
VMS Device Support

Order Number: AA-LA88A-TE

April 1988

This manual describes how to write a driver for a device connected to
a VAX processor. It discusses the required and optional components
of a driver, and explains their functions. It details the requirements

· VMS imposes upon driver code and includes guidelines for creating,
loading, and debugging a driver that can run on VMS uniprocessing and
multiprocessing systems. It also describes data structures and other
methods by which a driver and the VMS system communicate information
and synchronize their execution.

Revision/Update Information: This book supersedes the Guide to
Writing a Device Driver for VAX/VMS,
published April, 1986.

Operating System and Version: VMS Version 5.0

Software Version:

digital equipment corporation
maynard, massachusetts

VMS Version 5.0

April 1988

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright © 1988 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL UNIBUS
DEC/CMS EduSystem VAX
DEC/MMS IAS VAXcluster
DECnet MASSBUS VAXBI
DECsystem-10 PDP VMS
DECSYSTEM-20 PDT VT
DECUS RSTS

~urnuo~u TM DECwriter RSX

HOW TO ORDER ADDITIONAL DOCUMENTATION
DIRECT MAIL ORDERS

USA & PUERTO Rico* CANADA INTERNATIONAL

ZK4490

Digital Equipment Corporation Digital Equipment
P.O. Box CS2008 of Canada Ltd.

Digital Equipment Corporation
PSG Business Manager

Nashua, New Hampshire 100 Herzberg Road
03061 Kanata, Ontario K2K 2A6

Attn: Direct Order Desk

c/o Digital's local subsidiary
or approved distributor

In Continental USA, Puerto Rico, Alaska, and Hawaii call 800-DIGIT AL.
In Canada call 800-267-6215.
*Any prepaid order from Puerto Rico must be placed with the local Digital subsidiary (809-754-7575).
Internal orders should be placed through the Software Distribution Center (SDC). Digital Equipment
Corporation, Westminster, Massachusetts 01473.

Production Note
This book was produced with the VAX DOCUMENT electronic publishing
system, a software tool developed and sold by DIGITAL. In this system,
writers use an ASCII text editor to create source files containing text and
English-like code; this code labels the structural elements of the document,
such as chapters, paragraphs, and tables. The VAX DOCUMENT software,
which runs on the VMS operating system, interprets the code to format the
text, generate a table of contents and index, and paginate the entire document.
Writers can print the document on the terminal or line printer, or they can use
DIGITAL-supported devices, such as the LN03 laser printer and Postscript®
printers (PrintServer 40 or LN03R ScriptPrinter), to produce a typeset-quality
copy containing integrated graphics.

® PostScript is a trademark of Adobe Systems, Inc.

Contents

PREFACE xx ix

NEW AND CHANGED FEATURES xxxiii

PARTI THE VMS DEVICE DRIVER ENVIRONMENT

CHAPTER 1 INTRODUCTION TO DEVICE DRIVERS 1-1

1.1 DRIVER FUNCTIONS 1-2

1.2 DRIVER COMPONENTS 1-2
1.2.1 Driver Tables 1-2
1.2.2 Driver Routines I 1-3

1.3 THE 1/0 DATABASE 1-4
1.3.1 Driver Tables 1-4
1.3.2 Data Structures 1-5
1.3.3 1/0 Request Packets 1-6

1.4 SYNCHRONIZATION OF DRIVER ACTIVITY 1-7

1.5 DRIVER CONTEXT 1-7
1.5.1 Example of Driver Context-Switching 1-8

1.6 HARDWARE CONSIDERATIONS 1-9
1.6.1 Driver Dependency on VAX Processing Systems 1-10
1.6. 1. 1 VAX-11/780, VAX-11/785, and VAX

8600/8650/8670. 1-10
1.6.1.2 VAX-11/750 • 1-11
1.6.1.3 VAX-11/730 and VAX-11/725 • 1-12
1.6.1.4 VAX 8200/8250/8300/8350,

VAX 8530/8550/8700/8800/8830/8840, and VAX 6200
Series• 1-12

1.6.1.5 MicroVAX 3600 Series and MicroVAX II • 1-15
1.6.1.6 MicroVAX I• 1-16

v

Contents

1.7 PROGRAMMED-1/0 AND DIRECT-MEMORY-ACCESS
TRANSFERS 1-16

1.7.1 Programmed 1/0 1-17
1.7.2 Direct-Memory-Access 1/0 1-17

1.8 BUFFERED AND DIRECT 1/0 1-18

1.9 EXAMPLE OF AN 1/0 REQUEST 1-19

CHAPTER 2 DISCUSSION OF A $QIO REQUEST 2-1

2.1 DRIVER CODE FOR THE LP11 WRITE FUNCTION 2-1

2.2 A USER PROCESS'S 1/0 REQUEST 2-2

2.3 DEVICE-INDEPENDENT 1/0 PREPROCESSING BY VMS 2-3

2.4 DEVICE-DEPENDENT 1/0 PREPROCESSING BY THE DRIVER 2-3

2.5 QUEUING THE 1/0 REQUEST PACKET TO THE DRIVER 2-4

2.6 ACTIVATING THE PRINTER 2-5

2.7 WAITING FOR A DEVICE INTERRUPT 2-5

2.8 HANDLING INTERRUPTS 2-6

2.9 1/0 POSTPROCESSING BY THE DRIVER 2-7

2.10 1/0 POSTPROCESSING BY VMS 2-7

CHAPTER 3 SYNCHRONIZATION OF 1/0 REQUEST PROCESSING 3-1

vi

3.1 INTERRUPT PRIORITY LEVELS
3.1.1 Interrupt Service Routines
3.1.2 IPL Use During 1/0 Processing
3.1.2.1 IPL 2 (IPL$_ASTDEL) • 3-4
3.1.2.2 IPL 4 (IPL$_10POST) • 3-4
3.1.2.3 IPL 8 Through IPL 11 (Fork IPLs) • 3-5
3.1.2.4 IPL 20 Through IPL 23 (Device IPLs) • 3-5
3.1.2.5 IPL 31 (IPL$_POWER) • 3-6
3.1.3 Additional I PLs
3.1.3.1 IPL 3 (IPL$_RESCHED) • 3-7
3.1.3.2 IPL 6 (IPL$_QUEUEAST) • 3-7
3.1.3.3 IPL 7 (IPL$_ TIMERFORK) • 3-7
3.1.3.4 IPL 8 (IPL$_SYNCH) • 3-8
3.1.3.5 IPL 11 (IPL$_MAILBOX) • 3-8
3.1.3.6 IPL 14 (XDEL TA Entry IPL) • 3-8
3.1.3.7 IPL 22 or IPL 24 (Interval Clock IPLs) • 3-8
3.1.4 Modifying I PL in Driver Code
3.1.4.1 Raising IPL • 3-1 0
3.1.4.2 Lowering IPL • 3-11

3.2 SPIN LOCKS
3.2.1 Fork Locks
3.2.2 Device Locks

3.3 DEVICE DRIVER SYNCHRONIZATION
3.3.1 Overview of the Synchronization of an 1/0 Operation
3.3.2 Synchronizing the Device Database
3.3.3 Synchronizing at Driver Fork Level
3.3.3.1 Forking and the VMS Fork Dispatcher• 3-21
3.3.3.2 Restrictions on Fork Processes • 3-22

3.4 RESOURCE WAIT QUEUES
3.4.1 Competing for a Controller's Data Channel

CHAPTER 4 OVERVIEW OF 1/0 PROCESSING

4.1
4.1.1
4.1.2
4.1.2.1
4.1.2.2
4.1.2.3
4.1.3

PREPROCESSING AN 1/0 REQUEST
Process 1/0 Channel Assignment
Locating a Device Driver in the 1/0 Database

Channel Request Block • 4-4
Interrupt Dispatch Block • 4-5
Device Data Block • 4-6

Validating the 1/0 Function

Contents

3-1
3-3
3-3

3-6

3-8

3-11
3-14
3-15

3-15
3-16
3-19
3-20

3-23
3-23

4-1

4-1
4-3
4-4

4-7

vii

Contents

4.1.4 Checking Process 1/0 Request Quotas
4.1.5 Validating the 1/0 Status Block
4.1.6 Allocating and Setting Up an 1/0 Request Packet
4.1.7 FDT Processing

4.2 HANDLING DEVICE ACTIVITY
4.2.1 Creating a Driver Fork Process to Start 1/0
4.2.2 Activating a Device and Waiting for an Interrupt
4.2.3 Handling a Device Interrupt
4.2.4 Switching from Interrupt to Fork Process Context
4.2.5 Activating a Fork Process from a Fork Queue

4.3 COMPLETING AN 1/0 REQUEST
4.3.1 1/0 Postprocessing

PARTll WRITING A DEVICE DRIVER

CHAPTER 5 TEMPLATE FOR A DEVICE DRIVER

5.1

5.2

5.3

5.4

CODING CONVENTIONS

RESTRICTIONS ON THE USE OF DEVICE-REGISTER 1/0
SPACE

IMPLEMENTING CONDITIONAL CODE IN A DRIVER

DRIVER TEMPLATE

CHAPTER 6 WRITING DEVICE-DRIVER TABLES

6.1 DRIVER PROLOGUE TABLE

6.2 DRIVER DISPATCH TABLE

viii

4-7
4-7
4-7
4-9

4-12
4-12
4-13
4-14
4-14
4-15

4-17
4-17

5-1

5-1

5-3

5-5

5-6

6-1

6-1

6-3

6.3
6.3.1
6.3.2 .

CHAPTER 7

7.1

7.2
7.2.1
7 .2.1.1
7.2.1.2
7.2.1.3
7.2.1.4
7.2.1.5

7.3

7.4
7.4.1
7.4.2
7.4.3

7.5

CHAPTER 8

8.1

8.2

8.3
8.3.1
8.3.2

8.3.3
8.3.4
8.3.5
8.3.6

FUNCTION DECISION TABLE
Defining Buffered-1/0 Functions
Defining Device-Specific Function Codes

WRITING FDT ROUTINES

CONTEXT OF FDT ROUTINE EXECUTION

FDT ROUTINES AND THEIR EXIT PATHS
FDT Exit Paths

RSB • 7-3
JMP GAEXE$QIODRVPKT. 7-4
JMP GAEXE$FINISHIO or JMP GAEXE$FINISHIOC • 7-4
JMP GAEXE$ABORTIO • 7-4
JSB GAEXE$AL TQUEPKT • 7-5

FDT ROUTINES FOR VMS DIRECT 1/0

FDT ROUTINES FOR VMS BUFFERED 1/0
Checking Accessibility of the User's Buffer
Allocating the System Buffer
Buffered-1/0 Postprocessing

FDT ROUTINES PROVIDED BY VMS

WRITING A START-1/0 ROUTINE

TRANSFERRING CONTROL TO THE START-1/0 ROUTINE

CONTEXT OF A DRIVER FORK PROCESS

FUNCTIONS OF A START-1/0 ROUTINE
Obtaining Controller Access
Obtaining and Converting the 1/0 Function Code and Its
Modifiers
Preparing the Device Activation Bit Mask
Synchronizing Access to the Device Database
Checking for a Local Processor Power Failure
Activating the Device

Contents

6-4
6-7
6-7

7-1

7-1

7-2
7-3

7-5

7-6
7-6
7-6
7-7

7-8

8-1

8-1

8-1

8-2
8-3

8-4
8-4
8-5
8-5
8-5

ix

Contents

8.4
8.4.1
8.4.2

WAITING FOR AN INTERRUPT OR TIMEOUT
Expansion of WFI KPCH Macro
IOC$WFIKPCH Routine

CHAPTER 9 WRITING AN INTERRUPT SERVICE ROUTINE

9.1

9.2

9.3
9.3.1

CHAPTER 10

10.1
10.1.1
10.1.2
10.1.2.1
10.1.2.2
10.1.2.3

10.2
10.2.1
10.2.2
10.2.3

CHAPTER 11

11.1
11.1.1
11.1.2
11.1.3
11.1.4
11.1.5

x

INTERRUPT CONTEXT

SERVICING A SOLICITED INTERRUPT

SERVICING AN UNSOLICITED INTERRUPT
Examples of Unsolicited Interrupts

COMPLETING AN 1/0 REQUEST AND HANDLING
TIMEOUTS

1/0 POSTPROCESSING
EXE$10FORK
Completing an 1/0 Request

Releasing the Controller • 10-2
Saving Status, Count, and Device-Dependent Status • 10-3
Returning Control to the Operating System • 10-3

TIMEOUT HANDLING ROUTINES
Retrying an 1/0 Operation
Aborting an 1/0 Request
Sending a Message to the Operator

OTHER DRIVER ROUTINES

INITIALIZATION ROUTINES
Controller Initialization Routine
Unit Initialization Routine
Initialization During Driver Loading
Initialization During Recovery from a Power Failure
Forking from a Driver Initialization Routine

8-6
8-6
8-7

9-1

9-3

9-3

9-4
9-6

10-1

10-1
10-1
10-2

10-4
10-5
10-6
10-6

11-1

11-1
11-1
11-2
11-3
11-4
11-5

11.2
11.2.1
11.2.2
11.2.3
11.2.4

11.3
11.3.1
11.3.2
11.3.3

11.4

PART Ill

Contents

CANCEL-1/0 ROUTINE 11-6
Context of a Cancel-1/0 Routine 11-7
Drivers That Need No Cancel-1/0 Routine 11-7
Device-Independent Cancel-1/0 Routine 11-8
Device-Dependent Cancel-1/0 Routine 11-8

ERROR LOGGING ROUTINES 11-8
Error Logging Routines Supplied by VMS 11-9
Register Dumping Routine 11-10
Interpreting Error Log Entries 11-11

CLONED UCB ROUTINE 11-11

BUS SPECIFIC CONSIDERATIONS AND
ADVANCED TOPICS

CHAPTER 12 UNIBUS AND Q22 BUS DEVICE SUPPORT 12-1

12.1

12.1.1
12.1.2
12.1.3
12.1.3.1
12.1.3.2
12.1.3.3
12.1.3.4
12.1.3.5

12.2

12.2.1
12.2. 1. 1
12.2.1.2
12.2.1.3
12.2.1.4
12.2.2
12.2.2.1
12.2.2.2
12.2.3

FUNCTIONS OF THE UNIBUS ADAPTER AND Q22 BUS
INTERFACE
Reading and Writing Device Registers
Map Registers
UNIBUS Adapter Data Transfer Paths

Direct Data Path• 12-10
Buffered Data Paths • 12-11
Byte-Offset Data Transfers• 12-13
Purging a Buffered Data Path • 1 2-1 3
Longword-Aligned, 32-Bit, Random-Access Mode • 12-14

WRITING DRIVER CODE FOR UNIBUS/Q22 BUS OMA
TRANSFERS
Selecting and Requesting a Data Path

Requesting a Buffered Data Path • 1 2-1 7
Requesting a Permanent Buffered Data Path • 12-18
Requesting the Direct Data Path• 12-18
Mixed Use of Direct and Buffered Data Paths • 12-19

Requesting Map Registers
Allocating Map Registers • 1 2-19
Permanently Allocating Map Registers • 1 2-20

Loading Map Registers

12-1
12-4
12-4
12-8

12-15
12-17

12-19

12-21

xi

Contents

12.2.4 Computing the Starting Address of a Transfer 12-22
12.2.5 Computing the Transfer Length 12-23
12.2.6 Activating the Device 12-23
12.2.7 Completing a OMA Transfer 12-24
12.2.7.1 Purging the Data Path • 12-24
12.2.7.2 Releasing a Buffered Data Path • 12-25
12.2.7.3 Releasing Map Registers • 12-25
12.2.8 Considerations for MicroVAX I OMA Devices 12-26

12.3 INTERRUPT DISPATCHING IN A UNIBUS/Q22 BUS
SYSTEM 12-27

12.3.1 Direct-Vector and Non-Direct-Vector Interrupt Dispatching - 12-29
12.3.2 Adapter Dispatch Table 12-31
12.3.3 Interrupt Transfer Vector and Interrupt Transfer Routine 12-31
12.3.4 Multilevel Device Interrupt Dispatching for Q22 Bus

Devices 12-34
12.3.4. 1 Ensuring That the 022 Bus Is Properly Configured • 12-35
12.3.4.2 Effects of Enabling Multilevel Device Interrupt Dispatching on

Device Drivers • 12-36

CHAPTER 13 MASSBUS DEVICE SUPPORT 13-1

13.1 MASSBUS ADAPTER REGISTERS 13-1
13.1.1 Loading MASSBUS Adapter Registers 13-3
13.1.2 MASSBUS Adapter Registers and Offsets 13-4
13.1.3 Modifying MASSBUS Adapter Registers 13-6

13.2 1/0 DATABASE FOR MASSBUS DEVICES 13-6

13.3 MASSBUS ADAPTER OPERATIONS 13-8

13.4 MASSBUS ADAPTER'S INTERRUPT DISPATCHING 13-9
13.4.1 Checking for MASSBUS Adapter Ownership 13-9
13.4.2 Dispatching a Device Interrupt 13-10

13.5 SPECIAL CONSIDERATIONS FOR MASSBUS DEVICE
DRIVERS 13-11

13.5.1 Unit Initialization Routine 13-11
13.5.2 The MASSBUS Adapter and the 1/0 Database 13-12
13.5.3 Start-1/0 Routine 13-12
13.5.3.1 Requesting Controller Data Channels • 1 3-1 2
13.5.3.2 Loading Map Registers • 13-13

xii

13.5.3.3
13.5.4

13.6
13.6.1
13.6.2
13.6.3

CHAPTER 14

14.1

14.2
14.2.1
14.2.2

14.3
14.3.1
14.3.2

14.4

14.4.1
14.4.2

14.4.2.1
14.4.2.2
14.4.2.3
14.4.2.4
14.4.2.5
14.4.3

14.5
14.5.1

14.6

Releasing Controller Data Channels • 13-14
DPTAB Macro

INTERRUPT SERVICE ROUTINES FOR MASSBUS DEVICES
Transferring Control to the Interrupt Service Routine
Returning Control to MBA$1NT
Considerations for Interrupt Service Routines

GENERIC VAXBI DEVICE SUPPORT

OVERVIEW

VAXBI CONCEPTS
VAXBI Address Space
Backplane Interconnect Interface Chip {BllC)

INITIALIZATION PERFORMED BY VMS
Data Structures
System Control Block

INITIALIZATION PERFORMED BY THE VAXBI DEVICE
DRIVER
Examining BllC Self-Test Status
Clearing BllC Errors, Setting Interrupts, and Enabling
Interrupts

Clearing the Bus Error Register • 14-12
Loading the Interrupt Destination Register • 14-12
Setting Interrupt Vectors • 14-13
Enabling Error Interrupts• 14-13
Enabling BllC Options • 14-13

Mapping Window Space

OMA TRANSFERS
Example: DMB32 Asynchronous/Synchronous Multiplexer

UNIT INITIALIZATION ROUTINE

Contents

-

13-14

13-14
13-14
13-15
13-15

14-1

14-1

14-1
14-2
14-5

14-5
14-7
14-9

14-9
14-11

14-12

14-14

14-15
14-17

14-19

xiii

Contents

14.7 REGISTER DUMPING ROUTINE 14-19

14.8 LOADING A VAXBI DEVICE DRIVER 14-20

14.9 BllC REGISTER DEFINITIONS 14-21

CHAPTER 15 LOADING A DEVICE DRIVER 15-1

15.1 PREPARING A DRIVER FOR LOADING INTO THE OPERATING
SYSTEM 15-1

15.2 LOADING A DRIVER 15-2
15.2.1 LOAD Command 15-2
15.2.2 CONNECT Command 15-3
15.2.3 RELOAD Command 15-7
15.2.4 SHOW/ADAPTER Command 15-8
15.2.5 SHOW/CONFIGURATION Command 15-9
15.2.6 SHOW/DEVICE Command 15-9

15.3 LOADING UNIPROCESSING AND MULTIPROCESSING
DRIVERS 15-10

15.4 THE SYSGEN AUTOCONFIGURATION FACILITY 15-11
15.4.1 SYSGEN Device Table 15-12
15.4.2 Device Driver Control of Autoconfiguration 15-17
15.4.3 Floating-Vector Address Calculation 15-19
15.4.4 Floating-CSR Address Calculation 15-19
15.4.5 Rules for Configuration 15-19

CHAPTER 16 DEBUGGING A DEVICE DRIVER 16-1

16.1 BOOTSTRAPPING THE SYSTEM WITH XDELTA 16-1

16.2 PROCEEDING FROM THE INITIAL BREAKPOINTS 16-5

xiv

Contents

16.3 LOADING THE DRIVER 16-5

16.4 INSERTING BREAKPOINTS IN DRIVER SOURCE CODE 16-6

16.5 CALCULATING THE BASE OF DRIVER CODE 16-7

16.6 REQUESTING AN XDELTA SOFTWARE INTERRUPT 16-7

16.7 EXAMINING THE VECTOR-JUMP TABLE 16-8

16.8 SETTING AN XDELTA BASE REGISTER 16-9

16.9 EXAMINING THE UCB, IRP, OR PSL 16-10

16.10 XDELTA COMMANDS 16-10
16.10.1 Values and Expressions 16-12
16.10.2 Special Symbols 16-13
16.10.2.1 Stored Base Registers • 1 6-13
16.10.2.2 Stored Command Strings • 16-13
16.10.2.3 Setting Base Registers • 1 6-14
16.10.3 Display Names and Locations of Loaded Executive Images - 16-14
16.10.4 Set Display Mode 16-14
16.10.5 Open, Examine, and Close Location 16-15
16.10.5.1 Open and Display Value Command• 16-15
16.10.5.2 Display Instruction Command• 16-16
16.10.5.3 Close and Display Next Location Command • 6-16
16.10.5.4 Display Range Command • 16-16
16.10.5.5 Indirect Command• 16-17
16.10.5.6 Display Previous Location Command• 16-17
16.10.6 Breakpoints 16-17
16.10.6.1 Setting Breakpoints • 16-17
16.10.6.2 Clearing Breakpoints • 16-18
16.10.6.3 Displaying Breakpoint List• 16-18
16.10.6.4 Proceeding from Breakpoints • 16-18
16.10.6.5 Setting Complex Breakpoints • 16-18
16.10.7 Step, Set Location, and Execute Instruction Commands 16-18
16.10.7.1 Loading PC and Continuing • 16-18
16.10.7.2 Execute Instruction and Step Command • 16-19
16.10.7.3 Step Instruction Over Subroutine Command • 16-19
16.10.8 Execute String Command 16-19

xv

Contents

16.11 GUIDELINES FOR DEBUGGING DEVICE DRIVERS 16-20
16.11.1 Opening Device Registers in XDEL TA 16-20
16.11.2 Adjusting the Device Timeout Value 16-20
16.11.3 XDEL TA and System Failures 16-20

16.12 COMMON DRIVER ERRORS 16-21
16.12.1 References to System Addresses 16-21
16.12.2 Incorrect References to Device Registers 16-21
16.12.3 Destroying Register Contents 16-21

16.13 POOL CHECKING MECHANISM 16-22

16.14 DETECTING DRIVER PROBLEMS IN A MULTIPROCESSING
SYSTEM 16-24

CHAPTER 17 TERMINAL CLASS AND PORT DRIVERS 17-1

17.1 OVERVIEW 17-2

17.2 DATA STRUCTURES 17-2
17.2.1 Terminal UCB 17-2
17.2.2 Port Driver Vector Table 17-4
17.2.3 Class Driver Vector Table 17-5
17.2.4 Vector Table Generation Macros 17-5
17 .2.4.1 $VECINI Macro • 17-6
17.2.4.2 $VEC Macro • 17-6
17.2.4.3 $VECEND Macro • 17-6

17.3 STRUCTURE OF PORT AND CLASS DRIVERS 17-6
17.3.1 Binding Class and Port Drivers 17-8

17.4 PORT DRIVER ROUTINES 17-8
17.4.1 Port Startup Routines 17-10
17.4.1.1 Controller Initialization Routine • 17-11
17 .4.1.2 Unit Initialization Routine • 17-11
17.4.2 Port Initiate Routines 17-11
17.4.2.1 PORT_DISCONNECT • 17-12
17.4.2.2 PORT _DS_SET • 1 7-12
17.4.2.3 PORT_FDT • 17-12
17.4.2.4 PORT _FORKRET • 1 7-1 3
17.4.2.5 PORT_MAINT • 17-13

xvi

Contents

17.4.2.6 PORT_SET_LINE • 17-13
17.4.2.7 PORT _SET _MODEM • 1 7-14
17.4.2.8 PORT_STARTIO • 17-14
17.4.3 Port Service Routines 17-15
17.4.3 1 PORT_ABORT • 17-15
17.4.3.2 PORT_CANCEL•17-15
17.4.3.3 PORT_RESUME • 17-15
17.4.3.4 PORT_STOP • 17-15
17.4.3.5 PORT_XOFF • 17-16
17.4.3.6 PORT_XON • 17-16
17.4.3.7 Port Interrupt Service Routines• 17-16

17.5 CLASS DRIVER ROUTINES 17-17
17.5.1 CLASS_DDT 17-18
17.5.2 CLASS_DISCONNECT 17-18
17.5.3 CLASS_DS_ TRANS 17-18
17.5.4 CLASS_fQRK 17-18
17.5.5 CLASS_GETNXT 17-19
17.5.6 CLASS_PUTNXT 17-19
17.5.7 CLASS-SETUP _UCB 17-20
17.5.8 CLASS_POWERFAIL 17-20
17.5.9 CLASS_READERROR 17-21

CHAPTER 18 MAPPING TO 1/0 SPACE AND THE
CONNECT-TO-INTERRUPT FACILITY 18-1

18.1 1/0 ADDRESS SPACE 18-1

18.2 PFN MAPPING 18-5
18.2.1 Notes on PFN Mapping 18-6

18.3 CONNECTING TO AN INTERRUPT VECTOR 18-7
18.3.1 Performing the Connect-to-Interrupt 18-8
18.3.2 $QIO Connect-to-Interrupt Request to Driver 18-9
18.3.3 The Connect-to-Interrupt Driver (CONINTERR.EXE) 18-12
18.3.4 Process-Specified Routines 18-13
18.3.4. 1 Unit Initialization Routine • 18-14
18.3.4.2 Start-1/0 Routine • 18-15
18.3.4.3 Interrupt Service Routine • 18-16
18.3.4.4 Cancel-l/O Routine• 18-17
18.3.5 AST Procedure 18-18

xvii

Contents

18.4
18.4.1
18.4.2

18.4.3

REAL-TIME APPLICATIONS EXAMPLES 18-18
Example 1 : KW11-W Watchdog Timer 18-19
Example 2: AD11-K, AM11-K A/D Converter with Multiplexer
Connected to the UNIBUS 18-20
Example 3: KW11-P Real-Time Clock and AD11-K Converter
Connected to the UN I BUS 1 8-22

PART IV REFERENCE SECTION AND EXAMPLES

APPENDIX A DATA STRUCTURES A-1

A. 1 CONFIGURATION CONTROL BLOCK (ACF) A-2

A.2 ADAPTER CONTROL BLOCK (ADP) A-4

A.3 CHANNEL CONTROL BLOCK (CCB) A-11

A.4 PER-CPU DATABASE (CPU) A-12

A.5 CHANNEL REQUEST BLOCK (CRB) A-17

A.6 DEVICE DATA BLOCK (DOB) A-25

A.7 DRIVER DISPATCH TABLE (DDT) A-27

A.8 DRIVER PROLOGUE TABLE (DPT) A-30

A.9 INTERRUPT DISPATCH BLOCK (IDB) A-34

A.10 1/0 REQUEST PACKET (IRP) A-36

A.11 1/0 REQUEST PACKET EXTENSION (IRPE) A-41

xviii

Contents

A.12 OBJECT RIGHTS BLOCK (ORB) A-43

A.13 SPIN LOCK DATA STRUCTURE (SPL) A-45

A.14 UNIT CONTROL BLOCK (UCB) A-47

APPENDIX B VMS MACROS INVOKED BY DRIVERS B-1

ADPDISP B-2

CASE B-5
CLASS_CTRL_INIT B-6
CLASS_UNIT_INIT B-7

CPU DI SP B-8
DDTAB B-10

$DEF B-12

$DEFEND B-13

$DEFINI B-14

DEVICELOCK B-15

DEVICEUNLOCK B-17

DPT AB B-19
DPT_STORE B-22
DSBINT B-25
EN Bl NT B-26
$EQULST B-27
FIND_CPU_DATA B-29
FORK B-30

FOR KLOCK B-31

FORKUNLOCK B-33
FUNCTAB B-34
IFNORD, IFNOWRT, IFRD, IFWRT B-36
INVALIDATE_ TB B-38

IOFORK B-40
LOADALT B-41

LOADMBA B-42

LOADUBA B-43

LOCK B-44
PURDPR B-46
READ_SVSTIME B-47

RELALT B-48
RE LC HAN B-49
RELDPR B-50

xix

Contents

RELMPR B-51

RELSCHAN B-52

REQALT B-53

REQCOM B-54

REQDPR B-55

REQMPR B-56

REQPCHAN B-57

REQSCHAN B-58

SAVI PL B-59

SETI PL B-60

SOFTINT B-62

TIMEWAIT B-63

TIMEDWAIT B-64

UNLOCK B-66

$VEC B-67

$VECEND B-68

$VECINI B-69

$VIELD, _VIELD B-70

WFIKPCH, WFIRLCH B-72

APPENDIX C OPERATING SYSTEM ROUTINES C-1

COM$DELA TT NAST C-2

COM$DRVDEALMEM C-3

COM$FLUSHATTNS C-4

COM$POST C-5

COM$SETATTNAST C-6

ERL$DEVICERR, ERL$DEVICTMO,
ERL$DEVICEATTN C-8

EXE$ABORTIO C-10

EXE$ALLOCBUF, EXE$ALLOCIRP C-12

EXE$ALONONPAGED C-14

EXE$ALONPAGVAR C-15

EXE$ALOPHVCNTG C-16

EXE$ALTQUEPKT C-17

EXE$CREDIT_BVTCNT,
EXE$CREDIT_BVTCNT_BVTLM C-18

EXE$DEANONPAGED C-19
EXE$DEBIT_BVTCNT(_NW),

EXE$DEBIT_BVTCNT_BVTLM(_NW) C-20

EXE$DEBIT_BVTCNT_ALQ,
EXE$DEBIT_BVTCNT_BVTLM_ALO C-22

xx

Contents

EXE$FINISHIO, EXE$FINISHIOC C-24

EXE$FORK C-26

EXE$1NSERTIRP C-27

EXE$1NSIOQ, EXE$1NSIOQC C-28

EXE$1NSTIMQ C-29

EXE$10FORK C-30

EXE$MODIFY C-31

EXE$MODIFYLOCK, EXE$MODIFYLOCKR C-34

EXE$0NEPARM C-37

EXE$QIODRVPKT C-38

EXE$QIORETURN C-39

EXE$READ C-40

EXE$READCHK,EXE$READCHKR C-43

EXE$READLOCK,EXE$READLOCKR C-45

EXE$SENSEMODE C-48

EXE$SETCHAR, EXE$SETMODE C-49

EXE$SNDEVMSG C-51

EXE$WRITE C-53

EXE$WRITECHK, EXE$WRITECHKR C-55

EXE$WRITELOCK, EXE$WRITELOCKR C-57

EXE$WRTMAI LBOX C-59

EXE$ZEROPARM C-60
IOC$ALOAL TMAP, IOC$ALOAL TMAPN,

IOC$ALOAL TMAPSP C-61

IOC$ALOUBAMAP, IOC$ALOUBAMAPN C-63

IOC$APPL YECC C-65

IOC$CANCELIO C-66

IOC$DIAGBUFILL C-67

IOC$1NITIATE C-68

IOC$10POST C-70

IOC$LOADAL TMAP C-72

IOC$LOADMBAMAP C-74

IOC$LOADUBAMAP, IOC$LOADUBAMAPA C-75

IOC$MOVFRUSER, IOC$MOVFRUSER2 C-77

IOC$MOVTOUSER, IOC$MOVTOUSER2 C-78

IOC$PURGDATAP C-79

IOC$RELAL TMAP C-81

IOC$RELCHAN C-83

IOC$RELDATAP C-84

IOC$RELMAPREG C-86

IOC$RELSCHAN C-88

xxi

Contents

IOC$REQAL TMAP C-89

IOC$REQCOM C-91
IOC$REQDATAP, IOC$REQDATAPNW C-93
IOC$REQMAPREG C-95
IOC$REQPCHANH, IOC$REQPCHANL,

IOC$REQSCHANH,
IOC$REQSCHANL C-97

IOC$RETURN C-99

IOC$VERIFYCHAN C-100
IOC$WFIKPCH, IOC$WFIRLCH C-101
LDR$ALLOC_PT C-103
LDR$DEALLOC_PT C-104

MMG$UNLOCK C-105
SMP$ACQNOIPL C-106

SMP$ACQUIRE C-107
SMP$ACQUIREL C-108
SMP$RELEASE C-109
SMP$RELEASEL C-110
SMP$RESTORE C-111
SMP$RESTOREL C-112

APPENDIX D DEVICE DRIVER ENTRY POINTS D-1
ALTERNATE START-1/0 ROUTINE D-2

CANCEL-1/0 ROUTINE D-3

CLONED UCB ROUTINE D-5
CONTROLLER INITIALIZATION ROUTINE D-7

DRIVER UNLOADING ROUTINE D-9
FDT ROUTINES D-10
INTERRUPT SERVICE ROUTINE D-12

REGISTER DUMPING ROUTINE D-14

START-1/0 ROUTINE D-15
TIMEOUT HANDLING ROUTINE D-17

UNIT DELIVERY ROUTINE D-19
UNIT INITIALIZATION ROUTINE D-21

UNSOLICITED INTERRUPT SERVICE
ROUTINE D-23

xxii

Contents

APPENDIX E SAMPLE DRIVER FOR THE RL 11, RL01, AND RL02 E-1

APPENDIX F SAMPLE DRIVER FOR THE DR11-W AND
DRV11-WA F-1

APPENDIX G VMS VERSION 5.0 AND KERNEL-MODE CODE G-1

G.1

G.1.1
G.1.2
G.1.3

G.2

G.2.1

G.2.2

G.2.3
G.2.4
G.2.5
G.2.6

G.3

G.3.1
G.3.2

G.3.2.1
G.3.2.2
G.3.2.3
G.3.3
G.3.3.1

G.3.4
G.3.5
G.3.5.1
G.3.5.2
G.3.6
G.3.6.1
G.3.6.2
G.3.6.3

UNIPROCESSOR AND MULTIPROCESSOR DEVICE
DRIVERS
MUL Tl PROCESSING System Parameter
Device Driver Loading
VMS Synchronization Macros

CHANGES REQUIRED OF ALL EXISTING DRIVERS UNDER VMS
VERSION 5.0
Specifying the Address of the Driver's Interrupt Service Routine
in the DPT
Checking, Debiting, and Crediting a Process's Byte Count
Quota
Referring to the Current PCB
Allocating System Page-Table Entries
Referring to a System Process Mailbox
Reassembling and Relinking the Driver

ADAPTING DEVICE DRIVERS TO RUN ON A VMS
MULTIPROCESSING SYSTEM
Specifying the Fork Lock Index
Synchronizing Access to the Device Database with the
Interrupt Service Routine

Synchronizing at Device IPL • G-9
Raising IPL to IPL$_POWER • G-10
Synchronization Within the Interrupt Service Routine • G-11

Controller and Unit Initialization Routines
Permanently Allocating Map Registers and Buffered Data
Paths• G-12

Timeout Handling Routine
General Methods for Synchronizing Kernel-Mode Code

Using the Spin Lock Synchronization Macros • G-13
Interlocking Access to Data Cells and Queues • G-14

Miscellaneous Conversion Tasks
Reading the System Time • G-1 5
Calling the Driver Fork Process from a TQE • G-1 6
Invalidating Translation Buffer Entries • G-16

G-1
G-2
G-3
G-4

G-4

G-5

G-5

G-7
G-7
G-7
G-8

G-8
G-8

G-9

G-12

G-13
G-13

G-15

xxiii

Contents

G.3.6.4
G.3.7

G.3.7.1
G.3.7.2

G.3.7.3

G.4
G.4.1
G.4.2
G.4.3
G.4.4

GLOSSARY

INDEX

EXAMPLES
16-1

18-1

FIGURES
1-1

1-2

1-3

1-4

1-5

1-6

2-1

3-1

3-2

3-3

4-1

4-2

4-3

xx iv

Unsupported Use of the IRP • G-1 6
Troubleshooting a Devic~ Driver in a Multiprocessing
System

Multiprocessing Bugchecks • G-1 7
Analyzing a Multiprocessing System Failure • G-18

G.3.7.2.1 Investigating the Status of Spin Locks • G-19
Using XDEL TA on SMP Systems • G-20

MULTIPROCESSING IMPLEMENTATION DETAILS
Processor States
System Initialization
Scheduling in a VMS Multiprocessing Environment
Timekeeping in a VMS Multiprocessing Environment

Loading a Driver

Locating the Adapter Address Space of a DWBUA Adapter
on a VAXBI Bus

The 1/0 Database

SBl-Based System Configurations

VAXBl-Based System Configurations

MicroVAX 3600-Series and MicroVAX II System
· Configuration

MicroVAX I System Configuration

Example of 1/0 Request Processing

A Printer Write Function

Synchronizing 1/0 Request Processing

Synchronizing 1/0 Request Completion

Processor-Specific Fork Queue Structure

Sequence of Driver Execution

Detailed Sequence of VMS 1/0 Processing

Data Structures for Three Devices on One Controller

G-17

G-20
G-20
G-22
G-24
G-25

Glossary-1

16-6

18-4

1-5

1-11

1-13

1-15

1-16

1-19

2-2

3-16

3-18

3-22

4-2

4-3

4-5

Contents

4-4 1/0 Database for Two Controllers 4-6

4-5 Layout of a Function Decision Table 4-9

4-6 FDT Routines and 1/0 Preprocessing 4-11

4-7 Creating a Fork Process After an Interrupt 4-15

4-8 Reactivation of a Driver Fork Process 4-16

5-1 Driver Organization 5-2

7-1 $QIO Scan of a Function Decision Table 7-3

7-2 Format of System Buffer for a Buffered-1/0 Read
Function 7-7

8-1 Inserting a UCB into the Channel Wait Queue 8-3

9-1 Flow of Interrupt Servicing 9-2

12-1 UNIBUS and Q22 Bus Map Registers 12-6

12-2 Mapping a UNIBUS Address to a Physical Address 12-7

12-3 Mapping a Q22 Bus Address to a Physical Address 12-8

12-4 UNIBUS Data Path Registers 12-9

12-5 Direct-Vector Interrupt Dispatching 12-28

12-6 Non-Direct-Vector Interrupt Dispatching 12-29

12-7 VEC Structures Within a CRB 12-32

12-8 Interrupt Transfer Vector Block (VEC) 12-33

13-1 MASSBUS Configuration 13-2

13-2 MASSBUS External-Register Longword 13-2

13-3 Location of MASSBUS Registers in Physical Address
Space 13-5

13-4 1/0 Database for MASSBUS Disk Unit 13-7

13-5 1/0 Database for MASSBUS Disk and Tape Units 13-7

13-6 1/0 Data Structures Used in Dispatching a MASSBUS
Device Interrupt 13-8

14-1 VAXBI Address Space 14-2

14-2 Description of VAXBI 1/0 Address Space 14-3

14-3 Physical Addresses in VAXBI 1/0 Address Space 14-4

14-4 V AXBI Device Vectors 14-10

14-5 Backplane Interconnect Interface Chip (BllC) Registers 14-22

16-1 Format of the POOLCHECK System Parameter 16-22

16-2 Poisoned Pool Packet 16-24

17-1 UCB Structure for Terminal Class/Port Drivers 17-3

17-2 Port Driver Vector Table 17-4

17-3 Class Driver Vector Table 17-5

17-4 Port Driver Structure 17-7

17-5 Class Driver Structure 17-7

17-6 Terminal Class/Port Driver Binding 17-9

18-1 Format of a Physical Address 18-4

xxv

Contents

A-1 The 1/0 Database A-2

A-2 Configuration Control Block (ACF) A-3

A-3· Adapter Control Block (ADP) A-5

A-4 Channel Control Block (CCB) A-11

A-5 Per-CPU Database (CPU) A-13

A-6 Channel Request Block (CRB) A-18

A-7 Interrupt Transfer Vector Block (VEC) A-22

A-8 Device Data Block (DOB) A-26

A-9 Driver Dispatch Table (DDT) A-28

A-10 Driver Prologue Table (DPT) A-31

A-11 Interrupt Dispatch Block (I DB) A-34

A-12 1/0 Request Packet (I RP) A-37

A-13 1/0 Request Packet Extension (I RPE) A-42

A-14 Object Rights Block (ORB) A-44

A-15 Spin Lock Data Structure (SPL) A-46

A-16 Composition of Extended Unit Control Blocks A-49

A-17 Unit Control Block (UCB) A-50

A-18 UCB Error-Log Extension A-59

A-19 UCB Local Tape Extension A-60

A-20 UCB Local Disk Extension A-61

A-21 UCB Terminal Extension A-63

G-1 Multiprocessor State Transitions G-21

TABLES
3-1 I PLs Defined by VMS 3-2

3-2 VMS Macros That Change a Processor's I PL 3-9

3-3 Static Spin Locks 3-12

6-1 1/0 Function Codes 6-5

7-1 Registers Loaded by the $QIO System Service 7-1

7-2 FDT Routines Provided by VMS 7-8

12-1 Features of the UNIBUS Adapters/Q22 Bus Interfaces of
VAX Systems 12-2

12-2 VAX System UNIBUS/Q22 Bus Interrupt Dispatching 12-30

13-1 Major Offsets Defined by $MBADEF 13-4

14-1 Contents of the BllC Registers 14-23

15-1 Conventional Nexus Assignments 15-5

15-2 SVSGEN Device Table 15-13

16-1 Boot Flags That Control the Loading of XDEL TA 16-2

16-2 Recommended Methods for Bootstrapping with XDEL TA - 16-2

xxvi

Contents

16-3 Requesting an XDEL TA Software Interrupt 16-8

16-4 XDELTA Command Summary 16-10

16-5 Settings of MULTIPROCESSING System Parameter 16-25

16-6 Bugchecks Produced by Full-Checking Multiprocessing 16-25

17-1 Port Driver Routines 17-10

17-2 Class Driver Routines 17-17

18-1 Symbols Defined by the $10xxxDEF Macros 18-2

18-2 UNIBUS and Q22 Bus Adapter Address Space 18-3

A-1 Contents of the Configuration Control Block A-4

A-2 Contents of Adapter Control Block A-6

A-3 Contents of Channel Control Block A-11

A-4 Per-CPU Database (CPU) A-14

A-5 Contents of Channel Request Block A-19

A-6 Interrupt Dispatch Vector Block (VEC) A-23

A-7 Contents of Device Data Block A-27

A-8 Contents of Driver Dispatch Table A-29

A-9 Contents of Driver Prologue Table A-32

A-10 Contents of Interrupt Dispatch Block A-35

A-11 Contents of an 1/0 Request Packet A-38

A-12 Contents of the 1/0 Request Packet Extension A-43

A-13 Contents of Object Rights Block A-45

A-14 Contents of the Spin Lock Data Structure A-46

A-15 UCB Extensions and Sizes Defined in $UCBDEF A-48

A-16 Contents of Unit Control Block A-51

A-17 UCB Error-Log Extension A-60

A-18 UCB Local Tape Extension A-61

A-19 UCB Local Disk Extension A-62

A-20 UCB Terminal Extension A-64

G-1 VMS Synchronization Images G-2

G-2 Settings of MULTIPROCESSING System Parameter G-3

G-3 Converting I PL Synchronization to Spin Lock
Synchronization G-14

G-4 Bugchecks Produced Within Full-Checking
Synchronization G-18

G-5 Multiprocessor States G-21

xxvii

Preface

The VMS Device Support Manual provides information needed to write a
device driver that runs under VMS Version 5.0 and to load it into the
operating system. DIGITAL makes no guarantee that drivers written for
earlier versions of VMS will execute without modification on this version
of the operating system. Although the intent is to maintain the existing
interface, some unavoidable changes might occur as new features are added.

Intended Audience
This manual is intended for system programmers who are already familiar
with VAX processors and the VMS operating system.

Document Structure
This manual contains the following four parts: Part I describes the
components and environment of a device driver and provides explanations of
VMS concepts critical to an understanding of a device driver's functions and
role in the operating system. Part I contains the following sections:

• Chapter 1 describes the role of a device driver in the VMS operating
system, introduces the components of a typical driver and the data
structures it uses, and provides an overview of system concepts critical to
driver operation. It concludes with an examination of the I/O subsystems
of the VAX processing systems.

• Chapter 2 provides an example of a device driver-the VMS line printer
driver, and illustrates the functions of the various components of this
driver and describes the driver's interaction with VMS.

• Chapter 3 discusses VMS synchronization mechanisms: interrupt priority
levels; spin locks, fork locks, and device locks; fork processes and fork
queues; and resource-wait queues.

• Chapter 4 provides an overview of I/O processing and discusses the
interaction of device drivers with VMS.

Part II of this document describes how to code each part of a driver, and
includes the following sections:

• Chapter 5 explains some general driver coding rules and conventions, and
includes a template of a device driver.

• Chapter 6 describes how to create driver tables, including the driver
prologue table, driver dispatch table, and function decision table (FDT).

• Chapter 7 explains how to write FDT routines, use VMS-supplied FDT
routines, and transfer control out of I/O request preprocessing.

• Chapter 8 discusses the components of a driver's start-I/O routine.

• Chapter 9 discusses the functions performed by an interrupt service
routine.

• Chapter 10 describes how to perform device-dependent I/O cgmpletion
and write timeout handling routines. '

xxix

Preface

xxx

• Chapter 11 describes unit and controller initialization routines, cancel-1/0
routines, error logging routines, register dumping routines, and cloned
UCB routines.

Part III contains discussions of bus-specific and processor-specific details
that affect the composition and operation of a device driver. It also contains
chapters that discuss advanced topics relating to the writing of specific types
of drivers.

• Chapter 12 discusses 1/0 bus features that govern the operation of
direct-memory-access (DMA) transfers and affect the code of DMA device
drivers for UNIBUS and Micro VAX Q22 bus devices.

• Chapter 13 describes strategies for producing a MASSBUS device driver.

• Chapter 14 describes special coding considerations for generic VAXBI
devices.

• Chapter 15 examines the methods by which a device is logically
connected to the processor and by which a driver is loaded into the
operating system.

• Chapter 16 describes the use of XDELTA as a device driver debugging
tool.

• Chapter 17 discusses the components of terminal class and port drivers.

• Chapter 18 describes the connect-to-interrupt driver interface that is
available to real-time users.

Part IV is a reference section, and includes the following appendixes:

• Appendix A contains a set of figures and tables that describe the contents
of each data structure and table in the IjO database.

• Appendix B lists the VMS macros usually invoked by drivers.

• Appendix C describes the context, synchronization, and 1/0 requirements
of the executive routines used by drivers or called as the result of a driver
macro invocation.

• Appendix D supplies a condensed description of the function and
environment of each driver routine.

• Appendix E includes a sample driver that operates an RL01/RL02-type
disk on the UNIBUS or Q22 bus.

• Appendix F contains a sample driver for two connected DRll controllers
on the UNIBUS or Q22 bus.

• Appendix G describes the differences between drivers intended for a VMS
uniprocessing environment and those intended for a VMS multiprocessing
environment. It further describes those changes that DIGITAL requires
or recommends in all existing non-DIGITAL-supplied drivers because of
the release of VMS Version 5.0 and also discusses the means by which a
uniprocessing driver can be converted to a multiprocessing driver.

The glossary at the end of this manual defines the vocabulary that pertains to
device drivers and their environment.

Preface

Associated Documents

Conventions

Before reading the VMS Device Support Manual volume, you should have an
understanding of the material discussed in the following documents:

• VAX Hardware Handbook

• If 0-related portions of the VMS System Services Reference Manual

• The section on VMS naming conventions in the Guide to Creating VMS
Modular Procedures

• VMS I/O User's Reference Manual: Part I and VMS I/O User's Reference
Manual: Part II

You may also find useful some of the material in your processor's hardware
documentation, as well as in the following books:

• VMS System Dump Analyzer Utility Manual

• Guide to Maintaining a VMS System

• VAX/VMS Internals and Data Structures

• VMS Delta/XDelta Utility Manual

This manual describes code transfer operations in three ways:

1 The phrase "issues a system service call" implies the use of a CALL
instruction.

2 The phrase "calls a routine" implies the use of a JSB or BSB instruction.

3 The phrase "transfers control to" implies the use of a BRB, BRW, or JMP
instruction.

Typographical conventions used in this book include the following:

• Generally, terms that are further explained in the glossary of this manual
first appear in italic print. For example:

Under the VMS operating system, a device driver is a set of routines and
tables that the system uses to process an 1/0 request for a particular
device type.

• Terms that serve as arguments to macros appear in boldface in the text of
the manual. For example:

If an at-sign character (@) precedes the oper argument, then the exp
argument describes the address of the data with which to initialize the
field.

• In examples, a symbol with a one- to six-character abbreviation indicates
that you press a key on the terminal. For instance:

driver-base-address, 0; X ~

xxxi

Preface

xxxii

• In examples, the symbol < CTRL/x> indicates that you must press
the key labeled CTRL while you simultaneously press another key. For
instance:

$ CREATE MYDRIVER.OPT
BASE=O
lcTRL/ZI

• A horizontal ellipsis indicates that additional parameters, values, or
information can be entered. For example:

$LINK /NOTRACE MYDRIVER1[,MYDRIVER2, ...] ,­
MYDRIVER.OPT/OPTIONS,-
SYS$SYSTEM:SYS.STB/SELECTIVE_SEARCH

• Square brackets indicate that the enclosed item is optional. (Square
brackets are not, however, optional in the syntax of a directory name
in a file specification or in the syntax of a substring specification in an
assignment statement.)

DSBINT [ipl] [,dst]

• Command examples show in black letters all output lines or prompting
characters that the system prints or displays. All user-entered commands
are shown in red letters. For example:

»>DEPOSIT R3 0
»>©DMAXDT
SYSBOOT>
SYSBOOT>CONTINUE

• A vertical ellipsis means either that not all the data that the system would
display in response to the particular command is shown or that not all
the data a user would enter is shown. For example:

JSB ©UCB$L_FPC(R5) ; Restore the driver process.

;Between these instructions, the interrupt service routine
;can make no assumptions about the contents of RO through R4.

POPR #-M<RO,R1,R2,R3,R4,R5> Restore interrupt registers.

New and Changed Features

The VMS Device Support Manual reflects various enhancements and changes
to VMS evident in VMS Version 5.0. It also incorporates information useful
in the creation of device drivers for those VAX processors introduced since
VMS Version 4.4, including the VAX 8250, VAX 8300, VAX 8530, VAX 8550,
VAX 8670, VAX 8800, VAX 8830, VAX 8840, the VAX 6200 series, and the
MicroVAX 3600 series.

Among the new features discussed in this manual are the following:

• VMS Version 5.0 incorporates support for symmetric multiprocessing
(SMP) in VAX multiprocessing systems, such as the VAX 8300/8350, VAX
8800/8830/8840, and the VAX 6200 series. Drivers designed to run in a
multiprocessing environment must supplement IPL synchronization with
the additional synchronization mechanism of spin locks.

For a full discussion of the impact of VMS Version 5.0 on existing
non-DIGITAL-supplied drivers, refer to Appendix G. Appendix G also
discusses the means by which you can convert a driver designed to
execute in a VMS uniprocessing system so that it also runs in a VMS
multiprocessing system.

Chapter 3 supplies a full discussion of the rules for synchronizing drivers.

·Appendix B includes descriptions of the following new synchronization
macros:

DEVICELOCK

DEVICE UNLOCK

FORKLOCK

FORK UNLOCK

LOCK

UNLOCK

Achieves synchronized access to a device's database as
appropriate to the processing environment

Relinquishes synchronized access to a device's database
as appropriate to the processing environment

Achieves synchronized access to a driver's fork
database as appropriate to the processing environment

Relinquishes synchronized access to a driver's fork
database as appropriate to the processing environment

Achieves synchronized access to a system resource as
appropriate to the processing environment

Relinquishes synchronized access to a system resource
as appropriate to the processing environment

Additionally, Appendix B explains new requirements governing the use of
the following existing macros:

DSBINT

ENBINT

SETI PL

Blocks interrupts from occurring on the local processor
at or below a specified IPL

Lowers the local processor's IPL to a specified value
and thus permits interrupts to occur at or beneath the
current IPL

Sets the current IPL of the local processor

xxxiii

New and Changed Features

xxxiv

Appendix B also describes the following new macros that synchronize
certain tasks of privileged code in both a multiprocessing and
uniprocessing environment:

FIND_CPU_DA TA

READ_SYSTIME

INVALIDATE_ TB

Obtains the starting virtual address of the current
processor's per-CPU database structure

Obtains a consistent copy of the system time and
places it into the specified quadword destination

Flushes a single page-table entry or all page-table
entries from the system's translation buffers

Appendix C includes descriptions of all routines, invoked by the macros
listed above, that obtain and release spin locks, fork locks, and device
locks. It includes the following routines:

SMP$ACONOIPL

SMP$ACOUIRE

SMP$ACOUIREL

SMP$RELEASE

SMP$RELEASEL

Acquires a device lock, assuming that the
local processor is already running at the IPL
appropriate for the acquisition of the lock

Acquires a fork lock or a spin lock and enforces
the appropriate IPL synchronization on the local
processor

Acquires a device lock and enforces the
appropriate IPL synchronization on the local
processor

Releases any and all acquisitions of a fork lock or
a spin lock by the local processor and makes the
lock available for acquisition by other processors

Releases any and all acquisitions of a device
lock by the local processor and makes the lock
available for acquisition by other processors

Section 15.3 discusses the issues involved in loading a multiprocessing
driver into the system, and Section 16.14 describes the VMS
synchronization images and their role in testing a multiprocessing driver.

Finally, Appendix A includes full descriptions of two new structures that
control the disposition of multiprocessing synchronization and record
information regarding the members of the multiprocessing system: the
spin lock data structure (SPL) and the per-CPU database structure (CPU).

• The ADPDISP macro, described in Appendix B, provides the ability to
transfer control within a driver, based on a specified adapter characteristic.
Such adapter characteristics include the presence of mapping registers,
bus address size, and the capabilities of the data paths. You should
replace most existing occurrences of the CPUDISP macro with ADPDISP.

• This manual now includes a separate part (Part III; Chapters 12 through
18) that discusses hardware-related driver issues and other advanced
topics. This structure allows the manual to more clearly and concisely
explain the general coding concepts and requirements for all VMS drivers
in Parts I and ~I.

• VMS Version 5.0 allows Q22 bus systems to enable multilevel device
interrupt dispatching. Section 12.3.4 describes this new feature as well as
VMS interrupt dispatching in general.

New and Changed Features

• VMS Version 5.0 allows Q22 bus device drivers to allocate sets of registers
from the entire set of 8,192 map registers. Appendix C describes the
following routines that are used to allocate, request, load, and release
these alternate map registers. These routines include:

IOC$ALOAL TMAP I
IOC$ALOAL TMAPN,
IOC$ALOAL TMAPSP

IOC$LOADAL TMAP

IOC$RELAL TMAP

IOC$REOAL TMAP

Allocate a set of 022 bus alternate map registers

Loads a set of 022 bus alternate map registers

Releases a set of 022 bus alternate map registers

Allocates sufficient 022 bus alternate map
registers to accommodate a OMA transfer and,
if unavailable, place process in alternate-map­
register wait queue

• The executive routines that perform buffer quota checking
(EXE$BUFFRQUOTA and EXE$BUFQUOPRC) have beer. replaced in
VMS Version 5.0 by similar routines that check and debit (or credit) a
job's byte count quota and, optionally, its byte count limit. Versions of
these routines exist that also allocate a requested buffer.

Appendix C includes discussions of the following buffer quota checking
and adjusting routines:

EXE$CREDIT _BYTCNT I
EXE$CREDIT _BYTCNT _BYTLM

EXE$DEBIT_BYTCNT(_NW) I
EXE$DEBIT _BYTCNT _BYTLM(_NW)

EXE$DEBIT _BYTCNT _ALO,
EXE$DEBIT _BYTCNT _BYTLM_ALO

Return credit to a job's buffered-1/0
byte count quota and byte count
limit

Determine whether a job's buffered
1/0 byte count quota usage
permits the process to be granted
additional buffered 1/0 and, if so,
adjust the job's byte count quota
and byte count limit

Determine whether a job's buffered
1/0 byte count quota usage
permits the process to be granted
additional buffered 1/0 and, if so,
allocate the requested amount of
nonpaged pool and adjust the job's
byte count quota and byte count
limit

• Appendix C includes discussion of the following routines:

ERL$DEVICEA TTN

LDR$ALLOC_PT

LDR$DEALLOC_PT

Allocates an error message buffer and logs
information relevant to an error that occurs on a
device, independent of the 1/0 request currently
being processed

Allocates system page-table entries

Deallocates system page-table entries

• The SYSGEN CONNECT and LOAD commands have been modified
to load a driver image from either SYS$LOADABLE_IMAGES or
SYS$SYSTEM. DIGITAL recommends that all drivers be placed in the
SYS$LOADABLE_IMAGES directory.

xxxv

New and Changed Features

xxxvi

• This manual incorporates a description of the VMS terminal driver's
class/port interface. Chapter 17 details this architecture and each of its
vector entry points; Table A-20 and Figure A-21 illustrate the contents
of the UCB terminal extension; and Appendix B describes the CLASS_
CTRL_INIT, CLASS_UNIT_INIT, $VEC, $VECINI, and $VECEND
macros.

• In VMS Version 5.0, the XDELTA entry IPL has become IPL 14 on all
VAX processors. Formerly, it was IPL 5 on VAX uniprocessing systems
and IPL 15 on VAX multiprocessing systems.

• The new BREAKPOINTS system parameter, by default, inserts a
breakpoint at the end of system initialization. This is in addition to
the breakpoint at the beginning of system initialization controlled by the
boot flags described in Chapter 16.

• Special pool checking code has been added to the VMS memory
allocation and deallocation routines to facilitate detection of pool
corruption problems. You can enable this code to troubleshoot problems
of this sort by setting the POOLCHECK system parameter, as discussed
in Section 16.13.

• The VMS connect-to-interrupt facility, as detailed in Chapter 18, now
supports UNIBUS device operations on the VAX 8200 /8250 /8300 /8350
and VAX 8530/8550/8700/8800 processors.

• Section 11.4 and Appendix D describe the role of a driver's cloned UCB
routine in 1/0 processing.

• Appendix A includes a description of all fields that have been added,
moved, or modified since VMS Version 4.4.

• Other sections of this manual have been reorganized, corrected, and
rewritten as necessary to accurately reflect VMS Version 5.0.

Part I The VMS Device Driver Environment

1 Introduction to Device Drivers

Under the VMS operating system, a device driver is a set of routines and
tables that the system uses to process an 1/0 request for a particular device
type.

The VMS operating system's approach to 1/0 is that the system should
perform as much of the processing of an 1/0 request as possible and that
drivers should restrict themselves to the device-specific aspects of 1/0
processing. To accomplish this, the VMS operating system provides drivers
with the following services:

• A Queue 1/0 request ($QIO) system service that preprocesses an 1/0
request by performing those functions and checks that are common to all
devices; for example, validating those arguments of the 1/0 request that
are not device specific

• Many operating system routines that drivers can call to perform 1/0
preprocessing, allocate and deallocate resources, and synchronize driver
execution

• Macros that drivers can invoke to accomplish tasks that would otherwise
require many lines of code

• A VMS 1/0 postprocessing routine that performs device-independent 1/0
postprocessing for all 1/0 requests

Thus, drivers can leave the device-independent 1/0 processing to the
operating system and concentrate on servicing those aspects of an 1/0
operation that vary from device type to device type. In addition, drivers can
call VMS system routines to perform many functions that are common to
several, but not all, devices.

A device driver does not run sequentially from beginning to end. Rather,
the operating system uses driver tables and other information maintained
by itself and the driver to determine which driver routines to activate and
when they should be activated. Because little sequential processing of driver
code occurs, the VMS operating system must assume the responsibility for
synchronizing the execution of the various driver routines, as well as the
execution of all drivers in the system. A major purpose of this book is to
describe the conventions that all VMS drivers must follow to maintain this
synchronization and cooperate with the operating system in 1/0 request
processing.

This section first defines the general functions and purposes of a VMS device
driver. It then introduces VMS concepts crucial to an understanding of how
device drivers work within the operating system and integral to the process of
successfully writing one. It concludes with a brief description of the flow of
driver activity in servicing an 1/0 request, using the VMS line printer driver
as an example.

1-1

Introduction to Device Drivers
1.1 Driver Functions

1 . 1 Driver Functions
A VMS device driver defines itself to the system procedure that loads the
driver into system virtual address space and creates its associated data
structures. Once loaded, a device driver controls 1/0 operations on a
peripheral device by performing the following functions:

• Defining the peripheral device for the rest of the operating system

• Preparing a device unit and its controller (or both) for operation at system
start-up and during recovery from a power failure

• Performing device-dependent 1/0 preprocessing

• Translating programmed requests for 1/0 operations into device-specific
commands

• Activating a device unit

• Responding to hardware interrupts generated by a device unit

• Responding to device timeout conditions

• Responding to requests to cancel 1/0 on a device unit

• Reporting device errors to an error logging program

• Returning status from a device unit to the process that requested the 1/0
operation

1 .2 Driver Components

1.2.1 Driver Tables

1-2

Normally, a device driver module can consist of the routines and tables
discussed in this section. With a few exceptions, which are noted throughout
Chapter 6, the order of the various routines and tables within the driver
module is not important.

The following tables appear in every driver.

The driver prologue table (DPT) defines the identity and size of the driver to
the system routine that loads the driver into virtual memory and creates the
associated data structures. With the information provided in the DPT, the
driver-loading procedure can both load and reload drivers and perform the
1/0 database initialization that is appropriate to either situation.

Section 6.1 describes the procedure for creating a DPT and further discusses
its functions. Figure A-10 illustrates the DPT and Table A-9 describes its
contents.

The driver dispatch table (DDT) lists the addresses of the entry points of
standard routines within the driver, and records the size of the diagnostic
and error message buffers for drivers that perform error logging. You can
find additional information and instructions on how to specify a DDT in
Section 6.2. An illustration of the DDT appears in Figure A-9; Table A-8
describes its contents.

1.2.2 Driver Routines

Introduction to Device Drivers
1 .2 Driver Components

The function decision table (FDT) lists all valid function codes for the device,
and associates valid codes with the addresses of IjO preprocessing routines,
called FDT routines. The driver contains device-dependent FDT routines, and
the VMS operating system itself provides routines (described in Section 7.5)
that perform request preprocessing common to many 1/0 functions.

When a user process calls the $QIO system service, the system service uses
the 1/0 function code specified in the request to traverse the FDT and select
one or more of these preprocessing routines for execution, as appropriate to
the function. To prepare for the actual 1/0 operation, FDT routines perform
such tasks as allocating buffers in system space, locking pages in memory,
and validating the device-dependent arguments (pl through p6) of the $QIO
request. Section 6.3 provides further discussion of the FDT, and Chapter 7
details strategies and rules for writing, specifying, and exiting from an FDT
routine.

In addition to any FDT routines it may contain, a device driver generally
contains both a start-1/0 routine and an interrupt service routine.

The start-I/O routine performs such additional device-dependent tasks as
translating the 1/0 function code into a device-specific command, storing
the details of the user request in the device's unit control block in the
1/0 database and, if necessary, obtaining access to controller and adapter
resources. Whenever the start-1/0 routine must wait for these resources
to become available, the VMS operating system suspends the routine,
reactivating it when the resources become free.

The start-1/0 routine ultimately activates the device by suitably loading the
device's registers. At this stage, the start-1/0 routine invokes a VMS macro
that causes its execution to be suspended until the device completes the If O
operation and posts an interrupt to the processor. The start-1/0 routine
remains suspended until the driver's interrupt service routine handles the
interrupt.

When a device posts an interrupt, its driver's interrupt service routine
determines whether the interrupt is expected or unexpected, and takes
appropriate action. If the interrupt is expected, the interrupt service routine
reactivates the driver's start-1/0 routine at the point of suspension. The
general course of action of driver mainline code at this time is to perform
device-dependent 1/0 postprocessing and to transfer control to the VMS
operating system for device-independent 1/0 postprocessing.

Details on writing a start-1/0 routine appear in Chapter 8. A description of a
driver interrupt service routine appears in Chapter 9.

You can also include any of the following routines in a device driver.

The unit initialization routine and controller initialization routine prepare a
device or controller for operation when the VMS driver-loading procedure
loads the driver into memory and when the VMS system recovers from a
power failure. The amount and type of initialization needed by devices and
controllers varies according to the device type and the 1/0 bus to which the
device or controller is attached. Section 11.1 provides additional information
about device driver initialization routines.

1-3

Introduction to Device Drivers
1 .2 Driver Components

A timeout handling routine retries IjO operations and performs other error
handling when a device fails to complete a request in a reasonable period
of time. Once every second, the VMS system timer checks all devices in
the system for device timeout. When it locates a device that has timed out,
because it is offline or some error has occurred, the system timer calls the
driver's timeout handling routine.

Depending upon the reason for the timeout, the timeout handling routine
may call a VMS error logging routine to allocate and fill an error message
buffer with information about the error. In turn, the error logging routine can
call a register dumping routine in the driver that also loads into the buffer the
contents of device registers at the time of the error.

Timeout handling routines are discussed in Section 10.2. Register dumping
routines and driver error handling are discussed in Section 11.3.

The VMS operating system calls a driver's cancel-1/0 routine when a user
process issues a Cancel 1/0 on Channel ($CANCEL) system service for the
device. It may also call the routine when the device's reference count goes
to zero, which occurs when all users with assigned channels to the device
have deassigned them. The discussion of the cancel-I/O routine appears in
Section 11.2.

1 .3 The 1/0 Database

1.3.1 Driver Tables

1-4

Because a driver and the operating system cooperate to process an 1/0
request, they must have a common and current source of information about
the request. This is the function of the If O database. Under the VMS
operating system, the 1/0 database consists of these three parts:

• Driver tables that allow the system to load drivers, validate device
functions, and call driver routines at their entry points

• Data structures that describe I/O bus adapters, device types, device units,
device controllers, and logical paths from processes to a devices

• 1/0 request packets that define individual requests for 1/0 activity

Illustrations of If O database structures and detailed descriptions of their fields
appear in Appendix A. Figure 1-1 illustrates some of the relationships among
VMS 1/0 routines, the 1/0 database, and a device driver.

The three driver tables-driver prologue table, driver dispatch table, and
function decision table-are defined in every driver. Section 1.2 lists these
tables among the other components of a device driver, and Chapter 6
discusses their contents.

1.3.2 Data Structures

Introduction to Device Drivers
1 .3 The 1/0 Database

Figure 1-1 The 1/0 Database

1/0
REQUEST
PACKET

DESCRIBES
1/0

REQUEST

PROCESS
CONTROL

BLOCK
DESCRIBES

REQUESTING
PROCESS

UCB
DESCRIBES

DEVICE

CCB
DESCRIBES

LOGICAL PATH
TO DEVICE

DOB FOR
DEVICE
TYPE

CRB
SYNCHRONIZES

CONTROLLER

IDB
DESCRIBES

CONTROLLER

ADP
DESCRIBES
ADAPTER

DEVICE
REGISTERS

DDT
LOCATES DRIVER

DRIVER
FDT ROUTINE

DRIVER
ST ART 1/0 ROUTINE

DRIVER
INTERRUPT SERVICE

ROUTINE

DRIVER
CONTROLLER INITIALIZATION

ROUTINE

ZK-1766-84

I/O database data structures describe peripheral hardware and are used by
the operating system to synchronize access to devices. VMS creates these
data structures either at system startup or when a driver is loaded into the
system.

The system defines a unit control block (UCB) for each device unit attached
to the system. A UCB defines the characteristics and current state of an
individual device unit.

UCBs are the focal point of the IjO database. When a driver is suspended
or interrupted, the UCB keeps the context of the driver in a set of fields
collectively known as a fork block. 1 In addition, the UCB contains the listhead
for the queue of pending I/O request packets for the unit.

A device data block (DDB) contains information common to all devices of the
same type that are connected to a particular controller. It records the generic
device name concatenated with the controller designator (for example, LP A,
DBB), and the name and location of the associated device driver. In addition,
the DDB contains a pointer to the first UCB for the device units attached to
the controller.

1 Other structures, such as the CRB, also include a fork block. The discussion of fork blocks and fork processes
in Section 1.5 explains the role of fork blocks in driver processing.

1-5

1.3.3

Introduction to Device Drivers
1 .3 The 1/0 Database

The operating system creates a channel request block (CRB) for each controller.
A CRB defines the current state of the controller and lists the devices waiting
for the controller's data channel. It also contains the code that dispatches a
device interrupt to the interrupt service routine for that unit's driver.

The system also creates for each controller an interrupt dispatch block (IDB).
An IDB lists the device units associated with a controller and points to the
UCB of the device unit that the controller is currently servicing. In addition,
an IDB points to device registers and the controller's I/O adapter.

An adapter control block (ADP) defines the characteristics and current state
of an I/O adapter, such as the VAX UNIBUS and MASSBUS adapters, the
Q22 bus interface of the MicroVAX 3600-series and MicroVAX II systems,
or a device attached to the VAXBI bus. An ADP contains the queues and
allocation bit maps necessary to allocate the adapter's resources. VMS
provides routines that drivers can call to interface with the appropriate
adapter.

The channel control block (CCB) describes the logical path between a process
and the UCB of a specific device unit.2 Each process owns a number of CCBs.
When a process issues the Assign I/O Channel ($ASSIGN) system service,
the system writes a description of the assigned device to the CCB.

Unlike the data structures mentioned earlier, a CCB is not located in
nonpaged system space, but in the process's control region (Pl space).

1/0 Request Packets
The third part of the I/O database is a set of I/O request packets. When a
process requests I/O activity, the operating system constructs an l/O request
packet (IRP), that describes the I/O request in a standard form.

The IRP contains fields into which the system and driver I/O preprocessing
routines can write information: for instance, the device-dependent arguments
specified in the call to the $QIO system service. The packet also includes
buffer addresses, a pointer to the target device, an 1/0 function code, and
pointers to the 1/0 database. After preprocessing, the IRP can be queued to a
list originating in the device's UCB to await processing by the driver.

When the device unit is free and the IRP is next in line to be processed on
the unit, the system sends it to the device driver's start-I/O routine. The
start-1/0 routine uses the IRP as its source of detailed instructions about the
operation to be performed.

2 Channel request blocks and channel control blocks are two separate data structures. To help distinguish
the two, it may be helpful to think of the channel request block as the "controller request" block because it
describes the hardware controller. In contrast, the channel control block helps manage the logical channel (the
channel argument to the $ASSIGN and $QIO system services) by means of which a process and a device unit
accomplish I/O operations.

1-6

Introduction to Device Drivers
1 .4 Synchronization of Driver Activity

1.4 Synchronization of Driver Activity

1.5 Driver Context

Device drivers and other kernel-mode code must maintain synchronization
with other priority operating system activities. The term synchronization
refers to the means by which such code accesses shared data in a consistent,
orderly, and predictable fashion. Because there may be more than one
processor active in a VMS system, system-level code must synchronize its
actions with other code threads it may have preempted on the same (or local)
processor, as well as with those that are active (or to be activated) on other
processors in the system. The VMS operating system uses hardware and
software interrupt priority levels (IPLs) to order system events on each local
processor in a VAX system. The VAX hardware defines 32 interrupt priority
levels (IPLs). The higher numbered IPLs (16 through 31) are reserved for
hardware interrupts, such as those posted by devices. The VMS operating
system uses the lower numbered IPLs (0 through 15). Code that executes at a
higher IPL takes precedence over code that executes at a lower IPL.

A driver, in concert with the operating system, ensures that it maintains
system synchronization by performing certain activities and accessing certain
data only at the appropriate IPL. In a VMS multiprocessing system, the driver
extends the synchronization it achieves by executing locally at a given IPL
by acquiring ownership of the spin lock associated with the operation it is
performing. (IPL, spin locks, and other forms of synchronization in a VMS
system are discussed fully in Chapter 3.)

As indicated in Section 1.2.2, a driver may have several routines to which the
VMS operating system may pass control in certain situations. The context in
which any one routine receives control from VMS may differ substantially
from that in which another receives control. It is essential that a driver
routine not attempt to exceed the limitations of the context in which it
executes.

In general, context is characterized by the following factors:

• The current IPL of the executing processor

• The IPL at which the thread of execution that resulted in the call to the
driver began

• The currently owned spin locks of the executing processor

• The data structures available to the routine

• Data available to the routine in registers, in data structure fields, and on
the stack

• The condition of the registers, data structure fields, and stack when the
routine exits

• The ability or inability to access process space

A complete description of the context of each driver routine appears in
Appendix D. The following are some general observations:

• All device driver routines execute in kernel mode at an elevated IPL.

• Only driver FDT routines execute within process context and can access
process space (PO and Pl).

1-7

1.5.1

Introduction to Device Drivers
1 . 5 Driver Context

• The majority of driver routines execute in interrupt (or system context):
that is, in the sequence of execution that follows a processor's grant of
an interrupt request at a given IPL. Such code can refer only to system
(SO) space. Moreover, it cannot incur exceptions, including page faults,
without causing a fatal bugcheck. Code executing in interrupt context is
serviced on the interrupt stack, and must synchronize its execution with
other priority code threads by using IPLs, spin locks, and resource wait
queues, all of which are described in Chapter 3.

Most driver processing of an 1/0 request (before and after the device
acknowledges the servicing of the request by requesting an interrupt from
the processor) occurs at a fork IPL. This portion of driver code, which includes
most of the start-1/0 routine, is commonly known as the driver's fork process.

There are several instances in the processing of an 1/0 request when a
driver fork process must suspend execution to wait for a resource or a device
interrupt. To make the matter of saving and restoring fork process context
as efficient as possible, the VMS operating system places a restriction on the
context of a driver fork process, in addition to those that apply to any process
in interrupt context. Fork context consists of the following:

• Two general purpose registers (R3 and R4)

• The program counter (PC)

• A fork block (usually the unit control block, the address of which is
presumed to be in RS at the time of the suspension) that can contain
additional fork process context

VMS places the fork block of a suspended fork process in either a processor­
specific fork queue or a resource wait queue where it waits to be resumed.
When it resumes the fork process, VMS ensures that the fork context is
restored. Fork blocks, fork processes, and fork queues are discussed fully in
Section 3.3.3.

Example of Driver Context-Switching

1-8

Because a device driver consists of a number of routines that are activated by
VMS, the operating system for the most part determines the context in which
the routines execute.

As an example, consider the following write request that occurs without error:

1 A user process executing in user mode calls the $QIO system service to
write data to a device.

2 The $QIO system service gains control in process context but in kernel
mode. It performs device-independent preprocessing of the 1/0 request.

3 The system service uses the driver's function decision table to call the
appropriate FDT routines to perform device-dependent preprocessing.
These FDT routines execute in full process context in kernel mode.

4 When preprocessing is complete, a VMS routine creates a fork process to
execute the driver's start-1/0 routine in kernel mode.

5 The start-1/0 routine activates the device unit and suspends itself. At this
point, VMS suspends the fork process executing the start-1/0 routine and
saves sufficient context to reactivate the start-1/0 routine at the point of
suspension.

Introduction to Device Drivers
1 . 5 Driver Context

6 When the device completes the data transfer, it requests an interrupt.
The interrupt causes the system to activate the driver's interrupt service
routine.

7 The interrupt service routine executes to handle the device interrupt. It
then causes the start-1/0 routine to resume in interrupt context.

8 The start-I/O routine regains control in interrupt context but almost
immediately issues a request to the operating system to transform its
context to that of a fork process. This action dismisses the interrupt.

9 When reactivated in fork process context, the start-1/0 routine performs
device-specific 1/0 completion and passes control to the system for
additional 1/0 postprocessing.

10 VMS I/O postprocessing runs in interrupt context at a lower IPL and
issues a special kernel-mode asynchronous system trap (AST) for the user
process requesting 1/0.

11 When the special kernel-mode AST is delivered, the AST routine executes
in full process context in kernel mode to deliver data and status to the
process. If the original request specified a user-mode AST, the special
kernel-mode AST queues it.

1 2 When the user process gains control, the user's AST routine executes in
full process context in user mode.

1 . 6 Hardware Considerations
The VMS operating system runs on any of the following VAX systems:

• VAX 6200 series

• VAX 8530/8550/8700/8800/8830/8840

• VAX 8600/8650/8670

• VAX 8200/8250/8300/8350

• VAX-11/785 and VAX-11/780

• VAX-11/750

• VAX-11/730 and VAX-11/725

• MicroVAX 3600 series

• V AXstation 2000 /Micro VAX 2000

• MicroVAX II

• MicroVAX I

Although these system configurations employ the same operating system
and conform to the VAX architecture, there are some differences in design
among the machines that merit consideration in device driver coding,
installation, and debugging. For instance, VAX systems differ in the amount
of available physical address space and in the location of device registers.
Some VAX systems are available in multiprocessor configurations. Also, VAX
systems support different and various combinations of 1/0 buses to which a
nonstandard device can be connected.

1-9

1.6.1

Introduction to Device Drivers
1 . 6 Hardware Considerations

If you follow the conventions described in this manual when writing your
driver, your driver should, with little modification, drive the same device
attached to a corresponding 1/0 bus of another VAX system. For specific
system design and device configuration information, refer to your system's
technical reference or hardware manual or the VAX Hardware Handbook.

Driver Dependency on VAX Processing Systems

1.6.1.1

1-10

This section outlines some of the general differences among the VAX
processing systems that have a bearing upon the development of driver
code. The main thrust of the discussion is to provide a brief summary of
the layout of the 1/0 subsystems of the VAX processing systems, define a
general terminology, and, when necessary, direct device driver writers to
documentation particular to the 1/0 configuration of their device.

VAX-11/780, VAX-11/785, and VAX 8600/8650/8670
The VAX-11/780, VAX-11/785, VAX 8600, VAX 8650, and VAX 8670
systems, from the viewpoint of 1/0 architecture, are SBI-based systems.
That is, the synchronous backplane interconnect (SBI) is the bus by which
1/0 adapters communicate with main memory and the central processor
(see Figure 1-2). 1/0 adapters supported by the SBI include the UNIBUS
adapter (UBA), MASSBUS adapter (MBA), and the DR780 interface adapter.
Correspondingly, peripheral devices attach to either the UNIBUS, MASSBUS
or DR32 device interconnect (DDI) of the DR780 adapter. Main memory
shares the SBI with the 1/0 adapters on the VAX-11/780 and VAX-11/785.
The VAX 8600, VAX 8650, and VAX 8670 employ a separate bus to which
main memory is attached and can each be configured with up to two SBis for
1/0 adapters.

For these systems, nonstandard devices are commonly attached to the
UNIBUS, although some nonstandard devices connect to the MASSBUS and
DDI. The components of UNIBUS and MASSBUS drivers are nearly identical
and the strategies for producing driver code are similar; writers of either type
of driver will profit from reading the bulk of this manual. Writers of UNIBUS
drivers can find specific information about the UNIBUS adapter and VMS
support for UNIBUS drivers in Chapter 12. MASSBUS driver writers should
refer to Chapter 13 for similar information about the MASSBUS. DIGITAL
supplies a device driver and an application library for DDI devices; the VMS
1/0 User's Reference Manual: Part II discusses the DR32 interface driver in
detail.

A final note on terminology regarding these systems is pertinent. For the
purposes of the discussion in this book, the term VAX-11/780 refers to the
family of VAX systems that includes the VAX-11/780 and VAX-11/785; the
term VAX 8600 refers to the VAX 8600, VAX 8650, and VAX 8670.

1.6.1.2

Introduction to Device Drivers
1 . 6 Hardware Considerations

Figure 1-2 SBl-Based System Configurations

VAX-11/780
VAX-11/785

VAX 8600
VAX 8650
VAX 8670

CPU

MEMORY
CONTROLLER

en
::i
al

>­
<(
a:
a:
<(

SBI
ADAPTER

VAX-11/750

ZK-4838·85

The VAX-11 /750 system resembles the VAX-11 /780-type systems in that it
supports UNIBUS, MASSBUS, and DDI peripheral devices (see Figure 1-2).
The backplane, or CPU-to-memory interconnect (CMI), by which 1/0
adapters communicate with the central processor and main memory, is
integral to the processor, as are the UNIBUS interface (UBI) and MASSBUS
adapter (MBA). The DR750 interface adapter connects the CMI to the DDI
subsystem. Peripheral devices connect to the UNIBUS, MASSBUS, and DDI.
A separate memory interconnect provides an interface between main memory
and the rest of the system.

For the VAX-11/750, nonstandard devices are commonly connected to the
UNIBUS, although some nonstandard devices attach to the MASSBUS.
The components of UNIBUS and MASSBUS drivers are identical, and the
strategies for developing driver code are similar. Writers of either type of
driver will profit from reading this manual. Writers of UNIBUS drivers can
find specific information about the UNIBUS adapter and VMS support for
UNIBUS drivers in Chapter 12. MASSBUS driver writers should refer to
Chapter 13 for similar information about the MASSBUS. DIGITAL supplies a
device driver and an application library for DDI devices device; the VMS 1/0
User's Reference Manual: Part II discusses the DR32 interface driver in detail.

1-11

Introduction to Device Drivers
1 . 6 Hardware Considerations

1.6.1.3

1.6.1.4

1-12

VAX-11/730 and VAX-11/725
The VAX-11/730 and VAX-11/725 systems, like the VAX-11/750,
incorporate an integral UNIBUS adapter to control transactions between
UNIBUS peripheral devices, the processor, and the main memory interface.
The VAX-11/730 and VAX-11/725, however, do not support MASSBUS
devices. Writers of UNIBUS drivers can find specific information about the
UNIBUS adapter and VMS support for UNIBUS drivers in Chapter 12. For
the purposes of the discussion in this book, the term VAX-11/730 refers to
both the VAX-11/730 and the VAX-11/725.

VAX 8200/8250/8300/8350,
VAX 8530/8550/8700/8800/8830/8840, and VAX 6200 Series
The VAX 8200/8250/8300/8350, VAX 8530/8550/8700/8800/8830/8840
and VAX 6200 series are VAXBI-based systems; that is, the VAXBI is the bus
by which I/O adapters communicate with main memory and the central
processor (see Figure 1-3).

In a VAX 8200/8250/8300/8350 configuration, main memory, the DWBUA,
and other devices are all connected directly to the VAXBI bus. By contrast, the
VAX 8530/8550/8700/8800/8830/8840 and VAX 6200-series configurations
employ separate memory interconnects (known as the NMI, PBI, or XMI, as
illustrated in Figure 1-3, to service main memory. The VAX 8530/8550/
8700/8800 provides multiple VAXBI buses to which I/O adapters and devices
can be attached. The VAX 8300, VAX 8350, VAX 8800/8830/8840, and VAX
6200 series are multiprocessor systems.

The VAXBI bus supports UNIBUS peripherals by means of the BI-to­
UNIBUS adapter (DWBUA). Writers of UNIBUS drivers can find specific
information about the UNIBUS adapter and VMS support for UNIBUS drivers
in Chapter 12.

The VAXBI also supports non-DIGITAL-supplied devices designed according
to specifications established by DIGITAL and a license granted by DIGITAL.
Writers of drivers for such devices, referred to as generic V AXBI devices in this
manual, can find specific discussion in Chapter 14.

A final note on terminology regarding these systems is pertinent. For the
purposes of the discussion in this book, the term UNIBUS adapter includes the
DWBUA, and the term backplane interconnect represents the VAXBI bus.

Introduction to Device Drivers
1 .6 Hardware Considerations

Figure 1-3 VAXBl-Based System Configurations

VAX 8200

ZK-4839/ 1-85

Figure 1-3 Cont'd. on next page

1-13

Introduction to Device Drivers
1.6 Hardware Considerations

Figure 1-3 (Cont.) VAXBl-Based System Configurations

VAX 8800

CPU

CPU

MEMORY
CONTROLLER

en
::::>
co
>­
<(
a: a:
<(

VAX 8830

CPU

CPU

CPU

1-14

NBIA

~
z

~
z

NBW NBW

l>
:JJ
:JJ
l>
-<
OJ
c
en

MEMORY
CONTROLLER

PBIA

PBIA

UNIBUS

ZK-4839/2-85

1.6.1.5

Introduction to Device Drivers
1 . 6 Hardware Considerations

MicroVAX 3600 Series and MicroVAX 11
The Micro VAX 3600 series and MicroVAX II are Q22 bus-based systems.
On these systems, the Q22 bus is the bus by which peripheral devices
communicate with main memory and the processor.3 Q22 bus device drivers
are sufficiently similar to those that drive UNIBUS devices that most of the
discussion of UNIBUS drivers in this book can equally pertain to the writing
of Q22 bus device drivers (see Chapter 12 for a discussion of the similarities
and differences).

As you can see in Figure 1-4, in these systems main memory and 1/0 devices
reside on separate interconnects. The Micro VAX 3600-series and Micro VAX
II systems implement a scatter-gather map containing 8, 192 map registers
that allows devices to perform multiple-block direct-memory-access (DMA)
transfers. 4

For the purposes of discussion in this manual, the term backplane interconnect
represents the Q22 bus in the Micro VAX 3600-series and Micro VAX II
systems. The term Q22 bus interface represents those functions performed
by these processors that resemble those performed by the UNIBUS adapter of
other VAX systems. In most instances, you can assume that discussions of the
UNIBUS adapter apply as well to the Q22 bus.

Figure 1-4 MicroVAX 3600-Series and MicroVAX 11 System
Configuration

CPU MEMORY
.-

QBI
MEMORY

CONTROLLER , ________ A_R_RA_Y_s_u_s _______ ,/

L

I
_J

ZK-4840-85

3 DMA controllers attached to the Q22 bus must be capable of 22-bit addressing.
4 In these systems, the 4MB of Q22 bus memory is located from physical address 3000000016 to 303F000016 • If

you must install controllers that contain local memory on the Q22 bus, it is best to install them in the upper
3 3/4 MB of Q22 bus memory (after physical address 3004000016). The first 1/4 MB of Q22 bus memory
contains 496 map registers, 127 of which must be free for use by VMS in booting. If you must place a
controller containing memory in this address region, it cannot occupy more than 369 pages. If the controller
exceeds this space, VMS will probably boot but will not be able to take crash dumps.

1-15

Introduction to Device Drivers
1 . 6 Hardware Considerations

1.6.1.6 MicroVAX I
The Micro VAX I is a Q22 bus-based system; that is, the Q22 bus is the bus by
which peripheral devices communicate with main memory and the processor.
Q22 bus device drivers are sufficiently similar to those that drive UNIBUS
devices that most of the discussion of UNIBUS drivers in this book can
equally pertain to the writing of Q22 bus device drivers (see Chapter 12 for a
discussion of the similarities and differences).

MicroVAX I main memory and 1/0 devices exist together on the same bus
(see Figure 1-5). The effects of the absence of a scatter-gather map on DMA
device drivers are discussed in Section 12.2.8.5

Figure 1-5 MicroVAX I System Configuration

ZK·4853·85

1. 7 Programmed-1/0 and Direct-Memory-Access Transfers

Devices are equipped with various registers that initiate, control, and monitor
the progress of data transfer, seek operation, or other requests for device
activity. When it completes a request, the device posts an interrupt to the
processor. The size of the transfer concluded by a device interrupt depends
upon the capabilities of the device.

5 The MicroVAX I uses the 22-bit Q22 bus to address both main memory and Q22 bus memory. Because
MicroVAX I main memory shares the Q22 bus with 1/0 devices, the maximum amount of address space
available for main memory (4MB at most) is correspondingly decreased whenever controllers containing
memory are attached to the Q22 bus. For instance, if a controller containing a 256K bit map is installed on
the Q22 bus, 3 3/4 MB would remain for main memory. VMS is effectively prevented from using as main
memory those locations addressable as controller memory by the appropriate setting of the PHYSICALP AGES
system parameter. In the preceding example, PHYS I CA LP AGES would be set to 7680 to prevent the double
mapping of the 256K bit map as both main memory and controller memory.

1-16

1. 7.1

1.7.2

Introduction to Device Drivers
1.7 Programmed-1/0 and Direct-Memory-Access Transfers

Programmed 1/0
Drivers for relatively slow devices, such as printers, card readers, terminals,
and some disk and tape drives, must transfer data to a device register a
byte or a word at a time. These drivers must themselves keep a record of
the location of the data buffer in memory, as well as a running count of
the amount of data that has been transferred to or from the device. Thus,
these devices perform programmed I/O (PIO) in that the transfer is largely
conducted by the driver program.

Examples of UNIBUS devices that do PIO transfers are the LPl 1 and the
DZl 1. Corresponding Q22 bus devices that perform PIO transfers are the
LPVl 1 and the DZVl 1.

Chapter 2 outlines the action of the LPl 1 driver. The LPl 1 driver transfers
data from a system buffer to the line printer data buffer register a byte at
a time, while maintaining a count of the number of bytes left to transfer.
When the line printer data buffer is full, the line printer sets a "not ready"
bit in its status register. If the driver, while examining this register, sees this
bit set, it enables interrupts from the printer, and then suspends itself in the
expectation that the printer will post an interrupt to the processor. While
the driver remains suspended, the printer prints the data from its buffer and
interrupts the processor when it is done. With the interrupt handled by the
system interrupt dispatcher and the driver interrupt service routine, driver
execution resumes. The driver repeats both its byte-by-byte transfer to the
printer data buffer, as well as the entire routine described previously, until it
determines that all the data has been transferred as requested.

Drivers performing PIO transfers are generally not concerned with the
operation of IjO adapters. However, drivers that perform direct-memory­
access (DMA) transfers must take into account 1/0 adapter functions, as
discussed in Section 1.7.2.

Direct-Memory-Access 1/0
Devices that perform direct-memory-access (DMA) transfers do not require
the central processor so frequently. Once the driver activates the device, the
device can transfer a large amount of data without requesting an interrupt
after each of the smaller amounts. The responsibilities of a driver for a DMA
device involve supplying a device register with the starting address of the
buffer containing the data to be transferred, a byte offset into the buffer, and
the size of the transfer. By setting the appropriate bit or bits in the device
control and status register (CSR), the driver activates the device. The device
then automatically transfers the specified amount of data to or from the
specified address. The VMS drivers DLDRIVER and XADRIVER are examples
of DMA drivers, and appear in full in Appendixes E and F, respectively.

For DMA transfers, UNIBUS drivers and MicroVAX 3600-series/MicroVAX II
drivers must first map the transfer from main memory to IjO bus memory
space. The result of this mapping is a set of contiguous addresses in UNIBUS
or Q22 bus space that the DMA device can access to successfully perform a
DMA transfer. To accomplish this, a driver must first obtain map registers,
and, optionally for UNIBUS drivers, a buffered data path. The driver calls
VMS routines that interface with the I/O adapter to allocate these resources
on behalf of the driver. Chapter 12 discusses the operation of the UNIBUS
adapter and the Q22 bus. Section 12.2 provides instructions on how to write
a DMA driver for UNIBUS and Q22 bus devices.

1-17

Introduction to Device Drivers
1. 7 Programmed-1/0 and Direct-Memory-Access Transfers

The MicroVAX I Q22 bus has no map registers, so no mapping of physical
bus addresses to virtual memory addresses is possible. As a result, a driver
for a device attached to the Micro VAX I Q22 bus that performs DMA transfers
must include special logic that either allocates a physically contiguous buffer
from nonpaged pool for use in the transfer or segments the transfer at page
boundaries. Section 12.2.8 discusses the strategies for producing MicroVAX I
DMA drivers. ·

Some controllers that can do DMA transfers on the Q22 bus have microcode
that allows the controller itself to do physical-to-virtual address mapping.
This allows such controllers to do scatter-gather mapping, eliminating the
need for transfers to be made to or from physically contiguous main memory.
The RD /RX controller, which Micro VAX I uses for its system disk, is such a
controller.

The method by which a generic VAXBI device capable of DMA transfers
accomplishes such a transfer depends upon the characteristics of the device.
Several methods are discussed in Section 14.5.

1.8 Buffered and Direct 1/0

1-18

A separate issue, but one related to the data transfer capabilities of a device,
results from the fact that the original buffer, as specified in the user $QIO
request, is in process space and is mapped by process page-table entries.
Because the driver cannot rely on process context existing at the time the
device is ready to service the 1/0 request, it must have some means of
guaranteeing that it can access both the data involved in the transfer and the
page-table entries that map the buffer.

The VMS operating system provides the following two techniques that are
employed by device drivers:

• Direct 1/0, the technique used most commonly by drivers of DMA
devices, locks the user buffer in memory as well as the page-table entries
that map it. The function decision table (FDT) of such a driver calls a
VMS-supplied FDT routine that prepares the user buffer for direct 1/0.

• Buffered 1/0 is the strategy whereby the driver FDT dispatches to an FDT
routine in the driver that allocates a buffer from nonpaged pool. It is
this intermediate buffer that is involved in the transfer. The driver later
refers to the buffer using addresses in system space. Driver preprocessing
routines copy the data from the user buffer to the system buffer for a
write request; VMS 1/0 postprocessing (by means of a special kernel­
mode AST) delivers data from the system buffer to the user buffer for a
read request. Drivers most often use buffered 1/0 for PIO devices such
as line printers and card readers.

The trade-off between buffered 1/0 and direct 1/0 is the time required to
move the data into the user's buffer as against the time required to lock
the buffer pages in memory. Sections 6.3.1 and 7.4 provide additional
information.

Introduction to Device Drivers
1.9 Example of an 1/0 Request

1 .9 Example of an 1/0 Request
Figure 1-6 illustrates how the VMS operating system and the device driver
process a user request for a read 1/0 operation for a DMA device attached to
a UNIBUS or Q22 bus.

Figure 1-6 Example of 1/0 Request Processing

USER
PROCESS

1---+1 REQUESTS
1/0

DEVICE
GENERATES i-.
INTERRUPT

QIO DRIVER DRIVER OPERATING
OPERATING

SERVICE READ STARTS SYSTEM

ROUTINE f---+ FUNCTION ~
SYSTEM

1--1 DEVICE ~ SAVES

VALIDATES VALIDATES
CALLS

& WAITS FOR DRIVER
REQUEST REQUEST

DRIVER
INTERRUPT STATE

DRIVER OPERATING
USER

INTERRUPT DRIVER SYSTEM
PROCESS

HANDLER f---+ COLLECTS ~ COPIES ~ READS DATA
RESTORES STATUS DATA AND

DRIVER STATE STATUS
& STATUS

ZK-909-82

The processing of the sample 1/0 request illustrated in Figure 1-6 occurs in
the following steps:

1 A process requests an 1/0 operation.

A user process initiates an 1/0 request by issuing either a $QIO system
service call or an RMS call resulting in a call to the $QIO system servic~.

The user process specifies the target device, a read function code, and the
address of a buffer into which the data is to be read.

2 The operating system performs 1/0 preprocessing.

The $QIO system service validates the request and locates data structures
in the 1/0 database that describe the device and its driver. The system
service also allocates and initializes an 1/0 request packet to contain a
description of the 1/0 request. The system service then calls a reading
routine in the driver.

3 The driver performs 1/0 preprocessing.

The driver FDT routine verifies that the user buffer resides in virtual
memory pages that can be modified by the requesting process, locks the
buffer pages in memory, and adds details of the 1/0 operation to the 1/0
request packet. The read FDT routine then calls the operating system to
send the 1/0 request packet to the driver.

4 VMS creates a driver's fork process.

A VMS routine creates a fork process in which the device driver can
execute. The routine activates the driver's fork process by transferring
control to the driver's start-1/0 routine.

1-19

Introduction to Device Drivers
1 . 9 Example of an 1/0 Request

1-20

5 The driver readies the 1/0 adapter.

For DMA transfers, the driver's fork process calls VMS routines that
enable the 1/0 adapter hardware to map 1/0 bus addresses into physical
addresses for the transfer. (Note that the MicroVAX I system does not
have this capability, as discussed in Section 12.2.8.)

6 The driver activates the device.

The fork process activates the device by setting bits in device registers.

7 The driver waits for an interrupt.

A VMS routine saves the context of the driver's fork process and
relinquishes the processor until an interrupt occurs.

8 The device requests an interrupt.

When the data transfer is complete, the device requests a hardware
interrupt that causes the system to dispatch to the driver's interrupt
service routine.

9 The driver services the interrupt.

The driver's interrupt service routine handles the interrupt and reactivates
the driver, which reads device registers to obtain status information about
the transfer.

1 0 The operating system inserts the driver in a fork queue.

The driver requests that it again be suspended, to be reactivated later at a
lower software IPL.

11 The fork dispatcher reactivates the driver's fork process.

When processor priority permits, the VMS fork dispatcher reactivates the
driver as a fork process.

12 The driver completes the 1/0 operation.

The driver's fork process completes device-dependent processing of the
1/0 request and returns the 1/0 status to VMS.

13 VMS completes the 1/0 operation.

The VMS 1/0 postprocessing routines copy the 1/0 status into process
address space, general registers, or both, and return control to the user
process.

Only four of these 13 steps describe the driver's 1/0 preprocessing and fork
processing. The VMS 1/0-support routines perform 1/0 processing common
to many 1/0 requests. Driver writing is further simplified by the use of VMS
routines that handle device-independent functions.

Introduction to Device Drivers
1.9 Example of an 1/0 Request

The preceding example simplifies the processing of an 1/0 operation by
ignoring such issues as

• The association of a device with a process, which is to say device
assignment

• Simultaneous 1/0 requests for one device

• System synchronization issues, such as IPLs and spin locks

• Driver competition for shared system and I/O adapter resources

• Driver competition for a multiunit controller

• Driver recovery from device errors or power failure

Subsequent chapters discuss each of these issues in relation to device drivers.

1-21

2 Discussion of a $QIO Request

This chapter outlines the series of activities performed by the VMS operating
system and a simple device driver in order to process an 1/0 request. The
LPl l line printer driver (LPDRIVER) was selected for this discussion because
it is a simple driver but still illustrates many driver principles. The first-time
reader of this document might not understand all of the points made in this
chapter; however, the chapter should provide some insight into driver flow
and 1/0 processing.

The LPll printer is a PIO device (see Section 1.7.1). Although the LPll is
usually spooled, this discussion assumes that it is not.

A user process can request the following functions on this printer:

• Write data to the printer

• Read the printer's device characteristics

• Alter the printer's device characteristics

This chapter describes two aspects of printer 1/0 processing:

• The portions of the line printer driver that are used in servicing a write
request

• The VMS components with which the driver interacts to process the write
request

Figure 2-1 illustrates the flow of execution through the VMS executive
routines and printer driver code that satisfies an 1/0 request. The unshaded
boxes in Figure 2-1 indicate the processing performed by driver subroutines.
Boxes shown above the solid line indicate processing in the context of the
user process. Boxes below the line indicate processing in fork or interrupt
context.

2.1 Driver Code for the LP11 Write Function
The VMS device driver for an LPll printer implements a write function using
the following parts of the driver:

• An FDT routine that reformats the user-supplied data

• A start-1/0 routine that writes data to the printer data buffer register until
the printer enters a busy state as it prints the contents of its internal print
silo

• Code that modifies a device register to enable interrupts from the printer

• An interrupt service routine that returns control to the driver's fork
process after a hardware interrupt from the printer

• Code that returns 1/0 status to a VMS 1/0 completion routine

2-1

2.2

Discussion of a $QIO Request
2.1 Driver Code for the LP11 Write Function

Figure 2-1 A Printer Write Function

010
VALIDATION

I
FDT

KERNEL
MODE

SUBROUTINf AST

USER

I J CONTEXT

J. SYSTEM
CONTEXT

DELIVER
IRPTO

DRIVER

1
DEVICE DRIVER

SUSPEND
I-- GOES t-- WRITE TO

DRIVER INTO BUSY
STATE

DEVICE

l
QUEUE

DRIVER OPERATING DEVICE IRPTO
RETURN I--

INTERRUPT
I--

SYSTEM
t--1 GENERATES

POST- t--
STATUS

HANDLER DISPATCHES INTERRUPT
PROCESSOR INTERRUPT

I
1/0

POST-
PROCESSOR

l

A User Process's 1/0 Request
A user process writes a line to the printer by calling the Queue 1/0 Request
($QIO) system service, specifying the write-virtual-block function code as
follows:

2-2

$QIO_S chan = CHANNEL_NUMBER,­
func = #IO$_WRITEVBLK,­
efn = #6,-
iosb = STATUS_BLOCK,­
p1 BUFFER_ADDRESS,­
p2 = #BUFFER_SIZE,­
p4 = #~X30

Note that pl, p2, and p4 are device-dependent arguments.

Discussion of a $QIO Request
2.3 Device-Independent 1/0 Preprocessing by VMS

2.3 Device-Independent 1/0 Preprocessing by VMS
The $QIO system service first validates that the 1/0 request is correctly
specified. The 1/0 request must meet the following criteria:

• The location CHANNEL _NUMBER must contain a number that serves as
a valid index into the process's channel list. This means that the process
must have previously assigned the printer to this process channel using
the Assign IjO Channel system service. Once $QIO locates the assigned
channel control block, it can retrieve the address of the unit control
block (UCB) of the target device of the request. Ultimately, it obtains the
address of the driver's function decision table (FDT), by way of a chain of
longword pointers within the 1/0 database:

CCB ---+ UCB ---+ DDT ---+ FDT

• The driver FDT must list 10$_WRITEVBLK as a valid function for the
device.

• The event flag number must be valid.

• The process's remaining buffered 1/0 count (BIOCNT) must permit the
$QIO system service to perform a buffered-1/0 request.

• The process must have write access to location STATUS_BLOCK,
specified in the request for use as an 1/0 status block.

If all of these checks succeed, the $QIO system service creates an 1/0 request
packet (IRP) in nonpaged system address space. The service then writes all
known details about the 1/0 request into the IRP.

If the target device for the 1/0 request is not file structured, the $QIO system
service changes any virtual-function code to its equivalent logical-function
code when it builds the IRP. Thus, for a printer device, 10$_WRITEVBLK is
translated to 10$_WRITELBLK.

2.4 Device-Dependent 1/0 Preprocessing by the Driver
Once it has validated the 1/0 request, the $QIO system service scans the FDT
for an entry that associates the 10$_ WRITELBLK function code with an FDT
routine. The system service calls the routine, which in the case of the printer
driver is a device-specific routine located in the printer device driver.

The FDT routine confirms that the requesting process has read access to the
buffer starting at BUFFER_ADDRESS. Then, the FDT routine buffers data
from the process address space into system address space in the following
steps:

• It calculates the length of the required system space buffer.

• If the job byte count quota for buffered 1/0 (JIB$L_BYTCNT) permits,
the routine allocates a buffer from system address space, stores the
address of the buffer in the IRP, and decreases the current job byte count
quota.

• It then synchronizes access to the printer's UCB by obtaining its mutex
(UCB$L_LP_MUTEX) for write access. It can thus reliably preprocess the
write request, depending upon information contained in the UCB.

2-3

Discussion of a $010 Request
2.4 Device-Dependent 1/0 Preprocessing by the Driver

By obtaining the line printer mutex, the driver FDT routine effectively
prevents processes active in a VMS multiprocessing system from initiating
simultaneous functions on the printer. Also, in a VMS uniprocessing
system, this action prevents contention between a process that has
allocated the printer (and has been preempted in the midst of a write
function) and any of its subprocesses that, when scheduled, may attempt
to start a concurrent function that alters device characteristics.

• It reads the description of the printer's current line and page position
from the device's UCB.

• It reformats the data from the process buffer into the system buffer,
adding carriage control characters, as specified in argument p4 to the I/O
request, before and after the data.

Formatting includes such functions as the replacement of horizontal tabs
with multiple spaces and the replacement of lowercase characters with
uppercase characters, if necessary.

• It rewrites updated line and page positions into the device's UCB. This
information indicates what the current location on the page being printed
will be when the request completes.

• Finally, the routine transfers control to a VMS routine that queues the IRP
to the device driver.

All of the I/O processing described to this point occurs in the context of
the user's process. The user address space is mapped, and the processor's
IPL is still low enough to permit process scheduling and paging. Subsequent
queuing of the transfer request to the driver and all resulting driver processing
occur at higher IPLs-and with ownership of the appropriate fork lock and
device lock in a VMS multiprocessing environment-that synchronize the
driver's handling of the device. (See Chapter 3 for a discussion of the concept
of synchronization.)

2.5 Queuing the 1/0 Request Packet to the Driver

2-4

Before queuing the IRP to the printer driver, the VMS queuing routine raises
the IPL to the driver's fork level and obtains the associated fork lock in a
VMS multiprocessing environment. These actions synchronize access to those
fields of the UCB referenced by driver routines at fork IPL.

If the device is idle, which is to say that if the busy bit in the UCB status
longword (UCB$V_BSY in UCB$L _STS) of the UCB is clear, VMS can
transfer control to the driver. The driver dispatch table (DDT) contains the
entry point to the driver's start-I/O routine. To find the proper entry point,
the queuing routine chains through the I/O database to the DDT, as follows:

UCB ---+ DDT ---+ start-I/O routine

If the device unit is busy with another transfer, VMS inserts the IRP in a
queue of packets waiting for the unit. The UCB contains the head of the
queue. The packet's position in the queue depends on the scheduling priority
of the process issuing the request.

Discussion of a $QIO Request
2.6 Activating the Printer

2.6 Activating the Printer
The LPll printer controller accepts data into an internal print silo until the
silo is full or the driver writes a carriage-control character to the printer's
data buffer register. When either event occurs, the printer sets a busy bit in
the device's control and status register (CSR). Then the device driver sets the
interrupt-enable bit in the device's CSR and waits for the printer to interrupt.
When the printer requests a hardware interrupt, the driver can resume writing
characters to the printer's data buffer register.

The &iver routine delivers characters to the printer according to the following
sequence:

1 The driver locates the LPl 1 device registers using a chain of pointers
starting at the device's UCB.

UCB-+ CRB-+ IDB-+ CSR address

The CSR address is always the address of the printer's CSR, and all
other device registers are at fixed offsets from this address. In contrast
to many other devices, such as disks, the LPl 1 printer does not share a
controller with other devices; therefore, no arbitration for ownership of
the controller is required.

2 The driver examines the device's CSR to see if the device is ready to
accept characters.

3 If the device is ready, the driver writes a byte of data to the printer's data
buffer register. The printer controller moves the byte from the register to
the controller's internal print silo.

4 The driver decreases the count of bytes to transfer and repeats step 2. ·,

5 If the device is not ready (that is, its print silo is full), the driver raises
IPL to device IPL and obtains the corresponding device lock in a VMS
multiprocessing system. These actions allow it to set the interrupt-enable
bit in the device's CSR in synchronization with other routines in the
driver that may access the CSR.

After setting the interrupt-enable bit, the driver invokes a VMS wait-for­
interrupt macro to release the device lock and suspend driver processing
until the printer requests an interrupt or the device times out.

2. 7 Waiting for a Device Interrupt
The VMS wait-for-interrupt routine suspends the driver by performing the
following functions:

• Saving driver context (R3, R4, and the address of the next instruction in
the driver) in the device's UCB

• Calculating the time at which the device will time out

• Setting bits in the device's UCB to indicate that the driver expects a device
interrupt within a specified time period

• Releasing the device lock in a VMS multiprocessing system, restoring IPL
to fork level, and returning control to the caller of the driver's start-I/O
routine

2-5

Discussion of a $QIO Request
2. 7 Waiting for a Device Interrupt

The driver remains in a suspended state until one of two events occurs:

• The printer requests a hardware interrupt.

• VMS reports a device timeout because the printer did not request a
hardware interrupt within a specified period of time.

Normally, the LPl 1 prints the contents of its data buffer and requests the
interrupt.

2.8 Handling Interrupts

2-6

When the LPl 1 printer requests a h·irdware interrupt, the interrupt dispatcher
passes the interrupt to the LPll driver's interrupt service routine.

The driver's interrupt service routine restores control to the driver, as follows:

1 Restores the address of the UCB in RS

2 Obtains the appropriate device lock to ensure synchronization in a VMS
multiprocessing environment

3 Confirms that the interrupt was expected by examining bits in the device's
UCB

4 Restores the saved registers (R3 and R4) from the device's UCB

5 Transfers control to the driver PC address stored in the device's UCB

Rather than execute in interrupt context, the reactivated driver routine calls a
VMS routine to create a fork process. As a result of this action, VMS again
suspends driver processing by performing the following steps:

1 Saving driver context (R3, R4, and the driver PC address) in the device's
UCB

2 Inserting the UCB address in the appropriate fork queue in the local
processor's CPU database

The driver suspension allows the operating system to reschedule driver
processing at its fork IPL and permits higher priority code to execute and
device interrupts to be serviced while driver processing of the I/O request
concludes. The VMS fork dispatcher reactivates the driver when the IPL of
the local processor drops to fork level.

After creating the fork process, the system returns control to the driver's
interrupt service routine, which restores the registers saved at the time of the
device interrupt, releases the device lock, and dismisses the interrupt.

Discussion of a $QIO Request
2.9 1/0 Postprocessing by the Driver

2.9 1/0 Postprocessing by the Driver

2.10

When the VMS fork dispatcher reactivates the driver's fork process, the
driver obtains the number of characters left to transfer from the UCB. If there
are still characters to transfer, the driver and printer repeat the procedures
outlined in Sections 2.6 through 2.8, until the transfer is complete. When
all characters have been transferred, the driver code branches to the driver's
IjO-completion code.

The driver's 1/0-completion code stores a success status code and the number
of bytes transferred in RO, then transfers control to VMS to complete the I/O
request.

1/0 Postprocessing by VMS
The operating system inserts the IRP into the I/O postprocessing queue
of the executing processor and requests an interrupt from the processor
at IPL$_IOPOST. If another IRP is queued to the UCB for the device
unit, VMS dequeues that packet and calls the driver start-I/O routine to
process it. When IPL drops to IPL$_IOPOST, the processor grants the I/O
postprocessing interrupt request. The I/O postprocessing dispatcher dequeues
the packet for the printer I/O request and performs the following steps:

1 Increases the use count (PHD$L_BIOCNT) of the process's buffered I/O
requests because the current operation is complete. The use count is
maintained for accounting purposes.

2 Decreases the process's buffered I/O count (PCB$W_BIOCNT) to reflect a
completed buffered I/O operation. This operation restores buffered-I/O
quota to the process.

3 Deallocates the system buffer used for the reformatted user data.

4 Increases the job's byte count quota.

5

6

Sets an event flag to indicate that the I/O operation is complete.

Queues a special kernel-mode AST routine that will deallocate the IRP
and stores I/O status in the user's I/O status block.

The user process determines when the I/O operation is complete by the
setting of the event flag and/or the filling of the I/O status block, according
to the method defined in the I/O request. The Queue I/O Request and Wait
($QIOW) system service completes synchronously and returns control and
status to the user process only after the I/O operation has been completed.
The Synchronize ($SYNCH) system service waits for the completion of
an I/O request, initiated by the $QIO system service, that completes
asynchronously to user process activity.

2-7

3 Synchronization of 1/0 Request Processing

Because a device driver executes as kernel-mode code, it can preempt core
system tasks and access critical system data. As a result it must adhere to a
set of rules that governs the priority of system activities and controls the flow
of system events. These synchronization rules ensure that both the operating
system and the device driver access memory in an orderly and consistent
fashion.

This chapter contains the following discussions:

• Section 3.1 discusses the interrupt priority levels, focusing on those IPLs
and interrupt service routines that participate in the processing of an I/O
request. It briefly examines the roles of the other IPLs in the operating
system. Whether you are writing a driver for a VMS uniprocessor or
multiprocessor environment, you must adhere to the synchronization
rules discussed in this section.

• Section 3.3 illustrates how system synchronization is maintained during
the processing of an I/O request on any VAX system. As part of this
discussion, this section describes the driver fork process and the activity of,
forking. Finally, it examines the methods by which a driver synchronizes
at fork level and device interrupt level.

• Section 3.4 discusses the mechanism by which driver code stalls to wait
for an available adapter or controller resource on any VAX system.

3.1 Interrupt Priority Levels
The VAX architecture defines 32 levels of hardware priority, called interrupt
priority levels (IPLs). These IPLs govern the sequence of system events that
occur on each processor in a VAX system. The higher-numbered IPLs (16
through 31) are reserved for hardware interrupts, and the lower-numbered
IPLs (1 through 15) are reserved for software interrupts. Most process-based
software runs at IPL 0.

The hardware IPLs (16 through 31) are used for device interrupts (IPLs 20
through 23), interprocessor interrupts in a multiprocessing system, interval
timer interrupts, urgent conditions like power failure, and such serious errors
as a machine check. Those IPLs that have a bearing on driver execution are
discussed in Sections 3.1.2 and 3.1.3. For specific hardware IPL information,
see your VAX system's hardware documentation or the VAX Hardware
Handbook.

The software IPLs (1 through 15) are defined by VMS as illustrated in
Table 3-1.

3-1

Synchronization of 1/0 Request Processing
3.1 Interrupt Priority Levels

3-2

Table 3-1 IPLs Defined by VMS

IPL

0

1

2

3

4

5

6

7

8

11

8-11

12

13

14

15

Symbolic Name

IPL$_ASTDEL

IPL$_RESCHED

IPL$_10POST

IPL$_QUEUEAST

IPL$_ TIMERFORK

IPL$_SYNCH

IPL$_MAILBOX

IPL$_POOL

Use

Execution of most process-based software

Reserved

Servicing of AST-delivery interrupts

Servicing of scheduler interrupts

Servicing of 1/0-postprocessing interrupts

Reserved

Fork level processing for queuing ASTs

Entry level for software timer interrupt
servicing

Synchronization of access to system
databases in a uniprocessor system 1

Fork level processing for access to
mailboxes
Allocation of nonpaged pool

Fork level processing for executing driver
code

Recalculation of quorum; cancellation of
mount verification (IPC)

Reserved

Entry level for XDEL TA debugger

Reserved

1 IPL$_ TIMER, IPL$_SCHED, IPL$_JIB, IPL$_MMG, IPL$_FILSYS, and IPL$_10LOCK8 are all
synonyms for IPL$_SYNCH (see Table 3-3).

Because a higher IPL takes precedence over a lower IPL, a routine executing
at one IPL can block interrupts on a processor at that IPL and all lower IPLs.
This scheme allows VMS to assign the higher IPLs to system activities that
must be dispatched quickly and with little chance of interruption. In a general
sense, each processor services interrupts according to the following priorities:

• Power failure

• Processor errors

• Device interrupts

• Device driver fork processing

• I/O postprocessing

• Process rescheduling

• AST delivery

As a result of blocking events on and ordering the activities of a single VAX
processor, VMS use of IPLs ensures that kernel-mode code accesses data in
memory in a cooperative and predictable manner. The mechanism by which
synchronized access to data is ensured is twofold. First, VMS associates
a given IPL with the access of one or more data structures or databases.

3.1.1

3.1.2

Synchronization of 1/0 Request Processing
3.1 Interrupt Priority Levels

Secondly, VMS defines an ordered set of semaphores, called spin locks, that
extend IPL synchronization throughout a VMS multiprocessing system. A
processor must obtain one or more of these spin locks before executing any
code thread that must make use of the resources the spin lock protects. Spin
locks thus allow each processor in a VMS multiprocessing system to share
common system data and block events systemwide.

For example, consider a code thread running at IPL 8 that intends to access
the memory management database. To do so, it raises IPL to IPL$_MMG.
This action gives it the exclusive right to access the database from the
local processor, effectively preventing access by other code threads on the
same processor. After raising IPL, this code thread requests the memory
management (MMG) spin lock. Ownership of the MMG spin lock gives the
processor executing this thread the exclusive right to access the database
systemwide, and bars access from any other code thread running on any
other processor in the VAX system.

Although discussions in this book treat IPL and spin lock synchronization
as conceptually separate tasks for a device driver, the set of VMS
synchronization macros, described in Table 3-2, makes adjustment of IPL
and disposition of spin locks appear as a single operation.

A full description of spin locks appears in Section 3.2.

Interrupt Service Routines
VMS associates certain IPLs with the execution of certain tasks. Moreover,
when a processor in a VAX system grants an interrupt at a given IPL, the
grant actually triggers the execution of a specific piece of code, called an
interrupt service routine, that performs the task.

Device drivers themselves contain, an interrupt service routine which handles
device interrupts at an appropriate device IPL (IPLs 20 through 23). In
addition, drivers rely heavi1y upon the VMS interrupt service routine known
as the f ark dispatcher which runs at several IP Ls, including driver fork IP Ls 8
through 11. When the local processor's IPL drops to fork IPL, it is the fork
dispatcher that restores the context of the driver fork process and places it
into execution. (See Section 3.1.2.4 and 3.3.2 for discussions of the device
IPLs and interrupt dispatching, respectively. Sections 3.1.2.3 and 3.3.3 _91.scuss
the fork IPLs and driver fork processes.)

I PL Use During 1/0 Processing
The activities essential to the processing of an 1/0 request occur only at
certain IPLs. VMS performs some of these tasks in system routines and
interrupt service routines; drivers perform others. This section describes those
IPLs and interrupt service routines that are most involved in IfO processing.
Section 3.1.3 discusses the IPLs at which other system activities transpire
that may influence the coding of a driver. For additional information on the
pattern of synchronization throughout the servicing of an 1/0 request, see
Section 3.3.

3-3

Synchronization of 1/0 Request Processing
3.1 Interrupt Priority Levels

3.1.2.1

3.1.2.2

IPL 2 (IPL$_ASTDEL)
The asynchronous system trap (AST) delivery interrupt service routine
(SCH$ASTDEL) is associated with IPL$_ASTDEL.

When an AST is specified for delivery to a process, the AST queuing routine
(SCH$QAST) queues the AST to the specified process's process control
block (PCB).1 When an AST is delivered is determined by the mode of
the AST, the current mode of the processor, and the mode contained in
the processor's ASTLVL register. The VAX hardware, by means of the REI
instruction, requests a software interrupt on the local processor at IPL$_
ASTDEL whenever the processor's mode becomes less privileged than that
specified as its ASTL VL. 2

The AST delivery interrupt service routine gains control when the processor's
IPL drops below IPL$_ASTDEL, and delivers all deliverable ASTs to the
currently scheduled process. Any code executing at IPL$_ASTDEL or higher
blocks the execution of this interrupt service routine.

To block the delivery of ASTs-specifically the kernel-mode AST that causes
process deletion-I/O preprocessing, from the time that the $QIO system
service allocates an IRP through the execution of the last FDT routine, occurs
at IPLs no lower than IPL$_ASTDEL. The VMS allocation routine records the
address of the system memory allocated for the IRP in a process register; if an
AST that deletes the process were to occur, the allocated memory would be
lost from the pool.

In addition, some I/O postprocessing occurs in a special kernel-mode
AST servicing routine that also executes at IPL$_ASTDEL. The special
kernel-mode AST, running in the context of a process whose I/O has been
completed, writes status information into an I/O status block, copies buffered
input into process space, and deallocates system buffers. The completion of
these tasks depends on the availability of process context.

Page faults may be taken by code that executes at IPL$_ASTDEL. However,
this is not the case with code executing at higher IPLs. Thus, programs that
are sensitive to the contents of pageable data structures run at IPL$_ASTDEL
to take page faults. For example, the allocation of paged pool is one such
program code thread; paged pool, as a result, is protected by a mutex.

I PL 4 (I PL$_1QPOST)
The IPL$_IOPOST interrupt service routine (IOC$IOPOST) performs device­
independent postprocessing of an I/O request. As appropriate to the
I/O request, it adjusts process quota use and deallocates system memory.
IOC$IOPOST also queues a special kernel-mode AST to the process's PCB
that, once process context is restored, writes status and data into the process's
address space.

After it has completed whatever device-dependent postprocessing is required,
a driver fork process requests I/O postprocessing by calling a VMS routine
(COM$POST) that insert.s an IRP in the local processor's postprocessing
queue (at CPU$L_PSBL) and requests a software interrupt at IPL$_IOPOST.
When IPL drops below IPL 4, the IPL$_IOPOST interrupt service routine

1 Because the VMS AST queuing and delivery routines access the scheduler database, they synchronize within a
VMS multiprocessing environment by obtaining the SCHED spin lock before modifying system data.

2 In the event that a processor queues an AST to a process currently executing on another processor in a
multiprocessing system, the local processor generates an interprocessor interrupt to the other processor to
change its ASTL VL.

3-4

3.1.2.3

3.1.2.4

Synchronization of 1/0 Request Processing
3.1 Interrupt Priority Levels

dequeues an IRP from the 1/0 postprocessing queue at CPU$L _PSFL,
performs all 1/0-completion tasks that can occur without reference to the
device's unit control block (UCB) and, thus, at an IPL lower than fork IPL.

1/0 postprocessing runs at an IPL higher than IPL$_RESCHED so that all
pending 1/0-completion processing is finished before the scheduler looks for
a new process to schedule. The ability of a process to execute can depend on
the completion of the postprocessing of an 1/0 request. Additionally, 1/0
postprocessing can queue ASTs to certain processes, thus changing their state
to computable and resulting in a priority boost. Because all 1/0 completions
are accomplished before rescheduling activities, the scheduler can select
from a potentially larger set of computable processes, using more up-to-date
information about these processes.

IPL 8 Through IPL 11 (Fork IPLs)
On each processor in a VAX system-for each of the IPLs from 8 to 11-
there exists a queue for fork blocks waiting to be processed. Each fork block
contains the context of a suspended fork process. The interrupt service
routine that executes at each of these IPLs (EXE$FORKDSPTH) is known as
the fork dispatcher. The fork dispatcher dequeues a fork block, obtains the
appropriate fork lock, restores the context of the fork process, and resumes its
execution at the PC location saved in the fork block (at FKB$L_FPC). (Refer
to Section 3.3.3 for a discussion of fork blocks and fork processes.)

All driver routines, except most FDT routines, execute at fork IPL or higher.
Usually driver routines should not read or alter UCB fields without taking
steps to ensure synchronization. Because such UCB fields can be shared
among driver fork processes and VMS system tasks executing on other
processors in a VMS multiprocessing system, a processor must first secure the
corresponding fork lock to execute at that foL-k IPL. .Furthermore, the drivers
for all devices on a single 1/0 adapter must use the same fork lock if they
actively compete for shared 1/0 adapter resources such as map registers and
data paths. The VMS routine that initiates an 1/0 request on an idle device
unit, as well as the fork dispatcher, transfers control to the driver with the
appropriate synchronization.

A driver places a fork lock index in UCB$B_FLCK using the DPT_STORE
macro. (See Section 6.1.) VMS determines the appropriate fork IPL from the
contents of the SPL$B_IPL field in the fork lock's structure. (See Section 3.2
for a discussion of spin locks.) ·

IPL 20 Through IPL 23 (Device IPLs)
VAX peripheral devices request interrupts at IPLs 20 through 23 because
device interrupts usually need to preempt most user and VMS software
functions. When a device requests an interrupt at one of these IPLs and the
processor is executing at a lower IPL, the processor ·grants the interrupt, and
then transfers control to an interrupt service routine for the device located in
its driver. If the processor is executing at a higher or equal IPL, the interrupt
remains pending.

The interrupt dispatcher routes interrupts from. devices to the appropriate
device driver's interrupt service routine. A driver specifies the address of its
interrupt service routine in the driver prologue table (DPT). The interrupt
dispatcher's routing mechanism works differently depending upon the VAX
processor and 1/0 subsystem in use. (For additional information on device
interrupt dispatching, see the general discussion of interrupt dispatching
in Chapter 9. Information specific to a given 1/0 subsystem configuration

3-5

3.1.3

Synchronization of 1/0 Request Processing
3.1 Interrupt Priority Levels

3.1.2.5

Additional I Pls

3-6

appears in Sections 12.3 (UNIBUS/Q22 bus), 13.4 (MASSBUS), and 14.3.1
(VAXBI bus).)

Data in a device's registers and in various fields of the UCB that record
device status is synchronized on the local processor at device IPL, at which its
driver's interrupt service routine executes. This value is stored by the driver
in the UCB$B_DIPL field of the UCB. It is the responsibility of the interrupt
service routine to secure the corresponding device lock. This action allows it
to synchronize with other code threads that access the same resources in a
VMS multiprocessing system.

The driver's start-I/O routine is one such code thread and must similarly
synchronize. In a VMS uniprocessing environment, the routine raises IPL
to device IPL before writing data in device registers and database fields. In
a VMS multiprocessor environment, the start-I/O routine must secure the
appropriate device lock to achieve systemwide synchronization of the device
database. The act of acquiring the device lock automatically sets IPL to device
IPL.

Because code executing at IPLs 20 through 23 blocks most other hardware
interrupts and all software interrupts on the local processor, driver code
lowers its IPL as soon as possible. Interrupts from devices on a Micro VAX
3600-series, MicroVAX II, MicroVAX I, VAX 8200/8250/8300/8350, VAX
8530/8550/8700/8800/8830/8850, and VAX 6200-series system, in fact, can
block hardware interrupts from the processor's interval clock if these device
interrupts occur at or above IPL 22. To prevent the loss of an interval clock
interrupt, these drivers, when executing at IPL 22 or above, should lower IPL
below 22 as soon as possible (within 9 milliseconds).

I PL 31 (I PL$_PQWER)
The highest IPL, IPL$_POWER (IPL 31) locks out all other interrupts on the
local processor. Many VMS routines and drivers raise IPL to IPL$_POWER to
execute code sequences that cannot tolerate interruption. For example, much
of system initialization occurs at IPL$_POWER. In a VMS multiprocessing
system, these routines often need to acquire additional synchronization, as
described in Section 3.2.

When a device driver needs to execute a series of instructions without
interruption, the driver raises IPL to IPL$_POWER. The driver should never
remain at IPL$_POWER for more than a few instructions. The most common
instance of a driver's raising IPL to IPL$_POWER is to determine whether
a power failure has occurred on the local processor between the time that
the driver writes setup data into device registers and the time that the driver
starts the device by writing into the device's control register.

In addition to the IPLs that are directly involved in the processing of an I/O
request, VMS defines the IPLs described in this section.

3.1.3.1

3.1.3.2

3.1.3.3

Synchronization of 1/0 Request Processing
3.1 Interrupt Priority Levels

IPL 3 (IPL$_RESCHED)
When an event occurs that requires that a process be rescheduled, a VMS
routine requests a software interrupt on the local processor at IPL$_
RESCHED. The scheduler interrupt service routine (SCH$RESCHED) gains
control at this IPL, but immediately obtains the SCHED spin lock (as a result,
raising IPL to IPL$_SYNCH). This action synchronizes the processor's access
to the scheduler's database with other system activities.

Drivers never explicitly reference IPL$_RESCHED. Most driver processing
occurs at higher IP Ls. When a process raises IPL to or above IPL$_
RESCHED, the scheduler cannot reschedule the process. The process runs
until an interrupt occurs at a higher IPL or the process lowers IPL below
IPL$_RESCHED.

IPL 6 (IPL$_QUEUEAST)
IPL$_QUEUEAST is a fork-level IPL used predominantly by drivers written
before Version 4.0 of the VMS operating system. A driver fork process
originating at an IPL between 8 and 11 would use IPL$_QUEUEAST when it
needed to synchronize access to the scheduler's database at IPL$_SYNCH­
for instance, to queue an AST. Prior to VMS Version 4.0, the only way that
such a fork process could maintain proper synchronization was to first call
a system routine that creates yet another fork process to be dispatched at
IPL$_QUEUEAST. Once the fork dispatcher dequeued the fork block and
resumed execution of the driver, the driver fork process could then raise IPL
to IPL$_SYNCH and access the system database.

Because versions of the VMS operating system after Version 4.0 implement
IPL$_SYNCH as a fork IPL, a driver fork process can fork directly to IPL$_
SYNCH. In VMS Version 5.0, the fork dispatcher obtains the IPL 8 fork
lock (IOLOCK8), dequeues the driver fork block, restores driver context,
and resumes execution of the driver. To maintain synchronization in a VMS
multiprocessing environment, the driver then must obtain the spin lock that
corresponds to the data structure it is accessing.

IPL 7 (IPL$_ TIMERFORK)
The interval clock's interrupt service routine (EXE$HWCLKINT), executing at
IPL 22 or IPL 24 depending upon the VAX system, posts interrupts at IPL$_
TIMERFORK. A processor requests such an interrupt when the current process
has exceeded its processor time quantum. The software timer interrupt service
routine (EXE$SWTIMINT) gets control when the IPL drops below IPL$_
TIMERFORK, services quantum end events by immediately raising IPL to
IPL$_SYNCH (obtaining the SCHED spin lock, if needed), and calls the
appropriate scheduler routine.

The primary processor in a VMS multiprocessor system, when executing
the interval clock's interrupt service routine, requests an IPL$_TIMERFORK
interrupt when the first entry in the timer queue (EXE$GQ_lST_TIME)
is due. The software timer interrupt service routine contains special code
that allows the primary processor to service the expiration of a timer queue
element (TQE). The routine raises IPL to IPL$_SYNCH, synchronizes access
to the timer queue (except for the first TQE) by obtaining the TIMER spin
lock, and secures the interval clock database (the system time at EXE$GQ _
SYSTIME and the expiration time of the first TQE at EXE$GQ_lST_TIME)
by obtaining the HWCLK spin lock. Thus synchronized, it determines which
TQEs have expired, dequeues them, and transfers control to the appropriate
timeout handlers. Device timeouts are dispatched in this manner.

3-7

3.1.4

Synchronization of 1/0 Request Processing
3.1 Interrupt Priority Levels

3.1.3.4

3.1.3.5

3.1.3.6

3.1.3.7

IPL 8 {IPL$_SVNCH)
IPL$_SYNCH is the level at which the databases that record and control
system functions are synchronized. Individual spin locks, such as the JIB,
SCHED, MMG, and TIMER spin locks, provide synchronized access to
individual databases in a VMS multiprocessing environment. 3 When a
VMS subroutine or a driver needs to modify or read a dynamic portion of a
system database, the routine always executes at IPL$_SYNCH, holding an
appropriate system spin lock, to ensure that the database does not change
because of some interrupt service routine or process action.

IPL 11 (IPL$_MAILBOX)
IPL$_MAILBOX is the highest fork IPL. When a VMS or driver routine writes
into a mailbox, the executing processor must be at IPL$_MAILBOX holding
the MAILBOX spin lock. Because other readers or writers to the mailbox must
similarly pursue synchronization, these actions prevent other writers from
modifying incomplete data in the mailbox and readers from reading invalid
data.

IPL 14 (XDELTA Entry IPL)
For debugging purposes, you can halt a processor from the console terminal
and request a software interrupt to invoke the XDELTA debugger. You
accomplish this by depositing OE16 in the processor's Software Interrupt
Request Register (PR$_SIRR). (The procedure for requesting a software
interrupt to invoke XDELTA is described in Table 16-3.)

After you issue the console' s CONTINUE command and return to program
mode, the processor grants an interrupt at IPL 14. The processor must be
executing below the requested IPL for the interrupt to take effect.

IPL 22 or IPL 24 (Interval Clock IPLs)
Every ten milliseconds, the interval clock interrupts at IPL 22 or 24,
depending upon the VAX system. A system cell points to the IPL field
(SPL$B_IPL) in the HWCLK spin lock, identifying the IPL at which the
processor's interval clock interrupts.

The interval clock's interrupt service routine performs the functions described
in Section 3.1.3.3. Note that the interval clock's interrupt service routine
obtains the HWCLK spin lock to synchronize its operations on the system
time quadword (EXE$GQ_SYSTIME) and the quadword containing the due
time of the first timer queue element (EXE$GQ_lST_TIME).

Modifying I PL in Driver Code
Kernel-mode code can modify the IPL of the local processor by either
explicitly setting the processor's IPL to a specific value or by requesting a
software interrupt at a specific level. Driver code can change the IPL at
which it executes by invoking a VMS-supplied macro to request a change in
IPL. Because the DEVICELOCK, FORKLOCK, and LOCK macros (and their
counterparts) only raise (or lower) IPL in a VMS uniprocessing environment,
but achieve full synchronization in a VMS multiprocessing system, DIGITAL
recommends their use instead of the SETIPL, DSBINT, and ENBINT macros.

3 IPL$_TIMER, IPL$_SCHED, IPL$_JIB, IPL$_MMG, IPL$_FILSYS, and IPL$_IOLOCK8 are all synonyms for
IPL$_SYNCH (see Table 3-3).

3-8

Synchronization of 1/0 Request Processing
3.1 Interrupt Priority Levels

Table 3-2 lists the macros that set, store, or restore a processor's IPL. See
Appendix B for a further explanation of the functions of these macros and a
full description of their arguments.

Table 3-2 VMS Macros That Change a Processor's IPL

Macro

Raising IPL

DEVICELOCK [lockaddr]
[,lockipl} [,savipl] [,condition]
[,preserve= YES]

DSBINT [ip/=31] [,dst=-(SP)}
[, environ=MUL Tl PROCESSOR

FORKLOCK [lock} [,/ockipl] [,savipl}
[,preserve=YES] [,fipl=NO]

LOCK lockname [,lockipl} [,savipl]
[,condition] [,preserve=YES]

SETI PL [ip/=31]
[,environ=MUL TIPROCESSOR]

Lowering IPL

DEVICEUNLOCK [lockaddr]
[,newipl} [,condition]
[,preserve= YES]

ENBINT [src=(SP+)]

FORKUNLOCK [lock] [,newipl}
[,condition] [,preserve=YES]

UNLOCK lockname [,newipl}
[,condition] [,preserve= YES]

Miscellaneous Functions

SAVIPL [dst=-(SP)j

SOFTINT ipl

Function

Raises IPL on the local processor to the device IPL associated with the
device lock's lockaddr, obtains the device lock, and saves the current
IPL at savipl1

Raises IPL on the local processor to the specified ipl, saving the
current IPL at dst.2

Raises IPL on the local processor to lockipl, obtains the fork lock, and
saves the current IPL at savipl1

Raises IPL on the local processor to the lockipl, obtains the lock
indicated by lockname, and saves the current IPL at savipl1

Raises IPL on the local processor to the specified ipfl

Releases or restores the device lock indicated by lockaddr, lowering
the local processor's IPL to newipl, thus permitting interrupts to occur
at or beneath the current IPL 1

Lowers the local processor's IPL to src, thus permitting interrupts to
occur at or beneath the current IPL2

Releases or restores the fork lock indicated by lock, lowering the local
processor's IPL to newipl, thus permitting interrupts to occur at or
beneath the current IPL 1

Releases or restores the spin lock indicated by lockname and lowers
IPL to newipl, thus permitting interrupts to occur at or beneath the
current IPL 1

Saves the local processor's IPL at the specified location

Requests a software interrupt on the local processor at the specified
ipl

1 When used in a uniprocessing environment, the DEVICELOCK, DEVICE UNLOCK, FORKLOCK, FORKUNLOCK, LOCK, and
UNLOCK macros generate only the code that manipulates IPL.

2Use of the SETIPL, ENBINT, and DSBINT macros is not sufficient to guarantee systemwide synchronization of events
and data in a VMS multiprocessing system. The DEVICELOCK, FORKLOCK, and LOCK macros have been designed to
achieve appropriate synchronization in either a uniprocessing or multiprocessing environment.

3-9

Synchronization of 1/0 Request Processing
3.1 Interrupt Priority Levels

3.1.4.1

3-10

Raising IPL
To block certain activities on a local processor in a VAX system, it is
sometimes useful to raise IPL explicitly. Driver code should not raise IPL
for more than a few instructions, for doing so prevents the local processor
from servicing interrupts at the current IPL and all lower IPLs.

In a uniprocessor environment, raising IPL provides sufficient systemwide
synchronization to both block events and also protect data customarily
accessed at a given IPL. Drivers typically raise a processor's IPL to check for
a local processor power failure, send a message to a mailbox, or access device
registers. For instance, a driver running exclusively in a VMS uniprocessor ·
environment can set IPL to its device IPL (UCB$B_DIPL) to access device
registers. While the driver executes at device IPL, no other code thread can
execute at the same device IPL and thereby read or write the same device
registers. (See the discussion in Section 3.1.4.2 for a description of the rules
for lowering IPL that enforce the synchronization.) VMS supplies the SETIPL
and DSBINT macros to effect the change in IPL.

In a multiprocessing environment, as in a uniprocessing environment, a driver
can block activities on the local processor by raising IPL. However, in a
multiprocessing environment, simply raising IPL is not sufficient to protect
shared data structures from other processors that may attempt to access them
concurrently. To achieve synchronization in a VMS multiprocessing system,
VMS associates a series of semaphores, called spin locks, with such shared
databases. (See Section 3.2 for a further discussion of spin locks.)

A processor that must access a shared structure must first secure a
corresponding spin lock. The acquisition of a spin lock often involves the
raising of IPL to the IPL associated with the spin lock and the database it
protects. Spin lock acquisition code can elevate IPL automatically if called
from a code thread executing at an IPL lower than the synchronization IPL of
the lock. A processor that has properly obtained a spin lock can thus proceed
to access the associated database at the appropriate IPL. If necessary, it is free
to further raise IPL, but should not lower IPL below the spin lock's allocation
IPL without first releasing the spin lock.

For example, a driver running in a VMS multiprocessing system can set
IPL to IPL$_POWER to block the servicing of a power failure on the local
processor. However, while executing at IPL$_POWER (or at device IPL),
the driver cannot safely access device registers unless it has first secured the
spin lock associated with the device: that is, its device lock. Similarly, a
driver's fork process, although it executes at a fork IPL with a corresponding
fork lock held, may raise a processor's IPL by obtaining an additional spin
lock. Sending a message to the OPCOM mailbox (obtaining the MAILBOX
spin lock at IPL 11) and accessing device registers (obtaining the appropriate
device lock at device IPL) are two such activities.

The LOCK,. FORKLOCK, and DEVICELOCK macros ensure that the
synchronization needed for either the uniprocessor or multiprocessor
environment is obtained before the requested resource is accessed. When
executed in a uniprocessor environment, these macros only obtain the proper
IPL synchronization. When invoked in a multiprocessing environment, these
macros both raise IPL and obtain an appropriate spin lock, thus extending IPL
synchronization systemwide.

3.1.4.2

3.2 Spin Locks

Synchronization of 1/0 Request Processing
3.1 Interrupt Priority Levels

Lowering IPL
Driver code lowers its IPL to synchronize with code threads that access
common data or perform common activities at the lower IPL. In a
multiprocessing environment, lowering IPL is often associated with the
release of a spin lock. In addition, lowering IPL may be necessary in order to
obtain a spin lock synchronized at the lower IPL.

One of the most fundamental coding rules in VMS is that a code thread cannot
explicitly lower IPL below the level at which its execution has been initiated.
In relation to driver processing, this means that a driver fork process cannot
explicitly set IPL to be less than its fork IPL, nor can a driver's interrupt
service routine explicitly set IPL to be less than device IPL. This is because
a processor interrupted a lower IPL code thread in mid-execution to place
the current code thread into execution. It is important to the integrity of the
data structures protected at this lower IPL that the previous code thread be
resumed before other code accesses the same structures. A violation of the
IPL rule would undermine the VMS interrupt dispatching mechanism by not
first returning control to the interrupted code thread.

Driver code uses the following methods to lower IPL:

• Issuing a DEVICEUNLOCK, FORKUNLOCK, or UNLOCK macro (paired
with an earlier invocation of a DEVICELOCK, FORKLOCK, or LOCK
macro) or a ENBINT macro (paired with an earlier invocation of an
DSBINT macro) to restore IPL to a previously saved value.

• Invoking the IOFORK (or FORK) macro to preserve its context in a fork
block, insert the block in a fork queue, and request a software interrupt
at the driver's fork IPL. See Section 3.3.3.1 for a complete discussion of
forking.

• Issuing an REI instruction at the end of its interrupt service routine that
dismisses the interrupt.

Lowering IPL can cause many pending interrupts on the local processor
between the old and new IPLs to become deliverable.

In a multiprocessing environment, as in a uniprocessing environment, you
can block activities on the local processor by raising IPL. Similarly, certain
shared databases must be accessed only at a given IPL. However, in a
multiprocessing environment, simply raising IPL on the local processor does
not prevent other processors in the system from reading or modifying a
shared database. Unless other steps are taken to notify the other processors
that the database is "owned," such contention could potentially result in
corrupted data and system failures.

A spin lock is a semaphore associated with a set of system structures, fields, or
registers whose integrity is critical to the performance of a specific operating
system task. The scheduler and the memory management subsystem thus
have their own spin locks, as does each fork processing level and each device
controller. Because a spin lock can be owned by only one processor in the
system at a time, other processors attempting to acquire the same spin lock
are prevented from reading from or writing into the database it protects.
The structure of a spin lock is pictured in Figure A-15 and described in
Table A-14.

3-11

Synchronization of 1/0 Request Processing
3.2 Spin Locks

Table 3-3

Lock Name

QUEUEAST

FILSYS

IOLOCK8

PR_LK8

TIMER

JIB

MMG

SCH ED

IOLOCK9

PR_LK9

There are two categories of spin lock:

• The structure of a static spin lock is permanently assembled into the
system. As a result, its existence and definition are fixed from one
system to another. Static spin locks are accessed as indexes into a vector
of longword addresses called the spin lock vector and pointed to by
SMP$AR_SPNLKVEC. The system spin locks and fork locks listed in
Table 3-3 are static spin locks.

• A dynamic spin lock is a spin lock that is created based on the 1/0
configuration of a particular system. One such dynamic spin lock is
the device lock SYSGEN creates when configuring a particular device.
This device lock synchronizes access to the device's registers and certain
UCB fields. VMS creates a dynamic spin lock by allocating space from
nonpaged pool, rather than assembling the lock into the system as it does
in the creation of a static spin lock. Section 3.2.2 describes device locks.

Table 3-3 lists, in order of increasing logical rank, the static spin locks. For
each system spin lock or fork lock, the table records its index into the spin
lock vector, its synchronization IPL, and a brief description of its function.

Static Spin Locks

Lock Index Synchronization I PL

SPL$C_QUEUEAST 6 (IPL$_QUEUEAST)

SPL$C_FILSYS 8 (IPL$_FILSYS) 1

SPL$C_IOLOCK8 8 (IPL$_10LOCK8) 1

SPL$C_PR_LK8 8 (IPL$_10LOCK8) 1

SPL$C_ TIMER 8 (IPL$_ TIMER) 1

SPL$C_JIB 8 (IPL$_JIB) 1

SPL$C_MMG 8 (IPL$_MMG) 1

SPL$C_SCHED 8 (IPL$_SCHED) 1

SPL$C_IOLOCK9 9 (IPL$_10LOCK9)

SPL$C_PR_LK9 9 (IPL$_10LOCK9)

Description

Fork lock for executing a fork process
at IPL 6

Lock on file system structures

Fork lock for executing a fork process
at IPL 8

Primary CPU's private lock for IPL 8

Lock for adding and deleting timer
queue entries and searching the timer
queue2

Lock for manipulating job nonpaged
pool quotas as reflected by the fields
JIB$L_BYTCNT and JIB$L_BYTLM in
the job information block

Lock on VMS memory management,
PFN database, swapper, modified
page writer, and creation of per-CPU
database structures

Lock on process control blocks,
scheduler database, and mutex
acquisition and release structures

Fork lock for executing a fork process
at IPL 9

Primary CPU's private lock for IPL 9

1 IPL$_ TIMER, IPL$_SCHED, IPL$_JIB, IPL$_MMG, IPL$_FILSYS, and IPL$_10LOCK8 are all synonyms for IPL$_SYNCH.

2The HWCLK spin lock implicitly locks the timer queue element at the head of the timer queue by locking the quadword
representing its due time (EXE$GQ _ 1 ST_ TIME).

3-12

Synchronization of 1/0 Request Processing
3.2 Spin Locks

Table 3-3 (Cont.) Static Spin Locks

Lock Name

IOLOCK10

PR_LK10

IOLOCK11

PR_LK11

MAILBOX

POOL

PERFMON

INVALIDATE

VIRTCONS

HWCLK

MEGA

MC HECK

EMB

Lock Index Synchronization I PL Description

SPL$C_IOLOCK 10 10 (IPL$_10LOCK 10) Fork lock for executing a fork process
at IPL 10

SPL$C_PR_LK 10 10 (IPL$_10LOCK 10) Primary CPU's private lock for IPL 10

SPL$C_IOLOCK 11 11 (IPL$_10LOCK 11) Fork lock for executing a fork process
at IPL 11

SPL$C_PR_LK 11 11 (IPL$_10LOCK 11) Primary CPU's private lock for IPL 11

SPL$C_MAILBOX 11 (IPL$_MAILBOX) Lock for sending messages to
mailboxes

SPL$C_POOL 11 (IPL$_POOL) Lock on nonpaged pool database

SPL$C_PERFMON 15 (IPL$_PERFMON) Lock for 1/0 performance monitoring

SPL$C_INV ALIDA TE 19 (IPL$_1NV ALIDA TE) Lock system space translation buffer
(TB) invalidation

SPL$C_ VIRTCONS 20 (IPL$_ VIRTCONS) Lock for ownership of the virtual
console

SPL$C_HWCLK 22 or 24 Lock on interval clock database,
including the quadword containing
the due time of the first timer queue
element and the quadword containing
the system time

SPL$C_MEGA 31 (IPL$_MEGA) Lock for serializing access to fork and
wait queue

SPL$C_MCHECK 31 (IPL$_MCHECK) Lock for synchronizing certain machine
error handling

SPL$C_EMB 31 (IPL$_EMB) Lock for allocating and releasing error
logging buffers

Drivers rarely need to obtain system spin locks or fork locks explicitly; the
VMS routines that initiate driver processing and access resources protected by
a spin lock generally obtain and release these locks as required. However, a
driver must obtain the appropriate device locks whenever it must access data
synchronized at device IPL; for instance, in its interrupt service routine.

VMS provides a set of macros, listed in Table 3-2 and described in full
in Appendix B, that call the system's spin lock acquisition and releasing
routines.

Three factors control the successful acquisition of a spin lock: IPL, rank, and
ownership.

IPL

The processor must be executing at an IPL equal to or below the spin lock's
synchronization IPL (SPL$B_IPL). In keeping with the rules discussed
in Section 3.1.4.2, a processor should not lower the IPL of its thread of
execution in the process of acquiring a spin lock. Thus, in acquiring a spin
lock, a processor may or may not raise its IPL, depending upon whether it
is executing already at the spin lock synchronization IPL. VMS supplies spin
lock acquisition macros (DEVICELOCK, FORKLOCK, and LOCK) that, in
calling appropriate VMS routines, raise IPL automatically in the course of
obtaining the requested spin lock. Once it owns the spin lock, the processor

3-13

3.2.1

Synchronization of 1/0 Request Processing
3.2 Spin Locks

Fork Locks

can raise its IPL above the IPL at which the spin lock was acquired, but it
should not lower it below that level.

Rank

A processor can own multiple spin locks simultaneously, but must obtain
these spin locks in increasing order of rank. (Table 3-3 lists the spin locks
in order of rank.) In other words, a processor that owns one or more spin
locks should not attempt to acquire a spin lock whose logical rank4 is less
than a spin lock it already holds. It does not need to acquire all spin locks
of intervening rank. This rule is meant to avoid potential deadlocks in the
acquisition of system spin locks and fork locks, and does not pertain to device
locks. The processor may release spin locks in any order, as long as any
attempt to reacquire those spin locks acquires them in ascending order.

Note that .the concept of rank is independent of IPL. At any given
synchronization IPL, there may be many spin locks, each of which is ranked
according to its position in Table 3-3.

Ownership

The spin lock must not be owned by any other processor. If the spin lock is
currently owned by another processor, a requesting processor spin waits for
the lock to become available-. That is, it executes in a loop, waiting for the
processor that owns the spin lock to release it. If a spin lock is owned, its
owner field (SPL$L_OWN_CPU) contains an identifier that indicates which
processor in the multiprocessor system owns the spin lock.

It is legal for a processor to nest acquisitions of a given spin lock. In other
words, if a processor attempts to acquire a spin lock that it currently owns,
the acquisition will succeed. VMS provides a mechanism whereby such a
processor can release a single acquisition or all acquisitions of a spin lock.

In its simplest form, a fork lock is a static spin lock that synchronizes the
right of a fork process to execute at a specified IPL in a VMS multiprocessing
system. Fork locks exist for each of the fork IPLs from IPL 8 to 11. A driver
indicates the fork lock under which it processes, and by implication its fork
IPL, by specifying a fork lock index in its driver prologue table (using the
DPT_STORE macro as described in Section 6.1).

Those code threads that must synchronize with another fork thread use the
same fork lock. For instance, the fork processes of drivers whose devices
share the resources of a common adapter must synchronize themselves by
means of a common fork lock. These code threads fork not necessarily to
lower IPL, but rather to wait for the availability of a common resource such
as a controller data channel or map registers (see Section 3.4). The VMS
routines that acquire and release these resources ensure that the fork lock is
acquired and released as necessary.

4 The physical rank of a spin lock is the inverse of its logical rank. See the description of the SPL$B_RANK
field in Table A-14 for additional information.

3-14

3.2.2 Device Locks

Synchronization of 1/0 Request Processing
3.2 Spin Locks

Drivers rarely need to obtain a fork lock explicitly. VMS places the driver
fork process into execution (originally by EXE$INSIOQ and, by implication,
by IOC$REQCOM) at fork IPL holding the appropriate fork lock. In addition,
the fork dispatcher obtains the fork lock associated with the driver fork
process before it restores its context and resumes its execution. (Section 3.3.3
describes these concepts in greater detail.)

Note that, if a driver fork process is not placed into execution by one of these
means, it must itself expressly obtain the fork lock.

As an example, consider a driver fork process activated by a timer wakeup
associated with a timer queue element (TQE) previously queued by the
driver. The software timer interrupt service routine does raise IPL to IPL 8
(IPL$_SYNCH) and obtain certain spin locks prior to dequeuing the TQE and
placing it into execution, but it does not obtain the driver's fork lock. Thus,
even though the driver's fork IPL may be IPL$_SYNCH, the driver will not
be properly synchronized at fork level unless it first obtains the appropriate
fork lock.

A device lock represents a lock on an individual adapter or controller. A
processor executing a code thread that accesses a device's registers or certain
fields in its unit control block (UCB) that reflect its status does so while
holding the corresponding device lock.

UCBs are protected by a device lock common to all units on the same adapter
or common to the entire system, depending upon the type of device. A device
lock is dynamically created by the System Generation Utility (SYSGEN) when
it creates a channel request block (CRB). SYSGEN stores the address of the
device lock in the CRB (CRB$L_DLCK) and later copies it to the unit control
block (UCB$L _DLCK) as a UCB is created for each unit on the controller.

The acquisition of device locks is exempt from the spin lock rank rule. As
long as the processor does not violate IPL synchronization, it may successfully
obtain an unowned device lock while holding any system spin lock and,
likewise, may successfully obtain unowned system spin locks while holding a
device lock. However, a processor can acquire only one device lock at a given
IPL.

3.3 Device Driver Synchronization
This section describes how VMS and driver processing maintain
synchronization during the processing of a general 1/0 request. It later
focuses on the specific strategies drivers employ to synchronize at the device
and fork levels.

3-15

3.3.1

Synchronization of 1/0 Request Processing
3.3 Device Driver Synchronization

Overview of the Synchronization of an 1/0 Operation

3-16

Figure 3-1 diagrams the general flow of the processing of a single I/O
request, as synchronization is achieved by raising and lowering IPL, and, in
a multiprocessing environment, by also obtaining and releasing the necessary
spin locks.

Figure 3-1 Synchronizing 1/0 Request Processing

0 0
SAVE DRIVER

CHECK FOR
CONTEXT;

POWER FAILURE;
RELEASE
DEVICE LOCK;

ST ART DEVICE
WAIT FOR
INTERRUPT

IPL$_POWER !
1

0

OBTAIN
DEVICE LOCK

Device IPL I
I •

0 0 0
OBTAIN FORK LOCK; OBTAIN FORK LOCK;
MODIFY & START-1/0

~
CALL DRIVER'S RELEASE

READ UCB: ROUTINE START-1/0 FORK LOCK
RELEASE FORK LOCK ROUTINE

Fork IPL 1 l I
I I l

e e
~ $010

FDT
SYSTEM ~

FDT
ROUTINE ROUTINE

~ SERVICE

IPL$_ASTDEL I
I

0 '®

USER USER
ISSUES PROCESS
QIO RESUMES

IPL 0

ZK-6534-HC

Figure 3-1 illustrates the following events:

0 The user program, executing at IPL 0, issues a $QIO system service call.

8 The $QIO system service raises IPL to IPL$_ASTDEL to prepare the I/O
request according to the arguments included in the call.

0 The driver's FDT routines execute, mainly at IPL$_ASTDEL.

Synchronization of 1/0 Request Processing
3.3 Device Driver Synchronization

Note that during IPL 0 processing and FDT routine activity at IPL$_
ASTDEL, the process requesting the I/O is susceptible to being
rescheduled. In a multiprocessing environment, such an event could
cause I/O processing to resume on a different processor from that on
which it was started.

0 In certain rare circumstances, an FDT routine must read or modify the
device's UCB. Because most fields in the UCB may be shared by fork
processes running systemwide it is important that, if the FDT routine
must use them, it issue the FORKLOCK macro to obtain the appropriate
fork lock and raise to fork IPL. (When finished, it relinquishes this
synchronization by issuing the FORKUNLOCK macro.)

0 The continuation of VMS preprocessing of the I/O request-or the
completion of a previous I/O request on the device unit-ensures that
the driver's start-I/O routine is placed into execution at fork IPL and,
in a multiprocessing system, holding the corresponding fork lock. The
start-I/O routine accesses various UCB fields and contends for adapter
resources synchronized systemwide by the fork lock.

0 Once it has further prepared the 1/0 request and obtained the required
resources, it generally must access device registers. Device registers and
those UCB fields that record their status are synchronized at device IPL.
A processor in a VMS multiprocessing system must hold the appropriate
device lock to access the device database.

0 While executing a critical code sequence, such as those instructions that
start a device, the start-I/O routine raises the IPL of the local processor
to IPL$_PQWER to check for a processor power failure. In a VMS
multiprocessing environment, the executing processor retains the device
lock during this sequence.

0 After it activates the device, the start-I/O routine calls a VMS routine
that saves the driver's context in the UCB fork block, suspends driver
processing, releases the device lock, if held, and restores IPL to a previous
level.

0 VMS at this point returns control to the code that initiated the fork thread
where, in a VMS multiprocessing system, the fork lock is released.

4D After VMS services interrupts at intervening IPLs, the user process
resumes.

Figure 3-2 illustrates the synchronization involved in the completion of an
I/O request from the point of the device interrupt to the delivery of ASTs
to the user program. There is little linear flow involved in the completion
of an I/O request. The servicing of interrupts, represented by jagged lines
in the figure, the requesting of software interrupts, and the REI instruction
contribute to the flow that completes an I/O request.

3-17

Synchronization of 1/0 Request Processing
3.3 Device Driver Synchronization

3-18

Figure 3-2 Synchronizing 1/0 Request Completion

Device IPL

0

L__

Fork IPL

0,0

L__

IPL$_10POST

IPL$_ASTDEL

IPL 0

FORK
DISPATCHER
OBTAINS FORK
LOCK;
RESUMES DRIVER
FORK PROCESS

POSTPROCESS
1/0 REQUEST;
REI

DELIVER AST
TO PROCESS;
REI

DELIVER USER
AST TO
PROCESS;
EXECUTION
RESUMES

0,0

0
~

~

Figure 3-2 illustrates the following events:

INTERRUPT
SERVICE ROUTINE
OBTAINS DEVICE
LOCK; SERVICES
DEVICE, RELEASES
DEVICELOCK; REI

DRIVER WRITES
STATUS INTO UCB;
INVOKES REQCOM
MACRO; REQUESTS
INTERRUPT AT
IPL$_10POST

8

DRIVER RESUMES;
PLACES CONTEXT
IN FORK BLOCK;
ID FORK;
REI

IOPOST OBTAINS
SCHED SPINLOCK;
QUEUES SPECIAL
KERNEL MODE AST
TO PROCESS;
RELEASES SCHED
SPIN LOCK

~

ZK-6535-HC

0 A device interrupt in the range of IPL 20 through IPL 23 triggers the
execution of the driver's interrupt service routine. The interrupt service
routine locates the device unit's UCB and, in a VMS multiprocessing
system, immediately obtains the appropriate device lock. Af~er it analyzes
the interrupt and determines that it is expected, it reactivates the driver,
still at device IPL and holding any acquired device lock.

@ The driver briefly examines and/or saves the contents of the device's
registers, but, in order to permit other device interrupts to be serviced
and to allow other high priority system tasks to proceed, it lowers its
own priority. The driver accomplishes this by requesting VMS to save
some driver context in the UCB fork block and place it into one of the
processor-specific fork queues at IPLs 8 through 11 serviced by the fork
dispatcher. When it does so, VMS returns control to the driver's interrupt
service routine.

3.3.2

Synchronization of 1/0 Request Processing
3.3 Device Driver Synchronization

8 The interrupt service routine releases any acquired device lock and issues
an REI instruction to dismiss the device interrupt.

0 When IPL drops below the driver's fork IPL, the fork dispatcher
restores the context of the driver and resumes its execution. In a VMS
multiprocessing system, the fork dispatcher obtains the necessary fork
lock prior to placing the driver into execution.

0 Still synchronized at fork level, the driver fork process analyzes the
success of the I/O operation and writes status into RO and Rl. VMS
then inserts the IRP into the local processor's I/O postprocessing queue,
requests a software interrupt at IPL$_IOPOST, and starts any I/O request
that may be waiting for the device. Eventually, VMS returns to the fork
dispatcher and, if no other fork processes are queued for that IPL, issues
an REI instruction to dismiss the software interrupt.

0 When the processor's IPL falls below IPL$_IOPOST, the I/O
postprocessing routine removes the IRP from the I/O postprocessing
queue, adjusts process quota usage, and deallocates system buffers for
write functions.

0 When the routine finishes processing the IRP, it queues a special kernel­
mode AST to the process that issued the original $QIO request. To
accomplish this, it obtains the SCHED spin lock (raising to IPL$_SYNCH
in the process) and calls another VMS routine that queues the AST to the
process's PCB. It then releases the SCHED spin lock.

8 The I/O postprocessing routine continues execution at IPL$_IOPOST
until it has serviced all entries in the postprocessing queue. It then issues
an REI to dismiss this software interrupt.

0 The special kernel-mode AST routine executes at IPL$__ASTDEL. It
completes the transfer of the results and status of the I/O request to the
user process.

~ The special kernel-mode AST routine can queue a user-mode AST routine
to the user process. When the user process has been rescheduled and its
context reloaded, the user-mode AST routine executes at IPL 0.

Synchronizing the Device Database
A device database ordinarily consists of the device or adapter registers, plus
some storage in the UCB (or in another data structure) that reflects the status
of the device. Routines that access data in the device database must do so at
device IPL (UCB$B_DIPL) in order to maintain synchronization. Generally,
only three driver routines contend for access to the device database.

•
•
•

Interrupt service routine

Start-I/O routine when loading or reading device registers

Timeout handling routine

In a VMS uniprocessing environment, the start-I/O routine raises its IPL to
device IPL using the DSBINT macro. VMS calls the driver's timeout handling
routine at device IPL. Because the interrupt dispatcher invokes it at device
IPL, the driver's interrupt service routine does not need to acquire additional
synchronization.

3-19

3.3.3

Synchronization of 1/0 Request Processing
3.3 Device Driver Synchronization

In a VMS multiprocessing environment, these routines must also hold the
appropriate device lock (UCB$L_DLCK). The device lock protecting the
device database is a dynamic spin lock, created by SYSGEN when the device
is configured and its channel request block (CRB) is created. The address of
the device lock is first stored in CRB$L_DLCK and is moved to UCB$L_
DLCK as corresponding UCBs are allocated for each unit on the controller.
VMS calls the driver's timeout handling routine at device IPL with the device
lock held. The start-I/O routine and the interrupt service routine must
explicitly obtain such synchronization by invoking the DEVICELOCK macro.

The start-I/O routine and timeout handling routine are additionally
synchronized at driver fork level. VMS raises IPL to fork level and obtains the
corresponding fork lock before transferring control to them. This is not the
case, however, with a driver's interrupt service routine. A device's interrupt
service routine usually does not hold the fork lock. However, it may have
preempted a thread holding the fork lock, or a fork thread may be running
in parallel on another processor. Therefore, an interrupt service routine must
not change any fields in the UCB that are protected by the fork lock. To
access these fields, an interrupt service routine must fork, as described in
Section 3.3.3.1.

Synchronizing at Driver Fork Level

3-20

A large part of driver code executes in the context of a fork process. As a
fork process, driver code that must access data in its fork database does
so at a single, specific fork IPL (from IPL 8 to IPL 11) and-in a VMS
multiprocessing environment-holding a single, specific fork lock (see
Section 3.2.1). The fork database consists of those fields in the unit control
block (UCB) not explicitly synchronized at device level and such adapter or
controller resources as map registers or data paths.

The system routine EXE$INSIOQ initially creates a driver fork process as
it attempts to deliver a preprocessed I/O request to the driver's start-I/O
routine. If the device unit is busy (that is, a fork process is already active
servicing a prior request for that device), EXE$INSIOQ inserts the IRP into
the UCB's pending-I/O queue. If the device unit is not busy, EXE$INSIOQ
calls IOC$INITIATE to transfer control to the driver's start-I/O routine. The
start-1/0 routine begins to execute at fork IPL holding the associated fork
lock, if necessary.

When the driver fork process later calls IOC$REQCOM to complete
processing of a prior I/O request, IOC$REQCOM executes within the driver
fork process, dequeues the next IRP on the pending-I/O queue, and begins
processing it.

Like other processes, fork processes can be interrupted or suspended. The
local processor interrupts a fork process when the processor receives a
request for an interrupt at a higher priority level. To minimize the number of
interruptions, fork processes sometimes execute at raised IPLs, and even raise
their IPL to block all other interrupts, if necessary.

VMS stalls a driver's fork process when the process requests an unavailable
resource such as a controller's data path (see Section 3.4). When suspended, a
driver fork process, like other processes, preserves some context information.
As VMS preserves some of the context of a normal process in its hardware
PCB, so it preserves a driver fork process's context-however abbreviated-in
a fork block. Fork context consists of the following:

3.3.3.1

Synchronization of 1/0 Request Processing
3.3 Device Driver Synchronization

• Two general purpose registers (R3 and R4)

• The program counter (PC)

• A fork block (usually the UCB), the address of which is in RS at the time
of the suspension

Minimal context helps ensure that, when a driver fork process is ready to be
resumed, the resulting context-switching occurs swiftly.

Forking and the VMS Fork Dispatcher
Forking allows high IPL code to do the following:

• Continue executing a particular code thread at a lower IPL than the IPL
at which the code thread was initiated

• Synchronize with other code executing at the lower IPL

Usually, a driver forks after servicing a device interrupt at an IPL from 20
through 23. By forking, the driver lowers the IPL at which it continues
to process the device interrupt from device IPL to fork IPL (8 through
11). Forking not only allows the driver to process efficiently that part of
interrupt request processing that is not time critical, but it allows the driver
to synchronize its execution with other fork process code threads initiating
I/O. For example, forking helps the driver synchronize its use of a device
unit's UCB with other code threads interested in th~ structure. Moreover, the
driver, by forking after completing the initial servicing of a device interrupt,
allows other device interrupts to occur at that device IPL.

To fork, either the driver's interrupt service routine or the start-I/O routine,
when resumed by the interrupt service routine, invokes the VMS macro
IOFORK. The IOFORK macro saves fork process context in the UCB fork
block, places the fork block in the local processor's fork queue for the specific
fork IPL, and requests a software interrupt for that IPL. When that interrupt
is ultimately serviced, driver fork processing resumes at the lower level.

There are other specialized instances in which a device driver may fork.
As discussed in Section 11.1.5, the driver's unit initialization routine or
controller initialization routine, while executing at IPL 31, may fork in order
to permanently allocate controller resources, system nonpaged dynamic
memory, or system page-table entries. To fork, these routines use the VMS
macro FORK. The FORK macro allows a driver to fork, utilizing the fork
block, the address of which is placed in RS. Because the channel request
block (CRB) is available to these routines and contains a fork block, they
invoke the VMS macro FORK with the address of the CRB in RS.

One interrupt service routine (EXE$FORKDSPTH) handles all fork-process
dispatching on each processor in a VAX system. When the processor grants
an interrupt at fork IPL, the fork dispatcher saves RO through RS on the
stack and processes the local fork queue that corresponds to the IPL of the
interrupt. To do so, it removes an entry from the fork queue, restores the
fork process context from the fork block, obtains ownership of the fork lock
specified in the fork block (in a VMS multiprocessing system), and reactivates
the suspended fork process.

When that fork process is completed, the dispatcher releases the fork lock and
examines the fork queue. If an entry exists on the queue, the fork dispatcher
removes it, restores the context of the fork process, secures the fork lock
specified in the fork block, and reactivates the fork process. This sequence is
repeated until the fork queue is empty. When the queue is empty, the fork

3-21

Synchronization of 1/0 Request Processing
3. 3 Device Driver Synchronization

3.3.3.2

3-22

dispatcher restores RO through RS from the stack and dismisses the interrupt
with an REI instruction.

Figure 3-3 illustrates the fork queue structure.

Figure 3-3 Processor-Specific Fork Queue Structure

IPL 11 FORK
FORK QUEUE BLOCK

LISTHEAD

IPL 11 CPU$Q_SWIQFL [40]
IPL 10

FORK QUEUE
LISTHEAD

IPL 10 CPU$Q_SWIQFL [32]

IPL 9 CPU$Q_SWIQFL [24]
IPL 9

FORK QUEUE
IPL 8 CPU$Q_SWIQFL [16] LISTHEAD

IPL 7

IPL 8 FORK
IPL 6 CPU$Q_SWIQFL [O] FORK QUEUE BLOCK

LISTHEAD

IPL 6
FORK

FORK QUEUE
LISTHEAD

BLOCK

ZK-584-81

Restrictions on Fork Processes
A driver fork process executes under the following constraints:

• It should not attempt to refer to the address space of the process initiating
the I/O request.

• It can use only RO through RS freely; it must save other registers before
use and restore them after use. Use of registers other than RO through RS
is strongly discouraged.

• It must clean up the stack after use; the stack must be in its original state
when the fork process relinquishes control to any VMS routine.

• It must execute at IPLs between the driver's fork IPL and IPL$_POWER.
It must not lower IPL below the driver's fork IPL except by creating a
fork process to execute at a lower IPL.

• If executing in a VMS multiprocessing environment, it cannot attempt to
obtain system spin locks with lower ranks than that of its fork lock.

• When it returns control to the fork dispatcher, the fork process must be
at the same fork IPL and, if executing on a VMS multiprocessing system,
own the appropriate fork lock.

Synchronization of 1/0 Request Processing
3.4 Resource Wait Queues

3.4 Resource Wait Queues

3.4.1

The processing of an I/O request often requires shared system resources
such as memory and I/O adapter map registers. Drivers that depend on
such resources synchronize access to these resources and their respective
resource wait queues by executing at fork IPL and, in a VMS multiprocessing
environment, obtaining ownership of the associated fork lock.

The $QIO system service and fork processes call VMS routines to allocate and
deallocate shared system resources. Because the resources are limited, I/O
processing might be delayed until any such needed resources are released.
Thus, synchronization of access to these resources can have a substantial
impact on the processing of I/O requests.

For example, the $QIO system service calls a VMS routine to allocate
non paged system space for an IRP. If there is insufficient non paged pool,
the routine calls another VMS routine to save the process context and change
the process state to resource-wait mode (also called miscellaneous wait, or
MWAIT). As a result of waiting, the process is a candidate to be swapped
out of memory. When nonpaged pool becomes available, the scheduler
reschedules the process.

During fork process execution at elevated IPLs, driver context is very small.
At any point, the driver can obtain all details about an IjO request by
referring to the IjO database (see Appendix A). The driver needs only the
address of the device's UCB, which is the key to the rest of the database.
Therefore, VMS routines that control driver resources, such as map registers,
use fork blocks and resource-wait queues to save minimal driver context.
Each entry in a queue is a fork block (or UCB) that contains R3, R4, and the
continuation PC of the waiting fork process.

When the awaited resource becomes available, the routine controlling the
resource performs the following steps:

• Restores the UCB address to RS

• Restores the saved registers R3 and R4

• Grants the resource

• Transfers control to the saved driver return PC address

Because the VMS routine that controls a particular resource stalls any driver
that requests an unavailable resource, drivers are unaware of execution being
suspended and subsequently reactivated. Drivers must not leave anything on
the stack, or in general purpose registers, other than R3, R4, and RS, when calling
a routine that might suspend the driver's execution.

Competing for a Controller's Data Channel
A controller's data channel is a VMS synchronization mechanism that
guarantees that only one unit of a multiunit controller uses the controller
at one time.

Devices that share a controller, such as disk units, own the controller's data
channel only when a VMS routine assigns the channel to the unit's fork
process. The device driver's start-I/O routine issues the REQPCHAN macro
to obtain the channel.

3-23

Synchronization of 1/0 Request Processing
3.4 Resource Wait Queues

3-24

In contrast, a device unit on a single-unit controller always owns the
controller's data channel. The device driver's controller (or unit) initialization
routine affirms this fact by moving the address of the device's UCB into
IDB$L_OWNER. Generally, the driver's start-1/0 routine does not request a
single-unit controller.

In each case, the driver's start-I/O routine must take steps to synchronize its
access to device registers with any access of these registers by the driver's
interrupt service routine. The routine does so by issuing the DEVICELOCK
macro (as described in Section 3.1.4). The DEVICELOCK macro raises IPL
to device IPL and, in a VMS multiprocessing system, obtains the device lock
associated with the controller.

An RK611 controller, for example, controls as many as eight RK06/RK07
devices. The disk driver's fork process must gain control of the controller's
data channel before starting an I/O operation on the unit associated with the
fork process. The disk driver's start-I/O routine uses the following sequence
to start a seek operation on an RK07 device:

1 The start-I/O routine requests the controller's data channel by invoking a
VMS channel arbitration macro (REQPCHAN).

2 The VMS routine tests the CRB mask field to determine whether the
controller's data channel is available.

3 If the channel is available, the VMS routine allocates the channel to
the fork process and returns the address of the device's CSR to the fork
process.

If the channel is busy, the VMS routine saves the driver fork context in
the UCB fork block and inserts the fork block address in the controller's
channel wait queue.

4 When the fork process resumes execution, the process owns the controller
channel. The fork process can then obtain the device lock (raising IPL to
device IPL) and modify the device's registers to activate the device.

5 The driver's start-1/0 routine then requests the VMS operating system to
suspend driver processing in anticipation of an interrupt or timeout and
to release the channel.

6 The VMS channel-releasing routine assigns channel ownership to the
next fork process in the channel wait queue, loads the CSR address into a
general register, and reactivates the suspended fork process.

7 The reactivated fork process continues execution as though the channel
had been available in the first place.

The VMS channel-arbitration routines keep track of controller availability
using a flag field in the CRB. The fork process must always request and
release the controller's data channel by invoking these routines.

4 Overview of 1/0 Processing

Under the VMS operating system, I/O processing occurs in three major
phases:

• I/O request preprocessing

• Device activation and subsequent handling of the device interrupt

• I/O postprocessing

When a user process issues an I/O request, the Queue I/O Request ($QIO)
system service gains control and coordinates preprocessing of the request.
The last driver FDT routine called by the $QIO system service calls a VMS
routine that creates a driver fork process to execute the driver's start-I/O
routine. This routine activates the device.

When the transfer is completed, the device requests an interrupt that
results in execution of the driver's interrupt service routine. This routine
handles the interrupt and requests resumption of the driver fork process
to perform device-dependent IjO postprocessing. The driver fork process
finally transfers control to the system to perform device-independent I/O
postprocessing. Figure 4-1 illustrates the sequence of events.

The $QIO system service is dispatched by means of a corresponding system
service vector in process Pl space. This vector contains a CHMK instruction
that causes an exception that alters the process's access mode to kernel and
dispatches to the service-specific procedure, EXE$QIO. For the purposes of the
discussion in this section, as well as the rest of the book, Figure 4-2 portrays
the flow of an I/O request from its system service entry point to its servicing
by VMS executive routines and driver code. Discussion of other entry points
appears in Chapters 8, 9, and 10.

4.1 Preprocessing an 1/0 Request
EXE$QIO performs device-independent preprocessing of an I/O request and
calls driver FDT routines to perform device-dependent preprocessing. To
preprocess an I/O request, EXE$QIO takes the following steps:

• Verifies that the requesting process has assigned a process I/O channel to
the target device

• Locates the device driver in the I/O database

• Validates the I/O function code

• Checks process I/O request quotas

• Validates the I/O status block

• Allocates and sets up the I/O request packet (IRP)

• Calls driver FDT routines to perform device-dependent preprocessing

4-1

Overview of 1/0 Processing
4.1 Preprocessing an 1/0 Request

4-2

Figure 4-1 Sequence of Driver Execution

USER PROCESS CONTEXT
USER STACK

USER PROCESS CONTEXT
KERNEL STACK

FORK PROCESS CONTEXT
KERNEL STACK

USER PROCESS ISSUES $QIO.

QUEUE 1/0 REQUEST SYSTEM SERVICE
PERFORMS DEVICE-INDEPENDENT 1/0
PREPROCESSING.

QUEUE 1/0 SYSTEM SERVICE CALLS DRIVER
FDT ROUTINE(S) TO PERFORM DEVICE­
DEPENDENT PREPROCESSING.

LAST FDT ROUTINE CALLS VMS ROUTINE TO
QUEUE 1/0 REQUEST AND CREA TE A DRIVER
FORK PROCESS.

ONCE ACTIVATED THE DRIVER FORK PROCESS
EXECUTES THE START 1/0 ROUTINE.

I
ST ART 1/0 ROUTINE: OBTAINS NECESSARY
RESOURCES (FOR EXAMPLE, CONTROLLER
CHANNEL, MAP REGISTERS) AND ACTIVATES
THE DEVICE.

I
START 1/0 ROUTINE INVOKES A WAIT FOR
INTERRUPT MACRO THAT SAVES THE FORK
PROCESS CONTEXT AND SUSPENDS THE
START 1/0 ROUTINE.

HARDWARE INTERRUPT OCCURS WHEN-----------­
-------------REQUESTED BY DEVICE

INTERRUPT CONTEXT
INTERRUPT STACK

FORK PROCESS CONTEXT
INTERRUPT STACK

INTERRUPT CONTEXT
INTERRUPT STACK

USER PROCESS CONTEXT
KERNEL STACK

USER PROCESS CONTEXT
USER STACK

INTERRUPT DISPATCHER ACTIVATES
INTERRUPT SERVICE ROUTINE.

DRIVER'S INTERRUPT SERVICE ROUTINE
HANDLES THE INTERRUPT AND TRANSFERS
CONTROL TO THE DRIVER AT THE
INSTRUCTION FOLLOWING THE WAIT FOR
INTERRUPT INVOCATION.

THE DRIVER INVOKES IOFORK TO BE
RESCHEDULED AT FORK IPL AS A FORK PROCESS.

ONCE RESCHEDULED AS A FORK PROCESS,
THE DRIVER EXECUTES THE REST OF THE
DRIVER CODE THAT PERFORMS DEVICE­
DEPENDENT 1/0 COMPLETION.

1
THE DRIVER THEN CALLS A VMS ROUTINE TO PERFORM
DEVICE-INDEPENDENT 1/0 COMPLETION.

I
VMS QUEUES A KERNEL MODE AST TO THE
PROCESS THAT ORIGINALLY ISSUED THE 1/0
REQUEST.

ONCE DELIVERED, THE KERNEL MODE AST
ROUTINE RUNS IN USER PROCESS CONTEXT
TO READ DATA INTO THE USER'S BUFFER
FOR A BUFFERED 1/0 REQUEST,
RETURN FINAL STATUS, AND, IF REQUESTED,
QUEUE A USER MODE AST AND/OR SET AN
EVENT FLAG.

USER MODE AST

4.1.1

Figure 4-2

USER'S
PROGRAM

CALL

QIO

RET

IPL$JOPOST

Overview of 1/0 Processing
4.1 Preprocessing an 1/0 Request

Detailed Sequence of VMS 1/0 Processing

SYSTEM SERVICE CHANGE MODE $QIO SYSTEM
VECTOR DISPATCHER SERVICE JSB

SYS$QIO:: EXE$CMOD~RNL:: EXE$QIO::
(CALL)

CHMK JMP -----
RET SERVICE-EXIT:

JSB

EXE$QIODRVPKT RSB EXE$1NSIOQ

REI JMP JSB
RET

EXE$QIORETURN

JMP

DRIVER

10 START: RSB

DRIVER .
WFIKPCH INTSERV: DEVICE -----

JSB INTERRUPT

SOFTWARE INTERRUPT -----
RSB

IOFORK* REI
IOC$10POST:: ----.

FORK DISPATCHER
JSB

EXE$FORKD.SPTH:: FORK IPL
queue special SOFTWARE
kernel AST INTERRUPT

REQCOM ----
JMP .

TO
REI IOC$1NITIATE REI

IOC$REQCOM::

special kernel UCB
AST: JMP SOFTINT #IPL$JOPOST

if more IRPs
- set event flag else FORK BLOCK - write IOSB

FR3 - copy data
- update quotas RSB FR4 *

FPC

*DRIVER CONTENT SAVED IN FORK BLOCK OF UCB
ZK-4844-85

Process 1/0 Channel Assignment
The first step in preprocessing an 1/0 request is to verify that the I/O request
specifies a valid process IjO channel. The process I/O channel is an entry
in a system-maintained process table that describes a path of reference from
a process to a peripheral device unit. Before a program requests IjO to a
device, the program identifies the target device unit by issuing an Assign­
I/0-Channel ($ASSIGN) system service call. The $ASSIGN system service
performs the following functions:

• Locates an unused entry in the table of process I/O channels

• Creates a pointer to the device unit in the table entry for the channel

• Returns a channel-index number to the program

4-3

4.1.2

Overview of 1/0 Processing
4.1 Preprocessing an 1/0 Request

When the program issues an I/O request, EXE$QIO verifies that the channel
number specified is associated with a device and locates the unit control block
associated with the specified channel using the field CCB$L _UCB.

Refer to Figure A-4 and Table A-3 for an illustration of the channel control
block and a description of its contents.

Locating a Device Driver in the 1/0 Database

4.1.2.1

4-4

A unit control block (UCB) that describes a device unit exists for each device
in the system. The UCB indicates the current state of the device unit by
recording such information as the following:

• Whether the device is active (UCB$V_BSY in UCB$L_STS)

• What I/O request is being processed (UCB$L_IRP)

• Where transfer buffers are located (UCB$L_SVAPTE)

Because drivers run as fork processes and cannot use process address space
to store additional context, drivers use the UCB for temporary data storage
during I/O processing. (Section 6.1 describes how you can allocate additional
UCB space for storing data or device-dependent driver context.)

The UCB also holds the context of a driver fork process when VMS I/O
routines suspend the fork process to wait for an asynchronous event such as
a device interrupt.

Using information in the UCB, a driver can find other I/O data structures
associated with the device, including the channel request block, interrupt
dispatch block, and the device data block.

Figure A-17 represents a UCB and Table A-16 describes its fields.

Channel Request Block
The channel request block (CRB) allows the operating system to manage the
controller data channel. Among its contents are the following:

• Code that transfers control to a driver's interrupt service routine (CRB$L_
INTD)

• A pointer to the driver's interrupt service routine (CRB$L_
INTD+VEC$L_ISR)

• Addresses of a driver's unit and controller initialization routines (CRB$L_
INTD+ VEC$ L _UNITINIT I CRB$ L _INTD+ VEC$L _INITIAL)

• A pointer to the interrupt dispatch block (IDB), which further describes
the controller (CRB$L_INTD+VEC$L_IDB)

Controllers can be either multiunit or dedicated.

All UCBs describing device units attached to a single multiunit controller
contain a pointer to a single CRB (UCB$L _CRB). For these controllers, a
VMS routine uses fields in the CRB (CRBL_WQFL, CRBB_MASK) and
IDB (IDB$L _OWNER) to arbitrate pending driver requests for the controller.
When the system grants ownership of a multiunit controller data channel to a
driver fork process, the fork process can initiate an IjO operation on a device

4.1.2.2

Overview of 1/0 Processing
4.1 Preprocessing an 1/0 Request

attached to that controller. Figure 4-3 illustrates the data structures required
to describe three devices on a multiunit controller.

Figure 4-3 Data Structures for Three Devices on One Controller

CAB

UCB UCB UCB

IDB

ZK-920-82

The VMS operating system does not use the CRB to synchronize 1/0
operations for a dedicated controller, as the controller manages but a single
device. Nevertheless, the CRB still is present and is used by drivers and
operating system routines.

See Figure A-6 and Table A-5 for an illustration of the CRB and a description
of its contents.

Interrupt Dispatch Block
The CRB contains a pointer to an interrupt dispatch block (IDB) (CRB$L_
INTD+VEC$L_IDB). In turn, the IDB (at IDB$L_UCBLST) points to all UCBs
that share the controller (see Figure 4-3).

The IDB contains the addresses of these three critical data structures:

• The UCB of the device unit, if any, that currently owns the controller data
channel (IDB$L_OWNER)

• The control and status register (IDB$L _CSR); it is the key to access to
device registers

• The adapter control block (IDB$L_ADP) that describes the adapter of the
IjO bus to which the controller is attached

A detailed description of the fields in the IDB appears in Table A-10;
Figure A-11 shows its structure.

4-5

Overview of 1/0 Processing
4.1 Preprocessing an 1/0 Request

4.1.2.3

4-6

Figure 4-4 illustrates the relationship between the data structures that
describe a group of equivalent devices on two separate controllers. In this
figure, one controller has a single device unit, and the other controller has
two device units. Devices on both controllers share the same driver code.

Figure 4-4 1/0 Database for Two Controllers

IDB

CRB

UCB UCB

DEVICE
DRIVER

Device Data Block

IDB

CRB

UCB

ZK-1765-84

All UCBs describing device units attached to a single controller contain
a pointer (UCB$L _DDB) to a single device data block (DDB). The DDB
contains two fields that identify the device and its driver:

• The generic device/controller name (DDB$T_NAME)

• The name of the device's driver as obtained from the driver prologue
table (DDB$T_DRVNAME)

Table A-7 further describes the fields of the DDB. For a representation of its
structure, see Figure A-8.

4.1.3

4.1.4

4.1.5

4.1.6

Validating the 1/0 Function

Overview of 1/0 Processing
4.1 Preprocessing an 1/0 Request

Using the I/O database, EXE$QIO locates the address of the driver's function
decision table by following a chain of pointers that begins in the UCB of the
target device:

UCB ---+ DDT ---+ FDT

EXE$QIO then uses data in the function decision table to analyze the I/O
function. The procedure confirms that the function specified in the 1/0
request is a valid function for the device.

Checking Process 1/0 Request Quotas
EXE$QIO determines whether the I/O request being readied will cause the
process to exceed its quota for outstanding direct or buffered I/O requests.
If the process's requests remain under quota, the system service allows it
to continue I/O preprocessing. Where quota is exceeded, the procedure
examines the process's resource wait flag (PCB$V_SSRWAIT in PCB$L_STS).

If the flag is clear, EXE$QIO aborts the I/O request. However, if the flag is
set, it places the process in a wait state until previously issued I/O requests
complete and the number of requests drops below quota. When this occurs,
process execution resumes, at which time EXE$QIO charges process quotas as
appropriate for the requested operation.

Validating the 1/0 Status Block
If the I/O request specifies a quadword I/O status block to receive final I/O
status information, EXE$QIO determines whether the process issuing the
request has write access to the status block locations specified. If the process
has write access, EXE$QIO fills the quadword with zeros. If the process does
not have write access, the procedure terminates the request with an error
status.

Allocating and Setting Up an 1/0 Request Packet
If validation of the I/O request succeeds to this point, EXE$QIO allocates a
block of nonpaged pool to contain an IRP.

Before EXE$QIO allocates an IRP, it raises the IPL of the processor to IPL$_
ASTDEL to block any other asynchronous activity in the process. The new
IPL prevents possible deletion of the process; process deletion would result in
the operating system's losing track of the pool allocated for the IRP.

EXE$QIO attempts to allocate an IRP from a lookaside list containing
preallocated IRPs. If no preallocated packets exist, the procedure calls a VMS
routine that allocates an IRP from general nonpaged pool. This allocating
routine synchronizes with the rest of the system so that it can allocate the
memory needed.

4-7

Overview of 1/0 Processing
4.1 Preprocessing an 1/0 Request

4-8

EXE$QIO resumes 1/0 preprocessing by writing a description of the 1/0
request into the fields of the IRP as follows. Note that this data encompasses
the device-independent information associated with the request. It is up to
the device driver's FDT routines or VMS common FDT routines to fill in
the device-dependent portions of the IRP, as described in Section 4.1.7 and
Chapter 7.

Data

Size in bytes of the IRP

Identification of the block as an IRP

Access mode of the process at the time of the
request

Process ID of the requesting process

Address of an AST routine (if specified in the
request) and its parameter 1

For file-structured devices, address of a
window control block (WCB) that describes
the physical location of part of the file

Address of the target device's UCB

1/0 function code2

Number of event flag to set when processing
of the 1/0 request is complete

Base software priority of the requesting
process

Address of an 1/0 status block (if specified in
the request)

Process 1/0 channel index number

A flag indicating whether the 1/0 function is for
buffered or direct 1/0

A flag indicating whether the 1/0 request is an
input request

A flag indicating whether the 1/0 function is a
physical-1/0 function

Address of a diagnostic buffer (if specified in
the request)3and a flag indicating that the buffer
is present

Address of process's access rights block

1/0 transaction sequence number

Field(s)

IRP$W_SIZE

IRP$B_TYPE

IRP$B_RMOD

IRP$L_PID

IRPL_AST, IRPL_ASTPRM

IRP$L_WIND

IRP$L_UCB

IRP$W_FUNC

IRP$B_EFN

IRP$B_PRI

IRP$L_IOSB

IRP$W_CHAN

IRP$V_BUFIO in IRP$W_STS

IRP$V_FUNC in IRP$W_STS

IRP$V_PHYSIO in IRP$W_STS

IRP$L_DIAGBUF, IRP$V_
DIAGBUF in IRP$W_STS

IRP$L_ARB

IRP$L_SEQNUM

1 If the request specifies an AST, EXE$QIO also verifies that the request would not cause
the process to exceed its AST quota. If it would, EXE$QIO aborts the request.

2 For nonfile devices (DEV$V_FOD clear in UCB$L_OEVCHAR), EXE$QIO reduces read­
and write-virtual-block functions to their equivalent read- and write-logical-block functions
before storing a code.

3The size of the diagnostic buffer is specified in the driver dispatch table of the driver
servicing the device unit to which the request is made. See Section 6.2 for more
information.

4.1.7 FDT Processing

Overview of 1/0 Processing
4.1 Preprocessing an 1/0 Request

Figure A-12 illustrates the format of an IRP; Table A-11 describes each of its
fields.

The driver's function decision table controls the device-dependent
preprocessing of an 1/0 request. Figure 4-5 illustrates the layout of a function
decision table.

Figure 4-5 Layout of a Function Decision Table

2 longwords { valid 1/0
1-- - - - - - - - - -

functions

2 longwords { buffered 1/0
~----------

functions

3 longwords l 64-bit
~---- ------ -

mask
~-----------

routine address

3 longwords l 64-bit
~----------

mask
i------------...,

routine address

•

•

•
ZK-921-82

The 1/0 function code specified in an 1/0 request is a 16-bit value consisting
of two fields:

• A 6-bit 1/0 function code (bits 0 through 5) that permits you to define
64 unique 1/0 function codes for every device type. Table 6-1 lists the
function codes defined by VMS. Section 6.3.2 describes how you can
define device-specific function codes.

• A 10-bit 1/0 function modifier (bits 6 through 15). In subsequent
processing of the 1/0 request, the driver's start-1/0 routine uses both
1/0 function code and 1/0 function modifier, as stored in IRP$W_FUNC,
to create a device-specific function code to use in device activation.

The first two entries of a function decision table are two longwords (64
bits) each. The first quadword entry is the legal function bit mask of all 1/0
function codes that are valid for the device. The second quadword entry
is the buffered function bit mask of those valid 1/0 functions that are also
buffered-1/0 functions.

4-9

Overview of 1/0 Processing
4.1 Preprocessing an 1/0 Request

EXE$QIO uses the value of the low-order six bits of the 1/0 function code to
determine which bit to check in each of these bit masks. For example, if the
function code has a value of 22, the procedure checks the twenty-third bit (bit
22) of each bit mask. Thus, EXE$QIO determines whether the 1/0 function
code is valid for the device and is able to charge against the appropriate quota
of the requesting process for a direct- or buffered-1/0 operation.1

Subsequent entries in the function decision table are three longwords long,
and it is these entries that EXE$QIO uses to dispatch to the appropriate 1/0
preprocessing routine (FDT routine) for the requested function. Again, the
first quadword is a 64-bit bit mask, and is checked by EXE$QIO in exactly
the same way as the legal function bit mask and the buffered function bit
mask. These action routine bit masks, however, contain the address of an
FDT routine in the subsequent longword, and it is to this FDT routine that
EXE$QIO transfers control when it discovers the bit corresponding to the If O
function set in the quadword.

Some FDT routines are present in the operating system because they provide
common services for many devices. Section 7.5 describes these routines.
Other routines are included in the device driver because they perform device­
dependent services.

EXE$QIO uses the action routine bit mask entries in the function decision
table to call FDT routines in the driver or system, according to the following
strategy:

1 If the bit corresponding to the function code is set in the action routine
bit mask, EXE$QIO calls the FDT routine whose address appears in the
following longword.

• If this 1/0 function requires additional preprocessing after this
particular FDT routine completes its activity, the FDT routine returns
control to EXE$QIO with an RSB instruction. When EXE$QIO regains
control, it advances to the next action routine bit mask and repeats
step 1.

• If this FDT routine completes all necessary preprocessing for this
particular 1/0 function, then it transfers control to a VMS routine that
queues the IRP or completes the request.

2 If the bit corresponding to the function code is not set, EXE$QIO advances
to the next action routine bit mask in the table and repeats step 1.

Note: A single function decision table can specify that EXE$QIO call more
than one FDT routine to perform the many and varied steps in the
preprocessing of a single 1/0 function. However, it is the responsibility
of the FDT routine that ultimately completes the preprocessing to end
the scan (by EXE$QIO) of the function decision table. An FDT routine ·
accomplishes this by transferring control to either a VMS routine that
queues the 1/0 request for the driver's start-1/0 routine or one that
completes or aborts the request (see Figure 4-2). In other words, for each
valid 1/0 function code for a device, an .FDT entry must contain the
address of a routine that ends 1/0 preprocessing.

1 For physical- and logical-1/0 operations, EXE$QIO also verifies that the process making the 1/0 request has
suitable privileges.

4-10

Overview of 1/0 Processing
4.1 Preprocessing an 1/0 Request

Figure 4-6 FDT Routines and 1/0 Preprocessing

QIO DETERMINES
FUNCTION

CODE VALUE

CHECK FOR
BUFFERED

1/0

ADVANCE
TO

NEXT
ENTRY

CALL
SUBROUTINE

SUBROUTINE PERFORMS
1/0 PREPROCESSING
AND RETURNS OR
CALLS TO QUEUE

PACKET OR TERMINATE

NO

NO

CALL VMS
ROUTINE TO

QUEUE PACKET
FOR DRIVER

CALL VMS
ROUTINE TO

COMPLETE OR
ABORT 1/0

TERMINATE
REQUEST AND

RETURN TO
USER

4-11

Overview of 1/0 Processing
4.1 Preprocessing an 1/0 Request

FDT routines execute in the context of the process that requested the 1/0
operation. Thus, FDT routines can access process virtual address space. Once
all FDT preprocessing is complete, however, the rest of the processing for the
1/0 request continues in the limited context of a driver fork process or an
interrupt service routine.

4.2 Handling Device Activity

4.2.1

When 1/0 preprocessing is complete, the last-called FDT routine generally
jumps (with a JMP instruction) to a routine called EXE$QIODRVPKT.2

EXE$QIODRVPKT, in turn, transfers control (using a JSB instruction) to
EXE$INSIOQ, the VMS routine that queues IRPs and arbitrates device
activity. (See Figure 4-2 for a representation of the flow of 1/0 request
processing at this juncture.)

Creating a Driver Fork Process to Start 1/0
EXE$INSIOQ creates only one driver fork process at a time for each device
unit on the system. As a result, only one IRP for each device unit is serviced
at one time. EXE$INSIOQ determines whether a driver fork process exists for
the target device, as follows:

• If the device is idle, no driver fork process exists for the device; in
this case, EXE$INSIOQ immediately calls IOC$INITIATE to create and
transfer control to a driver fork process to execute the driver's start-I/O
routine.

• If the device is busy, a driver fork process already exists for the device,
servicing some other 1/0 request. In this case, EXE$INSIOQ calls
EXE$INSERTIRP to insert the IRP into a queue of IRPs waiting for
the device unit. The routine queues the IRP according to the base priority
of the caller. Within each priority, IRPs are in first-in/first-out order. The
completion of the current I/O request triggers the servicing of the 1/0
request that is first in the queue, according to the procedure described in
Section 10.1.2.3.

In the latter case, by the time the driver's start-I/O routine gains control to
dequeue the IRP, the originating user's process context is no longer available.
Because the context of the process initiating the 1/0 request is not guaranteed
to a driver's start-I/O routine, the driver must execute in the reduced context
available to a fork process.

IOC$INITIATE always initiates the driver's start-I/O routine with a context
that is appropriate for a fork process. VMS establishes this context by
performing the following steps:

1 Raising IPL to driver fork IPL (and obtaining the associated fork lock in a
VMS multiprocessing environment)

2 Loading the address of the IRP into R3

3 Loading the address of the device's UCB into RS

2 The rules for exiting from FDT preprocessing, including descriptions of EXE$QIODRVPKT and other FDT exit
routines, appear in Sections 7.2.1 and 7.2.

4-12

4.2.2

Overview of 1/0 Processing
4.2 Handling Device Activity

4 Transferring control (with a JMP instruction) to the entry point of the
device driver's start-I/O routine

The newly activated driver fork process executes under the constraints listed
in Section 3.3.3.2. It executes until one of the following events occurs:

• Device-dependent processing of the I/O request is complete.

• A shared resource needed by the driver is unavailable, as described in
Section 3.4.

• Device activity requires the fork process to wait for a device interrupt.

Activating a Device and Waiting for an Interrupt
Depending on the device type supported by the driver, the start-I/O routine
performs some or all of the following steps:

1 Analyzes the I/O function and branches to driver code that prepares the
UCB and the device for that I/O operation

2 Copies the contents of fields in the IRP into the UCB

3 Tests fields in the UCB to determine whether the device and/ or volume
mounted on the device are valid

4 If the device is attached to a multiunit controller, obtains the controller
data channel

5 If the I/O operation is a DMA transfer, obtains I/O adapter resources
such as map registers and a UNIBUS adapter buffered data path

6 Raises IPL to device IPL, obtaining the associated device lock in a VMS
multiprocessing environment, to synchronize its access to device registers

7 Loads all necessary device registers except for the device's control and
status register (CSR)

8 Raises IPL to IPL$_POWER and confirms that a power failure that would
invalidate the device operation has not occurred on the local processor

9 Loads the device's CSR to activate the device

10 Invokes a VMS routine (using either the WFIKPCH or WFIRLCH macro)
to suspend the driver fork process until a device interrupt or timeout
occurs

This routine (IOC$WFIKPCH or IOC$WFIRLCH) expects to find, among
the items it inherits on the stack, the driver's fork IPL, as placed there by
the start-I/O routine in step 7. As it suspends the driver, IOC$WFIKPCH
or IOC$WFIRLCH saves the driver's context in the UCB's fork block. This
context consists of the following information:

• The contents of R3 and R4 (UCBL_FR3, UCBL_FR4)

• The implicit contents of RS as the address of the UCB

• A driver return address (UCB$L_FPC)

4-13

4.2.3

4.2.4

Overview of 1/0 Processing
4.2 Handling Device Activity

• The relative offset to a device timeout handler (calculated from UCB$L_
FPC and the value specified in the invocation of the WFIKPCH or
WFIRLCH macro)

• The time at which the device will time out (UCB$L_DUETIM)

By convention, R4 often contains the address of the CSR; it permits the driver
to examine device registers. When the driver fork process regains control after
interrupt processing, RS contains the UCB address; it is the key to the rest of
the I/O database that is relevant to the current I/O operation.

Having removed the driver's start-1/0 routine's return address from the
stack and stored it in UCBL_FPC, IOCWFIKPCH (or IOC$WFIRLCH)
issues a DEVICEUNLOCK macro that restores IPL to fork IPL from the
stack. It then exits with an RSB instruction. Thus, IOC$WFIKPCH (or
IOC$WFIRLCH) effectively passes control to the caller of its caller. In this
case, the caller of the driver start-I/O routine is EXE$INSIOQ. The flow back
from EXE$INSIOQ to a user process that asynchronously requested the I/O
operation is shown in Figure 4-2.

You can find additional information on the context of a start-1/0 routine in
Chapter 8.

Handling a Device Interrupt
When the device requests an interrupt, the interrupt dispatcher transfers
control to the driver interrupt service routine. The driver's interrupt service
routine runs at a high IPL so that the routine can service interrupts quickly.
A driver interrupt service routine usually performs the following processing:

1 Retrieves the address of the UCB that owns the controller from IDB$L _
OWNER

2 Issues the DEVICELOCK macro to obtain the device lock associated with
operations at device IPL in a VMS multiprocessing environment

3 For multiunit device controllers, determines which device unit generated
the interrupt

4 Examines the UCB for the device to confirm that the driver fork process
expects the interrupt

5 Saves device registers

6 Reactivates the suspended driver fork process

If necessary, the reactivated driver fork process executes at the high IPL of
the interrupt service routine for a few instructions. Very soon, however,
the driver lowers its execution priority so that it does not block subsequent
interrupts for other devices in the system.

Switching from Interrupt to Fork Process Context

4-14

To lower its priority, the driver calls a VMS fork process queuing routine (by
means of the IOFORK macro) that performs the following actions:

1 Disables the timeout that was specified in the wait-for-interrupt routine

Overview of 1/0 Processing
4.2 Handling Device Activity

2 Saves R3 and R4 (UCBL_FR3, UCBL_FR4)

3 Saves the address of the instruction following the IOFORK request in the
UCB fork block (UCB$L_FPC)

4 Places the address of the UCB fork block from RS in a processor-specific
fork queue for the driver's fork level

5 Returns to the driver's interrupt service routine

The interrupt service routine then cleans up the stack, issues the
DEVICEUNLOCK macro to release the device lock, restores registers, and
dismisses the interrupt. Figure 4-7 illustrates the flow of control in a driver
that creates a fork process after a device interrupt.

Figure 4-7 Creating a Fork Process After an Interrupt

DEVICE DRIVER
_..... JSB

GENERATES
.. INTERRUPT -- DRIVER

i.... SERVICE -INTERRUPT --- REI ROUTINE

JSB

•
RSB

IOFORK

ZK-923-82

Activating a Fork Process from a Fork Queue
When no higher priority interrupts are pending, the local processor transfers
control to the fork dispatcher. When the processor grants an interrupt at a
fork IPL, the fork dispatcher processes the local fork queue that corresponds
to the IPL of the interrupt. To do so, the dispatcher performs these actions:

1 Removes a fork block from the fork queue

2 Restores fork context

3 Obtains the fork lock specified in the fork block

4 Transfers control back to the fork process

Thus, the driver code calls VMS code that coordinates suspension and
restoration of a driver fork process. This convention allows VMS to service
hardware device interrupts in a timely manner and reactivate driver fork
processes as soon as no device requires attention.

4-15

Overview of 1/0 Processing
4.2 Handling Device Activity

4-16

When a given fork process completes execution, the fork dispatcher releases
the fork lock and removes the next entry, if any, from the local fork queue.
This fork dispatcher repeats the sequence described previously until the
fork queue is empty. After servicing the last entry in the queue, the fork
dispatcher releases the fork lock, restores RO through RS from the stack, and
dismisses the interrupt with an REI instruction.

Figure 4-8 illustrates the reactivation of a driver fork process.

Figure 4-8 Reactivation of a Driver Fork Process

DEVICE
GENERATES
INTERRUPT

DRIVER
SERVICES

INTERRUPT

DRIVER
FORKS

DRIVER
DISMISSES
INTERRUPT

Lower IPL to fork level

SOFTWARE
INTERRUPT

OCCURS

FORK
DISPATCHER

CALLS DRIVER

DRIVER
COMPLETES

REQUEST

FORK
DISPATCHER

DISMISSES
INTERRUPT

ZK-924-82

Overview of 1/0 Processing
4.3 Completing an 1/0 Request

4.3 Completing an 1/0 Request

4.3.1

Once reactivated, a driver fork process completes the I/O request as follows:

1 Releases shared driver resources, such as map registers, UNIBUS adapter
buffered data path, and controller ownership

2 Returns status to the VMS I/O completion routine

The I/0-completion routine performs the following steps to start
postprocessing of the I/O request and to start processing the next I/O request
in the device's queue:

1 Writes return status from the driver into the IRP

2 Inserts the finished IRP in the local processor's I/0-postprocessing queue
and requests an interrupt from the processor at IPL$_IOPOST

3 Creates a new fork process for the next IRP in the device's pending-I/O
queue

4 Activates the new driver fork process

1/0 Postprocessing
When the local processor's IPL drops below the I/O postprocessing IPL, the
processor dispatches to the I/O postprocessing interrupt service routine. This
VMS routine completes device-independent processing of the I/O request.

Using the IRP as a source of information, the IPL$_IOPOST dispatcher
executes the following sequence for each IRP in the postprocessing queue:

1 Removes the IRP from the queue

2 If the I/O function was a direct I/O function, adjusts the issuing process's
direct I/O quota and unlocks the pages involved in the I/O transfer

3 If the I/O function was a buffered I/O function, adjusts the issuing
process's buffered I/O quota and, if the I/O was a write function,
deallocates the system buffers used in the transfer

4 Posts the local event flag associated with the I/O request

5 Queues a special kernel-mode AST routine to the process that issued the
$QIO system service call

4-17

Overview of 1/0 Processing
4.3 Completing an 1/0 Request

4-18

The queuing of a special kernel-mode AST routine allows 1/0 postprocessing
to execute in the context of the user process but in a privileged access mode.
Process context is needed to return the results of the 1/0 operation to the
process's address space. The special kernel-mode AST routine sets any
common event flag associated with the 1/0 request and writes the following
data into the process's address space:

• Data read in a buffered 1/0 operation

• If specified in the If O request, the contents of the diagnostic buffer

• If specified in the 1/0 request, the two longwords of 1/0 status

If the 1/0 request specifies an 1/0 completion AST routine, the special
kernel-mode AST routine queues the 1/0 completion AST for the process.
When VMS delivers the 1/0 completion AST, the system AST delivery
routine deallocates the IRP. The first part of an IRP is the AST control block
for user requested ASTs.

Part 11 Writing a Device Driver
Device drivers consist of static tables, routines that perform 1/0
preprocessing, and routines that handle the device and controller. The
chapters that follow describe how to write the following sections of a
driver:

• Static tables

• Routines that use the device driver's function decision table (FDT)

• Routines that start an 1/0 operation on the device and complete the
1/0 operation

• Routines that handle interrupts

• Routines that initialize devices and controllers

• Routines that cancel an 1/0 operation

• Routines that log errors

The "how to" chapters are preceded by a chapter that contains a driver
template. The template illustrates the general organization and writing of a
driver.

Note that the "how to" chapters describe a common approach to the
design of various driver routines; they are examples. They do not present
the only approach that can be taken to writing a driver.

5 Template for a Device Driver

The pages that follow describe conventions to be used by device drivers
and provide a template for a device driver. Drivers do not necessarily need
all of the routines indicated by the template, nor do driver routines and
tables need to follow the exact order of the template. However, the VMS
operating system does place a few restrictions on the order and content of
driver routines and tables.

Figure 5-1 illustrates the organization of a device driver. The first item in a
device driver is the driver prologue table and the second is usually the driver
dispatch table. The order of the remaining driver components varies from
driver to driver.

The last statement in every driver, except for the .END assembly directive,
must be a label marking the end of the driver. The address of this label
is stored in the driver prologue table. The driver-loading procedure uses
this address to calculate the size of the driver. Chapter 15 describes the
driver-loading procedure.

Some drivers contain no device-dependent, FDT routines. Other drivers
need only minimal initialization procedures. However, every driver normally
contains static driver tables and a start-I/O routine or an interrupt service
routine.

5.1 Coding Conventions
The driver-loading procedure loads a device driver into a block of nonpaged
system memory whose location is chosen by the operating system memory
allocation routines. Therefore, the driver must consist of position-independent
code only.

In addition, the system might call a device driver repeatedly to process
I/O requests and interrupts. The driver often does not complete one I/O
operation before the system transfers control to the driver to begin another on
a different unit. For this reason, the code must be reentrant.

The rules of position-independent and reentrant code are as follows:

•

•

•

•

Instructions can branch only to relative addresses within the driver and to
global addresses listed in the VMS symbol table (SYS$SYSTEM:SYS.STB).

Static tables can list only global addresses and relative addresses within
the driver.

The driver cannot store temporary data in local driver tables for dynamic
driver context. All dynamic temporary storage must be contained within
the unit control block corresponding to an I/O request or the current I/O
request block.

The driver must refer to the I/O database by loading the address of a
data structure into a general register and using displacement addressing
to the fields of the data structure.

5-1

Template for a Device Driver
5.1 Coding Conventions

5-2

Figure 5-1 Driver Organization

DRIVER
PROLOGUE

TABLE

DRIVER
DISPATCH

TABLE

FUNCTION
DECISION

TABLE

FDT
ROUTINES

DEVICE HANDLING
ROUTINES

END MARK

ZK-925-82

Device drivers must also restrict their use of general registers and the stack:

• FDT routines can use RO through R2 and R9 through Rl 1 as available
registers. The routines can use other registers by saving the registers
before use and restoring them before exiting from the FDT routine.

• All other driver routines can use RO through RS as available registers.
The routines can use other registers, if necessary, by saving and restoring
them; but using other registers in this way is discouraged.

• All driver routines can use the stack for temporary storage only if the
routines restore the stack to its previous state before calling any VMS
routines, forking, or executing RSB instructions.

Template for a Device Driver
5.1 Coding Conventions

Because certain VAX processors and VMS cooperate to support the emulation
of specific sets of VAX instructions, a device driver writer should exercise
some caution. Because the software emulation for floating-point instructions
may at some time be placed in pageable code, drivers should never use
floating-point instructions. VMS only guarantees the emulation for character
string instructions to be nonpaged.

5.2 Restrictions on the Use of Device-Register 1/0 Space
The programmer of a device driver must observe the following restrictions on
the use of device registers:

• Drivers should always store the address of a device control register in
a general register and then gain access to the device register indirectly
through the general register. The following example defines symbolic
word offsets for each device register and gains access to them using
displacement-mode addressing from R4.

; Device register off sets

LP_CSR = 0
LP_DBR = 2

CSR off set
Buff er address offset

MOVL UCB$L_CRB(R5),R4 Get address of CRB
MOVL ©CRB$L_INTD+VEC$L_IDB (R4) , R4 Get the addr.ess of

the device's CSR

TSTW LP_CSR(R4) ; Is printer on line?

• Floating-point, field, queue, quadword, and octaword operands are not
allowed in 1/0 address space, nor can an instruction obtain the position,
size, length, or base of an operand from I/O space. For example, a driver
cannot use a bit field instruction to test a bit in a device register.

• Drivers cannot use string-handling instructions when referring to 1/0
space.

• Drivers can use only those instructions that modify or write to a
maximum of one destination. The destination must be the last operand.

• Registers of devices connected to the backplane interconnect (for example,
UNIBUS adapter device registers and MASSBUS device registers) are
longwords. Registers of devices connected to the UNIBUS or Q22 bus
are words. Instructions that refer to UNIBUS adapter registers must use
longword context. All driver instructions that affect UNIBUS or Q22 bus
device registers must use word context (for example, BISW, MOVW, and
ADDW3) unless the register is byte addressable.

5-3

Template for a Device Driver
5.2 Restrictions on the Use of Device-Register 1/0 Space

5-4

• An instruction that refers to 1/0 space must not generate an exception or
be interruptable. If the instruction is allowed to restart, it will reread the
device register, which can cause undesirable dev!ce side effects or data
loss.

• On any given VAX processor, a device driver cannot anticipate the
completion of an instruction that writes to 1/0 space before subsequent
instructions execute. The processor can continue to execute without
waiting for the data to reach its intended destination.

Among the consequences of this behavior are the following:

If a driver initiates device actions that result in an interrupt from the
device, the amount of time before that interrupt actually occurs is
unpredictable.

If a driver disables interrupts from a device, the time before that
device can no longer generate an interrupt is unpredictable.

An 1/0 bus error will not be reported synchronously with the
instruction causing the error.

As a result, a driver's interrupt service routine always should be
prepared to service unexpected or spurious interrupts. See Section 9 .3
for additional discussion of the servicing of unexpected interrupts.

• To access 1/0 space, use only the following instructions. These
instructions cannot be interrupted unless they use autoincrement-deferred
addressing mode or any of the displacement-deferred modes when
specifying an operand.

ADAWI ADD(B,W,L)2 ADD(B,W,L)3

ADWC BIC(B, W ,L)2 BIC(B, W ,L)3

BICPSW BIS(B, W ,L)2 BIS(B, W ,L)3

BISPSL BISPSW Bff(B,W,L)

CASE(B, W ,L) CHM(K,E,S,U) CLR(B,W,L)

CMP(B,W,L) CVT(BW ,BL, WB, DEC(B,W,L)
WL,LB,LW)

INC(B,W,L) MCOM(B,W,L) MFPR

MNEG(B,W,L) MOV(B,W,L) MOVA(B,W,L)

MOVAQ MOVPSL MOVZ(BW ,BL, WL)

MTPR PROBE(R,W) PUSHA(B, W ,L)

PUSH AO PUSHL SBWC

SUB(B, W ,L)2 SUB(B,W,L)3 TST(B,W,L)

XOR(B,W,L)2 XOR(B,W,L)3

Template for a Device Driver
5.3 Implementing Conditional Code in a Driver

5.3 Implementing Conditional Code in a Driver
When writing a DMA driver to function for equivalent devices on different
1/0 bus implementations, you should use the ADPDISP macro in code paths
that need to differentiate between the systems.

The ADPDISP macro (defined in SYS$LIBRARY:LIB.MLB) provides a means
by which a device driver can be designed to drive a similar device in a variety
of VAX configurations. The ADPDISP macro allows the driver to determine
at run time the existence of a certain 1/0 bus or adapter characteristic, and
transfer control to code designed to execute given this hardware trait.

A driver can use ADPDISP to transfer control to specific code given any of
the following characteristics:

• Adapter type

• Number of adapter address bits (18 or 22)

• Map registers supported

• Autopurging data paths supported

• Buffered data paths supported

• Direct-vector interrupt dispatching supported

• Odd-aligned transfers on buffered data path supported

• Odd-aligned transfers on direct data path supported

• Alternate set of map registers (496 to 8191) available

• Q22 bus device

Use ADPDISP when it is necessary to conditionally execute pieces of code,
for instance, the allocation and loading of map registers for devices for which
map registers are available or the allocation of a physically contiguous buffer
for a DMA transfer on the MicroVAX I (which cannot map such a transfer).
VMS supplies a similar macro, CPUDISP, which causes a run-time transfer
of control to a specified destination depending on the CPU type of the
executing processor. For those processors not uniquely identified by CPU
type, CPUDISP also provides the means to dispatch on a particular CPU
subtype.

Because a device driver cannot make assumptions about the 1/0 architecture
of any given VAX system, DIGITAL recommends that most instances of the
CPUDISP macro be replaced by an appropriate usage of the ADPDISP macro.

Appendixes E and F contain examples of drivers that use the ADPDISP
macro to provide conditional code in a driver. See also the description of the
ADPDISP macro in Appendix B.

5-5

Template for a Device Driver
5.4 Driver Template

5.4 Driver Template
The following pages list the VMS template driver. The code in the
template can serve as a starting point for a new UNIBUS or Q22 bus
device driver. You can obtain a machine-readable copy of it from
SYS$EXAMPLES:TDRIVER.MAR .

. TITLE TDRIVER - VAX/VMS TEMPLATE DRIVER

.!DENT 'X-2'

;**
;* *
;* COPYRIGHT (c) 1978, 1980, 1982, 1984 BY *
;* DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS. *
;* ALL RIGHTS RESERVED. *

; * *
;* THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED *
;* ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE *
;* INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER *
;* COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY *
;* OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY *
;* TRANSFERRED. *

; * *
;* THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE *
;* AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT *
;* CORPORATION. *

; * *
;* DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS *
;* SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL. *

; * *
; * *
;**

;++

FACILITY:

VAX/VMS1 Template driver

ABSTRACT:

This module contains the outline of a driver:

Models of driver tables
Controller and unit initialization routines
An FDT routine

AUTHOR:

The start I/O routine
The interrupt service routine
The cancel I/O routine
The device register dump routine

S. Programmer 11-NOV-1979

REVISION HISTORY:

X-2 JHP002 J. Programmer
Add SMP support.

21-Aug-1987

V02 JHP001 J. Programmer 2-Aug-1979 11:27

5-6

Template for a Device Driver
5.4 Driver Template

Remove BLBC instruction from CANCEL routine.

V02-001 ROW0067 R. Programmer 11-Feb-1981 13:10
Add description of reason argument to CANCEL routine.
Correct references to channel index number .

. SBTTL External and local symbol definitions

External symbols

$CANDEF
$CRBDEF
$DCDEF
$DDBDEF
$DEVDEF
$IDBDEF
$IODEF
$IPLDEF
$IRPDEF
$SSDEF
$UCBDEF
$VECDEF

Local symbols

Cancel reason codes
Channel request block
Device classes and types
Device data block
Device characteristics
Interrupt data block
I/O function codes
Hardware IPL definitions
I/O request packet
System status codes
Unit control block
Interrupt vector block

Argument list (AP) off sets for device-dependent QIO parameters

P1
P2
P3
P4
P5
P6

= 0
= 4

8
12
16
20

Other constants

TD_DEF_BUFSIZ
TD_TIMEOUT_SEC
TD_NUM_REGS

1024
10
4

Definitions that follow the

$DEFINI UCB

.=UCB$K_LENGTH

$DEF UCB$W_TD_WORD
.BLKW

$DEF UCB$W_TD_STATUS
.BLKW

$DEF UCB$W_TD_WRDCNT
.BLKW

$DEF UCB$W_TD_BUFADR
.BLKW

$DEF UCB$W_TD_DATBUF
.BLKW

$DEF UCB$K_TD_UCBLEN

First QIO parameter
Second QIO parameter
Third QIO parameter
Fourth QIO parameter
Fifth QIO parameter
Sixth QIO parameter

Default buffer size
10-second device timeout
Device has 4 registers

standard UCB fields

Start of UCB definitions

Position at end of UCB

A sample word
1

Device's CSR register
1

Device's word count register
1

Device's buffer address
1 register

Device's data buffer register
1

Length of extended UCB

5-7

Template for a Device Driver
5.4 Driver Template

Bit positions for device-dependent status field in UCB

$VIELD UCB,O,<­
<BIT_ZERO, , M>, -
<BIT_ONE, ,M>,­
>

$DEFEND UCB

Device register off sets from CSR address

$DEF

$DEFINI TD

TD_STATUS
.BLKW 1

Device status
First bit
Second bit

End of UCB definitions

Start of status definitions

Control/status

Bit positions for device control/status register

_VIELD TD_STS,O,<- Control/status register
<GO, ,M>,- Start device
<BIT1, ,M>, - Bit one
<BIT2, ,M>, - Bit two
<BIT3, ,M>, - Bit three
<XBA,2,M>,- Extended address bits
<INTEN, ,M>, - Enable interrupts
<READY, ,M>, - Device ready for command
<BITS, ,M>,- Bit eight
<BIT9, ,M>, - Bit nine
<BIT10, , M>, - Bit ten
<BIT11, ,M>, - Bit eleven
<,1>,- Disregarded bit
<ATTN, ,M>, - Attention bit
<NEX, ,M>,- Nonexistent memory flag
<ERROR, ,M>, - Error or external interrupt

>

$DEF TD_WRDCNT Word count
.BLKW 1

$DEF TD_BUFADR Buff er address
.BLKW 1

$DEF TD_DATBUF Data buff er
.BLKW 1

$DEFEND TD End of device register
definitions

.SBTTL Standard tables

5-8

Template for a Device Driver
5.4 Driver Template

Driver prologue table

DPTAB
END=TD_END,-
ADAPTER=UBA,­
UCBSIZE=<UCB$K_TD_UCBLEN>,­
NAME=TDDRIVER

DPT_STORE !NIT

DPT_STORE UCB,UCBB_FLCK,B,SPLC_IOLOCK8
DPT_STORE UCB,UCB$B_DIPL,B,22
DPT_STORE UCB,UCB$L_DEVCHAR,L,<-

DEV$M_IDV!­
DEV$M_ODV>

DPT_STORE UCB,UCB$B_DEVCLASS,B,DC$_SCOM
DPT_STORE UCB,UCB$W_DEVBUFSIZ,W,­

TD_DEF_BUFSIZ

DPT_STORE REINIT

DPT_STORE DDB,DDBL_DDT,D,TDDDT
DPT_STORE CRB,CRB$L_INTD+VEC$L_ISR,D,­

TD_INTERRUPT
DPT_STORE CRB,­

CRB$L_INTD+VEC$L_INITIAL,­
D,TD_CONTROL_INIT

DPT_STORE CRB,-
CRB$L_INTD+VEC$L_UNITINIT,­
D,TD_UNIT_INIT

DPT_STORE END

Driver dispatch table

DDTAB
DEVNAM=TD,­
START=TD_START,­
FUNCTB=TD_FUNCTABLE,­
CANCEL=TD_CANCEL,­
REGDMP=TD_REG_DUMP

DPT-creation macro
End of driver label
Adapter type
Length of UCB
Driver name
Start of load
initialization table
Device FORK LOCK
Device interrupt IPL
Device characteristics

input device
output device

Sample device class
Default buffer size

Start of reload
initialization table
Address of DDT
Address of interrupt
service routine
Address of controller
initialization routine

Address of device
unit initialization
routine

End of initialization
tables

DDT-creation macro
Name of device
Start I/0 routine
FDT address
Cancel I/O routine
Register dump routine

5-9

Template for a Device Driver
5.4 Driver Template

5-10

Function decision table

TD_FUNCTABLE:
FUNCTAB -

<READVBLK,­
READLBLK,­
READPBLK,­
WRITEVBLK,­
WRITELBLK,­
WRITEPBLK,­
SETMODE,­
SETCHAR>

FUNCTAB ,
FUNCTAB +EXE$READ,­

<READVBLK,­
READLBLK,­
READPBLK>

FUNCTAB +EXE$WRITE,­
<WRITEVBLK,­
WRITELBLK,­
WRITEPBLK>

FUNCTAB +EXE$SETMODE,­
<SETCHAR,­
SETMODE>

FDT for driver
Valid I/O functions
Read virtual
Read logical
Read physical
Write virtual
Write logical
Write physical
Set device mode
Set device chars
No buffered functions
FDT read routine for
read virtual,
read logical,
and read physical
FDT write routine for
write virtual,
write logical,
and write physical
FDT set mode routine
for set chars and
set mode

.SBTTL TD_CONTROL_INIT, Controller initialization routine

;++
TD_CONTROL_INIT, Readies controller for I/0 operations

Functional description:

The operating system calls this routine in 3 places:

Inputs:

R4
R5
R6
R8

Outputs:

at system startup
during driver loading and reloading
during recovery from a power failure

- address of the CSR (controller status register)
- address of the IDB (interrupt data block)
- address of the DDB (device data block)
- address of the CRB (channel request block)

The routine must preserve all registers except RO-R3.

TD_CONTROL_INIT:
RSB

; Initialize controller
; Return

.SBTTL TD_UNIT_INIT, Unit initialization routine

Template for a Device Driver
5 .4 Driver Template

;++
TD_UNIT_INIT, Readies unit for I/O operations

Functional description:

The operating system calls this routine after calling the
controller initialization routine:

at system startup
during driver loading
during recovery from a power failure

Inputs:

R4 - address of the CSR (controller status register)
RS - address of the UCB (unit control block)

Outputs:

The routine must preserve all registers except RO-R3.

TD_UNIT_INIT:
BISW

RSB

#UCB$M_ONLINE, -
UCB$W_STS(R5)

Initialize unit

Set unit online
Return

.SBTTL TD_FDT_ROUTINE, Sample FDT routine

;++
TD_FDT_ROUTINE, Sample FDT routine

Functional description:

T.B.S.

Inputs:

RO-R2
R3
R4
RS
R6
R7

- scratch registers
- address of the !RP (I/0 request packet)
- address of the PCB (process control block)
- address of the UCB (unit control block)
- address of the CCB (channel control block)
- bit number of the I/0 function code
- address of the FDT table entry for this routine
- scratch registers

R8
R9-R11
AP - address of the 1st function dependent QIO parameter

Outputs:

The routine must preserve all registers except RO-R2, and
R9-R11.

TD_FDT_ROUTINE:
RSB

; Sample FDT routine
; Return

.SBTTL TD_START, Start I/0 routine

5-11

Template for a Device Driver
5.4 Driver Template

5-12

;++
TD_START Start a transmit, receive, or set mode operation

Functional description:

T.B.S.

Inputs:

R3 - address of the IRP (I/0 request packet)
R5 - address of the UCB (unit control block)

Outputs:

RO - 1st longword of I/0 status: contains status code and
number of bytes transferred

R1 - 2nd longword of I/0 status: device-dependent

The routine must preserve all registers except RO-R2 and R4.

TD_START:
DEVICELOCK LOCKADDR=UCB$L_DLCK(R5),­

SAVIPL=-(SP)

WFIKPCH TD_TIMEOUT,#TD_TIMEOUT_SEC

Process an I/0 packet
Lock device access.
Save current IPL

After a transfer completes successfully, return the number of bytes
transferred and a success status code.

IO FORK
INSV UCB$W_BCNT(R5),#16,-

#16,RO
MOVW #SS$_NORMAL,RO

Call I/0 postprocessing.

COMPLETE_IO:
REQCOM

Load number of bytes trans­
ferred into high word of RO.
Load a success code into RO.

Driver processing is finished.
Complete I/O.

Device timeout handling. Return an error status code.

TD_TIMEOUT:
DEVICEUNLOCK LOCKADDR=UCB$L_DLCK(R5),­

NEWIPL=#8,-
PRESERVE= NO

MOVZWL #SS$_TIMEOUT,RO
BSBB COMPLETE_ IO
DEVICELOCK LOCKADDR=UCB$L_DLCK(R5),­

PRESERVE=NO
RSB

Timeout handling
Unlock device access
Lower IPL
Don't preserve RO
Return error status
Call I/O postprocessing
Acquire device lock for exit

SBTTL TD_INTERRUPT, Interrupt service routine

;++

Template for a Device Driver
5.4 Driver Template

TD_INTERRUPT, Analyzes interrupts, processes solicited interrupts

Functional description:

The sample code assumes either

Inputs:

O(SP)

4(SP)
8(SP)

12(SP)
16(SP)
20(SP)
24(SP)
28(SP)
32(SP)

that the driver is for a single-unit controller, and
that the unit initialization code has stored the
address of the UCB in the IDB; or

that the driver's start I/O routine acquired the
controller's channel with a REQPCHAN macro call, and
then invoked the WFIKPCH macro to keep the channel
while waiting for an interrupt.

- pointer to the address of the IDB (interrupt data
block)

- saved RO
- saved R1
- saved R2
- saved R3
- saved R4
- saved R5
- saved PC
- saved PSL (processor status longword)

The IDB contains the CSR address and the UCB address.

Outputs:

The routine must preserve all registers except RO-R5.

TD_INTERRUPT: Service device interrupt
MOVL ©(SP)+,R4 Get address of IDB and remove

pointer from stack
ASSUME IDB$L_CSR EQ 0
ASSUME IDB$L_OWNER EQ 4
MOVQ IDB$L_CSR(R4) ,ft4 ; Get address of device's CSR

; Get address of device owner's UCB
DEVICELOCK LOCKADDR=UCB$L_DLCK(R5), - ; Lock device access

PRESERVE=NO,- Don't preserve RO
CONDITION=NOSETIPL Don't bother setting our IPL

BBCC #UCB$V_INT,- If device does not expect
UCB$W_STS(R5),- interrupt, dismiss it
UNSOL_INTERRUPT

This is a solicited interrupt. Save
the contents of the device registers in the UCB.

MOVW

MOVW

MOVW

MOVW

TD_STATUS(R4) ,­
UCB$W_TD_STATUS(R5)
TD_WRDCNT(R4) ,­
UCB$W_TD_WRDCNT(R5)
TD_BUFADR(R4) ,­
UCB$W_TD_BUFADR(R5)
TD_DATBUF(R4) ,­
UCB$W_TD_DATBUF(R5)

Otherwise, save all device
registers. First the CSR
Save the word count register

Save the buff er address
register
Save the data buff er register

5-13

Template for a Device Driver
5.4 Driver Template

5-14

Restore control to the main driver

RESTORE_DRIVER: Jump to main driver code
Restore driver's R3 (use a
MOVQ to restore R3-R4)
Call driver at interrupt
wait address

MOVL UCB$L_FR3(R5),R3

JSB ©UCB$L_FPC(R5)

Dismiss the interrupt

UNSOL_INTERRUPT: ; Dismiss unsolicited interrupt

;++

DEVICEUNLOCK LOCKADDR=UCB$L_DLCK(R5) ,- ; Unlock device access

POPR
REI

PRESERVE=NO Don't bother preserving RO
#AM<RO,R1,R2,R3,R4,R5> ; Restore RO-R5

; Return from interrupt

.SBTTL TD_CANCEL, Cancel I/0 routine

TD_CANCEL, Cancels an I/0 operation in progress

Functional description:

This routine calls IOC$CANCELIO to set the cancel bit in the
UCB status longword if:

the device is busy,
the IRP's process ID matches the cancel process ID,
the !RP channel matches the cancel channel.

If IOC$CANCELIO sets the cancel bit, then this driver routine
does device-dependent cancel I/0 fixups.

Inputs:

R2 - channel index number
R3 - address of the current !RP (I/0 request packet)
R4 - address of the PCB (process control block) for the

process canceling I/O
R5 - address of the UCB (unit control block)
RS - cancel reason code, one of:

Outputs:

CAN$C_CANCEL if called through $CANCEL or
$DALLOC system service

CAN$C_DASSGN if called through $DASSGN system
service

These reason codes are defined by the $CANDEF macro.

The routine must preserve all registers except RO-R3.

The routine may set the UCB$V_CANCEL bit in UCB$W_STS.

TD_CANCEL:
JSB
BBC

GAIOC$CANCELIO
#UCB$V_CANCEL,­
UCB$W_STS(R5), 10$

Cancel an I/0 operation
Set cancel bit if appropriate.
If the cancel bit is not set,
just return.

Template for a Device Driver
5.4 Driver Template

Device-dependent cancel operations go next.

Finally, the return.

10$:
RSB ; Return

.SBTTL TD_REG_DUMP, Device register dump routine

;++
TD_REG_DUMP, Dumps the contents of device registers to a buffer

Functional description:

Writes the number of device registers and their current
contents into a diagnostic or error buffer.

Inputs:

RO - address of the output buff er
R4 - address of the CSR (controller status register)
R5 - address of the UCB (unit control block)

Outputs:

The routine must preserve all registers except R1-R3.

The output buff er contains the current contents of the device
registers. RO contains the address of the next empty longword in
the output buffer.

TD REG_DUMP:

;++

MOVZBL #TD_NUM_REGS,(RO)+
MOVZWL UCB$W_TD_STATUS(R5) ,­

(RO)+
MOVZWL UCB$W_TD_WRDCNT(R5) ,­

(RO)+
MOVZWL UCB$W_TD_BUFADR(R5) ,­

(RO)+
MOVZWL UCB$W_TD_DATBUF(R5) ,­

(RO)+
RSB

.SBTTL TD_END, End of driver

; Label that marks the end of the driver

TD END:
.END

Dump device registers
Store device register count
Store device status register

Store word count register

Store buff er address register

Store data buff er register

Return

Last location in driver

5-15

6 Writing Device-Driver Tables

Every device driver declares three static tables that describe the device and
driver:

• Driver prologue table-describes the device type, driver name, and
fields in the 1/0 database to be initialized during driver loading and
reloading.

• Driver dispatch table-lists some of the driver's entry points to which
VMS transfers control. The channel request block and function decision
table list other entry points.

• Function decision table-lists valid functions of the driver and entry
points to routines that perform IjO preprocessing for each function.

The VMS operating system provides macros that drivers can invoke to create
these tables.

6.1 Driver Prologue Table
The driver prologue table (DPT) is the first part of every device driver.
This table, along with parameters to the SYSGEN command that request
driver loading, describes the driver to the driver-loading procedure. In turn,
the driver-loading procedure computes the size of the driver, loads it into
nonpaged system memory, and creates data structures for the new device(s)
in the I/O database. The loading procedure also links the new DPT into
a list of all DPTs known to the system. Chapter 15 describes how the
driver-loading procedure decides which data structures to build for a given
device.

Device drivers can pass data-structure initialization information to the driver­
loading procedure through values stored in the DPT. In addition, the driver­
loading procedure initializes some fields within the device data structures
using information from its own tables.

Figure A-10 illustrates the DPT data structure, and Table A-9 describes its
contents. Drivers must treat many of the fields initialized by the driver­
loading procedure as read-only fields. These fields are marked with an
asterisk in Figure A-10.

To create a DPT, the driver invokes the DPTAB macro, as described in
Appendix B. The DPTAB macro generates a driver prologue table (DPT) in a
program section called $$$ lOS_PROLOGUE.

The DPTAB macro requires the following information:

• Address of the end of the driver in its end argument.

• Code identifying the device by its adapter type in the adapter argument.
Accepted adapter types include UBA (for devices attached to either a
UNIBUS or Q22 bus), MBA, and GENBI.

• Name of the driver in the name argument.

6-1

Writing Device-Driver Tables
6.1 Driver Prologue Table

6-2

• Size of the unit control block (UCB) in the ucbsize argument. (The
template in Section 5.4 and the macro descriptions in Appendix B
demonstrate how you can specify an extended UCB defined by VMS
or create an extended UCB within a driver.)

The DPTAB also allows you to specify the following information, if applicable
to the device driver:

• Whether the driver needs a permanently allocated system page

• Whether the driver has been written to run in a VMS symmetric
multiprocessing system

• Name of a driver unloading routine, if any, to be called subject to a
SYSGEN RELOAD command

• Maximum number of units supported by the driver (default is 8)

• Number of UCBs to be created when the driver is loaded by means of
the SYSGEN autoconfiguration facility and the address of a unit delivery
routine to be called by that facility

A driver follows the DPTAB macro invocation with several instances of
the DPT_STORE macro. The DPT_STORE macro provides the driver with
a means of communicating its initialization needs to the driver-loading
procedure. When invoked, the DPT_STORE macro places information in
the DPT that the driver-loading procedure uses to load specified values into
specified fields. The DPT_STORE macro accepts two lists of fields:

• Fields to be initialized only when the driver is first loaded

• Fields to be initialized when a driver is first loaded and reinitialized if the
driver is reloaded

The DPTAB macro stores the relative addresses of these two lists, called
initialization and reinitialization tables, in the DPT.

Drivers use the DPT_STORE macro with the INIT table marker label to
begin a list of DPT_STORE invocations that supply initialization data for the
following fields:

UCB$B_FLCK Index of the fork lock under which the driver performs
fork processing. The DPTAB macro, in invoking the
$SPLCODDEF macro, defines the symbols for these
indexes.

UCB$B_DIPL Device interrupt priority level.

Other commonly initialized fields are

UCB$L_DEVCHAR

UCB$B_DEVCLASS

UCB$B_DEVTYPE

UCB$W _DEVBUFSIZ

UCB$Q_DEVDEPEND

Device characteristics

Device class

Device type

Default buffer size

Device-dependent parameters

Writing Device-Driver Tables
6.1 Driver Prologue Table

Drivers use the DPT_STORE macro with the REINIT table marker label
to begin a list of DPT_STORE invocations that supply initialization and
reinitialization data for certain fields. Every driver must specify the following
field in such an invocation:

DDB$L_DDT Driver dispatch table

Other commonly initialized fields are

CRB$L_INTD+VEC$L_ISR

, CRB$L_INTD2+VEC$L_ISR

CRB$L_INTD+VEC$L_INITIAL

CRB$L_INTD+VEC$L_UNITINIT

Interrupt service routine.

Interrupt service routine for second interrupt
vector.

Controller initialization routine.

Unit initialization routine (for UNIBUS, 022
bus, and generic VAXBI device drivers).
Note that MASSBUS drivers must specify
the address of the unit initialization routine
in an invocation of the DDT AB macro.

For an example of the use of the DPT and DPT_STORE macros, see the
description of the DPTAB macro in Appendix B.

6.2 Driver Dispatch Table
The driver dispatch table (DDT) lists some of the entry points for driver
routines to be called by VMS for 1/0 processing. Every driver must create a
DDT.

The routines listed in the DDT can reside in the driver module or in a VMS
module. Appendix C describes the VMS device-independent routines that can
be specified.

Device-dependent routines are normally located in the driver module. The
DDT contains relative addresses for routines located in the driver module and
absolute addresses for routines located in the operating system. At loading
time, the driver-loading procedure changes the relative addresses of driver
routines to absolute addresses.

The driver creates a DDT by invoking the macro DDTAB. The DDTAB macro
labels the DDT devnam$DDT, according to the value you supply in its
devnam argument. The driver-loading procedure writes the address of the
DDT table, as specified in a DPT_STORE macro, into the DDB. Figure A-9
illustrates the structure of a DDT and Table A-8 describes its contents.

The DDTAB macro also generates the program section ($$$1 lS_DRIVER) in
which the DDT itself and all driver code reside.

The DDTAB macro has a single required argument, functb, for which the
driver must specify the address of its function decision table. Several optional
arguments allow the driver to specify the names of the following routines, if
applicable:

• Start-1/0 routine

• Unsolicited interrupt service routine (for MASSBUS device drivers)

• Cancel-1/0 routine

• Register dumping routine

6-3

Writing Device-Driver Tables
6.2 Driver Dispatch Table

• Unit initialization routine

• Alternate start-1/0 routine

• Cloned UCB routine

In addition, you specify the length of any diagnostic buffer or error message
buffer using the DDTAB macro.

See the description of the DDTAB macro in Appendix B for additional
information.

6.3 Function Decision Table

6-4

The function decision table (FDT) lists codes for 1/0 functions that are valid
for the device; indicates whether the functions are buffered-1/0 functions;
and specifies routines to perform preprocessing for particular functions. Every
device driver must create an FDT containing three or more entries:

• The list of valid 1/0 function codes

• The list of buffered 1/0 function codes

• One or more entries each of which specifies all or a subset of 1/0 function
codes and the address of a routine that performs IjO preprocessing for
those function codes

If no buffered 1/0 functions are defined for the device, the second entry
contains an empty list.

Taken together, the third through last entries in the FDT specify one or
more FDT routines for each valid 1/0 function code for the device. The
FDT routines must terminate the 1/0 preprocessing for each type of function
by transferring control out of the $QIO system service and into a routine
that queues the 1/0 request to a driver, inserts the 1/0 request in the
postprocessing queue, or aborts the 1/0 request.

Refer to Chapter 7 for information on the writing of FDT routines.

Table 6-1 lists the physical, logical, and virtual 1/0 function codes defined by
VMS. Note that certain of the function codes listed have the same values in
VMS Version 5.0. A complete list of function codes and values is contained
in the macro $IODEF in SYS$LIBRARY:STARLET.MLB.

Table 6-1 1/0 Function Codes

Function

Physical 1/0

10$_NQP

10$_UNLOAD

10$_SEEK

10$_RECAL

10$_DRVCLR

10$_RELEASE

10$_QFFSET

10$_RETCENTER

10$_PACKACK

10$_SEARCH

10$_ WRITECHECK

10$_ WRITEPBLK

10$_READPBLK

10$_ WRITEHEAD

10$_READHEAD

10$_ WRITETRACKD

10$_READTRACKD

10$_A V AILABLE

10$_SETPRFP A TH

10$_DSE

IQ$_REREADN

10$_REREADP

10$_ WRITERET

10$_READPRESET

10$_SETCHAR

10$_SENSECHAR

10$_ WRITEMARK

10$_ WRTTMKR

10$_FORMAT

Description

No operation

Unload drive (required by all
disk drivers)

Seek cylinder

Recalibrate drive

Drive clear

Release port

Offset read heads

Return to center line

Pack acknowledgment
(required by all disk drivers)

Search for sector

Write check data

Write physical block

Read physical block

Write header and data

Read header and data

Write track data

Read track data

Set device available
(required by all disk drivers)

Set preferred path

Data security erase (and
rewind)

Reread next

Reread previous

Write retry

Read in preset

Set device characteristics

Sense device characteristics

Write tape mark

Write tape mark retry

Format

Writing Device-Driver Tables
6.3 Function Decision Table

Equivalent Symbol(s)

10$_LOADMCODE

10$_SP ACEFILE (space files), 10$_ST ARTMPROC
(start microprocessor)

10$_STOP (stop)

10$_1NITIALIZE (initialize)

10$_SETCLOCKP (set clock-physical)

10$_ERASETAPE (erase tape), 10$_ST ARTDAT AP
(start data transfer-physical)

10$_QSTOP (queue stop request)

10$_SP ACE RECORD (space records), 10$_READRCT
(read replacement and caching table)

10$_RDST A TS (read statistics), 10$_CRESHAD
(create a shadow set)

10$_ADDSHAD (add member to shadow set)

10$_CQPYSHAD (perform shadow set copy
operations)

10$_REMSHAD (remove member from shadow set)

10$_ WRITECHECKH (write check header and data)

10$_ST ARTSPNDL (start spindle)

10$_DIAGNOSE (diagnose), 10$_SHADMV (perform
mount verification on shadow set)

10$_CLEAN (clean tape)

6-5

Writing Device-Driver Tables
6.3 Function Decision Table

Table 6-1 (Cont.)

Function

Logical 1/0

10$_ WRITELBLK

10$_READLBLK

10$_REWINDOFF

10$_SETMODE

10$_REWIND

10$_SKIPFILE

10$_SKIPRECORD

10$_SENSEMODE

10$_ WRITEOF

10$_ TTY _PORT

10$_FLUSH

Virtual 1/0

10$_ WRITEVBLK

10$_READVBLK

10$_ACCESS

10$_CREATE

10$_DEACCESS

10$_DELETE

10$_MQDIFY

10$_NETCONTROL

10$_READPROMPT

10$_ACPCONTROL

10$_MOUNT

10$_ TTYREADALL

10$_ TTY RE ADP ALL

10$_CONINTREAD

10$_CONINTWRITE

6-6

1/0 Function Codes

Description Equivalent Symbol(s)

Write logical block

Read logical block

Rewind and set offline

Set mode

Rewind tape

Skip files

Skip records

Sense mode

Write end of file

Terminal port FDT routine 10$_FREECAP (return free capacity)

Flush controller cache

Write virtual block

Read virtual block

Access file

Create file

Deaccess file

Delete file

Modify file

X25 network control
function

Read terminal with prompt 10$_SETCLOCK (set clock)

Miscellaneous ACP control 10$_ST ARTDA TA (start data)

Mount volume

Terminal read passall

Terminal read with prompt
passall

Connect to interrupt read-
only

Connect to interrupt with
write

The device driver creates an FDT by invoking the FUNCTAB macro. Each
invocation of the FUNCTAB macro creates a 2- or 3-longword entry in the
FDT. The first two invocations create 2-longword entries because they specify
only function codes; they do not specify an accompanying action routine.

All subsequent invocations of the FUNCTAB macro must specify both
function codes and the address of a routine that is to perform preprocessing
for those functions. These invocations create 3-longword entries.

6.3.1

6.3.2

Writing Device-Driver Tables
6.3 Function Decision Table

The $QIO system service processes entries in the order in which they appear
in the FDT. When a function code is present in more than one 3-longword
entry, the system service sequentially calls every routine specified for the
function code until a routine stops the scan by aborting, completing, or
queuing an 1/0 request.

See the description of the FUNCTAB macro, and the example of its use, in
Appendix B for additional information on creating an FDT.

Defining Buffered-1/0 Functions
The second entry in an FDT is a buffered function bit mask that indicates which
legal functions the driver handles as buffered-1/0 operations. In selecting the
functions that are to be buffered, you should take the following information
into consideration:

•

•

•

•

•

•

Direct 1/0 is intended only for devices whose 1/0 operations always
complete quickly. For example, although terminal 1/0 appears fast, users
can prevent the 1/0 operation from completing by using CTRL/S to halt
the operation indefinitely; therefore, terminal 1/0 operations are buffered
1/0.

Use of direct 1/0 requires that the process pages containing the buffer be
locked in memory. Locking pages in memory increases the overhead of
swapping the process that contains the pages.

Use of buffered 1/0 requires that the data be moved from the system
buffer to the user buffer. Moving data requires additional time.

Routines that manipulate data before delivering it to the user (for
example, an interrupt service routine for a terminal) cannot gain access
to the data if direct 1/0 is used. Therefore, transfers that require data
manipulation must be buffered 1/0.

VMS handles the quotas differently for direct 1/0 and buffered IjO, as
described in the Guide to Maintaining a VMS System.

Generally, direct-memory-access (DMA) devices use direct 1/0, while
programmed 1/0 devices use buffered 1/0.

Defining Device-Specific Function Codes
You can also define device-specific function codes by equating the name of a
device-specific function with the name of an existing function that is irrelevant
to the device. The selected codes should, however, have a type (logical,
physical, or virtual) that is appropriate for the function they represent. Also,
user programs that issue $QIO requests specifying a device-specific code must
similarly redefine the existing function. For example, the assembly code that
follows defines three device-specific physical 1/0 function codes. ·

IO$_STARTCLOCK=IO$_ERASETAPE
IO$_STOPCLOCK=I0$_0FFSET
IO$_STARTDATA=IO$_SPACEFILE

Start interval clock
Stop interval clock
Start data acquisition

6-7

7 Writing FDT Routines

The $QIO system service uses the driver's function decision table (FDT) to
determine which FDT routines to call to preprocess an 1/0 request. These
FDT routines validate process-specified arguments to the $QIO request. VMS
supplies many device-independent FDT routines. Device drivers contain
device-dependent FDT routines.

A driver should call the VMS device-independent FDT routines, described
in Section 7.5, whenever possible. This practice encourages the use of well
debugged routines and min.imizes driver size.

7 .1 Context of FDT Routine Execution
The $QIO system service executes in the context of the process that issues
the 1/0 request, but in kernel mode and at IPL$_ASTDEL. The process is
executing in kernel mode because the dispatching of the $QIO system service
executes a CHMK instruction. Process context allows the $QIO system service
and driver FDT routines to access perprocess address space. Because the
$QIO system service expects FDT routines to preserve this context, an FDT
routine observes the following conventions:

• It cannot call VMS system services or VMS RMS services.

• It does not lower IPL below IPL$_ASTDEL. If a routine raises IPL, it
must obtain any appropriate spin lock, and it must lower IPL to IPL$_
ASTDEL before exiting, releasing any acquired spin lock.

• It does not alter the stack without restoring its original state before
exiting.

• If it issues a subroutine call, it must preserve the contents of R3 through
R8 across the call. It can, however, use RO through R2 and R9 through
Rl 1 without saving their previous contents. If an FDT routine needs to
use R3 through R8, it can use the PUSHR and POPR instructions to save
registers on the stack and later restore them.

• It exits either by an RSB instruction to return control to the system service,
or it issues a JMP instruction to one of the VMS routines described in
Section 7.2.1.

Before calling an FDT routine, the $QIO system service sets up the contents
of certain registers, as described in Table 7-1.

Table 7-1 Registers Loaded by the $QIO System Service

Register Content

RO Address of FDT routine being called

R3 Address of IRP for current 1/0 request

R4 Address of process control block (PCB) of current process

7-1

Writing FDT Routines
7.1 Context of FDT Routine Execution

Table 7-1 (Cont.) Registers Loaded by the $QIO System Service

Register

R5

R6

R7

R8

AP

Content

Address of UCB of device assigned to user-specified process-1/0
channel

Address of CCB that describes user-specified process-1/0 channel

Bit number of user-specified 1/0 function code

Address of current entry in FDT

Address of first function-dependent argument (p1) specified in 1/0
request

While FDT routines can perform extensive preprocessing, such as determining
whether user buffers are accessible and reformatting data into buffers in the
system address space, they should not access device registers because the
device might be active. Furthermore, FDT routines should exercise restraint
when modifying the UCB. Routines usually access the UCB while holding
the associated fork lock at driver fork IPL to synchronize modifications, and
FDT routines do not execute with such synchronization. Drivers containing
FDT routines that access device registers or carelessly modify the UCB risk
unpredictable operation or a system failure.

7 .2 FDT Routines and Their Exit Paths

7-2

To transfer control to an FDT routine, the $QIO system service loads the
address of the FDT routine into a register and executes a JSB instruction, as
follows:

JSB (RO)

Each FDT routine chooses an exit path based on the following factors:

• Whether another FDT routine needs to be called to perform additional
function-specific processing

• Whether an error is found in the IfO request

• Whether the operation is complete

• Whether the 1/0 operation requires and is ready for device activity

The FDT routines, as illustrated in Figure 7-1, must transfer control out of the
FDT processing loop and into a VMS routine that queues an IRP, completes
an 1/0 request, or aborts an 1/0 request. The $QIO system service does
not stop scanning the FDT. Therefore, you must ensure that for each valid
function code in a driver's FDT, there is an FDT routine that does not return
control to the $QIO system service.

7.2.1 FDT Exit Paths

Writing FDT Routines
7.2 FDT Routines and Their Exit Paths

Figure 7-1 $QIO Scan of a Function Decision Table

READ
NEXT

FDT ENTRY

CALL
FDT

ROUTINE

FDT ROUTINE
RETURNS

FDT ROUTINE EXITS

QUEUE IRP,
FINISH 1/0,

OR ABORT 1/0

ZK-926-82

An FDT routine can exit using any of the following methods:

• RSB

• JMP GAEXE$QIODRVPKT

• JSB GAEXE$AL TQUEPKT

• JMP GAEXE$FINISHIO or JMP GAEXE$FINISHIOC

• JMP GAEXE$ABORTIO

These methods are described in the following sections, and you can find
additional details on the routines they involve in Appendix C.

7.2.1.1 RSB
An FDT routine issues an RSB instruction to return to the $QIO system
service. The FDT routine returns to the system service because the routine
knows that the FDT contains a subsequent entry with the same function code
bit set. As a result, the system service searches for another FDT routine.

7-3

Writing FDT Routines
7.2 FDT Routines and Their Exit Paths

7.2.1.2

7.2.1.3

7.2.1.4

7-4

JMP G"EXE$QIODRVPKT
EXE$QIODRVPKT transfers control to a VMS routine that queues an IRP to a
driver. The FDT routine uses this exit method if all preprocessing is complete,
if no fatal errors are found in the specification of an I/O request, and if device
activity, synchronized access to the device's UCB, or synchronized access to
device registers is required to complete the 1/0 request. Common examples
of such a request are read and write functions.

EXE$QIODRVPKT transfers control to the device driver's start-1/0
routine only if the device unit is currently idle. If the device unit is busy,
EXE$QIODRVPKT inserts the IRP in a priority-ordered queue of IRPs waiting
for the unit.

Once an FDT routine transfers control to EXE$QIODRVPKT, no driver code
that further processes the I/O request can refer to process virtual address
space. When a device driver's start-I/O routine gains control, the process that
queued the I/O request might no longer be the mapped process. Therefore,
the driver must assume that all information regarding the I/O request is in
the UCB or the IRP and that all buffer addresses in the UCB are either system
addresses or page-frame numbers that can be interpreted in any process
context.

For direct I/O operations, FDT routines also must have locked all user buffer
pages in physical memory because paging cannot occur at driver fork level
or higher interrupt priority levels. The process virtual address space is not
guaranteed to be mapped again until VMS delivers a special kernel-mode
AST to the requesting process as part of I/O postprocessing.

JMP G"EXE$FINISHIO or JMP G"EXE$FINISHIOC
EXE$FINISHIO and EXE$FINISHIOC transfer control to a VMS routine
that writes a quadword of final I/O status from RO and Rl into the I/O
status field of the IRP (IRP$L_MEDIA and IRP$L_MEDIA+4). (Note that
EXE$FINISHIOC clears the second longword of the final IjO status.) The
routine then inserts the IRP in the 1/0 postprocessing queue. These routines
return to the $QIO system service the two longwords of status contained in
the I/O status block (if any) specified in the I/O request.

An FDT routine that discovers a device-dependent error should always return
status using EXE$FINISHIO or EXE$FINISHIOC. These routines gain control
without any change in process context. Interrupt priority level is at IPL$_
ASTDEL; the process page-tables are mapped; and the process is executing in
kernel mode.

JMP G"EXE$ABORTIO
EXE$ABORTIO transfers control to a VMS routine that aborts an I/O request.
An FDT routine that discovers a device-independent error should always use
this method of exiting. Inability to gain access to a data buffer or an error
in the specification of the I/O request are examples of device-independent
errors.

EXE$ABORTIO gains control without any change in the process context.
Interrupt priority level is at IPL$__ASTDEL; the process virtual space is
mapped; and the process is executing in kernel mode. EXE$ABORTIO stores
a longword of status in RO and returns this to the system service.

7.2.1.5

Writing FDT Routines
7.2 FDT Routines and Their Exit Paths

JSB G"EXE$ALTQUEPKT
EXE$AL TQUEPKT transfers control to a VMS routine that calls an alternate
start-1/0 routine in the driver (specified in the driver dispatch table at offset
DDT$L _AL TS TART) that synchronizes requests for activity on a device unit
and initiates the processing of 1/0 requests.

The FDT routine uses this exit method when it has successfully completed
all driver preprocessing and the request requires device activity. However, in
contrast to EXE$QIODRVPKT, EXE$AL TQUEPKT bypasses the device unit's
pending-1/0 queue and the device busy flag; thus, the driver is activated
regardless of whether the device unit is busy. A driver that can handle two
or more 1/0 requests simultaneously uses this exit method.

Be aware that programming a device driver to process simultaneous 1/0
requests requires detailed knowledge of VMS internal design. A driver that
uses EXE$AL TQUEPKT must not only maintain its internal queues but must
also synchronize those queues with the unit's pending-1/0 queue, which
the operating system maintains. In addition, if a driver processes more than
one IRP at the same time, it must use separate fork blocks. Such a driver
completes the processing of IjO requests by calling the routine COM$POST.
This routine places each IRP in a postprocessing queue and returns control to
the driver. The driver can then fetch another IRP from an internal queue. For
more information about COM$POST, see Appendix C.

Unlike the other FDT exit routines, EXE$ALTQUEPKT is called with a JSB
instruction rather than a JMP instruction. When the alternate start-1/0
routine finishes, it returns control to EXE$AL TQUEPKT by executing an
RSB instruction. The FDT routine performs any postprocessing and transfers
control to the routine EXE$QIORETURN. When EXE$QIORETURN gains
control, it performs the following steps:

1 Sets the success status code SS$_NORMAL in RO

2 Lowers the interrupt priority level to zero

3 Returns (with the RET instruction) to the system service dispatcher

7 .3 FDT Routines for VMS Direct 1/0
The VMS operating system provides two standard FDT routines that are
applicable for direct 1/0 operations: EXE$READ and EXE$WRITE. When
called by the driver, these routines completely prepare a direct 1/0 read or
write request. Thus, a driver that uses these routines eliminates the need for
its own device-specific FDT routines.

EXE$READ and EXE$WRITE are described in Section 7.5.

7-5

Writing FDT Routines
7 .4 FDT Routines for VMS Buffered 1/0

7 .4 FDT Routines for VMS Buffered 1/0

7.4.1

7.4.2

Device drivers for buffered I/O operations generally contain their own
device-specific FDT routines.

An FDT routine for a buffered IjO data transfer operation should confirm
either read or write access to the user's buffer and allocate a buffer in system
space. Sections 7.4.1 and 7.4.2 describe these tasks.

An FDT routine for a buffered If O operation that does not involve data
transfer should copy the function-dependent parameters of the $QIO request
(pl to p6) to the IRP, perform any necessary preprocessing, and use one of
the exit methods listed in Section 7.2.1.

Checking Accessibility of the User's Buffer
First the FDT routine calls EXE$READCHK or EXE$WRITECHK to confirm
write or read access, respectively, to the user's buffer. Both of these routines
write the transfer byte count into IRP$L_BCNT. EXE$READCHK also sets
IRP$VJUNC in IRP$W_STS to indicate that the function is a read.

Allocating the System Buffer

7-6

Next, the FDT routine allocates a system buffer in the following manner:

1 It adds 12 bytes to the byte count passed in the p2 argument of the user's
I/O request, thus accommodating the standard size of a VMS buffer
header. This is the total system buffer size.

2 It calls EXE$DEBIT_BYTCNT-ALO to ensure that the process's job has
sufficient remaining byte count quota to allow its use of the requested
buffer. If the job has sufficient quota, EXE$DEBIT_BYTCNT-ALO
allocates the requested buffer from nonpaged pool, writes the buffer's
size and type into its third longword, and subtracts the system buffer size
from JIB$ L _BYTCNT.

VMS also supplies the routines EXE$DEBIT_BYTCNT_BYTLM-ALO,
EXE$DEBIT_BYTCNT(_NW), EXE$DEBIT_BYTCNT_BYTLM(_NW), and
EXE$ALLOCBUF which perform the same type of work as EXE$DEBIT_
BYTCNT-ALO. These routines are fully described in Appendix C.

Once the buffer is allocated, the FDT routine takes the following steps:

1 Loads the address of the system buffer into IRP$L_SVAPTE.

2 Loads the total size of the system buffer into IRP$W_BQFF.

3 Stores the starting address of the system buffer data area in the first
longword of the buffer header.

4 Stores the user's buffer address in the second longword of the header.

5 Copies data from the user buffer to the system buffer if the I/O request is
a write operation.

7.4.3

Writing FDT Routines
7 .4 FDT Routines for VMS Buffered 1/0

At this point, the buffers are ready for the transfer. Figure 7-2 illustrates the
format of the system buffer.

Figure 7-2 Format of System Buffer for a Buffered-1/0 Read
Function

System Space

SYSTEM BUFFER ~ address of data area

>-l HEADER

,_...,
user buffer address

I type I size

~

buffer
data Process Space

area
~

user
buffer

Buffered-1/0 Postprocessing

ZK-927-82

When the transfer finishes, the driver returns control to VMS for completion
of the 1/0 request. The driver writes the final request status in the low-order
word of RO. Use of the high-order word of RO and the longword of Rl is
driver specific. Certain drivers use these fields to report a transfer byte count,
for example.

The driver must leave the buffer header intact; 1/0 postprocessing relies
on the header's accuracy. When VMS 1/0 postprocessing gains control, it
performs three steps:

1 Calls EXE$CREDIT_BYTCNT to add the value in IRP$W_BOFF to JIB$L _
BYTCNT, thus updating the user's byte count quota

2 If IRP$L _SVAPTE is nonzero, assumes a system buffer was allocated and
checks to see whether IRP$V_FUNC is set in IRP$W_STS

3 If IRP$V_FUNC is clear; deallocates the system buffer used for the write
operation; if IRP$V_FUNC is set, the special kernel-mode AST copies the
data to the user's buffer and then deallocates the buffer in addition to
performing other kernel-mode AST functions

The special kernel-mode AST performs the following steps to complete a
buffered read operation:

1 Obtains the address of the system buffer from IRP$L_SVAPTE.

7-7

Writing FDT Routines
7 .4 FDT Routines for VMS Buffered 1/0

2 Obtains the number of bytes to write to the user's buffer from IRP$L_
BCNT.

3 Obtains the address of the user's buffer from the second longword of the
system buffer header.

4 Checks for write accessibility on all pages of the user's buffer.

5 Copies the data from the system buffer to the process' buffer.

6 Deallocates the system buffer. Note that the system uses the size listed in
the buffer's header to deallocate the buffer.

7 .5 FDT Routines Provided by VMS
The VMS FDT routines perform IjO request validation that is common
to many devices. Whenever possible, drivers should take advantage of
these routines. Normally, if a VMS FDT routine is called, no additional
FDT processing is required. All of the VMS FDT routines listed in
Table 7-2 exit by transferring control to EXE$QIODRVPKT, EXE$FINISHIO,
EXE$FINISHIOC, or EXE$ABORTIO. Once a VMS FDT routine is called, no
subsequent FDT processing occurs.

For additional information about VMS FDT routines, see the pertinent routine
descriptions in Appendix C.

Table 7-2 FDT Routines Provided by VMS

FDT Routine

EXE$0NEPARM

EXE$READ

EXE$SENSEMODE

EXE$SETCHAR 1

EXE$SETMODE 1

Function

Processes a nontransfer 1/0 function
code that has one parameter
associated with it

Processes a logical-read or physical­
read function for a direct 1/0
operation

Processes the sense-device-mode
and sense-device-characteristics
functions by reading fields of the
UCB

Exit Method

Transfers control to EXE$QIODRVPKT

Aborts the 1/0 request if an error occurs,
or dismisses and resubmits the 1/0 request
if the user 1/0 buffers cannot be locked in
memory; otherwise, transfers control to
EXE$QIODRVPKT

Transfers control to EXE$FINISHIO

Processes the set-device-mode and Transfers control to EXE$FINISHIO
set-device-characteristics functions

Processes the set-device-mode and
set-device-characteristics functions
by creating a driver fork process

Aborts the 1/0 request if an error
occurs; otherwise, transfers control to
EXE$QIODRVPKT

1 If setting device characteristics requires no device activity or requires no synchronization with fork processing, the
driver's FDT entry can specify EXE$SETCHAR; otherwise, it must specify EXE$SETMODE.

7-8

Writing FDT Routines
7.5 FDT Routines Provided by VMS

Table 7-2 (Cont.) FDT Routines Provided by VMS

FDT Routine

EXE$WRITE

EXE$ZEROP ARM

Function

Processes a logical-write or
physical-write function for a direct
1/0 operation

Processes a nontransfer 1/0 function
code that has no associated
parameters

Exit Method

Aborts the 1/0 request if an error occurs,
or dismisses the 1/0 request if the
user 1/0 buffers cannot be locked in
memory; otherwise, transfers control to
EXE$QIODRVPKT

Transfers control to EXE$010DRVPKT

7-9

8 Writing a Start-1/0 Routine

A driver start-I/O routine activates a device and then waits for a device
interrupt or timeout. This chapter describes the start-I/O routine. Chapter 10
describes the reactivation of the driver routine that performs device­
dependent I/O postprocessing. With a few exceptions, the start-I/O routine
discussed in the following sections describes a OMA transfer using a single­
unit controller.

8.1 Transferring Control to the Start-1/0 Routine
The start-I/O routine of a device driver gains control from either of two VMS
routines: EXE$QIODRVPKT or IOC$REQCOM.

When FDT processing is complete for an I/O request, the FDT routine
transfers control to EXE$QIODRVPKT. If the designated device is idle,
IOC$INITIATE is called to create a driver fork process. (This procedure
is detailed in Section 7.2.1.2.) The driver fork process then gains control
in the start-I/O routine of the appropriate driver. If the device is busy,
EXE$QIODRVPKT calls EXE$INSIOQ, which queues the packet to the device
unit's pending-I/O queue.

After a device completes an I/O operation, the driver fork process exits by
transferring control to IOC$REQCOM. IOC$REQCOM inserts the IRP for the
finished transfer into the postprocessing queue. It then dequeues the next IRP
from the device unit's pending-I/O queue and calls IOC$INITIATE to initiate
the processing of this I/O request in the driver's fork process at the entry
point of the driver's start-I/O routine.

8.2 Context of a Driver Fork Process
A start-I/O routine does not run in the context of a user process. Rather, it
has the following context:

System context

Kernel mode

High IPL

Kernel or
interrupt stack

Driver code can only refer to system virtual addresses.

Execution occurs in the most privileged access mode and
can, therefore, change IPL and obtain spin locks.

The VMS routine that creates a driver fork process
obtains the driver's fork lock, raising IPL to driver fork
level before activating the driver.

Execution occurs on the kernel or interrupt stack.
The driver must not alter the state of the stack
without restoring the stack to its previous state before
relinquishing control. The stack used depends on whether
the 1/0 startup is the result of a new 1/0 request or
because a previously requested 1/0 operation has been
completed. The choice of stacks must not affect the
operation of the start-1/0 routine.

8-1

Writing a Start-1/0 Routine
8.2 Context of a Driver Fork Process

In addition to the context described, the VMS packet-queuing routines set up
R3 and RS for a driver start-I/O routine, as follows:

• R3 contains the address of the IRP.

• RS contains the address of the UCB for the device.

The start-1/0 routine must preserve all general registers except RO, Rl, R2,
and R4.

Before the packet-queuing routines call the start-1/0 routine, they copy the
following IRP fields into their corresponding slots in the device's UCB:

• IRP$L_BCNT (low-order word)---+ UCB$W_BCNT

• IRP$W_BOFF---+ UCB$W_BOFF

• IRP$L_SVAPTE---+ UCB$L_SVAPTE

8.3 Functions of a Start-1/0 Routine

8-2

The processing performed by a start-1/0 routine is device specific. A start-
1/0 routine normally contains elements that perform the following functions
to activate:

• Analyzing the 1/0 function

• Transferring the details of a request from the IRP into the UCB

• Obtaining and initializing the controller

• Modifying device registers to activate the device

A start-1/0 routine of a DMA device driver performs additional tasks to
prepare the device for a DMA transfer prior to activating the device. These
tasks include the following:

• Obtaining 1/0 adapter resources such as map registers and a buffered
data path

• Computing the starting address of a data transfer

The following sections describe the general activities of a start-1/0 routine for
a typical device. The details of DMA processing are specific to the particular
device. Section 12.2 describes the UNIBUS- and Q22 bus-related details of
DMA transfers. Section 13.S.3 relates those tasks that MASSBUS DMA device
drivers must perform. Section 14.S discusses similar functions that drivers for
generic VAXBI devices may need to perform.

8.3.1

Writing a Start-1/0 Routine
8.3 Functions of a Start-1/0 Routine

Obtaining Controller Access
If the device is one of several attached to a controller, the start-1/0 routine
invokes the VMS macro REQPCHAN to assign the controller's data channel
to the device unit. Controllers that control only one device do not require
arbitration for the controller's data channel. REQPCHAN calls the VMS
routine IOC$REQPCHANL that acquires ownership of the controller data
channel.

The transfer being controlled by the start-1/0 routine discussed here requires
no seek preceding the transfer. Disk 1/0 is an example of a transfer that
requires a seek first. To permit seeks to be overlapped with transfers, invoke
REQPCHAN with the argument pri=HIGH. Specifying pri=HIGH inserts a
request for a channel at the head of the channel wait queue.

If the channel is not available, IOC$REQPCHANL suspends driver processing
by saving the driver's context in the UCB fork block and inserting the fork
block in the channel wait queue. IOC$REQPCHANL then returns control to
the caller of the driver, that is, to EXE$INSIOQ, as illustrated in Figure 8-1.
This procedure is further discussed in Section 3.4.1.

Figure 8-1 Inserting a UCB into the Channel Wait Queue

USER
JSB

INSIOQ JSB INITIATE
PROGRAM

RSB

JMP

CHANNEL
RET QIORETURN WAIT

QUEUE

RSB I REQCHAN ~ - UCB
ADDRESS

ZK-928-82

The UCB fork block now represents the entire context of the suspended
driver:

• Saved R3 containing the IRP address

• Implicitly saved RS containing the UCB address

• A return address in the driver

Note that, because IOC$RELCHAN moves the address of the device's CSR
into R4 before resuming a suspended driver, IOC$REQPCHANL does not
save R4 in the UCB fork block.

8-3

8.3.2

8.3.3

Writing a Start-1/0 Routine
8.3 Functions of a Start-1/0 Routine

If the channel is available, IOC$REQPCHANL locates the interrupt dispatch
block (IDB) for the channel with a pointer in the UCB:

UCB--+ CRB--+ IDB

The IDB contains the address of the control and status register (CSR) for the
channel (IDB$L _CSR). IOC$REQPCHANL returns the CSR address in R4.
The driver for a unit attached to a dedicated controller must contain the code
needed to load the CSR address into R4.

IOC$REQPCHANL also writes the address of the new channel-owner's UCB
in the owner field of the IDB (IDB$L_OWNER). The driver's interrupt service
routine later reads this IDB field to determine which device unit owns the
controller's data channel. A driver for a single-unit controller must fill the
IDB$L _OWNER field in its controller or unit initialization routines.

The driver must maintain the stack in a known and consistent state for the
resource-wait-queue mechanism to work. When IOC$REQPCHANL gains
control, the top two items on the stack must be two return addresses:

• OO(SP)-Address of the next instruction to be executed in the driver fork
process. The transfer of control to IOC$REQPCHANL places this address
on the stack.

• 04(SP)-Address of the next instruction to be executed in the routine that
called the driver start-1/0 routine.

Obtaining and Converting the 1/0 Function Code and Its Modifiers
The start-1/0 routine extracts the IjO function code and function modifiers
from the field IRP$W_FUNC and translates them into device-specific function
codes, which it loads into the device's CSR or other control registers. The
start-1/0 routine creates and modifies a bit mask that is to be loaded into
the CSR when the driver starts the device. To accomplish this, the start-
1/0 routine converts the function modifiers contained in IRP$W_FUNC into
device-specific bit settings in the general register.

At this point, a UNIBUS /Q22 bus DMA driver follows procedures to obtain
1/0 bus resources and compute the size and starting address of a transfer.
These procedures are discussed in Section 12.2. MASSBUS DMA device
drivers perform the steps indicated in Section 13.5.3.

Preparing the Device Activation Bit Mask

8-4

For a typical device, the start-IjO routine prepares the device-activation bit
mask by setting the interrupt-enable bit and the go bit in the general purpose
register that also contains the high-order bits of the bus address and the
device-function bits. At this point, the general register contains a complete
command for starting the transfer, also known as the control mask.

When the start-1/0 routine copies the contents of the register into the device's
CSR, the device starts the transfer. Before activating the device, however, the
start-1/0 routine should perform the steps described in Sections 8.3.4 and
8.3.5.

8.3.4

8.3.5

8.3.6

Writing a Start-1/0 Routine
8.3 Functions of a Start-1/0 Routine

Synchronizing Access to the Device Database
The start-1/0 routine invokes the VMS macro DEVICELOCK to synchronize
its access to device registers with the interrupt service routine. This macro
invocation is doubly important, for it establishes the context wherein the
driver can later issue the wait-for-interrupt macro (WFIKPCH or WFIRLCH).
The wait-for-interrupt macros expect the driver's fork IPL to be on the stack,
as placed there by the DEVICELOCK macro. In addition, the wait-for­
interrupt macros issue the DEVICEUNLOCK macro to release ownership of
the device lock and restore the previous IPL.

Checking for a Local Processor Power Failure
After synchronizing access to device registers, the start-1/0 routine invokes
the VMS macro SETIPL to raise IPL to IPL$_p0WER to block all interrupts
on the local processor.

The start-1/0 routine then examines the powerfail bit in the UCB's status
longword (UCB$V_POWER in UCB$L_STS) to determine whether a local
power failure has occurred since the start-1/0 routine gained control. If the
bit is not set, the transfer can proceed.

If the bit is set, a power failure might have occurred between the time that the
start-1/0 routine wrote the first device register and the time that the start-1/0
routine is ready to activate the device. Such a power failure could modify the
already-written device registers and cause unpredictable d~.vice behavior if
the device were to be started.

If the bit UCB$V_POWER is set, the start-1/0 routine branches to an error
handler in the driver. The driver error handler must perform the following
actions:

• Clear UCB$V_POWER

• Issue the DEVICEUNLOCK macro to release the device lock and restore
IPL to fork IPL

After performing these tasks, many drivers transfer control to the beginning
of the start-1/0 routine, which restarts the processing of the 1/0 request.

Activating the Device
If no power failure has occurred, the start-1/0 routine copies the contents
of the control mask into the device's CSR. When the device notices the new
contents of the device register, it begins to transfer the requested data.

8-5

Writing a Start-1/0 Routine
8.4 Waiting for an Interrupt or Timeout

8.4 Waiting for an Interrupt or Timeout

8.4.1

Once the start-1/0 routine activates the device, the driver fork process cannot
proceed until one of these events occurs:

• The device generates a hardware interrupt.

• The device does not generate a hardware interrupt within an expected
time limit, which is to say that a device timeout occurs.

Still executing at IPL$_POWER, the driver's start-1/0 routine asks VMS to
suspend the driver fork process by invoking one of the following macros:

WFIKPCH

WFIRLCH

Wait for an interrupt or timeout and keep the controller data
channel

Wait for an interrupt or timeout and release the controller data
channel

The WFIKPCH and WFIRLCH macros require the address of a timeout
handling routine in the excpt argument. Optionally, but almost always, the
driver can also indicate the number of seconds· the system must wait before
signaling a timeout in the time argument. A full description of these macros
appears in Appendix C.

Both macros invoke routines that release ownership of the device lock,
relinquish synchronization, and return IPL to the previous level when exiting.
These routines expect to find the return IPL on the stack. This IPL is saved
on the stack by the DEVICELOCK macro as described in Section 8.3.4.

Drivers generally keep the controller data channel while waiting for the
interrupt or timeout. Drivers of devices with dedicated controllers always
keep the channel because only one unit ever needs it. For devices that share
a controller, some operations, such as disk seeks, do not require the controller
once the operation has begun. In such cases, the driver can release the
controller's data channel while waiting for an interrupt or timeout so that
other units on the controller can start their operations.

Expansion of WFIKPCH Macro

8-6

Because the WFIKPCH and WFIRLCH macros are similar, the description that
follows analyzes the expansion of WFIKPCH only.

If the driver specifies the time argument in the macro call, the macro pushes
the value of the argument into the stack. If the time argument is not
specified, the macro pushes the value 65,536 onto the stack. IOC$WFIKPCH
uses the time value to calculate the length of time VMS waits before
transferring control to a device timeout handler.

WFIKPCH completes its expansion with two lines of code:

JSB G-roC$WFIKPCH
.WORD EXCPT-.

The execution of the JSB instruction pushes the address following the JSB
onto the stack as the address to which the called routine would normally
return with an RSB instruction.

8.4.2 IOC$WFIKPCH Routine

Writing a Start-1/0 Routine
8.4 Waiting for an Interrupt or Timeout

The VMS routine IOC$WFIKPCH, invoked by the macro WFIKPCH, performs
the functions necessary for the driver fork process to wait for a device
interrupt or timeout. IOC$WFIKPCH first adds 2 to the address on the top
of the stack so that the top of the stack contains the address of the next
instruction in the driver after the macro invocation. This address is where
the driver resumes execution as a result of an interrupt service routine's JSB
instruction.

IOC$WFIKPCH then saves the contents of R3, R4, and the address to which
control must be returned to the driver, which it takes from the top of the
stack. It saves this information in the first part of the UCB in the UCB fork
block.

Note that, after an interrupt, the interrupt service routine must restore RS so
that it contains the address of the UCB. The interrupt service routine normally
obtains the address of the UCB from the field IDB$L_OWNER of the IDB.

The VMS routine that detects a device timeout calculates the address of the
driver's timeout routine by subtracting 2 from the saved PC in the UCB's fork
block and calling indirectly through the result. For example:

MOVL UCB$L_FPC(R5),R2 Get saved PC
CVTWL -(R2),-(SP) Get off set to timeout

handler
ADDL (SP)+,R2 Add to relative driver

address to obtain relative
handler address

JSB (R2) Call timeout handler

IOC$WFIKPCH sets bits in the UCB (UCB$V_INT and UCB$V_TIM in
UCB$L_STS) to indicate that interrupts and timeouts are expected from the
device. IOC$WFIKPCH also writes the device timeout absolute time in the
field UCB$L_DUETIM. The absolute time is the number of seconds since the
operating system was bootstrapped plus the number of seconds specified in
the time argument to the macro.

Finally, IOC$WFIKPCH reenables interrupts by releasing the device lock
and lowering IPL to fork level, the IPL at which the driver was executing
previously. It then returns control to the caller of the driver.

8-7

9 Writing an Interrupt Service Routine

When a device generates a hardware interrupt, it requests an interrupt at the
appropriate device IPL. Either the device or its adapter requests a processor
interrupt at that IPL. When the processor executes at an IPL below that device
IPL, interrupt dispatching begins.

The mechanism of interrupt dispatching has no direct bearing on the contents
of a driver's interrupt service routine. Its implementation varies slightly
according to the VAX processing system and I/O subsystem in use. To obtain
background information on the dispatcher, refer to the overview provided
in Section 12.3, which also details the method of dispatching UNIBUS/Q22
bus device interrupts. MASSBUS device driver writers should refer also to
Section 13.4; generic VAXBI device driver writers should read the discussion
in Section 14.3.1.

For most device drivers, the driver prologue table contains, in the
reinitialization section established by the DPT_STORE macro, the address
of one or more interrupt service routines. Each interrupt service routine
corresponds to an interrupt vector on the I/O bus. You specify the address of
an I/O bus vector using the SYSGEN command CONNECT, as described in
Section 15.2.2.

Most device interrupt service routines perform the following functions:

• Locate the device's UCB

• Determine whether the interrupt was solicited

• Reject or process unsolicited interrupts

• Activate the suspended driver to process solicited interrupts

Figure 9-1 illustrates the general flow of interrupt handling. The remaining
sections of this chapter describe the handling of solicited and unsolicited
interrupts in further detail.

9-1

Writing an Interrupt Se,rvice Routine

9-2

Figure 9-1

INTERRUPT
SERVICE ROUTINE

DETERMINES
CAUSE OF
INTERRUPT

TAKES
APPROPRIATE

ACTION

Flow of Interrupt Servicing

NO

INTERRUPT

INTERRUPT
DISPATCHER

ACTIVATES THE
DEVICE UNIT'S

INTERRUPT
SERVICE ROUTINE

INTERRUPT SERVICE
ROUTINE LOCATES

DEVICE'S UCB
USING IDB POINTER

ON INTERRUPT
STACK

INTERRUPT SERVICE
ROUTINE ISSUES

DEVICELOCK MACRO

INTERRUPT
SERVICE ROUTINE

REJECTS INTERRUPT
AS SPURIOUS

YES

REACTIVATE
SUSPENDED

DRIVER

DRIVER
INVOKES
IOFORK
MACRO

IOFORK
CALLS

EXE$10FORK

EXE$10FORK
QUEUES DRIVER

FORK BLOCK
AND RETURNS
TO INTERRUPT

SERVICE ROUTINE

INTERRUPT
SERVICE ROUTINE

REMOVES IDB POINTER
FROM ST ACK, RELEASES

DEVICE LOCK, AND
RESTORES RO THROUGH R5

INTERRUPT
SERVICE ROUTINE

DISMISSES
INTERRUPT
WITH REI

ZK-929-82

9. 1 Interrupt Context

Writing an Interrupt Service Routine
9.1 Interrupt Context

When the interrupt dispatcher calls a driver's interrupt service routine,
execution context is as follows:

• RO through RS are saved on the stack.

• Only system address space may be accessed.

• IPL is at hardware device interrupt level.

• The processor is running in kernel mode.

• The processor is running on the interrupt stack.

The stack contains the following information:

Stack Location

OO(SP)

04(SP) through 24(SP)

28(SP)

32(SP)

Content

Pointer to the address of the IDB

Saved RO through R5

PC at the time of the interrupt

PSL at the time of the interrupt

In the course of its processing, an interrupt service routine must remove the
IDB pointer and the saved registers from the stack before dismissing the
interrupt with an REI instruction.

9.2 Servicing a Solicited Interrupt
When a driver's fork process activates a device and expects to service a
device interrupt as a result, the fork process suspends its execution and waits
for an interrupt to occur. The suspended driver is represented only by the
contents of the fork block in the device's UCB and the stack, which contain
the following information:

• A description of the I/O request and the state of the device

• The contents of R3 and R4

• The implicit contents of RS (the address of the UCB fork block)

• The address at which to return control to the driver

• The implicit address of a timeout handling routine

When the interrupt service routine returns control to the main line of driver
processing, it has only restored the contents of R3, R4, RS, and the PC.

A driver's interrupt service routine performs the following tasks to process the
interrupt and transfer control to the waiting driver:

1 Obtains the address of the device's UCB from the IDB, as follows:

OO(SP) ---+ CRB ---+ IDB ---+ IDB$L _OWNER ---+ UCB

The interrupt service routine restores the UCB address to RS.

2 Issues the DEVICELOCK macro to obtain synchronized access to device
registers.

9-3

Writing an Interrupt Service Routine
9.2 Servicing a Solicited Interrupt

3 Tests the interrupt-expected bit in the UCB status longword (UCB$V_INT
in UCB$L _STS). If the bit is set, the driver is waiting for an interrupt
from this device. After performing this test, the interrupt service routine
must clear UCB$V_INT to indicate that it has received the expected
interrupt.

Note: Because device timeout processing mostly occurs at fork IPL (see
Section 10.2), a driver's interrupt service routine, executing at device
IPL, could interrupt the processing of a timeout on the same device
unit. For this reason, the driver's interrupt service routine should
check the interrupt-expected bit (UCB$V_INT) before handling the
interrupt. VMS clears this bit before it calls the driver's timeout
handler.

4 Obtains device-status or controller-status information from the device
registers, if necessary, and stores the status information in the UCB.

5 Places the contents of UCB$L_FR3 and UCB$L_FR4 in R3 and R4,
respectively.

6 Issues a JSB instruction to the waiting driver's PC address, which is saved
in the UCB fork block at UCB$L _FPC.

The restored driver should execute as briefly as possible in interrupt context.
As soon as possible, the driver should invoke the IOFORK macro to request
the creation of a fork process at the driver's fork IPL. It must do this in
order to complete the I/O operation. Forking lowers the IPL of driver
execution below device IPL, allowing the processor to service additional
device interrupts. IOFORK calls the routine EXE$IOFORK. EXE$IOFORK
inserts into the appropriate fork queue the UCB fork block that describes the
driver process. It then returns control to the driver's interrupt service routine.
(See Section 10.1.1 for additional information on driver forking.)

The interrupt service routine then performs the following steps:

1 Removes the IDB pointer from the stack

2 Issues the DEVICEUNLOCK macro to release ownership of the device
lock

3 Restores RO through RS

4 Dismisses the interrupt with an REI instruction

9.3 Servicing an Unsolicited Interrupt

9-4

A device requests an interrupt to indicate to a driver that the device has
changed status. If a driver's fork process starts an I/O operation on a device,
the driver expects to receive an interrupt from the device when the I/O
operation completes or an error occurs.

Other changes in the device's status occur when the device has not been
activated by a device driver. The device reports such a change by requesting
an unsolicited interrupt. For example, when a user types on a terminal, the
terminal requests an interrupt that is handled by the terminal driver. If the
terminal is not attached to a process, the terminal driver causes the login
procedure to be invoked for the· user at the terminal.

Writing an Interrupt Service Routine
9.3 Servicing an Unsolicited Interrupt

As another example, an unsolicited interrupt occurs whenever a disk drive
goes offline, as could happen when an operator spins it down or pushes the
offline button. The disk driver services the interrupt by altering volume and
unit status bits in the disk device's UCB.

Devices request unsolicited interrupts because some external event has
changed the status of the device. A device driver can handle these interrupts
in two ways:

• Ignore the interrupt as spurious

• Examine the device registers and take action according to their indications
of changed status, and then poll for any other changes in device status

As mentioned in Section 9.2, an interrupt service routine first obtains the
address of the device's UCB from the IDB. It then issues the DEVICELOCK
macro to obtain synchronized access to device registers.

The routine determines whether an interrupt is solicited or not by examining
the interrupt-expected bit in the UCB status longword (UCB$V_INT in
UCB$L_STS). All UNIBUS, Q22 bus, and generic VAXBI device drivers must
use this method to determine whether or not an interrupt is solicited; the
address of the unsolicited interrupt service routine, specified in the driver
dispatch table, is used only by MASSBUS drivers (see Sections 13.4 and
13.6.)

If the interrupt is unsplicited, the driver can reject the interrupt with the
following code sequence:

1 Remove the IDB pointer from the stack

2 Restore RO through RS

3 Dismiss the interrupt with an REI instruction

If the driver decides to handle the unsolicited interrupt, it must observe
certain precautions. Certain methods of servicing unsolicited interrupts-for
instance sending a message to the operator or the job controller's mailbox­
must be accomplished at an IPL lower than device IPL. Although the interrupt
service routine can legitimately fork to accommodate unsolicited interrupts, it
should exercise extreme caution in doing so.

If UCB$V_BSY is set in UCB$L_STS, the UCB fork block is currently in use
by the driver's start-I/O routine. An attempt by the interrupt service routine
to concurrently use the fork block can destroy the fork context already stored
in that UCB. Moreover, if UCB$V_BSY is not set, the interrupt service routine
cannot safely assume that the fork block is not in use, for it may be currently
employed to service a previous unsolicited interrupt.

To avoid confusion, code servicing an unsolicited interrupt must ensure that
the fork block it requires is not being used. Perhaps the safest method to
guarantee this is for the driver to define a separate fork block in a device­
specific UCB extension. The driver should also define a semaphore bit to
control access to this fork block and protect against multiple forking. Note
that the driver should access the semaphore bit using interlocked instructions
(for example, BBSSI or BBCCI).

9-5

9.3.1

Writing an Interrupt Service Routine
9.3 Servicing an Unsolicited Interrupt

If, upon servicing an unsolicited interrupt, the driver's interrupt service
routine examines the semaphore and discovers that a fork is already in
progress (that is, the bit is set), it should not attempt to fork.

The VMS routine that creates the fork process (once these conditions are
satisfied) returns control to the interrupt service routine. The interrupt service
routine then releases the device lock, restores the saved registers, and issues
an REI instruction to dismiss the interrupt.

Examples of Unsolicited Interrupts

CR$INT::

A card reader requests an unsolicited interrupt when a user puts the reader
online. Once the card-reader driver's interrupt service routine determines
that the interrupt is unsolicited, the routine analyzes the interrupt, as in the
following code example.

Because only one sequence of instructions can use the UCB as a fork block,
the interrupt service routine performs the following steps before it creates the
fork process:

• Ensures that no one is using the device, and that no one wants to use it,
by determining that the reference count (UCB$W_REFC) is zero.

• Ensures that it is not already using the UCB, to create a fork process in
order to lower IPL and to send~ message to the job controller, by testing
the job-attached bit (UCB$V_JOB in UCB$W_DEVSTS).

MOVL ©(SP)+,R3 ;Get address of IDB~
MOVQ IDB$L_CSR(R3),R4 ;Get controller CSR and owner UCB address~
DEVICELOCK LOCKADDR=UCB$L_DLCK(R5) ,-

PRESERVE=NO,-
CONDITION=NOSETIPL ;Obtain device lock@>

BBCC #UCBV_INT,UCBL_STS(R5),10$;If clear, interrupt not expectedCt

UNSOLICITED INTERRUPT

' 10$: MOVZWL CR_CSR(R4),RO ;Get reader status
MOVZBW #CR_CSR_M_IE,CR_CSR(R4) ;Clear status, enable interrupts4B
BITW #CR_CSR_M_ONLINE,RO ;Reader transition to online?~
BEQL 20$;If equal no
TSTW UCB$W_REFC(R5) ;Device assigned or allocated?f)
BNEQ 20$;If not equal yes
BBSS #UCBV_JOB,UCBW_DEVSTS(R5),-

20$;If set, message already sentf!>
BSBB 30$;Send message to job controller

20$: DEVICEUNLOCK LOCKADDR=UCB$L_DLCK(R5),-
PRESERVE=NO ;Release device lock

MOVQ (SP)+,RO ;Restore registers
MOVQ (SP)+,R2
MOVQ (SP)+,R4
REI

9-6

30$:

40$:

FORK
MOVZBL
MOVL
JSB
BLBS
BICW
RSB

Writing an Interrupt Service Routine
9.3 Servicing an Unsolicited Interrupt

#MSG$_CRUNSOLIC,R4
GASYS$AR_JOBCTLMB,R3
GAEXE$SNDEVMSG
R0,40$
#UCBM_JOB,UCBW_DEVSTS(R5)

;Create fork process0
;Set message typeGi>
;Set address of job controller mailbox
;Sent message to job controller
;If LBS successful notification4'
;Clear message sent bitQ}

0 The interrupt service routine obtains the address of the IDB from the top
of the stack.

8 By means of this action, it obtains the address of the control and status
register (CSR) in R4 and restores the address of the UCB in RS. 1

0 It issues a DEVICELOCK macro to secure synchronized access to device
registers and UCB fields.

e It checks for an unsolicited interrupt by testing the interrupt expected bit
in the UCB status longword.

0 Because the interrupt is unsolicited, the routine clears all CSR bits except
for the interrupt-expected bit.

0 It confirms that the reader was just placed on line by examining a saved
copy of the CSR.

0 It examines the reference count field of the device's UCB (UCB$W_REFC)
to determine whether a process has allocated the device or assigned a
channel to it.

0 If the reference count is zero, the interrupt service routine tests the
job-attached bit in the device-dependent status field (UCB$V_JQB in
UCB$W_DEVSTS) to make sure it has not already sent the job controller
a message about the card reader being placed on line.

0 If the job-attached bit is not set, the routine sets the bit and creates a fork
process to send the message to the job controller, using the system routine
EXE$SNDEVMSG (described in Appendix C). It is necessary to lower IPL
from device IPL by forking at this point because EXE$SNDEVMSG
expects its caller's IPL to be no greater than IPL$_MAILBOX.

When the interrupt service routine regains control, it releases the device lock,
restores RO through RS and dismisses the interrupt with an REI instruction.
(The interrupt service routine removed the IDB pointer from the stack earlier
in its execution in order to obtain CSR and UCB addresses.)

4li> When the fork process created at step 8 eventually executes, it writes a
message to the job controller's mailbox, indicating that the card reader is
on line.

41 If the fork process successfully sends the message, it leaves the job­
attached bit set to prevent the job controller from receiving any further
messages about the card reader's state. (The driver's cancel-I/O routine
later clears the bit.)

1 Because the card reader has a dedicated controller, the IDB$L_OWNER field always points to the UCB for the
single unit:

OO(SP) --+ CRB --+ IDB --+ IDB$L_OWNER --+ UCB

9-7

Writing an Interrupt Service Routine
9.3 Servicing an Unsolicited Interrupt

9-8

a> If the send-message request fails, the fork process clears the job-attached
bit so that if the card reader makes a subsequent state change to on line,
the interrupt service routine can attempt again to send a message to the
job controller.

Another example of unsolicited interrupt processing occurs in a device driver
for a multiunit controller. When a disk is placed off line, the disk drive
hardware requests an interrupt. The driver interrupt service routine must
determine what device unit requested the interrupt, obtain status information
from the disk device's CSR, and then decide whether the interrupt was
solicited.

Because it must access device UCB fields and device registers, the interrupt
service routine first obtains the appropriate device lock. If the interrupt is
unexpected, it calls code that services the unsolicited interrupt. This code
checks the status of the volume, as described in the following steps:

1 It sets a bit in the UCB to indicate that the unit is on line (UCB$V_
ONLINE in UCB$L_STS).

2 If the UCB's volume-valid bit is set (UCB$V_VALID in UCB$L_STS), the
routine tests the volume valid status bit in a device register to determine
whether the volume status has changed. If the volume is no longer valid,
the routine clears the UCB volume valid bit.

3 The routine returns control to the driver's interrupt service routine.

The driver's interrupt service routine then polls the other device units on the
controller to determine whether any other units requested interrupts while the
first interrupt was being processed. When no unit requires interrupt servicing,
the routine removes the IDB pointer from the stack, releases the device lock,
restores registers RO through RS, and dismisses the interrupt with an REI
instruction.

1 Q Completing an 1/0 Request and Handling Timeouts

Once a driver has activated the device and invoked the wait-for-interrupt
macro, the driver remains suspended until the device requests an interrupt or
times out.

If the device requests an interrupt, the driver's interrupt service routine
handles the interrupt and then reactivates the driver at the instruction
following the wait-for-interrupt macro. The reactivated driver performs
device-dependent 1/0 postprocessing.

If the device does not request an interrupt within the designated time interval,
the system transfers control to the driver's timeout handling routine. The
address of the timeout handling routine is specified as the excpt argument to
the wait-for-interrupt macro.

10.1 1/0 Postprocessing

10.1 .1 EXE$10FORK

Once the driver interrupt service routine has processed an interrupt, it
transfers control to the driver by issuing a JSB instruction. At this point,
the driver is executing in interrupt context. If the driver were to continue
executing in interrupt context, it would lock out most other processing on the
processor including the handling of hardware interrupts.

To restore the driver to the context of a driver fork process, the driver
invokes the VMS macro IOFORK. Once the fork process has been created
and dispatched for execution, it executes the driver code that completes the
processing of the 1/0 request.

IOFORK generates a call to the routine EXE$IOFORK. EXE$IOFORK converts
the driver context from that of an interrupt service routine to that of a fork
process by performing the following steps:

1 It disables software timeouts by clearing the timeout enable bit in the
UCB status longword (UCB$V_TIM in UCB$L_STS).

2 It saves R3 and R4 of the current driver context in the UCB fork block
(UCB$L_FR3 and UCB$L_FR4).

3 It saves the current driver PC in the UCB fork block (UCB$L_FPC).
(The driver PC is the top longword on the stack, as a result of the JSB to
EXE$IOFORK.)

4 It obtains the fork lock index of the driver from the UCB (UCB$B_FLCK)
and uses it to determine in which fork queue it should place the fork
block.

5 It inserts the address of the UCB fork block (RS) into the processor-specific
fork queue corresponding to the driver's fork IPL.

10-1

Completing an 1/0 Request and Handling Timeouts
10.1 1/0 Postprocessing

6 Finally, if the fork block is the first entry in the fork queue, EXE$IOFORK
requests a software interrupt from the local processor at the driver's fork
IPL.

The steps listed previously move the fork process's context into the UCB's
fork block. They save R3 through RS and the driver's PC address. The
driver's fork process resumes processing when the VMS fork dispatcher
dequeues the UCB fork block from the fork queue, and reactivates the driver
at the driver's fork IPL.

10.1.2 Completing an 1/0 Request

10.1.2.1

10-2

When VMS reactivates a driver's fork process by dequeuing the fork block,
the driver resumes processing of the 1/0 operation holding the appropriate
fork lock at fork IPL. Generic VAXBI devices perform whatever device­
dependent operations are needed to prepare an 1/0 request for completion. If
the device has completed the IjO operation without errors, a UNIBUS/Q22
bus driver for a DMA device proceeds as follows:

1 Purges the data path

2 Releases the buffered data path (applies only to UNIBUS DMA device
drivers)

3 Releases map registers (does not apply to MicroVAX I DMA device
drivers)

4 Releases the controller (applies only to drivers of devices on multiunit
controllers)

5 Checks device register images saved in the UCB to determine the status
of the 1/0 operation

6 Saves in the IRP the status code, transfer count, and device-dependent
status that is to be returned to the user process in an 1/0 status block

7 Returns control to the operating system

The first three steps listed previously apply to UNIBUS/Q22 bus DMA
transfers only and are discussed in Section 12.2. The following sections
describe the last three steps.

Releasing the Controller
To release the controller channel, the driver code invokes the VMS macro
RELCHAN. RELCHAN calls the VMS routine IOC$RELCHAN. If another
driver is waiting for the controller channel, IOC$RELCHAN grants that
driver's fork process the channel, restores its context from the UCB fork
block, and transfers control to the saved PC. When no more drivers are
awaiting the channel, IOC$RELCHAN returns control to the fork process that
released the channel.

Drivers for devices with dedicated controllers need not release the controller's
data channel (as discussed in Sections 8.3.1and11.1). By means of code in
the unit initialization routine, these drivers set up the device's UCB so that
the device owns the controller permanently.

Drivers must be executing at driver's fork IPL when they invoke RELCHAN
or call IOC$RELCHAN.

Completing an 1/0 Request and Handling Timeouts
10.1 1/0 Postprocessing

10.1.2.2

10.1.2.3

Saving Status, Count, and Device-Dependent Status
To save the status code, transfer count, and device-dependent status, the
driver performs the following steps:

1 Loads a success status code (SS$_NORMAL), or whatever is appropriate,
into bits 0 through 15 of RO.

2 Loads the number of bytes transferred into the high-order 16 bits of RO
(bits 16 through 31), if the I/O operation performed by the device is a
transfer function.

3 Loads device-dependent status information, if any, into Rl. 1

Returning Control to the Operating System
Finally, the driver fork process returns control to the system by invoking
the REQCOM macro to complete the 1/0 request. REQCOM issues a JMP
instruction to the VMS routine IOC$REQCOM. IOC$REQCOM locates the
address of the I/O request packet (IRP) corresponding to the I/O operation
in the device's UCB (UCB$L_IRP). It then writes the two longwords of
completion status contained in RO and Rl into the media field of the IRP
(IRP$L _MEDIA and IRP$L _MEDIA+4).

IOC$REQCOM then inserts the IRP in the local processor's I/0-
postprocessing queue and requests a software interrupt at IPL$_10POST
from the local processor so the postprocessing begins when IPL drops below
IPL$_IOPOST.

If the error-logging bit is set in the device's UCB (UCB$V_ERLOGIP in
UCB$L_STS), IOC$REQCOM obtains the address of the error message buffer
from the UCB (UCB$L_EMB). It then writes the following information into
the error buffer:

• Final device status (UCB$W_DEVSTS)

• Final error count (UCB$B_ERTCNT)

• Maximum error retry count for the driver

• Two longwords of completion status (RO and Rl)

To release the error message buffer, IOC$REQCOM calls ERL$RELEASEMB.
Section 11.3 describes error logging in more detail.

If any IRPs are waiting for driver processing, IOC$REQCOM dequeues an IRP
from the head of the queue of packets waiting for the device unit (UCB$L_
IOQFL), and transfers control to IOC$INITIATE. IOC$INITIATE initiates
execution of this 1/0 request in the driver's fork process, by activating the
driver's start-I/O routine, as described in Section 4.2.1.

Otherwise, IOC$REQCOM clears the unit-busy bit in the device's UCB
status longword (UCB$V_BSY in UCB$L _STS) and transfers control to
IOC$RELCHAN to release the controller channel in case the driver failed to
do so. IOC$RELCHAN, in turn, returns control to the caller of the driver fork
process (if the fork process issued the RE QC OM macro). This is generally
the VMS fork dispatcher. The fork dispatcher releases the fork lock, restores
saved registers, and dismisses the fork IPL software interrupt with an REI
instruction.

1 RO and Rl are the status values that VMS returns to the user process in the I/O status block specified in the
original $QIO system service.

10-3

10.2

Completing an 1/0 Request and Handling Timeouts
10.1 1/0 Postprocessing

The remaining steps in processing the I/O request are performed by VMS
I/O postprocessing. (See Section 4.3.1 for additional information.)

Timeout Handling Routines

10-4

VMS transfers control to the driver's timeout handling routine if a device unit
does not request an interrupt within the time limit specified in the invocation
of the wait-for-interrupt macro. Among its other activities, the VMS software
timer interrupt service routine, having raised IPL from IPL$_TIMERFORK to
IPL$_SYNCH, scans UCBs once every second to determine whether a device
has timed out.

When the software timer interrupt service routine locates a device that
has timed out, the routine calls the driver's timeout handling routine by
performing the following steps:

1 It obtains both the fork lock and the device lock associated with the
device unit to synchronize access to its fork database and device database.
It raises IPL to device IPL as a result of obtaining the device lock.

2 It raises IPL on the local processor to IPL$_POWER to block local power
failure servicing.

3 It disables expected interrupts and timeouts on the device by clearing bits
in the status field of the device's UCB (UCB$V_INT and UCB$V_TIM in
UCB$L_STS).

4 It sets the device-timeout bit in the UCB status field (UCB$V_TIMOUT in
UCB$L _STS).

5 It lowers IPL to hardware device interrupt IPL (UCB$B_DIPL).

6 It restores the saved R3 and R4 of the driver's fork process from the UCB
fork block (UCB$L_FR3 and UCB$L_FR4).

7 It restores RS (address of the UCB fork block).

8 It computes the address of the driver's timeout handling routine from the
saved PC in the UCB fork block (UCB$L_FPC).

9 It transfers control to the driver's timeout handling routine.

The driver's timeout handling routine executes in the following context:

• RO through RS are saved on the stack.

•
•
•
•
•
•

RS contains the address of the UCB for the device that timed out.

Only system address space may be accessed .

The processor is running in kernel mode .

The processor is running on, the interrupt stack .

The processor holds both fork lock and device lock .

IPL is at hardware device interrupt level.

A timeout handling routine returns control to the software timer interrupt
service routine by issuing an RSB instruction. The driver's fork process
eventually regains control, with R3 and R4 restored from UCB$L_FR3 and
UCB$L __FR4.

Completing an 1/0 Request and Handling Timeouts
10.2 Timeout Handling Routines

Certain timeout handling routines may find it useful to fork to execute low
priority code or to accomplish certain tasks, such as the restarting of an 1/0
request (see Section 10.2.1). If a driver uses this method, its interrupt service
routine should check the interrupt-expected bit (UCB$V_INT) before handling
the interrupt. The operating system clears this bit before it calls the driver's
timeout handling routine. This allows the routine to determine whether
device-timeout processing is in progress at fork IPL.

During recovery from a power failure, VMS forces a device timeout by
altering the timeout field (UCB$L_DUETIM) of a UCB if that device's UCB
records that the unit is waiting for an interrupt or timeout (UCB$V_INT and
UCB$V_ TIM set in UCB$L _STS). The timeout handling routine can perceive
that recovery from a power failure is occurring by examining the power bit
(UCB$V_POWER in UCB$L_STS) in the UCB.

A timeout handling routine usually performs one of three functions:

•
•

•

It retries the 1/0 operation unless a retry count is exhausted .

It aborts the 1/0 request, returning status (for instance, SS$_TIMEOUT)
in RO.

It sends a message to an operator mailbox and waits for a subsequent
interrupt or timeout.

10.2.1 Retrying an 1/0 Operation
Some devices might retry an 1/0 operation after a timeout. For example, a
disk driver's timeout handling routine might take the following steps after a
transfer timeout:

1 Invokes the FORK macro to lower IPL to fork level.

2 Releases any owned map registers, data path, and controller data channel.

3 Determines whether it is possible to retry the 1/0 operation.

4 Examines the error retry count (UCB$B_ERTCNT) to determine whether
it is possible to retry the 1/0 operation.

If the retry count is exhausted, the timeout handling routine sets the error
code, performs a normal abort 1/0 cleanup operation, and issues the
REQCOM macro to complete the 1/0 request.

If the retry count is not exhausted, the routine proceeds to the next step.

5 Examines the power bit (UCB$V_POWER in UCB$L_STS) to determine
if it must take special steps before retrying the operation. For instance,
the timeout handling routine should load the address of the IRP into R3
and reload the following fields of the IRP into the corresponding UCB
fields, if they have been altered by partial processing of the 1/0 request:

IRP$L_BCNT
IRP$W_BOFF
IRP$L _SVAPTE

These actions set up an environment in which the transfer can be retried
from the beginning.

6 Calls ERL$DEVICTMO to log the device timeout if the driver supports
error logging (see Section 6.2).

10-5

Completing an 1/0 Request and Handling Timeouts
10.2 Timeout Handling Routines

7 Decreases the error retry count (UCB$B_ERTCNT).

8 Clears the UCB timeout bit (UCB$V_TIMOUT) in UCB$L_STS.

9 Branches to the start-I/O routine to retry the operation.

10.2.2 Aborting an 1/0 Request
A driver's timeout handling routine aborts the IjO request when it exhausts
its retry count or when, having read device registers, the driver determines
that some fatal error condition has occurred such that there is no point in
retrying the request. Similarly, the routine aborts a request if the device's
cancel-I/O bit (UCB$V_CANCEL in UCB$L_STS) is set, signifying that a
cancel-I/O request was made.

To abort an I/O request, a timeout handling routine performs the following
sequence of steps:

1 Clears the device control and status register (CSR), if appropriate to the
device and controller

2 Invokes the FORK macro to lower IPL to fork level

3 Releases any owned map registers, data path, and controller data channel

4 Loads the abort status code (SS$-ABORT) into the low word of RO

5 Clears bits 16 through 31 in RO to indicate that no data was transferred

6 Issues the REQCOM macro to complete the request

10.2.3 Sending a Message to the Operator

10-6

The following sequence describes a timeout handling routine that sends a
message to the operator's mailbox and then goes back into a wait-for-interrupt
or timeout state on the presumption that subsequent human intervention will
make the device operational:

1 The timeout handling routine invokes the FORK macro to lower IPL to
driver fork level.

2 It checks the cancel-I/O bit in the UCB status longword (UCB$V_
CANCEL in UCB$L _STS).

If UCB$V_CANCEL is set, the timeout handling routine can abort the
request. However, if UCB$V_CANCEL is clear, the timeout handling
routine performs the following actions:

a. Saves R3 and R4 on the stack.

b. Loads an OPCOM message code, such as MSG$_DEVOFFLIN, into
R4. Note that the driver must invoke the message definition macro
$MSGDEF (located in SYS$LIBRARY:STARLET.MLB) to use these
message codes.

c. Loads the address of the operator's mailbox (a pointer to which is
located at SYS$AR_OPRMBX) into R3.

Completing an 1/0 Request and Handling Timeouts
10.2 Timeout Handling Routines

d. Calls a VMS routine to place the message in the operator's mailbox,
as follows:

JSB G~EXE$SNDEVMSG

e. Restores R3 and R4.

f. Invokes the DEVICELOCK macro to raise IPL to device IPL and
obtain the associated device lock.

g. Issues a SETIPL macro to raise IPL$_POWER and prevent power
failure interrupts on the local processor.

h. Invokes the WFIKPCH macro to wait for another interrupt or timeout.

When the OPCOM process reads the message in its mailbox, it sends the
requested message, in this case "device-offline," to all operator terminals
enabled for that device class.

10-7

11

11.1

Other Driver Routines

Drivers normally contain initialization, cancel-1/0, error logging, and register
dumping routines. The driver prologue table specifies the addresses of the
unit and controller initialization routines.1 The driver dispatch table (DDT)
contains the addresses of the cancel-1/0, error logging, and register dumping
routines. The type of device determines which of these routines are required
in a driver.

Drivers more rarely require a driver unloading routine, cloned UCB routine,
or unit delivery routine. VMS, however, provides a method for specifying
these routines in the DPT or DDT. A brief discussion of the driver unloading·
routine appears in Section 15.2.3. Section 11.4 describes the functions of a
cloned UCB routine. A description of the unit delivery routine appears in
Section 15.4.2.

Initialization Routines
Most device controllers and device units require initialization both when
the corresponding device driver is loaded and when the operating system
is recovering from a power failure. At these times, the duty of initialization
routines is to prepare controllers and device units for operation, according to
their characteristics.

The VMS operating system always calls controller and unit initialization
routines with IPL raised to IPL$_POWER. The high IPL prevents any
interrupts from reaching the local processor while initialization is occurring;
for this reason, initialization routines should only contain code that is
absolutely needed at initialization time. Initialization routines should not
explicitly lower IPL. The system calls initialization routines with a JSB
instruction; the routines return by executing an RSB instruction.

11 .1 .1 Controller Initialization Routine
The duties of a controller initialization routines depend on the characteristics
of the device. For example, a controller initialization routine for a card reader
might enable interrupts from the device by setting the interrupt-enable bit in
the device's control and status register (CSR). A disk's controller initialization
routine, on the other hand, might enable interrupts and initialize all unit­
status registers. A controller initialization routine can typically perform any of
the following tasks:

• Determines if it is being called as a result of a power failure by examining
the power bit (UCB$V_POWER in UCB$L_STS) in the UCB. A controller
initialization routine may want to perform or avoid specific tasks when
servicing a power failure (see Section 11.1.4).

• Clears error-status bits in device registers.

1 A MASSBUS device driver must specify the address of its unit initialization routine in the driver dispatch table
(using the unitinit argument to the DDTAB macro as discussed in Section 6.2). UNIBUS, Q22 bus, and generic
VAXBI device drivers can specify the address in either the DPT or DDT.

11-1

Other Driver Routines
11 .1 Initialization Routines

• Initiates a device operation, such as clearing a drive or acknowledging a
disk pack.

• Enables controller interrupts.

• If the controller is dedicated to a single-unit device, such as a printer,
fills in IDB$L_OWNER and set the online bit (UCB$V_ONLINE in
UCB$L_STS).

• Permanently allocates driver resources, such as

UNIBUS/Q22 bus map registers (see Section 12.2.2.2)

UNIBUS buffered data path (see Section 12.2.1.2)

• Allocates a buffer from nonpaged system dynamic memory.

Note that the permanent allocation of driver resources and the allocation of
nonpaged pool require that the controller initialization routine fork to the
driver's fork IPL. This action warrants careful coordination of the activities of
the controller and unit initialization routines, both with each other and with
the System Generation Utility (SYSGEN). See Section 11.1.5 for a discussion
of forking in an initialization routine.

The controller initialization routine for a generic VAXBI device driver
must initialize the device-specific aspects of the VAXBI device. Hardware
initialization might include such activities as writing values to BIIC and
device-specific registers, examining the results of the BIIC self test, mapping
a node's window space, building data structures to control the device, and
linking these structures into chains of similar data structures. (Section 14.4
extensively discusses the means by which a driver's controller initialization
routine performs these tasks.)

At the time of a call to a controller initialization routine, the following
registers contain the listed values:

Register

R4

R5

R6

RS

Value

Address of CSR

Address of IDB that describes the controller

Address of DOB associated with the controller

Address of CRB for the controller

A controller initialization routine must preserve the contents of all registers
except RO, Rl, and R2.

11.1.2 Unit Initialization Routine

11-2

A unit initialization routine is useful for initializing device-dependent fields in
the UCB. For example, a. unit initialization routine for a disk can also specify
disk-drive geometry (such as number of cylinders) in the UCB and wait for
online units to spin up to speed. Unit initialization routines must set the
online bit in the UCB (UCB$V_ONLINE) to declare the unit to be on line.

A unit initialization routine can perform the same types of tasks as a
controller initialization routine (see Section 11.1.1). Generally, the driver
for a single-unit controller does not need a unit initialization routine.

Other Driver Routines
11 .1 Initialization Routines

At the time of a call to a unit initialization routine, the registers contain the
following values:

Register

R3

R4

R5

Value

Address of primary CSR

Address of secondary CSR; R4 is equal to R3 if there is no
secondary CSR

Address of the device's UCB

A unit initialization routine must preserve the contents of all registers except
RO, Rl, and R2.

11 .1 .3 Initialization During Driver Loading
Prior to calling the initialization routines within a driver, VMS takes steps to
initialize the appropriate 1/0 database structures and establish the appropriate
links between these data structures and the driver. First, during system
initialization, VMS creates an ADP for the device adapter. For generic VAXBI
devices and MASSBUS devices, VMS creates an ADP, CRB, and IDB for the
device at this time. Secondly, during driver loading, VMS performs some
additional initialization. Finally, the driver's initialization routines are given
an opportunity to initialize the device in a device-specific manner.

The extent of the initialization VMS performs during driver loading depends
upon whether the 1/0 database is being created, and whether the driver is
being loaded for the first time or is replacing a driver that was previously
loaded.

The SYSGEN commands LOAD, AUTOCONFIGURE, and CONNECT add
new drivers to the system configuration. The RELOAD command unloads an
existing version of a driver and replaces it with a new one.

The LOAD command loads the driver into nonpaged system memory but
does not call any driver-specific routines or execute any initialization requests
specified in DPT_STORE macro invocations.

The AUTOCONFIGURE and CONNECT commands create and initialize
1/0 database structures associated with the device driver, call driver-specific
initialization routines, and perform requests specified in DPT_STORE macro
invocations. For each new device they add to the system, AUTOCONFIGURE
and CONNECT perform the following steps:

• Create a UCB for the device. If this is the first occurrence of device and
controller name, the commands create a DDB, CRB, and an IDB. (Because
the CRB and IDB for a generic VAXBI device driver or MASSBUS device
driver have already been created by the VMS adapter initialization
routine, a CONNECT or AUTOCONFIGURE command for such a device
never creates these structures.)

• Perform the initialization operations specified by the DPT_STORE macros
within the initialization and reinitialization portions of the DPT.

• Relocate all addresses in the DDT and FDT to system virtual addresses.

• Call the controller initialization routine specified in the CRB, if it has
created a CRB (or if CRB$V_UNINIT is set in CRB$B_MASK for a generic
VAXBI device).

11-3

Other Driver Routines
11.1 Initialization Routines

• Call the unit initialization routine (if any) specified in the DDT. If no
routine exists in the DDT, call the unit initialization routine (if any)
specified in the C:RB.

The AUTOCONFIGURE and CONNECT command operations raise IPL to
IPL$_POWER before calling the driver's initialization routines.

The RELOAD command replaces an existing driver with a new driver. The
command loads the new driver's code into non paged system memory. Unlike
the other SYSGEN commands for driver loading, RELOAD assumes that the
data structures. associated with the driver already exist, and thus updates the
IjO database to reflect the modified code and its different location in system
virtual address space. It performs the following functions:

• Calls the driver unloading routine in the old version of the driver, if one
exists (as indicated in the unload argument of the DPTAB macro) and if
bit DPT$V_NOUNLOAD in DPT$B_FLAGS is clear.

The driver unloading routine must return success status in RO for
SYSGEN to proceed with the following steps.

• Deallocates the memory occupied by the old version of the driver.

• Loads the new version of the driver.

• Executes requests specified by DPT_STORE macro invocations in only the
reinitialization section of the DPT in the new driver.

• Relocates all addresses in the FDT and DDT to system virtual addresses.

• Calls the controller initialization routine.

Chapter 15 contains detailed descriptions of all SYSGEN commands related
to device drivers.

11.1.4 Initialization During Recovery from a Power Failure
During recovery from a power failure, the operating system locates every
UCB in the I/O database, by following the chain of pointers to all DDBs in
the system (starting at IOC$GL _DEVLIST and chained by DDB$L _LINK)
and the chain of pointers to all UCBs of the same device and controller type
(starting at DDB$L_UCB and chained by UCB$L_LINK). For each UCB it
finds, VMS performs the following procedure:

1 It locates the CRB associated with the UCB (UCB$L_CRB) and
determines whether a controller initialization routine exists for the
device's controller by examining CRB$L_INTD+VEC$L_INITIAL. If an
invocation of the DPT_STORE macro loaded the address of a controller
initialization routine into this field, VMS calls that routine.

2 It determines whether a unit initialization routine exists for the particular
device unit by examining the unit initialization field of the DDT (DDT$L_
UNITINIT). If the field does not contain an address, the system checks
the CRB (CRB$L_INTD+VEC$L_UNITINIT).2

2 MASSBUS drivers store unit initialization routines addresses only in the DDT.

11-4

Other Driver Routines
11.1 Initialization Routines

If either the CRB or the DDT contains a nonzero address for such a
routine, the system calls the routine to initialize the device unit. The
system calls only one routine; if the DDT contains an address, the address
in the CRB is ignored.

When called to service a power failure, driver initialization routines must
adhere to the following rules:

• They cannot acquire any spin locks. Controller and unit initialization
routines are called at IPL 31 during power failure recovery to reinitialize
1/0 devices before the processors are allowed to proceed with execution
at lower IPLs. Because processors may have been holding spin locks at
the time of the power failure, they will not be able to release them until
after they resume execution. As a result, spin locks are not available to
controller and unit initialization routines.

• They cannot perform any operation that requires the intervention of other
processors in a VMS multiprocessing system.

A driver initialization routine can determine if it is being called as a result of a
power failure by examining the power bit (UCB$V_POWER in UCB$L _STS)
in the UCB.

11 .1 . 5 Forking from a Driver Initialization Routine
If a driver initialization routine must fork to perform a thread of code that
must synchronize with code or a structure synchronized at a lower IPL, it
must take special care to avoid breaking that synchronization.

First of all, because SYSGEN, under normal circumstances, immediately
calls a driver's unit initialization routine at IPL$_POWER after its controller
initialization completes, the unit initialization routine must be prepared for
the instance of a controller initialization routine that forks. Such a unit
initialization routine would complete before the fork thread of the controller
initialization routine resumed.

A fork thread in a unit initialization routine (or a controller initialization
routine in a driver without a unit initialization routine) must otherwise take
the following precautions to avoid breaking synchronization:

• Use either the CRB fork block, or a fork block defined in a device-specific
extension to the UCB. The separate fork block prevents a conflict with
the use of the normal UCB fork block by the IOFORK routine. If you are
using a separate UCB fork block, you must not attempt to allocate the
fork block from paged pool.

• You should use a semaphore bit to protect against multiple forking.
Remember that the unit initialization routine may be called repeatedly
in the case of power failures. If the semaphore shows that a fork is in
progress, then exit without attempting to fork. Access the semaphore bit
using interlocked instructions (for example, BBSSI or BBCCI).

• Invoke EXE$FORK with RS pointing to the alternate fork block. Restore
the original value of RS once the fork process is active.

11-5

11.2

Other Driver Routines
11 .1 Initialization Routines

• Restore all registers on exit. Because EXE$FORK removes the caller's
address from the stack and returns to the caller's caller, the unit
initialization routine must set up a dummy caller's caller routine to
restore registers destroyed by EXE$FORK.

Cancel-1/0 Routine
VMS routines call a device driver's cancel-1/0 routine under the following
circumstances:

• When a process issues a Cancel-1/0-on-Channel system service
($CANCEL)

• When a process deallocates a device, causing the device reference count
(UCB$W_REFC) to become zero (that is, no process 1/0 channels are
assigned to the device)

• When a process deassigns a channel from a device, using the $DASSGN
system service3

• When VMS performs cleanup operations as part of image termination
by canceling all pending 1/0 requests for the image and closing all
image-related files open on process 1/0 channels

The VMS routine EXE$CANCEL locates the UCB for the device associated
with a process ljO channel from a pointer in the CCB, as follows:

channel index number ~ CCB ~ UCB

EXE$CANCEL performs the following steps:

1 Obtains the fork lock associated with the driver, thus raising IPL to fork
IPL.

2 Removes from the device's pending-1/0 queue all IRPs associated with
the process and that channel.

3 For a buffered-1/0 read operation, clears the buffered-read function bit
(IRP$V_FUNC) in IRP$W_STS.

4 Sets the status code SS$_CANCEL in IRP$L_MEDIA.

5 Inserts the IRPs removed from the pending-1/0 queue into the local
processor's 1/0 postprocessing queue.

6 Requests a software interrupt from the local processor at IPL$_IOPOST.

7 Calls the cancel-1/0 routine specified in the DDT of the associated device
driver (argument cancel to the DDTAB macro). EXE$CANCEL locates the
routine using the following chain of pointers:

UCB ~ DDT ~ cancel-1/0 routine

3 Note that if the call to $DASSGN deassigns the last channel to the device, the device driver's cancel-I/O
routine is called a second time. Channel deassignment and last channel deassignment are both potentially
significant events for certain devices. The former means, in effect, that a user has finished with a device and the
latter means that all users are finished with a device. The reason code for both events is CAN$C_DASSGN.
However, a driver's cancel-1/0 routine can distinguish between the two cases by examining UCB$W_REFC.

11-6

Other Driver Routines
11.2 Cancel-1/0 Routine

The cancel-1/0 routine gives the driver an opportunity to prevent further
device-specific processing of the 1/0 request currently being processed on the
device.

11.2.1 Context of a Cancel-1/0 Routine
When EXE$CANCEL calls the cancel-1/0 routine, the local processor is at
driver fork IPL holding the associated fork lock. As a result, the cancel-1/0
routine can read and modify the device's UCB. Registers at the time of the
call contain the following values:

Register

R2

R3

R4

R5
RS

Value

Channel index number.

Address of current IRP.

Address of process control block (PCB) of process for which the
$CANCEL system service is being performed.

Address of device's UCB.

Reason for call to cancel the 1/0 request. Codes that signify
the reasons for cancellation are defined by the $CANDEF macro.
Possible values for RS include
CAN$C_CANCEL Called by $CANCEL system service

CAN$C_DASSGN Called by $DASSGN or $DALLOC system
service

If a cancel-1/0 routine uses registers other than RO through R3, it must save
the registers and restore them before exiting.

Device drivers might want to base their cancel-1/0 operation on whether
the cancel-1/0 request is the result of a channel deassignment (CAN$C_
DASSGN). For example, the terminal driver cancels out-of-band AST requests
only if the call to its cancel-1/0 routine results from a Deassign-1/0-Channel
($DASSGN) system service call.

11.2.2 Drivers That Need No Cancel-1/0 Routine
Some devices do not need any device-dependent processing performed for
an 1/0 request; you can omit the cancel argument from the DDTAB macro.
In this case, the DDTAB macro expansion loads the address of the VMS
routine IOC$RETURN into the appropriate position in the DDT. The routine
IOC$RETURN executes a single RSB instruction.

11-7

Other Driver Routines
11.2 Cancel-1/0 Routine

11.2.3 Device-Independent Cancel-1/0 Routine
Drivers can specify the VMS routine IOC$CANCELIO as the value of the
cancel argument in the DDTAB macro invocation. IOC$CANCELIO cancels
IJO to a device in the following device-independent manner:

1 It confirms that the device is busy by examining the device-busy bit in
the UCB status longword (UCB$V_BSY in UCB$L _STS).

2 It locates the process-identification field in the IRP currently being
processed on the device by using the following chain of pointers:

UCB ---+ IRP ---+ process identification field

IOC$CANCELIO confirms that the field (IRP$L_PID) contains the same
value as the corresponding field in the PCB (PCB$L_plD).

3 It confirms that the specified channel-index number is the same as the
value stored in the IRP's channel-index field (IRP$W_CHAN).

4 It sets the cancel-1/0 bit in the UCB status longword (UCB$V_CANCEL
in UCB$L_STS). Other driver routines, such as the timeout handling
routine, check the cancel-1/0 bit to determine whether to retry the 1/0
operation or abort it. (See Section 10.2.2 for additional information.)

11.2.4 Device-Dependent Cancel-1/0 Routine

11.3

Drivers that include their own cancel-1/0 routines must perform the first
three steps of IOC$CANCELIO listed in Section 11.2.3 to determine whether
the 1/0 request being processed originates from the process canceling 1/0 on
a channel. If the three checks succeed, the cancel-1/0 routine can proceed in
a device-specific manner. For instance, a cancel-1/0 routine may perform the
following tasks:

• Clear UCB$V_INT and UCB$V_TIM in the UCB status longword
(UCB$L_STS)

• Release any owned map registers, data path, and controller data channel

• Load a status code (SS$_CANCEL, for instance) into the low word of RO

• Load other status information into the high word of RO and the longword
of Rl

• Issue the REQCOM macro to complete the request

Error Logging Routines

11-8

A driver that supports error logging must satisfy the following prerequisites:

• It must invoke the data structure definition macro $EMBDEF (located in
SYS$LIBRARY: LIB.MLB).

• It must use the local disk extension or local tape extension of the UCB.
These extensions include error-log extension. (See Section A.14 for
additional information.)

Other Driver Routines
11.3 Error Logging Routines

• It must provide a means whereby error logging can be enabled for the
device. For instance, it can use the DPT_STORE macro to set the device
characteristic DEV$V__ELG in UCB$L _DEVCHAR or it can support an
10$_SETCHAR function that sets this bit.

• It must ensure that the size of the error log buffer, as specified in
DDT$W_ERRORBUF, is large enough to accommodate EMB$L_DV_
REG SA V +4, plus one longword for each register to be dumped. It must
specify this value ip the erlgbf argument to the DDTAB macro.

• It should include a register dumping routine, specifying its address in the
regdmp argument of the DDTAB macro.

• It must complete the servicing of the 1/0 request by invoking the
REQCOM macro. (Routines, like ERL$DEVICEATTN, that log errors
that are not associated with the current 1/0 request skip this step.)
IOC$REQCOM takes steps to complete the error logging initiated by a
call to an error logging routine.

11.3.1 Error Logging Routines Supplied by VMS
The VMS operating system provides the following routines that drivers can
call to allocate and fill an error message buffer after a device error or timeout
occurs:

Routine Function

ERL$DEVICERR Logs an error associated with the 1/0 request in progress

ERL$DEVICTMO Logs a timeout associated with the 1/0 request in progress

ERL$DEVICEATTN Logs an error not associated with an 1/0 request

These routines are described in full in Appendix C, but they all perform
similar functions, as follows:

• Increment UCB$W_ERRCNT to record a device error. If the error-log­
in-progress bit (UCB$V_ERLOGIP in UCB$L _STS) is set, the routine
returns control to its caller (ERL$DEVICERR and ERL$DEVICTMO only).

• Allocate from the current error log allocation buffer an error message
buffer of the length specified in the device's DDT (in argument erlgbf to
the DDTAB macro).

• Initialize the buffer with the current system time, error log sequence
number, and error type code. These routines use the following error type
codes:

Routine Error Code

ERL$DEVICERR Device error (EMB$C_DE)

ERL$DEVICTMO Device timeout (EMB$C_DT)

ERL$DEVICEA TTN Device attention (EMB$C_DA)

• Place the address of the error message buffer in UCB$L _EMB.

• Set UCB$V_ERLOGIP in UCB$L_STS.

11-9

Other Driver Routines
11 .3 Error Logging Routines

• Load into RO the address of the location in the buffer in which the
contents of the device registers are to be stored.

• Call the driver's register dumping routine.

11 .3.2 Register Dumping Routine

11-10

A driver that supports error logging or diagnostics specifies the address of a
register dumping routine in the regdmp argument to the DDTAB macro.

When an error logging routine passes control to the driver's register dumping
routine, the following registers contain the listed values:

Register Value

RO

R4

R5

Address of buffer into which a register dumping routine copies the
contents of device registers

Address of device's CSR (if the driver invoked the WFIKPCH macro
to wait for an interrupt or timeout)

Address of UCB

The register dumping routine preserves the contents of all registers except RO
through R2. If it uses the stack, the register dumping routine must restore the
stack before passing control to another routine, waiting for an interrupt, or
returning control to its caller.

A register dumping routine uses the following procedure to fill the indicated
buffer:

1 Writes a longword value representing the number of device registers to be
written into the buffer.

2 Moves device register longword values into. the buffer following the
register count longword.

The source of these register values depends upon the nature of the
driver. If the driver has established a UCB extension, its interrupt service
routine can copy to it the values of critical device registers. In this case,
the register dumping routine may contain instructions similar to the
following:

MOVL UCB$L_TD_STATUS(R5),(RO)+

Alternatively, the register dumping routine can obtain device register
values directly from 1/0 address space, offsetting from the address of the
CSR as follows:

MOVZWL TD_STATUS(R4),(RO)+

Note that this latter method is not truly accurate in that, at the time a
register dumping routine runs, all or some device registers may have been
modified during the servicing of device interrupts unrelated to the error.

When a driver fork process invokes the system routine IOC$DIAGBUFILL, as
described in Appendix C, the routine transfers control to the register dumping
routine with the address of the diagnostic buffer in RO, the address of the
device's CSR in R4, and the address of the UCB in RS.

Other Driver Routines
11 .3 Error Logging Routines

11 .3.3 Interpreting Error Log Entries

11.4

See the Guide to Maintaining a VMS System and the VMS Error Log Utility
Manual for help with producing and reading error log files.

Cloned UCB Routine
EXE$ASSIGN calls the driver's cloned UCB routine when an Assign 1/0
Channel system service request ($ASSIGN) specifies a template device (that
is, bit UCB$V_TEMPLATE in UCB$L_STS is set). EXE$ASSIGN does not
assign the channel to the template device itself. Rather, it creates a copy of
the template device's UCB and ORB, initializing and clearing certain fields as
appropriate.

A cloned UCB routine receives control at IPL$_ASTDEL in kernel mode
with process context available, holding the IjO database mutex (IOC$GL _
MUTEX).

Only drivers for network devices or template devices, such as mailboxes,
include a cloned UCB routine. A driver specifies the address of a cloned UCB
routine in the cloneducb argument of the DDTAB macro.

The driver's cloned UCB routine verifies the contents of fields in the UCB and
ORB and completes their initialization. When a cloned UCB routine is called,
the following locations contain the listed values:

Location

RO

R2

R3

R4

R5

UCB$L _FQFL(R2)

UCB$L _FQBL(R2)

UCB$L _FPC(R2)

UCB$L _FR3(R2)

UCB$L _FR4(R2)

UCB$W _BUFQUO(R2)

UCB$L _ORB(R2)

UCB$L_LINK(R2)

UCB$L _IQQFL(R2)

UCB$L _IQQBL(R2)

UCB$W_UNIT(R2)

UCB$W _CHARGE(R2)

UCB$W _REFC(R2)

UCB$L _STS(R2)

Contents

SS$_NORMAL

Address of cloned UCB

Address of DDT

Address of current PCB

Address of template UCB

Address of UCB$L_FQFL(R2)

Address of UCB$L_FQFL(R2)

0

0

0

0

Address of cloned ORB

Address of next UCB in DOB chain

Address of UCB$L_IQQFL(R2)

Address of UCB$L_IQQFL(R2)

Device unit number (minimum UCB$W_UNIT_
SEED(R5)+ 1)

Mailbox byte quota charge (UCB$W _SIZE)

0

UCB$V_DELETEUCB set, UCB$V_ONLINE set

11-11

Other Driver Routines
11 .4 Cloned UCB Routine

11-12

Location

UCB$W _DEVSTS(R2)

UCB$L _OPCNT(R2)

UCB$L_SVAPTE(R2)

UCB$W _BOFF(R2)

UCB$W_BCNT(R2)

UCB$L _ORB(R2)

ORB$L _OWNER
of template ORB

ORB$L _ACL _MUTEX
of template ORB

ORB$B_FLAGS
of template ORB

ORB$W_PROT
of template ORB

ORB$L_ACL_COUNT
of template ORB

ORB$L _ACL _DESC
of template ORB

ORB$R_MIN_CLASS
of template ORB

Contents

UCB$V_DELMBX set if DEV$V_MBX is set in
UCB$L _DEVCHAR(R2)

0

0

0

0

Address of cloned ORB

UIC of current process

FFFF15

ORB$V_PROT _ 16 set

0

0

0

0 in first longword

A cloned UCB routine must preserve the contents of R2. It issues an RSB
instruction to return control to EXE$ASSIGN. If the routine returns error
status in RO, EXE$ASSIGN undoes the process of UCB cloning and completes
with the failure status in RO.

Part 111 Bus Specific Considerations and Advanced
Topics

12 UNIBUS and 022 Bus Device Support

12.1

This chapter provides information specific to the creation of drivers for
devices attached to the UNIBUS or Q22 bus. VMS provides extensive support
for UNIBUS/Q22 bus drivers, including many system routines and macros
that drivers can use to accomplish a multiblock transfer to a DMA device by
means of UNIBUS adapter/Q22 bus interface resources. Section 12.1 explains
the functions of the UNIBUS adapter and Q22 bus interface, describing these
resources in detail. Section 12.2 provides a step-by-step account of how
UNIBUS/Q22 bus device drivers can use the facilities of VMS to accomplish
DMA transfers.

Although the general mechanism of device interrupt dispatching, as defined
by the VAX architecture and briefly described on Chapter 9, is the same for
all VAX processing systems and I/O subsystems, certain implementation
details differ. In that regard, Section 12.3 describes the means by which
VAX hardware and the VMS operating system deliver a UNIBUS or Q22 bus
device's interrupt to its driver's interrupt service routine.

Functions of the UNIBUS Adapter and Q22 Bus Interface
The UNIBUS adapter connects the UNIBUS, an asynchronous, bidirectional
bus, to the backplane interconnect. The adapter performs the following
functions:

• Arbitrates interrupts from UNIBUS devices according to their priority

• Delivers interrupts from UNIBUS devices to the processor

• Allows drivers to gain access to UNIBUS device registers using system
virtual addresses

• Translates 18-bit UNIBUS addresses to physical addresses in main
memory

• Provides a data-transfer path to randomly ordered physical addresses in
main memory

• Provides buffered data transfer paths to consecutively increasing UNIBUS
addresses, thus optimizing CPU..,to-UNIBUS data transfers

• Permits byte-aligned buffers for UNIBUS devices requiring word-aligned
buffer addresses

The Q22 bus closely resembles the UNIBUS. For Micro VAX 3600-series,
MicroVAX II, or MicroVAX I devices attached to the Q22 bus, special
processor logic implements a Q22 bus interface that similarly allows drivers
access to device registers and manages device interrupts. Additional logic
in the Micro VAX 3600-series processor or MicroVAX II processor establishes
a scatter-gather map that translates 22-bit Q22 bus addresses to physical
addresses. However, Micro VAX 3600-series, MicroVAX II, and Micro VAX I
systems do not implement buffered data paths. (Table 12-1 compares the
UNIBUS and Q22 bus I/O subsystems of the various VAX and MicroVAX
processing systems.)

12-1

UNIBUS and 022 Bus Device Support
12.1 Functions of the UNIBUS Adapter and Q22 Bus Interface

The protocol a VAX system uses to enable communications between its 1/0
bus and backplane permits its devices and device drivers to exchange data
without much awareness of the intervening hardware. First of all, both the
UNIBUS adapter and the Q22 bus interface provide access to device registers
using an address mapping scheme that is invisible to the driver. In addition,
when the configuration of the 1/0 interface has an impact on the control of a
data transfer, the driver can generally call one of the many VMS routines that
handle the details of the interface.

The functional differences between 1/0 adapters are irrelevant to devices
that do not perform DMA transfers. A driver that performs non-DMA
(programmed 1/0) transfers for a device on the UNIBUS can, with no
alteration, perform the same services for an equivalent device on a Q22
bus.

On the other hand, the differences between the functions of the UNIBUS
adapter and the Q22 bus interface of the Micro VAX 3600-series, Micro VAX
II, and MicroVAX I systems are significant to those drivers that manage DMA
device operations.

Section 12.2 describes the means by which device drivers set up DMA
transfers, according to any of these interfaces. If a DMA driver that drives
similar devices on various VAX systems must secure ·some measure of
machine independence, it can include some run-time conditional code that
branches to appropriate routines in the driver that accomplish the machine­
dependent work. See the description of the ADPDISP macro in Appendix B
and the sample drivers that appear in Appendixes E and F for guidance.

This section discusses the functions of the UNIBUS adapter and the Q22 bus,
as follows:

• The discussion of reading and writing device registers in Section 12.1.1
applies to UNIBUS, MicroVAX 3600-series, MicroVAX II, and MicroVAX I
drivers.

• The description of mapping 1/0 bus addresses in Section 12.1.2 pertains
only to UNIBUS, MicroVAX 3600-series, and MicroVAX II DMA drivers.

• The description of buffering data transfers in Section 12.1.3 relates mainly
to UNIBUS drivers, although Section 12.1.3.l contains information
relevant to MicroVAX 3600-series, MicroVAX II, and MicroVAX I drivers
as well.

Table 12-1 Features of the UNIBUS Adapters/Q22 Bus Interfaces of VAX Systems

System

VAX-11/780
VAX-11/785
VAX 8600
VAX 8650
VAX 8670

Memory
References
(Physical Direct Buffered Data

Adapter Address) Data Path Paths

UBA 30-bit (via
SBI)

1,
no byte­
aligned
transfers

15,
8-byte buffer,
byte-aligned
transfers,
LWAE,3

pref etch

Map
Registers

496

Interrupt
Dispatcher

Non-direct-vector

3LWAE (longword access enable) refers to the capability to reference random longword-aligned data in a bus transfer.

12-2

UNIBUS and 022 Bus Device Support
12.1 Functions of the UNIBUS Adapter and Q22 Bus Interface

Table 12-1 (Cont.) Features of the UNIBUS Adapters/Q22 Bus Interfaces of VAX Systems

Memory
References
(Physical Direct Buffered Data Map Interrupt

System Adapter Address) Data Path Paths Registers Dispatcher

VAX-11/750 UBI 24-bit (via 1, 3, 5124 Direct-vector
CMI) byte- 4-byte buffer, 2

aligned byte-aligned
transfers transfers,

LWAE,3

no prefetch

VAX-11/730 UBA 24-bit 1, None 5124 · Direct-vector
VAX-11/725 byte-

aligned
transfers

VAX 8200 DWBUA 30-bit (via 1, 5, 5124 Direct-vector
VAX 8250 VAXBI) byte- 8-byte buffer,
VAX 8300 aligned byte-aligned
VAX 8350 transfers transfers,
VAX 8530 LWAE,3

VAX 8550 no prefetch
VAX 8700
VAX 8800
VAX 8830
VAX 8850
VAX 6200
series

MicroVAX 29-bit 1, None 8192 Direct-vector
3600 series no

restrictions
on data
alignment 1

MicroVAX II 24-bit 1, None 8192 Direct-vector
no
restrictions
on data
alignment 1

MicroVAX I 22-bit 1, None None Direct-vector
no
restrictions
on data
alignment 1

1The MicroVAX 3600-series, MicroVAX II, and MicroVAX I implementations of the 022 bus provide no byte-offset
register; so, on 022 bus devices that are only capable of word-aligned transfers, only word-aligned transfers are
possible.

2Buffered data paths on the VAX-11 /750 only buffer four bytes of data. Because the data paths do not perform a
prefetch, they can always reference longwords at random.

3LWAE (longword access enable) refers to the capability to reference random longword-aligned data in a bus transfer.

4The VMS operating system makes available only 496 of these map registers.

12-3

UNIBUS and Q22 Bus Device Support
12.1 Functions of the UNIBUS Adapter and Q22 Bus Interface

12 .1 .1 Reading and Writing Device Registers

12.1 .2 Map Registers

12-4

Each 1/0 controller or device directly attached to a UNIBUS or Q22 bus has
a control and status register (CSR) and set of data registers. These registers
are assigned physical addresses in the 8KB allocated for this purpose from the
256KB UNIBUS address space or in the Q22 bus 1/0 space. Device drivers
obtain the device's status and activate the device by reading and writing to
these registers.

Because the VMS operating system maps this 1/0 space into virtual address
space, a device driver can treat the addresses of device registers as identical to
all other virtual addresses. The driver can read and write data to the device's
register as though the device's register were a location in memory. The driver
must use instructions within the restrictions described in Section 5.2.

Before a driver for a device that shares a controller can gain access to a
device's registers, it must first obtain a controller channel, as described in
Sections 3.4.1 and 8.3.1.

OMA devices read and write data from and to memory locations using
18-bit UNIBUS addresses or, for the MicroVAX 3600 series, MicroVAX II, and
MicroVAX I, 22-bit Q22 bus addresses.

A driver that performs multiblock OMA transfers for a UNIBUS device or Q22
bus device must set up any mapping or buffering mechanisms required by
the system's 1/0 interface. For UNIBUS OMA drivers, this involves setting
up sufficient map registers and, perhaps, a buffered data path prior to the
transfer. MicroVAX 3600-series and MicroVAX II OMA drivers, likewise,
must allocate and fill a set of map registers. By contrast, Micro VAX I OMA
drivers-because the Micro VAX I has no scatter-gather map-cannot map the
many and scattered pages of a multiblock OMA transfer to a contiguous set of
addresses in the 1/0 adapter's address space. As a result, when it is loaded
into the system, a Micro VAX I OMA driver must reserve enough physically
contiguous memory to accommodate its largest possible OMA transfer (see
Section 12.2.8).

For UNIBUS devices and Micro VAX II/Micro VAX 3600-series devices, the
UNIBUS adapter and the Q22 bus interface translate the bus addresses into
main memory addresses, thus allowing the operating system, 1/0 drivers,
and UNIBUS devices to access the same physical address space. OMA
devices connected to either a UNIBUS, MicroVAX 3600-series Q22 bus, or
Micro VAX II Q22 bus can access a block of memory indirectly by means
of the scatter-gather map supplied by the UNIBUS adapter or Micro VAX
processor, respectively. The map registers provided allow the device to access
scattered, physical memory addresses as contiguous, physical addresses in
1/0 space.

When a device driver performs a OMA transfer, it allocates map registers and
a buffered data path (an option available to devices on the UNIBUS of some
VAX systems), and sets up the transfer by means of the device's registers. The
device then accesses memory directly by means of the 1/0 bus, transferring
all the data requested. When the transfer is complete, the device notifies the
driver by requesting an interrupt.

UNIBUS and Q22 Bus Device Support
12.1 Functions of the UNIBUS Adapter and Q22 Bus Interface

Consider a buffer, for example, that consists of virtual pages 400, 401, 402,
and 403, which are physical pages 1003, 204, 1190, and 240, respectively.
For a UNIBUS or Q22 bus device to access this buffer, the driver requests
four map registers, then places the physical addresses of these pages in the
map registers. A field in each map register identifies the page-frame number
corresponding to the UNIBUS space or Q22 bus space address that the map
register represents (see Figure 12-1).

Assume the driver has allocated four map registers, 127 through 130. The
driver loads them as follows:

Map Register

127

128

129

130

Contents

1003

204

1190

240

Note that the VMS routine the driver calls to allocate map registers
automatically allocates an additional map register (register 131 in this case).
The map register loading routine clears this register in order to prevent a
runaway DMA transfer.

The device and the UNIBUS can transfer data into or out of these physical
pages without intervention by the driver. The device requests an interrupt
only when all the data in these four pages has been transferred.

Generally, a map register exists for each page of I/O space. Because the
UNIBUS address space consists of 256K of memory, minus the 8KB reserved
for device control registers, 496 map registers are available for UNIBUS DMA
transfers. MicroVAX 3600-series and Micro VAX II DMA devices can use up to
8192 of the map registers that correspond to the 4MB of Q22 bus I/O space.

Drivers call VMS routines to fill as many map registers with valid page-frame
numbers as needed for a DMA transfer. The DMA device puts an address on
the I/O bus. The UNIBUS adapter or Q22 bus interface receives the address
and translates it using the following information (see Figures 12-2 and 12-3):

• In UNIBUS addresses, the 9-bit UNIBUS page address field (bits 9 through
17 of the UNIBUS address) identifies the UNIBUS adapter map register.

In Q22 bus addresses, the 13-bit Q22 bus page address field (bits 9 through
22 of the Q22 bus address) identifies the MicroVAX II map register.

• The page-frame-number (PFN) field in the map register specifies the
high-order bits of the physical address. (The PFN field is 15 bits long for
the MicroVAX II, VAX-11/750, and VAX-11/730; 20 bits long for the
MicroVAX 3600-series systems, and 21 bits long for other VAX systems.)

12-5

UNIBUS and 022 Bus Device Support
12.1 Functions of the UNIBUS Adapter and 022 Bus Interface

12-6

Figure 12-1 UNIBUS and Q22 Bus Map Registers

VAX-11/780, VAX-11/785, and VAX 8600/8650/8670

31 26 25 24 2120

reserved
data
path
number

page frame number

byte offset

longword access enable (L W AE)

~--------valid bit

VAX-11/750, VAX-11/730, and VAX-11/725

31 26 25 24 22 21 20 1514

MBZ reserved page frame number

• ' t L data path number (for VAX-11 /750)

byte offset

longword access enable (LWAE) for compatibility with

0

0

VAX-11/780; unused on VAX-11/750 and VAX-11/730
valid bit

VAX 8200/8250/8300/8350, VAX 8530/8550/8700/8800/8830/8850, and VAX 6200 Series

31 30 29 27 26 25 24 23 21 20 0

reserved

MicroVAX II

3130

p
data

0 path
number

11

reserved

f -------valid bit

MicroVAX 3600 Series

3130

11

reserved

f-------valid bit

page frame number

byte offset

longword access enable (L W AE)

valid bit

1514 0

page frame number

2019 0

page frame number

ZK-4842-85

UNIBUS and Q22 Bus Device Support
12.1 Functions of the UNIBUS Adapter and Q22 Bus Interface

• From UNIBUS addresses, bits 2 through 8 map to bits 0 through 6 of the
physical address. 1 The resulting physical address locates the longword
that is the target of the transfer.

From Q22 bus addresses, bits 0 through 8 map to bits 0 through 8 of the
physical address. The resulting physical address locates the byte that is
the target of the transfer.

Each UNIBUS adapter or Q22 bus map register also contains a bit called the
map-register valid bit. The. UNIBUS adapter or Q22 bus interface tests this
bit every time the map register is used. If the bit is not set, the UNIBUS
adapter or Q22 bus interface aborts the transfer. This bit is clear whenever
the register is not mapped to a physical address.

Figure 12-2 Mapping a UNIBUS Address to a Physical Address

18-BIT UNIBUS ADDRESS

---------------1 map register number
longword

offset

UNIBUS
adapter

scatter-gather
map

32-BIT MAP REGISTER

page frame number

page frame number

PHYSICAL ADDRESS

longword
offset

ZK-915-82

1 The disposition of the lowest two bits of the UNIBUS address depends on the VAX system. For instance, the
VAX-11/780 uses them to construct a byte-selection mask and function to be transmitted across UNIBUS lines
that modify the I/O transaction.

12-7

UNIBUS and 022 Bus Device Support
12.1 Functions of the UNIBUS Adapter and Q22 Bus Interface

Figure 12-3 Mapping a 022 Bus Address to a Physical Address

scatter-gather
map

22-BIT 022 BUS ADDRESS

map register number byte offset

32-BIT MAP REGISTER

page frame number

page frame number byte offset

24-BIT PHYSICAL ADDRESS (MicroVAX II)

29-BIT PHYSICAL ADDRESS
(MicroVAX 3600 Series)

ZK-4841-85

12.1.3 UNIBUS Adapter Data Transfer Paths

12-8

The UNIBUS adapter sends data through one of several data paths for
UNIBUS devices performing DMA transfers. One data path, the direct data
path (DDP), allows UNIBUS transfers to randomly ordered physical addresses.
The direct data path maps each UNIBUS transfer to a backplane interconnect
transfer. Thus, a single word or byte of data is transferred for each backplane
interconnect operation.

The remaining data paths, the buffered data paths (BDPs), allow devices on the
UNIBUS to transfer more efficiently than through the direct data path. The
buffered data paths store UNIBUS data so that multiple UNIBUS transfers
result in a single backplane interconnect transfer.

When a UNIBUS device begins a DMA transfer by placing an address on
the UNIBUS, the UNIBUS adapter not only performs address mapping
but also provides the number of the data path to be used for the transfer
(see Figure 12-1). Each UNIBUS adapter map register contains a field that
describes the data path. Data path 0 is the direct data path; the other data
paths are the buffered data paths. (The UNIBUS data path registers of the
various VAX systems are pictured in Figure 12-4.)

The following sequence describes a UNIBUS-device DMA transfer.

1 The UNIBUS device puts an address on the UNIBUS.

2 The UNIBUS adapter locates the UNIBUS adapter map register that
corresponds to the UNIBUS address.

UNIBUS and 022 Bus Device Support
12.1 Functions of the UNIBUS Adapter and Q22 Bus Interface

Figure 12-4 UNIBUS Data Path Registers

VAX-11/780, VAX 8600, VAX 8650, and VAX 8670

31 30 29 28 23 1 5 0

unused spare UNIBUS address
<17:2> . ~ ~ L data path function

Lo..--- buffer transfer error

buffer not empty /purge

VAX-11/750

3130 29 28 1 0

MBZ

uncorrectable error purge

nonexistent memory error

....._ ___ error summary

VAX 8200/8250/8300/8350, VAX 8530/8550/8700/8800/8830/8850, and VAX 6200 Series
DATA PATH CONTROL/STATUS REGISTER

31 2423 2120 1 0

I data path
select

ADDRESS/ST A TUS REGISTER

31

buffer address

1615 0

flags

ZK-4843-85

3 The UNIBUS adapter verifies that the map register has the map-register
valid bit set.

4 The UNIBUS adapter maps the UNIBUS address to a physical address.

5 The UNIBUS adapter extracts the number of the data path to be used for
the transfer from the map register.

6 The UNIBUS adapter translates the UNIBUS function to a backplane
interconnect function by reading the UNIBUS control lines.

12-9

UNIBUS and Q22 Bus Device Support
12.1 Functions of the UNIBUS Adapter and Q22 Bus Interface

12.1.3.1

7 Based on the UNIBUS function indicated by the UNIBUS control lines,
(DATI, DATIP, DATO, or DATOB), the UNIBUS adapter starts appropriate
UNIBUS and backplane interconnect operations to transfer data between
the UNIBUS device and memory.

Direct Data Path
Since the direct data path performs a backplane interconnect transfer for
every 1/0 bus transfer, it can be used by more than one UNIBUS or Q22 bus
device at a time. The UNIBUS adapter or Q22 bus interface arbitrates among
devices that wish to use the direct data path simultaneously. The device
driver is unaffected by this arbitration.

The direct data path is less efficient than a buffered data path because each
1/0 bus transfer cycle corresponds to a backplane interconnect cycle. One
word or byte is transferred for each backplane interconnect cycle. On some
hardware configurations, the direct data path is unable to transfer a word of
data to an odd-numbered physical address. Therefore, an FDT routine for
a DMA device that uses th~ direct data path should check that the specified
buffer is on a word boundary. 2

The Q22 bus systems only employ a direct data path. A UNIBUS device
driver may choose to use a direct data path rather than a buffered data path
to perform the following functions:

• Execute an interlock sequence to the backplane interconnect (DATIP­
DATO/DATOB)

• Transfer to randomly ordered addresses instead of consecutively
increasing addresses

• Mix read and write functions

The direct data path is the simplest data path to program. Since the direct
data path can be shared simultaneously by any number of 1/0 transfers, the
device driver does not need to call a VMS routine to allocate the data path.
Instead, the driver performs the following actions:

1 Uses the REQMPR macro to allocate a set of map registers (or the
REQALT macro to allocate a set of Q22 bus alternate map registers
(registers 496 to 8191)).

2 Uses the LOADUBA macro (or LOADALT macro) to load the
map registers with physical address map data and, for UNIBUS
devices, the number of the direct data path (0). The VMS routines
called in the expansion of these macros (IOC$LOADUBAMAP and
IOC$LOADAL TMAP respectively) also set the valid bit in every map
register except the last, which remains invalid to prevent a runaway
transfer.

3 Loads the starting address of the transfer in a device register.

4 Loads the transfer byte or word count in a device register.

5 Sets bits in the device CSR to initiate the transfer.

2 The Micro VAX 3600-series, Micro VAX II, and Micro VAX I implementations of the Q22 bus provide no
byte-offset register. As a result, for Q22 bus devices that are only capable of word-aligned transfers, only
word-aligned transfers are possible.

12-10

UNIBUS and 022 Bus Device Support
12.1 Functions of the UNIBUS Adapter and 022 Bus Interface

12.1.3.2 Buffered Data Paths
When a buffered data path is used, the UNIBUS adapter transfers data much
more efficiently between the UNIBUS and the backplane interconnect than
when a direct data path is used. It accomplishes this by decoupling the
UNIBUS transfer from the backplane interconnect transfer. The buffered data
path allows the UNIBUS adapter to read or write multiple words of data in a
transfer, and buffer the unrequested portions of the data in a UNIBUS adapter
buffer. Thus, several UNIBUS read functions can be accommodated with a
single backplane interconnect transfer.

Q22 bus systems do not employ buffered data paths. The writer of a UNIBUS
device driver may choose to use a buffered data path rather than a direct data
path to perform the following functions:

• Faster DMA block transfers to or from consecutively increasing UNIBUS
addresses

• Word-oriented block transfers that begin and end on an odd-numbered
byte· of memory; note, however, that these transfers can be quite slow
because the UNIBUS adapter might need to perform multiple transfers to
complete a one-word transfer

• 32-bit data transfers from random longword-aligned physical addresses

A single buffered data path cannot be assigned to more than one active
transfer at a time. When a driver fork process is preparing to transfer data
to or from a UNIBUS device on a buffered data path, it performs a sequence
of steps similar to those performed by a driver that uses the direct data path,
with the exception that it uses a macro that calls a VMS routine that allocates
a free buffered data path. The following are among the actions of the driver
fork process:

1 Uses the REQMPR macro to allocate a set of map registers.

2 Uses the REQDPR macro to allocate a free buffered data path.

3 Uses the LOADUBA macro to load the map registers with physical
address mapping data and the number of the allocated buffered data
path. The VMS routine called in the expansion of the LOADUBA macro
(IOC$LOADUBAMAP) also sets the valid bit in every map register except
the last, which remains invalid to prevent a runaway transfer.

4 Loads the starting address of the transfer in a device register.

5 Loads the transfer byte or word count in a device register.

6 Sets bits in the device CSR to initiate the transfer.

The UNIBUS adapter hardware of certain VAX systems normally restricts
buffered data paths to referring only to consecutively increasing UNIBUS
addresses. Through a special mode of operation, these UNIBUS adapters can
also refer to 32-bit data at randomly-ordered, longword-aligned locations in
physical memory. Other systems do not impose this restriction. In order for a
device driver to run on both types of systems, it must observe three rules:

• All transfers within a block must be of the same function type (DATI or
DATO/DATOB).

• Buffered data paths must always transfer data to consecutively increasing
addresses.

12-11

UNIBUS and 022 Bus Device Support
12.1 Functions of the UNIBUS Adapter and Q22 Bus Interface

12-12

• To reference 32-bit data at random, longword-aligned locations in
physical memory, the longword-access-enable bit (LWAE) must be set.

A buffered data path stores data from the UNIBUS in a buffer until multiple
words of data have been transferred (except in longword-aligned, 32-bit,
random-access mode as discussed in Section 12.1.3.5). Then, the UNIBUS
adapter transfers the contents of the buffer to the appropriate physical address
in a single backplane interconnect operation. The procedure for a UNIBUS
write operation that transfers data from a device to memory is broken into
individual steps.

1 The UNIBUS device transfers one word of data to the buffered data path.

2 The UNIBUS adapter stores the word of data and completes the UNIBUS
cycle.

3 The UNIBUS adapter sets the buffer-not-empty flag in the buffered data
path to indicate that the buffer contains valid data.

4 The UNIBUS device repeats the first three steps until the buffer is full.

5 When the UNIBUS device addresses the last byte or word in the buffer,
the UNIBUS adapter recognizes a complete data-gathering cycle.

6 The UNIBUS adapter requests a write function on the backplane
interconnect to write the data from the buffered data path to memory.

7 When the backplane interconnect transfer is complete, the buffered data
path clears its flag to indicate that the buffer no longer contains valid
data.

The procedure for a UNIBUS read operation that transfers data from main
memory to a device varies according to the type of UNIBUS adapter. Those
adapters that can perform a prefetch function complete UNIBUS reads
from memory more quickly than those that cannot. The prefetch feature
accomplishes this improved performance by automatically filling the data
path buffer after the buffer's contents are transferred to the UNIBUS.

The following paragraphs discuss the UNIBUS read operation with and
without the prefetch function. Device drivers that adhere to the conventions
outlined in this manual will execute properly whether or not the device is
associated with a UNIBUS adapter that is capable of prefetches.

1 The UNIBUS device initiates a read operation from a buffered data path.

2 The UNIBUS adapter checks to see if its buffers contain valid data.

3 If the buffers do not contain valid data, the buffered data path initiates
a read function to fill the buffers with data from main memory. The
transfer completes before the UNIBUS adapter begins a UNIBUS transfer.

4 The UNIBUS adapter transfers the requested bytes to the UNIBUS. Bytes
of data that were not transferred to the UNIBUS remain in the buffer.

5 The UNIBUS adapter sets the buffer-not-empty flag in the buffered data
path to indicate that the buffer contains valid data.

6 When the UNIBUS device empties the buffers of the buffered data path
with a UNIBUS read function that accesses the last word of data, the
buffered data path clears the buffer-not-empty flag to indicate that the
buffer no longer contains valid data.

UNIBUS and Q22 Bus Device Support
12.1 Functions of the UNIBUS Adapter and Q22 Bus Interface

12.1.3.3

12.1.3.4

7 The buffered data path then initiates a read function to prefetch data from
memory.

8 When the prefetch is complete, the buffered data path sets the buffer-not­
empty flag to indicate that the buffers now contain valid data.

The prefetch might attempt to read data beyond the address mapped by the
final map register. To avoid referring to memory that does not exist, the
VMS routines that allocate and load map registers always allocate one extra
map register and clear the map-register-valid bit before initiating the transfer.
When the UNIBUS adapter notices that the map register for the prefetch is
invalid, the UNIBUS adapter aborts the prefetch without reporting an error.

A UNIBUS read function without prefetch includes the following steps:

1 The UNIBUS device initiates a read operation from a buffered data path.

2 The buffered data path checks to see if its buffers contain valid data.

3 If the buffers do not contain valid data, the buffered data path initiates a
read function to fill the buffers with data. The transfer completes before
the UNIBUS adapter begins a UNIBUS transfer.

4 The buffered data path transfers the requested bytes to the UNIBUS.
Bytes of data that were not transferred to the UNIBUS remain in the
buffer.

Byte-Offset Data Transfers
The UNIBUS adapter has a byte-offset register; thus, words that are not
word-aligned can be transferred to and from any device on the UNIBUS
regardless of whether the device supports non-word-aligned transfers.

Some UNIBUS devices are restricted to transferring integral words of data
in word-aligned UNIBUS addresses. The buffered data paths allow these
devices to perform transfers to memory that begins and ends on an odd-byte
address. A byte-offset bit in the map registers indicates byte-aligned data to
the hardware. If the bit is set, the hardware increments physical addresses.
A VMS subroutine that loads map registers determines whether the data is
word- or byte-aligned and sets the byte-offset bit accordingly.

Purging a Buffered Data Path
Because prefetches can read more data from memory than the UNIBUS device
wishes to read, driver fork processes must ask the UNIBUS adapter to purge
the buffered data path when a transfer is complete. In addition, a transfer
from a device to the backplane interconnect can complete with some data left
in the buffer. The driver must purge the data path to complete the transfer.

The purge guarantees that the data is not transferred to the next user of the
buffered data path. The driver fork process performs the purge by calling a
standard VMS routine that performs two functions:

• Tells the hardware to purge the buffered data path register owned by the
fork process. For a UNIBUS read function, the adapter simply clears the
buffer-not-empty flag. For a UNIBUS write function, the adapter transfers
any data left in the data path buffer to VAX memory, then clears the flag.

• Notifies the driver fork process of any error that occurs during the purge.

The data path must be purged before the driver releases map registers or the
buffered data path register.

12-13

UNIBUS and Q22 Bus Device Support
12.1 Functions of the UNIBUS Adapter and Q22 Bus Interface

12.1.3.5

12-14

Longword-Aligned, 32-Bit, Random-Access Mode
Another· method of transferring data over a buffered data path is the use
of longword-aligned, 32-bit, random-access mode. This mode essentially
prevents the UNIBUS prefetch operation, thereby allowing a device that reads
data from or writes data to memory to reference longword-aligned locations
in memory at random, in longword multiples.

To transfer data in the longword-aligned, 32-bit, random-access mode, the
driver fork process sets the longword-access-enable bit (VEC$V_LWAE) in the
channel request block (CRB) prior to loading the map registers. The UNIBUS
device can then perform a read (DATI) or write (DATO) function.

For a UNIBUS read operation that transfers data from main memory to a
device, the function occurs as follows:

1 The driver fork process initiates a read function on the UNIBUS device.

2 The UNIBUS adapter clears the buffer-not-empty flag in the assigned
buffered data path.

3 The UNIBUS adapter requests a read-from-memory operation on the
backplane interconnect.

4 The UNIBUS adapter stores the longword of data in the buffered data
path and sets the buffer-not-empty flag.

5 The UNIBUS adapter completes two UNIBUS read operations to transfer
two words of data.

For a UNIBUS write operation that transfers data from a device to main
memory, the function occurs as follows:

1 The .. driver fork process initiates a write function on the UNIBUS device.

2 The UNIBUS adapter clears the buffer-not-empty flag in the assigned
buffered data path.

3 The UNIBUS adapter completes two write operations to transfer two
words of data from the UNIBUS device.

4 The UNIBUS adapter stores the longword of data in the data path's buffer
and sets the buffer-not-empty flag.

5 The UNIBUS adapter initiates a backplane interconnect write operation.

6 When the backplane interconnect write operation is complete, the
UNIBUS adapter clears the buffer-not-empty flag.

To ensure that random-access mode works correctly regardless of the VAX
system involved, the writer of a device driver should ensure that a device
assigned to a buffered data path does not repeatedly address the same
longword. On certain systems, a UNIBUS device that polls a single longword,
waiting for data, will constantly be returned the same data.

12.2

UNIBUS and 022 Bus Device Support
12.2 Writing Driver Code for UNIBUS/Q22 Bus OMA Transfers

Writing Driver Code for UNIBUS/Q22 Bus OMA Transfers
A driver performing DMA transfers over the UNIBUS or Q22 bus must take
I/O bus operation into consideration. The VMS operating system and the
I/O database manage the map registers and data path resources of the I/O
adapter for device drivers.

The I/O database contains an adapter control block (ADP) that describes the
I/O adapter. This block contains allocation information for the map registers;
for UNIBUS adapters, the ADP also contains similar information for data
paths.

The ADP also contains the virtual address of the adapter's configuration
register. All the adapter's other registers are located at fixed offsets from
the configuration register. The VMS adapter-handling routines modify the
adapter's map registers and data-path register according to requests from the
driver fork process.

In general, a driver fork process does not directly access the ADP. Instead, a
driver calls VMS routines that perform adapter-related services, such as the
following:

• Allocating a buffered data path

• Allocating map registers or alternate map registers

• Loading map registers or alternate map registers

• Deallocating map registers or alternate map registers

• Purging a buffered data path

• Deallocating a buffered data path

The critical responsibility of device drivers that actively compete for such
shared I/O adapter resources as map registers and data paths is to ensure the
synchronized access of adapter resources. Drivers that share these resources
must execute at the same fork IPL. In a VMS multiprocessing system, they
must additionally contend for the same fork lock. A given driver code thread
that must attempt to access its fork database can only do so if suitably
synchronized.

The system creates a driver fork process by calling the start-I/O routine in
a device driver. The fork process takes some or all of the following steps
to initiate an I/O transfer to or from a device on a UNIBUS, MicroVAX
3600-series Q22 bus, MicroVAX II Q22 bus, or Micro VAX I Q22 bus.

12-15

UNIBUS and 022 Bus Device Support
12.2 Writing Driver Code for UNIBUS/Q22 Bus OMA Transfers

12-16

Operation

Requests buffered data path

Requests map registers

Requests alternate map registers

Loads map registers

Loads alternate map registers

Calculates starting bus address

Activates device

Waits for interrupt

Applicable to

UNIBUS

UNIBUS, MicroVAX 3600 series,
MicroVAX II

MicroVAX 3600 series, MicroVAX II

UNIBUS, MicroVAX 3600 series,
MicroVAX II

MicroVAX 3600 series, MicroVAX II

UNIBUS, MicroVAX 3600 series,
MicroVAX II, MicroVAX I

UNIBUS, MicroVAX 3600 series,
MicroVAX II, MicroVAX I

UNIBUS, MicroVAX 3600 series,
MicroVAX II, MicroVAX I

When a hardware interrupt indicates that the 1/0 transfer is complete, the
driver fork process checks the success or failure of the transfer. The driver
then concludes with the following steps:

Operation

Purges data path

Releases buffered data path

Releases map registers

Releases alternate map registers

Applicable to

UNIBUS, MicroVAX 3600 series,
MicroVAX II, MicroVAX 11

UNIBUS

UNIBUS, MicroVAX 3600 series,
MicroVAX II

MicroVAX 3600 series, MicroVAX II

1 Regardless of whether the associated VAX system provides buffered data paths, drivers
of all devices should initiate a purge of the data path after a transfer. The purge operation
enables the detection of memory parity errors that may have occurred during the transfer,
as described in the sections on the PURDPR macro and IOC$PURGDA TAP in Appendixes B
and C, respectively.

Because of the different requirements of DMA transfers on different VAX and
MicroVAX systems, a driver must contain some run-time conditional code in
order to function for equivalent UNIBUS, MicroVAX 3600-series, MicroVAX
II, and MicroVAX I devices. Appendix E contains an example of one driver
that supports the RLl 1 on the UNIBUS and the RL Vll on the Micro VAX I
and MicroVAX II Q22 bus.

Regarding the material presented in this section, UNIBUS driver writers
should read Sections 12.2.1 through 12.2.7.3. MicroVAX 3600-series and
MicroVAX II driver writers should read Section 12.2.1.3 and Sections
12.2.2 through 12.2.7.3. MicroVAX I driver writers should turn directly to
Section 12.2.8. Because the MicroVAX I provides no scatter-gather map,
MicroVAX I device drivers must perform transfers according to the method
described therein.

UNIBUS and 022 Bus Device Support
12.2 Writing Driver Code for UNIBUS/Q22 Bus OMA Transfers

12.2.1 Selecting and Requesting a Data Path

12.2.1.1

DMA device drivers for certain VAX systems can elect to request the use of a
UNIBUS adapter buffered data path to accelerate data transfers (as described
in Section 12.1.3). Other VAX processing systems, such as the MicroVAX
3600 series, MicroVAX II and VAX-11/730, provide no buffered data paths
for data transfers. The descriptions of the direct data path in the following
sections apply to drivers written for devices in those systems.

Requesting a Buffered Data Path
Some VAX systems allow UNIBUS drivers to request temporary or permanent
allocation of a buffered data path (see Table 12-1). After the driver fork
process gains access to the controller (see Section 8.3.1), it requests a
buffered data path by invoking the VMS macro REQDPR. REQDPR calls
a VMS routine named IOC$REQDATAP that locates the ADP. To do this,
IOC$REQDATAP uses a series of pointers that begins in the current unit
control block (UCB), as follows:

UCB -+ CRB -+ ADP

IOC$REQDATAP performs the following services:

1 Tests the path-lock bit (VEC$V_PATHLOCK) in the data-path number
field of the channel request block (CRB$L_INTD+VEC$B_DATAPATH).
If the device has a permanent data path allocated to it, IOC$REQDATAP
simply returns.

2 Determines which data paths are available by examining the data path
allocation information in the ADP (ADP$W_DPBITMAP).

3 Allocates the first free data path to the driver by inserting its number
in the data path field of the CRB (CRB$L_INTD+VEC$B_DATAPATH)
and indicating in the ADP that the data path is in use (by clearing the
appropriate bit in ADP$W_DPBITMAP).

4 Returns control to the driver fork process.

If no data path is available, IOC$REQDATAP saves driver context (R3, R4,
and PC) in the UCB fork block and inserts the address of the fork block,
which is also the address of the UCB and the content of RS, in the ADP's
data-path wait queue. The driver fork block remains in the queue until both
of the following conditions are met:

• A data path is available.

• The driver fork block is the next entry in the data-path wait queue.

When these conditions are met, the VMS routine IOC$RELDATAP allocates
the data path to the suspended driver and reactivates the driver fork process.

12-17

UNIBUS and Q22 Bus Device Support
12.2 Writing Driver Code for UNIBUS/Q22 Bus OMA Transfers

12.2.1.2

12.2.1.3

12-18

Requesting a Permanent Buffered Data Path
A device driver can permanently allocate a buffered data path in its unit
initialization routine. Instead of using the REQDPR macro, however, the unit
initialization routine should perform the following steps:

1 Issue the FORK macro to drop IPL to fork IPL. The VMS fork dispatcher
causes the following steps to be performed at fork IPL under the
ownership of the required fork lock in a VMS multiprocessing system.
(The consequences of forking in a unit initialization routine are discussed
at length in Section 11.1.5.)

2 Test the path-lock bit (VEC$V_PATHLOCK) in the data-path-number
field of the CRB (CRB$L_INTD+VEC$B_DATAPATH) to ensure that a
data path is not already allocated for this device.

3 Call the subroutine IOC$REQDATAPNW to allocate the data path as
follows:

JSB GAIOC$REQDATAPNW

If IOC$REQDATAPNW successfully allocates the data path, it stores
the number of the data path it obtained in the CRB at CRB$L_
INTD+VEC$B_DATAPATH and returns with the low-order bit set in RO
(SS$_NORMAL). If it cannot allocate a data path, IOC$REQDATAPNW
does not create a fork process to wait for one to become available.
Instead, it returns to the unit initialization routine with the low-order bit
clear in RO.

4 If the data path has been successfully obtained, set the path-lock bit
(VEC$V_PATHLOCK) in the CRB at CRB$L_INTD+VEC$B_DATAPATH.

The driver-loading procedure calls the unit initialization routine for each unit
that the driver serves. A unit initialization routine that contains the code
described previously will permanently allocate one buffered data path for
each CRB associated with the driver, which is one path for each controller
that the driver serves.

Because some VAX systems have few buffered data paths (refer to
Table 12-1), device drivers running in these systems must limit their
allocation of permanent buffered data paths. For example, if the drivers
loaded on a VAX-11/750 permanently allocated all three of the system's
buffered data paths, none would remain for normal system operations. As a
result, 1/0 transfers requiring a buffered data path would wait forever.

Requesting the Direct Data Path
Because the UNIBUS adapter or Q22 bus interface arbitrates among devices
that wish to use the direct data path and initializes the data path field in the
CRB (CRB$L_INTD+VEC$B_DATAPATH} to 0 (0 =direct data path}, drivers
are not required to invoke the REQDPR macro to request the direct data path.

Some VAX systems, such as the VAX-11/780 or VAX 8600, do not permit
byte-offset transfers on the direct data path (see Table 12-1). Because the
UNIBUS itself is word-oriented, such a system must ensure that the data
buffer is aligned on a word boundary for word-aligned devices.

UNIBUS and Q22 Bus Device Support
12.2 Writing Driver Code for UNIBUS/Q22 Bus OMA Transfers

12.2.1.4 Mixed Use of Direct and Buffered Data Paths
A UNIBUS device driver can use the buffered data path for certain operations,
then use the direct data path for other operations. To accomplish this task,
the driver should allocate a buffered data path for buffered 1/0. When the
operation is completed, the driver should then purge and release the buffered
data path. The release automatically resets the data path number to zero,
which signifies a direct data path. When the driver has finished using the
direct data path, it should purge it (but not release it). (A purge of the direct
data path is a NOP and always yields success.)

12.2.2 Requesting Map Registers

12.2.2.1

The UNIBUS adapter and Q22 bus interface allow UNIBUS and Q22 bus
drivers, respectively, to allocate map registers as needed or to allocate them
permanently.

Allocating Map Registers
After the driver fork process gains access to the controller (see Section 8.3.1),
it can request a set of adapter map registers (registers 0 through 495)
by invoking the VMS macro REQMPR. This macro calls the routine
IOC$REQMAPREG. IOC$REQMAPREG calculates the number of map
registers needed for a transfer, allocating one map register for each full
or partial page of the buffer (based on the values of UCB$W_BCNT and
UCB$W_BOFF). In addition, it reserves an additional map register to be
marked invalid to stop a potential runaway transfer and inhibit prefetches
from the page past that in which the end of the buffer resides. Finally,
IOC$REQMAPREG may allocate one more extra map register to ensure that
an even number of map registers is allocated.

The procedure for allocating map registers is similar to that used to allocate a
buffered data path. First, IOC$REQMAPREG locates the ADP from a series
of pointers that begins with the current UCB, as follows:

UCB --+ CRB --+ ADP

Then, the routine examines the map-register-allocation information to locate
the required number of contiguous map registers. If the registers are not
currently available, IOC$REQMAPREG saves the driver context (R3, R4, and
PC) in the UCB fork block and inserts the fork block's address (same as UCB
address and the contents of RS) in the standard-map-register wait queue.

When the map registers are available, IOC$REQMAPREG allocates them and
adjusts the appropriate information about the allocation of map registers in
the ADP. IOC$REQMAPREG then writes the number of the first map register
and the number of map registers allocated into the CRB and returns control
to the driver fork process.

VMS supplies a similar macro (REQAL T) and routine (IOC$REQAL TMAP)
that MicroVAX 3600-series or MicroVAX II drivers can use to allocate a
set of alternate map registers (registers 496 through 8191). REQALT and
IOC$REQAL TMAP perform the allocation in the same manner as REQMPR
and IOC$REQMAPREG. Note that, although VMS records the allocation
of standard and alternate map registers in separate areas of the ADP and
CRB, IOC$REQMAPREG and IOC$REQAL TMAP use the same UCB fields to
calculate the number of map registers required for a transfer.

12-19

UNIBUS and Q22 Bus Device Support
12.2 Writing Driver Code for UNIBUS/Q22 Bus OMA Transfers

12.2.2.2

12-20

Permanently Allocating Map Registers
A device driver can allocate a permanent set of map registers with code in its
unit initialization routine. The number of map registers permanently allocated
must be sufficient for the largest possible transfer and must include an extra
map register to be marked invalid to prevent a runaway transfer.

A unit initialization routine performs the following steps to permanently
allocate a set of map registers:

1 Issue the FORK macro to drop IPL to fork IPL. The VMS fork dispatcher
causes the following steps to be performed at fork IPL under the
ownership of the required fork lock in a VMS multiprocessing system.
(The consequences of forking in a unit initialization routine are discussed
at length in Section 11.1.5.)

2 Test the map-lock bit (VEC$V_MAPLOCK) in the CRB (CRB$L_
INTD+VEC$W_MAPREG) to ensure that map registers are not already
allocated for this device.

3 Load the number of map registers required into R3.

4 Call the VMS routine IOC$ALOUBAMAPN with a JSB instruction:

JSB a-IoC$ALOUBAMAPN

If IOC$ALOUBAMAPN successfully allocates the map registers, it stores
the number of map registers allocated and the number of the first of
the allocated map registers at CRB$L_INTD+VEC$B_NUMREG and
CRB$L_INTD+VEC$W_MAPREG, respectively. It then returns with the
low-order bit set in RO. Otherwise, it returns with the low-order bit of RO
clear.

5 If map registers have been successfully allocated, set the map-lock bit in
the CRB (VEC$V_MAPLOCK in CRB$L_INTD+VEC$W_MAPREG).

Micro VAX 3600-series drivers and Micro VAX II drivers perform the following
steps to allocate a permanent set of alternate map registers (registers 496
through 8191):

1 Issue the FORK macro to drop IPL to fork IPL. The VMS fork dispatcher
causes the following steps to be performed at fork IPL under the
ownership of the required fork lock in a VMS multiprocessing system.
(The consequences of forking in a unit initialization routine are discussed
at length in Section 11.1.5.)

2 Test the alternate-map-lock bit (VEC$V-ALTLOCK) in the CRB (CRB$L_
INTD+VEC$W_MAPALT) to ensure that alternate map registers are not
already allocated for this device.

3 Load the number of alternate map registers required into R3.

4 Call the VMS routine IOC$ALOAL TMAPN with a JSB instruction:

JSB a-roC$ALOALTMAPN

If IOC$ALOAL TMAPN successfully allocates the alternate map registers,
it stores the number of map registers allocated and the number of the first
of the allocated map registers in CRB$L_INTD+VEC$W_NUMALT and
CRB$L-1NTD+VEC$W_MAPALT, respectively. It then returns with the
low-order bit set in RO. Otherwise, it returns with the low-order bit of RO
clear.

UNIBUS and Q22 Bus Device Support
12.2 Writing Driver Code for UNIBUS/Q22 Bus OMA Transfers

5 If alternate map registers have been successfully allocated, set the
alternate-map-lock bit in the CRB (VEC$V_ALTLOCK in CRB$L_
INTD+VEC$W_MAP ALT).

The driver-loading procedure calls the unit initialization routine once for each
unit associated with the driver. If the unit initialization routine contains the
code described previously, it permanently allocates a set of map registers
for each CRB associated with the driver, which is a set of registers for each
device controller that the driver serves. Because VMS records the allocation of
standard and alternate map registers in separate areas of the ADP and CRB, a
MicroVAX 3600-series or MicroVAX II driver could permanently allocate a set
of registers from both areas.

12.2.3 Loading Map Registers
Once a driver fork process has assigned a data path and allocated a set of map
registers, it can request VMS to load the map registers with physical page­
frame numbers (PFNs) by invoking the VMS macro LOADUBA.3 LOADUBA
calls the VMS routine IOC$LOADUBAMAP to load each allocated map
register with the following data items:

• A bit setting to indicate whether the map register is valid.

• A bit setting to indicate whether the transfer is to start on the odd or even
byte within a word; this bit is set if the low-order bit of UCB$W_BQFF is
a 1.

• The number of the data path to use for the transfer (UNIBUS drivers
only).

• The page-frame number of a page in memory.

• A bit setting to indicate that the transfer operates in longword-aligned,
random-access mode on the buffered data path; this bit is set when
VEC$V_LWAE is set in VEC$B_DATAPATH (UNIBUS drivers only).

IOC$LOADUBAMAP loads the PFN of the first page of the transfer into
the first allocated map register, the PFN number of the second page of the
transfer into the second map register, and so forth. IOC$LOADUBAMAP sets
the valid bit in every allocated map register except the last. It clears the valid
bit in the final map register to prevent a prefetch from an invalid page.

To calculate the PFN used in the 1/0 transfer, IOC$LOADUBAMAP uses
three fields that VMS has written into the UCB:

• UCB$W_BOFF-Byte offset in the first page of the transfer

• UCB$W_BCNT-Number of bytes to transfer

• UCB$L_SVAPTE-Virtual address of the page-table entry that contains
the PFN of the first page of the transfer

3 MicroVAX 3600-series and MicroVAX II DMA driver writers also use the LOADUBA macro to load a set of
standard map registers (registers 0 through 495).

12-21

UNIBUS and Q22 Bus Device Support
12.2 Writing Driver Code for UNIBUS/Q22 Bus OMA Transfers

IOC$LOADUBAMAP determines the data path's number (for UNIBUS
devices), the number of the first map register, the address of the first map
register, and the number of allocated map registers from the CRB and the
ADP, as follows:

UCB --t CRB --t number of the data path
UCB --t CRB --t number of first map register
UCB --t CRB --t ADP --t virtual address of first map register
UCB --t CRB --t number of map registers

When IOC$LOADUBAMAP has loaded all the map registers and marked the
last map register invalid, it returns control to the driver fork process.

VMS supplies a similar macro (LOAD ALT) and routine
(IOC$LOADALTMAP) that MicroVAX 3600-series or MicroVAX II drivers
can use to load a set of previously allocated alternate map registers (registers
496 through 8191). LOADALT and IOC$LOADALTMAP load the alternate
map registers in the same manner as LOADUBA and IOC$LOADUBAMAP
load standard map registers.

Drivers that handle UNIBUS byte-addressable devices call the routine
IOC$LOADUBAMAP A. This routine performs the same function as
IOC$LOADUBAMAP, with one exception. When IOC$LOADUBAMAPA
loads map registers, it clears the byte-offset bit even if the transfer begins on
an odd-byte address.

12.2.4 Computing the Starting Address of a Transfer
The driver fork process must calculate the starting address of a DMA transfer
and load this address into the appropriate device register. MicroVAX I device
drivers perform the procedure outlined in Section 12.2.8. UNIBUS drivers
and other Q22 bus drivers that use a set of standard map registers take the
following steps to make the calculation:

1 Write the byte-offset-in-page field of the UCB (UCB$W_BOFF) into bits 0
through 8 of a general register.

2 Get the number of the starting map register for the transfer from CRB$L _
INTD+VEC$W_MAPREG. Write bits 0 through 6 of this 9-bit value into
bits 9 through 15 of the general register.

3 Write bits 0 through 15 of the general register into the device's buffer
address register.

4 Write bits 7 and 8 of the map register number, acquired in step 2, into
the extended memory bits of the appropriate device register (usually the
control and status register (CSR)).4

MicroVAX 3600-series and MicroVAX II drivers that use a set of alternate map
registers perform a similar procedure, as follows:

1 Write the byte-offset-in-page field of the UCB (UCB$W_BOFF) into bits 0
through 8 of a general register.

4 One example of a device that does not treat the extended memory bits in this fashion is the DRVll-WA, the
code for which is listed in Appendix F. For the DRVl 1-WA, code in XADRIVER stores bits 7 and 8 of the map
register number in a discrete device bus address extension register, then clears the extended address bits of the
device's CSR. In contrast, XADRIVER handles the DRll-W according to the method described previously.

12-22

UNIBUS and 022 Bus Device Support
12.2 Writing Driver Code for UNIBUS/Q22 Bus OMA Transfers

2 Get the number of the starting alternate map register for the transfer from
CRB$L_INTD+VEC$W_MAPALT. Write bits 0 through 6 of this 13-bit
value into bits 9 through 15 of the general register.

3 Write bits 0 through 15 of the general register into the device's buffer
address register.

4 Write bits 7 through 12 of the map register number, acquired in step 2,
into the extended memory bits of the appropriate device register (usually
the control and status register (CSR)).

12.2.5 Computing the Transfer Length
Generally, a device driver must indicate to the device the size of a DMA
transfer by writing to a device register. If a device expects the transfer size
as a word count, for instance, the start-I/O routine computes the length of
the transfer in words by dividing the byte count field of the UCB (UCB$W_
BCNT) by 2. The routine loads the computed value into the device's word­
count register. One of the FDT routines that processes the I/O request must
ensure that the byte count for the transfer is even. An odd byte count results
in the user's not receiving the last byte of data.

12.2.6 Activating the Device
Because a driver fork process can address device registers as though they were
any other virtual address, the loading of the device buffer address register and
CSR are simple procedures. The driver locates the CSR address of the device
in the interrupt dispatch block (IDB), as follows:

UCB ---+ CRB ---+ IDB ---+ CSR address

The CSR address is the virtual address of a device register. All other device
registers are located at constant offsets from the CSR address. If, for example,
the CSR is the first device register and the device's word-count register is the
third device register, the device driver can describe the device register offsets
and load the word-count register with the following series of instructions:

DEV_CSR = 0
DEV_XREG = 2
DEV_WDCNT = 4

Compute word count of transfer and store it in user-defined UCB field,
UCB$W_WDCNT.

MOVL
MOVL
MOVW

UCB$L_CRB(R5),R4
©CRB$L_INTD+VEC$L_IDB(R4),R4
UCB$W_WDCNT,DEV_WDCNT(R4)

;Address of CRB
;Address of CSR
;Move word count to device
;word count register

12-23

UNIBUS and Q22 Bus Device Support
12.2 Writing Driver Code for UNIBUS/Q22 Bus OMA Transfers

12.2. 7 Completing a OMA Transfer

12.2.7.1

12-24

After a UNIBUS, MicroVAX 3600-series, MicroVAX II, or MicroVAX I device
driver fork process activates a DMA device, the driver waits for a device
interrupt by invoking a VMS macro that suspends execution of the driver.
When the device requests a hardware interrupt, the interrupt dispatcher gains
control.

The dispatcher saves RO through RS and transfers control to the driver's
interrupt service routine. If the interrupt service routine can match the
interrupt with a suspended driver fork process, it reactivates the driver
fork process at the point where execution was suspended. Most driver fork
processes almost immediately invoke the VMS macro IOFORK.

IOFORK calls the VMS routine EXE$IOFORK. EXE$IOFORK saves the driver
context (R3, R4, and PC) in the UCB fork block and inserts the address of
the fork block (RS) in the processor-specific fork queue corresponding to the
device's fork IPL. EXE$IOFORK then returns control to the driver's interrupt
service routine, which dismisses the interrupt.

When the fork dispatcher reactivates the driver fork process, the driver
performs any necessary cleanup operations, such as purging the data path
and deallocating adapter resources used in the DMA transfer.

Purging the Data Path
Driver fork processes must purge the data path after the DMA transfer is
complete. This is true for devices with buffered data paths, direct data paths,
or no data path.

To purge the data path, the driver invokes the macro PURDPR, which in turn
calls the VMS routine IOC$PURGDATAP. This routine takes the following
steps to purge the data path:

1 Saves the contents of R4 on the stack.

2 Locates the CRB as follows:

RS --+ UCB--+ CRB

3 Obtains the starting address of the UNIBUS adapter's register space and
stores it in R2.

4 Extracts the number of the data path to be purged from the CRB and
loads it into Rl.

5 Stores the address of the data path register in R4.

6 Instructs the UNIBUS adapter or Q22 bus interface to purge the data
path. The routine then modifies RO through R2 to contain the following
information:

RO Success/failure status. lfthe purge completes without error, the routine
sets SS$_NORMAL in this register. If a data-path error does occur, RO
is clear and the hardware is reset.

R 1 Contents of the data-path register.

R2 Address of the first adapter map register.

The address of the CRB remains in R3. This address, along with the
information in Rl and R2, is used as input to the error logging routine in
the event of a data-path error.

UNIBUS and 022 Bus Device Support
12.2 Writing Driver Code for UNIBUS/Q22 Bus OMA Transfers

12.2.7.2

12.2.7.3

7 Restores the information stored on the stack to R4 and returns to the
address in the driver immediately after the invocation of the PURDPR
macro.

8 Some machine implementations also check for memory errors that might
have occurred during the DMA operation, and, if an error is detected, log
it.

If a data-path error occurs during a data-path purge, the driver should retry
the entire DMA transfer.

Releasing a Buffered Data Path
A driver fork process releases a buffered data path by invoking the VMS
macro RELDPR. RELDPR calls a VMS routine, IOC$RELDATAP, that
determines which data path was assigned to the driver fork process and
releases the data path to a waiting driver. The driver must be executing at
fork IPL.

The data-path number is stored in the CRB. IOC$RELDATAP locates it as
follows:

UCB ---+ CRB ---+ number of the data path

If the data path is permanently assigned to a device, IOC$RELDATAP
does not release the data path. Otherwise, the data path number in the
CRB (CRB$L_INTD+VEC$B_DATAP ATH) is zeroed. The IOC$RELDATAP
routine attempts to dequeue a waiting driver fork process from the data-path
wait queue. It finds the queue as follows:

UCB ---+ CRB ---+ ADP ---+ data-path wait queue

If another driver is waiting for a buffered data path, IOC$RELDATAP grants
that driver fork process the data path, restores its context from its UCB fork
block, and transfers control to the saved driver PC. When IOC$RELDATAP
can allocate no more data paths, the routine returns to the driver that released
the data path. This diversion of driver processing is transparent to the driver
fork process.

If the data-path wait queue is empty, IOC$RELDATAP marks the data path
as available in the ADP and returns control to the driver.

Releasing Map Registers
A driver fork process releases a set of map registers by invoking the
VMS macro RELMPR at fork IPL. RELMPR calls the VMS routine
IOC$RELMAPREG, which releases map registers in a manner similar to
the way in which the RELDPR macro releases data paths. The CRB records
the number of map registers assigned to the device. The number of the first
map register and the number of map registers are located as follows:

UCB ---+ CRB ---+ number of the first map register
UCB ---+ CRB ---+ number of allocated map registers

IOC$RELMAPREG releases the map registers by adjusting the map-register­
allocation information in the ADP.

Then, IOC$RELMAPREG attempts to dequeue a driver fork process from
the standard-map-register wait queue. If a suspended driver is found,
IOC$RELMAPREG takes the following steps:

1 Dequeues the fork block and restores driver context

12-25

UNIBUS and Q22 Bus Device Support
12.2 Writing Driver Code for UNIBUS/Q22 Bus OMA Transfers

2 Satisfies the map-register request, if possible

3 Reactivates the driver fork process at the instruction following the driver's
request for map registers

4 Repeats steps 1 through 3

If the standard-map-register wait queue is empty or if IOC$RELMAPREG
still does not have enough contiguous map registers for any of the waiting
fork processes, it returns control to the fork process that released the map
registers.

VMS supplies a similar macro (RE LAL T) and routine (IOC$RELAL IMAP)
that MicroVAX 3600-series and MicroVAX II drivers can use to release a
set of alternate map registers (registers 496 through 8191). RELALT and
IOC$RELAL IMAP perform the release in the same manner as RELMPR and
IOC$RELMAPREG. Note that VMS records the allocation of standard and
alternate map registers in separate areas of the ADP and CRB.

12.2.8 Considerations for MicroVAX I OMA Devices

12-26

Because the MicroVAX I does not provide a scatter-gather map,
MicroVAX I Q22 bus DMA devices must use a physically contiguous buffer
in data transfers. Because there is no guarantee that this is the state of the
user's buffer, the driver must allocate an intermediate buffer consisting of
contiguous physical pages. The driver never deallocates this buffer unless
the driver is being unloaded (by means of SYSGEN' s RELOAD command).
The best time to allocate such a buffer is during the device's initialization.
Memory is most likely contiguous at that time. Later it will be much more
difficult to obtain a buffer that contains physically contiguous pages.

To be sure that the buffer you allocate to the driver is contiguous, use the
VMS routine EXE$ALOPHYCNTG, described in Appendix C. The size of the
buffer will depend on the device's characteristics and the size of the transfers
requested on the device. A buffer of four pages is likely to be large enough
for most disk transfers, for example; but if you have enough memory on your
system, you might want to make your buffer the size of a disk track in order
to reduce disk latency. In any event, large transfers to the device must be
segmented into transfers the size of your intermediate buffer.

When a user requests a transfer to a MicroVAX I Q22 bus device, the driver
start-1/0 routine copies the data from the user's buffer into the intermediate,
physically contiguous buffer by means of the routine IOC$MOVFRUSER,
described in Appendix C. The driver must ensure that the buffer is word­
aligned because the MicroVAX I has no byte-offset capability.

The driver then sets up the device for the DMA transfer:

1 Determines the 22-bit physical address of the buffer from the system
virtual address returned by EXE$ALOPHYCNTG. If it has stored the
virtual address in CRB$L_AUXSTRUC, the driver can use code similar to
the following excerpt from DLDRIVER (in Appendix E).

12.3

UNIBUS and Q22 Bus Device Support
12.2 Writing Driver Code for UNIBUS/Q22 Bus OMA Transfers

MOVL
MOVL

BEQL
MOVL
EXTZV

MOVL
MOVL
BICL3
ASSUME
INSV
MOVL

70$: RSB

UCB$L_CRB(R5) ,R1
CRB$L_AUXSTRUC(R1) ,R2

;Get CRB address
;Memory alloc failure during
; controller initialization?

70$;If equal, yes, leave offline
R2,UCB$A_DL_BUF_VA(R5) ;Save buffer's virtual address
#VA$V_VPN,#VA$S_VPN,R2,R1;Get virtual page number

GAMMG$GL_SPTBASE,RO
(RO) [R1] , RO
#AC<VA$M_BYTE>,R2,R1
PTE$S_PFN GE 13
R0,#9,#13,R1
R1,UCB$A_DL_BUF_PA(R5)

; of buff er
;Get base address of SPTs
;Get the PTE contents
;get buffer offset (BAOO-BA08)

;Copy BA09-BA21
;Save buffer's physical address

2 Moves the low word (bits 0 to 15) of the buffer physical address into the
device's buffer address register.

3 Moves the extended address bits of the buffer's physical address into the
device's extended address register or the device's CSR, as required by the
device.

4 Activates the device as described in Section 12.2.6.

5 If the transfer size exceeds the size of the buffer, returns to step 1.

When a user requests a transfer from a MicroVAX I Q22 bus device, the driver
moves the data from the device to the intermediate, physically contiguous
buffer by means of a DMA transfer, then calls IOC$MOVTOUSER (as
described in Appendix C) to copy the data into the user's buffer.

A MicroVAX I driver should complete the transfer as described in
Section 12.2.7. The driver should call IOC$PURGDATAP in order to detect
and log any memory errors that might have occurred during the transfer.

Interrupt Dispatching in a UNIBUS/Q22 Bus System
The interrupt dispatcher is a combination of hardware and software that routes
interrupts from a device on the UNIBUS or Q22 bus to the appropriate device
driver's interrupt service routine. Although there are slight differences in
the implementation of the interrupt dispatcher in different VAX systems, it
performs the same tasks in any given VAX environment.

When a processor grants a device interrupt, the processor microcode first
saves the PC and PSL of the currently executing code on the interrupt stack.
The device responds to the grant by supplying a device interrupt vector in
the range of 0 to 7778 to the processor. VAX/VMS uses the device interrupt
vector to locate the correct interrupt transfer vector for the device. The
interrupt transfer vector structure (VEC) contains a short routine which issues
a JSB instruction to the device driver's interrupt service routine. Execution
continues at the location of the transfer vector.

12-27

UNIBUS and Q22 Bus Device Support
12.3 Interrupt Dispatching in a UNIBUS/Q22 Bus System

This is a somewhat simplified view of the interrupt dispatcher's activities.
Figure 12-5 and Figure 12-6 depict the flow of interrupt dispatching from the
time that a processor grants the interrupt to the processing of the interrupt
within a device driver's interrupt service routine. The following subsections
provide a more complete description of the role of each component in the
servicing of device interrupts.

Figure 12-5 Direct-Vector Interrupt Dispatching

Interrupt granted

PC and PSL
saved on stack

Device supplies
device interrupt
vector

12-28

OBUS_MUL LINTR
SCB page system parameter

r------ set r-- - -
I
I

~ H --
~

....... - - - _.

-

VEC (in CRB)

022 bus multilevel
interrupt code

PUSHR RO-RS

JSB driver_isr

IDB pointer

Device Driver

Interrupt Service Routine . Obtains device lock . Uses IDB address
on stack to locate
device registers and UCB . Restores R3 and R4
from UCB fork block . Transfers control to PC
in fork block (via JSB) . When driver issues RSB

- Releases device lock

- Restores RO-RS

- Issues REI to
dismiss interrupt

--

Device IDB
~

Device CSR

~
UCB address

Device UCB

Fork block . R3 . R4 . PC

The interrupted
rocess continues p

execution

~
Device
Registers

:::~

1--i

ZK-6537-HC

UNIBUS and 022 Bus Device Support
12.3 Interrupt Dispatching in a UNIBUS/Q22 Bus System

Figure 12-6 Non-Direct-Vector Interrupt Dispatching

Interrupt granted

PC and PSL saved
on stack

UBA supplies
adapter interrupt
vector

SCB (First page)

~---'""""

UBA ADP ,.--.,..--------..,
UBA Interrupt Service Routine

• PUSHR RO-R5

• Reads BRRVR in UBA
to obtain device
interrupt vector

• Uses vector as index
into VECT AB to obtain
vector address

• JMP to vector
address+ 2

~------
VECTAB

~ Device IDB - Device CSR
Device

r---- Registers

UCB address ~

VEC Un CRB)

022 bus multilevel
interrupt code

PUSHR RO-R5

r--- JSB driver _isr ~

.... --

IDB pointer

Device UCB

Device Driver Fork block

Interrupt Service Routine •
• Obtains device lock •
• Uses IDB address .

on stack to locate
device registers and UCB . Restores R3 and R4
from UCB fork block . Transfers control to PC
in fork block (via JSB)

• When driver issues RSB

- Releases device lock

- Restores RO-R5

- Issues REI to
dismiss interrupt The interrupted

'--------------~~ process continues
execution

R3

R4

PC

ZK-6536-HC

12.3.1 Direct-Vector and Non-Direct-Vector Interrupt Dispatching
The system control block (SCB) contains the vectors that the VAX architecture
uses to dispatch all interrupts and exceptions. The size of the SCB is system
dependent. Page 1, the only SCB page defined by the VAX architecture,
contains the addresses of software and hardware interrupt service routines
and exception service routines.

12-29

UNIBUS and Q22 Bus Device Support
12.3 Interrupt Dispatching in a UNIBUS/Q22 Bus System

Table 12-2 VAX System UNIBUS/Q22 Bus Interrupt Dispatching

VAX System

Type of
Interrupt
Dispatching

Location of
Adapter Dispatch Table

VAX-11/750, VAX-11/730, MicroVAX 3600
series, MicroVAX II, MicroVAX I

Direct SCB pages 2 and 3

VAX-11/780, VAX-11/785, VAX 8600, VAX
8650, VAX 8670

Non-Direct ADP vector-jump table

VAX 8200/8250/8300/8350 Direct

Direct

Direct

SCB page 2 1

SCB page 2 1

SCB page 2 1

VAX 8530/8550/8700/8800/8830/8850

VAX 6200 series

1 Subsequent pages may be used if there is more than one DWBUA in the system.

12-30

The SCB therefore has an initial, albeit system-dependent role, in servicing
device interrupts. A UNIBUS/Q22 bus system employs either of two methods
to dispatch a device interrupt (see Table 12-2):

• If the system in question is a Micro VAX 3600 series, MicroVAX II,
or Micro VAX I-or uses a direct-vector UNIBUS adapter (UBA)- it
dispatches a device interrupt directly through page 2 (or subsequent
pages, for VAX systems with more than one such UNIBUS) of the SCB.
It takes the device interrupt vector and uses it as an index into the
appropriate SCB page, thus obtaining the address of the appropriate
interrupt transfer vector structure (VEC) for the device. This process is
known as direct-vector interrupt dispatching.

• In a VAX system that employs a non-direct-vector UNIBUS adapter, the
adapter posts an interrupt that is dispatched through a vector in page
1 of the SCB that points to a UBA interrupt service routine. For each
non-direct-vector UBA adapter, the VMS adapter initialization procedure
creates four such interrupt service routines, each corresponding to a
device BR (bus request) level, and places them in an area of nonpaged
pool specially allocated at the end of the adapter control block.

The UNIBUS adapter's interrupt service routine performs the following
actions:

1 Saves RO through RS on the interrupt stack.

2 Reads the UNIBUS adapter's Bus Request Receive Vector register
(BRRVR) to determine the vector address of the device requesting the
interrupt.

3 Uses the vector address as an index into the adapter dispatch table to
locate the interrupt transfer vector for the device in the CRB. For each
non-direct-vector UBA, an adapter dispatch table (also known as the
vector-jump table) is located after the UBA interrupt service routines
in nonpaged pool.

4 Transfers control by means of a JMP instruction to a location within
the interrupt transfer routine contained in the VEC structure. This
process is known as non-direct-vector interrupt dispatching.

UNIBUS and 022 Bus Device Support
12.3 Interrupt Dispatching in a UNIBUS/Q22 Bus System

From another point of view, direct-vector interrupt dispatching and non­
direct-vector interrupt dispatching are characterized by the following two
factors:

• Location of the adapter dispatch table

• Contents of the interrupt transfer routine

The following sections further examine the differences in the dispatching
methods. Figure 12-5 and Figure 12-6 present the flow of tasks performed
within the context of both direct-vector and non-direct-vector interrupt
dispatching.

12.3.2 Adapter Dispatch Table
The adapter dispatch table contains 128 longword vectors, each of which
corresponds to a device interrupt vector. Each longword vector within the
adapter dispatch table contains either the address of an interrupt trans[er
vector structure (VEC), located within the channel request block (CRB) of
the device's controller or, if no device is using the vector, the address of the
adapter's unexpected interrupt service routine. In either case, the address
contained in the adapter dispatch table is longword aligned.

The location of the adapter dispatch table, as signified by the contents of
ADP$L _VECTOR, is system dependent:

• The MicroVAX 3600 series, MicroVAX II, MicroVAX I, and those VAX
systems that employ direct vector UNIBUS adapters situate the adapter
dispatch table in the second and subsequent pages of the system control
block (SCB), as described previously.

• Those VAX systems that employ non-direct-vector interrupt dispatching
situate the adapter dispatch table in a region of nonpaged pool (known
also as the vector-jump table and commonly referred to as VECTAB).

12.3.3 Interrupt Transfer Vector and Interrupt Transfer Routine
The interrupt transfer vector data structure (VEC) is located within the channel
request block (CRB) corresponding to the interrupting device's controller, as
shown in Figure 12-7.

The interrupt transfer vector structure (see Figures 12-8 and A-7) starts with
several lines of executable code known as the interrupt transfer routine.
It also stores several pieces of data, including pointers to the unit and
controller initialization routines in the device driver, the address of the
interrupt dispatch block (IDB), and the address of the adapter control block
(ADP). The interrupt transfer vector may also include information reflecting
the disposition of the adapter's map registers.

12-31

UNIBUS and Q22 Bus Device Support
12.3 Interrupt Dispatching in a UNIBUS/Q22 Bus System

12-32

Figure 12-7 VEC Structures Within a CRB

preceding portion of CRB

Interrupt Transfer Vector Block
(VEC$K_LENGTH bytes)

Interrupt Transfer Vector Block
(VEC$K_LENGTH bytes)

additional
transfer vectors

may follow

:CRB$L_INTD

:CRB$L_INTD2

ZK-6538-HC

There may be one or more interrupt transfer vectors within a single CRB,
as shown in Figure 12-7. VMS creates the appropriate number of interrupt
transfer vector structures within a CRB according the the value specified in
the /NUMVEC qualifier to the SYSGEN command CONNECT. The default
value is 1.

VMS automatically initializes the interrupt dispatching instructions and the
data structure locations in each of the specified vectors.

The interrupt transfer routine is a piece of executable code at the beginning
of each interrupt transfer vector. It is the interrupt transfer routine that
ultimately transfers control to the device driver's interrupt service routine and,
to a certain extent, establishes the context for its execution.

For those VAX systems employing non-direct-vector interrupt dispatching, the
interrupt transfer routine consists of only one instruction:

JSB ©#Adriver-isr-address

For those VAX systems employing direct-vector interrupt dispatching, the
interrupt transfer routine consists of the following two instructions:

PUSHR #AM<RO,R1,R2,R3,R4,R5>
JSB ©#Adriver-isr-address

Note: If the VAX system is a MicroVAX 3600-series or MicroVAX II system with
multilevel device interrupt dispatching enabled, these two instructions
are preceded by some instructions that check the legality of the Q22
bus configuration and conditionally lower IPL. See Section 12.3.4 for a
description of this optional function of the interrupt transfer routine.

UNIBUS and Q22 Bus Device Support
12.3 Interrupt Dispatching in a UNIBUS/Q22 Bus System

Figure 12-8 Interrupt Transfer Vector Block (VEC)

bugcheck data l BUG_CHECK

CMPZV #PSL$V_IPL,-
#PSL$S_IPL,-
4(SP),-
sA#DIPL

BGEQ VEC$L _BUGCHECK
SETIPL sA#DIPL

(total of 12 bytes of ·code)

JSB @# I PUSHR RO-R5

address of ISR

address of IDB

rv ..

T
remaining bytes in VEC block """' J

: VEC$L _BUGCHECK

: VEC$L _RTINTD

: VEC$L _INTD
(CRB$L_INTD)

:VEC$L_ISR

ZK-6539-HC

The driver-loading procedure obtains the address of the interrupt service
routine for each interrupt transfer vector structure from the reinitialization
portion of the driver prologue table (see Section 6.1). This section of the DPT
contains one or more DPT_STORE macros that identify the addresses of the
interrupt service routines. For example:

DPT_STORE,CRB,CRB$L_INTD+VEC$L_ISR,D,isr_for_1st_vector
DPT_STORE,CRB,CRB$L_INTD2+VEC$L_ISR,D,isr_for_2nd_vector
DPT_STORE,CRB,CRB$L_INTD+(2*VEC$K_LENGTH)+VEC$L_ISR,D,isr_for_3rd_vector

The number of DPT_STORE macros that identify interrupt service routines
must equal the number of vectors given in the /NUMVEC qualifier to the
SYSGEN command CONNECT to avoid errors in device initialization or
interrupt handling.

Immediately following the interrupt transfer routine in the CRB is the address
of the interrupt dispatch block (IDB) associated with the CRB. When the JSB
instruction executes, a pointer to the address of the IDB is pushed onto the
top of the stack as though it were a return address. The driver interrupt
service routine can use this IDB address as a pointer into the I/O database.
See Figure 12-5 and Figure 12-6 for an illustration of the context available to
a driver's interrupt service routine when it is called by the interrupt transfer
routine.

12-33

UNIBUS and Q22 Bus Device Support
12.3 Interrupt Dispatching in a UNIBUS/Q22 Bus System

12.3.4 Multilevel Device Interrupt Dispatching for Q22 Bus Devices
VAX peripheral devices request interrupts at IPLs 20 through 23. IPLs 20
through 23 generally correspond with the four bus request levels of the
UNIBUS (BR4 through BR7) and Q22 bus (BIRQ4 through BIRQ7).

The UNIBUS also has four bus grant lines (BG4 through BG7). Because
of this, interrupt dispatching for UNIBUS devices inherently occurs at four
levels. When a UNIBUS device requests an interrupt at BR4, for example,
from a processor executing at an IPL lower than IPL 20, the processor grants
the interrupt to the device at IPL 20 (BG4). If the processor is already
executing at IPL 20 or above, the device interrupt remains pending.

The MicroVAX 3600-series and MicroVAX II Q22 bus architecture has but
one bus grant line (BIAK). As a result, the central processor must, by default,
grant all Q22 bus device interrupts at a single IPL (IPL 23), even though it
arbitrates interrupt requests according to the bus request line used. When a
Q22 bus device requests an interrupt at BIRQ4, for example, from a processor
executing at an IPL lower than IPL 20, the processor grants the interrupt,
unconditionally raising IPL to IPL 23. If the processor is already executing at
IPL 20 or above, the interrupt remains pending.

There are certain consequences of this implementation of interrupt
dispatching on the configuration and behavior of Q22 bus devices: ·

1 Because the Micro VAX 3600 series and Micro VAX II dispatch Q22 bus
interrupts at a single IPL, it is essential that Q22 bus devices that request
interrupts at a high BIRQ be positioned on the bus closer to the CPU than
devices that interrupt at a low BIRQ. (To determine the BIRQ level of any
given Q22 bus device, refer to its hardware user's guide.)

2 It is possible for a Q22 bus peripheral that requests interrupts at a low
BIRQ to block the granting of an interrupt to a peripheral that requests
interrupts at a higher BIRQ. For instance, the processor could grant an
interrupt to a BIRQ4 device, elevating its IPL to IPL 23 in the process.
While executing at IPL 23, the processor would not grant the interrupt
request of a BIRQ7 device. In a real-time environment, where 1/0
operations to one· peripheral must always have priority over lesser forms
of 1/0, this behavior can cause problems.

VMS incorporates a means by which system programmers, concerned about
real-time performance issues, can avoid these problems and implement
multilevel interrupt dispatching for devices on a MicroVAX 3600-series and
MicroVAX II system.

The default behavior of a MicroVAX 3600-series or MicroVAX II interrupt
dispatcher is sufficient for a typical MicroVAX 3600-series or
Micro VAX II system. Only system managers and system programmers
involved in real-time system environments should attempt to use the
multilevel device interrupt dispatching capability of VMS Version 5.0.
Such users should possess a thorough understanding of the VMS interrupt
dispatching mechanism and the means by which VMS synchronizes access to
structures in the 1/0 database.

If you must enforce real-time device priorities in your Q22 bus system, you
can do so by setting the QBUS_MULT_INTR system parameter. This static
parameter causes VMS to set up the proper code and data structures to enable
multilevel device interrupt dispatching at system initialization.5

5 Other VAX systems ignore the QBUS_MUL T_INTR system parameter.

12-34

12.3.4.1

UNIBUS and 022 Bus Device Support
12.3 Interrupt Dispatching in a UNIBUS/Q22 Bus System

When you bootstrap a Micro VAX 3600-series system or Micro VAX II system
with the QBUS_MUL T_INTR system parameter set, VMS initializes data
structures for each device and implements multilevel device interrupts as
follows:

• Locates the address of the device driver's interrupt service routine in the
driver's DPT and stores it in the appropriate VEC data structure.

• Adjusts the corresponding vectors in the second page of the SCB so
that they point to the multilevel device interrupt dispatching code in the
interrupt transfer vector (that is, replacing the address of CRB$L_INTD
with CRB$L_INTD+VEC$L_RTINTD).

• Sets up data and code at VEC$L_RTINTD in the first interrupt transfer
vector for the device. This code performs special checks for the legality of
the Q22 bus configuration and conditionally lowers IPL, when necessary,
to service the interrupts of low priority devices.

When multilevel device interrupt dispatching is enabled, interrupt dispatching
proceeds as in the default case. However, after the processor raises IPL
to IPL 23 to grant the interrupt, the dispatching of the interrupt results in
the lowering of IPL to device IPL, if necessary, to service the interrupt.
As a result, the processor, executing at the lower IPL, will be free to grant
interrupts from higher priority devices.

Prior to implementing this feature in a Micro VAX 3600-series system or
MicroVAX II system, users should perform the following tasks:

1 Ensure that the Q22 bus is properly configured.

2 Adapt any existing non-DIGITAL-supplied device driver so that it
correctly initializes any secondary vector (VEC) structures it uses and
also refers to fields in the channel request block (CRB) and VEC by the
proper symbolic offsets.

Ensuring That the Q22 Bus Is Properly Configured
The Micro VAX 3600-series and Micro VAX II Q22 bus architecture mandates
that devices with the ability to interrupt at a high BIRQ level (for instance,
BIRQ7) must be positioned on the bus closer to the CPU than devices that
interrupt at lower BIRQ levels. In a Q22 bus system, when the processor
grants an interrupt to a device, the processor passes the interrupt down the
BIAK line to the first device on the bus. If the device is not the one requesting
an interrupt, it is responsible for propagating the acknowledgment grant to
the next device on the bus, and so on. However, if a device coincidentally
initiates an interrupt just before it would be required to pass the grant further
down the bus, it may instead "steal" the grant for itself.

The problems of an illegally configured Q22 bus can be illustrated in the
following two examples.

Consider the case of a device that interrupts at BIRQ6 (IPL 22). Assume
the CPU is at IPL 21. The bus arbitrator will grant the device its interrupt
and send the grant down the Q22 bus. However, if at this precise moment
a device that is closer to the CPU on the grant path, and that interrupts
at BIRQS (IPL 21), initiates an interrupt, it may not propagate the grant as it
should. Instead, it may steal the grant and assume ownership of the interrupt.
Thus, there exists the possibility of an IPL 21 device successfully interrupting
a processor executing at IPL 21. The end result is an unpredictable break in
synchronization that could have a multitude of consequences.

12-35

UNIBUS and Q22 Bus Device Support
12.3 Interrupt Dispatching in a UNIBUS/Q22 Bus System

12.3.4.2

12-36

Consider also an instance where the second device interrupts at a lower IPL,
such as BIRQ4 (IPL 20). Although it essentially is executing below the IPL of
the CPU (IPL 21), this device, too, may steal the interrupt grant. The break in
synchronization in this instance will result in a reserved operand fault when
the driver's interrupt service routine issues the REI instruction, as the VAX
architecture does not permit an REI from a lower IPL to a higher IPL.

If the MicroVAX 3600-series system or MicroVAX II system employs the
multilevel device interrupt dispatching option, VMS introduces special code
in the interrupt transfer vector data structure that helps prevent violations
of system synchronization resulting from an illegally configured Q22 bus
(see Figure 12-8). This code, located at offset VEC$L_RTINTD, checks the
device IPL of the interrupting peripheral against the IPL in the processor
status longword (PSL) of the interrupted thread of code. If the device IPL is
not greater than the IPL in the saved PSL, VMS generates an ILLQBUSCFG
bugcheck, signifying that the Q22 bus is illegally configured.

Effects of Enabling Multilevel Device Interrupt Dispatching on Device
Drivers
Before enabling multilevel device interrupts in a MicroVAX 3600-series system
or MicroVAX II system, you should first ensure that all existing device drivers
have been adapted according to the following guidelines:

• If the driver creates or accesses any secondary VEC data structures, it
must take steps to initialize properly the multilevel device interrupt
dispatching code (at offset VEC$L_RTINTD in the primary VEC
structure) in these secondary structures. Failure to properly initialize
these structures in the system can negate any performance increases
expected as a result of enabling multilevel device interrupt dispatching.

• The device IPLs of certain Q22 bus devices may differ from those of
corresponding UNIBUS devices. To ensure that the DPT specifies the
correct device IPL, refer to the device's hardware user's guide.

• Wherever the driver implicitly refers to the longword in the VEC structure
that contains the address of the interrupt service routine, it should
explicitly use the symbol VEC$L _ISR. For example, you should replace
any instance of CRB$L_INTD+4 with CRB$L_INTD+VEC$L_ISR.

• If the driver assumes that the contents of the device's SCB vector (that
is, the vector in the adapter dispatch table) always points to CRB$L_
INTO, it must be appropriately modified to reflect the implementation of
multilevel device interrupt dispatching. The transfer vector can legally
point to any longword-aligned address between CRB$L_INTD+VEC$L_
RTINTD and CRB$L_INTD+VEC$L_INTD. Because the MicroVAX 3600
series and MicroVAX II utilize direct-vector interrupt dispatching, the
transfer vector will never point to VEC$L_INTD+2.

Although certain of the symbolic offsets defined in the data structure
definition macro $VECDEF have negative values, driver code can uniformly
refer to the contents of the VEC structure in the form CRB$L_INTD+VEC$x_
symbol.

1 3 MASSBUS Device Support

13.1

The MASSBUS adapter (MBA) is the hardware interface between the
backplane interconnect and MASSBUS storage devices. The MASSBUS is
the communication path linking the MASSBUS adapter to the mass storage
devices.

The MASSBUS adapter performs the following functions that allow
communication between devices and memory:

• Mapping of virtual addresses to physical addresses

• Buffering of data for transfers between main memory and the MASSBUS

• Transfer of interrupts from MASSBUS devices to the backplane
interconnect

A MASSBUS adapter supports any combination of up to eight device
controllers. Typical MASSBUS controllers include the TM03 tape controller
and the RP06, RM03, and RM80 disk controllers. Only one controller can
transfer data over the MASSBUS at a time.

The TM03 tape controller supports up to eight tape drives. In contrast to tape
controllers, there is a one-to-one relationship between a disk controller and
its device; each controller supports only one disk drive. The VMS system
interprets and maintains the I/O database differently, depending upon
whether the controller is single or multiunit.

Each MASSBUS controller connected to a MASSBUS adapter is assigned a
unit number in the range 0 to 7. The method of unit number assignment
is controller specific, but you can obtain the number from either unit plugs
or switch packs. In the case of a controller for several devices, the unit
number is distinct from the subunit numbers assigned to the individual drives
connected to the controller.

Figure 13-1 illustrates a possible MASSBUS configuration.

MASSBUS Adapter Registers
The MASSBUS adapter has three sets of registers:

• The MASS BUS adapter's registers

• External registers for each device (controller) on the MASS BUS

• 256 map registers

To allow competing devices to share these resources, access to and
modification of all MASSBUS adapter registers (internal, external, and map
registers) are governed by certain rules and conventions. In particular, access
to registers might, at times, require ownership of either the device controller

13-1

MASSBUS Device Support
13.1 MASSBUS Adapter Registers

13-2

Figure 13-1 MASSBUS Configuration

MASSBUS

B c

TAPE A
CONTROLLER (UNIT 0)

(TM03)
UNIT 1 UNIT 2 NON-DIGIT AL

DEVICE

SUBUNIT SUBUNIT SUBUNIT SUBUNIT
0 1 2 3

ZK-939-82

Figure 13-2 MASSBUS External-Register Longword

31 16 15 0

MBA' s status register bits external register contents

ZK-1796-84

or the MASSBUS adapter itself, or both. Subsequent sections in this chapter
discuss the methods of obtaining such ownership of these shared resources.

MASS BUS adapter external registers are device dependent and accessible"
whether or not the driver owns the MASSBUS adapter. However, in the case
of multiunit MASSBUS adapter controllers, the driver might need to own the
controller before it can gain access to a register.

MASSBUS adapter external registers are each 16 bits wide, but they must
be accessed as longwords. When a driver reads an external register, the
MASSBUS adapter concatenates the high-order 16 bits of the MBA's status
register (one of the MBA's internal registers) with the contents of the specified
external register. Figure 13-2 illustrates the resulting longword.

On a write to an external register, the MASSBUS adapter uses the low-order
16 bits of the longword source operand to update the external register.

MASSBUS adapter internal and map registers are 32 bits in length. They
must be accessed as longwords or the processor will signal a machine
check exception. The driver for a MASSBUS device must obtain exclusive
ownership of the MASSBUS adapter before modifying any of the MBA's
internal or map registers.

MASSBUS Device Support
13.1 MASSBUS Adapter Registers

Bits 21 through 30 of each of the MBA's map registers are reserved; they
cannot be written. Use of the MBA's map registers is analogous to use of the
UNIBUS adapter's map registers with the following exceptions:

• Because the MASSBUS can handle only one transfer at a time, ownership
of the MASSBUS adapter implies ownership of all its map registers. Thus,
the driver need not independently request map registers.

• The MBA's map registers do not contain a byte-offset field. The driver
loads the full MASSBUS adapter virtual address, including the byte
alignment, into the MASSBUS adapter virtual address register (MBA$L _
VAR, one of the MBA's internal registers) at the start of a data transfer.
Use of the MBA$L_VAR register is described in Section 13.1.1.

• The MBA's map registers do not contain a data path field; the MASSBUS
adapter has a single data path, and ownership of the adapter implies
ownership of the path. Thus, the driver need not allocate the data path
independently.

13.1.1 Loading MASSBUS Adapter Registers
To prepare for a data transfer over the MASSBUS, the driver that owns
the MASSBUS adapter uses the LOADMBA macro to load the MBA's map
registers and associated internal registers. The LOADMBA macro invokes the
subroutine IOC$LOADMBAMAP, which performs the following steps:

• Determines the number of map registers needed to map the data area by
adding the contents of UCB$W_BCNT to UCB$W_BOFF, adjusting the
sum to the next even multiple of 512, and dividing the result by 512.

• Loads the specified number of map registers, beginning with map register
0, with the contents of the page-table entries to which
UCB$L_SVAPTE points. This step maps the data area for the transfer
into the low portion of the MBA's virtual address space. The routine also
loads the next map register beyond the number used to map the data
area with zeros (an invalid map entry). This procedure stops the transfer
should a hardware failure occur.

• Loads the MBA$L _VAR register with the zero-extended contents of
UCB$W_BOFF. Because the first byte of the data area is located at offset
UCB$W_BOFF within the page of memory mapped by map register 0, the
UCB$W_BQFF contains the virtual address of the start of the data area in
MASSBUS adapter virtual address space.

• Loads the complement (negative) of UCB$W_BCNT into the MBA's
byte-count register (MBA$L _BCR).

Note that if a driver is to perform a data transfer in the reverse direction (for
example, read reverse on a tape), it must modify the contents of the
MBA$L_VAR, as established by IOC$LOADMBAMAP, so that it points
to the last byte of the data area. This is done by adding one less than the
contents of UCB$W_BCNT to the contents of the MBA$L_VAR register.

During the progress of a data transfer over the MASSBUS, the MBA$L_VAR
register is continuously updated so that it points to the current position in
the data area. The VAX Hardware Handbook illustrates the mapping of the
contents of the MBA$L_VAR register into physical memory.

13-3

MASSBUS Device Support
13.1 MASSBUS Adapter Registers

13.1 .2 MASSBUS Adapter Registers and Offsets

13-4

During system initialization, VMS builds an adapter control block (ADP),
a channel request block (CRB), and an interrupt dispatch block (IDB) for
each MASSBUS adapter. The system also allocates 4KB of system virtual
address space for the adapter's register 1/0 space. The base of this 1/0
register virtual address space is placed in IDB$L_CSR. Thus, you can access
MASSBUS adapter registers using the base register virtual address plus
some offset. The $MBADEF macro defines the offsets for MASSBUS adapter
registers. The major symbols defined by this macro are shown in Table 13-1.

Table 13-1 Major Offsets Defined by $MBADEF

Symbol

MBA$L_CSR

MBA$L_CR

MBA$L_SR

MBA$L_VAR

MBA$L_BCR

MBA$L_DR

MBA$L_SMR

MBA$L_CAR

MBA$L_ERB

MBA$L_AS

MBA$L_MAP

MBA Register Name

Configuration register

Control register

Status register

Virtual-address register

Byte-count register

Diagnostic register

Selected map register

Command-address register

External register base

Attention-summary register

Base of map registers

Hex Offset

0

4

8

c
10

14

18

1C

400

414

800

The MASSBUS adapter's internal registers occupy the low-order 1024 bytes
of address space even though there are only eight internal MBA registers.
Beyond the internal registers, there are eight blocks of 32 longwords (128
bytes) each, one block for each of the eight device controllers that can be
connected to a single MASSBUS adapter. Each of these blocks provides space
for the device registers of each controller. Beyond the device-register space is
the area reserved for the MASSBUS adapter's 256 map registers.

Figure 13-3 illustrates the relative positions of the MASSBUS adapter's
registers and the values device drivers use to gain access to them. The base
address of the MASSBUS adapter's address space, stored in IDB$L_CSR, is
the address of the first of the MASSBUS adapter's internal registers.
IDB$L_CSR represents the internal register's virtual location, while the
MBA$L_ symbols represent register values as defined by $MBADEF. Note
that the MASSBUS adapter's register space occupies only the first 3KB out
of the 8KB allotted to physical 1/0 address space. However, by convention,
VMS allocates 4KB of virtual addresses to each MASSBUS adapter.

To address a map register in the MASSBUS adapter, the driver constructs the
following address:

IDB$L_CSR + MBA$L_MAP +map-register-index

MASSBUS Device Support
13.1 MASSBUS Adapter Registers

Figure 13-3 Location of MASSBUS Registers in Physical Address
Space

MASSBUS INTERNAL REGISTERS
IDB$LCSR

UNIT 0 DEVICE REGISTERS
IDB$LCSR+MBA$LERB=(X"80 *Q)

UNIT 1 DEVICE REGISTERS
IDB$LCSR+MBA$LERB=(X"80 * 1)

UNIT 2 DEVICE REGISTERS
IDB$LCSR+MBA$LERB=(X"80 *2)

4K BYTES .
~ . ~ .

UNIT 7 DEVICE REGISTERS
IDB$LCSR+MBA$LERB=(X"80 *7)

MAP REGISTERS
IDB$LCSR+MBA$LMAP

1024 UNUSED BYTES

ZK-940-82

To address a device register, the driver constructs the following address:

IDB$L_CSR + MBA$L_ERB +(unit-number* 8016) +register­
displacement

An individual driver should define offsets for the registers of its device.
During execution, the driver computes a register address by summing the
MBA's starting virtual address (the contents of IDB$L_CSR), MBA$L_ERB,
the unit number of the device controller multiplied by 80161 and the offset of
the specified register.

The attention-summary register (MBA$L_AS), as shown in Table 13-1,
appears to reside within the external-register space reserved for MASSBUS
adapter controller 0. Actually, the attention-summary register is a composite
register. Each of the MASSBUS adapter's controllers contributes one bit of
information to the register. This composite register appears in each of the
eight device register spaces at offset 1016 from the base of the device registers
for that device. Thus, MBA$L_AS can be defined as any of the values 41016,
49016, 51016, 59016, and so on. For convenience, it has been defined as
41016·

13-5

MASSBUS Device Support
13.1 MASSBUS Adapter Registers

13.1.3 Modifying MASSBUS Adapter Registers

13.2

The driver for a MASSBUS device must obtain ownership of the MBA before
modifying any of the MBA's internal registers or map registers. A driver
obtains ownership of the MBA by invoking either the REQPCHAN macro or
the REQSCHAN macro, depending on whether the device is connected to a
single-unit MASSBUS controller or a multiunit MASSBUS controller.

For dedicated controllers, invoke the REQPCHAN macro. Because the
controller is dedicated to its single device, there is never any contention
for the controller.

For multiunit devices, however, invoke the REQSCHAN macro to obtain
MBA ownership because several devices can share the controller, and so must
contend for its use. The controller for several devices relegates the MASSBUS
adapter to a secondary position. Thus, for multiunit controllers, invoke
REQPCHAN to gain ownership of the controller, and invoke REQSCHAN to
obtain the MASSBUS adapter.

1/0 Database for MASSBUS Devices

13-6

During initialization, the system creates an ADP, a CRB, and an IDB for
each MASSBUS adapter included in the configuration. The driver-loading
procedure subsequently builds additional data structures for each device
controller connected to a MASSBUS adapter. The type of structure created
depends upon whether the device controller is a dedicated controller or the
controller of several devices.

The system builds a unit control block (UCB) for each single-unit controller.
Figure 13-4 illustrates the 1/0 database for a MASSBUS adapter with one
dedicated controller attached to it. Note that the ADP, CRB, and IDB all
correspond to the MASSBUS adapter and can logically be considered a single,
extended data block. The UCB corresponds to the device/controller pair.
Because of the one-to-one correspondence between a dedicated controller and
its device, the system does not need to distinguish between the two and thus
does not maintain separate data blocks for each piece of hardware.

A controller of several devices, however, requires separate data structures for
the controller and each of its subunits (devices). The driver-loading procedure
builds a CRB /IDB pair for the controller, as well as a UCB for each subunit.
Figure 13-5 shows the 1/0 database created for a MASSBUS adapter with
one disk unit and two tape units.

Figure 13-5 does not include several pointers used in interrupt dispatching.
In particular, the IDB associated with the MASSBUS adapter maintains an
array of up to eight longwords that point to the data structures associated
with the eight possible MASSBUS controllers attached to the MASSBUS.

For dedicated controllers, the IDB longword points to the device's UCB;
whereas, for a controller for several devices, the longword (or longwords)
points to a field within the CRB associated with the controller. The low
bit of this longword, when set, indicates a multiunit vector. The software
checks this bit to determine whether the longword points to a single UCB or
a multiunit CRB.

MASSBUS Device Support
13.2 1/0 Database for MASSBUS Devices

Figure 13-4 1/0 Database for MASSBUS Disk Unit

HARDWARE
CONFIGURATION

MBA I""-
.............. 1

I
I

.......

RP06 I- - -1-
I
I
I
I

.......
.......

..........

UCB

ASSOCIATED
DATABASE

.......
.......

ADP

CRB

IDB

ZK-941-82

Figure 13-5 1/0 Database for MASSBUS Disk and Tape Units

HARDWARE
CONFIGURATION

r---------
1

I

MBA

RP06

UNIT
0

UNIT
1

I
I
l ------
1

I
I

-l-
1

I
-1-

1

UCB

UCB

UCB

ASSOCIATED
DATABASE

ADP

CRB IDB

ZK-942-82

Also not pictured in Figure 13-5 is how multiunit IDBs also maintain an array
of longwords. Each longword points to the individual UCBs for the units
attached to the controller. Figure 13-6 illustrates in more detail the set of IJO
data structures for the MASSBUS adapter and its devices.

13-7

13.3

MASSBUS Device Support
13.2 1/0 Database for MASSBUS Devices

Figure 13-6 1/0 Data Structures Used in Dispatching a MASSBUS Device Interrupt

ADP

r- L DISK
CRB FOR MBA IDB FOR MBA UCB 0

MBA CONFIG. REG
~

MBA UNIT 0 (DISK) CRB I--'

CRB ~ IDB ~ MBA UNIT 1 (TAPE) . . .
TAPE

CRB FOR TM03 IDB FOR TM03 UCB 0

ADP CSR
,._,

L---.1 LINK

L---.1 ADP

INTD+1 i----J CRB 1--1

ADP

IDB UCB 0 f----'

f-----1 UCB 1 1------i

TAPF
UCB1

~

CRB t-

ZK-943-82

MASSBUS Adapter Operations

13-8

The MASSBUS accepts two kinds of operations: data transfer operations
and nondata transfer operations. Data transfer operations require the use of
MASSBUS adapter shared resources, while nondata transfers do not.

Before a driver can activate a data transfer operation on the MASSBUS, the
driver must request and receive ownership of the MASSBUS adapter on
behalf of the device unit. However, drivers must not initiate nondata transfer
operations while they have control of the MASSBUS adapter. Section 13.4.1
explains this statement further.

The MASSBUS adapter generates interrupts when data transfers terminate
and when attention conditions arise on devices. When an interrupt occurs
on the MASSBUS adapter, the MASSBUS adapter's interrupt dispatcher
determines whether the interrupt is for a data transfer or an attention
condition.

Data transfer interrupts occur when a data transfer either completes or is
aborted. When the interrupt occurs, the MBA's status register (MBA$L_SR)
contains information about the condition that caused the interrupt.

13.4

MASSBUS Device Support
13.3 MASSBUS Adapter Operations

Attention interrupts occur when nondata transfers on MASSBUS devices
terminate, or when the device undergoes an exceptional condition, such as
coming on line.

The MASSBUS adapter's attention-summary register controls attention­
interrupt handling. This register contains eight bits of data, one for each
of the eight possible controllers that can be connected to the MASSBUS
adapter. When a device incurs an attention condition, the hardware sets
the corresponding bit in the attention-summary register and generates a
MASSBUS adapter interrupt.

If the attention condition occurs while a data transfer operation for another
device is in progress, the hardware sets the bit in the attention-summary
register but suppresses the attention interrupt. The interrupt generated when
the data transfer is completed allows the MASS BUS adapter's interrupt
dispatcher to gain control, handle the data transfer interrupt, check the
attention-summary register and then invoke the proper driver to handle the
attention condition.

MASSBUS Adapter's Interrupt Dispatching
When interrupts occur on the MASSBUS adapter, the MASSBUS adapter's
interrupt dispatcher gains control. This routine first determines whether the
interrupt is the result of a data transfer or an attention condition. The routine
checks to see if the MASSBUS adapter is owned and, if so, by whom.

13.4.1 Checking for MASSBUS Adapter Ownership
There are two conditions by which the interrupt dispatcher can determine
that the interrupt is an attention interrupt:

• If the MASSBUS adapter is not owned

• If the MASSBUS adapter is owned, but the owner is not expecting an
interrupt (UCB$V_INT in UCB$L_STS is clear)

When the MASSBUS adapter is owned and the owner expects an interrupt,
the interrupt is assumed to be the result of a data transfer operation.

As mentioned earlier, a driver must not initiate nondata transfers on the
MASSBUS adapter while it owns the adapter. For example, consider a
MASSBUS adapter attached to two disk units, A and B. Disk A is performing
an 10$_SEEK (a nondata transfer operation that completes fairly quickly),
while at the same time, disk B is performing an 10$_RECAL operation (a
nondata transfer operation that takes about 0.5 seconds to complete).

The driver for disk A correctly initiates its operation without obtaining
possession of the MASSBUS adapter channel, but the disk B driver
initiates its operation while it owns the MASSBUS adapter. Both of these
operations, upon completion, set the bit in the attention-summary register
that corresponds to their respective drive units, and initiate an interrupt. We
will assume that disk A's 10$_SEEK is completed first. The operation sets
disk A's bit in the attention-summary register and generates the MASSBUS
adapter's interrupt.

13-9

MASSBUS Device Support
13.4 MASSBUS Adapter's Interrupt Dispatching

The MASSBUS adapter's interrupt dispatcher finds that the adapter is owned,
and that the owner is expecting an interrupt. Therefore, the interrupt
dispatcher incorrectly assumes that it is handling a data transfer interrupt,
and, moreover, that this interrupt is the one for which the owner of the MBA
is waiting.

As a result, the MASSBUS adapter's interrupt dispatcher returns control,
through the fork block in the MASSBUS adapter owner's UCB, to the driver
for disk B, even though disk B's operation has not completed. The disk
B driver will now incorrectly assume that the device has completed its
operation, which can cause serious problems.

13.4.2 Dispatching a Device Interrupt

13-10

Once the MASS BUS adapter's interrupt dispatcher determines the type of
interrupt, it dispatches the interrupt to the driver. The interrupt dispatcher
handles attention interrupts and data transfer interrupts in the same way,
with one exception: on an attention interrupt, the interrupt dispatcher clears
the MASSBUS adapter's status register (MBA$L_SR) before dispatching the
interrupt to the driver. The status register contains information used only in
data transfer interrupt dispatching.

How the interrupt dispatcher dispatches the interrupt to the driver differs
depending on the type of controller.

The MASS BUS adapter's interrupt dispatcher handles a solicited interrupt
on a dedicated controller by transferring control to the driver through the
fork block in the UCB. On unsolicited interrupts on dedicated controllers, the
interrupt dispatcher calls the driver's unsolicited interrupt service routine.

On dedicated controllers, the MASSBUS adapter's interrupt dispatcher always
clears the attention bit in the attention-summary register before it calls back
the driver after an interrupt.

Dispatching interrupts to the driver of a device that shares its controller with
several other devices differs in two ways from dispatching interrupts to the
driver of a device with a dedicated controller.

First, the interrupt dispatcher never clears the attention bit. This task is left
to the driver because some controllers that control more than one device use
this bit to synchronize their activities, and guarantee the integrity of device
registers only while the bit is set. If the interrupt dispatcher clears the bit
before returning control to the driver, the driver can no longer rely on the
contents of the device's registers.

Second, a controller that controls several devices needs another interrupt
dispatcher to handle simultaneous requests from its several subunits. This
second-level interrupt dispatcher resides in the driver. After an interrupt, the
MASS BUS adapter's interrupt dispatcher indirectly calls this second driver's
interrupt dispatcher using code in the controller's CRB. The driver-loading
procedure installs this code when it establishes the 1/0 database.

13.5

MASSBUS Device Support
13.5 Special Considerations for MASSBUS Device Drivers

Special Considerations for MASSBUS Device Drivers
MASSBUS adapter considerations affect a driver's device unit initialization
routine, start-1/0 routines and, for multiunit controllers only, the driver's
use of the DPTAB macro. MBA considerations also affect interrupt handling,
as described in Section 13.4.2. The next sections in this chapter discuss
programming details for writing a MASSBUS device driver.

13.5.1 Unit Initialization Routine
All drivers for MASSBUS adapter devices initialize two fields in the UCB (as
well as initializing device-specific fields): UCB$B_SLAVE and
UCB$B_SLAVE+ 1. The first of these fields should contain the controller's
MASSBUS adapter unit number, which marks the controller's position on the
MASSBUS adapter. The second of these contains the offset, in longwords,
from the start of the MASSBUS adapter's external registers to this controller's
device registers. The value of this longword offset is always 32 times the unit
number of the controller.

Initialization of a device attached to a dedicated controller is simple because
the device unit number and the controller position number on the MASSBUS
adapter are always equal. To initialize the field UCB$B_SLAVE, copy to
it the contents of UCB$W_UNIT. To initialize UCB$B_SLAVE+l, multiply
the contents of UCB$W_UNIT by 32. The driver's fork process or interrupt
service routine later uses this information to compute a pointer to this device's
registers. By convention, R4 points to the MASSBUS adapter configuration
register, and RS points to the UCB of this device.

Thus, the following two instructions cause R3 to point to the device registers
during normal system operation:

MOVZBL
MOVAL

UCB$B_SLAVE+1(R5),R3
MBA$L_ERB(R4) [R3] ,R3

For devices connected to a controller that controls several devices,
determination of the controller's MBA position is more complex. When
the unit initialization routine is invoked, the following values are in the
following registers:

R3 Address of controller's device registers

R4 Address of the MBA's configuration register

R5 Address of device's UCB

The driver computes the MBA position of the controller by using R3 and
R4 to determine the number of bytes from the start of the MBA' s external
registers to the start of the device's device registers. The difference, when
divided by 128, is the controller's MBA position number.

13-11

MASSBUS Device Support
13.5 Special Considerations for MASSBUS Device Drivers

13.5.2 The MASSBUS Adapter and the 1/0 Database

13.5.3 Start-1/0 Routine

13.5.3.1

13-12

The UCB of a device connected to a single-unit controller, at offset
UCB$L_CRB, contains the address of the MASSBUS adapter's CRB. This
CRB in turn contains, at offset CRB$L_INTD+VEC$L_IDB, the address of
the MASSBUS IDB. This IDB points to the base address of the MASSBUS
adapter registers at offset IDB$L_CSR.

A controller that controls several devices maintains a more complicated 1/0
database. The device UCB, at offset UCB$L_CRB, points to the controller's
CRB, and this structure points to the CRB for the MASSBUS adapter at
offset CRB$L_LINK. Also, the controller's CRB points to its own IDB at
offset CRB$L_INTD+VEC$L_IDB. This IDB points to the controller's device
registers at offset IDB$L_CSR.

Thus, the UCB for a device always points to that device's primary CRB,
whether it is the MASSBUS adapter's CRB or the controller's CRB. The
primary CRB points to the secondary CRB, if one exists for the device.

Figure 13-6 shows these relationships among 1/0 data structures.

Depending on the function being executed, the start-I/O routine for a
MASSBUS device performs all or some of the following tasks:

• Requests, if necessary, controller data channel(s) as described in
Section 13.5.3.1

• Clears errors on the MASSBUS adapter by placing the value -1 into the
MBA's status register; this is a write-ones-to-clear register (MASSBUS
device registers and the MBA's registers are all longwords)

• Invokes the LOADMBA macro to load the MBA's map registers as
described in Section 13.5.3.2

• Loads device registers to start the function

• Waits for a device interrupt or timeout

• Releases, if necessary, controller data channel(s) as described in
Section 13.5.3.3

• Finishes the request like other drivers

Requesting Controller Data Channels
Device drivers for MASSBUS devices must request and receive ownership of
the MASSBUS adapter channel before loading the MBA's internal registers
or map registers. In addition, drivers for devices connected to multiunit
controllers must obtain ownership of the controller channel before modifying
the contents of controller registers that can be shared among the units
connected to the controller.

Drivers for dedicated controllers must request ownership of the MASSBUS
adapter channel by invoking the macro REQPCHAN.

13.5.3.2

MASSBUS Device Support
13.5 Special Considerations for MASSBUS Device Drivers

Device drivers for controllers that control several devices invoke the
REQPCHAN macro when the operation requires ownership of only the
primary channel (the controller's channel). However, if the operation
requires ownership of both primary and secondary channels (a data transfer
operation), the driver must first obtain the controller channel and then request
the MASSBUS adapter channel by invoking the REQSCHAN macro.

Again, the driver needs ownership of both channels only when performing
a data transfer, and must release the channels before initiating a nondata
transfer. Thus, a driver must obtain ownership of the MASSBUS adapter
channel some time before initiating a data transfer and must either not
own the channel or release such ownership before it invokes the WFIKPCH
macro, or issue the WFIRLCH macro, following the start of a nondata transfer
operation.

Loading Map Registers
MASSBUS device drivers invoke the LOADMBA macro before they initiate
a data transfer, to load the MBA's map registers, the MBA's virtual-address
register (MBA$L_ VAR), and the MBA's byte-count register (MBA$L_BCR).
Drivers cannot modify these registers during a transfer. The LOADMBA
macro expects the following register contents:

• The address of the MBA's configuration register (MBA$L _CSR) in R4

• The address of the device UCB in RS

LOADMBA preserves the contents of R3 but modifies RO through R2. The
macro performs the following steps:

1 Uses the contents of UCB$W_BCNT and UCB$W_BOFF to determine the
number of pages that contain pieces of the I/O buffer.

2 Beginning with the page-table entry to which UCB$L_SVAPTE points
and continuing for the number of page-table entries determined in
step 1, copies the page-frame numbers from the page-table entries to the
corresponding map registers, starting at map register 0.

3 Ensures that the valid bit is clear in the map register that immediately
follows the last map register loaded with a PFN. This prevents a hardware
fault or prefetch from modifying memory.

4 Moves the negative value of the transfer byte count (UCB$W_BCNT) into
the MBA's byte-count register (MBA$L_BCR).

5 Moves the byte offset in the first page of the transfer (UCB$W_BOFF) into
the MBA's virtual-address register (MBA$L_VAR).

6 Returns to the start-I/O routine that invoked it.

If the I/O operation about to be initiated by the driver is a reverse operation
(a read-reverse on tape), the driver must modify the contents of the MBA's
virtual-address register set up by LOADMBA. Because reverse operations
access the I/O buffer from its highest address through its lowest address,
the value to be loaded into the MBA's virtual-address register must be the
virtual address, in MBA's virtual memory, of the last byte of the buffer. This
number is equal to one less than the sum of the contents of UCB$W_BOFF
and UCB$W_BCNT.

13-13

MASSBUS Device Support
13.5 Special Considerations for MASSBUS Device Drivers

13.5.3.3 Releasing Controller Data Channels
The driver releases the controller data channels by invoking the RELCHAN
macro. RELCHAN releases all controller channels (both primary and
secondary) currently owned by the device. To release only the secondary
channel and retain ownership of the primary channel, a driver can invoke the
RELSCHAN macro.

13.5.4 DPTAB Macro

13.6

The device driver for a MASSBUS device that shares its controller with other
devices must set the DPT$V_SUBCNTRL bit in the flags argument of the
DPTAB macro. Setting this bit causes the driver-loading procedure to create a
second CRB and an IDB for the controller.

Interrupt Service Routines for MASSBUS Devices
The MASSBUS interrupt dispatcher (MBA$INT) gains control when it receives
an interrupt from the MASSBUS adapter. Because data transfers in progress
suppress attention interrupts on the MASSBUS adapter, and because several
devices can request attention simultaneously, several device drivers might
need to be informed of the interrupt.

MBA$INT determines which drivers should be invoked as a result of the
interrupt and then passes control to these drivers. For data transfer interrupts,
MBA$INT preserves the value contained in the MBA's status register at the
time of the interrupt so that the driver can have access to this value.

For IjO operations that involve no data transfer, MBA$INT clears this register
before invoking the driver. MBA$INT only preserves the contents of registers
R2 through RS. Drivers that use other registers must save the contents of
those registers, and must restore them before exiting from the interrupt
service routine.

13.6.1 Transferring Control to the Interrupt Service Routine

13-14

The method by which MBA$INT invokes a driver depends upon whether
the driver serves a device connected to a dedicated controller or a device that
shares its controller with several other devices. Furthermore, if the device is
connected to a dedicated controller, the method of transfer from MBA$INT to
the driver depends upon whether or not the interrupt is expected.

For a device on a dedicated controller whose driver is expecting an interrupt,
MBA$INT restores the driver context saved in the UCB fork block and
transfers control (using a JSB instruction) to the instruction that follows the
wait-for-interrupt instruction.

For a device on a dedicated controller whose driver is not expecting interrupts,
MBA$INT obtains the address of the driver's unsolicited interrupt service
routine from the driver dispatch table and calls the routine.

For a device that shares its controller with several other devices, MBA$INT
transfers control to the driver's interrupt service routine by simulating a
direct transfer, through an interrupt vector, to the controller's CRB. The CRB
contains code that transfers control to the interrupt service routine.

MASSBUS Device Support
13.6 Interrupt Service Routines for MASSBUS Devices

MBA$INT first pushes the processor status longword (PSL) onto the stack.
The routine then calls (with a JSB instruction that leaves an address within
MBA$INT on the stack) the code within the CRB. This code contains the
following sequence of instructions, where XX$INT is the address of the
interrupt service routine and XX$IDB is the address of the controller's IDB:

PUSHR #AM<R2,R3,R4,R5>
JSB XX$INT
.LONG XX$IDB

The execution of the previous instruction sequence, plus the instructions
executed by MBA$INT (the pushing of the PSL onto the stack and the JSB),
places a simulated interrupt frame onto the stack, including a saved PSL, a
saved PC, saved registers, and a pointer to an address in the IDB.

13.6.2 Returning Control to MBA$1NT
The way in which a driver returns control to MBA$INT depends on the way
in which MBA$INT invoked it. Drivers for dedicated controller devices return
to MBA$INT through an RSB instruction, although the RSB can execute as a
result of the driver's invoking the IOFORK macro.

Drivers of devices that share a controller return control to MBA$INT by
removing the indirect pointer to the IDB from the top of the stack, restoring
registers R2 through RS, and executing an REI instruction. This sequence,
executed within the driver's interrupt service routine, eliminates the simulated
interrupt frame from the stack before returning to MBA$INT.

13.6.3 Considerations for Interrupt Service Routines
Drivers for dedicated controller devices attached to the MASSBUS do not
have interrupt service routines. Instead, MBA$INT handles all the functions
that a driver interrupt service routine normally provides.

Drivers of devices that share a controller on the MASSBUS must have their
own interrupt service routines. In general, these routines perform the same
functions as the interrupt service routines for UNIBUS and Q22 bus devices
(discussed in Chapter 9). However, the two types of drivers diverge in two
areas.

One difference between UNIBUS/Q22 bus and MASSBUS drivers concerns
the number of registers saved by the interrupt service routine. When the
interrupt dispatcher transfers control to a MASSBUS driver interrupt service
routine, registers R2 through RS are pushed onto the stack. UNIBUS/Q22
bus drivers save RO through RS.

After handling an interrupt, both MASS BUS and UNIBUS /Q22 bus driver
interrupt service routines execute an REI instruction. For UNIBUS/Q22 bus
devices, the REI dismisses a real interrupt, whereas the MASSBUS driver's
REI returns control to MBA$INT.

13-15

14 Generic VAXBI. Device Support

14.1

14.2

Overview

VAXBI Concepts

This chapter provides information needed to write and load a device driver
for a non-DIGITAL-supplied device attached to the VAXBI bus. VMS provides
special support for such devices in the system initialization routines for the
VAX 8200/8250/8300/8350, VAX 8530/8550/8700/8800/8830/8840, and
VAX 6200-series systems. Because of the many and varied implementations
of V AXBI devices, however, VMS support must of necessity be very general.
Some devices may more fully utilize the VAXBI interface than others; a device
may incorporate its interface initialization logic in microcode, whereas another
may defer initialization to code in its driver.

The VAXBI Options Handbook includes a description and guidelines for
possible VAXBI device implementations. Refer to that manual for further
discussion of all VAXBI topics discussed in brief in Section 14.2 and elsewhere
in this chapter.

A VAXBI device driver refers to the same data structures and contains the
same routines as a traditional VMS driver. A VAXBI device driver deviates
from the traditional VMS driver almost exclusively in code that initializes the
VAXBI interface or supports direct-memory-access (DMA) transfers for devices
that address memory across the VAXBI bus. Section 14.4 discusses tasks that
drivers of various V AXBI devices may perform in their initialization routines
to supplement VMS initialization and that initialization performed by device
microcode. Section 14.5 contains a general discussion of how some VAXBI
devices and their drivers manage DMA transactions.

Section 14.3 describes those data structures the VMS adapter initialization
routine creates and prepares for a generic VAXBI device, while Section 14.8
discusses the method by which its driver can be loaded into the operating
system. The final section of this chapter provides reference material and
includes a description of the backplane interconnect interface chip (BIIC)
registers.

The VAXBI serves as the I/O bus for the VAX 8200/8250/8300/8350,
VAX 8530/8550/8700/8800/8830/8840, and VAX 6200-series systems (see
Figure 1-3).1 The VAX 8200/8250/8300/8350 systems can have a single
VAXBI; the VAX 8530/8550/8700/8800/8830/8840 and VAX 6200-series
systems can have multiple VAXBI buses.

Each location on a VAXBI bus is called a node. A single VAXBI bus can
service 16 nodes. In the case of the VAX 8200/8250/8300/8350 systems,
these nodes can be processors, memory, and adapters; the VAX 8530/
8550/8700/8800/8830/8840 and VAX 6200-series systems permit only

1 The VAXBI is also the system bus for the VAX 8200/8250/8300/8350 systems.

14-1

Generic VAXBI Device Support
14.2 VAXBI Concepts

adapters to be attached to the VAXBI bus.2 A node receives its node ID, a
number from 0 to 15, from a plug on the VAXBI backplane slot into which
the node module is inserted.

An adapter is a node that connects other buses, communication lines, and
peripheral devices to the VAXBI bus. This chapter uses the term device to
refer to a device or combination of devices serviced by a single adapter or
controller.

14.2.1 VAXBI Address Space
Each VAXBI bus supports 30-bit addressing capability. This gigabyte of
physical address space is split equally between memory and 1/0 address
space, as shown in Figure 14-1.

Figure 14-1 VAXBI Address Space

Hex Address
------- 0000 0000

Memory Space
512MB

1/0 Space
512MB

2000 0000

-------' 3FFF FFFF

ZK-5541-86

All memory locations on a VAXBI bus are addressed using physical addresses
in VAXBI memory space (from 0000000016 through 1FFFFFFF16). A VAXBI
device that accesses memory directly (or indirectly through a memory­
interconnect-to-VAXBI adapter), or its driver, must perform virtual-to­
physical translation before transmitting a memory address on the bus. (See
Section 14.5 for additional information).

VAXBI I/O address space (physical addresses 2000000016 through
3FFFFFFF16) is partitioned as illustrated in Figure 14-2. Figure 14-3 shows
the structure of an 1/0-space address.

2 For VAX 8530/8550/8700/8800, VAX 8830/8840, and VAX 6200-series systems, the memory-interconnect-to­
VAXBI adapter (NBI PBI, or DWMBA) or, more specifically, the NBIB, PBIB or DWMBA/B resides at a node on
a VAXBI bus, monitoring and controlling transactions to the memory interconnect (NMI, NMis, or XMI) where
the processors and memory reside.

14-2

Generic VAXBI Device Support
14.2 VAXBI Concepts

Figure 14-2 Description of VAXBI 1/0 Address Space

Node O Nodespace
(8KB)

• . .
Node 15 Nodespace

(8KB)

Multicast Space
(128KB)

Node Private Space
(3.75MB)

Node O
Window Space

(256KB)

. . .
15

Window Space
(256KB)

RESERVED

RESERVED
(for multiple VAXBI systems)

(480MB)

Hex Address

2000 0000

2000 1FFF

2001 EOOO

2001 FFFF
2002 0000

2003 FFFF
2004 0000

203F FFFF
2040 0000

2043 FFFF

207C 0000

207F FFFF

3FFF FFFF

ZK-5542-86

14-3

Generic VAXBI Device Support
14.2 VAXBI Concepts

Figure 14-3 Physical Addresses in VAXBI 1/0 Address Space

29

~ 1/0 SPACE

28 25 D SPECIFIES WHICH VAXBI BUS

24 23 B IF NOT ZERO BITS <24: 23> INDICATE RESERVED SPACE

22

GJ WINDOW SPACE

21 18

I I SPECIFIES WHICH NODE'S WINDOW SPACE

17

WINDOW SPACE ADDRESS

22 G NON-WINDOW SPACE

212019 18

Io o o ol 1F NOT ZERO BITS <21: 18> INDICATE NODE PRIVATE SPACE

17 G NODESPACE

16 13

DNODEID

12 0

.._I __________ ...JI NODESPACE ADDRESS

8 MULTICAST SPACE

16 0

MULTICAST SPACE ADDRESS

14-4

ZK·SS43·86

Generic VAXBI Device Support
14.2 VAXBI Concepts

As shown in Figures 14-2 and 14-3, VAXBI architecture grants each of the 16
nodes on a VAXBI bus two discrete sections in 1/0 address space.

Node space

Window space

An 8KB block of addresses consisting of 256 bytes
of 81/C CSR space, followed by user interface CSR
space. A device can access the control and status
registers (CSRs) of its backplane interconnect interface
chip by using BllC CSR space addresses. Device-specific
registers reside in user interface CSR space.

Because the VMS adapter initialization routine virtually
maps node space for each V AXBI node on each V AXBI
bus, a device driver can access both BllC registers and
device registers using virtual addresses. (See Sections
14.4 and 14.5 for a discussion of driver access to
registers.)

A 256KB block used by a V AXBI adapter to map an
1/0 transfer to a target bus. Because VMS does not
automatically map window space to virtual addresses,
a driver that manipulates addresses in window space
must itself allocate and fill sufficient system page-table
entries for the range of its window space addresses.
(See Section 14.4.)

Note that node private space contains locations used for the storage of
bootstrap firmware and software. VAXBI nodes are not permitted to issue
or respond to VAXBI transactions targeting locations in node private space.

14.2.2 Backplane Interconnect Interface Chip {BllC)

14.3

The backplane interconnect inter/ ace chip (BIIC) serves as the primary interface
between the VAXBI bus and the user interface logic of a node. The BIIC
supplies the logic necessary for a node to initiate and respond to transactions
on the VAXBI bus, arbitrate bus ownership, send and receive interrupt
requests, and monitor bus errors.

A node can enable, control, and monitor such activities by accessing the set
of BIIC registers located in the first 256 bytes of its node space. Because
the VMS adapter initialization routine virtually maps node space addresses,
drivers for VAXBI devices can use virtual addresses to access BIIC registers.
In addition, given the virtual address of the base of a device's node space, a
driver can use the symbolic offsets, masks, and bit fields defined by the VMS
macro $BIICDEF (in SYS$LIBRARY:LIB.MLB). Table 14-1 describes these
symbols.

Initialization Performed by VMS
During the phase of system initialization known as adapter initialization
VMS performs a set of system-specific tasks to identify and configure each
device it discovers at each of the 16 nodes on each VAXBI bus in the system
configuration.

14-5

Generic VAXBI Device Support
14.3 Initialization Performed by VMS

I

The adapter initialization module configures DIGITAL-supplied and non­
DIGITAL-supplied devices alike, performing the following activities as part of
its initialization cycle:

1 Tests for the presence of a device at the node by issuing a MOVL
instruction, the target of which is a system virtual address temporarily
mapped to the first longword of its node space. If this instruction is
successful, it returns the contents of the BIIC Device Type Register of the
addressed node to the processor. 3

2 Records the contents of the low '16 bits of the BIIC Device Type Register,
plus an I/9 bus identifier in the slot in the CONFREGL array that
corresponds to the VAXBI bus and node at which it found the device, 4

and compares this value against a table of recognized device types.

3 If it recognizes the device, maps the number of pages specified in the
table for the device type, and places the system virtual address of the
base of the mapped node space in the slot in the SBICONF array that
corresponds to the VAXBI bus and node at which it found the device.5

If it does not recognize the device, maps the entire 8KB of the node's node
space into VMS virtual address space by allocating 16 system page-table
entries (SPTEs) and associating them with the 16 page-frame numbers
(PFNs) of the physical addresses assigned to this node's node space on
this VAXBI bus. The adapter initialization module then saves the base
system virtual address of the resulting 8KB range in the longword slot
corresponding to this node in the SBICONF array.

4 Performs such additional tasks as allocating and filling in data structures
in a device-specific manner. For a non-DIGITAL-supplied device attached
to a VAXBI bus, VMS creates generic versions of the channel request
block, interrupt dispatch block, and adapter control block-and fills in
the appropriate vectors in the system control block-as discussed in
Section 14.3.1.

For devices it does recognize, VMS additionally calls a VMS-supplied
subroutine, the address of which it obtains from the device-type table,
that performs further device-specific initialization.

For devices it does not recognize, VMS must defer device-specific
initialization to the device driver's initialization routine.

3 If no device exists at a given VAXBI node address, the CPU becomes aware of this in a system-specific
way. For example, the VAX 8200/8250/8300/8350 systems experience a machine check, whereas the VAX
8530/8550/8700/8800/8830/8840 and VAX 6200-series systems determine that the node is vacant by reading
an NXM (nonexistent memory) error from the BIIC Bus Error Register of the NBIB, PBIB, or DWMBA on the
VAXBI being examined.

4 The CONFREGL array is a set of longwords in system pool pointed to by EXE$GL_CONFREGL. The
CONFREGL array contains an entry for each possible VAXBI node. For VAX 8200/8250/8300/8350 systems,
with one VAXBI, this array has 16 entries. For VAX 8530/8700/8800/8830/8840 and VAX 6200-series systems,
this array has 16 entries for each VAXBI bus on the system.

5 The SBICONF array is a set of longwords, similar in structure to the CONFREGL array and pointed to by
MMG$GL_SBICONF, that lists the system virtual addresses of the base of the node space for each node on a
VAXBI bus.

14-6

14.3.1 Data Structures

Generic VAXBI Device Support
14.3 Initialization Performed by VMS

The adapter initialization module creates and prepares a channel request
block, interrupt dispatch block, and an adapter control block in the manner
described in this section. For each data structure it creates, VMS fills in the
first three longwords with the standard VMS header information (that is, the
structure type, size, and links).

Channel Request Block

For the newly created channel request block (CRB), VMS performs the
following tasks:

• Sets up the resource wait queue header (CRB$L_WQFL and CRB$L_
WQBL)

• Sets the bit CRB$V_UNINIT in CRB$B_MASK to indicate to the
System Generation Utility that, although the CRB exists, its controller
initialization routine has not yet been called

• Initializes four interrupt dispatchers (CRBL_INTD, CRBL_INTD2, and
so on) so that they have the effect of pushing general registers RO through
RS onto the stack, and issuing a JSB instruction

The adapter initialization module always creates the four vectors, in contrast
to the methods by which UNIBUS/Q22 bus drivers control the number of
vectors created (see Section 12.3.3). The destination of the JSB instruction at
initialization is a standard null interrupt handler which merely dismisses the
interrupt. Later, when the specific device driver is loaded for the device (see
Section 14.8), the driver's interrupt service routine address replaces this null
interrupt handler in the dispatchers. As necessary, the driver specifies the
addresses of its interrupt service routines as follows:

DPT_STORE,CRB,CRB$L_INTD,D,isr_for_1st_vector
DPT_STORE,CRB,CRB$L_INTD2+VEC$L_ISR,D,isr_for_2nd_vector
DPT_STORE,CRB,CRB$L_INTD+(2*VEC$K_LENGTH)+VEC$L_ISR,D,isr_for_3rd_vector
DPT_STORE,CRB,CRB$L_INTD+(3*VEC$K_LENGTH)+VEC$L_ISR,D,isr_for_4th_vector

Interrupt Dispatch Block

VMS initializes the interrupt dispatch block (IDB) in the following manner:

• Sets the number of device units controlled by this interrupt dispatch block
(IDB$W_UNITS) to 1. The list of unit control block (UCB) addresses
in this IDB, as a result, is one longword in size. The driver-loading
procedure writes a UCB address into this longword whenever it creates a
new UCB associated with the controller. Because there is only one slot in
this array, drivers for non-DIGITAL-supplied multiunit controllers must
use a different mechanism to locate the UCB of interest at the time of an
interrupt.

• Copies the virtual address of the base of this device's node space to
IDB$L_CSR from the corresponding slot in the SBICONF array.

14-7

Generic VAXBI Device Support
14.3 Initialization Performed by VMS

14-8

Adapter Control Block

VMS creates a truncated adapter control block (ADP) for a non-DIGITAL­
supplied VAXBI device (48 bytes as opposed to the traditional 600 bytes). The
ADP it creates contains no fields reserved for the allocation and accounting of
data paths or map registers. VMS prepares this generic ADP in the following
manner:

• Copies the virtual address of the base of this device's node space to
ADP$L_CSR from IDB$L_CSR.

• Places the VAXBI node ID of this device in ADP$W_TR.

• Stores the value AT$_GENBI (signifying the generic VAXBI ADP type) in
ADP$W_ADPTYPE.

• Calculates the address of the first of the four interrupt vectors for this
node in the system control block (SCB), and places it in ADP$L_
A VECTOR. A driver can determine the addresses of the other three
SCB vectors by adding 64, 128, or 192, respectively, to the address of this
first SCB vector.

• Saves the offset of this first SCB vector from the start of its SCB page in
ADP$W_Bl_ VECTOR. (Refer to Section 14.3.2 for a description of the
SCB.)

• Places in ADP$L_Bl_IDR a longword mask with a single bit set, as
appropriate to the VAX system, that specifies which VAXBI node should
become the destination of interrupts from this node. In VAX 8200 /
8250 /8300 /8350 systems, the VAXBI node of the primary processor
becomes the destination for interrupts. In VAX 8530 /8550 /8700 /8800,
VAX 8830/8840, and VAX 6200-series systems, it is the VAXBI node of
the NBIB, PBIB, or DWMBA/B on the particular VAXBI bus on which this
device resides that becomes the destination for such interrupts.

• Stores in ADP$L_MBASCB-and in each of the device's four SCB
vectors-the address of the interrupt dispatcher. The actual stored value
is CRBL_INTD+l, CRBL_INTD2, and so on, the set low bit of the
address indicating that the interrupt stack be used to service the interrupt.
Certain powerfail recovery operations use the contents of ADP$L _
MBASCB to refresh the SCB vectors.

• Saves in ADP$L_MBASPTE the contents of the first of the 16 SPTEs
that map the device's node space. Certain recovery operations use the
contents of ADP$L_MBASPTE to restore correct SPTE values and remap
node space following a power failure.

• Places in ADP$L_BIMASTER the address of the ADP of the memory­
interconnect-to-VAXBI-adapter (NBI, PBI, or DWMBA). Note that there is
no memory-interconnect-to-VAXBI adapter for VAX 8200 /8250 /
8300 /8350 configurations.

Generic VAXBI Device Support
14.3 Initialization Performed by VMS

14.3.2 System Control Block

14.4

The system control block (SCB) consists of one or more pages of vectors.
For all VAX processing systems, the first half page contains vectors used in
exception dispatching. VMS uses the remainder of the first page, as well as
subsequent pages, in a system-specific way.

For VAX 8200/8250/8300/8350 systems, VMS assigns the vectors from 10016
to 1FC16 to VAXBI devices in the order of their node IDs.

The VAX 8530/8550/8700/8800/8830/8840 and VAX 6200-series system
architectures relegate vectors 10016 to 1FC16 to NMI nexus vectors.
Page 1 is reserved for the first "offsettable" device that exists in the system.
(An "offsettable" device is an adapter such as the BI-to-UNIBUS adapter
(DWBUA) that passes interrupts from devices on another bus to the
VAXBI and, from there, to the memory interconnect (NMI or XMI) and
the processor.) If there is more than one "offsettable" device, an additional
SCB page is needed for each.

Ultimately, the vectors for other devices attached to each of the six possible
V AXBI buses of the system are contained in the six corresponding SCB pages
from page 26 to page 31. In a 4-VAXBI system, for instance, vectors for
devices connected to VAXBI 0 and VAXBI 1 on NBI/PBI/DWMBA 0 are
assigned to pages 28 and 29 of the SCB, respectively; vectors for devices
connected to VAXBI 0 and VAXBI 1 on NBI/PBI/DWMBA 1 are likewise
assigned to pages 30 and 31. In a 6-V AXBI system, the vectors are assigned
in a similar fashion, starting at page 26.

Generally, a VAX processor obtains a device vector from the BIIC registers of
the node that has requested the interrupt (see Figure 14-4). Information
supplied in the device vector allows the processor to index to the
corresponding interrupt-dispatching vector in the appropriate page of the
SCB. For VAX 8200/8250/8300/8350 systems, such information includes the
interrupt level of the device and its VAXBI node ID. A similar vector for VAX
8530/8550/8700/8800, VAX 8830/8840, or VAX 6200-series devices further
specifies the appropriate NBI/PBI/DWMBA vector offset and the number of
the VAXBI bus.

The specific SCB interrupt-dispatching vector, thus found, transfers control to
the interrupt-dispatching code in the device's CRB. Upon an interrupt from
this device, the SCB vector directs flow into the interrupt dispatcher in the
CRB, which saves the register contents and dispatches to the interrupt service
routine established by the device driver.

Initialization Performed by the VAXBI Device Driver
All generic VAXBI device drivers must specify GENBI as the adapter type in
the adapter argument to the DPTAB macro.

The device driver's initialization routines are expected to initialize the device­
specific aspects of the VAXBI device. For non-DIGITAL-supplied devices, the
initialization routines perform the sort of tasks that the adapter initialization
module performs for the DIGITAL-supplied devices it discovers on a VAXBI
bus. For single-unit devices, a separate unit initialization routine may not be
necessary.

14-9

Generic VAXBI Device Support
14.4 Initialization Performed by the VAXBI Device Driver

14-10

Figure 14-4 VAXBI Device Vectors

For VAX 8200/8250/8300/8350

13 12 11 10 9 8 7 6 5 4 3 2 0

j 0 Hele+AXBI node I~ I

For VAX 8530/8550/8700/8800/8830/8850 and
VAX 6200 Series Devices

9 87654 32 10
NBl/PBl/XBI
Vector
Offset
Register

1 select VAXBI node ID

"select" indicates
one of four
interrupt vectors

ZK-5545-86

The VMS System Generation Utility (SYSGEN) calls the controller
initialization routine at IPL 31, passing it the following values in the listed
general registers:

• R4 pointing to the system virtual address of the device's node space

• RS pointing to the IDB

• R6 pointing to the DDB

• RB pointing to the CRB

After the controller initialization routine has completed, SYSGEN calls the
driver's unit initialization routine at IPL 31, and passes it the following values
in the listed general registers:

• R3 pointing to the system virtual address of the device's node space

• RS pointing to the UCB

Hardware initialization might include such activities as writing values to
BIIC. and device-specific registers, examining the results of the BIIC self test,
mapping a node's window space, building data structures to control the
device, and linking these structures into chains of similar data structures.

This section provides some ideas and guidelines for code that may be
necessary in an initialization routine. There is no requirement that driver
code perform all of the functions discussed here. The needs of various
devices differ, and some devices make more demands on driver software than
others.

Code examples in the section assume that R4 initially contains the virtual
address of the base of the device's node space and R8 contains the virtual
address of the device's CRB.

Generic VAXBI Device Support
14.4 Initialization Performed by the VAXBI Device Driver

14.4.1 Examining BllC Self-Test Status
According to the hardware specification for all devices attached to a VAXBI
bus, a VAXBI node undergoes a self test on power failure recovery and at
system boot time. The BIIC indicates the successful completion of the self test
by setting BIIC$V_STS and by clearing BIIC$V_BROKE in BIIC$L_BICSR.

A driver unit initialization routine should test these bits before performing
any transaction on the VAXBI bus. If BIIC$V_STS is clear, then self test is still
under way. If BIIC$V_BROKE is set, then the driver action is implementation­
specific. In any event, a driver should not set UCB$V_ONLINE in UCB$L_
STS if the node is not usable.

The maximum duration of the BIIC self test is ten seconds. If a VAXBI node
implements the maximum self-test time, then the driver unit initialization
routine may have to spin wait for the setting of BIIC$V_STS (for instance,
by embedding the testing instructions in an invocation of the TIMEDWAIT
macro). Driver unit initialization routines should perform this spin wait only
when UCB$V_POWER in UCB$L_STS is set. Otherwise, the driver is being
loaded by SYSGEN, and a long spin wait at high IPL will have adverse effects
on the rest of the VMS system.

Normally, only diagnostics initiate a self test by setting the SST bit in the
BIIC. A VAXBI driver that sets this bit must take special precautions to avoid
a machine check and to avoid undetected corruption of VAXBI memory.
These precautions include the following steps:

1 Use the $PRTCTINI macro to begin a machine check protection block,
supplying the location of the end of the block in the label argument and
the mask value# <MCHK$M_NEXM!MCHK$M_LOG> in the mask
argument. (Note that you must include an invocation of the $MCHKDEF
macro in the driver to use these symbols.) Code within the block executes
atIPL31.

2 Disable arbitration on the VAXBI node being reset by setting BIIC$V_
ARBCNTRL in BIIC$L_BICSR.

3 Set BIIC$V_SST and BIIC$V_STS simultaneously to initiate the self test.
Do not set BIIC$V_SST in the same instruction that disables arbitration.

4 Use the $PRTCTEND macro to end the machine check protection block.
You must specify in the label argument the same value you specified in
the label argument to the $PRTCTINI macro.

5 Do not access the BIIC registers for at least one millisecond. You may not
even check the state of the STS bit during this interval.

6 Do not access any other address on the V AXBI node until the self test has
completed.

14-11

Generic VAXBI Device Support
14.4 Initialization Performed by the VAXBI Device Driver

14.4.2 Clearing BllC Errors, Setting Interrupts, and Enabling Interrupts

14.4.2.1

14.4.2.2

14-12

There is a set of tasks that a VAXBI driver should perform during initialization
that ensures that interrupts are properly enabled and delivered to an
appropriate VAXBI target node. These tasks include the following:

• Clearing any outstanding set bits in the Bus Error Register.

• Setting the target node for interrupts in the Interrupt Destination Register.

• Setting the device interrupt vector in the Error Interrupt Control Register.

• Setting the device interrupt vector in the User Interface Interrupt Control
Register.

• Enabling hard and soft error interrupts as required by the device.
Typically hard errors are enabled and soft errors are disabled.

• Enabling interrupts upon certain types of transactions to user interface
CSR space.

It is important that the interrupt vectors and destination be set up before BIIC
hard error and soft error interrupts are enabled. An error occurring while
error interrupts are enabled but the vector is not initialized could lead to an
invalid condition.

Clearing the Bus Error Register
The following example clears all set bits in the Bus Error Register (BIIC$L_
BER) to prevent spurious or pending error interrupts at initialization.

MOVL BIIC$L_BER(R4), -
BIIC$L_BER (R4)

;Clear all set write-1-to-clear
; bits in BIIC$L_BER

Loading the Interrupt Destination Register
The Interrupt Destination Register (BIIC$L -1DR) specifies which VAXBI node
should become the destination of interrupts from this node. In VAX
8200 /8250 /8300 /8350 systems, the VAXBI node of the primary CPU
becomes the destination for interrupts. In VAX 8530/8550/8700/8800,
VAX 8830/8840, and VAX 6200-series systems, the VAXBI node of the NBIB,
PBIB, or DWMBA/B on the particular VAXBI on which this device resides
becomes the destination for such interrupts.

The VMS system initialization procedure described in Section 14.3 creates a
32-bit mask with the appropriate bit set and stores it in ADP$L_BI_IDR. If
a driver must set the Interrupt Destination Register, it can simply move this
value to the BIIC register:

MOVL CRB$L_INTD+VEC$L_ADP(R8),RO
;Get ADP address

MOVL ADP$L_BI_IDR(RO),- ;Write to !DR
BIIC$L_IDR(R4)

14.4.2.3

14.4.2.4

14.4.2.5

Generic VAXBI Device Support
14.4 Initialization Performed by the VAXBI Device Driver

Setting Interrupt Vectors
A VAXBI node uses the Error Interrupt Control Register (BIIC$L_EICR)
to determine the SCB vector through which to interrupt when a BIIC at
this node detects a bus error. The User Interface Interrupt Control Register
(BIIC$L _UICR) similarly controls the operation of interrupts initiated by the
device at this node. A driver can also use the Error Interrupt Control Register
to support a device that generates secondary interrupt vectors.

Because the VMS system initialization procedure described in Section 14.3
saves the offset of the node's first SCB vector from the start of its SCB page in
ADP$W_BI_ VECTOR, a driver can initialize both of these registers by using
code similar to that in the following example:

MOVL CRB$L_INTD+VEC$L_ADP(R8) ,RO ;Get ADP address
MOVZWL ADP$W_BI_VECTOR(RO),R2 ;Get device vector
MOVL BIIC$L_UICR(R4) ,BIIC$L_UICR(R4) ;Clear user vector
MOVL R2,BIIC$L_UICR(R4) ;Set user vector
BISL #1©<BIIC$V_LEVEL+BIIC$S_LEVEL-1>,R2

;OR in interrupt level

MOVL BIIC$L_EICR(R4),BIIC$L_EICR(R4)
MOVL R2,BIIC$L_EICR(R4)

;BR7 in this case
;Clear error vector
;Set error vector

Note that the driver clears both vectors before it actually sets them. Clearing
BIIC$L _UICR and BIIC$L_EICR causes any pending interrupt to be cleared.
Also note that the interrupt level must be set in BIIC$L _EICR, in this case
BR7. If the level is not set, an interrupt will never be generated.

Enabling Error Interrupts
Finally, to enable interrupts that report errors detected by the node's BIIC,
the controller initialization routine can set the soft error interrupt-enable or
hard error interrupt-enable bits in the VAXBI Control and Status Register.
The BIIC sets bits in the Bus Error Register (BIIC$L _BER) to reflect the type
of bus error reported by the interrupt.

BISL #<BIIC$M_SEIE!BIIC$M_HEIE>,-
BIIC$L_BICSR(R4)

Enabling BllC Options

;Soft error interrupt enable
;Hard error interrupt enable

Device registers are in the area of node space called user interface CSR
space, and are located following the 256 bytes reserved for the BIIC-required
registers. Use of user interface CSR space is implementation-dependent.

For the processor to be alerted to various transactions directed at user
interface CSR space, the controller initialization routine of devices that
support such transactions should set appropriate bits in the BCI Control and
Status Register (BIIC$L_BCICR). See Table 14-1 for definitions of these bits.

The following example enables a node to alert the node specified as the
interrupt destination (in BIIC$L_IDR) when a retry timeout, STOP command,
or read or write transaction is directed at its user interface CSR space.

BISL #<BIIC$M_STOPEN!­
BIIC$M_RTOEVEN!­
BIIC$M_UCSREN>,­
BIIC$L_BCICR(R4)

;Stop enable
;Retry timeout enable
;User CSR enable

14-13

Generic VAXBI Device Support
14.4 Initialization Performed by the VAXBI Device Driver

14.4.3 Mapping Window Space

14-14

Each VAXBI, starting at address 2040000016 in its 1/0 address space, provides
16 address blocks of 256K bytes apiece, called window space. VAXBI nodes
can use window space if it is necessary to map VAXBI transactions to memory
space on a target bus, although only such nodes as the DWBUA adapter
currently use this feature.

Whereas the VMS initialization routine maps each VAXBI node's node space
to virtual addresses, it does not automatically map each node's window
space. If a device needs to use its window space, it is up to the driver's unit
initialization routine to map this space.

First of all, the driver must determine the starting physical address of
the node's window space. Figure 14-3 illustrates how VAXBI addresses
are constructed. Drivers can use the following VMS-supplied macros (in
SYS$LIBRARY:LIB.MLB) to access pertinent VAXBI addresses and values:

$108SSDEF (for VAX 8200/8250/8300/8350 systems)
$108NNDEF (for VAX 8530/8550/8700/8800 systems)
$108NNDEF and $108PSDEF (for VAX 8830/8840 systems)
$109CCDEF (for VAX 6200-series systems)

A driver calculates the starting address of a node's window space by first
determining the offset to the start of the VAXBI node's window space from
the beginning of its VAXBI IJO space. To do so, it performs the following
tasks:

1 Extracts the VAXBI node ID from bits <3:0> of ADP$W_TR.

2 Multiplies the VAXBI node ID with the size of window space. The driver
obtains this value from the following symbols:

Symbol

108SS$AL _NDSPER

108NN$AL _NDSPER

109CC$C_BIWSIZ

System

VAX 8200/8250/8300/8350

VAX 8530/8550/8700/8800/8830/8840

VAX 6200 series

3 Adds the address of the window space of VAXBI node 0 to this value.
The driver obtains this value from the following symbols:

Symbol

108SS$AL _NQDESP

108NN$AL _NQDESP

109CC$C_BIWINDOW

System

VAX 8200/8250/8300/8350

VAX 8530/8550/8700/8800/8830/8840

VAX 6200 series

The driver for a device on a VAX system configured with more than one
VAXBI bus (for instance, the VAX 8530/8550/8700/8800/8830/8840 or VAX
6200-series systems) must proceed to calculate the start of the 1/0 address
space of the VAXBI bus to which the device is attached. It adds the result of
the following steps to the value it has obtained above:

1 Determine the offset to the 1/0 address space of the VAXBI bus to which
the node is attached.

14.5 OMA Transfers

Generic VAXBI Device Support
14.4 Initialization Performed by the VAXBI Device Driver

For VAX 6200-series systems, a driver first must obtain the XMI node
ID of the NBI, PBI, or DWMBA to which the V AXBI is connected. It
determines the address of the NBI's, PBI's or DWMBA's ADP at offset
ADP$L_BIMASTER of the node's ADP. It then finds the XMI node of the
NBI, PBI, or DWMBA at offset ADP$W_XBIA_TR of the ADP.

For VAX 8530/8550/8700/8800/8830/8840 configurations, a driver
obtains the VAXBI bus number from bits <7:4> from offset ADP$W_
TR of the node's ADP.

2 Multiply this value by 200000016, the amount of physical address space
allocated for each VAXBI bus.

3 Add to this value the base of 1/0 address space. The driver obtains this
value from the following symbols:

Symbol

108SS$AL _IOBASE

108NN$AL _IOBASE

109CC$AL _IOBASE

System

VAX 8200/8250/8300/8350

VAX 8530/8550/8700/8800/8830/8840

VAX 6200 series

After performing these calculations, the driver must associate each page
of window space to be used with a system page-table entry (SPTE) that
maps the page-frame number (PFN) of the physical page in window space
to a system virtual address. VMS includes the routine LDR$ALLOC_PT,
described in Appendix B, that allocates system page-table entries (SPTEs) for
a specified number of pages.

Because LDR$ALLOC_PT executes at IPL$_SYNCH (holding the MMG
spin lock in a VMS multiprocessing system), the controller initialization
routine must fork from IPL$_POWER to fork IPL (using the CRB fork block)
prior to calling it. See Section 11.1.5 for a discussion of forking in a driver
initialization routine.

Finally, once the SPTEs have been allocated, the driver moves the PFNs of
the window space pages into the SPTEs, sets their valid bits, and initializes
them in a device-specific manner.

The method by which a device accomplishes direct-memory-access (DMA)
transfers depends upon the characteristics of the device. As part of a VAXBI
read or write transaction, such a device must place on the VAXBI bus a
physical address, the target of which is a memory node or a node (such as an
NBIB adapter) that transmits the request to memory across another bus.

For the DMA device to successfully access the memory pages of a buffer
involved in an 1/0 transfer, it must be given sufficient information as to
the size and location of these buffer pages, the type of transaction that is
requested, an offset into the first page of the buffer, and the length of the
transaction. In addition, if the size of the transaction causes it to exceed the
boundaries of a page, the device must have some means of accessing the
remaining pages-even if they are, as is most likely, scattered throughout
physical memory.

14-15

Generic VAXBI Device Support
14.5 OMA Transfers

14-16

As a result, devices make use of several types of structures, the purpose of
which is to help generate a succession of contiguous physical addresses on
the VAXBI bus, that map to the various pages of the buffer involved in the
transfer. Some possible strategies of this sort include the following:

• A physically contiguous buffer in memory

• System page tables in system memory

• Process page tables locked in system memory

• Map registers in the device's VAXBI I/O address space

A separate but related issue results from the fact that the original buffer, as
specified in the user $QIO request, is in process space and is mapped by
process page-table entries. Because the driver cannot rely on process context
existing at the time the device is ready to service the I/O request, it must
have some means of guaranteeing that it can access both the data involved in
the transfer and the page-table entries that map the buffer.

VMS supplies two separate techniques, applied by traditional VMS drivers
and described in Section 6.3.1.

• Direct 1/0, the technique used most commonly by DMA drivers, locks the
user buffer in memory as well as the page-table entries that map it. Such
a driver calls a VMS-supplied FDT routine that prepares the user buffer
for direct I/ 0.

• Buffered 1/0 is the strategy whereby the driver FDT routine allocates a
buffer from nonpaged pool. It is this intermediate buffer that is involved
in the DMA transfer. The FDT routine copies the data from the user
buffer to the system buffer for a write request; I/O postprocessing
routines deliver data from the system buffer to the user buffer for a
read request.

That DMA drivers may make use of either VMS direct I/O or buffered IjO
is one way by which these drivers can supply specific information needed
by the device to accomplish a DMA transfer. Those driver FDT routines that
call a VMS direct-I/O FDT routine provide the following information in the
device's unit control block (UCB):

UCB$L_SV APTE

UC8$W_BOFF

UCB$W_BCNT

Virtual address of the system page-table entry (SPTE)
for the first page used in the transfer

Byte offset in the· first page of the transfer buffer

Size in bytes of the transfer

FDT routines for buffered I/O call EXE$ALLOCBUF, EXE$DEBIT_BYTCNT_
ALO, or EXE$DEBIT_BYTCNT_BYTLM-ALO to obtain a nonpaged pool
buffer (debiting a job's byte count quota in the last two routines) and initialize
the same UCB fields with the following information:

UCB$L_SVAPTE

UCB$W_BQFF

UCB$W_BCNT

Virtual address of system buffer used in the 1/0
transfer

Number of bytes to be charged to the process for the
transfer

Size in bytes of the transfer

Generic VAXBI Device Support
14.5 OMA Transfers

If a driver's fork process must manipulate the data in any way at fork level
(that is, outside of the driver's FDT routines), then it needs a virtual address
it can use to access the data. Such a requirement could cause the driver
writer to consider structuring the driver so that it uses buffered 1/0. For
short transfers, this need also could be accommodated by the driver's loading
an SPTE with the correct PFN and computing the associated system virtual
address. The drivers for the disks that have ECC correction applied by the
host do this when there is an ECC error detected. The controller can tell
the driver that the error in the data in memory can be corrected by applying
some pattern to a part of the data, but the fork process has to perform the
correction, not the controller.

MOVL
SUBW3
BICW3
EXTZV
MOVL
MOVAL

IRP$L_SVAPTE(R3) ,R2
#12,8(R2) ,UCB$W_BCNT(R5)
#C-<VA$M_BYTE>, (R2),UCB$W_BOFF
#VA$V_VPN,#VA$S_VPN(R2) ,R2
G-MMG$GL_SPTBASE,R1
(R1) [R2] ,UCB$L_SVAPTE(R5)

;Get address of system buffer
;Calculate system buffer length
;Put offset in buffer
;Get system virtual page number
;Get address of system page table
;Get system virtual address of page

14.5.1 Example: DMB32 Asynchronous/Synchronous Multiplexer
The DMB32 asynchronous/synchronous multiplexer can use any of four
different modes of address translation for DMA accesses. Under each of these
modes, the DMB32 requires that its driver supply an address by which it can
either directly or indirectly obtain the pages of the buffer that is involved in
the transfer. The four different translation modes require such addresses in
one of the following forms:

1 System virtual address of a buffer

2 System virtual address of a page-table entry

3 Physical address of a page table

4 Address of a physically-contiguous buffer

System Virtual Address of a Buffer and System Virtual Address of a
Page-Table Entry

The DMB32 can itself perform the first two types of address translation
because it can read entries in the VMS system page table (see the VAX/VMS
Internals and Data Structures manual for a description of page-table entries).
The controller initialization routine of a DMB32 device driver supplies the
physical address and length of the VMS system page table, plus the virtual
address and length of the VMS global page table. It also sets a page-table­
valid bit in a device maintenance register.

As a result, a driver for a DMB32 device could use either direct 1/0 or
buffered 1/0, and accordingly load a device register with the system virtual
address of the page-table entry that maps the buffer or the system virtual
address of the buffer itself. After the driver has loaded other device registers
with a buffer offset value and a transfer size-and set the "start" bit in a
DMB32 line-control register-the DMB32 performs the transfer without any
additional mapping or other driver intervention.

14-17

Generic VAXBI Device Support
14.5 OMA Transfers

14-18

Physical Address of a Page Table

In this mode, the DMB32 can be given the physical address of a page table
that maps the 1/0 transfer. The DMB32 architecture mandates that each
page-table entry be four bytes long and that the page table be aligned on a
longword boundary. Also, each page is 512 bytes long. However, the page
table can be anywhere in memory, possibly at a range of VAXBI 1/0-space
addresses belonging to the node to which the DMB32 adapter is attached.
To perform a DMA transfer under this addressing mode, the DMB32 adapter
requires the offset of the first byte of the buffer that is in the page described
by the page-table entry. Each page-table entry contains bits <29:9> of the
physical address of the page that is to be accessed.

In this case, the driver must extract the PFNs of the pages involved in the
transfer and insert them into the page table of the device. The following is
an example of a routine that translates a system virtual address to a physical
address. It returns the physical address at the top of the stack.

VIRT_TO_PHYAD:
PUSHL (SP)

PUSHR #-M<RO, R1 . Ri. R3>
BICL3 #-512,Ri,RO
EXTZV #VA$V_VPN,-

#VA$S_VPN,R1,R2
MOVL G-MMG$GL_SPTBASE,R3
MOVL (R3)[R2],R3
EXTZV #PTE$V_PFN,-

#PTE$S_PFN,R3,R3
ASHL #VA$V_VPN,R3,R3

BISL3 RO,R3,20(SP)
POPR #-M<RO,R1,R2,R3>
RSB

Physical Address of a Buffer

;Create slot at top of stack
; for return value
;Save registers
;RO = byte offset of address
;Extract VPN
; and put it in R2
;R3 => system page table
;R3 => PTE
;Get page frame number of buffer
; page into R3
;Shift into place for physical
; address
;Put result into stack slot
;Restore registers
;Return to caller

If the device can neither read system page tables nor has its own scatter­
gather map-and must perform a DMA transfer that spans physical pages-it
must rely upon the actual contiguity of the physical pages involved in
the transfer. Because there is no guarantee that this is the state of the user's
buffer, the driver must allocate an intermediate buffer consisting of contiguous
physical pages. The driver never deallocates this buffer unless the driver is
being unloaded by means of SYSGEN's RELOAD command. (The driver
unloading routine can call COM$DRVDEALMEM to do so.) The best time
to allocate such a buffer is during the device's initialization, when memory is
most likely to be contiguous.

The VMS routine EXE$ALOPHYCNTG, described in Appendix C, allocates
such a buffer. The size of the buffer that should be allocated depends on the
device's characteristics and the size of the transfers requested on the device.
A buffer of four pages is likely to be large enough for most disk transfers, for
example; but if you have enough memory on your system, you might want
to make your buffer the size of a disk track in order to reduce disk latency.
In any event, large transfers to the device can be segmented into transfers the
size of your intermediate buffer.

The start-1/0 routine of such a driver copies the data from the user's buffer
into the intermediate, physically contiguous buffer by means of the routine
IOC$MOVFRUSER.

14.6

14.7

Generic VAXBI Device Support
14.5 OMA Transfers

The driver then sets up the device for the DMA transfer:

1 Determines the physical address of the buffer from the system virtual
address returned by EXE$ALOPHYCNTG

2 Moves the address to the device address register

3 Activates the device

4 If the transfer size exceeds the size of the buffer, returns to step 1

When a user requests a transfer from such a device, the driver moves the data
from the device to the intermediate, physically contiguous buffer by means
of a DMA transfer, then calls IOC$MOVTOUSER to copy the data into the
user's buffer.

Unit Initialization Routine
A generic VAXBI device driver may include a unit initialization routine, in
addition to its controller initialization routine, if it services a multiunit device.

SYSGEN attempts to create a UCB and call the unit initialization routine for
the number of units specified in the maxunits argument to the DPTAB macro.

When called in the process of driver loading, the unit initialization routine
of a generic V AXBI device driver must therefore determine if the unit it is
currently servicing actually exists. Prior to returning control to SYSGEN, the
routine must place in RO a success status (low bit set) if the unit exists or a
failure status (low bit clear) if it does not. If SYSGEN receives failure status,
it deallocates the UCB for the unit and proceeds to configure the next unit in
a similar manner.

Register Dumping Routine
In the event of a device error or a VAXBI bus error, a driver's register
dumping routine should contain code that makes certain interesting registers
available for error logging. Apart from any device registers that should be
saved, the following BIIC registers may contain information important in
determining the cause of the error: the Device Register (BIIC$L_DTREG), the
VAXBI Control and Status Register (BIIC$L_BICSR), the Bus Error Register
(BIIC$L_BER}, the Error Interrupt Control Register (BIIC$L_EICR), and the
Interrupt Destination Register (BIIC$L_IDR).

The following is an example of part of a register dumping routine that saves
the contents of these BIIC registers in an error buffer.

MOVL
MOVL
MOVL
MOVL
MOVL

BIIC$L_DTREG(R4), (RO)+
BIIC$L_BICSR(R4),(RO)+
BIIC$L_BER(R4),(RO)+
BIIC$L_EICR(R4),(RO)+
BIIC$L_IDR(R4) ,(RO)+

;Device Type Register
;BIIC CSR Register
;Bus Error Register
;Error Interrupt Control Register
;Interrupt Destination Register

14-19

14.8

Generic VAXBI Device Support
14.8 Loading a VAXBI Device Driver

Loading a VAXBI Device Driver
The System Generation Utility (SYSGEN) loads the device driver into
system virtual memory, creates additional data structures for the device
unit, connects the device's interrupt vectors, and calls the device driver's
controller initialization routine and unit initialization routine.

Chapter 15 discusses the SYSGEN commands commonly used during driver
loading. The following discussion pertains to those aspects of the loading
process that specifically relate to the support of non-DIGITAL-supplied VAXBI
devices.

Because the autoconfigure facility cannot recognize non-DIGITAL-supplied
VAXBI devices, the system startup procedure (or a later invocation of
SYSGEN) must explicitly request that SYSGEN connect the device.6 SYSGEN
responds to such explicit requests by utilizing the data structures created by
the adapter initialization module for the unknown VAXBI device to load the
associated device driver and invoke its initialization routines.

For example, suppose that an unknown VAXBI device were located at
node 3 on a given VAXBI bus, and that the software device driver for this
device were known as "ZZDRIVER". During adapter initialization, VMS
would have encountered an unknown type of VAXBI device at node 3 and
would have performed the following operations:

• Mapped the node space for node 3 into system virtual memory

• Constructed various data structures to govern the future operation of this
device

SYSGEN executes in response to the following commands:

$RUN SYS$SYSTEM:SYSGEN
SYSGEN> CONNECT ZZAO:/ADAPTER=3

SYSGEN performs the following activities:

1 Searches the list of ADPs in the system to find the ADP for this VAXBI
node (node 3) and, in turn, locates the corresponding CRB and IDB by
following pointers in the ADP.

2 Loads ZZDRIVER into system virtual memory. If the /DRIVER qualifier
is specified, SYSGEN loads the specified driver instead.

3 Creates a UCB for device ZZAO and places the address of the device's
CRB in that UCB. SYSGEN also initializes other UCB fields at this time.

4 Sets the first entry in the IDB UCB array (IDB$L _UCBLST) to point to
the new UCB.

5 Creates a DDB for the ZZA device/controller combination. This allows
user programs to assign I/O channels to device ZZAO later. This DDB, in
turn, points to the location in memory where ZZDRIVER has been loaded
and to the UCB for the ZZAO device.

6 Because the autoconfigure facility will never be called for a non-DIGITAL-supplied device, any unit delivery
routine that a VAXBI device driver may include will never be called.

14-20

14.9

Generic VAXBI Device Support
14.8 Loading a VAXBI Device Driver

6 Calls the controller initialization routine in ZZDRIVER at IPL 31.

7 Calls the unit initialization routine in ZZDRIVER at IPL 31.

Note: If you did not specify GENBI as the adapter type in the adapter argument
to the DPT AB macro, the CONNECT command will fail with the
following error message:

%SYSGEN-E-INVVEC, invalid or unspecified interrupt vector

BllC Register Definitions
Each V AXBI node is required to implement a minimum set of registers
contained in specific locations within the node's node space. VMS
automatically maps each node's node space at boot time and provides the
macro $BIICDEF (in SYS$LIBRARY:LIB.MLB) to define offsets to the BIIC
registers and their significant bit fields.

The contents of the BIIC registers are illustrated in Figure 14-5 and described
in Table 14-1. See the V AXBI Options Handbook for a discussion of the BIIC
and the rules for configuring its registers.

Note: Fields marked "Reserved to DIGIT AL" are reserved for DIGIT AL's future
use and should contain zeros.

14-21

Generic VAXBI Device Support
14.9 BllC Register Definitions

Figure 14-5 Backplane Interconnect Interface Chip (BllC) Registers

BllC$L_DTREG

BllC$L_BICSR

BllC$L_BER

BllC$L_EICR

BllC$L_IDR

BllC$L_IPIMR

BllC$L_IPIDR

BllC$L_IPISR

BllC$L_SAR

BllC$L_EAR

BllC$L _BCICR

BllC$L_WSR

BllC$L _IPISTPF

unused

unused

unused

BllC$L_UICR

~ unused (172 bytes) ~~

BllC$L_GPRO

BllC$L_GPR1

BllC$L_GPR2

BllC$L_GPR3

ZK-6623-HC

14-22

Generic VAXBI Device Support
14.9 BllC Register Definitions

Table 14-1 Contents of the BllC Registers

Field Name Contents

BllC$L_DTREG Device Register.

BllC$L _BICSR

1 Read-only field.

BllC$L_DTREG consists of the following two words:

BllC$W_DEVTYPE Device type. This field is written by device hardware
and self-test microcode. It contains two bit fields:

BllC$W _REVCODE

BllC$V_MEMNODE (bits < 14:8>), when clear,
indicates a memory node.

BllC$V_NONDEC (bit 15), when clear, indicates a
DIGIT AL-supplied device; it should be 1 otherwise.

Revision code.

V AXBI Control and Status Register.

The following fields are defined within BllC$L _BICSR.

BllC$V_NQDE_ID 1 Node ID. This field is automatically loaded during the
powerup sequence. Reserved to DIGITAL.

BllC$V_ARBCNTL

BllC$V_SEIE

BllC$V_HEIE

BllC$V_UWP

<9>

Arbitration mode used by the node. Currently, all
arbitration modes except dual round-robin arbitration are
reserved to DIGIT AL. Correspondingly, these two bits
should be clear. When these two bits are set, arbitration
is disabled, thus preventing a node from starting a
VAXBI transaction.

Soft error interrupt enable. When set, this bit allows
the node to generate an interrupt when the soft error
summary bit (BllC$V_SES) in this register is set.

Hard error interrupt enable. When set, this bit allows
the node to generate an interrupt when the hard error
summary bit (BllC$V_HES) in this register is set.

Unlock write pending. When set, this bit signals that
the master port interface at this node has successfully
completed an IRCI (Interlock Read with Cache Intent)
transaction. The node clears this bit when it successfully
completes a corresponding UWMCI (Unlock Write Mask
with Cache Intent) instruction.

Reserved to DIGIT AL. Must be zero.

14-23

Generic VAXBI Device Support
14.9 BllC Register Definitions

Table 14-1 (Cont.) Contents of the Bl IC Registers

Field Name Contents

BllC$L_BER

1 Read-only field.

BllC$V_SST

BllC$V_STS

Bl IC$V_BROKE2

BllC$V_INIT2

BllC$V_SES 1

BllC$V_HES 1

BllC$V_BllCTYPE 1

BllC$V_BllCREVN 1

Bus Error Register.

Node reset. This bit is normally used by diagnostics to
initiate the BllC internal self test. Prior to initiating a BllC
self test, a node should disable arbitration by setting
both bits in BllC$V_ARBCNTL. When BllC$V_SST is set,
the self-test status bit (BllC$V_STS) in this register must
also be set.

Reads to BllC$V_SST return a zero.

Self-test status. When set, this bit indicates that the
BllC has passed its self test. The controller initialization
routine of a V AXBI device driver should inspect this
bit and the BllC$V_BROKE bit before proceeding with
any VAXBI transactions. During the self-test sequence,
BllC$V_STS will automatically be reset by the BllC to
allow the proper recording of the new self-test results at
the end of self test.

Broke bit. When cleared by the device's self test, this
bit indicates that the device has passed its self test. The
controller initialization routine of a V AXBI device driver
should inspect this bit and the BllC$V_STS bit before
proceeding with any VAXBI transactions.

Initialization bit.

Soft error summary. When set, this bit indicates that
one or more of the soft error bits in the Bus Error
Register (BllC$L_BER) is set.

Hard error summary. When set, indicates that one or
more of the hard error bits in the Bus Error Register
(BllC$L_BER) is set.

BllC type. These bits <23: 16> always contain
00000001.

BllC revision number.

The following bits are defined within BllC$L_BER. Bits <30: 16> are hard error
bits and bits <2:0> are soft error bits.

BllC$V_NPE2 Null bus parity error.

BllC$V_CRD2 Corrected read data.

BllC$V_IPE2

BllC$V_UPEN 1

< 14:4> 1

BllC$V_ICE2

BllC$V_NEX2

ID parity error.

User parity enabled.

Reserved to DIGIT AL. Must be zero.

Illegal confirmation error.

Nonexistent address.

2 Write-one-to-clear bit. Write-type transactions cannot set this bit.

14-24

'
Generic VAXBI Device Support

14.9 BllC Register Definitions

Table 14-1 (Cont.) Contents of the BllC Registers

Field Name Contents

BllC$L_EICR

1 Read-only field.

BllC$V_BT02

BllC$V_ST02

BllC$V_RT02

BllC$V_RDS2

BllC$V_SPE2

BllC$V_CPE2

BllC$V_IVE2

BllC$V_ TDF2

BllC$V_ISE2

BllC$V_MPE2

BllC$V_CTE2

BllC$V_MTCE2

BllC$V_NMR2

<31>

Bus timeout.

Stall timeout.

Retry timeout.

Read data substitute.

Slave parity error.

Command parity error.

IDENT vector error.

Transmitter during fault.

Interlock sequence error.

Master parity error.

Control transmit error.

Master transmit check error.

NO ACK to multiresponder command received.

Reserved to DIGIT AL. Must be zero.

Error Interrupt Control Register. This register supplies information the node uses to
request and monitor the status of both BllC-detected and forced-error interrupts:
that is, those interrupts signaled by either the setting of a bit in the Bus Error
Register (BllC$L_BER) or the setting of the force bit (BllC$V_EIFORCE) in this
register, respectively. The node can initiate BllC-detected error-interrupt requests
only if the appropriate error-interrupt enables (BllC$V_SEIE and/or BllC$V_HEIE) are
set in the V AXBI Control and Status Register (BllC$L _BICSR).

The following fields are defined within BllC$L _EICR.

< 1 :O> 1 Reserved to DIGIT AL. Must be zero.

BllC$V_EIVECTOR 12-bit vector used in error interrupt sequences.

< 15: 14 > 1 Reserved to DIGIT AL. Must be zero.

BllC$V_LEVEL These four bits (< 19: 16>) correspond to the four
interrupt levels (INT <7:4>) of the VAXBI bus. A set
bit causes the corresponding level to be used when INTR
commands under control of this register are transmitted. ·

BllC$V_EIFORCE Force bit. When set, this bit posts an error interrupt
request in the same way as a bit set in the Bus Error
Register (BllC$L_BER), except that the request is not
qualified by the bits BllC$V_HEIE and BllC$V_SEIE in
BllC$L_BICSR.

BllC$V_EISENT2

<22>

BllC$V_EllNTC2

INTR sent.

Reserved to DIGIT AL. Must be zero.

INTR complete. When set, this bit indicates that the
vector for an error interrupt has been successfully
transmitted or an INTR command sent under the control
of this register has been successfully aborted.

2 Write-one-to-clear bit. Write-type transactions cannot set this bit.

14-25

Generic VAXBI Device Support
14.9 BllC Register Definitions

Table 14-1 (Cont.) Contents of the BllC Registers

Field Name Contents

BllC$L_IDR

BllC$L_IPIMR

BllC$L_IPIDR

BllC$L _IPISR2

BllC$L_SAR

BllC$L_EAR

BllC$L _BCICR

1 Read-only field.

BllC$V_EllNT AB2

<31:25> 1

INTR abort. When set, this bit indicates that an INTR
command under the control of this register has been
aborted (that is, a NO ACK or illegal confirmation code
has been received). This bit is a status bit set by the
BllC and can be reset only by the user interface.

Reserved to DIGIT AL. Must be zero.

Interrupt Destination Register. The low-order word of this register indicates which
nodes are to be selected by INTR commands.

Interprocessor Interrupt Mask Register. The high-order word of this register
indicates which nodes are permitted to send interprocessor interrupts to this node.

Force-bit IPINTR/STOP Destination Register. The low-order word of this register
indicates which nodes are to be targeted by force-bit IPINTR or STOP commands
sent by this node.

IPINTR Source Register. The BllC stores in the high-order word of this register the
decoded ID of a node that sends an IPINTR command to this node.

Starting Address Register. The Starting Address Register and Ending Address
Register define storage blocks in either memory or 1/0 space. They must not be
configured to include node space or multicast space.

The low-order 18 bits of this register must be zero. This means that memories
are multiples of 256K bytes. Software should set up the Starting Address Register
before the Ending Address Register.

Ending Address Register.

The low-order 18 bits of this register must be zero. This means that memories
are multiples of 256K bytes. Software should set up the Starting Address Register
before the Ending Address Register. See the description of the Starting Address
Register (BllC$L _SAR) for further details ..

BCI Control Register.

The following fields are defined within BllC$L _BCICR.

<2:0> 1 Reserved to DIGITAL. Must be zero.

BllC$V_RTOEVEN RTO EV enable.

BllC$V_PNXTEN

BllC$V_IPINTREN

BllC$V_INTREN

BllC$V_BICSREN

BllC$V_UCSREN

BllC$V_WINVALEN

BllC$V_INV ALEN

BllC$V_IDENT

BllC$V_RESEN

Pipeline NXT enable.

IPINTR enable.

INTR enable.

BllC CSR Space enable.

User Interface CSR Space enable.

WRITE Invalidate enable.

INVAL enable.

IDENT enaple.

RESERVED enable.

2 Write-one-to-clear bit. Write-type transactions cannot set this bit.

14-26

Generic VAXBI Device Support
14.9 BllC Register Definitions

Table 14-1 (Cont.) Contents of the BllC Registers

Field Name

BllC$L_WSR

BllC$L_IPISTPF

BllC$L_UICR

1 Read-only field.

Contents

BllC$V_STOPEN

BllC$V_BDCSTEN

BllC$V_MSEN

BllC$V_IPINTRF

BllC$V_BURSTEN

<31:18> 1

Write Status Register.

STOP enable.

BDCST enable.

Multicast Space enable.

IPINTR/STOP force.

Burst enable.

Reserved to DIGIT AL. Must be zero.

The following fields are defined within BllC$L_WSR.

<27:0> 1 Reserved to DIGIT AL. Must be zero.

BllC$V_GPR02 Indicates that a V AXBI transaction has written to General
Purpose Register 0 (BllC$L_GPRO).

BllC$V_GPR 12

BllC$V_GPR22

BllC$V_GPR32

Indicates that a V AXBI transaction has written to General
Purpose Register 1 (BllC$L_GPR 1).

Indicates that a V AXBI transaction has written to General
Purpose Register 2 (BllC$L_GPR2).

Indicates that a V AXBI transaction has written to General
Purpose Register 3 (BllC$L_GPR3).

Force-Bit IPINTR/STOP Command Register.

The following fields are defined within BllC$L _IPISTPF.

< 10:0> 1 Reserved to DIGIT AL. Must be zero.

BllC$V_MIDEN Master ID Enable.

BllC$V_CMD

<31:16> 1

These four bits indicate the command code for either an
IPINTR or STOP transaction that is initiated by setting
the IPINTR/STOP force bit (BllC$V_INTRF in BllC$L_
BCICR).

Reserved to DIGIT AL. Must be zero.

User Interface Interrupt Control Register. This register controls the operation of
interrupts initiated by the device.

The following fields are defined within BllC$L _UICR.

< 1 :O> 1 Reserved to DIGIT AL. Must be zero.

BllC$V_UIVECTOR These 12 bits contain the vector used during user
interface interrupt sequences (unless the external vector
bit (BllC$V_EXVECTOR in BllC$L_UICR) is set). The
vector is transmitted when this node wins an IDENT
arbitration that matches the conditions given in BllC$L_
UICR.

2 Write-one-to-clear bit. Write-type transactions cannot set this bit.

14-27

Generic VAXBI Device Support
14.9 BllC Register Definitions

Table 14-1 (Cont.) Contents of the BllC Registers

Field Name

BllC$L_GPRO

BllC$L_GPR1

BllC$L_GPR2

BllC$L_GPR3

Contents

<14>

BllC$V_EXVECTOR

BllC$V_UIFORCE

BllC$V~UISENT2

BllC$V_UllNTC2

Reserved to DIGITAL. Must be zero.

When set, the BllC solicits the interrupt vector from the
node rather than transmitting the vector contained in
BllC$L_UICR.

These four bits correspond to the four interrupt levels
(INT <7:4>). When a bit is set, the BllC generates an
interrupt at the indicated level.

These four bits correspond to the four interrupt levels
(INT <7:4>). A set bit indicates that an INTR command
for the corresponding level has been successfully
transmitted.

These four bits correspond to the four interrupt levels
(INT <7:4>). A set bit indicates that the vector
for an interrupt at the corresponding level has been
successfully transmitted or that an INTR command sent
under the control of this register has been successfully
aborted.

BllC$V_UllNT AB2 These four bits correspond to the four interrupt levels
(INT <7:4>). A set bit indicates that an INTR command
at the corresponding level, sent under the control of this
register, has been aborted (that is, a NO ACK or illegal
confirmation code has been received).

General Purpose Register 0.

General Purpose Register 1 .

General Purpose Register 2.

General Purpose Register 3.

2 Write-one-to-clear bit. Write-type transactions cannot set this bit.

14-28

1 5 Loading a Device Driver

15.1

You can load a non-DIGITAL-supplied device driver any time after the system
is bootstrapped. If the driver contains an error and the error does not crash
or corrupt the operating system, you can correct the error and reload a new
version of the driver.

Preparing a Driver for Loading into the Operating System
To prepare a device driver for loading, perform the following steps:

1 Write the device driver in one or more source files. If the driver comprises
several source files, you must insert a .PSECT directive before any
generated code in all files except the file that contains the DPTAB and
DDTAB macro invocations. The following .PSECT must be used:

.PSECT $$$115_DRIVER

If a single source file contains the driver, you must not specify any
.PSECT directives. The declaration of the DPTAB and DDTAB macros
correctly establishes driver program sections ($$$ lOS_PROLOGUE and
$$$1 lS_DRIVER, respectively).

2 Assemble the source file(s) with the system's macro library
(SYS$LIBRARY:LIB.MLB). For example:

$ MACRO MYDRIVER.MAR+SYS$LIBRARY:LIB.MLB/LIBRARY

3 Link the object file with the VMS global symbol table, which is located in
SYS$SYSTEM and called SYS.STB. If the driver consists of several source
files, you must specify the file that contains the driver prologue table
as the first file in the list. The linker-options file must contain a BASE
statement specifying a zero base for the executable image. The following
is an example of the creation of the options file and the LINK command
used to link a driver:

$ CREATE MYDRIVER.OPT
BASE=O
!cTRL/Zl

$ LINK /NOTRACE MYDRIVER1[,MYDRIVER2, ...] ,-
_$ MYDRIVER.OPT/OPTIONS,-
_$ SYS$SYSTEM:SYS.STB/SELECTIVE_SEARCH

The resulting image must consist of a single image section. The linker
will report that the image has no transfer address.

Once you have linked or relinked a driver, you should copy its image to the
SYS$LOADABLE_IMAGES or SYS$SYSTEM directory. The SYSGEN LOAD
and CONNECT commands first search for a driver in the SYS$LOADABLE_
IMAGES directory. If they do not find the driver, they then search the
SYS$SYSTEM directory.

15-1

15.2

Loading a Device Driver
1 5.2 Loading a Driver

Loading a Driver
Once the driver has been linked correctly, it is ready to be loaded. To load
the driver into system virtual memory, run the System Generation Utility
(SYSGEN) from the system manager's account or from an account having
CMKRNL privilege, using the following command:

$ RUN SYS$SYSTEM:SYSGEN

SYSGEN responds with a prompt and waits for further input:

SYSGEN>

The VMS System Generation Utility Manual describes the full set of SYSGEN
commands. The sections that follow describe those commands SYSGEN uses
to load drivers:

SYSGEN Command

LOAD

CONNECT

RELOAD

SHOW/ ADAPTER

SHOW/CONFIGURATION

SHOW /DEVICE

Privilege Required

CMKRNL

CMKRNL

CM KR NL

CMEXEC

CM EXEC

CMEXEC

SYSGEN takes special steps to ensure that drivers that do not adhere to
multiprocessing synchronization standards do not coexist in a system with
drivers that are properly synchronized. The procedure that SYSGEN follows
to accomplish this is discussed in Section 15.3. In addition, SYSGEN provides
an automatic configuration service for UNIBUS /Q22 bus devices, as described
in Section 15.4.

15.2.1 LOAD Command

15-2

To load a device driver, issue the LOAD command.

Note: If the controller has only a single unit attached to it, you can issue
the CONNECT command to perform the driver-loading tasks normally
performed by the LOAD command, as well as its task of creating the
device's 1/0 database (see Section 15.2.2).

Format

LOAD filespec

Parameter

filespec
Name of a file containing an executable driver image. The driver-loading
procedure compares the name field (DPT$T_NAME) in the driver prologue
table of the driver being loaded with the names of the drivers in the current
system configuration. If the procedure discovers that a driver with the same
name already exists in the configuration, it will not load the new driver. If
it does not find a configured driver with the same name, it loads the new

Loading a Device Driver
1 5.2 Loading a Driver

driver into contiguous locations in nonpaged pool, and links the DPT into the
system's linked list of DPTs (headed by IOC$GL_DPTLIST).

The LOAD command uses SYS$LOADABLE_IMAGES as the default
device/directory name, and EXE as the default file type. If it cannot find
the driver in the SYS$LOADABLE_IMAGES directory, it searches for it in
SYS$SYSTEM.

Example

SYSGEN> LOAD CRDRIVER

This command loads the driver found in SYS$LOADABLE_
IMAGES:CRDRIVER.EXE (the card-reader driver).

15.2.2 CONNECT Command
The CONNECT command creates data structures in the I/O database for a
specified device. The device-connecting procedure performs the following
general functions:

• If the CONNECT command specifies a new device unit on an existing
controller, it creates a unit control block for the new unit and calls the
driver's unit initialization routine.

• If the CONNECT command specifies a device unit on a new controller, it
creates a device data block, channel request block, interrupt dispatch
block, and unit control block and then calls both the controller
initialization and unit initialization routine in the driver. (Note that,
because system initialization creates the CRB and IDB for a generic V AXBI
device, the CONNECT command for such a device omits the creation and
initialization of these structures.)

The CONNECT command can also load into system memory a driver
that has not been previously loaded. (See the following discussion of the
/DRIVERNAME qualifier and the description of the LOAD command in
Section 15.2.1 for information on driver loading.)

CAUTION: The database-loading procedure does little error checking. If you specify a
vector that has already been defined, the procedure rejects the CONNECT
command. However, if the CONNECT command specifies an incorrect
CSR address, the 1/0 database is apt to become corrupted and will likely
cause a system failure.

Format

CONNECT device

15-3

Loading a Device Driver
1 5.2 Loading a Driver

15-4

Parameter

device
Name of the device to be connected. Specify the device name in the format
ddcu where

dd = device code (up to 9 alphabetic characters)

c = controller designation (alphabetic)

u = unit number

For example, LP AO specifies the line printer (LP) on controller A at unit
number 0. When specifying the device name, do not follow it with a
colon (:).

The device code and controller specification must be a unique and accurate
device name and controller combination. If data structures for the specified
device/controller already exist, the device-connecting procedure does not
create any data structures or perform any initialization operations. If the
device/controller name does not accurately name a device, the procedure
creates spurious data structures.

The device-connecting procedure examines the 1/0 database for data
structures that support the specified device. The procedure creates the
following data structures if they do not exist:

• DDB for the specified device/controller combination (ddcu).

• CRB and IDB for the specified controller. The device connecting
procedure creates these data structures whenever it creates a DDB for
a UNIBUS, MASSBUS, or Q22 bus device.

• UCB for the device unit. The device-connecting procedure creates a UCB
whenever it creates a DDB, or when a UCB for the specified device does
not exist. If a UCB already exists, the procedure ceases its modifications
to the 1/0 database and continues its other tasks.

After it creates these data structures, the procedure initializes them as follows:

• Performs the initialization operations specified by the DPT_STORE
macros in the initialization and reinitialization portions of the DPT.

• Relocates all addresses in the DDT and FDT to absolute system virtual
addresses.

• Raises IPL to IPL$_POWER on the local processor so that initialization is
not interrupted.

• If it created a new CRB (or is connecting a generic VAXBI device),
calls the controller initialization routine, if one is specified by CRB$L _
INTD+ VEC$ L _JNITIAL.

• Calls the unit initialization routine if one is specified by DDT$L _
UNITINIT. If the DDT$L_UNITINIT does not specify a unit initialization
routine, the device-connecting procedure calls the unit initialization
routine (if any) specified by CRB$L_INTD+VEC$L_UNITINIT.

Required Qualifiers

/[NO]ADAPTER=nexus

Loading a Device Driver
15.2 Loading a Driver

Nexus value of the UNIBUS adapter, MASSBUS adapter, or other controller
to which the device unit is attached. The nexus can be a number or a generic
name as listed by the /ADAPTER qualifier to the SYSGEN command SHOW.
(See Section 15.2.4 for a discussion of the SHOW/ ADAPTER command.) For
generic VAXBI devices, this value is the VAXBI node number. Table 15-1 lists
typical nexus assignments for UNIBUS and MASSBUS adapters.

Table 15-1 Conventional Nexus Assignments

VAX-11/780
VAX-11/785 VAX 8200 VAX 8530
VAX 8600 VAX 8250 VAX 8550

VAX-11/725 VAX 8650 VAX 8300 VAX 8700
Adapter VAX-11/730 VAX-11/750 VAX 8670 VAX 8350 VAX 88001

UNIBUS

0 3 8 3 0 0

1 9 4 0

2 5 0

3 6 0

MASS BUS

0 4 8

5 9

2 6 10

3 11

1 The VAX 8530 /8550 /8700 /8800 systems can provide up to four V AXBI buses. A DWBUA can be situated only at
node 0 on a VAXBI and, thus, can have a nexus value of 0, 16, 32, or 48.

All numeric values are interpreted as decimal unless they are preceded by
a radix descriptor (%0 or %X). Is~ue the CONNECT command with the
/NOADAPT:ER qualifier to conne¢t drivers associated with software devices.
The mailbox driver is an example 'of this type of driver.

/CSR=csr-addr
UNIBUS or Q22 bus address of the device's control and status register (CSR).
All numeric values are interpreted as decimal unless they are preceded by a
radix descriptor (%0 or %X). Table 15-2 provides additional information on
vector and CSR assignments for UNIBUS and Q22 bus devices.

/CSR_OfFSET=value
Offset from the CSR address of a multiple-device controller board to the CSR
address of the device. The /CSR_OFFSET qualifier is only required for a
multi-device board, such as the DMF32. All numeric values are interpreted
as decimal unless they are preceded by a radix descriptor (%0 or %X).
Table 15-2 provides additional information on vector and CSR assignments
for UNIBUS and Q22 bus devices.

15-5

Loading a Device Driver
15.2 Loading a Driver

15-6

/VECTOR=vector-addr
Q22 bus or UNIBUS address of the interrupt vector for the device. All
numeric values are interpreted as decimal unless they are preceded by a radix
descriptor (%0 or %X). Table 15-2 provides additional information on vector
and CSR assignments for UNIBUS and Q22 bus devices.

/VECTQR_QFFSET=value
Offset from the interrupt vector of a multiple-device board to the interrupt
vector of the device being connected. The /VECTOR_OFFSET qualifier is
only required for a multi-device board, such as the DMF32. All numeric
values are interpreted as decimal unless they are preceded by a radix
descriptor (%0 or %X). Table 15-2 provides additional information on
vector and CSR assignments for UNIBUS and Q22 bus devices.

Optional Qualifiers

/NU MVEC=vector-cnt
Number of interrupt vectors for the device. If this qualifier is omitted, the
default number of vectors is 1. The number specified by the /VECTOR
qualifier is the address of the lowest vector. Vectors must be contiguous.

/DRIVER NAM E=driver
Name of the driver for the device to be connected. If the driver for the
specified device has not yet been loaded, the CONNECT command will
load its driver. First, it will attempt to load the driver whose name is
specified in this qualifier, defaulting to a file type of EXE in device/directory
SYS$LOADABLE_IMAGES. (If it cannot find the driver in SYS$LOADABLE_
IMAGES, the CONNECT command checks SYS$SYSTEM.)

If the /DRIVERNAME qualifier is omitted, CONNECT follows one of two
procedures to supply a default name. If the device to be connected is the
first unit on the controller, CONNECT concatenates the first two characters
of the device code with "DRIVER," (for example, LPDRIVER). Otherwise,
CONNECT obtains the driver name from the field DDB$T_DRVNAME.

Consult the SYSGEN device table in Table 15-2 for the driver names of the
devices supported by VMS.

/ ADPUNIT=unit-number
Unit number of a device on the MASSBUS adapter. The unit number for a
disk drive is the number of the plug on the drive. For magnetic tape drives,
the unit number corresponds to the tape controller's number.

/MAXU N ITS=max-unit-cnt
Maximum number of units attached to the controller. This number
determines the size of the UCB list appended to the IDB. If specified, this
value overrides the maximum number of units designated in the DPT. The
maximum number of units is stored in the field IDB$W_UNITS.

Example

SYSGEN> CONNECT LPAO /ADAPTER=UBO/CSR=%0777514/VECTOR=%0200

This command loads the driver LPDRIVER, if it is not already loaded, and
creates the data structures (DDB, CRB, IDB, and UCB) needed to describe
LPAO. It also causes the driver's controller and unit initialization routines to
be executed.

15.2.3 RELOAD Command

Loading a Device Driver
15.2 Loading a Driver

The RELOAD command loads a driver and removes a previously loaded
version of that driver.

The RELOAD command provides all of the functions of LOAD, except that it
loads the driver regardless of whether it is already loaded. If any of the units
associated with the driver is busy, the driver cannot be reloaded; SYSGEN
issues an error message.

CAUTION: Use the RELOAD command only when all devices supported by the
driver are inactive. The checks for activity made by the RELOAD
command might not detect all device activity, and changing a driver
while an 1/0 request is being processed will cause a system failure.

Format

RELOAD filespec

Parameter

filespec
Name of a file containing an executable driver image. The driver-reloading
procedure compares the name DPT$T_NAME of the driver being loaded with
the names of the drivers in the current system configuration. If no such driver
is configured, the driver-reloading procedure loads the driver as described in
the discussion of the LOAD command in Section 15.2.1.

If the SYSGEN reloading procedure finds a driver with the specified name in
the configuration, it first determines that the current driver can be replaced in
the following steps:

• Confirms that the DPT$V_NOUNLOAD flag of the current driver is not
set.

• Ensures that no devices that use the current driver are busy, as indicated
by the UCB$V_BSY bit set in UCB$L _STS.

• If these checks succeed, calls the current driver's driver unloading routine,
if one has been specified in the unload argument of the DPTAB macro.

The driver unloading routine executes in process context at IPL$_
POWER. It cannot lower IPL or obtain spin locks.

Registers at the time of the call contain the following values:

Register

R6

R10

Value

Address of DOB

Address of DPT

A driver unloading routine can take steps to ensure that no thread of code
or structure exists in the system that may reference the space occupied
by the version of the driver about to be unloaded, a timer-queue element
(TQE), for instance.

A driver unloading routine can use COM$DRVDEALMEM to return
system buffers allocated by the driver to nonpaged pool. The driver
unloading routine returns status in RO to the driver-reloading procedure.

15-7

Loading a Device Driver
15.2 Loading a Driver

Upon receiving success status, the driver-reloading procedure replaces the
current driver with the new driver in the following manner:

1 Loads the new driver into contiguous locations in nonpaged pool.

2 Searches the 1/0 database for references to the driver. If any DDB
refers to the driver being reloaded, the driver-reloading procedure
must reinitialize data structure fields according to the reinitialization
instructions in the new DPT. (see Section 6.1).

Fields that must be reinitialized when a driver is reloaded include those
that contain relative addresses within the driver:

• Addresses of the interrupt service routines

• Addresses of the unit and controller initialization routines

• Address of the driver dispatch table

3 Calls the driver's controller initialization routine. (It does not call the unit
initialization routine.)

4 Removes the newly replaced driver from the system's linked list of DPTs
(headed by IOC$GL _DPTLIST) and deallocates the nonpaged system
space the old driver occupied.

5 Links the address of the new DPT to the system's DPT list.

15.2.4 SHOW/ADAPTER Command

15-8

The SHOW/ ADAPTER command displays nexus numbers and generic names
of UNIBUS and MASSBUS adapters, VAXBI adapters, memory controllers,
and interconnection devices such as the DR32 and CI. Use of the SHOW
/ADAPTER command requires CMEXEC privilege.

Format

SHOW/ ADAPTER

Example

SYSGEN> SHOW/ADAPTER

CPU Type: VAX 8530

Nexus Generic Name or Description

32 CIO
34 BI - NBIB Adapter
38 BI Combo Board
39 BI - AIE Adapter with NI port only
48 UBO
50 BI - NBIB Adapter
52 BI - Disk Adapter (KDB50)

Loading a Device Driver
15.2 Loading a Driver

15.2.5 SHOW/CONFIGURATION Command
The SHOW /CONFIGURATION command displays the device name, number
of units, nexus number and type, and shows the CSR and vector addresses of
devices connected to or autoconfigured in the system.

Format

SHOW/CONFIGURATION

Optional Qualifiers

I ADAPTER=nexus
Nexus value of the UNIBUS adapter, MASSBUS adapter, or other
interconnect to be displayed. The nexus value can be expressed as an integer
or as one of the generic names listed by the SHOW/ ADAPTER command.

/COMMANO_FILE
Option by which you instruct SYSGEN to format all device data produced by
the SHOW /CONFIGURATION command into CONNECT/ ADAPTER=nexus
commands and write them to a specified output file. By executing the
commands in this file, you can remove a device from floating address
space without completely reconnecting the CSR and vector addresses of
the remaining devices. See the VMS System Generation Utility Manual for
more details.

/OUTPUT=filespec
Name of a file into which SHOW /CONFIGURATION is to write device
configuration information.

Example

SYSGEN> SHOW/CONFIGURATION/ADAPTER=UB1

System CSR and Vectors on 24-JUL-1988 14:58:26.08

Name: LPA Units: 1 Nexus:4 (UBA) CSR: 777514 Vector!: 200 Vector2: 000
Name: DYA Units: 2 Nexus:4 (UBA) CSR: 777170 Vector!: 264 Vector2: 000
Name: XMA Units: 1 Nexus:4 (UBA) CSR: 760070 Vector!: 300 Vector2: 304
Name: XMB Units: 1 Nexus:4 (UBA) CSR: 760100 Vector!: 310 Vector2: 314
Name: XMC Units: 1 Nexus:4 (UBA) CSR: 760110 Vector!: 320 Vector2: 324
Name: TTA Units: 8 Nexus:4 (UBA) CSR: 760130 Vector!: 330 Vector2: 334
Name: TTB Units: 8 Nexus:4 (UBA) CSR: 760140 Vector!: 340 Vector2: 344
Name: TTC Units: 8 Nexus:4 (UBA) CSR: 760150 Vector!: 350 Vector2: 354
Name: TTD Units: 8 Nexus:4 (UBA) CSR: 760160 Vector!: 360 Vector2: 364
Name: TTE Units: 8 Nexus:4 (UBA) CSR: 760170 Vector!: 370 Vector2: 374

15.2.6 SHOW/DEVICE Command
The SHOW /DEVICE command displays the following information:

• Name of the driver

• Starting virtual address of the driver (that is, the address of its DPT)

• Ending virtual address of the driver

• Generic device/controller name associated with the driver

15-9

15.3

Loading a Device Driver
15.2 Loading a Driver

• Addresses of the DDB, CRB, and IDB for the generic device/controller
supported by the driver

• Unit number and UCB address of each device unit associated with the
driver

The SHOW /DEVICE command requires CMEXEC privilege.

Format

SHOW /DEVICE [=driver-name]

Parameter

driver-name
Name of the driver for which the information is to be displayed. If a driver
name is not specified, the command displays information about all drivers
and devices known to the system.

Example

SYSGEN> SHOW/DEVICE=TMDRIVER

__ DRIVER ___ START ____ END ___ DEV ___ DDB ______ CRB ______ IDB _______ UNIT ___ UCB

TMDRIVER 8009DFOO 8009F020
MTA 800BA660 800BA6CO 800BA360

0 8009F020
1 8009FOCO

Loading Uniprocessing and Multiprocessing Drivers

15-10

In a VMS multiprocessing environment, the presence of a device driver that
does not adhere to multiprocessing synchronization conventions can be fatal
to proper system functions. VMS takes steps to either prohibit the enabling
of multiprocessing in a VAX system that has such a driver present or prevent
the loading of such a driver if multiprocessing has already been enabled.

To accomplish this, the VMS driver-loading routine assumes that any driver
that can run in a VMS multiprocessing environment uses the spin lock
synchronization macros and loads the appropriate I/O database fields. (See
Section G.3 for information on how to produce a driver that can execute in a
VMS multiprocessing environment.) Use of the spin lock synchronization
macros causes VMS to set the SMP-modified bit in the DPT (DPT$V_
SMPMOD in DPT$L_FLAGS).

If multiprocessing has not been enabled on the system, the driver-loading
routine checks the SMP-modified bit in the DPT and takes either of the
following actions:

• If the SMP-modified bit is set, the driver-loading routine loads the driver
and calls its controller and unit initialization routines, as discussed in
Section 15.2.

• If the SMP-modified bit is not set, the driver-loading mechanism sets
the unmodified-driver bit (SMP$V_UNMOD_DRIVER) in SMP$GL _
FLAGS, thus prohibiting the subsequent enabling of multiprocessing
on the system. It then loads the driver and calls its controller and unit
initialization routines. If such a driver has been successfully loaded into a
VMS system, you cannot subsequently enable multiprocessing.

15.4

Loading a Device Driver
15.3 Loading Uniprocessing and Multiprocessing Drivers

If multiprocessing is currently enabled on the system, the driver-loading
mechanism checks the SMP-modified bit in the DPT and takes either of the
following actions:

• If the SMP-modified bit is set, the driver-loading mechanism loads the
driver and calls its controller and unit initialization routines.

• If the SMP-modified bit is not set, the driver-loading mechanism does
not load the driver, returning the error status SS$_NONSMPDRV to its
caller.

The SYSGEN Autoconfiguration Facility
Traditionally, SYSGEN is invoked near the end of system initialization
processing during t.l;oe execution of the system startup command procedure.
This procedure generally issues a SYSGEN AUTOCONFIGURE ALL
command, the result of which is that SYSGEN scans various device tables
to determine devices VMS expects to be connected to each UNIBUS, Q22
bus, MASSBUS, and VAXBI bus configured in the system. Ultimately, as the
autoconfigure facility discovers the data structures associated with the devices
recognized by VMS, it loads the associated device drivers and invokes their
initialization routines.

To configure devices attached to the UNIBUS or Q22 bus, SYSGEN goes
through the steps described in subsequent sections of this chapter. Because
the autoconfigure facility cannot recognize non-DIGITAL-supplied VAXBI
devices, the system startup procedure (or a later invocation of SYSGEN) must
explicitly request that SYSGEN connect the device. SYSGEN responds to
such explicit requests by utilizing the data structures created by the VMS
adapter initialization module for the unknown VAXBI device to load the
associated device driver and invoke its initialization routines.

SYSGEN automatically configures a UNIBUS or Q22 bus as follows:

• It initializes the base of floating space to 3008 and 7600108 for vectors
and CSRs, respectively.

• It tests fixed and floating CSR address space for all known DIGITAL
devices.

• When a device is found at a CSR, SYSGEN reserves floating CSR and
vector space for that device, if necessary.

• It searches for the name of the driver associated with the device by
checking the SYSGEN device table (shown in Table 15-2) and the
directory SYS$LOADABLE_IMAGES (or SYS$SYSTEM). If the driver
has already been loaded or exists as an image file in SYS$LOADABLE_
IMAGES (or SYS$SYSTEM), SYSGEN creates and initializes the I/O
database for that device and loads the driver's image if necessary. If the
device at the CSR is supported by VMS and SYSGEN cannot locate its
associated driver's image, it generates an error message. If the device is
unsupported and has no corresponding driver's image, SYSGEN ignores
the condition.

15-11

Loading a Device Driver
15.4 The SYSGEN Autoconfiguration Facility

15.4.1 SYSGEN Device Table

15-12

DIGITAL-supplied devices are attached to the UNIBUS or Q22 bus according
to the following basic rules:

• A device of type A is always at a fixed and predefined CSR address; the
device always interrupts at a fixed and predefined vector address; only
one example of device A can be configured in each system.

• A device of type Bis identical to type A except that 1 through n examples
can be configured in a single system. Examples 2 through n are also
located at fixed and predefined CSRs and vector addresses.

• Devices of type C (1 through n of them) are always at fixed and
predefined CSR addresses; however, the interrupt vector addresses vary
according to what other devices are present on the system.

• Devices of type D (1 through n of them) are at CSR addresses and vector
addresses that vary according to what other devices are present on the
system.

CSR and vector addresses that vary are called floating addresses. The devices
must be located in floating CSR and vector space according to the order in
which the devices appear in the SYSGEN device table. This table, shown
in Table 15-2, lists all the type A and type B devices supported by VMS. It
also lists the type C and type D devices that are recognized by SYSGEN's
autoconfiguration procedure.

The base of floating vector space is 3008. The base of floating CSR space is
7600108.

Table 15-2 lists the characteristics of all devices recognized by SYSGEN. This
table indicates the following information for each device type:

• Device name

• Device controller name

• Interrupt vector

• Number of interrupt vectors per controller

• Vector alignment factor

• Address of the first device register for each controller recognized by
SYSGEN (the first register is usually, but not always, the CSR)

• Number of registers per controller

• Device driver name

• Indication of whether the driver is or is not supported

Loading a Device Driver
15.4 The SYSGEN Autoconfiguration Facility

Devices not listed in the SYSGEN device table include the following:

• Non-DIGITAL-supplied devices with fixed CSR and vector addresses .
These devices have no effect on autoconfiguration. Customer-built
devices should be assigned CSR and vector addresses beyond the floating
address space reserved for DIGITAL-supplied devices.

• Those DIGITAL-supplied floating-vector devices that the
AUTOCONFIGURE command does not recognize. Use the CONNECT
command to attach these devices to the system.

Table 15-2 SYSGEN Device Table

Number
Device Controller of
Name Name Vector Vectors

CR CR11 230

OM RK611 210

LP LP11 200
170
174
270
274

DL RL11 160

MS TS11 224

DY RX211 264

DO RB730 250

PU UDA 154

PT TU81 260

XE UNA 120

XO ONA 120 1

OM DC11 Float 2

DD TU58 Float 2

Vector
Alignment

8

8

CSR/Rank

777160

777440

777514
764004
764014
764024
764034

774400

772520

777170

775606

772150

774500

774510

774440

774000
774010
774020
774030

32 units
maximum

776500
776510
776520
776530

16 units
maximum

Register
Alignment

Driver
Name Support

CRDRIVER Yes

OM DRIVER Yes

LPDRIVER Yes

DLDRIVER Yes

TSDRIVER Yes

DYDRIVER Yes

DODRIVER Yes

PUDRIVER Yes

PU DRIVER Yes

XEDRIVER Yes

XODRIVER Yes

OMDRIVER No

DDRIVER Yes

15-13

Loading a Device Driver
15.4 The SYSGEN Autoconfiguration Facility

Table 15-2 (Cont.) SYSGEN Device Table

Number
Device Controller of Vector
Name Name Vector Vectors Alignment CSR/Rank

OB DN11 Float

YM DM11B Float

OA DR11C Float

PR PR611 Float

pp PP611 Float

15-14

4

4

2 8

8

8

775200
775210
775220
775230

16 units
maximum

770500
770510
770520
770530

16 units
maximum

767600
767570
767560
767550

16 units
maximum

772600
772604
772610
772614

8 units
maximum

772700
772704
772710
772714

8 units
maximum

Register Driver
Alignment Name Support

OBDRIVER No

YMDRIVER No

OADRIVER No

PRDRIVER No

PPDRIVER No

Loading a Device Driver
15.4 The SYSGEN Autoconfiguration Facility

Table 15-2 (Cont.) SYSGEN Device Table

Number
Device Controller of Vector
Name Name Vector Vectors Alignment CSR/Rank

OC DT11 Float 2 8 777 420
777422
777424
777426

8 units
maximum

OD DX11 Float 2 8 776200
776240

YL DL11C Float 2 8 775610
775620
775630
775640

31 units
maximum

YJ DJ 11 Float 2 8 Float

YH DH11 Float 2 8 Float

OE GT40 Float 4 8 772000
772010

LS LPS11 Float 6 8 770400

OR 0011 Float 2 8 Float

OF KW11W Float 2 8 772400

XU DU11 Float 2 8 Float

xv DV11 Float 3 8 775000
775040
775100
775140

OG LK 11 Float 2 8 Float

XM DMC11 Float 2 8 Float

TTA DZ11 Float 2 8 Float

XK KMC11 Float 2 8 Float

OH LPP11 Float 2 8 Float

01 VMV21 Float 2 8 Float

OJ VMV31 Float 2 8 Float

OK DWR70 Float 2 8 Float

DL RL11 Float 4 Float

Register Driver
Alignment Name Support

OCDRIVER No

ODD RIVER No

YLDRIVER No

8 YJDRIVER No

16 YHDRIVER No

OEDRIVER No

LSDRIVER No

8 ORDRIVER No

OFDRIVER No

8 XUDRIVER No

XVDRIVER No

8 OGDRIVER No

8 XMDRIVER Yes

8 DZDRIVER Yes

8 XKDRIVER No

8 OHDRIVER No

8 OIDRIVER No

16 OJ DRIVER No

8 OKDRIVER No

8 DLDRIVER Yes

15-15

Loading a Device Driver
15.4 The SYSGEN Autoconfiguration Facility

Table 15-2 (Cont.) SYSGEN Device Table

Number
Device Controller of Vector Register Driver
Name Name Vector Vectors Alignment CSR/Rank Alignment Name Support

MS TS11 Float 4 772524 TSDRIVER Yes
772530
772534

LA LPA 11 Float 2 8 770460 LADRIVER Yes

LA LPA 11 Float 2 8 Float 16 LADRIVER Yes

OL KW11C Float 2 8 Float 8 OLDRIVER No

DY RX211 Float 4 Float 8 DYDRIVER Yes

XA DR11W Float 4 Float 8 XADRIVER Yes

XB DR11B 124 772410 XBDRIVER No

XB DR11B Float 4 772430 XBDRIVER No

XB DR11B Float 4 Float 8 XBDRIVER No

XD DMP11 Float 2 8 Float 8 XDDRIVER Yes

ON DPV11 Float 2 8 Float 8 ON DRIVER No

IS ISB 11 Float 2 8 Float 8 ISDRIVER No

XO DMV11 Float 2 8 Float 16 XDDRIVER No

XE UNA Float 4 Float 8 XEDRIVER No

XO ONA Float 4 774460 XODRIVER Yes

PU UDA Float 1 4 Float 4 PU DRIVER Yes

XS KMS11 Float 3 8 Float 16 XSDRIVER No

XP PCL11 Float 2 8 764200 XPDRIVER No
764240
764300
764340

VB VS100 Float 1 4 Float 16 VBDRIVER No

PT TU81 Float 1 4 Float 4 PUDRIVER Yes

00 KMV11 Float 2 8 Float 16 OODRIVER No

UK KCT32 Float 2 8 764400 UKDRIVER No
764440
764500
764540

IX IE011 Float 2 8 764100 IXDRIVER No

TX DHV11 Float 2 8 Float 16 YFDRIVER Yes

OT TC11 214 1 777340 DTDRIVER No

vc VCB01 Float 2 777200 VCDRIVER Yes

vc VCB01 Float 2 Float 64 VCDRIVER Yes

OT LNV11 Float 4 776200 OTDRIVER No

LO LNV21 Float 4 Float 16 LDDRIVER No

ZO OTA Float 4 772570 ZODRIVER No

ZO OTA Float 4 Float 8 ZODRIVER No

15-16

Table 15-2 (Cont.)

Device Controller
Name Name

SJ DSV11

OU ADV11C

ov AAV11C

ov AAV11C

AX AXV11C

AX AXV11C

KZ KWV11C

KZ KWV11C

OF KWV11W

AZ ADV11D

AZ ADV11D

AY AAV11D

AY AAV11D

VA VCB02

DN DRV11J

HX DR03B

VO VSV24

vv VSV21

BO 18001

UT MIRA

IX IE011

AW AD032

vx DTC04

Loading a Device Driver
15.4 The SYSGEN Autoconfiguration Facility

SYSGEN Device Table

Number
of Vector Register Driver

Vector Vectors Alignment CSR/Rank Alignment Name Support

Float 1 4 Float 8 SJ DRIVER No

Float 2 8 Float 8 OU DRIVER No

Float 0 8 770440 OVDRIVER No

Float 0 8 Float 8 OVDRIVER No

140 2 776400 AXDRIVER No

Float 2 8 Float 8 AXDRIVER No

Float 2 8 770420 KZDRIVER No

Float 2 8 Float 4 KZDRIVER No

Float 2 8 772400 OFDRIVER No

Float 2 8 776410 AZDRIVER No

Float 2 8 Float 4 AZDRIVER No

Float 2 8 776420 AYDRIVER No

Float 2 8 Float 4 AYDRIVER No

Float 3 16 777400 VADRIVER Yes
777402
777404
777406

8 units
maximum

Float 16 4 764160 DNDRIVER No
764140
764120

Float 2 8 Float 16 HXDRIVER No

Float 4 Float 8 VODRIVER No

Float 4 Float 8 VVDRIVER No

Float 1 4 Float 8 BODRIVER No

Float 2 8 Float 8 UTDRIVER No

Float 2 8 Float 16 IXDRIVER No

Float 2 8 Float 32 AWDRIVER No

Float 2 8 Float 2 VXDRIVER No

15.4.2 Device Driver Control of Autoconfiguration
The SYSGEN autoconfiguration facility provides two features that drivers
can use to control the automatic configuration of the devices they operate.
These features are invoked through the defunits and deliver arguments to
the DPTAB macro.

15-17

Loading a ·Device Driver
15.4 The SYSGEN Autoconfiguration Facility

15-18

The defunits argument to the DPTAB macro specifies a default number -of
units to be configured on each controller. The DPTAB macro copies this value
to the DPT$W_DEFUNITS field in the DPT. The SYSGEN autoconfiguration
facility reads this field and creates UCBs numbered zero through the default
unit number minus one. The default value of defunits is 1.

The deliver argument to the DPTAB macro specifies the address of a driver­
specific unit delivery routine. An offset to this routine is stored in the
DPT$W_DELIVER field in the DPT. When the deliver argument is present,
the SYSGEN autoconfiguration facility calls the unit delivery routine once for
each unit, the number of which is specified in the defunits argument.

Note: Because the autoconfigure facility will never be called for a non-
DIGIT AL-supplied device, any unit delivery routine that a V AXBI device
driver may include will never be called.

The unit delivery routine prevents the creation of UCBs for devices that do
not respond to a test for their presence.

If the unit delivery routine returns a true status in RO, the unit is configured.
If the status in RO is false, the autoconfiguration facility does not configure
the device. If the deliver argument is not used, the unit delivery feature is
disabled.

SYSGEN calls the unit delivery routine with a JSB instruction in the following
context:

• Interrupt priority level is at IPL$_POWER.

• RO through R2 are available for use.

• R3 contains the address of the IDB, if one exists. If none exists, the value
contained in R3 is zero.

• R4 contains the address of the CSR for the controller.

• RS contains the number of the unit that the routine must decide whether
or not to configure.

• R6 contains the base address of UNIBUS adapter 1/0 space.

• R7 contains the address of the configuration control block (ACF).

• RS contains the address of the ADP.

The configuration control block is described in Figure A-2 and Table A-1.

A driver may or may not specify a unit delivery routine. For instance, the
DZll's device driver specifies 8 as the default unit number, but provides no
routine to configure eight terminal units automatically for each DZl l's CSR.
The RK611 device driver specifies 8 as the default number of units and also
specifies the address of a unit delivery routine that is called once for each of
the eight possible devices on the controller.

Loading a Device Driver
15.4 The SYSGEN Autoconfiguration Facility

15.4.3 Floating-Vector Address Calculation
To calculate the floating-vector address of a device, SYSGEN rounds the
current floating-vector base (CFVB) up to the next valid vector address
boundary for the next device in the table.

If a device is present, SYSGEN reserves floating-vector space for the device
by computing a new CFVB:

CFVB + (4 *number-of-vectors)~ CFVB

15.4.4 Floating-CSR Address Calculation
To calculate the floating CSR address of a device, SYSGEN rounds the current
floating CSR base (CFCB) up to the next valid floating CSR address. Floating
CSR addresses must fall on an 8-byte boundary.

SYSGEN tests the CSR address (CFCB) for the next device in the device table
by executing a TSTW instruction on the address and noting whether there is
a response at that address.

If the device is present, SYSGEN reserves floating CSR address space for the
device by computing a new CFCB:

CFCB +bytes-in-register-set~ CFCB

When all devices of a particular type have been located and their floating CSR
space reserved, SYSGEN reserves an extra block of CSR space to indicate a
change to a new device type:

CFCB + 8 ~ CFCB

If the device is not present, SYSGEN reserves an extra block of CSR space to
indicate a change to a new device type by adding eight to the rounded CFCB:

CFCB + 8 ~ CFCB

1 5.4. 5 Rules for Configuration
The formulas described in Sections 15.4.3 and 15.4.4 reduce to the following
maxims:

• Devices with fixed CSR addresses and fixed vector addresses must be
attached according to the SYSGEN device table settings.

• Devices with floating CSR or vector addresses must be attached in the
order in which they are listed in the SYSGEN device table.

• An 8-byte gap must be reserved between each different type of device
that is located in floating CSR address space.

• An 8-byte gap must be reserved in floating CSR address space for each
device type that has no controller in its configuration.

• An extra 8-byte gap must be reserved between the KWl lC and the RXl l
in floating CSR address space.

15-19

Loading a Device Driver
15.4 The SYSGEN Autoconfiguration Facility

When assigning floating vector addresses and registers to devices not supplied
by DIGITAL, be sure to leave a generous gap between these addresses and
those of devices in the table because future VMS maintenance updates might
add new devices to the SYSGEN device table. 1

1 UNIBUS addresses 7641008 through 7677768 are available for non-DIGITAL-supplied devices.

15-20

1 6 Debugging a Device Driver

16.1

DEL TA and XDEL TA are debugging tools that can be used to monitor the
execution of user programs and the VMS operating system. When you link
DEL TA with a user image that runs in a non privileged process, DEL TA is
a user-mode debugging tool. When run in a privileged process, however,
DELTA acts as a multimode debugger; it allows you to debug in user mode or
to change to kernel mode for debugging. However, DEL TA does not support
debugging at elevated IPLs.

XDEL TA is syntactically identical to DEL TA but also allows you to debug code
that executes at an elevated IPL. XDELTA is used for stand-alone debugging
of driver code and the executive.

This chapter primarily describes the use of XDEL TA as a tool for debugging
an executing driver image. In the command syntaxes and dialogues contained
in this chapter, red ink indicates the commands typed by the user and black
ink indicates the system prompts and responses.

The chapter includes discussions of two additional topics:

• Detection and analysis of driver errors in a VMS multiprocessing system

• Detection of corruption in nonpaged pool and the ways in which the
corrupting code can be discovered

These topics supplement information presented in the VMS System Dump
Analyzer Utility Manual.

Bootstrapping the System with XDELTA
Under VMS, drivers are part of the operating system. You normally bootstrap
the system with two boot flags set to allow you to debug with XDEL TA. One
flag causes the bootstrapping procedure to include XDEL TA in the system.
The other boot flag indicates a stop at the breakpoint at the beginning of
VMS initialization. (The BREAKPOINTS system parameter, by default,
enables a breakpoint at the end of system initialization. See Section 16.2 for
additional information.) Table 16-1 describes the possible values of these
flags. Following a boot that includes XDEL TA, executing a BPT instruction
causes control to transfer to a fault handler located in XDEL TA.

16-1

Debugging a Device Driver
16.1 Bootstrapping the System with XDEL TA

Table 16-1 Boot Flags That Control the Loading of XDELTA

Flag
Value (f) Meaning

0 Normal nonstop bootstrap (default)

1 Stop in SYSBOOT (equivalent to @DxyGEN on the V AX-11 /780)

2 Include XDEL TA with the system but do not take the initial
breakpoint

6 Include XDEL TA with the system and take the initial breakpoint

7 Include XDEL TA with the system, stop in SYSBOOT and take the
initial breakpoint at system initialization (equivalent to @DxyXDT
on the V AX-11 /780)

The procedures for bootstrapping the system with XDEL TA differ depending
upon the system on which the operating system is running. Some VAX
systems that use a console block storage device supply a special boot
command file that automatically includes XDEL TA in the system and causes
the processor to stop in SYSBOOT and take the initial breakpoint at system
initialization. When booting other systems, you must specify the appropriate
flag value in the BOOT command. Table 16-2 lists some recommended
methods for booting with XDELTA. See your system's installation and
operations guides for additional information.

Table 16-2 Recommended Methods for Bootstrapping with XDEL TA

Boot Commands Explanation

MicroVAX 3600-Series, MicroVAX II, MicroVAX I, and VAX-11/7501Systems

B[/ ~ devname B is the console BOOT command. The flags (f) parameter is a 32-bit hexadecimal
integer loaded into R5 as input to VMS.EXE, the primary bootstrap program. See
Table 16-1 for a list of its possible values.

Using the format ddcu, specify the name of the device that contains the volume
to be bootstrapped. You must supply both controller (c) and unit (u) identifiers;
there are no defaults. If you omit devname, the f parameter is ignored.

The following example bootstraps a MicroVAX II system from DUA0.2

>»B/7 DUAO
SYSBOOT>
SYSBOOT>CONTINUE

1 The console TU58 of the VAX-11 /750 system contains command files (DMAXDT.CMD and DBAXDT.CMD) analogous
to those supplied for the VAX-11/780. See your system's installation and operations guides for additional information.

2 At the SYSBOOT prompt enter other required SYSBOOT commands and conclude the boot operation with a CONTINUE
command. If you do not set or load system parameters with a USE command, the system uses parameters stored in
the system image. To prevent the system from automatically rebooting after a bugcheck, clear the BUGREBOOT system
parameter.

16-2

Debugging a Device Driver
16.1 Bootstrapping the System with XDELTA

Table 16-2 (Cont.) Recommended Methods for Bootstrapping with XDEL TA

Boot Commands Explanation

VAX 6200-Series Systems

B[/R5:~
[/XMl:xmi_node_id]
[/Bl: vaxbLnode_id]
devname

B is the console BOOT command. The flags (f) parameter is a 32-bit hexadecimal
integer loaded into R5 as input to VMB.EXE, the primary bootstrap program. See
Table 16-1 for a list of its possible values.

Specify devname in the format ddduuu, identify the location of the memory­
interconnect-to-VAXBI adapter (XBIA) in /XMI qualifier and the VAXBI node id
of the device in the /Bl qualifier. (You can substitute a symbolic name for these
qualifiers as discussed in your processor-specific operations guide.)

The console places the specified unit number (uu) in R3 and executes the procedure
dddBOO.COM. If you do not specify devname, the console executes DEFBOO.COM.
To use the /R5 qualifier to the BOOT command, you must have previously removed
or commented out the DEPOSIT R5 command in the procedure to be executed.

The following example bootstraps a VAX 6240 system from the boot disk at
node 3 of the V AXBI bus at node 15 of the XMI. 2

>>>B/R5:7/XMI:E/BI:3 DUO
SYSBOOT>
SYSBOOT> CONTINUE

VAX 8200/8250/8300/8350 and VAX 8530/8550/8700/8800/8830/88403 Systems

B[/R5:~ devname B is the console BOOT command. The flags (f) parameter is a 32-bit hexadecimal
integer loaded into R5 as input to VMB.EXE, the primary bootstrap program. See
Table 16-1 for a list of its possible values.

For the VAX 8530/8550/8700/8800/8830/8840, specify devname in the format
ddduuu. The console places the specified unit number (uuu) in R3 and executes
the procedure dddBOO.COM. If you do not specify devname, the console executes
DEFBOO.COM.

To use the /R5 qualifier to the BOOT command for VAX 8530/8550/8700/8800
systems, you must have previously removed or commented out the DEPOSIT R5
command in the procedure to be executed. For VAX 8830/8840 systems, data
specified in the /R5 qualifier to the BOOT command overrides data specified in the
DEPOSIT R5 command in the boot command procedure.

For the VAX 8200/8250/8300/8350, specify devname in the format ddxu, where
x represents the number of the V AXBI node to which the boot device unit is
attached. If you do not specify devname, the console boots from the default boot
device.

The following example bootstraps a VAX 8200 system from the boot disk at
V AXBI node 4. 2

»>B/R5:7 DU40
SYSBOOT>
SYSBOOT>CONTINUE

2 At the SYSBOOT prompt enter other required SYSBOOT commands and conclude the boot operation with a CONTINUE
command. If you do not set or load system parameters with a USE command, the system uses parameters stored in
the system image. To prevent the system from automatically rebooting after a bugcheck, clear the BUGREBOOT system
parameter.

3 Note that the console prompt for the VAX 8830 and 8840 systems is PS-C/0-0> and not > > > .

16-3

Debugging a Device Driver
16.1 Bootstrapping the System with XDEL TA

Table 16-2 (Cont.) Recommended Methods for Bootstrapping with XDEL TA

Boot Commands Explanation

VAX-11/780 and VAX-11/785 Systems

@DMAXDT
@DBAXDT

Use either DMAXDT.CMD or DBAXDT.CMD, depending upon the boot device. The
following example boots from DMAO, first depositing the value 0 in R3. 2

>»DEPOSIT R3 0
»>©DMAXDT
SYSBOOT>
SYSBOOT>CONTINUE

VAX-11/730 and VAX-11/725 Systems

@DOAXDT
@DOOXDT

Use either DQAXDT.CMD or DOOXDT.CMD, depending upon the boot device. The
following example boots from DOA 1, first depositing the value 1 in R3. When the
boot device is DQAO, you can omit this step and execute DOOXDT.COM.2

»>D/G/L 3 1
»>©DQAXDT
SYSBOOT>
SYSBOOT>CONTINUE

VAX 8600/8650/8670 Systems

@DUOXDT Use DUOXDT.COM, if available on the console media, according to the method
described for the VAX-11 /780. Otherwise, perform a normal bootstrap using the
available dduGEN.COM or dduBOO.COM according to the following method:

Use the /NOST ART qualifier in the BOOT command to cause the processor to
pause and await console commands after it boots. After a variety of progress
messages are displayed, the console prompt reappears. First, determine a value
for the flag that controls XDEL TA loading (see Table 16-1). Then, examine the
current value of R5; if it is nonzero (for instance, it is the system root number),
perform an inclusive-OR operation upon it and your selected XDEL TA flag value. 2

>»BOOT/NOSTART
SYSBOOT>EXAMINE R5
SYSBOOT>DEPOSIT R5 7
SYSBOOT>
SYSBOOT>CONTINUE

2 At the SYSBOOT prompt enter other required SYSBOOT commands and conclude the boot operation with a CONTINUE
command. If you do not set or load system parameters with a USE command, the system uses parameters stored in
the system image. To prevent the system from automatically rebooting after a bugcheck, clear the BUGREBOOT system
parameter.

16-4

16.2

16.3

Debugging a Device Driver
16.2 Proceeding from the Initial Breakpoints

Proceeding from the Initial Breakpoints
Before stopping at any breakpoints that may be defined in driver code,
the VAX processor can stop at either or both of two breakpoints in system
initialization.

The breakpoint at the end of system initialization is enabled by the default
setting of the BREAKPOINTS system parameter. The breakpoint at the
beginning is enabled by the appropriate value of the boot flag as described in
Table 16-1.

After being bootstrapped, the system displays its welcoming message and
halts in XDEL TA, as follows:

1 BRK AT nnnnnnnn
address/NOP

XDELTA is waiting for input. (XDELTA never issues explicit prompts.)
Usually, you proceed from this point with the following command:

;P ~

All of the XDELTA commands are described in Section 16.10 and in the VMS
Delta/XDelta Utility Manual.

If the operating system halts with a fatal bugcheck, the system prints
the bugcheck information on the console terminal. Then, because the
BUGREBOOT system parameter is clear, XDELTA prompts. Bugcheck
information consists of the following:

• Type of bugcheck

• Register values

• Dump of one or more stacks

PC and stack content indicate how an experimental driver crashed the
system. You can then examine the system state further by issuing XDEL TA
commands.

Loading the Driver
Once the system is running, you can log in to the system as the system
manager and load the experimental driver.

To load the driver, run SYSGEN and issue the appropriate LOAD and
CONNECT commands. Example 16-l provides a sample dialogue.

The first SHOW command in Example 16-1 causes SYSGEN to display the
location of the device driver in system memory. You then define the device
to the operating system. The second SHOW command causes SYSGEN to
display the driver's location and the addresses of the device's DDB, CRB, IDB,
and UCB.

16-5

16.4

Debugging a Device Driver
16.4 Inserting Breakpoints in Driver Source Code

Example 1 6-1 Loading a Driver

$ RUN SYS$SYSTEM:SYSGEN
SYSGEN> LOAD DMAO: [YOUR.DIRECTORY]YRDRIVER.EXE
SYSGEN> SHOW /DEVICE=YRDRIVER

__ Driver _____ Start ____ End ____ Dev ___ DDB ______ CRB ______ IDB _____ Unit __ UCB ___ _
YRDRIVER 80060E50 80061070
SYSGEN> CONNECT YR /ADAP=3/VEC=%0274/CSR=%0776240
SYSGEN> SHOW /DEVICE=YRDRIVER

__ Driver _____ Start ____ End ____ Dev ___ DDB ______ CRB ______ IDB _____ Unit __ UCB ___ _
YRDRIVER 80060E50 80061070

YRA 8005FDCO 80060B70 8005FEOO
0 80060BBO

SYSGEN> EXIT

Inserting Breakpoints in Driver Source Code

16-6

The SYSGEN command CONNECT calls controller initialization and unit
initialization routines. To begin debugging the driver, you should ensure that
the kernel-mode debugging utility XDELTA gains control of the driver before
these routines execute. This is accomplished by placing one or more calls
to the special system routine INI$BRK within the source code of either the
controller or unit initialization routine. To call INI$BRK, use the following
instruction:

JSB G-INI$BRK

The INI$BRK routine contains two instructions:

BPT
RSB

When the processor executes the BPT instruction, XDEL TA gains control and
reports the address of the breakpoint:

1 BRK AT nnnnnnnn

You can use INI$BRK as a debugging tool and place calls to it within any part
of the driver source code.

To determine the last driver PC before the breakpoint, examine the kernel
stack. The stack register is register RE (hexadecimal format):

RE/address /address

Display RE to find the address of the top of the stack. Another display
command (/) reveals the contents of the top of the stack, which should be
the return address to the driver that called INI$BRK.

16.5

16.6

Debugging a Device Driver
16.5 Calculating the Base of Driver Code

Calculating the Base of Driver Code
Before you debug the driver, it is a good idea to calculate the base address of
driver code, as follows:

1 Run SYSGEN and issue the SHOW /DEVICE command. The resulting
display lists the location in nonpaged pool at which SYSGEN loaded the
driver.

2 Consult the loadmap for the driver (obtained at driver link time). Driver
code resides in two program sections (PSECTs):

$$$105_PROLOGUE
$$$ 115_DRIVER

driver prologue table

driver code

The locations given in the driver code listing are offsets from $$$115_
DRIVER. Thus, you can calculate the base address of the driver by adding
the address at which the driver was loaded to the offset associated with
the PSECT $$$1 lS_DRIVER shown in the map.

If you do not have the loadmap, consult the driver prologue table in the
driver listing. Look for the address of DPT_STORE_END, which generates a
2-byte entry that terminates the DPT. To get the base address of driver code,
add the address of DPT_STORE_END + 2 to the address at which the driver
was loaded. You can set an XDEL TA base register to the base of driver code;
Section 16.8 describes this procedure.

Requesting an XDEL TA Software Interrupt
Once the controller and unit initialization routines complete execution,
you will need to set breakpoints in order to debug the driver. You can set
a breakpoint in the driver source code by inserting calls to INI$BRK, as
described in Section 16.4.

Note that, in a VMS multiprocessing system, only one processor can be in
XDELTA at a time. If a processor encounters a breakpoint while another
processor is in XDEL TA, it too must wait until the current processor exits
from XDEL TA. When it does, this processor again executes the instruction
that caused it to attempt to enter XDEL TA. If the processor previously in
XDEL TA did not delete the breakpoint, this processor now enters XDEL TA.
If the processor previously in XDEL TA did remove the breakpoint, this
processor does not enter XDEL TA.

You can also invoke XDEL TA to set breakpoints interactively by requesting
an XDEL TA software interrupt.

The procedures described in Table 16-3 issue a software interrupt to a single
processor at IPL 14.

On the processor requesting the XDEL TA interrupt, the interrupt service
routine at IPL 14 handles the interrupt by calling the routine INI$BRK, which
in turn executes the first XDEL TA breakpoint. XDEL TA then issues this
message:

1 BRK AT nnnnnnnn
address/NOP

16-7

16.7

Debugging a Device Driver
16.6 Requesting an XDELTA Software Interrupt

In a VMS multiprocessing system, if another processor attempts to enter
XDEL TA at this time, it must wait until the processor currently in XDEL TA
exits.

Table 16-3 Requesting an XDELTA Software Interrupt

System

VAX 8530/8550/8700/8800/8830/88401

VAX 6200 Series2

VAX 8600/8650/86702

VAX 8200/8250/8300/8350
VAX-11/750
VAX-11/730
VAX-11 /7252

VAX-11/780
VAX-11/785

MicroVAX 3600 Series
MicroVAX II
MicroVAX 12

Boot Commands

$ lcTRL/PI

»>HALT
»>D/I 14 E
»>C

$ lcTRL/PI

>»HALT
»>D/I 14 E
»>C

$ lcTRL/PI

»>D/I 14 E
»>C

$ lcTRL/PI

»>HALT
>>>DEPOSIT/I 14 E
»>CONTINUE

Press and release the HALT
button on the CPU control
panel, or press the BREAK
key (if enabled) on the console
terminal. Then issue these
commands:

»>D/I 14 E
»>C

1 Note that the console prompt for the VAX 8830 and 8840 systems is PS-C/0-0> and
not>>>.
2 These VAX systems accept only 1-character console commands.

Examining the Vector-Jump Table

16-8

To gain familiarity with the IjO database, you might wish to look for the
address of the location in the channel request block that contains a JSB
instruction to the driver's interrupt service routine. You can do this at a
controller initialization breakpoint because one of the inputs is the IDB
address. The procedures for locating the driver interrupt service routine on
non-direct-vector and direct-vector adapters follow.

16.8

Debugging a Device Driver
16. 7 Examining the Vector-Jump Table

Non-Direct-Vector Procedure

R5/IDB-address Q+10/ADP-address
Q+10/vector-table-address
Q+vector-address-in-hex/address-of-JSB-instruction-in-CRB
Q!JSB-instruction

Direct-Vector Procedure

R5/IDB-address Q+10/ADP-address
Q+10/vector-table-address
Q+vector-address-in-hex+2/address-of-JSB-instruction-in-CRB
Q!JSB-instruction

Finding the address of the driver's interrupt service routine at the expected
vector does not guarantee that an interrupt from the device will dispatch to
the driver's interrupt service routine. If the device's, physical vector is set to
some other address, an interrupt from the device can dispatch to some other
interrupt service routine, or dispatch to an unassigned vector.

See the SYSGEN device table shown in Table 15-2 for a list of vectors.
Consult DIGITAL field service for help with any problem similar to the one
described above.

Setting an XDEL TA Base Register
During a driver debugging session, you can use an XDEL TA relocation register
as a base from which to examine driver code and set breakpoints within the
driver. Use one of the methods outlined in Section 16.5 to determine the base
address of driver code, then set a relocation register by issuing the following
command:

driver-base-address,O;X ~

This command sets relocation register XO to the base of driver code. Now you
can examine offsets into the code using XO as a base:

XO + offset/nnnnnnnn

or

XO + offset!instruction

XDEL TA also uses the base register to display address values in the base
register plus offset format. Suppose, for example, that your driver contains
the following code:.

50 81 90 OOD3 132 10$: MOVE (R1)+,RO
10 13 OOD6 133 BEQL 20$

20 50 91 OOD8 134 CMPB RO,#AA/ I
F6 19 OODB 135 BLSS 10$

7A 8F 50 91 OODD 136 CMPB RO,#AA/Z/
FO 14 OOE1 137 BGTR 10$

82 50 90 OOE3 138 MOVE RO, (R2) +
EB 11 OOE6 139 BRB 10$

16-9

16.9

Debugging a Device Driver
1 6.8 Setting an XDEL TA Base Register

If base register 0 contains the base address of your driver, the following
XDEL TA dialogue is possible:

XO+D3,XO+E6!XO+D3/MOVB (Rl)+,RO
XO+D6/BEQL XO+E8
XO+D8/CMPB R0,#20
XO+DB/BLSS XO+D3
XO+DD/CMPB R0,#7A
XO+El/BGTR XO+D3
XO+E3/MOVB RO, (R2)+
XO+E6/BRB XO+D3

To set breakpoints in driver code, use the following command:

XO + offset;B ~

To display a driver instruction and set a breakpoint, add the instruction's
offset to the base register. For example:

X0+1C ! instruction . ;B ~

The last XDEL TA command sets a breakpoint at the displayed location.
See Section 16.10 or the VMS Delta/XDelta Utility Manual for a detailed
discussion of XDEL TA commands.

Examining the UCB, IRP, or PSL
In addition to using XDEL TA to debug drivers, you can also examine the
contents of the UCB and the associated IRP.

It is also useful to examine the contents of the PSL at the time of a system
failure. The PSL, for example, indicates the IPL at the time. When the system
fails it prints the PSL and other register contents on the console terminal.

While the system is running, the following command can be used to examine
the PSL in XDELTA:

RF+4/

The PSL location is stored in the longword following the PC.

16.10 XDELTA Commands

16-10

Table 16-4 summarizes XDELTA commands. The sections that follow this
table describe the commands.

Table 16-4 XDELTA Command Summary

Command Function

Set Display Mode

[B Set byte mode

[W Set word mode

[L Set longword mode

Debugging a Device Driver
16.10 XDELTA Commands

Table 16-4 (Cont.) XDELTA Command Summary

Command Function

Set Display Mode

[I
II

Set instruction mode

Set ASCII mode

Set and Proceed from Breakpoint

;P

;B
Proceed from breakpoint

Set/ clear/ display breakpoint

Open, Examine, and Close Location

I Open location (display contents in current mode)

Open location (display contents as instructions)

I RETI Close current location

[ill Close current location; open next

IT AB I Open location specified by current value

I ESC I Display previous location

Deposit in Location

'string' Deposit string at current location, autoincrementing the current
location symbol (.). Every carriage-return and line-feed character
typed will be stored. An apostrophe terminates the string.

Step, Set Location, and Execute Code

s
0

;G

;E

Execute one instruction, step into subroutine call

Execute one instruction, step over subroutine call (on CALLx, JSB,
or BSBx instruction)

Go to location and proceed

Execute command string at location

Special Symbols

Q

Xn

;X

Rn

Pn

Field separator

Last quantity displayed

Display value of expression; set 0

Base register n

Set base register

Register n

Processor register n

16-11

Debugging a Device Driver
16.10 XDELTA Commands

Table 16-4 {Cont.) XDEL TA Command Summary

Command Function

Special Symbols

G

H

Operators

+

space

@

%

Add AX80000000 to subsequent or preceding value

Add AX7FFEOOOO to subsequent or preceding value

Current location

Add

Subtract

Add

Multiply

Shift

Divide

Miscellaneous

;L List names and locations of loaded executive images

16.10.1 Values and Expressions

16-12

All numeric values are interpreted in hexadecimal radix. Expressions are
strings of alternating values and binary operators, where the first and last
items in the string are always values, as in the following example:

G4A32 + 24 - .

XDEL TA evaluates expressions from left to right with no precedence, and
ignores trailing operators. To display the value of an expression, use the
XDEL TA Show Value (=) command, as follows:

Syntax

expression=value-of-expression

Type an expression followed by an equal sign (=). The expression can be
composed of a series of values and operators from the set of operators listed
in the command summary. XDELTA shows the value of the expression
according to the current display data type. The last quantity (Q) is set to the
value of the computed expression.

16.10.2 Special Symbols

Debugging a Device Driver
16.10 XDELTA Commands

XDELTA defines the following special symbols:

Q

XO-XF

RO-RF

PO-Pnn

RF+4

G

H

Current location; set by slash (/), exclamation point (!) and TAB
operations.

Last quantity displayed; you can also change this value by using the
Show Value(=) command described in Section 16.10.1.

Base registers; used for remembering values. Set base registers
by means of the Set Base Register command (;X) described in
Sections 16.8 and 16.10.2.3. XDEL TA, by default, stores special
values in base registers X4 and X5 that help reference the process
control block of the current process (see Section 16. 10. 2. 1). Also,
XDEL TA initializes XE and XF with special commands that help
reference page-frame numbers, as described in Section 16. 10.2.2.

General register names.

Internal processor registers.

PSL.

AX80000000; prefix for system space addresses; for example, G2E
is equivalent to AX8000002E.

AX7FFEOOOO; prefix for control region prefix; for example, H2E is
equivalent to AX7FFE002E.

16.10.2.1 Stored Base Registers
XDELTA defines two base registers useful in system debugging: X4 and XS.
Base register X4 contains the address of the location that contains the address
of the PCB of the current process on the current processor. Base register XS
corresponds to the global symbol SCH$GL _PCBVEC, which contains the
starting address of the list of PCB slots.

16.10.2.2 Stored Command Strings
XDEL TA contains two predefined command strings whose addresses are
contained in base registers XE and XF. You can use these commands during
general system debugging as well as driver debugging; they perform the
following functions:

XE Use the value of base register XO as a page-frame number and display
the PFN database for that page

XF Set base register XO to the value (PFN) in RO and perform the same
function as XE

You must initialize the stored commands to set the relocation registers they
use (X6 through XD). Issue the following commands:

XE;E ~
XF;E ~

After executing these commands, you can use the commands stored in XE
and XF to obtain the following information about a page-frame number:

• Specified physical page number (PFN)

• PFN state

• PFN type

• PFN reference count

16-13

Debugging a Device Driver
16.10 XDEL TA Commands

• PFN backward link/working set list index

• PFN forward link/ share count

• Page-table entry (PTE) pointer to PFN

• PFN backing store address

• Virtual block number in process swap image

16.10.2.3 Setting Base Registers
Syntax

address-expression,n;X ~

Type an expression followed by a comma(,), a single digit between 0 and D
(hexadecimal), a semicolon (;), and the letter X. XDEL TA assigns the specified
expression to the base register selected by n. XDEL TA confirms that the base
register is set by displaying the value deposited in the base register.

Whenever XDEL TA displays an address located close to an address stored in
a base register, XDEL TA displays the base register identifier (Xn), followed by
an offset that gives the address's location in relation to the address stored in
the base register. For example, if base register 2 (X2) contains 800D046A and
the address XDELTA needs to display is 800D052E, XDELTA displays X2+C4.
XDEL TA computes relative addresses for opened or displayed locations and
addresses that are instruction operands.

XDEL TA displays an address in base register plus offset format to a distance
of 80016 from the base register. If the address falls outside this range,
XDEL TA displays it as a hexadecimal value.

16.10.3 Display Names and Locations of Loaded Executive Images
Syntax

16.10.4 Set Display Mode

16-14

;L

Use the ;L command to list the names and locations of the loaded modules
of the VMS executive. If you issue the ;L command before all the executive
images are loaded (for example, at an XDEL TA initial breakpoint), only those
images that have been loaded will be displayed.

Syntax

[B Byte width

[W Word width

[L Longword width

[I Instruction display (using longword width)

ASCII display (using current width)

Debugging a Device Driver
16.10 XDEL TA Commands

Type a left square bracket ([) followed by one of the letters B, W, or L to
change the current display width to byte, word, or longword respectively.
The default value is longword. The setting remains in effect until another
display mode control command is given. For example, the following
command displays the least significant byte contained at the specified address
and deposits the new value to that byte only.

address-expression [B/ old-value new-value

Type a left square bracket ([) followed by the letter I to change the current
display mode to instruction format. This command is equivalent to the
exclamation point (!) command and, similarly, is canceled by typing a slash
(/) or a quotation mark (/1

). Instruction mode sets display mode storage
units to longword values. For an example of an instruction display, see
Section 16.8.

You can display contents of memory locations in ASCII characters by typing
an address expression followed by a quotation mark (/1

).

address-expression" old-value-in-ASCII

Pressing LINE FEED displays the next location in ASCII.

The display mode remains set to ASCII until the next slash (/) or exclamation
point (!) command. At this point, the display mode reverts to hexadecimal.
The width remains unchanged.

16.10.5 Open, Examine, and Close Location

16.10.5.1

XDEL TA provides the commands described in the following sections to open,
examine, and close the specified memory locations.

Open and Display Value Command
Syntax

address-expression/old-value [new-value-expression]

Type an address expression followed by a slash (/) character. XDEL TA
displays the contents of the location (old-value above), followed by a space
character. You can change the value at the location by typing a new value
and then pressing RETURN. If you press RETURN without preceding it with
a value, the old contents remain unchanged.

The display and the value deposited default to longword hexadecimal values.
The length can be changed to byte or word with the set mode commands.

A slash preceded by a null address expression uses the displayed value (Q)
as the address value. This feature is convenient for following address linked
chains, as follows:

address-expression/old-value /old-value /old-value

16-15

Debugging a Device Driver
16.10 XDEL TA Commands

16-16

16.10.5.2 Display Instruction Command
Syntax

address-expression!decoded-instruction

Type an address expression followed by an exclamation point (!). XDEL TA
displays the contents of memory as a VAX MACRO instruction starting with
the address you specify.

XDEL TA does not make any distinction between reasonable and unreasonable
instructions or instruction streams; the decoding always begins at the specified
address. The display instruction command does not allow you to modify the
displayed location. The command sets a flag that causes subsequent close and
display next or indirect location commands to perform instruction decoding.
You can reset the flag with the open and display value command.

Whenever an address appears as an instruction operand, XDEL TA sets the
last quantity displayed (Q) to that address. XDEL TA changes Q only for
operands that use program counter or branch displacement addressing modes;
Q is not altered for literal and register addressing modes. This feature is
useful for following branches, as follows:

address-expression!BRW address-2 !instruction-at-address-2

16.10.5.3 Close and Display Next Location Command
Syntax

rm
address/old-value

Press LINE FEED. XDELTA closes the current open location, then opens and
displays the value in the next location, according to the current display mode.

If instruction display is the current mode, XDEL TA does not deposit a value in
the open location. The next location is the first location after the instruction
currently displayed. If value display is the current mode, you can deposit
a value into the open location. In this case, the next location is the current
location, incremented by the current data width (byte, word, or longword).

16.10.5.4 Display Range Command
Syntax

start-addr-expression,end-addr-expression/contents-of-start

or

start-addr~expression,end-addr-expression!contents-of-start

Type two address expressions separated by a comma and followed by a
slash (/) or exclamation point (!) character. XDEL TA displays the range
of addresses, using the specified display mode (value or instruction). If
you specify instruction display, XDEL TA decodes one or more instructions.
Otherwise, XDEL TA displays the contents of each location in the current data
type (byte, word, or longword).

Debugging a Device Driver
16.10 XDEL TA Commands

16.10.5.5 Indirect Command
Syntax

[ill]
address/old-value

Press TAB. XDEL TA uses the last quantity displayed (Q) as an address and
displays that address and its contents using the current display mode. This
command opens locations in the same way as the slash (/) and exclamation
point (!) commands, but prints the information on a new line and displays
the address value before showing the address's contents.

16.10.5.6 Display Previous Location Command
Syntax

16.10.6 Breakpoints

16.10.6.1

~
address/old-value

Press ESC. Unless the current display mode is instruction, XDELTA decreases
the location counter by the current data width, and displays the contents of
the resulting location using the current data width and type. This command
is ignored in instruction display mode.

XDEL TA uses the following commands to set and clear breakpoints, display
a list of set breakpoints, continue from a breakpoint, and set a complex
breakpoint.

Setting Breakpoints
Syntax

address-expression; B ~

Type an address followed by a semicolon (;) and the letter B, then press
RETURN. XDEL TA sets a breakpoint at the specified location and assigns it
the first available breakpoint number.

Alternate syntax:

address-expression, n; B ~

Type an address followed by a comma, a single digit between 2 and 8,
a semicolon(;), the letter B, and then press RETURN. XDELTA sets a
breakpoint at the specified location and assigns it the specified breakpoint
number. Breakpoint 1 is reserved for INI$BRK.

Before XDEL TA executes the instruction as a breakpoint, it suspends normal
instruction processing, sets a flag that causes subsequent close and display
next or indirect location commands to perform instruction decoding, and
displays the following message:

n BRK at address
address/decoded-instruction

You can now enter XDEL TA commands. You can reset the flag that controls
instruction display mode by issuing the open and display value command.

16-17

Debugging a Device Driver
1 6 .10 XDEL TA Commands

16.10.6.2 Clearing Breakpoints
Syntax

O,n;B [g"f]

Type zero (0) followed by a comma, a single digit between 2 and 8, a
semicolon (;), the letter B, and then press RETURN. XDELTA clears the
specified breakpoint. Never clear breakpoint 1.

16.10.6.3 Displaying Breakpoint List
Syntax

; B [g"f]

Type a semicolon (;) followed by the letter B. XDEL TA shows the current
settings of all breakpoints. For each breakpoint, XDELTA displays the
following information:

• Breakpoint number

• Address at which the breakpoint is set

• Display address (for complex breakpoints; see Section 16.10.6.5)

• Command string address (for complex breakpoints)

16.10.6.4 Proceeding from Breakpoints
Syntax

; p lliffi

Type a semicolon (;) followed by the letter P, and then press RETURN.
XDEL TA continues executing at the current PC.

16.10.6.5 Setting Complex Breakpoints
Syntax

address-expression,n,display-addr-expression,command-string-address;B [g"f]

Type an address expression followed by a comma, a single digit between
2 and 8, another address expression, and the address of a command string.
The first address is the breakpoint address; the digit equals the breakpoint
number. XDEL TA shows the contents of the display address in the current
display mode when the breakpoint is reached. The command string address
specified in the last command parameter executes after automatic display.

16.10. 7 Step, Set Location, and Execute Instruction Commands

16-18

The following XDEL TA commands enable you to step through and execute
driver code.

16.10. 7 .1 Loading PC and Continuing
Syntax

address-expression; G [g"f]

Type an address, a semicolon, and G, then press RETURN. XDEL TA loads
the address into PC and continues executing at the new PC.

Debugging a Device Driver
16.10 XDEL TA Commands

16.10. 7 .2 Execute Instruction and Step Command
Syntax

s

Type an S. XDELTA causes one instruction to be executed, then displays the
address of the next instruction and decodes that instruction.

This command also sets a flag that causes subsequent close and display next
or indirect location commands to perform instruction decoding. The open and
display value command resets the flag.

If the next instruction is BSBB, BSBW, JSB, CALLG, or CALLS, this command
steps into the subroutine and displays the first instruction within the routine.

16.10. 7 .3 Step Instruction Over Subroutine Command
Syntax

0

Type an 0. XDEL TA causes one instruction to be executed, then displays the
address of the next instruction and decodes that instruction.

This command also sets a flag that causes subsequent close and display next
or indirect location commands to perform instruction decoding. The open and
display value command resets the flag.

If the next instruction is BSBB, BSBW, JSB, CALLG or CALLS, XDELTA
executes the entire subroutine and displays the instruction that immediately
follows the subroutine call; this command steps over subroutines.

16.10.8 Execute String Command
Syntax

address-expression;E ~

Type an address expression followed by a semicolon, the letter E, then
press RETURN. This command executes the ASCII commands found at the
specified address expression. If you terminate the ASCII commands with
a semicolon followed by the letter P, XDEL TA will proceed with program
execution. If you terminate the string with null (1 byte of 0), XDELTA waits
for a new command.

To create command strings, open the address of the start of the string and
deposit ASCII text as follows:

address/old-contents 'XDELTA-command' ~

You can use any XDELTA command, including RETURN, LINE FEED, and
TAB.

To terminate the string with a null, follow the above command with

. /old-contents 0 ~

You can deposit command strings into nonpaged system patch space. To
determine the size of patch space and its starting address, locate the symbol
PAT$A_NONPGD in the system map file (SYS$SYSTEM:SYS.MAP). This

16-19

16.11

Debugging a Device Driver
16.10 XDEL TA Commands

symbol contains a descriptor of the address and size of patch space remaining
in the system, as follows:

PAT$A_NONPGD : :

.LONG size-in-bytes

.LONG patch-space-start-address

You can also preassemble command strings with your experimental driver.
Locate the addresses of these strings as you would any other address within
your driver.

Guidelines for Debugging Device Drivers
The following sections discuss errors commonly made during debugging
sessions and describe additional debugging techniques.

16.11.1 Opening Device Registers in XDEL TA
References to 16-bit device registers must be word instructions; references to
8-bit device registers must be byte instructions. These restrictions apply to
the XDEL TA EXAMINE command; therefore, be sure to set the correct mode
control before examining device registers. For example, if the address of the
device CSR is in R4, give the following command:

R4/csr_address [W/csr_contents

16.11.2 Adjusting the Device Timeout Value
When single-stepping through driver code using XDEL TA, it may be necessary
to adjust the device's timeout value (as specified in the WFIKPCH or
WFIRLCH macro) so that it is large enough to keep the device from timing
out. When the driver debugging is complete, this value should be reset to a
reasonable length of time.

16.11.3 XDEL TA and System Failures

16-20

Driver errors can cause the operating system to suspend activity in such a
way that you cannot invoke XDEL TA. In this case, the only recourse is to
induce a system failure. Follow the procedure described in the VMS System
Dump Analyzer Utility Manual; the system will signal a fatal bugcheck.

To gain control in XDELTA following a fatal bugcheck, stop in SYSBOOT
while initializing the system and clear the BUGREBOOT system parameter.
The system will stop in XDEL TA, thereby allowing you to examine the device
UCB and other driver data to determine the driver error.

Another, more thorough, way to determine the cause of a system failure is
to leave the BUGREBOOT system parameter set, allow the system to reboot,
and then invoke the System Dump Analyzer (SDA) Utility to examine the
condition of the IfO data structures at the time of the fatal bugcheck. The
VMS System Dump Analyzer Utility Manual provides detailed information on
fatal bugcheck stack format and how SDA can help debug a device driver.

Debugging a Device Driver
16.12 Common Driver Errors

16.12 Common Driver Errors
This section describes errors commonly made in drivers.

16.12.1 References to System Addresses
References by drivers to system addresses within the executive must use
general addressing (G") mode. For example, use

JSB G-INI$BRK

16.12.2 Incorrect References to Device Registers
A common driver error is to access a nonexistent device register or to
access the correct register with an instruction using incorrect length. On
VAX systems that use direct-vector interrupts, these references cause a fatal
machine check exception. On VAX systems using non-direct-vector interrupts,
these references cause a UNIBUS adapter error interrupt. The system logs the
adapter error and continues.

In many cases, the saved PC on the stack is the address of the instruction that
caused the error. In other cases (for example, when the offending instruction
is executed at IPL 31), the saved PC is not the address of this instruction
but an address some number of instructions later, when the system actually
services the interrupt.

16.12.3 Destroying Register Contents
Because the driver frequently calls VMS 1/0 routines, you must be careful
to anticipate the register usage of these routines. Most VMS common I/O
support routines use RO through R3 freely. A frequent driver bug is to load a
value into R3 and expect to find it intact after a call to allocate or load adapter
resources.

Other VMS I/O routines write into R4. In some cases, the use of R4 is
obvious; for example, IOC$REQSCHANL writes the device's CRB address
into R4. In other cases, you might not anticipate the use of R4.

For example, EXE$IOFORK saves the calling code's R4 in a fork block, and
then writes the device's IPL into R4. Because the normal flow of events is
that an interrupt service routine restores a driver with a JSB instruction and
the driver then calls EXE$IOFORK which returns to the interrupt service
routine, the instructions following the JSB in the interrupt service routine can
only assume RS is still untouched. The coding sequence is as follows:

MOVQ
JSB

UCB$L_FR3(R5),R3
©UCB$L_FPC(R5)

Restore R3-R4.
; Restore the driver process.

;Between these instructions, the interrupt service routine
;can make no assumptions about the contents of RO through R4.

POPR #-M<RO,R1,R2,R3,R4,R5> Restore interrupt registers.
REI Return from the interrupt.

16-21

Debugging a Device Driver
16.13 Pool Checking Mechanism

16.13 Pool Checking Mechanism
Certain system failures cannot easily be traced to a single instruction or to
a single piece of kernel-mode code. If a device driver, for example, accesses
memory that it has not properly allocated or continues to use memory
that it has deallocated, a system failure can occur long after the driver has
completed its activity. The system may crash when another operating system
thread executes and attempts to use the corrupted data.

Special pool checking code in the VMS memory allocation and deallocation
modules can help isolate problems of this sort reliably and quickly. In
a normal VMS system, this code is disabled. For a system experiencing
frequent and inexplicable failures, you can enable pool checking by setting
the POOLCHECK system parameter.

When enabled, pool checking routines execute whenever pool is deallocated
or allocated. 1

On any deallocation of pool, the routine fills the deallocated packet with
a "free" pattern specified in the POOLCHECK system parameter. The first
five longwords of the packet are not filled, but instead contain the following
information:

• Forward and backward links into the free list

• Size, type, and subtype fields

• Address of the code that deallocated the packet

• Checksum

On any allocation from pool, the routine verifies the checksum and ensures
that the packet still contains the "free" pattern. If the pattern is still intact,
the routine replaces the "free" pattern with an "allo" pattern, also specified
in the POOLCHECK system parameter. The two patterns allow allocated,
uninitialized pool to be distinguished from nonallocated pool. If the "free"
pattern is not intact, the pool checking routine induces a POOLCHECK
bugcheck, assuming that some code has modified the packet while it was on
the free list.

Figure 16-1 illustrates the format of the POOLCHECK system parameter.

Figure 16-1 Format of the POOLCHECK System Parameter

31 23 15 7

allo free 0 flags

0

ZK-6618-HC

1 The pool allocation routines (EXE$ALLOCBUF, EXE$ALLOCIRP, EXE$ALONONPAGED,
COM$DEANONPAGED, EXE$DEANONPAGED, and so on) are discussed in -1ppendix C. These routines are
the only means recommended by DIGITAL for allocating pool. ·

16-22

Debugging a Device Driver
16.13 Pool Checking Mechanism

The flags byte indicates the actions that the pool checking code should take
whenever pool is allocated or deallocated. It also indicates the type of pool to
be subject to checking. The following bit masks are defined:

Bit Mask (hex)

1

2

4

8

10

80

Action

At deallocation, fill variable pool packets with free pattern.

At allocation, check packets for free pattern and, if the
pattern is intact, fill with allo pattern. If not, induce
POOLCHECK bugcheck.

At deallocation, fill SRPs with free pattern.

At deallocation, fill IRPs with free pattern.

At deallocation, fill LRPs with free pattern.

At deallocation, fill P 1-space addresses with free pattern.

The free byte indicates the character to be inserted in a packet (except for its
header) when it is deallocated to free pool.

The allo byte indicates the character to be inserted in a packet (if bit 2 of the
flags byte is set) when it is allocated.

It is possible that, when first enabled on a system, the pool checking
mechanism will discover specific violations of pool allocation and deallocation
protocol. In investigating subsequent crashes using SDA, you should first
check the value of the global longword EXE$GL _POOLCHECK to determine
whether pool checking has been enabled and, if so, which packets it has been
enabled for and which patterns it is using.

One of the results of the pool checking mechanism is the occurrence of a fatal
system bugcheck such as INVEXCEPTN, SSRVEXCEPT, or FATALEXCPTN
whenever kernel-mode code attempts to use an address in free pool. When
these exceptions signal an access violation and the free pattern appears as the
violating address in the exception's signal array, the exception PC has been
caught in the process of using deallocated pool.

The POOLCHECK bugcheck is explicitly generated by the pool checking
mechanism whenever it determines that a pool packet has been corrupted
while on the free queue. When a POOLCHECK bugcheck occurs, you can
obtain information about the crash from the contents of general registers as
well as from the pool packet itself. At the time of the crash, the following
registers contain relevant information:

Register

RO

R1

R2

R3

R4

Contents

Allocation (allo) pattern

Deallocation (free) pattern

Address of packet being allocated

Number of longwords remaining in packet to be
checked

Address in packet where the pool checking code
discovered corrupted pattern

16-23

Debugging a Device Driver
1 6.13 Pool Checking Mechanism

Register

R5

Contents

Checksum, computed as the sum of the address of
the packet, the deallocation pattern, the third and
fourth longwords of the packet, and a longword
within the system boot time quadword (EXE$GQ_
BOO TIME)

Because the address of the packet is in R2, you can attempt to format R2 to
see what type of structure the pool is being allocated for. The following SDA
commands accomplish this:

SDA> READ SYS$SYSTEM:SYSDEF.STB
SDA> FORMAT ©R2

If this does not identify the structure, you may obtain some information from
the packet itself, as pictured in Figure 16-2.

Figure 1 6-2 Poisoned Pool Packet

--R2
forward link

backward link

subtype l type l size

address of deallocating routine

packet checksum

~

1
poison pattern (RO minus 20)

J
ZK-6619-HC

To determine what code may have corrupted the packet, it may be helpful to
examine the contents of R4 (the address at which the pool checking routine
found a corrupted pattern). If this address contains an address, it is a fair
assumption that code that uses that address placed it there.

In addition, the routine that deallocated the packet may be a likely suspect.
Frequently, pool is corrupted by a device driver that deallocates pool and later
attempts to use the pool that it has deallocated.

16.14 Detecting Driver Problems in a Multiprocessing System

16-24

When testing a new driver that has been designed to run in a VMS
multiprocessing environment, it is a good idea to ensure that the system in
which the driver is being tested is running the full-checking synchronization
image. You can cause the full-checking synchronization image to be loaded
at boot time on either a VAX uniprocessing system or multiprocessing system
by the appropriate setting of the MULTIPROCESSING system parameter, as
listed in Table 16-5.

Debugging a Device Driver
16.14 Detecting Driver Problems in a Multiprocessing System

Table 16-5 Settings of MULTIPROCESSING System Parameter

Value

0

2

3

Result

Loads uniprocessing synchronization image for any hardware
configuration.

Loads full-checking synchronization image and sets multiprocessing­
enabled bit (SMP$V_ENABLED in SMP$GL _FLAGS) if the
hardware configuration is capable of multiprocessing and two
or more processors are available; otherwise, loads uniprocessing
synchronization image. This is the default value.

Loads full-checking synchronization image and sets multiprocessing:­
enabled bit regardless of the hardware configuration.

Loads streamlined synchronization image and sets multiprocessing­
enabled bit if the hardware configuration is capable of multiprocessing
and two or more processors are available; otherwise, loads
uniprocessing synchronization image.

In a processing environment with the full-checking synchronization image
loaded, violation of spin lock synchronization by a device driver will produce
the bugchecks described in Table 16-6.

Table 16-6 Bugchecks Produced by Full-Checking Multiprocessing

SPLIPLHIGH

SPLIPLLOW

SPLACQERR

SPLRELERR

A processor has attempted to acquire a spin lock at an IPL
higher than the IPL associated with spin lock synchronization
(SPL$B_IPL). SMP$ACQUIRE (called by the LOCK and FORKLOCK
macros with condition=NOSETIPL not specified) signals this
bugcheck.

A processor has attempted to acquire a device lock-not
already owned by the acquiring processor-at an IPL higher than
the IPL associated with device lock synchronization (SPL$B_
IPL). SMP$ACQUIREL (called by the DEVICELOCK macro with
condition=NOSETI PL not set) signals this bugcheck.

A processor has attempted to conditionally or unconditionally
release a spin lock or device lock at an IPL lower than the
IPL at which it originally acquired it. SMP$RELEASE and
SMP$RESTORE (called by the UNLOCK and FORKUNLOCK
macros) and SMP$RELEASEL or SMP$RESTOREL (called by the
DEVICEUNLOCK macro) signal this bugcheck.

A processor has attempted to acquire a spin lock while holding
a higher ranked spin lock. SMP$ACQUIRE, SMP$ACQUIREL,
and SMP$ACQNOIPL (called by the LOCK, FORKLOCK, and
DEVICELOCK macros) signal this bugcheck.

An attempt has been made to completely release a spin lock
not owned by the releasing processor. SMP$RELEASE and
SMP$RELEASEL (called by the UNLOCK, FORKUNLOCK, and
DEVICEUNLOCK macros) signal this bugcheck.

16-25

Debugging a Device Driver
16.14 Detecting Driver Problems in a Multiprocessing System

16-26

Table 16-6 (Cont.) Bugchecks Produced by Full-Checking
Multiprocessing

SPLRSTERR An attempt has been made to conditionally release a spin lock
not owned by the releasing processor. SMP$RESTORE and
SMP$RESTOREL (called by the UNLOCK, FORKUNLOCK, and
DEVICEUNLOCK macros when condition=RESTORE is specified)
signal this bug check.

An examination of the crash dump resulting from any of these bugchecks can
help locate the cause of the crash. Enter the System Dump Analyzer (SDA)
and perform the following steps:

1 Issue the following command:

SDA> READ/EXECUTIVE SYS$LOADABLE_IMAGES

This command generates the symbols that correspond to locations in
the loadable images that are part of the VMS executive. These symbols
facilitate the interpretation of addresses that appear in the stacks and
other SDA displays.

2 Issue the following command:

SDA> SHOW STACK

Trace through the current stack to determine what activities on the
processor led to the acquisition or release of the spin lock. Start at high
stack addresses and work towards low addresses, identifying everything
on the stack, or as much of it as required to decipher what is going on.

3 Issue the following command:

SDA> SHOW SPINLOCK/FULL/ADDR=©RO

This command produces a display of information about the spin lock the
executing code was trying to acquire or release, a list of PCs indicating
the addresses of the latest eight acquirers or releasers of the lock, plus the
PC of the last unconditional release of a set of multiply nested spin lock
acquisitions. Note the acquisition IPL and the rank of the spin lock.

. 4 To decipher SPLIPLLO and SPLIPLHI bugchecks, compare the IPL at
which the system was running at the time of the crash to that shown
in the SHOW SPINLOCK display as required for acquisition of the spin
lock. ·

5 To decipher SPLACQERR, SPLRSTERR, and SPLRELERR bugchecks,
issue the following command:

SDA> SHOW SPINLOCK/OWNED

In the case of SPLACQERR bugchecks, compare the rank of the spin lock
being sought with that of the currently owned spin locks.

In the case of SPLRSTERR and SPLRELERR bugchecks, determine
whether the releasing processing in fact did not own the spin lock it is
attempting to release.

Standard drivers seldom release spin locks and fork locks. When they do,
they should be careful to use the condition=RESTORE argument to the
UNLOCK and FORKUNLOCK macros when it is likely that the driver code is
executing at the behest of other code interested in retaining the lock.

Debugging a Device Driver
16.14 Detecting Driver Problems in a Multiprocessing System

One error of which driver writers should be wary concerns the unconditional
release of a spin lock or fork lock for which there exist multiple, nested
acquisitions. When multiple acquisitions of a spin lock accumulate for
a processor, and one of the intermediate acquirers performs an explicit
release of that lock, all ownership of the lock by that processor is entirely
and immediately relinquished. If at least one of the original acquisition
threads still expects the lock to be held when that thread regains control,
system synchronization is broken. Moreover, when the original thread that
acquired the lock itself attempts to release the lock, the system crashes with
an SPLRELERR because the processor no longer owns the lock being released.

If few attempts have subsequently been made by the processor to obtain or
release spin locks, you should be able to find the PC of the code that last
unconditionally released the spin lock in question in SHOW SPINLOCKS
/FULL/ ADDRESS=@RO display. Issue the SDA command EXAMINE/INST
for each of the PCs in the display, from the top to the bottom, to determine
the recent history of the lock.

16-27

1 7 Terminal Class and Port Drivers

This chapter describes details of the implementation of the VMS terminal
driver. The VMS terminal driver consists of two pieces: the terminal port
driver and the terminal class driver. These two pieces of code, when bound
together within the unit control block (UCB), form a single device-dependent
driver that implements the VMS terminal services.

TTDRIVER.EXE, the VMS terminal class driver, handles the device­
independent functions and tasks. For example, it contains code that enables
command line editing on many different types of terminals. The port drivers
manage those functions and tasks that depend on the device's hardware
configuration. For example, the port driver for a particular type of terminal
controller performs the actual transmission and reception of characters to and
from that terminal controller. The port driver reserves all manipulation and
interpretation of those characters to the class driver. Because class driver code
supports the functions common to terminal devices, a terminal port driver can
contain only that code needed to control a specific interface.

There are several reasons why a new port driver may be required:

• To support a new terminal controller

• To implement a terminal server such as LATl 1

• To provide a pseudoterminal

Both class drivers and port drivers adhere to the same rules as other VMS
device drivers. They consist of the same routines and tables as standard
drivers, and reference the same data structures. However, because a class
driver and its port drivers must intercommunicate, they must employ a few
additional structures and routines not required for standard VMS device
drivers.

The structure of the VMS terminal driver illustrates one specific approach
to the class/port concept. The discussions that appear in this chapter relate
only to TTDRIVER.EXE and its ports. Note that there are no supported
methods for implementing the class/port design in a non-DIGITAL-supplied
device driver. Moreover, the System Generation Utility (SYSGEN) provides
no support for alternate class drivers and can only connect port drivers to
TTDRIVER.EXE.

The. remainder of this chapter describes how the VMS terminal class and
port drivers are structured and how they interact. A full description of the
functions of the VMS terminal driver appears in the VMS 1/0 User's Reference
Manual: Part I.

17-1

17.1

17.2

Terminal Class and Port Drivers
1 7 .1 Overview

Overview

Data Structures

The terminal class driver is the device-independent part of the VMS terminal
driver. It contains the driver's function decision table (FDT) routines, start
I/O routine, fork process routines, code that implements the features of the
VMS terminal services, and the class driver service routines.

The terminal port driver is the device-dependent piece of the VMS
terminal driver. It contains the driver prologue table (DPT); data structure
initialization; device, unit, and controller initialization routines; port service
routines; interrupt service routine; and any additional device-dependent code.
Among the port drivers included in VMS are DZDRIVER for the DZ-32 and
DZ-11, YCDRIVER for the DMF-32 and DMZ-32, and YFDRIVER for the
DHU-11 and DHV-11, YIDRIVER for the DMB32, and YEDRIVER for the
MicroVAX 2000. (See the VMS 1/0 User's Reference Manual: Part I for a
complete list of supported terminal controllers.)

There are three major data structures that define the communication between
the port and the class drivers. These data structures are the UCB, the port
driver vector table and the class driver vector table. To reference these
structures, a driver must include an invocation of the $TTYDEFS macro (from
SYS$LIBRARY:LIB.MLB). The $TTYDEFS macro defines symbolic offsets for
the following structures:

• Unit control block (UCB)

• Terminal UCB extension

• Channel request block (CRB)

• Interrupt dispatch block (IDB)

• Port and class driver vector tables

• Read buffer

• Input stack

• Item list descriptor

• Type-ahead buffer

17 .2.1 Terminal UCB

17-2

A terminal UCB, as depicted in Figure 17-1, contains four sections: the
system section (base UCB), the class driver required section, the port driver
required section, and the port extension region.

The system section of the terminal driver UCB contains the pieces of the UCB
that are present in all of the UCBs on the system.

The class driver required section of the UCB contains fields that are needed by
the class driver. These fields have names of the form UCB$x_TT_fieldname,
where x denotes the field size and fieldname is the name of the field.

Terminal Class and Port Drivers
17.2 Data Structures

Figure 17-1 UCB Structure for Terminal Class/Port Drivers

system
region

terminal class
driver required

region

terminal port
driver required

region

port driver
extension region

ZK-6540-HC

·The port driver required section of the UCB contains fields that both the class
and port driver must access. These fields have names of the form UCB$x_
TP_fieldname, where x denotes the field size and fieldname is the name of
the field. Although a port driver may not actually use all these fields, their
presence is required.

The terminal port extension region is defined by the terminal port driver.
It can be any length and contain any context that the port driver needs to
perform its duties.

Tables A-16 and A-20 describe the fields defined within a terminal UCB, and
Figures A-17 and A-21 illustrate their configuration.

17-3

Terminal Class and Port Drivers
17.2 Data Structures

17 .2.2 Port Driver Vector Table

17-4

The port driver vector table, as depicted in Figure 17-2, is the data structure
that allows the terminal class driver to find the port service routines. The
vector table contains the address, relative to the beginning of the port driver,
of each port service routine. The port driver's controller initialization routine
invokes the CLASS_CTRL_INIT macro, as described in Section 17.4.1.1, to
relocate this vector table.

The port driver vector table is contained within the port driver itself, usually
after the port driver's DPT. The port driver builds its vector table using the
$VECINI, $VEC, and $VECEND macros, as described in Section 17.2.4. A
field in the UCB, UCB$L_TT_PORT, contains the address of the port driver
vector table.

Port and class drivers refer to fields within the port driver vector table using
the symbolic offsets represented in Figure 17-2. To use these offsets, they
include an invocation of the macro $TTYDEFS (in SYS$LIBRARY:LIB.MLB).

Figure 17-2 Port Driver Vector Table

PORLST ARTIO 00

PORLDISCONNECT 04

PORLSELLINE 08

PORLDS_SET 12

PORLXON 16

PORLXOFF 20

PORLSTOP 24

PORLSTOP2 28

PORLABORT 32

PORLRESUME 36

PORLSELMODEM 40

PORLDMA 44

PORLMAINT 48

PORLFORKRET 52

PORLFDT 56

PORLCANCEL 72

ZK-6625-HC

Terminal Class and Port Drivers
1 7 .2 Data Structures

17 .2.3 Class Driver Vector Table
The class driver vector table, as depicted in Figure 17-3, contains the address,
relative to the beginning of the class driver, of each class service routine.
The list is terminated by a longword containing zeros that indicates to the
relocation routine where the list ends.

At driver load time, the relative offsets are relocated to actual virtual
addresses. The port driver's controller initialization routine invokes the
CLASS_CTRL_JNIT macro, as described in Section 17.4.1.1, to relocate this
vector table. The VMS terminal class driver is loaded by SYSINIT at boot
time to allow the console terminal port driver to run.

Figure 17-3 Class Driver Vector Table

CLASS_GETNXT 00

CLASS_PUTNXT 04

CLASS_SETUP _UCB 08

CLASS_os_ TRAN 12

CLASS_DDT 16

CLASS_READERROR 20

CLASS_DISCONNECT 24

CLASS_FORK 28

CLASS_POWERFAIL 32

CLASS_ TABLES 36

ZK-6624-HC

The class driver vector table is contained within the class driver itself, usually
after the class driver's DPT. The class driver builds its vector table using the
$VECINI, $VEC, and $VECEND macros, as described in Section 17.2.4. A
field in the UCB, UCB$L_TT_CLASS, contains the address of the class driver
vector table.

1 7 .2.4 Vector Table Generation Macros
Port drivers use three VMS-supplied macros to build the port driver
vector table: $VECINI, $VEC, and $VECEND. Class drivers build the
class driver vector table using the same macros. To obtain the definitions
for these macros, a driver must invoke the $TTYMACS macro (in
SYS$LIBRARY:LIB.MLB). This section briefly discusses the functions of
each of these macros. An example of their use appears in Figure 17-4 and a
full discussion of their syntax appears in Appendix B.

17-5

17.3

Terminal Class and Port Drivers
17.2 Data Structures

17.2.4.1

17.2.4.2

17.2.4.3

$VECINI Macro
The $VECINI macro creates a vector table and initializes each entry with the
address of the driver's null entry point. Subsequent calls to the $VEC macro
fill in selected table entries with the addresses of real entry points.

The driver must specify the drivername and null_routine arguments to
the $VECINI macro. The drivername argument generally contains a 2-letter
prefix to the driver name, such as DZ or YE. The null_routine argument
contains the address of a routine within the driver (for example DZ$NULL)
that contains an RSB. When the class driver attempts to call the port driver
at an entry point corresponding to an unsupported function, the port driver's
null routine simply returns control to the class driver. The class driver can
then proceed to service the error.

$VEC Macro
The $VEC macro validates and generates a vector table entry.

Each invocation of the $VEC macro specifies the entry argument and the
routine argument. However, a driver need not supply the address of a
routine for each entry in the table. The $VEC macro will construct a valid
table regardless of how many entries are supplied. The $VEC macro accepts
the entry names (minus the PORT_ or CLASS_ prefix) shown in Table 17-1,
for port drivers, and Table 17-2, for class drivers. Note that a driver accesses
the table using the symbolic offsets indicated in Figures 17-2 and 17-3. The
$VECINI macro defines the prefix applied to the entries, which is PORT_ for
the port vector table and CLASS_ for the class vector table.

$VECEND Macro
The $VECEND macro generates the longword of zeros that terminates the
vector table and positions the location counter at label drivername$VECEND.
It has no required arguments.

Structure of Port and Class Drivers

17-6

Class and port drivers share a similar organization, as can be seen in Figures
17-4 and 17-5.

The vector table of each follows the driver prologue table (DPT). The driver
specifies the address of the vector table in the vector argument to the DPTAB
macro, which places its relative address in DPT$W_ VECTOR.

Following the vector table, and linked to the vectors by invocations of the
$VEC macro, are a set of service routines. The balance of the driver includes
standard driver routines and tables and driver-specific routines.

Terminal Class and Port Drivers
17 .3 Structure of Port and Class Drivers

Figure 17-4 Port Driver Structure

DPT

Port Vector Table

$VECINI ZZ,ZZ$NUL
$VEC ST ARTIO,ZZ$ST ARTIO
$VEC RESUME,ZZ$RESUME
$VEC ABORT ,ZZ$ABORT 1---
$VECEND

Port Service Routines

ZZ$ABORT:
ZZ$RESUME: --~
ZZ$ST ARTIO: --

Port Specific Routines

ZK-6541-HC

Figure 17-5 Class Driver Structure

TTY$GL_DPT::

[DPT$W_VECTO:P_T---------.

DDT

CLASS VECTOR: _.-.,. _________ __,
-

Class Vector Table

.LONG TTY$GETNEXTCHAR-TT$DPT _, t---
1--.LONG TTY$PUTNEXTCHAR-TT$DPT ""'

.LONG 0

Class Service Routines

TTY$PUTNEXTCHAR: ---
TTY$GETNEXTCHAR: --

Class Specific Routines

ZK-6542-HC

17-7

Terminal Class and Port Drivers
17.3 Structure of Port and Class Drivers

17 .3.1 Binding Class and Port Drivers

17.4

The terminal class and port drivers are bound together to form a single,
complete driver in the manner represented in Figure 17-6.

The port driver's unit initialization routine performs the binding process by
calling the CLASS_UNIT_INIT macro. The CLASS_UNIT_INIT macro fills
in the following UCB fields as indicated:

Field

UCB$L_TT_CLASS

UCB$L_TT_PORT

UCB$L_ TT_GETNXT

UCB$L_TT_PUTNXT

UCB$L_DDT

Contents

Terminal class driver's vector table address

Terminal port driver vector table address

Address of the class driver's get-next-character
routine (CLASS_GETNXT)

Address of the class driver's put-next-character
routine (CLASS_PUTNXT)

Address of the terminal class driver's driver dispatch
table

Note that, because the get-next-character and put-next-character routines are
the most heavily used class driver routines, their addresses are stored in the
UCB. It is therefore possible for code to issue the instruction JSB @address(R5)
to call either routine (presuming that RS contains the address of the UCB).
To call other routines, the driver must first move the address of the vector
table to a general register and issue an instruction of the form JSB @offset(Rn).
Although a saving of one instruction does not seem significant, it can save
one instruction per character when a driver is receiving data.

When the port driver's unit initialization routine completes the binding, the
terminal class and port drivers have become one complete driver, and the
device units are ready for 1/0.

Port Driver Routines

17-8

When the terminal class driver has completed a segment of device­
independent processing of an 1/0 request, it calls a port routine to complete
the device-dependent processing. The port driver contains three types of
routines: port startup routines, port initiate routines, and port service routines.

Table 17-1 lists the port driver routines that are part of the class/port
interface. This section describes the functions and context of each listed
routine.

Terminal Class and Port Drivers
1 7 .4 Port Driver Routines

Figure 17-6 Terminal Class/Port Driver Binding

Port Driver

PORLVECTOR: -
Port Vector Table

$VECINI ZZ,ZZ$NUL
$VEC ST ARTIO,ZZ$ST ARTIO
$VEC RESUME,ZZ$RESUME
$VEC ABORT,ZZ$ABORT
$VECEND UCB

l l Port Service Routines

ZZ$ST ARTIO: -- system section ~

ZZ$RESUME: --~
ZZ$ABORT:

terminal class
driver required

Class Driver -- UCB$L_TLPORT
TTY$GL _DPT:: -

DPT

DPT$W _VECTOR:

terminal port

I I
driver required

DDT UCB$L_TLCLASS

*
UCB$L_TLPUTNXT
UCB$1_ TLGETNXT

CLASS_ VECTOR:

Class Vector Table

.LONG TTY$GETNEXTCHAR-TT$DPT port driver
~ ~ .LONG TTY$PUTNEXTCHAR-TT$DPT extension region

.LONG 0

Class Service Routines
w

TTY$PUTNEXTCHAR: -
TTY$GETNEXTCHAR: --

ZK-6543-HC

17-9

Terminal Class and Port Drivers
1 7 .4 Port Driver Routines

Table 17-1 Port Driver Routines

Routine Function

Port Startup Routines

Controller initialization
routine

Unit initialization routine

Port Initiate Routines

PORT_DISCONNECT

PORT_DS_SET

PORT_FDT

PORT_FORKRET

PORT_MAINT

PORT _SET _LINE

PORT _SET _MODEM

PORT _ST ARTIO

Port Service Routines

PORT_ABORT

PORT _CANCEL

PORT_DMA

PORT _RESUME

PORT_STOP

PORT_STOP2

PORT_XOFF

PORT_XON

Resets the controller and relocates the port and
class driver vector tables

Sets up each device unit controlled by the driver

Notifies the port driver of the last deassign for the
UCB

Outputs modem signals to a specified unit

Performs FDT processing for device-specific
function modifiers

Return address in the port driver to which CLASS_
FORK transfers control when servicing the port
driver's request for a fork process

Services $010 requests for 10$_SETMODE
function with the 10$M_MAINT modifier

Changes terminal line parameters

Informs the port that a line has been enabled for
modem signal input transitions

Starts output on an inactive line

Aborts any currently active output

Cancels internally queued operations in response
to a $CANCEL request

Not used; reserved to DIGIT AL

Resumes any previously stopped output

Halts the output data stream

Not used; reserved to DIGITAL

Takes steps to halt an input data stream that is
approaching its limit

Resumes the acceptance of input data

1 7 .4. 1 Port Startup Routines

17-10

Port startup routines include the port driver's controller and unit initialization
routines. Note that, although these routines are not included in the port
vector table, they must make calls to several class routines. They additionally
fill the role of the equivalent initialization routines in a standard device driver,
as discussed in Section 11.1.

17.4.1.1

17.4.1.2

Terminal Class and Port Drivers
17 .4 Port Driver Routines

Controller Initialization Routine
The controller initialization routine is responsible for resetting the controller
and relocating the port and class driver's vector tables. To perform the last­
mentioned task, the routine should invoke the CLASS_CTRL_INIT macro,
supplying the symbolic name of the driver prologue table (for instance,
DZ$DPT) in the dpt argument and the address of the port driver's vector
table in the vector argument. To use the CLASS_CTRL _INIT macro, the
driver must include an invocation of the $TTYMACS definition macro (from
SYS$ LIBRARY: LIB.MLB).

Unit Initialization Routine
The unit initialization routine is responsible for setting up each individual
device unit. The activities of a standard unit initialization routine include
loading certain locations in the UCB with controller-specific data, preparing
the hardware for input and output, and taking any action necessary to service
a power failure.

The unit initialization routine of a terminal port driver must additionally
perform the following tasks:

1 Invoke the CLASS_UNIT_INIT macro to generate the common code that
must be executed by all terminal port driver unit initialization routines.
This code includes the logic that binds the class and port drivers in the
manner discussed in Section 17.3.1. Before it invokes .the CLASS_UNIT_
INIT macro, the unit initialization routine must place the address of the
port driver vector table in RO.

To use the· CLASS_UNIT_INIT macro, the driver must include
an invocation of the $TTYMACS definition macro (from
SYS$ LIBRARY: LIB.MLB).

2 Call the class service routine, CLASS_SETUP_UCB, to allow the class
driver to reset fields in the UCB.

3 Call the class service routine, CLASS_SET_LINE, to allow the class driver
to reset the speed, parity, and the device-dependent bits, if necessary.

4 If the line can run modem protocol, call the class service routine, CLASS_
OS_ TRANS, with the transition type MODEM$C_INIT in Rl. Note that,
to use modem symbols, the port driver must invoke the $TTYMDMDEF
macro (from SYS$LIBRARY:LIB.MLB).

5 When a power failure occurs (UCB$V_PQWER set in UCB$W_STS), call
the class service routine, CLASS_PQWERFAIL.

6 Perform other hardware-specific functions.

17 .4.2 Port Initiate Routines
The terminal class driver calls port initiate routines when it must initiate
device activity and the port driver is not active. Port initiate routines can
issue callbacks to the class driver.

A call to a port initiate routine uses the following instruction format:

MOVL UCB$L_TT_PORT(R5),RO ;get pointer to port vector table
JSB ©PORT_DISCONNECT(RO) ;call port disconnect routine

Note that a port initiate routine must preserve the contents of all registers.

17-11

Terminal Class and Port Drivers
1 7 .4 Port Driver Routines

17-12

17.4.2.1 PORT_DISCONNECT
A call to the PORT-DISCONNECT routine indicates that there are no longer
channels associated with the device, thus notifying the port driver of the last
deassignment for the device's UCB. If the delete bit (UCB$V_DELMBX) is set
in UCB$W_DEVSTS, VMS will delete the UCB.

Note: As long as the device name is known to the system, broadcasts and assign
channel requests may occur on this device. (Broadcasts, however, will not
occur if the DEV$V_NET bit is set in UCB$L-DEVCHAR.)

17.4.2.2

17.4.2.3

Input to the PORT-DISCONNECT routine is as follows:

RO Flags. If bit 0 is set, the user requested that the UCB not be deleted
(NOHANGUP).

R5 Address of UCB.

PORT_os_SET
The PORT_DS_SET routine sends modem signals to the specified
unit. Masks representing modem signals are defined in $TTDEF (in
SYS$LIBRARY:STARLET.MLB). They include the following:

TT$M_DS_CARRIER Data channel received line signal detector

TT$M_DS_CTS Clear to send

TT$M_DS_DSR

TT$M_DS_DTR

TT$M_DS_RING

TT$M _DS_RTS

TT$M_DS_SECREC

TT$M _DS_SECTX

Data set ready

Data terminal ready

Calling indicator

Request to send

Secondary receive

Secondary transmit

See the VMS 1/0 User's Reference Manual: Part I for an explanation of modem
protocol.

Input to the PORT_DS_SET routine is as follows:

R2 Low byte indicates signals to be activated; high byte indicates signals to
be deactivated.

R5 Address of UCB.

PORT_FDT
The terminal class driver calls the PORT_FDT routine when servicing a $QIO
request for an 10$_TTY_PORT function. The PORT_FDT routine performs
whatever tasks the class driver's FDT routine would normally do to service
the request. These tasks include checking the function-dependent parameters
(pl through p6), verifying access to buffers, and terminating with a call to
EXE$QIORETURN, EXE$ABORTIO, or EXE$FINISHIO.

The PORT_FDT routine thus allows a port driver to implement support for
device-specific function modifiers without requiring an extension to the
class/port interface.

If there is no PORT_FDT routine, control will pass to the port driver's null
routine, which returns control to the class driver. The VMS terminal class
driver, TTDRIVER.EXE, thereupon issues an illegal IjO function error.

17.4.2.4

17.4.2.5

17.4.2.6

Terminal Class and Port Drivers
17 .4 Port Driver Routines

Input to the PORT_FDT routine is as follows:

R3

R4

R5

R6

R7

OO(AP)

Address of IRP

Address of current PCB

Address of UCB

Address of CCB

Bit number of the 1/0 function code

Address of the first function-dependent QIO
parameter (p1)

The routine destroys the contents of R2.

Note that a port driver must set TTY$V_PC_PORTFDT in UCB$W_TT_
PRTCTL if it contains a PORT_FDT routine.

PORT_FQRKRET
The terminal class driver's service routine, CLASS_FORK, returns control to
the port driver's PORT_FORKRET entry point after servicing the port driver's
request to create a fork process. (See the description of CLASS_FORK in
Section 17.5.4.) The only context returned from the servicing of the fork
request is the address of the UCB in RS.

The terminal class driver issues a a JMP instruction (rather than a JSB
instruction) to the PORT_FORKRET routine.

PORT_MAINT
The class driver calls the PORT_MAINT routine whenever a $QIO request
is issued for an 10$_SETMODE function with the 10$M_MAINT modifier.
The VMS I/O User's Reference Manual: Part I lists all possible maintenance
functions; each port driver must decide which of these functions it must
support.

Input to the PORT_MAINT routine is as follows:

R5 Address of UCB

UCB$8_ TT _MAINT Parameters to the 10$M_MAINT function

PORT_SET_LINE
The PORT_SET_LINE routine changes terminal line parameters. The
terminal class driver calls the PORT_SET_LINE routine whenever any
terminal characteristic in UCB$L _DEVDEPEND or UCB$L _DEVDEPND2
is changed. It also calls this routine when speed, parity, and the enabling or
disabling of DMA and automatic flow control are affected.

The PORT_SET_LINE routine is the only port routine that is allowed to write
the fields UCB$L_DEVDEPEND and UCB$L_DEVDEPND2.

17-13

Terminal Class and ·Port Drivers
.1 7 .4 Port Driver Routines

17.4.2.7

17.4.2.8

17-.14

Input to the PORT_SET_LINE routine is as follows:

R5

UCB$B_ TT_MAINT

UCB$B_ TT_PARITY

UCB$W_ TT_SPEED

UCB$W_TT_PRTCTL

UCB$L _DEVDEPEND

UCB$L _DEVDEPND2

Address of UCB.

Parameters to the 10$M_MAINT function.

Parity, stop bits, and frame size.

Low byte indicates transmit speed; high byte
indicates receive speed or is zero.

DMA enable flag (TTY$V_PC_DMAENA) and auto
XOFF enable flag (TTY$V_PC_XOFENA)

First longword for device-dependent status.

Second longword for device-dependent status.

The PORT_SET_LINE routine destroys the contents of R4.

PORT_SET_MQDEM
A call to the PORT_SET_MODEM routine informs the port that the line
has been enabled for modem signal input transitions. A port implementing
modem functions must ensure that the hardware is ready to detect changes in
input modem signals. When hardware does not provide this capability (as, for
instance, the DZl 1 terminal controller does not), the VMS terminal class/port
interface implements the equivalent capability by using timer-based polling.

At the time of the call, RS contains the address of the UCB.

PORT_STARTIO
The terminal class driver calls the PORT_STARTIO routine to start output on
a line that is currently inactive. The PORT_STARTIO routine is always called
with either a character or a burst of data and it is never called unless the line
is idle (UCB$V_INT is clear in UCB$W_STS).

The UCB$V_INT bit functions as an interlock, signifying that the port output
logic is busy. The class driver always sets UCB$V_INT when it calls PORT_
STARTIO. If the port requests that timers be set up (TTY$V_PC_NOTIME
clear in UCB$W_TT_PRTCTL), then the class driver calculates and creates an
output timer for the burst or character and sets UCB$V_TIM in UCB$L_STS.

Input to the PORT_STARTIO routine is as follows:

RO First 1/0 status longword (IRP$L_IOST 1)

R3

R5

UCB$B_ TT_OUTYPE

UCB$L_ TT_OUT ADR

UCB$W_ TT_OUTLEN

Character to be output (if UCB$B_ TT_OUTYPE is 1)

Address of UCB

Zero if there is no character to be output; 1 if there
is one character to be output; and a negative value if
there is a burst to be output

Address of burst to output (if UCB$B_ TT _OUTYPE is
negative)

Length of burst (if UCB$B_ TT _OUTYPE is negative)

Terminal Class and Port Drivers
17 .4 Port Driver Routines

17 .4.3 Port Service Routines
The terminal class driver can call port service routines at any time.

Note: Because they must consist of reentrant code, port service routines cannot
issue callbacks to the class driver.

17.4.3.1

17.4.3.2

17.4.3.3

17.4.3.4

A call to a port service routine uses the following instruction format:

MOVL UCB$L_TT_PORT(R5),RO ;get pointer to port vector table
JSB ©PORT_ABORT(RO) ;call port abort routine

Note that a port service routine must preserve the contents of all registers.

PORT-ABORT
The terminal class driver calls the PORT_ABORT routine to abort any
currently active output activity: for instance, the last burst of output sent
to the port. The PORT_ABORT routine invalidates the contents of the
address stored in UCB$L _ TT_OUTADR.

At the time of the call, RS contains the address of the UCB.

PORT_CANCEL
The terminal class driver calls the PORT_CANCEL routine in servicing a
$CANCEL, $DASSGN, or $DALLOC request. The PORT_CANCEL routine
cancels any internally queued operations for the port. Most commonly, a call
is issued to this routine when a request to establish an outgoing connection
has been stalled because the port is busy.

Input to the PORT_CANCEL routine is as follows:

R2 Channel index number

R4 Address of current PCB

R5 Address of UCB

RS Reason for cancellation, one of the following:
CAN$C_CANCEL Called by $CANCEL system service

CAN$C_DASSGN Called by $DASSGN or $DALLOC system service

PORT_RESUME
The terminal class driver calls the PORT_RESUME routine to resume any
previously stopped output. The port must be prepared for this routine to be
called at any time (whether output is currently active or has previously been
stopped). The PORT_RESUME routine should always ensure that the port
hardware is enabled for output.

At the time of the call, RS contains the address of the UCB.

PORT_STOP
The PORT_STOP routine halts the output data stream. The terminal class
driver normally calls this routine in response to input flow control. When
called, the PORT_STOP routine should stop the data stream as soon as
possible.

At the time of the call, RS contains the address of the UCB.

17-15

Terminal Class and Port Drivers
1 7 .4 Port Driver Routines

17.4.3.5

17.4.3.6

17.4.3.7

17-16

PORT->COFF
The terminal class driver calls the PORT_)(QFF routine when it is
approaching or has reached its input limit. The PORT_)(QFF routine takes
steps to stop the input data stream. For character-oriented controllers, it
commands the port to insert the flow control character in the output data
stream as soon as possible.

Input to the PORT_)(QFF routine is as follows:

R3

R5

UCB$L_STS

Flow control character to be inserted in the input data
stream

Address of UCB

UCB$V_INT may or may not be set

The PORT_)(QFF routine must set UCB$V_INT in UCB$L_STS.

PORT->CON
The terminal class driver calls the PORT_)(QN routine when it has cleared its
input path and is ready to accept data. For character-oriented controllers, the
PORT_)(QN routine commands the port to insert the flow control character in
the input data stream.

Input to the PORT_)(QN routine is as follows:

R3

R5

UCB$L_STS

Flow control character to be inserted in the input data
stream

Address of UCB

UCB$V_INT may or may not be set

The PORT_)(QN routine must set UCB$V_INT in UCB$L_STS.

Port Interrupt Service Routines
A terminal port driver must contain code to service receiver interrupts and
transmitter interrupts. The exact form of a device interrupt associated with
the port driver is device dependent. For multiple-line interfaces, the port
driver must also determine which line is requesting the interrupt and move its
UCB address into RS.

To service receiver interrupts, the port driver obtains a character from the port,
together with hardware error flags that signal a parity, overrun, or frame error
in the transaction. It proceeds as follows:

• If an error has been detected, the port driver passes the character and
error flags to the CLASS_READERROR service routine for processing (for
instance, autobaud detection).

• If no error has been detected, the port driver passes the character to the
CLASS_PUTNXT service routine.

If either of these service routines returns characters that must be echoed
and the line is currently inactive, the port driver must start output. Before
dismissing the interrupt, the port driver for a controller with multiple lines
should check all lines for pending transactions and empty the silo.

17.5

Terminal Class and Port Drivers
17.4 Port Driver Routines

To service transmitter interrupts, the port driver first records any reported
errors. It then proceeds as follows:

• If TTY$V_TP_ABORT is set in UCB$B_TP_STAT, the port driver calls the
PORT_ABORT service routine to terminate the transaction.

• If TTY$V_ TP_ABORT is not set, the port driver sets up the next output
sequence according to the following priority:

Transaction

Preempt

Hold

Burst

Use

Normally used to send an XON or XOFF character

Normally used for single-character output

Used for multiple-character (OMA) output

Note that this action can result in an XON or XOFF character appearing
in the middle of an escape sequence.

Class Driver Routines
Table 17-2 lists the class driver routines that are part of the class/port
interface. This section describes the functions and context of each listed
routine.

A call to a class service routine uses the following instruction format:

MOVL UCB$L_TT_CLASS(R5),RO ;get pointer to class vector table
JSB ©CLASS_DISCONNECT(RO) ;call class disconnect routine

Table 17-2 Class Driver Routines

Routine

CLASS_DDT

CLASS_DISCONNECT

CLASS_DS_TRANS

CLASS_FORK

CLASS_GETNXT

CLASS_PUTNXT

CLASS_SETUP _UCB

CLASS_POWERFAIL

CLASS_READERROR

Function

Pointer to the driver dispatch table

Disconnects a process from a terminal on a
nonmodem line

Manages data set transitions

Services a port driver's request to create a fork
process

Delivers to the port driver the next character or
burst to be output

Obtains input characters from the port driver

Initializes the UCB

Services a power failure

Services a parity, data overrun, or framing error on
a terminal line

17-17

Terminal Class and Port Drivers
17. 5 Class Driver Routines

17.5.1 CLASS_DDT
This entry in the class driver vector table points to the driver dispatch table
(DDT). The CLASS-UNIT_INIT macro uses the CLASS_DDT entry point
when moving the address of the DDT into the UCB.

17 .5.2 CLASS_DISCONNECT
A port driver calls the CLASS_DISCONNECT routine to indicate to the
terminal class driver that the terminal is no longer connected to the system.
This is the preferred way of disconnecting a process from a terminal on a
nonmodem line.

At the time of the call, RS must contain the address of the UCB. The CLASS_
DISCONNECT routine destroys the contents of R4.

17 .5.3 CLASS_DS_ TRANS

17.5.4 CLASS_FORK

17-18

This CLASS_DS_ TRANS routine manages data set state transitions. The
port driver's unit initialization routine must call this routine with the
transition type MODEM$C_INIT in Rl if the unit is capable of having
data set transitions. (Note that, to use modem symbols, the port driver
must invoke the $TTYMDMDEF data structure definition macro (from
SYS$ LIBRARY: LIB.MLB).

Input to the CLASS_DS_TRANS routine is as follows:

R1 Transition type, one of the following:
MODEM$C_INIT

MODEM$C_INIT _NORESET

MODEM$C_SHUTDWN

MODEM$C_SHUTDWN_NOHANGUP

Initialize modem control

Start modem protocol, but do
not initialize signals

Shut down the line and
disconnect the process

Stop modem protocol but do
not stop the signals

MODEM$C_DA T ASET Data set signal changes

R2 New receive modem mask (if MODEM$C_DA T ASET is specified in R 1)

R5 Address of UCB

The CLASS_DS_TRANS routine destroys the contents of RO through R4.

A port driver calls the CLASS_FQRK routine to create a driver fork process
that uses the UCB fork block. The port driver must never initiate a fork
directly-it must always call this routine.

The CLASS_FQRK routine sets up the fork block in the UCB and performs
the other tasks necessary to store context in the fork block, insert it in a
processor-specific fork queue, and suspend driver processing. When the fork
has taken place, the class driver calls the port driver at its PORT_FQRKRET
entry point.

17 .5.5 CLASS_GETNXT

17 .5.6 CLASS_PUTNXT

Terminal Class and Port Drivers
1 7. 5 Class Driver Routines

At the time of the call, RS must contain the address of the UCB. The CLASS_
FORK routine destroys the contents of R4.

The port driver calls the CLASS_GETNXT routine whenever it has completed
the current character or burst to obtain the next characters to be output on
the unit. If CLASS_GETNXT returns data to the port driver, a timer is set up
(unless explicitly disabled) and the interrupt expected bit is set.

At the time of the call, RS must contain the address of the UCB. Output from
the CLASS_GETNXT routine includes the following:

R 1 Destroyed

R2

R3

R4

R5

R6 through R 11

UCB$B_ TT _QUTYPE

UCB$L _TT _OUT ADR

UCB$VV_TT_OUTLEN

Number of characters (if R3 contains an address)

Character to be output (if UCB$B_ TT_OUTYPE is
positive); address of characters to be output (if
UCB$B_ TT_OUTYPE is negative); or no character (if
UCB$B_ TT_OUTYPE is zero)

Destroyed

Address of UCB

Destroyed

Zero if there is no character to be output; 1 if there
is one character to be output; and a negative value if
there is a burst to be output

Address of burst to output (if UCB$B_ TT_OUTYPE is
negative)

Length of burst (if UCB$B_ TT_OUTYPE is negative)

The port driver calls the CLASS_PUTNXT routine to pass input characters
to the terminal class driver. The CLASS_PUTNXT routine filters characters
received from nonpassall units for immediate control sequences. If a slave
mode unit (that is, generating no unsolicited input) does not have a read
outstanding, the CLASS_PUTNXT routine ignores the input characters, after
performing the control-character filtering.

If the input characters are to be echoed to the terminal, CLASS_PUTNXT
calls CLASS_GETNXT to notify the port driver.

The CLASS_PUTNXT routine may or may not return output data to the port
driver, depending upon the setting of the interrupt-expected bit (UCB$V_INT)
in UCB$L_STS. If this bit is set, CLASS_PUTNXT does not return data. If it
does return data, the terminal port driver should assume that more data may
follow, and call CLASS_GETNXT after outputting the returned data.

Input to the CLASS_PUTNXT routine is as follows:

R3 Input character

R5 Address of UCB

17-19

Terminal Class and Port Drivers
1 7. 5 Class Driver Routines

Output from the CLASS_PUTNXT routine is as follows:

R1

R2

R3

R4

R5

R6 through R 11

UCB$B_ TT _OUTYPE

UCB$L_ TT_OUT ADA

UCB$W _TT _OUTLEN

Destroyed

Number of characters (if R3 contains an address)

Character to be output (if UCB$B_ TT_OUTYPE is
positive); address of characters to be output (if
UCB$B_ TT_OUTYPE is negative); or no character (if
UCB$B_ TT _OUTYPE is zero)

Destroyed

Address of UCB

Destroyed

Zero if there is no character to be output; one if there
is one character to be output; and a negative value if
there is a burst to be output

Address of burst to output (if UCB$B_ TT_OUTYPE is
negative)

Length of burst (if UCB$B_ TT_OUTYPE is negative)

17.5.7 CLASS_SETUP_UCB
A port driver's unit initialization routine calls CLASS_SETUP_UCB when it
is invoked at system startup and power failure.

The CLASS_SETUP_UCB routine initializes the unit's fork block; write queue
(UCB$L_TT_WFLINK); break, passall, and DMA device characteristics; and
read timed out dispatch field (UCB$L _TT--RTIMOU).

In addition, it initializes several UCB fields as follows:

UCB$L_ TT_LOGUCB Address of UCB

UCB$L_DEVCHAR DEV$V_A VL set

UCB$L_DEVCHAR2 DEV$V_RED cleared

UCB$W_TT_CURSOR 1

UCB$W_ TT_HOLD Cleared

UCB$W_ TT_SPEED UCB$W_TT_DESPEE

UCB$B_ TT _PARITY UCB$B_ TT_DEPARI

UCB$B_DEVTYPE UCB$B_TT_DETYPE

At the time of the call, RS must contain the address of the UCB.

17 .5.8 CLASS_PQWERFAIL

17-20

A port driver's unit initialization routine calls the CLASS_POWERFAIL
routine when it detects a power failure.

At the time of the call, RS must contain the address of the UCB.

Terminal Class and Port Drivers
17. 5 Class Driver Routines

Output from the CLASS_POWERFAIL routine includes the following:

UCB$W_STS UCB$V_INT cleared; UCB$V_ TIM set

UCB$L_OUETIM Cleared

17 .5.9 CLASS_READERROR
A port driver calls CLASS_READERROR when it detects a parity, data
overrun, or framing error on the terminal line. CLASS_READERROR
completes the read operation with error status if a read is active, or simply
returns if no read is active.

Input to the CLASS_READERROR routine is as follows:

R3 Character and flags. The following flags are defined:
Bit 12 Parity error on the given character

Bit 13 Framing error on the given character

Bit 14 Data overrun

R5 Address of UCB.

Output from the CLASS_READERROR routine is as follows:

Destroyed RO through R3

UCB$B_ TT _OUTYPE Zero if there is no character to be output; 1 if there
is one character to be output; and a negative value if
there is a burst to be output

17-21

18 Mapping to 1/0 Space and the Connect-to-Interrupt
Facility

18.1

Programs written in VAX MACRO can interface with the I/O subsystem by
using VMS RMS, by using the Queue I/O Request ($QIO) system service,
or by mapping to I/O address space and connecting to a device interrupt:
vector. Programs written in a high-level language can interface with the I/O
subsystem using the same methods as a VAX MACRO program, or they can
issue the I/O statements specific to that language. In the latter case, the
program interfaces with the I/O subsystem by means of the VAX Common
Run-Time Procedure Library.

A user program can interface with the I/O subsystem at one of several levels,
depending on its requirements. At each level, the user program makes trade­
offs between ease of use and execution speed. As a general rule, the closer
to the VMS executive that a user program interfaces, the less overhead is
involved in the 1/0 operation. The connect-to-interrupt capability offers the
least overhead.

A process with suitable privileges can connect to a device interrupt vector
or map the system's I/O address space into process virtual address space or
both. Connecting to a device interrupt vector allows your process to respond
to interrupts from the device with minimal overhead. Mapping system I/O
address space allows your process to access device registers from the main
program or from an AST procedure,___

A process normally uses these features for devices that do not have VMS
drivers. These devices must not be direct memory access (DMA) devices, and
they must be attached to the UNIBUS or Q22 bus. Examples of such devices
are the AXVll-C and the KWll-P.

1/0 Address Space
In a VAX system, I/O address space is assigned physical address locations of
2000000016 and higher (F2000016 and higher for VAX-11 /730 and
VAX-11/780 systems). I/O address space contains device registers that a
driver or user process can read and write to control a device. Each device
controller has an associated control and status register (CSR) in I/O address
space. Device registers for each device are located at an offset from the
device's CSR.

Macros of the format $IOxxxDEF (where xxx represents a specific VAX
system), 'contained in SYS$LIBRARY:LIB.MLB, define symbols describing
the layout of I/O address space. Table 18-1 describes these macros and the
symbols they define for each VAX system.

18-1

Mapping to 1/0 Space and the Connect-to-Interrupt Facility
18.1 1/0 Address Space

Table 18-1 Symbols Defined by the $10xxxDEF Macros

Macro Symbol(s)

VAX 6200 Series

$109CCDEF 109CC$AL _IOBASE
109CC$C_BIWINDOW
109CC$C_BIWSIZ
109CC$C_PERXBI

VAX 8530/8550/8700/8800/8830/8840

$108NNDEF 108NN$AL _NBIB_O
108NN$AL_NBIB_ 1
108NN$AL _NBIB_2
108NN$AL_NBIB_3
108NN$AL _NBIB_4
108NN$AL_NBIB_5
108NN$AL _NODESP
108NN$AL_NDSPER

VAX 8200/8250/8300/8350

$108SSDEF 108SS$AL _NODESP
108SS$AL _NDSPER

VAX 8600/8650/8670

$10790DEF 10790$AL_IOAO
10790$AL_IOA 1
10790$AL_UBOSP

VAX-11 /780 and VAX-11 /785

$10780DEF

VAX-11/750

$10750DEF 1

10780$AL_IOBASE
10780$AL _UBOSP

10750$AL_IOBASE
10750$AL_UBBASE
10750$AL_MBBASE
10750$AL_UBOSP

VAX-11/730 and VAX-11/725

$10730DEF 10730$AL_IOBASE
10730$AL_UBOSP

Meaning

Start of 1/0 address space
Offset to node 0 window space
Size of window space
Size of adapter address space

Start of 1/0 address space for VAXBI 0
Start of 1/0 address space for VAXBI 1
Start of 1/0 address space for VAXBI 2
Start of 1/0 address space for VAXBI 3
Start of 1/0 address space for VAXBI 4
Start of 1/0 address space for VAXBI 5
Offset to node 0 window space
Size of window space

Address of node 0 window space
Size of window space

Start of 1/0 address space for SBIO
Start of 1/0 address space for SBI 1
Offset to start of adapter address space
for first UNIBUS

Value. (Hex)

20000000
400000
40000
2000000

20000000
22000000
24000000
26000000
28000000
2AOOOOOO
400000
40000

20400000
40000

20000000
22000000
24000000

Start of 1/0 address space 20000000
Start of adapter address space for first UNIBUS 20100000

Start of 1/0 address space
Start of UBAO adapter register space
Start of MBAO adapter register space
Start of adapter address space for first UNIBUS

Start of 1/0 address space
Start of adapter address space for UNIBUS

F20000
F30000
F28000
FCOOOO

F20000
FCOOOO

1 The VAX-11 /750 system has fixed MASSBUS adapters (UBBASE, MBBASE) in contrast to the VAX-11 /780 system,
which has floating MASSBUS adapters, and the VAX-11 /730, which does not have MASSBUS adapters.

18-2

Mapping to 1/0 Space and the Connect-to-Interrupt Facility
18.1 1/0 Address Space

Table 18-1 (Cont.) Symbols Defined by the $10xxxDEF Macros

Macro Symbol(s} Meaning Value (Hex}

MicroVAX 3600 Series

$10650DEF 10650$AL_QBOSP Start of adapter address space for 022 bus 20000000

MicroVAX II

$10UV2DEF

MicroVAX I

$10UV1DEF

IOUV2$AL _QBOSP Start of adapter address space for 022 bus 20000000

IOUV 1 $AL_QBOSP Start of adapter address space for 022 bus 20000000

The number of registers and their locations varies from device to device.
The PDP-11 Peripherals Handbook provides the necessary information
for DIGITAL-supplied devices. The VAX Hardware Handbook contains
information about the layout of 1/0 address space.

From the symbols defined by the macros described in Table 18-1, you can
derive the starting physical addresses of UNIBUS or Q22 bus adapter address
space for the various VAX systems. Table 18-2 lists the starting physical
addresses for UNIBUS adapters on the VAX 8600/8650/8670, VAX-11/780,
VAX-11/785, VAX-11/750, VAX-11/730, and VAX-11/725 systems, as
well as the starting physical addresses for Micro VAX I, Micro VAX II, and
MicroVAX 3600-series Q22 bus interface address space.

Note: To access UNIBUS device CSRs you must add 3E00016 to the addresses
listed in Table 18-2. This operation is not necessary when you use the
values supplied for MicroVAX/Q22 bus systems.

For VAX 8530/8550/8700/8800 and VAX 8200/8250/8300/8350 systems,
Example 18-1 illustrates the calculations that are necessary to determine the
location of the adapter address space for a given DWBUA adapter on a VAXBI
bus. For additional information on the layout of VAXBI 1/0 address space,
see the discussion and illustrations in Section 14.2.

Table 18-2 UNIBUS and Q22 Bus Adapter Address Space

UNIBUS
Adapter VAX-11/725
Number VAX-11/730 VAX-11/750

0 OOFCOOOO OOFCOOOO

1 OOF80000

2

3

VAX-11
/780
VAX-11
/785

20100000

20140000

20180000

201COOOO

MicroVAX
3600 Series
MicroVAX II
MicroVAX I

20000000

VAX 8600 SBIO/SBI 1
VAX 8650 SBIO/SBI 1
VAX 8670 SBIO/SBI 1

20100000/22100000

20140000/22140000

20180000/22180000

201C0000/221COOOO

18-3

Mapping to 1/0 Space and the Connect-to-Interrupt Facility
18.1 1/0 Address Space

Example 18-1 Locating the Adapter Address Space of a DWBUA Adapter on a VAXBI Bus

For VAX 8530/8550/8700/8800:

I08NN$AL_NBIB_n ;Start of I/0 address space for given VAXBI bus
+ I08NN$AL_NODESP ;Offset to window space
+ I08NN$AL_NDSPER * VAXBI-node-ID-of-DWBUA ;Offset to given VAXBI node window space
+ UNIBUS-address-of-device-CSR ;Offset to device CSR

For VAX 8200/8250/8300/8350:

I08SS$AL_NODESP ;Start of window space
+ I08SS$AL_NDSPER * VAXBI-node-ID-of-DWBUA ;Offset to given VAXBI node window space
+ UNIBUS-address-of-device-CSR ;Offset to device CSR

For most VAX processors, the page frame number (PFN) of a physical page
in memory is contained in bits 9 through 29 of its physical address (see
Figure 18-1). Bit 29 of the address is clear to indicate a physical memory
address and set to indicate an address in 1/0 address space. Bits 0 through 8
specify the byte address within the page.

Figure 18-1 Format of a Physical Address

31 30 29 98 0

I I I page frame number byte

ZK-4845-85

18-4

18.2

Mapping to 1/0 Space and the Connect-to-Interrupt Facility
18.2 PFN Mapping

PFN Mapping
For a process to gain access from an outer access mode to 1/0 address space
or to any page of physical memory, it must map that page into its virtual
address space. When a VMS process maps a page by specifying its page
frame number, it completely bypasses VMS memory management and creates
its own window to the page. As a result, the protection functions that VMS
normally performs are not performed for PFN mapping:

• No checks are performed to ensure that no other VMS processes are
mapped to the page and modifying it.

• No reference count is maintained. A process can delete a global section
mapped by page frame numbers when other processes are still using it;
this is not the case for other types of global sections.

Modifying pages mapped by page frame numbers can have unpredictable
results and can adversely affect system operation, especially if the operating
system is also using these pages or accessing devices whose registers are in
the same pages. Because PFN-mapped pages are not inherently protected
from such modification, a process must have the PFNMAP privilege to use
this capability.

When used for PFN mapping, the Create and Map Section ($CRMPSC)
system service designates the specified page(s) as a global or private section
and maps the section into the requesting process's virtual address space. The
pages can be located anywhere in the VAX system's local memory, in MA780
memory (if a multiport memory unit is connected to the system), or in 1/0
address space.

The format and conventions for PFN mapping (that is, mapping a physical
page frame section) are similar to those for mapping a disk file section. The
$CRMPSC system service has the following general formats:

VAX MACRO Format

$CRMPSC [inadr] [,retadr] [,acmode] [,flags] [,gsdnam] [,ident] -
[,relpag] [,chan] [,pagcnt] [,vbn] [,prot] [,pfc]

High-Level Language Format

SYS$CRMPSC ([inadr] [,retadr] [,acmode] [,flags] [,gsdnam] [,ident]
[,relpag] [,chan] [,pagcnt] [,vbn] [,prot] [,pfc])

The relpag, chan, and pfc arguments are not applicable to mapping by
page frame number. The inadr, retadr, acmode, gsdnam, ident, and prot
arguments have the same functions regardless of whether you specify page
frame number mapping. The VMS System Services Reference Manual further
describes these arguments.

The following arguments can have values specific to PFN mapping:

Arguments

[flags]
Mask defining the section type and characteristics. This mask is the logical
OR of the flag bits you want to set. The $SECDEF macro defines symbolic
names for the flag bits in the mask. The SEC$M_PFNMAP flag bit must be
set to indicate mapping by page frame number. The SEC$M_PFNMAP flag
setting identifies the memory for the section as starting at the page frame

18-5

Mapping to 1/0 Space and the Connect-to-Interrupt Facility
18.2 PFN Mapping

number specified in the vbn argument and extending for the number of pages
specified in the pagcnt argument.

If appropriate, the following flags can also be set:

Flag

SEC$M_GBL

SEC$M_EXPREG

SEC$M_WRT

SEC$M_PERM

SEC$M_SYSGBL

Description

Pages form a global section. The default is private section.

Pages are mapped into the first available space. By default,
pages are mapped into the range specified by the inadr
argument.

Pages form a read/write section. By default, pages form a
read-only section.

Pages are permanent. By default, pages are temporary.

Pages form a system global section. By default, pages
form a group global section.

You must not set either the SEC$M_CRF (copy-on-reference) or the SEC$M_
DZRO (demand-zero) bit when mapping by page frame number.

[pagcnt]
Number of pages in the section; the value of this argument must not be zero.

[vbn]
Page frame number of the first page to be mapped (as opposed to this
argument's normal usage identifying the starting virtual block number (vbn)
within a disk file). When you are mapping more than one page with a single
$CRMPSC system service request, the pages are physically contiguous starting
with the specified page.

18.2.1 Notes on PFN Mapping

18-6

The following considerations apply to PFN mapping.

1 An error in mapping UNIBUS or Q22 bus adapter address space or a
reference to a nonexistent bus address causes a UNIBUS adapter error.
However, this error does not cause a system failure (except on a VAX
8530/8550/8700/8800/8830/8840, VAX-11/750, or VAX-11/730
system, where a machine check will occur). Rather, an entry is made
in the system error log file and the user program continues executing
(probably with erroneous results). The process is not notified of the
UNIBUS adapter error.

2 On systems where a UNIBUS power failure can occur without causing a
system failure, a user process receives a machine check exception, if it is
using perprocess space mapping when accessing UNIBUS or Q22 bus IjO
address space during the failure. To survive this exception, the process
must have a condition handler to deal with machine check exceptions.
The VMS System Services Ref ere nee Manual discusses condition handlers in
detail.

3 During recovery from a power failure, the processor spends a considerable
amount of time (perhaps 10 to 60 milliseconds) at IPL 31. This action
blocks user processes from executing during the recovery.

18.3

Mapping to 1/0 Space and the Connect-to-Interrupt Facility
18.2 PFN Mapping

4 When a process requests deletion of a PFN-mapped page, VMS will wait
until there is no direct I/O outstanding for the process before deleting the
page. This is because no reference count is maintained for PFN-mapped
pages. (For example, VMS cannot determine whether outstanding direct
I/O is for the PFN-mapped page or not.) Applications using devices that
have direct I/O perpetually outstanding, such as the DR32, must not
delete PFN-mapped pages because this will cause the process to hang in
the MWAIT state.

Once you have mapped to I/O address space, you can read data from a
device data buffer register, because the device registers are now addressable
as part of your process's virtual memory. The UNIBUS adapter performs the
actual mapping of VAX virtual addresses to the 18-bit UNIBUS addresses
that correspond to device registers. Likewise, the MicroVAX 3600-series,
Micro VAX II, or MicroVAX I system performs the mapping of virtual
addresses to 22-bit Q22 bus addresses that correspond to device registers.

See Section 5.2 for a list of restrictions that apply to instruction references to
device register address space.

Connecting to an Interrupt Vector
You can use the $QIO system service with an appropriate function code to
connect to a device interrupt vector and to specify_ a user-supplied interrupt
service routine that VMS executes when the designated device interrupts.
Connecting to a device interrupt vector allows you to do the following:

• Respond to an interrupt within a short time

• Preempt other system processing to handle a real-time event, for example,
a clock interrupt

• Buffer data from a device in real time and return the data to the process
at a later time

• Set an event flag or queue an AST to your process after receiving the
interrupt

An interrupt service rqutine specified in your process allows it to perform
some of the functions normally performed by a device driver. The connect­
to-interrupt facility, with its VMS-supplied driver (CONINTERR), thus allows
you to avoid writing a full device driver and loading it into the operating
system.

If you must access device registers from user mode (that is, from the main
program or a user-mode AST procedure), you must use the Create and Map
Section ($CRMPSC) system service to map I/O address space, specifying page
frame number (PFN) mapping. The service creates a global or private section
that maps the specified I/O pages into your process's virtual address space
with suitable protection. The process can then gain access to I/O address
space using perprocess virtual addresses (see Section 18.1 for additional
discussion).

You do not need to map I/O address space to access device registers from
any of the following routines specified in the $QIO call connecting to an
interrupt vector:

• Unit initialization routine

18-7

Mapping to 1/0 Space and the Connect-to-Interrupt Facility
18.3 Connecting to an Interrupt Vector

• Start-IjO routine

• Interrupt service routine

• Cancel-I/O routine

These routines execute in system context and thus can access UNIBUS or Q22
bus I/O address space, which is mapped as part of system address space.

18.3.1 Performing the Connect-to-Interrupt

18-8

Connecting to a device interrupt vector allows your program to receive
notification of an interrupt from a designated device by any combination of
the following means:

• By execution of a user-supplied interrupt service routine

• By the setting of an event flag

• By execution of an AST procedure that gains control in process context

In addition, you can specify a cancel-I/O routine that is executed when the
process disconnects from the interrupt vector or is deleted.

Before your program can run, the system manager must have performed the
following actions at system generation time:

• Specify the REALTIME_SPTS system parameter, reserving system page
table entries for use by real-time processes. These system page-table
entries are used to map process-specified buffers in system address space
(see the pl argument description in Section 18.3.2). The REALTIME_SPTS
parameter value must be greater than or equal to the number of pages in
buffers specified by processes connected to interrupt vectors.

• Configure the real-time device by issuing a CONNECT command to the
System Generation Utility. This command names the device; its vector,
register, and adapter addresses; and a skeletal driver (CONINTERR)
for the device. (See the description of the CONNECT command in
Section 15.2.2 and in the VMS System Generation Utility Manual.)

At run time the process calls the $ASSIGN system service to associate a
channel with the device. To connect to the device interrupt vector, the
process issues a $QIO call specifying the IO$_CONINTREAD or IO$_
CONINTWRITE function code and as many of the following items as are
appropriate:

• An interrupt service routine to be executed when the device generates an
interrupt.

• A unit initialization routine.

• A start-I/O routine.

• A cancel-I/O routine.

• A buffer containing the code to be executed in system context, data (that
is, the previously-listed routines), or both.

Mapping to 1/0 Space and the Connect-to-Interrupt Facility
18.3 Connecting to an Interrupt Vector

• An AST procedure to execute, an event flag to be set after the interrupt
service routine (if any) completes, or both. (If an AST procedure is
specified, an AST parameter may also be specified.)

A nonprivileged process (that is, lacking the CMKRNL privilege) can also
connect to an interrupt vector, but it can only specify an AST procedure to be
executed or an event flag to be set (or both) when an interrupt is generated.
The process can also map the page in UNIBUS or Q22 bus 1/0 address space
containing the device registers (see Section 18.2).

18.3.2 $QIO Connect-to-Interrupt Request to Driver
The format of the $QIO system service to connect to an interrupt vector
follows. This explanation is limited to connecting to an interrupt vector. For
a detailed description of the $QIO system service, see the VMS System Services
Reference Manual.

VAX MACRO Format

$010 [efn] ,[chan] ,func [,iosb] [,astadr] [,astprm] -
[,p 1] [,p2] [,p3] [,p4] [,p5] [,p6]

High-Level Language Format

SYS$010 ([efn] ,[chan] ,func [,iosb] [,astadr] [,astprm]
[,p 1] [,p2] [,p3] [,p4] [,p5] [,p6])

Arguments

[efn]
[chan]
[iosb]
[astadr]
[astprm]

These arguments apply to the $QIO system service completion, not to device
interrupt actions. For an explanation of these arguments, see the description
of the $QIO system service in the VMS System Services Reference Manual.

func
Function code of 10$_CONINTREAD or 10$_CONINTWRITE. The 10$_
CONINTWRITE function code allows locations in the buffer pointed to by the
pl argument to be modified; the 10$_CONINTREAD function code makes
the buffer contents read-only.

[p1]
Address of a descriptor for the buffer containing code and/ or data. The first
longword records the number of bytes in the buffer; the second longword
records the address of the buffer. The buffer size must not exceed 65 ,535
bytes.

[p2]
Address of an entry point list. The list consists of four longwords that contain
offsets into the buffer (specified in the pl argument) of the entry points

18-9

Mapping to 1/0 Space and the Connect-to-Interrupt Facility
18.3 Connecting to an Interrupt Vector

of process-specified routines. These longwords and their contents1 are as
follows:

Symbol

CIN$L_INIDEV

CIN$L_START

CIN$L_ISR

CIN$L_CANCEL

[p3]

Meaning

Offset to unit initialization routine

Offset to start-1/0 routine

Offset to interrupt service routine

Offset to cancel-1/0 routine

Longword containing flags and an optional event flag number specification.

The low-order word contains the inclusive-OR of flags describing options to
the connect-to-interrupt facility. The flags and their meanings are as follows:

Flag

CIN$M_EFN

CIN$M_USECAL

CIN$M_REPEAT

CIN$M_INIDEV

CIN$M_ST ART

CIN$M_ISR

CIN$M_CANCEL

Meaning

Set event flag on interrupt.

Use CALL interface to process-specified routines (default is
JSB interface).

Leave process connected to the interrupt vector until the
connection is canceled.

Process-specified unit initialization routine is in the buffer
specified in the p1 argument.

Process-specified start-1/0 routine is in buffer.

Process-specified interrupt service routine is in buffer.

Process-specified cancel-1/0 routine is in buffer.

The high-order word specifies the number of the event flag to·be set when an
interrupt occurs. This number is expressed as an offset to CIN$V_EFNUM.

For example, to specify that your interrupt service routine is in the buffer and
to set event flag 4, code p3 as follows:

P3 = <CIN$M_ISR!CIN$M_EFN!4©CIN$V_EFNUM>

See note 3 in the following description for additional information on these
flags.

[p4]
Address of the entry mask of an AST procedure to be called as the result of
an interrupt (see Section 18.3.5).

[p5]
AST parameter to be passed to the AST procedure (used as the AST
parameter only if the process-supplied interrupt service routine does not
overwrite the value).

1 The listed symbols are defined by the $CINDEF macro located in the library SYS$LIBRARY:LIB.MLB.

18-10

Mapping to 1/0 Space and the Connect-to-Interrupt Facility
18.3 Connecting to an Interrupt Vector

[p6]
Number of AST control blocks to preallocate in anticipation of fast, recurrent
interrupts from the device.

Condition Values Returned

SS$_NORMAL

SS$_ACCVIO

SS$_BADPARAM

SS$_DISCONNECT

SS$_EXOUOT A

SS$_1LLEFC

SS$_1NSFMEM

SS$_1NSFSPTS

SS$_NOPRIV

SS$_UNASEFC

System service successfully completed.

The caller does not have the appropriate access to the
buffer specified in the p1 argument or to the entry point
list specified in the p2 argument.

The size of the buffer specified in the p1 argument
exceeds 65,535 bytes, or the number of preallocated
AST control blocks specified in the P6 argument exceeds
65,535.

A connection is already outstanding for the device, or a
condition described as follows in note 2b has occurred.

The process has exceeded its direct 1/0 limit quota or its
AST limit quota.

An illegal event flag number was specified.

Insufficient system dynamic memory is available to
complete the system service.

Insufficient system page-table entries are available
to double map the process buffer. (The value of the
REAL TIME_SPTS SYSGEN parameter must be increased.)

The process does not have the CMKRNL privilege. This
privilege is only required if the user specifies a buffer ·
to be used by the process and the process-specified
kernel-mode routines.

The process is not associated with the cluster containing
the specified event flag.

Privilege Restrictions

The connect-to-interrupt $QIO call does not require privileges if no shared
buffer is specified. If the request specifies a buffer descriptor argument (that
is, pl), the process must have the CMKRNL privilege.

Resources Required/Returned

A connect-to-interrupt request updates the process quota values as follows:

• Subtracts the number of preallocated AST control blocks in the p6
argument from the number of outstanding ASTs remaining for the
process (ASTCNT)

• Subtracts 1 (for the $QIO) from the direct I/O count (DIOCNT)

18-11

Mapping to 1/0 Space and the Connect-to-Interrupt Facility
18.3 Connecting to an Interrupt Vector

Notes

1 After the $QIO call is issued, the operation is not completed until the
process or the connect-to-interrupt driver cancels I/O on the channel.

2 The connect-to-interrupt driver can cancel I/O on the channel for a
number of reasons, including the following:

a. The driver cannot set the specified event flag, perhaps because
the process disassociated from the common event flag cluster after
requesting that a flag in that cluster be set.

b. The driver cannot reallocate AST control blocks quickly enough.
This condition can occur because not enough AST control blocks
(p6 argument) were specified, not enough pool space is available for
the requested AST control blocks, or the process ASTCNT quota is
exhausted.

c. The driver cannot queue the AST to the process.

3 If no event flag setting was requested in the p3 argument and if no
AST procedure was specified in the p4 argument, p6 is ignored and no
AST control blocks are preallocated. If you requested that an event flag
be set or specified an AST procedure, but did not preallocate any AST
control blocks (that is, p6 is zero), one AST control block is preallocated
automatically, because the system needs one control block to set any
event flag or to deliver any ASTs.

If you request an event flag and/ or an AST procedure and if you
preallocate any AST control blocks, the CIN$M_REPEAT bit is set
automatically in the longword specified in the p3 argument. Thus,
as long as you preallocate any AST control blocks, your process will
automatically remain connected to the interrupt vector to receive repeated
interrupts until the process is disconnected from the interrupt vector.

If the CIN$M_REPEAT flag is not set, the process is disconnected from
the interrupt vector after the first successful interrupt, and a status code of
SS$_NQRMAL is returned.

18.3.3 The Connect-to-Interrupt Driver (CONINTERR.EXE)

18-12

The VMS connect-to-interrupt driver (CONINTERR) provides a driver
interface to the system on behalf of the process. CONINTERR connects
the process to the device by executing the following steps:

1 Validates the arguments to the $QIO system service call, such as the
accessibility of the buffer specified in argument pl to the process, and the
number of the event flag optionally specified in the efn argument.

2 Locks the physical pages of the buffer into physical memory, and maps
the pages using system page-table entries allocated by the REALTIME_
SPTS SYSGEN parameter.

3 Constructs argument lists and calling interfaces to the process-specified
routines by storing values in the device's unit control block (UCB).

4 Allocates the specified number of AST control blocks to the process, and
inserts each block in a queue in the device's UCB.

Mapping to 1/0 Space and the Connect-to-Interrupt Facility
18.3 Connecting to an Interrupt Vector

5 Transfers control to VMS to queue the connect-to-interrupt 1/0 packet to
the CONINTERR start-1/0 routine.

When the CONINTERR start-1/0 routine gains control, it passes control, by
means of a user-specified JSB or CALLS instruction interface, to the process­
specified start-1/0 routine. This routine usually initializes the device and may
also start device activity.

When the device generates an interrupt, the CONINTERR interrupt service
routine gains control. This routine transfers control to the process-supplied
interrupt service routine.

18.3.4 Process-Specified Routines
Any routines that the process specifies in the connect-to-interrupt call, with
the exception of the AST procedure, are double-mapped, once in process
address space and once in system address space. EacJ:i. routine executes in
kernel mode at an appropriate IPL:

Routine

Unit initialization routine (after power
recovery)

Start-1/0 routine

Interrupt service routine

Cancel-1/0 routine

IPL

IPL$_POWER (IPL 31)

IPL$_QUEUEAST (IPL 6)

Device IPL

IPL$_QUEUEAST (IPL 6)

The process must have CMKRNL privilege. Each routine must

• Be position independent

• Follow the rules for accessing 1/0 address space as described in
Section 5.2

• Access only data within the buffer or nonpageable locations in system
address space

• Perform any necessary synchronization of access to data in the shared
buffer

• Save any registers it uses (unless otherwise noted in the remaining
sections of this chapter)

• Exit properly

• Not incur exceptions

• Not perform lengthy processing

• Not dispatch to code outside the buffer specified in the pl argument to
the $QIO system service call

Only VAX MACRO or VAX BLISS-32 should be used to code process­
specified routines in system address space or any references to 1/0 address
space. There is no assurance that the code generated by compilers for other
languages will satisfy all the constraints described in this section.

18-13

Mapping to 1/0 Space and the Connect-to-Interrupt Facility
18.3 Connecting to an Interrupt Vector

18.3.4.1

18-14

The following constraints apply to process-specified routines in system
address space (that is, in the buffer specified in the pl argument to the $QIO
call that establishes the connection to the interrupt vector):

• The compiler must generate position-independent code for the routines.

• The generated code and data must be contiguous in virtual address space.

• No calls can be made to any procedure outside the buffer. (This
restriction includes calls to routines in the VAX Run-Time Library.)

• For any references to I/O address space, the generated code must follow
the rules for accessing I/O address space discussed in Section 5.2.

You can find additional help for writing a start-I/O routine, interrupt service
routine, unit initialization routine, or cancel-I/O routine in Sections 8, 9,
11.1, and 11.2, respectively. Additionally, you may find useful the several
program examples of connecting to an interrupt vector with which this
chapter concludes.

Unit Initialization Routine
During recovery from a power failure, VMS calls the CONINTERR unit
initialization routine. This routine marks the device as on line in the UCB$L_
STS field, stores the UCB address in the IDB$L_OWNER field, and then
transfers control to the process-specified unit initialization routine. The
process-specified routine executes in system context at IPL$_POWER
(IPL 31).

If the process specified a JSB interface, the process unit initialization routine
gains control with the following register settings:

RO Address of UCB

R4 Address of CSR

R5 Address of IDB

R6 Address of DDB

RS Address of CRB

If the process specified a CALL interface, the process unit initialization routine
gains control with an argument list pointed to by AP:

OO(AP) Argument count of 5

04(AP) Address of CSR

08(AP) Address of IDB

12(AP) Address of DDB

16(AP) Address of CRB

20(AP) Address of UCB

The process-specified unit initialization routine may initialize device registers.
It must follow these conventions:

• Not lower IPL nor obtain any spin locks

• Save and restore all registers it uses, other than RO through R3

• Restore the stack to its original state before exiting

Mapping to 1/0 Space and the Connect-to-Interrupt Facility
18.3 Connecting to an Interrupt Vector

18.3.4.2

• Exit with an RSB instruction (for a JSB interface) or a RET instruction (for
a CALL interface)

For additional information on writing a unit initialization routine, see
Section 11.1.

Start-1/0 Routine
The process-specified start-1/0 routine executes in process context in system
space at IPL$_QUEUEAST (IPL 6), holding the QUEUEAST fork lock in
a VMS multiprocessing environment. It is entered from the CONINTERR
start-1/0 routine.

If the process specified a JSB interface, the process start-1/0 routine gains
control with the following register settings:

R2 Address of counted argument list

R3 Address of IRP

R5 Address of UCB

If the process specified a CALL interface, the process start-1/0 routine gains
control with an argument list pointed to by AP:

OO(AP)

04(AP)

08(AP)

12(AP)

16(AP)

Argument count of 4

System-mapped address of process buffer

Address of IRP

System-mapped address of the device's CSR

Address of UCB

The process-specified start-1/0 routine may set up device registers. It must
follow these conventions:

• Maintain an IPL equal to or higher than IPL$_QUEUEAST (IPL 6), and
exit at IPL 6. (If it raises IPL, the routine should first save the current
IPL on the stack for later use in restoring IPL.) In a VMS multiprocessing
system, the process-specified start-1/0 routine must suitably synchronize
any access of device registers with the process-specified interrupt service
routine. To do so, each routine must obtain the appropriate device
lock, using the VMS-supplied macro DEVICELOCK. Before exiting, each
routine releases ownership of the device lock using the DEVICEUNLOCK
macro. (See the discussion of these macros in Appendix B.)

• Save and restore all registers it uses, other than RO through R4.

• Restore the stack to its original state before exiting.

• Exit with an RSB instruction (for a JSB interface) or a RET instruction (for
a CALL interface).

For additional information on writing a start-1/0 routine, see Chapter 8.

18-15

Mapping to 1/0 Space and the Connect-to-Interrupt Facility
18.3 Connecting to an Interrupt Vector

18.3.4.3

18-16

Interrupt Service Routine
A process-specified interrupt service routine is entered when an interrupt
from the device occurs. This routine executes in system context at device IPL.

If the process specified a JSB interface, the process interrupt service routine
gains control with the following register settings:

R2 Address of counted argument list

R4 Address of IDB

R5 Address of UCB

If the process specified a CALL interface, the process interrupt service routine
gains control with an argument list pointed to by AP:

OO(AP)

04(AP)

08(AP)

12(AP)

16(AP)

20(AP)

Argument count of 5

System-mapped address of process buffer

Address of AST parameter

System-mapped address of the device's CSR

Address of IDB

Address of UCB

The process-specified interrupt service routine usually performs one or more
of the following steps:

1 Copies the contents of device registers into the shared buffer or the AST
parameter

2 Writes to a device register to clear the interrupt condition, if such an
operation is required for the device

3 Restarts the device, or returns an offset, a byte count, or actual data as an
AST parameter

4 Returns an interrupt status to the VMS connect-to-interrupt driver
(CONINTERR)

The process-specified interrupt service routine, like those supplied by VMS,
has the following characteristics:

• It is mapped in system address space.

• It executes on the interrupt stack.

• It executes at the IPL of the device that requested the interrupt.

The routine must follow these conventions:

• Maintain an IPL equal to or higher than device IPL. (If it raises IPL,
the routine should first save the current IPL on the stack for later use
in restoring IPL.) In a VMS multiprocessing system, if the process­
specified start-1/0 routine or cancel-1/0 routine accesses device registers
or UCB fields also accessed by the process-specified interrupt service
routine, the routines must suitably synchronize. To do so, each routine
must obtain the appropriate device lock, using the VMS-supplied macro
DEVICELOCK. Before exiting, each routine releases ownership of the
device lock using the DEVICEUNLOCK macro. (See the discussion of
these macros in Appendix B.)

• Save and restore all registers it uses, other than RO through R4.

Mapping to 1/0 Space and the Connect-to-Interrupt Facility
18.3 Connecting to an Interrupt Vector

18.3.4.4

• Restore the stack to its original state before exiting.

• Set or clear the low bit of RO, as a status value, before exiting. The status
values are as follows:

Bit 0 of RO Meaning

Clear Dismiss the interrupt. The process is not notified of the
interrupt.

Set Set the event flag if CIN$M_EFN bit is set in the p3
argument to the $OIO system service call, and queue the
AST if p4 specifies an AST procedure.

• Return to the CONINTERR interrupt service routine with a REI
instruction (for a CALL interface) or RSB instruction (for a JSB interface).

Depending on the interrupt status returned in RO, the CONINTERR
interrupt service routine queues a fork process to run at a lower IPL (IPL$_
QUEUEAST). Then the interrupt service routine exits from the interrupt with
an REI instruction. When the CONINTERR fork process gains control, it
queues an AST or posts an event flag to the process (or both).

For additional information on writing an interrupt service routine, see
Chapter 9.

Cancel-1/0 Routine
When the user process issues a cancel-1/0 request for a device connected to
the process, the CONINTERR cancel-1/0 routine first checks to determine
whether the process can indeed cancel 1/0 for this device. If it can, the
CONINTERR cancel-1/0 routine transfers control to the process-specified
cancel-1/0 routine. This routine executes in system context at IPL 8 (fork
IPL).

If the process specified a JSB interface, the process cancel-1/0 routine gains
control with the following register settings:

R2 Negated value of channel index number

R3 Address of current IRP

R4 Address of PCB for process canceling the 1/0

R5 Address of UCB

If the process specified a CALL interface, the process cancel-1/0 routine gains
control with an argument list pointed to by AP:

OO(AP)

04(AP)

08(AP)

12(AP)

16(AP)

Argument list count of 4

Negated value of channel index number

Address of current IRP

Address of PCB for process canceling the 1/0

Address of UCB

The process-specified cancel-1/0 routine may clear device registers and set
the UCB$V_CANCEL bit in UCB$L _STS. It must follow these conventions:

• Maintain an IPL equal to 01 higher than IPL$_QUEUEAST (IPL 6), and
exit at IPL 6. (If it raises IPL, the routine should first save the current IPL
on the stack for later use in restoring IPL.) In a VMS multiprocessing

18-17

Mapping to 1/0 Space and the Connect-to-Interrupt Facility
18.3 Connecting to an Interrupt Vector

system, if the process-specified cancel-I/O routine accesses device
registers or UCB fields also accessed by the process-specified interrupt
service routine, the routines must suitably synchronize. To do so, each
routine must obtain the appropriate device lock, using the VMS-supplied
macro DEVICELOCK. Before exiting, each routine releases ownership of
the device lock using the DEVICEUNLOCK macro. (See· the discussion of
these macros in Appendix B.)

• Save and restore all registers it uses, other than RO through R3.

• Place a completion status in RO and Rl. VMS places the values in these
registers in the I/O status block associated with the connect-to-interrupt
$QIO call.

• Restore the stack to its original state before exiting.

• Exit with an RSB instruction (for a JSB interface) or a REI instruction (for
a CALL interface).

For additional information on writing a cancel-I/O routine, see Section 11.2.

18.3.5 AST Procedure

1-8.4

The AST procedure that you specify in the call to the $QIO system service
for the connect-to-interrupt operation gains control in process context. This
routine usually performs one or more of the following steps:

1 Reads or writes device registers if the process mapped I/O address space.

2 Interprets data. Use caution, however, because any processing done by
the AST procedure can be interrupted by a device interrupt, which might
store more data or modify the buffer's contents.

3 Calls the Cancel I/O on Channel ($CANCEL) system service to
disconnect the process from the interrupt. Once the process is completely
disconnected, the CONINTERR driver clears all interrupts for the driver.

Real-Time Applications Examples

18-18

To understand how the connect-to-interrupt facility is useful for programming
real-time devices, consider devices used in three types of real-time
applications:

1 Asynchronous event reporting without data-devices that generate an
interrupt as the result of an external event not initiated by a programmed
request.

2 Program-driven data collection-devices that generate an interrupt as
the result of a programmed request, and make the result of the request
available as data in a device register at the time of the interrupt.

3 Asynchronous event reporting with data-one device triggers another
device by generating an interrupt that causes a programmed request to be
sent to the other device, which in turn generates an interrupt.

Mapping to 1/0 Space and the Connect-to-Interrupt Facility
18.4 Real-Time Applications Examples

Examples of these three types of real-time applications and models of
programs to handle the devices follow.

Note: The configurations described in the examples in this section are not
officially supported; DIGIT AL does not provide device driver, UETP,
or diagnostic support for certain devices mentioned. (In fact, DIGIT AL
has officially retired the -K series models (ADll-K and AMll-K A/D
Converter). The examples are provided merely as possible models for
users who wish to design real-time applications using unsupported
devices or configurations.

The files in the SYS$EXAMPLES directory whose names begin with "LABIO"
illustrate an application using the connect-to-interrupt technique. Included is
a program example illustrating data definitions and coding used to connect to
a device interrupt vector.

18.4.1 Example 1: KW11-W Watchdog Timer
This type of device reports asynchronous external events: it generates an
interrupt as a result of an external event not initiated by a programmed
request. The only data of interest to be passed to the user process is the
occurrence of the external event. Such devices include contact and/or solid
state interrupts, and clocks or counters. The program may need to activate
clock and counter devices by means of a programmed request, but any
subsequent interrupts are the result of external events only.

In this example, a dual-processor system uses two KWl 1-W watchdog timers
connected back-to-back to monitor CPU failures. Each processor must arm
its timer at regular intervals to prevent the timer from operating a relay that
outputs an alarm signal. The alarm output of each timer is connected to the
receive input of the other watchdog. If processor A fails and its watchdog
times out, the alarm output generates an interrupt on processor B by way of
the second watchdog timer.

The watchdog control program on each processor simply addresses the timer
at regular intervals. If the interval passes without the timer being addressed,
the timer operates an output relay that generates an interrupt to the second
CPU. For this example, assume that the interval is 5 seconds. (Section 18.4.3
contains an example that addresses the problem of a much smaller time
interval.)

The watchdog control program on processor A executes as follows:

1 Assigns a channel to the device

2 Calls the $CRMPSC system service to map to the 1/0 page in order to
address the device registers

3 Issues a connect-to-interrupt $QIO request to connect the program to the
watchdog timer for processor B; specifies the addresses of an interrupt
service routine and an AST procedure

4 Writes a value to a device register to start the timer

5 Calls the $SETIMR system service to request that an event flag be set
after a specified interval (for example, 4 seconds)

6 Calls the $WAITFR system service to wait for the event flag

18-19

Mapping to 1/0 Space and the Connect-to-Interrupt Facility
18.4 Real-Time Applications Examples

7 When the event flag is set, writes a value to a device register to reset the
timer

8 Loops to step 5

The same control program runs on processor B except that it connects to the
watchdog timer for processor A. If either processor fails, the watchdog timer
generates an interrupt on the other processor.

The standby processor that receives the interrupt gains control in the VMS
connect-to-interrupt driver (CONINTERR), which calls a process-supplied
interrupt service routine (defined in step 3) that handles the interrupt as
follows:

1 Sets the KWll-W switch relay register to clear the timer interrupt
condition

2 Sets a status flag that will cause an AST to be delivered to the control
program that connected to the interrupt

3 Returns to CONINTERR

CONINTERR completes the interrupt handling as follows:

1 Schedules a fork process at a lower IPL (IPL$_QUEUEAST). This fork
process, when it gains control, will queue an AST to the user program.

2 Executes an REI instruction to return from the interrupt.

The timer control program on the standby processor regains control in an
AST procedure which responds to the other processor's failure by switching
over and assuming control of the other processor's tasks (or whatever is
appropriate).

18.4.2 Example 2: AD11-K, AM11-K A/D Converter with Multiplexer
Connected to the UNIBUS

18-20

This type of device provides program-driven data collection: it generates an
interrupt as the result of a programmed request to the device, and makes the
result of the request available as data in a device register. Typical devices
include A/D converters and digital I/O registers.

The data collection operation is usually repetitive for such applications.
Therefore, the interrupt service routine must be capable of buffering data
from the device in order to ensure that no data is lost because of the high­
speed data transfer rate. A typical buffer size for this sampling technique
might be 32 16-bitwords.

In this example, a user program controls an ADll-K/ AMll-K combination
that accepts analog data from thermocouples. The ADll-K converts analog
data to digital data and returns the data in a device register. Every 10
seconds, the program samples 16 to 32 out of 64 channels at gain settings
that may vary based on the thermocouple type and previous samplings.

To collect data efficiently, the program buffers data in a process-specified
interrupt service routine, and requests delivery of an AST to the user process
when all the requested channels have been sampled. To perform variable
sampling, the program passes parameters to the interrupt service routine.

Mapping to 1/0 Space and the Connect-to-Interrupt Facility
18.4 Real-Time Applications Examples

The program establishes a protocol to communicate between the program
and the interrupt service routine. The protocol defines a data area shared by
the main program, the interrupt service routine, and the AST procedure. The
data area contains parameters from the program and data from the ADl 1-K.
The data area is a 98-word array used as follows:

1 Elements 1-2 of the data area contain an index to the next buffer location
to be filled, and a count indicating the number of samplings still to be
taken. The main program initializes these values before starting the
device. The interrupt service routine reads and modifies these values in
the process of copying data and determining when to stop sampling.

2 Elements 3-66 of the data area are reserved for interrupt service routine
parameters. Each pair of elements contains the number of a channel and
a gain value. The main program loads these parameters before starting
the device.

3 Elements 67-98 of the data area receive the data that the interrupt service
routine reads from the ADll-K data buffer register. The AST routine
later reads data from this part of the buffer.

The program sets up for the sampling as follows:

1 Assigns a channel to the device

2 Calls the $CRMPSC system service to map to the IjO page in order to
address the device registers

3 Initializes the data area by writing a 67 (the index to the next buffer
location to be filled) into element 1, and the number of samples to take
into element 2 of the data area; clears elements 3 through 98 of the data
area

4 Writes channel numbers and gain values into the parameter section of the
data area

5 Issues a connect-to-interrupt $QIO call to connect the process to the A/D
converter; specifies the addresses of the area to be double-mapped, an
offset to the interrupt service routine, and an AST procedure

6 Sets the start and interrupt-enable bits in the ADl 1-K status register to
start the A/D converter

7 Calls the $HIBER system service to place the process in a wait state

As soon as the ADll-K has converted the first sample, the device generates
an interrupt. CONINTERR.EXE calls the process-specified interrupt service
routine. This process-specified routine executes as follows:

1 Computes the next location to be written in the buffer by reading the first
element in the data area

2 Reads 12 bits of data from the A/D buffer register into the next location
in the buff er

3 Updates the buffer offset and count elements at the beginning of the data
area

4 If all requested samples have been collected, writes the address of the
data area into the AST parameter, sets a status flag that will cause an AST
to be delivered to the control program, and returns to the CONINTERR
routine

18-21

Mapping to 1/0 Space and the Connect-to-Interrupt Facility
18.4 Real-Time Applications Examples

5 Otherwise, sets the start bit in a device register to restart the device and
returns to the CONINTERR routine with a status flag requesting no AST
delivery or event flag setting

Based on the interrupt status from the process-specified interrupt service
routine, the CONINTERR routine completes the interrupt processing by
queuing a fork process that will queue an AST to the user process. When the
process gains control in the AST procedure, it processes the samples in the
following steps:

1 Clears the interrupt-enable bit in the device status register

2 Examines the data collected in order to adjust channel selection and/ or
gain values for the next sampling

3 Copies the data to a file

4 Reinitializes the data area

5 Calls the $SCHDWK system service to wake the process after a short
interval (for example, 10 seconds)

6 Returns

When the time interval elapses, the process regains control. The program
can then restart the sampling process by again setting the start and interrupt­
enable bits in the ADl 1-K status register.

18.4.3 Example 3: KW11-P Real-Time Clock and AD11-K Converter
Connected to the UNIBUS

18-22

This type of device reports asynchronous external events by collecting data:
one device triggers another device by generating an interrupt that causes a
programmed request to be sent to the other device, which in turn generates
an interrupt. A typical example is a dock-driven A/D operation for precise
time sampling as required in signal processing. This processing technique
is often used in laboratories. The amount of data collected in such a timed
sampling might typically be 200 to 1000 16-bit words.

In this example, the main program sets up the real-time clock to generate
interrupts periodically. At regular intervals, the clock interrupt triggers a
programmed request for an A/D conversion operation. The AD11-K collects
a sample, and interrupts the CPU with a "done" interrupt and 12 bits of
data. The AD11-K interrupt service routine buffers the data and, if the buffer
is full, causes an AST to be delivered to the process. The process, gaining
control in an AST procedure, copies the buffered data to another buffer or to
disk.

Programming these device functions is slightly more complicated than the
previous example. The main program must specify a large buffer to be
used in ring fashion to guarantee that data is not lost between dock-driven
samplings. In addition, the program must connect to two device interrupts­
one for the clock and one for the A/D converter.

The protocol used by the main program, the interrupt service routine, and the
AST procedure is similar to the previous example. The data area is larger: 4K
words of buffer area follow the parameter area. The A/D converter interrupt
service routine and the AST procedure treat the 4K-word buffer as four buffer
sections of lK words per section. The first element in each lK buffer section

Mapping to 1/0 Space and the Connect-to-Interrupt Facility
18.4 Real-Time Applications Examples

is a flag indicating whether the section is in use. The AST resets the flag
value after copying the contents of the buffer. The interrupt service routine
uses a buffer section only if the section's flag value indicates that the buffer
has been emptied.

The main program starts the sampling with the following steps:

1 Assigns channels to the clock and to the A/D converter.

2 Calls the $CRMPSC system service to map to the IjO page in order to
address the device registers.

3 Initializes the data buffer by writing a 67 (the index to the next buffer
location to be filled) into element 1, and the number of samples to take
into element 2 of the data area; clears elements 3 through 4096 of the
data area; flags each page of the buffer as available.

4 Writes channel numbers and gain values into the parameter segments of
the data area.

5 Issues a connect-to-interrupt $QIO call to connect the process to the clock,
and specifies the address of an interrupt service routine.

6 Issues a connect-to-interrupt $QIO call to connect the process to the A/D
converter; and specifies the addresses of the area to be double mapped,
an offset to the interrupt service routine and an AST procedure.

7 Sets the sampling interval by writing a 16-bit value into the KWll-P
count set buffer register.

8 Starts the clock by setting the run, mode, rate selection, and interrupt­
enable bits in the KWll-P control and status register. Setting the mode
bit causes repeated interrupts generated at a rate specified in the time
interval.

9 Calls the $HIBER system service to place the process in a wait state.

The clock interrupts when zero (underflow) occurs during a countdown from
the preset interval count. The VMS CONINTERR routine calls the process­
specified clock interrupt service routine. This process-specified routine starts
the A/D conversion as follows:

1 Starts the A/D converter by setting the start and interrupt-enable bits in
the ADll-K status register

2 Sets interrupt status that prevents AST delivery or event flag setting as a
result of this interrupt

3 Returns to CONINTERR

Starting the A/D converter results in an interrupt from the ADll-K, and
control passes, by way of CONINTERR, to the ADl 1-K interrupt service
routine. This routine executes as follows:

1 If this sample is the first sample for a new buffer (indicated by a flag in
the data area), the routine moves to the next buffer section (branching to
error handling if the buffer is still full), and sets up the first two elements
of the data area to indicate the buffer section to be written next. Then it
sets the flag at the start of the new buffer section and sets a flag in the
data area to indicate that sampling is occurring.

2 The routine computes the next location to be written in the buffer by
reading the first location in the data area.

18-23

Mapping to 1/0 Space and the Connect-to-Interrupt Facility
18.4 Real-Time Applications Examples

18-24

3 The routine reads 12 bits of data from the A/D buffer register into the
next location in the buffer.

4 The routine updates the buffer offset and count values in the data area.

5 If this sample fills the data sector, the routine writes the offset of the filled
sector from the start of the 4K-word buffer into the AST parameter, sets a
status flag that will cause an AST to be delivered to the control program,
and sets a flag indicating that a new data section is to be started.

6 The routine returns to CONINTERR.

The AST procedure copies and fills the next buffer section with zeros to
indicate that the section is again available to the interrupt service routine.
When the next clock interrupt occurs, the data can be written to the next
buffer section, even if the AST routine has not yet emptied the previous
buffer section.

Part IV Reference Section and Examples

A Data Structures

This appendix provides a condensed description of those data structures
referenced by driver code. It lists their fields in the order in which they
appear in the structures. All data structures discussed in this appendix-with
the exception of the channel control block (CCB)-exist in nonpaged system
memory.

Many of these structures-including the adapter control block (ADP), channel
control block (CCB), channel request block (CRB), configuration control
block (ACF), device data block (DDB), driver dispatch table (DDT), driver
prologue table (DPT), object rights block (ORB), I/O request packet (IRP),
I/O request packet extension (IRPE), and unit control block (UCB)-are
collectively known as the I/O database (see Figure A-1). The structures in
the 1/0 database help the VMS operating system and device drivers monitor
the status of, and control the functions of, the I/O subsystem. They provide
the following types of information:

•
•
•
•
•
•
•
•
•

Descriptions of each pending and in-progress I/O request

Characteristics of each device type

Number and type of each device unit

Status of current activity on each device unit

External entry points to all device drivers

Entry points for controller and device unit initialization routines

Code that dispatches interrupts to the appropriate servicing routines

Addresses of device registers

Bit maps describing the allocation of data paths and map registers

Aside from the I/O database structures, this appendix includes descriptions of
those data structures VMS uses to maintain multiprocessing synchronization
and record processor-specific information: the spin lock data structure (SPL)
and the per-CPU database structure (CPU), respectively.

Notes: Driver code must consider fields marked by asterisks to be read-only
fields. Fields marked "reserved" or "unused" are reserved for future use
by DIGIT AL unless otherwise specified.

When referring to locations within a data structure, a driver should use
symbolic offsets from the beginning of the structure and not numeric
offsets. Numeric offsets are likely to change with each new release of the
VMS operating system. The figures in this appendix list VMS Version 5.0
numeric offsets to aid in driver debugging.

A-1

Data Structures
A.1 Configuration Control Block (ACF)

Figure A-1 The 1/0 Database

1/0
REQUEST
PACKET

DESCRIBES
1/0

REQUEST

PROCESS
CONTROL

BLOCK
DESCRIBES

REQUESTING
PROCESS

UCB
DESCRIBES

DEVICE

CCB
DESCRIBES

LOGICAL PATH
TO DEVICE

DOB FOR
DEVICE
TYPE

CRB
SYNCHRONIZES

CONTROLLER

IDB
DESCRIBES

CONTROLLER

ADP
DESCRIBES
ADAPTER

DEVICE
REGISTERS

DDT
LOCATES DRIVER

DRIVER
FDT ROUTINE

DRIVER
ST ART 1/0 ROUTINE

DRIVER
INTERRUPT SERVICE

ROUTINE

DRIVER
CONTROLLER INITIALIZATION

ROUTINE

ZK-1766-84

A. 1 Configuration Control Block (ACF)

A-2

The configuration control block (ACF) is used by the SYSGEN
autoconfiguration facility to describe the device it is adding to the system.
Device drivers can gain access to this_ data structure only if they have specified
a unit delivery routine in the DPT and only when that routine is executing.
Under certain conditions, the information stored in the ACF might be useful
to a unit delivery routine.

The fields described in the configuration control block are illustrated in
Figure A-2 and described in Table A-1.

Data Structures
A.1 Configuration Control Block (ACF)

Figure A-2 Configuration Control Block (ACF)

ACF$L_ADAPTER* 00

ACF$L _CONFIGREG* 04

ACF$B_AFLAG* I ACF$B_AUNIT* ACF$W _A VECTOR* 08

ACF$L _CONTRLREG* 12

ACF$W_CUNIT* ACF$W _CVECTOR* 16

ACF$L _DEVNAME* 20

ACF$L _DRVNAME* 24

ACF$8_COMBO_ VEC* I ACF$B_CNUMVEC* ACF$W _MAXUNITS* 28

unused ACF$8_NUMUNIT* I ACF$B_COMBO_CSR* 32

ACF$L_DLVR_SCRH 36

ZK-6626-HC

A-3

Data Structures
A.1 Configuration Control Block (ACF)

Table A-1 Contents of the Configuration Control Block

Field Name Contents

ACF$L_ADAPTER*

ACF$L _CONFIGREG*

ACF$W_AVECTOR*

ACF$B_AUNIT*

ACF$B_AFLAG*

ACF$L _CONTRLREG*

ACF$W _CVECTOR*

ACF$B_CUNIT*

ACF$L_DEVNAME*

ACF$L _DRVNAME*

ACF$W _MAXUNITS*

ACF$B_CNUMVEC*

ACF$B_COMBO_ VEC*

ACF$B_COMBO_CSR*

ACF$B_NUMUNIT*

ACF$L_DLVR_SCRH

Address of ADP for adapter currently being configured.

Address of configuration register for adapter currently being configured.

Offset from base of SCB to interrupt vector of adapter currently being configured.

Adapter unit number of device or controller currently being configured.

Flags associated with autoconfiguration operation. Flags defined in this field
include the following:

ACF$V_RELOAD

ACF$V_CRBBL T

ACF$V_SCBVEC

Reloading driver code.

CRB and IDB already built for device.

CVECTOR is offset into SCB.

ACF$V_NOLOAD_DB Do not load 1/0 database, only load driver.

ACF$V_SUPPORT VMS-supported device.

ACF$V_GETDONE Addresses of data structures in 1/0 database have been
obtained.

ACF$V_BVP Multiport BVP adapter.

Address of CSR for controller currently being configured.

Offset into ADP vector table to longword that contains transfer address of
interrupt vector used by controller currently being configured (if ACF$V_SCBVEC
is not set). If ACF$V_SCBVEC is set, this field is the offset from the SCB base to
the interrupt vector of the controller currently being configured.

Unit number of device currently being configured.

Address of counted ASCII string that gives name of controller currently being
configured.

Address of counted ASCII string that gives driver name for controller currently
being configured.

Maximum number of units that can be connected to controller currently being
configured.

Number of interrupt vectors to configure for controller currently being configured.

Offset to vectors for combo device. (The name of this field is ACF$B_COMBO_
VECTOR_OFFSET .)

Offset to start of control registers of combo device. (The name of this field is
ACF$B_COMBO_CSR_OFFSET .)

Number of units to be configured for controller currently being configured.

Field available for use by unit delivery routine. SYSGEN never alters this field.

A.2 Adapter Control Block (ADP)

A-4

Each MASSBUS adapter, UNIBUS adapter, Q22 bus, and VAXBI node
configured in a VAX system is represented to VMS and driver routines by
an adapter control block (ADP). The ADP stores adapter-specific static and
dynamic data such as the adapter CSR address and map-register wait queues.

Data Structures
A.2 Adapter Control Block (ADP)

The ADP varies in size, depending upon what type of adapter it describes.
Table A-2 defines those fields that generally appear in an ADP.

Figure A-3 Adapter Control Block (ADP)

ADP$L_CSR• 00

ADP$L_LINK• 04

ADP$B_NUMBER• I ADP$8_ TYPE• ADP$W _SIZE• 08

ADP$W _ADPTYPE• ADP$W_TR• 12

ADP$L _VECTOR• 16

ADP$L_DPQFL• 20

ADP$L _DPQBL • 24

ADP$L _A VECTOR• 28

ADP$L _Bl _IDR• 32

unused 36

ADP$W _Bl_ VECTOR• ADP$W _Bl _FLAGS• 40

ADP$L _SCB_PAGE• 44

ADP$L _BIMASTER• 48

ADP$B_ADDR_BITS• T unused ADP$W _ADPDISP _FLAGS• 52

reserved 56

ADP$L_MRQFL• 60

ADP$L_MRQBL• 64

.
I~----------------------A-D-P$_L ___ IN_T_D __ (_12_b_y-te_s_) ____________________ ___.I68

ADP$L UBASCB (16 b t) 80 - * yes

ADP$L _UBASPTE• 96

ADP$L _MRACTMDRS• 100

ADP$W _MRNFENCE• I ADP$W _DPBITMAP• 104

*
I.,

f
~--~------------A-D_P_$_w ___ M_R_N_R_E_G_A-RY __ (_2_48--by-t-es_) ________________ ----fl310568

ADP$W _MRFFENCE• _

~ - . ytes i' ADP$W MRFREGARY (248 b

ADP$W _UMR_DIS• l
ADP$L _MR20FL * 608

ADP$L _MR2QBL * 612

ADP$L_MR2ACTMDR• 616

ADP$W _MR2NFENCE• T unused 620

d . cl..

l.__ _________________ A_D_P_$_W ___ M_R_2_N_R_E-GA_R __ (-24-8--by-te_s_) ________________ __.J624

ZK-6627-HC

Figure A-3 Cont'd. on next page
A-5

Data Structures
A.2 Adapter Control Block (ADP)

Figure A-3 (Cont.) Adapter Control Block (ADP)

l ..._ ___ A_D_P_$_w ___ M_R_2_FF_E_N_c_E* ___ _....1872

l
ADP$W_MR2FREGAR* (248 bytes) l

~DP$W _UMR2-DIS*
~------------A-DP_$_L __ ~M~R-2A_D_D_R_*--------------t 1124

ZK-6628-HC

Table A-2 Contents of Adapter Control Block

Field Name

ADP$L_CSR*

ADP$L_LINK*

ADP$W _SIZE*

ADP$B_ TYPE*

ADP$B_NUMBER*

ADP$W_TR*

ADP$W_ADPTYPE*

A-6

Contents

Virtual address of adapter configuration register. For a generic VAXBI adapter,
this field contains the address of the base of the adapter's node space. The
VMS adapter initialization routine writes this field.

The configuration register marks the base of adapter register space, an
area that contains data path registers, map registers, or any other registers
appropriate to the implementation of the adapter.

Address of next ADP. The VMS adapter initialization routine writes this field.
A value of 0 indicates that this is the last ADP.

Size of ADP. The VMS adapter initialization routine writes this field when the
routine creates the ADP. For non-direct-vector UNIBUS adapters, ADP$W_
SIZE includes the space allocated for the four UNIBUS interrupt service routines
(for BR4 to BR7) and the vector jump table.

Type of data structure. The VMS adapter initialization routine writes the
symbolic constant DYN$C_ADP into this field when the routine creates the
ADP.

Number of this type of adapter (for example, the number for a third MASSBUS
adapter is 2). The VMS adapter initialization routine writes this field when the
routine creates the ADP.

Nexus number of adapter. The VMS adapter initialization routine writes this
field when the routine creates the ADP. The driver-loading procedure compares
the nexus number specified in a CONNECT command with this field of each
ADP in the system to determine to which adapter a device is attached. For a
generic VAXBI adapter, this field contains its VAXBI node ID.

Type of adapter. The VMS adapter initialization routine writes the symbolic
constant A T$_UBA into this field when the routine creates an ADP for a
UNIBUS adapter or 022 bus; A T$_MBA for a MASSBUS adapter; and AT$_
GENBI for a generic V AXBI adapter.

Data Structures
A.2 Adapter Control Block (ADP)

Table A-2 (Cont.) Contents of Adapter Control Block

Field Name · Contents

ADP$L_VECTOR* Address of adapter dispatch table. The table is 512 bytes of longword vectors
that correspond to device interrupt vectors (Oa-7778).

ADP$L_DPOFL*

ADP$L_DPOBL*

ADP$L _A VECTOR*

On VAX processors that handle direct-vector interrupts, ADP$L_ VECTOR
points to the second (or subsequent) page of the SCB. The CPU uses this page
when it dispatches the device interrupt to the driver interrupt service routine.
Each vector entry that corresponds to a vector in use contains the address of
the controller's interrupt dispatcher (CRB$L _INTD). (The actual stored value
is CRB$L_INTD+ 1, the set low bit of the address indicating that the interrupt
stack is to be used in servicing interrupts.)

On VAX processors that handle non-direct-vector interrupts, ADP$L_VECTOR
points to a page allocated from nonpaged pool called the adapter dispatch
table (or vector jump table). Each longword in the page that corresponds to
a vector in use contains the address of the controller's interrupt dispatcher
(CRB$L_INTD+2). When the UNIBUS adapter interrupts on behalf of a UNIBUS
device, the UNIBUS adapter interrupt service routine saves RO through R5,
determines the vector address of the interrupting device, indexes into the
vector-jump table, and jumps to the instruction at CRB$L_INTD+2.

For both types of VAX processor, adapter dispatch table entries that
correspond to unused vectors contain the address of the adapter's unexpected­
interrupt service routine.

Data path wait queue forward link. IOC$REQDA TAP and IOC$RELDA TAP read
and write this field. When a driver fork process requests a buffered data path
and none is currently available, IOC$REQDA TAP saves driver context in the
device's UCB fork block, inserts the fork block address in the data path wait
queue, and suspends the driver fork process.

When another driver calls IOC$RELDA TAP to release a buffered data path, the
routine dequeues a UCB fork block address from the data path wait queue,
allocates a data path to the driver, and reactivates that driver fork process.

This field is also known as ADP$L_MBASCB. For MASSBUS adapters and
generic V AXBI adapters, the VMS adapter initialization routine stores the
address of the adapter's interrupt vector in this field. Certain power failure
recovery operations use the contents of ADP$L _MBASCB to refresh the SCB
vectors. The actual stored value is CRB$L_INTD+ 1, the set low bit of the
address indicating that the interrupt stack is to be used in servicing interrupts.

Data path wait queue backward link. IOC$REQDAT AP and IOC$RELDAT AP
read and write this field.

This field is also known as ADP$L_MBASPTE. For generic VAXBI adapters,
the VMS adapter initialization routine stores here the contents of the first of
16 SPTEs that map the adapter's node space. For the MASSBUS adapter, the
routine stores here the SPTE value that maps MBA address space. Certain
recovery operations use the contents of ADP$L _MBASPTE to restore SPTE
values and remap node space following a power failure.

Address of first SCB vector for adapter.

.A-7

Data Structures
A.2 Adapter Control Block (ADP)

Table A-2 (Cont.)

Field Name

ADP$L_BUDR*

ADP$W_Bl_FLAGS*

ADP$W_Bl_VECTOR*

ADP$L _SCB_PAGE*

ADP$L_BIMASTER*

ADP$W _ADPDISP _
FLAGS*

ADP$B_ADDR_BITS*

ADP$L_MROFL*

ADP$L_MROBL*

ADP$L_INTD*

A-8

Contents of Adapter Control Block

Conterits

Longword mask specifying, by a single set bit, which VAXBI node is the
destination of interrupts from this adapter. In VAX 8200/8250/8300/8350
systems, the V AXBI node of the primary processor becomes the destination
for interrupts; in VAX 8530/8550/8700/8800/8830/8840 and VAX 6200-
series systems, it is the V AXBI node at which the memory-interconnect-to­
V AXBI adapter (NBIB, PBIB, or DWMBA/B) resides.

VAXBI device flags field.

Offset of the first interrupt vector for this VAXBI node from the start of its
SCB page. ADP$L_AVECTOR contains the address of this vector.

Offset to SCB page for this VAXBI device.

Address of the ADP of the master device of the VAXBI (for example, the
DWMBA in a VAX 6200-series system).

Flags used by the ADPDISP macro to control branching according to adapter
characteristics. The following bit fields are defined within ADP$W_ADPDISP_
FLAGS:
ADP$V_ADPDISP _INIT

ADP$V_ADAP _MAPPING

ADP$V_DIRECT _VECTOR

ADP$V_AUTOPURGE_DP

ADP$V_BUFFERED_DP

ADP$V_ODD_XFER_BDP

ADP$V_ODD_XFER_DDP

ADP$V_EXTENDED_
MAPREG

ADP$V_OBUS

< 15:9>

ADPDISP flags have been initialized

Adapter mapping supported

Direct-vector interrupts

Autopurging datapath

Buffered datapath supported

Odd transfers supported on buffered data path

Odd transfers supported on direct data path

Alternate map registers (registers 496 to 8191)
supported

022 bus adapter

Reserved to DIGIT AL

Number of adapter address bits. This field contains the value 22 (for 022 bus
systems) and 18 (for UNIBUS adapters).

Standard-map-register wait queue's forward link. IOC$ALOUBAMAP,
IOC$REOMAPREG, and IOC$RELMAPREG read and write these fields. When a
driver fork process requests a set of standard map registers and the set is not
currently available, IOC$REOMAPREG saves driver fork context in the device's
UCB fork block, inserts the fork block address in the standard-map-register
wait queue, and suspends the driver fork process.

When another driver calls IOC$RELMAPREG to release a set of standard map
registers, the routine dequeues a UCB fork block address from the standard­
map-register wait queue, allocates the requested set of map registers to the
driver, and reactivates that driver fork process.

Standard-map-register wait queue's backward link. IOC$ALOUBAMAP,
IOC$REOMAPREG, and IOC$RELMAPREG read and write this field.

Interrupt transfer vector. The VMS adapter initialization routine places
executable code in this field to allow certain DIGITAL-supplied adapters or
controllers to dispatch to adapter-specific interrupt and error handling routines.

Data Structures
A.2 Adapter Control Block (ADP)

Table A-2 (Cont.) Contents of Adapter Control Block

Field Name

ADP$L _UBASCB*

ADP$L _UBASPTE*

ADP$L_MRACTMDRS*

ADP$W _DPBITMAP*

ADP$W_MRNFENCE*

ADP$W _MRNREGARY*

ADP$W _MRFFENCE*

ADP$W_MRFREGARY*

ADP$W _UMR_DIS*

Contents

Series of four longwords that contain SCB entry values, one for each bus
request (BR) level or interrupt vector. The UNIBUS adapter power failure
recovery procedure uses these values.

System page-table entry (PTE) values for base of UNIBUS adapter register
space and base of UNIBUS 1/0 register space. These values contained in this
quadword field a~3 used during UNIBUS adapter power failure recovery.

Number of active standard map register descriptors in arrays to which
ADP$W_MRNREGARY and ADP$W_MRFREGARY point. IOC$REOMAPREG
and IOC$RELMAPREG use these fields when allocating and deallocating
standard map registers.

Data path allocation bit map. IOC$REODAT AP and IOC$RELDAT AP read and
write this field. The VMS adapter initialization routine sets the bit map to show
as available all the buffered data paths supported by the UNIBUS adapter.
(The adapter initialization routine for certain VAX processors whose UNIBUS
adapters or 022 bus interfaces do not supply buffered data paths marks three
data paths as available. This facilitates the writing of machine-independent
code that can execute regardless of the presence of buffered data paths.)

The state of each of the available buffered data paths (whether in use or
available) is recorded in the data path allocation bit map. One data path
corresponds to each bit in the field. If a bit is clear, the related data path is
currently allocated to a driver fork process.

Boundary marker for the array specified by ADP$W_MRNREGARY;
contains -1 .

Standard map register "number of registers" array of 124 words. The number
of words, or cells, that are active in this array is contained in ADP$L_
MRACTMDRS. Each active cell gives the number of free standard map
registers. For each active cell in this array, there is a corresponding first
free map register number in the "first register" array (ADP$W _MRFREGARY).
Together, these values give the base map register and number of free map
registers for a block of free map registers. This information is used to allocate
and deallocate standard map registers.

Boundary marker for array specified by ADP$W_MRFREGARY; contains -1.

Standard map register "first register" array of 124 words. The number of
currently active cells in this array is contained in ADP$L_MRACTMDRS. Each
active cell gives a number of the first free map register within a block of free
map registers. For each active cell in this array, there is a corresponding cell in
the "number of registers" array (ADP$W_MRNREGARY) that gives a number
of free map registers. Together, these values give the base map register
and number of free map registers for a block of free map registers. This
information is used to allocate and deallocate standard map registers.

Number of disabled standard map registers. During system initialization, some
standard map registers can be disabled so that their corresponding UNIBUS
and 022 bus addresses can be accessed directly through UNIBUS-space or
022-bus-space physical addresses.

A-9

Data Structures
A.2 Adapter Control Block {ADP)

Table A-2 (Cont.) Contents of Adapter Control Block

Field Name Contents

ADP$L_MR20FL* Alternate-map-register wait queue's forward link. IOC$ALOALTMAP,
IOC$REOAL TMAP, and IOC$RELAL TMAP read and write this field. When
a driver fork process requests a set of 022 bus alternate map registers and
the set is not currently available, IOC$REOAL TMAP saves driver context in the
device's UCB fork block, inserts the fork block address in the alternate-map­
register wait queue, and suspends the driver fork process.

When another driver calls IOC$RELAL TMAP to release a sufficient number of
map registers, the routine dequeues a UCB fork block from the alternate-map­
register wait queue, allocates the requested set of map registers to the driver,
and reactivates that driver fork process.

ADP$L_MR20BL* Alternate-map-register wait queue's backward link. IOC$ALOALTMAP,
IOC$REOAL TMAP, and IOC$RELAL TMAP read and write this field when
allocating and deallocating from the set of 022 bus alternate map registers.

ADP$L_MR2ACTMDR* Number of active map register descriptors in arrays to which ADP$W_
MR2NREGAR and ADP$W_MR2FREGAR point. IOC$ALOAL TMAP,
IOC$REOAL TMAP, and IOC$RELMAPREG use these fields when allocating
and deallocating 022 bus alternate map registers.

ADP$W _MR2NFENCE* Boundary marker for the array specified by ADP$W _MR2NREGAR;
contains -1 .

ADP$W_MR2NREGAR*

ADP$W_MR2FFENCE*

ADP$W _MR2FREGAR*

ADP$W _UMR2_DIS*

ADP$L_MR2ADDR

A-10

Alternate-map-register "number of registers" array of 124 words. The number
of words, or cells, that are active in this array is contained in ADP$L_
MR2ACTMDR. Each active cell gives a number of map registers in a block
of free alternate map registers. For each active cell in this array, there is
a corresponding first free map register number in the array specified by
ADP$W_MR2FREGAR. Together, these values give the base map register
and the number of free map registers for a block of free alternate map
registers. IOC$ALOAL TMAP, IOC$REOALTMAP, and IOC$RELALTMAP
use this information when allocating and deallocating from 022 bus alternate
map registers.

Boundary marker for the array specified by ADP$W _MR2NREGAR;
contains -1 .

Alternate map register "first register" array of 124 words. The number
of words, or cells, that are active in this array is contained in ADP$L _
MR2ACTMDR. Each active cell gives the number of the first free map register
within a block of free map registers. For each active cell in this array, there is
a corresponding cell in the "number of registers" array, ADP$W_MR2NREGAR.
Together, these values give the base map register and the number of free map
registers for a block of free map registers.

Number of disabled 022 bus alternate map registers. During system
initialization, some map registers can be disabled so that their corresponding
022 bus addresses can be accessed directly through physical addresses.

Address of the first 022 bus alternate map register mapped in CPU node
private space. The value varies for each processor with alternate map
registers. IOC$LOADUBAMAP reads this field when accessing alternate
map registers.

Data Structures
A.3 Channel Control Block (CCB)

A.3 Channel Control Block (CCB)
When a process assigns an 1/0 channel to a device unit with the $ASSIGN
system service, EXE$ASSIGN locates a free block among the process's
preallocated channel control blocks (CCBs). EXE$ASSIGN then writes into
the CCB a description of the device attached to the CCB' s channel.

The channel control block is the only data structure described in this appendix
that exists in the control (Pl) region of perprocess address space. It is
illustrated in Figure A-4 and described in Table A-3.

Figure A-4 Channel Control Block (CCB)

CCB$L_UCB* 00

CCB$L_WIND* 04

CCB$W_IOC* l CCB$8_AMOD* I CCB$8_STS* 08

CCB$L_DIRP* 12

ZK-6629-HC

Table A-3 Contents of Channel Control Block

Field Name

CCB$L_UCB*

CCB$L_WIND*

CCB$B_STS*

CCB$B_AMOD*

CCB$W_IOC*

CCB$L_DIRP*

Contents

Address of UCB of assigned device unit. EXE$ASSIGN writes a value into this
field. EXE$QIO reads this field to determine that the 1/0 request specifies a
process 1/0 channel assigned to a device and to obtain the device's UCB address.

Address of window control block (WCB) for file-structured device assignment.
This field is written by an ACP or XOP and read by EXE$QIO.

A file-structured device's XOP or ACP creates a WCB when a process accesses
a file on a device assigned to a process 1/0 channel. The WCB maps the virtual
block numbers of the file to a series of physical locations on the device.

Channel status.

Access mode plus 1 of the channel. EXE$ASSIGN writes the access mode value
into this field.

Number of outstanding 1/0 requests on channel. EXE$010 increases this field
when it begins to process an 1/0 request that specifies the channel. During 1/0
postprocessing, the special kernel-mode AST routine decrements this field. Some
FDT routines and EXE$DASSGN read this field.

Address of IRP for requested deaccess. A number of outstanding 1/0 requests
can be pending on the same process 1/0 channel at one time. If the process that
owns the channel issues an 1/0 request to deaccess the device, EXE$QIO holds
the deaccess request until all other outstanding 1/0 requests are processed.

A-11

Data Structures
A.4 Per-CPU Database (CPU)

A.4 Per-CPU Database (CPU)

A-12

A per-CPU database structure exists for each processor in a VMS
multiprocessing environment. The per-CPU database records processor­
specific information such as the current process control block (PCB), the
priority of the current process, and the physical processor identifier. It
points to the processor's interrupt stack and contains the list heads for the
processor's fork queues and 1/0 postprocessing queue.

To ensure that the path of a processor's activity at booting and on the
interrupt stack remains independent of the paths of other active processors in
the system, VMS places a separate boot stack and a separate interrupt stack
(formerly pointed to by EXE$GL_INTSTK) adjacent to the area allocated
for the per-CPU database structure. The processor's boot stack, interrupt
stack, and per-CPU database fields are virtually contiguous in system address
space, although three no-access guard pages prevent the expansion of the
stacks beyond the areas reserved for their use. Offset CPU$L_INTSTK in the
per-CPU database points to the interrupt stack.

The fields described in the per-CPU database are illustrated in Figure A-5
and described in Table A-4.

Data Structures
A.4 Per-CPU Database (CPU)

Figure A-5 Per-CPU Database (CPU)

CPU$L _CURPCB* 00

CPU$L_REALST ACK* 04

CPU$B_SUBTYPE* CPU$B_ TYPE* CPU$W_SIZE* 08

CPU$B_CUR _PRI* CPU$B_CPUMTX* CPU$B_ST A TE* I reserved 12

CPU$L _INTSTK* 16

CPU$L_ WORK_REO* 20

CPU$L_PERCPUVA* 24

CPU$L_SAVED_AP* 28

CPU$L_HAL TPC* 32

CPU$L_HALTPSL* 36

CPU$L_SAVED_ISP* 40

CPU$L_PCBB* 44

CPU$L_SCBB* 48

CPU$L_SISR* 52

CPU$L_POBR* 56

CPU$L_POLR* 60

CPU$L _P 1 BR* 64

CPU$L _P 1 LR* 68

CPU$L _BUGCODE* 72

~~ CPU$B_CPUDA TA* (32 bytes) ~~ 76

CPU$L _MCHK_MASK * 108

CPU$L _MCHK_SP* 112

CPU$L _POPLP AGE* 116

reserved (408 bytes) 120

< <

I~~~~~~~~~~~-C-PU_$_Q~S-W_l_Q_FL~(4-8~b-t~)~~~~~~~~~----tI.28
- * yes

CPU$L_PSFL* 576

CPU$L_PSBL* 580

CPU$Q_WORK_FQFL* 584

CPU$L _QLOSLFOFL * 592

CPU$L _QLOSLFOBL * 596

CPU$B_QLOSLFLCK* l CPU$8_QLOSL TYPE*l CPU$W _QLOSLSIZE* 600

ZK-6630-HC

Figure A-5 Cont'd. on next page

A-13

Data Structures
A.4 Per-CPU Database (CPU)

Figure A-5 (Cont.) Per-CPU Database (CPU)

CPU$L _QLOSLFPC• 604

CPU$L _QLOSLFR3• 608

CPU$L_QLOST_FR4• 612

CPU$Q_BOOL TIME• 616

CPU$Q _CPUID_MASK * 624

CPU$L _PHY _CPUID• 632

CPU$L _CAPABILITY* 636

CPU$L_ TENUSEC• 640

CPU$L_UBDELAY• 644

.,
* '

l~~~~~~~~~~C-P_U_$_L __ K_E_R_N-EL~(2_8_b_y-te-s)~~~~~~~~~----ti664768 _ CPU$L _NULLCPU• _

~ - * ytes

CPU$W _UNULLCPU•

CPU$W _HARDAFF• CPU$W _CLKUTICS• 696

CPU$L _RANK_ VEC• 700

CPU$L _IPL_ VEC• 704

~ CPU$L_IPL_ARRAY• (128 bytes) :: 708

CPU$L_ TPOINTER• 836

CPU$W _SANITY_ TICKS• CPU$W _SANITY_ TIMER• 840

ZK-6631-HC

Table A-4 Per-CPU Database (CPU)

Field

CPU$L _CURPCB*

CPU$L_REALST ACK*

CPU$W _SIZE*

CPU$B_ TYPE*

CPU$B_SUBTYPE*

A-14

Contents

Address of current PCB. The scheduler writes this field.

Physical address of boot stack.

Size of the per-CPU database, including the size of the boot stack but not the
interrupt stack or the interrupt stack's guard pages.

Type of data structure. VMS writes the value DYN$C_MP into this field when
it creates the per-CPU database.

Structure subtype. VMS writes the value DYN$C_MP_CPU into this field when
it creates the per-CPU database.

Data Structures
A.4 Per-CPU Database (CPU)

Table A-4 (Cont.) Per-CPU Database (CPU)

Field Contents

CPU$B_STATE* State of this processor. VMS defines the following processor states:

CPU$B_CPUMTX *

CPU$B_CUR_PRI*

CPU$L _INTSTK *

CPU$L _ WORK_REO*

CPU$L_PERCPUVA*

CPU$L _SA VED_AP*

CPU$L_HAL TPC*

CPU$L_HALTPSL*

CPU$C_INIT Processor is being initialized.

CPU$C_RUN

CPU$C_STOPPING

CPU$C_STOPPED

CPU$C_ TIMOUT

CPU$C_BOOT_REJECTED

Processor is running.

Processor is stopping.

Processor is stopped.

Logical console has timed out.

Processor has refused to join multiprocessing
system.

CPU$C_BOOTED Processor has booted, but is waiting to join
multiprocessing active set.

Count of acquisitions of CPUMTX mutex.

Current process priority. The scheduler writes this field.

Address of initial interrupt stack.

Work request bits. A processor sets one or more of these bits in another
processor's per-CPU database when directing an interprocessor interrupt to
that processor.

The following fields are defined within CPU$L_WQRK_REO:

CPU$V_INV_ TBS Request to invalidate single address (SMP$GL _
INV AUD) in translation buffer

CPU$V_INV_ TBA

CPU$V_ TBACK

CPU$V_BUGCHK

CPU$V_BUGCHKACK

CPU$V_RECALSCHD

CPU$V_UPDASTL VL

CPU$V_UPDTODR

CPU$V_ WORK_FQP

CPU$V_QLOST

CPU$V_RESCHED

CPU$V_ VIRTCONS

Request to invalidate all addresses in translation
buffer

Acknowledgment that a processor requested to
invalidate its translation buffer has done so

Request to bugcheck

Acknowledgment that the processor has saved
process context and per-CPU data so that the crash
CPU can continue to perform a bugcheck

Recalculate per-CPU mask and reschedule

Request to update processor AST level register
(PR$_ASTL VL)

Request to update processor time-of-day register
(PR$_ TOOR)

Request to process internal fork queue (CPU$Q_
WORK_IFO)

Request to stall until quorum regained

Request to initiate software interrupt at IPL 3

Request to enter virtual console mode

<28:31 > Processor-specific work request bits

Virtual address of this per-CPU database structure.

Halt restart code.

Halt PC for restart.

Halt PSL for restart.

A-15

.. _ _../

Data Structures
A.4 Per-CPU Database (CPU)

Table A-4 (Cont.) Per-CPU Database (CPU)

Field

CPU$L _SA VED_ISP*

CPU$L _PCBB*

CPU$L _SCBB*

CPU$L_SISR*

CPU$L_POBR*

CPU$L _POLR*

CPU$L_P 1 BR*

CPU$L _P 1 LR*

CPU$L _BUGCODE*

CPU$B_CPUDAT A*

CPU$L_MCHK_MASK*

CPU$L_MCHK_SP*

CPU$L_POPT_PAGE*

CPU$Q_SWIQFL*

CPU$L_PSFL*

CPU$L_PSBL*

CPU$Q_WORK_FQFL*

CPU$L _QLOST _FQFL*

CPU$L _QLOST _FQBL*

CPU$W _QLOST _SIZE*

CPU$B_QLOST _TYPE*

CPU$B_QLOST _FLCK *

CPU$L _QLOST _FPC*

CPU$L_QLOST_FR3*

CPU$L _QLOST _FR4*

CPU$Q_BOOT_ TIME*

CPU$Q _CPUID_MASK *

CPU$L_PHY_CPUID*

A-16

Contents

Saved ISP for restart.

PCBB from power down.

SCBB from power down.

SISR from power down.

PO base register (used by system power failure and bugcheck routines).

PO length register (used by system power failure and bugcheck routines).

P1 base register (used by system power failure and bugcheck routines).

P1 length register (used by system power failure and bugcheck routines).

Bugcheck code.

Processor-specific hardware revision information. The first longword of this
16-byte field always contains the processor's system ID (SID) register, and is
also defined as CPU$L_SID.

Function mask for current machine check recovery block.

Saved SP for return at end of machine check recovery block. This field is zero
if there is no current recovery block.

System virtual address of a page reserved to this processor that is used as a
PO page table when memory management is being enabled.

Twelve longwords representing the forward and backward links for the
software interrupt queues (fork IPLs 6 through 11).

1/0 postprocessing queue forward link.

1/0 postprocessing queue backward link.

Work packet queue. This field is also called CPU$Q_WORK_IFQ.

Quorum loss fork queue forward link.

Quorum loss fork queue blink link.

Quorum loss fork block size.

Quorum loss fork block type.

Quorum loss fork lock.

Quorum loss fork PC .

Quorum loss fork R3.

Quorum loss fork R4.

System time at which this processor was bootstrapped.

Bit mask representing this processor's CPU ID.

Integer that uniquely identifies the local processor in a multiprocessor
configuration. This value is system specific. (For example, in a VAX
8300/8350 corifiguration, it is the VAXBI node ID. For a VAX 8800, it is
the left or right bit from the processor's system ID register (PR$_SID); for
a VAX 8830/8840 it is the CPU number (0 to 3) from PR$_SID. In a VAX
6200-series configuration, it is the XMI node ID. VMS uses the physical ID
principally to locate the per-CPU database and interrupt stack of a processor
that it is restarting.)

Data Structures
A.4 Per-CPU Database (CPU)

Table A-4 (Cont.) Per-CPU Database (CPU)

Field Contents

CPU$L_CAPABILITY* Bit mask of this processor's capabilities.

CPU$L_ TENUSEC*

CPU$L _UBDELA Y *

CPU$L _KERNEL*

CPU$L _NULLCPU*

VMS defines the following capabilities in $CPBDEF:

CPB$C_PRIMARY Primary CPU.

CPB$C_NS Reserved to DIGIT AL.

CPB$C_QUORUM

CPB$C_HARDAFF

Quorum required.

Hard affinity. Reserved for diagnostics software.

10-microsecond delay value.

UNIBUS delay counter.

Set of seven longwords that tally the processor's clock ticks in kernel mode,
in executive mode, in supervisor mode, in user mode, on the interrupt stack, in
compatibility mode, and in kernel-mode spin-lock busy-wait state, respectively.

Clock ticks during which the null job has been the current process on this
processor.

CPU$W_UKERNEL* Reserved to DIGITAL.

CPU$W _UNULLCPU* Reserved to DIGIT AL.

CPU$W_CLKUTICS* Reserved to DIGITAL.

CPU$W_HARDAFF* Count of processes with hard affinity for this processor.

CPU$L_RANK_VEC* Longword recording the ranks of all spin locks currently held by the processor.
Spin lock acquisition code issues a Find First Set (FFS) instruction on this
longword to determine if the processor holds any locks that are lower ranked
than the one it seeks.

CPU$L_IPL_VEC* Vector recording, in inverse order, the IPLs of all spin locks currently held by
the processor (that is, bit 0 represents IPL 31).

CPU$L_IPL_ARRA Y* Array of 32 longwords, corresponding in inverse order to the 32 IPLs (that
is, the first longword represents IPL 31). Upon each successful spin lock
acquisition by this processor, the IPL vector corresponding to the spin lock's
synchronization IPL (SPL$B_IPL) is incremented.

CPU$L_ TPOINTER* Address of the sanity timer (CPU$W_SANITY_ TIMER) of the active processor
with the next highest CPU ID.

CPU$W_SANITY_ TIMER* Number of sanity cycles before this processor times out.

CPU$W_SANITY_ TICKS* Number of clock ticks until the next sanity cycle.

A.5 Channel Request Block (CRB)
The activity of each controller in a configuration is described in a channel
request block (CRB). This data structure contains pointers to the wait queue of
drivers ready to gain access to a device through the controller. It also stores
the entry points to the driver's interrupt service routines and unit/ controller
initialization routines.

The channel request block is illustrated in Figure A-6 and described in
Table A-5.

A-17

Data Structures
A.5 Channel Request Block (CRB)

Figure A-6 Channel Request Block (CRB)

CRB$L_FQFL 00

CRB$L_FQBL 04

CRB$B_FLCK l CRB$B_ TYPE• l CRB$W_SIZE• 08

CRB$L_FPC 12

CRB$L_FR3 16

CRB$L_FR4 20

CRB$L_WQFL• 24

CRB$L_WQBL• 28

unused l CRB$B_ TL TYPE• 32

CRB$B_UNILBRK• I CRB$B_MASK * I CRB$W_REFC• 36

CRB$L _AUXSTRUC 40

CRB$L_ TIMELINK• 44

CRB$L_DUETIME• 48

CRB$L_ TOUTROUT• 52

CRB$L_LINK• 56

CRB$L_DLCK• 60

CRB$L _BUGCHECK • 64

....,
*

....,

i--~~~~~~~~~-C-R-B-$L ___ R_T_IN_T_D~(1_2_b-yt-e-s)~~~~~~~~~---il68
CRB$L _INTD• (40 bytes) 80

CRB$L_BUGCHECK2• 120

CRB$L_RTINTD2• (12 bytes)

...._~~~~~~~~~~C-RB_$_L ___ IN_T_D_2·-(-40~by-te_s_)~~~~~~~~~--J'36
ZK-6632-HC

A-18

Data Structures
A.5 Channel Request Block (CRB)

Table A-5 Contents of Channel Request Block

Field Name

CRB$L_FQFL

CRB$L_FQBL

CRB$W _SIZE*

CRB$B_ TYPE*

CRB$B_FLCK

CRB$L_FPC

CRB$L_FR3

CRB$L_FR4

CRB$L_WQFL*

CRB$L_WQBL*

CRB$B_ TT_ TYPE*

CRB$W _REFC*

Contents

Fork queue forward link. The link points to the next entry in the fork queue.

Controller initialization routines write this field when they must drop IPL to utilize
certain executive routines, such as those that allocate memory, that must be
called at a lower IPL. The CRB timeout mechanism also uses the CRB fork block
to lower IPL prior to calling the CRB timeout routine.

Fork queue backward link. The link points to the previous entry in the fork queue.

Size of CRB. The driver-loading procedure writes this field when it creates the
CRB.

Type of data structure. The driver-loading procedure writes the symbolic constant
DYN$C_CRB into this field when it creates the CRB.

Fork lock at which the controller's fork operations are synchronized. If it must use
the CRB fork block, a driver either uses a DPT _STORE macro to initialize this field
or explicitly sets its value within the controller initialization routine.

Address of instruction at which execution resumes when the VMS fork dispatcher
dequeues the fork block. EXE$FORK writes this field when called to suspend
driver execution.

Value of R3 at the time that the executing code requests VMS to create a fork
block. EXE$FORK writes this field when called to suspend driver execution.

Value of R4 at the time that the executing code requests VMS to create a fork
block. EXE$FORK writes this field when called to suspend driver execution.

Controller data channel wait queue forward link. IOC$REOxCHANy and
IOC$RELxCHAN insert and remove driver fork block addresses in this field.

A channel wait queue contains addresses of driver fork blocks that record
the context of suspended drivers waiting to gain control of a controller data
channel. If a channel is busy when a driver requests access to the channel,
IOC$REOxCHANy suspends the driver by saving the driver's context in the
device's UCB fork block and inserting the fork block address in the channel wait
queue.

When a driver releases a channel because an 1/0 operation no longer needs the
channel, IOC$RELxCHAN dequeues a driver fork block, allocates the channel to
the driver, and reactivates the suspended driver fork process. If no drivers are
awaiting the channel, IOC$RELxCHAN clears the channel busy bit.

Controller channel wait queue backward link. IOC$REQxCHANy and
IOC$RELxCHAN read and write this field.

Type of controller (for instance, DZ 11 or DZ32) for terminals. A terminal port
driver fills in this field.

UCB reference count. The driver-loading procedure increases the value in this field
each time it creates a UCB for a device attached to the controller.

A-19

Data Structures
A.5 Channel Request Block (CRB)

Table A-5 (Cont.) Contents of Channel Request Block

Field Name

CRB$B_MASK *

CRB$B_UNIT _BRK *

CRBtL_AUXSTRUC

CRB$L_ TIMELINK*

CRB$L _DUETIME*

CRB$L_ TOUTROUT*

CRB$L_LINK*

CRB$L _DLCK *

CRB$L _BUGCHECK *

CRB$L _RTINTD*

A-20

Contents

Mask that describes controller status.

The following fields are defined in CRB$B_MASK:

CRB$V_BSY Busy bit. IOC$REQxCHANy reads the busy bit to
determine whether the controller is free and sets this
bit when it allocates the controller data channel to a
driver. IOC$RELxCHAN clears the busy bit if no driver is
waiting to acquire the channel.

CRB$V_UNINIT Indication, when set, that the VMS adapter initialization
routine has created a CRB for a generic V AXBI device,
but has not yet called its controller initialization routine.
SYSGEN reads this bit to determine whether to call the
controller initialization routine and clears it when the
initialization routine completes. This facilitates SYSGEN's
processing of multiunit generic V AXBI devices.

Break bits for terminal lines. Used by VMS terminal port drivers.

Address of auxiliary data structure used by device driver to store special controller
information. A. device driver requiring such a structure generally allocates a block
of nonpaged dynamic memory in its controller initialization routine and places a
pointer to it in this field.

Forward link in queue of CRBs waiting for periodic wakeups. This field points to
the CRB$L_ TIMELINK field of the next CRB in the list. The CRB$L_ TIMELINK field
of the last CRB in the list contains zero. The listhead for this queue is IOC$GL_
CRBTMOUT. Use of this field is reserved to DIGIT AL.

Time in seconds, relative to EXE$GL_ABSTIM, at which next periodic wakeup
associated with the CRB is to be delivered. Compute this value by raising IPL
to IPL$_POWER, adding the desired number of seconds to the contents of
EXE$GL_ABSTIM, and storing the result in this field. Use of this field is reserved
to DIGITAL.

Address of routine to be called at fork IPL (holding a corresponding fork lock
if necessary) when a periodic wakeup associated with CRB becomes due. The
routine must compute and reset the value in CRB$L_DUETIME if another periodic
wakeup request is desired. Use of this field is reserved to DIGIT AL.

Address of secondary CRB (for MASSBUS devices only). This field is written by
the driver-loading procedure and read by IOC$REOSCHANx and IOC$RELSCHAN.

Address of controller's device lock. The driver-loading procedure initializes this
field and propagates it to each UCB it creates for the device units associated with
the controller.

Bugcheck data used to issue an ILLOBUSCFG bugcheck when the multilevel
interrupt dispatching code (at CRB$L _RTINTD) determines that a 022 bus is
illegally configured.

Portion of interrupt transfer vector created at system initialization when a
MicroVAX 3600-series system or MicroVAX II system implements multilevel
device interrupt dispatching. The code stored in this 12-byte field implements
a conditional lowering to device IPL. See Figure A-7 and Table A-6 for a
description of the contents of the interrupt transfer vector.

Data Structures
A.5 Channel Request Block (CRB)

Table A-5 (Cont.) Contents of Channel Request Block

Field Name Contents

CRB$L_INTD* Interrupt transfer vector. This 10-longword field (described in Figure A-7

CRB$L_BUGCHECK2*

CRB$L _RTINTD2*

CRB$L_INTD2*

and Table A-6) stores executable code, driver entry points, and 1/0 adapter
information. It contains pointers to the driver's controller and unit initialization
routines, the interrupt dispatch block (IDB), and the adapter control block (ADP).
It may also contain fields that describe the disposition of a controller's data paths
and map registers. The interrupt transfer routine is located at the top of the
interrupt transfer vector.

Although certain of the symbolic offsets defined in the data structure definition
macro $VECDEF have negative values, driver code can uniformly refer to the
contents of the VEC structure in the following form:

CRB$L_INTD+VEC$x_symbo/.

Bugcheck data used to issue an ILLQBUSCFG bugcheck when the multilevel
interrupt dispatching code (at CRB$L_RTINTD2) determines that the 022 bus is
illegally configured.

Portion of second interrupt transfer vector initialized and used if multilevel interrupt
dispatching is enabled in a MicroVAX 3600-series system or MicroVAX II system.
See Figure A-7 and Table A-6 for a description of the contents of the interrupt
transfer vector.

Second interrupt transfer vector for devices with multiple interrupt vectors. The
data structure definition macro $CRBDEF supplies symbolic offsets for only the
first two interrupt transfer vector structures.

VMS creates the appropriate number of interrupt transfer vector structures (as
shown in Figure A-7) within a CRB if a driver specifies that the addresses of
additional interrupt service routines be loaded into these structures. For example:

DPT_STORE,CRB,CRB$L_INTD2+VEC$L_ISR,D,isr_for_vec2
DPT_STORE,CRB,CRB$L_INTD+(2*VEC$K_LENGTH)+VEC$L_ISR,D,isr_for_vec3

The offset of the nth vector located within the CRB is equal to the result of the
following formula:

CRB$L_INTD+(n*VEC$K_LENGTH)

VMS automatically initializes the interrupt dispatching instructions and the data
structure locations from information located in the primary vector. The number
of device vectors and vector structures actually created can be overridden by the
value specified in the /NUMVEC qualifier to the SYSGEN command CONNECT.

A-21

Data Structures
A.5 Channel Request Block (CRB)

Figure A-7 Interrupt Transfer Vector Block (VEC)

1~~~~~~~~~~~~V-EC_$_L ___ su_G_c_H_Ec_K_*~~~~~~~~~~--tl -16

VEC$L RTINTD (12 b -12 ~ - * ytes

VEC$L_INTD* 00

VEC$L_ISR 04

VEC$L_IDB* 08

VEC$L _INITIAL 12

VEC$B_DATAPATH l VEC$B_NUMREG] VEC$W_MAPREG 16

VEC$L_ADP* 20

VEC$L_UNITINIT* 24

VEC$L_ST ART* 28

VEC$L _UNITDISC* 32

VEC$W_NUMAL T] VEC$W_MAPAL T 36

ZK-6633-HC

A-22

Data Structures
A.5 Channel Request Block (CRB)

Table A-6 Interrupt Dispatch Vector Block (VEC)

Field Name Contents

VEC$L _BUGCHECK *

VEC$L_RTINTD*

VEC$L_INTD*

VEC$L_ISR

VEC$L_IDB*

VEC$L_INITIAL

Bugcheck data used to issue an ILLOBUSCFG bugcheck when the multilevel
interrupt dispatching code determines that the 022 bus is illegally configured.

Portion of interrupt transfer vector created at system initialization when a
MicroVAX 3600-series system or MicroVAX II system implements multilevel
device interrupt dispatching. The code stored in this 12-byte field implements a
conditional lowering to device IPL, as follows:

CMPZV #PSL$V_IPL, #PSL$S_IPL,-
4(SP), s-#DIPL

BGEQ BUGCHECK
SETIPL s-#DIPL

Interrupt dispatching code, written by the driver-loading procedure as follows:

PUSHR #-M<RO,R1,R2,R3,R4,R5>
JSB ©#

The destination of the JSB instruction is the driver's interrupt service routine, as
indicated at offset VEC$L_ISR. Under normal operations, direct-vector UNIBUS
or 022 bus adapters-as well as V AXBI system interrupt dispatching-transfer
control to CRB$L_INTD. The code located here causes the processor to execute
the PUSHR instruction to save RO through R5 on the stack and execute a JSB
instruction to transfer control to the driver's interrupt service routine.

In dispatching interrupts from non-direct-vector UNIBUS adapters, the UNIBUS
adapter interrupt service routine transfers control to CRB$L_INTD+2, which
contains the JSB instruction to the driver's interrupt service routine. Because
the UNIBUS adapter's interrupt service routine has already saved RO through R5,
interrupt dispatching bypasses the PUSHR instruction in these instances.

This field, plus VEC$L_ISR, is also known as VEC$0_DISPATCH.

The DPT in every driver for an interrupting device specifies the address of a driver
interrupt service routine.

Address of IDB for controller. The driver-loading procedure creates an IDB for
each CRB and loads the address of the IDB in this field: Device drivers use the
IDB address to obtain the virtual addresses of device registers.

When a driver's interrupt service routine gains control, the top of the stack
contains a pointer to this field.

Address of controller initialization routine. If a device controller requires
initialization at driver-loading time and during recovery from a power failure,
the driver specifies a value for this field in the DPT.

The driver-loading procedure calls this routine each time the procedure loads
the driver. The VMS power failure recovery procedure also calls this routine to
initialize a controller after a power failure.

A-23

Data Structures
A.5 Channel Request Block (CRB)

Table A-6 (Cont.) Interrupt Dispatch Vector Block (VEC)

Field Name

VEC$W_MAPREG

VEC$B_NUMREG

VEC$B_DA T APA TH

VEC$L_ADP*

VEC$L_UNITINIT*

A-24

Contents

The following bits are defined within VEC$W_MAPREG:
VEC$V_MAPREG Number of first standard map register allocated to the

driver that owns controller data channel.

IOC$REOMAPREG writes this field when the routine
allocates a set of standard map registers to a driver fork
process for a DMA transfer. IOC$RELMAPREG reads the
field to deallocate a set of map registers.

Device drivers read this field in calculating the starting
address of a UNIBUS or MicroVAX
3600-series/MicroVAX II 022 bus transfer.

VEC$V_MAPLOCK Map register set is permanently allocated (when set).

Number of UNIBUS adapter or MicroVAX 022 bus standard map registers
allocated to driver. IOC$REOMAPREG writes this 15-bit field when the routine
allocates a set of standard map registers. IOC$RELMAPREG reads this field to
deallocate a set of standard map registers.

Data path specifier. The bits that make up this field are used as follows:
VEC$V_DA T APA TH Number of data path used in DMA transfer. The routine

IOC$REODA TAP writes this 5-bit field when a buffered
data path is allocated and clears the field when the data
path is released.

VEC$V_LWAE

<6>
VEC$V_P A TH LOCK

The routine IOC$LOADUBAMAP copies the contents
of this field into UNIBUS adapter map registers. These
bits also serve as implicit input to the IOC$PURGDA TAP
routine.

Longword access enable (LW AE) bit. Drivers set
this bit when they wish to limit the data path to
longword-aligned, random-access mode. The routine
IOC$LOADUBAMAP copies the value in this field to the
UNIBUS adapter map registers.

Reserved to DIGIT AL.

Buffered data path allocation indicator. Drivers set this
bit to specify that the buffered data path is permanently
allocated.

Address of ADP. The SYSGEN command CONNECT must specify the nexus
number of the UNIBUS adapter used by a controller. The driver-loading procedure
writes the address of the ADP for the specified UBA into the VEC$L_ADP field.

IOC$REOMAPREG, IOC$REQAL TMAP, and IOC$RELMAPREG read and write fields
in the ADP to allocate and deallocate map registers.

Address of device driver's unit initialization routine. If a device unit requires
initialization at driver-loading time and during recovery from a power failure, the
driver specifies a value for this field in the DPT. The driver-loading procedure calls
this routine for each device unit each time the procedure loads the driver. The
VMS power failure recovery procedure also calls this routine to initialize device
units after a power failure.

MASSBUS drivers that support mixed device types must not use this field.
Instead, they should specify the unit initialization routine in the unit initialization
field of the DDT (DDT$L_UNITINIT). Other drivers can use either field.

Data Structures
A.5 Channel Request Block (CRB)

Table A-6 (Cont.) Interrupt Dispatch Vector Block (VEC)

Field Name Contents

VEC$L_START* Address of VMS start protocol routine. Use of this field is reserved to DIGITAL.

VEC$L_UNITDISC* Address of unit disconnect routine. Use of this field is reserved to DIGIT AL.

VEC$W_MAPALT The following bits are defined within VEC$W_MAPAL T:

VEC$W _NUMAL T

VEC$V_MAPAL T Number of first 022 bus alternate map register allocated
to driver that owns controller data channel.

VEC$V_AL TLOCK

IOC$REOAL TMAP writes this field when the routine
allocates a set of 022 bus alternate map registers
to a driver fork process for a OMA transfer.
IOC$RELMAPREG reads the field to deallocate a set
of map registers.

Device drivers read this 15-bit field in calculating the
starting address of a MicroVAX 3600-series/MicroVAX
II 022 bus transfer that uses a set of alternate map
registers.

Alternate map register set is permanently allocated
(when set).

Number of 022 bus alternate map registers allocated to driver. IOC$REOAL TMAP
writes this field when allocating a set of alternate map registers.
IOC$RELMAPREG reads this field to deallocate a set of alternate map registers.

A.6 Device Data Block (DOB)
The device data block (DDB) is a block that identifies the generic
device/ controller name and driver name for a set of devices attached to
a single controller. The driver-loading procedure creates a DDB for each
controller during autoconfiguration at system startup, and dynamically creates
additional DDBs for new controllers as they are added to the system using
the SYSGEN command CONNECT. The procedure initializes all fields in the
DDB. All the DDBs in the 1/0 database are linked in a singly linked list. The
contents of IOC$GL _DEVLIST point to the first entry in the list.

VMS routines and device drivers refer to the DDB.

The device data block is illustrated in Figure A-8 and described in
Table A-7.

A-25

Data Structures
A.6 Device Data Block (DOB)

Figure A-8 Device Data Block (DOB)

DDB$L_LINK• 00

DDB$L_UCB• 04

unused I DDB$8_ TYPE• I DDB$W_SIZE• 08

DDB$L_DDT 12

DDB$L_ACPD 16

~ .
I~~~~~~~~~~-D-D-B-$T ___ N_A_M_E_(-16~by-te_s_)~~~~~~~~~-tI20

DDB$T DRVNAME (16 b 36 "i' - * ytes

DDB$L_SB• 52

DDB$L_CONLINK• 56

DDB$L _ALLOCLS• 60

DDB$L_2P_UCB• 64

ZK-6634-HC

A-26

Data Structures
A. 6 Device Data Block (DOB)

Table A-7 Contents of Device Data Block

Field Name

DDB$L_LINK*

DDB$L_UCB*

DDB$W _SIZE*

DDB$B_ TYPE*

DDB$L_DDT

DDB$L_ACPD

DDB$T_NAME*

DDB$T _DRVNAME*

DDB$L_SB*

DDB$L _CONLINK *

DDB$L_ALLOCLS*

DDB$L_2P_UCB*

Contents

Address of next DOB. A zero indicates that this is the last DOB in the DOB chain.

Address of UCB for first unit attached to controller.

Size of DOB.

Type of data structure. The driver-loading procedure writes the constant DYN$C_
DOB into this field when the procedure creates the DOB.

Address of DDT. VMS can transfer control to a device driver only through
addresses listed in the DDT, the CRB, and the UCB fork block. The DPT of every
device driver must specify a value for this field.

Name of default ACP (or XQP) for controller. ACPs that control access to file­
structured devices (or the XQP) use the high-order byte of this field, DDB$B_
ACPCLASS, to indicate the class of the file-structured device. If the ACP_
MULTIPLE system parameter is set, the initialization procedure creates a unique
ACP for each class of file-structured device.

Drivers initialize DDB$B_ACPCLASS by invoking a DPT_STORE macro. Values for
DDB$B_ACPCLASS are as follows:

DDB$K_PACK Standard disk pack

DDB$K_CART

DDB$K_SLOW

DDB$K_TAPE

Cartridge disk pack

Floppy disk

Magnetic tape that simulates file-structured device

Generic name for the devices attached to controller. The first byte of this field is
the number of characters in the generic name. The remainder of the field consists
of a string of up to 15 characters that, suffixed by a device unit number, identifies
devices on the controller.

Name of device driver for controller. The first byte of this field is the number of
characters in the driver name. The remainder of the field contains a string of up
to 15 characters taken from the DPT in the driver.

Address of system block.

Address of next DOB in the connection subchain.

Allocation class of device.

Address of the first UCB on the secondary path. Another name for this field is
DDB$L _DP _UCB.

A. 7 Driver Dispatch Table (DDT)
Each device driver contains a driver dispatch table (DDT). The DDT lists entry
points in the driver that VMS routines call: for instance, the entry point for
the driver start-1/0 routine.

A device driver creates a DDT by invoking the VMS macro DDTAB. The
fields in the driver dispatch table are illustrated in Figure A-9 and described
in Table A-8.

A-27

Data Structures
A. 7 Driver Dispatch Table (DDT)

Figure A-9 Driver Dispatch Table (DDT)

DDT$L_START 00

DDT$L_UNSOLINT 04

DDT$L_FDT 08

DDT$L _CANCEL 12

DDT$L_REGDUMP 16

DDT$W _ERRORBUF l DDT$W _DIAGBUF 20

DDT$L _UNITINIT 24

DDT$L_ALTSTART 28

DDT$L_MNTVER 32

DDT$L_CLONEDUCB 36

unused l DDT$W _FDTSIZE• 40

DDT$L _MNTV_SSSC• 44

DDT$L _MNTV_FOR• 48

DDT$L _MNTV_SQD• 52

DDT$L _AUX_STQRAGE• 56

DDT$L _AUX _RQUTINE• 60

ZK-6635-HC

A-28

Data Structures
A. 7 Driver Dispatch Table (DDT)

Table A-8 Contents of Driver Dispatch Table

Field Name Contents

DDT$L_START

DDT$L_UNSOLINT

DDT$L_FDT

DDT$L _CANCEL

DDT$L_REGDUMP

DDT$W _DIAGBUF

DDT$W _ERRORBUF

DDT$L_UNITINIT

DDT$L _AL TST ART

Entry point to the driver's start-1/0 routine. Every driver must specify this
address in the start argument to the DDT AB macro.

When a device unit is idle and an 1/0 request is pending for that unit,
IOC$1NITIATE transfers control to the address contained in this field.

Entry point to a MASSBUS driver's unsolicited-interrupt service routine. The
driver specifies this address in the unsolic argument to the DDTAB macro.

This field contains the address of a routine that analyzes unexpected interrupts
from a device. The standard interrupt service routine, the address of which
is stored in the CRB, determines whether an interrupt was solicited by a
driver. If the interrupt is unsolicited, the interrupt service routine can call the
unsolicited-interrupt service routine.

Address of the driver's FDT. Every driver must specify this address in the
functb argument to the DDT AB macro.

EXE$010 refers to the FDT to validate 1/0 function codes, decide which
functions are buffered, and call FDT routines associated with function codes.

Entry point to the driver's cancel-1/0 routine. The driver specifies this address in
the cancel argument to the DDT AB macro.

Some devices require special cleanup processing when a process or a VMS
routine cancels an 1/0 request before the 1/0 operation completes or when the
last channel is deassigned. The $DASSGN, $DALLOC, and $CANCEL system
services cancel 1/0 requests.

Entry point to the driver's register dumping routine. The driver specifies this
address in the regdmp argument to the DDT AB macro.

IOC$DIAGBUFILL, ERL$DEVICERR, and ERL$DEVICTMO call the address
contained in this field to write device register contents into a diagnostic buffer
or error message buffer.

Size of diagnostic buffer. The driver specifies this value in the diagbf argument
to the DDT AB macro. The value is the size in bytes of a diagnostic buffer for
the device.

When EXE$010 preprocesses an 1/0 request, it allocates a system buffer of the
size recorded in this field (if it contains a nonzero value) if the process requesting
the 1/0 has DIAGNOSE privilege and specifies a diagnostic buffer in the 1/0
request. IOC$DIAGBUFILL fills the buffer after the 1/0 operation completes.

Size of error message buffer. The driver specifies this value in the erlgbf
argument to the DDT AB macro. The value is the size in bytes of an error
message buffer for the device.

If error logging is enabled and an error occurs during an 1/0 operation, the driver
calls ERL$DEVICERR or ERL$DEVICTMO to allocate and write error-logging data
into the error message buffer. IOC$1NITIATE and IOC$REOCOM write values
into the buffer if an error has occurred.

Address of the device's unit initialization routine, if one exists. Drivers for
MASSBUS devices use this field rather than CRB$L_INTD+VEC$L_UNITINIT.
Drivers for UNIBUS, VAXBI, and 022 devices can use either field.

Address of a driver's alternate start-1/0 routine. EXE$AL TOUEPKT transfers
control to the alternate start-1/0 routine at this address.

A-29

Data Structures
A. 7 Driver Dispatch Table (DDT)

Table A-8 (Cont.) Contents of Driver Dispatch Table

Field Name Contents

DDT$L _MNTVER Address of the VMS routine (IOC$MNTVER) called at the beginning and end
of mount verification operation. The mntver argument to the DPT AB macro
defaults to this routine. Use of the mntver argument to call any routine other
than IOC$MNTVER is reserved to DIGIT AL.

DDT$L _CLONEDUCB Address of routine to call when UCB is cloned.

DDT$W_FDTSIZE* Number of bytes in FDT. The driver-loading procedure uses this field to relocate
addresses in the FDT to system virtual addresses.

DDT$L_MNTV_SSSC* Address of routine to call when performing mount verification for a shadow-set
state change. Use of this field is reserved to DIGIT AL.

DDT$L _MNTV_FOR* Address of routine to call when performing mount verification for a foreign
device. Use of this field is reserved to DIGIT AL.

DDT$L _MNTV_SOD* Address of routine to call when performing mount verification for a sequential
device. Use of this field is reserved to DIGIT AL.

DDT$L_AUX_ Address of auxiliary storage area. Use of this field is reserved to DIGIT AL.
STORAGE*

DDT$L_AUX_RQUTINE* Address of auxiliary routine. Use of this field is reserved to DIGIT AL.

A.8 Driver Prologue Table (DPT)

A-30

When loading a device driver and its database into virtual memory, the
driver-loading procedure finds the basic description of the driver and its
device in a driver prologue table (DPT). The DPT provides the length, name,
adapter type, and loading and reloading specifications for the driver.

A device driver creates a DPT by invoking the VMS macros DPTAB and
DPT~STORE. The driver prologue table is illustrated in Figure A-10 and
described in Table A-9.

Data Structures
A.8 Driver Prologue Table (DPT)

Figure A-10 Driver Prologue Table (DPT)

DPT$L_FLINK* 00

DPT$L_BLINK* 04

DPT$B_REFC• I DPT$B_ TYPE* DPT$W_SIZE 08

DPT$W _UCBSIZE unused l DPT$B_ADPTYPE 12

DPT$L_FLAGS 16

DPT$W_REINITT AB DPT$W_INITT AB 20

DPT$W _MAXUNITS DPT$W_UNLOAD 24

DPT$W _DEFUNITS DPT$W _VERSION* 28

DPT$W _VECTOR DPT$W _DELIVER 32

~~ DPT$LNAME (12 bytes) ~ 36

DPT$Q_LINKTIME* 48

DPT$L_ECOLEVEL* 56

DPT$L_UCODE• 60

DPT$Q_LMF_ 1* 64

DPT$Q_LMF _2* 72

DPT$Q_LML3* 80

DPT$Q_LMF _4* 88

DPT$Q_LMF _5* 96

DPT$Q_LMF _6* 104

DPT$Q_LMF _7* 112

DPT$Q_LML8* 120

DPT$W _DECW _SNAME* 124

ZK-6636-HC

A-31

Data Structures
A.8 Driver Prologue Table (DPT)

Table A-9 Contents of Driver Prologue Table

Field Name

DPT$L_FLINK*

DPT$L _BLINK*

DPT$W_SIZE

DPT$B_ TYPE*

DPT$B_REFC*

DPT$B_ADPTYPE

DPT$W _UCBSIZE

DPT$L_FLAGS

A-32

Contents

Forward link to next DPT. The driver-loading procedure writes this field. The
procedure links all DPTs in the system in a doubly linked list.

Backward link to previous DPT. The driver-loading procedure writes this field.

Size in bytes of the driver. The DPT AB macro writes this field by subtracting
the address of the beginning of the DPT from the address specified as the end
argument to the DPT AB macro. The driver-loading procedure uses this value to
determine the space needed in nonpaged system memory to load the driver.

Type of data structure. The DPT AB macro always writes the symbolic constant
DYN$C_DPT into this field.

Number of DDBs that refer to the driver. The driver-loading procedure
increments the value in this field each time the procedure creates another
DDB that points to the driver's DDT.

Type of adapter used by the devices using this driver. Every driver must specify
the suing "UBA", "MBA", "GENBI", "NULL", or "DR" as the value of the adapter
argument to the DPT AB macro. 022 bus drivers should specify "UBA" as the
adapter type. The macro writes the value A T$_UBA, A T$_MBA, or AT$_
GENBI in this field.

Size in bytes of the unit control block for a device that uses this driver. Every
driver must specify a value for this field in the ucbsize argument to the DPT AB
macro.

The driver-loading procedure allocates blocks of nonpaged system memory of
the specified size when creating UCBs for devices associated with the driver.

Driver-loading flags. The driver can specify any of a set of flags as the value of
the flags argument to the DPT AB macro. The driver-loading procedure modifies
its loading and reloading algorithm based on the settings of these flags.

Flags defined in the flag field include the following:

DPT$V_SUBCNTRL Device is a subcontroller.

DPT$V_SVP

DPT$V_NOUNLOAD

DPT$V_SCS

DPT$V_DUSHADOW

DPT$V_SCSCI

DPT$V_BVPSUBS

Device requires permanent system page to be
allocated during driver loading.

Driver cannot be reloaded.

SCS code must be loaded with this driver.

Driver is the shadowing disk class driver.

Common SCS/CI subroutines must be loaded with
this driver.

Common BVP subroutines must be loaded with this
driver.

DPT$V_UCODE Driver has an associated microcode image.

DPT$V_SMPMOD Driver has been designed to run in a VMS
multiprocessing environment.

DPT$V_DECW_DECODE Driver is a decoding driver.

This field is also known as DPT$B_FLAGS.

Data Structures
A.8 Driver Prologue Table (DPT)

Table A-9 (Cont.) Contents of Driver Prologue Table

Field Name

DPT$W _INITT AB

DPT$W _REINITT AB

DPT$W_UNLOAD

DPT$W _MAXUNITS

DPT$W _VERSION*

DPT$W _DEFUNITS

DPT$W _DELIVER

DPT$W _VECTOR

DPT$T_NAME

DPT$Q _LINKTIME*

DPT$L _ECOLEVEL *

DPT$L_UCODE*

Contents

Offset to driver initialization table. Every driver must specify a list of data
structure fields and values to be written into the fields at the time that the
driver-loading procedure creates the driver's data structures and loads the
driver.

The driver invokes the VMS macro DPT _STORE to specify these fields and their
values.

Offset to driver-reinitialization table. Every driver must specify a list of data
structure fields and values to be written into these fields at the time that the
driver-loading procedure creates the driver's data structures and loads the driver
or the driver is reloaded.

The driver invokes the VMS macro DPT _STORE to specify these fields and their
values.

Relative address of driver routine to be called when driver is reloaded. The
driver specifies this field with the value of the unload argument to the DPT AB
macro. The driver-loading procedure calls the driver unloading routine before
reinitializing all device units associated with the driver.

Maximum number of units on controller that this driver supports. Specify this
value in the maxunits argument to the DPT AB macro. If no value is specified,
the default is eight units.

Version number that identifies format of DPT. The DPT AB macro automatically
inserts a value in this field. SYSGEN checks its copy of the version number
against the value stored in this field. If the values do not match, an error is
generated. To correct the error, reassemble and relink the driver.

Number of UCBs that the VMS autoconfiguration facility will automatically create.
Drivers specify this number with the defunits argument to the DPT AB macro. If
the driver also gives a value to DPT$W _DELIVER, this field is also the number
of times that the autoconfiguration facility calls the unit delivery routine.

Relative address of the unit delivery routine that autoconfiguration facility calls
for the number of UCBs specified in DPT$W_DEFUNITS. The driver supplies
the address of the unit delivery routine in the deliver argument to the DPT AB
macro.

Relative address of a driver-specific vector. A terminal class or port driver
stores the address of its class or port entry vector table in this field.

Name of the device driver. Field is 12 bytes. One byte records the length of the
name string; the name string can be up to 11 characters. Drivers specify this
field as the value of the name argument to the DPT AB macro.

The driver-loading procedure compares the name of a driver to be loaded with
the values in this field in all DPTs already loaded into system memory to ensure
that it loads only one copy of a driver at a time.

Time and date at which driver was linked, taken from its image header.

ECO level of driver, taken from its image header.

Address of associated microcode image, if DPT$V_UCODE is set in DPT$L_
FLAGS. Use of this field is reserved to DIGIT AL.

A-33

Data Structures
A.8 Driver Prologue Table (DPT)

Table A-9 (Cont.) Contents of Driver Prologue Table

Field Name

DPT$Q_LMF _ 1 *

DPT$W_DECW_
SNAME*

Contents

First of eight quadwords reserved to DIGIT AL for the use of the VMS license
management facility. (The others are DPTQ_LMF_2, DPTQ_LMF_3, DPT$Q_
LMF _4, DPT$Q_LMF _5, DPT$Q_LMF _6, DPT$Q_LMF _7, and DPT$Q_LMF _
8.)

Offset to counted ASCII string used by decoding drivers.

A.9 Interrupt Dispatch Block (IDB)

A-34

The interrupt dispatch block (IDB) records controller characteristics. The
driver-loading procedure creates and initializes this block when the procedure
creates a CRB. The IDB points to the physical controller by storing the virtual
address of the CSR. The CSR is the indirect pointer to all device unit registers.

The interrupt dispatch block is illustrated in Figure A-11 and described in
Table A-10.

Figure A-11 Interrupt Dispatch Block (IDB)

108$L_CSR* 00

108$L_OWNER 04

108$8_ VECTOR* 108$8_ TYPE* 108$W _SIZE* 08

108$8_COM80_CSR* 108$8_ TLENA8LE* 108$W_UNITS* 12

unused 108$8_FLAGS* l 108$8_COM80_ VEC* 16

108$L_SPL* 20

108$L_AOP* 24

* l-~~~~~~~~~-IO_B_$_L __ u_C_B_LS-T~(3_2_b-yt-es-)~~~~~~~~~-l28
ZK-6637-HC

Data Structures
A.9 Interrupt Dispatch Block (IDB)

Table A-10 Contents of Interrupt Dispatch Block

Field Name

IDB$L_CSR*

IDB$L _OWNER

IDB$W _SIZE*

IDB$B_ TYPE*

IDB$B_ VECTOR*

IDB$W _UNITS*

IDB$B_ TT_ENABLE*

IDB$B_COMBO_CSR*

IDB$B_COMBO_ VEC*

IDB$B_FLAGS*

IDB$L_SPL*

IDB$L_ADP*

Contents

Address of CSR. The SYSGEN command CONNECT specifies the address of a
device's CSR. The driver-loading procedure writes the system virtual equivalent of
this address into the IDB$L_CSR field. Device drivers set and clear bits in device
registers by referencing all device registers at fixed offsets from the CSR address.

The driver-loading procedure tests the value of this field. If the value is not a CSR
address, it sets IDB$V_NO_CSR in IDB$L_FLAGS and places the device offline by
clearing UCB$V_ONLINE in UCB$L_STS. In this event, it does not call the driver's
controller and unit initialization routines.

Address of UCB of device that owns controller data channel. IOC$REQx CHANy
writes a UCB address into this field when the routine allocates a controller data
channel to a driver. IOC$RELx CHAN confirms that the proper driver fork process
is releasing a channel by comparing the driver's UCB with the UCB stored in
the IDB$L_OWNER field. If the UCB addresses are the same, IOC$RELx CHAN
allocates the channel to a waiting driver by writing a new UCB address into the
field. If no driver fork processes are waiting for the channel, IOC$RELxCHAN
clears the field.

If the controller is a single-unit controller, the unit or controller initialization routine
should write the UCB address of the single device into this field.

Size of IDB. The driver-loading procedure writes the constant IDB$K_LENGTH into
this field when the procedure creates the IDB.

Type of data structure. The driver-loading procedure writes the symbolic constant
DYN$C_IDB into this field when the procedure creates the IDB.

Interrupt vector number of the device, right-shifted by two bits. SYSGEN writes
a value into this field using either the autoconfiguration database or the value
specified in the /VECTOR qualifier to the CONNECT command. Drivers for devices
that define the interrupt vector address through a device register must use this
field to load that register during unit initialization and reinitialization after a power
failure.

Maximum number of units connected to the controller. The maximum number of
units is specified in the DPT and can be overridden at driver-loading time.

Reserved for use by the VMS terminal driver.

Address of the start of CSRs for a multicontroller device such as the DMF32.
(The name of this field is IDB$B_COMBO_CSR_OFFSET .)

Address of the start of interrupt vectors for a multicontroller device. (The name
of this field is IDB$B_COMBO_ VECTOR_OFFSET .)

Flags associated with the IDB. The only flag currently defined is IDB$V_NO_CSR.
The driver loading procedure sets this flag if IDB$L_CSR does not contain the
address of a CSR.

Address of the device lock that-in a VMS multiprocessing environment­
synchronizes access to device registers and those fields in the UCB accessed at
device IPL.

Address of the adapter's ADP. The SYSGEN CONNECT command must specify
the nexus number of the 1/0 adapter used by a device. The driver-loading
procedure writes the address of the ADP for the specified 1/0 adapter into the
IDB$L_ADP field.

A-35

A.10

Data Structures
A.9 Interrupt Dispatch Block (IDB)

Table A-10 (Cont.) Contents of Interrupt Dispatch Block

Field Name

IDB$L_UCBLST*

Contents

List of UCB addresses. The size of this field is the maximum number of units
supported by the controller, as defined in the DPT. The maximum specified in the
DPT can be overridden at driver load time. The driver-loading procedure writes a
UCB address into this field every time the routine creates a new UCB associated
with the controller.

1/0 Request Packet (IRP)

A-36

When a user process queues a valid 1/0 request by issuing a $QIO or $QIOW
system service, the service creates an 1/0 request packet (IRP). The IRP
contains a description of the request and receives the status of the 1/0
processing as it proceeds.

The 1/0 request packet is illustrated in Figure A-12 and described in
Table A-11. Note that the standard IRP contains space for fields required
by VMS multiprocessing and the VMS class drivers. Under no circumstances
should a non-DIGITAL-supplied driver use these fields.

Data Structures
A.10 1/0 Request Packet (IRP)

Figure A-12 1/0 Request Packet {IRP)

IRP$L_IOQFL 00

IRP$L_IOQBL 04

IRP$B_RMOD• l IRP$B_ TYPE• IRP$W _SIZE• 08

IRP$L_PID• 12

IRP$L_AST• 16

IRP$L_ASTPRM• 20

IRP$L_WIND• 24

IRP$L_UCB• 28

IRP$B_PRI• I IRP$B_EFN• IRP$W_FUNC 32

IRP$L_IOSB• 36

IRP$W_STS IRP$W_CHAN• 40

IRP$L_SV APTE 44

'---+
IRP$L_BCNT IRP$W_BOFF 48

IRP$W_STS2 IRP$L_BCNT

IRP$L_IOST1 56

IRP$L_IOST2 60

IRP$L_ABCNT 64

IRP$L_OBCNT 68

IRP$L_SEGVBN 72

IRP$L _DIAGBUF• 76

IRP$L _SEQNUM• 80

IRP$L _EXTEND 84

IRP$L_ARB• 88

IRP$L _KEYDESC• 92

cl,

J~~~~~~~~~~--~-re-s-er-ve_d_(-72~by-te_s_)~~~~~~~~~~___.J96
ZK-6638-HC

A-37

Data Structures
A.10 1/0 Request Packet (I RP)

Table A-11 Contents of an 1/0 Request Packet

Field Name Contents

IRP$L_IOOFL 1/0 queue forward link. EXE$1NSERTIRP reads and writes this field when the
routine inserts IRPs into a pending-1/0 queue. IOC$REQCOM reads and writes this
field when the routine dequeues IRPs from a pending-1/0 queue in order to send
an IRP to a device driver.

IRP$L_IOQBL 1/0 queue backward link. EXE$1NSERTIRP and IOC$REOCOM r~ad and write these
fields.

IRP$W _SIZE* Size of IRP. EXE$010 writes the symbolic constant IRP$C_LENGTH into this field
when the routine all,ocates and fills an IRP.

IRP$B_ TYPE* Type of data structure. EXE$010 writes the symbolic constant DYN$C_IRP into
this field when the routine allocates and fills an IRP.

IRP$B_RMOD* Information used by 1/0 postprocessing. This field contains the same bit fields
as the ACB$B_RMOD field of an AST control block. For instance, the two bits
defined at ACB$V_MODE indicate the access mode of the process at time of
the 1/0 request. EXE$010 obtains the processor access mode from the PSL and
writes the value into this field.

IRP$L_PID* Process identification of the process tha1 issued the 1/0 request. EXE$010
obtains the process identification from the PCB and writes the value into this field.

IRP$L_AST* Address of AST routine, if specified by the process in the 1/0 request. (This field
is otherwise clear.) If the process specifies an AST routine address in the $010
call, EXE$010 writes the address in this field.

IRP$L_ASTPRM*

IRP$L _WIND*

IRP$L_UCB*

IRP$W_FUNC

A-38

During 1/0 postprocessing, the special kernel-mode AST routine queues a user
mode AST to the requesting process if this field contains the address of an AST
routine.

Parameter sent as an argument to the AST routine specified by the user in the
1/0 request. If the process specifies an AST routine and a parameter to that AST
routine in the $010 call, EXE$010 writes the parameter in this field.

During 1/0 postprocessing, the special kernel-mode AST routine queues a user
mode AST if the IRP$L_AST field contains an address, and passes the value in
IRP$L_ASTPRM to the AST routine as an argument.

Address of window control block (WCB) that describes the file being accessed
in the 1/0 request. EXE$010 writes this field if the 1/0 request refers to a
file-structured device. An ACP or XQP reads this field.

When a process gains access to a file on a file-structured device or creates a
logical link between a file and a process 1/0 channel, the device ACP er--XQP
creates a WCB that describes the virtual-to-logical mapping of the file data on the
disk. EXE$OIO stores the address of this WCB in the IRP$L_WIND field.

Address of UCB for the device assigned to the process's 1/0 channel. EXE$QIO
copies this value from the CCB.

1/0 function code that identifies the function to be performed for the 1/0 request.
The 1/0 request call specifies an 1/0 function code; EXE$010 and driver FDT
routines map the code value to its most basic level (virtual ---+ logical ---+ physical)
and copy the reduced value into this field.

Based on this function code, EXE$010 calls FDT action routines to preprocess
an 1/0 request. Six bits of the function code describe the basic function. The
remaining 10 bits modify the function.

Data Structures
A.10 1/0 Request Packet (IRP)

Table A-11 (Cont.) Contents of an 1/0 Request Packet

Field Name

IRP$B_EFN*

IRP$B_PRI*

IRP$L_IOSB*

IRP$W _CHAN*

IRP$W_STS

Contents

Event flag number and group specified in 1/0 request. If the 1/0 request call
does not specify an event flag number, EXE$QIO uses event flag 0 by default.
EXE$QIO writes this field. The 1/0 postprocessing routine calls SCH$POSTEF to
set this event flag when the 1/0 operation is complete.

Base priority of the process that issued the 1/0 request. EXE$QIO obtains a value
for this field from the process's PCB. EXE$1NSERTIRP reads this field to insert an
IRP into a priority-ordered pending-1/0 queue.

Virtual address of the process's 1/0 status block (IOSB) that receives final status
of the 1/0 request at 1/0 completion. EXE$QIO writes a value into this field if the
1/0 request call specifies an IOSB address. (This field is otherwise clear.) The
1/0 postprocessing special kernel.,.mode AST routine writes two longwords of 1/0
status into the IOSB after the 1/0 operation is complete.

When an FDT routine aborts an 1/0 request by calling EXE$ABORTIO,
EXE$ABORTIO fills the IRP$L_IOSB field with zeros so that 1/0 postprocessing
does not write status into the IOSB.

Index number of process 1/0 channel for request. EXE$QIO writes this field.

Status of 1/0 request. EXE$QIO initializes this field to 0. EXE$QIO, FDT routines,
and driver fork processes modify this field according to the current status of
the 1/0 request. 1/0 postprocessing reads this field to determine what sort of
postprocessing is necessary (for example, deallocate system buffers and adjust
quota usage).

Bits in the IRP$W_STS field describe the type of 1/0 function, as follows:

IRP$V_BUFIO Buffered-1/0 function

IRP$V_FUNC

IRP$V_PAGIO

IRP$V_COMPLX

IRP$V_ VIRTUAL

IRP$V_CHAINED

IRP$V_sw APIO

IRP$V_DIAGBUF

IRP$V_PHYSIO

IRP$V_ TERMIO

IRP$V_MBXIO

IRP$V_EXTEND

IRP$V_FILACP

IRP$V_MVIRP

IRP$V_SRVIO

IRP$V_KEY

Read function

Paging-1/0 function

Complex-buffered-1/0 function

Virtual-1/0 function

Chained-buffered-1/0 function

Swapping-1/0 function

Diagnostic buffer is present

Physical-1/0 function

Terminal 1/0 (for priority increment calculation)

Mailbox-1/0 function

An extended IRP is linked to this IRP

File ACP 1/0

Mount-verification 1/0 function

Server-type 1/0

Encrypted function (encryption key address at
IRP$L _KEYDESC)

A-39

Data Structures
A.10 1/0 Request Packet (IRP)

Table A-11 (Cont.) Contents of an 1/0 Request Packet

Field Name

IRP$L_SVAPTE

IRP$W_BOFF

IRP$L_BCNT

IRP$W_STS2

IRP$L _IOST 1

A-40

Contents

For a direct-1/0 transfer, virtual address of the first page-table entry (PTE) of the
1/0-transfer buffer, written here by the FDT routine locking process pages; for
buffered-1/0 transfer, address of a buffer in system address space, written here
by the FDT routine allocating buffer.

IOC$1NITIATE copies this field into UCB$L_SVAPTE before transferring control to
a device driver start-1/0 routine.

1/0 postprocessing uses this field to deallocate the system buffer for a buffered-
1/0 transfer or to unlock pages locked for a direct-1/0 transfer.

Byte offset into the first page of a direct-1/0 transfer. FDT routines calculate this
offset and write the field.

For buffered-1/0 transfers, FDT routines must write the number of bytes to be
charged to the process in this field because these bytes are being used for a
system buffer.

IOC$1NITIA TE copies this field into UCB$W _BOFF before calling a device driver
start-1/0 routine.

1/0 postprocessing uses IRP$W_BOFF in conjunction with IRP$L_BCNT and
IRP$L_SVAPTE to unlock pages locked for direct 1/0. For buffered 1/0, 1/0
postprocessing adds the value of IRP$W_BOFF to the process byte count quota.

Byte count of the 1/0 transfer. FDT routines calculate the count value and write
the field. IOC$1NITIATE copies the low-order word of this field into UCB$W_
BCNT before calling a device driver's start-1/0 routine.

For a buffered-1/0-read function, 1/0 postprocessing uses IRP$L_BCNT to
determine how many bytes of data to write to the user's buffer.

The field IRP$W _BCNT points to the low-order word of this field to provide
compatibility with previous versions of VMS.

Second word of 1/0 request status. EXE$QIO initializes this field to 0. EXE$QIO,
FDT routines, and driver fork processes modify this field according to the current
status of the 1/0 request.

Bits in the IRP$W_STS2 field describe the type of 1/0 function, as follows:

IRP$V_START_PAST_HWM 1/0 starts past file highwater mark.

IRP$V_END_PAST _HWM

IRP$V_ERASE

IRP$V_PART_HWM

IRP$V_LCKIO

1/0 ends past file highwater mark.

Erase 1/0 function.

Partial file highwater mark update.

Locked 1/0 request, as used by DECnet direct
1/0.

First 1/0 status longword. IOC$REQCOM and EXE$FINISHIO(C) write the contents
of RO into this field. The 1/0 postprocessing routine copies the contents of this
field into the user's IOSB.

EXE$ZEROPARM copies a 0 and EXE$0NEPARM copies p1 into this field. This
field is a good place to put a $010 request argument (p1 through p6) or a
computed value.

This field is also called IRP$L_MEDIA.

A.11

Data Structures
A.10 1/0 Request Packet (IRP)

Table A-11 {Cont.) Contents of an 1/0 Request Packet

Field Name

IRP$L_IOST2

IRP$L _ABCNT

IRP$L _OBCNT

IRP$L _SEGVBN

IRP$L_DIAGBUF*

IRP$L_SEQNUM*

IRP$L_EXTEND

IRP$L_ARB*

IRP$L _KEYDESC

Contents

Second 1/0 status longword. IOC$REQCOM, EXE$FINISHIO, and EXE$FINISHIOC
write the contents of R1 into this field. The 1/0 postprocessing routine copies the
contents of this field into the user's IOSB.

The low byte of this field is also known as IRP$B_CARCON. IRP$B_CARCON
contains carriage control instructions to the driver. EXE$READ and EXE$WRITE
copy the contents of p4 of the user's 1/0 request into this field.

Accumulated bytes transferred in virtual 1/0 transfer. IOC$10POST reads and
writes this field after a partial virtual transfer.

The symbol IRP$W_ABCNT points to the low-order word of this field to provide
compatibility with previous versions of VMS.

Original transfer byte count in a virtual 1/0 transfer. IOC$10POST reads this
field to determine whether a virtual transfer is complete, or whether another 1/0
request is necessary to transfer the remaining bytes.

The symbol IRP$W_OBCNT points to the low-order word of this field to provide
compatibility with previous versions of VMS.

Virtual block number of the current segment of a virtual 1/0 transfer. IOC$10POST
writes this field after a partial virtual transfer.

Address of a diagnostic buffer in system address space. If the 1/0 request call
specifies a diagnostic buffer and if a diagnostic buffer length is specified in the
DDT, and if the process has diagnostic privilege, EXE$010 copies the buffer
address into this field.

EXE$QIO allocates a diagnostic buffer in system address space to be filled by
IOC$DIAGBUFILL during 1/0 processing. During 1/0 postprocessing, the special
kernel-mode AST routine copies diagnostic data from the system buffer into the
process diagnostic buffer.

1/0 transaction sequence number. If an error is logged for the request, this field
contains the universal error log sequence number.

Address of an IRPE linked to this IRP. FDT routines write an extension address
to this field when a device requires more context than the IRP can accommodate.
This field is read by IOC$10POST. IRP$V_EXTEND in IRP$W_STS is set if this
extension address is used.

Address of access rights block (ARB). This block is located in the PCB and
contains the process privilege mask and UIC, which are set up as follows:

ARB$Q_PRIV Quadword containing process privilege mask

SPARE$L Unused longword

ARB$L_UIC Longword containing process UIC

Address of encryption key.

1/0 Request Packet Extension (I RPE)
1/0 request packet extensions (IRPEs) hold additional 1/0 request
information for devices that require more context than the standard IRP
can accommodate. IRP extensions are also used when more than one buffer
(region) must be locked into memory for a direct-1/0 operation, or when a
transfer requires a buffer that is larger than 64K. An IRPE provides space for
two buffer regions, each with a 32-bit byte count.

A-41

Data Structures
A.11 1/0 Request Packet Extension (IRPE)

A-42

FDT routines allocate IRPEs by calling EXE$ALLOCIRP. Driver routin,es link
the IRPE to the IRP, store the IRPE's address in IRP$L_EXTEND and set
the bit field IRP$V_EXTEND in IRP$W_STS to show that an IRPE exists
for the IRP. The FDT routine initializes the contents of the IRPE. Any fields
within the extension not described in Table A-12 can store driver-dependent
information.

If the IRP extension specifies additional buffer regions, the FDT routine must
use those buffer locking routines that perform coroutine calls back to the
driver if the locking procedure fails (EXE$READLOCKR, EXE$WRITELOCKR,
and EXE$MODIFYLOCKR). If an error occurs during the locking procedure,
the driver must unlock all previously lock~d regions using MMG$UNLOCK
and deallocate the IRPE before returning to the buffer locking routine.

IOC$10POST automatically unlocks the pages in region 1 (if defined) and
region 2 (if defined) for all the IRPEs linked to the IRP undergoing completion
processing. IOC$IOPOST also deallocates all the IRPEs.

The I/O request packet extension is illustrated in Figure A-13 and described
in Table A-12.

Figure A-13 1/0 Request Packet Extension {IRPE)

unused 00

T IRPE$8_ TYPE* T IRPE$W_SIZE* 08

~ unused (31 bytes) ~~

IRPE$W_STS l
IRPE$L_sv APTE 1 40

unused l IRPE$W_BOFF1 44

IRPE$L_BCNT1 48

IRPE$L_SVAPTE2 52

unused l IRPE$W_BOFF2 56

IRPE$L_BCNT2 60

d '

li--~~--~~--~-------un-u-se_d_(-16_b_y-te-s)----------------------1l 8604 _ IRPE$L _EXTEND 1
ZK-6639-HC

A.12

Data Structures
A.11 1/0 Request Packet Extension {I RPE)

Table A-12 Contents of the 1/0 Request Packet Extension

Field Name

IRPE$W_SIZE*

IRPE$B_ TYPE*

IRPE$W_STS

IRPE$L_SVAPTE 1

IRPE$W _BOFF 1

IRPE$L _BCNT 1

IRPE$L_SVAPTE2

IRPE$W _BOFF2

IRPE$L _BCNT2

IRPE$L _EXTEND

Contents

Size of IRPE. EXE$ALLOCIRP writes the constant IRP$C_LENGTH to this field.

Type of data structure. EXE$ALLOCIRP writes the constant DYN$C_IRP to this
field.

IRPE status field. If bit IRPE$V_EXTENDIRPE is set, it indicates that another IRPE
is linked to this one.

System virtual address of the page-table entry (PTE) that maps the start of region
1. FDT routines write this field. If the region is not defined, this field is zero.

Byte offset of region 1. FDT routines write this field.

Size in bytes of region 1. FDT routines write this field.

System virtual address of the PTE that maps the start of region 2. Set by FDT
routines. This field contains a value of zero if region 2 is not defined.

Byte offset of region 2. This field is set by FDT routines.

Size in bytes of region 2. FDT routines write this field.

Address of next IRPE for this IRP, if any.

Object Rights Block (ORB)
The object rights block (ORB) is a data structure that describes the rights
a process must have in order to access the object with which the ORB is
associated.

The ORB is usually allocated when the device is connected by means of
SYSGEN's CONNECT command. SYSGEN also sets the address of the ORB
in UCB$L_ORB at that time.

The object rights block is illustrated in Figure A-14 and described in
Table A-13.

A-43

Data Structures
A.12 Object Rights Block (ORB)

Figure A-14 Object Rights Block (ORB)

ORB$L _OWNER 00

ORB$L _ACL _MUTEX 04

ORB$B_FLAGS 1 ORB$B_ TYPE• ORB$W _SIZE• 08

ORB$W _REFCOUNT unused 12

ORB$Q _MODE _PROT 16

ORB$L_SYS_PROT 24

ORB$L_OWN_PROT 28

ORB$L_GRP _PROT 32

ORB$L _ WQR_PROT 36

ORB$L_ACLFL 40

ORB$L_ACLBL 44

~

It--~~~~~~~~-O-R_B_$_K __ M_l_N ___ CL_A_S_S_(2_0_b_y-te-s)~~~~~~~~~~I4B

l-~~~~~~~~~O-R-B$_K ___ M_A_x ___ C_LA_S_S_(_20~by-te_s_)~~~~~~~~ J68

ZK-6640-HC

A-44

A.13

Data Structures
A.12 Object Rights Block (ORB}

Table A-13 Contents of Object Rights Block

Field

ORB$L_OWNER

ORB$L_ACL_MUTEX

ORB$W _SIZE*

ORB$B_ TYPE*

ORB$B_FLAGS

ORB$W _REFCOUNT

ORB$Q_MOOE_PROT

ORB$L_SYS_PROT

ORB$L _OWN_PROT

ORB$L_GRP_PROT

ORB$L_ WOR_PROT

ORB$L_ACLFL

ORB$L_ACLBL

ORB$R_MIN_CLASS

ORB$R_MAX _CLASS

Contents

UIC of the object's owner.

Mutex for the object's ACL, used to control access to the ACL for reading and
writing. The driver-loading procedure initializes this field with -1.

Size in bytes of ORB. The driver-loading procedure writes the symbolic constant
ORB$K_LENGTH into this field when it creates an ORB.

Type of data structure. The driver-loading procedure writes the symbolic constant
DYN$C_ORB into this field when it creates an ORB.

Flags needed for interpreting portions of the ORB that can have alternate
meanings. The following fields are defined within ORB$B_FLAGS:

ORB$V_PROT_ 16 The driver-loading procedure sets this bit to 1,
signifying SOGW protection.

ORB$V_ACL_QUEUE

ORB$V_MOOE_VECTOR

ORB$V_NOACL

ORB$V_CLASS_PROT

Reference count.

This flag represents the existence of an ACL queue.
The driver-loading procedure does not set this bit.

Use vector mode protection, not byte mode.

This object cannot have an ACL.

Security classification is valid.

Mode protection vector. The low byte of this quadword is known as ORB$B_
MODE.

System protection field. The low word of this field is known as ORB$W_PROT
and contains the standard SOGW protection.

Owner protection field.

Group protection field.

World protection field.

ACL queue forward link. If ORB$V_ACL_QUEUE is 0, this field should contain
0. This field is also known as ORB$L_ACL_COUNT and is cleared by the
driver-loading procedure.

ACL queue backward link. If ORB$V_ACL_QUEUE is 0, this field should contain
0. This field is also known as ORB$L_ACL_DESC and is cleared by the driver­
loading procedure.

Minimum classification mask.

Maximum classification :nask.

Spin Lock Data Structure (SPL}
The spin lock data structure records all information necessary to properly
grant, release, and record the ownership of a spin lock. Each static system
spin lock (including the fork locks) and device lock uses an SPL to record the
IPL required for spin lock acquisition, its rank, and its owner. The spin lock
structure also maintains a history of spin lock use and a variety of counters
used in accounting and debugging.

A-45

Data Structures
A.13 Spin Lock Data Structure (SPL)

Static system spin locks are assembled from module LDAT and are located
from a vector of longword addresses starting at SMP$AR_SPNLKVEC.
UCB$L_DLCK contains the address of the device lock for the corresponding
device unit.

The fields described in the spin lock data structure are illustrated in
Figure A-15 and described in Table A-14.

Figure A-1 5 Spin Lock Data Structure {SPL)

SPL$B_ VEC_INX* l SPL$B_RANK* SPL$B_IPL* I SPL$B_SPINLOCK•

SPL$W _ W AILCPUS* SPL$W _OWN_CNT*

SPL$B_SUBTYPE* 1 SPL$B_ TYPE* SPL$W _SIZE*

SPL$L _OWN _CPU*

~ SPL$L_OWN_PC_VEC* (32 bytes)

SPL$L_WAILPC*

SPL$Q_ACQ_COUNT*

SPL$L _Busy_ w AITS*

SPL$Q_SPINS*

SPL$L_ TIMO_INT*

SPL$L _RLS_PC*

00

04

08

12

::~ 16

48

52

60

64

72

76

ZK-6641-HC

Table A-14 Contents of the Spin Lock Data Structure

Field

SPL$B_SPINLOCK *

SPL$B_IPL*

SPL$B_RANK*

SPL$B_VEC_INX*

A-46

Contents

The following fields are defined within SPL$B_SPINLOCK:
SPL$V_INTERLOCK Spin lock access interlock. When set, this bit signifies

that the spin lock is owned.

< 7: 1 > Reserved to DIGIT AL.

IPL required for spin lock acquisition.

Spin lock rank. Note that the internal value of a spin lock's rank, as stored in this
field, is the inverse of the spin lock's logical rank, as displayed by the System
Dump Analyzer and listed in Table 3-3_ For instance, the structure of a spin lock
with a logical rank of 0 contains the value 31 in this field.

Index of the next entry to be written in the spin lock PC vector index (SPL$L_
OWN_PCVEC). SPL$B_VEC_INX is updated upon each successful acquisition or
release of the spin lock.

A.14

Data Structures
A.13 Spin Lock Data Structure (SPL)

Table A-14 (Cont.) Contents of the Spin Lock Data Structure

Field

SPL$W_OWN_CNT*

SPL$W _WAIT _CPUS*

SPL$W_SIZE*

SPL$B_ TYPE*

SPL$B_SUBTYPE*

SPL$L _OWN _CPU*

SPL$L_OWN_PC_
VEC*

SPL$L_WAIT_PC*

SPL$Q_ACQ_CQUNT*

SPL$L _BUSY_ WAITS*

SPL$Q_SPINS*

SPL$L_ TIMO_INT*

SPL$L_RLS_PC*

Contents

Ownership count. This field is -1 if the spin lock is unowned, zero or positive if
owned. When a processor initially acquires a spin lock, this field goes from -1
to zero. A positive ownership count signifies concurrent acquisitions by a single
processor.

Number of processors waiting to obtain the spin lock.

Size of spin lock data structure (SPL$C_LENGTH).

Type of data structure. VMS writes the value DYN$C_SPL in this field when it
creates the SPL data structure.

Spin lock subtype. This field can contain the following values:

SPL$C_SPL_SPINLOCK Static system spin lock

SPL$C_SPL_FORKLOCK Fork lock

SPL$C_SPL _DEVICELOCK Device lock (dynamic spin lock)

Physical ID of owner CPU. This field is initialized to -1. Upon a successful
acquisition, VMS copies the physical ID of the acquiring processor from CPU$L_
PHY_CPUID to this field.

Last eight calling PCs of acquirers and releasers of the spin lock. SPL$B_ VEC_
INX serves as the index of the next vector to be written in this array.

Last busy-wait PC.

Count of successful acquisitions.

Count of failed acquisitions.

Count of number of spins.

Timeout interval before a spin lock acquisition attempt fails.

PC of the last unconditional release of a set of nested acquisitions of the spin
lock.

Unit Control Block (UCB)
The unit control block (UCB) is a variable-length block that describes a single
device unit. Each device unit on the system has its own UCB. The UCB
describes or provides pointers to the device type, controller, driver, device
status, and current IjO activity.

During autoconfiguration, the driver-loading procedure creates one UCB
for each device unit in the system. A privileged system user can request
the driver-loading procedure to create UCBs for additional devices with the
SYSGEN command CONNECT, as described in Chapter 15. The procedure
creates UCBs of the length specified in the DPT. The driver uses UCB storage
located beyond the standard UCB fields for device-specific data and temporary
driver storage.

The driver-loading procedure initializes some static UCB fields when it creates
the block. VMS and device drivers can read and modify all nonstatic fields
of the UCB. The UCB fields that are present for all devices are illustrated in
Figure A-17 and described in Table A-16. The length of the basic UCB is
defined by the symbol UCB$K_LENGTH.

A-47

Data Structures
A. 14 Unit Control Block (UCB)

UCBs are variable in length depending on the type of device and whether the
driver performs error logging for the device. VMS defines a number of UCB
extensions in the data structure definition macro $UCBDEF and defines a
terminal device extension in $TTYUCBDEF. Table A-15 lists those extensions
that are most often used by device drivers, indicating where each is described
in this appendix. Note that use of the dual-path extension is reserved to
DIGITAL; its contents should remain zero.

Table A-15 UCB Extensions and Sizes Defined in $UCBDEF

Extension

Base UCB

Error log extension

Dual-path extension

Local tape extension

Local disk extension

Terminal extension 1

Used by

All devices

All disk and tape devices

Reserved to DIGIT AL

All tape devices

All disk devices

Terminal class and port
drivers

Size

UCB$K_SIZE

UCB$K_ERL_LENGTH

UCB$K_DP _LENGTH
(UCB$K_2P _LENGTH)

UCB$K_LCL_TAPE_LENGTH

UCB$K_LCL _DISK_LENGTH

UCB$K_ TT _LENGTH

Figure

A-17

A-18

A-19

A-20

A-21 2

Table

A-16

A-17

A-18

A-19

A-20

1 The terminal UCB extension is defined by the data structure definition macro, $TTYUCBDEF.

2 Fields marked by asterisks indicate fields that may be written only by the VMS terminal class driver (TTDRIVER.EXE); a
port driver may only read these fields.

A-48

In order to use an extended UCB, a device driver must specify its length in
the ucbsize argument to the DPTAB macro. For instance:

DPT AB

UCBSIZE=UCB$K_LCL_TAPE_LENGTH,-

As represented in Figure A-16, each UCB extension used in a disk or tape
driver builds upon the base UCB structure and any extension $UCBDEF
defines earlier in the structure. (Note that shaded UCB extensions are
reserved to DIGITAL.) For instance, if you specify a UCB size of UCB$K_
LCL_TAPE_LENGTH, the size of the resulting UCB can accommodate the
base UCB, the error log extension, the dual-path extension, and the local tape
extension.

Data Structures
A.14 Unit Control Block (UCB)

Figure A-1 6 Composition of Extended Unit Control Blocks

TERMINAL
DRIVER

EXTENSION

ERROR LOG
EXTENSION

(UCB$K _ERL _LENGTH)

BASE UCB

(UCB$K _LENGTH)

LOCAL DISK
EXTENSION

(UCB$K_LCL _DSK _LENGTH)

LOCAL TAPE
EXTENSION

(UCB$K_LCL _TAPE _LENGTH)

ZK-6620-HC

A device driver can further extend a UCB by using the $DEFINI, $DEF,
$DEFEND, and _VIELD macros. For instance:

$DEFINI UCB
.=UCB$K_LCL_DISK_LENGTH
$DEF UCB$W_XX_FIELD1
$DEF UCB$W_XX_FIELD2
$DEF UCB$L_XX_FLAGS

_VIELD UCB,O,<-
<XX_BIT1, , M>, -
<XX_BIT2, , M>, -
>

$DEF UCB$K_XX_LENGTH
$DEFEND UCB

.BLKW 1

.BLKW 1

.BLKL 1

In this case, too, the driver must ensure that it specifies the length of the
extended UCB in the ucbsize argument of the DPTAB macro:

DPTAB

UCBSIZE=UCB$K_XX_LENGTH,-

A-49

Data Structures
A.14 Unit Control Block (UCB)

Figure A-1 7 Unit Control Block (UCB)

UCB$L_FQFL• 00

UCB$L_FQBL• 04

UCB$B_FLCK 1 UCB$8_ TYPE• 1 UCB$W_SIZE• 08

UCB$L_FPC 12

UCB$L_FR3 16

UCB$L_FR4 20

UCB$W _INIOUO• 1 UCB$W _BUFOUO• 24

UCB$L_ORB• 28

UCB$L _LQCKID• 32

UCB$L_CRB• 36

UCB$L_DLCK• 40

UCB$L_DDB• 44

UCB$L_PID• 48

UCB$L_LINK• 52

UCB$L_VCB• 56

UCB$L _DEVCHAR 60

UCB$L_DEVCHAR2 64

UCB$L _AFFINITY• 68

reserved 72

UCB$W _DEVBUFSIZ l UCB$B_DEVTYPE l UCB$B_DEVCLASS 76

UCB$Q_DEVDEPEND 80

UCB$Q_DEVDEPEND2 88

UCB$L_IOOFL• 96

UCB$L _IQOBL • 100

UCB$W _CHARGE• I UCB$W_UNIT• 104

UCB$L_IRP 108

UCB$B_AMOD• 1 UCB$B_DIPL l UCB$W _REFC• 112

UCB$L_AMB• 116

UCB$L_STS 120

UCB$W_QLEN• l UCB$W _DEVSTS 124

UCB$L_DUETIM• 128

UCB$L_QPCNT• 132

UCB$L_SVPN• 136

ZK-6642-HC

Figure A-17 Cont'd. on next page

A-50

Data Structures
A. 14 Unit Control Block (UCB)

Figure A-17 (Cont.) Unit Control Block (UCB)

UCB$L _SV APTE• 140

UCB$W_BCNT UCB$W_BOFF 144

UCB$W_ERRCNT UCB$B_ERTMAX I UCB$B_ERTCNT 148

UCB$L_PDT• 152

UCB$L_DDT• 156

UCB$L_MEDIA_ID• 160

ZK-6643-HC

Table A-16 Contents of Unit Control Block

Field Name

UCB$L_FQFL*

UCB$L_FQBL*

UCB$W _SIZE*

UCB$B_ TYPE*

UCB$B_FLCK

Contents

Fork queue forward link. The link points to the next entry in the fork queue.
EXE$10FORK and VMS resource management routines write this field. The queue
contains addresses of UCBs that contain driver fork process context of drivers
waiting to continue 1/0 processing.

Fork queue backward link. The link points to the previous entry in the fork queue.
EXE$10FORK and VMS resource management routines write this field.

Size of UCB. The DPT of every driver must specify a value for this field. The
driver-loading procedure uses the value to allocate space for a UCB and stores
the value in each UCB created. Extra space beyond the standard bytes in a UCB
(UCB$K_LENGTH) is for device-specific data and temporary storage.

Type of data structure. The driver-loading procedure writes the constant DYN$C_
UCB into this field when the procedure creates the UCB.

Index of the fork lock that synchronizes access to this UCB at fork level. The DPT
of every driver must specify a value for this field. The driver-loading procedure
writes the value in the UCB when the procedure creates the UCB. All devices
that are attached to a single 1/0 adapter and actively compete for shared adapter
resources and/or a controller data channel must specify the same value for this
field.

When VMS creates a driver fork process to service an 1/0 request for a device,
the fork process gains control at the IPL associated with the fork lock, holding the
fork lock itself in a VMS multiprocessing environment. When the driver creates
a fork process after an interrupt, VMS ir.serts the fork block into a processor­
specific fork queue based on this fork IPL. A VMS fork dispatcher, executing
at fork IPL, obtains the fork lock (if necessary), dequeues the fork block, and
restores control to the suspended driver fork process.

This field is also known as UCB$B_FIPL. Drivers designed to execute exclusively
in a VMS uniprocessing environment store the fork IPL associated with the UCB
in this field.

A-51

Data Structures
A.14 Unit Control Block (UCB)

Table A-16 (Cont.) Contents of Unit Control Block

Field Name Contents

UCB$L_FPC Fork process driver PC address. When a VMS routine saves driver fork context
in order to suspend driver execution, the routine stores the address of the next
driver instruction to be executed in this field. A VMS routine that reactivates a
suspended driver transfers control to the saved PC address.

UCB$L_FR3

UCB$L_FR4

UCB$W _BUFOUO*

UCB$W _INIOUO*

UCB$L_ORB*

UCB$L_LOCKID*

UCB$L_CRB*

UCB$L_DLCK*

UCB$L_DDB*

UCB$L_PID*

UCB$L_LINK*

A-52

VMS routines that suspend driver processing include EXE$10FORK,
IOC$REQxCHAN y, IOC$REOMAPREG, IOC$REOAL TMAP, IOC$REODA TAP, and
IOC$WFIKPCH. Routines that reactivate suspended drivers include IOC$RELCHAN,
IOC$RELMAPREG, IOC$RELAL TMAP, IOC$RELDA TAP, EXE$FORKDSPTH, and
driver interrupt service routines.

When a driver interrupt service routine determines that a device is expecting an
interrupt, the routine restores control to the saved PC address in the device's
UCB.

Value of R3 at the time that a VMS routine suspends a driver fork process. The
value of R3 is restored just before a suspended driver regains control.

Value of R4 at the time that a VMS routine suspends a driver fork process. The
value of R4 is restored just before a suspended driver regains control.

Buffered-1/0 quota if the UCB represents a mailbox.

Initial buffered-1/0 quota if the UCB represents a mailbox.

Address of ORB associated with the UCB. SYSGEN places the address in this field
when you use SYSGEN's CONNECT command.

Lock management lock ID of device allocation lock. A lock management lock
is used for device allocation so that device allocation functions properly for
cluster-accessible devices in a V AXcluster (DEV$V_CLU set within UCB$L _
DEVCHAR2).

Address of primary CRB associated with the device. The driver-loading procedure
writes this field after it creates the associated CRB. Driver fork processes read
this field to gain access to device registers. VMS routines use UCB$L_CRB to
loc~te interrupt-dispatching code and the addresses of driver unit and controller
initialization routines.

Address of device lock that-in a VMS multiprocessing environment­
synchronizes access to device registers and those fields in the UCB accessed
at device IPL. The driver-loading routine copies the address of the device lock
in the CRB (CRB$L _DLCK) to this field as it creates a UCB for each device on a
controller.

Address of DOB associated with device. The driver-loading procedure writes this
field when the procedure creates the associated UCB. VMS routines generally
read the DOB field in order to locate device driver entry points, the address of a
driver FDT, or the ACP associated with a given device.

Process identification number of the process that has allocated the device.
Written by the $ALLOC system service.

Address of next UCB in the chain of UCBs attached to a single controller and
associated with a DOB. The driver-loading procedure writes this field when the
procedure adds the next UCB. Any VMS routine that examines the status of all
devices on the system reads this field. Such routines include EXE$TIMEOUT,
IOC$SEARCHDEV, and power failure recovery routines.

Data Structures
A.14 Unit Control Block (UCB)

Table A-16 (Cont.) Contents of Unit Control Block

Field Name

UCB$L_VCB*

UCB$L_DEVCHAR

Contents

Address of volume control block (VCB) that describes the volume mounted on the
device. This field is written by the device's ACP and read by EXE$QIOACPPKT,
ACPs, and the XQP.

First longword of device characteristics bits. The DPT of every driver
should specify symbolic constant values (defined by the $DEVDEF macro in
SYS$LIBRARY:STARLET.MLB) for this field. The driver-loading procedure writes
the field when the procedure creates the UCB. The $QIO system service reads
the field to determine whether a device is spooled, file structured, shared, has a
volume mounted, and so on.

The system defines the following device characteristics:

DEV$V_REC Record-oriented device

DEV$V_CCL Carriage control device

DEV$V_TRM

DEV$V_DIR

DEV$V_SDI

DEV$V_SQD

DEV$V_SPL

DEV$V_OPR

DEV$V_RCT

DEV$V_NET

DEV$V_FQD

DEV$V_DUA

DEV$V_SHR

DEV$V_GEN

DEV$V_AVL

DEV$V_MNT

DEV$V_MBX

DEV$V_DMT

DEV$V_ELG

DEV$V_ALL

DEV$V_FOR

DEV$V_SWL

DEV$V_IDV

DEV$V_ODV

DEV$V_RND

DEV$V_RTM

DEV$V_RCK

DEV$V_WCK

Terminal device

Directory-structured device

Single directory-structured device

Sequential block-oriented device (magnetic tape, for example)

Device spooled

Operator device

Device contains RCT

Network device

File-oriented device (disk and magnetic tape, for example)

Dual-ported device

Shareable device (used by more than one program
simultaneously)

Generic device

Device available for use

Device mounted

Mailbox device

Device marked for dismount

Error logging enabled

Device allocated

Device mounted as foreign (not file structured)

Device software write-locked

Device capable of providing input

Device capable of providing output

Device allowing random access

Real-time device

Read-checking enabled

Write-checking enabled

A-53

Data Structures
A.14 Unit Control Block (UCB)

Table A-16 (Cont.) Contents of Unit Control Block

Field Name

UCB$L_DEVCHAR2

UCB$L _AFFINITY*

UCB$B_DEVCLASS

A-54

Contents

Second longword of device characteristics. The DPT of every driver
should specify symbolic constant values (defined by the $DEVDEF macro in
SYS$LIBRARY:STARLET.MLB) for this field. The driver-loading procedure writes
the field when the procedure creates the UCB.

The system defines the following device characteristics:

DEV$V_CLU Device available clusterwide

DEV$V_DET

DEV$V_RTT

DEV$V_CDP

DEV$V_2P

DEV$V_MSCP

DEV$V_SSM

DEV$V_SRV

DEV$V_RED

DEV$V_NNM

DEV$V_WBC

DEV$V_WTC

Detached terminal

Remote-terminal UCB extension

Dual-pathed device with two UCBs

Two paths known to device

Disk or tape accessed using MSCP

Shadow set member

Served by MSCP server

Redirected terminal

Device name has a prefix of the format "node$"

Device supports write-back caching

Device supports write-through caching

DEV$V_HOC Device supports host caching

Bit mask of the CPU-IDs of processors in a VMS multiprocessing system that
have physical connectivity to the device. Such processors can thereby access the
device's registers and initiate 1/0 operations on the device.

Device class. The DPT of every driver should specify a symbolic constant (defined
by the $DCDEF macro) for this field. The driver-loading procedure writes this field
when it creates the UCB.

Drivers with set mode and device characteristics functions can rewrite the value
in this field with data supplied in the characteristics buffer, the address of which
is passed in the 1/0 request.

VMS defines the following device classes:

DC$_DISK Disk

DC$_ TAPE

DC$_SCOM

DC$_CARD

DC$_ TERM

DC$_LP

DC$_ WORKSTATION

DC$_REAL TIME

DC$_BUS

DC$_MAILBOX

DC$_MISC

Tape

Synchronous communications

Card reader

Terminal

Line printer

Workstation

Real time

Bus

Mailbox

Miscellaneous

Note that the definition of a device as a real-time device (DC$_REAL TIME) is
somewhat subjective; it implies no special treatment by VMS.

Data Structures
A.14 Unit Control Block (UCB)

Table A-16 (Cont.) Contents of Unit Control Block

Field Name Contents

UCB$B_DEVTYPE Device type. The DPT of every driver should specify a symbolic constant (defined
by the $DCDEF macro) for this field. The driver-loading procedure writes the field
when it creates the UCB.

UCB$W _DEVBUFSIZ

UCB$Q _DEVDEPEND

UCB$Q_DEVDEPND2

UC8$L_IOQFL*

UCB$L_IOOBL*

UCB$W_UNIT*

UCB$W _CHARGE*

UCB$L_IRP

UCB$W_REFC*

Drivers for devices with set mode and set characteristics functions can rewrite
the value in this field with data supplied in the characteristics buffer, the address
of which is passed in the 1/0 request.

Default buffer size. The DPT can specify a value for this field if relevant. The
driver-loading procedure writes the field when it creates the UCB.

Drivers for devices with set mode and set characteristics functions can rewrite
the value in this field with data supplied in the characteristics buffer, the address
of which is passed in the 1/0 request. This field is used by RMS for record 1/0 on
nonfile devices.

Device-descriptive data interpreted by the device driver itself. The DPT can
specify a value for this field. The driver-loading procedure writes this field when it
creates the UCB.

Drivers for devices with set mode and set characteristics functions can rewrite
the value in this field with data supplied in the characteristics buffer, the address
of which is passed in the 1/0 request.

Second longword for device-dependent status. This field is an extension of
UCB$Q _DEVDEPEND.

Pending-1/0 queue listhead forward link. The queue contains the addresses of
IRPs waiting for processing on a device. EXE$1NSERTIRP inserts IRPs into the
pending-1/0 queue when a device is busy. IOC$REQCOM dequeues IRPs when
the device is idle.

The queue is a priority queue that has the highest priority IRPs at the front of the
queue. Priority is determined by the base priority of the requesting process. IRPs
with the same priority are processed first-in/first-out.

Pending-1/0 queue listhead backward link. EXE$1NSERTIRP and IOC$REQCOM
modify the pending-1/0 queue.

Number of the physical device unit; stored as a binary value. The driver-loading
procedure writes a value into this field when it creates the UCB. Drivers for
multiunit controllers read this field during unit initialization to identify a unit to the
controller.

Mailbox byte count quota charge, if the device is a mailbox.

Address of IRP currently being processed on the device unit by the driver fork
process. IOC$1NITIA TE writes the address of an IRP into this field before the
routine creates a driver fork process to handle an 1/0 request. From this field, a
driver fork process obtains the address of the IRP being processed.

The value contained in this field is not valid if the UCB$V_BSY bit in UCB$L_STS
is clear.

Reference count of processes that currently have process 1/0 channels assigned
to the device. The $ASSIGN and $ALLOC system services increment this field.
The $DASSGN and $DALLOC system services decrement this field.

A-55

Data Structures
A.14 Unit Control Block (UCB)

Table A-16 (Cont.) Contents of Unit Control Block

Field Name

UCB$B_DIPL

UCB$B_AMOD*

UCB$L_AMB*

UCB$L_STS

A-56

Contents

Interrupt priority level (IPL) at which the device requests hardware interrupts.
The DPT of every driver must specify a value for this field. The driver-loading
procedure writes this field when the procedure creates the UCB. When the driver­
loading procedure subsequently creates the device lock's spin lock structure
(SPL), it moves the contents of this field into SPL$B_IPL.

In a VMS uniprocessing environment, device drivers raise IPL to device IPL
before reading or writing device registers or accessing other fields in the UCB
synchronized at device IPL. In a VMS multiprocessing environment, drivers obtain
the device lock at UCB$L_DLCK, thereby also raising IPL to device IPL in the
process.

Access mode at which allocation occurred, if the device is allocated. Written by
the $ALLOC and $DALLOC system services.

Associated mailbox UCB pointer. A spooled device uses this field for the address
of its associated device. Devices that are nonshareable and not file oriented can
use this field for the address of an associated mailbox.

Device unit status (formerly UCB$W_STS). Written by drivers, IOC$REQCOM,
IOC$CANCELIO, IOC$1NITIATE, IOC$WFIKPCH, IOC$WFIRLCH, EXE$1NSIOQ, and
EXE$TIMEOUT. This field is read by drivers, the $010 system service routines,
IOC$REQCOM, IOC$1NITIA TE, and EXE$TIMEOUT.

This longword includes the following bits:
UCB$V_ TIM Timeout enabled.

UCB$V_INT Interrupts expected.

UCB$V_ERLOGIP

UCB$V_CANCEL

UCB$V_ONLINE

UCB$V_POWER

UCB$V_ TIMOUT

UCB$V_INTTYPE

UCB$V_BSY

UCB$V_MOUNTING

UCB$V_DEADMO

UCB$V_ V AUD

UCB$V_UNLOAD

UCB$V_ TEMPLATE

UCB$V_MNTVERIP

UCB$V_ WRONGVOL

UCB$V_DELETEUCB

Error log in progress.

Cancel 1/0 on unit.

Device is on line.

Power has failed while unit was busy.

Unit is timed out.

Receiver interrupt.

Unit is busy.

Device is being mounted.

Deallocate device at dismount.

Volume appears valid to software.

Unload volume at dismount.

Template UCB from which other UCBs for this device
are made. The $ASSIGN system service checks this
bit in the requested UCB and, if the bit is set, creates
a UCB from the template. The new UCB is assigned
instead.

Mount verification in progress.

Volume name does not match name in the VCB.

Delete this UCB when the value in UCB$W _REFC
becomes zero.

Data Structures
A.14 Unit Control Block (UCB)

Table A-16 (Cont.) Contents of Unit Control Block

Field Name

UCB$W _DEVSTS

UCB$W _QLEN*

UCB$L _DUETIM*

UCB$L_OPCNT*

Contents

UCB$V_LCL_VALID

UCB$V_SUPMVMSG

The volume on this device is valid on the local node.

Suppress mount-verification messages if they indicate
success.

UCB$V_MNTVERPND Mount verification is pending on the device and the
device is busy.

UCB$V_DISMOUNT

UCB$V_CLUTRAN

UCB$V_ WRTLOCKMV

Dismount in progress.

V AXcluster state transition in progress.

Write-locked mount verification in progress.

UCB$V_SVPN_END Last byte used from page is mapped by a system
virtual page number.

Device-dependent status. Read and written by device drivers.

The system defines the following status bits:
UCB$V_JOB Job controller has been notified.

UCB$V_ TEMPL_BSY Template UCB is busy.

UCB$V_PRMMBX Device is a permanent mailbox.

UCB$V_DELMBX Mailbox is marked for deletion.

UCB$V_SHMMBS Device is shared-memory mailbox.

Disk drivers use bits in UCB$W_DEVSTS as follows:
UCB$V_ECC ECC correction made.

UCB$V_DIAGBUF Diagnostic buffer is specified.

UCB$V_NOCNVRT No logical block number to media address conversion.

UCB$V_DX_WRITE Console floppy write operation.

UCB$V_OAT ACACHE Data blocks are being cached.

Length of pending-1/0 queue (pointed to by UCB$L_IOOFL).

Due time for 1/0 completion. Stored as the low-order 32-bit absolute time (time
in seconds since the operating system was booted) at which the device will time
out. IOC$WFIKPCH and IOC$WFIRLCH write this value when they suspend a
driver to wait for an interrupt or timeout.

EXE$TIMEOUT examines this field in each UCB in the 1/0 database once per
second. If the timeout has occurred and timeouts are enabled for the device,
EXE$TIMEOUT calls the device driver timeout handler.

Count of operations completed on device unit since last bootstrap of VMS
system. IOC$REOCOM writes this field every time the routine inserts an IRP into
the 1/0 postprocessing queue.

A-57

Data Structures
A.14 Unit Control Block (UCB)

Table A-16 (Cont.) Contents of Unit Control Block

Field Name

UCB$L _SVPN*

UCB$L_SVAPTE

UCB$W_BOFF

UCB$W_BCNT

UCB$B_ERTCNT

UCB$B_ERTMAX

UCB$W _ERRCNT

UCB$L_PDT*

UCB$L_DDT*

UCB$L_MEDIA_ID*

A-58

Contents

Index to the virtual address of the system PTE that the driver loading procedure
has permanently allocated to the device. The system virtual address of the page
described by this index can be calculated by the following formula:

(index * 20015) + 8000000015

If a DPT specifies DPT$M_SVP in the flags argument to the DPT AB macro, the
driver-loading procedure allocates a page of nonpaged system memory to the
device. The procedure writes the system PTE's index into UC8$L_SVPN when
the procedure creates the UCB.

Disk drivers use this field for ECC error correction.

For a direct-1/0 transfer, the virtual address of the system PTE for the first page
to be used in the transfer; for a buffered-1/0 transfer, the virtual address of the
system buffer used in the transfer.

IOC$1NITIATE writes this field from IRP$L_SVAPTE before calling a driver
start-1/0 routine. Drivers read this value to compute the starting address of a
transfer.

For a direct-1/0 transfer, the byte offset in the first page of the transfer buffer;
for a buffered-1/0 transfer, the number of bytes charged to the process for the
transfer.

IOC$1NITIA TE copies this field from the IRP. Drivers read the field in calculating
the starting address of a OMA transfer. If only part of a OMA transfer succeeds,
the driver adjusts the value in this field to be the byte offset in the first page of
the data that was not transferred.

Count of bytes in the 1/0 transfer. IOC$1NITIA TE copies this field from the
IRP. Drivers read this field to determine how many bytes to transfer in an 1/0
operation.

Error retry count of the current 1/0 transfer. The driver sets this field to the
maximum retry count each time it begins 1/0 processing. Before each retry, the
driver decreases the value in this field. During error logging, IOC$REQCOM copies
the value into the error message buffer.

Maximum error retry count allowed for single 1/0 transfer. The DPT of some
drivers specifies a value for this field. The driver-loading procedure writes the
field when the procedure creates the UCB. During error logging, IOC$REQCOM
copies the value into the error message buffer.

Number of errors that have occurred on the device since VMS booted. The
driver-loading procedure initializes the field to 0 when the procedure creates the
UCB. ERL$DEVICERR and ERL$DEVICTMO increment the value in the field and
copy the value into an error message buffer. The DCL command SHOW DEVICE
displays in its error count column the value contained in this field.

Address of port descriptor table (PDT). This field is reserved for VMS SCS port
drivers.

Address of DDT for unit. The driver load procedure writes the contents of
DDB$L_DDT for the device controller to this field when it creates the UCB.

Bit-encoded media name and type, used by MSCP devices.

Data Structures
A.14 Unit Control Block (UCB)

Figure A-18 UCB Error-Log Extension

1 ase yes B UCB (164 b t)

UCB$B_CEX I UCB$B_FEX I UCB$B_SPR I UCB$B_SLA VE• 164

UCB$L_EMB• 168

UCB$W_FUNC l unused 172

UCB$L_DPC 176

ZK-6644-HC

A-59

Data Structures
A.14 Unit Control Block (UCB)

Table A-17

Field Name

UCB$B_SLA VE*

UCB$B_SPR

UCB$B_FEX

UCB$B_CEX

UCB$L_EMB*

UCB$W_FUNC

UCB$L_DPC

A-60

UCB Error-Log Extension

Contents

Unit number of slave controller.

Spare byte. This field is reserved for driver use. MASSBUS adapter drivers use
this field to store a fixed offset to the MASSBUS adapter registers for the unit.

Device-specific field. This field is reserved for driver use. Certain VMS disk
drivers (such as DLDRIVER in Appendix E) use this field to store an index in a
hardware function dispatch table.

Device-specific field. This field is reserved for driver use. Certain VMS disk
drivers (such as DLDRIVER in Appendix E) use this field to store an index into a
software function case table.

Address of error message buffer. If error logging is enabled and a
device/controller error or timeout occurs, the driver calls ERL$DEVICERR or
ERL$DEVICTMO to allocate an error message buffer and copy the buffer address
into this field. IOC$REQCOM writes final device status, error counters, and 1/0
request status into the buffer specified by this field.

1/0 function modifiers. This field is read and written by drivers that log errors.

Device-specific field. This field is reserved for driver use. Certain VMS disk
drivers (such as DLDRIVER in Appendix E) use this field to store the driver's return
PC across a dispatch to a hardware function routine.

Figure A-19 UCB Local Tape Extension

t Base UCB (164 bytes) t 00

i~------------------------------------E-rr-or-L-o-g-U-C-B-Ex-t-en-s-io-n-(1-6-b-yt-e-s)------------------------------------1I1s4
D I P th UCB E t (12 b t) 180 '"t' ua a x ens1on yes '"t'

UCB$B_PREV_RECORDl UCB$B_ONLCNT UCB$W_DIRSEQ 192

UCB$L_RECORD 196

reserved 200

UCB$L_TMV_RECORD 204

UCB$W _ TMV_CRC2 UCB$W _ TMV_CRC 1 208

UCB$W_ TMV_CRC4 UCB$W_ TMV_CRC3 212

ZK-6645-HC

Data Structures
A.14 Unit Control Block (UCB)

Table A-18 UCB Local Tape Extension

Field Name

UCB$W _DIRSEQ

UCB$B_ONLCNT

UCB$B_PREV_RECORD

UCB$L_RECORD

UCB$L _ TMV_RECORD

UCB$W _ TMV_CRC 1

UCB$W _ TMV_CRC2

UCB$W _ TMV_CRC3

UCB$W _ TMV_CRC4

Contents

Directory sequence number. If the high-order bit of this word, UCB$V_AST_
ARMED, is set, it indicates that the requesting process is blocking ASTs.

Number of times the device has been placed on line since VMS was last
bootstrapped.

Tape position prior to the start of the last 1/0 operation.

Current tape position or frame counter.

Position following last guaranteed successful 1/0 operation.

First CRC for mount verification's media validation.

Second CRC for mount verification's media validation.

Third CRC for mount verification's media validation.

Fourth CRC for mount verification's media validation.

Figure A-20 UCB Local Disk Extension

I
l Base UCB (164 bytes) Il O

~ Error Log UCB Extens;on (16 bytes) -

I
.______ ____ ____.I 164

D I P th UCB E t (12 b t) 180 ua a x ens1on yes '}'

Reserved I UCB$B_ONLCNT UCB$W_DIRSEQ 192

UCB$L _MAXBLOCK 196

UCB$L _MAXBCNT 200

UCB$L_DCCB 204

UCB$L _MEDIA 208

UCB$L_BCR 212

UCB$W_EC2 UCB$W_EC1 216

UCB$B_OFFRTC l UCB$B_OFFNDX UCB$W _OFFSET 220

UCB$L_DX_BUF 224

UCB$L _DX _BFPNT 228

UCB$L _DX _RXDB 232

unused I UCB$B_DX_SCTCNT UCB$W_DX_BCR 236

ZK-6646-HC

A-61

Data Structures
A.14 Unit Control Block {UCB)

Table A-19 UCB Local Disk Extension

Field Name

UCB$W _DIRSEQ

UCB$B_ONLCNT

UCB$L _MAXBLOCK

UCB$L _MAXBCNT

UCB$L_DCCB

UCB$L_MEDIA

UCB$L_BCR

UCB$W_EC1

UCB$W_EC2

UCB$W _OFFSET

UCB$B_OFFNDX

UCB$B_OFFRTC

UCB$L_DX_BUF

UCB$L_DX_BFPNT

UCB$L_DX_RXDB

UCB$W_DX_BCR

UCB$B_DX_SCTCNT

A-62

Contents

Directory sequence number. If the high-order bit of this word, UCB$V_AST_
ARMED, is set, it indicates that the requesting process is blocking ASTs.

Number of times device has been placed on line since VMS was last
bootstrapped.

Maximum number of logical blocks on random-access device. This field is written
by a disk driver during unit initialization and power recovery.

Maximum number of bytes that can be transferred. A disk driver writes this field
during unit initialization and power recovery.

Pointer to cache control block.

Media address.

Byte-count register. Some disk drivers use this field as an internal count of the
number of bytes left to be transferred in an 1/0 request. The symbol UCB$W_
BCR points to the low-order word of this field.

ECC position register. This field records the starting bit number of an error burst.
Disk driver register dumping routines copy the contents of this field into an error
message or diagnostic buffer.

The VMS correction routine IOC$APPL YECC reads the contents of this field to
locate the beginning of an error burst in a disk block.

ECC position register. Records the exclusive OR correction pattern. Disk driver
register dumping routines copy the contents of this field into an error message or
diagnostic buffer.

The VMS ECC correction routine IOC$APPL YECC reads the contents of this field
to correct disk data.

Current offset register contents.

Current offset table index. When a disk driver transfer ends in an error, the
disk driver can retry the transfer a number of times with different offsets of the
disk head from the centerline. This field is an index into a driver table of offset
positions.

Current offset retry count. This field records the number of times to try a
particular offset setting in a disk transfer retry.

Address of sector buffer (used by floppy-disk drivers).

Pointer to current sector (used by floppy-disk drivers).

Address of saved receiver-data buffer (used by floppy-disk drivers).

Current floppy byte count (used by floppy-disk drivers).

Current sector byte count (used by floppy-disk drivers).

Data Structures
A.14 Unit Control Block (UCB)

Figure A-21 UCB Terminal Extension

l >y B UCB (164 b ase ytes ~

UCB$L _TL _CTRL Y 164

UCB$L _TL _CTRLC 168

UCB$L_TL_OUTBAND 172

UCB$L_TL_BANDOUE 176

UCB$L_TL_PHYUCB 180

UCB$L _TL _CTLPID 184

UCB$Q_TL_BRKTHRU 188

UCB$L_TLRDUE 196

UCB$L _ TLRTIMOU 200

UCB$L _ TLST A TE 1 204

UCB$L_ TLST ATE2 208

UCB$L _ TLLOGUCB 212

UCB$L _ TLDECHAR 216

UCB$L_TLDECHA1 220

UCB$L_TLDECHA2 224

UCB$L_TLDECHA3 228

UCB$L_ TLWFLINK 232

UCB$L_ TLWBLINK 236

UCB$L_TT_WRTBUF 240

UCB$L_ TLMUL Tl 244

UCB$W_ TLSML TLEN UCB$W _ TLMUL TILEN 248

UCB$L_TLSMLT 252

UCB$B_ TLDELFF UCB$B_TLDECRF UCB$W_TT_DESPEE 256

unused UCB$8_ TLDEPARI 260

reserved UCB$W _ TLDESIZE UCB$B_TLDETYPE 264

UCB$B_ TLLFFILL UCB$B_ TLCRFILL UCB$B_ TLRSPEED UCB$B_TLTSPEED 268

unused UCB$8_ TLPARITY 272

UCB$L_TLTYPAHD 276

UCB$B_TLLASTC UCB$B_TLLINE UCB$W_TT_CURSOR 280

UCB$B_TLESC UCB$B_ TLFILL UCB$W_TT_BSPLEN 284

UCB$W_ TLUNITBIT UCB$B_ TLINTCNT UCB$B_TLEsc_o 288

UCB$B_ TLOUTYPE UCB$B_ TLPREMPT UCB$W_TLHOLD 292

UCB$L_TLGETNXT 296

ZK-6647-HC

Figure A-21 Cont'd. on next page

A-63

Data Structures
A.14 Unit Control Block (UCB)

Figure A-21 (Cont.) UCB Terminal Extension

UCB$L_TLPUTNXT 300

UCB$L_TLCLASS 304

UCB$L_TLPORT 308

UCB$L_TLOUTADR 312

UCB$V\l_TT_PRTCTL UCB$V\l_ TLOUTLEN 316

UCB$V\l_ TLDS_ST UCB$B_TT_DS_TX l UCBB_TT_D_RCV 320

UCB$B_TLOLD I UCB$8_ TLMAINT UCB$V\I _ TLDS_ TIM 324

UCB$L_ TLFBK 328

UCB$L_ TLRDVERIFY 332

UCB$L_TLCLASS1 336

UCB$L_TLCLASS2 340

UCB$L_TT_ACCPORNAM 344

UCB$L_ TP_MAP 348

unused I UCB$8_ TP _ST AT 352

ZK-6648-HC

Table A-20 UCB Terminal Extension

Field Name

UCB$L _TL _CTRL Y *

UCB$L_ TL_CTRLC*

UCB$L_TL_OUTBAND*

UCB$L_ TL_BANDOUE*

UCB$L_ TL_PHYUCB*

UCB$L_ TL_CTLPID*

UCB$Q_ TL _BRKTHRU*

UCB$L _TT _RDUE*

UCB$L_ TT_RTIMOU*

UCB$L_ TT_ST ATE 1 *

A-64

Contents

Listhead of CTRL/Y AST control blocks (ACBs).

Listhead of CTRL/C ACBs.

Out-of-band character mask.

Listhead of out-of-band ACBs.

Address of physical UCB.

Process ID of controlling process (used with SPAWN).

Facility broadcast bit mask.

Absolute time at which a read timeout is due.

Address of read timeout routine.

First longword of terminal state information.

The following fields are defined within UCB$L_ TT_ST ATE 1:
TTY$V_ST _POWER Power failure

TTY$V_ST_CTRLS

TTY$V_ST _FILL

TTY$V_ST _CURSOR

TTY$V_ST _SENDLF

TTY$V_ST_BACKSPACE

TTY$V_ST_MUL Tl

TTY$V_ST _WRITE

Class output

Fill mode

Cursor

Forced line feed

Backspace

Multi-echo

Write in progress

Data Structures
A.14 Unit Control Block (UCB)

Table A-20 (Cont.) UCB Terminal Extension

Field Name

UCB$L _TT _ST A TE2*

Contents

TTY$V_ST _EOL

TTY$V_ST _EDITREAD

TTY$V_ST_RDVERIFY

TTY$V_ST _RECALL

TTY$V_ST _READ

End of line

Editing read in progress

Read verify in progress

Command recall

Read in progress

Second longword of terminal state information.

The following fields are defined within UCB$L_ TT_ST ATE2:
TTY$V_ST _CTRLO Output enable

TTY$V_ST _DEL

TTY$V_ST _PASALL

TTY$V_ST_NOECHO

TTY$V_ST _ WRT ALL

TTY$V_ST _PROMPT

TTY$V_ST _NOFL TR

TTY$V_SLESC

TTY$V_ST_BADESC

TTY$V_ST_NL

TTY$V_ST _REFRSH

TTY$V_ST _ESCAPE

TTY$V_ST_ TYPFUL

TTY$V_ST_SKIPLF

TTY$V_ST _ESC_O

TTY$V_ST _WRAP

TTY$V_ST _OVRFLO

TTY$V_ST_AUTOP

TTY$V_ST _CTRLR

TTY$V_ST _SKIPCRLF

TTY$V_ST_EDITING

TTY$V_ST_TABEXPAND

TTY$V_ST _QUOTING

TTY$V_ST _OVERSTRIKE

TTY$V_ST_TERMNORM

TTY$V_ST _ECHAES

TTY$V_ST _PRE

TTY$V_ST _NINTMUL Tl

Delete

Pass-all mode

No echo

Write-all mode

Prompt

No control-character filtering

Escape sequence

Bad escape sequence

New line

Refresh

Escape mode

Type-ahead buffer full

Skip line feed

Output escape

Wrap enable

Overflow condition

Autobaud pending

Clock prompt and data string from read buffer

Skip line feed following a carriage return

Editing operation

Expand tab characters

Quote character

Overstrike mode

Standard terminator mask

Alternate echo string

Pre-type-ahead mode

Noninterrupt multi-echo mode

A-65

Data Structures
A.14 Unit Control Block (UCB)

Table A-20 (Cont.) UCB Terminal Extension

Field Name

UCB$L_TT_LOGUCB*

UCB$L_ TT_DECHAR*

UCB$L_TT_DECHA1*

UCB$L_TT_DECHA2*

UCB$L_ TT_DECHA3*

UCB$L_ TT_WFLINK*

UCB$L_ TT_WBLINK*

UCB$L_ TT_WRTBUF*

UCB$L_ TT_MUL Tl*

UCB$W_ TT_MUL TILEN*

UCB$W_ TT_SMLTLEN*

UCB$L_ TT_SML T*

UCB$W _TT _DESPEE*

UCB$B_ TT_DECRF*

UCB$B_ TT _DELFF*

UCB$B_ TT_DEPARI*

UCB$B_ TT_DETYPE*

UCB$W _TT _DESIZE*

UCB$W _TT _SPEED*

UCB$B_ TT _CRFILL*

UCB$B_ TT_LFFILL*

UCB$B_ TT_PARITY*

A-66

Contents

TTY$V_ST_RECONNECT

TTY$V_ST_CTSLOW

TTY$V_ST_ TABRIGHT

Reconnect operation

Clear-to-send low

Check for tabs to the right of the current
position

Address of logical UCB, if the redirect bit is set (DEV$V_RED in UCB$L_
DEVCHAR2). If this UCB describes the logical UCB, the contents of UCB$L_
TT_LOGUCB are zero.

First longword of default device characteristics.

Second longword of default device characteristics.

Third longword of default device characteristics.

Fourth longword of default device characteristics.

Write queue forward link.

Write queue backward link.

Current write buffer block.

Address of current multi-echo buffer.

Length of multi-echo string to be written.

Saved length of multi-echo string.

Saved address of multi-echo buffer.

Default speed.

Default carriage-return fill.

Default line-feed fill.

Default parity /character size.

Default terminal type.

Default line size.

Terminal line speed. This field is read and written by the class driver, and read
by the port driver. It contains the following byte fields:
UCB$8_ TT_ TSPEED Transmit speed

UCB$8_ TT _RSPEED Receive speed

Number of fill characters to be output for carriage return.

Number of fill characters to be output for line feed.

Parity, frame and stop bit information to be set when the PORT _SET _LINE
service routine is called. This field is read and written by the class driver, and
read by the port driver. It contains the following bit fields:
UCB$V_ TT _XX PARITY Reserved to DIGIT AL.

UCB$V_ TT_DISPARERR

UCB$V_ TT_USERFRAME

UCB$V_ TT_LEN

UCB$V_TLSTOP

Reserved to DIGIT AL.

Reserved to DIGIT AL.

Two bits signifying character length (not counting
start, stop, and parity bits), as follows: 002 = 5
bits; 01 2 = 6 bits; 102 = 7 bits; and 11 2 = 8 bits.

Number of stop bits: clear if one stop bit; set if
two stop bits.

Data Structures
A.14 Unit Control Block (UCB)

Table A-20 (Cont.) UCB Terminal Extension

Field Name Contents

UCB$L_TT_TYPAHD*

UCB$VV_TT_CURSOR*

UCB$B_ TT _LINE*

UCB$B_ TT _LASTC*

UCB$VV_TT_BSPLEN*

UCB$B_ TT_FILL*

UCB$B_ TT _ESC*

UCB$B_TT_ESC_O*

UCB$B_ TT_INTCNT*

UCB$VV_ TT_UNITBIT*

UCB$VV_ TT_HOLD

UCB$B_ TT _PREMPT

UCB$B_ TT _QUTYPE*

UCB$L_TT_GETNXT*

UCB$L_TT_PUTNXT*

UCB$L _TT _CLASS*

UCB$L_TT_PORT

UCB$L_TT_OUTADR

UCB$VV_ TT_QUTLEN

UCB$V_ TT_PARITY Parity checking. This bit is set if parity checking
is enabled.

UCB$V_ TT _ODD Parity type: clear if even parity; set if odd parity.

Address of type-ahead buffer.

Current cursor position.

Current line position on page.

Last formatted output character.

Number of back spaces to output for non-ANSI terminals.

Current fill character count.

Current read escape syntax state.

Current write escape syntax state.

Number of characters in interrupt string.

Enable and disable modem control.

Port driver's internal flags and unit holding tank. This is read and written by the
port driver, and is not accessed by the class driver. It contains the following
subfields:

TTY$B_ T ANK_CHAR Character.

TTY$V_ T ANK_PREMPT Send preempt character.

TTY$V_ T ANK_STOP Stop output.

TTY$V_ T ANK_HOLD Character stored in TTY$B_ T ANK_CHAR.

TTY$V_ T ANK_BURST Burst is active.

TTY$V_ T ANK_DMA OMA transfer is active.

Preempt character.

Amount of data to be written on a callback from the class driver. VVhen
negative, this field indicates that there is a burst of data ready to be returned;
when zero, it signifies that no data is to be written; and when 1, it indicates
that a single character is to be written. This field is written by the class driver
and read by the port driver.

Address of the class driver's input routine. This field is read by the port driver.

Address of the class driver's output routine. This field is read by the port
driver.

Address of the class driver's vector table. This field is initialized by the
CLASS_CTRL_INIT macro. The port driver reads UCB$L_ TT_CLASS
whenever it must call the class driver at an entry point other than UCB$L_
TT _GETNXT or UCB$L _ TLPUTNXT.

Address of the port driver's vector table.

Address of the first character of a burst of data to be written. This field is
only valid when UCB$B_ TT _OUTYPE contains -1 . It is read and written by
the port driver, and written by the class driver.

Number of characters in a burst of data to be written. This field is only valid
when UCB$B_ TT _OUTYPE contains -1 . It is read and written by the port
driver, and written by the class driver.

A-67

Data Structures
A.14 Unit Control Block (UCB)

Table A-20 (Cont.) UCB Terminal Extension

Field Name Contents

UCB$W_ TT_PRTCTL Port driver control flags. The bits in this field indicate features that are available
to the port; the class driver specifies which of these features are to be enabled.

UCB$B_TT_OS_RCV

UC8$8_TT_OS_TX

UCB$W_TT_OS_ST*

UCB$W_ TT_OS_ TIM*

A-68

The following fields are defined within UCB$W_ TT_PRTCTL.
TTY$V_PC_NOTIME No timeout. If set, the terminal class driver is

not to set up timers for output.

TTY$V_PC_OMAENA OMA enabled. If set, OMA transfers are
currently enabled on this port.

TTY$V_PC_OMAAVL OMA supported. If set, OMA transfers are
supported for this port.

TTY$V_PC_PRMMAP

TTY$V_PC_MAPAVL

TTY$V_PC_XOFAVL

TTY$V_PC_XOFENA

TTY$V_PC_NQCRLF

TTY$V_PC_BREAK

TTY$V_PC_PORTFOT

TTY$V_PC_NOMOOEM

TTY$V_PC_NOOISCONNECT

TTY$V_PC_SMART _REAO

TTY$V_PC_ACCPORNAM

TTY$V_PC_MUL TISESSION

Current receive modem.

Current transmit modem.

Current modem state.

Current modem timeout.

Permanent map registers. If set, the port
driver is to permanently allocate
UNIBUS/022 bus map registers.

Map registers available. If set, the port driver
has currently allocated map registers.

Auto XOFF supported. If set, auto XOFF is
supported for this port.

Auto XOFF enabled. If set, auto XOFF is
currently enabled on this port.

No. auto line feed. If set, a line feed is not
generated following a carriage return.

Break. If set, the port driver should generate
break character; if clear, the port should turn
off the break feature.

FOT routine. If set, the port driver contains
FOT routines.

No modem. If set, the port cannot support
modem operations.

No disconnect. If set, the device cannot
support virtual terminal operations.

Smart read. If set, the port contains
additional read capabilities.

Access port name. If set, the port supports
an access port name.

Multisession terminal. If set, the port is part
of a multisession terminal.

Data Structures
A.14 Unit Control Block (UCB)

Table A-20 (Cont.) UCB Terminal Extension

Field Name

UCB$8_ TT_MAINT*

UCB$8_0LD*

UCB$L _TT _FBK *

UCB$L_ TT_RDVERIFY*

UCB$L_ TLCLASS1*

UCB$L_ TT_CLASS2*

UCB$L_TT_ACCPORNAM

UCB$L _ TP _MAP*

UCB$8_ TP _ST AT

Contents

Maintenance functions. This field is used as the argument to the port driver's
PORT_MAINT routine. It is written by the class driver and read by the port
driver.

It contains several bits that allow the following maintenance functions:
10$M_LOOP Set loopback mode.

Reset loopback mode. 10$M_UNLOOP

10$M_AUTXOF _ENA Enable the use of auto XON/XOFF on this line. This
is the default.

10$M_AUTXOF _DIS Disable the use of auto XON/XOFF on this line.

10$M_LINE_OFF Disable interrupts on this line.

10$M_LINE_QN Reenable interrupts on this line.

Reference these bits by using the mask, shifted as follows:

BITB #IO$M_LOOP©-7,UCB$B_TT_MAINT(R5) ;Set loopback mode

UCB$8_ TT_MAINT also defines the bit UCB$V_ TT_DSBL that, when set,
indicates that the line has been disabled.

The full name of this field is UCB$8_ TT_OLDCPZORG; it currently serves as a
filler byte.

Address of fallback block.

Address of read/verify table. Reserved for future use.

First class driver longword.

Second class driver longword.

Address of counted string.

UNIBUS/022 bus map registers.

OMA port-specific status.

The following fields are defined within UCB$8_ TP _ST AT.
TTY$V_ TP_ABORT OMA abort requested on this line.

TTY$V_ TP _ALLOC

TTY$V_ TP _DLLOC

Allocate map fork in progress.

Deallocate map fork in progress.

A-69

B VMS Macros Invoked by Drivers

This appendix describes VMS macros frequently used by device drivers.
When referring to the macro descriptions contained herein, you should be
aware of the following conventions:

• If an argument is enclosed in brackets, you can choose to include that
argument or omit it.

• VMS assigns values by default to certain arguments. If you omit one of
these arguments, the macro behaves as if you specified the argument with
its default value. In the macro descriptions contained in this appendix,
the format signifies such arguments by an equal sign (=) separating the
argument from its keyword. For example:

SETIPL [ipl=31]

• If an argument takes a keyword value, you should specify the keyword
value using all uppercase letters. For example:

preserve= YES
condition=RESTORE

General information about the structure of macros and their arguments in
general appears in the VAX MACRO and Instruction Set Reference Manual.

B-1

VMS Macros Invoked by Drivers
ADPDISP

ADPDISP

FORMAT

Causes a branch to a specified address given the existence of a selected
adapter characteristic.

ADPDISP select ,addrlist {,adpaddr] {,crbaddr] {,ucbaddr]
{, ecrbaddr] [,scratch= RO]

PARAMETERS select

B-2

Determines which ADP field or bit field is the basis for dispatching and, by
implication, which adapter characteristic. See the Description section that
follows for a list of legal values for select.

addrlist
A list containing one or more pairs of arguments in the following format:

<flag, destination>

The values ADPDISP accepts for flag depend upon the adapter characteristic
specified in select and are listed in the Description section that follows. The
destination argument contains the address to which the code generated by
the invocation of ADPDISP passes control if the specified flag is set.

[adpaddr]
Register containing the address of the adapter control block. If adpaddr is not
specified, one of the following three address fields must be specified.

[crbaddr]
Register containing the address of the channel request block.

[ucbaddr]
Register containing the address of the unit control block.

[ecrbaddr]
Register containing the address of the Ethernet controller data block (ECRB).

[scratch=ROJ
Register, destroyed in macro invocation, used in computing the ADP address
if adpaddr is not specified.

DESCRIPTION

select

ADAP_TYPE

ADDR_BITS

ADAP_MAPPING

AUTOPURGE_DP

BUFFERED_DP

DIRECT_ VECTOR

ODD_XFER_BDP

ODD_XFER_DDP

EXTENDED_MAPREG

OBUS

VMS Macros Invoked by Drivers
ADPDISP

ADPDISP dispatches upon the following adapter characteristics:

Possible Value of flag in
addrlist Definition

UBA, MBA, GENBI, DR, or Adapter type.
NULL. (See those symbols
prefixed with AT$ defined
by the $DCDEF macro in
SYS$LIBRARY:STARLET.MLB.)

18 or 22 Number of adapter address bits.

YES or NO Does adapter support mapping?

YES or NO Does adapter support autopurging datapaths?

YES or NO Does adapter support buffered datapaths?

YES or NO Does adapter directly vector device
interrupts?

YES or NO Does adapter support odd-aligned transfers
over its buffered data paths?

YES or NO Does adapter support odd-aligned transfers
over its direct data paths?

YES or NO Does adapter support extended set (8, 192)
map registers?

YES or NO Is this a 022 bus device?

Specification of select=ADAP_TYPE causes ADPDISP to generate a CASEW
instruction using ADP$W__ADPTYPE as an index into the case table.
Specification of select=ADDR_BITS similarly causes ADPDISP to dispatch
from the contents of ADP$B__ADDR_BITS (16 or 22 bits). If any of the other
conditions is specified for select, ADPDISP issues a BBC or BBS instruction
on the contents of bit field ADP$V_select in ADP$W__ADPDISP_FLAGS.

You cannot use a single invocation of ADPDISP to dispatch on more than one
adapter characteristic. For example, if an autopurging datapath that supports
direct vectoring is being sought, you must use the ADPDISP macro twice.

ADPDISP requires that the address of an ADP, CRB, UCB, or ECRB be
specified. If anything other than an ADP is specified, the scratch register is
used in determining the ADP address.

B-3

VMS Macros Invoked by Drivers
ADPDISP

EXAMPLES

iJ

B-4

ADPDISP -
SELECT=ADAP_MAPPING,­
ADDRLIST=<<N0, 10$>,<YES,20$>>,­
ADPADDR=R3

ADPDISP -

ADPDISP transfers control to the instruction at 10$ if the adapter does not
support mapping, or to 20$ if it does. ADPDISP uses the value in R3 to
locate the ADP.

SELECT=ADAP_TYPE,­
ADDRLIST=<<CI,10$>,<MBA,20$>,<UBA,30$>>,­
UCBADDR=R5,-
SCRATCH=R1

ADPDISP -

ADPDISP transfers control to 10$ if the adapter is a CI, 20$ if the adapter is a
MASSBUS adapter, and 30$ if it is a UNIBUS adapter. ADPDISP determines
the location of the ADP from a chain of pointers starting at the UCB address
specified in RS. In doing so, it destroys the contents of scratch register Rl.

SELECT=ADDR_BITS,­
ADDRLIST=<<18, 10$> ,<22,20$>>,­
ADPADDR=R3

ADPDISP transfers control to 10$ for all adapters using an 18-bit address and
20$ for all using a 22-bit address. The ADP address is supplied in R3.

CASE

FORMAT

VMS Macros Invoked by Drivers
CASE

Generates a CASE instruction and its associated table.

CASE src ,displist [,type=W] [,/imit=#O] [,nmode=S#]

PARAMETERS src

EXAMPLE

10$: CASE -

Source of the index value to be used with the CASE instruction.

displist
List of destinations to which control is to be dispatched, depending on the
value of the index.

[type=W]
Data type of src (B, W, or L).

[limit=#O]
Lower limit of the value of src.

[nmode=S#J
Addressing mode used to reference the case-table entries; the default, short­
literal mode, is good for up to 63 entries.

src=ITEMC,
displist=<FIRST,SECOND,THIRD,FOURTH>

This invocation of.the CASE macro expands to the following code:

30000$:

30001$:

CASEW ITEMC,#O,SA#<<30001-30000>/2>-1

.SIGNED_WORD

.SIGNED_WORD

.SIGNED_WORD

.SIGNED_WORD

FIRST-30000$
SECOND-30000$
THIRD-30000$
FOURTH-30000$

B-5

VMS Macros Invoked by Drivers
CLASS_CTRL_INIT

CLASS_CTRL_INIT

FORMAT

Generates the common code that must be executed by the controller
initialization routine of all terminal port drivers.

CLASS_CTRL_INIT dpt, vector

PARAMETERS dpt

DESCRIPTION

8-6

Symbolic name of the port driver's driver prologue table.

vector
Address of the port driver vector table.

A terminal port driver's controller initialization routine invokes the CLASS_
CTRL _INIT macro to relocate the class and port driver vector tables and
perform other required initialization.

To use the CLASS_CTRL_INIT macro, the driver must include an invocation
of the $TTYMACS definition macro (from SYS$LIBRARY:LIB.MLB).

VMS Macros Invoked by Drivers
CLASS_UNIT_INIT

CLASS_UNIT_INIT

FORMAT

DESCRIPTION

Generates the common code that must be executed by the unit
initialization routine of all terminal port drivers.

CLASS_UNIT_INIT

A terminal port· driver's unit initialization routine invokes the CLASS_ UNIT_
INIT macro to perform initialization tasks common to all port drivers. To use
the CLASS_UNIT_INIT macro, the driver must include an invocation of the
$TTYMACS definition macro (from SYS$LIBRARY:LIB.MLB).

The CLASS_UNIT_INIT macro binds the terminal port and class driver into
a single, complete driver by initializing the following UCB fields as indicated:

Field

UCB$L_TT_CLASS

UCB$L_TT_PORT

UCB$L_;_TT_GETNXT

UCB$L_TT_PUTNXT

UCB$L_DDT

Contents

Ciass driver vector table address

Port driver vector table address

Address of the class driver's get-next-character
routine (CLASS_GETNXT)

Address of the class driver's put-next-character
routine (CLASS_PUTNXT)

Address of the terminal class driver's driver dispatch
table

Prior to invoking this macro, the unit initialization should place in RO the
address of the port driver vector table.

B-7

VMS Macros Invoked by Drivers
CPU DI SP

CPU DI SP

FORMAT

PARAMETERS

B-8

Causes a branch to a specified address according to the CPU type of the
VAX processor executing the macro code.

CPUDISP addrlist ,[environ=VMS] ,continue=NO

addrlist
List containing one or more pairs of arguments in the following format:

<CPU-type, destination>

The CPU-type parameter identifies the type or subtype of a VAX processor
for which the macro is to generate a case table entry. The CPUDISP macro
identifies the following VAX systems by type alone:

CPU Type VAX System

8PS VAX 8830/8840

8NN VAX 8530/8550/8700/8800

790 VAX 8600/8650/8670

SSS VAX 8200/8250/8300/8350

780 VAX-11 /780 and VAX-11 /785 1

785 VAX-11/785

750 VAX-11/750

730 V AX-11 /730 and V AX-11 /725

UV1 MicroVAX I

1 Because the VAX-11 /785 has the same CPU type as the V AX-11 /780, the CPUDISP
macro contains special code to distinguish between the two processors. This code tests a
bit within the processor's system identification register (PR$_SID) that indicates whether it
is a VAX-11/785.

The CPUDISP macro identifies the following VAX systems by type and
subtype:

CPU Type Subtype VAX System

UV MicroVAX II processor-based system

UV2 MicroVAX II

410 VAXstation 2000/MicroVAX 2000

CV CV AX processor-based system

650 MicroVAX 3600-series system

9CC VAX 6200-series system

DESCRIPTION

VMS Macros Invoked by Drivers
CPUDISP

You can supply any combination of generic type and subtype in a single
invocation of the CPUDISP macro. Should the CPUDISP macro code be
executed on the appropriate processor, the following transfers of control are
possible:

• If you specify a generic type but no subtype, CPUDISP causes the branch
designated for the generic type to be taken for all of its subtypes.

• If you specify one or more subtypes but not the generic type, CPUDISP
causes the branch designated for each subtype to be taken.

• If you specify both the generic type and one or more subtypes, CPUDISP
causes the branch designated for each specified subtype to be taken. For
those subtypes that you do not specify, CPUDISP causes the branch
designated for the generic type to be taken.

The destination parameter contains the address to which the code generated
by the invocation of the CPUDISP macro passes control to continue with
CPU -specific processing.

[environ=VMSJ
Identification of the run-time environment of the code generated by the
CPUDISP macro. There is no need to change the default value of this
argument.

continue=NO
Specifies whether execution should continue at the line immediately after the
CPUDISP macro if the value at EXE$GB_CPUTYPE does not correspond to
any of the values specified as the CPU-type in the addrlist argument. A fatal
bugcheck of UNSUPRTCPU occurs if the dispatching code does not find the
executing processor identified in the addrlist and the value of continue is
NO.

The CPUDISP macro provides a means for transferring control to a specified
destination depending on the CPU type of the executing processor. For those
processors that do not have a unique CPU type, CPUDISP also provides the
means to dispatch on a particular CPU subtype.

To accomplish this, CPUDISP builds one or two case tables. The first CASEB
instruction uses words in the first case table to set up a transfer based on
each CPU-type specified in the addrlist argument. CPUDISP constructs the
second case table in the event it encounters a CPU subtype in the addrlist.

CPUDISP constructs appropriate symbolic constants for each CPU-type listed
in addrlist, and compares them against the contents of EXE$GB_CPUTYPE.
These constants have the form PR$_SID_TYPCPU-type.

For each CPU subtype it encounters in the addrlist argument, CPUDISP also
constructs symbolic constants of the form PR$_xsm__xx_yyy, where xx is the
generic CPU type (either UV or CV) and yyy is the CPU subtype (UV2 or 410
for UV, or 650 or 9CC for CV). It compares the value of PR$_xsm__xx_yyy
against the contents of EXE$GB_CPUDATA+15.

B-9

VMS Macros Invoked by Drivers
DDTAB

DDT AB

FORMAT

Generates a driver dispatch table {DDT) labeled devnam$DDT.

DDTAB devnam ,[start==+IOC$RETURN]
,[unsolic=+IOC$RETURN]
, functb [, cance/=+IOC$RETURN]
[,regdmp=+IOC$RETURN] [,diagbf=O]
[, erlgbf=O] [, unitinit==+IOC$RETURN]
[,altstart==+IOC$RETURN]
[,mntveF+IOC$MNTVER]
[,cloneducb=+IOC$RETURN]

PARAMETERS devnam

B-10

Generic name of the device.

[start=+IOC$RETURN]
Address of start-1/0 routine.

[unsolic=+IOC$RETURN]
Address of the routine that services unsolicited interrupts from the device.
Only MASSBUS device drivers use this field.

functb
Address of the driver's function decision table.

[cancel=+IOC$RETURN]
Address of cancel-1/0 routine.

[regdmp=+IOC$RETURN]
Address of the routine that dumps the device registers to an error message
buffer or to a diagnostic buffer.

[diagbf=OJ
Length in bytes of the diagnostic buffer.

[erlgbf=O]
Length in bytes of the error message buffer.

[unitinit=+IOC$RETURN]
Address of unit initialization routine. MASSBUS drivers should use this
field rather than CRB$L_INTD+VEC$L_UNITINIT. UNIBUS, Q22-bus, and
generic·VAXBI drivers can use either one.

[altstart=+IOC$RETURN]
Address of alternate start-1/0 routine. To initiate this routine, a driver
FDT routine exits by means of VMS routine EXE$AL TQUEPKT instead of
EXE$QIODRVPKT.

DESCRIPTION

EXAMPLE

VMS Macros Invoked by Drivers
DDTAB

[mntver=+IOC$MNTVER]
Address of the VMS routine that is called at the beginning and end of a
mount verification operation. The default, IOC$MNTVER, is suitable for all
single-stream disk drives. Use of this field to call any other routine is reserved
to DIGITAL.

[cloneducb=+IOC$RETURN]
Address of routine called when a UCB is cloned by the $ASSIGN system
service.

The DDTAB macro creates a driver dispatch table (DDT). The table has a
label of devnam$DDT. Just preceding the table, DDTAB generates the driver
code program section with the following statement:

.PSECT $$$115_DRIVER

The DDTAB macro writes the address of the VMS universal executive
routine vector IOC$RETURN into routine address fields of the DDT that
are not supplied in the macro invocation (with the exception of the mntver
argument). IOC$RETURN simply executes an RSB instruction.

A plus sign (+) precedes the address of any specified routine that is part of
VMS: that is, it is an address that is not relative to the location of the driver.
No plus sign precedes the address of a routine (such as a start-I/O routine)
that is part of the driver module.

DDTAB ;DDT-creation macro
DEVNAM=XX, - ;Name of device
START=XX_START,- ;Start-I/0 routine
FUNCTB=XX_FUNCTABLE,- ;FDT address
CANCEL=+IOC$CANCELIO,- ;Cancel-I/0 routine
REGDMP=XX_REGDUMP,- ;Register dumping routine
DIAGBF=<<15*4>+<<3+5+1>*4>>,- ;Diagnostic buffer size
ERLGBF=<<15*4>+<1*4>+<EMB$L_DV_REGSAV>> ;Error message buffer size

This code excerpt uses the DDTAB macro to create a driver dispatch table for
the XX device type. Note that because the cancel-I/O routine is part of VMS,
its address is preceded by a plus sign (+).

B-11

VMS Macros Invoked by Drivers
$DEF

$DEF

Defines a data-structure field within the context of a $DEFINI macro.

FORMAT $DEF sym [,alloc} {,siz]

PARAMETERS sym

DESCRIPTION

B-12

Name of the symbol by which the field is to be accessed.

[alloc]
Block-storage-allocation directives, one of the following: .BLKB, .BLKW,
.BLKL, .BLKQ, or .BLKO.

[siz]
Number of block storage units to allocate.

See the descriptions of the $DEFINI, $DEFEND, _ VIELD, and $EQULST
macros for additional information on defining symbols for data structure
fields.

You can define a second symbolic name for a single field, using the $DEF
macro a second time immediately following the first definition, leaving the
alloc argument blank in the first definition. The following example does this,
equating SYNONYM2 with LABEL2:

$DEFINI JLB
$DEF LABEL1 .BLKL 1
$DEF SYNONYM2
$DEF LABEL2 .BLKL 1
$DEF LABEL3 .BLKL 1
$DEFEND JLB

;Start structure definition
;First JLB field
;Synonym for LABEL2 field
;Second JLB field
;Third JLB field
;End of JLB structure

For another example of the use of the $DEF macro, see the description of the
$DEFINI macro.

$DEFEND

FORMAT

VMS Macros Invoked by Drivers
$DEFEND

Ends the scope of the $DEFINI macro, thereby completing the definition of
fields within a data structure.

$DEFEND struc

PARAMETERS struc
Name of the structure that is being defined.

DESCRIPTION See the descriptions of the $DEFINI, _VIELD, and $EQULST macros for
additional information on defining symbols for data structure fields.

B-13

VMS Macros Invoked by Drivers
$DEFINI

$DEFINI

FORMAT

PARAMETERS

DESCRIPTION

EXAMPLE

Begins the definition of a data structure.

$DEFINI struc {,gbl=LOCAL] {,dot=O]

struc
Name of the data structure that is being defined.

[gbl=LOCAL]
Specifies whether the symbols defined for this data structure are to be local or
global symbols. The default is to make them local.

To make the definitions of symbols global, you must specify GLOBAL for the
value of the gbl argument.

[dot=O]
Offset from the beginning of the data structure of the first field to be defined.
The $DEFINI macro moves this value into the current location counter (.).

The $DEF macro defines fields within the structure specified by the invocation
of the $DEFINI macro, and the $DEFEND macro ends the definition. See the
descriptions of the _ VIELD and $EQULST macros for additional information
on defining symbols for data structure fields.

$DEFINI UCB, ,UCB$K_LCL_DISK_LENGTH

$DEF
$DEF
$DEF
$DEF
$DEF

B-14

UCB_W_DL_PBCR
UCB_W_DL_CS
UCB_W_DL_BA
UCB_A_DL_BUF_PA
UCB_K_DL_LEN
$DEFEND UCB

;Start UCB extension, begin definitions

.BLKW 1

.BLKW 1

.BLKW 1

.BLKL 1

.BLKW 1

; at end of local disk UCB extension
;Partial byte count
;Control status register
;Bus address register
;Physical buffer physical address
;Length of extended UCB

This code excerpt, when assembled in VMS Version 5.0, produces the
following symbol listing:

UCB_A_DL_BUF_PA
UCB_K_DL_LEN
UCB$K_LCL_DISK_LENGTH
UCB_W_DL_BA
UCB_W_DL_CS
UCB_W_DL_PBCR

OOOOOOD2
OOOOOOD6

= oooooocc
OOOOOODO
OOOOOOCE
oooooocc

VMS Macros Invoked by Drivers
DEVICELOCK

DEVICELOCK

FORMAT

Achieves synchronized access to a device's database as appropriate to
the processing environment.

DEVICELOCK [lockaddr] {,Jockipl] {,savipl] {,condition]
[,preserve= YES]

PARAMETERS [lockaddr]

DESCRIPTION

Address of the device lock to be obtained. If lockaddr is not present,
DEVICELOCK presumes that RS contains the address of the UCB and uses
the value at UCB$L_DLCK(R5) as the lock address.

[lockipl]
Location containing the IPL at which the device database is synchronized.
In a uniprocessing environment, the DEVICELOCK macro sets IPL to the
specified lockipl; if no lockipl is specified, it obtains the synchronization IPL
from the device lock's data structure. In a multiprocessing environment, the
VMS routine called by DEVICELOCK raises IPL to the IPL value contained in
the device lock's data structure, regardless of whether the lockipl argument is
present.

DIGITAL recommends that you specify a lockipl value to facilitate debugging.

[savipl]
Location at which to save the current IPL.

[condition]
Indication of a special use of the macro. The only defined condition is
NOSETIPL, which causes the macro to omit setting IPL. In some instances
setting IPL is undesirable or unnecessary when a driver obtains a device lock.
For example, when an interrupt service routine issues the DEVICELOCK
macro, the dispatching of the device interrupt has already raised IPL to device
IPL.

[preserve= YE SJ
Indication that the macro should preserve RO across the invocation. If you do
not need to retain the contents of RO, specifying preserve=NO can enhance
system performance.

In a uniprocessing environment, the DEVICELOCK macro raises IPL to lockipl
(if condition=NOSETIPL is not specified).

In a multiprocessing environment, the DEVICELOCK macro performs the
following actions:

• Preserves RO through the macro call (if preserve=YES is specified).

• Stores the address of the device lock in RO.

B-15

VMS Macros Invoked by Drivers
DEVICE LOCK

• Calls either SMP$ACQUIREL or SMP$ACQNOIPL, depending upon the
presence of condition=NOSETIPL. SMP$ACQUIREL raises IPL to device
IPL prior to obtaining the lock, determining appropriate IPL from the
device lock's data structure (SPL$B_IPL).

In both processing environments, the DEVICELOCK macro performs the
following tasks:

• Preserves the current IPL at the specified location (if savipl is specified)

• Sets the SMP-modified bit in the driver prologue table (DPT$V_
SMPMOD in DPT$L _FLAGS)

EXAMPLE

L1:

DEVICELOCK -
LOCKADDR=UCB$L_DLCK(R5) ,­
LOCKIPL=UCB$B_DIPL(R5) ,­
SAVIPL=-(SP),­
PRESERVE=YES

SETIPL #31
BBC #UCB$V_POWER,-

UCB$W_STS(R5) ,L1

DEVICEUNLOCK -
LOCKADDR=UCB$L_DLCK(R5) ,­
NEWIPL=(SP)+,-
PRESERVE= YES

BRW RETREG

WFIKPCH RETREG,#2

;Lock device access
;Raise IPL
;Save current IPL
;Save RO
;Disable all interrupts
;If clear - no power failure

;Service power failure!

;Unlock device access
;Restore IPL
;Save RO
;Exit
;Return for no power failure

;Wait for interrupt

The start-I/O routine of DLDRIVER invokes the DEVICELOCK macro
to synchronize access to the device's registers and UCB fields. Thus
synchronized at device IPL, and holding the device lock in a VMS
multiprocessing environment, the routine raises IPL to IPL$_POWER (IPL
31) to check for a power failure on the local processor. If a power failure has
occurred, the routine releases the device lock and pops the saved IPL from
the stack before servicing the failure. If a power failure has not occurred, the
routine branches to set up the IjO request. Note that, in this instance, it is
the wait-for-interrupt routine, invoked by the WFIKPCH macro, that issues
the DEVICEUNLOCK macro and pops the saved IPL from the stack.

B-16

VMS Macros Invoked by Drivers
DEVICEUNLOCK

DEVICEUNLOCK

FORMAT

Relinquishes synchronized access to a device's database as appropriate to
the processing environment.

DEVICEUNLOCK [lockaddr] {,newip/} {,condition]
{,preserve= YES]

PARAMETERS [lockaddr]

DESCRIPTION

Address of the device lock to be released or restored. If lockaddr is not
present, DEVICEUNLOCK presumes that RS contains the address of the UCB
and uses the value at UCB$L _DLCK(R5) as the lock address.

[newip/]
Location containing the IPL to which to lower. A prior invocation of the
DEVICELOCK macro may have stored this IPL value.

[condition]
Indication of a special use of the macro. The only defined condition
is RESTORE, which causes the macro-in a VMS multiprocessing
environment-to call SMP$RESTOREL instead of SMP$RELEASEL. This
releases a single acquisition of the spin lock by the local processor.

[preserve= YE SJ
Indication that the macro should preserve RO across an invocation. If you do
not need to retain the contents of RO, specifying preserve=NO can enhance
system performance.

In a uniprocessing environment, the DEVICEUNLOCK macro lowers IPL to
newipl. If an interrupt is pending at the current IPL or at any IPL above
newipl, the current procedure is immediately interrupted.

In a multiprocessing environment, the DEVICEUNLOCK macro performs the
following tasks:

• Preserves RO through the macro call (if preserve=YES is specified).

• Stores the address of the device lock in RO.

• Calls SMP$RELEASEL or, if condition=RESTORE is specified,
SMP$RESTOREL.

• Moves any specified newipl into the local processor's IPL register (PR$_
IPL). If an interrupt is pending at the current IPL or at any IPL above
newipl, the current procedure is immediately interrupted.

In either processing environment, the DEVICELOCK macro sets the SMP­
modified bit in the driver prologue table (DPT$V_SMPMOD in DPT$L _
FLAGS).

B-17

VMS Macros Invoked by Drivers
DEVICEUNLOCK

EXAMPLE

DEVICELOCK -
LOCKADDR=UCB$L_DLCK(R5),- ;Lock device access
CONDITION=NOSETIPL,- ;Do not set IPL
PRESERVE=NO ;Do not preserve RO

20$: MOVQ UCB$L_FR3(R5),R3 ;Restore driver context
JSB ©UCB$L_FPC(R5) ;Call driver at interrupt return address

40$: DEVICEUNLOCK -
LOCKADDR=UCB$L_DLCK(R5),­
PRESERVE=NO

;Unlock device access
;Do not preserve RO

B-18

When the device interrupts, DLDRIVER's interrupt service routine
immediately obtains the device lock so that it can examine device registers
and preserve their contents. It then calls the driver's start-1/0 routine at the
location in which it initiated device activity. The routine forks and returns
control to the interrupt service routine, which releases the device lock.

DPT AB

FORMAT

VMS Macros Invoked by Drivers
DPTAB

Generates a driver prologue table (DPT) in a program section called
$$$105_PROLOGUE.

DPTAB end ,adapter ,[f/ags=O] ,ucbsize ,[unload]
,[maxunits=B] ,[defunits= 1] ,[deliver] ,[vector]
,name [,psect=$$$105_PROLOGUE] [,smp=NO]
[,decode]

PARAMETERS end
Address of the end of the driver.

adapter
Type of adapter (as indicated by the symbols prefixed by AT$ defined by the
$DCDEF macro in SYS$LIBRARY:STARLET.MLB). The adapter type can be
any of the following:

UBA UNIBUS adapter or 022 bus interface

MBA MASSBUS adapter

GENBI Generic V AXBI adapter

DR DR device

NULL No actual device for driver

[flags=OJ
Flags used in loading the driver. Drivers use the following flags:

DPT$M_SVP

DPT$M_NQUNLOAD

Indicates that the driver requires a permanently
allocated system page. Disk drivers use this SPTE
during ECC correction and when using the system
routines 1.0C$MOVFRUSER and IOC$MOVTOUSER.

When this flag is set, the driver-loading procedure
allocates a permanent system page-table entry (SPTE)
for the device. It stores an index to the virtual address
of the SPTE in UCB$L_SVPN when it creates the UCB.
A driver can calculate the system virtual address of the
page corresponding to this index by using the following
formula:

(index* 20015) + 8000000016

Indicates that the driver cannot be reloaded.- When this
bit is set, the driver can be unloaded only by rebooting
the system.

B-19

VMS Macros Invoked by Drivers
DPTAB

B-20

DPT$M_SMPMOD

ucbsize

Indicates that the driver has been designed to execute
within a VMS multiprocessing environment. Use
of any of the VMS multiprocessing synchronization
macros (DEVICELOCK/DEVICEUNLOCK, FORKLOCK
/FORKUNLOCK, or LOCK/UNLOCK) automatically sets
this flag, as long as the code using the macro resides
in the same module as the invocation of DPT AB.

Size in bytes of each UCB the driver-loading procedure creates for devices
supported by the driver. This required argument allows drivers to extend
the UCB to store device-dependent data describing an 1/0 operation.
Figure A-17 describes the VMS-defined extensions to the UCB and discusses
the means by which a driver can define a device-specific extension.

[unload]
Address of the driver routine invoked by the SYSGEN RELOAD command
before it unloads an old version of the driver to load a new version. The

·driver-loading procedure calls this routine before reinitializing all controllers
and device units associated with the driver.

[maxunits=BJ
Maximum number of units that this driver supports on a controller. This field
affects the size of the IDB created by the driver-loading procedure. If you
omit the maxunits argument, the default is eight units. You can override
the value specified in the DPT by using the /MAXUNITS qualifier to the
SYSGEN CONNECT command.

[def units= 1]
Maximum number of UCBs to be created by SYSGEN's AUTOCONFIGURE
command (one for each device unit to be configured). The unit numbers
assigned are zero through defunits-1.

If you do not specify the deliver argument, AUTOCONFIGURE creates
the number of units specified by defunits. If you specify the address of a
unit delivery routine in the deliver argument, AUTOCONFIGURE calls that
routine to determine whether or not to create each UCB automatically.

[deliver]
Address of the driver unit delivery routine. The unit delivery routine
determines which device units supported by this driver the SYSGEN
AUTOCONFIGURE command should configure automatically. If you omit
the deliver argument, the AUTOCONFIGURE command creates the number
of units specified by the defunits argument.

[vector]
Address of a driver-specific transfer vector. A terminal port driver specifies
the address of its vector table in this argument.

name
Name of the device driver. The driver-loading procedure will permit the
loading of only one copy of the driver associated with this name. A driver
name can be up to 11 alphabetic characters and, by convention, is formed
by appending the string DRIVER to the 2-alphabetic-character generic device
name, for example, DBDRIVER.

VMS Macros Invoked by Drivers
DPTAB

[psect=$$$105_PROLOGUE]
Program section in which the DPT is created. The default value of this
argument is required for all non-DIGITAL-supplied device drivers.

[smp=NOJ
Indication of whether the driver is suitably synchronized to execute in a VMS
multiprocessing system. Note that use of any of the spin lock synchronization
macros in a device driver causes the DPTAB macro to indicate multiprocessing
synchronization.

[decode]
Offset to name used by workstation windowing software.

DESCRIPTION The DPTAB macro, in conjunction with invocations of the DPT_STORE
macro, creates a driver prologue table (DPT). The DPTAB macro places
information in the DPT that allows the driver-loading procedure to determine
the identity of the driver and the devices it supports. The DPTAB macro,

EXAMPLE

DPTAB

DPT_STORE
DPT_STORE

DPT_STORE
DPT_STORE

DPT_STORE

DPT_STORE

DPT_STORE

DPT_STORE
DPT_STORE
DPT_STORE

DPT_STORE

in invoking the $SPLCODDEF definition macro, also defines the spin lock
indexes used in the DPT_STORE, FORKLOCK, and LOCK macros.

END=XA_END,­
ADAPTER=UBA,­
FLAGS=<DPT$M_SVP!-

DPT$M_SMPMOD>,­
UCBSIZE=UCB$K_SIZE,­
NAME=XADRIVER
!NIT
UCB,UCB$B_FLCK,B,-

SPL$C_IOLOCK8
UCB,UCB$B_DIPL,B,22
UCB,UCB$L_DEVCHAR,L,<­

DEV$M_AVL!­
DEV$M_RTM!­
DEV$M_ELG!­
DEV$M_IDV!­
DEV$M_ODV>

UCB,UCB$B_DEVCLASS,B,­
DC$_REALTIME

UCB,UCB$B_DEVTYPE,B,­
DT$_DR11W

UCB,UCB$W_DEVBUFSIZ,W,-

;DPT-creation macro
;End of driver label
;Adapter type
;Allocate permanent SPTE
;Multiprocessing driver
;UCB size
;Driver name
;Start of load initialization table

;Fork lock index
;Device interrupt IPL
;Device characteristics
;Available
;Real time device
;Error logging enabled
;Input device
;Output device

;Device class

;Device type

XA_DEF_BUFSIZ ;Default buffer size
REINIT ;Start of reload initialization table
DDB,DDBL_DDT,D,XADDT ;Address of DDT
CRB,CRB$L_INTD+VEC$L_ISR,D,-

XA_INTERRUPT ;Address of interrupt service routine
CRB,CRB$L_INTD+VEC$L_INITIAL,D,-

DPT_STORE END
XA_CONTROL_INIT ;Address of controller initialization routine

;End of initialization

This excerpt from XADRIVER.MAR contains the DPTAB macro and the series
of DPT_STORE macros that create its driver prologue table.

B-21

VMS Macros Invoked by Drivers
DPT_STORE

DPT_STORE

FORMAT

PARAMETERS

B-22

Instructs the VMS driver-loading procedure to store values in a table or
data structure.

DPT_STORE str_type ,str_off ,oper ,exp [,pos] [,size]

str_type
Type of data structure (CRB, DDB, IDB, ORB, or UCB) into which the driver­
loading procedure is to store the specified data, or a label denoting a table
marker. Table marker labels indicate the start of a list of DPT_STORE macro
invocations that store information for the driver-loading procedure in the
driver initialization table and driver reinitialization table sections of the DPT.
If this argument is a table marker label, no other argument is allowed. The
following labels are used:

INIT

REINIT

Indicates the start of fields to initialize when the driver is loaded

Indicates the start of additional fields to initialize when the driver is
loaded and reinitialized when the driver is reloaded

END Indicates the end of the two lists

str_off
Unsigned offset into the data structure in which the data is to be stored. This
value cannot be more than 65 ,535 bytes.

op er
Type of storage operation, one of the following:

Type Meaning

B Write a byte value.

W Write a word value.

L Write a longword value.

D Write an address relative to the beginning of the driver.

V Write a bit field. If you specify a V in the oper argument, the
driver-loading procedure uses the exp, pos, and size arguments as
operands to an INSV instruction.

If an at sign(@) precedes the oper argument, the exp argument indicates the
address of the data that is to be stored and not the data itself.

DESCRIPTION

VMS Macros Invoked by Drivers
DPT_STORE

exp
Expression indicating the value with which the driver-loading procedure
is to initialize the indicated field. If an at-sign character (@) precedes the
oper argument, the exp argument indicates the address of the data with
which to initialize the field. For example, the following macro indicates that
the contents of the location DEVICE_CHARS are to be written into the
DEVCHAR field of the UCB.

DPT_STORE UCB,UCB$L_DEVCHAR,©L,DEVICE_CHARS

[pos]
Starting bit position within the specified field; used only if oper=V.

[size]
Number of bits to be written; used only if oper=V.

The DPT_STORE macro places information in the DPT that the driver­
loading procedure uses to load specified values into specified fields. The
DPT_STORE macro accepts two lists of fields:

• Fields to be initialized only when a driver is first loaded

• Fields to be initialized when a driver is first loaded and reinitialized if the
driver is reloaded

The DPTAB macro stores the relative addresses of these two lists, called
initialization and reinitialization tables, in the DPT. A driver constructs
the initialization tables by following the DPTAB macro with one or more
invocations of the DPT_STORE macro.

Drivers use the DPT_STORE macro with the INIT table marker label to
begin a list of DPT_STORE invocations that supply initialization data for the
following fields:

UCB$B_FLCK Index of the fork lock under which the, driver performs
fork processing. Fork lock indexes are defined by the
$SPLCODDEF definition macro (invoked by DPT AB) as
follows:

IPL Fork Lock Index

8 SPL$C_IOLOCK8

9 SPL$C_IOLOCK9

lO SPL$C_IOLOCK 10

11 SPL$C_IOLOCK 11

UCB$B_DIPL Device interrupt priority level.

B-23

VMS Macros Invoked by Drivers
DPT_STORE

B-24

Other commonly initialized fields are as follows:

UCB$L_DEVCHAR

UCB$B_DEVCLASS

UCB$B_DEVTYPE

UCB$W _DEVBUFSIZ

UCB$Q_DEVDEPEND

Device characteristics.

Device class.

Device type.

Default buffer size.

Device-dependent parameters.

Drivers use the DPT_STORE macro with the REINIT table marker label
to begin a list of DPT_STORE invocations that supply initialization and
reinitialization data for the following fields:

DDB$L_DDT

CRB$L_INTD+
VEC$L_ISR

CRB$L_INTD2+
VEC$L_ISR

CRB$L_INTD+
VEC$L _INITIAL

CRB$L_INTD+
VEC$L _UNITINIT

Driver dispatch table. Every driver must specify a value
for this field.

Interrupt service routine.

Interrupt service routine for second interrupt vector.

Controller initialization routine.

Unit initialization routine (for UNIBUS, 022 bus, and
generic V AXBI device drivers). Note that MASSBUS
drivers must specify the address of the unit initialization
routine in an invocation of the DDT AB macro.

For an example of the use of the DPT_STORE macro, see the description of
the DPTAB macro.

DSBINT

FORMAT

VMS Macros Invoked by Drivers
DSBINT

Blocks interrupts from occurring on the local processor at or below a
specified IPL.

DSBINT [ip/=31] [,dst=-(SP)}
[, environ=MUL TIPROCESSOR]

PARAMETERS [ip/=31]
IPL at which to block interrupts. If no ipl is specified, the default is IPL 31,
which blocks all interrupts.

[dst=-(SP)]
Location in which to save the current IPL. If no destination is specified, the
current IPL is pushed onto the stack.

[environ=MUL Tl PROCESSOR]
Processing environment in which the DSBINT synchronization macro
is to be assembled. If you do not specify environ, or if you do specify
environ=MUL TIPR CESSOR, the DSBINT macro generates the following
assembly-time warnin message, where xx is an IPL above IPL 2:

%MACRO-W-GENWARN, Generated WARNING: Raising IPL to #xx provides n ultiprocessing synchronization

DESCRIPTION

If you are certain that the purpose o cro invocation is t0 block only
local processor events, you can disable the warning message by includ:.:tg
environ=UNIPROCESSOR in the invocation.

The DSBINT macro first stores the current IPL of the local processor and then
moves the specified IPL into the processor's IPL register (PR$_IPL).

Note that the DSBINT and ENBINT macros provide full synchronization
only in a uniprocessing environment. In a multiprocessor configuration,
DSBINT and ENBINT are suitable only for blocking events on the local
processor. To provide synchronized access to system resources and
devices in a multiprocessing environment, you must use the DEVICELOCK
/DEVICEUNLOCK, FORKLOCK/FORKUNLOCK, and LOCK/UNLOCK
macros.

B-25

VMS Macros Invoked by Drivers
EN Bl NT

EN Bl NT

FORMAT

Lowers the local processor's IPL to a specified value, thus permitting
interrupts to occur at or beneath the current IPL.

ENBINT [src=(SP)+]

PARAMETERS [src=(SP)+]

DESCRIPTION

8-26

Location containing the IPL to be restored to the processor IPL register (PR$_
IPL) of the local processor. If you do not specify a value in src, ENBINT
moves the value on the top of the stack into PR$_IPL.

The ENBINT macro complements the actions of the DSBINT macro, restoring
an IPL value to PR$_IPL. Procedures invoke this macro to lower IPL to a
previously saved level. If an interrupt is pending at the current IPL or at
any IPL above the IPL specified by src, the current procedure is immediately
interrupted.

Note that the DSBINT and ENBINT macros only provide full synchronization
in a uniprocessor environment. In multiprocessor configurations,
DSBINT and ENBINT are only suitable for blocking events on the local
processor. To provide synchronized access to system resources and
devices in a multiprocessing environment, you must use the DEVICELOCK
/DEVICEUNLOCK, FORKLOCK/FORKUNLOCK, and LOCK/UNLOCK
macros.

$EQULST

FORMAT

VMS Macros Invoked by Drivers
$EQULST

Defines a list of symbols and assigns values to the symbols.

$EQULST prefix ,[gbl=LOCAL] ,init ,finer== 1] ,list

PARAMETERS prefix

DESCRIPTION

EXAMPLE

$EQULST XA_K_,,0,1,<­
<fnct1,2>­
<fnct2,4>­
<fnct3,8>­
<statusa,2048>­
<statusb, 1024>­
<statusc, 512>­
>

Prefix to be used in forming the names of the symbols.

[gbl=LOCAL]
Scope of the definition of the symbol, either LOCAL, the default, or
GLOBAL.

in it
Value to be assigned to the first symbol in the list.

[incr=1]
Increment by which to increase the value of each succeeding symbol in the
list. The default is 1.

list
List of symbols to be defined. Each element in the list can have one of the
following forms:

<symbol> - where symbol is the string appended to the prefix,
forming the name of the symbol; the value of the symbol is assigned
based on the values of init and incr.
<symbol,value> - where symbol is the string that is appended to the

prefix, forming the name of the symbol, and value specifies the value of
the symbol.

See the descriptions of the $DEFINI and _ VIELD macros for additional
information on defining symbols for data structure fields.

;Define CSR bit values

B-27

VMS Macros Invoked by Drivers
$EQULST

This code excerpt produces the following symbols:

B-28

XA_K_FNCT1
XA_K_FNCT2
XA_K_FNCT3
XA_K_STATUSA
XA_K_STATUSB
XA_K_STATUSC

= 00000002
= 00000004
= 00000008
= 00000800
= 00000400
= 00000200

VMS Macros Invoked by Drivers
FIND_CPU_DATA

FIND_· CPU_DATA

FORMAT

PARAMETERS

DESCRIPTION

EXAMPLE

FIND_CPU_DATA RO

Locates the start of the current process's per-CPU database area (CPU).

FIND_CPU_DATA reg {,amod=G] {,istack=NO]

reg
Register to receive the base virtual address of the current processor's per-CPU
database structure (CPU)).

[amod=GJ
Addressing mode.

[istack=NOJ
Mechanism by which the base of the per-CPU database structure is calculated.
Use istack=YES used only when it is certain that the processor is executing
on the interrupt stack. The mechanism used when istack=NO is somewhat
slower, but works whether the processor is executing on the interrupt stack or
kernel stack.

The FIND_CPU_DATA macro loads the starting virtual address of the
current processor's per-CPU database (CPU) into the specified register. A
driver generally invokes the FIND_CPU_DATA macro in the process of
determining the current process of the current CPU when executing in system
context.

Such a driver must adhere to the following rules:

• It must invoke the FIND_CPU_DATA macro in kernel mode at or above
IPL$_RESCHED.

• It must ensure that it will not be rescheduled after issuing the macro
while it is using the information returned by FIND_CPU_DATA. It
typically does this by remaining at IPL$_RESCHED or greater.

MOVL CPU$L_CURPCB(RO),R1

The FIND_CPU_DATA macro returns the starting virtual address of the
current processor's per-CPU database in RO. The subsequent MOVL
instruction obtains the address of the process currently active on that
processor and places it in Rl.

B-29

VMS Macros Invoked by Drivers
FORK

FORK

FORMAT

DESCRIPTION

B-30

Creates a fork process, in which context the code that follows the macro
invocation executes.

FORK

The FORK macro calls EXE$FORK to create a fork process. When the FORK
macro is invoked, the following registers must contain the values listed:

Register

R3

R4

R5

OO(SP)

Contents

Contents to be placed in R3 of the fork process

Contents to be placed in R4 of the fork process

Address of fork block

Address of caller's caller

Unlike EXE$10FORK, EXE$FORK does not disable device timeouts by clearing
the UCB$V_TIM bit in the field UCB$L_STS.

FOR KLOCK

FORMAT

VMS Macros Invoked by Drivers
FOR KLOCK

Achieves synchronized access to a device driver's fork database as
appropriate to the processing environment.

FORKLOCK [lock} [,lockipl} [,savipl} [,preserve= YES]
[,fipl=NO}

PARAMETERS [lock]

DESCRIPTION

Index of the fork lock to be obtained. If the lock argument is not present in
the macro invocation, FORKLOCK presumes that RS contains the address of
the fork block and uses the value at FKB$B_FLCK(R5) as the lock index.

[lockipl]
Location containing the IPL at which the fork database is synchronized.
Although the value of this argument is ignored by the macro, DIGITAL
recommends that you specify a lockipl value to facilitate debugging.

[savipl]
Location at which to save the current IPL.

[preserve= YES]
Indication that the macro should preserve RO across the invocation. If you do
not need to retain the contents of RO, specifying preserve=NO can enhance
system performance.

[fipl=NOJ
Indication that the macro does not need to determine whether the contents of
the lock argument or FKB$B_FLCK(R5) is a fork lock index or a fork IPL. The
FORKLOCK macro ignores the contents of this argument in a multiprocessing
environment.

The VMS fork dispatcher uses fipl=YES to determine whether a fork block it
is servicing contains a fork lock index or a fork IPL. Because a device driver
initializes offset UCB$B_FLCK (also known as UCB$B_FIPL) in the fork
block, it does not need to determine its contents when it issues a FORKLOCK
macro.

In a uniprocessing environment, the FORKLOCK macro raises IPL according
to one of the following methods:

• It sets IPL to the IPL that corresponds to the fork lock index in the spin
lock IPL vector (SMP$AR_IPL VEC).

B-31

VMS Macros Invoked by Drivers
FOR KLOCK

• If you specify fipl=YES, the FORKLOCK macro takes the following
actions:

If offset FKB$B_FLCK (FKB$B_FIPL) contains a fork lock index, it
sets IPL to the IPL that corresponds to the fork lock index in the spin
lock IPL vector (SMP$AR_IPL VEC).

If offset FKB$B_FLCK (FKB$B_FIPL) contains a fork IPL, it sets IPL
to that fork IPL.

In a multiprocessing environment, the FORKLOCK macro stores the fork lock
index in RO and calls SMP$ACQUIRE. SMP$ACQUIRE uses the value in RO
to locate the fork lock structure in the system spin lock database (a pointer
to which is located at SMP$AR_SPNLKVEC). Prior to securing the fork lock,
SMP$ACQUIRE raises IPL to its associated IPL (SPL$B_IPL).

In both processing environments, the FORKLOCK macro performs the
following tasks:

• Preserves RO through the macro call (if preserve=YES is specified)

• Preserves the current IPL at the specified location (if savipl is specified)

• Sets the SMP-modified bit in the driver prologue table (DPT$V_
SMPMOD in DPT$L _FLAGS)

EXAMPLE

20$:

FORKLOCK -

INCW
BBSS

LOCK=UCB$B_FLCK(R5),- ;Lock fork database
SAVIPL=-(SP),- ;Save the current IPL
PRESERVE=NO ;Do not preserve RO
UCB$W_QLEN(R5) ;Bump device queue length
#UCBV_BSY,UCBW_STS(R5) ,-
20$

PUSHL R5
;If set, device is busy
;Save UCB address
;Initiate I/O function
;Restore UCB address

BSBW IOC$INITIATE
POPL R5
FORKUNLOCK -

LOCK=UCB$B_FLCK(R5) ,­
NEWIPL=(SP)+ ,­
PRESERVE= NO

;Unlock fork database
;Restore previous IPL
;Do not preserve RO

RSB

;Place !RP in UCB pending-I/a queue

The VMS routine that determines whether a device can immediately service
an 1/0 request synchronizes its access to the fork database by invoking the
FORKLOCK macro. The FORKLOCK macro raises IPL to fork IPL and, in a
multiprocessing environment, obtains the corresponding fork lock.

Thus synchronized, the VMS routine tests a bit in the UCB to determine
whether the device is busy. If the device is not busy, VMS calls a routine
that initiates driver processing of the 1/0 request, still at fork IPL and holding
the fork lock. Later, possibly with an invocation of the WFIKPCH macro,
the driver start-I/O routine returns control to this routine, which issues the
FORKUNLOCK macro to relinquish fork level synchronization.

B-32

VMS Macros Invoked by Drivers
FORKUNLOCK

FORKUNLOCK

FORMAT

Relinquishes synchronized access to a device driver's fork database as
appropriate to the processing environment.

FORKUNLOCK [lock] [,newipl} [,condition]
[,preserve= YES]

PARAMETERS [lock]

DESCRIPTION

Index of the fork lock to be released or restored. If lock is not present,
FORKUNLOCK assumes that RS contains the address of the fork block and
uses the value at FKB$B_FLCK(R5) as the fork lock index.

[newipl]
Location containing the IPL to which to lower. A prior invocation of the
FORKLOCK macro may have stored this IPL value.

[condition]
Indication of a special use of the macro. The only defined condition
is RESTORE, which causes the macro-in a VMS multiprocessing
environment-to call SMP$RESTORE instead of SMP$RELEASE. This
releases a single acquisition of the fork lock by the local processor.

[preserve= YE SJ
Indication that the macro should preserve RO across an invocation. If you do
not need to retain the contents of RO, specifying preserve=NO can enhance
system performance.

In a uniprocessing environment, the FORKUNLOCK macro lowers IPL to
newipl. If an interrupt is pending at the current IPL or at any IPL above
newipl, the current procedure is immediately interrupted.

In a multiprocessing environment, the FORKUNLOCK macro performs the
following tasks:

• Preserves RO through the macro call (if preserve=YES is specified).

• Stores the fork lock index in RO.

• Calls SMP$RELEASE or, if condition=RESTORE is specified,
SMP$RESTORE.

• Moves any specified newipl into the local processor's IPL register (PR$_
IPL). If an interrupt is pending at the current IPL or at any IPL above
newipl, the current procedure is immediately interrupted.

In either processing environment, the FORKUNLOCK macro sets the SMP­
modified bit in the driver prologue table (DPT$V_SMPMOD in DPT$L_
FLAGS).

For an example of the use of the FORKUNLOCK macro, see the description
of the FORKLOCK macro.

8-33

VMS Macros Invoked by Drivers
FUNCTAB

FUNCTAB

Creates a driver's function decision table (FDT) and generates FDT entries.

FORMAT FUNCTAB faction] ,codes

PARAMETERS [action]

DESCRIPTION

B-34

Address of an FDT routine that VMS calls when preprocessing an 1/0 request
whose function code matches a function indicated in the codes argument. A
plus sign (+) precedes the address of any specified FDT routine that is part of
VMS. No plus sign precedes the address of an FDT routine that is contained
within the driver module.

You cannot specify an action argument in a driver's first two invocations of
the FUNCTAB macro.

codes
List of 1/0 function codes that VMS preprocessing services by calling the FDT
routine specified in the action argument of the FUNCTAB macro invocation.
The macro expansion prefixes each code with the string 10$_; for example,
READVBLK expands to 10$-READVBLK.

A device driver uses several invocations of the FUNCTAB macro to generate
the three components of a function decision table:

• The list of valid 1/0 function codes

• The list of buffered 1/0 function codes

• One or more FDT entries

The first two invocations of the FUNCTAB macro in a driver generate the
lists of valid 1/0 functions and buffered 1/0 functions, respectively. These
invocations include the codes argument, but not the action argument. If no
buffered 1/0 functions are defined for the device, the codes argument to the
second invocation of the FUNCTAB macro specifies an empty list.

Each succeeding invocation of the FUNCTAB macro generates an FDT entry.
Each FDT entry specifies all or a subset of the valid 1/0 function codes and
the address of an FDT routine that performs 1/0 preprocessing for those
function codes. You can specify any valid 1/0 function code in more than
one of these FUNCTAB macro invocations, thus causing more than one FDT
routine to be called for a single valid IjO function code.

EXAMPLE

XX_FUNCTABLE:
FUNCTAB

FUNCTAB

<READLBLK,­
READPBLK,­
READVBLK,­
SENSEMODE,­
SENSECHAR.­
SETMODE,­
SETCHAR.-

>

<READLBLK,­
READPBLK.­
READVBLK,­
SENSEMODE.­
SENSECHAR,­
SETMODE,­
SETCHAR,-

>
FUNCTAB XX_READ.­

<READLBLK,­
READPBLK,­
READVBLK,-

>
FUNCTAB +EXE$SETMODE.­

<SETCHAR,­
SETMODE,-

>
FUNCTAB +EXE$SENSEMODE,­

<SENSECHAR.­
SENSEMODE,-

>

VMS Macros Invoked by Drivers
FUNCTAB

;Function decision table
;Valid functions
;Read logical block
;Read physical block
;Read virtual block.
;Sense reader mode
;Sense reader characteristics
;Set reader mode
;Set reader characteristics

;Buffered-I/0 functions
;Read logical block
;Read physical block
;Read virtual block
;Sense reader mode
;Sense reader characteristics
;Set reader mode
;Set reader characteristics

;Read function FDT routine
;Read logical block
;Read physical block
;Read virtual block

;Set mode/characteristics FDT routine
;Set reader characteristics
;Set reader mode

;Sense mode/characteristics FDT routine
;Sense reader characteristics
;Sense reader mode

This function decision table specifies that the routine XX_READ be called for
all read functions that are valid for the device. XX_READ appears later in
the driver module. VMS 1/0 preprocessing will call routines EXE$SETMODE
and EXE$SENSEMODE for the device's set-characteristics and sense-mode
functions. Because each of these routines is part of VMS, a plus sign (+)
precedes its name in the FUNCTAB macro argument.

B-35

VMS Macros Invoked by Drivers
IFNORD, IFNOWRT, IFRD, IFWRT

IFNORD, IFNOWRT, IFRD, IFWRT

FORMAT

Determines the read or write accessibility of a range of memory locations.

l IFNORD l
IFNOWRT
IFRD
IFWRT

siz ,adr ,dest [,mode=#O]

PARAMETERS siz

DESCRIPTION

B-36

Offset of the last byte to check from the first byte to check, a number less
than or equal to 512.

adr
Address of first byte to check.

de st
Address to which the macro transfers control, according to the following
conditions:

Macro

IF NORD

IFNOWRT

IFRD

IFWRT

[mode=#O]

Condition

If either of the specified bytes cannot be read in the specified
access mode

If either of the specified bytes cannot be written in the specified
access mode

If both bytes can be read in the specified access mode

If both bytes can be written in the specified access mode

Mode in which access is to be checked; zero, the default, causes the check to
be performed in the mode contained in the previous-mode field of the current
PSL.

The IFNORD and IFRD macros use the PROBER instruction to check the read
accessibility of the specified range of memory by checking the accessibility of
the first and last bytes in that range. The IFNORD macro passes control to
the specified destination if either of the specified bytes cannot be read in the
specified access mode. The IFRD macro transfers control if both bytes can be
read in the specified access mode. Otherwise, the macros transfer to the next
in-line instruction.

EXAMPLE

MOVZWL
MOVL
IFRD

BRW

VMS Macros Invoked by Drivers
IFNORD, IFNOWRT, IFRD, IFWRT

The IFNOWRT and IFWRT macros use the PROBEW instruction to check
the write accessibility of the specified range of memory by checking the
accessibility of the first and last bytes in that range. The IFNOWRT macro
passes control to the specified destination if either of the specified bytes
cannot be written in the specified access mode. The IFWRT macro transfers
control to the specified destination if both bytes can be written in the specified
access mode. Otherwise, the macros transfer to the next in-line instruction.

$SS_ACCVIO,RO
ENTRY_LIST(AP) ,R11
#4*4, (R11), 50$

;Assume read access failure
;Get address of entry point list
;Branch forward if process

ERROR
; has read access
;Otherwise stop with error

The connect-to-interrupt driver uses the IFRD macro to verify that the process
has read access to the four longwords that make up the entry point list. The
address of the entry point list was specified in the p2 argument of the $QIO
request to the driver.

B-37

VMS Macros Invoked by Drivers
INVALIDATE_ TB

INVALIDATE_TB

FORMAT

Flushes a single page-table entry (PTE) or all PTEs from the translation
buffers of all processors in a VAX system.

INVALIDATE_ TB [addr} [,reg} [,inst1] [,inst2} [,inst3]

PARAMETERS [addr]

DESCRIPTION

8-38

Virtual address mapped by the PTE for which invalidation is required. If addr
is blank, then the macro invalidates all PTEs in the translation buffer.

[reg]
Register into which the macro moves the value of addr.

[inst1]
First instruction that writes the PTE.

[inst2]
Second instruction that writes the PTE.

[inst3]
Third instruction that writes the PTE.

When privileged code alters page mapping information, modifying a
valid PTE in an active page table, it must remove the stale value of that
PTE from any translation buffers that may have cached it, both on the
processor performing the modifications and on any other processor in a VMS
multiprocessing system.

You must use the INVALIDATE_TB macro to flush the stale value of a
previously valid PTE from the translation buffer of any processor in a VAX
system and execute up to three instructions that modify the PTE while all
processors are prevented from referencing that page. If you do not supply an
addr argument, the INVALIDATE_ TB macro invalidates all translation buffer
entries.

INVALIDATE_TB executes the instructions supplied in the macro invocation
as part of a coroutine call to SMP$INVALID. These instructions, therefore,
should not reference the stack and should not use R2. Note that the
INVALIDATE_ TB macro destroys the contents of R2.

To invoke INVALIDATE_TB, code must be executing at or below IPL$_
INVALIDATE, holding-in a VMS multiprocessing environment-no spin
lock ranked higher than INVALIDATE. If you issue the INVALIDATE_ TB
macro from pageable code, you must ensure that the location of the code has
been locked in memory.

EXAMPLE

MOVL 8(SP),R2
MOVL 12(SP),R3

VMS Macros Invoked by Drivers
INVALIDATE_ TB

;Load virtual address to invalidate
;Load address of PTE

INVALIDATE_ TB R2,- ;Invalidate translation buffer
;Clear PTE valid bit INST1=<BICL2 #PTE$M_VALID,(R3)>

The INVALIDATE_TB macro causes the PTE corresponding to the virtual
address supplied in R2 to be flushed from the system's translation buffers.
The macro causes the specified BICL2 instruction to be executed while other
processors in the system are prevented from referencing the stale PTE.

B-39

VMS Macros Invoked by Drivers
IOFORK

IOFORK

FORMAT

DESCRIPTION

EXAMPLE

Disables timeouts from a target device and creates a fork process, in
which context the code that follows the macro invocation executes.

IOFORK

The IOFORK macro calls EXE$IOFORK to disable timeouts from a target
device (by clearing UCB$V_TIM in UCB$L_STS) and to create a fork process
for a device driver.

When the IOFORK macro is invoked, the following registers must contain the
values listed:

Register

R3

R4

R5

OO(SP)

Contents

Contents to be placed in R3 of the fork process

Contents to be placed in R4 of the fork process

Address of a UCB that will be used as a fork block for the fork
process to be created

Address of caller's caller

WFIKPCH XA_TIME_OUT,IRP$L_MEDIA(R3)
IO FORK

;Wait for interrupt
;Device has interrupted; fork

B-40

The start-I/O routine of a driver initiates an I/O request by invoking the
WFIKPCH macro. The WFIKPCH macro sets UCB$V_INT and UCB$V_TIM
in UCB$L_STS to record an expected interrupt and enable timeouts from the
device, saving the PC of the instruction following IOFORK at UCB$L_FPC
in the driver's fork block. When the device interrupts, the driver's interrupt
service routine clears UCB$V-1NT and issues the instruction JSB @UCB$L_
FPC(RS), transferring control to the IOFORK macro invocation.

The IOFORK macro clears the UCB$V_TIM bit, creates a fork block, inserts
it in the appropriate fork queue, requests a software interrupt at that fork IPL
from the local processor, and returns control to the driver's interrupt service
routine at the instruction following the JSB. When the processor's IPL drops
below the fork level, the fork dispatcher dequeues the fork block, obtains
proper synchronization, and resumes execution at the instruction in the driver
that follows the IOFORK invocation.

LOADALT

FORMAT

DESCRIPTION

VMS Macros Invoked by Drivers
LOADALT

Loads a set of 022-bus alternate map registers.

LOADALT

The LOADALT macro calls IOC$LOADALTMAP to load a set of Q22 bus
alternate map registers (registers 496 to 8191). Map registers must already be
allocated before the LOAD ALT macro can be invoked.

When the LOADALT macro is invoked, register RS must contain the address
of the UCB. LOADALT destroys the contents of RO through R2.

B-41

VMS Macros Invoked by Drivers
LOADMBA

LOADMBA

FORMAT

DESCRIPTION

B-42

Loads MASSBUS map registers.

LOADMBA

The LOADMBA macro calls IOC$LOADMBAMAP to load MASSBUS map
registers. The driver must own the MASSBUS adapter, and thus the map
registers, before it can invoke LOADMBA.

When the LOADMBA macro is invoked, the following registers must contain
the following values:

Register

R4

R5

Contents

Address of the MBA's configuration register (MBA$L_CSR)

Address of UCB

LOADMBA destroys the contents of RO through R2.

LOADUBA

FORMAT

DESCRIPTION

VMS Macros Invoked by Drivers
LOADUBA

Loads a set of UNIBUS map registers or a set of the first 496 022-bus
map registers.

LO ADU BA

The LOADUBA macro calls IOC$LOADUBAMAP to load a set of UNIBUS
map registers or a set of the first 496 Q22-bus map registers. Map registers
must already be allocated before the LOADUBA macro can be invoked.

When the LOADUBA macro is invoked, register RS must contain the address
of the UCB. LOADUBA destroys the contents of RO through R2.

8-43

VMS Macros Invoked by Drivers
LOCK

LOCK

FORMAT

PARAMETERS

DESCRIPTION

B-44

Achieves synchronized access to a system resource as appropriate to the
processing environment.

LOCK lockname [,Jockip/} [,savip/} [,condition]
[,preserve= YES]

lockname
Name of the resource to lock.

[lockipl]
Location containing the IPL at which the resource is synchronized. Although
the value of this argument is ignored by the macro, DIGITAL recommends
that you specify a lockipl value to facilitate debugging.

[savipl]
Location at which to save the current IPL.

[condition]
Indication of a special use of the macro. The only defined condition is
NOSETIPL, which causes the macro to omit setting IPL.

[preserve= YES]
Indication that the macro should preserve RO across the invocation. If you do
not need to retain the contents of RO, specifying preserve=NO can enhance
system performance.

In a uniprocessing environment, the LOCK macro sets IPL to the IPL that
corresponds to the constant IPL$-1ockname.

In a multiprocessing environment, the LOCK macro performs the following
actions:

• Preserves RO through the macro call (if preserve=YES is specified).

• Generates a spin lock index of the form SPL$C-1ockname and stores it
in RO.

• Calls SMP$ACQUIRE to obtain the specified spin lock. SMP$ACQUIRE
indexes into the system spin lock database (a pointer to which is located
at SMP$AR_SPNLKVEC) to obtain the spin lock. Prior to securing
the spin lock, SMP$ACQUIRE raises IPL to the IPL associated with the
spin lock, determining the appropriate IPL from the spin lock structure
(SPL$B_IPL).

VMS Macros Invoked by Drivers
LOCK

In either processing environment, the LOCK macro performs the following
tasks:

• Preserves the current IPL at the specified location (if savipl is specified)

• Sets the SMP-modified bit in the driver prologue table (DPT$V_
SMPMOD in DPT$L _FLAGS)

B-45

VMS Macros Invoked by Drivers
PURDPR

PURDPR

FORMAT

DESCRIPTION

B-46

Purges a UNIBUS adapter buffered data path.

PURDPR

The PURDPR macro calls IOC$PURGDATAP to purge a UNIBUS adapter
buffered data path. A driver within an 1/0 subsystem configuration that
does not provide buffered data paths may use the PURDPR macro because
the purge operation detects memory parity errors that may have occurred
during the transfer. When the PURDPR macro is invoked, RS must contain
the address of the UCB.

When PURDPR returns control to its caller, the following registers contain the
following values:

Register

RO

R1

R2

R3

Contents

Status of the purge (success or failure)

Contents of data-path register, provided for the use of the driver's
register dumping routine

Address of first map register, provided for the use of the driver's
register dumping routine

Address of the CRB

VMS Macros Invoked by Drivers
READ_SVSTIME

READ_SVSTIME

Reads the current system time.

FORMAT READ_SVSTIME dst

PARAMETER dst

DESCRIPTION

EXAMPLE

READ_SYSTIME RO

Quadword into which the macro inserts the system time.

The READ_SYSTIME macro generates the code required to obtain a
consistent copy of the system time from EXE$GQ _SYSTIME.

Use of the READ_SYSTIME macro is subject to the following restrictions:

• IPL must be less than 23.

• The processor must be executing in kernel mode.

• When using the macro within pageable program sections (or within code
executing at IPL 2 and below), you must ensure that the pages involved
are locked in memory.

The READ_SYSTIME macro inserts the current system time in RO and Rl.

B-47

VMS Macros Invoked by Drivers
RELALT

RELALT

Releases a set of 022-bus alternate map registers allocated to the driver.

FORMAT RELAL T

DESCRIPTION The RELALT macro calls IOC$RELALTMAP to release a set of Q22-bus
alternate map registers (registers 496 to 8191) allocated to the driver. When
the RELAL T macro is invoked, RS must contain the address of the UCB.
RELALT destroys the contents of RO through R2.

B-48

RE LC HAN

VMS Macros Invoked by Drivers
RE LC HAN

Releases all controller data channels allocated to a device.

FORMAT RELCHAN

DESCRIPTION The RELCHAN macro calls IOC$RELCHAN to release all controller data
channels allocated to a device. When the RELCHAN macro is invoked, RS
must contain the address of the UCB. RELCHAN destroys the contents of RO
through R2.

B-49

VMS Macros Invoked by Drivers
RELDPR

RELDPR

Releases a UNIBUS adapter data path register allocated to the driver.

FORMAT RELDPR

DESCRIPTION The RELDPR macro calls IOC$RELDATAP to release a UNIBUS adapter
buffered data path allocated to the driver.

B-50

When the RELDPR macro is invoked, RS must contain the address of the
UCB. RELDPR destroys the contents of RO through R2.

RELMPR

VMS Macros Invoked by Drivers
RELMPR

Releases a set of UNIBUS map registers or a set of the first 496 022-bus
map registers allocated to the driver.

FORMAT RELMPR

DESCRIPTION The RELMPR macro calls IOC$RELMAPREG to release a set of map registers
allocated to the driver. When the RELMPR macro is invoked, RS must contain
the address of the UCB. RELMPR destroys the contents of RO through R2.

8-51

VMS Macros Invoked by Drivers
RELSCHAN

RELSCHAN

Releases all secondary channels allocated to the driver.

FORMAT RELSCHAN

DESCRIPTION The RELSCHAN macro calls IOC$RELSCHAN to release all secondary data
channels (for example, the MASSBUS adapter's controller data channel)
allocated to the driver.

B-52

When the RELSCHAN macro is invoked, RS must contain the address of the
UCB. RELSCHAN destroys the contents of RO through R2.

REQALT

FORMAT

DESCRIPTION

VMS Macros Invoked by Drivers
REQALT

Obtains a set of 022-bus alternate map registers.

REQALT

The REQALT macro calls IOC$REQALTMAP to obtain a set of Q22-bus
alternate map registers (registers 496 to 8191). When the REQALT macro is
invoked, the following registers must contain the following values:

Register

R5

OO(SP)

Contents

Address of UCB

Address of caller's caller

The REQAL T macro destroys the contents of RO through R2.

,8-53

VMS Macros Invoked by Drivers
REQCOM

REQCOM

FORMAT

DESCRIPTION

B-54

Invokes VMS device-independent 1/0 postprocessing.

REQCOM

The REQCOM macro calls IOC$REQCOM to complete the processing of an
1/0 request after the driver has finished its portion of the processing.

When the REQCOM macro is invoked, the following registers must contain
the following values:

Register

RO

R1

R5

Contents

First longword of 1/0 status

Second longword of 1/0 status

Address of UCB

The REQCOM macro destroys the contents of RO through R3. All other
registers are also destroyed if the action of the macro initiates the processing
of a waiting 1/0 request for the device.

REQDPR

VMS Macros Invoked by Drivers
REQDPR

Requests a UNIBUS adapter buffered data path.

FORMAT REQDPR

DESCRIPTION The REQDPR macro calls IOC$REQDATAP to request a UNIBUS adapter
buffered data path.

When the REQDPR macro is invoked, the following registers must contain
the following values:

Register

R5

OO(SP)

Contents

Address of UCB

Address of caller's caller

The REQDPR macro destroys the contents of RO through R2.

B-55

VMS Macros Invoked by Drivers
REQMPR

REQMPR

Obtains a set of UNIBUS map registers or a set of the first 496 022 bus
map registers.

FORMAT REQMPR

DESCRIPTION The REQMPR macro calls IOC$REQMAPREG to obtain a set of map registers.

B-56

When the REQMPR macro is invoked, the following registers must contain
the following values:

Register

R5

OO(SP)

Contents

Address of UCB

Address of caller's caller

The REQMPR macro destroys the contents of RO through R2.

REQPCHAN

FORMAT

VMS Macros Invoked by Drivers
REQPCHAN

Obtains a controller's data channel.

REQPCHAN [pri]

PARAMETERS [pri]
Priority of request. If the priority is HIGH, REQPCHAN calls
IOC$REQPCHANH; otherwise it calls IOC$REQPCHANL.

DESCRIPTION The REQPCHAN macro calls IOC$REQPCHANH or IOC$REQPCHANL,
depending on the priority specified, to obtain a controller's data channel.

When the REQPCHAN macro is invoked, the following registers must contain
the following values:

Register

R5

OO(SP)

Contents

Address of UCB

Address of caller's caller

The REQPCHAN macro returns the address of the device's CSR in R4 and
destroys the contents of RO through R2.

B-57

VMS Macros Invoked by Drivers
REQSCHAN

REQSCHAN

FORMAT

PARAMETER

DESCRIPTION

B-58

Obtains a secondary MASSBUS data channel.

REQSCHAN {pri}

[pri]
Priority of request. If the priority is HIGH, REQSCHAN calls
IOC$REQSCHANH; otherwise it calls IOC$REQSCHANL.

The REQSCHAN macro calls IOC$REQSCHANH or IOC$REQSCHANL,
depending on the priority specified, to obtain a secondary MASSBUS data
channel.

When the REQSCHAN macro is invoked, the following registers must contain
the following values:

Register

R5

OO(SP)

Contents

Address of UCB

Address of caller's caller

The REQSCHAN macro returns the address of the device's CSR in R4 and
destroys the contents of RO through R2.

VMS Macros Invoked by Drivers
SAVI PL

SAVI PL

Saves the current IPL of the local processor.

FORMAT SAVIPL [dst=-(SP)]

PARAMETER [dst=-(SP)]
Address of longword in which to save the current IPL.

DESCRIPTION The SAVIPL macro stores the current IPL of the local processor, as recorded
in the processor IPL register (PR$_IPL), in the specified location.

B-59

VMS Macros Invoked by Drivers
SETI PL

SETI PL

Sets the current IPL of the local processor.

FORMAT SETI PL [ip/=31] [environ=MUL TIPROCESSOR]

PARAMETERS [ip/=31]
Level at which to set the current IPL. The default value sets IPL to 31,
blocking all interrupts on the local processor.

[environ=MULTIPROCESSOR]
Processing environment in which the SETIPL synchronization macro is
to be assembled. If you do not specify environ, or if you do specify
environ=MUL TIPROCESSOR, the SETIPL macro generates the following
assembly-time warning message, where xx is an IPL above IPL 2:

%MACRO-W-GENWARN. Generated WARNING: Raising IPL to #xx provides no multiprocessing synchronization

DESCRIPTION

B-60

If you are certain that the purpose of the macro invocation is to block only
local processor events, you can disable the warning message by including
environ=UNIPROCESSOR in the invocation.

The SETIPL macro sets the IPL of the local processor by moving the specified
ipl or IPL 31 into its IPL register (PR$_IPL).

Note that the SETIPL macro provides full synchronization only in a
uniprocessing environment. In a multiprocessor configuration, SETIPL
is suitable only for blocking events on the local processor. To provide
synchronized access to system resources and devices in a multiprocessing
environment, you must use the DEVICELOCK/DEVICEUNLOCK,
FORKLOCK/FORKUNLOCK, and LOCK/UNLOCK macros.

EXAMPLE

DEVICELOCK -
LOCKADDR=UCB$L_DLCK(R5),­
SAVIPL=-(SP)

SETIPL #IPL$_POWER,­
ENVIRON=UNIPROCESSOR

BBC #UCB$V_POWER, -
UCB$W_STS(R5) ,30$

;Service power failure

DEVICEUNLOCK -
LOCKADDR=UCB$L_DLCK(R5) ,­
NEWIPL=(SP)+

;Branch
30$: ;Start device

WFIKPCH

VMS Macros Invoked by Drivers
SETI PL

;Secure device lock
;(also raises IPL to device lock's IPL)
;Save current IPL on stack
;Raise IPL to 31
;Avoid assembly-time warning

;If clear, no power failure

;Release device lock

;Restore old IPL from stack

;Wait for interrupt

Here, the DEVICELOCK macro achieves synchronized systemwide access
to the device registers. The SETIPL macro then synchronizes the local
processor against its own powerful interrupt event. The code does not need
to synchronize systemwide against powerful events, because its interest is
truly limited to the local processor.

Note that the WFIKPCH macro conditionally releases the device lock and
restores the old IPL prior to returning control to the caller's caller.

B-61

VMS Macros Invoked by Drivers
SOFTINT

SOFTINT

FORMAT

PARAMETER

DESCRIPTION

B-62

Requests a software interrupt from the local processor at a specified. IPL.

SOFTINT ipl

ipl
IPL at which the software interrupt is being requested.

The SOFTINT macro moves the specified ipl into the local processor's
Software Interrupt Request Register (PR$_SIRR), thus requesting a software
interrupt at that IPL on the processor.

The processor may take either of the following actions:

• If the local processor is executing at an IPL below the level of the
requested interrupt, it immediately transfers control to a software interrupt
service routine for the appropriate IPL.

• If the local processor is executing at an IPL equal or above the level of the
requested interrupt, it does not transfer control to the software interrupt
service routine until its IPL drops below the specified ipl.

The SOFTINT macro does not provide the capability of requesting a software
interrupt from another processor in a VMS multiprocessing environment.

TIMEWAIT

FORMAT

PARAMETERS

DESCRIPTION

EXAMPLE

VMS Macros Invoked by Drivers
TIMEWAIT

Waits for a specified bit to be cleared or set within a specified length of
time.

TIMEWAIT time ,bitval ,source ,context {,sense=. TRUE.]

time
Number of 10-microsecond intervals to wait. VMS multiplies this value
by a processor-specific value in order to calculate the interval to wait. The
processor-specific value is inversely proportional to the speed of the processor,
but is never less than 1.

bitval
Mask that determines which bits to test.

source
Address of bits to test.

context
Context in which the bits are to be tested (B, W, or L).

[sense=. TRUE.]
If .TRUE., test for one or more of the specified bits set; otherwise test for all
bits cleared.

The TIMEWAIT macro checks for a specific state by testing bits for a specified
length of time.

If the state comes into existence during the specified interval, the TIMEWAIT
macro places a success code in RO and returns control to its caller. If the state
does not occur during the specified period, the TIMEWAIT macro places a
failure code in RO and returns control to its caller. The TIMEWAIT macro
destroys the contents of Rl, and preserves the contents of all other registers.

Because the TIMEDWAIT macro provides more flexibility and a more
controlled environment for detection of events or conditions, DIGITAL
recommends its use over the TIMEWAIT macro.

MOVQ RO,-(SP) ;Save RO,R1
TIMEWAIT #3,#RL_CS_M_CRDY,-

RL_CS(R4) ,W
MOVQ (SP)+,RO ;Restore RO,R1

DLDRIVER's unit initialization routine uses the TIMEWAIT macro to wait 30
microseconds for the RLl 1 controller to be ready before proceeding.

B-63

VMS Macros Invoked by Drivers
TIMEDWAIT

TIMEDWAIT

FORMAT

PARAMETERS

B-64

Waits a specified interval of time for an event or condition to occur.

TIMEDWAIT time [,ins 1] [,ins2] [,ins3] [,ins4] [,ins5]
[,ins6] [,done/bl] [,imbedlbl] [,ub/bl]

time
Number of 10-microsecond intervals to wait. VMS multiplies this value
by a processor-specific value in order to calculate the interval to wait. The
processor-specific value is inversely proportional to the speed of the processor,
but is never less than 1.

If you do not specify any embedded instructions, increase the value of time
by 25 percent.

If you specify embedded instructions that take longer to execute than the
average, such as the POLYD instruction, they will cause TIMEDWAIT to wait
proportionally longer.

[ins1]
First instruction in the loop.

[ins2]
Second instruction in the loop.

[ins3]
Third instruction in the loop.

[ins4]
Fourth instruction in the loop.

[ins5]
Fifth instruction in the loop.

[ins6]
Sixth instruction in the loop.

[done/bl]
Label placed after the instruction at the end of the TIMEDWAIT loop;
embedded instructions can pass control to this label in order to pass control
to the instruction following the invocation of the TIMEDWAIT macro.

[imbedlbl]
Label placed at the first of the embedded instructions; after executing a
processor-specific delay, the TIMEDWAIT macro passes control here to retest
for the condition.

DESCRIPTION

EXAMPLE

[ublbl]

VMS Macros Invoked by Drivers
TIMEDWAIT

Label placed at the instruction that performs the processor-specific delay
after each execution of the loop of embedded instructions; embedded
instructions can pass control here in order to skip the execution of the rest of
the embedded instructions in a given execution of the embedded loop.

The TIMEDWAIT macro waits for a period of time for an event or condition
to occur. You can specify up to six instructions for this macro to execute in a
loop to determine whether the event has occurred.

The TIMEDWAIT macro does not read the processor's clock. The interval
it waits is approximate and depends upon the processor and the set of
instructions you choose for testing to see if the condition exists.

TIMEDWAIT returns a status code (success or failure) in RO, destroys the
contents of Rl, and preserves all other registers.

TIMEDWAIT TIME=#600*1000,­
INS1=<TSTB RL_CS(R4)>,­
INS2=<BLSS 15$>,­
DONELBL=15$

;6-second wait loop
;Is controller busy
; If LSS - yes
;Label to exit wait loop
;Time expired - exit BLBC R0,25$

The unit initialization routine of DLDRIVER issues the TIMEDWAIT macro
to wait a maximum of six seconds if another unit is busy on the controller's
channel.

B-65

VMS Macros Invoked by Drivers
UNLOCK

UNLOCK

FORMAT

PARAMETERS

DESCRIPTION

B-66

Relinquishes synchronized access to a system resource as appropriate to
the processing environment.

UNLOCK lockname [,newipl} [,condition] [,preserve= YES]

lockname
Name of the system resource to be released or restored.

[newipl]
Location containing the IPL to which to lower. A prior invocation of the
LOCK macro may have stored this IPL value.

[condition]
Indication of a special use of the macro. The only defined condition
is RESTORE, which causes the macro-in a VMS multiprocessing
environment-to call SMP$RESTORE instead of SMP$RELEASE, thus
releasing a single acquisition of the spin lock by the local processor.

[preserve= YE SJ
Indication that the macro should preserve RO across an invocation. If you do
not need to retain the contents of RO, specifying preserve=NO can enhance
system performance.

In a uniprocessing environment, the UNLOCK macro lowers IPL to newipl.
If an interrupt is pending at the current IPL or at any IPL above newipl, the
current procedure is immediately interrupted.

In a multiprocessing environment, the UNLOCK macro performs the following
tasks:

• Preserves RO through the macro call (if preserve=YES is specified).

• Generates a spin lock index of the format SPL$C_lockname and stores it
in RO.

• Calls SMP$RELEASE or, if condition=RESTORE is specified,
SMP$RESTORE. These routines index into the system spin lock database
(a pointer to which is located at SMP$AR_SPNLKVEC) to release the
appropriate spin lock.

• Moves any specified newipl into the local processor's IPL register (PR$_
IPL). If an interrupt is pending at the current IPL or at any IPL above
newipl, the current procedure is immediately interrupted.

In either processing environment, the UNLOCK macro sets the SMP-modified
bit in the driver prologue table (DPT$V_SMPMOD in DPT$L _FLAGS).

$VEC

FORMAT

VMS Macros Invoked by Drivers
SVEC

Defines an entry in a port driver vector table within the context of a
$VECINI macro.

SVEC entry, routine

PARAMETERS entry

DESCRIPTION

Name of the vector table entry, specified without the PORT_ prefix.

routine
Name of the service routine within the driver that corresponds to the entry
point.

A terminal port driver uses the $VEC macro to validate and generate a
vector table entry. A driver need not invoke the $VEC macro to associate a
routine with each entry in the vector table. The $VECINI macro initializes all
unspecified entry points with the address of the driver's null entry point.

To use the $VEC macro, the driver must include an invocation of the
$TTYMACS definition macro (from SYS$LIBRARY:LIB.MLB). See the
description of the $VECINI macro for an example of creating a port driver
vector table.

B-67

VMS Macros Invoked by Drivers
$VECEND

$VECEND

FORMAT

PARAMETER

DESCRIPTION

B-68

Ends the scope of the $VECINI macro, thereby completing the definition of
a port driver vector table.

$VECEND {end}

[end]
Flag controlling the generation of the end of the vector table. This argument
is generally omitted so that the $VECEND macro can generate the end of the
vector table. Otherwise, the $VECEND macro does not generate the end of
the table.

A terminal port driver uses the $VECEND macro to generate the longword
of zeros that terminates a port driver vector table initialized by the
$VECINI and $VEC macros. It also positions the location counter at label
drivername$VECEND, as defined by the $VECINI macro.

To use the $VECEND macro, the driver must include an invocation of
the $TTYMACS definition macro (from SYS$LIBRARY:LIB.MLB). See the
descriptions of the $VECINI and $VEC macros for additional information on
creating a port driver vector table.

$VECINI

FORMAT

PARAMETERS

DESCRIPTION

EXAMPLE

VMS Macros Invoked by Drivers
$VECINI

Begins the definition of a port vector table.

$VECINI drivername, nul/_routine [,prefix=PORT_j

drivername
Prefix (usually two letters) of the driver name (for example, DZ).

nu//_routine
Address of the driver's null entry point, usually specified in the format
drivername$NULL. This address contains an RSB instruction.

[,prefix=PORT _J
Prefix to be added to the symbols defined in subsequent invocations of the
$VEC macro.

A terminal port driver uses the $VECINI macro to begin the definition of a
port vector table and initialize each table entry to point to the driver's null
entry point. The $VECINI macro generates the label drivername$VEC at the
beginning of the table and drivername$VECEND at the end of the table.

The $VEC macro defines valid entries within the port driver vector table
specified by the invocation of the $VECINI macro, and the $VECEND macro
ends the table's definition.

To use the $VECINI macro, the driver must include an invocation of the
$TTYMACS definition macro (from SYS$LIBRARY:LIB.MLB).

$VECINI DZ32,DZ$NULL
$VEC STARTIO,DZ32$STARTIO
$VEC SET_LINE,DZ32$SET_LINE
$VEC XON,DZ32$XON
$VEC XOFF,DZ32$XOFF
$VEC STOP,DZ32$STOP
$VEC ABORT,DZ32$ABORT
$VEC RESUME,DZ32$RESUME
$VEC MAINT,DZ32$MAINT
$VECEND

;Start new output
;Set new parity/speed
;Send XON
;Send XOFF
;Stop current output
;Abort current output
;Resume stopped output
;Invoke maintenance functions

In this example, the $VECINI macro creates a port driver vector table. The
table entries defined by the eight subsequent invocations of the $VEC macro
(PORT_STARTIO, PORT_SET_LINE, and so on) are set up to point to the
specified routines in the port driver. The $VECINI macro initializes any entry
point not defined by a $VEC macro (for instance, PORT_SET_MODEM) with
the address of the null entry point, DZ$NULL.

The $VECEND macro concludes the definition of the port driver vector table.

B-69

VMS Macros Invoked by Drivers
$VIELD, _VIELD

$VIELD, _VIELD

FORMAT

PARAMETERS

DESCRIPTION

B-70

Defines symbolic offsets and masks for bit fields.

{ $VIELD } mod ,inibit ,fields
_VIELD

mod
Module in which this bit field is defined; the prefix portion of the name of the
symbol to be defined.

inibit
Bit within the field on which the positions of the bits to be defined are based.

fields
One or more fields of the form <sym,[size=l],[mask]> , where these
arguments are defined as follows:

Argument

sym

[size=1]

[mask]

Meaning

String appended to the string "mod$" to form the name of
this bit field.

Size in bits of this bit field. If you specify a value greater than
1, the VIELD macro generates a symbol for the size of the bit
field.

Character "M" if the VIELD macro is to generate a symbol for
the mask of the bit field, blank otherwise.

The $VIELD and _ VIELD macros define bit fields whose names have the
form mod$x_sym and mocL.x_sym (where x can be V, S, or Mand sym is
a value supplied in the fields argument). Because the dollar-sign character
($) is reserved for use in VMS-defined symbols, use of the _ VIELD macro is
recommended for non-DIGITAL-supplied device drivers.

See the descriptions of the $DEFINI and $EQULST macros for additional
information on defining symbols for data structure fields.

EXAMPLE

$EQULST XA_K_,,0,1,<­
<fnct1, 2>­
<fnct2, 4>­
<fnct3,8>-

_VIELD XX_CSR,O,<-
<GO, ,M> ,­
<FNCT ,3,M>, -
<XBA, 2 , M>, -
<IE, ,M> ,­
<MAINT> ,­
<ATTN>,-
>

VMS Macros Invoked by Drivers
$VIELD, _VIELD

;Define CSR bit values

;Control/status register
;Start device
;Function bits
;Extended address bits
;Enable interrupts
;Maintenance bit
;Status from other processors

This code excerpt produces the following symbols:

XX_CSR M FNCT
XX_CSR_M_GO
XX_CSR_M_IE
XX_CSR_M_XBA
XX_CSR_S_FNCT
XX_CSR_S_XBA
XX_CSR_V_FNCT
XX_CSR_V_GO
XX_CSR_V_IE
XX_CSR_V_MAINT
XX_CSR_V_XBA

= OOOOOOOE
= 00000001
= 00000040
= 00000030
= 00000003
= 00000002
= 00000001
= 00000000
= 00000006
= 00000007
= 00000004

B-71

VMS Macros Invoked by Drivers
WFIKPCH, WFIRLCH

WFIKPCH, WFIRLCH

FORMAT

PARAMETERS

DESCRIPTION

8-72

Suspends a driver fork thread and folds its context into a fork block in
anticipation of a device interrupt or timeout. When WFIKPCH is invoked,
the fork thread keeps ownership of the controller channel while waiting;
when WFIRLCH is invoked, the fork thread releases ownership of the
controller channel.

{
WFIKPCH }
WFIRLCH

excpt [,time=65536]

excpt
Name of a device timeout handling routine; the address of this routine must
be within 65,536 bytes of the address at which the WFIKPCH macro is
invoked.

[time=65536]
Timeout interval, expressed as the number of seconds to wait for an interrupt
before a device timeout is considered to exist. A value equal to or greater
than 2 is required because the timeout detection mechanism is accurate only
to within one second.

The WFIKPCH and WFIRLCH macros push time on the stack and call
IOC$WFIKPCH and IOC$WFIRLCH, respectively. After the JSB instruction
that makes the routine call, either of these macros constructs a word that
contains the relative offset to the timeout handling routine specified in
excpt. Because these routines compute and store the address of the following
instruction in the fork block at UCB$L JPC, the software timer interrupt
service routine can determine the routine's location and call it if the device
times out before it can deliver an interrupt.

IOC$WFIKPCH and IOC$WFIRLCH assume that, prior to the invocation of
the macro, a DEVICELOCK macro has been issued-both to synchronize with
other device activity and to leave the IPL of the previous code thread on the
top of the stack. Upon storing the context of and suspending the current code
thread, IOC$WFIKPCH and IOC$WFIRLCH return control to their caller's
caller at the stored IPL.

When the WFIKPCH or WFIRLCH macro is invoked, the following locations
must contain the values listed:

Location

R5

OO(SP)

04(SP)

Contents

Address of UCB

IPL at which control is passed to the caller's caller

Address (in the caller's caller) at which to return control

VMS Macros Invoked by Drivers
WFIKPCH, WFIRLCH

The suspended code thread is resumed by the occurrence of an interrupt
signaling the successful completion of a device operation. When an interrupt
occurs, control returns to the instruction following the macro. If a device
timeout occurs before an interrupt can be posted, the timeout handling
routine specified in excpt is called. In both instances, subsequent code can
assume that only R3 and R4 have been preserved across the suspension.

See the descriptions of the DEVICELOCK, IOFORK, and SETIPL macros for
examples of the use of the WFIKPCH macro.

B-73

C Operating System Routines

This appendix describes the VMS operating system routines that are used by
device drivers and employs the following conventions:

• Most routines reside in modules within the [SYS] facility of VMS. A
routine description provides a facility name (in brackets) only if the
module is not located in the [SYS] facility.

• Many routines are not directly called by device drivers. Rather, VMS
supplies macros that drivers invoke to accomplish the routine call. The
description of a routine that has such a macro interface lists the name of
the associated macro. Appendix B describes how a driver can use these
macros.

• System routines generally return a status value in RO (for instance, SS$_
NORMAL). The low-order bit of this value indicates successful (1) or
unsuccessful (0) completion of the routine. Additional information on
returned status values appears in the VMS System Services Reference
Manual and the VMS System Messages and Recovery Procedures Reference
Volume.

• If a register is not used to transfer output or is not explicitly indicated as
destroyed, a driver can assume that its contents are preserved.

C-1

Operating System Routines
COM$DELATTNAST

COM$DELATTNAST

module

input

output

synchronization

DESCRIPTION

C-2

Delivers all attention ASTs linked in the specified list.

COMDRVSUB

Location

R4

R5

Location

Specified listhead

RO through R 11

Contents

Address of listhead of AST control blocks

Address of UCB

Contents

Empty

Preserved

COM$DELATTNAST executes and exits at the caller's IPL, and acquires no
spin locks.

COM$DELATTNAST removes all AST control blocks (ACBs) from
the specified list. Using each ACB as a fork block, it schedules a fork
process at IPL$_QUEUEAST to queue the AST to its target process.
COM$DELATTNAST dequeues each ACB from the head of the list,
thus removing them in the reverse order of their declaration by
COM$SETATTNAST. Note that in certain circumstances attention ASTs
can be delivered to a user process before the delivery of 1/0 completion ASTs
previously posted by the driver.

Operating System Routines
COM$DRVDEALMEM

COM$DRVDEALMEM

module

input

output

synchronization

DESCRIPTION

Deallocates system dynamic memory.

COMDRVSUB

Location

RO

IRP$W_SIZE

Location

RO through R 11

Contents

Address of block to be deallocated

Size of block in bytes (must be at least 24 bytes
long)

Contents

Preserved

Drivers can call COM$DRVDEALMEM from any IPL. COM$DRVDEALMEM
executes at the caller'slPL and returns control at that IPL. The caller retains
any spin locks it held at the time of the call.

COM$DRVDEALMEM calls EXE$DEANONP AGED to deallocate the buffer
specified by RO. If the driver is running at an IPL above IPL$_SYNCH,
COM$DRVDEALMEM transforms the block to be deallocated into a fork
block, and requests a software interrupt at IPL$_QUEUEAST. The code that
executes in the fork process jumps to EXE$DEANONP AGED.

If the buffer to be deallocated is less than FKB$C_LENGTH in size, or its
address is not aligned on a 16-byte boundary, COM$DRVDEALMEM issues a
BADDALRQSZ bugcheck.

C-3

Operating System Routines
COM$FLUSHATTNS

COM$FLUSHATTNS

module

input

output

synchronization

DESCRIPTION

C-4

Flushes an attention AST list.

COMDRVSUB

Location

R4

R5

R6

R7

UCB$L_DLCK

PCB$L_PID

PCB$W _ASTCNT

Location

RO

R1, R2, R7

PCB$W _ASTCNT

Specified listhead

Contents

Address of PCB

Address of UCB

Number of the assigned 1/0 channel

Address of listhead of AST control blocks

Address of device lock

Process ID

AST s remaining in quota

Contents

SS$_NORMAL

Destroyed

Incremented by the number of AST control
blocks that are flushed

Updated

COM$FLUSHATTNS raises IPL to device IPL, acquiring the corresponding
device lock. Before returning control to its caller at the caller's IPL,
COM$FLUSHATTNS releases the device lock. The caller retains any spin
locks it held at the time of the call.

A driver's cancel-I/O routine calls COM$FLUSHATTNS to flush an attention
AST list. A driver FDT routine calls COM$FLUSHATTNS to service a $QIO
request that specifies a set-attention-AST function and a value of 0 in the pl
argument.

COM$FLUSHATTNS locates all AST control blocks whose channel number
and PID match those supplied as input to the routine. It removes them from
the specified list, deallocates them, and returns control to its caller.

COM$POST

module

input

output

synchronization

DESCRIPTION

Operating System Routines
COM$POST

Initiates device-independent postprocessing of an 1/0 request independent
of the status of the device unit.

COMDRVSUB

Location

R3

R5

IRP$L_MEDIA

IRP$L_MEDIA+4

Location

RO and R1

UCB$L_OPCNT

Contents

Address of IRP

Address of UCB

Data to be copied to the 1/0 status block

Data to be copied to the 1/0 status block

Contents

Destroyed

Incremented

Drivers call COM$POST at or above fork IPL. COM$POST executes at its
caller's IPL and returns control at that IPL. The caller retains any spin locks it
held at the time of the call.

A driver fork process calls COM$POST after it has completed device­
dependent 1/0 processing for an 1/0 request initiated by EXE$ALTQUEPKT.

COM$POST inserts the IRP into the local processor's 1/0 postprocessing
queue headed by CPU$L _PSBL, requests an IPL$_IOPOST software
interrupt, and returns control to its caller. Unlike IOC$IOPOST, it does
not attempt to dequeue any IRP waiting for the device or change the busy
status of the device.

C-5

Operating System Routines
COM$SETATTNAST

COM$SETATTNAST

module

input

output

synchronization

DESCRIPTION

C-6

Enables or disables attention ASTs.

COMDRVSUB

Location

R3

R4

R5

R7
AP

IRP$W_CHAN

UCB$L_DLCK

PCB$W _ASTCNT

PCB$L_PID

OO(AP)

04(AP)

08(AP)

Location

RO

R1 and R2

R3

R5

R6,R7, RS
PCB$W _ASTCNT

Specified listhead

Contents

Address of IRP

Address of current PCB

Address of UCB

Address of listhead of AST control blocks

Address of $010 system service argument list

1/0 request channel index number

Address of device lock

Number of AST s remaining in process quota

Process ID

Address of process's AST routine

AST parameter

Access mode for AST

Contents

SS$_NORMAL, SS$_EXOUOT A, or
SS$_1NSFMEM

Destroyed

Address of IRP

Address of UCB

Destroyed

Decremented

Updated

COM$SETATTNAST raises IPL to device IPL, acquiring the corresponding
device lock. It returns control to its caller at the caller's IPL.

A driver FDT routine calls COM$SETATTNAST to service a $QIO request
that specifies a set-attention-AST function.

If the pl argument of the request contains a zero, COM$SETATTNAST
transfers control to COM$FLUSHATTNS, which disables all ASTs indicated
by the PIO and 1/0 channel number (IRP$W_CHAN). COM$FLUSHATTNS
searches through the AST control block (ACB) list, extracts each identified
ACB, deallocates, and returns to the caller of COM$SETATTNAST.

Operating System Routines
COM$SETATTNAST

If the pl argument of the request contains the address of an AST routine,
COM$SETATTNAST decrements PCB$W_ASTCNT and allocates an
expanded AST control block (ACB) that contains the following information:

• Spin lock index SPL$C_QUEUEAST

• Address of the AST routine (as specified in pl)

• AST parameter (as specified in p2)

• Access mode (as specified in p3 and maximized against the current
process's access mode and bit ACB$V_QUOTA set to indicate a process­
requested AST)

• Number of the assigned IjO channel

• PID of the requesting process

COM$SETATTNAST links the ACB to the start of the specified linked list
of ACBs located in a UCB extension area. (See Section A.14 for information
on defining an extension to a UCB.) COM$DELATTNAST can later use the
expanded ACB to fork to IPL$_QUEUEAST, at which IPL it reformats the
block into a standard ACB.

If the process exceeds buffered IjO or AST quotas, or if there is no memory
available to allocate the expanded ACB, COM$SETATTNAST restores
PCB$W_ASTCNT to its original value and transfers control to EXE$ABORTIO
with error status.

C-7

Operating System Routines
ERL$DEVICERR, ERL$DEVICTMO, ERL$DEVICEATTN

ERL$DEVICERR, ERL$DEVICTMO,
ERL$DEVICEATTN

module

input

output

synchronization

DESCRIPTION

· C-8

Allocate an error message buffer and record in it information concerning
the error.

ERROR LOG

Location

R5

DDT$W _ERRORBUF

UCB$L_DEVCHAR

UCB$W_FUNC

UCB$L_IRP

UCB$L_ORB

Location

UCB$W_ERRCNT

UCB$L_EMB

UCB$L_STS

RO through R 11

Contents

Address of UCB

Size of error message buffer in bytes

Bit DEV$V_ELG set

Bit 10$V_INHERLOG clear

Address of IRP currently being processed
(ERL$DEVICERR and ERL$DEVICTMO only)

ORB address

Contents

Incremented

Address of error message buffer

UCB$V_ERLOGIP set

Preserved

A driver calls ERL$DEVICERR, ERL$DEVICTMO, or ERL$DEVICEATTN,
at or above fork IPL, holding the corresponding fork lock in a VMS
multiprocessing environment. These routines return control to the caller
at the caller's IPL. The caller retains any spin locks it held at the time of the
call.

ERL$DEVICERR and ERL$DEVICTMO log an error associated with a
particular 1/0 request. ERL$DEVICEATTN logs an error that is not associated
with an IjO request. Each of these routines performs the following steps:

• Increments UCB$W_ERRCNT to record a device error. If the error-log­
in-progress bit (UCB$V__ERLOGIP in UCB$L _STS) is set, the routine
returns control to its caller.

• Allocates from the current error log allocation buffer an error message
buffer of the length specified in the device's DDT (in argument erlgbf to
the DDTAB macro). This allocation is performed at IPL$_EMB holding
the EMB spin lock.

Operating System Routines
ERL$DEVICERR, ERL$DEVICTMO, ERL$DEVICEATTN

• Initializes the buffer with the current system time, error log sequence
number, and error type code. These routines use the following error type
codes:

ERL$DEVICERR

ERL$DEVICTMO

ERL$DEVICEA TTN

Device error (EMB$C_DE)

Device timeout (EMB$C_DT)

Device attention (EMB$C_DA)

• Places the address of the error message buffer in UCB$L_EMB.

• Sets UCB$V_ERLOGIP in UCB$L_STS.

• Loads fields from the UCB, the IRP, and the DDB into the buffer,
including the following:

Device class

Device type

UCB$B_DEVCLASS

UCB$B_DEVTYPE

IRP$L_PID Process ID of the process originating the 1/0 request
(ERL$_DEVICERR and ERL$_DEVICTMO)

IRP$W_BOFF

IRP$W_BCNT

UCB$L_MEDIA

UCB$W_UNIT

UCB$W _ERRCNT

UCB$L_OPCNT

ORB$L_OWNER

UCB$L_DEVCHAR

UCB$B_SLA VE

IRP$W_FUNC

Transfer parameter (ERL$DEVICERR and
ERL$DEVICTMO)

Transfer parameter (ERL$DEVICERR and
ERL$DEVICTMO)

Disk size

Unit number

Count of device errors

Count of completed operations

UIC of volume owner

Device characteristics

Slave unit number

1/0 function value (ERL$DEVICERR and
ERL$DEVICTMO)

DDB$T_NAME Device name (concatenated with cluster node name
if appropriate)

• Loads into RO the address of the location in the buffer in which the
contents of the device registers are to be stored.

• Calls the driver's register dumping routine, the address of which is
specified in the regdmp argument to the DDTAB macro.

Note that a driver must define the local disk UCB extension or local tape UCB
extension, as described in Section A.14, to use these error logging routines.

C-9

Operating System Routines
EXE$ABORTIO

EXE$ABORTIO

module

input

output

synchronization

DESCRIPTION

C-10

Completes the servicing of an 1/0 request without returning status to the
1/0 status block specified in the request.

SYSQIOREQ

Location

RO

R3

R4

R5

IRP$L_IOSB

IRP$B_RMOD

PCB$W _ASTCNT

Location

IRP$L_IOSB

IRP$B_RMOD

PCB$W _ASTCNT

Contents

First longword of status for the 1/0 status block

Address of IRP

Address of current PCB

Address of UCB

Address of 1/0 status block

ACB$V_QUOT A set indicates process-specified
AST pending

Count of available AST queue entries

Contents

Zero

ACB$V_QUOT A clear

Incremented if ACB$V_QUOT A was set

EXE$ABORTIO executes at its caller's IPL and raises to fork IPL, acquiring the
associated fork lock in a VMS multiprocessing environment. As a result, its
caller cannot be executing above fork IPL. A driver usually transfers control
to EXE$ABORTIO at IPL$_ASTDEL.

EXE$ABORTIO exits at normal process IPL (IPL 0).

EXE$ABORTIO performs the following actions:

1 Clears IRP$L_IOSB so that no status is returned by I/O postprocessing

2 Clears ACB$V_QUOTA in IRP$B_RMOD to prevent the delivery of any
AST to the process specified in the I/O request

3 Updates the count of available AST entries at PCB$W_ASTCNT, if
necessary

4 Inserts the IRP in the local processor's I/O postprocessing queue headed
by CPU$L_PSBL

5 If the queue is empty, requests a software interrupt from the local
processor at IPL$_IOPOST

This interrupt causes I/O postprocessing to occur before the remaining
instructions in EXE$ABORTIO are executed.

Operating System Routines
EXE$ABORTIO

When all 1/0 postprocessing has been completed, EXE$ABORTIO regains
control and completes the 1/0 operation as follows:

• Lowers IPL to zero

• Issues the RET instruction that restores the original access mode of the
caller of the $QIO system service and returns control to the system service
dispatcher

EXE$ABORTIO returns in RO the final status code saved when the exit routine
was called. Any ASTs specified when the 1/0 request was issued will not be
delivered, and any event flags requested will not be set.

C-11

Operating System Routines
EXE$ALLOCBUF, EXE$ALLOCIRP

EXE$ALLOCBUF, EXE$ALLOCIRP

module

input

output

synchronization

DESCRIPTION

C-12

Allocates a buffer from nonpaged pool for a buffered-1/0 operation.

MEMORYALC

Location

R1

PCB$L_STS

Location

RO

R1

R2

R4

IRP$W_SIZE (in allocated
buffer)

IRP$B_ TYPE (in allocated
buffer)

Contents

Size of requested buffer in bytes
(EXE$ALLOCBUF only). This value should include
the 12 bytes required to store header information.

PCB$V_SSRW AIT clear if the process should
wait if no memory is available for requested
buffer; set if resource wait mode is disabled.

Contents

SS$_NQRMAL or SS$_1NSFMEM.

Size of requested buffer in bytes (IRP$C_LENGTH
for EXE$ALLOCIRP).

Address of allocated buffer.

See the following discussion.

Size of requested buffer in bytes (for
EXE$ALLOCBUF), IRP$C_LENGTH (for
EXE$ALLOCIRP).

DYN$C_BUFIO (for EXE$ALLOCBUF), DYN$C_
IRP (for EXE$ALLOCIRP).

EXE$ALLOCBUF and EXE$ALLOCIRP set IPL to IPL$_ASTDEL. As a result
they cannot be called by code executing above IPL$_ASTDEL. They return
control to their callers at the caller's IPL.

EXE$ALLOCBUF attempts to allocate a buffer of the requested size from
nonpaged pool; EXE$ALLOCIRP attempts to allocate an IRP from nonpaged
pool.

If sufficient memory is not available, EXE$ALLOCBUF and EXE$ALLOCIRP
move the current PCB (CTL$GL_PCB) into R4 to determine whether the
process has resource wait mode enabled. If PCB$V_SSRWAIT in PCB$L_
STS is clear, these routines place the process in a resource wait state until
memory is released.

The caller must check and adjust process quotas (JIB$L_BYTCNT
and/or JIB$L_BYTLM) by calling EXE$DEBIT_BYTCNT or EXE$DEBIT_
BYTCNT_BYTLM. (Note that you can perform this task and allocate a
buffer of the requested size by using the routines EXE$DEBIT_BYTCNT_
ALO and EXE$DEBIT_BYTCNT_BYTLM_ALO. These routines invoke
EXE$ALLOCBUF.)

Operating System Routines
EXE$ALLOCBUF, EXE$ALLOCIR.P

The normal buffered 1/0 postprocessing routine (IOC$REQCOM), initiated
by the REQCOM macro, readjusts quotas and also deallocates the buffer.

Note that the value returned in Rl and placed at IRP$W_SIZE in the
allocated buffer is the size of the requested buffer. The actual size of
the allocated buffer is determined according to the algorithms used by
EXE$ALONONP AGED and the size of the lookaside list packets. The
nonpaged pool deallocation routine (EXE$DEANONPAGED), called in
buffered 1/0 postprocessing, uses similar algorithms when returning memory
to nonpaged pool.

C-13

Operating System Routines
EXE$ALONONPAGED

EXE$ALONONPAGED

module

input

output

synchronization

DESCRIPTION

C-14

Allocates a block of memory from nonpaged pool.

MEMORYALC

Location

R1

Location

RO

R1

R2

Contents

Size of requested block in bytes

Contents

SS$_NORMAL or SS$_1NSFMEM.

If the allocation succeeds from one of the
lookaside lists, the value returned in R 1 remains
the size of the requested block. If the allocated
block i& from general nonpaged pool, the value in
R 1 is the requested size, rounded up to a 16-byte
multiple.

Address of allocated block.

EXE$ALONONPAGED executes at its caller's IPL and at IPL$_POOL,
obtaining the POOL spin lock in a VMS multiprocessing environment. For
this reason, it cannot be called by code executing above IPL$_FOOL.

EXE$ALONONPAGED returns control to its caller at the caller's IPL. The
caller retains any spin locks it held at the time of the call.

Depending upon the size of the requested block, EXE$ALONONP AGED
allocates nonpaged pool either from one of the lookaside lists (SRP, IRP, or
LRP) or from the variable region of nonpaged dynamic memory.

EXE$ALONONP AGED does not initialize the header of the allocated block of
memory.

Operating System Routines
EXE$ALONPAGVAR

EXE$ALONPAGVAR

module

input

output

synchronization

DESCRIPTION

Allocates a block of memory from the variable region of nonpaged pool.

MEMORYALC

Location

R1

Location

RO

R1

R2

Contents

Size of requested block in bytes

Contents

SS$_NORMAL or SS$_1NSFMEM

Size of requested buffer, rounded up to a 16-byte
multiple

Address of allocated block

EXE$ALONPAGVAR executes at its caller's IPL and at IPL$_POOL, holding
the POOL spin lock in a VMS multiprocessing environment. For this reason,
its caller cannot be executing at an IPL above IPL$_POOL.

EXE$ALONP AGV AR returns control to its caller at the caller's IPL. The caller
retains any spin locks it held at the time of the call.

EXE$ALONP AGVAR allocates a block of memory of the requested
size from the variable region of non paged dynamic memory. Because
EXE$ALONP AGVAR does not attempt to service the request from the
lookaside lists, it is suitable for driver fork processes that may afterwards
return the allocated block to nonpaged pool in pieces.

EXE$ALONP AGVAR does not initialize the header of the allocated block of
memory.

C-15

Operating System Routines
EXE$ALOPHYCNTG

EXE$ALOPHYCNTG

module

input

output

synchronization

DESCRIPTION

C-16

Allocates a physically-contiguous block of memory.

MEMORYALC

Location

R1

Location

RO

R2

Contents

Number of physically contiguous pages to allocate

Contents

SS$_NORMAL, SS$_1NSFMEM, or SS$_
INSFSPTS

System virtual address of allocated block, if the
allocation succeeds

EXE$ALOPHYCNTG raises IPL to IPL$_SYNCH and obtains the MMG
spin lock. As a result, its caller cannot be executing above IPL$_SYNCH
or hold any spin lock ranked higher than MMG. (For instance, a driver fork
process executing at IPL$_SYNCH holding the IOLOCK8 fork lock can call
EXE$ALOPHYCNTG.)

EXE$ALOPHYCNTG returns control to its caller at the caller's IPL. The caller
retains any spin lock it held at the time of the call.

EXE$ALOPHYCNTG allocates a physically contiguous block of memory. You
cannot deallocate memory allocated by EXE$ALOPHYCNTG.

Note that the number of SPT slots available depends on the value of the
SPTREQ system parameter.

Operating System Routines
EXE$AL TQUEPKT

EXE$AL TQUEPKT

module

input

output

synchronization

DESCRIPTION

Delivers an IRP to a driver's alternate start-1/0 routine without regard for
the status of the device.

SYSQIOREQ

Location

R3

R5

DDT$L _AL TST ART

UCB$B_FLCK

UCB$L_OOB

DDB$L_OOT

Location

RO through R5

Contents

Address of IRP

Address of UCB

Address of alternate start-1/0 routine

Fork lock index

Address of unit's DOB

Address of DDT

Contents

Destroyed

A driver FDT routine calls EXE$ALTQUEPKT at IPL$_ASTDEL.
EXE$ALTQUEPKT raises to fork IPL (acquiring any required fork lock)
before calling the driver's alternate start-I/O routine. When the alternate
start-I/O routine returns control to it, EXE$ALTQUEPKT returns control to its
caller at the caller's IPL (having released its acquisition of the fork lock).

EXE$ALTQUEPKT calls the driver's alternate start-I/O routine. It does not
test whether the unit is busy before making the call.

C-17

Operating System Routines
EXE$CREDIT_BVTCNT, EXE$CREDIT_BVTCNT_BVTLM

EXE$CREDIT_BVTCNT I
EXE$CREDIT_BVTCNT_BVTLM

module

input

output

synchronization

DESCRIPTION

C-18

Return credit to a job's buffered-1/0 byte count quota and byte limit.

EXSUBROUT

Location

RO

R4

JIB$B_FLAGS

JIB$L_BYTCNT

JIB$L _BYTLM

Location

RO

JIB$L_BYTCNT

JIB$L_BYTLM

Contents

Number of bytes to return to the byte count
quota (and byte limit)

Address of current PCB

JIB$V_BYTCNT _WAITERS set if there are
processes waiting for byte count quota from this
JIB

Job's byte count usage quota

Job's byte limit (used by EXE$CREDIT_BYTCNT_
BYTLM)

Contents

Destroyed

Updated

Updated (by EXE$CREDIT_BYTCNT_BYTLM)

EXE$CREDIT_BYTCNT and EXE$CREDIT_BYTCNT_BYTLM raise IPL to
IPL$_SYNCH and obtain the JIB spin lock and the SCHED spin lock (if
JIB$V_BYTCNT_WAITERS is set) in a VMS multiprocessing environment. As
a result, their callers cannot be executing above IPL$_SYNCH or hold any
spin lock ranked higher than JIB. (For instance, a driver fork process executing
at IPL$_SYNCH holding the IOLOCK8 fork lock can call these routines. It
cannot, however, hold the SCHED spin lock.)

EXE$CREDIT_BYTCNT and EXE$CREDIT_BYTCNT_BYTLM return control
to their callers at the caller's IPL. Their caller retains any spin locks it held at
the time of the call.

EXE$CREDIT_BYTCNT provides a synchronized method of crediting a job's
byte count quota to JIB$L_BYTCNT. EXE$CREDIT_BYTCNT_BYTLM also
credits a job's byte limit to JIB$L_BYTLM.

Both routines round the value specified in RO up to the nearest 16-byte
boundary before applying it to the JIB. Both check JIB$V_BYTCNT_WAITERS
to determine if any process is waiting for the return of nonpaged pool quota
for this JIB. If a process is waiting, EXE$CREDIT_BYTCNT calls a system
routine that attempts to fill any pending requests.

Operating System Routines
EXE$DEANONPAGED

EXE$DEANONPAGED

module

input

output

synchronization

DESCRIPTION

Deallocates a block of memory and returns it to nonpaged pool.

MEMORYALC

Location

RO

IRP$W_SIZE

Location

R1 and R2

Contents

Address of block to be deallocated

Size of block in bytes

Contents

Destroyed

EXE$DEANONPAGED executes at the caller's IPL, at IPL$_SYNCH
holding the SCHED spin lock, and at IPL$_p00L holding the POOL
spin lock. As a result, its caller cannot be executing above IPL$_SYNCH.
EXE$DEANONPAGED returns control to its caller at the caller's IPL. The
caller retains any spin locks it held at the time of the call.

EXE$DEANONP AGED deallocates the specified block of memory to
nonpaged dynamic memory, returning it to a lookaside list or the variable
region of nonpaged pool as appropriate. It also reports to the scheduler the
availability of the deallocated pool.

EXE$DEANONPAGED issues a BADDALRQSZ bugcheck if the address of
the pool to be deallocated is not aligned on a 16-byte boundary.

C-19

Operating System Routines
EXE$DEBIT_BVTCNT(_NW), EXE$DEBIT_BVTCNT_BVTLM(_NW)

EXE$DEBIT_BVTCNT(_NW),
EXE$DEBIT_BVTCNT_BVTLM(_NW)

module

input

output

synchronization

C-20

Determine whether a job's buffered 1/0 byte count quota usage permits
the process to be granted additional buffered 1/0 and, if so, adjust the
job's byte count quota and byte limit.

EXSUBROUT

Location

R1

R4

PCB$L_STS

IOC$GW _MAXBUF

JIB$L_BYTCNT

JIB$L_BYTLM

Location

RO

R1

JIB$L _BYTCNT

JIB$L_BYTLM

Contents

Number of bytes to be deducted; bit 31,
when set, disables the routine's check against
IOC$GW _MAXBUF

Address of current PCB

PCB$V_SSRW AIT clear if the process should
wait for buffered-1/0 byte quota; set if resource
wait mode is disabled

Maximum number of buffered 1/0 bytes the
system allows to a single request

Job· s byte count usage quota

Job's byte limit (used by EXE$DEBIT_BYTCNT_
BYTLM and EXE$DEBIT_BYTCNT_BYTLM_NW)

Contents

SS$_NORMALorSS$_EXQUOTA

Number of bytes deducted; bit 31 cleared

Updated if successful

Updated if successful (by EXE$DEBIT_BYTCNL
BYTLM and EXE$DEBIT_BYTCNT_BYTLM_NW)

EXE$DEBIT_BYTCNT, EXE$DEBIT_BYTCNT_NW, EXE$DEBIT_BYTCNT_
BYTLM, and EXE$DEBIT_BYTCNT_BYTLM_NW raise IPL to IPL$_SYNCH
and obtain the JIB spin lock in a VMS multiprocessing environment. As a
result, their callers cannot be executing above IPL$_SYNCH or hold any spin
lock ranked higher than JIB. (For instance, a driver fork process executing
at IPL$_SYNCH holding the fOLOCK8 fork lock can call these routines. It
cannot, however, hold the SCHED spin lock.)

EXE$DEBIT_BYTCNT, EXE$DEBIT_BYTCNT_NW, EXE$DEBIT_BYTCNT_
BYTLM, and EXE$DEBIT_BYTCNT_BYTLM_NW return control to their
callers at the caller's IPL. The caller retains any spin locks it held at the time
of the call.

Operating System Routines
EXE$DEBIT_BYTCNT(_NW), EXE$DEBIT_BYTCNT_BYTLM(_NW)

DESCRIPTION EXE$DEBIT_BYTCNT and EXE$DEBIT_BYTCNT_NW check whether a
process has sufficient quota for a buffer of the specified size and, if so,
deduct the corresponding number of bytes from the job's byte count quota.
EXE$DEBIT_BYTCNT_BYTLM and EXE$DEBIT_BYTCNT_BYTLM_NW also
adjust the job's byte limit. All routines round the value specified in Rl up to
the nearest 16-byte boundary before applying it to the JIB.

If the process's quota usage is too large, EXE$DEBIT_BYTCNT and
EXE$DEBIT_BYTCNT_BYTLM place the process into a resource wait state,
based on the setting of PCB$V_SSRWAIT, until sufficient quota is returned
to the job. EXE$DEBIT_BYTCNT_NW and EXE$DEBIT_BYTCNT_BYTLM_
NW do not refer to PCB$V_SSRWAIT and return an error if the process has
exceeded its job's quota. These latter routines never wait for sufficient quota.

If bit 31 in Rl is clear, all routines compare the byte count in Rl against
IOC$GW_MAXBUF, returning an error if the system's maximum buffer
allotment to a process is exceeded.

C-21

Operating System Routines
EXE$DEBIT_BVTCNT_ALO, EXE$DEBIT_BVTCNT_BVTLM_ALQ

EXE$DEBIT_BVTCNT_ALO,
EXE$DEBl-T_BVTCNT_BVTLM _ALO

module

input

output

synchronization

C-22

Determine whether a job's buffered 1/0 byte count quota usage permits
the process to be granted additional buffered 1/0 and, if so, allocates the
requested amount of nonpaged pool and adjust the job's byte count quota
and byte limit.

EXSUBROUT

Location

R1

R4

PCB$L_STS

IOC$GW _MAXBUF

JIB$L _BYTCNT

JIB$L _BYTLM

Location

RO

R1

R2

R3

JIB$L_BYTCNT

JIB$L_BYTLM

IRP$W_SIZE (in allocated
buffer)

IRP$B_ TYPE (in allocated
buffer)

Contents

Number of bytes to be allocated (including the
12 bytes required for the buffer's header) and
deducted; bit 31, when set, disables the routine's
check against IOC$GW _MAXBUF

Address of current PCB

PCB$V_SSRWAIT clear if the process should
wait for buffered-1/0 byte quota; set if resource
wait mode is disabled

Maximum number of buffered 1/0 bytes the
system allows to a single request

Job's byte count usage quota

Job's byte limit (used by EXE$DEBIT_BYTCNT_
BYTLM-,-ALO)

Contents

SS$_NQRMAL or SS$_EXOUOT A

Number of bytes deducted; bit 31 cleared

Address of requested buffer

Destroyed

Updated if successful

Updated if successful (by EXE$DEBIT_BYTCNT_
BYTLM_ALO)

Size of requested buffer in bytes

DYN$C_BUFIO

EXE$DEBIT_BYTCNT_ALO and EXE$DEBIT_BYTCNT_BYTLM_ALO raise
IPL to IPL$_SYNCH and obtain the JIB spin lock in a VMS multiprocessing
environment. As a result, their callers cannot be executing above IPL$_
SYNCH or hold any spin lock ranked higher than JIB. (For instance, a driver
fork process executing at IPL$_SYNCH holding the IOLOCK8 fork lock can
call these routines. It cannot, however, hold the SCHED spin lock.)

Operating System Routines
EXE$DEBIT_BVTCNT_ALO, EXE$DEBIT_BVTCNT_BVTLM_ALO

DESCRIPTION

EXE$DEBIT_BYTCNT_ALO and EXE$DEBIT_BYTCNT_BYTLM_ALO return
control to their callers at the caller's IPL. The caller retains any spin locks it
held at the time of the call.

EXE$DEBIT_BYTCNT_ALO checks whether a process has sufficient quota for
a buffer of the specified size and, if so, allocates the buffer from nonpaged
pool and deducts the corresponding number of bytes from the job's byte
count quota. EXE$DEBIT_BYTCNT_BYTLM_ALO also adjusts the job's byte
limit. Both routines round the value specified in Rl up to the nearest 16-byte
boundary before applying it to the JIB.

If the process's quota usage is too large, EXE$DEBIT_BYTCNT_ALO and
EXE$DEBIT_BYTCNT_BYTLM_ALO place the process into a resource wait
state, based on the setting of PCB$V_SSRWAIT, until sufficient quota is
returned to the job.

If bit 31 in Rl is clear, these routines compare the byte count in Rl against
IOC$GW_MAXBUF, returning an error if the system's maximum buffer
allotment to a process is exceeded.

C-23

Operating System Routines
EXE$FINISHIO, EXE$FINISHIOC

EXE$FINISHIO, EXE$FINISHIOC

module

input

output

synchronization

DESCRIPTION

C-24

Complete the servicing of an 1/0 request and return status to the 1/0
status block specified in the request.

SYSQIOREQ

Location

RO

R1

R3

R4

R5

Location

RO

IRP$L _IQST 1

IRP$L _IQST2

UCB$L_OPCNT

Contents

First longword of status for the 1/0 status block

Second longword of status for the 1/0 status
block (EXE$FINISHIO only)

Address of IRP

Address of current PCB

Address of UCB

Contents

SS$_NQRMAL

First longword of 1/0 status

Second longword of 1/0 status (cleared by
EXE$FINISHIOC)

Incremented

EXE$FINISHIO and EXE$FINISHIOC execute at their caller's IPL and raise
to fork IPL, acquiring the associated fork lock in a VMS multiprocessing
environment. As a result, th.eir callers cannot be executing above fork IPL. A
driver usually transfers control to these routines at IPL$-ASTDEL.

EXE$FINISHIO and EXE$FINISHIOC exit at IPL 0 (normal process IPL).

EXE$FINISHIOC clears the contents of R1. Then, EXE$FINISHIO or
EXE$FINISHIOC takes the following steps to complete the processing of
the I/O request:

• Increases the number of I/O operations completed on the current device
in the operation count field of the UCB (UCB$L _OPCNT). This task
is performed at fork IPL, holding the associated fork lock in a VMS
multiprocessing environment.

• Stores the contents of RO and Rl in the IRP.

• Inserts the IRP in the local processor's I/O postprocessing queue headed
by CPU$L_PSBL.

• If the queue is empty, requests a software interrupt from the local
processor at IPL$_IOPOST.

Operating System Routines
EXE$FINISHIO, EXE$FINISHIOC

This interrupt causes postprocessing to occur before the remaining instructions
in EXE$FINISHIO or EXE$FINISHIOC are executed.

When all 1/0 postprocessing has been completed, EXE$FINISHIO or
EXE$FINISHIOC regains control and completes the 1/0 operation as follows:

• Places status SS$_NORMAL in RO

• Lowers IPL to zero

• Issues the RET instruction that restores the original access mode of the
caller of the $QIO system service and returns control to the system service
dispatcher

The image that issued the $QIO receives SS$_NORMAL status in RO,
indicating that the If O request has completed without device-independent
error.

C-25

Operating System Routines
EXE$FORK

EXE$FORK

module

macro

input

output

synchronization

DESCRIPTION

C-26

Creates a fork process on the local processor.

FORKCNTRL

FORK

Location

R5

OO(SP)

04(SP)

FKB$8_FLCK

Location

R3

R4

FKB$L_FR3 (UCB$L_FR3)

FKB$L_FR4 (UCB$L_FR4)

FKB$L_FPC (UCB$L_FPC)

Contents

Address of fork block

Return PC of caller

Return PC of caller's caller

Fork lock index or fork IPL

Contents

Destroyed

Fork IPL

R3 of caller

R4 of caller

OO(SP)

EXE$FORK acquires no spin locks and leaves IPL unchanged. It returns
control to its caller's caller.

EXE$FORK saves the contents of R3 and R4 (in FKB$LJR3 and FKB$L_
FR4, respectively) in the fork block specified by RS, and pops the return PC
value from the top of the stack into FKB$L _FPC.

If FKB$BJLCK contains a fork lock index, EXE$FORK determines the fork
IPL by using this value as an index into the spin lock IPL vector (SMP$AR_
IPL VEC). EXE$FORK inserts the fork block into the fork queue on the local
processor (headed by CPU$Q _SWIQFL) corresponding to this IPL. If the
queue is empty, EXE$FORK issues a SOFTINT macro, requesting a software
interrupt from the local processor at that fork IPL.

Unlike EXE$IOFORK, EXE$FORK does not disable timeouts by clearing
UCB$V_TIM in the UCB$L_STS field.

Operating System Routines
EXE$1NSERTIRP

EXE$1 NSERTI RP

module

input

output

synchronization

DESCRIPTION

Inserts an IRP into the specified queue of IRPs according to the base
priority of the process that issued the 1/0 request.

SYSQIOREQ

Location

R2
R3
IRP$B_PRI

Location

R1

PSL <2> (Z bit)

Pending-1/0 queue

Contents

Address of 1/0 queue listhead for the device

Address of IRP

Base priority of process requesting the 1/0

Contents

Destroyed

Set if the entry is first in the queue, cleared if at
least one entry is already in the queue

IRP inserted

EXE$INSERTIRP must be called at fork IPL or higher. In a VMS
multiprocessing environment, the caller must also hold the associated fork
lock. EXE$INSERTIRP does not alter IPL or acquire any spin locks. It returns
to its caller.

EXE$INSERTIRP determines the position of the specified IRP in the pending-
1/0 queue according to two factors:

• Priority of the IRP, which is derived from the requesting process's base
priority as stored in the IRP$B_pRJ

• Time that the entry is queued; for each priority, the queue is ordered on a
first-in/first-out basis

EXE$INSERTIRP inserts the IRP into the queue at that position, adjusts the
queue links, and sets the Z bit in the PSL to indicate the status of the queue.

C-27

Operating System Routines
EXE$1NSIOQ, EXE$1NSIOQC

EXE$1NSIOQ, EXE$1NSIOQC

module

input

output

synchronization

·DESCRIPTION

C-28

Insert an IRP in a device's pending-1/0 queue and call the driver's start-1/0
routine if the device is not busy.

SYSQIOREQ

Location

R3

R5

UCB$B_FLCK

UCB$L_STS

UCB$L_IOQFL

UCB$W_QLEN

Location

RO, R1, R2

UCB$L_STS

UCB$W_QLEN

Contents

Address of IRP

Address of UCB

Fork lock index

UCB$V_BSY set indicates device is busy, clear
indicates device is idle

Address of pending-1/0 queue listhead

Length of pending-1/0 queue

Contents

Destroyed. Other registers (used by the driver's
start-1/0 routine) are destroyed if the start-1/0
routine is called.

UCB$V_BSY set.

Incremented.

EXE$INSIOQ and EXE$INSIOQC immediately raise to fork IPL and, in a
VMS multiprocessing environment, obtain the corresponding fork lock. As a
result, their callers must not be executing at an IPL higher than fork IPL or
hold a spin lock ranked higher than the fork lock.

EXE$INSIOQ unconditionally releases ownership of the fork lock before
returning control to the caller without possession of the fork lock. If a fork
process must retain possession of the fork lock, it should call EXE$INSIOQC
instead.

EXE$INSIOQ and EXE$INSIOQC increment UCB$W_QLEN and proceed
according to the status of the device (as indicated by UCB$V_BSY in UCB$W_
STS) as follows:

• If the device is busy, call EXE$INSERTIRP to place the IRP on the
device's pending-I/O queue.

• If the device is idle, call IOC$INITIATE to begin device processing of the
I/O request immediately. IOC$INITIATE transfers control to the driver's
start-I/O routine.

Operating System Routines
EXE$1NSTIMQ

EXE$1NSTIMQ

module

input

output

synchronization

DESCRIPTION

Inserts a timer queue element (TOE) into the timer queue.

EXSUBROUT

Location

RO, R1

R5

EXE$GQ_ 1 ST_ TIME

Location

R2, R3

TQE$Q_TIME

EXE$GQ_ 1 ST_ TIME

Contents

Quadword expiration time for TOE

Address of TOE to be inserted

Expiration time of first TOE in timer queue

Contents

Destroyed

Quadword expiration time for TOE

Updated if TOE is inserted at the head of the
timer queue

EXE$INSTIMQ immediately raises to IPL$_ TIMER (IPL$_SYNCH), obtaining
the TIMER spin lock in a VMS multiprocessing environment. As a result, its
caller must not be executing above IPL$_SYNCH or hold any spin locks of a
higher rank. (For instance, a driver fork process executing at IPL$_SYNCH
holding the IOLOCK8 fork lock can call EXE$INSTIMQ.)

EXE$INSTIMQ returns control to its caller at the caller's IPL. The caller
retains any spin locks it held at the time of the call.

EXE$INSTIMQ inserts the specified TQE into the timer queue according to
its expiration time. If the expiration time of the new TQE is sooner than that
of the first TQE in the queue, EXE$INSTIMQ raises IPL to interval clock IPL
(obtaining the HWCLK spin lock in a VMS multiprocessing environment),
inserts it on the head of the queue, and updates EXE$GQ_lST_TIME.

C-29

Operating System Routines
EXE$10FORK

EXE$10FORK

module

macro

input

output

synchronization

DESCRIPTION

C-30

Creates a fork process on the local processor for a device driver, disabling
timeouts from the associated device.

FORKCNTRL

IO FORK

Location

R5

OO(SP)

Contents

Address of fork block (usually the UCB)

Return PC of caller

04(SP) Return PC of caller's caller

FKB$B_FLCK (UCB$B_FLCK) Fork lock index or fork IPL

Location

R3

R4

UCB$L_STS

FKB$L_FR3 (UCB$L_FR3)

FKB$L_FR4 (UCB$L_FR4)

FKB$L_FPC (UCB$L_FPC)

Contents

Destroyed

Fork IPL

UCB$V_ TIM cleared, disabling device timeouts

R3 of caller

R4 of caller

OO(SP)

EXE$IOFORK acquires no spin locks and leaves IPL unchanged. It returns
control to its caller's caller.

EXE$IOFORK first disables timeouts from the target device by clearing
UCB$V_TIM in UCB$L_STS.

It saves the contents of R3 and R4 (in FKB$L_FR3 and FKB$L_FR4,
respectively) in the fork block specified by RS, and pops the return PC
value from the top of the stack into FKB$L _FPC.

If FKB$B_FLCK contains a fork lock index, EXE$IOFORK determines the fork
IPL by using this value as an index into the spin lock IPL vector (SMP$AR_
IPL VEC). EXE$IOFORK inserts the fork block into the fork queue on the
local processor (headed by CPU$Q _SWIQFL) corresponding to this IPL. If
the queue is empty, EXE$IOFORK issues a SOFTINT macro, requesting a
software interrupt from the local processor at that fork IPL.

Operating System Routines
EXE$MODIFY

EXE$MODIFY

module

input

output

synchronization

DESCRIPTION

Translates a logical read or write function into a physical read or write
function, transfers $010 system service parameters to the IRP, validates
and prepares a user buffer, and proceeds with or aborts a direct-1/0, OMA
read/write operation.

SYSQIOFDT

Location

R3

R4

R5

R6

R7

RS

OO(AP)

04(AP)

12(AP)

IRP$W_FUNC

Location

RO, R1, R2

IRP$L _IOST2

IRP$W_STS

IRP$W_FUNC

IRP$L _SV APTE

IRP$W_BOFF

IRP$L_BCNT

Contents

Address of IRP.

Address of current PCB.

Address of UCB.

Address of CCB.

Bit number of the 1/0 function code.

Address of FDT entry for this routine.

Virtual address of buffer (p 1) .

Number of bytes in transfer (p2.) The maximum
number of bytes that EXE$MODIFY can transfer
is 65,535 (128 pages minus one byte).

Carriage control byte (p4).

1/0 function code.

Contents

Destroyed

p4

IRP$V_FUNC set, indicating a read function

Logical read or write function code converted to
physical function

System virtual address of the process page-table
entry (PTE) that maps the first page of the buffer

Byte offset to start of transfer in page

Size of transfer in bytes

EXE$MODIFY is called as a driver FDT routine at IPL$_ASTDEL.

A driver uses EXE$MODIFY as an FDT routine when the driver must both
read from and write to the user-specified buffer. Because EXE$MODIFY
transfers control to EXE$QIODRVPKT if its operations are successful or
EXE$ABORTIO if they are not, it must be the last FDT routine called to
perform the preprocessing of 1/0 read/write requests. A driver cannot use
EXE$MODIFY for buffered 1/0 operations.

C-31

Operating System Routines
EXE$MODIFY

EXE$MODIFY performs the following functions:

• Sets IRP$V_FUNC in IRP$W_STS to indicate a read function.

• Writes the p4 argument of the $QIO request into IRP$L _IOST2 (IRP$B_
CARCON).

• Translates logical read and write functions to physical read and write
functions.

• Examines the size of the transfer, as specified in the p2 argument of the
$QIO request, and takes one of the following actions:

If the transfer byte count is zero, EXE$MODIFY transfers control to
EXE$QIODRVPKT to deliver the IRP to the driver's start-1/0 routine.
The driver start-1/0 routine should check for zero-length buffers to
avoid mapping them to UNIBUS, Q22-bus, MASSBUS, or VAXBI
node space. An attempted mapping can cause a system failure.

If the byte count is not zero, EXE$MODIFY loads the byte count and
the starting address of the transfer into Rl and RO, respectively, and
calls EXE$MODIFYLOCK.

EXE$MODIFYLOCK calls EXE$MODIFYLOCKR. EXE$MODIFYLOCKR calls
EXE$READCHKR, which performs the following tasks:

• Moves the transfer byte count into IRP$L_BCNT. If the byte count is
negative, it returns SS$_BADP ARAM status to EXE$MODIFYLOCKR.

• Determines if the specified buffer is write accessible for a read 1/0
function, with one of the following results:

If the buffer allows write access, EXE$READCHKR sets IRP$V_FUNC
in IRP$W_STS and returns SS$_NORMAL to EXE$MODIFYLOCKR.

If the buffer does not allow write access, EXE$READCHKR returns
SS$-ACCVIO status to EXE$MODIFYLOCKR.

If EXE$READCHKR succeeds, EXE$MODIFYLOCKR moves into IRP$W_
BOFF the byte offset to the start of the buffer and calls MMG$10LOCK.
MMG$10LOCK attempts to lock into memory those pages that contain the
buffer, with one of the following results: 1

• If MMG$10LOCK succeeds, EXE$MODIFYLOCKR stores in IRP$L_
SV APTE the system virtual address of the process PTE that maps the first
page of the buffer, and returns control to EXE$MODIFY. EXE$MODIFY
calls EXE$QIODRVPKT to deliver the IRP to the driver's start-1/0
routine.

• If MMG$IOLOCK fails, it returns SS$_ACCVIO, SS$_INSFWSL, or page
fault status to EXE$MODIFYLOCKR.

1 For read requests, MMG$IOLOCK performs an optimization for any nonvalid page contained within the buffer.
It creates a demand-zero page rather than fault into memory the requested page. However, if the buffer
extends to more than one page, this optimization is not possible.

C-32

Operating System Routines
EXE$MODIFY

If either EXE$READCHKR or MMG$IOLOCK returns an error status other
than a page fault condition, EXE$MODIFYLOCKR calls EXE$ABORTIO. In
the event of a page fault, EXE$MODIFYLOCKR adjusts direct 1/0 count and
AST count to the values they held before the IjO request, deallocates the
IRP, and restarts the 1/0 request at the $QIO system service. This procedure
is carried out so that the user process can receive ASTs while it waits for
the page fault to complete. Once the page is faulted into memory, the $QIO
system service will resubmit the 1/0 request.

C-33

Operating System Routines
EXE$MODIFYLOCK, EXE$MODIFYLOCKR

EXE$MODIFYLOCK, EXE$MODIFYLOCKR

module

input

output

synchronization

DESCRIPTION

C-34

Validate and prepare a user buffer for a direct-1/0, DMA read/write
operation.

SYSQIOFDT

Location

RO

R1

R3

R4

R5

R6

R7

Location

RO

R1

R2

IRP$W_STS

IRP$L_sv APTE

IRP$W_BQFF

IRP$L_BCNT

Contents

Virtual address of buffer

Number of bytes in transfer

Address of IRP

Address of current PCB

Address of UCB

Address of CCB

Bit number of the 1/0 function code

Contents

SS$_NORMAL

System virtual address of the process page-table
entry (PTE) that maps the first page of the buffer

1, indicating a read function

IRP$V_FUNC set, indicating a read function

System virtual address of the PTE that maps the
first page of the buffer

Byte offset to start of transfer in page

Size of transfer in bytes

EXE$MODIFYLOCK and EXE$MODIFYLOCKR are called by a driver FDT
routine at IPL$_ASTDEL.

A driver typically calls EXE$MODIFYLOCKR instead of EXE$MODIFYLOCK
when it must lock multiple areas into memory for a single 1/0 request and
must regain control, if the request is to be aborted, to unlock these areas.
A driver uses either of these routines when it must both read and write to
the user-specified buffer and it is not desirable to automatically deliver the
IRP to the device unit after the buffer has been successfully locked. A driver
cannot use EXE$MODIFYLOCK or EXE$MODIFYLOCKR for buffered 1/0
operations.

Operating System Routines
EXE$MODIFYLOCK, EXE$MODIFYLOCKR

EXE$MODIFYLOCK calls EXE$MODIFYLOCKR.

EXE$MODIFYLOCKR calls EXE$READCHKR, which performs the following
tasks:

• Moves the transfer byte count into IRP$L_BCNT. If the byte count is
negative, it returns SS$_BADP ARAM status to EXE$MODIFYLOCKR.

• Determines if the specified buffer is write accessible for a read 1/0
function, with one of the following results:

If the buffer allows write access, EXE$READCHKR sets IRP$V_FUNC
in IRP$W_STS and returns SS$_NORMAL to EXE$MODIFYLOCKR.

If the buffer does not allow write access, EXE$READCHKR returns
SS$__ACCVIO status to EXE$MODIFYLOCKR.

If EXE$READCHKR succeeds, EXE$MODIFYLOCKR moves into IRP$W_
BOFF the byte offset to the start of the buffer and calls MMG$IOLOCK,
disabling a paging mechanism used in write-only operations. MMG$IOLOCK
attempts to lock into memory those pages that contain the buffer, with one of
the following results:2

• If MMG$IOLOCK succeeds, EXE$MODIFYLOCKR stores in IRP$L_
SV APTE the system virtual address of the process PTE that maps the first
page of the buffer, and returns success status to its caller.

• If MMG$IOLOCK fails, it returns SS$_ACCVIO, SS$_INSFWSL, or page
fault status to EXE$MODIFYLOCKR.

If the initial call was to EXE$MODIFYLOCK and either EXE$READCHKR
or MMG$IOLOCK returns an error status other than a page fault condition,
EXE$MODIFYLOCKR calls EXE$ABORTIO. In the event of a page fault,
EXE$MODIFYLOCKR adjusts direct 1/0 count and AST count to the values
they held before the 1/0 request, deallocates the IRP, and restarts the 1/0
request at the $QIO system service. This procedure is carried out so that the
user process can receive ASTs while it waits for the page fault to complete.
Once the page is faulted into memory, the $QIO system service will resubmit
the 1/0 request.

If the initial call was to EXE$MODIFYLOCKR and an error occurs,
EXE$MODIFYLOCKR, by means of a coroutine call, returns control to the
driver's FDT routine with status in RO. The driver performs whatever device­
specific actions are required to abort the request, preserving the contents of
RO and Rl. When the driver issues the RSB instruction, control is returned to
EXE$MODIFYLOCKR. EXE$MODIFYLOCKR proceeds to abort or resubmit
the 1/0 request.

Otherwise, these routines return success status to their callers.

2 For read requests, MMG$IOLOCK performs an optimization for any nonvalid page contained within the buffer.
It creates a demand-zero page rather than fault into memory the requested page. However, if the buffer
extends to more than one page, this optimization is not possible.

C-35

Operating System Routines
EXE$MODIFYLOCK, EXE$MODIFYLOCKR

C-36

A driver FDT routine that calls EXE$MODIFYLOCKR must distinguish
between successful and unsuccessful status when it resumes, as shown in the
following example:

JSB GAEXE$MODIFYLOCKR
BLBS BUF_LOCK_OK

BUF_LOCK_FAIL:

; clean up this $QIO bookkeeping

RSB
BUF_LOCK_OK:

;continue processing this I/0 request

Operating System Routines
EXE$0NEPARM

EXE$0NEPARM

module

input

output

synchronization

DESCRIPTION

Copies a single $010 parameter into the IRP and delivers the IRP to a
driver's start-1/0 routine.

SYSQIOFDT

Location

R3

R4

R5

R6

R7

R8

OO(AP)

Location

IRP$L_MEDIA

Contents

Address of IRP

Address of current PCB

Address of UCB

Address of CCB

Bit number of the 1/0 function code

Address of FDT entry for this routine

Address of first function-dependent parameter of
the $010 request (p1)

Contents

p1

EXE$0NEP ARM is called as a driver FDT routine at IPL$_ASTDEL.

EXE$0NEP ARM processes an I/O function code that requires only one
parameter. This parameter should need no checking: for instance, for read or
write accessibility. EXE$0NEPARM stores the parameter, found at OO(AP), in
IRP$L_MEDIA and transfers control to EXE$QIODRVPKT to deliver the IRP
to the driver.

C-37

Operating System Routines
EXE$QIODRVPKT

EXE$QIODRVPKT

module

input

output

synchronization

DESCRIPTION

C-38

Delivers an IRP to the driver's start-1/0 routine or pending-1/0 queue,
returns success status in RO, lowers IPL to 0, and returns to the system
service dispatcher.

SYSQIOREQ

Location

R3

R4

R5

UCB$8_FLCK

UCB$L_STS

UCB$L_IOOFL

UCB$W_QLEN

UCB$L_STS

UCB$W_QLEN

Contents

Address of IRP

Address of current PCB

Address of UCB

Fork lock index or fork IPL

UCB$V_BSY set if device is busy, clear if device
is idle

Address of pending-1/0 queue listhead

Length of pending-1/0 queue

UCB$V_BSY set

Incremented

EXE$QIODRVPKT is called by a driver's FDT routine at IPL$_ASTDEL. It
exits at IPL 0 (normal process IPL).

EXE$QIODRVPKT calls EXE$INSIOQ. EXE$INSIOQ checks the status of the
device and calls either EXE$INSERTIRP or IOC$INITIATE to place the IRP in
the device's pending-I/O queue or deliver it to the driver's start-I/O routine,
respectively.

When EXE$INSIOQ returns to EXE$QIODRVPKT at IPL$_ASTDEL,
EXE$QIODRVPKT returns control to the system service dispatcher in the
following steps:

1 Loads SS$_NQRMAL into RO

2 Lowers IPL to zero

3 Issues the RET instruction that restores the original access mode of the
caller of the $QIO system service and returns control to the system service
dispatcher

The image that requested the I/O operation receives status SS$_NORMAL in
RO, indicating that the I/O request has completed without device-independent
error.

Operating System Routines
EXE$QIORETURN

EXE$QIORETURN

module

input

output

synchronization

DESCRIPTION

Sets a success status code in RO, lowers IPL to 0, and returns to the
system service dispatcher.

SYSQIOREQ

Location

R5

UCB$B_FLCK

Location

RO

Contents

Address of UCB

Fork lock index or fork IPL

Contents

SS$_NQRMAL

EXE$QIORETURN is typically called by a driver FDT routine at IPL$_
ASTDEL. Its caller cannot be executing above fork IPL or hold any spin locks
other than the appropriate fork lock.

EXE$QIORETURN releases any fork lock held by its caller before it issues the
RET instruction.

EXE$QIORETURN performs the following actions:

• Loads SS$_NORMAL into RO

• Lowers IPL to zero

• Issues the RET instruction that restores the original access mode of the
caller of the $QIO system service and returns control to the system service
dispatcher

The image that requested the I/O operation receives status SS$_NORMAL in
RO, indicating that the I/O request has completed without device-independent
error.

C-39

Operating System Routines
EXE$READ

EXE$READ

module

input

output

synchronization

DESCRIPTION

C-40

Translates a logical read function into a physical read function, transfers
$010 system service parameters to the IRP, validates and prepares a
user buffer, and proceeds with or aborts a direct-1/0, DMA read/write
operation.

SYSQIOFDT

Location

R3

R4

R5

R6

R7

RS

OO(AP)

04(AP)

12(AP)

IRP$W_FUNC

Location

RO, R1, R2

IRP$B_IOST2

IRP$W_STS

IRP$W_FUNC

IRP$L _SV APTE

IRP$W_BOFF

IRP$L_BCNT

Contents

Address of IRP.

Address of current PCB.

Address of UCB.

Address of CCB.

Bit number of the 1/0 function code.

Address of FDT entry for this routine.

Virtual address of buffer (p1).

Number of bytes in transfer (p2). The maximum
number of bytes that EXE$READ can transfer is
65,535 (128 pages minus one byte).

Carriage control byte (p4).

1/0 function code.

Contents

Destroyed

p4

IRP$V_FUNC set, indicating a read function

Logical read function code converted to physical

System virtual address of the process page-table
entry (PTE) that maps the first page of the buffer

Byte offset to start of transfer in page

Size of transfer in bytes

EXE$READ is called as a driver FDT routine at IPL$_ASTDEL.

A driver uses EXE$READ as an FDT routine when the driver must write
to the user-specified buffer. Because EXE$READ transfers control to
EXE$QIODRVPKT if its operations are successful or EXE$ABORTIO if they
are not, it must be the last FDT routine called to perform the preprocessing
of read 1/0 requests. A driver cannot use EXE$READ for buffered-1/0
operations.

Operating System Routines
EXE$READ

EXE$READ performs the following functions:

• Sets lRP$V_FUNC in lRP$W_STS to indicate a read function

• Writes the p4 argument of the $Ql0 request into lRP$L_lOST2 (lRP$B_
CARCON).

• Translates a logical read function to a physical read function.

• Examines the size of the transfer, as specified in the p2 argument of the
$Ql0 request, and takes one of the following actions:

If the transfer byte count is zero, EXE$READ transfers control to
EXE$QlODRVPKT to deliver the lRP to the driver's start-1/0 routine.
The driver start-1/0 routine should check for zero-length buffers to
avoid mapping them to UNIBUS, Q22-bus, MASSBUS, or VAXBl
node space. An attempted mapping can cause a system failure.

If the byte count is not zero, EXE$READ loads the byte count and the
starting address of the transfer into Rl and RO, respectively, and calls
EXE$READLOCK.

EXE$READLOCK calls EXE$READLOCKR.

EXE$READLOCKR calls EXE$READCHKR, which performs the following
tasks:

• Moves the transfer byte count into lRP$L_BCNT. If the byte count is
negative, it returns SS$_BADP ARAM status to EXE$READLOCKR.

• Determines whether the specified buffer is write accessible for a read IfO
function, with one of the following results:

If the buffer allows write access, EXE$READCHKR sets lRP$VJUNC
in lRP$W_STS, and returns SS$_NORMAL to EXE$READLOCKR.

If the buffer does not allow write access, EXE$READCHKR returns
SS$__ACCV10 status to EXE$READLOCKR.

If EXE$READCHKR succeeds, EXE$READLOCKR moves into lRP$W_
BOFF the byte offset to the start of the buffer and calls MMG$10LOCK.
MMG$10LOCK attempts to lock into memory those pages that contain the
buffer, with one of the following results:3

• If MMG$10LOCK succeeds, EXE$READLOCKR stores in lRP$L _SVAPTE
the system virtual address of the process PIE that maps the first page of
the buffer, and returns control to EXE$READ. EXE$READ transfers
control to EXE$QlODRVPKT to deliver the lRP to the driver's start-1/0
routine.

• If MMG$10LOCK fails, it returns SS$_ACCV10, SS$_1NSFWSL, or page
fault status to EXE$READLOCKR.

3 For read requests, MMG$IOLOCK performs an optimization for any nonvalid page contained within the buffer.
It creates a demand-zero page rather than fault into memory the requested page. However, if the buffer
extends to more than one page, this optimization is not possible.

C-41

Operating System Routines
EXE$READ

C-42

If either EXE$READCHKR or MMG$10LOCK returns an error status
other than a page fault condition, EXE$READLOCKR transfers control to
EXE$ABORTIO. In the event of a page fault, EXE$READLOCKR adjusts
direct 1/0 count and AST count to the values they held before the 1/0
request, deallocates the IRP, and restarts the 1/0 request at the $QIO system
service. This procedure is carried out so that the user process can receive
ASTs while it waits for the page fault to complete. Once the page is faulted
into memory, the $QIO system service will resubmit the 1/0 request.

Operating System Routines
EXE$READCHK, EXE$READCHKR

EXE$READCHK, EXE$READCHKR

module

input

output

synchronization

DESCRIPTION

Verify that a process has write access to the pages in the buffer specified
in a $010 request.

SYSQIOFDT

Location

RO

R1

R3

Location

Contents

Virtual address of buffer

Size of transfer in bytes

Address of IRP

Contents

RO Virtual address of buffer (EXE$READCHK), SS$_
NORMAL (EXE$READCHKR), or error status

R1

R2

R3

IRP$W_STS

IRP$L_BCNT

Size of transfer in bytes

1 , indicating a read function

Address of IRP

IRP$V_FUNC set, indicating a read function

Size of transfer in bytes

EXE$READCHK and EXE$READCHKR are called by a driver FDT routine at
IPL$__ASTDEL.

A driver uses either of these routines to check the write accessibility of a
user-specified buffer. A driver typically calls EXE$READCHKR instead of
EXE$READCHK when it must regain control before the request is aborted in
the event the buffer is inaccessible.

EXE$READCHK calls EXE$READCHKR.

EXE$READCHKR performs the following tasks:

• Moves the transfer byte count into IRP$L_BCNT. If the byte count is
negative, it returns SS$_BADP ARAM status to its caller.

• Determines whether the specified buffer is write accessible for a read 1/0
function, with one of the following results:

If the buffer allows write access, EXE$READCHKR sets IRP$V_FUNC
in IRP$W_STS and returns SS$_NORMAL to its caller.

If the buffer does not allow write access, EXE$READCHKR returns
SS$__ACCVIO status to its caller.

C-43

Operating System Routines
EXE$READCHK, EXE$READCHKR

C-44

If the initial call was to EXE$READCHK, and EXE$READCHKR returns error
status, EXE$READCHK transfers control to EXE$ABORTIO to terminate the
1/0 request. If the initial call was to EXE$READCHKR, and an error occurs,
EXE$READCHKR returns control to the driver. Otherwise, these routines
return success status to their callers.

A driver FDT routine that calls EXE$READCHKR must distinguish between
successful and unsuccessful status when it resumes, as shown in the following
example:

JSB GAEXE$READCHKR
BLBS BUF_ACCESS_OK

BUF_ACCESS_FAIL:

; clean up this $QIO bookkeeping

JSB GAEXE$ABORTIO
BUF_ACCESS_OK:

;continue processing this I/O request

Operating System Routines
EXE$READLOCK, EXE$READLOCKR

EXE$READLOCK, EXE$READLOCKR

module

input

output

synchronization

DESCRIPTION

Validate and prepare a user buffer for a direct-1/0, OMA read operation.

SYSQIOFDT

Location

RO

R1

R3

R4

R5

R6

R7

Location

RO

R1

R2

IRP$W_STS

IRP$L _SV APTE

IRP$W_BOFF

IRP$L_BCNT

Contents

Virtual address of buffer

Number of bytes in transfer

Address of IRP

Address of current PCB

Address of UCB

Address of CCB

Bit number of the 1/0 function code

Contents

SS$_NORMAL

System virtual address of the process page-table
entry (PTE) that maps the first page of the buffer

1, indicating a read function

IRP$V_FUNC set, indicating a read function

System virtual address of the PTE that maps the
first page of the buffer

Byte offset to start of transfer in page

Size of transfer in bytes

EXE$READLOCK and EXE$READLOCKR are called by a driver FDT routine
at IPL$_ASTDEL.

A driver typically calls EXE$READLOCKR instead of EXE$READLOCK
when it must lock multiple areas into memory for a single 1/0 request and
must regain control, if the request is to be aborted, to unlock these areas. A
driver uses either of these routines when it must write to the user-specified
buffer and it is not desirable to automatically deliver the IRP to the device
unit after the buffer has been successfully locked. A driver cannot use
EXE$READLOCK or EXE$READLOCKR for buffered 1/0 operations.

EXE$READLOCK calls EXE$READLOCKR.

EXE$READLOCKR calls EXE$READCHKR, which performs the following
tasks:

• Moves the transfer byte count into IRP$L_BCNT. If the byte count is
negative, it returns SS$_BADP ARAM status to EXE$READLOCKR.

C-45

Operating System Routines
EXE$READLOCK, EXE$READLOCKR

• Determines whether the specified buffer is write accessible for a read 1/0
function, with one of the following results:

If the buffer allows write access, EXE$READCHKR sets IRP$V_FUNC
in IRP$W_STS and returns SS$_NORMAL to EXE$READLOCKR.

If the buffer does not allow write access, EXE$READCHKR returns
SS$__ACCVIO status to EXE$READLOCKR.

If EXE$READCHKR succeeds, EXE$READLOCKR moves into IRP$W_
BOFF the byte offset to the start of the buffer and calls MMG$IOLOCK.
MMG$IOLOCK attempts to lock into memory those pages that contain the
buffer, with one of the following results:4

• If MMG$IOLOCK succeeds, EXE$READLOCKR stores in IRP$L_SVAPTE
the system virtual address of the process PTE that maps the first page of
the buffer, and returns success status to its caller.

• If MMG$IOLOCK fails, it returns SS$_ACCVIO, SS$_INSFWSL, or page
fault status to EXE$READLOCKR.

If the initial call was to EXE$READLOCK and either EXE$READCHKR or
MMG$10LOCK returns an error status other than a page fault condition,
EXE$READLOCKR transfers control to EXE$ABORTIO. In the event of a
page fault, EXE$READLOCKR adjusts direct 1/0 count and AST count to
the values they held before the 1/0 request, deallocates the IRP, and restarts
the 1/0 request at the $QIO system service. This procedure is carried out
so that the user process can receive ASTs while it waits for the page fault to
complete. Once the page is faulted into memory, the $QIO system service
will resubmit the 1/0 request.

If the initial call was to EXE$READLOCKR and an error occurs,
EXE$READLOCKR, by means of a coroutine call, returns control to the
driver's FDT routine with status in RO. The driver performs whatever device­
specific actions are required to abort the request, preserving the contents of
RO and Rl. When the driver issues the RSB instruction, control is returned to
EXE$READLOCKR. EXE$READLOCKR proceeds to abort or resubmit the 1/0
request.

Otherwise, these routines return success status to their callers.

4 For read requests, MMG$IOLOCK performs an optimization for any nonvalid page contained within the buffer.
It creates a demand-zero page rather than fault into memory the requested page. However, if the buffer
extends to more than one page, this optimization is not possible.

C-46

Operating System Routines
EXE$READLOCK, EXE$READLOCKR

A driver FDT routine that calls EXE$READLOCKR must distinguish between
successful and unsuccessful status when it resumes, as shown in the following
example:

JSB GAEXE$READLOCKR
BLBS BUF_LOCK_OK

BUF_LOCK_FAIL:

; clean up this $QIO bookkeeping

RSB
BUF_LOCK_OK:

;continue processing this I/0 request

C-47

Operating System Routines
EXE$SENSEMODE

EXE$SENSEMODE

module

input

output

synchronization

DESCRIPTION

C-48

Copies device-dependent characteristics from the device's UCB into R 1 ,
writes a success code into RO, and completes the 1/0 operation.

SYSQIOFDT

Location

R3

R4

R5

R6

R7

RS

OO(AP)

UCB$Q_DEVDEPEND

Location

RO

R1

Contents

Address of IRP

Address of current PCB

Address of UCB

Address of CCB

Bit number of the 1/0 function code

Address of FDT entry for this routine

Address of first function-dependent parameter of
the $010 request

Device-dependent status

Contents

SS$_NORMAL

Device-dependent status

EXE$SENSEMODE is called as a driver FDT routine at IPL$_ASTDEL.

A driver uses EXE$SENSEMODE as an FDT routine to process the sense­
device-mode (IO$_SENSEMODE) and sense-device-characteristics (10$_
SENSECHAR) I/O functions.

EXE$SENSEMODE loads the contents of UCB$Q_DEVDEPEND into Rl,
places SS$_NORMAL status into RO, and transfers control to EXE$FINISHIO
to insert the IRP in the I/O postprocessing queue.

Operating System Routines
EXE$SETCHAR, EXE$SETMODE

EXE$SETCHAR, EXE$SETMODE

module

input

output

synchronization

DESCRIPTION

Write device-specific status and control information into the device's
UCB and complete the 1/0 request (EXE$SETCHAR); or write the
information into the IRP and deliver the IRP to the driver's start-1/0 routine
(EXE$SETMODE).

SYSQIOFDT

Location

R3

R4

R5

R6

R7

R8

OO(AP)

UCB$B_DEVCLASS

Location

RO

UCB$B_DEVCLASS

UCB$B_DEVTYPE

UCB$W _DEVBUFSIZ

UCB$Q_DEVDEPEND

IRP$L_MEDIA

IRP$L_MEDIA+4

Contents

Address of IRP

Address of current PCB

Address of UCB

Address of CCB

Bit number of the 1/0 function code

Address of FDT entry for this routine

Address of location containing device
characteristics quadword (p1)

Device class

Contents

SS$_NORMAL, SS$_ACCVIO, or SS$_
ILLIOFUNC

Byte 0 of quadword (EXE$SETCHAR,
10$_SETCHAR function only)

Byte 1 of quadword (EXE$SETCHAR,
10$_SETCHAR function only)

Bytes 2 and 3 of quadword (EXE$SETCHAR)

Bytes 4 through 7 of quadword (EXE$SETCHAR)

First longword of device characteristics
(EXE$SETMODE)

Second longword of device characteristics
(EXE$SETMODE)

EXE$SETCHAR or EXE$SETMODE is called as a driver FDT routine at IPL$_
AS TD EL.

A driver uses EXE$SETCHAR or EXE$SETMODE as an FDT routine to
process the set-device-mode (IQ$_SETMODE) and set-device-characteristics
(10$_SETCHAR) functions. If setting device characteristics requires device
activity or synchronization with fork processing, the driver's FDT entry must
specify EXE$SETMODE. Otherwise, it can specify EXE$SETCHAR.

C-49

Operating System Routines
EXE$SETCHAR, EXE$SETMODE

C-50

EXE$SETCHAR and EXE$SETMODE examine the current value of UCB$B_
DEVCLASS to determine whether the device permits the specified function.
If the device class is disk (DC$_DISK), the routines place SS$_ILLIOFUNC
status in RO and transfer control to EXE$ABORTIO to terminate the request.

EXE$SETCHAR and EXE$SETMODE then ensure that the process has read
access to the quadword containing the new device characteristics. If it does
not, the routines place SS$_ACCVIO status in RO and transfer control to
EXE$ABORTIO to terminate the request.

If the request passes these checks, EXE$SETCHAR and EXE$SETMODE
proceed as follows:

• EXE$SETCHAR stores the specified characteristics in the UCB. For an
10$_SETCHAR function, the device type and class fields (UCB$B_
DEVCLASS and UCB$B_DEVTYPE, respectively) receive the first word
of data. For both 10$_SETCHAR and 10$_SETMODE functions,
EXE$SETCHAR writes the second word into the default-buffer-size
field (UCB$W_DEVBUFSIZ) and the third and fourth words into the
device-dependent-characteristics field (UCB$Q _DEVDEPEND).

Finally, EXE$SETCHAR stores normal completion status (SS$_NORMAL)
in RO and transfers control to EXE$FINISHIO to insert the IRP in the 1/0
postprocessing queue.

• EXE$SETMODE stores the specified quadword of characteristics in
IRP$L _MEDIA, places normal completion status (SS$_NORMAL) in
RO, and transfers control to EXE$QIODRVPKT to deliver the IRP to the
driver's start-1/0 routine.

The driver's start-1/0 routine copies data from IRP$L_MEDIA and the
following longword into UCB$W_DEVBUFSIZ, UCB$Q_DEVDEPEND, and,
if the 1/0 function is 10$_SETCHAR, UCB$B_DEVCLASS and UCB$B_
DEVTYPE as well.

Operating System Routines
EXE$SNDEVMSG

EXE$SNDEVMSG

module

input

output

synchronization

DESCRIPTION

Builds and sends a device-specific message to the mailbox of a system
process, such as the job controller or OPCOM.

MB DRIVER

Location

R3

R4

R5

UCB$W_UNIT

UCB$L_DDB

DDB$T _NAME and
mailbox UCB fields

Location

RO

R 1 through R4

Contents

Address of mailbox UCB

Message type

Address of device UCB

Device unit number

Address of device DOB

Device controller name

Contents

SS$_NORMAL, SS$_MBTOOSML, SS$_MBFULL,
SS$_INSFMEMj or SS$_NQPRIV

Destroyed

Because EXE$SNDEVMSG raises IPL to IPL$_MAILBOX and obtains the
MAILBOX spin lock in a VMS multiprocessing environment, its caller cannot
be executing above IPL$_MAILBOX. EXE$SNDEVMSG returns control to its
caller at the caller's IPL. The caller retains any spin locks it held at the time
of the call.

EXE$SNDEVMSG builds a 32-byte message on the stack that includes the
following information:

Bytes

0 and 1

2 and 3

4 through 31

Contents

Low word of R4 (message type)

Device unit number (UCB$W_UNIT)

Counted string of device controller name, formatted as
node$controller for clusterwide devices

EXE$SNDEVMSG then calls EXE$WRTMAILBOX to send the message to a
mailbox.

C-51

Operating System Routines
EXE$SNDEVMSG

C-52

EXE$SNDEVMSG can fail for any of the following reasons:

• The message is too large for the mailbox (SS$_MBTOOSML).

• The message mailbox is full of messages (SS$_MBFULL).

• The system is unable to allocate memory for the message (SS$_
INSFMEM).

• The caller lacks privilege to write to the mailbox (SS$_NOPRIV).

EXE$WRITE

module

input

output

synchronization

DESCRIPTION

Operating System Routines
EXE$WRITE

Translates a logical write function into a physical write function, transfers
$010 system service parameters to the IRP, validates and prepares a
user buffer, and proceeds with or aborts a direct-1/0, OMA read/write
operation.

SYSQIOFDT

Location

R3

R4

R5

R6

R7

R8

OO(AP)

04(AP)

12(AP)

IRP$W_FUNC

Location

RO, R1, R2

IRP$L _IOST2

IRP$W_FUNC

IRP$W_STS

IRP$L_SVAPTE

IRP$W_BQFF

IRP$L_BCNT

Contents

Address of IRP.

Address of current PCB.

Address of UCB.

Address of CCB.

Bit number of the 1/0 function code.

Address of FDT entry for this routine.

Virtual address of buffer (p1).

Number of bytes in transfer (p2). The maximum
number of bytes that EXE$WRITE can transfer is
65,535 (128 pages minus one byte).

Carriage control byte (p4).

1/0 function code.

Contents

Destroyed

p4

Logical read function code converted to physical

IRP$V_FUNC clear, indicating a write function

System virtual address of the process page-table
entry (PTE) that maps the first page of the buffer

Byte offset to start of transfer in page

Size of transfer in bytes

EXE$WRITE is called as a driver FDT routine at IPL$_ASTDEL.

A driver uses EXE$WRITE as an FDT routine when the driver must read
from the user-specified buffer. Because EXE$WRITE transfers control to
EXE$QIODRVPKT if its operations are successful or EXE$ABORTIO if they
are not, it must be the last FDT routine called to perform the preprocessing
of write 1/0 requests. A driver cannot use EXE$WRITE for buffered 1/0
operations.

C-53

Operating System Routines
EXE$WRITE

C-54

EXE$WRITE performs the following functions:

• Writes the p4 argument of the $QIO request into IRP$L_IOST2 (IRP$B_
CARCON).

• Translates a logical write function to a physical write function.

• Examines the size of the transfer, as specified in the p2 argument of the
$QIO request, and takes one of the following actions:

If the transfer byte count is zero, EXE$WRITE transfers control to
EXE$QIODRVPKT to deliver the IRP to the driver's start-1/0 routine.
The driver start-1/0 routine should check for zero-length buffers to
avoid mapping them to UNIBUS, Q22 bus, MASSBUS, or VAXBI
node space. An attempted mapping can cause a system failure.

If the byte count is not zero, EXE$READ loads the byte count and the
starting address of the transfer into Rl and RO, respectively, and calls
EXE$WRITELOCK.

EXE$ WRITELOCK calls EXE$ WRITELOCKR.

EXE$WRITELOCKR calls EXE$WRITECHKR, which performs the following
tasks:

• Moves the transfer byte count into IRP$L_BCNT. If the byte count is
negative, it returns SS$_BADP ARAM status to EXE$WRITELOCKR.

• Determines whether the specified buffer is read accessible for a write 1/0
function, with one of the following results:

If the buffer allows read access, EXE$WRITECHKR returns SS$_
NORMAL to EXE$WRITELOCKR.

If the buffer does not allow read access, EXE$WRITECHKR returns
SS$_.ACCVIO status to EXE$WRITELOCKR.

If EXE$WRITECHKR succeeds, EXE$WRITELOCKR moves into IRP$W_
BOFF the byte offset to the start of the buffer and calls MMG$10LOCK.
MMG$10LOCK attempts to lock into memory those pages that contain the
buffer, with one of the following results:

• If MMG$10LOCK succeeds, EXE$WRITELOCKR stores in IRP$L_
SVAPTE the system virtual address of the process PTE that maps the
first page of the buffer, and returns control to EXE$WRITE. EXE$WRITE
transfers control to EXE$QIODRVPKT to deliver the IRP to the driver's
start-1/0 routine.

• If MMG$10LOCK fails, it returns SS$_ACCVIO, SS$_INSFWSL, or page
fault status to EXE$WRITELOCKR.

If either EXE$WRITECHKR or MMG$10LOCK returns an error status,
EXE$WRITELOCKR transfers control to EXE$ABORTIO.

Operating System Routines
EXE$WRITECHK, EXE$WRITECHKR

EXE$WRITECHK, EXE$WRITECHKR

module

input

output

synchronization

DESCRIPTION

Verify that a process has read access to the pages in the buffer specified
in a $010 request.

SYSQIOFDT

Location

RO

R1

R3

Location

RO

R1

R2

IRP$W_STS

IRP$L_BCNT

Contents

Virtual address of buffer

Size of transfer in bytes

Address of IRP

Contents

Virtual address of buffer (EXE$WRITECHK), SS$_
NORMAL (EXE$WRITECHKR), or error status

Size of transfer in bytes

0, indicating a write function

IRP$V_FUNC clear, indicating a write function

Size of transfer in bytes

EXE$WRITECHK and EXE$WRITECHKR are called by a driver FDT routine
at IPL$_ASTDEL.

A driver uses either of these routines to check the read accessibility of a
user-specified buffer. A driver typically calls EXE$WRITECHKR instead of
EXE$WRITECHK when it must regain control before the request is aborted in
the event the buffer is inaccessible.

EXE$WRITECHK calls EXE$WRITECHKR.

EXE$WRITECHKR performs the following tasks:

• Moves the transfer byte count into IRP$L_BCNT. If the byte count is
negative, it returns SS$_BADPARAM status to its caller.

• Determines if the specified buffer is read accessible for a write 1/0
function, with one of the following results:

If the buffer allows read access, EXE$WRITECHKR returns SS$_
NORMAL to its caller.

If the buffer does not allow read access, EXE$WRITECHKR returns
SS$-ACCVIO status to its caller.

C-55

Operating System Routines
EXE$WRITECHK, EXE$WRITECHKR

C-56

If the initial call was to EXE$WRITECHK, and EXE$WRITECHKR returns
error status, EXE$WRITECHK transfers control to EXE$ABORTIO to terminate
the 1/0 request. If the initial call was to EXE$WRITECHKR, and an error
occurs, EXE$WRITECHKR returns control to the driver. Otherwise, these
routines return success status to their callers.

A driver FDT routine that calls EXE$WRITECHKR must distinguish between
successful and unsuccessful status when it resumes, as shown in the following
example:

JSB G-EXE$WRITECHKR
BLBS BUF_ACCESS_OK

BUF_ACCESS_FAIL:

; clean up this $QIO bookkeeping

JSB G-EXE$ABORTIO
BUF_ACCESS_OK:

;continue processing this I/O request

Operating System Routines
EXE$WRITELOCK, EXE$WRITELOCKR

EXE$WRITELOCK, EXE$WRITELOCKR

module

input

output

synchronization

DESCRIPTION

Validate and prepare a user buffer for a direct-1/0, DMA write operation.

SYSQIOFDT

Location

RO

R1

R3

R4

R5

R6

R7

Location

RO

R1

R2

IRP$W_STS

IRP$L _SV APTE

IRP$W_BOFF

IRP$L_BCNT

Contents

Virtual address of buffer

Number of bytes in transfer

Address of IRP

Address of current PCB

Address of UCB

Address of CCB

Bit number of the 1/0 function code

Contents

SS$_NORMAL

System virtual address of the process page-table
entry (PTE) that maps the first page of the buffer

0, indicating a write function

IRP$V_FUNC clear, indicating a write function

System virtual address of the PTE that maps the
first page of the buffer

Byte offset to start of transfer in page

Size of transfer in bytes

EXE$WRITELOCK and EXE$WRITELOCKR are called by a driver FDT routine
at IPL$_ASTDEL.

A driver typically calls EXE$WRITELOCKR instead of EXE$WRITELOCK
when it must lock multiple areas into memory for a single 1/0 request and
must regain control, if the request is to be aborted, to unlock these areas.
A driver uses either of these routines when it must read from the user­
specified buffer and it is not desirable to automatically deliver the IRP to the
device unit after the buffer has been successfully locked. A driver cannot use
EXE$WRITELOCK or EXE$WRITELOCKR for buffered 1/0 operations.

EXE$WRITELOCK calls EXE$WRITELOCKR.

EXE$WRITELOCKR calls EXE$WRITECHKR, which performs the following
tasks:

• Moves the transfer byte count into IRP$L_BCNT. If the byte count is
negative, it returns SS$_BADP ARAM status to EXE$WRITELOCKR.

C-57

Operating System Routines
EXE$WRITELOCK, EXE$WRITELOCKR

C-58

• Determines if the specified buffer is write accessible for a write 1/0
function, with one of the following results:

If the buffer allows read access, EXE$WRITECHKR returns SS$_
NORMAL to EXE$WRITELOCKR.

If the buffer does not allow read access, EXE$WRITECHKR returns
SS$__ACCVIO status to EXE$WRITELOCKR.

If EXE$WRITECHKR succeeds, EXE$WRITELOCKR moves into IRP$W_
BOFF the byte offset to the start of the buffer and calls MMG$IOLOCK.
MMG$IOLOCK attempts to lock into memory those pages that contain the
buffer, with one of the following results:

• If MMG$IOLOCK succeeds, EXE$WRITELOCKR stores in IRP$L_
SVAPTE the system virtual address of the process PTE that maps the
first page of the buffer, and returns success status to its caller.

• If MMG$IOLOCK fails, it returns SS$_ACCVIO, SS$_INSFWSL, or page
fault status to EXE$WRITELOCKR.

If the initial call was to EXE$WRITELOCK and either EXE$WRITECHKR or
MMG$10LOCK returns an error status other than a page fault condition,
EXE$WRITELOCKR transfers control to EXE$ABORTIO. In the event of a
page fault, EXE$WRITELOCKR adjusts direct 1/0 count and AST count to
the values they held before the 1/0 request, deallocates the IRP, and restarts
the 1/0 request at the $QIO system service. This procedure is carried out
so that the user process can receive ASTs while it waits for the page fault to
complete. Once the page is faulted into memory, the $QIO system service
will resubmit the 1/0 request.

If the initial call was to EXE$WRITELOCKR and an error occurs,
EXE$WRITELOCKR, by means of a coroutine call, returns control to the
driver's FDT routine with status in RO. The driver performs whatever device­
specific actions are required to abort the request, preserving the contents of
RO and Rl. When the driver issues the RSB instruction, control is returned to
EXE$WRITELOCKR. EXE$WRITELOCKR proceeds to abort the 1/0 request.

Otherwise, these routines return success status to their callers.

A driver FDT routine that calls EXE$WRITELOCKR must distinguish between
successful and unsuccessful status when it resumes, as shown in the following
example:

JSB G-EXE$WRITELOCKR
BLBS BUF_LOCK_OK

BUF_LOCK_FAIL:

; clean up this $QIO bookkeeping

RSB
BUF_LOCK_OK:

;continue processing this I/O request

Operating System Routines
EXE$WRTMAI LBOX

EXE$WRTMAI LBOX

module

input

output

synchronization

DESCRIPTION

Sends a message to a mailbox.

MB DRIVER

Location

R3

R4

R5

Mailbox UCB fields

Location

RO

R1 and R2

Contents

Message size

Message address

Address of mailbox UCB

Contents

SS$_NORMAL, SS$_MBTOOSML, SS$_MBFULL,
SS$_1NSFMEM, or SS$_NQPRIV

Destroyed

Because EXE$WRTMAILBOX raises IPL to IPL$_MAILBOX and obtains the
MAILBOX spin lock in a VMS multiprocessing environment, its caller cannot
be executing above IPL$_MAILBOX. EXE$WRTMAILBOX returns control to
its caller at the caller's IPL. The caller retains any spin locks it held at the
time of the call.

EXE$WRTMAILBOX checks fields in the mailbox UCB (UCB$W_BUFQUO,
UCB$W_DEVBUFSIZ) to determine whether it can deliver a message of the
specified size to the mailbox. It also checks fields in the associated ORB to
determine whether the caller is sufficiently privileged to write to the mailbox.
Finally, it calls EXE$ALONONPAGED to allocate a block of nonpaged pool to
contain the message. If it fails any of these operations, EXE$WRTMAILBOX
returns error status to its caller.

If it is successful thus far, EXE$WRTMAILBOX creates a message and delivers
it to the mailbox's message queue, adjusts its UCB fields accordingly, and
returns success status to its caller.

C-59

Operating System Routines
EXE$ZEROPARM

EXE$ZEROPARM

module

input

output

synchronization

DESCRIPTION

C-60

Processes an 1/0 function code that requires no parameters.

SYSQIOFDT

R3

R4

R5

R6

R7

R8

Location

IRP$L_MEDIA

Address of IRP

Address of current PCB

Address of UCB

Address of CCB

Bit number of the 1/0 function code

Address of FDT entry for this routine

Contents

0

EXE$ZEROP ARM is called as a driver FDT routine at IPL$_A.STDEL.

EXE$ZEROP ARM processes an 1/0 function code that describes an 1/0
operation completely without any additional function-specific arguments. It
clears IRP$L _MEDIA and transfers control to EXE$QIODRVPKT to deliver
the IRP to the driver.

Operating System Routines
IOC$ALOAL TMAP, IOC$ALOAL TMAPN, IOC$ALOAL TMAPSP

IOC$ALOALTMAP, IOC$ALOALTMAPN,
IOC$ALOAL TMAPSP

module

input

output

Allocate a set of 022-bus alternate map registers.

[SYSLOA]MAPSUBxxx

Location

R3

R4

R5

UCB$W_BCNT

UCB$W_BOFF

UCB$L_CRB

CRB$L_INTD+
VEC$L_ADP

CRB$L_INTD+
VEC$W _MAPAL T

ADP$W _MR2NREGAR,
ADP$W _MR2FREGAR,
ADP$L_MR2ACTMDR

Location

RO

R1

R2

CRB$L_INTD+
VEC$W _NUMAL T

CRB$L_INTD+
VEC$W_MAPAL T

ADP$W_MR2NREGAR,
ADP$W_MR2FREGAR,
ADP$L_MR2ACTMDR

Contents

Number of alternate map registers to allocate
(IOC$ALOAL TMAPN and IOC$ALOAL TMAPSP
only).· The value should account for one extra
register needed to prevent a transfer overrun.

Number of first alternate map register to allocate
(IOC$ALOAL TMAPSP only).

Address of UCB.

Transfer byte count (IOC$ALOAL TMAP only).

Byte offset in page (IOC$ALOALTMAP only).

Address of CRB.

Address of ADP.

VEC$V_AL TLOCK set indicates that alternate
map registers have been permanently allocated to
this controller.

Alternate map register descriptor arrays.

Contents

SS$_NORMAL, SS$_1NSFMAPREG, or
SS$_SSFAIL

Destroyed

Address of ADP

Number of alternate map registers allocated

Starting alternate map register number

Updated

C-61

Operating System Routines
IOC$ALOAL TMAP, IOC$ALOALTMAPN, IOC$ALOALTMAPSP

synchronization

DESCRIPTION

C-62

Callers of IOC$ALOALTMAP, IOC$ALOALTMAPN, or
IOC$ALOAL TMAPSP may be executing at fork IPL or above and must
hold the corresponding fork lock in a VMS multiprocessing environment.
Each routine returns control to its caller at the caller's IPL. The caller retains
any spin locks it held at the time of the call.

IOC$ALOALTMAP, IOC$ALOALTMAPN, and IOC$ALOALTMAPSP
allocate a contiguous set of Q22-bus alternate map registers (registers 496
to 8191) and record the allocation in the ADP and CRB. These routines differ
in the way in which they determine the number and location of the alternate
map registers they allocate:

• IOC$ALOAL TMAP calculates the number of needed map registers
using the values contained in UCB$W_BCNT and UCB$W_BOFF. It
automatically allocates one extra map register. When it is later called by
the driver, IOC$LOADAL TMAP marks this register invalid to prevent a
transfer overrun.

• IOC$ALOAL TMAPN uses the value in R3 as the number of required
registers.

• IOC$ALOAL TMAPSP uses the value in R3 as the number of required
registers and attempts to allocate these registers starting at the one
indicated by R4.

If an odd number of map registers is required, these routines round this value
up to an even multiple.

If alternate map registers have been permanently allocated to the controller,
IOC$ALOALTMAP, IOC$ALOALTMAPN, or IOC$ALOALTMAPSP returns
successfully to its caller without allocating the requested map registers.
Otherwise, it searches the alternate map register descriptor arrays for the
required number of map registers. If there are not enough contiguous map
registers available, the routine returns SS$_INSFMAPREG status.

If the VAX system does not support alternate map registers, the routine exits
with SS$_SSFAIL status.

Operating System Routines
IOC$ALOUBAMAP, IOC$ALOUBAMAPN

IOC$ALOUBAMAP, IOC$ALOUBAMAPN

module

input

output

synchronization

Allocate a set of UNIBUS map registers or a set of the first 496 022-bus
map registers.

IOSUBNPAG

Location

R3

R5

UCB$W_BCNT

UCB$W_BOFF

UCB$L_CRB

CRB$L_INTD+
VEC$L_ADP

CRB$L_INTD+
VEC$W_MAPREG

ADP$W _MRNREGARY I
ADP$W _MRFREGARY,
ADP$L_MRACTMDRS

Location

RO

R1

R2
CRB$L_INTD+VEC$B_
NUMREG

CRB$L _INTD+ VEC$W _
MAPREG

ADP$W_MRNREGARY I
ADP$W _MRFREGARY I
ADP$L_MRACTMDRS

Contents

Number of map registers to allocate
(IOC$ALOUBAMAPN only). The value should
account for one extra register needed to prevent
a transfer overrun.

Address of UCB.

Transfer byte count (IOC$ALOUBAMAP only).

Byte offset in page (IOC$ALOUBAMAP only).

Address of CRB.

Address of ADP.

VEC$V_MAPLOCK set indicates that map
registers have been permanently allocated to
this controller.

Map register descriptor arrays.

Contents

SS$_NORMAL or 0

Destroyed

Address of ADP

Number of map registers allocated

Starting map register number

Updated

The caller of IOC$ALOUBAMAP or IOC$ALOUBAMAPN may be executing
at fork IPL or above and must hold the corresponding fork lock in a VMS
multiprocessing environment. Either routine returns control to its caller at the
caller's IPL. The caller retains any spin locks it held at the time of the call.

C-63

Operating System Routines
IOC$ALOUBAMAP, IOC$ALOUBAMAPN

DESCRIPTION

C-64

IOC$ALOUBAMAP and IOC$ALOUBAMAPN allocate a contiguous set of
UNIBUS map registers or a set of the first 496 Q22-bus map registers and
record the allocation in the ADP and CRB. These routines differ in the way in
which they determine the number of the map registers they allocate:

• IOC$ALOUBAMAP calculates the number of needed map registers
using the values contained in UCB$W_BCNT and UCB$W_BOFF. It
automatically allocates one extra map register. When it is later called by
the driver, IOC$LOADUBAMAP marks this register invalid to prevent a
transfer overrun.

• IOC$ALOUBAMAPN uses the value in R3 as the number of required
registers.

If an odd number of map registers is required, both routines round this value
up to an even multiple.

If map registers have been permanently allocated to the controller,
IOC$ALOUBAMAP or IOC$ALOUBAMAPN returns successfully to its
caller without allocating the requested map registers. Otherwise, it searches
the map register descriptor arrays for the required number of map registers. If
there are not enough contiguous map registers available, the routine returns
an error status of zero to its caller.

Operating System Routines
IOC$APPL YECC

IOC$APPL YECC

module

input

output

synchronization

DESCRIPTION

Applies an ECC correction to data transferred from a disk device into
memory.

IOSUBRAMS

Location

RO

R5

UCB$W_BCNT

UCB$W_EC1

UCB$W_EC2

UCB$L_SVPN

UCB$L_SVAPTE

Location

RO,R1,R2

UCB$W _DEVSTS

Contents

Number of bytes of data that have been
transferred, not including the block to be
corrected; this must be a multiple of 512 bytes

Address of UCB

Length of transfer in bytes

Starting bit number of the error burst

Exclusive OR correction pattern

Address of system PTE for a page that is
available for use by driver

System virtual address of PTE that maps the
transfer

Contents

Destroyed

UCB$V_ECC set to indicate that an ECC
correction was made

IOC$APPLYECC executes at the caller's IPL, obtains no spin locks, and
returns control to its caller at its caller's IPL.

IOC$APPL YECC corrects data transferred from a disk device to memory by
performing an exclusive-OR operation on the data and applying a correction
pattern from the UCB. IOC$APPLYECC also sets a UCB bit (UCB$V_ECC in
UCB$W_DEVSTS) to indicate that it has made an ECC correction.

Note that, to use this routine, the driver must define the local UCB disk
extension, as described in Section A.14.

C-65

Operating System Routines
IOC$CANCELIO

IOC$CANCELIO

module

input

output

synchronization

DESCRIPTION

C-66

Conditionally marks a UCB so that its current 1/0 request will be canceled.

IOSUBNPAG

Location

R2

R3
R4

R5

IRP$L_PID

IRP$W_CHAN

PCB$L_PID

UCB$L_STS

Location

UCB$L_STS

Contents

Channel index number

Address of IRP

Address of current PCB

Address of UCB

Process identification of the process that queued
the 1/0 request

1/0 request channel index number

Process identification of the process that
requested cancellation

UCB$V_BSY set if device is busy, clear if device
is idle

Contents

UCB$V_CANCEL set if the 1/0 request should be
canceled

IOC$CANCELIO executes at its caller's IPL, obtains no spin locks, and
returns control to its caller at the caller's IPL. It is usually called by
EXE$CANCEL (if specified in the DDT as the driver's cancel-1/0 routine)
at fork IPL, holding the corresponding fork lock in a VMS multiprocessing
environment.

IOC$CANCELIO cancels 1/0 to a device in the following device-independent
manner:

1 It confirms that the device is busy by examining the device-busy bit in
the UCB status longword (UCB$V_BSY in UCB$L_STS).

2 It confirms that the IRP in progress on the device originates from the
current process (that is, the contents of IRP$L _pm and PCB$L _pm are
identical).

3 It confirms that the specified channel-index number is the same as the
value stored in the IRP's channel-index field (IRP$W_CHAN).

4 It sets the cancel-1/0 bit in the UCB status longword (UCB$V_CANCEL
in UCB$L_STS).

Oper~ting System Routines
IOC$DIAGBUFILL

IOC$DIAGBUFILL

module

input

output

synchronization

DESCRIPTION

Fills a diagnostic buffer if the original $010 request specified such a buffer.

IOSUBNPAG

Location

R4

R5

UCB$L_IRP

IRP$W_STS

IRP$L _DIAGBUF

UCB$B_ERTCNT

UCB$L_DDB

DDB$L_DDT

DDT$L_REGDUMP

EXE$GQ_SYSTIME

Location

RO, R1

R2
R3

R4

R5

Contents

Address of device's CSR

Address of UCB

Address of current IRP

IRP$V_DIAGBUF set if a diagnostic buffer exists

Address of diagnostic buffer, if one is present

Final error retry count

Address of DDB

Address of DDT

Address of driver's register dumping routine

Current system time (time at 1/0 request
completion)

Contents

Destroyed

Address of DDT

Address of IRP

Address of device's CSR

Address of UCB

The caller of IOC$DIAGBUFILL may be executing at or above fork IPL
and must hold the corresponding fork lock in a VMS multiprocessing
environment. IOC$DIAGBUFILL returns control to its caller at the caller's
IPL. The caller retains any spin locks it held at the time of the call.

A device driver fork process calls IOC$DIAGBUFILL at the end of 1/0
processing but before releasing the 1/0 channel. IOC$DIAGBUFILL stores
the 1/0 completion time and the final error retry count in the diagnostic
buffer. (IOC$INITIATE has already placed the 1/0 initiation time in the first
quadword of the buffer.) IOC$DIAGBUFILL then calls the driver's register
dumping routine, which fills the remainder of the buffer, and returns to its
caller.

C-67

Operating System Routines
IOC$1NITIATE

IOC$1NITIATE

module

input

output

synchronization

C-68

Initiates the processing of the next 1/0 request for a device unit.

IOSUBNPAG

Location

R3

R5

CPU$L_PHY_CPUID

IRP$L_SVAPTE

IRP$W_BOFF

IRP$L_BCNT

IRP$W_STS

IRP$L_DIAGBUF

EXE$GQ_SYSTIME

UCB$L_DDB

UCB$L_DDT

UCB$L _AFFINITY

DDT$L_ST ART

Location

RO, R1

UCB$L_IRP

UCB$L _SV APTE

UCB$W_BOFF

UCB$W_BCNT

UCB$L_STS

Diagnostic buffer

Contents

Address of IRP

Address of UCB

CPU ID of local processor

Address of system buffer (buffered 1/0) or
system virtual address of the PTE that maps
process buffer (direct 1/0)

Byte offset of start of buffer

Size in bytes of transfer

IRP$V_DIAGBUF set if a diagnostic buffer exists

Address of diagnostic buffer, if one is present

Current system time (when 1/0 processing began)

Address of DOB

Address of DDT

Device's affinity mask

Address of driver start-1/0 routine

Contents

Destroyed

Address of IRP

IRP$L_SV APTE

IRP$W_BOFF

IRP$L _BCNT (low-order word)

UCB$V_CANCEL and UCB$V_ TIMOUT cleared

Current system time (first quadword)

IOC$INITIATE is called at fork IPL with the corresponding fork lock held in
a VMS multiprocessing system. Within this context, it transfers control to the
driver's start-1/0 routine.

DESCRIPTION

Operating System Routines
IOC$1NITIATE

IOC$1NITIATE creates the context in which a driver fork process services an
1/0 request. IOC$1NITIATE creates this context and activates the driver's
start-1/0 routine in the following steps:

• Checks the CPU ID of the local processor against the device's affinity
mask to determine whether the local processor can initiate the 1/0
operation on the device. If it cannot, IOC$1NITIATE takes steps to initiate
the IjO function on another processor in a VMS multiprocessing system.
It then returns to its caller.

• Stores the address of the current IRP in UCB$L_IRP.

• Copies the transfer parameters contained in the IRP into the UCB:

Copies the address of the system buffer (buffered 1/0) or the system
virtual address of the PTE that maps process buffer (direct 1/0) from
IRP$L_SVAPTE to UCB$L_SVAPTE

Copies the byte offset within the page from IRP$W_BOFF to
UCB$W_BOFF

Copies the low-order word of the byte count from IRP$L _BCNT to
UCB$W_BCNT

• Clears the cancel-1/0 and timeout bits in the UCB status longword
(UCB$V_CANCEL and UCB$V_TIMOUT in UCB$L_STS).

• If the 1/0 request specifies a diagnostic buffer, as indicated by IRP$V_
DIAGBUF in IRP$W_STS, stores the system time in the first quadword
of the buffer to which IRP$L_DIAGBUF points (the $QIO system service
having already allocated the buffer).

• Transfers control to the driver's start-1/0 routine.

C-69

Operating System Routines
IOC$10POST

IOC$10POST

Performs device-independent 1/0 postprocessing and delivers the results
of an 1/0 request to a process.

module

input

C-70

IOCIOPOST

Location

CPU$L_PSFL

IRP$L_PID

IRP$L_UCB

IRP$W_STS

IRP$L _DIAGBUF

IRP$L_SV APTE

IRP$W_BOFF

IRP$L_BCNT

IRP$L _OBCNT

IRP$L_IOST1

IRP$W_CHAN

IRP$L_IOSB

IRP$B_RMOD

IRP$B_EFN

UCB$W_QLEN

UCB$L_DEVCHAR

PCB$W _DIOCNT

PCB$W _BIOCNT

JIB$L _BYTCNT

CCB$W_IOC

CCB$L_DIRP

Contents

Head of the CPU-specific 1/0 postprocessing
queue

Process identification of the process that initiated
the 1/0 request

Address of UCB

IRP$V_BUFIO set if buffered-1/0 request, clear if
direct-1/0 request; IRP$V_PHYSIO set if physical-
1/0 function; IRP$V_EXTEND set if an IRPE is
linked to this IRP; IRP$V_KEY set if IRP$L_
KEYDESC contains the address of an encryption
key buffer; IRP$V_FUNC set if read function,
clear if write function; IRP$V_DIAGBUF set if
diagnostic buffer exists; IRP$V_MBXIO set if
mailbox read function

Address of diagnostic buffer, if one is present

Address of system buffer (buffered 1/0) or
system virtual address of the PTE that maps
process buffer (direct 1/0)

Byte offset of start of buffer

Size in bytes of transfer

Original byte count for virtual 1/0 transfer

First 1/0 status longword

1/0 request channel index number

Address of 1/0 status block, if specified

Access mode of 1/0 request; ACB$V_QUOT A
set if request specified AST

Event flag number

Length of pending-1/0 queue

DEV$V_FQD set if file-oriented device

Process's direct-1/0 count

Process's buffered-1/0 count

Job byte count quota

Number of outstanding 1/0 requests on channel

Address of IRP for requested deaccess

output

synchronization

DESCRIPTION

Operating System Routines
IOC$10POST

Location

CPU$L_PSFL

UCB$W_QLEN

PCB$W _DIOCNT

PCB$W _BIOCNT

JIB$L_BYTCNT

CCB$W_IOC

CCB$L_DIRP

Contents

Updated

Decremented

Incremented for a direct-1/0 request

Incremented for a buffered 1/0 request

Updated for buffered 1/0 request

Decremented

Cleared if channel is idle

IOC$10POST executes in response to an interrupt granted at IPL$_10POST.
It performs some of its functions in a special kernel-mode AST that executes
within process context at IPL$_ASTDEL. It obtains and releases the various
spin locks required to deallocate nonpaged pool and adjust process quotas.

This interrupt service routine processes IRPs in an 1/0 postprocessing
queue, gaining control when the processor grants a software interrupt at
IPL$_10POST. When a processor's 1/0 postprocessing queue is empty,
IOC$10POST dismisses the interrupt with an REI instruction.

IOC$10POST performs several tasks to complete either a direct- or buffered-
1/0 request:

• For a buffered-1/0 read request, it copies data from the system buffer
to the process buffer. If it cannot write to the process buffer, it returns
SS$_ACCVIO status. For read and write requests, it releases the system
buffer to nonpaged pool.

• For a direct-1/0 request, it unlocks those process buffer pages that were
locked for the 1/0 transfer. (If an IRPE exists, the unlocked pages include
any defined in the IRPE area descriptors.)

IOC$10POST performs the following tasks for both direct and buffered 1/0
requests:

• Decrements the device's pending-1/0 queue length

• Adjusts direct-1/0 or buffered-1/0 quota use

• Sets an event flag if one was specified in the $QIO system service call

• Copies 1/0 completion status from the IRP to the process's 1/0 status
block (if one was specified in the $QIO system service call).

• Queues a user mode AST (if specified) to the process

• Copies the diagnostic buffer (if specified) from system to process space
and releases the system buffer

• Deallocates the IRP and any IRPEs

Note that many of these operations are performed within process context by
the special kernel-mode AST IOC$10POST queues to the process.

C-71

Operating System Routines
IOC$LOADAL TMAP

IOC$LOADAL TMAP

module

macro

input

output

synchronization

DESCRIPTION

C-72

Loads a set of 022-bus alternate map registers.

[SYSLOA]MAPSUBxxx

LOADALT

Location

R5

UCB$W_BCNT

UCB$W_BOFF

UCB$L _SV APTE

UCB$L_CRB

CRB$L_INTD+
VEC$W _NUMAL T

CRB$L_INTD+
VEC$W _MAPAL T

CRB$L_INTD+
VEC$L_ADP

ADP$L _MR2ADDR

Location

RO

R1, R2

Contents

Address of UCB

Number of bytes in transfer

Byte offset in first page of transfer

·System virtual address of PTE for first page of
transfer

Address of CRB

Number of alternate map registers allocated

Number of first alternate map register allocated

Address of ADP

Address of the first 022-bus alternate map
register

Contents

SS$_NORMAL, SS$_1NSFMAPREG, or
SS$_SSFAIL

Destroyed

A driver fork process calls IOC$LOADAL TMAP at fork IPL, holding
the corresponding fork lock in a VMS multiprocessing environment.
IOC$LOADALTMAP returns control to its caller at the caller's IPL. The
caller retains any spin locks it held at the time of the call.

A driver fork process calls IOC$LOADALTMAP to load a previously-allocated
set of alternate map registers with page-frame numbers (PFNs). This enables
a device DMA transfer to or from the buffer indicated by the contents of
UCBL_SVAPTE, UCBW_BCNT, and UCB$W_BQFF.

Operating System Routines
IOC$LOADAL TMAP

IOC$LOADALTMAP confirms that sufficient alternate map registers have
been previously allocated. If not, it issues a UBMAPEXCED bugcheck.
Otherwise, it loads the appropriate PFN into each map register and sets the
map register valid bit. It clears the last map register. This last invalid register
prevents a transfer overrun.

If the VAX system does not support alternate map registers, the routine exits
with SS$_SSFAIL status.

C-73

Operating System Routines
IOC$LOADMBAMAP

IOC$LOADMBAMAP

module

macro

input

output

synchronization

DESCRIPTION

C-74

Loads MASSBUS map registers.

LOADMREG

LOAD MBA

Location

R4

R5

UCB$W_BCNT

UCB$W_BOFF

UCB$L_SVAPTE

MBA$L_MAP

Location

RO, R1, R2

Contents

Address of MBA configuration register
(MBA$L _CSR)

Address of UCB

Number of bytes in transfer

Byte offset in first page of transfer

System virtual address of PTE for first page of
transfer

Address of first MASSBUS map register

Contents

Destroyed

A driver fork process calls IOC$LOADMBAMAP at fork IPL.
IOC$LOADMBAMAP returns control to its caller at the caller's IPL.

Driver fork processes for DMA transfers call IOC$LOADMBAMAP to load
MASSBUS adapter map registers with page-frame numbers (PFNs).

IOC$LOADMBAMAP uses the contents of UCBL_SVAPTE, UCBW_
BCNT, and UCB$W_BOFF to determine the number of pages involved in the
transfer. It then copies the page frame numbers from the page-table entries
associated with this buffer into map registers, starting with map register 0.
IOC$LOADMBAMAP also loads the negated transfer size into the MASSBUS
adapter's byte count register (MBA$L_BCR) and the byte offset of the transfer
into the MASSBUS adapter's virtual address register (MBA$L_VAR). It clears
the last map register. This last invalid register prevents a transfer overrun.

The driver must own the MASSBUS adapter, and thus its map registers,
before it calls this routine.

Operating System Routines
IOC$LOADUBAMAP, IOC$LOADUBAMAPA

IOC$LOADUBAMAP, IOC$LOADUBAMAPA

module

macro

input

output

synchronization

DESCRIPTION

Load a set of UNIBUS map registers or a set of the first 496 022 bus map
registers.

LOADMREG

LOADUBA

Location

R5

UCB$W_BCNT

UCB$W_BOFF

UCB$L_SVAPTE

UCB$L_CRB

CRB$L _INTD+
VEC$B_NUMREG

CRB$L _INTD+
VEC$W _MAPREG

CRB$L _INTD+
VEC$B_DA T APA TH

CRB$L_INTD+
VEC$L_ADP

UBA$L_MAP

UCB$L_SV APTE

Location

RO,R1, R2

Contents

Address of UCB

Number of bytes in transfer

Byte offset in first page of transfer

System virtual address of PTE for first page of
transfer

Address of CRB

Number of map registers allocated

Number of first map register allocated

Data path specifier; VEC$V_LWAE set if
longword buffering is used, clear if quadword
buffering is used

Address of ADP ·

Address of first UNIBUS or 022 bus map register

System virtual address of PTE for the first page
of the transfer

Contents

Destroyed

A driver fork process calls IOC$LOADUBAMAP or IOC$LOADUBAMAP A
at fork IPL, holding the corresponding fork lock in a VMS multiprocessing
environment. Either routine returns control to its caller at the caller's IPL.
The caller retains any spin locks it held at the time of the call.

A driver fork process calls IOC$LOADUBAMAP or IOC$LOADUBAMAP A
to load a previously-allocated set of map registers with page-frame numbers
(PFNs). This enables a device DMA transfer to or from the buffer indicated
by the contents of UCBL_SVAPTE, UCBW_BCNT, and UCB$W_BOFF.

C-75

Operating System Routines
IOC$LOADUBAMAP, IOC$LOADUBAMAPA

C-76

Either IOC$LOADUBAMAP or IOC$LOADUBAMAPA confirms that
sufficient map registers have been previously allocated. If not, it issues a
UBMAPEXCED bugcheck. Otherwise, it loads into each map register the
appropriate PFN and data-path number. It sets the map register valid bit and,
if VEC$V_LWAE is set in VEC$B_DATAP ATH, the longword-access-enable
bit.

IOC$LOADUBAMAP checks the low bit of UCB$W_BOFF to determine
whether the transfer is byte-aligned or word-aligned. If the low bit is set, it
sets the byte-offset bit in each map register. Drivers for byte-aligned UNIBUS
devices that must never set the byte-offset bit call IOC$LOADUBAMAP A.
Drivers for Q22-bus-only devices also call IOC$LOADUBAMAP A as there is
no byte-offset bit in a Q22-bus map register.

Both IOC$LOADUBAMAP and IOC$LOADUBAMAPA clear the last map
register. This last invalid register prevents a transfer overrun.

Operating System Routines
IOC$MOVFRUSER, IOC$MOVFRUSER2

IOC$MOVFRUSER, IOC$MOVFRUSER2

module

input

output

synchronization

DESCRIPTION

Move a string from a user buffer to a system buffer.

BUFFERCTL

Location

RO

R1

R2

'R5

DPT$B_FLAGS

UCB$L_SVAPTE

UCB$L_SVPN

UCB$W_BOFF

None.

Contents

Address of byte to be moved
(IOC$MOVFRUSER2 only)

Address of driver's buffer

Number of bytes to move

Address of UCB

Bit DPT$V_SVP set (causing a system page-table
entry (SPTE) to be allocated to the driver)

System virtual address of PTE that maps the first
page of the buffer

System virtual page number of SPTE allocated to
driver

Byte offset to start of transfer in page

The caller of IOC$MOVFRUSER or IOC$MOVFRUSER2 may be executing
at fork IPL or above and must hold the corresponding fork lock in a VMS
multiprocessing environment. Either routine returns control to its caller at the
caller's IPL. The caller retains any spin locks it held at the time of the call.

IOC$MOVFRUSER2 is useful for moving blocks of data in several pieces,
each piece beginning within a page rather than on a page boundary. To
begin, the driver calls IOC$MOVFRUSER. For each subsequent piece, the
driver calls IOC$MOVFRUSER2.

If an SPTE has not been allocated to the driver, these routines will cause an
access violation when they attempt to refer to the location addressed by the
contents of the field UCB$L _SVAPTE. (See the description of the DPTAB
macro in Appendix B for information on how to allocate this SPTE.)

C-77

Operating System Routines
IOC$MOVTOUSER, IOC$MOVTOUSER2

IOC$MOVTOUSER, IOC$MOVTOUSER2

module

input

output

synchronization

DESCRIPTION

C-78

Move a string from a system buffer to a user buffer.

BUFFERCTL

Location

RO

R1

R2

R5

DPT$B_FLAGS

UCB$L_SVAPTE

UCB$L_SVPN

UCB$W_BOFF

None.

Contents

Address of byte to be moved
(IOC$MOVTOUSER2 only)

Address of driver's buffer

Number of bytes to move

Address of UCB

Bit DPT$V_SVP set (causing a system page-table
entry (SPTE) to be allocated to the driver)

System virtual address of PTE that maps the first
page of the buffer

System virtual page number of SPTE allocated to
driver

Byte offset to start of transfer in page

The caller of IOC$MOVTOUSER or IOC$MOVTOUSER2 may be executing
at fork IPL or above and must hold the corresponding fork lock in a VMS
multiprocessing environment. Either routine returns control to its caller at the
caller's IPL. The caller retains any spin locks it held at the time of the call.

IOC$MOVTOUSER2 is useful for moving blocks of data in several pieces,
each piece beginning within a page rather than on a page boundary. To
begin, the driver calls IOC$MOVTOUSER. For each subsequent piece, the
driver calls IOC$MOVTOUSER2.

If an SPTE has not been allocated to the driver, these routines will cause an
access violation when they attempt to refer to the location addressed by the
contents of the field UCB$L_SVAPTE. (See the description of the DPTAB
macro in Appendix B for information on how to allocate this SPTE.)

Operating System Routines
IOC$PURGDATAP

IOC$PURGDATAP

module

macro

input

output

synchronization

DESCRIPTION

Purges the buffered data path and logs memory errors that may have
occurred during an 1/0 transfer.

[SYSLOA]LIOSUBxxx

PURDPR

Location

R5

Location

RO

R1

R2

R3

Contents

Address of UCB

Contents

Bit 0 set if success, clear if failure

Contents of data path after purge

Address of start of the 1/0 bus map registers

Address of CRB

The caller of IOC$PURGDATAP may be executing at fork IPL or above
and must hold the corresponding fork lock in a VMS multiprocessing
environment. It returns control to its caller at the caller's IPL. The caller
retains any spin locks it held at the time of the call.

All device drivers that support DMA transfers, including those on VAX
systems that have no buffered data paths (such as the Micro VAX 3600 series,
MicroVAX II, and MicroVAX I), call IOC$PURGDATAP after a data transfer.

IOC$PURGDATAP performs the following tasks:

• Obtains the start of adapter register space using the following chain of
pointers:

UCB$L_CRB --+ CRB$L_INTD+VEC$L_ADP --+ ADP$L_CSR

• Extracts the caller's data path number (buffered or direct) from the CRB.

• Purges the data path if it is a buffered data path. Note that a purge of a
direct data path (data path 0) is legal and always results in success status.

• Stores the contents of the data path register in Rl. The driver's register
dumping routine writes this value to the error message buffer.

C-79

Operating System Routines
IOC$PURGDATAP

C-80

• Clears any purge errors in the data path register.

• Places the appropriate return status in RO.

• Determines the base of UNIBUS or Q22-bus map registers and writes the
value into R2. The driver's register dumping routine writes this value to
the error message buffer.

• In some machine implementations, checks for memory errors that might
have occurred during the DMA operation and, if an error is detected,
logs it.

Operating System Routines
IOC$RELAL TMAP

IOC$RELAL TMAP

module

macro

input

output

synchronization

DESCRIPTION

Releases a set of 022-bus alternate map registers.

[SYSLOA]MAPSUBxxx

RELALT

Location

R5

UCB$L_CRB

CRB$L_INTD+
VEC$L_ADP

CRB$L_INTD+
VEC$W _MAPAL T

CRB$L _INTD+
VEC$W_NUMAL T

ADP$L_MR20FL

ADP$W _MR2NREGAR,
ADP$W_MR2FREGAR,
ADP$L_MR2ACTMDR

Location

RO

R1, R2

ADP$W _MR2NREGAR,
ADP$W _MR2FREGAR,
ADP$L_MR2ACTMDR

Contents

Address of UCB

Address of CRB

Address of ADP

Starting alternate map register number; VEC$V_
AL TLOCK set indicates that alternate map
registers have been permanently allocated to
this controller

Number of allocated alternate map registers

Head of queue of UCBs waiting for alternate map
registers

Alternate map register descriptor arrays

Contents

SS$_NORMAL or SS$_SSF AIL

Destroyed

Updated

A driver fork process calls IOC$RELAL TMAP at fork IPL, holding the
corresponding fork lock in a VMS multiprocessing environment.

A driver fork process calls IOC$RELAL TMAP to release a previously-allocated
set of Q22-bus alternate map registers (registers 496 to 8191) and update the
alternate map register descriptor arrays in the ADP. IOC$RELMAPREG
assumes that its caller is the current owner of the controller data channel.

C-81

Operating System Routines
IOC$RELAL TMAP

C-82

IOC$RELALTMAP obtains the location and number of the allocated
map registers from CRB$L_INTD+VEC$W_MAPALT and CRB$L_
INTD+VEC$W_NUMALT, respectively. If VEC$V_ALTLOCK is set in
CRB$L_INTD+VEC$W_MAPALT, the alternate map registers have been
permanently allocated to the controller and IOC$RELALTMAP returns
successfully to its caller.

After adjusting the alternate map register descriptor arrays,
IOC$RELAL TMAP examines the alternate-map-register wait queue. If the
queue is empty, IOC$RELAL TMAP returns successfully to its caller. If the
queue contains waiting fork processes, IOC$RELAL TMAP dequeues the first
process and calls IOC$ALOALTMAP to attempt to allocate the set of map
registers it requires.

If there are sufficient alternate map registers, IOC$RELAL TMAP restores R3
through RS to the process and reactivates it. When this fork process returns
control to IOC$RELALTMAP, IOC$RELALTMAP attempts to allocate map
registers to the next waiting fork process. IOC$RELAL TMAP continues to
allocate map registers in this manner until the alternate-map-register wait
queue is empty or it cannot satisfy the requirements of the process at the
head of the queue. In the latter event, IOC$RELAL TMAP reinserts the fork
process's UCB in the queue and returns successfully to its caller.

If the VAX system does not support alternate map registers,
IOC$RELAL TMAP exits with SS$_SSF AIL status.

Operating System Routines
IOC$RELCHAN

IOC$RELCHAN

module

macro

input

output

synchronization

DESCRIPTION

Releases device ownership of all controller data channels.

IOSUBNPAG

REL CHAN

Location

R5

UCB$L_CRB

CRB$L_LINK

CRB$B_MASK

CRB$L_INTD+VEC$L_IDB

IDB$L_OWNER

CRB$L_WQFL

Location

RO, R1, R2

IDB$L_OWNER

CRB$B_MASK

Contents

Address of UCB

Address of CRB

Address of secondary CRB

CRB$V_BSY set if the channel is busy

Address of IDB

Address of UCB of channel owner

Head of queue of UCBs waiting for the controller
channel

Contents

Destroyed

Cleared if no driver is waiting for the channel

CRB$V_BSY cleared if no driver is waiting for the
channel

A driver fork process calls IOC$RELCHAN at fork IPL, holding the
corresponding fork lock in a VMS multiprocessing environment.
IOC$RELCHAN returns control to its caller after resuming execution of
other fork processes waiting for a controller channel.

A driver fork process calls IOC$RELCHAN to release all controller data
channel assigned to a device; it calls IOC$RELSCHAN to release only the
secondary data channel.

If the channel wait queue contains waiting fork processes, IOC$RELCHAN
dequeues a process, assigns the channel to that process, restores R3 and RS,
moves the address of the CSR (IDB$L_CSR) into R4, and reactivates the
suspended fork process.

C-83

Operating System Routines
IOC$RELDATAP

IOC$RELDATAP

module

macro

input

output

synchronization

DESCRIPTION

C-84

Releases a UNIBUS adapter's buffered data path.

IOSUBNPAG

RELDPR

Location

R5

UCB$L_CRB

CRB$L_INTD+
VEC$L_ADP

CRB$L _INTD+
VEC$B_DATAPATH

ADP$L _DPOFL

ADP$W _DPBITMAP

Location

RO, R1, R2

ADP$W _DPBITMAP

CRB$L _INTD+
VEC$B_DATAPATH

Contents

Address of UCB

Address of CRB

Address of ADP

Data path specifier; VEC$V_PATHLOCK set if the
data path has been permanently allocated to the
controller

Head of queue of UCBs waiting for a UNIBUS
adapter buffered data path

Data path bit map

Contents

Destroyed

Bit representing data path set if the path is not
allocated to another driver fork process

Bits 0 through 4 cleared if the path is not
permanently allocated

A driver fork process calls IOC$RELDATAP at fork IPL, holding
the corresponding fork lock in a VMS multiprocessing environment.
IOC$RELDATAP returns control to its caller after resuming execution of
any other fork processes waiting for a buffered data path.

A driver fork process must own a UNIBUS buffered data path when it calls
IOC$RELDATAP.

IOC$RELDATAP obtains the number of the allocated data path from bits
0 through 4 of the data path specifier. If VEC$V_PATHLOCK is set in the
specifier, the data path has been permanently allocated to the controller and
IOC$RELDATAP returns to its caller.

Operating System Routines
IOC$RELDATAP

If the data path wait queue contains waiting fork processes, IOC$RELDATAP
dequeues the first process, allocates the data path to it, restores R3 through
RS, and reactivates it. Otherwise, it marks the path available by setting the
corresponding bit in the data path bit map (ADP$W_DPBITMAP), and returns
to its caller.

If the bit map has been corrupted, IOC$RELDATAP issues an INCONSTATE
bugcheck.

C-85

Operating System Routines
IOC$RELMAPREG

IOC$RELMAPREG

module

macro

input

output

synchronization

DESCRIPTION

C-86

Releases a set of UNIBUS map registers or a set of the first 496 022-bus
map registers.

IOSUBNPAG

RELMPR

Location

R5

UCB$L_CRB

CRB$L_INTD+
VEC$L_ADP

CRB$L _INTD+
VEC$W _MAPREG

CRB$L_INTD+
VEC$B_NUMREG

ADP$L _MRQFL

ADP$W _MRNREGARY I
ADP$W _MRFREGARY I
ADP$L _MRACTMDRS

Location

RO

R1, R2

ADP$W _MRNREGARY I
ADP$W _MRFREGARY I
ADP$L_MRACTMDRS

Contents

Address of UCB

Address of CRB

Address of ADP

Starting map register number; VEC$V_MAPLOCK
set indicates that map registers have been
permanently allocated to this controller

Number of allocated map registers

Head of queue of UCBs waiting for map registers

Map register descriptor arrays

Contents

SS$_NORMAL or SS$_SSFAIL

Destroyed

Updated

A driver fork process calls IOC$RELMAPREG at fork IPL, holding the
corresponding fork lock in a VMS multiprocessing environment.

A driver fork process calls IOC$RELMAPREG to release a previously­
allocated set of UNIBUS map registers or a set of the first 496 Q22 bus map
registers. IOC$RELMAPREG updates the alternate map register descriptor
arrays in the ADP. IOC$RELMAPREG assumes that its caller is the current
owner of the controller data channel.

Operating System Routines
IOC$RELMAPREG

IOC$RELMAPREG obtains the location and number of the allocated
map registers from CRB$L-1NTD+VEC$W_MAPREG and CRB$L_
INTD+VEC$B_NUMREG, respectively. If VEC$V_MAPLOCK is set in
CRB$L_INTD+VEC$W_MAPREG, the map registers have been permanently
allocated to the controller and IOC$RELMAPREG returns successfully to its
caller.

After adjusting the map register descriptor arrays, IOC$RELMAPREG
examines the standard-map-register wait queue. If the queue is empty,
IOC$RELMAPREG returns successfully to its caller. If the queue contains
waiting fork processes, IOC$RELMAPREG dequeues the first process and
calls IOC$ALOUBAMAP to attempt to allocate the set of map registers it
requires.

If there are sufficient map registers, IOC$RELMAPREG restores R3 through
RS to the process and reactivates it. When this fork process returns control to
IOC$RELMAPREG, IOC$RELMAPREG attempts to allocate map registers to
the next waiting fork process. IOC$RELMAPREG continues to allocate map
registers in this manner until the standard-map-register wait queue is empty
or it cannot satisfy the requirements of the process at the head of the queue.
In the latter event, IOC$RELMAPREG reinserts the fork process's UCB in the
queue and returns successfully to its caller.

C-87

Operating System Routines
IOC$RELSCHAN

IOC$RELSCHAN

module

macro

input

output

synchronization

DESCRIPTION

C-88

Releases device ownership of only the secondary controller's data channel.

IOSUBNPAG

RELSCHAN

Location

R5

UCB$L_CRB

CRB$L_LINK

CRB$B_MASK

CRB$L_INTD+VEC$L_IDB

IDB$L_OWNER

CRB$L_WQFL

Location

RO, R1, R2

IDB$L_OWNER

CRB$B_MASK

Contents

Address of UCB

Address of CRB

Address of secondary CRB

CRB$V_BSY set if the channel is busy

Address of IDB

Address of UCB of channel owner

Head of queue of UCBs waiting for the controller
channel

Contents

Destroyed

Cleared if no driver is waiting for the channel

CRB$V_BSY cleared if no driver is waiting for the
channel

A driver fork process calls IOC$RELSCHAN at fork IPL, holding
the corresponding fork lock in a VMS multiprocessing environment.
IOC$RELSCHAN returns control to its caller after resuming execution of
other fork processes waiting for the secondary controller's channel.

IOC$RELSCHAN releases a secondary controller's data channel (for
instance, the MASSBUS adapter's controller data channel). The caller retains
ownership of the primary controller's data channel. A driver fork process
calls IOC$RELCHAN to release all controller data channels assigned to a
device.

If the secondary channel's wait queue contains waiting fork processes,
IOC$RELSCHAN dequeues a process, assigns the channel to that process,
restores R3 through RS, and reactivates the suspended process.

Operating System Routines
IOC$REQAL TMAP

IOC$REQAL TMAP

module

macro

input

Allocates sufficient 022-bus alternate map registers to accommodate a
DMA transfer and, if unavailable, places the requesting fork process in an
alternate-map-register wait queue.

SYSLOA[MAPSUB]xxx

REQALT

Location

R5

OO(SP)

04(SP)

UCB$W_BCNT

UCB$W_BOFF

UCB$L_CRB

CRB$L_INTD+
VEC$L_ADP

CRB$L _INTD+
VEC$W_MAPAL T

ADP$W _MR2NREGAR,
ADP$W _MR2FREGAR,
ADP$L_MR2ACTMDR

ADP$L_MR2QBL

Contents

Address of UCB

Return PC of caller

Return PC of caller's caller

Transfer byte count

Byte offset in page

Address of CRB

Address of ADP

VEC$V_AL TLOCK set indicates that alternate
map registers have been permanently allocated to
this controller

Alternate map register descriptor arrays

Tail of queue of UCBs waiting for alternate map
registers

C-89

Operating System Routines
IOC$REQAL TMAP

output

synchronization

DESCRIPTION

C-90

Location

RO

R1

R2

CRB$L_INTD+
VEC$W_NUMAL T

CRB$L _INTD+
VEC$W _MAPAL T

ADP$W _MR2NREGAR,
ADP$W _MR2FREGAR,
ADP$L_MR2ACTMDR

ADP$L_MR2QBL

UCB$L_FR3

UCB$L_FR4

UCB$L_FPC

Contents

SS$_NORMAL or SS$_SSFAIL

Destroyed

Address of ADP

Number of alternate map registers allocated

Starting alternate map register number

Updated

Updated

R3 of caller

R4 of caller

OO(SP)

A driver fork process calls IOC$REQAL IMAP at fork IPL, holding the
corresponding fork lock in a VMS multiprocessing environment.

A driver fork process calls IOC$REQAL IMAP to allocate a contiguous set of
Q22 bus alternate map registers (registers 496 to 8191) to service the DMA
transfer described by UCB$W_BCNI and UCB$W_BOFF. IOC$REQALIMAP
calls IOC$ALOALIMAP.

If alternate map registers have been permanently allocated to the controller,
IOC$REQAL IMAP returns successfully to its caller without allocating map
registers. Otherwise, it searches the alternate map register descriptor arrays
for the required number of map registers.

IOC$ALOAL IMAP determines the required number of alternate map
registers from the contents of UCB$W_BQFF and UCB$W_BCNI. It allocates
one extra map register; this register is marked invalid when the driver fork
process subsequently calls IOC$LOADALIMAP, thus preventing a transfer
overrun. If an odd number of map registers is required, IOC$ALOALTMAP
rounds this value up to an even multiple.

If sufficient alternate map registers are available, IOC$REQAL IMAP assigns
them to its caller, records the allocation in the ADP and CRB, and returns
successfully to its caller.

If IOC$REQAL IMAP cannot allocate a sufficient number of contiguous map
registers, it saves process context by placing the contents of R3, R4, and the
PC into the UCB fork block and the UCB into the alternate-map-register wait
queue (ADP$L_MR2QBL). It then returns to its caller's caller.

If the VAX system does not support alternate map registers,
IOC$REQAL IMAP exits with SS$_SSFAIL status.

Operating System Routines
IOC$REQCOM

IOC$REQCOM

module

macro

input

output

Completes an 1/0 operation on a device unit, requests 1/0 postprocessing
of the current request, and starts the next 1/0 request waiting for the
device.

IOSUBNPAG

REQCOM

Location

RO

R1

R5

UCB$L_STS

UCB$B_ERTCNT

UCB$B_ERTMAX

UCB$L_EMB

UCB$L_IRP

UCB$B_DEVCLASS

UCB$L_IOQFL

CPU$L_PSBL

Location

RO through R3

IRP$L_IQST 1

IRP$L_IQST2

UCB$L_OPCNT

UCB$L_IOQFL

EMB$W _DV_STS

EMB$B_DV_ERTCNT

EMB$B_DV_ERTCNT+1

EMB$Q_DV_IQSB

UCB$L_STS

CPU$L_PSBL

Contents

First longword of 1/0 status.

Second longword of 1/0 status.

Address of UCB.

UCB$V_ERLOGIP set if error logging is in
progress.

Final error count.

Maximum error retry count.

Address of error message buffer.

Address of IRP.

DC$_DISK and DC$_ TAPE devices are subject to
mount verification checks.

Device unit's pending-1/0 queue.

Tail of local processor's 1/0 postprocessing
queue.

Contents

Destroyed. Other registers (used by the driver's
start-1/0 routine) are destroyed if IOC$1NITIA TE
is called.

First longword of 1/0 status.

Second longword of 1/0 status.

Incremented.

Updated.

UCB$W_STS.

UCB$B_ERTCNT.

UCB$B_ERTMAX.

Quadword of 1/0 status.

UCB$V_BSY and UCB$V_ERLOGIP cleared.

Updated.

C-91

Operating System Routines
IOC$REQCOM

synchronization

DESCRIPTION

C-92

A driver fork process calls IOC$REQCOM at fork IPL, holding the
corresponding fork lock in a VMS multiprocessing environment.
IOC$REQCOM transfers control to IOC$RELCHAN. If the fork process
calls IOC$REQCOM by means of the RE QC OM macro (or a JMP instruction),
IOC$RELCHAN returns control to the caller of the driver fork process (for
instance, the fork dispatcher).

A driver fork process calls this routine after a device 1/0 operation and all
device-dependent processing of an IjO request is complete.

IOC$REQCOM performs the following tasks:

• If error logging is in progress for the device (as indicated by UCB$V_
ERLOGIP in UCB$L _STS), writes into the error message buffer the status
of the device unit, the error retry count for the transfer, the maximum
error retry count for the driver, and the final status of the 1/0 operation.
It then releases the error message buffer by calling ERL$RELEASEMB.

• Increments the device unit's operations count (UCB$L_OPCNT).

• If UCB$B_DEVCLASS specifies a disk device (DC$_DISK) or tape device
(DC$_ TAPE) and error status is reported, performs a set of checks to
determine if mount verification is necessary. Tape end-of-file errors
(SS$_ENDOFFILE) are exempt from these checks. For a tape device with
success status, checks to determine if CRC must be generated.

• Writes final 1/0 status (RO and Rl) into IRP$L_IOST1 and IRP$L_
IOST2.

• Inserts the IRP into the local processor's 1/0 postprocessing queue
headed by CPU$L_PSBL.

• Requests a software interrupt from the local processor at IPL$_IOPOST.

• Attempts to remove an IRP from the device's pending-1/0 queue (at
UCB$L_IOQFL). If successful, it transfers control to IOC$INITIATE to
begin driver processing of this 1/0 request. If the queue is empty, it
clears the unit busy bit (UCB$V_BSY in UCB$L_STS) to indicate that the
device is idle.

• Exits by transferring control to IOC$RELCHAN.

Operating System Routines
IOC$REQDATAP, IOC$REQDATAPNW

IOC$REQDATAP, IOC$REQDATAPNW

module

macro

input

output

synchronization

DESCRIPTION

Request a UNIBUS adapter buffered data path and, optionally, if no path is
available, place process in data-path wait queue.

IOSUBNPAG

REQDPR

Location

R5

OO(SP)

04(SP)

UCB$L_CRB

UCB$L_CRB

CRB$L_INTD+
VEC$L_ADP

CRB$L_INTD+
VEC$B_DA T APA TH

ADP$W _DPBITMAP

Location

RO

CRB$L_INTD+
VEC$B_DA T APA TH

ADP$W _DPBITMAP

Contents

Address of UCB

Return PC of caller

Return PC of caller's caller

Address of CRB

Address of CRB

Address of ADP

Data path specifier; VEC$V_P A THLOCK set if
the data path is permanently allocated to the
controller

Data path bit map

Contents

SS$_NQRMAL or bit 0 set (indicating error
status)

Data path specifier

Bit corresponding to allocated data path cleared

A driver fork process calls IOC$REQDATAP or IOC$REQDATAPNW at
fork IPL, holding the corresponding fork lock in a VMS multiprocessing
environment.

A driver fork process calls IOC$REQDATAP or IOC$REQDATAPNW to
request a UNIBUS adapter buffered data path for a DMA transfer.

If a buffered data path is already permanently allocated to the controller,
IOC$REQDATAP or IOC$REQDATAPNW returns successfully to its caller
without allocating a data path. Otherwise, it searches the data path bit map
for the first available data path.

C-93

Operating System Routines
IOC$REQDATAP, IOC$REQDATAPNW

C-94

If IOC$REQDATAP or IOC$REQDATAPNW locates a free data path, it writes
the data path number into CRB$L_INTD+VEC$B_DATAPATH, updates
the data path bit map (ADP$W_DPBITMAP), and returns successfully to its
caller. If the bit map has been corrupted, the routine issues an INCONSTATE
bugcheck.

If IOC$REQDATAP cannot allocate a data path, it saves process context
by placing the contents of R3, R4 and the PC into the UCB fork block and
the UCB into the data-path wait queue (ADP$L_DPQBL). It then returns
to its caller's caller. By contrast, if IOC$REQDATAPNW cannot allocate a
data path, it returns immediately to its caller with the low bit in RO clear,
indicating an error.

When called from a driver executing in a VAX system that does not provide
buffered data paths, IOC$REQDATAP and IOC$REQDATAPNW return
control after examining the data path bit map in the ADP.

Operating System Routines
IOC$REQMAPREG

IOC$REQMAPREG

module

macro

input

Allocates sufficient UNIBUS mab registers or a sufficient number of the
first 496 022-bus map registers to accommodate a DMA transfer and, if
unavailable, places process in standard-map-register wait queue.

IOSUBNPAG

REQMPR

Location

R5

OO(SP)

04(SP)

UCB$W_BCNT

UCB$W_BOFF

UCB$L_CRB

CRB$L _INTD+
VEC$L_ADP

CRB$L _INTD+
VEC$W _MAPREG

ADP$W_MRNREGARY I
ADP$W_MRFREGARY I
ADP$L_MRACTMDRS

ADP$L _MROBL

Contents

Address of UCB

.Return PC of caller

Return PC of caller's caller

Transfer byte count

Byte offset in page

Address of CRB

Address of ADP

VEC$V_MAPLOCK set indicates that map
registers have been permanently allocated to
this controller

Map register descriptor arrays

Tail of queue of UCBs waiting for map registers

C-95

Operating System Routines
IOC$REQMAPREG

output

synchronization

DESCRIPTION

C-96

Location

RO

R1

R2

CRB$L _INTD+
VEC$B_NUMREG

CRB$L_INTD+
VEC$W_MAPREG

ADP$W _MRNREGARY I
ADP$W _MRFREGARY I
ADP$L_MRACTMDRS

ADP$L _MROBL

UCB$L_FR3

UCB$L_FR4

UCB$L_FPC

Contents

SS$_NORMAL

Destroyed

Address of ADP

Number of map registers allocated

Starting map register number

Updated

Updated

R3 of caller

R4 of caller

OO(SP)

A driver fork process calls IOC$REQMAPREG at fork IPL, holding the
corresponding fork lock in a VMS multiprocessing environment.

A driver fork process calls IOC$REQMAPREG to allocate a contiguous set
of UNIBUS map registers or a set of the first 496 Q22-bus map registers to
service the DMA transfer described by UCB$W_BCNT and UCB$W_BOFF.
IOC$REQMAPREG calls IOC$ALOUBAMAP.

If map registers have been permanently allocated to the controller,
IOC$REQMAPREG returns successfully to its caller without allocating map
registers. Otherwise, it searches the map register descriptor arrays for the
required number of map· registers.

IOC$ALOUBAMAP determines the required number of map registers from
the contents of UCB$W_BOFF and UCB$W_BCNT. It allocates one extra
map register; this register is marked invalid when the driver fork process
subsequently calls IOC$LOADUBAMAP, thus preventing a transfer overrun.
If an odd number of map registers is required, IOC$ALOUBAMAP rounds
this value up to an even multiple.

If sufficient map registers are available, IOC$REQMAPREG assigns them to
its caller, records the allocation in the ADP and CRB, and returns successfully
to its caller.

If IOC$REQMAPREG cannot allocate a sufficient number of contiguous map
registers, it saves process context by placing the contents of R3, R4, and the
PC into the UCB fork block and RS into the standard-map-register wait queue
(ADP$L_MRQBL). It then returns to its caller's caller.

Operating System Routines
IOC$REQPCHANH, IOC$REQPCHANL, IOC$REQSCHANH, IOC$REQSCHANL

IOC$REQPCHANH, IOC$REQPCHANL,
IOC$REQSCHANH, IOC$REQSCHANL

module

macro

input

output

synchronization

Request a controller's primary or secondary data channel and, if
unavailable, place process in channel wait queue.

IOSUBNPAG

REQPCHAN,REQSCHAN

Location

R5

OO(SP)

04(SP)

UCB$L_CRB

CRB$L_LINK

CRB$B_MASK

CRB$L_INTD+VEC$L _IDB

CRB$L_WQFL

CRB$L_WQBL

IDB$L_CSR

Location

RO, R1, R2

R4

IDB$L _OWNER

CRB$L_WQFL

CRB$L_WQBL

Contents

Address of UCB

Return PC of caller

Return PC of caller's caller

Address of CRB

Address of secondary CRB (IOC$REOSCHANH
and IOC$REOSCHANL only)

CRB$V_BSY set if the channel is busy

Address of IDB

Head of queue of UCBs waiting for the controller
channel

Tail of queue of UCBs waiting for the controller
channel

Address of device CSR

Contents

Destroyed

Address of device CSR

Address of UCB

Updated

Updated

A driver fork process calls IOC$REQPCHANH, IOC$REQPCHANL,
IOC$REQSCHANH, or IOC$REQSCHANL holding the corresponding fork
lock in a VMS multiprocessing environment.

C-97

Operating System Routines
IOC$REQPCHANH, IOC$REQPCHANL, IOC$REQSCHANH, IOC$REQSCHANL

DESCRIPTION

C-98

A driver fork process calls IOC$REQPCHANH or IOC$REQPCHANL
to acquire ownership of the primary controller's data channel; it calls
IOC$REQSCHANH or IOC$REQSCHANL to request the secondary
controller's data channel (for instance, the MASS BUS adapter's controller
data channel).

Each routine examines CRB$V_BSY in CRB$B_MASK. If the selected
controller's data channel is idle, the routine grants the channel to the
fork process, placing its UCB address in IDB$L_OWNER and returning
successfully with the device's CSR address in R4.

If the data channel is busy, the routine saves process context by placing
the contents of R3 and the PC into the UCB fork block. (Note that
IOC$RELCHAN moves the contents of IDB$L _CSR into R4 before
resuming execution of a waiting fork process.) IOC$REQPCHANH and
IOC$REQSCHANH then insert the UCB at the head of the channel wait
queue (CRB$L_WQFL); IOC$REQPCHANL and IOC$REQSCHANL insert
the UCB at the tail of the queue (CRB$L_WQBL). Finally, the routine returns
control to its caller's caller.

Operating System Routines
IOC$RETURN

IOC$RETURN

module

input

output

synchronization

DESCRIPTION

Returns to its caller.

None.

None.

None.

IOC$RETURN executes at its caller's IPL and returns control to the caller at
that IPL.

IOC$RETURN is a universal executive routine vector in the fixed portion
of the VMS executive. It contains a single RSB instruction. When a driver
invokes the DDTAB macro, the macro writes the address of IOC$RETURN
into routine address fields of the DDT that are not supplied in the macro
invocation.

C-99

Operating System Routines
IOC$VERIFYCHAN

IOC$VERIFYCHAN

module

input

output

synchronization

DESCRIPTION

C-100

Verifies an 1/0 channel number and translates it to a CCB address.

IOSUBPAGD

Location

RO

CTL$GL_CCBBASE

CCB$B_AMOD

Location

RO

R1

R2

R3

Contents

Channel number (in low word)

Base address of process CCB table

Access mode (plus 1) of process owning the
channel

Contents

SS$_NQRMAL, SS$_1VCHAN, or SS$_NOPRIV

Address of CCB

Channel index number

Destroyed

Because IOC$VERIFYCHAN gains access to information stored in user
process virtual address space, it should only be called from code originating
at IPL$_ASTDEL or below.

Drivers call IOC$VERIFYCHAN to validate a user-supplied channel number,
construct a channel index, and obtain the address of the CCB to which the
channel number points.

If the channel number is invalid or zero, or if the channel is unowned,
IOC$VERIFYCHAN returns SS$_IVCHAN status to its caller.

If the access mode of the current process is less privileged than that indicated
in CCBB_AMOD, IOCVERIFYCHAN returns SS$_NOPRIV status to its
caller with the address of the CCB in Rl.

Otherwise, IOC$VERIFYCHAN returns successfully to its caller with the
address of the CCB in Rl.

Operating System Routines
IOC$WFIKPCH, IOC$WFIRLCH

IOC$WFIKPCH, IOC$WFIRLCH

module

macro

input

output

synchronization

Suspend a driver fork thread and fold its context into a fork block in
anticipation of a device interrupt or timeout.

IOSUBNPAG

WFIKPCH, WFIRLCH

Location

R5

OO(SP)

04(SP)

08(SP)

12(SP)

EXE$GL _ABSTIM

Location

UCB$L_DUETIM

UCB$V_INT

UCB$V_TIM

UCB$V_ TIMOUT

UCB$L_FR3

UCB$L_FR4

UCB$L_FPC

Contents

Address of UCB

Address following the JSB to IOC$WFIKPCH or
IOC$WFIRLCH

Timeout value in seconds

IPL to which to lower before returning to the
caller's caller

Return PC of caller's caller

Absolute time

Contents

Sum of timeout value and EXE$GL _ABSTIM

Set to indicate that interrupts are expected on the
device

Set to indicate device 1/0 is being timed

Cleared to indicate that unit is not timed out

R3

R4

00(SP)+2

When it is called, IOC$WFIKPCH or IOC$WFIRLCH assumes that the local
processor has obtained the appropriate synchronization with the device
database:

• In a uniprocessing environment, the processor must be executing at device
IPL or above.

• In a multiprocessing environment, the processor must own the appropriate
device lock, as recorded in the unit control block (UCB$L _DLCK) of the
device unit from which the interrupt is expected. This requirement also
presumes that the local processor is executing at the device IPL associated
with the lock.

C-101

Operating System Routines
IOC$WFIKPCH, IOC$WFIRLCH

DESCRIPTION

C-102

Before exiting, IOC$WFIKPCH or IOC$WFIRLCH achieves the following
synchronization:

• In a uniprocessing environment, it lowers the local processor's IPL to the
IPL saved on the stack.

• In a multiprocessing environment, it conditionally releases the device lock,
so that if the caller of the driver fork thread (the caller's caller) previously
owned the device lock, it will continue to hold it when the routine exits.
IOC$WFIKPCH or IOC$WFIRLCH also lowers the local processor's IPL
to the IPL saved on the stack.

A driver fork process calls IOC$WFIKPCH to wait for an interrupt while
keeping ownership of the controller's data channel; IOC$WFIRLCH, by
contrast, releases the channel.

Either routine performs the following operations:

• Adds 2 to the address on the top of the stack to determine the address of
the next instruction in the driver fork thread after the invocation of the
WFIKPCH or WFIRLCH macro. (Note that the macro places the relative
offset to the timeout handling routine in the word following the JSB to
IOC$WFIKPCH or IOC$WFIRLCH.) It pops this address into the UCB
fork block (UCB$L_FPC) so that the driver's interrupt service routine can
resume execution of the driver fork thread with a JSB instruction.

• Pops R3 and R4 from the top of the stack into the UCB fork block.

• Sets UCB$V_INT to indicate an expected interrupt from the device unit.

• Sets UCB$V_TIM to indicate that VMS should check for timeouts from
the device unit.

• Determines the timeout due time from the timeout value, now at the top
of the stack, and EXE$GL _ABSTIM, and stores the result in UCB$L _
DUE TIM.

• Clears UCB$V_TIMOUT to indicate that the unit has not timed out.

• In a multiprocessing environment, issues a DEVICEUNLOCK to
conditionally release the device lock associated with the device unit and
to lower IPL to the IPL saved on the stack. These actions presume that
the DEVICELOCK macro has been issued prior to the wait-for-interrupt
invocation.

• Returns to the caller of the driver fork thread (that is, its caller's caller)
whose address is now at the top of the stack.

In the course of processing, IOC$WFIKPCH or IOC$WFIRLCH explicitly
removes the longwords at OO(SP) through 08(SP) from the stack and implicitly
removes the longword at 12(SP) by exiting with an RSB instruction.

Note that IOC$WFIRLCH exits by transferring control to IOC$RELCHAN.
IOC$RELCHAN releases the controller data channel and executes the RSB
instruction. Because the release of the channel occurs at fork IPL, an interrupt
service routine cannot reliably distinguish between operations initiated by
IOC$WFIKPCH and IOC$WFIRLCH by examining the ownership of the CRB.

Operating System Routines
LDR$ALLQC_PT

LDR$ALLQC_PT

module

input

output

synchronization

DESCRIPTION

Allocates the specified number of system page-table entries (SPTEs).

PTALLOC

Location

R2

LDR$GL _SPTBASE

LDR$GL _FREE _PT

location

RO

R1

R2

Contents

Number of SPTEs to be allocated

Base of system page table

Offset to first free SPTE

Contents

SS$_NORMAL, SS$_1NSFSPTS, or SS$_
BADPARAM

Address of first allocated SPTE

Number of allocated system page-table entries

Because LDR$ALLOC_PT executes at IPL$_SYNCH and obtains the
MMG spin lock in a VMS multiprocessing environment, its caller cannot
be executing above IPL$_SYNCH or hold any higher ranked spin locks.
(For instance, a driver fork process executing at IPL$_SYNCH holding the
IOLOCK8 fork lock can call LDR$ALLQC_PT.) LDR$ALLQC_PT returns
control to its caller at the caller's IPL. The caller retains any spin locks it held
at the time of the call.

LDR$ALLOC_PT allocates the number of system page-table entries (SPTEs)
specified in R2. LDR$ALLOC_PT adjusts the pool of free SPTEs to reflect the
allocation of the SPTEs.

A generic VAXBI device driver calls LDR$ALLOC_PT if it must map the
device's node window space. It is the caller's responsibility to fill in each
allocated SPTE with a page-frame number (PFN), set its valid bit, and
otherwise initialize it.

If R2 contains a zero, LDR$ALLOC_PT returns SS$_BADPARAM status in
RO and clears Rl. If there are no free SPTEs, it returns SS$_1NSFSPTS status
to its caller.

C-103

Operating System Routines
LDR$DEALLQC_PT

LDR$DEALLOC_PT

module

input

output

synchronization

DESCRIPTION

Deallocates the specified system page-table entries (SPTEs).

PTALLOC

Location

R1

R2
LDR$GL _SPTBASE

LDR$GL_FREE_PT

Location

RO

R1

R2

Contents

Address of first SPTE to be deallocated

Number of SPTEs to be deallocated

Base of system page table

Offset to first free SPTE

Contents

SS$_NORMAL, SS$_BADPARAM, or LOADER$_
PTE _NOT _EMPTY

Address of first allocated SPTE

Destroyed

Because LDR$DEALLOC_PT executes at IPL$_SYNCH and obtains the
MMG spin lock in a VMS multiprocessing environment, its caller cannot
be executing above IPL$_SYNCH or hold any higher ranked spin locks.
(For instance, a driver fork process executing at IPL$_SYNCH holding the
IOLOCK8 fork lock can call LDR$DEALLOC_PT.) LDR$DEALLOC_PT
returns control to its caller at the caller's IPL. The caller retains any spin locks
it held at the time of the call.

LDR$DEALLOC_PT deallocates the number of system page-table entries
(SPTEs) specified in R2, starting at the one indicated by the contents of Rl.
LDR$DEALLQC_PT adjusts the pool of free SPTEs to reflect the addition of
the deallocated SPTEs.

If R2 contains a zero, LDR$DEALLOC_PT returns SS$_BADP ARAM status
in RO and clears R 1.

It is the caller's responsibility to ensure that the SPTEs to be deallocated are
empty.5 If they are not, LDR$DEALLOC_PT returns LOADER$_PTE_NQT_
EMPTY status in RO.

5 Modifications to valid SPTEs require that these SPTEs be flushed from the system's translation buffers. See the
description of the INVALIDATE_TB macro in Appendix B.

C-104

Operating System Routines
MMG$UNLOCK

MMG$UNLOCK

module

input

output

synchronization

DESCRIPTION

Unlocks process pages previously locked for a direct-1/0 operation.

IO LOCK

Location

R1

R3

None.

Contents

Number of buffer pages to unlock

System virtual address of PTE for the first buffer
page

Because MMG$UNLOCK raises IPL to IPL$_SYNCH, and obtains the
MMG spin lock in a VMS multiprocessing environment, its caller cannot
be executing above IPL$_SYNCH or hold any higher ranked spin locks.
MMG$UNLOCK returns control to its caller at the caller's IPL. The caller
retains any spin locks it held at the time of the call.

Drivers rarely use MMG$UNLOCK. At the completion of a direct-I/O
transfer, IOC$IOPOST automatically unlocks the pages of both the user
buffer and any additional buffers specified in region 1 (if defined) and region
2 (if defined) for all the IRPEs linked to the packet undergoing completidn
processing.

However, driver FDT routines do use MMG$UNLOCK when an attempt
to lock IRPE buffers for a direct-I/O transfer fails. The buffer-locking
routines called by such a driver-EXE$READLOCKR, EXE$WRITELOCKR,
and EXE$MODIFYLOCKR-all perform coroutine calls back to the driver
if an error occurs. When called as a coroutine, the driver must unlock all
previously locked regions using MMG$UNLOCK, and deallocate the IRPE
(using EXE$DEANONPAGED), before returning to the buffer-locking routine.

C-105

Operating System Routines
SMP$ACQNOIPL

SMP$ACQNOIPL

module

macro

input

output

synchronization

DESCRIPTION

C-106

Acquires a device lock, assuming the local processor is already running at
the IPL appropriate for acquisition of the lock.

SPINLOCKS

DEVICELOCK

Location Contents

RO Address of device lock

Location Contents

RO Address of device lock

Upon entry, the local processor must be executing at the synchronization IPL
of the device lock, as it is, for instance, when responding to a device interrupt.

SMP$ACQNOIPL exits with the IPL unchanged and the device lock held.

The DEVICELOCK macro calls SMP$ACQNOIPL when NOSETIPL is
specified as its condition argument.

SMP$ACQNOIPL attempts to acquire the requested device lock, allowing the
acquisition to succeed if the local processor already holds the lock or if the
lock is unowned.

If the lock is unowned, the routine increments by 1 a counter that records the
acquisition level. Each additional (or nested) acquisition of this lock by the
owning processor again increments this counter.

If the lock is owned by another processor, the local processor spin waits until
the lock is released.

Operating System Routines
SMP$ACQUIRE

SMP$ACQUIRE

module

macro

input

output

synchronization

DESCRIPTION

Acquires a fork lock or spin lock and enforces the appropriate IPL
synchronization on the local processor.

SPINLOCKS

FORKLOCK, LOCK

Location Contents

RO Fork lock or spin lock index

Location Contents

RO Fork lock or spin lock index

When calling SMP$ACQUIRE, the local processor should be executing at
an IPL less than or equal to the synchronization IPL of the lock. The
routine, if necessary, immediately raises IPL to the synchronization IPL of
the lock. Violations of IPL synchronization in a full-checking multiprocessing
environment result in a SPLIPLHIGH bugcheck.

In a full-checking multiprocessing environment, if it must spin wait for
the requested lock to be released by another processor, SMP$ACQUIRE
temporarily restores the original IPL for the duration of the wait. If the
original IPL was less than IPL$_RESCHED, the spin wait occurs at IPL$_
RESCHED.

SMP$ACQUIRE exits with IPL at the synchronization IPL of the lock and the
fork lock or spin lock held.

The FORKLOCK and LOCK macros call SMP$ACQUIRE.

In a full-checking multiprocessing environment, SMP$ACQUIRE, having
ensured that IPL has been set to the lock's synchronization IPL, verifies that
the local processor does not currently hold any higher-ranked locks. If a
higher-ranked lock is held, SMP$ACQUIRE issues an SPLACQERR bugcheck.

Otherwise SMP$ACQUIRE attempts to acquire the requested lock, allowing
the acquisition to succeed if the local processor already holds the lock or if
the lock is unowned.

If the lock is unowned, the routine increments by 1 a counter that records the
acquisition level. Each additional (or nested) acquisition of this lock by the
owning processor again increments this counter.

If the lock is owned by another processor, the local processor spin waits until
the lock is released.

C-107

Operating System Routines
SMP$ACQUIREL

SMP$ACQUIREL

module

macro

input

output

synchronization

DESCRIPTION

C-108

Acquires a device lock and enforces the appropriate IPL synchronization
on the local processor.

SPINLOCKS

DEVICELOCK

Location Contents

RO Address of device lock

Location Contents

RO Address of device lock

When calling SMP$ACQUIREL, the local processor should be executing at
an IPL less than or equal to the synchronization IPL of the device lock. The
routine, if necessary, immediately raises IPL to the synchronization IPL of
the device lock. Violations of IPL synchronization result in a SPLIPLHIGH
bugcheck if full-checking multiprocessing is enabled.

In a full-checking multiprocessing environment, if it must spin wait for
the requested lock to be released by another processor, SMP$ACQUIREL
temporarily restores the original IPL for the duration of the wait. If
the original IPL was less than IPL$_RESCHED, the spin wait occurs at
IPL$_RESCHED. SMP$ACQUIREL exits with IPL at the device lock's
synchronization IPL and the device lock held.

The DEVICELOCK macro calls SMP$ACQUIREL when NOSETIPL is not
specified as its condition argument.

SMP$ACQUIREL, having ensured that IPL has been set to the device lock's
synchronization IPL, attempts to acquire the requested device lock, allowing
the acquisition to succeed if the local processor already holds the lock or if
the lock is unowned.

If the lock is unowned, the routine increments by 1 a counter that records the
acquisition level. Each additional (or nested) acquisition of this lock by the
owning processor again increments this counter.

If the lock is owned by another processor, the local processor spin waits until
the lock is released.

Operating System Routines
SMP$RELEASE

SMP$RELEASE

module

macro

input

output

synchronization

DESCRIPTION

Releases all acquisitions of a fork lock or spin lock by the local processor
and makes the lock available for acquisition by other processors.

SPINLOCKS

FORKUNLOCK,UNLOCK

Location Contents

RO Fork lock or spin lock index

Location Contents

RO Fork lock or spin lock index

Upon entry, the local processor must be executing at or above the IPL at
which the lock was originally obtained. This IPL must be greater than IPL$_
ASTDEL. Violations of IPL synchronization in a full-checking multiprocessing
environment result in a SPLIPLLOW bugcheck. At exit, IPL is unchanged
and the lock is released.

The FORKUNLOCK and UNLOCK macros call SMP$RELEASE when the
condition=RESTORE argument is not specified.

SMP$RELEASE first verifies that the local processor owns the specified
lock. If this is not the case, the procedure issues an SPLRELERR bugcheck.
Otherwise, SMP$RELEASE initializes the ownership count of the lock and
releases the lock.

C-109

Operating System Routines
SMP$RELEASEL

SMP$RELEASEL

module

macro

input

output

synchronization

DESCRIPTION

C-110

Releases all acquisitions of a device lock by the local processor and makes
the lock available for acquisition by other processors.

SPINLOCKS

DEVICEUNLOCK

Location Contents

RO Address of device lock

Location Contents

RO Address of device lock

Upon entry, the local processor must be executing at or above the IPL at
which the device lock was originally obtained. This IPL must be greater
than IPL$_ASTDEL. Violations of IPL synchronization in a full-checking
multiprocessing environment result in a SPLIPLLOW bugcheck. At exit, IPL
is unchanged and the device lock is released.

The DEVICEUNLOCK macro calls SMP$RELEASEL when the
condition=RESTORE argument is not specified.

SMP$RELEASEL first verifies that the local processor owns the specified
device lock. If this is not the case, the procedure issues an SPLRELERR
bugcheck. Otherwise, SMP$RELEASEL initializes the ownership count of the
device lock and releases the lock.

Operating System Routines
SMP$RESTORE

SMP$RESTORE

module

macro

input

output

synchronization

DESCRIPTION

Releases a single acquisition of a fork lock or spin lock held by the local
processor.

SPINLOCKS

FORKUNLOCK,UNLOCK

Location Contents

RO Fork lock or spin lock index

Location Contents

RO Fork lock or spin lock index

Upon entry, the local processor must be executing at or above the IPL at
which the lock was originally obtained. This IPL must be greater than IPL$_
ASTDEL. Violations of IPL synchronization in a full-checking multiprocessing
environment result in a SPLIPLLOW bugcheck. At exit, IPL is unchanged
and the lock may or may not be still held.

The FORKUNLOCK and UNLOCK macros call SMP$RESTORE when
RESTORE is specified as the condition argument.

SMP$RESTORE first verifies that the local processor owns the specified
lock. If this is not the case, the procedure issues an SPLRSTERR bugcheck.
Otherwise, SMP$RESTORE proceeds to decrement the ownership count of
the lock. If the ownership count of the lock drops to its initial state, the
procedure releases the lock and makes it available to other processors.

C-111

Operating System Routines
SMP$RESTOREL

SMP$RESTOREL

module

macro

input

output

synchronization

DESCRIPTION

C-112

Releases a single acquisition of a device lock held by the local processor.

SPINLOCKS

DEVICEUNLOCK

Location

RO

Location

RO

Contents

Address of device lock

Contents

Address of device lock

Upon entry, the local processor must be executing at or above the IPL at
which the device lock was originally obtained. This IPL must be greater
than IPL$_ASTDEL. Violations of IPL synchronization in a full-checking
multiprocessing environment result in a SPLIPLLOW bugcheck. At exit, IPL
is unchanged and the device lock may or may not be still held.

The DEVICEUNLOCK macro calls SMP$RESTOREL when RESTORE is
specified as its condition argument.

SMP$RESTOREL first verifies that the local processor owns the specified
device lock. If this is not the case, the procedure issues an SPLRSTERR
bugcheck. Otherwise, SMP$RESTOREL proceeds to decrement the ownership
count of the device lock. If the ownership count of the device lock drops to
its initial state, the procedure releases the lock and makes it available to other
processors.

D Device Driver Entry Points

This appendix describes the entry points VMS uses to activate a device driver.

D-1

Device Driver Entry Points
Alternate Start-1/0 Routine

Alternate Start-1/0 Routine

specified in

called by

synchronization

context

register usage

input

exit

DESCRIPTION

D-2

Initiates activity on a device that can support multiple, concurrent 1/0
operations and synchronizes access to its UCB.

Specify the address of the alternate start-I/O routine in the altstart argument
to the DDTAB macro. This macro places the address into DDT$L_
ALTSTART.

Called by routine EXE$ALTQUEPKT in module SYSQIOREQ. A driver FDT
routine generally is the caller of EXE$AL TQUEPKT.

An alternate start-I/O routine begins execution at fork IPL, holding the
corresponding fork lock in a VMS multiprocessing environment. It must
return control to its EXE$AL TQUEPKT in this context.

Because an alternate start-I/O routine gains control in fork process context, it
can access only those virtual addresses that are in system (SO) space.

An alternate start-I/O routine must preserve the contents of all registers
except RO through RS.

Location

R3

R5

Contents

Address of IRP

Address of UCB

The alternate start-I/O routine completes I/O requests by calling the routine
COM$POST. This routine places each IRP in the IjO postprocessing queue
and returns control to the driver. The driver can then fetch another IRP
from an internal queue. If no IRPs remain, the driver returns control to
EXE$ALTQUEPKT, which relinquishes fork level synchronization and returns
to the driver FDT routine that called it. The FDT routine performs any
postprocessing and transfers control to the routine EXE$QIORETURN.

An alternate start-I/O routine initiates requests for activity on a device that
can process two or more I/O requests simultaneously. Because the method
by which the alternate start-I/O routine is invoked bypasses the unit's
pending-I/O queue (UCB$L_IOQFL) and the device busy flag (UCB$V_BSY
in UCB$L _STS), the routine is activated regardless of whether the device
unit is busy with another request.

As a result, the driver that incorporates an alternate start-I/O routine must
use its own internal I/O queues (in a UCB extension, for instance) and
maintain synchronization with the unit's pending-I/O queue. In addition, if
the routine processes more than one IRP at a time, it must employ separate
fork blocks for each request.

Device Driver Entry Points
Cancel-1/0 Routine

Cancel-1/0 Routine

specified in

called by

synchronization

context

register usage

Prevents further device-specific processing of the 1/0 request currently
being processed on a device.

Supply the address of the cancel-1/0 routine in the cancel argument of
the DDTAB macro. The macro places this address into DDT$L_CANCEL.
Many drivers specify the system routine IOC$CANCELIO as their cancel-1/0
routine.

VMS routines call a driver's cancel-1/0 routine under the following
circumstances:

• When a process issues a Cancel-1/0-on-Channel system service
($CANCEL)

• When a process deallocates a device, causing the device's reference count
(UCB$W_REFC) to become zero (that is, no process 1/0 channels are
assigned to the device)

• When a process deassigns a channel from a device, using the $DASSGN
system service

• When the command interpreter performs cleanup operations as part of
image termination by canceling all pending 1/0 requests for the image
and closing all image-related files open qn process 1/0 channels

A cancel-1/0 routine begins execution at fork IPL, holding the corresponding
fork lock in a VMS multiprocessing environment. It must return control to its
caller in this context.

A cancel-1/0 routine executes in kernel mode in process context.

A cancel-1/0 routine must preserve the contents of all registers except RO
through RS.

D-3

Device Driver Entry Points
Cancel-1/0 Routine

input

exit

DESCRIPTION

D-4

Location

R2

R3

R4

R5

RS

Contents

Channel index number

Address of IRP

Address of PCB of the process for which the 1/0
request is being canceled

Address of UCB

Reason for cancellation, one of the following:

Code

CAN$C_CANCEL

CAN$C_DASSGN

Meaning

Called by $CANCEL
system service

Called by $DASSGN or
$DALLOC system service

The cancel-1/0 routine issues an RSB instruction to return to its caller.

A driver's cancel-1/0 routine must perform the following tasks:

1 Confirm that the device is busy by examining the device-busy bit in the
UCB status longword (UCB$V_BSY in UCB$L _STS).

2 Confirm that the PIO of the request the device is servicing (IRP$L _PID)
matches that of the process requesting the cancellation (PCB$L_PID).

3 Confirm that the channel-index number of the request the device is
servicing (IRP$W_CHAN) matches that specified in the cancel-1/0
request.

4 Cause to be completed (canceled) as quickly as possible all active 1/0
requests on the specified channel that were made by the process that has
requested the cancellation. The cancel-1/0 routine usually accomplishes
this by setting UCB$V_CANCEL in the UCB$L_STS. When the next
interrupt or timeout occurs for the device, the driver's start-1/0 routine
detects the presence of an active but canceled IjO request by testing this
bit and takes appropriate action, such as completing the request without
initiating any further device activity. Other driver routines, such as the
timeout handling routine, check the cancel-1/0 bit to determine whether
to retry the 1/0 operation or abort it.

Device Driver Entry Points
Cloned UCB Routine

Cloned UCB Routine

specified in

called by

synchronization

context

register usage

input

Performs device-specific initialization and verification of a cloned UCB.

Specify the address of a cloned UCB routine in the cloneducb argument
of the DDTAB macro. The macro places this address into DDT$L_
CLONEDUCB. Only drivers for template devices, such as mailboxes, specify
a cloned UCB routine.

EXE$ASSIGN calls the driver's cloned UCB routine when an Assign I/O
Channel system service request ($ASSIGN) specifies a template device (that
is, bit UCB$V_TEMPLATE in UCB$L_STS is set).

A cloned UCB routine executes at IPL$__ASTDEL, holding the I/O database
mutex (IOC$GL _MUTEX).

A cloned UCB routine executes in kernel mode in process context.

A cloned UCB routine must preserve the contents of R2.

Location

RO

R2

R3

R4

R5

UCB$L _FQFL(R2)

UCB$L _FQBL(R2)

UCB$L _FPC(R2)

UCB$L_FR3(R2)

UCB$L _FR4(R2)

UCB$W _BUFOUO(R2)

UCB$L _ORB(R2)

UCB$L _LINK(R2)

UCB$L _IOOFL(R2)

UCB$L_IOOBL(R2)

UCB$W_UNIT(R2)

UCB$W _CHARGE(R2)

UCB$W _REFC(R2)

Contents

SS$_NORMAL

Address of cloned UCB

Address of DDT

Address of current PCB

Address of template UCB

Address of UCB$L _FQFL(R2)

Address of UCB$L _FQFL(R2)

0

0

0

0

Address of cloned ORB

Address of next UCB in DOB chain

Address of UCB$L _IQOFL(R2)

Address of UCB$L _IQOFL(R2)

Device unit number

Mailbox byte quota charge (UCB$W_SIZE)

0

D-5

Device Driver Entry Points
Cloned UCB Routine

exit

DESCRIPTION

D-6

UCB$L _STS(R2)

UCB$W _DEVSTS(R2)

UCB$L _OPCNT (R2)

UCB$L_SVAPTE(R2)

UCB$W _BQFF(R2)

UCB$W_BCNT(R2)

UCB$L _ORB(R2)

ORB$L _OWNER
of template ORB

ORB$L _ACL _MUTEX
of template ORB

ORB$B_FLAGS
of template ORB

ORB$W_PROT
of template ORB

ORB$L_ACL_COUNT
of template ORB

ORB$L_ACL_DESC
of template ORB

ORB$R_MIN_CLASS
of template ORB

UCB$V_DELETEUCB set, UCB$V_ONLINE set

UCB$V_DELMBX set if DEV$V_MBX is set in
UCB$L _DEVCHAR(R2)

0

0

0

0

Address of cloned ORB

UIC of current process

FFFF16

ORB$V_PROT _ 16 set

0

0

0

0 in first longword

A cloned UCB routine issues an RSB instruction to return control to
EXE$ASSIGN. If the routine returns error status in RO, EXE$ASSIGN undoes
the process of UCB cloning and completes with failure status in RO.

When a process requests that a channel be assigned to a template device,
EXE$ASSIGN does not assign the channel to the template device itself.
Rather, it creates a copy of the template device's UCB and ORB, initializing
and clearing certain fields as appropriate.

The driver's cloned UCB routine verifies the contents of these fields and
completes their initialization.

Device Driver Entry Points
Controller Initialization Routine

Controller Initialization Routine

specified in

called by

synchronization

context

register usage

input

exit

Prepares a controller for operation.

Use the DPT_STORE macro to place the address of the controller initialization
routine into CRB$L_INTD+VEC$L_INITIAL.

SYSGEN calls a driver's controller initialization routine when processing a
CONNECT command. Also, VMS calls this routine if the device, controller,
processor, or adapter to which the device is connected experiences a power
failure.

VMS calls a controller initialization routine at IPL$_POWER. If it must lower
IPL, the controller initialization routine cannot explicitly do so. Rather, it
must fork. Because SYSGEN calls the unit initialization routine immediately
after the controller initialization returns control to it, the driver's initialization
routines must synchronize their activities. If the controller initialization
routine forks, the unit initialization routine must be prepared to execute
before the controller initialization routine completes.

The portion of the controller initialization that services power failure cannot
acquire any spin locks. As a result, the routine cannot fork to perform power
failure servicing.

Because a controller initialization routine executes within system context, it
can refer only to those virtual addresses that reside in system (SO) space.

A controller initialization routine must preserve the contents of all registers
except RO, Rl, and R2.

Location

R4

R5

R6

R8

Contents

Address of device's CSR

Address of IDB associated with the controller

Address of DOB associated with the controller

Address of controller's CRB

The controller initialization routine returns control to its caller with an RSB
instruction.

D-7

Device Driver Entry Points
Controller Initialization Routine

DESCRIPTION

D-8

Some controllers require initialization when the system's driver-loading
routine loads the driver and when the system is recovering from a power
failure. Depending on the device, a controller initialization routine performs
any and all of the following actions:

• Determine whether it is being called as a result of a power failure by
examining the power bit (UCB$V_POWER in UCB$L_STS) in the UCB.
A controller initialization routine may want to perform or avoid specific
tasks when servicing a power failure.

• Clear error-status bits in device registers.

• Enable controller interrupts.

• Allocate resources that must be permanently allocated to the controller.

• If the controller is dedicated to a single-unit device, such as a printer,
fill in IDB$L_OWNER and set the online bit (UCB$V_ONLINE in
UCB$L_STS).

• For generic VAXBI devices, initialize BIIC and device hardware.

Device Driver Entry Points
Driver Unloading Routine

Driver Unloading Routine

specified in

called by

synchronization

context

register usage

input

exit

DESCRIPTION

A driver specifies a driver unloading routine if there is any device-specific
work to do when the driver is unloaded and reloaded.

Specify the address of the driver unloading routine in the unload argument
of the DPTAB macro. The driver-loading procedure puts the relative address
of this routine in DPT$W_UNLOAD.

SYSGEN calls the driver unloading routine, if it exists, when executing a
RELOAD command.

SYSGEN calls a driver unloading routine at IPL$_PQWER. The driver
unloading routine cannot lower IPL.

The driver unloading routine executes in process context.

The driver unloading routine can use all registers.

Location

R6

R10

Contents

Address of DOB

Address of DPT

The driver unloading routine returns exits with an RSB instruction. If it
returns a success code (bit 0 set) in RO, SYSGEN proceeds to load the new
version of the driver. If it returns a failure code (bit 0 clear), SYSGEN neither
unloads the old version of the driver nor loads the new version.

Because the driver unloading routine cannot lower IPL from IPL$_POWER
or obtain spin locks, it is of limited usefulness. It cannot safely modify I/O
database fields, but can use COM$DRVDEALMEM to return system buffers
allocated by the driver to nonpaged pool.

D-9

Device Driver Entry Points
FDT Routines

FDT Routines

specified in

called by

synchronization

context

register usage

input

D-10

Perform any device-dependent activities needed to prepare the 1/0
database to process an 1/0 request.

Use the FUNCTAB macro to specify the set of FDT routines that preprocess
requests for I/O activity of a given type. Specify the names of the routines in
the order in which you want them to execute for each type of I/O operation.

The $QIO system service calls a driver's FDT routines from the module
SYSQIOREQ.

FDT routines are called at IPL$_ASTDEL and must exit at IPL$_ASTDEL.
FDT routines must not lower IPL below IPL$_ASTDEL. If they raise IPL,
they must lower it to IPL$_ASTDEL before passing control to any other code.
Similarly, before exiting they must release any spin locks they may acquire in
a VMS multiprocessing environment.

FDT routines execute in the context of the process that requested the I/O
activity. If an FDT routine alters the stack, it must restore the stack before
returning control to the caller of the routine.

FDT routines must preserve the contents of R3 through RS, the AP, and the
FP.

Location

RO
R3
R4
R5

R6

R7

R8

AP

Contents

Address of FDT routine being called

Address of IRP

Address of PCB of the requesting process

Address of UCB of the device on which 1/0
activity is requested

Address of CCB that describes the user-specified
process-1/0 channel

Number of the bit that specifies the code for the
requested 1/0 function

Address of entry in the function decision table
that dispatched control to this FDT routine

Address of first function-dependent argument
(p1) specified in the $010 request

exit

DESCRIPTION

Device Driver Entry Points
FDT Routines

In a set of FDT routines associated with an 1/0 function, each, except the
last, must return control to its caller by means of an RSB instruction. The last
must exit using one of the following mechanisms:

Exit Mechanism

JMP EXE$ABORTIO

JSB EXE$AL TQUEPKT

JMP EXE$FINISHIO

JMP EXE$FINISHIOC

JMP EXE$010DRVPKT

Function

Aborts an 1/0 request and returns status to the
caller of the $QIO system service in RO.

Queues an IRP to the driver's alternate start-1/0
routine without checking the status of the device.

Completes the processing of an 1/0 request,
returning status to the caller of the $QIO
system service. (EXE$FINISHIO takes the status
information from RO and R 1 and returns it in the
IOSB specified in the call to $010.)

Completes the 1/0 processing of an 1/0 request,
returning status to the caller of the $010 system
service. (EXE$FINISHIOC takes the status
information from RO and returns it in the IOSB
specified in the call to $010, clearing the second
longword of the IOSB.)

Inserts an IRP into a device's pending-1/0 queue
if the device is busy, or starts 1/0 activity if the
device is idle.

FDT routines validate the function-dependent arguments to a $QIO system
service request and prepare the 1/0 database to service the request. For
each function that a device supports, a set of FDT routines must provide
preprocessing of requests for that function. For a function that does not
involve an 1/0 transfer, a set of FDT routines may complete its processing.
Otherwise FDT routines can abort the request, pass it to the next FDT routine
in the set, or pass it to a VMS routine that delivers it to the driver.

D-11

Device Driver Entry Points
Interrupt Service Routine

Interrupt Service Routine

specified in

called by

synchronization

context

register usage

D-12

Processes interrupts generated by a device.

UNIBUS, Q22-bus, and generic VAXBI devices require an interrupt service
routine for each interrupt vector the device has. Use the DPT_STORE
macro to place the address of the interrupt service routine into CRB$L _
INTD+VEC$L_ISR.

If the device has two interrupt vectors, use the DPT_STORE macro to
place the address of the second interrupt service routine into CRB$L _
INTD2+VEC$L _ISR.

Tape devices on the MASSBUS require an interrupt service routine that
interrogates the tape formatter (the controller) to determine which drive needs
attention and whether the interrupt is unsolicited.

Disk devices on the MASSBUS use the interrupt service routine provided by
VMS and do not need to provide their own interrupt service routine.

The interrupt service routine is called either by the VMS interrupt dispatcher
(for direct-vectored adapters) or by an adapter interrupt service routine (for
non-direct-vector adapters).

A driver's interrupt service routine is called, executes, and returns at device
IPL. In a VMS multiprocessing environment, the interrupt service routine
must obtain the device lock associated with its device IPL. It performs this
acquisition as soon as it obtains the address of the UCB of the interrupting
device. It must release this device lock before dismissing the interrupt.

At the execution of a driver's interrupt service routine, the processor is
running in kernel mode on the interrupt stack. As a result, an interrupt
service routine can reference only those virtual addresses that reside in
system (SO) space.

If an interrupt service routine uses R6 through Rl l, the AP, or the FP, it must
first save the contents of those registers, restoring their contents before exiting
by means of the REI instruction. MASSBUS drivers must also preserve the
contents of RO and R 1.

input

exit

DESCRIPTION

Location

OO(SP)

04(SP) to 24(SP)

28(SP)

32(SP)

04(SP) to 16(SP)

20(SP)

24(SP)

Device Driver Entry Points
Interrupt Service Routine

Contents

Address of longword that contains the address
of the IDB

For UNIBUS, 022-bus, and generic V AXBI
devices, the contents of RO through R5 at the
time of the interrupt

For UNIBUS, 022-bus, and generic V AXBI
devices, PC at the time of the interrupt

For UNIBUS, 022-bus, and generic V AXBI
devices, PSL at the time of the interrupt

for MASSBUS devices, the contents of R2
through R5 at the time of the interrupt

For MASSBUS devices, PC at the time of the
interrupt

For MASSBUS devices, PSL at the time of the
interrupt

Before an interrupt service routine transfers control to the suspended driver,
it must restore the contents of R3 and R4 from the UCB. It then transfers
control to the address saved in UCB$L _FPC.

When it regains control (after the suspended driver forks), an interrupt service
routine removes the address of the pointer to the IDB from the top of the
stack and restores the registers VMS saved when dispatching the interrupt
(RO through RS for UNIBUS, Q22-bus, and generic VAXBI interrupt service
routines, R2 through RS for MASSBUS interrupt service routines). Finally, an
interrupt service routine dismisses the interrupt with an REI instruction.

An interrupt service routine performs the following functions:

1 Determines whether the interrupt is expected

2 Processes or dismisses unexpected interrupts

3 Activates the suspended driver so it can process expected interrupts

For MASSBUS devices, a VMS interrupt service routine performs these
functions.

D-13

Device Driver Entry Points
Register Dumping Routine

Register Dumping Routine

specified in

called by

synchronization

context

register usage

input

exit

DESCRIPTION

D-14

Copies the contents of a device's regist~rs to an error message buffer or a
diagnostic buffer. '>1

Specify the name of the register dumping routine in the regdmp argument
of the DDTAB macro. This macro places the address of the routine into
DDT$L_REGDUMP.

The VMS error logging routines (ERL$DEVICERR, ERL$DEVICTMO, and
ERL$DEVICEATTN) and diagnostic buffer filling routine (IOC$DIAGBUFILL)
call the register dumping routine.

VMS calls a register dumping routine at the same IPL at which the
driver called the VMS routine ERL$DEVICERR, ERL$DEVICTMO,
ERL$DEVICEATTN, or IOC$DIAGBUFILL. A register dumping routine
must not change IPL.

A register dumping routine executes within the context of an interrupt service
routine or a driver fork process, using the kernel-mode stack. As a result, it
can only refer to those virtual addresses that reside in system (SO) space.

The register dumping routine preserves the contents of all registers except RO
through R2. If it uses the stack, the register dumping routine must restore the
stack before passing control to another routine, waiting for an interrupt, or
returning control to its caller.

Location

RO

R4

R5

Contents

Address of buffer into which a register dumping
routine copies the contents of device registers

Address of device's CSR (if the driver invoked
the WFIKPCH macro to wait for an interrupt or
timeout)

Address of UCB

The register dumping routine issues an RSB instruction to return to its caller.

A register dumping routine fills the indicated buffer as follows:

1 Writes a longword value representing the number of device registers to be
written into the buffer

2 Moves device register longword values into the buffer following the
register count longword

Device Driver Entry Points
Start-1/0 Routine

Start-1/0 Routine

specified in

called by

synchronization

context

register usage

input

Activates a device to process a requested 1/0 function.

Specify the name of the start-1/0 routine in the start argument of the DDTAB
macro. This macro places the address of the routine into DDT$L_START.

The start-1/0 routine is called by IOC$INITIATE and IOC$REQCOM in
module IOSUBNPAG.

A start-1/0 routine is placed into execution at fork IPL, holding the associated
fork lock in a VMS multiprocessing environment. It must relinquish control
of the processor in the same context.

For many devices, the start-I/O routine raises IPL to IPL$_POWER to check
that a power failure has not occurred on the device prior to loading the
device's registers. The start-1/0 routine initiates device activity at device
IPL, after acquiring the corresponding device lock in a VMS multiprocessing
environment. An invocation of the WFIKPCH or WFIRLCH macro to wait for
a device interrupt releases this device lock.

Because a start-I/O routine gains control of the processor in the context of a
fork process, it can refer only to those addresses that reside in system (SO)
space.

A start-I/O routine must preserve the contents of all registers except RO, Rl,
R2, and R4. If the start-1/0 routine uses the stack, it must restore the stack
before completing the request, waiting for an interrupt, or requesting system
resources.

Location

R3

R5

UCB$W_BCNT

UCB$W_BOFF

UCB$L_SVAPTE

Contents

Address of IRP

Address of UCB

Number of bytes to be transferred, copied from
the low-order word of IRP$L _BCNT

Byte offset into first page of direct-1/0 transfer;
for buffered-1/0 transfers, number of bytes to be
charged to the process allocating the buffer.

For a direct-1/0 transfer, virtual address of first
page-table entry (PTE) of 1/0-transfer buffer; for
buffered-1/0 transfer, address of buffer in system
address space

D-15

Device Driver Entry Points
Start-1/0 Routine

exit

DESCRIPTION

D-16

The start-I/O routine suspends itself whenever it must wait for a required
resource, such as a controller data channel or UNIBUS/Q22 bus map
registers. To do so, it invokes a VMS macro (such as REQPCHAN or
REQMPR) that saves its context in the UCB fork block, places the UCB in
a resource wait queue, and returns control to the caller of the start-I/O
routine.

The start-I/O routine also suspends itself when it issues a WFIKPCH or
WFIRLCH macro to initiate device activity. These macros also store the
driver's context in the UCB fork block to be restored when the device
interrupts or times out.

The start-I/O routine is again suspended if it forks to complete servicing of
a device interrupt. The IOFORK macro places driver context in the UCB fork
block, inserts the fork block into a processor-specific fork queue, and requests
a software interrupt from the processor at the corresponding fork IPL. After
issuing the IOFORK macro, the routine issues an RSB instruction, returning
control to the driver's interrupt service routine.

The routine completes the processing of an I/O request by invoking the
REQCOM macro. In addition to initiating device-independent postprocessing
of the current request, the REQCOM macro also attempts to start the next
request waiting for a device unit. If there are no waiting requests, the macro
returns control to the caller of the start-I/O routine. This is often the VMS
fork dispatcher.

A driver's start-1/0 routine activates a device and waits for a device interrupt
or timeout. After a device interrupt, the driver's interrupt service routine
returns control to the start-I/O routine at device IPL, holding the associated
device lock in a VMS multiprocessing environment.

The start-I/O routine usually forks at this time to perform various device­
dependent postprocessing tasks, and returns control to the interrupt service
routine.

Device Driver Entry Points
Timeout Handling Routine

Timeout Handling Routine

specified in

called by

synchronization

context

register usage

Takes whatever action is necessary when a device has not yet responded
to a request for device activity and the time allowed for a response has
expired.

Specify the address of the timeout handling routine in the excpt argument to
the WFIKPCH or the WFIRLCH macro.

The WFIKPCH and WFIRLCH macros use this entry point, but only when
the name of a timeout handling routine is provided in their excpt argument.
These macros are used in the driver's start-I/O routine; thus, strictly speaking,
the driver itself is the only entity that uses this entry point.

Routines in the VMS module TIMESCHDL call the timeout handling routine
at the request of the WFIKPCH and WFIRLCH macros.

A timeout handling routine is called at device IPL and must return to its caller
at device IPL. In a VMS multiprocessing environment, the processor holds
both the fork lock and device lock associated with the device at the time of
the call.

After taking whatever device-specific action is necessary at device IPL, a
timeout handling routine can lower IPL to fork IPL to perform less critical
activities. Because its caller restores IPL to fork IPL (and releases the device
lock in a VMS multiprocessing environment), if a timeout handling routine
does lower IPL, it can do so only by forking or by performing the following
steps:

• Issue a DEVICEUNLOCK macro to lower to fork level

• Perform timeout handling activities possible at the lower IPL

• Issue a DEVICELOCK macro to again obtain the device lock and raise to
device IPL

• Issue an RSB instruction to return to its caller

Because a timeout handling routine executes in the context of a fork process,
it can access only those virtual addresses that refer to system (SO) space.

A timeout handling routine can use RO, Rl, and R2 freely, but must preserve
the contents of all other registers. If a timeout handling routine uses the
stack, it must restore the stack before completing or canceling the current I/O
request, waiting for an interrupt, or returning control to its caller.

D-17

Device Driver Entry Points
Timeout Handling Routine

input

exit

DESCRIPTION

D-18

Location

R3

R4

R5

UCB$L_STS

c'ontents

Contents of R3 when the last invocation of
WFIKPCH or WFIRLCH took place

Contents of R4 when the last invocation of
WFIKPCH or WFIRLCH took place

Address of UCB of the device

UCB$V_INT and UCB$V_ TIM clear; UCB$V_
TIMOUT set

The timeout handling routine issues an RSB instruction to return to its caller.

There are no outputs required from a timeout handling routine, but,
depending on the characteristics of the device, the timeout handling routine
might cancel or retry the current 1/0 request, send a message to the operator,
or take some other action.

Before calling a timeout handling routine, VMS places the device in a state
in which no interrupt is expected (by clearing the bit UCB$V_INT in field
UCB$L _STS). If the requested interrupt occurs after this routine is called, it
will appear to be an unsolicited interrupt. Many drivers handle this situation
by disabling interrupts while the timeout handling routine executes.

Device Driver Entry Points
Unit Delivery Routine

Unit Delivery Routine

specified in

called by

synchronization

context

register usage

input

For controllers that can control a variable number of device units,
determines which specific devices are present and available for inclusion in
the system's configuration.

Specify the name of the unit delivery routine in the deliver argument to
the DPTAB macro. The macro puts the relative address of this routine in
DPT$W_DELIVER.

SYSGEN's AUTOCONFIGURE command calls the unit delivery routine once
for each unit the controller is capable of controlling. This value is specified in
the defunits argument to the DPTAB macro.

The unit delivery routine is called at IPL$_POWER. It must not lower IPL.

The unit delivery routine executes in the context of the process within which
SYSGEN executes.

The unit delivery routine can use RO, Rl, and R2 freely, but must preserve
the contents of all other registers.

Location

R3

R4

R5

R6

R7

RS

Contents

Address of IDB; 0 if none exists

Address of device's CSR

Number of unit that the unit delivery routine must
decide to configure or not to configure

Address of start of the UNIBUS adapter's or
022-bus's 1/0 space (UNIBUS/022-bus devices);
address of MBA configuration register (MASSBUS
devices)

Address of AUTOCONFIGURE command's
configuration control block (ACF)

Address of ADP

D-19

Device Driver Entry Points
Unit Delivery Routine

exit

DESCRIPTION

D-20

A unit delivery routine issues an RSB instruction to return control to the
SYSGEN autoconfiguration facility. If the routine returns error status in RO,
SYSGEN does not configure the unit.

Note that, because generic VAXBI devices are not recognized by SYSGEN's
autoconfiguration facility, their drivers do not contain a unit delivery routine.

The unit delivery routine determines which units on a controller should be
configured. For instance, a unit delivery routine can prevent the creation of
UCBs for devices that do not respond to a test for their presence.

Device Driver Entry Points
Unit Initialization Routine

Unit Initialization Routine

specified in

called by

synchronization

context

register usage

input

exit

Prepares a device for operation and, in the case of a device on a dedicated
controller, initializes the controller.

You can specify a unit initialization routine in two ways, either of which will
suffice for all but a few specific devices.

• Specify the address of the unit initialization routine unitinit argument
of the DDTAB macro. This macro places the address of the routine into
DDT$L_UNITINIT. MASSBUS device drivers must use this method.

• Use the DPT_STORE macro to place the address of the unit initialization
routine into CRB$L_INTD+VEC$L_UNITINIT.

SYSGEN calls a driver's unit initialization routine when processing a
CONNECT command. VMS calls a unit initialization routine when the
device, the controller, the processor, or the adapter to which the device is
connected undergoes power failure recovery.

VMS calls a unit initialization routine at IPL$_POWER. If it must lower IPL,
the controller initialization routine cannot explicitly do so. Rather, it must
fork. Because SYSGEN calls the unit initialization routine immediately after
the controller initialization returns control to it, the driver's initialization
routines must synchronize their activities. If the controller initialization
routine forks, the unit initialization routine must be prepared to execute
before the controller initialization routine completes.

The portion of the unit initialization that services power failure cannot acquire
any spin locks. As a result, the routine cannot fork to perform power failure
servicing.

Because VMS calls it in system context, a unit initialization routine can only
refer to those virtual addresses that reside in system (SO) space.

A unit initialization routine must preserve the contents of all registers except
RO, Rl, and R2.

Location

R3

R4

R5

Contents

Address of primary CSR.

Address of secondary CSR, if it exists. (If it does
not, the contents of R4 are the same as those of
R3.)

Address of UCB.

The unit initialization routine returns control to its caller with an RSB
instruction.

D-21

Device Driver Entry Points
Unit Initialization Routine

DESCRIPTION

D-22

Depending on the device, a unit initialization routine performs any or all of
the following tasks:

1 Determines whether it is being called as a result of a power failure by
examining the power bit (UCB$V_POWER in UCB$L _STS) in the UCB.
A unit initialization routine may want to perform or avoid specific tasks
when servicing a power failure.

2 Clears error-status bits in device registers.

3 Enables controller interrupts.

4 Sets the online bit (UCB$V_ONLINE in UCB$L_STS).

5 Allocates resources that must be permanently allocated to the device or,
for some devices, the controller.

6 If the device has a dedicated controller, as some printers do, fills in
IDB$L_OWNER.

7 For dedicated VAXBI controllers, initializes BIIC and device hardware.

Device Driver Entry Points
Unsolicited Interrupt Service Routine

Unsolicited Interrupt Service Routine

specified in

called by

synchronization

context

register usage

input

exit

DESCRIPTION

Services an interrupt from a MASSBUS disk that is not the result of a
driver's request.

Specify the name of the unsolicited interrupt service routine in the unsolic
argument to the DDTAB macro. This macro places the address of the routine
into DDT$L_UNSOLINT.

The MASSBUS adapter's interrupt service routine (MBA$INT in module
ADPERRSUB of the SYSLOA facility) calls a driver's unsolicited interrupt
service routine.

An unsolicited interrupt service routine is called, executes, and returns at
device IPL.

Because the unsolicited interrupt service routine executes in kernel mode on
the interrupt stack, it can only refer to those addresses that reside in system
(SO) space.

The unsolicited interrupt service routine must not alter the contents of
registers R6 through Rl 1, the AP, or the FP.

Location

R4

R5

Contents

Address of MBA's configuration register

Address of UCB

An unsolicited interrupt service routine issues an RSB instruction to return
control to the MASSBUS adapter's interrupt service routine.

Only drivers of MASSBUS disks must provide unsolicited interrupt service
routines. All other devices detect unsolicited interrupts in their interrupt
service routines.

The routine that handles these unsolicited interrupts must determine the
nature of the interrupt and act accordingly, depending on the characteristics
of the device and controller. Examples of such unsolicited interrupts include
disks being placed on line or taken off line.

D-23

E Sample Driver for the RL 11, RL01, and RL02

This example driver, DLDRIVER, drives a disk device on both the UNIBUS
and the Q22 bus .

. TITLE DLDRIVER - VAX/VMS RL11/RL01,RL02 DISK DRIVER

.IDENT 'X-7'

;**
;* *
;* COPYRIGHT (c) 1978, 1980, 1982, 1984 BY *
;* DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS. *
;* ALL RIGHTS RESERVED. *
;* *
;* THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED *
;* ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE *
;* INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER *
;* COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY *
;* OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY *
;* TRANSFERRED. *
;* *
;* THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE *
;* AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL'EQUIPMENT *
;* CORPORATION. *
;* *
;* DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS *
;* SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL. *
;* *
;* *
;**

FACILITY:

VAX/VMS RL11/RL01,RL02 DISK DRIVER

;**
.PAGE

ABSTRACT:

RL01
RL02

THIS MODULE CONTAINS THE TABLES AND ROUTINES NECESSARY TO
PERFORM ALL DEVICE-DEPENDENT PROCESSING OF AN I/O REQUEST
FOR RL11/RL01,RL02 DISK TYPES ON A VAX/VMS SYSTEM.

THE DISKS HAVE THE FOLLOWING PHYSICAL GEOMETRY:

CYL

256
512

TRACKS/ SECTORS/
CYLINDER TRACK

2
2

40
40

BYTES/
SECTOR

256
256

MAXIMUM
BLOCKS

10240
20480

SINCE THE SECTOR SIZE IS ONLY 1/2 BLOCK, LOGICAL TO PHYSICAL
CONVERSION OF THE DISK ADDRESS IS DONE IN THE DRIVER STARTIO
ROUTINE RATHER THAN IN THE IOC$CVTLOGPHY FDT ROUTINE.

OVERLAPPED SEEKS ARE NOT ATTEMPTED BECAUSE THE DEVICE DOES

E-1

Sample Driver for the RL 11, RL01, and RL02

NOT INTERRUPT AT THE COMPLETION OF A SEEK.

ALSO, THE DEVICE DOES NOT PERFORM AN IMPLICIT SEEK WHEN PERFORMING
A READ OR WRITE FUNCTION.SO SEEK FUNCTIONS ARE ISSUED BY THIS
DRIVER WHERE NECESSARY PRIOR TO ISSUING A READ OR WRITE FUNCTION.
THE READ OR WRITE FUNCTION IS THEN ISSUED AS SOON AS THE RL11
CONTROLLER BECOMES READY (WHILE THE SEEK IS IN PROGRESS), AND A
WAIT FOR INTERRUPT (UPON COMPLETION OF THE READ OR WRITE) IS
ISSUED. IF A SEEK FUNCTION IS REQUESTED SEPARATELY FROM A READ OR
WRITE, A DUMMY READ HEADER FUNCTION IS ISSUED FOLLOWING THE SEEK
FUNCTION AND A WAIT FOR INTERRUPT (UPON COMPLETION OF THE READ
HEADER) IS ISSUED.

THE IO$X_INHSEEK FUNCTION MODIFIER IS TREATED AS A NO-OP BY
THIS DRIVER, SINCE AN EXPLICIT SEEK IS NECESSARY FOR THE RL02
TO TRANSFER DATA PROPERLY.

THE RL'S DO NOT READ OR WRITE BEYOND THE END OF TRACK (THEY DO NOT
AUTOMATICALLY SEEK THE NEXT TRACK), SO ALL READ AND WRITE FUNCTIONS
ARE BROKEN UP BY THIS DRIVER INTO PARTIAL TRANSFERS TO THE END OF
TRACK, FOLLOWED BY A SEEK TO THE NEXT TRACK, THEN ANOTHER READ OR
WRITE FUNCTION UNTIL THE TOTAL DATA TRANSFER IS COMPLETE .

. PAGE

.SBTTL EXTERNAL AND LOCAL DEFINITIONS

EXTERNAL SYMBOLS

$ADPDEF
$CRBDEF
$DCDEF
$DDBDEF
$DEVDEF
$DPTDEF
$DYNDEF
$EMBDEF
$IDBDEF
$IODEF
$IRPDEF
$PRDEF
$PTEDEF
$SSDEF
$UCB DEF
$VADEF
$VECDEF

;DEFINE ADAPTER CONTROL BLOCK
;DEFINE CHANNEL REQUEST BLOCK
;DEFINE DEVICE CLASS
;DEFINE DEVICE DATA BLOCK
;DEFINE DEVICE CHARACTERISTICS
;DEFINE DRIVER PROLOGUE TABLE
;DEFINE.DYNAMIC DATA STRUCTURE TYPES
;DEFINE ERROR MESSAGE BUFFER
;DEFINE INTERRUPT DATA BLOCK
;DEFINE I/O FUNCTION CODES
;DEFINE I/O REQUEST PACKET
;DEFINE PROCESSOR REGISTERS
;DEFINE SYSTEM PTES
;DEFINE SYSTEM STATUS CODES
;DEFINE UNIT CONTROL BLOCK
;DEFINE VIRTUAL ADDRESS BITS
;DEFINE INTERRUPT VECTOR BLOCK

LOCAL MACROS

E-2

EXFUNCL
BRANCH TO SUBROUTINE WHICH REQUESTS CHANNEL (IF NOT ALREADY OWNED),
EXECUTES FCODE (OR R3) FUNCTION, AND BRANCHES TO BOST ON ERROR

.MACRO EXFUNCL BDST,FCODE

.ENDM

.IF NB FCODE
MOVZBL #CD'FCODE,R3
.ENDC
BSBW FEXL
.BYTE BDST-.-1

;IS FCODE NONBLANK?
;IF NB - SPECIFY FCODE FUNCTION
;IF B - SPECIFY FNTN IN EXISTING R3
;EXECUTE FUNCTION
;WHERE TO GO IF ERROR

Sample Driver for the RL 11, RL01, and RL02

GENF
GENERATE FUNCTION TABLE ENTRY AND CASE TABLE INDEX SYMBOL

.MACRO GENF FCODE
CD'FCODE=.-FTAB/2
.WORD FCODE!RL_CS_M_IE ;FCODE WITH INT ENABLE BIT

.ENDM

CKPWR
DISABLE INTERRUPTS, CHECK IF POWER HAS FAILED,
AND PUT DEVICE UNIT NUMBER IN R2<9:8>

.MACRO CKPWR SAVE_RO=YES,?L1
CLRL R2 ;CLEAR R2 FOR UNIT NUMBER
INSV UCB$W_UNIT(R5),- ;PUT UNIT# IN R2<9:8>

#8,#2,R2 , ...
DEVICELOCK -

LOCKADDR=UCB$L_DLCK(R5) ,- ; LOCK DEVICE ACCESS
LOCKIPL=UCB$B_DIPL(R5) ,- ; RAISE IPL
SAVIPL=-(SP) ,- ;SAVE CURRENT IPL
PRESERVE='SAVE_RO

SETIPL #31,- ;DISABLE ALL INTERRUPTS
ENVIRON=UNIPROCESSOR

BBC #UCB$V_POWER,- ;IF CLR - NO POWER FAILURE
UCB$W_STS(R5),L1 , ...

; POWERFAILURE!
DEVICEUNLOCK -

LOCKADDR=UCB$L_DLCK(R5) .- ; UNLOCK DEVICE ACCESS
NEWIPL=(SP)+,- ;RESTORE IPL
PRESERVE='SAVE_RO

BRW RETREG ;EXIT
L1: ;RETURN FOR NO POWER FAILURE

.ENDM

LOCAL SYMBOLS

RL_NUM_REGS =4
RL_SLM =5
UCB$B_DL_DCHEK =UCB$W_OFFSET+1

;NUMBER OF DEVICE REGISTERS
;STATE=SEEK LINEAR MODE (READY TO GO)
;REDEFINE FOR DATA CHECK USE

UCB OFFSETS WHICH FOLLOW THE STANDARD UCB FIELDS

$DEFINI UCB ;START OF UCB DEFINITIONS

E-3

Sample Driver for the RL 11, RL01, and RL02

.=UCB$K_LCL_DISK_LENGTH ;BEGIN DEFINITIONS AT END OF UCB
$DEF UCB$W_DL_PBCR .BLKW 1 ;PARTIAL BYTE COUNT
$DEF UCB$W_DL_CS .BLKW 1 ;CONTROL STATUS REGISTER
$DEF UCB$W_DL_BA .BLKW 1 ;BUS ADDRESS REGISTER
$DEF UCB$W_DL_DA .BLKW 1 ;DISK ADDRESS REGISTER
$DEF UCB$W_DL_MP .BLKW 1 ;MULTIPURPOSE REGISTER
$DEF UCB$W_DL_DPN .BLKW 1 ;DATA PATH NUMBER
$DEF UCB$L_DL_SVAPTE ;SAVED SVAPTE OF THE USER'S BUFFER
$DEF UCB$L_DL_DPR .BLKL 1 ;DATAPATH REGISTER
$DEF UCB$L_DL_BUFADR ;USER BUFFER ADDRESS
$DEF UCB$L_DL_FMPR .BLKL 1 ;FINAL MAP REGISTER
$DEF UCB$A_DL_MOVRTN ;BUFFER MOVE ROUTINE ADDRESS
$DEF UCB$L_DL_PMPR .BLKL 1 ;PREVIOUS MAP REGISTER
$DEF UCB$B_DL_DPPE .BLKB 1 ;DATAPATH PURGE ERROR
$DEF UCB$W_DL_DB .BLKW 3 ;DATA BUFFER REGISTER
$DEF UCB$B_DL_XBA .BLKB 1 ;BUS ADDRESS EXTENSION BITS
$DEF UCB$W_DL_SBA .BLKW 1 ;SAVED BUFFER ADDRESS
$DEF UCB$A_DL_BUF_VA .BLKL 1 ;PHYSICAL BUFFER VIRTUAL ADDRESS
$DEF UCB$A_DL_BUF_PA .BLKL 1 ;PHYSICAL BUFFER PHYSICAL ADDRESS
$DEF UCB$W_DL_FLAGS .BLKW 1 ;FLAGS

$VIELD UCB,O,<- ;START THE FLAG DEFINITIONS
<DL_22BIT, , M>, - ;22 BIT ADDRESSING
<DL_MAPPING,,M>,- ;ADAPTER MAPPING
> ;END OF FLAG DEFINITIONS

$DEF UCB$K_DL_LEN .BLKW 1 ;LENGTH OF UCB
$EQU UCB$K_DL_BUFSZ 20 ;BUFFER SIZE = 40 SECTORS *

;256 BYTES/SECTOR l 512 BYTES/PAGE
$DEFEND UCB ;END OF UCB DEFINITIONS

RL11/RL01 REGISTER OFFSETS FROM CSR ADDRESS

$DEFINI RL ; START OF REGISTER DEFINITIONS

$DEF RL_CS .BLKW 1 ;CONTROL STATUS REGISTER (CSR)
_VIELD RL_CS,O,<- ;START OF CSR BIT DEFINITIONS

<DRDY, , M>, - DRIVE READY
<FCODE,3>,- FUNCTION CODE
<XBA,2>,- BUS ADDRESS EXTENSION BITS
<IE, ,M>,- INTERRUPT ENABLE
<CRDY, , M> , - CONTROLLER READY
<DS, 2>,- DRIVE SELECT
<OPI, ,M>,- OPERATION INCOMPLETE
<CRC, ,M>,- DATA CRC OR HEADER CRC
<DLT, ,M>,- DATA LATE OR HEADER NOT FOUND
<NXM, ,M>,- NONEXISTENT MEMORY
<DE, ,M>, - DRIVE ERROR
<CE, ,M>- COMPOSITE ERROR

> ;END CSR BIT DEFINITIONS

$DEF RL_BA .BLKW 1 ;BUS ADDRESS REGISTER (BAR)

$DEF RL_DA .BLKW 1 ;DISK ADDRESS REGISTER (DAR)
_VIELD RL_DA,O,<- ;START OF DAR BIT DEFINITIONS

<MRK, ,M>, - MARK (ALWAYS 1)
<STS, ,M>,- GET STATUS
<,1>,- ; RESERVED BIT
<RST, ,M>, - ; RESET
<' 12>,- ; RESERVED BITS

> ;END OF DAR BIT DEFINITIONS

E-4

Sample Driver for the RL 11, RL01, and RL02

$DEF RL_MP .BLKW
_VIELD RL_MP,O,<-

<STA,3>,-
<BH, ,M>,-
<HO, ,M>,-
<CO, ,M>,-
<HS, ,M>,-
<TYP, ,M>,-
<DSE, ,M>,-
<VC, ,M>,-
<WGE, ,M>,-
<SPE, ,M>,-
<SKTO , , M>, -
<WL, ,M>,-
<CHE, ,M>,-
<WDE, ,M>-

>

$DEF RL_BAE .BLKW

$DEFEND RL

HARDWARE FUNCTION CODES

F_NOP=0*2
F_UNLOAD=F_NOP
F_SEEK=3*2
F_RECAL=F_NOP
F_DRVCLR=2*2
F_RELEASE=F_NOP
F'-OFFSET=F_NOP
F_RETCENTER=F_NOP
F_PACKACK=2*2
F_SEARCH=F_NOP
F_WRITECHECK=1*2
F_WRITEDATA=5*2
F_WRITEHEAD=F_NOP
F_READDATA=6*2
F_READHEAD=4*2
F_AVAILABLE=F_NOP
F_GETSTATUS=2*2

.PAGE

.SBTTL STANDARD TABLES

DRIVER PROLOGUE TABLE

1

1

;MULTIPURPOSE REGISTER (MPR)
;START OF MPR BIT DEFINITIONS

DRIVE STATE
BRUSH HOME
HEADS OUT
COVER OPEN
HEAD SELECT
DRIVE TYPE
DRIVE SELECT ERROR
VOLUME CHECK
WRITE GATE ERROR
SPIN ERROR
SEEK TIME OUT
WRITE LOCK
CURRENT HEAD ERROR
WRITE DATA ERROR

;END MPR BIT DEFINITIONS

; BUS ADDRESS EXTENSION REGISTER(BAE)

;END RL11/RL01 REGISTER DEFINITIONS

;NO OPERATION
;NO OPERATION
;SEEK CYLINDER
;NO OPERATION
;DRIVE CLEAR (GET STATUS)
;NO OPERATION
;NO OPERATION
;NO OPERATION
;PACK ACKNOWLEDGE (SET VOLUME VALID)
;NO OPERATION
;WRITE CHECK
;WRITE DATA
;NO OPERATION
;READ DATA
;READ HEADER
;NO OPERATION
;GET STATUS (DRIVER INTERNAL USE)

THE DPT DESCRIBES DRIVER PARAMETERS AND I/0 DATABASE FIELDS
THAT ARE TO BE INITIALIZED DURING DRIVER LOADING AND RELOADING

DPTAB
END=DL_END,­
ADAPTER=UBA,­
FLAGS=DPT$M_SVP,­
UCBSIZE=UCB$K_DL_LEN,­
NAME=DLDRIVER

;DPT CREATION MACRO
;END OF DRIVER LABEL
;ADAPTER TYPE = UNIBUS
;SYSTEM PAGE-TABLE ENTRY REQUIRED
;LENGTH OF UCB
;DRIVER NAME

E-5

Sample Driver for the RL 11, RL01, and RL02

DPT_STORE !NIT ;START CONTROL BLOCK !NIT VALUES
DPT_STORE DDB,DDB$L_ACPD,L,<~A\F11\> ;DEFAULT ACP NAME
DPT_STORE DDB,DDBL_ACPD+3,B,DDBK_CART ;ACP CLASS
DPT_STORE UCB,UCBB_FLCK,B,SPLC_IOLOCK8 ;FORK LOCK INDEX
DPT_STORE UCB,UCB$L_DEVCHAR,L,- ;DEVICE CHARACTERISTICS

<DEV$M_FOD- FILES ORIENTED
!DEV$M_DIR- DIRECTORY STRUCTURED
!DEV$M_AVL- AVAILABLE
!DEV$M_ELG- ERROR LOGGING
!DEV$M_SHR- SHAREABLE
!DEV$M_IDV- INPUT DEVICE
!DEV$M_ODV- OUTPUT DEVICE
!DEV$M_RND> ; RANDOM ACCESS

DPT_STORE UCB,UCB$L_DEVCHAR2,L,-; DEVICE CHARACTERISTICS
<DEV$M_NNM> ; PREFIX NAME WITH "node$"

DPT_STORE UCB,UCB$B_DEVCLASS,B,DC$_DISK ;DEVICE CLASS
DPT_STORE UCB,UCB$W_DEVBUFSIZ,W,512 ;DEFAULT BUFFER SIZE
DPT_STORE UCB,UCB$B_SECTORS,B,40 ;NUMBER OF SECTORS PER TRACK
DPT_STORE UCB,UCB$B_TRACKS,B,2 ;NUMBER OF TRACKS PER CYLINDER
DPT_STORE UCB,UCB$B_DIPL,B,21 ;DEVICE IPL
DPT_STORE UCB,UCB$B_ERTMAX,B,8 ;MAX ERROR RETRY COUNT
DPT_STORE UCB,UCB$W_DEVSTS,W,- ;INHIBIT LOG TO PHYS CONVERSION IN FDT

<UCB$M_NOCNVRT> , ...

DPT_STORE REINIT ;START CONTROL BLOCK RE-INIT VALUES
DPT_STORE CRB,CRB$L_INTD+4,D,DL_INT ;INTERRUPT SERVICE ROUTINE ADDRESS
DPT_STORE CRB,CRB$L_INTD+VEC$L_INITIAL,- ;CONTROLLER INIT ADDRESS

D,DL_RL11_INIT , ...
DPT_STORE CRB,CRB$L_INTD+VEC$L_UNITINIT,- ;UNIT INIT ADDRESS

D,DL_RLOX_INIT , ...
DPT_STORE DDB,DDBL_DDT,D,DLDDT ;DDT ADDRESS

DPT_STORE END ;END OF INITIALIZATION TABLE

DRIVER DISPATCH TABLE

THE DDT LISTS ENTRY POINTS FOR DRIVER SUBROUTINES WHICH ARE
CALLED BY THE OPERATING SYSTEM.

DDTAB ;DDT CREATION MACRO
DEVNAM=DL,- ;NAME OF DEVICE
START=DL_STARTIO,- ;START I/O ROUTINE
UNSOLIC=DL_UNSOLNT,- ;UNSOLICITED INTERRUPT
FUNCTB=DL_FUNCTABLE,- ;FUNCTION DECISION TABLE
CANCEL=O,- ;CANCEL=NO-OP FOR FILES DEVICE
REGDMP=DL_REGDUMP,- ;REGISTER DUMP ROUTINE
DIAGBF=<<RL_NUM_REGS+5+5+3+1>*4>,- ;BYTES IN DIAG BUFFER
ERLGBF=<<<RL_NUM_REGS+5+1>*4>+EMB$L_DV_REGSAV> ;BYTES IN

;ERROR LOG BUFFER

DIAGNOSTIC BUFFER SIZE = <<4 RL02 REGISTER LONGWORDS + 5 UCB FIELD LONGWORDS
+ 5 IOC$DIAGBUFILL LONGWORDS + 3 BUFFER ALLOCATION
LONGWORDS + 1 LONGWORD FOR # REGISTERS IN DL_REGDUMP>
* 4 BYTES/LONGWORD>

ERROR LOG BUFFER SIZE = <<<4 RL02 REGISTER LONGWORDS + 5 UCB FIELD LONGWORDS
+ 1 LONGWORD FOR # REGISTERS IN DL_REGDUMP>

E-6

* 4 BYTES/LONGWORD> + BYTES NEEDED FOR ERROR LOGGER
TO SAVE SOFTWARE REGISTERS>

Sample Driver for the RL 11, RL01, and RL02

HARDWARE FUNCTION CODE TABLE

FTAB:

THIS TABLE MERGES THE FUNCTION CODE BITS WITH THE
INTERRUPT ENABLE BIT AND GENERATES THE CASE TABLE
INDEX SYMBOL.

GENF F_NOP ;NO-OP
GENF F_UNLOAD ;UNLOAD VOLUME (NOP)
GENF F_SEEK ;SEEK
GENF F_RECAL ;RECALIBRATE (NOP)
GENF F_DRVCLR ;DRIVE CLEAR (RESET & GET STATUS)
GENF F_RELEASE ;RELEASE PORT (NOP)
GENF F_OFFSET ;OFFSET HEADS (NOP)
GENF F_RETCENTER ;RETURN HEADS TO CENTERLINE (NOP)
GENF F_PACKACK ;PACK ACKNOWLEDGE (RESET & GET STATUS)
GENF F_SEARCH ;SEARCH (NOP)
GENF F_WRITECHECK ;WRITE CHECK
GENF F_WRITEDATA ;WRITE DATA
GENF F_READDATA ;READ DATA
GENF F_WRITEHEAD ;WRITE HEADERS (NOP)
GENF F_READHEAD ;READ HEADERS
GENF F_NOP ;place holder
GENF F_NOP ;place holder
GENF F_AVAILABLE ;AVAILABLE

.PAGE

FUNCTION DECISION TABLE

THE FDT LISTS VALID FUNCTION CODES, SPECIFIES WHICH
CODES ARE BUFFERED, AND DESIGNATES SUBROUTINES TO
PERFORM PREPROCESSING FOR PARTICULAR FUNCTIONS.

DL_FUNCTABLE:
FUNCTAB -

<NOP.­
UNLOAD,­
SEEK,­
DRVCLR,­
PACKACK,­
SENSECHAR,­
SETCHAR,­
SENSEMODE,­
SETMODE,­
WRITECHECK,­
READHEAD,­
READLBLK,­
WRITELBLK,­
READPBLK,­
WRITEPBLK,­
READVBLK,­
WRITEVBLK,­
AVAILABLE,­
ACCESS,­
ACPCONTROL,­
CREATE,­
DEACCESS,­
DELETE.­
MODIFY,­
MOUNT-
>

FUNCTAB ,­
<NOP,-

;LIST LEGAL FUNCTIONS
NO-OP
UNLOAD
SEEK
DRIVE CLEAR
PACK ACKNOWLEDGE
SENSE CHARACTERISTICS
SET CHARACTERISTICS
SENSE MODE
SET MODE
WRITE CHECK
READ HEADER
READ LOGICAL BLOCK
WRITE LOGICAL BLOCK
READ PHYSICAL BLOCK
WRITE PHYSICAL BLOCK
READ VIRTUAL BLOCK
WRITE VIRTUAL BLOCK
AVAILABLE
ACCESS FILE / FIND DIRECTORY ENTRY
ACP CONTROL FUNCTION
CREATE FILE AND/OR DIRECTORY ENTRY
DEACCESS FILE
DELETE FILE AND/OR DIRECTORY ENTRY
MODIFY FILE ATTRIBUTES
MOUNT VOLUME

;BUFFERED FUNCTIONS
; NO-OP

E-7

Sample Driver for the RL 11, RL01, and RL02

E-8

UNLOAD.­
SEEK,­
DRVCLR,­
PACKACK,­
SENSECHAR,­
SETCHAR,­
SENSEMODE,­
SETMODE,­
AVAILABLE.­
ACCESS,­
ACPCONTROL,­
CREATE,­
DEACCESS,­
DELETE,­
MODIFY.­
MOUNT-
>

FUNCTAB DL_ALIGN,­
<READHEAD,­
READLBLK,­
READPBLK,­
READVBLK,­
WRITECHECK,­
WRITELBLK,­
WRITEPBLK,­
WRITEVBLK-
>

FUNCTAB +ACP$READBLK,­
<READHEAD,­
READLBLK,­
READPBLK,­
READVBLK-
>

FUNCTAB +ACP$WRITEBLK,­
<WRITECHECK, -
WRITELBLK,­
WRITEPBLK,­
WRITEVBLK-
>

FUNCTAB +ACP$ACCESS,­
<ACCESS,­
CREATE-
>

FUNCTAB +ACP$DEACCESS,­
<DEACCESS-
>

FUNCTAB +ACP$MODIFY,­
<ACPCONTROL,­
DELETE.­
MODIFY-
>

FUNCTAB +ACP$MOUNT,­
<MOUNT-
>

FUNCTAB +EXE$LCLDSKVALID,­
<UNLOAD,­

AVAILABLE,­
PACKACK-

>
FUNCTAB +EXE$ZEROPARM,­

<NOP,-
UNLOAD,­
DRVCLR,-

UNLOAD
SEEK
DRIVE CLEAR
PACK ACKNOWLEDGE
SENSE CHARACTERISTICS
SET CHARACTERISTICS
SENSE MODE
SET MODE
AVAILABLE
ACCESS FILE / FIND DIRECTORY ENTRY
ACP CONTROL FUNCTION
CREATE FILE AND/OR DIRECTORY ENTRY
DEACCESS FILE
DELETE FILE AND/OR DIRECTORY ENTRY
MODIFY FILE ATTRIBUTES
MOUNT VOLUME

;TEST ALIGNMENT FUNCTIONS
READ HEADER
READ LOGICAL BLOCK
READ PHYSICAL BLOCK
READ VIRTUAL BLOCK
WRITE CHECK
WRITE LOGICAL BLOCK
WRITE PHYSICAL BLOCK
WRITE VIRTUAL BLOCK

;READ FUNCTIONS
READ HEADER
READ LOGICAL BLOCK

; READ PHYSICAL BLOCK
; READ VIRTUAL BLOCK

;WRITE FUNCTIONS
WRITE CHECK
WRITE LOGICAL BLOCK

; WRITE PHYSICAL BLOCK
; WRITE VIRTUAL BLOCK

;ACCESS FUNCTIONS
; ACCESS FILE / FIND DIRECTORY ENTRY
; CREATE FILE AND/OR DIRECTORY ENTRY

;DEACCESS FUNCTION
; DEACCESS FILE

;MODIFY FUNCTIONS
; ACP CONTROL FUNCTION
; DELETE FILE AND/OR DIRECTORY ENTRY
; MODIFY FILE ATTRIBUTES

;MOUNT FUNCTION
; MOUNT VOLUME

;LOCAL DISK VALID FUNCTIONS
;UNLOAD VOLUME
;UNIT AVAILABLE
;PACK ACKNOWLEDGE

;ZERO PARAMETER FUNCTIONS
NO-OP
UNLOAD

; DRIVE CLEAR

Sample Driver for the RL 11, RL01, and RL02

;++

PACKACK,­
AVAILABLE,­
>

FUNCTAB +EXE$0NEPARM,­
<SEEK-
>

FUNCTAB +EXE$SENSEMODE,­
<SENSECHAR,­
SENSEMODE-
>

FUNCTAB +EXE$SETCHAR,­
<SETCHAR,­
SETMODE-
>

.PAGE

PACK ACKNOWLEDGE
AVAILABLE

;ONE PARAMETER FUNCTION
; SEEK

;SENSE FUNCTIONS
; SENSE CHARACTERISTICS
; SENSE MODE

; SET FUNCTIONS
SET CHARACTERISTICS

; SET MODE

.SBTTL CONTROLLER INITIALIZATION ROUTINE

FUNCTIONAL DESCRIPTION:

THIS ROUTINE IS A NO-OP FOR THE RL11 BUT MUST BE INCLUDED
SINCE IT IS CALLED WHEN THE RL02 IS BOOTED AS A SYSTEM DEVICE.

THE OPERATING SYSTEM CALLS THIS ROUTINE:
- AT SYSTEM STARTUP
- DURING DRIVER LOADING
- DURING RECOVERY FROM POWER FAILURE

INPUTS:

R4 - CSR ADDRESS (DEVICE CONTROL STATUS REGISTER)
RS - IDB ADDRESS (INTERRUPT DATA BLOCK)
R6 - DDB ADDRESS (DEVICE DATA BLOCK)
R8 - CRB ADDRESS (CHANNEL REQUEST BLOCK)
ALL INTERRUPTS ARE LOCKED OUT

OUTPUTS:

ALL REGISTERS EXCEPT RO-R3 ARE PRESERVED.
CONTROL IS RETURNED TO THE CALLER.

DL_RL11_INIT: ;CONTROLLER INITIALIZATION

10$:

; FOR MICROVAX I, ALLOCATE A PHYSICALLY CONTIGUOUS BUFFER
; AREA FOR PERFORMING I/0.

ADPDISP SELECT=ADAP_MAPPING,­
ADDRLIST=<<YES,20$>>,­
CRBADDR=R8,­
SCRATCH=RO

MOVZWL #UCB$K_DL_BUFSZ,R1
JSB G-EXE$ALOPHYCNTG
BLBC R0,20$
MOVL R2,CRB$L_AUXSTRUC(R8)
RSB

Allocate a physically contiguous
buff er for those adapters that
don't support mapping.

;LOAD SIZE OF BUFFER
;ALLOCATE PHYSICALLY CONTIGUOUS MEMORY
;EXIT ON ERROR
;GET BUFFER VIRTUAL ADDRESS
;RETURN TO CALLER

20$: CLRL CRB$L_AUXSTRUC(R8) ;INDICATE MEMORY ALLOCATION FAILURE
RSB ;RETURN TO CALLER
.PAGE
.SBTTL UNIT INITIALIZATION ROUTINE

E-9

Sample Driver for the RL 11, RL01, and RL02

;++

DL_RLOX_INIT - UNIT INITIALIZATION ROUTINE

FUNCTIONAL DESCRIPTION:

THIS ROUTINE READIES THE RL01/RL02 UNITS FOR I/O OPERATIONS.

THE OPERATING SYSTEM CALLS THIS ROUTINE:
- AT SYSTEM STARTUP
- DURING DRIVER LOADING
- DURING RECOVERY FROM POWER FAILURE

INPUTS:

R4 - CSR ADDRESS (CONTROLLER STATUS REGISTER)
R5 - UCB ADDRESS (UNIT CONTROL BLOCK)

OUTPUTS:

THE DRIVE UNIT IS RESET, UCB FIELDS ARE INITIALIZED, AND THE
ROUTINE WAITS FOR ONLINE UNITS TO SPIN UP. ALL REGISTERS
EXCEPT RO-R3 ARE PRESERVED.

DL_RLOX_INIT: ;RL01/RL02 UNIT INITIALIZATION
DEFAULT TO ADAPTER MAPPING MOVW #1©UCB$V_DL_MAPPING,-

UCB$W_DL_FLAGS(R5)
ADPDISP SELECT=ADAP_MAPPING,­

ADDRLIST=<<YES,2$>>,­
UCBADDR=R5,­
SCRATCH=RO

CLRW UCB$W_DL_FLAGS(R5)

; AND 18 BIT ADDRESSING

Clear adapter mapping bit
2$: ADPDISP SELECT=ADDR_BITS,-

3$:

ADDRLIST=<<18,3$>>,­
ADPADDR=RO

BISW #1©UCB$V_DL_22BIT,-
UCB$W_DL_FLAGS(R5)

FOR MICROVAX II 22-BIT
ADDRESSING AS WELL AS ADAPTER MAPPING

10$: MOVZWL UCB$W_STS(R5),R3 ;SAVE CURRENT UNIT STATUS
BICW #UCB$M_ONLINE!UCB$M_VALID,- ;ASSUME OFFLINE/INVALID

UCB$W_STS(R5) , ...

WAIT FOR CONTROLLER (6 SECONDS MAX) IF CHANNEL IS BUSY WITH ANOTHER UNIT

MOVL UCB$L_CRB(R5) ,RO ;GET CRB ADDRESS
BBC #CRBV_BSY,CRBB_MASK(RO) ,20$;IF CLEAR - CHANNEL NOT BUSY
TIMEDWAIT TIME=#600*1000,- ;6 SECOND WAIT LOOP

INS1=<TSTB RL_CS(R4)>,- ;IS CONTROLLER READY
INS2=<BLSS 15$>,- ;IF LSS - YES
DONELBL=15$;LABEL TO EXIT WAIT LOOP

BLBC R0,25$;TIME EXPIRED - EXIT

GET CURRENT DRIVE STATUS AND RESET DRIVE

E-10

Sample Driver for the RL 11, RL01, and RL02

20$: MOVW

CLRL
INSV
BISW3
BSBW
TSTB
BGEQ

#RL DAM RST!- ;PUT RESET AND GET STATUS IN DAR
RL_DA_M_STS!RL_DA_M_MRK,RL_DA(R4) , ...
R1 ;CLEAR R1 FOR UNIT NUMBER
UCB$W_UNIT(R5),#8,#8,R1 ;GET UNIT NUMBER
R1,#F_GETSTATUS.RL_CS(R4) ;EXECUTE GET STATUS FUNCTION
DL_WAIT ;WAIT FOR CONTROLLER
RL_CS(R4) ;WAS CONTROLLER READY?
25$;IF GEQ - NO

CLASSIFY DRIVE TYPE

25$:

30$:

40$:

MOVL

BITW
BNEQ
MOVB

MOVW
MOVZWL
BRB

BRB

MOVB

MOVW
MOVZWL
INCL
BBC

#-X2324C001,-
UCB$L_MEDIA_ID(R5) ;SET MEDIA IDENT "DL RL01"

#RL_MP_M_TYP,RL_MP(R4) ;IS DRIVE TYPE= RL02?
30$;IF NEQ - YES
s-#DT$_RL01,-

UCB$B_DEVTYPE(R5) ;SET RL01 DEVICE TYPE
#256,UCB$W_CYLINDERS(R5);SET NUMBER OF RL01 CYLINDERS
#10240,UCB$L_MAXBLOCK(R5) ;SET MAX RL01 BLOCK NUMBER
40$

70$;BRANCH TO COMMON EXIT

s-#DT$_RL02,-
UCB$B_DEVTYPE(R5) ;SET RL02 DEVICE TYPE

#512,UCB$W_CYLINDERS(R5);SET NUMBER OF RL02 CYLINDERS
#20480,UCB$L_MAXBLOCK(R5) ;SET MAX RL02 BLOCK NUMBER
UCB$L_MEDIA_ID(R5) ;SET MEDIA IDENT "DL RL02"
#UCB$V_VALID,R3,60$ Branch around wait for drive to spin up

if the drive did NOT have a VALID
volume on it before POWER failure.

INITIALIZE UCB FIELDS AND WAIT FOR ONLINE UNITS TO SPIN UP

45$:

50$:

BITW
BNEQ
JSB
BLBS
BRB

#RL_CS_M_DRDY,RL_CS(R4)
50$
G-EXE$PWRTIMCHK
R0,45$
60$

; Is drive ready?
;IF NEQ - YES
;IS MAX TIME EXCEEDED?
;IF LBS - NO, STILL MORE TIME NEEDED
;POWER UP TIME EXCEEDED

BISW #UCBM_VALID,UCBW_STS(R5) ;SET UCB STATUS VOLUME VALID

E-11

Sample Driver for the RL 11, RL01, and RL02

60$:

65$:
70$:

BBS

MOVL
MOVL
BEQL
MOVL
EXTZV
MOVL
MOVL
BICL3
ASSUME
INSV
MOVL
BISW
RSB
.PAGE
.SBTTL

#UCB$V_DL_MAPPING,- ;ADAPTER MAPPING?
UCB$W_DL_FLAGS(R5),65$;IF BS YES
UCB$L_CRB(R5),R1 ;GET CRB ADDRESS
CRB$L_AUXSTRUC(R1),R2 ;MEMORY ALLOC FAILURE DURING CTL INIT?
70$;IF EQL YES, LEAVE OFFLINE
R2,UCB$A_DL_BUF_VA(R5) ;SAVE BUFFER'S VIRTUAL ADDRESS
#VA$V_VPN,#VA$S_VPN,R2,R1;GET VIRTUAL PAGE NUMBER OF BUFFER
G-MMG$GL_SPTBASE,RO ;GET BASE ADDRESS OF SPTS
(RO)[R1] ,RO ;GET THE PTE CONTENTS
#-C<VA$M_BYTE>,R2,R1 ;GET BUFFER OFFSET (BAOO-BA08)
PTE$S_PFN GE 13
R0,#9,#13,R1 ;COPY BA09-BA21
R1,UCB$A_DL_BUF_PA(R5) ;SAVE PHYSICAL ADDRESS OF BUFFER
#UCBM_ONLINE,UCBW_STS(R5) ;SET UCB STATUS VOLUME VALID

DRIVER SPECIFIC SUBROUTINES

DL_WAIT - WAIT FOR CONTROLLER READY

INPUTS:
R4 - DEVICE CSR ADDRESS

FUNCTIONAL DESCRIPTION:

THIS ROUTINE IS CALLED FROM THE DRIVER UNIT INITIALIZATION ROUTINE
TO WAIT UNTIL THE RL11 CONTROLLER IS READY. TO PREVENT HANGING UP
AT HIGH IPL, A MAXIMUM OF 30 USEC ELAPSES BEFORE CONTROL IS
RETURNED TO THE CALLER.

DL_WAIT: ;WAIT FOR CONTROLLER READY
MOVQ RO,-(SP) ;SAVE RO, R1
TIMEWAIT '#3,#RL_CS_M_CRDY,RL_CS(R4),W
MOVQ (SP)+,RO ;RESTORE RO, R1
RSB ;RETURN TO UNIT INIT OR STARTIO
.PAGE
.SBTTL FDT ROUTINE - TEST TRANSFER BYTE COUNT ALIGNMENT

;++

DL_ALIGN - FDT ROUTINE TO TEST XFER BYTE COUNT

FUNCTIONAL DESCRIPTION:

THIS ROUTINE IS CALLED FROM THE FUNCTION DECISION TABLE DISPATCHER
TO CHECK THE BYTE COUNT PARAMETER SPECIFIED BY THE USER PROCESS
FOR AN EVEN NUMBER OF BYTES (WORD BOUNDARY).

INPUTS:

R3 - IRP ADDRESS (I/O REQUEST PACKET)
R4 - PCB ADDRESS (PROCESS CONTROL BLOCK)
R5 - UCB ADDRESS (UNIT CONTROL BLOCK)
R6 - CCB ADDRESS (CHANNEL CONTROL BLOCK)
R7 - BIT NUMBER OF THE I/0 FUNCTION CODE
R8 - ADDRESS OF FDT TABLE ENTRY FOR THIS ROUTINE
4(AP) - ADDRESS OF FIRST FUNCTION DEPENDENT QIO PARAMETER

OUTPUTS:

E-12

IF THE QIO BYTE COUNT PARAMETER IS ODD, THE I/O OPERATION IS
TERMINATED WITH AN ERROR. IF IT IS EVEN, CONTROL IS RETURNED
TO THE FDT DISPATCHER.

Sample Driver for the RL 11, RL01, and RL02

DL_ALIGN: ;CHECK BYTE COUNT AT P1(AP)
;IF LBS·- ODD BYTE COUNT
;EVEN - RETURN TO CALLER
;SET BUFFER ALIGNMENT STATUS
;ABORT I/O

BLBS 4(AP),10$
RSB

10$: MOVZWL #SS$_IVBUFLEN,RO
JMP G-EXE$ABORTIO
.PAGE
.SBTTL START I/0 ROUTINE

;++

DL_STARTIO - START I/O ROUTINE

FUNCTIONAL DESCRIPTION:

THIS FORK PROCESS IS ENTERED FROM THE EXECUTIVE AFTER AN I/O REQUEST
PACKET HAS BEEN DEQUEUED, AND PERFORMS THE FOLLOWING:

INPUTS:

R3

- ACTIVATES THE DISK AFTER SETTING UCB FIELDS, OBTAINING
UBA AND CONTROLLER RESOURCES, AND SETTING RL11 REGISTERS

- WAITS FOR AN INTERRUPT

- REGAINS CONTROL AFTER THE ISR SERVICES THE INTERRUPT, AND
- REACTIVATES THE DISK IF THE ORIGINAL FUNCTION

IS NOT YET COMPLETE, OR
- COMPLETES THE I/0 REQUEST BY RELEASING RESOURCES,

SETTING STATUS CODES, AND RETURNING TO THE EXECUTIVE.

- IRP ADDRESS (I/O REQUEST PACKET)
R5
IRP$L_MEDIA

- UCB ADDRESS (UNIT CONTROL BLOCK)
- PARAMETER LONGWORD (LOGICAL BLOCK NUMBER)

OUTPUTS:

RO - FIRST I/O STATUS LONGWORD: STATUS CODE & BYTES XFERED
R1 - SECOND I/0 STATUS LONGWORD: 0 FOR DISKS

THE I/O FUNCTION IS EXECUTED.

ALL REGISTERS EXCEPT RO-R4 ARE PRESERVED.

DL_STARTIO: ;START I/0 OPERATION

COMPUTE PHYSICAL MEDIA ADDRESS

LBN = LBN * (SECTORS/BLOCK)
LBN/(SECTORS/TRACK) = D + SECTOR
D/(TRACKS/CYLINDER) = CYLINDER + TRACK

PREPROCESS UCB FIELDS

E-13

Sample Driver for the RL 11, RL01, and RL02

PREPROCESS:
MOVL

BBS

MULL3
MOVZBL
CLRL
EDIV
MOVZBL
EDIV
MOVB
MOVW

10$:
MOVB

MNEGW
CLRW

CLRB
MOVW
EXTZV

MOVB
f'MPR

BNEQ
MOVW

20$:
BICW

BBC

BISW

IRP$L_MEDIA(R3),­
UCB$L_MEDIA(R5)
#IRP$V _PHYSIO, -
IRP$W_STS(R3),10$

Copy given MEDIA address (logical)
; to the UCB.
;IF SET - PHYSICAL I/O

#2,UCB$L_MEDIA(R5),RO ;SCALE LBN IN RO
UCB$B_SECTORS(R5),R2 ;GET NUMBER OF SECTORS PER TRACK
R1 ;CLEAR HIGH PART OF DIVIDEND
R2,RO,RO,UCB$L_MEDIA(R5);CALCULATE SECTOR NUMBER AND STORE
UCB$B_TRACKS(R5),R2 ;GET NUMBER OF TRACKS PER CYLINDER
R2,RO,RO,R1 ;CALCULATE TRACK AND CYLINDER
R1,UCB$L_MEDIA+1(R5) ;STORE TRACK NUMBER
RO,UCB$L_MEDIA+2(R5) ;STORE CYLINDER NUMBER

UCB$B_ERTMAX(R5),- ;INITIALIZE ERROR RETRY COUNT
UCB$B_ERTCNT(R5) , ...
UCB$W_BCNT(R5),UCB$W_BCR(R5) ;INIT NEG BYTES LEFT TO XFER
UCB$W_DL_DPN(R5) ;CLEAR DATA PATH NO. FOR USE AS-

;UBA RESOURCE ALLOCATION FLAG
UCB$B_DL_DPPE(R5) ;CLEAR DATAPATH PURGE ERROR REGISTER
IRP$W_FUNC(R3),UCB$W_FUNC(R5) ;SAVE FUNCTION CODE
#IRP$V_FCODE,- ;EXTRACT I/O FUNCTION CODE
#IRPS_FCODE,IRPW_FUNC(R3),R1 , ...
R1,UCB$B_FEX(R5) ;STORE FUNCTION DISPATCH INDEX
#!~$_SEEK,R1 ;SEEK FUNCTION?
20$;IF NEQ - NO
IRP$L_MEDIA(R3),- ;STORE CYLINDER ADDRESS
UCB$W_DC(R5) , ...

#UCB$M_DIAGBUF,-
UCB$W_DEVSTS(R5) ;CLR DIAGNOSTIC BUFFER PRESENT
#IRP$V_DIAGBUF,- ;IF CLR - NO DIAG BUFFER
IRP$W_STS(R3),FDISPATCH , ...
#UCB$M_DIAGBUF,UCB$W_DEVSTS(R5) ;SET DIAG BUFFER PRESENT

CENTRAL FUNCTION DISPATCH

FDISPATCH:
MOVL
BBS

BBS

MOVZWL
BRW

10$: CLRB

E-14

MOVZBL
CASE

UCB$L_IRP(R5),R3
#IRP$V _PHYSIO, -
IRP$W_STS(R3),10$
#UCB$V_VALID,­
UCB$W_STS(R5) ,10$
#SS$_VOLINV,RO
RESETXFR
UCB$B_DL_DCHEK(R5)
UCB$B_FEX(R5),R3
R3,<-
UNLOAD,-
SEEK.-
NOP,-
DRVCLR,-
NOP,-
NOP.-
NOP,-
PACKACK,-
NOP,­
WRITECHECK,­
WRITEDATA,­
READDATA,-
NOP,-
READHEAD,-

;FUNCTION DISPATCH
;GET IRP ADDRESS
;IF SET - PHYSICAL I/0 FUNCTION

;IF SET - VOLUME SOFTWARE VALID

;SET VOLUME INVALID STATUS
;RESET BYTE COUNT AND EXIT
;CLEAR DATA CHECK IN PROGRESS
;GET FUNCTION DISPATCH INDEX
;DISPATCH TO FUNCTION HANDLING ROUTINE

UNLOAD
SEEK
RE9ALIBRATE (unsupported)
DRVCLR
RELEASE PORT (unsupported)
OFFSET HEADS (unsupported)
RETURN TO CENTER (unsupported)
PACK ACKNOWLEDGE
SEARCH (unsupported)
WRITE CHECK
WRITE DATA
READ DATA
WRITE HEADER (unsupported)
READ HEADER

Sample Driver for the RL 11, RL01, and RL02

NOP:
SEEK:
DRVCLR:

NOP.­
NOP,­
AVAILABLE-
>, LIMIT=#CDF _UNLOAD

DO_FUNCTION:

PACKACK:

UNLOAD:

EXFUNCL RETRYERR
BRB NORMAL

BISW

BRB

#UCB$M_VALID, -
UCB$W_STS(R5)
DO_FUNCTION

AVAILABLE:
BICW

BRB

WRITECHECK:

#UCB$M_VALID, -
UCB$W_STS(R5)
NORMAL

READHEAD:
BICW #IO$M_DATACHECK,­

UCB$W_FUNC(R5)

WRITEDATA:
READDATA:

NORMAL:

EXFUNCL RETRYERR,F_SEEK

MOVZBL UCB$B_FEX(R5),R3
EXFUNCL RETRYERR

OPERATON COMPLETION

MOVZWL #SS$_NORMAL,RO
BRW FUNCXT

RETRYERR:
DECB
BEQL
BRW

UCB$B_ERTCNT(R5)
FATALERR
FDISPATCH

FATALERR:

5$:

MOVZWL #SS$_VOLINV,RO
BBS #RL_MP_V_VC,-

UCB$W_DL_MP(R5) ,FUNCXT

MOVZWL #SS$_WRITLCK,RO
BBC #RL_MP_V_WL,-

UCB$W_DL_MP(R5) ,5$
BBS #RL_MP_V_WGE,-

MOVZWL
TSTB
BEQL
BBS

BBS

UCB$W_DL_MP(R5) ,FUNCXT

#SS$_DATACHECK,RO
UCB$B_DL_DCHEK(R5)
10$
#RL_CS_V_OPI,­
UCB$W_DL_CS(R5), 10$
#RL_CS_V_CRC,­
UCB$W_DL_CS(R5) ,FUNCXT

place holder
place holder
AVAILABLE

;NO-OP
;SEEK
;DRIVE CLEAR (GET STATUS & RESET)

;EXECUTE FUNCTION - RETRY IF FAILURE
;SUCCESSFUL - EXIT WITH NORMAL STATUS

;PACK ACKNOWLEDGE (GET STATUS & RESET)
;Set software volume valid bit.

;Then go do hardware function.

;UNLOAD
;AVAILABLE
;Clear software volume valid bit.
;and go complete operation without
;any hardware interaction.

;WRITE CHECK
;READ HEADER
;CLEAR DATA CHECK REQUEST­
;TO PREVENT EXTRA WRITE CHECK

;WRITE DATA
;READ DATA
;EXECUTE EXPLICIT SEEK - RETRY IF FAIL

;GET FUNCTION DISPATCH INDEX
;EXECUTE TRANSFER FUNCTION

;SUCCESSFUL OPERATION COMPLETE
;SET NORMAL COMPLETION STATUS
;FUNCTION EXIT

;RETRIABLE ERROR
;ANY RETRIES LEFT?
;IF EQL - NO
;RETRY FUNCTION

;UNRECOVERABLE ERROR
;ASSUME VOLUME INVALID STATUS
;IF SET - VOLUME INVALID

;ASSUME WRITE LOCK ERROR STATUS
;IF CLR - VOLUME NOT WRITE LOCKED

;IF SET - WRITE GATE ERROR
;IF WL & WGE SET - WRITE LOCK ERROR

;ASSUME DATA CHECK ERROR STATUS
;WRITE CHECK IN PROGRESS?
;IF EQL - NO
;IF SET - NOT WRITE CHECK ERROR

;IF SET - WRITE CHECK ERROR

E-15

Sample Driver for the RL 11, RL01, and RL02

10$:

20$:

FUNCXT:

MOVZWL
BBS

MOVZWL
BBS

MOVZWL

PUSHL
JSB
CMPB
BGTRU
CMPB
BEQL
MOVL
ADDW3

TSTW
BEQL
BBC

#SS$_PARITY,RO ;ASSUME PARITY ERROR STATUS
#RL_CS_V_CRC,- ;IF SET - CRC ERROR
UCB$W_DL_CS(R5) ,FUNCXT ;OR DATAPATH PURGE ERROR

#SS$_DRVERR,RO
#RL_CS_V_DE,­
UCB$W_DL_CS(R5) ,FUNCXT

#SS$_CTRLERR,RO

;ASSUME DRIVE ERROR STATUS
;IF SET - DRIVE ERROR

;ASSUME CONTROLLER ERROR STATUS

; FUNCTION EXIT
RO ;SAVE FINAL REQUEST STATUS
GAIOC$DIAGBUFILL ;FILL DIAGNOSTIC BUFFER IF PRESENT
#CDF_WRITECHECK,UCB$B_FEX(R5) ;DRIVE RELATED FUNCTION?
10$;IF GTRU - YES
#CDF_AVAILABLE,UCB$B_FEX(R5) ;DRIVE RELATED FUNCTION?
10$;IF EQL - YES
UCB$L_IRP(R5),R3 ;RETRIEVE ADDRESS OF IRP
UCB$W_BCR(R5),- ;CALCULATE BYTES TRANSFERRED
IRP$W_BCNT(R3),2(SP) , ...
UCB$W_DL_DPN(R5) ;ARE UBA RESOURCES ALLOCATED?
20$;IF EQL-- NO
#UCB$V_DL_MAPPING,- ;ADAPTER MAPPING?
UCB$W_DL_FLAGS(R5),10$;IF BC NO

RELDPR ;RELEASE DATA PATH
RELMPR ;RELEASE MAP REGISTERS
BRB 20$;JOIN COMMON CODE

10$: MOVL UCB$L_DL_SVAPTE(R5) ,- ;RESTORE ORIGINAL SVAPTE
UCB$L_SVAPTE(R5)

20$: RELCHAN ;RELEASE CHANNEL IF OWNED

CLRL R1
POPL RO
REQCOM
.PAGE

;CLEAR SECOND STATUS LONGWORD
;RETRIEVE FINAL REQUEST STATUS
;COMPLETE REQUEST

FEXL - RL11 HARDWARE FUNCTION EXECUTION

THIS ROUTINE IS CALLED VIA A BSB WITH A BYTE IMMEDIATELY FOLLOWING THAT
SPECIFIES THE ADDRESS OF AN ERROR ROUTINE. ALL DATA IS ASSUMED TO HAVE BEEN
SET UP IN THE UCB BEFORE THE CALL. THE APPROPRIATE PARAMETERS ARE LOADED
INTO DEVICE REGISTERS AND THE FUNCTION IS INITIATED. THE RETURN ADDRESS
IS STORED IN THE UCB AND A WAIT FOR INTERRUPT IS EXECUTED. WHEN THE
INTERRUPT OCCURS, CONTROL IS RETURNED TO THE CALLER.

INPUTS:

R3 = FUNCTION TABLE DISPATCH INDEX
R5 = DEVICE UNIT UCB ADDRESS

OO(SP) = RETURN ADDRESS OF CALLER
04(SP) = RETURN ADDRESS OF CALLER'S CALLER

IMMEDIATELY FOLLOWING INLINE AT THE CALL SITE IS A BYTE WHICH CONTAINS
A BRANCH DESTINATION TO AN ERROR RETRY ROUTINE.

OUTPUTS:

E-16

THERE ARE FOUR EXITS FROM THIS ROUTINE:

1. SPECIAL CONDITION - THIS EXIT IS TAKEN IF A POWER FAILURE OCCURS
OR THE OPERATION TIMES OUT. IT IS A JUMP TO THE APPROPRIATE
ERROR ROUTINE.

2. FATAL ERROR - THIS EXIT IS TAKEN IF A FATAL CONTROLLER OR DRIVE

Sample Driver for the RL 11, RL01, and RL02

ERROR OCCURS OR IF ANY ERROR OCCURS AND ERROR RETRY IS EITHER
INHIBITED OR EXHAUSTED. IT IS A JUMP TO THE FATAL ERROR EXIT
ROUTINE.

3. RETRIABLE ERROR - THIS EXIT IS TAKEN IF A RETRIABLE CONTROLLER
OR DRIVE ERROR OCCURS AND ERROR RETRY IS NEITHER INHIBITED
NOR EXHAUSTED. IT CONSISTS OF TAKING THE ERROR BRANCH EXIT
SPECIFIED AT THE CALL SITE.

4. SUCCESSFUL OPERATION - THIS EXIT IS TAKEN IF NO ERRORS OCCUR
DURING THE OPERATION. IT CONSISTS OF A RETURN INLINE.

IN ALL CASES IF AN ERROR OCCURS, AN ATTEMPT IS MADE TO LOG THE ERROR.

IN ALL CASES FINAL DEVICE REGISTERS ARE RETURNED VIA THE UCB.

UCB$W_BCR(R5) = NEGATIVE BYTES REMAINING TO TRANSFER
.PAGE

FEXL: ;FUNCTION EXECUTOR
POPL UCB$L_DPC(R5) ;SAVE DRIVER PC VALUE
MOVB R3,UCB$B_CEX(R5) ;SAVE CASE INDEX
MOVL UCB$L_CRB(R5),RO ;GET ADDRESS OF PRIMARY CRB
MOVL CRB$L_INTD+VEC$L_IDB(RO),R1 ;GET ADDRESS OF IDB
CMPL R5,IDB$L_OWNER(R1) ;DOES THIS PROCESS OWN CHANNEL?
BNEQ 10$;IF NEQ - NO
MOVL IDB$L_CSR(R1),R4 ;SET ASSIGNED CHANNEL CSR ADDRESS
BRB 20$,

10$: REQPCHAN ;REQUEST CHANNEL (RETURNS R4 = CSR ADR)

20$: CASE R3,<­
IMMED,­
IMMED,­
POSIT,­
IMMED,­
DRCLR,­
IMMED,­
IMMED,­
IMMED,­
DRCLR,­
IMMED,­
>

BRW XFER
.PAGE

IMMEDIATE FUNCTION EXECUTION

FUNCTIONS ~NCLUDE:

INPUTS:
R3
R4
R5

NO OPERATION,
DRIVE CLEAR, AND
PACK ACKNOWLEDGE

- CASE INDEX
- CSR ADDRESS
- UCB ADDRESS

FUNCTIONAL DESRIPTION:

;DISPATCH TO PROPER FUNCTION ROUTINE
;NO OPERATION
;UNLOAD VOLUME (NOP)
;SEEK CYLINDER
;RECALIBRATE (NOP)
;DRIVE CLEAR (GET STATUS & RESET)
;RELEASE DRIVE (NOP)
;OFFSET HEADS (NOP)
;RETURN TO CENTERLINE (NOP)
;PACK ACKNOWLEDGE
;SEARCH (NOP)

;TRANSFER FUNCTION

INTERRUPTS ARE LOCKED OUT, THE APPROPRIATE FUNCTION IS INITIATED WITH
INTERRUPT ENABLE, AND A WAIT FOR INTERRUPT AND KEEP CHANNEL IS EXECUTED.

E-17

Sample Driver for the RL 11, RL01, and RL02

DRCLR:

IMMED:

;DRIVE CLEAR
BISW #RL_DA_M_STS!- ;SET GETSTATUS,RESET,AND MARK IN DAR

RL_DA_M_RST!RL_DA_M_MRK,RL_DA(R4) , ...

CKPWR SAVE_RO=NO

BISW3 R2,FTAB[R3] ,RL_CS(R4)
WFIKPCH RETREG,#2
IO FORK

BRW RETREG
.PAGE

;IMMEDIATE FUNCTION EXECUTION
;DISABLE INTERRUPTS, CHECK POWER,­
;AND PUT UNIT NUMBER IN R2<9:8>
;MERGE UNIT WITH FNTN AND EXECUTE
;WAIT FOR INTERRUPT
;RETURN FROM ISR-
;CREATE FORK PROCESS (&JSB BACK TO ISR)

POSITIONING FUNCTION EXECUTION

FUNCTIONS INCLUDE:

SEEK CYLINDER

INPUTS:
R3
R4
R5

- CASE INDEX
- DEVICE CSR ADDRESS
- UCB ADDRESS

FUNCTIONAL DESRIPTION:

THE CYLINDER DIFFERENCE WORD IS CALCULATED AND LOADED INTO THE DISK
ADDRESS REGISTER, INTERRUPTS ARE LOCKED OUT, AND THE SEEK FUNCTION
IS INITIATED WITHOUT INTERRUPT ENABLE. THE CONTROLLER IS THEN POLLED
FOR READY, AND DEVICE INTERRUPTS ARE ENABLED.

SINCE THE RL01/RL02 DO NOT ISSUE AN INTERRUPT UPON COMPLETION OF A
SEEK, OVERLAPPED SEEKS ARE NOT ATTEMPTED, AND ONE OF THE FOLLOWING IS
PERFORMED.

E-18

IF ONLY A SEEK FUNCTION IS BEING REQUESTED, A DUMMY READ HEADER
FUNCTION IS ISSUED AND A WAITFOR INTERRUPT IS INITIATED.
THE READ HEADER IS USED TO SIGNAL THE END OF THE SEEK, SINCE IT
WILL ISSUE AN INTERRUPT SHORTLY (315 USEC AVG) AFTER THE SEEK IS
COMPLETE. IT WILL ALSO SENSE FOR A TIMEOUT DURING THE SEEK.

IF THE SEEK IS ASSOCIATED WITH A DATA TRANSFER REQUEST (RL01/RL02
TRANSFER FUNCTIONS REQUIRE EXPLICIT SEEKS), THE PROGRAM KEEPS THE
CHANNEL AND RETURNS TO FDISPATCH TO ISSUE THE TRANSFER REQUEST
WHILE THE SEEK IS STILL IN PROGRESS. WHEN THE SEEK COMPLETES, THE
RL11 CONTROLLER WILL BEGIN THE TRANSFER.

Sample Driver for the RL 11, RL01, and RL02

POSIT: ;POSITIONING FUNCTION

OBTAIN CURRENT DISK ADDRESS

IF THERE HAS NOT BEEN A PREVIOUS TRANSFER DURING THIS REQUEST,
A READ HEADER IS EXECUTED TO DETERMINE THE CURRENT DISK ADDRESS.

5$:
10$:
20$:

40$:

TSTW
BEQL
BICW3
BRW
BRW
MOVZBL
CKPWR

UCB$W_DL_DPN(R5) ;WAS THERE A PREVIOUS TRANSFER?
10$;IF EQL - NO, READ HEADER
#A077,UCB$W_DL_DA(R5),R1 ;PUT CURRENT CYL & SURFACE IN R1
60$;CALCULATE DIFFERENCE WORD
50$;CONTINUE
#8,R3 ;SET READ HEADER RETRY COUNT IN R3
SAVE_RO=NO ;DISABLE INTERRUPTS, CHECK POWER,-

;AND PUT UNIT NUMBER IN R2<9:8>
BISW3 R2,#F_READHEAD!RL_CS_M_IE,- ;EXECUTE READ HEADER

RL_CS(R4) , ...
WFIKPCH 40$,#2 ;WAIT FOR INTERRUPT OR TIMEOUT
IOFORK ;CREATE FORK PROCESS
BBC #RL_CS_V_CE,UCB$W_DL_CS(R5),5$;BR ON NO ERRORS
DECB R3 ;DECREMENT READ HEADER RETRY COUNT
BNEQ 20$;IF NEQ - RETRY READ HEADER

MOVZBW #AX80!RL_DA_M_MRK,­
RL_DA(R4)

;IF EQL - READ HEADER RETRY EXHAUSTED -
;TRY PREVIOUS TRACK
;LOAD REVERSE SEEK DIFFERENCE WORD

CKPWR SAVE_RO=NO ;DISABLE INTERRUPTS, CHECK POWER,­
;AND PUT UNIT NUMBER IN R2<9:8>

BISW3 R2,#F_SEEK!RL_CS_M_IE,- ;EXECUTE REVERSE SEEK
RL_CS(R4) , ...

WFIKPCH 40$,#2 ;WAIT FOR SEEK TO BEGIN (INTERRUPT)
IOFORK ;CREATE FORK PROCESS
CKPWR SAVE_RO=NO ;DISABLE INTERRUPTS, CHECK POWER,-

;AND PUT UNIT NUMBER IN R2<9:8>
BISW3 R2,#F_READHEAD!RL_CS_M_IE,- ;TRY READ HEADER ON NEW TRACK

RL_CS(R4) , ...
WFIKPCH 40$,#2 ;WAITFOR INTERRUPT OR TIMEOUT
IOFORK ;CREATE FORK PROCESS
BBC #RL_CS_V_CE,UCB$W_DL_CS(R5),50$;BR IF NO HEADER ERROR

CLRB
BRW

UCB$B_ERTCNT(R5)
RETREG

;CANNOT READ CURRENT DISK ADDRESS
;CLEAR RETRY COUNT

50$: ;FOUND CURRENT DISK ADDRESS
BICW3 #A077,UCB$W_DL_MP(R5),R1 ;PUT CURRENT CYL & SURFACE IN R1

CALCULATE CYLINDER DIFFERENCE WORD

60$:

70$:

CLRL
INSV
INSV
CMPW
BEQL
BICB
BICB
SUBW
BEQL
BCC
MNEGW
BISW
INSV
BISW3

RO ;CLEAR RO FOR DESIRED ADDRESS
UCB$W_DA+1(R5),#6,#1,RO ;INSERT DESIRED SURFACE IN R0<6>
UCB$W_DC(R5) ,#7,#9,RO ;INSERT DESIRED CYLINDER IN R0<15:7>
RO,R1 ;IS A SEEK NEEDED?
80$;IF EQL - NO
#A0177,R1 ;REMOVE SURFACE BIT
#A0177,RO ;REMOVE SURFACE BIT
RO,R1 ;SUBTRACT DESIRED FROM ACTUAL
70$;IF EQL - ONLY CHANGE SURFACE
70$;IF CC - ACTUAL>=DESIRED
R1,R1 ;ACTUAL<DESIRED, MAKE POSITIVE DIFF
#4,R1 ;SET SIGN FOR MOVE TO CENTER OF DISK
UCB$W_DA+1(R5) ,#4,#1,R1 ;INSERT SURFACE BIT
#RL_DA_M_MRK,R1,RL_DA(R4) ;SET MARKER AND LOAD DIFFERENCE WORD

E-19

Sample Driver for the RL 11, RL01, and RL02

EXECUTE SEEK

80$:

CKPWR SAVE_RO=NO

BISW3 R2,#F_SEEK!RL_CS_M_IE,-

;DISABLE INTERRUPTS, CHECK POWER,­
;AND PUT UNIT NUMBER IN R2<9:8>
;EXECUTE SEEK FUNCTION

RL_CS(R4)
WFIKPCH 40$,#2
IO FORK

;WAIT FOR SEEK TO BEGIN (INTERRUPT)
;CREATE FORK PROCESS

#IO$_SEEK,UCB$B_FEX(R5) ;IS SEEK ASSOCIATED WITH A TRANSFER? CMPB
BEQL 90$;IF EQL - NO, SEEK ONLY

RETURN FOR SEEK ASSOCIATED WITH A TRANSFER REQUEST

INCL
JMP

UCB$L_DPC(R5)
©UCB$L_DPC(R5)

RETURN FOR SEEK ONLY REQUEST

;ADJUST TO CORRECT RETURN ADDRESS
;RETURN TO DRIVER FOR TRANSFER

90$: CKPWR SAVE_RO=NO ;DISABLE INTERRUPTS, CHECK POWER,-
;AND PUT UNIT NUMBER IN R2<9:8>

BISW3 R2,#F_READHEAD!RL_CS_M_IE,- ;EXECUTE DUMMY READ HEADER
RL_CS(R4) , ...

WFIKPCH RETREG,#2 ;WAIT FOR SEEK TO COMPLETE (INTERRUPT)
IOFORK ;CREATE FORK PROCESS
BRW RETREG
.PAGE

TRANSFER FUNCTION EXECUTION

FUNCTIONS INCLUDE:

INPUTS:
R3
R4
R5

WRITE CHECK
WRITE DATA
READ DATA, AND
READ HEADER

- CASE INDEX
- DEVICE CSR ADDRESS
- UCB ADDRESS

FUNCTIONAL DESCRIPTION:

A UNIBUS DATAPATH IS REQUESTED FOLLOWED BY THE APPROPRIATE NUMBER OF MAP
REGISTERS REQUIRED FOR THE TRANSFER. THE TRANSFER PARAMETERS ARE LOADED
INTO THE DEVICE REGISTERS, INTERRUPTS ARE LOCKED OUT, THE FUNCTION IS
INITIATED, AND A WAITFOR INTERRUPT AND KEEP CHANNEL IS EXECUTED.

UPON RETURN FROM THE INTERRUPT SERVICE ROUTINE, IF THE TRANSFER IS
COMPLETE, THE APPROPRIATE EXIT IS TAKEN. IF THE FUNCTION IS NOT COMPLETE
TRANSFER PARAMETERS ARE UPDATED AND A RETURN TO FDISPATCH IS EXECUTED TO
REISSUE SEEK AND TRANSFER FUNCTIONS WHILE KEEPING CHANNEL AND UBA
RESOURCES. IF A DATA CHECK HAS BEEN REQUESTED, IT IS PERFORMED
BEFORE RETURNING TO FDISPATCH.

E-20

Sample Driver for the RL 11, RL01, and RL02

XFER:
BBS

MOVW
MOVZWL
MOVW
ASHL
MOVB

;TRANSFER FUNCTION EXECUTION
#UCB$V_DL_MAPPING,- ;ADAPTER MAPPING?
UCB$W_DL_FLAGS(R5),2$;BRANCH IF ADAPTER MAPPING.
UCB$A_DL_BUF_PA(R5),UCB$W_DL_SBA(R5);GET 1ST WORD OF BUFFER ADDR
UCB$A_DL_BUF_PA+2(R5),RO;GET BITS 16:21 OF BUFFER ADDRESS
RO,RL_BAE(R4) ;SET MEMORY EXTENSION BITS IN BAE
#4,RO,RO ;PUT MEMORY EXTENSION BITS IN <5:4>
RO,UCB$B_DL_XBA(R5) ;OF CSR

FIRST TRANSFER OF THIS I/O REQUEST - ALLOCATE RESOURCES

1$:

TSTW
BNEQ
CLRL
CMPB
BNEQ
MOVAB

MOVL
MNEGW
BRB

UCB$W_DL_DPN(R5) ;RESOURCES ALREADY ALLOCATED?
5$;IF NEQ - YES
UCB$A_DL_MOVRTN(R5) ;ASSUME READ
#CDF_WRITEDATA,R3 ;WRITE DATA?
1$;IF NEQ NO
G-IOC$MOVFRUSER,- ;SET MOVE ROUTINE ADDRESS FOR
UCB$A_DL_MOVRTN(R5) ;1ST PARTIAL WRITE
UCB$L_SVAPTE(R5),UCB$L_DL_SVAPTE(R5);SAVE SVAPTE FOR BUFFER COPY
#1,UCB$W_DL_DPN(R5) ;SET FIRST XFER FLAG
5$;JOIN COMMON CODE

FIRST TRANSFER OF THIS I/O REQUEST - ALLOCATE RESOURCES

2$: TSTW
BNEQ
REQDPR
REQMPR
LOADUBA
MOVL
EXTZV

MOVW

MOVZWL
INSV

MOVW
EXTZV
MULB3

UCB$W_DL_DPN(R5) ;UBA RESOURCES ALREADY ALLOCATED?
5$;IF NEQ - YES

;REQUEST DATAPATH
;REQUEST MAP REGISTERS
;LOAD UNIBUS MAP REGISTERS

UCB$L_CRB(R5),R1 ;GET CRB ADDRESS
#VEC$V_DATAPATH,#VEC$S_DATAPATH,- ;EXTRACT DATAPATH NUMBER -
CRB$L_INTD+VEC$B_DATAPATH(R1),RO ;FOR UBA RESOURCE FLAG
RO,UCB$W_DL_DPN(R5) ;INDICATE UBA RESOURCES ALLOCATED

UCB$W_BOFF(R5),RO ;GET BYTE OFFSET IN PAGE
CRB$L_INTD+VEC$W_MAPREG(R1),- ;INSERT HIGH 7 BITS OF ADDRESS
#9,#7,RO , ...
RO,UCB$W_DL_SBA(R5) ;SET BUFFER ADDRESS
#7,#2,CRB$L_INTD+VEC$W_MAPREG(R1),RO ;GET MEMORY EXTENSION BITS
#16,RO,UCB$B_DL_XBA(R5) ;POSITION MEMORY EXTENSION BITS TO <5:4>

COMMON TRANSFER POINT

FOR A READ OPERATION WHEN NO ADAPTER MAPPING IS PRESENT EMPTY THE
INTERNAL PHYSICALLY CONTIGUOUS BUFFER FROM THE PREVIOUS READ TO THE
USER'S BUFFER.

5$: BSBW DL_MOVE_TO_BUFFER ;COPY TO USER BUFFER

PUT BUFFER ADDRESS, WORD COUNT, AND DISK ADDRESS IN DEVICE REGISTERS

E-21

Sample Driver for the RL 11, RL01, and RL02

MOVW
MNEGW

MOVZBL
MOVZBL
SUBW
MULW
CMPW
BLEQU
MOVW

UCB$W_DL_SBA(R5),RL_BA(R4) ;SET BUFFER ADDRESS
UCB$W_BCR(R5),- ;GET BYTES LEFT TO TRANSFER AND -
UCB$W_DL_PBCR(R5) ;ASSUME ONLY ONE TRANSFER NEEDED
UCB$B_SECTORS(R5),R2 ;GET SECTORS/SURFACE
UCB$W_DA(R5),R1 ;GET DESIRED SECTOR
R1,R2 ;CALCULATE SECTORS LEFT ON SURFACE
#256,R2 ;CONVERT TO BYTES LEFT ON SURFACE
UCB$W_DL_PBCR(R5),R2 ;ARE ADDITIONAL TRANSFERS REQUIRED?
10$;IF LEQU - NO
R2,UCB$W_DL_PBCR(R5) ;SET BYTE COUNT FOR THIS TRANSFER

FOR A WRITE OPERATION WHEN NO ADAPTER MAPPING IS PRESENT
FILL INTERNAL PHYSICALLY CONTIGUOUS BUFFER FROM THE USER'S BUFFER.

10$: BSBW DL_MOVE_FROM_BUFFER ;COPY FROM USER BUFFER

MOVZBL UCB$B_DL_XBA(R5),RO ;SET MEMORY EXTENSION BITS
BISW FTAB[R3] ,RO ;MERGE XBA BITS WITH FUNCTION
DIVW3 #2,UCB$W_DL_PBCR(R5),R2 ;CALCULATE TRANSFER WORD COUNT
MNEGW R2,RL_MP(R4) ;SET TRANSFER WORD COUNT

MOVZBL UCB$W_DA(R5),R1 ;PUT DESIRED SECTOR IN R1<5:0>
INSV UCB$W_DA+1(R5),#6,#1,R1 ;INSERT DESIRED SURFACE IN R1<6>
INSV UCB$W_DC(R5),#7,#9,R1 ;INSERT DESIRED CYLINDER IN R1<15:7>
MOVW R1,RL_DA(R4) ;SET DESIRED DISK ADDRESS

EXECUTE THE TRANSFER FUNCTION

CKPWR

BISW3 R2,RO,RL_CS(R4)
WFIKPCH RETREG,#6

IO FORK

PURGE DATAPATH

CLRB
JSB
BLBS
INCB

UCB$B_DL_DPPE(R5)
GAIOC$PURGDATAP
R0,20$
UCB$B_DL_DPPE(R5)

;DISABLE INTERRUPTS, CHECK POWER,­
;AND PUT UNIT NUMBER IN R2<9:8>
;EXECUTE FUNCTION
;WAITFOR INTERRUPT AND KEEP CHANNEL
;RETURN HERE FROM !SR SAVING REGISTERS
;CREATE FORK PROCESS (RETURN TO !SR)
;RETURN HERE FROM !SR REI ROUTINE

;CLEAR DATAPATH PURGE ERROR
;PURGE DATAPATH
;IF SET - NO PURGE ERRORS
;SET DATAPATH PURGE ERROR

SAVE UBA REGISTERS FOR UPDATE AND REGDUMP ROUTINES

E-22

Sample Driver for the RL 11, RL01, and RL02

20$:

25$:

30$:

40$:

BBC

MOVL
EXTZV
EXTZV
INSV
CMPW
BGEQ
MOVZWL
MOVL
CLRL
DECL
CMPV

BGTR
MOVL
BBC
BRW
BLBC
BRW

#UCB$V_DL_MAPPING,- ;ADAPTER MAPPING?
UCB$W_DL_FLAGS(R5) ,30$;IF BC NO
R1,UCB$L_DL_DPR(R5) ;SAVE DATAPATH REGISTER
#9,#7,UCB$W_DL_BA(R5),RO ;EXTRACT LOW BITS OF FINAL MAP REG NO.
#4,#2,UCB$W_DL_CS(R5),R1 ;EXTRACT HI BITS OF FINAL MAP REG NO.
R1,#7,#2,RO ;INSERT HIGH BITS OF FINAL MAP REGISTER
#495,RO ;LEGAL MAP REGISTER NUMBER?
25$;IF GEQ - YES
#495,RO ;RESTRICT MAP REGISTER NUMBER
(R2) [RO] ,UCB$L_DL_FMPR(R5) ;SAVE FINAL MAP REGISTER NUMBER
UCB$L_DL_PMPR(R5) ;CLEAR PREVIOUS MAP REGISTER CONTENTS
RO ;CALCULATE PREVIOUS MAP REGISTER NUMBER
#VEC$V_MAPREG,#VEC$S_MAPREG,- ;ANY PREVIOUS MAP REGISTER?
CRB$L_INTD+VEC$W_MAPREG(R3),RO ; ...
30$;IF GTR - NO
(R2) [RO] ,UCB$L_DL_PMPR(R5) ;SAVE PREVIOUS MAP REGISTER
#RL_CS_V_CE,UCB$W_DL_CS(R5),40$;IF CLR - NO RL ERRORS
RETREG ;DEVICE ERROR
UCB$B_DL_DPPE(R5) ,45$;IF CLR - NO PURGE ERROR
RETREG ;PURGE ERROR

RETURN HEADER INFORMATION FOR READ HEADER FUNCTION

45$:

50$:

CMPB
BNEQ
PUSHL
PUSHL
MOVAB
MOVL
CMPW
BLSSU
MOVZWL
SUBW3
JSB
POPL
POPL

#CDF_READHEAD,UCB$B_CEX(R5) ;READ HEADER FUNCTION?
DATACHECK ;IF NEQ - NO
UCB$W_BCR(R5) ;SAVE NEG BYTES REMAINING
UCB$L_SVAPTE(R5) ;SAVE ADDRESS OF PTE
UCB$W_DL_DB(R5),R1 ;SET ADDRESS OF INTERNAL BUFFER
#6,R2 ;SET NUMBER OF BYTES TO MOVE
R2,UCB$W_BCNT(R5) ;ROOM FOR FULL HEADER?
50$;IF LSSU - YES
UCB$W_BCNT(R5),R2 ;SET LENGTH OF PARTIAL HEADER
UCB$W_BCNT(R5),R2,UCB$W_BCR(R5) ;CALCULATE TRANSFER BYTE COUNT
GAIOC$MOVTOUSER ;MOVE HEADER TO USER BUFFER
UCB$L_SVAPTE(R5) ;RESTORE ADDRESS OF PTE
UCB$W_BCR(R5) ;RESTORE NEG BYTES REMAINING

PERFORM DATA CHECK, IF REQUESTED

DATACHECK:
BBC

BBSC

INCB
MOVZBL
BRW

#IO$V_DATACHECK,­
UCB$W_FUNC(R5) ,UPDATE
#O,UCB$B_DL_DCHEK(R5),­
UPDATE
UCB$B_DL_DCHEK(R5)
#IO$...:WRITECHECK,R3
XFER

;DATACHECK AFTER PARTIAL TRANSFER
;IF CLR - DATA CHECK NOT REQUESTED

;IF SET - DATA CHECK ALREADY PERFORMED

;SET DATA CHECK IN PROGRESS
;SET CASE INDEX TO WRITE CHECK
;BRANCH TO PERFORM WRITE CHECK

UPDATE BUFFER ADDRESS, CURRENT DISK ADDRESS, AND BYTES REMAINING
FOR NEXT TRANSFER

UPDATE:
BBC

BICB3

MOVW

#UCB$V_DL_MAPPING,­
UCB$W_DL_FLAGS(R5) ,10$
#AXCF,UCB$W_DL_CS(R5),­
UCB$B_DL_XBA(R5)
UCB$W_DL_BA(R5),­
UCB$W_DL_SBA(R5)

;UPDATE TRANSFER PARAMETERS
;ADAPTER MAPPING?
;IF BC NO
;SAVE MEMORY EXTENSION BITS

;UPDATE SAVED BUFFER ADDRESS

E-23

Sample Driver for the RL 11, RL01, and RL02

10$: CLRB
ADDL3
EXTZV
MOVB
EXTZV
MOVW
ADDW

BEQL
BRW

UCB$W_DA(R5) ;UPDATE DESIRED SECTOR TO ZERO
#A0100,UCB$W_DL_DA(R5),R1 ;INCREMENT CYLINDER & SURFACE
#6,#1,R1,R2 ;EXTRACT DESIRED DISK SURFACE
R2,UCB$W_DA+1(R5) ;UPDATE DESIRED DISK SURFACE
#7,#9,R1,R2 ;EXTRACT DESIRED DISK CYLINDER
R2,UCB$W_DC(R5) ;UPDATE DESIRED DISK CYLINDER
UCB$W_DL_PBCR(R5),- ;UPDATE NEG BYTES REMAINING TO XFER
UCB$W_BCR(R5) , ...
RETREG ;IF EQL - TRANSFER COMPLETE
FDISPATCH ;MORE BYTES REMAINING - CONTINUE

GET STATUS AND RESET ERRORS

RETREG: ;GET STATUS AND RESET ERRORS

FOR A READ OPERATION WHEN NO ADAPTER MAPPING IS PRESENT
EMPTY INTERNAL BUFFER INTO USER'S BUFFER FOR LAST READ

BSBW DL_MOVE_TO_BUFFER ;MOVE LAST READ INTO USER'S BUFFER

BITW #UCB$M_TIMOUT!UCB$M_POWER,- ; TIMEOUT OR POWERFAIL?
UCB$L_STS(R5)

BEQL 0$;BR IF NO
IOFORK ;ELSE, FORK

0$: MOVW #RL_DA_M_STS!- ;PUT GET STATUS IN DAR
RL_DA_M_MRK,RL_DA(R4) , ...

CLRL R2 ;CLEAR R2 FOR UNIT NUMBER
INSV UCB$W_UNIT(R5),#8,#8,R2 ;GET UNIT NUMBER
BISW3 R2,#F_GETSTATUS,RL_CS(R4) ;EXECUTE GET STATUS
DEVICELOCK -

LOCKADDR=UCB$L_DLCK(R5),- ;LOCK DEVICE ACCESS
LOCKIPL=UCB$B_DIPL(R5),- ;RAISE IPL
SAVIPL=-(SP),- ;SAVE CURRENT IPL
PRESERVE=NO ;DON'T PRESERVE RO

BSBW DL_WAIT ;WAIT FOR CONTROLLER
MOVW RL_MP(R4),UCB$W_DL_MP(R5) ;RETRIEVE ERROR REGISTER
MOVW #RL_DA_M_RST!- ;PUT GET STATUS & RESET IN DAR

RL_DA_M_STS!RL_DA_M_MRK,RL_DA(R4) , ...
BISW3 R2,#F_GETSTATUS,RL_CS(R4) ;EXECUTE RESET
BSBW DL_WAIT ;WAIT FOR CONTROLLER
DEVICEUNLOCK -

LOCKADDR=UCB$L_DLCK(R5),- ;UNLOCK DEVICE ACCESS
NEWIPL=(SP)+,- ;RESTORE IPL
PRESERVE=NO ;DON'T PRESERVE RO

DETERMINE EXIT - SPECIAL CONDITION, FATAL ERROR, RETRIABLE ERROR, OR SUCCESS

CMPZV

BEQL
BICW
MOVZWL
BRW

1$: BITW

BNEQ

E-24

#0,#5,UCB$W_DL_MP(R5),- ;HEADS, BRUSHES, STATE OK?
#RL_MP_M_BH!RL_MP_M_HO!RL_SLM ; ...
1$;IF EQL - YES, ONLINE
#UCBM_TIMOUT,UCBW_STS(R5) ;CLEAR DEVICE TIME OUT
#SS$_MEDOFL,RO ;SET MEDIUM OFFLINE STATUS
FUNCXT ;RETURN
#UCB$M_POWER!- ;POWER FAIL OR DEVICE TIMEOUT?
UCBM_TIMOUT,UCBW_STS(R5) , ...
SPECOND ;IF NEQ - YES, SPECIAL CONDITION

Sample Driver for the RL 11, RL01, and RL02

2$:

4$:

BBS
BBS
BLBC
JSB
BBS
BBS
BBC
BBC
BBS
BITW

BNEQ

#RL_MP_V_VC,UCB$W_DL_MP(R5),20$;IF SET - VOLUME INVALID
#RL_CS_V_CE,UCB$W_DL_CS(R5),2$;IF SET - RL ERROR
UCB$B_DL_DPPE(R5),10$;IF CLR - NO PURGE ERROR
GAERL$DEVICERR ;ALLOCATE AND FILL ERROR MESSAGE BUFFER
#IO$V_INHRETRY,UCB$W_FUNC(R5),20$;IF SET - RETRY INHIBITED
#RL_CS_V_NXM,UCB$W_DL_CS(R5),20$;IF SET - NONEXISTENT MEMORY
#RL_CS_V_DE,UCB$W_DL_CS(R5),5$;IF CLR - NO DRIVE ERRORS
#RL_MP_V_WL,UCB$W_DL_MP(R5),4$;IF CLR - NOT WRITE LOCKED
#RL_MP_V_WGE,UCB$W_DL_MP(R5),20$;IF WL & WGE SET - WL ERROR
#RL_MP_M_WDE!- ;WRITE DATA ERROR, OR
RL_MP_M_CHE!- ;CURRENT HEAD ERROR, OR
RL_MP_M_WGE!- ;WRITE GATE ERROR, OR
RL_MP_M_DSE,UCB$W_DL_MP(R5) ;DRIVE SELECT ERROR?
20$;IF NEQ - YES

RETRIABLE ERROR EXIT

5$: CVTBL ©UCB$L_DPC(R5),-(SP)
ADDL (SP)+,UCB$L_DPC(R5)

;GET BRANCH DISPLACEMENT
;CALCULATE RETURN ADDRESS - 1

SUCCESSFUL OPERATION EXIT

10$: INCL
JMP

UCB$L_DPC(R5)
©UCB$L_DPC(R5)

;ADJUST TO CORRECT RETURN ADDRESS
;RETURN TO DRIVER

FATAL ERROR EXIT

20$: BRW FATALERR ;FATAL ERROR EXIT

; SPECIAL CONDITION EXIT (POWER FAILURE OR DEVICE TIMEOUT)

SPECOND:
BBS

JSB
BICW
MOVZWL
DECB
BEQL
BRW

RESETXFR:
MOVL
MNEGW
BRW

#UCBV_POWER,UCBW_STS(R5),PWRFAIL ;IF SET - POWER FAILURE
;IF CLR - DEVICE TIMEOUT

GAERL$DEVICTMO ;LOG DEVICE TIMEOUT
#UCBM_TIMOUT,UCBW_STS(R5) ;CLEAR TIMEOUT STATUS
#SS$_TIMEOUT,RO ;SET DEVICE TIMEOUT STATUS
UCB$B_ERTCNT(R5) ;ANY ERROR RETRIES REMAINING?
RESETXFR ;IF EQL - NO
FDISPATCH ;RETURN

;RESET TRANSFER BYTE COUNT
UCB$L_IRP(R5),R3 ;GET ADDRESS OF I/0 PACKET
IRP$W_BCNT(R3),UCB$W_BCR(R5) ;RESET BYTE COUNT
FUNCXT ;EXIT

E-25

Sample Driver for the RL 11, RL01, and RL02

PWRFAIL:

50$:

;++

BICW
TSTW
BEQL
BBC

RELDPR
RELMPR
REL CHAN

;POWER FAILURE
#UCBM_POWER,UCBW_STS(R5) ;CLEAR POWER FAILURE BIT
UCB$W_DL_DPN(R5) ;ARE UCB RESOURCES ALLOCATED?
50$;IF EQL - NO
#UCB$V_DL_MAPPING,- ;ADAPTER MAPPING?
UCB$W_DL_FLAGS(R5),50$;IF BC NO

;RELEASE DATA PATH
;RELEASE MAP REGISTERS

MOVL UCB$L_IRP(R5),R3
;RELEASE CHANNEL IF OWNED
;GET ADDRESS OF I/0 PACKET
;RESTORE TRANSFER PARAMETERS MOVQ IRP$L_SVAPTE(R3),-

BRW
.PAGE

UCB$L_SVAPTE(R5)
PREPROCESS ;RETURN TO PREPROCESS UCB FIELDS

.SBTTL INTERRUPT SERVICE ROUTINE

DL$INT - RL11 INTERRUPT SERVICE ROUTINE

FUNCTIONAL DESCRIPTION:

THIS ROUTINE IS ENTERED VIA A JSB INSTRUCTION WHEN AN INTERRUPT
OCCURS ON AN.RL11 DISK CONTROLLER. IF THE INTERRUPT IS NOT EXPECTED,
THE UNSOLICITED INTERRUPT ROUTINE DISMISSES THE INTERRUPT. IF
THE INTERRUPT IS EXPECTED, DEVICE REGISTERS ARE SAVED AND THE
DRIVER IS CALLED AT ITS INTERRUPT RETURN ADDRESS. THE DRIVER FORKS,
CAUSING A RETURN TO THIS ROUTINE, WHICH RESTORES GENERAL REGISTERS
AND DISMISSES THE INTERRUPT.

INPUTS:

OO(SP) - POINTER TO ADDRESS OF THE IDB
04(SP) - SAVED RO
08(SP) - SAVED R1
12(SP) - SAVED R2
16(SP) - SAVED R3
20(SP) - SAVED R4
24(SP) - SAVED R5
28(SP) - PC AT THE TIME OF THE INTERRUPT
32(SP) - PSL AT THE TIME OF THE INTERRUPT

OUTPUTS:

DL_INT::

E-26

DEVICE REGISTERS ARE SAVED, IPL IS LOWERED TO FORK LEVEL, THE
INTERRUPT IS DISMISSED, ALL REGISTERS EXCEPT RO-R5 ARE PRESERVED.

MOVL ©(SP)+,R3
ASSUME IDB$L_CSR EQ 0
ASSUME IDB$L_OWNER EQ 4
MOVQ (R3),R4
TSTL R5
BEQL DL_UNSOLNT
DEVICELOCK -

;INTERRUPT SERVICE ROUTINE
;REMOVE ADDRESS OF IDB FROM STACK

;GET ADDRESS OF CSR AND UCB
;IS R5 A ZERO
;IF EQL NO OWNER

LOCKADDR=UCB$L_DLCK(R5) ,- ;LOCK DEVICE ACCESS
CONDITION=NOSETIPL,- ;DON'T CHANGE IPL
PRESERVE=NO ;DON'T PRESERVE RO

BBCC #UCB$V_INT,- ;IF CLR - INTERRUPT NOT EXPECTED
UCB$W_STS(R5),40$, ...

Sample Driver for the RL 11, RL01, and RL02

10$:

20$:

CMPB
BNEQ
MOVW
MOVW
MOVW

MOVAB
MOVAB
MOVW
MOVW
MOVW
MOVW

MOVQ
JSB

#CDF_READHEAD,UCB$B_CEX(R5) ;READ HEADER FUNCTION?
10$;IF NEQ - NO
RL_MP(R4),UCB$W_DL_DB(R5) ;SAVE SECTOR HEADER INFORMATION
RL_MP(R4),UCB$W_DL_DB+2(R5) , .. .
RL_MP(R4),UCB$W_DL_DB+4(R5) , .. .

RL_CS(R4) ,R2 ;GET ADDRESS OF CONTROL STATUS REGISTER
UCB$W_DL_CS(R5),R3 ;GET ADDRESS OF REGISTER SAVE AREA
(R2)+,(R3)+ ;SAVE CONTROL STATUS REGISTER
(R2)+,(R3)+ ;SAVE BUFFER ADDRESS REGISTER
(R2)+,(R3)+ ;SAVE DISK ADDRESS REGISTER
(R2)+,(R3)+ ;SAVE MULTIPURPOSE REGISTER

UCB$L_FR3(R5),R3
©UCB$L_FPC(R5)

;RESTORE DRIVER CONTEXT
;CALL DRIVER AT INTERRUPT RETURN ADDRESS

40$: DEVICEUNLOCK -
LOCKADDR=UCB$L_DLCK(R5) ,- ;UNLOCK DEVICE ACCESS
PRESERVE=NO ;DON'T PRESERVE RO

DL_UNSOLNT: ;UNSOLICITED INTERRUPT
;RESTORE RO-R5 POPR #AM<RO,R1,R2,R3,R4,R5>

REI ;RETURN FROM INTERRUPT
.PAGE
.SBTTL REGISTER DUMP ROUTINE

;++

DL_REGDUMP - REGISTER DUMP ROUTINE

FUNCTIONAL DESCRIPTION:

THIS ROUTINE IS CALLED TO SAVE THE DEVICE REGISTERS AND UBA RESOURCE
REGISTERS IN A SPECIFIED BUFFER. IT IS CALLED FROM THE DEVICE ERROR
LOGGING ROUTINE AND FROM THE DIAGNOSTIC BUFFER FILL ROUTINE.

INPUTS:

RO - ADDRESS OF REGISTER SAVE BUFFER
R4 - ADDRESS OF DEVICE CONTROL STATUS REGISTER (CSR)
R5 - ADDRESS OF UNIT CONTROL BLOCK (UCB)

OUTPUTS:

THE DEVICE AND UBA REGISTERS ARE SAVED IN THE SPECIFIED BUFFER.
RO CONTAINS THE ADDRESS OF THE NEXT EMPTY LONGWORD IN THE BUFFER.
ALL REGISTERS EXCEPT R1 AND R2 ARE PRESERVED.

DL_REGDUMP:
MOVL
MOVAL
MOVZBL

10$: MOVZWL
SO BG TR
MOVZWL
MOVL
MOVL
MOVL
MOVZBL
RSB

#<RL_NUM_REGS+5>, (RO)+
UCB$W_DL_CS(R5),R1
#RL_NUM_REGS,R2
(R1)+,(RO)+
R2, 10$
(R1)+,(RO)+
(R1)+,(RO)+
(R1)+,(RO)+
(R1)+,(RO)+
(R1) +, (RO)+

;REGISTER DUMP ROUTINE
;INSERT NUMBER OF REGISTERS
;GET ADDRESS OF SAVED DEVICE REGISTERS
;GET NUMBER OF DEVICE REGISTERS TO MOVE
;DUMP REGISTER IN BUFFER
;IF GTR - STILL MORE TO MOVE
;DUMP DATAPATH NUMBER
;DUMP DATAPATH REGISTER
;DUMP FINAL MAP REGISTER
;DUMP PREVIOUS MAP REGISTER
;DUMP DATAPATH PURGE ERROR REGISTER
;RETURN

E-27

Sample Driver for the RL 11, RL01, and RL02

.PAGE

.SBTTL MOVE TO USER BUFFER ROUTINE
;++

DL_MOVE_TO_BUFFER - MOVE TO USER BUFFER

FUNCTIONAL DESCRIPTION:

THIS ROUTINE MOVES DATA BETWEEN THE PHYSICALLY CONTIGUOUS BUFFER AND
THE USER'S BUFFER.

INPUTS:

R5 - UCB ADDRESS

OUTPUTS:

DATA MOVE BETWEEN THE PHYSICALLY CONTIGUOUS BUFFER AND THE USER'S BUFFER.
REGISTER'S RO,R1, AND R2 ARE DESTROYED

DL_MOVE_TO_BUFFER: ;BUFFER MOVE ROUTINE

10$:

20$:

E-28

BBS #UCB$V_DL_MAPPING,- ;ADAPTER MAPPING?

CMPB
BNEQ
BBS

TSTL
BEQL
MOVL
MOVL
MOVZWL
JSB
MOVL
MOVAB

RSB

UCB$W_DL_FLAGS(R5),10$;IF BS YES NOTHING TO MOVE
#CDF_READDATA,UCB$B_CEX(R5);READ DATA OPERATION?
10$;IF NEQ NOT A READ
#O,UCB$B_DL_DCHEK(R5),- ;DATA CHECK IN PROGRESS?
10$;IF BS YES NOTHING TO MOVE
UCB$A_DL_MOVRTN(R5) ;ANYTHING TO MOVE?
20$;IF EQL NO
UCB$L_DL_BUFADR(R5),RO ;GET USER BUFFER POINTER
UCB$A_DL_BUF_VA(R5),R1 ;GET PHYSICALLY CONTIGUOUS BUFFER ADDRESS
UCB$W_DL_PBCR(R5),R2 ;GET NUMBER OF BYTES TO TRANSFER
©UCB$A_DL_MOVRTN(R5) ;CALL MOVE ROUTINE
RO,UCB$L_DL_BUFADR(R5) ;SAVE INTERNAL BUFFER POINTER
G-IOC$MOVTOUSER2,- ;SET NEXT MOVE ROUTINE TO BE USED
UCB$A_DL_MOVRTN(R5)

;RETURN

MOVAB G-IOC$MOVTOUSER,- ;SET NEXT MOVE ROUTINE TO BE USED
UCB$A_DL_MOVRTN(R5)

RSB ;RETURN

Sample Driver for the RL 11, RL01, and RL02

.PAGE

.SBTTL MOVE FROM USER BUFFER ROUTINE
;++

DL_MOVE_FROM_BUFFER - MOVE FROM USER BUFFER

FUNCTIONAL DESCRIPTION:

THIS ROUTINE MOVES DATA BETWEEN THE PHYSICALLY CONTIGUOUS BUFFER AND
THE USER'S BUFFER.

INPUTS:

R5 - UCB ADDRESS

OUTPUTS:

DATA MOVE BETWEEN THE PHYSICALLY CONTIGUOUS BUFFER AND THE USER'S BUFFER.
REGISTER'S RO,R1, AND R2 ARE DESTROYED

DL_MOVE_FROM_BUFFER: ;BUFFER MOVE ROUTINE

10$:

DL_END:

BBS #UCB$V_DL_MAPPING,- ;ADAPTER MAPPING?

CMPB
BNEQ
BBS

MOVL
MOVL
MOVZWL
JSB
MOVL
MOVAB

RSB

.END

UCB$W_DL_FLAGS(R5),10$;IF BS YES NOTHING TO MOVE
#CDF_WRITEDATA,UCB$B_CEX(R5);WRITE DATA OPERATION?
10$;IF NEQ NOT A WRITE
#O,UCB$B_DL_DCHEK(R5) ,- ;DATA CHECK IN PROGRESS?
10$;IF BS YES NOTHING TO MOVE
UCB$L_DL_BUFADR(R5),RO ;GET USER BUFFER POINTER
UCB$A_DL_BUF_VA(R5) ,R1 ;GET PHYSICALLY CONTIGUOUS BUFFER ADDRESS
UCB$W_DL_PBCR(R5),R2 ;GET NUMBER OF BYTES TO TRANSFER
©UCB$A_DL_MOVRTN(R5) ;CALL MOVE ROUTINE
RO,UCB$L_DL_BUFADR(R5) ;SAVE INTERNAL BUFFER POINTER
G-IOC$MOVFRUSER2,- ;SET NEXT MOVE ROUTINE TO BE USED
UCB$A_DL_MOVRTN(R5)

;RETURN

;ADDRESS OF LAST LOCATION IN DRIVER

E-29

f Sample Driver for the DR 11-W and DRV11-WA

The following driver, XADRIVER, controls the DRll-W, a 16-bit parallel
DMA interface on UNIBUS systems. The driver also controls the DRVl 1-
WA, a 16-bit parallel DMA interface on the Q22 bus. Operational details
of these devices, as well as the capabilities controlled by the driver, can be
found in the VMS·l/O User's Reference Manual: Part II.

You can find an online copy of the driver code (XADRIVER.MAR) in
SYS$EXAMPLES .

. TITLE XADRIVER - VAX/VMS DR11-W AND DRV11-WA DRIVER

. !DENT 'X-15'

;**
;* *
;* COPYRIGHT (c) 1978, 1980, 1982, 1984, 1985, 1986 BY *
;* DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS. *
;* ALL RIGHTS RESERVED. *
;* *
;* THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED *
;* ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE *
;* INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER *
;* COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY *
;* OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY *
;* TRANSFERRED. *
;* *
;* THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE *
;* AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT *
;* CORPORATION. *
;* *
;* DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS *
;* SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL. *
;* *
;* *
;**

;++

FACILITY:

VAX/VMS Executive, I/O Drivers

ABSTRACT:

This module contains the driver for the DR11-W (Unibus) and
DRV11-WA (Q-bus). Since the driver was originally written for
the DR11-W, m~ny inline comments refer to the "DR11-W" and "Unibus"
but apply equally well to the DRV11-WA and the Q-bus.

For DR11-W users:
This driver works for all hardware revision levels of
the DR11-W.

For DRV11-WA users:
This driver works for all hardware revision levels of
the DR''11-WA, up through and including CS Rev C.

F-1

Sample Driver for the DR 11-W and DRV11-WA

P1
P2
P3
P4
P5
P6

ENVIRONMENT:

BECAUSE ETCH REVISION E OF THE DRV11-WA
PROVIDES SEVERAL CUSTOMER MODIFIABLE SETTINGS,
IT IS VERY IMPORTANT THAT THE USERS OF THIS
BOARD PROPERLY CONFIGURE IT TO BE BACKWARDS
COMPATIBLE WITH EARLIER REVISIONS OF THE
DRV11-WA. SPECIFICALLY, ON ETCH REVISION E
BOARDS, JUMPERS W2, W3, AND W6 MUST BE INSTALLED.

Kernel Mode, Non-paged

.SBTTL External and local symbol definitions

External symbols

$A CB DEF
$ADP DEF
$CRBDEF
$DCDEF
$DDBDEF
$DEVDEF
$DPTDEF
$DYNDEF
$EMBDEF
$IDBDEF
$IODEF
$IPLDEF
$IRPDEF
$PRDEF
$PRIDEF
$SSDEF
$UCBDEF
$VECDEF
$XADEF

Local symbols

AST control block
Adapter control block
Channel request block
Device types
Device data block
Device characteristics
Driver prologue table
Dynamic data structure types
EMB off sets
Interrupt data block
I/O function codes
Hardware IPL definitions
I/O request packet
Internal processor registers
Scheduler priority increments
System status codes
Unit control block
Interrupt vector block
Define device specific characteristics

Argument list (AP) off sets for device-dependent QIO parameters

= 0
4
8
12
16
20

First QIO parameter
Second QIO parameter
Third QIO parameter
Fourth QIO parameter
Fifth QIO parameter
Sixth QIO parameter

; Other constants

XA_DEF TIMEOUT 10
XA_DEF_BUFSIZ 65535
XA_RESET_DELAY = <<2+9>/10>

10 s.econd default device timeout
Default buffer size
Delay N microseconds after RESET

(rounded up to 10 microsec intervals)

DR11-W definitions that follow the standard UCB fields
*** N 0 T E *** ORDER OF THESE UCB FIELDS IS ASSUMED

F-2

Sample Driver for the DR11-W and DRV11-WA

$DEFINI UCB
.=UCB$L_DPC+4

$DEF UCB$L_XA_ATTN Attention AST listhead
.BLKL 1

$DEF UCB$W_XA_CSRTMP Temporary storage of CSR image
.BLKW 1

$DEF UCB$W_XA_BARTMP Temporary storage of BAR image
.BLKW 1

$DEF UCB$W_XA_CSR Saved CSR on interrupt
.BLKW 1

$DEF UCB$W_XA_EIR Saved EIR on interrupt
.BLKW 1

$DEF UCB$W_XA_IDR Saved IDR on interrupt
.BLKW 1

$DEF UCB$W_XA_BAR Saved BAR register on interrupt
.BLKW 1

$DEF UCB$W_XA_WCR Saved WCR register on interrupt
.BLKW 1

$DEF UCB$W_XA_ERROR Saved device status flag
.BLKW 1

$DEF UCB$L_XA_DPR Data Path Register contents
.BLKL 1

$DEF UCB$L_XA_FMPR Final Map Register contents
.BLKL 1

$DEF UCB$L_XA_PMPR Previous Map Register contents
.BLKL 1

$DEF UCB$W_XA_DPRN Saved Datapath Register Number
.BLKW 1 And Datapath Parity error flag

$DEF UCB$W_XA_BAETMP Temporary storage of BAE (DRV11-WA
.BLKW 1 only)

$DEF UCB$W_XA_BAE Saved BAE register (DRV11-WA only)
.BLKW 1

Bit positions for device-dependent status field in UCB

$VIELD UCB,O,<-
<ATTNAST, ,M> ,­
<UNEXPT, , M>, -
<IGNORE_UNEXPT, ,M>,-
>

UCB$K_SIZE=.
$DEFEND UCB

UCB device specific bit definitions
ATTN AST requested
Unexpected interrupt received
Ignore initial interrupt on DRV11-WA

; Device register off sets from CSR address

$DEFINI XA Start of DR11-W definitions
$DEF XA_WCR Word count

.BLKW 1
$DEF XA_BAR Buff er address
$DEF XA_BAE Buff er address extension (DRV11-WA)

.BLKW 1
$DEF XA_CSR Control/status

; Bit positions for device control/status register

$EQULST XA$K_, ,0,1,<­
<FNCT1,2>­
<FNCT2,4>­
<FNCT3,8>­
<STATUSA,2048>­
<STATUSB,1024>­
<STATUSC,512>-

>

; Define CSR FrCT bit values

Define CSR STATUS bit values

F-3

Sample Driver for the DR11-W and DRV11-WA

$VIELD XA_CSR,O,<- Control/status register
<GO, ,M>, - Start device
<FNCT,3,M>,- CSR FNCT bits
<XBA,2,M>,- Extended address bits
<IE, ,M> ,- Enable interrupts
<RDY, ,M>, - Device ready for command
<CYCLE, , M>, - Starts slave transmit
<STATUS,3,M>,- CSR STATUS bits
<MAINT, ,M>, - Maintenance bit
<ATTN, ,M>, - Status from other processor
<NEX, ,M>, - Nonexistent memory flag
<ERROR, ,M>, - Error or external interrupt

>

$VIELD XA_BAE,O,<- Extended bus address register
<MSB_ADDR,6,M>,- Qbus physical address <22:16>
<,9,>,-
<CS_REV_C, ,M>,- true if DRV11-WA CS Rev c

>

$DEF XA_EIR ; Error information register

Bit positions for error information register

$VIELD XA_EIR,O,<- Error information register
<REGFLG, , M> , - Flags whether EIR or CSR is accessed
<SPARE,7,M>,- Unused - spare
<BURST, ,M>, - Burst mode transfer occurred
<DLT, ,M>,- Timeout for successive burst xf er
<PAR, ,M>,- Parity error during DATI/P
<ACLO, ,M>, - Power fail on this processor
<MULTI, ,M>, - Multi-cycle request error
<ATTN, ,M>, - ATTN - same as in CSR
<NEX, ,M>,- NEX - same as in CSR
<ERROR, , M>, - ERROR - same as in CSR

>
.BLKW 1

$DEF XA_IDR Input Data Buff er register
$DEF XA_ODR Output Data Buff er register

.BLKW 1

$DEFEND XA End of DR11-W definitions

.SBTTL Device Driver Tables

Driver prologue table

F-4

Sample Driver for the DR11-W and DRV11-WA

DP TAB
END=XA_END,­
ADAPTER=UBA,­
FLAGS=DPT$M_SVP,­
UCBSIZE=UCB$K_SIZE,­
NAME=XADRIVER

DPT-creation macro
End of driver label
Adapter type
Allocate system page table
UCB size
Driver name

DPT_STORE INIT Start of load
; initialization table

DPT_STORE UCB,UCBB_FLCK,B,SPLC_IOLOCK8 ; Device fork IPL
DPT_STORE UCB,UCB$B_DIPL,B,22 Device interrupt IPL
DPT_STORE UCB,UCB$L_DEVCHAR,L,<- Device characteristics

DEV$M_AVL!- Available
DEV$M_RTM!- Real Time device
DEV$M_ELG!- Error Logging enabled
DEV$M_IDV!- input device
DEV$M_ODV> ; output device

DPT_STORE UCB,UCB$B_DEVCLASS,B,DC$_REALTIME ; Device class
DPT_STORE UCB,UCB$B_DEVTYPE,B,DT$_DR11W Device Type
DPT_STORE UCB,UCB$W_DEVBUFSIZ,W,- Default buffer size

XA_DEF_BUFSIZ
DPT_STORE REINIT Start of reload

DPT_STORE DDB,DDBL_DDT,D,XADDT
DPT_STORE CRB,CRB$L_INTD+4,D,-

initialization table
Address of DDT
Address of interrupt
service routine
Address of controller
initialization routine
End of initialization
tables

XA_INTERRUPT ;
DPT_STORE CRB,CRB$L_INTD+VEC$L_INITIAL,-;

D,XA_CONTROL_INIT
DPT_STORE END

Driver dispatch table

DDTAB DDT-creation macro
DEVNAM=XA,- Name of device
START=XA_START,- Start I/O routine
FUNCTB=XA_FUNCTABLE,- FDT address
CANCEL=XA_CANCEL,- Cancel I/O routine
REGDMP=XA_REGDUMP,- Register dump routine
DIAGBF=<<15*4>+<<3+5+1>*4>>,- ; Diagnostic buffer size
ERLGBF=<<15*4>+<1*4>+<EMB$L_DV_REGSAV>> ; Error log buffer size

Function dispatch table

XA_FUNCTABLE: ; FDT for driver
FUNCTAB - ; Valid I/0 functions

<READPBLK,READLBLK,READVBLK,WRITEPBLK,WRITELBLK,WRITEVBLK,­
SETMODE,SETCHAR,SENSEMODE,SENSECHAR>

FUNCTAB , ; No buffered functions
FUNCTAB XA_READ_WRITE,- ; Device-specific FDT

<READPBLK,READLBLK,READVBLK,WRITEPBLK,WRITELBLK,WRITEVBLK>
FUNCTAB +EXE$READ,<READPBLK,READLBLK,READVBLK>
FUNCTAB +EXE$WRITE,<WRITEPBLK,WRITELBLK,WRITEVBLK>
FUNCTAB XA_SETMODE,<SETMODE,SETCHAR>
FUNCTAB +EXE$SENSEMODE,<SENSEMODE,SENSECHAR>

.SBTTL XA_CONTROL_INIT, Controller initialization

F-5

Sample Driver for the DR11-W and DRV11-WA

;++
XA_CONTROL_INIT, Called when driver is loaded, system is booted, or
power failure recovery.

Functional Description:

1) Allocates the direct data path permanently
2) Assigns the controller data channel permanently
3) Clears the Control and Status Register
4) If power recovery, requests device time-out

Inputs:

R4 address of CSR
R5 address of IDB
R6 address of DDB
R8 address of CRB

Outputs:

VEC$V_PATHLOCK bit set in CRB$L_INTD+VEC$B_DATAPATH
UCB address placed into IDB$L_OWNER

XA_CONTROL_INIT:

1$:

;+

MOVL IDB$L_UCBLST(R5),RO ; Address of UCB
MOVL RO,IDB$L_OWNER(R5) ; Make permanent controller owner
BISW #UCBM_ONLINE,UCBW_STS(RO)

ADPDISP SELECT=ADAP_MAPPING,­
ADDRLIST=<<YES,1$>>,­
CRBADDR=R8,­
SCRATCH=R1

BUG_CHECK UNSUPRTCPU,FATAL
ADPDISP SELECT=QBUS,­

ADDRLIST=<<N0,9$>>,­
ADPADDR=R1

MOVB #DT$_XA_DRV11WA,-
UCB$B_DEVTYPE(RO)

Set device status "on-line"
; Check for adapter mapping

DRV11-WA not supported on non-mapping adapter
Check for QBUS machine

If this is a Q-bus, then this is
a DRV11-WA rather than a DR11-W.

DRV11-WAs at CS revision B and earlier incorrectly generated an interrupt
whenever the Interrupt Enable control bit (IE) underwent a low to high
transition. This phenomenon does not occur in boards at CS revision C.

To account for this unsoliciated interrupt, IGNORE_UNEXPT is set at
initialization for all DRV11-WAs at CS revisions prior to C. When this
bit is set, the next unexpected interrupt (as determined by the INT bit
in UCB status word, which is set whenever an I/O request is outstanding)
is discarded. The IGNORE_UNEXPT flag is necessary because driver
initialization occurs at a different IPL from the interrupt handling
routine.

BICW

TSTW
MOVW

BBS

#UCB$M_IGNORE_µNEXPT,-
UCB$W_DEVSTS(RO)

XA_BAR(R4)
XA_BAE(R4) ,R1

#XA_BAE$V_CS_REV_C,R1,9$

start out assuming this is a
CS Rev C DRV11-WA

BAR and BAE share the same physical
address -- they must be read in order.

branch around if CS Rev C

F-6

Sample Driver for the DR11-W and DRV11-WA

BAE<15> is always set if the DRV11-WA is at CS Rev C or later.

BISW #UCB$M_IGNORE_UNEXPT,­
UCB$W_DEVSTS(RO)

; set flag so all interrupts are
; discarded until further notice

If powerfail has occurred and device was active, force device timeout.
The user can set his own timeout interval for each request. Timeout
is forced so a very long timeout period will be short circuited.

9$:

10$:

;++

BBS #UCBV_POWER,UCBW_STS(R0),10$
; Branch if powerf ail

BISB #VEC$M_PATHLOCK,CRB$L_INTD+VEC$B_DATAPATH(R8)

BSBW
RSB

XA_DEV_HWRESET
Permanently allocate direct datapath

Done

.SBTTL XA_READ_WRITE, FDT for device data transfers

XA_READ_WRITE, FDT for READLBLK,READVBLK,READPBLK,WRITELBLK,WRITEVBLK,
WRITEPBLK

Functional description:

1) Rejects QUEUE I/O's with odd transfer count
2) Rejects QUEUE I/O's for BLOCK MODE request to UBA Direct

PATH on odd byte boundary
3) Stores request timeout count specified in P3 into !RP
4) Stores FNCT bits specified in P4 into !RP
5) Stores word to write into ODR from P5 into !RP
6) Checks block mode transfers for memory modify access

Inputs:

R3 = Address
R4 = Address
R5 = Address

of
of
of

!RP
PCB
UCB

R6
R8
AP

= Address of CCB
= Address of FDT routine

Address of P1
P1 = Buff er Address
P2 = Buff er size in bytes

Data

P3 = Request timeout period (conditional on IO$M_TIMED)

Outputs:

P4 = Value for CSR FNCT bits (conditional on IO$M_SETFNCT)
P5 = Value for ODR (conditional on IO$M_SETFNCT)
P6 = Address of Diagnostic Buff er

RO = Error status if odd transfer count
IRP$L_MEDIA = Timeout count for this request
IRP$L_SEGVBN = FNCT bits for DR11-W CSR and ODR image

XA_READ_WRITE:

The IO$M_INHERLOG ("inhibit error logging") function modifier was not
intended to be used by this driver. However, since the definition for
the IO$M_RESET modifier used to be the same as that for IO$M_INHERLOG,
the error logging routine incorrectly used the IO$M_RESET bit to
determine whether it should log errors. To solve this problem, the
definition for IO$M_RESET was changed. For the sake of old programs, we
manually move the RESET bit to its new location.

F-7

Sample Driver for the DR11-W and DRV11-WA

1$:
2$:
5$:
10$:

15$:

20$:

BBCC #IO$V_INHERLOG,IRP$W_FUNC(R3),1$
; Branch if old reset bit not set

BISW #IOM_RESET,IRPW_FUNC(R3)

BLBC
MOVZWL
JMP
MOVZWL
MOVL
BBS
MOVL

BBC
EXTZV
CMPB

BEQL
CMPB
BEQL
MOVZWL
BRB
EXTZV
ASHL
MOVW

Set new reset bit
P2(AP),10$ Branch if transfer count even
#SS$_BADPARAM,RO Set error status code
G-EXE$ABORTIO Abort request
IRP$W_FUNC(R3),R1 Fetch I/0 Function code
P3(AP),IRP$L_MEDIA(R3) Set request specific timeout count
#IO$V_TIMED,R1,15$; Branch if timeout specified
#XA_DEF_TIMEOUT,IRP$L_MEDIA(R3)

; Else set default timeout value
#IO$V_DIAGNOSTIC,R1,20$; Branch if not maintenance request
#IO$V_FCODE,#IO$S_FCODE,R1,R1 ; AND out all function modifiers
#IO$_READPBLK,R1 ; If maintenance function, must be

; physical I/O read or write
20$
#IO$_WRITEPBLK,R1
20$
#SS$_NOPRIV,RO ; No privilege for operation
5$; Abort request
#0,#3,P4(AP),RO ; Get value for FNCT bits
#XA_CSRV_FNCT,RO,IRPL_SEGVBN(R3) ; Shift into position for CSR
P5(AP),IRP$L_SEGVBN+2(R3) ; Store ODR value for later

If this is a block mode transfer, check buffer for modify access
whether or not the function is read or write. The DR11-W does
not decide whether to read or write, the user's device does.
For word mode requests, return to read check or write check.

If this is a BLOCK MODE request and the UBA Direct Data Path is
in use, check the data buffer address for word alignment. If buffer
is not word aligned, reject the request.

25$:
30$:

F-8

BBS #IOV_WORD,IRPW_FUNC(R3),30$
; Branch if word mode transfer

BBS #XA$V_DATAPATH,UCB$L_DEVDEPEND(R5),25$

BLBS
JMP
RSB

P1(AP) ,2$
G-EXE$MODIFY

Branch if Buffered Data Path in use
DDP, branch on bad alignment
Check buff er for modify access
Return

.SBTTL XA_SETMODE, Set Mode, Set characteristics FDT

Sample Driver for the DR11-W and DRV11-WA

;++
XA_SETMODE, FDT routine to process SET MODE and SET CHARACTERISTICS

Functional description:

If IO$M_ATTNAST modifier is set, queue attention AST for the device.
If IO$M_DATAPATH modifier is set, queue packet.
Else, finish I/0.

Inputs:

R3 = I/O packet address
R4 = PCB address
R5 = UCB address
R6 = CCB address
R7 = Function code
AP QIO Parameter list address

Outputs:

If IO$M_ATTNAST is specified, queue AST on UCB attention AST list.
If IO$M_DATAPATH is specified, queue packet to driver.
Else, use exec routine to update device characteristics.

XA_SETMODE:
MOVZWL
BBC

IRP$W_FUNC(R3) ,RO
#IO$V_ATTNAST,R0,20$

Get entire function code
Branch if not an ATTN AST

Attention AST request

10$:

PUS HR
MOVAB
JSB
POPR
BLBC
BISW

BBC

#-M<R4,R7>
UCB$L_XA_ATTN(R5),R7 Address of ATTN AST control block list
G-coM$SETATTNAST Set up attention AST
#-M<R4,R7>
R0,50$ Branch if error
#UCB$M_ATTNAST,UCB$W_DEVSTS(R5)

; Flag ATTN AST expected.
#UCBV_UNEXPT,UCBW_DEVSTS(R5) ,10$

Deliver AST if unsolicited interrupt
BSBW DEL_ATTNAST
MOVZBL #SS$_NORMAL,RO Set status
JMP G-EXE$FINISHIOC That's all for now (clears R1)

If modifier IO$M_DATAPATH is set,
queue packet. The data path is changed at driver level to preserve
order with other requests.

20$: BBS

JMP

s-#IO$V_DATAPATH,R0,30$ If BDP modifier set, queue packet

Set device characteristics

; This is a request to change data path useage, queue packet

30$: CMPL
BNEQ
JMP

#IO$_SETCHAR,R7
45$
G-EXE$SETMODE

Error, abort IO

45$:
50$:

MOVZWL #SS$_NOPRIV,RO
CLRL R1
JMP G-EXE$ABORTIO

Set characteristics?
No, must have the privilege
Queue packet to start I/0

No priv for operation

Abort IO on error

F-9

Sample Driver for the DR11-W and DRV11-WA

.SBTTL XA_START, Start I/O routines
;++

XA_START - Start a data transfer, set characteristics, enable ATTN AST.

Functional Description:

This routine has two major functions:

1) Start an I/O transfer. This transfer can be in either word
or block mode. The FNCTN bits in the DR11-W CSR are set. If
the transfer count is zero, the STATUS bits in the DR11-W CSR
are read and the request completed.

2) Set Characteristics. If the function is change data path, the
new data path flag is set in the UCB.

Inputs:

R3 = Address of the I/O request packet
R5 = Address 'of the UCB

Outputs:

RO = final status and number of bytes transferred
R1 = value of CSR STATUS bits and value of input data buff er register
Device errors are logged
Diagnostic buff er is filled

.ENABL LSB

XA_START:

Retrieve the address of the device CSR

ASSUME IDB$L_CSR EQ 0
MOVL UCB$L_CRB(R5),R4 ; Address of CRB
MOVL ©CRB$L_INTD+VEC$L_IDB(R4),R4

; Address of CSR

Fetch the I/0 function code

MOVZWL
MOVW
EXTZV

IRP$W_FUNC(R3),R1 ; Get entire function code
R1,UCB$W_FUNC(R5) ; Save FUNC in UCB for Error Logging
#IO$V_FCODE,#IO$S_FCODE,R1,R2 ; Extract function field

Dispatch on function code. If this is SET CHARACTERISTICS, we will
select a data path for future use.
If this is a transfer function, it will either be processed in word
or block mode.

F-10

CMPB
BNEQ

#IO$_SETCHAR,R2
3$

Set characteristics?

Sample Driver for the DR11-W and DRV11-WA

;++
SET CHARACTERISTICS - Process Set Characteristics QIO function

INPUTS:

XA_DATAPATH bit in Device Characteristics specifies which data path
to use. If bit is a one, use buffered data path. If zero, use
direct datapath.

OUTPUTS:

2$:

CRB is flagged as to which datapath to use.
DEVDEPEND bits in device characteristics is updated

XA_DATAPATH = 1 -> buffered data path in use
XA_DATAPATH = 0 -> direct data path in use

MOVL UCB$L_CRB(R5),RO ; Get CRB address
MOVQ IRP$L_MEDIA(R3),UCB$B_DEVCLASS(R5) ; Set device characteristics
BISB #VEC$M_PATHLOCK,CRB$L_INTD+VEC$B_DATAPATH(RO)

; Assume direct datapath
BBC #XA$V_DATAPATH,UCB$L_DEVDEPEND(R5),2$; Were we right?
BICB #VEC$M_PATHLOCK,CRB$L_INTD+VEC$B_DATAPATH(RO) ; Set buffered datapath

CLRL R1
MOVZWL #SS$_NORMAL,RO
REQCOM

; Return Success

; If subfunction modifier for device reset is set, do one here

3$: BBC
BSBW

s-#IO$V_RESET,R1,4$
XA_DEV_RESET

Branch if not device reset
; Reset DR11-W

This must be a data transfer function - i.e. READ OR WRITE
Check to see if this is a zero length transfer.
If so, only set CSR FNCT bits and return STATUS from CSR

4$: TSTW UCB$W_BCNT(R5) Is transfer count zero?

5$:

6$:

7$:

BNEQ 10$ No, continue with data transfer
BBC s-#IO$V_SETFNCT,R1,6$ Set CSR FNCT specified?
DEVICELOCK -

LOCKADDR=UCB$L_DLCK(R5),- ; Lock device access
SAVIPL=-(SP),- Save current IPL
PRESERVE=NO ; Don't preserve RO

MOVW IRP$L_SEGVBN+2(R3),XA_ODR(R4)

MOVZWL
BICW
BISW
BISW
MOVW
BBC
BICW3

; Store word in ODR
XA_CSR(R4),RO
#<XA_CSR$M_FNCT!XA_CSR$M_ERROR>,RO
IRP$L_SEGVBN(R3),RO
#XA_CSR$M_ATTN,RO ; Force ATTN on to prevent lost interrupt
RO,XA_CSR(R4)
#XAV_LINK,UCBL_DEVDEPEND(R5) ,5$; Link mode?
#XA$K_FNCT2,RO,XA_CSR(R4) ; Make FNCT bit 2 a pulse

DEVICEUNLOCK -

BSBW
BLBS
JSB
JSB
MOVL
MOVZWL

LOCKADDR=UCB$L_DLCK(R5) ,- ; Unlock device access
NEWIPL=(SP)+,- Enable interrupts
PRESERVE= NO

XA_REGISTER
R0,7$
G-ERL$DEVICERR
G-IOC$DIAGBUFILL
UCB$W_XA_CSR(R5) ,R1
UCB$W_XA_ERROR(R5) ,RO

Fetch DR11-W registers
If error, then log it
Log a device error
Fill diagnostic buff er if specified
Return CSR and EIR in R1
Return status in RO

F-11

Sample Driver for the DR11-W and DRV11-WA

BISB
REQCOM

#XA_CSR$M_IE,XA_CSR(R4) ; Enable device interrupts
; Request done

Build CSR image in RO for later use in starting transfers

10$:

20$:

MOVZWL UCB$W_BCNT(R5),RO
DIVL3 #2,RO,UCB$L_XA_DPR(R5)

Fetch byte count
Make byte count into word count

; Set up UCB$W_CSRTMP used for loading CSR later

MOVZWL
BICW
BISW
BBC
BICW
BISB
BBC
BISW

XA_CSR(R4),RO
#-C<XA_CSR$M_FNCT>,RO
#XA_CSR$M_IE!XA_CSR$M_ATTN,RO ; Set Interrupt Enable and ATTN
s-#IO$V_SETFNCT,R1,20$ Set FNCT bits in CSR? .
#<XA_CSR$M_FNCT>,RO Yes, Clear previous FNCT bits
IRP$L_SEGVBN(R3),RO ; OR in new value
s-#IO$V_DIAGNOSTIC,R1,23$; Check for maintenance function
#XA_CSR$M_MAINT,RO Set maintenance bit in CSR image

; Is this a word mode or block mode request?

23$:

;++

MOVW
BBC
BRW

RO,UCB$W_XA_CSRTMP(R5) ; Save CSR image in UCB
s-#IO$V_WORD,R1,BLOCK_MODE ; Check if word or block mode
WORD_MODE ; Branch to handle word mode

BLOCK MODE Process a Block Mode (DMA) transfer request

FUNCTIONAL DESCRIPTION:

This routine takes the buffer address, buffer size, fucntion code,
and function modifier fields from the IRP. It calculates the UNIBUS
address, allocates the UBA map registers, loads the DR11-W device
registers and starts the request.

; Set up UBA
; Start transfer

BLOCK_MODE:

; If IO$M_CYCLE subfunction is specified, set CYCLE bit in CSR image

BBC #IO$V_CYCLE,R1,25$; Set CYCLE bit in CSR?
BISW #XA_CSRM_CYCLE,UCBW_XA_CSRTMP(R5) ; If yes, OR into CSR image

Allocate UBA data path and map registers

25$:
REQDPR
REQMPR
LOADUBA

Request UBA data path
Request UBA map registers
Load UBA map reqisters

Calculate the UNIBUS transfer address for the DR11-W from the UBA
map register address and byte offset.

F-12

Sample Driver for the DR11-W and DRV11-WA

MOVZWL UCB$W_BOFF(R5),R1 ; Byte off set in first page of xf er
MOVL UCB$L_CRB(R5) ,R2 ; Address of CRB
INSV CRB$L_INTD+VEC$W_MAPREG(R2) ,#9,#9,R1

Insert page number
EXTZV #16,#2,R1,R2 Extract bits 17:16 of bus address
CMPB #DT$_DR11W,- If this is a DR11-W,

UCB$B_DEVTYPE(R5)
BEQL 100$ then branch.
MOVW R2,UCB$W_XA_BAETMP(R5) Save value of BAE prior to transfer
CLRL R2 Clear XBA bits

100$: ASHL #XA_CSR$V_XBA,R2,R2 Shift extended memory bits for CSR
BISW #XA_CSR$M_GO,R2 Set 11 G0 11 bit into CSR image
BISW R2,UCB$W_XA_CSRTMP(R5) ; Set into CSR image we are building
BICW3 #<XA_CSR$M_GO!XA_CSR$M_CYCLE>,UCB$W_XA_CSRTMP(R5) ,RO

; CSR image less "GO" and "CYCLE"
BICW3 #XAK_FNCT2,UCBW_XA_CSRTMP(R5),R2 ; CSR image less FNCT bit
MOVW R1,UCB$W_XA_BARTMP(R5) ; Save BAR for error logging

At this juncture:
RO = CSR image less "GO" and "CYCLE"
R1 = low 16 bits of transfer bus address
R2 = CSR image less FNCT bit 2
UCB$L_XA_DPR(R5) = transfer count in words
UCB$W_XA_CSRTMP(R5) = CSR image to start transfer with

Set DR11-W registers and start transfer
Note that read-modify-write cycles are NOT performed to the DR11-W CSR.

2

The CSR is always written directly into. This prevents inadvertently setting
the EIR select flag (writing bit 15) if error happens to become true.

DEVICELOCK -
LOCKADDR=UCB$L_DLCK(R5),- ; Lock device access
SAVIPL=-(SP),- Save current IPL
PRESERVE=NO Don't preserve RO

SETIPL #31,- Raise to IPL POWER
ENVIRON=UNIPROCESSOR

MNEGW UCB$L_XA_DPR(R5),XA_WCR(R4)

MOVW
CMPB

BEQL
MOVW

R1,XA_BAR(R4)
#DT$_DR11W,­

UCB$B_DEVTYPE(R5)
200$
UCB$W_XA_BAETMP(R5),-

XA_BAE(R4)

Load negative of transfer count
Load low 16 bits of bus address
If this is a DR11-W,

then branch.
Load high bits of bus address

200$: MOVW RO,XA_CSR(R4) ; Load CSR image less "GO" and "CYCLE"

26$:

BBC
MOVW
BRB

#XAV_LINK,UCBL_DEVDEPEND(R5) ,26$; Link mode?
R2,XA_CSR(R4) ; Yes, load CSR image less "FNCT" bit 2
126$; Only if link mode in dev characteristics

MOVW UCB$W_XA_CSRTMP(R5) ,XA_CSR(R4) ; Move all bits to CSR

; Wait for transfer complete interrupt, powerfail, or device timeout

126$:
WFIKPCH XA_TIME_OUT,IRP$L_MEDIA(R3) ; Wait for interrupt

Device has interrupted, FORK

IO FORK ; FORK to lower IPL

Handle request completion, release UBA resources, check for errors

F-13

Sample Driver for the DR11-W and DRV11-WA

27$:

300$:
310$:

28$:

MOVZWL
CLRW
PURDPR
BLBS
MOVZWL
INCB
MOVL
EXTZV

MOVB
EXTZV
CMPB

BEQL
MOVZWL
BRB
EXTZV
INSV
CMPW
BGTR
MOVL
CLRL
DECL
CMPV

BGTR
MOVL
RELMPR
RELDPR

#SS$_NORMAL,-(SP)
UCB$W_XA_DPRN(R5)

Assume success, store code on stack
Clear DPR number and DPR error flag
Purge UBA buffered data path

R0,27$ Branch if no datapath error
#SS$_PARITY,(SP) Flag parity error on device
UCB$W_XA_DPRN+1(R5) Flag PDR error for log
R1,UCB$L_XA_DPR(R5) Save data path register in UCB
#VEC$V_DATAPATH,- Get Datapath register no.
#VEC$S_DATAPATH,- ; For Error Log
CRB$L_INTD+VEC$B_DATAPATH(R3),RO
RO,UCB$W_XA_DPRN(R5) ; Save for later in UCB
#9,#7,UCB$W_XA_BAR(R5),RO; Low bits, final map register no.
#DT$_DR11W,- If this is a DR11-W,

UCB$B_DEVTYPE(R5)
300$
UCB$W_XA_BAE(R5) ,R1
310$

then branch.
Fetch high bits of map register no.

#4,#2,UCB$W_XA_CSR(R5),R1 ; Hi bits of map register no.
R!,#7,#2,RO Entire map register number
R0,#496 Is map register number in range?
28$; No, forget it - compound error
(R2)[RO] ,UCB$L_XA_FMPR(R5) ; Save map register contents
UCB$L_XA_PMPR(R5) ; Assume no previous map register
RO ; Was there a previous map register?
#VEC$V_MAPREG,#VEC$S_MAPREG,-
CRB$L_INTD+VEC$W_MAPREG(R3) ,RO
28$; No if gtr
(R2)[RO] ,UCB$L_XA_FMPR(R5) ; Save previous map register contents

; Release UBA resources

Check for errors and return status

30$:

35$:

37$:

40$:

F-14

TSTW
BEQL
MOVZWL
BBC
MOVZWL
BSBW
BLBS

CMPW
BNEQ
CMPB

BEQL
BBS

JSB

BSBW
JSB
MOVL
MULW3
ADDW
INSV
MOVL
BISB
REQCOM

UCB$W_XA_WCR(R5) All words transferred?
30$ Yes
#SS$_0PINCOMPL, (SP) ; No, flag operation not complete
#XA_CSRV_ERROR,UCBW_XA_CSR(R5),35$; Branch on CSR error bit
UCB$W_XA_ERROR(R5),(SP) Flag for controller/drive error status
XA_DEV_RESET Reset DR11-W
(SP),40$ Any errors after all this?

(SP),#SS$_0PINCOMPL
37$
#DT$_DR11W, -

UCB$B_DEVTYPE(R5)
37$
#XA$V_LINK,- ;

UCB$L_DEVDEPEND(R5) ,40$
GAERL$DEVICERR

DEL_ATTNAST
GAIOC$DIAGBUFILL
(SP)+,RO
#2,UCB$W_XA_WCR(R5) ,R1
UCB$W_BCNT(R5) ,R1
R1, #16, #16, RO .
UCB$W_XA_CSR(R5),R1
#XA_CSR$M_IE,XA_CSR(R4)

Log the error, unless this is
a DRV11-WA running in link mode
and the operation is incomplete,
in which case it is an expected
error and not worth logging.

Log the error.

Deliver outstanding ATTN AST's
Fill diagnostic buff er
Get final device status
Calculate final transfer count

Insert into high byte of IOSB
Return CSR and EIR in IOSB
Enable interrupts
Finish request in exec

Sample Driver for the DR11-W and DRV11-WA

.DSABL LSB
;++

WORD MODE -- Process word mode (interrupt per word) transfer

FUNCTIONAL DESCRIPTION:

Data is transferred one word at a time with an interrupt for each word.
The request is handled separately for a write (from memory to DR11-W
and a read (from DR11-W to memory).
For a write, data is fetched from memory, loaded into the ODR of the
DR11-W and the system waits for an interrupt. For a read, the system
waits for a DR11-W interrupt and the IDR is transferred into memory.
If the unsolicited interrupt flag is set, the first word is transferred
directly into memory withou waiting for an interrupt .

. ENABL LSB
WORD_MODE:

Dispatch to separate loops on READ or WRITE

;++

CMPB
BNEQ
BRW

#IO$_READPBLK,R2
10$
30$

Check for read function
Br if not, must be write function
Else, read

WORD MODE WRITE -- Write (output) in word mode

FUNCTIONAL DESCRIPTION:

10$:

15$:

Transfer the requested number of words from user memory to
the DR11-W ODR one word at a time, wait for interrupt for each
word.

BSBW MOVFRUSER Get two bytes from user buff er
DEVICELOCK -

LOCKADDR=UCB$L_DLCK(R5) ,­
SAVIPL=-(SP) ,-

; Lock device access
Save current IPL
Don't preserve RO

SETI PL

MOVW
MOVW
BBC
BICW3

PRESERVE= NO

#31,­
ENVIRON=UNIPROCESSOR

Flag interrupt expected
Raise IPL to power

R1,XA_ODR(R4) ; Move data to DR11-W
UCB$W_XA_CSRTMP(R5) ,XA_CSR(R4) ; Set DR11-W CSR
#XAV_LINK,UCBL_DEVDEPEND(R5),15$; Link mode?
#XAK_FNCT2,UCBW_XA_CSRTMP(R5) ,XA_CSR(R4) ; Clear interrupt FNCT bit 2

; Only if link mode specified

; Wait for interrupt, powerfail, or device timeout

WFIKPCH XA_TIME_OUTW,IRP$L_MEDIA(R3)

Check for errors, decrement transfer count, and loop until complete

F-15

Sample Driver for the DR11-W and DRV11-WA

17$:

20$:

IO FORK
CMPB

BEQL
BBC

BRW
BITW

BEQL
BRW
DECW
BNEQ

Fork to lower IPL
#DT$_DR11W,- Branch if this is a DR11-W

UCB$B_DEVTYPE(R5)
17$
#XA_CSR$V_ERROR,- DRV11-WA - check ERROR bit in CSR.

UCB$W_XA_CSR(R5),20$ Branch on success.
40$ Branch on error.
#XA_EIR$M_NEX!-
XA_EIR$M_MULTI!-
XA_EIR$M_ACLO!-
XA_EIR$M_PAR!­
XA_EIRM_DLT,UCBW_XA_EIR(R5) ; Any errors?
20$ No, continue
40$ Yes, abort transfer.
UCB$L_XA_DPR(R5) ; All words transferred?
10$ No, loop until finished.

; Transfer is done, clear iterrupt expected flag and FORK
; All words read or written in WORD MODE. Finish I/0.

RETURN_STATUS:

22$:

;++

JSB
BSBW
MOVZWL
MULW3
SUBW3
INSV
MOVL
BISB
REQCOM

GAIOC$DIAGBUFILL
DEL_ATTNAST
#SS$_NORMAL,RO
#2,UCB$L_XA_DPR(R5),R1
R1,UCB$W_BCNT(R5),R1
Rl,#16,#16,RO
UCB$W_XA_CSR(R5) ,R1
#XA_CSR$M_IE,XA_CSR(R4)

Fill diagnostic buff er if present
Deliver outstanding ATTN AST's
Complete success status
Calculate actual bytes xf erred
From requested number of bytes
And place in high word of RO
Return CSR and EIR status
Enable device interrupts
Finish request in exec

WORD MODE READ -- Read (input) in word mode

FUNCTIONAL DESCRIPTION:

30$:

Transfer the requested number of words from the DR11-W IDR into
user memory one word at a time, wait for interrupt for each word.
If the unexpected (unsolicited) interrupt bit is set, transfer the
first (last received) word to memory without waiting for an
interrupt.

DEVICELOCK -
LOCKADDR=UCB$L_DLCK(R5),- ; Lock device access
SAVIPL=-(SP),- Save current IPL
PRESERVE=NO Don't preserve RO

If an unexpected (unsolicited) interrupt has occurred, assume it
is for this READ request and return value to user buffer without
waiting for an interrupt.

32$:

35$:

F-16

BBCC #UCB$V_UNEXPT,­
UCB$W_DEVSTS(R5) ,32$

DEVICEUNLOCK -
LOCKADDR=UCB$L_DLCK(R5) ,­
NEWIPL=(SP)+, -
PRESERVE= NO

BRB 37$

SETIPL #IPL$_POWER,­
ENVIRON=UNIPROCESSOR

Branch if no unexpected interrupt

; Unlock device access
Enable interrupts

continue

Sample Driver for the DR11-W and DRV11-WA

Wait for interrupt, powerfail, or device time-out

WFIKPCH XA_TIME_OUTW,IRP$L_MEDIA(R3)

Check for errors, decrement transfer count and loop until done

IO FORK
37$:

CMPB

BEQL
BBC

BRW
1037$: BITW

Fork to lower IPL

#DT$_DR11W,- Branch if this is a DR11-W
UCB$B_DEVTYPE(R5)

1037$
#XA_CSR$V_ERROR,- ; DRV11-WA - check ERROR bit in CSR.

UCB$'W_XA_CSR(R5) ,1038$; Branch on success.
40$; Branch on error.
#XA_EIR$M_NEX!-
XA_EIR$M_MULTI!-
XA_EIR$M_ACLO!-
XA_EIR$M_PAR!­
XA_EIRM_DLT,UCBW_XA_EIR(R5) ; Any errors?

BNEQ
1038$: BSBW

40$; Yes, abort transfer.
MOVTOUSER ; Store two bytes into user buff er

; Send interrupt back to sender. Acknowledge we got last word.

38$:

DEVICELOCK -
LOCKADDR=UCB$L_DLCK(R5) ,- ; Lock device access
SAVIPL=-(SP),- ; Save current IPL
PRESERVE=NO ; Don't preserve RO

MOVW UCB$W_XA_CSRTMP(R5),XA_CSR(R4)
BBC #XAV_LINK,UCBL_DEVDEPEND(R5),38$; Link mode?
BICW3 #XAK_FNCT2,UCBW_XA_CSRTMP(R5),XA_CSR(R4) ; Yes, clear FNCT 2

DECW UCB$L_XA_DPR(R5)
BNEQ 35$
DEVICEUNLOCK -

LOCKADDR=UCB$L_DLCK(R5) ,­
NEWIPL=(SP)+,-
PRESERVE= NO

BRW RETURN STATUS

; Decrement transfer count
Loop until all words transferred

; Unlock device access
Enable interrupts

Finish request in common code

Error detected in word mode transfer

40$:
BSBW
BSBW
JSB
JSB
MOVZWL
BRW

DEL_ATTNAST
XA_DEV_RESET
G-roc$DIAGBUFILL
G-ERL$DEVICERR
UCB$W_XA_ERROR(R5),RO
22$

Deliver ATTN AST's
Error, reset DR11-W
Fill diagnostic buff er if present
Log device error
Set controller/drive status in RO

F-17

Sample Driver for the DR11-W and DRV11-WA

.DSABL LSB

MOVFRUSER - Routine to fetch two bytes from user buffer.

INPUTS:

R5 = UCB address

OUTPUTS:

R1 = Two bytes of data from user's buffer
Buffer descriptor in UCB is updated .

. ENABL LSB
MOVFRUSER:

MOVAL
MOVZBL
JSB
MOVL
BRB

-(SP),R1
#2,R2
G-IOC$MOVFRUSER
(SP)+,R1
20$

Address of temporary stack loc
Fetch two bytes
Call exec routine to do the deed
Retrieve the bytes
Update UCB buff er pointers

MOVTOUSER - Routine to store two bytes into user's buffer.

INPUTS:

R5 = UCB address
UCB$W_XA_IDR(R5) Location where two bytes are saved

OUTPUTS:

Two bytes are stored in user buff er and buffer descriptor in
UCB is updated.

MOVTOUSER:

20$:

MOVAB UCB$W_XA_IDR(R5),R1
MOVZBL #2,R2
JSB G-IOC$MOVTOUSER

Address of internal buff er

Call exec
Update buff er pointers in UCB

ADDW
BICW
BNEQ
ADDL

#2,UCB$W_BOFF(R5) Add two to buffer descriptor
#-c<-X01FF>,UCB$W_BOFF(R5) ; Modulo the page size
30$ If NEQ, no page boundary crossed
#4,UCB$L_SVAPTE(R5) ; Point to next page

30$:
RSB

.DSABL LSB

.PAGE

.SBTTL DR11-W DEVICE TIMEOUT
;++

DR11-W device TIME-OUT
If a DMA transfer was in progress, release UBA resources.
For DMA or WORD mode, deliver ATTN ASTs, log a device timeout error,
and do a hard reset on the controller.

Clear DR11-W CSR
Return error status

Power failure will appear as a device timeout

.ENABL LSB
XA_TIME_OUT:

F-18

Timeout for DMA transfer

Sample Driver for the DR11-W and DRV11-WA

IO FORK
PURDPR
RELMPR
RELDPR
BRB 10$

Fork to complete request
Purge buffered data path in UBA
Release UBA map registers
Release UBA data path
continue

XA_TIME_OUTW: Timeout for WORD mode transfer

10$:

20$:

;++

IO FORK
MOVL
MOVL
BSBW
JSB
JSB
BSBW
BSBW
MOVZWL
BBC

MOVZWL
CLRL
BICW

BICW

Fork to complete operations
UCB$L_CRB(R5),R4 Fetch address of CSR
©CRB$L_INTD+VEC$L_IDB(R4) ,R4
XA_REGISTER Read DR11-W registers
GAIOC$DIAGBUFILL Fill diagnostic buffer
GAERL$DEVICTMO Log device time out
DEL_ATTNAST And deliver the ASTs
XA_DEV_RESET Reset controller
#SS$_TIMEOUT,RO Assume error status
#UCB$V_CANCEL,­
UCB$W_STS(R5) ,20$
#SS$_CANCEL,RO
R1

Branch if not cancel
Set status

#UCB$M_ATTNAST!UCB$M_UNEXPT,UCB$W_DEVSTS(R5)
; Clear unwanted flags.

#<UCB$M_TIM!UCB$M_INT!UCB$M_TIMOUT!UCB$M_CANCEL!UCB$M_POWER>,-
UCB$W_STS(R5) Clear unit status flags

REQCOM
.DSABL LSB
.PAGE

; Complete I/0 in exec

.SBTTL XA_INTERRUPT, Interrupt service routine for DR11-W

XA_INTERRUPT, Handles interrupts generated by DR11-W

Functional description:

This routine is entered whenever an interrupt is generated
by the DR11-W. It checks that an interrupt was expected.
If not, it sets the unexpected (unsolicited) interrupt flag.
All device registers are read and stored into the UCB.
If an interrupt was expected, it calls the driver back at its Wait
For Interrupt point.
Deliver ATTN ASTs if unexpected interrupt.

Inputs:

OO(SP)
04(SP)
08(SP)
12(SP)
16(SP)
20(SP)
24(SP)
28(SP)
32(SP)

Outputs:

Pointer to address of the device IDB
saved RO
saved R1
saved R2
saved R3
saved R4
saved R5
saved PSL
saved PC

The driver is called at its Wait For Interrupt point if an
interrupt was expected.
The current values of the DR11-W CSRs are stored in the UCB.

XA_INTERRUPT:
MOVL ©(SP)+,R4

Interrupt service for DR11-W
Address of IDB and pop SP

F-19

Sample Driver for the DR11-W and DRV11-WA

MOVQ (R4),R4 CSR and UCB address from IDB
DEVICELOCK -

LOCKADDR=UCB$L_DLCK(R5) ,- ; Lock device access
CONDITION=NOSETIPL,- Don't change IPL
PRESERVE=NO Don't preserve RO

Read the DR11-W device registers (WCR, BAR, CSR, EIR, IDR) and store
into UCB.

BSBW XA_REGISTER ; Read device registers

Check to see if device transfer request active or not
If so, call driver back at Wait for Interrupt point a3d
Clear unexpected interrupt flag.

20$: BBCC #UCB$V_INT,UCB$W_STS(R5) ,25$
; If clear, no interrupt expected

Interrupt expected, clear unexpected interrupt flag and call driver
back.

BICW #UCBM_UNEXPT,UCBW_DEVSTS(R5)

MOVL
JSB
BRB

UCB$L_FR3(R5),R3
©UCB$L_FPC(R5)
30$

Clear unexpected interrupt flag
Restore driver's R3
Call driver back

Deliver ATTN ASTs if no interrupt expected and set unexpected
interrupt flag.

25$: BBSC

BISW
BSBW
BISB
BRB

#UCB$V_IGNORE_UNEXPT,- ; Ignore spurious interrupt -
UCB$W_DEVSTS(R5) ,24$; (DRV11-WA only.)

#UCBM_UNEXPT,UCBW_DEVSTS(R5) ; Set unexpected interrupt flag
DEL_ATTNAST Deliver ATTN ASTs
#XA_CSR$M_IE,XA_CSR(R4) ; Enable device interrupts
30$

Restore registers and return from interrupt

24$:

30$:

;++

NOP ; allow a breakpoint here (spurious interrupt)

DEVICEUNLOCK -
LOCKADDR=UCB$L_DLCK(R5) ,­
PRESERVE=NO

POPR #-M<RO,R1,R2,R3,R4,R5>
REI

.PAGE

Unlock device access
Don't preserve RO
Restore registers
Return from interrupt

.SBTTL XA_REGISTER - Handle DR11-W CSR transfers

XA_REGISTER - Routine to handle DR11-W register transfers

INPUTS:

R4 - DR11-W CSR address
R5 - UCB address of unit

OUTPUTS:

CSR, EIR, WCR, BAR, BAE, IDR, and status are read and stored into UCB.
The DR11-W is placed in its initial state with interrupts enabled.
RO - .true. if no hard error

.false. if hard error (cannot clear ATTN)

If the CSR ERROR bit is set and the associated condition can be cleared, then
the error is transient and recoverable. The status returned is SS$_DRVERR.
If the CSR ERROR bit is set and cannot be cleared by clearing the CSR, then
this is a hard error and cannot be recovered. The returned status is

F-20

Sample Driver for the DR11-W and DRV11-WA

SS$_CTRLERR.

RO,R1 - destroyed, all other registers preserved.

XA_REGISTER:

55$:

57$:

59$:

60$:

70$:

;++

MOVZWL
MOVZWL
MOVW
BBC
MOVZWL
BICW
CMPB

BEQL
BISB
MOVW
BRB
BISW

MOVW
MOVW
BBC
MOVZWL
MOVW
MOVW
CMPB

BEQL
MOVW
MOVW
MOVW
RSB

#SS$_NORMAL,RO
XA_CSR(R4),R1
R1,UCB$W_XA_CSR(R5)
#XA_CSR$V_ERROR,R1,55$
#SS$_DRVERR,RO
#~C<XA_CSR$M_FNCT>,R1

#DT$_XA_DRV11WA,-
UCB$B_DEVTYPE(R5)

Assume success
Read CSR
Save CSR in UCB
Branch if no error
Assume "drive" error
Clear all uninteresting bits for later
If this is a DRV11-WA,

57$; then branch.
#<XA_CSR$M_ERROR/256>,XA_CSR+1(R4) ; Set EIR flag
XA_EIR(R4) ,UCB$W_XA_EIR(R5) ; Save EIR in UCB
59$
#XA_CSR$M_IE,R1 On the DRV11-WA, if the IE bit makes

a 0->1 transition while READY=1, a
spurious interrupt is generated.
Therefore, we leave IE high at all
times.

R1,XA_CSR(R4) Clear EIR flag and errors
XA_CSR(R4),R1 Read CSR back
#XA_CSR$V_ATTN,R1,60$ If attention still set, hard error
#SS$_CTRLERR,RO ; Flag hard controller error
XA_IDR(R4) ,UCB$W_XA_IDR(R5) ; Save IDR in UCB
XA_BAR(R4) ,UCB$W_XA_BAR(R5)
#DT$_DR11W,- If this is a DR11-W,

UCB$B_DEVTYPE(R5)
70$; then branch.
XA_BAE(R4),UCB$W_XA_BAE(R5) ; Save BAE in UCB
XA_WCR(R4) ,UCB$W_XA_WCR(R5)
RO,UCB$W_XA_ERROR(R5) ; Save status in UCB

.SBTTL XA_CANCEL, Cancel I/O routine

XA_CANCEL, Cancels an I/O operation in progress

Functional description:

Flushes Attention AST queue for the user.
If transfer in progress, do a device reset to DR11-W and finish the
request.
Clear interrupt expected flag.

Inputs:

R2 = negated value of channel index
R3 = address of current IRP
R4 = address of the PCB requesting the cancel
RS = address of the device's UCB

Outputs:

XA_CANCEL:

BBCC #UCB$V_ATTNAST,­
UCB$W_DEVSTS(R5) ,20$

; Cancel I/O

ATTN AST enabled?

F-21

Sample Driver for the DR11-W and DRV11-WA

Finish all ATTN ASTs for this process.

PUSHR
MOVL
MOVAB
JSB
POPR

#AM<R2,R6,R7>
R2,R6
UCB$L_XA_ATTN(R5),R7
GACOM$FLUSHATTNS
#AM<R2,R6,R7>

Set up channel number
Address of listhead
Flush ATTN ASTs for process

Check to see if a data transfer request is in progress
for this process on this channel

20$:
DEVICELOCK -

LOCKADDR=UCB$L_DLCK(R5),­
SAVIPL=-(SP) ,­
PRESERVE=NO

BBC #UCB$V_INT,-
UCB$W_STS(R5) ,30$

JSB GAIOC$CANCELIO
BBC #UCB$V_CANCEL,-

UCB$W_STS(R5) ,30$

; Lock device access
Save current IPL
Don't preserve RO
br if I/O not in progress

Check if transfer going

Branch if not for this guy

Force timeout

CLRL UCB$L_DUETIM(R5) ; clear timer
BISW #UCBM_TIM,UCBW_STS(R5) ; set timed bit
BICW #UCB$M_TIMOUT,-

UCB$W_STS(R5) ; Clear timed out
30$:

DEVICEUNLOCK -
LOCKADDR=UCB$L_DLCK(R5) ,- ; Unlock device access
NEWIPL=(SP)+,- Enable interrupts
PRESERVE= NO

RSB Return

.PAGE

.SBTTL DEL_ATTNAST, Deliver ATTN ASTs
;++

DEL_ATTNAST, Deliver all outstanding ATTN ASTs

Functional description:

This routine is used by the DR11-W driver to deliver all of the
outstanding attention ASTs. It is copied from COM$DELATTNAST in
the exec. In addition, it places the saved value of the DR11-W CSR
and Input Data Buffer Register in the AST parameter.

Inputs:

R5 = UCB of DR11-W unit

Outputs:

RO,R1,R2 Destroyed
R3,R4,R5 Preserved

DEL_ATTNAST:
DEVICELOCK -

LOCKADDR=UCB$L_DLCK(R5) ,- ; Lock device access
SAVIPL=-(SP),- Save current IPL
PRESERVE=NO ; Don't preserve RO

BBCC #UCB$V_ATTNAST,UCB$W_DEVSTS(R5),30$
Any ATTN ASTs expected?

PUSHR #-M<R3,R4,R5> ; Save R3,R4,R5

F-22

Sample Driver for the DR11-W and DRV11-WA

10$: MOVL
MOVAB
MOVL
BEQL
BICW
MOVL
MOVW

8(SP) ,R1 Get address of UCB
UCB$L_XA_ATTN(R1),R2 Address of ATTN AST listhead
(R2),R5 Address of next entry on list
20$ No next entry, end of loop
#UCBM_UNEXPT,UCBW_DEVSTS(R1) ; Clear unexpected interrupt flag
(R5), (R2) ; Close list
UCB$W_XA_IDR(R1) ,ACB$L_KAST+6(R5)

; Store !DR in AST parameter
MOVW UCB$W_XA_CSR(R1),ACB$L_KAST+4(R5)

PUSHAB B-10$
FORK

Store CSR in AST parameter
Set return address for FORK
FORK for this AST

AST fork procedure

20$:
30$:

;++

MOVQ ACB$L_KAST(R5) ,ACB$L_AST(R5)

MOVB
MOVL
CLRL
MOVZBL
JMP

; Rearrange
ACB$L_KAST+8(R5) ,ACB$B_RMOD(R5)
ACB$L_KAST+12(R5) ,ACB$L_PID(R5)

entries

ACB$L_KAST(R5)
#PRI$_IOCOM,R2
G-scH$QAST

POPR #-M<R3,R4,R5>
DEVICEUNLOCK -

LOCKADDR=UCB$L_DLCK(R5) ,­
NEWIPL=(SP)+,-
PRESERVE= NO

RSB

.PAGE

Set up priority increment
Queue the AST

Restore registers

; Unlock device access
Enable interrupts

Return

.SBTTL XA_REGDUMP - DR11-W register dump routine

XA_REGDUMP - DR11-W Register dump routine.

This routine is called to save the controller registers in a specified
buffer. It is called from the device error logging routine and from the
diagnostic buffer fill routine.

Inputs:

RO - Address of register save buff er
R4 - Address of Control and Status Register
R5 - Address of UCB

Outputs:

The controller registers are saved in the specified buffer.

CSRTMP - The last command written to the DR11-W CSR by
by the driver.

BARTMP - The last value written into the DR11-W BAR by
the driver during a block mode transfer.

CSR - The CSR image at the last interrupt
EIR - The EIR image at the last interrupt
!DR - The !DR image at the last interrupt
BAR - The BAR image at the last interrupt
WCR - Word count register
ERROR - The system status at request completion
PDRN - UBA Datapath Register number
DPR - The contents of the UBA Data Path register
FMPR - The contents of the last UBA Map register
PMRP - The contents of the previous UBA Map register
DPRF - Flag for purge datapath error

F-23

Sample Driver for the DR11-W and DRV11-WA

0 = no purger datapath error
1 = parity error when datapath was purged

BAETMP - The last value written to the BAE by the
driver during a block mode transfer (DRV11-WA only)

BAE - The BAE image at the last interrupt (DRV11-WA only)

Note that the values stored are from the last completed transfer
operation. If a zero transfer count is specified, then the
values are from the last operation with a non-zero transfer count.

XA_REGDUMP:

10$:

20$:

;++

MOVZBL
MOVAB
MOVZBL
MOVZWL
SO BG TR
MOVZBL
MOVZBL
MOVL
SOBGTR
MOVZBL
MOVZWL
MOVZWL
RSB

.PAGE

#15,(RO)+
UCB$W_XA_CSRTMP(R5),R1
#8,R2
(R1)+,(RO)+
R2, 10$
UCB$W_XA_DPRN(R5), (RO)+
#3,R2
(R1) +, (RO)+
R2,20$
UCB$W_XA_DPRN+1(R5), (RO)+
UCB$W_XA_BAETMP(R5), (RO)+
UCB$W_XA_BAE(R5) ,(RO)+

15 registers are stored.
Get address of saved register images
Return 8 registers here

Move them all
Save Datapath Register number
And 3 more here
Move UBA register contents

; Save Datapath Parity Error Flag
; Save BAE stored prior to xf er
Save BAE store following xf er

.SBTTL XA_DEV_RESET - Device reset DR11-W

XA_DEV_RESET - DR11-W Device reset routine

This routine raises IPL to device IPL, performs a device reset to
the required controller, and reenables device interrupts.

Must be called at or below device IPL to prevent a conf ict in
acquiring the device_spinlock.

Inputs:

R4 - Address of Control and Status Register
R5 - Address of UCB

Outputs:

Controller is reset, controller interrupts are enabled

XA_DEV_RESET:

F-24

PUSHR #AM<RO,R1,R2>
DEVICELOCK -

LOCKADDR=UCB$L_DLCK(R5) ,­
SAVIPL=-(SP) ,-
PRESERVE= NO

BSBB XA_DEV_HWRESET

DEVICEUNLOCK -
LOCKADDR=UCB$L_DLCK(R5) ,­
NEWIPL=(SP)+,-
PRESERVE= NO

POPR #AM<RO,R1,R2>

RSB

Save some registers

; Lock device access
Save current IPL
Don't preserve RO

; Unlock device access
Enable interrupts

Restore registers

Sample Driver for the DR11-W and DRV11-WA

XA_DEV_HWRESET:

20$:

CMPB

BEQL
MOVW
BITB
BNEQ
MNEGW
MOVB

BRB
MOVB
CLRB

#DT$_DR11W,- If this is a DR11-W,
UCB$B_DEVTYPE(R5)

20$ then branch.
#XA_CSR$M_IE,XA_CSR(R4) ; Clear all writable bits but IE.
#XA_CSR$M_RDY,XA_CSR(R4);
40$
#1,XA_WCR(R4)
#XA_CSR$M_CYCLE/256,-

XA_CSR+1(R4)
30$

If not READY then no xfer in progress,
So no need to reset device
Tell it only 1 byte left to xfer
and complete the transfer.

#<XA_CSR$M_MAINT/256>,XA_CSR+1(R4)
XA_CSR+1(R4)

; *** Must delay here depending on reset interval

30$:

40$:

XA_END:

TIMEDWAIT TIME=#XA_RESET_DELAY No. of 10-micro-sec intervals to wait

MOVB
RSB

#XA_CSR$M_IE,XA_CSR(R4) Reenable device interrupts

End of driver label
.END

F-25

G VMS Version 5.0 and Kernel-Mode Code

Several features of VMS Version 5.0 have some impact on the execution
of existing non-DIGITAL-supplied kernel-mode code, most notably device
drivers. This chapter describes those changes DIGITAL requires or
recommends in an existing non-DIGITAL-supplied device driver. It also
provides a brief explanation of key VMS concepts that are integral to an
understanding of the operation of privileged code under VMS Version 5.0.

G.1 Uniprocessor and Multiprocessor Device Drivers
One of the most significant components of VMS Version 5.0 is its support of
a symmetric multiprocessing environment for certain VAX systems, including
the VAX 8300/8350, VAX 8800/8830/8840, and VAX 6200 series. The
multiprocessing environment provided by earlier versions of VMS was
asymmetric in nature. Because only the primary processor could execute
kernel-mode code, kernel-mode code, including device drivers, effectively ran
in a uniprocessing environment and did not need to undertake any special
actions due to the multiprocessing nature of the system.

In the symmetric multiprocessing environment supported by VMS Version
5.0, however, all processors in the system can execute kernel-mode code.
Consequently, privileged code must take steps to ensure that its execution
and use of memory are synchronized with kernel-mode code that may be
executing concurrently on another processor. Such code must maintain
two dimensions of synchronization: raising to the appropriate IPL for a
certain transaction, while securing the proper spin lock for the object of that
transaction.

For privileged code executing within a VMS uniprocessing environment
VMS Version 5.0 transparently forgoes the second of these requirements.
That is, on a VAX uniprocessor, or in a VMS multiprocessor system wherein
multiprocessing is not enabled, privileged code may securely execute by
adhering to the IPL synchronization method alone.

To support both uniprocessor and multiprocessor environments in the most
efficient and secure way possible, VMS Version 5.0 incorporates special
logic in the System Generation Utility (SYSGEN), the device driver loading
mechanism, and several synchronization macros. This code enables VMS to
discern the environment in which it is executing and, most importantly, to
take steps to prohibit a privileged code thread from executing without proper
synchronization in a multiprocessing environment.

As discussed in Section G.3, non-DIGITAL-supplied device drivers must be
altered to execute correctly in a VMS symmetric multiprocessing environment.
The modifications discussed in Section G.3 are not required for a device
driver that will be loaded and executed only on a VMS uniprocessor
system. However, the same macros, routines, and field names used in
a multiprocessing environment are accepted by VMS in a uniprocessing
environment. Furthermore, the spin lock synchronization macros and
routines are specially designed to execute a streamlined code that obtains
IPL synchronization alone in such an environment. DIGITAL recommends

G-1

G.1.1

VMS Version 5.0 and Kernel-Mode Code
G. 1 Uniprocessor and Multiprocessor Device Drivers

that any driver that may execute in a multiprocessing environment be updated
accordingly.

The remainder of this section identifies the activities of the
MULTIPROCESSING system parameter, VMS driver loading mechanisms,
and the VMS synchronization macros in creating a multiprocessing or
uniprocessing environment and enforcing the appropriate synchronization.

MUL Tl PROCESSING System Parameter

G-2

Every VMS system is initially booted as a single processor, regardless
of its hardware configuration. The setting of the MULTIPROCESSING
system parameter for the first processor in the system to boot (called the
primary processor in a multiprocessing environment) determines which
synchronization image the secondary bootstrap program (SYSBOOT) loads
into memory as part of the operating system. Table G-1 describes the
contents of the three possible synchronization images.

Table G-1 VMS Synchronization Images

Image Results

Uniprocessing Synchronization is accomplished by elevating IPL. Spin
lock acquisition routines only achieve IPL synchronization.

Full-checking Synchronization is accomplished by both elevating IPL
and obtaining an appropriate spin lock. Spin lock
acquisition routines perform both of these tasks. Spin
lock acquisition routines also perform spin lock rank
checking and verify the spin lock synchronization IPL,
issuing appropriate bugchecks if they discover violations
of synchronization rules. Spin lock acquisition routines
maintain various debugging aids and performance analysis
aids (such as the longwords in the spin lock data structure
containing the PCs of the most recent acquisitions and
releases of the spin lock and the set of counters in the
per-CPU database structure (CPU)). (See Section G.3.7 for
additional description of full-checking synchronization.)

Streamlined Synchronization is accomplished by both elevating IPL and
obtaining an appropriate spin lock. Spin lock acquisition
routines do not perform checking and do not record the
PCs of the spin lock acquisitions and releases.

Table G-2 lists the possible settings of the MULTIPROCESSING system
parameter.

G.1.2

VMS Version 5.0 and Kernel-Mode Code
G.1 Uniprocessor and Multiprocessor Device Drivers

Table G-2 Settings of MULTIPROCESSING System Parameter

Value Result

0 Loads uniprocessing synchronization image for any hardware
configuration

Loads full-checking synchronization image and sets multiprocessing­
enabled bit (SMP$V_ENABLED in SMP$GL_FLAGS) if the hardware
configuration is capable of multiprocessing and two or more processors
are available; otherwise, loads uniprocessing synchronization image.
This is the default value.

2 Loads full-checking synchronization image and sets multiprocessing­
enabled bit regardless of the hardware configuration.

3 Loads streamlined synchronization image and sets multiprocessing­
enabled bit if the hardware configuration is capable of multiprocessing
and two or more processors are available; otherwise, loads
uniprocessing synchronization image.

Device Driver Loading
In a VMS multiprocessing environment, the presence of a device driver that
does not adhere to multiprocessing synchronization conventions can be fatal
to proper system functions. VMS Version 5.0 takes steps to either prohibit the
enabling of multiprocessing in a VAX system that has such a driver present
or prevent the loading of such a driver if multiprocessing has already been
enabled.

To accomplish this, the VMS driver-loading routine assumes that any driver
that can run in a VMS multiprocessing environment uses the spin lock
synchronization macros and loads the appropriate I/O database fields. (See
Section G.3 for information on how to produce a driver that can execute in a
VMS multiprocessing environment.) Use of the spin lock synchronization
macros causes VMS to set the SMP-modified bit in the DPT (DPT$v-:_
SMPMOD in DPT$L_FLAGS).

If multiprocessing has not been enabled on the system, the driver loading
mechanism checks the SMP-modified bit in the DPT and takes either of the
following actions:

• If the SMP-modified bit is set, the driver loading mechanism loads the
driver and calls its controller and unit initialization routines, as discussed
in Chapter 15.

• If the SMP-modified bit is not set, the driver loading mechanism sets
the unmodified-driver bit (SMP$V_UNMOD_DRIVER) in SMP$GL_
FLAGS, thus prohibiting the subsequent enabling of multiprocessing
on the system. It then loads the driver and calls its controller and unit
initialization routines, as described in Chapter 15. If such a driver has
been successfully loaded into a VMS system, you cannot subsequently
enable multiprocessing.

G-3

G.1.3

VMS Version 5.0 and Kernel-Mode Code
G.1 Uniprocessor and Multiprocessor Device Drivers

If multiprocessing is currently enabled on the system, the driver loading
mechanism checks the SMP-modified bit in the DPT and takes either of the
following actions:

• If the SMP-modified bit is set, the driver loading mechanism loads the
driver and calls its controller and unit initialization routines, as discussed
in Chapter 15.

• If the SMP-modified bit is not set, the driver loading mechanism does
not load the driver, returning the error status SS$_NONSMPDRV to its
caller.

VMS Synchronization Macros
To support the spin lock synchronization required in VMS multiprocessor
systems, VMS Version 5.0 adds the DEVICELOCK/DEVICEUNLOCK,
FORKLOCK/FORKUNLOCK, and LOCK/UNLOCK macros to the existing
SETIPL and DSBINT/ENBINT macros. As discussed in Section G.3, the
SETIPL and DSBINT /ENBINT macros must not be used to synchronize
systemwide activities in a VMS multiprocessing environment. However,
the DEVICELOCK/DEVICEUNLOCK, FORKLOCK/FORKUNLOCK, and
LOCK/UNLOCK macros are designed to operate appropriately in either a
multiprocessing or uniprocessing environment. According to the value of the
multiprocessing-enabled bit (SMP$V_ENABLED) in SMP$GL _FLAGS, the
run-time code produced by these macros behaves as follows:

• If multiprocessing has not been enabled in the system, these macros
only raise or lower IPL to the IPL required to synchronize access to the
specified system resource.

• If multiprocessing has bee:.1 enabled in the system, these macros call the
appropriate spin lock synchronization routine, which acquires or releases
the spin lock corresponding to the system resource, raising or lowering
IPL as required.

The setting of the MULTIPROCESSING system parameter controls the
disposition of the multiprocessing-enabled bit, as discussed in Section G.1.1.
Appendix B describes the VMS synchronization macros in full. ·

G.2 Changes Required of All Existing Drivers Under VMS Version 5.0

G-4

Most changes in VMS Version 5.0 are transparent to existing non-DIGITAL­
supplied drivers and can be accommodated in the driver image by simply
reassembling and relinking the driver. However, there are several required­
and some recommended-changes that the writers and maintainers of these
drivers should make before attempting these tasks. This section describes
these modifications.

In addition, if a non-DIGITAL-supplied driver is to be loaded and run in
a VMS symmetric multiprocessing system, it is critical that it be adapted
according to the guidelines discussed in Section G.3. Failure to adapt such
drivers to use multiprocessing synchronization mechanisms may result in
either a failure to load the driver or the inability to enable multiprocessing on
the system.

G.2.1

G.2.2

VMS Version 5.0 and Kernel-Mode Code
G.2 Changes Required of All Existing Drivers Under VMS Version 5.0

Specifying the Address of the Driver's Interrupt Service Routine
in the DPT

In order to provide an optional method of servicing MicroVAX 3600-series
or MicroVAX II Q22-bus device interrupts at the IPLs at which they are
requested, VMS Version 5.0 defines several new symbolic offsets in the
interrupt dispatch vector (VEC) portion of the channel request block (CRB).

One of these symbolic offsets is significant to all device drivers. Prior to VMS
Version 5.0, device drivers initialized the location in the vector containing the
address of the driver's interrupt service routine by referring explicitly to its
location (CRB$L_INTD+4). With VMS Version 5.0, DIGITAL recommends
that all device drivers refer to this location using the symbolic offset CRB$L_
INTD+VEC$L_ISR, as follows:

Old: DPT_STORE CRB,CRBL_INTD+4,D,LP1NT_SERV_RTN

New: DPT _STORE CRB ,CRB$L _INTD+ VEC$L _ISR,D ,LP$1NT _SERV_RTN

To use the new symbols, you must include the $CRBDEF and $VECDEF
structure definition macros in the driver. All structure definition macros can
be found in SYS$LIBRARY:LIB.MLB.

Checking, Debiting, and Crediting a Process's Byte Count Quota
VMS Version 5.0 replaces the routines EXE$BUFFRQUOTA and
EXE$BUFQUOPRC with a set of eight new routines that manipulate a job's
byte count quota and byte limit, optionally allocating a nonpaged pool buffer
of the requested size. To ensure proper synchronization, programs should use
these routines and avoid any direct manipulation of the nonpaged pool quota
fields JIB$L_BYTCNT and JIB$L_BYTLM).

Among the new routines are the following:

Routine

EXE$CREDIT _BYTCNT

EXE$CREDIT _BYTCNT _BYTLM

EXE$DEBIT _BYTCNT

EXE$DEBIT _BYTCNT _NW

Function

Returns credit to a job's byte count
quota

Returns credit to a job's byte count
quota and byte count limit

Determines whether a job's buffered byte
count quota usage permits the process
to be granted additional buffered 1/0
and, if so, adjusts the job's byte count
quota

Same function as EXE$DEBIT _BYTCNT,
but never places a process in a resource
wait state pending the return of sufficient
quota

G-5

VMS Version 5.0 and Kernel-Mode Code
G.2 Changes Required of All Existing Drivers Under VMS Version 5.0

G-6

Routine

EXE$DEBIT _BYTCNT _BYTLM

EXE$DEBIT _BYTCNT _BYTLM_NW

EXE$DEBIT _BYTCNT _ALO

EXE$DEBIT _BYTCNT _BYTLM _ALO

Function

Determines whether a job's buffered byte
count quota usage permits the process
to be granted additional buffered 1/0
and, if so, adjusts the job's byte count
quota and byte count limit

Same function as EXE$DEBIT_BYTCNT_
BYTLM, but never places a process in
a resource wait state pending sufficient
quota

Same function as EXE$DEBIT _BYTCNT,
but, if quota checks succeed, allocates
the requested amount of pool

Same function as EXE$DEBIT_BYTCNT_
BYTLM, but, if quota checks succeed,
allocates the requested amount of pool

Many drivers written prior to VMS Version 5.0 contain code sequences similar
to the following:

JSB

BLBC
JSB
BLBC
MOVL
SUBL2

G-EXE$BUFFRQUOTA

RO.ERROR
a-ExE$ALLOCBUF
RO.ERROR
PCB$L_JIB(R4) ,R5
R1,JIB$L_BYTCNT(R5)

;Would buffer allocation
;exceed byte count quota?
;Branch if yes
;If not, allocate buffer
;Branch if error
;Obtain job information block
;Decrement job's byte count quota

The new routines allow you to simplify such code sequences. For instance,
a single routine, EXE$DEBIT_BYTCNT_ALO, checks and debits quotas and
allocates pool. When there is not enough quota available to service the
request, the routine restores the deducted amount and returns the error SS$_
EXQUOTA IN RO.

In VMS Version 5.0, the preceding code example can be rewritten as follows:

JSB

BLBC

G-EXE$DEBIT_BYTCNT_ALO

RO.ERROR

;Check for quota violation,
;allocate buffer, decrement
;JIB byte count quota
;Branch if error

G.2.3

VMS Version 5.0 and Kernel-Mode Code
G.2 Changes Required of All Existing Drivers Under VMS Version 5.0

Referring to the Current PCB
The symbol SCH$GL _CURPCB is obsolete and should be replaced as
follows:

• If the process's Pl space is available, use the Pl space location
CTL$GL _PCB.

• If the process's Pl space is not available, use the FIND_CPU_DATA
macro, as follows:

FIND_CPU_DATA RO
MOVL CPU$L_CURPCB(RO) ,R1

The FIND_CPU_DATA macro obtains the virtual address of the per-CPU
database for the processor on which it executes. Code that issues the
FIND_CPU_DATA macro must adhere to the following rules:

It must be executing in kernel mode above IPL 2 when it invokes the
FIND_CPU_DATA macro.

It must take care to prevent rescheduling after issuing the macro as
long as the information returned by FIND_CPU_DATA is in use. It
typically does this by remaining at an IPL greater than 2.

G.2.4 Allocating System Page-Table Entries

G.2.5

The system routine IOC$ALLOSPT has been replaced by the
LDR$ALLOC_PT.

IOC$ALLOSPT was briefly described in Versions 4.5 and 4.6 of the VAX/VMS
Release Notes as an appropriate method for non-DIGITAL-supplied VAXBI
device drivers to map a portion of a device's node space to system virtual ,
address space. See Appendix C for a full description of LDR$ALLOC_PT.

Referring to a System Process Mailbox
An existing driver that refers to either the job controller's mailbox or
OPCOM's mailbox must be altered to use the new symbolic names that
point to these mailboxes. Usually, it is the driver's interrupt service routine or
timeout handling routine that loads the address of the mailbox UCB into R3
and calls the system routine EXE$SNDEVMSG, as follows.

MOVAB a-sYS$AR_JOBCTLMB,R3

JSB G-EXE$SNDEVMSG

;Set address of job controller
; mailbox
;Sent message to job controller

The new symbolic names actually refer to global pointers to the mailbox UCB
structures. They include the following:

VMS Version 5.0

SYS$AR_JQBCTLMB

SYS$AR_QPRMBX

Old

SYS$AL _JOBCTLMB

SYS$AL _OPRMBX

Name

Job controller's mailbox

OPCOM's mailbox

G-7

G.2.6

VMS Version 5.0 and Kernel-Mode Code
G.2 Changes Required of All Existing Drivers Under VMS Version 5.0

Reassembling and Relinking the Driver
Because of changes in the definitions of data structures, the behavior of
system macros, the location of global symbols, and the contents of system
images, it is necessary to reassemble and relink non-DIGITAL-supplied
drivers regardless of whether their contents have been modified.

To do so, reassemble your driver against SYS$LIBRARY:LIB.MLB. For
example:

$ MACRO MYDRIVER.MAR+SYS$LIBRARY:LIB.MLB/LIBRARY

Relink your driver against the VMS global symbol table. If the driver consists
of several source files, you must specify the file that contains the driver
prologue table as the first file in the list. The linker options file must contain
the statement BASE=O. For example:

$ CREATE MYDRIVER.OPT
BASE=O
lcTRL/ZI

$ LINK/NOTRACE MYDRIVER1[,MYDRIVER2, ...] ,­
MYDRIVER.OPT/OPTIONS,­
SYS$SYSTEM:SYS.STB/SELECTIVE_SEARCH

The linker will report that the image has no transfer address. You may ignore
this message.

Once you have linked or relinked a driver, you should copy its image to the
SYS$LOADABLE_IMAGES or SYS$SYSTEM directory. The SYSGEN LOAD
and CONNECT commands first search for a driver in the SYS$LOADABLE_
IMAGES directory. If they do not find the driver, they then search the
SYS$SYSTEM directory.

G.3 Adapting Device Drivers to Run on a VMS Multiprocessing System

G.3.1

VMS Version 5.0 contains several new routines that enforce synchronization
in a symmetric multiprocessing (SMP) environment. Drivers do not generally
call these routines explicitly, but rather invoke VMS-supplied macros that
synchronize as appropriate to the processing environment. There are only a
few instances in which existing non-DIGITAL-supplied drivers must change
to conform to the new synchronization mechanisms. This section outlines
those instances; Chapter 3 describes synchronization rules in greater detail.

Specifying the Fork Lock Index

G-8

To adapt a driver to execute properly in a VMS multiprocessor environment,
you must replace all instances of UCB$B_FlPL (or FKB$B_FIPL) with
UCB$B_FLCK (or FKB$B_FLCK). In addition, you must replace the
invocation of the DPT_STORE macro that defined the driver's fork IPL
with one that defines the driver's fork lock index, as follows:

Old: DPT_STORE UCB,UCB$B_FIPL,B,8

New: DPT_STORE UCB,UCBB_FLCK,B,SPLC_IOLOCK8

G.3.2

VMS Version 5.0 and Kernel-Mode Code
G.3 Adapting Device Drivers to Run on a VMS Multiprocessing System

To use the new symbol, include the $UCBDEF structure definition macro
in the driver. Fork lock (and other spin lock) indexes, such as SPL$C_
IOLOCK8, are defined by the $SPLCODDEF definition macro as invoked by
DPTAB. Replace fork IPLs with the corresponding fork lock index according
to the following list:

IPL Fork Lock Index

8 SPL$C_IOLOCK8

9 SPL$C_IOLOCK9

10 SPL$C_IOLOCK 10

1 1 SPL$C_IOLOCK 11

All structure definition macros can be found in SYS$LIBRARY:LIB.MLB.

Drivers rarely need to obtain a fork lock explicitly. VMS places the driver
fork process into execution (originally by EXE$INSIOQ and, by implication,
by IOC$REQCOM) at fork IPL holding the appropriate fork lock. In addition,
the fork dispatcher obtains the fork lock associated with the driver fork
process before it restores its context and resumes its execution.

Note that, if a driver fork process is not placed into execution according to
one of these means, it must obtain the fork lock itself. (See the discussion in
Section G.3.6.2.)

Synchronizing Access to the Device Database with the Interrupt Service
Routine

G.3.2.1

The device database consists of device and adapter registers, plus driver­
specific UCB fields that record the status of a device. As these locations
are primarily accessed by the driver's interrupt service routine, the driver
fork process must take special care to synchronize with the interrupt service
routine whenever it accesses them.

Synchronizing at Device IPL
Previous versions of VMS used the DSBINT macro to synchronize with the
interrupt service routine at device IPL (UCB$B_DIPL), as follows:

DSBINT UCB$B_DIPL(R5)

;Access device data

ENBINT

;Raise IPL to device IPL
;Save current IPL on stack

;Restore saved IPL

G-9

VMS Version 5.0 and Kernel-Mode Code
G.3 Adapting Device Drivers to Run on a VMS Multiprocessing System

G.3.2.2

G-10

Under VMS Version 5.0, this code should be modified so that it obtains the
appropriate device lock, as follows:

DEVICELOCK -
LOCKADDR=UCB$L_DLCK(R5) ,­
SAVIPL=-(SP)

;Access device data

;Secure device lock
;(aiso raises IPL to device IPL)
;Save current IPL on stack

DEVICEUNLOCK - ;Release device lock
LOCKADDR=UCB$L_DLCK(R5),-
NEWIPL=(SP)+ ;Restore old IPL from stack

Raising I PL to I PL$_POWER
If the device driver start-I/O routine (or fork process) raises IPL to IPL 31
(IPL$_POWER) to check for the occurrence of a power failure and to access
device registers, it must ensure that it has explicitly synchronized with the
device's database at device IPL. Under VMS Version 5.0, this means that the
routine must first obtain the appropriate device lock, using the DEVICELOCK
macro.

Because versions of VMS prior to Version 5.0 allowed only one processor,
even in a VAX multiprocessor system, to execute kernel-mode code,
the following code in a driver's start-I/O routine provided adequate
synchronization:

DSBINT

BBC #UCB$V_POWER,­
UCB$W_STS(R5) ,30$

;Service power failure

;Branch
30$: ;Start device

WFIKPCH

;Raise IPL to 31
;Save current IPL on stack

;If clear, no power failure

VMS Version 5.0 and Kernel-Mode Code
G.3 Adapting Device Drivers to Run on a VMS Multiprocessing System

G.3.2.3

Under VMS Version 5.0, the preceding code should be replaced with the
following:

DEVICELOCK -
LOCKADDR=UCB$L_DLCK(R5) ,­
SAVIPL=-(SP)

SETIPL #IPL$_POWER,­
ENVIRON=UNIPROCESSOR

BBC #UCB$V_POWER, -
UCB$W_STS(R5),30$

;Service power failure

;Secure device lock
;(also raises IPL to device IPL)
;Save current IPL on stack
;Raise IPL to 31
;Avoid assembly-time warning

;If clear, no power failure

DEVICEUNLOCK - ;Release device lock
LOCKADDR=UCB$L_DLCK(R5) ,-
NEWIPL=(SP)+ ;Restore old IPL from stack

;Branch
30$: ;Start device

WFIKPCH ;Wait for interrupt

Here, the DEVICELOCK macro achieves synchronized systemwide access
to the device registers. The SETIPL macro then synchronizes the local
processor against its own powerfail interrupt event. The code does not need
to synchronize systemwide against powerfail events, because its interest is
truly limited to the local processor.

Note that the WFIKPCH macro releases the last acquisition of the device lock
by the executing processor, restoring the old IPL prior to returning control to
the caller's caller.

Refer to Chapters 3 and 8 for additional information on the synchronization
rules imposed on a driver's start-I/O routine.

Synchronization Within the Interrupt Service Routine
As soon as it obtains the device unit's UCB in RS, the driver's interrupt
service routine must issue the DEVICELOCK macro to synchronize with other
code threads (such as the start-I/O routine and the timeout handling routine)
that may access the device database at device IPL holding the device lock.
Because the interrupt service routine is automatically called at device IPL,
the DEVICELOCK macro invocation should specify condition=NOSETIPL.
To save time, the macro should also specify preserve=NO so that code to
preserve RO is not executed.

For example:

DEVICELOCK - ;Obtain device lock
LOCKADDR=UCB$L_DLCK(R5),-
CONDITION=NOSETIPL,- ;Do not bother to set IPL
PRESERVE=NO ;Do not save RO

G-11

G.3.3

VMS Version 5.0 and Kernel-Mode Code
G.3 Adapting Device Drivers to Run on a VMS Multiprocessing System

Similarly, the interrupt service routine should release the device lock when it
no longer needs to access the device database. Generally, this is immediately
after the routine regains control from the driver fork process and before it
restores the saved registers and issues an REI instruction, as follows:

DEVICEUNLOCK -
LOCKADDR=UCB$L_DLCK(R5),­
PRESERVE=NO

POPR #".'M<RO,R1,R2,R3,R4,R5>
REI

;Release device lock

;Do not save RO
;Restore registers
;Exit from interrupt

Refer to Chapters 3 and 9 for additional information on the synchronization
rules imposed on a driver's interrupt service routine.

Controller and Unit Initialization Routines

G.3.3.1

G-12

As discussed in Section 11.1, a device driver's controller and unit initialization
routines are called during driver loading and reloading and during system
recovery from a power failure.

In a VMS symmetrical multiprocessing environment, any logic in a driver's
controller initialization routine or unit initialization routine that takes special
action to service a power failure must adhere to the following rules:

• It cannot acquire any spin locks. Controller and unit initialization routines
are called at IPL 31 during power failure recovery to reinitialize I/O
devices before the processors are allowed to proceed with execution at
lower IPLs. Because processors may have been holding spin locks at
the time of the power failure, they will not be able to release them until
after they resume execution. As a result, spin locks are not available. to
controller and unit initialization routines.

• It cannot perform any operation that requires the intervention of other
processors in the system.

Permanently Allocating Map Registers and Buffered Data Paths
Because the map registers and buffered data paths of a UNIBUS adapter are
shared by the devices residing on the bus, they are synchronized at a single
fork IPL and, in a VMS multiprocessing system, by a single fork lock.

Prior to VMS Version 5.0, a unit initialization routine that permanently
allocated map registers or a buffered data path could do so at IPL$_POWER
(its calling IPL). Under VMS Version 5.0, however, the map register and data
path allocation routines require that the appropriate fork lock be held at the
time of their calling. As a result, a unit initialization routine that permanently
allocates these resources must fork before calling the allocation routine. The
VMS fork dispatcher ensures that, when execution of the routine resumes, it
is executing at fork IPL holding the fork lock.

The consequences of forking in a unit initialization routine are discussed at
length in Section 11.1.5. Refer to Sections 12.2.2.2 and 12.2.1.2 for additional
information on permanently allocating map registers and buffered data paths,
respectively.

G.3.4

G.3.5

VMS Version 5.0 and Kernel-Mode Code
G.3 Adapting Device Drivers to Run on a VMS Multiprocessing System

Timeout Handling Routine
In a VMS multiprocessing environment, the software timeout interrupt service
routine calls a driver's timeout handling routine at device IPL, holding both
the appropriate fork lock and device lock.

Previous editions of this manual have suggested that a timeout handling
routine can explicitly lower its IPL from device IPL to fork IPL using a
SETIPL instruction. This action assumed that the thread of code that resulted
in the call to the routine originated in a software interrupt granted at IPL 7
(IPL$_ TIMERFORK).

In a VMS multiprocessing system, such a forced lowering of IPL would break
synchronization. In addition, similar assumptions about the origin of the
calling code thread cannot be guaranteed. Instead, those timeout handling
routines that must lower IPL should issue the IOFORK macro to fork.

See Section 10.2 for additional information on the timeout handling routine.

General Methods for Synchronizing Kernel-Mode Code

G.3.5.1

In addition to the changes in the driver routines explicitly discussed in
Sections G.3.2 and G.3.3, there may be other alterations required in device
drivers and other kernel-mode code before they can execute successfully in
a VMS symmetric multiprocessing environment. This section provides some
general discussion of these changes. You can find additional information on
multiprocessing synchronization in Chapter 3.

Using the Spin Lock Synchronization Macros
You must adapt most kernel-mode code that raises or lowers IPL so that it
obtains appropriate synchronization in a VMS multiprocessing environment.
Determine these locations by searching for instances of the system macros
SETIPL, ENBINT, and DSBINT or for an instruction such as MTPR x, PR$_
IPL (where xis an IPL value). Do not change those instances of the SETIPL
and DSBINT macros intended to achieve synchronization only on the local
processor. After careful inspection proves that the macro in question is
intended to achieve local processor synchronization only, add the argument
environ=UNIPROCESSOR to their invocations.

You should replace most instances of these macros with a LOCK, UNLOCK,
FORKLOCK, FORKUNLOCK, DEVICELOCK, or DEVICEUNLOCK macro,
as shown in Table G-3. You can substitute the appropriate usage of any
of these macros wherever Table G-3 lists the LOCK and UNLOCK macros.
The formats of the spin lock synchronization macros are fully described in
Appendix B. Table 3-3 lists the system spin locks.

G-13

VMS Version 5.0 and Kernel-Mode Code
G.3 Adapting Device Drivers to Run on a VMS Multiprocessing System

Table G-3 Converting IPL Synchronization to Spin Lock Synchronization

Existing Macro

SETIPL ipl (where ipl is
greater than 2)

SETIPL ipl (where ipl is
greater than 2)

SETIPL ipl (where ipl is
less than 3)

DSBINT ipl

ENBINT

G.3.5.2

Function New Macro Function

Raise IPL LOCK lockname, Raise IPL, acquire spin lock
lockipl

Lower IPL from an IPL UNLOCK Release spin lock, lower IPL
greater than 2 lockname, lockipl

Lower IPL from an IPL SETIPL ipl Lower IPL
less than 3

Save current IPL and LOCK lockname, Save current IPL, raise IPL,
raise to specified IPL lockipl, savipl acquire spin lock

Lower IPL and restore UNLOCK Release spin lock, lower IPL
saved IPL lockname, lockipl

Interlocking Access to Data Cells and Queues
VMS Version 5.0 assigns spin lock protection to system resources as described
in Table 3-3. The system time and timer queue are managed under the
TIMER and HWCLK spin locks, as detailed in Section 3.1.3.

In a VMS multiprocessing environment, any thread of code that manipulates
bit fields at different IPLs without spin lock protection must do so with
interlocked instructions (for example, BBCCI and BBSSI).1 Instances of
the INSQUE and REMQUE instructions may need to be changed to use
the INSQTI and REMQHI instructions, respectively, if they are issued to
manipulate a queue at multiple IPLs. Certain cells, such as PCB$W-ASTCNT,
must be incremented and decremented using an ADAWI instruction. INCx
and DECx instructions are not interlocked in a VMS multiprocessing system.

Spin locks explicitly protect various system queues and lists. For example, the
AST queue in the process control block (PCB$L _ASTQFL) is synchronized by
the SCHED spin lock and the variable region of nonpaged pool is protected
by the POOL spin lock.

A fork lock implicitly protects the following adapter resource wait queues (at
the specified listheads) at fork IPL, as long as the drivers for all devices on
the adapter that require the resources use the same fork lock.

Listhead

VMS Version
5.0

UCB$L_IOOFL

ADP$L _DPOFL

ADP$L _MROFL

Old

Same

Same

Same

ADP$L_MR20FL Same

Name

Pending-1/0 queue

UNIBUS buffered data path wait queue

UNIBUS/022 bus map register wait
queue

022 bus alternate map register wait
queue

Because a single spin lock cannot control access to list items that must
be accessed by code threads executing at different IPLs, VMS Version 5.0

1 It is illegal to intermix interlocked and noninterlocked instructions that refer to the same bit: for instance BBCC
and BBCCI. Should any noninterlocked instruction refer to the same bit, the bit is not interlocked.

G-14

G.3.6

VMS Version 5.0 and Kernel-Mode Code
G.3 Adapting Device Drivers to Run on a VMS Multiprocessing System

provides either a processor-specific queue or a self-relative queue for such
items. The following queues (at the specified listheads) are, under VMS
Version 5.0, processor-specific queues whose forward and backward links are
contained in the per-CPU database (described in Section A.4 and Table A-4).

Listhead

VMS Version
5.0 Old

CPU$Q_SWIQFL SWl$GL _FQFL

CPU$L_PSFL IOC$GL_PSFL

Name

Software interrupt queue listhead

1/0 postprocessing queue

The following queues are, under VMS Version 5.0, self-relative queues whose
forward and backward links are contained in the data area of the system
loadable image SYSTEM_PRIMITIVES.EXE. 2 All system macros and routines
that access these queues have been converted to access them with the INSQTI
and REMQHI interlocked instructions.

Listhead

VMS Version
5.0

IOC$GQ _SRPIQ

IOC$GQ_LRPIQ

IOC$GQ_IRPIQ

Old Name

IOC$GL _SRPFL Nonpaged pool SRP lookaside list

IOC$GL _LRPFL Nonpaged pool LRP lookaside list

IOC$GL_IRPFL Nonpaged pool IRP lookaside list

Miscellaneous Conversion Tasks

G.3.6.1

This section describes those activities performed by some kernel-mode code
threads that should be examined in the course of converting them to run in a
VMS multiprocessing environment.

Reading the System Time
As discussed in Section 3.1.3, because EXE$GQ_SYSTIME can only be
changed or compared with multiple instructions, any code thread in a
multiprocessing system that must obtain a consistent copy of the quadword
must first acquire proper synchronization.

VMS Version 5.0 supplies the READ_SYSTIME macro to simplify this
procedure. It has the following format, where dst is the quadword destination
where the macro returns the system time:

READ_SYSTIME dst

Use of the READ_SYSTIME macro is subject to the following restrictions:

• IPL must be less than 23.

2 System cell EXE$AR_SYSTEM_PRIMITIVES contains the address of this image; the macro $$SYSTEM_
PRIM_DATADEF in SYS$SYSTEM:LIB.MLB defines offsets into its data area.

G-15

VMS Version 5.0 and Kernel-Mode Code
G.3 Adapting Device Drivers to Run on a VMS Multiprocessing System

G.3.6.2

G.3.6.3

G.3.6.4

G-16

• The processor must be executing in kernel mode.

• When using the macro within pageable program sections executing at
IPL 2 and below, you must ensure that the pages involved are locked in
memory.

Calling the Driver Fork Process from a TQE
Whenever VMS places a driver fork process into execution, it ensures that
it is synchronized with other processes at that fork level. In other words, if
it is generated by the conclusion of 1/0 preprocessing (EXE$INSIOQ), the
completion of a previous 1/0 request on a device unit (IOC$REQCOM), or
the operation of the fork dispatcher, the driver fork process is placed into
execution at the correct fork IPL, holding the corresponding fork lock.

As an example, consider a driver fork process activated by a timer wakeup
associated with a timer queue element (TQE) previously queued by the
driver. The software timer interrupt service routine does raise IPL to IPL 8
(IPL$_SYNCH) and obtain certain spin locks prior to dequeuing the TQE and
placing it into execution, but it does not obtain the driver's fork lock. Thus,
even though the driver's fork IPL may be IPL$_SYNCH, the driver will not
be properly synchronized at fork level unless it first obtains the appropriate
fork lock.

Invalidating Translation Buffer Entries
Prior to VMS Version 5.0, privileged code that changed a valid page-table
entry (PTE) could flush the stale PTE from the processor's translation buffer
by using the INVALID macro or writing directly to the Translation Buffer
Invalidate Single (TBIS) processor register. Similarly, it could invalidate
the entire translation buffer by using the INVALID macro or writing to the
Translation Buffer Invalidate All (TBIA) processor register.

In a VMS Version 5.0 symmetric multiprocessing environment, processors
must not use previously buffered PTE contents while another processor is
changing that PTE. Once the PTE has been changed, other processors must
flush the stale translation buffer entry for the PTE. To accomplish this, VMS
has replaced the INVALID macro with the INVALIDATE_TB macro.

The INVALID ATE_ TB macro flushes a single PTE or all PTEs from the
processor translation buffers in either a VAX uniprocessor or multiprocessor
system. In updating privileged code for VMS Version 5.0, you must replace
any instances of an INV AUD macro or of an MTPR instruction to PR$_ TBIS
or PR$_TBIA with a suitable invocation of the INVALIDATE_ TB macro.

Appendix B contains a description of the INVALIDATE_ TB macro.

Unsupported Use of the IRP
The VMS multiprocessing code employs a portion of the IRP (the 24 bytes
following IRP$L_KEYDESC), previously used only as a fork block by the
VMS disk and tape class drivers, to effect the transfer of an 1/0 request from
a processor with no access to the device to another processor that does have
access.

G.3.7

VMS Version 5.0 and Kernel-Mode Code
G.3 Adapting Device Drivers to Run on a VMS Multiprocessing System

A driver that uses this portion of the IRP to store data can lose this data
when the VMS I/O initiation routine (IOC$INITIATE) attempts to transfer the
request to the driver's start-I/O routine. VMS I/O initiation occurs when an
FDT routine calls EXE$QIODRVPKT or when the driver issues the REQCOM
macro to complete the current I/O request.

Troubleshooting a Device Driver in a Multiprocessing System

G.3.7.1

If the full-checking synchronization image has been loaded into memory,
the spin lock acquisition and releasing routines perform certain activities that
aid in the debugging and tuning of a VMS multiprocessing system. These
activities include the following:

• Enforcement of the spin lock ranking and IPL requirements. The means
by which the multiprocessing synchronization routines accomplish this
are discussed in Section G .3. 7 .1.

• Recording, for each spin lock, the last eight PCs that acquired or released
the spin lock. These PCs are located at offset SPL$L _OWN _PC_ VEC in
the spin lock data structure (SPL). You can use the SDA command SHOW
SPINLOCKS /FULL to display the contents of the PC list.

• Tallying, for each spin lock, the number of successful acquisitions and
the number of failed acquisitions in SPL$Q _ACQ _COUNT and SPL$L _
BUSY_WAITS, respectively.

Section G.1.1 explains the settings of the MULTIPROCESSING system
parameter that produce the full-checking synchronization environment.

The full-checking synchronization environment contains a mechanism
for producing bugcheck messages that describe the detection of serious
synchronization problems in the system. In most instances, these problems
are caused by a non-DIGITAL-supplied device driver that does not adhere to
multiprocessing synchronization rules.

This section describes the bugchecks that are possible in a VMS full-checking
synchronization environment and the SDA commands that aid in the
investigation of a multiprocessing system failure. It concludes with a brief
description of VMS Version 5.0 changes to the XDELTA debugger.

Multiprocessing Bugchecks
In order to obtain a spin lock or fork lock, a processor must be executing at an
IPL no higher than the lock's synchronization IPL (SPL$B_IPL). Additionally,
the processor cannot obtain a spin lock or fork lock if the lock's rank (SPL$B_
RANK) is lower than that of any locks the processor currently holds. To
release a spin lock, a processor must be executing at or above the IPL at
which it originally acquired the lock. However, a processor can release spin
locks in any order of rank. (See Table 3-3 for additional information on spin
lock IPL and rank requirements.)

In a full-checking synchronization environment, violation of spin lock
synchronization will produce the bugchecks described in Table G-4.

G-17

VMS Version 5.0 and Kernel-Mode Code
G.3 Adapting Device Drivers to Run on a VMS Multiprocessing System

Table G-4 Bugchecks Produced Within Full-Checking Synchronization

SPLIPLHIGH

SPLIPLLOW

SPLACQERR

SPLRELERR

SPLRSTERR

A processor has attempted to acquire a spin lock at an IPL higher than the IPL associated
with spin lock synchronization (SPL$B_IPL). SMP$ACQUIRE (called by the LOCK and
FORKLOCK macros with condition=NOSETIPL not specified) signals this bugcheck.

A processor has attempted to acquire a device lock-not already owned by the acquiring
processor-at an IPL higher than the IPL associated with device lock synchronization
(SPL$8_1PL). SMP$ACQUIREL (called by the DEVICELOCK macro with condition=NOSETIPL
not set) signals this bugcheck.

A processor has attempted to unconditionally or conditionally release a spin lock or device
lock at an IPL lower than the IPL at which it originally acquired it. SMP$RELEASE and
SMP$RESTORE (called by the UNLOCK and FORKUNLOCK macros) and SMP$RELEASEL or
SMP$RESTOREL (called by the DEVICEUNLOCK macro) signal this bugcheck.

A processor has attempted to acquire a spin lock while holding a higher ranked spin lock.
SMP$ACQUIRE, SMP$ACQUIREL, and SMP$ACONOIPL (called by the LOCK, FORKLOCK,
and DEVICELOCK macros) signal this bugcheck.

An attempt has been made to completely release a spin lock not owned by the releasing
processor. SMP$RELEASE and SMP$RELEASEL (called by the UNLOCK, FORKUNLOCK, and
DEVICEUNLOCK macros) signal this bugcheck.

An attempt has been made to conditionally release a spin lock not owned by the releasing
processor. SMP$RESTORE and SMP$RESTOREL (called by the UNLOCK, FORKUNLOCK,
and DEVICEUNLOCK macros when condition=RESTORE is specified) signal this bugcheck.

G.3.7.2 Analyzing a Multiprocessing System Failure

G-18

When invoked to analyze either a crash dump or a running system, the VMS
System Dump Analyzer (SDA) establishes a default context for itself from
which it interprets certain commands.

When the subject of analysis is a VMS uniprocessing system, SDA's context
is solely process context. That is, SDA can interpret its process-specific
commands in the context of either the process current on the uniprocessor or
some other process in some other scheduling state. When initially invoked
to analyze a crash dump, SDA's process context defaults to the process that
was current at the time of the crash. When invoked to analyze a running
system, process context is initially that of the current process: that is, the one
executing SDA. Change SDA's process context by entering commands in any
of the following forms:

SET PROCESS /INDEX=nn
SET PROCESS name
SHOW PROCESS /INDEX=nn

When invoked to analyze a crash dump from a VMS multiprocessing system
with more than one active CPU, SDA maintains a second dimension of
context-its CPU context-that allows it to display certain processor-specific
information, such as the reason for the bugcheck exception, the currently
executing process, the current IPL, the contents of processor-specific registers,
the interrupt stack pointer (ISP), and the spin locks owned by the processor.
When invoked to analyze a multiprocessor's crash dump, the SDA CPU
context defaults to that of the processor that induced the system failure.

Note: When you use SDA to analyze a running system, CPU context is not
accessible to SD A. As a result, the SET CPU and SHOW CPU commands
are not permitted.

VMS Version 5.0 and Kernel-Mode Code
G.3 Adapting Device Drivers to Run on a VMS Multiprocessing System

G.3.7.2.1

Change the SDA CPU context by using any of the following commands:

SET CPU cpu-id
SHOW CPU cpu-id
SHOW CRASH

Changing CPU context involves an implicit change in process context in one
of the following ways:

• If there is a current process on the CPU made current, SDA process
context is changed to that of the CPU's current process.

• If there is no current process on the CPU made current, SDA process
context is undefined and no process-specific information is available until
SDA process context is set to that of a specific process.

Changing process context can involve a switch of CPU context as well. For
instance, if you enter a SET PROCESS command for a process that is current
on another CPU, SDA will automatically change its CPU context to that of
the CPU on which the process is current. The following commands can have
this effect if the name or index number (nn) refer to a current process.

SET PROCESS name
SET PROCESS /INDEX=nn
SHOW PROCESS name
SHOW PROCESS /INDEX=nn

Investigating the Status of Spin Locks
SDA in VMS Version 5.0 includes the command SHOW SPINLOCKS. The
SHOW SPINLOCKS command displays various levels of information about
system spin locks, fork locks, and device locks that help investigations of
system failures caused by synchronization violations.

For each spin lock, fork lock, or device lock in the system, SHOW
SPINLOCKS provides the following information:

• Name of the spin lock (or device name for the device lock)

• Address of the spin lock (SPL) structure

• The owner CPU's CPU ID

• IPL at which allocation of the lock is synchronized on a local processor

• Number of nested acquisitions of the spin lock by the processor (depth of
ownership)

• Rank of the spin lock

• Number of processors waiting to obtain the spin lock

• Spin lock index

SHOW SPINLOCKS /BRIEF produces a condensed display of this same
information.

If the VAX system under analysis had been executing with full-checking
synchronization enabled (that is, with the MULTIPROCESSING system
parameter set to 1 or 2), SHOW SPINLOCKS/FULL adds to the spin lock
display the last eight PCs at which the lock was acquired or released.

G-19

VMS Version 5.0 and Kernel-Mode Code
G.3 Adapting Device Drivers to Run on a VMS Multiprocessing System

G.3.7.3 Using XDELTA on SMP Systems
Only one processor in a VMS multiprocessing environment can be in XDEL TA
at a time. If one processor attempts to enter XDELTA while another processor
is using XDEL TA, it waits until the other processor has exited XDEL TA. If the
processor using XDEL TA sets a breakpoint, other SMP processors are aware
of the breakpoint. Therefore, when the code with the XDEL TA breakpoint
is executed on another processor, that processor will stop at the specified
breakpoint and wait to enter XDEL TA.

XDELTA uses its own system control block (SCB) to direct all interrupt
handling to an error handling routine in XDEL TA. Therefore, an error
encountered by XDEL TA will not affect any of the other processors which
share the standard system SCB.

G.4 Multiprocessing Implementation Details

G.4.1 Processor States

G-20

In order to develop or maintain code that interacts closely with the operating
system, a system programmer should be aware of certain aspects of the
underlying operation of VMS that have been altered or introduced in
VMS Version 5.0. The implementation of symmetric multiprocessing has
its greatest effect on non-DIGITAL-supplied device drivers that must be
adapted to run in a VMS multiprocessing environment.

This section discusses the following operating system concepts, focusing on
the effects of the Version 5.0 implementation of multiprocessing:

• Processor states and state transitions

• Initialization sequence of a VMS multiprocessing system

• Process scheduling

• System timekeeping

For information about multiprocessing synchronization and data structures,
see Chapter 3 and Appendix A, respectively.

A VMS multiprocessing system can be in one of several defined states, as
illustrated in Figure G-1.

VMS Version 5.0 and Kernel-Mode Code
G.4 Multiprocessing Implementation Details

Figure G-1 Multiprocessor State Transitions

boot timeout
retries

uniprocessor

Li;,.,'"""'' processor boot

boot
write

timeout
(or)
INIT

timeout
failure

error after boot

successful boot
INIT

TIM OUT

STOP/CPU

START/CPU

BOOTED

STOPPED

STOP/CPU

RUN

boot
timeout

(or)
RESTART
timeout

TIMOULCRASH

ZK-6621-HC

VMS boots initially as a uniprocessor and later creates a multiprocessing
environment as part of system initialization (subject to the system parameters
MULTIPROCESSING and SMP_CPUS). The DCL command START /CPU
adds one or more available, inactive processors to the multiprocessing
configuration. VMS stores a processor's state (and other processor-specific
data) in its per-CPU database structure. The DCL command SHOW CPU
retrieves this information for display.

Table G-5 describes the states defined for processors in a VMS
multiprocessing system. State transitions are depicted in Figure G-1.

Table G-5 Multiprocessor States

State Description

Uniprocessor The multiprocessing system implicitly begins processing as a uniprocessor prior to
any attempt to bring a secondary processor into the system.

INIT A secondary processor enters the INIT state during system initialization if the SMP_
CPUS system parameter indicates that this processor is to be booted. Alternatively,
a processor enters the INIT state when it is the object of a START /CPU command.
Should the bootstrap operation fail, a timeout mechanism causes VMS to retry the
operation a defined number of times. If it has not successfully bootstrapped after
these attempts, the secondary processor enters the 'TIMOUT state.

TIMOUT A secondary processor enters the TIMOUT state when it fails to boot after a defined
number of retries. If it is subsequently the object of a ST ART /CPU command,
the secondary enters the INIT state for another series of retries of the bootstrap
operation.

G-21

G.4.2

VMS Version 5.0 and Kernel-Mode Code
G.4 Multiprocessing Implementation Details

Table G-5 (Cont.) Multiprocessor States

State Description

RUN A secondary processor enters the RUN state when it successfully boots at the
request of the primary processor and passes a series of processor validation checks.
The primary processor itself is always in the RUN state. RUN is the normal state for
all processors running in a multiprocessing environment. A processor in the RUN
state is a formal member of the active set, actively participating in operating system
activity in concert with other members of the active set. A secondary processor
may exit the RUN state if it is the object of a STOP/CPU command. Additionally, a
secondary can exit the RUN state if the primary processor requests a machine restart
and the restart mechanism fails to restart the secondary.

BOOTED A secondary processor enters the BOOTED state when, after completing all normal
operations to enter the RUN state, it must wait for the primary processor to
complete the initialization of the multiprocessing environment. When in the BOOTED
state, the secondary processor is running, but has has not yet been allowed by the
primary to join the active set.

BOOT _REJECTED A secondary processor enters the BOOT _REJECTED state upon successfully
booting at the request of the primary, but failing the series of processor validation
checks that ensure that all processors in a multiprocessing system are at equivalent
hardware and firmware revision levels. To force its exit from the BOOT_REJECTED
state, you must issue a STOP /CPU for its CPU ID prior to powering it down for
repair.

STOPPED A secondary processor enters the STOPPED state when it is the object of a
STOP/CPU command. You can issue the STOP/CPU command only for a processor
in the RUN or BOOT_REJECTED state. A subsequent START /CPU command causes
the secondary processor to enter the INIT state.

TIMOUT _CRASH When a secondary processor in the RUN state is restarting at the request of
the primary (for instance, following a system power failure), a successful restart
results in no transition from the RUN state. However, a failure to restart the
secondary indicates that a critical processor resource has been lost. In this event,
the secondary processor enters the TIMOUT_CRASH state and VMS induces a
bugcheck.

System Initialization

G-22

A VMS multiprocessing system initially boots as a uniprocessor. At this time,
the primary processor is responsible for initializing system memory, loading
VMS, and other system tasks. Because the primary CPU is the processor to
which the console subsystem is physically or logically connected, it generates
the output of all software messages to the console from any processor in the
system. The primary CPU is also responsible for keeping system time.

When the primary CPU first enters program mode, the primary bootstrap
program (VMB) has been loaded into memory, and its stack pointer register
points to the end of a physical page that VMB later formats as a restart
parameter block (RPB). The primary CPU uses the end of the RPB as a boot
stack until VMS memory management is enabled, when the interrupt stack in
its per-CPU database is used. (See Appendix A for additional information on
multiprocessing data structures.)

VMS Version 5.0 and Kernel-Mode Code
G.4 Multiprocessing Implementation Details

VMB loads the secondary bootstrap program (SYSBOOT) into memory
and transfers control to it. Among its tasks in the creation of a VMS
multiprocessing environment, SYSBOOT reserves sufficient system resources
for the creation of an individual per-CPU database structure, boot stack, and
interrupt stack for each processor in the system's available set; that is, for
all processors that can be brought into the system's active set. SYSBOOT
also must load an appropriate system synchronization image into memory,
based on the setting of the MULTIPROCESSING system parameter for
the primary processor. Table G-1 describes the contents of the three
possible synchronization images. Table G-2 lists the possible settings of
the MULTIPROCESSING system parameter.

SYSBOOT completes its part in system initialization and transfers control to
the INIT module of the VMS executive. In addition to its traditional duties,
INIT completes the initialization of the primary processor's per-CPU database
and calls the SMP$SETUP_SMP entry point in the system-dependent
initialization code (module SYSLOAxxx). This processor-dependent code
has the responsibility of completing the multiprocessing initialization of a
VAX system.

First, SMP$SETUP_SMP performs the following general initialization tasks:

• Places the address of the interprocessor interrupt service routine into the
system control block (SCB).

• Allocates a page of memory to serve as a boot page. It then inserts into
this boot page code that is immediately executed by each processor in the
system as it comes on line. It also stores data in the boot page required
by each booting processor before it enables memory management.

• Establishes a vector containing the physical addresses of all known per­
CPU databases. A newly bootstrapped processor accesses this vector as
it begins execution in order to locate its per-CPU database area. The
physical address of this vector is found in the RPB.

• Determines the processors that are to be brought into the system's active
set, using the value of the SMP_CPUS system parameter.

The second phase of system-dependent initialization occurs in the system
routine SMP$SETUP_CPU, which executes once for each processor indicated
in the SMP_CPUS system parameter. Also, it is SMP$SETUP_CPU that
executes whenever a START /CPU command attempts to place a secondary
processor in the active set.

SMP$SETUP_CPU performs the following functions:

• Allocates sufficient system resources (such as system page-table entries
and page frame numbers) to map the per-CPU database and stacks of the
processor.

• Maps the SPTEs to the page-frame numbers (PFNs) of the allocated
physical memory.

• Initializes as much of the per-CPU database as possible. Later, the newly
executing processor will complete this initialization.

• Executes the processor-specific procedure that actually bootstraps the
starting processor into the multiprocessing environment.

G-23

G.4.3

VMS Version 5.0 and Kernel-Mode Code
G.4 Multiprocessing Implementation Details

As each processor in the VMS multiprocessing system begins execution, it
performs the following steps:

• Locates its per-CPU database

• Sets up any immediate context that it requires before enabling memory
management

• Enables memory management

• Loads the interrupt stack pointer

• Completes the initialization of its per-CPU database

• Lowers IPL and begins processing as a member of the active set of the
VMS multiprocessing system

Scheduling in a VMS Multiprocessing Environment

G-24

With VMS Version 5.0, the scheduler no longer schedules a null process.
Rather, all idle processors run in an idle loop at IPL 3 on the interrupt stack.
Within this loop, the scheduler monitors SCH$GL _COMQS, the global cell
that records the availability of computable inswapped processes. Each set bit
in the longword corresponds to a process priority level at which there exist
currently computable processes. When a process becomes computable, the
bit in SCH$GL _COMQS corresponding to its priority is updated under the
SCHED spin lock.

When an idle processor determines that a computable process exists, it
contends for the SCHED spin lock, along with all other idle processors that
have noted the change to SCH$GL _CQMQS. Because only one processor
at a time can enter the database protected by the SCHED spin lock, work is
dispatched to each processor as it is able to secure the SCHED spin lock, until
an inswapped computable process is scheduled on each active processor.

While a processor runs in the idle loop, its CPU$L_CURPCB field points
to the null PCB, and its CPU$B_CUR_PRI field contains 255, representing
the highest priority process. This arrangement prevents code in RSE (report
system event) from issuing a RESCHED request when a process becomes
computable and the processor is actually idle. Thus, a processor issues a
RESCHED request only when it must preempt the current process. With VMS
Version 5.0, idle processors avoid the overhead involved in rescheduling the
null process.

For performance monitoring purposes, the time each processor spends
executing on the interrupt stack at IPL 3, with the CPU$L_CURPCB field
pointing to the null PCB, is counted as both null time and interrupt stack
time. As recorded in the per-CPU database structure, null time is correct. To
determine that portion of interrupt stack time that does not include null time,
you must first subtract null time from the interrupt stack time.

As a result of this implementation, VMS Version 5.0 ensures only that
the n-highest real-time priority computable processes on an n-processor
multiprocessing system will be current simultaneously. However, if all
processes are of normal priority, VMS only guarantees that the highest
priority normal process capable of running in the system will be scheduled.

VMS Version 5.0 and Kernel-Mode Code
G.4 Multiprocessing Implementation Details

G.4.4 Timekeeping in a VMS Multiprocessing Environment
Each processor in a VMS multiprocessor system has its own interval timer
that, every ten milliseconds, causes a hardware interrupt at the interval clock's
IPL (either IPL 22 or 24, depending upon processor type). The interval clock
interrupt service routine runs on each processor to service these interrupts,
but portions of this routine are reserved to run on only one processor in the
system, the primary CPU. By default, the boot CPU is also the primary CPU,
as it is the processor to which the console subsystem is physically attached.

The primary CPU has the sole responsibility of updating system data
structures that maintain system time. Similarly, the primary CPU must
examine the first entry in the systemwide timer queue to determine whether
the first timer queue element (TQE) has expired, and request a software timer
interrupt at IPL$_TIMERFORK (IPL 7) if it has. The IPL$_TIMERFORK
interrupt service routine thereupon removes entries from the head of the
timer queue until it has dispatched all due TQEs.

Given this strategy, VMS Version 5.0 supplies two spin locks for the timer
queue:

HWCLK Interval clock database spin lock. Locks the interval clock database.

TIMER Software timer database spin lock. Locks the rest of the system timer
queue.

The following example describes how VMS uses these two spin locks:

When servicing an interval clock interrupt, the primary CPU performs the
following sequence of tasks:

1 Obtains the HWCLK spin lock, thus locking the interval clock database

2 Advances the system time stored in EXE$GQ _SYSTIME by ten
milliseconds

3 Compares the due time of the first TQE (EXE$GQ_JST_TIME) with
EXE$GQ _SYSTIME to determine whether the first TQE has expired

4 If it has, requests a software interrupt at IPL$_TIMERFORK

5 Releases the HWCLK spin lock, thus unlocking the interval clock database

When servicing a software timer interrupt at IPL$_TIMERFORK, the primary
processor performs the following tasks:

1 Obtains the TIMER spin lock, thus locking the software timer database

2 Obtains the HWCLK spin lock, thus locking the interval clock database

3 Compares the due time of the first TQE (EXE$GQ_lST_TIME) with
EXE$GQ _SYSTIME to determine if the first TQE has expired

4 If the first TQE has expired, removes it and resets EXE$GQ_JST_TIME
to reflect the due time of the TQE now at the head of the queue

5 Releases the HWCLK spin lock, thus unlocking the interval clock database

6 Releases the TIMER spin lock, thus unlocking the software timer database

G-25

VMS Version 5.0 and Kernel-Mode Code
G.4 Multiprocessing Implementation Details

G-26

When inserting a TQE into the timer queue, any processor performs the
following tasks:

1 Obtains the TIMER spin lock, thus locking the software timer database.

2 Searches the timer queue to determine the proper place to insert the
TQE in the queue. (If the TQE belongs at the head of the timer queue, it
obtains the HWCLK spin lock, thus locking the interval clock database.)

3 Inserts the TQE in the timer queue. (If it has inserted the TQE at the
head of the queue, it resets EXE$GQ_lST_TIME to reflect the due time
of the TQE and then releases the HWCLK spin lock.)

4 Releases the TIMER spin lock, thus unlocking the software timer
database.

Non-DIGITAL-supplied system code that must access the system time
quadword (EXE$GQ _SYSTIME) must do so after acquiring the HWCLK
spin lock. See Section G.3.6.1 for some guidelines on how such code should
perform these tasks.

Glossary

ACF: See configuration control block.

ACP: See ancillary control process.

adapter control block {ADP): A structure in the I/O database that describes an IjO
adapter (or VAXBI device) and its resources.

active set: In a VMS symmetric multiprocessing system, those processors that have
been bootstrapped into the system, have undergone initialization, and are capable
of scheduling and executing processes. Together, the primary processor and all
secondary processors make up a system's active set. Compare with available set.

ADP: See adapter control block.

allocate a device: To reserve a particular device unit for exclusive use. A user process
can allocate a device only when that device is not allocated by any other process.

ancillary control process {ACP): A process that acts as an interface between user
software and an I/O driver. An ACP provides functions supplemental to those
performed by the driver, such as file and directory management.

Examples of ACPs are the magnetic tape ACP (MTAACP) and the network ACP
(NETACP).

affinity: In a VMS symmetric multiprocessing system, a close association of a device
or a process with a specific processor or set of processors in the system. See device
affinity and process affinity.

assign a channel: To establish the necessary software linkage between a user process
and a device unit before a user process can communicate with that device. A user
process requests the system to assign a channel and the system returns a channel
number.

AST: See asynchronous system trap.

ASTLVL: See asynchronous system trap level.

asynchronous system trap {AST): A software-simulated interrupt that passes control
to a user-defined routine. ASTs enable a user process to be notified of the occurrence
of a specific event asynchronously with respect to the execution of the user process.

If a user process has defined an AST routine for an event, the system interrupts
the process and executes the AST routine when that event occurs. When the AST
routine exits, the system resumes execution of the process at the point where it was
interrupted.

Glossary-1

Glossary

Glossary-2

asynchronous system trap level (ASTLVL): A value kept in an internal processor
register that is the highest access mode for which an AST is pending. The AST does
not occur until the current access mode drops in privilege (rises in numeric value) to
a value greater than or equal to ASTL VL. Thus, an AST for an access mode will not
be delivered while the processor is executing in a more privileged access mode.

available set: In a VMS symmetric multiprocessing system, those processors that have
passed the system's power-on hardware diagnostics and may or may not be actively
involved in the system. The available set includes the active set. Compare with
active set.

ASMP: See asymmetric multiprocessing.

asymmetric multiprocessing (ASMP): A multiprocessing configuration in which
the processors are not equal in their ability to execute operating system code. In
general, a single processor is designated as the primary, or master, processor; other
processors are the slaves. The slave processors are limited to performing certain
tasks, whereas the master processor can perform all system tasks. Contrast with
symmetric multiprocessing.

attached processor: See secondary processor.

backplane interconnect: An internal processor bus that allows I/O device controllers
to communicate with main memory and the central processor. These I/O controllers
may reside on the same bus as memory and the central processor (for instance, in
a VAX 8200 /8250 /8300 /8350 system}, or they may be on a separate bus entirely
(for instance, in a VAX 8600/8650/8670 system). In the latter case, an I/O adapter
enables and controls the communications between the I/O bus and the processor
and memory.

The backplane interconnect is called the synchronous backplane interconnect (SBI)
in the VAX-11/780 and VAX 8600/8650/8670 systems, the CPU-to-memory
interconnect (CMI) in the VAX-11/750 system, the VAXBI in the VAX 8200/
8250/8300/8350 systems, and the memory interconnect (NMI or XMI) in VAX
8530/8550/8700/8800/8830/8840 and VAX 6200-series systems. The
MicroVAX II and MicroVAX I processors use the Q22 bus as a backplane.

base register: A general register that contains the base address (the address of the first
entry) of a list, table, array, or other data structure.

buffered data path: A UNIBUS adapter data path that transfers several bytes of data in
a single backplane-interconnect transfer.

buffered 1/0: An I/O operation, such as terminal or mailbox I/O, in which an
intermediate buffer from the system's buffer pool is used instead of a buffer in
process space. See also direct 1/0.

bugcheck: The operating system's diagnostic that detects and reports internal
inconsistencies. If the system can continue running, it declares a nonfat al bugcheck
and reports it in an error log entry. A serious error results in a fatal bugcheck. As a
result of a fatal bugcheck, the system shuts itself down in an orderly fashion.

busy wait: See spin wait.

CALL instructions: The processor instructions CALLG (Call Procedure with General
Argument List) and CALLS (Call Procedure with Stack Argument List).

Glossary

capability: In a VMS symmetric multiprocessing environment, an attribute of a single
processor or set of processors. The capabilities required by a given process determine
the set of processors on which it can be scheduled. For instance, the VMS routine
that maintains the system time can execute only on the processor that has the
timekeeper capability.

CCB: See channel control block.

channel: A logical path connecting a user process to a physical device unit. A user
process requests the operating system to assign a channel to a device so the process
can communicate with that device. See also controller data channel.

channel control block (CCB): A structure in the 1/0 database maintained by the
Assign-1/0-Channel system service to describe the device unit to which a channel is
assigned.

channel request block (CRB): A structure in the IjO database that describes the
activity on a particular controller. The CRB for a controller contains pointers to the
queue of drivers waiting to access a device through the controller.

configuration control block (ACF): A structure in the 1/0 database used by the
autoconfiguration facility of the System Generation Utility to describe the device it is
adding to the system. The information stored in the ACF might be useful to a device
driver's unit delivery routine.

configuration register: A control and status register for an 1/0 adapter (for example, a
UNIBUS adapter). It resides in the adapter's 1/0 space.

connect-to-interrupt: A function by which a process connects to a device interrupt
vector. To perform a connect-to-interrupt, the process must map to the physical
pages in the 1/0 space that contain the vector.

console: The manual control unit integrated into the central processor. The console
includes a serial-line interface connected to a hardcopy terminal. This enables the
operator to start and stop the system, monitor system operation, and run diagnostic
programs.

console terminal: The terminal connected to the central processor's console.

context: The environment of an activity. See also process context, hardware context, and
software context.

controller data channel: A logical path to which the driver of a device that shares a
controller must gain access before it can use the controller to activate a device.

control and status register (CSR): A control and status register for a device or
controller. It resides in the processor's 1/0 space.

CRB: See channel request block.

CSR: See control and status register.

database: A collection of related data structures; all the occurrences of data described
by a database management system.

data structure: Any table, list, array, queue, or tree whose format and access
conventions are well defined for reference by one or more images.

Glossary-3

Glossary

Glossary-4

DOB: See device data block.

DDT: See driver dispatch table.

device affinity: In a VMS symmetric multiprocessing system, a close association of a
device with a specific processor or set of processors in the system. There are three
dimensions to device affinity in a VMS system. First, physical connectivity describes
those devices that are directly accessible only to the primary processor or to all
processors. Secondly, affinity is a software mechanism that defines those processors
that can initiate an I/O operation on the device. Finally, interruptibility describes
the set of processors that can receive interrupts from a device.

device data block (DOB): A structure in the 1/0 database that identifies the generic
device/controller name and driver name for a set of devices that share the same
controller.

device driver: The set of instructions and tables that handles physical 1/0 operations to
a device.

device interrupt: An interrupt received on interrupt priority levels 20 through 23.
Device interrupts can be requested only by devices, controllers, and memories.

device lock: In a VMS symmetric multiprocessing system, a dynamic spin lock the
ownership of which synchronizes device-specific code that executes at device IPL. A
device lock is associated with each adapter or controller in the system. See spin lock.

device register: A location in controller logic used to request device functions (such as
IjO transfers) and/or report status.

device unit: One device and its controlling logic (for example, a disk drive or terminal).
Some controllers can have several device units connected to a single controller (for
example, mass-storage controllers).

diagnostic program: A program that tests hardware, firmware, peripherals logic, or
memory, and that reports any faults it detects.

direct data path: A UNIBUS adapter data path that transfers several bytes of data in a
single backplane-interconnect transfer.

direct 1/0: An 1/0 operation in which VMS locks the pages containing the associated
buffer in physical memory for the duration of the 1/0 operation. The I/O transfer
takes place directly from the process's buffer. Contrast with system buffered 1/0.

direct-memory-access (OMA) transfer: The type of 1/0 transfer by which a device
controller accesses memory directly and, as a result, can transfer a large amount
of data without requesting a processor interrupt after each of the smaller amounts.
Contrast with programmed-1/0 (PIO) transfer.

DPT: See driver prologue table.

drive: The electromechanical unit of a mass storage device on which a recording
medium (disk cartridge, disk pack, or magnetic tape reel) is mounted.

driver dispatch table (DDT): A table in a driver that lists the addresses of the entry
points of standard driver routines and the sizes of diagnostic and error message
buffers for the device.

Glossary

driver prologue table (DPT): A table in a driver that describes the driver and the type
of device it controls to the VMS procedure that loads drivers into the system.

dynamic load balancing: A method of work distribution in which the operating
system ensures that the system work load is evenly distributed among the
processors. Dynamic load balancing in a VMS symmetric multiprocessing system
is a direct effect of the implementation of the scheduler. In a VMS multiprocessing
system, processors independently and continually look for processes to execute from
a common pool of such processes.

ECC: Error-Correction Code.

error logger: A system process that empties the error logging buffers and writes the
error messages into the error file. Errors logged by the system include memory
errors, device errors and timeouts, and interrupts with invalid vector addresses.

exception: An event detected by the hardware or software (other than an interrupt or
jump, branch, case, or call instruction) that changes the normal flow of instruction
execution.

An exception is always caused by the execution of an instruction or set of
instructions (whereas an interrupt is caused by an activity in the system that is
independent of the current instruction).

There are three types of hardware exceptions: traps, faults, and aborts. Examples
are attempts to execute a privileged or reserved instruction, trace traps, page faults,
compatibility-mode faults, execution of breakpoint instructions, and arithmetic traps.

executive: The software that provides the basic control and monitoring functions of the
operating system.

extended QIO processor: The facility that supplements the QIO driver's functions
when the driver performs virtual I/O operations on file-structured devices (Files-11
On-Disk Structure Level 2). The XQP executes as a kernel-mode thread in the
process of its caller.

FDT: See function decision table.

FDT routines: Driver routines called by the $QIO system service to perform device­
dependent preprocessing of an I/O request.

fork block: That portion of a data structure, such as the unit control block, which
contains a driver's context while the driver is waiting for an event or a resource.
A driver awaiting the processor resource has its UCB fork block linked into a
processor-specific fork queue.

fork dispatcher: A VMS interrupt service routine that is activated by a software
interrupt on the local processor at a fork IPL. Once activated, it obtains the fork
lock associated with the fork IPL and dispatches driver fork processes from a fork
queue until no processes remain in the queue for that IPL.

fork lock: In a VMS symmetric multiprocessing system, a static spin lock the ownership
of which synchronizes the right of a driver's fork process to execute at its associated
fork IPL. See spin lock.

Glossary-5

Glossary

Glossary-6

fork process: A process with a minimal context that executes instructions under a set
of constraints: it executes at raised interrupt priority levels; it uses RO through RS
only (other registers must be saved and restored); it executes in the system's virtual
address space; it can refer to and modify static storage that is never modified by
procedures that execute at a higher IPL. VMS uses software interrupts, spin locks,
fork processes, and resource wait queues to synchronize executive operations.

fork queue: A processor-specific queue of fork blocks that are awaiting activation at a
particular IPL by the VMS fork dispatcher.

function code: See 1/0 function code.

function decision table (FDT): A table in the driver that lists all valid function codes
for the device and lists the addresses of preprocessing routines associated with each
valid function of the device.

function modifier: See 1/0 function modifier.

generic device name: A device name that identifies the type of device but not a
particular unit; a device name in which the specific controller and/ or unit number is
omitted (for example, MB).

hardware context: The values contained in the following registers while a process is
executing:

• The PC

• The PSL

• The 14 general registers (RO through R13)

• The four processor registers (POBR, POLR, PlBR and PlLR) that describe the
process's virtual address space

• The SP for the access mode in which the processor is executing

• The contents to be loaded in the SP for every access mode other than the current
access mode

When a process is executing, its hardware context is continually being updated by
the processor. When a process is not executing, its hardware context is stored in its
hardware PCB.

hardware process control block (hardware PCB): A data structure known to the
processor that contains the hardware context when a process is not executing. A
process's hardware PCB resides in its process header (PHD).

I DB: See interrupt dispatch block.

interrupt: An event other than an exception or a branch, jump, case, or call instruction
that changes the normal flow of instruction execution. Interrupts are generally
external to the process executing when the interrupt occurs. See also device interrupt,
software interrupt, and urgent interrupt.

interrupt dispatch block (IDB): A structure in the I/O database that describes the
characteristics of a particular controller and points to devices attached to that
controller.

Glossary

interrupt priority level (IPL): The level at which a software or hardware interrupt
is generated. There are 32 interrupt priority levels: IPL 0 is lowest, 31 is highest.
The levels arbitrate contention for processor service. For example, a device cannot
interrupt a processor if the processor is currently executing at an IPL greater than
the IPL of the device's interrupt request.

interrupt service routine (ISR): A routine executed when a device interrupt occurs.

interrupt stack (IS): The processor-specific stack used when the processor is executing
instructions in interrupt context. In the VMS operating system, all hardware
interrupts (and all software interrupts above IPL 3) are serviced on a processor­
specific interrupt stack and not one of the perprocess stacks.

interrupt stack pointer (ISP): The pointer to the top of the interrupt stack.

interrupt vector: See vector.

1/0 database: A collection of data structures that describe I/O requests, controllers,
device units, volumes, and device drivers in a VMS system. Examples are the driver
dispatch table, driver prologue table, device data table, unit control block, channel
request block, 1/0 request packet, and interrupt dispatch block.

1/0 driver: See driver.

1/0 function: An 1/0 operation interpreted by the operating system and typically
resulting in one or more physical I/O operations.

1/0 function code: A 6-bit value specified in a $QIO system service call that describes
the particular I/O operation to be performed (such as, read, write, rewind).

1/0 function modifier: A 10-bit value specified in a $QIO system service call that
modifies an I/O function code (for example: read terminal input, no echo).

1/0 lockdown: The state of a page such that it cannot be paged or swapped out of
memory.

1/0 request packet (IRP): A structure in the 1/0 database that describes an individual
1/0 request. The $QIO system service creates an IRP for each I/O request. VMS
and the driver of the target device use information in the IRP to process the request.

1/0 rundown: An operating system function in which the system cleans up any If O in
progress when an image exits.

1/0 space: The regions of physical address space that contain the configuration
registers and device control and status register and data registers. These regions
are physically noncontiguous.

1/0 status block (IOSB): A data structure associated with the $QIO system service.
This service optionally returns a status code, number of bytes transferred, and
device/function-dependent information in an I/O status block. The information
is not returned from the system service call, but filled in by VMS when the IjO
request completes.

I PL: See interrupt priority level.

IRP: See 1/0 request packet.

Glossary-7

Glossary

Glossary-8

ISP: See interrupt stack pointer.

ISR: See interrupt service routine.

limit: The size or number of items requiring system resources (such as mailboxes, locked
pages, 1/0 requests, or open files) that a job is allowed to have at any one time
during execution, as specified by the system manager in the user authorization file.
See quota.

load balancing: A function of the operating system by which work is distributed
equally among all processors in a system. For more information, see static load
balancing and dynamic load balancing.

locking a page in memory: Making a page ineligible for either paging or swapping. A
page stays locked in physical memory until VMS specifically unlocks it.

logical-1/0 function: A set of 1/0 operations (for example, read-logical-block and
write-logical-block) that allow restricted direct access to device-level If O operations
using logical block numbers.

loosely coupled system: A multiprocessing system configuration consisting of
separate operating systems that communicate through some message transfer
mechanism. Contrast with tightly coupled system.

mailbox: A software data structure that is treated as a record-oriented device for
interprocess communication (for example, the error logger and OPCOM read from
systemwide mailboxes). Communication using a mailbox is similar to other forms
of device-independent 1/0. Senders write to a mailbox; the receiver reads from that
mailbox.

machine check: An exception that is reported when the processor or an external
adapter detects an internal error. If the machine check is recoverable, the machine
check handler logs the condition in an error log entry. If an unrecoverable machine
check occurs while the processor is in supervisor or user mode, the machine check
handler reports the exception to that mode. However, if an unrecoverable machine
check occurs in kernel or executive mode, a fatal bugcheck results. See also exception
and bugcheck.

map register: See scatter-gather map.

MASSBUS adapter (MBA): An interface device between the backplane interconnect
and the MASSBUS.

memory interconnect: The name of the internal processor bus for the VAX-11 /750
(CMI), VAX 8530/8550/8700/8800/8830/8840 (NMI), and VAX 6200 series (XMI).

multiprocessing system: A system containing two or more general purpose
processors. These processors are connected through hardware so that they can
work on the same application concurrently. See asymmetric multiprocessing and
symmetric multiprocessing.

multiprogramming: A mode of operation in which hardware resources are shared
among multiple, independent software processes.

nexus: A physical connection to the synchronous backplane interconnect (SBI). For
example, when connected to the SBI, the central processor, memory subsystem, and
1/0 controllers are known as nexuses. See also synchronous backplane interconnect.

Glossary

node: A VAXBI interface-such as a central processor, controller, or memory
subsystem-that occupies one of 16 logical locations on a VAXBI bus. See also
VAXBI.

offset: A displacement from the beginning of a data structure to the beginning of a field
within that data structure. Offsets for items within a data structure usually have an
associated symbol. The name of the symbol is used to refer to the field; its value is
the offset.

page-frame number (PFN): The high-order 21 bits of the physical address of a page
in physical memory.

page-table entry (PTE): The data structure that identifies the physical location and
status of a page of virtual address space. When a virtual page is in memory, the PTE
contains the page-frame number needed to map the virtual page to a physical page.
When it is not in memory, the page-table entry contains the information needed to
locate the page on secondary storage (disk).

parallel processing: A method of computing that occurs when a section of an
application is divided into multiple tasks, and those multiple tasks are executed
simultaneously on multiple processors.

PCB: See process control block.

PFN: See page-frame number.

physical address: The address used by hardware to identify a location in physical
memory or on directly-addressable secondary storage devices such as disks. A
physical-memory address consists of a page-frame number and the number of a byte
within the page. A physical-disk-block address consists of a cylinder or track and a
sector number.

physical address space: The set of all possible physical addresses that can be used to
refer to locations in memory (memory space) or device registers (1/0 space).

physical-1/0 functions: A set of IjO functions that allows access to all device-level
I/O operations except maintenance-mode operations.

Pl D: See process identification.

primary processor: The processor in a VMS symmetric multiprocessing system that
is either logically or physically attached to the console device. Only the primary
processor performs the initialization activities that define the VMS environment and
prepare memory for the entire system. In addition, the primary processor serves as
the system timekeeper.

process: The basic entity, scheduled by the system software, that provides the context
in which an image executes. A process consists of an address space, hardware
context, and software context.

process affinity: In a VMS symmetric multiprocessing system, a close association of a
process with a specific processor or set of processors in the system. Process affinity
can be indicated as either a requirement that a process run only on the processor
with a specific CPU ID or on a processor or set of processors that have a needed
capability. See capability.

process context: The hardware and software contexts of a process.

Glossary-9

Glossary

Glossary-1 0

process control block (PCB): A data structure used to contain process context. The
hardware PCB contains the hardware context. The software PCB contains the
software context, which includes a pointer to the hardware PCB.

process identification (PIO): A 32-bit value that uniquely identifies a process. Each
process has a PID and a name.

process 1/0 channel: See channel.

process page tables: The page tables used to describe process virtual memory.

process priority: The priority assigned to a process for scheduling purposes. The
operating system recognizes 32 levels of process priority, where 0 is lowest and 31
is highest. Levels 16 through 31 are used for real-time processes. The system does
not modify the priority of a real-time process (although the system manager or the
process itself might). Levels 0 through 15 are used for normal processes. The system
can temporarily increase the priority of a normal process based on the activity of the
process.

Contrast with interrupt priority level.

programmed-1/0 (PIO) transfer: The type of 1/0 transfer, largely conducted by
the driver program, that requires processor intervention after each byte or word
is transferred. Drivers for relatively slow devices, such as printers, card readers,
terminals, and some disk and tape drives use PIO data transfers. Contrast with
direct-memory-access (DMA) transfer.

program section (psect): A portion of a program with a given protection and set of
storage-management attributes. Program sections that have the same attributes are
gathered together by the linker to form an image section.

PTE: See page-table entry.

Q22 bus: The hardware interconnect by which MicroVAX-3600 series, MicroVAX
II, and Micro VAX I peripheral devices communicate with main memory and the
processor.

QIO: Queue I/O Request system service. The VMS system service that services $QIO
and $QIOW requests. The Queue I/O Request system service prepares an I/O
request for processing by the driver and performs device-independent preprocessing
of the request. This system service also calls driver PDT routines. See also FDT
routines.

quota: The total amount of a system resource, such as CPU time, that a job is allowed
to use in an accounting period, as specified by the system manager in the user­
authorization file. See limit.

return status code: See status code.

SBI: See synchronous backplane interconnect.

scatter-gather map: A technique by which a set of physically discontiguous pages are
made to seem contiguous to an I/O controller performing a direct-memory-access
transfer. It is I/O adapter hardware that generally provides this means of mapping
physical pages to I/O adapter address space.

Glossary

secondary processor: The processor or processors in a VMS symmetric
multiprocessing system that do not have the initialization and timekeeper
responsibilities of the primary processor.

small process: A system process that has no control region in its virtual address space
and has an abbreviated context. Examples are the swapper and the null process. A
small process is scheduled in the same manner as user processes, but must remain
resident until it completes execution; it cannot be swapped.

shared memory: A generic term referring to any memory that can be accessed by two
or more concurrent processes. In a VMS symmetric multiprocessing system, a single
copy of the VMS operating system resides in memory. Each processor in the system
can access this memory, as can any process executing on any processor.

SM P: See symmetric multiprocessing.

software context: The context maintained by VMS to describe a process. See also
software process control block (PCB).

software process control block (software PCB): The data structure used to contain
a process's software context. The operating system defines a software PCB for every
process when the process is created.

The software PCB includes the following kinds of information about the process:
current state; storage address, if the process is swapped out of memory; unique
identification of the process; and address of the process header (which contains the
hardware PCB). The software PCB resides in the system region of virtual address
space. It is not swapped with a process.

start-1/0 routine: The routine in a device driver that is responsible for obtaining
needed resources and for activating the device unit. An example of a needed
resource is the controller's data channel.

spin lock: In a VMS symmetric multiprocessing system, a semaphore associated
with a set of system structures, fields, or registers whose integrity is critical to the
performance of a specific operating system task. There are two types of spin lock.
Static spin locks are assembled permanently into the system; the same static spin
locks exist in the same memory locations in all VMS multiprocessing systems. A
fork lock is a form of static spin lock. Dynamic spin locks are created as required by
the I/O configuration of a system; as a result, the set of dynamic spin locks differs
from processor to processor. A device lock is a form of dynamic spin lock. See fork
lock and device lock.

spin wait: In a VMS symmetric multiprocessing system, an execution loop performed
by a processor attempting to acquire a spin lock already owned by another processor
in the system. This activity is also known as a busy wait.

static load balancing: A method of work distribution in which every process in an
application is preassigned to a processor during process creation.

status code: A longword value that indicates the success or failure of a specific
function. For example, system services always return a status code in RO upon
completion.

SV A: See system virtual address.

Glossary-11

Glossary

Glossary-12

symmetric multiprocessing (SMP): A multiprocessing system configuration in which
all processors have equal access to operating system code residing in shared memory
and can perform all, or almost all, system tasks.

synchronous backplane interconnect (SBI): The part of the VAX-11/780,
VAX-11/785, and VAX 8600/8650/8670 hardware that interconnects the processor,
memory controllers, MASSBUS adapters, and the UNIBUS adapter.

System Page Table (SPT): The data structure that maps the system virtual addresses,
including the addresses used to refer to the process page tables. The SPT contains
one PTE for each page of system virtual memory. The physical base address of the
SPT is contained in a processor register called the System Base Register (SBR).

system virtual address (SVA): A virtual address identifying a location mapped to an
address in system space.

tightly coupled system: A multiprocessing system configuration consisting of
multiple processors sharing a single copy of the operating system. These processors
are connected so that they can communicate and share data. Contrast with loosely
coupled system.

timeout: The expiration of the time limit in which a device is to complete an I/O
transfer. The driver's wait-for-interrupt request specifies the timeout limit.

timer: A system process that maintains the time of day and the date. It is also alert for
device timeouts and performs time-dependent scheduling upon request. The timer's
interrupt service routine creates the timer process.

UCB: See unit control block.

UNIBUS adapter: An interface device between the backplane interconnect and the
UNIBUS. In a VAX-11/780, VAX-11/785, or VAX 8600/8650/8670 system this
device is called the UBA. In a VAX-11/750 system, it is called the UBI. In a
VAX 8200/8250/8300/8350 or VAX 8530/8550/8700/8800 system, it is called
a DWBUA.

unit control block (UCB): A structure in the I/O database that describes the
characteristics of a device unit and current activity on it. The unit control block
also holds the fork block for its unit's device driver; the fork block is part of the
UCB and is a critical part of a driver fork process. The UCB also provides a static
storage area for the driver.

unit initialization routine: The routine that readies controllers and device units for
operation. Controllers and device units require initialization after a power failure
and during execution of the driver-loading procedure.

urgent interrupt: An interrupt received on interrupt priority levels 24 through 31.
These can be generated only by the processor for the interval clock, serious errors,
and power failures.

VAXBI: The part of the VAX 8200/8250/8300/8350 hardware that connects I/O
adapters with memory controllers and the processor. In a VAX 8530/8550/
8700/8800 system, the part of the hardware that connects I/O adapters with the
bus that interfaces with the processor and memory.

Glossary

vector: A one-dimensional array.

An interrupt or exception vector is a storage location known to the system that
contains the starting address of a routine to be executed when a given interrupt or
exception occurs. The system defines separate vectors for each interrupting adapter
and for classes of exceptions. Each system vector is a longword.

For the purpose of handling exceptions, users can declare up to two software­
exception vectors (primary and secondary) for each of the four processor-access
modes. Each vector contains the address of a condition handler, and is a longword.

virtual-1/0 functions: A set of 1/0 functions that must be interpreted by an ancillary
control process.

wait-for-interrupt request: A request made by a driver's start-1/0 routine after it
activates a device. The reque.st causes the driver's fork process to be suspended until
the device requests an interrupt or the device times out.

XCEL TA: A software tool for debugging the VMS operating system and device drivers.

XQP: See extended QIO processor.

Glossary-13

Index

A
Aborting an 1/0 request

See 1/0 request
ACB$V_QUOTA•C-7,C-10
ACB (AST control block)•4-18, A-38, A-64,

C-2,C-4
contents • C-6

Accessibility of memory

See Buffer
Access violation

See SS$_ACCVIO
ACF (configuration control block)• A-2 to A-4
ACL (access rights list) • A-45
ACP (ancillary control process)• A-11, A-38,

A-39,A-52

See also XQP
class• A-27
default• A-27

ACP_MULTIPLE parameter• A-27
Action routine

See FDT routine
Action routine bit mask• 4-10
Active set• G-23
Adapter

See 1/0 adapter
Adapter control block

See ADP
Adapter dispatch table• 12-27, 12-31, A-6, A-7

address• A-6
examining• 16-8 to 16-9

ADP$L_AVECTOR•14-8
ADP$L_BIMASTER• 14-8, 14-15
ADP$L_BUDR• 14-8, 14-12
ADP$L_CSR•14-8,C-79
ADP$L_DPQFL•C-84,G-14
ADP$L_MBASCB•14-8,A-7
ADP$L_MBASPTE•14-8,A-7
ADP$L_MR2QFL•G-14
ADP$L_MRQFL•G-14
ADP$L_VECTOR•12-31
ADP$VV_ADPTYPE•14-8,B-3
ADP$VV _Bl_ VECTOR• 14-8, 14-13
ADP$VV_DPBITMAP• 12-17, C-93
ADP$VV_TR•14-8, 14-15

ADP$VV_XBIA_TR• 14-15
ADP (adapter control block)• 1-6, 12-15,

A-4 to A-10
address•4-5, 12-17, 12-19, 12-31, A-24,

A-35
alternate map register allocation information•

A-10
alternate map register wait queue• A-9
data path allocation information• 12-17, A-9
data path wait queue• 12-17, A-7
fields supporting ADPDISP macro• 8-3
for generic V AXBI device • 14-8
for MBA• 13-4, 13-6 to 13-7
for V AXBI adapter• 14-8
map register allocation information• A-9
map register wait queue• A-8
size•A-5

ADPDISP macro• 5-5, B-2 to 8-4
examples• B-4

Affinity

See Device affinity
Alignment of data transfer• 12-3
Allocation class• A-27
Alternate map registers• 12-2, 12-5, 12-22,

A-8,A-25,8-3

See also Map registers
allocating• 12-19, C-61 to C-62
allocating permanent• 11-2, 12-20, A-25
loading• 12-22, B-41, C-72 to C-73
number of active• A-10
number of disabled • A-10
releasing• 12-26, 8-48, C-81 to C-82
requesting• B-53, C-89 to C-90

Alternate map register wait queue• A-9, C-90,
G-14

Alternate start 1/0 routine• 7-5, C-17
address• 6-4, A-29, D-2
context• D-2
entry point• D-2
exit method• D-2
input•D-2
register usage• D-2
synchronization requirements• D-2

ARB (access rights block)• 4-8, A-41
AST (asynchronous system trap)• C-6 to C-7

See also Attention AST
control• A-64

lndex-1

Index

AST (asynchronous system trap) (cont'd.)

delivering• 3-4, C-2, C-11
for aborted 1/0 request• C-11
out of band• 11-7, A-64
process-requested • 4-18, C-7, C-10, C-7 1
queuing•3-4, C-71
special kernel-mode• 3-4, 4-17, 7-7,

7-7 to 7-8, A-11
user specified• A-38

AST control block
See ACB

ASTL VL (AST level) processor register• 3-4
AST procedure (for connect to interrupt facility)•

18-18
AST service routine (for connect to interrupt

facility)• 18-8, 18-10, 18-12
A T$_MBA • A-32
A T$_UBA • A-32
Attached processor

See Secondary processor
Attention AST

See also AST
blocking• A-61, A-62
delivering• C-2
disabling• C-6 to C-7
enabling• C-6 to C-7
flushing• C-4

Attention condition• 13-8 to 13-9
See also MBA, MBA$L_AS, MASSBUS

Attention summary register

See MBA$L _AS
Autoconfiguration

See also System Generation Utility
driver control of• 15-17 to 15-18

B
Backplane interconnect • 1-11 , 1-15, 1 2-1

See also V AXBI, CML SBI, 022 bus
Backplane interconnect interface chip

See BllC
BADDALRQSZ bugcheck • C-3, C-19
Bl

See V AXBI bus
BllC

CSR space • 14-5
BllC$L_BCICR• 14-13, 14-26 to 14-27
BllC$L_BER• 14-6, 14-12, 14-13,

14-24to 14-25

lndex-2

BllC$L_BICSR • 14-11, 14-23 to 14-24
BllC$L_DTREG• 14-6, 14-23
BllC$L _EAR• 14-26
BllC$L_EICR• 14-9, 14-13, 14-25 to 14-26
BllC$L_GPRO • 14-28
BllC$L _GPR 1 • 14-28
BllC$L _GPR2 • 14-28
BllC$L_GPR3 • 14-28
BllC$L_IDR• 14-12, 14-26
BllC$L_IPIDR• 14-26
BllC$L _IPIMR • 14-26
BllC$L_IPISR • 14-26
BllC$L_IPISTPF • 14-27
BllC$L_SAR• 14-26
BllC$L_UICR• 14-9, 14-13, 14-27 to 14-28
BllC$L_WSR• 14-27
BllC$V_ARBCNTRL • 14-11
BllC$V_BROKE • 14-11
BllC$V_SST• 14-11
BllC$V_STS • 14-11
BllC (backplane interconnect interface chip)• 14-5

clearing error register• 14-12
enabling error interrupts• 14-13, 14-25
enabling options• 14-13
initializing• 11-2
self test• 14-11
setting interrupt vectors• 14-13

$BllCDEF macro• 14-5, 14-21
BllC registers

accessing• 14-5
symbolic names• 14-21 to 14-28

BIOCNT (buffered 1/0 count)• 2-3
BIOLM (buffered 1/0 limit) quota

adjusting• 4-1 7
charging• 4-7, 4...: 10
checking • 4-7
for mailbox• A-52

BIRO level• 12-34, 12-35
Bl-to-UNIBUS adapter

See DWBUA
BOOTED processor state• A-15, G-22
Booting with XDEL TA• 16-1 to 16-5
Boot page• G-23
Boot stack• A-14
BOOT _REJECTED processor state• A-15, G-22
BPT (Breakpoint) instruction• 16-6
Breakpoint

clearing • 16-1 8
complex• 16-18
displaying XDEL TA breakpoint list• 16-18
proceeding from • 1 6-5, 16-18

Breakpoint (cont'd.)

setting in driver code• 16-6, 16-10, 16-17
BREAKPOINTS parameter• 16-1 , 16-5
BR level• 12-34

relation to SCB vectors• A-9
Buffer

allocating• 1-18, 2-3, 7-6 to 7-7,
C-12 to C-13, C-14, C-15,
C-22to C-23,G-5

allocating a physically contiguous• 12-26,
C-16

data area• 7-6
deallocating•2-7, 4-17, 7-7, C-3, C-19
format• 7-7
header area• 7-6, 7-7
locking• 1-18, 6-7, A-41, A-42,

C-31 to C-33, C-34 to C-36,
C-40to C-42, C-45to C-47,

C-53to C-54, C-57to C-58
locking multiple areas• C-34, C-45, C-57
moving data from system to user•C-78
moving data from user to system• C-77
size• 7-6, 12-26
storing address of• 7-6
testing accessibility of• 7-6, B-36 to B-3 7,

C-31 to C-33, C-34 to C-36,
C-40to C-42, C-43to C-44,
C-45to C-47, C-53to C-54,
C-55to C-56,C-57to C-58

unlocking• C-105
Buffer address register• 12-22
Buffered data path• 12-8, A-8

See also Data path
allocating permanent• 11-2, 12-18, A-24,

G-12
flow of read operation using• 12-12 to 12-13
flow of write operation using• 12-12
functions• 12-11
odd transfer• A-8
purging•12-13, 12-19, 12-24to 12-25,

C-79to C-80
releasing• 10-2, 12-19, 12-25, B-50, C-84
requesting• 12-11, 12-17 to 12-18, B-55,

C-93to C-94
rules for using• 12-11, 12-14
speed• 12-14

Buffered data path wait queue

See Data path wait queue
Buffered function bit mask• 4-9, 6-7
Buffered l/0• 1-18, 2-3, 4-9, 11-6, 14-16,

A-39, A-40, A-58
chained• A-39

Buffered 1/0 (cont'd.)

complex• A-39
FDT routines for• 7-6 to 7-8
functions • 6-4
postprocessing • 7-7 to 7-8, C-70
reasons for using• 1-18, 6-7

Buffered read function bit
See IRP$V_FUNC

Bugcheck • 16-20
BADDALRQSZ•C-3,C-19

Index

examining information regarding• 16-5
ILLQBUSCFG • A-20
INCONSTATE•C-85,C-94
SPLACQERR•16-25, 16-26, C-107,G-18
SPLIPLHIGH• 16-25, C-107, C-108, G-18
SPLIPLLOW• 16-25, C-109, C-110, C-111,

C-112, G-18
SPLRELERR• 16-25, 16-26, C-109, C-110,

G-18
SPLRSTERR • 16-25, 16-26, C-111, C-112,

G-18
UBMAPEXCED•C-73, C-76
UNSUPRTCPU • B-9

BUGREBOOT parameter• 16-2, 16-5, 16-20
Bus grant• 12-34, 12-35
Bus request

See BR level, BIRO level
Busy bit

See UCB$V_BSY
BYTCNT (byte count) quota• 3-12

checking • G-5
crediting • C-18, G-5
debiting• C-12, C-20 to C-21,

C-22 to C-23, G-5
system maximum• C-20, C-22
verifying• C-20 to C-2 1 , C-22 to C-23

Byte count quota

See BYTCNT
Byte count register

See MBA$L _BCR
Byte limit

See BYTLM
Byte offset register• 12-13
BYTLM (byte limit)

crediting • G-5
BYTLM (byte limit) quota• 3-12

checking • G-5
crediting • C-18
debiting• C-12, C-20 to C-21,

C-22 to C-23, G-5

lndex-3

Index

c
Cache control block• A-62
Caching• A-54
CAN$C_CANCEL•11-7
CAN$C_DASSGN•11-7
Cancel 1/0 bit

See UCB$V_CANCEL
Cancel 1/0 routine• 1-4, 9-7, 11-6 to 11-8,

A-29
address• 6-3, 11-1, D-3
context• 11-7, D-4
device dependent• 11-8
device independent • 11-8
entry point• D-3
exit method • D-4
flushing AST s in • C-4
for connect to interrupt facility• 18-8, 18-10,

1 8-1 7 to 1 8-18
input•D-4
of CONINTERR.EXE• 18-12, 18-17
register usage• D-4
synchronization requirements• D-4
when unneeded• 11-7

$CANDEF macro • 11-7
Card reader• A-54

device driver• 9-6 to 9-8
Carriage control• A-53
CASE macro• B-5

example• B-5
CCB$B_AMOD • C-100
CCB$L_UCB•4-4
CCB (channel control block)• 1-6, 4-4, A-11

address • C-100
Channel• 1-6

See also. Process 1/0 channel
Channel control block

See CCB
Channel index number• 4-4, 11-8, C-66, C-100,

D-4
Channel request block

See CRB
Channel wait queue

See Device controller data channel wait queue
CHMK (Change Mode to Kernel) instruction• 4-1
$CINDEF macro• 18-10
Class driver

See Terminal class driver
Class driver entry vector table• A-33

lndex-4

Class driver vector table• 17-5, A-67
address• 17-8, B-7
relocating • B-6

CLASS_CTRL_INIT macro• 17-11, A-67, B-6
CLASS_DDT vector table entry• 17-1 8
CLASS_DISCONNECT service routine• 17-18
CLASS_DS_ TRANS service routine• 17-11,

17-18
CLASS_FORK service routine• 17-13, 1 7-18
CLASS_GETNXT service routine• 17-19, A-67,

B-7
address• 17-8

CLASS_POWERFAIL service routine• 17-11,
17-20

CLASS_PUTNXT service routine• 17-16, 17-19,
A-67,B-7

address• 17-8
CLASS_READERROR service routine• 1 7-16,

17-21
CLASS_SETUP _UCB service routine• 17-11 ,

17-20
CLASS_SET _LINE service routine• 17-11
CLASS_UNIT_INIT macro• 17-8, 17-11, 17-18,

B-7
Clock

See Interval clock
Cloned UCB routine• 11-11 to 11-12, A-56

address• 6-4, A-30, D-5
context • D-5
exit method• 11-12, D-6
input• 11-11, D-5
register usage• 11-11, D-5
synchronization requirements• D-5

CMI (CPU-to-memory interconnect) • 1-11
Coding conventions

See Device driver
COM$DELA TTNAST • C-2
COM$DRVDEALMEM • 14-18, C-3
COM$FLUSHATTNS • C-4, C-6
COM$POST • 3-4, 7-5, C-5, D-2
COM$SETATTNAST•C-6to C-7
Command address register

See MBA$L _CAR
Configuration register

See CSR, MBA$L_CSR
CONFREGL array• 14-6
CONINTERR.EXE • 18-7, 18-12 to 18-13

cancel I /0 routine of• 18-12
connecting to• 18-8

CONNECT command
See System Generation Utility

Connect to interrupt driver

See CONINTERR.EXE
Connect to interrupt facility

cancel 1/0 routine• 18-17 to 18-18
condition values returned• 18-11
CONNECT command• 18-8
example of A/D converter using• 18-18,

18-20 to 18-22
example of time sampling using• 18-18,

18-22 to 18-24
example of watchdog timer using• 18-18,

18-19 to 18-20
interrupt service routine• 18-16 to 18-17
mapping 1/0 address space• 18-7
privileges required• 18-11
programming language requirements• 18-13
start 1/0 routine• 18-15
SYSGEN requirements• 18-8
unit initialization routine• 18-14 to 18-15
user-specified routines• 18-8, 18-13 to 18-18

Control and status register

See CSR
Control block

See Data structure
Controller

See Device controller
Controller initialization routine• 1-3,

11-1 to 11-6 I 1 5-4 I 1 5-8
address• 4-4, 6-3, 11-1, 12-31, A-23,

B-24,D-7
allocating controller data channel in• 8-4
context • 11-1 , D-7
entry point• D-7
exit method • D-7
for generic V AXBI device• 14-10 to 14-1 5
forking• A-19
forking in• 3-21 , 11-5 to 11-6
for terminal port driver• 17-11, B-6
functions• 11-1, D-8
input• 11-2, D-7
register usage• D-7
synchronization requirements• D-7, G-12

Control mask
See Device activation bit mask

Control register

See CSR, MBA$L _CR
Coroutine•C-35, C-46, C-58, C-105
Corruption

detecting• 16-22 to 16-24
CPU$L _PHY _CPUID • C-68
CPU$L_PSBL•C-5,C-10, C-24,C-92

CPU$L_PSFL•3-5,C-70, G-15
CPU$Q_SWIOFL•C-26, C-30, G-15
CPU$Q_WQRK_IFQ • A-16
CPU (per-CPU database)• A-12 to A-17

creation• G-23
locating• B-29, G-7

CPUDISP macro• 5-5, B-8 to B-9
CPU ID• A-16, C-68
CRB$B_MASK•4-4, 14-7
CRB$L_AUXSTRUC•12-26
CRB$L_DLCK • 3-20
CRB$L_INTD•4-4, A-20 to A-25
CRB$L_INTD+VEC$L_INITIAL• 11-4
CRB$L_INTD+VEC$L_UNITINIT• 11-4
CRB$L _LINK• 13-12
CRB$L_WQBL• 14-7
CRB$L_WQFL•4-4, 14-7, C-83,C-88
CRB$V_UNINIT • 14-7

Index

CRB (channel request block)• 1-6, 4-4 to 4-5,
A-17 to A-25

alternate map register allocation information•
12-20

creation • 1 5-4
data path allocation information•

12-17 to 12-18
for generic V AXBI device• 14-7
fork block• 3-21 , 15-7, A-19
for MBA• 13-4, 13-6 to 13-7, 13-12,

13-14
initializing• 6-3, B-24
map register allocation information•

12-19 to 12-20
periodic wakeup of• A-20
primary• 13-12, A-52
reinitializing• 6-3, B-24
secondary• 13-12, A-20
synchronizing access to. 3-15

CSR
fixed space • 1 5-1 2
floating space• 15-12

CSR (control and status register)• 12-4, 12-22

See also Device registers
address•4-5, 8-4, 12-23, A-35
bad address• A-35
displaying address• 15-9
loading • 8-5
locating device registers from• 12-23
of LP 11 printer• 2-5
specifying address• 15-5
specifying offset for multiunit controller• 1 5-5

CTL$GL_CCBBASE•C-100

lndex-5

Index

CTL$GL _PCB• G-7

D
Data path • 1-1 7, 12-8 to 1 2-14,

12-17to 12-19, A-24
See also Buffered data path, Direct data path
autopurging • A-8, B-3
buffered• 12-2, A-8, B-3
direct• B-3
mixed use of direct and buffered• 12-19
purging• 10-2, 12-13, 12-19,

12-24to 12-25, B-46,C-79to C-80
speed• 12-10, 12-11, 12-14

Data path allocation bit map• A-9
Data path register• 12-8, 12-15

purge error• C-80
Data path wait queue• 12-25, A-7, C-85, C-94,

G-14
Data storage • 5-1

device specific•4-4, 11-2, A-40, A-47,
B-20

Data structure• A-1
See also 1/0 database
defining bit field within• B-70 to B-71
defining field within• B-12, B-13, B-14
initializing• 6-1, B-22 to B-24

Data transfer
See also OMA transfer, PIO transfer
alignment• 12-3
byte aligned• 12-2, 12-22, B-3, C-76
byte count• A-58, A-62
byte offset• 12-13, 12-18, A-58, C-75
in reverse direction• 13-3, 13-13
longword-aligned 32-bit random-access•

12-11
mixing read and write functions in• 12-10
negative byte count• C-32, C-35, C-41, C-43,

C-45,C-54,C-55,C-57
overlapping with seek operation• 8-3
size• 12-23
speed• 12-10, 12-11, 12-14
starting address• 12-22 to 12-23, 12-26,

A-58
to randomly ordered addresses• 12-10
word aligned• 12-2, C-76
zero byte count• C-32, C-41', C-54

$DCDEF macro• A-54, B-3, B-19
DDB$L _LINK• 11-4
DDB$L _UCB• 11-4

lndex-6

DDB$T_DRVNAME • 4-6
DDB$T_NAME • 4-6
DOB (device data block)• 1-5, 4-6, 11-4,

A-25to A-27
address• A-52
creation • 15-4
initializing• 6-3, B-24
reinitializing• 6-3, B-24

DDT$L_ALTSTART•7-5,D-2
DDT$L_CANCEL•D-3
DDT$L_CLONEDUCB•D-5
DDT$L_REGDUMP•D-14
DDT$L_START•D-15
DDT$L_UNITINIT • 11-4, D-21
DDT$L_UNSOLINT • D-23
DDT$VV_ERRORBUF•11-9
DDT (driver dispatch table)• 1-2, 11-1, 11-9,

A-27to A-30,C-99
address•6-3, A-27, A-58, B-24
creating•6-3 to 6-4, 11-3, B-10 to B-11
of terminal class driver• 1 7-18
relocating addresses specified in• 11-4

DDT AB macro• 11-9, 15-1, B-10 to B-11 ,
C-99

example• B-11
Debugging

device driver• 16-1 to 16-2 7
$DEFEND macro• A-48, B-13

example• B-14
$DEFINI macro• A-48, B-14

example• B-14
$DEF macro• A-48, B-12

example• B-14
DELTA

See Delta/XDelta Utility
Delta/XDelta Utility (DEL T A/XDEL TA)•

16-1 to 16-20
base register• 16-13

predefined • 16-13
X4• 16-13
X5•16-13
XE•16-13
XF•16-13

changing contents of location using• 16-15,
16-16

closing location using• 16-16
commands

executing string. 16-19
indirect• 16-17
predefined in XE and XF • 16-13
summary• 16-10 to 16-12

Delta/XDelta Utility (DEL T A/XDEL TA) (cont'd.)

depositing command string in system patch
space for use by• 1 6-19

displaying contents of address range using•
16-16

displaying contents of location using• 16-16
expressions • 16-12
formats

address display• 16-15
instruction display• 16-16

guidelines• 16-20
prefixes

G• 16-13
H • 16-13

setting PC with • 16-18
stepping through code with • 16-19
symbols

period (.) • 16-13
Q. 16-13 I 16-1 6 I 16-1 7

using in multiprocessing environment• 16-7,
G-20

values• 16-12
DEV$V_AVL • 17-20
DEV$V_ELG. 11-9 I C-8
DEV$V_NET • 17-12
DEV$V_RED • 17-20
$DEVDEF macro• A-53, A-54
Device

See also Device unit
allocation class• A-27
associated mailbox• A-56
bus•A-54
byte-addressable• 12-22
card reader• A-54
cluster accessible• A-52
cluster available• A-54
DIGIT AL-supplied• 15-12 to 15-13
directory structured• A-53
disk• A-54, C-50, C-92
dual ported• A-53, A-54
file structured• 2-3, 4-8, A-27, A-53
input• A-53
line printer• A-54
mailbox• A-53, A-54
mounted•A-53,A-56
mounted foreign• A-53
network• A-53
off settable• 14-9
on V AXBI bus• 14-2
output• A-53
random access• A-53
real time• A-53, A-54

Device (cont'd.)

record oriented • A-53
reference count• A-57
sequential block-oriented• A-53
shareable• A-53
spooled• A-53
synchronous communications• A-54
tape• A-54, C-92
terminal• A-53, A-54
timed out• A-56
word-aligned• 12-18
workstation• A-54

Device activation bit mask• 8-4
Device affinity• A-54, C-69
Device allocation lock• A-52

Index

Device characteristics• 7-8, A-53 to A-54
retrieving• C-48
setting • C-49 to C-50
specifying• 6-2, B-24

Device class• A-54
specifying• 6-2, B-24

Device controller• 1-5, 1-6, A-17

See also MBA, Controller initialization routine
initializing• 11-1
intelligent• 1-18
multiunit•3-23, 4-4, 4-14, 8-3, 8-6, 9-8,

A-35, A-52, A-55
number of units created for• 15-6, B-20
number of units supported by• A-33, A-35,

A-36,8-20
reinitializing• B-20
single-unit• 3-24, 4-5, 10-2, 11-2, 15-2,

A-35
status• A-20
synchronizing access to• 3-15

Device controller channel wait queue• 3-24
Device controller data channel• 4-4 to 4-5,

13-12, 13-14
See also Secondary controller data channel
obtaining ownership of•3-23, 4-4,

8-3to 8-4,A-35, B-57,C-97to C-98
owner•4-5
releasing•3-24, 8-6, 10-2, B-49, C-83
releasing before waiting for interrupt• C-102
relinquishing ownership• B-7 2
requesting • 8-3
retaining ownership• B-72
retaining while waiting for interrupt• C-102
unavailability• 8-3

Device controller data channel wait queue• 8-3,
A-19,C-83,C-88,C-98

Device database• 3-5, 3-1 5, G-9

lndex-7

Index

Device database (cont'd.)

synchronizing access to• 3-19 to 3-20,
B-15 to B-16

Device data block
See DOB

Device driver• 1-1
assembling with SYS$LIBRARY:LIB.MLB • 15-1,

G-8
asynchronous nature• 1-1, 1-8 to 1-9, 5-1
branching on adapter characteristics•

B-2to B-4
branching on processor type• B-8 to B-9
calculating base address• 16-7
coding conventions• 5-1 to 5-3, 15-1,

16-2 1, 16-21
components• 1-2 to 1-4, 5-1
context• 1-7 to 1-9
converting uni processing to multiprocessing•

G-8to G-20
debugging• 16-1 to 16-20
displaying address of• 15-10
entry points• 1-2, 6-3 to 6-4, A-27,

D-1 to E-1
example• E-1 to E-29, F-1 to F-25
flow• 1-8 to 1-9, 1-19 to 1-2 1
for generic V AXBI device• 14-1 to 14-28,

C-103
for MASSBUS device• 13-1 to 13-15
for 022 bus device• 12-1 to 12-36
for UNIBUS device• 12-1 to 12-36
functions• 1-2
hardware considerations• 1-9 to 1-16
implementing a conditional wait• B-63, B-64
linking with SYS$SYSTEM:SYS.STB • 15-1,

16-7,G-8
loading•6-1, 11-3 to 11-4, 13-6 to 13-7,

15-1 to 15-20, 16-5, A-32
machine independence• 1-10, 5-5, 12-16,

8-2to 8-4,8-8to B-9
maximum number of supported units• 6-2
multiprocessor• 15-10, G-1, G-3
name•4-6, 15-3, 15-6, 15-7, 15-9, A-27,

A-33,B-20
program sections• 6-3, 15-1 , 16-7, 8-11 ,

B-19
reloading • 15-7 to 15-8
size• 5-1, A-32
storing data from • 5-1
suspending•2-6, 8-6 to 8-7, 12-24, A-52
synchronization flow • 3-16 to 3-19
synchronization methods used by • 1-7,

3-1 to 3-24

lndex-8

Device driver (cont'd.)

template for• 5-6 to 5-15
uniprocessor• 15-10, G-1, G-3
unloading• A-32, B-20

Device interrupt• 1-6, 3-5, 4-14, 9-1 to 9-8,
12-27 to 12-35

See also Interrupt service routine
destination for V AX81 node• 14-8
direct-vector• 12-2, 12-28, 12-30, 12-32,

A-7,A-8,A-23,8-3
disabling• 5-4, 10-4
enabling•2-5, 11-2
expected•8-7,9-3to 9-4,A-56,C-102
multilevel 022 bus• 12-32, 12-34 to 12-36,

A-20
non-direct-vector• 12-2, 12-29, 12-30,

12-32, A-7, A-23
on MASSBUS • 13-8
servicing• 2-6
unsolicited• 9-4 to 9-8, A-29
waiting for•2-5 to 2-6, 4-14, 8-6 to 8-7,

12-24,B-73,C-101 to C-102
Device interrupt vector• 12-27, 14-8, 14-9

connecting to• 18-7 to 18-24
for generic V AXBI device • 14-13
multiple• 12-32, 14-7
specifying address• 15-6
specifying multiple• 15-6

Device IPL• 3-5, 9-1, A-55, 8-15 to 8-16
specifying• 6-2, B-24

Device lock•3-6, 3-12, 3-15, 8-5, A-47,
A-56,C-102

See also Spin lock
acquisition IPL• C-108
address•3-20, A-20, A-35, A-52
multiple acquisition of• B-17, C-112
obtaining•3-9, B-15 to B-16, C-106, C-108
ownership• 3-15
rank •3-15
releasing•3-9, B-17 to B-18, C-110
restoring• B-1 7, C-112

DEVICELOCK macro • 3-8, 3-9, B-15 to B-16,
B-61, B-72,C-106,C-108,G-4,G-10,
G-11

example• B-16, 8-18, 8-61
used by interrupt service routine• 9-3

Device mode • 7-8
Device name• 1-5, A-27
Device registers• 1-6, 1-16 to 1-18, 12-23

accessing•2-5, 4-5, 12-4, 12-23, 14-5,
16-20 to 16-21, 18-1, A-23, A-35,
8-15 to B-16

Device registers (cont'd.)

clearing error status• 11-1
modification by power failure• 8-5
modifying• 5-3
of LP 11 printer• 2-5
rules for referencing• 5-3 to 5-4, 12-4
saving the value of• 11-10, D-14
synchronizing access to• 3-5, 3-15, 8-5

Device timeout
See Timeout

Device timeout bit
See UCB$V_ TIMOUT

Device type• A-54
specifying• 6-2, B-24

Device unit• 1-5, A-4 7

See also UCB, Unit initialization routine
activating• 2-5, 8-4 to 8-5, 12-23
allocating• A-52, A-53, A-56
autoconfiguring • 15-19 to 15-20, B-20
busy indicator• A-56
CSR address• 15-9
deaccessing • A-11
deallocating• A-56
description • 4-4
error retry count• A-58
initializing• 11-1
marking available• A-53
marking on line• 11-2, A-56
name•4-6
number• A-55
operations count• C-92
reference count • 11-6, D-3
reinitializing• B-20
status• 4-4, A-56 to A-57
vector address• 15-9

DEVICE UNLOCK macro• 3-9, B-17 to B-18,
B-61,C-110,C-112,G-4,G-11,G-12

example•B-16, B-18, B-61
issued by IOC$WFIKPCH and IOC$WFIRLCH •

C-102
Diagnostic buffer•4-18, A-39, A-41, A-57,

A-62,C-69
copied to process space • C-71
filling• C-67
size•A-29
specifying• 4-8, 6-4

Diagnostic register

See MBA$L_DR
DIOLM (direct 1/0 limit) quota

adjusting• 4-17
charging• 4-7, 4-10

DIOLM (direct 1/0 limit) quota (cont'd.)

checking• 4-7
Direct data path• 12-8, 12-10

See also Data path
functions• 12-10
odd transfer• A-8
purging• 12-19, 12-24 to 12..:..25
requesting• 12-18
speed• 12-10

Index

Direct l/0• 1-18, 7-4, 14-16, A-39, A-58
additional buffer regions for• A-4 1 to A-43
checking accessibility of process buffer for•

C-43to C-44,C-55to C-56
FDT routines for• 7-5, 7-8
locking a process buff~r for• C-31 to C-33,

C-34to C-36, C-40to C-42,
C-45to C-47, C-53to C-54,
C-57to C-58

postprocessing • C-70
reasons for using• 1-18, 6-7
unlocking process buffer• C-105

Direct memory access transfer

See OMA transfer
Directory sequence number• A-61, A-62
Direct-vector interrupt• 12-2, 12-28, 12-30,

12-32, 16-9,A-7,A-8,A-23,B-3
Disk driver• 7-8, 8-3, 8-6, 9-5, A-57, A-58

See also MBA, MASSBUS
ECC correction routine for• C-65
pack acknowledgment in• 11-2
recording disk geometry in• 11-2
removing a disk volume in• 9-8
using local disk UCB extension• A-48,

A-61 to A-62
waiting for disk unit spinup in• 11-2

DLDRIVER.MAR • E-1 to E-29
OMA transfer• 1-17 to 1-18, 5-5

See also Map registers, Data path
byte-aligned• 12-11
calculating starting address• 12-26 to 12-27
detecting memory error during• 12-25
flow• 1-19 to 1-21, 12-8
for modify operation• C-31 to C-33,

C-34to C-36
for read operation• C-40 to C-42,

C-45to C-47
for write operation• C-53 to C-54,

C-57to C-58
longword-aligned 32-bit random-access•

12-12, 12-14

lndex-9

Index

OMA transfer (cont'd.)

on MicroVAX I• 12-24 to 12-25,
12-26 to 12-27

on 022bus•12-15 to 12-16,
12-19 to 12-26

on UNIBUS• 12-15 to 12-26
on V AXBI bus• 14-15 to 14-19
postprocessing • 12-16, 12-24 to 12-26
start 1/0 routine• 8-1 to 8-7
using direct data path in• 12-10
using direct 1/0 in•6-7
using 1/0 adapter resources in• 12-2 to 12-14

DMB32 asynchronous/synchronous multiplexer•
14-17

DPT$V_NOUNLOAD•15-7
DPT$V_SMPMOD• 15-10, G-3
DPT$V_SUBCNTRL•13-14
DPT$V_SVP•A-58, B-19, C-77, C-78
DPT$W _DEFUNITS • 15-18
DPT$W_DELIVER• 15-18, D-19
DPT$W _UNLOAD• D-9
DPT (driver prologue table)• 1-2, 3-5, 11-1,

16-7, A-30 to A-34, A-53, A-54
creating• 6-1 to 6-3, B-19 to B-24
initialization table• 6-2, 15-4, A-32,

B-23to B-24
linked into system DPT list• 15-3, 15-7, 15-8
reinitialization table• 6-3, 15-4, 15-8, B-24,

B-24
DPT AB macro • 6-1 , 11-1 , 14-9, 15-1, A-48,

B-19 to B-21
controlling autoconfiguration with•

15-17 to 15-18
example• B-21
used by MASSBUS drivers• 13-14

DPT_STORE macro•3-5, 6-2 to 6-3, 11-9,
B-22to B-24

example• B-21
DR 11-W driver• F-1 to F-25
Driver

See Device driver
Driver dispatch table

See DDT
Driver prologue table

See DPT
Driver unloading routine• 6-3, 11-4, 14-18,

15-7to 15-8,8-20,B-24
address•6-2, A-33, D-9
context• D-9
exit method • D-9
functions• D-9
input•D-9

lndex-10

Driver unloading routine (cont'd.)

register usage• D-9
synchronization requirements• D-9

ORV 11-WA driver• F-1 to F-25
DSBINT macro• 3-8, 3-9, 8-5, 8-6, B-25,

G-4, G-10
replacing with spin lock synchronization macro•

G-13
Dual path UCB extension• A-48
Dual ported device• A-53
DWBUA (Bl-to-UNIBUS adapter)• 1-12, 14-9,

18-3
See also UNIBUS adapter

DWMBA
See Memory interconnect to V AXBI adapter

DYN$C_BUFIO • C-12, C-22
DYN$C_IRP • C-12
Dynamic spin lock• 3-12
DZ 11 controller• A-19
DZ32 controller• A-19

E
ECC error correction•A-57, A-58, A-62, B-19,

C-65
ECC position register• A-62
ECRB (Ethernet controller data block)• B-2
EMB$C_DA • 11-9
EMB$C_DE • 11-9
EMB$C_DT • 11-9
EMB$L _DV_REGSA V • 11-9
EMB$W_DV_STS•C-91
$EMBDEF macro• 11-8
EMB spin lock• 3-13, C-8
Emulated instructions

in device driver• 5-3
ENBINT macro•3-8, 3-9, B-26, G-4

replacing with spin lock synchronization macro•
G-13

Encryption key• A-41
Entry point

specifying in driver tables• B-11
$EQULST macro• B-2 7 to B-28

example• B-2 7, B-71
ERL$DEVICEATTN• 11-9, C-8 to C-9, D-14
ERL$DEVICERR• 11-9, A-29, A-58, A-60,

C-8to C-9,D-14
ERL$DEVICTM0• 10-6, 11-9, A-29, A-58,

A-60,C-8to C-9,D-14
ERL$RELEASEMB • 10-3, C-92

Error
See also Error logging
associated with 1/0 request• 11-9
not associated with 1/0 request• 11-9
servicing within driver• 1-3, 8-5,

C-79to C-80
Error log allocation buffer• 11-9, C-8
Error logging• A-58, C-8 to C-9

driver prerequisites• 11-8
enabling• A-53
error log sequence number• A-41
final error count• 10-3
inhibiting• C-8
in progress• A-56
performed by IOC$REQCOM • C-92

Error logging enable bit

See UCB$V_ERLOGIP
Error logging routine• 1-4, 11-8 to 11-10, A-29

See also Register dumping routine
address • 11-1

Error log in progress bit

See UCB$V_ERLOGIP
Error log UCB extension• A-48, A-58 to A-60
Error message buffer•3-13, 10-3, A-60, A-62,

C-79
allocating• 11-9, C-8
filling• C-9
initializing• 11-9
releasing• 10-3, C-92
size•C-8
specifying size•6-4, 11-9, A-29
written into by IOC$REQCOM • C-92

Error status
clearing• 11-1

Event flag• A-38
handling for aborted 1/0 request• C-11
posting• 4-17
setting• 2-7

Exception
generating• 5-4

EXE$ABORTI0•7-4, 17-12, A-39, C-7,
C-10 to C-11, C-33, C-42, C-44, C-46,
C-49, C-50,C-54,C-56, C-58,0-11

EXE$ALLOCBUF•7-6, 14-16,C-12to C-13
EXE$ALLOCIRP • A-41 , A-43, C-12 to C-13
EXE$ALONONPAGED•C-13,C-14,C-59
EXE$ALONPAGVAR•C-15
EXE$ALOPHYCNTG•12-26, 14-18,C-16
EXE$ALTQUEPKT•7-5,A-29,C-5,C-17,D-2,

D-11
EXE$ASSIGN • 11-11 , A-11, D-5

EXE$BUFFRQUOT A
replaced in VMS Version 5.0•G-5

EXE$BUFQUOPRC

Index

replaced in VMS Version 5.0•G-5
EXE$CANCEL • 11-6 to 11-7, C-66
EXE$CREDIT_BYTCNT•7-7, C-18, G-5
EXE$CREDIT _BYTCNT _BYTLM • C-18, G-5
EXE$DASSGN • A-11
EXE$DEANONPAGED•C-3,C-13,C-19
EXE$DEBIT_BYTCNT • C-20 to C-21, G-5
EXE$DEBIT_BYTCNT_ALO • 7-6, 14-16,

C-22to C-23,G-6
EXE$DEBIT_BYTCNT_BYTLM • 7-6,

C-20 to C-2 1 , G-5
EXE$DEBIT _BYTCNT _BYTLM _ALO• 7-6,

14-16,C-22to C-23, G-6
EXE$DEBIT_BYTCNT_BYTLM_NW •

C-20 to C-21, G-6
EXE$DEBIT_BYTCNT_NW • C-20 to C-21, G-5
EXE$FINISHIO • 7-4, 7-8, 17-12, A-40,

C-24to C-25,C-48,C-49, C-50,D-11
EXE$FINISHIOC • 7-4, A-40, C-24 to C-25,

D-11
EXE$FORK• 11-5, A-19, B-30, C-26
EXE$FORKDSPTH•3-5,3-21,A-52
EXE$GB_CPUTYPE•B-9
EXE$GL _ABSTIM • A-20
EXE$GL_CONFREGL•14-6
EXE$GL _INTSTK

replaced by CPU$L _INTSTK • A-12
EXE$GQ_ 1ST_TIME•3-7, 3-8, 3-12, 3-13,

C-29
EXE$GQ_SYSTIME•3-7, 3-8, 3-13, B-47,

C-67
reading• G-15

EXE$HWCLKINT • 3-7
EXE$1NSERTIRP•4-12, A-38, A-39, A-55,

C-27,C-28,C-38
EXE$1NSIOQ • 3-20, 4-12, 8-1, A-56, C-28,

C-38
returning control to• 4-14

EXE$1NSIOQC • C-28
EXE$1NSTIMQ • C-29
EXE$10FORK•9-4, 10-1 to 10-2, 12-24,

A-51, A-52, C-30
EXE$MODIFY • C-31 to C-33
EXE$MODIFYLOCK • C-32, C-34 to C-36
EXE$MODIFYLOCKR • A-42, C-32,

C-34to C-36,C-105
EXE$0NEPARM • 7-8, A-40, C-37
EXE$QIO • 4-1 to 4-12, A-11, A-29,

A-36 to A-39, A-41

lndex-11

Index

EXE$010ACPPKT • A-52
EXE$010DRVPKT•4-12, 7-4, 7-8, 7-9, 8-1,

C-32, C-37,C-38, C-41, C-50, C-54,
C-60, D-11

EXE$010RETURN• 17-12, C-39
EXE$READ • 7-8, A-41, C-40 to C-42
EXE$READCHK•7-6,C-43to C-44
EXE$READCHKR•C-32,C-35, C-41,

C-43to C-44,C-45
EXE$READLOCK•C-41,C-45to C-47
EXE$READLOCKR•A-42,C-41,C-45to C-47,

C-105
EXE$SENSEMODE•7-8,C-48
EXE$SETCHAR•7-8,C-49to C-50
EXE$SETMODE • 7-8, C-49 to C-50
EXE$SNDEVMSG • 9-7 to 9-8, 10-6,

C-51 to C-52, G-7
EXE$SWTIMINT • 3-7
EXE$TIMEOUT• A-52, A-56, A-57
EXE$WRITE • 7-8, A-41, C-53 to C-54
EXE$WRITECHK • 7-6, C-55 to C-56
EXE$WRITECHKR•C-54, C-55 to C-56, C-57
EXE$WRITELOCK • C-54, C-5 7 to C-58
EXE$WRITELOCKR • A-42, C-54, C-57 to C-58,

C-105
EXE$WRTMAILBOX • C-51, C-59
EXE$ZEROPARM • 7-9, A-40, C-60
Expected interrupt

See Device interrupt
External register base

See MBA$L_ERB

F
FDT (function decision table)• 1-2, 4-9

address• 4-7, 6-3, A-29
as used by EXE$010 • 4-7
creating•6-4 to 6-7, 11-3, B-34 to B-35
dispatching to FDT routines from • 4-10
relocating addresses specified in• 11-4
size•A-30
specifying buffered functions in • 4-9
specifying legal functions in • 4-9

FDT routine• 1-3, 1-18, 2-3 to 2-4
adjusting process quotas in• C-12
allocating IRPE in• A-41
allocating system buffer in • 7-6 to 7-7
calling sequence• 7-2
completing an 1/0 operation in• C-24 to C-25
context•4-12, 7-1, D-10

lndex-12

FDT routine (cont'd.)

creating• 7-1 to 7-5
dispatched to/from EXE$QIO • 4-10
ensuring an even byte count in• 12-23
entry point• D-10
exit method•7-2 to 7-4, D-11
for buffered 1/0 • 7-6 to 7-8
for direct 1/0 • 7-5, 7-8, C-31 to C-33,

C-40to C-42,C-53to C-54
provided by VMS • 7-8 to 7-9
register usage• 5-2, 7-1, D-10
returning to the system service dispatcher•

C-39
setting attention AST s in• C-6
specifying• D-10
synchronization requirements• D-10
unlocking process buffers in• C-105

File structured device• A-53
File system

synchronizing access to• 3-12
FILSYS spin lock• 3-12
FIND_CPU_DATA macro•B-29, G-7

example• B-29
Floating address• 15-12
Floating CSR space

assigning to device• 15-19
current base• 15-19

Floating-point instructions
in device driver• 5-3

Floating vector space
assigning to device• 15-19
current base • 15-19

Fork block• 1-5, 1-8, 3-21, 3-24,
4-13 to 4-14, 8-7, 10-1, B-72, C-26,
C-30, C-101 to C-102

dequeuing• 3-5
in CRB• 15-7, A-19
in extended UCB • 11-5
in UCB• A-51 to A-52

Fork context• 1-8, 3-20 to 3-2 1, 4-13
Fork database• 3-5

accessing• B-31 to B-32
synchronizing access to• 3-20 to 3-22

Fork dispatcher•2-6, 3-3, 3-5, 3-7, 3-21,
B-31

functions• 4-1 5
Forking•3-15, 3-21, B-30, B-40, C-26, C-30,

G-9
avoiding multiple• 11-5
from controller initialization routine•

11-5 to 11-6, D-7
from driver unloading routine• D-9

Forking (cont'd.)

from interrupt service routine• 9-5
from unit initialization routine• 11-5 to 11-6,

D-21
in terminal port driver• 17-13, 17-18

Fork IPL•2-4, 3-2, 3-5, 3-14, 3-20, 4-15,
A-51 , B-31 to B-32

Fork lock•2-4, 3-5, 3-7, 3-12, 3-14 to 3-15,
3-20, 11-6, 12-15, A-19, A-47

See also Spin lock
acquisition IPL• C-107
multiple acquisition of• B-33, C-111
obtained by fork dispatcher• 3-5
obtaining•3-9, B-31 to B-32, C-107
ownership• 16-26
rank• 3-12 to 3-13
releasing• 3-9, B-33, C-109
restoring• B-33, C-111

Fork lock index• 3-12 to 3-13, A-51
list•G-9
placing in UCB$B_FLCK • 6-2, B-24, G-8

FORKLOCK macro• 3-8, 3-9, B-31 to B-32,
C-107, G-4

example• B-32
FORK macro•3-11, 3-21, 12-18, 12-20, B-30,

C-26
See also IOFORK macro

Fork process• 1-8, 3-20 to 3-22, 8-1
context•4-12 to 4-13, 4-13 to 4-14,

4-14, 8-1 to 8-2
creating• B-30, B-40, C-26, C-30
creation by driver• 2-6, 4-14, 10-1 to 10-2
creation by IOC$1NITIATE • 4-12 to 4-13,

8-1, 10-3, C-68to C-69
reactivating• 4-15 to 4-16
rules•3-22
suspending• 4-14, 8-6 to 8-7, B-72,

C-101 to C-102
Fork queue•3-22, 4-14, 4-15, A-16, A-51,

C-26,C-30,G-15
FORKUNLOCK macro•3-9, B-33, C-109, C-111,

G-4
example• B-32

Full-checking synchronization image• 16-25,
G-17

loading• G-2
Full duplex device driver• 7-5, D-2

1/0 completion for• C-5
FUNCT AB macro• 6-6, B-34 to B-35

example• B-35
Function decision table

See FDT

Index

G
General purpose registers

rules for using in driver code• 5-2
Generic V AXBI device• 11-2, 14-1 to 14-28

See also V AXBI node
initialized by driver• 14-9 to 14-15
initialized by VMS• 14-5 to 14-9
interrupt destination• 14-8

H
Hardware clock

See Interval clock
HWCLK spin lock•3-7, 3-8, 3-13, C-29, G-14,

G-15,G-25

I
1/0adapter•1-6, 1-10 to 1-16, 1-17

See also UBA, UNIBUS adapter, MBA, and 022
bus

configuration register• A-6
data path register• B-46
displaying nexus value• 15-8, 15-9
number of address bits• A-8, B-3
on V AXBI bus• 14-2
type•14-8,A-6, A-32,B-3, B-19

1/0 adapter registers

See Map registers, Data path register, Vector
register, Byte count register, MBA

1/0 address space• 18-1 to 18-7
access to during bus power failure• 18-6
error in mapping• 18-6
mapping to process address space• 18-4,

1 8-5 to 18-7 I 1 8-7
of V AXBI bus• 14-2
rules for referencing• 18-6

1/0 channel

See Process 1/0 channel
1/0 completion

See 1/0 postprocessing
1/0 database• 1-4 to 1-6, A-1

creation• 6-1, 6-2, 11-3, 13-6,
15-3 to 15-6, 15-11, A-32, B-24

lndex-13

Index

1/0 database (cont'd.)

examining with XDEL TA• 16-10
for MASSBUS configuration• 13-6 to 13-7,

13-12
for two-controller configuration• 4-6
initializing• 11-3, 15-11
locating• 15-10
referencing fields in • 5-1
reinitializing• 11-4

1/0 function
analyzing• 8-2
indicating a buffered• 4-9, 6-4
indicating as legal to a device• 4-9, 6-4
preprocessing • 4-10

1/0 function code• 4-9, A-38
converting to device-specific function code•

8-4
defined by VMS• 6-4 to 6-6
defining device-specific• 6-7

I/ 0 function modifier• 4-9
1/0 postprocessing • 3-4, 10-1 to 10-4, A-40

device-dependent• 2-7, 4-1 7, 7-7,
10-2 to 10-4

device-independent•2-7, 4-17 to 4-18, 7-7,
C-70to C-71

for aborted 1/0 request• C-10
for buffered 1/0 • 7-7 to 7-8, 12-25
for DMA transfer• 12-16, 12-24 to 12-26
for full duplex device driver• C-5
for 1/0 request involving no device activity•

C-24to C-25
synchronization flow• 3-4

1/0 postprocessing queue• 10-3, 11-6, A-16,
A-57,C-5,C-92,G-15

1/0 preprocessing

See also SYS$QIO and FDT routine
completing• 4-12, 6-4
device-dependent• 2-3 to 2-4, 4-9 to 4-12,

7-1 to 7-9
device-independent• 2-3, 4-1 to 4-9
IPL requirements• 3-4

1/0 request
aborting• 7-4, 10-6, C-10 to C-11
canceling• 11-6 to 11-8, A-29, A-56, C-66
completing• C-91 to C-92
example• 2-1 to 2-7
outstanding on channel• A-11
restarting after power failure• 8-5
retrying• 10-5 to 10-6
returning completion status of to process• 2-7,

4-18, 7-4, 10-2, 10-3
status• A-39

lndex-14

1/0 request (cont'd.)

synchronizing simultaneous processing of
multiple• 7-5

validating device-dependent arguments• 2-3
validating device-independent arguments•

2-2to 2-3,4-7
with no parameters• 7-9, C-60
with one parameter• 7-8, C-37

1/0 request packet

See IRP
1/0 space

of MASSBUS• 13-4
of 022 bus• 12-4
of UNIBUS• 12-4
rules for referencing • 5-3, 5-4
writing to• 5-4

1/0 status block

See IOSB
IDB$L_ADP • 4-5
IDB$L_CSR•4-5, 13-4, 13-12, 14-8
IDB$L_OWNER•3-24, 4-4, 4-5, 8-4, 8-7,

9-3, 11-2, C-83, C-97
IDB$L_UCBLST • 14-20
IDB$V_NQ_CSR • A-35
IDB$W_UNITS• 14-7, 15-6
IDB (interrupt dispatch block)• 1-6, 4-5 to 4-6,

12-23, A-34 to A-36
address• 4-4, 8-4, 12-31, 12-33
creation• 15-4, B-20
for generic V AXBI device• 14-7
for MBA• 13-4, 13-6 to 13-7, 13-12,

13-14
size•B-20

Idle time• G-24
IFNORD macro• B-36 to B-37
IFNOWRT macro• B-36 to B-37
IFRD macro• B-36 to B-37

example• B-37
IFWRT macro• B-36 to B-37
ILLOBUSCFG bugcheck • A-20
Image termination• 11-6, D-3
INCONST ATE bugcheck • C-85, C-94
INl$BRK • 16-6
Initialization routine

See Unit initialization routine, Controller
initialization routine

Initialization table• 6-2, A-33, B-23
INIT module• G-23
INIT processor state• A-15, G-21
Input device• A-53

Interlocked instructions
using in multiprocessing environment•

G-14to G-15
Interprocessor interrupt• 3-4, 3-13, A-15
Interrupt• 3-2

See also Device interrupt
blocking• B-25, B-60
dismissing• 10-1
interprocessor• 3-4, 3-13, A-15
requesting an XDEL TA• 16-7 to 16-8
requesting a software• 3-9, B-62

Interrupt context• 1-8, 9-3
Interrupt dispatch block

See IDB
Interrupt dispatcher•3-5, 12-24, 14-7, 14-9,

A-7, A-8
for MASSBUS• 13-7, 13-7 to 13-10,

13-14 to 13-15, D-23
for 022 bus• 12-27 to 12-35
for UNIBUS• 12-27 to 12-35, A-23

Interrupt enable bit• 8-4
Interrupt expected bit

See UCB$V_INT
Interrupt priority level

See IPL
Interrupt service routine• 1-3, 3-3, 3-13,

9-1 to 9-8, 12-24, A--52
address•6-3, 12-33, A-23, B-24, D-12,

G-5
context • 9-3, D-12
entry point• 4-14, D-12
example• 9-6 to 9-8
exit ·method • D-13
for connect to interrupt facility• 18-10,

1 8- 1 6 to 18-1 7
for LP 11 printer• 2-6
for MASSBUS device• 13-10, 13-15, D-12
for solicited interrupt• 9-3 to 9-4
for terminal port driver• 17-16
for unsolicited interrupt• 9-4 to 9-8, D-23
functions• 4-14, 9-1, D-13
input• D-13
of CONINTERR.EXE • 18-13
of UNIBUS adapter• 12-30
preemption of device timeout handling• 10-5
register usage• 8-7, D-12
specifying more than one• D-12
synchronization requirements• 3-5, 3-19,

9-3, D-12, G-11 to G-12
Interrupt stack• 8-1

address• A-1 5

Interrupt transfer routine• 12-32
Interrupt transfer vector

See VEC
Interrupt vector• 15-9

See Device interrupt vector
number• 15-6

Index

Interval clock•3-6, 3-7, 3-13, G-25 to G-26
interrupt service routine• 3-7, 3-8
role in device timeouts• 1-3

INV ALIDA TE spin lock• 3-13
INVALIDATE_ TB macro• B-38 to B-39, G-16
INV AUD macro

replaced by INV ALIDA TE_ TB macro• G-16
10$V_INHERLOG • C-8
10$_AV AILABLE function• 7-8
10$_CONINTREAD function• 18-8, 18-9
10$_CONINTWRITE function• 18-8, 18-9
10$_PACKACK function• 7-8
10$_SENSECHAR function

servicing • C-48
10$_SENSEMODE function

servicing• C-48
10$_SETCHAR function• 11-9

servicing• C-49 to C-50
10$_SETMODE function• 17-13

servicing• C-49 to C-50
10$_ TTY _PORT function • 1 7-12
10$_UNLOAD function• 7-8
$10650DEF macro• 18-1
$10730DEF macro• 18-1
$10750DEF macro• 18-1
$10780DEF macro• 18-1
$10790DEF macro• 18-1
$108NNDEF macro• 14-14, 18-1
$108PSDEF macro• 14-14
$108SSDEF macro• 14-14, 18-1
$109CCDEF macro• 14-14, 18-1
IOC$ALLOSPT

replaced by LDR$ALLOC_PT • G-7
IOC$ALOALTMAP• A-9, C-61 to C-62, C-90
IOC$ALOAL TMAPN • 12-20, C-61 to C-62
IOC$ALOAL TMAPSP • C-61 to C-62
IOC$ALOUBAMAP • C-63 to C-64, C-87, C-96
IOC$ALOUBAMAPN • 12-20, C-63 to C-64
IOC$APPL YECC • A-62, C-65
IOC$CANCELI0• 11-8, A-56, C-66, D-3
IOC$DIAGBUFILL • A-29, A-41, C-67
IOC$GL_CRBTMOUT • A-20
IOC$GL_DEVLIST• 11-4, A-25
IOC$GL _DPTLIST • 15-3, 15-8

lndex-15

Index

IOC$GL_IRPFL
replaced in VMS Version 5.0•G-15

IOC$GL _LRPFL
replaced in VMS Version 5.0•G-15

IOC$GL_MUTEX • 11-11, D-5
IOC$GL _PSFL

replaced by CPU$L _PSFL • G-1 5
IOC$GL _SRPFL

replaced in VMS Version 5.0 • G-15
IOC$GQ_IRPIQ • G-15
IOC$GQ_LRPIO • G-15
IOC$GQ_SRPIO • G-1 5
IOC$GW_MAX8UF • C-20, C-22
IOC$1NITIATE•3-20, 4-12 to 4-13, 8-1, 10-3,

A-29, A-40, A-55,A-56, A-58,C-28,
C-38,C-67,C-68to C-69,C-92,D-15

IOC$10POST•3-4, A-41, A-42, C-70 to C-71
unlocking process buffers• C-105

IOC$LOADAL TMAP • 12-22, 8-41,
C-72 to C-73

IOC$LOADM8AMAP• 13-3, 8-42, C-74
IOC$LOADU8AMAP • 12-21 to 12-22, A-24,

8-43,C-75to C-76
IOC$LOADU8AMAPA • 12-22, C-75 to C-76
IOC$MNTVER • A-29
IOC$MOVFRUSER• 12-26, 14-18, 8-19, C-77
IOC$MOVFRUSER2 • C-77
IOC$MOVTOUSER• 12-27, 14-19, 8-19, C-78
IOC$MOVTOUSER2 • C-78
IOC$PURGDATAP• 12-24 to 12-25, 12-27,

A-24,8-46,C-79to C-80
IOC$RELAL TMAP • 12-26, A-9, A-52, 8-48,

C-81 to C-82
IOC$RELCHAN• 10-2, A-19, A-35, A-52,

8-49, C-83, C-92
called by IOC$WFIRLCH • C-102

IOC$RELDATAP• 12-25, A-7, A-9, A-52, 8-50,
C-84

IOC$RELMAPREG • 12-25 to 12-26, A-8, A-9,
A-24, A-25, A-52, 8-51, C-86 to C-87

IOC$RELSCHAN • A-19, A-20, A-35, 8-52,
C-88

IOC$REQALTMAP• 12-19, A-9, A-52, 8-53,
C-89to C-90

IOC$REOCOM•3-20, 8-1, 10-3 to 10-4,
A-29, A-38, A-40, A-55, A-56, A-57,
A-58, A-60, B-54, C-13, C-91 to C-92,
D-15

error logging activities• 11-9
IOC$REODATAP• 12-17, A-7, A-9, A-24,

A-52, 8-55,C-93to C-94
IOC$REODAT APNW • 12-18, C-93 to C-94

lndex-16

IOC$REOMAPREG• 12-19, A-8, A-9, A-24,
A-25, A-52, 8-56, C-95to C-96

IOC$REOPCHANH•A-19, A-35, A-52, 8-57,
C-97to C-98

IOC$REOPCHANL•8-3 to 8-4, A-19, A-35,
A-52,8-57,C-97to C-98

IOC$REOSCHANH•A-19, A-20, A-35, 8-58,
C-97to C-98

IOC$REOSCHANL • A-19, A-20, A-35, A-52,
B-58,C-97to C-98

IOC$RETURN • 11-7, B-11 , C-99
IOC$SEARCHDEV • A-52
IOC$VERIFYCHAN • C-100
IOC$WFIKPCH•4-13, 4-14, 8-7, A-52, A-56,

A-57,C-101 to C-102
IOC$WFIRLCH•4-13, 4-14, A-56, A-57,

C-101 to C-102
$10DEF macro• 6-4
IOFORK macro• 3-11, 3-21, 4-14, 9-4, 10-1,

12-24,8-40,C-30
IOLOCK 10 fork lock• 3-12
IOLOCK 11 fork lock • 3-13
IOLOCK8fo~lock•3-7,3-12

IOLOCK9 fork lock• 3-12
IOSB (1/0 status block)•7-4, 10-2, 10-3, A-39,

A-40,C-5,C-10,C-71,C-92
validating access to• 4-7

$10UV 1 DEF macro• 18-1
$10UV2DEF macro• 18-1
IPL$_ASTDEL•3-2, 3-4, 3-16, 4-7, C-10,

C-12, C-31, C-34, C-37, C-38, C-40,
C-43, C-48, C-49, C-55, C-60, C-71,
C-100,C-109,C-111, C-112,D-5,D-10

IPL$_EMB • C-8
IPL$_FILSYS • 3-12
IPL$_10LOCK8 • 3-12
IPL$_10POST•2-7, 3-2, 3-4, 4-17, 10-3,

11-6,C-5,C-10, C-24,C-71,C-92
IPL$_JIB • 3-12
IPL$_MAILBOX•3-2, 3-8, 3-13, 9-7, 10-6,

C-51,C-59
IPL$_MMG • 3-12
IPL$_POOL•3-2, C-14, C-15
IPL$_POWER•3-6, 8-5 to 8-6, 11-4, 15-4,

D-7,D-9
IPL$_QUEUEAST•3-2, 3-7, 3-12, 18-15,

18-17,C-2,C-3
IPL$_RESCHED•3-2, 3-5, 3-7, B-29, C-107,

C-108
IPL$_SCHED • 3-12
IPL$_SYNCH • 3-2, 3-7, 3-8
IPL$_ TIMER• 3-12, C-29
IPL$_ TIMERFORK • 3-2, 3-7, 10-4

IPL (interrupt priority level) • 1-7, 3-1 to 3-11

See also Device IPL, Fork IPL
hardware• 3-1
lowering•3-8 to 3-11, 3-21, 8-7, C-26,

C-30
modifying•B-15 to B-16, B-17 to B-18,

B-25, B-26, B-31 to B-32, B-33,
B-44to B-45, B-60, B-66

raising• 3-8 to 3-11, 3-14, B-60
relation to spin lock• 3-13
saving•3-9, B-15, B-31, B-44, B-59
software• 3-1

IRP$B_CARCON • A-41, C-32, C-41, C-54
IRP$B_PRI • C-2 7
IRP$L_BCNT•8-2, C-32, C-35, C-41, C-43,

C-45,C-54, C-55, C-57, C-68, C-69,
C-70

writing • 7-6
IRP$L_DIAGBUF • C-67, C-68, C-69
IRP$L_IQST2 • C-32, C-41, C-54
IRP$L_KEYDESC • C-70
IRP$L_MEDIA•7-4, 10-3, 11-6, A-40, C-37,

C-50,C-60
IRP$L_PID • 11-8, C-66, D-4
IRP$L_SVAPTE•8-2,C-32,C-35,C-41,C-46,

C-54,C-58,C-68,C-69
for buffered 1/0 • 7-6, 7-7

IRP$V_BUFIO • C-70
IRP$V_DIAGBUF•C-67, C-68, C-69, C-70
IRP$V_EXTEND • C-70
IRP$V_FUNC• 7-6, 7-7, 11-6, C-32, C-35,

C-41,C-43,C-46
IRP$V_KEY • C-70
IRP$V_MBXIO • C-70
IRP$V_PHYSIO • C-70
IRP$W_BOFF • 7-6, 7-7, 8-2, C-32, C-35,

C-41, C-46, C-54, C-58, C-68, C-69,
C-70

IRP$W_CHAN• 11-8, C-66, D-4
IRP$W _FUNC • 8-4
IRP$W_STS

for read function• 7-6, 7-7
for write function• 7-7

IRP (1/0 request packet)• 1-6, A-36 to A-41
allocating• 4-7
copying to UCB• 8-2
creation• 2-3, 4-7
current• A-55
deallocation• 2-7, C-71
dequeuing from UCB• A-38
device-independent portion of• 4-8

Index

IRP (1/0 request packet) (cont'd.)

insertion in pending-1/0 queue• 2-4, 4-12,
7-4, 8-1, C-27, C-28

insertion in postprocessing queue• 2-7
removal from pending-1/0 queue• 2-7, 4-12,

10-3
size•A-36
storing data in• 5-1 , G-16
unlocking buffers specified in• C-105

IRPE (1/0 request packet extension)• A-39,
A-41 to A-43, C-70

address• A-41
allocating• A-41
deallocation• A-42, C-71, C-105
unlocking buffers specified in• C-71, C-105

J
JIB$L_BYTCNT•3-12, 7-6, 7-7, C-12, C-18,

C-20,C-22,G-5
JIB$L _BYTLM • 3-12, C-12, C-18, C-20, C-22,

G-5
JIB$V_BYTCNT_WAITERS • C-18
JIB Oob information block) • 3-12
JIB spin lock•3-12, C-18, C-20, C-22
Job attached bit

See UCB$V_JOB
Job controller• A-5 7

sending a message to•9-7 to 9-8, C-52,
C-59

Job information block
See JIB

Job quota• G-5
byte count•2-3, 3-12, C-12, C-18,

C-20to C-21,C-22to C-23
byte limit• 3-12, C-12, C-18, C-20 to C-21,

C-22to C-23

K
Kernel stack• 8-1

L
LDR$ALLOC_PT•14-15,C-103,G-7
LDR$DEALLOC_PT•C-104
LDR$GL_FREE_PT•C-103,C-104

lndex-17

Index

LDR$GL_SPTBASE•C-103,C-104
Legal function bit mask • 4-9
LOADALT macro• 12-10, 12-22, B-41, C-72
LOADER$_PTE_NOLEMPTY status• C-104
LOADMBA macro• 13-3, 13-12, 13-13, B-42,

C-74
LOADUBA macro• 12-10, 12-11, 12-21, B-43,

C-75
Local disk UCB extension• A-48, A-61 to A-62

required for error logging• 11-8, C-9
required for IOC$APPL YECC routine• C-65

Local processor• 1-7
Local tape UCB extension• A-48, A-60 to A-61

required for error logging• 11-8, C-9
Lock ID• A-52
LOCK macro•3-8, 3-9, B-44 to B-45, C-107,

G-4
Lock manager• A-52
Logical 1/0 function

translation from virtual function to• 2-3
translation to physical function• C-31, C-40,

C-53
Longword access enable bit

See VEC$V_LW AE
Longword-aligned random-access mode• 12-2,

12-11, 12-14, A-24
Lookaside list

See Nonpaged pool
Loopback mode• A-69
L W AE (longword access enable) bit

See VEC$V_LW AE

M
Machine check• 3-13, 16-2 1 , 18-6

condition handler• 18-6
Machine check protection block• 14-11
Macro

format• B-1
Mailbox• A-53, A-54, A-55

associated with device• A-56
buffered 1/0 quota for• A-52
1/0 function• A-39
in shared memory• A-57
marked for deletion• A-5 7
of job controller• 9-7, G-7
of OPCOM process • 10-6, G-7
permanent• A-5 7
sending a message to• C-51 to C-52, C-59

lndex-18

Mailbox (cont'd.)

synchronizing access to• 3-8, 3-13
Mailbox driver• 15-5
MAILBOX spin lock•3-13, C-51, C-59
Maintenance function• 17-13
Map register base register

See MBA$L _MAP
Map registers• 1-17, 12-2, 12-4 to 12-7,

12-15, 12-19 to 12-22, A-8,
A-23to A-24,A-24,B-3

See also Alternate map registers
allocrting • C-63 to C-64
allocating permanent• 11-2, 12-20 to 12-21,

A-24,G-12
byte offset bit • C-7 5
calculating the number needed• 12-19
format• 12-5 to 12-7, 12-21
invalidating• 12-7, 12-13, 12-22
loading• 12-21 to 12-22, B-43,

C-75to C-76
number of active• A-9
number of disabled• A-9
of MBA• 13-2, B-42, C-74
of 022 bus• 12-5
of UBA• 12-5
operation• 12-5 to 12-7
releasing• 10-2, 12-25 to 12-26, B-51,

C-86to C-87
requesting• 12-19 to 12-21, B-56,

C-95to C-96
Map register valid bit• 12-21
Map register wait queue• 12-19, 12-25, A-8,

C-87,C-96,G-14
MASSBUS

configuration• 13-1, 13-4
1/0 address space• 18-1
1/0 database• 13-4, 13-6 to 13-7
servicing multiunit controller on• 13-2, 13-6,

13-11, 13-12, 13-14
servicing single-unit controller on• 13-6,

13-10, 13-11, 13-12, 13-14
MASSBUS adapter

See MBA
MASSBUS driver

DPT for• 13-14
interrupt service routine• 13-1 5
start 1/0 routine• 13-12
unit initialization routine• 13-11
unsolicited interrupt service routine• 13-14

MBA$1NT• 13-14 to 13-15, D-23
MBA$L_AS • 13-4, 13-5, 13-8 to 13-9, 13-9,

13-10

MBA$L_BCR•13-3, 13-4, 13-13,C-74
MBA$L_CAR • 13-4
MBA$L_CR• 13-4
MBA$L_CSR•13-4, 13-13
MBA$L_DR• 13-4
MBA$L_ERB• 13-4, 13-5, 13-11
MBA$L_MAP• 13-4, C-74
MBA$L_SMR• 13-4
MBA$L_SR• 13-4, 13-10, 13-12
MBA$L_VAR• 13-3, 13-4, 13-13, C-74
MBA (MASSBUS adapter)• 1-10, 1-11

address space• 13-4 to 13-5
data path • 13-3
functions• 13-1 , 13-8 to 13-9
nexus value of• 15-5
obtaining ownership• 13-2, 13-6 to 13-10,

1 3-1 2 to 13-13
registers• 13-1 to 13-6

device • 13-5, 13-11 , 13-1 2
external• 13-2
internal• 13-2
map•13-2to 13-6, B-42,C-74

releasing secondary data channel • C-88
subunit number• 13-1
unit number• 13-1, 13-11, 15-6

$MBADEF macro• 13-4 to 13-5
MCHECK spin lock• 3-13
$MCHKDEF macro• 14-11
Media ID• A-58
MEGA spin lock• 3-13
Memory

See also Buffer, Non paged pool
detecting corruption in• 16-22 to 16-24
detecting parity errors in• 12-25, B-46
testing accessibility of• B-36 to B-37

Memory interconnect to V AXBI adapter• 14-2,
14-6, 14-8

ADP address• 14-8
Memory management resources

synchronizing access to• 3-12
MicroVAX 3600 series• 1-15

booting with XDEL TA from• 16-2
requesting an XDEL TA interrupt from• 16-8

MicroVAX I• 1-16
accomplishing a OMA transfer on•

12-24to 12-25
adapter logic• 12-1
booting with XDEL TA from• 16-2
comparison with other VAX systems• 1-18
OMA transfer• 12-26 to 12-27
requesting an XDEL TA interrupt from• 16-8

MicroVAX II• 1-15
adapter logic• 12-1

Index

booting with XDEL TA from• 16-2
requesting an XDEL TA interrupt from• 16-8

MMG$GL_SBICONF • 14-6
MMG$10LOCK • C-32, C-35, C-41, C-46, C-54,

C-58
MMG$UNLOCK • A-42, C-105
MMG spin lock•3-12, C-16, C-103, C-104,

C-105
Modem signals

input transitions of• 17-14
sending to device• 1 7-12

Mount verification• A-39, A-5 7
Mount verification routine• A-29, A-30
MSG$_CRUNSOLIC • 9-7
MSG$_DEVOFFLIN • 10-6
Multilevel device interrupt dispatching• 12-32,

12-34to 12-36,A-20
Multiprocessing device driver

analyzing crash dumps• G-18 to G-19
incompatibility with uni processing driver•

15-10,G-3
using XDEL TA• 16-7, G-20
writing• G-8 to G-20

Multiprocessing environment
contrasted with uniprocessing environment•

3-10, G-1
debugging a driver designed for•

16-25 to 16-27
MULTIPROCESSING parameter• 16-24, 16-25,

G-2 to G-3, G-4, G-23
Multiprocessor state• A-15, G-20 to G-24
Mutex

for ACL • A-45
for 1/0 database• D-5
1/0 database• 11-11

N
NBI

See Memory interconnect to V AXBI adapter
Network device• A-53
Nexus• 15-5, 15-8, 15-9
Nexus ID• A-6
Node• 15-5, 15-8, 15-9

See V AXBI node
Node ID• 14-8, A-6
Node private space• 14-5
Node space • 14-5

lndex-19

Index

Node space (cont'd.)

accessing BllC registers within• 14-5
address• 14-8
mapped by VMS• 14-6

Non-direct-vector interrupt• 12-2, 12-29,
12-3b, 12-32, 16-8,A-7,A-23

Nonpaged pool
aliocating • C-12 to C-13, C-14, C-15,

C-2,2 to C-23
allocating in initialization routine• 11-2
deallocating• C-3, C-19
lookaside list• C-13, C-14, G-15
synchronizing access to• 3-13
variable region• C-15, G-14

NPR (Nonprocessor request)

See OMA transfer
Null process• G-24

0
Object

protection• A-45
Online bit

See UCB$V_ONLINE
Online condition

on MASSBUS • 13-9
OPCOM process

sending a message to• 10-6, C-52, C-59
Operator device• A-53
ORB (object rights block)• A-43 to A-45

address• A-52
cloned • 11-12, D-6

Output device• A-53

p
Page fault

taken within driver code• 3-4
Page table

physical address of• 14-18
Page-table entry

allocating• C-103
deallocating• C-104
format • 14-1 7
modifying• B-38, G-16

Paging 1/0 function• A-39
PAT$A_NONPGD• 16-20
Patch space• 16-20

lndex-20

PBI
See Memory interconnect to V AXBI adapter

PCB$L_ASTOFL•G-14
PCB$L_JIB • 7-6
PCB$L_PID • 11-8, C-66, D-4
PCB$V_SSRVVAIT•4-7,C-12,C-20,C-22
PCB$VV_ASTCNT•C-4,C-6,C-10

modifying with ADA VVI instruction• G-14
PCB$VV_BIOCNT• 2-7
PCB (process control block)• 3-4, 16-13

referring to current• G-7
synchronizing access to• 3-12

PDT. (port descriptor table)• A-58
Pending-1/0 queue•3-20, 4-12, 8-1, 11-6,

A-38, A-55, C-27,C-28, C-37, C-38,
C-71,C-92,G-14

bypassing• 7-5, C-17
length• A-5 7, C-28
synchronizing with driver internal queue• 7-5

Per-CPU database
See CPU

PERFMON spin lock• 3-13
Performance

stack time• A-16
PFN database

examining with XDEL TA• 16-13 to 16-14
PFN mapping• 18-5 to 18-7

deleting a page designated for• 18-6
modifying a page designated for• 18-5

PHD$L _BIOCNT • 2-7
Physical address

format• 1 8-4
Physical 1/0 function• A-39, C-70
PIO (process identification number) • A-52
PIO transfer• 1-17

example• 2-1 to 2-7
using buffered 1/0 in• 6-7
using 1/0 adapter resources in• 12-2

Pool checking mechanism• 16-22 to 16-24
POOLCHECK parameter• 16-22
POOL spin lock•:3-13, C-14, C-15, C-19
Port driver

See Terminal port driver
Port driver entry vector table• A-33
Port driver vector table• 17-4, A-67

address• 17-8, B-7
creating• 17-5 to 17-6, B-68, B-69
defining entry in• B-67
relocating • B-6

PORT _ABORT service routine• 1 7-1 5
PORT _CANCEL service routine• 17-15

PORT _DISCONNECT initiate routine• 17-12
PORT _DS_SET initiate routine• 1 7-12
PORT_FDT initiate routine• 17-12
PORT _FORKRET initiate routine• 17-13, 17-18
PORT_MAINT initiate routine• 17-13, A-68
PORT _RESUME service routine• 17-15
PORT _SET _LINE initiate routine• 17-13
PORT _SET _MODEM initiate routine• 17-14
PORT _ST ARTIO initiate routine• 17-14
PORT _STOP service routine • 1 7-1 5
PORT _XOFF service routine• 17-16
PORT _XON service routine• 17-16
Position independent code• 5-1
Postprocessing

See 1/0 postprocessing
Power bit

See UCB$V_POWER
Power failure

blocking• 3-6
determining the occurrence of• 8-5
occurring when device is busy• A-56
on 1/0 bus• 18-6
servicing in an initialization routine• 11-1, 11-5
servicing in port driver unit initialization routine•

17-11, 17-20
Power failure recovery procedure• A-23, A-24,

A-52
device timeout forced by• 10-5
initialization performed by• 11-4 to 11-5

PR$_ASTL VL processor register• 3-4
PR$_SID processor register• A-16
PR$_SIRR processor register• 3-8, B-62
PR$_ TBIA processor register• G-16
PR$_ TBIS processor register• G-16
Prefetch function of UNIBUS adapter• 12-3,

12-12, 12-13
Preprocessing

See 1/0 preprocessing
Preprocessing routine

See FDT routine
Primary bootstrap program (VMB) • G-22
Primary processor• G-2, G-22, G-25
Printer driver

description• 2-1 to 2-7
Process

See also Process quota
current• A-14
privilege mask• A-41
quantum end event• 3-7
returning control from driver to• 4-14
scheduling• G-24

Process context• 1-7, 2-4, 4-12, 7-1
returning to• 4-18

Process 1/0channel•11-6, A-11, A-39
assigning• 4-3
assigning to template device• 11-11
deassigning• 11-6, 11-7, 17-12, D-3
reference count• A-55, A-56
validating•2-3, 4-4, C-100

Processor state
See Multiprocessor state

Processor status longword

See PSL
Processor subtype• B-8
Processor type • B-8
Process quota

adjusting• 4-17
buffered l/0•2-3, 2-7, 4-7
byte count• 7-7
charging•4-7, 4-10, A-40, D-15
direct l/0•4-7

Programmed 1/0

See PIO transfer
$PRTCTEND macro• 14-11
$PRTCTINI macro• 14-11
PSL (processor status longword)

examining with XDEL TA• 16-10
Z condition code• C-27

PURDPR macro• 12-24, B-46, C-79
detecting memory errors using• 12-25

a
022bus•1-15, B-3

Index

accomplishing a DMA transfer on•
12-15 to 12-16, 12-19 to 12-26

address size• 12-5
device interrupt dispatching• 12-34 to 12-36,

A-20
example of driver designed for• E-1 to E-29,

F-1 to F-25
1/0 address space• 18-1, 18-3, 18-6
1/0 space• 12-4
power failure • 18-6
rules for configuring• 1-15, 12-35 to 12-36
scatter-gather map• 12-4 to 12-7

022 bus interface
functions• 12-1 to 12-14
obtaining resources of• 12-15

OBUS_MUL T_INTR parameter• 12-34

lndex-21

Index

Quantum end event• 3-7
QUEUEAST spin lock• 3-12, C-7
Queue operations

in multiprocessing environment• G-14 to G-15
Quota

See Process quota, Job quota

R
Random access device• A-53
Rank

of spin lock• 3-14
Read check

enabling• A-53
Read function • A-39, A-40

FDT routine for• 7-8
postprocessing for• C-70

READ_SYSTIME macro• B-4 7, G-15
example• B-4 7

Real time device• A-53, A-54
REAL TIME_SPTS parameter• 18-8
Record oriented device• A-53
Reentrant code• 5-1
Register dumping routine• 1-4, 11-9, 11-10,

A-29,A-62,B-46,C-9,C-67,C-79
address• 6-3, D-14
context • D-14
entry point• D-14
exit method • D-1 4
for generic V AXBI device• 14-19
functions• D-14
input• D-14
register usage• D-14
synchronization requirements• D-14

Registers

See BllC registers, Device registers, General
purpose registers, Map registers

REI instruction
role in AST delivery• 3-4

Reinitialization table• 6-2, 15-8, A-33, B-24
RELAL T macro• 12-26, B-48, C-81
RELCHAN macro• 10-2, 13-14, B-49, C-83
RELDPR macro• 12-25, B-50, C-84
RELMPR macro• 12-25, B-51, C-86
RELSCHAN macro• B-52, C-88
Remote terminal UCB extension• A-54
REQALT macro• 12-10, 12-19, C-89
REQCOM macro• 10-3, B-54, C-91

required for error logging• 11-9

lndex-22

REQDPR macro• 12-11, 12-17, B-55, C-93
REQMPR macro• 12-10, 12-11, 12-19, B-56,

C-95
REQPCHAN macro•3-24, 8-3 to 8-4, 13-6,

13-12,B-57,C-97
REQSCHAN macro• 13-6, 13-13, B-58, C-97
Resource wait flag

See PCB$V_SSRW AIT
Resource wait mode•4-7, C-12, C-20, C-22
Resource wait queue• 3-23 to 3-24, G-14

See also Alternate map register wait queue,
Device controller data channel wait queue

See also Map register wait queue, Secondary
data channel wait queue, Data path wait
queue

buffered data path• C-85
Retry count • 10-6
RLO 1 driver• E-1 to E-29
RL02 driver• E-1 to E-29
RL 11 driver• E-1 to E-29
RSB instruction• 7-3
RUN processor state• A-15, G-21

s
SAVIPL macro•3-9, B-59
SBI (synchronous backplane interconnect)• 1-10

UNIBUS interlock sequence to• 12-10
SBICONF array• 14-6
Scatter-gather map• 12-4

See also Map registers
SCB (system control block)• 14-9, A-7

of VAX 6200 series• 14-9
of VAX 8200 /8250 /8300 /8350 • 14-9
of VAX 8550 /8 700 /8800 /8830 /8840 • 14-9

SCH$GL_CQMQS•G-24
SCH$GL_CURPCB

replaced in VMS Version 5.0•G-7
SCH$GL_PCBVEC•16-13
SCH$POSTEF•A-38
SCH$QAST • 3-4
SCH$RESCHED • 3-7
SCHED spin lock•3-4, 3-7, 3-12, C-19, G-24
Scheduler• G-24

blocking activity of• 3-5
synchronization of• 3-7

SCS (system communications services)• A-32
SDA

See System Dump Analyzer

SDA current process• G-19
$SECDEF macro• 18-6
Secondary bootstrap program (SYSBOOT) •

16-20,G-23
Secondary controller data channel• 13-12,

13-14,B-52
obtaining ownership of• B-58, C-97 to C-98
releasing• C-88

Secondary controller data channel wait queue•
C-88,C-98

Secondary processor• G-21
Seek operation • 8-6

overlapping with data transfer• 8-3
Selected map register

See MBA$L_SMR
Self-test status• 14-23
Sense device characteristics function• 7-8
Sense device mode function • 7-8
Set device characteristics function• 7-8, A-54,

A-55
Set device mode function• 7-8, A-54, A-55
SETIPL macro• 3-8, 3-9, B-60, G-4

example• B-61
replacing with spin lock synchronization macro•

G-13
Set mode function• A-55
SET PROCESS command• G-18
Shareable device• A-53
SHOW DEVICE command• A-58
SHOW SPIN LOCKS command• G-17
SIRR (software interrupt request register)• 3-8
SMP$ACQNOIPL• 16-25, B-15, G-18
SMP$ACQUIRE • 16-25, B-32, B-44, G-18
SMP$ACQUIREL• 16-25, B-15, G-18
SMP$AR_IPLVEC•B-31, C-26, C-30
SMP$AR_SPNLKVEC•3-12,A-46,B-32,B-44,

B-66
SMP$GL_FLAGS • 15-10, G-3
SMP$RELEASE•16-25,B-33,B-66,G-18
SMP$RELEASEL•16-25,B-17,G-18
SMP$RESTORE•16-25, 16-26, B-33, B-66,

G-18
SMP$RESTOREL•16-25, 16-26,B-17,G-18
SMP$SETUP _CPU• G-23
SMP$SETUP _SMP • G-23
SMP$V_UNMOD_DRIVER• 15-10, G-3
SMP _CPUS parameter• G-21, G-23
SOFTINT macro• 3-9, B-62, C-26, C-30
Software timer• G-25 to G-26
Software timer interrupt service routine• 3-7,

10-4

Index

Solicited interrupt

See Device interrupt
Spin lock• 1-7, 3-2, 3-11 to 3-15

See also Device lock, Fork lock, SPL, Spin lock
index, Spin wait

acquisition IPL• 3-10, 3-13, A-46, C-107,
G-17,G-19

acquisition PC list • A-4 7, G-17
address • G-1 9
dynamic• 3-12, A-4 7
multiple acquisition of• 3-14, B-66, C-111 ,

G-19
name•G-19
obtaining• 3-9, B-44 to B-45, C-107
ownership•3-14, 16-26, A-46, A-47, G-19
rank•3-12 to 3-13, 3-14, 3-15, A-46,

G-17,G-19
releasing•3-9, B-66, C-109
restoring• B-66, C-111
static•3-12, A-47
status• G-19
system• 3-12, A-4 7

Spin lock data structure

See SPL
Spin lock index•3-12, 3-12 to 3-13, G-19
Spin lock IPL vector

See SMP$AR_IPL VEC
Spin lock synchronization macros• G-4, G-13

See also DEVICELOCK, DEVICEUNLOCK,
FORKLOCK, FORKUNLOCK, LOCK, and
UNLOCK

Spin wait•3-14, A-47, C-106, C-107, C-108
SPL$B_IPL•3-8, A-56, G-17
SPL$B_RANK • G-17
SPL$L _BUSY_ WAITS• G-17
SPL$L_OWN_PC_ VEC • G-17
SPL$Q_ACQ_COUNT • G-17
SPL (spin lock data structure) • A-45 to A-4 7
SPLACQERR bugcheck • 16-25, 16-26, C-107,

G-18
$SPLCODDEF macro• B-21, B-24, G-9
SPLIPLHIGH bugcheck• 16-25, C-107, C-108,

G-18
SPLIPLLOW bugcheck• 16-25, C-109, C-110,

C-111 , C-11 2, G-18
SPLRELERR bugcheck • 16-2 5, 16-2 6, C-109,

C-110, G-18
SPLRSTERR bugcheck • 16-25, 16-26, C-111,

C-112,G-18
Spooled device• A-53
SPTREQ parameter• C-16

lndex-23

Index

SS$_ABORT • 10-6
SS$_ACCVIO • C-32, C-35, C-41, C-43, C-46,

C-49, C-50, C-54, C-55, C-58,C-71,
C-77,C-78

SS$_BADPARAM • C-32, C-35, C-41, C-43,
C-45,C-54,C-55,C-57,C-103

SS$_CANCEL • 11-6
SS$_EXQUOTA•C-6,C-20, C-22,G-6
SS$_1LLIOFUNC • C-50
SS$_1NSFMAPREG • C-62
SS$_1NSFMEM•C-6, C-12, C-14, C-15, C-16,

C-51, C-59
SS$_INSFSPTS • C-16, C-103
SS$_INSFVVSL•C-32,C-35,C-41,C-46,C-58
SS$_1VCHAN • C-100
SS$_MBFULL • C-51, C-59
SS$_MBTOOSML•C-51,C-59
SS$_NONSMPDRV•G-4
SS$_NOPRIV. C-51, C-59 I C-100
SS$_SSFAIL•C-62, C-73, C-82, C-90
Stack

device driver use of• 8-1
using for temporary storage• 5-3

ST ART /CPU command• G-21 , G-23
Start 1/0 routine• 1-3

See also Alternate start 1/0 routine
activating • C-28
address•2-4, 6-3, A-29, D-15
checking for zero length buffer• C-32, C-41,

C-54
context•4-12 to 4-13, 8-1 to 8-2, D-15
entry point• D-15
exit method • D-16
for connect to interrupt facility• 18-10, 18-15
for MASSBUS device • 13-12
for MicroVAX I device driver• 12-26
functions• 4-13 to 4-14
input• D-15
of CONINTERR.EXE • 18-13
reactivating• 4-15 to 4-16
register usage• 8-1, D-15
suspending• 4-14
synchronization requirements• 3-6, 3-19,

8-5, D-15, G-9 to G-11
transferring control to• 4-12 to 4-13, 8-1,

10-3,C-38,C-68to C-69
writing• 8-1 to 8-7

Static spin lock • 3-12
Status register

See CSR, MBA$L _SR
STOP /CPU command• G-22

lndex-24

STOPPED processor state• A-15
STOPPING processor state• A-15
Streamlined synchronization image• 16-25

loading• G-2
Subcontroller • A-32
Swapping 1/0 function• A-39
SVVl$GL _FQFL

replaced by CPU$Q _S\/VIQFL • G-15
Symbol list

defining• 8-27 to 8-28
Synchronization image• G-23

full-checking• 16-25, G-2, G-17
streamlined• 16-25, G-2
uniprocessing • 16-25, G-2

Synchronization techniques• 1-7, 3-1 to 3-24
See also IPL, Spin lock, Fork queue, and

Resource wait queue
Synchronous backplane interconnect

See SBI
Synchronous communications device• A-54
SYS$ALLOC•A-52,A-56
SYS$AL _JOBCTLMB

replaced by SYS$AR_JOBCTLMB • G-7
SYS$AL_OPRMBX

replaced by SYS$AR_OPRMBX • G-7
SYS$AR_JOBCTLMB•9-7,G-7
SYS$AR_OPRMBX•10-7,G-7
SYS$ASSIGN• 1-6, 2-3, 4-3, 18-8, A-11,

A-55,A-56
for template device • D-5

SYS$CANCEL• 1-4, 11-6, 11-7, 17-15,
18-18, A-29, D-3

SYS$CRMPSC• 18-5 to 18-6, 18-7
SYS$DALLOC• 11-7, 17-15, A-29, A-55,

A-56, D-3
SYS$DASSGN• 11-6, 11-7, 17-15, A-29,

A-55, D-3
SYS$LOADABLE_IMAGES directory• G-8
SYS$010• 1-1, 2-2 to 2-4, 4-1 to 4-13,

A-36
device-dependent arguments of• A-40
for connect to interrupt facility• 18-8,

18-9 to 18-12
SYS$QIOVV. 2-7 I A-36
SYS$SYNCH•2-7
SYSBOOT

See Secondary bootstrap program
System buffer

See Buffer, Nonpaged pool
System configuration• 15-9

System context• 1-8
System control block

See SCB
System Dump Analyzer (SDA) • 16-20

current process• G-18
SET CPU command • G-19
SHOW CPU command• G-19
SHOW CRASH command• G-19
SHOW SPINLOCKS command• G-19
using to debug device driver• 16-26

System failure
inducing with XDEL TA• 16-20

System Generation Utility (SYSGEN) •
15-2 to 15-20

AUTOCONFIGURE command• 11-3 to 11-4,
14-20, 15-11 to 15-20, A-2, A-33,
A-47,B-20,D-19

CONNECT command• 11-3 to 11-4, 14-20,
15-2, 15-3to 15-6, A-6,A-24, A-35,
A-43,A-47, B-20,D-7,D-21, G-3
/ADAPTER qualifier• 15-5
/ ADPUNIT qualifier• 1 5-6
/CSR qualifier• 15-5
/CSR_QFFSET qualifier• 15-5
/DRIVERNAME qualifier• 15-6
/MAXUNITS qualifier• 15-6
/NO ADAPTER qualifier• 15-5
/NUMVEC qualifier• 12-32, 12-33, 15-6,

A-21
/VECTOR qualifier• 15-6
/VECTOR_OFFSET qualifier• 15-6

device table• 15-12 to 15-13, 15-20
LOAD command• 11-3, 15-2 to 15-3, G-3
loading a V AXBI device driver using•

14-20to 14-21
RELOAD command• 11-4, 15-7 to 15-8, D-9
SHOW/ ADAPTER command• 15-8
SHOW/CONFIGURATION command• 15-9
SHOW /DEVICE :·command• 15-9 to 1 5-10

System initialization• G-22 to G-24
System map (SYS$SYSTEM:SYS.MAP) • 16-20
System page-table entry

allocating• 14-15, C-103, G-7
allocating permanent•6-2, A-32, A-58, B-19,

C-77,C-78
deallocating• C-104

System resource
accessing• B-44 to B-45

System service dispatcher
role in servicing 1/0 request• 4-1

System spin lock• 3-12
System time•3-7, 3-13, C-67, G-14, G-25

System time (cont'd.)

reading•B-47, G-15, G-26

T
Tape _driver• A-53, D-12""

using local tape UCB extension• A-48,
A-60 to A-61

Template device• 11-11
Template for a device driver• 5-6 to 5-1 5
Template UCB• A-56, A-5 7
Terminal• A-53, A-54

Index

See also Terminal controller, Terminal class
driver, Terminal port driver, Terminal UCB
extension

detached• A-54
1/0 function for• A-39
redirected• A-54

Terminal class driver• 17-1 to 17-21
binding to port driver• 17-8, B-7
service routines• 17-17 to 17-21
structure• 17-6

Terminal controller• A-19
Terminal port driver• 17-1 to 17-21, B-6

aborting output activity in • 1 7-15
binding to class driver• 17-8, B-7
canceling 1/0 request in• 17-15
control flags• A-67
detecting an error on terminal line in• 1 7-2 1
disconnecting a process from a terminal in•

17-18
forking in• 17-13, 17-18
implementing modem functions in• 17-14
initiate routines• 1 7-11 to 17-14
managing data set state transitions in• 17-18
obtaining characters for output in• 17-19
passing input characters to class driver from•

17-19
resuming stopped output in• 1 7-15
service routines• 17-15 to 17-17
starting output on an inactive line in• 1 7-14
startup routines• 17-10 to 17-11
stopping output in• 1 7-15
structure• 1 7-6
using input flow control character in• 17-16

Terminal UCB extension• 17-2 to 17-3, A-48,
A-62 to A-69

initializing• 17-20
remote• A-54

lndex-25

Index

Time
reading system• B-4 7

TIMEDWAIT macro• B-64 to B-65
See also TIMEW AIT macro
example• 8-65

Timekeeping• G-25 to G-26
Timeout• A-56, B-72

caused by power failure recovery procedure•
10-5

detecting• A-57
disabling•4-14, 10-1, B-40, C-30
due time• A-5 7
expected• A-56, C-102
logging• 10-6, 11-9

Timeout enable bit
See UC8$V_ TIM

Timeout handling routine• 1-3, 3-7, 9-4,
10-4to 10-7, 11-8, B-72,D-4

aborting an 1/0 request in• 10-6
address • 8-7, 10-1 , D-17
context • 10-4, D-1 7
entry point• D-1 7
exit method • D-18
functions• 10-5, D-18
input• D-18
register usage• D-17
retrying an 1/0 operation in• 10-5 to 10-6
synchronization requirements• 3-19, D-17,

G-13
Timeout interval • B-7 2

specifying • 10-4
Timer

See Software timer, Interval clock
Timer queue•3-13, C-29, G-14, G-25
Timer queue element

See TOE
TIMER spin lock•3-7, 3-12, C-29, G-14, G-25
TIMEW AIT macro• 8-63

See also TIMEDW AIT macro
example• B-63

TIMOUT processor state• A-15, G-21
TIMOUT _CRASH processor state• G-22
TOE$0_ TIME• C-29
TOE (timer queue element)

calling a driver from• G-16
expiration time• 3-7, C-29
inserting in timer queue• C-29

Translation buffer
invalidating• B-38 to 8-39, G-16

TTDRIVER. EXE • 17-1
TTY$V_PC_NOTIME • 17-14

lndex-26

TTY$V_PC_PORTFDT•17-13
TTY$V_TP_ABORT•17-17
$TTYDEFS macro• 17-2
$TTYMACS macro• 17-11, B-6, B-7, B-67,

B-68, B-69
$TTYMDMDEF macro• 17-18
$TTY MODEM DEF macro• 17-11
$TTYUCBDEF macro• A-48

u
UBA (UNIBUS adapter) • 1-10

See also UNIBUS adapter
UBI (UNIBUS interface)• 1-11

See also UNIBUS adapter
UBMAPEXCED bugcheck • C-73, C-76
UCB$B_DEVCLASS•6-2,B-24,C-50
UCB$B_DEVTYPE•6-2,B-24,C-50
UCB$B_DIPL•3-6, 6-2, 10-4, B-24
UCB$B_ERTCNT•10-3,C-67,C-91
UCB$B_FIPL • A-51, B-31
UCB$B_FLCK•3-5, 6-2, 10-1, B-24, B-31

initializing• G-8
UCB$B_SLAVE•13-11
UCB$B_SLAVE+1•13-11
UCB$B_TP_STAT• 17-17
UCB$8_ TT_DEPARI • 17-20
UCB$B_TT_DETYPE•17-20
UCB$B_TT_MAINT• 17-13, 17-14
UCB$B_TT_OUTYPE•17-14, 17-19, 17-20,

17-21
UCB$B_TT_PARITY• 17-14, 17-20
UCB$L_AFFINITY • C-69
UCB$L_CRB•11-4, 13-12
UCB$L_DDB•4-6
UCB$L_DDT • 17-8
UCB$L_DEVCHAR•6-2, 11-9,B-24
UCB$L_DLCK • 3-20
UCB$L_DUETIM•4-14, 8-7, 10-5, C-101,

C-102
UCB$L_EMB•10-3,C-8
UCB$L_FPC • 4-13, 4-14, 9-4, 10-1, 10-4
UCB$L_FR3•4-13,4-14, 9-4, 10-1, 10-4
UCB$L_FR4•4-13,4-14, 9-4, 10-1, 10-4
UCB$L _IOOFL • 10-3, C-28, G-14
UCB$L_IRP•4-4, 10-3, C-69
UCB$L _LINK• 11-4
UCB$L_OPCNT•C-5, C-24, C-91

adjusted by IOC$REOCOM • C-92

UCB$L_ORB•A-43
UCB$L_STS•2-4, 8-5, 8-7
UCB$L_SVAPTE•4-4, 8-2, 12-21, 13-3,

13-13, 14-16,A-40,C-69,C-77
UCB$L_SVPN•B-19,C-65, C-77
UCB$L_TT_CLASS•17-8,B-7
UCB$L_TT_GETNXT•17-8
UCB$L_TT_LOGUCB•17-20
UCB$L_TT_OUTADR• 17-14, 17-15, 17-19,

17-20
UCB$L_TT_PORT•17-8,B-7
UCB$L_TT_PUTNXT•17-8
UCB$L_ TT_RTIMOU • 17-20
UCB$L_ TT_WFLINK • 17-20
UCB$Q_DEVDEPEND•6-2,C-48,C-50
UCB$V_BSY•2-4, 4-4, 7-5, 10-3, 11-8,

C-28,C-66,D-4
UCB$V_CANCEL•10-6, 11-8,C-66,C-69,D-4
UCB$V_DELMBX • 1 7-12
UCB$V_ECC • C-65
UCB$V_ERLOGIP• 10-3, 11-9, C-8, C-92
UCB$V_INT• 8-7, 9-3, 9-7, 10-4, 13-9,

17-14
UCB$V_JOB. 9-6 I 9-7 I 9-8
UCB$V_ONLINE • 9-8, 11-2, 14-11 , A-35
UCB$V_POWER•8-5, 10-5, 11-1, 17-11
UCB$V_TEMPLATE•D-5
UCB$V_TIM•8-7, 10-1, 10-4, B-40, C-30,

C-101
UCB$V_ TIMOUT• 10-4, C-69, C-101
UCB$V_ V AUD• 9-8
UCB$W_BCNT•8-2, 12-19, 12-21, 13-3,

13-13, 14-16, A-40, A-58, C-62, C-64,
C-69

UCB$W_BOFF•8-2, 12-19, 12-21, 12-22,
13-3, 13-13, 14-16, A-40, A-58, C-62,
C-64, C-69

UCB$W _BUFQUO
in mailbox UCB• C-59

UCB$W_DEVBUFSIZ • 6-2, C-50
in mailbox UCB• C-59

UCB$W_DEVSTS•10-3
UCB$W _EC 1 • C-65
UCB$W_EC2 • C-65
UCB$W _ERRCNT • 11-9, C-8
UCB$W _QLEN • C-28
UCB$W_REFC•9-6,9-7, 11-6,D-3
UCB$W_TT_CURSOR•17-20
UCB$W_TT_DESPEE•17-20
UCB$W_TT_HOLD• 17-20
UCB$W_TT_OUTLEN•17-14, 17-19, 17-20
UCB$W_TT_PRTCTL•17-13, 17-14

UCB$W_TT_SPEED•17-14, 17-20
UCB$W _UNIT• 13-11

Index

UCB (unit control block) • 1-5, 3-5, 4-4, A-11 ,
A-47 to A-69

address•8-7, 11-4
as fork block• 8-7
as template• A-57
cloned• A-30, A-56
creation• 11-3, 13-6, 15-4, 15-18, A-36,

A-47
dual path extension• A-48
error log extension• 11-8, A-48,

A-58to A-60
extending• A-48 to A-49
initializing• 11-2
local disk extension• 11-8, A-48,

A-61 to A-62,C-9,C-65
local tape extension• 11-8, A-48,

A-60 to A-61 , C-9·
logical• A-66
number to be created• 6-2
physical• A-64
reference count• A-56
remote terminal extension• A-54
size•A-32, A-47 to A-49, A-51, B-20
storing data in• 4-4, 5-1
synchronizing access to• 2-4, 3-5, 3-15
terminal extension• 17-2 to 17-3, A-48,

A-62to A-69
$UCBDEF macro• A-48
UNIBUS

accomplishing a DMA transfer on•
12-15 to 12-26

address size• 12-5
example of driver designed for• E-1 to E-29,

F-1 to F-25
example of read operation• 12-12 to 12-13,

12-14
example of write operation• 12-12, 12-14
1/0 address space• 18-1, 18-3, 18-6
1/0 space• 12-4
power failure• 18-6

UNIBUS adapter• 1-11, 1-12
error interrupt from• 16-21, 18-6
functions• 12-1 to 12-14
interrupt service routine• 12-30
nexus value of• 15-5
obtaining resources of• 12-15
prefetch function• 12-12, 12-13
registers• 12-15
scatter-gather map• 12-4 to 12-7
synchronizing access to• 12-2

lndex-27

Index

Uniprocessing device driver
converting to multiprocessing device driver•

G-8to G-20
incompatibility with multiprocessing device

driver• 15-10, G-3
Uniprocessing environment

contrasted with multiprocessing environment•
3-10,G-1

Uniprocessing synchronization image• 16-25
loading• G-2

Unit control block
See UCB

Unit delivery routine• A-2
addrass•6-2, 15-18, A-33,8-20, D-19
context • 15-18, D-19
entry point• D-19
exit method • D-20
functions• 15-18, D-20
input• D-19
output • 15-18
register usage• D-19
synchronization requirements• D-19

Unit initialization routine• 1-3, 11-1 to 11-6,
15-4

address•4-4, 6-3, 6-4, 11-1, 12-31,
A-24, A-29, B-24, D-21

allocating contiguous physical memory in•
12-26

allocating controller data channel in• 8-4, 10-2
allocating permanent buffered data path in•

12-18
allocating permanent map registers in•

12-20 to 12-21
context • 11-1, 11-3, D-21
entry point• D-21
exit method • D-21
for connect to interrupt facility• 18-10,

18-14 to 1 8-1 5
for generic V AXBI device• 14-10, 14-19
forking in• 3-21, 11-5 to 11-6
for MASSBUS device• 11-4, 13-11, A-24
for MicroVAX I device• 12-26
for terminal port driver• 17-8, 17-11
functions• 11-2, D-22
input• 11-3, D-21
of CONINTERR.EXE • 18-14
of terminal port driver• B-7
register usage• 0-21
synchronization requirements• 0-21 , G-12

UNLOCK macro • 3-9, B-66, C-109, C-111 , G-4

lndex-28

Unsolicited interrupt
See Device interrupt

Unsolicited interrupt service routine• 9-5, 13-14,
A-29

address• 6-3, 0-23
context• D-23
entry point• D-23
exit method• D-23
input•D-23
register usage• D-23
synchronization requirements• D-23

UNSUPRTCPU bugcheck • B-9
User interface CSR space

enabling interrupts from• 14-13

v
VAX-11 /725

See V AX-11 /730
booting with XDEL TA from • 16-4

VAX-11/730• 1-12
booting with XDEL TA from• 16-4

VAX-11/750• 1-11
booting with XDEL TA from• 16-2

VAX-11/780• 1-10
booting with XDEL TA from• 16-4
requesting an XDEL TA interrupt from• 16-8

VAX-11/785

See V AX-11 /780
booting with XDEL TA from• 16-4
requesting an XDEL TA interrupt from • 16-8

VAX 6200series•1-12 to 1-14
booting with XDEL TA from• 16-2
requesting an XDEL TA interrupt from • 16-8

VAX 8200• 1-12 to 1-14
booting with XDEL TA from• 16-3, 16-8

VAX 8250
See VAX 8200
booting with XDEL TA from • 16-3, 16-8

VAX 8300
See VAX 8200
booting with XDEL TA from • 16-3, 16-8

VAX 8350
See VAX 8200
booting with XDEL TA from• 16-3, 16-8

VAX 8530• 1-12 to 1-14
booting with XDEL TA from• 16-3
requesting an XDEL TA interrupt from • 16-8

VAX 8550

See VAX 8530
booting with XDEL TA from • 16-3
requesting an XDEL TA interrupt from• 16-8

VAX 8600• 1-10
booting with XDEL TA from • 16-4
requesting an XDEL TA interrupt from• 16-8

VAX 8650
See VAX 8600
booting with XDEL TA from • 16-4
requesting an XDEL TA interrupt from• 16-8

VAX 8670
See VAX 8600
booting with XDEL TA from• 16-4
requesting an XDEL TA interrupt from• 16-8

VAX 8700
See VAX 8530
booting with XDEL TA from• 16-3
requesting an XDEL TA interrupt from • 16-8

VAX 8800• 1-12 to 1-14
booting with XDEL TA from• 16-3
requesting an XDEL TA interrupt from• 16-8

VAX 8830
booting with XDEL TA from• 16-3
requesting an XDEL TA interrupt from• 16-8

VAX 8840
booting with XDEL TA from• 16-3
requesting an XDEL TA interrupt from• 16-8

VAXBI bus• 1-12
address•14-2to 14-5
arbitration mode of• 14-23
errors• 14-24
1/0 address space• 14-2, 14-14, 18-1
master of• 14-8
memory space• 14-2

VAXBI node
See also Generic V AXBI device, Node ID
definition• 14-1
determining self-test status of• 14-11
enabling BllC options on • 14-13
enabling error interrupts from• 14-13
mapping window space of• 14-14 to 14-15,

C-103
setting interrupt destination of• 14-12
setting interrupt vector for• 14-13

VAX MACRO instructions
as used in device driver• 5-1 to 5-4

VCB (volume control block)• A-52, A-56
VEC$B_DATAPATH• 12-17, 12-18, 12-21,

12-25
VEC$B_NUMREG • 12-20
VEC$L_IDB • 4-4, 13-12

VEC$L_INITIAL•4-4, 15-4, D-7
VEC$L_ISR•4-4, D-12, G-5
VEC$L_RTINTD• 12-35, 12-36
VEC$L_UNITINIT • 4-4, 15-4, D-21
VEC$Q_DISPATCH • A-23
VEC$V_LWAE• 12-14, 12-21, C-76
VEC$V_MAPLOCK • 12-20, C-87
VEC$V_PATHLOCK•12-17, 12-18,C-84
VEC$W_MAPALT• 12-20, 12-23
VEC$W_MAPREG• 12-20, 12-22
VEC$W_NUMAL T • 12-20

Index

VEC (interrupt transfer vector)• 12-30, 12-31,
12-31 to 12-33, A-8,A-20to A-25

initializing• 12-32
multiple• A-21

$VECEND macro• 17-6, B-68
example• B-69

$VECINI macro• 17-6, B-67, B-69
example• B-69

$VEC macro• 17-6, B-67
example• B-69

VECTAB
See Adapter dispatch table

Vector
fixed space • 1 5-12
floating space• 15-12

Vector jump table

See Adapter dispatch table
_ VIELD macro• A-48, B-70 to B-71

example• B-71
$VIELD macro• B-70 to B-71
VIRTCONS spin lock• 3-13
Virtual address

translating to physical address• 12-26
Virtual address register

See MBA$L_VAR
Virtual 1/0 function• A-39, A-41

translation to logical function from• 2-3
VMB

See Primary bootstrap program
Volume• A-56
Volume valid bit

See UCB$V_ V AUD

w
Wait for interrupt macro

See WFIKPCH macro, WFIRLCH macro
WCB (window control block)• 4-8, A-11, A-38

lndex-29

Index

WFIKPCH macro•4-14, 8-5, 8-6, 10-7, 13-13,
B-61,B-72to B-73,C-101,D-17,G-11

WFIRLCH macro•4-14, 8-5, 8-6,
B-72to B-73, C-101,D-17

Window control block
See WCB

Window space• 14-5
mapping• 14-14 to 14-15
starting address• 14-14

Word count register• 12-23
Working set limit• C-35, C-41

insufficient• C-32
Workstation device• A-54

lndex-30

Write check
enabling• A-53

Write function
FDT routine for• 7-8

x
XADRIVER.MAR • F-1 to F-25
XDELTA

See Delta/XDelta Utility
XDEL TA entry IPL• 3-8
XQP (extended 010 processor)• A-11, A-52

default• A-27

Reader's Comments VMS Device Support
AA-LA88A-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to find topic) D
Page layout (easy to find information) D

I would like to see more /less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.

Name/Title

Company

Mailing Address

Good Fair Poor

D D D
D D D
D D D
D D D
D D D
D D D
D D D
D D D

Dept.

Date

Phone

·- Do Not Tear - Fold Here and Tape -------------------[lllr--------------­
No Postage

mamaoma™ ~==

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POST AGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111 11.11 11 1.11.1 .. 1.1 .. 1 •• 1.1 ••• 1.11 .. 1

in the
United States

- Do Not Tear - Fold Here --

I
I
I
I
I
I

