DOS

Multiuser/Multitasking Operating System

PROGRAMMERS GUIDE

A
Ab i NN
//%/ ,//Vv»/ -

, .ﬁolwaoﬁa&&

DIGITAL RESEARCH’

MOS

PROGRAMMERS GUIDE

DIGITAL RESEARCH’

Xm 6.0
256 2.0

COPYRIGHT

Copyright © 1987 Digital Research Inc. All rights reserved. No part of this publication may
be reproduced, transmitted, transcribed, stored In a retrieval system, or translated into any
language or computer language, in any form or by any means, electronic, mechanical,
magnetic, optical, chemical, manual or otherwise, without the prior written permission of
Digital Research Inc., P.O. Box DRI, Monterey, California 93950.

DISCLAIMER

DIGITAL RESEARCH INC. MAKES NO REPRESENTATIONS OR WARRANTIES WITH
RESPECT TO THE CONTENTS HEREOF AND SPECIFICALLY DISCLAIMS ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.
Further, Digital Research Inc. reserves the right to revise this publication and to make
changes from time to time in the content hereof without obllgatlon of Digital Research Inc.
to notlify any person of such revision or changes.

NOTICE TO USER

This manual should not be construed as any representation or warranty with respect to the
software named herein. Occasionally, changes or varlations exist in the software that are
not reflected in the manual. Generally, if such changes or variations are known to exist and
to affect the product significantly, a release note or README.DOC file accompanies the
manual and distribution disk(s). In that event, be sure to read the release note or
README.DOC file before using the product.

TRADEMARKS

CP/M, CP/M-86, and Digital Research and its logo are registered trademarks of Digital
Research Inc. DR Assembler Plus Tools, Concurrent, Concurrent DOS 386, Concurrent
CP/M, Concurrent PC DOS, GEM, LINK-86, LIB-86, MP/M, MP/M-86, RASM-86, and SID-86
are trademarks of Digital Research Inc. We Make Computers Work is a service mark of
Digital Research Inc. AST and RAMpage! are trademarks of AST Research, Inc. MS-DOS is
a registered trademark of Microsoft Corporation. IBM is a registered trademark of
International Business Machines, Corp. Intel is a registered trademark of Intel Corp. Lotus is
a registered trademark of Lotus Development Corp. CompuPro is a registered trademark of
Viasyn Corp, a Godbout Company.

This manual describes the assembly-language programming
Interface to the Concurrent DOS operating system.

Itis Intended as a reference manual for experienced programmers.

Contents

1 CONCURRENT DOS 86 OVERVIEW

1.1 Introduction e 1-1
1.2 Supervisor (SUP). e e e 1-3
1.3 Real-time Monitor (RTM). i inenean.n 1-3
1.3.1 Process Dispatching 0 .iiiiieenn.. 1-3
1.3.2 Queue Management i eneneennnn 1-5
1.3.3 System Timing Functions 1-7
1.4 Memory Management Module (MEM). 1-7
1.4.1 Expanded Memory Support. 1-7
1.4.2 Memory Paging Environments. 1-8
143 EMM Drivers e 1-1
1.5 Basic Disk Operating System (BDOS).c....... 1-1
1.6 Character 1/0 Module (CIO). it e e 1-1
1.7 Virtual Console Screen Management. 1-12
1.8 Extended Input/Output System (XIOS). 1-13
1.9 Terminal Message Processes (TMP) 1-13
1.10 Transient Programs. e 1-13
1.11 System Call Calling Conventions. 1-13
1.12 SYSTAT: System Statusttt 1-14
2 THE CONCURRENT DOS 86 CP/M FILE SYSTEM
2.1 File System OVerviewWttt it 2-1
2.1.1 File-access System Calls, 2-1
2.1.2 Drive-related System Calls 2-2
2.2 File Naming Conventions iennennnnns 2-4
2.3 Disk Drive and File Organization. 2-6
2.4 File Control Block Definition ou.. 2-8
24.1 FCB Initializationand Use 2-10
2.4.2 FCB Initialization for DOS Media Files 2-11
243 File Attributes. e 2-13
244 Interface Attributes e 2-15
2.5 User Number Conventionsc.cuutiiieennennnnnnns 2-16
2.6 Directory Labels and XFCBSctiiinemneennnnnnnn 2-17
27 File PasswWOrdsottt ittt e e e 2-19
2.8 File Date and Time Stamps: SFCBSccoivueiennnn. 2-21
29 File Open Modes. ittt e 2-22
210 File SBCUMItY ittt it e e e e 2-24
2.11 Extended File Lockingttt 2-26
2.12 Compatibility Attributes. 2-27
213 Multisector 1/0 e 2-30

Contents

2.14 Concurrent File Access.

2.15
2.16
2.17
2.18

FileByteCounts.................
Record Blocking and Deblocking.
Reset, Access, and Free Drive.......
BDOS Error Handling.

3 TRANSIENT COMMAND FILES

3.1

32
33
34
35

Transient Program Loading..........
3.1.1 SharedCode................
3.1.2 8087 Support
3.1.3 8087 Exception Handling.......
Command File Format.
Base Page Initialization.
Parent/Child Process Relationships. . ..
Direct Video Mapping

4 TRANSIENT PROGRAM MEMORY MODELS

4.1
42
43

5 RESI

5.1
5.2

5.3

5.4

5.5

The 8080 Memory Model
The Small Memory Model.
The Compact Memory Model

DENT SYSTEM PROCESS GENERATION

Introduction to RSPs.
RSP Memory Models.
5.2.1 8080 Model RSP
5.2.2 Small Model RSP.
Multiple Copies of RSPs
53.1 8080 Model.
53.2 SmallModel
5.3.3 Small Mode! with Shared Code. .
Creating and Initializing an RSP
54.1 The RSP Header
5.4.2 The RSP Process Descriptor
54.3 The RSP User Data Area.......
544 The RSP Stack
545 The RSP Command Queue
5.4.6 Multiple Processes within an RSP
Developing and Debugging an RSP

WWwWwwWwwwww

|
NNBENNN o -

4-2
4-3
4-4

mu‘lmmmmmtrmmmmmmmm
OWOWONDODEWWWNN = ==

Contents

6 CONCURRENT SYSTEM CALLS

6.1 Reference Tables i
6.2 Auxiliary Device Calls
6.3 Console Device Calls iiiiiiinnnnnn.
6.4 Device Callsttt it
6.5 Disk Drive Calls it
6.6 File System Callst
6.7 ListDevice Calls.ttt
6.8 Memory Management Calls.
6.9 Process Management Calls.
6.10 Queue Management Calls iinnnn.n
6.11 System Information Calls
6.12 Time Management Calls iinn..

7 PC DOS SYSTEM CALLS

7.1 Introduction e
7.2 DOS System Call Parameters uiiiieneenennnn
721 ASCHZ Input Strings
7.22 DOS File and Device Handles
7.3 DOS System Call Error Return Codesouonn..
7.4 DOS System Call Summary.ttt
7.5 DOS FCB Oriented File Management.
7.5.1 Standard DOS FCBttt it
752 DOS Extended FCB e e
7.5.3 DOS File Attribute Byte.
7.5.4 DOS Disk Transfer Area.cociiiinnnnen..

8 PC DOS INTERRUPT SUPPORT

8.1 PCROS Monitor Calls. it
8.2 DOS INtBITUPESttt it e e
8.2.1 DOS INT 20H - Program Terminate.
8.2.2 DOS INT 22H - Invoke a DOS System Call.
8.2.3 DOS INT 22H - Terminate Address
8.24 DOS INT 23H - Ctrl_ Break Address
8.2.5 DOS INT 24H - Critical Error Exit Address.
8.2.6 DOS INT 25H - Absolute Disk Read.
8.2.7 DOS INT 26H - Absolute Disk Write

9 DOS DEVICE DRIVER SUPPORT

9.1 Writing @aDOS Driver e e,

iiii

Contents

9.1.1 DOS Driver Formatttt 9-1
9.1.2 DOS Device Header. iiiiiinenen.. 9-1
9.13 DOSRequest Header. iiiniuno .. 9-4
9.14 DOS Driver FUnCtionsttt nnnnnen. 9-6
9.2 Installing @a DOS Driver.ttt 9-15
9.2.1 Memory Requirementsuueumnienennnens 9-15
9.22 Drive Assignmentttt 9-15

10 WINDOW MANAGEMENT

10.1 Virtual Consoles ittt i e e e 10-1
10.2 Virtual Console OQutputttt 10-1
10.3 XIOS Window Management Calls. 10-3
10.4 ESCAPe S@QUENCESt i vt ittt ettt et ettt eeae e 10-9
Appendices
A ECHOAB86 - SAMPLE RSPt ie e A-1
B 8087 Exception Handling. B-1
Figures
1-1 Concurrent DOS 86 Virtual/Physical Environments 1-1
1-2 Environment Memory Paging Interfaces. 1-9
1-3 Environment Memory Paging. ittt 1-10
2-1 FCB - File Control BIOCKttt 2-8
2-2 FCB Initialized for a DOS Directoryt iuiennnn. 2-11
2-3 FCB Time and Date Fields for DOS Files. 2-13
2-4 Directory Label Format it 2-17
2-5 XFCB - Extended File Control Block. oo u.. 2-18
2-6 Directory Record with SFCB.ttt 2-21
2-7 SFCB Subfieldsttt 2-21
2-8 Disk System ReSet. ittt e 2-35
3-1 CMD File Header Format ituniiinnnnnnnnn 3-3
3-2 Group Descriptor Format. e 3-3
3-3 Base Page Valuest 2-5
4-1 Initial Program Stackttt 4-2
4-2 8080 Memory Modelc. ittt e e 4-3
4-3 Small Memory Model. e 4-4
4-4 Compact Memory Model iiiiiinenen.. 4-5
5-1 8080 and Small Model RSPs iuiienon.. 5-2
5-2 RSP Header Format0ttt 5-3
5-3 RSP Command Queue M@SSage.ouuuieeemunnnnn 5-4
5-4 RSP Data Segment.ttt 5-6

Contents

6-1 ACB - Assign Control Block. i 6-30
6-2 Console Buffer Format.t 6-41
6-3 Drive Vector Structure.ttt 6-52
6-4 DPB - Disk Parameter Block., 6-55
6-5 Disk Free Space Field Format. 6-69
6-6 PFCB - Parse Filename Control Block. 6-88
6-7 MCB - Memory Control Block vuun.. 6-126
6-8 MPB - Memory Parameter Block 6-127
6-9 MFPB - M_FREE Parameter Block. 6-130
6-10 APB — Abort Parameter Block. 6-137
6-11 CLI Command Line Buffer. iien... 6-140
6-12 PD - Process DesCriptorttt 6-143
6-13 UDA - User Data Area.uuivummunneenennnn 6-148
6-14 CPB - Call Parameter Blockt 6-156
6-15 QPB - Queue Parameter Block., 6-160
6-16 QD - Queue DeSCriptorttt ittt 6-165
6-17 BIOS Descriptor Format 6-172
6-18 SERIAL Number Formatttt 6-174
6-19 SYSDAT Tablettt i 6-176
6-20 TOD - Time-of-Day Structureuoun.. 6-181
7-1 DOS Console Buffer Format. eninann. 7-22
7-2 DOS Standard File Control Block 7-26
7-3 DOS Extended FCB Prefix. 0.t 7-28
7-4 DOS File Time Format\ttt e e 7-72
7-5 DOS File Date Formatttt 7-72
7-6 Country Dependent Data Return Block. 7-82
7-7 EXEC Load and Execute Parameter Block...................... 7-87
7-8 DOS Environment String Format 7-88
7-9 EXEC Load Overlay Parameter Block 7-89
7-10 DOS Program Segment Prefix 7-90
8-1 User Stack at DOS INT 24Httt 8-4
9-1 DOS Device Header. it 9-2
9-2 Request Header. it 9-4
9-3 BIOS Parameter Block i 9-8
9-4 Input and Output Parameter Block. 9-12
Tables
1-1 Registers Used by System Calls 1-14
2-1 File System Calls.ttt ittt et e e it e e 2-3
2-2 Valid Filename Delimiters. i, 2-5
2-3 Filetype CONVeNtiONSt i ittt it ittt et it ee i 2-6
2-4 Drive CapacCity.ttt i e e e e e 2-7
2-5 FCB Field Definitions 2-9
2-6 FCB Disk Map Values forDOS Media......................... 2-12
2-7 File Attribute Definitions i, 2-14

Contents

2-8 Attributes F5' and FB'. it 2-15
2-9 Label Field Definitionst imnnnannennn 2-17
2-10 Field Definitions.ttt ittt 2-18
2-11 Password Protection Modes.ciivieeinneenn. 2-19
2-12 Compatibility Attribute Definitions 2-28
2-13 BDOS Physical ErrOrs.o i ittt ettt it e 2-38
2-14 BDOS Extended EFrOrsttt it 2-39
2-15 BDOS Logical Errors.ttt ittt it e e e 2-41
2-16 BDOS Physical and Extended Errorscc.u... 2-43
3-1 Group Descriptor TYPeS. . . . vttt e e et e 3-3
3-2 Group Descriptor Fields. it 3-4
3-3 Base Page Fields i 3-6
4-1 Transient Program Memory Models 4-1
6-1 System Call Functional Categories.c.oouuuuu. ... 6-2
6-2 Concurrent DOS 86 System Calls. 6-4
6-3 System Call Summary - By Mnemonic. 6-10
6-4 System Call Summary by Function Number. 6-14
6-5 Register CX Error Codes ittt 6-17
6-6 Data Structures Indexttt 6-18
6-7 ACB Field Definitions.« ...ttt 6-31
6-8 C_RAWIO Calling Values. oiuiiriniannn. 6-39
6-9 Console Buffer Field Definitions.c........... 6-41
6-10 C_READSTR Line-editing Characters. 6-42
6-11 DPB Field Definitions i, 6-56
6-12 PFCB Field Defintions. i, 6-88
6-13 FCB Initialization ittt 6-90
6-14 MCB Field Definitions.t 6-126
6-15 MPB Field Definitions. itiniinnann.. 6-127
6-16 APB Field Definitions ittt 6-138
6-17 Command Line Buffer Field Definitions. 6-140
6-18 PD Field Definitionsttt 6-144
6-19 UDA Field Definition.ttt 6-149
6-20 CPB Field Definitionsttt 6-156
6-21 QPB Field Definitions it . 6-160
6-22 Queue Descriptor Field Definitions. 6-166
6-23 SYSDAT Table Data Fieldso, 6-177
6-24 Time-of-Day Field Definitions 6-181
7-1 DOS System Call Categoriescuuuiuiiinennnnn 7-2
7-2 DOS System Calls Requiring ASCHZ Strings. 7-5
7-3 DOS Standard Device Handles0vuunn... 7-5
7-4 DOS System Call AXError Codesccuuuriuennnnan.. 7-6
7-5 DOS System Call Summary iinnennen.. 7-7
7-6 DOS Standard FCB Fields. it iveirunnennnn 7-27
7-7 DOS Extended FCB Fields.ttt eiinannnnn 7-29
7-8 DOS Attribute Byte Values. ittt 7-29
7-9 DOS File Attribute Byte Values.c.ciiuireennn. 7-36
7-10 EXEC Load Parameter Block Fields 7-88

vi

Contents

7-11 EXEC Load Overlay Parameter Block Fields. 7-89
8-1 DOS Monitor Call Interrupts. inintnnnnnn... 8-1
8-2 DOS Interrupts Supported by Concurrent. 8-1
8-3 INT 24H Disk Error and Response Indicators 8-3
8-4 DOS Critical Error Codesttt 8-4
8-5 DOS Absolute Disk Read/Write Error Codes 8-6
9-1 DOS Device Header Fields 9-2
9-2 Fields in Request Header., 9-5
9-3 INIT Parameter Block Fields 9-7
9-4 DOS BIOS Parameter Block Fields 9-9
9-5 Fields in I/0 Parameter Block. 9-12
10-1 XIOS Window FUNCliONS.ttt i 10-4
10-2 XIOS Window Management Call Summary 10-5
10-3 Virtual Console Structure Definition. 10-7
10-4 Window Data Block Definition 10-8
10-5 XIOS Calls for Escape Sequences.cuuiuinen... 10-9
Listings
6-1 Memory Control Block Definition 6-127
6-2 Memory Parameter Block Definition. 6-128
6-3 Queue Parameter Block Definition 6-161
A-T ECHOLABD e e e e e e e A-1
B-1 8087 Exception Handling B-2

vii

Foreword

Concurrent™ DOS 86 (hereinafter cited as Concurrent) is a multi- or single-user
operating system targeted specifically for the Intel®8086/8088/80186/80286 family
of micro-processors. It supports multiple CP/M™ or DOS' programming
environments each implemented on a virtual console. A different task can run
concurrently in each environment.

Intended audience

This manual is primarily a reference tool intended for experienced programmers. It
is not a tutorial on programming. It assumes you are already familiar with general
aspects of assembly-language programming and in particular, intel microprocessor
architecture. It also assumes you are familiar with the hardware components of
your own system.

What's in this manual

This manual describes the invariant programming interface to Concurrent. It
supports the applications programmer who wants to create software that runs in
the Concurrent environment.

*

*

*

*

Section 1 is a general overview of Concurrent.

Section 2 describes the structure of the Concurrent’'s CP/M file system.
Section 3 describes the format of transient command files.

Section 4 describes the transient program memory models.

Section 5 describes the creation of resident system processes.

Section 6 describes all the generic Concurrent system calls.

Section 7 describes all the PC DOS system calls that Concurrent supports.
Section 8 describes Concurrent’'s support for PC DOS interrupts.

Section 9 describes PC DOS driver support.

Section 10 describes Window management.

1ln this manual, DOS refers to both PC DOS and MS-DOS

Where to find more information

The Concurrent DOS User's Guide, (hereinafter cited as the User's Guide)
documents Concurrent’s user interface, explaining the various features used to
execute application programs and Digital Research utility programs.

The Concurrent DOS Reference Guide, (cited as the Reference Guide) is a detailed
reference manual that describes all of Concurrent’s commands.

The Concurrent DOS 86 System Guide, (cited as the System Guide) documents
Concurrent’s internal, hardware-dependent structures.

Two other documents describe Digital Research software that you can use to
write, debug, and verify software written for the Concurrent environment.

RASM-86™, relocating assembler, LINK-86™, linkage editor, and LIB-86™,
software librarian are described in Programmer’s Utilities Guide for the CP/M-86...
Family of Operating Systems, (cited as the Programmer’s Utilities Guide).

SID-86™, symbolic instruction debugger is described in SID-86 Productivity Tool
User’'s Guide, (cited as SID-86 User's Guide).2

Notation conventions

The following notation conventions are used throughout this manual:

n A numeric value indicates a decimal number unless
otherwise stated.

nH A numeric value followed by the capital letter H indicates
the number is a hexadecimal value.

Horizontal ellipses indicate the immediately preceding item
can occur once, or any number of times in succession.
Vertical ellipses indicate an omitted portion of a source
program or example; only the relevant part is shown.

CTRL In the text, the symbol CTRL represents a control character.
Thus, CTRL-C means control-C. In any listing that shows
example console interaction, the symbol ~ is the echo of a
control character.

2RASI’W-BS, LINK-86, LIB-86 and SID-86 are sold together as DR Assembler Plus TooIsTM

SECTION 1

CONCURRENT DOS 86 OVERVIEW

1.1 Introduction

Concurrent DOS 86 is a multi- or single—user, multitasking operating system. It
lets you run multiple programs simuitaneously by initiating tasks on two or more
terminals or virtual consoles. Application programs have access to system calls
used by Concurrent to control the multiprogramming environment. Concurrent
supports extended features, such as communication among and synchronization of
independently running processes. Figure 1-1 depicts the relationships between
application programs, virtual environments, virtual consoles, and the user’s physical
terminal.

TEAMINAL

APPLICATION MESSAGE

PROCESSES PROCES>
X

0S SUPERVISOR

>

MEMORY
CHARACTERIO BASIC Disk 5001 AEA.TIME
MODULE MANAGER monToR

L
oo
Yy vw

VIRTUAL CONSOLE
SESSION

MANAGER

L L

EXTENDED! O SYSTEM

t l L] ¢ [] t

INTEARPT
CONTROLU
Lesic

SYSTEM HARDCOPY DISKETTE
CONSOLE PRINTER DRIVES

Figure 1-1. Concurrent DOS 86 Virtual/Physical Environments

1-1

1.1 Introduction Concurrent DOS 86 Programmer’s Guide

In the Concurrent environment there is an important distinction between a program
and a process. A program is simply a block of code residing somewhere in
memory or on disk; it is essentially static. A process, on the other hand, is a
dynamic entity. You can think of it as a logical machine that executes not only
the program code, but also the operating system routines necessary to support the
program’s functions.

When Concurrent loads a program, it creates a process associated with the loaded
program. Subsequently, it is the process, rather than the program, that obtains
access to the system’s resources. Thus, Concurrent monitors the process, not the
program. This distinction is a subtle one, but vital to your understanding of
system operation as a whole.

Processes running under Concurrent fall into two categories: transient processes
and Resident System Processes (RSPs). Transient processes run programs loaded
into memory from disk in response to a user command or system calls made by
another process. Resident system processes run code that is made an integral
part of Concurrent during system generation, so they are immediately available to
perform operating system tasks. For example, the CLOCK process is an RSP that
maintains the time of day within Concurrent.

The following list briefly summarizes Concurrent’s capabilities:

* Interprocess communication, synchronization, and mutual exclusion functions
are provided by system queues.

* A logical interrupt mechanism using flags allows Concurrent to interface with
any physical interrupt structure.

System timing functions enable processes to compute elapsed times, delay
execution for specified intervals, and to access and set the current date and
time.

* The shared file system allows multiple programs to access common data files
while maintaining data integrity.

* Ability to run DOS programs by providing software emulation of DOS system
calis.

* Shared code support eliminates loading multiple copies of the same program
and conserves memory space.

* 8087 support takes advantage of fast 8087 math instructions.

* Support for memory paging hardware allows memory to be expanded up to 8
megabytes.

* Virtual console handling lets a single user run multiple programs, each in its
own console environment.

* Real-time process control allows communications and data acquisition without
loss of information.

Concurrent DOS 86 Programmer’s Guide 1.1 Introduction

Concurrent is composed of the following modules:

* The Supervisor module (SUP) handles miscellaneous system calls such as
returning the version number or the address of the System Data Area. SUP
also calls other system calls when necessary.

* The Real-time Monitor module (RTM) monitors the execution of running
processes and arbitrates conflicts for the system’s resources.

* The Memory Management module (MEM) allocates and frees memory upon
demand from executing processes.

* The Basic Disk Operating System (BDOS) is the hardware-independent
module that contains the logically invariant portion of the file system. The
BDOS file system is explained in detail in Section 2.

* The Character 1/0 module (CIO) handles all character 1/0 for console, list, and
auxiliary devices.

* The Virtual Console Screen Manager extends the CIO to support virtual
console environments.

* The Extended 1/0 System (XIOS) is the hardware-dependent module that
defines Concurrent’s interface to a specific hardware environment. See the
System Guide for more detailed information about the XIOS.

1.2 Supervisor (SUP)

The Supervisor module (SUP) manages the interface between processes and
Concurrent’'s multitasking nucleus. It also manages internal communication
between the other Concurrent modules. All system calls, whether they originate
from a transient process or internally from another system module, go through a
common table-driven function interface in SUP. SUP also handles the P_LOAD
(Load Process) and P_CLI (Call Command Line Interpreter) calls.

1.3 Real-time Monitor (RTM)

The Real-time Monitor (RTM) is the real-time multitasking nucleus of Concurrent.
The RTM performs process dispatching, queue management, flag management,
device polling, and system timing tasks. User programs can also use many of the
RTM calls that perform these tasks.

1.3.1 Process Dispatching

Although Concurrent is a multiprocess operating system, only one process has
access to the CPU resource at any given time. Unless you specifically write a
program to communicate or synchronize execution with other processes, a process
is unaware of other processes competing for system resources.

1.3 Real-time Monitor (RTM) Concurrent DOS 86 Programmer’s Guide

The primary task of the RTM is to transfer, or dispatch, the CPU resource from one
process to another. The RTM module called the Dispatcher performs this task.
The RTM maintains two data structures, the Process Descriptor (PD) and the User
Data Area (UDA), for each process running under Concurrent. The Dispatcher uses
these data structures to save and restore the current state of each running
process.

Each process in the system resides in one of three states: ready, running, or
suspended. A ready process is one that is waiting for the CPU resource only. A
running process is one that the CPU is currently executing. A suspended process
is one that is waiting for a system resource or a specified event, such as the
occurrence of an interrupt, an indication that polled hardware is ready, or the
expiration of a delay period.

Every existing process is represented on a system list. The Dispatcher removes a
process from one list and places it on another. The Process Descriptor of the
currently running process is the first entry on the Ready List. Other processes
ready to run are represented on the Ready List in priority order. Suspended
processes are on other system lists, depending on why the processes were
suspended.

Process dispatching can be summarized as follows:

1. The Dispatcher suspends the process from execution and stores its current
state in the Process Descriptor and the UDA.

2. The Dispatcher places the process on an appropriate system list, depending
on why the Dispatcher was called. For example, if a process is to delay for a
certain number of system ticks, the Dispatcher places its Process Descriptor
on the Delay List. When a process releases a resource, the Dispatcher usually
places the process back on the Ready List. If another process is waiting for
the resource, the Dispatcher removes that process from its current system list
and places it on the Ready List.

3. The Dispatcher chooses the highest priority process on the Ready List for
execution. If two or more processes have the same priority, the process that
has waited the longest executes first.

4. The Dispatcher restores the state of the selected process from its Process
Descriptor and UDA, and gives it the CPU resource.

5. The process executes until it needs a busy resource, a resource needed by
another process becomes available, or an interrupt occurs. At this point, a
dispatch occurs, allowing another process to run.

Only processes on the Ready List are eligible for selection during dispatch. By
definition, a process is on the Ready List if it is waiting only for the CPU resource.
Processes waiting for other system resources cannot execute until the resources
they require are available.

Concurrent DOS 86 Programmer’s Guide 1.3 Real-time Monitor (RTM)

Concurrent blocks a process from execution if it is waiting for:
* a queue message so it can complete a Q_READ operation.

* space to become available in a queue so it can complete a Q WRITE
operation.

* a console, list, or auxiliary device to become available.

* a specified number of system clock ticks before it can be removed from the
system Delay List.

* an |I/0 event to complete.
These situations are discussed in greater detail in the following sections.

A running process not needing a resource and not releasing one runs until an
interrupt causes a dispatch. While not all interrupts cause dispatches, the system
clock generates interrupts every clock tick and forces a dispatch each time. Clock
ticks usually occur 60 times a second (approximately every 16.67 milliseconds), and
allow time sharing within a real-time environment.

Concurrent is a priority-driven system, which means that during a dispatch, the
Dispatcher gives the CPU resource to the process with the best priority. The
Dispatcher allots equal shares of Concurrent's resources to processes with the
same priority. With priority dispatching, the Dispatcher never gives control to a
lower-priority process if there is a higher-priority process on the Ready List.
Because high-priority, compute-bound processes tend to monopolize the CPU
resource, it is best to reduce their priority to avoid degrading overall system
performance.

When Concurrent is executing a single program on a single virtual console, its
speed approximates that of CP/M-86. But when multiple processes are running on
several virtual consoles, the execution of each individual process slows according
to the proportion of I/0 to CPU resources it requires. A process that performs a
large amount of 1/0 in proportion to computing exhibits only minor speed
degradation. This also applies to a process that performs a large amount of
computing, but runs concurrently with other processes that are largely 1/0-bound.
On the other hand, significant speed degradation occurs where more than one
compute-bound process is running.

1.3.2 Queue Management

Queues perform several critical functions for processes running under Concurrent.
A process can use a queue for communicating with another process, synchronizing
its execution with that of another process, and for excluding other processes from
protected system resources. A process can make, open, delete, read from, or write
to a queue with system calls similar to those used to manage disk files.

Each system queue consists of two parts: the Queue Descriptor and the Queue
Buffer. Concurrent implements these special data structures as memory files that
contain room for a specified number of fixed-length messages.

1-5

1.3 Real-time Monitor (RTM) Concurrent DOS 86 Programmer’s Guide

When the Q_MAKE call creates a queue, the queue is assigned a unique 8-
character name. As the name queue implies, messages are read from a queue on
a first-in, first-out basis.

A process can read from or write to a queue conditionally or unconditionally. If
the queue is empty when a conditional read is performed, or full when a
conditional write is performed, Concurrent returns an Error Code to the calling
process. However, if a process attempts an unconditional queue operation in
these circumstances, Concurrent suspends it from execution until the operation
becomes possible.

More than one process can wait to read or write a queue message from the same
queue at the same time. When these operations become possible, Concurrent
restores the highest priority process first; processes with the same priority are
restored on a first-come, first-served basis.

Mutual exclusion queues are a special type of queue under Concurrent. They
contain one message of zero length and their names follow a convention,
beginning with the upper-case letters MX. A mutual exclusion queue acts as a
binary semaphore, ensuring that only one process uses a resource at any time.

Access to a resource protected by a mutual exclusion queue takes place as
follows:

1. A process issues an unconditional Q_READ call to the MX queue protecting
the resource, thereby suspending itself if the message is not available.

2. When the message becomes available, the process accesses the protected
resource. Note that from the time the process issues the unconditional read,
any other process attempting to access the same resource is suspended.

3. The process writes the zero-length message back to the queue when it has
finished using the protected resource, thus freeing the resource for other
processes.

As an example, the system mutual exclusion queue, MXdisk, ensures that
processes cannot access the file system simultaneously. Note that the BDOS, not
the application software, executes the preceding series of queue calls. Therefore,
the mutual exclusion process is transparent to the programmer, who is only
responsible for originating the disk system calls.

Mutual exclusion queues differ from normal queues in another way. When a
process reads a message from a mutual exclusion queue, the RTM notes the
Process Descriptor address within the Queue Descriptor. This establishes the
owner of the queue message. If Concurrent aborts the process while it owns the
mutual exclusion message, the RTM automatically writes the message back to all
mutual exclusion queues whose messages are owned by the aborted process.
This grants other processes access to protected resources owned by the aborted
process.

Concurrent DOS 86 Programmer’s Guide 1.3 Real-time Monitor (RTM)

1.3.3 System Timing Functions

Concurrent’s timing system calls include keeping the time of day and delaying the
execution of a process for a specified period of time. An internal process called
CLOCK provides the time of day. The CLOCK process issues DEV_WAITFLAG calls
on the system’s one second flag, Flag 2. When the XIOS Tick Interrupt Handler
sets this flag, it initiates the CLOCK process, which then increments the internal
time and date. Subsequently, the CLOCK process makes another DEV_WAITFLAG
call and suspends itself until the flag is set again.

Concurrent provides system calls that allow you to set and access the internal
date and time. In addition, the file system uses the internal time and date to
record when a file is updated, created, or last accessed.

The P_DELAY call replaces the typical programmed delay loop for delaying process
execution. P_DELAY requires that Flag 1, the system tick flag, be set approximately
every 16.67 milliseconds, or 60 times a second; the XIOS Tick Interrupt Handler
also sets this flag.

When a process makes a P_DELAY call, it specifies how many ticks it should be
suspended from execution. Concurrent maintains the address of the Process
Descriptor for the process on an internal Delay List along with its current delay
tick count. When a DEV_SETFLAG call occurs, setting Flag 1, the tick count is
decremented. When the delay count goes to zero, the Dispatcher removes the
process from the Delay List and places it on the Ready List.

Note: The length of a tick might vary from installation to installation. For instance,
in Europe, a tick is commonly 20 milliseconds, yielding 50 ticks per second. The
description of P_DELAY in Section 6 describes how to determine the correct
number of ticks to delay 1 second.

1.4 Memory Management Moduie (MEM)

Concurrent supports an extended, fixed partition model of memory management;
the Memory Module handles all memory management system calls. In practice,
the exact method that Concurrent uses to allocate and free memory is transparent
to the application program. Therefore, you should take care to write code
independent of the memory management model; use only the Concurrent-specific
memory system calls described in Section 6.

14.1 Expanded Memory Support

Concurrent also supports Expanded Memory Management (EMM), so a process can
address other memory not currently available in the processor's normal 1Mb
address space. Concurrent's EMM support is generic and hardware-independent.

1-7

1.4 Memory Management Module (MEM) Concurrent DOS 86 Programmer’s Guide

Concurrent supports EMM through the Memory Manager (MEM), Real-time Monitor
(RTM), and the XIOS functions that enable it to perform a technique called memory
paging. Concurrent dynamically maps regions (usually 16K bytes) of physical
memory in and out of the 1Mb logical address space accessible to the processor.
The regions of physical memory are called pages, and the areas in the processor’s
logical address space into which pages are mapped are called logical address
windows, or simply windows.

1.4.2 Memory Paging Environments

Concurrent supports EMM in two dissimilar environments. The first environment is
generic. In this environment, the XIOS is responsible for managing the memory
mapping hardware and allocating physical pages of memory.

The second environment is that of an IBM®Personal Computer (or compatible) with
an add-on memory board such as the AST™ RAMpage!™. Concurrent also
supports any board that conforms to the Intel /Lotus™ Lbove Board standard,
although such boards do not provide memory paging. In this environment, certain
applications call the EMM Driver to perform their own memory management tasks
completely independent of Concurrent. This second environment is called the
“EMM environment.”

Generic Environment

In the generic environment, the Supervisor and applications call the Memory
Manager (MEM) for all memory requests. MEM passes these calls to the XIOS as
memory page allocation and release requests. During process dispatching, the
Real-time Monitor (RTM) generates XIOS calls to save the current state of the
memory mapping hardware and to restore a previously saved state.

Figure 1-2 illustrates the generic environment’s interfaces.

1-8

Concurrent DOS 86 Programmer’s Guide 1.4 Memory Management Module (MEM)

S +
| Application |
B v-—————- +
|
Fmmm + |
| Supervisor | |
fmm——————— v——t+ |
| |
v \'A
o + e +
I RTM I | MEM I
omm e R +
| |
\Y v
e +
| X108 |
et A +
|
|
\Y%
T T TP +
| Expanded Memory |
| Hardware |
o +

Figure 1-2. Generic Environment Memory Paging Interfaces

EMM Environment

In the EMM environment, the XIOS passes all memory page allocation and release
requests to the EMM Driver, which handles the page mapping hardware. Calls into
the XIOS are translated to EMM Driver calls, and the EMM Driver is invoked with an
Interrupt 67H.

An application running in the EMM environment can make calls directly to the EMM
Driver, but the Interceptor module intercepts such calls so Concurrent can handle
context switching and memory deallocation for aborted processes. To reserve
some memory for system use, the Interceptor might not allow an application to
know the total number of available memory pages.

The Interceptor’'s primary functions are creating and linking new Memory Page
Allocation Descriptors (MPADs) as an application performs EMM Allocate calls.
The Interceptor destroys these MPADs when the application performs an EMM
Close call. These functions allow the Interceptor to track an application’s calls to
the EMM Driver. The MPAD data structure is described in the System Guide.

Figure 1-3 illustrates the interfaces within the EMM environment.

1.4 Memory Management Module (MEM) Concurrent DOS 86 Programmer’s Guide

e ———————— +
| Application |
Fmm ey ————— V————t
Fomm + | |
| Supervisor | I |
Fommmm v-—+ | |
| I I
\' v |
dmmm e + B + |
RTM | I MEM I |
Fomm v-—+ Fm—Y + |
I I I
v \' |
Fomm e + |
| X108 I |
Fomm v--+ |
I |
v \'4
Fmm e +
I Interceptor I
fom e ——— Vo m +
|
v
Fmm +
| EMM Driver |
Fm————— Vem———— +
I
v
e +
| Expanded Memory |
| Hardware
e +
Figure 1-3. EMM Environment Memory Paging

Concurrent DOS Programmer’s Guide 1.4 Memory Management Module (MEM)

1.4.3 EMM Drivers

Memory paging hardware requires a corresponding Expanded Memory Management
(EMM) software driver. Section 9 contains information about configuring EMM drivers. See
the System Guide for more Information about Concurrent’'s XIOS support for Expanded
Memory Management.

1.5 BASIC DISK OPERATING SYSTEM (BDOS)

Concurrent's BDOS handies file creation and deletion, performs sequential or random file
access, and allocates or frees disk space.

Concurrent’'s BDOS provides support for multiple virtual consoles and list devices as well as
those services required in a multitasking environment. The major features of the file system
are:

® Byte-level flle and record locking.

@ Shared access to files. As a special option, iIndependent users can open the same file
In Shared or Unlocked mode. Concurrent supports record locking and unlocking
commands for files opened In this mode and protacts files opened in Shared mode
from deletion by other processes.

® Date Stamps. The BDOS supports time and date stamps when a file is modified

@ Password Protection. The BDOS password protection feature Is optional at either the
file or subdirectory level. The user or applications program assigns subdirectory pass-
words, while application programs can assign file protection passwords in several
modes.

® Extended Error Module. Besides the default error mode, Concurrent has two optional
error-handling modes that return an error code to the calling process in the event of
an Irrecoverable disk error.

1.6 CHARACTER I/0 MODULE (CIO)
The Character /O module handles all console, list, and auxiliary device 1/O. Every character

I/0 device Is assoclated with a data structure called a Console Control Block (CCB) or a List
Control Block (LCB). These data structures reside in the XIOS.

1-11

1.7 Virtual Console Screen Management . Concurrent DOS Programmer’s Guide

The CCB contains the current owner, status information, line editing variables, and the root
of a linked list of Process Descriptors (PDs) that are walting for access. More than one
process can wait for access to a single console. These processes are maintained on a
linked list of Process Descriptors in priority order. The LCBs contain similar information
about the list devices. See the System Guide for more Information about LCBs and CCBs.

1.7 Virtual Console Screen Management

Virtual console screen management is coordinated by three separate modules: the CIO, the
PIN (Physical INput) process, and the XIOS. The line editing associated with the
C_READSTR call Is performed in the CIO.

The PIN process handles keyboard input for all the virtual consoles; it also traps and
implements the CTRL-C, CTRL-S, CTRL-Q, CTRL-P, and CTRL-O functions.

The XIOS decides which special keys represent the virtual consoles, and returns a special
code from I0_CONIN when you request a screen switch. The XIOS also implements any
screen saving and restoring when screens are switched. See the System Guide and the
discusslion of the |O_SWITCH function.

The PIN process reads the keyboard by directly calling the XIOS IO_CONIN function. This is
the only place In Concurrent where |O_CONIN is called. The PIN scans the input stream
from the keyboard for switch screen requests and the special function keystrokes CTRL-C,
CTRL-S, CTRL-Q, CTRL-P, and CTRL-O.

All other keyboard input Is written to the VINQ (Virtual Console INput Queue) assoclated
with the foreground virtual console. The data in the VINQ becomes a type-ahead buffer for
each virtual console, and is returned to the process attached to that. console as It performs
console input.

When PIN sees a CTRL-C, it calls P_ABORT to abort the process attached to the virtual
console, flushes the type-ahead buffer in the VINQ, turns off CTRL-S, and performs a
DRV_RESET call for each logged-in drive.

The P_ABORT call succeeds when the Process Keep flag Is not on, saving the Terminal
Message Process. The DRV_RESET calls affect only the removable media drives, as
specified in the CKS fleld of the Disk Parameter Blocks in the XIOS (see the System Guide
for detalls on Disk Parameter Blocks).

CTRL-S stops any output to the screen. CTRL-S stays set when a virtual console is switched
to the background.

CTRL-O discards any console output to the virtual console. CTRL-O s turned off when any
other key is subsequently pressed, except for the keys representing the virtual consoles.

CTRL-P echoes console output to the default list device specified in the LIST field of the
Process Descriptor attached to the virtual console. If the list device is attached to a process,
a PRINTER BUSY message appears.

Concurrent DOS Programmer’s Guide 1.7 Virtual Console Screen Management

All of the above control keys can be disabled by the C_MODE call. When one of the above
control characters Is disabled with C_MODE, or when the process owning the virtual
console is using the C_RAWIO call, the PIN does not act on the control character but
Instead writes it to the VINQ. It is thus possible to read any of the above control characters
from an application program. These control keys are discussed in the User's Guide.

1.8 Extended Input/output System (XIOS)

The XIOS module Is similar to the CP/M-86 Basic Input/Output System (BIOS) module, but it
is extended in several ways. Primitive operations, such as console 1/O, are modified to
support multiple virtual consoles. Several additional primitive system calls, such as
DEV_POLL, support Concurrent’s additional features, including elimination of wait loops for
real-time 1/O operations.

1.9 Terminal Message Processes (TMP)

Terminal Message Processes (TMPs) are resident system processes that accept command
lines from the virtual consoles and call the Command Line Interpreter (CLI) to execute them.
The TMP prints the prompt on the virtual consoles. Each virtual console has an independent
TMP defining that console’s environment, including default disk, printer, and console.

1.10 Transient Programs

Under Concurrent, a transient program is one that Is not system-resident. Concurrent must
load such a program from disk Into avallable memory every time It executes. The command
file of a transient program lIs identifled by the filetype CMD. When you enter a command at
the console, Concurrent searches on disk for the appropriate CMD file, loads It, and initiates
it.

Concurrent supports three different execution models for transient programs: the 8080
Model, the Small Model, and the Compact Model. Sections 4.1.1 through 4.1.3 describe
these models in detall.

1.11 System Call Calling Conventions

When a Concurrent process makes a system call, it loads values Into the registers shown In
Table 1-1 and Initiates Interrupt 224 (via the INT 224 instruction), reserved by the Intel
Corporation for this purpose.

1.11 System Call Calling Conventions Concurrent DOS Programmer’s Guide

Table 1-1. Registers Used by System Calis

Entry Parameters

Register CL.: System Call Parameters
DL: Byte Parameter
or
DX: Word Parameter
or
DX: Address - Offset
DS: Address - Segment

Return Values

Register AL: Byte Return
or
AX: Word Return
or
AX: Address - Offset
ES: Address - Segment
BX: Same as AX
CX: Error Code

Concurrent preserves the contents of registers S|, DI, BP, SP, S8, DS, and CS through the
system calls. The ES register Is preserved when It Is not used to hold a return segment
value. Error codes returned In CX are shown In Table 6-5, "CX Error Codes."

1.12 SYSTAT: System Status

The SYSTAT utility Is a development tool that can show Concurrent’s internal state including
memory allocation, current processes, system queue activity, and many informative
parameters assoclated with these system data structures.

SYSTAT can present two views: either a static snapshot of system activity, or a continuous,
real-time window Into Concurrent.

You can specify SYSTAT in one of two modes. If you know which display you want, you can
specify it in the invocation, using an option shown in the menu below. If you do not specify
an option, select a display from this menu by typing

A>SYSTAT <cr>

The screen clears and the main menu appears:

Concurrent DOS 86 Programmer’s Guide 1.12 SYSTAT: System Status

Which Option?

H(elp)

M(emory)
O(verview)
P(rocesses - All)
Q(ueues)

U(ser Processes)
C(onsoles)

E(xit)

->

Press the appropriate letter to obtain a display.

When you select H(elp), the HELP file demonstrates the proper syntax and available
options:

SYSTAT [option]
SYSTAT [option C]
SYSTAT [option C ##]

-where-

-> = Continuous display
1-2 digits indicating the period,

in seconds, between display refreshes.

C
##
-> option =

M(emory) P(rocesses) O(verview) C(onsols)
U(ser Processes) Q(ueues) H(elp)

Type any key to leave and return to the main menu.

The M, P, Q, and U and C options ask you if you prefer a continuous display. If
you type y, Concurrent asks for a time interval, in seconds, and then displays a
real-time window of information. If you type n, a static snapshot of the requested
information appears. In either case, press any key to return to the menu.

1.12 SYSTAT: System Status Concurrent DOS 86 Programmer’s Guide

The M(emory) option displays all memory potentially available to you, but it does
not display restricted memory. The partitions are listed in memory-address order.
Length parameter is shown in paragraph values.

The O(verview) option displays an overview of the system parameters, as specified
at system generation time. The display is not continuous.

The P(rocesses) option displays all system processes and the resources they are
using.

The Q(ueues) option displays all system queues, listing queue readers, writers, and
owners.

The U(ser Processes) option displays only user-initiated processes in the same
format as the P(rocess) option.

The C(onsoles) option displays console information; for example, background,
foreground, buffered, suspended, purging, and CTRL-Q.

The E(xit) option returns you to system level from the menu, as does CTRL-C.

End of Section 1

Concurrent DOS Programmer’s Guide SECTION 2

THE CONCURRENT DOS 86 CP/M FILE SYSTEM

2.1 FILE SYSTEM OVERVIEW

The Basic Disk Operating System (BDOS) flle system supports from one to thirteen logical
drives. Each logical drive has two regions: a directory area and a data area. The directory
area defines the flles that exist on the drive and Iidentifies the data area space that belongs
to each file. The data area contains the file data defined by the directory.

The file system automatically allocates directory and data area space when a process
creates or extends a file, and returns previously allocated space to free space when a
process deletes or truncates a file. If no directory or data space Is avallable for a requested
operation, the BDOS returns an error code to the calling process. The allocation and
retrieval of directory and data spacs Is transparent to the process making file system calls.

An elght-character filename and a three-character filetype field identify each file in a
directory. Together, these flelds must be unique for each file within a directory. However,
files with the same filename and flletype can reside In different subdirectories without
conflict. Processes can also assign an eight-character password to a file to protect it from
unauthorized access.

All system calls that Involve file operations specify the requested file by fllename and
filetype. For some system calls, multiple files can be specified by a technique called
ambiguous reference whereby question marks and asterisks are used as wildcard
characters to give the flle system a pattern to match as it searches a directory.

The file system supports two categorles of system calls: file-access calls and drive-related
calls. The file-access calls have mnemonics beginning with F_, and the drive-related calls
have mnemonics beginning with DRV_. The next two sections Introduce the file system
calls.

2.1.1 Flle-access System Calls

Most of the file-access system calls can be divided Into two groups: system calls that
operate on flles within a directory and system calls that operate on records within a file.
However, the file-access category also includes several miscellaneous functions that either
affect the execution of other file-access system calls or are commonty used with them.

2.1 _File System Overview o Concurrent DOS Programmer’s Guide

System calls In the first file-access group Include calls to search for one or more files, delete
one or more files, rename or truncate a file, set flle attributes, assign a password to a file,
and compute the size of a file. Also included in this group are system calls to open a file, to
create a file, and to close a file.

The second file-access group includes system calls to read or write records to a file, either
sequentlally or randomly, by record position. FCB read and write system calls transfer data
in 128-byte units. This group also Includes system calls to lock and unlock records and
thereby allow muitiple processes to coordinate access to records within a commonly
accessed file.

Before making read, write, lock, or unlock system calls for a file, you must first open or
create the flle. Creating a file has the side effect of opening the flle for record access. In
addition, because-Concurrent supports three different modes of opening files (Locked,
Unlocked, and Read-Only), there can be other restrictions on system calls In this group that
are related to the open mode. For example, you cannot write to a flle that you have opened
in Read-Only mode.

After a process has opened a file, access to the flle by other processes Is restricted until the
file is closed. Again, the exact nature of the restrictions depends on the open mode.
However, in all cases the file system does not allow a process to delete, rename, or change
a file’s attributes if another process has opened the file. Thus, F_CLOSE performs two steps
to terminate record access to a file. It permanently records the current status of the file In
the directory and removes the open-ile restrictions limiting access to the flle by other
processes.

The miscellaneous flle-access system calls include calls to set the current user number, set
the DMA address, parse an ASCII file specification and set a default password. This group
also Includes system calls to set the BDOS Multisector Count and the BDOS Error Mode.
The BDOS Multisector count determines the number of 128-byte records to be processed
by the read, write, lock, and unlock system calls. The Multisector count can range from 1 to
128; the default value Is one. The BDOS Error Mode determines whether the flle system
Intercepts certain errors or returns on all errors to the calling process.

2.1.2 Drive-related System Calls

BDOS drive-related system calls select the default drive, compute a drive’s free spacs,
Interrogate drive status, and assign a directory label to a drive. A drive’s directory label
controls whether the flle system enforces file password protection for files in the directory. It
also speclfies whether the file system Is to perform date and time stamping of flles on the
drive.

This category also includes system calls to reset specified drives and to control whether
other processes can reset particular drives. When a drive is reset, the next operation on the
drive reactivates it by logging it in.

2-2

Concurrent DOS 86 Programmer’s Guide 2.1 File System Overview

Logging in a drive initializes the drive for directory and file operations. A drive
reset call prepares for a media change on drives that support removable media.
Under Concurrent, drive reset calls are conditional. A process cannot reset a drive
if another process has a file open on the drive.

Table 2-1 summarizes the BDOS file system calls.

Table 2-1. File System Calls

Mnemonic

Description

DRV_ACCESS
DRV_ALLOCVEC
DRV_ALLRESET

Access Drive
Get Drive Allocation Vector
Reset All Drives

DRV_DPB Get Disk Parameter Block Address
DRV_GET Get Default Drive

DRV_GETLABEL Get Directory Label

DRV_FLUSH Flush Data Buffers

DRV_FREE Free Drive

DRV_LOGINVEC Return Drives Logged In Vector
DRV_RESET Reset Drive

DRV_ROVEC Return Drives R/0 Vector
DRV_SETLABEL Set Directory Label

DRV_SET Set (Select) Drive

DRV_SETRO Set Drive To Read-Only
DRV_SPACE Get Free Space On Drive
F_ATTRIB Set File’s Attributes

F_CLOSE Close File

F_DELETE Delete File

F_DMASEG Set DMA Segment

F_DMAGET Get DMA Address

F_DMAOFF Set DMA 0Offset

F_ERRMODE Set BDOS Error Mode

F_LOCK Lock Record In File

F_MAKE Make A New File

F_MULTISEC Set BDOS Multisector Count
F_OPEN Open File

F_PARSE Parse Filename

F_PASSWD Set Default Password

F_RANDREC Return Record Number For File Read-Write
F_READ Read Record Sequentially From File

2-3

2.1 File System Overview

Concurrent DOS 86 Programmer’'s Guide

Table 2-1. (Cont'd)

Mnemonic Description

F_READRAND Read Random Record From File
F_RENAME Rename File

F_SETDATE Set File Time and Date Stamp
F_SIZE Compute File Size

F_SFIRST Directory Search First

F_SNEXT Directory Search Next

F_TIMEDATE Return File Time/Date Stamps Password Mode
F_TRUNCATE Truncate File

F_UNLOCK Unlock Record In File

F_USERNUM Set/Get Directory User Number
F_WRITE Write Record Sequentially Into File
F_WRITERAND Write Random Record Into File
F_WRITEZF Write Random Record With Zero Fill
F_WRITEXFCB Write File’s XFCB

The following sections contain information on important topics related to the file
system. Read these sections carefully before attempting to use the system calls
described individually in Section 6.

2.2 File Naming Conventions

Under Concurrent, a file specification has four parts: a drive specifier, the filename
field, the filetype field, and the file password field. The general format for a
command line file specification is shown below:

{d:} filename {.typ} {;password}

The drive specifier is a letter (A,B,C, etc.), where the actual drive letters supported
on a given system are determined by the XIOS. When no drive letter is specified,
Concurrent assumes the current default drive.

The filename and password fields can contain one to eight nondelimiter characters.
The filetype field can contain one to three nondelimiter characters. All three fields
are padded with blanks, if necessary.

The drive, type, and password fields are optional, and the delimiters : . ; are
required only when specifying their associated fields. Omitting the optional type
or password fields implies a field specification of all blanks.

Under Concurrent, the P_CLI call interprets ASCIl command lines and loads
programs. P_CLI in turn calls F_PARSE to parse file specifications from a command
line. F_PARSE recognizes certain ASCIl characters as delimiters when it parses a
file specification. These characters are shown in Table 2-2.

2-4

Concurrent DOS Programmer’s Guide 2.2 File Naming Conventions

Table 2-2. Valid Filename Delimiters

ASCII Hex Equivalent
null 000H
space 020H
return 00DH
tab 009H
: 03AH
. - 02EH
; 03BH
= 03DH
, 02CH
[05BH
] 05DH
< 03CH
> 03EH
07CH

F_PARSE also excludes all control characters from the file specification flelds and translates
all lowercase letters to uppercase.

Avold using parentheses and the backslash character, \, In the fllename and filetype fields
because they are commonly used delimiters. Use asterisk and question mark characters, *
and ?, only to make an ambiguous flle reference. When F_PARSE encounters an asterisk in
a filename or flletype fleld, it pads the remainder of the field with question marks.

For example, a fllename of X*.* Is parsed to X?77????.2??. F_SFIRST, F_SNEXT, and
F_DELETE all match a question mark In the filename or filetype fields to the corresponding
position of any directory entry belonging to the current directory. Thus, a search operation

file-access calls treat a question mark In the fllename or flletype fields as an error.

It iIs not mandatory to follow Concurrent's file naming conventions when you create or
rename a file with BDOS system calls directly from an application program. However, the
conventions must be used If the file Is to be accessed from a command line. For example,
P_CLI cannot locate a command file in the directory if its flename or filetype field contains a
lowercase letter.

As a general rule, the filetype field names the generic category of a particular file, and the
filename field distinguishes individual files within each category. Although they are generally
arbitrary, Table 2-3 lists some of the generic filetype categories that have been established.

2.2 File Naming Conventions

Table 2-3. Filetype Conventions

Filetype Description

AB6 8086 Assembler Source
BAK Text or Source Back-up
BAS BASIC Source Flle

BAT DOS Submit File

o] C Source File

CMD 8086 Command File (CP/M)

COM 8086 Command File (DOS)
CON Concurrent Module

DAT Data File

EXE 8086 Command Flie (DOS)
INT Intermediate File

LiB Library File

L86 Library Flle

LST List File

PLI PL/I Source File

RSP Resident System Process
SYM Symbol File

SYS System File

$$$ Temporary File

2.3 DISK DRIVE AND FILE ORGANIZATION

Concurrent DOS Programmer's Guide

The file system can support up to thirteen logical drives, identified by the letters A through
M. A logical drive usually corresponds to a physical drive on the system, particularly for
physical drives that support removable media such as floppy disks. High-capacity hard
disks, however, are commonly divided up into multiple logical drives.

If a disk contains system tracks reserved for the boot loader, these tracks precede the
tracks of the disk mapped by the logical drive. In this manual, references to drives means

logical drives, unless explicitly stated otherwise.

The maximum file size supported on a drive is 128 megabytes. The maximum capacity of a
drive is determined by the data block size specified for the drive in the XIOS. The data block
size is the basic unit in which the BDOS allocates space to files. Table 2-4 displays the
relationship between data biock size and total drive capacity.

2-6

Concurrent DOS Programmer’s Guide 2.3 Disk Drive and File Organization

Data Block Size Maximum Drive Capacity

1K 32 megabytes (DOS) or 256 kilobytes (CP/M)
2K 64 megabytes

4K 128 megabytes

8K 256 megabytes

16K 512 megabytes

Each drive is divided into two regions: a directory area and a data area. The actual number
of directory entries Is set in the XIOS. Directory entries residing in this area define the files
that exist on the drive. In additlon, the directory entries belonging to a file Identify the data
blocks in the drive’s data area that contain the flle's records.

Each disk flle may consist of a set of up to 1,048,576 (100000H) 128- byte records. Each
record Is Identified by its position in the flle, which Is called the record’s Random Record
Number. If a file Is created sequentially, the first record has a position of zero, while the last
record has a position one less than the number of records in the flle. Such a file can be read
sequentially, beginning at record zero, or randomly by record position.

Conversely, if a file is created randomly, records are added to the file by specified position.

The BDOS automatically allocates data blocks to a file to contain the file’s records on the
basls of the record positions consumed.

Note that any data block allocated to a flle Is permanently allocated until the flle Is deleted
or truncated. These are the only mechanisms supported by the BDOS for releasing data
blocks belonging to a file.

Source files under Concurrent are treated as a sequence of ASCII characters, where each
line of the source file Is followed by a carriage return/line-feed sequence, ODH followed by
0AH. Thus, a single 128-byte record could contain several lines of source text. The end of
an ASCI! file Is denoted by a CTRL-Z character (1AH), or a real end-of-file, returned by the
BDOS read system call.

2-7

2.4 File Control Block Definition Concurrent DOS Programmer’s Guide

Note that these source flle conventions are not supported in the file system directly but are
followed by Concurrent utilities such as TYPE and RASM-86. In addition, CTRL-Z characters
embedded within other types of flles such as CMD flles do not signal end-of-file.

2.4 File Control Block Definition

The File Control Block (FCB) is a system data structure that serves as an important channel
for information exchange between a process and BDOS file-access system calls. A process
initializes an FCB to specify the drive location, fllename and filetype fields, and other
information that s required to make a file-access call.

For example, in an F_OPEN call, the FCB specifies the name and location of the file to be
opened. In addition, the file system uses the FCB to malntain the current state and record
position of an open file.

Some file-access system calls use special fields within the FCB for invoking options. Other
file-access system calls use the FCB to return data to the calling program. All BDOS
random /O system calls require the calling process to specify the Random Record Number
In a 3-byte fleld at the end of the FCB. Some file-access system calls use a modified FCB to
perform special DOS-directory related operations when accessing DOS media files.

When a process makes a BDOS file-access system call, it passes an FCB address to the
BDOS. This address has two 16-bit components: register DX, which contains the offset, and
register DS, which contains the segment. The length of the FCB data area depends on the
BDOS system call. For most system calls, the minimum length Is 33 bytes. For
F_READRAND, F_WRITERAND, F_WRITEZF, F_LOCK, F_UNLOCK, F_RANDREC, F_SIZE,
and F_TRUNCATE, the minimum FCB length is 36 bytes. When F_OPEN or F_MAKE open a
file in Unlocked mode, the FCB must be at least 35 bytes long.

Figure 2-1 shows the FCB data structure.

D e e L D +
OOH | DR | F1 | F2 | F3 | F4 | F6 | F6 | FT |
e e e e e e — e ————————— +
O8H | F8 | T1 | T2 } T3 | T4 |} T6 | T6 | TT |
L el e R e e L L L DD R il B L LT DD L b +
10H | DO | D1 | p2 | p3 | D4 | D6 | D6 | DT...!
B e e e T L +
184 | D8) D9 | D10 | D11 | D12 |} D13 | D14 | Dib |
R et e b +
20} CR | RO | R1 | R2 !
e e e +

Figure 2-1. FCB - File Control Block

Concurrent DOS Programmer’s Guide 2.4 Flle Control Definition

The fields in the FCB are defined as follows:

Table 2-5. FCB Field Definitions

Fleid Definitions

DR Contains the Drive Code, with 0 for the default drive, 1 for drive A, 2 for
drive B, etc.

F1..F8 Contain the fllename in ASCII uppercase. The high-order bits of F1...F8 are
called attribute bits (see Table 2-8 and Table 2-12).

T1..T3 Contain the filetype in ASCIl uppercase. The high-order bits of T1...T3' are
called attribute bits (see Table 2-7).

EX Contains the current extent number. This field is usually set to 0 by the
calling process, but it can range from 0 to 31 during file 1/O.

Ccs Contains the FCB checksum value for open FCBs.

RS Reserved for internal system use

RC Record count for extent EX. This field takes on values from 0 to 255 (values
greater than 128 imply a record count of 128).

Do...D15 Normally fllied in by Concurrent and reserved for system use. Also used to
specify the new fllename and filetype with F_RENAME.

CR Current record to read or write in a sequential file operation. This field Is
normally set to zero by the calling process when a flle is opened or
created.

RoO,R1,R2 Optional Random Record Number in the range 0 - 1,048,575 (0 - FFFFFH).

RO, R1, R2 constitute a 20-bit value with low byte RO, middle byte R1, and
high byte R2. Note: The 2-byte File ID is returned in bytes RO and R1 of the
FCB when a file is successfully opened in Unlocked mode (see Section
2.10).

2.4 File Control Block Definition Concurrent DOS Programmer’s Guide

2.4.1 FCB Initialization and Use

The calling process must initlalize bytes 0 through 11 of the referenced FCB before calling
F_ATTRIB, F_DELETE, F_MAKE, F_OPEN, F_RENAME, F_SFIRST, F_SIZE, F_SNEXT,
F_TIMEDATE, F TRUNCATE orF WRITEXFCB Normally, the DR field specifies the file’s
drive location, and the hame and type fields specify file’'s name.

You must also set the EX field of the FCB before calling F_MAKE, F_OPEN, F_SFIRST, or
F_WRITEXFCB. Except for F_WRITEXFCB, you can usually set this fleld to zero. Note that
F_RENAME requires the calling process to place the new filename and flletype In bytes D1
through D11.

The remaining flle-access calls that use FCBs require an FCB that has been Initialized by a
prior file-access system call. For example, F_SNEXT expects an FCB inltialized by a prior
F_SFIRST call. In addition, F_LOCK, F_READ, F_READRAND, F_UNLOCK, F_WRITERAND,
and F_WRITEZF all require an FCB that has been activated for record operations. Under
Concurrent, only F_OPEN and F_MAKE can activate an FCB.

If you intend to process a file sequentlally from the beginning, using F_READ and F_WRITE,
you must set byte 32 to zero before you make your first read or write call. In addition, when
you use F_LOCK, F_READRAND, F_UNLOCK, F_WRITERAND, or F_WRITEZF, you must
set bytes RO through R2 of the FCB to the requested Random Record Number.
F_TRUNCATE also requires the FCB random record fleld to be initialized.

F_SFIRST, F_SNEXT, and F_DELETE support multiple or ambiguous reference. In general,
a question mark in the filename, filetype, or EX fields matches all values in the
corresponding positions of directory entries during a directory search operation.

The search calls, F_SFIRST and F_SNEXT, also recognize a question mark in the FCB DR
fleld, and, If specified, they return all directory entries on the disk regardless of user number,
including empty entries. A directory FCB that begins with ESH is an empty directory entry.

When F_OPEN and F_MAKE activate an FCB for record operations, they copy the FCB's
matching directory entry from disk, excluding byte 0, into the FCB in memory. In addition,
these system calls compute and store a checksum value in the CS fleld of the FCB. During
subsequent record operations on the file, the flle system uses this checksum field to verify
that the FCB has not been lllegally modified by the calling process. Thus, all read, write,
lock, and unlock operations on a file must specify a valld activated FCB; otherwise, the
BDOS returns a checksum error to protect the integrity of the file system. In general, you
should not modify bytes 0 through 31 of an open FCB, except to set Interface attributes
(see Section 2.4.4). Other restrictions related to activated FCBs are discussed in Section
2.10.

Concurrent DOS 86 Programmer’'s Guide 2.4 File Control Block Definition

The BDOS updates the memory copy of the FCB during file processing to maintain
the current position within the file. During file write operations, the BDOS also
updates the memory copy of the FCB to record the allocation of data blocks to the
file. At the termination of file processing, F_CLOSE permanently records this
information on disk.

Note that the BDOS does not record the data blocks allocated to a file during write
operations in the disk directory until the calling process issues an F_CLOSE call.
Therefore, a process that creates or modifies files must close the files at the
termination of file processing. Otherwise, data might be lost.

242 FCB Initialization for DOS Media Files

When a process calls F_CLOSE, F_DELETE, F_MAKE, F_OPEN, F_SFIRST, or F_SNEXT
with the high-bit of the FCB's drive specuﬂer byte turned on (Ioglcally ORed with
080H), the call performs the appropriate DOS directory-related operation as
follows:

F_CLOSE Forces the FCB-specified drive to the root directory.
F_DELETE Deletes a subdirectory in relation to the current directory.
F_MAKE Creates a subdirectory in relation to the current directory.
F_OPEN Opens a subdirectory in relation to the current directory.

F_SFIRST Finds the first matching DOS directory FCB when the high-
bit of the referenced FCB’s drive specifier byte is set.

F_SNEXT Finds the next DOS directory FCB that matches the FCB
(byte O high-bit set) specified in a previous F_SFIRST call.

Figure 2-2 shows an FCB initialized for directory operations with DOS media files.

76543210

o ——— e + o —————— tmm——————— +
|1110/0/0IDRVCODE| DIRECTORY NAME |...| DIR TYPE | EXTENT# |
e —— o —————————————— + tm————————— tm———————— +
Byte: 00 01 . . . 09 . . . 12

Figure 2-2. FCB Initialized for a DOS Directory

2.4 File Control Block Definition Concurrent DOS 86 Programmer’'s Guide

The calling process sets the high-order bit of byte 0 in the FCB and places the
drive code in the remainder of byte 0. Bytes 01 through 08 are initialized with the
directory name, and bytes 09 through 11 contain the directory type field.

The calling process initializes the Extent field (byte 12) to a value of 0, or sets it to
a floating-drive code. To specify a floating drive, set byte 12 to 1 for N, 2 for O,
or 3 for P. This will map the appropriate floating drive to the drive and directory
specified in the FCB.

Note that when a process calls F_SFIRST (11H) or F_SNEXT (12H) to locate a DOS
directory FCB, it must set the first bit of the referenced FCB. Concurrent clears
this bit following these calls. Without the first bit of the referenced FCB set on
F_SFIRST and F_SNEXT calls, Concurrent will not search for any DOS directory
FCBs.

The first two bytes of the Disk Map field in the FCB (beginning at offset 10H) have
special meaning when a process reads or writes to DOS media. Table 2-6 shows
the values these bytes have for DOS media file 1/0.

Table 2-6. FCB Disk Map Values for DOS Media

Byte FCB Offset Bit Values

DO 10H Bit 0-4 Reserved
Bit 5 1 for Hidden File
Bit 6 1 for Subdirectory
Bit 7 Always Set

D1 1MH Same as DO

Bytes D6 through D9 (16H-19H) also have special meaning for processes reading
from or writing to files on DOS media. These bytes contain the time of day and
date the DOS media file was created or last updated. This information is mapped
to the bits of D6-D9 as shown in Figure 2-3.

Concurrent DOS 86 Programmer’s Guide 2.4 File Control Block Definition

h h h h h m m m m m m s s s s s
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

hh = 00-23, mm = 00-59, ss = 00 - 59
hours minutes seconds

Y Y Yy Yy YY YMMMMDUDDDD
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

DD = 01-31, MM = 01-12, YY = 0-119 (1980-2099)
day month year

Figure 2-3. FCB Time and Date Fields for DOS Files

You can perform the following steps to determine the type of medium in the
current default drive:

1. Call F_SFIRST with byte 0 of the referenced FCB set to a question mark. This
returns the first FCB in the directory.

2. Read byte 0 of the first directory FCB to identify the directory label. If this
byte has a value of 32 (20H), the returned FCB is a directory label. Any other
value indicates CP/M media.

3. Read byte OFH of the directory label; a value of 80H indicates DOS media.
Any other value indicates CP/M media.

2.4.3 File Attributes

The high-order bits of the FCB filename (F1'..,F8) and filetype fields (T1',7T2'.T3’)
are called attribute bits. Attribute bits are 1-bit Boolean fields, where 1 indicates
on or true, and 0 indicates off or false.

Attributes F1’ through F4’ of command files are defined as Compatibility attributes
(see Section 2.12). For all other files, F1’ through F4' are available for user
definition. Attributes F5 and F6’' are defined as Interface attributes (see Section
2.4.4).

The attribute bits, F1'..,F4 and T1, T2, T3’ indicate that a file has a defined
attribute. These bits are recorded in a file’s directory FCBs. File attributes can be
set or reset only by the F_ATTRIB call. When F_MAKE creates a file, it initializes all
file attributes to zero. A process can interrogate file attributes in an FCB activated
by F_OPEN, or in directory FCBs returned by F_SFIRST and F_SNEXT.

2.4 File Control Block Definition Concurrent DOS 86 Programmer’s Guide

Note: The file system ignores the file attribute bits when it attempts to locate a

file i

n the directory.

Table 2-7 shows the definitions for file attributes T1',T2’, and T3".

Table 2-7. File Attribute Definitions

Attribute Definition

T1': Read-Only Attribute
Attribute T1’, if set, prevents write operations to a file.
T2: System Attribute

Attribute T2', if set, identifies the file as a Concurrent
System file. Concurrent’s DIR utility does not usually
display System files. In addition, user-zero system files can
be accessed on a Read-Only basis from other user
numbers.

T3’: Archive Attribute

Attribute T3’ supports user-written archive programs. When
an archive program copies a file to back-up storage, it sets
the archive attribute of the copied files. The file system
automatically resets the archive attribute of a directory
entry when writing to the directory entry’s region of a file.
An archive program can test this attribute in each of the
file’s directory entries using F_SFIRST and F_SNEXT. If all
directory entries have the archive attribute set, the file has
not been modified since the previous archive. The
Concurrent PIP utility supports file archival.

Concurrent DOS Programmer’s Guide 2.4 File Control Block Definition

2.4.4 Interface Attributes

The Interface attributes are F5', F&', F7', and F8'. These attributes cannot be used as file
attributes. Interface attributes F5' and F6' request options for BDOS file-access system
calls. Table 2-8 lists the F5’ and F6’ attribute definitions for the system calls that define
interface attributes. Note that the F5' = 0 and F6' = 0 definitions are not listed if their
definition simply Implies the absence of the option assoclated with setting the interface
attribute.

Table 2-8. Interface Attributes F5’ and Fé’

System Call Attribute

FATTRIB F5
F&'

1 : Maintain extended file lock
1 : Set file byte count

F_CLOSE F5'
F&'

1 : Partial Close
1 : Extend file lock

F_DELETE F5' = 1 : Delete file XFCBs only and
Malintain extended file lock

F_LOCK F5' = 0 : Exclusive Lock
F5' = 1: Shared Lock
F6' = 0: Lock existing records only

F6' = 1 : Lock logical records

F_MAKE F5' = 0: Open in Locked mode
F5' = 1: Open in Unlocked mode
F6’ = 1 : Assign password to flle

F_OPEN F5' = 0: Open in Locked mode
F5’ = 1: Open in Unlocked mode
F6' = 0: Open In mode specified by F5'
F6' = 1: Open in Read-Only mode

[l

F_RENAME F5’ = 1 : Maintaln extended flle lock
F_TRUNCATE F5' = 1: Maintain extended file lock
F_UNLOCK F5' = 1 : Unlock all locked records

Section 6 details the above interface attribute definitions for each of the preceding system
calls. Note that the BDOS always resets interface attributes F5' and F6’ before returning to
the calling process. Interface attributes F7' and F8’ are reserved for internal use by the file
system.

Concurrent DOS Programmer’s Guide

This page intentionally blank

Concurrent DOS Programmer’s Guide

This page Intentionally blank

Concurrent DOS Programmer's Guide

This page intentionally blank

Concurrent DOS Programmer’s Guide 2.7 File Passwords

2,7 FILE PASSWORDS

There are two ways to assign passwords to a file: with F_MAKE or with F_WRITEXFCB. You
can also change a file’s password or password mode with F_WRITEXFCB if you can supply
the original password.

The Concurrent BDOS provides password protection In one of three modes when password
support is enabled by the directory label. Table 2-11 shows the difference In access level
allowed to BDOS system calls when the password Is not supplied.

Table 2-11. Password Protection Modes

Mode Access Allowed Without Password

Read File cannot be read, modified, or deleted.
Write Flle can be read, but not modified or deleted.
Delete File can be read and modified, but not deleted.

If a flle Is password protected in Read mode, a process must supply the password to open
the file. Processes cannot write to a file protected In Write mode without the password.

A file protected in Delete mode allows read and write access, but a process must specify
the password to delete or truncate the file, rename the flle, or to modify the file's attributes.
Thus, mode 1 protection implies mode 2 and 3 protection, and mode 2 protection iImplies
mode 3 protection. All three modes require you to specify the password to delete or
truncate the flle, rename the file, or to modify the file’s attributes.

2-19

2.7 File Passwords Concurrent DOS Programmer's Guide

If a process supplies the correct password, then access to the BDOS system calls Is the
same as for a file that Is not password-protected. In addition, F_SFIRST and F_SNEXT are
not affected by flle passwords.

The following BDOS system calls test for passwords:

DRV_SETLABEL

e F_ATTRIB

e F_DELETE

e F_OPEN

e F_RENAME

e F_WRITEXFCB

@ F_TRUNCATE
The BDOS malintains file passwords in the FCB in encrypted form. To make a BDOS system
call for a file that requires a password, a process must place the password In the first eight

bytes of the current DMA, or make It the default password with an F_PASSWD call, before
making the system call.

Note: The BDOS maintains the assigned default password for each process. Processes
Inherit the default password of their parent process. You can set a given TMP's default
password using the password utility; all programs loaded by this TMP inherit the same
default password. :

2-20

Concurrent DOS Programmer’s Guide

2.8 This Section has been intentionally omitted

2.9 Open File Modes Concurrent DOS Programmer’s Guide

2.9 FILE OPEN MODES

The file system provides three different modes for opening files:
Locked Mode

Locked mode Is the Default mode for opening files under Concurrent. A process can open a
file in Locked mode only if the file is not currently opened by another process. Once open in
Locked mode, no other process can open the flle untll it Is closed. Thus, if a process
successfully opens a flle In Locked mode, that process owns the file untll the file Is closed or
the process terminates.

Files opened In Locked mode support read and write operations unless the file is a
Read-Only file (attribute T1’ set) or the file Is password-protected In Write mode, and the
process Issuing the F_OPEN call cannot supply the password. In both of these cases, the
BDOS allows only read operations to the file.

2-22

Concurrent DOS 86 Programmer’s Guide 2.9 File Open Modes

Unlocked Mode

A process can open a file in Unlocked mode if the file is not currently open, or if
another process has already opened the file in Unlocked mode. Unlocked mode
allows more than one process to open the same file. Files opened in Unlocked
mode support read and write operations unless the file is a Read-Only file
(attribute T1’ set) or the file is password-protected in Write mode and the process
issuing the F_OPEN call cannot supply the password.

When opening a file in Unlocked mode, a process must reserve 35 bytes in the
FCB because F_OPEN returns a 2-byte value called the File ID in the RO and R1
bytes of the FCB. The File ID is a required parameter for the F_LOCK and
F_UNLOCK calls which work only for files opened in Unlocked mode.

Read-Only Mode

A process can open a file in Read-Only mode if the file is not currently opened by
another process or if another process has opened the file in Read-Only mode.
This mode allows more than one process to open the same file for Read-Only
access.

F_OPEN performs the following steps for files opened in Locked or Read-Only
mode:

* If the current user number is nonzero, and the file to be opened does not
exist under the current user number, F_OPEN searches the user zero directory
for the file.

* If the file exists under user zero and has the System attribute T2’ set, the
BDOS opens the file under user zero, with the open mode automatically forced
to Read-Only.

F_OPEN also performs the following action for files opened in Locked mode when
the current user number is zero.

* |f the file exists under user zero and has both the System T2’ and Read-Only
(T1) attributes set, the open mode is automatically set to Read-Only. The
Read-Only attribute controls whether a user-zero process and processes on
other user numbers can concurrently open a user-zero system file when each
process opens the file in the default Locked mode.

* |[f the Read-Only attribute is set, all processes open the file in Read-Only
mode and the BDOS allows concurrent access of the file. However, if the
Read-Only attribute is reset, the user-zero process opens the file in Locked
mode to prevent sharing the file with other processes.

F_OPEN and F_MAKE both use FCB interface attributes F5' and F6' to specify the
open mode. The interface attribute definitions for these functions are listed in
Table 2-8.

Note: F_MAKE does not allow opening the file in Read-Only mode.

2.10 File Security Concurrent DOS 86 Programmer’s Guide

2.10 File Security

The security measures implemented in the file system are designed to prevent
accidental collisions between running processes. It is not possible to provide total
security because the file system maintains file allocation information in open FCBs
in the user's memory region, and Concurrent does not require memory protection.

However, the file system is designed to ensure that multiple processes can share
the same file system without interfering with each other by performing checksum
verification of open FCBs, and monitoring all open files and locked records via the
system Lock List.

The BDOS validates the checksum of user FCBs before all I/0 operations to protect
the integrity of the file system from corrupted FCBs. The F_OPEN and F_MAKE
calls compute and assign checksums to FCBs. F_READRAND, F_READ,
F_WRITERAND, F_WRITEZF, F_WRITE, F_LOCK, and F_UNLOCK subsequently verify and
recompute the checksums when they change the FCB. F_CLOSE also verifies FCB
checksums. Although you can disable FCB verification by these system calls (see
Section 2.12), it is not recommended because Concurrent’s file security is reduced.

If the BDOS detects an FCB checksum error, it does not perform the requested
command. Instead, it either returns to the calling process with an error code, or if
the system call is F_CLOSE and the BDOS Error mode is in the default state (see
Section 2.18), it terminates the calling process with an error message.

Concurrent uses a system data structure, called the Lock List, to manage file
opening and record locking by running processes. Each time a process opens a
file or locks a record successfully, the file system allocates an entry in the system
Lock List to record the fact. The file system uses the Lock List to:

* prevent a process from deleting, truncating, renaming, or updating the
attributes of another process’s open file.

* prevent a process from opening a file currently opened by another process,
unless both processes open the file in uniocked or Read-Only mode.

* prevent a process from resetting a drive on which another process has an
open file.

* prevent a process from reading, writing, or locking a record currently locked
by another process. Refer to Section 2.14 for more information on record
locking and unlocking.

The file system only verifies whether another process has the FCB-specified file
open for the following file-access system calls: F_OPEN, F_MAKE, F _DELETE,
F_RENAME, F_ATTRIB, and F_ TRUNCATE. For file-access calls that require an open
FCB, the FCB checksum controls whether the calling process can use the FCB. By
definition, a valid FCB checksum implies that the file has been successfully opened
and an entry for the file resides in the Lock List.

2-24

Concurrent DOS 86 Programmer’s Guide 2.10 File Security

The most common way a process releases a lock entry for an open file is by
closing the file. A close operation is permanent if it causes the removal of the
file's open lock list entry. The file system invalidates the FCB checksum field on
permanent close operations to prevent continued open file operations with the
FCB.

However, not all close operations are permanent. For example, if a process makes
muitiple F_OPEN or F_MAKE calls to an open file, a matching number of F_CLOSE
calls must be made before the file system permanently closes the file. Of course,
if you only open a file once, a single close operation permanently closes the file.

In addition, a process can optionally make partial F_CLOSE calls to a file by setting
interface attribute F5. A partial close operation does not affect the open state of
a file. In the above example, a partial close operation would not count against an
F_OPEN or F_MAKE call. A partial close operation simply updates the directory to
reflect the current state of the file.

As a general rule, under Concurrent a process should close files as soon as it no
longer needs them, even if it has not modified them. While a process has a file
open, access by other processes to the file is restricted. For example, after a
process has opened a file in Locked mode, the file cannot be opened by other
processes until the file is closed or the process terminates.

Furthermore, space in the Lock List is limited. If a process attempts to open a file
and no space remains in the Lock List, or if the process exceeds the open file limit,
the BDOS denies the open request and usually terminates the calling process. You
can change the way the file system handles this error by making an F_ERRMODE
call. Note that the size of the Lock List and the process open file limit are
GENCCPM parameters.

Under Concurrent, deleting an open file is not recommended but it is supported for
files opened in Locked mode to provide compatibility with software written under
earlier releases of MP/M™ and CP/M. The file system does not allow deletion of a
file opened in Unlocked or Read-Only mode.

To ensure that the process does not use the open FCB corresponding to the
deleted file, the file system subsequently checks all open FCBs for the process.
Each open FCB is checked the next it is used with a file-access system call that
requires an open FCB. If a Lock List entry exists for the file, the BDOS allows the
operation to proceed; if not, it indicates that the file has been purged and the file
system returns an FCB checksum error.

The BDOS performs FCB verification whenever it purges open file entries from the
system Lock List in the following situations:

2-25

2.10 File Security Concurrent DOS 86 Programmer’s Guide

* A process makes a F_ATTRIB, F_ DELETE, F RENAME, or F_TRUNCATE call to a
file it has open in Locked mode. These operatlons cannot be performed on a
file open in Unlocked or Read-Only mode.

* A process issues a DRV_FREE call for a drive on which it has an open file.

*+ The BDOS detects a change in media on a drive that has open files. This is a
special case because a process cannot control the occurrence of this
situation, and because it can impact more than one process. Refer to Section
2.17 for more details on this situation.

Open FCB verification can affect performance because each verification operation
requires a directory search operation. In general, you should avoid such situations
when creating new programs for Concurrent.

2.11 Extended File Locking

Extended file locking enables a Concurrent process to maintain a lock on a file
after the file is permanently closed. This facility allows a process to set the
attributes, delete, rename, or truncate a file without interference from other
processes. In addition, this technique avoids the problems associated with using
these system calls on open files (see Section 2.10).

A process can also reopen a file with an extended lock and continue open file
processing. To illustrate how extended file locking might be used, a process can
close an open file, rename the file, reopen the file under its new name, and
continue with file operations without ever losing the file's Lock List item and
control over the file.

A process can only specify extended file locking for a file it has opened in Locked
mode. To extend a file’'s lock, set interface attribute F6' when closing the file.
F_CLOSE interrogates this attribute only when it is closing a file permanently.
Thus, interface attribute F5’, signifying a partial close, must be reset when the
F_CLOSE call is made. In addition, the close operation must be permanent. If a
process has opened a file N times, F_CLOSE ignores the F6’ attribute until the file
is closed for the Nth time.

Note that the access rules for a file with an extended lock are identical to the
rules for a file open in Locked mode.

To maintain an extended file lock through a F_ATTRIB, F_RENAME, or F_TRUNCATE
call, set interface attribute F5' of the referenced FCB when making the call. The
BDOS honors this attribute only if the file has been closed with an extended lock.

Setting attribute F5’ also maintains an extended file lock for F_DELETE, but setting
this attribute also changes the nature of the delete operation to an XFCB-only
delete. If successful, all four of these system calls delete a file's extended lock
item if they are called with attribute F5' reset. However, the extended lock item is
not deleted if they return with an error code.

2-26

Concurrent DOS 86 Programmer’s Guide 2.11 Extended File Locking

You can make an F_OPEN call to resume record operations on a file with an
extended lock. Note that you can also change the open mode when you reopen
the file. The following steps illustrate the use of extended locks.

1. Open file EXLOCK.TST in Locked mode.
2. Perform read and write operations on the file EXLOCK.TST using the open FCB.

3. Close file EXLOCK.TST with interface attribute F6' set to retain the file's lock
item.

4. Use F_RENAME to change the name of the file to EXLOCK.NEW with interface
attribute F5’ set to retain the file’s extended lock item.

5. Reopen the file EXLOCK.NEW in Locked mode.

6. Perform read and write operations on the file EXLOCKNEW, using the open
FCB.

7. Close file EXLOCK.NEW again with interface attribute F6' set to retain the file’s
lock item.

8. Set the Read-Only attribute and release the file's lock item by making an
F_ATTRIB call with interface attribute F5’ reset.

At this point, the file EXLOCK.NEW becomes available for access by another
process.

2.12 Compatibility Attributes

Compatibility attributes are defined as file attributes F1’ through F4’ of program
(CMD) files, and they provide a mechanism to modify some of Concurrent’s file
security rules. This facility is needed because some programs developed under
earlier Digital Research operating systems do not run properly under Concurrent.
Most of the problems encountered by such programs occur because they were
designed for single-tasking operating systems where file security is not required.

For example, suppose a program closes a file and then continues reading and
writing to the file. Under CP/M-86, this is not a problem but under Concurrent,
the BDOS intercepts open file operations with a deactivated FCB to ensure file
system integrity. Compatibility attributes are a tool for dealing with such
situations, and you should use them only with existing programs that run properly
under CP/M-86, not with new programs developed under Concurrent.

If the GENCCPM COMPATMODE option has been selected during system
generation, you can use Concurrent’s FSET utility to set compatibility attributes
from the command line. ‘When COMPATMODE is selected, the P_CLI call
interrogates the command file’'s compatibility attributes during program loading
and modifies the Concurrent file security rules for the loaded program.

Table 2-12 defines the Concurrent BDOS Compatibility Attributes.

2-27

2.12 Compatibility Attributes Concurrent DOS 86 Programmer’s Guide

Table 2-12. Compatibility Attribute Definitions

Attribute Definition

F1’ Modify the rules for Locked mode.

When a process running with F1’' set opens a file in Locked
mode, it can perform read and write operations to the file
as normal. However, to other processes, it appears as if
the file was opened in Read-Only mode. Thus, another
process running with F1’ set, can open the same file in
Locked mode and also perform write operations to the file.

In addition, if a process with F1’ reset attempts to open the
file in Locked or Read-Only mode, the open attempt is
allowed but the open mode is forced to Read-Only.
Furthermore, write operations are not allowed when the
process has F1’ reset.

The F1’ compatibility mode is designed to allow multiple
copies of the same program to run concurrently, even
though the program might make read and write calls to a
common file that it has opened in Locked mode. In
addition, the F1’ mode allows other programs not in this
compatibility mode to access the file on a Read-Only basis.
Note that record locking is not supported for this modified
open mode. In addition, to be safe, make all static files
such as program and help files Read-Only if you use the F1’
attribute.

There is an alternative to using this attribute if a program
only makes read calls to the common file. By placing the
file under User 0 with the SYS and Read-Only attributes
set, you force the open mode to Read-Only when the file is
opened in Locked mode.

F2’ Change F_CLOSE to partial close.

Processes running with F2’ set, only make partial F_CLOSE
calls. The F2' attribute is intended for programs that close
a file to update the directory but continue to use the file.
A side effect of this attribute is that files opened by a
process are not released from the system Lock List until
the process terminates. When using this attribute, it might
be necessary to to set the Lock List parameters to higher
values when you generate the system with GENCCPM.

2-28

Concurrent DOS Programmer’s Guide 2.12 Compatibility Attributes

Table 2-12. (Cont'd)

Attribute Definition

F3' Ignore close checksum errors.

The F3' attribute changes the way F_CLOSE handles Close Checksum
errors. Normally, the file system prints an error message at the console
and terminates the calling process. However, if F3' Is set, F_CLOSE
Ignores the checksum error and performs the close operation. This
interface attribute Is Intended for programs that modify an open FCB
before closing a file.

F4’ Disable FCB Checksum verification for read and write operations.

Setting F4' also sets attributes F2' and F3'. The F4' attribute Is intended for
programs that modify open FCBs during read and write operations. Use
this attribute very carefully, and only with software known to work,
because it effectively disables Concurrent’s file security.

Use Concurrent's CHSET utllity to specify the combination of compatibllity attributes you
want set In the program’s command file. For example,

A> CHSET fllespec [f1 =on]
A>CHSET fllespec [f1 =on,f3 =o0n]
A>CHSET filespec [f4 =on]

If you have a program that runs under CP/M or CP/M-86 but does not run properly under
Concurrent, use the following guldelines to select the proper compatibllity attributes.

o |f the program ends with the "File Currently Opened" message when multiple copies
of the program are run, set compatibility attribute F1’, or place all common static files
under User 0 with the SYS and Read-Only attributes set.

o |f the program terminates with the message "Close Checksum Error", set compati-
bllity attribute F3'.

@ |f the program terminates with an 1/O error, try running the program with attribute F2’
set. If the problem persists, then try attribute F4'. Use attribute F4’ only as a last re-
sort.

2.3 Multisector 1/0 Concurrent DOS Programmetr’s Guide

2.13 MULTISECTOR 1/0

The file system provides the capability to read or write multiple 128-byte records in a single
BDOS system call. This multisector facllity can be visualized as a BDOS burst mode,
enabling a process to complete multiple I/O operations without interference from other
running processes. In addition, the file system bypasses, when possible, all intermediate
record buffering during multisector /O operations. Data Is transferred directly between the
calling process’s memory and the drive.

The BDOS also informs the XIOS when It is reading or writing multiple physical records on a
drive. The XIOS can use this Information to further optimize the 1/O operation resulting in
even better performance. As a result, using this facllity in an application program can
improve Its performance and also enhance overall system throughput, particularly when
performing sequential 1/0.

The number of records that can be transferred with multisector I/O ranges from 1 to 128.
This value, called the BDOS Multisector Count, can be set with F_MULTISEC. P_CLI sets
the Multisector Count to one when it initiates a transient program for execution.

Note that the greatest potential performance increases are obtained when the Multisector
Count is set to 128. Of course, this requires a 16K buffer. ‘

The Multisector Count determines the number of operations to be performed by the
following BDOS system calls: F_READ, F_WRITE, F_READRAND, F_WRITERAND,
F_WRITEZF, F_LOCK and F_UNLOCK. If the Multisector Count is N, making one of these
calls Is equivalent to making N calls.

With the exception of disk 1/O errors encountered by the XIOS, if an error interrupts a
multisector read or write operation, the flle system returns the number of 128-byte records
successfully transferred in register AH. Section 2.14 describes how the Multisector Count
affects F_LOCK and F_UNLOCK.

2.14 CONCURRENT FILE ACCESS

Concurrent supports two open modes, Read-Only and Unlocked, which allow concurrently
running processes to access common files for record operations. The Read-Only open
mode allows muiltiple processes to read from a common file, but processes cannot write to
aflle open In this mode. Thus, files remain static when they are opened in Read-Only mode.
The Unlocked open mode Is more complex because it allows multiple processes to read
and write records to a common file. As a result, Unlocked mode has some Important
differences from the other open modes.

When a process opens a file in Unlocked mode, the file system returns a 2-byte field called
the File ID in the RO and R1 bytes of the FCB. The File ID is a required parameter of
Concurrent’s record locking system calls, F_LOCK and F_UNLOCK, which are only
supported for files open in Unlocked mode.

Concurrent DOS 86 Programmer’s Guide 2.14 Concurrent File Access

Note that these system calls return a successful error code if they are called for
files opened in Locked mode. However, they perform no action in this case,
because, by definition, the calling process has the entire file locked.

F_LOCK and F_UNLOCK allow a process to establish and release temporary
ownership of particular records within a file. You must set the FCB Random
Record field and place the File ID in the first two bytes of the current DMA buffer
before making these calls. The file system locks and unlocks records in units of
128 bytes, which is the standard Concurrent record size. The number of records
locked or unlocked is controlled by the BDOS Muitisector count, which can range
from 1 to 128 (see Section 2.13).

In order to simplify the discussion of record locking and unlocking, the following
paragraphs assume the Multisector count is one. However, as discussed later in
this section, the more general case of multiple record locking and unlocking is a
simple extension of the single record case.

F_LOCK supports two types of lock operations: exclusive locks and shared locks.
Interface attribute F5' specifies the type of lock. F5 = 0 requests an exclusive lock;
F5° = 1 requests a shared lock. If a process locks a record with an exclusive lock,
other processes cannot read, write, or lock the record. The locking process,
however, can access the record with no restrictions. You should use this type of
lock when exclusive control over a record is required.

If a process locks a record with a shared lock, other processes cannot write to the
record or make an exclusive lock of the record. However, other processes are
allowed to read the record and make their own shared locks on the record. No
process, including the locking process, can write to a record with a shared lock.
Shared locks are useful when you want to ensure that a record does not change,
but you want to allow other processes to read the record.

F_LOCK also lets you change the lock of a record if there is no conflict. For
example, you can convert an exclusive lock into a shared lock with no restrictions.
On the other hand, if a process attempts to convert a record’s shared lock to an
exclusive lock if another process has a shared lock on the record, Concurrent
returns an error.

F_LOCK has another option, specified by interface attribute F6’, which controls
whether a record must exist in order to be locked. If you make an F_LOCK call
with F6' = 0, the file system returns an error code if the specified record does not
exist. Setting F6' to 1 requests a logical lock operation. Logical lock operations
are only limited by the maximum Concurrent file size of 32 megabytes, which
corresponds to a maximum Random Record Number of 262,143. You can use
logical locks to control extending a shared file.

F_UNLOCK is similar to F_LOCK except that it removes locks instead of creating
them. There are few restrictions on unlock operations. Of course a process can
only remove locks that it has made.

2-31

2.14 Concurrent File Access Concurrent DOS 86 Programmer’s Guide

F_UNLOCK has one option, controlled by interface attribute F5'. If F5' is set to one,
F_UNLOCK removes all locks for the file made by the calling process. Otherwise, it
removes the locks specified by the Random Record field and the BDOS Multisector
Count. Note that F_CLOSE also removes all locks for a file on permanent close
operations.

If the BDOS Muitisector Count is greater than one, F_LOCK and F_UNLOCK perform
multiple record locking or unlocking. {In general, multiple record locking and
unlocking can be viewed as a sequence of N independent operations, where N
equals the Multisector Count. However, if an an error occurs on any record within
the sequence, no locking or unlocking is performed.

For example, both F_LOCK and F_UNLOCK perform no action and return an error
code if the sum of the FCB Random Record Number and the BDOS Multisector
Count is greater that 262,144. As another example, F_LOCK also returns an error
code if another process has an exclusive lock on any record within the sequence.

When a process makes an F_LOCK call, the file system allocates a new entry in the
system Lock List to record the lock operation and associate it with the calling
process. A corresponding F_UNLOCK call removes the locked entry from the list.
While the lock entry exists in the Lock List, the file system enforces the
restrictions implied by the lock item.

Because each lock item includes a record count field, a multiple lock operation
normally results in the creation of a single new entry. However, if the file system
must split an existing lock entry to satisfy the lock operation, an additional entry is
required. Similarly, an unlock operation can require the creation of a new entry if
a split is needed. Thus, in the worst case, a lock operation can require two new
lock entries and an unlock operation can require one. Note that lock item splitting
can be avoided by locking and unlocking records in consistent units.

These considerations are important because the Lock List is a limited resource
under Concurrent. The file system performs no action and returns an error code if
insufficient available entries exist in the Lock List to satisfy the lock or unlock
request. In addition, the number of lock items a single process is allowed to
consume is a GENCCPM parameter. The file system also returns an error code if
this limit is exceeded.

The file system performs several special operations for read and write system calls
to a file open in Unlocked mode. These operations are required because the file
system maintains the current state of an open file in the calling process’'s FCB.
When multiple processes have the same file open, FCBs for the same file exist in
each process’'s memory.

To ensure that all processes have current information, the file system updates the
directory immediately when an FCB for an unlocked file is changed. In addition,
the file system verifies error situations such as end-of-file, or reading unwritten
data with the directory before returning an error. As a result, read and write
operations are less efficient for files open in Unlocked mode when compared to
equivalent operations for files opened in Locked mode.

2-32

Concurrent DOS 86 Programmer’s Guide 2.15 File Byte Counts

2.15 File Byte Counts

Although the logical record size of Concurrent is restricted to 128 bytes, the file
system does provide a mechanism to store and retrieve a byte count for a file.
This facility can identify the last byte of the last record of a file. The F_SIZE call
returns the last Random Record Number, + 1, of the last record of a file.

The F_ATTRIB call can set a file's byte count. This is an option controlled by
interface attribute F6’. Conversely, F_OPEN can return a file’s byte count to the CR
field of the FCB. F_SFIRST and F_SNEXT also return a file’s byte count in the CS
field of the FCB returned in the current DMA buffer.

Note that the file system does not access or update the byte count value in BDOS
read or write system calls. However, the F_MAKE call does set the byte count
value to zero when it creates a file in the directory.

2.16 Record Blocking and Deblocking

Under Concurrent, the logical record size for disk 1/0 is 128 bytes. This is the
basic unit of data transfer between the operating system and running processes.
However, on disk, the physical record size is not restricted to 128 bytes, but can
range from 128 bytes to 4k bytes. Record blocking and deblocking is required on
systems that support drives with physical record sizes larger than 128 bytes.

The process of building up physical records from 128-byte logical records is called
record blocking and is required in write operations. The reverse process of
breaking up physical records into their component 128-byte logical records is
called record deblocking and is required in read operations. Under Concurrent,
record blocking and deblocking is normally performed by the BDOS.

Record deblocking implies a read-ahead operation. For example, if a process reads
a logical record that resides at the beginning of a physical record, the entire
physical record is read into an internal buffer. Subsequent BDOS read calls for the
remaining logical records access the buffer instead of the disk.

Conversely, record blocking results in the postponement of physical write
operations but only for data write operations. For example, if a transient program
makes a BDOS write call, the logical record is placed in a buffer equal in size to
the physical record size. The write operation on the physical record buffer is
postponed until the buffer is needed in another I/0 operation. Note that under
Concurrent, directory write operations are never postponed.

Postponing physical record write operations has implications for some application
programs. For programs that involve file updating, it is often critical to guarantee
that the state of the file on disk parallels the state of the file in memory after an
update operation. This is only an issue on drives where physical write operations
are postponed because of record blocking and deblocking. If the system should
crash while a physical buffer is pending, data would be lost. To prevent this loss
of data, you can use F_FLUSH to force the write of any pending physical buffers
associated with the calling process.

2-33

2.16 Record Blocking and Deblocking Concurrent DOS 86 Programmer’'s Guide

Note: The file system discards all pending physical data buffers when a process
terminates. However, the file system automatically makes an F_FLUSH call in the
F_CLOSE call. Thus, it is sufficient to make an F_CLOSE call to ensure that all
pending physical buffers for that file are written to the disk.

217 Reset, Access, and Free Drive

The BDOS calls DRV_ALLRESET, DRV_RESET, DRV_ACCESS, and DRV_FREE allow a
process to control when to reinitialize a drive directory for file operations. This
process of initializing a drive’s directory is called logging-in the drive.

When vyou start Concurrent, all drives are initialized to the reset state.
Subsequently, as processes reference drives, the file system automatically logs
them in. Once logged-in, a drive remains in the logged-in state until it is reset by
DRV_ALLRESET or DRV_RESET or a media change is detected on the drive.

If the drive is reset, the file system automatically logs in the drive again the next
time a process references it. The file system logs in a drive immediately when it
detects a media change on the drive.

Note that DRV_ALLRESET and DRV_RESET have similar effects except that
DRV_ALLRESET affects all drives on the system. You can specify the combination
of drives to reset with DRV_RESET.

Logging-in a drive consists of several steps. The most important step is the
initialization of the drive’s allocation vector. The allocation vector records the
allocation and deallocation of data blocks to files, as files are created, extended,
deleted and truncated. Another function performed during drive log-in is the
initialization of the directory checksum vector. The file system uses the checksum
vector to detect media changes on a drive. Note that permanent drives, which do
not support media changes, might not have checksum vectors.

Under Concurrent, the DRV_RESET operation is conditional. The file system cannot
reset a drive for a process if another process has an open file on the drive.
However, the exact action taken by a DRV_RESET operation depends on whether
the drive to be reset is permanent or removable.

Concurrent determines whether a drive is permanent or removable by interrogating
a bit in the drive’'s Disk Parameter Block (DPB) in the XIOS. A high-order bit of 1
in the DPB Checksum Vector Size field designates the drive as permanent. A
drive’s Removable or Nonremovable designation is critical to the reset operation
described below.)

The BDOS first determines whether there are any files currently open on the drive
to be reset. If there are none, the reset takes place. If there are open files, the
action taken by the reset operation depends on whether the drive is removable
and whether the drive is Read-Only or Read-Write. Note that only the DRV_SETRO
call can set a drive to Read-Only. Following log-in, a drive is always Read-Write.

If the drive is a permanent drive and if the drive is not Read-Only, the reset
operation is not performed, but a successful result is returned to the calling
process.

2-34

Concurrent DOS 86 Programmer’s Guide 2.17 Reset, Access, and Free Drive

However, if the drive, is removable or set to Read-Only, the file system determines
whether other processes have open files on the drive. If they do, then it denies
DRV_RESET operation and returns an error code to the calling process.

If all the open files on a removable drive belong to the calling process, the
process is said to own the drive. In this case, the file system performs a qualified
reset on the drive and returns a successful result. This means that the next time a
process accesses this drive, the BDOS performs the log-in operation only if it
detects a media change on the drive.

Figure 2-8 illustrates the logic flow of the drive reset operation.

YES
OPEN FILES |
ON DRIVE? |
NO
DRIVE YES
REMOVABLE?
¥ no
YES
DRIVE R/O?
NO
RESET DO NOT RESET OPEN FILES YES
DRIVE DRIVE BELONG 7O
ANOTHER
PROCESS?
¥ no
QUALIFIED
RESET
PERFORMED
DISK ‘ DISK
RESET RESET
SUCCESS DENIED

Figure 2-8. Disk System Reset

2-35

2.17 Reset, Access, and Free Drive Concurrent DOS 86 Programmer’s Guide

If the BDOS detects a media change on a drive after a qualified reset, it purges all
open files on the drive from the Lock List and subsequently verifies all open FCBs
in file operations for the owning process (refer to Section 2.10 for details of FCB
verification).

in all other cases where the BDOS detects a media change on a drive, the file
system purges all open files on the drive from the Lock List, and flags all
processes owning a purged file for automatic open FCB verification.

Note: If a process references a purged file with a BDOS command that requires
an open FCB, the file system returns to the process with an FCB checksum error.

The primary purpose of the drive reset functions is to prepare for a media change
on a drive. Because a drive reset operation is conditional, it allows a process to
test whether it is safe to change disks. Thus, a process should make a successful
drive reset call before prompting the user to change disks. In addition, you should
close all your open files on the drive, particularly files you have written to, before
prompting the user to change disks. Otherwise, you might lose data.

DRV_ACCESS and DRV_FREE perform special actions under Concurrent.
DRV_ACCESS inserts a dummy open file item into the system Lock List for each
specified drive. While that item exists in the system Lock List, no other process
can reset the drive. DRV_FREE purges the Lock List of all items, including open file
items, belonging to the calling process on the specified drives. Any subsequent
reference to those files by a BDOS system call requiring an open FCB results in a
FCB checksum error return.

DRV_FREE has two important side effects. First of all, any pending
blocking/deblocking buffers on a specified drive that belong to the calling process
are discarded. Secondly, any data blocks that have been allocated to files that
have not been closed are lost. Be sure to close your files before calling DRV_FREE.

DRV_SETRO is also conditional under Concurrent. The file system does not allow a
process to set a drive to Read-Only if another process has an open file on the
drive. This applies to both removable and permanent drives.

A process can prevent other processes from resetting a Read-Only drive by
opening a file on the drive or by issuing a DRV_ACCESS call for the drive and then
making a DRV_SETRO call. Executing DRV_SETRO before the F_OPEN or
DRV_ACCESS call leaves an interval in which another process could set the drive
back to Read-Write. While the open file or dummy item belonging to the process
resides in the Lock List, no other process can reset the drive to take it out of
Read-Only status.

2-36

Concurrent DOS 86 Programmer’s Guide 2.18 BDOS Error Handling

2.18 BDOS Error Handling

The Concurrent file system has an extensive error handling capability. When an
error is detected, the BDOS can respond in one of three ways:

1. Display an error message on the consoie and terminate the process.

2. Return to the calling process with return codes in register AX identifying the
error.

3. Display an error message on the console and return an error code to the
calling process, as in method 2.

The file system handles the majority of errors it detects by method 2. Two
examples of this kind of error are the “file not found” error for F_OPEN and the
“reading unwritten data” error for F_READ.

More serious errors, such as disk I/0 errors, are normally handled by method 1.
Errors in this category, called physical and extended errors, can also be reported
by methods 2 and 3 under program control.

The BDOS Error mode, which has three states, determines how the file system
handles physical and extended errors.

* In the default Error mode, the BDOS displays the error message and
terminates the calling process (method 1).

* In Return Error mode, the BDOS returns control to the calling process with
the error identified in register AX (method 2).

* In Return and Display Error mode, the BDOS returns control to the calling
process with the error identified in register AX and also displays the error
message at the console (method 3).

While both return modes protect a process from termination because of a physical
or extended error, the Return and Display mode also allows the calling process to
take advantage of the built-in error reporting of the file system.

Physical and extended errors are displayed in the following format:

Concurrent Error on d: error message
BDOS Function = nn File = filename.typ

where d is the name of the drive selected when the error condition occurs; error
message identifies the error; nn is the BDOS function number, and filename.typ
identifies the file specified by the BDOS function. If the BDOS function did not
involve an FCB, the file information is omitted.

The following tables detail BDOS physical and extended error messages.

2.18

BDOS Error Handling Concurrent DOS 86 Programmer’'s Guide

Table 2-13. BDOS Physical Errors

Disk 1/0

The “Disk I/0” error results from an error condition returned
to the BDOS from the XIOS module. The file system makes
XIOS read and write calls to execute BDOS file-access
system calls. If the XIOS read or write routine detects an
error, it returns an error code to the BDOS, causing this
error message.

Invalid Drive

The “Invalid Drive” error also results from an error condition
returned to the BDOS from the XIOS module. The BDOS
makes an XIOS Select Disk call before accessing a drive to
perform a requested BDOS function. If the XIOS does not
support the selected disk, it returns an error code resulting
in this error.

Read/Only File

The BDOS returns the “Read/Only File” error message when
a process attempts to write to a file with the R/O attribute
set.

Read/Only Disk

The BDOS returns the “Read/Only Disk” error message when
a process makes a write operation to a disk that is in
Read-Only status. A drive can be placed in Read-Only
status explicitly with DRV_SETRO.

2-38

Concurrent DOS 86 Programmer’'s Guide

2.18 BDOS Error Handling

Table 2-14. BDOS Extended Errors

Message

Meaning

File Opened in Read/Only Mode

The BDOS returns the “File Opened in Read/Only Mode”
error message when a process attempts to write to a file
opened in Read-Only mode. A process can open a file in
Read-Only mode explicitly by setting FCB interface attribute
F6’. In addition, if a process opens a file in Locked mode,
the file system automatically forces the open mode to
Read-Only mode when:

* the current user number is zero and the process opens
a file with the Read-Only and System attributes set.

* the current user number is not zero and the process
opens a user zero file with the System attribute set.

The BDOS also returns this error if a process attempts to
write to a file that is password-protected in Write mode,
and it did not supply the correct password when it opened
the file.

File Currently Open

The BDOS returns the “File Currently Open” error message
when a process attempts to delete, rename, or modify the
attributes of a file opened by another process. The BDOS
also returns this error when a process attempts to open a
file in a mode incompatible with the mode in which the file
was previously opened by another process or by the calling
process.

Close Checksum Error

The BDOS returns the “Close Checksum Error” message
when the BDOS detects a checksum error in the FCB
passed to the file system with an F_CLOSE call.

Password Error

The BDOS returns the “Password Error* message when
passwords are required and the file password is not
supplied or is incorrect.

2-39

2.18 BDOS Error Handling Concurrent DOS 86 Programmer’s Guide

Table 2-14. (Cont'd)

Message Meaning

File Already Exists

The BDOS returns the “File Already Exists” error message
for the F_MAKE and F_RENAME when the BDOS detects a
conflict on filename and filetype.

lllegal ? in FCB

The BDOS returns the “lilegal ? in FCB” error message when
the BDOS detects a ? character in the filename or filetype
of the passed FCB for F_ATTRIB, F_OPEN, F_RENAME,
F_TIMEDATE, F_WRITEXFCB, F_TRUNCATE, and F_MAKE.

Open File Limit Exceeded

The BDOS returns the “Open File Limit Exceeded” error
message when a process exceeds Concurrent’'s process file
lock limit. F_OPEN, F_MAKE, and DRV_ACCESS can return
this error.

No Room in System Lock List

The BDOS returns the "No Room in System Lock List” error
message when no room for new entries exists within the
Lock List. F_OPEN, F_MAKE, and DRV_ACCESS can return
this error.

The following paragraphs describe the error return code conventions of the file
system calls. Most file system calls fall into three categories in regard to return
codes; they return an error code, a directory code, or an error flag. The error
conventions let programs written for CP/M-86 run without modification.

The following BDOS system calls return an error code in register AL:

F_LOCK
F_READ
F_READRAND
F_UNLOCK
F_WRITE
F_WRITERAND
F_WRITEZF

* ¥ * ¥ ¥ F

*

Table 2-15 lists error code definitions for register AL.

2-40

Concurrent DOS 86 Programmer’s Guide 2.18 BDOS Error Handling

Table 2-15. BDOS Logical Errors

Code Definition

00H Function successful

01H Reading unwritten data
or
No available directory space on (Write Sequential)

02H No available data block

03H Cannot close current extent

04H Seek to unwritten extent

05H No available directory space

06H Random record number out of range

08H Record locked by another process (only for files opened in
Unlocked Mode)

09H Invalid FCB (error in previous F_CLOSE call

0AH FCB checksum error

0BH Unlocked file unallocated block verify error (only for files
opened in Unlocked Mode)

0CH Process record lock limit exceeded (returned only by
F_LOCK and F_UNLOCK for files opened in Unlocked mode

ODH Invalid File ID (returned only by F_LOCK and F_UNLOCK for

files opened in Unlocked mode

OEH No room in System Lock List (returned only by F_LOCK and
F_UNLOCK for files opened in Unlocked mode

OFFH Physical error : refer to register AH

For BDOS read and write system calls, the file system also sets register AH when
the returned error code is a value other than zero or OFFH. In this case, register
AH contains the number of 128-byte records successfully read or written before
the error was encountered. Note that register AH can only contain a nonzero
value if the calling process has set the BDOS Multisector Count to a value other
than one; otherwise register AH is always set to zero. On successful system calls
(Error Code = 0), register AH is also set to zero. If the Error Code OFFH, register
AH contains a physical error code (see Table 2-16).

2-41

2.18 BDOS Error Handling Concurrent DOS 86 Programmer’s Guide

The following BDOS system calls return a directory code in register AL:

*

DRV_SETLABEL
F_ATTRIB
F_CLOSE
F_DELETE
F_MAKE
F_OPEN
F_RENAME
F_SETDATE
F_SIZE
F_SFIRST
F_SNEXT

* F_TIMEDATE
* F_TRUNCATE
* F_WRITEXFCB

* % * * F ¥ ¥

* ¥ *

The directory code definitions for register AL are:

00H - 03H successful function
OFFH unsuccessful function

With the exception of F_SFIRST and F_SNEXT, all functions in this category return
with the directory code set to zero upon a successful return. However, for these
two system calls, a successful directory code identifies the relative starting
position of the directory entry in the calling process’s current DMA buffer.

If a process uses F_ERRMODE to place the BDOS in Return Error mode, the
following system calls return an error flag in register AL on physical errors:

*

DRV_GETLABEL
DRV_ACCESS
DRV_SET
DRV_SPACE
DRV_FLUSH

* % ¥ ¥

The error flag definitions for register AL are:

00H successful function
OFFH physical error : refer to register AH

The BDOS returns nonzero values in register AH to identify a physical or extended
error if the BDOS Error mode is in one of the return modes. Except for system
calls that return a Directory Code, register AL equal to OFFH indicates that register
AH identifies the physical or extended error.

For functions that return a Directory Code, if register AL equals OFFH, and register
AH is not equal to zero, register AH identifies the physical or extended error.
Table 2-16 shows the physical and extended error codes returned in register AH.

2-42

Concurrent DOS 86 Programmer’'s Guide 2.18 BDOS Error Handling

Table 2-16. BDOS Physical and Extended Errors

Code Explanation

01H Disk 1/0 Error : permanent error

02H Read/Only Disk

03H Read/Only File, File Opened in Read/Only Mode, or File

Password Protected in Write Mode and Correct Password

Not Specified

04H Invalid Drive : drive select error

05H File Currently Open in an incompatible mode
06H Close Checksum Error

07H Password Error

08H File Already Exists

09H Illlegal ? in FCB

0AH Open File Limit Exceeded

0BH No Room in System Lock List

The following two system calls represent a special case because they return an

address in register AX.

* DRV_ALLOCVEC
* DRV_DBP

When the calling process is in one of the BDOS return error modes and the BDOS
detects a physical error for these system calls, it returns to the calling process

with registers AX and BX set to OFFFFH. Otherwise, they return no error code.

2-43

2.18 BDOS Error Handling Concurrent DOS 86 Programmer’s Guide

Under Concurrent, the following system calls also represent a special case:

* DRV_ALLRESET
* DRV_RESET
* DRV_SETRO

These system calls return to the calling process with registers AL and BL set to
OFFH if another process has an open file or has made a DRV_ACCESS call that
prevents the reset or write protect operation. If the calling process is not in
Return Error mode, these system calls also display an error message identifying
the process that prevented the requested operation.

End of Section 2

2-44

SECTION 3

TRANSIENT COMMAND FILES

3.1 Transient Program Loading

A transient program is a file of type CMD that is loaded from disk and resides in
memory only during its operation. A Resident System Process (RSP) is a file that
is included in Concurrent during system generation.

You can initiate a transient process by entering a command at a system console.
The console’s TMP (Terminal Message Process) then calls P_CLI (Command Line
Interpreter), and passes to it the command line you entered. If the command is
not an RSP, then P_CLI locates and then loads the proper CMD file. P_CLI then
calls F_PARSE to parse up to two filenames following the command, and place the
properly formatted FCBs at locations 005CH and 006CH in the Base Page of the
initial Data Segment (see Section 3.3).

P_CLI initializes memory, the Process Descriptor (PD), and the User Data Area
(UDA), and then allocates a 96-byte stack area, independent of the program, to
contain the process’s initial stack. If 8087 processing is required (see Section
3.1.2) P_CLI allocates an additional 96 bytes for the UDA.

Concurrent divides the Direct Memory Address (DMA) into the DMA segment
address and the DMA offset. P_CLI initializes the default DMA segment to the
value of the initial data segment, and the default DMA offset to 0080H.

P_CLI creates the new process with a P_CREATE call and sets the initial stack so
that the process can execute a Far Return instruction to terminate. A process also
ends when it calls P_TERMCPM or P_TERM.

You can also terminate a process by typing a single CTRL-C during console input.
See C_MODE in Section 6 for the details of enabling/disabling CTRL-C. CTRL-C
also forces a DRV_RESET call for each logged-in drive. This DRV_RESET operation
only affects removable media drives.

Note: Additional UDA space is allocated for 8087 processing only if the process is
initialized by P_CLI. Other processes (such as RSPs) that require 8087 processing
and do not use P_CLI must allocate this additional UDA space themselves.

3.1.1 Shared Code

Concurrent allows processes to share program code. This capability avoids
unnecessary program loading of a code segment already in memory and conserves
memory space since multiple copies of the same program code do not have to
occupy different memory space.

When loading “sharable” program code, Concurrent allocates the code group
separately from the rest of the program, and maintains this code group in memory
even after the program has terminated. Subsequent loading of the same program
does not load the code group, but uses the existing one instead. Obviously,
programs written with separate code and data can take advantage of this feature.

3.1 Transient Program Loading Concurrent DOS 86 Programmer’s Guide

Concurrent maintains a shared code group in memory until a memory request or a
reset drive forces its release. Concurrrent maintains shared code groups in
memory in Least Recently Used (LRU) order on the Shared Code List. If a memory
request is made that cannot be satisfied, the list is drained, one at a time, until the
memory request is satisfied, or the Shared Code List is emptied. If a drive is reset,
Concurrent purges all code groups loaded from that drive.

A shared code program is flagged by the value 09H in G-Type field of the Code
Group Descriptor in the CMD file header (see Section 3.2). You can set this field
with the CHSET utility (see the User's Guide). Note that programs using the 8080
memory model cannot share code.

3.1.2 8087 Support

Concurrent provides optional 8087 support for systems that use the 8087
coprocessor. This support is indicated by the Program Flag, byte 127 (07FH), of
the CMD file header.

Setting bit 6 (bit 0 is least significant bit) of the Program Flag indicates optional
8087 support, which means that if the 8087 is present, the program will use it;
otherwise, the program will emulate it.

If bit 5 of the Program Flag is set, it indicates that the 8087 must be present in
order for the program to run. If no 8087 is present and bit 5 of the Program Flag
is set, the system returns an error when it tries to load the program. You can use
the CHSET utility to set the program’s header record for optional or required 8087
support.

If you use P_CLI to initiate and execute a process, Concurrent allocates an extra 96
bytes to the UDA for 8087 support. If you require 8087 support and do not use
P_CLI, you must specifically allocate this additional 96 bytes to the UDA, turn on
the 8087 flag in the PD, and initialize the CW and SW fields in the 8087 UDA
extension (see description of these fields in Section 6 under P_CREATE).

3.1.3 8087 Exception Handling

Although Concurrent provides its own 8087 exception handling routine, you may
want to write your own. Appendix B includes instructions and information required
to write an 8087 exception handler, with a sample listing of such a routine.

3.2 Command File Format

A CMD file consists of a 128-byte header record followed immediately by the
memory image. The command file header record is composed of 8 Group
Descriptors (GDs), each 9 bytes long. Each Group Descriptor describes a portion
of the program to be loaded. Figure 3-1 shows the format of the header record.

3-2

Concurrent DOS Programmer’s Guide 3.2 Command Flle Format

it e e T T T PP +
e 1 ! 6> 2! GD3 | GD4 | GDB | GD6 ! GD7 | GD8 |
e it T +
N L LT P P E 128 BYTES ----------------------o- >

Figure 3-1. CMD File Header Format

In Figure 3-1, GD 1 through GD 8 represent Group Descriptors. Each Group Descriptor
corresponds to an independently loaded program unit and has the format shown in Figure
3-2.

OOH O1H 03H OBH OTH 09H
e et T T L T T +
| G-Type | G-Length | A-Base | G-Min | G-Max !
et T LT T T PR +

Figure 3-2. Group Descriptor Format

G_Type dstermines the Group Descriptor type. The valid Group Descriptors have a G_Type
In the range 1 through 9, as shown in Table 3-1. All other values are reserved for future use.
For a given CMD flle header only a Code Group and one of any other type can be included.
If a program uses either the Small or Compact Model, the code group s typically pure; that
Is, it Is not modified during program execution.

Table 3-1. Group Descriptor Types

G_Type Group Type

01H Code Group (non-shared)
02H Data Group

03H Extra Group

04H Stack Group

05H Auxiliary Group #1

06H Auxillary Group #2

07H Auxiliary Group #3

08H Auxiliary Group #4

09H Code Group (shared)

All remaining values in the Group Descriptor are given in increments of 16-byte paragraph
units with an assumed low-order 0 nibble to complete the 20-bit address.

3.2 Command File Format Concurrent DOS Programmer's Guide

Table 3-2. Group Descriptor Fields

Field Description

G_Length gives the number of paragraphs in the group. For example,
given a G_length of 080H, the size of the group Is 0800H
(2048 decimal) bytes.

A_Base defines the base paragraph address for a nonrelocatable group.
G_Min defines the minimum size of the memory area to allocate to the
group.
G_Max defines the maximum size of the memory area to allocate to
the group.

The memory model described by a header record Is implicitly determined by the Group
Descriptors (refer to Section 4.1). The 8080 Model Is assumed when only a code group Is
present, because no Independent data group Is named. The Small Model Is assumed when
both a code and data group are present but no additional Group Descriptors occur.
Otherwise, the Compact Model Is assumed when the CMD file is loaded.

Concurrent DOS and DOS Plus support programs with multiple segments per group with
up to 1 megabyte per group (code, data, stack, extra).

When loading large model programs, the operating system will automatically fixup all
intersegment references and adjust them according to the group base address. If the top bit
of the byte at offset 007FH In the 128-byte CMD header Is set to 1, relocatlon information Is
present. In that case, the word at offset 007DH of the CMD header holds the number of the
first 128-byte record in the file which holds relocatlon data. There Is one relocation entry per
segment reference (e.g. "CALLF", "SEG <seghame>" In assembler). These relocation
items are automatically added to the CMD file by LINK86 when intersegment references are
detected in object files.

Each entry consists of four bytes. The top four bits of the first byte specify the source group
number, the bottom four bits the destination group'number. An entry of 00H signals the end
of the relocation list. The group numbers are identical to the numbers in the 9-byte group
descriptors at the beginning of the CMD header. For example, an entry of 12H would be
generated If a "mov ax, seg variable" were found in the source of the program and "variable"
were in a data segment in the DGROUP of the program.

3-4a

Concurrent DOS Programmer's Guide 3.2 Command File Format

The second and third bytes are a word (in LSB-first format) which needs to be added to the
segment address of the source segment. The fourth byte specifies the offset within this
paragraph that needs to be relocated. Continuing the example above, if the code group
were based at segment 1000H and the second, third and fourth bytes were 27H, 09H and
0DH, then the word at offset 1927H:000DH would be relocated.

The relocation occurs by adding the segment address of the destination group to the word
specified by the relocation item. If the data segment in the example were located at 3000H,
then the value 3000H would be added to the word 1927H:000DH.

This relocation scheme is rather more flexible than the DOS one which assumes that all
groups are contiguous In memory and thersfore only permits the last group to be of
variable size.

Note that CHSET refuses to set SHARE = ON for programs which have code to data
relocation items, because data segments are not shared and therefore code requiring
fixups from code to data cannot be shared.

3.3 BASE PAGE INITIALIZATION

The Base Page contains default values and locatlons Initialized by P_CLI and P_LOAD and
used by the transient process.

The Base Page occuples the regions from offset 0000H through 00FFH relative to the Initial
data segment, and contains the values shown In Figure 3-3.

3-4b

Concurrent DOS 86 Programmer’'s Guide

3.3 Base Page Initialization

12
18
1E
24
2A

30

50
56

5C

6C

7C

80

L M
0 1 2 3
Fomm———— o —————— o ————— +
| CODE LENGTH |
|-—====- tommm tomm +
| DATA LENGTH |
| === tmmm o ———— +
| EXTRA LENGTH |
| ——==—=—- tommm——— pm————— +
| STACK LENGTH |
|————— o tm————— +
| AUX 1

|-———==== o o ————— +
| AUX 2

e B ettt o ——— +
[AUX 3

| ——— o to—m——— - +
| AUX 4

|- Fom—————— tomm————— +

H
4 5 6

o ——— +
BASE | M80 |
tm——————— D ettt |
BASE | RESERVED|
e o ———— |
BASE | RESERVED |
to——————— tmmmm——— |
BASE | RESERVED |
o ———— tmm—————— |

| RESERVED |
o ————— tm—m—————— |

| RESERVED |
o ——— o ——— |

| RESERVED |
to——— - to————— |

| RESERVED |
tm—————— o —————— |

Bytes 030H through 04FH are not currently used; |
they are reserved for future use by Digital Research]

———————— B T T SR S |
DRIVE | P1 ADDR |P1 LEN | P2 ADDR |
___ l
P2 LEN | RESERVED | |
———————— B e T it Sttt |
DEFAULT FILENAMEl |

. I

. |

———————— B e T e Sttt |
|

DEFAULT FILENAME2 |

. |

. |

———————— BT T Tt et TeE ey |
CR |RANDOM RECORD NUMBER (opt) | |
———————— T DTy

DEFAULT 128-byte DMA BUFFER

Figure 3-3. Base Page Values

Table 3-3 lists the fields in the Base Page.

3-5

3.3 Base Page Initialization

Table 3-3. Base Page Fields

Field

Definition

M80

AUX 1-4

LENGTH

BASE

DRIVE

P1 ADDR

P1 LEN

P2 ADDR

P2 LEN

The M80 byte is a flag indicating whether the 8080 Memory
Model was used during load. The values of the flag are:

1 = 8080 Model
0 = not 8080 Model

If the 8080 Model is used, the code length never exceeds
OFFFFH.

Designate a set of four optional independent groups that
might be required for programs that execute using the
Compact Memory Model. The initial values for these
descriptors are derived from the header record in the
memory image file.

Length is stored using the Intel convention: low, middle,
and high bytes.

Refers to the paragraph address of the beginning of the
segment.

Identifies the drive from which the transient program was
read. 0 designates the default drive, while a value of 1
through 16 identifies drives A through P.

Contains the address of the password field of the first
command tail operand in the default DMA buffer at 0080H.
P_CLI sets this field to 0 if no password is specified.

Contains the length of the password field for the first
command tail operand. P_CLI sets this field to 0 if no
password is specified.

Contains the address of the password field of the second
command tail operand in the default DMA buffer at 0080H.
P_CLI sets this field to 0 if no password is specified.

Contains the length of the password field for the second
command tail operand. P_CLI sets this field to 0 if no
password is specified.

Concurrent DOS 86 Programmer’'s Guide

Concurrent DOS 86 Programmer’s Guide 3.3 Base Page Initialization

Table 3-3. (Cont'd)

Field Definition

FILENAME1 Initialized by P_CLI for a transient program from the first
command tail operand of the command line.

FILENAME2 Initialized by P_CLI for a transient program from the second
command tail operand of the command line.

Note: File Namel can be used as part of a File Control
Block (FCB) beginning at 05CH. To preserve File Name2,
copy it to another location before using the FCB in file 1/0
system calls.

CR Contains the current record position used in sequential file
operations with the FCB at 05CH.

RANDOM RECORD NUMBER
The optional Random Record Number is an extension of the
FCB at 05CH, used in random record processing.

DMA BUFFER The Default DMA buffer contains the command tail when
P_CLI loads a transient program.

3.4 Parent/Child Process Relationships

Under Concurrent when one process (the parent) creates another process (the
child), the child process inherits most of the default values of the parent process.
This includes the default disk, user number, console, list device, and password.
The child process also inherits interrupt vectors 0, 1, 3, 4, 224, and 225, which the
parent process initialized.

3.5 Direct Video Mapping

Processes which bypass Concurrent’s Character I/0 system calls and use a video
map or screen buffer directly cannot be monitored, and continue to put characters
on the screen even when running in the background. Consequently, any screen
displayed by the program in the foreground console is interspersed with characters
displayed by the program in the background using direct video map I/0.

To avoid the problems created by using direct video 1/0, set bit 3 of the Program
Flag to tell Concurrent that the process is to be put in suspend mode whenever it
is running in the background and may continue running only when switched to the
foreground. You can use the CHSET utility (see the User's Guide) to set bit 3 of
the Program Flag.

3.5 Direct Video Mapping Concurrent DOS 86 Programmer’s Guide

Note that by-passing Concurrent’s Character I/O system calls negates the
concurrency of a process, because Concurrent suspends it from running (if bit 3 of
Program Flag is set) unless it is running in the foreground.

End of Section 3

3-8

SECTION 4

TRANSIENT PROGRAM MEMORY MODELS

When Concurrent loads a program, the initial values of the segment registers, the
instruction pointer, and the stack pointer are determined by the memory model
indicated in the CMD file header record.

There are three transient program models, the 8080 model, the Small Model, and
the Compact Model, summarized in Table 4-1.

Table 4-1. Transient Program Memory Models

Model Group Relationships

8080 Model Code and Data Groups Overlap
Small Model Independent Code and Data Groups
Compact Model Three or More Independent Groups

The 8080 Model supports programs that are directly translated from an 8080
environment where code and data are intermixed. The 8080 Model consists of one
group containing all the code, data, and stack areas. Segment registers are
initialized to the starting address of the region containing this group. The segment
registers can, however, be managed by the program during execution so that
multiple segments in the code group can be addressed.

The Small Model is similar to that defined by Intel, consisting of an independent
code group and a data group. The code and data groups often consist of, but are
not restricted to, single 64K byte segments.

The Compact Model occurs when any of the extra, stack, or auxiliary groups are
present in a program. Each group can consist of one or more segments, but if any
group exceeds one segment in size, or if auxiliary groups are present, then the
program must manage its own segment registers during execution in order to
address all code and data areas. .

The three memory models differ primarily in how Concurrent initializes the
segment registers when it loads a program. P_LOAD determines which memory
model to use by examining the program group usage, as described in the following
sections.

4.0 Concurrent DOS 86 Programmer’s Guide

For all three memory models, Concurrent initializes an internal 96-byte stack. The
first two words of this stack are reserved for the double word return for
termination by a RETF (Far return) instruction. Figure 4-1 shows the initial
program stack for all three memory models.

Far Return Address |----———=—-- [

Figure 4-1. Initial Program Stack

The transient program can terminate by using P_TERMCPM or P_TERM, or by
executing a RETF (Far Return) instruction when the SS and SP still point to the
initial program stack.

4.1 The 8980 Memory Model

P_LOAD assumes the 8080 Model when the transient program contains only a code
group. The intermixed code and data areas are indistinguishable. In this case,
P_CLI (Command Line Interpreter) initializes the CS, DS, and ES registers to the
beginning of the code group and sets the SS and SP registers to a 96-byte initial
stack area that it allocates.

Note: P_CLI initializes the stack so that if the process executes a Far Return
instruction, it terminates. P_CLI sets the Instruction Pointer (IP) Register to 100H,
thus allowing Base Page values at the beginning of the code group. Following
program load, the 8080 Model appears as shown in Figure 4-2.

Concurrent DOS 86 Programmer’s Guide 4.1 The 8080 Memory Model

o —————— +

| CODE/DATA |

| . |

| . |

| . |

| CODE/DATA |

CS:IP ———> 0100H |-———-——————— |
| |

| BASE PAGE |

| |

CS:0,DS:0,ES:0 ---> 0000H +---—-———=——= +

Figure 4-2. 8080 Memory Model

The following RASM-86 code fragment shows how to define an 8080 Model
transient program.

cseg
org 100h
. (code)

endcs equ $
dseg
org offset endcs
. (data)
end

4.2 The Small Memory Model

P_LOAD assumes the Small Model when the transient program contains both a
code and data group. (In RASM-86, all code is generated following a CSEG
directive. Data is defined following a DSEG directive, with the origin of the Data
Segment independent of the Code Segment.)

In this model, P_CLI sets the CS register to the beginning of the code group, the IP
to 0000H, the DS and ES registers to the beginning of the data group, and the SS
and SP registers to a 96-byte initial stack area that it initializes. Following
program load, the Small Model appears as shown in Figure 4-3.

4-3

4.2 The Small Memory Model Concurrent DOS 86 Programmer’s Guide

Q
[¢]
O
=

|
|
| | DATA |
|
|
CS:0 | DS:0 | BASE PAGE |

IP:0 -> 0000H +--=-—==—===—- + ES:0 -> 0000H +------——-—- +
Figure 4-3. Small Memory Model

The machine code begins at CS+0000H, the Base Page values begin at DS+0000H,
and the data area starts at DS+0100H.

The following RASM-86 code fragment shows how to define a Small Model
transient program.

cseg

. (code)
dseg

org 100h
. (data)
end

4.3 The Compact Memory Model

P_LOAD assumes the Compact Model when code and data groups are present,
along with one or more of the remaining stack, extra, or auxiliary groups. In this
case, P_CLI sets the CS, DS, and ES registers to the base addresses of their
respective areas, with the IP set to 0000H, and the SS and SP registers set to a
96-byte stack area it allocates.

Figure 4-4 shows the initial configuration of the segments in the Compact Model.
The values of the various segment registers can be changed during execution by
loading from the initial values placed in Base Page. This allows access to the
entire memory space.

4-4

Concurrent DOS 86 Programmer’s Guide 4.3 The Compact Memory Model

tom———— + o ——— + tm———— +
| . | | . | I .
. | - | | <
(- | | DATA | | <
| CODE | 0100H |------ | I I
| | | BASE | | DATA |
cs,IP | | | PAGE | | |
0000H +-——-—- + DS:0000H +------ + ES:0000H +--—--- +

Figure 4-4. Compact Memory Model

If the transient program intends to use the stack group as a stack area, the SS and
SP registers must be set upon entry. The SS and SP registers remain in the initial
stack area, even if a stack group is defined.

Although it appears that the SS and SP registers should be set to address the
stack group, there are two contradictions. First, the transient program might be
using the stack group as a data area. In that case, the stack values set by P_CLI
so a far return can terminate a transient program could overwrite data in the stack
area. Second, the SS register would logically be set to the base of the group,
while the SP would be set to the offset of the end of the group. However, if the
stack group exceeds 64K, the address range from the base to the end of the group
exceeds a 16-bit offset value.

The following RASM-86 code fragment shows how to define a Compact Model
transient program.

cseg

. (code)

dseg

org 100h

. (data)

eseg

. (more data)
sseg

. (stack area)
end

End of Section 4

4-5

SECTION 5

Resident System Process Generation

5.1 Introduction to RSPs

Resident System Processes are programs that become part of Concurrent during
system generation. GENCCPM searches the directory for all files with the filetype
RSP and prompts you to choose whether to include them in the system file,
CCPM.SYS. You create an RSP file by generating a CMD file and then renaming it
with an RSP filetype.

RSPs can be useful in several ways: to create a turnkey system, autoloading
programs when Concurrent is booted; to build customized user interfaces or shells
at the consoles, for monitoring hardware not supported in the XIOS; and to avoid
disk loading time for frequently-used commands.

Appendix A includes the source code for the ECHO RSP. Study this listing carefully
while reading this section. The discussion of P_CREATE in Section 6 is also helpful
in understanding RSPs.

5.2 RSP Memory Models

RSPs have two memory models that are similar to the 8080 Model and the Small
Model for transient programs. However, there are several important distinctions
between transient program and RSP memory models.

The RSP has no equivalent of the Base Page in a transient program’s Data
Segment. The RSP is responsible for its own Process Descriptor (PD) and User
Data Area (UDA). The RSP must also allocate an additional 96 bytes at the end of
the User Data Area if 8087 processing is required. Concurrent automatically
creates and initializes these data structures for transient programs at load time.
RSPs, on the other hand, must initialize these structures within their own Data
Segments (See P_CLI and P_CREATE in Section 6 for PD and UDA descriptions).

Although there is no Base Page in an RSP, there is an RSP header that must exist
at offset 00H of the Data Segment. In the 8080 Model, this implies that the RSP
header is in the Code Segment. Section 5.4 describes the RSP header and its
associated data structures.

5.2.1 8080 Model RSP

The 8080 Model consists of mixed code and data. When Concurrent gives control
of the CPU to an 8080 Model RSP, it initializes the Code, Data, Extra and Stack
Segment registers to the same value.

5-1

5.2 RSP Memory Models Concurrent DOS 86 Programmer’'s Guide

GENCCPM assumes the 8080 Model if the RSP's CMD File Header Record has a
single Code Group Descriptor and no other Group Descriptors (refer to Section
3.3). When discussing an 8080 Model RSP, any reference to the Data Segment also
refers to the Code Segment.

5.2.2 Small Model RSP

The Small Model RSP implies separate Code and Data Segments. Before
Concurrent gives control of the CPU to a Small Model RSP, it initializes the Data,
Extra and Stack Segment Registers to the Data Segment address, while the Code
Segment register is initialized to the Code Segment address.

There is no guarantee where GENCCPM will place the Code Segment in memory
relative to the Data Segment. The CMD Header Record for a Small Model RSP
must have both Data and Code Group Descriptors.

Figure 5-1 shows the 8080 and Small Memory model RSPs.

Fom e + e e e et + High

| I | I

| MIXED I | DATA |

| CODE I |——— - |

| AND | | RSP HEADER |

| DATA | | |

| | DS:--> |----mmmmmmmme [

| m—— e | | |

| RSP HEADER | | CODE |
CS:,DS:—-> +-——-————————— + CS:--> +-——---mmmm—— + Low

8080 Model Small Model

Figure 5-1. 8080 and Small Model RSPs

Note: Concurrent does not support compact model RSPs. Extra and Stack
Segments must be part of the Data Segment.

5.3 Muiltiple Copies of RSPs

GENCCPM can make up to 255 copies of an RSP, with each copy generating a
separate process. The number of copies made by GENCCPM can be fixed, or
dependent on a byte value in the System Data Area. To determine the number of
copies to make, GENCCPM examines the RSP Header. Figure 5-2 shows the RSP
Header format. '

5-2

Concurrent DOS 86 Programmer’s Guide 5.3 Multiple Copies of RSPs

Byte: O0OH 02H 04H 05H 010H
B e et bt +
| LINK | SDATVAR | NCP | RESERVED |
Bt et ettt D e P +

Figure 5-2. RSP Header Format

If the SDATVAR field is nonzero, GENCCPM uses it as an offset of a byte value in
the System Data Area, which contains the number of copies to generate. The
offset should indicate a value you set during system generation. The TMP RSP
uses this feature by placing the offset of the NVCNS (Number of Virtual Consoles)
field into the SDATVAR field. This way, a TMP is generated for each System
Console you specify.

If SDATVAR is 0 then the NCP byte is used as the number or extra copies to make.
If both of these fields are 0 then GENCCPM makes no extra copies. The ECHO RSP
is an example of the latter.

If GENCCPM determines the number of copies is greater than 0, it gives each copy
a unique copy number by placing the number in the NCP field and appending the
ASCIl equivalent to the end of the Process Descriptor NAME field of each copy. If
there is not enough space for the number in the PD NAME, part of the PD NAME is
over written.

For example, with the TMP RSP, GENCCPM makes the specified number of copies
and changes the NAME field in each copy to be TMPO, TMP1, TMP2,.., and sets the
NCP field to 0, 1, 2, ..., respectively.

5.3.1 8080 Model

When GENCCPM makes copies of an 8080 Model RSP, the CS, DS, ES, and SS fields
in each copy’'s User Data Area are set to the paragraph address where the RSP is
in memory after loading.

5.3.2 Small Model

When GENCCPM makes copies of a Small Model RSP, it copies both the Code and
Data Groups of the RSP, if the MEM field of the Process Descriptor is 0. See
P_CREATE in Section 6 for a description of the Process Descriptor format.
GENCCPM sets the UDA fields CS to the Code Segment of the RSP and DS, ES and
SS to the Data Segment of the RSP.

5.3.3 Small Model with Shared Code

If a Small Model RSP has a nonzero MEM field in its Process Descriptor, the Code
Segment is assumed to be reentrant. When GENCCPM makes copies of this type
of RSP, it copies only the Data Group. GENCCPM sets the UDA CS field for each
copy to the paragraph address of the one Code Segment for the RSP’s, but sets
the DS, ES, and SS, in each copied Data Segment to the paragraph address of the
Data Segment for that particular copy.

5.3 Multiple Copies of RSPs Concurrent DOS 86 Programmer’s Guide

5.4 Creating and Initializing an RSP

An RSP that is to be invoked from a console, or through a P_CLI call, must create a
special queue called an RSP Command Queue. Such an RSP is called a Command
RSP, and usually performs some initialization routine then goes into a loop. The
initialization routine consists of creating and opening an RSP Command Queue as
well as changing the priority to the default transient process priority. (Priority
values with regard to RSPs are discussed below.)

The first step of the loop reads a message from the RSP Command Queue. The
process that writes the message to the RSP Command Queue activates the
associated RSP. After the RSP returns from the Q_READ call, it obtains the system
resources it needs, such as the calling process’s console.

Typically, P_CLI assigns the RSP process the console process after successfully
writing the command tail to the RSP Queue. This is only true if the RSP Process
Descriptor name matches the RSP Command Queue name. See P_CLI in Section 6
for more information.

When the RSP completes its activities for the given command, it releases any
system resources it has acquired, including the console, and restarts the loop by
reading from its RSP Command Queue.

A Command RSP is a single process and is a serially reusable resource; in other
words, the RSP acts on one message at a time. When several processes attempt
to invoke a single Command RSP, they must wait. See Q_READ, Q_CREAD,
Q_WRITE and Q_CWRITE in Section 6 for further details.

Note: It is certainly possible to create RSPs that are invoked differently.

Figure 5-3 shows the RSP Command Queue Message format.

Byte: O0O0H 020 . . . 082H
e +
| PDADDRESS | COMMAND TAIL (129 bytes) |
e +

Figure 5-3. RSP Command Queue Message

The PDADDRESS is the offset (relative to the System Data Area segment) of the
Process Descriptor of the process calling the RSP. A program that wants to invoke
an RSP and is forming an RSP Command Queue Message, can find its Process
Descriptor address by calling P_PDADR. The COMMAND TAIL usually contains what
the TMP sends to P_CLI minus the command name, and is terminated with a zero
byte. i

When you enter a command at a console, the TMP performs a P_CLI call which
attempts to open a queue that has the RSP Flag on, and has the same name as
the command sent to the CLI. If the Q_OPEN is successful, P_CLI attempts to
assign the calling process’s console to a process with the same name as the
command.

5-4

Concurrent DOS 86 Programmer’s Guide 5.4 Creating and Initializing an RSP

P_CLI then creates an RSP Command Queue Message with the command tail sent
to the CLI from the TMP, and writes it to the RSP Command Queue. A transient
program can use a Command RSP in the same manner by writing directly to the
appropriate RSP Command Queue. An advantage of using P_CLI is that it looks for
an RSP first and only searches on disk for a CMD file if the the RSP is not found.

When an RSP reads a RSP Command Queue Message, it often needs information
about the calling process, such as which console, list device, drive, or user number
to use. If a P_CLI call invokes an RSP, the RSP is assigned the calling process’s
console, but if the RSP Command Queue is written to directly, the calling process
might or might not assign its console to the RSP.

A Command RSP can use the PD address in the Command RSP Message to find
out what the default devices of the calling process are. The RSP should release
any resources it assigns to itself when it is finished.

The RSP Header begins at offset 0 from the beginning of the RSP Data Segment.
Note that in the 8080 Model, the RSP Header is also in the Code Segment. After
the RSP Header is a Process Descriptor starting at offset 010H. A User Data Area
and a stack must also be within the Data Segment, with the UDA placed at a
paragraph boundary relative to the beginning of the Data Segment.

If system calls assuming a default DMA buffer are used, a 128-byte DMA Buffer
must also exist. The DMA OFFSET field in the User Data Area should be set to the
address of the DMA buffer. When Concurrent creates the process, the DMA
SEGMENT field is initialized to the same value as the DS registerr The DMA
SEGMENT and OFFSET can also be set by calling F_DMASEG and F_DMAOFF once
the RSP is running.

Figure 5-4 shows the beginning of the RSP Data Segment.

5.4 Creating and Initializing an RSP Concurrent DOS 86 Programmer’s Guide

. PROGRAM, DATA, .
. AND RSP STACK .

| |01A0H
| |
| Optional 8087 |
| UDA extension |
| I
| m |0140H
| USER |
| DATA |
| AREA |
o - |10040H
| PROCESS DESCRIPTOR |
| mmmm e |0010H
| RSP HEADER |

DS: —=> 4o +

Figure 5-4. RSP Data Segment

The RSP Header must be located at offset zero in the RSP Data Segment, the RSP
Process Descriptor must be at offset 010H, and the RSP User Data Area must
begin on an even paragraph boundary.

5.4.1 The RSP Header

As discussed in Section 5.2, the number of RSP copies made depends on the
values of the SDATVAR and NCP fields in the RSP Header. If no copies are desired,
these fields must be zero. As a convenience, when Concurrent creates the RSP
process, the LINK field in the RSP Header is set to the paragraph address of the
System Data Area. The System Data Area can be obtained by an RSP or transient
program with the S_SYSDAT call.

5.4.2 The RSP Process Descriptor

The RSP Process Descriptor should be initialed to zeros, except for the PRIORITY,
FLAGS, NAME, and UDA SEGMENT fields. The PRIORITY field is usually initialized to
190. This is higher than transient programs and TMPs (200 and 198 respectively),
but lower than the INIT process, which has a priority of 1. The description of
P_PRIORITY in Section 6 contains more information about system priority
assignments.

Starting an RSP at a priority of 190 ensures the RSP is able to create and open an
RSP Command Queue before it can be invoked through a TMP. RSPs such as
ECHO usually set their priority to 200 after creating and opening their RSP
Command queue and before attempting to read from the queue.

5-6

Concurrent DOS 86 Programmer’s Guide 5.4 Creating and Initializing an RSP

Note: There are no guarantees about the order in which Concurrent creates the
RSPs. If one RSP must run before another, it must have a higher priority. Such is
the case when one RSP uses a resource created by a second RSP; the second
must run (at least during initialization) with a priority higher than the first.

The Process Descriptor SYS and KEEP Flags can be initialized in the RSP Data
Segment. The SYS Flag allows a process to read and write to and from restricted
system queues. This is discussed below with regard to RSP Command Queues.
The KEEP flag signals Concurrent that the process cannot be terminated. KEEP is
necessary if an RSP is not to be terminated when you type CTRL-C on a console
being used by the RSP. The 8087 flag telis Concurrent that a process is actively
using the 8087 processor.

The NAME field of the RSP’s Process Descriptor is 8 bytes long. It is assumed to
be left-justified and padded with blanks on the right. If an RSP Command Queue
is going to be used to invoke the RSP through the CLI, the PD must have the same
upper-case name as the Command Queue.

The UDA field in the Process Descriptor must be the offset (in paragraphs) of the
UDA relative to the RSP data segment. GENCCPM restores the UDA field in the
Process Descriptor to the actual UDA paragraph address when the system is
loaded.

If the PD field name is not the same as the Command Queue, the CLI does not
assign the console to the RSP.

5.4.3 The RSP User Data Area

The User Data Area must have its SP field set to the offset of a three-word IRET
structure, in the RSP's Data Segment. The offset is relative to the beginning of the
Data Segment. The first of the three words is the offset of the code entry point
for the RSP, relative to the beginning of the RSP Code Segment. Concurrent
executes an IRET instruction to start the RSP using these three words for the IP,
CS and Flag registers respectively.

The CS value on the stack is initialized to be the CS field of the UDA, while the
Flag value is set to 0200H (interrupts on). The RSP stack must come immediately
before these three words. The initial values of the AX, BX, CX, DX, DI, Si, and BP
registers are taken from the appropriate fields in the UDA.

The DMA OFFSET field should be set to the offset of the DMA buffer in the RSP’s
Data Segment. Except for the SP and DMA OFFSET fields, and possibly the AX, BX,
CX, DX, DI, SI, and BP fields, the remainder of the UDA fields should be initialized
to 0. The CS, DS, ES, and SS fields are set by GENCCPM as discussed in Section
5.3.

If you include the 8087 extension in the UDA, you must initialize the CW field
(Control Word) to 03FFH and the SW (Status Word) field to 0 before system
generation.

5.4 Creating and Initializing an RSP Concurrent DOS 86 Programmer’s Guide

5.44 The RSP Stack

The RSP must reserve space for its stack, which is assumed to lie within the RSP’s
Data Segment. The RSP stack must be large enough to accommodate what the
RSP code needs, plus four levels (eight bytes) to handle possible hardware
interrupts. We highly recommend that you reserve more than four extra levels of
stack.

The SP field in the RSP’s UDA points to the top of this stack; the top contains the
three-word IRET instruction discussed above.

5.4.5 The RSP Command Queue

The RSP's Command Queue contains information that determines when it begins
execution, and to which console it is attached. If an RSP is to be accessible from
a console via the TMP, the Command Queue name must be in upper-case. The
FLAGS field in the RSP Command Queue Descriptor must have the RSP bit on. If
this flag is not on, P_CLI does not write a message to the RSP Command Queue,
and instead attempts to load a transient program. The KEEP flag should be set on
to protect the RSP QUEUE from inadvertently using a Q_DELETE call.

The RESTRICTED flag makes a queue accessible only by privileged processes.
Privileged processes have the SYS Flag on in their Process Descriptor. If the
RESTRICTED Flag is on in an RSP Command Queue, then only privileged processes
can invoke the related RSP. A lower-case letter in the RSP Command Queue name
and the RESTRICTED Flag provide two methods of filtering access to an RSP
QUEUE.

The Queue Descriptor of the RSP Command Queue must have have a message
length 131 bytes. The number of messages is usually 1. If the Queue Descriptor
is within 64K bytes of the beginning of the System Data Area, buffer space for the
Queue Descriptor must be allocated in the RSP. The BUFFER field in the Queue
Descriptor must be the offset of this buffer, relative to the beginning of the RSP’'s
Data Segment. The buffer size is the message length times the number of
messages, usually 131 bytes.

Note: The queue buffer should be before the Queue Descriptor within the RSP Data
Segment.

An RSP can certainly create other queues besides the RSP Command Queue used
with Command RSPs. However, any queue an RSP creates that lies within 64K of
the System Data Area must have a buffer area pointed to by the BUFFER field in its
Queue Descriptor. To be safe, the buffer should come before the Queue Descriptor
in the RSP’s Data Segment.

It is assumed the BUFFER field points to a buffer that is also within 64K of the
System Data Area. If the Queue Descriptor is farther than 64K from then System
Data Area, Concurrent uses buffer space in the System Data Area. Refer to
Q_MAKE in Section 6 for further details.

In order to open the RSP Command Queue and subsequently read from it, a Queue
Parameter Block and its associated buffer must be allocated in the RSP’'s Data
Segment. These structures are treated just as in a transient process.

5-8

Concurrent DOS 86 Programmer’'s Guide 5.4 Creating and Initializing an RSP

Note: For any queues created by an RSP, the Queue Buffer areas associated with
the Queue Descriptor and the Queue Parameter Block are separate, distinct areas
of storage.

5.4.6 Multiple Processes within an RSP

An RSP can create child processes by calling P_CREATE. Note that if the Process
Descriptor of the process being created is within 64K bytes of the beginning of the
System Data Area, Concurrent uses the PD structure directly. Otherwise it copies
the PD structure into the PD table in the System Data Area.

5.5 Developing and Debugging an RSP

The first RSP you attempt should be very simple, on the order of the ECHO RSP.
New RSPs should be developed and debugged as if they were transient processes,
such as Concurrent’'s CMD utilities, then converted into RSPs.

An RSP debugging session should proceed like an XIOS debugging session: first
load CP/M-86, then invoke SID-86™™, and then bring up Concurrent. The System
Guide provides more information about running Concurrent under CP/M-86.

After reading in the CCPM.SYS file under SID-86, find the RSPSEG field of the
System Data Segment (SYSDAT). The paragraph address of the SYSDAT is found
in the A BASE field of the Data Group Descriptor in the CCPM.SYS command file
header. The RSPSEG field contains the paragraph address of the Data Segment of
the first RSP in a linked list of the RSPs included by GENCCPM.

See S_SYSDAT in Section 6 for details of SYSDAT.

Using SID-86's Display Memory (D) command to show memory at the segment
RSPSEG, you can identify the name of the first RSP in the RSP's Process
Descriptor. The LINK field in the RSP Header, which is the first word in the
RSPSEG segment, is the paragraph value of the next RSP’s Data Segment. A zero
in the LINK field means the end of the list of RSPs.

Note that linkage information is lost once Concurrent is initialized. The LINK field
of the RSP Header contains the System Data Segment once an RSP begins
execution.

Once you locate the RSP to be debugged, the initial code entry point can aiso be
found. As discussed previously, the SP field in the RSP's UDA is the offset from
the beginning of the RSP’s Data Segment of the three-word IRET structure. The
first word of the IRET structure contains the initial value of the IP register when
Concurrent creates the RSP process. The initial value of the CS register is in the
CS field also in the RSP's UDA. Once this is done, you can set break points in the
RSP, similar to setting break points in XIOS system calls.

End of Section 5

SECTION 6

Concurrent System Calls

This section summarizes the Concurrent DOS 86 system calls in tabular form. It is
intended both as an introduction to the calls and as a reference for use when
programming. You should be familiar with the material in Sections 1 through 5
before proceeding.

Note: The system calls described in this section are native to Concurrent. Section
7 describes the DOS system calls that Concurrent emulates. [t is strongly
recommended that you do not mix Concurrent and DOS system calls in the same
program; code purely in one or the other.

6.1 Reference Tables
Table 6-1 describes the functional categories of Concurrent system calls and their
general uses.

Table 6-2 lists the system calls in each category and serves as a quick reference
to find the call you need while programming.

Table 6-3 is a summary of the system calls in alphabetical order (by mnemonics)
along with the parameters you must pass when making the call, and the values
returned by the call.

Table 6-4 lists the system calls humerically by function number.
Table 6-5 lists the error codes returned in register CX.

Table 6-6 is an index of the page numbers and figure titles for commonly used
data structures.

6.1 Reference Tables

Table 6-1. System Call Functional Categories

Category Use

A_ Auxiliary Device 1/0 System Calls

The Auxiliary Device 1/0 system calls support /0 operations
for auxiliary devices.

C_ Console System Calls

The Console system calls handle I/0O operations for virtual
consoles on a character, string, and line basis, attach and
detach consoles from processes, and return or change the
number corresponding to the default virtual console.

DEV_ Device System Calls

The Device system calls deal with flags and polling in
managing system resources.

DRV_ Disk Drive System Calls

The Disk Drive system calls manage Concurrent’s logical
drives.

F_ File~Access System Calls

The File-Access system calls include calls that operate on
files within a directory, calls that operate on records within
files, and other miscellaneous system calls related to file
170.

L_ List Device System Calls

The List Device system calls write characters or strings to
the default list device, attach and detach the default list
device from calling processes, and return or change the
number corresponding to the default list device.

M_ MP/M-86"™ Memory Management System Calls

The M_ Memory Management system calls are included for
compatibility with MP/M-86. These calls allocate and free
memory segments according to the MP/M-86 segmentation
algorithm.

MC_ cP/M-86™ Memory Management System Calls

The MC_ Memory Management system calls allocate and
free memory segments according to the CP/M-86
segmentation algorithm.

Concurrent DOS 86 Programmer’s Guide

Concurrent DOS 86 Programmer’'s Guide 6.1 Reference Tables

Table 6-1. (Cont'd)

Category Use

P_ Process/Program System Calls

The Process/Program system calls create and terminate
processes, call other processes, and perform other
operations on processes.

Q_ Queue Management System Calls

The Queue Management system calls create, delete, open,
read from, and write to queues.

S_ System Information Calls
The System information calls return various types of
systems data, such as version numbers and addresses.
T_Time System Calls
The Time system calls set the system calendar and clock

and return the time from them in hours and minutes or in
hours, minutes, and seconds.

6.1 Reference Tables Concurrent DOS 86 Programmer’s Guide

Table 6-2. Concurrent DOS 86 System Calls

Mnemonic Definition
Auxiliary Device 1I/0 Calls

A ATTACH Attach default auxiliary device to calling process.

A CATTACH Conditionally attach default auxiliary device to calling process.

A _DETACH Detach default auxiliary device from calling process.

A _GET Return default auxiliary device of calling process.

A _READ Read a character from the default auxiliary device.

A_READBLK Read characters from the default auxiliary input device and write
them to a buffer.

A_SET Set default auxiliary device for calling process.

A _STATIN Obtain input status of default auxiliary input device.

A STATOUT Obtain output status of default auxiliary output device.

A WRITE Write a character to the default auxiliary output device.

A WRITEBLK Write a character string to the default auxiliary output device.

Console I/0 Calls

C_ASSIGN Assign default virtual console to another process.

C_ATTACH Establish ownership of the default virtual console to the calling
process; suspend process until console becomes available.

C_CATTACH Conditionally establish ownership of the default virtual console
by the calling process; return an error message if the device is
unavailable.

C_DELIMIT Set or return current String Output Delimiter; used with
C_WRITESTR.

C_DETACH Detach default virtual console from the calling process.

C_GET Return the virtual console number of the calling process.

C_MODE Set or return Console mode.

C_RAWIO lserform Raw mode 1/0 with the default virtual console.

C_READ Read a character from the default virtual console.

C_READSTR Read an edited line from the default virtual console.

Concurrent DOS 86 Programmer’'s Guide

6.1 Reference Tables

Table 6-2. (Cont'd)

Mnemonic Definition

C_SET Set or change the default virtual console for the calling process.

C_STAT Obtain the input status of the default virtual console.

C_WRITE Write a character to the default virtual console.

C_WRITEBLK Write a specified number (block) of characters to the default
virtual console.

C_WRITESTR Write a string to the default virtual console until delimiter.

Device Calls
DEV_POLL Poll a noninterrupt-driven device.
DEV_SETFLAG Set a system flag.

DEV_WAITFLAG

DRV_ACCESS
DRV_ALLOCVEC
DRV_ALLRESET
DRV_DPB

DRV_FLUSH
DRV_FREE
DRV_GET
DRV_GETLABEL
DRV_LOGINVEC
DRV_RESET
DRV_ROVEC
DRV_SET
DRV_SETLABEL
DRV_SETRO
DRV_SPACE

Wait for a system flag to be set before restoring the current
process.

Disk Drive Calls
Indicate access to specified drives.
Get the address of the disk Allocation Vector.
Reset all disk drives.

Return the segment and offset address of the Disk Parameter
Block for the default disk of the calling process.

Write internal pending blocking/deblocking data buffers to disk.
Relinquish access to specified drives.

Return the default drive of the calling process.

Return the directory label data byte for the specified drive.
Return bit map of logged-in disk drives.

Reset the specified drives.

Return bit map vector of drives set to Read-Only.

Set default drive of calling process.

Create or update a directory label.

Set the default drive to Read-Only.

Return unallocated space on the specified drive.

6-5

6.1 Reference Tables Concurrent DOS 86 Programmer’s Guide

Table 6-2. (Cont'd)

Mnemonic Definition
File System Calis

F_ATTRIB Set file attributes.

F_CLOSE Close file.

F_DELETE Delete file.

F_DMAGET Return segment and offset address of Direct Memory Address
buffer.

F_DMAOFF Set the Direct Memory Address offset address.

F_ DMASEG Set Direct Memory Address buffer segment address.

F_ERRMODE Set the BDOS Error mode.

F_LOCK Lock record within file opened in Unlocked mode.

F_MAKE Create file.

F_MULTISEC Set the BDOS Multisector Count.

F_OPEN Open file for record access.

F_PARSE Parse an ASCII string and initialize an FCB.

F_PASSWD Set the default password.

F_RANDREC Set the Random Record field in the FCB from the sequential
record position.

F_READ Read records sequentially.

F_READRAND Read random records

F_RENAME Rename file.

F_SETDATE Set file time and date stamp.

F_SFIRST Search for first matching directory FCB that matches the
specified FCB.

F_SIZE Return the size of a file.

F_SNEXT Search for next matching directory FCB that matches the FCB
specified in the F_SFIRST system call.

F_TIMEDATE Return file’s date and time stamps and password mode.

F_TRUNCATE Truncate file to the specified Random Record Number.

F_UNLOCK Remove record locks.

F_USERNUM Set or return the default user number of the calling process.

6-6

Concurrent DOS 86 Programmer’s Guide

6.1 Reference Tables

Table 6-2. (Cont'd)

Mnemonic Definition

F_WRITE Write records sequentially.

F_WRITERAND Write random records.

F_WRITEXFCB Create or update file’s XFCB.

F_WRITEZF Write random records and zero-fill any previously unallocated
data blocks.

List Device Calls

L_ATTACH Establish ownership of the default list devie by the calling
process; suspend the process until the device is available.

L CATTACH Conditionally establish ownership of the default list device by
the calling process; return error code if the device is
unavailable.

L_DETACH Relinquish ownership of the default list device.

L _GET Return the default list device number of the calling process.

L_SET Change the default list device for the calling process.

L_WRITE Write a character to the default list device.

L_WRITEBLK Write the specified number of characters (block) to the default
list device.

MP/M-compatible Memory Allocation Calls

M_ALLOC Allocate the memory segment between the sizes specified in the
Memory Parameter Block to the calling process.

M_FREE Free the specified memory segment.

MC_ABSALLOC
MC_ABSMAX

MC_ALLFREE
MC_ALLOC

MC_FREE

MC_MAX

CP/M-compatible Memory Allocation Calls
Allocate a specified amount of RAM at a specific address.

Allocate the maximum amount of RAM available at a specified
address.

Free all memory owned by the calling process.

Allocate a segment of RAM, as specified in the Memory Control
Block, to the calling process.

Free an area of RAM beginning at a specified address, and
extending to the end of the previously-allocated memory area.

Allocate the maximum amount of RAM available in the system.

6-7

6.1 Reference Tables Concurrent DOS 86 Programmer’s Guide

Table 6-2. (Cont'd)

Mnemonic Definition
Process/Program Calls

P_ABORT Terminate a process specified by name or Process Descriptor
address.

P_CHAIN Pass control to the program specified in the DMA buffer.

P_CLI Interpret and execute the specified command line by calling
Command Line Interpreter (CLI).

P_CREATE Create a subprocess.

P_DELAY Suspend the calling process for a specified number of system
clock ticks.

P_DISPATCH Force a dispatch operation; give up the CPU resource to the
highest priority process ready to run.

P_LOAD Load the specified CMD file in memory; return its Base Page
segment address.

P_PDADR Return the address of the Process Descriptor of the calling
process.

P_PRIORITY Set the priority of the calling process.

P_RPL Invoke a system call from a Resident Procedure Library.

P_TERM Terminate the calling process.

P_TERMCPM Terminate calling process unconditionally, release all owned
resources.

Queue Management Calls

Q_CREAD Conditionally read a message from a system queue; return error
code if a message is not available.

Q_CWRITE Conditionally write a message to a system queue; return an
error code if space is not available.

Q_DELETE Delete a system queue. '

Q_MAKE Create a system queue.

Q_OPEN Open a system queue for subsequent queue operations.

Q_READ Read a message from a system queue; suspend calling process
until message is available.

Q_WRITE Write a message to a system queue; suspend calling process

until space becomes available.

6-8

Concurrent DOS 86 Programmer’s Guide 6.1 Reference Tables

Table 6-2. (Cont'd)

Mnemonic Definition

System Information Calls
S_BDOSVER Return BDOS version number, CPU and operating system type.
S_BIOS Call specified CP/M-86 BIOS character I/0 routine.
S_OSVER Return type and version number of Concurrent.
S_SERIAL Return the Concurrent system serial number.
S_SYSDAT Return address of the System Data Segment (SYSDAT)

Time Calls

T_GET Obtain the system calendar and clock, hours and minutes only.
T_SECONDS Return current system date and time; hours, minutes, seconds.
T_SET Set internal system calendar and clock to specified value.

6.1 Reference Tables

Concurrent DOS 86 Programmer’s Guide

Table 6-3.

System Call Summary - By Mnemonic

Mnemonic

Parameters

Returned Values

A_ATTACH (A5H)
A_CATTACH (A7H)
A_DETACH (A6H)

A_GET (A9H)

A READ (03H)
A_READBLK (172H)
A_SET (A8H)

A_STATIN (07H)
A_STATOUT (1:8H)
A_WRITE (04H)
A_WRITEBLK (ADH)
C_ASSIGN (95H)
C_ATTACH (92H)
C_CATTACH (A2H)
C_DELIMIT (6EH)
C_DETACH (93H)
C_GET (99H)
C_MODE (6DH)

C_RAWIO (06H)
C_READ (01H)
C_READSTR (0AH)
C_SET (94H)

C_STAT (0BH)
C_WRITE (02H)
C_WRITEBLK (6FH)
C_WRITESTR (09H)
DEV_POLL (83H)
DEV_SETFLAG (85H)
DEV_WAITFLAG (84H)
DRV_ACCESS (26H)
DRV_ALLOCVEC (1BH)
DRV_ALLRESET (ODH)
DRV_DPB (1FH)
DRV_FLUSH (30H)
DRV_FREE (27H)
DRV_GET (19H)
DRV_GETLABEL (65H)

none
none
none

none
none
DX = .CHCB
AL = Aux #

none

none

DL = char

DX =.CHCB

DX = .ACB

none

none

DX = Out Delim

none

none

DX = Con Mode
= FFFFH

see def

none

DX = .Buffer

DL = Console

none

DL = char

DX = .CHCB

DX = .Buffer

DL = Device

DL = Flag

DL = Flag

DX = Drive Vect

none

none

none

none

DX = Drive Vect

none

DX = Drive #

none
AX = 0000 if attach, FFFF on failure
AX = 0000 if detach, FFFF on failure
CX = Error Code

AL = Aux Dev #

AL = char

AX = # of chars read

AX = 0000 if set, FFFF on failure
CX = Error Code

AL = FFH/00H
AL = FFH/00H
none

AX = # of chars written
AX = Return Code
none

AX = Return Code
AL = Out Delim
none

AL = con #

none

AX = Con Mode
see def

AL = char

see def

none

AL = 00/01

none

none

none

none

AX = Return Code
AX = Return Code
none

AX = Alloc

see def

AX = .DPB

see def

none

AL = Cur Drive #
AL = Label Data Byte

Concurrent DOS 86 Programmer’s Guide

6.1 Reference Tables

Table 6-3. (Cont'd)

Mnemonic Parameters Returned Values
DRV_LOGINVEC (18H) none AX = Login Vect
DRV_RESET (25H) DX = Drive Vect AL = Error Code
DRV_ROVEC (1DH) none AX = R/0 Vect
DRV_SET (0EH) DL = Drive # see def
DRV_SETLABEL (64H) DX = .FCB AL = Dir Code
DRV_SETRO (1CH) none see def
DRV_SPACE (2EH) DL = Drive # see def
F_ATTRIB (1EH) DX = .FCB see def
F_CLOSE (10H) DX = .FCB AL = Dir Code
F_DELETE (13H) DX = .FCB AL = Dir Code
F_DMAGET (34H) none AX = DMA Offset
F_DMAOFF (1AH) DX = .DMA none
F_DMASEG (33H) DX = .DMA Seg none
F_ERRMODE (2DH) DL = Err Mode none
F_LOCK (2AH) DX = .FCB AL = Error Code
F_MAKE (16H) DX = .FCB AL = Dir Code
F_MULTISEC (2CH) DL = # of Recs AL = Return Code
F_OPEN (OFH) DX = .FCB AL = Dir Code
F_PARSE (98H) DX = .PFCB see def
F_PASSWD (6AH) DX = .Password none
F_RANDREC (24H) DX = .FCB RO, R1, R2
F_READ (14H) DX = .FCB AL = Error Code
F_READRAND (21H) DX = .FCB AL = Error Code
F_RENAME (17H) DX = .FCB AL = Dir Code
F_SFIRST (11H) DX = .FCB AL = Dir Code
F_SIZE (23H) DX = .FCB RO, R1, R2
AL = Dir Code

F_SNEXT (12H) none AL = Dir Code
F_TIMEDATE (66H) DX = XFCB AL = Dir Code
F_TRUNCATE (63H) DX = .FCB see def
F_UNLOCK (2BH) DX = .FCB AL = Error Code
F_USERNUM (20H) DL = OFFH (get) AL = User #

= User # (set) none

F_WRITE (15H)
F_WRITERAND (22H)
F_WRITEXFCB (67H)
F_WRITEZF (28H)
L_ATTACH (SEH)
L_CATTACH (A1H)
L_DETACH (9FH)

DX = .FCB
DX = .FCB
DX = XFCB
DX = .FC
none
none

none

AL = Error Code
AL = Error Code
AL = Dir Code

AL = Error Code
none

AX = Return Code
none

6.1 Reference Tables Concurrent DOS 86 Programmer’s Guide

Table 6-3. (Cont'd)

Mnemonic . Parameters Returned Values
L_GET (AdH) none AL = list #

L_SET (AQH) DL = List # none

L_WRITE (05H) DL = char none

L_WRITEBLK (70H) DX = .CHCB none

M_ALLOC (80H) DX = .MPB AX = Return Code
M_FREE (82H) DX = .MPB none
MC_ABSALLOC (38H) DX = .MCB see def
MC_ABSMAX (36H) DX = .MCB see def
MC_ALLFREE (3AH) none none

MC_ALLOC (37H) DX = .MCB see def

MC_FREE (39H) DX = .MCB see def

MC_MAX (35H) DX = .MCB see def

P_ABORT (9DH) DX = .ABP AX = Return Code
P_CHAIN (2FH) see def none

P_CLI (96H) DX = .CLBUF none

P_CREATE (S0H) DX = .PD none

P_DELAY (8DH) DX = #ticks none

P_DISPATCH (8EH) none none

P_LOAD (3BH) DX = .FCB AX = BP Addr
P_PDADR (SCH) none AX = PD Addr
P_PRIORITY (91H) DL = Priority none

P_RPL (97H) DX = .CPB AX = result
Q_CREAD (8AH) DX = .QPB AX = Return Code
Q_CWRITE (8CH) DX = .QPB AX = Return Code
Q_DELETE (88H) DX = .QPB AX = Return Code
Q_MAKE (86H) DX = .QD none

Q_OPEN (87H) DX = .QPB AX = Return Code
Q_READ (89H) DX = .QPB none

Q_WRITE (8BH) DX = .QPB none

S_BDOSVER (0OCH) none AX= Version#
S_BIOS (32H) DX = .BD AX = BIOS rtn
S_OSVER (A3H) none AX = Version #
S_SERIAL (6BH) DX = .serial # serial # set
S_SYSDAT (9AH) none AX = Sys Data Addr
T_GET (69H) DX = .TOD AL = seconds
T_SECONDS (9BH) DX = .TOD TOD filled in
T_SET (68H) DX = .TOD none

Concurrent DOS Programmer’s Guide 6.1 Reference Tables

Table 6-3 uses the following conventions:

. Address of

Number

ACB Assign Control Block
APB Abort Parameter Block
Addr Address

BD Blos Descriptor

BP Base Page

Char ASCII Character

CHCB Character Control Block
CLBUF Command Line Buffer
CPB Call Parameter Block
Con Console

Cur Current

Delim Delimiter

Dir Directory

DMA Direct Memory Address
FCB File Control Block

MCB Memory Control Block
MPB Memory Parameter Block
Num Number

Out Output

PD Process Descriptor
PFCB Parse Filename Control Block
QD Queus Descriptor

QPB Queue Parameter Block
Rec Record

Rtn Return

Sys System

TOD Time of Day

Vect Vector

Uppercase mnemonics refer to Data Structures; see the function definition. A "." before a
Data Structure means the byte offset of the Data Structure. A Return Code Is either 0 for
success or OFFFFH to Indicate failure. When the Return Code In AX Is OFFFFH, CX Is the
Error Code (see Table 6-5). An error code returned in AL is specific to the BDOS system call
that was made.

6-13

6.1 Reference Tables Concurrent DOS Programmer’s Guide

Table 6-4. System Call Summary by Function Number

Decimal Hexadecimal Mnemonic

0 0 P_TERMCPM

1 1 C_READ

2 2 C_WRITE

3 3 A_READ

4 4 A_WRITE

5 5 L_WRITE

6 6 C_RAWIO

7) 7 A_STATIN

8 8 A_STATOUT

9 9 C_WRITESTR
10 A C_READSTR

11 B C_STAT

12 C S_BDOSVER
13 D DRV_ALLRESET
14 E DRV_SET

15 F F_OPEN

16 10 F_CLOSE

17 11 F_SFIRST

18 12 F_SNEXT

19 13 F_DELETE

20 14 F_READ

21 15 F_WRITE

22 16 F_MAKE

23 17 F_RENAME
24 18 DRV_LOGINVEC
25 19 DRV_GET

26 1A F_DMAOFF

27 1B DRV_ALLOCVEC
28 1C DRV_SETRO
29 1D DRV_ROVEC
30 1E F_ATTRIB

31 1F DRV_DPB

32 20 F_USERNUM
33 21 F_READRAND
34 22 F_WRITERAND
35 23 F_SIZE

36 24 F_RANDREC

6-14a

Concurrent DOS Programmer's Guide 6.1 Reference Tables

Table 6-4. System Call Summary by Function Number

Decimal Hexadecimal Mnemonic

37 25 DRV_RESET
38 26 DRV_ACCESS
39 27 DRV_FREE

40 28 F_WRITEZF

(Table 6-4 Is continued on page 6-15)

6-14b

&

Concurrent DOS 86 Programmer’s Guide 6.1 Reference Tables

Table 6-4. (Cont'd)

Decimal Hexadecimal Mnemonic
42 2A F_LOCK
43 2B F_UNLOCK
44 2C F_MULTISEC
45 2D F_ERRMODE
46 2E DRV_SPACE
47 2F P_CHAIN
48 30 DRV_FLUSH
50 32 S_BIOS
51 33 F_DMASEG
52 34 F_DMAGET
53 35 MC_MAX
54 36 MC_ABSMAX
55 37 MC_ALLOC
56 38 MC_ABSALLOC
57 39 MC_FREE
58 3A MC_ALLFREE
59 3B P_LOAD
99 63 F_TRUNCATE
100 64 DRV_SETLABEL
101 65 DRV_GETLABEL
102 66 F_TIMEDATE
103 67 F_WRITEXFCB
104 68 T_SET
105 69 T_GET
106 6A F_PASSWD
107 6B S_SERIAL
109 6D C_MODE
110 6E C_DELIMIT
11 6F C_WRITEBLK
112 70 L_WRITEBLK
116 74 F_SETDATE
128 80 M_ALLOC
129 81 M_ALLOC
130 82 M_FREE
131 83 DEV_POLL
132 84 DEV_WAITFLAG
133 85 DEV_SETFLAG
134 86 Q_MAKE
135 87 Q_OPEN
136 88 Q _DELETE
137 89 Q_READ

6.1 Reference Tables Concurrent DOS 86 Programmer’s Guide

Table 6-4. (Cont'd)

Decimal Hexadecimal Mnemonic
138 8A Q_CREAD
139 8B Q_WRITE
140 8C Q_CWRITE
141 8D P_DELAY
14C 8E P_DISPATCH
143 8F P_TERM
144 90 * P_CREATE
145 91 P_PRIORITY
146 92 C_ATTACH
147 93 C_DETACH
148 94 C_SET
149 95 C_ASSIGN
150 96 P_CL
151 97 P_RPL
152 98 F_PARSE
153 99 C_GET
154 9A S_SYSDAT
155 9B T_SECONDS
156 9C P_PDADR
157 9D P_ABORT
158 9E L_ATTACH
159 9F L_DETACH
160 A0 L_SET
161 A1l L_CATTACH
162 A2 C_CATTACH
163 A3 S_OSVER
164 A4 L GET
165 A5 A_ATTACH
166 A6 A DETACH
167 A7 A CATTACH
168 A8 A _SET
169 A9 A GET
172 AC A_READBLK
173 AD A_WRITEBLK

Concurrent DOS 86 Programmer’s Guide 6.1 Reference Tables

Table 6-5. Register CX Error Codes

Dec Hex Error Report
0 00H No error
1 01H System call not implemented
2 02H lllegal system call number
3 03H Cannot find memory
4 04H lllegal flag number
5 05H Flag overrun
6 06H Flag underrun
7 07H No unused Queue Descriptors
8 08H No free queue buffer
9 09H Cannot find queue
10 0AH Queue in use
12 OCH No free process descriptors
13 ODH No queue access
14 OEH Empty queue
15 OFH Full queue
16 10H CLI queue missing
17 11H No 8087 in system
18 12H No unused Memory Descriptors
19 13H lllegal console number
20 14H No Process Descriptor match
21 15H No console match
22 16H No CLI process
23 17H lllegal disk number
24 18H lllegal filename
25 19H lllegal filetype
26 1AH Character not ready
27 1BH lllegal memory descriptor
28 1CH Bad return from BDOS load
29 1DH Bad return from BDOS read
30 1EH Bad return from BDOS open
31 1FH Null command
32 20H Not owner of resource
33 21H No CSEG in load file
34 22H Process Descriptor exists on Thread Root
35 23H Could not terminate process
36 - 24H Cannot attach to process
37 25H lllegal list device number
38 26H Illegal password
40 28H External termination occurred
41 29H Fixup error upon load
42 2AH Flag set ignored
43 2BH lllegal auxiliary device number

6.1 Reference Tables Concurrent DOS 86 Programmer’s Guide

Table 6-6. Data Structures Index

Figure Title Page
2-1 FCB - File Control Block 2-8

2-2 FCB Initialized for a DOS Directory 2-11
2-3 FCB Time/Date Fields for DOS Files 2-13
2-4 Directory Label Format 2-17
2-5 XFCB - Extended File Control Block 2-18
2-6 Directory Record with SFCB 2-21
2-7 SFCB Subfields 2-21

CMD File Header Format

Group Descriptor Format

Concurrent DOS 86 Base Page Values
Initial Program Stack

Concurrent CP/M 8080 Memory Model
Concurrent CP/M Small Memory Model
Concurrent CP/M Compact Memory Model

[)
|

U
1

ARABWW®
B WN = WN -
AEAPWOW
TAWNDWW

5-1 8080 and Small RSP Models 5-2
5-2 RSP Header Format 5-3
5-3 RSP Command Queue Message 5-4
5-4 RSP Data Segment 5-6
6-1 ACB - Assign Control Block 6-30
6-2 Console Buffer Format 6-41
6-3 Drive, R/0, or Login Vector Structure 6-52
6-4 DPB - Disk Parameter Block 6-55
6-5 Disk Free Space Field Format 6-69
6-6 PFCB - Parse Filename Control Block 6-88
6-7 MCB - Memory Control Block 6-126
6-8 MPB - Memory Parameter Block 6-127
6-9 MFPB - M_FREE Parameter Block 6-130
6-10 APB - Abort Parameter Block 6-137
6-11 CLI Command Line Buffer 6-140
6-12 PD - Process Descriptor : 6-143
6-13 UDA - User Data Area 6-148
6-14 CPB - Call Parameter Block 6-156
6-15 QPB - Queue Parameter Block 6-160
6-16 QD - Queue Descriptor Format 6-165
6-17 BIOS Descriptor Format 6-172
6-18 Serial Number Format 6-174
6-19 SYSDAT Table 6-176
6-20 TOD Structure 6-181

Concurrent DOS 86 Programmer’s Guide A_ATTACH

A_ATTACH
Attach Default Auxiliary Device to Calling Process

Entry Parameters:
Register CL: AB5H (165)

A_ATTACH attaches the default auxiliary device to the calling process. If the
auxiliary device is already owned by the calling process or if it is not owned by
another process, A ATTACH immediately returns with ownership established and
verified. If another process owns the auxiliary device, the calling process
relinquishes the CPU and waits until the auxiliary device becomes available.

The A READ, A READBLK, A WRITE, and A _WRITEBLK calls internally invoke
A_ATTACH to ensure the calling process owns the auxiliary device before
attempting the appropriate read or write operation. If the process does not own
the device, these Auxiliary Device I/0 system calls use A ATTACH to establish
ownership.

The preferred method of performing auxiliary device 1/0 is to call A ATTACH to
establish device ownership before invoking the appropriate read or write system
function.

A_CATTACH Concurrent DOS 86 Programmer’s Guide

A_CATTACH
Conditionally Attach Default Auxiliary Device To Calling Process’

Entry Parameters:
Register CL: A7H (167)

Returned Values:
Register AX: 0000 on attach, FFFFH on failure
BX: Same as AX

A _CATTACH attaches the default auxiliary device to the calling process only if the
device is currently available. If the auxiliary device is currently attached to another
process, A_ATTACH returns a value of FFFFH to indicate the device could not be
attached. A _CATTACH returns a value of 0000 to indicate that either the auxiliary
device is already attached to the process, or that it was successful in attaching the
device.

6-20

Concurrent DOS 86 Programmer’s Guide A_DETACH

A _DETACH
Detach Default Auxiliary Device from Calling Process

Entry Parameters:
Register CL: AG6H (166)

Returned Values:
Register AX: 0000 on detach, FFFFH on failure
BX: Same as AX
CX: Error code

A DETACH detaches the default auxiliary device from the calling process.
A DETACH performs no action if the auxiliary device is not currently attached to
the calling process.

Table 6-5 contains the list of error codes returned in register CX.

6-21

A _GET Concurrent DOS 86 Programmer’s Guide

A_GET
Return the Calling Process’s Default Auxiliary Device

Entry Parameters:
Register CL: A9H (169)

Returned Values:
Register AL: Auxiliary device number
BL: Same as AL

A_GET returns the default auxiliary device number of the calling process.

6-22

Concurrent DOS 86 Programmer’s Guide A_READ

A_READ
Read a Character from the Default Auxiliary Input Device

Entry Parameters:
Register CL: 03H (3)

Returned Values:
Register AL: ASCII character
BL: Same as AL

A_READ reads the next 8-bit character from the logical auxiliary input device
(AUXIN:) and returns it in register AL. Before reading the character, Concurrent
internally calls A ATTACH to ensure that the calling process owns its default
auxiliary device (see A ATTACH). A _READ does not return control to the calling
process until it has read the character.

6-23

A_READBLK Concurrent DOS 86 Programmer’'s Guide

A_READBLK

Read Characters from the Default Auxiliary
Input Device and Write Them to a Buffer

Entry Parameters:
Register CL: ACH (172)
DX: CHCB address

Returned Values:
Register AX: Number of characters read
BX: Same as AX

“A_READBLK reads characters from the default auxiliary input device (AUXIN:) and
writes them into the character buffer located by the Character Control Block
(CHCB) addressed in DX. Concurrent calls A_ATTACH to ensure the calling process
owns its default auxiliary device before performing the read operation (see
A_ATTACH).

The format of the CHCB is as follows:

Bytes 0-1: Offset of character buffer
Bytes 2-3: Segment address of character buffer
Bytes 4-5: Length of character buffer

A READBLK returns the number of characters actually read from the default
auxiliary device in register AX. A_READBLK returns to the calling process when the
status of AUXIN: indicates that the device is empty or the character buffer is full.
A _READBLK does not return control to the calling process until at least one
character has been read.

6-24

Concurrent DOS 86 Programmer’s Guide A_SET

A_SET
Set the Calling Process’s Default Auxiliary Device

Entry Parameters:
Register CL: A8H (168)
DL: Auxiliary device number

Returned Values:
Register AX: 0000 on set, FFFF on failure
BX: Same as AX
CX: Error code

A_SET sets the default auxiliary device for the calling process.

Table 6-5 contains the list of error codes returned in register CX.

A_STATIN Concurrent DOS 86 Programmer’s Guide

A_STATIN
Obtain the Input Status of the Default Auxiliary Input Device

Entry Parameters:
Register CL: 07H (7)

Returned Values:
Register AL: FFH Character ready, 00 Not ready
BL: Same as AL

A_STATIN checks the input status of the AUXIN: device. If a character is ready for
input from the auxiliary device, A STATIN returns the value FFH in register AL
A_STATIN returns 00H if no input is ready.

6-26

Concurrent DOS 86 Programmer’s Guide A STATOUT

A_STATOUT
Obtain the Output Status of the Default Auxiliary Output Device

Entry Parameters:
Register CL: 08H (8)

Returned Values:
Register AL: FFH Ready for output, 00 Not ready
BL: Same as AL

A_STATOUT checks the output status of the AUXOUT: device. If AUXOUT: is ready
for output, A_STATOUT returns the value FFH in register AL. A_STATOUT returns
O0H if the auxiliary device is not ready for output.

6-27

A_WRITE Concurrent DOS 86 Programmer’'s Guide

A_WRITE

Write a Character to the Default Auxiliary Output Device

Entry Parameters:
Register CL: 04H (4)
DL: ASCII character

A_WRITE writes the specified character to the default auxiliary device of the calling
process. Before writing the character, A WRITE calls A_ ATTACH to ensure the
calling process owns its default auxiliary device. If the process does not own the
device, A_WRITE uses A ATTACH to establish ownership (see A_ATTACH).

6~28

Concurrent DOS 86 Programmer’s Guide A_WRITEBLK

A_WRITEBLK

Send Specified Character String to
the Default Auxiliary Output Device

Entry Parameters:
Register CL: ADH (173)
DX: CHCB address

Returned Values:
Register AX: Number of characters written
BX: Same as AX

A WRITEBLK writes the character string located by the Character Control Block
(CHCB) addressed in register DX to the default auxiliary device. As with A WRITE,
Concurrent ensures the calling process owns the auxiliary device by calling
A _ATTACH before attempting the write operation (see A_ATTACH).

The format of the CHCB is as follows:

Bytes 0-1: Offset of character string
Bytes 2-3: Segment address of character string
Bytes 4-5: Length of character string

A WRITEBLK returns the number of characters written to the default auxiliary
device in register AX. A WRITEBLK returns to the calling process when the status
of AUXOUT: indicates that the device is full or the character string has been
written. A _WRITEBLK does not return control to the calling process until at least
one character has been written.

6-29

C_ASSIGN Concurrent DOS 86 Programmer’s Guide

C_ASSIGN
Assign Default Console Device To Another Process

Entry Parameters:
Register CL: 095H (149)
DX: ACB Address - Offset
DS: ACB Address — Segment

Returned Values:
Register AX: 0 if assign “OK”, OFFFFH on Failure
BX: Same as AX
CX: Error Code

C_ASSIGN directly assigns the specified console to a specified process, overriding
the normal mechanism of the C_ATTACH and C_DETACH calls. C_ASSIGN returns
an error code if a process other than the calling process owns the console.
C_ASSIGN ignores other processes waiting to attach to the specified console, and
they continue to wait until the current owner either calls C_DETACH, or terminates.

The calling process passes the address of an Assign Control Block (ACB). Figure
6-1 shows the Assign Control Block format. Table 6-7 lists the fields in the
Assign Control Block. Table 6-5 contains the list of error codes returned in CX.

00 | CNS | MATCH | PD |

Figure 6-1. ACB - Assign Control Block

6-30

Concurrent DOS 86 Programmer’s Guide

C_ASSIGN

Table 6-7. ACB Field Definitions

Field

Definitions

CNS
MATCH

PD

NAME

Console to assign

Boolean; if OFFH, the process being assigned the console
must have the CNS as its default console for a successful
Assign. If OH, no check is made.

Process ID of the process being assigned the console. If
this field is zero, a search is made of the Thread list for a
process whose name is NAME. This field must be either
zero or a valid Process ID. If this value is not a valid PD,
an error occurs.

8-byte process name to search for. An error occurs if a
process by this name does not exist.

6-31

C_ATTACH Concurrent DOS 86 Programmer’s Guide

C_ATTACH
Attach Default Console To Calling Process

Entry Parameters:
Register CL: 092H (146)

C_ATTACH attaches the default console to the calling process. If the console is
already owned by the calling process or if it is not owned by another process,
C_ATTACH immediately returns with ownership established and verified. If another
process owns the console, the calling process waits until the console becomes
available.

6-32

Concurrent DOS 86 Programmer’s Guide c_CATTACH

C_CATTACH
Conditionally Attach Default Console To Calling Process

Entry Parameters:
Register CL: 0A2H (162)
Returned Values:
Register AX: 0 if attach ‘OK’, OFFFFH on failure
BX: Same as AX
CX: Error Code

C_CATTACH attaches the default console of the calling process only if the console
is currently unattached. If the console is currently attached to another process,
C_CATTACH returns a value of OFFH indicating the console could not be attached.
C_CATTACH returns a value of 0 to indicate that either the console is already
attached to the process or that it was unattached and a successful attach
operation was made.

Table 6-5 contains the list of error codes returned in CX.

6-33

C_DELIMIT Concurrent DOS 86 Programmer’s Guide

C_DELIMIT
Set or Return Output Delimiter

Entry Parameters:
Register CL: 06EH (110)
DX: OFFFFH (get) or
DL: Output Delimiter (set)

Returned Values:
Register AL: Output Delimiter, or no value if set
BL: Same as AL

C_DELIMIT can set or interrogate the current Output Delimiter. If register DX =
OFFFFH, then the current Output Delimiter is returned in register AL. Otherwise,
C_DELIMIT sets the Output Delimiter to the value in register DL.

C_DELIMIT sets the string delimiter for C_WRITESTR. When a new process is
created, the default delimiter value is set to a dollar sign, $. The default delimiter
is not inherited from the parent process.

6-34

Concurrent DOS 86 Programmer’'s Guide C_DETACH

C_DETACH
Detach Default Console From Calling Process

Entry Parameters:
Register CL: 093H (147)

Returned Values:
Register AX: 0 if detach ‘OK", OFFFFH on failure
BX: Same as AX

C_DETACH detaches the default console from the calling process. If the defauit
console is not attached to the calling process, no action is taken. If other
processes are waiting to attach to the consoie, the process with the highest
priority attaches the console. If there is more than one process with the same
priority waiting for the console, it is given to the queue writing processes on a
first-come, first-serve basis.

6-35

C_GET Concurrent DOS 86 Programmer’s Guide

C_GET
Return The Calling Process’s Default Console

Entry Parameters:
Register CL: 099H (153)

Returned Values:
Register AL: Console number
BL: Same as AL

C_GET returns the default console number of the calling process.

6-36

Concurrent DOS 86 Programmer’s Guide C_MODE

Entry Parameters:
Register CL:
DX:

Returned Values:
Register AX:
BX:

C_MODE

Set or Return Console mode

06DH (109)
FFFFH (get) or Console mode (Set)

Console mode or (no value)
Same as AX

C_MODE can set

or interrogate the Console Mode, which is a 16-bit system

parameter that determines the action of certain Console I/0 functions. The
Console Mode is set to zero when a new process created; it is not inherited from

its parent.

If register DX = FFFFH, C_MODE returns the current Console Mode in register AX.
Otherwise, C_MODE sets the Console Mode to the value contained in register DX.

The Console Mode definition is:

bit 0 = 1
bit 0 =0
bit 1 =1
bit 1 =0
bit 2 = 1
bit2=0
bit 3 = 1
bit3 =0
bit 7 = 1
bit7 =0
bit 10 = 1
bit 10 = 0

CTRL-C only status for C_STAT.

Normal status for C_STAT.

Disable support for stop/start scroll (CTRL-S/CTRL-Q).
Enable support for stop/start scroil.

Raw console output mode. Disables tab expansion for
C_WRITE, C_WRITESTR, and C_WRITEBLK. Also disables
support for printer echo (CTRL-P).

Normal console output mode.

Disable CTRL-C program termination.
Enable CTRL-C program termination.
Disable CTRL-O console output byte bucket.
Enable CTRL-O console output byte bucket
Enable Escape as end-of-line character.
Disable Escape as end-of-line character.

Note that the Console mode bits are numbered from right to left.

6-37

C_RAWIO Concurrent DOS 86 Programmer’'s Guide

C_RAWIO
Perform Direct Console I/0 With Default Console

Entry Parameters:
Register CL: 06H (6)
DL: OFFH (Input/Status) or
OFEH (Status) or
OFDH (Input) or Character (Output)

Returned Values:
Register AL: (Input/Status)

= OH (No Character)
= Character

(Status)
= 0OH (No Character)
= OFFH (Ready)

(Input)
= Character

(Output)
No return value

BL: Same as AL

C_RAWIO allows the calling process to do raw console I/0 to its default console.
Concurrent verifies that the calling process owns its default console before
allowing any /0.

In Raw mode, the CTRL-C, CTRL-P, CTRL-S, and CTRL-O characters are not acted
on by the PIN (Physical Input Process) but are passed on to the calling process.

Note: If the virtual console is in CRTL-S mode, and the process that owns the
virtual console then performs a C_RAWIO call, the CTRL-S state is reset.

A process calls C_RAWIO by passing one of three values shown in Table 6-8.

6-38

Concurrent DOS 86 Programmer’s Guide C_RAWIO

Table 6-8. C_RAWIO Calling Values

Value Description

OFFH Console input status command (if no character is ready, a
0OH is returned, else the character is returned.)

OFEH Console status command (on return, register AL contains
00H if no character is ready; otherwise it contains OFFH.)

OFDH Console input command (if no character is ready, the
calling process waits until one is typed.) Input characters
are not echoed to the screen.

ASCII character
If the parameter is less than OFDH, C_RAWIO assumes
register DL contains a valid ASCIl character and sends it to
the console.

6-39

C_READ Concurrent DOS 86 Programmer’s Guide

C_READ
Read A Character From The Default Console

Entry Parameters:
Register CL: 01H (1)

Returned Values:
Register AL: Character
BL: Same as AL

C_READ reads a character from the default console of the calling process. Before
attempting the read, Concurrent verifies the ownership of the console. If the
calling process does not own the console, it relinquishes the CPU resource until
the calling process can attach to the console. Typically, a process created through
a P_CLI call owns its default console when it begins execution.

C_READ echoes graphic characters read from the console. This includes the
carriage return, line feed, and backspace characters. It expands tab characters
(CTRL-I) in columns of eight characters.

C_READ ignores the termination character (CTRL-C) if the calling process cannot
terminate (refer to P_TERM). C_READ does not return until a character is typed on
the console. Concurrent suspends the calling process until a character is ready.

6-40

Concurrent DOS 86 Programmer’s Guide C_READSTR

C_READSTR
Read An Edited Line From The Default Console

Entry Parameters:
Register CL: 0AH (10)
DX: Console Buffer Address - Offset
DS: Console Buffer Address - Segment

C_READSTR reads characters from the calling process’s default console and places
them into the specified Console Buffer. Figure 6-2 shows the format of the
Console Buffer, and Table 6-9 lists the Console Buffer field definitions.

C_READSTR performs line-editing system calls on the line as it is read from the
console; it completes a line and returns upon receiving a terminator character
(carriage return or line feed) from the console, or when the maximum number of
characters is reached.

As with C_READ, C_READSTR echoes all graphic characters read from the console.
Concurrent verifies that the calling process owns its default console before
allowing I/0 to begin.

0 1 MAX + 2
- +
| MAX | NCHAR | CHARACTERS ... | [
- +

Figure 6-2. Console Buffer Format

Table 6-9. Console Buffer Field Definitions

Field Definition
MAX Maximum number of characters that can be read into the
buffer. This value must be initialized before calling
) C_READSTR.
NCHAR Actual number of characters read into the buffer as filled in

by C_READSTR.

CHARACTERS Actual characters read from the console as filled in by
C_READSTR.

6-41

C_READSTR Concurrent DOS 86 Programmer’s Guide

C_READSTR recognizes a number of special characters used in editing the input

line,

as well as a set of special characters that actually control the calling process.

Table 6-10. C_READSTR Line-editing Characters

Character Function

CTRL S Move the cursor one character to the left.

CTRL D Move the cursor one character to the right.

CTRL A Move the cursor one word to the left.

CTRL F Move the cursor one word to the right.

CTRL Q Move the cursor to the beginning of the line.

CTRL W Move the cursor to the end of the line.

CTRL H Delete the character to the left of the cursor.

CTRL G Delete the character to the right of the cursor.

CTRLT Delete the word to the right of the cursor.

CTRL Y Delete entire line. If the line has been modified, it is saved
in the commnd history buffer.

CTRL U Delete to the beginning of the line.

CTRL K Delete to the end of the line.

CTRL V Toggle the insert mode.

CTRL\ Enter the next character literally.

CTRL E Move up in the command history buffer. If the line has
been modified, it is saved.

CTRL X Move down in the command history buffer. If the line has
been modified, it is saved.

CTRL J Line feed; terminates the input line. C_READSTR does not

echo a terminating character, nor does it place the
character in the line buffer.

CTRL M Carriage return; terminates the input line.

6-42

Concurrent DOS 86 Programmer’s Guide C_READSTR

Table 6-10. (Cont'd)

Character Function

CTRL R Toggles the search mode on/off for the current line. After
entering the line, the search mode returns to the default
(off).

CTRL _ Toggles the default search mode on/off and sets the

current line’s mode to the new default. Initially, the default
begins each line with the search mode off.

RUB/DEL Same as CTRL-H.
BACKSPACE Same as CTRL-H.

6-43

C_SET

Concurrent DOS 86 Programmer’s Guide

Entry Parameters:
Register CL:
DL:

Returned Values:
AX:
BX:
CX:

C_SET

Set The Calling Process’s Default Console

094H (148)
Console Number

0 if successful, OFFFFH on failure
Same as AX
Error Code

C_SET changes the calling process’s default console to the value specified. If the
console number specified is not one supported by this particular implementation of
Concurrent, C_SET returns an error code, and does not change the default console.

Table 6-5 contains the list of error codes returned in CX.

6-44

Concurrent DOS 86 Programmer’'s Guide C_STAT

C_STAT
Obtain Status of the Default Console

Entry Parameters:
Register CL: O0BH (11)

Returned Values:
Register AL: 01H character ready, 00H not ready
BL: Same as AL

C_STAT checks to see if a character has been typed at the default console. If the
calling process is not attached to its default console, C_STAT causes a dispatch to
occur and returns O0H (the Not Ready condition).

C_STAT sets the console to the Nonraw mode, allowing recognition of special
control characters such as the terminate character, CTRL-C. Use C_RAWIO to
obtain console status in Raw mode.

Note: If C_MODE is used to set bit 0 in the console mode word, C_STAT only
returns AL = 01H when a CTRL-C is typed on the default console.

6-45

C_WRITE Concurrent DOS 86 Programmer’'s Guide

C_WRITE
Write A Character To The Default Console
Entry Parameters:

Register CL: 02H (2)
DL: ASCII character

C_WRITE writes the specified character to the calling process’s default console. As
with C_READ, Concurrent verifies that the calling process owns its default console
before performing the operation. On output, C_WRITE expands tabs in columns of
eight characters.

6-46

Concurrent DOS Programmer’s Guide C_WRITEBLK

C_WRITEBLK

Send Specified String to the Default Console

Entry Parameters:
Register CL: 06FH (111)
DX: CHCB Address

C_WRITEBLK-sends the character string located by the Character Control Block CHCB
addressed in register pair DX to the logical console . If the Console mode Is in the default
state C_WRITEBLK expands CTRL-l tab characters In columns of eight characters.

The CHCB format is:

bytes 0-1: Offset of character string
bytes 2-3: Segment of character string
bytes 4-5: Length of character string to print

C WRITESTR Concurrent DOS Programmer’s Guide

C_WRITESTR

Print An ASCII String To The Default Console

Entry Parameters:
Register CL: 0SH (9)
DX: STRING Address - Offset
DS: STRING Address - Segment

C_WRITESTR prints an ASCII string starting at the indicated string address and continuing
until it reaches a dollar sign ($) character (024H; $ Is the default string delimiter, and can be
changed by C_DELIMIT). C_WRITESTR writes this string to the calling process’s default
console.

Concurrent verifies that the calling process owns the console before writing the string.
C_WRITESTR sets the console to a Nonraw state and expands tabs in columns of eight
characters, as does C_WRITE.

Use C_WRITESTR whenever possible, rather than the single-character system calls. The
CPU overhead involved in handling the first character is the same as that for a
single-characte system call, but subsequent characters require as little as one-fifth the CPU
overhead.

6 - 48a

Concurrent DOS Programmer’s Guide DEV FLAGALLOC

Entry Parameters:
Register CL:

Returned Values:
Register AH:

AL:

AX:

BX:

DEV_FLAGALLOC

Allocate a System Flag

057H (87)

OH

Flag number

OFFFFH If no free flags
Same as AX

This function returns the number of a Concurrent DOS flag for use by the current
application. Before the process terminates, the flag must be returned to the pool of free
flags using the DEV_FLAGFREE function.

6-48b

DEV FLAGFREE Concurrent DOS Programmer’s Guide

DEV_FLAGFREE

Free a System Flag

Entry Parameters:
Register CL: 058H (88)
DL: Flag number

Returned Values:
Register AX: 0 on success, OFFFFH if flag is still in use
BX: Same as AX

A previously allocated flag is returned to the pool of free flags maintained by the system.

6-48c

Concurrent DOS 86 Programmer’'s Guide DEV_POLL

DEV_POLL
Poll A Device

Entry Parameters:
Register CL: 083H (131)
DL: Device Number

Returned Values:
Register AX: 0 on success, OFFFFH on failure
BX: Same as AX
CX: Error Code

DEV_POLL is used by the XIOS to poll noninterrupt-driven devices. It should be
used whenever the XIOS is waiting for a noninterrupt event.

The calling process relinquishes the CPU and allows Concurrent to poll the device
at every dispatch. The XIOS contains routines for each polling device number
which are called through DEV_POLL, and they return whether the device is ready or
not.

When the device is ready, DEV_POLL restores the calling process to the RUN state
and returns. Upon return, the calling process knows the device is ready.

Table 6-5 contains the list of error codes returned in CX.

6-49

DEV_SETFLAG Concurrent DOS 86 Programmer’s Guide

DEV_SETFLAG
Set A System Flag

Entry Parameters:
Register CL: 085H (133)
DL: Flag Number

Returned Values:
Register AX: 0 on success, OFFFFH on failure
BX: Same as AX
CX: Error Code

DEV_SETFLAG is used by interrupt routines to notify Concurrent that a logical
interrupt has occurred. A process waiting for this flag is placed back into the RUN
state. If there are no processes waiting, then the next process to wait for this flag
returns successfully without relinquishing the CPU. DEV_SETFLAG detects an error
if the flag has already been set, and no process has done a DEV_WAITFLAG call to
reset it.

Note: If a process waiting for a specific flag to be set is aborted, the next
DEV_SETFLAG call is ignored and OFFFFH is returned in AX.

Table 6-5 contains the list of error codes returned in CX.

6-50

Concurrent DOS 86 Programmer’'s Guide DEV_WAITFLAG

DEV_WAITFLAG
Wait For A System Flag

Entry Parameters:
Register CL: 084H (132)
DL: Flag Number

Returned Values:
Register AX: 0 on success, OFFFFH on failure
BX: Same as AX
CX: Error Code

DEV_WAITFLAG is used by a process to wait for an interrupt. The process
relinquishes the CPU until an interrupt routine calls DEV_SETFLAG, which places the
waiting process in the RUN state.

When DEV_WAITFLAG returns to the calling process, the interrupt has occurred, or
an error has occurred. An error occurs when a process is already waiting for the
flag. If the Flag was set before DEV_WAITFLAG was called, the routine returns
successfully without relinquishing the CPU.

DEV_WAITFLAG is meant to be used by the XIOS. The mapping between types of
interrupts and flag numbers is maintained in the XIOS, although Concurrent
reserves flags 0, 1, 2, 3, and 4 for system use.

Table 6-5 contains the list of error codes returned in CX.

6-51

DRV_ACCESS Concurrent DOS 86 Programmer’s Guide

DRV_ACCESS
Access Specified Disk Drives

Entry Parameters:
Register CL: 026H (38)
DX: Drive Vector

Returned Values:
AL: Return Code
AH: Extended Error
BX: Same as AX

DRV_ACCESS inserts a special open file item into the system Lock List for each
drive specified in the Drive Vector, which is passed in register DX. While the item
exists in the Lock List, no other process can reset the drive. DRV_ACCESS inserts
no items if insufficient free space exists in the Lock List to support all the new
items, or if the number of items to be inserted puts the calling process over the
Lock List open file maximum.

Figure 6-3 illustrates the format of the Drive Vector. The least significant bit
corresponds to drive A, and the high-order bit corresponds to the sixteenth drive,
labeled P.

Drive

B et e e P +
IPIOINIMILIKIJIIIHIGIFIEID|ICIB|A|

e e +

Bit 15 eee 321

Figure 6-3. Drive Vector Structure

If the BDOS is in the default Error mode (see F_ERRMODE), the file system displays
a message at the console identifying the error and terminates the calling process.
Otherwise, DRV_ACCESS returns to the calling process with register AL set to OFFH
and register AH set to one of the following hexadecimal values:

0AH - Open File Limit Exceeded
0BH - No Room in System Lock List

On successful calls, DRV_ACCESS returns with register AL set to 00H.

6-52

Concurrent DOS 86 Programmer’s Guide DRV_ALLOCVEC

DRV_ALLOCVEC
Get Allocation Vector Address For the Calling Process’'s Default Disk

Entry Parameters:
Register CL: 01BH (27)

Returned Values:
Register AX: ALLOC Address - Offset
BX: Same as AX
ES: ALLOC Address - Segment

DRV_ALLOCVEC returns the address of the allocation vector (ALLOC) for the
currently selected drive. If a physical error is encountered whan the BDOS Error
mode is in one of the return modes (see F_ERRMODE), DRV_ALLOCVEC returns the
value OFFFFH in AX.

Concurrent maintains an allocation vector in memory for each active disk drive.
Some programs use the information provided by the allocation vector to determine
the amount of free data space on a drive. Note, however, that the allocation
information can be inaccurate if the drive has been marked Read-Only.

You can use DRV_SPACE to directly return the number of free 128-byte records on
a drive. Concurrent's SHOW utility displays a drive’'s free space by using the
DRV_SPACE call.

6-53

DRV_ALLRESET Concurrent DOS 86 Programmer’s Guide

DRV_ALLRESET
Restore All Drives To Reset State

Entry Parameters:
Register CL: ODH (13)

Returned Values:
Register AL: 0 if successful, OFFH on error
BL: Same as AL

DRV_ALLRESET restores the file system to a reset state where all the disk drives
are set to Read-Write (see also DRV_SETRO and DRV_ROVEC), the default disk is
set to drive A, and the default DMA address is reset to offset 080H relative to the
current DMA segment address.

DRV_ALLRESET can be used, for example, by an application program that requires
disk changes during operation. You can also use DRV_RESET for this purpose.

DRV_ALLRESET is conditional under Concurrent, so if another process has a file
open on any of the drives to be reset, and the drive is also Read-Only or
removable, the DRV_ALLRESET call is denied, and none of the specified drives are
reset (see Section 2.17).

Upon return, if the reset operation is successful, DRV_ALLRESET sets register AL to
00H. Otherwise, it sets register AL to OFFH. If the BDOS is not in one of the
return error modes (see F_ERRMODE), the file system displays an error message at
the console identifying the process owning the first open file that caused the
DRV_ALLRESET to be denied.

6-54

Concurrant DOS Programmer’s Guide DRV_DPB

DRV_DPB

Return Address Of Disk Parameter Block
For Calling Process’ Default Disk

Entry Parameters:
Register CL: 01FH (31)

Returned Values:
Reglster AX: DPB Address - Offset, OFFFFH - on Physical Error
BX: Same as AX
ES: DPB Address - Segment

DRV_DPB returns the address of the XIOS-resident Disk Parameter Block (DPB) for the
currently selected drive. The calling process can use this address to extract the disk
parameter values.

If a physical error Is encountered when the BDOS Error mode Is one of the Return Error
modes (see F_ERRMODE), DRV_DPB returns the value OFFFFH.

Figure 6-4 shows the Disk Parameter Block format. Table 6-11 contains the DPB fleld
definitions.

4o $mm——- - 4 4o - 4o temmee +
QOH | 8PT | BSH | BLM | EXM | DSM | DRM |

D $ommmm o - mm——- $mm—— o ¥
O8H | DRM | RSVD| RBVD! CKS H OFF ! PSH |

R ittt 4o b $m———- 4o $om——- $mmm- +
10H | PRM |

4o +

Figure 6-4. DPB - Disk Parameter Block

6-55

DRV_DPB Concurrent DOS Programmer's Guide

Table 6-11. DPB Field Definitions

Field Definition

SPT Sectors Per Track
The number of Sectors Per Track equals the total number of physical

sectorsper track. Physical sector size is defined by PSH and PRM
described below

BSH Allocation Block Shift Factor

BLM Allocation Block Mask
The data allocation block size determines the values of the data allocation
BlockShift Factor and the allocation Block Mask. The Block Shift factor
equals the logarithm base two of the block logical size in 128 byte records,
or BSH = LOG2(BLS). The Block Mask equals the number of 128-byte
records In an allocation block minus 1, or BLM = (2**BSH)-1. Refer to the
System Guide for valid block sizes and BSH and BLM values.

EXM Extent Mask - i)
The data block allocation size and the number of disk allocation blocks
determinethe value of the Extent Mask. The Extent Mask determines the
maximum number of 16k extents that can be contained in a directory entry.
It Is equal to the maximum number of 16K extents per directory entry minus
one. Refer to the System Guide for EXM values. ‘

DSM Disk Storage Maximum . .
The Disk Storage Maximum defines the total storage capacity of the drive.
This Is equal to the total number of allocation blocks minus 1 for the drive.
DSM must be less than or equal to 7FFFH. If the disk uses. 1024 byte
blocks (BSH =3, BLM =7), DSM must be less than or equal to 00FFH.

DRM Directory Maximum
The Directory Maximum defines the total number of directory entries for the
drive.This is equal to the total number of directory entries, minus 1, that can
be kept on this drive. The directory requires 32 bytes of disk per entry. The
maximum directory allocation Is 16 blocks, where the block size is
determined by BSH and BLM.

6-56

Concurrent DOS Programmer’s Guide DRV _DPB

Table 6-11. (Cont'd)

Field Definition

RSVD Reserved setto 0

CKS Checksum Vector Size

The Checksum Vector Size determines the required length of the directory
checksum vector. If the media Is fixed, CKS might be zero, no storage
needs to be reserved, and the BDOS does not calculate directory
checksumis for the drive.

The high-bit of CKS (that Is, = 08000H) is set If the referenced drive is
considered to be a nonremovable media drive. Note that this modifies the
rules for resetting the drive. For more information, refer to Section 2.15.

OFF Track Offset

The Track Offset Is the number of reserved tracks at the beginning of the
disk. OFF is equal to the track number on which the directory starts.

PSH Physical Record Shift Factor

The Physical Record Shift Factor ranges from 0 to 5, corresponding
tophysical record sizes of 128, 256, 512, 1K, 2K, or 4K bytes. It Is equal to
the logarithm base two of the physical record size divided by 128, or
LOG2(sector_size/128).

PRM Physical Record Mask
The Physical Record Mask ranges from 0 to 31, corresponding to physical
record sizes of 128, 256, 512, 1K, 2K, or 4K bytes. It Is equal to the physical
sector slze divided by 128 minus 1, or (sector_size/128)-1. For more
information on DPB parameters, refer to the System Guide.

DRV_FLUSH Concurrent DOS Programmer’s Guide

DRV_FLUSH

Flush Write-Deferred Buffers

Entry Parameters:
Register CL: 030H (48)
DL: Purge Flag

Returned Values:
Register AL: Error Flag
AH: Permanent Error
BX: Same as AX

DRV_FLUSH forces the write of any write-pending records contalned in internal
blocking/deblocking buffers. If register DL is set to OFFH, DRV_FLUSH also purges all active
data buffers after performing the writes.

Programs that provide write with read verify support need to purge Internal buffers to
ensure that verlfying reads actually access the disk instead of returning data resident in
Internal data buffers. Concurrent’s PIP utility is an example of such a program.

Upon return, DRV_FLUSH sets register AL to 00H If the flush operation Is successful. If a
physical error is encountered, DRV_FLUSH performs different actions depending on the
BDOS Error mode (see F_ERRMODE). If the BDOS Is in the default Error mode, Concurrent
displays a message at the console identifying the error and terminates the calling process.
Otherwise, it returns to the calling process with register AL set to OFFH and register AH set
to one of the following physical error codes:

01H - Disk 1/O Error: permanent error
02H - Read/Only Disk

6-58

Concurrent DOS 86 Programmer’s Guide DRV_FREE

DRV_FREE
Free Specified Disk Drives
Entry Parameters:

Register CL: 027H (39)
DX: Drive Vector

DRV_FREE purges the system Lock List of all file and locked record items that
belong to the calling process on the specified drives. DRV_FREE passes the drive
vector in register DX

DRV_FREE does not close files associated with purged open file Lock List items. In
addition, if a process references a purged file with a BDOS system call requiring an
open FCB, DRV_FREE returns a checksum error. A file that has been written to
should be closed before making a DRV_FREE call to the file’s drive, or data can be
lost. Refer to Section 2.17 for more information on DRV_FREE.

Figure 6-3 on page 6-52, shows the format of the Drive Vector.

Note: DRV_FREE treats a floating drive as the physical drive to which it is mapped.
For example, if drive N is mapped unto drive A and you call DRV_FREE on A, all
files on N are lost in addition to those on A.

6-59

DRV_GET Concurrent DOS 86 Programmer’s Guide

DRV_GET

Return The Calling Process’s Default Drive

Entry Parameters:
Register CL: 019H (25)

Returned Values:
Register AL: Drive Number
BL: Same as AL

DRV_GET returns the calling process’s currently selected default disk number. The
disk numbers range from 0 through 15, corresponding to drives A through P.

6-60

Concurrent DOS Programmer’s Guide DRV_GETLABEL

DRV_GETLABEL

Return Directory Label Data Byte For The Specified Drive

Entry Parameters:
Register CL: 065H (101)

DL: Drive

Returned Values:
Register AL: Directory Label Data Byte

AH: Physical Error
BX: Same as AX

DRV_GETLABEL returns the directory label data byte for the specified drive. The calling
process passes the drive number In register DL with 0 for drive A, 1 for drive B, continuing
through 15 for drive P in a full 16-drive system.

The directory label data byte has the following format:

bit 7
bit 6
bit 5
bit 4
bit 0

Require passwords for password protected flles
Perform access time and date stamping
Perform update time and date stamping
Perform create time and date stamping
Directory label exists on drive

(Bt 0 is the least significant bit)

DRV_GETLABEL returns the directory label data byte in register AL. Register AL equal to
00H indicates that no directory label exists on the specified drive.

If DRV_GETLABEL encounters a physical error when the BDOS Error mode Is In one of the
return error modes (see F_ERRMODE), it returns with register AL set to OFFH and register
AH set to one of the following:

01H - Disk 1/O Error: permanent error
04H - Invalid Drive: drive select error

6-61a

Concurrent DOS Programmer's Guide DRV_LOCK

Entry Parameters:
Register CL:
DL:

Returned Values:
Register AX:
BX:

DRV_LOCK

Lock the Physical Drive

05AH (90)
Physical Drive, OH to FH (for A to P)

0 on success, else error locking drive
Same as AX

DRV_LOCK is used to lock the physical drive, denying access to all other processes until
DRV_UNLOCK is called. If any flles are open on the drive or If another process has already
locked the drive, the DRV_LOCK function will fall.

6-61b

DRV _LOGINVEC Concurrent DOS Programmer’s Guide

DRV_LOGINVEC

Return Bit Map Of Logged-in Disk Drives

Entry Parameters:
Register CL: 018H (24)

Returned Values:
Register AX: Login Vector
BX: Same as AX

DRV_LOGINVEC returns the Login Vector In register AX. The Login Vector Is a 16-bit value
with the least significant bit corresponding to drive A, and the high-order bit corresponding
to the 16th drive, drive P. A 0 bit Indicates the drive Is not logged-in, while a 1 bit indicates
the drive Is logged in.

The Login Vector is identical in format to the Drive Vector show in Figure 6-3, on page 6-52.

6-62

Concurrent DOS 86 Programmer’'s Guide DRV_RESET

DRV_RESET
Reset Specified Disk Drives

Entry Parameters:
Register CL: 025H (37)
DX: Drive Vector

Returned Values:
AL: Return Code
BL: Same as AL

DRV_RESET is used to programmatically restore specified removable media drives
to the reset state (a reset drive is not logged in and is in Read-Write status).

Upon entry, register DX contains a 16-bit vector of drives to be reset, where the
least significant bit corresponds to drive A, and the high-order bit corresponds to
the sixteenth drive, labeled P. Bit values of 1 indicate that the specified drive is to
be reset (see Figure 6-3).

DRV_RESET is conditional under Concurrent, so if another process has a file open
on any of the drives to be reset, the call is denied, and none of the drives are
reset. Refer to Section 2.17 for more information regarding the use of DRV_RESET.

Upon return, if the reset operation is successful, DRV_RESET sets register AL to
00H. Otherwise, it sets register AH to OFFH. If the BDOS Error mode is not in
Return Error mode (see F_ERRMODE), Concurrent displays an error message at the
console, identifying the process owning the first open file that caused the
DRV_RESET request to be denied.

6-63

DRV_ROVEC Concurrent DOS 86 Programmer’s Guide

DRV_ROVEC
Return Bit Map Of Read-Only Disks

Entry Parameters:
Register CL: 01DH (29)

Returned Values:
Register AX: R/0O Vector
BX: Same as AX

DRV_ROVEC returns a bit vector indicating which drives have the temporary Read-
Only bit set. The Read-Only bit can only be set by a DRV_SETRO call.

Note: When the file system detects a change in the media on a drive, it
automatically logs in the drive and sets it to Read-Write.

The format of the R/O Vector is analogous to that of the Login Vector (see Figure
6-3). The least significant bit corresponds to drive A; the most significant bit
corresponds to drive P.

6-64

Concurrent DOS 86 Programmer’'s Guide DRV_SET

DRV_SET
Set Calling Process’s Default Disk

Entry Parameters:
Register CL: OEH (14)
DL: Selected disk

Returned Values:
Register AL: Error Flag
AH: Physical Error
BX: Same as AX

DRV_SET designates the specified disk drive as the default disk for subsequent
BDOS file operations. Set the DL register to 0 for drive A, 1 for drive B, continuing
through 15 for drive P. DRV_SET also logs in the designated drive if it is currently
in the reset state. Logging in a drive activates the drive's directory for file
operations.

FCBs that specify drive code zero (DR = 00H) automatically reference the currently
selected default drive. FCBs with drive code values between 1 and 16, however,
ignore the selected default drive and directly reference drives A through P.

Upon return, register AL equal to O0OH indicates the select operation was
successful. If a physical error is encountered, DRV_SET performs different actions
depending on the BDOS Error mode (see F_ERRMODE).

If the BDOS is in the defauit Error mode, Concurrent displays a message at the
console, identifying the error and terminates the calling process. Otherwise,
DRV_SET returns to the calling process with register AL set to OFFH and register
AH set to one of the following physical error codes:

01H - Disk I/0O Error : permanent error
04H - Invalid Drive : drive select error

6-65

DRV_SETLABEL Concurrent DOS 86 Programmer’s Guide

DRV_SETLABEL
Create Or Update A Directory Label

Entry Parameters:
Register CL: 064H (100)
DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Values:
Register AL: Directory Code
AH: Physical or Extended Error
BX: Same as AX

DRV_SETLABEL creates a directory label or updates the existing directory label for
the specified drive. The calling process passes the address of an FCB containing
the name, type, and extent fields to be assigned to the directory label.

The name and type fields of the referenced FCB are not used to locate the
directory label in the directory; they are simply copied into the updated or created
directory label. Byte 12 of the FCB contains the user's specification of the
directory label data byte.

The directory label data byte has the following definition:

bit 7 Require passwords for password protected files
bit 6 Perform access time and date stamping

bit 5 Perform update time and date stamping

bit 4 Perform create time and date stamping

bit 0 Assign a new password to the directory label

(Bit 0 is the least significant bit)

If the current directory label is password protected, the correct password must be
placed in the first 8 bytes of the current DMA or have been previously established
as the default password (see F_PASSWD). If bit 0 of the directory label data byte
is set to 1, it indicates that a new password for the directory label has been
placed in the second eight bytes of the current DMA.

DRV_SETLABEL also requires that the referenced directory contains SFCBs in order
to activate date and time stamping on the drive. If you attempt to activate date
and time stamping when no SFCBs exist, DRV_SETLABEL returns an error code and
performs no action. Concurrent’s INITDIR utility initializes a directory for date and
time stamping by placing an SFCB in every fourth entry of the directory.

6-66

Concurrent DOS 86 Programmer’s Guide DRV_SETLABEL

Upon return, DRV_SETLABEL returns a directory code in register AL with the value
O0H if the directory label create or update was successful, or OFFH if no space
existed in the referenced directory to create a directory label. It also returns OFFH
if date and time stamping was requested and the referenced directory did not
contain SFCBs. Register AH is set to O0H in all of these cases.

If a physical or extended error is encountered, DRV_SETLABEL performs different
actions depending on the BDOS Error mode (see F_ERRMODE). If the BDOS is in
the default Error mode, Concurrent displays a message at the console identifying
the error and terminates the calling process. Otherwise, DRV_SETLABEL returns to
the calling process with register AL set to OFFH and register AH set to one of the
following physical or extended error codes:

01H - Disk /O Error : permanent error
02H - Read/Only Disk
04H - Invalid Drive : drive select error
07H - Password Error

6-67

DRV_SETRO Concurrent DOS 86 Programmer’s Guide

DRV_SETRO
Set Default Disk To Read-Only

Entry Parameters:
Register CL: 01CH (28)

Returned Values:
Register AL: Return Code
BL: Same as AL

DRV_SETRO provides temporary write protection for the currently selected disk by
marking the drive as Read-Only. No process can write to a disk that is in the
Read-Only state. You must perform a successful DRV_RESET operation to restore
a Read-Only drive to the Read-Write state (see DRV_ALLRESET and DRV_RESET).

DRV_SETRO is conditional under Concurrent, so if another process has an open file
on the drive, the operation is denied, and DRV_SETRO returns the value OFFH to the
calling process. Otherwise, it returns a 00H.

If the BDOS is not in Return Error mode (see F_ERRMODE), Concurrent displays an
error message at the console, identifying the process owning the first open file
that caused the DRV_SETRO request to be denied.

Note that a drive in the Read-Only state cannot be reset by a process if another
process has an open file on the drive.

6-68

DRV 8PACE Concurrent DOS Programmer’s Guide

DRV_SPACE

Return Free Disk Space On Specified Drive

Entry Parameters:
Register CL: 02EH (46)
DL: Drive

Returned Values:
Register AL: Error Flag
AH: Physical Error
BX: Same as AX, First 3 bytes of DMA Buffer filled in

DRV_SPACE determines the number of free sectors (128-byte records) on the specified
drive. The calling process passes the drive number in register DL, with 0 for drive A, 1 for B,
continuing through 15 for drive P.

DRV_SPACE returns a binary number In the first 3 bytes of the current DMA buffer. Figure
6-5 shows the format of the returned number.

| FS0 | FSt | Fs2 |
| low byte | | high byte]

Figure 6-5. Disk Free Space Field Format

Note that the returned free space value might be inaccurate if the drive has been marked
Read-Only.

Upon return, DRV_SPACE sets register AL to 00H, indicating the operation was successful.
However, if the BDOS Is In one of the return Error modes (see F_ERRMODE), and a
physical error occurs, It sets register AL to OFFH, and register AH to one of the following
values:

01H - Disk I/O Error: permanent error
04H - Invalid Drive: drive select error

6 - 69a

F DOS (subfunctions) Concurrent DOS Programmer’s Guide

DRV_UNLOCK

Unlock a Physical Drive

Entry Parameters:
Register CL: 05BH (91)
DL: Physical Drive, OH to FH (for A to P)

Returned Values:
Register AX: 0 on success, else error unlocking
BX: Same as AX

This function unlocks a drive successfully locked previously using DRV_LOCK.

6 - 69b

F ATTRIB Concurrent DOS Programmer’s Guide

F_ATTRIB

Set The Attributes Of A Disk Flle

Entry Parameters:
Register CL: 01EH (30)
DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Values: Register
AL: Directory Code
BL: Same as AL

F_ATTRIB can modify a file’s attributes and set its last record byte count. Other BDOS
system calls can interrogate these file parameters, but only F_ATTRIB can change them.

F_ATTRIB can set or reset the file attributes: Read-Only (T1'), System (T2’), and Archive
(T3).

The specified FCB contains a filename with the appropriate attributes set or reset. The
calling process must ensure that it does not specify an ambiguous filename. Also, If the
specified flle Is password protected, the correct password must be placed in the first eight
bytes of the current DMA buffer or have been previously established as the default
password (see F_PASSWD).

Interface attribute F5' specifies whether an extended file lock Is to be maintained after the
F_ATTRIB call. Interface attribute F6' specifies if the specified file's byte count is to be set.
The interface attribute definitions are listed below:

F5'=0 Do not maintain an extended file lock (default)
F5'=1 Maintain an extended file lock

F6'=0 Do not set byte count (default)

F6'=1 Set byte count

If F5' is set and the referenced FCB specifies a file with an extended file lock, the calling
process maintains the lock on the file. Otherwise, the file becomes available to other
processes. Section 2.11 describes extended file locking in detail.

If interface attribute F6’ is set, the calling process must set the CR field of the referenced
FCB to the new byte count value. A process can access a file's byte count value with the
BDOS F_OPEN, F_SFIRST, and F_SNEXT system calls. File byte counts are described in
Section 2.15.

6-70

Concurrent DOS Programmer’s Guide F ATTRIB

F_ATTRIB searches the FCB specified directory for an entry belonging to the current user
number that matches the FCB specified name and type flelds. F_ATTRIB then updates the
directory to contain the selected Indicators, and if interface attribute F6’ Is set, the specified
byte count value. Note that the last record byte count is maintained in the byte 13 of a file's
directory FCBs.)

File attributes T1', T2', and T3’ are defined by Concurrent as described In Section 2.4.2.
Attributes F1’ through F4' are reserved: these Compatibility Attributes were supported by
earlier releases of Concurrent, but they are now stored in the CMD header and may be
changed using CHSET. Attributes F5' through F8' are reserved as Interface Attributes and
therefore cannot be used as file attributes. Interface attributes are described in Section
2.4.3.

An F_ATTRIB call is not performed If the referenced FCB specifies a flle currently open for
another process. It is performed, however, If the referenced flle Is open by the calling
process In Locked mode. However, the file's lock entry is purged when this Is done and the
file system prevents continued read and write operations on the file. F_ATTRIB does not set
the attributes of a file currently open in Read-Only or Unlocked mode for any process.

Making an F_ATTRIB call for an open file can adversely affect the performance of the calling
process. For this reason, you should close an open file before you call F_ATTRIB.

Upon return, F_ATTRIB returns a directory code in register AL with the value 00H If the call
Is successful, or OFFH If the file specified by the referenced FCB Is not found. Register AH s
set to 00H In both cases.

If a physical or extended error Is encountered, F_ATTRIB performs different actions
depending on the BDOS Error mode (see F_ERRMODE). If the BDOS Is in the default Error
mode, Concurrent displays a message at the console Identifying the error and terminates
the process. Otherwise, It returns to the calling process with register AL set to OFFH and
register AH set to one of the following physical or extended error codes:

01H - Disk I/O Error: permanent error
02H - Read/Only Disk

04H - Invalid Drive: drive select error
05H - Flle open by another process
07H - Password Error

09H - lilegal ? iIn FCB

6-71

F_CLOSE

Concurrent DOS Programmer’s Guide

Entry Parameters:
Register CL:

DX:

DS:

Returned Values:
Register AL:

AH:

BX:

F_CLOSE

Close A Disk File

010H (16)
FCB Address - Offset
FCB Address - Segment

Directory Code
Physical or Extended Error
Same as AX

F_CLOSE performs the inverse operation of F_OPEN. The referenced FCB must have been
previously activated by a successful F_OPEN or F_MAKE call. Interface attributes F5' and
F6’ specify how the file Is to be closed, as shown below:

F§' = 0, F6'
F5 = 0, F6’
F5' = 1, F6’'
F§' = 1, F6’

—_a“ O =0

Default Close
Extend File Lock
Partial Close
Partial Close

F_CLOSE performs the following steps regardless of the Interface attribute specification.

1. First, it verifies the referenced FCB has a valid checksum. If the checksum Is
invalid, F_CLOSE performs no action and returns an error code.

2. If the checksum Is valid and the referenced FCB contains new information
because of write operations to the FCB, F_CLOSE permanently records the new
Information In the directory. If the FCB does not contain new Informatlon, the
directory update step Is bypassed. However, F_CLOSE always attempts to locate
the FCB’s corresponding entry in the directory and returns an error code if the
directory entry cannot be found.

If F_CLOSE successfully performs the above steps, it performs different actions, depending
on how the interface attributes are set.

In default close operations, F_CLOSE decrements the file’s open count, which is maintained
in the file’s system Lock List entry. If the open count decrements to zero, it indicates that the
number of default close operations for the file matches the number of open operations.

Concurrent DOS Programmer’s Guide F CLOSE

If the open count decrements to zero, F_CLOSE permanently closes the file by performing
the following steps.

1. First, it removes the file’s Item from the system Lock List. If the FCB Is opened In
Unlocked mode, it also purges all record locks belonging to the file from the
system Lock List.

2. In addition, F_CLOSE invalidates the FCB's checksum to ensure the referenced
FCB Is not subsequently used with BDOS system calls that require an open FCB
(for example, F_WRITE).

3. If the open count does not decrement to zero, F_CLOSE simply returns to the
calling process and the file remains open.

For partial close operations, F_CLOSE does not decrement the file’s open count and
returns to the calling process. The flle always remains open following a partial close
request.

Closing a flle with an extended file lock modifies the way F_CLOSE performs a permanent
close. F_CLOSE only honors an extended lock request on a permanent close of a file
opened In Locked Mode. If these conditions are satisfled, F_CLOSE Invalldates the FCB’s
checksum but maintains the lock item. Thus, although the flle Is permanently closed, other
processes cannot access the file. Section 2.11 describes extended file locking in detall.

Upon return, F_CLOSE returns a directory code In register AL with the value 00H If the close
operation Is successful, or OFFH if the file Is not found. Register AH Is set to 0 In both of
these cases.

If a physical or extended error Is encountered, F_CLOSE performs different actions
depending on the BDOS Error mode (see F_ERRMODE). If the BDOS Is in the default Error
mode, Concurrent displays a message identifying the error at the console and terminates
the calling process. Otherwise F_CLOSE returns to the calling process with register AL set
to OFFH and register AH set to one of the following physical or extended error codes:

01H - Disk |/O Error: permanent error
02H - Read/Only Error

04H - Invalid Drive: drive select error
06H - Close Checksum Error

6-73

F DELETE Concurrent DOS Programmer’s Guide

F_DELETE

Delete A Disk File

Entry Parameters:
Register CL: 013H (19)
DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Values:
Register AL: Directory Code
AH: Physical or Extended Error
BX: Same as AX

F_DELETE removes files and/or XFCBs that match the FCB addressed In register DX. The
filename and filetype fields can contain wildcard file specifications (question marks in bytes
1 through 11), but byte 0 cannot be a wildcard as It can be In the F_SFIRST and F_SNEXT
calls.

Interface attribute F5' specifies the type of delete operation to be performed, as shown
below:

F5' =0
F5' =1

If any of the files specified by the referenced FCB are password protected, the correct
password must be placed In the first eight bytes of the current DMA buffer or it must have
been previously established as the default password (see F_PASSWD).

For standard delete operations, F_DELETE removes all directory entries belonging to flles
that match the referenced FCB. All disk directory and data space owned by the deleted files
Is returned to free space and becomes avallable to other files. If Interface Attribute F5’ of the
FCB Is set to 1, F_DELETE deletes only the password of the directory FCB, matching the
referenced FCB. '

Note: If any of the files matching the input FCB specification fail the password check, are
Read-Only, or are currently open by another process, then F_DELETE deletes no flles or
XFCBs. This applies to both types of delete operations.

Interface attribute F5’ also specifies whether an extended file lock Is to be maintained after
the F_DELETE call. If F5' is set and the referenced FCB specifies a file with an extended
lock, the calling process maintains the lock on the file. Section 2.11 describes extended file
locking in detail.

6-74

Concurrent DOS 86 Programmer’s Guide F_DELETE

A process can delete a file that it currently has open if the file is opened in locked
mode. However, the BDOS returns a checksum error if the process makes a
subsequent reference to the file with a BDOS system call requiring an open FCB.
A process cannot delete files open in Read-Only or Unlocked mode.

Deleting an open file can adversely affect the performance of the calling process.
For this reason, you should close an open file before you delete it.

Upon return, F_DELETE returns a directory code in register AL with the value 00H if
the delete is successful, or OFFH if no file matching the referenced FCB is found.
Register AH is set to 0 in both of these cases.

If a physical or extended error is encountered, F_DELETE performs different actions,
depending on the BDOS Error mode (see F_ERRMODE).

If the BDOS is the default Error mode, Concurrent displays a message identifying
the error at the console and terminates the calling process. Otherwise, it returns
to the calling process with register AL set to OFFH and register AH set to one of
the following physical or extended error codes:

01H - Disk I/O Error : permanent error

02H - Read/Only Disk

03H - Read/Only File

04H - Invalid Drive : drive select error

05H - File opened by another process or
open in Read-Only or Unlocked mode

07H - Password Error

6-75

F_DMAGET Concurrent DOS 86 Programmer’s Guide

F_DMAGET
Return Address Of Direct Memory Access Buffer

Entry Parameters:
Register CL: 034H (52)

Returned Values:
Register AX: DMA Offset
BX: Same as AX
ES: DMA Segment

F_DMAGET returns the current DMA Base Segment address in ES, with the current
DMA Offset in AX.

DMA is an acronym for Direct Memory Address, which is often used with disk
controllers that directly access the memory of the computer to transfer data to
and from the disk subsystem.

Under Concurrent, the current DMA is usually defined as the buffer in memory
where a record resides before a disk write and after a disk read operation. If the
BDOS Multisector Count is equal to one (see F_MULTISEC), the size of the buffer is
128 bytes. However, if the BDOS Multisector Count is greater than one, the size of
the buffer must equal N * 128, where N equals the Multisector Count.

Some BDOS system calls also use the current DMA to pass parameters and to
return values. For example, BDOS system calls that check and assign file
passwords require that the password be placed in the current DMA Buffer. As
another example, DRV_SPACE returns its results in the first 3 bytes of the current
DMA. When the current DMA is used in this context, the size of the buffer in
memory is determined by the specific requirements of the system call.

6-76

Concurrent DOS Programmer’s Guide F_DMAOFF

F_DMAOFF

Set The Direct Memory Address Offset

Entry Parameters:
Register CL: 01AH (26)
DX: DMA Address - Offset

F_DMAOFF can change the default value of the DMA offset to another memory address.
When P_CLI Initiates a transient program, it sets the DMA offset to 080H and the DMA
Segment or Base to Its Initlal Data Segment. DRV_ALLRESET also sets the DMA offset to
080H. The DMA address remains at its current value untll it Is changed by an F_DMASEG,
F_DMAOFF, or DRV_ALLRESET call.

6-77

F_DMASEG Concurrent DOS Programmer’s Guide

F_DMASEG

Set Direct Memory Access Segment Address

Entry Parameters:
Register CL: 033H (51)
DX: DMA Segment Address

F_DMASEG sets the segment value of the current DMA buffer address. The word parameter
in DX is a paragraph address and Is used with the DMA offset value to specify the 20-bit
address of the DMA buffer.

Note that upon Initial program loading, the default DMA base Is set to the address of the
user's data segment (the initial value of DS) and the DMA offset Is set to 0080H, which
provides access to the default buffer in the Base Page.

6-78a

Concurrent DOS Programmer’s Guide F DOS

F_DOS

DOS Compatible File Functions

Entry Parameters:
Register CL: 071H (113)
DS: Address of Parameter Block - Offset
DX: Address of Parameter Block - Segment

Returned Values:

Register AX: Error Code Iif negative, else Modlfied Parameter Block
BX: Same as AX

The first word of the parameter block is a subfunction number. The structure and size of the
remainder depends on the particular subfunction. All entries are multiples of words.

File handles are small positive integers. Their definitions are described below:

Handle Definition

standard Input

standard output
standard error

standard auxiliary device
standard list device

S WON-=-0O

The first two handles can be redirected from the command line level. Standard error is used
for printing error messages that are not to be redirected.

All error codes are negative numbers. Thelr absolute values are shown in Table 7-4 on page
7-6. Error codes -7, -8, -9, -10, -50, -83 and -85 are not applicable. No BDOS error
messages are ever triggered by physical errors, though these may generate any of the
physical error codes -19 through -31.

The subfunctions available are defined In the following pages:

6-78b

F DOS (subfunctions) Concurrent DOS Programmer’s Guide

GET DISK PARAMETER BLOCK

Entry Parameters:
drive: drive for which information Is required (0, 1-26)
dpb: pointer to 32-byte buffer

Returned Values:
AX: 0 on success, error code if negative
BX: same as AX
dpb: address of drive’s DOS disk parameter block

Function-specific

Error Codes: none
Equivalent DOS call: none
Structure:
e e e et EELEL EEEE)
! 0 ! DRIVE | DISK PAR. BLOCK |
L e LRy L e R e T]

This function returns Information on sector size, cluster size, media byte, number of
clusters, free disk space, etc.

The Disk Parameter Block points to a 32-byte buffer with the following structure. All items
are Read Only.

pomm——- $ommmmm e pmmm——— dmmm——— dmmmmm- - t--m--- t---m-- +
0 | UNIT | RUNIT| SECSIZE | CLMSK! CLSHF| FATADDR |
$mmmm—— e pmmmmmm tmmmmmm D il e B et +
8 | NFATS| DIRENT ! DATADDR 1 NCLSTRS | NFATR|
pomm——— - dmmmm——— $m—m——- D ket to-mmm- B e +
10 | DIRADDR ! RESERVED | MEDIA|RESER’D|
tom--—- R R tommmm— tommm-- R tomm-m - pommm—- +
18 | RESERVED ! RESERVED ! FREE !
pmmmm tommmmm B et fmmm——— tmmmm—— $om—--- dmmmmm - tommm—- +

6-78¢c

Concurrent DOS Programmer’s Guide F DOS (subfunctions)

Field Definition

UNIT absolute drive number (0-25 for drives A-Z)
SECSIZE sector size In bytes

CLMSK (sectors per cluster) - 1

CLSHF log2 (sectors per cluster)

FATADDR sector address of FAT

NFATS number of FAT copies

DIRENT number of root directory entries

DATADDR sector address of cluster #2 (first data cluster)

NCLSTRS number of clusters on disk

NFATR number of sectors per FAT
DIRADDR sector address of root directory
MEDIA current media byte

FREE total free clusters on drive

The most common use of F_DOS subfunction 0 is to compute the disk free space on a
drive, which is ((FREE < < CLSHF) * SECSIZE) bytes.

6-78d

F DOS (subfunctions)

Concurrent DOS Programmer’s Guide

Entry Parameters:

MAKE DIRECTORY (MKDIR)

name: segmented address of ASCIIZ name
Returned Values:
AX: 0 on success, error code If negative
BX: same as AX
Function-specific
Error Codes:
-3: ED_PATH specified path does not exist
-5: ED_ACCESS name already exists or directory full
Equivalent DOS Call: 039H Create a Subdirectory
Structure:
L e T 3
! 1 ! name |
D R e e

6-78e

Concurrent DOS Programmer’s Guide F DOS (subfunctions)

REMOVE DIRECTORY (RMDIR)

Entry Parameters:

name: segmented address of ASCIIZ name
Returned Values:
AX: 0 on success, error code if negative
BX: same as AX

Function-specific

Error-Codes:
-3 ED_PATH specified path does not exist
-5: ED_ACCESS not directory or not empty or root
-16: ED_DIR directory in use
Equivalent DOS call: 03AH Remove a Subdirectory
Structure:

L T L e

] ! name !

dmmmtm—— e e T

6-78f

F_DOS (subfunctions) Concurrent DOS Programmer’s Guide

CHANGE DIRECTORY (CHDIR)
Entry Parameters:
name: segmented address of ASCIIZ name
Returned Values:
AX: 0 on sucocess, error code If negative
BX: same as AX
Function-specific
Error Codes:
-2 ED_FILE directory does not exist
-3: ED_PATH path does not exist
-5 ED_ACCESS name refers to label
Equivalent DOS call: 03BH Change Current Directory
Structure:
B R e T R J
! 3 ! name]
D e e e

6-78g

Concurrent DOS Programmer’s Guide

F DOS (subfunctions)

CREATE FILE (CREAT)
Entry Parameters:
name: segmented address of ASCHIZ name
mode: file attribute
Returned Values:
AX: file handle If positive, error code if negative
BX: same as AX
Function-specific
Error Codes:
-2: ED_FILE directory full
-3: ED_PATH path does not exist
-4: ED_HANDLE out of flle handles
-5: ED_ACCESS file exists as password protected or as a
directory or with with a more restrictive
mode (e.g. hidden, r/o)
-32: ED_SHAREFAIL file is currently open
Equivalent DOS call: 03CH Create a Flle
Structure:
L e e e e T
! | name ! mode !
B b R e T

6-78h

F_DOS (subfunctions)

Concurrent DOS Programmer's Guide

Entry Parameters:
name;:
mode:

Returned Values:

OPEN FILE (OPEN)

segmented address of ASCIIZ name
open mode with bit structure | SSS R AAA, where:
| = 0 if child inherits handle
S = 000 compatibility

001 deny read/write

010 deny write

011 deny read

100 deny none
R = 0 (reserved)
A = 000 read access

001 write access

010 read/write access

AX: file handle If positive, error code If negative
BX: same as AX
Function-specific
Error Codes
-2: ED_FILE file not found
-3: ED_PATH path not found
-4 ED_HANDLE out of file handles
-5: ED_ACCESS password error or directory or label or access
mode incompatible with file attribute
-12: ED_ACC_CODE Invalid access code
-32: ED_SHAREFAIL file is currently open
Equivalent DOS call: 03DH Open a File Handle
Structure:
et e L P L LT
| | name ! mode |
LEEEEE Sty e Rt EELEL P e,]

6-78i

Concurrent DOS Programmer's Guide F DOS (subfunctions)

CLOSE FILE (CLOSE)

Entry Parameters:
handle: open file handie to be closed
Returned Values:
AX: 0 on success, error code If negative
BX: same as AX
Function-specific
Error-Codes:
-6: ED_H_MATCH handle not open or Invalid
Equivalent DOS call: 03EH Close a File Handle
Structure:
R e e .
! 6 ! handle |
R T e

6-78]

F_DOS (subfunctions)

Concurrent DOS Programmer’s Guide

Entry Parameters:
handle:

buffer:

count:

Returned Values:
AX:

BX:

count:

Function-specific

READ FROM FILE (READ)

open file handle
destination buffer
maximum number of bytes to be read

0 on success, error code If negative
same as AX
number of bytes read, f AX = 0

Error Codes:
-5: ED_ACCESS file opened for write access only
-6: ED_H_MATCH Invalid handle
-33: ED_LOCKFAIL range Is currently locked
Equivalent DOS call: 03FH Read from a Flle or Device
Structure:

+——-—+--——+--——-‘»----—+-——‘+——-—+---—+--—-—+-—--+----+
! 4 ! handle | buffer ! count |
e e e e R e T DL]

6-78k

Concurrent DOS Programmer's Guide F_DOS (subfunctions)

WRITE TO FILE (WRITE)

Entry Parameters:

handle: open file handle
buffer: destination buffer
count: maximum number of bytes to be written

Returned Values:

AX: 0 on success, error code If negative
BX: same as AX
- count: number of bytes written, if AX = 0

Function-specific
Error Codes:
-5: ED_ACCESS file opened for read access only
-6 ED_H_MATCH invalid handle
-33: ED_LOCKFAIL range Is currently locked

Equivalent DOS call: 040H Write to a File or Device
Structure:
R e e e e e Rt
! 8 | handle | buffer ! count |
L R e e e e et e

While a count of 0000 is ignored if it refers to a character device, it has a special meaning if
the handle refers to a disk file. In that case, the file size is set to the current file offset as
determined by LSEEK. Clusters are allocated or released as required.

6-78l

F DOS (subfunctions)

Concurrent DOS Programmer’s Guide

Entry Parameters:
name:

Returned Values:

DELETE FILE (UNLINK)

segmented address of ASCIIZ name

AX: 0 on success, error code if negative
BX: same as AX
Function-specific
Error Codes:
-2: ED_FILE file not found
-3: ED_PATH path not found
-5: ED_ACCESS directory or r/o file
-32: ED_SHAREFAIL file is currently open
Equivalent DOS call: 041H Erase a File from Directory
Structure:
B e e e R T
] 9 ! name !
B et T

6-78m

Concurrent DOS Programmer's Guide F DOS (subfunctions)

Entry Parameters:

GET/SET FILE POSITION (LSEEK)

handle: open file handle
offset: long Integer offset
method: 0 = begin, 1 = current, 2 = end of file
Returned Values:
AX: 0 on success, error code if negative
BX: same as AX offset: new offset
Function-specific
Error Codes:
-1: ED_FUNCTION method isnot0, 1 or2
-6: ED H_MATCH Invalid handle
Equivalent DOS call: 042H Move File Read/Write Pointer
Structure:
+----+--—-+----+----+----+----+----+----+-‘---+----+
! 10 | handle | offset ! method |
Lt Al et D EEEE Ll it Dl e il DR)

6-78n

F_DOS (subfunctions)

Concurrent DOS Programmer’s Guide

Entry Parameters:
name:
attrib:

flag:

Returned Values:
AX:

BX:

attrib:

Function-specific

GET/SET FILE ATTRIBUTES (CHMOD)

pointer to ASCIIZ file name
new attribute if flag = 1
password mode If flag = 2

0 = get attribute
= set attribute

2 = get password mode
3 = set password or password mode

0 on success, error code If negative

same as AX

file attribute if flag = 0
file password mode if flag = 2

Error Codes:
-1 ED_FUNCTION flag Is neither O nor 1
-2: ED_FILE file not found
-3 ED_PATH path not found
-5: ED_ACCESS attribute cannot be changed
-32: ED_SHAREFAIL file Is currently open
Equivalent
(but less extensive)
DOS call:
043H Change Flie Mode
Structure:
L et et el et e L et L)
| 11 | name ! attrib | flag |
LR R e e e et T T Ty

6-780

Concurrent DOS Programmer’s Guide F_DOS (subfunctions)

If FLAG = 3 (set password), the file's password mode Is changed and optionally a new
password Is assigned. The following bits in ATTRIB are used to control passwords:

16 14 13 12 11 10 9 8 7 6 6 4 3 2 1 O©
R R e R e L e e L LR e
{P¥io {0 {o {R W |E |D IR {W |E {D |R |W |E |D |
e e et e e e e et e L L TP

<- World -> <- Group -> <- Owner ->

If PW Is specified as 1, a new password Is assigned to the file or directory. The password Is
taken from the first 8 bytes of the current DMA address. The R, W, E and D bits specify if a
password Is réquired for Read, Write, Execute or Delete access to the file or directory. The
E bit Is supported for FlexOS compatibllity only: It is treated the same as the R bit. Since the
present release of Concurrent does not support owner or group identifications, the same
access restrictions should be specified for all three bit flelds when setting a password

mode.

6-78p

F_DOS (subfunctions) Concurrent DOS Programmer’s Guide

GET CURRENT DIRECTORY

Entry Parameters:
drive: drive for which path Is sought
path: address of 64 byte buffer holding current path

Returned Values:
AX: 0 on success, error code if negative
BX: same as AX

Function-specific

Error Codes:
-15: ED_DRIVE invalld drive
Equivalent DOS call: 047H Get Current Directory
Structure:
L e R e e R ek R E]
| 12 | drive | path |
LR e R e E L P TS]

6-78q

Concurrent DOS Programmer’s Guide F_DOS (subfunctions)

FIND FIRST FILE

Entry Parameters:

name: polnter to ASCIIZ file name
attrib: attribute to be used in search
count: size of buffer In bytes

Returned Values:

AX: number of matching entries returned, error code If negative
BX: same as AX

Function-8pecific

Error Codes:
-3 ED_PATH path not found
-18: ED_ROOM file not found
Equivalent
(but less extensive)
DOS call: 04EH Find First Matching File
Structure:
R e e e e R S Ty
] 13] name | attrib | count |
L R s e e e B e Tl L

This call returns matching files in the current DMA address and also saves the BDOS state.

If attribute 10H Is set, directorles are Included. If attribute 04H Is set, hidden filles are
Included. If attribute 02H Is set, system flles are included. If attribute 08H Is set, only the
label Is returned, unless any 1EH bits are also set, in which case the label Is found In
addition to the other specified entries. If attribute 08H Is set, the root directory is searched
instead of the current directory.

If a search buffer of less than 47 bytes Is specified, up to one directory entry is returned.
Otherwise the BDOS will attempt to return as many directory entries as will fit into the buffer.
Note that for DR Net compatibllity, a returned count that corresponds to an incompletely
filled buffer should not be interpreted as the end of the search. DR Net imposes an upper
limit on how many directory entries can be returned per call. Only an error code should be
used to indicate no more matching files.

6-78r

F DOS (subfunctions) Concurrent DOS Programmet’s Guide

FIND NEXT FILE
Entry Parameters:
nxtent: size of search buffer
Returned Values:
AX: number of matching entries returned, error code If negative
BX: same as AX

Function-specific

Error Codes: .
-18 ED_ROOM no more matching files
Equivalent DOS call: 04FH Find Next Matching File
Structure:
L S e T
| 14 | nxtent |
L e e Y

This call returns matching flles In the current DMA address and also saves the BDOS state.
All other comments for Find First File apply.

B-78s

Concurrent DOS Programmer's Guide

F _DOS (subfunctions)

Entry Parameters:
old name:
new name:

Returned Values:

RENAME FILE

segmented address of ASCIIZ name
segmented address of ASCIIZ name

AX: 0 on success, error code If negative
BX: same as AX
Function-specific
Error Codes:
-2: ED_FILE file not found
-3 ED_PATH path not found
-5: ED_ACCESS new file exists or file Is label or there are no
spare directory entries in the new path
-17: ED_DEVICE a rename across devices was attempted
-32: ED_SHAREFAIL file Is currently open
Equivalent DOS call: 056H Rename a File
Structure:
D e R e ettt Skttt &
| 16 | old name | new name !
R R e e e e TP

6-78t

F_DOS (subfunctions) Concurrent DOS Programmer's Guide

GET/SET FILE DATE/TIME
Entry Parameters:
handle: open file handle
sflag: 0 = get date/time, 1 = set date/time
date: date as in directory FCB
time: time as In directory FCB
Returned Values:
AX: 0 on success, error code if negative
BX: same as AX
date: date of last modification If mode = 0
time: date of last modification if mode = 0

Function-specific
Error Codes:
-1 ED_FUNCTION mode Is neither 0 nor 1
-6 ED_H_MATCH invalid handle

Equivalent DOS call: 057H Get/Set Time and Date Stamps
Structure:
B et Rt e e R ik ittt 1
| 16 ! handle | sflag | date | time |
R R R e e et e e T]

6-78u

Concurrent DOS Programmer’s Guide

F_DOS (subfunctions)

CREATE TEMPORARY FILE (MKTEMP)

Entry Parameters:
name: segmented address of ASCIIZ path
mode: file attribute
Returned Values:
AX: flle handle, error code if negative
BX: same as AX
Function-specific
Error Codes:
-2: ED_FILE file not found
-3 ED_PATH path not found
-4 ED_HANDLE out of file handles
-5: ED_ACCESS fite Is label or directory
Equivalent DOS call: 05AH Create a Unique File
Structure:
LR e L R e et L L 4
! 17 ! name | mode 1
L et L L L e e ST 4

The name passed to the BDOS only contains the path, excluding the file name, which Is
filled In by the BDOS. If the name does not end In a path delimiter, one Is appended. Then a
"unique” name Is appended, MKNEW is attempted and the name Is varled if the file cannot
be created because It already exIsts. This Is repeated untll a different error code Is returned

or the call succeeds.

6-78v

F_DOS (subfunctions) Concurrent DOS Programmer’s Guide

CREATE NEW FILE (MKNEW)
Entry Parameters:
name: segmented address of ASCIIZ name
mode: file attribute

Returned Values
AX: file handle, error code if negative
BX: same as AX

Function-specific
Error Codes:
-2: ED_FILE file not found
-3: ED_PATH path not found
-4 ED_HANDLE out of file handles
-5: ED_ACCESS file Is label or directory

-80: ED_EXISTS file already exists
Equivalent DOS call: 05BH Create New File
Structure:
L e e EE LT Rttt
! 18 ! name | mode]
B e e ek T TR P

This function Is identical to CREATE FILE with the exception that an error is returned If the
specified flle already exists.

6 - 78w

Concurrent DOS Programmer's Guide

F DOS (subfunctions)

Entry Parameters:
handle:

offset:

length:

Iflag:

Returned Values:

open flle handle
long integer offset

LOCK/UNLOCK FILE DATA (LOCK/UNLOCK)

long integer byte count
0 = lock, 1 = unlock

AX: 0 on success, error code If negative
_ BX: same as AX
Function-specific
Error Codes:
-1 ED_FUNCTION LOCK other than 0 or 1
-6 ED_H_MATCH handle Is invalid
-33: ED_LOCKFAIL locking conflict
-36: ED_NOLOCKS out of lock list items
Equivalent DOS call: 05CH Lock/Unlock File Access
Structure:
R L L e e ey T
! 19 ! handle | offset |
R R e e e]
| length | 1lflag |
L L R LT

When trying to lock, no existing lock is permitted in the specified range. The unlock request
must exactly match a previous lock request in offset and length.

6-78x

F_DOS (subfunctions) Concurrent DOS Programmer’s Guide

DUPLICATE FILE HANDLE (DUP)

Entry Parameters:

handle: open file handle
Returned Values:
AX: duplicate file handle, error code If negative
BX: same as AX

Function-specific
Error Codes:
-4: ED_HANDLE out of file handles
-6 ED_H_MATCH handle is invalid

Equivalent DOS call: 045H Duplicate a File Handle
Structure:
B R e e 3
! 20 ! handle |
AL EEL ELE TS Rl L et

The handle is checked and an error code returned If It Is not open or If It Is out of range. If
there are none left an error Is returned. Otherwise the old handle Is duplicated so that the
new handle refers to the same file.

6-78y

Concurrent DOS Programmer’s Guide

F DOS (subfunctions)

Entry Parameters:

FORCE DUPLICATE FILE HANDLE (DUP2)

handle: open file handle
newhnd: new file handle
Returned Values:
AX: duplicate file handle, error code If negative
BX: same as AX
Function-specific
Error Codes:
-4 ED_HANDLE out of file handles
-6: ED_H_MATCH handle is invalid
Equivalent DOS call: 046H Force a Duplicate of a Handle
Structure:
L R e et
! 21 | handle | newhnd |
P L L R LT LR Lt

The handle is checked and an error Is returned if it Is not open or if It is out of range. If the
new handle refers to a file which is already open, first that file is closed and then the old
handle Is duplicated so that the new handle refers to the same flle.

6-782

F_DOS (subfunctions) Concurrent DOS Programmer’s Guide

INPUT/OUTPUT CONTROL (I0CTL)

Subfunction 00

Get Device Information

Entry Parameters:
handle: open file handle

Returned Values:
AX: 0 on success, error code if negative
BX: same as AX status: device status

Function-specific

Error Codes:
-6: ED_H_MATCH file not opened by calling process
Equivalent DOS call: 04400H Get Device Information
Structure:
e et e R i T T
! 26 ! handle | 0000 | status |
L R et e LT L E

6-78aa

Concurrent DOS Programmer’s Guide F DOS (subfunctions)

INPUT/OUTPUT CONTROL (I0CTL)

Subfunction 01

Set Device Information

Entry Parameters:
handle: open file handle
status: device status

Returned Values:

AX: 0 on success, error code if negative
BX: same as AX status: device status

Function-specific
Error Codes:

-1: ED_FUNCTION file Is not a character device
-6: ED_H_MATCH file not opened by calling process

Equivalent DOS call: 04401H Set Device Information
Structure:
L R et R L e EEEET
| 26 ! handle | 0001 | status |
LR e e L L e T

This function only works with character device handles. The high byte of the status must be
zero.

6-78ab

F_DOS (subfunctions) Concurrent DOS Programmer’s Guide

INPUT/QUTPUT CONTROL (IOCTL)

Subfunction 02

Recelve Control Strings from a Character Device

Entry Parameters:
handle: open character device handle
ctibuf: address of conirol string from device
cticnt: number of bytes to receive

Returned Values:

AX: 0 on success, error code If negative
BX: same as AX
cticnt: number of bytes recelved from device
Function-specific
Error Codes:
-1 ED_FUNCTION file Is not a character device or control string

1/O Is not supported by device
-6: ED_H_MATCH file not opened by calling process

Equivalent DOS call: 04402H Recelve Control Strings from a Character Device
Structure:

L e el L

! 26 | handle | 0002 |

LR Rl bt DEE L L Ty PR RT

! ctlbuf ! ctlcent |

LR R et e e

6-78ac

Concurrent DOS Programmer’s Guide F_DOS (subfunctions)

Entry Parameters:
handle:

ctibuf:

cticnt:

Returned Values:
AX:
BX:

Function-specific

INPUT/OUTPUT CONTROL (I0CTL)

Subfunction 03

Send Control Strings to a Character Device

open character device handle
address of control string to be sent to device
number of bytes to be sent

0 on success, error code if negative
same as AX cticnt: number of bytes sent to device

Error Codes:
-1 ED_FUNCTION file Is not a character device or control string
1/0 Is not supported by device
-6: ED_H_MATCH file not opened by calling process
Equivalent DOS call: 04403H Send Control Strings to a Character Device
Structure:
L e e R L L LR
| 26] handle | 0003 |
e il e e e 4
| ctlbuf ! ctlent |
L Y L Ry bl EE LDl Ly

6-78ad.

F_DOS (subfunctions) Concurrent DOS Programmer’s Guide

INPUT/OUTPUT CONTROL (IOCTL)

Subfunction 04

Receive Control Strings from a Block Device

Entry Parameters:
drive: drive code (0, 1-26)
ctibuf: address of control string to be received from device
cticnt: number of bytes to be received
Returned Values:
AX: 0 on success, error code If negative
BX: same as AX ctlcnt: number of bytes received from device

Function-specific
Error Codes:
-1t ED_FUNCTION control string I/O Is not supported by device

Equivalent DOS call: 04404H Receive Control Strings from a Block Device
Structure:

B e e kLT T

! 26 | drive | 0004 |

D R R e et T

! ctlbuf ! ctlent |

R e R e e T LT

6-78ae

Concurrent DOS Programmer's Guide F DOS (subfunctions)

INPUT/OUTPUT CONTROL (IOCTL)
Subfunction 05
Send Control Strings to a Block Device

Entry Parameters:
drive: drive code (0, 1-26)

ctibuf: address of control string to be sent to device
cticnt: number of bytes to be sent
Returned Values:
AX: 0 on success, error code if negative
BX: same as AX
cticnt: number of bytes sent to device

Function-specific
Error Codes:
-1: ED_FUNCTION control string I/O Is not supported by device

Equivalent DOS call: 04405H: Send Control Strings to a Block Device
Structure:

L e ek et

! 26 | drive | 0006 |

R e e L TR

! ctlbuf | ctlent |

L ey e E e LR &

6-78af

F DOS (subfunctions) Concurrent DOS Programmer’s Guide

INPUT/OUTPUT CONTROL (IOCTL)

Subfunction 06
Check Handle Ready for Input

Entry Parameters:

handie: open file handle
Returned Values:
AX: 0 on success, error code If negative
BX: same as AX status: input status

Function-specific
Error Codes:
-6: ED_H_MATCH file not opened by calling process

Equivalent DOS call: 04406H Check Handle Ready for Input
Structure:

B e ittt T TR

| 26 | handle | 0006 | status |

B et R e e e Ty

6-78ag

Concurrent DOS Programmer’s Guide F DOS (subfunctions)

Entry Parameters:
handle:

Returned Values:
AX:
© BX:

Function-specific

INPUT/OUTPUT CONTROL (IOCTL)

Subfunction 07
Check Handle Ready for Output

open file handle

0 on success, error code If negative
same as AX status: output status

Error Codes:
-6: ED_H_MATCH file not opened by calling process
Equivalent DOS call: 04407H Check Handle Ready for Output
Structure:
L e e EELEL L TEY
H 26 ! handle | 0007 | status |
L e b T e e]

6-78ah

F_DOS (subfunctions)

Concurrent DOS Programmer’s Guide

Entry Parameters:
drive:

Returned Values
AX:

BX:

status:

Function-specific

INPUT/OUTPUT CONTROL (IOCTL)

Subfunction 08
Removable Media Check

drive code (0, 1-26)

0 on success, error code If negative
same as AX
0 if the drive Is removable media 1 if the drive Is permanent media

Error Codes:
-1 ED_FUNCTION drive Is networked
-15: ED_DRIVE invalid drive was specified
Equivalent DOS call: 04408H Removable Media Check
Structure:
B R R i ket 1
| 26 ! drive ! 0008 | status |
L e L e e e e et 4

6 - 78ai

Concurrent DOS Programmer's Guide

INPUT/OUTPUT CONTROL (IOCTL)

Entry Parameters:
drive:

Returned Values:
AX:

BX:

status:

Function-specific

INPUT/OUTPUT CONTROL (IOCTL)

Subfunction 09

Local or Remote Device

drive code (0, 1-26)

0 on success, error code If negative
same as AX
0000H for local drives 1000H for networked drives

Error Codes:
-15: ED_DRIVE Invalid drive was specified
Equivalent DOS call: 04409H Local or Remote Device
Structure:
B e Rt EELEE L L]
1 26 | drive | 0009 | status |
B e e e e S T)

6 - 784

F_DOS (subfunctions) Concurrent DOS Programmer’s Guide

INPUT/OUTPUT CONTROL (IOCTL)

Subfunction 0A
Local or Remote Handle -
Entry Parameters:
handle: open file handle
Returned Values:
AX: 0 on success, error code If negative
BX: same as AX

status: 0000H if handie is local 8000H if handle is networked

Function-specific
Error Codes: :
-6: ED_H_MATCH file not opened by calling process

Equivalent DOS call: 0440AH Local or Remote Handle
Structure:

R e A e A e T)

} 26 | handle | 000A | status |

L R R Ty Rt]

6 - 78ak

Concurrent DOS Programmer’s Guide F DOS (subfunctions)

COMMIT FILE (COMMIT)

Entry Parameters:
handle: open flle handle to be updated

Returned Values:
AX: 0 on success, error code If negative
BX: same as AX

Function-specific
Error-Codes:
-6: ED_H_MATCH handle not open or invalid

Equivalent DOS call: 068H Commit File
Structure:

T e T T

| 27 ! handle |

L e L LY

This function updates the directory entry for the open file and flushes all data and FAT
buffers assoclated with the file. It has the same effect as closing the flle and then reopening
it.

6-78al

F_DOS (subfunctions) Concurrent DOS Programmer’s Guide

EXPAND NAME
Entry Parameters:
relative name: segmented address of ASCIIZ name
absolute name: segmented address of ASCIIZ name

Returned Values:
AX: 0 on success, error code If negative
BX: same as AX

Function-specific

Error Codes:
-3: ED_PATH invalid path
Equivalent DOS call: none
Structure:
LR e R T T]
! 28 | relative name ! absolute name |
B e e ik ittt ettt SRR ST

This function expands a flle name to an absolute name, which Includes a drive specification,
path specification starting at the root and the flle name. The name Is translated Into upper
case. But no checks are made to determine if a directory entry of that name actually exists.

6-78am

Concurrent DOS 86 Programmer’s Guide F_ERRMODE

F_ERRMODE
Set BDOS Error Mode For Error Returns
Entry Parameters:

Register CL: 02DH (45)
DL: BDOS Error mode

F_ERRMODE sets the BDOS Error mode, which is a system parameter maintained
for each running process that determines how the file system handles physical and
extended errors. Physical and extended errors are described in Section 2.18.

The BDOS Error mode has three states: the default mode, Return and Error mode,
and Return and Display mode.

The BDOS performs different actions in each mode when a physical or extended
error occurs:

* In the default Error mode, the BDOS displays a system message at the
console identifying the error and terminates the calling process.

* In Return Error mode, the BDOS sets register AL to OFFH, places an error code
identifying the physical or extended error in register AH, and returns to the
calling process.

* In Return and Display mode, the BDOS displays the system message before
returning to the calling process, and sets registers AH and AL as in the Return
Error mode.

F_ERRMODE sets the BDOS Error mode as specified in register DL. If register DL is
set to OFFH, the mode is set to Return Error mode. If register DL is set to OFEH,
the mode is set to Return and Display mode. If register DL is set to any other
value, the mode is set to the default mode.

6-79

F_LOCK Concurrent DOS 86 Programmer’'s Guide

F_LOCK
Lock Records in a Disk File

Entry Parameters:
Register CL: 02AH (42)
DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Values:
Register AL: Error Code
AH: Physical Error
BX: Same as AX

F_LOCK allows a process to establish temporary ownership of particular records
within a file, and is only supported for files open in Unlocked mode. If F_LOCK is
called for a file open in Locked or Read-Only mode, no locking action is performed
but a successful result is returned. This provides compatibility between
Concurrent and CP/M-86.

The calling process passes the address of an FCB in which the random record field
is filled with the Random Record Number of the first record to be locked. The
number of records to be locked is determined by the BDOS Muitisector Count (see
F_MULTISEC). The current DMA must also contain the 2-byte File ID returned by
F_OPEN or F_MAKE when the referenced FCB was opened. Note that the File ID is
only returned by F_OPEN and F_MAKE when the Open mode is Unlocked.

Interface attribute F5' specifies the type of lock to perform. Interface attribute F6’
specifies whether records have to exist in order to be locked. The F_LOCK
interface attribute definitions are listed below:

F5'= 0 Exclusive lock (default)

F5'= 1 Shared lock

F6'= 0 Lock existing records only (default)
F6'= 1 Lock logical records.

These options are described in detail in Section 2.14.

F_LOCK verifies that a locking conflict with another process does not exist for each
of the records to be locked. In addition, if F LOCK is called with attribute F6’ reset,
it also verifies that each record number to be locked exists within the specified
file. Both tests are made before any records are locked.

Most F_LOCK requests require a new entry in the BDOS system Lock List. If there
is insufficient space in the system Lock List to satisfy the lock request, or if the
process record lock limit is exceeded, then F_LOCK does not lock any records and
returns an error code to the calling process.

6-80

Concurrent DOS 86 Programmer’s Guide F_LOCK

Upon return, F_LOCK sets register AL to OOH if the lock operation is successful.
Otherwise, register AL contains one of the following error codes:

01H - Reading unwritten data

03H - Cannot close current extent

04H - Seek to unwritten extent

06H - Random Record Number out of range
08H - Record locked by another process
OAH - FCB Checksum Error

0BH - Unlocked file verification error
OCH - Process record lock limit exceeded
ODH - Invalid File ID

OEH - No Room in System Lock List

OFFH - Physical error; refer to register AH

F_LOCK returns error code 01H when it accesses a data block that has not been
previously written.

F_LOCK returns error code 03H when it cannot close the current extent prior to
moving to a new extent.

F_LOCK returns error code 04H when it accesses an extent that has not been
created.

F_LOCK returns error code 06H when byte 35 (R2) of the referenced FCB is greater
than 3.

F_LOCK returns error code 08H if the specified record is locked by another process
with an incompatible lock type.

F_LOCK returns error code 0AH if the referenced FCB failed the FCB checksum test.

F_LOCK returns error code OBH if the BDOS cannot locate the referenced FCB's
directory entry when attempting to verify that the FCB contains current
information.

F_LOCK returns error code OCH if performing the lock request would require that
the process consume more than the maximum allowed number of system Lock List
entries.

F_LOCK returns error code ODH when an invalid File ID is placed at the beginning
of the current DMA.

F_LOCK returns error code OEH when the system Lock List is full and performing
the lock request would require at least one new entry.

6-81

F_LOCK Concurrent DOS 86 Programmer’'s Guide

F_LOCK returns error code OFFH if a physical error is encountered, and the BDOS
Error mode is either Return Error mode or Return and Display Error mode (see
F_ERRMODE). If the BDOS is in the default Error mode, Concurrent displays a
message at the console identifying the physical error and terminates the calling
process. When F_LOCK returns a physical error to the calling process, it is
identified by register AH as shown below:

01H - Disk 1/0 Error : permanent error
04H - Invalid Drive : drive select error

6-82

Concurrent DOS 86 Programmer’s Guide F_MAKE

F_MAKE
Create A Disk File

Entry Parameters:
Register CL: 016H (22)
DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Values:
Register AL: Directory Code
AH: Physical or Extended Error
BX: Same as AX

F_MAKE creates a new directory entry for a file under the current user number. It
also creates an XFCB for the file if the referenced drive has a directory label that
enables password protection on the drive, and the calling process assigns a
password to the file.

The calling process passes the address of the FCB with byte 0 of the FCB
specifying the drive, bytes 1 through 11 specifying the filename and filetype, and
byte 12 set to the extent number. Byte 12, the EX field, is usually set to OOH.
Byte 32 of the FCB, the CR field, must be initialized to 00H, before or after the
F_MAKE call, if the intent is to write sequentially from the beginning of the file.

Interface attribute F5' specifies the mode in which the file is to be opened.
Interface attribute F6' specifies whether a password is to be assigned to the
created file. The interface attributes are summarized below:

F5 =0 Open in Lockec mode (default)
F5 =1 Open in Unlocked mode

F6'= 0 Do not assign password (default)
F6' = 1 Assign password to created file

When attribute F6’ is set to 1, the calling process must place the password in the
first 8 bytes of the current DMA buffer and set byte 9 of the DMA buffer to the
password mode. Note that F_MAKE only interrogates attribute F6’ if the referenced
drive’s directory label has enabled password support. The XFCB Password mode is
summarized below:

Bit 7 Read mode
Bit 6 Write mode
Bit 5 Delete mode

F_MAKE returns with an error code if the referenced FCB names a file that
currently exists in the directory under the current user number. If there is any
possibility of duplication, an F_DELETE call should precede the F_MAKE call.

6-83

F_MAKE Concurrent DOS 86 Programmer’'s Guide

If the make file operation is successful, F MAKE activates the referenced FCB for
record operations (opens the FCB) and initializes both the directory entry and the
referenced FCB to an empty file.

F_MAKE also computes a checksum and assigns it to the FCB. BDOS system calls
that require an open FCB (for example, F_WRITE) verify that the FCB checksum is
valid before performing their operation.

If the file is opened in Unlocked mode, F_MAKE also sets bytes RO and R1 in the
FCB to a two-byte value called the File ID. The File ID is a required parameter for
the BDOS Lock Record and Unlock Record system calls. Note that F_MAKE
initializes all file attributes to 0.

The BDOS also creates an open file item in the system Lock List to record a
successful F_MAKE operation. While this item exists, no other process can delete,
rename, truncate, or set the file attributes of this file.

A creation and/or update stamp is made for the created file if the referenced drive
contains a directory label that enables creation and/or update time and date
stamping and the FCB extent number is equal to 0.

F_MAKE also creates an XFCB for the created file if the referenced drive contains a
directory label that enables password protection, interface attribute F6' of the FCB
is 1, and the FCB is an extent zero FCB. In addition, F_MAKE also assigns the
password and password mode placed in the first nine bytes of the DMA to the
XFCB.

Upon return, F_MAKE returns a directory code in register AL with the value O0H if
the make operation is successful, or OFFH if no directory space is available.
Register AH is set to 00H in both cases.

If a physical or extended error is encountered, F_MAKE performs different actions
depending on the BDOS Error mode (see F_ERRMODE). If the BDOS is in the
default Error mode, Concurrent displays a message at the console identifying the
error and terminates the calling process. Otherwise, it returns to the calling
process with register AL set to OFFH and register AH set to one of the following
physical or extended error codes:

01H - Disk I/0 Error : permanent error
02H - Read/Only Disk

04H - Invalid Drive : drive select error
08H - File Already Exists

08H - lllegal ? in FCB

0AH - Open File Limit Exceeded

0BH - No Room in System Lock List

6-84

Concuirent DOS Programmer’s Guide F_MULTISEC

F_MULTISEC

Set BDOS Multisector Count

Entry Parameters:
Register CL: 02CH (44)
DL: Number of Sectors

Returned Values:
Register AL: Return Code
BL: Same as AL

F_MULTISEC provides logical record blocking under Concurrent. It enables a process to
read and write from 1 to 128 physical records of 128 bytes at a time during subsequent
BDOS read and write system calls. It also specifies the number of 128-byte records to be
locked or unlocked by F_LOCK and F_UNLOCK.

F_MULTISEC sets the Multisector Count value for the calling process to the value passed in
register DL. Once set, the specified Multisector Count remains in effect until the calling
process makes another F_MULTISEC call and changes the value. Note that P_CLI sets the
Multisector Count to one when it Initiates a transient program.

The Multisector Count affects BDOS error reporting for the BDOS read and write system
calls. With the exception of physical errors, If an error occurs during these system calls and
the Multisector Count is greater than one, Concurrent returns the number of records
successfully processed In register AH.

Upon return, F_MULTISEC sets register AL to 00H if the specified value is in the range of 1
to 128. Otherwise, It sets register AL to OFFH.

6-85

F_OPEN Concurrent DOS Programmer’s Guide

F_OPEN

Open A Disk File

Entry Parameters:
Register CL: OFH (15)
DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Values:
Register AL: Directory Code
AH: Physical or Extended Error
BX: Same as AX

F_OPEN activates the FCB for a flle that exists in the disk directory. The calling process
passes the address of the FCB, with byte 0 of the FCB specifying the drive, bytes 1 through
11 specifying the filename and filetype, and byte 12 specifying the extent. Byte 12 Is usually
set to zero.

Interface attributes F5’ and F6' of the FCB specify the mode in which the file Is to be
opened, as shown below:

F5'=0,F6' =0 Open in locked mode (Default mode)
F5'=1,F6' =0 Open in Unlocked mode
F5 =0or1,F6' =1 Open in Read-Only mode

If the file is password protected in Read mode, the correct password must be placed in the
first eight bytes of the current DMA or have been previously established as the default
password (see F_PASSWD). If the current record field of the FCB, CR, Is set to OFFH,
F_OPEN returns the byte count of the last record of the file in the CR fleld. The last record
byte count for a flle can be set using F_ATTRIB.

Note: The calling process must set the CR fleld of the FCB to 00H If the file Is to be
accessed sequentially from the first record.

F-OPEN performs the following action for files opened In locked mode. If the file exists in
the directory, and has both the system attribute set and the Read-Only attribute set, the
Open mode is automatically set to Read- Only. Note that Read-Only mode implies the file
can be concurrently accessed by other processes if they also open the file in Read-Only
mode.

6-86

Concurrent DOS 86 Programmer’s Guide F_OPEN

If the open operation is successful, F_OPEN activates the user’s FCB for record
operations as follows: F_OPEN copies the relevant directory information from the
matching directory FCB into bytes DO through D15 of the FCB. It also computes a
checksum and assigns it to the FCB. All BDOS system cails that require an open
FCB (for example, F_READ) verify that the FCB checksum is valid before performing
their operation.

If the file is opened in Unlocked mode, F_OPEN sets bytes RO and R1 of the FCB to
a two-byte value called the File ID. The File ID is a required parameter for the
F_LOCK and F_UNLOCK calls. If the Open mode is forced to Read-Only, F_OPEN
sets interface attribute F8' to 1 in the user’'s FCB. In addition, the system call sets
attribute F7' to 1 if the referenced file is password protected in Write mode and
the correct password was not passed in the DMA or did not match the default
password. The BDOS does not support write operations for an activated FCB if
interface attribute F7' or F8' is set to 1.

The BDOS also creates an open file item in the system Lock List to record a
successful open file operation. While this item exists, no other process can delete,
rename, or modify the file’s attributes. In addition, this item prevents other
processes from opening the file if the file is opened in Locked mode. It also
requires that other processes match the file's Open mode if the file is opened in
Unlocked or Read-Only mode. This item remains in the system Lock List until the
file is permanently closed or until the process that opened the file terminates.

When the open operation is successful, F_OPEN also makes an access time and
date stamp for the opened file when the following conditions are satisfied: the
referenced drive has a directory label that requests access date and time stamping,
the FCB extent field is equal to zero, and the referenced drive is Read-Write.

Upon return, F_OPEN returns a directory code in register AL with the value O0H if
the open is successful, or OFFH if the file is not found. Register AH is set to 0 in
both of these cases. If a physical or extended error is encountered, F_OPEN
performs different actions depending on the BDOS Error mode (see F_ERRMODE).
If the BDOS is in the default Error mode, Concurrent displays a message identifying
the error at the console and terminates the process. Otherwise, F_OPEN returns to
the calling process with register AL set to OFFH and register AH set to one of the
following physical or extended error codes:

01H - Disk I/0 Error : permanent error

04H - Invalid Drive : drive select error

05H - File is open by another process or by the
current process in an incompatible mode

07H - Password Error

09H - lliegal ? in FCB

O0AH - Open File Limit Exceeded

OBH - No Room in System Lock List

6-87

F_PARSE Concurrent DOS 86 Programmer’s Guide

F_PARSE
Parse An ASCII String And Initialize An FCB

Entry Parameters:
Register CL: 098H (152)
DX: PFCB Address — Offset
DS: PFCB Address - Segment

Returned Values:
Register AX: OFFFFH if error
0 if end of filename string
0 if end of line address of next item to parse
BX: Same as AX
CX: Error Code

F_PARSE parses an ASCII file specification and prepares a File Control Block. The
calling process passes the address of a data structure called the Parse Filename
Control Block, (PFCB) in registers DX and DS.

Figure 6-6 shows the format of the Parse Filename Control Block. Table 6-12 lists
the fields in the PFCB.

Figure 6-6. PFCB - Parse Filename Control Block

Table 6-12. PFCB Field Defintions

Field Description

FILENAME Offset of an ASCII file specification to parse. The offset is
relative to the same Data Segment as the PFCB.

FCBADR Offset of a File Control Block to initialize. The offset is
relative to the same Data Segment as the PFCB.

6-88

Concurrent DOS Programmer’s Guide F_PARSE

F_PARSE assumes the file specification to be in the following form:

{d:}filename{.typ}{;password}

where those items enclosed in curly brackets are optional.

F_PARSE parses the first file specification it finds in the input string. First of all, it eliminates
leading blanks and tabs. F_PARSE then assumes the flle specification ends on the first
delimiter it encounters that is out of context with the specific field it Is parsing. For Instance,
If It finds a colon (), and It Is not the second character of the flle specification, the colon
delimits the whole file specification.

F_PARSE recognizes the following characters as delimiters:

space
tab
carrlage return

null

; (semicolon)

- except before password fleld

= (equal)

< (less than)

> (greater than)

. (perlod) - except after filename and before filetype
: (colon) - except before filename and after drive
, (comma)

| (vertical bar)

[(left square bracket)

] (right square bracket)

+ (plus)
/ (slash)

\ (backslash)

If F_PARSE encounters a nongraphic character in the range 1 through 31 not listed above,
It treats the character as an error.

F_PARSE Inltializes the specified FCB as shown In Table 6-13.

6-89

F_PARSE

Concurrent DOS Programmer’s Guide

Table 6-13. FCB Initialization

Byte

Definition

byte 0

byte 1-8

byte 9-11

byte 12-15

byte 16-23

byte 24-31

The drive fleld Is set to the specified drive. If the drive Is not specified,the
default value is used. 0 = default, 1 = A, 2 = B, etc.

The name Is set to the specified fllename. All letters are converted to
upper-case. If the name Is not eight characters long, the remaining bytesin
thé fllename field are padded with blanks. If the filename has an asterisk
(*), all remaining bytes in the filename fleld are filled in with question marks
(?). F_PARSE returns an error If the fllename Is more than eight bytes long.

The type Is set to the specified filetype. If no type Is specified, the type field
is Initlalized to blanks. All letters are converted to upper-case. If the type Is
not three characters long, the remaining bytes In the filetype fleld are
padded with blanks. If an asterisk Is encountered, all remaining bytes are
filled in with question marks. F_PARSE returns .an error if the type field is
more than 3 bytes long.

Filled in with zeros.

The password field Is set to the specified password. If no password Is
specified, this field Is Initialized to blanks. If the password Is not eight
characters long, remaining bytes are padded with blanks. All letters are
converted to upper-case. F_PARSE returns an error If the password fleld is
more than eight bytes long.

Reserved for system use.

If an error occurs, F_PARSE returns OFFFFH In register AX indicating the error.

On a successful parse, F_PARSE checks the next item in the FILENAME string. It scans for
the first character that follows trailing blanks and tabs. If the character Is a line feed (0AH), a
carriage return (ODH), or a null character (00H), it returns a 0 Indicating the end of the
FILENAME string. If the next character is a delimiter, It returns the address of the delimiter. If
the next character is not a delimiter, it returns the address of the first tralling blank or tab.

If F_PARSE is to be used to parse a subsequent filename in the FILENAME string, the
returned address should be advanced over the delimiter before placing it in the PFCB.

Table 6-5 contains the list of error codes returned in CX.

6-90

Concurrent DOS 86 Programmer’s Guide F_PASSWD

F_PASSWD
Establish A Default Password For File Access

Entry Parameters:
Register CL: 06AH (106)
DX: Password Address - Offset
DS: Password Address - Segment

F_PASSWD allows a process to specify a password value before a file protected by
the password is accessed. When the file system accesses a password-protected
file, it checks the current DMA, and the default password for the correct value. If
either value matches the file’s password, full access to the file is allowed.

Concurrent maintains a default password for each process running on the system.
A new process inherits its initial default password from its parent, the process
creating the new process.

Note: Changing the default password does not affect other processes currently
running on the system.

To make an F_PASSWD call, the calling process passes the address of an eight-
byte field containing the password.

6-91

F_RANDREC Concurrent DOS 86 Programmer’s Guide

F_RANDREC

Return The Random Record Number Of The
Next Record To Access In A Disk File

Entry Parameters:
Register CL: 024H (36)
DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Values:
Random Record Field of FCB Set

F_RANDREC returns the Random Record Number of the next record to be accessed
from a file that has been read or written sequentially to a particular point.
F_RANDREC returns this value in the Random Record field, bytes RO, R1, and R2, of
the addressed FCB. F_RANDREC can be useful in two ways.

First, it is often necessary to initially read and scan a sequential file to extract the
positions of various key fields. As each key is encountered, you call F_RANDREC
to compute the random record position for the data corresponding to this key. If
the data unit size is 128 bytes, the resulting record number minus one is placed
into a table with the key for later retrieval.

After scanning the entire file and tabularizing the keys and their record numbers,
you can move directly to a particular record by performing a random read using
the corresponding Random Record Number that was saved earlier. The scheme is
easily generalized when variable record lengths are involved, because the program
need only store the buffer-relative byte position along with the key and record
number in order to find the exact starting position of the keyed data at a later
time.

F_RANDREC can also be used when switching from a sequential read or write to a
random read or write. Access records sequentially to a particular point in the file,
call F_RANDREC to set the record number, and then subsequent random read and
write operations can continue from the next record in the file.

6-92

Concurrent DOS 86 Programmer’'s Guide F_READ

F_READ
Read Records Sequentially From A Disk File

Entry Parameters:
Register CL: 014H (20)
DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Values:
Register AL: Error Code
AH: Physical Error
BX: Same as AX

F_READ reads the next 1 to 128 128-byte records from a file into memory,
beginning at the current DMA address. The BDOS Muitisector Count (see
F_MULTISEC) determines the number of records to be read. The default is one
record. The addressed FCB must have been previously activated by an F_OPEN or
F_MAKE call.

F_READ reads each record from the current record (CR) field in the FCB, relative to
the current extent, then automatically increments the CR field to the next record
position. If the CR field overflows, then F_READ automatically opens the next
logical extent and resets the CR field to zero for the next read operation. The
calling process must set the CR field to 00H following the open call if the intent is
to read sequentially from the beginning of the file.

Upon return, F_READ sets register AL to zero if the read operation is successful.
Otherwise, register AL contains an error code identifying the error as shown below:

01H - Reading unwritten data (end-of-file)
08H - Record locked by another process
09H - Invalid FCB

OAH - FCB Checksum Error

O0BH - Unlocked file verification error
OFFH - Physical error; refer to register AH

F_READ returns error code 01H if no data exists at the next record position of the
file. The no data situation is usually encountered at the end of a file. However, it
can also occur if you try to read a data block that has not been previously written
or an extent that has not been created. These situations are usually restricted to
files created or appended with the BDOS random write calls (F_ WRITERAND and
F_WRITEZF). '

6-93

F_READ Concurrent DOS 86 Programmer’s Guide

F_READ returns error code 08H if the calling process attempts to read a record
locked by another process with an exclusive lock. This error code is only returned
for files opened in Unlocked mode.

F_READ returns error code 09H if the FCB is invalidated by a previous F_CLOSE call
that returned an error.

F_READ returns error code OAH if the referenced FCB failed the FCB checksum test.

F_READ returns error code OBH if the BDOS cannot locate the FCB's directory entry
when attempting to verify that the referenced FCB contains current information.
F_READ only returns this error for files opened in Unlocked mode.

F_READ returns error code OFFH if a physical error is encountered and the BDOS
Error mode is in one of the return modes (see F_ERRMODE). If the BDOS is in the
default Error mode, Concurrent displays a message at the console identifying the
physical error and terminates the calling process. When F_READ returns a physical
error to the calling process, it is identified by register AH as shown below:

01H - Disk I/O Error : permanent error
04H - Invalid Drive : drive select error

On all error returns, except for physical error returns (AL = 255), F_READ sets
register AH to the number of records successfully read before the error was
encountered. This value can range from 0 to 127 depending on the current BDOS
Multisector Count. It is always set to zero when the Multisector Count is equal to
one.

6-94

Concurrent DOS 86 Programmer’s Guide F_READRAND

F_READRAND
Read Random Records From A Disk File

Entry Parameters:
Register CL: 021H (33)
DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Values:
Register AL: Error Code
AH: Physical Error
BX: Same as AX

F_READRAND is similar to F_READ except that the read operation takes place at a
particular Random Record Number, selected by the 24-bit value constructed from
the three-byte, RO, R1, R2, field beginning at position 33 of the FCB. Note that the
sequence of 24 bits is stored with the least significant byte first, RO, the middle
byte next, R1, and the high byte last, R2. The Random Record Number can range
from 0 to 262,143. This corresponds to a maximum value of 3 in byte R2.

To read a file with F_READRAND, the calling process must first open the base
extent, extent 0. This ensures that the FCB is properly initialized for subsequent
random access operations. The base extent might or might not contain any
allocated data.

F_READRAND reads the record specified by the random record field into the
current DMA address. F_READRAND automatically sets the FCB extent and current
record number values, EX and CR, but unlike F_READ, it does not advance the
current record number. Thus, a subsequent F_READRAND call rereads the same
record. After a random read operation, a file can be accessed sequentially, starting
from the current randomly accessed position. However, the last randomly
accessed record is reread or rewritten when switching from random to sequential
mode.

If the BDOS Multisector count is greater than one (see F_MULTISEC), F_READRAND
reads multiple consecutive records into memory beginning at the current DMA.

F_READRAND automatically increments the RO, R1, R2 field of the FCB to read each
record. Howeuver, it restores the FCB’s Random Record Number to the first record’s
value upon return to the calling process.

6-95

F_READRAND Concurrent DOS 86 Programmer’s Guide

Upon return, F_READRAND sets register AL to 00H if the read operation is
successful. Otherwise, register AL contains one of the following error codes:

01H - Reading unwritten data

O03H - Cannot close current extent

04H - Seek to unwritten extent

06H - Random record number out of range
08H - Record locked by another process
0OAH - FCB Checksum Error

0BH - Uniocked file verification error

OFFH - Physical error refer to register AH

F_READRAND returns error code 01H when it accesses a data block not previously
written. This may indicate an end-of-file condition.

F_READRAND returns error code 03H when it cannot close the current extent prior
to moving to a new extent.

F_READRAND returns error code 04H when a read random operation accesses an
extent that has not been created.

F_READRAND returns error code 06H when byte 35 (R2) of the referenced FCB is
greater than 3.

F_READRAND returns error code 08H if the calling process attempts to read a
record locked by another process with an exclusive lock. This error code is only
returned for files opened in Unlocked mode.

F_READRAND returns error code OAH if the referenced FCB failed the FCB
checksum test.

F_READRAND returns error code 0BH if the BDOS cannot locate the FCB's directory
entry when attempting to verify that the referenced FCB contains current
information. F_READRAND only returns this error for files open in Uniocked mode.

F_READRAND returns error code OFFH if a physical error is encountered and the
BDOS Error mode is in one of the return modes (see F_ERRMODE). If the BDOS is
in the default Error mode, Concurrent displays a message at the console
identifying the physical error and terminates the calling process.

When a physical error is returned to the calling process, it is identified by the four
low-order bits of register AH as shown below:

01H - Disk I/O Error : permanent error
04H - Invalid Drive : drive select error

On all error returns except for physical error returns, AL = 255, F_ READRAND sets
register AH to the number of records successfully read before the error was
encountered. This value can range from 0 to 127 depending on the current BDOS
Multisector Count. It is always set to zero when the Muiltisector Count is equal to
one.

6-96

Concurrent DOS 86 Programmer’s Guide F_RENAME

F_RENAME
Rename A Disk File

Entry Parameters:
Register CL: 017H (23)
DX: FCB Address — Offset
DS: FCB Address - Segment

Returned Values:
Register AL: Directory Code
AH: Physical or Extended Error
BX: Same as AX

F_RENAME uses the referenced FCB to change all directory entries of the file
specified by the drive and filename in bytes 0 to 11 of the FCB to the filename
specified in bytes 17 through 27.

If the file specified by the first filename is password-protected, the correct
password must be placed in the first eight bytes of the current DMA buffer, or
have been previously established as the default password (see F_PASSWD).

The calling process must also ensure that the filenames specified in the FCB are
valid and unambiguous, and that the new filename does not already exist on the
drive. F_RENAME uses the drive code at byte 0 of the FCB to select the drive. The
drive code at byte 16 of the FCB is ignored.

Interface attribute F5' specifies whether an extended file lock is to be maintained
after the F_ATTRIB call as shown below:

F5'= 0 Do not maintain an extended file lock (default)
F5'= 1 Maintain an extended file lock

If F5’ is set and the referenced FCB specifies a file with an extended file lock, the
calling process maintains the lock on the file. Otherwise, the file becomes
available to other processes on the system. Section 2.11 describes extended file
locking in detail.

A process can rename a file that it has open if the file is open in locked mode.
However, the BDOS returns a checksum error if the process subsequently
references the file with a system call requiring an open FCB. A file open in Read-
Only or Unlocked mode cannot be renamed by any process.

Renaming an open file can adversely affect the performance of the calling process.
For this reason, you should close an open file before you rename it.

Upon return, F_RENAME returns a directory code in register AL with the value 00H
if the rename is successful, or OFFH if the file named by the first filename in the
FCB is not found. Register AH is set to O0H in both of these cases.

6-97

F_RENAME Concurrent DOS 86 Programmer’s Guide

If a physical or extended error is encountered, F_RENAME performs different
actions depending on the BDOS Error mode (see F_ERRMODE). If the BDOS is in
the default Error mode, Concurrent displays a message at the console identifying
the error, and terminates the process. Otherwise, it returns to the calling process
with register AL set to OFFH and with register AH set to one of the following
physical or extended error codes:

01H - Disk I/0 Error : permanent error
02H - Read/Only Disk

03H - Read/Only File

04H - Invalid Drive : drive select error
05H - File open by another process
07H - Password Error

08H - File Already Exists

09H - lllegal ? in FCB

6-98

Concurrent DOS 86 Programmer’s Guide F_SETDATE

F_SETDATE
Set File Time and Date Stamps

Entry Parameters:
Register CL: 74H (116)
DX: FCB address — Offset
DS: FCB address - Segment

Returned Values:
Register AL: Directory code
AH: Physical error
BX: Same as AX

F_SETDATE sets the time and date stamp fields for the specified file to the time
and date stamp values specified in the first eight bytes of the DMA buffer. The
specified file must currently be open in Locked mode by the calling process.

The first 4-byte field in the DMA buffer contains the access or create stamp field
for CP/M™ media files. This field is copied into the file’s access or create stamp
field if the directory label has activated access and/or creation time and date
stamping on the file’s drive.

Note that only the update stamp field can be set for DOS media files. DOS media
files are not stamped for access or create times.

The second 4-byte field of the DMA buffer contains the update stamp field. This
field is copied into the update stamp field for CP/M files only when the directory
label has activated update time and date stamping on the file’s drive. The DMA
update stamp field is always copied into the update stamp field of DOS media files.

Upon return from a successful operation, F_SETDATE sets register AL to 00H. If
the referenced FCB does not specify a file opened by the calling process in Locked
mode, register AL will be set to 0AH. Register AH is set to 00H in both cases.

If a physical or extended error is encountered, F_SETDATE performs different
actions, depending upon the BDOS Error mode (see F_ERRMODE). If the BDOS is in
the default Error mode, Concurrent displays an error message at the console and
terminates the calling process. Otherwise, F_SETDATE returns to the calling
process with register AL set to FFH and register AH set to one of the following
physical error codes:

01H - Disk I/0 Error : Permanent Error
02H - Read/Only Disk
04H - Invalid Drive : Drive Select Error
09H - lllegal ? in FCB

6-99

F_SFIRST Concurrent DOS 86 Programmer’s Guide

F_SFIRST
Find The First File That Matches The Specified FCB

Entry Parameters:
Register CL: 011H (17)
DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Values:
Register AL: Directory Code
AH: Physical or Extended Error
BX: Same as AX

F_SFIRST scans the directory for a match with the referenced FCB. Two types of
searches can be performed. For standard searches, the calling process initializes
bytes 0 through 12 of the referenced FCB, with byte 0 specifying the drive
directory to be searched, bytes 1 through 11 specifying the file or files to be
searched for, and byte 12 specifying the extent. Byte 12 is usually set to 00H.

An ASCIl question mark (63, or 03FH hexadecimal) in any of the bytes 1 through 12
matches all entries on the directory in the corresponding position. This facility,
called ambiguous file reference, can be used to search for multiple files on the
directory. When called in the standard mode, F_SFIRST scans for the first file entry
in the specified directory that matches the FCB and belongs to the current user
number.

F_SFIRST also initializes the F_SNEXT call. After the search call has located the
first directory entry matching the referenced FCB, F_SNEXT can be called
repeatedly to locate all remaining matching entries. In terms of execution
sequence, however, the F_SNEXT call must follow either an F_SFIRST or F_SNEXT
call with no other intervening BDOS file-access system calls.

If byte 0 of the referenced FCB is set to a question mark, F_SFIRST ignores the
remainder of the referenced FCB and locates the first directory entry residing on
the current default drive. All remaining directory entries can be located by making
multiple F_SNEXT calis.

This type of search oparation is not usually made by application programs, but it
does provide complete flexibility to scan all directory entries. Note that this type
of search operation must be performed to access a drive’s directory label.

6-100

Concurrent DOS 86 Programmer’s Guide F_SFIRST

Upon return, F_SFIRST returns a directory code in register AL with the value 0 to 3
if the search is successful, or OFFH if a matching directory entry is not found.
Register AH is set to zero in both of these cases. For successful searches, the
current DMA is also filled with the directory record containing the matching entry,
and the relative starting position is (AL*32). The directory information can be
extracted from the buffer at this position.

If the directory has been initialized for date and time stamping, then an FCB
resides in every fourth directory entry, and successful directory codes are
restricted to the values 0 to 2. For successful searches, if the matching directory
record is an extent zero entry, and if an SFCB resides at offset 96 within the
current DMA buffer, then the contents of (DMA Address + 96) = 021H, and the
SFCB contains the time and date stamp information and password mode for the
file. This information is located at the relative starting position of 97 + (AL * 10)
within the current DMA in the following format:

0 - 3 Create or Access Date and Time Stamp Field
4 - 7 Update Date and Time Stamp Field
8 Password Mode Field

Refer to Section 2.8 for more information about SFCBs.

If a physical error is encountered, F_SFIRST performs different actions depending
on the BDOS error mode (see F_ERRMODE). If the BDOS is in the default Error
mode, Concurrent displays a message identifying the error at the console and
terminates the calling process. Otherwise, it returns to the calling process with
register AL set to OFFH and register AH set to one of the following physical error
codes:

01H - Disk I/0 Error : permanent error
04H - Invalid Drive : drive select error

6-101

F_SIZE Concurrent DOS 86 Programmer’s Guide

F_SIZE
Compute The Size Of A Disk File

Entry Parameters:
Register CL: 023+ (35)
DX: FCB Address — Offset
DS: FCB Address - Segment

Returned Values:
Register AL: Directory Code
AH: Physical or Extended Error
BX: Same as AX, Random Record Field of FCB Set

F_SIZE determines the virtual file size, which is the address of the record
immediately following the end of the file. The virtual size of a file corresponds to
the physical size if the file is written sequentially. If the file is written in random
mode, gaps might exist in the allocation, and the file might contain fewer records
than the indicated size. For example, if a single record with record number
262,143, the Concurrent maximum, is written to a file using F_ WRITERAND, then the
virtual size of the file is 262,144 records even though only one data block is
actually allocated.

To compute file size, the calling process passes the address of an FCB with bytes
RO, R1, and R2 present. F_SIZE sets the random record field of the FCB to the
Random Record Number + 1 of the last record in the file. If the R2 byte is set to
04H, and RO and R1 are both zero, then the file contains the maximum record
count, 262,144.

A process can append data to the end of an existing file by calling F_SIZE to set
the random record position to the end of file, and then performing a sequence of
random writes.

Note: The file need not be open in order to use F_SIZE. However, if the file is open
in Locked mode and it has been extended by the calling process, the file must be
closed before calling F_SIZE. Otherwise, F_SIZE returns an incorrect file size.
F_SIZE returns the correct size for files open in Unlocked mode and Read-Only
mode. :

Upon return, F_SIZE returns a OOH in register AL if the file specified by the
referenced FCB is found, or a OFFH in register AL if the file is not found. Register
AH is set to O0H in both cases.

6-102

Concurrent DOS 86 Programmer’s Guide F_SIZE

If a physical or extended error is encountered, F_SIZE performs different actions
depending on the BDOS Error mode (see F_ERRMODE). |If the BDOS is in the
default Error mode, Concurrent displays a message at the console identifying the
error and terminates the process. Otherwise, F_SIZE returns to the calling process
with register AL set to OFFH and register AH set to one of the following physical
or extended error codes:

01H - Disk I/0O Error : permanent error
04H - Invalid Drive : drive select error
09H - lllegal ? in FCB

6-103

F_SNEXT Concurrent DOS 86 Programmer’s Guide

F_SNEXT

Find A Subsequent File That Matches the
Specified FCB Of A Previous F_SFIRST Or F_SNEXT

Entry Parameters:
Register CL: 012H (18)

Returned Values:
Register AL: Directory Code
AH: Physical or Extended Error
BX: Same as AX

F_SNEXT is identical to F_SFIRST except that the directory scan continues from the
last entry that was matched. F_SNEXT returns a directory code in register AL,
analogous to F_SFIRST.

Note: In execution sequence, an F_SNEXT call must follow either an F_SFIRST or
another F_SNEXT with no other intervening BDOS file-access system calls.

6-104

Concurrent DOS Programmer’s Guide F_TIMEDATE

F_TIMEDATE

Return File Date Stamps And Password Mode

Entry Parameters:
Register CL: 066H (102)
DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Values:
Register AL: Directory Code
AH: Physical Error
BX: Same as AX

F_TIMEDATE returns the time and date stamp information and password mode for the
specified flle In byte 12 and bytes 24 through 31 of the specified FCB. The calling process
passes the address of an FCB In which the drive, fllename, and type fields have been
defined.

If F_TIMEDATE is successful, it sets the following fields in the referenced FCB:
byte 12 password mode field
bit 7 - Read
bit 6 - Write
bit 5 - Delete
Byte 12 equal to 0 indicates the flie has not been assigned a password.
byte 24 - 27 SFCB Create or Access time stamp field
byte 28 - 31 SFCB Update time stamp fleld

Upon return, F_TIMEDATE returns a directory code In register AL with the value 00H if the
operation Is successful, or OFFH if the specified file Is not found. Register AH Is set to 00H in
both of these cases.

If a physical or extended error is encountered, F_TIMEDATE performs different actions
depending on the BDOS Error mode (see F_ERRMODE). If the BDOS s In the default Error
mode, Concurrent displays a message at the console identifying the error and terminates
the calling process. Otherwise, F_TIMEDATE returns to the calling process with register AL
set to OFFH and register AH set to one of the following physical error codes:

01H - Disk I/O Error: permanent error

04H - Invalld Drive: drive select error

09H - lllegal ? in FCB

6-105

Concurrent DOS Programmer's Guide F TRUNCATE

F_TRUNCATE

Truncate File

Entry Parameters:
Register CL: 063H (99)
Register DX: FCB Address - Offset

Returned Values:
Register AL: Directory Code
Register AH: Physical or Extended Error
Register BX: Same as AX

F_TRUNCATE sets the last record of a file to the Random Record Number contained in the
referenced FCB. The calling program passes the address of the FCB In register DX with
byte 0 of the FCB speclfying the drive, bytes 1 through 11 specifying the fllename and
flletype, and bytes 33 through 35 (R0, R1, and R2) specifying the last record of the file. The
last record number Is an 18-bit value, stored with the least significant byts first (R0), the
middle byte next (R1), and the high byte last (R2). This value can range from 0 to 262,143
(0O3FFFFH)

If the file specified by the referenced FCB is password-protected, the correct password
must have been placed in the first eight bytes of the current DMA buffer, or have been
previously established as the default password (see F_PASSWD).

Interface attribute F5' specifies whether an extended file lock Is to be maintained after the
F_TRUNCATE call, as shown below:

F5’'= 0 Do not maintain an extended file lock (default) F5’ = 1 Maintain an extended file lock

If F5' Is set and the referenced FCB specifies a file with an extended file lock, the calling
process maintains the lock on the file. Otherwise, the flle becomes avallable to other
processes. Section 2.11 describes extended flle locking In detall.

F_TRUNCATE requires that the Random Record Number field of the referenced FCB
specify a value less than the current file size.

A process can truncate a file that It currently has open If the file is opened in Locked mode,
and the file has not been extended during the open session. However, the BDOS returns a
checksum error if the process makes a subsequent reference to the file with a BDOS
system call requiring an open FCB. A process cannot truncate files open in R/O or
Unlocked mode.

6-106

Concurrent DOS 86 Programmer’s Guide F_TRUNCATE

Truncating an open file is not recommended. F_TRUNCATE truncates a file based
on the file’s state in the directory. If a process attempts to truncate at a region of
the file that has been allocated in memory but has not been recorded in the
directory, F_TRUNCATE returns an error. Even when successful, an open file
truncate can adversely affect the performance of the calling process. For these
reasons, you should close an open file before you truncate it.

After completion, F_TRUNCATE returns a directory code in register AL with the
value 00H if the operation is successful or OFFH if the file is not found or if the
record number is invalid. In both cases register AH is set to 00H.

If a physical or extended error is encountered, F_TRUNCATE performs different
actions depending on the BDOS error mode (see F_ERRMODE). If the BDOS is in
the default Error mode, Concurrent displays a message at the console identifying
the error and terminates the calling process. Otherwise, F_TRUNCATE returns to
the calling program with register AL set to OFFH and register AH set to one of the
following physical or extended error codes:

01H - Disk I/0 Error : permanent error
02H - Read/Only Disk

03H - Read/Only File

04H - Invalid Drive : drive select error
05H - File Currently Open

06H - Close Checksum Error

07H - Password Error

08H - File Already Exists

09H - lllegal ? in FCB

O0AH - Open File Limit Exceeded

OBH - No Room in System Lock List

6-107

F_UNLOCK Concurrent DOS 86 Programmer’s Guide

F_UNLOCK
Unlock Records In A Disk File

Entry Parameters:
Register CL: 02BH (43)
DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Values:
Register AL: Error Code
AH: Physical Error
BX: Same as AX

F_UNLOCK unlocks one or more consecutive records previously locked by an
F_LOCK call. F_UNLOCK is only supported for files open in Unlocked mode. If it is
called for an file open in Locked or Read-Only mode, no unlocking action occurs
but a successful result is returned. Record locking and unlocking is described in
detail in Section 2.14.

The calling process passes the address of an FCB in which the Random Record
Field is filled with the Random Record Number of the first record to be unlocked.
The number of records to be unlocked is determined by the BDOS Multisector
Count (see F_MULTISEC). The current DMA must contain the 2-byte File ID
returned by the F_OPEN call when the referenced FCB was opened. Note that the
File ID is only returned by F_OPEN when the file open mode is Uniocked.

If interface attribute F5’ is set to 1, F_UNLOCK unlocks all locked records belonging
to the calling process. The F_UNLOCK interface attribute definition is listed below:

F5'= 0 Unlock records specified by Random Record Number
and BDOS Multisector Count (default)
F5'= 1 Unlock all locked records.

F_UNLOCK ignores the FCB Random Record field and the BDOS Multisector Count
when F5’ is set.

F_UNLOCK does not unlock a record that is currently locked by another process.
However, F_UNLOCK does not return an error if a process attempts to do that.
Thus, if the Multisector Count is greater than one, F_UNLOCK unlocks all records
locked by the calling process, skipping those records locked by other processes.

Some F_UNLOCK requests require a new entry in the BDOS system Lock List. If
there is insufficient space in the system Lock List to satisfy the F_UNLOCK request,
or if the process record Lock List limit is exceeded, then F_UNLOCK does not
unlocks any records and returns an error code to the calling process.

6-108

Concurrent DOS 86 Programmer’'s Guide F_UNLOCK

Upon return, F_UNLOCK sets register AL to 00H if the unlock operation was
successful. Otherwise, register AL contains one of the following error codes:

01H - Reading unwritten data

03H - Cannot close current extent

04H - Seek to unwritten extent

06H - Random Record Number out of range
0AH - FCB Checksum Error

OCH - Process record Lock List limit exceeded
0DH - Invalid File ID

OEH - No room in system Lock List

OFFH - Physical error refer to register AH

F_UNLOCK returns error code 01H when it accesses a data block which has not
been previously written.

F_UNLOCK returns error code 03H when it cannot close the current extent prior to
moving to a new extent.

F_UNLOCK returns error code 04H when it accesses an extent that has not been
created.

F_UNLOCK returns error code 06H when byte 35 (r2) for a list of the referenced
FCB is greater than 3.

F_UNLOCK returns error code OAH if the referenced FCB failed the FCB checksum
test.

F_UNLOCK returns error code OCH if performing the unlock request would require
that the process consume more than the maximum allowed number of system
Lock List entries.

F_UNLOCK returns error code ODH when an invalid File ID is placed at the
beginning of the current DMA.

F_UNLOCK returns error code OEH when the system Lock List is full and performing
the unlock request would require at least one new entry.

F_UNLOCK returns error code OFFH if a physical error was encountered and the
BDOS Error mode is one of the return modes (see F_ERRMODE). If the BDOS is in
the default Error mode, Concurrent displays a message at the console identifying
the physical error and terminates the calling process. When F_UNLOCK returns a
physical error to the calling process, it is identified by register AH as shown
below:

01H - Disk I/0 Error : permanent error
04H - Invalid Drive : drive select error

6-109

F_USERNUM Concurrent DOS 86 Programmer’s Guide

F_USERNUM
Set Or Return The Calling Process’s Default User Number

Entry Parameters:
Register CL: 020H (32)
DL: OFFH to GET User Number
User Number to SET

Returned Values:
Register AL: Current User Number if GET
BL: Same as AL

F_USERNUM can change or interrogate a process’s current default user number. If
register DL = OFFH, then F_USERNUM returns the value of this user number in
register AL. The value can range from 0 to OFH. If register DL is not OFFH, then
F_USERNUM changes the default user number to the value in DL, modulo 010H (the
high nibble of DL is masked off).

Under Concurrent, a new process inherits its initial default user number from its
parent, the process creating the new process. Changing the default user number
does not change the user number of the parent. On the other hand, all child
processes of the calling process inherit the new user number.

The operation of the Terminal Message Process (TMP) demonstrates this
convention. When you enter a command, Concurrent creates a new process with
the same user number as that of the TMP. If this new process changes its user
number, the TMP is unaffected. Once the new process terminates, the TMP
displays the same user number in its prompt that it displayed before you entered
the command and the child process was created.

6-110

Concurrent DOS 86 Programmer’s Guide F_WRITE

F_WRITE
Write Records Sequentially To A Disk File

Entry Parameters:
Register CL: 015H (21)
DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Values:
Register AL: Error Code
AH: Physical Error
BX: Same as AX

F_WRITE writes 1 to 128, 128-byte data records beginning at the current DMA
address into the file named by the specified FCB. The BDOS Multisector Count
(see F_MULTISEC) determines the number of 128-byte records that are written.
The default is one record. An F_OPEN or F_MAKE call must have previously
activated the referenced FCB.

F_WRITE places the record into the file at the position indicated by the CR byte of
the FCB, and then automatically increments the CR byte to the next record
position. If the CR field overflows, F_WRITE automatically opens or creates the
next logical extent and resets the CR field to 00H in preparation for the next write
operation.

If F_WRITE is used to write to an existing file, then the newly written records
overlay those already existing in the file. The calling process must set the CR field
to O0H following an F_OPEN or F_MAKE call if the intent is to write sequentially
from the beginning of the file.

F_WRITE makes an update date and time stamp for the file if the following
conditions are met: the referenced drive has a directory label that requests update
date and time stamping, and the file has not already been stamped for update by a
previous F_MAKE or F_WRITE call.

Upon return, F_WRITE sets register AL to O0H if the write operation is successful.
Otherwise, register AL contains an error code identifying the error as shown below:

01H - No available directory space

02H - No available data block

08H - Record locked by another process
09H - Invalid FCB

O0AH - FCB Checksum Error

0BH - Unlocked file verification error
OFFH - Physical error; refer to register AH

6-111

F_WRITE Concurrent DOS 86 Programmer’s Guide

F_WRITE returns error code 01H when it attempts to create a new extent that
requires a new directory entry, and no available directory entries exist on the
selected disk drive.

F_WRITE returns error code 02H when it attempts to allocate a new data block to
the file, and no unallocated data blocks exist on the selected disk drive.

F_WRITE returns error code 08H if the calling process attempts to write to a record
locked by another process, or a record locked by the calling process in shared
mode. F_WRITE returns this error only for files open in Unlocked mode.

F_WRITE returns error code 09H if the FCB is invalidated by a previous F_CLOSE
system call that returned an error.

F_WRITE returns error code 0AH if the referenced FCB fails the FCB checksum test.

F_WRITE returns error code 0BH if the BDOS cannot locate the FCB’'s directory
entry when attempting to verify that the referenced FCB contains current
information. F_WRITE returns this error only for files open in Unlocked mode.

F_WRITE returns error code OFFH if a physical error was encountered and the BDOS
is in Return Error mode or Return and Display Error mode (see F_ERRMODE). If the
BDOS is in the default Error mode, Concurrent displays a message at the console
identifying the physical error and terminates the calling process. When F_WRITE
returns a physical error to the calling process, it is identified by register AH as
shown below:

01H - Disk I/0 Error : permanent error
02H - Read/Only Disk
03H - Read/Only File or
File Opened in Read/Only Mode or
File password protected in Write mode
04H - Invalid Drive : drive select error

On all error returns except for physical error returns (AL = 255), F_ WRITE sets
register AH to the number of records successfully written before the error was
encountered. This value can range from 0 to 127, depending on the current BDOS
Muitisector Count. It is always set to zero when the Multisector Count is equal to
one.

6-112

Concurrent DOS 86 Programmer’s Guide F_WRITERAND

F_WRITERAND
Write Random Records To A Disk File

Entry Parameters:
Register CL: 022H (34)
DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Values:
Register AL: Error Code
AH: Physical Error
BX: Same as AX

F_WRITERAND is analogous to F_READRAND, except that data is written to the disk
from the current DMA address. If the disk extent and/or data block where the data
is to be written is not already allocated, the BDOS automatically performs the
allocation before the write operation continues.

In order to write to a file using F_WRITERAND, the calling process must first open
the base extent, extent 0. This ensures that the FCB is properly initialized for
subsequent random access operations. If the file is empty, the calling process
must create the base extent with an F_MAKE call before calling F_WRITERAND. The
base extent might or might not contain data, but it records the file in the directory
so that it can be displayed by the DIR utility. If a process does not open extent 0
and allocates data to some other extent, the file is invisible to the DIR utility.

F_WRITERAND sets the logical extent and current record positions to correspond
with the random record being written, but does not change the Random Record
Number. Thus sequential read or write operations can follow a random write, with
the current record being reread or rewritten as the calling process switches from
random to sequential mode.

F_WRITERAND makes an update date and time stamp for the file if the following
conditions are met: the referenced drive has a directory label that requests update
date and time stamping, and the file has not already been stamped for update by a
previous F_MAKE or F_WRITE call.

If the BDOS Multisector Count is greater than one (see F_MULTISEC), F_WRITERAND
reads multiple consecutive records into memory beginning at the current DMA
address. F_WRITERAND automatically increments the RO, R1,and R2 field of the
FCB to write each record. However, it restores the FCB’s Random Record Number
to the first record’s value upon return to the calling process.

6-113

F_WRITERAND Concurrent DOS 86 Programmer’'s Guide

Upon return, F_WRITERAND sets register AL to O00H if the write operation is
successful. Otherwise, register AL contains one of the following error codes:

02H - No available data block

03H - Cannot close current extent

05H - No available directory space

06H - Random record number out of range
08H - Record locked by another process
0OAH - FCB Checksum Error

0BH - Unlocked file verification error

OFFH - Physical error; refer to register AH

F WRITERAND returns error code 02H when it attempts to allocate a new data
block to the file. No unaliocated data blocks exist on the selected disk drive.

F_WRITERAND returns error code 03H when it cannot close the current extent
before moving to a new extent.

F_WRITERAND returns error code 05H when it attempts to create a new extent that
requires a new directory entry and no available directory entries exist on the
selected disk drive.

F_WRITERAND returns error code 06H when byte 35 (R2) of the referenced FCB is
greater than 3.

F_WRITERAND returns error code 08H if the calling process attempts to write to a
record locked by another process, or a record locked by the calling process in
Shared mode. F_WRITERAND returns this error only for files open in Unlocked
mode.

F_WRITERAND returns error code 0AH if the referenced FCB fails the FCB checksum
test.

F_WRITERAND returns error code 0BH if the BDOS cannot locate the FCB’s directory
entry when attempting to verify that the referenced FCB contains current
information. F_WRITERAND returns this error only for files open in Unlocked mode.

F_WRITERAND returns error code OFFH if a physical error is encountered and the
BDOS Error mode is in one of the return modes (see F_ERRMODE). If the BDOS is
in the default Error mode, Concurrent displays a message at the console
identifying the physical error and terminates the calling process. When a physical
error is returned to the calling process, it is identified by register AH as shown
below:

01H - Disk I/0 Error : permanent error
02H - Read/Only Disk
03H - Read/Only File or
File Opened in Read/Only Mode or
File password protected in Write mode
04H - Invalid Drive : drive select error

6-114

Concurrent DOS 86 Programmer’s Guide F_WRITERAND

On all error returns, except for physical error returns (AL = 255), F_WRITERAND sets
register AH to the number of records successfully written before the error was
encountered. This value can range from 0 to 127 depending on the current BDOS
Multisector Count. It is always set to zero when the Muitisector Count is equal to
one.

6-115

F_WRITEXFCB Concurrent DOS 86 Programmer’s Guide

F_WRITEXFCB
Write Extended File Control Block Of A Disk File

Entry Parameters:
Register CL: 067H (103)
DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Values:
Register AL: Directory Code
AH: Physical or Extended Error
BX: Same as AX

F_WRITEXFCB creates a new XFCB or updates the existing XFCB for the specified
file. The calling process passes the address of an FCB in which the drive, name,
type, and extent fields have been defined. The FCB extent field, if set, specifies the
password mode and whether a new password is to be assigned to the file. The
format of the extent field byte is shown below:

FCB byte 12 (EX) XFCB password mode

bit 7 - Read mode

bit 6 - Write mode

bit 5 - Delete mode

bit 0 - assign new password to the file

If the FCB is currently password-protected, the correct password must reside in
the first 8 bytes of the current DMA or have been previously established as the
default password (see F_PASSWD). If bit 0 is set to 1, the new password must
reside in the second 8 bytes of the current DMA.

Note: F_WRITEXFCB does not create or update an XFCB if the XFCB specifies a file
open by another process. However, a process can update or create an XFCB for a
file that it has open in Locked mode.

Upon return, F_WRITEXFCB returns a directory code. in register AL with the value
OOH if the XFCB create or update was successful. F_WRITEXFCB returns OFFH in
register AL if no directory label existed on the specified drive, or the file specified
in the FCB was not found, or no space existed in the directory to create an XFCB,
or if the drive is not password enabled. F_WRITEXFCB also returns OFFH if
passwords are not enabled by the specified drive’s directory label. Register AH is
set to O0H in all of these cases.

6-116

Concurrent DOS 86 Programmer’s Guide F_WRITEXFCB

If a physical or extended error is encountered, F_WRITEXFCB performs different
actions depending on the BDOS Error mode (see F_ERRMODE). If the BDOS is in
the default Error mode, Concurrent displays a message at the console identifying
the error and terminates the calling process. Otherwise, F_WRITEXFCB returns to
the calling process with register AL set to OFFH and register AH set to one of the
following physical or extended error codes:

01H - Disk 170 Error : permanent error
02H - Read/Only Disk
04H - Invalid Drive : drive select error
05H - File open by another process,
or open in Read-Only or Unlocked mode
07H - Password Error
09H - lllegal ? in FCB

6-117

F_WRITEZF . Concurrent DOS 86 Programmer’'s Guide

F_WRITEZF
Write A Random Record To A Disk File
And Prefill New Data Blocks With Zeros

Entry Parameters:
Register CL: 028H (40)
DX: FCB Address - Offset
DS: FCB Address - Segment

Returned Values:
Register AL: Error Code
AH: Physical Error
BX: Same as AX

F_WRITEZF is similar to F_WRITERAND, with the exception that it fills a previously
unallocated data block with zeros (00H) before writing the record. If F_WRITEZF
has been used to create a file, records accessed by F_READRAND that contain all
zeros identify unwritten random records. Unwritten random records in allocated
data blocks of files created using F_ WRITERAND contain uninitialized data.

6-118

Concurrent DOS 86 Programmer’'s Guide L_ATTACH

L_ATTACH
Attach The Default List Device To The Calling Process

Entry Parameters:
Register CL: 09EH (158)

L_ATTACH attaches the default list device of the calling process. If the list device
is already attached to some other process, the calling process relinquishes the
CPU until the other process detaches from the list device. When the list device
becomes free, and the calling process is the highest priority process waiting for
the list device, the attach operation occurs.

6-119

L_CATTACH Concurrent DOS 86 Programmer’s Guide

L_CATTACH
Conditionally Attach To The Default List Device

Entry Parameters:
Register CL: O0A1H (161)

Returned Values:
Register AX: 0 if attach ‘OK’, OFFFFH on failure
BX: Same as AX
CX: Error Code

L_CATTACH attaches the default list device of the calling process only if the list
device is currently available.

If the list device is currently attached to another process, L_CATTACH returns a
value of OFFH, indicating that the list device could not be attached. L _CATTACH
returns a value of O0H to indicate that either the list device is already attached to
the process, or that it was unattached, and a successful attach operation was
made.

Table 6-5 contains the list of error codes returned in CX.

6-120

Concurrent DOS 86 Programmer’s Guide L_DETACH

L_DETACH
Detach The Default List Device From The Calling Process

Entry Parameters:
Register CL: 09FH (159)

Returned Values:
Register AX: 0 if detach ‘OK’, OFFFFH on failure
BX: Same as AX

L_DETACH detaches the default list device of the calling process. If the list device
is not currently attached, no action takes place.

6-121

L_GET Concurrent DOS 86 Programmer’s Guide

L_GET
Return The Calling Process’s Default List Device

Entry Parameters:
Register CL: 0A4H (164)

Returned Values:
Register AL: List Device Number
BL: Same as AL

L_GET returns the default list device number of the calling process.

6-122

Concurrent DOS 86 Programmer’s Guide L_SET

L_SET
Set The Calling Process’s Default List Device
Entry Parameters:
Register CL: O0AOH (160)

DL: List Device Number

Returned Values:
Register CX: Error Code

L_SET sets the default list device for the calling process.

Table 6-5 contains the list of error codes returned in CX.

6-123

L_WRITE Concurrent DOS 86 Programmer’s Guide

L_WRITE
Write A Character To The Default List Device
Entry Parameters:

Register CL: 05H (5)
DL: Character

L_WRITE writes the specified character to the default list device of the calling
process. Before writing the character, Concurrent calls L_ATTACH to verify that the
calling process owns its default list device.

6-124

Concurrent DOS 86 Programmer’'s Guide L_WRITEBLK

L_WRITEBLK
Send Specified Character String to Default List Device
Entry Parameters:

Register CL: 070H (112)
Register DX: CHCB Address

L_WRITEBLK sends the character string specified in the Character Control Block
(CHCB) and addressed in register pair DX to the logical list device, LST:. The CHCB
format is:

bytes 0 - 1 Offset of character string
bytes 2 - 3 Segment of character string
bytes 4 - 5 Length of character string to print

6-125

Memory Call Data Structures Concurrent DOS 86 Programmer’s Guide

Memory Call Data Structures

There are two classes of Memory system calls in Concurrent DOS 86. The first
class supports the MP/M-86 memory allocation scheme and contains two calls:
M_ALLOC and M_FREE.

The second class supports the CP/M-86 memory allocation scheme and contains
six calls: MC_ABS, MC_ALLFREE, MC_ALLOC, MC_ALLOCABS, MC_FREE, and MC_MAX.

Note: The CP/M-86 memory calls are also supported under MP/M-86.

Many of the Memory calls use the Memory Control Block (MCB) or the Memory
Parameter Block (MPB) to pass parameters to and from Concurrent.

Figure 6-7 shows the Memory Control Block, Table 6-14 defines its fields, and
Listing 6-1 shows the programming equates for this data structure.

Figure 6-7. MCB - Memory Control Block

Table 6-14. MCB Field Definitions

Field Definition

BASE The Segment Address of the beginning of the specified
memory segment. '

LENGTH Length of the Memory Segment in paragraphs. The LENGTH
field is set to the number of paragraphs wanted.

EXT The EXT field is unused but must be available.

6-126

Concurrent DOS 86 Programmer’s Guide

Memory Call Data Structures

Listing 6-1. Memory Control Block Definition

;***

ok

’

H Memory Control Block Definition

o« %
;***t*****
mcb_base equ word ptr 0

mcb_length equ word ptr mcb_base + word
mcb_ext equ byte ptr mcb_length + word
mcb_len equ mcb_ext + byte

.
’

Figure 6-8 shows the Memory Control Block, Table 6-15 defines its fields, and
Listing 6-2 shows the programming equates for this data structure.

Figure 6-8. MPB - Memory Parameter Block

t————— ————— m———— m—————— tm————— +
| START| MIN | MAX [*0000H|*0000H]|
fm———— +m————— pm————— tm———— F—————— +
Table 6-15. MPB8 Field Definitions

Field Description

START if non-00H, an absolute request at this paragraph

MIN minimum memory needed (paragraphs)

MAX maximum memory wanted (paragraphs)

* 0000H These fields must be 00H; they are used internally.

6-127

Memory Call Data Structures Concurrent DOS 86 Programmer’s Guide

Listing 6-2 Memory Parameter Block Definition

,-*********‘k**‘k******‘k**k**********'k************************

.k
’

i Memory Parameter Block Definition

.k
’

;***)\'************************k*****k*****‘k*************‘k***

mpb_start equ word ptr O

mpb_min equ word ptr mpb_start + word
mpb_max equ word ptr mpb min + word
mpb_pdadr equ word ptr mpb _max + word
mpb_flags equ word mpb_pdadr + word
mpb_len equ mpb_flags + word

; mpb_flags definition

mf_ load equ 00001h
mf_share equ 00002h
mf_ code equ 00004h

’

EMM Data Structures

Expanded Memory Management requires two additional memory call data structures. These are the
Memory Window Descriptor and the Memory Page Allocation Descriptor.

The XIOS maintains one Memory Window Descriptor (MWD) for each logical address window of
paged memory in the system. MWDs are arranged as a linked list pointed to by the Memory Window
Descriptor Root (MWDR) located at offset 98H in the System Data Area (see SYSDAT).

The Memory Page Allocation Descriptor (MPAD) is a dynamic structure created by MEM whenever
paged memory is allocated to a process. MPADs are arranged as a linked list pointed to by the
Memory Page Allocation Root (P-MPAR) field in the Process Descriptor of the process owning the
unit of paged memory. The P_MPAR field is located at offset 34H in the Process Descriptor (see
P_CREATE).

See the System Guide for additional information about these data structures.

If you need to ensure that allocated memory is not switched out during a process then the process
flag PSF-NOBANK may be set before the call is made. The PSF-NOBANK flag is described in Table
6-18 (p 6-147)

6-128

Concurrent DOS 86 Programmer’'s Guide M_ALLOC

M_ALLOC
Allocate A Memory Segment

Entry Parameters:
Register CL: 080H or 081H (128,129)
DX: MPB Address Offset
DS: MPB Address Segment
MPB filled in

Returned Values:
Register AX: 0 on success, OFFFFH on failure
BX: Same as AX
CX: Error Code
MPB_start filled in

M_ALLOC allows a program to allocate extra memory. A successful allocation
allocates a contiguous memory segment whose length is at least the MIN and no
more than the MAX number of paragraphs specified in the MPB.

The START field of the MPB is modified to be the starting paragraph of the
memory segment. The MIN and MAX fields are modified to be the length of the
memory segment in paragraphs. Memory Segments can be explicitly released with
M_FREE; Concurrent also releases all memory owned by a process at termination.

Note: MIN and MAX fields must be explicitly filled in. The MAX value must be
greater than or equal to the MIN value.

Table 6-5 contains the list of error codes returned in CX.

6-129

M_FREE Concurrent DOS 86 Programmer’'s Guide

M_FREE
Free A Memory Segment

Entry Parameters:
Register CL: 082H (130)
DX: MFPB Address - Offset
DS: MFPB Addre'ss - Segment

Returned Values:
Register AX: 0 on success, OFFFFH on failure
BX: Same as AX
CX: Error Code

The calling process passes the address of a Memory Free Parameter Block (MFPB)
as shown in the Figure 6-9.

Figure 6-9. MFPB - M_FREE Parameter Block

M_FREE releases memory starting at the START paragraph to the end of a single
previously allocated segment that contains the START paragraph. If the START
paragraph is the same as that returned in the MPB of a memory allocation call,
then M_FREE releases the whole memory segment. The * 0000H field must be
initialized to zero.

Table 6-5 contains the list of error codes returned in CX.

6-130

Concurrent DOS 86 Programmer’'s Guide MC_ABSALLOC

MC_ABSALLOC
Allocate A Memory Segment At A Specified Address

Entry Parameters:
Register CL: 038H (56)
DX: MCB Address - Offset
DS: MCB Address - Segment

Returned Values:
Register AL: 0 on success, OFFH on failure
BL: Same as AL
CX: Err