EVANS § SUTHERLAND COMPUTER CORP.
LINE DRAWING SYSTEM MODEL 1
SYSTEM REFERENCE MANUAL

'Evans G Sutherland Computer Corporatlon
‘Three Research Road
~Salt Lake City, Utah 84112

November 1, 1970
U0800-1-1
For -101 Systems

Copyright 1970

Evans § Sutherland Computer Cofp.

Preface

This manual has been developed by Evans § Sutherland
Computer Corporation for use by experienced engineers
and programmers who are interested in using and/or
maintaining the LDS-1 Graphic Display System.

The first six chapters deal with the basic hardware
- of the LDS-1. The next three explain programming features.
The remaining chapters deal with LDS-1 hardware options
and how they relate to the rest of the system.

Any suggestions or corrections to this manual are
invited, as it is our intent to continually improve it.
Pages which may be used to suggest corrections are '
included at the end of the manual.

TABLE OF CONTENTS

PREFACE
SYSTEM OVERVIEW

Function of the LDS- 1
System Configuration
Data Base ,

The Display Program '
Coordinate Data

Data Form Specifications
Programming Language

CHANNEL CONTROL

Function

- Instruction Set

Operating Modes

Instruction Fetching § Decodlng
Data Accessing

Repeat Drawing InstructlonsA
The Stack

The Data Sink

Subroutines

Execute Mode

Returning Output to Memory
Channel Control Registers

‘Character String Interpreter

MATRIX MULTIPLIER

Function

Three-dimensional Matrix Transformations
Two-dimensional Matrix Transformations

Composite Transformations -
Two-dimensional Curves
Three-dimensional Curves
Surface Patches

Arithmetic Conventions
Mode Control

CLIPPING DIVIDER

Function
The Current Point
Relative Data

Two-dimensional Clipping and Division
- Three-dimensional C11pp1ng and Division

Boxing
HIT and COUNT Functions
Scope Control

~The NAME Register

Graph Mode
Mode Control

- Chapter

Chapter

Chapter

Chapter

WOoO~ION U1 NN R

bl et ek
WA =

WORONOU N -t NO TSN
: o

b= 0 001 O\ L b L B

-

LINE GENERATOR § DISPLAY SCOPE
Function
Control

LDS-1/PDP-10 INTERFACE
General ;
Hardware Interface
System Software Interface

INSTRUCTION SET-STRUCTURAL BREAKDOWN

General

- Group 0 Instructions
Group 2 Instructions
Group 3 Instructions

Groups 4,5,6, and 7 Instructions

INSTRUCTION SET-FUNCTIONAL BREAKDOWN
Channel Control Register Loading

Push-Down Stack Manipulation
"Program Control

Condition Manipulation

Drawing Instructions
Clipping Divider Instructions
Matrix Multiplier Instructions

Character String Interpreter Instructions

PROGRAMMING EXAMPLES
Startup
2D Picket Fence
2D Star
Repeat Mode Instruction File
Chess Board
Boxing
Subroutlnlng w1th a New Box
3D Stars in Space
3D Picture .
Moving Cart
3D Surface Example
Timesharing
Self Mode

- MEMORY PROTECTION AND RELOCATION
General
Memory Relocation Register
- Memory Violation

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

SWITCHES BUTTONS, KNOBS, AND LIGHTS (SBKL) Chapter

General
Operation of the SBKL Optlon :
Instructlons

00O OMWEOOEES NIJII~3 O
.« e e e e e e . o 66 e

VWWOOWOWOWOWLWWWYWWLW

(S NS BT, |
* e
N =

.]

3

(CL RSN]

U BN

OV DN

NN b=

LN

O 00 NI O U B N

TABLET INTERFACE
Function
Programming
Additional Programming Hints

LORGNETTE ,
Introduction
Principles of Operation
The Lorgnette Motor Drive Circuit
Lorgnette Synchronization
Power Supply and Regulation
Interfacing the Lorgnette
Programming the Lorgnette
Special Applications

LDS-1 PROCESSING TIMES

MNEMONICS
The Instructions
Construction of Mnemonics
Definition of Arguments
Complete List of Instructions

A NOTE ON HOMOGENEOUS COORDINATES
Introduction
Conventions for Homogeneous Coordinates
Conventions of the Clipping Divider
Position - Viewpoint Matrices
 The Airport Problem

QUIQK REFERENCE MATERIAL
LIS INSTRUCTIONS

Chapter

Chapter‘

Appendix
Appendix

Appendix

‘Appendix

Appendix

12

12.
12,
12.

I

II

II.
IT1.
IT.
II.

DO =

f—t
W
R N N R G T

LN

ITI.
ITI.
ITI.
III.
III.

IV
v

U1 AN

CHAPTER 1
SYSTEM OVERVIEW

1.1 Functien of the LDS-1

The Evans § Sutherland Line Drawing System Model 1 (LDS-1)
is a high-speed display processing system which has the capa-
bility to process and display complex three-dimensional dynamic
~displays in real time as well as the capability to process and .
display two- and three-dimensional stati¢ displays. The LDS-1
- is an interactive display system which will accept input from

a variety of graphic input devices. The LDS-1 shares the
memory of a host computer and is interfaced both directly to
the memory port and to the I/0 path of the host computer. In
this environment the LDS-1 operates as an autonomous processor
with its own instruction fetching and data accessing facilities
and works off the. memory of the host computer on a "cycle
stealing" basis. , ;

; The LDS-1 is a fully programmable display processing system
with very general and very powerful graphic processing capa-
bilities and thus lends itself to a wide variety of problems
which involve displays. Programs are written specifically for
~the LDS-1, assembled by the assembler of the host computer, stored
in memory, and then interpreted and executed by the LDS-1. The
LDS-1 can be started and stopped by the host computer s monltor
via the I/0 path. »

The LDS-1 interprets a DRAWING definition, processes the
DRAWING to generate the view the user wishes to see, and displays
a PICTURE which represents the processed view of the drawing.

For the purposes of this manual, these terms will be assumed to
have the following definitions: ') ~

o DRAWING-~-the DRAWING is the definition stored in memory
which consists of two- or three-dimensional coordinate.
data and a display program which determines how these
coordinate values should be interpreted.

e PICTURE--the PICTURE is made up of the lines and dots
that appear on the Display Scope.

The intent of this manual is to describe the principal
features and explain the programming procedures for the LDS-1
when it is interfaced to a Digital Equipment Corporation PDP-10.
The manual assumes the reader to have an introductory knowledge
of the basic graphic functions performed by the LDS-1 and to
be familiar with the DEC MACRO-10 Assembler o

.1 2 System Conflguratlon

The system conflguratlon of the LDS-1 is shown in figure
1.1. Each of the major units operates asynchronously and

1-1

LDS-1 DISPLAY SYSTEM CONFIGURATION

Memory
H
I/0 Buss

(Tablet and
SBKL) |

DATA o ~ |DATA L
‘ Matrix et Clipping
COMMANDS COMMAND o
= Multiplier ————‘; Divider
LDS-1
Channel kDATA
| | < ; |
Control | DATA
. . @
L ' COMMANDS !? 5 DATA
Character '
String Input Devices
Interpreter

Famure 1.1

DATA
COMMANDS

Line

Generator

s

N

\\\\

Display
Scopes

together they work as a processing "pipeline." The drawing
information flows through the LDS-1 pipeline to produce a
picture on the Display Scope. The function of each of the
units is described briefly below: o

e The Channel Control. The Channel Control interprets the
display program and provides the other units of the LDS-1 with
the appropriate data and control. e :

e The Character String Interpreter. The Character String
Interpreter (sometimes referred to as the Character Bubble)
can interpret a packed string of characters and call on either
the hardware character generator (if any) or software character
routines to draw the character. .

e The Matrix Multiplier. The Matrix Multiplier can rotate,
translate, and scale the drawing. The Matrix Multiplier also
iterates the difference equations which define curves.

o The Clipping Divider. The Clipping Divider allows the
user to specify the portion of the drawing he wishes to view.
The Clipping Divider will automatically eliminate all portions
of the drawing which lie outside the viewing area and then
scale and position the picture on the Display Scope.

e The Line Generator and Display Scope. The Line Generator
converts the digital specification of endpoints into analog
sweep voltages to drive the deflection system of the Display
Scope. The picture appears on the Display Scope. '

¢ Input Devices. Various input devices are available with
the LDS-1I. These are described in later chapters. Generally,
these devices pass input data through the Channel Control and
into memory where it is processed by the LDS-1, the host
computer, or both.

~ Figure 1.2 illustrates some of the processing functions
performed by the LDS-1, in particular the major functions of
Clipping Divider and Matrix Multiplier.

1.3 The Data Base

In seeking to understand and in programming the LDS-1,
it is useful to think of three basic sets of information used
by the LDS-1. These groups include: .

e The Display Progrém. The diSplaylprogram contains

~~ the drawing instructions, addressing information for accessing

data, and control information to control the processing per-
formed by the LDS-1. The display program is interpreted by
the Channel Control. - S ’ o

1-2

LDS-1 GRAPHIC PROCESSING

(.)
—] . el
| 7 %
v 5|
| AT 2 z
: i ' | < =
y [R | = :
- window o ELMWOOD AVE.
| _ W,
1.The drawing is defined in the

user-chosen drawing space and a

"window" is specified.

2. All parts of the drawing outside
the "window" are eliminated by
the Clipping Divider.

3. The clipped drawing is mapped
onto the "viewport" on the
Display Scope.

Two-dimensional windowing

L 2 [
LThe drawing is defined

in a three-dimensional
drawing space.

Pyramid
of vision

‘lPart outside

: {clipped

2. The Matrix Multiplier 3. The drawing is compare
rotates, translates, § to-a pyramid of vision
scales the drawing. by the Clipping Divider

. The drawing is clip=

ped, and put in per-
spective, then mappe
onto the viewport of

Three-dimensional processing

the_Bisplay Scope,

e 3 .
Fieesre 1.2

e The Coordinate Data. The coordinate data specify the
Cartesian coordinate values for the position of dots or the
endpoints of lines in the drawing. The coordinate values
are processed by the arithmetic units in the pipeline.

.® The Viewing Parameters. The viewing parameters are the
- numerical quantities which are used by the arithmetic units

in processing the drawing to determine the position, orien-
tation, and scale of the picture displayed.

The display program is generally stored separately from
the coordinate data and viewing parameters. The Coordinate
data and the viewing parameters are pure numerical quantities
and can thus be manipulated directly by both the LDS-1 and
the host computer. Thus the coordinate data and the viewing
parameters can be considered part of a single data base which
is common to the LDS-1 and to the host computer. This common
data base makes direct interaction between the LDS-1 and the
host computer possible as indicated in figure 1.3.

1.4 The Display Progfam

The display program contains (1) drawing instructions, which
usually reference coordinate data, (2) instructions which mani-
pulate the viewing parameters, (3) and instructions which control
the addressing of data and the operation of the LDS-1. These
- instructions are described in detail in chapters 7 and 8 of
this manual, but it is necessary to understand basically how
the drawing instructions are used to define the drawing in order
to comprehend the functions performed by the LDS-1.

~1.4.1 Drawing Instructions

The drawing is interpreted, processed, and displayed one
line (or dot) at a time. The LDS-1 maintains the coordinates
of the "current point." The simple drawing instructions
reference the coordinates of a '"new point." 1In "set point"
and "dot" operations, this new point is used for positioning
and its value becomes the value of the current point. Lines
may be drawn either to the new point from the current point
("draw to") or from the new point back to the current point
(""draw from'). “Examples of these operations are shown in
figure 1.4. ' :

: More complex drawing instructions which result in the exe-
cution of a series of these basic drawing instructions are

also included in the LDS-1. These instructions provide for
drawing polygon-like figures, star-like figures, discon-

nected series of lines, and dots as shown in figure 1.4.

The coordinate data for these instructions are stored in a
continguous table to which the instruction makes reference.

1-3

THE DATA BASE

CPU o : Memory of Host Computer j : LDS-1
PU Instruction CPU LDS-1 |LDS-1 Instrucs
‘Fetch I tion Fetch 7
Program |Display :
General Purpose '_ : ' Program e Graphic Display
Processing < Data . "““*‘“—*“‘Viewiqg‘ Processing

Parameters 1>

| Processed Datd> Common
' ; - | Coordinate >
’ Data Space Data
: . <{Processed

Data

The LDS-1 operates as an autonomous processor, similar to the CPU, but with
specialized facilities for display proce551ng tasks The comblnatlon of the
CPU and the LDS-1 gives a dual processor system where the CPU is used for
general computing, and the LDS-1 is used to process and display pictures.

'Figu;gkl.S

DRAWING INSTRUCTIONS

“Basic Drawing Instructions

1 is current location.

"Set point" to 2 (2 becomes
location)

“"Draw to" 3 (3 becomes
location)

"Draw from" 4 (3 remains

‘ ; location)
"Dot" 5§ (5 becomes
location)

Complex Drawing Instructions

"Polygon" = Set point, draw
' to, draw to...
"Star" = Set point, draw

' draw from...

"Lines" = Set point, draw
point, draw to,
point... -

"Dots" = dot, dot, dot.

Figure 1.4

current
current
current

current

to, draw

from,

to, set

set

COORDINATE DATA FORMATS
FOR LDS-1/PDP-10

2-dimensional Data

0 17 18 35

3-dimensional Data (with Matrix Multiplier)

0 1718 35
two X Y
contiguous -
words ¢ Z W

3- d1men51ona1 Data (without Matrix Multiplier
or Matrix Multiplier inactive)

0 17 18 35
two X _ Y
contiguous '
words Zx: Ly

Note: Zx and Z, are generally the
same; ﬁlng them different
prov1des for different per-
spective divisors in X and Y,

a feature which is useful in
drawing certain types of curves.

Figure 1.5

DATA FORM SPECIFICATIONS

A Absolute
oo Y (x,Y)
(0,0) X
, , Relative
4 ‘ (AX, AY)
L7 YAY
A
Current AX
point
- Size Absolute
e (X Y) ("X "Y)
X Y ’ ’
...Y L‘(.tx
(0,0)
'Size Relative
_AX /4 AY (AX, AY) (-AX, -AY)
-ALZP?A&
* “Current.
point_

Figure 1.6

1.5 Coordinate Data

‘The coordinate data specify the position of endpoints of
lines or the position of dots. These points are specified by
their Cartesian coordinate values. The coordinate system cn
which the drawing is defined is a two or three-dimensional
virtual drawing space known as the PAGE. The PAGE is a fixed
point two's complement space. When the LDS-1 is interfaced
to a PDP-10, coordinate values are stored in 18-bit PDP-10
half-words and thus the page stretches from -400000 to +377777
(all addresses and coordinate data are expressed in octal) in
each axis. It should be remembered that coordinate values
are specified in page coordinates rather than in the coordinate
system of the Display Scope. » .

“Two-dimensional coordinate values are specified by X and Y
values. These values are packed into PDP-10 half-words so
that together they occupy a single PDP-10 word as shown in
figure 1.5. Three-dimensional data should take one of two
forms depending on whether the Matrix Multiplier is being used.
Data to be processed by the Matrix Multiplier should be in '"homo-
geneous coordinates'". The format for homogeneous coordinates
is (X, Y, Z, W). (Homogeneous coordinates are discussed in
-chapter 3 dealing with the Matrix Multiplier, and In Appendix
ITI.) 1If the Matrix Multiplier is not used, coordinate values
pass to the Clipping Divider and should be in the form (X, Y,
Zx, Zy) where Zx and Zy are generally equal (see chapter 4).
In either case, three-dimensional data occupy two full words
of memory as shown in figure 1.5. :

1.6 Data Form Specifications

The drawing instructions not only address the coordinate
data for the new point, but also specify the way to interpret
this data. Viewing parameter data can also be in one of several
forms. See figure 1:6. ‘

¢ Absolute. Data specified as '"absolute" denote an ab-
solute location on the drawing space.

e Relative. Data specified as '"'relative" are taken as a
relative displacement from the current point. With the exception -
of matrix elements for the Matrix Multiplier, which are added
to the old matrix values, this applies both to coordinate data
and viewing parameters, : '

Two special data forms are used primarily for Clipping
Divider viewing parameters, although they can also be used for
coordinate data. -

® Size Absolute. The '"size absolute" specification results
in the data being taken as both a positive and negative displace-
ment from the origin of the drawing space. - :

- ¢ Size Relative. The "size relative" specification results
in the data being taken as both a positive and a negative dis- -
placement from the current point.

1-4

1.7 Programming Language

This manual describes programming of the LDS-1 in PDP-10
MACRO-10 Assembly Language. The LDS-1 mnemonics are defined by
MACRO-10 OPDEF's so that the MACRO-10 assembler will prepare

LDS-1 programs. It is also possible to use other language
translating facilities of the host computer to prepare LDS-1
programs. ' ’ ’ ‘ :

1-5

CHAPTER 2
THE CHANNEL CONTROL

2.1 Function

The Channel Control is a stored program processor which
operates off the memory of the host computer and functions as
the programmable control unit of the LDS-1. The Channel
Control interprets the display program and controls the
operations of the arithmetic devices, 1In addition, the
Channel Control accesses the necessary coordinate data and
viewing parameters and passes this data to the processing
pipeline. o

A series of memory address registers within the Channel
Control provide programmable addressing machanisms for
instruction fetching and data accessing. A group of control
registers are used to regulate the operation of the LDS-1
and to indicate the state of the system. These registers
are described in detail in section 2.12 and reference should
‘be made to this section during the following discussion of
the operation of the Channel Control.

2.2 Instruction Set

The instruction set of the Channel Control is specifically

oriented towards display Brotessing tasks and the controlling of
the processing performed by the LDS-1. The instruction set 1is

divided into the following groups:

® Group 0 -- Load immediate data into the Channel Control

’ ~ registers. Push the contents of the Channel
Control registers onto the stack. Change
mode. .

e Group 2 -- Conditional load immediate data into the
' ~ Channel Control registers.

e Group 3 -- Manipulation of the parameter registers of
other LDS-1 devices (load/store, sink/retrieve).

o Group 4 -- Drawing instructions with direct addréssing.
® Group 5 -- Drawing instructions with indirect addressing.
obGroup 6 -- Dataless drawing instructions (used by the

Matrix Multiplier to generate curves and in
~several other cases where data is not relevant
to the operation). :

"® Group 7 -- Character interpreting instructions.

2-1

These groups and the individual instructions are discussed
in detail in chapters 7 and 8 of this manual, but it is
useful to keep the basic groups in mind as one attempts

to understand the operation of the Channel Control.

2.3 Operating Modes

The Channel Control has four operating modes which
determine its method of instruction fetching:

® Program Mode -- For the normal processing of the display

: program, the Channel Control is in
"program mode." The other three modes
are for special situations encountered
in the display program. ‘

® Repeat Mode -- For drawing or character handling in-
. ' structions which make repeated data
accesses, the Channel Control should
be §ut in "repeat mode" (see section
2.6). ‘

o Peel Mode! -- "Peel mode" is used to retrieve infor-
: mation from the stack (e. g. when
returning from subroutines; see
section 2.7).

e Execute Mode -- When a word in the data space is to
3 ' be executed as an instruction, the
- Channel Control is put in "execute
mode'" (see section 2.10).

All of these modes are entered under program control. Many
LDS-1 instructions have mode change fields. Since the new . i
mode primarily affects the manner in which the next instruction
is fetched, it is best to think of the mode change being made
~after the instruction has been executed. An exception is
repeat mode, which is best thought of as being entered before
the instruction has been executed (see section 2.6).

It is possible to specify mode changes to more than one
mode at once. In such a case, the Channel Control first enters
the mode with highest priority and then any modes with lower
priority. 'A'tab%e of how to specify mode changes is shown
in section 7.2. 'Figure 2.1 shows the operation of the Channel

Control in each of its modes.

2-2

,-Program

PC used
for instruction
fetch '

CHANNEL CONTROL MODES OF OPERATION

’ [Peel

SP used for
instruction
fetch

Execute

PC«PC + 1

-

RAR used for
instruction
fetch

v

-

SP&SP + 1

'RAR€-RAR + 1

RAR used for
data access
(if any)

-

-

s

'RAR used for

data access
(if any)

RAR€RAR + 1

-

RAR used for
data access
(if any)

+

RAR¢&RAR + 1

>

Mode Change
if marked on
instruction

T

RARRAR + 1

]

* do twice for 3D

- Mode Change .
if marked on

instruction

-

- Figure 2.1

Back to previous
mode (unless mode
change marked

on instruction)

3

CHANNEL CONTROL MODES OF OPERATION

| Figurc 2.1 Ttontinued)

Repeat : ~ Group 3 instructions? Mode Priority
Repeat mode entered on instruc- Group 3 1instruction fetch
tion fetched in another mode. in one of the 4 modes.
+1 | | : 1. Group 32
* B _ % '
_ RAR used for RAR used for 2. Repeat
h data access ' o ”"" (load/store) 3. Execute
(if any) DSP used for 4 Pro
- i 3 . Program and Peel
| | (sink/retrieve) (mutually exclusive).
* ’ [RAR RAR + 1 L
o : (load/store)
RAR€RAR + 1 DSP«-DSP + 1
: (sink)
"DSP<«~DSP - 1
. (retrieve)
| scesc - 1 o
_ " ~ SC = Register count
RCR<RCR + 1 1£sC=0 &
SR updated " new instruction
‘ fetch
WL'] SC # 0 SC = 0
Back to previous ' ‘*’
mode if RCR + ‘ _ _ :
When using the Character String Interpreter to call
- software subroutines, an instruction is fetched in re-
w: peat mode. The Character String Interpreter provides
RCR < 0 RCR + : the address which passes through, and is stored in
v : register Pl. The address in P1 is not, however,
- incremented after it is used.
* dd twice for 3D 2Group 3 instructions do not constitute a distinct
7 R : - mode.

2.4 Instruction Fetching and.Decoding

The address register used for the instruction fetch
depends on the mode of the Channel Control. In program
mode, the PROGRAM COUNTER (PC) is used for the instruction
fetch. 1In peel mode, the STACK POINTER (SP) is used; and
in execute mode the READ ADDRESS REGISTER (RAR), which is
normally used for the data access, is used for the instruc-
tion fetch. In repeat mode no instruction fetch is made
except when interpreting characters, in which case the
address for the instruction fetch is provided by the
Character String Interpreter and stored in the temporary
register P1.

The left half of an instruction word is deposited in
the instruction register where it is decoded. (Note: The
instruction register is not otherwise accessible to the user.)
The decoded instruction is used along with system mode control
information stored in the DIRECTIVE register (DIR) to control
the operation of the LDS-1. (See section 2,12 for details
concerning the DIR and other registers mentioned here.) .

+ In group 2 (conditional load) instructions the loading is
not done unless the condition specified is met.The conditions
which may be tested are stored in the STATUS REGISTER (SR).
Some of these bits are program flags set by the program
itself. Others indicate certain conditions detected by the
arithmetic devices or external devices such as the tablet or
Lorgnette.

' 2.5 Data Accessing

. For instructions which require some action on the part

of the processing units of the LDS-1 pipeline, the Channel
Control generates the necessary control information and
accesses the necessary -data. The instruction may address

the data either directly or indirectly. For direct addressing
the READ ADDRESS REGISTER (RAR), which serves the Channel :
Control as a data pointer, is used to specify the address
of the data. In two-dimensional operation, only one word is
accessed; however, in three-dimensional operation, two con- o
tiguous words are accessed by the RAR. This is true regardless
of the type of data being accessed (i. e. whether it is -
coordinate data, parameter data, or control information).

: When data values are addressed indirectl » the RAR is used
to fetch a single word which contains two halfcword pointers
which point to two separate coordinate specifications (e.g.

for the two ends of a line). The pointers are deposited in.
registers P1 and P2 of the Channel Control. These registers
are then used to access the actual coordinate data. As in

the case of direct addressing, in three-dimensional operation
two contiguous words are fetched by each pointer.

2-3

2.6 Repeat Drawing Instructions

The Channel Control can generate a repeated series of
simple drawing instructions in order to draw more complex
figures with a single instruction. When the Channel Control
receives a '"draw to'", "draw from", "polygon", "star', "lines",
or '"dots'" instruction and is put in repeat mode, it will
automatically generate the appropriate series of basic
drawing instructions. These complex drawing instructions
make reference to a table of coordinate data rather than to
a single data item. The RAR should point to the head of this
‘table when the instruction sequence begins and will automati-
cally step through the table as the instruction is being
executed. ’ ' ' v

The iterations of this process are counted by the READ
COUNT REGISTER (RCR) of the Channel Control. When using
direct addressing the RCR should be loaded with the two's com-
plement of the number of data elements (endpoints). Each time
a data item is fetched (which is one word in 2D and two words
in 3D), the RCR is incremented. For indirect addressing the
RCR should be loaded with the two's complement of the number
of pointer words and is incremented as each pointer word is
accessed by the RAR. When the count in the. RCR runs out,
repeat mode is cleared and the Channel Control continues on
~with the program. The RCR can also be incremented by the dis-
play program (when the Channel Control is not in repeat mode)
and tested for negative (or positive). It can thus be used
as a counter for program loops or other functions.

For repeat mode drawing instructions, there is also an

"absolute/relative'" sequence generated by the Channel Control.‘,

This allows, for example, the first point to be taken as
absolute, and the rest as relative. Many other sequences are
possible, These sequences and the sequences for the drawing
instruction are shown in figures 7.1 and 7.2. ’

2.7 The Stack

The stack is an area in memory of the host computer into
which the information in the Channel Control registers may be
pushed. The STACK POINTER (SP) of the Channel Control points
to the last entry into the stack, When a "push" instruction
is received the Channel Control generates a "load immediate"
instruction which references the register from which the in-
formation is pushed. The information in the register is then
placed in the immediate data field of the instruction and the =
entire instruction is written into the stack.

Information is retrieved from the stack by putting the
Channel Control in peel mode. In peel mode the SP is used’
to supply the address for the instruction fetch so instruc-
tions are fetched from the stack. When these instructions

2-4

are executed they restore the information to'the’Channel
Control registers. '

The SP is decremented before it is used to write
information onto the stack and incremented after it is used

. to retrieve information from the stack. The SP is thus in-

cremented just as the PC and the stack can be processed as
a program. :

The Channel Control will stay in peel mode, executing
instructions from the stack, until an instruction is en-
countered which indicates a mode change. Instructions on
the stack which indicate a mode change are said to be "mark-
ed". The '"push mark" instruction causes the code for a
change to the current mode of the Channel Control to be in-
cluded in the ''load immediate" instruction which is pushed .
onto the stack. Marking is used, for example, for the first

~register of a particular group that is to be pushed onto
the stack. When that group of registers is to be returned
to their old values, the Channel Control is put into peel
‘mode and the instructions on the Stack are' executed until
the marked instruction is encountered. The Channel Con-
trol will then return to its previous mode. (Note: The
~only way to push execute mode onto the stack is with an
I/0 instruction or with the Character String .Interpreter.)

2.8 The Data Sink

; It may also be necessary (e.g. when entering a sub-
routine) to save vital parameters from the other LDS-1 de-
vices by saving the contents of the paramenter registers in
the '"data sink". The data sink is an area in memory which
is addressed by the DATA SINK POINTER (DSP) of the Channel
Control. The contents of the parameter registers of the
arithmetic devices may be the "sinked" into or "retrieved"
from the data sink. The sink and retrieve instructions can
refer to a single register or sequential group. of parameter
registers within a single device. The DSP is incremented
after it is used to sink a parameter and decremented before
a parameter is retrieved. L ' ’

2.9 Subroutines

The stack and the data sink provide convenient facil-
ities for subroutine linkage and communication. Subroutines
may be nested to any level, and they may be reentrant.
Methods for inplementing subroutines are descussed in sec-
tion 8.3. ‘ : LA o

2-5

.'2.10 Execute Mode

In execute mode, the RAR rather than the PC is used for
the instruction fetch. As soon as the instruction is fetch-
ed, the Channel Control will drop out of execute mode. If,
however, this instruction is marked with a mode change to
execute mode, the Channel Control will again enter execute
mode and again use the RAR for the instruction fetch. 1In
this manner, execute instructions can be chained. If the
state of PC is not changed by one of the instructions exe-
cuted, as soon as the Channel Control returns to program
mode, it fetches the instruction immediately following the
- first execute instruction in the chain. '

_ It should be noted that repeat mode has priority over
execute mode (see figure 2.1) so that if both modes are set,
the Channel Control will first enter repeat mode and then
when it drops out of repeat mode, it will enter execute
mode and the RAR will be used for the next instruction fetch.
It is, however, possible for the instruction fetched in exe-
cute mode to be a repeat instruction. In this case, execute
mode has already been entered and cleared before the repeat
mode instruction is processed so that when the Channel Con-
trol drops out of repeat mode, it will return to program
mode. Examples of such cases are given in section 8.3 of
~ this manual.

2%11 Returning Processed Output to Mémory
|

‘ The processed output of the arithmetic devices may be
returned to memory. The Channel Control regulates this
process and controls the writing of data back into memory.
When a unit has data ready to return to memory, it signals
the Channel Control which stops its operation to record this
data. The WRITE ADDRESS REGISTER (WAR) of the Channel Con-
‘trol is used to provide the memory address for recording the
processed output. Since the WAR is incremented after each
use, this data is recorded in a contiguous table. The
length of this table may be limited by loading the WRITE
COUNT REGISTER (WCR) of the Channel Control with the two's
complement of the desired length of the table. The WCR is
incremented each time a word is written back into memory
of the host computer. When the count in the WCR runs out,
an interrupt can be sent to the host computer (if the inter-
rupt is enabled; see section 6.2). Note: Because the pipe-
line must clear before the LDS-1 is stopped (i.e. because all
pending data must be processed and recorded), it is possible that
that the length of the table will actually over-run the limit
.set by the count in the WCR. The overrun will in no case ex-
ceed 34 words. An overrun this large is, however, extremely
unlikely because to have this happen, all units must be re-
turning all possible outputs to memory (which results in a
scrambled table in memory). ' :

2-6

'2.12 Channel Control Registers

In this section, the registers of the Channel Control
are examined and the use of each register and the meaning
of each bit is explained. Figure 2.2 shows a block diagram
of the Channel Control registers. Registers 0-7 contain
‘addresses. Their output goes to the Memory Address Register
(MAR), register 15, where it is either incremented or de-
cremented and then written hack into the register. Regis-
‘ters 10-14 are control registers. Register 17 is the NEXT
register of the Character String Interpreter.

The registers of the Channel Control are each 18 bits
long (except the NEXT register which is only 8 bits). These
bits are labeled 18-35 because their values are loaded from
~ bits 18-35 of the instruction word. (Note: All register

addresses are given in octal.) ,

2-7

CHANNEL CONTROL REGISTER CONFIGURATION -

% “ ﬁ ‘ ‘,“4,

Zo€
» . — | 5 To Cobeomal
13 P—.——.—’—l{—f—ﬂ' "nea N f ‘g 1 - . RER : _!""H o S bl .
w ? - - - ‘ Dovieos

i I : : f

ConmAng | a8

e

Ase Gofber |
I_Sebtesd o

|
)

r 1
: :
1
' \
ne? |
: In 1 .
t }
IsTRVC T REQETE o bw ' ; -‘—fO{O __RAR] ;
' .
4 1 —ela war }—e :
: 1
. 1 -*—.{z 143 }—- :
{renormossesoo o - i .
' man ConTROC ! i . S !
i ! R e i m =t .
N ')
i Rom & meaocoo€ PRocEssOR | X ot 2 T ;
i ' 1 s o3P J—e ;
' ! :
') ! —={7 unassiGngs | ' s
)
e e e e e . ——— —— = 4 : , !
' !
! .

'
'
v 1
~N
-
D
R
;]
N
L
o
»
3
[
°
-
-
[1.]
»
3
"
2
»
‘ N
[N
N
3
»
Uv

_—.{Io RCR }-—.] . o m,-.o?
: ‘;’ » ADDE &] v i Adaeest
+—n weR -) Rdbrcases
! CC.“

| MAPPSA
—i 2 [2L] ~}
+—i11 RS R
L—af iy $R e

oy {1

7:“‘05‘“ CMU&L’J"@J’
S‘H:azj Laterpretes

Figuer 2.2

PROGRAM COUNTER
18

(PC)
35

ADDRESS

Binary Address
- 0010

USE: The PC

is used for the ihstruction fetch when

the Channel Control is in program mode.

OPERATIONS: P
P

C «— PC+1 (after each use)
C «— New Address (load immediate or jump)

PC —— Stack (push PC)

READ ADDRESS REG
18

ISTER (RAR)‘
35

ADDRESS

Binary Address
- 0000

USE: ’The RAR is used:

(1) to
(2) to
- for
(3) to’
(4) to
(5) (so

met

OPERATIONS

access data for d1rect addressing.

access a pointer word with two p01nters
indirect addressing.

fetch the instruction in execute mode.

access data for load and store instructions.

ftware convention) to pass address of a para-

er 113t to a subroutlne

"RAR <—— RAR+1 (after each use)
RAR «<— New Address (load immediate)

RAR —— Stack (push RAR)

P
18

35

ADDRESS

Binary Address
0100

USE: Pl is u
' for indi
by the
also pa

OPERATIONS
Pl «—
Pl «—

Pl —
Pl <—

sed as a temporary reglster to hold one pointer.
irect data addressing. The address provided
Character String Interpreter (see section 2.12)
sses. through, and is stored in register Pl.

New Address (load immediate)

‘Character Address (provided by Character
‘String Interpreter)

Stack (push P1)

Left half at indirect address word.

2-8

P2
18 ’ . ’ 35

' Binary Address
ADDRESS | | A

" USE: P2 is used as a temporary register to hold the
other pointer for indirect addressing. P2 is
also used during the push operation. Note: A
'""load immediate and push P2" results in pushing
the new (rather than the old) data onto the stack.

OPERATIONS:
P2 <— New Address (1oad 1mmed1ate)
P2 —— Stack (push P2)
NEW DATA —> P2 ——> Stack (load immediate and push P2)
OLD DATA (from other CC reg15ter)-—> P2 — Stack
(push other register)
P2 <— Right half of indirect address word.

STACK POINTER (SP) |
18 35

Binary'Address
0011 '

ADDRESS

USE: The SP is used to specify the address at which in-

o formation from the Channel Control registers is
pushed onto the stack. In peel mode, the SP is
used. for the 1nstruct10n fetch.

OPERATIONS:
SP ¢— SP-1 (before information is pushed on stack)
SP ¢— §SP+1 (after information is retrieved from '
the .stack, peel mode) ,
SP &«— New Address (1oad 1mmed1ate SP)
SP —— Stack (push SP)

DATA SINK POINTER (DSP)
18 35

ADDRESS | Blnar%'l’l‘gdress

USE: The DSP is used to specify the address at wh1ch
information from the parameter reglsters is put into
or taken from the data 51nk : :

OPERATIONS:
DSP «—— DSP+1 (after sinking)
DSP «—— DSP-1 (before retrieving) '
DSP &«—— New Address (load immediate DSP)
DSP —— Stack (push DSP) :

2-9

WRITE ADDRESS REGISTER (WAR)
18 35

ADDRESS Binary Address
0001 ‘

USE: The WAR is used to specify the address for
processed data written back into memory.

OPERATIONS:
WAR <«— WAR+1 (after each use)

WAR «— New Address (load immediate WAR)
WAR —> Stack (push WAR)

UNASSIGNED REGISTER (UR)
18 | 35

- ADDRESS (OR DATA) : Binary Address
' 0111

USE: The UR is available for programmer use as desired.

OPERATIONS:

UR «— New Address or Data (load immediate)
UR — Stack (push)

MEMORY ADDRESS REGISTER (MAR)

18 ‘ 35

ADDRESS | Binary Address
| -~ 1101

USE: All memory addresses pass through the MAR. The. MAR
may not be loaded, but it may be pushed. However,
SP-1"will be recorded, as the SP is used as the
address for the push operation.

2-10

READ COUNT REGISTER (RCR)

18 19 35 » v
+ _ o Binary Address
- COUNT S o 1000
USE: The RCR is used to count the number bf data items.

It is loaded with the two's complement of the num-
ber of either:
(1) end points (draw direct)
(2) pointer words (draw indirect)
(3) characters (for use with Character
String Interpreter)

When the count in the RCR goes positive repeat mode
is cleared. The RCR can also be used as a counter
in program loops. - : :

OPERATIONS:

RCR <— RCR+1 (after each data item is processed)
RCR <— Count (load immediate RCR)

RCR —> Stack (push RCR) ‘ L ,

RCR <— RCR+1 (group 2 instruction if "J" RCRN)

BIT MEANINGS:‘vThe‘Contents of the RCR are taken as a

signed count.

WRITE COUNT REGISTER (WCR)

18 19

35 | -
+ ' _ ‘bBinary Address
[| count o) s
USE: The WCR is used to count the,number'ofvwords [rather}

‘than data items) written back into memory. The WCR
is incremented after each word is written back into

memory. When the WCR goes positive, an interrupt
can be sent to the host computer. If processed out-
put is not being returned to memory, the WCR can
also be used as a counter for program loops.

OPERATIONS :

- int> memory)
WCR <— Count (load immediate WCR)
WCR — Stack (push WCR) = R
WCR <— WCR+1 (group 2 instruction if "Jw WCRN)

WCR <«— WCR+1 (after éach data’item is written back

BIT MEANINGS: The'contents of the WCR are taken as a

signed count.

1 2-11

DIRECTIVE (DIR)

Binary Address

1010
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 »
/ ' no over |do / stop stop on B
/42;2 MMA lap 3D twice. CDA /42§;agon hit|{WCR positive -
USE: The DIR 1is used to specify global operating modes
for the system. The bits are coded in a special
way so that it is possible to manipulate functions
independently.
I'Jl' HK"
OPERATIONS: v - Set Clear
DIR <— DATA (load immediate 0 | 0 no change
DIR —> Stack (push) 0 1 clear
: 1 0 set v
1 1 complement
BITS FUNCTION

18 Unused

19 "~ Unused

20 J Matrix Multiplier Active

21 K Matrix Multiplier Active :

22 J No Overlap. (If no overlap is set, the system
will completely process one jnstruction (one line)
before it starts to process the next. Although this
slows the system down, it is useful in testing and
"pointing" functions associated with the tablet).

23 K No Overlap '

24 J 3D (Fetch two words of data)

25 K 3D N S ~ ‘

26 J Do twice (Do twice causes the two halves of the
data word to be swapped and then used a second time.
It is generally used with the SELF modes of the
Clipping Divider, see section 4.10. Do twice 1is
cleared if 3D is set.) o

27 K Do twice | .

28 J Clipping Divider Activel Not yet implemented. These -

29 - K Clipping Divider Activej bits are there but do nothing.

30-31 Unused : S s

32 J STOP ON HI Stop the Channel Control when

- 33 K STOP ON HIT J = Clipping Divider sets the HIT bit.

34 J STOP ON WCR Positive . -

35 K STOP ON WCR Positive ’

‘The DIR does not hold the value loaded into it, but

rather the status at the functions it controls. When -
the DIR is pushed and later restored these functions
will be set to their previous state.

2-12

- STATUS REGISTER (SR)

Binary Address

_ 1100
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
Program Flags| Tablet |Tablet Lorgn | RCR[WCR[HIT[AIC[Lorgnette Stopl—=
-3 Control|Flags |[Clock|<-1f<-1 Flags = |Flag ,/;ZE
USE: The SR is used to hold the conditions which can be
tested and changed by the conditional load instructions
of group 2. Some of the bits are set and cleared
only by the program, others are controlled both
by the program and by the LDS-1, and some are con-
trolled only by the LDS-1 and can be tested but not
altered by the instructions.
OPERATIONS: : '
' "~ SR ¢— DATA (load immediate)
- SET CONDITION : ' ‘
CLEAR CONDITION
COMPLEMENT CONDITION
SR — Stack (push) _ v)
SR(bit) «— condition from external equipment
: CONDITION '
BIT NO. (Octal) FUNCTION
18-21 0-3 Program Flags : ‘
22 4 Tablet Control (enables writing of
tablet data into memory. The TABLET
CONTROL bit is automatically cleared
by "system clear" and by WCR positive.
See chapter 12.)
23-24 5-6 Tablet flags (used to test Z values
of tablet. see chapter 12), :
25 7 Lorgnette Clock (see chapter 13).
.26 10 RCR < -1) Set automatically by RCR § WCR.
27 11 - WCR. < -l} When these bits are "set" by a
‘ Group 2 instruction, the RCR or WCR is
, incfemented;vclearing has no effect. =
- 28 12 ‘ Hit (set and cleared by Clipping Divider).
29 - 13 - AIC (set and cleared by Clipping Divider).
30-32 © 14-16 Lorgnette color code (set by Lorgnette,
» ~ ‘ cannot be set or cleared by group 2 in-
_ L structions, see chapter 13).
33 17 _ Program Stop Flag o
34-35 Not used

2-13

'REPEAT STATUS REGISTER (RSR)

Binary
1

Address
011

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

COPY OF INSTRUCTION REGISTER BITS

The RSR contains a copy of the bits in the

USE:
Instruction Register. The RSR exists so that
the Channel Control can be interrupted during
a repeat mode instruction (or a group 3.
instruction) and the present status of the
Channel Control can be saved by pushing the
RSR, then restored by peeling the value of
the stack and returning it to the RSR.

OPERATIONS:

RSR<— DATA (load immediate)
RSR —— Stack (push) _
RSR <—— Update for group 3 and repeat mode

(internal to Channel Control).

BIT MEANINGS:

18-20
*¥21-23

*24-26
- 27-30

- 31
32-35

Instruction type (copy of IR 0-2}
Present state of the finite-state machine
setpoint/endpoint (copy of IR 3-5)

Present state of the finite-state machine

absolute/relative (copy of IR 6-8)
Register Address (copy of IR 9-12)
Copy of IR 13

Short count for multiple load/store (copy

*For group 3 instructions, tits 21-26 indicate:

21-22

Load Store

23-26 Device and Manner

,inStructions

for

for

of IR 14-17)

NOTE: <A LI RSR (RPTM) can be used to start up a repeat

sequence.

2-14

2.13 The Character String Interpreter (Optional)
2.13.1 Function | '

The’Character_String_Interpreter (sometimes referred to
as the '"Character Bubble'") provides the LDS-1 with the capa-
bility to interpret character strings automatically. The
Character String Interpreter unpacks the character code and
sends the code to the hardware character generator (if this
option is also included in the system). If there is no hard-
ware character generator, if it 1s turned off, or if it does
not recognize the character, the character code is used as an
~offset to fetch an instruction from a dispatch table, which
can call the appropriate software character routine.

The Character String Interpreter is a much more powerful
device than might appear at first glance. Because the sub-
routines called do not have to be merely character drawing
routines, and because they themselves can use the Character
String Interpreter, it is possible to treat the LDS-1' as a
string processing machine with a syllable-by-syllable in-
struction code. The '"character string'" becomes the program
with each operation code defined by an appropriate LDS-1
subroutine. o ' o

2.13.2 Registersv

There are three registers. associated with the Character
String Interpreter. The FONT register specifies (1) the size
of the character code (i.e. how many bits), (2) an internal
- pointer to the next character to be interpreted, (3) control
signals for turning the hardware character generator (if any)
on.or off and (4) a base address for the character dispatch
table. The format of this register is shown in figure 2.3.
The CHAR register contains a copy of the memory word currently
being interpreted. These two registers are treated as ;
parameter registers of an external device by the Channel Con-
trol and are thus manipulated by group 3 instructions (see
section 7.3.). The FONT register should be loaded prior to
interpreting characters. The CHAR register is usually loaded
automatically and need be manipulated directly only when the
Character String Interpreter is "borrowed" by a character
subroutine (see eéxample, section 8.10).

In addition, the 8-bit (maximum) value of the next char-
acter to be interpreted may be read by the Channel Control
- register NEXT. The NEXT "register" is not implemented as a
register but rather exist as the output of a '"shift device"
attached to the CHAR register. For this reason, it may be
pushed onto the stack, but can not be loaded by a group 0 or
group 2 instruction. Any attempt to load the NEXT register
will change the state of the Character String Interpreter.

2-15

CHARACTER STRING INTERPRETER REGISTERS

FONT REGISTER Binary Address
; | 0001
0 5678 11 12 15 14 15 16 17 18 35
F ~ >
POINTER = sizE |E B Jlx B= '
= ZRiL jjzféikBASE ADDRESS

F'whEre: ' ,
POINTER specifies the number of bits to the right of
the end of the new Character to be interpreted.

SIZE specifies the bit length of each character code.

E specifies whether to load POINTER and SIZE, i. e. if
E in the new font word is not one, POINTER and SIZE
will not be loaded. E is always one when storing or
sinking the font word. '

JK turns the hardware character generator on or off
according to the following table:

K

0 remains unchanged
1 turns off

0 turns on

1 complements state

OO |

BASE specifies the base address for the character dispatch
table (BASE HAS NOTHING TO DO WITH THE LOCATION OF THE
CHARACTER BEING INTERPRETED).

—— — o—— — v ——— — v o—— w— S wemm mes . o s e en e e mea e e i ot e s aa S

CHARacter REGISTER 'Binary Address

0000
Example 8-bit characters - 36-bit word

0 7 8 1516 23 24 31 32 35

CHAR 1 CHAR 2 CHAR -3 CHAR 4 | XXXX
NEXT REGISTER | Binary Address
o | | | ' 1111
18 25 |
CHAR

Figure 2.3

2.13.3 Operation

- The Character String Interpreter will interpret
characters up to 8 bits in length. Characters up to 15
bits may be designated and will be accessed from the data
words according to the SIZE field, but only the least
significant 8 bits are actually used in the addition to
the base address. The size of the character codes is spec-
ified by the SIZE field of the FONT register. Characters
should be packed into the memory word so that no character
code overlaps word boundaries and the extra bits are on the
~right end of the word (see figure 2.3.)

The Character String Interpreter is turned on when
the LDS-1 encounters a group 7 ''do character" instruction
which should also be marked to put the Channel Control in
repeat mode. The word addressed by the '"do character"
instruction is loaded into the CHAR register. Prior to
this, the RCR of the Channel Control should have been loaded
with the (two's complement of the) number of characters to
be interpreted (+1) and the FONT register should have been
loaded with the appropriate information (see figure 2.3).
The CHARacter register is loaded automatically with the
word whose address is held in the READ ADDRESS REGISTER (RAR)
of the Channel Control. o '

» The Character String Interpreter begins by interpreting
the first character. The number of bits specified by the

SIZE field are peeled off and sent to the hardware character
generator. If there is no hardware character generator, it
‘is turned off, or if it does not recognize the character code,
~ the code is added to the address specified by the BASE field
of the font word. The resulting address is used to fetch a
word from the character dispatch table. The address passes
through, and is stored in register Pl of the Channel Control.
Note that Pl is not incremented after this word is fetched.
The word fetched by P1 is treated as an instruction. Normally
the character dispatch table is made up of a series of "jump
push' instructions as shown in section 8.10. These jump push
instructions serve as subroutine calls. The character sub-
routines are discussed in more detail in section 8.10. After
-exiting from the subroutine, the Channel Control again returns
to repeat mode and interprets the next character.

-~ Each time a character is interpreted,; the quantity in the
SIZE field of the FONT register is subtracted from the quan-
tity in the POINTER field, and the result is placed in the
POINTER field. If this subtraction yields a negative result,
a new word of characters is fetched, and the value in the-
pointer field is set to 36-SIZE. If, in fact, the POINTER
value is larger than 475, the POINTER field is reset to 36-
SIZE. 1In this sense the Character String Interpreter will

2-16

"self-initialize" when the POINTER portion of the FONT reg-
ister is loaded with 50 or greater. When the first word
of characters is fetcheg, the POINTER will be set to 36-
SIZE. The Character String Interpreter will continue to
interpret characters in this manner until the count in the
RCR goes positive which will cause the Channel Control

~to drop out of repeat mode, or until a terminating char-
acter is encountered. Terminating characters are defined
by placing a '"no op'" with a change to program mode in the
character dispatch table. _ -

2-17

CHAPTER 3
THE MATRIX MULTIPLIER

3.1 Function

The Matrix Multiplier is the first arithmetic device
in the LDS-1 display processing pipeline. The Matrix Multi-
plier performs rotations, translations, and scalings of the
drawing by multiplying the coordinate data by an internally
stored transformation matrix. The Matrix Multiplier can also
compute the product of two such transformation matrices to
give a composite transformation for substructures within the
drawing definition. The third function of the Matrix Multi-
plier involves iterating a set of difference equations for
drawing two- or three-dimensional curves which are drawn as
a series of short line segments. Families of such curves
can also be generated to draw a cross-hatched surface patch.

The basic configuration of the Matrix Multiplier and
the addresses of the registers used for storing matrix
elements are shown in figure 3.1. Four matrices A, B, C,
and D each of dimension 4 x 4, are stored internally in a
4 x 4 x 4 matrix array of storage registers. The values in
these registers may be manipulated by the "load'", "'store'",
"sink", and "retrieve' instructions. See section 7. The
matrix multiplications are performed by a high-speed array
multiplier. Input data for the Matrix Multiplier are passed
from the Channel Control and the output is sent to the Clip-
ping Divider, back to the memory of the host computer via
the Channel Control, or both.

3.2 Three-dimensional Matrix Transformations

The Matrix Multiplier works on 'homogeneous coordinates"

(see appendix III.) In homogeneous coordinates three-dimensional
coordinate data are represented by the four-component vector
(XY Z W), where X, Y, and Z are the normal orthogonal distances
from the origin and W is used as a scale factor. The transfor-
mation matrix is the 4 x 4 matrix in position A. When the ,
Matrix Multiplier is in three-dimensional operation and "active",
all coordinate data values are multiplied by the matrix stored in
~ position A (see figure 3.1). Note that this does not include v

parameter data for group 3 instructions. The form of the trans-
formation and the equations which define this transformation are
given in figure 3.2. In 3D entire rows of the matrices are :
affected by a '"load", "store", 'sink", or "retrieve'" instruction,
(i.e. four components are loaded at a time). '

‘It should be noted that while the Matrix Multiplier expects
~input of the form (X Y Z W), The Clipping Divider expects

(XY Z_ Z). The transform matrix can easily be structured

'so that i¥ will make this change. :

3-1

MATRIX MULTIPLIER REGISTERS

14 ; D
doo | dgy | Doz | dos
15 C
d,, 10 .
Coo | Cox | Co2 | Cos
16
: Cio :
17 = boo |bois |bo2 |bos
d 5
30 Cyo ; . A
bio '
13 ; 8po| 01| Q02| o3
T ‘
Csop b 1 |
20 ai10! @11} A12| ais
-
2
b ;
L 30 azp | az21| az2| azs
3
30| as1| aszz| ass
Matrix data is stored in memory in the format:
3D ¢ 17 18 32
Two con- e e, '
~ tiguous _x0 x1
words ‘
' Cx2 ®x3
X = number of row as
indicated above
2D 0 17 18 35
exO exl
Note: 1In 2D ex2 and

ex3 are inaccessible

Figure‘3‘1

[X Y Z W] | rOO rel
Ti0 T11
T20 T21
tzo 31

‘Where
Xf = rOOX + rlOY + T
Y' = r01x + rllY + T
' = rOZX + rle + T
W' =h.,, X+ h, .Y +h

L}

I

THREE-DIMENSIONAL MATRIX TRANSFORMATIONS

rotation terms

‘h03

hyg

hys

tz; hgg

translation terms

homogenous terms .

FigureVS.Z

[X' Y' z' W'l

3.3 Two-dimensional Matrix Transformations

Two-dimensional coordinate data can also be transformed
by the Matrix Multiplier. The "boxing" operation of the
Clipping Divider (see section 4.5) is, however a more effi-
cient way to effect two-dimensional transformations which do
not involve rotations. For two-dimensional operation the
input is made up simply of the X and Y coordinate values.
These values are augmented (by the Matrix Multiplier) to take
the form: , o

XY 1] for absolute data

[XY 0] For relative data.

Figure 3.3 shows the structure of the two-dimensional transforma-

- tion matrix, the equation' for the transformations performed,
~and the Trigonometric values for the elements,

. In 2D only the first. two elements of each column in
matrix A are loaded from a single word in memory. (See figure
3.1). The zeros ~and ones shown in the third column of the
transformation matrix in figure 3.3 are not actually present
but shown only for expository purposes. : '

3.4 Composite Transformations

When an object within the drawing is to be transformed
with respect to the drawing and the drawing itself is also
to be transformed, a composite transformation of the form

[X Y Z W} [T1] [To] — [X' Y' 2% W]

is required., Instead of generating the intermediate result,

[X Y Z W] [T1], and then multiplying it by [Tg], the Matrix
Multiplier can form the composite transformation [T3]1-[To].
This is done by executing a 'load product" instruction (see
chapter 7). The load product instruction takes the matrix

[T;] which is stored in memory,and multiplies it by [Ty], ,
which can be specified as either matrix B, C, or D (but not A).
The resulting matrix is left in matrix A, '

3.4.1 NeSted Transformations

This method of forming composite transformations gen-
eralizes to any level. The '"data sink" operated by the Chan-
‘nel Control (see section 2.8) serves as a pushdown stack for
~storing matrices in order to implement nested transformations.
The sink and retrieve instructions for the Matrix Multiplier _
contain a "slide" option which allows matrix A and some other
‘matrix (usually B) to be operated as the first two matrices in
a pushdown stack. The slide option copies matrix A into an-
other matrix (e.g. B) as that matrix is "sinked' into the data
sink. Then when matrix B is retrieved from the data sink, the
matrix in position B is copied back into A. The slide versions
of the "sink" and "retrieve" instructions, together with the "pro-
duct load", facilitate a recursive subroutine call with only a
few instructions. :

3-2

TWO-DIMENSIONAL MATRIX TRANSFORMATIONS

: ‘ . . lr) eusme
Xy (Wl oo To1 :0
T10 T11:0
to ta1-?
-_Where'
X' = 71X * T1Y * tyeW)
Y' = rle + rllY + t21(W)
W' is not computed
r = rotation terms
~t = translation terms
w =
: by the Matrix Multiplier
- w =1 for'absolute
w = 0 for relative
Form of 2D Transformation'Matrix
Cos & sine
-sin¢ cos«.
1 Fx F.).

Figure 3.

3

=X Y Wl

is not provided by input, but rather augmented

3.4.2 Row-to Row Moves

Rows of matrix A may be copied into another matrix by
the "push Matrix Multiplier" instruction, and similarly rows
of one of the other matrices can be copied back into matrix
A by the "pop Matrix Multiplier" instruction, thus allowing
matrices B, C, and D to be used as pushdown storage. This
feature can be used in special cases where subroutine depth
is limited. The additional speed obtained in this manner by
avoiding memory references is paid for by a loss of generality
in the subroutine calls. ,

3?4.3 Matrix Normalization

_ Since the Clipping Divider performs perspective divi-
sion yeilding X/Zx and Y/Zy, homogenous transformation matri-
ces may be scaled without effecting the transformation per-
formed. It is customary to normalize the matrices used so
that at least one element is between one-half and one in mag-
nitude (taking matrix elements as signed fractions; see sec-
tion 3.8). The multiplication of two such matrices may result

~in a matrix which is no longer normalized. Renormalization

of this matrix before ‘it is used in some subsequent concatena-
‘tion will assure that maximum precision is maintained in the
new transformation matrix. The "normalize" instruction (see
section 7.3) is used to shift the elements of matrix A left
until any clement is greater than one-half in magnitude or
until the "count'" given in the normalize instruction runs

out. The normalize instruction is disregarded in 2D.

3.5 Two-dimensional Curves

A two-dimensional curve is defined by the elements held
in the first two columns of matrix A (see figure 3.4a). When
a group 6 dataless drawing instruction (other than "box'") is
received, a coordinate value is calculated by an iteration of
‘the matrix according to the equations shown in figure 3.4a
and the output is sent to the Clipping Divider (or memory, or
- both). Usually, a complete curve is drawn with a "polygon"
~instruction with the Channel Control is repeat mode. In this
case the RCR of the Channel Control should be loaded with
the two's complement of the number of line segments that are
to be in the curve (+1 for the initial setpoint). The class
~of curves that can be drawn includes all of the conic sec-
tions and a few other special curves such as circular and
elliptical spirals. o

3.6 Three-dimensional Curves

Three-dimensional curves are defined using all of
matrix A as shown in figune 3.4b. The coordinate values
for current location are held on the top row of matrix A.
Dataless drawing instructions (other then "box") cause
an iteration of the matrix to compute a new coordinate
‘value and send it to the Clipping Divider. Following

3-3

2D CURVES

A= Too Tio
10 T11
tx ty

X y

Basic Representation

[x, y] + [tx, ty]—>Clipping Divider

Set Curve Operation

[x, y] [R] + [tx, ty] —>» Clipping Divider
[x, y] [R]l — [x, ¥l

Other Drawing Instructions

Figure 3.4a

10

30

lazg az; ag, az;]

- a

a7 @

031 * Qlajy a5 ay, a1 —[ay, a,, Y

3D CURVES

02 03 | - top row specifies

" current absolute
12

11 13

coordinate
221 322 453 |
233

(7]
[3S)

Basic Representation

131 * Qayy ay; 2y, ay;l—(agy ap; 31, 315l

+

Qlagg azy azy agzl—la,y ay; ay, ayz]

+

o —>lazg az; asz, az;]

(209 891 292 3p3] —> Clipping Divider

Iteration

Note: Q is taken from the right half of the MDIR

Figure 3.4b

the perspective division performed by the Clipping Divider
(see section 4.5), these cubic difference equations
~generate a very general class of curves called rational
parametric cubics.

3.7 Surface Patches

Families of the curves generated in three-dimensional
curve mode can be used to -draw cross-hatched surface patches.
The definition of the surface patch is stored in the matrix
array as shown in figure 3.5. The '"new curve'" instruction
is used to generate each new curve of the surface patch.

3.8 Arithmetic Conventions

The basic word length of the Matrix Multiplier is
18 bits, which corresponds to the half-word length of the
PDP-10. The elements of input vectors and output vectors
written into memory are all of this basic word length; however,
the outputs to the Clipping Divider carry two extra bits of
precision. The€ reason for this extra precision is that an
output vector may be the result of up to 4 accumulating multi-
plications. The Clipping Divider can accomodate these extra
bits in its Matrix Multiplier input. These extra bits are
lost, however, if the output vector is written into memory
or into the internal matrix storage (as happens when two
transformations are concatenated, or during the iteration of
curve-drawing difference equations).

_ All arithmetic operations are performed treating elements
as 2's complement signed (fixed point) fractions. Since the word
length is 18 bits, the algebraically largest number that can

be represented is 1-2 -17 "and the algebraically smallest number
that can be represented_is -1. Data sent to the Clipping Di-
vider range from 4-2 “17 to -4, In binary notation (with the
binary point separating the 51gn b1t from the fraction):

0.111111... is the’ algebralcally largest number
0.000000... is the unique representation for zero
1.000000... is the algebraically smallest number (-1).

If these data were passed directly to the'CIipping Divider,
they would be leftward sign-extended (000.111111...,
000.000000..., and 111.000000..., respectively) by 2 bits.

The reader should note that the closest approximation
“to +1 is the fraction 0. 111111 ., which is close enough to
+1 for practical cases.

Two's complement binary multiplication always invokes
some questions. The Matrix Multiplier performs fractional
multiplication, in which the 17 low-order bits of the product

3-4

SURFACE PATCH ITERATION

«

NN
INOINN

AN
\\
»
DD
\\\ AN

A+ QB—s A
-~ B+ QC—> B | e
' For all 16 elements of each matrix
C+Qdp—c
D+0 —> D,
Note: Q is taken from the MDIR

Figure 3.5

are lost. These bits are used, however, for rounding.
Multiplication of -1 by -1 (1.000000...x1.000000...)
yields a product of +1 (001.000000..) with the extra
precision, but a product of -1 (1.000000...) when trun-
cated. Since the accumulation is carried out with the
extra precision, the accumulated result of 4 such multi-
plications would be -4 (100.000000...), unfortunately,

but the accumulation of 3 such multiplications is correct:
+3 (011.000000...). It is usually best to avoid -1
altogether.

The practical consequence of using fractional arithmetic
is that at least one of the two numbers involved in a multi-
plication must be a fraction, and the other number may be
thought of as having the binary point located at the user's
discretion. Figure 3.6 shows a good way to think of the
structure of the input vector and the transformation matrix.
The advantage of this structure is that both multiplication
of the input vector by the transformation matrix and multi-
plication of one transformation matrix by another results in
an integer times a fraction of a fraction times a fraction.
In addition, multiplication of one matrix by another gives
a matrix of the same form. ’

3.9 Mode Controi

n The mode of operation of the Matrix Multiplier is con-
trolled both by the Channel Control Directive register (DIR),
and by a directive register internal to the Matrix Multiplier
(MDIR). 1In general, the DIR specifies global operating modes,
which may apply to several of the operating units in the dis-
play system, while the MDIR specifies those modes which apply
only to the Matrix Multiplier. ' o '

The following bits in the Channel Control DIR have a
direct effect on the operations of the Matrix Multiplier:

MMA (Matrix Multiplier Active) -- When this bit

: is 0, the Matrix Multiplier is 'transparent' --
that is, it simply passes its input data on to
the Clipping Divider, and provides a 'level of
data buffering in the computational pipeline. -
Matrix Multiplier load and store operations occur
whether or not the MMA bit is set.

3D (3-dimensional operation) -- This bit determines
whether the Channel Control fetches a 2-component
(2D) or 4-component (3-D) input to the compu-
tational pipeline, and affects the subsequent
processing accordingly. Please note that this
applies both to drawing information and to load/
store information. : '

(SWAP) is a hidden directive bit generated automatically
in DO TWICE operation, and causes the Matrix
Multiplier to swap the right and left halves of
its input data word. Data are swapped whether or

‘not the MMA bit is set.
‘ 3-5

FRACTIONAL MULTIPLICATION

‘IX" Y: Z, W] = [I, I, I, F]
rOO r01 r02 0 = F F. F O
rlO r11 r12 0 F F F 0
r20 r21 r22 0 F F F 0 |
tx ty tz s I I 1 F
Where F = Fractions

I = Integers

The coordinates (X, Y; Z) are ﬁsually best regarded
as integérs, whiie the homogénous’term W is usualiy
considered to be a fractlon

The elements of the 3 x 3 submatrlx (R), the rotation
‘matrix, are products of sines and cosines and are thus
approprlately considered fractlons - The translat10na1
: elements (t) may be thought of as 1ntebers since W is a
'fractlon. The "s" term is used to scale the matrix and

is a fraction.

Figure 3.6

The directive information stored internally in the
‘Matrix Multiplier MDIR register is the following: :

MOC

MOM

(Matrix Output to Clipper) -- causes the Matrix
Multiplier to send its computatlonal results to
the Cllpplng Divider. This bit is ignored if
MMA=0, in which case the Matrix Multiplier is

plng D1V1der

(Matrix Output to Memory) -- causes. the Matrix

Multiplier to send its computational results to
memory. This bit is ignored if MMA=0. The MOC
and MOM bits are mutually independent, so it is
p0551b1e to route the matrix output to the Clip-
ping Divider, to memory, to both or to neither.

,"transparent" and always sends data to the Clip-

Matrix Multlpller output to memory takes the following

format:
0 1718 | 35
3D Xl = Y'
‘ A W
0 17 18 35
b X! Y
CURVE (Curve Mode) -- causes the Matrix Multiplier teu
interpret drawing instructions as commands to
iterate difference equatlons
TR1, TRO (Transpose Map) -- are interpreted as a 2-bit

number which controls the addressing into the matrix
scratchpad memory. They may be thought of as causing

‘the array to be, transposed about any one of its three

diagonals. The matrix elements agq, by, C2z, and dg; °

remain in the same place, for any transposition,

but

the other elements are reflected in the following way:

TRl TRO
0 kO -- no trahspositiOn
O 1 -- rows and columns are exchanged (i.e. ;.
‘ : matrices A, B, C, and D are each transposed)y
1 0 -- columns and rods are exchanged.
1 1 -- rods and rows are exchanged.

The planes about which the elements are reflected are
shown in flgure 3.7.

3-6

Lo

TRANSPOSITION PLANES

_Rods‘ - - - - =01
ﬁ\n «—> Rows ~ | —— - — 11
I : | | cesc--c10
Columns ' -
— 11
AN . 7
\\\ = ~ | : "\\
) NG e s LIS W
\ Koo };
NN ')
AN N\ N ao N
A R N & iR
\ P \'"'A v\ }
._1:_.‘.,__.‘.'.\‘.;,] N o
L. v o]\\‘ AN '
. D’ . - I | \
s.Z‘.--_..-»—»- ‘ ..l \\
¢ B \
B " " N
| \
\\ lA » o . N

Figure:3.7

— 01

The MOC, MOM and CURVE bits and the transpose map are
coded into the MDIR word in a special way, which permits the
programmer to change one of them without knowing the values
of the others. The right half of the MDIR is a numerical -
quantity, called Q, which is used in the 3D curve drawing
operation.. The left half of the MDIR reglster contains the
actual directive coding, in the form shown in figure 3.8.
Please note that if the MDIR register is stored (or sinked),
and later is loaded (or retrieved) from data wrltten it will
be restored to its original contents.

THE MDIR REGISTER

()
Take Q
K MCURVE
J MCURVE
TM(0)
LOAD <TM(1)
RETRIEVETake ™
K MOM
1J MoM
K MOC
J MOC | |
0 S ‘78 9 1011121314151617 18 35
7% A
-
MCC=1 ¢
MOC=0 ¢
IMOM=1 <
MOM=0 <
Always one &
STORE<TM(1) ¢
T™(0)
SINK INcURVE=1
MCURVE=0 1 v
Always one\ <
Q)
\.
Note: J K Next
’ 0 0 no change
010 -
101
1

1 complement

Figure 3.8

CHAPTER 4
THE CLIPPING DIVIDER

4.1 Function

The Clipping Divider eliminates those portions of the
drawing which lie outside the field of view and.maps the re-
maining portion of the drawing into scope coordinates. Input
data comes from the Matrix Multiplier (or The Channel Control
if the Matrix Multiplier is not included in the system), and
output goes to the Line Generator, back to memory via the
Channel Control, or both.

4,2 The Current Point

The coordinates of the current point which are re-
tained by the LDS-1 are stored in the SAVE register of the
Clipping Divider. The Clipping Divider processes lines (dots
being treated as lines of zero length). 1In most cases the
current point serves as one end of the line and the new point,
defined by the incoming data, serves as the other end of the
line. The SAVE register is automatically updated by drawing
instructions as explained in chapter 8. The address and
structure of the SAVE register are shown in figure 4.1.

4.3 Relative Data

The current point also serves as a reference point for
relative data specifications. For relative drawing instruc-
tions, the incoming data is first added to the contents of the
SAVE register and the result is used as the endpoint. For re-
lative parameter data (e.g. the window), data is also first
added to the contents of the SAVE register and the result is
used to load the parameter register. '

The !"size relatlve" specification, which is used mainly
for parameter data, results in the data first being added to
the SAVE register contents, for the second two. components,
and then subtracted from the contents of the SAVE register
to give the first two components.

4.4 Two-dimensional Clipping and Division

In two-dimensional operation the Clipping Divider auto-
‘matically eliminates portions of the drawing which lie outside
a rectangular area of the drawing space, OT "page'. This ;
~area on the drawing space is known as the WINDOW. The user
is able to specify what part of the drawing space he wishes
to view by specifying a window in page coordinates which covers
that area. The window is Spec1f1ed by giving the page coordi-
‘nates for its left, bottom corner and its right, top corner.
These values are loaded into the WINDOW register of the Clip-
ping Divider.

4-1

 CLIPPING DIVIDER REGISTER CONFIGURATION

2-component

4-component | “addresses ,
addresses ' S
=258 0 SAVELB ' 1 SAVERT
7 Fe A i % 1
i1 & LEFT ['*| BOTTOM 7] RIGHT ,@@ TOP
4 SAVE 0 V(X or 2,) J/ACY or z,)
| , 2 VIEWLB | | | 3 VIEWRT
- i ' T7 0127 7
15 VIEW 71 LEFT /] BOTTOM /1 RIGHT 4? TOP
/ o a4 74 : 14
(VIEWPORT) . |/ (X) 7 (Y) /i (X) Zﬁ (Y)
| 4 WINDLB 5 WINDRT
V 3 7 7]] R . .
16 WIND 70 LEFT g& ‘BOTTOM 'RIGHT ;4, TOP
(WINDOW) /] (X) é% (Y) 7) m
EA R 6 INSTLB 7 _INSTRT
17 INST v?? LEFT [/ BOTTOM 7/ RicaT [/}l TOP
(INSTANCE) 42 (X) 7 4§ (X) g% o0
10 NAME 11 CDIR
7 V , 7
NAME 771 NAME Z& CDIR /2
44 1/ A /7
12* HITANG 13* SELINT
//HIT, CORNER,7/] ANGLE 7/ SEL- | PERY/
42EDGE COUNT%%Z COUNTS %z ECT 1 MIT[y INTENSITY
7z 7/ - 7 L VA

‘ ;Eg = 2-bit sign extension
DATA FORMATS v | * Ali bits not used,

, - ~see figure 4.5 for
0 17 18 . 35 . . exact formats.

2D LEFTcn-RIGHT(X)&OTTOMtu‘TOP(Y)

~{werr (|BorTOM ()
3D ‘

RIGHT (X or Z,)| TOP (Y or Z,)

" Note: The numbers associated with the registers are octal,
addresses. The names associated with the registers
are LDS-1 mnemonics which have been defined in MACRO-10.

~Figure 4.1

The user may specify the rectangular portion of the scope
on which he wishes the picture to appear. This area

on the scope is known as the viewport. The viewport

is specified by loading the VIEWPORT register with the
scope coordinates of its left, bottom corner and right,
top corners. The scope coordinate system is centered
about zero and stretches from -3777 to 3777 (i.e. 12 bits)
but because the VIEWPORT register is a full 18-bit regis-
ter (plus a two-bit sign extension) and because only the
12 least significant bits are used to drive the scope,
each boundary of the viewport should be specified to be
between -3777 and 3777. Specifying a larger viewport re-
sults in wraparound and specifying a smaller viewport
results in the picture being drawn on less than the full
viewing area on the scope. '

The relation between the sizes of the window and view-
port determines the scale of the drawing. A window specifi-
cation of -377777, + 377777 (in each axis) and a viewport
specification of -3777, + 3777 (each axis) will map the entire
page onto the entire viewing area of the scope. If the win-
dow is only half as large (in each axis) and the viewport is
the same size only % of the drawing appears and the scale
is twice as large.

The window and viewport need not be the same "shape".
When they are different, the scale will be different in X
and Y (to "stretch'" the picture in one direction). Further-
more it is possible to create mirror images by specifying a
"backward" viewport (i.e. where the value for the left edge
is greater than the value for the right edge or the value

- for the bottom edge is greater than the value for the top

edge). Specifying a backward window, however, results in
none of the drawing being displayed.

4.5 Three-dimensional Clipping and Division

In three-dimensional operation the drawing is compared
to a pyramid of vision rather than to the window. The pyra-
mid of vision in defined for positive Z values by the planes
X=+2, X= -2, Y=+Z, and Y = -Z, thus forming a right
angle pyramid with its apex at an observation point about
5" from the face of the 5creen. Any portion of the drawing
outside this pyramid of vision is eliminated. Thus only
‘those lines or portions of lines where lX}gZ and |YlZ
are displayed as shown in figure 4.3. X B y

In three-dimensions, perspective division becomes part
~of the process of mapping the coordinate data into scope
coordinates. This perspective division yield X/Z_ and Y/Z
The viewport operates just as in two-dimensions, controllixg~
the portion of the viewing area of the Display Scope onto °
which the picture is mapped.

4-2

TWO-DIMENSIONAL CLIPPING AND DIVISION

Y;\TINDOW » | " Yi\TIEWPORT

\ (N

N r 1

i) ; IR
kiii\ . g' ' | = :'

: ‘,‘ \\\\\\\; : | ‘. | {VBNUE‘ g ’:

e o L)| !

1\ E | mk |

[o |

S~ 113

_ N
- PAGE - | SCOPE

Figure 4.2

THREE-DIMENSIONAL CLIPPING AND DIVISION

Note perspective division.

— \ - ';_
\
Av
7 — | R
~ 7

Viewport

- Scope

'Page

Figure 4.3

It should be noted that because the pyramid of vision
is right-angled, the perspective looks strange unless viewed
~from very close to the scope face (about 5"). Othgr viewing
angles can be implemented by using the transformation

. ‘ Z = 1 tan(«/2)
where = is the desired viewing angle.

4.6 Boxing

The boxing process is a special feature of the LDS-1 ;
Clipping Divider which allows two-dimensional subpictures to
be defined only once but appear in several different sizes and
locations. In order to understand boxing it is useful to
think of it conceptually as the concatenation of two mappings.
The first mapping is from the subroutine definition space, a
space similar to the page, onto the page. The second mapping
is then the normal page to scope (window to viewport) mapping
performed by the Clipping Divider. See figure 4.4.

The area on this subroutine definition space which is
to be the domain in the first mapping is deliniated by the
MASTER. The master specifies the rectangular portion of the
subroutine definition space which is to be mapped onto the
page. The area on the page onto which the MASTER is mapped
is known as the INSTANCE. Once the subroutine has been
mapped onto the page, the mnormal window- to-viewport mapping
will eliminate any portion of the subroutine which lies out-
side the window and map the result onto the viewport, thus
~displaying the subroutine at the proper position and size.

The "box" instruction of the LDS-1 automatically sets
up the window and viewport to perform a composite mapping.
The subroutine is thus mapped directly from the subroutine
definition space onto the scope. In order to compute these
new parameters, the Clipping Divider must be provided with
. @ master and an instance just as if two successive mappings
were to be performed. ' , L

e The Master. The master is specified as a direct
parameter of the box instruction (i.e. the data
addressed by the box instruction is the master).

- The master should be specified by giving the left,
bottom and right, top corners in the coordinate
system of the subpicture to be drawn. ’

* The Instance. The instance should be loaded into ‘
~ the INSTANCE register of the Clipping Divider prior
to executing the box instruction. The instance is
specified by giving the page coordinates of its

left, bottom and right, top corners.

. The box operation results in defining a new window on .
the subroutine definition space and a new viewport on the
scope. After the box instruction has been executed, the pro-
gram can jump to the. subroutine and draw the "subpicture just as
if it were executing a part of the main drawing routine. The

4-3

BOXING

The Two (C6nceptua1) Mappings

» RMASTER ﬁTANCE \- OLD WINDOW \OLD VIEWPORT

_\
| : ::::::::::::T\‘+*~%-~‘

DEFINITION PAGE - " SCOPE

The Composite Mapping Set Up By Boxing

| S | \ _
\- NEW WINDOW | \NEXV VIEWPORT

Figure 4.4 .

subpicture need not be in relative format. The relative
size of the subpicture on the main drawing is determined
by the ratio of the master to the instance and thus the
subpicture can appear in any size. Finally, any part of
the subpicture which lies outside the current window is
~clipped. ’ o ‘ ‘

When the instance is loaded prior to boxing the Clip-
ping Divider will check to see if there is any area in
common between the current window and the instance. If not,
- there is no need to draw the subpicture and it can be skipped
~entirely. An "area in common'" bit AIC is sent to the STATUS
REGISTER of the Channel Control where it can be tested prior
to boxing. Please note that for the AIC bit to operate
properly the INSTANCE register must be the last register
loaded with a 2D component load prior to the box instruction
(i.e. no other register should be loaded between the loading
of the INSTANCE and testing AIC) and the INSTANCE must be
- loaded with a 2D four-component load. See section 8.5. The

AIC bit is cleared by a new 2D four-component load.

.4;7 HIT and COUNT Functions

The HIT bit is generated by the Clipping Divider when
some portion of the line being generated intersects the
current window. This bit is sent to the STATUS REGISTER of
the Channel Control where it can be tested. The HIT bit can
also be enabled to stop the LDS-1 and cause an interrupt to
the PDP-10. (See section 6.3). Once the HIT bit is set it
remains on until cleared by a PDP-10 CONO instruction, a
group -2 instruction which clears the HIT bit, or by a '"load"
immediate' of the STATUS REGISTER. The HIT bit thus gives
the Clipping Divider the features of an automatic comparator
which are very useful for "pointing" functions such as are
associated with a tablet. (See chapter 9). S

Several different counts that may be useful in examining
the geometry of a drawing are maintained in the HITANG . '
register. These counts are primarily useful for determining
the relationship between polygons and the current window and
thus will be explained assuming that a polygon is being
drawn. , ‘ : '

e EDGE COUNT. The EDGE COUNT is incremented when-

ever both ends of the line are outside the window
and the line passes through the window. .

e CORNER COUNT. The CORNER COUNT is incremented for
' each corner (i.e. endpoint connecting two lines)
within the. window. ’ :

e HIT COUNT. The HIT COUNT is incremented for each
~dot within the window or each line which inter-
sects the window. . _ o

4-4

e ANGLE COUNTS (Q1-Q4). The four angle count
Tegisters may be used in conjunction with the
other counts to determine how the polygon inter-
sects the window. To understand the angle detec-
tion logic it is best to think of radials eminat-
ing from the corners of the window as shown in
figure 4.5 (note that the radials do not include
the edges of the window). Each time a polygon edge
crosses the radial in a counter-clockwise direc-
tion the count is incremented and each time it
crosses in a clockwise direction the count is
decremented. The four angle counters are used to
hold the accumulated counts for each quadrant
(radial). Examples of the use of these registers
are shown in figure 4.5

It should perhaps also be noted that in order to make intelli-
~gent use of these registers they must be zeroed before the
polygon is processed. The HITANG register can be loaded
stored, sinked, and retrieved by the instructions of group 3.
(Note: These features are provided on a 'best effort” basis
and their proper functioning is not considered part of the
acceptance criteria for the system.) =

4.8 Scope Control

The SELINT register of the Clipping Divider contains
scope selection and intensity information. ‘The first 8 bits
are used for scope selection. The next bit is used as a
"take" bit for the select bits. If this bit is 0, the select
bits are not loaded. It is thus possible to load the inten-
sity bits without loading the select bits. The next 8 bits
are used for the scope permit bits. These bits form a mask
against which the scope selection bits are tested. If a
violation occurs, a scope selection violation signal is
‘generated which can be enabled to cause interrupt of the
PDP-10 (see chapter 6). The permit bits can only be loaded
~ with an I/0 instruction and thus in a time-sharing environ-
ment are only accessible to the monitor. ‘

The last 18 bits of the SELINT register are used to

. specify the intensity. However, only the most significant
12 bits are actually used (see section 5.2.1). Zero spec-
ifies greatest intensity, 7777 specifies least intensity.
The format for the SELINT register is shown in figure 4.5.

4.9 The NAME Register

The NAME register of the Clipping Divider is an un-
assigned register which can be used by the programmer as a
storage register. The NAME register can be loaded, stored,
sinked, or retrieved. S '

HITANG and SELINT REGISTERS

HITANG REGISTER

012 56 910 17 181920 2324 2728 3132 35
EDGE CORNER] HIT | E , ,
'ES] COUNT [COUNT | COUNT Ql | @z 1 Q3 Q4

Examples of HITANG register usage.

. CORNER COUNT
EDGE COUNT = 2

ANGLE COUNTS (ASSUMING COUNTER-
CLOCKWISE TRACE)

1. Intersects the window

2. Entirely within the window
3, Entirely surrounds the window
4 Outside.the‘Window

'SELINT REGISTER , |
0 7 809 16 17 18 . | 35

SELECT § PERMIT g% » INTENSITY

T TAKE SELECT
~ Figure 4.5

4.10 Graph Mode

The Clipping Divider can be put into 'graph mode'" by
specifying "self X" or '"self Y" in the Clipping Divider
directive register (see next section). In this mode either
the X or the Y values in the SAVE register (or both) are
incremented by the corresponding X or Y value in the INSTANCE
register to form the new point, and the X or Y part of the
incoming data is ignored. For more efficient storage of data
in this mode, the DO TWICE bit of the Channel Control DIRECTIVE
register should be set. In all self modes all drawing in-
structions should be relative. Also, both the X components
and both the Y components of the INSTANCE registers should be
loaded with AX or AY. :

If SELFY and DO TWICE are set, the data should appear
as follows: ; S ' : :

Xy ’ X2
X’33 Xy
etc. |
If SELFX and DO TWICE are set, the data must appear as:
YZ ’ Yl / ' o
Ylo, Y3 k
eth

; 'The reason for this is that data is always taken nor-
mally the first time and reversed the second time. :

4,11 Mode Control

~ The 3D bit of the Channel Control DIRECTIVE (DIR)
register determines whether the Clipping Divider is in 2D
or 3D mode. The rest of the mode control information is
stored in the Clipping Divider directive register (CDIR).

4-6

The bits of this register are as follows:

0-1
2
3

10

11 -

12

-~ Unused

STOS

'STOM

ZTOS

 PTOM

NTOM

Take bits 2-6

J (Set) CURVE

'Scaled'output to scope.

Scaled output to memory (see

~ figure 4.6 for format).

Z sent to scope to control
intensity. (Otherwise the
intensity bits of the SELINT
register control intensity).

Clipped page coordinates (be-
fore division) to memory (See
figure 4.6 for format).

NAME register contents to
memory (see figure 4.6 for
format).

vanot set bits 2-6'are not
loaded. e o

If CURVE mode is set in 3D, the
Clipping Divider calculates the
part of the drawing within the
negative 7 pyramid as well as
the positive Z pyramid. The re-
sult is that the drawing behind
the observer is also projected
onto the scope. This feature is
useful in displaying certain
types of curves. CURVE for the
Clipping Divider should not be
confused with MCURVE for the

- Matrix Multiplier.

K (Clear) CURVE
J (Set) MEF

K (Clear) MEF

J (Set) Dashed
Line .

'scope to be dashe

“Minimum Effort Mode is a special

mode where the Clipping Divider
merely computes the X, Y and Z

~coordinates for some point which

is visible on the specified line.
(PTOM should be set to get these
values into memory). -

Causes the line drawn on the
d rather than

solid.

4-7

13

14
15

16

17

K (Clear) Dashed

Unused

SELF X

SELF Y

- Take SELF

. Line Lo

Use INSTANCE'regiStér for AX
displacement.

‘Use INSTANCE register for AY

displacement.

If not set SELF bits are not
loaded.

FORMAT FOR CLIPPING DIVIDER OUTPUT TO MEMORY

PTOM (Clipped page
- coordinates)

NTOM (Name Register)

STOM (Scaled scope
coordinates)

Previous Point [

New Point

Previous Point

New Point

17 18

35

X Y
z z
.x_ Y
Z YA
- NAME NAME R
Y
X - Y

IF all three are set, data are deposited on the order shown.

Dots are recorded only once (i.e. New Point)

#Omitted if 2D set.

Fiéuré'4.6‘u

CHAPTER 5
THE LINE GENERATOR AND DISPLAY SCOPE

5.1 Function

The last units in the LDS-1 processing pipeline are the
Line Generator and Display Scope. The Line Generator accepts
digital input from the Clipping Divider, converts these to
‘analog signals and generates the sweep voltages required to
drive the deflection system of the Display Scope. Input
“includes 12 bits of X, 12 bits of Y, and 12 bits of Z inten-
sity, as well as scope selection data, MOVE/DRAW commands,
and the DASHED LINE command.:

5.2 Ccntrol

~ The programmable control for the Line Generator and
Display Scope is contained in the Clipping Divider.

5.2.1 Intensity

The intensity modulation of the line drawn on the Display
Scope is under program control in one of two ways. First, :
if the ZTOS (Z to scope) bit of the Clipping Divider directive
~ register (CDIR) is set, the Z value of the line is used to
modulate intensity. This 'depth cueing'" makes the intensity
of any point on the line a function of the Z coordinate
of that point. Thus lines that extend very far from the
observation point will grow dim at the far end.

If ZTOS is not set, the most significant 12 bits of

“the value stored in the INTENSITY register (i.e. the right
18 bits of the SELINT register) of the Clipping Divider. are
used to determine intensity. ' _

5.2.2 Scope Selection

. The Line Generator can drive up to four scopes. The
selection for these scopes is determined by the Select

- register (bits 0-7 of SELINT) of the Clipping Divider.

These bits are masked against the bits in the Permit register
(bits 9-16 of SELINT) and in the case of violation, a scope
select violation bit is sent to the Channel Control. This.
bit can be enabled so that it will cause an interrupt. (see
section 6.2). The permit bits can be set only via an »
I1/0 instruction and are thus protected. For the format of the
SELINT register see figure 4.5. A line can be displayed on
any combination of the available display scopes.

5-1

5.2.3 Beam Control

The Clipping Divider controls the movement of the beam
on the Display Scope. The "set point" and drawing instruc-
- tions received by the Clipping Divider are used to control
the MOVE/DRAW function of the Line Generator. The clipping
process insures that the Line Generator will not be fed
values which are off the edge of the viewing area of the
Display Scope. '

The Diéplay Scope can be made to draw a. dashed line
(instead of a solid one) by setting the DASHED LINE bit of

~the Clipping Divider directive register.

5-2

CHAPTER 6
LDS-1/PDP-10 INTERFACE

6.1 General

The LDS-1 is interfaced directly to the memory port
of the PDP-10 (DMA) or to a memory part multiplexor. In
addition, the LDS-1 is interfaced to the I/O path of the
PDP-10 in order to allow I/0 communications. Minor mod-
ifications to the PDP-10's monitor and extensions to
MACRO-10 through the use of OPDEF's provide the necessary
~adjustments so that the system software of the PDP-10. can

accommodate the LDS-1. : :

6.2 Hardware Interfates

The LDS-1 operates off the memory of the PDP-10.
Instructions and data are fetched by the LDS-1 on a 'cycle
stealing" basis. The LDS-1 provides a memory address and
makes a read or write memory cycle request. The memory
addréss provided is an 18-bit unsigned number. If the
memory protection and relocation option is included in the
system, this address is first mapped,; otherwise, the address
is taken as the effective address. See Chapter 10 for a
description of the memory protection and relocation functions.
When the memory cycle is granted, the information passes
either to or from the LDS-1 through the DMA of the PDP-10.
All data is buffered by the LDS-1. S o

If the LDS-1 attempts to address non-existent memory, .
the PDP-10 will not respond with a memory cycle and the LDS-1
will hang. The NXM indicator light on the Channel Control.
control panel will go on. The LDS-1 also checks for parity
errors and lights the PARITY ALARM light if a parity error occurs.
Both of these conditions may be detected by the CONI instruction.

I1/0 communications take place through the I/0 interface.
Several conditions within the LDS-1 can be enabled by the
PDP-10 CONO instruction word to cause a PDP-10 interrupt.
System clear and the priority interrupt assignment are also
implemented through the CONO instruction word (see Figure
6.1). When an interrupt occurs or when it is necessary to -
test some condition of the LDS-1, a PDP-10 CONI instruction
word is used (see Figure 6.2). The CONI word can be tested
by CONSO or CONSZ as explained in the PDP-10 Reference Manual.

Considerable care has been exercised to insure that the
display system will operate gracefully in a multiple-user:
or time-shared environment. The display may be interrupted
by the CPU at the end of any instruction, and during the
execution of a repeat mode sequence or multiple LOAD, STORE,

6-1

SINK, or RETRIEVE. Instructions can be terminated and later re-
sumed, since the state of the instruction execution is saved in
the repeat status register of the Channel Control. The CPU may
inject an "I/0 stop" request by mecans of a CONO instruction,
and may then give commands to the display processor with DATAO
instructions. The full 1/0 word transferred by a DATAO is
interpreted as a standard LDS-1 instruction. "“"Push'" and
"store" instructions issued in this way can be used to save

the entire state of the LDS-1 in memory so that after pro-
Cessing another user's material, it is possible to resume

the interrupted process. A program to interrupt and restore

a user is shown in the programming examples.,

6.3 System Software Interface

In order to prOperly handle thé LDS-l,Tminor modifi-
cations must be made to the PDP-10's monitor. These modi-
ficatiqns,are described in a separate document.! '

v Programs for the LDS-1 are prepared by the MACRO-10
assembler, LDS-l-instructions are defined in OPDEF's which
are used to assemble LDS-1 code from the LDS-1 mnemonics.,
The mnemonics commonly used for LDS-1 instructions are given
- in Chapters 7 and § of this manual. It should be realized,
however, that not all possible instructions have mnemonics
defined for them and that there is, in a sense, nothing
sacred about the mnemonics which have been defined; that is, .
they may be freely changed to fit the needs of a particular
systemn. o o

o It should also be remembered that, once initialized,

the LDS-1 acts as an autonomous processor, interpreting its

- own program. The PDP-10 can also be running a program. Both
~ Programs may access the same data, but it is, however, impor-
- tant that the LDS-1 does not try to execute PDP-10 code and
vice-versa, ‘as disaster may result. , B

»‘See LDS-1/PDP-1O monitor modifications.

6-2

CONO BITS

18 - System clear. This has the same effect as the console
I/0 reset switch and the clear switches on the Clipping
Divider and Channel Control. The clipper and processor
are cleared and the processor is sent to the STOP state
while the clipper is sent to the INPUT WAIT state. Two
successive clears are necessary if the clipper has been
operating in the 3D mode. The clipper will not finish
the line it is working on, nor will the processor com-
plete 1its 1nstruct10n ‘No information is lost in the
processor. ' '

19 - Allow Memory Alarm Intérfupt This allows non- existent
memory and parity errors to cause the host computer to
1nterrupt on the selected channel.

20 - Disallow Memory Alarm Interrupt.

21 - Enable Memory Protection and Relocation.

22 - Allow Map/Protect Interrupt. This bit is used in connec-
tion with memory protection. :

23’- Disallow Map/Protect Interrupt.

24 - Set I1/0 Stop. | |

‘25 - Allow Stop Interiupt;

26 - Disallow Stop'Intérrupt.

27 - Clear I/0 Stop.

28 - Clear Program Stop.

29 - Clear Hit.

30 - Step. If the Channel Control is stopped (due to an I/O Stop)
a CONO instruction with this bit set causes the Channel
Control to execute one instruction and then return to
the STOP state. : ;

31»?’Unused. |

32 - Allbw Priority Inferrupt Assignment.

- 33, 34, 35 - Priority Interrupt Assignmént.

Figufe 6.1

CONI BITS

0-3 - Unused

4-17

18

19

20
21
22
23

24

25
26
27
28
29
30
31
32

- Unused »

Parity Alarm

NXM Alarm (non-existent memory) .
Alarm Interrupt On

Map/Prdtect Violation
Map/Prdtect~Interrﬁpt On

Unused

~Stopped and Ready (DATAO may be given only if
this bit is on, otherwise the DATAO is ignored)

Stop Interrupt On

vMemofy To Mémory Stop

I/0 Stop

Program Stop

Hit Stop |

ScOpe Select Vibiation Stqp
Unused .

LDS-1 Caused Interrupt (i.e.'Iﬁtefrupt has
actually occurred) ‘ ' '

33, 34, 35 - Priority Interrupt Assignment

Figufc 6}2

CHAPTER 7
THE INSTRUCTION SET - STRUCTURAL BREAKDOWN

7.1 General .

The instructiqn set of the LDS-1 can be easily broken
down by the codes in bits 0-2. The contents of this three-bit
field designate the group number of the instructions. This is
a meaningful division because group number determines
how the rest of the instruction word is to be split into

" fields and what those fields are to mean. Furthermore,
in a very formal sense, group number indicates the géneral
function of the instruction. ' These functions are:

Group o v Functioﬁ
0 ~ Channel Control Register TransmisSion
-2 Conditional Loading and Cond1t1on R
Modification
3 External Device Register Transmission
4 Direct Address Drawing Instructions.
5 Indirect Address'DraWing Instructibns
6 Matrix Mu1t1p11er Curve Mode Drawing
: Instructlons : '
7 Character Strlng Interpreter DraW1ng B
’ ’Instructlon : ,

v Note that Group 1 has been reserved for later system'
expan51on.

LDS-1 1nstruct10ns conform to the format of PDP-10
‘assembly language instructions and are decoded by the same
assembler

, Instructions are held 1n 36-bit words w1th the follow1ng
format: : :

0 89 121314 1718 35
OPCODE | A |I | X . |IMMEDIATE DATA

The assembly language fields are as'follows:
LABEL OPCODE A @DATA(X), COMMENT

The @ is present if the "I" bit is to be sct and absent
otherwise. Spaces are ignored except that at least one space
must follow the OPCODE. Missing fields are compiled as zeroes.
If the A fleld is absent the comma may be omltted

7-1

7.2 Group 0

2 3 4 5678 91011 12 13 14 15 16 17 18

35

1
0

. B N
v Push-——";r’ l ' ‘ - . f
~ Mark , | | .

Channel Control Register
Inhibit Load
.Mode Change

Plup) reG 1| MODE IMMEDTATE DATA

" The sequence of operations performed is shown below.

1. The contents of the Channel Control register addressed
by the REG field are placed in the temporary Channel Control

Register P2.

2. If the'L'bit is zero, the immediate data are plated'into_
the Channel Control register addressed by the REG field.

3. If thé 2 bit is one and the M bit is zero, the Channel
Control register is pushed onto the stack; i.e., the SP
(STACK POINTER) is decremented and the following instruction

~is written into the location it addresses:

LI A, OLDATA

where A is a copy of the REG field and OLDATA is the previous
contents of that register, held in P2. R

4, If the P bit is one and thevM-bit is also one, action

is taken as in 3, but the instruction pushed is:

‘LI A, OLDATA(OLDMOD)
where OLDMOD is the current mode of the ChanneIVCQntrol§’
This constitutes marking the pushed instruction. :
5. If the MODEvfield‘is nbn-zero, it is used to determine
the mode of the next instruction fetch. The MODE field is
decoded according to the following table: ‘ S

7-2

BITS 14-17 " RESULTS

Do nothing

Go to PROG mode, clear EXEQ and REPT

Go to PEEL mode, clear EXEQ and REPT

Clear EXEQ and REPT ' :

Go to REPT mode, clear EXEQ (XX indicates
- PROG and PEEL modes as above)

~Go to EXEQ mode, clear REPT
- Go to EXEQ and REPT

-~ ocoococo
o Hoooo
M Mmoo
XX MR oMO

The'modes have the following priority:

Repeat
gxecute (self- clearlng,applles only once)
P;Z§ram} mutually exclusive

7-3

7.2.1 Instructions in Group 0

Mhemonic: LI (Load Immediate)
Assembler definition: [0]
Structﬁfe:

0 - 89 - 12 1314 1718 35

0 0 o0 CREG | 0| mMODE | DpaTA

Function: Load immediate data into Channel Control register;
change mode (optional). - : '

Format: LI REG, DATA(MODE)

.where: REG is the registér to be loaded
DATA is the immediate data
MODE is the new mode (optional)

‘.Mnemonic: LIPSH (Load Immediate and PuSH old value)
Assembler definition: [040000000000]

Structure:

0 89 12 1314 1718 35

0 4 0 REG 0 | MODE ~ DATA

‘Function: Load immediate data; push old value; change mode
' (optional). ‘

~ Format: LIPSH REG, DATA(MODE)

where: REG is the register
DATA is the immediate data
MODE is the new mode (optional)- o

Mnemonic: LIPSHM (load Immediate, PuSH old value, Mark)
Assembler definition: [060000000000]

Structure:

0 89 12 13 14 17 18 35
0 6 0 REG 0 MODE DATA
Function: Load immediate data; push old value marked; change
: mode (optional). : .
Format: LIPSHM REG, DATA(MODE)
"where: REG is the register
DATA is the immediate data
MODE is the new mode (optional)
Mnemonic: PSH (PuSH)
 Assembler definition: [LIPSH ,@0]
- Structure:
0o ~ g§ 9 12 13 14 17 18 35
0 4 0 'REG | 1 | MODE 0

Function: Push Channel Control reglster leaving the contents. of

the reglster unchanged change mode (optlonal)
Format: PSH REG, (MODE)

where: REG is the reglster '
: MODE is the new mode (optlonal)

7-5

Mnemonic: PSHM (PuSH and Mark) »
Assembler definition: [LIPSHM'»,@O]
Structure: | |

0 _ 89 12 13 14 17 18 | 35

0 6 0 REG | 1 MODE | 0

" Function: »PuSh Channel Control register marked leaving the contents
' of that register unchanged; change mode (optional).

Format: PSHM = REG, (MODE)

where: REG is the register ;
‘ MODE 1is the new mode (optional)

| Mnemonicg"NOP (No-OPeration)
Assembler definition: [LI ,@0]

Structuré:

0_ - 8 9 1213 14 17 18 35

0 0 0 0 1| MODE 0

j’Fﬁnction: No-op§ change mode (optional).

‘Format: NOP (MODE)

where: MODE is the new mode (optional)

7-6

Mnemonic: JMP (JuMP)
Assembler definition: [LI PC, 0]

Structure:

0 | 8 9 12 13 14 17 18 35
0 0 0 ~ 2 0 | MODE ~ ADDR
Function: Jump to specified address; change mode (optional).
Format: JMP ADDR(MODE)
where: ADDR is the address _ _
MODE is the new mode (optional)’
" Mnemonic: JMPPSH (JuMP and PuSH old value)
Assembler definition: [LIPSHM PC, 0]
Structure:
0 L 8§ 9 12 13 14 17 18 35
o6 0 | 2 0 | MODE ADDR |

-_Function: -Jump to specified address; push old program counter;

change mode (optlonal)
Format: JMPPSH ADDR (MODE)

where: ADDR is the address
: MODE is the new mode (optlonal)

7-7

Mnemonic: NWSTK (New STacK)

Assembler definitioﬁ:_[LIPSH SP, 0]

Structure:

0 89 12 1314 17 18 35
0 4 o0 3 0 MODE ADDR
Function: Create a new stack at‘speCified~addreSS; push old stack
- - pointer onto new stack; change mode (optional),
Format: NWSTK ADDR (MODE)
ADDR is the address

- where:

MODE is the new mode (optional)

Mnemonic: NWSTKM (NeW STacK, Mark)

4Aésemb1er definition: [LIPSHM SP, 0]

Structﬁré:

0

0 -

8 9 12 13 14 17 18 , : 35

6 0 03 0 MODE ADDR

- Function:

Format:

where:

Create a new stack at specified address; push old stack

pointer marked onto new stack; change mode (optional).

NWSTKM ~ ADDR (MODE)

ADDR is the address E
MODE is the new mode (optional)

.7,31

Mnemonic: XQTA (execute atvaddress)v
“Assembler definition:> [LI RAR,O(XQTM)]
Structure: |

0 | 89 12 1314 17 18

o000 | o o] 10 ADDR

Function: Execute the instruction at the specified address.

Format: XQTA ADDR

where: "ADDR is the address

'~Mnemoﬂic: XQT (enter XQTM)
Assembler definition: [NOP ,0(XQTM)]
-Structure:

0 8 9 12 13 14 17 18

0 0 0 o | 1| 1o | 0

‘Function: Enter EXECUTE mode.

Format: XQT

7-9

Mnemonic: RPT (enter RPTM)
 Assembler definition: [NOP ,0(RPTM)]

Structure:

0 | 89 12 13 14 17 18

35
0 0 o 0 1 4
Function: Enter REPEAT mode.
Format: RPT
‘Mnemonic: PEEL (enterkPEELM)'
Assembler definition: [NOP , 0 (PEELM)]
| Structure:
0 89 12 1314 17 18 35
000 4 o f1f 2

Function: Enter PEEL mode.

Format: PEEL

7-10

Mnemonic: PROG (enter PROGM)

Assembler definition: [NOP ,0(PROGM)]

Structure:

12

13 14

17 18

35

1

Function: Enter PROG mode.

Format: PROG

7-11

7.3 Group 2

01 234 5 9 10 11 12 13 14 15 16 17 18 35

6 7 8
2 |a|J]x ?5%2;%; REG | I | coo | IMMEDIATE pATA

r N ’ A A
Always———‘T “ES , o , ‘ ‘
'J' Condition-

'K' Condition
- Channel Control Register-—
Invert Sense ‘

Condition Number

Group 2 instructions perform two operations: the bits
A and I and the value of condition COND are examined to
determine whether the Immediate Data should be placed
~in the specified Channel Control register; and the condi-
tion COND is modified according to the bits J and K.

The first operation is summarized in the following

table:
A| I |CoND| RESULT | COMMENT .
11]0 - load " load always
1 1 - do not 1load load never
-0 0 1 load . .. :
ol o 0 do not load :}1oad if condition holds
0 1 0 load ; .
0 1 1 do not load ﬁgig if condition does not

The second operation, which is performed only after the
first is completed, is summarized in the following table:

J | K | RESULT

0 0 | no change =

0 1 | clear condition

1 0 | set condition

111 complement condition

Group 2 instructions are not executed until the pipeline
is clear. This is because the condition to be tested may not
be determined until the pipeline has finished its processing.
Thus LAL differs from LI and should, for example, be used to

load the WAR.

.,7512

7.3.1 Instruction in Group 2

Mnemonic: LIF (Load immediate IF)
Assembler definition: [200000000000]
Structufe: |

0o _89. 12 13 14 17 18 | 35

2 0 0 REG 1| conp DATA

.~ Function: Load immediate data into Channel Control,registér if
condition holds and I is zero or if condition does not
hold and I is one. '

Format: LIF REG, DATA(COND); or
LIF REG. @DATA(COND)

‘where: REG is the register
DATA is the immediate data
COND is the condition
@ sets the I bit

‘Mnemonic: LIFCL (Load immediate IF, CLear condition)
‘Assembler definition: [210000000000]

Structure:

0 - : 8 9 12 13 14 17 18 3%

2 1 0 REG | I| oD | DATA

Function: Load register if condition holds and I is zero or if
. condition does not hold and I is one; then clear condition.

Format: LIFCL REG, DATA(COND); or
' - LIFCL REG, @DATA(COND)

where: REG is the register L
' DATA is the immediate data
COND is the condition
@ sets the I bit

7-13

Mnemonic:

LIFST (Load immediate IF, SeT condition)

Assembler definition: [2200000000001

Structure:

0 .

2

89 12 1314 1718 35

2 0 REG | I COND DATA

Function:

Format:

- where:

“Mnemonic:

~Load register if condition holds and I is zero or if

condition does not hold and I is one; then set condition.

LIFST REG, DATA(COND); or
LIFST REG eDATA(COND)

REG is the register e
DATA is the immediate data
COND is the condition ’
@ sets the I bit

LIFCM: (Load immediate IF, CoMplement condition)

Assembler definition: [230000000000]

Structure:

0

89 12 13 14 17 18 35

5.0 REG | 1| cono | Dpata

Function:

Format:

where:

~Load register if condition holds and I is Zero'or'if

condition does not hold and I is one; then complement
condition. ‘ ' .

LIFCM REG, DATA (COND); or
LIFCM REG, @DATA (COND) ”

REG is the register :
DATA is the immediate data
COND is the condition

@ sets the I bit

7-14

Mnemonic: LAL (Load ALways)

Assembler dcfinitibn; [240000000000]
Sthcture: | ‘ | |
0o 89 12 13 14 1718 35
2 4 0 REG o] o0 N DATA

Function: Load immediate data in ChannelAContrdl'register.ﬁ

Format: LAL REG, DATA

where: REG is the register ‘
DATA is the immediate data

Mnemonic: pALCL (Load ALways, ClLear condition)
“Assembler definition: [250000000000]

Structure:

0 89 . 12 13 14 17 18 35

2 5 0 REG. o | conp DATA

Function: Load register; then clear condition.

Format: LALCL REG, DATA(COND)

where: REG is the register
~~ DATA is the immediate data
COND is the condition

>V7515

Mnemonic: LALST (Load ALways, SeT condition)

Assembler deflnltIOH ' [260000000000]
»Structure | - ﬁ
0o 89 12 13 14 17 18 e 35
2.6 0 REG |0 COND | bama

Function; Lbad register;'then.set.condition.

Format: LALST REG, DATA(COND)

where: REG is the register
DATA is the immediate data .
COND is the condition

Mnemonic: LALCM (Load ALways, CoMplement condltlon)
Assemb]er deflnltlon [270000000000]

,,Structure.

0 - 89 .12 1314 1718 | 35

270 | RrG. [0 cow DATA

Function: Load register; then complement condition.

Format: LALCM REG, DATA(COND)

‘where: REG is the reglster
: "DATA is the immediate data
COND is the cond1t10n

7-16

Mnemonic: JIF (Jump IF)
Assembler definition: [LIF PC,0]

Structure:

0 89 121314 1718 35
| 200 | 2 1| conn ADDR

Function: Jump to specified address if condition holds and I is
zero or if condition does not hold and I is one.

Format: JIF ADDR(COND); or
JIF @ADDR(COND)

where: ADDR is the address
COND is the condition
@ sets the I bit

Mnemonic: jr1pcL (JumkaF‘CLeaf condition)
Assembler definition: [LIECL PC,0]
4 Struéture:

0 _ 89 . 12 1314 1718 . 35

2 1 0 2|11l conp ADDR

Function: 'Jump to Specified;address if condition hblds,and I
L is zero or if condition does not hold and I is one;
then clear condition. R .

Format: JIFCL ADDR(COND); or
i "JIFCL @ADDR(COND)

Qhere: ADDR is the address
COND is the condition
@ sets the 1 bit

7-17

Mnemonié:}JIFST'(Jump IF, SeT condition)

,Aésembler definition: = [LIFST PC,0]
Structure: -
0. 89 12 1314 - 1718 35

2 2.0 2 I - COND - ADDR

Function: Jump to specified address if condition holds and I is
: i zero or if condition does not hold and I is one; then
set condition. : : : '

Fdrmat: JIFST ADDR(COND); or
: - JIFST @ADDR (COND)

where: ADDR is the addfess
' COND is the condition
@ sets the I bit ‘

- Mnemonic: JIFCM (Jump IF, CoMplement condition)
Assembler definition: [LIFCM PC,0]
'Structure: - |

0 89 . 12 1314 17 18 35

2 3 0 2 |1 COND | ADDR

Function: Jump to specified address if condition holds and I is
K : zero or if condition does not hold and I is one; then
complement condition. : : .

- Format: JIFCM ADDR(COND) ; or
| JIFCM @ADDR (COND)

where: ADDR iS» the addi‘ess
'COND is the condition
@ sets the I bit

7-18

Mnemonic: JAL (Jump ALways)
Assembler definition: [LAL . PC,0]

Structure:

0 8§ 9 12,A 13 14 17 18 35
2 4 0 2 0 0 ADDR
Function: Jump to specified address.
‘Format: JAL ADDR
where: ADDR is the address
MnemonfCJ‘\JALCL'(Jump Always, CLear condition)
Assembler definition: [LALCL PC,0]
Structure: F
0 o 89 . 12 1314 17 18 35
2 5 0 2 0 | COND ADDR

Function: Jump to specified address; then clear condition.

Format: JALCL ADDR(COND)

where: ADDR is the address
‘ COND is the condition

7-19

Mnemonic: JALST (Jump ALways, SeT cbndition).

Assembler definition: [LALST PC,0]
Structure:
0 8§ 9 12 13 14 17 18 35
2 6 0 2 0 COND | ADDR
Function: Jump'to specified address; then set condition.
Format: jALST ADDR(COND)
~ where: ADDR is the address
: COND is the condition
Mnemonic: jaLcMm (Jump ALways, CoMplement-conditidn)
‘Assembler definition; [LALCM PC,0]
~Structure:
0 | - 8 9 12 13 14 17 18 35
2 7 0 2 | COND ADDR

fFunctiOn:k Jump to specified address; then complement condition.
~ Format: JALCM ADDR(COND)

where: ADDR is the address
COND is the condition

- 7-20

Mnemonic: IJNRCR (Increment and Jump'if Negatife RCR)

Assembler definition: [JIFST ,0(RCRN)]
Structure: '
0 8 9 : 12 - 13 14 17 18 35

2 2 0 1 2 0 10 o ADDR

Function: Jump to specifled address if RCR<-1; then increment RCR.
(Note: this is equivalent to 1ncrement1ng the RCR first
and then Jumplng if it is still negative.

Format: IJNRCR- ADDR

where: ADDR is the address

Mnemonic: 1gNycRr (Increment and Jump if Negatlve WCR)

Assembler definition: [JIFST ,0(WCRN)]
Structure:
o 8 9 1213 14 718 35
2.2 0 2 0| 11 ADDR

Function: Jump to specified address if WCR<-1; then increment WCR.
’(Note this is equivalent to 1ncrement1ng the WCR first
and jumping if it is still negatlve)

Format: IJNWCR ADDR

~where: ADDR is the address

7-21

Mnemonic: IJPRCR (Increment and Jump if Positive RCR)
Assembler definition: [IJNRCR e0]
Structure:

0 , 8 9 12 13 14 17 18

A
2]

2 2.0 ’ 2 1 10 ADDR

Function: Jump to specified address if RCRZ-l; then increment RCR.

(Note: this is equivalent to incrementing the RCR and

jumping if it is positive or 0.

Format: IJPRCR ADDR

where: ADDR is the address

Mnemonic: IJPWCR (Increment and Jump if Positive WCR)

Assembler definition: [IJNWCR»@O]
Structure: |
0 89 12 13 14 17 18 35
2 2 0 2 . 1 11 _ ADDR

Function: Jump to specified address if WCRz-1; then increment WCR.
' ' (Note: this is equivalent to incrementing the WCR and

jumping if it is positive or 0.)

Format: IJPWCR ADDR

where: ADDR is the address

7-22

Mnemonic: CL (CLear condition)

~ Assembler definition: [LALCL @o0]

Structure:
0 | 8 9 12 13 14 17 18 35
2 5 0 | o 1 COND
Function: Clear specified condition.
Format: CL (COND)
Where: COND is the condition
~Mnemonic: gT (SeT condition)
Assembler definition: [LALST €0]
Structure: '
0 ~ 8 9 12 13 14 17 18 35
2 6 0 0 1| conp

Function: Set specified condition.

Format: ST (COND)

where: COND is the condition

7-23

Mnemonic: CM (CoMplement condition)

Assembler definition:

Structure:

[LALCM €0]

Format:

0 8 9 12 13 14 17 18 35
2 7 0 0 1 COND
Function: Complement specified condition.
CM (COND)
where: COND is the condition
Mnemonic: gTop (STOP)
Assembler definition: [ST (STOPF)]
Structure:
0 8 9 1213 14 17 18 35
2 6 0 0 1 17

- Function: Stop the LDS-1.

- Format:

STOP

7-24

7.4 Group 3

234 567891011 12 13 14 15 16 17 18 3!

1
3 DEV REG I | COUNT ADDRESS
™ \ A A

3 KN
00=LOAD
01=STORE D
10=RETRIEVE
11=SINK _{ .
Device and Manner
Device Register
Inhibit Load

Count

This instruction group is used to transmit external device
registers in and out of core. It is also used for miscellaneous
Matrix Multiplier operations. These instructions are not executed
until the pipeline is settled. Four types of transmission are
provided, as determined by bits 3 and 4:

LOAD loads registers from the core location held in the RAR.

STORE stores registers in the core location held in the RAR.

RETRIEVE loads registeré from the core location held in the
DSP (i. e. it retrieves from the data sink).

SINK stores registers in the core location held in the DSP
(i. e. it pushes onto the data sink). '

The first thing these instruction do, if the I bit is zero,
is to load the ADDRESS field into the RAR (for load and store)
or the DSP (for sink and retrieve). No loading is done if the
I bit is one. The I bit is generally one for sink and retrieve
Instructions (and iS in fact defined as one for the mnemonics)
so that the DSP is not disturbed from keeping track of the
current location in the data sink.

The registers are then transmitted. The first register

to be transmitted is specified by the REG field, and the num-
~ber of registers to be transmitted is specified by the COUNT

field, where a COUNT of zero means sixteen. After each regis-
- ter is transmitted, the following actions are taken: o

1. The REG field is incremented‘(load,kstore, and sink)
or decremented (retrieve). :

2. The RAR is incremented (16ad and store), the DSP is
incremented (sink), or the DSP is decremented (retrieve).

3. The COUNT field is decremented and tested for'zero;
if non-zero, another register is transmitted. _

7-25

The external device in which the registers are located
is specified by the DEV field, as well as the manner of
transmission. The store and sink variants have only one
manner-absolute. Load and retrieve have four manners, however,
Listed below are the meanings of these manners:

Clipping Divider Registers

Absolute: Core values are copied into registers;

Relative: Core values are added to the contents
of the SAVE register and placed in
the registers; '

Size Absolute: Core values are copied into the
second two components of the registers,
and the negative of the core values
are copied into the first two com-
ponents of the registers (2D only,
registers 14-17 only);

Size Relative: Core values are added to the contents

- of the SAVE register and placed in
the second half of the registers;
core values are subtracted from the
centents of the SAVE register and
placed in the first half of the
registers (2D only, registers 14-17
only).

Matrix Multiplier Registers

Absolute: Core values are copied into registers.

Relative: Core values are added to the contents
‘ ' - of the respective register and the
sum is used to fill the register.

Product: Core values are multiplied by contents
of a matrix (not A) and the result is~
placed in matrix A.

Size Absolute and Size Relative are not used for the
: Matrix Multiplier. :

A summary of the devices and manners representable by
the DEV field of load instructions follows:

DEV - Device and Manner Abbreviation
0 Clipper-Absolute » - CLA

1 Clipper-Relative : o CLR

2 Clipper-Size Absolute : CLSA

3 Clipper-Size Relative _ : ‘CLSR

4 Matrix Multiplier-Absolute ‘ o MM

5 Matrix Multiplier-Relative _ MMR

- 7-26

DEV : Device and Manner Abbreviation

6 Matrix Multiplier-Product - MMP

7 Matrix Multiplier Directive-Absolute MDIR
14 Character Bubble-Absolute CB
16 . Switches, Buttons, Knobs, Lights-Absolute SBKL
17 Additional SBKL Registers-Absolute

In store instructions, only DEV fields of 0, 4, 7, 14,
16, and 17 are legal. However, a DEV field of 5 in a store
instruction has a special meaning for the Matrix Multiplier:

"normalize." Also a DEV field of 6 means "push Matrix
Multiplier.' See section 8.7

In sink instructions, the same DEV fields are legal: O,
4, 7, 14, 16, and 17. Here a DEV field of 5 has the meaning
sink and slide.

All the DEV fields legal for load are also legal for
retrieve instructions; but 5 means retrieve and slide and
6 means 'pop Matrix Multiplier" as described in section 8.7
as well.

7.4.1 2D and 3D Register Transmission

In 2D, two-component registers are generally loaded with
a single memory word whereas in 3D the registers loaded are
four-component registers, and two data words are used. Each
of the four-component registers is made up of two separate two-
component registers. ' ' : I

2D loads for the Matrix Multiplier address rows of ‘the
matrices just as 3D loads, the difference being that in 2D

‘only the first two elements of the row are loaded whereas in
3D the whole row is loaded. '

For the Clipping Divider, however, 2D loads use different
addresses than 3D loads (see Figure 4.1). Registers 0-13s
are two-component registers, and registers 14-17s the corres-
ponding four-component registers. A four-component register
may, however, be specified in 2D. If the manner is size
absolute or size relative, the load works as described
previously. If the manner is simply absolute or relative,
the contents of the first two components of the SAVE register
are copied into the first two components of the register, while
the data word is copied into the remaining two components of
the register (absolute) or first added to the contents of SAVE
and then copied into the remaining two components (relative).
2D, four-component loads are used preliminary to boxing (see
section 8.5). - ~

7-217

7.4.2 Instfuctions in Group 3

Mnemonic: LOCLA (LOad CLipping'diyider Absolute)
Assembler definition: [300000000000] _

Structure:

0 ' 89 - 12 13 14 17 18 ' 3

300 REG 1 1I COUNT ADDR

h_lU'!

- Function: Load COUNT Clipping Divider registers directly from core
: beginning at ADDR (if I=0) -or at the current value of the
RAR (if I=1).

Format: LOCLA REG,ADDR(COUNT) ; or
' LOCLA- REG, @ (COUNT)

where: REG is the first register to be loaded.
‘ ADDR is the address. ,
COUNT is the number of registers to be loaded.
@ sets the I bit.

Mnemonic: LOCLR (LOad CLipping‘diVider Relative)
Assembler definition: [301000000000]
‘Structure: A

0 ' 8 9 12 13 14 17 18 - ’ 35

301 , REG . I COUNT ADDR

- Function: Load COUNT Clipper registers with the sum of the SAVE
register contents plus values taken from core beginning
at ADDR (if I=0) or the RAR (if I=1). ;

Format: LOCLR REG,ADDR(COUNT) ; or
| LOCLR REG, € (COUNT)

where: REG is the first register.
ADDR is the address. ‘
COUNT is the number of registers.
@ sets the I bit. :

- 7-28

Mnemonic: LOCLSA (LOad CLipping divider Size Absolute)
Assembler definition: [302000000000]
Structure: |

0 ‘ 8 9 12 13 14 17 18 ' 35

302 REG I "‘COUNT ADDR

Function: Load COUNT four-component Clipper registers using values
beginning at ADDR (if I=0) or the RAR (if I=1). Place
the values in the second half of the register and the
negative of those values in the first half.

Format: LOCLSA REG,ADDR(COUNT) ; or
LOCLSA REG,@ (COUNT)

where: REG is the first register.
ADDR is the address.
COUNT is the number of registers.
@ sets the I bit '

Mnemonic: ~LOCLSR (LOad CLipping divider SiZe Relative)
~ Assembler definition: [303000000000]

Structure:

0) 89 12 13 14 17 18 35

303 REG . I | Ccount ADDR

Function: Load COUNT four-component Clipper registers using values
beginning at ADDR (if I=0) or the RAR (if I=1). Obtain
the second half of the registers by adding the values
found to the SAVE register; obtain the first half by

_ subtracting those values from the SAVE register.

Format: LOCLSR REG,ADDR(COUNT) ; or o :
LOCLSR REG, @(COUNT) '

where: REG is the first register (REG = 14, 15, 16, or 17)
ADDR is the address. S o
COUNT is the number of registers.
@ sets the I bit.

7-29

Mnemonic:

STCL (STore CLipping divider)

Assembler definition: [320000000000]

Structure: ;
0 8 9 12 13 14 17 18 35
320 ~ REG I - COUNT ADDR
Function: Store COUNT Clipper registers into the core locations
addressed by ADDR (if I=0) or the RAR (if I=1).
Format:

where:

Mnemonic:

STCL REG,ADDR(COUNT) ; or
STCL REG, @ (COUNT) .

REG is the first register to be stored.
ADDR is the address.. -

COUNT is the number of registers.

@ sets the I bit. '

RTCLA (ReTrieve CLipping'divider Absolute)

Assembler definition: [340 , e0]

Structure:

8 9 12 13 14 17 18 : 35

0
340 | REG. | 1 | count | 0
Function: Load COUNT Clipper registers, beginning at REG and counting
: backwards, from the current value of the DSP (which is
decremented after each register is retrieved).
Format : RTCLA REG, (COUNT)
wheré: "REG is the first register to be retrieved.

COUNT is the number of registers.

7-30

Mnemonic: RTCLR (ReTrieve CLipping divider Relative)
Assembler definition: [341 ,e0] '

Structure:

0 8 9 12 13 14 17 18 35
341 REG 1 'COUNT | 0

Function: Load COUNT Clipper registers; Counting backward from REG,
by adding the contents of the SAVE register to the values
addressed by the DSP (which is decremented after each use) .

Format: RTCLR REG, (COUNT)

where: REG is the first register.
COUNT is the number of registers.

‘Mnemonic: RTCLSA (ReTrieve CLipping divider Size Absolute)
Assembler definition: [342 ,@0] ‘

Structure:

0 ' - 8 9 12 13 14 17 18 35
342 REG | 1 COUNT 0 |

Function: Load COUNT four-component Clipper registers counting back-
wards from REG, using values addressed by the decrementing
DSP. Load the values into the second half of the registers
and the negative of those values into the first half. ‘

Format: RTCLSA REG, (COUNT) .

where: 'REG is the first register (REG = 14, 15; 16, or 17)
, COUNT is the number of registers.

7-31

Mnemonic: RTCLSR (ReTrieve CLipping divider Size Relative)

Assembler definition: [343 ,e0]

‘Structure:
0__ 8 9 12 13 14 17 18 35
343 REG 1 | COUNT 0
F . Load COUNT four-component,clipper registers, counting back-
Stunction: .49 from REG, using values addressed by the decrementing
' DSP. Obtain the second half of the registers by adding
the values addressed to the contents of the SAVE register;
obtain the first half by subtracting those values from
the contents of the SAVE register,. ‘

Format: RTCLSR REG, (COUNT)

where: REG is the first register (REG = 14, 15,

16, or 17)
COUNT is the number of registers. :
| Mnemonic: SKCL = (SinkK CLipping divider)
~ Assembler definition: [360 ,e0]
'Structure: '
0 : _ é 9 12 13 14 17 18 35 -
360 REG | 1 | count 0

- Function: Store COUNT Clipper registers into core,
the location addressed by the DSP.

Format: = SKCL' REG, (COUNT)

~where: REG is the first register.
COUNT is the number of registers.

7-32

beginning at

Mnemonic: LOMM (LOad Matfix Multiplier, absolute implied)
Assembler definition: [304000000000] |

V

Structure:

35

0 89 12 1314 17 18

3046 . | row | 1 | counr "ADDR

Function: Load COUNT Matrix Multiplier rows, beginning at ROW, from
core locations beginning at ADDR (if I=0) or the RAR (if

I=1). '

Format : LOMM ROW,ADDR(COUNT) ; or
' LOMM ROW, @ (COUNT) v

where: ROW is the first row to be loaded.
ADDR is the address. '
COUNT is the number of TOWS.
€@ sets the I bit.. o

Mnemonic: LOMMR (LOad Matrix Multiplier Relative)
- Assembler definition: [305000000000]
Structure: ‘ '

0 ‘ 89 12 13 14 17 18

305 ROW I COUNT - ADDR

‘Function: Add the values addressed by ADDR (if I=0) or the RAR (if
: I=1) element-by-element to each of COUNT Matrix Multiplier

rows, beginning at ROW.

Format: LOMMR ROW,ADDR(COUNT) 3 or
LOMMR ROW, @ (COUNT)

where: ROW is the first row to be modified.
ADDR is the address. ' :
COUNT is the number of TOWS .
@ sets the I bit.

7-33

Mnemonic:

LOMMP (LOad Matrix Multiplier Product)

Assembler definition: [306000000000]

Structure:

0 8 9 1213 14 17 18 35
306 1 ROW |1 'COUNT . ADDR
Function: MUltiply the values addressed by ADDR (if I=0) or the RAR
(if I=1) by the entire matrix in which ROW is located, and
place the result in the corresponding row of matrix A. If
COUNT is greater than one, do the same for ROW+1, etc.
Format: LOMMP ROW,ADDR(COUNT) 5 or
LOMMP ROW,@(COUNT),
where: ROW specifies the matrix (high two bits) and row for

‘Mnemonic:

result (low two bits).
ADDR is the address. , _ _
COUNT is the number of vector products. COUNT should be = 4.
@ sets the I bit. ‘ :

LOMDIR (LOad Matrix Multiplier DIRective register)‘

Assembler definition: [307 ,0(1)]

Format:

Structure: |
0 8 9 12 13 14 17 18 | 35
307 0 I 1 ADDR
~Function: Load the Matrix Multiplier Directive register with the

word addressed by ADDR (if I=0) or the RAR (if I=1).

LOMDIR ADDR ; or

~ LOMDIR @

where:

ADDR is the address.
@ sets the I bit.

7-34

Mnemonic: gTMM (STore Matrix Multipiier, absolute implied)

Assembler definition: [324000000000]
Structure:
0 8 9 - 12 13 14 17 18 - 35
324 ROW I COUNT ~ ADDR

Function: Store COUNT Matrix Multiplief rows beginning at ROW into
core beginning at ADDR (if I=0) or the RAR (if I=1).

Format: STMM ROW,ADDR(COUNT) ; or
STMM ° ROW, @ (COUNT)

where: ROW is the first row to be stored.
ADDR is the address.
COUNT is the number of rows.

Mnemonic: NOMM (NOrmalize Matrix Multiplier)
- Assembler definition: [325 ,e0]

Structure:

0 : 8 9 12 13 14 17 18 35
325 0 1 | MAXSHIFT | 0

Function: Normalize matrix A by shifting each of its elements left
: one bit until either MAXSHIFT shifts have taken place or
some element of A is between one-half and one in magnitude.

Format: ~ NOMM (MAXSHIFT)

where: MAXSHIFT is the maximum number of shifts.

35

7

‘Mnemonic: STMDIR '(STore Matrix multiplier DIRective register)
Assembler definition: [327 ,0(1)]
Structure: | |

0_ - 8 9 12 13 14 17 18

327 1 o0 I 1 ~ ADDR

| Function: Store the Matrix Multiplier Directive register into the
core location addressed by ADDR (if I=0) or the RAR

(if I=1).
Format: . STMDIR ADDR '; or

STMDIR e

where: ADDR is the address.
: @ sets the I bit.

Mnemonic} 'RTMM (ReTrieve Matrix Multiplier, absolute implied)
Assembler definition: [344 ,@0]

~Structure:

0 89 12 13 14 17 18
344 ROW 1| COUNT | 0

- Function: Load COUNT Matrix Multiplier rows beginning at ROW and
: counting backwards, with values addressed by the DSP,
which is decremented after each use. _

Format: =~ RTMM ROW, (COUNT)

where: Row is the first row to be retrieved.
o COUNT is the number of rows.

7-36

Mnemonic: RTMMS (ReTrieve Matrix Multiplier and Slide)
Assembler definition: [345 ,@0]

Structure:

0 8 9 12 1% 14 17 18 35
345 ROW 1| count o

Function: Load COUNT Matrix Multiplier rows, counting backward from
ROW, from the decrementing DSP; but before each load, copy
the old value of the row into the corresponding row of
matrix A.

Format: RTMMS ROW, (COUNT)

where: ROW is the first row to be retrieved.
COUNT is the number of rows.

Mnemonic: RTMDIR (ReTrieve Matrix mhltiplier DIRective register)
Assembler definition: [347 ,e0(1)]
Structure: |

0 : 8 9 12 13 14 17 18 o 35

347 0 . 1 1 " 0

Function: Retrieve the value of the Matrix Multiplier Directive -
~ register from the DSP. e

.Féxmat: . RTMDIR

7-37

Mnemonic: SKMDIR (SinK Matrix multiplier DIRective register)
- Assembler definition: [367 ,60(1)] | |
Structure:

0 8 9 12 13 14 17 18 | 35

367 0 1 1 , 0

Function: Store the Matrix MultiplierbDirective register'at the
location addressed by the DSpP.

Format: SKMDIR

Mnemonic: SKMM (SinK Métrix Multiplier)
"Asscmbler definition: [364 ;0]

Structure:

0 - 89 12 13 14 17 18 | 35
364 | ROW |1 | CoUNT | | 0o

- Function: Store COUNT Matrix Multiplier registers beginning at
‘ ' ROW into core beginning at the DSP. I

- Format: sxmM ROW, (COUNT)
wheré:, ROW is the first row to be sinked.

COUNT is the number of rows.

7-38

Mnemonic: SKMMS (SinK Matrix Multiplier and Slide)
Assembler definition: [365 ,€0]
Structure:

0 8 9 12 13 14 .17 18

365 “ROW A 1 COUNT 0

Function: Store COUNT Matrix Multiplier registers beginning at ROW
into core beginning at the DSP, and after each store
replace the sinked row with the corresponding row of
matrix A.

- Format : SKMMS ROW, (COUNT)

where: ROW is the first row to be 31nked and replaced
COUNT is the number of rows.

Mnemonic: ~PUSHMM (PUSH Matrix Multipiier)
Assembler definition: [326 ,@0]
Structure:

0 . 89 1213 14 17 18 - 35

366 ’ ROW 1 COUNT 0

Function: Load each of COUNT Matrix Multiplier rows starting with
o ROW with its corresponding row from matrix A.

Format: PUSHMM ROW, (COUNT)

where: ROW is the first row to be loaded.
' COUNT 1is the number of rows.

7-39

Mnemonic: POPMM (POP Matrix'Multiplier)

Asscembler definition: [366 ,e0] -
Structure:

0

8 9 12 13 14 17 18
326 ROW 1 | COUNT

0

"Function: Copy each of COUNT Matrix Multiplier rows starting with
ROW into its corresponding row in matrix A,

‘Format: POPMM ROW, (COUNT)

‘where: ROW is the fir

St row to be copied.
COUNT is the n

umber of rows,

7-40

Mnemonic:

LOCB (LOad Character Bubble absolute)

Assembler definition: ~[314000000000]

Structure:
0 8§ 9 12 13 14 17 18 35
314 REG 1 COUNT ADDR
Function: Load COUNT registers of the Character Bubble with-data
' addressed by ADDR (if I=0) or the RAR (if I=1).
Format : LOCB REG,ADDR(COUNT) ; or
LOCB REG,@(COUNT) :
where: REG is the first register to be loaded.
ADDR is the address.
COUNT is the number of registers.
@ sets the I bit. .
‘Mnemonic: STCB (STore Character Bubble)

Assembler definition: [334000000000]

Structure:
0 8 9 12 13 14 17 18 : : 35
334 | REG . | 1 | CcouNnT ADDR |
Function: Store COUNT Character Bubble registers into core locations
o beginning at ADDR (if I=0) or the RAR (if 1=1).
Format : STCB REG,ADDR(COUNT) ; or
STCB REG, @ (COUNT) o
where: REG is the first register to be stored.

ADDR is the address.
COUNT is the number of registers.
@ sets the I bit.

7-41

Mnemonic: RTCB (ReTrieve Character Bubble absolute)
Assembler definition: [354 ,e0]

~Structure:

0 8 9 12 13 14 17 18 35
354 REG 1 COUNT 0

Function: Load COUNT Character Bubble registers, starting at REG
and counting backwards, from the location held in the
DSP (which is decremented after each retrieve).

Format: RTCB REG, (COUNT)

where:, REG is the first register to be retrieved,
COUNT is the number of registers.

Mnemonic: SKCB (SinK Character Bubble)
Assembler definition: - [374 ,e0]
Structure:

0 . g9 12 13 14 17 18 35

374 REG . | 1 | COUNT 0

Function: Storé COUNT Character Bubble registers starting with
REG into core beginning at the DSP. : '

Formai: SKCB REG, (COUNT)

where: REG is the first register to be sinked.
, COUNT is the number of registers.

7-42

Mnemonic: LOSBKL (LOad SBKL)
Assembler definition: [316000000000]
Structure:'

0 89 12 13 14 17 18 | 35

316 REG | I COUNT ~ ADDR

Function: Load COUNT SBKL registers béginniﬁg at REG with values
- addressed by ADDR (if I=0) or the RAR (if 1=1).

Format: LOSBKL REG,ADDR(COUNT) ; or
LOSBKL REG, @ (COUNT)"

where: REG is the first register to be loaded.
ADDR is the address. ;
COUNT is the number of registers.
@ sets the I bit.

Mnemonic: STSBKL (STore SBKL)

Assembler definition: [335000000000]'

Structure:

0 . 89 . 12 13 14 17 18 ‘ 35
336 REG I COUNT ; ADDR

Function: Store COUNT SBKL registers starting with REG into core
starting at ADDR (if I=0) or the RAR (if I=1).

" Format: STSBKL REG,ADDR(COUNT) ; or
STSBKL REG, € (COUNT)

where: REG is the first register to be stored.
i ADDR is the address. : -
COUNT is the number of registers.
@ sets the I bit,

7-43

Mnemonic: RTSBKL (ReTrieve SBKL)
Assembler definition: [356 ,@0]
Stfucturé:
0 | 89 12 13 14 17 18 35
356 'REG 1 | count 0

Function: Load COUNT SBKL registers beginning at REG and counting
- bacRwards, from the location Beld in the DSP, which is
decremented after each use, ~

Format: RTSBKL REG, (COUNT)

where: REG is the first register to be retrieved,
: COUNT is the number of registers, -

Mnemonic: SKSBKL (SinkK SBKL)
Assembler definition: - [376 ,e0]
Structure:

0 - 89 12 13 14 17 18 ' : 35

376 REG | 1 | COUNT 0

Function:. Store COUNT SBKL registers'starting with REG into core
- beginning at the Dsp, - R y : '

Format: SKSBKL REG, (COUNT)
where: REG is the first register to be sinked,

COUNT is the number of registers,

7-44

Mnemonic: STSWCH (STore SWitCHes)
Assembler definition: [STSBKL 4,0(1)]

Structure:

0 8 9 12 13 14 17 18

337 4 I 1 ADDR

Function: Store the Swtich settings at ADDR (if I=0) or the RAR

(if I=1).
Format: STSWCH ADDR ; or
STSWCH e :

where: ADDR is the address.
' @ sets the I bit.

Mnemonic: LOLITS (LOad LIghTS)
Assembler definition: [LOSBKL 6,0(1)]

Structure: |
0 89 .12 13 14 17 18
317 6 o | ADDR
Function: Load the register driving the‘lights with the word
~addressed by ADDR (if I=0)vor the RAR (if I=1).
Fofmét: LOLITS ADDR ; or -

LOLITS e

whefe: ADDR is the address.
: @ sets the I bit.

7-45

Mnemonic:

 STKNOB (STore KNOB) -

Assembler definition: [STSBKL, 0]

Structure:

0

8 9 12 13 14 17 18 35

336 NUM | I COUNT ADDR

Function:

Format:

where:

Store COUNT knob pair readings, starting with pair
number NUM, into core beginning at ADDR (if I=0) or
the RAR (if I=1). : v

STKNOB NUM,ADDR (COUNT)
STKNOB NUM, @ (COUNT)

NUM is the first pair number

ADDR is the address :

COUNT is the number of pairs (NUM + COUNT should not
exceed 4) I

‘@ sets the I bit

7-46

7.5 Group'4, 5, 6, and 7

0 12 345 6 78 910 11 12 13 14 15 16 17 18 ’ : . 35
DS SS EG I | MODE IMMEDIATE DATA.

/
Group NOT:S
Drawing Sequence —_
Specification Sequence-
Channel Control Reglster
Inhibit Load
Mcde Change

Group 4-7 instructions are the only instructions that
paint on the scope. Each group has its own function, but they
are all discussed together because they have the same fields
and the same sequence of operatlon

These instructions begin by plaC1ng the immediate data
into the spec1f1ed Channel Control reglster, unless the I bit
is one. ,

- Then bits 1-8 of the 1nstruct10n are c0p1ed into the RSR
(Repeat Status Register).

At this point the groupS'diverge into their own fhnctions:

- Group 4 instructions fetch data (one word in 2D, two words
in 3D) from the location held in the RAR; .interpret the data
according to the SS field; and draw accordlng to the DS field.
The RAR is incremented as it is used.(once in 2D, tw1ce in 3D),

Group 5 instructions fetch the word of data addressed by
the RAR; put the left-half into P1 and the right half into P2;
fetch data (one word in 2D, two words in 3D) first from Pl
and then from P2Z; 1nterpret the data according to the SS field;
and draw accordlng to the DS field. The RAR, "P1 and P2 are
incremented after each_tlme they are used, ,

Group 6 1nstruct10ns fetch no data and do not use the SS
- field, but rather draw using data stored internally in the Matrix
Multiplier (if its CURVE bhit is set) according to the DS field,

: ~Group 7 has only one instruction, DOCHAR, which places
the word addressed by the RAR ‘into the Character String Inter-
preter's CHAR register; then either: 1) has the Character
Generator draw the character, if possible, or 2) fetches the
wcrd whose address is the sum of the character code and the

 FONT register's BASE field and then executes that word as an
instruction; in either case, it increments the position
pointer in the FONT register and increments the RCR. If RE-

'PEAT mode is spec1f1ed it continues this sequence until all
the characters held in its CHAR register have been drawn or

7-47

the RCR runs out. If the CHAR register is exhausted before
the RCR runs out, the RAR is incremented, the word it now
addresses is placed in the CHAR register, and the procedure
is resumed. o ‘ ' ,

Before groups 4-7 are executed they check the MODE

field of the instruction for a possible mode change. If the
- mode change is to REPEAT mode, the RCR is incremented.

- The sequences representable by the>2§ and SS fields are
‘useful mainly to update the command in REPEAT mode.

The DS field represents any of eight sequenceS‘whbse
basic elements are chosen from these drawing types:

set - move to a new point without drawing, make this
~the current point ‘

draw to - draw to a new point, make this the current

point ' '

draw from - draw to a new point, leave the current .
o point unchanged ' ’ :

dot - move to a new point, place a dot there, make
~this the current point

box - perform a box operation

The sequence available for the DS field are defined as
follows: : ' ' '

(set, draw to, set, draw to, etc.)

LS = 60 =

LT = 70 = (draw te, set, draw to, set, etc.)
PO = 30 = (set, draw to, draw to, etc.)

TO = 20 = (draw to, draw to, etc.)

SS = 40 = (set, draw from, draw from, etc.)
FR = 50 = (draw from, draw from, etc.)

DT = 10 = (dot, dot, etc.) S

BX = 0 = (box, box, etc.)

See figure 7.1.

The SS field repfesents any of eight sequences of data
interpretation types whose basic elements are chosen from:

absolute - accept data as is :
relative - add data to current point
size absolute - form two points, the first being the
- - negative of the data, the second being
: "the data as is . ‘
size relative - form two points, the first being the
- current point minus the data, the second
being the current point plus the data

7-48

SPECIFICATION OF SET/DRAW AND DOT AND BOX

LS - LT
SET : 'DRAW
- TO

LINe ' R Line To first

PO

SET

To

POLygon

STAR From
DT Ill ‘ BX
DOTS ‘ BOX

‘Figure 7.1

, ‘The sequences available for the SS field are defined
as follows: ~ ' ' ' :

(felative, absolute, relative, absolute, etc.)

RX = 7 =

AX = 6 = (absolute, relative, absolute, relative, etc.)
RA = 3 = (relative, absolute, absolute, etc.) :

AB = 2 = (absolute, absolute, etc.)

AR =4 = (absolute, relative, relative, etc.)

RE = 5§ = (relative, relative, etc.)

SL = 1 = (size relative, size relative, etc.)

SA = 0 = (size absolute, size absolute, etc.)

See figure 7.2.

Size absolute and size relative specifications differ

- from absolute and relative in two important respects. First,
the current point is never altered. Secondly, instead of
causing a draw (or move) between the current point and the
new point, they cause a draw (or move) between the two new
points. ‘ i '

Furthermore, the groups themselves have abbreviations:

DD = 400 =vkdraw direct (Group 4)
DI = 500 = draw indirect (Group 5)
DN = 600 = .draw internal (Group 6)

. Group'7 has no abbreviation since it consists of oniy one
instruction. ~ : .

o Mnemonics may be defined (theoretically) for any combina-
tion of one group name, one DS field, and one SS field. This
can be done in a program by the statement:. '

' OPDEF MNEM[GN + DS + SS]

where GN is a group name, DS is a drawing sequence name)'and
SS is a specification sequence name. B

The moSt common and useful combinations have already been
given mnemonics, which are listed on the following pages with
their assembler definition, structure, and function. .

- Group 6 instructions have the format:
MNEM (MODE)

and groups 4, 5, and 7 instructions have the format:

MNEM REG, DATA(MODE); or
MNEM e (MODE) ‘

7-49

where: REG is the register to be loaded
- DATA is the data to be placed in the register
MODE is the new mode (optional)
@ sets the I bit, inhibiting the load

- Most commonly REG is the RAR, in which case it may be
omitted (since RAR=0). In this case DATA is the address
of the coordinates to be fetched. Since this is by far the
most common usage, REG will be assumed to be the RAR on the
following pages, and hence bits 9-12 will be all zeros (since
RAR = 0). Also, the name ADDR will be used in bits 18-35,
since in this usage that field always represents an address.

Also, bits 14-17 usually contain zeros (for no mode
change) or 4 (for REPEAT mode) but may contain any mode
changes. The mode field is decoded as shown on section 7.2,
The customary use of that field will be stated for each in-
struction. .

It is well to remember however that any Channel Control
register may be loaded in these instructions (if the RAR is
already set to correct location) and that any mode may be"
entered after their executlon, even if REPEAT mode is also
specified.

7-50

Fe e LIEDLIUCLLIONS 1N LJI‘OUp 4

Mnemonic: gpTpraA (SETPoinT Absolute)

_ Assembler deflnlt;on: [DD + LS + AB ,0]

Structure: ‘ : » v ,
0 . 8 9 12 13 14 17 18 35

46 2 0 I [MODE. ADDR

Function: go¢ point without drawing to indicated position;

call this the current point.
REPEAT mode not generally used.

~ Mnemonic: SETPTR (SETPoinT Relative)

Assembler definition: [DD + LS + RE ,0]

Structure: | ; = o R
0 . L 8 9 12 13 14 17 18 » ‘) 35
46 s o | I | MooE ADDR
Function} Set point without drawing by indicated displacement;

call new point the current point.
REPEAT mode not generally used.

Mnemonic: DRAWTA (DRAW To Absolute)
Assembler defini»tion: [DD + TO + AB ,0]

Structurei - ' _
0 ' 8 9 12 13 14 17 18 35

4 2 2 0 I MODE ADDR

Function: Draw to indicated position; call this the current point.
- REPEAT mode optional. :

‘Mnemonic: DRAWTR (DRAW To Relative)
Assembler definition: ([DD + TO + RE ,0]

Structuref . : ,
0 ~ 89 12 13 14 17 18 35

4 2 s 1 o I | MODE ADDR

Function: Draw from current point by indicated displacemént;
call new point the current point. ‘
REPEAT mode optional

7-51

Mnemonic: DRAWFA (DRAW From Absolute)
Assembler definition: [DD + FR + AB ,0]

‘Structure: - ' ' :
0 89 12 13 14 17 18 35

45 2 o | 1| wmopE ADDR

Function: praw to indicated position; leave current point unchanged.
REPEAT mode optional ’

Mnemonic: DRAWFR (DRAW From Relative)
Assembler definition: [DD + FR + RE ,0]

Structure: : ;
0 8 9 12 13 14 17 18 35

; o | 1| MODE ~ ADDR

4 5

Function: Draw from current point by indicated displacement;
leave current point unchanged.
REPEAT mode optional

MRemonic: yINAA (LINes Absolute Absolute)
Assembler definition: |[DD + LS + AB ,0]

Structure: : _ ‘
0 ~ 89 12 13 14 17 18 , 35

4 6 2 | 0 I | MODE ADDR

Function: ge¢ point absolute, draw to ébsolute, set point absoluté,
draw to absolute, etc.
REPEAT mode generally used.

Mnemonic: [INAR (LINes Absolute Relative)

~Assembler definition: [DD + LS + AX ,0]

Structure: , : : A . :
0 A 8 9 12 13 14 17 18 " 35

4 6 6 1 o | 1| momE ADDR

Function: Set point absolute, draw to relative, set point absolute,
draw to relative, etc. , ' ‘
-REPEAT mode generally used.

7-52

Mnemonic: LINRA (LINes Relative Absolute)
Assembler definition: [DD + LS + RX7,0]

Structure: o : ' :
0 8 9 12 13 14 17 18 ’ 35

4 6 7 0 I MODE ADDR

Function:v Set point relative, draw to absolute, set point relative
draw to absolute, etc. REPEAT mode generally used.

’

‘Mnemonic: LINRR (LINeiselative Relative)

Assembler definition: [DD + LS + RE ,0]

Structure: :
0 ' 8 9 12 1314 17 18 ‘ ' 35
4 6 5 o | I MODE ADDR
Function:

Set point relative, draw to relatlve, set p01nt relative,
draw to relative, etc :
REPEAT mode,generally used.

Mnemonic: popap (POLygon Absolute Absolute)
‘Assembler def1n1t10n [DD + PO + AB ,0]

- Structure: : B ' o 3 v
0 ‘ 8 9 12 13 14 17 18 . 35

4 3 2 0 | I MODE ADDR

~Function: get point absolute, draw to absolute, draw to abSolute,.ete.
: REPEAT mode generally used. :

Mnemonic: POLAR (POLygon Absolute Relative)
.Assembler deflnltlon [DD + PO + AR ,0]

Structule : . '
0 -89 12 13 14 17 18 _ ‘ 35
4 3 4 ' 0 I MODE .ADDR
Function: Set point-absolute, draw to relatlve, draw to relative, etc

REPEAT mode generally used

7-53

Mnemonic: POLRA (POLygon Relative Absolute)
Assembler definition: [DD + PO + RA '0]
: : ’

Structure: _ ; : . ;
0 : 89 12 13 14 17 18 35

403 3 | 0 I | MODE ADDR

Function: get point relative, draw to absolute, draw to absolute, etc.
REPEAT mode generally used.

Mnemonic: POLRR (POLygon Relative Relative)
Assembler definition: [pp + PO + RE ,0]

Structure:
0 8 9 12 13 14 17 18 ’ 35

4 3 5 0 {1 MODE ADDR

Function: Set point relative, draw to relative, draw to relatlve etc.
REPEAT mode generally used.

Mnemonic: STARAA (STAR Absolute Absolute)
Assembler definition: |[DD + SS + AB ,0]

Structurei

0 8 9 12 13 14 17 18 35
44 2 o - | I | MODE ADDR
Function:

Set point absolute, draw from absolute, draw from
absolute, etc. :
REPEAT mode generally used

Mnemonic: gTARAR (STAR Absolute Relative)
Assembler definition: [DD + SS + AR ,0]

_'Structuref | . A - :
0 , ' 8 9 12 13 14 17 18 - 35

4 4 4 1 0 I MODE ~ ADDR

Function: get point absolute, draw from relative, draw from

relative, etc.
REPEAT mode generally used

7-54

Mnemonic:

STARRA (STAR Relative Absolute)

Assembler definition: [DD + SS + RA" ,0]

Structure:

0 8 9 12 13 14 17 18 | - 35
4 4 3 0 I | MODE ADDR
Function: Set p01nt relatlve, draw from absolute, draw from
relative, etc.
REPEAT mode generally used.
Mnemonic: STARRR (STAR Relative Relative)

Assembler definition: [DD + SS + RE ,0]

Stiucture: : _ L
0 8 9 12 13 14 . 17 18 35
4 4 5 0 I | MODE ADDR
~Function: get p01nt relatlve, draw from relative, draw from
o relative, etc. :
REPEAT mode generally used.
- Mnemonic: DOTSAA (DOTS Absolute Absolute)

Assembler definition: [pD + DT + AB ,0]

Structure:

‘89 12 33 14 17 18 35

0
4 2 o |1 MODE_ ADDR
Function: Draw a dot at specified p051t10n call this the
: current point. ' '
REPEAT mode optional.

, Mnemonic’

DOTSRR (DOTS Relative Relatlve)

Assembler deflnltlon [DD,+ DT + RE ,0]

.Structure:

0 .

89 1213 14 17 18 35

s | o I | MODE ADDR

Function:

Draw a dot at current p01nt offset by indicated dlsplacement'
call this new point the current p01nt

v REPEAT mode optional.

7-55

Mnemonic: DOTSAR (DOTS Absolute Relatlve)
Assembler definition: [pD + DT + ARJ

Structure: v
0o ' ' 89 12 13 14 17 18 35

4 1 4 0 I MODE 'ADDR

Function: Dot absolute, dot relative, dot relatlve, etc.
REPEAT mode generally used.

Mnemonic: DOTSRA .(DOTS Relative Absolute)
Assembler definition: [DD + DT + RA ,0]

Structure: : _ , \ B
0 8§ 9 12 13 14 17 18 , : 35

i1 .3 0 I | MODE ~ ADDR

Function: po¢ telative, dot absolute, dot absolute, etc.
REPEAT mode generally used.

Mnemonic: BOXA (BOX Absolute)
~ Assembler definition: [po + BX + AB ,0]

Structure:

0 | 8 9 12 13 14 17 18 35
4 0 2 1 o I | MODE | ADDR

Function: pPerform a box operation; creating a master rectangle
whose left-bottom is the current point and whose right-
top is at the indicated position.

REPEAT mode not generally used.

Mnemonic: BOXR (BOX Relative)

Assembler definition: [DD + BX + RE ,0]

Structure: A L SR

0. 8 9 12 13 14 17 18 35

4 0 S | 0 I MODE | ' ADDR

Function: Perform a box operation, creating a master rectangle
whose left-bottom is the current point and whose right-
top is offset by the indicated displacement.

REPEAT mode not gencrally used.

7-86

Mnemonic: BOXSA (BOX Size Absolute)
Assembler definition: [DD + Bx.+ SA ,0]

~Structure: . | o :
0 8 9 12 13 14 17 18; - 35

4 0 o o [I | MODE | appR

Function: Perform a box operation, Creating a master whose right-
top is at the indicated position and whose left-botton
is given by the negative of the coordinates of that
position. ’

Mnemonic: BOXSR (BOX Size Relative)
Assembler definition: |[DD + BX + SL ,01]

Structure: :
0 8 9 12 13 14 17 18 35S

4 0 1 o | I | MODE | ADDR

Function: perform a box operation, creating a master whose right-
~top is offset from the current point by the indicated
displacement, and whose left-bottom is offset from the
current point by the negative of the components repre-
sented by that displacement. .

7-57

7.5.2 Instructions in Group 5

Mnemonic: iNIAA (LINes Indirect Absolute Absolute)
Assembler definition: |[pI + LS + AB’ ,0] :

Structure: , . ‘
0 8 9 12 13 14 17 18

5 6 2 0 I MODE ADDR

Function: get. point absolute and draw to absolute (1nd1rect)

for each pointer.
REPEAT mode generally used.

Mnemonic: jrnNraR (LINes Indirect Absolute Relative)
Assembler definition: [DI + LS + AX ,0]

Structure: .
0 89 12 13 14 17 18
5 6 6 0 I MODE ADDR
Function:

Set point absolute and draw to relative (1nd1rect)
for each pointer. o
REPEAT mode generally used.

Mnemonic: ;INIRA (LINes Indirect Relative Absolute)
Assembler definition: [DI + LS + RX ,0]

-Structure:
0 ‘ 8 9 12 13 14 17 18
5 6 7 -0 I MODE ADDR
Function:

Set point relative and draw to absolute (1nd1rect)
for each pointer. .
REPEAT mode generally used.

- Mnemonic: jiNJRR (LINes Indirect Relative Relative)
Assembler definition: [DI + LS + RE 0]
~ A ’

sStructuref _
-0 8 9 12 13 14 -17 18

5 6 5 ‘ o | T | MopE | ADDR

Function: get point relative and draw to relative (indirect)
for each pointer. -
REPEAT mode generally used.

7-58

Mnemonic‘l POLIAA (POLygon Indirect Absolute Absolute)

Assembler definition: [DI + PO + AB ,0]

Structure: , o '
0 _ 89 12 13 14 17 18 , 35

5 3 2 o | I | MODE ADDR

Function: get point absolute, draw to absolute draw to absolute,
draw to absolute, .(indirect). ‘
REPEAT mode generally used

Mnemonic: poLIAR (POLygon Indirect Absolute Relative)

Assembler definition: [DI + po + AR ,0]

Structure: ' ~

0 ' o 8 9 » 12 13 14 17 18 : 35
5 3 4 o | 1| MopE ADDR

FunCtion:

Set point absolute, draw to relative, draw to relatlve
draw to relative,... . (indirect)
REPEAT mode generally used. :

~ Mnemonic: pop1Ra (POLygon Indirect Relatlve Absolute)
Assembler def1n1t10n [DI + PO + RA ,0]

Structure:

0 8 9 12 13 14 17 18 35
5 3 3 0 I | MODE ADDR |

‘Function: Setpoint relatlve, draw -to absolute, draw to absolute,
: draw to absolute,... . (indirect).
REPEAT mode generally used

Mnemonic: POLIRR (POLygon Indlrect Relative Relat1ve)
'Assembler def1n1t10n [DI + PO + RE 0]

Structure. ; B . SRR o :
0 . 89 12 13 14 17 18 | L 35

5 3 5 - o |1 MobE | ApDR

Function: Setp01nt relat1ve, draw to relatlve draw to relative,
draw to relative, . (indirect). ‘
REPEAT mode gencrally used

7-59

7.5.3 Instructions in Group 6
Mnemonic: gpTCRV (SET CuRVe)
Assembler definition:

[DN + LS + AB ,@0]

Structure: ; ‘
0o 8 9 12 13 14 17 18

6 6 2 0 1 MODE ADDR

Function: get point to the initial position'held in the Matrix
Multiplier's A matrix. '
REPEAT mode not generally used.

Mnemonic: prAcCRV (DRAw CuRVe)
Assembler definition: [DN + TO + AB ,@0]

Structure:

0 8 9 12 13 14 17 18
6 2 2 0 I MODE ADDR

Function: 1Iterate the difference equation held in the A matrix
and draw to the point calculated.
REPEAT mode generally used.

Mnemonic: POLCRV (POLygon CuRVe)

Assembler definition: |[DN + PO + AB ,€0]

Structure: : '
0 8 9 12 13 14 17 18

6 3 2 0 I MODE ADDR

Function: Using the A matrix, set.point to the initial position,
- and repeatedly iterate and draw to.
- 'REPEAT mode generally used.

- Mnemonic: DOTCRV (DOT CuRVe)
Assembler definition: [DN + DT + AB ,€0]

Structure: : _
0 o 8 9 12 13 14 17 18

6 1 2 ' 0 I MODE ADDR

Function: Jterate the difference equation held in the A matrix
and draw a dot at the point calculated. :
REPEAT mode generally used.

7-60

Mnemonic: NEwCRV (NEW CuRVe)
Assembler definition: [DN + BX + AB ,e0]

Structure:

0 89 12 13 14 17 18 : 35
6 0 2 | o | I | MoDE ADDR

Function: pergorm o single iteration along the rods of the Matrix
: Multiplier. :
REPEAT mode not generally used. (Used to draw surface
patches) ‘

7-61

The Group 7 Instructioh
Mnemonic: pocHAR (DO CHARacters)
Assembler definition:

17000000000000]
~ Structure: S -
0 8 9 12 13 14 17 18 35
7 0 0 o | 1| MoDE ADDR
Function:

Draw the characters represented by the indicated words.
REPEAT mode generally used.

7-62

CHAPTER 8
THE INSTRUCTION SET - FUNCTIONAL BREAKDOWN

The instructions of the LDS-1 may be usefully class-
ified by group number, as described previously, but from
a programming viewpoint it is probably more convenient to
classify them by function. This section will list the
functional areas into which they fall and describe each -
in such a context. ' ’ : o

8.1 Channel Control Register Loading

: The registers of the Channel Control are the keys

to the operation of the LDS-1. They contain the pointers,
control words, counts, intermediaries, addresses, and
statuses around which the machine revolves. They are
actually loaded far more often than the programmer realizes,
sometimes as a consequence of other instructions, some-
times directly but in a hidden fashion. The following are
instructions which can be used by a programmer to load
Channel Control registers.

LI, LAL

The following instruction allows'loading of a register
with an immediate value:

LI REG, DATA(NEWMOD) |
where REG is the register to be loaded, DATA is the immediate
data to be placed into REG, and NEWMOD is an optional field

for mode change. Mode changes will be discussed later.
For example, .

LI RCR, -10
would fill the RCR register with -10.

Another instruction exists which is identical in func-
tion to LI, but is slower. It has the form:

LAL REG, DATA

but it is generally pointless not to use LI. Note that LAL
has no mode change field. . :

LIF

It is also possible to load a Channel Control register
only if a specific condition holds, by the instruction LIF:

LIF REG, DATA(CNDIN)
where register REG is to be loaded with the immediate data

3-1

DATA only if condition CNDTN is '"set" (or "1" or "on")}i
See section 8.4. '
For example, ‘

LIF WAR, ADDR(PF2)
puts ADDR into the WAR if PF2=1.
| To invert the sense of the test, i.e. to load the
register if the condition does not hold, an "@'" should be
~ included in the instruction. E.g., .
LIF SR,@0(AICF)

will zero the SR if AICF is not set.

8.2 kPush}Down'Stack Manipulation

The push-down stack is the mechanism for storing (saving)
the values of the Channel Control registers. The stack is
merely an area of core set aside for this purpose. There
is a Channel Control register called the stack pointer (SP)
which always contains the address of the last-filled loca-
tion in the stack and is used by the stack instructions.
The SP is automatically decremented every time a register
is pushed onto the stack and incremented whenever one is
peeled off it. It can be initially loaded using an LI
instruction containing the location of (the highest address
of) an area to use for the stack.

A brief discussion is in order on exactly what it v
means to push a register. Pushing amounts to writing an
instruction in the stack area. The instruction is created
by the LDS-1. The instruction written is a load immediate
(LI) of the register with its value at the time of pushing.
The register may then be modified and later its old value
may be restored by peeling from the stack, which amounts
to executing the LI instruction written there. This is
accomplished by the LDS-1 by using the SP rather than the
program counter (PC) for instruction fetching.

PSH
The basic instruction for pushing is:
PSH REG, (NEWMOD)
where REG is the register to be pushed and NEWMOD'is the
optional mode change field. As an example, suppose the RCR
contains -50 and the instruction:

PSH RCR,

is executed. The SP would be decremented and at the loca-
tion it then addresses would be written:

| LI RCR,-50
PEEL, PEELM

To restore the RCR to —SO, it is possible to’eﬁter PEEL
- mode by executing the instruction: : o

| PEEL

It'cankalso be restored by appending (PEELM) to any group 0~
- or group 4-7 instruction, as for example: » .

LI DIR,002000 (PEELM)

8-3

Entering PEEL mode causes the SP register rather than PC to
- serve as program counter. In this mode, the SP acts just
as the PC normally does, pointing to the instruction to
~be fetched and being incremented after use. Thus pushing
takes one instruction per register, but many registers may
-be peeled at once. ' L S

PSHM

- The Channel Control stays in PEEL mode until encounter-
ing an instruction indicating a return to PROG mode, and
returning the instruction fetching job to the PC. ' The last
instruction to be peeled must be marked with a return to
PROG mode. This is done at the time of pushing registers
by using, instead of PSH, the instruction: : :

PSHM REG, (NEWMOD)

- for "push and mark'", where REG is the register andfthe op-
- tional NEWMOD is for mode change. For example, if the SR
~contains 0, the instruction: -)

PSHM SR,
would write the following at the SP location:
LI SR, 0(PROGM)

and a subsequent PEEL would zero the SR and return to PROG
mode. Since execution in PEEL mode proceeds in the reverse
order of stacking, the marked register load instruction
should be the first one stacked in a series of register
loads to be peeled. ' o :

- LIPSH, LIPSHM

~ The instructions PSH and PSHM may be combined with LI
- for more compact and efficient code with the instructions:

| LIPSH REG, DATA(NEWMOD)
and S
LIPSHM REG, DATA(NEWMOD)

where REG is the register to be pushed, DATA is the immediate

data to be loaded into REG after the old data is pushed, and

NEWMOD is optional for mode change. Thus, g
' LIPSH RCR,-100

is generally equivalent to

PSH RCR,

LI RCR,-100

- 8-4

(except when the reglster is SP, in which case the new SP
value loaded is used as the push p01nter) »

Inc1denta11y, the register P2 is used as temporary
storage in the push operation. Therefore the instruction:

LIPSH P2,DATA
pushes not the old value of P2, but rather the new one,
DATA, onto the stack. This pecullarlty may be used to
push data onto the stack with a 51ng1e instruction.

NWSTK

- A new stack may be created as a continuation of an old
stack, complete with a p01nter back to the old stack, by
the 1nstruct10n

NWSTK ADDR"

where ADDR is the address. where the new stack 1s to start
NWSTK is a LIPSH of the SP. .

NWSTKM

To mark the pointer back to the old stack, the instruc-
tion: '

NWSTKM ADDR
should be used in 1ieu of NWSTK.

8.3 Program Control

cuted in: sequence,
as the program counter is incremented following each ,
instruction fetch. However, program flow ' can be altered in
a variety of ways, : :

~ Normally, LDS-1 instructions are exec

JMP, JAL

| k.Unconditionalkjump is accomplished by the instruction:
JMP ADDR(NEWMOD)’, , 4 |

where ADDR is the location to which to'jump and NEWMOD is

‘an optional field for mode change. There is another
instruction which performs the same function:

JAL ADDR

but JAL is slower than JMP. No mode change may appear in
a JAL.

JIF
A conditional‘jump is accomplished by:
 JIF ADDR(CNDTN)

where transfer to ADDR will be effected if condition CNDTN

is set. See the section 8.4. Otherwise, the next instruction
in sequence will be executed. It is possible to jump if and
only if a condition is not set, by inserting an "@" in the
instruction. For example, ’ ‘ '

JIF @X(HITF)
i will cause a jump to X if HITF is not set.
JMPPSH

A very useful instruction is one that transfers but
saves the current program counter, as a subroutine call.
In the LDS-1, write: ' '

JMPPSH SUBR (NEWMOD)

where SUBR is the address of the beginning of the subroutine,
and can contain any normal instruction. NEWMOD is an optional
mode change field. JMPPSH is actually a LIPSHM of the PC, thus
pushing and marking the PC and resetting it to the subroutine
beginning. Return from the subroutine is accomplished by

a simple PEEL which restores the PC and returns to PROG mode.

8-6

Upon entering a subroutine, it is necessary to save
any Channel Control registers which will be changed by
the subroutine. A convenient way to enter and exit from
subroutines is shown below:

- JMPPSH SUBR

SUBR:LIPSH REG1, DATAl; Save REG1
LIPSH REG2, DATAZ; Save REG2

H Subroutlne instructions (may call another sub-
routine)

PEEL; | Exit

The JMPPSH pushes the subroutine return location onto the
stack marked with a return to PROG mode. Thus when peel
mode is entered all of the information on the stack will
be restored to the appropriate registers, and finally the
PC will be restored to the address of thé instruction
after the JMPPSH. Since this instruction on the stack

is marked, the Channel Control will leave peel mode and
continue on with the program. ‘ '

- XQTA
The LDS-1 has an‘execute instruction:

XQTA ADDR

which executes the instruction whose address is ADDR. | What

this

instruction does is load the Read Address Register (RAR)

with ADDR, change to execute mode to execute the instruc-

tion

mode.

tion

addressed by the RAR, and change back to normal (PROG)
Normal execution is then continued at the instruc-
after the XQTA unless the instruction in ADDR is also

marked with mode change (like another execute!).

9 XQTM

If the RAR is already pointing to the instruction to

be executed, it is necessary only to enter EXECUTE mode.

This

can be done by appendlng (XQTM) to any group 0 or

group 4-7 instruction, e.g.

"LIPSH DIR, 100010 (XQTM)

which causes EXECUTE mode to be entered after pushing and |
loading the DIR register, or by the instruction:

XQT

- §-7

which is a.no—op.causing EXECUTE~modévto,be entered.

If the instruction executed is a repeat mode instruction,
it is convenient to store the data for that instruction in
a table immediately following the instruction since the RAR
is pointing at the instruction. For example, the sequence:

XQTA POL1

.

POL1:POLAA RCR, 4(RPTM)
DATA:P1

P2

P3

P4

will execute the polygon instruction at POL1. Since the
RAR is already pointing to the DATA (remember that the RAR
is incremented each time it is used), the RCR can be loaded
~as part of the polygon instruction. When the polygon
instruction is finished, the instruction in the location

. immediately following the XQTA will be fetched and the
Channel Control will continue with the program.

It is possible to combine execute and repeat mode
in another way. The instruction sequence:

LI RAR DATA

POLAA RCR, -10(RPTM+XQTM)
DATA:P1

P2

P10 |

_ POLAA RCR, -4(RPTHM:XQTM)

DAT2:P11 | »
“p12

Etc. .

JMP NXTJOB _
forms a chain of polygon instructions. The polygon instruc-
tion is executed first in repeat mode. Execute mode is
then entered and the next polygon instruction (which is
- being pointed to by the RAR) is executed, causing reépeat
mode to be entered, etc. This sequence can be continued

as far as desired. The final instruction in the chain should
be a JMP to reset the PC to the next instruction.

'IJNRCR

There is a class of 1nstruct10ns fac111tat1ng program
loops. (Also see condltlon manipulation.) The 1nstruct10n

'IJNRCR ADDR

increments the RCR and jumps to ADDR if the RCR is negative.

- 8-8

IJNWCR
The instruction:
; IJNWCR ADDR
does the same thing but for the WCR.
I1JPRCR |
The iﬂstruction:
IJPRCR ADDR

increments the RCR as above, but jumps to ADDR if the
result is positive. : '

IJPWCR
The instruction:
IJPWCR ADDR
is the WCR counterpart.

- These statements are used at the end of a program loop
when the RCR or WCR has been initialized before the loop
to the (negative of the) number of iterations desired.

While it is generally not of consequence to the pro-
grammer, it is noteworthy that these instructions test
~for "less than -1" and not really ''negative.'" This is
because the actual course of events is to test, then incre-
ment, then possibly jump. '

RPT, RPTM

One of the above instructions (generally IJNRCR is
used) is necessary for a progranm loop consisting of more
than one statement. However, if a single instruction is
to be executed several times, a "built-in" IJNRCR may be
facilitated by causing that instruction to enter REPEAT
mode. This is done for group 0 or group 4-7 instructions
. by appending (RPTM) to them, after the RCR has been
properly initialized. For example: ,

LI RCR,-5
~ POLAA ADDR(RPTM)
REPEAT mode says to execute the instruction addressed by
the PC until the RCR runs out. REPEAT mode may be entered
directly by the instruction: .

RPT

8-9

which is a no-op causing REPEAT mode to be entered, but
"this is of dubious utility since the instruction to be
repeatedly executed is a no-op.

PROG, PROGM

Another instruction of infrequent use is the call to
enter PROG mode, which is the normal mode of fetching instruc-
tions Sequentially from the PC. This is done by appending
(PROGM) to a group 0 or group 4-7 instruction:

LI RCR,-2(PROGM)

as is done automatically in the stack for a marked push, or
directly by: _ ‘ ‘

PROG

which is a no-op causing PROG mode to be entered. These
instructions are not often used since the LDS-1 is generally
in PROG mode when statements the programmer writes are
encountered. An exception is programming for the Character
String Interpreter.

8-10

8.4 Condition Manipulation

The LDS-1 contains several independently testable
conditions. Each is one bit long and ‘can have the value
"1" (or "set" or "on") or the value "0" (or "clear'" or
"off"). Some can be set by the programmer and can be
used as desired for program flags; other serve as signals
generated by the LDS-1 or its external devices. These
conditions are listed below: '

PFO | ,

gg% ' Prbgram Flags - May be used as desired
PF3] |

PF4 - Tablet Read Signal

ggg Tablet"Z' Values

PF7 - Lorgnette Clock

RCRN- - Sign of the RCR
WCRN- - Sign of the WCR
HITF- - Hit Flag o
~AICF- - Area in Common Flag
PF14 :

PF15 Lorgnette Values
PF16 '
STOPF - Stop Flag

Normally, only program flags 0 through 3 are manipulated
in a program. They may be set (to a value of one):

ST (GNDTN)
cleared (tb a value of zero):
CL (CNDTN)
or complemented:
CM (CNDTN)
In each Cése, CNDIN is the condition to be modified. For
instance: o DT
CM (PF3)

would complement program flag 3 (set it if it was cleared,
or clear it if it was set). ~

These flags may be tested by the LIF or JIF instruCtiqns
discussed earlier. : . ' ‘ _ S

Program flags 4 through 6 (PF4, PFS5, and PF6) are dis-
cussed in the tablet section. '

8-11

PF7 and PF14, PF15, and PF16 discussed in the
- Lorgnette section. ' ‘ _

: The RCRN flag is a special condition bit, set by

- the Channel Control to indicate the status of the RCR.

. Whenever the RCR is altered, RCRN ‘is set on if the RCR
contains a value less than -1, and is set off if the RCR
contains a value equal to or greater than - l. An instruc-
tion to clear the RCRN flag has no effect on the RCRN

(an effective no-op), but setting or complementing it has
the unique effect of incrementing the RCR. The RCRN

value is then set as an indication of the status of the
"RCR. RCRN may be tested by a LIF of JIF. The instruction:

IJNRCR ADDR
is actually defined to be
| JIEST ADDR(RCRN)

for: jﬁmp to ADDR if the RCRN flag is set and then set the
RCRN (i.e., increment the RCR).

WCRNFis a flag identical to the RCRN except that it
refers to the WCR. _

HITF is a flag set automatically by the Clipping | ‘
- Divider whenever a line, dot, or setpoint falls within the
window. It is cleared by a: ‘ :
CL (HITF) | |
AICF is a flag set by the Clipping Divider to indicate

whether there is any area in common between the window and
~instance. It will be discussed in detail in the next section,

STOP

STOPF is the flag which when set stops execution of
the LDS-1. It may be set by: . ‘ : '

ST (STOPF)
or its equivalent:
| STOP

The stop flag may also be set by certain conditions in the
LDS-1 (see Chapter 7). :

} These conditions are all bits of the Status Register
(SR) of the Channel Control unit. As such, their values

- 8-12

may be set by loading the SR and saved by pushing the SR.
The SR bits which are functions of LDS-1 units are set by
these units. They may be loaded, but unless they are '
tested before the unit changes thelr value, the load is
basically ignored.

The CONO word contains bits for clearlng HITF and
STOPF. See the section on communlcatlons via the I/0
buss.

LALST, LALCL, LALCM, LIFST LIFCL LIFCM, JALST JALCL
JALCM, JIFST, JIFCL JIPCM

The instructions ST, CL, and CM may be combined with
LAL, LIF, JAL, or JIF 1nstruct10ns to produce more compact
and eff1c1ent code. In each case, the condition is tested
before it is modified. For instance, the instruction:

LIFCL WAR, ADDR(PFO0)

would first test PFO, then if set would place ADDR into the
WAR, then clear PFO. , _ S

There are a total of twelve instructions that may be
formed by such concatenation:

LALST - Load always and set
LALCL - Load always and clear
LALCM - Load always and complement
LIFST - Load if and set

LIFCL - Load if and clear

LIFCM - Load if and complement
JALST - Jump always and set

JALCL - Jump always and clear
JALCM - Jump always and complement
JIFST - Jump if and set

JIFCL - Jump if and clear

JIFCM - Jump if and complement

It is noteworthy that while LI is faster than LAL,

LALST is faster than a ST followed by a LI. The same
holds for JAL vs, JMP

8-13

8.5 Drawing Instructions

This section deals with the instructions used ‘to ac-
tually draw pictures on the scope. The format of these
instructiqns is -

‘COMMAND REG,DATA

In each case, the named register is first loaded and then
the drawing function is performed. Any Channel Control
register can be loaded as part of these instructions.

However, the REG:field‘may_be omitted and commonly
is. When it is omitted, the RAR is assumed to be the
register and the format of the instruction becomes

COMMAND ADDR

If the drawing instruction does not fequire the loading
of the RAR (i.e. the RAR already contains the required
address), the instruction format reduces further to

COMMAND @

which bypasses the loading of the RAR. In this case only
the drawing function of the instruction is performed. Use
of the "@" permits a single instruction to address different
locations each time it is encountered. The "@'" may be

used in all of the line drawing instructions with the same
meaning. :

By appending "(RPTM)" to the end of the drawing in- ;
struction, the drawing function is repeated under the con-
‘trol of the RCR (see discussion of RPTM). Thus format can
become : ' : v

COMMAND REG,DATA (RPTM)
'COMMAND ADDR (RPTM)
COMMAND @ (RPTH)

- In all drawing instructions, the RAR is used to obtain
~the coordinates of the point to be ''set to', '"drawn to'",
or whatever. These instructions fetch one word per point
in 2D and two words per point in 3D. Recall that the RAR
is incremented every time it is used so that it may step
through a table of data in the repeat mode.

In this section on drawing instructions, all formats
except the ' ’ '

COMMAND REG,DATA

- 8-14

form are shown. Use of this format is only required to
load a Channel Control register other than the RAR, and
generally has no direct bearing on the drawing performed.
"SETPTA
- The instruction:

SETPTA ADDR
(for SET PoinT Absolute) draws nothihg, but sets the current
point (in the SAVE register of the Clipper) to the point
addressed by ADDR (which address is first placed in the
RAR). This may be thought of as comparable to moving to
a new point on a plotter with the pen up.

An alternative form to this instruction is:
SETPTA e

which set points to the point currently addressed by the
RAR, without reloading it.

The instruction:
SETPTA ADDR
is equivalent to:
SETPTA RAR,ADDR
However, if the RAR is already pointing to the right‘piace,
any other Channel Control register may be loaded during
the same instruction, e.g.:
| SETPTA DIR, 004000
This ié.equivalent to:
LI DIR, 004000
SETPTA @
'SETPTR
An instruction similar to SETPTA is:
SETPTR ADDR | |
or |
SETPTR e ’
(for SET PoinT Relative), which also drawS nothing bﬁt adds

the coordinates of the current point to the coordinates of
the point addressed by ADDR and moves the result back into

8-15.

the current point. As an example, suppose the”pfogram
is in 3D and the current point is (50,20,100). Now suppose
the instruction: ' : ‘ ‘

SETPTR X
is éxecuted, where X is defined:

X: XWD 5,2

~ XWD 10,10 |
Then the current point would be redefined‘to-be (55,22,110).
DRAWTA | | L
| The instruction:

'DRAWTA ADDR
or

DRAWTA @ o
(for DRAW To Absolute) draws a line on the scope from the
current point to the point addressed by ADDR (or by the RAR,

~in the second form). It also resets the current point to
‘the point drawn to.

Another form of this instruction is:
DRAWTA ADDR (RPTM)
or '
 DRAWTA @ (RPTM)

which causes the "draw to" to be executed repeatedly, until
the RCR runs out. Refer back to the discussion of REPEAT
mode. If the RCR is initialized to -N, then N lines will

be drawn: from the current point to the point addressed
by ADDR (or by the RAR), from that point to the next point,
-etc. ‘ L

DRAWTR
A similar instruction (in all its forms) is:

- DRAWTR ADDR
DRAWTR @ ‘
DRAWTR ADDR (RPTM).
DRAWTR @ (RPTM)

(for DRAW To Relative) which draws lines from the current

point to the point whose displacement from the current point
is addressed by ADDR :(or the RAR). As with DRAWTA, the

8-16

current point is reset each time to the last point drawn to.

DRAWFA
Another instruction whose forms are:

DRAWFA ADDR
DRAWFA @

DRAWFA ADDR(RPTM)
DRAWFA @ (RPTM)

(for DRAW From Absolute) does the same thing as DRAWTA except
that the current point is not changed after a draw. Thus,
lines are drawn from the current point to the points re-
ferred to.

DRAWFR
- Similarly, the instructions:
DRAWFR ADDR
DRAWFR @

DRAWFR ADDR (RPTM)
DRAWFR @ (RPTM)

(for DRAW From Relative) draw lines from the current point
to points obtained by adding the coordinates of the current
point to the coordinates of the points addressed, never
changing the current point.

'POLAA

There are several instructions, useful only in REPEAT
mode, which are slightly more complex. One is:

POLAA ADDR(RPTM)
POLAA @ (RPTM)

(for POLygon, Absolute setpoint, Absolute drawing points)
which perform a SETPTA followed by repeated DRAWTAs. Thus
this one instruction does two different types of things:

it moves to a new point and then draws. When initializing
the RCR, the SETPTA should be counted as one of the repeats.

POLA

A variation to this instruction is:

POLAR ADDR(RPTM)

_ POLAR @ (RPTM) | i |

(fbr POLygon, Absolute setpoint, Relativevdrawing points)
which does SETPTA followed by repeated DRAWTRs. L

8-17

POLRA
‘The instruction:

‘POLRA ADDR(RPTM)
POLRA @ (RPTM)

(for POLygon,'Relative setpdint,‘Absolute drawing points)
does a SETPTR followed by repeated DRAWTAs. -

POLRR

Finally, the instruction:

POLRR ADDR (RPTM)
POLRR @ (RPTM)

Relative drawing points)

(for POLygon, Relativevéetpoint,
d DRAWTRs.

does a SETPTR followed by repeate

STARAA -

Along the same vein as the P
are the STAR type instructions.

STARAA ADDR(RPTM)
STARAA @ (RPTM)

(for STAR, Absolute setpoint,
forms a SETPTA followed by rep
figure this instruction draws is

a single point.

OLygon type instructions

Absolute drawing pbihts) per-

eated DRAWFAs. Thus the
a set of lines emanating from

STARAR |
The instructibn:
‘STARAR ADDR(RPTM)
STARAR @(RPTM)

Rélative drawing points) per-

(for STAR, Absolute setpoint,
eated DRAWFRs.

forms a SETPTA followed by rep
 STARRA |
" The instruction:

STARRA ADDR(RPTM)
STARRA @ (RPTM)

(for STAR, Relative Setpoint, Absolute drawing

_ points)
performs a SETPTR followed by repeated DRAWFAs.

- 8-18

STARRR
And the instruction:

- STARRR ~ ADDR(RPTM)
STARRR @ (RPTM)

(for STAR, Relatlve setpoint, Relative drawing points)
performs a SETPTR followed by repeated DRAWFRs .

LINAA

Another class of draw1ng instructions generates un-
connected lines:

LINAA ADDR(RPTM)
LINAA @ (RPTM)

(for LINes, Absolute setpoints, Absolute drawing points).
LINAA executes a SETPTA followed by a DRAWTA followed by a
SETPTA followed by a DRAWTA etc. The RCR must be 1n1tlallzed
for the total number of SETPTAs plus the total number of .
DRAWTAs. For example, to draw three complete lines, the RCR
must be initialized to -6.

LINAR

Another instruction in this family is:

LINAR ADDR (RPTM)
LINAR € (RPTH)

(for LINes, Absolute setp01nts, Relative draw1ng p01nts)
which alternately executes SETPTAs and DRAWTRs. Thus in
this instruction not only does the type of motlon alternate
but also the absolute-relative specification.

LINRA

A third instruction in this class is:

LINRA ADDR(RPTM)
LINRA @ (RPTM) ‘

(for LINes, Relative setpoints, Absolute draw1ng p01nts)
which alternately executes SETPTRs and DRAWTAs

LINRR

Finally, the instruction:

LINRR ADDR(RPTM)
LINRR @ (RPTM)

(for LINes, Relative setpoints, Relatlve draw1ng p01nts)
' alternately executes SETPTRs and DRAWTRs.

8- 19

DOTSAA

The LDS-1 is also capable of drawing individual dots
on the scope, either one at a time or in REPEAT mode. Thus
this instruction has four forms:

- DOTSAA ADDR
DOTSAA @.
DOTSAA ADDR(RPTM)
DOTSAA @ (RPTM)

(for DOTS, Absolute first dot, Absolute subsequent dots).

If REPEAT mode is not specified, a dot is drawn at the point
addressed by ADDR (or the RAR). If REPEAT mode is specified,
the RCR should be initialized for the desired number of dots,
and ADDR (or the RAR) should point to the head of the table.
Each time a dot is drawn, the current point is reset to the
coordaintes of that dot. :

'DOTSAR
Thisftoo’has.Variants:

DOTSAR ADDR
"DOTSAR @ |
DOTSAR ADDR (RPTM)
DOTSAR @ (RPTM)

(for DOTS, Absolute first dot, Relative subsequent dots)
which draws a dot at the first point referenced and at sub- ;
- sequent points obtained by adding the displacement referenced
to the current point, updating the current point each time,

DOTSRA
Anothér variant:’

DOTSRA ADDR
"DOTSRA @
DOTSRA ADDR(RPTM)
DOTSRA @ (RPTM)

’(for'DOTS, Relative first dot, Absolute subsequent dots) draws
a dot at the current point offset by the first displacement -
referenced, and then at each coordinate referenced. ,
DOTSRR
- Finally:
- DOTSRR ADDR
DOTSRR @ -

DOTSRR ADDR (RPTM)
DOTSRR @ (RPTM)

8-20

(for DOTS Relative first dot, Relative subsequent dots)
obtains locations for drawing dots by adding displacements
referenced to the current p01nt, updating the current point
each time.

The LDS-1 also has a facility for indirect addressing
of points in drawing instructions. Such instructions do
not address the coordinates directly, but rather a pointer
word in which each half-word addresses the actual coordinates
for a point (thus giving two. p01nts) :

These 1nstruct10ns may use an "@" to inhibit loading
of the RAR (which is not disturbed in the second level data
fetch, incidentally) and may use REPEAT mode as before.

The RCR should be initialized to the number of pointer
words, not the number of p01nts to be referenced.

‘POLIAA

Indirection is generally used with POLYGON and LINES
instructions, and each of the direct drawing versions of
these two types has an indirect version. For one:

POLIAA ADDR(RPTM)
POLIAA @(RPTM)

(for POLygon, Indirect, Absolute setpoint, Absolute drawing
points) breaks up the word addressed by ADDR (or the RAR)
- into two words, then SETPTAs using the point at the first
address, then DRAWTAS using the point at the second address.
It then breaks up the word in ADDR + 1 (or the incremented
RAR) and DRAWTAs u51ng the p01nt addressed by the first
half, the DRAWTAs using the point addressed by the second
half, etc.

For example,‘Suppose.thatvthis code is executed in

LI RCR, -2
POLIAA TRIANG(RPTM)

where TRIANG is defined:

TRIANG: XWD PT1,PT2
XWD PT3,PT1

and the points are defined:

PT1: Xwbp 10,20
PT2: XWD 50,50
PT3: XWD 50 0

A trlangle would then be drawn with vertlces at PT1, PT2,
and PT3. In 3D the only change 15 that PT1, PT2 'and PT3
would address two words each, e. g . '

8-21

PT1: XWD 10,20

XWD 30,30
PT2: XWD 50,50

XWD 70,70
PT3: XWD 50,0

XWD 100,100

The points PT1, PT2, and PT3 can appear in any order and
need not be contiguous, but TRIANG and its subsequent
pointer words must appear as shown.

POLIAR

The indirect version of POLYGON also has its variants,
eogo: : : :

POLIAR ADDR(RPTM)

POLIAR @ (RPTM)
(for POLygon, Indirect, Absolute setpoint, Relative drawing
points). This instruction performs like POLIAA except that
the coordinates addressed by the right half of ADDR (or the
RAR) and by both halves of the rest of the pointer words
represent displacements from the current point, which is
updated each time. '

. POLIRA
The instruction:

POLIRA ADDR(RPTM)
POLIRA @(RPTM)

(for POLygon, Indirect, Relative setpoint, Absolute drawing
points) performs as expected, the left half of ADDR (or
the RAR) pointing to a displacement from the current point,
and the right half of that word and both halves of succeed.
ing words pointing to coordinate points to be drawn to.

POLIRR

POLIRR ADDR(RPTM)
POLIRR @ (RPTM)

(for POLygon, Indirect, Relative setpoint, Relative drawing
points) breaks up each pointer word into addresses of dis-
placements from the current point, which is updated after
the set point and each draw. ~ '

LINIAA
The other type of drawing ihstruction which uses in-
direction is LINES. It is particularly handy here since

each pointer word addresses the two endpoints of a line to
be drawn. For one: :

8-22

LINIAA ADDR(RPTM)
LINIAA @ (RPTM)

(for LINes, Indlrect Absolute setp01nts, Absolute draw1ng
points) first breaks up the word addressed by ADDR (or the
RAR} into two pointer words; then SETPTAs to the point ad-
dressed by the first half; and then DRAWTAs the point
addressed by the second. It then does the same for each
word after ADDR (or the RAR) until the RCR runs out.

 LINIAR
Anothef version:

LINIAR ADDR(RPTM)
LINIAR @ (RPTM)

(for LINes, Indirect, Absolute setp01nts, Relative drawing
points) does the same thing but interprets the second
half of each pointer word cs p01nt1ng to a dlsplacement
from the ~point addressed by the first half.

LINIRA

LINIRA ADDR (RPTM)
LINIRA @ (RPTM)

(for LINes, Indirect, Relative setp01nts, Absolute drawing
points) interprets the word addressed by the left half of
each pointer word as a displacement and the word addressed
by the second half of each as a p01nt to be drawn to.

LINIRR

- LINIRR ADDR(RPTM)
LINIRR € (RPTM)

- (for LINes, Indirect, Relatlve setpoints, Relative drawing
points) interprets all pointer-word halves as addressing .
displacements from the current point, which is updated
~each time. ‘

: The precedlng is a complete list of the drawing
instructions deflned in the LDS-1 adjunct to the PDP-10
assembler mnemonics. It is not however a complete list of
the draw1ng instructions available. For instance, in- -
- direction is provided in the Assembler with the LINES and
- POLYGON sequences but not with the STAR sequence. Also not
-provided in the Assembler are size absolute and size rela-
tive specifications in drawing instructions. While these
unusual combinations are generally not needed, instructions
calling for them may easily be defined and used by the pro-
grammer. See sectlon 7.5 for the method of doing this.

8-23

8.6 Clipping Divider Instructions

8.6.1 .Clipping.Divider Register Transmission

_ The registers of the Clipping Divider (Clipper) may be
loaded from memory, stored into memory, placed in a data sink,
and retrieved from the data sink. These operations constitute
the topic of this section. : ' »

- The Clipping Divider registers are referred to as two-
component or four-component registers. Two-component registers
are 40 bits long and generally contain two distinct 20-bit pieces
of information. Four-component registers are 80-bits long
consisting of a pair of related two-component (40-bit) registers.

The distinction is important because the method of load-
ing, storing, etc. depends on whether the LDS-1 is in 2D or
3D because this in turn determines how many words should be
~referred to in a data fetch or store.

The registers are arranged in the following configuration
and can be referred to by name or number (octal): -

NAME NUMBER ~ DESCRIPTION
(SAVELB 0 SAVE left and bottom
SAVERT 1 SAVE right and top
VIEWLB 2 VIEWPORT left and bottom
VIEWRT 3 VIEWPORT right and top
WINDLB 4 WINDOW left and bottom
WINDRT 5 WINDOW right and top
two-component < TNSTLB 6 INSTANCE left and bottom
S INSTRT 7 INSTANCE right and top
NAME 10 NAME register '
CDIR 11 Clipper Directive Register
HITANG 12 Hit Count and Angle Count
| SELINT. 13 Scope Select and Intensity
‘ - | SAVE , 14 'SAVELB and SAVERT
four- VIEW 15 VIEWLB and VIEWRT
component WIND 16 WINDLB and WINDRT
' INST 17 INSTLB and INSTRT

 There are four instructions for'loading the.Clipper
registers representing four types of loads: absolute,
relative, size absolute, and size relative. In all these
instructions the specified address may be replaced by an
- "@"., In this case the address used is the current value of
the RAR. R | R ' » ' .
LOCLA
The absolute specification:
LOCLA REG,ADIR (COUNT)

loads the number of,registers specified by COUNT, beginning at

8-24

register REG, from memory beginning at ADDR. In 2D, one 36-
bit memory word is placed in each 40-bit register, placing

18 bits with sign extension in each 20-bit half of the register.
In 3D, two contiguous words are put in each register. Thus,
‘only four component registers should normally be loaded in 3D.
If a four- component register is specified in 2D, the current
point is placed in the left-bottom and the addressed data in
the right top. , v

If only one register is to be loaded; COUNT should be 1.
Specifying a COUNT of 0, or leaving out the (COUNT) field,
calls for all sixteen registers to be loaded, something that
is seldom desired. : '

Suppose that the LDS-1 is in 2D and the statement:
LOCLA VIEWLB V(4)

is encountered, where V is deflned in PDP-10 assembly code as
- four contlguous words: .

vV XWD 3777 0 ; VIEWPORT LEFT,BOTTOM
XWD 0, 3777 ; VIEWPORT RIGHT,TOP
XWD -200,1000 ; WINDOW LEFT,BOTTOM
~XWD 500,3000 ; WINDOW RIGHT,TOP

Then VIEWLB would be set to -3777,0; VIEWRT would be :
0,3777; WINDLB would be -200,1000; and WINDRT would be 500 3000.
ThlS would define the v1ewport and window to be:

3777-

3000 -

0- .
i

L A 1000 -
-3777 0

VIEWPORT =200 500
~ (Second quadrant of the. scope) WINDOW

Suppose now that the machine is in 3D and the same window
and viewport are to be defined. Then the proper instruction is:

'LOCLA VIEW, V(2)
where V is as before.
| The ahsolute spec1f1cat10n is the only way Cllpplng

Divider registers may be loaded in 3D. The follow1ng dis-
cussion of other spec1f1cat10ns applies only to the 2D case.

8-25

LOCLR

For alrelative load, use the instruction:
LOCLR REG, ADDR (COUNT)

~where REG and COUNT are as before but the data in ADDR repre-
sent a displacement from the current point, held in the SAVE
register. In 2D, the instruction: :

LOCLR INSTLB,LOC(2)

would add the left half of LOC to SAVE_ and the right half of
LOC to SAVEy and put the result in‘INS%LB; then add the left

half of LOC*+1 to SAVE, and the right half of LOC+1 to SAVEy
and put the result in” INSTRT. :

LOCLSA

In addition to absolute and relative loads, there is the
size absolute specification used almost exclusively to define
- the window, viewport, or instance: :

LOCLSA REG,ADDR(COUNT)

Here, REG is a four-component register and COUNT is the number
of such four-component registers to be loaded. The register
will be loaded with the coordinates in ADDR in its right-top
and -the negative of those coordinates in its left-bottom.

Thus, the rectangle it refers to will be centered at (0,0)

‘and have its half-length in X and Y specified in ADDR.

For example, the instruction:

~ LOCLSA WIND,W(1)

where W is defined as: '
| W: 50,100

would define the window:

100

+

0,0

-100
S [
-50 50
LOCLSR

The fourth specification, size relative, is like size

8-26

absolute except that the current point (held“in the SAVE
register) becomes the center of the rectangle. Thus in:

LOCLSR RBG,ADDR(COUNT)
the fields are the same as for LOCLSA.

For instance, if SAVE contalned (100,0) :and V is deflned
as (20, 10), the instruction:

LOCLSR VIEW V(l)

would define this v1ewport

10-

+ :
(100,0)

- --10-
60 120

STCL

—————

Storing the Clipper registers is a much simpler process,
since there is only one specification - absolute. The basic
instruction is: o

STCL REG,ADDR(COUNT)‘

which means that COUNT registers, beginning at REG, are to
be written into memory locations beginning at ADDR.

In 2D, one memory location is filled for each reglster
stored, and only two- component registers should be referenced.
For example: .

STCL CDIR,LOC(3)

would write the Clipper Directive 1nto LOC, the HITANG into
LOC+1, and SELINT into LOC+2,. ;

In 3D, two contiguous memory locations are filled for
each reglster referenced, which should be only four-component
registers. For instance:

STCL - SAVE LOC(Z)

would write the SAVELB into LOC, the SAVERT into LOC+1 “the
"VIEWLB into LOC+2, and the VIEWRT into LOC+3.

8-27

SKCL

The data sink is an area of core set aside as a push-down
stack for Clipping Divider registers. The Channel Control
register DSP (Data Sink Pointer) keeps track of the next
location to be filled in the sink. o

Registers may be pushed onto the sink by the instruction:
' SKCL REG, (COUNT)

‘where the number of registers specified by COUNT and beginning
‘at REG are written into the data sink. ’

As with STCL, one location is filled per register in 2D
and two locations per register are filled in 3D, and consequently,
only two-component registers should be referenced in 2D and only
four-component registers in 3D. ‘
_For‘instancé, in 2D the instruction:
SKCL INSTLB, (3)

would write the values of the INSTLB, INSTRT, and NAME onto the
data sink. : ‘

In 3D, |
| SKCL SAVE, (1)
would sink SAVELB and SAVERT.

RTCLA

, A wider variation of methods exists for retrieving Clipper

~ registers from the sink after they have been placed there. In
fact, retrieving is exactly analogous to loading in the methods
available and the restrictions on each. A unique feature of

the retrieve instructions is that they count backwards through
the register configuration. This is so that registers may be
retrieved in the inverse order that they were sinked, in order
that each receives its proper former value. , '

Registers may be retrieved exactly as they sit in the data
sink by the instruction: « i ,

RTCLA REG, (COUNT)
speCifying that COUNT registers going backward from REG are to
be retrieved. As always, one location is referenced per

register in 2D and two locations per register are referenced
“in 3D. , ' o

8-28

As a 2D example, suppose that the sink contains values
of the INSTLB, INSTRT, and NAME, as the 2D example for SKCL
put them there. Then the instruction:

RTCLA' NAME, (3)
would retrieve them correctly.~v
In 3D, the instruction:
RTCLA SAVE, (1)

would restore the value of the SAVE fegister had the 3D
example for SKCL been executed previously.

RTCLR

The specifications relative, size absolute, and size
relative are available for the retrieve instructions also,
but as with loading, they can be used only in 2D.

The instruction: |

'RTCLR REG, (COUNT)
is a relative retrieve. The coordinates retrieved from the
sink are added to the coordinates of the current point as ‘
held in the SAVE register. Suppose that the instruction:
SKCL WINDLB, (2) - ‘

has been executed and that the SAVE register now ¢0ntains
(-100,0). . - ' :

Then the instruction:
~ RTCLR WINDRT,(2)

would create a window of the same size and shape as the
previous one but 100 units to the left.

~ RTCLSA,RTCLSR

Of dubious utility are the instructions:

RTCLSA REG, (COUNT)
and ' : S
RTCLSR REG, (COUNT)

for retrieving size absolute and size relative, respectively.
They operate as expected, RTCLSA loading the rig t-top of the
" specified register with the last word sinked and the left-
bottom with the negative of the coordinates in that word;
and RTCLSR doing the same but offsetting the result by the

contents of the SAVE register,. :

8-29

If these instructions are used, only four-component
registers should be specified.

There is no direct way to transmit two-component registers
in 3D. This is no problem when the two-component register is
part of a four-component register, but it does come up with
the others. The best solution is to switch to 2D, do the
loading or whatever, and then switch back to 3D.

8.6.2 Boxing

‘The boxing capability of the LDS-1 provides a very con-
venient method for placing a 2D object (i.e. symbol) at
several places in a drawing, varying its size and scale if
desired. A less obvious but important related capability is
that of discarding the object by a simple test when it is
entirely outside the window. This saves time from being
wasted and permits more complex pictures to be displayed
flicker-free. : ’ ; ' '

The boxing instruction itself draws nothing on the scope.
Rather, it modifies the window and viewport to permit drawing
to take place in the desired coordinate system and still show
up at the right area of the scope and picture. Prior to boxing,
the Clipping Divider INSTANCE register (INST) should be loaded
with the area on the current window where the object is to
appear. Then the window and instance should be checked for
area in common; if there is no area in common, the rest of this
procedurc should be skipped. The Area-In-Common bit is sent
to the Channel Control STATUS Register and may be tested by
an instruction like ' ‘

JIF @NEXT (AICF)

-Next, if the current window and viewport are to be used later,
they should be sinked (or stored), because these two registers
will be changed by the box instruction. The box instruction -
does two things: First, the viewport is redefined to be that
section of the current viewport corresponding to the area in
common between the instance and the old window; secondly, it
redefines the window in the following fashion: the box in-
‘struction contains directions for forming a "master" rec-
tangle on the new subpicture coordinate system, optionally
independent of the old window's coordinate system; the new
window is then defined to be that section of the "master"
corresponding to the area in common between the instance and
the old window. See figure 4.4. The subpicture may now be
drawn by regular LDS-1 instructions. Finally, the old window
and viewport can be retrieved (or loaded) and normal proces-
sing can continue. :

There are four forms to the box instruction, corresponding
to the four ways to load a Clipper register. In each case the
specified address may be replaced by an "@", indicating that

the current value of the RAR should be used for the address.

8-30

BOXA
The absolute form:
BOXA ADDR
defines a "master" whose lower left-hand corner is the current
point (held in the SAVE reglster) and whose upper right-hand
corner is in location ADDR. _
BOXR
The relative form:
BOXR ADDR
makes the lower left-hand corner of the '"master" to be the
~ current point and the upper right-hand corner to be the current
point:plus the contents of ADDR. As an example, suppose the
SAVE reglster contains the point (1004,2005) and the instruction:
 BOXR DISP | |
is executed, where DISP is defined to be:

DISP: XWD 30,40

Then this master would be created:

240 - |

200 -
]
100 130
BOXSA

The size absolute specification can bé used:
'BOXSA ADDR
to specify a "master" whose center is at (0, 0) and whose
~upper right-hand corner is glven by the contents of ADDR,

and the lower left-hand corner is given by the negative
of the contents of ADDR.

8-31

BOXSR

Finally, the size relative specification:

-BOXSR ~ ADDR

_spécifies the "master" exactly as BOXSA does, except that
it is centered on the current point. :

- Suppose, for example, that the SAVE register contéins
(1005,20033 as before and a: ,

BOXSR DISP
is executed, where DISP is also defined as before:
| DISP: XWD 30,40

Then ghe "master'" created would be:

240 :
+# | current point
(100,200) |

140

¢

' i
50 130

The important things to remember about these instructions
are that they all are useful only in 2D; that they update the
viewport to be the image of the area in common between the
instance and the old window under the existing window-to-viewport
mapping; that they differ only in how they define the 'master"
and therefore redefine the window; and that they throw the LDS-1
into no special "box mode" or -anything, i. e. normal instructions
‘may follow just as if the window and viewport were redefined by
LOCL's instead of BOX's. : : »

. Checking for area in common is not a completely straight-
forward process. First of all, AICF does not necessarily test
the window vs. the instance, but rather the window vs. the ’
last register loaded. This precludes loading the instance
~ before the window, for then AICF would check for area in common
between the window and itself. Secondly, AICF is updated only
on a four-component register load. Usually the program is in
2D at the time the instance is fo be loaded, in which case
the following procedure does work: ‘

SETPTA LB
LOCLA INST, RT(1)

8-32

where LB addresses the coordinates. of the left-bottom of the
instance to be defined, and RT addresses its right-top
coordinates. '

If RT addresses the displacement necessary to obtain the
right-top from the left-bottom, the code:

' SETPTA LB
LOCLR INST, RT(1)

would work. These procedures work because 'the SETPTA 1loads
the SAVE register, which is used by the LOCLA and LOCLR in
a four-component 2D load to specify the first two components.

The instructions:

, LOCLSA INST,ADDR(1)
LOCLSR INST,ADDR(1)

work as expected, update the AICF, and need not be preceded
by a SETPTA. -

The following is a complete example of all the steps
involved in boxing: o = ,

SETPTA LB sPREPARE THE SAVE :
LOCLA INST, RT(1) ;LOAD INSTANCE |
JIF @NOBOX(AICF) ;GO AWAY IF NO A.I.C.

SKCL VIEWLB, (4) -~ ;SINK VIEWPORT, WINDOW
SETPTA MASTER ;PREPARE TO BOX ABSOLUTE
BOXA MASTER+1 ;PERFORM THE BOX OPERATION

. ;DRAW THE OBJECT
RTCLA WINDRT, (4) ;RESTORE WINDOW, VIEWPORT

NOBOX:

' . - ;CONTINUE ‘
LB: - XWD 40,40 ~ ;INSTANCE LEFT,BOTTOM
RT: XwD 200,140 - ;INSTANCE RIGHT,TOP

~ MASTER: XWD 0, {MASTER LEFT,BOTTOM
. " XWD 1000,1000 ;MASTER RIGHT,TOP

8-33

8.7 Matrix Multiplier_Instructions

‘8.7.1 Matrix“Manipulations

The matrix multiplier has a 36-bit directive register
and a set of 6 18-bit numerical registers arranged in a
4 x 4 x 4 array. :

LOMDIR, STMDIR:

The directive register is handled individually. It may
be loaded from memory : ‘
o | LOMDIR ADDR
- or stored into memory:
| STMDIR . ADDR ,
where ADDR is the address of the memory location to be loaded
from or stored into. . ”

SKMDIR,RTMDIR:

The directive may also be plécedvinto the same data sink
asffor_the,clipper,registers: , : = e

~ SKMDIR
and,retrieVed from the data sink:
 RTMDIR

_The best procedure is always to perform these instructions
in 2D, since in 3D they call for double word data fetches and
stores. If the program is in 3D, it should be switched to 2D
for the desired operation and then back to 3D. :

The 64 element array is addressed by row, rows 0-3 forming
the 4 x 4 matrix A, rows 4-7 forming B, rows 10-13 forming C,-
and rows 14-17 forming D. Thus rows are loaded, stored, etc.,
as a unit. The Matrix Multiplier instruction set is the same
for 2D and 3D, and the row is the basic unit of transmission
in each. However, as always, 2D data fetches and stores are
one word each and in 3D they are two words each. In 3D, the
‘two 36-bit words correspond to the four 18-bit elements of one
register or row. In 2D, the one 36-bit word corresponds to the

first two 18-bit elements, and the other two elements are
ignored. _

LOMM

Matrix rows may be loaded directly.from memory by the
- instruction: - -

LOMM REG, - ADDR(COUNT)

- 8-34

where COUNT registers beginning at REG are to be loaded from
core locations beginning at DATA. In 2D, COUNT memory locations
are used, one per register (row). In 3D, twice as many memory
words are read, two per register.

An eXample is in order. The instruction:
LOMM 0 ,MATRIX (4) |
loads matrix A (the four registers beglﬁnlng at O)vfrom the
- eight locations beginning at MATRIX in 3D or from the four
locations: beglnnlng at MATFIX in 2D. »

- LOMMR

Relative loads are facilitated by the instruction:
LOMMR REG, DATA(COUNT)

where REG DATA, and COUNT are as before but the incoming
vector is added element by element to the specified registers.

LOMMP.

- Matrices may be multiplied using,theyinstruction:
LOMMP REG, ADDR(COUNT)

which multiplies COUNT input vectors starting at ADDR (one
word each in 2D, two words each in 3D) by the entire matrix
in which REG is located and stores each resultant vector in
its corresponding row in matrix A. (One can think of the
two high-order bits of REG as specifying the matrix to be
multiplied, and the two-low order bits as specifying the
row in A where the results are to begln being placed)

For example, the instruction:
LOMMP 4, INMAT (4) .

'multlplles the matrix stored at INMAT by matrix B (where
register 4 is located) and leaves the result in matrix A.
To multlply by matrix C, use a REG of 10, and to multiply
- by matrix D, use a REG of 14. Clearly multiplying by
matrix A would not give a desired result since A is changedﬁ
after each row multlpllcatlon .
STMM

There is one matrix multipiier stofeyinstruction:

STMM REG, ADDR (COUNT)

8-35

which stores COUNT registers starting at REG in core locafions
beginning at ADDR. COUNT locations are filled in 2D, and twice
as many are filled in 3D. ;

SKMM

Matrix Multiplier régisters may be sinked into and retrieved
from the data sink like Clipper registers. The basic sink
instruction is: : | ' o
SKMM REG, (COUNT)
specifying that COUNT régisters starting at REG are to be

sinked onto the sink. ‘Each register takes up one sink word in
2D and two words in 3D. : ‘ _

- RTMM
Retrieving Matrix Nultiplier registers from the data sink
is analogous to retrieving Clipper registers, except that

relative, size absolute, and size relative retrieves are not
permitted. The basic instruction is:

RTMM REG, (COUNT)

specifying that COUNT registers counting backward from REG
are to be peeled off the data sink. The Inverse order is
necessary so that each register receives its proper former
value. ' - ~ : : :

"For exampie:
RTMM 17, (0)

retrieves all 16 registers (as always, a COUNT of 0 calls for
16 registers). . G ‘ o

SKMMS

The sink and retrieve instructions have useful slide
variants for matrix multiplier registers. The instruction:

SKMMS REG, (COUNT)

sinks COUNT registers starting at REG and replaces each with
the corresponding row from matrix A. ‘

: - When entire matrices are manipulated in this fashion
(COUNT=4), the data sink, appended first by matrix B, C, or

D and then by matrix A, may be considered as a push-down

stack of matrices. Y .

8536

RTMMS

The inverse of SKMMS is'provided by:
| | RTMMS REG, (COUNT)
which copies COUNT registers counting backward from REG into
the corresponding rows in matrix A and replaces each from
the data sink. : ’ ‘ ' ~ ﬂ

Thus if the instfuction:
SKMMS 4, (4)

has been used to sink B and replace B with A, former status
could be restored with:

RTMMS 7, (4)
PUSHMM
, The facility exists to éopy.rows of matrix A into
- corresponding rows of the other matrices without doing any
sinking. _ , ' - -
Td do this, use thevinstructiOn:’
| PUSHMM REG, (COUNT)

to specify that COUNT rows starting'with‘REG are to be filled
- with the corresponding rows of matrix A. y ,

POPMM

The reverse procedure can be accomplished by the
instruction: : ' ' '

POPMM REG, (COUNT)

 which specifies that each of COUNT rows starting with REG are
'to be copied into its corresponding row in matrix A. '

For example, if the instruction:
| PUSHMM 14, (4)

 had been used to copy matrix A into matrix D, A could be later -
restored with: . S o

POPMM 14, (4)

It is noteworthy that this procedure does not restore matrix D
to its former status, as opposed to the SKMMS and RTMMS
procedure. ’ :

8-37

NOMM ‘

‘Matrices must be normalized to maintain maximal
precision. While input matrices are generally normalized
by the programmer, multiplying matrices together may leave
- an un-normalized result in matrix A. This, situation may
be rectified in 3D without affecting the transformation
represented except to make its result more precise, by
the instruction: : ‘ S

NOMM (MSHIFT)

This instruction shifts each element of matrix A to the
‘left until either MSHIFT shifts have taken place, or some
element of A is between one-half and one in magnitude
(i.e. A is normalized). The reascn why the transformation
is unaffected is that factors thus introduced are cancelled
out later by the perspective division. ‘

Normally it is pointless to specify a maximum number
of shifts, so that the instruction: ;

NOMM

(i.e. MSHIFT=0, implying a maximum shift of 16) is guaranteed
to normalize A. However, normalizing takes some time, and =~
it may be desired to limit the amount of shifting with the
first option. - : '

The NOMM instructibn~is ignored in 2D, because the
element a;» is always considered to be 1. See Chapter 3,
Matrix Multiplier. , ' : -

NOTE: Normalization is pointless unless the scale

- factor (a;;) is unequal to +1. Normalizing
is important before using it in a concantenation.

8-38

8.7.2 Curves And Surface Patches

The Matrix Multiplier can be put into a special mode
in which it draws 2D or 3D curves or 3D surface patches, all
from data stored internally by the Matrix Multiplier. See
sections 3.5 to 3.7 for a.description of the representation
of these curves in the Matrix Multiplier registers.

SETCRV

A sétp01nt (loading of the Clipper Divider SAVE
register) to the beginning of a curve may be accompllshed
by the 1nstruct10n

SETCRV

where the initial point has been previously placed in the
Matrix Multiplier's Matrix A.

DRACRV

After the RCR has been initialized to the (negative
of) the number of points on a curve, the curve may be
drawn by the instruction:

DRACRV (RPTM)
POLCRV
' The tWO operations above may be combined in the same
way that a set point and draw to's (absolute) are combined
in a POLYGON type instruction by using:
POLCRV (RPTM)

where the RCR has been initialized to (the negatlve of) one
greater than the number of lines in the curve. :

For example the 2D matrlx

F—éos(2n/2003) _ sin(zn/zooai—

-sin(2m/200s) cos(Zﬁ/ZOO@)
iEby 400006 20000, :

11000005 0 |

in curve mode with the instruction:

LOMM 0,A(4)
POLCRV RCR,-201(RPTM)

8-39

will draw a complete circle centered at octal coordinates
(40000,20000) with a radius of 1000004, and composed of 20
line segments. ' '

DOTCRV

For a curve consisting of dots instead of lines, the
instruction: : ' '

DOTCRV (RPTM)

should be used instead of DRACRYV, where the RCR has been
initialized to the number of dots per curve.

Note that DOTCRV does not draw a dot at the initial
point. To place a dot there, use the sequence:

SETCRV
DOTSRR [0]

LI RCR,-N
DOTCRV (RPTM)

NEWCRV

- A surface patch in 3D consists of a number of related
curves. The iteration of points along a curve is done by
the preceding instructions, but the iteration to get from
- one curve to another is done by: » :

NEWCRV

8.8 Character String Interpreter Instructions

The Character String Interpreter uses directions sup-
plied by its FONT register to decode words packed with
character codes and to draw the desired characters using
the hardware character generator, if possible, or software .
subroutlnes

: The Character Strlng Interpreter contains two 36-bit
reglsters FONT, whose address is 1 , and CHAR, whose ad-
dress is 0. CHAR is seldom directly accessed in a program.
The following instructions should be used only in 2D.
NOTE: The Character String Interpreter is also sometimes

referred to as the '"Character Bubble. Therefore, the
following instructions use '"CB'" as part of the mnemonics.

LOCB
The registers can be loaded by the instruction:
LOCB REG, ADDR (COUNT)
specifying that COUNT registers starting with REG are to
be loaded with data beginning at ADDR. COUNT is normally
1, but it can be 2 (to load both registers). In this usage,
if REG is FONT, ADDR should contain data for FONT, and

ADDR+1 should contain data for CHAR. If REG is CHAR, ADDR
should contain data for CHAR, and ADDR+1 should contain data

for FONT .
| Storing the registers is accomplished b;'the instruction:
sch~ REG, ADDR(COUNT)'

specifying that COUNT reglsters starting w1th REG are to be
stored at ADDR. ; ;

SKCB

The registers may be pushed onto the data sink by using:
 SKCB REG, (COUNT) T |
where COUNT registers etarting'with REG are to be‘sinked.
RTCB _ : ,
| After-sinkiﬁg, the registers may be retrieved by:
‘RTCB REG, (COUNT) |
8-41

spec1fy1ng that COUNT reglsters counting backward from REG
are to be retrieved from the data sink.

For example, if both registers had been sinked byﬁ
' SKCB FONT, (2) | o

theykceuld be tetrieved_by:
| RTCB CHAR, (2)
DOCHAR |

Once the FONT register has been properly loaded, and the
RCR has been initialized to the (negative of the) number of
characters to be drawn, the 1nstruct10n

DOCHAR ADDR (RETM)

can be used to draw the characters coded into words at ADDR.

‘ This instruction does several things. It:

dl. puts ADDR into the RAR;

2. moves the word now addressed by the RAR into the CHAR
reglster,

3. ‘increments the RAR;

4. extracts a byte from the CHAR register whose length
’ is given by the 'length" field of the FONT register
and whose p051t10n (bit position of right-hand edge)
is given by 35 minus the "p01nter" field of the
FONT reglster, v

5. fetches the instruction whose.address is the sum'of‘
: this byte and the 'base'" field of the FONT register;

6. decreases the "pointer" field by the "length" field;

7. exwecutes the instruction fetched (whlch may possibly
stop this sequence);

‘8. increments the RCR and stops this sequence if non-
negatlve, .

9. returns to step 4 above 1f the "p01nter" field is
"~ still non- negat1ve, .

10. resets the "pointer" f1e1d to 36 minus the "1ength"
- field if the "pointer"” field is negatlve and returns

to step 2 above

8-42

‘If the LDS-1 has an active hardware character generator
which recognizes the byte extracted in step 4 as one of its
character codes, step 5 is skipped and step 7 is replaced by
a signal to the character generator to draw the requested

character.

If the RAR is already pointing to the right place, step
1 above may be skipped by using this form of the instruction:

DOCHAR @ (RPTM)

In fact, if the RAR is already correct, any other
Channel Control reglster may be loaded, e.g.:

DOCHAR RCR SO(RPTM)

‘ The idea behind the "base" field and the character codes
(bytes extracted) 1is that somewhere in core is a dispatch
table of the form: :

BASE: 'JMPPSH CHARO (PROGM)
- JMPPSH CHAR1 (PROGM)

: ®

)

o

The address BASE should be in the ''base' field and the
sets of code at CHARO, CHARl, etc. should draw the characters
whose codes are 0, 1, etc. respectlvely

The reason why such 1nstruct10ns work is rather intricate.
'The JMPPSH pushes onto the stack the current PC (which is one
- greater than the address of the DOCHAR) marked with a change
to the current mode, which is REPEAT. It also loads the PC
with the address of the character-drawing subroutine and
causes PROG mode to be entered, which permits the character
to be drawn. A PEEL at the end of the subroutinc restores
the PC and returns to REPEAT mode, whence the RSR (Repeat
Status Reglster) returns control to the Character String

Interpreter

Clearly the character subroutine should not destroy
the values in the RAR, RCR, ‘or RSR, which are needed for
more decoding. The best practice is to push these reglsters
at the beglnnlng of each subroutlne ‘

Consider the follow1ng example Wthh draws the char-

‘acters:
XY XYX

- 8-43

INFO:

LI RCR, -5

LOCB FONT, INFO(1)
DOCHAR WORDS (RPTM)

XWD 341044, BASE

WORDS: 000004000020

‘BASE:

X:

Y:

JMPPSH
~ JMPPSH

PSH RAR,

PSH RCR,
PSH RSR,
'DRAWTR
SETPTR
DRAWTR
SETPTR
PEEL

" PSH RAR,

PSH RCR,

PSH RSR,

SETPTR
DRAWTR
DRAWTR
SETPTR
DRAWTR
SETPTR
PEEL

X (PROGM)
Y (PROGM)

[XWD 2,4]
[XWD-2,0]

[XWD 2,-4]

[XWD 2,0]

[XwD 1,0]

[XwD 0, 2]
[XWD‘ 1,2] :
[XWD 1,-2]

[XwD 1,2]

[XWD 2,-4]

;FIVE CHARACTERS TO BE DRAWN
;LOAD FONT REGISTER - -
; DRAW CHARACTERS

;POINTER = 34 (OCTAL)

- ;LENGTH = 10 (OCTAL)

yACCEPT POINTER, LENGTH
yDISABLE CHARACTER GENERATOR
sDISPATCH TABLE AT BASE
sBITS 0-8 : 0 .
;BITS 9-16 : 1
3BITS 17-24 : O
yBITS 25-32 : 1
yBITS 33-36 IGNORED

;BITS 0-8 : 0
yBITS 9-36 IGNORED

" .GO HERE ON CHARACTER CODE 0

;GO HERE ON CHARACTER CODE 1

3 SAVE REGISTERS

;DRAW AN X

;RESTORE REGISTER AND PC, GO
;BACK TO REPEAT MODE |

'sSAVE REGISTERS

SDRAW A Y

;RESTORE REGISTERS AND PC, GO
$BACK TO REPEAT MODE |

8-44

CHAPTER 9
PROGRAMMING - EXAMPLES

This chapter is devoted entirely to examples of code for
the LDS-1 system. A prior knowledge of the PDP-10 assembly
language is assumed. The code shown in these examples is not
guaranteed to be the optimal code for accomplishing a task, but
is presented to illustrate the use of certain features of LDS-1.

9.1 Start Up

This example is a subroutine which initializes the system
and starts the processor at a specified location. This sub-
routine is employed in nearly all the examples, so it behooves
the reader to become familiar with the functions performed even
if he doesn't care to understand it in detail. This subroutine
 is included in the MACRO-10 file which defines the operation

codes for LDS-1. N -

; START UP SUBROUTINE TO INITIALIZE PROCESSOR

DP=130
DPPI=4
SINK: BLOCK 177
STACK: BLOCK 1 v
OPDEF CONODP [CONO DP,DPPI]
INDISP: 0 v
CONODP 515300
MOVE 0, [JSR DPINTR]
MOVEM 0,40+2*DPPI
CONSO DP,4000
JRST -1 o
DATAO = DP,[LI DIR,52405(PROGM)]
CONSO DP,4000 |
JRST -1
DATAO DP,[LI SR,0]
CONSO DP,4000 |
JRST -1 |
 DATAO DP,[LOCLA SELINT,[XWD 401400,770000](1)]
HRRZ 0,(16) , T L T
'ADD 0,[JMP 0]
MOVEM 0,DSTQQQ+4
CONSO DP,4000
JRST -1
'DATAO DP, [JMP DSTQQQ]
CONODP 400 E
| JRA 16,1(16)
'DSTQQQ: LI . SP,STACK
LI DSP, SINK

LOCLSA VIEW, [XWD 3777,3777](1)
LOCLSA WIND, [XWD 1000,1000] (1)
LOCLA CDIR,[102521](1)
STOP o

9-1

The LDS-1 system is set up as unit 130 on the PDP-10 and
is assigned priority interrupt level 4 by the assignment DPPI
=4.° A combination stack and sink are supplied. Remember that
- the stack is loaded toward lower addresses and the sink toward

higher addresses. A new OPDEF is ‘given for the CONO instruc-
tion. CONODP is a CONO directed toward the LDS-1 with the
priority interrupt level always supplied. .

The first instruction to the system is via the CONO. The
system is master clecared, all interrupts turned off, and pause
request issued. A JSR DPINTR is planted in the interrupt loca-
tion. (DPINTR is a minimal interrupt routine which is supplied
with INDISP, but not explained here). The CONSO loop causes ‘
the PDP-10 to wait until the LDS-1 system has returned to the
PAUSE state. Then all conditions which might cause the system
to stop are cleared. These conditions must be cleared via the
DATAO instruction because the system will return to the STOP
- (or PAUSE) state if all stop conditions have not been cleared.

Therefore, a sequence of instructions from memory would not
necessarily clear all stop conditionms. One must wait for the
system to return to the PAUSE state before issuing another
DATAO instruction. (NB, The DATAO instruction has no effect

on the system if the LDS-1 is not in a PAUSE state.)

The stop condltlons and means of clearlng ‘each are listed.
below:

STOP on WCR + ‘CIear'directive bit mask
STOP on HIT Clear directive bit mask
PROGRAM STOP : Clear status register bit

Scope Selection Violation = Load proper permit and select
' ‘ ~bits (this can be done only by

a DATAO)

After clearing all stop conditions, a JMP POOH is placed
at the end of the setup code located at DSTQQQ and the system
is given the command to load the PC with DSTQQQ. Then the re-
sume pulse is issued via a CONO. This causes the pause and
stop flip flop to be cleared. (NB, The stop flip flop may be
cleared for the execution of one instruction, but if a stop
condition still exists, it will be set again. Therefore, issu-
. ing RESUME does not clear the condition, only the Stop flip -flop.)
The system then starts executing the code located at DSTQQQ. :
The first two instructions load the stack and sink pointers.
The viewport is loaded to give full screen deflection and the
window is loaded with the arbitrary numbers -1000, +1000 for
both X and Y. Note the use of size absolute in conJunctlon ' %
with a 72-bit load. The planted JMP'1nstruct10n 15 then executed
which starts the user program. :

Included with the INDISP subroutine is the follow1ng macro
def1n1t10n : _

DEFINE DSTART (POOH)
<JSA 16,INDISP
JUMP POOH>

This macro will be used throughout the examples.
9-2 ~

9.2 Example To Draw A 2D Picket Fence'

This example draws a plcket fence as shown.

o 1 unlt
1 t 2 : AN
A uni .
v//\\ //h\ //\\ //\\ //«\
‘ 2
25 units . | .ﬁ\(O;O)
! 2
i
v ' 1 .
A units
LI RCR, -4 ,
- LINAA CRSBRD(RPTM) ; DRAW CROSSBOARDS
SETPTA [XWD -10,2] TOP OF FIRST PICKET
LI RCR, -5 ' :FIVE PICKETS
DRAWP: LIPSHM RCR,-3 ; THREE LINES PER PICKET
DRAWFR PICKET(RPTM) ;s DRAW PICKET '
PEEL RESTORE RCR
SETPTR [XWD 4,0] - 3;MOVE FOR NEXT PICKET

~ IJNRCR DRAWP - ;MORE PICKETS?

CRSBRD: XWD -10,-2
~ XWD 10,-2

XWD 10, 0

XWD -10, 0

PICKET: XWD -1, -1
XWD 0, -5

XWD 1, -1

-“Note: The statements:

DRAWFR. PICKET (RPTM)
PEEL

Could be replaced by the equivalent:
>DRAWFR PICKET (RPTM+PEELM) |

0.3

9.3 2D Star

This example will display a star whose center is controlled
-via the switches and load the hit and angle counters in the con-
sole lights. The counts are cleared each tlme through the loop
before any drawing instructions are issued. The setpoint

data is controlled by the console switches. The RCR is used

to control the number of THRURR type instructions executed in
-repeat mode. The RAR is loaded with the address of CNTR2D via
the SETPTA instruction and will be incremented by SETPTA.
Therefore,vlt is not necessary to load RAR in the THRURR in-
struction since the data is located immediately after CNTR2D.

OPDEF THRURR ~ [DD+TO0+SL]
TEST2D: DSTART(SHOW2D)
| RSW CNTR2D

DATAO = PI,STACK
, JRST TEST2D+2
'SHOW2D: LI RCR, -4
LOCLA HITANG, [0] (1)
SETPTA CNTR2D
THRURR @ (RPTM)
STCL HITANG,STACK(1)

- JMP SHOW2D
CNTR2D: 0
~ XWD 600,600
XWD 600,0
XWD 600,-600

XWD 0,-600

- 9-4

9.4 Repeat Mode Instruction File

This example shows processor code for a typical repeat
‘mode instruction file. The processor is told to execute Table -
T1l, followed by T2, followed by T3, etc. For example purposes,
the three types of display tables are each different. The
header for Tl shows that its data is to be interpreted as a
polygon (i.e., set point, draw to, draw to, draw to, etc.) The
Read Count Register is to be set to the negative number N1
which is one greater than the number of data items in the table.
Notice when the Read Count Register counts up to zero, the
table has been completely executed and the processor will return
to the next instruction which is to execute T2.

‘The header of Table T2 shows that the table is to be inter-
preted as a list of address data. Each address specifies the
location of one X,Y coordinate datum. The left half-word points
to the coordlnates of one end of a line, and the right half-
word points to the coordinates of the other end. The Read
Count Register is loaded with a negative number N2, whose mag-
nitude is one more than the number of address pairs in the
‘table. The figure drawn by T2 is the same polygon as in T1.

It is drawn directly over the Tl polygon by drawing every
other line in succession.

Table T3 shows the redrawing of both Tl and T2 u51ng the
push down stack. _

TYPICAL REPEAT MODE INSTRUCTION FILE

;Display Code

XQTA T1

XQTA T2 _

XQTA T3

;ETC v
: _ 3T1, T2, T3 Are Three Kinds
N1=T1-L+1 Of Display Tables To Execute
T1: POLRR RCR,N1(RPTM) * ;Load Read Count Register -

Wlth N1, Draw Polygon From
-Relatlve Coordinate Data

s

Xwb 0,1000 : ;Right And Left Half Words
, v RN Separated By Comma
I: XWD 400,0 | |
J: XWwD 200,-500
K: XWD =200,-500
L: XWD -400,0
N2=T2-T2E+1 o
T2: LINIRR RCR NZ(RPTM) ;Load Read Count Register

With N2, Setup For Drawing
Lines From Address Pointers
In Left And Right Half Words
Separated By A Comma

XWD T1+1, T1+2
XWD T1+3, T1+4
XWD T1+5, T1+1

T2E: XWD T1+2, T1+3
T3: JMPPSH ,+1 ;Save PC, Setup For Table
XQTA T1 = ~ Of Code
 XQTA T2 | S .

PEEL

The POLYGON

H I

- 9-6

9.5 vChess Board

This'examplé displays a chess board on the Scope. Cross

hatching of the squares is controlled by program flag 0.
the use of a processor subroutine (SQUARE).

Note
When exit from the

subroutine is effected by the PEEL instruction, the RCR is also
peeled since it was pushed, unmarked, when the subroutine was

entered.

Cross hatchin

by testing PFO.

g is carried out in the SQUARE subroutine

The RCR is used to control the column count, the row count,

and the count for two repeat mode instructions.

This multiple

use of the RCR is made possible by correct use of the stack.

>6HBSS:
SCHESS:

CHESS1:
CHESS2Z:

SQUARE:

DCHESS :

 TABCHS:

- CHESSB (SHOWS CHESS BOARD)

DSTART (SCHESS)
WINDLB,DCHESS(2) ;LOAD WINDOW

HALT
LOCLA
ST (PF0)
SETPTA [XWD 0,0]
LI~ RCR,-10
LIPSHM RCR,-10
JMPPSH - SQUARE
SETPTR [XWD 0,100]
IJNRCR CHESS2
SETPTR [XWD 100,-1000]
CM (PF0)
" PEEL T
IJNRCR CHESS1
JMP SCHESS+1
LIPSH RCR,-5
POLRR TABCHS (RPTM)
SETPTR @ |
JIFCM .+2(PF0)
PEEL
LI RCR,-13
LINRR @ (RPTM)
PEEL |
Xwp 0,0 .
“XWD 1000,1000
 XWD 10,10
XWD 60,0
XWD 0,60
XWD -60,0
XWD© 0,-60
XWD -10,-10

9-7

; SET PROGRAM FLAG 0
;SET COLUMNS COUNT

- ;SET ROWS COUNT

;ADVANCE TO NEXT LINE

;MORE LINES? o
;ADVANCE TO. NEXT COLUMN

; CHANGE CROSS-HATCHING PARITY
sRETRIEVE COLUMN COUNT

- ;MORE COLUMNS ?

;s START ALL OVER AGAIN

;DRAW A SQUARE
;CHECK CROSS-HATCHING PARITY

; CROSS-HATCHING

3WINDOW SIZE

3DATA FOR SQUARES.

XWD
XWD
XWD
XWD
XWD
XWD
XWD
XWD
XWD
XWD

XWD.

10,50
20,20
-20,-40
40,40

- -40,-60

60,60
-40,-60
40,40

-20,-40

20, 20
-70,-30

;DATA FOR CROSS-HATCHING

9,6 Boxing

This example produces two pictures, the first is in
the upper left which displays a window and a line represent-
ing the diagonal of the instance. The other is in the lower
right and displays that part of the instance (a transistor)
within the window plus the dlagonal line. The PDP-10 por-
tion of the program changes the size and position of the
window and instance.

) ' After the code for the upper left picture has been
executed, the window and viewport are changed and the in-
stance loaded with a 72-bit load (this is necessary to

test Area In Common). AIC is tested with a group 2 instruc-
tion and if the instance has no area in common with the
window, control is passed to NOBOX which displays the
diagonal of the instance.

If there is AIC, the window and viewport are "sinked."
‘The BOXSA command is given with the RAR set to point to
MASTER. Since the box command is given as size absolute
- and MASTER contains 2000,2000, the master definition space
is -2000 to 2000 in X and Y. The box command causes the
viewport and window to be changed to reflect the mapping
directly from master space to scope coordinates. The com-
mands are then issued to draw the transistor. The old view- -
port and window are then retrieved from the data stack.

9-9

Boxing

BOX2D: DSTART (SUB2D)
BXLOOP: RSW 14
| MOVEI 10,WS

JSA 16,FIX
HRRZ 15,WS
LSH 15,1
HRRM =~ 15,WS+3 |
XOR 15, [XWD 0,-1]

~ HRRM 15,WS+1
HLRZ 15,WS

LSH 15,1
HRLM 15,WS+4

XOR 15, [XWD 0,-1]
HRLM 15,WS+2
LSH 14,-6

MOVEI -10,WC

JSA 16,FIX

LSH 14,-6
MOVEI 10,LSZ

JSA 16,FIX

LSH 14,-6

MOVEI 10,LC

JSA 16, FIX

MOVEI 15,100

SOJGE 15, .

JRST BXLOOP

FIX: 0
TRNN 14,1
JRST XM

HRLZI 15,1
ADDM 15,0(10)
XM: TRNN 14,2
JRST YP
HRLZI 15,-1 .
ADDM 15,0(10)

YP: TRNN -~ 14,4
_ JRST YM
" HRRZI 15,1 |
ADD 15,0(10)
AND 15, [XWD 0,-1]
HRRM 15,0(10)
YM: TRNN 14,10
JRA 16,0(16)
'HRRZI ' 15,-1
ADD 15,0(10)
~ AND 15, [XWD 0,-1]
HRRM 15,0(10)

JRA 16,0(16)

9-10

OPDEF
SUB2D:

NOBOX:

MASTER:

VIEW11:
VIEW21:

wC:
WS:

“LC:

LISR[DD+TO+SL]

LOCLA VIEWLB,VIEW11(4)
SETPTA WC -
LI RCR,- 5

POLRR @ (RPTM)

SETPTA LC

LISR @0

SETPTA WC

LOCLSR @WIND, (1)

LOCLA VIEWLB,VIEW21(2)
SETPTA LC |
LOCLSR @INST, (1) |
JIF @NOBOX (AICF)
SKCL VIEWLB, (4)

BOXSA MASTER

SETPTA @

LI RCR, - 20

LINRR @ (RPTM)

RTCLA WINDRT, (4)

SETPTA LC
LISR eo
JMP SUB2D
XWD 2000,2000
XWD -2000,0
XWD 0,0
XWD 2000,0
XWD 0,1000
XWD 0,-2000
XWD ~ 0,1400
XWD 1000, 400
XWD 0,0 .
XWD 0,1000
XWD 0,-4000
XWD 0,1000
XWD 0,0
XWD -1000, 400
XWD 0,0
XWD 100,0
XWD -100,0

 XWD 70,-70
BLOCK 20 |
XWD ~ -3777,0
XWD 0,3777
XWD 400000,400000
XWD 377777,377777
XWD 0,-3777
XWD 3777,0
XWD 0,0

XWD 4000,4000
XWD 0,-100000
XWD -100000,0
XWD 0,100000
XWD 100000,0
XWD . 0,0
XWD 4000, 4000

LSZ:

9-11 .

9.7 Subroutining with a New Box

-This example shows how the Save Register in the Clipper
can be used to see if there is any Area In Common Between
the material about to be drawn and the material shown on the
scope face. If there is area in common, the correct material
is shown; if there is no area in common, the subroutine is
skipped completely. The essence of this routine is the BOX
instruction. : :

The BOX instruction forms a composite transformation from
two linear transformations and places the parameters of the
composite transformation in the window and viewport registers.
The two transformations combined by the BOX instruction are
each specified by two rectangular areas. One transformation
~is the former'window—to-viewportvtransformation. The other
transformation is the transformation from the rectangle of
definition space specified during the BOX instruction itself
into the rectangle of page space defined in the instance
register. : :

Using the boxing instruction requires the following steps:

1. In the main routine, establish the part of page space
to be occupied by the symbol. This is done by loading the
instance register. There are. two methods shown. Loading the
instance register clears the AIC bit, and resets it if the
symbol overlays the window.

2. In the subroutine test to see if there was an overlap

between the old window and the instance space specified; and
if there was none, go to the place where done. «

- 3. Save the old window-to—viéwpoft'transformation by
sinking the window and viewport registers. e

: 4. Establish the portion of definition space to be seen.
The BOX instruction computes the composite transformation, if
any, and puts it into the window and viewport registers.

5. If there was overlap, display the subroutine content,
transforming information from definition space directly onto
the scope. The new transformation (a composite of the old
- window-to-viewport and definition - to. - symbol transformation)
~applies. Coordinates are now treated in definition space.

Repeat steps 1 to 5 recursively if desired.

: ~Typically operation 1 will be done in the main body of
code prior to calling the symbol subroutine. Operations 2
through 6 will be done in the symbol subroutine. Thus, the
~main body of code needs to know only the position-and size
of the desired symbol and does not need to know how much of
~its definition space is used. L .

9-12

This process of calling subroutines with a new trans-
formation is too costly in time and memory space to use for
subroutines producing very simple fixed-size symbols such as
single printed characters. Because it expands a symbol only
if some portion of it is potentially visible, however, it
is worthwhile to use it for relatively complex subroutines or
subroutines for producing variable sized symbols. For
example, each line of text displayed should certainly be
called as a subroutine which makes the BOX test. The indi-
vidual character calls with the line of text, however, would
use simple subroutine calls to the character subroutines.

The character subroutines should use relative specification
exclusively, so that the advance in position of successive
characters in the line is provided by the information stored
in the Save register. : ' :

As a note to the subroutine, the following reviews the
four numerical registers in the clipping divider called the
Window, Viewport, Save, and Instance registers.. Each of
these registers stores a four-component vector.

In the Window, Viewport and Instance registers, these
four components deal with the left, right, bottom and top
of a rectangular area defined by the register. The Window
specifies the region of the page coordinate space to be shown.
The Viewport register specifies the portion of the scope in
which the material is to appear. The Instance register
specifies the portion of page space to be occupied by a
'symbol.

In the Save register these four components specify a
single point in two or three dimensions. In two dimensions,
the Save register contains duplicate information in its first
and last two components, XXYY. (In three dimensions the
Save register contains XZYZ, but in the descriptions that
follow assume only two-dimensional use.) '

The window, viewport and instance registers can be
addressed by the program in two ways: '

1. Individually, as two-component halves.
2. Collectively, as full four-component vectors.

The two-component halves are called (WINDLB, WINDRT,
VIEWLB, VIEWRT, INSTLB, INSTRT) where LB suffix indicates
" the left and bottom sections, and RT suffix indicates the
right and top sections. Thus a specification of LOCLA
WINDLB, [X1,Y1](1) will put X1 and Y1 into the left and
bottom portions of the window register respectively. ‘

9-13

The Window, Viewport and Instance registers can also
be addressed using a relative, rather than an absolute mode
as above. A relative specification of the form LOCLR WINDLB(lq
will load two portions of the Window register with information
derived by adding the new data from memory to the content of
the Save register. o : : ~

A four-component load specification obtains only two
components fresh from memory. ‘The other two components are
made from the data remaining in the Save register. The Save
register always contains the data that was last addressed.

A full four-component load of the Window, Viewport, or Instance
registers (or Save register itself) use the new data and the
data in the Save register just as this data would be used to
draw a line. The two ends of this virtual (invisible) 1line
supply the four components required. :

‘ Suppose, for example, that the Save register contains
. [X1,X1,Y1,Y1]. A relative specification which loads the full
window register might look like this:

LOCLR WIND, [dX,dY](1)

Where [dX,dY] is the address of a register storing dX,dY in its
left and right halves. Such an instruction would generate a
new endpoint, X2 Y2, just as would be generated to draw a line.
The numbers placed in the window register then woqld be: B

X1 + dX

[X1,X2,Y1,Y2] ‘where X2
| | : Y1 + dY

Y2

non

This full window load can be thought of as drawing a virtual
(invisible) line from the lower left to the upper right of the
rectangle desired. ‘

9-14

MAIN:

LL:
SZ:

MAIN:

SY:

SUBR:

DONE:

DEF:

Subroutining With New Box

SETPTA LL

LOCLSR INST,Sz(1)

JMPPSH SUBR

;ETC

X¥D XL,YB.
XWD XR-XL,YT-YB

SETPTA SY

LOCLA INST,SY+1(1)

JMPPSH SUBR

:ETC
XWD XL,YB

XWD XR,YT

JIF @DONE (AICF)

SKCL VIEWLB, (4)

SETPTA DEF
BOXA DEF+1

XQTA T1
DRAWTR P

;ETC
DRAWTR Q

RTCLA WINDRT,(4)
kPEEL

XWD XL,YB
XWD XR,YT

;In The Cailing Routine

;Establish Lower Left Of Symbol

;Put Symbol Data In Instance Register;
This Sets AIC Bit If The Symbol
Overlays The Window. Note: Clipper
Save Register Supplies The Other
Coordinate. ,

;Left Bottom Of Symbol Space
3Size Of Symbol o

;OR Alternative Method - :
;Establish Symbol Space By Loading
Instance--Left Bottom--To Completion--
Right Top : :

;Bottom Left Of Symbol
;Top Right Of Symbol

;The Subroutine Called =

;Test The AIC Bit :
;Save In The Next Four Words Of The
Data Sink The 01d Contents Of The
Window And Viewport '

;Set Bottom Left Of Definition Space
;Pick Up Top Right Of Definition Space
;At This Point The Window And Viewport
Registers Have Been Setup With Their
New Values. See Following ‘

Explanation »
;Draw The Symbol

;Restore Winddw And Viewport From
The Stack ; T '

;Desired part Of Definition Space To
See IR . o

9-15

9.8 3D Stars In Space

This, example draws five three- dlmen51ona1 stars in
locations spec1f1ed by table STARL.

OPDEF LISR [DD+TO+SL] ;LINES SIZE RELATIVE
: LI RCR, -5 , 3 35 STARS

SETPTA STAR1 - 3POSITION FOR FIRST STAR

DRAWST: PSHM RAR ' ;SAVE POINTER FOR STARS
LIPSH RCR,-10 ;10 (OCTAL) POINTS PER STAR
LISR STAR(RPTM) ,;DRAW A STAR
PEEL : sRESTORE RCR, RAR
SETPTA @ yPOSITION FOR NEXT STAR
IJNRCR DRAWST : ,MORE STARS?

STAR1: XWD 100,200 3STAR 1: X=100, Y=200

' - XWD 300,300 5 Z2=300
XWD 40,-70 ;STAR 2: X=40, Y=-70
XWD 120,120 . ; Z=120
XWD 500,0 ' STAR 3: X=500, Y=0
XWD 600,600 ; Z=600
XWD ' 0,0 3STAR 4: X=0, Y=0
. XWD - 20,20 o 3 Z=20
XWD -300,-100 STAR 5: X=-300, Y=-100

: XWD 400, 400 5 Z=400

STAR:" XWD 4,4 ' ,(4 4,4) to (-4,-4,-4)
XWD . 4,4 ' _ :
XWD -4,4 3(-4,4,4) to (4,-4,-4)
XWD 4,4 :
XWD -4,4 3(-4,-4,4) to (4,4,-4)
XWD 4,4 ' '
XWD 4,-4 ;(4,-4,4) to (-4,4,-4)
XWD 4,4 Co ‘ L

9-16

9.9 3D Picture

This example will display a set of parallel squares
equally spaced along the Z axis. The X and Y starting
point for the first square and the number of squares are
controlled by the switches. Note that the directive must
be loaded for 3D operation, and ZTOS must be selected in
addition to OUTPUT TO SCOPE. The RCR is used for two
purposes in this example. ¥First, it is loaded with the
negative of the number of squares requested. The RCR is
then Pushed Marked and loaded with -4 to control repeat mode.
Note that in 3D it is necessary to access two words for
each data point, but the RCR refers to data points, not
PDP-10 words. After the square is drawn with the DRAWTR
instruction, a SETPTR is issued (without reloading the RAR)
which moves Z out 40 units and goes into PEEL mode. PEEL
mode causes the stacked value of the RCR to be unstacked
and, since the PUSH instruction was marked, the mode is
changed back to PROG. The IJNRCR causes the RCR to be
incremented and the PC to be loaded with CNT3S+1 until the :
RCR goes to -1. (The RCR is tested before it is incremented.)

9-17

Squares in 3D Space

TEST3S: DSTART (SHOW3S)
RSW 0
AND - 0,[77]
 MOVN 0,0
HRRM 0,CNT3S
RSW INPT3S

BITSM(INPT3S, [0],[16],X3S)
BITSM(INPT3S, [17],[35],Y3S)
COMBIN (X3S,Y3S,XY3S)

JRST = TEST3S+2

: ,

X3S: 0

Y3S: . 0

INPT3S: 0 |

SHOW3S: LI DIR, 4000
SETPTA PNT3S

CNTSSZ LI RCR, -2

LIPSHM RCR,-4
DRAWTR TAB3S (RPTM)
SETPTR @ (PEELM)
IJNRCR CNT3S+1

JMP SHOW3S+1

PNT3S: XWD 400,400
- XWD 400,400

TAB3S XWD -1000,0

XWD 0,0

XWD 0,-1000

XWD 0,0 .

XWD 1000, 0

XWD ° 0,0

XWD 0,1000

XWD 0,0

XWD 0,0

XWD 40,40

’ ; BITSM AND BITS SUBROUTINES
DEFINE BITSM(A1,A2,A3,A4)
' <JSA 16,BITS

LI Al

LI Az

LI A3

MOVEM 0,A4>
’ ENTRY BITS 5 BITS(X,M,N) GETS BITS M-N OF X
| 0 SET o
BITS: 0 | _

| MOVEM 1,BITS-1
MOVE 0,€0(16) ; X TO ACO
MOVE 1.e1(16) ; LSH ACO M BITS

9-18

LSH
MOVE
SUB

SUBI

ASH

MOVE-

JRA

0,0(1)
1,e2(16)
1,81(16)
1,4D35
0,0(1)
1,BITS-1
16,3(16)

9-19

yAC1 =
yACl1 =
3AC1 = N-M-35

; RIGHT LSH (35-M+N) BITS

'9.10 Moving Cart

- The following éxample shows use of the Matrix Multiplier.
It depicts ‘a simple-minded cart driving around in a circle
with its wheels turning. : : :

STRT:

MOVE 0,RW
FDVR 0,RC

- MOVEM 0,RATIO ;

-~ INCRMT:

SINW
COSW
SINC
COSC

‘RW:

RC:
RATIO:
THETAW:
THETAC:
DELTAW:

BEGIN:
DRACAR:

DSTART (BEGIN) ;
SETZM THETAW ~ ;

MOVE 0,DELTAW

'FADRB 0,THETAW ;

FMPR 0,RATIO

‘MOVEM 0,THETAC ;

SIN (THETAW)
COS (THETAW)
SIN(THETAC)
'COS (THETAC)

Wowonon

RATIO‘= RW/RC
START LDS-1 AT BEGIN
INITIALIZE o

INCREMENT THETAW
INCREMENT THETAC

APPROPRIATE ROUTINES SHOULD BE
CALLED IN HERE TO COMPUTE SINES,

COSINES, ETC. IN FIXED-POINT
SIGNED FRACTIONS.

5 UPDATE MATRICES

MOVE 0,SINW.
HRLM 0,WHLMAT+3
HRRM 0,WHLMAT+3
MOVNS 0

HRRM 0,WHLMAT+4

“MOVE 0,COSW

HRRM 0, WHLMAT+2
HRLM 0,WHLMAT+5
HRRM 0, WHLMAT+5
MOVE 0,SINC
HRLM 0,CARMAT+1
HRRM 0,CARMAT+1
MOVNS 0
HRLM 0,CARMAT+4
MOVE 0,COSC
HRLM 0,CARMAT
HRLM 0,CARMAT+5

"HRRM 0,CARMAT+5

JRST INCRMT
s CONSTANTS
6.0 '

192.0

0
0

0

.001

; LDS-1 CODE
LI DIR, 104000
LOMDIR MD

LOMM 0,CARMAT(4)

LI- RCR, -12
POLAA CART (RPTM)

9-20

;RADIUS OF WHEELS |
;RADIUS OF TURN (300 OCTAL)

;ANGLE WHEELS HAVE TURNED
;ANGLE CART HAS TURNED
sUNIT OF WHEEL ROTATION

3y 3D, MM ACTIVE ‘

; LOAD MM DIRECTIVE

; PUT CART MATRIX INTO A
; DRAW CART ' '

WHEEL:

MD:
CARMAT:

WHLMAT :

WHEEL 2:
WHEEL 3:
" WHEEL 4:

- CART:

LI RCR,
LINAA @ (RPTM) ;

PUSHMM 4,

LOMMP 4,

-6 ;0

(4) MOVE A INTO B

WHLMAT (4) ;MOVE PRODUCT OF WHEEL 1

;MATRIX AND B INTO A

JMPPSH WHEEL ~ ;DRAW A WHEEL
LOMMP 7,

JMPPSH‘WHEBL

WHEELZ(l) RELOAD TRANSLATION

; PART FOR WHEEL 2
3DRAW A SECOND WHBEL

LOMMP 7,WHEEL3(1) ;RELOAD FOR WHEEL 3

JMPPSH WHEEL ;DRAW WHEEL 3
LOMMP 7, WHEEL4(1);RELOAD FOR WHEEL 4
JMPPSH WHEEL :DRAW WHEEL 4
JMP DRACAR ;GO DO IT AGAIN
LI RCR, -4 :DRAW A WHEEL
LINAA WHL (RPTM) ;CONSISTING OF
PEEL » ; FOUR SPOKES
;MATRIX MULTIPLIER DIRECTIVE
XWD 11020,0 ;MOC ON, ALL ELSE OFF
| ;MATRIX FOR CART
XWD 0, 0 - 3COS(THETAC), 0
XWD 0, 0 sSIN(THETAC), SIN(THETAC)
XWD 0, 1 5 0, 1
XWD 0, 0 : 0, 0
XWD 0, 0 : ~SIN(THETAC), 0
XWD 0, 0 ;,COS(THFTAC), COS (THETAC)
XWD 0, -140 sTX, TY
XWD 1000, 1000 STZ, TZ
;MATRIX FOR WHEELS
XWD 1, 0 s 1, 0
XWD 0, 0 ; 0, 0
XWD 0, 0 ; 0, COS(THETAW)
XWD 0, 0 ~ ;SIN(THETAW), SIN(THETAW)
XWD 0, 0 ; 0, -SIN(THETAW)
XWD 0, 0 ;COS (THETAW) , COS (THETAW)
XWD 300, 0 ~3TX, TY (WHEEL 1)
XWD 0, 0 sTZ, TZ (WHEEL 1)
- ;TRANSLATION PART FOR WHEEL 2
XWD 300, 0 S 3TX, TY »
XWD 100, 100 STz, T2
; ", TRANSLATION PART FOR WHEEL 3
XWD 340, 0 sTX, TY
XWD 100, 100 . ;TZ, TZ
R s TRANSLATION PART FOR WHEEL 4
XWD 340, 0 ;TX, TY
XWD 0, 0 - 3TZ, TZ
3 ‘,CART THIS PART DRAWN. BY POLAA
XWD 300, 0 X, Y
XWD 0, 1 3z, W
XWD 300, 0 3 etc.
~ XWD 100, 1 |
XWD 340, D
XWD 100, 1
XWD 340, 0
XWD 0, 1

9-21

WHL:

XWD
XWD
XWD
XWD
- XWD
XWD
XWD
XWD
XWD

XWD -

XWD
XWD

XWD

XWD
XWD
XWD
XWD
XWD
XWD
XWD

XWD
XWD-
XWD

~ XWD
XWD
XWD

XWD
XWD
XWD

XWD

XWD
- XWD

- XWD
END

XWD

100,
340,
100,
340,
100,

0,
340,

o0,
0,
0,

6,
0,

’

O
=)

[

e

O OM | Oy O O s e
: " o

STRT

THIS PART DRAWN BY LINAA

[}

WHEEL

The program continually updates the angle through Which

each wheel has turned, and redefines accordin
through which the cart has turned.

gly the angle
It then finds the sine.

and cosine of each angle and updates the matrices for each.

~ The matrix for the cart has the form:

o
S .
cos 0

0
-sin ec

TX

0 'sin ec

1
0

Y

0
cos

TZ

sin 6 i
c

0
cos ecl;
TZ

.ec

This matrix represents a rotation through angle ec
X-Z plane and a translation by TX, TY, and TZ.

9-22

‘in the

'The matrix for the wheels is defined in the coordinatev
system of the cart. It has the form: «
1 0 0 0
0 “CoSs ew $1n ew _s1n ew
0 -sin ew cos‘ew cos Gw
TX TY - TZ ' TZ

representing a rotation through angle 6 in the Y-Z plane
- and translations of TX, TY, and TZ. Sifice the four wheels
differ only by a translation, this matrix serves for each
with only the last row changing.

Notice that in both matrices the fourth column is a
duplicate of the third. This is so that incoming vectors
of the form:

[x Y z]

will be output in the form the Clipper expects:

[x v z z]

The LDS-1 begins‘bY‘initializing_the directive registers
of the Channel Control and Matrix Multiplier.

It then loads Matrix A with the matrix for the cart,
which moves it 1000 units deep into the screen and down 140
units, and rotates it by the angle 6 _ in a horizontal plane
from its initial position. The datacdefining the cart is.
then passed through Matrix A, coming in the form:

C[x Yy z 1]
and coming out in the form:

[x vy 2z z1]
“where: X' = X cos GC - Z sin ec + TX

Y' =Y + TY
Z' = X sin ec'+ Z cos B_ + TZ

. Then matrix A is copied into matrix B to prepare for
the following step, which is multiplication of the matrix
for the first wheel by the matrix for the cart, with the
result going into matrix A. The data for the first wheel
~is then passed through A, which is equivalent to passing it
first through the matrix for the wheel (which aligns the
wheel properly on the cart) and then passing the result
~through the matrix for the cart, moving the wheel just as
the cart has moved. This equivalence is easily seen by:

Voo, M) o= (VM) e M
' 9-23

Next matrix A is set up for the second wheel, but since -
the second wheel differs from the first only by a translation,
only the last row of matrix A need be updated. This is done
by multiplying a new translation row by matrix B and leaving
- the result in the fourth row of A. The wheel is then drawn
‘again, and it is translated correctly.

The third and fourth wheels are then drawn in similar
fashion, and the whole process is repeated. ~ '

9-24

9.11 3D Surfaces Example

A family of the curves generated in 3D curve mode can
be used to portray a surface patch. Execution of a NEWCRV
instruction causes the matrix multiplier to iterate difference
equations just like those performed along the columns in
drawing curves, but instead along all 16 rods of the array.
Thus, the array is the basic representation of the surface
to be drawn, and the cubic difference equations are iterated
in the columns of matrix A in order to draw each curve segment,
and are iterated in the rods in order to permute A so that it
draws a family of curves. If the transpose map is loaded
with T=10, the rods and columns will be interchanged so as to
draw the same surface patch in the other direction (criss-
cross style). A program to draw surface patches is illustrated
below (using LDS-1/PDP-10 assembly language code):

BEGIN: LI DIR, 2000 ;2D DIRECTIVE
LOMDIR ,D1 ; LOAD MDIR: T=00,MOC,CURVE
LOCLA VIEWLB,VIEWPT(2) ;LOAD CLIPPER VIEWPORT
LI DIR, 104000 ;MM ACTIVE, 3D

: | | -

DRAW: LOMM 0,ARRAY (0) ;LOAD ARRAY INTO MM
LI RCR,-100 s #CURVES /FAMILY
SKMM 0,(4) o :SINK MATRIX A
LIPSHM RCR,-41 ;# LINES/CURVE +1
POLCRV (RPTM + PEELM) ;DRAW CURVE, PEEL COUNT
RTMM 3, (4) sRETRIEVE MATRIX A \
NEWCRV - ;DO ITERATION ALONG RODS

IJNRCR .-5 ; LOOP END TEST

.
b

; NOW DRAW OTHER"WAY | ‘
’ LOMM 'G,ARRAY(14) ;RELOAD FIRST 3 MATRICES

LOMDIR D2 ; LOAD T=10 INTO MDIR
LI. RCR, -40 .

“SKMM 0,(4)

LIPSHM RCR,-101
POLCRV (RPTM + PEELM)
RTMM 3,(4)

NEWCRV
IJNRCR .-5
JMP DRAW

S |

D1: 001045010000 sFIRST DIRECTIVE FOR MM

D2: 0 | ;BECAUSE 3D DATA FETCH
000060000000 | ;SECOND DIRECTIVE FOR MM,

S T=10 "
VIEWPT: XWD -3777,-3777 ;CLIPPER VIEWPORT

XWD 3777,3777

9-25

The above program requires 1,318 memory cycles, and
draws 4,096 lines on the scope. If all the lines appear
on the scope, this picture can be refreshed at about 30

frames/second. Very acceptable patches can be portrayed
with far smaller counts. ' »

9.12 _Timesharihg

- This example program swaps two users on the same scope.
The switches control the time that each user has the scope.
The console lights show which user has the scope by display-
ing one or two. : :

‘Subroutine WAIT is the timeout subroutines.

"SAVV is the subroutine to save a user in an area speci-
fied in the calling sequence. First a pause request is
issued, then, via a DATAO, a new stack is formed and the
status register and PC are both pushed marked. Then the
processor is given control to execute the code at SAVV4 which
saves all other registers plus the registers of the clipper.
Note that the data stack pointer is pushed marked and then
‘pushed marked again after saving the clipper registers.

RESTOR is the routine to restore a user from a saved
area. First the status register is cleared to clear program
stop which was set at the end of the SAVV routine. Then
the stack pointer is set to the top of the stack for the
saved user and PEEL mode entered whiéh causes thc data stack
pointer to be unstacked (the DSP was the last thing pushed
in SAVV and it was pushed marked). Then all registers of
the clipper are retrieved via the restored DSP. PEEL mode
is entered again which restores all registers but the PC,

SR and SP. These three registers get restored via DATAO
instruction and the resume is igsued.

9-27

Timesharing The Scope

TESTSW: DSTART (USER1)

JSA 16,WAIT
JSA 16,SAVV
LI SAVVU1

DSTART (USER 2)
LOOPSW: DATAO PI,[2]

JSA 16,WAIT
JSA 16,SAVV
LI SAVVU2
JSA 16,RESTOR
LI SAVVUl
DATAO ~ PI,[1]
JSA 16 ,WAIT
JSA 16, SAVV
LI SAVWUl
JSA 16 ,RESTOR
LI SAVVU2
JRST LOOPSW
WAIT: 0 .
RSW -
" AND 0,[7777]
WAITI: CONO APR,1000
| CONSO APR,1000
JRST .-1
SOSLE
JRST WAIT1
JRA 16, (16)
USER1: LOCLA VIEWLB,VWU1(4)
LI RCR,-5
POLAR TABSW(RPTM)
JMP USERL+1
USER2: LOCLA VIEWLB,VWU2(4)
LI RCR,-5
POLAR TABSW(RPTM)
- JMP USER2+1
TABSW: XWD 100,100
| XWD -200,0
XWD 0,-200
XWD 200,0
 XWD 0,200
VWU1: XWD -3777,0
XWD 3777,3777
XWD -200,-200
XWD 200,200
VWU2: ~ XWD -3777,-3777
| XWD 3777,0
XWD -100,-100
XWD 100,100
BLOCK 14
SAVVU1: BLOCK 14
| BLOCK 14

SAVVU2: BLOCK 14

9-28

: A SAVED-USER-TABLE ('USERSV')

; -14 LI DSP,(PROGM) ; AFTER SINKING THE CD
; -13 LI RSR, | |
s -12 LI DIR,

: -11 LI WCR,

; -10 LI RCR,

; -7 LI UR,

-6 LI RAR,
-5 LI WAR,
-4 LI DSP,(PROGM)
-3 LI PC,(PROGM)
LI SR, (PROGM)
-1 LI SP,(PROGM)
USERSV: BLOCK 14 ; FOR THE CD

Ve We we e Ve WS Ve we
1
(o]

’
DEFINE IOMBR (A1)
[DATAO DP,Al
» CONSO DP,4000
JRST .-1]

SAVV: 0
MOVE 0,80(16)

HRRM 0,SAVV1

HRRM 0,SAVV4

CONO DP,4000

CONSO DP, 4000

JRST -1

TOMBR(SAVV1)

TOMBR(SAVV2)

IOMBR (SAVV3) |

CONO DP,40000 ; RESUME

CONSO DP,40000

JRST -1

JRA 16, (16)
SAVV1: NWSTKM 0
SAVV2: LIPSHM SR,0
SAVV3: JMPPSH SAVV4 i |
SAVV4: LIPSHM DSP,0 ~ ; 'USERSV' PLANTED HERE

; 'USERSV' PLANTED HERE

PSH 'WAR,
PSH RAR,
PSH UR,
PSH RCR,
PSH WCR,
"PSH DIR,
~ PSH RSR,

SKCL SAVELB, (14)
PSHM DSP,
STOP

9-29

RESTOR:

0
MOVE 0,@0(16)
SUBI 0,14

HRRM 0,RESTR1
CONO DP, 4000
CONSO DP, 4000

- JRST .-1

RESTR1:

RESTR2:

’

IOMBR (RESTR2)
IOMBR([JMP RESTR1])
CONO DP,40000
CONSO DP, 40000
JRST .-1

CONO DP, 4000

CONSO DP,4000
JRST -1

"IOMBR([PEEL])

TOMBR ([PEEL])
IOMBR([PEEL])
CONO DP,40000
JRA 16, (16)

LI 'SP,0(PEELM)

RTCLA SELINT, (14)
PEEL

STOP

LI SR,0

9-30

’; 'USERSV'-14 PLANTED HERE

9,13 Self Mode

This example demonstrates the plotting (SELF) mode.
Two graphs are vlotted; one in the upper left of the screen,
and one in the lower right.

The upper left display uses SELFX; the lower right dis-
play uses SELFY and DO TWICE. SELFX is not given until after
the viewport, window, and instance have been loaded and the
starting point has been set. Then the DOTSRR instruction
is used within three loops controlled by the RCR. After
drawing the graph, SELFX is cleared. When SELFX is being
used, the X data is always 10, since 10 is loaded into the
X portion of the instance register.

The lower right graph uses SELFY and DO TWICE. The
instance is loaded with -40 in the Y portion for the SELFY
~data. This time both an X and Y are given in the DOTSRR
instruction. Normally, the Y would be ignored, but since
DO TWICE is set, the normal X data (20 or -20) is used for
X, then the normal Y data (60 or -60) is used for X.

>
DOTSLF:

SHOWSF

- VIEWL:

 VIEW2: X
. XWD

kSelf Mode

‘DSTART(SHOWSF)
HALF .
LI DIR,2400
LOCLA VIEWLB,VIEW1(6)
SETPTA [XWD 100,4000]
LOCLA CDIR,[§ 1(1)
LI RCR, - 140
DOTSRR [XWD 0,10]
IJNRCR .-1 -
LI RCR. -300
DOTSRR [XWD 0,-10]
IJNRCR .-1 -
LI " RCR.-140
~ DOTSRR [XWD 0,10]
IJNRCR .-1
LOCLA CDIR,1 -
LOCLA = VIEWLB,VIEW2(6)
SETPTA [XWD 4000,10000]
LI DIR,1000
LOCLA CDIR,[3]
LI RCR, -20
DOTSRR [XWD 20,60]
CIJMRCR -1
LI RCR, -40
DOTSRR [XWD -20, -60]
IJNRCR .-1
LI RCR, - 20
DOTSRR [XWD 20,60]
~ IJNRCR .-1
~JMP SHOWSF
XWD -3777,0
XWD 0,3777
 XWD 0,0
XWD 10000,10000
XWD 10,0
XWD 10,0
XWD 0,-3777
3777,0
XWD 0,0 '
- XWD 10000,10000
XWD 0,-40
XWD

0,-40

9-32

2D, CLEAR DO TWICE ‘
N LOAD VIEWPORT, WINDOW,
INSTACE .
SELF X

-

e we

; CLEAR SELF

; DO TWICE

sSELF Y

; VIEWPORT

; WINDOW
'; INSTANCE (DUPLICATE IN-

; FORMATION IN BOTH HALVES)

- CHAPTER 10
MEMORY PROTECTION AND RELOCATION®

10.1 General

The memory protectlon and relocation facilities pro-
vided for an LDS-1 which is interfaced to a PDP-10 operate
* in much the same manner as those provided by the CPU of
the PDP-10. Two areas of memory are provided for the user's
program. These areas are referred to as "low'" memory and
"high'" memory and are mapped separately by the relocation
and protection hardware of the LDS-1 as shown in figure 10.1.
Low memory begins at location 0 (except that the first 17,
locations are not mapped) and high memory begins at location
400000g. The low relocation address is used to map memory
addresses which lie between 20g and the 1limit set by the
"low bounds'". The high relocation address is used to map
addresses which lie between 4000004 (except when low bounds
exceed 4000005 in which case the high relocation takes effect
at the value of the low bounds plus 1777+1) and the limit set
- by the high bounds.

10.2 Memory Relocation Register

Four 8-bit registers and one control bit are used to
implement the memory protection and relocation function as
indicated in figure 10.1. The low relocation register con-
tains the most 51gn1f1cant 8 bits of the relocation address.
The low bounds register specifies the number of 1024,, word
blocks which can be accessed by the lower portion of the
user's program. If the most significant 8 bits of the memory
address are within the limit set by the lower bounds, they
are added to the contents of the low relocation register;
and the result is used as the most 51gn1f1cant 8 b1ts of the
mapped memory address. /

The high relocation register contains the most 51gn1f1-
cant 8 bits of the high relocation address plus 400000,
(using wrap-around modular arithmetic). For example, if the
high memory addresses were to be mapped into an area in memory
beginning with 100000g, the high relocation register would
contain the most significant 8 bits of 500000,. The high ,
bounds register specifies the number of 1024,, blocks (+ the
high 8 bits of 400000s) Whlbh are accessible to the high ‘
memory portion of the user's program High memory can be v
write-protected by setting the write protect bit (see figure
10.1) so that only read cycles are allowed.

10.3 Memory Violation

If the memory address is out of the bounds for both low
and high memory, the memory cycle is not started, and the

10-1

MEMORY PROTECTION AND RELOCATION

Figure 10.1

. .<;I_,:::,::
LOW N
MEMORY ; -
. ~ UR (+400000)
LB+1777 SooL- | ouieH. |)
| S ~ , UR+UB+1777
AN - -
N -, N . o
‘ IL}L}E»GAL RN . - — LR
| - . , qLE
| 4ooooo-. e IR LR+20
UB+1777 MEMORY &~ o~ _ | Low
B o ~LR+LB+1777
ILLEGAL | :
LDS-1 ADDRESS MAPPED ADDRESS
before relocation
0. 7809 16 17 18 25 26 27 34 35
Low HIGH , LOW | HIGH N\
BOUNDS (LB) BOUNDS (HB) RELOCATION RELOCATION
- . (LR) (HR)
1 jWRITE PROTECT
HIGH MEMORY
EXAMPLE OPERATION __ EXAMPLE MEMORY MAP
; i } B
| | 0
Word sent by DATAO 134:004 407 010 500 | — >
(1) 000014 1000014 (2)» 004 |
(2) 002036 012036 (2)—»|LOW
(3) 403764 '103764 » Ok |
' (Read cycle only)| * ILLEGAL PROTECTED
4) 006000 1 Memory Violation B
5) 410235 1 Memory Violation (3,-HHIGH
o T : —400000
, . b | ——r407000 |
LDS-1 ADDRESS MAPPED ADDRESS (5 ILLEGAL » L
| St - | PROTECTED|

MEMORY VIOLATION level is raised which can be sensed by a
CONI word and will cause an interrupt if the ALLOW MAP/
PROTECT INTERRUPT bit of the CONO word is set. The memory
protection and relocation function is enabled by setting
bit 21 of the CONO word. A PDP-10 DATAO instruction is
used to load the four 8-bit registers and the control bit
which sets write protect for high memory. The LDS-1 memory
mapper is device 134 on the PDP-10. Some examples of the
operation of the memory protection and relocation function
are also given in figure 10.1.

10-2

" CHAPTER 11

SWITCHES, BUTTONS, KNOBS AND LIGHTS
(The SBKL Option)

11.1 General

The Evans § Sutherland SBKL Option provides the ,
capability to simply and easily interface Switches, Buttons,
Knobs, and Lights to the display system. The SBKL Option
may include accommodations for between 1 and 4 user consoles,
where each console consists of eight knobs, 16 input switches,
and 16 lights. The SBKL Option provides very simple replace-
ment of the console controls by the customer with controls
arranged to suit 'his convenience since all operator control
boxes are removable from the cables connecting them to the
unit. The operator control boxes themselves contain nothing
"but switches, 11ghts, potentiometers, cables, cable connectors,
and ordinary wire. All electronic parts are located in the
fixed electronic boxes of the SBKL Option. '

11.2 Operation of the SBKL Option

- The SBKL Option contains a register memory of 32 words
for each pair of consoles, each register being 16 bits long.
These registers are accessed in pairs by the LDS-1 as 16
words. These 16 registers may be loaded, stored, sinked or
retrieved by LDS-1 using ordinary group 3 instructions. The -
SKBL Option regularly senses the contents of these registers
and transfers whichever of them are appropriate to the
indicator lights. Similarly, the SBKL Option regularly
senses the position of the switches and transfers them to
whichever of its storage registers is appropriate. And
finally, the SKBL Option regularly senses the voltage output
~of the knobs, converts it to a digital value, and places that
value in its corresponding internal register. Updating of
the information takes place about every 2 milliseconds or
about 500 times per second. Thus, although the programmer
can load or store any of the registers in the SBKL Option,
the registers assigned to switches and knobs will change
spontaneously to reflect the condition of these input devices.

The SBKL Option is a551gned to be dev1ce number 1110
(expanded memory section is 1111) (binary). Thus, the b1nary
representation of a command to access 1t should be: ,

011 xx 1110 aaaa i nann address

where the 011 is the load store group, xx indicates load, store .
or retrieve, 1110 addresses the SBKL Option (first pair of

11-1

consoles), and aaaa is the octal address of the SBKL register
being treated. Multiple load and store operations are possible
and practical: the field nnnn gives the count of registers to
be transferred, where binary 0000 transfers 16 registers, and
binary 0001 transfers 1 register. For 4 user consoles, device
code 1111 is used to access 16 additional registers.

- The régisters‘in a two-console SBKL Option are assigned
as shown below: ' ‘ : -

xxxxxxxxxXLLLLLLLL,,xxxxxxxxxxLLLLLLLL
XXXXXXXXXXSSSSSSSS, , xXXXXXXXxXxXxSSSSSSSS
XXXXXXAAAAAAAAAAXX , , XXXXXXAAAAAAAAAAXX

where the bits "L" drive the lights in order, the bits 'S"

are set according to the position of the switches, the bits

"A" are set according to the position of the knobs, and the
bits "x" are ignored, and will be set to zero on input devices.

- The numerical values of the numbers in these registers
are established by the switches and knobs, and control the
lights. When an "L" bit is set, the corresponding light will
be 1it. When a switch 'is set in the neutral position, the
corresponding '"S'" bit will be zero; when the switch is '"closed,"
(on the standard tabletop unit, that means either pushed upward
[for spring return] or locked downward [until manually returned])
the corresponding '"S'" bit will be a one. For the knobs, the
value of A can range from 0000000000 to 1111111111. The value
0000000000 corresponds roughly to one extreme or knob rotation,
the value of 1111111111 corresponds to the other extreme or knob
rotation. Thus, the number AAAAAAAAAA should be considered to
be a 10-bit unsigned binary quantity. No sign extension is
provided; the x bits will appear always to be zero.

; ~The full range of possible values for AAAAAAAAAA may never
be reached. For one extreme of knob rotation, a small but non-

zero value will be read; for the other extreme of knob rotation,
a value slightly less than 1111111111 will be read. The pro-
grammer must measure these values and interpolate properly
between them. The readings obtained at the extreme of knob
rotation may vary slightly from time to time.

In programming with the SBKL Option, it is well to remem-
ber the sampling rate properties of the devices. Each knob is
sampled about every 2 milliseconds or about 500 times per '
second. Thus, the values read will remain the same for about
that period of time even if the knob is actually being turned.

11-2

- Pair No (octal) -

THE STANDARD SBKL CONFIGURATION»

vf o. Knob 0 (X) Knob 0_(Y)
1 Knob 1 (X) Knob 1 (Y)
-2 Knob 2 (X) Knob 2 (Y)
kUSER 3 Knob 3 (X) Knob 3 (Y)
#; 3 4 Switches (1-8) Switches (9-16)
5 Unused Unﬁsed
6 Lights (1-8) Lights (9-16)
L 7 Unused Uﬁused
10 Knob 0 (X) Knob 0 (Y)
T ‘Knob 1 (X) Knob 1 (Y)
12 Knob 2 (X) Knob 2 (Y)
USER ' 13 Knob 3 (X) Knob 3 (Y)’
2 14 ‘ _Switches (1-8) Switches (9-16)
15 B Uﬁused ' ____Unused - _
16 ‘Lights (1-8) Lights (9-16)
L 17 | ~"Unused’ | Unused

~ Figure 11.1

11.3 Instructions

Since the SBKL Option can be configured in several
ways, it is '"legal" to load, store, sink or retrieve any of
the 16 registers. In any given configuration, of course,

there are nonsensical combinations, like loading registers
connected to switches. S o

All of the instructions defined in this section should
be used only in 2D. The registers are numbered 0-17,.

LOSBKL
To load a register‘pair,»use the instruction:
‘LOSBKL REG, ADDR(COUNT)

to specify the COUNT register pairs, starting at REG, are
to be loaded from core beginning at ADDR.

STSBKL
To store a register pair, use:
STSBKL REG, ADDR(COUNT)

specifying that COUNT register pairs starting at REG are to
be stored into memory locations beginning at ADDR.

SKSBKL

Register pairs may be pushed onto the data sink by the
instruction: v _ _ ' ~

SKSBKL REG, (COUNT)

which'pushes,COUNT register pairs'starting at REG onto the
data sink. v ' ' ‘ : :

RTSBKL |

Register pairs that have been pushed onto the data7sihk

may be retrieved by the instruction: '
RTSBKL REG, = (COUNT)

specifying that COUNT register pairs counting backward from

REG are to be retrieved from the data sink. Thus, the order
of retrieving is the reverse of the order of sinking, so that
each register pair receives its proper former value. ‘

11-3

The instructions above apply to any SBKL configuration.
A set of higher level mnemonics have been defined for the
standard configuration, consisting of eight X-Y pairs of knobs,
one set of sixteen switches, and one set of sixteen lights.

STKNOB
To interrogate a peir of knob settings, use the instruction:
STKNOB ~ NUM, ADDR (COUNT)

spec1fy1ng that knob pairs startlng at pair number NUM are to
be stored into core at location ADDR. Knob pairs are numbered
0 - 3. COUNT should not be 0 or omitted, as this would specify
16 pairs, and NUM + COUNT should not exceed 4,

For example, the instruction:
STKNOB 2, LOC(2)

would store the values of knob pair 2 into location LOC and
- knob pair 3 into LOC+1.

STSWCH

To 1nterrogate the switch sett1ngs, use the 1nstruct10n

 STSWCH ADDR

where ADDR is the memory location in which fhe switch settlngs
- are to be stored. This instruction has a built-in COUNT of 1,
and therefore thls field should be omltted

The memory word w111 correspond to the sw1tch settlngs 1n1
the following way: :

xxxxxxxxxxSSSSSSSS,,xxxxxxxxxxSSSSSSSS
where the two groups of S's correspond to the two banks of
switches and the x's are always 0. An S of 0 means the switch
is in the neutral position; and S of 1 means the switch is up
: (for spring return) or down (for manual return)

"LOLITS

. To load the reglster dr1v1ng the 11ghts, use the
1nstruct10n : :

LOLITS 'ADDR

- where ADDR contains the de51red light settlngs, and a bu11t 1n7
COUNT of 1 is supplled ‘

The memory word should look like this:
xxxxxxxxxxLLLLLLLL xxxxxxxxxxLLLLLLLL

- where the groups of L's drlve the two banks of 11ghts (L =
“turns on a light, L = 0 turns it off) and the x's are 1gnored

11-4

© CHAPTER 12
LDS-1 TABLET INTERFACE

12.1 ‘Function

The LDS-1 Tablet Interface is an optional accessory
to the LDS-1 Display Processor. Although it was designed
primarily for tablets, it may be used in conjunction with
any two-dimensional position encoder, ~and allows program-
controlled transfer of single or multiple words from the
encoding device to memory. The single word operation is
useful for pointing and control functions, while multiple
word operation is used primarily for automatic "inking".

12.2 Programming.

The tablet interface is controlled by program flag
4 (PF4), and tablet Z values may be read by testing
program flags 5 and 6. Words are written into memory at
the location specified by the processor Write Address
Register (WAR), and the number of words to be transferred
is specified by the Write Count Register (WCR), exactly
as in memory-to-memory operation. The word(s) written into.
memory have X in the left half and Y in the right half.
The tablet center is (0,0), the upper right corner is
(3777,3777) and the lower left corner is (-3777,-3777).
This coordinate system is exactly like that ot the scope.
If the tablet (or other device) has less than 12 bits
resolution, then the unused bits will be 0's (i.e. for a
10-bit tablet, the two rightmost bits of the left and right
halves will be 0). L :

The tablet interface includes a timer(nominally 20
milliseconds) which is used to meter out inking points at
a reasonable rate. The timer is initiated following
each but the last write in a multiple transfer, and inhi-
bits transfer of data for its duration. This allows single
transfers to occur as rapidly as desired, but slows down
multiple transfers. : ' e v

- Tablet writing is enabled by setting PF4 and disabled
by clearing PF4. PF4 is automatically cleared by ''system
clear" and by a positive WCR. The WAR and WCR should be
loaded before setting PF4. The usual coding for a single
transfer is: o ' RIS o ‘

LI WCR,-1
LALST ~ WAR, WHERE(PF4)
JIE . (PF4) ;PF4 CLEARED WHEN DONE

12-1

Mu1t1p1e transfers require a buffer area. One good
display this buffer using a window of

strategy is to

- (3777,3777) size a

bsolute, and to fill it initially w1th‘

values outside this window. In this way, the inking points
will appear as they are wrltten into memory. Example:

.
’

TSETUP:

LI
SETPTA
LI
STCL

- IJNRCR

. LINK TO

INK:

IBUF

LI

LALST
PEEL

5 SETUP SUBROUTINE FOR INKING

"RCR -400

[XWD 400000,400000]
RAR, IBUF

SAVELB, @ (2)
S-1

WCR, -1000

WAR, IBUFE (PF4)

THIS SUBROUTINE TO DISPLAY INK

LOCLSA

LI
DOTSAA
PEEL

BLOCK

WIND, [XWD 3777,3777] (1)
RCR,-1000
IBUF(RPTM) ; OR POLAA IS NICE

1000

12-2

12.3 Additional Programming Hints

Use of a tablet requires some periodic checks, which
are generally done at the beginning or end of each complete
display frame. To show the program user where he is point-
ing, 7read the tablet each frame and display a cursor at
this point. This is not necessary (or possible) during
inking, but while inking the Z value given by the tablet
should be checked each frame to see if the pen has been
lifted and the inking should be stopped. When using the
tablet for pointing (i.e: at light buttons, picture features)
there are two basic strategies. The first is to test once
each frame (usually at the beginning) whether the tablet
is pointing at any of a list of features. The second is to
leave the tablet position in a particular memory location
and incorporate the tests into the code for each feature.
The first method is often preferred if the pointing is to
perform a gross change (such as selecting another picture)
and if the items pointed at are relatively static (such as
light buttons). The second method is often necessary for
more complex interaction. s :

One generally thinks of the boundaries of the tablet
corresponding to the boundaries of the scope, or perhaps
of some viewport on the scope. Pictures are defined in page
coordinates, which bear an indirect and perhaps a variable
relation to the scope. For hit tests, it is necessary to
- map the tablet position '"backwards" from scope to page.

- Consider the place pointed at to be a small square on the
scope, centered on the position of the tablet with a "palsy
allowance'" defined by the size of the square. S

e
W1

v | vi)

W2

W3’ o : N _ e v1 ~/)

SCOPE

TABLET SQUARE

12-3

Each time a window/viewport combination is loaded, we can
call a subroutine which sinks the window and v1ewport
then exchanges them, loads the tablet square as an 1nstance,

tests area-in-common; and .if there is AIC, does a Box operation
(master doesn't matter). The new

view ort result of the
Box operation is the appropriate window for hit testing.

12-4

CHAPTER 13

"~ LORGNETTE COLOR/STEREO SYSTEM

13.1 Introduction

~ The Lorgnette (pronounced '"Lorn-yet") is a light-weight,
- hand held viewing system which, with associated electronic
circuitry, permits the user to observe computer generated
displays in programmed color or stereo or both. The Lorgnette
system allows several viewing units to be driven in exact
synchronism, thus enabling multiple users to see the color
and/or stereo pictures simultaneously. »

C 13,2 Pr1nc1ples of Operation

The basic Lorgnette system includes two motor driven

- viwing units. Each viewing unit contains a six-segment disk
which rotates at about 10 revolutions per second, inside a
-transparent plastic housing. The user holds the viewing unit
directly in front of his face so that the axis of rotation,

if extended, would pass directly through the bridge of his
nose. The user's eyes look through diametrically opposite
sides of the rotating disk. Marks are provided on the front
of the viewer hou51ng ‘to assist in malntalnlng correct V1ew1ng
-allgnment.

Three viewing disks are furnished with each viewing unit,
and are easily interchangeable without tools. These disks are
keyed so that they can be installed on the motor hub in only
one position. The color disk is used for viewing displays in
color and contains segments in the order red, green, blue, red,
green, blue. A second disk contains segments in the order
clear, opaque, clear, opaque, clear, opaque. This is the stereo
disk and provides for uncolored stereo viewing because the
user's left and right eye views are alternately blanked by an
opaque segment. The final disk is the color/stereo disk and
contains segments in the order red, opaque, blue, opaque, green,
opaque. This disk permits the,viewer’to;see colored stereo s
pictures. ' : o R :

The color or stereo effect of the Lorgnette is achleved
because successive frames of information presented on the dis-
play are seen by the user through different filters. This
technique of color or stereo viewing is known as '"field se-
quential" color or stereo. The eye retains the images seen and
fuses them 1nto a single colored or three dlmen51ona1 1mage.

13-1

For example, if a stereo image is to be seen, the clear and
opaque disk will be used. The user will see alternate frames
with each eye. If these frames represent slightly different
perspective views of a three-dimensional object, the user's
eye will fuse them into a single three-dimensional impression.
This form of "time division stereo" works just as well as the
more usual "space division stereo" in which the separate images
are presented simultaneously but separated for the two eyes by
optical means. Observers without Lorgnette viewing units will
see both images super-imposed on the screen and will not get
the stereo effect. : ‘ o :

The rotation of the colored disks and the presentations
of the pictures on the CRT must be synchronized. Information
to be seen by the users as '"red" must be presented during the
‘time that the red segment of the disk is in place in front of
the user's eyes. Obviously, all disks that are used on a single
display must themselves be driven in exact synchronism. If the
display is to be sunchronized to the rotating disks, signals
must be provided to the Lorgnette system. It is the purpose of
the Lorgnette Power and Synchronization unit to provide for all
such synchronization signals.

Color pictures can be seen on any display with the Lorgnette
but because many blue and green phosphors are deficient in red
output, the red colors may be weak. Stereo presentations require
that the right eye image be extinguished before the left eye is

uncovered by the rotating disk. Thus, a fast-decaying phosphor
~ is required for stereo presentations. The well-known television
phosphor, P4, is suitable for both stereo and color because it
is both fast and white. AR ‘ a ‘

13.3 The Lorgnette Motor Drive Circuit

The Lorgnette is made possible by a special ‘type of syn-
chronous motor. This motor has a permanent magnet rotor and a
four-phase star-connected stator. Electronic detectors within
the motor detect the position of the rotor. The signals de-
livered by these detectors are used to control the currents in
the stator so that the motor will start and run at approximately
the correct speed. In addition, synchronous running currents
are provided to ensure that all of the motor units turn in
exact synchronization. ' ‘ s

The synchronous drive currents and the starting and -
damping drive currents combine to provide for stable synchronous.
operation of the motor. The starting currents provide a torque
on the motor which decreases with the motor velocity. 'The
synchronous running currents provide a torque on the motor which
is proportional to the error in the motor's position from proper
_phase. . _ '

13-2

The damping term is. very important. Without proper
damping, any synchronous drive system will "hunt'". In the
Lorgnette system, this damping is provided by decreasing the
starting torque as the Lorgnette velocity increases. When
correctly adjusted, the starting torque should be just suf-

- ficient to drive the motor against friction and windage at

about the correct synchronous speed. A TOGGLE-SWITCH is pro-
vided on the Lorgnette Power and Synchronization panel to
remove the synchronous drive while adjusting the starting and
damping torque. When this SWITCH is UP, the Lorgnette motors
should neither speed up nor slow down. Each motor has a screw-
~driver adjustment, accessible from the front of the panel,
which changes the magnitude of the damping term. The poten-
tiometer is just sufficient to drive the motor against friction
and windage about synchronous speed. When correctly adjusted,
the motor will neither speed up nor slow down when the syn-
chronous drive is interrupted by FLIPPING the SYNC SWITCH UP.
‘Because the Lorgnette motor will operate satisfactorily over a
wide range of misadjustment, the adjustments can be checked
infrequently. FOR NORMAL OPERATION, THE SYNC SWITCH SHOULD BE
IN THE '"DOWN" POSITION.

13.4 Lorgnette Synchronization

Synchronizing signals for the Lorgnette motors are pro-
vided by the clock card. The clock card accepts a driving
signal of about 120 Hz and provides for drive of the motors of
one-twelfth of the drive frequency. The Lorgnette system is
delivered with the synchronization drive derived from the power
line, but other drive signals between about 100 and 150 Hz can
be used. The drive signal must be sufficient to switch the
one-shot multivibrator located on the clock card. Signals which
vary between about ground and about +3 to +5 volts will work
Signals larger than +5 volts should be avoided.

~ The one-shot multivibrator drives a six-stage shift
register. The output of the shift register is fed back to its
“input in such a way that a unique shift register sequence is
. generated. This shift register sequence has 12 unique states
which are shown below. Alternatively, the shift register
sequence and timing signals might be provided by the computer
to which the Lorgnette system is connected : ’

- The Shlft register outputs are used to generate two sets
of signals. One set of signals is wused to drive the motors.
These signals are equally spaced in time and each two-twelfths
of a period long. The four signals are equally spaced in time
. so that there is a one-twelfth time period between them when

~none of them are high. The synchronizing signals are disabled
whenever the SYNC switch is UP. The other set of signals o1,
92, and 93 are used to indicate the p051tlon of the disks to

13-3

the computer. These signals change six times during a complete
cycle. In addition, every other output pulse of the multi-
vibrator itself is provided to the computer on a line called

- "CLOCK'". This CLOCK signal is an indication that the joint be-
tween segments of the disk is in front of the observer's eye.
The multivibrator delay is set at the factory to about four
milliseconds. '

SHIFT REGISTER SEQUENCE

81 92 93 Color Disk Steieo Disk Color Stereo Disk

0 0 0 Red . Right ~ Red Right
1 0 0 Green Left o Green Left
1 1 0 Blue - Right o Blue Right’
11 1 Red Left ~ Red Left
0 1 1 Green - Right Green Right
0 0 1 Blue Left | vB1ue Left |
Fig. 1

Obviously, the phase relationship between the phasing
signals delivered to the computer and the actual position of
the disks must be adjusted to match. Each Lorgnette motor.
and viewing unit has a mechanical phasing adjustment. This
‘adjustment is achieved by rotating the motor mounting disk with
respect to its housing. The motor mounting should be adjusted
so that the color disk segments correspond to the output coding
and so that the transition between colors occurs at the center
of the multivibrator pulse. This adjustment should change very
little from time to time and so a few degrees of rotation should
suffice. The motor housing disk has a mark put on it at the
factory to indicate approximately the correct phasing. This

- mark should be at or near the center of the handle. If the

motor is removed from its mounting plate or the hub for mounting
disks is removed, the mark may. have to be moved. o

A quick check of phasing may be performed by connecting
an oscilloscope to the test BNC jack located on the panel and
setting the horizontal sweep and triggering until 3 complete
cycles of the waveform are stationary on the screen. When
viewed through the Lorgnette, the trace should be solid color
during the time the waveform is '"low" and the transition be-
tween colors should occur while the waveform is 'high".

13-4

13.5 Power Supply and Regulator

The Lorgnette contains its own power supply and filter.
This power supply provides a reference voltage and regulated
voltage to each of the motor driver cards. The reference
voltage is. regulated by a zener diode located in the main power
supply and is used to supply +5V to the clock card integrated
circuits. :

The regulated voltage is supplied by a series regulator
located on the regulator subassembly and furnishes power to
the motor driver cards and the motors. It is factory adjusted
to +8.0 volts and normally should not be changed. Refer to
the Maintenance Manual for adjustment procedures.

13.6 Interfating the Lorgnette

The signals &1, &2, @3 and the CLOCK destined for the
computer are delivered to the level shifter card. The level
shifter card takes special power voltages and ground from the
computer and.delivers the three ¢ signals and the CLOCK at the
electrical levels approprlate to the particular computer in
question. » :

‘ Level connectors are available for 0 and -3 volts (DEC
standard), and 0 and +5 volts (TTL levels). The appropriate
level shifter card will be supplled for the particular computer
to which the Lorgnette system is applied.

13.7 Programming the Lorgnette

: There are four signals coming from the Lorgnette to in-
dicate the color in front of the eye. Three of the four levels
‘indicate the color and the fourth 1nd1cates when the other three

levels are valid.

: v ,The.valid bit (valid when low) is called '"'clock enable"

and wired to program flag 7 in the Channel Control STATUS
REGISTER (SR). The three phase signals come in as program flags
14, 15, and 16. Phase 0 is on 14,phase 1 is on 15, and phase 2
is on 16. ' : » ’

These four levels can be sensed by use of Group 2
~instructions: :

kConditiOn Tests .
 PF 7" ’ , Clock enable (low for ok)
PF14 Phase 0
PF15 v - Phase 1
PF16 Phase 2

13-5

The color codes are as‘folloWs:

Condition

7 14 15
0 0 0
1l 0 0
0 1 0
1 1 -0
0 1 1
1 1 1
0 1 1
1 1 1
0 0 1
1 0 1
0 0 0
1 0 0

. : |
e e OO0 O lo'

‘Stereo

Right
Changing

" Left

Changing
Right
Changing
Left

- Changing

Right
Changing
Left
Changing

Red
Color

Green

Color

Color

Changing
Changing

Blue

Color
Red
Color
Green
Color
Blue
Color

Changing
Changing

Changing

Changing

Color Stereo

Red - Right

~Color Changing

Green - Left
Color Changing
Blue - Right
Color Changing
Red - Left
Color Changing
Green - Right
Color Changing
Blue - Left
Color Changing

The following is a programming example, using the
Lorgnette on the Evans § Sutherland Line Drawing System,
A blue box is seen very
-close to the observer; a green box at an intermediate distance;
and a red box very far away. ‘

- Model 1,

to draw a set of boxes.

13-6

LORGNETTE TEST, DEMO, AND PROGRAMMING EXAMPLE

’
’
’
.
H
’
H
b

(PDP-10/LDS-1)

VALID BIT IS CONDITION 7,
- CODE IS CONDITIONS 14,

LORGNETTE CODE:

CODE
000
100
110
111
011
001
000

’
?
’
’
’
’
b
b
?
>
3
.
’
b
b
b
’
b
?
é

HALT
LDS 1 CODE:

DISPAT. JIF
JIF
LI
IJNRCR

JIF
JIF
JIF
JMP
JIF

ER R R R R

COLOR
RED
GREEN
BLUE
RED
GREEN
BLUE -

[l "N el - B ol N s

ETC.

START: DSTART(DISPAT)

e. (PF7)
. (PE7)
RCR,-10

. +4 (PF14)
C011 (PF15)
C001 (PF16)
Co00

@C100 (PF15)

15,

13-7

AND IS VALID IF 0
16, AS SHOWN BELOW

THE CODES APPEAR IN THE ORDER SHOWN --
THE COLOR/STEREO WHEEL COMBINES COLOR & STEREO
ACCORDING TO THE ABOVE TABLE --

;PDP-10 CODE TO START LDS-1

s FALLS OUT WHEN JUST BECAME'VALID
; DELAY
;(01X) GRN R

; (001) BLU L
,(000) RED R

; (10X) GRN L

C000:
C100:
;
C110:
S
C111

C011:

C001

BOX:

BOXT:

JIF
JMP

SETPTA
JMPPSH
JMP

SETPTA
JMPPSH
JMP

SETPTA
JMPPSH
JMP

SETPTA
JMPPSH
JMP

SETPTA
JMPPSH
JMP

SETPTA
JMPPSH
JMP

LI

LIPSHM
DRAWTR
IJNRCR
PEEL

XWD
XWD
XWD

XWD

END

@C110(PF16)

C1l11

[XWD -400,0] -
BOX
DISPAT

[XWD 0 ,0]
BOX
DISPAT

[XWD 400-100,0]

BOX
DISPAT

[XWD -400,0]
BOX
DISPAT

[XWD 0-40,0]

BOX
DISPAT

[XWD 400,0]
BOX
DISPAT

RCR,-40

RCR, -4

BOXT(RPTM+PEELM)
-2

- 100,0

0,100 -

'100,0

0,-100

 START

- 13-8

; (110) BLU R
:(111) RED L

; RED RIGHT

; GREEN LEFT

; BLUE RIGHT

;RED LEFT

; GREEN RIGHT

:BLUE LEFT

13.8 Special'Applicationé

The

Lorgnette disk normally rotates clockwise as viewed

in the normal way, that is, from the shaft end of the motor.
The color sequence is red, green, blue, with the color indi-
cating signals as shown in Table 1. With such rotation, an
observer's right eye looks through the color filters which
move down, and the left eye looks through color filters moving

up.

For
~both eyes
down. To
should be
units, as

television applications, it may be desirable to have
observe the screen through wheels which are moving
accomplish this, two Lorgnette motor and viewing units
used. The observer will put his nose between the two
shown in figure 2. The direction of rotation for the

left eye should be clockwise, the direction should be counter-

clockwise

for the right eye.

13-9

TECHNIQUE FOR VIEWING RASTER PICTURES

/;d‘“&\i('¢fﬁﬁ\.‘
B ' ,4‘ {
;N\
CLOCKWISE COUNTER CLOCKWISE
‘Rotation = : Reverse Rotation

- LORGNETTE

RIGHT
EYE

"FIGURE 2

APPENDIX I
LDS-1 PROCESSING TIMES

The LDS-1 will process and display an "average" picture
(i. e. a picture with a typical distribution of long and
short lines) of 2500 lines. This figure includes use of
full pipeline processing. If more lines than this are pre-

sented, the picture may begin to flicker.

Because the LDS-1 operates as an asynchronous pipeline,
it is not always significant to calculate how long an indi-
vidual instruction will take. Group 0 instructions, which
require only the Channel Control to execute require 2.5 micro-
- seconds, but if these instructions are executed while other '
parts of the pipeline are still processing previous data,
these instructions may be performed without adding to the
total processing time for the system. ' .

The Matrix Multiplier will multipy the incoming data
by the transformation matrix in from 6 to 10 microseconds
(depending on the setting of the Matrix Multiplier clock).

The period of the Clipping Divider clock is 0.5 usec.
We are attempting to operate the clock considerably faster
than this, probably in the 0.35 usec. region. Clipping
Divider processing of dots and lines starts with 5 clock
times of '"setup." Center size specification and processing
dots requires one additional clock time during the "setup'
phase. Processing then proceeds to the "clipping" step,
in which any portion of the picture outside the window is
eliminated. Dots require only a single clock time in this
phase of the computation. The time required for a line
depends on its position relative to the window. If both
ends of a line are within the window, the "clipping'" phase
is completed in 1 clock time. Otherwise the processing time
is from 1 to 20 clock periods, tending toward smaller times
if the line is entirely outside the window. The maximum
clipping time is [log, L] clock periods where L is the larger
of the X and Y line lengths. If the dot or any segment of the
line was within the window, the processing then proceeds to
the perspective division and the window-to-viewport mapping.
-The processing time here, following 1 "setup" step, is from
1 to 20 clock times depending upon the size of the window =
and the viewport. The maximum processing time will be [log2 W]
clock periods where "W" is the larger of the dimensions of the
viewport or the larger of the dimensions of the window, which-
ever is smaller. The worst case for processing lines is 46
Clock times (for 20 bit numbers) or 42 clock times (for 18
. bit numbers) and the best time for rejecting a line is 6 clock)
times. Sending to memory requires several clock times, sending
to the scope requires fram 1 to 2 clock times, and sending
depth cueing information to the scope requires several clock
times. ’ , - _

AI-1

After the usual "setup" operations, boxing requires 2
clock times for determining that the window and instance have
no area in common, or from 12 to 31 steps to compute a new
window and viewport. Loading and unloading Clipping Divider
viewing parameters requires from 4 to 6 clock times.

AI-2

 APPENDIX II
'MNEMONICS

 II.1 The Instructions

MNEMONIC

GROUP 0

LI----
PSH-
JMP- - -
NWSTK-
XQTA

NOP
XQT
 RPT
PROG
PEEL

GROUP 2

LIF--
LAL--
JIF--
JAL- -
CL
ST
CM

IJ--CR
STOP

GROUP 3

NOMM
'PUSHMM, POPMM

GROUP 4

SETPT-
DRAW- -
LIN--
POL--
DOTS- -
STAR--
BOX- -

ARGUMENTS

CC REGISTER,DATA(NEXT MODE)
CC REGISTER, (NEXT MODE)
ADDRESS(NEXT MODE)

ADDRESS (NEXT MODE)

ADDRESS

'THE ADDRESS PART IS IGNORED

CC REGISTER,DATA(CONDITION)
CC REGISTER,DATA(CONDITION)
ADDRESS (CONDITION)
ADDRESS (CONDITION)

(CONDITION)
(CONDITION)
(CONDITION)

~ ADDRESS

THE ADDRESS PART IS IGNORED

REGISTER, ADDRESS(N)
REGISTER , ADDRESS (N)
REGISTER, (N)
REGISTER, (N)

(MAX. COUNT)
MM-REGISTER, (N)

ADDRESS-OF DATA(NEXT MODE)
ADDRESS-OF-DATA (NEXT MODE)
ADDRESS-OF-DATA(RPTM)

-ADDRESS-0OF-DATA (RPTM)

ADDRESS-OF -DATA (RPTM)
ADDRESS-0OF-DATA (RPTM)
ADDRESS-OF-DATA

CAII-1

INDIRECT BIT

xR
ALWAYS SET

NO JUMP

NO SP-CHANGE

ALWAYS SET
ALWAYS SET
ALWAYS SET
ALWAYS SET
ALWAYS SET

REVERSE DECISION
7 kR .)

REVERSE DECISION
NO JUMP

ALWAYS SET
ALWAYS SET
ALWAYS SET
REVERSE DECISION
ALWAYS SET

X .
x &

ALWAYS SET

ALWAYS SET
ALWAYS SET
ALWAYS SET -

s
% %
*k
Xk
%%
%%
®%

GROUP 5 : ‘
LINI-- ADDRESS-OF-POINTER (RPTM) : L RR

POLI-- ADDRESS - OF- POINTER (RPTM) - A%
‘GROUP 6

---CRV . (NEXT MODE) | ~ ALWAYS SET
GROUP 7 |

DOCHAR ADDRESS-OF - DATA (RPTM) o k&

**If the indirect bit is set, the information in the address
field of this instruction is not loaded into the processor.
Memory address registers used will be incremented after use
in the normal manner.

©AII-2

I1.2 Construction of Mnemonics for E§S Display Codes

GROUP 0

. L ' —Mark
Load Immediate ~-PuSH old value - | -
—PuSH marked return address ; ‘ —Mark
Juwp —f = NeW STacKk—

NOP , XQTA , XQT , RPT , PEEL , PROG

GROUP 2 :
' ‘ - —— CLear
Load immediate- .IF condition holds » SeT
Jump ' I i ALways— Rt
- . ' , }— CoMplement
STOP : _
~Positive —RCR
Increment and Jump if- .]-
- =Ump —Lgpgative" —WCR -
GROUP 3
| ——Matrix Multiplier DIRective
o absolute
—Matrix Mpltiplier———{ggelative
Product .
' —Size— ——Absolute
LOad———CLipping Divider—

Relative
‘——fgharacter §pbb1e

——Switches, Buttons, Knobs and Lights

——LIghTS

AII-3

—Matrix Muitiplier DIRective
f—Matrix Mpltiplief

STore —F—CLipping Divider

' ~——Qharacter gubble.
4-~§witchés,,§pttohs, Knobs, and Lights
—KNOBs |

—SWitChes

—Matrix Multiplier DIRective

St

——Matrix Multiplier-—L~ _
, and Slide

, o Size— —Absolute
gelrieve-**QLiPPingvDiVider‘{:;;____J*_L_Re1ative

—-gharacter Bubble

___§witches, Buttons, Knobs, and Lights

—Matrix Multiplier DIRective

-*-Matrix Mpltiplier-[:

, and §iide
§in§f—f-——géipping Divider

——Character Bubble

—Switches, Buttons, Knobs, and Lights

NOrmalize —

PUSH—— 1 Matrix Multiplier

¢ ——

POP—oo

—

AIT-4

GROUPS 4 and 5

SET PoinT

, ——To
DRAW— = |

._Erom_l

BOX:

- LINe

POLygon

- STAR

Indirect—

direct——

I.*§ize_J’

' ~'~~--1_§_bsoluté

~——gpsolute———

—————

DOTS

GROUP 6

SET

DRAW——o/

POLygon-

" DOT-

NEW

* GROUP 7

DO CHARacters

CuRVe

AII-S

Relative—

—Relative

I1.3 Definition of Arguments for the E§S Dlsplay System
Instructions :

- THE DISPLAY PROCBSSOR (DP-REGISTER):

RAR = 0

WAR = 1

PC = 2

- SP = 3

PL = 4

P2 =5

DSP = 6

UR = 7

RCR = 10

WCR =11

DIR = 12

RSR =13

SR =14

NEXT = 17

THE MODE (NEXT MODE) :
| XQTM = 10
RPTM = 4
PEELM = 2
PROGM = 1

CONDITIONS WHICH MAY BE CHECKBD (CONDITION):

PFO = 0 Program Flag #0

PF1 = 1 Program Flag #1

PF2 = 2 - Program Flag #2

PF3 = 3 - Program Flag #3 g
PF4 =, 4 Tablet Read Slgnal
PF5 = 5 Tablet Z Value

PF6 = 6 Tablet Z Value

PF7 = 7 , - Lorgnette Clock
RCRN = 10 - RCR Less Than -1.
WCRN = 11 o . WCR Less Than -1
HITF = 12 - Hit Flag

AICF = 13 : : - Area In Common Flag
PF14 = 14 Lorgnette Color Code
PF15 =15 Lorgnette Color Code
~PF16 =16 Lorgnette Color Code

= 17 ' Stop Flag B v

STOPF

CAIL- 6

THE CLIPPING DIVIDER REGISTERS (CD-REGISTER):

SAVELB = 0 : Two Components
SAVERT = 1 Two Components
VIEWLB = 2 Two Components
VIEWRT = 3 Two Components
WINDLB = 4 Two Components
WINDRT = 5 Two Components
INSTLB = 6 Two Components
INSTRT = 7 Two Components
NAME = 10 Two Components -
CDIR =11 Two Components, Second Ignored
HITANG = 12 Two Components, Hit Count + Angle Count
SELINT = 13 Two Components, Select + Intensity
SAVE = 14 Four Components '
VIEW = 15 Four Components
WIND = 16 Four Components
INST = 17 Four Components
THE CHARACTER BUBBLE REGISTERS:
FONT = 1
CHAR = 0
THE SBKL REGISTERS:
LITS = 6

SWCH = 4 ‘
BITS FOR THE DIRECTIVE REGISTERS:

DIR BITS | CDIR BITS -
JWMA = 1006000 STOS = 100000000000
KMMA = 40000 STOM = 40000000000
~ JNO = 20000 2T0S = 20000000000
KNO .= 10000 PTOM = 10000000000
J3D = 4000 NTOM = = 4000000000
K3D - 2000 TTO = 2000000000
JDT - 1000 JCURVE = 1000000000
KDT - 400 KCURVE = 400000000
JSOH = 10 JMEF = 200000000
KSOH = 4 KMEF = 100000000
JSOWCR = 2 JDL 4 40000000
KSOWCR = 1 KDL = 20000000
| | | SELFX = 4000000
MDIR | | SELFY = 2000000
FMOC = 10000000000 TSELF = 1000000
XMOC = 4000000000 | ST
JMOM = 2000000000
KMOM = 1000000000
TM3 = 700000000
TMZ = 600000000
ML = 500000000
TMO = 200000000
JMCUR = - 40000000
KMCUR = 2000000
= 1000000

 TAKEQ

AlIL-7

II1.4 The Complete List of Instruqtions

GROUP 0 - LOAD IMMEDIATE INSTRUCTIONS

Load Immediate .
Load Imm. Push-01d-Value

- Load Imm. Push-0l1d-Value Marked

LI = [000 ,0]
LIPSH = [040 ,0]
~ LIPSHM = [060 ,0]

"PSH = [LIPSH ,e0]
PSHM = [LIPSHM ,@0]
NOP = [LI ,e0]

- JMP = [LI PC,0]
JMPPSH = [LIPSHM PC,0]
NWSTK = [LIPSH SP,0]
NWSTKM = [LIPSHM SP,0]
XQTA =
XQT = [NOP , (XQTM)]
RPT = [NOP , (RPTM)]
PEEL = [NOP , (PEELM)]
'PROG = [NOP , (PROGM)]
LIS* = [020 ,0]

= [LIS PC,0]

RJIMP*

*See Appendix V

AII-8

Push-0ld-Value, Without Loading

 Push-01d-Value Marked, Without Loading

No-operation :

Jump o

A Marked [JMP 0] Is Saved In Stack
Unmarked [LI SP,0] Is Saved In Stack
A Marked [LI SP,0] Is Saved In Stack .

[LI RAR, (XQTM)] Execute the Instruction

Enter Execute Mode
Enter Repeat Mode
Enter Peel Mode
Enter Program Mode

LI + LOC+1 to RAR
RAR Jump

GROUP 2 - CONDITIONAL LOAD IMMEDIATE

LIF

LIFCL
LIFST
LIFCM

- LAL
LALCL
LALST
LALCM

JIF

JIFCL
JIFST
JIFCM

JAL

JALCL
JALST
JALCM

IJNRCR
IJNWCR
IJPRCR
IJPWCR

CL
ST
cM

- STOP

JIFDED

manon o wononon nunn

[T T I T

[200 ,0]
[210 ,0]
[220 ,0
[230 ,0]

[240 ,0]
[250 ,0]
[260 ,0]
(270 ,0]

[LIF PC,]

{LIFCL PC,]
[LIFST PC,]
[LIFCM PC,]

[LAL PC,]

[LALCL PC,]
[LALST PC,]
[LALCM PC,]

Load Immediate if Condition Holds
LIF And Clear

LIF And Set

LIF And Complement

Load Always, LAL Is Slower Than LI
LAL And Clear

LAL And Set

LAL And Complement

Jump If Condition Holds
JIF And Clear

JIF And Set

JIF And Complement

- Jump Always, JAL Is Slower Than JMP
JAL And Clear
JAL And Set
JAL And Complement

[JIFST ,(RCRN)] Increment RCR, JMP If Negative
[JIFST , (WCRN)] Increment WCR, JMP If Negative

[IJNRCR ,@0]

[IJNWCR ,@0]

[LALCL ,@0]
[LALST ,@0]
[LALCM ,@0]

[ST (STOPF)]

Increment RCR, JMP if Positive
Increment WCR, JMP If Positive

- Clear Condition
Set Condition

- Complement Condition
Stop The Processor

[JIF ,(STOPF)] Jump if Stopped

AII-9

GROUP 3 = EXTERNAL DEVICE REGISTER TRANSMISSION

LOCLA

LOCLR
LOCLSA

LOCLSR

LOMM
LOMMR
LOMMP
- LOMDIR
LOCB
LOSBKL
LOLITS

- STCL
STMM
NOMM

POPMM

- STMDIR
STCB
STSBKL
STKNOB
STSWCH

RTCLA
RTCLR

RTCLSA

RTCLSR
RTMM
RTMMS
RTMDIR
RTCB
RTSBKL

SKCL
SKMM
SKMMS
PUSHMM

SKMDIR

SKCB
- SKSBKL

wwownowonowownon oy

A O T I R

U T T R TR

LI T S I R T TR |

[300

301

[302

[303

[304
[305
[306
[307
[314
{316

LOSBKL

[320
[324

[325

[326

(327

[334
[336

»0]
»0]
,€0]
,€0]

b4

]«

,0]

[STSBKL ,0]

[340
[341
[342
[343
[344
[345
[347
[354
[356

[360
[364
[365
[366
[367

[374
[376

[STSBKL

,@0]
»@0]

,80]
,e0]
,@0]
,e0]
@0(1)]
,80]
,80]

»€0]
»€0]
»@0]
»€0]
»€0(1)]
»€0]
»@0]

6,0(1)]

4,0(1)]

- Load Clipper Absolute

Load Clipper Relative

Load Clipper Size Absolute

Load Clipper Size Relative

Load Matrix Multiplier Absolute
Load Matrix Multiplier Relative
Load Matrix Multiplier Product
Load Matrix Multiplier Directive
Load Character Bubble Absolute
Load SBKL Absolute R
Load nghts

Store Clipper Absolute

‘Store Matrix Multiplier Absolute
‘Normalize Matrix Multiplier

Push Matrix Multiplier

Store Matrix Multiplier Directive
Store Character Bubble Absolute
Store SBKL Absolute S

Store Knob

Store Switches

Retrieve Clipper Absolute

Retrieve Clipper Relative

Retrieve Clipper Size Absolute
Retrieve Clipper Size Relative
Retrieve Matrix Multiplier Absolute

Retrieve Matrix Multiplier and Slide

Retrieve Matrix Multiplier Directive
Retrieve Character Bubble Absolute
Retrieve SBKL Absolute -

Sink Clipper Absolute
Sink Matrix Multiplier Absolute

Sink Matrix Multiplier and Slide

Pop Matrix Multiplier

Sink Matrix Multiplier Directive
Sink Character Bubble Absolute
Sink SBKL Absolute

AII-10

Instructlons in Groups 4- 6 are deflned using the follow1ng

field deflnltlons

GROUP NAME:
DD = 400
DI = 500
DN = 600

THE WHAT-TO-DO MACHINE:

LS = 060
LT - 070
PO = 030
TO = 020
SS = 040
FR = 050
DT = 010
BX = 000

" THE ABS/REL-MODES MACHINE:

RX = 007
AX = 006
RA = 003
AB = .002
AR = 004
RE = 005
SL = 001
SA = 000

Do Direc
Do Indir
Do Inter

-3
(@]
onou hnwn nn

(REL-ABS-
(ABS-REL-
REL- (ABS-
(ABS-ABS.
ABS- (REL -
(REL -REL.
(SIZE RE
(SIZE AB

AII-11

t ,
ect
nal

(SET-DRANTO-SET-DRAWTO. .
(DRAWTO - SET-DRAWTO - SET. . .

SET- (DRAWTO-DRANTO. . .)
(DRAWTO-DRAWTO .

SET- (DRAWEROM , DRAWFROM.
(DRAWFROM-DRAWFROM. . .)
(DOT-DOT)

(BOX-BOX. ..)

REL-ABS...)
ABS- REL...)
-ABS...)

-)
“REL. .)

..)

L-STZE REL...)
S-SIZE ABS...)

-)

-)

GROUPS 4-6 -

SETPTA

SETPTR

DRAWTA
DRAWTR
DRAWFA
DRAWFR
LINAA
LINAR
LINRA
LINRR
LINIAA
LINIAR
LINIRA

LINIRR .

POLAA
POLAR
POLRR
POLRA
POLIAA
POLIAR
POLIRR
POLIRA
~STARAA
STARAR
STARRR
STARRA
DOTSAA
DOTSAR

DOTSRR

DOTSRA
BOXA

- BOXR
BOXSA
BOXSR
~SETCRV
DRACRV
POLCRV
DOTCRV

- NEWCRV.

DISPLAY INSTRUCTIONS:

. nunwn noaon LI T I O T T LU T A I N] o wwnp 0y

[DD+LS+AB

[DD+LS+RE
[DD+TO+AB
[DD+TC+RE

[DD+FR+AB
[DD+FR+RE

[DD+LS+AB
[DD+LS+AX
[DD+LS+RX
[DD+LS+RE
[DI+LS+AB .
[DI+LS+AX
[DI+LS+RX

[DI+LS+RE

[DD+PO+AB
[DD+PO+AR
[DD+PO+RE
[DD+PO+RA

[DI+PO+AB

[DI+PO+AR
[DI+PO+RE
[DI+PO+RA

 [DD+SS+AB’

[DD+SS+AR

- [DD+SS+RE
[DD+SS+RA

[DD+D7T+AB
[DD+DT+AR
[DD+DT+RE
[DD+DT+RA
[DD+BX+AB
[DD+BX+RE
[DD+BX+SA
[DD+BX+SL
[DN+LS+AB
[DN+TO+AB
[DN+PO+AB
[DN+DT+AB

[DN+BX+AB

,b]
»0]
»0]

GROUP 7 - CHARACTER DRAWING

" DOCHAR

[700 ,0]

Set-Point-Absolute

" Set-Point-Relative
"Draw-To-Absolute

Draw-To-Relative

Draw-From-Absolute

Draw-From-Relative

,Line-(Absolute-AbSolute) S

Line- (Absolute-Relative)

Line- (Relative-Absolute)

Line- (Relative-Relative)
Line-Indirect- (Absolute-Absolute)
Line-Indirect- (Absolute-Relative)
Line-Indirect-(Relative-Absolute)
Line-Indirect- (Relative-Relative)
Polygon-Absolute's =
Polygon-Absolute-Relative's

~Polygon-Relative's

Polygon-Relative-Absolute's
Polygon-Indirect-Absolute's

~ Polygon-Indirect-Absolute-Relative's

Polygon-Indirect-Relative's ‘
Polygon-Indirect-Relative-Absolute's
Star-Absolute's ‘
Star-Absolute-Relative's
Star-Relative's o

: Star—Relative~Absolute's

Dots-Absolutes .
Dots-Absolute-Relative's
Dots-Relative's

Dots-Relative-Absolute's

Box-Absolute
Box-Relative
Box-Size-Absolute
Box-Size-Relative
Curve-Set-Point
Curve-Draw-To
Curve-Polygon
Curve-Dots -

- Curve-New

" Draw Characters

S AII-12

‘APPENDIX III
A NOTE ON HOMOGENEOUS COORDINATES AND THE LDS-1

III.1 Introduction

: This note is designed as an operational, as opposed to

a theoretical, note on homogeneous coordinates and the Evans §
Sutherland Line Drawing System Model 1. The use of homogeneous
coordinates operationally and conceptually simplifies many of
the problems in presenting and manipulating three-dimensional
objects with a computer graphic system. The degree of simpli-
fication gained is apparent in the airport examples discussed
at the end of this Appendix. These examples are significant
because they are indicative of the general class of problems
‘which involve multiple moving bodies in three-space.

For a full LDS-1 system, the basic three-dimensional
~coordinates describing objects is stored in main memory in

four consecutive "half-words." These four half-words represent
~the "homogeneous'" three-space coordinate vector (X, Y, Z, W].
The first three components X, Y, Z are the normal orthoginal
three-space distances from the origin of coordinates of the
particular object. The fourth component, W, is a scale factor
for the first three components. ‘

o The X, Y and Z components are binary 2's complement numbers
arrayed about Zero=00...00,. The binary point, analogous to
the decimal point, can be thought to be located at the user's
discretion. Thus in one representation of the whole three-
space, the user might be thinking of a '"cube" of space ''centered"
at Zero and running to approximately ¢ Unity in each direction;
if so, the user would be thinking of the binary point being
located one binary place to the right of the left end of the
half-word. Another natural representation with an 18-bit LDS-1
- system might be a cube of space centered at Zero and running
from -2'7 = 10...0, to 2'7-1 = 01...1,; in this case, the binary
point would be located at the right end of the half-word. ;
Regardless of the assumed binary point, the X, Y, and Z values
can still represent any scale for the object or space in question.
The location assumed for the binary point is independent of this
choice of scale for the object. : ' R '

The W component is often stored as unity to represent a
unity scale for the homogeneous coordinate. If W were half of
unity, the coordinate would represent a point (or distance)
twice as far from the origin. If W were Zero, the coordinate
would represent a relative value. Since a relative coordinate
is the difference between two absolute coordinates, this can
~easily be shown for coordinates with equal W's: o ,

[X, Y, 2z, 11 - [X', Y', 2', 1] = [AX, AY, AZ, 0]

AITI-1

The set of four-element homogeneous coordinate vectors
that describe an object can be transformed by the LDS-1 Matrix
Multiplier. There are 16 elements in this matrix and, contrary
to coordinate data, they are considered to have a fixed binary
point. The elements are signed fractions in 2's complement
representation. Thus, the binary point is assumed to be
located to the right of the left end of the half-word. Unity =
01...1,, is the largest positive fraction that can be represented
as a matrix element. For convenience in the example matrices
that follow, this is written "1." o

I111.2 Conventions for the Homogeneous Coordinates

Some of the literature about homogeneous coordinates con-
siders Z as the distance from the projection plane to the object,
and W as the distance from the observer's "eye point" to the
object. However, in many applications, it is inconvenient or
impossible to calculate the location of the projection plane.

An example is the projection screen for a pilot in an aircraft
simulator; this application may need a virtual screen at
infinity. In contrast to this potential problem of the location
of the projection plane, the location of the eye point is known
'in almost all applications. The Evans § Sutherland Clipping
Divider considers the Z information presented to it as the
‘distance from the eye point to the object. o

Before proceeding, a comment about orthographic projection
is in order. In the "Z from the projection plane" coordinate
system, the perspective presentation seen on the projection
plane approaches an orthographic projection as the eye position
is moved farther and farther from the plane, i. e. as W » o,

In the "Z from the eye point" system, which is used exclusively
in what follows, orthographic projections are made by using a
transformation matrix which makes the resulting scope coordinates
depend upon W (the homogeneous coordinate scale factor), but

not on Z (the distance from the viewpoint). As an interesting
example, consider a star in the sky which is located infinitely
far from the viewer. Since the star is infinitely far away,

it has a coordinate of [X, Y, Z, 0]. If this point were ortho-
graphically projected onto a screen, it is almost certain to

be projected to a point on the screen that is very far from the
area of the screen that represents the viewport. In effect,

the orthographic projection of the star by the Clipping Divider
would entail dividing by 0. This would make the scope coordinates
Xs and‘YS extremely large, (i. e. off the scope). = -

,iII.S | Conventionskof the Clippihg Divider |

In addition to the "Z from the eye point" coordinate
system, three other conventions used by the Clipping Divider
must also be understood. The first convention is that the
Clipping Divider treats its four component vector input as if
it were [X, Y, Zx,‘Z] rather than [X, Y, Z, W]. That is, Zx
is assumed to be theyZ distance for X and the Z_ the Z distance
for Y. Since [X, Y, Zx"zy] describes a single’point, normally

AITI-2

Z ='Zx = Z_ for information presented. to the Clipping Divider.

The transformation from [X, Y, Z, W] data stored in memory to

the [X, Y, Zx, Z.] data presented'to-the Clipping Divider can
be handled by the Matrix Multiplier. Examples are given at

~ the end of this Appendix. The Clipping Divider algorithm then
processes this input information to get an intermediate result
X', y', Zys Z']. Following this, the algorithm divides X' by
Z% and Y' by Z! to get the final X and Y scope coordinates‘to

~be passed to tKe'display. ‘

The second convention is that the Clipping Divider hard-
ware operates as if the field of view were 90° in both X and
Y. Consequently, the Zx,andvz presented as input should have

been scaled to provide the desired field of view. Again, this
transformation can be handled by the Matrix Multiplier as shown
in the examples at the end of this Appendix. The normal pro-
cedure is to scale Zx and Z_ to values that equal X and Y at

the edge of the desired fiéXd of view. For fields of view less
than 90°, this scaling reduces Z, and can be represented as an
appropriate fractional number in the'Matrix'Multiplier, S

The third convention is that the Clipping Divider always
treats its input information in a left-hand coordinate system.
‘Thus, positive X increases to the right and positive Y increases
upward, while positive Z increases away from the eye point per-
pendicular to the center of the screen. s B :

These conventions used by the Clipping Divider need cause
no trouble; they can be handled by appropriate transformations
made by the Matrix Multiplier. 1In fact, the natural way to
handle all transformation information is to combine them into-
a single 4 x 4 transformation matrix. A matrix for the first
transformation, the Clipping Divider Switching Transformation
[CDST], can be written as in the top of figure AIII.2 when
7= Z, = Z,.. The matrix for the second Field of View Trans-
formation [FVT] is shown in the bottom row of figure AIII.1.
The desired field of view is defined by a° and B°. This trans-
formation [FVT] can then be combined with [CDST] to get the
- final Switching and View transformation [SV].

Since the Matrix Multiplier can multiply matrices, [SV]
can be combined with any other transformation by the Matrix
‘Multiplier. One method is to load [SV] into the Matrix -
Multiplier (and probably the: Data SINK for later use) as the
LDS-1 starts. It:.can, thereafter, be combined automatically
with each individual transformation which has been stored
with individual picture elements. ' An alternate method is to
use software to combine the [SV] transformation with each
individual picture element's transformation before beginning
~the display. The first method makes the data base more 'pure'
and requires less software, while the second allows the LDS-1
to operate faster when displaying the picture. I

AIII-3

I1II.4 Position - Viewpoint Mafrices.

~An Object's Position matrix (denoted [OP]) is the 4 x 4
homogeneous coordinate matrix that specifies an object's
location and orientation with respect to the origin of three-
space coordinates. It is derived from‘concatenating the
information describing the object's rotation, scaling and
translation, as shown in figure AIII.2. The concatenation of

a [0, 0, 0, 1] column makes the matrix square. :

This resulting square [OP] matrix always has an inverse.
Moreover, since the [OP] describes the object position from
the origin of three-space, the inverse [oP]-1!, describes the
three-space position from the origin of the object! Thus,
the [OP] can be thought of as describing the "view of," and
the [OP]"! can be thought of as describing the "view from,"
;he object in question. Use will be made of this relationship

elow. ‘

III.5 The Airport Problem

The picture in figure AIII.3 allows several operational

- relationships to be written down just as the LDS-1 system will

. éxecute them. We will assume for the sake of simplicity that
all viewers have the same field of view (i. e. a° and B°) so

that there is only one [FVT], and thus only one [SV]. Other

position matrices are defined as noted in Table 3. :

First, what does one see from the base of the control ;
tower (the origin of three-space coordinates) looking straight
up? One sees the space, the Trans-World plane in its correct
position, and the United Airlines plane in its correct position,
(assuming the field of view is large enough). Thus, to start
a picture, the display program could: , :

1) 1load [SV] into the DATA SINK (for later use)
and the Matrix Multiplier ‘ '
2) draw the objects fixed in three-space | |
3) multiply the [SV] matrix in the Matrix Multiplier
- by [UAP] ‘ | : ,
4) draw the United Airline plane o
5) 1load the Matrix Multiplier'with [SV] from SINK .
~6) multiply by [TWP], and draw the Trans-World plane

What does the contrbl tower operator see? He sees the
three-space}and the objects just as before, except from his
translated position up the Z axis and looking along a direction

rotated from the three-space Z axis. This transformation is
dgfined in figure AIII.3 as [CTP]. The program would:

AIII-4

1) 1load [SV] into the DATA SINK and Matrlx
Multiplier

2) multiply [CTP]™!
3) draw the objects fixed in three-space
4) continue as in previous example
Note that there may be no reason to draw the control
tower itself (which is assumed to be part of the three-space).
This is especially true if none of the control tower appears
to the control tower operator. Omitting the tower may save

program execution time at the cost of a little more care in
initially organizing the data.

What does the United Airlines pilot see? He sees the
space, and TWA at the TWA location. Consequently, a program-
might: .

1) 1load [SV] into SINK and Matrix Mu1t1p11er
2) multiply [UAP] ! 4

3) draw the three-dimensional space

4) multiply [TWP] '

5) ‘draw the Trans-World plane

~Again, this assumes that none of the Unlted plane is visible
to the United pllot

AIII-S

TRANSFORM MATRICES

‘[cbsr]

, - Clipping Divider.
Homogeneous Switching
Coordinates Transformation
x, Y, z,wi[1 o o o] =

. 0 1 0 o0

0 0 1 1

0 0 0 0

| [FVT]

i Field of View

[CDST] Transformation
1 0 o o1 o o o T

0 1 0 o0 o 1 0o 0

0 0 1. 1 0 0 tan a/2 0
0 0 0 o o 0 o tan's/zJ

. p heme

L

[x,

Ciipper Input~

Z]

x’ Ty

(SV]

Final Switching and
View Transformation

¥ Y

0 0 7

0
1 0 0

0 tan a/2 tan B/2

—d

0 ‘,o _ 0

 whete the chosen angles of view rebresént a Viewport~describéd by:

B°

a, B < 90°

Figure AITI.1

HoMOGENEOUS COORDINATES

' COORDINATES X TRANSFORMATION = NEW CO_V,ORDINATES

: ‘ | ' ‘ o B T Ot vl '
3X3 TRANSFORMATION - r’,“- Y, Zj , a- b. ¢ ~r;(' Y. Z—l
9\ ' v | o] . | ' |
(ROTATION AND SCALING) e | x d e ¢ = |
' | I : I I
g h i
3X4 TRANSFORMATION [x. vz 1] | [2]
(ROTATION, SCALING AND : S | : » 3X3 - : :
TRANSLATION) e I o | | o | |
: | i k ' |
4% 4 HOMOGENEOUS % . 21 | ° ERERY
TRANSFORMATION ' % 3x3 o | o | |
(ROTATION,SCALING R ; o " |
AND TRANSLATION)
o e 3IXt 1

Figure AIII.2

THE ATRPORT PROBLEM

Origin of the three-spacekat base of control tower.

Origin of each plane'assumed to be at pilot's eye point.

Associated Matricies

[UAP] = United Airlines Position. Matrix giving the
position and orientation in three-space
of the United Airlines plane from the
origin of three-space coordinates.
[TWP] = Trans World Airlines Position. Matrix as above.
[CTP] = Control Tower observer's Position. Matrix as

above.

Figure AIII.3

APPENDIX IV

QUICK REFERENCE MATERIAL

The following pages contain information which has been
extracted from earlier chapters and is intended for use as
quick reference material. In most cases, the information
is a direct copy of figures or data located elsewhere in
this manual. 1In the case of figures, the figure number has
been retained so that the reader can direct himself back to
~the chapter from which the figure was extracted if he needs
more information.

- Included are the following figures and pages:

COORDINATE DATA FORMATS

CHANNEL CONTROL MODES OF OPERATION

CHANNEL CONTROL REGISTER CONFIGURATION
CHANNEL CONTROL REGISTER BITS (several pages)
CHARACTER STRING INTERPRETER REGISTERS
MATRIX MULTIPLIER REGISTERS

THE MDIR REGISTER ‘ '

CLIPPING DIVIDER REGISTER CONFIGURATION
CDIR, HITANG, AND SELINT REGISTERS :
FORMAT FOR CLIPPING DIVIDER OUTPUT TO MEMORY
CONO BITS - :

CONI BITS v '

MEMORY PROTECTION AND RELOCATION

THE STANDARD SBKL CONFIGURATION

LORGNETTE COLOR CODE

AIV-1

APPENDIX V
LIS INSTRUCTIONS

With spec1a1 hardware modification an addltlonal in-

- struction is available in group 0. The "LIS" instruction
is a load immediate of the indicated register, but in addi-
tion the ‘address used to fetch the instruction (+1) is
stuffed into the RAR. The LIS instruction takes the form
shown in figure AV.1. An LIS of the PC is defined in the
mnemonics as RJMP. : '

, To illustrate the usefulness of these instructions,
let us consider an instruction sequence such as:

RIMP N1 (XQTM) -
POLAA RCR, -5 (RPTM)
DATAL

DATAS

[;le RIMP N2 (XQTM)
POLAA RCR, -7(RPTM)
etc.

This instruction sequence facilitates a chaln of poly-
gon instructions. which do not have to be contiguously
located in memory. The RJMP loads the PC with N1 and then
puts LOC + 1 in the RAR. Since execute mode is indicated,
the Channel Control uses the RAR for the next instruction
fetch. The RAR is incremented as it is used for this in-
struction fetch so it is pointing to the data for the
polygon instruction. When the count in the RCR goes posi-
tive the Channel Control again enters program mode and
uses the PC (which was loaded with N1 by the RJMP) for the
next instruction fetch. This sequence can then be repeat-
ed to chain a group of polygon instructions.

- AV-1

Mhemonié: LIS
- Asscmbler definition: [020000000000]

1Structure:

0 89 12 13 14

o020 |z | of wmopE

17 18 35
020 - REG I MODE DATA
Function: Load 1mmedlate REG if I=0.
: - LoC (of 1nstruct10n) +1—>RAR
Format: LIS REG,DATA(MODE) ;or
. LIS @(MODE)
“ where: REG‘is the register
- DATA is the new data
MODE is the new mode (optlonal)
@ sets the I bit.
: Mncmonlc ~ RSMP
‘ﬁvAssembler deflnltlon ~ [LIS PC,0]
ktStlucture,i |
0 89 12 13 14 17 18 35
ADDR

- Function: ADDR PC
SR - LOC (of 1nstruct10n) +1~—>RAR

Format: RJMP ADDR(MODE)

'i.“ gWh¢Iéf ADDR is the address to be loaded into PC
R ~-MODE is the new mode (optional)

Figure AV.1

	001
	002
	003
	004
	005
	006
	01-01
	01-01a
	01-02
	01-02a
	01-03
	01-03a
	01-03b
	01-03c
	01-03d
	01-04
	01-05
	02-01
	02-02
	02-02a
	02-02b
	02-03
	02-04
	02-05
	02-06
	02-07
	02-07a
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-15a
	02-16
	02-17
	03-01
	03-01a
	03-01b
	03-02
	03-02a
	03-03
	03-03a
	03-03b
	03-04
	03-04a
	03-05
	03-05a
	03-06
	03-06a
	03-07
	03-07a
	04-01
	04-01a
	04-02
	04-02a
	04-02b
	04-03
	04-03a
	04-04
	04-05
	04-05a
	04-06
	04-07
	04-08
	04-08a
	05-01
	05-02
	06-01
	06-02
	06-02a
	06-02b
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-30
	07-31
	07-32
	07-33
	07-34
	07-35
	07-36
	07-37
	07-38
	07-39
	07-40
	07-41
	07-42
	07-43
	07-44
	07-45
	07-46
	07-47
	07-48
	07-48a
	07-49
	07-50
	07-51
	07-52
	07-53
	07-54
	07-55
	07-56
	07-57
	07-58
	07-59
	07-60
	07-61
	07-62
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	08-29
	08-30
	08-31
	08-32
	08-33
	08-34
	08-35
	08-36
	08-37
	08-38
	08-39
	08-40
	08-41
	08-42
	08-43
	08-44
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	09-29
	09-30
	09-31
	09-32
	10-01
	10-01a
	10-02
	11-01
	11-02
	11-02a
	11-03
	11-04
	12-01
	12-02
	12-03
	12-04
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-09a
	A1-01
	A1-02
	A2-01
	A2-02
	A2-03
	A2-04
	A2-05
	A2-06
	A2-07
	A2-08
	A2-09
	A2-10
	A2-11
	A2-12
	A3-01
	A3-02
	A3-03
	A3-04
	A3-05
	A3-05a
	A3-05b
	A3-05c
	A4-01
	A5-01
	A5-01a

