VMS Device Support

Order Number: AA-LA88SA-TE

April 1988

This manual describes how to write a driver for a device connected to
a VAX processor. It discusses the required and optional components
of a driver, and explains their functions. It details the requirements

- VMS imposes upon driver code and includes guidelines for creating,
loading, and debugging a driver that can run on VMS uniprocessing and
multiprocessing systems. It also describes data structures and other
methods by which a driver and the VMS system communicate information
and synchronize their execution.

Revision/Update Information: = This book supersedes the Guide to
Writing a Device Driver for VAX/VMS,
published April, 1986.

Operating System and Version: VMS Version 5.0
Software Version: VMS Version 5.0

digital equipment corporation
maynard, massachusetts

April 1988

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright ©1988 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user’s critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL UNIBUS
DEC/CMS EduSystem VAX
DEC/MMS 1AS VAXcluster
DECnet MASSBUS VAXBI
DECsystem—10 PDP VMS
DECSYSTEM-20 PDT VT
DECUS RSTS
DECwriter RSX Eumﬂuau ™
ZK4490
HOW TO ORDER ADDITIONAL DOCUMENTATION
DIRECT MAIL ORDERS
USA & PUERTO RICO" CANADA INTERNATIONAL
Digital Equipment Corporation Digital Equipment Digital Equipment Corporation
P.O. Box CS2008 of Canada Ltd. PSG Business Manager
Nashua, New Hampshire 100 Herzberg Road c/o Digital’'s local subsidiary
03061 Kanata, Ontario K2K 2A6 or approved distributor

Attn: Direct Order Desk

In Continental USA, Puerto Rico, Alaska, and Hawaii call 800-DIGITAL.
I*n Canada call 800-267-6215.
Any prepaid order from Puerto Rico must be placed with the local Digital subsidiary (809-754-7575).

Internal orders should be placed through the Software Distribution Center (SDC), Digital Equipment
Corporation, Westminster, Massachusetts 01473.

Production Note

This book was produced with the VAX DOCUMENT electronic publishing
system, a software tool developed and sold by DIGITAL. In this system,
writers use an ASCII text editor to create source files containing text and
English-like code; this code labels the structural elements of the document,
such as chapters, paragraphs, and tables. The VAX DOCUMENT software,
which runs on the VMS operating system, interprets the code to format the
text, generate a table of contents and index, and paginate the entire document.
Writers can print the document on the terminal or line printer, or they can use
DIGITAL-supported devices, such as the LNO3 laser printer and PostScnpt
printers (PrintServer 40 or LNO3R ScriptPrinter), to produce a typeset-quality
copy containing integrated graphics.

® PostScript is a trademark of Adobe Systems, Inc.

Contents

PREFACE XXix

NEW AND CHANGED FEATURES xxxiii

PARTI THEVMS DEVICE DRIVER ENVIRONMENT

CHAPTER 1 INTRODUCTION TO DEVICE DRIVERS 1-1
1.1 DRIVER FUNCTIONS 1-2
1.2 DRIVER COMPONENTS 1-2
1.2.1 Driver Tables 1-2
1.2.2 Driver Routines r1-3
1.3 THE 1/O0 DATABASE 1-4
1.3.1 Driver Tables 1-4
1.3.2 Data Structures 1-5
1.3.3 1/0 Request Packets 1-6
14 SYNCHRONIZATION OF DRIVER ACTIVITY 1-7
1.5 DRIVER CONTEXT 1-7
1.5.1 Example of Driver Context-Switching 1-8
1.6 HARDWARE CONSIDERATIONS 1-9
1.6.1 Driver Dependency on VAX Processing Systems _____ 1-10
1.6.1.1 VAX-11/780, VAX-11/785, and VAX

8600/8650/8670 « 1-10
1.6.1.2 VAX-11/750° 1-11
1.6.1.3 VAX-11/730 and VAX-11/725¢1-12
1.6.1.4 VAX 8200/8250/8300/8350,
VAX 8530/8550/8700/8800/8830/8840, and VAX 6200
Series * 1-12
RS MicroVAX 3600 Series and MicroVAX Il « 1-15
.6 MicroVAX 1 1-16

Contents

1.7 PROGRAMMED-1/O AND DIRECT-MEMORY-ACCESS
TRANSFERS 1-16
1.7.1 Programmed 1/0 1-17
1.7.2 Direct-Memory-Access 1/0 1-17
1.8 BUFFERED AND DIRECT 1/0 1-18
1.9 EXAMPLE OF AN I/O0 REQUEST 1-19
CHAPTER 2 DISCUSSION OF A $QI0 REQUEST 21
2.1 DRIVER CODE FOR THE LP11 WRITE FUNCTION 2-1
2.2 A USER PROCESS’S 1/0 REQUEST 2-2
23 DEVICE-INDEPENDENT I/O PREPROCESSING BY VMS 2-3
24 DEVICE-DEPENDENT 1/0 PREPROCESSING BY THE DRIVER 2-3
2.5 QUEUING THE 1/0 REQUEST PACKET TO‘THE DRIVER 2-4
2.6 ACTIVATING THE PRINTER 2-5
2.7 WAITING FOR A DEVICE INTERRUPT 2-5
2.8 HANDLING INTERRUPTS 2-6
29 I/0 POSTPROCESSING BY THE DRIVER 2-7
2.10 I/0 POSTPROCESSING BY VMS 2-7
CHAPTER 3 SYNCHRONIZATION OF I/O REQUEST PROCESSING 31

vi

Contents

3.1 INTERRUPT PRIORITY LEVELS 3-1

3.1.1 interrupt Service Routines 3-3

3.1.2 IPL Use During I/O Processing 3-3

3.1.2.1 IPL 2 (IPL$_ASTDEL) » 3—4

3.1.2.2 IPL 4 (IPL$_IOPOST) » 3—4

3.1.23 IPL 8 Through IPL 11 (Fork IPLs) * 3—5

3.1.24 IPL 20 Through IPL 23 (Device IPLs) * 3—5

3.1.25 IPL 31 (IPLS_POWER) » 3—6

3.1.3 Additional IPLs 3-6

3.1.3.1 IPL 3 (IPL$_RESCHED) 3—7

3.1.3.2 IPL 6 (IPLS_QUEUEAST) * 3-7

3.1.3.3 IPL 7 (IPL$_TIMERFORK) ¢ 3—-7

3.1.34 IPL 8 (IPLS_SYNCH) » 3-8

3.1.35 IPL 11 (IPLS_MAILBOX) » 3-8

3.1.3.6 IPL 14 (XDELTA Entry IPL) « 3—8

3.1.3.7 IPL 22 or IPL 24 (interval Ciock IPLs) » 3—8

3.14 Modifying IPL in Driver Code 3-8

3.1.4.1 Raising IPL ¢ 3—10

3.1.4.2 Lowering IPL * 3-11

3.2 SPIN LOCKS 3-11

3.21 Fork Locks 3-14

3.2.2 Device Locks 3-15

33 DEVICE DRIVER SYNCHRONIZATION 3-15

3.3.1 Overview of the Synchronization of an /0 Operation 3-16

3.3.2 Synchronizing the Device Database 3-19

3.3.3 Synchronizing at Driver Fork Level 3-20

3.3.3.1 Forking and the VMS Fork Dispatcher ¢ 3—21

3.3.3.2 Restrictions on Fork Processes ¢ 3—22

3.4 RESOURCE WAIT QUEUES 3-23

3.4.1 Competing for a Controller’s Data Channel 3-23
CHAPTER 4 OVERVIEW OF I/0 PROCESSING 4-1

4.1 PREPROCESSING AN 1I/0 REQUEST 41

4.1.1 Process I/O Channel Assignment 4-3

4.1.2 Locating a Device Driver in the 1/0 Database 4-4

4.1.2.1 Channel Request Block * 4—4

4.1.2.2 Interrupt Dispatch Block ® 4-5

- 4.1.2.3 Device Data Block * 4—6
4.1.3 Validating the I/O Function 4-7

vii

Contents

4.1.4 Checking Process I/O Request Quotas 4-7
415 Validating the 1/O Status Block 4-7
4.1.6 Allocating and Setting Up an 1/O Request Packet 4-7
4.1.7 FDT Processing 4-9
4.2 HANDLING DEVICE ACTIVITY 4-12
4.2.1 Creating a Driver Fork Process to Start 1/0 4-12
4.2.2 Activating a Device and Waiting for an Interrupt 4-13
4.2.3 Handling a Device Interrupt 4-14
4.2.4 Switching from Interrupt to Fork Process Context 4-14
4.2.5 Activating a Fork Process from a Fork Queue 4-15
4.3 COMPLETING AN 1/0 REQUEST 4-17
4.3.1 I/O Postprocessing 4-17
CHAPTER 5 TEMPLATE FOR A DEVICE DRIVER 5-1
5.1 CODING CONVENTIONS 5-1
5.2 RESTRICTIONS ON THE USE OF DEVICE-REGISTER I/O
SPACE 5-3
5.3 IMPLEMENTING CONDITIONAL CODE IN A DRIVER 5-;5
5.4 DRIVER TEMPLATE 5-6
CHAPTER 6 WRITING DEVICE-DRIVER TABLES 6-1
6.1 DRIVER PROLOGUE TABLE 6-1
6.2 DRIVER DISPATCH TABLE 6-3

viii

Contents

6.3 FUNCTION DECISION TABLE 6-4
6.3.1 Defining Buffered-1/0O Functions 6—7
6.3.2 . Defining Device-Specific Function Codes 6-7
CHAPTER 7 WRITING FDT ROUTINES 7-1
7.1 CONTEXT OF FDT ROUTINE EXECUTION 7-1
7.2 FDT ROUTINES AND THEIR EXIT PATHS 7-2
7.2.1 FDT Exit Paths 7-3
7.2.1.1 RSB ¢ 7-3
7.2.1.2 JMP G'EXE$QIODRVPKT ¢ 7—4
7.2.1.3 JMP G EXESFINISHIO or JMP G"EXE$FINISHIOC « 7—4
7.2.1.4 JVIP G'EXE$SABORTIO « 74
7.2.1.5 JSB G'EXESALTQUEPKT » 7-5
7.3 FDT ROUTINES FOR VMS DIRECT I/0 7-5
7.4 FDT ROUTINES FOR VMS BUFFERED /0 7-6
7.4.1 Checking Accessibility of the User’s Buffer 7-6
7.4.2 Allocating the System Buffer 7-6
7.4.3 Buffered-1/O Postprocessing 7-7
7.5 FDT ROUTINES PROVIDED BY VYMS 7-8
CHAPTER 8 WRITING A START-1/O ROUTINE 8-1
8.1 TRANSFERRING CONTROL TO THE START-1/0 ROUTINE 8-1
8.2 CONTEXT OF A DRIVER FORK PROCESS 8-1
8.3 FUNCTIONS OF A START-1/0 ROUTINE 8-2
8.3.1 Obtaining Controller Access 8-3
8.3.2 Obtaining and Converting the 1/0 Function Code and Its
Modifiers 8-4
8.3.3 Preparing the Device Activation Bit Mask 8-4
8.3.4 Synchronizing Access to the Device Database 8-5
8.3.5 Checking for a Local Processor Power Failure 8-5
8.3.6 Activating the Device 8-5

Contents

8.4 WAITING FOR AN INTERRUPT OR TIMEOUT 8-6
8.4.1 Expansion of WFIKPCH Macro 8-6
8.4.2 IOCSWFIKPCH Routine 8-7
CHAPTER 9 WARITING AN INTERRUPT SERVICE ROUTINE 9-1
9.1 INTERRUPT CONTEXT 9-3
9.2 SERVICING A SOLICITED INTERRUPT 9-3
9.3 SERVICING AN UNSOLICITED INTERRUPT 9-4
9.3.1 Examples of Unsolicited Interrupts 9-6
CHAPTER 10 COMPLETING AN I/O REQUEST AND HANDLING
TIMEOUTS 10-1
10.1 1/0 POSTPROCESSING 10-1
10.1.1 EXE$IOFORK 10-1
10.1.2 Completing an 1/0 Request 10-2
10.1.2.1 Releasing the Controller « 10-2
10.1.2.2 Saving Status, Count, and Device-Dependent Status ® 10-3
10.1.2.3 Returning Control to the Operating System ¢ 10-3
10.2 TIMEOUT HANDLING ROUTINES 104
10.2.1 Retrying an 1/0O Operation 10-5
10.2.2 Aborting an 1I/0O Request 10-6
10.2.3 Sending a Message to the Operator 10-6
CHAPTER 11 OTHER DRIVER ROUTINES 11-1
11.1 INITIALIZATION ROUTINES 11-1
11.1.1 Controller Initialization Routine 11-1
11.1.2 Unit Initialization Routine 11-2
11.1.3 Initialization During Driver Loading 11-3
11.1.4 Initialization During Recovery from a Power Failure 11-4
11.1.5 Forking from a Driver Initialization Routine 11-5

Contents

11.2 CANCEL-1/O ROUTINE 11-6
11.2.1 Context of a Cancel-1/0 Routine 11-7
11.2.2 Drivers That Need No Cancel-1/O Routine 11-7
11.2.3 Device-Independent Cancel-1/O Routine 11-8
11.24 Device-Dependent Cancel-1/0O Routine 11-8
11.3 ERROR LOGGING ROUTINES 11-8
11.3.1 Error Logging Routines Supplied by VMS 11-9
11.3.2 Register Dumping Routine 11-10
11.3.3 Interpreting Error Log Entries 11-11
11.4 CLONED UCB ROUTINE 11-11

PARTIII BUSSPECIFICCONSIDERATIONS AND

ADVANCED TOPICS

CHAPTER 12 UNIBUS AND Q22 BUS DEVICE SUPPORT 12-1

121 FUNCTIONS OF THE UNIBUS ADAPTER AND Q22 BUS
INTERFACE 121
12.1.1 Reading and Writing Device Registers 12-4
12.1.2 Map Registers 12-4
12.1.3 UNIBUS Adapter Data Transfer Paths 12-8
12.1.3.1 Direct Data Path » 12-10
12.1.3.2 Buffered Data Paths » 12-11
12.1.3.3 Byte-Offset Data Transfers ¢ 12-13
12.1.3.4 Purging a Buffered Data Path * 12-13
12.1.3.5 Longword-Aligned, 32-Bit, Random-Access Mode * 12-14
12.2 WRITING DRIVER CODE FOR UNIBUS/Q22 BUS DMA
TRANSFERS 12-15

12.2.1 Selecting and Requesting a Data Path 12-17
12.2.1.1 Requesting a Buffered Data Path ¢ 12—-17
12.2.1.2 Requesting a Permanent Buffered Data Path « 12—-18
12.2.1.3 Requesting the Direct Data Path ¢ 12-18
12.2.1.4 Mixed Use of Direct and Buffered Data Paths ¢ 12—-19
12.2.2 Requesting Map Registers 12-19
12.2.2.1 Allocating Map Registers * 12—19
12.2.2.2 Permanently Allocating Map Registers ¢ 12—20
12.2.3 Loading Map Registers 12-21

Xi

Contents

12.2.4 Computing the Starting Address of a Transfer 12-22
12.2.5 Computing the Transfer Length 12-23
12.2.6 Activating the Device 12-23
12.2.7 Completing a DMA Transfer 12-24
12.2.7.1 Purging the Data Path » 12—-24
12.2.7.2 Releasing a Buffered Data Path ¢ 12—-25
12.2.7.3 Releasing Map Registers ¢ 12—-25
12.2.8 Considerations for MicroVAX | DMA Devices 12-26
12.3 INTERRUPT DISPATCHING IN A UNIBUS/Q22 BUS

SYSTEM 12-27
12.3.1 Direct-Vector and Non-Direct-Vector Interrupt Dispatching _ 12-29
12.3.2 Adapter Dispatch Table 12-31
12.3.3 Interrupt Transfer Vector and Interrupt Transfer Routine ___ 12-31
12.3.4 Multilevel Device Interrupt Dispatching for Q22 Bus

Devices 12-34
12.3.4.1 Ensuring That the Q22 Bus Is Properly Configured « 12—-35
12.3.4.2 Effects of Enabling Multilevel Device Interrupt Dispatching on

Device Drivers ® 12—-36

CHAPTER 13 MASSBUS DEVICE SUPPORT 13-1
13.1 MASSBUS ADAPTER REGISTERS 13-1
13.11 Loading MASSBUS Adapter Registers 13-3
13.1.2 MASSBUS Adapter Registers and Offsets 13-4
13.1.3 Modifying MASSBUS Adapter Registers 13-6
13.2 1/0 DATABASE FOR MASSBUS DEVICES 13-6
133 MASSBUS ADAPTER OPERATIONS 13-8
134 MASSBUS ADAPTER'’S INTERRUPT DISPATCHING 13-9
13.4.1 Checking for MASSBUS Adapter Ownership 13-9
13.4.2 Dispatching a Device Interrupt 13-10
13.5 SPECIAL CONSIDERATIONS FOR MASSBUS DEVICE

DRIVERS 13-11
13.5.1 Unit Initialization Routine 13-11
13.5.2 The MASSBUS Adapter and the 1/O Database 13-12
13.5.3 Start-1/0 Routine 13-12
13.5.3.1 Requesting Controller Data Channels ¢ 13—-12

Xii

13.6.3.2 Loading Map Registers ® 13—13

Contents

13.5.3.3 Releasing Controller Data Channels ¢ 13—-14
13.5.4 DPTAB Macro 13-14
13.6 INTERRUPT SERVICE ROUTINES FOR MASSBUS DEVICES 13-14
13.6.1 Transferring Control to the Interrupt Service Routine 13-14
13.6.2 Returning Control to MBASINT 13-15
13.6.3 Considerations for Interrupt Service Routines 13-15
CHAPTER 14 GENERIC VAXBI DEVICE SUPPORT 14-1
14.1 OVERVIEW 14-1
14.2 VAXBI CONCEPTS 14-1
14.2.1 VAXBI Address Space 14-2
14.2.2 Backplane Interconnect Interface Chip (BIIC) 14-5
14.3 INITIALIZATION PERFORMED BY VMS 14-5
14.3.1 Data Structures 14-7
14.3.2 System Control Block 14-9
14.4 INITIALIZATION PERFORMED BY THE VAXBI DEVICE
: DRIVER 14-9
14.4.1 Examining BIIC Self-Test Status 14-11
14.4.2 Clearing BIIC Errors, Setting Interrupts, and Enabling
Interrupts 14-12
14.4.2.1 Clearing the Bus Error Register « 14—-12
14.4.2.2 Loading the Interrupt Destination Register ¢ 14—12
14.4.2.3 Setting Interrupt Vectors * 14—-13
14.4.2.4 Enabling Error Interrupts ® 14—13
14.4.2.5 Enabling BIIC Options * 14-13
14.4.3 Mapping Window Space 14-14
14.5 DMA TRANSFERS : 14-15
14.5.1 Example: DMB32 Asynchronous/Synchronous Multiplexer _ 14-17

14.6 UNIT INITIALIZATION ROUTINE 14-19

xiii

Contents

14.7 REGISTER DUMPING ROUTINE 14-19
14.8 LOADING A VAXBI DEVICE DRIVER 14-20
14.9 BIIC REGISTER DEFINITIONS 14-21
CHAPTER 15 LOADING A DEVICE DRIVER 15-1
15.1 PREPARING A DRIVER FOR LOADING INTO THE OPERATING
SYSTEM 15-1
15.2 LOADING A DRIVER 15-2
15.2.1 LOAD Command 15-2
15.2.2 CONNECT Command 15-3
15.2.3 RELOAD Command 15-7
15.2.4 SHOW/ADAPTER Command 15-8
15.2.5 SHOW/CONFIGURATION Command 15-9
15.2.6 SHOW/DEVICE Command 15-9
15.3 LOADING UNIPROCESSING AND MULTIPROCESSING
DRIVERS 15-10
15.4 THE SYSGEN AUTOCONFIGURATION FACILITY 15-11
15.4.1 SYSGEN Device Table 15-12
15.4.2 Device Driver Control of Autoconfiguration 15-17
15.4.3 Floating-Vector Address Calculation 15-19
15.4.4 Floating-CSR Address Calculation 15-19
15.4.5 Rules for Configuration 15-19
CHAPTER 16 DEBUGGING A DEVICE DRIVER 16-1
16.1 BOOTSTRAPPING THE SYSTEM WITH XDELTA 16-1
16.2 PROCEEDING FROM THE INITIAL BREAKPOINTS 16-5

Xiv

Contents

16.3 LOADING THE DRIVER 16-5
16.4 INSERTING BREAKPOINTS IN DRIVER SOURCE CODE 16-6
16.5 CALCULATING THE BASE OF DRIVER CODE 16-7
16.6 REQUESTING AN XDELTA SOFTWARE INTERRUPT 16-7
16.7 EXAMINING THE VECTOR-JUMP TABLE 16-8
16.8 SETTING AN XDELTA BASE REGISTER 16-9
16.9 EXAMINING THE UCB, IRP, OR PSL 16-10
16.10 XDELTA COMMANDS 16-10
16.10.1 Values and Expressions 16-12
16.10.2 Special Symbols 16-13

16.10.2.1 Stored Base Registers * 16—13
16.10.2.2 Stored Command Strings * 16—13
16.10.2.3 Setting Base Registers ® 16—14

16.10.3 Display Names and Locations of Loaded Executive Images _ 16-14
16.10.4 Set Display Mode 16-14
16.10.5 Open, Examine, and Close Location 16-15

16.10.5.1 Open and Display Value Command ¢ 16—15

16.10.5.2 Display Instruction Command ¢ 16—16

16.10.5.3 Close and Display Next Location Command ¢ 6-16

16.10.5.4 Display Range Command ¢ 16—-16

16.10.5.5 Indirect Command ¢ 16—17

16.10.5.6 Display Previous Location Command * 16-17

16.10.6 Breakpoints 16-17
16.10.6.1 Setting Breakpoints ® 16—-17

16.10.6.2 Clearing Breakpoints ® 16—18

16.10.6.3 Displaying Breakpoint List * 16—18

16.10.6.4 Proceeding from Breakpoints * 16—18

16.10.6.5 Setting Complex Breakpoints * 16—18

16.10.7 Step, Set Location, and Execute instruction Commands ____ 16-18
16.10.7.1 l.oading PC and Continuing ® 16—-18

16.10.7.2 Execute Instruction and Step Command ¢ 16—-19

16.10.7.3 Step Instruction Over Subroutine Command ® 16—19

16.10.8 Execute String Command 16-19

Xv

Contents

16.11 GUIDELINES FOR DEBUGGING DEVICE DRIVERS 16-20

16.11.1 Opening Device Registers in XDELTA 16-20

16.11.2 Adjusting the Device Timeout Value 16-20

16.11.3 XDELTA and System Failures 16-20

16.12 COMMON DRIVER ERRORS 16-21

16.12.1 References to System Addresses 16-21

16.12.2 Incorrect References to Device Registers 16-21

16.12.3 Destroying Register Contents 16-21

16.13 POOL CHECKING MECHANISM 16-22

16.14 DETECTING DRIVER PROBLEMS IN A MULTIPROCESSING

SYSTEM 16-24

CHAPTER 17 TERMINAL CLASS AND PORT DRIVERS 171

17.1 OVERVIEW 17-2

17.2 DATA STRUCTURES 17-2

17.2.1 Terminal UCB 17-2

17.2.2 Port Driver Vector Table 17-4

17.2.3 Class Driver Vector Table 17-5

17.2.4 Vector Table Generation Macros 17-5

17.2.4.1 $VECINI Macro » 17—6

17.2.4.2 $VEC Macro » 17—6

17.2.4.3 $VECEND Macro » 17—6

17.3 STRUCTURE OF PORT AND CLASS DRIVERS 17-6

17.31 Binding Class and Port Drivers 17-8

17.4 PORT DRIVER ROUTINES 17-8

17.4.1 Port Startup Routines 17-10

17.4.1.1 Controller Initialization Routine ® 17-11

17.4.1.2 Unit Initialization Routine ® 17-11

17.4.2 Port Initiate Routines 17-11

17.4.2.1 PORT_DISCONNECT » 17-12

17.4.2.2 PORT_DS_SET *17-12

17.4.2.3 PORT_FDT ¢ 17-12

17.4.2.4 PORT_FORKRET » 17-13

17.4.25 PORT_MAINT » 17-13

Xvi

Contents

17.4.2.6 PORT_SET_LINE « 17-13

17.4.2.7 PORT_SET_MODEM ¢ 17-14

17.4.2.8 PORT_STARTIO » 17-14

17.4.3 Port Service Routines 17-15

17.4.3 1 PORT_ABORT ¢ 17-15

17.4.3.2 PORT_CANCEL » 17-15

17.4.3.3 PORT_.RESUME » 17-15

17.4.3.4 PORT_STOP « 17-15

17.4.3.5 PORT_XOFF » 17-16

17.4.3.6 PORT_XON ¢ 17-16

17.4.3.7 Port Interrupt Service Routines ®* 17—16

17.5 CLASS DRIVER ROUTINES 17-17

17.5.1 CLASS_DDT 17-18

17.5.2 CLASS_DISCONNECT 17-18

17.5.3 CLASS_DS_TRANS 17-18

17.5.4 CLASS_FORK 17-18

17.5.5 CLASS_GETNXT 17-19

17.5.6 CLASS_PUTNXT 17-19

17.5.7 CLASS_SETUP_UCB 17-20

17.5.8 CLASS_POWERFAIL 17-20

17.5.9 CLASS_READERROR 17-21

CHAPTER 18 MAPPING TO I/O SPACE AND THE

CONNECT-TO-INTERRUPT FACILITY 18-1

18.1 1/0 ADDRESS SPACE 18-1

18.2 PFN MAPPING 18-5

18.2.1 Notes on PFN Mapping 18-6

18.3 CONNECTING TO AN INTERRUPT VECTOR 18-7

18.3.1 Performing the Connect-to-Interrupt 18-8

18.3.2 $QI0 Connect-to-Interrupt Request to Driver 18-9

18.3.3 The Connect-to-Interrupt Driver (CONINTERR.EXE) 18-12

18.3.4 Process-Specified Routines 18-13

18.3.4.1 Unit Initialization Routine * 18—14

18.3.4.2 Start-1/0 Routine * 18-15

18.3.4.3 Interrupt Service Routine * 18—16

18.3.4.4 Cancel-1/O Routine ® 18-17

18.3.5 AST Procedure 18-18

Xvii

Contents

18.4
18.4.1
18.4.2

18.4.3

REAL-TIME APPLICATIONS EXAMPLES 18-18
Example 1: KW11-W Watchdog Timer 18-19
Example 2: AD11-K, AM11-K A/D Converter with Multiplexer
Connected to the UNIBUS 18-20
Example 3: KW11-P Real-Time Clock and AD11-K Converter
Connected to the UNIBUS 18-22

PARTIV REFERENCESECTION AND EXAMPLES

APPENDIX A DATA STRUCTURES A-1
A1 CONFIGURATION CONTROL BLOCK (ACF) A-2
A.2 ADAPTER CONTROL BLOCK (ADP) A-4
A3 CHANNEL CONTROL BLOCK (CCB) A-11
A4 PER-CPU DATABASE (CPU) A-12
A.5 CHANNEL REQUEST BLOCK (CRB) A-17
A.6 DEVICE DATA BLOCK (DDB) A-25
A.7 DRIVER DISPATCH TABLE (DDT) A-27
A.8 DRIVER PROLOGUE TABLE (DPT) A-30
A.9 INTERRUPT DISPATCH BLOCK (IDB) A-34
A.10 1/0 REQUEST PACKET (IRP) A-36
A.11 1/0 REQUEST PACKET EXTENSION (IRPE) A-41

Xviii

Contents

A12 OBJECT RIGHTS BLOCK (ORB) A-43
A.13 SPIN LOCK DATA STRUCTURE (SPL) A-45
A.14 UNIT CONTROL BLOCK (UCB) A-47
APPENDIX B VMS MACROS INVOKED BY DRIVERS B-1

ADPDISP B-2

CASE B-5

CLASS_CTRL_INIT B—-6

CLASS_UNIT_INIT B-7

CPUDISP B-8

DDTAB B-10

$DEF B-12

$DEFEND B-13

$DEFINI B-14

DEVICELOCK B-15

DEVICEUNLOCK B-17

DPTAB B-19

DPT_STORE B-22

DSBINT B—-25

ENBINT B—-26

$SEQULST B-27

FIND_CPU_DATA B-29

FORK B-30

FORKLOCK B-31

FORKUNLOCK B-33

FUNCTAB B-34

IFNORD, IFNOWRT, IFRD, IFWRT B-36

INVALIDATE_TB B-38

IOFORK B—40

LOADALT B—-41

LOADMBA B-42

LOADUBA B-43

LOCK B-44

PURDPR B-46

READ_SYSTIME B-47

RELALT B-48

RELCHAN B-49

RELDPR B-50

Xix

Contents

RELMPR B-51
RELSCHAN B-52
REQALT B-53
REQCOM B-54
REQDPR B-55
REQMPR B-56
REQPCHAN B-57
REQSCHAN B-58
SAVIPL B-59
SETIPL B—-60
SOFTINT B-62
TIMEWAIT B-63
TIMEDWAIT B-64
UNLOCK B—66
$VEC B—67
SVECEND B-68
SVECINI B—69
$VIELD, _VIELD B-70
WFIKPCH, WFIRLCH B-72
APPENDIX C OPERATING SYSTEM ROUTINES c-1
COMSDELATTNAST Cc-2
COMS$DRVDEALMEM c-3
COMSFLUSHATTNS cC-4
COMSPOST C-5
COMSSETATTNAST C-6
ERL$SDEVICERR, ERL$DEVICTMO,

ERL$DEVICEATTN c-8
EXE$SABORTIO C-10
EXESALLOCBUF, EXESALLOCIRP C-12
EXESALONONPAGED C-14
EXESALONPAGVAR C-15
EXESALOPHYCNTG C-16
EXESALTQUEPKT Cc-17
EXE$CREDIT_BYTCNT,

EXESCREDIT_BYTCNT_BYTLM c-18
EXESDEANONPAGED C-19
EXESDEBIT_BYTCNT(_NW),

EXESDEBIT_BYTCNT_BYTLM(_NW) C-20
EXE$DEBIT_BYTCNT_ALO,

EXESDEBIT_BYTCNT_BYTLM_ALO C-22

Contents

EXESFINISHIO, EXESFINISHIOC C-24
EXESFORK C-26
EXESINSERTIRP Cc-27
EXESINSIOQ, EXESINSIOQC C-28
EXESINSTIMQ C-29
EXE$IOFORK C-30
EXE$SMODIFY C-31
EXE$SMODIFYLOCK, EXESMODIFYLOCKR c-34
EXESONEPARM ; Cc-37
EXE$QIODRVPKT Cc-38
EXE$QIORETURN C-39
EXE$SREAD C-40
EXESREADCHK, EXESREADCHKR C-43
EXESREADLOCK, EXESREADLOCKR C-45
EXESSENSEMODE Cc-48
EXESSETCHAR, EXESSETMODE C-49
EXE$SSNDEVMSG C-51
EXESWRITE C-53
EXESWRITECHK, EXESWRITECHKR C-55
EXESWRITELOCK, EXESWRITELOCKR C-57
EXESWRTMAILBOX C-59
EXE$ZEROPARM C-60
IOCSALOALTMAP, IOC$SALOALTMAPN,
IOC$SALOALTMAPSP C-61
IOC$SALOUBAMAP, IOCSALOUBAMAPN C-63
IOC$SAPPLYECC C-65
IOC$CANCELIO C-66
I0C$DIAGBUFILL Cc-67
I0CSINITIATE C-68
10C$IOPOST Cc-70
IOCSLOADALTMAP C-72
IOCSLOADMBAMAP C-74
IOC$SLOADUBAMAP, IOCSLOADUBAMAPA C-75
IOC$SMOVFRUSER, IOC$MOVFRUSER2 Cc-77
IOC$MOVTOUSER, IOC$SMOVTOUSER2 C-78
IOC$PURGDATAP Cc-79
IOCSRELALTMAP C-81
IOCSRELCHAN C-83
IOCSRELDATAP c-84
IOC$RELMAPREG C-86
IOCSRELSCHAN Cc-88

Contents

IOC$REQALTMAP c-89
IOC$REQCOM c-91
IOC$REQDATAP, IOCSREQDATAPNW c-93
IOC$REQMAPREG c-95
IOC$REQPCHANH, IOCSREQPCHANL,

IOC$REQSCHANH,

IOC$REQSCHANL c-97
IOC$RETURN c-99
IOC$VERIFYCHAN C-100
IOC$WFIKPCH, IOC$WFIRLCH c-101
LDR$ALLOC_PT c-103
LDR$DEALLOC_PT c-104
MMGS$UNLOCK C-105
SMP$ACQNOIPL C-106
SMP$ACQUIRE c-107
SMPS$ACQUIREL c-108
SMP$RELEASE c-109
SMPSRELEASEL c-110
SMPS$RESTORE c-111
SMP$RESTOREL c-112

APPENDIX D DEVICE DRIVER ENTRY POINTS D-1
ALTERNATE START-I/O ROUTINE D-2
CANCEL-1/0 ROUTINE D-3
CLONED UCB ROUTINE D-5
CONTROLLER INITIALIZATION ROUTINE D-7
DRIVER UNLOADING ROUTINE D-9
FDT ROUTINES D-10
INTERRUPT SERVICE ROUTINE D-12
REGISTER DUMPING ROUTINE D-14
START-1/0 ROUTINE D-15
TIMEOUT HANDLING ROUTINE D-17
UNIT DELIVERY ROUTINE D-19
UNIT INITIALIZATION ROUTINE D-21
UNSOLICITED INTERRUPT SERVICE

ROUTINE D-23

Contents

APPENDIX E SAMPLE DRIVER FOR THE RL11, RLO1, AND RLO2 E-1
APPENDIX F SAMPLE DRIVER FOR THE DR11-W AND
DRV11-WA F-1
APPENDIX G VMS VERSION 5.0 AND KERNEL-MODE CODE G-1
G.1 UNIPROCESSOR AND MULTIPROCESSOR DEVICE
DRIVERS G-1
G.1.1 MULTIPROCESSING System Parameter G-2
G.1.2 Device Driver Loading G-3
G.1.3 VMS Synchronization Macros G-4
G.2 CHANGES REQUIRED OF ALL EXISTING DRIVERS UNDER VYMS
VERSION 5.0 G-4
G.2.1 Specifying the Address of the Driver's Interrupt Service Routine
in the DPT . G-5
G.2.2 Checking, Debiting, and Crediting a Process’s Byte Count
Quota G-5
G.2.3 Referring to the Current PCB G-7
G.24 Allocating System Page-Table Entries G-7
G.2.5 Referring to a System Process Mailbox G-7
G.2.6 Reassembling and Relinking the Driver G-8
G.3 ADAPTING DEVICE DRIVERS TO RUN ON A VMS
MULTIPROCESSING SYSTEM G-8
G.3.1 Specifying the Fork Lock Index G-8
G.3.2 Synchronizing Access to the Device Database with the
Interrupt Service Routine G-9
G.3.21 Synchronizing at Device IPL ¢ G—9
G.3.2.2 Raising IPL to IPL$_POWER * G—-10
G.3.2.3 Synchronization Within the Interrupt Service Routine ® G—11
G.3.3 Controller and Unit Initialization Routines G-12
G.3.3.1 Permanently Allocating Map Registers and Buffered Data
Paths » G-12
G.34 Timeout Handling Routine G-13
G.3.6 General Methods for Synchronizing Kernel-Mode Code G-13
G.3.5.1 Using the Spin Lock Synchronization Macros ¢ G-13
G.35.2 Interiocking Access to Data Cells and Queues * G-14
G.3.6 Miscellaneous Conversion Tasks G-15
G.3.6.1 Reading the System Time ® G—-15
G.3.6.2 Calling the Driver Fork Process from a TQE ¢ G—-16
G.3.6.3 Invalidating Translation Buffer Entries * G—16

XXiii

Contents

G.3.6.4 Unsupported Use of the IRP ¢ G—16
G.3.7 Troubleshooting a Device Driver in a Multiprocessing
System G-17
G.3.7.1 Multiprocessing Bugchecks ® G—17
G.3.7.2 Analyzing a Multiprocessing System Failure ¢ G—-18
G.3.7.2.1 Investigating the Status of Spin Locks ®* G-19
G.3.7.3 Using XDELTA on SMP Systems ¢ G-20
G4 MULTIPROCESSING IMPLEMENTATION DETAILS G-20
G.4.1 Processor States G-20
G.4.2 System Initialization G-22
G.4.3 Scheduling in a VMS Multiprocessing Environment G-24
G.4.4 Timekeeping in a VMS Multiprocessing Environment G-25
GLOSSARY Glossary—1
INDEX
EXAMPLES
16-1 Loading a Driver 16-6
18-1 Locating the Adapter Address Space of a DWBUA Adapter
on a VAXBI Bus 184
FIGURES
1-1 The I/O Database 1-5
1-2 SBIl-Based System Configurations 1-11
1-3 VAXBI-Based System Configurations 1-13
1-4 MicroVAX 3600-Series and MicroVAX Il System
- Configuration 1-15
1-5 MicroVAX | System Configuration 1-16
1-6 Example of 1/0 Request Processing 1-19
2-1 A Printer Write Function 2-2
3-1 Synchronizing 1/0 Request Processing 3-16
3-2 Synchronizing 1/0 Request Completion 3-18
3-3 Processor-Specific Fork Queue Structure 3-22
4-1 Sequence of Driver Execution 4-2
4-2 Detailed Sequence of VMS 1I/O Processing 4-3
4-3 Data Structures for Three Devices on One Controller ___ 4-5

XXiv

8—1
9-1

12-1
12-2
12-3
12-4
12-5
12-6
12-7
12-8
13-1
13-2
13-3

13-4
13-5
13-6

14-1
14-2
14-3
144
14-5
16-1
16-2
171
17-2
17-3
17-4
17-5
17-6
18-1

Contents

I/0 Database for Two Controllers 4-6
Layout of a Function Decision Table 4-9
FDT Routines and I/O Preprocessing 4-11
Creating a Fork Process After an Interrupt 4-15
Reactivation of a Driver Fork Process 4-16
Driver Organization 5-2
$QI0 Scan of a Function Decision Table 7-3
Format of System Buffer for a Buffered-1/O Read

Function 7-7
Inserting a UCB into the Channel Wait Queue _____ 8-3
Flow of Interrupt Servicing 9-2
UNIBUS and Q22 Bus Map Registers 12-6
Mapping a UNIBUS Address to a Physical Address 12-7
Mapping a Q22 Bus Address to a Physical Address 12-8
UNIBUS Data Path Registers 12-9
Direct-Vector Interrupt Dispatching 12-28
Non-Direct-Vector Interrupt Dispatching 12-29
VEC Structures Within a CRB : 12-32
Interrupt Transfer Vector Block {VEC) 12-33
MASSBUS Configuration 13-2
MASSBUS External-Register Longword 13-2
Location of MASSBUS Registers in Physical Address

Space 13-5
I/O Database for MASSBUS Disk Unit 13-7
1/0 Database for MASSBUS Disk and Tape Units ____ 13-7
I/O Data Structures Used in Dispatching a MASSBUS

Device Interrupt 13-8
VAXBI Address Space 14-2
Description of VAXBI I/O Address Space 14-3
Physical Addresses in VAXBI I/O Address Space 14-4
VAXBI Device Vectors 14-10
Backplane Interconnect Interface Chip (BIIC) Registers __ 14-22
Format of the POOLCHECK System Parameter 16-22
Poisoned Pool Packet ' 16-24
UCB Structure for Terminal Class/Port Drivers 17-3
Port Driver Vector Table 17-4
Class Driver Vector Table 17-5
Port Driver Structure 17-7
Class Driver Structure - 17-7
Terminal Class/Port Driver Binding 17-9
Format of a Physical Address 18-4

Contents

A-1 The 1/0 Database A-2
A-2 Configuration Control Block (ACF) A-3
A-3 Adapter Control Block (ADP) A-5
A—-4 Channel Control Block (CCB) A-11
A-5 Per-CPU Database (CPU) A-13
A—6 Channel Request Block (CRB) A-18
A-7 Interrupt Transfer Vector Block (VEC) A-22
A-8 Device Data Block (DDB) A-26
A-9 Driver Dispatch Table (DDT) A-28
A-10 Driver Prologue Table (DPT) A-31
A-11 Interrupt Dispatch Block (IDB) A-34
A-12 I/O Request Packet (IRP) A-37
A-13 1/0 Request Packet Extension (IRPE) A-42
A-14 Object Rights Block (ORB) A-44
A-15 Spin Lock Data Structure (SPL) A-46
A-16 Composition of Extended Unit Control Blocks A-49
A-17 Unit Control Block (UCB) A-50
A-18 UCB Error-Log Extension A-59
A-19 UCB Local Tape Extension A—-60
A-20 UCB Local Disk Extension A-61
A-21 UCB Terminal Extension A-63
G—1 Multiprocessor State Transitions G-21
TABLES

3-1 IPLs Defined by VMS 3-2
3-2 VMS Macros That Change a Processor's IPL 3-9
3-3 Static Spin Locks 3-12
6-1 1/O Function Codes 6-5
7-1 Registers Loaded by the $QlO System Service _____ 71
7-2 FDT Routines Provided by VMS 7-8
12-1 Features of the UNIBUS Adapters/Q22 Bus Interfaces of

VAX Systems 12-2
12-2 VAX System UNIBUS/Q22 Bus Interrupt Dispatching ____ 12-30
131 Major Offsets Defined by SMBADEF 13-4
14-1 Contents of the BIIC Registers 14-23
15-1 Conventional Nexus Assignments 15-5
15-2 SYSGEN Device Table 15-13
161 Boot Flags That Control the Loading of XDELTA ____ 16-2
16-2 Recommended Methods for Bootstrapping with XDELTA . 16-2

xxvi

A-10
A-11
A-12
A-13
A-14
A-15
A-16
A-17
A-18
A-19
A-20
G-1

G-2

G-3

G4

Contents

Requesting an XDELTA Software Interrupt 16-8
XDELTA Command Summary 16-10
Settings of MULTIPROCESSING System Parameter 16-25
Bugchecks Produced by Full-Checking Multiprocessing __ 16-25
Port Driver Routines 17-10
Class Driver Routines 17-17
Symbols Defined by the $10xxxDEF Macros 18-2
UNIBUS and Q22 Bus Adapter Address Space _______ 18-3
Contents of the Configuration Control Block ___ A-4
Contents of Adapter Control Block A—6
Contents of Channel Control Block A-11
Per-CPU Database (CPU) A-14
Contents of Channel Request Block A-19
Interrupt Dispatch Vector Block (VEC) A-23
Contents of Device Data Block A-27
Contents of Driver Dispatch Table A-29
Contents of Driver Prologue Table A-32
Contents of Interrupt Dispatch Block A-35
Contents of an I/O Request Packet A-38
Contents of the I/O Request Packet Extension _____ A-43
Contents of Object Rights Block A—-45
Contents of the Spin Lock Data Structure A-46
UCB Extensions and Sizes Defined in SUCBDEF ____ A-48
Contents of Unit Control Block A-51
UCB Error-Log Extension A-60
UCB Local Tape Extension A-61
UCB Local Disk Extension A—62
UCB Terminal Extension A-64
VMS Synchronization Images G-2
Settings of MULTIPROCESSING System Parameter G-3
Converting IPL Synchronization to Spin Lock

Synchronization G-14
Bugchecks Produced Within Full-Checking ;

Synchronization G-18
Multiprocessor States G-21

XXvii

Preface

The VMS Device Support Manual provides information needed to write a
device driver that runs under VMS Version 5.0 and to load it into the
operating system. DIGITAL makes no guarantee that drivers written for
earlier versions of VMS will execute without modification on this version
of the operating system. Although the intent is to maintain the existing
interface, some unavoidable changes might occur as new features are added.

Intended Audience

This manual is intended for system programmers who are already familiar
with VAX processors and the VMS operating system.

Document Structure

This manual contains the following four parts: Part I describes the
components and environment of a device driver and provides explanations of
VMS concepts critical to an understanding of a device driver’s functions and
role in the operating system. Part I contains the following sections:

* Chapter 1 describes the role of a device driver in the VMS operating
system, introduces the components of a typical driver and the data
structures it uses, and provides an overview of system concepts critical to
driver operation. It concludes with an examination of the I/O subsystems
of the VAX processing systems.

* Chapter 2 provides an example of a device driver—the VMS line printer
driver, and illustrates the functions of the various components of this
driver and describes the driver’s interaction with VMS.

¢ Chapter 3 discusses VMS synchronization mechanisms: interrupt priority
levels; spin locks, fork locks, and device locks; fork processes and fork
queues; and resource-wait queues,

* Chapter 4 provides an overview of I/O processing and discusses the
interaction of device drivers with VMS.

Part II of this document describes how to code each part of a driver, and
includes the following sections:

* Chapter 5 explains some general driver coding rules and conventions, and
includes a template of a device driver.

¢ Chapter 6 describes how to create driver tables, including the driver
prologue table, driver dispatch table, and function decision table (FDT).

¢ Chapter 7 explains how to write FDT routines, use VMS-supplied FDT
routines, and transfer control out of I/O request preprocessing.

® Chapter 8 discusses the components of a driver’s start-I/O routine.

¢ Chapter 9 discusses the functions performed by an interrupt service
routine.

¢ Chapter 10 describes how to perform device-dependent I/O completlon
and write timeout handling routines.

XXix

Preface

* Chapter 11 describes unit and controller initialization routines, cancel-I/O
routines, error logging routines, register dumping routines, and cloned
UCB routines.

Part III contains discussions of bus-specific and processor-specific details
that affect the composition and operation of a device driver. It also contains
chapters that discuss advanced topics relating to the writing of specific types
of drivers.

* Chapter 12 discusses I/O bus features that govern the operation of
direct-memory-access (DMA) transfers and affect the code of DMA device
drivers for UNIBUS and MicroVAX Q22 bus devices.

® Chapter 13 describes strategies for producing a MASSBUS device driver.

® Chapter 14 describes special coding considerations for generic VAXBI
devices.

* Chapter 15 examines the methods by which a device is logically
connected to the processor and by which a driver is loaded into the
operating system.

® Chapter 16 describes the use of XDELTA as a device driver debugging
tool.

* Chapter 17 discusses the components of terminal class and port drivers.

® Chapter 18 describes the connect-to-interrupt driver interface that is
available to real-time users.

Part IV is a reference section, and includes the following appendixes:

* Appendix A contains a set of figures and tables that describe the contents
of each data structure and table in the I/O database.

® Appendix B lists the VMS macros usually invoked by drivers.

® Appendix C describes the context, synchronization, and I/O requirements
of the executive routines used by drivers or called as the result of a driver
macro invocation.

* Appendix D supplies a condensed description of the function and
environment of each driver routine.

* Appendix E includes a sample driver that operates an RL01/RL02-type
disk on the UNIBUS or Q22 bus.

* Appendix F contains a sample driver for two connected DR11 controllers
on the UNIBUS or Q22 bus.

* Appendix G describes the differences between drivers intended for a VMS
uniprocessing environment and those intended for a VMS multiprocessing
environment. It further describes those changes that DIGITAL requires
or recommends in all existing non-DIGITAL-supplied drivers because of
the release of VMS Version 5.0 and also discusses the means by which a
uniprocessing driver can be converted to a multiprocessing driver.

The glossary at the end of this manual defines the vocabulary that pertains to
device drivers and their environment. '

Preface

Associated Documents

Before reading the VMS Device Support Manual volume, you should have an
understanding of the material discussed in the following documents:

.

VAX Hardware Handbook
I/O-related portions of the VMS System Services Reference Manual

The section on VMS naming conventions in the Guide to Creating VMS
Modular Procedures

VMS 1/0 User’s Reference Manual: Part I and VMS 1/0 User’s Reference
Manual: Part I

You may also find useful some of the material in your processor’s hardware
documentation, as well as in the following books:

VMS System Dump Analyzer Utility Manual
Guide to Maintaining a VMS System
VAX/VMS Internals and Data Structures
VMS Delta/XDelta Utility Manual

Conventions

This manual describes code transfer operations in three ways:

1

2
3

The phrase “issues a system service call” implies the use of a CALL
instruction.

The phrase “calls a routine” implies the use of a JSB or BSB instruction.

The phrase “transfers control to” implies the use of a BRB, BRW, or J]MP
instruction.

Typographical conventions used in this book include the following:

Generally, terms that are further explained in the glossary of this manual
first appear in italic print. For example:

Under the VMS operating system, a device driver is a set of routines and
tables that the system uses to process an I/O request for a particular
device type.

Terms that serve as arguments to macros appear in boldface in the text of
the manual. For example:

If an at-sign character (@) precedes the oper argument, then the exp
argument describes the address of the data with which to initialize the
field.

In examples, a symbol with a one- to six-character abbreviation indicates
that you press a key on the terminal. For instance:

driver-base-address,0;X

XXXi

Preface

In examples, the symbol <CTRL/x> indicates that you must press
the key labeled CTRL while you simultaneously press another key. For
instance:

$ CREATE MYDRIVER.OPT
BASE=0

A horizontal ellipsis indicates that additional parameters, values, or
information can be entered. For example:

$LINK /NOTRACE MYDRIVER1[,MYDRIVER2,...]l,-
MYDRIVER.OPT/OPTIONS, -
SYS$SYSTEM: SYS . STB/SELECTIVE_SEARCH

Square brackets indicate that the enclosed item is optional. (Square
brackets are not, however, optional in the syntax of a directory name
in a file specification or in the syntax of a substring specification in an
assignment statement.)

DSBINT [ipl] [.dst]

Command examples show in black letters all output lines or prompting
characters that the system prints or displays. All user-entered commands
are shown in red letters. For example:

>>>DEPOSIT R3 0O
>>>@DMAXDT
SYSBOOT>
SYSBOOT>CONTINUE

A vertical ellipsis means either that not all the data that the system would
display in response to the particular command is shown or that not all
the data a user would enter is shown. For example:

JSB QUCB$L_FPC(R5) ; Restore the driver process.

;Between these instructions, the interrupt service routine
;can make no assumptions about the contents of RO through R4.

POPR #°M<RO,R1,R2,R3,R4,R5> ; Restore interrupt registers.

New and Changed Features

The VMS Device Support Manual reflects various enhancements and changes
to VMS evident in VMS Version 5.0. It also incorporates information useful
in the creation of device drivers for those VAX processors introduced since
VMS Version 4.4, including the VAX 8250, VAX 8300, VAX 8530, VAX 8550,
VAX 8670, VAX 8800, VAX 8830, VAX 8840, the VAX 6200 series, and the
MicroVAX 3600 series.

Among the new features discussed in this manual are the following:

VMS Version 5.0 incorporates support for symmetric multiprocessing
(SMP) in VAX multiprocessing systems, such as the VAX 8300/8350, VAX
8800/8830/8840, and the VAX 6200 series. Drivers designed to run in a
multiprocessing environment must supplement IPL synchronization with
the additional synchronization mechanism of spin locks.

For a full discussion of the impact of VMS Version 5.0 on existing
non-DIGITAL-supplied drivers, refer to Appendix G. Appendix G also
discusses the means by which you can convert a driver designed to
execute in a VMS uniprocessing system so that it also runs in a VMS
multiprocessing system.

Chapter 3 supplies a full discussion of the rules for synchronizing drivers.

Appendix B includes descriptions of the following new synchronization

macros:
DEVICELOCK Achieves synchronized access to a device's database as
appropriate to the processing environment

DEVICEUNLOCK Relinquishes synchronized access to a device's database
as appropriate to the processing environment

FORKLOCK Achieves synchronized access to a driver’'s fork
database as appropriate to the processing environment

FORKUNLOCK Relinquishes synchronized access to a driver’'s fork
database as appropriate to the processing environment

LOCK Achieves synchronized access to a system resource as
appropriate to the processing environment

UNLOCK Relinquishes synchronized access to a system resource
as appropriate to the processing environment

Additionally, Appendix B explains new requirements governing the use of
the following existing macros:

DSBINT Blocks interrupts from occurring on the local processor
at or below a specified IPL

ENBINT Lowers the local processor’s IPL to a specified value
and thus permits interrupts to occur at or beneath the
current IPL

SETIPL Sets the current IPL of the local processor

XXXiii

New and Changed Features

XXXiv

Appendix B also describes the following new macros that synchronize
certain tasks of privileged code in both a multiprocessing and
uniprocessing environment:

FIND_CPU_DATA Obtains the starting virtual address of the current
processor’s per-CPU database structure
READ_SYSTIME Obtains a consistent copy of the system time and

places it into the specified quadword destination

INVALIDATE_TB Flushes a single page-table entry or all page-table
' entries from the system'’s translation buffers

Appendix C includes descriptions of all routines, invoked by the macros
listed above, that obtain and release spin locks, fork locks, and device
locks. It includes the following routines:

SMP$ACQNOIPL Acquires a device lock, assuming that the
local processor is already running at the IPL
appropriate for the acquisition of the lock

SMP$ACQUIRE Acquires a fork lock or a spin lock and enforces
the appropriate IPL synchronization on the local
processor

SMP$ACQUIREL Acquires a device lock and enforces the
appropriate IPL synchronization on the local
processor

SMP$RELEASE Releases any and all acquisitions of a fork lock or
a spin lock by the local processor and makes the
lock available for acquisition by other processors

SMPS$RELEASEL Releases any and all acquisitions of a device
lock by the local processor and makes the lock
available for acquisition by other processors

Section 15.3 discusses the issues involved in loading a multiprocessing
driver into the system, and Section 16.14 describes the VMS
synchronization images and their role in testing a multiprocessing driver.

Finally, Appendix A includes full descriptions of two new structures that
control the disposition of multiprocessing synchronization and record
information regarding the members of the multiprocessing system: the
spin lock data structure (SPL) and the per-CPU database structure (CPU).

The ADPDISP macro, described in Appendix B, provides the ability to
transfer control within a driver, based on a specified adapter characteristic.
Such adapter characteristics include the presence of mapping registers,
bus address size, and the capabilities of the data paths. You should
replace most existing occurrences of the CPUDISP macro with ADPDISP.

This manual now includes a separate part (Part III; Chapters 12 through
18) that discusses hardware-related driver issues and other advanced
topics. This structure allows the manual to more clearly and concisely
explain the general coding concepts and requirements for all VMS drivers
in Parts I and II.

VMS Version 5.0 allows Q22 bus systems to enable multilevel device
interrupt dispatching. Section 12.3.4 describes this new feature as well as
VMS interrupt dispatching in general.

New and Changed Features

VMS Version 5.0 allows Q22 bus device drivers to allocate sets of registers
from the entire set of 8,192 map registers. Appendix C describes the
following routines that are used to allocate, request, load, and release
these alternate map registers. These routines include:

IOCSALOALTMAP, Allocate a set of Q22 bus alternate map registers
IOCSALOALTMAPN,

IOCSALOALTMAPSP

IOCSLOADALTMAP Loads a set of Q22 bus alternate map registers
IOCSRELALTMAP Releases a set of Q22 bus alternate map registers
IOC$REQALTMAP Allocates sufficient Q22 bus alternate map

registers to accommodate a DMA transfer and,
if unavailable, place process in alternate-map-
register wait queue

The executive routines that perform buffer quota checking
(EXE$BUFFRQUOTA and EXE$BUFQUOPRC) have beer replaced in
VMS Version 5.0 by similar routines that check and debit (or credit) a
job’s byte count quota and, optionally, its byte count limit. Versions of
these routines exist that also allocate a requested buffer.

Appendix C includes discussions of the following buffer quota checking
and adjusting routines:

EXESCREDIT_BYTCNT, Return credit to a job’s buffered-1/0O

EXE$SCREDIT_BYTCNT_BYTLM byte count quota and byte count
limit

EXESDEBIT_BYTCNT(_NW), Determine whether a job’s buffered

EXESDEBIT_BYTCNT_BYTLM(_NW) 1/0 byte count quota usage

permits the process to be granted
additional buffered |/O and, if so,
adjust the job’s byte count quota
and byte count limit

EXE$DEBIT_BYTCNT_ALO, Determine whether a job’s buffered

EXE$DEBIT_BYTCNT_BYTLM_ALO 1/O byte count quota usage
permits the process to be granted
additional buffered 1/0 and, if so,
allocate the requested amount of
nonpaged pool and adjust the job’s
byte count quota and byte count
limit

Appendix C includes discussion of the following routines:

ERLSDEVICEATTN Allocates an error message buffer and logs
information relevant to an error that occurs on a
device, independent of the 1/O request currently
being processed

LDR$ALLOC_PT Allocates system page-table entries
LDRSDEALLOC_PT Deallocates system page-table entries

The SYSGEN CONNECT and LOAD commands have been modified
to load a driver image from either SYSSLOADABLE _IMAGES or

SYS$SYSTEM. DIGITAL recommends that all drivers be placed in the
SYS$LOADABLE_IMAGES directory.

XXXV

New and Changed Features

XXXVi

This manual incorporates a description of the VMS terminal driver’s
class/port interface. Chapter 17 details this architecture and each of its
vector entry points; Table A-20 and Figure A-21 illustrate the contents
of the UCB terminal extension; and Appendix B describes the CLASS_
CTRL _INIT, CLASS_UNIT_INIT, $VEC, $VECINI, and $VECEND
macros.

In VMS Version 5.0, the XDELTA entry IPL has become IPL 14 on all
VAX processors. Formerly, it was IPL 5 on VAX uniprocessing systems
and IPL 15 on VAX multiprocessing systems.

The new BREAKPOINTS system parameter, by default, inserts a
breakpoint at the end of system initialization. This is in addition to

the breakpoint at the beginning of system initialization controlled by the
boot flags described in Chapter 16.

Special pool checking code has been added to the VMS memory
allocation and deallocation routines to facilitate detection of pooi
corruption problems. You can enable this code to troubleshoot problems
of this sort by setting the POOLCHECK system parameter, as discussed
in Section 16.13.

The VMS connect-to-interrupt facility, as detailed in Chapter 18, now
supports UNIBUS device operations on the VAX 8200/8250/8300/8350
and VAX 8530/8550,/8700/8800 processors.

Section 11.4 and Appendix D describe the role of a driver’s cloned UCB
routine in I/O processing.

Appendix A includes a description of all fields that have been added,
moved, or modified since VMS Version 4.4.

Other sections of this manual have been reorganized, corrected, and
rewritten as necessary to accurately reflect VMS Version 5.0.

Part | The VMS Device Driver Environment

Introduction to Device Drivers

Under the VMS operating system, a device driver is a set of routines and
tables that the system uses to process an I/0O request for a particular device

type.

The VMS operating system’s approach to I/O is that the system should

- perform as much of the processing of an I/O request as possible and that
drivers should restrict themselves to the device-specific aspects of 1/0
processing. To accomplish this, the VMS operating system provides drivers
with the following services:

* A Queue I/O request ($QIO) system service that preprocesses an I/O
request by performing those functions and checks that are common to all
devices; for example, validating those arguments of the I/O request that
are not device specific

* Many operating system routines that drivers can call to perform 1/0
preprocessing, allocate and deallocate resources, and synchronize driver
execution

* Macros that drivers can invoke to accomplish tasks that would otherwise
require many lines of code

* A VMS I/O postprocessing routine that performs device-independent I/O
postprocessing for all 1/O requests

Thus, drivers can leave the device-independent I/O processing to the
operating system and concentrate on servicing those aspects of an 1/0
operation that vary from device type to device type. In addition, drivers can
call VMS system routines to perform many functions that are common to
several, but not all, devices.

A device driver does not run sequentially from beginning to end. Rather,
the operating system uses driver tables and other information maintained
by itself and the driver to determine which driver routines to activate and
when they should be activated. Because little sequential processing of driver
code occurs, the VMS operating system must assume the responsibility for
synchronizing the execution of the various driver routines, as well as the
execution of all drivers in the system. A major purpose of this book is to
describe the conventions that all VMS drivers must follow to maintain this
synchronization and cooperate with the operating system in 1/O request
processing.

This section first defines the general functions and purposes of a VMS device
driver. It then introduces VMS concepts crucial to an understanding of how
device drivers work within the operating system and integral to the process of
successfully writing one. It concludes with a brief description of the flow of
driver activity in servicing an I/O request, using the VMS line printer driver
as an example.

1.1

1.2

1.2.1

Introduction to Device Drivers
1.1 Driver Functions

Driver Functions

A VMS device driver defines itself to the system procedure that loads the
driver into system virtual address space and creates its associated data
structures. Once loaded, a device driver controls I/O operations on a
peripheral device by performing the following functions:

* Defining the peripheral device for the rest of the operating system

® Preparing a device unit and its controller (or both) for operation at system
start-up and during recovery from a power failure

¢ Performing device-dependent I/O preprocessing

¢ Translating programmed requests for I/O operations into devicé-speciﬁc
commands

* Activating a device unit

* Responding to hardware interrupts generated by a device unit
* Responding to device timeout conditions

* Responding to requests to cancel I/O on a device unit

* Reporting device errors to an error logging program

* Returning status from a device unit to the process that requested the 1/0
operation

Driver Components

Normally, a device driver module can consist of the routines and tables
discussed in this section. With a few exceptions, which are noted throughout
Chapter 6, the order of the various routines and tables within the driver
module is not important.

Driver Tables

The following tables appear in every driver.

The driver prologue table (DPT) defines the identity and size of the driver to
the system routine that loads the driver into virtual memory and creates the
associated data structures. With the information provided in the DPT, the
driver-loading procedure can both load and reload drivers and perform the
I/0 database initialization that is appropriate to either situation.

Section 6.1 describes the procedure for creating a DPT and further discusses
its functions. Figure A-10 illustrates the DPT and Table A-9 describes its
contents.

The driver dispatch table (DDT) lists the addresses of the entry points of
standard routines within the driver, and records the size of the diagnostic
and error message buffers for drivers that perform error logging. You can
find additional information and instructions on how to specify a DDT in
Section 6.2. An illustration of the DDT appears in Figure A-9; Table A-8
describes its contents.

Introduction to Device Drivers
1.2 Driver Components

The function decision table (FDT) lists all valid function codes for the device,

and associates valid codes with the addresses of I/O preprocessing routines,

called FDT routines. The driver contains device-dependent FDT routines, and
the VMS operating system itself provides routines (described in Section 7.5)

that perform request preprocessing common to many I/O functions.

When a user process calls the $QIO system service, the system service uses
the I/O function code specified in the request to traverse the FDT and select
one or more of these preprocessing routines for execution, as appropriate to
the function. To prepare for the actual I/O operation, FDT routines perform
such tasks as allocating buffers in system space, locking pages in memory,
and validating the device-dependent arguments (p1 through p6) of the $QIO
request. Section 6.3 provides further discussion of the FDT, and Chapter 7
details strategies and rules for writing, specifying, and exiting from an FDT
routine.

1.2.2 Driver Routines

In addition to any FDT routines it may contain, a device driver generally
contains both a start-I/O routine and an interrupt service routine.

The start-1/0 routine performs such additional device-dependent tasks as
translating the I/O function code into a device-specific command, storing
the details of the user request in the device’s unit control block in the
I/0O database and, if necessary, obtaining access to controller and adapter
resources. Whenever the start-1/O routine must wait for these resources
to become available, the VMS operating system suspends the routine,
reactivating it when the resources become free.

The start-1/O routine ultimately activates the device by suitably loading the
device’s registers. At this stage, the start-I/O routine invokes a VMS macro
that causes its execution to be suspended until the device completes the I/O
operation and posts an interrupt to the processor. The start-I/O routine
remains suspended until the driver’s interrupt service routine handles the
interrupt.

When a device posts an interrupt, its driver’s interrupt service routine
determines whether the interrupt is expected or unexpected, and takes
appropriate action. If the interrupt is expected, the interrupt service routine
reactivates the driver’s start-I/O routine at the point of suspension. The
general course of action of driver mainline code at this time is to perform
device-dependent 1/O postprocessing and to transfer control to the VMS
operating system for device-independent 1/O postprocessing.

Details on writing a start-I/O routine appear in Chapter 8. A description of a
driver interrupt service routine appears in Chapter 9.

You can also include any of the following routines in a device driver.

The unit initialization routine and controller initialization routine prepare a
device or controller for operation when the VMS driver-loading procedure
loads the driver into memory and when the VMS system recovers from a
power failure. The amount and type of initialization needed by devices and
controllers varies according to the device type and the I/O bus to which the
device or controller is attached. Section 11.1 provides additional information
about device driver initialization routines.

1.3

1.3.1

Introduction to Device Drivers
1.2 Driver Components

A timeout handling routine retries I/O operations and performs other error
handling when a device fails to complete a request in a reasonable period
of time. Once every second, the VMS system timer checks all devices in
the system for device timeout. When it locates a device that has timed out,
because it is offline or some error has occurred, the system timer calls the
driver’s timeout handling routine.

Depending upon the reason for the timeout, the timeout handling routine
may call a VMS error logging routine to allocate and fill an error message
buffer with information about the error. In turn, the error logging routine can
call a register dumping routine in the driver that also loads into the buffer the
contents of device registers at the time of the error.

Timeout handling routines are discussed in Section 10.2. Register dumping
routines and driver error handling are discussed in Section 11.3.

The VMS operating system calls a driver’s cancel-1/0 routine when a user
process issues a Cancel I/O on Channel ($CANCEL) system service for the
device. It may also call the routine when the device’s reference count goes
to zero, which occurs when all users with assigned channels to the device
have deassigned them. The discussion of the cancel-I/O routine appears in
Section 11.2.

The 1/0 Database

Because a driver and the operating system cooperate to process an I/O
request, they must have a common and current source of information about
the request. This is the function of the I/O database. Under the VMS
operating system, the I/O database consists of these three parts:

® Driver tables that allow the system to load drivers, validate device
functions, and call driver routines at their entry points

* Data structures that describe I/O bus adapters, device types, device units,
device controllers, and logical paths from processes to a devices

. vI/ O request packets that define individual requests for I/O activity
Ilustrations of I/O database structures and detailed descriptions of their fields

appear in Appendix A. Figure 1-1 illustrates some of the relationships among
VMS 1/0 routines, the I/O database, and a device driver.

Driver Tables

The three driver tables—driver prologue table, driver dispatch table, and
function decision table—are defined in every driver. Section 1.2 lists these
tables among the other components of a device driver, and Chapter 6
discusses their contents.

Introduction to Device Drivers
1.3 The 1/O Database

Figure 1-1 The 1/O Database

1 1
PROCESS X |
CONTROL
BLOCK
DESCRIBES
REQUESTING LOCATES DRIVER
PROCESS
DDB FOR
DEVICE DRIVER
TYPE FDT ROUTINE
1/0
REQUEST —
PACKET ucB . DRIVER
DESCRIBES |— DESCRIBES START 1/0 ROUTINE
DEVICE
1/0
M
REQUEST e
CRB INTERRUPT SERVICE
, SYNCHRONIZES ROUTINE
CONTROLLER]
DRIVER
ccs CONTROLLER INITIALIZATION
.| DESCRiBES ROUTINE
LOGICAL PATH
TO DEVICE ! ’
ADP ! [
DB DESCRIBES
DESCRIBES ADAPTER
CONTROLLER

DEVICE
REGISTERS

ZK-1766-84

1.3.2 Data Structures

I/0 database data structures describe peripheral hardware and are used by
the operating system to synchronize access to devices. VMS creates these
data structures either at system startup or when a driver is loaded into the
system.

The system defines a unit control block (UCB) for each device unit attached
to the system. A UCB defines the characteristics and current state of an
individual device unit.

UCBs are the focal point of the I/O database. When a driver is suspended
or interrupted, the UCB keeps the context of the driver in a set of fields
collectively known as a fork block.! In addition, the UCB contains the listhead
for the queue of pending I/0O request packets for the unit.

A device data block (DDB) contains information common to all devices of the
same type that are connected to a particular controller. It records the generic
device name concatenated with the controller designator (for example, LPA,
DBB), and the name and location of the associated device driver. In addition,
the DDB contains a pointer to the first UCB for the device units attached to
the controller.

' Other structures, such as the CRB, also include a fork block. The discussion of fork blocks and fork processes
in Section 1.5 explains the role of fork blocks in driver processing.

1-5

Introduction to Device Drivers
1.3 The 1/O Database

The operating system creates a channel request block (CRB) for each controller.
A CRB defines the current state of the controller and lists the devices waiting
for the controller’s data channel. It also contains the code that dispatches a
device interrupt to the interrupt service routine for that unit’s driver.

The system also creates for each controller an interrupt dispatch block (IDB).
An IDB lists the device units associated with a controller and points to the
UCB of the device unit that the controller is currently servicing. In addition,
an IDB points to device registers and the controller’s 1/0 adapter.

An adapter control block (ADP) defines the characteristics and current state
of an I/O adapter, such as the VAX UNIBUS and MASSBUS adapters, the
Q22 bus interface of the MicroVAX 3600-series and MicroVAX II systems,
or a device attached to the VAXBI bus. An ADP contains the queues and
allocation bit maps necessary to allocate the adapter’s resources. VMS
provides routines that drivers can call to interface with the appropriate
adapter.

The channel control block (CCB) describes the logical path between a process

and the UCB of a specific device unit.2 Each process owns a number of CCBs.
When a process issues the Assign I/O Channel ($ASSIGN) system service,
the system writes a description of the assigned device to the CCB.

Unlike the data structures mentioned earlier, a CCB is not located in
nonpaged system space, but in the process’s control region (P1 space).

1.3.3 1/0 Request Packets

The third part of the I/O database is a set of I/O request packets. When a
process requests I/O activity, the operating system constructs an I/0 request
packet (IRP), that describes the I/O request in a standard form.

The IRP contains fields into which the system and driver I/O preprocessing
routines can write information: for instance, the device-dependent arguments
specified in the call to the $QIO system service. The packet also includes
buffer addresses, a pointer to the target device, an I/O function code, and
pointers to the I/O database. After preprocessing, the IRP can be queued to a
list originating in the device’s UCB to await processing by the driver.

When the device unit is free and the IRP is next in line to be processed on
the unit, the system sends it to the device driver’s start-I/O routine. The
start-I/O routine uses the IRP as its source of detailed instructions about the
operation to be performed.

? Channel request blocks and channel control blocks are two separate data structures. To help distinguish
the two, it may be helpful to think of the channel request block as the “controller request” block because it
describes the hardware controller. In contrast, the channel control block helps manage the logical channel (the
channel argument to the $ASSIGN and $QIO system services) by means of which a process and a device unit
accomplish I/O operations.

1-6

1.4

1.5

Introduction to Device Drivers
1.4 Synchronization of Driver Activity

Synchronization of Driver Activity

Device drivers and other kernel-mode code must maintain synchronization
with other priority operating system activities. The term synchronization
refers to the means by which such code accesses shared data in a consistent,
orderly, and predictable fashion. Because there may be more than one
processor active in a VMS system, system-level code must synchronize its
actions with other code threads it may have preempted on the same (or local)
processor, as well as with those that are active (or to be activated) on other
processors in the system. The VMS operating system uses hardware and
software interrupt priority levels (IPLs) to order system events on each local
processor in a VAX system. The VAX hardware defines 32 interrupt priority
levels (IPLs). The higher numbered IPLs (16 through 31) are reserved for
hardware interrupts, such as those posted by devices. The VMS operating
system uses the lower numbered IPLs (0 through 15). Code that executes at a
higher IPL takes precedence over code that executes at a lower IPL.

A driver, in concert with the operating system, ensures that it maintains
system synchronization by performing certain activities and accessing certain
data only at the appropriate IPL. In a VMS multiprocessing system, the driver
extends the synchronization it achieves by executing locally at a given IPL
by acquiring ownership of the spin lock associated with the operation it is
performing. (IPL, spin locks, and other forms of synchronization in a VMS
system are discussed fully in Chapter 3.)

Driver Context

As indicated in Section 1.2.2, a driver may have several routines to which the
VMS operating system may pass control in certain situations. The context in
which any one routine receives control from VMS may differ substantially
from that in which another receives control. It is essential that a driver
routine not attempt to exceed the limitations of the context in which it
executes.

In general, context is characterized by the following factors:
¢ The current IPL of the executing processor

e The IPL at which the thread of execution that resulted in the call to the
driver began

* The currently owned spin locks of the executing processor
® The data structures available to the routine

* Data available to the routine in registers, in data structure fields, and on
the stack

* The condition of the registers, data structure fields, and stack when the
routine exits

* The ability or inability to access process space

A complete description of the context of each driver routine appears in
Appendix D. The following are some general observations:

e All device driver routines execute in kernel mode at an elevated IPL.

* Only driver FDT routines execute within process context and can access
process space (PO and P1).

1-7

Introduction to Device Drivers
1.5 Driver Context

* The majority of driver routines execute in interrupt (or system context):
that is, in the sequence of execution that follows a processor’s grant of
an interrupt request at a given IPL. Such code can refer only to system
(S0) space. Moreover, it cannot incur exceptions, including page faults,
without causing a fatal bugcheck. Code executing in interrupt context is
serviced on the interrupt stack, and must synchronize its execution with
other priority code threads by using IPLs, spin locks, and resource wait
queues, all of which are described in Chapter 3.

Most driver processing of an I/O request (before and after the device
acknowledges the servicing of the request by requesting an interrupt from
the processor) occurs at a fork IPL. This portion of driver code, which includes
most of the start-I/O routine, is commonly known as the driver’s fork process.

There are several instances in the processing of an I/0O request when a
driver fork process must suspend execution to wait for a resource or a device
interrupt. To make the matter of saving and restoring fork process context
as efficient as possible, the VMS operating system places a restriction on the
context of a driver fork process, in addition to those that apply to any process
in interrupt context. Fork context consists of the following:

* Two general purpose registers (R3 and R4)
¢ The program counter (PC)

* A fork block (usually the unit control block, the address of which is
presumed to be in R5 at the time of the suspension) that can contain
additional fork process context

VMS places the fork block of a suspended fork process in either a processor-
specific fork queue or a resource wait queue where it waits to be resumed.
When it resumes the fork process, VMS ensures that the fork context is
restored. Fork blocks, fork processes, and fork queues are discussed fully in
Section 3.3.3.

1.56.1 Example of Driver Context-Switching

Because a device driver consists of a number of routines that are activated by
VMS, the operating system for the most part determines the context in which
the routines execute. :

As an example, consider the following write request that occurs without error:

1 A user process executing in user mode calls the $QIO system service to
write data to a device.

2 The $QIO system service gains control in process context but in kernel
mode. It performs device-independent preprocessing of the I/O request.

3 The system service uses the driver’s function decision table to call the
appropriate FDT routines to perform device-dependent preprocessing.
These FDT routines execute in full process context in kernel mode.

4 When preprocessing is complete, a VMS routine creates a fork process to
execute the driver’s start-I/O routine in kernel mode.

5 The start-I/O routine activates the device unit and suspends itself. At this
point, VMS suspends the fork process executing the start-I/O routine and
saves sufficient context to reactivate the start-I/O routine at the point of
suspension.

Introduction to Device Drivers
1.5 Driver Context

6 When the device completes the data transfer, it requests an interrupt.
The interrupt causes the system to activate the driver’s interrupt service
routine.

7 The interrupt service routine executes to handle the device interrupt. It
then causes the start-1/O routine to resume in interrupt context.

8 The start-I/O routine regains control in interrupt context but almost
immediately issues a request to the operating system to transform its
context to that of a fork process. This action dismisses the interrupt.

9 When reactivated in fork process context, the start-I/O routine performs
device-specific I/O completion and passes control to the system for
additional I/O postprocessing.

10 VMS 1/0 postprocessing runs in interrupt context at a lower IPL and
issues a special kernel-mode asynchronous system trap (AST) for the user
process requesting /0.

11 When the special kernel-mode AST is delivered, the AST routine executes
in full process context in kernel mode to deliver data and status to the
process. If the original request specified a user-mode AST, the special
kernel-mode AST queues it.

12 When the user process gains control, the user’s AST routine executes in
full process context in user mode.

1.6 Hardware Considerations
The VMS operating system runs on any of the following VAX systems:
* VAX 6200 series
e VAX 8530/8550/8700/8800/8830/8840
e VAX 8600/8650/8670
e VAX 8200/8250/8300/8350
e VAX-11/785 and VAX-11/780
e VAX-11/750
* VAX-11/730 and VAX-11/725
¢ MicroVAX 3600 series
* VAXstation 2000/MicroVAX 2000
¢ MicroVAX II
¢ MicroVAX I

Although these system configurations employ the same operating system
and conform to the VAX architecture, there are some differences in design
among the machines that merit consideration in device driver coding,
installation, and debugging. For instance, VAX systems differ in the amount
of available physical address space and in the location of device registers.
Some VAX systems are available in multiprocessor configurations. Also, VAX
systems support different and various combinations of I/O buses to which a
nonstandard device can be connected.

1-9

Introduction to Device Drivers
1.6 Hardware Considerations

If you follow the conventions described in this manual when writing your
driver, your driver should, with little modification, drive the same device
attached to a corresponding 1/0 bus of another VAX system. For specific
system design and device configuration information, refer to your system’s
technical reference or hardware manual or the VAX Hardware Handbook.

1.6.1 Driver Dependency on VAX Processing Systems

1-10

This section outlines some of the general differences among the VAX
processing systems that have a bearing upon the development of driver
code. The main thrust of the discussion is to provide a brief summary of
the layout of the I/O subsystems of the VAX processing systems, define a
general terminology, and, when necessary, direct device driver writers to
documentation particular to the I/O configuration of their device.

1.6.1.1

VAX-11/780, VAX-11/785, and VAX 8600/8650/8670

The VAX-11/780, VAX-11/785, VAX 8600, VAX 8650, and VAX 8670
systems, from the viewpoint of I/O architecture, are SBI-based systems.
That is, the synchronous backplane interconnect (SBI) is the bus by which
I/0O adapters communicate with main memory and the central processor
(see Figure 1-2). 1/0 adapters supported by the SBI include the UNIBUS
adapter (UBA), MASSBUS adapter (MBA), and the DR780 interface adapter.
Correspondingly, peripheral devices attach to either the UNIBUS, MASSBUS
or DR32 device interconnect (DDI) of the DR780 adapter. Main memory
shares the SBI with the I/O adapters on the VAX-11/780 and VAX-11/785.
The VAX 8600, VAX 8650, and VAX 8670 employ a separate bus to which
main memory is attached and can each be configured with up to two SBIs for
I/O adapters.

For these systems, nonstandard devices are commonly attached to the
UNIBUS, although some nonstandard devices connect to the MASSBUS and
DDI. The components of UNIBUS and MASSBUS drivers are nearly identical
and the strategies for producing driver code are similar; writers of either type
of driver will profit from reading the bulk of this manual. Writers of UNIBUS
drivers can find specific information about the UNIBUS adapter and VMS
support for UNIBUS drivers in Chapter 12. MASSBUS driver writers should
refer to Chapter 13 for similar information about the MASSBUS. DIGITAL
supplies a device driver and an application library for DDI devices; the VMS
1/0 User’s Reference Manual: Part II discusses the DR32 interface driver in
detail.

A final note on terminology regarding these systems is pertinent. For the
purposes of the discussion in this book, the term VAX-11/780 refers to the
family of VAX systems that includes the VAX-11/780 and VAX-11/785; the
term VAX 8600 refers to the VAX 8600, VAX 8650, and VAX 8670.

Introduction to Device Drivers
1.6 Hardware Considerations

Figure 1-2 SBIl-Based System Configurations

VAX-11/780
VAX-11/785 CPU MEMORY

MBA UBA

DEVICE DEVICE

DEVICE DEVICE

VAX 8600
VAX 8650
VAX 8670

sBl
ADAPTER

cPy

” ﬁ MBA UBA
MEMORY A-BUS MASSBUS
CONTROLLER

DEVICE DEVICE

DEVICE DEVICE

ARRAY BUS

SBI
ADAPTER

2K.4838:85

1.6.1.2

VAX-11/750

The VAX-11/750 system resembles the VAX-11/780-type systems in that it
supports UNIBUS, MASSBUS, and DDI peripheral devices (see Figure 1-2).
The backplane, or CPU-to-memory interconnect (CMI), by which I/O
adapters communicate with the central processor and main memory, is
integral to the processor, as are the UNIBUS interface (UBI) and MASSBUS
adapter (MBA). The DR750 interface adapter connects the CMI to the DDI
subsystem. Peripheral devices connect to the UNIBUS, MASSBUS, and DDI.
A separate memory interconnect provides an interface between main memory
and the rest of the system.

For the VAX-11/750, nonstandard devices are commonly connected to the
UNIBUS, although some nonstandard devices attach to the MASSBUS.

The components of UNIBUS and MASSBUS drivers are identical, and the
strategies for developing driver code are similar. Writers of either type of
driver will profit from reading this manual. Writers of UNIBUS drivers can
find specific information about the UNIBUS adapter and VMS support for
UNIBUS drivers in Chapter 12. MASSBUS driver writers should refer to
Chapter 13 for similar information about the MASSBUS. DIGITAL supplies a
device driver and an application library for DDI devices device; the VMS I/0
User’s Reference Manual: Part II discusses the DR32 interface driver in detail.

1-11

Introduction to Device Drivers
1.6 Hardware Considerations

1-12

1.6.1.3

VAX-11/730 and VAX-11/725

The VAX-11/730 and VAX-11/725 systems, like the VAX-11/750,
incorporate an integral UNIBUS adapter to control transactions between
UNIBUS peripheral devices, the processor, and the main memory interface.
The VAX-11/730 and VAX-11/725, however, do not support MASSBUS
devices. Writers of UNIBUS drivers can find specific information about the
UNIBUS adapter and VMS support for UNIBUS drivers in Chapter 12. For
the purposes of the discussion in this book, the term VAX-11/730 refers to
both the VAX-11/730 and the VAX-11/725.

1.6.1.4

VAX 8200/8250/8300/8350,

VAX 8530/8550/8700/8800/8830/8840, and VAX 6200 Series
The VAX 8200/8250/8300/8350, VAX 8530,/8550/8700/8800/8830/8840
and VAX 6200 series are VAXBI-based systems; that is, the VAXBI is the bus
by which I/O adapters communicate with main memory and the central
processor (see Figure 1-3).

In a VAX 8200/8250/8300/8350 configuration, main memory, the DWBUA,
and other devices are all connected directly to the VAXBI bus. By contrast, the
VAX 8530/8550/8700/8800/8830/8840 and VAX 6200-series configurations
employ separate memory interconnects (known as the NMI, PBI, or XMI, as
illustrated in Figure 1-3, to service main memory. The VAX 8530/8550/ :
8700/8800 provides multiple VAXBI buses to which I/0 adapters and devices
can be attached. The VAX 8300, VAX 8350, VAX 8800/8830/8840, and VAX
6200 series are multiprocessor systems.

The VAXBI bus supports UNIBUS peripherals by means of the Bl-to-
UNIBUS adapter (DWBUA). Writers of UNIBUS drivers can find specific
information about the UNIBUS adapter and VMS support for UNIBUS drivers
in Chapter 12.

The VAXBI also supports non-DIGITAL-supplied devices designed according
to specifications established by DIGITAL and a license granted by DIGITAL.
Writers of drivers for such devices, referred to as generic VAXBI devices in this
manual, can find specific discussion in Chapter 14.

A final note on terminology regarding these systems is pertinent. For the
purposes of the discussion in this book, the term UNIBUS adapter includes the
DWBUA, and the term backplane interconnect represents the VAXBI bus.

Introduction to Device Drivers
1.6 Hardware Considerations

Figure 1-3 VAXBI-Based System Configurations

VAX 8200
CpPU MEMORY

DEVICE

DEVICE DEVICE

VAX 6220

CPU

DEVICE

DEVICE

CPU

MEMORY

ARRAY BUS CONTROLLER

MEMORY

2ZK-4839/1-85

Figure 1-3 Cont’d. on next page

1-13

Introduction to Device Drivers
1.6 Hardware Considerations

Figure 1-3 (Cont.) VAXBI-Based System Configurations

VAX 8800
NBIA
DEVICE
CPU
s
z
DEVICE DEVICE
MEMORY
CONTROLLER
NBIA
w
2
@
>
<
o
o«
<
VAX 8830
>
D
0
>
<
o
c
w
MEMORY
CONTROLLER
PBIA
DEVICE DEVICE
cru K s
z
2
cru K
N NBwW naw K
cPU <) PBIA
N PBIA

ZK-4839/2-85

Introduction to Device Drivers
1.6 Hardware Considerations

1.6.1.5 MicroVAX 3600 Series and MicroVAX II
The MicroVAX 3600 series and MicroVAX II are Q22 bus-based systems.
On these systems, the Q22 bus is the bus by which peripheral devices
communicate with main memory and the processor.> Q22 bus device drivers
are sufficiently similar to those that drive UNIBUS devices that most of the
discussion of UNIBUS drivers in this book can equally pertain to the writing
of Q22 bus device drivers (see Chapter 12 for a discussion of the similarities
and differences).

As you can see in Figure 1-4, in these systems main memory and I/O devices
reside on separate interconnects. The MicroVAX 3600-series and MicroVAX
I systems implement a scatter-gather map containing 8,192 map registers
that allows devices to perform multiple-block direct-memory-access (DMA)

transfers.*

For the purposes of discussion in this manual, the term backplane interconnect
represents the Q22 bus in the MicroVAX 3600-series and MicroVAX 1II
systems. The term Q22 bus interface represents those functions performed

by these processors that resemble those performed by the UNIBUS adapter of
other VAX systems. In most instances, you can assume that discussions of the
UNIBUS adapter apply as well to the Q22 bus.

Figure 1-4 MicroVAX 3600-Series and MicroVAX Il System
Configuration

CPU MEMORY MEMORY

Tt

|
l |
| MEMORY
asl CONTROLLER ARRAY BUS
|
|

DEVICE

DEVICE

ZK-4840-85

> DMA controllers attached to the Q22 bus must be capable of 22-bit addressing.

* In these systems, the 4MB of Q22 bus memory is located from physical address 30000000;¢ to 303F000046. If
you must install controllers that contain local memory on the Q22 bus, it is best to install them in the upper
3 3/4 MB of Q22 bus memory (after physical address 30040000;¢). The first 1/4 MB of Q22 bus memory
contains 496 map registers, 127 of which must be free for use by VMS in booting. If you must place a
controller containing memory in this address region, it cannot occupy more than 369 pages. If the controller
exceeds this space, VMS will probably boot but will not be able to take crash dumps.

1-156

Introduction to Device Drivers
1.6 Hardware Considerations

1.6.1.6 MicroVAX |
The MicroVAX I is a Q22 bus-based system; that is, the Q22 bus is the bus by
which peripheral devices communicate with main memory and the processor.
Q22 bus device drivers are sufficiently similar to those that drive UNIBUS
devices that most of the discussion of UNIBUS drivers in this book can
equally pertain to the writing of Q22 bus device drivers (see Chapter 12 for a
discussion of the similarities and differences).

MicroVAX I main memory and I/O devices exist together on the same bus
(see Figure 1-5). The effects of the absence of a scatter-gather map on DMA

device drivers are discussed in Section 12.2.8.5

Figure 1-5 MicroVAX | System Configuration

CPU MEMORY

DEVICE DEVICE
ZK-4853-85
1.7 Programmed-1/0 and Direct-Memory-Access Transfers

Devices are equipped with various registers that initiate, control, and monitor
the progress of data transfer, seek operation, or other requests for device
activity. When it completes a request, the device posts an interrupt to the
processor. The size of the transfer concluded by a device interrupt depends
upon the capabilities of the device.

> The MicroVAX I uses the 22-bit Q22 bus to address both main memory and Q22 bus memory. Because
MicroVAX I main memory shares the Q22 bus with I/O devices, the maximum amount of address space
available for main memory (4MB at most) is correspondingly decreased whenever controllers containing
memory are attached to the Q22 bus. For instance, if a controller containing a 256K bit map is installed on
the Q22 bus, 3 3/4 MB would remain for main memory. VMS is effectively prevented from using as main
memory those locations addressable as controller memory by the appropriate setting of the PHYSICALPAGES
system parameter. In the preceding example, PHYSICALPAGES would be set to 7680 to prevent the double
mapping of the 256K bit map as both main memory and controller memory.

1-16

1.7.1

Introduction to Device Drivers

1.7 Programmed-1/O and Direct-Memory-Access Transfers

Programmed 1/0

Drivers for relatively slow devices, such as printers, card readers, terminals,
and some disk and tape drives, must transfer data to a device register a
byte or a word at a time. These drivers must themselves keep a record of
the location of the data buffer in memory, as well as a running count of
the amount of data that has been transferred to or from the device. Thus,
these devices perform programmed I1/0 (PIO) in that the transfer is largely
conducted by the driver program.

Examples of UNIBUS devices that do PIO transfers are the LP11 and the
DZ11. Corresponding Q22 bus devices that perform PIO transfers are the
LPV11 and the DZV11.

Chapter 2 outlines the action of the LP11 driver. The LP11 driver transfers
data from a system buffer to the line printer data buffer register a byte at

a time, while maintaining a count of the number of bytes left to transfer.
When the line printer data buffer is full, the line printer sets a “not ready”
bit in its status register. If the driver, while examining this register, sees this
bit set, it enables interrupts from the printer, and then suspends itself in the
expectation that the printer will post an interrupt to the processor. While
the driver remains suspended, the printer prints the data from its buffer and
interrupts the processor when it is done. With the interrupt handled by the
system interrupt dispatcher and the driver interrupt service routine, driver
execution resumes. The driver repeats both its byte-by-byte transfer to the
printer data buffer, as well as the entire routine described previously, until it
determines that all the data has been transferred as requested.

Drivers performing PIO transfers are generally not concerned with the
operation of I/O adapters. However, drivers that perform direct-memory-
access (DMA) transfers must take into account I/O adapter functions, as
discussed in Section 1.7.2.

1.7.2 Direct-Memory-Access 1/0

Devices that perform direct-memory-access (DMA) transfers do not require
the central processor so frequently. - Once the driver activates the device, the
device can transfer a large amount of data without requesting an interrupt
after each of the smaller amounts. The responsibilities of a driver for a DMA
device involve supplying a device register with the starting address of the
buffer containing the data to be transferred, a byte offset into the buffer, and
the size of the transfer. By setting the appropriate bit or bits in the device
control and status register (CSR), the driver activates the device. The device
then automatically transfers the specified amount of data to or from the
specified address. The VMS drivers DLDRIVER and XADRIVER are examples
of DMA drivers, and appear in full in Appendixes E and F, respectively.

For DMA transfers, UNIBUS drivers and MicroVAX 3600-series/MicroVAX 1I
drivers must first map the transfer from main memory to I/O bus memory
space. The result of this mapping is a set of contiguous addresses in UNIBUS
or Q22 bus space that the DMA device can access to successfully perform a
DMA transfer. To accomplish this, a driver must first obtain map registers,
and, optionally for UNIBUS drivers, a buffered data path. The driver calls
VMS routines that interface with the I/O adapter to allocate these resources
on behalf of the driver. Chapter 12 discusses the operation of the UNIBUS
adapter and the Q22 bus. Section 12.2 provides instructions on how to write
a DMA driver for UNIBUS and Q22 bus devices.

1-17

Introduction to Device Drivers
1.7 Programmed-I/O and Direct-Memory-Access Transfers

The MicroVAX I Q22 bus has no map registers, so no mapping of physical
bus addresses to virtual memory addresses is possible. As a result, a driver
for a device attached to the MicroVAX I Q22 bus that performs DMA transfers
must include special logic that either allocates a physically contiguous buffer
from nonpaged pool for use in the transfer or segments the transfer at page
boundaries. Section 12.2.8 discusses the strategies for producing MicroVAX I
DMA drivers. :

Some controllers that can do DMA transfers on the Q22 bus have microcode
that allows the controller itself to do physical-to-virtual address mapping.
This allows such controllers to do scatter-gather mapping, eliminating the
need for transfers to be made to or from physically contiguous main memory.
The RD/RX controller, which MicroVAX I uses for its system disk, is such a
controller.

The method by which a generic VAXBI device capable of DMA transfers
accomplishes such a transfer depends upon the characteristics of the device.
Several methods are discussed in Section 14.5.

1.8 Buffered and Direct 1/0

1-18

A separate issue, but one related to the data transfer capabilities of a device,
results from the fact that the original buffer, as specified in the user $QIO
request, is in process space and is mapped by process page-table entries.
Because the driver cannot rely on process context existing at the time the
device is ready to service the I/O request, it must have some means of
guaranteeing that it can access both the data involved in the transfer and the
page-table entries that map the buffer.

The VMS operating system provides the following two techniques that are
employed by device drivers:

* Direct 1/0, the technique used most commonly by drivers of DMA
devices, locks the user buffer in memory as well as the page-table entries
that map it. The function decision table (FDT) of such a driver calls a
VMS-supplied FDT routine that prepares the user buffer for direct I/0O.

* Buffered I/0 is the strategy whereby the driver FDT dispatches to an FDT
routine in the driver that allocates a buffer from nonpaged pool. It is
this intermediate buffer that is involved in the transfer. The driver later
refers to the buffer using addresses in system space. Driver preprocessing
routines copy the data from the user buffer to the system buffer for a
write request; VMS I/O postprocessing (by means of a special kernel-
mode AST) delivers data from the system buffer to the user buffer for a
read request. Drivers most often use buffered I/O for PIO devices such
as line printers and card readers.

The trade-off between buffered I/O and direct I/O is the time required to
move the data into the user’s buffer as against the time required to lock
the buffer pages in memory. Sections 6.3.1 and 7.4 provide additional
information.

Introduction to Device Drivers
1.9 Example of an 1/0 Request

1.9 Example of an 1/0 Request

Figure 1-6 illustrates how the VMS operating system and the device driver
process a user request for a read I/O operation for a DMA device attached to
a UNIBUS or Q22 bus.

Figure 1-6 Example of I/O Request Processing
Qlo DRIVER DRIVER OPERATING
PF:JS(E?SS SERVICE READ OPSEY'*S’?B;‘G STARTS SYSTEM
REQUESTS ROUTINE FUNCTION > CALLS DEVICE SAVES
/o VALIDATES VALIDATES ORIVER & WAITS FOR DRIVER
REQUEST REQUEST INTERRUPT STATE
DRIVER OPERATING USER
DEVICE INTERRUPT DRIVER SYSTEM PROCESS
GENERATES HANDLER COLLECTS COPIES READS DATA
INTERRUPT RESTORES STATUS DATA AND & STATUS
DRIVER STATE STATUS

ZK-909-82

The processing of the sample I/O request illustrated in Figure 1-6 occurs in
the following steps:

1 A process requests an I/O operation.

A user process initiates an 1/O request by issuing either a $QIO system
service call or an RMS call resulting in a call to the $QIO system service.

The user process specifies the target device, a read function code, and the
address of a buffer into which the data is to be read.

2 The operating system performs I/O preprocessing.

The $QIO system service validates the request and locates data structures
in the I/O database that describe the device and its driver. The system
service also allocates and initializes an 1/O request packet to contain a
description of the I/O request. The system service then calls a reading
routine in the driver.

3 The driver performs I/O preprocessing.

The driver FDT routine verifies that the user buffer resides in virtual
memory pages that can be modified by the requesting process, locks the
buffer pages in memory, and adds details of the I/O operation to the I/O
request packet. The read FDT routine then calls the operating system to
send the I/O request packet to the driver.

4 VMS creates a driver’s fork process.

A VMS routine creates a fork process in which the device driver can
execute. The routine activates the driver’s fork process by transferring
control to the driver’s start-I/O routine.

1-19

Introduction to Device Drivers
1.9 Example of an I/O Request

1-20

5 The driver readies the I/O adapter.

For DMA transfers, the driver’s fork process calls VMS routines that
enable the I/O adapter hardware to map I1/O bus addresses into physical
addresses for the transfer. (Note that the MicroVAX I system does not
have this capability, as discussed in Section 12.2.8.)

6 The driver activates the device.
The fork process activates the device by setting bits in device registers.
7 The driver waits for an interrupt.

A VMS routine saves the context of the driver’s fork process and
relinquishes the processor until an interrupt occurs.

8 The device requests an interrupt.

When the data transfer is complete, the device requests a hardware
interrupt that causes the system to dispatch to the driver’s interrupt
service routine.

9 The driver services the interrupt.

The driver’s interrupt service routine handles the interrupt and reactivates
the driver, which reads device registers to obtain status information about
the transfer.

10 The operating system inserts the driver in a fork queue.

The driver requests that it again be suspended, to be reactivated later at a
lower software IPL.

11 The fork dispatcher reactivates the driver’s fork process.

When processor priority permits, the VMS fork dispatcher reactivates the
driver as a fork process.

12 The driver completes the I/O operation.

The driver’s fork process completes device-dependent processing of the
I/0 request and returns the I/O status to VMS.

13 VMS completes the 1/O operation.

The VMS 1/0 postprocessing routines copy the I/O status into process
address space, general registers, or both, and return control to the user
process.

Only four of these 13 steps describe the driver’s I/O preprocessing and fork
processing. The VMS I/O-support routines perform I/O processing common
to many I/O requests. Driver writing is further simplified by the use of VMS
routines that handle device-independent functions.

Introduction to Device Drivers
1.9 Example of an 1I/O Request

The preceding example simplifies the processing of an I/O operation by
ignoring such issues as

* The association of a device with a process, which is to say device
assignment

¢ Simultaneous 1/O requests for one device

* System synchronization issues, such as IPLs and spin locks

® Driver competition for shared system and I/O adapter resources
® Driver competition for a multiunit controller

* Driver recovery from device errors or power failure

Subsequent chapters discuss each of these issues in relation to device drivers.

1-21

2 Discussion of a $Q10 Request

This chapter outlines the series of activities performed by the VMS operating
system and a simple device driver in order to process an I/O request. The
LP11 line printer driver (LPDRIVER) was selected for this discussion because
it is a simple driver but still illustrates many driver principles. The first-time
reader of this document might not understand all of the points made in this
chapter; however, the chapter should provide some insight into driver flow
and 1/0O processing.

The LP11 printer is a PIO device (see Section 1.7.1). Although the LP11 is
usually spooled, this discussion assumes that it is not.

A user process can request the following functions on this printer:
* Write data to the printer
¢ Read the printer’s device characteristics

* Alter the printer’s device characteristics

This chapter describes two aspects of printer [/O processing:

® The portions of the line printer driver that are used in servicing a write
request

¢ The VMS components with which the driver interacts to process the write
request

Figure 2-1 illustrates the flow of execution through the VMS executive
routines and printer driver code that satisfies an I/O request. The unshaded
boxes in Figure 2-1 indicate the processing performed by driver subroutines.
Boxes shown above the solid line indicate processing in the context of the
user process. Boxes below the line indicate processing in fork or interrupt
context.

2.1 Driver Code for the LP11 Write Function

The VMS device driver for an LP11 printer implements a write function using
the following parts of the driver:

¢ An FDT routine that reformats the user-supplied data

® A start-I/O routine that writes data to the printer data buffer register until
the printer enters a busy state as it prints the contents of its internal print
silo

¢ Code that modifies a device register to enable interrupts from the printer

* An interrupt service routine that returns control to the driver’s fork
process after a hardware interrupt from the printer

* Code that returns I/O status to a VMS I/O completion routine

2.2

Discussion of a $Ql0 Request
2.1 Driver Code for the LP11 Write Function

Figure 2—1 A Printer Write Function

Qaio
VALIDATION

SUBI:(?JTINE K&SSEL
AST

USER

| CONTEXT

' SYSTEM
CONTEXT

DELIVER
IRP TO
DRIVER

1

SUSPEND
DRIVER

DEVICE
GOES
INTO BUSY
STATE

DRIVER

WRITE TO
DEVICE
QUEUE OPERATING
RIVER ICE
18P TO merurn || mremmwer | | Csvstew | b (RENE
POST- 1 STATUS HANDLER DISPATCHES INTERRUPT
PROCESSOR INTERRUPT

|

1/0
POST-
PROCESSOR

2K-911.62

A User Process’s |/O Request

2-2

A user process writes a line to the printer by calling the Queue I/O Request
($QIO) system service, specifying the write-virtual-block function code as
follows:

$QI0_S chan = CHANNEL_NUMBER, -
func = #I0$_WRITEVBLK, -
efn = #6,-
iosb = STATUS_BLOCK, -

p1 = BUFFER_ADDRESS, -
p2 = #BUFFER_SIZE, -
pd = #°X30

Note that p1, p2, and p4 are device-dependent arguments.

Discussion of a $Ql0 Request
2.3 Device-Independent 1/O Preprocessing by VMS

2.3 Device-Independent I/O Preprocessing by VMS

The $QIO system service first validates that the I/O request is correctly
specified. The I/0O request must meet the following criteria:

* The location CHANNEL _NUMBER must contain a number that serves as
a valid index into the process’s channel list. This means that the process
must have previously assigned the printer to this process channel using
the Assign I/O Channel system service. Once $QIO locates the assigned
channel control block, it can retrieve the address of the unit control
block (UCB) of the target device of the request. Ultimately, it obtains the
address of the driver’s function decision table (FDT), by way of a chain of
longword pointers within the I/O database:

CCB — UCB — DDT — FDT

e The driver FDT must list IO$_WRITEVBLK as a valid function for the
device.

* The event flag number must be valid.

¢ The process’s remaining buffered I/O count (BIOCNT) must permit the
$QIO system service to perform a buffered-I/O request.

® The process must have write access to location STATUS_BLOCK,
specified in the request for use as an I/O status block.

If all of these checks succeed, the $QIO system service creates an 1/O request
packet (IRP) in nonpaged system address space. The service then writes all
known details about the I/O request into the IRP.

If the target device for the I/O request is not file structured, the $QIO system
service changes any virtual-function code to its equivalent logical-function
code when it builds the IRP. Thus, for a printer device, IO$_WRITEVBLK is
translated to IO$_WRITELBLK.

2.4 Device-Dependent |/O Preprocessing by the Driver

Once it has validated the I/0O request, the $QIO system service scans the FDT
for an entry that associates the IO$_WRITELBLK function code with an FDT

routine. The system service calls the routine, which in the case of the printer
driver is a device-specific routine located in the printer device driver.

The FDT routine confirms that the requesting process has read access to the
buffer starting at BUFFER_ADDRESS. Then, the FDT routine buffers data
from the process address space into system address space in the following
steps:

* It calculates the length of the required system space buffer.

* If the job byte count quota for buffered I/O (JIBSL _BYTCNT) permits,
the routine allocates a buffer from system address space, stores the
address of the buffer in the IRP, and decreases the current job byte count
quota.

¢ It then synchronizes access to the printer’s UCB by obtaining its mutex
(UCB$L _LP_MUTEX) for write access. It can thus reliably preprocess the
write request, depending upon information contained in the UCB.

Discussion of a $QlI0 Request
2.4 Device-Dependent 1/O Preprocessing by the Driver

By obtaining the line printer mutex, the driver FDT routine effectively
prevents processes active in a VMS multiprocessing system from initiating
simultaneous functions on the printer. Also, in a VMS uniprocessing
system, this action prevents contention between a process that has
allocated the printer (and has been preempted in the midst of a write
function) and any of its subprocesses that, when scheduled, may attempt
to start a concurrent function that alters device characteristics.

* It reads the description of the printer’s current line and page position
from the device’s UCB.

s It reformats the data from the process buffer into the system buffer,
adding carriage control characters, as specified in argument p4 to the I/O
request, before and after the data.

Formatting includes such functions as the replacement of horizontal tabs
with multiple spaces and the replacement of lowercase characters with
uppercase characters, if necessary.

® It rewrites updated line and page positions into the device’s UCB. This
information indicates what the current location on the page being printed
will be when the request completes.

¢ Finally, the routine transfers control to a VMS routine that queues the IRP
to the device driver.

All of the I/O processing described to this point occurs in the context of

the user’s process. The user address space is mapped, and the processor’s
IPL is still low enough to permit process scheduling and paging. Subsequent
queuing of the transfer request to the driver and all resulting driver processing
occur at higher IPLs—and with ownership of the appropriate fork lock and
device lock in a VMS multiprocessing environment—that synchronize the
driver’s handling of the device. (See Chapter 3 for a discussion of the concept
of synchronization.)

2.5 Queuing the 1/0 Request Packet to the Driver

2-4

Before queuing the IRP to the printer driver, the VMS queuing routine raises
the IPL to the driver’s fork level and obtains the associated fork lock in a
VMS multiprocessing environment. These actions synchronize access to those
fields of the UCB referenced by driver routines at fork IPL.

If the device is idle, which is to say that if the busy bit in the UCB status
longword (UCB$V_BSY in UCB$L_STS) of the UCB is clear, VMS can
transfer control to the driver. The driver dispatch table (DDT) contains the
entry point to the driver’s start-I/O routine. To find the proper entry point,
the queuing routine chains through the I/O database to the DDT, as follows:

UCB — DDT - start-I/O routine

If the device unit is busy with another transfer, VMS inserts the IRP in a
queue of packets waiting for the unit. The UCB contains the head of the
queue. The packet’s position in the queue depends on the scheduling priority
of the process issuing the request.

Discussion of a $Ql0 Request
2.6 Activating the Printer

2.6 Activating the Printer

The LP11 printer controller accepts data into an internal print silo until the
silo is full or the driver writes a carriage-control character to the printer’s
data buffer register. When either event occurs, the printer sets a busy bit in
the device’s control and status register (CSR). Then the device driver sets the
interrupt-enable bit in the device’s CSR and waits for the printer to interrupt.
When the printer requests a hardware interrupt, the driver can resume writing
characters to the printer’s data buffer register.

The driver routine delivers characters to the printer according to the following
sequence:

1 The driver locates the LP11 device registers using a chain of pointers
starting at the device’s UCB.

UCB — CRB — IDB — CSR address

The CSR address is always the address of the printer’s CSR, and all
other device registers are at fixed offsets from this address. In contrast
to many other devices, such as disks, the LP11 printer does not share a
controller with other devices; therefore, no arbitration for ownership of
the controller is required.

2 The driver examines the device’s CSR to see if the device is ready to
accept characters.

3 If the device is ready, the driver writes a byte of data to the printer’s data
buffer register. The printer controller moves the byte from the register to
the controller’s internal print silo.

4 The driver decreases the count of bytes to transfer and repeats step 2. -

5 If the device is not ready (that is, its print silo is full), the driver raises
IPL to device IPL and obtains the corresponding device lock in a VMS
multiprocessing system. These actions allow it to set the interrupt-enable
bit in the device’s CSR in synchronization with other routines in the
driver that may access the CSR.

After setting the interrupt-enable bit, the driver invokes a VMS wait-for-
interrupt macro to release the device lock and suspend driver processing
until the printer requests an interrupt or the device times out.

2.7 Waiting for a Device Interrupt

The VMS wait-for-interrupt routine suspends the driver by performing the
following functions: -

* Saving driver context (R3, R4, and the address of the next instruction in
the driver) in the device’s UCB

* Calculating the time at which the device will time out

® Setting bits in the device’s UCB to indicate that the driver expects a device
interrupt within a specified time period

* Releasing the device lock in a VMS multiprocessing system, restoring IPL
to fork level, and returning control to the caller of the driver’s start-1/O
routine

2-5

Discussion of a $QI0 Request
2.7 Waiting for a Device Interrupt

The driver remains in a suspended state until one of two events occurs:
® The printer requests a hardware interrupt.

® VMS reports a device timeout because the printer did not request a
hardware interrupt within a specified period of time.

Normally, the LP11 prints the contents of its data buffer and requests the
interrupt.

2.8 Handling Interrupts

2-6

When the LP11 printer requests a hardware interrupt, the interrupt dispatcher
passes the interrupt to the LP11 driver’s interrupt service routine.

The driver’s interrupt service routine restores control to the driver, as follows:
1 Restores the address of the UCB in R5

2 Obtains the appropriate device lock to ensure synchronization in a VMS
multiprocessing environment

3 Confirms that the interrupt was expected by examining bits in the device’s
UCB

4 Restores the saved registers (R3 and R4) from the device’s UCB

5 Transfers control to the driver PC address stored in the device’s UCB

Rather than execute in interrupt context, the reactivated driver routine calls a
VMS routine to create a fork process. As a result of this action, VMS again
suspends driver processing by performing the following steps:

1 Saving driver context (R3, R4, and the driver PC address) in the device’s
UCB

2 Inserting the UCB address in the appropriate fork queue in the local
processor’'s CPU database

The driver suspension allows the operating system to reschedule driver
processing at its fork IPL and permits higher priority code to execute and
device interrupts to be serviced while driver processing of the I/O request
concludes. The VMS fork dispatcher reactivates the driver when the IPL of
the local processor drops to fork level.

After creating the fork process, the system returns control to the driver’s
interrupt service routine, which restores the registers saved at the time of the
device interrupt, releases the device lock, and dismisses the interrupt.

Discussion of a $QI0 Request
2.9 1/O Postprocessing by the Driver

2.9 1/O Postprocessing by the Driver

When the VMS fork dispatcher reactivates the driver’s fork process, the
driver obtains the number of characters left to transfer from the UCB. If there
are still characters to transfer, the driver and printer repeat the procedures
outlined in Sections 2.6 through 2.8, until the transfer is complete. When
all characters have been transferred, the driver code branches to the driver’s
I/O-completion code.

The driver’s I/O-completion code stores a success status code and the number
of bytes transferred in RO, then transfers control to VMS to complete the I/O
request.

2.10 1/0O Postprocessing by VMS

The operating system inserts the IRP into the I/O postprocessing queue

of the executing processor and requests an interrupt from the processor

at IPL$_IOPOST. If another IRP is queued to the UCB for the device

unit, VMS dequeues that packet and calls the driver start-I/O routine to
process it. When IPL drops to IPL$_IOPOST, the processor grants the 1/0O
postprocessing interrupt request. The I/O postprocessing dispatcher dequeues
the packet for the printer I/O request and performs the following steps:

1 Increases the use count (PHD$L _BIOCNT) of the process’s buffered I/0O
requests because the current operation is complete. The use count is
maintained for accounting purposes.

2 Decreases the process’s buffered I/0 count (PCB$W_BIOCNT) to reflect a
completed buffered I/O operation. This operation restores buffered-1/0O
quota to the process.

Deallocates the system buffer used for the reformatted user data.
Increases the job’s byte count quota.

Sets an event flag to indicate that the I/O operation is complete.

(=22 S B R V)

Queues a special kernel-mode AST routine that will deallocate the IRP
and stores I/O status in the user’s I/O status block.

The user process determines when the I/O operation is complete by the
setting of the event flag and/or the filling of the I/O status block, according
to the method defined in the I/O request. The Queue I/O Request and Wait
($QIOW) system service completes synchronously and returns control and
status to the user process only after the I/O operation has been completed.
The Synchronize ($SYNCH) system service waits for the completion of

an I/O request, initiated by the $QIO system service, that completes
asynchronously to user process activity.

3 Synchronization of 1/O Request Processing

Because a device driver executes as kernel-mode code, it can preempt core
system tasks and access critical system data. As a result it must adhere to a
set of rules that governs the priority of system activities and controls the flow
of system events. These synchronization rules ensure that both the operating
system and the device driver access memory in an orderly and consistent
fashion.

This chapter contains the following discussions:

* Section 3.1 discusses the interrupt priority levels, focusing on those IPLs
and interrupt service routines that participate in the processing of an 1/0
request. It briefly examines the roles of the other IPLs in the operating
system. Whether you are writing a driver for a VMS uniprocessor or
multiprocessor environment, you must adhere to the synchronization
rules discussed in this section.

* Section 3.3 illustrates how system synchronization is maintained during
the processing of an I/O request on any VAX system. As part of this
discussion, this section describes the driver fork process and the activity of-
forking. Finally, it examines the methods by which a driver synchronizes
at fork level and device interrupt level.

* Section 3.4 discusses the mechanism by which driver code stalls to wait
for an available adapter or controller resource on any VAX system.

3.1 Interrupt Priority Levels

The VAX architecture defines 32 levels of hardware priority, called interrupt
priority levels (IPLs). These IPLs govern the sequence of system events that
occur on each processor in a VAX system. The higher-numbered IPLs (16
through 31) are reserved for hardware interrupts, and the lower-numbered
IPLs (1 through 15) are reserved for software interrupts. Most process-based
software runs at IPL 0.

The hardware IPLs (16 through 31) are used for device interrupts (IPLs 20
through 23), interprocessor interrupts in a multiprocessing system, interval
timer interrupts, urgent conditions like power failure, and such serious errors
as a machine check. Those IPLs that have a bearing on driver execution are
discussed in Sections 3.1.2 and 3.1.3. For specific hardware IPL information,
see your VAX system’s hardware documentation or the VAX Hardware
Handbook.

The software IPLs (1 through 15) are defined by VMS as illustrated in
Table 3-1.

Synchronization of 1/O Request Processing

3.1 Interrupt Priority Levels

Table 3-1

IPLs Defined by VMS

IPL

Symbolic Name

Use

N O o WN - O

11

8-11

12

13
14
15

IPL$_ASTDEL
IPL$_RESCHED
IPL$_IOPOST

IPLS_QUEUEAST
IPL$_TIMERFORK

IPLS_SYNCH

IPL$_MAILBOX

IPL$_POOL

Execution of most process-based software
Reserved

Servicing of AST-delivery interrupts
Servicing of scheduler interrupts

Servicing of 1/O-postprocessing interrupts
Reserved

Fork level processing for queuing ASTs

Entry level for software timer interrupt
servicing

Synchronization of access to system
databases in a uniprocessor system’

Fork level processing for access to
mailboxes
Allocation of nonpaged pool

Fork level processing for executing driver
code

Recalculation of quorum; cancellation of
mount verification (IPC)

Reserved
Entry level for XDELTA debugger
Reserved

"PL$_TIMER, IPL$_SCHED, IPL$_JIB, IPL$_MMG, IPL$_FILSYS, and IPL$_IOLOCKS are all
synonyms for IPLE_SYNCH (see Table 3-3).

Because a higher IPL takes precedence over a lower IPL, a routine executing
at one IPL can block interrupts on a processor at that IPL and all lower IPLs.
This scheme allows VMS to assign the higher IPLs to system activities that
must be dispatched quickly and with little chance of interruption. In a general
sense, each processor services interrupts according to the following priorities:

* Power failure

® Processor errors

® Device interrupts

* Device driver fork processing
* 1/0O postprocessing

® Process rescheduling

* AST delivery

As a result of blocking events on and ordering the activities of a single VAX
processor, VMS use of IPLs ensures that kernel-mode code accesses data in
memory in a cooperative and predictable manner. The mechanism by which
synchronized access to data is ensured is twofold. First, VMS associates

a given IPL with the access of one or more data structures or databases.

3.1.1

3.1.2

Synchronization of 1/O Request Processing
3.1 Interrupt Priority Levels

Secondly, VMS defines an ordered set of semaphores, called spin locks, that
extend IPL synchronization throughout a VMS multiprocessing system. A
processor must obtain one or more of these spin locks before executing any
code thread that must make use of the resources the spin lock protects. Spin
locks thus allow each processor in a VMS multiprocessing system to share
common system data and block events systemwide.

For example, consider a code thread running at IPL 8 that intends to access
the memory management database. To do so, it raises IPL to IPL$_MMG.
This action gives it the exclusive right to access the database from the
local processor, effectively preventing access by other code threads on the
same processor. After raising IPL, this code thread requests the memory
management (MMG) spin lock. Ownership of the MMG spin lock gives the
processor executing this thread the exclusive right to access the database
systemwide, and bars access from any other code thread running on any
other processor in the VAX system.

Although discussions in this book treat IPL and spin lock synchronization
as conceptually separate tasks for a device driver, the set of VMS
synchronization macros, described in Table 3-2, makes adjustment of IPL
and disposition of spin locks appear as a single operation.

A full description of spin locks appears in Section 3.2.

Interrupt Service Routines

VMS associates certain IPLs with the execution of certain tasks. Moreover,
when a processor in a VAX system grants an interrupt at a given IPL, the
grant actually triggers the execution of a specific piece of code, called an
interrupt service routine, that performs the task.

Device drivers themselves contain an interrupt service routine which handles
device interrupts at an appropriate device IPL (IPLs 20 through 23). In
addition, drivers rely heavily upon-the VMS interrupt service routine known
as the fork dispatcher which runs at several IPLs, including driver fork IPLs 8
through 11. When the local processor’s IPL drops to fork IPL, it is the fork
dispatcher that restores the context of the driver fork process and places it
into execution. (See Section 3.1.2.4 and 3.3.2 for discussions of the device
IPLs and interrupt dispatching, respectively. Sections 3.1.2.3 and 3.3.3 discuss
the fork IPLs and driver fork processes.) ‘

IPL Use During 1/O Processing

The activities essential to the processing of an I/O request occur only at
certain IPLs. VMS performs some of these tasks in system routines and
interrupt service routines; drivers perform others. This section describes those
IPLs and interrupt service routines that are most involved in 1/O processing.
Section 3.1.3 discusses the IPLs at which other system activities transpire
that may influence the coding of a driver. For additional information on the
pattern of synchronization throughout the servicing of an 1/O request, see
Section 3.3.

3-3

Synchronization of |/O Request Processing
3.1 Interrupt Priority Levels

3.1.2.1 IPL 2 (IPLS_ASTDEL)
The asynchronous system trap (AST) delivery interrupt service routine
(SCH$ASTDEL) is associated with IPL$_ASTDEL.

When an AST is specified for delivery to a process, the AST queuing routine
(SCH$QAST) queues the AST to the specified process’s process control
block (PCB).! When an AST is delivered is determined by the mode of

the AST, the current mode of the processor, and the mode contained in
the processor’s ASTLVL register. The VAX hardware, by means of the REI
instruction, requests a software interrupt on the local processor at IPL$_
ASTDEL whenever the processor’s mode becomes less privileged than that
specified as its ASTLVL.?

The AST delivery interrupt service routine gains control when the processor’s
IPL drops below IPL$_ASTDEL, and delivers all deliverable ASTs to the
currently scheduled process. Any code executing at IPL$_ASTDEL or higher
blocks the execution of this interrupt service routine.

To block the delivery of ASTs—specifically the kernel-mode AST that causes
process deletion—I/O preprocessing, from the time that the $QIO system
service allocates an IRP through the execution of the last FDT routine, occurs
at IPLs no lower than IPL$_ASTDEL. The VMS allocation routine records the
address of the system memory allocated for the IRP in a process register; if an
AST that deletes the process were to occur, the allocated memory would be
lost from the pool.

In addition, some I/O postprocessing occurs in a special kernel-mode

AST servicing routine that also executes at IPLS_ASTDEL. The special
kernel-mode AST, running in the context of a process whose I/O has been
completed, writes status information into an I/O status block, copies buffered
input into process space, and deallocates system buffers. The completion of
these tasks depends on the availability of process context.

Page faults may be taken by code that executes at IPL$_ASTDEL. However,
this is not the case with code executing at higher IPLs. Thus, programs that
are sensitive to the contents of pageable data structures run at IPL$_ASTDEL
to take page faults. For example, the allocation of paged pool is one such
program code thread; paged pool, as a result, is protected by a mutex.

3.1.2.2 IPL 4 (IPL$_IOPOST)
The IPL$_IOPOST interrupt service routine (IOC$IOPOST) performs device-
independent postprocessing of an 1/O request. As appropriate to the
I/0 request, it adjusts process quota use and deallocates system memory.
IOCS$IOPOST also queues a special kernel-mode AST to the process’s PCB
that, once process context is restored, writes status and data into the process’s
address space.

After it has completed whatever device-dependent postprocessing is required,
a driver fork process requests I/O postprocessing by calling a VMS routine
(COMS$POST) that inserts an IRP in the local processor’s postprocessing
queue (at CPU$L _PSBL) and requests a software interrupt at IPL$_IOPOST.
When IPL drops below IPL 4, the IPL$_IOPOST interrupt service routine

! Because the VMS AST queuing and delivery routines access the scheduler database, they synchronize within a
VMS multiprocessing environment by obtaining the SCHED spin lock before modifying system data.
2 In the event that a processor queues an AST to a process currently executing on another processor in a

multiprocessing system, the local processor generates an interprocessor interrupt to the other processor to
change its ASTLVL.

3-4

Synchronization of I/O Request Processing
3.1 Interrupt Priority Levels

dequeues an IRP from the I/O postprocessing queue at CPU$L _PSFL,
performs all I/O-completion tasks that can occur without reference to the
device’s unit control block (UCB) and, thus, at an IPL lower than fork IPL.

I/0O postprocessing runs at an IPL higher than IPL$_RESCHED so that all
pending I/O-completion processing is finished before the scheduler looks for
a new process to schedule. The ability of a process to execute can depend on
the completion of the postprocessing of an I/O request. Additionally, 1/O
postprocessing can queue ASTs to certain processes, thus changing their state
to computable and resulting in a priority boost. Because all I/O completions
are accomplished before rescheduling activities, the scheduler can select
from a potentially larger set of computable processes, using more up-to-date
information about these processes.

3.1.2.3

IPL 8 Through IPL 11 (Fork IPLs)

On each processor in a VAX system—for each of the IPLs from 8 to 11—
there exists a queue for fork blocks waiting to be processed. Each fork block
contains the context of a suspended fork process. The interrupt service
routine that executes at each of these IPLs (EXE3FORKDSPTH) is known as
the fork dispatcher. The fork dispatcher dequeues a fork block, obtains the
appropriate fork lock, restores the context of the fork process, and resumes its
execution at the PC location saved in the fork block (at FKB$L _FPC). (Refer
to Section 3.3.3 for a discussion of fork blocks and fork processes.)

All driver routines, except most FDT routines, execute at fork IPL or higher.
Usually driver routines should not read or alter UCB fields without taking
steps to ensure synchronization. Because such UCB fields can be shared
among driver fork processes and VMS system tasks executing on other
processors in a VMS multiprocessing system, a processor must first secure the
corresponding fork lock to execute at that fork IPL. Furthermore, the drivers
for all devices on a single I/O adapter must use the same fork lock if they
actively compete for shared I/O adapter resources such as map registers and
data paths. The VMS routine that initiates an I/O request on an idle device
unit, as well as the fork dispatcher, transfers control to the driver with the
appropriate synchronization.

A driver places a fork lock index in UCB$B_FLCK using the DPT_STORE
macro. (See Section 6.1.) VMS determines the appropriate fork IPL from the
contents of the SPL$B_IPL field in the fork lock’s structure. (See Section 3.2
for a discussion of spin locks.) '

3.1.24

IPL 20 Through IPL 23 (Device IPLs)

VAX peripheral devices request interrupts at IPLs 20 through 23 because
device interrupts usually need to preempt most user and VMS software
functions. When a device requests an interrupt at one of these IPLs and the
processor is executing at a lower IPL, the processor grants the interrupt, and
then transfers control to an interrupt service routine for the device located in
its driver. If the processor is executing at a higher or equal IPL, the interrupt
remains pending.

The interrupt dispatcher routes interrupts from devices to the appropriate
device driver’s interrupt service routine. A driver specifies the address of its
interrupt service routine in the driver prologue table (DPT). The interrupt
dispatcher’s routing mechanism works differently depending upon the VAX
processor and I/O subsystem in use. (For additional information on device
interrupt dispatching, see the general discussion of interrupt dispatching

in Chapter 9. Information specific to a given I/O subsystem configuration

3-5

Synchronization of 1/O Request Processing
3.1 Interrupt Priority Levels

appears in Sections 12.3 (UNIBUS/Q22 bus), 13.4 (MASSBUS), and 14.3.1
(VAXBI bus).)

Data in a device’s registers and in various fields of the UCB that record
device status is synchronized on the local processor at device IPL, at which its
driver’s interrupt service routine executes. This value is stored by the driver
in the UCB$B_DIPL field of the UCB. It is the responsibility of the interrupt
service routine to secure the corresponding device lock. This action allows it
to synchronize with other code threads that access the same resources in a
VMS multiprocessing system.

The driver’s start-1/O routine is one such code thread and must similarly
synchronize. In a VMS uniprocessing environment, the routine raises IPL

to device IPL before writing data in device registers and database fields. In

a VMS multiprocessor environment, the start-I/O routine must secure the
appropriate device lock to achieve systemwide synchronization of the device
database. The act of acquiring the device lock automatically sets IPL to device
IPL.

Because code executing at IPLs 20 through 23 blocks most other hardware
interrupts and all software interrupts on the local processor, driver code
lowers its IPL as soon as possible. Interrupts from devices on a MicroVAX
3600-series, MicroVAX II, MicroVAX 1, VAX 8200/8250/8300/8350, VAX
8530/8550,/8700/8800/8830/8850, and VAX 6200-series system, in fact, can
block hardware interrupts from the processor’s interval clock if these device
interrupts occur at or above IPL 22. To prevent the loss of an interval clock
interrupt, these drivers, when executing at IPL 22 or above, should lower IPL
below 22 as soon as possible (within 9 milliseconds).

3.1.25

IPL 31 (IPLS_POWER)

The highest IPL, IPL$_POWER (IPL 31) locks out all other interrupts on the
local processor. Many VMS routines and drivers raise IPL to IPL§_POWER to
execute code sequences that cannot tolerate interruption. For example, much
of system initialization occurs at IPL§_POWER. In a VMS multiprocessing
system, these routines often need to acquire additional synchronization, as
described in Section 3.2.

When a device driver needs to execute a series of instructions without
interruption, the driver raises IPL to IPLS_POWER. The driver should never
remain at IPL$_POWER for more than a few instructions. The most common
instance of a driver’s raising IPL to IPL$_POWER is to determine whether

a power failure has occurred on the local processor between the time that
the driver writes setup data into device registers and the time that the driver
starts the device by writing into the device’s control register.

3.1.3 Additional IPLs

In addition to the IPLs that are directly involved in the processing of an I/O
request, VMS defines the IPLs described in this section.

Synchronization of 1/0 Request Processing
3.1 Interrupt Priority Levels

When an event occurs that requires that a process be rescheduled, a VMS
routine requests a software interrupt on the local processor at IPL$_
RESCHED. The scheduler interrupt service routine (SCH$RESCHED) gains
control at this IPL, but immediately obtains the SCHED spin lock (as a result,
raising IPL to IPL$_SYNCH). This action synchronizes the processor’s access
to the scheduler’s database with other system activities.

Drivers never explicitly reference IPL$_RESCHED. Most driver processing
occurs at higher IPLs. When a process raises IPL to or above IPL$_
RESCHED, the scheduler cannot reschedule the process. The process runs
until an interrupt occurs at a higher IPL or the process lowers IPL below

IPL$_QUEUEAST is a fork-level IPL used predominantly by drivers written
before Version 4.0 of the VMS operating system. A driver fork process
originating at an IPL between 8 and 11 would use IPL§_QUEUEAST when it
needed to synchronize access to the scheduler’s database at IPL$_SYNCH—
for instance, to queue an AST. Prior to VMS Version 4.0, the only way that
such a fork process could maintain proper synchronization was to first call

a system routine that creates yet another fork process to be dispatched at
IPL$_QUEUEAST. Once the fork dispatcher dequeued the fork block and
resumed execution of the driver, the driver fork process could then raise IPL
to IPL$_SYNCH and access the system database.

Because versions of the VMS operating system after Version 4.0 implement
IPL$_SYNCH as a fork IPL, a driver fork process can fork directly to IPL$_
SYNCH. In VMS Version 5.0, the fork dispatcher obtains the IPL 8 fork
lock (IOLOCKS), dequeues the driver fork block, restores driver context,
and resumes execution of the driver. To maintain synchronization in a VMS
multiprocessing environment, the driver then must obtain the spin lock that
corresponds to the data structure it is accessing.

3.1.3.1 IPL 3 (IPL$_RESCHED)
IPL$_RESCHED.

3.1.3.2 IPL 6 (IPL$_QUEUEAST)

3.1.3.3

IPL 7 (IPLS_TIMERFORK)

The interval clock’s interrupt service routine (EXE$SHWCLKINT), executing at
IPL 22 or IPL 24 depending upon the VAX system, posts interrupts at IPL$_
TIMERFORK. A processor requests such an interrupt when the current process
has exceeded its processor time quantum. The software timer interrupt service
routine (EXE$SWTIMINT) gets control when the IPL drops below IPL$_
TIMERFORK, services quantum end events by immediately raising IPL to
IPL$_SYNCH (obtaining the SCHED spin lock, if needed), and calls the
appropriate scheduler routine.

The primary processor in a VMS multiprocessor system, when executing
the interval clock’s interrupt service routine, requests an IPL$__TIMERFORK
interrupt when the first entry in the timer queue (EXE$GQ_1ST_TIME)

is due. The software timer interrupt service routine contains special code
that allows the primary processor to service the expiration of a timer queue
element (TQE). The routine raises IPL to IPL$_SYNCH, synchronizes access
to the timer queue (except for the first TQE) by obtaining the TIMER spin
lock, and secures the interval clock database (the system time at EXE$GQ _—
SYSTIME and the expiration time of the first TQE at EXE$GQ _1ST_TIME)
by obtaining the HWCLK spin lock. Thus synchronized, it determines which
TQEs have expired, dequeues them, and transfers control to the appropriate
timeout handlers. Device timeouts are dispatched in this manner.

Synchronization of 1/0 Request Processing
3.1 Interrupt Priority Levels

- 3.1.34 IPL 8 (IPLS_SYNCH)
IPL$_SYNCH is the level at which the databases that record and control
system functions are synchronized. Individual spin locks, such as the JIB,
SCHED, MMG, and TIMER spin locks, provide synchronized access to
individual databases in a VMS multiprocessing environment.> When a
VMS subroutine or a driver needs to modify or read a dynamic portion of a
system database, the routine always executes at IPL$_SYNCH, holding an
appropriate system spin lock, to ensure that the database does not change
because of some interrupt service routine or process action.

3.1.3.5 IPL 11 (IPL$_MAILBOX)
IPL$_MAILBOX is the highest fork IPL. When a VMS or driver routine writes
into a mailbox, the executing processor must be at IPL$_MAILBOX holding
the MAILBOX spin lock. Because other readers or writers to the mailbox must
similarly pursue synchronization, these actions prevent other writers from
modifying incomplete data in the mailbox and readers from reading invalid
data.

3.1.3.6 IPL 14 (XDELTA Entry IPL)
For debugging purposes, you can halt a processor from the console terminal
and request a software interrupt to invoke the XDELTA debugger. You
accomplish this by depositing OE;4 in the processor’s Software Interrupt
Request Register (PR$_SIRR). (The procedure for requesting a software
interrupt to invoke XDELTA is described in Table 16-3.)

After you issue the console’s CONTINUE command and return to program
mode, the processor grants an interrupt at IPL 14. The processor must be
executing below the requested IPL for the interrupt to take effect.

3.1.3.7 IPL 22 or IPL 24 (Interval Clock IPLs)
Every ten milliseconds, the interval clock interrupts at IPL 22 or 24,
depending upon the VAX system. A system cell points to the IPL field
(SPL$B_IPL) in the HWCLK spin lock, identifying the IPL at which the
processor’s interval clock interrupts.

The interval clock’s interrupt service routine performs the functions described
in Section 3.1.3.3. Note that the interval clock’s interrupt service routine
obtains the HWCLK spin lock to synchronize its operations on the system
time quadword (EXE$GQ_SYSTIME) and the quadword containing the due
time of the first timer queue element (EXE$GQ _1ST_TIME).

3.1.4 Modifying IPL in Driver Code

Kernel-mode code can modify the IPL of the local processor by either
explicitly setting the processor’s IPL to a specific value or by requesting a
software interrupt at a specific level. Driver code can change the IPL at
which it executes by invoking a VMS-supplied macro to request a change in
IPL. Because the DEVICELOCK, FORKLOCK, and LOCK macros (and their
counterparts) only raise (or lower) IPL in a VMS uniprocessing environment,
but achieve full synchronization in a VMS multiprocessing system, DIGITAL
recommends their use instead of the SETIPL, DSBINT, and ENBINT macros.

3 IPL$_TIMER, IPL$_SCHED, IPL$_JIB, IPL$_MMG, IPL$_FILSYS, and IPL$_IOLOCKS are all synonyms for
IPL$_SYNCH (see Table 3-3). _

3-8

Synchronization of 1/O Request Processing

3.1 Interrupt Priority Levels

Table 3-2 lists the macros that set, store, or restore a processor’s IPL. See
Appendix B for a further explanation of the functions of these macros and a
full description of their arguments.

Table 3—2 VMS Macros That Change a Processor’s IPL

Macro

Function

Raising IPL

DEVICELOCK [lockaddr]
[lockipl] [,savipl] [.condition]
[.preserve=YES]

DSBINT [ipi=31] [,dst=—(SP)]
[.environ=-MULTIPROCESSOR

FORKLOCK [iock] [,lockipl] [,savipl]
[.preserve=YES] [.fipFNO]

LOCK lockname [,lockipl] [,savipl]
[.condition] [,preserve=YES]

SETIPL [ipk31]
[.environ=MULTIPROCESSOR]

Raises IPL on the local processor to the device IPL associated with the
device lock’s lockaddr, obtains the device lock, and saves the current
IPL at savip!'

Raises IPL on the local processor to the specified ip/, saving the
current IPL at dst?

Raises IPL on the local processor to lockipl, obtains the fork lock, and
saves the current IPL at savip/'

Raises IPL on the local processor to the lockipl, obtains the lock
indicated by lockname, and saves the current IPL at savip/'

Raises IPL on the local processor to the specified ip#

Lowering IPL

DEVICEUNLOCK [lockaddr]
[.newipl] [,condition]
[.preserve=YES]

ENBINT [src=(SP+)]

FORKUNLOCK [lock] [.newipl]
[.condition] [,preserve=YES]

UNLOCK Jockname [,newipl]
[.condition] [,preserve=YES]

Releases or restores the device lock indicated by lockaddr, lowering
the local processor’s IPL to newipl, thus permitting interrupts to occur
at or beneath the current IPL’

Lowers the local processor’s IPL to src, thus permitting interrupts to
occur at or beneath the current IPL?

Releases or restores the fork lock indicated by lock, lowering the local
processor’s IPL to newipl, thus permitting interrupts to occur at or
beneath the current IPL’

Releases or restores the spin lock indicated by lockname and lowers
IPL to newipl, thus permitting interrupts to occur at or beneath the
current IPL'

Miscellaneous Functions

SAVIPL [dst=—(SP)]
SOFTINT ip/

Saves the local processor’s IPL at the specified location

Requests a software interrupt on the local processor at the specified
ipl

"When used in a uniprocessing environment, the DEVICELOCK, DEVICEUNLOCK, FORKLOCK, FORKUNLOCK LOCK, and
UNLOCK macros generate only the code that manipulates IPL.

2Use of the SETIPL, ENBINT, and DSBINT macros is not sufficient to guarantee systemwide synchronization of events
and data in a VMS multiprocessing system. The DEVICELOCK, FORKLOCK, and LOCK macros have been designed to
achieve appropriate synchronization in either a uniprocessing or multiprocessing environment.

Synchronization of 1/0 Request Processing
3.1 Interrupt Priority Levels

3-10

3.1.4.1

Raising IPL

To block certain activities on a local processor in a VAX system, it is
sometimes useful to raise IPL explicitly. Driver code should not raise IPL
for more than a few instructions, for doing so prevents the local processor
from servicing interrupts at the current IPL and all lower IPLs.

In a uniprocessor environment, raising IPL provides sufficient systemwide
synchronization to both block events and also protect data customarily
accessed at a given IPL. Drivers typically raise a processor’s IPL to check for
a local processor power failure, send a message to a mailbox, or access device
registers. For instance, a driver running exclusively in a VMS uniprocessor -
environment can set IPL to its device IPL (UCB$B_DIPL) to access device
registers. While the driver executes at device IPL, no other code thread can
execute at the same device IPL and thereby read or write the same device
registers. (See the discussion in Section 3.1.4.2 for a description of the rules
for lowering IPL that enforce the synchronization.) VMS supplies the SETIPL
and DSBINT macros to effect the change in IPL.

In a multiprocessing environment, as in a uniprocessing environment, a driver
can block activities on the local processor by raising IPL. However, in a
multiprocessing environment, simply raising IPL is not sufficient to protect
shared data structures from other processors that may attempt to access them
concurrently. To achieve synchronization in a VMS multiprocessing system,
VMS associates a series of semaphores, called spin locks, with such shared
databases. (See Section 3.2 for a further discussion of spin locks.)

A processor that must access a shared structure must first secure a
corresponding spin lock. The acquisition of a spin lock often involves the
raising of IPL to the IPL associated with the spin lock and the database it
protects. Spin lock acquisition code can elevate IPL automatically if called
from a code thread executing at an IPL lower than the synchronization IPL of
the lock. A processor that has properly obtained a spin lock can thus proceed
to access the associated database at the appropriate IPL. If necessary, it is free
to further raise IPL, but should not lower IPL below the spin lock’s allocation
IPL without first releasing the spin lock.

For example, a driver running in a VMS multiprocessing system can set
IPL to IPL$_POWER to block the servicing of a power failure on the local
processor. However, while executing at IPLS_POWER (or at device IPL),
the driver cannot safely access device registers unless it has first secured the
spin lock associated with the device: that is, its device lock. Similarly, a
driver’s fork process, although it executes at a fork IPL with a corresponding
fork lock held, may raise a processor’s IPL by obtaining an additional spin
lock. Sending a message to the OPCOM mailbox (obtaining the MAILBOX
spin lock at IPL 11) and accessing device registers (obtaining the appropriate
device lock at device IPL) are two such activities.

The LOCK, FORKLOCK, and DEVICELOCK macros ensure that the
synchronization needed for either the uniprocessor or multiprocessor
environment is obtained before the requested resource is accessed. When
executed in a uniprocessor environment, these macros only obtain the proper
IPL synchronization. When invoked in a multiprocessing environment, these
macros both raise IPL and obtain an appropriate spin lock, thus extending IPL
synchronization systemwide.

3.2

Synchronization of 1/0 Request Processing
3.1 Interrupt Priority Levels

3.1.4.2

Lowering IPL

Driver code lowers its IPL to synchronize with code threads that access
common data or perform common activities at the lower IPL. In a
multiprocessing environment, lowering IPL is often associated with the
release of a spin lock. In addition, lowering IPL may be necessary in order to
obtain a spin lock synchronized at the lower IPL.

One of the most fundamental coding rules in VMS is that a code thread cannot
explicitly lower IPL below the level at which its execution has been initiated.

In relation to driver processing, this means that a driver fork process cannot
explicitly set IPL to be less than its fork IPL, nor can a driver’s interrupt
service routine explicitly set IPL to be less than device IPL. This is because
a processor interrupted a lower IPL code thread in mid-execution to place
the current code thread into execution. It is important to the integrity of the
data structures protected at this lower IPL that the previous code thread be
resumed before other code accesses the same structures. A violation of the
IPL rule would undermine the VMS interrupt dispatching mechanism by not
first returning control to the interrupted code thread.

Driver code uses the following methods to lower IPL:

¢ Issuing a DEVICEUNLOCK, FORKUNLOCK, or UNLOCK macro (paired
with an earlier invocation of a DEVICELOCK, FORKLOCK, or LOCK
macro) or a ENBINT macro (paired with an earlier invocation of an
DSBINT macro) to restore IPL to a previously saved value.

¢ Invoking the IOFORK (or FORK) macro to preserve its context in a fork
block, insert the block in a fork queue, and request a software interrupt
at the driver’s fork IPL. See Section 3.3.3.1 for a complete discussion of
forking. :

* Issuing an REI instruction at the end of its interrupt service routine that
dismisses the interrupt.

Lowering IPL can cause many pending interrupts on the local processor
between the old and new IPLs to become deliverable.

Spin Locks

In a multiprocessing environment, as in a uniprocessing environment, you
can block activities on the local processor by raising IPL. Similarly, certain
shared databases must be accessed only at a given IPL. However, in a
multiprocessing environment, simply raising IPL on the local processor does
not prevent other processors in the system from reading or modifying a
shared database. Unless other steps are taken to notify the other processors
that the database is “owned,” such contention could potentially result in
corrupted data and system failures.

A spin lock is a semaphore associated with a set of system structures, fields, or
registers whose integrity is critical to the performance of a specific operating
system task. The scheduler and the memory management subsystem thus
have their own spin locks, as does each fork processing level and each device
controller. Because a spin lock can be owned by only one processor in the
system at a time, other processors attempting to acquire the same spin lock
are prevented from reading from or writing into the database it protects.

The structure of a spin lock is pictured in Figure A-15 and described in
Table A-14. *

3-11

Synchronization of 1/0 Request Processing
3.2 Spin Locks

There are two categories of spin lock:

The structure of a static spin lock is permanently assembled into the
system. As a result, its existence and definition are fixed from one
system to another. Static spin locks are accessed as indexes into a vector
of longword addresses called the spin lock vector and pointed to by
SMP$AR_SPNLKVEC. The system spin locks and fork locks listed in
Table 3-3 are static spin locks.

A dynamic spin lock is a spin lock that is created based on the I/O
configuration of a particular system. One such dynamic spin lock is

the device lock SYSGEN creates when configuring a particular device.
This device lock synchronizes access to the device’s registers and certain
UCB fields. VMS creates a dynamic spin lock by allocating space from
nonpaged pool, rather than assembling the lock into the system as it does
in the creation of a static spin lock. Section 3.2.2 describes device locks.

Table 3-3 lists, in order of increasing logical rank, the static spin locks. For
each system spin lock or fork lock, the table records its index into the spin
lock vector, its synchronization IPL, and a brief description of its function.

Table 3—-3 Static Spin Locks

Lock Name Lock Index Synchronization IPL Description

QUEUEAST SPL$C_QUEUEAST 6 (IPL$_QUEUEAST) Fork lock for executing a fork process
atIPL 6

FILSYS SPLSC_FILSYS 8 (IPL$_FILSYS)' Lock on file system structures

IOLOCKS8 SPL$C_IOLOCKS 8 (IPL$_IOLOCKS)' Fork lock for executing a fork process
at IPL 8

PR_LKS8 SPL$C_PR_LKS8 8 (IPL$_IOLOCKS)' Primary CPU’s private lock for IPL 8

TIMER SPL$C_TIMER 8 (IPL$_TIMER)' Lock for adding and deleting timer
queue entries and searching the timer
queue?

JiB SPL$C_JIB 8 (IPL$_JIB)" Lock for manipulating job nonpaged
pool quotas as reflected by the fields
JIBSL_BYTCNT and JIBSL _BYTLM in
the job information block

MMG SPL$C_MMG 8 (IPL$_MMG)' Lock on VMS memory management,
PFN database, swapper, modified
page writer, and creation of per-CPU
database structures

SCHED SPL$C_SCHED 8 (IPL$_SCHED)’ Lock on process control blocks,
scheduler database, and mutex
acquisition and release structures

IOLOCK9 SPL$C_IOLOCK9 9 (IPL$_IOLOCK9) Fork lock for executing a fork process
at IPL 9

PR_LK9 SPLSC_PR_LK9 9 (IPL$_IOLOCK9) Primary CPU’s private lock for IPL 9

"IPL$__TIMER, IPL$_SCHED, IPL$_JIB, IPLS_MMG, iPLS_FILSYS, and IPL$_IOLOCKS are all synonyms for IPLS_SYNCH.

2The HWCLK spin lock implicitly locks the timer queue element at the head of the timer queue by locking the quadword
representing its due time (EXE$GQ _1ST_TIME).

3-12

Synchronization of 1/O Request Processing

Table 3-3 (Cont.) Static Spin Locks

3.2 Spin Locks

Lock Name

Lock Index

Synchronization IPL

Description

IOLOCK10

PR_LK10
IOLOCK11

PR_LK11
MAILBOX

POOL
PERFMON
INVALIDATE

VIRTCONS

HWCLK

MEGA

MCHECK

EMB

SPL$C_IOLOCK 10

SPL$C_PR_LK10
SPL$C_IOLOCK 11

SPL$C_PR_LK11
SPL$C_MAILBOX

SPL$C_POOL
SPL$C_PERFMON
SPLSC_INVALIDATE

SPL$C_VIRTCONS

SPL$C_HWCLK

SPL$C_MEGA
SPL$C_MCHECK

SPL$C_EMB

10 (IPL$_I0LOCK10)

10 {IPL$_IOLOCK10)
11 (IPL$_IOLOCK1 1)

11 (IPL$_IOLOCK1 1)
11 (IPL$_MAILBOX)

11 (IPL$_POOL)
15 (IPL$_PERFMON)

19 (IPL$_INVALIDATE)

20 (IPL$_VIRTCONS)

22 or 24

31 (IPL$_MEGA)
31 (IPL$_MCHECK)

31 (IPL$_EMB)

Fork lock for executing a fork process
at IPL 10

Primary CPU’s private lock for [PL 10

Fork lock for executing a fork process
at IPL 11

Primary CPU’s private lock for iPL 11

Lock for sending messages to
mailboxes

Lock on nonpaged pool database
Lock for I/O performance monitoring

Lock system space translation buffer
(TB) invalidation

Lock for ownership of the virtual
console

Lock on interval clock database,
including the quadword containing

the due time of the first timer queue
element and the quadword containing -
the system time

Lock for serializing access to fork and
wait queue '

Lock for synchronizing certain machine
error handling

Lock for allocating and releasing error
logging buffers

Drivers rarely need to obtain system spin locks or fork locks explicitly; the
VMS routines that initiate driver processing and access resources protected by
a spin lock generally obtain and release these locks as required. However, a
driver must obtain the appropriate device locks whenever it must access data
synchronized at device IPL; for instance, in its interrupt service routine.

VMS provides a set of macros, listed in Table 3-2 and described in full
in Appendix B, that call the system’s spin lock acquisition and releasing
routines.

Three factors control the successful acquisition of a spin lock: IPL, rank, and
ownership.

IPL

The processor must be executing at an IPL equal to or below the spin lock’s
synchronization IPL (SPL$B_IPL). In keeping with the rules discussed

in Section 3.1.4.2, a processor should not lower the IPL of its thread of
execution in the process of acquiring a spin lock. Thus, in acquiring a spin
lock, a processor may or may not raise its IPL, depending upon whether it
is executing already at the spin lock synchronization IPL. VMS supplies spin
lock acquisition macros (DEVICELOCK, FORKLOCK, and LOCK) that, in
calling appropriate VMS routines, raise IPL automatically in the course of
obtaining the requested spin lock. Once it owns the spin lock, the processor

3-13

3.2.1

Synchronization of 1/0 Request Processing

3.2 Spin Locks

can raise its IPL above the IPL at which the spin lock was acquired, but it
should not lower it below that level.

Rank

A processor can own multiple spin locks simultaneously, but must obtain
these spin locks in increasing order of rank. (Table 3-3 lists the spin locks
in order of rank.) In other words, a processor that owns one or more spin

locks should not attempt to acquire a spin lock whose logical rank? is less
than a spin lock it already holds. It does not need to acquire all spin locks
of intervening rank. This rule is meant to avoid potential deadlocks in the
acquisition of system spin locks and fork locks, and does not pertain to device
locks. The processor may release spin locks in any order, as long as any
attempt to reacquire those spin locks acquires them in ascending order.

Note that the concept of rank is independent of IPL. At any given
synchronization IPL, there may be many spin locks, each of which is ranked
according to its position in Table 3-3.

Ownership

The spin lock must not be owned by any other processor. If the spin lock is
currently owned by another processor, a requesting processor spin waits for
the lock to become available. That is, it executes in a loop, waiting for the
processor that owns the spin lock to release it. If a spin lock is owned, its
owner field (SPL$L. _OWN_CPU) contains an identifier that indicates which
processor in the multiprocessor system owns the spin lock.

It is legal for a processor to nest acquisitions of a given spin lock. In other
words, if a processor attempts to acquire a spin lock that it currently owns,
the acquisition will succeed. VMS provides a mechanism whereby such a
processor can release a single acquisition or all acquisitions of a spin lock.

Fork Locks

In its simplest form, a fork lock is a static spin lock that synchronizes the
right of a fork process to execute at a specified IPL in a VMS multiprocessing
system. Fork locks exist for each of the fork IPLs from IPL 8 to 11. A driver
indicates the fork lock under which it processes, and by implication its fork
IPL, by specifying a fork lock index in its driver prologue table (using the
DPT_STORE macro as described in Section 6.1).

Those code threads that must synchronize with another fork thread use the
same fork lock. For instance, the fork processes of drivers whose devices
share the resources of a common adapter must synchronize themselves by
means of a common fork lock. These code threads fork not necessarily to
lower IPL, but rather to wait for the availability of a common resource such
as a controller data channel or map registers (see Section 3.4). The VMS
routines that acquire and release these resources ensure that the fork lock is
acquired and released as necessary.

* The physical rank of a spin lock is the inverse of its logical rank. See the description of the SPL$B_RANK
field in Table A-14 for additional information.

3-14

Synchronization of /O Request Processing
3.2 Spin Locks

Drivers rarely need to obtain a fork lock explicitly. VMS places the driver
fork process into execution (originally by EXE$INSIOQ and, by implication,
by IOC$REQCOM) at fork IPL holding the appropriate fork lock. In addition,
the fork dispatcher obtains the fork lock associated with the driver fork
process before it restores its context and resumes its execution. (Section 3.3.3
describes these concepts in greater detail.)

Note that, if a driver fork process is not placed into execution by one of these
means, it must itself expressly obtain the fork lock.

As an example, consider a driver fork process activated by a timer wakeup
associated with a timer queue element (TQE) previously queued by the
driver. The software timer interrupt service routine does raise IPL to IPL 8
(IPL$_SYNCH) and obtain certain spin locks prior to dequeuing the TQE and
placing it into execution, but it does not obtain the driver’s fork lock. Thus,
even though the driver’s fork IPL may be IPL$_SYNCH, the driver will not
be properly synchronized at fork level unless it first obtains the appropriate
fork lock.

3.2.2 Device Locks

A device lock represents a lock on an individual adapter or controller. A
processor executing a code thread that accesses a device’s registers or certain
fields in its unit control block (UCB) that reflect its status does so while
holding the corresponding device lock.

UCBs are protected by a device lock common to all units on the same adapter
or common to the entire system, depending upon the type of device. A device
lock is dynamically created by the System Generation Utility (SYSGEN) when
it creates a channel request block (CRB). SYSGEN stores the address of the
device lock in the CRB (CRB$L _DLCK) and later copies it to the unit control
block (UCB$L _DLCK) as a UCB is created for each unit on the controller.

The acquisition of device locks is exempt from the spin lock rank rule. As
long as the processor does not violate IPL synchronization, it may successfully
obtain an unowned device lock while holding any system spin lock and,
likewise, may successfully obtain unowned system spin locks while holding a
device lock. However, a processor can acquire only one device lock at a given
IPL.

3.3 Device Driver Synchronization

This section describes how VMS and driver processing maintain
synchronization during the processing of a general 1/O request. It later
focuses on the specific strategies drivers employ to synchronize at the device
and fork levels.

3-15

Synchronization of /0O Request Processing

3.3 Device Driver Synchronization

3.3.1

3-16

Overview of the Synchronization of an 1/O Operation

Figure 3-1 diagrams the general flow of the processing of a single I/O
request, as synchronization is achieved by raising and lowering IPL, and, in
a multiprocessing environment, by also obtaining and releasing the necessary
spin locks.

Figure 3—1 Synchronizing 1/0 Request Processing

o SAVE DRIVER
CHECK FOR o X
POWER FAILURE;
START DEVICE DEVICE LOCK;
WAIT FOR
INTERRUPT
IPLS_POWER |
(6]
OBTAIN
DEVICE LOCK
Device IPL
Y
4]
OBTAIN FORK LOCK; OBTAIN FORK LOCK;
MODIFY & START-1/0 CALL DRIVER'S RELEASE
READ UCB: ROUTINE START-/0 FORK LOCK
RELEASE FORK LOCK ROUTINE
Fork PL J
(3] (2]
FOT 0 FOT
ROUTINE _ StRVICE ROUTINE
IPL$_ASTDEL J
(1]
USER USER
ISSUES PROCESS
Qo RESUMES
IPL O

ZK-6534-HC

Figure 3-1 illustrates the following events:

@ The user program, executing at IPL 0, issues a $QIO system service call.
@ The $QIO system service raises IPL to IPL$_ASTDEL to prepare the 1/0O

request according to the arguments included in the call.

© The driver’s FDT routines execute, mainly at IPL$_ASTDEL.

Synchronization of 1/O Request Processing

1]

3.3 Device Driver Synchronization

Note that during IPL 0 processing and FDT routine activity at IPL$_
ASTDEL, the process requesting the I/O is susceptible to being
rescheduled. In a multiprocessing environment, such an event could
cause I/O processing to resume on a different processor from that on
which it was started.

In certain rare circumstances, an FDT routine must read or modify the
device’s UCB. Because most fields in the UCB may be shared by fork
processes running systemwide it is important that, if the FDT routine
must use them, it issue the FORKLOCK macro to obtain the appropriate
fork lock and raise to fork IPL. (When finished, it relinquishes this
synchronization by issuing the FORKUNLOCK macro.)

The continuation of VMS preprocessing of the I/O request—or the
completion of a previous I/O request on the device unit—ensures that
the driver’s start-I/O routine is placed into execution at fork IPL and,
in a multiprocessing system, holding the corresponding fork lock. The
start-I/O routine accesses various UCB fields and contends for adapter
resources synchronized systemwide by the fork lock.

Once it has further prepared the I/O request and obtained the required

resources, it generally must access device registers. Device registers and
those UCB fields that record their status are synchronized at device IPL.
A processor in a VMS multiprocessing system must hold the appropriate
device lock to access the device database.

While executing a critical code sequence, such as those instructions that
start a device, the start-I/O routine raises the IPL of the local processor
to IPLS_POWER to check for a processor power failure. In a VMS
multiprocessing environment, the executing processor retains the device
lock during this sequence.

After it activates the device, the start-I/O routine calls a VMS routine
that saves the driver’s context in the UCB fork block, suspends driver
processing, releases the device lock, if held, and restores IPL to a previous
level.

VMS at this point returns control to the code that initiated the fork thread
where, in a VMS multiprocessing system, the fork lock is released.

After VMS services interrupts at intervening IPLs, the user process
resumes.

Figure 3-2 illustrates the synchronization involved in the completion of an
I/0 request from the point of the device interrupt to the delivery of ASTs
to the user program. There is little linear flow involved in the completion
of an I/O request. The servicing of interrupts, represented by jagged lines
in the figure, the requesting of software interrupts, and the REI instruction
contribute to the flow that completes an 1/O request.

3-17

Synchronization of 1/0 Request Processing
3.3 Device Driver Synchronization

3-18

Figure 3—2 Synchronizing I/0 Request Completion

o[9
INTERRUPT DRIVER RESUMES;
SERVICE ROUTINE PLACES CONTEXT
—7___| OBTAINS DEVICE IN FORK BLOCK:
LOCK; SERVICES D FORK: '
DEVICE, RELEASES jel
DEVICELOCK; RE
Device IPL
© FORK © DRIVER WRITES 'SO(;?ESDTS%?,IQSE.
DISPATCHER STATUS INTO UCB; QUEUES SPECIAL.
—7___| OBTAINS FORK INVOKES REQCOM KERNEL MODE AST
LOCK; MACRO; REQUESTS TO PROCESS:
RESUMES DRIVER [*® 7 INTERRUPT AT RELEASES SCHED
FORK PROCESS IPL$_IOPOST SPINLOCK
Fork IPL
@;‘9
POSTPROCESS
— Z— /o REQUEST;
REI -
IPL$_IOPOST
——— | oDpeuvemast
TO PROCESS;
REI
IPLS_ASTDEL
DELIVER USER
—7 | astTO
PROCESS;
EXECUTION
RESUMES
IPL O

ZK-6535-HC

Figure 3-2 illustrates the following events:

© A device interrupt in the range of IPL 20 through IPL 23 triggers the
execution of the driver’s interrupt service routine. The interrupt service
routine locates the device unit's UCB and, in a VMS multiprocessing
system, immediately obtains the appropriate device lock. After it analyzes
the interrupt and determines that it is expected, it reactivates the driver,

still at device IPL and holding any acquired device lock.

® The driver briefly examines and/or saves the contents of the device’s
registers, but, in order to permit other device interrupts to be serviced
and to allow other high priority system tasks to proceed, it lowers its
own priority. The driver accomplishes this by requesting VMS to save
some driver context in the UCB fork block and place it into one of the
processor-specific fork queues at IPLs 8 through 11 serviced by the fork

dispatcher. When it does so, VMS returns control to the driver’s interrupt
service routine.

Synchronization of 1I/O Request Processing
3.3 Device Driver Synchronization

©® The interrupt service routine releases any acquired device lock and issues
an REI instruction to dismiss the device interrupt.

© When IPL drops below the driver’s fork IPL, the fork dispatcher
restores the context of the driver and resumes its execution. In a VMS
multiprocessing system, the fork dispatcher obtains the necessary fork
lock prior to placing the driver into execution.

©® Still synchronized at fork level, the driver fork process analyzes the
success of the I/O operation and writes status into RO and R1. VMS
then inserts the IRP into the local processor’s I/O postprocessing queue,
requests a software interrupt at IPL$_IOPOST, and starts any I/O request
that may be waiting for the device. Eventually, VMS returns to the fork
dispatcher and, if no other fork processes are queued for that IPL, issues
an REI instruction to dismiss the software interrupt.

O® When the processor’s IPL falls below IPL$_IOPOST, the I/O
postprocessing routine removes the IRP from the I/O postprocessing
queue, adjusts process quota usage, and deallocates system buffers for
write functions.

@ When the routine finishes processing the IRP, it queues a special kernel-
mode AST to the process that issued the original $QIO request. To
accomplish this, it obtains the SCHED spin lock (raising to IPL$_SYNCH
in the process) and calls another VMS routine that queues the AST to the
process’s PCB. It then releases the SCHED spin lock.

© The I/O postprocessing routine continues execution at IPL$_IOPOST
until it has serviced all entries in the postprocessing queue. It then issues
an REI to dismiss this software interrupt.

© The special kernel-mode AST routine executes at IPL$_ASTDEL. It
© completes the transfer of the results and status of the I/O request to the
user process.

® The special kernel-mode AST routine can queue a user-mode AST routine
to the user process. When the user process has been rescheduled and its
context reloaded, the user-mode AST routine executes at IPL 0.

3.3.2 Synchronizing the Device Database

A device database ordinarily consists of the device or adapter registers, plus
some storage in the UCB (or in another data structure) that reflects the status
of the device. Routines that access data in the device database must do so at
device IPL (UCB$B_DIPL) in order to maintain synchronization. Generally,
only three driver routines contend for access to the device database.

* Interrupt service routine
¢ Start-I/O routine when loading or reading device registers

¢ Timeout handling routine

In a VMS uniprocessing environment, the start-I/O routine raises its IPL to
device IPL using the DSBINT macro. VMS calls the driver’s timeout handling
routine at device IPL. Because the interrupt dispatcher invokes it at device
IPL, the driver’s interrupt service routine does not need to acquire additional
synchronization.

3-19

Synchronization of 1/O Request Processing
3.3 Device Driver Synchronization

In a VMS multiprocessing environment, these routines must also hold the
appropriate device lock (UCB$L _DLCK). The device lock protecting the
device database is a dynamic spin lock, created by SYSGEN when the device
is configured and its channel request block (CRB) is created. The address of
the device lock is first stored in CRB$L _DLCK and is moved to UCB$L —
DLCK as corresponding UCBs are allocated for each unit on the controller.
VMS calls the driver’s timeout handling routine at device IPL with the device
lock held. The start-I/O routine and the interrupt service routine must
explicitly obtain such synchronization by invoking the DEVICELOCK macro.

The start-I/O routine and timeout handling routine are additionally
synchronized at driver fork level. VMS raises IPL to fork level and obtains the
corresponding fork lock before transferring control to them. This is not the
case, however, with a driver’s interrupt service routine. A device’s interrupt
service routine usually does not hold the fork lock. However, it may have
preempted a thread holding the fork lock, or a fork thread may be running
in parallel on another processor. Therefore, an interrupt service routine must
not change any fields in the UCB that are protected by the fork lock. To
access these fields, an interrupt service routine must fork, as described in
Section 3.3.3.1.

3.3.3 Synchronizing at Driver Fork Level

3-20

A large part of driver code executes in the context of a fork process. As a
fork process, driver code that must access data in its fork database does

so at a single, specific fork IPL (from IPL 8 to IPL 11) and—in a VMS
multiprocessing environment—holding a single, specific fork lock (see
Section 3.2.1). The fork database consists of those fields in the unit control
block (UCB) not explicitly synchronized at device level and such adapter or
controller resources as map registers or data paths.

The system routine EXE$INSIOQ initially creates a driver fork process as

it attempts to deliver a preprocessed I/O request to the driver’s start-1/O
routine. If the device unit is busy (that is, a fork process is already active
servicing a prior request for that device), EXE$INSIOQ inserts the IRP into
the UCB’s pending-I/O queue. If the device unit is not busy, EXESINSIOQ
calls IOCSINITIATE to transfer control to the driver’s start-I/O routine. The
start-I/O routine begins to execute at fork IPL holding the associated fork
lock, if necessary.

When the driver fork process later calls IOC$REQCOM to complete
processing of a prior I/O request, IOC$REQCOM executes within the driver
fork process, dequeues the next IRP on the pending-I/O queue, and begins
processing it.

Like other processes, fork processes can be interrupted or suspended. The
local processor interrupts a fork process when the processor receives a
request for an interrupt at a higher priority level. To minimize the number of
interruptions, fork processes sometimes execute at raised IPLs, and even raise
their IPL to block all other interrupts, if necessary.

VMS stalls a driver’s fork process when the process requests an unavailable
resource such as a controller’s data path (see Section 3.4). When suspended, a
driver fork process, like other processes, preserves some context information.
As VMS preserves some of the context of a normal process in its hardware
PCB, so it preserves a driver fork process’s context—however abbreviated—in
a fork block. Fork context consists of the following:

Synchronization of I/O Request Processing
3.3 Device Driver Synchronization

¢ Two general purpose registers (R3 and R4)
* The program counter (PC)

* A fork block (usually the UCB), the address of which is in R5 at the time
of the suspension

Minimal context helps ensure that, when a driver fork process is ready to be
resumed, the resulting context-switching occurs swiftly.

3.3.3.1

Forking and the VMS Fork Dispatcher
Forking allows high IPL code to do the following:

¢ Continue executing a particular code thread at a lower IPL than the IPL
at which the code thread was initiated

* Synchronize with other code executing at the lower IPL

Usually, a driver forks after servicing a device interrupt at an IPL from 20
through 23. By forking, the driver lowers the IPL at which it continues

to process the device interrupt from device IPL to fork IPL (8 through

11). Forking not only allows the driver to process efficiently that part of
interrupt request processing that is not time critical, but it allows the driver
to synchronize its execution with other fork process code threads initiating
1/0. For example, forking helps the driver synchronize its use of a device
unit’'s UCB with other code threads interested in tho structure. Moreover, the
driver, by forking after completing the initial servicing of a device interrupt,
allows other device interrupts to occur at that device IPL.

To fork, either the driver’s interrupt service routine or the start-I/O routine,
when resumed by the interrupt service routine, invokes the VMS macro
IOFORK. The IOFORK macro saves fork process context in the UCB fork
block, places the fork block in the local processor’s fork queue for the specific
fork IPL, and requests a software interrupt for that IPL. When that interrupt
is ultimately serviced, driver fork processing resumes at the lower level.

There are other specialized instances in which a device driver may fork.

As discussed in Section 11.1.5, the driver’s unit initialization routine or
controller initialization routine, while executing at IPL 31, may fork in order
to permanently allocate controller resources, system nonpaged dynamic
memory, or system page-table entries. To fork, these routines use the VMS
macro FORK. The FORK macro allows a driver to fork, utilizing the fork
block, the address of which is placed in R5. Because the channel request
block (CRB) is available to these routines and contains a fork block, they
invoke the VMS macro FORK with the address of the CRB in R5.

One interrupt service routine (EXE$FORKDSPTH) handles all fork-process
dispatching on each processor in a VAX system. When the processor grants
an interrupt at fork IPL, the fork dispatcher saves RO through R5 on the
stack and processes the local fork queue that corresponds to the IPL of the
interrupt. To do so, it removes an entry from the fork queue, restores the
fork process context from the fork block, obtains ownership of the fork lock
specified in the fork block (in a VMS multiprocessing system), and reactivates
the suspended fork process.

When that fork process is completed, the dispatcher releases the fork lock and
examines the fork queue. If an entry exists on the queue, the fork dispatcher
removes it, restores the context of the fork process, secures the fork lock
specified in the fork block, and reactivates the fork process. This sequence is
repeated until the fork queue is empty. When the queue is empty, the fork

3-21

Synchronization of 1/O Request Processing
3.3 Device Driver Synchronization

3-22

dispatcher restores RO through R5 from the stack and dismisses the interrupt
with an REI instruction.

Figure 3-3 illustrates the fork queue structure.

Figure 3—3 Processor-Specific Fork Queue Structure

IPL 11

| FORK QUEUE
I LISTHEAD
IPL 10 CPU$Q_SWIQFL [32]

IPL 9

IPL 8

IPL 7

IPL 6

IPL 11
FORK QUEUE BFI%RCKK =
LISTHEAD

IPL 10

CPUSQ_SWIQFL {40]

CPU$Q_SWIQFL [24] Lo

FORK QUEUE
CPUSQ_SWIQFL [16] LISTHEAD

CPU$Q _SWIQFL [0] FORK QUEUE —
LISTHEAD BLock

IPL 6
FORK QUEUE FORK |

LISTHEAD BLOCK

ZK-584-81

3.3.3.2

Restrictions on Fork Processes
A driver fork process executes under the following constraints:

It should not attempt to refer to the address space of the process initiating
the I/0 request.

It can use only RO through R5 freely; it must save other registers before
use and restore them after use. Use of registers other than RO through R5
is strongly discouraged.

It must clean up the stack after use; the stack must be in its original state
when the fork process relinquishes control to any VMS routine.

It must execute at IPLs between the driver’s fork IPL and IPL$_POWER.
It must not lower IPL below the driver’s fork IPL except by creating a
fork process to execute at a lower IPL.

If executing in a VMS multiprocessing environment, it cannot attempt to
obtain system spin locks with lower ranks than that of its fork lock.

When it returns control to the fork dispatcher, the fork process must be
at the same fork IPL and, if executing on a VMS multiprocessing system,
own the appropriate fork lock.

Synchronization of I/O Request Processing
3.4 Resource Wait Queues

3.4 Resource Wait Queues

The processing of an 1/0 request often requires shared system resources
such as memory and I/O adapter map registers. Drivers that depend on
such resources synchronize access to these resources and their respective
resource wait queues by executing at fork IPL and, in a VMS multiprocessing
environment, obtaining ownership of the associated fork lock.

The $QIO system service and fork processes call VMS routines to allocate and
deallocate shared system resources. Because the resources are limited, I/0O
processing might be delayed until any such needed resources are released.
Thus, synchronization of access to these resources can have a substantial
impact on the processing of 1/O requests.

For example, the $QIO system service calls a VMS routine to allocate
nonpaged system space for an IRP. If there is insufficient nonpaged pool,
the routine calls another VMS routine to save the process context and change
the process state to resource-wait mode (also called miscellaneous wait, or
MWAIT). As a result of waiting, the process is a candidate to be swapped
out of memory. When nonpaged pool becomes available, the scheduler
reschedules the process.

During fork process execution at elevated IPLs, driver context is very small.
At any point, the driver can obtain all details about an 1/O request by
referring to the I/O database (see Appendix A). The driver needs only the
address of the device’s UCB, which is the key to the rest of the database.
Therefore, VMS routines that control driver resources, such as map registers,
use fork blocks and resource-wait queues to save minimal driver context.
Each entry in a queue is a fork block (or UCB) that contains R3, R4, and the
continuation PC of the waiting fork process.

When the awaited resource becomes available, the routine controlling the
resource performs the following steps:

e Restores the UCB address to R5
* Restores the saved registers R3 and R4
¢ Grants the resource

¢ Transfers control to the saved driver return PC address

Because the VMS routine that controls a particular resource stalls any driver
that requests an unavailable resource, drivers are unaware of execution being
suspended and subsequently reactivated. Drivers must not leave anything on
the stack, or in general purpose registers, other than R3, R4, and R5, when calling
a routine that might suspend the driver’s execution.

3.4.1 Competing for a Controller’'s Data Channel

A controller’s data channel is a VMS synchronization mechanism that
guarantees that only one unit of a multiunit controller uses the controller
at one time.

Devices that share a controller, such as disk units, own the controller’s data
channel only when a VMS routine assigns the channel to the unit’s fork
process. The device driver’s start-I/O routine issues the REQPCHAN macro
to obtain the channel. '

3-23

Synchronization of 1/0 Request Processing
3.4 Resource Wait Queues

In contrast, a device unit on a single-unit controller always owns the
controller’s data channel. The device driver’s controller (or unit) initialization
routine affirms this fact by moving the address of the device’s UCB into
IDB$L._OWNER. Generally, the driver’s start-I/O routine does not request a
single-unit controller.

In each case, the driver’s start-I/O routine must take steps to synchronize its
access to device registers with any access of these registers by the driver’s
interrupt service routine. The routine does so by issuing the DEVICELOCK
macro (as described in Section 3.1.4). The DEVICELOCK macro raises IPL
to device IPL and, in a VMS multiprocessing system, obtains the device lock
associated with the controller.

An RK611 controller, for example, controls as many as eight RK06/RK07
devices. The disk driver’s fork process must gain control of the controller’s
data channel before starting an I/O operation on the unit associated with the
fork process. The disk driver’s start-I/O routine uses the following sequence
to start a seek operation on an RK07 device:

1 The start-I/O routine requests the controller’s data channel by invoking a
VMS channel arbitration macro (REQPCHAN).

2 The VMS routine tests the CRB mask field to determine whether the
controller’s data channel is available.

3 If the channel is available, the VMS routine allocates the channel to
the fork process and returns the address of the device’s CSR to the fork
process.

If the channel is busy, the VMS routine saves the driver fork context in
the UCB fork block and inserts the fork block address in the controller’s
channel wait queue.

4 When the fork process resumes execution, the process owns the controller
channel. The fork process can then obtain the device lock (raising IPL to
device IPL) and modify the device’s registers to activate the device.

5 The driver’s start-I/O routine then requests the VMS operating system to
suspend driver processing in anticipation of an interrupt or timeout and
to release the channel.

6 The VMS channel-releasing routine assigns channel ownership to the
next fork process in the channel wait queue, loads the CSR address into a
general register, and reactivates the suspended fork process.

7 The reactivated fork process continues execution as though the channel
had been available in the first place.

The VMS channel-arbitration routines keep track of controller availability

using a flag field in the CRB. The fork process must always request and
release the controller’s data channel by invoking these routines.

3-24

4 Overview of 1/O Processing

Under the VMS operating system, I/O processing occurs in three major
phases:

* I/0 request preprocessing
¢ Device activation and subsequent handling of the device interrupt

* 1/0 postprocessing

When a user process issues an I/O request, the Queue I/O Request ($QIO)
system service gains control and coordinates preprocessing of the request.
The last driver FDT routine called by the $QIO system service calls a VMS
routine that creates a driver fork process to execute the driver’s start-1/O
routine. This routine activates the device.

When the transfer is completed, the device requests an interrupt that
results in execution of the driver’s interrupt service routine. This routine
handles the interrupt and requests resumption of the driver fork process
to perform device-dependent [/O postprocessing. The driver fork process
finally transfers control to the system to perform device-independent 1/0O
postprocessing. Figure 4-1 illustrates the sequence of events.

The $QIO system service is dispatched by means of a corresponding system
service vector in process P1 space. This vector contains a CHMK instruction
that causes an exception that alters the process’s access mode to kernel and
dispatches to the service-specific procedure, EXE$QIO. For the purposes of the
discussion in this section, as well as the rest of the book, Figure 4-2 portrays
the flow of an I/O request from its system service entry point to its servicing
by VMS executive routines and driver code. Discussion of other entry points
appears in Chapters 8, 9, and 10.

4.1 Preprocessing an 1/O Request

EXE$QIO performs device-independent preprocessing of an I/O request and
calls driver FDT routines to perform device-dependent preprocessing. To
preprocess an I/0 request, EXE$QIO takes the following steps:

* Verifies that the requesting process has assigned a process I/O channel to
the target device

* Locates the device driver in the I/O database

e Validates the I/O function code

® Checks process 1/O request quotas

* Validates the I/O status block

* Allocates and sets up the I/O request packet (IRP)

e Calls driver FDT routines to perform device-dependent preprocessing

Overview of 1/O Processing
4.1 Preprocessing an 1/O Request

Figure 4—1 Sequence of Driver Execution

USER PROCESS CONTEXT

USER STACK | USER PROCESS ISSUES $Q10.
USER PROCESS CONTEXT T
KERNEL STACK QUEUE 1/0 REQUEST SYSTEM SERVICE

PERFORMS DEVICE-INDEPENDENT 1/0
PREPROCESSING.

QUEUE 1/0 SYSTEM SERVICE CALLS DRIVER
FDT ROUTINE(S) TO PERFORM DEVICE-
DEPENDENT PREPROCESSING.

#

LAST FDT ROUTINE CALLS VMS ROUTINE TO
QUEUE 1/0 REQUEST AND CREATE A DRIVER
FORK PROCESS.

FORK PROCESS CONTEXT
KERNEL STACK ONCE ACTIVATED THE DRIVER FORK PROCESS
EXECUTES THE START 1/0 ROUTINE.

l

START 1/O ROUTINE OBTAINS NECESSARY

RESOURCES (FOR EXAMPLE, CONTROLLER

CHANNEL, MAP REGISTERS) AND ACTIVATES
THE DEVICE.

START 1/0 ROUTINE INVOKES A WAIT FOR
INTERRUPT MACRO THAT SAVES THE FORK
PROCESS CONTEXT AND SUSPENDS THE
START I/0 ROUTINE.

HARDWARE INTERRUPT OCCURS WHEN
REQUESTED BY DEVICE

INTERRUPT CONTEXT
INTERRUPT STACK

INTERRUPT DISPATCHER ACTIVATES
INTERRUPT SERVICE ROUTINE.

l

DRIVER'S INTERRUPT SERVICE ROUTINE
HANDLES THE INTERRUPT AND TRANSFERS
CONTROL TO THE DRIVER AT THE
INSTRUCTION FOLLOWING THE WAIT FOR
INTERRUPT INVOCATION.

!

THE DRIVER INVOKES IOFORK TO BE
RESCHEDULED AT FORK IPL AS A FORK PROCESS.

FORK PROCESS CONTEXT
INTERRUPT STACK ONCE RESCHEDULED AS A FORK PROCESS,
THE DRIVER EXECUTES THE REST OF THE
DRIVER CODE THAT PERFORMS DEVICE-
DEPENDENT 1/0 COMPLETION.

f

THE DRIVER THEN CALLS A VMS ROUTINE TO PERFORM
DEVICE-INDEPENDENT /0 COMPLETION.
i

INTERRUPT CONTEXT '

INTERRUPT STACK VMS QUEUES A KERNEL MODE AST TO THE
PROCESS THAT ORIGINALLY ISSUED THE I/0
REQUEST.

USER PROCESS CONTEXT
KERNEL STACK ONCE DELIVERED, THE KERNEL MODE AST

ROUTINE RUNS IN USER PROCESS CONTEXT

TO READ DATA INTO THE USER'S BUFFER

FOR A BUFFERED 1/0 REQUEST,

RETURN FINAL STATUS, AND, IF REQUESTED,
QUEUE A USER MODE AST AND/OR SET AN

EVENT FLAG.

USER PROCESS CONTEXT T
USER STACK J

USER MODE AST

ZK-918-82

4-2

Figure 4—2 Detailed Sequence of VMS 1/0 Processing

Overview of 1/0 Processing
4.1 Preprocessing an I/O Request

USER'S SYSTEM SERVICE CHANGE MODE $Q10 SYSTEM
PROGRAM VECTOR DISPATCHER SERVICE JSB
CALL[sYssalo: EXESCMODKRNL:: EXE$QIO::; RSB| FDT|
> : (CALL) . —
a0 CHMK S S—— JSB
RET SERVICE _EXIT: T
RET : - | exesaloorvekT | RsB[ExEsiNsioa |
REI lJMP lJSB
—RE—T——-{ EXE$QIORETURN [1ocsINTIATE |
fome
DRIVER y
10 START: _ RSB
. DRIVER
_ VLF.IKPE' . INTSERV: . DEVICE
IPL$_IOPOST JsB . ‘_S INTERRUPT
SOFTWARE INTERRUPT .
? RSB .
IOFORK* E
IOCSIOPOST - L T REI
. 1S FORK DISPATCHER
. EXE$FORKD.SPTH:: FORK IPL
duoue SAPSGTC‘a' . A SOFTWARE
ernel
; REQ.COM] INTERRUPT
. JMP .
. TO .
REI IOC$INITIATE ati
I0C$REQCOM::
; . ucB
SPocial kemel JMP | SOFTINT #PLS_IOPOST
set‘ event flag if more IRPs
h |
- write 10SB else . Fl;OsRK BLOCK
- copy data M FR4 *
- update quotas RSB PO
*DRIVER CONTENT SAVED IN FORK BLOCK OF UCB .

Process I/O Channel Assignment

The first step in preprocessing an I/O request is to verify that the I/O request
specifies a valid process I/O channel. The process 1/O channel is an entry
in a system-maintained process table that describes a path of reference from
a process to a peripheral device unit. Before a program requests I/O to a
device, the program identifies the target device unit by issuing an Assign-
I/O-Channel ($ASSIGN) system service call. The $ASSIGN system service
performs the following functions:

Locates an unused entry in the table of process I/O channels

Creates a pointer to the device unit in the table entry for the channel

Returns a channel-index number to the program

4-3

Overview of 1/O Processing
4.1 Preprocessing an 1/O Request

When the program issues an I/O request, EXE$QIO verifies that the channel
number specified is associated with a device and locates the unit control block
associated with the specified channel using the field CCB$L _UCB.

Refer to Figure A—4 and Table A-3 for an illustration of the channel control
block and a description of its contents.

4.1.2 Locating a Device Driver in the /O Database

4-4

A unit control block (UCB) that describes a device unit exists for each device
in the system. The UCB indicates the current state of the device unit by
recording such information as the following:

¢ Whether the device is active (UCB$V_BSY in UCB$L _STS)
* What I/O request is being processed (UCB$L _IRP)
* Where transfer buffers are located (UCB$L _SVAPTE)

Because drivers run as fork processes and cannot use process address space
to store additional context, drivers use the UCB for temporary data storage
during I/O processing. (Section 6.1 describes how you can allocate additional
UCB space for storing data or device-dependent driver context.)

The UCB also holds the context of a driver fork process when VMS I/0
routines suspend the fork process to wait for an asynchronous event such as
a device interrupt.

Using information in the UCB, a driver can find other I/O data structures
associated with the device, including the channel request block, interrupt
dispatch block, and the device data block.

Figure A-17 represents a UCB and Table A-16 describes its fields.

4.1.2.1

Channel Request Block

The channel request block (CRB) allows the operating system to manage the
controller data channel. Among its contents are the following:

* Code that transfers control to a driver’s interrupt service routine (CRB$L _
INTD)

* A pointer to the driver’s interrupt service routine (CRB$L _
INTD+VECS$L _ISR)

® Addresses of a driver’s unit and controller initialization routines (CRB$L _
INTD+VECS$L _UNITINIT, CRB$L _INTD+VECS$L _INITIAL)

* A pointer to the interrupt dispatch block (IDB), which further describes
the controller (CRB$L _INTD+VEC$L _IDB)

Controllers can be either multiunit or dedicated.

All UCBs describing device units attached to a single multiunit controller
contain a pointer to a single CRB (UCB$L _CRB). For these controllers, a
VMS routine uses fields in the CRB (CRB$L _WQFL, CRB$B._MASK) and
IDB (IDBSL _OWNER) to arbitrate pending driver requests for the controller.
When the system grants ownership of a multiunit controller data channel to a
driver fork process, the fork process can initiate an I/O operation on a device

Overview of 1/O Processing
4.1 Preprocessing an I/O Request

attached to that controller. Figure 4-3 illustrates the data structures required
to describe three devices on a multiunit controller.

Figure 4—-3 Data Structures for Three Devices on One Controller

CRB

ucB ucsB ucs

IDB

ZK-920-82

The VMS operating system does not use the CRB to synchronize 1/0
operations for a dedicated controller, as the controller manages but a single
device. Nevertheless, the CRB still is present and is used by drivers and
operating system routines.

See Figure A-6 and Table A-5 for an illustration of the CRB and a description
of its contents.

4.1.2.2

Interrupt Dispatch Block

The CRB contains a pointer to an interrupt dispatch block (IDB) (CRB$L —
INTD+VEC$L _IDB). In turn, the IDB (at IDB$L _UCBLST) points to all UCBs
that share the controller (see Figure 4-3).

The IDB contains the addresses of these three critical data structures:

* The UCB of the device unit, if any, that currently owns the controller data
channel (IDBSL _OWNER)

¢ The control and status register (IDB$L _CSR); it is the key to access to
device registers

* The adapter control block (IDBSL _ADP) that describes the adapter of the
1/0 bus to which the controller is attached

A detailed description of the fields in the IDB appears in Table A-10;
Figure A-11 shows its structure.

Overview of 1/O Processing
4.1 Preprocessing an 1/0 Request

Figure 4-4 illustrates the relationship between the data structures that
describe a group of equivalent devices on two separate controllers. In this
figure, one controller has a single device unit, and the other controller has
two device units. Devices on both controllers share the same driver code.

Figure 4—4 1/O Database for Two Controllers

DB IDB
A A
CRB CRB
A
ucB ucB ucB
DDT
DEVICE
DRIVER

ZK-1765-84

4.1.2.3

Device Data Block

All UCBs describing device units attached to a single controller contain
a pointer (UCB$L _DDB) to a single device data block (DDB). The DDB
contains two fields that identify the device and its driver:

¢ The generic device/controller name (DDB$T_NAME)

* The name of the device’s driver as obtained from the driver prologue
table (DDB$T_DRVNAME)

Table A-7 further describes the fields of the DDB. For a representation of its
structure, see Figure A-8.

Overview of 1/O Processing
4.1 Preprocessing an |/O Request

4.1.3 Validating the I/O Function

Using the I/0O database, EXE$QIO locates the address of the driver’s function
decision table by following a chain of pointers that begins in the UCB of the
target device:

UCB — DDT — FDT
EXE$QIO then uses data in the function decision table to analyze the I/O

function. The procedure confirms that the function specified in the I/0
request is a valid function for the device.

4.1.4 Checking Process |/O Request Quotas

EXE$QIO determines whether the I/O request being readied will cause the
process to exceed its quota for outstanding direct or buffered I/O requests.

If the process’s requests remain under quota, the system service allows it

to continue I/O preprocessing. Where quota is exceeded, the procedure
examines the process’s resource wait flag (PCB$V_SSRWAIT in PCB$L _STS).

If the flag is clear, EXE$QIO aborts the I/O request. However, if the flag is
set, it places the process in a wait state until previously issued I/O requests
complete and the number of requests drops below quota. When this occurs,
process execution resumes, at which time EXE$QIO charges process quotas as
appropriate for the requested operation.

4.1.5 Validating the I/O Status Block

If the I/O request specifies a quadword [/O status block to receive final I/0
status information, EXE$QIO determines whether the process issuing the
request has write access to the status block locations specified. If the process
has write access, EXE$QIO fills the quadword with zeros. If the process does
not have write access, the procedure terminates the request with an error
status.

4.1.6 Allocating and Setting Up an I/O Request Packet

If validation of the I/O request succeeds to this point, EXE$QIO allocates a
block of nonpaged pool to contain an IRP.

Before EXE$QIO allocates an IRP, it raises the IPL of the processor to IPL$__
ASTDEL to block any other asynchronous activity in the process. The new
IPL prevents possible deletion of the process; process deletion would result in
the operating system’s losing track of the pool allocated for the IRP.

EXE$QIO attempts to allocate an IRP from a lookaside list containing
preallocated IRPs. If no preallocated packets exist, the procedure calls a VMS
routine that allocates an IRP from general nonpaged pool. This allocating
routine synchronizes with the rest of the system so that it can allocate the
memory needed.

Overview of 1/O Processing
4.1 Preprocessing an 1/O Request

4-8

EXE$QIO resumes I/O preprocessing by writing a description of the I/O
request into the fields of the IRP as follows. Note that this data encompasses
the device-independent information associated with the request. It is up to
the device driver’s FDT routines or VMS common FDT routines to fill in

the device-dependent portions of the IRP, as described in Section 4.1.7 and

Chapter 7.

Data Field(s)

Size in bytes of the IRP IRP$W_SIZE
Identification of the block as an IRP IRP$B_TYPE
Access mode of the process at the time of the IRP$B_RMOD
request '

Process ID of the requesting process IRP$L _PID

Address of an AST routine (if specified in the
request) and its parameter’

For file-structured devices, address of a
window control block (WCB) that describes
the physical location of part of the file

Address of the target device's UCB
1/0 function code?

Number of event flag to set when processing
of the 1/0 request is complete

Base software priority of the requesting
process

Address of an I/0O status block (if specified in
the request)

Process 1/0 channel index number

A flag indicating whether the 1/O function is for
buffered or direct I/0O

A flag indicating whether the I/O request is an
input request

A flag indicating whether the 1/0 function is a
physical-1/O function

Address of a diagnostic buffer (if specified in
the request)®and a flag indicating that the buffer
is present

Address of process’s access rights block
1/0 transaction sequence number

IRP$L_AST, IRPSL _ASTPRM

IRP$L_WIND

IRP$L _UCB

IRP$W_FUNC
IRP$B_EFN

IRP$B_PRI

IRP$L _10SB

IRPSW_CHAN
IRP$V_BUFIO in IRP$W_STS

IRPSV_FUNC in IRP$W_STS

IRP$V_PHYSIO in IRP$W_STS

IRPSL _DIAGBUF, IRP$V_
DIAGBUF in IRP$W_STS

IRPSL _ARB
IRP$L_SEQNUM

'If the request specifies an AST, EXE$QIO also verifies that the request would not cause
the process to exceed its AST quota. If it would, EXE$QIO aborts the request.

2For nonfile devices (DEVSV_FOD clear in UCB$L_DEVCHAR), EXE$QIO reduces read-
and write-virtual-block functions to their equivalent read- and write-logical-block functions

before storing a code.

3The size of the diégnostic buffer is specified in the driver dispatch table of the driver
servicing the device unit to which the request is made. See Section 6.2 for more

information.

4.1.7

Overview of 1/O Processing
4.1 Preprocessing an 1I/O Request

Figure A-12 illustrates the format of an IRP; Table A-11 describes each of its
fields.

FDT Processing

The driver’s function decision table controls the device-dependent
preprocessing of an I/O request. Figure 4-5 illustrates the layout of a function
decision table.

Figure 4—5 Layout of a Function Decision Table

2 longwords

{ valid 1/0

functions

buffered 1/0O
2longwords (pPm—m——a———————

3 longwords mask

3 longwords mask

routine address

ZK-921-82

The I/0 function code specified in an I/O request is a 16-bit value consisting
of two fields:

* A 6-bit I/O function code (bits 0 through 5) that permits you to define
64 unique I/O function codes for every device type. Table 6-1 lists the
function codes defined by VMS. Section 6.3.2 describes how you can
define device-specific function codes.

e A 10-bit I/O function modifier (bits 6 through 15). In subsequent
processing of the [/O request, the driver’s start-I/O routine uses both
1/0 function code and I/O function modifier, as stored in IRP§W_FUNC,
to create a device-specific function code to use in device activation.

The first two entries of a function decision table are two longwords (64
bits) each. The first quadword entry is the legal function bit mask of all 1/O
function codes that are valid for the device. The second quadword entry
is the buffered function bit mask of those valid I/O functions that are also
buffered-1/O functions.

4-9

Overview of 1/O Processing
4.1 Preprocessing an 1/O Request

Note:

EXE$QIO uses the value of the low-order six bits of the I/O function code to
determine which bit to check in each of these bit masks. For example, if the
function code has a value of 22, the procedure checks the twenty-third bit (bit
22) of each bit mask. Thus, EXE$QIO determines whether the I/O function
code is valid for the device and is able to charge against the appropriate quota
of the requesting process for a direct- or buffered-I/O operation.!

Subsequent entries in the function decision table are three longwords long,
and it is these entries that EXE$QIO uses to dispatch to the appropriate I/O
preprocessing routine (FDT routine) for the requested function. Again, the
first quadword is a 64-bit bit mask, and is checked by EXE$QIO in exactly
the same way as the legal function bit mask and the buffered function bit
mask. These action routine bit masks, however, contain the address of an
FDT routine in the subsequent longword, and it is to this FDT routine that
EXE$QIO transfers control when it discovers the bit corresponding to the I/O
function set in the quadword.

Some FDT routines are present in the operating system because they provide
common services for many devices. Section 7.5 describes these routines.
Other routines are included in the device driver because they perform device-
dependent services.

EXE$QIO uses the action routine bit mask entries in the function decision
table to call FDT routines in the driver or system, according to the following
strategy:

1 If the bit corresponding to the function code is set in the action routine
bit mask, EXE$QIO calls the FDT routine whose address appears in the
following longword.

e If this I/O function requires additional preprocessing after this
particular FDT routine completes its activity, the FDT routine returns
control to EXE$QIO with an RSB instruction. When EXE$QIO regains
control, it advances to the next action routine bit mask and repeats
step 1.

e If this FDT routine completes all necessary preprocessing for this
particular I/O function, then it transfers control to a VMS routine that
queues the IRP or completes the request.

2 If the bit corresponding to the function code is not set, EXE$QIO advances
to the next action routine bit mask in the table and repeats step 1.

A single function decision table can specify that EXE$QIO call more
than one FDT routine to perform the many and varied steps in the
preprocessing of a single I/O function. However, it is the responsibility
of the FDT routine that ultimately completes the preprocessing to end
the scan (by EXE$QIO) of the function decision table. An FDT routine
accomplishes this by transferring control to either a VMS routine that
queues the I/O request for the driver’s start-I/O routine or one that
completes or aborts the request (see Figure 4-2). In other words, for each
valid I/O function code for a device, an FDT entry must contain the
address of a routine that ends I/O preprocessing.

! For physical- and logical-I/O operations, EXE$QIO also verifies that the process making the I/O request has

suitable privileges.

4-10

Overview of 1/O Processing
4.1 Preprocessing an |/O Request

Figure 4—6 FDT Routines and I/O Preprocessing

QIO DETERMINES
FUNCTION
CODE VALUE

CORRESPONDING NO TERMINATE

BIT SET IN MASK OF REQUEST AND
VALID FUNCTIONS, RE‘[)USm TO

CHECK FOR
BUFFERED
/0

ADVANCE
TO
NEXT
ENTRY

1S
CORRESPONDING
BITSET IN FDT
ENTRY

NO

CALL
SUBROUTINE

-

SUBROUTINE PERFORMS
1/0 PREPROCESSING
AND RETURNS OR
CALLS TO QUEUE
PACKET OR TERMINATE

RETURN TO QIO

CALL VMS CALL VMS
ROUTINE TO ROUTINE TO
QUEUE PACKET COMPLETE OR
FOR DRIVER ABORT 1/0

2K-922-82

4-11

4.2

4.2.1

Overview of 1/O Processing
4.1 Preprocessing an 1/O Request

FDT routines execute in the context of the process that requested the I/O
operation. Thus, FDT routines can access process virtual address space. Once
all FDT preprocessing is complete, however, the rest of the processing for the
I/0 request continues in the limited context of a driver fork process or an
interrupt service routine.

Handling Device Activity

When I/O preprocessing is complete, the last-called FDT routine generally
jumps (with a JMP instruction) to a routine called EXE$QIODRVPKT.?
EXE$QIODRVPKT, in turn, transfers control (using a JSB instruction) to
EXE$INSIOQ, the VMS routine that queues IRPs and arbitrates device
activity. (See Figure 4-2 for a representation of the flow of I/O request
processing at this juncture.)

Creating a Driver Fork Process to Start 1/O

EXES$INSIOQ creates only one driver fork process at a time for each device
unit on the system. As a result, only one IRP for each device unit is serviced
at one time. EXE$INSIOQ determines whether a driver fork process exists for
‘the target device, as follows:

e If the device is idle, no driver fork process exists for the device; in
this case, EXE$INSIOQ immediately calls IOC$INITIATE to create and
transfer control to a driver fork process to execute the driver’s start-1/O
routine.

* If the device is busy, a driver fork process already exists for the device,
servicing some other I/O request. In this case, EXE$INSIOQ calls
EXE$INSERTIRP to insert the IRP into a queue of IRPs waiting for
the device unit. The routine queues the IRP according to the base priority
of the caller. Within each priority, IRPs are in first-in/first-out order. The
completion of the current I/O request triggers the servicing of the I/O
request that is first in the queue, according to the procedure described in
Section 10.1.2.3.

In the latter case, by the time the driver’s start-I/O routine gains control to
dequeue the IRP, the originating user’s process context is no longer available.
Because the context of the process initiating the I/O request is not guaranteed
to a driver’s start-1/O routine, the driver must execute in the reduced context
available to a fork process.

IOCSINITIATE always initiates the driver’s start-I/O routine with a context
that is appropriate for a fork process. VMS establishes this context by
performing the following steps:

1 Raising IPL to driver fork IPL (and obtaining the associated fork lock in a
VMS multiprocessing environment)

2 Loading the address of the IRP into R3
3 Loading the address of the device’s UCB into R5

2 The rules for exiting from FDT preprocessing, including descriptions of EXE$QIODRVPKT and other FDT exit
routines, appear in Sections 7.2.1 and 7.2.

4-12

4

Overview of 1/O Processing
4.2 Handling Device Activity

Transferring control (with a JMP instruction) to the entry point of the
device driver’s start-I/O routine

The newly activated driver fork process executes under the constraints listed
in Section 3.3.3.2. It executes until one of the following events occurs:

Device-dependent processing of the I/0O request is complete.

A shared resource needed by the driver is unavailable, as described in
Section 3.4.

Device activity requires the fork process to wait for a device interrupt.

4.2.2 Activating a Device and Waiting for an Interrupt

Depending on the device type supported by the driver, the start-I/O routine
performs some or all of the following steps:

1

2
3

8

9

Analyzes the 1/0 function and branches to driver code that prepares the
UCB and the device for that I/O operation

Copies the contents of fields in the IRP into the UCB

Tests fields in the UCB to determine whether the device and/or volume
mounted on the device are valid

If the device is attached to a multiunit controller, obtains the controller
data channel

If the 1/O operation is a DMA transfer, obtains I/O adapter resources
such as map registers and a UNIBUS adapter buffered data path

Raises IPL to device IPL, obtaining the associated device lock in a VMS
multiprocessing environment, to synchronize its access to device registers

Loads all necessary device registers except for the device’s control and
status register (CSR)

Raises IPL to IPL}_POWER and confirms that a power failure that would
invalidate the device operation has not occurred on the local processor

Loads the device’s CSR to activate the device

10 Invokes a VMS routine (using either the WFIKPCH or WFIRLCH macro)

to suspend the driver fork process until a device interrupt or timeout
occurs

This routine (IOC$WFIKPCH or IOC$WFIRLCH) expects to find, among
the items it inherits on the stack, the driver’s fork IPL, as placed there by
the start-1/O routine in step 7. As it suspends the driver, IOC$WFIKPCH
or IOC$WFIRLCH saves the driver’s context in the UCB’s fork block. This
context consists of the following information:

The contents of R3 and R4 (UCB$L _FR3, UCB$L _FR4)
The implicit contents of R5 as the address of the UCB
A driver return address (UCB$L _FPC)

4-13

Overview of 1/0O Processing
4.2 Handling Device Activity

* The relative offset to a device timeout handler (calculated from UCB$L _
FPC and the value specified in the invocation of the WFIKPCH or
WFIRLCH macro)

¢ The time at which the device will time out (UCB$L _DUETIM)

By convention, R4 often contains the address of the CSR; it permits the driver
to examine device registers. When the driver fork process regains control after
interrupt processing, R5 contains the UCB address; it is the key to the rest of
the I/O database that is relevant to the current I/O operation.

Having removed the driver’s start-I/O routine’s return address from the
stack and stored it in UCB$L _FPC, IOC$WFIKPCH (or IOC$WFIRLCH)
issues a DEVICEUNLOCK macro that restores IPL to fork IPL from the
stack. It then exits with an RSB instruction. Thus, IOC$WFIKPCH (or
IOC$WEFIRLCH) effectively passes control to the caller of its caller. In this
case, the caller of the driver start-I/O routine is EXE$INSIOQ. The flow back
from EXE$INSIOQ to a user process that asynchronously requested the I/O
operation is shown in Figure 4-2.

You can find additional information on the context of a start-I/O routine in
Chapter 8.

4.2.3 Handling a Device Interrupt

When the device requests an interrupt, the interrupt dispatcher transfers

control to the driver interrupt service routine. The driver’s interrupt service
routine runs at a high IPL so that the routine can service interrupts quickly.
A driver interrupt service routine usually performs the following processing:

1 Retrieves the address of the UCB that owns the controller from IDB$L _
OWNER

2 Issues the DEVICELOCK macro to obtain the device lock associated with
operations at device IPL in a VMS multiprocessing environment

3 For multiunit device controllers, determines which device unit generated
the interrupt

4 Examines the UCB for the device to confirm that the driver fork process
expects the interrupt

5 Saves device registers

6 Reactivates the suspended driver fork process

If necessary, the reactivated driver fork process executes at the high IPL of
the interrupt service routine for a few instructions. Very soon, however,
the driver lowers its execution priority so that it does not block subsequent
interrupts for other devices in the system.

4.2.4 Switching from Interrupt to Fork Process Context

To lower its priority, the driver calls a VMS fork process queuing routine (by
means of the IOFORK macro) that performs the following actions:

1 Disables the timeout that was specified in the wait-for-interrupt routine

4-14

Overview of 1/0O Processing
4.2 Handling Device Activity

2 Saves R3 and R4 (UCB$L _FR3, UCB$L _FR4)

3 Saves the address of the instruction following the IOFORK request in the
UCB fork block (UCB$L _FPC)

4 Places the address of the UCB fork block from R5 in a processor-specific
fork queue for the driver’s fork level

5 Returns to the driver’s interrupt service routine

The interrupt service routine then cleans up the stack, issues the
DEVICEUNLOCK macro to release the device lock, restores registers, and
dismisses the interrupt. Figure 4-7 illustrates the flow of control in a driver
that creates a fork process after a device interrupt.

Figure 4—7 Creating a Fork Process After an Interrupt

DEVICE DRIVER -
GENERATES *1 INTERRUPT DRIVER

INTERRUPT fe—— SERVICE
REl | ROUTINE

[

JSB

RSB

IOFORK

ZK-923-82

4.2.5 Activating a Fork Process from a Fork Queue

When no higher priority interrupts are pending, the local processor transfers
control to the fork dispatcher. When the processor grants an interrupt at a
fork IPL, the fork dispatcher processes the local fork queue that corresponds
to the IPL of the interrupt. To do so, the dispatcher performs these actions:

1 Removes a fork block from the fork queue
2 Restores fork context
3 Obtains the fork lock specified in the fork block

4 Transfers control back to the fork process

Thus, the driver code calls VMS code that coordinates suspension and
restoration of a driver fork process. This convention allows VMS to service
hardware device interrupts in a timely manner and reactivate driver fork
processes as soon as no device requires attention.

4-15

Overview of 1/0 Processing
4.2 Handling Device Activity

4-16

When a given fork process completes execution, the fork dispatcher releases
the fork lock and removes the next entry, if any, from the local fork queue.
This fork dispatcher repeats the sequence described previously until the
fork queue is empty. After servicing the last entry in the queue, the fork
dispatcher releases the fork lock, restores RO through R5 from the stack, and
dismisses the interrupt with an REI instruction.

Figure 4-8 illustrates the reactivation of a driver fork process.

Figure 4—8 Reactivation of a Driver Fork Process

DEVICE
GENERATES
INTERRUPT
DRIVER SOFTWARE
SERVICES INTERRUPT
INTERRUPT OCCURS
y
FORK
DRIVER] LowerIPL1to fork level '}) opATCHER
FORKS CALLS DRIVER
Y
DRIVER DRIVER
DISMISSES COMPLETES
INTERRUPT REQUEST
4
FORK
DISPATCHER
DISMISSES
INTERRUPT

ZK-924-82

Overview of 1/O Processing
4.3 Completing an 1/O Request

4.3 Completing an /O Request
Once reactivated, a driver fork process completes the I/O request as follows:

1 Releases shared driver resources, such as map registers, UNIBUS adapter
buffered data path, and controller ownership

2 Returns status to the VMS I/O completion routine

The I/O-completion routine performs the following steps to start
postprocessing of the I/O request and to start processing the next I/O request
in the device’s queue:

1 Writes return status from the driver into the IRP

2 Inserts the finished IRP in the local processor’s 1/O-postprocessing queue
and requests an interrupt from the processor at IPL$_IOPOST

3 Creates a new fork process for the next IRP in the device’s pending-1/O
queue

4 Activates the new driver fork process

4.3.1 1/0 Postprocessing

When the local processor’s IPL drops below the 1/O postprocessing IPL, the
processor dispatches to the I/O postprocessing interrupt service routine. This
VMS routine completes device-independent processing of the I/O request.

Using the IRP as a source of information, the IPL§_IOPOST dispatcher
executes the following sequence for each IRP in the postprocessing queue:

1 Removes the IRP from the queue

2 If the I/O function was a direct I/O function, adjusts the issuing process’s
direct I/O quota and unlocks the pages involved in the I/O transfer

3 If the I/O function was a buffered 1/O function, adjusts the issuing
process’s buffered I/O quota and, if the I/O was a write function,
deallocates the system buffers used in the transfer

Posts the local event flag associated with the I/O request

5 Queues a special kernel-mode AST routine to the process that issued the
$QIO system service call

4-17

Overview of 1/0 Processing
4.3 Completing an 1/0 Request

4-18

The queuing of a special kernel-mode AST routine allows I/O postprocessing
to execute in the context of the user process but in a privileged access mode.
Process context is needed to return the results of the I/O operation to the
process’s address space. The special kernel-mode AST routine sets any
common event flag associated with the I/O request and writes the following
data into the process’s address space:

* Data read in a buffered I/O operation
* If specified in the I/O request, the contents of the diagnostic buffer
¢ If specified in the I/O request, the two longwords of I/O status

If the I/O request specifies an I/O completion AST routine, the special
kernel-mode AST routine queues the I/O completion AST for the process.
When VMS delivers the I/O completion AST, the system AST delivery
routine deallocates the IRP. The first part of an IRP is the AST control block
for user requested ASTs.

Part Il Writing a Device Driver

Device drivers consist of static tables, routines that perform 1/O
preprocessing, and routines that handle the device and controller. The
chapters that follow describe how to write the following sections of a
driver:

Static tables
Routines that use the device driver’s function decision table (FDT)

Routines that start an |/O operation on the device and complete the
1/0 operation

Routines that handle interrupts
Routines that initialize devices and controllers
Routines that cancel an 1/O operation

Routines that log errors

The “"how to” chapters are preceded by a chapter that contains a driver
template. The template illustrates the general organization and writing of a
driver.

Note that the “how to" chapters describe a common approach to the
design of various driver routines; they are examples. They do not present
the only approach that can be taken to writing a driver.

B Template for a Device Driver

The pages that follow describe conventions to be used by device drivers
and provide a template for a device driver. Drivers do not necessarily need
all of the routines indicated by the template, nor do driver routines and
tables need to follow the exact order of the template. However, the VMS
operating system does place a few restrictions on the order and content of
driver routines and tables.

Figure 5-1 illustrates the organization of a device driver. The first item in a
device driver is the driver prologue table and the second is usually the driver
dispatch table. The order of the remaining driver components varies from
driver to driver.

The last statement in every driver, except for the .END assembly directive,
must be a label marking the end of the driver. The address of this label
is stored in the driver prologue table. The driver-loading procedure uses
this address to calculate the size of the driver. Chapter 15 describes the
driver-loading procedure.

Some drivers contain no device-dependent, FDT routines. Other drivers
need only minimal initialization procedures. However, every driver normally
contains static driver tables and a start-I/O routine or an interrupt service
routine.

5.1 Coding Conventions

The driver-loading procedure loads a device driver into a block of nonpaged
system memory whose location is chosen by the operating system memory
allocation routines. Therefore, the driver must consist of position-independent
code only.

In addition, the system might call a device driver repeatedly to process

1/0 requests and interrupts. The driver often does not complete one I/0
operation before the system transfers control to the driver to begin another on
a different unit. For this reason, the code must be reentrant.

The rules of position-independent and reentrant code are as follows:

* Instructions can branch only to relative addresses within the driver and to
global addresses listed in the VMS symbol table (SYS$SYSTEM:SYS.STB).

¢ Static tables can list only global addresses and relative addresses within
the driver.

® The driver cannot store temporary data in local driver tables for dynamic
driver context. All dynamic temporary storage must be contained within
the unit control block corresponding to an I/O request or the current I/O
request block.

* The driver must refer to the I/O database by loading the address of a
data structure into a general register and using displacement addressing
to the fields of the data structure.

Template for a Device Driver
5.1 Coding Conventions

5-2

Figure 5—1 Driver Organization

DRIVER
PROLOGUE
TABLE

DRIVER
DISPATCH
TABLE

FUNCTION
DECISION
TABLE

FDT
ROUTINES

DEVICE HANDLING
ROUTINES

END MARK

ZK-925-82

Device drivers must also restrict their use of general registers and the stack:

FDT routines can use R0 through R2 and R9 through R11 as available
registers. The routines can use other registers by saving the registers
before use and restoring them before exiting from the FDT routine.

All other driver routines can use R0 through R5 as available registers.
The routines can use other registers, if necessary, by saving and restoring
them; but using other registers in this way is discouraged.

All driver routines can use the stack for temporary storage only if the
routines restore the stack to its previous state before calling any VMS
routines, forking, or executing RSB instructions.

Template for a Device Driver
5.1 Coding Conventions

Because certain VAX processors and VMS cooperate to support the emulation
of specific sets of VAX instructions, a device driver writer should exercise
some caution. Because the software emulation for floating-point instructions
may at some time be placed in pageable code, drivers should never use
floating-point instructions. VMS only guarantees the emulation for character
string instructions to be nonpaged.

5.2 Restrictions on the Use of Device-Register |/O Space

The programmer of a device driver must observe the following restrictions on
the use of device registers:

Drivers should always store the address of a device control register in
a general register and then gain access to the device register indirectly
through the general register. The following example defines symbolic
word offsets for each device register and gains access to them using
displacement-mode addressing from R4.

; Device register offsets

’

LP_CSR = 0 ; CSR offset
LP_DBR = 2 ; Buffer address offset
MOVL UCB$L_CRB(R5) ,R4 ; Get address of CRB

MOVL @CRB$L_INTD+VEC$L_IDB(R4) ,R4 ; Get the address of
; the device's CSR

TSTW LP_CSR(R4) ; Is printer on line?

Floating-point, field, queue, quadword, and octaword operands are not
allowed in I/O address space, nor can an instruction obtain the position,
size, length, or base of an operand from I/O space. For example, a driver
cannot use a bit field instruction to test a bit in a device register.

Drivers cannot use string-handling instructions when referring to /0
space.

Drivers can use only those instructions that modify or write to a
maximum of one destination. The destination must be the last operand.

Registers of devices connected to the backplane interconnect (for example,
UNIBUS adapter device registers and MASSBUS device registers) are
longwords. Registers of devices connected to the UNIBUS or Q22 bus
are words. Instructions that refer to UNIBUS adapter registers must use
longword context. All driver instructions that affect UNIBUS or Q22 bus
device registers must use word context (for example, BISW, MOVW, and
ADDW?3) unless the register is byte addressable.

Template for a Device Driver
5.2 Restrictions on the Use of Device-Register I/O Space

An instruction that refers to I/O space must not generate an exception or
be interruptable. If the instruction is allowed to restart, it will reread the
device register, which can cause undesirable device side effects or data
loss.

On any given VAX processor, a device driver cannot anticipate the
completion of an instruction that writes to I/O space before subsequent
instructions execute. The processor can continue to execute without
waiting for the data to reach its intended destination.

Among the consequences of this behavior are the following:

— If a driver initiates device actions that result in an interrupt from the
device, the amount of time before that interrupt actually occurs is
unpredictable.

— If a driver disables interrupts from a device, the time before that
device can no longer generate an interrupt is unpredictable.

= An I/O bus error will not be reported synchronously with the
instruction causing the error.

As a result, a driver’s interrupt service routine always should be
prepared to service unexpected or spurious interrupts. See Section 9.3
for additional discussion of the servicing of unexpected interrupts.

To access 1/O space, use only the following instructions. These
instructions cannot be interrupted unless they use autoincrement-deferred
addressing mode or any of the displacement-deferred modes when
specifying an operand.

ADAWI ADD(B,W.,L)2 ADD(B,W,L)3
ADWC BIC(B,W,L)2 BIC(B,W.,L)3
BICPSW BIS(B,W,L)2 BIS(B,W.,L)3
BISPSL BISPSW BIT(B,W.L)
CASE(B,W.,L) CHM(K,E,S,U) CLR(B,W,L)
CMP(B.W,L) CVvT(BW,BL,WB, DEC(B.W.,L)

: WL,LB,LW)
INC(B.W,L) MCOM(B,W, L) MFPR
MNEG(B,W L) MOV(B,W,L) MOVA(B,W,L)
MOVAQ MOVPSL MOVZ(BW ,BL,WL)
MTPR PROBE(R, W) PUSHA(B.W,L)
PUSHAQ PUSHL SBWC
SUB(B,W.,L)2 SUB(B,W.,L)3 TST(B,W.L)
XOR(B,W,L)2 XOR(B,W,L)3

Template for a Device Driver
5.3 Implementing Conditional Code in a Driver

5.3 Implementing Conditional Code in a Driver

When writing a DMA driver to function for equivalent devices on different
1/0 bus implementations, you should use the ADPDISP macro in code paths
that need to differentiate between the systems.

The ADPDISP macro (defined in SYS$LIBRARY:LIB.MLB) provides a means
by which a device driver can be designed to drive a similar device in a variety
of VAX configurations. The ADPDISP macro allows the driver to determine
at run time the existence of a certain I/O bus or adapter characteristic, and
transfer control to code designed to execute given this hardware trait.

A driver can use ADPDISP to transfer control to specific code given any of
the following characteristics:

* Adapter type

* Number of adapter address bits (18 or 22)

* Map registers supported

* Autopurging data paths supported

* Buffered data paths supported

® Direct-vector interrupt dispatching supported

® Odd-aligned transfers on buffered data path supported
® Odd-aligned transfers on direct data path supported

* Alternate set of map registers (496 to 8191) available

* (22 bus device

Use ADPDISP when it is necessary to conditionally execute pieces of code,
for instance, the allocation and loading of map registers for devices for which
map registers are available or the allocation of a physically contiguous buffer
for a DMA transfer on the MicroVAX I (which cannot map such a transfer).
VMS supplies a similar macro, CPUDISP, which causes a run-time transfer
of control to a specified destination depending on the CPU type of the
executing processor. For those processors not uniquely identified by CPU
type, CPUDISP also provides the means to dispatch on a particular CPU
subtype. .

Because a device driver cannot make assumptions about the I/O architecture
of any given VAX system, DIGITAL recommends that most instances of the
CPUDISP macro be replaced by an appropriate usage of the ADPDISP macro.

Appendixes E and F contain examples of drivers that use the ADPDISP
macro to provide conditional code in a driver. See also the description of the
ADPDISP macro in Appendix B.

5-5

Template for a Device Driver
5.4 Driver Template

Driver Template

The following pages list the VMS template driver. The code in the
template can serve as a starting point for a new UNIBUS or Q22 bus
device driver. You can obtain a machine-readable copy of it from

SYS$EXAMPLES:TDRIVER.MAR.

.TITLE TDRIVER - VAX/VMS TEMPLATE DRIVER
.IDENT 'X-2'

¢ ok Kok R ok o oK o ok ook oK K ok o ok R R oK s oK ok ok sk R o ook ko o o R R R oK Kk K K K ok o ok sk KR K o ok sk ok ok ok ok K ok oK

COPYRIGHT (c) 1978, 1980, 1982, 1984 BY
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS.
ALL RIGHTS RESERVED.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE
INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER
COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY
OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY
TRANSFERRED.

K K K K K K K X KK K KK K KX X X ¥

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
CORPORATION.

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL.

¥ K K KX K K K KX K KKK K X K K X X ¥

5 sk ok stokskok sk s ok skl sk etk sk sk sk ok ks o s skt sk ke sk sk skl sk sk sk s o ok sk sk ok ok sk s ksl ok s ok ko sk sk ok ook ok o ok
)
D+

; FACILITY:

; VAX/VMS, Template driver

; ABSTRACT:

; This module contains the outline of a driver:
; Models of driver tables

; Controller and unit initialization routines
; An FDT routine

; The start I/0 routine

; The interrupt service routine

; The cancel I/0 routine

; The device register dump routine

; AUTHOR:

; S. Programmer 11-NOV-1979

; REVISION HISTORY:

; X-2 JHPO02 J. Programmer 21-Aug-1987
; Add SMP support.

; Vo2 JHPOO1 J. Programmer 2-Aug-1979 11:27

Template for a Device Driver
5.4 Driver Template

Remove BLBC imstruction from CANCEL routine.

V02-001 ROWO067 R. Programmer

11-Feb-1981 13:10

Add description of reason argument to CANCEL routine.
Correct references to channel index number.

.SBTTL External and local symbol definitions

; External symbols

; Local

$CANDEF
$CRBDEF
$DCDEF

$DDBDEF
$DEVDEF
$IDBDEF
$I0DEF

$IPLDEF
$IRPDEF
$SSDEF

$UCBDEF
$VECDEF

symbols

; Cancel reason codes

; Channel request block

; Device classes and types
; Device data block

; Device characteristics

; Interrupt data block

; I/0 function codes

; Hardware IPL definitions
; 1/0 request packet

; System status codes

; Unit control block

; Interrupt vector block

; Argument list (AP) offsets for device-dependent QI0 parameters

P1
P2
P3
P4
P5
P6

; Other

TD_DEF_BUFSIZ
TD_TIMEQOUT_SEC
TD_NUM_REGS

$DEF
$DEF
$DEF
$DEF
$DEF

$DEF

=0

=4

=8

= 12

= 16

= 20

constants
= 1024
= 10
=4

$DEFINI UCB
.=UCB$K_LENGTH
UCB$W_TD_WORD

UCB$W_TD_STATUS
UCB$W_TD_WRDCNT
UCB$W_TD_BUFADR
UCB$W_TD_DATBUF

UCB$K_TD_UCBLEN

.BLKW

.BLKW

.BLKW

.BLKW

.BLKW

; First QIO parameter
; Second QIO parameter
; Third QIO parameter
; Fourth QIO parameter
; Fifth QIO parameter
; Sixth QIO parameter

; Default buffer size
; 10-second device timeout
; Device has 4 registers

; Definitions that follow the standard UCB fields

; Start of UCB definitions

; Position at end of UCB

; A sample word

; Device's CSR register

; Device's word count register
; Device's buffer address

, register

; Device's data buffer register

; Length of extended UCB

Template for a Device Driver
5.4 Driver Template

; Bit positions for device-dependent status field in UCB

$VIELD UCB,0,<- ; Device status
<BIT_ZERO, ,M>,- ; First bit
<BIT_ONE, ,M>,- ; Second bit
>

$DEFEND UCB ; End of UCB definitions

; Device register offsets from CSR address

$DEFINI TD ; Start of status definitions

$DEF TD_STATUS ; Control/status
.BLKW 1

; Bit positions for device control/status register

_VIELD TD_STS,0,<- ; Control/status register
<GO, ,M>, - ; Start device
<BIT%, M>,- ; Bit one
<BIT2, ,M>,- ; Bit two
<BIT3, ,M>,- ; Bit three
<XBA,2,M>, - ; Extended address bits
<INTEN, ,M>,- ; Enable interrupts
<READY, ,M>, - ; Device ready for command
<BITS8, ,M>,- ; Bit eight
<BIT9, ,M>,- ; Bit nine
<BIT10, ,M>,- ; Bit ten
<BIT11, ,M>,- ; Bit eleven
<,1>,- ; Disregarded bit
<ATTN, ,M>,- ; Attention bit
<NEX, ,M>, - ; Nonexistent memory flag
<ERROR, ,M>, - ; Error or external interrupt
>
$DEF TD_WRDCNT ; Word count
.BLKW 1
$DEF TD_BUFADR ; Buffer address
.BLKW 1
$DEF TD_DATBUF ; Data buffer
BLKW 1
$DEFEND TD ; End of device register
; definitions

.SBTTL Standard tables

5-8

; Driver prologue table

DPTAB -

Template for a Device Driver

END=TD_END, -
ADAPTER=UBA, -

UCBSIZE=<UCB$K_TD_UCBLEN>, -

NAME=TDDRIVER

DPT_STORE INIT

DPT_STORE UCB,UCB$B_DIPL,B,22
DPT_STORE UCB,UCB$L_DEVCHAR,L,<-
DEV$M_IDV!-
DEV$M_0DV>

DPT_STORE UCB,UCB$B_DEVCLASS,B,DC$_SCOM

DPT_STORE UCB,UCB$W_DEVBUFSIZ,W,-
TD_DEF_BUFSIZ

DPT_STORE REINIT

DPT_STORE DDB,DDBL_DDT,D, TDDDT

DPT_STORE CRB,CRB$L_INTD+VEC$L_ISR,D,-

TD_INTERRUPT

DPT_STORE CRB, -

CRB$L_INTD+VEC$L_INITIAL,

D,TD_CONTROL_INIT

DPT_STORE CRB, -

CRB$L_INTD+VEC$L_UNITINIT, -

D,TD_UNIT_INIT

DPT_STORE END

; Driver dispatch table

DDTAB -

DEVNAM=TD, -

START=TD_

START, -

FUNCTB=TD_FUNCTABLE, -
CANCEL=TD_CANCEL, -
REGDMP=TD_REG_DUMP

5.4 Driver Template

; DPT-creation macro
; End of driver label
; Adapter type
; Length of UCB
; Driver name
; Start of load

; initialization table
DPT_STORE UCB,UCBB_FLCK,B,SPLC_IOLOCKS ;
; Device interrupt IPL
; Device characteristics

Device FORK LOCK

input device
output device

; Sample device class
; Default buffer size

; Start of reload

; initialization table

; Address of DDT

; Address of interrupt

; service routine

; Address of controller
; initialization routine

; Address of device
; unit initialization
; routine

; End of initialization
; tables

; DDT-creation macro

; Name of device

; Start I/0 routine

; FDT address

; Cancel I/0 routine

; Register dump routine

Template for a Device Driver
5.4 Driver Template

5-10

; Function decision table

TD_FUNCTABLE:
FUNCTAB

FUNCTAB
FUNCTAB

FUNCTAB

FUNCTAB

’

<READVBLK, -
READLBLK, -
READPBLK, -
WRITEVBLK, -
WRITELBLK, -
WRITEPBLK, -
SETMODE, -
SETCHAR>
+EXE$READ, -
<READVBLK, -
READLBLK,, -
READPBLK>
+EXE$WRITE, -
<WRITEVBLK, -
WRITELBLK, -
WRITEPBLK>
+EXE$SETMODE,, -
<SETCHAR, -
SETMODE>

FDT for driver

Valid I/0 functions
Read virtual

Read logical

Read physical

Write virtual

Write logical

Write physical

Set device mode

Set device chars

No buffered functions
FDT read routine for
read virtual,

read logical,

and read physical
FDT write routine for
write virtual,

write logical,

and write physical
FDT set mode routine
for set chars and
set mode

.SBTTL TD_CONTROL_INIT, Controller initialization routine

T+

; TD_CONTROL_INIT, Readies controller for I/0 operations

; Functional description:

; The operating system calls this routine in 3 places:

; Inputs:

; R4
; Rb
; R6
; R8

; Outputs:

at system startup

during driver loading and reloading
during recovery from a power failure

- address of the CSR (controller status register)
- address of the IDB (interrupt data block)

- address of the DDB (device data block)

- address of the CRB (channel request block)

; The routine must preserve all registers except RO-R3.

TD_CONTROL_INIT
RSB

; Initialize controller

.SBTTL TD_UNIT_INIT, Unit initialization routine

Template for a Device Driver
5.4 Driver Template

s

; TD_UNIT_INIT, Readies unit for I/0 operations

; Functional description:

; The operating system calls this routine after calling the
; controller initialization routine:

; at system startup
; during driver loading
; during recovery from a power failure

; Inputs:

; R4 - address of the CSR (controller status register)
; RS - address of the UCB (unit control block)

; Outputs:

; The routine must preserve all registers except RO-R3.

TD_UNIT_INIT: ; Initialize unit
BISW #UCB$M_ONLINE, -
UCB$W_STS(R5) ; Set unit online
RSB ; Return

.SBTTL TD_FDT_ROUTINE, Sample FDT routine

++

; TD_FDT_ROUTINE, Sample FDT routine

; Functional description:

; T.B.S.

; Inputs:

; RO-R2 - scratch registers

; R3 - address of the IRP (I/0 request packet)

; R4 - address of the PCB (process control block)

; R5 - address of the UCB (unit control block)

; R6 - address of the CCB (channel control block)

; R7 - bit number of the I/0 function code

; R8 - address of the FDT table entry for this routine
; R9-R11 - scratch registers

; AP - address of the 1st function dependent QIO parameter
; Outputs:

; The routine must preserve all registers except RO-R2, and

; R9-R11.
TD_FDT_ROUTINE: ; Sample FDT routine
RSB ; Return .

.SBTTL TD_START, Start I/0 routine

5-11

Template for a Device Driver
5.4 Driver Template

5-12

T+

3

; TD_START - Start a transmit, receive, or set mode operation

; Functional description:

; T.B.S.
; Inputs:

; R3

; R5

; Outputs:

; RO

; R1

- address of the IRP (I/0 request packet)
- address of the UCB (unit control block)

- 1st longword of I/0 status: contains status code and
number of bytes transferred

2nd longword of I/0 status: device-dependent

; The routine must preserve all registers except RO-R2 and R4.

TD_START:

SAVIPL=-(SP)

; Process an I/0 packet
DEVICELOCK LOCKADDR=UCB$L_DLCK(R5),- ; Lock device access.
; Save current IPL

WFIKPCH TD_TIMEQOUT,#TD_TIMEOUT_SEC

B

; After a transfer completes successfully, return the number of bytes

; transferred and a success status code.

IOFORK
INSV

MOVW

UCB$W_BCNT (R5) , #16, -
#16,RO
#SS$_NORMAL,RO

; Call I/0 postprocessing.

COMPLETE_IO:
REQCOM

»

; Load number of bytes trans-
; ferred into high word of RO.
; Load a success code into RO.

; Driver processing is finished.
; Complete I/0.

; Device timeout handling. Return an error status code.

TD_TIMEOUT:

DEVICEUNLOCK LOCKADDR=UCB$L_DLCK(R5),- ;

MOVZWL
BSBB

NEWIPL=#8, -
PRESERVE=NO
#SS$_TIMEOUT,RO
COMPLETE_IO

DEVICELOCK LOCKADDR=UCB$L_DLCK(R5),- ;

RSB

PRESERVE=NO

Timeout handling

Unlock device access

Lower IPL

Don't preserve RO

Return error status

Call I/0 postprocessing
Acquire device lock for exit

SBTTL - TD_INTERRUPT, Interrupt service routine

T+

»

Template

for a Device Driver
5.4 Driver Template

; TD_INTERRUPT, Analyzes interrupts, processes solicited interrupts

; Functional description:

; The sample code assumes either

; Inputs:
; 0(sP)

; 4(spP)
; 8(SP)
; 12(sP)
; 16(SP)
; 20(SP)
; 24(SP)
; 28(SP)
; 32(sP)

that the driver is for a single-unit controller, and
that the unit initialization code has stored the

address of the UCB in the

IDB; or

that the driver's start I/0 routine acquired the

controller's channel with

a REQPCHAN macro call, and

then invoked the WFIKPCH macro to keep the channel
while waiting for an interrupt.

- pointer to the address of the IDB (interrupt data

block)
- saved RO
- saved Rl
- saved R2
- saved R3
- saved R4
- saved R5
- saved PC

- saved PSL (processor status longword)

; The IDB contains the CSR address and the UCB address.

; Outputs:

; The routine must preserve all registers except RO-R5.

TD_INTERRUPT:

)

; Service device interrupt

MOVL @(SP)+,R4 ; Get address of IDB and remove
; pointer from stack
ASSUME IDB$L_CSR EQ O
ASSUME IDB$L_OWNER EQ 4
MmovQ IDB$L_CSR(R4) ,R4 ; Get address of device's CSR
; Get address of device owner's UCB
DEVICELOCK LOCKADDR=UCB$L_DLCK(R5), - ; Lock device access
PRESERVE=NO, - ; Don't preserve RO
CONDITION=NOSETIPL ; Don't bother setting our IPL
BBCC #UCB$V_INT, - ; If device does not expect

s

UCB$W_STS(R5) , - ;
UNSOL_INTERRUPT

; This is a solicited interrupt. Save
; the contents of the device registers in

’

MOVW

MOVW

MOVW

MOvw

TD_STATUS(R4) , - ;
UCB$W_TD_STATUS (R5) ;
TD_WRDCNT (R4) , - ;
UCB$W_TD_WRDCNT (R5)

TD_BUFADR(R4) , - ;
UCB$W_TD_BUFADR (R5) ;
TD_DATBUF (R4) , - ;
UCB$W_TD_DATBUF (R5)

interrupt, dismiss it

the UCB.

Otherwise, save all device
registers. First the CSR
Save the word count register

Save the buffer address

register
Save the data buffer register

5-13

Template for a Device Driver
5.4 Driver Template

5-14

; Restore control to the main driver

’

RESTORE_DRIVER: ; Jump to main driver code
MOVL UCBSL_FR3(R5) ,R3 ; Restore driver's R3 (use a
; MOVQ to restore R3-R4)
JSB QUCB$L_FPC (R5) ; Call driver at interrupt

; wait address

; Dismiss the interrupt

’

UNSOL_INTERRUPT: ; Dismiss unsolicited interrup:t
DEVICEUNLOCK LOCKADDR=UCB$L_DLCK(R5),- ; Unlock device access
PRESERVE=NO ; Don't bother preserving RO
POPR #°M<RO,R1,R2,R3,R4,RE> ; Restore RO-R5
REI ; Return from interrupt

.SBTTL TD_CANCEL, Cancel I/0 routine

s+
; TD_CANCEL, Cancels an I/0 operation in progress

; Functional description:

; This routine calls IOC$CANCELIO to set the cancel bit in the
; UCB status longword if:

; the device is busy,
; the IRP's process ID matches the cancel process ID,
; the IRP channel matches the cancel channel.

; If IOC$CANCELIO sets the cancel bit, then this driver routine
; does device-dependent cancel I/0 fixups.

; Inputs:

; R2 - channel index number

; R3 - address of the current IRP (I/0 request packet)

; R4 - address of the PCB (process control block) for the

; process canceling I/0

; RS - address of the UCB (unit control block)

; R8 - cancel reason code, one of:

; CAN$C_CANCEL if called through $CANCEL or

; $DALLOC system service

; CAN$C_DASSGN if called through $DASSGN system
; service

; These reason codes are defined by the $CANDEF macro.
; Outputs:

; The routine must preserve all registers except RO-R3.

; The routine may set the UCB$V_CANCEL bit in UCB$W_STS.

TD_CANCEL: ; Cancel an I/0 operation
JSB G~ IOC$CANCELIO ; Set cancel bit if appropriate.
BBC #UCB$V_CANCEL, - ; If the cancel bit is not set,
UCB$W_STS(R5) ,10$; just return.

Template for a Device Driver
5.4 Driver Template

; Device-dependent cancel operations go next.

; Finally, the return.
10%:
RSB ; Return

.SBTTL TD_REG_DUMP, Device register dump routine

T+

; TD_REG_DUMP, Dumps the contents of device registers to a buffer

; Functional description:

; Writes the number of device registers and their current
; contents into a diagnostic or error buffer.

; Inputs:

; RO - address of the output buffer

; R4 - address of the CSR (controller status register)
; R5 - address of the UCB (unit control block)

; Outputs:

; The routine must preserve all registers except R1-R3.

; The output buffer contains the current contents of the device
; registers. RO contains the address of the next empty longword in
; the output buffer.

TD_REG_DUMP: ; Dump device registers

MOVZBL #TD_NUM_REGS, (RO)+ ; Store device register count

MOVZWL UCB$W_TD_STATUS(R5),- ; Store device status register
(RO)+

MOVZWL UCB$W_TD_WRDCNT(R5) ,- ; Store word count register
(RO)+

MOVZWL UCB$W_TD_BUFADR(R5),- ; Store buffer address register
(RO)+

MOVZWL UCB$W_TD_DATBUF(R5),- ; Store data buffer register
(RO)+

RSB ; Return

.SBTTL TD_END, End of driver

T4
; Label that marks the end of the driver

TD_END: ; Last location in driver
.END

5-15

6 Writing Device-Driver Tables

Every device driver declares three static tables that describe the device and
driver:

¢ Driver prologue table—describes the device type, driver name, and
fields in the I/O database to be initialized during driver loading and
reloading.

¢ Driver dispatch table—lists some of the driver’s entry points to which
VMS transfers control. The channel request block and function decision
table list other entry points.

* Function decision table—lists valid functions of the driver and entry
points to routines that perform I/O preprocessing for each function.

The VMS operating system provides macros that drivers can invoke to create
these tables.

6.1 Driver Prologue Table

The driver prologue table (DPT) is the first part of every device driver.
This table, along with parameters to the SYSGEN command that request
driver loading, describes the driver to the driver-loading procedure. In turn,
the driver-loading procedure computes the size of the driver, loads it into
nonpaged system memory, and creates data structures for the new device(s)
in the I/O database. The loading procedure also links the new DPT into

a list of all DPTs known to the system. Chapter 15 describes how the
driver-loading procedure decides which data structures to build for a given
device.

Device drivers can pass data-structure initialization information to the driver-
loading procedure through values stored in the DPT. In addition, the driver-
loading procedure initializes some fields within the device data structures
using information from its own tables.

Figure A-10 illustrates the DPT data structure, and Table A-9 describes its
contents. Drivers must treat many of the fields initialized by the driver-
loading procedure as read-only fields. These fields are marked with an
asterisk in Figure A-10.

To create a DPT, the driver invokes the DPTAB macro, as described in
Appendix B. The DPTAB macro generates a driver prologue table (DPT) in a
program section called $$$105_PROLOGUE.

The DPTAB macro requires the following information:
¢ Address of the end of the driver in its end argument.

* Code identifying the device by its adapter type in the adapter argument.
- Accepted adapter types include UBA (for devices attached to either a
UNIBUS or Q22 bus), MBA, and GENBL

¢ Name of the driver in the name argument.

Writing Device-Driver Tables
6.1 Driver Prologue Table

6-2

® Size of the unit control block (UCB) in the ucbsize argument. (The
template in Section 5.4 and the macro descriptions in Appendix B
demonstrate how you can specify an extended UCB defined by VMS
or create an extended UCB within a driver.)

The DPTAB also allows you to specify the following information, if applicable
to the device driver:

* Whether the driver needs a permanently allocated system page

® Whether the driver has been written to run in a VMS symmetric
multiprocessing system

¢ Name of a driver unloading routine, if any, to be called subject to a
SYSGEN RELOAD command

" e Maximum number of units supported by the driver (default is 8)

* Number of UCBs to be created when the driver is loaded by means of
the SYSGEN autoconfiguration facility and the address of a unit delivery
routine to be called by that facility

A driver follows the DPTAB macro invocation with several instances of
the DPT_STORE macro. The DPT_STORE macro provides the driver with
a means of communicating its initialization needs to the driver-loading
procedure. When invoked, the DPT_STORE macro places information in
the DPT that the driver-loading procedure uses to load specified values into
specified fields. The DPT_STORE macro accepts two lists of fields:

¢ Fields to be initialized only when the driver is first loaded

¢ Tields to be initialized when a driver is first loaded and reinitialized if the
driver is reloaded

The DPTAB macro stores the relative addresses of these two lists, called
initialization and reinitialization tables, in the DPT.

Drivers use the DPT_STORE macro with the INIT table marker label to
begin a list of DPT_STORE invocations that supply initialization data for the
following fields:

UCB$B_FLCK Index of the fork lock under which the driver performs
fork processing. The DPTAB macro, in invoking the
$SPLCODDEF macro, defines the symbols for these
indexes.

UCB$B_DIPL Device interrupt priority level.

Other commonly initialized fields are

UCB$L _DEVCHAR Device characteristics
UCB$B_DEVCLASS Device class
UCB$B_DEVTYPE Device type

UCB$W_DEVBUFSIZ Default buffer size
UCB$Q _DEVDEPEND Device-dependent parameters

Writing Device-Driver Tables
6.1 Driver Prologue Table

Drivers use the DPT_STORE macro with the REINIT table marker label

to begin a list of DPT_STORE invocations that supply initialization and
reinitialization data for certain fields. Every driver must specify the following
field in such an invocation:

DDB$L_DDT Driver dispatch table

Other commonly initialized fields are

CRBSL _INTD+VECSL _ISR Interrupt service routine.
" CRBSL _INTD2+VECSL _ISR Interrupt service routine for second interrupt
vector.
CRBSL _INTD+VECSL _INITIAL Controller initialization routine.

CRBSL _INTD+VECSL _UNITINIT Unit initialization routine (for UNIBUS, Q22
bus, and generic VAXBI device drivers).
Note that MASSBUS drivers must specify
the address of the unit initialization routine
in an invocation of the DDTAB macro.

For an example of the use of the DPT and DPT_STORE macros, see the
description of the DPTAB macro in Appendix B.

6.2 Driver Dispatch Table

The driver dispatch table (DDT) lists some of the entry points for driver
routines to be called by VMS for I/O processing. Every driver must create a
DDT.

The routines listed in the DDT can reside in the driver module or in a VMS
module. Appendix C describes the VMS device-independent routines that can
be specified.

Device-dependent routines are normally located in the driver module. The
DDT contains relative addresses for routines located in the driver module and
absolute addresses for routines located in the operating system. At loading
time, the driver-loading procedure changes the relative addresses of driver
routines to absolute addresses.

The driver creates a DDT by invoking the macro DDTAB. The DDTAB macro
labels the DDT devnam$DDT, according to the value you supply in its
devnam argument. The driver-loading procedure writes the address of the
DDT table, as specified in a DPT_STORE macro, into the DDB. Figure A-9
illustrates the structure of a DDT and Table A-8 describes its contents.

The DDTAB macro also generates the program section ($$$115_DRIVER) in
which the DDT itself and all driver code reside.

The DDTAB macro has a single required argument, functb, for which the
driver must specify the address of its function decision table. Several optional
arguments allow the driver to specify the names of the following routines, if
applicable:

¢ Start-1/O routine
* Unsolicited interrupt service routine (for MASSBUS device drivers)
¢ Cancel-I/O routine

¢ Register dumping routine

6-3

Writing Device-Driver Tables
6.2 Driver Dispatch Table

e Unit initialization routine
® Alternate start-I/O routine
¢ (Cloned UCB routine

In addition, you specify the length of any diagnostic buffer or error message
buffer using the DDTAB macro.

See the description of the DDTAB macro in Appendix B for additional
information.

6.3 Function Decision Table

6-4

The function decision table (FDT) lists codes for I/O functions that are valid
for the device; indicates whether the functions are buffered-1/O functions;
and specifies routines to perform preprocessing for particular functions. Every
device driver must create an FDT containing three or more entries:

* The list of valid I/O function codes
* The list of buffered 1/0 function codes

* One or more entries each of which specifies all or a subset of I/O function
codes and the address of a routine that performs I/O preprocessing for
those function codes

If no buffered I/O functions are defined for the device, the second entry
contains an empty list.

Taken together, the third through last entries in the FDT specify one or
more FDT routines for each valid I/O function code for the device. The
FDT routines must terminate the I/O preprocessing for each type of function
by transferring control out of the $QIO system service and into a routine
that queues the I/O request to a driver, inserts the I/O request in the
postprocessing queue, or aborts the 1/O request.

Refer to Chapter 7 for information on the writing of FDT routines.

Table 6-1 lists the physical, logical, and virtual I/O function codes defined by
VMS. Note that certain of the function codes listed have the same values in
VMS Version 5.0. A complete list of function codes and values is contained
in the macro $IODEF in SYS$LIBRARY:STARLET.MLB.

Writing Device-Driver Tables
6.3 Function Decision Table

Table 6-1 1/0 Function Codes

Function Description Equivalent Symbol(s)

Physical 1/O

i0$_NOP No operation -

10$_UNLOAD Unload drive (required by all 10$_LOADMCODE

disk drivers)

10$_SEEK Seek cylinder I0$_SPACEFILE (space files), I0$_STARTMPROC
(start microprocessor)

I0$_RECAL Recalibrate drive I0$_STOP (stop)

I0$_DRVCLR Drive clear IO$_INITIALIZE (initialize)

I0$_RELEASE Release port I0$_SETCLOCKP (set clock—physical)

I0$_OFFSET Offset read heads IO$_ERASETAPE (erase tape), I0$_STARTDATAP

10$_RETCENTER
10$_PACKACK

I0$_SEARCH

I0$_WRITECHECK
10$_WRITEPBLK
10$_READPBLK
I0$_WRITEHEAD

I0$_READHEAD
I0$_WRITETRACKD

I0$_READTRACKD
I0$_AVAILABLE

I0$_SETPRFPATH
I0$_DSE

I0$_REREADN
|0$_.REREADP
I0O$_WRITERET
I0$_READPRESET
I0O$_SETCHAR
I0$_SENSECHAR
10$_WRITEMARK
I0$_WRTTMKR

I0$_FORMAT

Return to center line

Pack acknowledgment
{required by all disk drivers)

Search for sector

Write check data
Write physical block
Read physical block
Write header and data

Read header and data
Write track data

Read track data

Set device available
(required by all disk drivers)

Set preferred path

Data security erase (and
rewind)

Reread next

Reread previous

Write retry

Read in preset

Set device characteristics
Sense device characteristics
Write tape mark

Write tape mark retry

Format

(start data transfer—physical)
I0$_QSTOP (queue stop request)

I0$_SPACERECORD (space records), I0O$_READRCT
(read replacement and caching tabie)

IO$_RDSTATS (read statistics), I0$_CRESHAD
(create a shadow set)

10$_ADDSHAD (add member to shadow set)

10$_COPYSHAD (perform shadow set copy
operations)

10$_REMSHAD (remove member from shadow set)

10$_WRITECHECKH (write check header and data)
I0$_STARTSPNDL (start spindle)

I0$_DIAGNOSE (diagnose), I0$_SHADMV (perform
mount verification on shadow set)

IO$_CLEAN (clean tape)

6-5

Writing Device-Driver Tables

6.3 Function Decision Table

Table 6—1 (Cont.)

1/0 Function Codes

Function

Description

Equivalent Symbol(s)

Logical 1/0

10$_WRITELBLK
I0$_READLBLK
10$_REWINDOFF
|0$_SETMODE
I0$_REWIND
10$_SKIPFILE
10$_SKIPRECORD
10$_SENSEMODE

Write logical block
Read logical block
Rewind and set offline
Set mode

Rewind tape

Skip files

Skip records

Sense mode

I0$_WRITEOF Write end of file -

I0$_TTY_PORT Terminal port FDT routine IO$_FREECAP (return free capacity)
I0$_FLUSH Flush controller cache —

Virtual 1/0

I0$_WRITEVBLK
I0$_READVBLK
I0$_ACCESS
I0$_CREATE
I0$_DEACCESS
I0$_DELETE
10$_MODIFY
I0$_NETCONTROL

10$_READPROMPT
I0$_ACPCONTROL
I0$_MOUNT
I0$_TTYREADALL
I0$_TTYREADPALL

I0$_CONINTREAD

I0$_CONINTWRITE

Write virtual block
Read virtual block
Access file

" Create file

Deaccess file
Delete file
Modify file

X25 network control
function

Read terminal with prompt
Miscellaneous ACP control
Mount volume

Terminal read passall

Terminal read with prompt
passall

Connect to interrupt read-
only

Connect to interrupt with
write

10$_SETCLOCK (set clock)
IO$_STARTDATA (start data)

6-6

The device driver creates an FDT by invoking the FUNCTAB macro. Each
invocation of the FUNCTAB macro creates a 2- or 3-longword entry in the
FDT. The first two invocations create 2-longword entries because they specify
only function codes; they do not specify an accompanying action routine.

All subsequent invocations of the FUNCTAB macro must specify both
function codes and the address of a routine that is to perform preprocessing
for those functions. These invocations create 3-longword entries.

Writing Device-Driver Tables
6.3 Function Decision Table

The $QIO system service processes entries in the order in which they appear
in the FDT. When a function code is present in more than one 3-longword
entry, the system service sequentially calls every routine specified for the
function code until a routine stops the scan by aborting, completing, or
queuing an I/O request.

See the description of the FUNCTAB macro, and the example of its use, in
Appendix B for additional information on creating an FDT.

6.3.1 Defining Buffered-1/O Functions

The second entry in an FDT is a buffered function bit mask that indicates which
legal functions the driver handles as buffered-I/O operations. In selecting the
functions that are to be buffered, you should take the following information
into consideration:

* Direct I/O is intended only for devices whose 1/O operations always
complete quickly. For example, although terminal 1/O appears fast, users
can prevent the I/O operation from completing by using CTRL/S to halt
the operation indefinitely; therefore, terminal I/O operations are buffered
1/0.

* Use of direct I/O requires that the process pages containing the buffer be
locked in memory. Locking pages in memory increases the overhead of
swapping the process that contains the pages.

* Use of buffered 1/0 requires that the data be moved from the system
buffer to the user buffer. Moving data requires additional time.

* Routines that manipulate data before delivering it to the user (for
example, an interrupt service routine for a terminal) cannot gain access
to the data if direct I/O is used. Therefore, transfers that require data
manipulation must be buffered I/0.

¢ VMS handles the quotas differently for direct I/O and buffered 1/0, as
described in the Guide to Maintaining a VMS System.

* Generally, direct-memory-access (DMA) devices use direct I/O, while
programmed /O devices use buffered 1/0.

6.3.2 Defining Device-Specific Function Codes

You can also define device-specific function codes by equating the name of a
device-specific function with the name of an existing function that is irrelevant
to the device. The selected codes should, however, have a type (logical,
physical, or virtual) that is appropriate for the function they represent. Also,
user programs that issue $QIO requests specifying a device-specific code must
similarly redefine the existing function. For example, the assembly code that
follows defines three device-specific physical I/O function codes. '

I10$_STARTCLOCK=I0$_ERASETAPE ; Start interval clock
I0$_STOPCLOCK=I0$_OFFSET ; Stop interval clock
I0$_STARTDATA=I0$_SPACEFILE ; Start data acquisition

7] Writing FDT Routines

The $QIO system service uses the driver’s function decision table (FDT) to
determine which FDT routines to call to preprocess an I/O request. These
FDT routines validate process-specified arguments to the $QIO request. VMS
supplies many device-independent FDT routines. Device drivers contain
device-dependent FDT routines.

A driver should call the VMS device-independent FDT routines, described
in Section 7.5, whenever possible. This practice encourages the use of well
debugged routines and minimizes driver size.

7.1 Context of FDT Routine Execution

The $QIO system service executes in the context of the process that issues
the 1/0O request, but in kernel mode and at IPLS_ASTDEL. The process is
executing in kernel mode because the dispatching of the $QIO system service
executes a CHMK instruction. Process context allows the $QIO system service
and driver FDT routines to access perprocess address space. Because the
$QIO system service expects FDT routines to preserve this context, an FDT
routine observes the following conventions:

* It cannot call VMS system services or VMS RMS services.

¢ It does not lower IPL below IPL$_ASTDEL. If a routine raises IPL, it
must obtain any appropriate spin lock, and it must lower IPL to IPL$_
ASTDEL before exiting, releasing any acquired spin lock.

® It does not alter the stack without restoring its original state before
exiting,

e If it issues a subroutine call, it must preserve the contents of R3 through
R8 across the call. It can, however, use R0 through R2 and R9 through
R11 without saving their previous contents. If an FDT routine needs to
use R3 through RS, it can use the PUSHR and POPR instructions to save
registers on the stack and later restore them.

* It exits either by an RSB instruction to return control to the system service,
or it issues a JMP instruction to one of the VMS routines described in
Section 7.2.1.

Before calling an FDT routine, the $QIO system service sets up the contents
of certain registers, as described in Table 7-1.

Table 7-1 Registers Loaded by the $QIO0 System Service

Register Content

RO Address of FDT routine being called

R3 Address of IRP for current I/0 request

R4 Address of process control block (PCB) of current process

Writing FDT Routines
7.1 Context of FDT Routine Execution

Table 7—-1 (Cont.) Registers Loaded by the $QIO System Service

Register Content

R5 Address of UCB of device assigned to user-specified process-1/0
channel

R6 Address of CCB that describes user-specified process-1/0 channel

R7 Bit number of user-specified 1/0 function code

R8 Address of current entry in FDT

AP Address of first function-dependent argument (p1) specified in 1/0
request

While FDT routines can perform extensive preprocessing, such as determining
whether user buffers are accessible and reformatting data into buffers in the
system address space, they should not access device registers because the
device might be active. Furthermore, FDT routines should exercise restraint
when modifying the UCB. Routines usually access the UCB while holding
the associated fork lock at driver fork IPL to synchronize modifications, and
FDT routines do not execute with such synchronization. Drivers containing
FDT routines that access device registers or carelessly modify the UCB risk
unpredictable operation or a system failure.

7.2 FDT Routines and Their Exit Paths

To transfer control to an FDT routine, the $QIO system service loads the
address of the FDT routine into a register and executes a JSB instruction, as
follows:

JSB (RO)
Each FDT routine chooses an exit path based on the following factors:

* Whether another FDT routine needs to be called to perform additional
function-specific processing

* Whether an error is found in the I/O request
® Whether the operation is complete

® Whether the I/O operation requires and is ready for device activity

The FDT routines, as illustrated in Figure 7-1, must transfer control out of the
EDT processing loop and into a VMS routine that queues an IRP, completes
an I/O request, or aborts an I/O request. The $QIO system service does

not stop scanning the FDT. Therefore, you must ensure that for each valid
function code in a driver’s FDT, there is an FDT routine that does not return
control to the $QIO system service.

7.2.1

Writing FDT Routines
7.2 FDT Routines and Their Exit Paths

Figure 7-1 $QIO Scan of a Function Decision Table

READ

> NEXT
FDT ENTRY

FUNCTION
CODE
MATCH?

FDT ROUTINE
CALL
RETURNS
FDT v
ROUTINE

FDT ROUTINE EXITS

4

QUEUE IRP,
FINISH 1/0,
OR ABORT I/0

ZK-926-82

FDT Exit Paths

An FDT routine can exit using any of the following methods:

RSB

JMP G"EXE$QIODRVPKT

JSB G'EXE$ALTQUEPKT

JMP G"EXES$FINISHIO or JMP G"EXE$FINISHIOC
JMP G"EXE$ABORTIO '

These methods are described in the following sections, and you can find
additional details on the routines they involve in Appendix C.

7.2.1.1

RSB

An FDT routine issues an RSB instruction to return to the $QIO system
service. The FDT routine returns to the system service because the routine
knows that the FDT contains a subsequent entry with the same function code
bit set. As a result, the system service searches for another FDT routine.

7-3

Writing FDT Routines
7.2 FDT Routines and Their Exit Paths

7.2.1.2

JMP G"EXE$QIODRVPKT

EXE$QIODRVPKT transfers control to a VMS routine that queues an IRP to a
driver. The FDT routine uses this exit method if all preprocessing is complete,
if no fatal errors are found in the specification of an I/O request, and if device
activity, synchronized access to the device’s UCB, or synchronized access to
device registers is required to complete the I/O request. Common examples
of such a request are read and write functions.

EXE$QIODRVPKT transfers control to the device driver’s start-1/O

routine only if the device unit is currently idle. If the device unit is busy,
EXE$QIODRVPKT inserts the IRP in a priority-ordered queue of IRPs waiting
for the unit.

Once an FDT routine transfers control to EXE$QIODRVPKT, no driver code
that further processes the I/O request can refer to process virtual address
space. When a device driver’s start-I/O routine gains control, the process that
queued the I/O request might no longer be the mapped process. Therefore,
the driver must assume that all information regarding the I/O request is in
the UCB or the IRP and that all buffer addresses in the UCB are either system
addresses or page-frame numbers that can be interpreted in any process
context.

For direct I/O operations, FDT routines also must have locked all user buffer
pages in physical memory because paging cannot occur at driver fork level
or higher interrupt priority levels. The process virtual address space is not
guaranteed to be mapped again until VMS delivers a special kernel-mode
AST to the requesting process as part of /O postprocessing.

7.21.3

JMP G EXES$FINISHIO or JMP G"EXES$FINISHIOC

EXE$FINISHIO and EXE$FINISHIOC transfer control to a VMS routine

that writes a quadword of final I/O status from R0 and R1 into the I/O
status field of the IRP (IRP$L _MEDIA and IRP$L _MEDIA+4). (Note that
EXE$FINISHIOC clears the second longword of the final I/O status.) The
routine then inserts the IRP in the I/O postprocessing queue. These routines
return to the $QIO system service the two longwords of status contained in
the I/0O status block (if any) specified in the 1/O request.

An FDT routine that discovers a device-dependent error should always return
status using EXE$FINISHIO or EXE$FINISHIOC. These routines gain control
without any change in process context. Interrupt priority level is at IPL$_
ASTDEL; the process page-tables are mapped; and the process is executing in
kernel mode.

7.2.1.4

JMP G"EXE$SABORTIO

EXE$ABORTIO transfers control to a VMS routine that aborts an I/O request.
An FDT routine that discovers a device-independent error should always use
this method of exiting. Inability to gain access to a data buffer or an error

in the specification of the I/O request are examples of device-independent
errors.

EXE$ABORTIO gains control without any change in the process context.
Interrupt priority level is at IPL§_ASTDEL; the process virtual space is
mapped; and the process is executing in kernel mode. EXE$ABORTIO stores
a longword of status in RO and returns this to the system service.

Writing FDT Routines
7.2 FDT Routines and Their Exit Paths

7.21.5 JSB G'EXESALTQUEPKT
EXE$SALTQUEPKT transfers control to a VMS routine that calls an alternate
start-I/O routine in the driver (specified in the driver dispatch table at offset
DDT$L _ALTSTART) that synchronizes requests for activity on a device unit
and initiates the processing of 1/0O requests.

The FDT routine uses this exit method when it has successfully completed
all driver preprocessing and the request requires device activity. However, in
contrast to EXE$QIODRVPKT, EXESALTQUEPKT bypasses the device unit’s
pending-I/O queue and the device busy flag; thus, the driver is activated
regardless of whether the device unit is busy. A driver that can handle two
or more I/O requests simultaneously uses this exit method.

Be aware that programming a device driver to process simultaneous I/0
requests requires detailed knowledge of VMS internal design. A driver that
uses EXESALTQUEPKT must not only maintain its internal queues but must
also synchronize those queues with the unit’s pending-I/O queue, which

the operating system maintains. In addition, if a driver processes more than
one IRP at the same time, it must use separate fork blocks. Such a driver
completes the processing of I/O requests by calling the routine COM$POST.
This routine places each IRP in a postprocessing queue and returns control to
the driver. The driver can then fetch another IRP from an internal queue. For
more information about COM$POST, see Appendix C.

Unlike the other FDT exit routines, EXESALTQUEPKT is called with a JSB
instruction rather than a JMP instruction. When the alternate start-1/O
routine finishes, it returns control to EXESALTQUEPKT by executing an
RSB instruction. The FDT routine performs any postprocessing and transfers
control to the routine EXE$QIORETURN. When EXE$QIORETURN gains
control, it performs the following steps:

1 Sets the success status code SS$_NORMAL in RO
2 Lowers the interrupt priority level to zero

3 Returns (with the RET instruction) to the system service dispatcher

7.3 FDT Routines for VMS Direct 1/0

The VMS operating system provides two standard FDT routines that are
applicable for direct I/O operations: EXE$READ and EXE$WRITE. When
called by the driver, these routines completely prepare a direct I/O read or
write request. Thus, a driver that uses these routines eliminates the need for
its own device-specific FDT routines.

EXE$READ and EXE$WRITE are described in Section 7.5.

Writing FDT Routines
7.4 FDT Routines for VMS Buffered 1/0

7.4 FDT Routines for VMS Buffered 1/0

Device drivers for buffered I/O operations generally contain their own
device-specific FDT routines.

An FDT routine for a buffered 1/O data transfer operation should confirm
either read or write access to the user’s buffer and allocate a buffer in system
space. Sections 7.4.1 and 7.4.2 describe these tasks.

An FDT routine for a buffered I/O operation that does not involve data
transfer should copy the function-dependent parameters of the $QIO request
(p1 to pé) to the IRP, perform any necessary preprocessing, and use one of
the exit methods listed in Section 7.2.1.

7.4.1 Checking Accessibility of the User’s Buffer

First the FDT routine calls EXESREADCHK or EXE$WRITECHK to confirm
write or read access, respectively, to the user’s buffer. Both of these routines
write the transfer byte count into IRP$L _BCNT. EXESREADCHK also sets
IRP$V_FUNC in IRP$W_STS to indicate that the function is a read.

7.4.2 Allocating the System Buffer

Next, the FDT routine allocates a system buffer in the following manner:

1 It adds 12 bytes to the byte count passed in the p2 argument of the user’s
I/0 request, thus accommodating the standard size of a VMS buffer
header. This is the total system buffer size.

2 It calls EXESDEBIT_BYTCNT_ALO to ensure that the process’s job has
sufficient remaining byte count quota to allow its use of the requested
buffer. If the job has sufficient quota, EXE$DEBIT_BYTCNT_ALO
allocates the requested buffer from nonpaged pool, writes the buffer’s
size and type into its third longword, and subtracts the system buffer size
from JIB$L _BYTCNT.

VMS also supplies the routines EXESDEBIT_BYTCNT_BYTLM_ALO,
EXE$DEBIT_BYTCNT(_NW), EXE$DEBIT_BYTCNT_BYTLM(_NW), and
EXE$ALLOCBUF which perform the same type of work as EXE$DEBIT_
BYTCNT_ALO. These routines are fully described in Appendix C.

Once the buffer is allocated, the FDT routine takes the following steps:
1 Loads the address of the system buffer into IRP$L _SVAPTE.
2 Loads the total size of the system buffer into IRP$W_BOFF.

3 Stores the starting address of the system buffer data area in the first
longword of the buffer header.

4 Stores the user’s buffer address in the second longword of the header.

5 Copies data from the user buffer to the system buffer if the I/O request is
a write operation.

Writing FDT Routines
7.4 FDT Routines for VMS Buffered 1/0

At this point, the buffers are ready for the transfer. Figure 7-2 illustrates the
format of the system buffer.

Figure 7-2 Format of System Buffer for a Buffered-1/O Read
Function

System Space
SYSTEM BUFFER -]

address of data area

user buffer address — ; HEADER

l type J size

buffer
data Process Space

area

user
buffer

ZK-927-82

7.4.3 Buffered-1/O Postprocessing

When the transfer finishes, the driver returns control to VMS for completion
of the I/O request. The driver writes the final request status in the low-order
word of R0O. Use of the high-order word of RO and the longword of R1 is
driver specific. Certain drivers use these fields to report a transfer byte count,
for example. :

The driver must leave the buffer header intact; I/O postprocessing relies
on the header’s accuracy. When VMS I/O postprocessing gains control, it
performs three steps:

1 Calls EXESCREDIT_BYTCNT to add the value in IRP$W_BOFF to JIBSL _
BYTCNT, thus updating the user’s byte count quota

2 If IRPSL _SVAPTE is nonzero, assumes a system buffer was allocated and
checks to see whether IRP$V_FUNC is set in IRP$W_STS

3 If IRP$V_FUNC is clear; deallocates the system buffer used for the write
operation; if IRPSV_FUNC is set, the special kernel-mode AST copies the
data to the user’s buffer and then deallocates the buffer in addition to
performing other kernel-mode AST functions

The special kernel-mode AST performs the following steps to complete a
buffered read operation:

1 Obtains the address of the system buffer from IRP$L_SVAPTE.

Writing FDT Routines
7.4 FDT Routines for VMS Buffered 1/0

2 Obtains the number of bytes to write to the user’s buffer from IRP$L _

BCNT.

3 Obtains the address of the user’s buffer from the second longword of the

system buffer header.

4 Checks for write accessibility on all pages of the user’s buffer.

5 Copies the data from the system buffer to the process’ buffer.

6 Deallocates the system buffer. Note that the system uses the size listed in
the buffer’s header to deallocate the buffer.

7.5 FDT Routines Provided by VMS

The VMS FDT routines perform I/O request validation that is common

to many devices. Whenever possible, drivers should take advantage of
these routines. Normally, if a VMS FDT routine is called, no additional
FDT processing is required. All of the VMS FDT routines listed in

Table 7-2 exit by transferring control to EXE$QIODRVPKT, EXE$FINISHIO,
EXE$FINISHIOC, or EXEBABORTIO. Once a VMS FDT routine is called, no

subsequent FDT processing occurs.

For additional information about VMS FDT routines, see the pertinent routine

descriptions in Appendix C.

Table 7-2 FDT Routines Provided by VMS

FDT Routine

Function

Exit Method

EXESONEPARM

EXE$READ

EXE$SENSEMODE

EXE$SETCHAR'

EXE$SETMODE’

Processes a nontransfer 1/O function
code that has one parameter
associated with it

Processes a logical-read or physical-
read function for a direct I/0O
operation

Processes the sense-device-mode
and sense-device-characteristics
functions by reading fields of the
UCB

Processes the set-device-mode and
set-device-characteristics functions

Processes the set-device-mode and
set-device-characteristics functions
by creating a driver fork process

Transfers control to EXE$QIODRVPKT

Aborts the I/0 request if an error occurs,
or dismisses and resubmits the 1/0 request
if the user 1/O buffers cannot be locked in
memory; otherwise, transfers control to
EXE$QIODRVPKT

Transfers control to EXE$FINISHIO

Transfers control to EXE$FINISHIO

Aborts the 1/O request if an error
occurs; otherwise, transfers control to
EXE$QIODRVPKT

'If setting device characteristics requires no device activity or requires no synchronization with fork processing, the
driver's FDT entry can specify EXESSETCHAR; otherwise, it must specify EXESSETMODE.

Writing FDT Routines
7.5 FDT Routines Provided by VMS

Table 7-2 (Cont.) FDT Routines Provided by VMS

FDT Routine Function Exit Method
EXE$SWRITE Processes a logical-write or Aborts the 1/0 request if an error occurs,
physical-write function for a direct or dismisses the 1/O request if the
/O operation user 1/O buffers cannot be locked in
memory; otherwise, transfers control to
EXE$QIODRVPKT
EXE$ZEROPARM Processes a nontransfer 1/0 function Transfers control to EXE$QIODRVPKT
code that has no associated
parameters

8 Writing a Start-1/0 Routine

A driver start-I/O routine activates a device and then waits for a device
interrupt or timeout. This chapter describes the start-1/O routine. Chapter 10
describes the reactivation of the driver routine that performs device-
dependent I/O postprocessing. With a few exceptions, the start-I/O routine
discussed in the following sections describes a DMA transfer using a single-
unit controller.

8.1 Transferring Control to the Start-1/0 Routine

The start-I/O routine of a device driver gains control from either of two VMS
routines: EXE$QIODRVPKT or IOC$REQCOM.

When FDT processing is complete for an I/O request, the FDT routine
transfers control to EXE$QIODRVPKT. If the designated device is idle,
IOCSINITIATE is called to create a driver fork process. (This procedure

is detailed in Section 7.2.1.2.) The driver fork process then gains control

in the start-I/O routine of the appropriate driver. If the device is busy,
EXE$QIODRVPKT calls EXESINSIOQ, which queues the packet to the device
unit’s pending-I/O queue.

After a device completes an I/O operation, the driver fork process exits by
transferring control to IOC$REQCOM. IOC$REQCOM inserts the IRP for the
finished transfer into the postprocessing queue. It then dequeues the next IRP
from the device unit’s pending-I1/O queue and calls IOC$INITIATE to initiate
the processing of this I/O request in the driver’s fork process at the entry
point of the driver’s start-I/O routine.

8.2 Context of a Driver Fork Process

A start-1/O routine does not run in the context of a user process. Rather, it
has the following context:

System context Driver code can only refer to system virtual addresses.

Kernel mode Execution occurs in the most privileged access mode and
can, therefore, change IPL and obtain spin locks.

High IPL The VMS routine that creates a driver fork process

obtains the driver’s fork lock, raising IPL to driver fork
level before activating the driver.

Kernel or Execution occurs on the kernel or interrupt stack.

interrupt stack The driver must not alter the state of the stack
without restoring the stack to its previous state before
relinquishing control. The stack used depends on whether
the 1/0 startup is the result of a new 1/O request or
because a previously requested I/O operation has been
completed. The choice of stacks must not affect the
operation of the start-1/O routine.

Writing a Start-1/0 Routine

8.2 Context of a Driver Fork Process

In addition to the context described, the VMS packet-queuing routines set up
R3 and R5 for a driver start-1/O routine, as follows:

e R3 contains the address of the IRP.
e R5 contains the address of the UCB for the device.

The start-I/O routine must preserve all general registers except R0, R1, R2,
and R4.

Before the packet-queuing routines call the start-I/O routine, they copy the
following IRP fields into their corresponding slots in the device’s UCB:

e IRP$L _BCNT (low-order word) — UCBSW_BCNT
e IRP$W_BOFF — UCB$W_BOFF
» IRP$L _SVAPTE — UCB$L _SVAPTE

8.3 Functions of a Start-1/0 Routine

8-2

The processing performed by a start-I/O routine is device specific. A start-
I/0 routine normally contains elements that perform the following functions
to activate:

* Analyzing the I/O function
* Transferring the details of a request from the IRP into the UCB
* Obtaining and initializing the controller

* Modifying device registers to activate the device

A start-1/O routine of a DMA device driver performs additional tasks to
prepare the device for a DMA transfer prior to activating the device. These
tasks include the following:

* Obtaining I/O adapter resources such as map registers and a buffered
data path

* Computing the starting address of a data transfer

The following sections describe the general activities of a start-I/O routine for
a typical device. The details of DMA processing are specific to the particular
device. Section 12.2 describes the UNIBUS- and Q22 bus-related details of
DMA transfers. Section 13.5.3 relates those tasks that MASSBUS DMA device
drivers must perform. Section 14.5 discusses similar functions that drivers for
generic VAXBI devices may need to perform.

Writing a Start-1/0 Routine
8.3 Functions of a Start-1/0 Routine

8.3.1 Obtaining Controller Access

If the device is one of several attached to a controller, the start-I/O routine
invokes the VMS macro REQPCHAN to assign the controller’s data channel
to the device unit. Controllers that control only one device do not require
arbitration for the controller’s data channel. REQPCHAN calls the VMS
routine IOCSREQPCHANL that acquires ownership of the controller data
channel.

The transfer being controlled by the start-I/O routine discussed here requires
no seek preceding the transfer. Disk I/O is an example of a transfer that
requires a seek first. To permit seeks to be overlapped with transfers, invoke
REQPCHAN with the argument pri=HIGH. Specifying pri=HIGH inserts a
request for a channel at the head of the channel wait queue. \

If the channel is not available, IOC$REQPCHANL suspends driver processing
by saving the driver’s context in the UCB fork block and inserting the fork
block in the channel wait queue. IOCSREQPCHANL then returns control to
the caller of the driver, that is, to EXE$INSIOQ, as illustrated in Figure 8-1.
This procedure is further discussed in Section 3.4.1.

Figure 8—-1 Inserting a UCB into the Channel Wait Queue

caus | o luss [o o
IMP
JSB
USER QIODRVPKT instoa |2SBy| iniTiATE
PROGRAM
RSB
JMP JmP
)
CHANNEL
RET QIORETURN DRIVER WAIT
QUEUE
JSB

RSB ucs
REQCHAN (-} — — ADDRESS

ZK-928-82

The UCB fork block now represents the entire context of the suspended
driver:

® Saved R3 containing the IRP address
* Implicitly saved R5 containing the UCB address

e A return address in the driver

Note that, because IOC$RELCHAN moves the address of the device’s CSR
into R4 before resuming a suspended driver, IOC$REQPCHANL does not
save R4 in the UCB fork block.

Writing a Start-1/0 Routine
8.3 Functions of a Start-1/O Routine

If the channel is available, IOC$REQPCHANL locates the interrupt dispatch
block (IDB) for the channel with a pointer in the UCB:

UCB — CRB — IDB

The IDB contains the address of the control and status register (CSR) for the
channel (IDB$L _CSR). IOCSREQPCHANL returns the CSR address in R4.
The driver for a unit attached to a dedicated controller must contain the code
needed to load the CSR address into R4.

IOC$REQPCHANL also writes the address of the new channel-owner’s UCB
in the owner field of the IDB (IDBSL _OWNER). The driver’s interrupt service
routine later reads this IDB field to determine which device unit owns the
controller’s data channel. A driver for a single-unit controller must fill the
IDB$L _OWNER field in its controller or unit initialization routines.

The driver must maintain the stack in a known and consistent state for the
resource-wait-queue mechanism to work. When IOC$REQPCHANL gains
control, the top two items on the stack must be two return addresses:

® (00(SP)—Address of the next instruction to be executed in the driver fork
process. The transfer of control to IOC$REQPCHANL places this address
on the stack.

* (4(SP)—Address of the next instruction to be executed in the routine that
called the driver start-I/O routine.

8.3.2 Obtaining and Converting the I/O Function Code and Its Modifiers

The start-I/O routine extracts the I/O function code and function modifiers
from the field IRP$W_FUNC and translates them into device-specific function
codes, which it loads into the device’s CSR or other control registers. The
start-I/O routine creates and modifies a bit mask that is to be loaded into
the CSR when the driver starts the device. To accomplish this, the start-
I/0 routine converts the function modifiers contained in IRP$W_FUNC into
device-specific bit settings in the general register.

At this point, a UNIBUS/Q22 bus DMA driver follows procedures to obtain
I/O bus resources and compute the size and starting address of a transfer.
These procedures are discussed in Section 12.2. MASSBUS DMA device
drivers perform the steps indicated in Section 13.5.3.

8.3.3 Preparing the Device Activation Bit Mask

84

For a typical device, the start-I/O routine prepares the device-activation bit
mask by setting the interrupt-enable bit and the go bit in the general purpose
register that also contains the high-order bits of the bus address and the
device-function bits. At this point, the general register contains a complete
command for starting the transfer, also known as the control mask.

When the start-I/O routine copies the contents of the register into the device’s
CSR, the device starts the transfer. Before activating the device, however, the
start-I/O routine should perform the steps described in Sections 8.3.4 and
8.3.5.

Writing a Start-1/0 Routine
8.3 Functions of a Start-1/0 Routine

8.3.4 Synchronizing Access to the Device Database

The start-I/O routine invokes the VMS macro DEVICELOCK to synchronize
its access to device registers with the interrupt service routine. This macro
invocation is doubly important, for it establishes the context wherein the
driver can later issue the wait-for-interrupt macro (WFIKPCH or WFIRLCH).
The wait-for-interrupt macros expect the driver’s fork IPL to be on the stack,
as placed there by the DEVICELOCK macro. In addition, the wait-for-
interrupt macros issue the DEVICEUNLOCK macro to release ownership of
the device lock and restore the previous IPL.

8.3.5 Checking for a Local Processor Power Failure

After synchronizing access to device registers, the start-I/O routine invokes
the VMS macro SETIPL to raise IPL to IPL}_POWER to block all interrupts
on the local processor.

The start-I/O routine then examines the powerfail bit in the UCB’s status
longword (UCB$V_POWER in UCB$L_STS) to determine whether a local
power failure has occurred since the start-I/O routine gained control. If the
bit is not set, the transfer can proceed.

If the bit is set, a power failure might have occurred between the time that the
start-1/O routine wrote the first device register and the time that the start-1/0O
routine is ready to activate the device. Such a power failure could modify the
already-written device registers and cause unpredictable device behavior if
the device were to be started.

If the bit UCB$V_POWER is set, the start-I/O routine branches to an error
handler in the driver. The driver error handler must perform the following
actions:

* (Clear UCB$V_POWER

e Issue the DEVICEUNLOCK macro to release the device lock and restore
IPL to fork IPL

After performing these tasks, many drivers transfer control to the beginning
of the start-I/O routine, which restarts the processing of the I/O request.

8.3.6 Activating the Device

If no power failure has occurred, the start-I/O routine copies the contents
of the control mask into the device’s CSR. When the device notices the new
contents of the device register, it begins to transfer the requested data.

Writing a Start-1/0 Routine

8.4 Waiting for an Interrupt or Timeout

8.4 Waiting for an Interrupt or Timeout

Once the start-I/O routine activates the device, the driver fork process cannot
proceed until one of these events occurs:

* The device generates a hardware interrupt.

* The device does not generate a hardware interrupt within an expected
time limit, which is to say that a device timeout occurs.

Still executing at IPL§_POWER, the driver’s start-I/O routine asks VMS to
suspend the driver fork process by invoking one of the following macros:

WEFIKPCH Wait for an interrupt or timeout and keep the controller data
channel

WFIRLCH Wait for an interrupt or timeout and release the controller data
channel

The WFIKPCH and WFIRLCH macros require the address of a timeout
handling routine in the excpt argument. Optionally, but almost always, the
driver can also indicate the number of seconds the system must wait before
signaling a timeout in the time argument. A full description of these macros
appears in Appendix C.

Both macros invoke routines that release ownership of the device lock,
relinquish synchronization, and return IPL to the previous level when exiting.
These routines expect to find the return IPL on the stack. This IPL is saved
on the stack by the DEVICELOCK macro as described in Section 8.3.4.

Drivers generally keep the controller data channel while waiting for the
interrupt or timeout. Drivers of devices with dedicated controllers always
keep the channel because only one unit ever needs it. For devices that share
a controller, some operations, such as disk seeks, do not require the controller
once the operation has begun. In such cases, the driver can release the
controller’s data channel while waiting for an interrupt or timeout so that
other units on the controller can start their operations.

8.4.1 Expansion of WFIKPCH Macro

8-6

Because the WFIKPCH and WFIRLCH macros are similar, the description that
follows analyzes the expansion of WFIKPCH only.

If the driver specifies the time argument in the macro call, the macro pushes
the value of the argument into the stack. If the time argument is not
specified, the macro pushes the value 65,536 onto the stack. IOC$WFIKPCH
uses the time value to calculate the length of time VMS waits before
transferring control to a device timeout handler.

WFIKPCH completes its expansion with two lines of code:

JSB G~ IOC$WFIKPCH
.WORD EXCPT-.

The execution of the JSB instruction pushes the address following the JSB
onto the stack as the address to which the called routine would normally
return with an RSB instruction.

Writing a Start-1/0 Routine

8.4 Waiting for an Interrupt or Timeout

8.4.2 10CSWFIKPCH Routine

The VMS routine IOC$WFIKPCH, invoked by the macro WFIKPCH, performs
the functions necessary for the driver fork process to wait for a device
interrupt or timeout. IOC$WFIKPCH first adds 2 to the address on the top
of the stack so that the top of the stack contains the address of the next
instruction in the driver after the macro invocation. This address is where
the driver resumes execution as a result of an interrupt service routine’s JSB
instruction.

IOC$WFIKPCH then saves the contents of R3, R4, and the address to which
control must be returned to the driver, which it takes from the top of the
stack. It saves this information in the first part of the UCB in the UCB fork
block.

Note that, after an interrupt, the interrupt service routine must restore R5 so
that it contains the address of the UCB. The interrupt service routine normally
obtains the address of the UCB from the field IDB$L _OWNER of the IDB.

The VMS routine that detects a device timeout calculates the address of the
driver’s timeout routine by subtracting 2 from the saved PC in the UCB’s fork
block and calling indirectly through the result. For example:

MOVL UCB$L_FPC(R5) ,R2 ; Get saved PC

CVTWL -(R2),-(SP) ; Get offset to timeout
; handler

ADDL (SP)+,R2 ; Add to relative driver

; address to obtain relative
; handler address
JSB (R2) ; Call timeout handler

IOC$WFIKPCH sets bits in the UCB (UCB$V_INT and UCB$V_TIM in
UCBS$L _STS) to indicate that interrupts and timeouts are expected from the
device. IOC$WFIKPCH also writes the device timeout absolute time in the
field UCB$SL _DUETIM. The absolute time is the number of seconds since the
operating system was bootstrapped plus the number of seconds specified in
the time argument to the macro.

Finally, IOC$WFIKPCH reenables interrupts by releasing the device lock
and lowering IPL to fork level, the IPL at which the driver was executing
previously. It then returns control to the caller of the driver.

O Writing an Interrupt Service Routine

When a device generates a hardware interrupt, it requests an interrupt at the
appropriate device IPL. Either the device or its adapter requests a processor
interrupt at that IPL. When the processor executes at an IPL below that device
IPL, interrupt dispatching begins.

The mechanism of interrupt dispatching has no direct bearing on the contents
of a driver’s interrupt service routine. Its implementation varies slightly
according to the VAX processing system and I/O subsystem in use. To obtain
background information on the dispatcher, refer to the overview provided

in Section 12.3, which also details the method of dispatching UNIBUS/Q22
bus device interrupts. MASSBUS device driver writers should refer also to
Section 13.4; generic VAXBI device driver writers should read the discussion
in Section 14.3.1.

For most device drivers, the driver prologue table contains, in the
reinitialization section established by the DPT_STORE macro, the address

of one or more interrupt service routines. Each interrupt service routine
corresponds to an interrupt vector on the I/O bus. You specify the address of
an I/O bus vector using the SYSGEN command CONNECT, as described in
Section 15.2.2.

Most device interrupt service routines perform the following functions:
¢ Locate the device’s UCB

* Determine whether the interrupt was solicited

* Reject or process unsolicited interrupts

* Activate the suspended driver to process solicited interrupts

Figure 9-1 illustrates the general flow of interrupt handling. The remaining
sections of this chapter describe the handling of solicited and unsolicited
interrupts in further detail.

Writing an Interrupt Service Routine

Figure 9-1

Flow of Interrupt Servicing

INTERRUPT

INTERRUPT
DISPATCHER
ACTIVATES THE
DEVICE UNIT'S
INTERRUPT
SERVICE ROUTINE

4

INTERRUPT SERVICE
ROUTINE LOCATES
DEVICE'S UCB
USING IDB POINTER
ON INTERRUPT
STACK

i

INTERRUPT SERVICE
ROUTINE ISSUES
DEVICELOCK MACRO

IS
INTERRUPT

SOLICITED
?

INTERRUPT
SERVICE ROUTINE
DETERMINES
CAUSE OF
INTERRUPT

INTERRUPT
SERVICE ROUTINE
REJECTS INTERRUPT
AS SPURIOUS

!

TAKES
APPROPRIATE
ACTION

REACTIVATE
SUSPENDED
DRIVER

&

DRIVER
INVOKES
IOFORK
MACRO

l

IOFORK
CALLS
EXES$IOFORK

!

EXES$IOFORK
QUEUES DRIVER
FORK BLOCK
AND RETURNS
TO INTERRUPT
SERVICE ROUTINE

INTERRUPT
SERVICE ROUTINE
REMOVES IDB POINTER
FROM STACK, RELEASES
DEVICE LOCK, AND
RESTORES RO THROUGH R5

1

INTERRUPT
SERVICE ROUTINE
DISMISSES
INTERRUPT
WITH REI

ZK-929-82

Writing an Interrupt Service Routine
9.1 Interrupt Context

9.1 Interrupt Context

When the interrupt dispatcher calls a driver’s interrupt service routine,
execution context is as follows:

* RO through R5 are saved on the stack.

* Only system address space may be accessed.
e [PL is at hardware device interrupt level.

¢ The processor is running in kernel mode.

® The processor is running on the interrupt stack.

The stack contains the following information:

Stack Location Content

00(SP) Pointer to the address of the IDB
04(SP) through 24(SP) Saved RO through R5

28(SP) PC at the time of the interrupt
32(SP) PSL at the time of the interrupt

In the course of its processing, an interrupt service routine must remove the
IDB pointer and the saved registers from the stack before dismissing the
interrupt with an REI instruction.

9.2 Servicing a Solicited Interrupt

When a driver’s fork process activates a device and expects to service a
device interrupt as a result, the fork process suspends its execution and waits
for an interrupt to occur. The suspended driver is represented only by the
contents of the fork block in the device’s UCB and the stack, which contain
the following information:

® A description of the I/O request and the state of the device ‘
¢ The contents of R3 and R4

* The implicit contents of R5 (the address of the UCB fork block)

® The address at which to return control to the driver

e The implicit address of a timeout handling routine

When the interrupt service routine returns control to the main line of driver
processing, it has only restored the contents of R3, R4, R5, and the PC.

A driver’s interrupt service routine performs the following tasks to process the
interrupt and transfer control to the waiting driver:

1 Obtains the address of the device’s UCB from the IDB, as follows:
00(SP) — CRB — IDB — IDB$L _OWNER — UCB
The interrupt service routine restores the UCB address to R5.

2 Issues the DEVICELOCK macro to obtain synchronized access to device
registers.

9-3

Writing an Interrupt Service Routine
9.2 Servicing a Solicited Interrupt

3 Tests the interrupt-expected bit in the UCB status longword (UCB$V_INT
in UCB$L _STS). If the bit is set, the driver is waiting for an interrupt
from this device. After performing this test, the interrupt service routine
must clear UCB$V_INT to indicate that it has received the expected
interrupt.

Note: Because device timeout processing mostly occurs at fork IPL (see

Section 10.2), a driver’s interrupt service routine, executing at device
IPL, could interrupt the processing of a timeout on the same device
unit. For this reason, the driver’s interrupt service routine should
check the interrupt-expected bit (UCB$V_INT) before handling the
interrupt. VMS clears this bit before it calls the driver’s timeout
handler.

4 Obtains device-status or controller-status information from the device
registers, if necessary, and stores the status information in the UCB.

5 Places the contents of UCB$L _FR3 and UCB$L _FR4 in R3 and R4,
respectively.

6 Issues a JSB instruction to the waiting driver’s PC address, which is saved
in the UCB fork block at UCB$L _FPC.

The restored driver should execute as briefly as possible in interrupt context.
As soon as possible, the driver should invoke the IOFORK macro to request
the creation of a fork process at the driver’s fork IPL. It must do this in
order to complete the I/O operation. Forking lowers the IPL of driver
execution below device IPL, allowing the processor to service additional
device interrupts. IOFORK calls the routine EXE$IOFORK. EXE$IOFORK
inserts into the appropriate fork queue the UCB fork block that describes the
driver process. It then returns control to the driver’s interrupt service routine.
(See Section 10.1.1 for additional information on driver forking.)

The interrupt service routine then performs the following steps:
1 Removes the IDB pointer from the stack

2 Issues the DEVICEUNLOCK macro to release ownership of the device
lock

3 Restores RO through R5

4 Dismisses the interrupt with an REI instruction

9.3 Servicing an Unsolicited Interrupt

94

A device requests an interrupt to indicate to a driver that the device has
changed status. If a driver’s fork process starts an I/O operation on a device,
the driver expects to receive an interrupt from the device when the I/O
operation completes or an error occurs.

Other changes in the device’s status occur when the device has not been
activated by a device driver. The device reports such a change by requesting
an unsolicited interrupt. For example, when a user types on a terminal, the
terminal requests an interrupt that is handled by the terminal driver. If the
terminal is not attached to a process, the terminal driver causes the login
procedure to be invoked for the user at the terminal.

Writing an Interrupt Service Routine
9.3 Servicing an Unsolicited Interrupt

As another example, an unsolicited interrupt occurs whenever a disk drive
goes offline, as could happen when an operator spins it down or pushes the
offline button. The disk driver services the interrupt by altering volume and
unit status bits in the disk device’s UCB.

Devices request unsolicited interrupts because some external event has
changed the status of the device. A device driver can handle these interrupts
in two ways:

* Ignore the interrupt as spurious

* Examine the device registers and take action according to their indications
of changed status, and then poll for any other changes in device status

As mentioned in Section 9.2, an interrupt service routine first obtains the
address of the device’s UCB from the IDB. It then issues the DEVICELOCK
macro to obtain synchronized access to device registers.

The routine determines whether an interrupt is solicited or not by examining
the interrupt-expected bit in the UCB status longword (UCB$V_INT in
UCB$L_STS). All UNIBUS, Q22 bus, and generic VAXBI device drivers must
use this method to determine whether or not an interrupt is solicited; the
address of the unsolicited interrupt service routine, specified in the driver
dispatch table, is used only by MASSBUS drivers (see Sections 13.4 and
13.6.)

If the interrupt is unsolicited, the driver can reject the interrupt with the
following code sequence:

1 Remove the IDB pointer from the stack
2 Restore RO through R5

3 Dismiss the interrupt with an REI instruction

If the driver decides to handle the unsolicited interrupt, it must observe
certain precautions. Certain methods of servicing unsolicited interrupts—for
instance sending a message to the operator or the job controller’s mailbox—
must be accomplished at an IPL lower than device IPL. Although the interrupt
service routine can legitimately fork to accommodate unsolicited interrupts, it
should exercise extreme caution in doing so.

If UCB$V_BSY is set in UCB$L_STS, the UCB fork block is currently in use
by the driver’s start-I/O routine. An attempt by the interrupt service routine
to concurrently use the fork block can destroy the fork context already stored
in that UCB. Moreover, if UCB$V_BSY is not set, the interrupt service routine
cannot safely assume that the fork block is not in use, for it may be currently
employed to service a previous unsolicited interrupt.

To avoid confusion, code servicing an unsolicited interrupt must ensure that
the fork block it requires is not being used. Perhaps the safest method to
guarantee this is for the driver to define a separate fork block in a device-
specific UCB extension. The driver should also define a semaphore bit to
control access to this fork block and protect against multiple forking. Note
that the driver should access the semaphore bit using interlocked instructions
(for example, BBSSI or BBCCI).

9-5

Writing an Interrupt Service Routine
9.3 Servicing an Unsolicited Interrupt

If, upon servicing an unsolicited interrupt, the driver’s interrupt service
routine examines the semaphore and discovers that a fork is already in
progress (that is, the bit is set), it should not attempt to fork.

The VMS routine that creates the fork process (once these conditions are
satisfied) returns control to the interrupt service routine. The interrupt service
routine then releases the device lock, restores the saved registers, and issues
an REI instruction to dismiss the interrupt.

9.3.1 Examples of Unsolicited Interrupts

A card reader requests an unsolicited interrupt when a user puts the reader
online. Once the card-reader driver’s interrupt service routine determines
that the interrupt is unsolicited, the routine analyzes the interrupt, as in the
following code example.

Because only one sequence of instructions can use the UCB as a fork block,
the interrupt service routine performs the following steps before it creates the
fork process:

* Ensures that no one is using the device, and that no one wants to use it,
by determining that the reference count (UCB$W_REEC) is zero.

* Ensures that it is not already using the UCB, to create a fork process in
order to lower IPL and to send a message to the job controller, by testing
the job-attached bit (UCB$V_]JOB in UCB$W_DEVSTS).

CR$INT: :
MOVL @(SP)+,R3 ;Get address of IDB@
MOVQ IDB$L_CSR(R3) ,R4 :Get controller CSR and owner UCB address®
DEVICELOCK LOCKADDR=UCB$L_DLCK(RS),-
PRESERVE=NO, -
CONDITION=NOSETIPL :Obtain device lock®
BBCC #UCBV_INT,UCBL_STS(R5),10$;If clear, interrupt not expected®@

; UNSOLICITED INTERRUPT

108$: MOVZWL CR_CSR(R4),RO ;Get reader status
MOVZBW #CR_CSR_M_IE,CR_CSR(R4) ;Clear status, enable interrupts®
BITW #CR_CSR_M_ONLINE, RO ;Reader transition to online?@®
BEQL 20% ;If equal no
TSTW UCB$W_REFC (R5) ;Device assigned or allocated?@
BNEQ 20% ;If not equal yes
BBSS #UCBV_JOB, UCBW_DEVSTS(R5) , -
20$;If set, message already sent®
BSBB 30% ;Send message to job controller
20$: DEVICEUNLOCK LOCKADDR=UCB$L_DLCK(R5), -)
PRESERVE=NO ;Release device lock
MovQ (8P)+,RO ;Restore registers

MOVQ (SP)+,R2
MOVQ (SP)+,R4
REI

Writing an Interrupt Service Routine
9.3 Servicing an Unsolicited Interrupt

30$: FORK ;Create fork process®
MOVZBL #MSG$_CRUNSOLIC,R4 :Set message type®
MOVL G~SYS$AR_JOBCTLMB,R3 ;Set address of job controller mailbox
JSB G"EXE$SNDEVMSG ;Sent message to job controller

BLBS RO, 40%$

;If LBS successful notification®

BICW #UCBM_JOB,UCBW_DEVSTS(R5) ;Clear message sent bit®

408: RSB
(1]

2]

The interrupt service routine obtains the address of the IDB from the top
of the stack.

By means of this action, it obtains the address of the control and status
register (CSR) in R4 and restores the address of the UCB in R5.!

It issues a DEVICELOCK macro to secure synchronized access to device
registers and UCB fields.

It checks for an unsolicited interrupt by testing the interrupt expected bit
in the UCB status longword.

Because the interrupt is unsolicited, the routine clears all CSR bits except
for the interrupt-expected bit.

It confirms that the reader was just placed on line by examining a saved
copy of the CSR.

It examines the reference count field of the device’s UCB (UCB$W_REFC)
to determine whether a process has allocated the device or assigned a
channel to it.

If the reference count is zero, the interrupt service routine tests the
job-attached bit in the device-dependent status field (UCB$V_]JOB in
UCB$W_DEVSTS) to make sure it has not already sent the job controller
a message about the card reader being placed on line.

If the job-attached bit is not set, the routine sets the bit and creates a fork
process to send the message to the job controller, using the system routine
EXE$SNDEVMSG (described in Appendix C). It is necessary to lower IPL
from device IPL by forking at this point because EXESSNDEVMSG
expects its caller’s IPL to be no greater than IPL$_MAILBOX.

When the interrupt service routine regains control, it releases the device lock,
restores RO through R5 and dismisses the interrupt with an REI instruction.
(The interrupt service routine removed the IDB pointer from the stack earlier
in its execution in order to obtain CSR and UCB addresses.)

[10]

1)

When the fork process created at step 8 eventually executes, it writes a
message to the job controller’s mailbox, indicating that the card reader is
on line.

If the fork process successfully sends the message, it leaves the job-
attached bit set to prevent the job controller from receiving any further
messages about the card reader’s state. (The driver’s cancel-I/O routine
later clears the bit.)

! Because the card reader has a dedicated controller, the IDB$L _OWNER field always points to the UCB for the

single unit:

00(SP) — CRB — IDB — IDB$L_OWNER — UCB

9-7

Writing an Interrupt Service Routine
9.3 Servicing an Unsolicited Interrupt

@ If the send-message request fails, the fork process clears the job-attached
bit so that if the card reader makes a subsequent state change to on line,
the interrupt service routine can attempt again to send a message to the
job controller.

Another example of unsolicited interrupt processing occurs in a device driver
for a multiunit controller. When a disk is placed off line, the disk drive
hardware requests an interrupt. The driver interrupt service routine must
determine what device unit requested the interrupt, obtain status information
from the disk device’s CSR, and then decide whether the interrupt was
solicited.

Because it must access device UCB fields and device registers, the interrupt
service routine first obtains the appropriate device lock. If the interrupt is
unexpected, it calls code that services the unsolicited interrupt. This code
checks the status of the volume, as described in the following steps:

1 It sets a bit in the UCB to indicate that the unit is on line (UCB$V_.
ONLINE in UCB$L _STS).

2 If the UCB’s volume-valid bit is set (UCB$V_VALID in UCB$L_STS), the
routine tests the volume valid status bit in a device register to determine
whether the volume status has changed. If the volume is no longer valid,
the routine clears the UCB volume valid bit.

3 The routine returns control to the driver’s interrupt service routine.

The driver’s interrupt service routine then polls the other device units on the
controller to determine whether any other units requested interrupts while the
first interrupt was being processed. When no unit requires interrupt servicing,
the routine removes the IDB pointer from the stack, releases the device lock,
restores registers RO through R5, and dismisses the interrupt with an REI
instruction.

1 O Completing an I/O Request and Handling Timeouts

Once a driver has activated the device and invoked the wait-for-interrupt
macro, the driver remains suspended until the device requests an interrupt or
times out.

If the device requests an interrupt, the driver’s interrupt service routine
handles the interrupt and then reactivates the driver at the instruction
following the wait-for-interrupt macro. The reactivated driver performs
device-dependent 1/O postprocessing.

If the device does not request an interrupt within the designated time interval,
the system transfers control to the driver’s timeout handling routine. The
address of the timeout handling routine is specified as the excpt argument to
the wait-for-interrupt macro.

10.1 1/0 Postprocessing

Once the driver interrupt service routine has processed an interrupt, it
transfers control to the driver by issuing a JSB instruction. At this point,

the driver is executing in interrupt context. If the driver were to continue
executing in interrupt context, it would lock out most other processing on the
processor including the handling of hardware interrupts.

To restore the driver to the context of a driver fork process, the driver
invokes the VMS macro IOFORK. Once the fork process has been created
and dispatched for execution, it executes the driver code that completes the
processing of the I/O request.

10.1.1 EXE$IOFORK

IOFORK generates a call to the routine EXESIOFORK. EXE$IOFORK converts
the driver context from that of an interrupt service routine to that of a fork
process by performing the following steps:

1 It disables software timeouts by clearing the timeout enable bit in the
UCB status longword (UCB$V_TIM in UCB$L _STS).

2 It saves R3 and R4 of the current driver context in the UCB fork block
(UCB$L _FR3 and UCBS$L _FR4).

3 It saves the current driver PC in the UCB fork block (UCB$L _FPC).
(The driver PC is the top longword on the stack, as a result of the JSB to
EXE$IOFORK.)

4 1t obtains the fork lock index of the driver from the UCB (UCB$B_FLCK)
and uses it to determine in which fork queue it should place the fork
block. ‘

5 Itinserts the address of the UCB fork block (R5) into the processor-specific
fork queue corresponding to the driver’s fork IPL.

10-1

Completing an I/0 Request and Handling Timeouts
10.1 1/0 Postprocessing

6 Finally, if the fork block is the first entry in the fork queue, EXE$IOFORK
requests a software interrupt from the local processor at the driver’s fork
IPL.

The steps listed previously move the fork process’s context into the UCB’s
fork block. They save R3 through R5 and the driver’s PC address. The
driver’s fork process resumes processing when the VMS fork dispatcher
dequeues the UCB fork block from the fork queue, and reactivates the driver
at the driver’s fork IPL.

10.1.2 Completing an 1/0 Request

10-2

When VMS reactivates a driver’s fork process by dequeuing the fork block,
the driver resumes processing of the I/O operation holding the appropriate
fork lock at fork IPL. Generic VAXBI devices perform whatever device-
dependent operations are needed to prepare an 1/0 request for completion. If
the device has completed the I/O operation without errors, a UNIBUS/Q22
bus driver for a DMA device proceeds as follows:

1 Purges the data pafh

2 Releases the buffered data path (applies only to UNIBUS DMA device
drivers)

3 Releases map registers (does not apply to MicroVAX I DMA device
drivers)

4 Releases the controller (applies only to drivers of devices on multiunit
controllers)

5 Checks device register images saved in the UCB to determine the status
of the I/O operation

6 Saves in the IRP the status code, transfer count, and device-dependent
status that is to be returned to the user process in an I/O status block

7 Returns control to the operating system

The first three steps listed previously apply to UNIBUS/Q22 bus DMA
transfers only and are discussed in Section 12.2. The following sections
describe the last three steps.

10.1.2.1

Releasing the Controller

To release the controller channel, the driver code invokes the VMS macro
RELCHAN. RELCHAN calls the VMS routine IOC$RELCHAN. If another
driver is waiting for the controller channel, IOC$RELCHAN grants that
driver’s fork process the channel, restores its context from the UCB fork
block, and transfers control to the saved PC. When no more drivers are
awaiting the channel, IOC$RELCHAN returns control to the fork process that
released the channel.

Drivers for devices with dedicated controllers need not release the controller’s
data channel (as discussed in Sections 8.3.1 and 11.1). By means of code in
the unit initialization routine, these drivers set up the dev1ce s UCB so that
the device owns the controller permanently.

Drivers must be executing at driver’s fork IPL when they invoke RELCHAN
or call IOC$RELCHAN.

Completing an /O Request and Handling Timeouts
10.1 1/O Postprocessing

10.1.2.2 Saving Status, Count, and Device-Dependent Status
To save the status code, transfer count, and device-dependent status, the
driver performs the following steps:

1 Loads a success status code (SS$_NORMAL), or whatever is appropriate,
into bits 0 through 15 of RO.

2 Loads the number of bytes transferred into the high-order 16 bits of RO
(bits 16 through 31), if the I/O operation performed by the device is a
transfer function.

3 Loads device-dependent status information, if any, into R1.!

10.1.2.3 Returning Control to the Operating System
Finally, the driver fork process returns control to the system by invoking
the REQCOM macro to complete the I/O request. REQCOM issues a JMP
instruction to the VMS routine IOC$REQCOM. IOC$REQCOM locates the
address of the I/O request packet (IRP) corresponding to the I/O operation
in the device’s UCB (UCB$L_IRP). It then writes the two longwords of
completion status contained in R0 and R1 into the media field of the IRP
(IRP$L _MEDIA and IRP$L _MEDIA+4).

IOC$REQCOM then inserts the IRP in the local processor’s 1/0-
postprocessing queue and requests a software interrupt at IPL$_IOPOST

from the local processor so the postprocessing begins when IPL drops below
IPL$_IOPOST.

If the error-logging bit is set in the device’s UCB (UCB$V_ERLOGIP in
UCB$L _STS), IOC$REQCOM obtains the address of the error message buffer
from the UCB (UCB$L _EMB). It then writes the following information into
the error buffer:

¢ Final device status (UCB$W_DEVSTS)
* Final error count (UCB$B_ERTCNT)
* Maximum error retry count for the driver

* Two longwords of completion status (R0 and R1)

To release the error message buffer, IOC$REQCOM calls ERLSRELEASEMB.
Section 11.3 describes error logging in more detail.

If any IRPs are waiting for driver processing, IOC$REQCOM dequeues an IRP
from the head of the queue of packets waiting for the device unit (UCB$L _
IOQFL), and transfers control to IOC$INITIATE. IOCS$INITIATE initiates
execution of this I/O request in the driver’s fork process, by activating the
driver’s start-I/O routine, as described in Section 4.2.1.

Otherwise, IOC$REQCOM clears the unit-busy bit in the device’s UCB
status longword (UCB$V_BSY in UCB$L _STS) and transfers control to
IOC$RELCHAN to release the controller channel in case the driver failed to
do so. IOC$RELCHAN, in turn, returns control to the caller of the driver fork
process (if the fork process issued the REQCOM macro). This is generally
the VMS fork dispatcher. The fork dispatcher releases the fork lock, restores
saved registers, and dismisses the fork IPL software interrupt with an REI
instruction.

! RO and R1 are the status values that VMS returns to the user process in the I/O status block specified in the
original $QIO system service.

10-3

Completing an 1/0 Request and Handling Timeouts
10.1 1/O Postprocessing

The remaining steps in processing the I/O request are performed by VMS
I/0 postprocessing. (See Section 4.3.1 for additional information.)

10.2 Timeout Handling Routines

VMS transfers control to the driver’s timeout handling routine if a device unit
does not request an interrupt within the time limit specified in the invocation
of the wait-for-interrupt macro. Among its other activities, the VMS software
timer interrupt service routine, having raised IPL from IPL$_TIMERFORK to

IPL$_SYNCH, scans UCBs once every second to determine whether a device
has timed out.

104

When the software timer interrupt service routine locates a device that
has timed out, the routine calls the driver’s timeout handling routine by
performing the following steps:

1

9

It obtains both the fork lock and the device lock associated with the
device unit to synchronize access to its fork database and device database.
It raises IPL to device IPL as a result of obtaining the device lock.

It raises IPL on the local processor to IPL§_POWER to block local power
failure servicing.

It disables expected interrupts and timeouts on the device by clearing bits
in the status field of the device’s UCB (UCB$V_INT and UCB$V_TIM in
UCBS$L _STS).

It sets the device-timeout bit in the UCB status field (UCB$V_TIMOUT in
UCBS$L _STS).

It lowers IPL to hardware device interrupt IPL (UCB$B_DIPL).

It restores the saved R3 and R4 of the driver’s fork process from the UCB
fork block (UCB$L _FR3 and UCB$L _FR4).

It restores R5 (address of the UCB fork block).

It computes the address of the driver’s timeout handling routine from the
saved PC in the UCB fork block (UCB$L _FPC).

It transfers control to the driver’s timeout handling routine.

The driver’s timeout handling routine executes in the following context:

RO through R5 are saved on the stack.

R5 contains the address of the UCB for the device that timed out.
Only system address space may be accessed.

The processor is running in kernel mode.

The processor is running on the interrupt stack.

The processor holds both fork lock and device lock.

IPL is at hardware device interrupt level.

A timeout handling routine returns control to the software timer interrupt
service routine by issuing an RSB instruction. The driver’s fork process
eventually regains control, with R3 and R4 restored from UCB$L _FR3 and
UCB$L _FR4.

Completing an I/O Request and Handling Timeouts
10.2 Timeout Handling Routines

Certain timeout handling routines may find it useful to fork to execute low
priority code or to accomplish certain tasks, such as the restarting of an I/O
request (see Section 10.2.1). If a driver uses this method, its interrupt service
routine should check the interrupt-expected bit (UCB$V_INT) before handling
the interrupt. The operating system clears this bit before it calls the driver’s
timeout handling routine. This allows the routine to determine whether
device-timeout processing is in progress at fork IPL.

During recovery from a power failure, VMS forces a device timeout by
altering the timeout field (UCB$L _DUETIM) of a UCB if that device’s UCB
records that the unit is waiting for an interrupt or timeout (UCB$V_INT and
UCB$V_TIM set in UCB$L _STS). The timeout handling routine can perceive
that recovery from a power failure is occurring by examining the power bit
(UCB$V_POWER in UCB$L _STS) in the UCB.

A timeout handling routine usually performs one of three functions:
® [t retries the I/O operation unless a retry count is exhausted.

* It aborts the I/O request, returning status (for instance, SS$_TIMEOUT)
in RO.

¢ It sends a message to an operator mailbox and waits for a subsequent
interrupt or timeout.

10.2.1 Retrying an I/O Operation

Some devices might retry an I/O operation after a timeout. For example, a
disk driver’s timeout handling routine might take the following steps after a
transfer timeout:

1 Invokes the FORK macro to lower IPL to fork level.

2 Releases any owned map registers, data path, and controller data channel.
3 Determines whether it is possible to retry the I/O operation.
4

Examines the error retry count (UCB$B__ERTCNT) to determine whether
it is possible to retry the I/O operation.

If the retry count is exhausted, the timeout handling routine sets the error
code, performs a normal abort I/O cleanup operation, and issues the
REQCOM macro to complete the I/O request.

If the retry count is not exhausted, the routine proceeds to the next step.

5 Examines the power bit (UCB$V_POWER in UCB$L _STS) to determine
if it must take special steps before retrying the operation. For instance,
the timeout handling routine should load the address of the IRP into R3
and reload the following fields of the IRP into the corresponding UCB
fields, if they have been altered by partial processing of the I/O request:

IRP$L_BCNT
IRP$W_BOFF
IRP$L _SVAPTE

These actions set up an environment in which the transfer can be retried
from the beginning.

6 Calls ERL$DEVICTMO to log the device timeout if the driver supports
error logging (see Section 6.2).

10-5

Completing an 1/O0 Request and Handling Timeouts
10.2 Timeout Handling Routines

7 Decreases the error retry count (UCB$B_ERTCNT).
8 Clears the UCB timeout bit (UCB$V_TIMOUT) in UCB$L _STS.

9 Branches to the start-I/O routine to retry the operation.

10.2.2 Aborting an I/O Request

A driver’s timeout handling routine aborts the I/O request when it exhausts
its retry count or when, having read device registers, the driver determines
that some fatal error condition has occurred such that there is no point in
retrying the request. Similarly, the routine aborts a request if the device’s
cancel-1/O bit (UCB$V_CANCEL in UCB$L _STS) is set, signifying that a
cancel-I/O request was made.

To abort an I/O request, a timeout handling routine performs the following
sequence of steps:

1 Clears the device control and status register (CSR), if appropriate to the
device and controller

Invokes the FORK macro to lower IPL to fork level

Releases any owned map registers, data path, and controller data channel
Loads the abort status code (5S$_ABORT) into the low word of RO
Clears bits 16 through 31 in RO to indicate that no data was transferred

o A~ WD

Issues the REQCOM macro to complete the request

10.2.3 Sending a Message to the Operator

The following sequence describes a timeout handling routine that sends a
message to the operator’s mailbox and then goes back into a wait-for-interrupt
or timeout state on the presumption that subsequent human intervention will
make the device operational:

1 The timeout handling routine invokes the FORK macro to lower IPL to
driver fork level.

2 It checks the cancel-I/O bit in the UCB status longword (UCB$V_
CANCEL in UCB$L _STS). '

If UCB$V_CANCEL is set, the timeout handling routine can abort the
request. However, if UCB$V_CANCEL is clear, the timeout handling
routine performs the following actions:

a. Saves R3 and R4 on the stack.

b. Loads an OPCOM message code, such as MSG$_DEVOFFLIN, into
R4. Note that the driver must invoke the message definition macro
$MSGDEF (located in SYS$LIBRARY:STARLET.MLB) to use these
message codes.

c. Loads the address of the operator’s mailbox (a pointer to which is
located at SYS$AR_OPRMBX) into R3.

Completing an 1/0 Request and Handling Timeouts
10.2 Timeout Handling Routines

d. Calls a VMS routine to place the message in the operator’s mailbox,
as follows:

JSB G~EXE$SNDEVMSG
e. Restores R3 and R4.

Invokes the DEVICELOCK macro to raise IPL to device IPL and
obtain the associated device lock.

g. Issues a SETIPL macro to raise IPLS_POWER and prevent power
failure interrupts on the local processor.

h. Invokes the WFIKPCH macro to wait for another interrupt or timeout.

When the OPCOM process reads the message in its mailbox, it sends the
requested message, in this case “device-offline,” to all operator terminals
enabled for that device class.

10-7

11 Other Driver Routines

Drivers normally contain initialization, cancel-I/O, error logging, and register
dumping routines. The driver prologue table specifies the addresses of the
unit and controller initialization routines.! The driver dispatch table (DDT)
contains the addresses of the cancel-I/O, error logging, and register dumping
routines. The type of device determines which of these routines are required
in a driver.

Drivers more rarely require a driver unloading routine, cloned UCB routine,
or unit delivery routine. VMS, however, provides a method for specifying
these routines in the DPT or DDT. A brief discussion of the driver unloading -
routine appears in Section 15.2.3. Section 11.4 describes the functions of a
cloned UCB routine. A description of the unit delivery routine appears in
Section 15.4.2.

11.1 Initialization Routines

Most device controllers and device units require initialization both when
the corresponding device driver is loaded and when the operating system

is recovering from a power failure. At these times, the duty of initialization
routines is to prepare controllers and device units for operation, according to
their characteristics.

The VMS operating system always calls controller and unit initialization
routines with IPL raised to IPL}_POWER. The high IPL prevents any
interrupts from reaching the local processor while initialization is occurring;
for this reason, initialization routines should only contain code that is
absolutely needed at initialization time. Initialization routines should not
explicitly lower IPL. The system calls initialization routines with a JSB
instruction; the routines return by executing an RSB instruction.

11.1.1 Controller Initialization Routine

The duties of a controller initialization routines depend on the characteristics
of the device. For example, a controller initialization routine for a card reader
might enable interrupts from the device by setting the interrupt-enable bit in
the device’s control and status register (CSR). A disk’s controller initialization
routine, on the other hand, might enable interrupts and initialize all unit-
status registers. A controller initialization routine can typically perform any of
the following tasks:

* Determines if it is being called as a result of a power failure by examining
the power bit (UCB$V_POWER in UCB$L _STS) in the UCB. A controller
initialization routine may want to perform or avoid specific tasks when
servicing a power failure (see Section 11.1.4).

¢ C(Clears error-status bits in device registers.

! A MASSBUS device driver must specify the address of its unit initialization routine in the driver dispatch table
(using the unitinit argument to the DDTAB macro as discussed in Section 6.2). UNIBUS, Q22 bus, and generic
VAXBI device drivers can specify the address in either the DPT or DDT.

111

Other Driver Routines
11.1 Initialization Routines

¢ Initiates a device operation, such as clearing a drive or acknowledging a
disk pack.

* Enables controller interrupts.

® If the controller is dedicated to a single-unit device, such as a printer,
fills in IDB$L. _OWNER and set the online bit (UCB$V_ONLINE in
UCB$L _STS).

* Permanently allocates driver resources, such as
— UNIBUS/Q22 bus map registers (see Section 12.2.2.2)
— UNIBUS buffered data path (see Section 12.2.1.2)

* Allocates a buffer from nonpaged system dynamic memory.

Note that the permanent allocation of driver resources and the allocation of
nonpaged pool require that the controller initialization routine fork to the
driver’s fork IPL. This action warrants careful coordination of the activities of
the controller and unit initialization routines, both with each other and with
the System Generation Utility (SYSGEN). See Section 11.1.5 for a discussion
of forking in an initialization routine.

The controller initialization routine for a generic VAXBI device driver

must initialize the device-specific aspects of the VAXBI device. Hardware
initialization might include such activities as writing values to BIIC and
device-specific registers, examining the results of the BIIC self test, mapping
a node’s window space, building data structures to control the device, and
linking these structures into chains of similar data structures. (Section 14.4
extensively discusses the means by which a driver’s controller initialization
routine performs these tasks.)

At the time of a call to a controller initialization routine, the following
registers contain the listed values:

Register Value

R4 Address of CSR

R5 Address of IDB that describes the controller
R6 Address of DDB associated with the controller
R8 Address of CRB for the controller

A controller initialization routine must preserve the contents of all registers
except R0, R1, and R2.

11.1.2 Unit Initialization Routine

11-2

A unit initialization routine is useful for initializing device-dependent fields in
the UCB. For example, a unit initialization routine for a disk can also specify
disk-drive geometry (such as number of cylinders) in the UCB and wait for
online units to spin up to speed. Unit initialization routines must set the
online bit in the UCB (UCB$V_ONLINE) to declare the unit to be on line.

A unit initialization routine can perform the same types of tasks as a
controller initialization routine (see Section 11.1.1). Generally, the driver
for a single-unit controller does not need a unit initialization routine.

Other Driver Routines
11.1 Initialization Routines

At the time of a call to a unit initialization routine, the registers contain the
following values:

Register Value

R3 Address of primary CSR

R4 Address of secondary CSR; R4 is equal to R3 if there is no
secondary CSR

R5 Address of the device’'s UCB

A unit initialization routine must preserve the contents of all registers except
RO, R1, and R2.

11.1.3 Initialization During Driver Loading

Prior to calling the initialization routines within a driver, VMS takes steps to
initialize the appropriate I/O database structures and establish the appropriate
links between these data structures and the driver. First, during system
initialization, VMS creates an ADP for the device adapter. For generic VAXBI
devices and MASSBUS devices, VMS creates an ADP, CRB, and IDB for the
device at this time. Secondly, during driver loading, VMS performs some
additional initialization. Finally, the driver’s initialization routines are given
an opportunity to initialize the device in a device-specific manner.

The extent of the initialization VMS performs during driver loading depends
upon whether the I/O database is being created, and whether the driver is
being loaded for the first time or is replacing a driver that was previously
loaded.

The SYSGEN commands LOAD, AUTOCONFIGURE, and CONNECT add
new drivers to the system configuration. The RELOAD command unloads an
existing version of a driver and replaces it with a new one.

The LOAD command loads the driver into nonpaged system memory but
does not call any driver-specific routines or execute any initialization requests
specified in DPT_STORE macro invocations.

The AUTOCONFIGURE and CONNECT commands create and initialize
I/0 database structures associated with the device driver, call driver-specific
initialization routines, and perform requests specified in DPT_STORE macro
invocations. For each new device they add to the system, AUTOCONFIGURE
and CONNECT perform the following steps:

e Create a UCB for the device. If this is the first occurrence of device and
controller name, the commands create a DDB, CRB, and an IDB. (Because
the CRB and IDB for a generic VAXBI device driver or MASSBUS device
driver have already been created by the VMS adapter initialization
routine, a CONNECT or AUTOCONFIGURE command for such a device
never creates these structures.)

* Perform the initialization operations specified by the DPT_STORE macros
within the initialization and reinitialization portions of the DPT.

¢ Relocate all addresses in the DDT and FDT to system virtual addresses.

¢ (Call the controller initialization routine specified in the CRB, if it has
created a CRB (or if CRB$V_UNINIT is set in CRB$B_MASK for a generic
VAXBI device).

11-3

Other Driver Routines
11.1 Initialization Routines

¢ (all the unit initialization routine (if any) specified in the DDT. If no
routine exists in the DDT, call the unit initialization routine (if any)
specified in the CRB.

The AUTOCONFIGURE and CONNECT command operations raise IPL to
IPL$_POWER before calling the driver’s initialization routines.

The RELOAD command replaces an existing driver with a new driver. The
command loads the new driver’s code into nonpaged system memory. Unlike
the other SYSGEN commands for driver loading, RELOAD assumes that the
data structures associated with the driver already exist, and thus updates the
I/0 database to reflect the modified code and its different location in system
virtual address space. It performs the following functions:

* Calls the driver unloading routine in the old version of the driver, if one
exists (as indicated in the unload argument of the DPTAB macro) and if
bit DPT$V_NOUNLOAD in DPT$B_FLAGS is clear.

The driver unloading routine must return success status in RO for
SYSGEN to proceed with the following steps.

* Deallocates the memory occupied by the old version of the driver.
* Loads the new version of the driver.

* Executes requests specified by DPT_STORE macro invocations in only the
reinitialization section of the DPT in the new driver.

¢ Relocates all addresses in the FDT and DDT to system virtual addresses.

* (Calls the controller initialization routine.

Chapter 15 contains detailed descriptions of all SYSGEN commands related
to device drivers.

11.1.4 Initialization During Recovery from a Power Failure

During recovery from a power failure, the operating system locates every
UCB in the I/O database, by following the chain of pointers to all DDBs in
the system (starting at IOC$GL_DEVLIST and chained by DDB$L _LINK)
and the chain of pointers to all UCBs of the same device and controller type
(starting at DDB$L _UCB and chained by UCB$L _LINK). For each UCB it
finds, VMS performs the following procedure:

1 It locates the CRB associated with the UCB (UCB$L _CRB) and
determines whether a controller initialization routine exists for the
device’s controller by examining CRB$L _INTD+VEC$L _INITIAL. If an
invocation of the DPT_STORE macro loaded the address of a controller
initialization routine into this field, VMS calls that routine.

2 It determines whether a unit initialization routine exists for the particular
device unit by examining the unit initialization field of the DDT (DDT$L —
UNITINIT). If the field does not contain an address, the system checks

the CRB (CRB$L _INTD+VEC$L _UNITINIT).2

2 MASSBUS drivers store unit initialization routines addresses only in the DDT.

11-4

Other Driver Routines
11.1 Initialization Routines

If either the CRB or the DDT contains a nonzero address for such a
routine, the system calls the routine to initialize the device unit. The
system calls only one routine; if the DDT contains an address, the address
in the CRB is ignored.

When called to service a power failure, driver initialization routines must
adhere to the following rules:

* They cannot acquire any spin locks. Controller and unit initialization
routines are called at IPL 31 during power failure recovery to reinitialize
I/0O devices before the processors are allowed to proceed with execution
at lower IPLs. Because processors may have been holding spin locks at
the time of the power failure, they will not be able to release them until
after they resume execution. As a result, spin locks are not available to
controller and unit initialization routines.

¢ They cannot perform any operation that requires the intervention of other
processors in a VMS multiprocessing system.

A driver initialization routine can determine if it is being called as a result of a
power failure by examining the power bit (UCB$V_POWER in UCB$L_STS)
in the UCB. ‘

11.1.5 Forking from a Driver Initialization Routine

If a driver initialization routine must fork to perform a thread of code that
must synchronize with code or a structure synchronized at a lower IPL, it
must take special care to avoid breaking that synchronization.

First of all, because SYSGEN, under normal circumstances, immediately
calls a driver’s unit initialization routine at IPL$_POWER after its controller
initialization completes, the unit initialization routine must be prepared for
the instance of a controller initialization routine that forks. Such a unit
initialization routine would complete before the fork thread of the controller
initialization routine resumed.

A fork thread in a unit initialization routine (or a controller initialization
routine in a driver without a unit initialization routine) must otherwise take
the following precautions to avoid breaking synchronization:

® Use either the CRB fork block, or a fork block defined in a device-specific
extension to the UCB. The separate fork block prevents a conflict with
the use of the normal UCB fork block by the IOFORK routine. If you are
using a separate UCB fork block, you must not attempt to allocate the
fork block from paged pool.

* You should use a semaphore bit to protect against multiple forking.
Remember that the unit initialization routine may be called repeatedly
in the case of power failures. If the semaphore shows that a fork is in
progress, then exit without attempting to fork. Access the semaphore bit
using interlocked instructions (for example, BBSSI or BBCCI).

* Invoke EXE$FORK with R5 pointing to the alternate fork block. Restore
the original value of R5 once the fork process is active.

11-5

Other Driver Routines
11.1 Initialization Routines

<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>