

Guide to Using VMS

Order Number: AA-LAOSA-TE

April 1988

This manual describes general user tasks that can be performed using
the VMS operating system and is intended for users with all levels of
experience. The information contained within is applicable to all members
of the VAX and MicroVAX families of computers operating under the
control of the VMS operating system.

Revision/Update Information: This is a new manual.
Software Version: VMS Version 5.0

digital equipment corporation
maynard, massachusetts

April 1988

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright ©1988 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user’s critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL UNIBUS
DEC/CMS EduSystem VAX
DEC/MMS IAS VAXcluster
DECnet MASSBUS VMS
DECsystem—10 PDP VT
DECSYSTEM-20 PDT
DECUS RSTS
DECwriter RSX mﬂmﬂuau ™
ZK3390
HOW TO ORDER ADDITIONAL DOCUMENTATION
DIRECT MAIL ORDERS
USA & PUERTO RICO" CANADA INTERNATIONAL
Digital Equipment Corporation Digital Equipment Digital Equipment Corporation
P.O. Box CS2008 of Canada Ltd. PSG Business Manager
Nashua, New Hampshire 100 Herzberg Road c/o Digital’s local subsidiary
03061 Kanata, Ontario K2K 2A6 or approved distributor

Attn: Direct Order Desk

In Continental USA and Puerto Rico call 800-258-1710.
In New Hampshire, Alaska, and Hawaii call 603-884-6660.
Ln Canada call 800-267-6215.
Any prepaid order from Puerto Rico must be placed with the local Digital subsidiary (809-754-7575).

Internal orders should be placed through the Software Distribution Center (SDC), Digital Equipment
Corporation, Westminster, Massachusetts 01473.

Production Note

This book was produced with the VAX DOCUMENT electronic publishing
system, a software tool developed and sold by DIGITAL. In this system,
writers use an ASCII text editor to create source files containing text and
English-like code; this code labels the structural elements of the document,
such as chapters, paragraphs, and tables. The VAX DOCUMENT software,
which runs on the VMS operating system, interprets the code to format the
text, generate a table of contents and index, and paginate the entire document.
Writers can print the document on the terminal or line printer, or they can use
DIGITAL-supported devices, such as the LNO3 laser printer and PostScrlpt
printers (PrintServer 40 or LNO3R ScriptPrinter), to produce a typeset-quality
copy containing integrated graphics.

® PostScript is a trademark of Adobe Systems, Inc.

Contents

PREFACE Xv
CHAPTER 1 INTRODUCING VMS AND DCL 1-1

1.1 LOGGING IN TO THE SYSTEM 1-1

1.1.1 Alternative Login Procedures 1-3

1.1.1.1 Automatic Login ®* 1-3

1.1.1.2 Logging In over the Network ¢ 1-3

1.1.1.3 Dialing In 1-4

1.1.2 Logging Out of the System 1-5

1.2 USING THE DIGITAL COMMAND LANGUAGE 1-6

1.2.1 DCL Command HELP 1-7

1.2.2 The DCL Command Line 1-8

1.2.3 Prompting and System Defaults 1-11

1.2.4 Entering Parameters 1-11

1.2.5 Entering Qualifiers 1-12

1.2.5.1 Types of Qualifiers 1-12

1.2.5.2 Qualifier Defaults * 1-13

1.2.6 Entering Dates and Times as Values 1-14

1.2.6.1 Absolute Time ¢ 1-15

1.2.6.2 Delta Time * 1-16

1.2.6.3 Combination Time * 1-16

1.3 ENTERING AND EDITING DCL COMMANDS 1-17

1.31 Entering a DCL Command 1-19

1.3.2 Interrupting and Canceling a DCL Command 1-20

1.3.2.1 Using CTRL/T » 1-20

1.3.2.2 Using CTRL/Y ¢ 1-21

1.3.2.3 Using CTRL/C » 1-21

1.3.3 Redirecting the Output of Commands 1-21

1.34 Recalling Commands 1-21

1.3.5 Editing a DCL Command 1-22

1.3.6 Controlling Screen Display 1-23

1.3.7 Representing DCL Commands with Symbols 1-23

1.3.8 Defining Terminal Keys 1-24

1.3.8.1 Key States * 1-25

1.3.8.2 Examining and Deleting Keys * 1-26

Contents

1.4 UTILITIES 1-26
1.4.1 Using the Mail Utility 1-27
1.4.1.1 Creating a Mail Subdirectory ® 1-27
1.4.1.2 Sending Mail ® 1-27
1.4.1.3 Reading Mail « 1-30
1.4.1.4 Creating a File from a Mail Message * 1-31
1.4.1.5 Deleting Mail ¢ 1-32
1.4.1.6 Organizing Mail with Folders and Files * 1-32
1.4.1.7 Using the Mail Keypad » 1-34
1.4.1.8 Setting the Default Editor ¢ 1-35
1.4.2 Using the Phone Utility 1-36
1.4.3 Using the Sort/Merge Utility 1-37
1.4.3.1 Sorting Records ¢ 1-37
1.4.3.2 Other Types of Sorting * 1-39
1.4.3.3 Character Data Files * 1-39
1.4.3.4 Noncharacter Data Files ® 1-40
1.4.3.5 Terminal Input ¢ 1-40
1.4.3.6 Output File Organization « 1-41
1.4.3.7 Batch Job Submission ¢ 1—41
1.4.3.8 Merging Files ¢« 1-42

CHAPTER 2 WORKING WITH FILES AND DIRECTORIES 2-1
2.1 FILES 21
2.1.1 File Names, Types, and Versions 2-2
2.1.2 File Characteristics 2-4
2.2 DIRECTORIES 2-6
2.2.1 Directory Structure 2-6
2.2.2 Directory Names 2-8
2.3 DEVICES 2-8
2.3.1 Physical Device Names 2-9
2.3.2 Logical Device Names 2-10
233 Generic Device Names 2-10
2.4 FULL FILE SPECIFICATION 2-11
241 Using System Default Values When Specifying Files 2-12
2.5 FILE OPERATIONS 2-13
2.5.1 Using Wildcards with File Specifications 2-14
2.5.1.1 The Asterisk (*) Wildcard Character = 2—-14

vi

Contents

2.5.1.2 The Percent (%) Wildcard Character « 2—-15
2.5.2 Displaying the Contents of Files 2-15
2.5.3 Creating and Modifying Files 2-16
254 Deleting Files 2-17
2.5.5 Printing Files 2-18
2.6 DEVICE AND DIRECTORY OPERATIONS 2-20
2.6.1 Displaying Directories 2-20
2.6.2 Creating Directories 2-21
2.6.3 Deleting Directories 2-21
2.6.4 Setting a Default Directory 2-22
2.6.5 Setting a Default Device 2-23
2.6.6 Searching the Directory Structure with Search Wildcards __ 2-23
2.6.6.1 The Ellipsis (...} Wildcard Character « 2—23
2.6.6.2 The Hyphen (—) Wildcard Character « 2—24
2.6.6.3 Using Wildcards to Copy a Directory Structure ® 2—-25

CHAPTER 3 WORKING WITH PROCESSES 3-1
3.1 PROCESSES AND THE USER ENVIRONMENT 3-1
311 Programs 3-3
3.1.2 Command Procedures 3-4
3.1.3 Subprocesses 3-5
3.1.3.1 Exiting from a Subprocess * 3—6
3.1.3.2 Subprocess Context ¢ 3—7
314 Batch Jobs 3-8
3.1.5 Submitting a Batch Job 3-8
3.1.6 Batch Job Output 3-9
3.1.7 Restarting Batch Jobs 3-9

CHAPTER 4 USING LOGICAL NAMES 4-1
4.1 CREATING LOGICAL NAMES 4-2
4.1.1 Displaying Logical Names 4-3
4.1.2 Deleting Logical Names 4-5
4.2 LOGICAL NAME TABLES 4-5
4.2.1 The Process Table 4-5
4.2.2 The Job Table 4-6
4.2.3 The Group Table ' 4-7
4.2.4 The System Table 4-7

Contents

4.3 DIRECTORY LOGICAL NAME TABLES 4-9
4.3.1 The Process Directory Table 4-9
4.3.2 The System Directory Table 4-10
4.4 LOGICAL NAME TRANSLATION 4-11
441 Iterative Translation 4-12
4.4.2 Modifying Logical Name Translation 4-12
4.4.3 System Defaults During Logical Name Translation 4-13
4.5 LOGICAL NAME ACCESS MODES 4-13
4.6 CREATING A LOGICAL NAME TABLE 4-14
4.7 SEARCH LISTS 4-15
4.8 LOGICAL NODE NAMES 4-16
4.9 SYSTEM-CREATED LOGICAL NAMES 4-17
4.9.1 Process-Permanent Logical Names 4-17
4.9.1.1 Redefining SYSSINPUT ¢ 4-18
4.9.1.2 Redefining SYSSOUTPUT ¢ 4-18
49.1.3 Redefining SYSSERROR ¢ 4—-19
49.1.4 Redefining SYSSCOMMAND ¢ 4-19
4.9.2 System-Permanent Logical Names 4-20
CHAPTER 5 REPRESENTING DATA WITH SYMBOLS 5-1
5.1 DATA STORAGE 5-1
5.2 CREATING AND USING SYMBOLS 5-1
5.3 ABBREVIATING SYMBOL NAMES 5-4
5.4 DCL COMMANDS TO USE WITH SYMBOLS 5-5
5.5 SYMBOL SUBSTITUTION 5-6
5.6 STORING AND MANIPULATING DATA WITH SYMBOLS 5-7

viii

Contents

5.6.1 Symbol Values 5-7
5.6.1.1 Character String Values ¢ 5—-7
5.6.1.2 Numeric Values * 5-8
5.6.1.3 Values Returned by Lexical Functions * 5—9
5.6.1.4 Logical Values * 5-10
5.6.1.5 Using a Symbol as a Value for Another Symbol * 5—-10
5.6.2 Using Symbols in Expressions 5-11
5.6.2.1 Character String Expressions * 5-12
5.6.2.2 Numeric Expressions ¢ 5-13
5.6.2.3 Logical Expressions ® 5—15
5.6.2.4 Substring Replacement and Numeric Overlays * 5—16
5.6.2.5 Order of Operations and the Results of Evaluations * 5-18

CHAPTER 6 WRITING AND USING COMMAND PROCEDURES 6-1
6.1 FORMAT 6-1
6.2 EXECUTION 6-2
6.2.1 Changing Command Levels 6-3
6.2.2 Exiting from Command Procedures 6-4
6.3 DESIGNING A LOGIN COMMAND PROCEDURE 6-4
6.4 PASSING DATA 6-6
6.4.1 Using Parameters to Pass Data 6-6
6.4.2 The INQUIRE Command 6-9
6.4.3 The READ Command 6-9
6.4.4 Obtaining Data from SYS$INPUT 6-10
6.5 RETURNING DATA 6-11
6.6 DISPLAYING DATA 6-11
6.6.1 Displaying Character Strings and Symbols 6-12
6.6.2 Displaying Text 6-12
6.6.3 Displaying Files 6-13
6.7 READING AND WRITING FILES (FILE 1/0) 6-13
6.7.1 Specifying Files in Batch Job Command Procedures 6-13
6.7.2 Writing to a File 6-13
6.7.3 Reading from a File 6-15
6.7.4 Modifying a File 6-15

ix

Contents

6.7.4.1 Minor Modifications ® 6—16

6.7.4.2 Major Modifications ® 6—17

6.7.4.3 Appending Records to a File * 6—-18

6.7.5 Handling Input/Output (I/O) Errors 6-18

6.8 COMPLEX COMMAND PROCEDURES 6-18

6.8.1 Designing Complex Command Procedures 6-19

6.8.2 Coding Complex Command Procedures 6-20

6.8.2.1 The IF Command ¢ 6-21

6.8.2.2 Case Statements ® 6—23

6.8.2.3 Loops * 6—-24

6.8.2.4 Subroutines ¢ 6—25

6.8.3 Testing and Debugging 6-27

6.9 HANDLING ERRORS AND CTRL/Y INTERRUPTS 6-30

6.9.1 The ON Command 6-30

6.9.2 The SET [NOJON Command 6-31

6.9.3 CTRL/Y Interrupts 6-31

6.10 RESTARTING BATCH JOBS 6-32

6.11 CLEANUP OPERATIONS 6-33
CHAPTER 7 MAINTAINING ACCOUNTS AND SYSTEM SECURITY 7-1

71 USER ACCOUNTS 7-1

7.2 PROTECTION 7-1

7.2.1 UIC-Based Protection 7-2

7.2.1.1 UIC Format 7-2

7.2.1.2 Ownership and Access Categories ® 7—3

7.2.1.3 Protection Masks ¢ 7—-4

7.2.1.4 Securing User Data and Devices ® 7-5

7.2.2 ACL-Based Protection 7-5

7.2.2.1 Object Types » 7—6

7.2.2.2 Identifiers * 7—6

7.2.2.3 Access Control List Entries (ACE) » 7-7

7.2.2.4 IDENTIFIER ACEs 7—8

7.2.25 DEFAULT_PROTECTION ACEs » 7-9

7.2.2.6 ALARM_JOURNAL ACEs » 7-9

7.2.3 File Protection 7-9

7.2.3.1 Default File Protection * 7—-10

Contents

7.2.3.2 Explicit File Protection ¢ 7-10
7.2.3.3 Directory Protection ¢ 7—11
7.2.34 Mail File Protection ¢ 7—11
7.2.4 Disk Volume Protection 7-11
7.2.5 Device Protection 7-12
7.2.6 Displays of Ownership and Protection 7-12
7.3 CREATING AND DELETING ACLS 7-13
7.3.1 Using the SET ACL Command 7-13
7.3.2 ACL Editor 7-15
7.3.2.1 Using Prompts ® 7—-16
7.3.2.2 Moving the Cursor ® 7-17
7.3.23 Entering and Deleting Data » 7-17
7.3.2.4 Processing an ACE » 7-18

CHAPTER 8 EDITING FILES WITH THE EVE AND EDT EDITORS 8-1
8.1 THE EVE EDITOR 8-1
8.1.1 Beginning and Ending an Editing Session 8-1
8.1.1.1 Invoking EVE ¢ 8—1
8.1.1.2 Ending an Editing Session *« 8—-3
8.1.2 Entering EVE Commands 84
8.1.2.1 Using Defined Keys to Enter EVE Commands * 8—4
8.1.2.2 Entering EVE Commands ¢ 8—6
8.1.3 Editing Text 8-7
8.1.3.1 Moving the Cursor ¢ 8—7
8.1.3.2 Inserting Text « 8—-10
8.1.3.3 Erasing and Restoring Text « 8—-13
8.1.3.4 Moving Text from One Location to Another ¢ 8—15
8.1.3.5 Locating Text ¢ 8—17
8.1.3.6 Marking Locations in Text ¢ 8—19
8.1.3.7 Replacing Text « 8—20
8.1.4 Using the HELP Facility 8-22
8.1.5 Recovering from System Interruptions 8-23
8.1.5.1 Refreshing the Screen « 8—23
8.1.5.2 Using the Journal File « 8-23
8.1.6 Formatting Text 8-24
8.1.7 Using Buffers 8-31
8.1.7.1 Listing Buffers « 8—32
8.1.7.2 Displaying the Contents of the Messages Buffer » 8—32
8.1.7.3 Editing Two Buffers « 8—33
8.1.7.4 Reading and Writing Files ® 8—34
8.1.8 Using Windows 8-35
8.1.8.1 Editing One Buffer « 8—35
8.1.8.2 Editing Two Buffers « 8—36

Xi

Contents

Xii

8.1.9 Defining Keys 8-39
8.1.9.1 Defining Keys to Execute an EVE Command ¢ 8—-39

8.1.9.2 Defining Keys to Enter a Learn Sequence ® 8—40

8.1.9.3 Defining a GOLD Key ¢ 8—41

8.1.9.4 Saving Key Definitions and Learn Sequences * 8—43

8.1.95 Creating Initialization Files * 8—44

8.1.10 Using the TPU Command 8-45
8.1.11 Using DCL Within EVE 8-45
8.1.11.1 Executing a DCL Command ¢ 8-46

8.1.11.2 Creating a Subprocess * 8—-46

8.2 THE EDT EDITOR 8-46
8.2.1 Invoking and Terminating EDT 8-47
8.2.1.1 Invoking EDT ¢ 8—47

8.2.1.2 Terminating EDT » 8—48

8.2.2 Entering EDT Commands 8-48
8.2.2.1 Entering EDT Line Commands ¢ 8-48

8.2.2.2 Entering Keypad Commands ¢ 8—49

8.2.2.3 Canceling EDT Commands ® 8—-51

8.2.3 Getting HELP in EDT 8-51
8.2.3.1 Getting HELP on Keypad-Editing Commands ¢ 8-51

8.2.3.2 Getting HELP on Line-Editing Commands ¢ 8-52

8.2.3.3 Getting HELP on Nokeypad-Editing Commands ¢ 8—-52

8.2.4 Changing Editing Modes 8-52
8.2.4.1 Changing from Keypad to Line Editing ® 8-52

8.24.2 Changing from Line to Keypad Editing * 8—52

8.2.43 Entering Line-Editing Commands from Keypad Mode ¢ 8—53

8.2.5 Recovering from Interruptions 8-53
8.2.6 EDT Keypad Editing 8-54
8.2.6.1 Manipulating the Cursor ¢« 8—-54

8.2.6.2 Inserting Text « 8—-59

8.2.6.3 Deleting and Restoring Text ¢ 8—59

8.26.4 Locating Text ® 8—62

8.2.6.5 Substituting Text * 8—64

8.2.6.6 Moving Text ® 8—65

8.2.6.7 Moving Text Within the File « 8—65

8.2.6.8 Using Multiple Buffers « 8—69

8.2.7 Controlling EDT Sessions 8-71
8.2.7.1 Startup Command Files ¢ 8—71

8.2.7.2 Controlling Screen Format with SET Commands ¢ 8—72

8.2.7.3 Controlling Editing Functions with SET Commands ¢ 8-72

8.2.7.4 Defining Keys ¢ 8—73

8.2.75 Defining EDT Macros » 8-74

Contents

CHAPTER 9 PROCESSING FILES WITH DIGITAL STANDARD
RUNOFF

9-1
9.1 FORMATTING TEXT 9-1
9.1.1 Filling and Justifying Text 9-4
9.1.2 Adjusting Margins and Centering Text 9-5
9.1.3 Formatting Paragraphs 9-6
9.1.4 Formatting Literal Text 9-7
9.1.5 Formatting Lists 9-8
9.1.6.1 Numbered Lists * 9—8
9.1.56.2 Bulleted Lists » 9-9
9.1.6.3 Nested Lists * 9—10
9.1.5.4 Lists Beginning with Letters and Roman Numerals ¢ 9-10
9.1.6 Leaving Space on a Page 9-11
9.1.7 Formatting Notes 9-11
9.1.8 Formatting Footnotes 9-12
9.1.9 Bolding and Underlining Text 9-12
9.2 LAYING OUT A DOCUMENT 9-13
9.2.1 Chapters and Appendixes 9-14
9.2.2 Sections 9-14
9.2.3 Running Heads 9-16
9.24 Pagination 9-17
9.3 PROCESSING DSR FILES 9-17
9.3.1 Producing a Table of Contents 9-17
9.3.2 Producing an Index 9-18
9.3.3 Printing Output Files 9-20
APPENDIX A CHARACTER SETS A-1
A.1 ASCIl CHARACTER SET A-1
A.2 ASCIlI AND DEC MULTINATIONAL CHARACTER SET
TABLES A-1
A.3 DEC MULTINATIONAL CHARACTER SET A-5

Xiii

Contents

APPENDIX B EXPRESSIONS B-1
INDEX
FIGURES
2-1 Directory Structure 2-7
8-1 Editing Keys—VT200-Series and VT300-Series
Terminals 8-5
8-2 Editing Keys—VT100-Series Terminals 8-6
TABLES
1-1 Built-lIn Commands 1-7
1-2 Keys That Execute Terminal Functions 1-17
2-1 Default File Types 2-2
2-2 File Specification Defaults 2-12
4-1 Default Process Logical Names 4-6
4-2 Default Job Logical Names 4-7
4-3 Default System Logical Names 4-8
4-4 Default Process Directory Logical Names 4-9
4-5 Default System Directory Logical Names 4-10
4-6 Equivalence Names for Process-Permanent Logical
Names 4-17
5-1 DCL Commands to Use with Symbols 5-5
5-2 Determining the Value of an Expression 5-18
A-1 Graphical Representation of the ASCII Character Set ___ A-2
A-2 Graphical Representation of the DEC Multinational
Extension to the ASCIl Character Set A-4
A-3 Abbreviations and Descriptions of the DEC Multinational
Character Set A-6

Preface

This manual provides an overview of the VMS operating system and is
designed to support general users in their daily computing tasks.

Intended Audience

This manual is intended for all general users.

Document Structure
This manual includes the following chapters:
¢ Chapter 1—Introducing VMS and DCL
® Chapter 2—Working with Files and Directories
¢ Chapter 3—Working with Processes
* Chapter 4—Using Logical Names
* Chapter 5—Representing Data with Symbols
* Chapter 6—Writing and Using Command Procedures
* Chapter 7—Maintaining Accounts and System Security
* Chapter 8—Editing Files with the EVE and EDT Editors
¢ Chapter 9—Processing Files with DIGITAL Standard Runoff

Two appendixes contain the following information:

® ASCII character set

e ASCII and DEC multinational character set tables
* DEC Multinational Character Set

* Expressions

Preface

Conventions

Convention

Meaning

CTRL/C

$ SHOW TIME

05-JUN-1988 11:565:22

$ TYPE MYFILE.DAT

input-file, . . .

[logical-name]

quotation marks
apostrophes

In examples, a key name (usually abbreviated)
shown within a box indicates that you press

a key on the keyboard; in text, a key name is
not enclosed in a box. In this example, the key
is the RETURN key. (Note that the RETURN
key is not usually shown in syntax statements
or in all examples; however, assume that you
must press the RETURN key after entering a
command or responding to a prompt.)

A key combination, shown in uppercase with a
slash separating two key names, indicates that
you hold down the first key while you press the
second key. For example, the key combination
CTRL/C indicates that you hold down the key
labeled CTRL while you press the key labeled C.
In examples, a key combination is enclosed in a
box.

In examples, system output (what the system
displays) is shown in black. User input (what
you enter) is shown in red.

In examples, a vertical series of periods, or
ellipsis, means either that not all the data that
the system would display in response to a
command is shown or that not all the data a
user would enter is shown.

In examples, a horizontal ellipsis indicates
that additional parameters, values, or other
information can be entered, that preceding
items can be repeated one or more times, or
that optional arguments in a statement have
been omitted.

Brackets indicate that the enclosed item is
optional. {Brackets are not, however, optional
in the syntax of a directory name in a file
specification or in the syntax of a substring
specification in an assignment statement.)

The term quotation marks is used to refer
to double quotation marks (“). The term
apostrophe () is used to refer to a single
quotation mark.

XVi

1.1

Introducing VMS and DCL

Your VAX computer operates under the control of the VMS (Virtual Memory
System) operating system. VMS is an interactive system: while you are
logged in to the computer, you and the system conduct a dialogue of
command and response. You use DCL, the DIGITAL Command Language
interpreter, to communicate with VMS. DCL provides you with over 200
commands and functions to use in communicating with VMS to accomplish
your computing tasks.

This chapter describes basic interaction with the VMS operating system. In it,
you will learn how to log in to the system, how to use DCL to communicate
with the system, how to customize your computing environment, how to get
online help, and how to use two system utilities that let you communicate
with other users.

Some of the topics discussed in this chapter require you to be familiar with
your terminal. For information on setting up or using your terminal, see the
owner’s manual supplied with your terminal.

Logging In to the System

In order to interact with the VMS operating system, you must log in to

an account. Logging in consists of identifying yourself to the system as

an authorized user. Your system manager or whoever authorizes system
use at your installation usually sets up accounts. This person provides you
with your user name and password. Your user name is a unique name that
identifies you to the system and distinguishes you from other users. In
many cases, a user name is your first or last name. Your password is for
your protection. If you maintain its secrecy, other users cannot use system
resources under your user name.

Use the following procedure to log in to the system:
1 Make sure your terminal is plugged in and the power is turned on.

2 Press RETURN to signal the system that you want to log in. (You may
need to press RETURN several times.) The system responds by displaying
a prompt for your user name.

3 Enter your user name and press RETURN. The system displays your user
name on the screen as you type it. (You have about 30 seconds to do this,
otherwise the system “times out” and you must start the login procedure
again.) After you enter your user name and press RETURN, the system
prompts you for your password.

4 Enter your password and press RETURN. The system does not display
your password as you type it; this preserves the secrecy of your password.
The password you enter is compared with the encrypted password stored
in a system file called the User Authorization File (UAF). (See Section 7.1
for more information about the UAF file.)

Introducing VMS and DCL
1.1 Logging In to the System

If you make a mistake entering your user name or password, or your
password has expired, the system displays the message “User authorization
failure,” and you are not logged in. This message means that you made a
typing mistake when entering your user name or password, or that your
user name or password is incorrect. If you make a mistake entering your
user name or password, press RETURN and try again. If your password has
expired or you have any other problems logging in, get help from the person
who set up your account.

Some accounts are set up to require two passwords. If you see a second
password prompt, enter the second password required to access that account.

If none of these prompts ($, Password:, or Username:) appears when you
press RETURN, a system password may be required to log in to your system.
If you know the system password, type it and press RETURN. If you do not
know it, see the person in charge of your system.

If your login is successful, a dollar sign symbol ($) is displayed in the

left margin of your terminal. This dollar sign is a prompt that VMS uses

to indicate you are at DIGITAL Command Language (DCL) level and can
begin entering DCL commands. When you log in to the system and work
interactively with DCL, you are at command level 0. When you execute a
program interactively, you are placed at command level 1; when the program
completes execution, you are returned to command level 0.

The following example shows a successful login:

[RET
Username: CASEY
Pagsword:
Welcome to VAX/VMS version 5.0 on node MARS
Last interactive login on Friday, 31-DEC-1988 08:41
Last non-interactive login on Thursday, 30-DEC-1988 11:05
$

If your account was set up by someone else, immediately change your
password after you log in for the first time. You should also change your
password frequently to ensure system security. To change your password,
enter the DCL command SET PASSWORD. Enter your old password at
the first prompt and press RETURN. Enter your new password at the next
prompt and press RETURN. Finally, enter your new password again and
press RETURN to confirm your choice. The following example shows what
you see:

$ SET PASSWORD
01d password:
New password:
Verification:

(If you are managing your own system, see the Guide to Setting Up a VMS
System for instructions on setting up a user account and establishing a
password.)

Each time you log in, the system automatically executes up to two login
command procedures. A command procedure is a file that contains a list
of DCL commands. When a command procedure is executed, the DCL

interpreter reads the file and executes the commands it contains.

If your system manager has set up a system login command procedure, it

is executed when you log in. This command procedure allows your system
manager to ensure that certain commands are always executed when you and
other users on your system log in.

1.1.1

Introducing VMS and DCL
1.1 Logging In to the System

After executing the system login command procedure, the system executes
your personal login command procedure, if one exists. Your personal login
command procedure allows you to customize your computing environment.
The commands contained in it are executed every time you log in. The person
who set up your account may have placed a login command procedure in
your top level directory. (Unless your account has been specially modified to
do otherwise, the system automatically places you in your top level directory
when you log in.) If a login command procedure is not there, you can create
one yourself, name it LOGIN.COM, and place it in your top level directory
unless your system manager tells you otherwise. DCL and DCL commands
are discussed in Section 1.2, Directories, including your top level directory,
are discussed in Chapter 2. A sample personal login command procedure is
described in Section 6.3.

When you log in, an environment is created from which you can enter
commands. This environment is called your process. The system obtains the
characteristics that are unique to your process from the user authorization file
(UAF). The UAF lists those users permitted to access the system and defines
the characteristics for each user’s process. The system manager usually
maintains the UAF. See Chapter 3 for more information about processes.

Alternative Login Procedures

The standard login procedure described in the preceding section may not fit
your needs if you must log in to a terminal assigned to a specific account,
access a system other than your own, or dial in to your system by telephone.
The following sections describe these procedures.

1.1.11

Automatic Login

You may need to log in to a terminal that is assigned to a particular account.
This procedure, called automatic login, permits you to log in without
specifying a user name. To log in, turn on the terminal and press the
RETURN key. Either the DCL or password prompt appears. If the DCL
prompt appears, you are logged in. If the password prompt appears, type the
password of the account associated with the terminal and press RETURN.
(The password is not displayed on the screen.) If your login is successful, you
see the DCL dollar sign prompt that VMS uses to indicate you are at DCL
command level and can begin entering commands.

1.1.1.2

Logging In over the Network

Your system may be part of a DECnet-VAX network. VMS systems linked
together in a DECnet network are able to communicate with each other and
share information and resources. Each system in the network is called a
network node and is identified by a unique node name and address. When
you are logged in to a network node, you can communicate with every other
node in the network. The node at which you are logged in is called the local
node; the other nodes on the network are called remote nodes.

If you have access to an account on a remote node, you can log in to that
account from your local node and use the facilities of that remote node while
remaining physically connected to your local node.

The following example shows how to access a remote node on the network
using the DCL command SET HOST. HUBBUB is the name of the remote
node.

$ SET HOST HUBBUB

Introducing VMS and DCL
1.1 Logging In to the System

1-4

You can then log in to your account on the remote node using the remote
node’s login procedure. When you use the SET HOST command to log in
to a remote node, you can perform any operation on the remote node as
though it were your local node. Note that the remote node need not be a
VMS system. If the network link cannot be established, you receive an error
message.

If you want to abort the login procedure, enter CTRL/Z at the user name or
password prompt or enter CTRL/Y twice. The host system should respond
with the question, “Are you repeating “Y to abort the remote session?”
Answering Y (uppercase or lowercase) aborts the remote session.

You can terminate a remote session in two ways:

* Use the remote system’s logout procedure (for example, on a VMS
system, use the LOGOUT command).

* Press CTRL/Y twice to obtain the host system’s prompt that asks whether
you want to abort the remote session. Answer Y if you want to abort the
remote session. This method works regardless of the system running on
the remote node.

When you terminate a remote session, the message “%REM-S-END, control
returned to node _NODENAME::” is displayed, and you are returned to the
system from which you made the remote node connection.

If the DECnet network has made intermediate connections for you and one
of the intermediate systems goes down, DECnet either attempts to reroute
the connection or waits a few seconds to determine whether the system will
recover. If DECnet is able to recover the connection, the interruption may
be so brief that you do not notice it, or it may last as long as 60 seconds. If
DECnet cannot recover the connection, the remote session is terminated and
the message “Path lost to partner” may be displayed.

See the VMS DCL Dictionary for more information about the DCL command
SET HOST. For more information about networking and DECnet, see the
Guide to DECnet-VAX Networking.

Dialing In
Dialing in allows you to communicate with your system by telephone. To
dial in to your system, you need the following items:

* Modem (or data set)—A modem is a piece of hardware that is
independent of the VMS system. The user’s manual that comes with
the modem should describe how to connect the modem to a telephone
line and a terminal.

* Terminal—You cannot dial in unless the transmission speed (baud rate)
of the terminal agrees with the baud rate of the modem and the modem
terminal characteristic is set. To set the baud rate for VT200- and VT300-
series terminals, select the “Comm” category in the Set-Up Directory. To
set the baud rate for a VT100 series terminal, you must be in SET-UP
B. To enter the Set-Up Directory, press the SET-UP key. Press the key
labeled A/B to toggle to SET-UP B.

To set the modem terminal characteristic, use the DCL command

SET TERMINAL/MODEM. If your terminal has the modem terminal
characteristic set (the DCL command SHOW TERMINAL lists the terminal
characteristics set for your terminal), typing the SET
TERMINAL/NOMODEM command causes the system to log you out.

Introducing VMS and DCL
1.1 Logging In to the System

See your terminal’s installation manual for information on using the
Set-Up Directory to set the baud rate and other terminal characteristics.

* Manual login account—If your account is set up for automatic login, you
cannot dial in to it. Either change the account to a manual login account
(one where you must type your user name) or use a different account.

¢ Telephone number for the system—To dial in, you must know the
telephone number for your system. Get the telephone number from your
system manager.

Once the terminal is receiving the signal through the telephone line,
follow the conventions your site has instituted for remote login. When
communication is established, your system should respond with the DCL
dollar sign prompt.

If you are managing your own system, you can ensure system security by
disallowing dialup accounts with null passwords.

1.1.2 Logging Out of the System

When you finish using the system, always log out. This prevents
unauthorized users from accessing your account and the system at large.
It is also a wise use of system resources: the resources you no longer need
are freed for use by others.

To log out, enter the LOGOUT command, which can be abbreviated as LO.
You see a display confirming that you are logged out of the system that looks
similar to the following:

$ LOGOUT
HARRIS logged out at 31-DEC-1988 12:42:48.12

You can log out of the system only when you are at the DCL prompt. You
cannot enter the LOGOUT command while you are compiling or executing

a program, using an editor (such as EDT or EVE), or running a utility (such
as MAIL). First you must exit the program, editor, or utility and receive the
DCL prompt. It is possible to exit by entering CTRL/Y, but this is not always
advisable. See Section 1.3.2.2 for more information about using CTRL/Y.

To find out how much time you spent at the terminal (elapsed time), how
much computer time you used (charged CPU time), and other accounting
information, include the /FULL qualifier to the LOGOUT command as
follows:

$ LOGOUT/FULL
SIMPSON logged out at 31-DEC-1988 12:42:48.12

Accounting information:

Buffered I/0 count: 8005 Peak working set size: 212
Direct I/0 count: 504 Peak virtual size: 770
Page faults: 1476 Mounted volumes: 0

Charged CPU time:0 00:00:50.01 Elapsed time:0 02:27:43.06

If you are logging out from a dialup terminal, enter the LOGOUT command
with the /HANGUP qualifier. This command causes the system to break the
connection to the dialup line after you log out.

Introducing VMS and DCL
1.2 Using the DIGITAL Command Language

1.2 Using the DIGITAL Command Language

The DIGITAL Command Language (DCL) is the language you use to
communicate with the VMS operating system. DCL commands let you
do the following:

Get information about the system

Work with files

Work with disks, magnetic tapes, and other devices
Modify your work environment

Develop and execute programs

Provide security and ensure that resources are used efficiently

DCL commands are usually verbs that describe what you want the system to
do. In response to the DCL dollar sign ($) prompt, you enter a command (in
upper- or lowercase). The following example shows how to enter the DCL
command SHOW TIME:

$ SHOW TIME

The system responds by displaying the current date and time and returns the
DCL prompt to indicate it is ready to accept another command:

31-DEC-1988 15:41:43

$

You can use DCL in the following two modes:

Interactive—In interactive mode, you enter commands from your
terminal. One command has to finish executing before you can enter
another.

Batch—In batch mode, the system creates another process to execute
commands on your behalf. Batch jobs and network processes use DCL
in batch mode. A process is an environment created by the system that
makes it possible for you to work with the system. A batch job is a
command procedure or program that is submitted to the operating system
for execution as a separate user process. After you submit the command
procedure for batch execution, you can continue to use your terminal
interactively. (See Chapter 3 for more information about processes and
batch jobs.)

When you type a command and press RETURN, it is read and translated
by the DCL interpreter. The way the command interpreter responds to
a command is determined by the type of command entered. The three
types of commands are as follows:

- Built-in commands—These commands, listed in Table 1-1, are
built into the DCL interpreter. DCL executes a built-in command
internally.

- Commands that invoke programs—DCL calls another program
to execute the command rather than executing it internally. The
program invoked to execute a command is referred to as a command
image. This command image can be either an interactive program
like MAIL or a noninteractive program like COPY. Parameter and
qualifier information (which modify the command) are passed to the
program. Most commands not listed in Table 1-1 are in this category.

1.2.1

Introducing VMS and DCL
1.2 Using the DIGITAL Command Language

- Foreign commands—A symbol that executes an image is referred
to as a foreign command. A foreign command executes an image
whose name is not recognized by the command interpreter as a DCL
command. The following example defines the symbol FUN as a
foreign command. (No DCL command FUN exists.)

$ FUN := $DISK1:[ROY.PROGRAMS]GAMES.EXE

The request to execute the image GAMES.EXE is implied in the
symbol definition by the presence of the dollar sign. (File names
with a file type EXE are always executable images.) Once you equate
the symbol FUN to the file specification shown, you can execute the
image GAMES.EXE by typing FUN.

See Chapter 5 and the VMS DCL Concepts Manual for information
about defining symbols. See Chapter 3 for a description of images.
Chapter 2 describes file names, file types, and file specifications.

Table 1-1 Built-In Commands

= == = == ALLOCATE ASSIGN
ATTACH CALL CANCEL

CLOSE CONNECT CONTINUE
CREATE/LOGICAL_NAME_TABLE DEALLOCATE DEASSIGN

DEBUG DECK DEFINE

DEFINE/KEY DELETE/KEY DELETE/SYMBOL
DEPOSIT DISCONNECT ENDSUBROUTINE
EOD EXAMINE EXIT

GOSUB GOTO IF

INQUIRE ON OPEN

READ RECALL RETURN

SET CONTROL SET DEFAULT SET KEY

SET ON SET OUTPUT_RATE SET PROMPT

SET PROTECTION/DEFAULT SET UIC SET VERIFY

SHOW DEFAULT SHOW KEY SHOW PROTECTION
SHOW QUOTA SHOW STATUS SHOW SYMBOL
SHOW TIME SHOW TRANSLATION SPAWN

STOP SUBROUTINE WAIT

WRITE

DCL Command HELP

You can obtain online documentation for any DCL command by invoking the
HELP facility. To use the HELP facility in its simplest form, enter the DCL
command HELP. HELP displays a list of topics and the Topic? prompt. If
you want to see information on one of the topics, type the topic name after
the prompt. The system displays information on that topic. (Command and
topic names can be abbreviated.)

Introducing VMS and DCL
1.2 Using the DIGITAL Command Language

If the topic has subtopics, HELP lists the subtopics and displays the Subtopic?
prompt. If you want information on one of the subtopics, type the name after
the prompt. If you want information on another topic, press RETURN. You
can ask for information on another topic when HELP displays the Topic?
prompt. If you want to exit the HELP facility, press RETURN again to return
to DCL level. At any time, press CTRL/Z to exit.

If you know the command you need information about, type HELP and the
command name.

If you need help but do not know what command or system topic to specify,
enter the command HELP with the word HINTS as a parameter. Each task
name listed in the HINTS text is associated with a list of related command
names and system information topics.

Following is a sample HELP display for the DCL command SHOW USERS:

$ HELP SHOW USERS
SHOW
USERS

Displays the terminal name, username, and process
identification code (PID) of either specific interactive
users or all interactive users on the sytem.

Format:

SHOW USERS [username]

Additional information available:

Parameters Command_Qualifiers
/OUTPUT
Examples

SHOW USERS Subtopic?

You can also obtain help while you are using an interactive utility. Utilities
are programs that are invoked with DCL commands. To get help while
you are using an interactive utility, type HELP at the utility prompt (and
press RETURN) just as you would at DCL level. See Section 1.4 for more
information about VMS utilities.

1.2.2 The DCL Command Line

DCL, like any language, has its own vocabulary and usage rules. The
vocabulary consists of commands, parameters, and qualifiers, which are
strung together in a way that DCL can interpret. The way in which the parts
of a command line are put together is referred to as the command line syntax.
DCL command line syntax follows the following general format shown.
(Items in square brackets [] are optional and may not be required by a specific
command.)

[$] [label:] command [/qualifier[=value]...] [parameter[/qualifier...]]

Introducing VMS and DCL
1.2 Using the DIGITAL Command Language

The DCL command line can contain the following components:

3 The dollar sign is the DCL prompt. When you work
interactively with DCL, DCL displays the prompt when it is
ready to accept a command. When you write a command
procedure, you must type the dollar sign at the beginning of

each line.

Label Identifies a line in a command procedure. Use labels
only within command procedures, which are described in
Chapter 6.

Command Specifies the name of the command.

Parameter Specifies what the command acts upon. You must position

parameters in a specified order within the command. The DCL
command descriptions in the VMS DCL Dictionary describe
what parameter values are allowed for each command and
where they must be placed. Examples of parameter values
include file specifications, queue names, and logical names.

Qualifier Modifies the action taken by the command. Some qualifiers
can modify parameters. Some can accept values. The DCL
command descriptions in the VMS DCL Dictionary indicate
whether a specific qualifier can accept a value and what kind
of value is acceptable.

Value Modifies a qualifier and is often preceded by an equal sign.
A value can be a file specification, a character string, a
number, or a DCL keyword. A keyword is a word reserved
for use in certain specified syntax formats. You must use
keywords exactly as listed in the description of the particular
DCL command you want to specify. For example, SYSTEM,
OWNER, GROUP, and WORLD are DCL keywords. A DCL
keyword can also have a value.

Following is an example of a DCL command line:

$ PRINT/COPIES=5 LAUNDRY .LIS [RET]

In the previous example, the elements are as follows:

¢ $is the DCL prompt.

® PRINT is a command.

* /COPIES is a qualifier that modifies the command.

* 5is a value that modifies the qualifier.

* LAUNDRY.LIS is a parameter (in this case the parameter is a file

specification).

In some cases (such as DELETE/ENTRY or SHOW QUEUE), a command
is coupled with a parameter or qualifier. In these cases, the command and
parameter or qualifier are used as a pair and cannot be separated. If you
specify additional parameters or qualifiers, they must follow the command
pair.

The following example shows a command pair that contains a command
(SHOW) and a parameter (QUEUE). The additional parameter LNO3_PRINT,
which specifies the queue name whose jobs you want displayed, is specified
after the command pair.

1-9

Introducing VMS and DCL
1.2 Using the DIGITAL Command Language

$ SHOW QUEUE LNO3_PRINT

Observe the following rules when entering DCL commands:

You can use any combination of uppercase and lowercase letters. The
DCL interpreter translates lowercase letters to uppercase. Upper- and
lowercase characters in parameter and parameter qualifier values are
equivalent unless enclosed in quotation marks.

Separate the command name from the first parameter with at least one
blank space. Separate each additional parameter from the previous
parameter with at least one blank space. Begin each qualifier with a slash
(/) the slash serves as a separator and need not be preceded by blank
spaces or tabs.

You may need more than one line on your terminal screen to type

a command line. Continue the command line onto the next line by
terminating it with a hyphen and pressing RETURN. The system responds
to this combination of a hyphen and RETURN with an underscore (—)
followed by the dollar sign prompt; you continue typing the command
line after this prompt. (A single command line cannot exceed 256
characters.) A line beginning with an underscore means that the system
is waiting for your response, as shown in the following example:

$ COPY/LOG FORMAT.TXT,FIGURE.TXT,ART_WORK.TXT -
_$ SAVE.TXT

Note that you must include the appropriate spaces between command
names, parameters, and so on. Pressing RETURN after the hyphen does
not add a space.

A command line can contain a maximum of 128 elements (for example,
a file specification or qualifier). Each element in a command must not
exceed 255 characters. The entire command must not exceed 1024
characters after all symbols and lexical functions are converted to their
values. (You use symbols, described in Chapter 5, to pass information
to the system in an abbreviated manner. A lexical function, described in
Chapter 6, obtains information from the system, including information
about system processes, batch and print queues, and user processes, and
then substitutes the result of the operation for itself.)

You can abbreviate any command name by typing only the first four
characters. You can abbreviate a command name to fewer than four

characters as long as the abbreviated name remains unique among all
DCL command names.

For example, the following commands are equivalent:

$ PR/C=2 FORMAL_ART.TXT
$ PRINT/COPIES=2 FORMAL_ART.TXT

In interactive mode, you will work faster if you abbreviate. Do not
abbreviate commands in command procedures because your command
procedure will be difficult to read. Also, the abbreviations might not be
valid if new DCL commands are added at a later date.

Other rules governing the format of commands apply mainly to their use
in command procedures. See Chapter 6 for more information about using
commands in command procedures.

1-10

Introducing VMS and DCL
1.2 Using the DIGITAL Command Language

1.2.3 Prompting and System Defaults

Some items must be entered on the command line. If you do not enter them,
the system displays a prompt and asks you to supply the missing information.
In the following example, the TYPE command expects a file specification.
Because a file specification is a required parameter, if you do not enter one,
the system requests it. A line beginning with an underscore () means the
system is waiting for your response.

$ TYPE
_File: WATER. TXT

When you are prompted for an optional parameter, press RETURN to omit it.
At any prompt, you can enter one or more of the remaining parameters and
any additional qualifiers.

If you press CTRL/Z after a command prompt, DCL ignores the command
and redisplays the DCL prompt.

Some items need not be specified on the command line. These are called
defaults. When DCL does something by default, it assumes that you want

a command to use certain values or to take certain actions without your
having to explicitly specify them. In general, the values and actions are those
considered normal or expected by users.

For example, if you do not specify the number of copies as a qualifier for
the PRINT command, DCL uses the default value of 1. Unless you specify
otherwise, DCL assumes that you have chosen the default. You can override
this default behavior and print multiple copies of a file by specifying the
following:

$ PRINT/COPIES=4 MYFILE.TXT

DCL supplies default values in several areas, including command parameters
and qualifiers. Parameter defaults are described in the following section;
qualifier defaults are described in Section 1.2.5.2.

1.2.4 Entering Parameters

DCL supplies default values for some command parameters. The parameters
accepted by a command as well as the specific command parameter defaults
supplied by DCL are described in each command description in the VMS DCL
Dictionary. The following rules apply when specifying parameters:

® Square brackets ([]) indicate optional items. In the following example,
you do not have to enter a file specification:

DIRECTORY ([file-spec}

Anything not enclosed in square brackets is required. In the following
example, you must enter a device name:

SHOW PRINTER device-name
* Place required parameters to the left of optional parameters.

® Precede an output file parameter with an input file parameter. In the
following example, the input file, LISTS.TXT, is copied to the output file,
FORMAT.TXT:

$ COPY LISTS.TXT FORMAT.TXT

1-11

Introducing VMS and DCL
1.2 Using the DIGITAL Command Language

The following example reverses the order of the parameters, copying the
input file, FORMAT.TXT, to the output file, LISTS.TXT:

$ COPY FORMAT.TXT LISTS.TXT

* A parameter can be one item or a series of items. If you enter a series of
items, separate them with commas (,) or plus signs (+). Any number of
spaces or tab characters can precede or follow a comma or a plus sign.
Note that some commands regard the plus sign as a concatenator, not as
a separator. The parameter section of each DCL command description in
the VMS DCL Dictionary describes how each command interprets commas
and plus signs.

The following command syntax line shows that you can optionally enter
a list of files as the parameter:

DELETE file-spec....]

The following example shows how to specify a list of parameters. Here,
three files are copied to a fourth file. The three file specifications—
PLUTO.TXT, SATURN.TXT, and EARTH.TXT—constitute the first
parameter. PLANETS.TXT is the second parameter.

$ COPY PLUTO.TXT,SATURN.TXT,EARTH.TXT PLANETS.TXT

1.2.5 Entering Qualifiers

1-12

The qualifiers accepted by a command are described in each command
description in the VMS DCL Dictionary. The DCL command description
also indicates whether a qualifier accepts a value and what kind of value is
required.

You can abbreviate any qualifier name by typing only the first four characters
(not counting the slash). You can use fewer than four characters to abbreviate
a qualifier name as long as the abbreviated name remains unique among all
qualifier names for the same command.

Although you are never required to specify a qualifier, commands have
defaults automatically applied. You need to be aware of the defaults that
apply for each qualifier. The following sections describe types of qualifiers
and qualifier defaults.

1.2.5.1

Types of Qualifiers
The three types of qualifiers are as follows:

* Command qualifiers—A command qualifier modifies a command.
Although it is a good practice to place the qualifier after the command
name (or, if you are specifying multiple qualifiers, after other command
qualifiers that follow the command name), a command qualifier can
appear anywhere in the command line.

In the following example, /QUEUE is a command qualifier. The files
SATURN.TXT and EARTH.TXT are queued to the LNO3_PRINT queue.

$ PRINT/QUEUE=LNO3_PRINT SATURN.TXT,EARTH.TXT

Introducing VMS and DCL
1.2 Using the DIGITAL Command Language

¢ Positional qualifiers—A positional qualifier can modify commands or
parameters and has different meanings depending on where you place
it in the command string. If you place a positional qualifier after the
command but before the first parameter, it affects the entire command
string. If you place a positional qualifier after a parameter, it affects only
that parameter.

In the following example, the first PRINT command requests two copies
of the files SPRING.SUM and FALL.SUM. The second PRINT command
requests two copies of the file SPRING.SUM, but only one copy of
FALL.SUM.

$ PRINT/COPIES=2 SPRING.SUM,FALL.SUM
$ PRINT SPRING.SUM/COPIES=2,FALL.SUM

* Parameter qualifiers—A parameter qualifier can be used only with certain
types of parameters, such as input and output files.

For example, the BACKUP command accepts several parameter qualifiers
that apply only to input and output file specifications. In the following
example, the /CREATED and /BEFORE qualifiers, which can be specified
only with input files, select specific input files for the backup operation.
(For the purposes of this example, multiple copies of the file MYFILE. TXT
exist. Only those versions that were created before December 31, 1988,
are selected for the backup operation.)

$ BACKUP MYFILE.TXT/CREATED/BEFORE=31-DEC-1988 NEWFILE.TXT

1.2.5.2

Qualifier Defaults

When you omit a specific qualifier from the command line, the system
responds with default behavior. For example, when you delete a file with
the DELETE command, the system by default does not request confirmation
of each delete operation. However, by specifying the DELETE/CONFIRM
command, you can override that default behavior and request that you be
prompted for confirmation before each file is deleted.

You can specify qualifiers in several ways. The qualifier syntax required by

a specific DCL command is given in the command descriptions in the VMS
DCL Dictionary. The following paragraphs explain the syntax used to describe
qualifiers and their defaults:

* Qualifiers with positive and negative forms—These qualifiers have a
value of true or false. You do not specify a value, but indicate a true
value by simply naming the qualifier. Negate the qualifier by inserting
the prefix NO.

For example, the /CONFIRM qualifier can be expressed positively or
negatively. If you omit the qualifier from the command line, the default
action is /NOCONFIRM. The syntax for the /CONFIRM qualifier is given
in a DCL command description as follows:

/CONFIRM
/NOCONFIRM (default)

* Qualifiers that require values—If you use a qualifier that accepts a value,
you must specify a value. If you omit the qualifier completely, the default
value is applied. For example, if you use the /COPIES qualfier, you must

1-13

Introducing VMS and DCL
1.2 Using the DIGITAL Command Language

provide a numeric value. If you omit the /COPIES qualfier, the default
is /COPIES=1. The syntax for the /COPIES qualifier is given in a DCL
command description as follows:

/COPIES=n

If the qualifier accepts a list of values, you must enclose the values in
parentheses and separate them with commas as follows:

$ DELETE/ENTRY=(230,231) LNO3_PRINT
The command deletes jobs 230 and 231 from the queue LNO3_PRINT.

Qualifiers that accept value and positive /negative combinations—Some
qualifiers combine value and positive /negative characteristics so that the
qualifier both accepts a value and allows you to negate the qualifier by
inserting the prefix NO. For example, the SET TERMINAL command
permits the following choices for the /PARITY qualifier:

$ SET TERMINAL/PARITY=EVEN
$ SET TERMINAL/PARITY=0DD
$ SET TERMINAL/NOPARITY

Qualifiers that affect command execution only if specified—The qualifier
has no corresponding default. For example, the /BY_OWNER qualifier
does not affect the command if it is not specified. The syntax for the
/BY_OWNER qualifier is given in a DCL command description as
follows:

/BY_OWNER

Qualifiers that override other qualifiers—Sometimes a command has a
qualifier that is automatically applied as a default. Other qualifiers are
available to override the default qualifier.

For example, the /BRIEF qualifier is applied by default when you
specify the DIRECTORY command. That is, the DIRECTORY command
generates a listing that includes only the file name, file type, and version
number of each file in the directory. You must specify the /FULL qualifier
to generate a listing that includes the file name, file type, and version
number as well as the number of blocks used, the date of the file’s
creation, the date the file was last backed up, and so on.

Some commands contain conflicting qualifiers that cannot be specified in

the same command line. If you use incompatible qualifiers, the command
interpreter usually displays an error message. The command descriptions in
the VMS DCL Dictionary indicate which qualifiers cannot be used together.

1.2.6 Entering Dates and Times as Values

Certain commands and qualifiers accept date and time values. You can
specify these values in one of the following formats:

e Absolute time
¢ Delta time

¢ Combination time (combines absolute and delta time formats)

The command descriptions in the VMS DCL Dictionary indicate the time
formats accepted by commands and qualifiers.

Introducing VMS and DCL
1.2 Using the DIGITAL Command Language

1.2.6.1

Absolute Time
Absolute time is a specific date or time of day. The format for an absolute
time is as follows:

[dd-mmm-yyyy][:][hh:mm:ss.cc]

The fields are as follows:

Field Meaning

dd Day of the month; an integer in the range 1-31

mmm Month; JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT,
NOV, or DEC

yYYyy Year; an integer

hh Hour; an integer in the range 0-23

mm Minute; an integer in the range 0-59

ss Seconds; an integer in the range 0-59

cc Hundredths of a second; an integer in the range 0—99

You can truncate the date or the time on the right. However, if you are
specifying both date and time, you must include a colon between them. The
date must contain at least one hyphen. You can omit any of the fields within
the date and time as long as you include the punctuation marks that separate
the fields. A truncated or omitted date field defaults to the corresponding
fields for the current date. A truncated or omitted time field defaults to zero.
If you specify a past time in a command that expects the current or a future
time, the current time is used.

You can also specify an absolute time as one of the following keywords:

Keyword Meaning

TODAY The current day, month, and year at 00:00:00.0 o’clock
TOMORROW 00:00:00.00 o’clock tomorrow

YESTERDAY 00:00:00.00 o’clock yesterday

Some examples of absolute time specifications follow:

Time Specification Result

31-DEC-1988:13 1 P.M. on December 31, 1988

31-DEC Midnight at the beginning of December 31 this
year

15:30 3:30 P.M. today

31- The 31st day of the current year and month at
midnight

31-::30 12:30 A.M. on the 31st of this month

1-15

Introducing VMS and DCL
1.2 Using the DIGITAL Command Language

1-16

1.2.6.2 Delta Time
Delta time is an offset (a time interval) from the current date and time to a
time in the future. The general format of a delta time is as follows:
[dddd-][hh:mm:ss.cc]
The fields are as follows:
Field Meaning
dddd Number of days; an integer in the range 0-9999
hh Number of hours; an integer in the range 0-23
mm Number of minutes; an integer in the range 0-59
SS Number of seconds; an integer in the range 0~59
cc Number of hundredths of seconds; an integer in the range 0—99
You can truncate a delta time on the right. If you specify the number of
days, include a hyphen. You can omit fields within the time as long as you
include the punctuation that separates the fields. If you omit the time field,
the default is zero.
Some examples of delta time specifications follow:
Time Specification Result
3- 3 days from now (72 hours)
3 3 hours from now
:30 30 minutes from now
3-:30 3 days and 30 minutes from now
15:30 15 hours and 30 minutes from now
1.2.6.3 Combination Time

To combine absolute and delta time, specify an absolute time plus (1) or

minus (-) a delta time. The format for combination time is as follows:

"[absolute time][+delta time]”
or
[absolute time][-delta time]

The variable fields and default fields for absolute and delta time values are
the same as those described in the preceding sections. The delta time value
must always be preceded by a plus or minus sign. (Note that the minus sign
is the same keyboard key as the hyphen.) Whenever a plus sign precedes
the delta time value, enclose the entire time specification in quotation marks.
Also, you can omit the absolute time value. If you do, the delta time is offset
from the current date and time.

Some examples of combination time specifications follow:

Introducing VMS and DCL
1.2 Using the DIGITAL Command Language

Time Specification Result

“+5" 5 hours from now

“+:5" 5 minutes from now

-5 Current time minus 5 minutes

-1-00 Current time minus 1 day. The minus sign (—) indicates a
negative offset. The dash (-) separates the day from the
time field.

If a qualifier is described as a value that may be expressed as an absolute
time, a delta time, or a combination of the two, you must specify a delta time
as if it were part of a combination time. For example, to specify a delta time
value of five minutes from the current time, use “+:5” (not “0-0:5").

1.3 Entering and Editing DCL Commands

At the DCL level, you can use many individual keys and key combinations
to change what you type, to recall commands, or to display information.
Table 1-2 lists the keys that allow you to enter and edit DCL commands.
Sections that follow describe these keys in greater detail.

DCL also provides you with shortcuts that simplify the typing of commands
and command lines. You can establish symbols to use in place of command
names and entire command strings. You can define keys, which enable you
to enter commands with fewer keystrokes. These shortcuts are described in
Section 1.3.7 and Section 1.3.8.

Table 1-2 Keys That Execute Terminal Functions

Key

Function

Keys That Enter DCL Commands

CTRL/Z and F10'

RETURN

Signals the end of the file for data entered from the terminal. CTRL/Z
is displayed as “Exit.”

Sends the current line to the system for processing. (On some
terminals, the RETURN key is labeled CR.)

Before a terminal session, RETURN initiates a login sequence.

Keys That Interrupt DCL Commands

CTRL/C and F6'

CTRL/T

During command entry, cancels command processing. CTRL/C is
displayed as “Cancel.”

Momentarily interrupts terminal output to display a line of statistical
information about the current process. This display includes your node
and user name, the time, the name of the image you are running, and
information about system resources used during your current terminal
session.

"This key is available only on an LK201 keyboard.

Introducing VMS and DCL
1.3 Entering and Editing DCL Commands

Table 1-2 (Cont.) Keys That Execute Terminal Functions

Key

Function

Keys That Interrupt DCL Commands

CTRL/Y

You can also use the CTRL/T key to determine whether the system
is operating. CTRL/T does not return information if the system is
temporarily unresponsive or if your terminal is set to NOBROADCAST.
In order to use CTRL/T, SET CONTROL=T must be enabled either in
the system login command procedure or by you, either interactively or
in your login command procedure.

Interrupts command processing. CTRL/Y is displayed as “Interrupt.”
You can disable CTRL/Y with the command SET NOCONTROL=Y.

Under most conditions, CTRL/Y returns you to the DCL prompt. The
program running is still active. You can enter any built-in command
(described in Section 1.3.2) and then continue the program with the
CONTINUE command. (Press CTRL/W to refresh the screen after you
enter the CONTINUE command.)

Keys That Recall Commands

CTRL/B and Up arrow
Down arrow

Recalls up to 20 previously entered commands.

Displays the next line in the recall buffer.

Keys That Control Cursor Position

<X], DELETE

CTRL/A, F14'

CTRL/D and Left arrow

CTRL/E

CTRL/F and Right arrow
CTRL/H, BACKSPACE, and F12'
CTRL/l and TAB

CTRL/J, LINEFEED, and F13'
CTRL/K
CTRL/L

CTRL/R

CTRL/U

Deletes the last character entered at the terminal. (On some terminals,
the DELETE key is labeled RUBOUT.) The DELETE key also works
when line editing is disabled.

Switches between overstrike and insert mode. The default mode (as
set with the SET TERMINAL/LINE _EDITING command) is reset at the
beginning of each line.

Moves the cursor one character to the left.
Moves the cursor to the end of the line.
Moves the cursor one character to the right.
Moves the cursor to the beginning of the line.

Moves the cursor to the next tab stop on the terminal. The system
provides tab stops at every eighth character position on a line. Tab
settings are hardware terminal characteristics that, in general, you can
modify. The TAB key also works when line editing is disabled.

Deletes the word to the left of the cursor.
Advances the current line to the next vertical tab stop.

Causes the cursor to go to the beginning of the next page. This use
of this key is ignored when line editing is enabled.

Repeats the current command line and leaves the cursor positioned
where it was when you pressed CTRL/R.

Cancels the current input line.

"This key is available only on an LK201 keyboard.

1-18

1.3.1

Table 1-2 (Cont.)

Introducing VMS and DCL
1.3 Entering and Editing DCL Commands

Keys That Execute Terminal Functions

Key

Function

Keys That Control Cursor Position

CTRL/V

CTRL/X
F7,F8, F9, F11

Turns off some of the line editing function keys. For example, if you
press CTRL/V followed by CTRL/D, a CTRL/D is generated instead of
the cursor moving left one character. CTRL/D is a line terminator at
DCL level.

When combined with CTRL/V, characters that are not line terminators
have no effect. Examples are CTRL/H and CTRL/J. However, certain
control keys, such as CTRL/U, retain their line editing functions.

Cancels the current line and deletes data in the type-ahead buffer.
Reserved for DIGITAL.

Keys That Control Screen Display

CTRL/O

CTRL/S
CTRL/Q

Alternately suspends and continues display of output to the terminal.
CTRL/O is displayed as “Output off” and “Output on.”

Suspends terminal output until CTRL/Q is pressed.
Resumes terminal output suspended by CTRL/S.

HOLD SCREEN'and NO SCROLL? Suspends terminal output until the key is pressed again.

'This key is available only on an LK201 keyboard.

2This key is available only on a VT100 keyboard.

Entering a DCL Command

The RETURN key is recognized as a command line terminator. Once you
type a command at the DCL prompt, press RETURN to terminate the line and
send it to the DCL interpreter for execution. CTRL/Z is also recognized as a
command line terminator.

When you enter a command at the terminal or execute an image that results
in an error, the system displays an error message. Also, the system sometimes
generates messages when a command has completed successfully. For
interactive users, messages are normally displayed on the terminal; for batch
job users, messages are written to the batch job log file.

Most system error messages have the following format:
%FACILITY-L-IDENT, text

The fields are as follows:

* FACILITY is a mnemonic for the program issuing the message.

* L is the first letter of the severity code; the severity level can be S
(Success), I (Information), W (Warning), E (Error), or F (Fatal or severe
error).

e IDENT is an abbreviation of the text.

* Text is an explanation of the error.

1-19

Introducing VMS and DCL
1.3 Entering and Editing DCL Commands

Suppress any component of the error message with the SET MESSAGE
command. (See the VMS DCL Dictionary for the SET MESSAGE qualifiers you
need to specify to suppress individual components of the error message.)

A SET MESSAGE command remains in effect until you enter the SET
MESSAGE command again or log out. The following command suppresses
the abbreviation of the explanatory text of the message:

$ SET MESSAGE/NOIDENTIFICATION

1.3.2 Interrupting and Canceling a DCL Command

1-20

After you enter a DCL command, you can temporarily interrupt its execution,
run other commands, and then return to executing the command that was
interrupted. To interrupt the execution of a command, use CTRL/T, CTRL/Y,
or CTRL/C. These keys perform in different ways depending on the type of
DCL command currently executing.

As mentioned previously, there are built-in commands and command images.
A built-in DCL command (listed in Table 1-1) is part of the command
interpreter. A command image is a program that is called by the DCL
interpreter. (For example, COPY is a command image.)

A command image can be privileged or nonprivileged. The VMS operating
system, the system manager, or you may install a command image as
privileged. Privileged command images may vary from system to system.
Your system manager can tell you which command images on your system
are privileged.

For more information on privileged command images, see the VMS Install
Utility Manual.

1.3.2.1

Using CTRL/T

CTRL/T interrupts execution of the command, displays a line of statistical
information about the current process (node name, process name, system
time, currently running image, elapsed CPU time, page faults, direct and
buffered I/O operations, and pages in physical memory), and resumes
command execution, You can uge CTRL /T to interrust g built-in command,
or a privileged or nonprivileged command image. The following example
shows how pressing CTRL/T interrupts and then resumes the copy operation:

$ COPY [JONES.MEMOS]TODAY.LIS URGENT.LIS
SATURN: : JONES 16:54:17 COPY CPU=00:00:00.54 PF=241 10=47 MEM=141
$

In order to use CTRL/T, SET CONTROL~T must be enabled either in the
system login command procedure or by you. You can enable CTRL/T

in your login command procedure, or you can enable it interactively by
entering SET CONTROL~-T at DCL level. (To enable CTRL/T for the current
session, you must enable it interactively.) Section 1.1 describes your personal
login command procedure; Section 6.3 shows a sample personal command
procedure.

Introducing VMS and DCL
1.3 Entering and Editing DCL Commands

1.3.2.2 Using CTRL/Y
When you use CTRL/Y to interrupt a nonprivileged command image, the
interrupted command is temporarily suspended and control returns to the
DCL interpreter. You see the DCL prompt. To resume execution of the
interrupted command, type CONTINUE. Only built-in commands can
be entered after CTRL/Y and before CONTINUE without disturbing the
interrupted command. Entering any other type of command effectively
cancels the interrupted one.

If you are interrupting a privileged command image, you can press CTRL/Y
and enter the built-in commands SPAWN, ATTACH, and CONTINUE only,
followed by any other command. Entering a command after CTRL/Y other
than SPAWN, ATTACH, and CONTINUE effectively cancels the interrupted
one.

You can immediately terminate the privileged or nonprivileged command
image that you interrupted with CTRL/Y by entering one of the following:

* The STOP or EXIT commands. STOP suppresses any cleanup activities
such as the display of error messages. EXIT executes any cleanup
procedures before terminating.

* A command that invokes another command image (that is, a nonbuilt-
in command), which removes the interrupted command image from
memory.

1.3.2.3 Using CTRL/C
CTRL/C works like CTRL/Y in many cases. CTRL/C interrupts the execution
of a built-in command. Command images, however, can create different
definitions for CTRL/C, in which case pressing CTRL/C does not necessarily
interrupt the command and return you to DCL level. For example, the TYPE
command (a command image) defines CTRL/C as “cancel.” Pressing CTRL/C
while typing a series of files to the terminal halts the display of the current
file and begins the display of the next file in the series, but does not interrupt
the command.

1.3.3 Redirecting the Output of Commands

Many commands allow you to specify the /OUTPUT qualifier to redirect
output. The following example shows how the display produced by the DCL
command DIRECTORY is redirected to a new text file named FULL.LIS in
your default directory:

$ DIRECTORY/FULL/OUTPUT=FULL.LIS

1.3.4 Recalling Commands

At DCL level, you can recall previously typed command lines and avoid the
inconvenience of retyping long command lines. The recall buffer holds up
to 20 previously entered commands. Once a command is displayed, you can
reexecute or edit it.

Each of the following lets you display the commands stored in the recall
buffer:

e CTRL/B
* Up and down arrow keys

1-21

Introducing VMS and DCL
1.3 Entering and Editing DCL Commands

¢ RECALL command

Pressing CTRL/B once recalls the previous command line. Pressing CTRL/B
again recalls the line before the previous line, and so on to the last saved
command line.

Pressing the up and down arrow keys recalls the previous and successive
command, respectively. Press the arrow keys repeatedly to move through the
commands.

To examine up to 20 previously typed command lines, type RECALL/ALL.
Following is a sample display generated by typing RECALL/ALL:

$ RECALL/ALL

1 SET DEFAULT DISK2: [MARSHALL]

2 EDIT ACCOUNTS.COM

3 PURGE ACCOUNTS.COM

4 DIRECTORY/FULL ACCOUNTS.COM

5 COPY ACCOUNTS.COM [.ACCOUNTS]*
6 SET DEFAULT [.ACCOUNTS]

Having reviewed the available commands, you can recall a particular
command line by typing RECALL and the number of the desired command.
The following example shows how to recall the fourth command line stored
in the recall buffer:

$ RECALL 4

After you press RETURN, the fourth command in the list is displayed at the
DCL prompt. (The RECALL command itself is not placed in the buffer.)

You can also follow RECALL with the first characters of the command line
you want to display. RECALL scans the previous command lines (beginning
with the most recent one) and returns the first command line that begins with
the characters you typed. For example:

$ RECALL E
After you press RETURN, the following command line is displayed:
$ EDIT ACCOUNTS.COM

You can also perform command recall with CTRL/B and the up and down
arrow keys. If you are running a utility or an application program that uses
VMS screen management software, you can also use these keys to perform
command recall. Line editing must be enabled. Some utilities that have this
feature are MAIL, DEBUG, SHOW CLUSTER, the System Dump Analyzer
(SDA), and the VAXTPU editor.

1.3.5 Editing a DCL Command

1-22

Your terminal has a set of keys that you can use to edit a DCL command line.
Command-line editing is most useful for modifying long command lines. You
can edit command lines that contain typographical errors or command lines
that you have recalled and want to modify.

There are many types of terminals, each with its own operating
characteristics. In general, they all have standard line editing keys. Line
editing keys (keys that let you edit the DCL command line) allow you to
control cursor position and are listed in Table 1-2.

Introducing VMS and DCL
1.3 Entering and Editing DCL Commands

For some of the line editing keys to work, the SET TERMINAL/
LINE_EDITING command must be in effect. To see whether or not line
editing is enabled, enter the SHOW TERMINAL command, which displays
your terminal’s current characteristics. Use the SET TERMINAL command
to change any of these characteristics. See the VMS DCL Dictionary for a
description of SET TERMINAL.

For example, the following command line contains one mistake that can be
corrected easily using the line editing keys:

$ DILETE SCHEDULE.TXT;3

If you are using an LK201 keyboard (VT200- and VT300-series terminals),
press the F12 key. If you are using a VT100-series terminal, press the
BACKSPACE key. Notice that the cursor moves to the beginning of the
line. Press the right arrow key once to position the cursor over the “I” in
“DILETE.” Type the letter E and the typographical error is corrected.

The preceding example assumes that the SET TERMINAL/OVERSTRIKE
attribute is in effect, as it is by default. The OVERSTRIKE attribute allows
you to replace the incorrect character by typing the correct character over it.

To insert characters in the command line without simultaneously deleting
others, change the OVERSTRIKE attribute to the INSERT attribute. While
you are editing a command line, you can set the OVERSTRIKE or INSERT
attributes temporarily by pressing F14 (or CTRL/A). Use the SET TERMINAL
command to set either attribute for your current terminal session.

1.3.6 Controlling Screen Display

Your terminal has several keys that permit you to suspend and resume the
display of output to the terminal screen. These keys—CTRL/O, CTRL/Q,
and CTRL/S—are useful when a large file is scrolling on your screen and you
want to stop the display temporarily.

To suspend output to your terminal, press CTRL/S. To resume the output
suspended by CTRL/S, press CTRL/Q. To toggle between suspending and
resuming the output, type CTRL/O, which is alternatively displayed as
“Output off” and “Output on.”

The VT200- and VT300-series terminal also have a HOLD SCREEN key
that you can press to alternately hold and resume screen output. On VT100
terminals, the NO SCROLL key performs this same function.

1.3.7 Representing DCL Commands with Symbols

When you specify parameters, multiple qualifiers, and values, one DCL
command line can make for much typing. You can simplify your interaction
with DCL and save time by establishing symbols to use in place of command
names and entire command strings you type frequently. A symbol is a name
that represents a numeric, character, or logical value. When you use a symbol
in a DCL command line, DCL uses the value you assign to the symbol. By
defining a symbol as a command line, you can execute the command by
typing only the symbol name.

The following example equates the symbol ME to the DCL command SHOW
ENTRY:

$ ME == "SHOW ENTRY"

1-23

Introducing VMS and DCL
1.3 Entering and Editing DCL Commands

After you equate a symbol to an expression (which can be a DCL command),
the symbol assumes a new identity or value. In the previous example, the
symbol ME assumes a new identity as the DCL command SHOW ENTRY.
Once the two are equated, use the symbol ME in place of the SHOW ENTRY
command as follows:

$ ME
Jobname Username Entry Blocks Status
STAFF JONES 202 38 Printing

On printer queue SYS$PRINT

You can also equate long command strings to symbols. The following
example equates the symbol LN03 with the command string shown:

$ LNO3 == "PRINT/QUEUE=HUBBUB_LNO3A/NOBURST/NOFEED/NOTIFY"

By defining a symbol interactively, you create a symbol that is in effect for the
current session only. If you want that symbol to be in effect each time you
log in, place the symbol definition in your login command procedure. See
Chapter 5 for more information about defining symbols. See Section 1.1 and
Section 6.3 for more information about creating a personal login command
procedure.

1.3.8 Defining Terminal Keys

1-24

Key definitions let you customize your keyboard so you can enter DCL
commands with fewer keystrokes. A key definition is a string of characters
that you assign to a particular terminal key. When a key is defined, you can
press it instead of typing the string of characters. A key definition usually
contains all or part of a command line. When you press a defined key, the
command is either displayed on your terminal or executed.

Some definable keys are automatically enabled for definition (like keys

PF1 through PF4 and keys F17 through F20 on VT200- and VT300-

series terminals). However, before you can define other keys, including

KPO (keypad 0) through KP9 and the keypad keys PERIOD, COMMA,
MINUS, and ENTER, you must enable them for definition by entering either
the SET TERMINAL/APPLICATION_KEYPAD or the SET TERMINAL
/NONUMERIC command. For a complete list of definable keys and for more
information on how to create key definitions, see the description of the DCL
command DEFINE/KEY in the VMS DCL Dictionary.

The following example shows how to equate the PF1 key to the PRINT
command and the PF2 key to the qualifier /QUEUE=SATURN_LNO03:

$ DEFINE/KEY PF1 "PRINT"

%DCL-I-DEFKEY, DEFAULT key PF1 has been defined
$ DEFINE/KEY PF2 "/QUEUE=SATURN_LNO3"

%DCL-I-DEFKEY, DEFAULT key PF2 has been defined

When you press the PF1 key and then the PF2 key, the words PRINT/
QUEUE=SATURN_LNO3 are echoed and entered as if you had typed them.
You need only supply the parameter, which is the file name of the file
you want to print. When defining a command line with two or more keys,
remember to include all the necessary spaces required in the command line
syntax.

Introducing VMS and DCL
1.3 Entering and Editing DCL Commands

The informational message following the key definition indicates the key state
for which the key is defined. Key states are described in Section 1.3.8.1. You
can suppress the informational message using the /NOLOG qualifier of the
DEFINE/KEY command.

A key definition remains in effect until you redefine the key, enter the
DELETE/KEY command for that key, or terminate the session. If you want
to use a key definition each time you log in, place the key definition in
your login command procedure. See Section 6.3 for more information about
creating your personal login command procedure.

1.3.8.1

Key States

The same key can be assigned multiple definitions, as long as each definition
is associated with a different state. A key state is a name you invent to remind
you of the types of key definitions grouped under it. If you do not create any
key states, all keys are defined in the DEFAULT state.

Specify the /SET_STATE qualifier to the DEFINE/KEY command to change
the key state temporarily (the key state remains in effect until you press a
definable key or terminate the command line). Use the /IE_STATE qualifier
to the DEFINE /KEY to define a key for the specified state.

In the following example, the PF1 key in the DEFAULT state is defined to
enter the PRINT command and to change the key state to PRINTERS. The
MINUS key is defined in the PRINTERS state to enter the
/QUEUE=LNO3_PRINT qualifier. The COMMA is defined in the PRINTERS
state to enter the /QUEUE=LINE_PRINT qualifer. (Remember to enter the
DCL command SET TERMINAL/APPLICATION _KEYPAD to enable keypad
key definitions.) The /TERMINATE qualifier places a carriage return after the
text; when you press the key, the system attempts to execute the command
line.

$ DEFINE/KEY/SET_STATE=PRINTERS PF1 "PRINT"

%DCL-I-DEFKEY, DEFAULT key PF1 has been defined

$ DEFINE/KEY/TERMINATE/IF_STATE=PRINTERS MINUS "/QUEUE=LNO3_PRINT"
%DCL-I-DEFKEY, PRINTERS key MINUS has been defined

$ DEFINE/KEY/TERMINATE/IF_STATE=PRINTERS COMMA "/QUEUE=LINE_PRINT"
%DCL-I-DEFKEY, PRINTERS key COMMA has been defined

To change a key state permanently (until you log out or change the state
again), specify the /LOCK and /SET_STATE qualifiers to the DEFINE/KEY
command, or specify the /STATE qualifier to the SET KEY command. After
permanently changing the key state, you can recall the DEFAULT key state.
However, the system does not provide a mechanism that allows you to
determine whether the DEFAULT state was the previous key state.

Because you cannot determine the previous key state after permanently
changing the key state, you may want to use the following steps to extend
the duration of a temporary state:

1 Use the /SET_STATE qualifier to the DEFINE/KEY command to change
your key state temporarily.

2 Each time you define a key for that temporary state, use the /SET_STATE
qualifier to reset the temporary state.

1-25

1.4

Introducing VMS and DCL
1.3 Entering and Editing DCL Commands

1.3.8.2

Examining and Deleting Keys

To examine the key definitions you have created, enter the SHOW KEY
command. Specify the /DIRECTORY qualifier to display the states that you
have defined as follows:

$ SHOW KEY/DIRECTORY
DEFAULT
GOLD

Specify the /ALL and /FULL qualifiers to list all the keys in the states
specified by the /STATE qualifier. The following example shows that the PF1
key has been defined to enter the DIRECTORY command. The PF2 key has
been defined to enter the SET DEFAULT command and change the key state
from DEFAULT to DIRECTORIES.

$ SHOW KEY/ALL/FULL/STATE=DEFAULT
DEFAULT keypad definitions:
PF1 = "DIRECTORY" (echo,terminate,noerase,nolock)
PF2 = "SET DEFAULT" (echo,noterminate,noerase,nolock,state=DIRECTORIES)

To delete a particular key definition, enter the DELETE/KEY command, as
shown in the following example:

$ DELETE/KEY PF1
%DCL-I-DELKEY, DEFAULT key PF1 has been deleted

The following example shows how to delete all the keys defined in the GOLD
state:

$ DELETE/KEY/ALL/STATE=GOLD
%DCL-I-DELKEY, GOLD key PF2 has been deleted
%DCL-I-DELKEY, GOLD key PF3 has been deleted

Utilities

1-26

A utility is a program that provides a service. Ultilities are invoked with
DCL commands. Some utilities—interactive utilities—provide a special
environment from which you can perform a specific set of tasks. You
work interactively with these utilities by entering subcommands and other
information in response to the utility’s prompt. For example, MAIL is an
interactive utility; it has its own prompt and subcommands.

Other utilities are noninteractive. When you invoke a noninteractive utility,
it occupies your terminal and executes a task. When the task is complete,
you are returned to DCL level and your terminal is once again available.
The SORT/MERGE and the LIBRARIAN utilities are two examples of
noninteractive utilities.

Some utilities, both interactive and noninteractive, prompt you for a file
name. When you are using such a utility (for example, BACKUP, MESSAGE,
PATCH, and SORT/MERGE), you can add qualifiers to the DCL command
line to tailor the utility to your specific needs, as shown in the following
example:

$ BACKUP/RECORD/IMAGE/LOG
_From:

To exit from a utility and return to DCL level, type EXIT (and press RETURN)
or press CTRL/Z in response to the utility prompt.

Introducing VMS and DCL
1.4 Utilities

The following sections describe the interactive VMS Mail Utility, the VMS
Phone Utility, and the Sort/Merge Utility.

1.4.1 Using the Mail Utility

The interactive VMS Mail Utility (MAIL) allows you to send messages to
and receive messages from other users on your system or on any other VAX
computer that is connected to your system by means of DECnet-VAX. You
can also file, forward, delete, reply to, and print messages that you have
received.

To invoke the Mail Utility, enter the DCL command MAIL at the DCL
prompt. The MAIL prompt appears, signaling that the utility is ready to
accept subcommands as follows:

$ MAIL
MAIL>

For more information about MAIL commands and qualifiers, see the VMS
Mail Utility Manual or type HELP at the MAIL prompt.

To exit from MAIL, enter the MAIL command EXIT or press CTRL/Z. Note,
however, that if you are entering the text of a message, CTRL/Z sends the
message. If you wish to cancel the send operation without exiting from
MAIL, press CTRL/C.

1.4.1.1

Creating a Mail Subdirectory

When you receive mail messages, they are usually written to files named
MAIL$xxxxxxxxxx.MAI located in your top level directory. To avoid the
display of these MAI files in your top level directory, use the MAIL command
SET MAIL _DIRECTORY, which creates a mail subdirectory and moves all
your MAI files to that subdirectory. (The MAIL command SHOW

MAIL _DIRECTORY displays the name of the subdirectory that contains all
your MAI files.) To move the MAI files from a subdirectory back to your top
level directory, use the SET NOMAIL _DIRECTORY command.

1.4.1.2

Sending Mail

You can create and send a mail message interactively to one user or many
users with the Mail Utility. Also, you can send a file to other users from
within MAIL or from DCL level.

Sending a Message

To send a mail message to any user on your system, invoke the Mail Utility
and specify the MAIL command SEND. MAIL prompts you for the name of
the user receiving the message, the subject of the message (optional), and the
text of the message (optional). The following example sends a message to
THOMPSON:

MAIL> SEND
To: THOMPSON
Subj: Meeting on January 9

Enter your message below. Press CTRL/Z when complete, or CTRL/C to quit:
I have some new ideas for the Hubbub Cola account. Let me know when
you're available to talk about them.

--Jeff

1-27

Introducing VMS and DCL

1.4 Utilities

1-28

Press CTRL/Z to send the message. If you decide not to send the message,
press CTRL/C. Doing so cancels the send operation without exiting from
MAIL.

You can send the same message to several users. To do so, separate their user
names with commas, as shown in the following example:

MAIL> SEND
To: THOMPSON, JONES , BARNEY
Subj: Meeting on January 9

If your computer system is part of a network, you can send mail to any other
user on the network. If you are sending mail to someone not on your node,
you must enter their node name and user name at the To: prompt. (See
Section 1.1.1.2 for more information about nodes.) You can address the mail
message to the intended recipient on the remote node using the following
format:

nodename::username

The following example shows how to send a message to user HIGGINS on
node CHEETA:

MAIL> SEND
To: CHEETA::HIGGINS

MAIL will notify you if the network connection to the remote node is not
available.

You may want to use a VMS text editor to compose your message before
you send it interactively. (A text editor allows you to enter text from the
keyboard and use editing commands to modify that text. See Chapter 8 for
a description of the EVE and EDT text editors.) To do so, specify the /EDIT
qualifier with the SEND command as shown in the following example:

MAIL> SEND/EDIT

After you respond to the To: and Subj: prompts, MAIL invokes the text
editor. By default, MAIL invokes the EDT editor. (Section 1.4.1.8 describes
how to change the default editor.)

If you see an asterisk (*) after you enter the subject line and press RETURN,
press the C key to enter the screen editor. To send the message, exit from
the editor by pressing CTRL/Z and entering the EXIT command; to cancel
the send operation, exit from the editor by pressing CTRL/Z and entering the
QUIT command.

You can also use the /EDIT qualifier with the REPLY and FORWARD
commands. By specifying /EDIT when you invoke MAIL, you can use
the editor for send, reply, and forward operations during the ensuing mail
session.

Sending a File

You can send a file to other users from within MAIL or from DCL level. The
following example invokes MAIL and uses the MAIL command SEND to
send a file:

$ MAIL

MAIL> SEND MEMO.TXT
To: EDGELL

Subj: Another memo

Introducing VMS and DCL
1.4 Utilities

To send the file, press RETURN; to cancel the send operation, press CTRL/C
or CTRL/Y. CTRL/C keeps you within the Mail Utility; CTRL/Y returns you
to DCL level.

When you send a file from DCL level, MAIL is invoked, but you do not enter
an interactive session, nor do you see the MAIL prompt. When the file is
sent, you are automatically returned to DCL level. When you are sending

a file in this way, the argument to the (optional) /SUBJECT qualifier must
be enclosed in quotation marks if it contains any spaces or nonalphanumeric
characters, as shown in the following example:

$ MAIL/SUBJECT="Another memo" MEMO.TXT CHEETA::EDGELL
To send the file, press RETURN; to cancel the send operation, press CTRL/C.

Sending a Message to a Distribution List

If you need to send one message to many users, you can create a file—called
a distribution list—that contains a list of users. You then specify that file
name rather than the individual user names when you send the message to
those users. Use a text editor or the DCL command CREATE to create this
file.

When you create a distribution list, type one user name per line. You can
also include the names of other distribution lists by specifying an at sign (@)
followed by the name of the distribution list. Exclamation points (!) delimit
comments in programs and command procedures. DCL ignores everything to
the right of the exclamation point when processing the line. For example:

! ALLBUDGET.DIS
1

! Budget Committee Members

@BUDGET ! listed in BUDGET.DIS.
! Staff
HARRINGTON ! me

BRUTUS: :WILSON ! Martha Wilson
PORTIA: :RIPLEY ! Roy Ripley

If the file BUDGET.DIS is not in the same directory as the new distribution list
file you are creating, include the file specification for BUDGET.DIS in the new
distribution file. (The file specification gives the system all the information
necessary to locate a file. Depending on where you create ALLBUDGET.DIS,
you may have to specify the device and directory in which BUDGET.DIS is
located. See Chapter 2 for more information on file specifications.)

To send a message to a distribution list from within MAIL, type an at sign
and the file name at the To: prompt. For example:

MAIL> SEND
To: Q@ALLBUDGET
Subj: Tomorrow's Meeting

By default, the system looks for a distribution list file with the file type
DIS. If the file containing your distribution list has a different file type, you
must specify the file name and file type at the To: prompt. If you invoke
MAIL while in one directory and the file containing the distribution list is in
another, enter the distribution list’s file specification at the To: prompt.

1-29

Introducing VMS and DCL
1.4 Utilities

1-30

1413

Reading Mail

Invoke MAIL to read an old or new mail message. Messages you receive are
stored in mail files, which have a default file type of MAI. Your default mail
file, MAIL.MAL, is created in your top level directory the first time you receive
a mail message.

By default, MAIL provides folders. New messages are automatically placed
in a folder called NEWMAIL; old messages are held in a folder called MAIL.
You can move between these folders to read old or new mail messages.

Reading New Messages

When you are logged in and receive a mail message, notice of the new
message appears on your screen. (You can screen out notification of incoming
messages by specifying the DCL commands SET TERMINAL/
NOBROADCAST or SET BROADCAST=NOMAIL.) For example, a message
sent by user FELLINI appears as follows:

New mail from FELLINI

If you are part of a DEC-net VAX network and someone on a remote node
sends you mail, the sender’s node and name are indicated.

If you have new mail, you are notified when you log in and when you invoke
MAIL. To read a new message, invoke MAIL. MAIL displays the number

of mail messages received and prompts for a command, as shown in the
following example:

$ MAIL
You have 1 new message.

MAIL>

To read the new message, press RETURN. The message appears on your
screen as follows:

#1 31-DEC-1988 14:12:27 NEWMAIL
From: FELLINI
To: JONES

Subj: Sales presentation on January 9

The meeting to discuss the Hubbub Cola account has been moved
from our conference room to the auditorium. Dress to impress.

MAIL>

You may have another new message. To read your next new message, press
RETURN at the MAIL prompt. Pressing RETURN in MAIL is equivalent to
specifying the READ command without parameters. When you have read all
your new messages, MAIL issues the message “%MAIL-E-NOMOREMSG,
no more messages,” and continues to prompt for commands until you exit by
entering EXIT or pressing CTRL/Z.

If you receive a mail message while you are in MAIL, enter the READ/NEW
command to read the new message.

Introducing VMS and DCL
1.4 Utilities

Reading Old Messages

If you have just read a new message and want to reread an old message,
enter the following:

MAIL> SELECT MAIL

This command selects the MAIL folder. The SELECT command allows you to
move between folders. Once you are in the MAIL folder, press RETURN at
the MAIL prompt or use the READ command to read the old message. The
first message (numbered 1) in your default mail file appears on your screen.
Press RETURN to display the next message. If the message is too long to
display on one screen, press RETURN to display the next part of the message.
To skip part of a message and display the next message, type NEXT, which
can be abbreviated to “N.”

You can display a list of all messages within the current mail folder by
entering the DIRECTORY command. You can then display a particular
message by entering the READ command and the number of the message, as
shown in the following example:

MAIL> DIRECTORY

MAIL
From Date Subject
1 DOLCE: :FELLINI 31-DEC-1988 Sales presentation on January 9
2 DOODAH: : JONES 31-DEC-1988 status

MAIL> READ 2

You can also omit the READ command and enter just the number of the
message.

If you have many messages, you can locate a particular message by using
the SEARCH command to find a specified string. To search for a string,
specify that string as a parameter to the SEARCH command, as shown in the
following example:

MAIL> SEARCH "appointment"

The SEARCH command selects and displays the first message in the current
folder that contains the specified string.

To search for a new string, specify the string as a parameter to the SEARCH
command. Each time you specify a new string, the SEARCH command
starts the search at message number 1. To continue searching the folder
for messages that contain the specified string, use the SEARCH command
without specifying a parameter.

1414

Creating a File from a Mail Message

To copy a mail message to a text file, enter the EXTRACT command while
you are reading the message. When you exit from MAIL, the file is listed in
your current directory (unless you specify another directory). The following
example shows how to create a file named JANUARY_MEETINGS.TXT
containing the text of message number 3:

MAIL> READ 3

MAIL> EXTRACT/NOHEADER JANUARY_MEETINGS.TXT
%MAIL-I-CREATED, DISK1:[JONES]JANUARY_MEETINGS.TXT;1 created
MAIL>

1-31

Introducing VMS and DCL
1.4 Utilities

1-32

The mail header is composed of the From, To, and Subject lines. Specifying
the /NOHEADER qualifier deletes the mail header and copies only the text
of the message to the file. If the message has more than one header (as does,
for example, a forwarded message), only the last header is deleted.

Use the /APPEND qualifier to the EXTRACT command to copy a message to
the end of an existing file. Use the /ALL qualifier to copy all the files in the
current folder to an existing file.

1.4.1.5

Deleting Mail

To delete a mail message, either enter the DELETE command while you are
reading the message or enter the DELETE command followed by the number
(or range of numbers) of the message you want to delete. The following
example deletes messages 4, 5, 6, 11, 12, 14, 15, 16, and 17. You can use
either the hyphen (-) or the colon (:) to define the range of messages to be
deleted.

MAIL> DELETE 4-6,11,12,14:17

When you delete a message, the message is moved to a folder called
WASTEBASKET. During your interactive MAIL session, you can recover

any deleted message by moving the message out of the wastebasket folder.
(See Section 1.4.1.6 for information on moving messages between folders.)
Deleted messages collect in the WASTEBASKET folder until you exit from the
current mail file (either by exiting from MAIL or by specifying a different mail
file). Once you exit from the current mail file, WASTEBASKET is emptied and
the folder itself is deleted. (See Section 1.4.1.6 for a discussion of mail files.)

1.4.1.6

Organizing Mail with Folders and Files

By default, each user account has one mail file (called MAIL.MAI). MAIL
helps you organize your messages by providing the following folders as they
are required:

* NEWMAIL—Contains all messages that have not been read. If you
invoke MAIL when you have a new message, you are placed into
the NEWMAIL folder. Once you leave the NEWMAIL folder (either
by exiting MAIL or by changing to another folder), MAIL moves any
messages that have been read but not deleted to your MAIL folder and
deletes the NEWMAIL folder if it is empty.

* MAIL—Contains messages that have been read but not deleted. If you
invoke MAIL and have no new messages, you are placed into the MAIL
folder.

¢ WASTEBASKET-Contains messages that have been deleted. This folder
and its contents are deleted when you exit MAIL or specify a different
mail file.

You can extend this organizational scheme by creating your own folders.
Each folder can contain any number of messages.

Like the default folders, the folders you create are normally stored in the mail
file MAIL.MAL You can also create your own mail files; each mail file can
contain any number of folders. Although you can create any number of mail
files, you usually organize your messages by creating folders rather than by
creating mail files.

Introducing VMS and DCL
1.4 Utilities

Creating and Modifying Folders
The following MAIL commands allow you to create and modify folders:

¢ FILE—Files the current message in the folder you specify. If the folder
does not exist, you are asked whether you want to create it. After being
filed, the message is automatically deleted from the current folder.

* COPY—Places a copy of the current message into the folder you specify.
If the folder does not exist, you are asked whether you want to create
it. The following commands copy all messages containing the word
MEETING from the current folder to a folder named SCHEDULE. After
the commands are executed, you have two copies of each message, one
in the current folder and one in folder SCHEDULE. The first command
selects and displays the first message containing the word “meeting”:

MAIL> SEARCH MEETING

MAIL> COPY SCHEDULE

Folder SCHEDULE does not exist.

Do you want to create it (Y/N, default is N)?V
%MAIL-I-NEWFOLDER, folder SCHEDULE created

This command selects and displays the next message containing
“meeting”:

MAIL> SEARCH

MAIL> COPY MEETING
MAIL> SEARCH
#MAIL-E-NOTFOUND, no messages containing 'MEETING' found

¢ MOVE—Synonymous with the FILE command.

Selecting Folders

The name of the current folder is displayed in the top right corner of the
screen each time you enter a READ or DIRECTORY command. You can work
only with messages that are in your current folder.

To display a list of the folders in your current mail file, enter the
DIRECTORY /FOLDER command, as shown in the following example:

MAIL> DIRECTORY/FOLDER
Listing of folders in SYS$LOGIN: [JONESIMAIL.MAI;1
Press CTRL/C to cancel listing

MAIL MEETING_MINUTES
MEMOS PROJECT_NOTES
STAFF

To select a new folder as your current folder, use one of the following
commands:

* SELECT—Selects the specified folder as the current folder.

* DIRECTORY—Selects the specified folder as the current folder and lists
the messages in the folder.

* READ—Selects the specified folder as the current folder and displays the
specified message (by default, the first message in the folder).

1-33

Introducing VMS and DCL
1.4 Utilities

1-34

Deleting Folders

To delete a mail folder, delete all the messages in the folder or move them to
another folder. The following example deletes the MUSIC folder:

MAIL> SELECT MUSIC
%MAIL-I-SELECTED, 2 messages selected
MAIL> DELETE/ALL

Creating and Accessing Mail Files

To create a mail file, move a message into the file by entering the COPY,
MOVE, or FILE command as you would to create a folder. When MAIL
prompts you for the name of the folder, specify the name of the mail file after
the name of the folder.

The following example creates the mail file ACCOUNTS.MAI moves the
current message into a folder named FEED in the file ACCOUNTS.MAI, and
deletes the message from its current folder and file:

MAIL> MOVE
_Folder: FEED
_File: ACCOUNTS

To work within a mail file other than the default mail file, use the MAIL
command SET FILE to specify the alternate file. (The MAIL command SHOW
FILE displays the name of the current mail file.) When you change mail files,
the WASTEBASKET folder of the current mail file is emptied and deleted, and
the mail file is closed.

1.4.1.7

Using the Mail Keypad

You can use the keypad to execute commands in the Mail Utility. Most of the
keypad keys can execute two commands. To enter the top command for each
key shown in the following diagram, press the appropriate key. To enter the
bottom command shown in the following diagram, press the PF1 key before

you press the key.

Introducing VMS and DCL

1.4 Utilities

PF1 PF2 PF3 PF4
HELP EXTRACT/MAIL ERASE
GOLD
DIR/FOLDER EXTRACT SELECT/MAIL
7 8 9 —
SEND REPLY FORWARD READ/NEW
SEND/EDIT REP/EDIT/EXT ||FORWARD/EDIT|| SHOW/NEW
4 5 6 b
CURRENT FIRST LAST DIR/NEW
CURRENT/EDIT FIRST/EDIT LAST/EDIT DIR MAIL
1 2 3 ENTER
BACK PRINT DIR
BACK/EDIT PRINT/PR/NOT || DIR/ST=99999
SELECT
0 °
NEXT FILE
NEXT/EDIT DELETE

2K-1744-84

For example, to execute the MAIL command SEND, press the keypad key 7
(KP7). To execute the MAIL command SEND/EDIT, press the PF1 key first
and then press KP7. (For more information on mail keypad commands, see
the VMS Mail Utility Manual.)

You can redefine the keypad keys to execute MAIL commands when you
are in the Mail Utility. Defining keypad keys in MAIL is similar to defining
keypad keys to execute DCL commands; see the DEFINE/KEY command in
the VMS Mail Utility Manual for more information.

1.4.1.8

Setting the Default Editor

By default, MAIL invokes the EDT editor when you specify the MAIL
command SEND/EDIT. By entering the TPU parameter to the MAIL
command SET EDITOR, you can specify that the TPU editor be invoked
instead. (EVE is the default TPU editor.) The TPU editor remains your
default MAIL editor (even if you log out of the system and log back in) until
you enter the SET EDITOR EDT command.

The following example sets the default MAIL editor to TPU:
MAIL> SET EDITOR TPU

1-35

Introducing VMS and DCL

1.4 Utilities

In the following example, the default MAIL editor has been set to TPU, and
the MAIL command SEND/EDIT has been entered at the MAIL prompt. You
see the following screen display:

Buffer MAIN | Insert | Forward

Enter the text of your message, using EVE commands to move around in
the buffer, which is a temporary storage area that exists only during an
editing session. Send the message by pressing CTRL/Z. (See Chapter 8 and
the Guide to VMS Text Processing for information about using EVE and EVE
commands.)

You can display the default MAIL editor by entering the MAIL command
SHOW EDITOR, as shown in the following example:

MAIL> SHOW EDITOR
Your editor is TPU.

1.4.2 Using the Phone Utility

1-36

The VMS Phone Utility (PHONE) allows you to “talk” by way of your
terminal screen to other users on your system or on any other VAX computer
connected to your system by means of DECnet-VAX. The Phone Utility
simulates the functions and features of a telephone. To invoke the Phone
Utility, type PHONE at the DCL prompt. Your screen display splits
horizontally into two sections. Your name is in the top section. At the
switchhook character (the % sign), type the name of the person you want to
call. Type the following to reach user SMITH on node CHEETA:

% CHEETA: :SMITH

If you are calling another user on your node, or if your computer system is
not part of a network, type only their user name.

PHONE rings the other party. If that person answers your call, their name
appears in the bottom section. You can begin typing your conversation. If
your call is not answered, you will be informed that the person is unavailable.

To answer a call from another user, invoke PHONE. Again, your terminal
screen splits into two sections, with you in the top section. Enter the
ANSWER command at the switchhook character. When you finish typing
your conversation, enter the EXIT command or press CTRL/Z to exit from
PHONE.

For more information about PHONE commands, see the VMS Phone Utility
Manual or type HELP at the PHONE prompt.

Introducing VMS and DCL
1.4 Utilities

1.4.3 Using the Sort/Merge Utility

The VMS Sort Utility (SORT), invoked with the DCL command SORT, sorts
records from one or more input files according to the fields you select and
generates one reordered output file. The Sort Utility reorders records in a file
(or files) so that they are in alphabetic or numeric order, either low to high
(ascending) or high to low (descending), according to a portion of each record
called the key. By default, the Sort Utility sorts on the first character of the
first field in each record contained in the input file.

The VMS Merge Utility (MERGE), invoked with the DCL command MERGE,
combines up to ten previously sorted files into one ordered output file. By
default, MERGE does sequence checking to ensure the input files are in order.
The sequence check stops the merge if a record is found to be out of order.
To prevent sequence checking during the merge, specify the
/NOCHECK_SEQUENCE qualifier.

For more information about the SORT/MERGE parameters and qualifiers, see
the VMS Sort/Merge Utility Manual.

1.4.3.1

Sorting Records

A file record can be thought of as a line of text in a file. Record sorting,

the default sort operation, keeps records intact and produces an output file
consisting of complete records. Records can be subdivided into fields, which
describe individual segments of the record. A field is specified by the starting
position of its first character in the record and the length, in characters, of
the field. You can sort records based on the contents of certain fields by
specifying the field as a sort key.

The following example illustrates an ascending (the default) record sort based
on that portion of each record starting at character position 8 and extending
to the end of the record (the name):

$ SORT/KEY=(POSITION=8,SIZE=15) EMPLOYEE.LST BYNAME.LST

EMPLOYEE.LST —————— BYNAME.LST

7828 MCMAHON JANE 8042 BENTLEY PETER
7933 ROSENBERG HARRY 8102 KNIGHT MARTHA
8102 KNIGHT MARTHA il 7951 LONG FRANK

8042 BENTLEY PETER 7828 MCMAHON JANE
7951 LONG FRANK 7933 ROSENBERG HARRY

W>O0>rm
>WwWO >

ZK-1748-84

The following example sorts the same file in descending order using the field
in character positions 3 through 6 (the number) as the sort key:

$ SORT/KEY=(POSITION=3,SIZE=4,DESCENDING) EMPLOYEE.LST BYNUMBER.LST

1-37

Introducing VMS and DCL

1.4 Utilities

1-38

EMPLOYEE.LST

7828 MCMAHON JANE
7933 ROSENBERG HARRY
8102 KNIGHT MARTHA
8042 BENTLEY PETER
7951 LONG FRANK

BYNUMBER.LST

8102 KNIGHT MARTHA
8042 BENTLEY PETER
7951 LONG FRANK

7933 ROSENBERG HARRY
7828 MCMAHON JANE

TEO>W
Y
WX>WPO

ZK-1749-84

The first parameter of the SORT command names the file or files to be sorted.
Multiple files are treated as one large file for sorting purposes. The second
parameter provides a name for the ordered output file that the sort will create.
The following example sorts the records in two files, EMPLOYEE.LST and
EMPLOYER.LST, and creates the ordered output file BYNAME.LST:

$ SORT EMPLOYEE.LST,EMPLOYER.LST BYNAME.LST

Single Key

By default, the SORT command assumes that a key field in a record has the
following characteristics:

* Begins in the first position of a record

* Includes the entire record

* Contains character data

* Will be sorted in ascending order

Use the /KEY qualifier to specify characteristics of the key field other than
those assumed by default.

In the following example, the /KEY qualifier specifies that the key field starts
in position 8 and is 15 characters long:

$ SORT/KEY=(POSITION=8,SIZE=15) EMPLOYEE.LST BYNAME.LST

(If an actual key would have to extend beyond the end of the record to
meet the size specification—for example, if the key is the last item in a
variable-length format—the missing characters are treated as null characters.)

Multiple Keys

You can specify more than one key field, up to a limit of 255 characters. Each
key can be ascending or descending. Specify multiple keys in the order of
their priority in the sort. For example, the following command sorts records
first on the value of position 1 in descending order, then on the value of
positions 8 through 27 (or the end of the record) in ascending order:

$ SORT/KEY=(POSITION=1,SIZE=1,DESCENDING) -
_$ /KEY=(POSITION=8,SIZE=15) -
_$ EMPLOYEE.LST DEPTNAME.LST

Introducing VMS and DCL
1.4 Utilities

The results of the sort specified in the preceding example are as follows:

EMPLOYEE.LST ———

B 7828 MCMAHON JANE

A 7933 ROSENBERG HARRY
C 8102 KNIGHT MARTHA

A 8042 BENTLEY PETER

B 7951 LONG FRANK

DEPTNAME.LST

8102 KNIGHT MARTHA
7951 LONG FRANK

7828 MCMAHON JANE
8042 BENTLEY PETER
7933 ROSENBERG HARRY

Y
>>WWO

ZK-1764-84

By default, records with identical keys are kept but not sorted predictably.
To retain identical keys and arrange them according to the input file order,
specify the /STABLE qualifier. To eliminate duplicate keys, specify the
/NODUPLICATES qualifier.

In addition to record sorting, you can perform the following types of sort

* Tag sort—Sorts the keys only and then rereads the input file to produce
an output file of complete records. The net result is the same as for a
complete record sort. A tag sort is useful if disk space is at a premium,
because it typically uses less scratch file space while sorting. Time may
be saved if the records are large but the keys are relatively small. Specify
the /PROCESS=TAG qualifier with the SORT command to generate a tag

* Address sort—Sorts the keys only and produces an output file of record
addresses (RFAs) in binary format. An address sort is faster than a record
sort, but to take advantage of this feature, you must write a program to
associate the record addresses with the records of the input file. Specify
the /PROCESS=ADDRESS qualifier to generate an address sort.

* Indexed sort—Sorts the keys only and produces an output file of keys and
record addresses (RFAs). The addresses are in binary format. An index
sort is faster than a record sort, but, to take advantage of this feature, you
must write a program to associate the record addresses with the records
of the input file. Specify the /PROCESS=INDEX qualifier to generate an

1.4.3.2 Other Types of Sorting
operations:
sort.
index sort.
1.4.3.3 Character Data Files

The SORT command assumes by default that the files to be sorted contain
character data. Characters are sorted according to a collating sequence, which
describes the order in which characters are arranged (A, B, C, and so on).

ASCII is the default collating sequence for character data. In general, ASCII
orders numbers (0 through 9) first, then uppercase letters (A through Z), and
then lowercase letters (a through z).

You can specify the EBCDIC collating sequence to generate an output file that
is ordered in EBCDIC sequence (although it remains in ASCII representation).
To use the EBCDIC collating sequence, specify the
/COLLATING_SEQUENCE=EBCDIC qualifier.

1-39

Introducing VMS and DCL
1.4 Utilities

1-40

Note:

The multinational collating sequence collates characters according to the
international character set defined by DIGITAL (see Appendix A). The
multinational collating sequence compares for different characters first,
then for different diacritical forms of the same character (formed by using
diacritical marks as part of “compose sequences” on VT200-series terminals),
and then for different cases (uppercase or lowercase) of the same character.
To use the multinational collating sequence, specify the

/COLLATING _SEQUENCE=-MULTINATIONAL qualifier.

Use caution when using the multinational collating sequence to sort

or merge files for further processing. Sequence-checking procedures in
most programming languages compare numeric characters. Because the
multinational sequence is based on actual graphic characters (and not the
codes representing those characters), normal sequence checking will not
work.

1.4.3.4

Noncharacter Data Files

If you sort files containing items other than character data, you must specify
the data type of each key. Also, you must take care in calculating starting
positions and sizes, because the items being compared may occupy more than
one byte. For example, if you are sorting a file that contains 20 characters
followed by 3 floating-point numbers in F_floating format, and the key is the
last floating-point number, you must make the following specification:

$ SORT/KEY=(POSITION=29,F_FLOATING) STATS.RAW STATS.SOR

In the example, the character data occupies positions 1 through 20 (20
characters), the first F_floating-point number occupies position 21 through 24,
the second F_floating-point number occupies positions 25 through 28, and
the third F_floating-point number occupies positions 29 through 32. The size
of the floating-point number is not specified (since it is fixed at 4 bytes).

1.4.3.5

Terminal Input

The records to be sorted or merged need not be in a file. You can enter
the records directly from the terminal as you enter the SORT or MERGE
command.

To enter the input records for a sort or merge operation from your terminal,
specify SYS$INPUT as the input file parameter, qualifying it with the size
of the longest record (in bytes) and the approximate size of the input file (in
blocks). After you enter the command, enter the input records on successive
terminal lines. Terminate each record by pressing RETURN. Terminate the
file by pressing CTRL/Z.

The following example demonstrates a sort operation in which the input
records to be sorted are entered directly from the terminal:

$ SORT/KEY=(POSITION=8,SIZE=15) -

_$ SYS$INPUT/FORMAT=(RECORD_SIZE=22,FILE_SIZE=10) BYNAME.LST
B 7828 MCMAHON JANE

A 7933 ROSENBERG HARRY [RET]

C 8102 KNIGHT MARTHA [RET]

A 8042 BENTLEY PETER [RET]

B 7951 LONG FRANK [RET|

Introducing VMS and DCL
1.4 Utilities

You must specify the file organization of the output file of a sort or merge
operation if that organization differs from that of the input file. The following
example assumes that EMPLOYEE.LST is an indexed file and you want the
output file produced by the sort to be a sequential file (for more information
on file organization, see Section 2.1.2):

$ SORT/KEY=(POSITION=8,SIZE=15) -
_$ EMPLOYEE.LST BYNAME.LST/SEQUENTIAL

If the organization of the output file is indexed, the file must already exist
and must be empty. You must also qualify the output file parameter with

1.4.3.6 Output File Organization
/OVERLAY.
1.4.3.7 Batch Job Submission

If you are sorting large files, you should consider submitting the sort
operation as a batch job, since the sort will require some time. Batch jobs
are programs or DCL command procedures that run independently of your
current session. See Sections 3.1.2 and 3.1.4 for more information about
command procedures and batch jobs, respectively.

If the records to be sorted are in a file, the command procedure you submit as
a batch job must contain the SORT command and explicitly set your default
directory or include the directory in the command file specifications. The
following example submits the DCL command procedure SORTJOB.COM

as a batch job. The text of the command procedure is shown following the
command line:

$ SUBMIT SORTJOB

! SORTJOB.COM

!

$ SET DEFAULT [USER.PER] ! Set default to location of input files
$ SORT/KEY=(POSITION=8,SIZE=15) EMPLOYEE.LST BYNAME.LST

You can include the input records in the batch job by placing them after the
SORT command, one record per line, as shown in the following example.

As with terminal input of records, you specify the input file parameter as
SYS$INPUT and qualify it with the record size (in bytes) and the approximate
file size (in blocks):

$ SUBMIT SORTJOB

! SORTJOB.COM
1

$ SET DEFAULT [USER.PER]

$ SORT/KEY=(POSITION=8,SIZE=15)-
SYS$INPUT-

/FORMAT= (RECORD_SIZE=22,FILE_SIZE=10) -
BYNAME . LST

B 7828 MCMAHON JANE

A 7933 ROSENBERG HARRY

C 8102 KNIGHT MARTHA

A 8042 BENTLEY PETER

B 7951 LONG FRANK

1-41

Introducing VMS and DCL
1.4 Utilities

1-42

1.4.3.8

Merging Files

The MERGE command combines up to 10 sorted files into one ordered output
file. The input files must all have the same format, and all must have been
sorted on the same key fields.

The following example demonstrates the merging of two files based on the
field in each record starting at position 8 and extending to the end of the
record (the name field):

$ MERGE/KEY=(POSITION=8,SIZE=15) BYNAME!.LST,BYNAME2.LST BYNAME3.LST

BYNAME1.LST

8042 BENTLEY PETER
8102 KNIGHT MARTHA
7951 LONG FRANK

7828 MCMAHON JANE
7933 ROSENBERG HARRY

BYNAMES3.LST

8042 BENTLEY PETER
8102 KNIGHT MARTHA
7212 KRAMER KARL
7951 LONG FRANK

>0 OO >

7828 MCMAHON JANE
8323 NORTON FLORENCE
7933 ROSENBERG HARRY
8240 TROUT SAM

BYNAME2.LST

7212 KRAMER KARL
8323 NORTON FLORENCE
8240 TROUT SAM

>>0TOOO>

>00

ZK-1771-84

By default, MERGE does sequence checking to ensure the input files are in
order. The sequence check stops the merge and reports an error if a record
is found to be out of order. To prevent sequence checking during the merge,
specify the /NOCHECK_SEQUENCE qualifier.

2 Working with Files and Directories

In the VMS operating system, information is hierarchically stored. At the
top of this hierarchy is the master file directory (MFD). Your user file directory
(UFD) is listed in this master file directory, along with the user file directories
of other users. Your user file directory (usually called username.DIR) is a file
that points to your top level directory, which is also called your login directory
or default directory because the system places you there by default when you
log in. This top level directory contains the files and subdirectories that you
have created or that have been created for you. It is from your top level
directory that you perform most of your daily online tasks.

An MFD and UFDs are stored on physical devices called disks. The access
path to a file is through the node and device, through a top level directory,
through any subdirectories, and then to the file.

Your directory structure resembles a family tree. At the top is your top level
directory, which branches off to files and to subdirectories, which branch still
further. You can ascend and descend the directory structure to access your
files and subdirectories. You can also access other directory structures that
have been set up to allow public access. With the correct process privileges,
you can also access files and directories on remote systems. Process privileges
control what commands and functions you are authorized to execute from
your account. See the Guide to Setting Up a VMS System for more information
about process privileges.

2.1 Files

A file contains information. This information can be machine-readable data
that the computer understands. It can also be text you enter and manipulate.
The text in the file might be the text of a document; a program that you can
execute, written in a language such as C or Pascal; or a list of addresses. You
can examine the data in these files by displaying the files on a terminal screen
and printing them on paper.

Every file must have a file name or file type to identify it to both the system
and you. A file also has a version number. This file information is specified
using the following format:

filename.type;version

Taken together, these elements form a file specification. The following section
describes the elements of a file specification and the rules for specifying these
elements.

Working with Files and Directories
2.1 Files

2.1.1 File Names, Types, and Versions

When you create a file, give it a name that is meaningful to you. The file
name can be from 0 through 39 characters chosen from the letters A through
Z (upper- or lowercase), the numbers 0 through 9, an underscore (), a
hyphen (-), or a dollar sign ($). Do not use a hyphen as the first or last
character in the file name. Do not begin a file name with a dollar sign,
although it is a legal character within the file name.

A file type identifies the nature of a file. The file type can be from 0 through
39 characters and must be preceded by a period. The rules for creating file
names also apply to file types.

Including a file type is optional. With certain commands, if you omit the file
type, the system applies a default value. Table 2-1 lists some of the more
common default file types used by DCL commands. It also lists the default
file types for some high-level language source programs.

Table 2—1 Default File Types

File Type Contents

Default File Types for DCL Commands

CLD Command description file

COm Command procedure file

DAT Data file

DIS Distribution list file for the MAIL command

DIR Directory file

EDT Startup command file for the EDT editor

EXE Executable program image file created by the linker

HLP Input source file for help libraries

JOou Journal file created by the EDT editor

LIS Listing file created by a language compiler or assembler; default
input file for the PRINT and TYPE commands

LOG Batch job output file

MAI MAIL message file

MEM Output file created by DIGITAL Standard Runoff (DSR)

oBJ Obiject file created by a language compiler or assembler

RNO Input source file for DIGITAL Standard Runoff

SIXEL Sixel graphic file

SYS System image

TJL Journal file created by the VAXTPU and ACL editors

TMP Temporary file

TPU Command file for the VAXTPU editor

TXT Input file for text libraries or MAIL command output

Working with Files and Directories
2.1 Files

Table 2—1 (Cont.) Default File Types
File Type Contents

Default File Types for Language Source Programs

ADA Input source file for the VAX Ada compiler

BAS Input source file for the VAX BASIC compiler
B32 Input source file for the VAX BLISS-32 compiler
Cc Input source file for the VAX C compiler

coB Input source file for the VAX COBOL compiler
FOR Input source file for the VAX FORTRAN compiler
MAR Input source file for the VAX MACRO compiler
PAS Input source file for the VAX Pascal compiler

PLI Input source file for the VAX PL/I compiler

In addition to a file name and type, every file has a version number. Version
numbers are decimal numbers from 1 to 32,767 that differentiate versions of

a file. When you initially create a file, the system assigns it a version number
of 1.

You may have several versions of a file. Unless you specify a version number,
the system uses the highest existing version number of that file. When you
modify that file, the system saves the original file and produces a modified
output file. By default, this output file has the same name and type as the
original, but the version number is incremented by one.

Version numbers must be preceded with a semicolon or a period. When the
system displays file specifications, it generally displays a semicolon in front of
the file version number.

The following example shows how to display the latest version of the file
STAFE_VACATIONS.TXT. Because the system displays the latest version of a
file by default, you can omit the version number from the file specification.

$ TYPE STAFF_VACATIONS.TXT

You can refer to versions of a file in a relative manner by specifying a zero
or a negative version number. Specifying zero locates the latest (highest
numbered) version of the file. Specifying -1 locates the next-most-recent
version, -2 the version before that, and so on.

You can control the number of versions of a file by specifying the
/VERSION_LIMIT qualifier to the DCL commands CREATE /DIRECTORY,
SET DIRECTORY, and SET FILE.

2-3

Working with Files and Directories
2.1 Files

2.1.2 File Characteristics

A file consists of records, each of which consists of a number of bytes of data.
(Bytes are commonly used to represent characters.) A file’s characteristics
describe the physical layout of a file and determine how the file is treated
during file operations. Specifically, file characteristics describe the following
features of a file:

¢ TFile organization—Sequential, indexed, or relative.

The records of a sequential file are arranged one after another in the order
of creation. Records must be read from the file in order. The file must
be rewritten (that is, another file or version of the file must be created) to
update it.

The records of an indexed file are arranged randomly and accessed
through one or more indexes. An index contains a portion of each record
called a key; the keys are arranged in sequence from lowest to highest
(by binary, numeric, or ASCII value depending on data type); one key

is called the primary key. You can read a record directly (randomly) by
specifying an index and the value of one of its keys. You can read records
sequentially by specifying an index—records are read in ascending
sequence according to the key values for that index, starting with the
current record. Update an indexed file in place by adding, deleting, or
changing records. Indexed files require more space since, in addition to
the data, the indexes must be stored.

The records of a relative file are arranged in fixed-length, numbered cells.
The cell numbers are used to determine the position of the record in the
file. As with indexed files, you can read records sequentially or randomly.
Typically, relative files are created and accessed by programs, rather than
from DCL command level.

* Record format—Indicates the way all records in a file appear physically
on the recording surface of the storage medium. Record format is defined
in terms of record length and can be fixed length, variable length, variable
length with fixed control area (VFC), or stream. All records in a fixed-
length file are the same size. Records in a variable-length file vary in size.
Records in a VFC file have a fixed-length header followed by a variable
part. Note that VFC record format is not applicable for indexed files.
Records with stream format are delimited with special control characters.

e Data type—Strictly speaking, a file does not have a data type, because
programs processing a file must know how each item in the file is to
be interpreted. However, a file whose records contain all character data
(each item is one byte, interpreted according to ASCII conventions) is
called a text, or character, file. A file whose data is formatted as integers,
floating-point numbers, object code, or other non-ASCII data is called a
binary file.

* Carriage control—New line (also known as “implied,” “carriage return,”
or “CRLF”), FORTRAN carriage control, none, or print. New line places
a carriage return and line feed at the end of each record when it is
displayed or printed. FORTRAN carriage control uses the first character
of each record to specify carriage-control information. “None” does not
place carriage-control characters into a file; if you want to include control
characters in the file, you must specify them as part of the data in the
file. Note that the PRINT and TYPE commands interpret carriage-return,
line-feed, and form-feed characters embedded in records. Print carriage

2-4

Working with Files and Directories
2.1 Files

control interprets the two bytes of each VFC record as prefix and postfix
carriage-control information.

Files you create using the editor or the CREATE command use new-line
carriage control. Each time you press RETURN, you create a new record.
When the file is printed or typed, each record appears on a new line.
Files you create using the OPEN, WRITE, and CLOSE commands use
print carriage control. Each WRITE command adds a new record (in VFC
format) to the file.

¢ File size—The size of a sequential file with fixed-length records can
be calculated by multiplying the number of records and the size of
each record. Variable-length records require two extra bytes per record,
and indexed files require space for the indexes. In addition to the files
themselves, the VMS system uses disk space to store directory entries, file
headers, and other file-maintenance information.

At DCL level, you normally deal with sequential, variable-length text files,
although some commands permit access to indexed files. You can examine a
file’s characteristics with the /FULL qualifier of the DIRECTORY command,
as shown in the following example:

$ DIRECTORY/FULL RECEIPTS.DAT
Directory DISK1:[JONES.TAXES]

RECEIPTS.DAT; 15 File ID: (103,75,0)
Size: 64/66 Owner: [200,200]
Created: 02-JUN-1988 17:47:26.30

Revised: 31-DEC-1988 11:28:51.35 (2)

Expires: <None specified>

Backup: 30-DEC-1987 22:48:08:23

File organization: Sequential

File attributes: Allocation=153, Extend=0 Global Buffer Count = O
No version limit

Record format: Variable length, maximum 82 bytes

Record attributes: Carriage return carriage control

Journaling enabled: None

File protection: System:RWED, Owner:RWED, Group:RW, World:

Access Control List: None

Total of 1 file, 64/66 blocks.

The file size of the preceding example indicates that 64 blocks have been
used out of the 66 allocated. (File size is the number of actual blocks used of
the blocks that have been allocated; more will be allocated by the system as
needed.) If you are only interested in the size of the file (or several files), use
the /SIZE qualifier. The following example lists the number of blocks used
by the files in one directory.

$ DIRECTORY/SIZE
Directory DISK1: [JONES.TAXES]

BILLING.DAT;31 62
LEGAL.TXT;9 20
LOCAL.DIS;2 4
PROPERTY.DIR;1 7
RECEIPTS.DAT;15 64
SALES.DIR;1 5

Total of 6 files, 162 blocks.

Working with Files and Directories

2.2 Directories

2.2 Directories

A directory is a special kind of file that catalogs (by name and location) a
set of files. A directory file contains the following information for every file
cataloged within it:

¢ The file name, type, and version number

® A pointer to the file header, which describes, among other things, the
file’s owner, protection code, and location

A directory file has the following format:
directory.DIR;1

For example, DOG.DIR;1 is a directory file. Because you cannot edit a
directory file, all directory files have a version number of 1.

In addition to the file name, a file specification can include the directory in
which the file is located. The following example shows the file specification
used to display the file STAFF_VACATIONS.TXT located in the directory
[JONES]:

$ TYPE [JONES]STAFF_VACATIONS.TXT

If you omit the directory name from the file specification, the current directory
is assumed by default.

2.2.1 Directory Structure

Each disk contains a main directory that is set up by the system manager.
This main directory is called the master file directory (MFD). The MFD
contains a list of user file directories (UFDs). User file directories are files

in the master file directory that point to top level directories. Your top level
directory is also called your login or default directory. Unless your account has
been specially modified to do otherwise, by default the system places you in
your top level directory when you log in.

A UFD exists for each user on the system. It contains the names of and
pointers to files cataloged in a user’s directory. A subdirectory is any directory
file that is not an MFD or a UFD. Subdirectories let you organize files into
meaningful groups. Like a directory, a subdirectory contains names and
pointers for the files cataloged within it. It can contain an entry for another
subdirectory, which can contain an entry for another subdirectory, and so on
to seven levels of subdirectories. This structure (a first level directory plus a
maximum of seven levels of subdirectories) is called a hierarchical directory
structure.

Figure 2-1 shows a sample directory hierarchy. At the top of the
structure is the MFD. Its directory name is [000000]. (Directory names are
always enclosed in either square brackets ([]) or angle brackets (<>).)
Figure 2-1 contains entries for user file directories including MARTINO.DIR,
PUBLIC.DIR, SCHULTZ.DIR, and JONES.DIR. The top level directory
[JONES] exists as a user file directory named JONES.DIR;1 in [000000].

Assume that you are user JONES. At login, you are placed in [JONES],

your default directory. [JONES] contains four nondirectory files and two
directory files. The directory file TAXES.DIR;1 points to the [JONES.TAXES]
subdirectory; LICENSES.DIR;1 points to the [JONES.LICENSES] subdirectory.
(Subdirectories are specified by concatenating the subdirectory name to

Working with Files and Directories

2.2 Directories

the name of the directory one level above it.) The [JONES.LICENSES]
subdirectory contains three nondirectory files and two directory files. The
directory file DOG.DIR;1 points to the [JONES.LICENSES.DOG] subdirectory;
MARRIAGE.DIR points to the [JONES.LICENSES.MARRIAGE] subdirectory.

This sample directory structure is the basis for the examples in this chapter,
which demonstrate how to ascend and descend the directory structure and
how to access files within this structure.

Figure 2—1 Directory Structure

MASTER DIRECTORY:

TOP LEVEL DIRECTORY:

SECOND LEVEL DIRECTORY:

THIRD LEVEL DIRECTORY:

[000000]

MARTINO.DIR
PUBLIC.DIR
JONES.DIR

[JONES]

LOGIN.COM;3
LOGIN.COM;4
STAFF.DIS;3

STAFF_VACATIONS.TXT;2

LICENSES.DIR; 1
TAXES.DIR;1

I

[JONES.TAXES]

BILLING.DAT;31
LEGAL.TXT.9
LOCAL.DIS;2
RECEIPTS.DAT;15

PROPERTY.DIR;1
SALES.DIR;1 ,

Y
[JONES.LICENSES]

MAILING.LIS;6
TOTAL.DAT;2
DEPT.DAT:3

DOG.DIR; 1
MARRIAGE.DIR 1

[JONES.TAXES.SALES] [JONES.TAXES.PROPERTY] [JONES.LICENSES.MARRIAGE] [JONES.LICENSES.DOG]
FEDERAL.LIS;6 DISTRICT1.DAT;1 CURRENT.DAT;6 FEES.DAT ;4
STATE.LIS;2 DISTRICT2.DAT;4 FEES.DAT;11 FEMALE.LIS;6
DISTRICT3.DAT;2 1980S.DAT;2 MALE.LIS;3
POUND.LIS; 17

ZK-1746-84

Working with Files and Directories
2.2 Directories

2.2.2 Directory Names

Use a named directory specification to refer to a directory. A named directory
specification consists of a top level directory name that can be followed by a
maximum of seven subdirectory names.

A named directory specification has the following format:
[directory.subdirectory[.subdirectory...]]

A directory name can contain up to 39 alphanumeric characters. Any
characters valid for file names are also valid for directory names. Enclose
the directory name in either square brackets ([]) or angle brackets (<>).

Default and wildcard characters can be applied. You use wildcard characters to
apply DCL commands to multiple files rather than to one file at a time and to
move around the directory structure. See Section 2.6.6.3 for more information
about using wildcard characters in a named directory specification.

2.3 Devices

Files are stored on devices. In the VMS operating system, devices are
classified as follows:

* Mass storage devices save the contents of files on a magnetic medium.
Files saved this way can be accessed, updated, modified, or reused at any
time. Disks and magnetic tapes are mass storage devices.

* Record-oriented devices read and write only single physical units of data
at a time and do not provide online storage of the data. Terminals,
printers, mailboxes, and card readers are record-oriented devices.
(Printers and card readers are also called unit-record devices.)

A device name has the following three parts:

* The device type, which identifies the hardware device. (For example, an
RP06 disk has the device type DB, and a TE16 magnetic tape has the
device type MT.)

* A controller designator, which identifies the hardware controller to which
the device is attached.

* The unit number, which uniquely identifies a device on a particular
controller.

The files you commonly access are stored on disks or magnetic tape. Your
user file directory (UFD) and your default directory with all your files and
subdirectories are located on a disk. You can use a file specification that
contains directory information only if the file is located on a disk. Magnetic
tapes do not have directory structures. To obtain a file stored on tape, use a
file specification that contains only file information.

If you want to access a file that is not located on your default device, you
must specify the device name. For files on disks, you must also specify the
directory where the file is cataloged.

You can use physical, logical, or generic names, described in the following
sections, to refer to devices.

2-8

Working with Files and Directories
2.3 Devices

2.3.1 Physical Device Names

Each physical device known to the system is uniquely identified by a physical
device name. The physical device name identifies the kind of device, for
example a storage disk or a terminal. A device name has the following
format:

ddcu
The fields are as follows:

dd Device code that represents a device type.

c Controller designation. The controller designation, along with
the unit number, identifies the location of the device within the
hardware configuration of the system. Controllers are designated
with alphabetic letters A through Z.

u Unit number. The unit number, along with the controller
designation, identifies the location of the device within the
hardware configuration of the system. Unit numbers are decimal
numbers from O through 65535.

The maximum length of the device name field, including the controller and
the unit number, is 15 characters. When you specify a device name as part
of a file specification, terminate it with a colon (:). If you do not specify a
logical or physical device name, your default device name is supplied.

In addition to directory and file information, a file specification can include the
device on which a directory and file are located. In the following example,
the file STAFE_VACATIONS.TXT is located in the directory [JONES], which
is located on a device with the logical name DISK2. To display the file from
device DISK1, enter the following file specification:

$ TYPE DISK2: [JONES]STAFF_VACATIONS.TXT

A disk or tape must be mounted on a device in order to be recognized by the
system as a volume. The system also recognizes volume sets. A volume set
consists of two or more related volumes.

To access a file on a disk volume set, you have the following options:

* Specify the name of the device on which the first volume in the set is
mounted. For example, if the disks DUA1 and DUA2 have been mounted
as one volume set, access a file on that disk volume set by specifying
DUAL in the file specification.

* Specify the logical name assigned to the volume set when it was
mounted. This is the preferred method because it allows system managers
to move the volume to another device without disrupting users.

To access a file on a tape volume set, specify any device that has been
allocated to that volume set. For example, if the tapes MUA1 and MUA2
have been mounted as one volume set, access a file on that tape volume set
by specifying either MUA1 or MUA2 in the file specification.

Working with Files and Directories

2.3 Devices

2.3.2 Logical Device Names

Your system manager has probably set up logical names to represent the
devices on your system. Logical device names can be used to equate a
somewhat cryptic device name to a short, meaningful name. Use these
logical names, rather than the physical device names, to refer to devices.

By using logical names, users can avoid making specific references to physical
devices whose names may change. In daily system management, devices are
sometimes shuffled about. You might not know when a storage disk is added
to your system configuration and a frequently accessed file moved to that new
disk. You continue to access the file with the same file specification because
your system manager has redefined the logical name that previously pointed
to one device to point to the new device.

Consequently, if your file specification contains a logical device name, you
can access the file regardless of which physical device holds the disk or tape
on which the file is stored. Your system manager will ensure that logical
device names are always equated to the correct physical devices.

In the following example, a logical device name is used to specify the device

containing the disk volume with the file STAFE_VACATIONS.TXT. Note that,
like a physical device name, a logical device name must be terminated with a
colon.

$ TYPE DISK1:[JONES]STAFF_VACATIONS.TXT

The VMS system also offers a special type of logical device name called a
concealed device name. If a device has a concealed device name, the logical
name (not the physical device name) will be displayed in system messages
that refer to the device.

See Chapter 4 for a complete discussion of the use of logical names.

2.3.3 Generic Device Names

2-10

A generic device name consists of the device code and omits the specific
controller or unit number. When you use a generic device name, the system
locates the first available controller or device unit whose physical name
satisfies the portions of the generic device name you specified.

When you use the DCL commands ALLOCATE and MOUNT, the system
allows you to specify generic device names in which the controller, the unit
number, or both is not specified. For example, if you enter the ALLOCATE
command and specify only a device type, the ALLOCATE command locates
the first available unit of that type.

For all other DCL commands, the system goes to controller A if you omit the
controller designation, and to unit number 0 if you omit the unit number.

Working with Files and Directories
2.4 Full File Specification

2.4 Full File Specification

As discussed in Chapter 1, a node is one of several VMS systems connected
to form a computer network. If your VMS system is part of a network, the
node that you access when you log in is your local node. Other nodes in
the network are remote nodes. As a general user of the network, you can
perform file operations on nodes other than the one at which you are logged
in.

A node name can contain 1 to 6 alphanumeric characters and must contain at
least one alphabetic character. A node name must always be followed by a
double colon (::). You can also use a logical node name in place of the node
name. For more information on logical node names, see Section 4.8.

When you add node information to the device, directory, and file information,
you create a full file specification. A full file specification completely describes
the access path the system uses to locate and identify a file. Because it
describes the network node on which the file resides, a full file specification is
also known as a network file specification.

The format for a full file specification follows:
node-name::device:[directorylfilename.type;version

Assuming the file protection is set to allow remote access, the following
example shows the full file specification used to display the file
STAFE_VACATIONS.TXT on node HUBBUB:

$ TYPE HUBBUB::DISK1:[JONES]STAFF_VACATIONS.TXT

If you specify your local node in the file specification, DECnet-VAX logs
you in over the network to perform the file operation, even though the
file exists on your local node. To save time and reduce system overhead
when accessing a file on your current node, omit the node name in the file
specification.

The full file specification can optionally include an access control string. To
indicate that you are authorized to access a file protected against network
access, include an access control string (a 0- to 42-character string that contains
a user name and password). DECnet-VAX uses this access control string

to log in at the remote node. The device, directory, and file information is
passed to the remote node and interpreted there.

The usual format for a full file specification that contains an access control
string is as follows:

node-name”username password”::device:[directorylfilename.type;version

Assume again that you are user JONES. The following example includes the
access control string necessary for you to copy the file STAFE_SALARIES.TXT
from your account on node HUBBUB to your default directory on another
node. The asterisk at the end of the file specification is a wildcard character.
Here, it instructs the system to duplicate the file name STAFE_SALARIES.TXT
when that file is copied to the remote node.

$ COPY HUBBUB"JONES PANDEMONIUM"::DISK1:[JONES]STAFF_SALARIES.TXT *

2-11

Working with Files and Directories
2.4 Full File Specification

If you omit the access control string, the login information sent to the remote
node is determined as follows:

e If a proxy login account exists for you on the remote node, the system
logs you in using that account. (A proxy login account gives access
privileges on a remote node to selected users who do not have a private
account on that node.)

* If no proxy login account exists, the system uses the default DECnet-VAX
account for that node as specified by the local system manager.

If a file resides on a non-VMS system (that is, the file specification does not
conform to VMS syntax), the name of the file as specified in this format is
enclosed in a quoted string. The quotation marks prevent the local VMS
system from performing syntax checking or logical name translation. In the
following example, the file TEST?.DAT contains a question mark character,
which is not recognized as a valid file name character in VMS:

$ COPY BOSTON::"TEST?.DAT" *

2.4.1 Using System Default Values When Specifying Files

2-12

When you enter a file specification, you can omit fields and let the system
supply default values for these fields. Table 2-2 summarizes the defaults
applied to each field in a file specification.

Note that the system supplies the defaults described in Table 2-2 for the first
input file specification that you enter on a DCL command line.

Table 2—-2 File Specification Defaults

Field Defaults
Node The system assumes that the default is the local system.
Device The system uses the device (usually a disk) established at login

or by the SET DEFAULT command. Devices are usually identified
with logical names.

If a physical device (ddcu) is used and a controller designation is
omitted, the controller designation defaults to A. If a unit number
is omitted, the unit number defaults to 0. (The ALLOCATE,
MOUNT, and SHOW DEVICES commands, however, treat a
device name that does not contain controller or unit numbers as
a generic device name.)

Directory The system uses the directory name established at login or by
the SET DEFAULT command.
File name No defaults are applied to the first file name in an input file

specification. Most commands apply default output file names
based on the file name of an input file.

File type Various commands apply defaults for file types, based on the
standard file type conventions summarized in Table 2—1.

File version For input files, the system assumes the highest version number.

2.5

Working with Files and Directories
2.4 Full File Specification

Table 2—-2 (Cont.) File Specification Defaults
Field Defaults

For output files, if no file with the specified file name and file
type exists in the current directory, the file is created with a
version number of 1. However, if one or more versions do exist,
the next highest version number is used.

When you enter more than one input file specification, the system applies
temporary defaults for node, device, and directory names. The system uses
the preceding file specification in the list that included this information. The
following examples show how the system applies temporary defaults.

The following example copies the latest versions of
DISK1:[JONES.TAXES.PROPERTY|DISTRICT1.DAT and
DISK1:[JONES.TAXES.PROPERTY]|DISTRICT2.DAT to the file AUDIT.DAT
in the default directory. By default, the output (second) file specification
parameter assumes the corresponding fields of the first file specification.

$ COPY DISK1:[JONES.TAXES.PROPERTY]DISTRICT1.DAT,DISTRICT2 AUDIT

When you want to specify the default file type, be sure to omit the period
(which indicates a null file type).

The following example copies the files DISK1:[JONES.TAXES[BILLING.DAT
and DISK1:[JONES]STAFFE.DIS to DISK1:[JONES]JASSIGNMENTS.DAT. Note
that the output (second) file specification parameter uses the default directory,
not the directory in the first input file specification.

$ SET DEFAULT DISK1: [JONES]
$ COPY [.TAXESIBILLING.DAT, [1STAFF.DIS ASSIGNMENTS.DAT

The system applies defaults in different ways depending on the DCL
command you specify. If, for example, you substitute the RENAME
command for the COPY command in the previous example, you will
produce one file [JONES.TAXES]JASSIGNMENTS.DAT and another
[JONES]ASSIGNMENTS.DAT. See the VMS DCL Dictionary for more
information on the defaults applied to specific DCL commands.

File Operations

File operations involve the creation, use, and deletion of files. File operations
include the following:

* Displaying the contents of files
¢ Creating files

* Modifying files

* Copying files

* Renaming files

* Deleting files

* Printing files

* Purging files from directories

2-13

Working with Files and Directories
2.5 File Operations

* Using wildcards

As a VMS user, you can also perform file operations over the DECnet network
if you have sufficient privileges. You can display locally the contents of
remote directories and files and copy files from node to node. You can print
files at the remote node where they reside, copy them to a remote printing
device, or copy them to the local node for printing. DCL commands permit
you to access common or public directories or databases located on any node
on the network. You can display their contents or print or copy the files.

See the descriptions of the DCL commands in the VMS DCL Dictionary for
more information on specific file operations you can perform locally and over
the network.

2.5.1 Using Wildcards with File Specifications

2-14

By using wildcard characters, you can apply a DCL command to multiple files
rather than to one file at a time. The command applies to all files that match
the portion of the file specification entered.

With many DCL commands, you can use an asterisk (*) and a percent sign
(%) as a wildcard in directory names, file names, and file types. You can also
use the asterisk, but not the percent sign, in version numbers.

The use of wildcard characters in DCL commands varies with the individual
command. For more information on using wildcards with a particular DCL
command, see the VMS DCL Dictionary.

2.5.1.1

The Asterisk {*) Wildcard Character
Use the asterisk wildcard character to match the following:

* An entire field, or a portion of it, in the directory, file name, and file type
fields

* The entire version number field, but not a portion of it

The following example displays all versions of the file LOGIN.COM in the
directory [JONES]:

$ TYPE [JONESILOGIN.COM;*

The following example displays all versions and all file types of all files that
begin with the word STAFF in the directory [JONES]. This would include
STAFE_VACATIONS.TXT and STAFEF.DIS.

$ TYPE [JONES]STAFF*.*;%*

You can also use the asterisk wildcard character in a directory specification.
The following example displays all versions of all files with the file type .LIS
in all subdirectories one level down from [JONES]:

$ TYPE [JONES.*]*.LIS;*

You can use the asterisk in the name, type, and version fields in output file
specifications. Use an asterisk in an output file specification when you want
the output files to match the corresponding field in the input files.

The following example copies the latest versions of all DAT files in [JONES]
to new files in [JONES] with the same name but a file type of SAV:

$ COPY *.DAT *.SAV

Working with Files and Directories
2.5 File Operations

The following example copies the latest versions of all DAT files in [JONES]
beginning with the characters 19 to new files with the same names but in the
directory [SAVE]:

$ COPY 19% .DAT [SAVE]*. %

25.1.2 The Percent (%) Wildcard Character
The percent sign wildcard character can be used as a substitute for any single
character in a file specification. You can use the percent sign in the directory,
file name, and file type fields. You cannot, however, use the percent sign in
the version number field.

The following example displays the latest versions of all DAT files whose
names begin with DISTRICT:

$ TYPE [JONES.TAXES.PROPERTY]DISTRICTY.DAT

This display would include the files DISTRICT1.DAT, DISTRICT2.DAT,
and DISTRICT3.DAT. The file DISTRICT4_5.DAT would not be displayed
because it has more than one character after DISTRICT, nor would the
file DISTRICT.DAT be displayed. The percent sign replaces one character
position in a field, but there must be a character to replace.

2.5.2 Displaying the Contents of Files

You can display the contents of files on your terminal screen by using the
TYPE command or by invoking an interactive text editor with the
/READ_ONLY qualifier. The following example displays the file
STAFE_VACATIONS.TXT:

$ TYPE STAFF_VACATIONS.TXT

The following example displays the file COMPANY_HOLIDAYS.TXT, which
is located on remote node CHAQS:

$ TYPE CHAOS::DISK2: [PUBLIC]COMPANY_HOLIDAYS.TXT

If more than one file is listed in the TYPE command, the files are displayed in
the order specified; if wildcard characters are used, the files are displayed in
alphabetical order.

To stop the scrolling of the text on the screen temporarily, press the HOLD
SCREEN key (F1 on VT200- and VT300-series terminals); to resume scrolling,
press the HOLD SCREEN key again. To stop the display and return to DCL
command level, press CTRL/Y or CTRL/O.

If you specify the /PAGE qualifier to the TYPE command, you can view one
screen at a time. The system prompts you to press RETURN when you want
to see the next screen.

By invoking an interactive text editor (for example, EVE or EDT) with the
/READ_ONLY qualifier, you can use interactive editing commands to move
around in a file and search for specific sequences of characters. The
/READ_ONLY qualifier prevents you from modifying the file as you display
it. Control characters are displayed rather than being interpreted when you
use /READ_ONLY, however. For example, the form-feed character appears
as <FF> rather than producing a form feed.

2-15

Working with Files and Directories
2.5 File Operations

2.5.3 Creating and Modifying Files

2-16

The most versatile interactive tool for creating and modifying files is the
interactive editor. EVE and EDT are two such editors; VMS supports several
others. See Chapter 8 for a description of the EVE and EDT editors.

You can also create and modify files by using the DCL commands CREATE,
COPY, and RENAME. The CREATE command creates a text file. You enter
the CREATE command and then type lines of text, as shown in the following
example:

$ CREATE POUND.LIS

Tag #23, Elmer Doolittle, notified

Tag #37, James Watson, notified

No tag, light brown, 30 lbs., looks part beagle

Pressing CTRL/Z signals the end of the file and returns you to DCL command
level. You cannot modify a file with the CREATE command. Once you have
pressed RETURN, you cannot return to a previous line to modify a word.

The COPY command duplicates the contents of the old file in a new file.
The following example copies FEES.DAT to RECORDS.DAT in the default
directory:

$ COPY FEES.DAT RECORDS

The COPY command can duplicate many files at a time. The following
example copies all TXT files in the default directory to another directory:

$ COPY *.TXT;* [SAVETEXT]*.*;*

The COPY command can concatenate files. The following example appends
FEES1.DAT to FEES.DAT (forming a new version of FEES.DAT) in your
default directory:

$ COPY FEES.DAT,FEES1.DAT FEES.DAT

Use the COPY command to copy files from another node to your node. The
following example copies the latest version of all files in DISK2:[PUBLIC] on
node CHAOS to files with the same names in your default directory:

$ COPY CHAOS::DISK2:[PUBLIC]*.* *

Use the COPY command to copy files from your node to another node. The
following example copies the latest version of all files in your default directory
to files with the same names in the directory DISK2:[STAFE_BACKUP] on
node CHAOS:

$ COPY =.* CHAOS::DISK2:[STAFF_BACKUP]

If you receive a protection violation or DECnet-VAX error message when you
attempt to copy a file across systems, you have two recourses:

e If you own the file, you can send it to a user account on the other node
with the Mail Utility.

* You can follow the node name in the file specification with an access
control string.

Working with Files and Directories
2.5 File Operations

Use the /SINCE qualifier with the COPY command to select only those files
that meet the specified criterion. The following example copies to the default
directory only those files in the directory [JONES.LICENSES.DOG] that have
been modified since December 31, 1988:

$ COPY/SINCE=31-DEC-1988/MODIFIED [JONES.LICENSES.DOG]*.* *

Use the RENAME command to give the file a new name and optionally locate
it in a different directory. The following example gives the file FEES.DAT the
new name RECORDS.DAT and moves it from the default directory to another
directory:

$ RENAME FEES.DAT;4 [SAVETEXT]RECORDS.DAT

Note that after being renamed, the file FEES.DAT;4 no longer exists in the
default directory. When you use the RENAME command, the input and
output locations must be on the same device.

2.5.4 Deleting Files

$ DELETE/LOG *.LIS;

_%DELETE-I-FILDEL,
_%DELETE-I-FILDEL,
_%DELETE-I-FILDEL,

The DELETE command removes files from directories and releases the disk
space they occupy for use by other files. The DELETE command requires
you to specify a version number or the asterisk wildcard character in each file
specification. The following example deletes version 17 of POUND.LIS:

$ DELETE POUND.LIS;17

The following example deletes versions 16 and 17 of POUND.LIS:
$ DELETE POUND.LIS;16,;17

The following example deletes all versions of POUND.LIS:

$ DELETE POUND.LIS;*

When you delete many files with wildcard characters, you should confirm
each deletion by specifying the /CONFIRM qualifier, as shown in the
following example:

$ DELETE/CONFIRM *.%;*

DISK1: [JONES.LICENSES.DOG]FEES.DAT;4, delete? [N]:
DISK1:[JONES.LICENSES.DOG]FEMALE.LIS;6, delete? [N]:
DISK1: [JONES.LICENSES.DOGIMALE.LIS;3, delete? [N]:
DISK1: [JONES.LICENSES.DOG]POUND.LIS;17, delete? [N]:

Similarly, you may want to display the names of files as they are deleted. You
can do this by specifying the /LOG qualifier with the DELETE command, as
shown in the following example:

*
DISK1: [JONES.LICENSES.DOG]FEMALE.LIS;6 deleted (35 blocks)
DISK1: [JONES.LICENSES.DOGIMALE.LIS;3 deleted (5 blocks)

DISK1: [JONES.LICENSES.DOG]POUND.LIS;17 deleted (9 blocks)

The PURGE command deletes all but the latest version of the specified file
(or all files) in the default directory or any other specified directory. Purging
sequential files after updating them enables you to retain more free space on
your disk volumes.

The following example deletes all but the latest two versions of each file in
your default directory:

$ PURGE/KEEP=2

2-17

Working with Files and Directories
2.5 File Operations

2.5.5 Printing Files

2-18

The PRINT command places your print job (all the files to be printed) in a
list of jobs to be printed called a print queue. Print queues can be one of the
following types of queues:

* Print queue—A queue assigned to a specific print device.

® Terminal queue—A print queue assigned to a hardcopy terminal that is
being used solely as a printer (not interactively).

* Generic queue—A queue that distributes the processing of jobs to printers
with similar characteristics. Jobs submitted to a generic queue are held in
that queue until one of the assigned printer queues becomes available.

To print a file or files, use the PRINT command. The following example
places a print job containing three files in the default print queue,
SYS$PRINT.

$ PRINT POUND,MALE,FEES.DAT
Job POUND (queue SYS$PRINT, entry 202) started on SYS$PRINT

The file types of the files named in the PRINT command default to LIS

or the last explicitly named file type; thus, the preceding example queues
POUND.LIS, MALE.LIS, and FEES.DAT to SYS$PRINT. The system displays
the job name (POUND), the queue name (SYS$PRINT), the job number
(202), and indicates whether the job has started or is pending. By default,
the job name is the name of the first (or only) file specification in the PRINT
command. Once a job is submitted to a queue, you reference it using the
job number. Once the job is queued, it will be printed when no other jobs
precede it in the queue and when the printer is physically ready to print.

A print queue can execute only one job at a time. Print jobs are scheduled
for printing according to their priority, and the job with the highest priority is
printed first. If more than one job exists with the same priority, the smallest
job is usually printed first. Jobs of equal size having the same priority are
selected for printing according to their submission time.

The default print queue, SYS$PRINT, is usually initialized and started as part
of the site-specific system startup procedures. The SHOW QUEUE command
displays the queues that are initialized at your site. The SHOW ENTRY
command displays the status of your print jobs, as shown in the following
example:

$ SHOW ENTRY

Jobname Username Entry Blocks Status

POUND JONES 202 38 Printing
On printer queue SYS$PRINT

Specify the USERNAME parameter to the SHOW ENTRY command to see
jobs queued by other users. Use the ENTRY-NUMBER parameter to the
DELETE/ENTRY command to delete your job from the queue, as shown in
the following example:

$ DELETE/ENTRY=202

Working with Files and Directories

2.5 File Operations

You can print a file on another system by copying that file to the remote
node and specifying the /REMOTE qualifier to the PRINT command. The
following example copies the file COMPANY_HOLIDAYS.TXT from your
local node to the remote node CHAOS and queues the file for printing to the
default system print queue (SYS$PRINT) on node CHAOS. The asterisk at
the end of the file specification is a wildcard character. Here, it instructs the
system to duplicate the file name COMPANY_HOLIDAYS.TXT when that file

is copied to the remote node.

$ COPY COMPANY_HOLIDAYS.TXT CHAOS"JONES PANDEMONIUM"::DISK2:[JONES]*
$ PRINT/REMOTE CHAQS::DISK2: [JONES]COMPANY_HOLIDAYS.TXT

In the previous example, an access control string was specified to indicate that
you are authorized to copy files to the directory [JONES] on node CHAOS.
However, if you have a proxy account on that remote node, the access control
string is unnecessary. (See Section 2.4 for more information about proxy

accounts.)

Note that not all qualifiers to the PRINT command are compatible with the
/REMOTE qualifier. For example, you cannot queue a job to a specific print
queue; all jobs are queued to the default system print queue (SYS$PRINT).

See the description of the /REMOTE qualifier to the DCL command PRINT
in the VMS DCL Dictionary for a list of PRINT qualifiers compatible with

/REMOTE.

DCL Commands That Control Print Jobs

The DCL commands listed in the following table allow you to control print
jobs in various ways. For example, you can specify the number of copies
printed or you can request that the system notify you when your print job
is complete. For more information on any of these commands, see the VMS

DCL Dictionary.

Print Operations

Print Job Commands and Qualifiers

Number of copies
By job
By file
Specified file only
Number of pages
Print features
Flag pages
Type of forms (paper)
Special features
Double-spacing
Page heading

Notification of job execution

Delay execution of a job
For a specified time
Indefinitely

Release a delayed job
Display your print jobs

PRINT/JOB_COUNT=n'
PRINT/COPIES=n"
file-spec/COPIES=n'

PRINT/PAGES-"

PRINT/FLAG='
PRINT/FORM="
PRINT/CHARACTERISTICS='
PRINT/SPACE’
PRINT/HEADER'

PRINT/NOTIFY

PRINT/AFTER
PRINT/HOLD

SET QUEUE/ENTRY/RELEASE
SHOW ENTRY

TParallel qualifiers for the SET QUEUE/ENTRY command allow you to specify these
operations for print jobs that are already queued but not yet printing.

2-19

Working with Files and Directories
2.5 File Operations

Print Operations Print Job Commands and Qualifiers

Stop a print job
Delete job DELETE/ENTRY=job-number
Stop currently printing STOP/ABORT
job and begin printing
the next job in the
queue
Stop currently printing STOP/REQUEUE
job and requeue it for
printing

2.6 Device and Directory Operations

To access files on your system, you need to know how to navigate through
many directory structures. Because directories reside on devices, you also
need to know how to work with devices other than your default device.

Device and directory operations include the following:
¢ Displaying directories

¢ Creating directories

® Deleting directories

® Setting a default device

* Setting a default directory

* Searching the directory structure with wildcards

2.6.1 Displaying Directories

2-20

The DCL command DIRECTORY displays the names of the files in a
directory. The following example lists the files in [JONES]:

$ DIRECTORY/COLUMNS=1
Directory DISK1: [JONES]

LICENSES.DIR;1
LOGIN.COM;3
LOGIN.COM;4

STAFF .DIS;3
STAFF_VACATIONS.TXT;2
TAXES.DIR;1

Total of 5 files.

The display shows us that [JONES] contains two subdirectories—
[JONES.LICENSES] and [JONES.TAXES}—and four nondirectory files
STAFF.DIS, STAFE_VACATIONS.TXT, and two versions of LOGIN.COM.
The following example (assuming that the default directory remains [JONES])
lists the contents of the subdirectory [JONES.LICENSES]. Note that if you
want to move one level down the directory structure, you need specify only
the subdirectory name, preceded by a period, to which you want to move.

Working with Files and Directories
2.6 Device and Directory Operations

$ DIRECTORY/COLUMNS=1 [.LICENSES]
Directory DISK1: [JONES.LICENSES]

MAILING.LIS;6
TOTAL.DAT; 2
DEPT.DAT;3
DOG.DIR;1
MARRIAGE.DIR;1

Total of 6 files.

If you have sufficient privileges, you can display the contents of the master
file directory. To do so, specify [000000] as the file-spec parameter to the
DIRECTORY command or search up one level from a top level directory
using the [-] wildcard (described in Section 2.6.6.2). Note that nine of the
files contained in [000000] are structure files, which are special files created
and reserved by the system that must not be deleted. Note also that your
system disk contains several directories with files that provide data required
to run VMS and allow you to run command images and execute command
procedures.

See the Guide to Setting Up a VMS System for more information about user
privileges.

2.6.2 Creating Directories

The CREATE/DIRECTORY command creates a subdirectory, as shown in the
following example.

$ CREATE/DIRECTORY [JONES.LICENSES]
If your current default directory is [JONES], specify the following:
$ CREATE/DIRECTORY [.LICENSES]

Note that you must have SYSPRV privilege to create a top level directory.
See the Guide to Setting Up a VMS System for a discussion of user privileges.

2.6.3 Deleting Directories

You cannot delete a directory that contains files. Before deleting a directory or
subdirectory, make sure it is empty by entering the DIRECTORY command,
as shown in the following example:

$ SET DEFAULT [JONES.LICENSES]
$ DIRECTORY
No files found.

If the directory contains any files, copy or rename them to another directory
(if you want to save them) and delete them from the directory of interest. If
the directory contains subdirectories, examine those subdirectories (copying
and deleting their files) and delete the subdirectories.

To delete a directory, move to the directory one level above the directory you
want to delete. This means that if you want to delete [JONES.LICENSES],
you should set default to JONES]. Remember that the subdirectory
[JONES.LICENSES] exists as a file named LICENSES.DIR;1 in the directory
[JONES]. You delete a directory by deleting the file that points to that
directory.

2-21

Working with Files and Directories
2.6 Device and Directory Operations

Because a directory file is created without delete access to prevent accidental
deletion of the directory, you must change the file protection to allow delete
access before you can delete that directory file. (See Section 7.2 for more
information about file protection.) The following example shows how to
delete the subdirectory [JONES.LICENSES]:

$ SET DEFAULT [JONES]
$ SET PROTECTION=OWNER:D LICENSES.DIR
$ DELETE LICENSES.DIR;1

The directory files (for example, JONES.DIR;1) in the master file directory
require SYSPRYV privilege to delete. See the Guide to Setting Up a VMS System
for a discussion of user privileges.

2.6.4 Setting a Default Directory

2-22

Ascend and descend the directory hierarchy by setting default to a different
directory with the DCL command SET DEFAULT. The default remains in
effect until you enter another SET DEFAULT command.

The following example sets default to the directory [JONES] and displays the
file STAFE_VACATIONS.TXT:

$ SET DEFAULT [JONES]
$ TYPE STAFF_VACATIONS.TXT

Subdirectories are specified by concatenating the subdirectory name to the
name of the directory one level above it. The following example displays the
file BILLING.DAT located in the subdirectory [JONES.TAXES]:

$ SET DEFAULT [JONES.TAXES]
$ TYPE BILLING.DAT

When you move from your current default directory to a subdirectory one
level below, you can omit the current directory’s name in the file specification.
By default, the system assumes the current directory. In the following
example, the current default directory is [JONES]:

$ SET DEFAULT [.TAXES]
$ TYPE BILLING.DAT

You can display the current default directory by entering the command
SHOW DEFAULT, as shown in the following example:

$ SHOW DEFAULT

DISK1: [JONES.TAXES]
$ SET DEFAULT [PUBLIC]
$ SHOW DEFAULT

DISK1: [PUBLIC]

Working with Files and Directories
2.6 Device and Directory Operations

2.6.5 Setting a Default Device

Section 2.6.4 describes how to set a default directory with the DCL command
SET DEFAULT. You can also use the SET DEFAULT command to change
the default device. The default remains in effect until you enter another SET
DEFAULT command or log out.

The following example shows how to change the default device:

$ SHOW DEFAULT

DISK1: [JONES]
$ SET DEFAULT DISK2: [GROUP]
$ SHOW DEFAULT

DISK2: [GROUP]

You can specify the device to which you want to set default without including
the directory in the command. In the following example, the directory
{[JONES] is assumed and exists on DISK1 and DISK2:

$ SHOW DEFAULT
DISK1: [JONES]

$ SET DEFAULT DISK2:

$ SHOW DEFAULT
DISK2: [JONES]

Note that VMS allows you to set default to a nonexistent disk or directory.
If you find yourself in a nonexistent disk or directory and cannot carry out
a desired operation, simply set default to an existing disk or directory and
continue your task.

2.6.6 Searching the Directory Structure with Search Wildcards

From any point in a directory structure, you can refer to another directory or
subdirectory in the structure. Do this by specifically naming the directory or
subdirectory you want or by using the ellipsis (...) and hyphen (-) wildcard
characters.

2.6.6.1

The Ellipsis (...) Wildcard Character

Use the ellipsis to search down into the directory hierarchy. To search

the current directory and all the subdirectories below it, use the ellipsis by
itself. The following command searches the current default directory and all
subdirectories below it:

$ DIRECTORY [...]

Assuming the current directory is [JONES], the following command
displays the latest versions of all files named FEES.DAT in {JONES] and
all subdirectories under [JONES]:

$ TYPE [JONES...]FEES.DAT

If you begin the directory specification with an ellipsis, the search begins from
your current directory. Assuming the current default directory is [JONES],
the following command searches all subdirectories that end in .SALES and
displays the latest versions of the file FEDERAL.LIS:

$ TYPE [...SALES]FEDERAL.LIS

2-23

Working with Files and Directories
2.6 Device and Directory Operations

2-24

Assuming the current directory is [JONES], the following command
displays the latest versions of all files named DEPT.DAT in [JONES] and
all subdirectories under [JONES]:

$ TYPE [...]DEPT.DAT

However, if you begin the directory specification with a period, only the
subdirectory that is one level lower than the current directory is searched.
Assuming the current directory is [JONES], the following command searches
only the [.LETTERS] subdirectory that is one level lower than [JONES] for the
file INVITATION.TXT. The subdirectory [JONES.LETTERS] is searched, but
[JONES.WORK.LETTERS] is not:

$ TYPE [.LETTERS]INVITATION.TXT

Assuming the current directory is [JONES], the following command displays
the latest versions of all files named DEPT.DAT in the [.LICENSES]
subdirectory under [JONES] and all subdirectories under the [.LICENSES]
subdirectory:

$ TYPE [...LICENSES...]DEPT.DAT

To search all top level directories and their subdirectories from wherever you
are in the directory structure, use an asterisk (*) followed by an ellipsis (...).
The following command (which requires READALL privilege) searches as
many as eight levels of directory names (the top level directory and seven
subdirectories), if they exist. It does not search the MFD.

$ DIRECTORY [*...]

2.6.6.2

The Hyphen (—) Wildcard Character

The hyphen wildcard character permits you to move up through the directory
structure. Each hyphen refers to the directory one level up from the current
one. You can follow the hyphens with directory and subdirectory names to
move down the directory structure on another path.

If the current directory is [JONES.LICENSES], the following command
displays the latest version of STAFF.DIS in [JONES]:

$ TYPE [-]STAFF.DIS

If your current directory is [JONES.LICENSES], the following command
displays the latest version of BILLING.DAT in [JONES.TAXES]:

$ TYPE [-.TAXESIBILLING.DAT

You can specify more than one hyphen. The following command moves you
up two levels in the directory hierarchy.

$ SET DEFAULT [--]

If you enter so many hyphens that you point above the master file directory
(MED), the system displays an error message.

The following example uses the BACKUP command to copy all files in
[JONES.TAXES] to a directory named [AUDIT], and all the files in any
subdirectories under [JONES.TAXES] to corresponding subdirectories under
[AUDIT]:

$ BACKUP [JONES.TAXES...]#.%.% [AUDIT...J*.* %

Working with Files and Directories
2.6 Device and Directory Operations

The trailing ellipsis in the output specification lets you move the entire
third level directory structure from the input directory to the second level of
the output directory. Unlike the COPY command, the BACKUP command
preserves the input directory structure in the output it creates.

2.6.6.3

Using Wildcards to Copy a Directory Structure
By including asterisk (*) and ellipsis (...) wildcards in output directory
specifications, you can do the following:

* Duplicate an entire input directory structure

* Move files from one directory structure into another directory structure at
the same or at a different level

Each wildcard character in an output directory specification refers to

a corresponding directory level in the input specification. An output
specification may contain only wildcards, or it may contain a combination
of wildcards and directory names. If directory names are used, they must
always precede any wildcards that are included.

Use the asterisk when you want a particular level in the output directory
specification to match a level indicated by a wildcard in the input
specification. For example:

$ BACKUP [JONES.*]*.%;% [SCHULTZ.SAVE.*]%. ;%

In the previous example, the BACKUP command copies all files from any
subdirectories under [JONES] to any corresponding subdirectories under
[SCHULTZ.SAVE]. For example, all files in the subdirectory [JONES.TAXES]
are copied to the subdirectory [SCHULTZ.SAVE.TAXES]. Notice that

the single asterisk in the output directory specification refers to the first
subdirectory level in the input directory that contained a wildcard.

Use the ellipsis when you want the output directory specification to follow
the same structure downwards as the input directory from the first level that
contained a wildcard. For example:

$ BACKUP [JONES.TAXES...]#.*%;% [AUDIT...]* *:%

In the previous example, the BACKUP command copies all files in
[JONES.TAXES] to a directory named [AUDIT], and all the files in all
subdirectories under [JONES.TAXES] to corresponding subdirectories under
[AUDIT]. The trailing ellipsis in the output specification lets you move the
entire third level directory structure from the input directory to the second
level of the output directory.

For output directory specifications, a trailing asterisk and ellipsis are mutually
exclusive when they follow a specific directory name. Therefore, output
directory specifications such as [USER.*...] and [USER...¥] are invalid.
However, [*...] is valid, because the asterisk wildcard is used in place of a
directory name.

You can move an entire input directory structure to an output directory
structure. The two ways to do this are as follows:

$ BACKUP DISK1:[JONES...J]%.%;% DISK2[#]*. *;*
or

$ BACKUP DISK1:[JONES...Jl%.%;% DISK2[*...]x%.%;%

2-25

Working with Files and Directories
2.6 Device and Directory Operations

These commands let you move all the files in the [JONES] directory structure
on the disk DISK1 to the [JONES] directory structure on disk DISK2, from the
top level directory down through the entire structure.

2-26

3 Working with Processes

The environment in which you interact with the system is called a process. A
process contains identification and status information that the system needs to
execute programs for you. Within a process, programs execute one at a time
in the order in which they are invoked.

You can place your process into hibernation and create a second process
called a subprocess under your user name. You can interact with the system
and log out of that subprocess to return to the original process.

A program executes within the context of the process that invokes it. Some
programs are system programs that control the flow of events within the
process. For example, when you log in, your process is under the control of
the system program SYS$SYSTEM:LOGINOUT.EXE. When you work at DCL
level, your process is under the control of SYS$SYSTEM:DCL.EXE.

A command procedure is a file that contains a list of DCL commands.
Complex command procedures resemble programs written in high-level
programming languages. In this sense, command procedures provide a way
to write programs in DCL.

You can submit programs and command procedures for execution as batch
jobs, which you submit to the system as separate processes. Batch jobs allow
you to continue to work interactively with the system while the program or
procedure executes as another process under your user name.

3.1 Processes and the User Environment

Each user on the system is associated with a process, which is a special
environment created by the system that makes interaction with the system
possible. A process has a beginning and an end; for example, the system
creates a process for you when you log in and deletes that process when
you log out. A process contains all the information that the system needs
to execute programs. It is within your process that the system executes your
programs (also called images or executable images) one at a time.

A process can be a detached process (a process that is independent of other
processes) or a subprocess (a process that is dependent on another process
for its existence and resources). Your main process, also called your parent
process, is a detached process.

The system creates a process for you when you do one of the following:
* Log in—The system creates a process for each interactive user.

* Submit a batch job—The system creates a process for each batch job.
When the batch job is completed, the system deletes the process.
Section 3.1.4 discusses batch jobs.

* Spawn a subprocess—The system creates a process when you use the
SPAWN command. Section 3.1.3 describes subprocesses.

* Run a program using either the /DETACHED or the UIC=uic qualifiers.
Section 3.1.1 describes programs.

3-1

Working with Processes
3.1 Processes and the User Environment

The system also creates special system processes to perform various functions.
The DCL command SHOW SYSTEM displays both user and system processes.

The following list summarizes the process context. Certain characteristics,
such as the privileges, symbols, and logical names enabled in your process,
collectively create the process context. Use the DCL command SHOW
PROCESS/ALL to examine your process context.

31-DEC-1988 13:30:37.12 @ User: CLEAVER @
Pid: 24E003DC ©® Proc. name: CLEAVER_1 © UIC: [DOC,CLEAVER] ©
Priority: 4 @ Default file spec: DISK1:[CLEAVER] @

Process Quotas: ©
Account name: DOC

CPU limit: ' Infinite Direct I/0 limit: 18
Buffered I/0 byte count quota: 31808 Buffered I/0 limit: 25
Timer queue entry quota: 10 Open file quota: 57
Paging file quota: 22276 Subprocess quota: 4
Default page fault cluster: 64 AST quota: 38
Enqueue quota: 600 Shared file limit: 0
Max detached processes: 0 Max active jobs: 0
Accounting information: ©

Buffered I/0 count: 140 Peak working set size: 383
Direct I/0 count: 7 Peak virtual size: 2336

Page faults: 304 Mounted volumes: 0
Images activated: 1

Elapsed CPU time: 0 00:00:00.55

Connect time: 0 00:00:22.76
Process privileges: @

GROUP may affect other processes in same group

TMPMBX may create temporary mailbox

OPER operator privilege

NETMBX may create network device
Process rights identifiers: ®

INTERACTIVE

LOCAL

SYS$NODE_AJAX

Process Dynamic Memory Area ®

Current Size (bytes) 25600 Current Total Size (pages) 50
Free Space (bytes) 19592 Space in Use (bytes) 6008
Size of Largest Block 19520 Size of Smallest Block 24
Number of Free Blocks 3 Free Blocks LEQU 32 Bytes 1

Processes in this tree: ®
CLEAVER
CLEAVER_1 (%)

© Current date and time—The date and time when the SHOW
PROCESS/ALL command is executed.

® User name—The user name assigned to the account that is associated
with the process.

©® Process identification number (PID)—A unique number assigned to the
process by the system. The SHOW PROCESS command displays the PID
as a hexadecimal number,

O Process name—The name assigned to the process. Since process names
are unique, the first process logged in under an account is assigned the
user name, and subsequent processes logged in under the same account

3-2

3.1.1

Working with Processes
3.1 Processes and the User Environment

are assigned the terminal name. You can change your process name with
the DCL command SET PROCESS/NAME.

© User identification code (UIC)—The group and member numbers (or
letters) assigned to the account that is associated with the process (for
example, [PERSONNEL,RODGERS)). Part of your UIC identifies the
group to which you belong. Within a group, users are allowed to share
files or system resources more freely than between groups.

O Priority—The current priority of the process.

@ Default file specification—The current device and directory. Change your
current defaults with the-DCL command SET DEFAULT.

© Process quotas—The quotas (limits) associated with the process. Examine
these quotas with the /QUOTAS or /ALL qualifiers of the SHOW
PROCESS command.

© Accounting information—The continuously updated account of the
process’s use of memory and CPU time. Examine this information
with the /ACCOUNTING or /ALL qualifiers of the SHOW PROCESS
command.

® Process privileges—The privileges granted to your processes. Privileges
restrict the performance of certain system activities to certain users.
Examine your privileges with the /PRIVILEGES or /ALL qualifiers of the
SHOW PROCESS command.

® Process rights identifiers—System-defined identifiers that are used in
conjunction with access control list protection. Identifiers provide the
means of specifying the users in an access control list. An access control
list is a security tool that defines the kinds of access to be granted or
denied to users of an object, such as a file, device, or mailbox. (See
Chapter 7 for more information about identifiers and access control lists.)

® Process dynamic memory area—The process’s current use of dynamic
memory. Dynamic memory is allocated by the system to an image
when that image is executing. When that memory is no longer needed
by one process, the system allocates it to another process. Examine
this information with the /MEMORY or /ALL qualifiers of the SHOW
PROCESS command.

® Processes in this tree—A list of subprocesses belonging to the parent
process. An asterisk appears after the current process. Examine this with
the DCL SHOW PROCESS/SUBPROCESSES or /ALL command.

Programs

A program, also called an image or executable image, is a file that contains
instructions and data in machine-readable format. Image files can be VMS-
or user-supplied and usually have a file type of EXE. You cannot examine an
image file with the DCL commands TYPE, PRINT, or EDIT because image
files do not consist of ASCII characters. (Text files contain ASCII characters,
which are a standard method of representing the alphabet, punctuation
marks, numerals, and other special symbols.)

3-3

Working with Processes
3.1 Processes and the User Environment

A program can be either a command image or a noncommand image as
follows:

¢ Command image—A command image is a program associated
with and invoked by a DCL command. For example, when you
type the DCL command COPY, the system executes the program
SYS$SYSTEM:COPY.EXE. COPY.EXE is a command image. A system
directory named SYS$SYSTEM contains a number of command image
files, most of which are VMS-supplied. Use the DCL command
DIRECTORY SYS$SYSTEM to examine this system directory.

* Noncommand image—A noncommand image is a program not associated
with a DCL command. To invoke a noncommand image, name the file
containing the program as the parameter to the RUN command.

Executing Programs Across the Network

Because of support provided by DECnet-VAX, programs can execute across
the network as if they were executing locally. Because DECnet-VAX is
integrated within the VMS operating system, it is easy to write programs that
access remote files. To access a remote file in an application program, you
need only include in your file specification the name of the remote node and
any required access control information.

Task-to-task communications, a feature common to all DECnet
implementations, allows two application programs running on the same
or different operating systems to communicate with each other regardless
of the programming languages used. Examples of network applications are
distributed processing applications, transaction processing applications, and
applications providing connection to servers.

3.1.2 Command Procedures

3-4

A command procedure is a file that contains a list of DCL commands.
When you execute a command procedure, DCL reads the command file and
executes the commands it contains. Command procedures can be executed as
interactive or batch processes. If you use command procedures that require
lengthy processing time (for example, the compilation or assembly of large
programs) submit these procedures as batch jobs so you can continue to use
your terminal interactively.

When you submit a command procedure for batch execution, the system
creates a detached process using your account and process characteristics.
The system runs the job from that process and deletes the process when the
job is completed.

You can use command procedures to automate sequences of commands that
you enter frequently. For example, if you always examine the contents of a
directory immediately after setting default to it, you can design a command
procedure that issues the appropriate commands to display the directory’s
contents. A command procedure might contain the following commands

to set default to the ACCOUNT subdirectory and display the subdirectory’s
contents. (Exclamation points delimit comments in command procedures;
DCL ignores everything to the right of the exclamation point when processing
the line.)

Working with Processes
3.1 Processes and the User Environment

$! DISK1:[ADAMS]ACCOUNTD.COM

$!

$ SET DEFAULT DISK1: [ADAMS.ACCOUNT]
$ DIRECTORY

To execute a command procedure interactively, type the @ command
followed by the procedure’s file specification. To execute the command
procedure in the previous example, enter @DISK1:]ADAMS]ACCOUNTD
(or @ACCOUNTD if your current disk and directory are DISK1:{ADAMS]).

Chapter 6 discusses command procedures in greater detail.

3.1.3 Subprocesses

The SPAWN command enables you to create a subprocess of your current
process. Within this subprocess, you can interact with the system and log out
of the subprocess to return to your parent process, or switch between your
parent process and subprocesses. Only one of your processes is executing at
any time.

Each user on the system is represented by a job tree. A job tree is a hierarchy
of all your processes and subprocesses, with your main process at the top. A
subprocess is dependent on the parent process and is deleted when the parent
process exits. By default, the subprocess assumes the name of the parent
process followed by an underscore and a unique number. For example,

if the parent process name is DOUGLASS, the subprocesses are named
DOUGLASS_1, DOUGLASS_2, and so on, forming a tree of subprocesses.

Typically, you use a subprocess in one of the following two ways:

* To interrupt a task, perform a second task, then return to the original
task—Because SPAWN is a built-in command (listed in Chapter 1), you
can use CTRL/Y to interrupt one task, spawn a subprocess to perform
a second task, exit from the subprocess, and then enter the CONTINUE
command to return to the original task. By default, when you create a
subprocess, the parent process hibernates, and you are given control at
DCL level within the subprocess. Your default directory is the current
directory of the parent process. (If you interrupt the EDT editor, enter the
CONTINUE command and press CTRL/W to refresh the screen.)

* To perform a second task while continuing to work on your original
task—You can do so by creating the subprocess with the
SPAWN/NOWAIT command. Use the SPAWN/NOWAIT command
only to execute commands that do not require input; SPAWN/NOWAIT
generates a noninteractive, batch-like subprocess.

Because both the parent and the subprocess are executing concurrently,
both attempt to control the terminal. To prevent conflicts, also specify the
following:

- /OUTPUT qualifier—Indicates that the subprocess should write
output to a specified file rather than to the terminal.

- SPAWN command parameter or /INPUT qualifier—Indicates that
the subprocess should execute the specified commands rather than
reading input from the terminal.

3-5

Working with Processes
3.1 Processes and the User Environment

When you specify the /INPUT qualifier of the SPAWN command,
the subprocess is created as a noninteractive process that exits upon
encountering a severe error or an end-of-file indicator. At DCL level,
CTRL/Z is treated as an end-of-file indicator.

In the following example, a command image (the TYPE command) is
interrupted with CTRL/Y and a subprocess is spawned:

$ TYPE MICE.TXT

Once the weather turns cold, mice may find a crack in your
foundation and enter your house. They're looking for food and
shelter from the harsh weather ahead.

$ SPAWN

%DCL-S-SPAWNED, process DOUGLASS_1 spawned

%DCL-S-ATTACHED, terminal now attached to process DOUGLASS_1
$ MAIL

MAIL>

MAIL> EXIT

$ LOGOUT

Process DOUGLASS_1 logged out at 31-DEC-1988 12:42:12.46
%DCL-S-RETURNED, control returned to process DOUGLASS

$ CONTINUE

Once inside, they may gnaw through electrical wires and raid

your food. Because mice reproduce so quickly, what started

as one or two mice can quickly become an invasion. If you seal

the cracks and holes on the exterior of your foundation, you can

prevent these rodents from ever getting in.

Because each process you create is unique, commands executed in one
process do not usually affect any other process. However, because control

of the terminal passes between processes, commands that affect the terminal

characteristics (for example, SET TERMINAL) affect any process controlling

that terminal. For example, if one process inhibits echoing and exits without
restoring it, echoing remains inhibited for the next process that gains control

of the terminal. Reset any altered terminal characteristics with the SET
TERMINAL command.

3.1.3.1

Exiting from a Subprocess
To exit from a subprocess created by SPAWN, use one of the following
commands:

* LOGOUT—When you exit from a subprocess with the LOGOUT

command, the subprocess is deleted (along with any subprocesses that it

created), and you are returned to the parent process.

* ATTACH—When you exit from a subprocess with the ATTACH
command, the subprocess hibernates, and control of your terminal
is transferred to the specified process. (You must specify either a
process name as a parameter to the ATTACH command or a process
identification number (PID) as a value of the /IDENTIFIER qualifier of

the ATTACH command.) The following example shows how to exit from

the subprocess DOUGLASS_1 and attach to the process DOUGLASS:

Working with Processes
3.1 Processes and the User Environment

$ ATTACH DOUGLASS
%DCL-S-RETURNED, control returned to process DOUGLASS
$ SHOW PROCESS

26-APR-1988 10:34:58.50 VTA303 User: DOUGLASS
Pid: 25C002B4 Proc. name: DOUGLASS UIC: [200,200]
Priority: 4 Default file spec: SYS$SYSDEVICE: [DOUGLASS]

Devices allocated: 11VTA303:

3.1.3.2

Subprocess Context

By default, a subprocess inherits the following items from the parent process:
defaults, privileges, symbols, logical names, control characters, message
format, verification state, and key definitions. The environment that these
items collectively create is called the process context. The following items,
however, are not inherited from the parent process:

® Process identification number (PID)—The system assigns each created
subprocess a unique process identification number.

* Process name—By default, the subprocess name consists of the name of
the parent process followed by an underscore and an integer. Use the
/PROCESS qualifier of the SPAWN command to specify a process name
other than the default. A process name must be unique.

* Created commands—Commands that are defined by a parent process
using the SET COMMAND command are not copied to a subprocess. To
use a created command in a subprocess, you must use SET COMMAND
to create that command for the subprocess.

* Authorize privileges—When you spawn to a subprocess, the process
context contains the privileges currently enabled, not the privileges
that you may be authorized to enable. For example, if you spawn to a
subprocess while in MAIL and want to perform a privileged operation,
you need to have already set the proper privilege in the parent process.

You can use the following SPAWN qualifiers to prevent the subprocess from
inheriting a number of these items:

Qualifier Items Inhibited or Change“d

/CARRIAGE _CONTROL, /PROMPT DCL prompt

/NOCLI CLI (command language interpreter;
DCL by default)

/NOKEYPAD Keypad definitions

/NOLOGICAL _NAMES Logical names

/NOSYMBOL Symbols

The /SYMBOL and /LOGICAL _NAMES qualifiers do not affect system-
defined symbols (such as $SEVERITY and $STATUS) or system-defined
logical names (such as SYSSCOMMAND and SYS$OUTPUT). Symbols are
described in Chapter 5. See Chapter 4 for more information about logical
names.

Working with Processes
3.1 Processes and the User Environment

Since copying logical names and symbols to a subprocess can be time-
consuming (a few seconds), you may want to use the

/NOLOGICAL _NAMES and /NOSYMBOL qualifiers to the SPAWN
command unless you plan to use the logical names or symbols in the
subprocess. If you use subprocesses frequently, the ATTACH command
provides the most efficient way to enter and exit a subprocess. This method
allows you to transfer control quickly between the parent process and
subprocess rather than repeatedly waiting for the system to create a new
subprocess for you.

3.1.4 Batch Jobs

Usually you use VMS in interactive mode. When you work interactively with
VMS, the system must expend resources waiting for your input. If the system
is heavily loaded with other jobs, your interaction with VMS is slowed. Also,
when you run a long job interactively, your terminal is unavailable to you
until the job is completed.

A batch job consists of one or more programs or command procedures that
execute as a detached process without user interaction. A batch job allows
you to use your terminal for other work while the system executes your
program or command procedure.

When you submit a batch job, the system logs in under your user name and
creates a detached process dedicated to executing the commands in that file.
A batch job is also more efficient than an interactive session: it runs under
a lower priority and can be run at times when the system is not overloaded
with interactive users.

3.1.5 Submitting a Batch Job

3-8

To run a job in batch mode, submit your job to a batch queue (a list of batch
jobs waiting to execute) by entering the DCL command SUBMIT. When you
submit a job, it is directed to the default batch queue, SYS$BATCH, where it
is added to the end of the queue of jobs waiting to be executed. When the
jobs preceding yours are completed, your job is executed. (On a VMS system,
the number of batch jobs that can execute simultaneously is specified when
the batch queue is created by the system manager.)

By default, the SUBMIT command uses a file type of COM. The following
command enters JOB1.COM into SYS$BATCH:

$ SUBMIT JOB1
Job JOB1 (queue SYS$BATCH, entry 651, started on SYS$BATCH)

The system displays the name of the job, the queue containing the job, and
the entry number assigned to the job. You receive the DCL prompt once your
job is submitted to the batch queue. If you need to reference your batch job
in any DCL commands (DELETE/ENTRY, for example), do so by using the
job entry number. (You can obtain the job entry number by using the SHOW
ENTRY command.) Note that if multiple procedures are submitted in a batch
job, the batch job terminates when any procedure exits with an error or fatal
error status.

Working with Processes
3.1 Processes and the User Environment

Your batch job does not necessarily have to start running at the time you
submit it to the batch queue. To specify a different time, enter the
SUBMIT/AFTER command. In the following example, the job is submitted
after 11:30 p.m.:

$ SUBMIT/AFTER=23:30 JOB1.COM

3.1.6 Batch Job Output

By default, accumulated output from a batch job is written to a log file once
each minute. (To specify a different time interval, include the SET
OUTPUT_RATE command in your command procedure.) If you attempt to
use the EDT editor to read the log fle while the system is writing to it, you
receive a message indicating that the file is locked by another user. Wait a
few seconds and try again. The EVE editor, however, allows you to read the
batch job’s log file. By specifying EDIT/TPU/READ_ONLY and the name
of the log file, you can use EVE commands to move around the log file and
ensure that any changes you make to the file are not saved. If you omit the
/READ_ONLY qualifier and modify the log file in any way, the batch job
terminates.

Because your batch job is a process that logs in under your user name and
executes your login command procedure, the output from a batch job includes
the contents of your login command procedure. The output also includes
everything written to the batch job log file (command procedure output,
error messages, and so on) and the full logout message. To prevent your
login command procedure from being written to the batch log file, add the
following command to the beginning of your login command procedure:

$ IF F$MODE() .EQS. "BATCH" THEN SET NOVERIFY

By default, the log file name is the name under which you submitted the
job. Also by default, the log file has a file type of LOG and assumes the
device and directory specified by your login defaults. To specify a different
log file name when you submit the job, use the /LOG_NAME qualifier to
the SUBMIT command.

When the batch job completes, the log file is queued to the default system
printer (SYS$PRINT), printed, and deleted. To save the log file after printing
it, use the /KEEP qualifier to the SUBMIT command. To save the log file
without printing it, use the /NOPRINT qualifier to the SUBMIT command.

3.1.7 Restarting Batch Jobs

If the system fails while your batch job is executing, your job does not
complete. When the system recovers and the queue is restarted, your job is
aborted, and the next job in the queue is executed. However, by specifying
the /RESTART qualifier when you submit a batch job, you indicate that
the system should reexecute your job if the system crashes before the job is
finished.

By default, a batch job is reexecuted beginning with the first line. See
Section 6.10 for more information about symbols you can add to your
command procedures to specify a different restarting point.

3-9

4

Using Logical Names

When you define a logical name, you equate one character string to an
equivalence name, which is usually a full or partial file specification, another
logical name, or any other character string. Once you have equated a logical
name to one or more equivalence names, you can use the logical name to
refer to those equivalence names. For example, you might assign a logical
name to your default disk and directory. Logical names serve two main
functions:

* Shorthand and readability—You can define commonly used files,
directories, and devices with short, meaningful logical names. Such
names are easier to remember and type than the full file specifications.
Names that you use frequently can be defined in your login command
procedure. Names that most users on your system use frequently can be
defined by a system manager in the site-specific system startup command
procedure.

¢ File independence—You can use logical names to keep your programs
and command procedures independent of physical file specifications.
For example, if a command procedure references the logical name
ACCOUNTS, you can equate ACCOUNTS to any file on any disk before
executing the command procedure.

Logical names can be defined by you or by the system. Logical names and
their definitions are kept in tables called logical name tables. The system
provides the following logical name tables:

* Your process table

* The job table for your process
* Your group table

¢ The system table

When you enter a logical name as part of a command line, the system
translates the logical name. It does this by searching the logical name tables
in a certain order. Information about existing logical name tables and the
order in which they are searched is stored in two logical name directory tables.

With DCL, you can also apply special attributes to logical names and define
the order in which logical names tables are searched.

Using Logical Names
4.1 Creating Logical Names

4.1 Creating Logical Names

4-2

You can create your own logical names with either the ASSIGN or the
DEFINE command. This section uses the DEFINE command to create logical
names. (Note that the syntax for the ASSIGN command differs from the
syntax for the DEFINE command. For information on using the ASSIGN
command, see the VMS DCL Dictionary.)

The syntax for defining a logical name is as follows:
DEFINE logical-name equivalence-namel[,...]

The following example associates the logical name ACCOUNTS with the
equivalence name DISK1:[JONES.ACCOUNTS]:

$ DEFINE ACCOUNTS DISK1: [JONES.ACCOUNTS]

Now you can use ACCOUNTS to refer to the directory
DISK1:[JONES.ACCOUNTS].

Observe the following rules when creating a logical name with the DEFINE
command:

* A logical name and its equivalence name can each have a maximum of
255 characters. A logical name can contain alphanumeric characters, as
well as the underscore (), dollar sign ($), and hyphen (-).

* The equivalence name must include the punctuation marks (colons,
brackets, periods) that would be required if it were part of a file
specification. For example, a device name is terminated by a colon, a
directory specification is enclosed in square brackets, and a file type is
preceded by a period.

* You can optionally terminate a logical name with a colon. If you do this,
the ASSIGN command removes the colon before placing the logical name
in a logical name table. The DEFINE command does not remove the
colon before placing the name in a logical name table.

In general, you should not specify a colon at the end of a logical name
when you are creating it. However, if you do so and want to save the
colon as part of the logical name, use the DEFINE command. (Note

that when you delete a logical name ending with a colon, you need to
specify two colons because the DEASSIGN command, like the ASSIGN
command, removes one colon before it searches the logical name table for
a match.)

If the logical name is part of a file specification, the logical name must be
the leftmost component of the file specification and must be separated from
the rest of the file specification by a colon. When you use a logical name to
represent a complete file specification, the terminating colon is not needed.
The following examples all display the file
DISK1:[SALES_STAFFJPAYROLL.DAT:

Using Logical Names
4.1 Creating Logical Names

DEFINE PAY DISK1: [SALES_STAFF]PAYROLL.DAT
TYPE PAY

DEFINE PAY_FILE DISK1:([SALES_STAFF]PAYROLL
TYPE PAY_FILE: .DAT

DEFINE PAY_DIR DISK1:[SALES_STAFF]
TYPE PAY_DIR:PAYROLL.DAT

DEFINE PAY_DISK DISK1:
TYPE PAY_DISK: [SALES_STAFF]PAYROLL.DAT

& & “ A P eHh P

Note that if you combine a logical name with only an explicitly stated file type
or version number, you must include the period or semicolon, respectively.
For example, if PAY is equivalent to DUA1:[SALES_STAFFJPAYROLL.DAT,
PAY:2 is an invalid file specification. (PAY:;2 is valid.) Defaults for the
current directory, the file type (depending on the function being performed),
and the version number are applied as usual after translation.

By default, the DEFINE command places logical names in your process logical
name table, where the logical name is available only to your process and
subprocesses. Section 4.2 describes logical name tables.

You can equate more than one logical name with an equivalence name. For
example, you can equate the logical names $TERMINAL and CONSOLE to
the physical name of a terminal so that both logical names translate to the
same device. (If you equate a logical name to more than one equivalence
string in a single command, you create a search list for the system to use
to translate the names. See Section 4.7 for information about search list
translation.)

If you equate a logical name to one equivalence string and then equate

the same logical name to another equivalence string, the second definition
supersedes the first. You can, however, equate the same logical name to
different equivalence strings if the logical name definitions are in different
tables (described in Section 4.2). You can equate the same logical name to
different equivalence strings in the same table if they are defined in different
access modes (described in Section 4.5).

If you cannot access a file, and the command you are specifying and the

file specification seem in order, check the left-hand component of the file
specification (with SHOW LOGICAL) to be sure that it is not defined as a
logical name.

4.1.1 Displaying Logical Names

Display the definition of a logical name with either the SHOW LOGICAL or
SHOW TRANSLATION command.

When you enter the SHOW LOGICAL command, the system searches the
process, job, group, and system logical name tables (in that order) for the
specified logical name. In the following example, the system found the logical
name ACCOUNTS in both the process and job logical name tables:

$ SHOW LOGICAL ACCOUNTS
"ACCOUNTS" = "DISK1:[ACCOUNTS]" (LNM$PROCESS_TABLE)
"ACCOUNTS" = "DISK1:[ACCOUNTS]" (LNM$JOB_80891AEO)

Using Logical Names
4.1 Creating Logical Names

4-4

Sometimes the definition of a logical name may include another logical name.
The SHOW LOGICAL command continues to search the logical name tables
until all levels of logical names in a definition have been found. This is
referred to as iterative translation.

When iterative translation is performed, the SHOW LOGICAL command
displays multiple lines. Each line has a number that shows the level of
translation. For example:

$ SHOW LOGICAL MYDISK
"MYDISK" = "DISK2" (LNM$PROCESS_TABLE)
1 "DISK2" = "11DUA4:" (LNM$SYSTEM_TABLE)

Level numbers are zero based; that is, 0 is the first level, 1 is the second,
and so on. In the previous example, two translations were performed. The
number 1 indicates the second level of translation. See Section 4.4.1 for more
information about iterative translation.

Unless you have redefined the search order, you can display the contents
of the process, job, group, and system logical name tables by entering the
SHOW LOGICAL command without qualifiers or parameters. The following
command displays the logical names and their definitions in all four tables:

$ SHOW LOGICAL

When you enter the SHOW TRANSLATION command, the system searches
the process, job, group, and system logical name tables for the specified
logical name. It displays the first definition it finds as well as the table in
which it was found. In the following example, you see that the logical name
ACCOUNTS is translated as DISK1:]ACCOUNTS] and exists in the process
logical name table (LNM$PROCESS_TABLE):

$ SHOW TRANSLATION ACCOUNTS
"ACCOUNTS" = "DISK1:[ACCOUNTS]" (LNM$PROCESS_TABLE)

Some commands and lexical functions do not translate logical names
iteratively. The SHOW TRANSLATION command, for example, provides
only the immediate equivalence name, as shown in the following example:

$ DEFINE SALES_DISK WORKDISK:

$ DEFINE SALES SALES_DISK

$ SHOW TRANSLATION SALES

SALES = "SALES_DISK" (LNM$PROCESS_TABLE)

Although the SHOW LOGICAL and SHOW TRANSLATION commands
both translate logical names, certain circumstances argue for the use of one
command over the other, as follows:

* To ensure that all levels of logical name translation are performed, specify
the SHOW LOGICAL command. If you are certain that a logical name
does not require iterative translation, specify the SHOW TRANSLATION
command.

* Because the SHOW TRANSLATION command is a built-in command,
you can interrupt an image (with CTRL/Y, for example) and enter SHOW
TRANSLATION without causing the interrupted image to exit. (Built-in
commands are described in Section 1.2.) If you interrupt an image with
the SHOW LOGICAL command, your interrupted image is forced to exit.

Using Logical Names
4.1 Creating Logical Names

4.1.2 Deleting Logical Names

To delete a logical name defined interactively, use the DEASSIGN command.
For example:

$ DEFINE STAFF [JONES.STAFF]

$ DEASSIGN STAFF

Logical names in your process and job tables are automatically deleted when
your process terminates. However, by specifying the /USER_MODE qualifier
to the DEFINE command, you can place a logical name in the process logical
name table and execute one command image before the logical name is
deleted.

4.2 Logical Name Tables

The system stores logical names and their equivalence strings in four logical
name tables called process, job, system, and group. Some logical name tables
are available only to your process; these tables are called process-private.
Other tables are shareable; that is, they are available to other users on the
system.

Identical logical names can exist in more than one table. The logical name
that is used depends on the order in which the logical name tables are
searched. For example, when the system attempts to translate a logical name
in order to identify the location of a file, it uses the logical name
LNMSFILE_DEV to provide the list of tables in which to look for the name.
The order in which the tables are listed is also the order in which they are
searched. The precedence order defined by LNMS$FILE_DEV is: (1) process
table, (2) job table, (3) group table, (4) system table. Therefore, if a logical
name exists in both the process and the group logical name tables, the logical
name within the process table is used. See Section 4.3.2 for more information
about LNMS$FILE_DEV.

Within each table, the system defines some logical names for you. Each table
and its system-defined logical names are described in the following sections.

4.2.1 The Process Table

Your process logical name table, named LNM$PROCESS_TABLE, contains
logical names that are available only to your process and any subsequent
subprocesses. Use the logical name LNM$PROCESS to refer to the process
table.

Process logical names are recognized by the process they were created in and
by any subsequent subprocesses. However, process logical names are not
recognized by any parent process.

To display the logical names in your process table, use the following
command:

$ SHOW LOGICAL/PROCESS

You can also specify the SHOW LOGICAL/TABLE=table_name command to
display the contents of any logical name table.

4-5

Using Logical Names
4.2 Logical Name Tables

By default, the DEFINE and DEASSIGN commands place names in and delete
names from your process table.

Every process on the system has a process logical name table. When you log
in, the system creates logical names for your process and places them in your
process table. These names are listed in Table 4-1.

Table 4—-1 Default Process Logical Names

Logical Name Description

SYS$COMMAND The initial file (usually your terminal) from which DCL
reads input. (A file from which DCL reads input is
called an input stream.) The command interpreter uses
SYS$COMMAND to "remember” the original input

stream.

SYS$DISK Default device established at login or changed by the
SET DEFAULT command.

SYS$ERROR The default device or file to which DCL writes error
messages generated by warnings, errors, and severe
errors.

SYSS$INPUT The default file from which DCL reads input.

SYSSNET The source process that invokes a target process

in DECnet—-VAX task-to-task communication. When
opened by the target process, SYSSNET represents
the logical link over which that process can exchange
data with its partner. SYSSNET is defined only during
task-to-task communication.

SYS$OUTPUT The default file (usually your terminal} to which DCL
writes output. (A file to which DCL writes output is
called an output stream.)

TT Default device name for terminals.

Note that the logical names SYS$INPUT, SYS$OUTPUT, SYS$ERROR, and
SYS$COMMAND refer to files that remain open for the life of the process.
They are referred to as process-permanent files. For more information on
process-permanent files, see Section 4.9.1.

4.2.2 The Job Table

Your job logical name table contains logical names that are available to all
processes in your job tree, no matter what process or subprocess you are
currently in. Your job table is named LNM$JOB_xxx, where xxx is the Job
Information Block address (defined by the system) for your job tree. Use the
logical name LNM$JOB to refer to your job table.

When you log in, the system creates certain logical names and places them in
the job logical name table. These names are listed in Table 4-2. In addition,
the logical names created for mounted disks and tapes and temporary
mailboxes are also placed in the job logical name table.

Using Logical Names
4.2 Logical Name Tables

Table 4-2 Default Job Logical Names

Logical Name Description

SYSS$LOGIN Your default device and directory when you log in.
SYS$LOGIN_DEVICE Your default device when you log in.
SYS$REM_ID For jobs initiated through a DECnet network

connection, the identification of the process on the
remote node from which the job was originated. On
VMS operating systems, if proxy logins are enabled,
this identification is the process’s user name, or,

if proxy logins are not enabled, this is the process
identification number (PID). For more information about
proxy logins, see the Guide to VMS System Security.

SYS$REM_NODE For jobs initiated through a DECnet network
connection, the name of the remote node from which
the job was originated.

SYS$SCRATCH Default device and directory to which temporary files
are written.

There is one job table for each job tree in the system. All job tables are
shareable so that all users may access them. However, to access a job logical
name table other than your own, you must redefine LNM$JOB in your
process directory logical name table. For more information about LNM$JOB,
see Section 4.3.

4.2.3 The Group Table

The group logical name table contains logical names that are available to all
users with the same user identification code (UIC) group number. The group
table is named LNM$GROUP_xxx, where xxx represents your UIC group
number. Use the logical name LNM$GROUP to refer to your group table.
Every group on the system has a corresponding group logical name table.

To create or delete a name in your group table, you need GRPNAM,
GRPPRYV, or SYSPRYV privilege. See the Guide to Setting Up a VMS System for
a description of user privileges.

4.2.4 The System Table

The system logical name table contains logical names that are available to all
users on the system. The system table is named LNM$SYSTEM_TABLE; use
the logical name LNM$SYSTEM to refer to it. To create or delete a name in
the system table, you must have a UIC group number between 0 and 10, or
SYSNAM or SYSPRYV privilege.

There is only one system logical name table for the system. It contains the
names shown in Table 4-3.

Using Logical Names
4.2 Logical Name Tables

Table 4—3 Default System Logical Names

Logical Name

Description

DBGS$INPUT

DBG$OUTPUT

SYS$COMMON

SYS$ERRORLOG

SYS$EXAMPLES

SYSS$HELP

SYSSINSTRUCTION

SYSS$LIBRARY

SYS$LOADABLE _IMAGES

SYS$SMAINTENANCE

SYS$MANAGER
SYS$MESSAGE
SYS$NODE
SYS$SHARE
SYS$SPECIFIC
SYS$STARTUP
SYS$SYSDEVICE
SYS$SYSROOT
SYS$SYSTEM
SYS$TEST

SYS$UPDATE

Default input stream for the VMS Debugger;
equated to SYSSINPUT

Default output stream for the VMS Debugger;
equated to SYSSOUTPUT

Device and directory name for the common
part of SYS$SYSROOT

Device and directory name of error log data
files

Device and directory name of system
examples

Device and directory name of system HELP
files

Device and directory name of system
instruction data files

Device and directory name of system libraries

Device and directory of operating system
executive loadable images, device drivers,
and other executive loaded code

Device and directory name of system
maintenance files

Device and directory name of system
manager files

Device and directory name of system
message files

Network node name for the local system if
DECnet—-VAX is active on the system

Device and directory name of system
shareable images

Device and directory name for node-specific
part of SYS$SYSDEVICE

Device and directory name of system startup
files

VMS system disk containing system
directories

Device and root directory for system
directories

Device and directory of operating system
programs and procedures

Device and directory name of User
Environment Test Package (UETP) files

Device and directory name of system update
files

4.3

4.3.1

Using Logical Names
4.3 Directory Logical Name Tables

Directory Logical Name Tables

The system provides the following two directory tables to catalog your logical
name tables:

¢ LNMS$PROCESS_DIRECTORY catalogs your process tables
(LNM$PROCESS and LNM$JOB).

¢ LNMS$SYSTEM _DIRECTORY catalogs your shareable tables
(LNM$GROUP and LNM$SYSTEM).

Both of these directories contain logical names that translate iteratively to
table names. The name of a logical name table must be recorded in one of
these directory tables in order for the system to find it.

You can see the relationship of directory tables to logical name tables with
the SHOW LOGICAL/STRUCTURE command, as shown in the following
example:

$ SHOW LOGICAL/STRUCTURE

(LNM$PROCESS_DIRECTORY)
(LNM$PROCESS_TABLE)

(LNM$SYSTEM_DIRECTORY)
(LNM$GROUP_000360)
(LNM$JOB_806E98EQ)
(LNM$SYSTEM_TABLE)

The Process Directory Table

Each process on the system has its own process directory logical name table.
When you log in, the VMS operating system places certain logical names in
your process directory table. These names are listed in Table 4-4.

Table 4—4 Default Process Directory Logical Names

Logical Name Description

LNM$GROUP A logical name that is defined as
LNM$GROUP_xxx, where xxx represents
your group number. LNM$GROUP_xxx is
the logical name table used by your UIC
group. (The table LNM$GROUP_xxx is
cataloged in the system directory table.)
Therefore, LNM$GROUP is a logical name
that translates iteratively to the name of
your group logical name table.

LNM$JOB A logical name that is defined as
LNM$JOB_xxx, where xxx represents a
number unique to your job tree.
LNM$JOB_xxx is the logical name table
used by your job. (The table LNM$JOB_xxx
is cataloged in the system directory table.)
Therefore, LNM$JOB is a logical name that
translates iteratively to the name of your job
logical name table.

4-9

Using Logical Names
4.3 Directory Logical Name Tables

Table 4—-4 (Cont.) Default Process Directory Logical Names

Logical Name

Description

LNM$PROCESS

LNM$PROCESS_DIRECTORY

LNM$PROCESS_TABLE

A logical name that translates iteratively to
LNM$PROCESS_TABLE, which is the name
of your process logical name table.

The name of your process directory logical
name table.

The name of your process logical name
table.

4.3.2 The System Directory Table

There is one system directory logical name table. The VMS operating system
places certain logical names in the system directory table. These names are

4-10

listed in Table 4-5.

Table 4—5 Default System Directory Logical Names

Logical Name

Description

LNM$DCL _LOGICAL

LNM$DIRECTORIES

LNMS$FILE_DEV

LNM$GROUP_xxx

LNM$JOB_xxx

A logical name that is defined as
LNMS$FILE_DEV. This logical name
iteratively translates into the list of logical
name tables searched and displayed by the
SHOW LOGICAL and SHOW TRANSLATION
commands and the FETRNLNM lexical
function. By default, these commands
search and display the process, job, group,
and system logical name tables, in that
order.

A logical name that is defined as
LNM$PROCESS_DIRECTORY and
LNM$SYSTEM_DIRECTORY.

A logical name that is defined as the

list of logical name tables searched

by the system when processing a file
specification. By default, it is defined as
LNM$PROCESS, LNM$J0OB, LNM$GROUP,
and LNM$SYSTEM. This means that the
process, job, group, and system logical
name tables are searched, in that order.

The name of a group logical name table,
where xxx is a group number. There is an
LNM$GROUP_xxx logical name table for
each group in the system.

The name of a job logical name table,
where xxx is a number unique to this job
tree. There is an LNM$JOB_xxx logical
name table for each job in the system.

Using Logical Names
4.3 Directory Logical Name Tables

Table 4-5 (Cont.) Default System Directory Logical Names

Logical Name Description

LNM$SYSTEM A logical name that translates iteratively to
LNM$SYSTEM_TABLE, which is the name
of the system logical name table.

LNN$SYSTEM_DIRECTORY The name of the system directory logical
name table.
LNM$SYSTEM_TABLE The name of the system logical name table.

Generally, you do not need to change the default logical name table
definitions set up in the directory tables, LNM$PROCESS_DIRECTORY

and LNM$SYSTEM_DIRECTORY. Two reasons for changing the entries in
the directory tables are: (1) to create another logical name table, and

(2) to change the search order for file specification logical names by redefining
LNMS$FILE_DEV. See Section 4.6 for information about creating your own
logical name table and changing the order in which the system searches the
logical name tables.

Multiple tables with the same name may exist. For example, there may exist
both a process-private and a shareable table called MY_TABLE. The process-
private version always takes precedence over the shareable table in all logical
name table processing. When a logical name, such as LNM$FILE_DEYV, is
used as a table name, the logical name is iteratively translated until a list of
table names is formed. During this iterative translation, each name is first
translated in the process directory. If this translation fails, it is then translated
in the system directory. This order of precedence cannot be changed. As a
consequence of this ordering, a logical name placed in the process directory
table for use as a table name will always take precedence over any identical
name residing in the system directory.

4.4 Logical Name Translation

When the system reads a file specification or device name in a DCL command
line, it examines the file specification or device name to see whether the
leftmost component is a logical name. If the leftmost component ends with a
colon, space, comma, or a line terminator (for example, RETURN), the system
attempts to translate it as a logical name. If the leftmost component ends with
any other character, the system does not attempt to translate it as a logical
name.

After you enter the command shown in the following example, the system
checks to see whether PUP is a logical name because PUP is the leftmost
component of the file specification. Because the leftmost component is
terminated with RETURN, the system attempts to translate PUP.

$ TYPE PUP

After you enter the command shown in the next example, the system checks
whether DISK is a logical name. The system attempts to translate DISK
because it is the leftmost component and ends with a colon. (The system
does not check PUP.)

4-11

Using Logical Names
4.4 lLogical Name Translation

$ TYPE DISK:PUP

In the third example, the system does not try to translate [DRYSDALE]PUP
because the leftmost component ends with a square bracket (]):

$ TYPE [DRYSDALE]PUP

By default, when the system translates logical names in file specifications, it
searches the process, job, group, and system tables in that order, and uses the
first match it finds.

~~4.4.1 _ Iterative Translation

Logical name translation can be iterative. This means that after the system
translates a logical name, it repeats the translation process for any logical
names it finds contained within the first logical name. For example:

$ DEFINE DISK DUA1:
$ DEFINE MEMO DISK: [JEFF.MEMOS]COMPLAINT.TXT

In this example, the first DEFINE command equates the logical name DISK to
the device name DUA1. The second DEFINE command equates the logical
name MEMO to the file specification DISK:[JEFF.MEMOS]JCOMPLAINT.TXT.
When the system translates the logical name MEMO, it finds the equivalence
name DISK:[JEFF.MEMOS]JCOMPLAINT.TXT. It then checks to see whether
the leftmost component in this file specification ends in a colon, a space, a
comma, or an end-of-line terminator. It finds a colon after DISK. The system
translates that logical name also. The final translation of the file specification
is as follows:

DUA1: [JEFF .MEMOS]COMPLAINT.TXT

The system limits the number of levels to which it performs logical name
translation. The number of levels varies among system facilities, but it is at
least nine. If you define more than the system-determined number of levels,
or if you create a circular definition, an error occurs when the logical name is
used.

4.4.2 Modifying Logical Name Translation

4-12

When you create a logical name, you can specify translation attributes
that modify how the system interprets the equivalence name. Use the
/TRANSLATION_ATTRIBUTES qualifier to the DEFINE command. (This
is a positional qualifier: depending on where you place it on a command
line, it can apply translation attributes to all equivalence names or only to
certain ones.) Two translation attributes can be specified as values to the
/TRANSLATION _ATTRIBUTES qualifier: CONCEALED and TERMINAL.

The CONCEALED attribute causes the logical name of a device, rather than
the physical name, to be displayed in system messages (except for the SHOW
LOGICAL display). The CONCEALED attribute is usually specified when
defining logical names for devices. Using concealed devices allows you to
write programs and command procedures and perform other operations
without being concerned about which physical device actually holds the disk
or tape. It also lets you use names that are more meaningful than the physical
device names.

Using Logical Names
4.4 Logical Name Translation

The following example shows how to create a concealed device name:

$ DEFINE/TRANSLATION_ATTRIBUTES=CONCEALED DISK DJA3:
$ SHOW DEFAULT

DISK: [SAM.PUP]
$ SHOW LOGICAL DISK

"DISK" = "DJA3" (LNM$PROCESS_TABLE)

The logical name DISK represents the physical device DJA3. Thus, the
SHOW DEFAULT command displays the logical name DISK rather than the
actual physical device name, DJA3. The SHOW LOGICAL command reveals
the translation of DISK.

The TERMINAL attribute prevents iterative translation of a logical name.
That is, the equivalence name is not examined to see if it is also a logical
name. The translation is “terminal” (final, or completed) after the first
translation.

4.4.3 System Defaults During Logical Name Translation

When the system translates a logical name, it fills in any missing fields in a
file specification. It fills them in with the current default device, directory, and
version number. When you use a logical name to specify the input file for a
command, the command uses the logical name to assign a file specification to
the output file as well.

If the equivalence name contains a file name and file type, the output file
is given the same file name and file type. If the equivalence name does not
contain a file type, a default file type is supplied. The file type supplied
depends on the command you are using.

4.5 Logical Name Access Modes
The four access modes in the VMS operating system are as follows:
¢ User-mode (the outermost and least privileged mode)
¢ Supervisor-mode
¢ Executive-mode

¢ Kernel-mode (the innermost and most privileged mode)

When you create a logical name with DCL commands, it has an access mode
of user, supervisor, or executive. By default, logical names are created in
supervisor mode; you must have SYSNAM privilege to create an executive
mode logical name. To see the access mode for a logical name, use the
SHOW LOGICAL/FULL command, as follows:

$ SHOW LOGICAL/FULL PROJECT
"PROJECT" [super] = "DISK1:[JONES]" (LNM$PROCESS_TABLE)

This shows that the logical name PROJECT was created in supervisor mode.

You can equate the same logical name to different equivalence strings in
the same logical name table by specifying different access modes for each
definition. The following example equates the logical name ACCOUNTS to
two different equivalence names in the process logical name table—one in
supervisor-mode and one in executive-mode:

4-1:

Using Logical Names
4.5 Logical Name Access Modes

$ DEFINE ACCOUNTS DISK1:[ACCOUNTS]CURRENT.DAT
$ DEFINE/EXECUTIVE_MODE ACCOUNTS DISK1: [JANE.ACCOUNTS]OBSOLETE.DAT

Logical names created in user mode are temporary. Define a logical name
in user mode when you want to define it only for the execution of the
next image. In the following example, the logical name ADDRESSES is
automatically deleted after the execution of the program PAYABLE:

$ DEFINE/USER_MODE ADDRESSES DISK1:[SAM.ACCOUNTS]OVERDUE.LIS
$ RUN PAYABLE

In looking up logical names, all privileged images and utilities, such as
LOGINOUT and MAIL, bypass the user- and supervisor-mode portions of
the system logical name table. Therefore, DIGITAL recommends that logical
names for important system components (public disks and directories, for
example) be defined in executive mode, using the DCL command
DEFINE/SYSTEM/EXECUTIVE. (Only the operating system and privileged
programs can create logical names in kernel-mode.) This operation requires
either the SYSPRV or SYSNAM privilege.

4.6 Creating a Logical Name Table

4-14

The CREATE/NAME_TABLE command creates a logical name table and
catalogs it in one of the directory logical name tables. (Logical names that
identify logical name tables or that translate iteratively to logical name tables
must always be entered into one of the directory logical name tables.) To
create a logical name table that is private to your process, create the table

in LNM$PROCESS_DIRECTORY (the default). If you want the table to be
shareable, specify /PARENT_TABLE=LNM$SYSTEM_DIRECTORY with the
CREATE/NAME_TABLE command. Creating shareable name tables requires
SYSPRV privilege or ENABLE access to the parent table.

The following example creates a process-private logical name table named
TAX, places the definition for the logical name CREDIT in the table, and
verifies the table’s creation. (You must specify the /TABLE qualifier with the
SHOW LOGICAL command to display a logical name in any table other than
LNM$SYSTEM or LNM$PROCESS.)

$ CREATE/NAME_TABLE TAX
$ DEFINE/TABLE=TAX CREDIT [ACCOUNTS.CURRENT]CREDIT.DAT
$ SHOW LOGICAL/TABLE=TAX CREDIT

"CREDIT" = "[ACCOUNTS.CURRENT]CREDIT.DAT" (TAX)

To make the system search a user-created logical name table automatically
when processing file specifications, you must create a process-private version
of the default search list (LNM$FILE_DEYV) in
LNM$PROCESS_DIRECTORY. To add the created table’s name to the
default search list, you can define LNMS$FILE_DEYV as follows:

$ DEFINE/TABLE=LNM$PROCESS_DIRECTORY LNM$FILE_DEV -
_$ TAX,LNM$PROCESS,LNM$JOB, LNM$GROUP, LNM$SYSTEM

Placing the table’s name first specifies that the system search that table first,
and so on in the order of specification.

To delete a logical name table, specify the table that contains it (the system
or process directory logical name table) and the name of the table. Deleting a
shareable logical name table requires DELETE access to the table or SYSPRV
privilege. For example, to delete the logical name table TAX of the preceding
example, specify the following command line:

4.7

Using Logical Names
4.6 Creating a Logical Name Table

$ DEASSIGN/TABLE=LMN$PROCESS_DIRECTORY TAX

Note that all logical names in descendant tables (and the descendant tables
themselves) are deleted when a parent logical name table is deleted.

Search Lists

A search list is a logical name that has more than one equivalence name. You
can use a search list in any place you can use a logical name. For example:

$ DEFINE GETTYSBURG [JONES.HISTORY], [JONES.WORKFILES]
¢ SHOW LOGICAL GETTYSBURG

"GETTYSBURG" = " [JONES.HISTORY]" (LNM$PROCESS_TABLE)
= "[JONES.WORKFILES]"

The logical name GETTYSBURG is a search list because it has more than one
equivalence name.

When you use a logical name that is a search list, the system translates the
logical name until it finds a match. The order in which you specify the
equivalence strings determines the order in which the system translates the
names. It uses each equivalence name listed in the definition until a match is
found.

A search list is not a wildcard. It is a list of places to look. Once a file is
found, the search is ended. For example:

$ TYPE GETTYSBURG:SPEECH.TXT

DISK1: [JONES.HISTORY]SPEECH. TXT; 2

Fourscore and seven years ago, our fathers brought forth on
this continent a new nation, conceived in liberty, and
dedicated to the proposition that all men are created equal.

In the previous example, the TYPE command searches the equivalence names
[JONES.HISTORY] and [JONES.WORKFILES] in the order they were listed
when GETTYSBURG was defined. Once it finds a file named SPEECH.TXT,
the search is halted and the file is displayed.

You can use a search list with a command that accepts wildcards. When you
use wildcards, the system forms file specifications using each equivalence
name in the search list. The command operates on each file specification that
identifies an existing file.

For example, if you specify the DIRECTORY command with a wildcard
character in the version field, it finds all versions of SPEECH.TXT in the
search list defined by GETTYSBURG, as shown in the following example:

$ DIRECTCRY GETTYSBURG:SPEECH.TXT;*

Directory DISK1i:[JONES.HISTORY]
SPEECH. TXT;2 SPEECH. TXT;1
Total of 2 files.

Directory DISK1:[JONES.WORKFILES]

4-15

Using Logical Names
4.7 Search Lists

SPEECH.TXT;1
Total of 1 file.

Grand total of 2 directories, 3 files.

The DIRECTORY command searches the equivalence names
[JONES.HISTORY] and [JONES.WORKFILES] in the order they were listed
when GETTYSBURG was defined. It finds a file named SPEECH.TXT in
each directory. If SPEECH.TXT exists in only one of the directories, only
one directory listing is displayed. If SPEECH.TXT does not exist in either
directory, an error message is displayed indicating that the file was not found.

When you use a search list with a command that does not accept wildcards in
a file specification, the system forms a file specification using each equivalence
name in the search list until a file specification for an existing file is found.
The command affects only the first file found. For example:

$ DEFINE DECEMBER DISK1:[FRED],WORK2: [BARNEY]
$ EDIT/EDT DECEMBER:QUOTAS.TXT

First, the system forms the file specification DISK1:[FRED]JQUOTAS.TXT and
searches for that file. If QUOTAS.TXT is found in DISK1:[FRED], it is opened
for editing. No other files are subsequently opened. If QUOTAS.TXT is not
found in DISK1:[FRED], the system searches for it in WORK2:[BARNEY]. If
QUOTAS.TXT is found there, it is opened. If it is not found, an error message
is displayed. The system displays an error message only after it checks all
equivalence names in a search list. Then the system reports an error only on
the last file it attempted to find.

The RUN command is an exception. When the RUN command is followed
by a search list, the system forms file specifications as described previously.
However, the system then checks to see whether any of the files in the list
are installed images. It runs the first file in the search list that is an installed
image. Then the RUN command terminates.

If none of the file specifications are installed images, the system repeats

the process of forming file specifications. This time it looks for each file
specification on the disk. It runs the first file it finds there. An error message
is displayed if none of the specified files is found in either the known file list
or on the disk.

4.8 Logical Node Names

4-16

Note:

A logical node name is a special type of logical name that can be used in
place of a network node name or in place of a node name and an access
control string. For example:

$ DEFINE BOS "BOSTON""ADAMS JOHN'""::"

The logical name BOS is equated to the node name BOSTON and an access
control string, where ADAMS is the user name and JOHN is the password.
Use the logical name BOS to avoid typing (and displaying) your user name
and password on the terminal screen.

Do not place a DEFINE command that includes a password in a file (your
login command procedure, for example). If others read the file, they will
see the password.

Using Logical Names
4.9 System-Created Logical Names

4.9 System-Created Logical Names

The system creates a number of logical names for you when you start the
system and log in. By default, DCL creates and assigns logical names to
four process-permanent files. When you redefine these logical names, only
your process is affected. The system defines other logical names that you can
reassign only with special privileges.

4.9.1 Process-Permanent Logical Names

Process-permanent logical names are created by DCL when you log in and
remain defined for the life of your process. You cannot deassign these
logical names. You can redefine them (by specifying the same name in

a DEFINE command), but if the redefined name is later deassigned, the
process-permanent name is reestablished. These process-permanent logical
names, as follows, are available to each user of the system at the process
level:

* SYS$INPUT—Logical name that refers to the default input device or file

¢ SYS$OUTPUT—Logical name that refers to the default output device or
file

* SYS$ERROR—Logical name that refers to the default device or file to
which the system writes messages

* SYS$COMMAND—Logical name that refers to the value of SYS$INPUT
when you log in

Table 4-6 shows what these logical names are equated to by default.

Table 4—-6 Equivalence Names for Process-Permanent Logical

Names
Logical Interactive Batch Command
Name Mode Mode Procedure
SYS$COMMAND Terminal' Disk? Terminal
SYSSINPUT Terminal Disk Disk
SYS$ERROR Terminal Log file® Terminal
SYS$OUTPUT Terminal Log file Terminal

'Device name of your terminal
2Device name of the initial default device
3Batch job log file

The following sections describe how to use process-permanent logical names
as file specifications.

4-17

Using Logical Names
4.9 System-Created Logical Names

4.9.1.1 Redefining SYSSINPUT
You can redefine SYS$INPUT so that a command procedure reads input from
the terminal or another file. For example, to edit a file from a command
procedure, include the following lines in the command procedure:

$ DEFINE/USER_MODE SYS$INPUT SYS$COMMAND
$ EDIT/TPU MYFILE.DAT

In the previous example, SYS$INPUT is redefined as SYSSCOMMAND so
that the editor obtains input from the terminal rather than from the command
procedure file (the default). SYS$COMMAND refers to the terminal, the
initial input stream when you logged in. The /JUSER_MODE qualifier tells
the command procedure that SYS$INPUT is redefined only for the duration
of the next image. In this example, the next image is the editor. When the
editor is finished, SYSS$INPUT resumes its default value; in this case, the
default value is the command procedure file.

Note that if you redefine SYS$INPUT, DCL ignores your definition. DCL
always obtains input from the default input stream. However, images, such
as command procedures, can use your definition for SYSSINPUT.

4.9.1.2 Redefining SYSSOUTPUT
You can redefine SYS$OUTPUT to redirect output from your default device
to another file. When you redefine SYS$OUTPUT, the system opens a file
with the name you specify in the logical name assignment. When you define
SYS$OUTPUT, all subsequent output is directed to the new file.

In the following example, SYS$OUTPUT is defined as MYFILE.LIS before
the SHOW DEVICES command is entered. The display produced by SHOW
DEVICES is directed to MYFILE.LIS in your current directory rather than to
your terminal. You can manipulate this data as you would any other text file.

$ DEFINE SYS$OUTPUT MYFILE.LIS
$ SHOW DEVICES

Remember to deassign SYSSOUTPUT, or output will continue to be written
to the file you specify. Note that you can redefine SYSSOUTPUT in user
mode (with DEFINE /USER_MODE) to redirect output from an image. This
definition is in effect only until the next command i image is executed. Once
the command image is executed (that is, the output is captured in a file), the
logical name SYS$OUTPUT resumes its default value.

When you log in, the system creates two logical names called SYSSOUTPUT.
One name is created in executive mode; the other name is created in
supervisor mode. You can supersede the supervisor mode logical name

by redefining SYSSOUTPUT. If you deassign the supervisor mode name,
the system redefines SYSBOUTPUT in supervisor mode, using the executive
mode equivalence name. You cannot deassign the executive mode name.

In the following example, SYSSOUTPUT is redefined to the file TEMP.DAT.
When SYS$OUTPUT is redefined, output from DCL and from images is
directed to the file TEMP.DAT. The output from the SHOW LOGICAL
command and from the SHOW TIME command is also sent to TEMP.DAT.
When you deassign SYS$OUTPUT, the system closes the file TEMP.DAT
and redefines SYSSOUTPUT to your terminal. When you enter the TYPE
command, the output collected in TEMP.DAT is displayed on your terminal.

4-18

Using Logical Names
4.9 System-Created Logical Names

DEFINE SYS$OUTPUT TEMP.DAT
SHOW LOGICAL SYS$OUTPUT
SHOW TIME
DEASSIGN SYS$OUTPUT
TYPE TEMP.DAT
"SYS$OUTPUT" = "DISK1:" (LNM$PROCESS_TABLE)
31-DEC-JAN-1988 13:26:53

P P PH P

When you redefine SYS$OUTPUT to a file, the logical name contains only
the device portion of the file specification, even though the output is directed
to the file you specify. In the previous example, when SYSSOUTPUT was
redefined, the equivalence name contained the device name DISK1:, not the
full file specification.

If the system cannot open the file you specify when you redefine
SYS$OUTPUT, an error message is displayed.

After you redefine SYSSOUTPUT, most commands direct output to the
existing version of the file. However, certain commands create a new version
of the file before they write output.

4.9.1.3

Redefining SYSSERROR

You can redefine SYSBERROR to direct error messages to a specified file.
However, if you redefine SYS$ERROR so it is different from SYS$OUTPUT
(or if you redefine SYS$OUTPUT without also redefining SYSSERROR), DCL
commands send informational, warning, error, and severe error messages to
both SYS$ERROR and SYS$OUTPUT. Therefore, you receive these messages
twice—once in the file indicated by the definition of SYSSERROR and once in
the file indicated by SYS$OUTPUT. Success messages are sent only to the file
indicated by SYS$OUTPUT.

If you redefine SYSSERROR and then run an image that references
SYS$ERROR, the image sends error messages only to the file indicated

by SYS$ERROR even if SYSSERROR is different from SYS$OUTPUT. Only
DCL commands and images using standard VMS error display mechanisms
send error messages to both SYSBERROR and SYS$OUTPUT when these files
are different.

4914

Redefining SYS$COMMAND

Although you can redefine SYSSCOMMAND, DCL ignores your definition.
DCL always uses the default definition for your initial input stream.
However, if you execute an image that references SYSSCOMMAND, the
image can use your new definition.

4-19

Using Logical Names
4.9 System-Created Logical Names

4.9.2 System-Permanent Logical Names

The following table lists the logical names automatically defined when the
system starts up. These names are available to all users of the system at the

system level.

Logical Name

Equivalence Name

DBGSINPUT SYSSINPUT at the process level

DBG$OUTPUT SYS$OUTPUT at the process level

SYS$COMMON SYS$SYSDEVICE:[SYSn.SYSCOMMON.],
where n is the root directory number of your
processor

SYS$ERRORLOG SYS$SYSROOT:[SYSERR]

SYS$EXAMPLES SYS$SYSROOT:[SYSHLP.EXAMPLES]

SYS$HELP SYS$SYSROOT:[SYSHLP]

SYSS$INSTRUCTION SYS$SYSROOT:[SYSCBI]

SYSSLIBRARY SYS$SYSROOT:[SYSLIB]

SYS$LOADABLE_IMAGES SYS$SYSROOT:[SYSSLDR]

SYS$SMAINTENANCE SYS$SYSROOT:[SYSMAINT]

SYS$SMANAGER SYS$SYSROOT:[SYSMGR]

SYSSMESSAGE SYS$SYSROOT:[SYSMSG]

SYS$NODE Name of your node if you are on a network

SYS$SHARE SYS$SYSROOT:[SYSLIB|

SYSS$SPECIFIC SYS$SYSDEVICE:[SYSn.], where n is the root
directory number of your processor

SYS$STARTUP As a search list, points first to
SYS$SYSROOT:[SYS$SSTARTUP), then to
SYS$SMANAGER

SYS$SYSDEVICE System disk (usually SYS$DISK)

SYS$SYSROOT As a search list, points first to
SYS$SYSDEVICE:[SYSn.], where n is the
root directory number of your processor; then
to SYS$COMMON

SYS$SYSTEM SYS$SYSROOT:[SYSEXE]

SYS$TEST SYS$SYSROOT:[SYSTEST]

SYS$SUPDATE

SYS$SYSROOT:[SYSUPD]

5

5.1

5.2

Representing Data with Symbols

As you carry out your computing tasks with the support of DCL and VMS,
you may need to store and manipulate data, such as numbers and strings of
characters, through the use of symbols. Like files, symbols store data. Yet,
unlike files, the symbols you create are temporary and have no means of
physical storage—they exist only for the life of your computing session or for
the life of a program’s execution.

This chapter describes the kinds of data you can use in DCL, how you can
use symbols to represent that data, and how you can combine symbols into
expressions to manipulate the data that the symbols represent.

Data Storage

With the VMS operating system, the most common units in which data can
be stored are the following:

® Bit—The most basic unit of storage, a bit has a value of 0 or 1.

* Byte—Equal to 8 bits, a byte can represent an unsigned integer value of
0 through 255 and a signed value of —128 through 127. Characters are
stored one per byte.

* Word—Equal to 2 bytes, a word can represent an unsigned integer value
of 0 through 65,353 and a signed value of —32,768 through 32,767.

* Longword—Equal to 4 bytes (32 bits), a longword can represent an
unsigned integer value of 0 through 4,294,967,295 and a signed value of
-2,147,483,648 through 2,147,483,647.

The first unit in any series of these units is called the low-order unit. In
numeric values, the low-order unit is the least-significant unit in the number.
For example, in a binary number composed of the series of bits 11111110, the
0 is the low-order bit.

Creating and Using Symbols

A symbol is a name that represents a character value (for example, “DOG”"),
a numeric value (for example, 17), or a logical value (for example, True).
When you use a symbol in a DCL command, DCL replaces the symbol with
its value before executing the command. Symbols are useful for representing
data in commands and command procedures and as shortcuts for entering
commands you use frequently.

For example, you may define a symbol as any of the following:

* Foreign command—Defining a symbol as a foreign command allows you
to execute an image by entering only the symbol name. (The command
is “foreign” because it is unknown to DCL.) In the following example, the
symbol FIX is defined to execute the image NUMFIX.EXE in the [BILLS]
directory on the disk ACCOUNTS:

$ FIX == "$ACCOUNTS: [BILLSINUMFIX"

Representing Data with Symbols
5.2 Creating and Using Symbols

5-2

¢ Command line—Defining a symbol as a command line allows you

to execute the command by entering only the symbol name. In the
following example, the symbol HUBBUB is defined to establish a network
connection to the node HUBBUB:

$ HUBBUB == "SET HOST HUBBUB"

Setting a symbol equal to a command line that executes a command
procedure allows you to execute the procedure by typing only the symbol
name. In the following example, COUNT is defined to execute the
command procedure CENSUS:

$ COUNT == "@DISK1: [JONES.PROCEDURES]CENSUS™

When you enter COUNT to execute CENSUS, place any parameters for
CENSUS after the symbol as if you had entered @CENSUS.

® Character string—Defining a symbol as a character string allows you

to insert that string in a command line by typing the symbol (with
surrounding apostrophes to force substitution, as described in Section 5.5).
In the following example, the symbol FILE is first defined as a complete
file specification and then used in the TYPE command:

$ FILE == "DISK1:|JUNES. TAXES]CORPORATE DAT"
$ TYPE 'FLLE

The string can be a directory you often access. In the following example,
whenever the symbol TAXES occurs in a command line, the literal value
replaces the symbol before the line is executed.

$ TAXES == "[JONES. TAXES]"
$ COPY 'TAXES'OVERDUE.DAT OVERDUE.TMP

Symbols can also hold variables, which are values that you calculate or that
you assign as something other than a literal. For example, you might assign
the value of a lexical function to a variable or read the value of a file record
into a variable. As variables, symbols are most often used in command
procedures (see Chapter 6).

To create a symbol, assign a value to a symbolic name using the following
format:

symbol-name =[=] value

The symbol name can be 1 through 255 characters long and must begin with
a letter, an underscore (—), or a dollar sign ($). In a symbol name, both
lowercase and uppercase letters are treated as uppercase.

The value you assign to a symbol can be made either locally or globally
available to the command interpreter:

* Local—A local symbol is available to the command level that defined
it, to any command procedure executed from that level, and to lower
command levels. (By convention, DCL level—command level 0—is the
highest command level and command level 31 the lowest command level.
Thus, when you move from command level 3 to command level 2, you
are moving to the next higher command level. If you execute a command
procedure interactively, the commands in the procedure are executed at
command level 1. You can create a maximum of 32 command levels.)

Representing Data with Symbols
5.2 Creating and Using Symbols

* Global—A global symbol is available to any command level regardless of
the level at which it was defined.

To create a local symbol, use a single equal sign in the assignment
statement. To create a global symbol, use two equal signs. The
following commands define the local symbol FILE as the character string
DISK2:[BOLIVAR]PRICES.CUR and the global symbol MAX_VALUE as the
number 24.

$ FILE = "DISK2: [BOLIVAR]PRICES.CUR"
$ MAX_VALUE == 24

You can omit the quotation marks around character strings in assignment
statements if you precede the equal sign or signs with a colon. Symbol
assignments that omit quotation marks automatically change the character
string to uppercase letters and compress multiple spaces and tabs to a single
space. The following example again creates the local symbol FILE, this time
omitting the quotation marks because of the included colon:

$ FILE := ACCOUNTS: [BOLIVAR]PRICES.84

The result of DCL’s evaluation of a symbol is either a character string or an
integer value. The data type (character or integer) of a symbol is determined
by the data type of the value currently assigned. The type is not permanent:
if the value changes type, as in the following example, the symbol changes
type. In the following example, the local symbol NUM is first assigned a
character value and then converted to an integer value when used in an
expression with an integer:

$ NUM = "12n
$ RESULT = NUM + 10

Local symbols take precedence over global symbols with the same name.
Symbols take precedence over identical command names. This means that if
you define a symbol with the same name as a DCL command, your definition
overrides the command name. For example, if you define the symbol HELP
as the command TYPE HELP.LST, you can no longer invoke the system'’s
HELP facility by typing HELP.

Symbols are stored in the following tables, which are maintained by the
operating system:

* Local symbol table—DCL maintains a local symbol table for your main
process and for every command level that you create when you execute a
command procedure, use the CALL command, or submit a batch job. A
local table is deleted when its associated command level terminates. (See
Chapter 3 for more information about processes, command procedures,
and batch jobs.)

In addition to the local symbols you create, a local symbol table contains
eight symbols that are maintained by DCL. These symbols, named P1,
P2, and so on through P8, are used for passing parameters to a command
procedure. Parameters passed to a command procedure are regarded as
character strings. Otherwise, P1 through P8 are defined as null character
strings (””). They are stored in the local symbol table.

* Global symbol table—DCL maintains only one global symbol table for
the duration of a process. In addition to the global symbols you create,
the global symbol table contains the reserved global symbols described in
the following table. These global symbols give you status information on

5-3

Representing Data with Symbols
5.2 Creating and Using Symbols

your programs and command procedures as well as on system commands
and utilties.

Reserved

Global

Symbols Definition

$STATUS The condition code returned by the most recently executed

command. $STATUS conforms to the format of a VMS
message code. User programs can set the value of the global
symbol $STATUS by including a parameter value to the
EXIT command. The system uses the value of $STATUS to
determine which message, if any, to display and whether to
continue execution at the next-higher command level. The
value of the lower three bits in $8STATUS is placed in the
global symbol $SEVERITY.

$SEVERITY The severity level of the condition code returned by the most
recently executed command. $SEVERITY, which is equal to
the lower three bits of $STATUS, can have the following

values:

0 Woarning

1 Success

2 Error

3 Information

4 Severe (fatal) error

$RESTART Has the value TRUE if a batch job was restarted after it was
interrupted by a system crash. Otherwise, SRESTART has the
value FALSE.

5.3 Abbreviating Symbol Names

You can use abbreviated forms of symbols if you define them with the
asterisk. The following example shows how to create a local symbol that can
be abbreviated:

$ M#AIL = "MAIL"

Once this symbol is established, the VMS Mail Utility is invoked whenever
you specify any of the following versions of the symbolic name:

$ M
$ MA
$ MAI
$ MAIL

Generally, you can use abbreviated symbol definitions in any situation that
allows a symbol to be used. However, there are some restrictions as follows:

* You cannot abbreviate symbols that involve substring replacement.

* When you define a symbol that includes an asterisk, existing symbols
may possibly be deleted. If an existing symbol exactly matches the new
symbol at or past the asterisk, the new symbol replaces the existing
symbol.

Representing Data with Symbols
5.3 Abbreviating Symbol Names

¢ If you define a symbol with an asterisk, you cannot define another symbol
whose name partly matches the existing symbol at or past the asterisk.

5.4 DCL Commands to Use with Symbols

Table 5-1 shows the DCL commands you can use with symbols.

Table 5—-1 DCL Commands to Use with Symbols

Command Function

SHOW SYMBOL Displays the value of the specified symbol. By
default, the SHOW SYMBOL command searches the
local symbol tables and then the global symbol table
to locate a specified symbol name.

DELETE/SYMBOL Deletes a symbol. By default, the DELETE/SYMBOL
command searches for symbols only in the local
symbol table. To delete a global symbol, use the
/GLOBAL quaiifier.

SET SYMBOL/SCOPE You can mask global or local symbols at the specified
command level.

INQUIRE Reads a value from SYSSCOMMAND and assigns it
to a symbol.

READ Reads a record from a file and assigns its contents to
a symbol.

The SHOW SYMBOL command displays symbol values. Specify the name
of the symbol to display the value of a particular local symbol. Specify the
name of the symbol and /GLOBAL to display the value of a particular global
symbol. Specify /ALL to display all local symbols and /ALL/GLOBAL to
display all global symbols.

The DELETE/SYMBOL command deletes a symbol. You must include the
/GLOBAL qualifier to delete a global symbol. In the following example, the
global symbol TEMP is deleted:

$ DELETE/SYMBOL/GLOBAL TEMP

The SET SYMBOL/SCOPE=(keyword,...) command controls access to local
and global symbols in command procedures. This allows you to treat symbols
as undefined without deleting them. Symbol scoping works differently for
local and global symbols.

If you specify /SCOPE=NOLOCAL, all local symbols defined in an outer
procedure level are treated as undefined by the current procedure and any
inner levels. Specifying LOCAL removes any symbol translation limit set by
the current procedure level.

For example, if SET SYMBOL/SCOPE=NOLOCAL was specified at procedure
levels 2 and 4, procedure level 2 can access only procedure level 2 local
symbols. Procedure level 3 can access procedure levels 2 and 3 local symbols;
procedure level 4 can access procedure level 4 local symbols and any local
symbols in inner procedure levels.

Representing Data with Symbols
5.4 DCL Commands to Use with Symbols

Global symbols are not procedure level dependent. The global symbol
scoping state (GLOBAL or NOGLOBAL) that is in effect when a new
procedure level is invoked is propagated to the new procedure level.
Specifying /SCOPE=NOGLOBAL makes all global symbols inaccessible
for all subsequent commands until you either specify /SCOPE=GLOBAL or
exit to a previous level at which global symbols were accessible.

In the following example, the SET SYMBOL command denies access to all
global symbols:

$ SET SYMBOL/SCOPE=NOGLOBAL

Exiting a procedure level back to an outer procedure level causes the symbol
scope-state to be restored for both local and global symbols.

The INQUIRE and READ commands are most often used within DCL
command procedures and are therefore discussed in Chapter 6.

5.5 Symbol Substitution

When a command line is executed, symbols in the following positions are
automatically substituted:

® On the right side of an [:]= or [:]== assignment statement
* In alexical function

* In the brackets on the left side of an assignment statement when you are
performing substring substitution or number overlays (see Section 5.6.2.4)

* In a DEPOSIT, EXAMINE, IF, or WRITE command

* At the beginning of the command line

To force substitution of a symbol that is not in one of the positions listed,
enclose the symbol with apostrophes as follows:

$ TYPE 'B'

To force substitution of a symbol within a quoted character string, precede
that symbol with double apostrophes and follow it with a single apostrophe
as follows:

$ T = "TYPE ''B'"

When processing a command line, DCL replaces symbols with their values in
the following order:

* TForced substitution—From left to right, DCL replaces all strings
delimited by apostrophes (or double apostrophes for strings within
quotation marks). Symbols preceded by single apostrophes are translated
iteratively; symbols preceded by double apostrophes are not.

* Automatic substitution—From left to right, DCL evaluates each value in
the command line, executing it if it is a command and evaluating it if it
is an expression. Symbols in expressions are replaced by their assigned
values; this substitution is not iterative.

5.6

5.6.1

Representing Data with Symbols
5.5 Symbol Substitution

The following example demonstrates the effect of the order in which DCL
substitutes symbols. Assume the following symbol definitions:

$ PN = "PRINT/NOTIFY")
$ FTILE1 = "[BOLIVAR]TEST_CASE.TXT"
$ NUM = 1

Given the preceding symbol definitions, the following commands print the
file named [BOLIVAR]TEST_CASE.TXT:

$ FILE = “'FILE''NUM''"
$ PN 'FILE'

In the first command, forced substitution causes NUM to become 1, making
FILE’NUM' become FILE1. If you enter the command SHOW SYMBOL FILE,
you will see that FILE = "’FILE1"".

The second command performs two substitutions. First, ‘FILE’ is substituted
with ‘FILE1". 'FILE1’ also requires substitution because it is enclosed in
single quotation marks. Automatic substitution causes FILE1 to become
[BOLIVAR]TEST_CASE.TXT. This file name is then appended to the value of
PN, which is PRINT/NOTIFY. The resulting string is as follows:

$ PRINT/NOTIFY [BOLIVAR]TEST_CASE.TXT

Storing and Manipulating Data with Symbols

You can use symbols to store and manipulate a variety of values. This
section describes the values that can be stored in symbols. It also describes
how symbols can be combined in expressions to manipulate the values the
symbols contain.

Symbol Values

A symbol can be defined as a character string, a number, a lexical function,
a logical value, or another symbol. The following sections describe these
values.

5.6.1.1

Character String Values

A character string can contain any characters that can be printed.
Appendix A, which includes tables of the ASCII character set and the DEC
Multinational Character Set, shows those characters that you can include in a
character string,.

Characters fall into the following three main categories:

* Alphanumeric characters—The uppercase letters A through Z, the
lowercase letters a through z, the digits 1 through 9, the dollar sign
($), the underscore (—), and the hyphen (-).

* Special characters—All other characters that can be displayed or printed:
the exclamation point (!), quotation marks (”), number sign (#), and so
on.

* Nonprintable characters—All characters that cannot be printed or
displayed. In general, nonprintable characters are ignored for display

Representing Data with Symbols
5.6 Storing and Manipulating Data with Symbols

5-8

and print purposes. However, several nonprintable characters serve
control functions as follows:

Character Function

HT Starts printing or typing at the next horizontal tab

LF Starts printing or typing on the next line

FF Starts printing or typing at the top of the next page

CR Starts printing or typing at the first space on the same line
ESC Introduces a terminal escape sequence

SP Inserts one space

You can define a character string by enclosing it in quotation marks. In this
way, alphabetic case and spaces are preserved when the symbol assignment
is made.

5.6.1.2

Numeric Values
A number can have the following values:

¢ Decimal—The ASCII characters 0 through 9
® Hexadecimal—The ASCII characters 0 through 9 and A through F
¢ Octal—The ASCII characters 0 through 7

The number you assign to a symbol must be in the range —2147483648
through 2147483647 (decimal). (An error is not reported if a number outside
this range is specified or calculated, but an incorrect value results.)

At DCL‘ command level and within command procedures, specify a number
as follows:

® Positive numbers—Specify a positive number by typing the appropriate
digits. The following example assigns the number 13 to the symbol
DOG_COUNT:

$ DOG_COUNT = 13
$ SHOW SYMBOL DOG._COUNT
DOG_COUNT = 13 Hex = 0000000D Octal = 00000000015

* Negative numbers—Precede a negative number with a minus sign, as in
the following example:

$ BALANCE = -15237
$ SHOW SYMBOL BALANCE
BALANCE = -15237 Hex = FFFFC47B Octal = 37777742173

* Radix—Specify a number in a radix other than decimal by preceding the
number (but not the minus sign) with %X for hexadecimal numbers and
%0 for octal numbers. For example:

$ DOG_COUNT = %XD
$ SHOW SYMBOL DOG_COUNT v
DOG_COUNT = 13 Hex = 0000000D Octal = 00000000015

$ BALANCE = -%X3B85
$ SHOW SYMBOL BALANCE
BALANCE = -15237 Hex = FFFFC47B Octal = 37777742173

Representing Data with Symbols
5.6 Storing and Manipulating Data with Symbols

* Fractions—A number cannot include a decimal point. In calculations,
fractions are truncated; for example, 8 divided by 3 equals 2.

Numbers are stored internally as signed 4-byte integers, called longwords;
positive numbers have values of 0 through 2147483647 and negative numbers
have values of 4294967296 minus the absolute value of the number. The
number -15237, for example, is stored as 4294952059. Negative numbers are
converted back to minus-sign format for ASCII or decimal displays; however,
they are not converted back for hexadecimal and octal displays. For example,
the number -15237 appears in displays as hexadecimal FFFFC47B (decimal
4294952059) rather than hexadecimal -00003B85.

Numbers are stored in text files as a series of digits using ASCII conventions
(for example, the digit 1 has a storage value of 49).

5.6.1.3

Values Returned by Lexical Functions

Typically used in command procedures, lexical functions provide users with
a means to obtain information from the system, including information about
system processes, batch and print queues, and user processes. You can

also use lexical functions to manipulate character strings and translate logical
names. When you assign a lexical function to a symbol, the symbol is equated
to the information returned by the lexical function (for example, a number
or character string). At DCL level, you can then display that information
with the DCL command SHOW SYMBOL. In a command procedure, the
information stored in the symbol can be used later in the procedure. See the
VMS DCL Dictionary for a description of each lexical function.

To use a lexical function, type the name of the lexical function (which always
begins with F$) and its argument list. Use the following syntax:

F$function-name(args,...])

The argument list follows the function name with any number of intervening
spaces and tabs. When using a lexical function, observe the following rules:

¢ Enclose the argument list in parentheses.

* Within the list, specify arguments in exact order and separate them with
commas; even if you omit an optional argument, do not omit the comma.

* If no arguments are required, type an empty set of parentheses.
¢ Do not enclose lexical functions in quotation marks.

* If an argument contains a character string, enclose the character string in
quotation marks.

¢ If an argument contains an integer, a symbol, or another lexical function,
do not enclose these values in quotation marks.

Use lexical functions the same way you would use character strings, integers,
and symbols. The following example uses the FSLENGTH function.
FSLENGTH returns an integer that specifies the length of the string. The
returned value is assigned to the symbol LEN.

$ LEN = F$LENGTH("The cow jumped over the moon.")
$ SHOW SYMBOL LEN
LEN = 29 Hex = 0000001D Octal = 00000000035

5-9

Representing Data with Symbols
5.6 Storing and Manipulating Data with Symbols

5-10

You can use a lexical function in any position that you can use a symbol. In
positions where symbol substitution must be forced by enclosing the symbol
in apostrophes, lexical function evaluation must be forced by placing the
lexical function within apostrophes. Lexical functions can also be used as
argument values in other lexical functions.

The following example equates the length of the character symbol LINE to a
numeric symbol named L:

$ L = FSLENGTH (LINE)

The following example strips the last two characters from the character string
that is the value of the symbol LINE:

$ LINE = FSEXTRACT (O,F$LENGTH(LINE)-2,LINE)

5.6.1.4

Logical Values
Some operations interpret numbers and character strings as logical data with
values as follows:

* True—A number has a logical value of true if it is odd (that is, the low-
order bit is 1). A character string has a logical value of true if the first
character is an uppercase or lowercase T or Y.

* False—A number has a logical value of false if it is even (that is, the
low-order bit is 0). A character string has a logical value of false if the
first character is not an uppercase or lowercase T or Y.

In both of the following examples, DOG_COUNT is assigned the value 13.
IF STATUS means if the logical value of STATUS is true.

$ STATUS = 1
$ IF STATUS THEN DOG_COUNT

13

$ STATUS = "TRUE"
$ IF STATUS THEN DOG_COUNT

13

5.6.1.5

Using a Symbol as a Value for Another Symbol

After a symbol is defined, it can be used as a value for another symbol. It can
be interpreted as a character string or a number, depending on the context in
which it is used. For example, suppose a symbol, COUNT, is assigned the
integer value 3 as follows:

$ COUNT = 3

Then the value of COUNT can be used in other assignment statements. In
the following example, the value of COUNT is added to 1:

$ TOTAL = COUNT + 1

The result, 4, is equated to the symbol TOTAL. You can confirm the
assignment of the value to TOTAL by entering the SHOW SYMBOL
command as follows:

$ SHOW SYMBOL TOTAL
TOTAL = 4 Hex = 00000004 Octal = 00000000004

Representing Data with Symbols
5.6 Storing and Manipulating Data with Symbols

You can include the symbol COUNT in a string assignment statement as
follows:

$ BARK := P'COUNT'

COUNT is converted to a string value and appended to the character P. BARK
now has the value P3.

To include a symbol in a string assignment, use either a colon and an equal
sign (=) or a colon and two equal signs (:==), and enclose the symbol in
apostrophes. Otherwise, DCL will not recognize it as a symbol.

If you define a null character string for a symbol, that symbol has a value of
0, as shown in the following example:

2

A+B

0w SYMBOL C

= 2 Hex = 00000002 Octal = 00000000002

$ B
$c
$ SH

C

5.6.2 Using Symbolsin

Expressions

An expression is a combination of values. Each value in an expression is
connected to another value by an operator. Operators are denoted in the
following ways:

* Special characters—Asterisk (*), slash (/), plus sign (+), and minus
sign (-).

* Special names—.EQ., .GE., .GT., .LE., .LT,, .NE., NOT,, .AND., and
.OR.; the names can be uppercase or lowercase.

Data entities and operators can be adjacent or can be separated by any
number of spaces or tabs. The values in the expression can be symbols or
literal values (such as 3 or "DOG”). Expressions take the following two forms:

* QOperations—An operation combines two data entities or alters a data
entity. The following example combines the literal values 10 and 3 by
adding them:

$ DOG_COUNT = 10 + 3
$ SHOW SYMBOL DOG_COUNT
DOG_COUNT = 13 Hex = 0000000D Octal = 00000000015

* Comparisons—A comparison evaluates a relationship between two
entities as true or false. A true comparison evaluates to a numeric value
of 1, and a false comparison evaluates to a numeric value of 0. The
following example compares the value of the symbol DOG_COUNT with
the literal value 13 and finds them to be equal:

$ DOG_CHECK = DOG_COUNT .EQ. 13
$ SHOW SYMBOL DOG_CHECK
DOG_CHECK = 1 Hex = 00000001 Octal = 00000000001

You can create character string expressions, numeric expressions, and logical
expressions. These are described in the following sections.

5-11

Representing Data with Symbols
5.6 Storing and Manipulating Data with Symbols

5-12

5.6.2.1

Character String Expressions

A character string expression can contain character strings, lexical functions
that evaluate to character strings, or symbols that have character string
values. Attempting an operation or comparison between a character string
and a number causes the character string to be converted to a number.

You can specify the following character string operations:

* Concatenation—The plus sign concatenates two character strings. For
example:

$ COLOR = "light brown"
$ WEIGHT = "30 lbs."
$ DOG2 = "No tag, " + COLOR + ", " + WEIGHT
$ SHOW SYMBOL DOG2
DOG2 = "No tag, light brown, 30 lbs."

* Reduction—The minus sign removes the second character string from the
first character string. For example:

$ SHOW SYMBOL DOG2

DOG2 = "No tag, light brown, 30 1lbs."
$ DOG2 = DOGZ - ", 30 1lbs."
$ SHOW SYMBOL DOG2

DOG2 = "No tag, light brown"

If the second character string occurs more than once in the first character
string, only the first occurrence of the string is removed.

When you compare two character strings, the strings are compared character
by character; strings of different lengths are not equal (for example, “dogs” is
greater than “dog”).

The comparison criteria are the ASCII values of the characters. Under this
criterion, the digits 0 through 9 are less than the letters A through Z, and the
uppercase letters A through Z are less than the lowercase letters a through
z. A character string comparison terminates when either of the following
conditions is true:

1 All the characters have been compared, in which case the strings are
equal.

2 The first mismatch occurs.

You can specify the following varieties of string comparisons. In the
examples, assume that the symbol LAST_NAME has the value “WHITFIELD.”

* Equal to—The operator .EQS. compares one character string to another
for equality. The following comparison evaluates to 0 to indicate that the
value of the symbol LAST_NAME does not equal the literal “NORMAN":

$ TEST_NAME = LAST_NAME .EQS. "NORMAN"
$ SHOW SYMBOL TEST_NAME
TEST_NAME = 0 Hex = 00000000 Octal = 00000000000

* Greater than or equal to—The operator .GES. compares one character
string to another for a greater or equal value in the first specified string.
The following comparison evaluates to 1 to indicate that the value of the
symbol LAST_NAME is greater than or equal to the literal “'NORMAN":

Representing Data with Symbols
5.6 Storing and Manipulating Data with Symbols

$ TEST_NAME = LAST_NAME .GES. "NORMAN"
$ SHOW SYMBOL TEST_NAME
TEST_NAME = 1 Hex = 00000001 Octal = 00000000001

* Greater than—The operator .GTS. compares one character string to
another for a greater value in the first specified string. The following
comparison-evaluates to 1 to indicate that the value of the symbol
LAST_NAME is greater than the literal “NORMAN":

$ TEST_NAME = LAST_NAME .GTS. "NORMAN"
$ SHOW SYMBOL TEST_NAME
TEST_NAME = 1 Hex = 00000001 Dctal 00000000001

® Less than or equal to—The operator .LES. compares one character string
to another for a lesser or equal value in the first specified string. The
following comparison evaluates to 0 to indicate that the value of the
symbol LAST_NAME is not less than or equal to the literal “NORMAN":

$ TEST_NAME = LAST_NAME .LES. "NORMAN"
$ SHOW SYMBOL TEST_NAME
TEST_NAME = 0 Hex = 00000000 Octal = 00000000000

® Less than—The operator .LTS. compares one character string to another
for a lesser value in the first specified string. The following comparison
evaluates to 0 to indicate that the value of the symbol LAST_NAME is
not less than the literal “NORMAN":

$ TEST_NAME = LAST_NAME .LTS. "NORMAN"
$ SHOW SYMBOL TEST_NAME
TEST_NAME = 0 Hex = 00000000 Octal = 00000000000

* Not equal—The operator .NES. compares one character string to another
for inequality. The following comparison evaluates to 1 to indicate
that the value of the symbol LAST_NAME does not equal the literal
“NORMAN":

$ TEST_NAME = LAST_NAME .NES. "NORMAN"
$ SHOW SYMBOL TEST_NAME
TEST_NAME = 1 Hex = 00000001 Octal = 00000000001

5.6.2.2

Numeric Expressions

In a numeric expression, the values involved must be literal numbers (such
as 3) or symbols with numberic values. In addition, you can use a character
string that represents a number (for example, “23” or “~51"). Attempting an
operation or comparison between a number and a character string causes the
character string to be converted to a number.

You can specify the following numeric operations:
* Multiplication—The asterisk multiplies two numbers. For example:

$ BALANCE = 142 * 14
$ SHOW SYMBOL BALANCE
BALANCE = 1988 Hex = 000007C4 Octal = 00000003704

* Division—The slash divides the first specified number by the second
specified number. For example:

$ BALANCE = BALANCE / 14
$ SHOW SYMBOL BALANCE
BALANCE = 142 Hex = 0000008E Octal = 00000000216

If a number does not divide evenly, the remainder is lost. (No rounding
takes place.)

5-13

Representing Data with Symbols
5.6 Storing and Manipulating Data with Symbols

5-14

Addition—The plus sign adds two numbers. For example:

$ BALANCE = BALANCE + 37
$ SHOW SYMBOL BALANCE
BALANCE = 179 Hex = 000000B3 Octal = 00000000263

Subtraction—The minus sign subtracts the second specified number from
the first specified number. For example:

$ BALANCE = BALANCE - 15416
$ SHOW SYMBOL BALANCE
BALANCE = -15237 Hex = FFFFC47B Octal = 00000142173

Unary plus and minus—The plus and minus signs change the sign of the
number they precede. For example:

$ BALANCE = -(-142)
§ SHOW SYMBOL BALANCE
BALANCE = 142 Hex = 0000008E Octal = 00000000216

You can specify the following numeric comparisons:

Equal to—The operator .EQ. compares one number to another for
equality. The following comparison evaluates to 1 to indicate that
BALANCE equals -15237:

$ TEST_BALANCE = BALANCE .EQ. -15237
$ SHOW SYMBOL TEST_BALANCE
TEST_BALANCE = 1 Hex = 00000001 Octal = 00000000001

Greater than or equal to—The operator .GE. compares one number to
another for a greater or equal value in the first number. The following
comparison evaluates to 1 to indicate that BALANCE is greater than or
equal to -15237:

$ TEST_BALANCE = BALANCE .GE. -15237
$ SHOW SYMBOL TEST_BALANCE
TEST_BALANCE = 1 Hex = 00000001 Octal = 00000000001

Greater than—The operator .GT. compares one number to another for a
greater value in the first number. The following comparison evaluates to
0 to indicate that BALANCE is not greater than -15237:

$ TEST_BALANCE = BALANCE .GT. -15237
$ SHOW SYMBOL TEST_BALANCE
TEST_BALANCE = 0 Hex = 00000000 Octal = 00000000000

Less than or equal to—The operator .LE. compares one number to
another for a lesser or equal value in the first number. The following
comparison evaluates to 1 to indicate that BALANCE is less than or equal
to -15237:

$ TEST_BALANCE = BALANCE .LE. -15237
$ SHOW SYMBOL TEST_BALANCE
TEST_BALANCE = 1 Hex = 00000001 0Octal = 00000000001

Less than—The operator .LT. compares one number to another for a
lesser value in the first number. The following comparison evaluates to 0
to indicate that BALANCE is not less than -15237: '

$ TEST_BALANCE = BALANCE .LT. -15237
$ SHOW SYMBOL TEST_BALANCE
TEST_BALANCE = 0 Hex = 00000000 0Octal = 00000000000

Representing Data with Symbols
5.6 Storing and Manipulating Data with Symbols

Not equal to—The operator .NE. compares one number to another for
inequality. The following comparison evaluates to 0 to indicate that
BALANCE equals -15237:

$ TEST_BALANCE = BALANCE .NE. -15237
$ SHOW SYMBOL TEST_BALANCE
TEST_BALANCE = 0 Hex = 00000000 Octal = 00000000000

5.6.2.3

Logical Expressions

A logical operation affects all the bits in the number being acted upon. The
values for logical expressions are integers, and the result of the expression
is an integer as well. If you specify a character string value in a logical
expression, the string is converted to an integer before the expression is
evaluated.

String and integer values are evaluated as follows:

If the first character is T, t, Y, or y, a character string has a logical value
of true (1).

If the first character is not T, t, Y, or y, a character string has a logical
value of false (0).

If an integer is odd (the low-order bit is 1), it has a logical value of true
(1).
If an integer is even (the low-order bit is 0), it has a logical value of false

(0).

Typically, you use logical expressions to evaluate the low-order bit of a logical
value; that is, to determine whether the value is true or false. You can specify
the following logical operations:

Not—The operator .NOT. reverses the bit configuration of a logical value.
A true value becomes false and a false value becomes true. The following
example reverses a true value to false. The expression evaluates to -2;
the value is even and is therefore false:

$ SHOW SYMBOL STATUS

STATUS = 1 Hex = 00000001 Octal = 00000000001
$ STATUS = .NOT. STATUS
$ SHOW SYMBOL STATUS

STATUS = -2 Hex = FFFFFFFE Octal = 37777777776

And—The operator .AND. combines two logical values as follows:

Bit Level Entity Level

1.AND. 1=1 true .AND. true = true
1.AND.O0=0 true .AND. false = false
O0.AND. 1=0 false .AND. true = false
0.AND.O0=0 false .AND. false = false

5-15

Representing Data with Symbols
5.6 Storing and Manipulating Data with Symbols

5-16

The following example combines a true value and a false value to produce
a false value:

$ STAT1 = "TRUE"
$ STAT2 = "FALSE"
$ STATUS = STAT1 .AND. STAT2
$ SHOW SYMBOL STATUS
STATUS = 0 Hex = 00000000 Octal = 00000000000

Or—The operator .OR. combines two logical values as follows:

Bit Level Entity Level

1.0R. 1=1 true .OR. true = true
1.0R.0=1 true .OR. false = true
O.0OR 1=1 false .OR. true = true
O0.OR.0O=0 false .OR. false = false

The following example combines a true value and a false value to produce
a true value:

$ STAT1 "TRUE"
$ STAT2 = "FALSE"
$ STATUS = STAT1 .OR. STAT2
$ SHOW SYMBOL STATUS
STATUS = 1 Hex = 00000001 Octal = 00000000001

5.6.2.4

Subst-ing Replacement and Numeric Overlays
You can replace a part of a character string with another character string. The
assignment statement has the following format:

symbol-name[offset,size] :

or

I

replacement-string

symbol-name[offset,size] = = replacement-string

The fields are as follows:

Offset is an integer that indicates the position of the replacement-

string relative to the first character in the original string. An offset of

0 means the first character in the symbol, an offset of 1 means the second
character, and so on.

Size is an integer that indicates the length of the replacement-string.

To replace substrings, observe the following rules:

The square brackets are required notation. No spaces are allowed
between the symbol name and the left bracket.

Integer values can be in the range of 0 through 768.

The replacement-string must be a character string.

In the following example, the first assignment statement gives the symbol
A the value PACKRAT. The second statement specifies that MUSK replace
the first four characters in the value of A. The result is that the value of A
becomes MUSKRAT.

Representing Data with Symbols
5.6 Storing and Manipulating Data with Symbols

$ A := PACKRAT

$ Af0,4] := MUSK

$ SHOW SYMBOL A
= "MUSKRAT"

The symbol name you specify can be undefined initially. The assignment
statement creates the symbol name and, if necessary, provides leading or
trailing spaces in the symbol value. For example:

$ B[4,3] := RAT

If the symbol B does not have a previous value, it is given a value of four
leading spaces followed by RAT. This format creates a blank line of any
length. The following example gives the symbol LINE a value of 80 blank
spaces:

$ LINE[0,80]):= " "

Lining up records in columns makes a list easier to read and sort. You can
use this format to specify how you want data to be stored. For example:

$ DATA[O,15]
$ DATA[17.,1] :

'NAME'
'"GRADE'

The first statement fills in the first 15 columns of DATA with whatever value
NAME has. The second statement fills in column 18 with whatever value
GRADE has. Columns 16 and 17 contain blanks.

A special format of the assignment statement can also be used to perform
binary (bit-level) overlays of the current symbol value. This format is as
follows:

$ symbol-name[bit-position,size] = replacement-expression
or

$ symbol-name[bit-position,size] = = replacement-expression
where:

* bit-position is an integer that indicates the location relative to bit 0 at
which the overlay is to occur.

® size is an integer that indicates the number of bits to be overlaid.

When using numeric overlays, observe the following rules:

® The square brackets are required notation. No spaces are allowed
between the symbol name and the left bracket.

* Literal values are assumed to be decimal.
* The maximum length for both bit-position and size is 32 bits.
* The replacement-expression must be a numeric expression.

* When symbol-name is either undefined or defined as a string, the result of
the overlay is a string. Otherwise the result is an integer.

The following example defines the symbol BELL as the value 7. The low-
order byte of BELL has the binary value 00000111. By changing the 0 at
offset 5 to 1 (beginning with 0, count bits from right to left), you create the
binary value 00100111 (decimal value 39).

5-17

Representing Data with Symbols
5.6 Storing and Manipulating Data with Symbols

5-18

$ BELL = 7

$ BELL[5,1] = 1

$ SHOW SYMBOL BELL

BELL = 39 Hex = 00000027 Octal = 00000000047

5.6.2.5

Order of Operations and the Results of Evaluations

An expression can contain any number of operations and comparisons. You
can indicate precedence (the order in which operation and comparison should
be evaluated) by placing operations to be performed first in parentheses.
(Parentheses can be nested.) Otherwise, operations within an expression are
evaluated in the following order:

1 Unary plus (+) and minus (-)
Multiplication and division

All other numeric and character operations
All numeric and character comparisons

Logical NOT operations

(I &1 B R A

Logical AND operations
7 Logical OR operations

Operations and comparisons that have the same precedence are evaluated
from left to right. The following examples illustrate precedence of operations
in expressions:

$ BALANCE = 150 + 20 * 4
(BALANCE = 150 + 80)
$ SHOW SYMBOL BALANCE
BALANCE = 230 Hex = 000000E6 Octal = 00000000346

$ BALANCE = (150 + 20) * 4
(BALANCE = 170 * 4)
$ SHOW SYMBOL BALANCE
BALANCE = 680 Hex = 00000248 Octal = 00000001250

$ STATUS = 150 * 4 .GT. 80 * 2
(STATUS = 600 .GT. 160)
$ SHOW SYMBOL STATUS
STATUS = 1 Hex = 00000001 Octal = 00000000001

An expression has either an integer or a string value, depending on the
types of values and the operators used. The following table summarizes how
DCL evaluates expressions. The first column lists the different values and
operators that an expression might contain. The second column tells, for each
case, what the entire expression is equated to. Within the table any value
stands for a string or an integer.

Table 5—2 Determining the Value of an Expression

Resulting
Expression Value Type
Integer value Integer
String value String
Integer lexical function Integer

Representing Data with Symbols
5.6 Storing and Manipulating Data with Symbols

Table 5—2 (Cont.) Determining the Value of an Expression

Resulting

Expression Value Type
String lexical function String
Integer symbol Integer
String symbol String

+, —, or .NOT. any value Integer
Any value .AND. or .OR. any value Integer
String + or - string String
Integer + or - any value Integer
Any value + or - integer Integer
Any value * or / any value Integer
Any value (string comparison) any value Integer
Any value (numeric comparison) any value Integer

5-19

6 Writing and Using Command Procedures

6.1

A command procedure is a file that contains DCL commands and data

lines used by the DCL commands. You can write both simple and complex
command procedures. A simple command procedure executes a series of
DCL commands in the order in which they are written. A complex command
procedure performs program-like functions.

Format

Follow these instructions when formatting a command procedure:

Begin each line containing a command, comment, or label with a dollar
sign.

Do not begin data lines with a dollar sign.

Use comments to explain the command procedure to anyone who

must maintain it. Place comments at the beginning of a procedure to
describe the procedure and the parameters passed to it; place them at
the beginning of each block of commands to describe that section of

the procedure. The command interpreter ignores comments when the
command procedure executes. Precede a comment with an exclamation
point; the comment is all text to the right of an exclamation point. (To
include a literal exclamation point in a command line, precede and follow
it with quotation marks.)

Use complete names for commands and qualifiers. Commands and
qualifiers are usually self-explanatory when they are not abbreviated.
Abbreviated commands and qualifiers may no longer be unique when
new commands and qualifiers are added to the VMS operating system.

Put labels on separate lines to make loops, subroutines, and conditional
code easier to understand. (Labels mark the beginning of loops,
subroutines, and conditional code.) You may choose to differentiate
labels from commands by placing labels immediately after the dollar
sign and preceding commands by a space. A label can have up to 255
characters, cannot contain embedded blanks, and must be terminated
by a colon. (The GOTO, GOSUB, and CALL commands transfer control
to labels, which mark the beginning of a loop, a section of code, or a
subroutine.)

Separate command sequences with lines containing a dollar sign and

an exclamation point (§!). This makes it easier to see the outline of the
command procedure. (If you insert blank lines, the command interpreter
interprets them as data lines and produces a message warning you that
the data lines were ignored. If you insert lines containing only a dollar
sign, the command interpreter searches the whole line for a command.)

6.2

Writing and Using Command Procedures

6.2 Execution

Execution

6-2

Command procedures can be executed interactively from DCL level, from
within another command procedure, on a remote node using the TYPE
command, or in batch mode. To execute a command procedure interactively,
type an at sign (@) followed by the file specification of the procedure.

The file type defaults to COM. The following command executes the
procedure SETD.COM in the directory [MAINT.PROCEDURES] on the

disk WORKDISK:

$ @WORKDISK: [MAINT.PROCEDURES]SETD

To simplify the invocation of a procedure, create a global symbol or a
logical name, and place the symbol or logical name in your login command
procedure. (Section 6.3 describes how to create a login command procedure.
Symbols are described in Chapter 5. See Chapter 4 for more information
about logical names.) Equating the command line to a global symbol allows
you to invoke the command procedure from any directory by entering the
global symbol name as follows:

$ SETD == "@WORKDISK: [MAINT.PROCEDURES]SETD"
$ SETD

Equating the file specification to a logical name allows you to invoke the
command procedure from any directory by entering an at sign followed by
the logical name as follows:

$ DEFINE SETD WQRKDISK:[MAINT.PROCEDURES]SETD.COM
$ @SETD

To invoke a command procedure from within another command procedure,
use the at sign (@) followed by the file specification of the procedure. In the
following example, the command procedure WRITEDATE.COM invokes the
command procedure GETDATE.COM:

$! WRITEDATE.COM
$ INQUIRE TIME "What is the current time, in hh:mm format?"
$ QGETDATE

Use the TYPE command to execute a command procedure interactively on a
remote node. The TYPE command lets you execute command procedures to
list the users logged on to the remote node or to display the status of services
in the local cluster not provided clusterwide. The output of the command
procedure is displayed on the user’s terminal at the local node.

To execute a command procedure in the default DECnet account of the
remote node, specify the command procedure as a parameter to the TYPE
command as follows:

$ TYPE node_name: :"TASK=command_procedure"

The variable node_name is the name of the remote node on which the
command procedure resides; command_procedure is the name of the command
procedure.

To execute a command procedure in the top level directory of another account
on the remote node, use an access control string in the command as follows:

$ TYPE node_name"user_name password"::"TASK=command_procedure"

The variable user_name is the user name of the account on the remote node,
password is the password of the account on the remote node, and
command_procedure is the name of the command procedure.

Writing and Using Command Procedures
6.2 Execution

The following command procedure, SHOWUSERS.COM, displays the users
logged in at the remote node on which the command procedure resides:

$! SHOWUSERS.COM
$ IF F$MODE() .EQS. "NETWORK" THEN DEFINE/USER SYS$OUTPUT SYS$NET
$ SHOW USERS

The following command executes the command procedure
SHOWUSERS.COM and displays the output from this command procedure
on the user’s terminal. The command procedure resides in the top level
directory of account BIRD on node ORIOLE.

$ TYPE ORIOLE"BIRD FLIESFAST"::"TASK=SHOWUSERS"

VAX/VMS Interactive Users
09-DEC-1988 17:20:13.30
Total number of interactive users = 4

Username Process Name PID Terminal
FLICKER Freddie 00536278 TXA1l:
ROBIN Red 00892674 VTA2:
DOVE Whitie 00847326 TXA3:
DUCK Donna 02643859 RTA1:

You can also submit a command procedure to a batch queue to execute as a
batch job. If your system is part of a network, you can submit a command
procedure to execute as a batch job on a remote node. Within a command
procedure, you can use DCL commands to open and close files on a remote
node and read and write records in these files, using the same commands
and qualifiers as for local files. Section 3.1.4 contains more information about
batch jobs.

6.2.1 Changing Command Levels

A command level is an input stream for the DCL command interpreter.
You can create a maximum of 32 command levels. There are two ways to
create new command levels. You can either use the CALL command to call
a subroutine that exists within the command procedure, or you can nest
command procedures by using an execute procedure (@) command inside
one command procedure to invoke another command procedure. When you
use the CALL command or nest a command procedure, the command level
increases by 1.

When you invoke a command procedure, the command level increases by
1. For example, if you invoke procedure SUB from DCL command level
(level 0), SUB executes at command level 1. If SUB then invokes SUBI1,
which invokes SUBSUB1, SUB1 executes at command level 2, and SUBSUB1
executes at command level 3.

By convention, DCL level (command level 0) is the highest command level
and command level 31 the lowest command level. Thus, when you move
from command level 3 to command level 2, you are moving to the next
higher command level.

Writing and Using Command Procedures
6.2 Execution

6.2.2 Exiting from Command Procedures

A command procedure exits when it reaches the end of the procedure, an
EXIT command, or a STOP command. If the exit is caused by the end

of the procedure or an EXIT command, control returns to the next higher
command level. If the exit is caused by the EXIT command, you can return
a status value to the next higher command level by specifying the value
as the parameter of the EXIT command. (A status value is a hexadecimal
representation of a VMS message code.) This status value is placed in the
global symbol $STATUS. If you return the status value 44 with the EXIT
command, control returns to DCL command level and the following error
message is displayed:

%SYSTEM-F-ABORT, abort

See Section 5.2 for more information about the global symbols $STATUS and
$SEVERITY. For example, if you invoke SUB at DCL command level, and
SUB calls SUB1, the following sequence of actions occurs:

1 Exiting from SUBI returns you to SUB at the command line following the
call to SUBI.

2 Exiting from SUB returns you to DCL command level.

If the exit is caused by the STOP command, control always returns to
DCL command level, regardless of the command level in which the STOP
command executes.

6.3 Designing a Login Command Procedure

You can create a command procedure, called a login command procedure,
to execute the same commands each time you log in. Name your login
command procedure LOGIN.COM, and place it in your top level directory,
unless your system manager tells you otherwise.

The following sample LOGIN.COM procedure illustrates some commands
you may want to include in your login command procedure:

$! Sample LOGIN.COM for user MARCIA with

$! default disk of DISK3

$!

$! Exit if this is a batch job or another

$! type of noninteractive process

$1

$ IF F$MODE() .NES. "INTERACTIVE" THEN EXIT @
$!

$! Tailor the default behavior of

$! certain DCL commands

$!

$ PUR*GE :== PURGE/LOG

$ SUB*MIT :== SUBMIT/NOLOG_FILE/NOTIFY
$ M+AIL :== MAIL/EDIT=(SEND,FORWARD,REPLY)
$!

$! Define global symbols

$!

$ DISPLAY :== MONITOR PROCESSES/TOPCPU
$ GO :== SET DEFAULT

$ LP :== SHOW QUEUE/ALL SYS$PRINT

$ S8 :== SHOW SYMBOL

$ SQ :== SHOW QUEUE/ALL

Writing and Using Command Procedures
6.3 Designing a Login Command Procedure

$ REM :== @DISK3: [MARCIA.PROG]REMINDER
$ MAIN :== SET DEFAULT DISK3:[MARCIA]

$!

$! Define logical names for:

$! Directories

$ DEFINE HOME DISK3: [MARCIA]

$ DEFINE REV DISK3: [MARCIA.REVIEWS]

$ DEFINE TOOLS DISK3: [MARCIA.TOOLS]

$! Files

$ DEFINE EQUIP DISK3:[MARCIA.LISTS]EQUIPMENT.DAT
$ DEFINE ACCOMP DISK3: [MARCIA]ACCOMPLISHMENTS.DAT
$! Users

$ DEFINE JON DAISY::HARRIS

$ DEFINE JANE DAISY::MOORE

$!

$! Define keys to execute commands

$1

$ DEFINE/KEY PF3 "SHOW USERS" /TERMINATE

$ DEFINE/KEY KP7 "SPAWN" /TERMINATE

$ DEFINE/KEY KP8 "ATTACH "

$ DEFINE/KEY KP4 "SET HOST "

$!

$! Change the prompt string to a three-character
$! abbreviation of the node name

$! '

$ NODE = F$GETSYI("NODENAME") @

$ PROMPT = F$EXTRACT (0, 3,NODE)

$ SET PROMPT = "''PROMPT'> "

$t

$! Type the system notices ©
$!

$ TYPE SYS$SYSTEM:NOTICE.TXT

$!

$! Run a program that displays today's appointments 4]
$t
$ RUN DISK3:[MARCIA.PROG]REMINDER

@ The FSMODE lexical function returns the mode (interactive, batch,
network or other) that the process is in when the LOGIN.COM procedure
is executing. This statement causes the procedure to exit unless you are
using the system interactively. You should test the mode at the beginning
of your LOGIN.COM procedure to ensure that commands used only in
interactive mode are not executed in any other mode; in some cases these
commands can abort noninteractive processes.

©® This group of commands changes the DCL prompt to the first three
characters of the node name. The FSGETSYI lexical function determines
the node name. The FSEXTRACT lexical function extracts the first three
characters of the name. The SET PROMPT command changes the prompt
from a dollar sign to the first three characters of the node name followed
by the right-angle bracket character (>) and a space.

® This command displays the system notices that your system manager
keeps in the file SYS$SYSTEM:NOTICE.TXT.

© This command runs a user-written program that displays your daily
appointments. If you have written programs that you always run
after you log in, you may prefer to execute them directly from your
LOGIN.COM file.

Writing and Using Command Procedures
6.3 Designing a Login Command Procedure

The system manager assigns the file specification for your login command
procedure in the LGICMD field for your account. In most installations, the
login command procedure is called LOGIN.COM. However, if you want
to execute a file other than the one named in the LGICMD field for your
account, use the /COMMAND qualifier when you log in.

6.4 Passing Data

Command procedures frequently require data provided by a user. To specify
the same data each time the command procedure is executed, place the data
on data lines following the command that requires the data. (A data line

is a line that does not begin with a dollar sign. To include a data line that
begins with a dollar sign, use the DCL commands DECK and EOD, which
are described in the VMS DCL Dictionary.) The following command procedure
executes the image CENSUS.EXE, which reads the data 1981, 1982, and 1983
each time the procedure is executed:

$ 1 CENSUS.COM
$!

$ RUN CENSUS
1981

1982

1983

$ EXIT

The text on a data line is passed directly to the image; DCL does not process
data lines. Therefore, DCL does not translate symbols or evaluate arithmetic
expressions on data lines before passing the symbols or arithmetic expressions
to the image. Logical names are not translated by DCL; therefore, a logical
name included on a data line is translated before it is passed to an image.

To specify different data each time a command procedure executes, use one
of the following mechanisms, which are described in Sections 6.4.1 through
6.4.4:

¢ Pass the data as one or more parameter values.

* Use the INQUIRE or READ command within the command procedure to
prompt for data.

® Specify a device or file from which to read the data by redefining the
logical name SYS$INPUT.

6.4.1 Using Parameters to Pass Data

6-6

When you invoke a command procedure, you can pass it up to eight
parameters. Place the parameters after the file specification of the command
procedure. Separate the parameters with one or more spaces or tabs. For
example, the following command invokes SUM.COM and passes eight
parameters to the procedure:

$ OSUM 34 52 664 89 2 7 87 3

To pass parameters to a command procedure executed in batch mode, use the
/PARAMETERS qualifier of the SUBMIT command. If you pass more than
one parameter, place the parameters in parentheses and separate them with
commas. If you execute more than one command procedure using a single
SUBMIT command, the specified parameters are used for each command
procedure in the batch job. The following command passes three parameters

Writing and Using Command Procedures
6.4 Passing Data

to the command procedures ASK.COM and GO.COM, which are executed as
batch jobs:

$ SUBMIT/PARAMETERS=(TCDAY,TOMORROW,YESTERDAY) ASK.COM, GO.COM

DCL places parameters passed to a command procedure in the local symbols
P1 through P8; P1 is assigned the first parameter value; P2 the second; P3
the third, and so on. If you pass more than eight values, you receive the
following error message and the command procedure does not execute:

%DCL-W-DEFOVF, too many command procedure parameters - limit to eight

If you pass fewer than eight values, the extra symbols are assigned null
values.

Specify a parameter value as one of the following:

* Integer—When you specify an integer, it is converted to a string as
follows:

$ QADDER 24 25

In this example, P1 is the string value 24; P2 is the string value 25.
(You can, however, use the symbols P1 and P2 in both integer and
character string expressions; DCL performs the necessary conversions
automatically.)

® String—Specify character strings as follows:

$ @DATA Paul Cramer

In this example, the strings Paul and Cramer are converted to uppercase
letters; P1 is PAUL and P2 is CRAMER.

To preserve spaces, tabs, or lowercase characters, place quotation marks
before and after the string as follows:

$ @DATA "Paul Cramer"
In this example, P1 is Paul Cramer and P2 is nuil.

* Symbol—To pass the value of a symbol, place an apostrophe character
before and after the symbol, as shown in the following example. When
passing a symbol, DCL removes quotation marks that enclose a string.
(To preserve spaces, tabs, and lowercase characters in a symbol value,
surround the symbol with quotation marks.)

$ NAME = "Paul Cramer"
$ Q@DATA 'NAME'

In this example, P1 is Paul and P2 is Cramer.

To include a quotation mark as part of a string, enter three quotation
marks as follows:

$ NEW_NAME = """Paul Cramer"""
$ ODATA 'NEW_NAME'

In this example, P1 is “Paul Cramer” and P2 is null.

* Null—To pass a null parameter, use a set of quotation marks as a
placeholder in the command string. In the following example, the first
parameter passed to DATA.COM is a null parameter:

$ QDATA "" "Paul Cramer"

Writing and Using Command Procedures

6.4 Passing Data

6-8

In the preceding example, P1 is null, and P2 is Paul Cramer.

For example, when DATA.COM is invoked with the following command, P1
through P8 are defined in DATA.COM as follows:

P1 = Paul Cramer

P2=24
P3 = (555) 111-1111
P4-P8 = null

$ @DATA "Paul Cramer" 24 "(655) 111-1111"

You can pass up to eight parameters to a nested command procedure. The
local symbols P1 through P8 in the nested procedure are not related to the
local symbols P1 through P8 in the invoking procedure. In the following
example, DATA.COM invokes the nested command procedure NAME.COM:

$ | DATA.COM
$ GNAME 'P1' Joe Cooper

Because P1 in DATA.COM is the string Paul Cramer, which contains
no quotation marks, it is passed to NAME.COM as two parameters. In
NAME.COM, P1 through P8 are defined as follows:

P1=PAUL

P2 = CRAMER
P3 =]JOE

P4 = COOPER
P5-P8 = null

Because DCL removes quotation marks when passing a symbol, you must
enclose the value in three sets of quotation marks to preserve spaces, tabs,
and lowercase characters in the symbol value. In the following example, the
literal value in P1 is enclosed in three sets of quotation marks and passed to
NAME.COM. If P1 originally contained the value “Paul Cramer”, the value
"Paul Cramer” is passed to NAME.COM.

$! DATA.COM
$ QUUTE = nnun
$ P1 = QUOTE + P1 + QUOTE
$ GNAME 'P1' "Joe Cooper"

In this example, P1 is Paul Cramer and P2 is Joe Cooper in the command
procedure NAME.COM.

An alternative is to enclose the text in quotation marks and, where a symbol
appears, precede the symbol with two apostrophes and follow it with one
apostrophe as follows:

$! DATA.COM
$ @NAME LR} IP1|"

Passing Data and Parameters to a Batch Job

To specify parameters for a job submitted in batch mode, use the
/PARAMETERS qualifier of the SUBMIT command. Note that you can

also pass data to a batch job by including the data in a command procedure
or by defining SYS$INPUT to be a file. The specified parameters are used for
each command procedure in the batch job. The following SUBMIT command
passes two parameters to the command procedures LIBRARY.COM and
SORT.COM:

Writing and Using Command Procedures
6.4 Passing Data

$ SUBMIT-
_$ /PARAMETERS=(DISK: [ACCOUNT .BILLSIDATA.DAT,DISK: [ACCOUNT] NAME.DAT) -
_$ LIBRARY.COM, SORT.COM

Your batch job executes as if you had logged in and executed each of

the submitted command procedures. For example, the previous SUBMIT
command executes a batch job that logs in under your account, executes your
login command procedure, and then executes the following commands:

$ QLIBRARY DISK:[ACCOUNT.BILLS]DATA.DAT DISK:[ACCOUNT]NAME.DAT
$ @SORT DISK: [ACCOUNT.BILLS]DATA.DAT DISK: [ACCOUNT]NAME.DAT

6.4.2 The INQUIRE Command

You can use the INQUIRE command to obtain data for command procedures
that you execute interactively. The INQUIRE command prompts for a value,
reads the value from the terminal, and assigns it to a symbol. The response
to the prompt is interpreted as a character string. By default, the response

is converted to uppercase, multiple blanks and tabs are replaced by a single
space, and leading and trailing spaces are removed. To preserve lowercase
characters, multiple spaces, and tabs, enclose your response in quotation
marks. The following command procedure writes the prompt Filename: and
puts your response into the local symbol FILE:

$ INQUIRE FILE “"Filename"

To suppress the colon and space automatically added to the end of the
prompt, use the /NOPUNCTUATION qualifier. To make the symbol global
instead of local, use the /GLOBAL qualifier. The following command
procedure writes the prompt Do you want to use defaults? and puts the
response into the global symbol DEFAULT:

$ INQUIRE/NOPUNCTUATION/GLOBAL DEFAULT-
_$ "Do you want to use defaults?"

When a command procedure is submitted as a batch job, the value for
a symbol specified in an INQUIRE command is read from the data line
following the INQUIRE command. If you do not include a data line, the
symbol is assigned a null value.

6.4.3 The READ Command

You can use the READ command to obtain data for command procedures that
you execute interactively. The READ command prompts for a value, reads
the value from the source specified by the first parameter, and assigns it to the
symbol named as the second parameter. If you do not specify a prompt, the
READ command outputs DATA: as the default prompt. To specify a different
prompt, use the /PROMPT qualifier. All characters typed on the terminal

in response to the prompt are taken as an exact character string value (case,
spaces, and tabs are preserved). The following command writes the prompt
Filename:, reads the response from the source specified by the logical name
SYS$COMMAND (by default, the terminal), and assigns the response to the
symbol FILE:

$ READ/PROMPT="Filename: " SYS$COMMAND FILE

6-9

Writing and Using Command Procedures

6.4 Passing Data

6.4.4 Obtaining Data from SYSSINPUT

Commands, utilities, and other system images usually take their input from
the source specified by the logical name SYS$INPUT. SYS$INPUT is a
process-permanent logical name that the system defines automatically. You
can specify SYS$INPUT as any one of the following:

6-10

Data line—In a command procedure, the default value of SYS$INPUT is
the data lines of the procedure. In the following command procedure, the
image CENSUS.EXE uses the default value of SYS$INPUT to take input
(1986, 1987, and 1988) from the data lines:

$! CENSUS.COM

$!

$! Execute CENSUS
$ RUN CENSUS

1986

1987

1088

$

Terminal—A command procedure can get input from a terminal by
defining SYS$INPUT as the terminal. This allows you to perform
interactive tasks from a command procedure. The following command
procedure defines SYS$INPUT as SYSSCOMMAND, which is, by default,
the terminal. The command procedure then invokes the EDT editor,
beginning an interactive editing session. (The /USER_MODE qualifier
redefines SYS$INPUT for a single image; you should use this qualifier
whenever you redefine a process-permanent logical name.)

$ | EDIT.COM

$!

$ 1 Edit the file STATS.DAT

$ WRITE SYS$OUTPUT "Edit STATS.DAT:"

$ DEFINE/USER_MODE SYS$INPUT SYS$COMMAND:
$ EDIT STATS.DAT

File—A command procedure can get input from a file by defining
SYS$INPUT as a file. The following command procedure defines
SYS$INPUT as the file YEARS.DAT, then invokes the program CENSUS.
CENSUS reads its input from the file YEARS.DAT.

$! CENSUS.COM

$!

$! Execute CENSUS

$ DEFINE/USER_MODE SYS$INPUT YEARS.DAT
$ RUN CENSUS

6.5

6.6

Writing and Using Command Procedures
6.5 Returning Data

Returning Data

To return a value from a command procedure (either to a calling procedure or
to DCL command level), you must assign the value to a global symbol. The
global symbol can be read at any command level. Use comments to explain
the use of any global symbols.

To create a global symbol, specify the value to be passed on the right side of
a global assignment statement. In the following example, the command
procedure DATA.COM invokes the command procedure NAME.COM,
passing NAME.COM a full name. NAME.COM places the last name in the
global symbol LAST_NAME. When NAME.COM completes, DCL continues
executing DATA.COM, which reads the last name by specifying the global
symbol LAST_NAME. (The command procedure NAME.COM would be in a
separate file; it is indented here for clarity.)

@DATA "Paul Cramer"
DATA.COM

NAME.COM returns the last name in the

!

!

! P1 is a full name

!

! global symbol LAST_NAME
1

PP PAPRAPAPRL &

@NAME 'P1'
$! NAME.COM
$! P1 is a first name
$! P2 is a last name
$! return P2 in the global symbol LAST_NAME
$ LAST_NAME == P2
$ EXIT
$! write LAST_NAME to the terminal
$ WRITE SYS$OUTPUT "LAST_NAME = ''LAST_NAME'"

LAST_NAME = CRAMER

Displaying Data

Commands, utilities, and other system images normally write their output

to the source specified by the logical name SYS$SOUTPUT. By default,
SYS$OUTPUT is equated to the terminal. However, you can redirect the
output of a command procedure to a file by using the /OUTPUT qualifier. In
the following example, output from the command procedure SETD.COM is
written to the file RESULTS.TXT instead of to the terminal:

$ @SETD/OUTPUT=RESULTS.TXT

DCL commands that accept the /OUTPUT qualifier include: ACCOUNTING,
CALL, DIRECTORY, HELP, LIBRARY, RUN (process), SPAWN, and TYPE.

6-11

Writing and Using Command Procedures
6.6 Displaying Data

6.6.1 Displaying Character Strings and Symbols

To display character strings and symbols on the terminal, use the WRITE
command as follows:

¢ Character string—Enclose the text to be displayed in quotation marks.
The following example displays the text: Two files were written.

$ WRITE SYS$OUTPUT "Two files were written."

¢ Symbol value—The WRITE command automatically substitutes
symbols and lexical functions. The following example displays the
text STAT1.DAT, which is the translation of the symbol FILE:

$ FILE = "STAT1.DAT"
$ WRITE SYS$OUTPUT FILE

* Combination of character strings and symbol values—Enclose the text to
be displayed in quotation marks. Preface a symbol with two apostrophes,
and follow it with one apostrophe. The following example displays
the text: STAT1.DAT and STAT2.DAT were written. STAT1.DAT is the
translation of the symbol AFILE; STAT2.DAT is the translation of the
symbol BFILE.

$ AFILE = "STAT1.DAT"
$ BFILE = "STAT2.DAT"
$ WRITE SYS$OUTPUT "''AFILE' and ''BFILE' were written."

You can also use commas and quotation marks to display a combination
of character strings and symbol values. The following example displays
the same text as the previous example:

$ AFILE = "STAT1.DAT"
$ BFILE = "STAT2.DAT"
$ WRITE SYS$OUTPUT AFILE, " and " ,BFILE, " were written."

6.6.2 Displaying Text

6-12

To display text that is more than one line long, use the TYPE command.
TYPE writes data to SYSBOUTPUT (the terminal, by default). Using
SYS$INPUT as the parameter causes TYPE to read the data from the
command procedure. When the following command procedure is executed,
the text on the data lines is displayed on the terminal:

$! CLEAN.COM
$!
$ TYPE SYS$INPUT

This command procedure executes a command that allows you
to clean up a directory.

Please enter one of the following commands after the prompt:
EXIT, DIRECTORY, TYPE, PURGE, DELETE, COPY

$ INQUIRE COMMAND "Command"

Writing and Using Command Procedures
6.6 Displaying Data

6.6.3 Displaying Files

To display the contents of a file, use the TYPE command. The following
example displays the file STAT1.DAT on the terminal:

$ TYPE DUAO: [HORACE]STAT1.DAT

6.7 Reading and Writing Files (File 1/0)

To move data to and from files, use the OPEN, CLOSE, READ, and WRITE
commands. The logical name you specify in the OPEN command is used to
refer to the file in the WRITE, READ, and CLOSE commands.

6.7.1 Specifying Files in Batch Job Command Procedures

A batch job command procedure executes as if you had logged in and
executed the command procedure interactively. Since your login default
directory is not usually the default directory needed to access files mentioned
in a command procedure, command procedures that will be executed in batch
mode should use one of the following mechanisms to ensure that the correct
files are accessed:

Use complete file specifications—When specifying a file in a command
procedure or passing a file to a command procedure, include the device
and directory names as part of the file specification, as shown in the
previous example.

Use the SET DEFAULT command—Before accessing a file in a command
procedure, use the SET DEFAULT command to specify the proper device
and directory.

6.7.2 Writing to a File

To write data to a file, take the following steps:

1

Open the file—The OPEN command assigns to the logical name specified
in the first parameter the file name specified in the second parameter.

Use the /APPEND qualifier of the OPEN command to write data to
the end of an existing file. If you use the /APPEND qualifier to open a
nonexistent file, an error occurs and no file is opened.

Use the /WRITE qualifier of the OPEN command to create a new file and
to open this file for write access. If you use the /WRITE qualifier to open
an existing file, a new version of that file is created.

Begin the write loop with a label—File 1/0 is always done in a loop
unless you are writing or reading a single record.

Read the data to be written—Use the INQUIRE command or the READ
command to read data into a symbol.

Test the data—Check the symbol containing the data. If the symbol is
null (you pressed RETURN and entered no data on the line), you have
reached the end of the data to be written to the file and should go to the
end of the loop. Otherwise, continue.

6-13

Writing and Using Command Procedures
6.7 Reading and Writing Files (File 1/0)

6-14

Note:

5 Write the data to the file—Use the WRITE command to write the value of
the symbol (one record) to the file.

6 Return to the beginning of the loop—You remain in the loop until there
is no more data to be written to the file.

7 End the loop and close the file—The CLOSE command disassociates the
file name from the logical name and closes the file. (Files opened by the
OPEN command remain open until you log out unless you explicitly close
them.)

The following command procedure writes data to the new file STAT.DAT. If a
file of that name exists, a new version is created.

$! Write a file

$ ON ERROR THEN EXIT VEXIT if the command procedure
$! cannot open the file

$ OPEN/WRITE IN_FILE STAT.DAT !0Open the file

$ ON CONTROL_Y THEN GOTO END_WRITE !Close the file if you abort
$ ' ! execution with a CTRL/Y

$ ON ERROR THEN GOTO END_WRITE !Close the file if an error
$! occurs

$WRITE: !Begin loop

$ INQUIRE STUFF "Input data" !Get input

$ IF STUFF .EQS. "" THEN GOTO END_WRITE !Test for end of file

$ WRITE IN_FILE STUFF IWrite to the file

$ GOTO WRITE IGoto beginning

$END_WRITE: 1End loop

$!

$ CLOSE IN_FILE !Close the file

The logical name in the OPEN command must be unique. If the OPEN
command does not work and your commands seem correct, change the
logical name in the OPEN command. Use the SHOW LOGICAL command
to display logical name definitions.

If you want to create a file with a unique name, use the FSSEARCH lexical
function to see whether the name is already in the directory. (See the lexical
function descriptions in the DCL Commands section for more information
about FSSEARCH.) The following command procedure prompts the user for
a file name, then uses the FSSEARCH lexical function to search the default
directory for the name. If a file with that name already exists, control is
passed to ERROR_1, the procedure prints the message File already exists, and
control returns to the label GET_NAME. You are again prompted for a file
name.

$! FILES.COM

$!

$GET_NAME:

$ INQUIRE FILE "File" ! Get a file name

$ CHECK = F$SEARCH (FILE) ! Make sure the file name is unique
$ IF CHECK .NES. "" THEN GOTO ERROR_1

$ OPEN/WRITE IN_FILE 'FILE' ! Open and write to the file

$ EXIT

$ERROR_1:

$ WRITE SYS$OUTPUT "File already exists"
$ GOTO GET_NAME

Writing and Using Command Procedures
6.7 Reading and Writing Files (File 1/0)

6.7.3 Reading from a File

To read data from a file, take the following steps:

1

2

Open the file—The OPEN/READ command opens the file for read access
and associates the file name with a logical name.

Begin the read loop—File 1/0O is always done in a loop unless you are
reading or writing a single record.

Read the data from the file—Use the READ command with the
/END_OE_FILE qualifier to read the next record in the file to a symbol.
The /END_OF_FILE qualifier causes the VMS system to pass control to
the label specified by the /END_OF_FILE qualifier when you reach the
end of the file. Generally, you specify the label that marks the end of the
read loop.

Process the data—When you read a file sequentially, process the current
record before reading the next one.

Return to the beginning of the loop—You remain in the loop until you
reach the end of the file.

End the loop and close the file—The CLOSE command disassociates the
file name from the logical name and closes the file.

The following command procedure reads and processes each record in the file

STAT.DAT:

$ OPEN/READ OUT_F STAT.DAT 'Open the file

$!

$READ_DATA: 'Begin the loop

$ READ/END_OF_FILE=END_READ OUT_F STUFF !Read a record; test for
$! end of file

$! Process the data

$ GOTO READ_DATA 1Go to the beginning
$! of the loop
$END_READ: 'End of loop

$!

$ CLOSE OUT_F IClose the file

6.7.4 Modifying a File

You can modify a file in the following ways:

Rewrite records—This method allows you to make minor changes to a
small number of records in a file. You cannot change the size of a record
or the number of records in the file.

Rewrite the file—This method allows you to change, delete, and insert
records. You create a new file using the old file as the main source of
input.

Append records to a file—This method allows you to add new records to
the end of the file.

6-15

Writing and Using Command Procedures
6.7 Reading and Writing Files (File 1/0)

6.7.4.1 Minor Modifications
To make minor changes to the records in a file, take the following steps:

1 Open the file for both read and write access.

2 Use the READ command to read through the file until you reach the
record that you want to modify.

3 Create a symbol containing the modified record. The modified record
must be exactly the same size as the original record. If the text of the
modified record is shorter, pad the record with spaces. If the text of the
modified record is longer, you cannot use this method to modify the file.

4 Use the WRITE/UPDATE command to write the modified record back to
the file.

5 Repeat steps 2 through 4 until you have changed all records you intend
to change.

6 Close the file.

Since this method does not allow you to modify the size of the record, use it
only if you have formatted the records in a file (for example, in a data file).

The following command procedure reads each record in a data file. The
record is displayed on the terminal, and you are asked whether the record is
to be modified. If you choose to modify the record, a new record is read from
the terminal, and its length is compared to the length of the original record.
If the original record is longer, the new record is padded with spaces. If the
original record is shorter, an error message is displayed, and you are again
prompted for a new record. If you choose not to modify the record, the next
record is read from the file.

$! MODIFY.COM

$!

$ SPACES = " " ! Initialize string of spaces
$! for padding

$!

$ OPEN/READ/WRITE FILE STATS.DAT ! Open the file

$!

$BEGIN_LOOP: ! Begin the loop

$!

$ READ/END_OF _FILE=END_LOOP FILE RECORD ! Read and display a record
$PROMPT :

$ WRITE SYS$OUTPUT RECORD

$!

$! Does the user want to change the record?

$ INQUIRE/NOPUNCTUATION YN "Change? [Y] "

$ IF YN .EQS. "N" THEN GOTO BEGIN_LOOP ! If not, get next record

$ INQUIRE NEW_RECORD "New record" ! Otherwise, get the new record
$!

6-16

Writing and Using Command Procedures
6.7 Reading and Writing Files (File 1/0)

$ OLD_LEN = F$LENGTH (RECORD) ! Compare the old and new records
$ IF OLD_LEN .GE. F$LENGTH(NEW_RECORD) THEN GOTO NO_ERROR
$! New record longer than old record

$ WRITE SYS$OUTPUT "ERROR -- New record is too long"

$ GOTO PROMPT

$!

$NO_ERROR:

$ IF OLD_LEN .EQ. F$LENGTH(NEW_RECORD) THEN GOTO WRITE_RECORD
$! New record shorter than old record

$ PAD = F$EXTRACT(O,OLD_LEN-F$LENGTH(NEW_RECORD) , SPACES)

$ NEW_RECORD = NEW_RECORD + PAD

$!

$WRITE_RECORD: ! Write the new record
$ WRITE/UPDATE FILE NEW_RECORD

$ GOTO BEGIN_LOOP

$!

$END_LOOP:

$ CLOSE FILE

$ EXIT

6.7.4.2

Note:

Major Modifications

To make extensive changes to a file, open that file for read access and open

a new file for write access. Since the /WRITE qualifier opens a new file for
write access, the new file can have the same name as the original file. The
new file has a version number one greater than the version number of the old
file.

You must open the existing file for read access before you open the
new version for write access to ensure that the correct file is opened for
reading,.

To make major modifications to a file, take the following steps:
1 Open the file for read access. This is the file you are modifying.
2 Open a new file for write access.

3 Use the READ command to read each record from the file you are
modifying.

As you read each record from the original file, decide how the record is to
be treated. In the following examples, the symbol RECORD contains the
record read from the original file:

¢ No change—Write the same symbol to the new file.

$! No change
$ WRITE NEW_FILE RECORD

* Change—Use the INQUIRE command to read a different record into
the symbol, then write the modified symbol to the new file.

$! Change
$ INQUIRE NEW_RECORD "New record"
$ WRITE NEW_FILE NEW_RECORD
* Delete—Do not write the symbol to the new file.

* Insert—Use a loop to read records into the symbol and to write the
symbol to the new file, as shown in the following example:

6-17

Writing and Using Command Procedures
6.7 Reading and Writing Files (File 1/0)

$! Insertion

$L00P:

$!Get new records to insert

$ INQUIRE NEW_RECORD "New record"

$ IF RECORD .EQS. "" THEN GOTO END_LOOP
$ WRITE NEW_FILE NEW_RECORD

$ GOTO LOOP

$END_LOOP:

4 Continue reading and processing records until you have finished.

5 Use the CLOSE command to close both the input and the output files.

6.7.4.3

Appending Records to a File
The OPEN/APPEND command allows you to append records to the end of
an existing file. Use the following steps to append records to a file:

1 Use the OPEN command with the /APPEND qualifier to position the
record pointer at the end of the file. The /APPEND qualifier does not
create a new version of the file.

2 Use the WRITE command to write new data records. Continue adding
records until you are through.

3 Use the CLOSE command to close the file.

6.7.5 Handling Input/Output (I/O) Errors

Use the /ERROR qualifier with the OPEN, READ, or WRITE command to
suppress error messages and to pass control to a specified label if an error
occurs during an input or output operation. This qualifier overrides all other
error-control mechanisms (except the /JEND_OF_FILE qualifier on the READ
command). In the following command procedure, if an error occurs during
execution of the OPEN command, the message Error opening STAT.DAT is
printed and the procedure exits:

$ OPEN/READ/ERROR=READ_ERR OQUT_F STAT.DAT

$ EXIT

$READ_ERR:

$ WRITE SYS$OUTPUT "Error opening STAT.DAT"
$ EXIT

6.8 Complex Command Procedures

6-18

Complex command procedures perform programlike functions. You can use
variable input in a complex command procedure, execute sections of the
procedure only if certain conditions are true, execute subroutines, or invoke
other command procedures. The following sections describe how to design,
code, and test complex command procedures.

Writing and Using Command Procedures
6.8 Complex Command Procedures

6.8.1 Designing Complex Command Procedures

Before writing a complex command procedure, perform the tasks interactively
that the command procedure will execute. As you type the necessary
commands, note the following:

* Variables—Data that changes each time you perform the task.

* Conditionals—Any command or set of commands that may vary each
time you perform the task. Note the commands and the conditions under
which you would execute them.

¢ Iteration—Any command or set of commands that you repeat. Note the
commands and the factor that controls how often you repeat them.

The following example shows the commands needed to clean up a directory:

COMMAND VARIABLE CONDITION
DIRECTORY - TO DISPLAY NEW FILE NAMES
or
TYPE filename - TO DISPLAY A FILE
REPEAT or
UNTIL PURGE filename - TO PURGE A FILE
DONE or
DELETE filename - TO DELETE A FILE
or
COPY filename newname - TO COPY A FILE

.

ZK-1750-84

The file names change each time you clean your directory; therefore, they are
variables. Any or all of the commands may be executed depending on the
operation you need to perform; therefore, each command is conditional. The
entire process is repeated until the directory is clean; therefore, it is iterative.

You must decide how to load the variables, test the conditionals, and exit
from the loop. For the directory cleaning procedure, the following design
decisions were made:

* Load variables—The command procedure gets the file names from the
terminal.

* Test conditionals—The command procedure gets a command name
from the terminal and executes the appropriate statements based on the
command name. The first two characters of each command must be read
to differentiate between DELETE and DIRECTORY.

* Exit from loop—You must enter the EXIT command to exit from the loop.

6-19

Writing and Using Command Procedures
6.8 Complex Command Procedures

Complete the design as follows:

/

GET command

If command begins with DI
DIRECTORY

If command begins with TY
GET filename
TYPE filename

If command begins with PU
GET filename
PURGE filename

If command begins with DE
GET filename
DELETE/CONFIRM filename

If command begins with CO
GET filename

GET newname

COPY filename newname

If command begins with EX
EXIT

ZK-1751-84

6.8.2 Coding Complex Command Procedures

6-20

To make the command procedure easier to understand and to maintain, try
to write the statements so that the procedure executes in a linear fashion,
from the first command to the last command. The following sections describe
how to execute conditional code and loops. (See Section 5.6.2 for information
about the logical operators used in condition expressions.)

Writing and Using Command Procedures
6.8 Complex Command Procedures

6.8.2.1

The IF Command

The IF command tests the value of an expression and causes different
commands to execute when the expression is true and when it is false.
DCL provides two distinct formats for the IF command. The first format
executes a single command when the condition specified to the IF command
is true as follows:

$ IF condition THEN command

DCL also provides a block-structured IF format. The block-structured IF
command executes more than one command if the condition is true and
accepts an optional ELSE statement that executes one or more commands

if the condition is false. To execute more than one command upon a true
condition, specify the THEN statement as a verb (a DCL command preceded
by a dollar sign) and terminate the resulting block-structured statement with
an ENDIF statement as follows:

$ IF condition
$ THEN command
$ command

$ ENDIF

To execute one or more commands upon a false condition, specify the ELSE
statement as a verb and terminate the resulting block-structured statement
with an ENDIF statement as follows:

$ IF condition
$ THEN command
$ command

$ ELSE command
$ command

$ ENDIF

Command blocks can be executed in several ways, depending on whether
you leave the commands in the same command procedure or put them in
another command procedure and execute them there:

* If you leave the commands in the command procedure, place them after
the THEN statement.

$ IF condition
$ THEN command
command

$ ENDIF

6-21

Writing and Using Command Procedures
6.8 Complex Command Procedures

6-22

* If you place the commands in a separate procedure, make the call to that
command procedure as part of the THEN statement.

$ IF condition

$ THEN @command_procedure
$ ELSE command

$ command

$ ENDIF

You can continue to specify the nonblock structured IF format and direct flow
to a labeled region when the condition specified is met as follows:

$ IF not condition THEN GOTO END_LABEL

$END_LABEL:

In the following example, a specified file is purged if COMMAND equals
“PU”. If COMMAND does not equal "PU”, a specified file is printed.

$! Purge a file. If no file exists, print the requested file.

$ IF COMMAND .EQS. "PU"

$ THEN

$ INQUIRE FILESPEC "File to purge"
PURGE 'FILESPEC'

ELSE
INQUIRE FILESPEC "File to print"
PRINT 'FILESPEC'

$ ENDIF

$! Type a file. If no file exists, exit"

$ IF COMMAND .EQS. "TY"

$
$
$
$

$ EXIT

In the following example, the command procedure SCREEN_SETUP.COM is
executed if FEMODE() equals "INTERACTIVE”. If FEMODE() does not equal
"INTERACTIVE”, the procedure exits. (The command procedure
SCREEN_SETUP.COM would be in a separate file; the commands it contains
are indented here for clarity.)

$ IF F$MODE() .EQS. "INTERACTIVE"

$ THEN

$ @SCREEN_SETUP
$! SCREEN_SETUP.COM
$! Set terminal characteristics
$ SET TERMINAL/DEVICE=VT200
$ SET TERMINAL/WIDTH=132

$! Invoke Editor

$ EVE :== EDIT/TPU

$ ELSE

$ EXIT

$ ENDIF

Writing and Using Command Procedures
6.8 Complex Command Procedures

6.8.2.2

Case Statements

A case statement is a special form of conditional code that executes one out of
a set of command blocks, depending on the value of a variable or expression.
Typically, the valid values for the case statement are labels at the beginning
of each command block. The case statement passes control to the appropriate
block of code by using the specified value as the target label in a GOTO
statement.

To write a case statement:

1

List the labels—Equate a symbol to a string that contains a list of the
labels delimited by slashes (or any character you choose to act as a
delimiter). This symbol definition should precede the command blocks.

$ COMMAND_LIST = "/PURGE/DELETE/EXIT/"

Write the “case statement’—First, use the INQUIRE command to get the
value of the case variable. Next, use the IF command with FSLOCATE
and FSLENGTH to determine whether the value of the case variable is
valid. If the case variable is valid, execute the case statement (a GOTO
command) to pass control to the appropriate block of code. Otherwise,
display a message and exit or request a different case value.

In the following example, the label is equated to the full command
name. Therefore, FSLOCATE includes the delimiters in its search for the
command name to ensure that the command is not abbreviated.

$GET_COMMAND:

$ INQUIRE COMMAND -
"Command (EXIT,PURGE,DELETE)"

$ IF FSLOCATE ("/"+COMMAND+"/",COMMAND_LIST) .EQ. -
F$LENGTH (COMMAND_LIST) THEN GOTO ERROR_1

$ GOTO 'COMMAND'

$ERROR_1:
$ WRITE SYS$OUTPUT "No such command as ''COMMAND'"
$ GOTO GET_COMMAND

Write the command blocks—Each block of commands may contain one
or more commands. Begin each command block with a unique label.
End each command block by passing control to a label outside the list of
command blocks.

$GET_COMMAND :

$PURGE :

$ INQUIRE FILE

$ PURGE 'FILE'

$ GOTO GET_COMMAND
$ 1!

$DELETE:

$ INQUIRE FILE

$ DELETE 'FILE'

$ GOTO GET_COMMAND
$!

$EXIT:

6-23

Writing and Using Command Procedures
6.8 Complex Command Procedures

6.8.2.3 Loops

A loop is a group of commands that executes repeatedly until a condition is
met. The following arrangement is recommended for statements that form a
loop: :

1 Begin the loop.
2 Change the termination variable.

3 Test the termination variable. If the condition is met, go to the end of the
loop.

4 Perform the commands in the body of the loop.
5 Return to the beginning of the loop.
6 End the loop.

You can also write loops that test the termination variable at the end of the
loop rather than at the beginning as follows:

1 Begin the loop.

2 Perform the commands in the body of the loop.
3 Change the termination variable.
4

Test the termination variable. If the condition is not met, go to the
beginning of the loop.

5 End the loop.

Note that when you test the termination variable at the end of the loop, the
commands in the body of the loop execute at least once, regardless of the
value in the termination variable.

Both of the following examples execute a loop that terminates when
COMMAND equals "EX” (EXIT). (FSEXTRACT truncates COMMAND to
its first two characters.) In the first example, COMMAND, the termination
variable, is tested at the beginning of the loop; in the second, it is tested at
the end of the loop.

$! EXAMPLE 1
$!
$GET_COMMAND :
$ INQUIRE COMMAND-
"Command (EXIT,DIRECTORY,TYPE,PURGE,DELETE,COPY)"
$ COMMAND = F$EXTRACT (0,2, COMMAND)
$ IF COMMAND .EQS. "EX" THEN GOTO END_LOOP

$ GOTO GET_COMMAND
$END_LOOP:

6-24

Writing and Using Command Procedures
6.8 Complex Command Procedures

$! EXAMPLE 2
$!
$GET_COMMAND:
$ INQUIRE COMMAND-
"Command (EXIT,DIRECTORY,TYPE,PURGE,DELETE,COPY)"
$ COMMAND = F$EXTRACT (0,2, COMMAND)

$ IF COMMAND .NES. "EX" THEN GOTO GET_COMMAND
$! End of loop

To perform a loop a specific number of times, use a counter as the termination
variable. In the following example, 10 file names are input by the user and
placed into the local symbols FIL1, FIL2, ..., FIL10:

$ NUM =1 Set counter
$LOOP: Begin loop

$ NUM = NUM + 1 Update counter
$ IF NUM .LT. 11 THEN GOTO LOOP ! Test for termination

!
!
$ INQUIRE FIL'NUM' "File" ! Get file name
!
!
$END_LOOP: ! End loop

To perform a loop for a known sequence of values, use FSELEMENT. In the
following example, the files CHAP1, CHAP2, CHAP3, CHAPA, CHAPB, and
CHAPC are processed in order.

$ FILE_LIST = "1,2,3,A,B,C"

$ INDEX = O

$PROCESS:

$ NUM = F$ELEMENT (INDEX,",",FILE_LIST)
$ IF NUM .EQS. "," THEN GOTO END_LOOP

$ FILE = "CHAP''NUM'"
$! process file named by FILE

$ INDEX = INDEX + 1
$ GOTO PROCESS
$END_LOOP:

$ EXIT

6.8.2.4

Subroutines

Use the GOSUB command or the CALL command to transfer control to a
subroutine within a command procedure. The GOSUB command transfers
control to a labeled subroutine in a command procedure without creating

a new procedure level. Since the GOSUB command does not create a new
command level, it is referred to as a local subroutine call. The RETURN
command terminates the GOSUB subroutine procedure, returning control to
the command following the calling GOSUB statement.

6-25

Writing and Using Command Procedures
6.8 Complex Command Procedures

6-26

The following command procedure shows how to use the GOSUB command
to transfer control to labeled subroutines:

$!

$! GOSUB.COM

$!

$ SHOW TIME

$ GOSUB TEST1

$ WRITE SYS$OUTPUT "success completion"
$ EXIT

$!

$! TEST1 GOSUB definition

$!

$ TEST1:

$ WRITE SYS$OUTPUT "This is GOSUB level 1."
$ GOSUB TEST2

$ RETURN

$!

$! TEST2 GOSUB definition

$!

$ TEST2:

$ WRITE SYS$OUTPUT "This is GOSUB level 2."
$ RETURN

The CALL command transfers control to a labeled subroutine in a command
procedure and creates a new command level. The CALL command allows
you to keep more than one related command procedure in a single file,
making the procedures easier