
PICK
operator guide

88A00757 A06

ZEBRABVGA

RECORD OF REVISIONS

Title: PICK Operator Guide

Document No. 88A00757A06

Date Revision Record

---------+--
Apr 83 Original Issue

Sep 83 Revision B - (Covering ZEBRA/PICK 2.0)

Apr 84 Revision A03

Oct 84 Revision A04

Feb 85 Revision A05 - Change Package (85A00514A01)

Apr 85 Revision A06 - Change Package (85A00520A01)

THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION WHICH SHALL NOT BE
REPRODUCED OR TRANSFERRED TO OTHER DOCUMENTS OR DISCLOSED TO OTHERS
OR USED FOR MANUFACTURING OR ANY OTHER PURPOSE WITHOUT PRIOR WRITTEN
PERMISSIOO OF GENERAL AUTOMATION, INC.

ii

PICK
operator guide

88A00757 A06

CopyrightO by General Automltion.lnc.
1045 South Ellt Street P.O. Box 4883

Anlheim. CaliforniI92803
(714)778-4800 (800)854-6234

TWX 910-591.1695 TELEX 685·513

RECORD OF REVISIONS

Title: PICK Operator Guide

Document No. 88A00757A06

I
1 Date I Revision Record 1 ---------+--------------------------------------1

Apr 83 Original Issue

Sep 83 Revision B - (Covering ZEBRA/PICK 2.0)

Apr 84 Revision A03

Oct 84 Revision A04

Feb 85 Revision A05 - Change Package (85AOO514A01)

Apr 85 Revision A06 - Change Package (85AOO520A01)

THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION WHICH SHALL NOT BE
REPRODUCED OR TRANSFERRED TO OTHER DOCUMENTS OR DISCLOSED TO OTHERS
OR USED FOR MANUFACTURING OR ANY OTHER PURPOSE WITHOUT PRIOR WRITTEN
PERMISSION OF GENERAL AUTOMATION, INC.

ii

88A00757A

FOREWORD

This manual provides operator guidance in the use of the General Automation
ZEBRA/PICK operating system. It is intended for user persons responsible for
standard day-to-day operations; and for user persons who must carry out the
more specialized system operator functions. In today's computer environment.
both of these may be in the hands of one person.

The major subjects arranged in that way are as follows:

Section 1 - Introduction

Section 2 - System Startup

Section 3 - Terminal Control Language

Section 4 - System File Management

Section 5 System Memory Management

Section 6 - Dictionaries and Files

Section 7 Support Processors

Appendix A - ERRMSG (Error Messages)

Appendix B - ASCII Codes

Appendix C - ZEBRA Series Firmware Executives

Appendix D - Tape Operation

Appendix E - System-Cursor Definition Utility

iii

88A00757A

Related ZEBRA/PICK documents that are available to the user:

Document No.

88A0075lA

88A00758A

88A00759A

88A00760A

88A00774A

88A00775A

88A00776A

88A00777 A

88A00778A

88A00779A

88A00780A

88A0078lA

88A00782A

88A00783A

Title

Overview of the PICK Operating System

ACCD-PLOT Operator Guide

COMPU-SImET Operator Guide

Quick Guide for the PICK Operating System

PICK Utilities Guide

ZEBRA Hardware Reference Manual

PICK ACCESS Reference Manual

PICK SPOOLER Reference Manual

PICK BASIC Reference Manual

PICK EDITOR Reference Manual

PICK PROC Reference Uanual

PICK RUNOFF Reference Manual

Introduction to PICK TCL and FILE STRUCTURE

PICK JET Word Processor Guide

TMACCU-PLOT is a trademark of ACCUSOFT Enterprises

TMCOMPU-SHEET is a trademark of Raymond-Wayne Corporation

TMpICK is a trademark of PICK Systems, Inc.

TMZEBRA is a trademark of General Automation, Inc.

iv

Section

1

2

3

88A00757A

TABLE OF CONTENTS

Title

INTRODUCTION • • • • • •
1.1
1.2"

SYSTEM STRUCTURE •
DICTIONARIES/FILES •

. . . . · . .
1.2.1 SYsrEK DICTIONARY (SYSTEM)

· . .
1.2.2
1.2.3

USER MASTER DICTIONARIES (MD).
PILE LEVEL DICTIONARIES. • • • • •

·
·

1.2.4 DAtA PILES ••••••• · . . . · . . .
1.3 FILE STRUCTURES •• . . .

1.3.1 FRAKES ••• · . ·
1.4

1.3.2 MODULO AND SEPARAtION.
ITEM-ID AND AtTRIBUTES • ·
1.4.1
1.4.2

ItEM-ID ••••••••
ATTllIBUTES • • • • • •
1.4.2.1 Dictionary Attributes
1.4.2.2 Data Attributes • • • •

SYSTEM StARTUP • • • • •
2 .1 TUllNING ZEBRA ON • • • • . . . · . .

2.2

2.1.1 ZEBRA 1500, 2500, 3500, 5500 ••••••••

2.1.2
2.1.1.1 PICK Operating System Load ••••
ZEBRA 750. • • • • • • • • • • • • •
2.1.2.1 PICX Operating Systea Load •
2.1.2.2 -PICK OS RESTORE •••••••
2.1.2.3
2.1.2.4

Binary Backup and RESTORE.
BOOT •••••••

2.1.2.5 Cartridge and Hard
LOGGING OPERAtION ••••••

Disk Format Procedure

2.2.1
2.2.2
2.2.3

2.2.4
2.2.5

LOGON. • •
LOGOFF • • • • • • • • • • •
ADDITIONAL LOGON FUNCTIONS • •
2.2.3.1 LOGTO •••
2.2.3.2 CHARGE-TO.
2.2.3.3 CHARGES. • • • •
THE LOGON PROC AND GENERAL SYSTEM MESSAGES •
POWERP'AIL AND GENERAL SYSTEM MESSAGE ••••

TERMINAL CONTROL LANGUAGE (TCL).
3.1 TCL VERB TYPES •••••••
3.2 TCL VERB ATTRIBUTES ••

·
3.3 TCL VERB LIST. • • • • •
3.4 VERB DEFINITION FOR MD
3.5 TCL VERB STA'rEMEN'r • •

3.5.1 TYPE-I STATEMENTS ••
3.5.2 TYPE-II STA'rEMEN'rS •

·
· . .

v

1-1
1-1
1-2
1-2
1-3
1-3
1-3
1-4
1-4
1-5
1-9
1-9
1-11
1-11
1-12

2-1
2-1
2-1
2-1
2-3
2-3
2-5
2-6
2-6
2-7
2-8
2-8
2-9
2-10
2-10
2-11
2-11
2-13
2-14

3-1
3-1
3-2
3-4
3-9
3-10
3-10
3-10

Section

4

3.6

3.7

3.8

88A00757A

Title

TERMINAL/PRINTER CONTROLS •••••••••
3.6.1 KEYBOARD CONTROLS •••••••••
3.6.2 SETTING TERMINAL/PRINTER CONTROLS.

3.6.2.1 SET-TERM •••••••••••
3.6.2.2 Cr~ng1ng Baud Rate (SET-BAUD)

3.6.3
3.6.4

SETTING TAB STOPS ••••••••
ENABLE/DISENABLE CHARACTER ECHO.
3.6.4.1 The ECHO Verb

3.6.5 BLOCK PRINTING ••••
3.6.5.1 Block-Print.

3.6.6 GENERAL SERVICE VERBS.
3.6.6.1 TIME ••••
3.6.6.2 WHO •••
3 • 6 • 6 • 3 SLEEP. • • • • • •

. . .

3.6.6.4 MESSAGES. • • • • ••••
TAPE OPERATION AND CARTRIDGE DISK: SET-1/2 (OR SET-MT),
SET-1/4 (OR SET-CT), AND SET-CD ••••••
3.7.1 SETTING TAPE SIZE ••••••••••••••

3.7.1.1 Attaching Cartridge Disk ••••••
3.7.2 FULLY UTILIZING 1/4" TAPE BY LOCATING EOF'S:

T-EOF, T-EOFD ••••••••
PROGRAM INTERRUPTION: DEBUG FACILITY •

SYSTEM FILE MANAGEMENT • • • • • • • • • • • • • • •
4.1 CREATING NEW FILES: CREATE-FILE AND CREATE-PFILE •
4.2 CLEARING FILES •••

4.2.1 CLEAR-FILE.
4.2.2 DELETE-FILE.

4.3 COPYING FILE DATA. • •
4.3.1 COPY PROCESSOR.
4.3.2 COpy OPTIONS •

4.4

4.5

4.3.3 FILE-TO-FILE COpy ••••
4.3.3.1 Copy to Another Account •

RESTORING FILE DATA. • • • • • • • • • • • • •
4.4.1 SELECTIVE RESTORES: SEL-RESTORE •••••
4.4.2 GROUP FORMAT ERROR •••••••

4.4.2.1 Transient Format Error.
4.4.2.2 Real Format Error •••••••
4.4.2.3 Recovery from Group-Error.
4.4.2.4 Preventing Group Format Error •

SYSTEM FILE BACKUP • • • • • • • • • • • •
4.5.1 FILE-SAVE PROC ••••••••••••

4.5.1.1 Customizing the FILE-SAVE PROC:
CREATE-FILE-SAVE. • • • • • • • •

4.5.1.2 Customizing the FILE-SAVE PROC:
NEW-FILE-SAVE • • • • • • • • • • •

vi

3-11
3-11
3-12
3-14
3-15
3-15
3-16
3-16
3-17
3-17
3-18
3-18
3-19
3-20
3-21

3-22
3-22
3-22

3-23
3-24

4-1
4-3
4-5
4-5
4-6
4-7
4-7
4-8
4-10
4-10
4-12
4-12
4-15
4-15
4-16
4-16
4-16
4-17
4-17

4-19

4-19

Section

5

88A00757A

Title

4.5.2 ACCOUNT-SAVE AND ACCOUNT-RESTORE •
4.5.2.1 ACCOUNT-SAVE PROC •••
4.5.2.2 ACCOUNT-RESTORE ••••
4.5.2.3 Multi-Reel Tape Operation.

SYSTEM MEMORY MANAGEMENT • • •
5.1 MEMORY STRUCTURE ••••••

5.1.1 ADDED WORK SPACE.
5.1.2 THE FILE AREA •••
5.1.3 FRAME FORMATS •••

. .
. . . .

5.1.3.1 Frame Format Display: DUMP
5.1.3.2 Frame Lock in Memory: LOCK-FRAME,

UNLOCK-FRAME •••••••••
5.1.4 DISPLAY OF SYSTEM STATUS: WHAT, WHERE

5.1.4.1 The WHAT, WHERE Message.
5.1.5 LOADING AND USING SYSTEM SPACE.

5.1.5.1 POVF •••••••
5.2 SYSTEM DICTIONARY AND SYSTEM FILE. • •

5.2.1 USER IDENTIFICATION ITEMS. • • ••
5.2.2 SYSTEM FILE AND SYSTEM-LEVEL FILES •

5.2.2.1 Accounting History File.
5.2.2.2 Block Convert File. • •
5.2.2.3 PROetIB File. • • • • •••

. .

5.2.2.4 SYSTEM-ERRORS File. • ••••
5.3 SYSTEM-LEVEL FILES • • • • • • • • • ••

5.3.1 ACCOUNTING HISTORY FILE •••
5.3.1.1 Active User Items •
5.3.1.2 Accounting History Items. • ••••
5.3.1.3 Accounting History Pile Summary •••••
5.3.1.4 Accounting History File Clearance •

5.3.2 BLOCK-CONVERT FILE •
5.3.3 PROetIB FILE • • ••

5.4 ACCOUNT FILE MAINTENANCE •••
5.4.1 CREATE-ACCOUNT PROC.
5.4.2 DELETE-ACCOUNT PROC.
5.4.3 POINTER-FILES.

5.5 BASIC PROGRAM FILE •
5.6 SYSTEM MESSAGES FILE •

'. . .

5.6.1 ERRMSG FILE. • • •••••
5.6.1.1 Special ERRMSG File Items.

5.6.2 PRINT-ERR VERB • • • • • • •

vii

. . .

.

4-20
4-20
4-21
4-21

5-1
5-1
5-4
5-5
5-7
5-8

5-9
5-10
5-11
5-13
5-13
5-14
5-14
5-16
5-16
5-17
5-17
5-17
5-18
5-18
5-18
5-19
5-20
5-22
5-23
5-24
5-25
5-25
5-25
5-26
5-27
5-28
5-28
5-29
5-30

Section

6

88A00757A

Title

DICtIONARIES AND FILES •
6.1 FILE ACCESS ••••
6.2 THE DICtIONARIES •

6.2.1 THE SHARING OF DICTIONARIES ••
6 .3 FILE STRUCTURE • • • • • • • • • • • •

6.4

6.5
6.6

6.7

6.3.1 BASE, MODULO AND SEPARATION.
6.3.2 SELECTING MODULO AND SEPARATION.
ITEM SnUCTUaE • • • • •
6.4.1 PHYSICAL •••••••••••
6.4.2 LOGICAL..............
ITEM STORAGE AND THE BASHING ALGORITHM ••

. .

FILE ITEM SnUCTUBE. • • • • • • • • • • • • • • • • • • •
6.6.1 FILE DEFINITION ITEMS (D) •••••
6.6.2 FILE SYNONtK DEFINITION ITEMS (Q).

6.6.2.1 Q-Pointer Flexibility •••••
6.6.2.2 Account Specification •••
6.6.2.3 File Specification ••••••
6.6.2.4 Extensions to File-Naae Reference •

6.6.3 AXTRIBUTE DEFINITION ITEMS (A) •
CONVERSION AND CORRELATIVE CODES •
6.7.1 THE ARITHMETIC CODE (A) •••••••••

6.7.1.1 Operands ••••
6.7.1.2 FunctioDS •••
6.7.1.3 Operators •••

6.7.2 THE CONCATENATION CODE (C) •••••••
6.7.3 THE DATE CODE (D) •••
6.7.4 tHE FUNCTION CODE (F).

6.7.5
6.7.6
6.7.7
6.7.8
6.7.9
6.7.10
6.7.11
6.7.12
6.7.13
6.7.14

6.7.4.1 Special 'F' Code Operands.
6.7.4.2 The Load Previous Value (LPV) Operator ••
6.7.4.3 Summary of F Code Stack Operations.
THE GROUP EXTRAClIOtl CODE 'G' ••••
THE LENGTH AND RANGE CODES 'L', 'R' •••
THE MASK CHARACTER CODE 'MC' •••
THE MASK LEFT AHD MASK RIGHt CODES 'ML', 'MA'.
tHE MASK tIME CODE MT'. • • • • • • • • • • • • •
THE MASK HEXADECIMAL CODE MX' • • • • • • •
tHE PATTERN AND SUBStItuTE CODES 'p , 'S'.
THE TEXT EXTRACTION CODE T' • •
tHE TRANSLATE FILE CODE 'Tfile' •••••
THE USER-DEFINED CONVERSION CODE 'u' .

viii

6-1
6-1
6-3
6-5
6-7
6-7
6-9
6-11
6-11
6-13
6-15
6-16
6-18
6-21
6-24
6-25
6-25
6-26
6-27
6-31
6-37
6-37
6-38
6-39
6-40
6-42
'6-44
6-47
6-49
6-50
6-52
6-53
6-54
6-55
6-57
6-58
6-59
6-60
6-62
6-64

Section

7

Appendix

88A00757A

Title

SUPPORT PROCESSORS • • • •
7.1 UTILITY PROCESSORS

7.1.1 CT PROC •••

.

7.2

7.3
7.4
7.5

7.1.2 LISTACC PROC •
7.1.3 LISTCONN PROC.
7.1.4 LISTDICT PROC
7.1.5 LISTFILES PROC •
7.1.6 LISTPROCS PROC •
7.1.7 LISTU PROC •••••••

.
7.1.8 LISTVERBS PROC •
SYSTEM SECURITY •••••••
7.2.1 LIRET AND L/UPD •••

.
7.2.2 USER ASSIGNED CODES.
7.2.3 SECURITY CODE COMPARISON
FILE STATISTICS REPORT • • • • • • • •
FILE CHANGE VERIFICATION (CHECK-SUM) • •
FILE STRUCTURE INQUIRY • • • •
7.5.1 ITEM COMMAND ••••••

.

· .
· . .

· . .

7.5.2 GROUP COMMAND ••••••
7.5.3 ISIAT COMMAND ••

· . · . . .
7.6

7.5.4 HASH-TEST COMMAND.
PICK SYSTEM VERIFICATION •

LIST OF APPENDIXES

Title

ERRMSG (ERROR MESSAGES). •

. . .

· · . . . A
B
C

ASCII CODES. • • • • • • • • • •• . .

D
E
F
I

ZEBRA SERIES FIRMWARE EXECUTIVE.
C.1 UTILITIES AND DIAGNOSTICS ••••

C.1.1 OVERVIEW.. • • • •
C.1.2 OPERATION •••••••
C.1.3 PROCEDURE ••••••

· . . .
C.1.4 EXTENDED STATUS MESSAGES •••••

·

C.2 1500 - 5500 FIRMWARE EXECUTIVE • • • • • • • • • • • •
C.2.1 EXECUTIVE INITIALIZATION •••

C.3

C.2.2 1500 - 5500 EXECUTIVE COMMANDS •
C.2.3 1500 - 5500 ZEBRA DIAGNOSTICS.
ZEBRA 700/750 FIRMWARE EXECUTIVE • • ••
C.3.1 EXECUTIVE INITIALIZATION ••••••
C.3.2 EXECUTIVE COMMANDS •••
C.3.3 ZEBRA DIAGNOSTICS •••••••••••

· .
. . .

· .
CREATING A SYSGEN CARTRIDGE TAPE OR DISK FOR ZEBRA 750 • • • • •
SYSTEM-CURSOa DEFINITION UTILITY • • • • • • • • • • •
TCL STACKER.. • • • • • • • • • • • • • • • • • •
INDEX. • • • • • • • • • • • • • . . . · . .

iX/x

7-1
7-1
7-1
7-1
7-1
7-2
7-2
7-2
7-2
7-2
7-3
7-3
7-3
7-4
7-5
7-7
7-8
7-8
7-9
7-10
7-10
7-11

A-1
B-1
C-1
C-1
C-1
C-2
C-15
C-18
C-21
C-22
C-23
C-35
C-46
C-47
C-48
C-62
D-1
E-1
F-1
1-1

88A00757A

introduction 1
This document provides guidance for the user in turning on the ZEBRATM _ _ __ _
system, and in bringing up and using the PICK operating system.

Since you, the system operator, will be establishing and controlling
dictionaries and files, creating new accounts and supervising overall system
operation, it is appropriate that we define the basic system structure and key
words used throughout the text. Detailed description of all aspects of system
operations will be provided in later sections.

1.1 SYSTEM SnUCTUU

The primary elements of the PICK operating system are a set of files called
"dictionaries". These dictionaries exist at four levels, and are used to
describe the structure of files and "point" to their location. This pointer
data is a key link between a file and its dictionary. Access to a file cannot
take place without a dictionary to guide that access; and, where a single
dictionary can serve several files, no file can exist without a dictionary to
define its location and structure.

Pictorially, the dictionaries, their principle component levels and their
interface to the user are:

Level 0

Level 1

Level 2

Level 3

System
Dictionary
(One per system)

Master
Dictionary
(One per account)

File
Dictionary
(One per data
f11e(s»

Processors

File Structures

File File Synonym Attribute
Definition Definition Definition

(D) (Q) (A)

Item-id, Attributes

1-1

88A00757A

1.2 DICTIONARIES/FILES

This section describes the hierarchical nature of the dictionaries and files in
the PICK system. Throughout these sections, the following terms will be used:

Item
Item-id
Attribute
Value

Conventional Data Processing Name

Record
Record Key
Field
Subfield

Files are organized in a hierarchical structure, with files at each level
pointing to multiple files at the next lower level. Four distinct file levels
exist: System Dictionary, Kaster Dictionary, File Level Dictionary, and Data
File.

The term "file" as used in the context of this system refers to a mechanism
for maintaining a set of like items logically together. The data in a file
must be accessed via the dictionary associated with it. A "dictionary" is like
the "index" to a file. Since the dictionary itself is also a file, it contains
items just as a data file does. The items in a dictionary serve to define
lower level dictionaries or data files.

The system can contain any number of files. Files can contain any number of
items, and can automatically expand to any size. Items are variable length,
and can contain any number of fields and characters so long as the data in an
item does not exceed a maximum of 32,267 bytes.

1.2.1 SYSTEM DICTIONARY (SYSTEM)

The highest level dictionary is called the System Dictionary (SYSTEM). The
System Dictionary contains all legitimate user Logon names, along with
associated passwords, security codes, and system privileges. The Logon names
and related information are stored as items in the System Dictionary. These
items function as pointers to the user's Master Dictionary.

1-2

88A00757A

1.2.2 USER MASTER DICTIONARIES (MD)

The Master Dictionaries (MD) comprise the next dictionary level. Each user's
account will normally have a unique MD associated with it. The MD contains
items which store the definitions of all user vocabulary, (verbs, PROCs, etc.)
and items which function as pointers to accessible files.

When an account is created, a standard set of MD vocabulary items are stored
in the account's MD. A user may, however, create synonyms to, and abbreviated
forms of any or all of these standard'vocabulary words. Since they are merely
items within his MD file, he may create copies of their elements and rename the
words. The user can also create his own prestored vocabulary statements,
called FROCs.

The file pointers can reference any file or dictionary in the system, that is,
they are not restricted to files defined within the user's account alone.

1.2.3 FILE LEVEL DICTIONARIES

The File Level Dictionaries describe the structure of the data within the
associated data files. They also contain pointers to the associated data-level
files. A file~level dictionary may be shared by more than one data-level file.

Some dictionaries do not have an associated data-file; these are called
"single-level" files. Data in a single-level file is stored within the
dictionary itself.

1.2.4 DATA FILES

The Data Files contain the actual data stored in variable record/field length
format. In addition to the normal record/field data structure, an attribute
(field) can contain multiple values, and a value, in turn, can consist of
multiple subvalues. Thus, data may be stored in a three-dimensional variable
length format.

1-3

88A00757A

1.3 FILE STRUCTURES

The PICK operating system "addresses" disk storage in 512-byte units called
"frames". These frames are moved in and out of memory dynamically on an
as-needed basis. This process is totally transparent to the individual user,
who, for all practical purposes, can manipulate data within the capacity range
of the given disk configuration.

Each frame has a logical address known as the tlframe-id" and each frame
contains 12 bytes of link information, including the number and location of
forward and backward "links" in the chain of frames that make up an individual
file. The remaining five hundred bytes per frame are for the storage of user
data.

When a new file is created, space for it on disk is reserved in one contiguous
group of frames. These frames are chosen by consulting the available space
pool using two figures supplied by the user, the "modulo" and the "separation".
This space is called the "primary" space, and in no way represents a limit on
how large the file can grow.

The following illustrates the relation and provides further definition of
frame, modulo, separation and group.

MODULO 2
SEPARATION 2
BASE FRAME 100

GROUP a

BASE ... FRAME-!D: 100 ...
FRAME LINK BACKWARD: a
(100) L INK FORWARD: 101

FRAME-ID: 101
LINK BACKWARD: 100-

LINK FORWARD: a

GROUP 1

FRAME-IO: 102
LI NK BACKWARD: a

LINK FORWARD: 104

FRAME-ID: 103
LINK BACKWARD: 102

LI NK FORWARD: 0

1-4

88A00757A

1.3.2' MODULO AND SEPARATION

The modulo and separation are a method of dividing up a whole file into smaller
groups. The pu~ose of dividing a file into groups is to focus a search for a
given item of data in a smaller amount of storage, and thus, minimize the
search time. The modulo represents the number of groups the file is to be
divided into. The separation represents the number of frames that will
initially be-allocated--to each group. If af ile is "modulo three," that means
the file is divided into three groups. If the separation is three, then each
group is three frames long, and the file would reserve a total of nine frames
as the "primary" file space.

In short, the modulo*separation product represents the total number of frames
allocated for the file and these frames are always contiguous.

It is important to emphasize that this pre-allocation places no limit on the
growth potential in a file. Because each frame has forward and backward
linking pointers, new frames are automatically added to an expanding group, as
required.

While using the modulo*separation product to determine the amount of
contiguous space to allocate to a file, the system also uses these figures to
build the file dictionary. The file dictionary will contain the modulo, the
separation, and the disk address of the first frame in the file, called the
''base frame" or "file base".

The conceptual effect of dividing a file into groups is to create a number of
separate files. The following sketch diagrams the primary space of a modulo-3
separation-3 file. This file is divided into three frames each. The
"base-frame" is the first frame of the reserved, contiguous primary file
space.

1-5

MODULO 3
SEPARATION 3
BASE FRAME 100

BASE
FRAME
(100)

-.....
GROUP 0

FRAME-ID: 100
LINK BACKWARD: 0

LINK FORWARD: 101

FRAME-ID: 101
LINK BACKWARD: 100

LINK FORWARD: 102

FRAME-ID: 102
LINK BACKWARD: 10 1

LINK FORWARD: 0

88A00757A

GROUP 1

FRAME-ID: 103
LINK BACKWARD: 0

LINK FORWARD: 104

FRAME-ID: 104
LINK BACKWARD: 103

LINK FORWARD: 105

FRAME-ID: 105
LINK BACKWARD: 104

LINK FORWARD: 0

1-6

GROUP 2

FRAME-ID: 106
LINK BACKWARD: 0

LINK FORWARD: 107

I

FRAME-ID: 107
LINK BACKWARD: 106

LINK FORWARD: 108

FRAME-ID: 108
LINK BACKWARD: 107

LINK FORWARD: 0

88A00757A

Notice that the file effectively contains three "starting points" in frames
100, 103, and 106. These frames link baCkward to frame 0, which is to say they
do not "link back" at all. Because only the first frame of Group 0 is stored
in the file dictionary as the base frame, the starting frames of the following
groups are computed. Since the primary space frames are always contiguous, the
base frame of any given group can easily be determined using the following
formula:

Base of any Group - (Group * Separation) + Filebase

Thus, the starting frame of Group 1 is 103:

103 - (1 * 3) + 100

Now suppose an item is to be added to the file. First the item-id is hashed to
determine which group it will be stored in. The hashing algorithm will return
a value within the range of the modulo (the number of groups in the file). In
this case, we will assume the result is Group 1. Also, we will assume that the
primary space allocated to Group 1 is almost full and the addition of this item
will cause it to overflow two frames. The following sketch diagrams the result.

MODULO 3
SEPARATION 3
BASE FRAME 100

BASE
FRAME
(100)

GROUP 0

FRAME-ID: 100
L INK BACKWARD: 0

LINK FORWARD: 101

FRAME-ID: 101
LINK BACKWARD: 100

LINK FORWARD: 102

FRAME-ID: 102
LINK BACKWARD: 101

LINK FORWARD: 0

GROUP 1

FRAME-ID: 103
LINK BACKWARD: 0

LINK FORWARD: 104

FRAME-ID: 104
LINK BACKWARD: 103

LINK FORWARD: 105

FRAME-ID: 105
LINK BACKWARD: 104

LINK FORWARD: 947

FRAME-ID: 947
LINK BACKWARD: 105

LINK FORWARD:1106

FRAME-ID: 1106
LINK BACKWARD: 947

LINK FORWARD: 0

1-7

GROUP 2

FRAME-ID: 106
LINK BACKWARD: 0

LINK FORWARD: 107

FRAME-ID: 107
LINK BACKWARD: 106

LINK FORWARD: 108

FRAME-ID: 108
LINK BACKWARD: 107

LINK FORWARD: 0

88A00757A

As shown, when Group 1 overflowed, the additional data was written into frames
947 and 1106 and the linking information was used to chain these frames to the
last frame of the "primary" space in Group 1. Should the total size of Group 1
be reduced by future deletions, frames 947 and 1106 would be "un-linked" and
returned to the free space pool. The "primary space" will always be associated
with the file, even if one group, or the entire file, has all items deleted.

This process of defining the modulo and separation for a file can be used to
optimize the file access process. Utility programs are available to choose the
optimum modulo and separation based on average item size and the total number
of items stored. Since the search for anyone item is always limited to only
one group, it is group size, not file size, that determines the speed of
retrieval. The separation, involving reservation of contiguous space, is an
attempt to ensure that the "next access" will be physically the next sector on
the disk. Since most PICK Operating Systems are used in a timesharing environ
ment, contention for the disk will almost always cause head movement before the
next access for anyone user. Therefore, in most instances, the separation is
left as one, and the linking process begins as soon as the first frame of a
group is filled; each group being free to grow and shrink independently.

1-8

88A00757A

1.4 ITEK-ID AND ATTRIBUTES

The file structures just described are "transparent" to the user once a file
has been divided into frames by using the modulo and separation. The item is
where the real mechanics of the PICK 9perating System file structure become
obvious to the user.

1.4.1 ITEM-ID

Item-id is a keyword that identifies a related group of fields called an item.
A file is a collection of related items. A file can be any length. consisting
of-aQY number of items. with any one-rtem limited to 32K bytes. An item is
divided into attributes. These attributes can contain any data except for
attribute O. the Oth attribute. which contains the keyword that identifies the
item. This attribute O. called item-id. can be up to 50 bytes long. No length
restrictions apply to other individual attributes. except for their collective
limit of 32K bytes.

The data that follows item-id can be further divided into more attributes;
attributes can contain multiple values; and values can contain multiple
subvalues. Attributes are delimited by physically writing the A character
between attributes. Multiple values within attributes are delimited by the
character and multiple subvalues within values are delimited by the \
character. Attributes. values. and subvalues are individually variable in
length. can grow or shrink as required by the application. and occupy only as
much disk storage as they require plus the one-byte delimiter marks that
separate them. All of the information pertaining to what attributes are in a
file is contained in the file dictionary. Whereas attributes. values. and
subvalues can potentially contain the same data. attribute O. the item-id. must
be unique within one file.

Attribute O. or item-id. plays a key role in the location of an item.
The retrieval of a given item follows this basic procedure:

1. Given the file name and item-id of the data to be retrieved. the operating
system consults the file dictionary and determines the base frame. modulo,
and separation of the file.

2. Using the item-id supplied by the user and the hashing algorithm. the base
frame of the group in which the item is stored is determined.

3. The base frame and associated linking pointers to the following frames
are read and the group is searched until the item-id is found.

1-9

88A00757A

Shown below is an example of an item in an inventory file. This example
illustrates the role of the attribute mark A, the value mark], and the
subvalue mark ,. Both attributes 1 and 2 contain one item of data.

Attribute 3 illustrates the full range of complexity that can be managed by
the operating system; it contains three values delimited by the value mark],
and the third of these, Value 3, consists of two subvalues.

PART-52900ADATA FIELD #1ADATA FIELD '2AVAL 11]VAL 12]VAL 13-1'VAL #3-2
I I I I
+Attribute 1-+-Attribute 2-+-------+--Attribute 3-----------+

I I
I +--Value 2 I
+---Value 1 I I

+------Value 3------+
I I
+-Subvalues 3-1&3-2-+

1-10

88A00757A

1.4.2 ATTRIBUTES

Within the PICK operating system, file dictionaries and file data items are
composed of a string of attributes, delimited by the character A. In all
cases, attribute 0 serves as ite~id. A brief description of attributes
follows; detailed description is provided in Section 6.

1.4.2.1 Dictionary Attributes

An important c9ncept to remember is that dictionaries are files. Their
structure follows the same pattern of ite~id followed by attributes, like any
other file. Dictionaries achieve special significance by following a
relatively rigid structure, unlike data files which follow whatever structure
the data is suited to. Dictionary files reserve certain characters for
attribute 1. If one of these reserved characters appear as attribute 1 in the
item, then the item-id and the following attributes in that item take on
special significance in the definition of the item and its purpose.

There are three classes of items that can appear in a dictionary file. The
following is a discussion of these types.

1. File Definition (D) Items

When an item in a dictionary file is used to define another "lower level"
file, the item-id, or attribute 0, of the item becomes the name of the file
being pOinted to. This lower level file can be either a true data file, or
another dictionary.

When a file definition item appears in the system dictionary, the "file"
being defined is the master dictionary of a user account. Some of the
attributes take on special roles in the system dictionary, such as the
establishment of logon passwords.

When a file definition item appears in a master dictionary, the "file"
being defined is the dictionary establishing a data file. One dictionary
file can contain one or more file definition items pointing to ,data files
that have identical structure.

1-11

88A00757A

2. File Synonym Definition (Q) Items

When an item in a dictionary file is used to define another "lower level"
file, the item-id, or attribute 0, of the item becomes the name of the file
being defined. It is sometimes convenient to give a file more than one
name. as in giving the file "INVENTORY", the name "INVrt for short. File
synonyms can also be useful in a master dictionary (MD), to alter the
command language terminology and/or create abbreviations. PICK makes this
possible with the "file-synonym definition" item. Aside from giving a file
an alternate name within the same user account, the file-synonym definition
item can also point "outside" its account and reference files in other
accounts, providing security restrictions are met. The item-id of the
synonym definition item is the new version of the name. The "real" name
is placed in attribute 3.

3. Attribute Definition (A) Items

The purpose of the attribute definition item in the file dictionary is to
define the nature of the data contained within a specific attribute. Thus,
the data, and the inter-data relationships, can be defined on an attribute
by attribute basis. The item-id, or attribute 0, of the attribute
definition item is a mnemonic "name" for that attribute. This feature is
used extensively by the English-like ACCESS processor as a user-oriented
means to identify the data. For instance, a user could refer to the
"LIST-PRICE" rather than "ATTRIBUTE 14".

1.4.2.2 Data Attributes

A data file, like all files, consists of item identified by the item-id
followed by a number of other attributes, 1-n (or no attributes). These
attributes make up the data in the file. The handling of this data is
dependent upon the attribute definition and the processor selected for the
handling of the data.

1-12

88A00757A

system startup 2
Prior to turning on ZEBRA, make sure that the system is properly set up (refer
to your Installation Guide). Next, make sure that the disk heads are unlocked.
If in doubt verify and, if necessary, refer to the manufacturer's instructions
provided with the drive.

2.1 TURNING ZEBRA ON

2.1.1 ZEBRA 1500, 2500, 3500, 5500

Prior to turning on ZEBRA, make sure that your Installation Checklist is
complete through item 17. Then turn on the POWER ON switch, then press RESET.
These controls are on the front panel of all ZEBRA models. The console CRT
will then display:

GENERAL AUTOMATION EXECUTIVE - VER n.n., pIN 1561-X
(individual configuration statistics)

Enter BOOT, BACKUP or RESTORE
Ok,

If nothing is entered within 10 to 15 seconds, automatic bootstrap will begin.

2.1.1.1 PICK Operating System Load

The ZEBRA operating system loader and its execution will then begin, indicated
by the display of:

PICK OS LOADED

n nnnK MEMORY
cc COMM LINES

where:
nnnn - Amount of RAM

cc - Number of comm lines physically present

Following the successful load of PICK, the operator will be prompted:

OPTIONS (X,M,A,F,B) >

2-1

88A00757A

During startup and normal operation, the operator will enter X. This will
initialize the system and start the COLDSTART procedure. A summary of these
options is given below.

Option

M Loads only tne PICK monitor onto your system. Not valid for
the ZEBRA 750.

A Loads the operating system object code software consisting of
PICK processors (ACCESS, BASIC, PROC, etc.) and various utility
programs. A binary image cartridge must be mounted to use.
Before selecting this option, a backup of the master cartridge
containing the operating system should be prepared.

F Loads entire system from a FILE-SAVE tape or cartridge disk
containing the data and dictionary files. Prompt: "(m)ag tape or
(c)artridge" will be given. User should enter "m" or tic" as
appropriate and mount tape or cartridge with blocksize of 4000
bytes.

B Loads Utilities and Diagnostics program for the selection of tests.

The entry of "X" will result in IPL from disk, automatic logon and display:

SPOOLER STARTED
LINKING WORKSPACE FOR LINE 0

«< R80 GENERAL AUTOMATION REV. n.m »>
«< HH:MM:SS ZEBRA DD:MM:YY »>

The HH:l1M:SS shown will be the actual time since startup was initiated. The
display message will continue with display of:

THIS IS A COLDSTART PROCEDURE
HH:liM: SS DO MMM YYYY

and an operator prompt to enter the current time and the current date. -

TIME • HH:MM:SS [CR]
DATE - DD Ml-lH YYYY [CR]

The display message will continue with:

NOW CLEARING ACC FILE
NOW VERIFYING THE SYSTEM
[341] ZEBRA PICK R80 REV. m.n SYSTEM VERIFIED

Automatic logoff will then take place. This will occur automatically at one
time only during COLDSTART. Logon and Logoff will otherwise be carried out as
described in the following section.

2-2

88A00757A

2.1.2 ZEBRA 750

Turn on the POWER ON switch, then press RESET. These controls are on the back
panel of the ZEBRA 750 model. The console CRT will then display:

GENERAL AUTOMATION EXECUTIVE - VER n.n., pIN 1563-X
(individual configuration statistics)

Enter BOOT, BACKUP or RESTORE

Ok,

If a command is not entered within approximately 20 seconds, automatic
bootstrap of PICK will begin, indicated by the display of

LOADING AND VERIFYING PICK MONITOR

2.1.2.1 PICK Operating System Load

The following describes the load for the 750 model. For creation of a
formatted operating system cartridge tape or disk, see Appendix D, "CREATING A
SYSGEN CARTRIDGE TAPE OR DISK FOR ZEBRA 750." The execution of the ZEBRA 750
operating system loader will begin with the display of:

PICK MONITOR LOADED AND VERIFIED

mmmK MEMORY
cc COMM LINES

where:

mmmK - Amount of RAM
cc - Number of comm lines physically present

Following the successful load of PICK, the operator will be prompted to select
an option:

OPTIONS (X, F, B)-

For startup and normal operation, the operator should enter X or only a
carriage return. This will initialize the system and start the COLDSTART
procedure. The following will be displayed:

SPOOLER STARTED
LINKING WORKSPACE FOR LINE 0

«< R80 GENERAL AUTOMATION REV. 2.1 »>
«< time ZEBRA date »>
THIS IS THE COLD-START PROCEDURE
00:12:03 31 DEC 1967

2-3

88A00757A

The time will be the time since STARTUP was initiated, and the date will be
the start date of the PICK Operating System. The operator will then be
prompted to enter the current time in the form hh:mm:ss, using 24-hour format.
The new time and old date will then be displayed.

TIME
newtime 31 DEC 1967

The operator will then be prompted to enter the current date in the form
mm:dd:yy. The new time and new date will then be displayed.

DATE
newtime newdate

Display messages will continue until the LOGON message, at which time your
system is loaded, verified, and ready for LOGON.

NOW CLEANING UP ACC FILE
NOW VERIFYING THE SYSTEM

[341] ZEBRA PICK R80 rev. no SYSTEM VERIFIED!!!

<CONNECT TIME-min; CPU- ; UNITS-
<LOGGED OFF AT time ON date>

LOGON TO THE GA 2.1 ZEBRA AT time
PLEASE ENTER ACCOUNT NAME >

;LPTR PAGES - >

F option provides FILE RESTORE of user files.

B option returns you to the Firmware Executive. At the 'Ok,' prompt, type in
either '7', 'COM}~DS' or 'HELP' to receive the following list of Executive
commands.

? BOOT BACKUP COMMANDS CONNECT CONTEXT DIAGNOSTIC DUMP ERASE
FORMAT GOTO HELP LOAD MEMORY PAGE REGISTER RESTORE RESE RESET
RETENSION REWIND SAVE SEGMENT SRECORD SYSTEM

2-4

88A00757A

2.1.2.2 PICK OS RESTORE

To carry out ABS RESTORE, enter BOOT CD (for Cartridge Disk) or BOOT CT (for
Cartridge Tape) at the 'Ok,' prompt during startup. This will result with
the prompt:

Mount Cartridge 1 (yIn):

There are no default entries. If you enter 'N', you will return to 'Ok,'
prompt. If you enter 'Y', you will receive the following prompts:

ZEBRA 750 SYSGEN LOADER

RESTORE SYSTEM-R
RESTORE ABS-A

Enter one of the options. Option A loads ABS (operating system). After
entering 'A', the screen will display:

LOADING AND VERIFYING PICK MONITOR
PICK MONITOR LOADED AND VERIFIED
LOADING AND VERIFYING ABS
LOADING ABS FRAME > xxxx

The display of xxxx will flicker with numbers as frames are loaded. When
loaded, the system will jump to BOOT and display the message:

ABS LOADED AND VERIFIED

mUDD MEMORY
cc COMM LINES

OPTIONS(X, F, B)

Option R is a combination of options A and F. It loads ABS (operating system)
and FILES (user files). Option R steps are the same as ABS through "mmm
MEMORY, cc COMM LINES." Following this, the prompt will be displayed:

SPOOLER STARTED
MOUNT CARTRIDGE AND PRESS RETURN

If an ABS (operating system) is recorded at the front of the FILE-SAVE tape,
the system will take a few minutes to get past the ABS. The blinking red light
on the front of the panel indicates that the cartridge is being accessed. Once
ABS is passed, the names and sizes of the files will be brought to the screen.
When loaded, the system responds as it does for COLD-START procedure.

2-5

88A00757A

2.1.2.3 Binary Backup and RESTORE

In order to perform a binary backup, enter (after the ~Ok,~ prompt):

Ok, BACKUP CD (or BACKUP CT for Cartridge Tape)

The system then responds with:

Mount Cartridge 1 (y/n):

A ~Y~ response initiates the saving of data. The response may be either upper
or lowercase. Since each IOMEGA cartridge is 5M bytes, it will take four
cartridges to backup and entire 20M byte system. Once the data is saved, it
can be restored with the command (given after the ~Ok,~ prompt):

Ok, RESTORE CD (or RESTORE CT for Cartridge Tape)

Again, the system responds with:

Mount Cartridge 1 (y/n):

A 'Y' response will initiate the restoring of data.

2.1.2.4 BOOT

At the 'Ok,' prompt, enter 'BOOT'

Ok, BOOT

The system responds with:

LOADING AND VERIFYING PICK MONITOR
PICK MONITOR LOADED AND VERIFIED

256K MEMORY
cc Cm·1M LINES

OPTIONS (X, F, B)-

At this point, a coldstart may be performed by entering 'X~ for the X option,
or a fi1eload by entering 'f: for the F option. Currently, the B option
returns to the firmware prompt 'Ok,'.

NOTE

The sequence up to the Options message will
occur automatically if nothing is keyed for
20 seconds at the initial 'Ok,' prompt.

2-6

88A00757A

2.1.2.5 Cartridge and Hard Disk Format Procedure

Before using the removable cartridge disk to perform file-saves or T-DUMPs, the
cartridge must be formatted. To format an IOMEGA cartridge disk, you must be
at the firmware prompt 'Ok,'. You must ensure that the cartridge is not write
protected by ensuring that the write-protect switch on the cartridge is not
adjacent to the circle mark. At the 'Ok,' prompt, enter:

Ok, FORMAT CD MODEL 0

The system responds with:

Disk Configured, Proceed With Format (y/<n»:

At the '(y/<n»' prompt, enter 'Y'. The system will respond with the following
messages. Note that messages within braces ({}) will appear only if any tracks
are to be relocated. (In most of these cases, the system will continue.)

Initializing ••
Checking ••
{Defective Track At Head: 'X' (n), Cylinder: 'XX' (nnn) ,
Format Complete, {Defective Tracks:} 'XX'
Add Defect (Head; Cylinder):
{Mapping Alternate Tracks}

Status: 'XX'}

At the 'Add Defect (Head, Cylinder):' prompt, hit RETURN and if any tracks are
to be relocated, it will be done automatically. (Or you may specify tracks
that the system has not found by entering Head and Cylinder numbers in
hexadecimal, separated by commas.)

Should there be a need to format the 20MB hard disk drive, then, at the
firmware prompt 'Ok,', enter:

Ok, FORMAT DISK 0 MODEL 3

During formatting, the defective head and track numbers are displayed. When
formatting is completed, the number of defective tracks is displayed and the
user is prompted to enter additional tracks from the manufacturer's defect
list. The format of the response is defined as follows:

Add Defect (Head, Cylinder): [I] head cylinder

The user responds with the head and cylinder number of the additional defective
track. If the numbers are preceded with an exclamation point (I), they are
taken to be decimal. A null input will terminate the defect list and all
defective tracks are then remapped. After mapping, a 2048-byte configuration
table/defect map are written into the first secton on track 0, head O. See
700/750 Hardware Reference Manual (88A00785A) for further information.

After the hard disk has been formatted, you will need to reload the entire
system, either with a SYSGEN cartridge or a previously binary-saved cartridge.

2-7

88A00757A

2.2 LOGGING OPERATION

The Logon processor initiates user sessions by identifying valid users and
their associated passwords. The Logoff processor is used to terminate the
session and should always be invoked via the verb OFF when the user wishes to
terminate. These processors can accumulate accounting statistics for billing
purposes and associate the user with his privileges and security codes.

2.2.1 LOGON

The user may logon to the PICK system when the following message is displayed:

LOGON TO THE GA ZEBRA AT 00:00:00
PLEASE ENTER ACCOUNT NAME)

The actual form of this message will vary since the message format is obtained
from an entry called ··LOGON" in the SYSTEM dictionary.

The user enters the name (identification) established for him in the system,
followed by a carriage-return. If a password has also been established, there
will be a prompt:

PASSWORD:

The user then enters the password, followed by a carriage-return. If a valid
password is not entered, the system will display the message:

PASSWORD?

Note that it is possible to enter identification followed by a comma and the
password on one line, but then the password will be visible.

The system validates the user's identification against the entries in the
SYSTEM dictionary; if it is illegal, the following message is returned:

USER-ID?

The user must reenter his identification and password. If the identification
is valid but the password is not, the user must then reenter both his
identification and password. If the user has successfully logged onto the
system (i.e., both the identification and the password have been accepted), the
following message is displayed:

«<R80 GENERAL AUTOMATION REV: m.n»)
«(time ZEBRA date»)

)

where "time" is the current time, "date" is the current date, and "R80" is the
current release level. The ")" is the TCL prompt character which indicates
that the user may enter any valid TCL command.

2-8

88A00757A

2.2.2 LOGOFF

Logoff is achieved by entering the word OFF either at the TCL level or at the
DEBUG level. A message indicating the connect time (i.e., number of minutes
the user was logged on) and the appropriate charge units will be displayed.
The system then displays the LOGON PLEASE message and waits for the next user
session to be initiated. The ge~eral form of the logoff message is:

<CONNECT TIME • n KINS.; CPU • m UNITS, LPTR PAGES - x>
<LOGGED OFF AT time ON date >

where 'n' is the number of minutes of connect time, "m" is the number of charge
units, "time" is the current time, and "date" is the current date, and "x" is
the number of line-printer pages generated. The charge-units represent usage
of the CPU; it is in tenths of a CPU second. An example of Logon, Logoff:

PLEASE ENTER ACCOUNT NAME> TEST [CR] <------------ Valid identification.
PASSWORD: <------------ Valid password. [CR]

«<R80 GENERAL AUTOMATION REV: m.O»>
«<14:33:08 ZEBRA 3 JAN 1982»>

>OFF [CR]

<CONNECT TIME - 5 KINS.; CPU - 6 UNITS; LPTR PAGES - 15 >
<LOGGED OFF AT 17:55:44 ON 3 JAN 1983>

LOGON TO THE GA ZEBRA AT 17:56:01
PLEASE ENTER ACCOUNT NAME >

2-9

88A00757A

2.2.3 ADDITIONAL LOGON FUNCTIONS

The LOGTO verb allows the user to log to another account faster than by going
through the OFF and LOGON process. The CHARGE-TO verb allows the user to
charge a particular logon session to a specific charge number or name; the
CHARGES verb displays the charge statistics for the current logon session.

2.2.3.1 LOGTO

The general form of the LOGTO verb is as follows:

LOGTO acctname [CRl

where "acctname" is that of the new account that the user wishes to logon to.
If the account has a password defined, the message:

PASSWORD:

will be displayed and the password may then be entered.

If the account name is illegal, the message "USER ID?" will be printed and the
user will be back at TCL. If the password is incorrect, the message
"PASSWORD? II will be displayed.

If the account name and password are both correct, the current logon sessions
will be terminated by updating the accounting file with the appropriate
statistics and a new session started. The message:

<CONNECT TIME - n MINS.; CPU - m UNITS; LPTR PAGES - x >

will be displayed.

Note that it is possible to enter the acctname and password separated by a
COtuma on the same line, but that then the password will be visible.

Also, the tape unit and line-printer will be detached if the user had them
attached to this line prior to the LOGTO.

2-10

88A00757A

2.2.3.2 CHARGE-TO

The CHARGE-TO verb is used to keep track of computer usage for several projects
associated with the same logon name. This verb performs the following:

1. Terminates the current charge session by updating the ACC file with the
user's accumulated charge-units, line printer pages and connect-time
statistics.

2. Changes the logon name to the original name concatenated with an asterisk
and then the name following "CHARGE-TO".

The CHARGE-TO verb has the following general form:

CHARGE-TO {acctname}

where "acctname" is any sequence of non-blank characters. This statement will
cause the current logon session to be terminated and the account file to be
updated with the appropriate statistics; a new' session is started with the new
user identification of the form:

logon account name*acctname

where "acctname" is the account name specified in the CHARGE-TO statement.
This allows the user to charge his logon sessions to specific names or
numbers. If "acctname" is null in the CHARGE-TO statement, the user
identification will revert to the logon account name alone.

The CHARGE-TO statement will also cause the following message to be displayed:

<CONNECT TIME - n MINS. j CPU - m UNITS; LPTR PAGES - x >

2.2.3.3 CHARGES

The CHARGES verb prints the current computer usage since logon as connect time
in minutes and CPU usage in charge-units. The general form of this verb is:

CHARGES

This will display the logon statistics with the following message:

<CONNECT TIME=- n MINS. j CPU - m UNITS; LPTR PAGES - x >

2-11

88A00757A

Sample usage of LOGTO, CHARGE-TO and CHARGES verb:

* PLEASE ENTER ACCOUNT NAME) SMITH,XYZ [CR]

«<R80 GENERAL AUTOt~TION REV: m.n»)
«<09:15:33 ZEBRA 11 DEC 1982»)

*)WHO [CR]
7 SMITH

*)TIME [CR]
09:17:00 11 DEC 1982

*)LOGTO JONEA [CR]

USER-ID?

*)LOGTO JONES [CR]
* PASSWORD: ABC [CR]

<CONNECT TIME • 3 MINS.;

*)WHO [CR]
7 JONES

*)CHARGE-TO A001 [CR]

<CONNECT TIME • 0 MINS.;

*)WHO [CR]
7 JONES*A001

:Ie)CHARGES [CR]

<CONNECT TIME - 0 MINS.;

*)CHARGE-TO [CR]

<CONNECT TIME • 0 MINS.;

*)WHO [CR]
7 JONES

CPU • 11 UNITS; LPTR PAGES • 0)

CPU • 7 UNITS; LPTR PAGES • 0)

CPU • 8 UNITS; LPTR PAGES =- 0)

CPU=-9 UNITS; LPTR PAGES • 0)

2-12

88A00757A

2.2.4 THE LOGON PRoe AND GENERAL SYSTEM MESSAGES

Upon logon, PICK allows for the execution of a PROC with an item-id identical
to the user's identification. PICK also allows a general message to be sent to
each user as he logs onto the system.

When the user has logged on to this account, PICK permits the automatic
execution of PROC whose item-id is the same as the user's identification. That
is, the }~ster Dictionary (MD) of the account will be searched for a PROC
matching the identification which was used to log on to the account; if it is
found, it will be executed. (For further information regarding PROC's, refer
to PICK PROe Reference Manual, 88A00780A.)

Typically, the Logon FROC is used to perform standard functions that are
always associated with the particular user's needs. For example, setting of
terminal characteristics could be performed by the Logon PROC. When the user
logs on to the system, his terminal characteristics are set to the following
initial conditions:

Page Width:
Page Depth:
Line Skip:
LF Delay:
FF Delay:
Backspace:
Term Type:

Terminal

79
24
o
1
5
8
M

Printer

132 (characters)
60 (lines)

These conditions can subsequently be displayed and altered by the TCL verb
TERM. As an example, assume that the following PROC:

item 'SMITH' in MD of user SMITH

001 PQ
002 HTERM 118,44,7,6
003 P
004 X*** TERMINAL CHARACTERISTICS SET ***

is stored as item SMITH in the user's Master Dictionary (MD).

2-13

88A00757A

If the user's identification is the word SMITH, then the SMITH PROC will be
executed automatically every time the user logs on (i.e., the user's particular
terminal characteristics will automatically be set). This is illustrated as
follows:

PLEASE ENTER ACCOUNT NAME > SMITH,XYZ [CR] (------------ Logon sequence~

**** tiOTE: SYSTEM PRINTER WILL BE DOWN AT 12: 00
**** TODAY FOR ROUTINE MAINTENANCE UNTIL 2: OOPM

«<RBO GENERAL AUTOMATION REV: m.n»>
«<17:09:50 ZEBRA 05 DEC 1982»>

<- General system
message.

*** TERMINAL CHARACTERISTICS SET *** <---------- Message from SMITH
PROC.

> <-- TCL prompt
character.

A general system message may be stored in the special item "LOGON" of the
system error-message file ERRMSG; this file and the formats of the data in it
are described in Section 5.6. This system message will be printed immediately
before the standard logon message.

Typically, this facility is used to broadcast messages relating to the system
to everybody who logs on to it. Note that the item "LOGON" must exist in the
ERRMSG file even if there is to be no system-wide message; in this case, it
will be a null item.

2.2.5 POWERFAIL AND GENERAL SYSTEM MESSAGE

In the event of a power failure, battery backup will be provided for a limited
period of time in order to permit all users to log off for an orderly shutdown.
(Instructions to implement this procedure are in the Enhancement section of the
2.1 Release Notes.)

After a power failure, all logged-on users will receive the following general
system message:

time: date: from: SYSTEM
POWERFAIL - SIWTDOWN IMMINENT, LOGOFF NOW!

Users should log off immediately after receiving this message in order to
prevent loss of data.

2-14

START

FILE-5AVE

INITIALIZE
DEFECT MAP

FORMAT
PACK

VERIFY
PACK

LOAD
PICK O/S

88A00757A

SAVE ALL ACCOUNT FILES

INTIALIZE DEFECT MAP, FORMAT PACK,
AND VERIFY PACK ARE OPTIONAL
FUNCTIONS FROM THE UTILITIES AND
DIAGNOSTICS MENU (SEE APPENDIX C).
INITIALIZE DEFECT MAP AND FORMAT

. PACK MUST BOTH BE DONE IF EITHER
IS REQUIRED.

LOAD LATEST REVISION USING THE
UTILITIES AND DIAGNOSTICS MENU
(SEE APPENDIX C). DO NOT ABS LOAD
IT. DO BINA.RY LOAD (MENU ITEM 4).
NOTE: THE MESSAGE "BAD TAPE OPER
ATION" COULD APPEAR ON A ZEBRA 1500.
IGNORE IT IF SR4 HAS CYL -12E.

FILE-5AVE
:FILELOAD

ACCOUNT
RESTORE

SAVE (OF)

END

Figure 2-1. Initial Load/Reload Operating System

2-15/2-16

THIS STEP IS REQUIRED TO
DEFINE THE HARDWARE
CONFIGURATION.

RESTORE REQUIRED AC
COUNTS FROM PREVIOUS
FILE-5AVE TAPE.

OPTIONAL STEP IN ORDER TO
CHECK SYSTEM.

88A00757A

terminal control language (Tel) 3
TCL is a language processor that provides the communication media between a
user-operator.and the PICK operating system. All other processors, such as
EDITOR, BASIC, and ACCESS, are invoked by TeL. In addition, any PICK verb in a
command sentence is invoked from a keyboard, or from direct execution by a
PROe, .which is a series of stored instructions.

TCL is automatically entered during LOGON and returned to whenever a
particular verb process (such as LIST, DUMP, COUNT), or a series of processes
are complete. The display prompt for TCL is ">". This prompt is displayed at
the upper left of the display and indicates that the system awaits input from
the keyboard.

A TCL input statement will implement one of a set of verbs residing in the
user's Master Dictionary (MO) (see Section 6). This verb will perform a set of
steps specified at the keyboard, or will involve another processor to carry out
specified steps. The latter is often the case where the "specified steps" are
commonly used and required frequently. For example, the "RUN PROGRAMS ABC"
causes the BASIC program ABC in the PROGRAMS file to be executed.

3.1 TCL VERB TYPES

The TCL verbs are of three types: TYPE-I verbs perform specific functions, but
do not access file data. For example, TIME is a TYPE-I verb. TYPE-II verbs
are those which access file data. For example, RUN, COPY, COMPILE are TYPE-II
verbs. The TYPE-III verbs are for ACCESS, providing the user with immediate
access, via keyboard, to his file data. USing the TYPE-III verbs, he has an
unlimited flexibility for selecting the desired data, formatting and presenting
it. These verbs are totally covered in the PICK Reference Manual, ACCESS
section.

3-1

88A00757A

3.2 TCL VERB ATTRIBUTES

Table 3-1 identifies PICK verbs in alphabetical sequence and by type. The key
attribute identifiers shown in this table (such as attribute 1 for OIVO is
"PO") are defined as follows:

Attribute Number

o

1

2

3

4

Description

This is the item-id. which is the name of the verb.

Must contain a P optionally followed by another
letter.

P identifies
The letter
processor.
A defines
Q defines
Y defines
Z defines

the MD item as a verb definition item.
following P is passed to the defined

Some of these are:
an ACCESS verb.
a PROC verb.
a TCL-II verb.
a TCL-I verb.

This attribute defines the processor entry point to
which TCL passes control (i.e •• the mode-id in
hex). An ACCESS verb will have an entry of:

35

A Type-II verb will have an entry of:

2

A Type-I verb will have an entry of:

x xxx

where xxxx is the entry point.

Secondary transfer point. Use depends on attributes
1 and 2.

Tertiary transfer point. Use depends on attributes
1 and 2.

3-2

5

88A00757A

TCL-II parameter string. These parameters govern
treatment of the items retrieval by TCL-II verbs to
be passed to the processor whose entry point is
defined in attribute three. Parameter may be any
of the following:

C Copy item to a work area.

F Pick up file parameters only
(ignore item-list).

N Okay if item is not on file.

P Print item-id if item-list is It*" (all items)
or if SELECT-ed item-list.

S Ignore the select-list; item-list is
mandatory.

U Items will be updated by processor.

Z Final entry required on EOI.

Attribute zero, for all verbs, is item-id, the name assigned to an item as
shown in left-most column of the table.

3-3

88A00757A

3.3 TCL VERB LIST

Table 3-1. PICK Verbs (Sheet 1 of 5)

Privilege Attribute
Item-Id Level A1 I A2 I A3 I A4 I A5
---------------------+---------------+------+------+------+------+----
%%SELP%% 0 P 3146
:FILELOAD 2 P 20D7
: START SPOOLER 2 P 500A 60B6 lOAF
:TASKINIT S P 13C
ACCOUNT-RESTORE 2 P 80D7
ADDD 0 PA 40AO
ADDX 0 PA AO
B/ADD 1 PZ 2 53 57 CS
B/DEL 1 PD 2 53 57 CS
B/UNLOCK 2 P 4058
BASIC 0 P 2 BE UP
BLOCK-PRINT 0 P 500A 41
BREAK -KEY -OFF S P 418C
BREAK -KEY-oN S P 518C
CATALOG 0 P 2 EO
CHARGE-TO 0 P 6032
CHARGES 0 P 5032
CHECK-SUM 0 PX 35 4F
CLEAR-FILE 1 PO 8F
COMPARE 2 P 2 17D
COMPILE 0 P 2 BE UP
COpy 0 PZ 2 8C UZ
COPY-LIST 0 PL 3013 I
COUNT 0 PB 35 1069 I
CREATE-FILE 1 PO 8D t
CREATE-PFILE 1 PO 408D I
CROSS-INDEX 2 PZ 2 92 I C
DATE 0 P 618C I
DATE-FLAG S P 305B I
DECATALOG 1 PY 2 EO I N
DELETE 1 PD 2 509E I CUZ
DELETE-ACCOUNT S P ODE I
DELETE-FILE 1 PO l08F I
DELETE-LIST 1 PL 006D I
DIVD 0 PD 40AO I
DIVX 0 PD AO I

3-4

88A007S7A

Table 3-1. PICK Verbs (Sheet 2 of 5)

Privilege Attribute
Item-Id Level A1 I A2 I A3 I A4 I AS
---------------------+---------------+------+------+------+------+----
DTR 0 P 10AO
DTX 0 P 10AO
DUMP 2 PZ 42
ECHO 0 P 5080
ED{IT} 0 PE 2 D CUPN
EDIT-LIST 0 PL 13
EXCHANGE 0 PQ
FILE-SAVE S PQ
FORMAT 0 PQ
GET 0 PZ 2 142 FUN
GET-LIST 0 PL 1064
GROUP 0 P 2 50AO F
HASH-TEST 0 PA 35 106A
INIT-CURSOR S P 2 118F
I STAT 0 PA 35 6A
ITEM 0 P 2 30AO N
JET-EDIT 0 P 2 2154 CUN
JET-IN 0 P 2 154 CUN
JET-oUT 0 P 2 1154 CS
LAN 0 P 143
LANOFF 0 P 2143
LINK-WS 2 P 40AC
LIST 0 PA 35 4D
LIST-ITEM 0 PA 35 4D 50SE
LIST-LABEL 0 PA 35 4D 7D
LIST-LOCKS 0 P 500A 30CD
LISTABS 0 P 20AE
LISTPEQS 0 P AB
LISTPTR 0 P AE
LOAD 0 PZ 2 142 FUN
LOCK-FRAME 2 P 3041
LOGOFF 2 P 1116
LOGON 2 P 116
LOGTO 0 PG 7032
MAS S P 2 17 32 CUP
MESSAGE 2 PG 1034
MLIST 2 PY 2 20 C
HLOAD 2 P 2 1F

3-5

88A00757A

Table 3-1. PICK Verbs (Sheet 3 of 5)

Privilege Attribute
Item-Id Level A1 I A2 I A3 I A4 I AS
---------------------+---------------+------+------+------+------+-===

I I I
MSG I 2 PG I 1034 I
MOLD I 0 PM I 40AO I
MULX I 0 PM I AO I
MVERIFY I 2 P I 2 101F I
NODE I 0 P I 147 ,
OFF I 0 PZ , 32 I
P , 0 P , 2080 ,
PAS , S PA I 2 17 1B I CUP
PASSWORD I S P I 186 ,
PIE , 0 PA3S' 4D 11CC I
PLOT I 0 PA3S' 4D 01CC I
POVF , 0 P , 40BB ,
PRINT-ERR , 0 P I 2 43 ,
PRINTRONIX I 1 P I 40B4 I
PVERIFY I 0 PZ I 2 EO I N
QSELECT I 0 P I 2 303A 0 I Z
RECOVER-FD I 0 P I 1012 I
REFORMAT , 0 PA I 35 4D 12C I
RESET-PORT , S P , B18C I
RTD I 0 P , 20AO I
RUN , 0 PR , 2 E6 I F
RUNOFF I 0 P I 2 126 I S
S-DUMP I 1 PF , 35 4E 25 ,
SAVE , 2 P , C8 I
SAVE-LIST I 0 PL I 2064 I
SEL-RESTORE I 1 P I 90D7 I
SELECT I 0 PB I 35 3076 I
SELP I 0 P , 2146 I
SEND I 0 PZ I 2 140 I UZ
SET-1/2 I 1 P I 20A8 ,
SET-1/4 I 1 P I DOA8 I
SET-BAUD I 2 P I 10E I
SET-CD I 1 P I FOA8 I
SET-CT , 1 P I DOA8 I
SET-DATE I S PZ I 2033 I
SET-HT I 1 P I 20A8 I
SET-SYM I 0 P I 2 I 89 I F
SET-TERM I S PL I 607A I I
SET-TIME I S PZ I 1033 I I

3-6

88A00757A

Table 3-1. PICK Verbs (Sheet 4 of 5)

Privilege Attribute
Item-Id Level A1 I A2 I A3 I A4 I A5
---------------------+---------------+------+------+------+------+----
SLEEP 0 P 107A
SORT 0 PA 35 4E
SORT-ITEM 0 PA 35 4E 508E
SORT-LABEL 0 PA 35 4E 7D
SP-ASSIGN 0 P 10A7
SP-cLOSE 0 P A7
SP-EDIT 0 P A9
SP-SKILL 0 P lOAD
SP-oPEN 0 P 20A7
SP-STATUS 0 P 50A6
SP-TAPEOUT 1 P 20B4
SP!E 0 PA 35 4E 11CC
SPLOT 0 PA 35 4E 01CC
SREFORMAT 0 PA 35 4E 12C
SSELECT 0 PB 35 4E 3076
STACK-oFF 0 P 2188
STACK-oN 0 P 1188
STARTPTR 2 P B2
STAT 1 PF 35 4F
STOPPTR 2 P AD
STRIP-SOURCE S P 2 1091 CUP
SUBD 0 PS 40AO
SUBX 0 PS AO
SUM 0 PW 35 4F
T-ASSIGN 2 P 9A
T-ATT 1 P 80A8
T-BCK 1 PI 6033 B023
T-CHK 1 P B09A
T-DET 1 P AOA8
T-DUMP 1 PA 35 25
T-EOD 1 P 709A
T-EOF 1 P C09B
T-EOFD 1 P D09B
T-FWD 1 PI 6033 9023
T-LOAD 1 PT 35 73
T-RDLBL 1 PO 6033 2024 A09A
T-READ 1 P 99

3-7

88A00757A

Table 3-1. PICK Verbs (Sheet 5 of 5)

Privilege Attribute
Item-Id Level A1 A2 i A3 I A4

I
I AJ

---------------------+---------------+------+------+------+------+----
T-RET 1 P B09B
T-REW 1 PO 6033 8023
T-STATUS 1 P EOA8
T-UNLOAD 1 PO 6033 909B
T-WEOF 1 PN 6033 1024
T-WTLBL 1 PO 6033 2099 A09A
TABS 0 P 80
TA-oN 0 P 110E
TA-QFF 0 P 210E
TERM 0 PZ 607A
TIME 1 PZ 3033
UNLOCK-FRAME 2 P 4041
VERIFY-SYSTEM 0 P 11F
WHAT 2 P 30BB
WHERE 2 P 1079
WHICH 0 P 409E
WHO 0 P 10BB
XOFF-DISABLE 1 P 918C
XOFF-ENABLE 1 P A18C
XTD 0 P 20AO

NOTES:

Privilege Level indicates the minimum system privileges needed to use a verb.

Levels are: 0, 1, 2, and S.

The lowest is O.

The highest, S, indicates that the verb may only be used from SYSPROG.

3-8

88A00757A

3.4 VERB DEFINITION FOR MD

Examples of verb definition items using the attributes shown in Table 3-1:

1. Define the ACCESS verb LIST:

item 'LIST' in MD

001 PA
002 35
003 4D

2. Define the TeL-II verb COPY:

item 'COpY' in MD

001 PZ
002 2
003 8C
004
005 UZ

3. Define the TCL-I verb TIME:

item 'TIME' in MD

001 PZ
002 3033

Any number of synonyms for such verb definition items may be created (or
removed or changed) by the user. This can be accomplished by copying the verb
definition item to another master dictionary item with the new item-id for the
desired synonym name.

3-9

88A00757A

3.5 TCL VERB STATEMENT

3.5.1 TYPE-I STATEMENTS

Tjye-! statements do not access a file. The general form is simply a prompt
(» followed by the verb and a carriage return.

3.5.2 TYPE-II STAlEMEHTS

TCL Type-II verbs allow access to a specified file. The format for forming a
TCL-II input statement is more restrictive than for an ACCESS statement. The
advantage gained by this restricted format is an enhancement in processing
speed since statement parsing is qUicker. The general form of TCL-II
statement:

>VERB {DICT} file-name {item-list} {(options)}

A file-name (or DICT file-name) must immediately follow the TCL-II verb. Item
selection is more restricted than in ACCESS statements, since each item-id must
be explicitly named in the statement (or, alternatively, all items may be
specified via use of the asterisk (*) character).

File-name specifies the desired file. The DICT option specifies the
dictionary portion of the file. The item-list is made up of one or more
item-id's, separated by one or more blanks. If an item-id contains embedded
blanks or parentheses, it must be surrounded by single quotes. All items in a
file may be specified by using an asterisk (*) character as the item-list.
Options, if specified, must be enclosed in parentheses at the end of the input
line. Multiple options may be separated by commas. The specified options are
passed to the appropriate TCL-II processor.

The item-list may be omitted entirely, if the TCL-II statement is preceded by
a statement that generates a "select-list"; the item-ids are then ·obtained from
this preselected list. Statements that generate select-lists are SELECT,
SSELECT, QSELECT and GET-LIST, and are described in ACCESS section of the PICK
Ref erence ~lanual.

3-10

88A00757A

3.6 TERMINAL/PRINTER CONTROLS

3.6.1 KEYBOARD CONTROLS

The description of TCL in previous sections has implied the use of a standard
typewriter keyboard. Certain keys and combinations of keys, however, are
unique for PICK operation. NOTE: Some terminals may use different letters
than the ones shown below for these functions. If a control key does not work
as described, the ASCII equivalent will have to be looked up in the manual for
the terminal. ASCII equivalents are given in square brackets.

CONTROL

H Backspaces your cursor one character. [BS]

R (Retype) Causes the line you are on to be redisplayed on the
next line. This is useful if you have backspaced and retyped
since you can confirm what is actually there and that the
characters you wanted erased were erased. [DC2]

W Backspaces your cursor one word. [ETB]

x

o Sp

BREAK

NEW LINE
or ENTER

ESC
or ESCAPE

Causes the current line to be ignored and moves your cursor
back to the prompt. This is also used if you are displaying
a long ACCESS listing and wish to end it at the end of a
page. You can also end a display by using the Control-X.

(With both the Control and space bar pressed) allows you to
continue entering but on the next line. When you use this,
the prompt on the next line will be a colon (:). [US]

Usually this stops whatever process the computer is doing as
a result of input from your terminal (line). Sometimes the
BREAK key and the CONTROL key must be pressed together to get
the break result. In the break condition, the prompt is an
exclamation mark rather than the greater than sign. You have
two options for getting out of the break condition: you can
enter two "line feeds" (not "New Line") to pick up from where
you were when you ''broke'', or you can type in "END" which
will return you to the regular (» prompt.

This key, like carriage return, sends whatever you have keyed
in on your keyboard to the computer.

This key, like the Control key, is used with other keys to
cause certain results. It is used in some word processing
functions but not in normal operator procedures. It is used
to chain editor commands together as described in the section
on the Editor in the PICK Reference Manual.

3-11

88A00757A

3.6.2 SETTING TERMINAL/PRINTER CONTROLS

The terminal and/or line printer characteristics may be displayed or set by a
process via the TERM command. The general form of the TERM command:

TEID1 {a,b,c,d,e,f,g,h,t}

where:

a is the terminal line length (i.e., number of characters per line).
The a parameter must be in the following range: l6<a<140.

b is the number of print lines per page on the terminal.

c is the number of blank lines per page on the terminal
(sum of band c equals page length).

d is the number of delay or idle characters following each carriage
return or line feed. This is used for terminals that require a
pause after a carriage return or line feed (i.e., since the CPU
generates characters faster than the terminal can accept them).

e is the number of delay characters following each top-of-form.
If e is zero, no form-feed character will be sent to either the
terminal or the printer.

If e is non-zero, a form-feed character is also output before each
page; if e is 1, this character is sent to the line-printer, but
not to the terminal.

If e is greater than 1, the form-feed character is also sent to the
terminal at the beginning of each page, and that many delay or idle
characters is also sent to allow the terminal time to settle after
the form-feed.

The form-feed character sent to the printer is always a hexadecimal
'~C' (ASCII FF character).

f is the backspace character. An ASCII backspace (Control-H) is
always input to backspace over (or erase the last character that
was input; however, the user may set the actual character echoed
to his terminal). This accommodates terminals that cannot
physically backspace, or that have a backspace character other than
the ASCII backspace. The f parameter should be 21 for the ADDS
REGENT terminal, and d for the TEC 2404 terminal.

3-12

88A00757A

g is the line printer line length.

h is the line printer page length.

t is the terminal type code; this changes the form-feed chara.cter
sent by the system to match the terminal requirements, and, more
importantly, sets the appropriate cursor addressing for the BASIC
cursor functions. The letters used for supported terminals are:

L • LEAR-SIEGLER ADM-II, ADM-12

M • AMPEX, DIALOGUE 80

T • TELEVIDEO 925, 950

V - ADDS VIEWPOINT

x • No cursor addressing functions needed.

Individual parameters may be null (i.e., as specified by two adjacent commas
in the TERM command). If so, the previously defined parameter remains in
force. A TERM command without a parameter list causes display of the current
characteristics. To function properly, the t parameter must be the last
element in any TERM string. It may be the only statement if no other elements
are to be changed. The other parameters are positional, however.

3-13

88A00757A

An example of the use of TERM:

)TERM [CR]

TERMINAL PRINTER
PAGE WIDTH: 79 132
PAGE DEPTH: 24 64
LINt: SKIP: f'\ v

LF DELAY: 1
FF DELAY: 2
BACKSPACE: 8
TERM TYPE: M

Standard characteristics set for DIALOGUE terminal.

)TERM"",,120,48 [CR]

Resets the line-printer page size to l20x48.

)TERM [CR]
TERMINAL PRINTER

PAGE WIDTH: 79 120
PAGE DEPTH: 24 48
LINE SKIP: o
LF DELAY: 1
FF DELAY: 2
BACKSPACE: 8
TERM TYPE: M

Note that an FF delay of 0 will cause the printer not to do a top-of-form and
will not clear the screen on the terminal. An FF delay of 1 will not clear the
screen on the terminal.

3.6.2.1 SET-TERM

The general form of the SET-TERM command:

SET-TERM {a,b,c,d,e,f,g,h,t}

The SET-TERM verb sets the default printer and terminal characteristics for
subsequent logons on all terminals. This verb is present only on the SYSPROG
accountj the parameters are the same as for those for the TERM command.

3-14

88A00757A

3.6.2.2 Changing Baud Rate (SET-BAUD)

On IPL, this baud rate of the communication ports for terminals and printers
are default set to 9600. If you wish to change the rate for a particular
terminal on a printer, the following verb should be used:

SET-BAUD {p,}n

where: p is the port or channel number to which the terminal or printer
you wish to change is physically connected. If p is not
specified, the baud rate of the line currently being used will
be changed.

n is the baud rate desired.

3.6.3 SETTING TAB STOPS

Tab stops may be set with the TABS statement. The general form of the TABS
command is as follows:

TABS I or 0 n1,n2, •••••• n15
or

TABS I or 0 {S}

where the tabs may be set for input or output depending on the parameter "I" or
"0" following the TABS verb. n1, n2, etc., are up to fifteen tab-stop
positions, which must be entered in ascending numerical sequence.

Tabs set for input are then available at any time that the system requests
input from the terminal. By entering a Contro1-I ([cI]), the system will space
.over to the next tab-stop position, if any. If there are no more tab-stop
positions, the [cI] is ignored (Contro1-1 is also generated by the TAB key on
some terminals). The TAB stops set by the TABS I statement are identical to
those set by the TB statement in the EDITOR.

Tabs set for output are only useful for those printing terminals that have a
physical tabbing capability. Do not set output tabs for a CRT. If output tab
stops are set, the system will replace blank sequences in any output generated
by the system by an appropriate tab character ([cI]), thus, reducing the data
output. The user must also set up the physical tab stops on the terminal to
correspond to those set in the TABS 0 statement. On many terminals, this
entails positioning the carriage and entering a set-tabs sequence from the
keyboard.

Input or output tab stops may be disabled by entering "TABS I" or "TABS 0",
respectively. Previously set tab stops may then be recalled by entering
"TABS I S" or "TABS 0 S" for input and output tab stops, respectively. Current
tab stops can be displayed by entering "TABS" alone.

3-15

88A00757A

Examples of the use of TABS:

>TABS I 4,8,12,16,20,24,28 [CRl (sets input tab stops)

>TABS 0 10,20,30,40,50,60 [CRl (sets output tab stops)

>TABS (CR] (displays current tab stops)

1 234 567
1234567890123456789012345678901234567890123456789012345678901234567890

I I I I I I I
00000 0

>TABS 0 [CRl

>TABS [CR]

(turns off output tab stops)

1234567
1234567890123456789012345678901234567890123456789012345678901234567890

I I I I I I I

>TABS I 5,15,20,40,50 [CR]

>TABS 0 S [CR] (recalls previous output tabs stops)

>TABS [CRl

1234567
1234567890123456789012345678901234567890123456789012345678901234567890

I I I I I
000 000

3.6.4 ENABLE/DISENABLE CHARACTER ECHO

3.6.4.1 The ECHO Verb

The function of this verb is to toggle the switch in each user's PIB indicating
whether or not characters typed in are to be echoed to the terminal. Thus,
typing ECHO in normal mode will cause all further typing to be echo-suppressed.
Similarly, typing ECHO in suppressed mode will cause echoing to resume. The
user may also force a particular echo status. Typing ECHO (I) will force echo
suppression, just as ECHO (L) will force echoing.

3-16

88A00757A

3.6.5 BLOCK PRINTING

3.6.5.1 Block-Print

The BLOCK-PRINT command will print characters in block-form on the line printer
or the user's terminal. Any ASCII characters may be printed. The general form
of the BLOCK-PRINT command:

BLOCK-PRINT character-string rep)}

This command causes the specified character-string to be block-printed on the
terminal. Any character-string containing single quotes (') must be enclosed
in double quotes ("), and vice versa. The surrounding quotes will not be
printed. A character-string not containing quotes as part of the string need
not be surrounded by quotes.

The option (P) will route the output to the line printer.

Character-strings to be blocked cannot have more than nine characters. For
the BLOCK-PRINT command, the total number of characters must not exceed the
current line length set by the most recent TERM command.

If a BLOCK-PRINT command is illegally formed, any of the error messages 521
through 525 may be- displayed.

The BLOCK-PRINT commands use a file named BLOCK-CONVERT to create the blocked
characters. A BLOCK-CONVERT file already exists which contains the conversion
specifications for all printable ASCII characters (no lower case alphas). With
this file, characters will be printed as 9-by-12 to 9-by-20 blocks.

If it is desired to change the way any character is printed, it is necessary
to change the corresponding item in the BLOCK-CONVERT file. (See Section
5.3.2, BLOCK-CO~NERT FILE.)

3-17

88A00757A

3.6.6 GENERAL SERVICE VERBS

This section discusses TCL-I verbs such as TIME, SLEEP, WHO, and MSG. These
verbs are used for general service to the terminal operators.

The TIME statement displays the current system time and date. Its general form
is:

TIME

For example:

>TIME [CR]
09:11:23 11 DEC 1982

3-18

88A00757A

The WHO statement is used to display the account-name that a terminal is logged
on to. Its general form is:

WHO in}

If WHO is entered without the "n", the line-number (channel number) of the
user's terminal is displayed, along with the account-name that he is logged on
to. If the "n" is specified, the same data is displayed for line-number "n",
where n ranges from 0 to the maximum number of lines on the current system- If
the line is non-existent, or if no user is logged on to that line, the
account-name is replaced with "UNKNOWN".

Lines which have the name UNKNOWN and which are actively processing suggest
that something wrong is happening on the system, unless these lines are
spoolers or you have an account on the system by the name of UNKNOWN.

You may specify a line or a range of lines. Any non-numeric character will
cause WHO to display all lines and their logon name. For example:

>WHO [CR]
07 SMITH

>WHO 0 [CR]
00 SYSPROG

>WHO 11 [CR]
11 UNKNOWN

>WHO *

>WHO 1-3

01 JOHN
02 SYSPROG
03 UNKNOWN

>WHO 'SYSPROG'

(this is line-number 7, logged on to "SMITH")

(line number 0 is logged on to SYSPROG)

(displays accounts using all lines; lines which are
not logged on display UNKNOWN.)

(displays all lines logged onto the SYSPROG
account.

3-19

88A00757A

3.6.6.3 SLEEP

The SLEEP verb is used to put a terminal to "sleep", that is, to enter a
quiescent state for a specified period of time, or until a specified time. Its
general form is:

SLEEP x

where "x" is either a decimal number specifying the number of seconds to sleep,
or is of the form "hh:mm:ss" or ''hh:mm'', specifying a time in 24-hour format
until which to sleep. SLEEP is useful to cause a terminal to wait until some
time to run a task, for instance, the FILE-SAVE may be run at 23:00 (11:00PM)
every night. For example:

>SLEEP 100 [CR)
>SLEEP 23:00 [CR)

(terminal will sleep for 100 seconds)
(terminal will wake up at 11:00 pm)

The form of SLEEP with a wake-up time is usable for a maximum of 24 hours.

3-20

88A00757A

3.6.6.4 MESSAGES

The MSG (or MESSAGE) statement allows one user to send a message to another •.
The general form of the MSG statement is:

MSG[destination-account] [text]
or

MSG [! line#]

where "destination-account" is the name of the account that the other user is
logged on to, and "text" is the message that follows. The message text is not
edited in any way; there is no "options" parameter in the MSG statement.

Note that ALL users who are logged on to the specified destination-account
will receive the message.

Users with system level 2 privileges (see Section 5.2.1) can broadcast a
message to all users by substituting an asterisk (*) for the
"desination-account" in the MSG statement. This message will be received by
the sending userls terminal also.

A user who was entering data when a message is received will lose up to 16
characters due to the interference of the message; he should use the Control-R
to see exactly what data is left. Some examples:

)MSG MARY*AOOO1 WATIS THE STATUS OF THE INVENTORY REPORT??? [CR]

)HESSAGE JONES HELLO THERE! "%%%%111% [CR]

USER NOT LOGGED ON (JONES is not logged on).

)MSG * SYSTEM FILE-SAVE WILL START IN 5 MINUTES!!! [CR]

MESSAGE and ~ffiG verbs may direct a message to a particular line as well as to
a particular user by preceding the line number with an exclamation mark (!).
This form of the verb will send messages to terminals which are not logged-on.
Further, the user may send a message to all lines, signed on or not, through a
special form of this verb. For example:

MESSAGE !12 HELLO

MSG !* SIGN OFF NOW

Send the message IHELLOI to the user on line 12.

Sends a message to all terminals connected to the
computer.

3-21

88A00757A

3.7 TAPE OPERATION AND CARTRIDGE DISK: SET-1/2 (OR SET-MT),
SET-1/4 (OR SET-CT), AND SET-CD

3.7.1 SETTING TAPE SIZE

PICK allows you to use either 1/2-inch or 1/4-inch tape. It is necessarYt
however, to tell the system which tape size is currently being used. The
following verbs will specify the type of tape and attach the drive at the same
time:

SET-1/2 in} {U} which is the same as SET-MT in} {u}

or

SET-1/4 in} {U} which is the same as SET-CT in} {U}

Block size may be specified by n. If it is not, the last block size used, or
if none, the system default of 4000 bytes will be used. Note that 4000 bytes
is the most efficient blocksize to use for 1/4-inch tape. If it is necessary
to use a larger blocksize, 8000 bytes is the maximum recommended.

The U option unconditionally attaches the tape drive by detaching any other
line that is attached to the drive. SYS2 privileges are necessary to use the
'u' option.

The verb will remain in effect until you change it or IPL is performed.

3.7.1.1 Attaching Cartridge Disk

The following verb tells the system you are using cartridge disk and attaches
the drive at block size 1024:

SET-cn

3-22

88A00757A

3.7.2 FULLY UTILIZING 1/4" TAPE BY LOCATING EOF'S: T-EOF, T-EOFD

A physical EOF is automatically generated when a T-REW command is issued
immediately following a WRITE operation. This is different from a software EOF
because the PICK operating system treats each physical EOF as the actual end of
the tape. A T-FWD command will advance the tape over software EOFs, but will
not move past the first physical EOF.

To utilize tape beyond the first physical EOF, the following verbs should be
used:

T-EOF and T-EOFD

T-EOF will locate each physical EOF on a tape or perform a T-FWD on a cartridge
disk. T-EOFD will locate the last physical EOF on a tape. When you wish to
use a partially filled tape for another operation such as ACCOUNT-SAVE or
T-DUMP, the T-EOFD verb should be used to position the tape correctly at the
end of the last filled portion of tape. To search a tape which contains
multiple tape operations for a particular section, the T-EOF verb should be
used.

Note that use of the T-EOF and T-EOFD verbs will shorten the physical tape.
Since the T-REW verb will reset the logical tape pointer to zero, it is
possible to run over the logical tape EOT. Be sure to keep track of how much
you put on a tape so this does not happen. Also note that filling a tape in
this fashion does not also allow you to use the multi-reel capability.

NOTE: T-EOF may now be used with 1/2" tape (but T-EOFD may not be used).

Note that T-EOFD is not va~id for cartridge disk.

3-23

88A00757A

3.8 PROGRAM INTERRUPTION: DEBUG FACILITY

Debug is a system facility for debugging assembler programs. Since an
assembler is not an official part of ZEBRA/PICK, the use of DEBUG is not
supported.

Debug, however, will be entered when the BREAK key on the terminal (INT key on
some terminals) is pressed. This causes an interrupt in the current processing,
entry into the DEBUG state and display of the following message:

I x.d

The instruction location of the interruption is x.d. The DEBUG prompt
character (!) is displayed to prompt the user for a DEBUG command. For users
with system privilege levels 0 or 1, the only DEBUG commands allowed are:

Command

P

G
[LF]

OFF

Description

Print on/off. Each entry of a P command switches (toggles)
from print suppression to print non-suppression. The message
OFF is displayed if output is currently suppressed. The
message ON is displayed if output is resumed. This feature
is useful in limiting the output at the terminal.

Go or line feed. This command causes resumption of process
execution from the point of interruption. G cannot be used if a
process ABORT condition caused the entry to DEBUG.

Terminates current process and causes immediate return to TCL.

Terminates current process and causes the user to be logged
off the system.

Pressing the BREAK key while in the terminal input or output mode will cause a
loss of up to 16 characters. If in the input mode, the retype-line character
(Control-R) should be used to check the loss of data after returning from DEBUG
via the G command.

If the system is executing in virtual mode and an unrecoverable error occurs,
the system debugger will be entered and the message "PRIVILEGED OPCODE ABORT @
xxx. xxx" will be displayed. The FlO number xxx.xxx gives the location where
the abort occurred.

When a hardware abnormal condition exists, the system will also trap to the
DEBUG state with a message indicating the nature and location of the abort.

For both error conditions, if the user has system privileges level 0 or 1, he
should enter END or OFF to exit from the DEBUG state.

3-24

88A00757A

system file management 4
The PICK File Management processors provide for generating, managing, and
manipulating files and items within the system. The processors include the
CREATE-FILE processor, the CLEAR-FILE processor and the DELETE-FILE processor.

1. The CREATE-FILE processor is used to generate new dictionaries and/or data
files. The processor creates the file dictionaries which exist as the "0"
entries (pointers) in the user's Master Dictionary. The processor reserves
and links primary file space. The user need only specify values for the
desired modulo (number of groups in the file) and separation (number of
frames per group).

2. The CLEAR-FILE processor clears the data from a file (i.e., it sets the
file to the "empty" state by placing an attribute mark in the first data
position of each group of the file). "Overflow" frames that may be linked
to the primary frame space of the file will be released to the system's
overflow space pool. Either the data section or the dictionary section
of a file may be cleared.

3. The DELETE-FILE processor allows for the deletion of a file. Either the
data section or the dictionary section (or both) of the file may be
deleted.

If the file level dictionary is shared by several data files, each data file
can be created, cleared or deleted independently of the other data files
associated with the dictionary.

4-1

88A00757A

As a general introduction to this section, the following examples illustrate
use of the File Management processors:

* >CREAIE-FILE WORK-IN-PROGRESS 3,1 1743,1 (CR]

* >CREATE-FILE DICT TRANSLATION 23,1 (CR]

* >CREATE-FILE DICT DEPT 3,1 [CRl

* >CREATE-FILE DATA DEPT,PROGRAMMING 123,1 (CR]

* >CLEAR-FILE DICT TRANSLATION (CR]

* >CLEAR-FILE DATA DEPT,ACCOUNTING (CR]

* >DELETE-FILE WORK-IN-PROGRESS (CR]

* >DELETE-FILE DATA DEPT,MARKETING [CR]

* >DELETE-FILE DEPT (CR]

Additional file management procedures (such as the creation of new user
accounts, the saving and restoring of files, etc.), have been described in
Section 5.

4-2

88A00757A

4.1 CREATING NEW FILES: CREATE-FILE AND CREATE-PFILE

The CREATE-FILE processor provides the capability for generating new files and
dictionaries in the system. CREATE-FILE and CREATE-PFILE are used to create
file dictionaries by reserving disk space and inserting a "0" or "DC" entry,
respectively, in the user's Master Dictionary which points to the file-level
dictionary, and to create data files by reserving disk space and placing a
pointer to the space in the file-level dictionary. CREATE-FILE will
automatically locate and reserve a contiguous block of disk frames from the
available space pool. The user need only specify values for the modulo and the
separation of both the file dictionary and the data area.

For a discussion of the values to use for modulo and separation, refer to
Sections 1.3 and 6.3.

There may not be a data file without a file level dictionary pointing to it.
Therefore, the file-level dictionary must be created prior to or concurrently
with the data file. The latter is the preferred method for creating files and
this form of the CREATE-FILE command is shown below. This enables the creation
of both the dictionary and a data area with one command. The general form is:

CREATE-FILE file-name m1{,sl} m2{,s2}

CREATE-FILE dict-name,data-name mI{,sl} m2{,s2}

where "file-name" is the name of the file, m1 and sl are the modulo and
separation values of the dictionary (DICT) portion, and m2 and s2 are the
modulo and separation of the data portion. If sl and/or s2 are not given, then
separation will be 1. A dict-name and data-name are optional dictionary and
data file names to be used if mUltiple data files will be pointed to by the
file dictionary. In either case, a pointer to the data file is placed in the
file-level dictionary.

A file dictionary may be created without a data file by the command:

CREATE-FILE OICT file-name m1{,sl}

The term 'DICT' specifies creation of the dictionary only with modulo m1 and
separation sl, and a pointer to file-name is placed in the user's Master
Dictionary. The user should note that a data area need not be reserved for a
single-level file, in which case, the data is to be stored in the dictionary,
as in the case of the POINTER-FILE.

4-3

88A00757A

Once the DICT (Dictionary file) has been created, the primary file space for
the data section of the file can be reserved. The general form of the command:

CREATE-FILE DATA dict-name{,data-name} m2{,s2}

The term 'DATA' specifies creation of the data file data-name, if the data file
1s unique to the file-level dictionary, or creation of the data file data-name
under dictionary diet-name, if the multiple data file option is desired. The
data file has modulo m2 and separation s2, and the pointer to the reserved
space is placed in the file-level dictionary. This form is also used to create
new data files pOinted to by a shared dictionary using the option {data-name}.

If you wish to create a pointer-file or a BASIC program file, use the
CREATE-PFILE verb, which has the same gen,eral form as the CREATE-FILE verb.

* >CREATE-FILE INVENTORY 3,1 373 [CR]

Creates a new file called "INVENTORY", with a DICTIONARY section with
modulo of 3 and separation of 1, and a DATA section with a modulo of 373
and a separation of 1. An item called "INVENTORY" will be placed in the
Master Dictionary, and a D-item called "INVENTORY" will be placed in the
INVENTORY dictionary.

* >CREATE-FILE DICT TEST/FILE 7,1 [CR]

Creates a single-level file called "TEST/FILE"; a D-item "TEST/FILE" will
be placed in the Uaster Dictionary, and a Q-item "TEST/FILE" will also be
placed in the dictionary created, pointing back to itself.

* >CREATE-FILE DATA DEPT,ACCOUNTING 3 73,2 [CR]

Creates a dictionary called "DEPT" and a DATA section called I. ACCOUNTING"
for the dictionary DEPT; a D-item called "ACCOUNTING" will be placed in the
DEPT dictionary. The data file created will have to be referenced as
"DEPT,ACCOUNTING" since it has the shared dictionary structure.

* >CREATE-FILE DATA DEPT,MAINTENANCE 57 [CR]

Creates a new DATA section called "MAINTENANCE" for the dictionary DEPT.
This data file will have to be referenced as "DEPT,MAINTENANCE".

4-4

88A00757A

4.2 CLEARING FILES

4.2.1 CLEAR-FILE

The CLEAR-FILE processor clears the data from a file (i.e., it sets the file to
the "empty" state by placing an attribute mark in the first data position of
each group of the file). Overflow frames that may be linked to the primary
file space will be released to the system's additional space pool. Either the
data section or the dictionary (DICT) section of a file may be cleared using
the CLEAR-FILE command. If the dictionary section is cleared and a
corresponding data section exists (as implied by the presence of a file
definition item in the dictionary), then it will be maintained in the
dictionary. The BREAK key is inhibited during the DELETE process, but not
during the CLEAR process.

To clear the data section of a file, the following command is used:

CLEAR-FILE DATA file-name{,data-name}.

In the case that the data file is unique to dictionary file-name the data file
"file-name" is cleared; in the case that data file "data-name" is one of
multiple data files under dictionary file-name, then "data-name" will be
cleared.

To clear the dictionary section of a file, the following command is used:

CLEAR-FILE DICT file-name.

CLEAR-FILE examples:

* >CLEAR-FILE DATA INVENTORY [CR]

Clears the data section of the INVENTORY file.

* >CLEAR-FILE DICT TEST/FILE [CR]

Clears the dictionary of the TEST/FILE of all non-D-items; all D-items
are maintained in the dictionary.

* >CLEAR-FILE DATA DEPT,ACCOUNTING

Clears the ACCOUNTING data section of the DEPT file.

4-5

88A00757A

4.2.2 DELETE-FILE

The DELETE-FILE processor allows the deletion of the whole file, dictionary and
data files, the dictionary only (if the dictionary has no attached data file),
the data file in the case of a unique data file, or any data file in the
multiple data file case. A file-level dictionary which points to a data file
cannot be deleted. All frames owned by the deleted file are returned to the
available space pool. To delete a file-level dictionary and ALL its attached
data file(s), use the command:

DELETE-FILE file-name.

To delete a file-level dictionary without an attached data file, use the
command:

DELETE-FILE DICT file-name.

In both cases, the file-definition item (D-pointer) in the user's Master
Dictionary is deleted, and the space owned by the deleted file is returned to
the available space pool.

To delete the data file, the following command is used:

DELETE-FILE DATA file-name{,data-name}.

This will delete the pointer to the data file from the file-level dictionary
and return the space owned by the data file to the available space pool. The
parameter "data-name" is necessary to delete ~ file from a dictionary with
multiple data files.

Files that are defined by file-synonym definitions (Q-pointers) in the user's
MD cannot be specified in a DELETE-FILE command.

DELETE-FILE examples:

*)DELETE-FILE INVENTORY [CR]

Deletes the INVENTORY dictionary and all associated data files.

*)DELETE-FlLE (DICT TEST/FILE) [CR]

Deletes dictionary TEST/FILE. If there are any data sections associated
with this dictionary (if there are any D-items in the dictionary) this
command will not be executed. (Parentheses are optional.)

*)DELETE-FILE DATA DEPT,ACCOUNTING [CR]

Deletes the DATA section ACCOUNTING from the shared dictionary structure
whose shared dictionary name is DEPT.

4-6

88A00757A

4.3 COPYING FILE DATA

4.3.1 COpy PROCESSOR

The COpy processor allows the user to copy items from a file to the terminal,
to the line-printer, to the same file, or to another file (either in his
account or in the some other user-account).

The COpy processor is invoked via the COpy verb, which is a TYPE-II verb and,
therefore, takes on the TYPE-II format. The general form of the COpy command:

COpy {DICT} file-name item-list {(options)}

The file-name parameter specifies the source file. The item-list specifies
the items to be copied and consists of one or more item-ids separated by
blanks, or an asterisk (*) specifying all items. The options parameter, if
used, must be enclosed in parentheses. Options are described in the next
section.

Once a COpy command has been issued, the COpy processor will respond
differently depending on whether the copy is to the terminal or line-printer,
or to a file. Copy to the terminal is specified by the "T" option and copy to
the printer by the "p" option. If neither of these options is specified, the
copy is to a file.

If the copy is a file-to-file copy, the processor will respond with:

TO:

The response to this request is in the form:

{(}{DICT} file-name {item-list}

where:

1. If the data is to be copied to a different file, the destination file-name
is preceded by a left parenthesis; the word DICT may optionally precede
the file-name if the data is being copied to a destination dictionary file
instead of a data file.

2. If the data is being copied to the SAME file, the left parenthesis
is omit ted.

3. If the item-ids of the items being copied are to be changed, the list of
new item-ids must follow.

4. If a null is entered to the "TO" request, a copy to the terminal is
performed (just as if the original COpy statement had the lOT" option).

4-7

88A00757A

4.3.2 COpy OPTIONS

The COpy "options" parameter, if used, must be enclosed in parentheses.
Options are single alphabetic characters. Multiple options may be strung
together, or separated by commas for clarity. Table 4-1 describes the options
used by the COpy processor. Note that some options operate differently
depending on whether the copy is to the terminal or line-printer, or is a file
copy.

On a terminal or line-printer copy, the data is displayed in the following
format:

item-id
001 attribute one
002 attribute two
003 attribute three
nnn last attribute

For example, the item "ITEMX" in the SAMPLE-FILE may be copied to the terminal
as follows:

>COPY SAMPLE-FILE ITEMX (T) [CR]

ITEMX
001 3745
002 SMITH, JOHN
003 1234 11AIN STREET

4-8

88A00757A

Table 4-1. COpy Processor Options

Option I Note I Description

-------+------+------------~---

A

o

F

I

M

N

N

o

P

s

s

T

x

I
I
I
I 1
I

2

1

1

2

1

1

2

1

Acti vates Assembly l-tLIST format.

Delete item. On a file copy, the original (source item) is
deleted from the file after it is copied.

Form-feed. On a copy to the terminal or the line-printer,
item will cause a new page to begin.

Item-id list suppress. On a file copy, will inhibit the
listing of item-ids.

Activates Macro (Assembly) format.

New item inhibit. On a file copy, will not copy the items to
the destination file unless the item already exists there.
That is, new items will not be created if this option is set.

No Page. On a terminal copy, will inhibit the automatic
end-of-page wait.

Overwrite items. On a file copy, will copy the item
to the destination file even if it already exists on file.
Note that you may not use the "0" option to copy an item
which has the same name as the destination file to that file
if that file's dictionary contains a "0" pointer.

Printer copy. Copies the data ~o the line-printer.

Suppress error messages. On a file copy, messages indicating
that items were not copied (messages 409, 415, and 418) tolill
not be printed.

Suppress line-numbers. On a copy to the terminal or line
printer, the line-numbers will not be displayed.

Terminal copy. Copies the data to the terminal.

Hexadecimal format. On a terminal or line-printer copy, the
data is displayed in hexadecimal form.

n An integer number indicating the number of items to be
copied. Typically used for copying data for test files.

NOTES: 1. Valid only on a FILE copy.
2. Valid only on a NON-FILE (terminal or line-printer) copy.

4-9

88A00757A

4.3.3 FILE-TO-FILE COpy

It is frequently required to transfer data from one file to another or to
different locations within the same file.

Multiple items may be specified as the source and as the destination in the
COpy statement. Multiple item-ids are separated by blanks, unless the item-id
itself has embedded blanks, in which case the entire item-id may be enclosed in
double-quotes CO).

For example, the item-list may be:

1024-24 1024-25 "TEST ITEM" ABC

which specifies four item-ids, "1024-24" J "1024-25", "TEST ITEM" and ,0 ABC" •

Item-ids may be repeated within the item-list. There may be different numbers
of items within the source and destination lists. If the source item-list is
exhausted first, the COPY terminates. If the destination item-list is
exhausted first, the remainder of the items are copied with no change in
item-ide

If the items are to be copied without any change in the item-ids, the
destination file item-list may be null.

If it is desired to copy all existing items, an asterisk (*) may be used as
the source file item-list.

If a preselected list of items is to be copied, the source item-list should be
null. In this case, the COpy statement must be preceded by a SELECT, SSELECT,
QSELECT or GET-LIST statement. See the ACCESS Manual for a discussion of these
verbs.

T~en copying from one dictionary to another, the COpy processor does not copy
dictionary items with a D/CODE of .0D" (that is, the D-pointers). D-pointers
must only be created by the CREATE-FILE processor. To recreate both the
dictionary and the data sections of a file in a new file, a command sequence,
such as shown in the examples must be used.

Examples of COpy under different conditions are listed on the next page.

4.3.3.1 Copy to Another Account

When copying to a file in another account, it is neceesary to set up a
Q-pointer to that account. Q-pointers are discussed in Section 6.6.2.

4-10

Copying items to the same file:

>COpy DICT SAMPLE COST (I)
TO: PRICE [CR]

1 ITEMS COPIED

>COpy SAMPLE 1242-01 [CR]
TO: 1242-99 [CR]

88A00757A

[CR] <------ Single dictionary item
copied.

<--------- Single data item copied.

1 1242-01
1 ITEl<fS COPIED

<-------------------- Item-id is listed.

>COPY FLAVORS RED WHITE BLUE [CR] <----- Multiple data items copied.
TO: ALPHA BETA GAMMA [CR]

1 RED
2 WHITE
3 BLUE

3 ITEMS COPIED

Copying items to a different file:

>COpy DICT SAMPLE * (I) [CR] <-------- All dictionary items copied.
TO: (DICT FLAVORS [CR]
[418] FILE DEFINITION ITEM 'SAMPLE' WAS NOT COPIED.

2 ITEMS COPIED

Recreation of entire dictionary and data sections:

>CREATE-FILE (NEW-SAMPLE 1,1 3,1) [CR] <--- New file created.

[417] FILE 'NEW-SAMPLE' CREATED; BASE • 15417, MODULO - 1, SEPAR - 1.
[417] FILE 'NEW-SAMPLE' CREATED; BASE - 15418, MODULO - 3, SEPAR - 1.

>COPY DICT SAMPLE * (I) [CR] <------ All dictionary items (except
TO: (DICT NEW-SAMPLE [CR] D-pointer) copied.
[418] FILE DEFINITION ITEM 'SAMPLE' WAS NOT COPIED

3 ITEMS COPIED
>COPY SAMPLE * (I) [CR]
TO: (NEW-SAMPLE [CR]

22 ITEMS COPIED

<---------- All data items copied.

4-11

88A00757A

4.4 RESTORING FILE DATA

4.4.1 SELECTIVE RESTORES: SEL-RESTOIE

The Selective-Restore capability allows individual files or items to be loaded
onto a PICK system from a file-save tape or cartridge disk. This verb is used
to restore items from either a FILE-SAVE or ACCOUNT-SAVE media. Selective
restores are performed as follows:

1. Log on to the account with the file to be restored.
2. Mount the tape or cartridge disk.

NOTE: Selective-restores may be started from any tape or cartridge disk of a
multi- tape or cartridge disk file save. To save time in searching a tape or
cartridge disk. the StAT-FILE listing may be consulted to determine which reel
or cartridge the file's data starts on, and that reel or cartridge may be
mounted. A SEL-RESTORE may be started at any place on any reel or cartridge of

. the file-save media. Any coldstart or ABS sections will be skipped
automatically.

3. Attach the tape or cartridge disk unit (T-ATT).
4. To start the restore, enter:

)SEL-RESTORE file-name {item-list} {{options)} [CR]

where "file-name" is the file in which items will be placed. This file must be
defined on the account from which the restore is run. The optional item-list
enumerates those items eligible for restore. A '*' symbol may be used as the
item-list to indicate all items on the tape or cartridge disk. The options are:

A The tape or cartridge disk is already positioned in the desired account.
In this case, the "ACCOUNT NAME ON TAPE" prompt will not appear.

C This option has effect when the 'N' option is used. It causes every item
before the next End Of File to be a candidate for restore. This ensures
that data can be restored even if a D-pointer is damaged on the tape or
cartridge disk.

I The item-ids of the restored items will not be printed.

N The file is to be identified on tape or cartridge disk by its file
number, in which case, the prompt will be FILE'? The required file' is
the one which accompanies the file on the statistics file printout for
the appropriate file-save.

o Overwrites duplicate items.

S Skips label search of the tape or cartridge disk. This is used when
beginning at the second or later reels or cartridges of a file-save.

4-12

88A00757A

If the N option is not used, the operator will be prompted:

ACCOUNT NAME ON TAPE?account-name

FILE NAME?file-name

where 'account-name' is the name of the account under which the file was saved
on tape or cartridge disk, and 'file-name' is the name of the file as it
appears on the tape or cartridge disk. Entering [CR] to 'FILE NAME?' causes
the account Master Dictionary to be restored. The file-name may be of the form
file-name, DICT file-name, or file-name,data-name.

If the N option is used, the prompt will be:

FILE #1

and the file-number must then be entered.

As the media is searched, the file-names on it are printed along with the
file-numbers; names are indented one space for account-names, two spaces for
dictionaries, and three spaces for data-file-names.

If a STAT-FILE listing for the tape or cartridge disk is available,.ensure
that the account-name and file-name are on the media in the form you want. In
the case of multiple D-pointers in the SYSTEM dictionary to an account, or
mUltiple D-pointers in the MD to the file, the account-name or file-name on the
tape or cartridge disk will be the first one the save processor encounters, and
may be different from the one you commonly use. All other names will appear in
the STAT-FILE listing with no data (null SIZE field), and cannot be specified
in the SEL-RESTORE.

If in doubt about the contents of the tape or cartridge disk, the files can be
listed by using a SEL-RESTORE of the form:

>SEL-RESTORE TEMP *
ACCOUNT-NAME ON TAPE? XXXXX

FILE-NAME? YYYYY

where XXXXX and YYYYY are fake names that will cause the SEL-RESTORE to search
the media for non-existent data. Files will be printed out as encountered
along with the file-numbers. Files with an (S) are synonyms and should be
ignored.

4-13

88A00757A

In restoring both the dictionary and data section of a file, restore the
dictionary first (DIeT filename). Remember that the dictionary items follow
the data items, so for large files. there may be a considerable pause after the
time that the system has found the file (it stops the printout) and the actual
restore of the items.

At any pOint, the tape or cartridge disk may be backed up (T-BCK (n». or
forward-spaced (T-FWD(n» to position it, and a SEL-RESTORE with the A or N
options may be started; this may be faster than restarting the tape or
cartridge disk from the beginning when restoring both the dictionary and the
data sections of a file. or when restoring multiple files.

Remember also that 'account dictionaries (MD items) follow all other files for
the account on the tape or cartridge disk.

To restore the Q-pointers in the SYSTEM dictionary, use the N option with
FILE' - 1. Remember that this will be the last file on the tape or cartridge
disk. On a multi- ree~ or cartridge file-save. mount reel or cartridge #1
first. and start the SEL-RESTORE as usual; when the file-name "SYSTEM" has
printed out. use the BREAK key to interrupt the restore. then mount the last
reel or cartridge of the set and type "G[CR]" to continue the process. This
saves searching the entire first and any intermediate tape reels. tape
cartridges, or cartridge disks.

4-14

\

88A00757A

4.4.2 GROUP FORMAT ERROR

As described in Section 1.2.4, a file consists of a number of groups specified
by the modulo of the file. Using the modulo and the separation/baseframe
parameters, the hashing algorithm determines the group in which an item-id is
to be stored. The file retrieval (or storage) routine then searches that group
for a specific item. Within each group, the items are physically stored end to
end. Each item consists of a count field, a key (item-id) and the data.

The count field is a 16-bit binary number. The high-order bit is 0,
represented in the file in ASCII hexadecimal, and requires four bytes of
storage. It immediately precedes the item-id in the file. If the item in
question is the first item in the group, the count field starts in the first
data byte in the frame. If the item is not the first item in the group, then
the count field starts at the first byte after the segment mark of the previous
item.

The count field is used as a pointer to the end of the item. The end of the
item must be an attribute mark followed by a segment mark (~). If the count
field does not point to this pattern, there is a group format error, and the
group format error handler will be entered.

4.4.2.1 Transient Format Error

The group format error may be transient or real. Transient group format errors
will be encountered if another process is writing an item into the group at the
same time that you are trying to read an item in the group. The read without
update routines, notably ACCESS, RUNOFF, and PROC, will not check the group
locks which are set by the update processor. In the case that the update
processor is in the middle of an update, the various frames in the chain which
make up the group may not all be updated synchronously. There is, in other
words, a random set of conditions under which a phantom group format error will
occur, in which case the error handler will be entered. It will normally not
find a group format error and will exit back to the process it was executing
when it sensed the group format error.

4-15

88A00757A

4.4.2.2 Real Format Error

A real group format error is sensed if the count field does not point at an
attribute mark, segment mark sequence (A __). This can occur if count or end of
item data is wrong.

The count is in error if one or more of the ASCII characters which make up
count are incorrect. The correct ASCII count characters are 0-9, A-F.

The effect of the group format error handler is to terminate the group at the
end of the last consistent item and cut the forward link out of the last
acceptable frame in the group. The rest of the overflow is intentionally lost,
because of the effect of having two copies of the same frame referenced in the
overflow chain.

The one case in which the group will not be terminated is when a print file has
meandered across the base of the file. In this case, it is probably best to
recreate the file and selectively restore it., The old file pointer should be
thrown away. Do not use the DELETE-FILE verb on the old file, because this
will further muddy the condition of the overflow handler.

4.4.2.3 Recovery from Group-Error

Since the overflow handler will chop off groups at the end of good data, the
recovery strategy is to idehtify the file affected and do a SEL-RESTORE on the
file. It is best to do this as soon after the group format error is noticed as
possible.

In this conflict, note that the organization of file-save tapes written by R80
puts an end-of-file mark at the end of each account, and a tape label at the
beginning of each account. This means that the reel upon which the needed file
starts may be mounted, rather than starting at the beginning of the tape. If
the beginning of the required file occurs in the middle of the desired account,
then an A option is to be used.

4.4.2.4 Preventing Group Format Error

When Powering Off or IPL takes place and a user's files are still being written
back to disk, the system will not continue writing. Data will be lost and
Group Format Errors may possibly occur. To prevent this, wait at least 5
minutes after the last person logs off (longer if there was a lot of activity
on the system) before either Powering Down or IPL.

4-16

88A00757A

4.5 SYSTEM FILE BACKUP

PICK can save the entire disk data base on tape or cartridge disk and restore
this copy, entirely or selectively, to the fixed disk. It is this procedure
that provides backup in the event of a catastrophic failure or error.

4.5.1 FILE-SAVE PROC

The FILE-SAVE procedure protects your valuable data base by creating an
off-line copy of it on tape or cartridge disk. For adequate backup, you should
have separate daily backup sets for one week's time and a monthly backup for
each month in the year. Some situations may also need a weekly backup cycle
for the past month. That is, use a separate tape or cartridge disk set for
each day of the week, one for each week of the month, and one for each month of
the year. The longer cycle sets should be stored off premises to provide
protection in the event of physical damage such as fire.

The FILE-SAVE procedure requires that you mount the media that is to save your
data, and then LOGON to the SYSPROG account. Note that cartridge disks must be
formatted before using for the first time. (See Section 2.1.2.5, Cartridge and
Hard Disk Format Procedure.) The FILE-SAVE verb calls a PROC which sets up a
sentence using the SAVE verb with options D, F, L, S, and T. It also performs
a T-REW. The general form of the SAVE verb is:

SAVE {(options)}

Options Meaning

D Data area is saved. This option must be present if any files
are to be saved.

F File names are printed. If (F) is not specified, just the
SYSTEM file and account-names are listed.

I Individual account saved. The prompt "ACCOUNT-NAME:" is given.

L Suppresses prompting for Group Format Errors. Logs them in the
GFE and STAT files.

N No overflow space is required to run the SAVE. This makes it
possible to perform a FILE-SAVE on a system that has no over
flow space available. Note: If there are more than 1500 files
on the system, one (1) frame of overflow space will be needed
for every 125 files above 1500.

P Output (list of file names) goes to the line printer. If (P) is
not specified, all output goes to the user's terminal.

4-17

88A00757A

Options (Cont)

S STAT-FILE items are stored, one for each file saved. Must be
present if a STAT-FILE listing is made after the FILE-SAVE.

T Output to Tape or Cartridge Disk. If the (T) option is not
specified, nothing will be written on tape or cartridge disk.
However, the STAT-FILE will be generated if the (S) option is
used. Note that a cartridge disk must be formatted before
uSing the first time.

Files whose file definition items have a "DX" in attribute 1 will not be
saved. Thus, any data file, dictionary or even an entire account, may be
prevented from taking up space on the FILE-SAVE tape.

Files whose file definition items have a "DY" in attribute 1 will be saved,
but none of the items in the file or sub-files will be saved. The data section
of the STAT-FILE, for instance, has a "DY" code because the data is not valid
after a file-restore and need not be saved.

To prevent erroneous Group Format Error (GFE) messages from occurring on other
lines while the FILE-SAVE is running, the SAVE processor locks groups as it
saves them. Up to 4 groups may be locked at one time by a file-save process.
These groups would be the ones containing:

1. The SYSTEM dictionary pointer for the account being saved.

2. The file dictionary pointer for the dictionary of the file being saved.
This would be a group in the account's MD.

3. The group in the data file of the ACC file.

4. A group in the dictionary of the ACC file.

If a user on another line tries to access data in a locked group, his terminal
will hang until the file-save process finishes saving all the items in that
group and unlocks it.

If the (T) option is specified, the SAVE processor will prompt the user's
terminal:

FILE-SAVE TAPE LABEL -

The response will be written on the tape or cartridge disk as part of the tape
or cartridge disk label.

4-18

a3A00757A

4.5.1.1 Customizing the FILE-SAVE PRoe: CREATE-FILE-SAVE

This program allows you to customize the FILE-SAVE PROC for a more versatile
system. To run the program, execute the following TCL command from SYSPROG:

>RUN SYSPROG-PL CREATE-FILE-SAVE

The following will be displayed:

CUSTOMIZE FILE-SAVE PROC CREATOR

Enter Y or N to the following prompts if you want them in the FILE-SAVE PROC:

DO YOU WANT A LISTING TO THE PRINTER (Y,N)?

Enter Y or N-(CR):

Answer this the same way as for the previous prompts, and do the same for the
following:

ENTER TIME TO START FILE-SAVE OR (RETURN) FOR IMMEDIATELY:

Enter Y or N-(CR):

You will then be asked whether or not you would like to have a spooler
assignment for any type output placed in the FILE-SAVE PROC.

Enter Spooler Assignment (i.e., SP-ASSIGN HS) or (RETURN):

This will give you the option of preassigning the spooler assignment, or if you
enter (RETURN), of having no spooler assignment in the PROC and defaulting to
what was previously set up. This option, however, requires you to type in the
complete SP-ASSIGN verb, like in the preceding example.

The next inquiry allows you to select whether or not you wish the FILE-SAVE to
stop on a Group Format Error, or not to stop on any Group Format Errors, but to
log them into the STAT-FILE and the GFE files. (It does this by adding the
option "L" to the SAVE verb in the PROC.)

Once all the questions have been answered, the program will move the previous
FILE-SAVE PROe to an item called OLD-FILE-SAVE in the SYSPROG-PL file, and then
create a new FILE-SAVE PROC. Now, when the new FILE-SAVE PROC is run, whatever
new prompts have been added will be displayed.

4-19

88A00757A

4.5.1.2 Customizing The FILE-SAVE PROC: NEW-FILE-SAVE

A second, newer FILE-SAVE PROC called NEW-FlLE-SAVE has also been created. It
includes additional options which allow specification of FILE-SAVE media, time
to start the FILE-SAVE, and a request for a File-Stat Report. These options
will be prompted for by the PROC.

If you wish to use this new PROC in place of the old one, COpy NEW-FILE-SAVE
to FILE-SAVE and include the overwrite option in your statement. If you wish to
return to using the previous PROC, it can be obtained from SYSPROG-PL where it
is named ORIG-FlLE-SAVE.

4.5.2 ACCOUNT-SAVE AND ACCOUNT-RESTOBE

The PICK system provides the facility to save and restore single accounts. The
ACCOUNT-SAVE PROC allows you to generate a backup with only one account on it.
The ACCOUNT-RESTORE verb is used to add a single account to an already existing
PICK system.

4.5.2.1 ACCOUNT-SAVE PROC

The 'ACCOUNT-SAVE' PROC functions similarly to the 'FILE-SAVE' PROC. The files
section contains no System Dictionary pointer or items, and only one account is
saved. No synonym D or Q pointers will be saved. If STAT-FILE items are
generated, they will pertain only to the saved account.

Account saves are performed as follows:

1. Log onto SYSPROG

2. Mount a tape or cartridge disk which is not write-protected.

3. Type: ACCOUNT-SAVE [CR]

System responds: TAPE LABEL IF DESIRED

Type: tape or cartridge disk label [CR] or [CR] (if no label is
desired).

System responds: ACCOUNT NAME?

Type: account-name [CR] (of account to be saved).

The account-name used must be in the System Dictionary. Note that a cartridge
disk must be formatted before it is used for the first time.

4-20

88A00757A

4.5.2.2 ACCOUNT-RESTORE

An 'ACCOUNT-RESTORE' can be performed from a file-save of a whole system or
from an 'ACCOUNT-SAVE' backup. In either case, the account will be restored
and a pointer to the account will be created in the System Dictionary.

Note that the account must not already exist on the system. Account-restores
may be started from any reel or cartridge of a multi- tape or cartridge disk
file-save. To save time in searching for data, the STAT-FILE listing may be
consulted to determine which reel or cartridge the account's data starts on,
and that unit may be mounted.

Account restores are performed as follows:

1. Log on to SYSPROG.

2. Mount the tape or cartridge disk with the account on it.

3. Type: ACCOUNT-RESTORE new-account-name [CR1

System responds: ACCOUNT NAME ON TAPE?

or

ACCOUNT NAME ON CARTRIDGE?

Type: old-account-name [CR1

The operator must respond with the name of the account, and must use the same
name under which the account was saved. The media will be searched for the
account, and the restore will proceed automatically.

A 'Synonym' segment may be encountered with a base which has not been found on
the tape or cartridge disk. This happens when a D-pointer on the saved account
points to a file on another account, or if a 'D' segment on the tape or
cartridge disk is unrecognizable because of a parity error. In this case, the
message 'SYNONYM NOT FOUND' will appear. The synonym D-pointer will not be
created and the restore will continue.

4.5.2.3 Multi-Unit Tape or Cartridge Disk Operation

At the end of FILE-SAVE, :FILELOAD, ACCOUNT-SAVE and ACCOUNT-RESTORE tape or
cartridge disk operation, you will receive a message:

MOUNT REEL In or MOUNT CARTRIDGE In
LABEL date DATA file-name file-label reel-no. or cartridge-no.

The message gives the number of the unit to mount next and displays the file
label. After mounting the appropriate unit, you should type "C" to continue.

4-21/4-22

88A00757A

system memory management

5.1 MEMORY STRUCTURE

PICK is a multi-programmable virtual memory operating system with all of
virtual memory (disk) being directly addressable as if it were real memory.
The virtual memory of PICK resides on a disk drive, divided into 512 byte
frames. The frames are addressed by frame-ids (FID), numbered 1, 2, 3, ••• up
to a maximum, depending upon the disk being used.

1. ABS Frames - The lower-numbered frames on the disk are "ABS" frames, which
contain system software and workspaces. All frames above the ABS area are
available for use in files. Those frames not used for files make up the
Available Space, sometimes called "Overflow".

2. Work Area - The PICK operating system allows multi-programming, which means
more than one different program may be executed on a time-sharing basis
by the CPU. Each running program, or process, has a work area of 32
contiguous frames, the first of which is called the "Process Control Block"
(PCB) as shown in Figure 5-1.

The PCB of channel zero is normally frame 1024 (400 hexadecimal). PCB~s for
succeeding processes are separated by 32, and therefore, the PCB for line
one is 1056 (420 hexadecimal), line two is 1088 hexadecimal, etc.

Additionally, larger "Secondary" workspace blocks are reserved in the ABS
area following the last primary workspace, which is that of the SPOOLER.
WSSTART is the starting FID of the secondary workspaces, which continue to
the end of the work area. Each process has three secondary workspaces,
usually consisting of 127 frames each.

5-1

5

88A00757A

FID (HEX)

1 1 1 1
2 2 1 PICK I
3 3 i Assembly EXECUTABLE I

1 Code AREA I
1 399 • 1 I I

1--------------+----------------------1 I
1 400 1 1 I
1 1 User 1 I
1 1 Assembly 1 I
1 1 Code 1 I
1 1023 3FF 1 I I
1--------------+----------------------+----------------1
1 1024 400 1 Line 0 PCB 1 1
1 1 & Primary 1 WORK I
1 1 Workspace 1 AREA 1
1 • • 1 1 1
1------------+---------------1 1
1 1056 420 1 Line 1 PCB 1 Process 1
I I & Primary 1 Control 1
1 • • 1 Workspace 1 Blocks 1
1--------------+----------------------1 & I
1 1 1 Primary 1
1 1 ••• workspaces... 1 Workspaces 1
1 1 1 1
1 I Spooler PCB I 1
I I & Pr imary 1 1
1 I Workspace 1 1
I • • 1 1 1
1--------------+----------------------+----------------1
1 WSSTART 1 Line 0 Sec. 1 1
I 1 Workspace 1 1
1 1 1 Secondary 1
1 I I Workspaces 1
1 1 SPOOLER Sec. 1 1
I I Workspace I I

Figure 5-1. ABS Area, Including Executable Area and Work Area

5-2

88A00757A

3. Files and Overflow - Following the work area are PICK files, beginning with
the SYSTEM file. The base of the SYSTEM file, SYSBASE, is the beginning of
the file space. On a newly generated or restored system, all other files
on the system immediately follow the SYSTEM file. At the end of the files
is the start of Available Space (overflow), which then continues until the
end of the disk (MAXFID) as shown in the illustration below.

On a running system, the overflow area will become "fragmented" as frames
are taken from and returned to the overflow pool. The following
illustration shows the effect on files and available space following a
file-restore (left) and after undergoing normal fragmentation (right).

SYSBASE

· · Files

· · r ---
· ,
· · I
· I
· I · I · ~-- - Available--

I

· Space ,

· I

· I L ___

· MAXFID

5-3

88A00757A

5.1.1 ADDED WORK SPACE

The "additional workspace" is a set of contiguous, linked frames that is
initialized by the system at coldstart or system-generation time.

There are several processors in the system that require large amounts of
workspace or buffer area. The workspace is preassigned and need not be linked
up at LOGON time. The workspace is linked after a file-restore, or it may be
linked from TCL by use of the LINK-WS verb. The SPOOLER process links the
workspace for all the other lines and no other user can log on the system while
this linkage is taking place.

The following message will appear until the spooler has finished the linkage:

LINKING WORK-SPACE; WAIT

The starting FID of the secondary workspace for line 0 may be computed:

WSSTART • (number of lines) * (32) + 1024

(Each line has 3 secondary workspaces of 127 contiguous frames.)

The workspace may be linked on a live system using the LINK-WS verb on the
SYSPROG account. This may be done if it is suspected that the links of the
additional workspace have been destroyed. One manifestation of this situation
is that BASIC programs terminate with the "NOT ENOUGH WORK SPACE" message.
Work-space links should be particularly suspect if a program or process aborts
on one channel but works correctly on others.

The general form of the verb to relink the workspace is:

LINK-WS {(n{-m})}

If the "(n)" or "(n-m)" is omitted, the workspace of ALL lines will be
relinked, except those of lines logged on and that of the spooler process. The
parenthetical specification may be used to limit the relinking process to lines
"n", or "n" through "m" only.

As the linkage proceeds, the line-number of the process whose workspace is
currently being linked is displayed on the terminal; if the line is logged on,
the message "ONl" will be displayed, and also THE WORK-SPACE IS NOT RELINKED.
The spooler's workspace can only be relinked via a coldstart.

5-4

88A00757A

5.1.2 THE FILE AREA

Immediately following Work Area, the remainder of the virtual memory, the File
Area is available for the storage of data in files. The portions of the File
Area that are not allocated to the files are maintained as a pool of Available
Space. The beginning of the File Area is a system generation parameter. It
may be computed as follows:

Start of File Area (SYSBASE) - (FID of first PCB) +
«number of processes)*32 +
«number of processes)*(pre-assigned work-space)*3

Pre-assigned work-space is set to 127 frames per process per work-space. Each
process (including the spooler) has 3 secondary workspaces of 127 frames each.

As an example, a system with 18 communication lines (therefore 19 processes
including the spooler) will have the start of the file area at frame:

1024 + (19 * 32) + (19 * 381) - 8871

The end of the File Area is the highest available disk frame, MAXFID.

Disk Configuration
One 16MB disk
One 32MB di sk
One 64MB disk
One 142MB disk

Highest Disk Frame
25,427
56,423

118,823
272,075

(MUFID)

File Area frames which are not allocated to the files are maintained as a pool
of Available Space, often called "Overflow". Available Space is used by the
PICK system file management routines as additional data space, and also by
other processors as scratch work space. The PICK system maintains a table of
pointers that define the Available Space, which may be either in a "linked"
form, or in a "contiguous" form. Contiguous Available Space consists of blocks
of contiguous frames (defined by starting and ending numbers) that can be taken
out of the pool either singly or as a block. Linked Available Space can only
be taken a frame-at-a-time. Conversely, space may be released by processors to
the linked available pool a frame-at-a-time, or to the contiguous pool as a
block.

At the conclusion of a File-Restore process, an initial condition existsj
there will be one principle block of contiguous available space, extending from
the end of the current data space through the last available data frame. This
is illustrated as follows:

)POVF [CR]

23987 - 56423: 32437

.TOTAL NUMBER OF CONTIGUOUS FRAMES AVAILABLE- 32437

5-5

88A00757A

The results of the POVF (print overflow) verb indicate that there is no linked
overflow space (blank line at the top of the output), and only one contiguous
block of space. See Section 5.1.5.1 for further description of POVF.

As the system obtains and releases Available Space (and as files are created
and deleted), the Available Space becomes fragmented; at any particular time
there may be several blocks of contiguous Available Space, and a chain of
linked Available Space. Available frames will be placed in the linked
Available Chain only when there are 31 sets of contiguous Available space
(representing the maximum that the system space management routines can
maintain). For example:

>POVF [CRl
23459 (400)

8112- 8117 6
23789- 23801 13
25681- 25692 12
34502- 35123 522
37091- 37091 1
37099- 37100 2
43100- 44234 1135
46343- 46443 101
46448- 46448 1
46454- 46454 1
47011- 47444 434
47661- 47750 90
48018- 48018 1
48233- 48268 36
51111- 53234 2124
60000- 97799 :37800

9000- 9000
25000- 25678
27123- 27323
35800- 35801
37093- 37093
38100- 38100
45680- 45681
46445- 46445
46451- 46451
46458- 46474
47460- 47492
48012- 48017
48020- 48101
48299- 48299
53400- 53601

1
679
201

2
1
1
2
1
1

17
33

6
82

1
202

TOTAL NUMBER OF CONTIGUOUS AVAILABLE FRAMES- 43509

In this example, the linked Available chain starts at FlO 23459 and contains
400 frames. There are also several sets of contiguous Available space as shown
by the pairs of FIDs displayed.

Logically, there is no difference between Available space in linked chain and
that in the contiguous sets; however, certain processors obtain frames from the
contiguous space only, for example, the CREATE-FILE processor. Therefore, if
the system Available space is severely fragmented, while there may actually be
enough disk space to create a large file, there may not be enough available as
a contiguous block. For further explanation, see the section on the POVF verb.

5-6

88A00757A

5.1.3 FRAME FORMATS

A Frame is a block of 512 bytes that is referenced by a unique number called
the Frame Identifier, or FID. There are two types of PICK frames; ABS frames
and FILE frames. The FILE frames contain 500 bytes of data, the remaining 12
bytes being the "link fields". ABS frames may be object-code (assembly or
BASIC-compiled object code), buffers or other workspaces required by the
system.

Linked frames are used to define data areas which may be greater than 1 frame
in length. Unlinked frames have no specified format; all 512 bytes of the
frame may be used by the system.

The groups in data files may expand as more data is placed in the group, so
when the end of a frame is reached, another frame is obtained from the system
Available Space pool and linked to the end of the group. The format of the
linked frame is as follows:

byte: 0 1 2 3 4 5 6 7 8 9 A B C

* nncf •• forward link ••••• backward link ••• npcf * start
of data

where:

*
nncf

npcf

forward link

backward link

Unused byte.

Number of next contiguous frames (count of frames that are
linked forward of this one, whose FID's are sequential to
this FID).

Number of previous contiguous frames (count of frames that
are linked backward to this one, whose FID's are
sequential to this FID).

FID of the frame that is next in logical sequence to
this one.

FID of frame that is logically previous to this one.

The first frame of a linked set of frames will have zero "npcf" and "backward
link" fields. The last frame of such a set will have zero "nncf" and "forward
link" fields. The "nncf" and "npcf" fields are also normally zero, except in
the "linked workspace" allocated to each process, and in files that have a
separation greater than one.

5-7

88A00757A

5.1.3.1 Frame Format Display: DUMP

The DUMP verb may be used to display data in a frame or to display absolute
core locations. The data display may be specified in either character or
hexadecimal format. The general form of the DUMP verb is as follows:

DUMP nl{-n2},{options}

"nl" and "nZ" are numbers that may be specified in decimal or in hexadecimal by
preceding the hex number with a period (.). The nl and nZ parameters contain
the beginning (and ending) FID(s) of the frame(s) being dumped. After the
first entry, if nl is not entered, the next frame will be displayed. If nl is
the ABS area, the ABS frame will be displayed in Z048 byte format without
links. Otherwise, the data frame will be displayed in 500 byte format with
links. The left-hand column gives the absolute decimal displacement. Options
are specified like normal statement options, as single characters, optionally
separated by commas. Valid options are:

Option

C

G

L

N

P

U

X

Description

Core dump; specifies that absolute memory locations are to be
dumped. In this case, a 51Z-byte block starting at (nl modulo
51Z) is dumped. nZ is ignored. This option automatically sets
the X (hex) option also.

Group; specifies that the data starting at frame nl is to be
dumped and that the dump continue following either the forward
or backward links (depending on whether the U option is not or
is specified). The dump will terminate when the last frame
in the logical chain has been found.

Links; specifies that the dump be confined to the "links" of
the frame(s) concerned; no data is displayed.

Nostop; if the data is printed on the terminal, specifies that
the end-of-page stop be inhibited.

Printer; the display is routed to the line-printer.

The data or links are traced logically upwards; that is, the
backward links are used to continue the display.

Outputs in hexadecimal and character format.

5-8

An example of the use of DUMP:

)DUMP 6950,L
FlO: 6950

+FID: 6967

[CR]
o
o

6967
o

o
6950

88A00757A

o
o

(
(

1B26
1B37

o
o

1B37
o

o
1B26

o)
o)

In the above example, the display indicates that 6950 is the FID whose links
are being dumped; the "nncf"* field is 0; the "forward link" field is 6967; the
"backward link" field is 0; the "npcf"** field is O. Data in parentheses
displays the same information in hexadecimal.

The next line displays the link fields of FID 6967; the "+" indicates that
this FlO is logically "forward" of the preceding one.

5.1.3.2 Frame Lock in Memory: LOCK-FRAME, UNLOCK-FRAME

The LOCK-FRAME verb may be used to lock a frame in memory. The general form of
this verb is:

LOCK-FRAME number

where "number" is a decimal frame number. The LOCK-FRAME verb responds with
the absolute hexadecimal work address of the memory buffer in which the frame
is locked.

The frame remains locked until it is released by the UNLOCK-FRAME verb (of the
same general form), or RESET from the system front panel, which releases all
memory frames locked by the LOCK-FRAME verb.

*nncf • Number of next contiguous frames. (Count of frames that are linked
forward to this frame, whose FlO's are sequential to this FID.)

**npcf • Number of previous contiguous frames. (Count of frames that are
linked backward to this one, whose FID's are sequential to this FID.)

5-9

88A00757A

5.1.4 DISPLAY OF SYSTEM STATUS: WHAT, WHERE

The WHAT verb is used to display the system configuration, the current status
of its locks and tables, and the location of the processes that are logged on.
The tlHERE verb is a subset of the tmAT verb; both verbs require SYS2 privileges
to use. The WHAT and WHERE verbs have the following general form:

~·rriAT {options} w-dERE {n} {options}

lffiAT and WHERE options:

WHAT Options Explanation

L Suppresses lock status display.

P Statistics printed on printer.

S Suppresses SP-STATUS statistics.

W Suppresses current processes information (WHERE component).

lffiERE Options Explanation

"account-name Displays informaion only for lines logged onto specified
account (quotes must be used).

n{-m} Diplays information only for lines logged on in range
specified.

Z Displays information for all lines whether logged on or not.

WHAT and WHERE examples:

WHERE 3-5

WHERE 'OP'

{ffiAT L

WHAT W

WHAT S

WHAT LWS

Displays the return stack for users three through five.

Displays the return stack for all lines logged onto DP.

Will suppress the locks section of the WHAT verb.

Will suppress the WHERE section of the WHAT verb.

Will suppress the SP-STATUS section of the tmAT verb.

Will yield only the system configuration section of the
WHAT verb.

WHAT 'account-name' Will display only those lines which have the account
account-name logged onto them.

5-10

88A00757A

5.1.4.1 The WHAT. WHERE Kessage

The WHAT verb displays the state of the system status as shown below. (Numbers
in brackets identify Notes listed below; they are not a part of display.)

CORE LINES PCBO WSSTART WSSIZE SYSBASE/MOD/SEP HAXFID AVAIL. OVERFLOW
256K 11 1024 1376 127 5567 11 1 56423 49569

[1] [2] [3] [4] ••• [5]....... [6] [7]

II II #1 II II " 1# " " II II II #1 II II II
II II II II " II II II II II II II II II II II [8]
II II " " I' II II II II " II II II II II II

II In In In " 1# II II II II " II II II " " [9]
II I' II II II " " " " II

00 0400 FOOO 6.178 6.096 236.660
02 0440 F30A 6.44A 233.578
03 0460 FFOO 478.31E 454.1C6 454.264 465.328
04 0448 FFOO 231.064
05 04AO EFOO 6.44A 344.008 353.658 351.332

*06 04CO FBOO 121.000 121.1B4 166.626
09 0520 BFOO 170.060 170.0B4
10 0540 BFOO 170.060 170.14E

[10][11] [12][13] [14] [15] ••••••••••

THE SPOOLER IS INACTIVE
PRINTER' 0 IS SERIAL. INACTIVE, AND ON LINE.
THE PRINTER IS RUNNING ON LINE 9.
ASSIGNEO OUTPUT QUEUES: 0
THE NUMBER OF INTER-JOB PAGES TO EJECT IS O.

NOTES for "WHAT":

[1] Number of communication lines (terminals) plus one (spooler) • number
of processes on system.

[2] PCB-FlO for channel zero; each following channels PCB-FlO is displaced
by 32 frames from PCBO.

[3] Extended workspace starting FID; WSSTART • PCBO + 32*LINES
(Including SPOOLER).

[4] Extended workspace size; number of frames per workspace is either
100 or 127 frames. There are three workspaces per line.

[5] System base-FIO/modulo/separation; SYSBASE-WSSTART + WSSIZE*3*LINES.
[6] Maximum disk FID; (32MB - 56423).
[7] Available overflow space; linked frames + contiguous frames.
[8] BASIC locks (48); system reserved (15); spooler-linking-workspace

(last bit). Bits start at 127.20.

5-11

88A00757A

[9] System
LOCK /I
o

lock bytes;
LOC
127.0
127.1
127.2
127.3

In-available; else has channel number as above.

1
2
3
4-26

USAGE
Lock-table lock.
Overflow table lock.
Group-lock table lock.
MESSAGE processor lock.
ReServed.

The sequence of channels is in the current priority chain sequence. except for
those channels that have a PIB-status of "7D" (waiting for terminal input).
which are not in the chain and. therefore, appear in numerical sequence. tf
the .. s .. option is used in the WHAT verb, all channels are in numerical
sequence.

[10] Channel number; preceded by a " ... if your channel.
(11) PCB-FtD (hex) of channel.
(12) PIB-status of channel;

7F/FF - Active. or ready to go.
7B/FB - Terminal output.
7D - Terminal input.
SF - Waiting for disk.
3F - Release Quantum/Sleeping.
Typically, spooler is "BF".

[13] PtB-status-2; 00-Norma1. 4D-in DEBUGGER.
[14] "T" - Tape or Cartridge Disk attached; "P" - Printer attached.
[15] Location counter (first address) and subroutine return - stack

addresses.

Entry format - fff.lll where fff - decimal FlO; 111 - hex location.

Typical Locations:
6/9 - Terminal I/O
225-248,275 - BASIC
290-298 RUNOFF
5 - TCL-I

13-20 - EDITOR;
53-64 - ACCESS Compiler
189-199 - BASIC Compiler
161-183 - SPOOLER.

5-12

89 - DEBUGGER
71-77 - LIST
200-220 - SAVE-RESTORE

88A00757A

5.1.5 LOADING AND USING SYSTEM SPACE

5.1.5.1 POVF

The POVF verb displays the contents of the system overflow table. The general
form of the POVF verb is:

POVF {(P)}

The P option forces all printed output to the line printer. The first line of
output is the FlO of the first frame in linked overflow, followed by the number
of frames in the linked chain.

The next lines (up to 16) describe blocks of contiguous overflow and have the
following format:

m - n : p m - n - p

where:

m is the first frame of a contiguous block.

n is the last frame of the block.

p is the number of frames in the block.

The total number of frames contained in all the contiguous overflow is then
printed (using error message number 293):

TOTAL NUMBER OF CONTIGUOUS FRAMES : number

For an example, see Section 5.1.2 of this manual.

5-13

88A00757A

5.2 SYSTEM DICTIONARY AND SYSTEM FILE

The remaining part of Section 5 describes the content and the use of the
system dictionary and the system file. The system dictionary contains an
identification item for each PICK user. This set of items defines the users
who have access to the system. Such items are file definition or file synonym
definition ieems.

The SYSTEM file is the highest level (level 0) file within PICK. It contains
pointers to the appropriate data base accounts as well as pointers to
system-level files.

5.2.1 USER IDENTIFICATION ITEMS

User identification items are initially created via the CREATE-ACCOUNT PROC.
These items may subsequently be updated via the EDITOR. Entries in the System
Dictionary should not be updated (from the SYSPROG account) when any other user
is logged on to the system. This is because the system software maintains
pointers to data in the System dictionary when users log on, and updating the
System Dictionary will invalidate the pointers. An exception to this rule is
creating a new account for a synonym to an existing account, which can be done
at any time since new items are added to the end of the existing System
Dictionary data, and thus do not disturb any pointers to it.

Attributes 5 through 8 of a user identification item contain data associated
with the user's security (lock) codes, password, and system privileges.

Attribute Use

5 Contains the set of retrieval lock-codes associated with the user.
Multiple values (separated by value marks) are allowable. There is
no restriction as to the format of individual lock-codes. This
attribute may be null, indicating no lock-codes. (Lock-code usage
is described in Section 7.2, SECURITY.)

6 Contains the set of update lock-codes associated with the user.
(Same as described for retrieval lock-codes above.)

7 Contains the user's password, which is a single value. This
attribute may be null. There is no restriction as to the format
of the password.

8 Contains a code which indicates the level of "system privileges"
(see below) aSSigned to the user.

9 May contain the code "u" to indicate that logon/logoff times should
be logged by the system. May contain the code "R" to specify the
RESTART option. May contain the code "L" which is equal to a
null code.

5-14

88A00757A

Attributes one through four and attributes ten through thirteen are like those
defined for regular file definition of file synonym definition items. A user
identification item example:

Item SMITH in System Dictionary

001 D <-------------------------- D/cODE
002 2537 <----------------------- Base FID
003 13 <------------------------- Modulo
004 1 <-------------------------- Separation
005 ABC <------------------------ Retrieval lock code (L/RET)
006 1234 <----------------------- Update Lock Code (L/UPD)
007 A1234567 <------------------- Password
008 SYS2 <----------------------- System Privilege Level
009 U <-------------------------- Update Account File for this user

Three levels of system privileges are available; they are referred to as zero
(lowest), one, and two (highest). Lower levels of system privileges restrict
usage of certain facilities of the system, described as follows:

Facility Lowest Privilege Level Allowed

Updating of MD One
Use of tape or cartridge disk One
Use of DEBUG (other than P, OFF, Two

END and G commands)
Use of DUMP processor Two
Use of Assembler and Loader Two
Use of FILE-SAVE and FILE-RESTORE Two

processors.

System privileges are aSSigned by the code in attribute eight of the user
identification item. Leave this part null for level 0, specify SYS1 for level
1, and SYS2 for level 2.

Attribute 9 may contain the codes ~U' or ~R', or both. 'U~ specifies that the
accounting listing file is to be updated whenever the user logs on and off this
account (see ACCOUNTING FILE). ~R' specifies that the Restart option is to be
set. This causes the LOGON PROe to be reexecuted whenever an "END" is typed at
the DEBUG level. This attribute may also contain the code "L" which is equal
to a null code.

5-15

88A00757A

5.2.2 SYSTEM PILE ABO SYSTEM-LEVEL PILES

Entries in the SYSTEM file define user ~m's or special files necessary for
PICK. The MD pointers are either 0 (file definition) or Q (file synonym)
items. The item-ids of such items are the user-names that the user enters when
the system requests him to LOGON. Such items are created by the CREATE-ACCOUNT
processor j (for D items) or by use of the EDITOR or COpy processor for Q
items. The format of user-identification items was discussed in the previous
section. The SYSTEM file also contains file-pointers to system-level files
that are necessary for overall operation of the system. These files were
introduced in Section 1. The following matrix identifies in further detail the
structure of these files.

Level 0 SYSTEM dictionary

Level 1 ACC BLoCK-CONVERT ERRMSG PROCLI! SYSTEM-ERRORS

Level 2 ACC SYSTEM-ERRORS
dictionary dictionary

Level 3 ACC SYSTEM-ERRORS
data data

5.2.2.1 Acounting Ristory Pile

The ACC file (Accounting history) has two types of items; those that indicate
the actively logged-on users, and the accounting-history data items that keep
track of the usage statistics of each user. The format of the items in this
file is discussed in later sections.

The ACC files have a tri-level structure with an ACC account, an ACC
dictionary, and an ACC data section.

5-16

88A00757A

5.2.2.2 Block Convert File

The BLOCK-CONVERT File is a three-level file that contains two unrelated types
of items:

1. Items that define the format used in the characters displayed when the
BLOCK-PRINT verb is used.

2. Items that are used to print a descriptive message when the "A" (assembly
code) option is used when compiling a BASIC program.

5.2.2.3 PROCLIB File

The PROCLIB file is a three-level file that contains commonly used PROCs, such
as CT (Copy to Terminal), LISTU (List Active Users), etc.

5.2.2.4 SYSTEK-ERRORS File

The SYSTEM-ERRORS file is a three-level file reserved for logging system
errors. Currently, its only use is to store disk errors.

System-level files are further described in the following section.

5-17

88A00757A

5.3 SYSTEM-LEVEL FILES

5.3.1 ACCOURTIHG HISTORY FILE

The Accounting History file is one of the mandatory files in the PICK system.
This file contains accounting history for the system; as well as entries that
describe the currently active (logged-on) users.

The System dictionary (SYSTEM) contains the file definition item (item-id
'ACC') for the Accounting History file illustrated as follows:

Channel I Item-id Channel I Item-id

0 0200 16 0400
1 0220 17 0420
2 0240 18 0440
3 0260 19 0460
4 0280 20 0480
5 02A0 21 04AO
6 02CO 22 04CO
7 02EO 23 04EO
8 0300 24 0500
9 0320 25 0520
10 0340 26 0540
11 0360 27 0560
12 0380 28 0580
13 03AO 29 05AO
14 03CO 30 05CO
15 03EO

The 'ACC' dictionary is set up for examining and listing the data in the
Accounting History file. There are two item types in the Accounting History
file: those that represent active (logged-on) users, and those that keep track
of accounting history.

5.3.1.1 Active User Items

The item-id of an active user item in the Accounting History file is the four
character hexadecimal FID of the PCB of the user's process. If the PCB's start
at FID-5l2, (they proceed in steps of 32 frames from there on), we see that a
user logged on to process zero will have an entry with an item-id '0200' (512),
while a user logged on to process one will have an entry with an item-id '0220'
(544), and so on. Attribute one of an active user item contains the name of
the user (i.e., the item-id of the user identification item), attribute two the
date logged on, and attribute three the time logged on). Active user items are
created when a user logs on and deleted when he logs off.

5-18

88A00757A

5.3.1.2 Accounting History Items

The item-id of an accounting history item is the name of the user (i.e., the
item-id of the user identification item), with the channel number concatenated
by a "II". For example, if user "'SMITH' logs on to channel 12, when he logs
off, the item whose item-id is "'SMITHII12' in the ACC file will be updated.
This allows one to keep track of system usage by user-id as well as channel
number.

Attributes one, two, and three are not used. The remainder of the attributes
are described below:

Attribute Use

4 Date(s) Logged on. Each unique date is. stored. Value marks
are tagged on to the value in this attribute if multiple
logoffs occur on the same date (for LIST alignment purposes).
Date is stored in PICK date format.

5 Time(s) Logged on. An entry is made for each logoff,
representing the time at which the user logged on. Time is
represented in seconds past midnight (24-hour clock).

6 Connect time(s). This entry represents the item in seconds
between the logon and the logoff.

7 Charge-units. A number representing the CPU usage is added
on each logoff.

8 Line-Printer pages. A number representing the number of pages
routed to the line-printer for each session.

Attributes 4, 5, 6, 7, and 8 are stored as a "controlling-dependent" data set,
with attribute 4 being the controlling value and the others the dependent
ones. The "controlling-dependent" data set format is described in the ACCESS
section of the PICK Reference Manual.

The accounting history file 'ACC'" is not automatically updated every time a
user logs off the system. The SYSTEM dictionary item for the user must have a
... u' in attribute 9 if the user is to have his Account file history items
updated. The entries in the Account file contain the history of each session
(logon to logoff). If the SYSTEM dictionary data has been changed since logon
or the history file item to be updated is too large for the work-space, the
message number 338 will be printed.

5-19

88A00757A

5.3.1.3 Accounting History File Summary

This section summarizes the formats of the active user items and the accounting
history items in the Accounting History File. Also presented are sample
entries for the Accounting History File.

A summary of the
history items is as follows:

Attribute
Number

1

2

3

4

5

6

7

8

'ACC' Dictionary
Name

(i tem-id)

NAME

DATE

TIME

DATES

TIMES

CONN

UNITS

PAGES

items and the accounting

Active User Item

Four-character
hexadecimal PCB-FlO

User name

Date logged on

Time logged on

Accounting
History Item

user name#lineno

Not used

Not used

Not used

Dates logged on

Times logged on

Connect time

Charge-units

Number of printer
pages generated.

An example of a LISTU sorted listing of the active users (users with a value
for attribute 1) via an ACCESS SORT statement.

>LISTU [CR]

CRR PCBF NAME ••••••••••••••• TIME ••• DATE •••• LOCATION ••••••••••••••••••

00 0200 CM
01 0220 SYSPROG
02 0240 EL-RDD
03 0260 LC
05 02AO RVE

*06 02eo CM
07 02EO BUGEYE
10 0340 JT

11:02AM 03/22/82
12:10PM 03/22/82
09:11AM 03/22/82
06:59AM 03/22/82
09:55AM 03/22/82
11:25AM 03/22/82
01:29PM 03/22/82
11:34AM 03/22/82

5-20

88A00757A

And finally, a sample listing of the accounting history item for user SMITH
via an ACCESS LIST statement:

>LIST ACC • "SMITH]"

PAGE 1

ACC •••••••• DATE. TIME •••

*
SMITHIIO 01/13 16:56

01/14 10:13
10: 15

02/06 17:02
02/09 10:21
02/23 07:58
03/09 11:35

16:05
SMITHII5 01/13 12:48

15: 20
15: 25
15: 28
16:20
19: 15

01/16 09:41
15:55

2 ITEMS LISTED.

(selects items with item-ids starting with
the string "SMITH")

12: 17: 22 22 t1AR 1982

CONN ••• UNITS •• PAGES

* *
00:04 9
00:00 5
00:01 343
00: 18 41
00: 17 690
00:01 27
01:57 378
00:22 94
02:25 160 5
00:05 14
00:00 2
00:17 110
02:55 2575 16
00:00 13
06:13 1853 6
00:12 15

5-21

88A00757A

5.3.1.4 Accounting History File Clearance

To avoid overflowing the accounting history items in the Accounting History
File for a specific user, the items should be periodically cleared. If the
accounting history item for a user-account exceeds the available workspace, the
user will be logged off, but the Accounting History File will not be updated.
To recover from this situation, clear the accounting history items from the ACC
file with the following steps:

1. Logon to the SYSPROG account.

2. Type the following (if you need a listing only):

>SORT ACC WITH NAME LPTR [CR]

3. Type the following:

>SELECT ACC WITH 'user-name' [CR]
>DELETE ACC [CR]

The point of overflow is determined by the activity of the user-account.
Approximately 1000 logon/logoffs are allowed. This point can be calculated by
taking the following steps:

1. Use the WHAT verb to determine the number of additional workspace frames
allocated for the system (parameter WSSIZE in the WHAT display). Multiply
this figure by 500 and add 3000.

2. To determine the current size, type:

>STAT ACC 'user-name' [CR]

This will produce the following output:

STATISTICS OF ACC:
TOTAL - xxx AVERAGE - yyy COUNT - zzz

3. If the value displayed for TOTAL in step 2 (i.e., xxx) approaches the value
calculated in step 1, then the user-account is approaching the overflow
point.

5-22

88A00757A

5.3.2 BLOCK-CONVERT FILE

The BLOCK-CONVERT file contains data used by the BLOCK-PRINT verb to convert
characters to a n-by-8 block format.

There are two types of entries in the BLOCK-CONVERT file; type I is the entry
that forms the characters for the BLOCK-PRINT verb. Its format is:

Item-id

where "item-id" is the character to be formed; that is, the item whose item-id
is "C" will form the character C; the item whose item-id is "{" will form the
character {, etc. Each item must consist of exactly ten attributes.

The first attribute contains a code of the form:

n{c}

where "n" is the width of the character matrix (i.e., "n" of the n-by-8 block;
the depth of all characters formed is fixed at 8); and the optional "c" is a
character that will replace the item-id in the generation of the BLOCK-PRINT
form.

There must be 8 succeeding attributes, each one specifying the format of a row
in the generated form. Each attribute must begin with a "c" or a "B",
specifying a character insertion or a blank insertion, respectively, followed
by the number of such insertions needed; optionally, additional numbers may be
specified, separated by commas. Each succeeding number switches the insertion
from character to blank and vice-versa. The sum of all numbers must equal the
character width specified in attribute 1. An example of BLOCK-CONVERT:

>COpy BLOCK-CONVERT S SA (T) [CR]

S Item-idj defines format for character "s"
001 7 Defines character width as 7
002 Bl,5,1 Specifies string
003 C2,3,2 Specifies string
004 C2,5 Specifies string
005 Bl,5,1 Specifies string
006 B5,2
007 C2,3,2
008 BI,5,1
009 B7

8A Item-id (BASIC object-code byte)

" SSSSS " (1 blank, 5 S, (1 blank)
"ss SS" (2S, 3 blank, 2S)
"ss "
" SSSSS "
" SS"
"SS SS"
" SSSSS "

001 STOP Identifies object-code (STOP opcode).

5-23

88A00757A

The second type of data in the BLOCK-CONVERT file has a 2 hexadecimal digit
item-id, corresponding to the BASIC opcode generated by the BASIC compiler;
attribute 1 is the symbolic name for the opcode. These entries are used by the
BASIC compiler "A" option to generate a listing of the BASIC object code.

An example of the use of the BLOCK-PRI~~ verb:

>BLOCK-PRINT S [CRl

5.3.3 PROCLIB FILE

SSSSS
S5 5S
SS

SSSSS
SS

SS SS
SSSSS

The PROCLIB file is used to contain all common PROCs (e.g., LISTU, CT, etc.).
Each MD will contain a pointer to PROCLIB and items that transfer control to
the corresponding PROCs in PROCLIB. For further information, refer to the PROC
section of the PICK Reference Manual.

5-24

88A00757A

5 .4 ACCOUNT FILE MAINTENANCE

5.4.1 CREATE-ACCOUNT PROC

The CREATE-ACCOUNT PROC generates a new account according to given specifica
tions. It then copies the contents of the NEWAC file (the prototype MD) to the
new user !om. The CREATE-ACCOUNT PROC is invoked by typing in the PROC name:

>CREATE-ACCOUNT [CR]

The PROC then prompts the user for the required information as follows. Note
that defaults may be overwritten.

ACCOUNT NAME: MODULO, SEPARATION: 29,1
RETRIEVAL LOCKS: (See Section 7.2.1)

UPDATE LOCKS:
PRIVILEGE LEVEL (0-2):0
CONTROL CODE: L (See Section 5.2.1)

R--RESTART FLAG, U--UPDATE FLAG, L--DEFAULT
PAS SWORD: (Op tional)

SYSn VERBS ADDED TO THE ACCOUNT

[901] 'A' account created!

The CREATE-ACCOUNT PROC should not be used to create a new synonym to an
existent account; this should be done by using EDITOR to create the file
synonym definition item (Q-item) in the SYSTEM dictionary.

5.4.2 DELETE-ACCOUNT PROC

DELETE-ACCOUNT deletes an account and all its files from the PICK system.
DELETE-ACCOUNT runs the program DEL-ACC in SYSPROG-PL. The BASIC program
removes the SYSTEM D-pointer for the account and puts it in SYSPROG's MD.
Then i~ removes all D-pointers to data files froe all the dictionaries on that
account and places them in the account's lID. The program then calls on the
DELETE-FILE verb which deletes the account's MD, plus all dictionary and
data-level files for that account from SYSPROG's MD. Requirements to run
DELETE-ACCOUNT:

1. You must be logged on to SYSPROG.
2. SYSPROG must have Q-pointers to the MD of the account and to SYSTEM.
3. D-items must exist in DICT SYSTEM for SYSPROG and the account name.
4. SYSPROG must have access to SYSTEM and all files on the account to be

deleted.

5-25

88A00757A

All users should log off before running DEL-ACC because an item in the SYSTEM
dictionary will be deleted. The DEL-ACC program produces a listing of all
files being deleted. An example of DELETE-ACCOUNT usage:

)DELETE-ACCOUNT PROC name is typed at TeL.

ACCOUNT NAME ?SHERRY

FILES TO BE DELETED IN ACCOUNT SHERRY 02 APR 82 PAGE 1

FILE

MD
GEN/LED
GEN/LED
BP

BASE

34593
85344
49911
44319

MODE

37
1
231
17

SEP

1
1
1
5

DO YOU STILL WANT TO DELETE THE ACCOUNT ?YES Must start with 'y'

5.4.3 POINTER-FILES

File level dictionaries define the structure of data files, and they contain
pointers to those data files. If a file level dictionary has no associated
data file, it is a 'single level' file.

The POINTER-FILE contains the pointers to select-lists that are stored by the
SAVE-LIST verb. These pointers may be examined, but, like file-pointers,
should never be altered in any way by the user. The format of these pointers:

Item-id
001
002
003
004
005

item name
CL
FID
n
m
time & date

name is provided with SAVE-LIST verb.
CL for lists.
Base FlO of the list.
Number of frames in the list.
Number of items in a list.
Time and date of generation.

The POINTER-FILE is referenced implicitly whenever the SAVE-LIST, GET-LIST,
DELETE-LIST, COPY-LIST verbs are used. The POINTER-FILE is a single level
file. The file-defining entry "POINTER-FILE" in the ACCOUNT MD must have the
code "DC ,. in at tribute 1. This indicates that the file contains non-s tandard
items. When a new account 1s created, a POINTER-FILE 1s created for that
account.

5-26

88A00757A

5.5 BASIC PROGRAM FILE

The BASIC program file must have a dictionary
files and the master dictionary entry for the
'DC' in attribute 1. The source code must be
dictionary will contain pointers to executable
only source items will be in the program file.
associated with the object code and the object
compiler, does not need to be loaded before it
a CATALOGed program.

The BASIC file dictionary pointer item list:

level and one or more data-level
BASIC program file must contain a
in a data-level file and the
object code. This means that

The symbol table information is
code, which is emitted by the
can be run. It is equivalent to

item-id
001

item-name
CC

Name given with BASIC program creation.
CC for program.

002 FID
003 n
004 m
005 time and date

Base FID of the program.
Number of frames in the program.
Null.
Time and date of generation.

If there are multiple data files and if there is a program with the same name
in more than one of them, the last one compiled is the one which will be run.

The CATALOG verb will include the name of the program in the master dictionary
with a pOinter to the file which contains the particular program.

The DE CATALOG verb is available to delete the object code from the system. It
does not require that the program has been CATALOGed.

5-27

88A00757A

5.6 SYSTEM MESSAGES FILE

5.6.1 ERRHSG FILE

This dictionary level file in the SYSPROG account contains the system messages
(error and informative, see Appendix A). Each account's MD must have an item
called ERRHSG which points to this file in the SYSPROG account. (This is
automatically created by the CREATE-ACCOUNT PROC.)

Error messages generated by TCL, ACCESS, BASIC, PROC or any other system
software are contained in the ERRMSG file. The user may change the error
messages, add new error messages, or create another ERRMSG file for each
account. This can be particularly useful when used in conjunction with the
STOP and ABORT statements in BASIC, in which the user can specify an error
message and pass parameters to the error message processor.

Items in the ERRMSG file must follow a .certain format, in which the first
character in each line of the item defines a special operation, as listed
below:

Character

A

A(n)

D

H

L

L(n)

R(n)

S(n)

T

x

Meaning

Inserts the next parameter in the list of parameters which was
passed to the error message processor with the error message.
The parameters may be specified by the BASIC program (in the
case of a BASIC STOP or ABORT statement), or by some system
processor in the case of system-generated error messages.

Inserts the next parameter, left-justified, in a field of n
blanks.

Places the current date in the output buffer.

Causes the string following the "H" to be placed in the output
buffer, with no carriage return or line feed. At the end of
the error message item, the string "H+" will inhibit the final
carriage-return/line-feed that is normally outpt.

Causes the output buffer to be printed with a carriage-return
and line-feed.

As above, and also causes n-1 blank lines to be printed.

Inserts the next parameter right-justified in a field of
n blanks.

Sets the output buffer pointer to location "n".

Places the current time in the output buffer.

Skips a parameter in the parameter list.

5-28

88A00757A

5.6.1.1 Special ERRMSG File Items

The item "LOGON" in the System dictionary contains the request to logon to the
system, typically:

LOGON TO THE GA ZEBRA 2500 AT 12:34:00
PLEASE ENTER ACCOUNT NAME>

When a user logs onto PICK, the error message specified by the item "LOGON" in
the ERRMSG file is printed on the user's terminal. Therefore, any message
which is to be received by all users on the system immediately upon logging on
may be placed in this item. This item must exist on file even if there is to
be no general system message.

The ERRMSG items "335" and "336" contain the connect time messages displayed
when a user logs on or off the system.

Some examples of error message processing are:

In the BASIC program, the lines •••

FILE - "BP" ; ID =- "1006"
OPEN "",FILE ELSE STOP 201,FILE
READ ITEM FROM ID ELSE STOP 202, ID

could cause the program to stop with either of the following:

[201] 'BP' IS NOT A FILE NAME
'1006' NOT ON FILE.

If the item "LOGON" in the ERRMSG file for an account looked like:

HHello out there!
L
HIt's now
T
H and all's well!

then the user would see the following when he logged on:

Hello out there!
It's now 11:22:33 and all's well!

5-29

88A00757A

5.6.2 PRINT-ERR VERB

The PRINT-E~~ verb allows the user to invoke the error message processor from
TCL. The format is:

>PRINT-ERR file-name item-list

The error messages specified in the item-list will be processed with a
parameter list of A,B,C,D ••• For example:

>PRINT-ERR ERRMSG 201 [CRl
[201] 'A' IS NOT A FILE NAME

>PRINT-ERR ERRMSG 289

TERMINAL PRINTER
PAGE WIDTH: A B
PAGE DEPTH: C D
LINE SKIP: E
LF DELAY: F
FF DELAY: G
BACKSPACE: H
TERM TYPE: I

5-30

88A00757A

dictionaries and files

As introduced in Section 1, files are organized in a "hierarchical" structure
with files at each level pointing to mUltiple files at the next lower level.
Four distinct file levels exist: System Dictionary, Master Dictionary, File
Dictionary, and Data File.

The word "file" refers to a mechanism for logically maintaining a set of
similar items. The data in a file must be accessed via the Dictionary
associated with it. The dictionary is an index, or a directory, to a file.
However, since the dictionary is also a file, it contains items like a data
file. The items in a dictionary define the lower level dictionaries and data
files.

6.1 FILE ACCESS

The file access system was designed to allow the access of a particular item
(or a number of particular items) in a file, or to access all items in a file,
consecutively.

A file is a logical structure which associates a set of items so that they can
be accessed for both retrieval and update. Items may vary in length, but the
maximum size of an item is 32,267 bytes. There is no limit to the number of
items which may be contained in a file, nor any limit to the number of files in
an account. Each item has a "name" which is called its item-ide An item-id is
an identifier (key or name) and must be unique to the file which contains it.

Items are stored in the file in a "pseudo-random" sequence; this sequence is
determined by the result of a computational "hashing" (randomizing) technique
which is employed by the system for purposes of storage and retrieval of data
on disk. This technique utilizes the item-id along with other predefined
parameters for the file to produce the disk-address (frame-identifier or FID)
that identifies the location of the item.

Items that are stored in a file may be accessed directly using the item-id as
the key, or sequentially in the pseudo-random sequence. If items are to be
accessed in any sorted sequence, a preliminary pass through the file to
generate the sort sequence is needed (see SORT and SSELECT verbs in the ACCESS
Manual). The result of the preliminary pass is a list of item-ids; this list
may be saved for future use or used to access the items in the file in the
required sorted sequence (see also SAVE-LIST and GET-LIST verbs in the ACCESS
manual) •.

6-1

6

88A00757A

The direct file access technique, which uses the item-id to locate the item
within the file, is an efficient method of locating data and lends itself to
the on-line nature of the PICK system. The system overhead required to access
an item using this technique is essentially independent of the actual size of
the file.

Special reserved characters are used as delimiters for storing data within an
item. These delimiters were described and illustrated in Section 1.4.1. The
hexadecimal value of these delimiters is unique to PICK:

Attribute Marks (A)
Value Marks (])
Subvalue Marks (\)

X'FE'
X'FD'
X'FC'

This item structure allows each attribute (including values and subvalues) to
be a variable length. This is discussed in Section 6.4.2, Item Structure,
Physical.

In summary, the PICK system can accommodate:

ANY NUMBER OF FILES, WHICH CONTAIN:

ANY NUMBER OF ITEMS (RECORDS), WHICH CONTAIN:

MULTIPLE ATTRIBUTES (FIELDS), WHICH MAY CONTAIN:

MULTIPLE VALUES, WHICH MAY CONTAIN:

- MULTIPLE SUBVALUES.

All files, items, attributes, values, and subvalues are variable in length;
and each item must be less than or equal to 32,267 characters in length.

6-2

88A00757A

6.2 THE DICTIONARIES

A dictionary defines and describes data within its associated file. The
following dictionary levels exist within the system:

1. System Dictionary (one per system).

2. Master Dictionary (one per user account).

3. File Dictionary (one per file or files).

Since the dictionary itself is also a file, it contains items like a data
file. The items in a dictionary serve as the actual definitions for lower
level dictionaries or data files. The following types of items are stored in
dictionaries:

1. File Definition Items (file-names/pointers)
(also called "D" items).

2. File Synonym Definition Items (file-names/pointers)
(also called "Q" items).

3. Attribute Definition Items (attribute names)
(also called "A" items).

The File Definition Items and the File Synonym Definition Items are used to
define files. The item-ids of these items are the file-names of the files they
define or point to. File-names must start with a non-numeric character, may be
of any length and may contain any character except a comma (,) or a semicolon
(j). The Attribute Definition Items are used to define attributes within data
file items.

For example, "INVENTORY", "TEST.FILE" and "Zl" are all legal file-names. It
is common practice to use file-names that are descriptive of the type of data
stored within the file. A file is said to be defined from the dictionary that
contains the "D-item" that points to its dictionary. Therefore, according to
the hierarchy of files in the system, all Master Dictionaries (or HDs) are
defined from the SYSTEM dictionary. In turn, a user may define any nu~ber of
user dictionaries (with associated file or files) from his Master Dictionary
(see CREATE-FILE processor). Note that D-items are automatically created by
the CREATE-FILE processor and should never be created by using the EDITOR.

In order to access a file in another user's account, the user must create a
File Synonym Definition Item ("Q-itemlt

) using the EDITOR. Assuming that the
system security structure permits it, such a synonym file definition allows
access to any file within the system.

6-3

88A00757A

A synonym file-pointer may also be used for convenience. For example, the
INVENTORY file may have a synonym file-name INV, which reduces the number of
characters the user has to type in order to access a file.

The data in each dictionary item consists of attributes (and optional
multivalues) just like the data in file items.

For ACCESS processors, special dictionary items (called Attribute Definition
Items or A-items) define the nature of the data stored in their associated
file. They contain additional information such as:

1. Conversion specifications which are used to perform table look-ups,
masking functions, etc.

2. Correlative specifications which are used to describe inter-file and
intra-file data relationships.

3. Justification (left or right) for output purposes.

A data file is referenced by its "file-name". The dictionary file which is
associated with that data file is referenced by "DICT" followed by the data
file-name. A dictionary file may have more than one data file associated with
it. This relationship is explained in the following section.

In summary, a dictionary contains:

1. File Definitions, or "D-items" that define the physical extents of other,
lower-level files.

2. File Synonym Definitions, or "Q-items" that point to files in a user's
or another account.

3. Data Definition Items or "A-items" that are used by the ACCESS processor to
define the structure of data in the data section of the file.

In addition, a Master Dictionary contains:

1. Verbs (see TCL, Introduction to PICK Manual).

2. PROCs (see PROC Manual).

3. Vocabulary elements of the ACCESS language (see ACCESS Manual).

6-4

88A00757A

6.2.1 THE SHARING OF DICTIONARIES

File-level dictionaries may define a unique data file or multiple data files.
tolhen a dictionary defines mUltiple data files, it is said to be "shared" by
those data files. The characteristics of the data in these data files are
typically similar.

For example, there may be sets of data relating to the various departments in
a corporation. For ease of maintenance, these sets of data may share a
dictionary, since the dictionary items that describe the data are identical for
each department. These dictionary items, used by the ACCESS processor, apply
to all of the data files defined by that dictionary. This structure has the
advantage of requiring only one set of dictionary items for a set of similar
files.

Any number of data files sharing a dictionary may be opened simultaneously.
The general form for specification of a data file is:

dict-name{,data-name}

The first parameter, dict-name, always specifies the file dictionary. The
second parameter, data-name, specifies the data file and is required only when
multiple data files are using a common dictionary. If only one data file is
using a dictionary, then the form:

file-name

specifies the dictionary and the data file of the same name.

For example, the inventory file may be called:

INVENTORY

but the departmental data files, whose shared dictionary is called "DEPT",
require a further specification. For example:

DEPT ,ACCOUNTING or
DEPT ,MAINTENANCE

The dictionary of a file contains a "D-item" which defines the associated data
file. If the dictionary is not shared, the item-id of this pointer (file-name)
is the same as that of the dictionary; this is the default case. Therefore,
for example, the INVENTORY dictionary will contain an item, also called
"INVENTORY", which is the pointer to the associated INVENTORY data file. The
DEPT dictionary, on the other hand, will contain as many D-items as there are
departments; the item-ids of these pointers may be the department names.

6-5

88A00757A

In the following example, the statements required to create a shared
dictionary structure are:

1. To Create the dictionary of the file:

)CREATE-FILE DICT DEPT m1,sl [CR]

2. To create the data section for each data file:

)CREATE-FILE DATA DEPT,ACCOUNTING m2,s2 [CR]
)CREATE-FILE DATA DEPT,MAINTENANCE m2,s2 [CR]

User MD

DEPT

DEPT Dictionary

1 ACCOUNTING MAINTENANCE 1
--------1---------------------1-----------

I 1
1 1
1 1

Dataf1le ACCOUNTING Dataf1le MAINTENANCE

Data Data

File-name: DEPT ,ACCOUNTING DEPT ,MAINTENANCE

6-6

88A00757A

6.3 FILE STRUCTURE

6.3.1 BASE, MODULO, AND SEPARATION

The physical boundaries of the random-access file are defined by three
parameters: the BASE, the MODULO, and the SEPARATION. The selection of a
proper MODULO and SEPARATION is essential for an efficient file access method.
An algorithm for optimum selection is presented in the next section.

The physical boundaries of a file are stored in the associated dictionary's
File Definition Item. The item-id of this item is the file-name.

Files are defined at the time of creation by the following three parameters:

BASE

MODULO

the physical disk address (frame-identifier or FID) of the
start of a contiguous block of reserved disk space. Base is
automatically selected by the system.

the number of groups that the file space is logically divided
into (sometimes called "buckets"). Modulo is selected by the
user.

SEPARATION the number of sequential frames per group. Separation is
selected by the user.

The BASE, MODULO, and SEPARATION of the file are stored by the CREATE-FILE
processor (see Section 4.1) when the file is created. (These parameters should
never be altered in any way by the user.)

At the time of file creation, a contiguous block of disk space is reserved.
The size of this contiguous block is MODULO*SEPARATION, and is called the
"Primary Space" allocated to the file. This does not, however, define the
total space available for the file. As data is placed into each group, the
group may overflow by linking on additional disk frames, as needed. There is
no theoretical limit to this growth, other than the physical limit of disk
space available. In practice, however, a group should be kept as small as
possible. This may be achieved by the optimum selection of the file's MODULO.

6-7

88A00757A

An example showing a file's defined BASE, MODULO and SEPARATION:

Item "INVENTORY" in the MD:

INVENTORY

001 0
002 17324 ------- (base)
003 3 -------- (modulo)
004 1 ----------- (separation)

FID "Primary" space allocated to the INVENTORY
dictionary file.

17324 I

17325 I

17326

Item "INVENTORY" in the dictionary INVENTORY

INVENTORY

001 D
002 17573 ------- (base)
003 373 --------- (modulo)
004 1 ----------- (separation)

1st group

2nd group

3rd group

FlO "Primary" space allocated to the INVENTORY data
file.

17573 1st group

17574 2nd group

17946 --------------------------- last group

6-8

88A00757A

6.3.2 SELECTING MODULO AND SEPARATION

The effective file accessing and efficient disk utilization depend on proper
selection of modulo and separation.

Recall that "modulo" is the number of groups in a file and "separation" the
number of contiguous frames per group. A file is created by specifying its
modulo and separation parameters; the frames allocated by the system
(modulo*separation) are referred to as "primary" file-space. As data is placed
into the file, any group may overflow by attaching frames from the available
system space pool; this space is referred to as the "overflow" file-space.

l-lhen an item is to be added to a file, its item-id is "hashed" or converted
into a large number by a multiplication process. This number is then divided
by the modulo of the file. The remainder of this division is the "group" into
which the item will be placed. This method will produce an even distribution
of items in each group.

l-lhen an item must be retrieved or located, the same procedure is followed.

In the current file structure, a separation parameter of more than 1 should
only be used if the average item-size is greater than 1000 bytes. In this
case, a few disk reads are avoided when searching for (reading) an item in the
primary file-space. In all other cases, particularly in a multi-user
environment, the disk-head will almost certainly have moved during the time
between the moment that a process requests one frame of a group and the next;
therefore, whether the next linked frame of the group is contiguous (that is,
if the separation is greater than 1) or not makes only a marginal difference.

Selecting a proper modulo is extremely important, since the number of groups
directly affects the search and update time for an item in the group. The
modulo separation process will attempt to make the average group length between
1 and 2 frames. If the item-size is 250 bytes or greater, this rule must be
modified. Try to minimize as far as possible, the average number of frames in
a group. The average number of items in a group should be selected with the
average item-size in mind; the larger the iteIil-size, the smaller the nuober of
items in a group.

The number of disk reads, which is the factor that causes the most degradation
of overall system response, increases dramatically as the number of frames per
group increases. This is due to the fact that on the average, one-half of the
frames in a group have to be written back to the disk after an item update.
Thus, to update an item in a group, the system has to read every frame in the
group, and wri.te and verify one-half of them.

With this in mind, it is recommended that the following tables be used as a
guide in selecting modulo, and that separation should be 1. Note that the
discontinuities in the items/group columns occur because the selection of the
number is such that the bytes/group figures are close to integral multiples of
frames (500, 1000, 1500, etc.).

6-9

88A00757A

The last figure in Table 6-1, 0.8 Items/Group may be used for files with
relatively few items that are very large, such as Assembly or BASIC program
files. If the number of items in such a file is also very large, adjust the
Items/Group figure upwards" since the lower figure will result in a lot of
wasted disk space. Using the table, you can select an appropriate Items Group
value; knowing the expected number of items in the file then gives the
approximate modulo. The actual modulo must not be a multiple of 2 or 5; and
should preferably be a prime number. (When the approximate modulo is a
multiple of 2 or 5, you should round up; i.e., change 230 to 231.)

Table 6-1. Selecting Items/Group

If Average Then Average Items/Group And Average Bytes/
Item-Size is: Should Be: Group will be:

20 X 22.0 - 440
35 X 13.0 • 455
50 X 9.0 - 450
75 X 12.0 - 900

100 X 9.0 • 900
125 X 7.5 - 937
150 X 6.0 - 900
175 X 8.0 - 1400
200 X 7.0 - 1400
250 X 5.8 - 1450
300 X 6.4 - 1920
350 X 5.5 - 1925
400 X 4.8 • 1920
500 X 3.8 - 1900

1000 X 3.0 - 3000
5000 X 0.8 - 4000

Table 6-2. Examples of Computing Modulo

Average Item Approximate Items/Group Approximate
Size , of Items From Table 6-1 Modulo

20 850 / 22.0 39
40 8000 / 11.0 - 727

210 1800 / 7.0 - 257
4000 230 / 1.0 - 230

6-10

88A00757A

6 .4 ITEM STRUCTURE

6.4.1 PHYSICAL

Data within an item is stored as attributes, values, and subvalues, all of
which provide variable length storage. This section further describes the
p.hysical item format as stored on disk.

As briefly described previously (Sections 1.4.1 and 6.1), an item consists of
one or more variable length attributes, separated by attribute-marks. An
attribute mark is a character with a special PICK value of X'FE' (hexadecimal),
which prints out as A'. The first attribute in an item (attribute 0) is the
item-ide The item-id is preceded by a four-character hexadecimal count field
which specifies the total number of characters in the item including the count
field itself. For example, consider the following stored item:

002EITEMXALINE1ASMITH, JOHNA1234 MAIN STREETA

Attribute 0 is the item-id "ITEMX". It is preceded by "002E" which specifies
that there are X'002E' (decimal 46) bytes in the item. Attribute 1 of "ITEMX"
is "LINE 1". Attribute 2 is "SMITH,· JOHN". Attribute 3 is "1234 MAIN STREET".

An attribute, in turn, may consist of any number of variable length values
separated by value marks. A value mark has an eight bit PICK value of X'FD',
which prints as "]". Finally, a value may consist of any number of variable
length subvalues (also known as secondary values) separated by secondary value
marks. A secondary value mark has an eight bit value of X'FC', which prints as
"'"a For example, consider the following item:

ITEM-ID ATT1 ATT3 ATT4
1 1 1 1

_1 __ 1 _____ 1 ___ 1
ATT6 ATT7
1 1

_--1--:---- _I _

END OF ITEM
1
1

003AITEMYA05AAAAAAA123]456]78910AAABAS188\99\77\S5]4AXyZA_<---

--r-
1

--,
I

T
1

COUNT-FIELD ATT2 MULTIVALUES ATTS HULTI-SUBVALUES
(003A =: 58 decimal)

The absence of an attribute value is specified by placing an attribute mark
immediately following the attribute mark that indicates the end of the previous
attribute (i.e., 'AA'). This maintains the correct attribute sequence. The
"null" between two adjacent attribute marks may be thought of as representing
the absent attribute. Depending on the data structure, two adjacent value
marks may be permissible, indicating the absence of a multi value. Two adjacent
sub-multivalues are normally not permitted.

6-11

88A00757A

The mnemonics AM, VM, and SVM will be used hereafter to denote attribute mark,
value mark, and subvalue mark, respectively.

Within a group, there may be zero or more items whose item-id's hash to that
group. Such items are stored sequentially in the group, the sequence being
solely dependent on the order in which the items are created. Once created,
the order of the individual items in the group does not alter; as the item size
changes due to updates; the remaining data in the group is shif~ed left or
right to accommodate the new item.

After determining the group to which an item-id hashes, a linear search is
conducted to find the particular item-id that 1s being retrieved. The count
field is used to skip from one item to the next during this search. The
presense of an AM where the count field of the next item should be indicates
the END-oF-GROUP condition. An empty group therefore has an AM in the very
first data position, which is also the condition set up by the CREATE-FILE and
CLEAR-FILE processors (Sections 4.1 and 4.2).

In summary, the physical file item structure:

FIRST
ITEM

SECOND
ITEM

G R 0 U P
I
V

I
V

I COUNT I A'ITR 0 I 1\ I ATTRIBUTE I 1\ I
I FIELD I I AM I ONE I AM I

FIRST
VALUE

I FIRST
I SUBVALUE

I]
I VM

"- I
SVM I

I SECOND
I VALUE

I
V

I]
I VM

I
V

SECOND I "
SUBVALUE I SVM

6-12

I 1\

lAM

I]
I VM

I "
I SVM

LAST
ITEM

A'ITRIBUTE
LAST

LAST
VALUE

LAST
SUBVALUE

I 1\ I
I AJ.'1 I

88A00757A

6.4.2 LOGICAL

This section describes the item structure at the logical level. While it is
important to understand the physical item structure, in normal system usage
items are always accessed at a more abstract or higher level. Files are
identified by a file-name. Within a file, items are referenced by their
item-ide Attributes are referred to as lines (e.g.,.Attribute 1 is called
"line 1"). The first example in this section shows a sample COpy operation
where the item with the item-id ITEMX (in the file SAMPLE-FILE) is being copied
to the terminal. The item has three attributes (lines) of sample data.

Utility processors like COpy and the EDITOR deal at the file-item line level.
They make no logical distinction in definition between various lines in an item
other than their implied line numbers.

ACCESS processors, however, add an additional dimension through the use of the
dictionary. The dictionary informs ACCESS as to the nature of the information
stored for each of the attributes.

An item may be thought of as a "record" in computer terminology. It is more
effective to think of and use an item as a group of related records, however.
One tends to see a record as a collection of fields distributed horizontally,
having meaning by virture of their offsets from the initial byte of the record.

In the PICK system, a data-string has meaning by virtue of its attribute
number. Therefore, if you think of an item (record) as a vertical list of
attributes (fields) with attribute 1 on the first line, attribute 2 on the
second, etc., you get a clearer picture of the system's storage structure.

Further, the basic intent of the value mark is to delimit the contents within
each attribute, and the intent of the subvalue mark to delimit multiple entries
within each value.

It is therefore effective "to store transaction records relating, for example,
to a single vendor, within one item. Within a single attribute, the fields
from different records may be separated by value marks. Attributes used in
this manner are referred to as multi valued. Continuing the chain, a value
within an attribute may itself contain several values. These are called
subvalues and represent multiple subrecords within a given transaction record,
as in the case of a purchase order specifying several different parts. The
individual records remain identifiable because of the ordinal relationship of
the delimiting value marks. The ACCESS processor is then able to generate
reports from this storage structure.

6-13

88A00757A

The logical item format is identical for all processors. It is the
responsibility of the user to ascertain the further qualifications, if any, of
the various attributes. For example, the following item listing by COpy is
compared with the next listing produced by the LIST processor.

>COPY Sf_M~LE-F!LE !TE~~ (T) [CR]

ITEMX <--------------------------------- item-id
001 5207 <---------------------------------- Attribute 1
002 SMITH, JOHN <--------------------------- Attribute 2
003 1234 MAIN STREET <-------------------- Attribute 3

)LIST SAMPLE-FILE "ITEMX" ATTRIBUTE-1 NAME ADDRESS [CR]

PAGE 1 09: 28: 32 12 NOV 1982

SAMPLE-FILE •• ATTRIBUTE-1 •• NAME •••••••••••• ADDRESS ••.•••••••

ITEMX 04/03/82 SMITH, JOHN 1234 MAIN STREET

Here, the SAMPLE-FILE dictionary "defines·· attribute 2 (line 2) as NAl1E and
attribute 3 (line 3), as ADDRESS. This permits the user to reference his data
symbolically (through dictionaries). However, the actual data stored on file
is the same regardless of the processor accessing it.

Also note that the COpy of the item displays a value of 5207 for attribute 1
of the item, whereas) the ACCESS listing displays it as '·04/03/82 '., which is
the same data after conversion using the standard system date code.

6-14

88A00757A

6 .5 ITEM STORAGE AND THE HASHING ALGORITHM

The PICK system employs a computational group hashing technique which utilizes
the item-id and the file parameters that are defined at the time of file
creation. This technique generates the disk address (FlO) of the group in
which the item is stored. The hashing formula used by the system to store or
retrieve items is:

x • 0
FOR J • 1 TO LEN(ITEMID)

X • X*lO + SEQ(ITEMID(J,lJ)
NEXT J
GROUP - REM(X,MODULO)
FID - GROUP*SEPARATION + BASE

where:
ITEMID
LEN
ITEMID (J, 1 J
SEQ
REM
FID

contains the sequence of characters in the item-ide
function returns the number of characters in the item-ide
extracts the j-th character of the item-ide
function converts the above character to binary for addition.
function returns the remainder of the division of X by UODULO.
is the resulting disk address where the item may be found.

The item-id is treated as a variable length string of binary bytes; these
bytes are accumulated sequentially with each partial sum being multiplied by
10. Dividing this value by the positive integer HODOLO yields an unsigned
integer remainder within the range:

o <- Remainder < MODULO

This is then the group number (i.e-, 0, 1, 2, ••• , up to HODULO - 1) where the
item is to be stored. Multiplying by the SEPARATION and adding the BASE yields
the actual FlO of the first frame in the group.

After computing a FID to locate the specific group in which the item resides,
each item's item-id in the group must be compared for a "match". The frames
comprising a group are linked both forward and backward. This system facility
makes the group appear as a physically sequential string where items are stored
one immediately after another. In fact, any portion of an item may spill
across a physically frame boundary.

When a file is created, it is allocated a primary area of frames, the number
of frames being: HODULD * SEPARATION. Thus, this amount of contiguous disk
space is permanently allocated to the file. As the file grows, individual
groups may fill up. When this happens, an additional frame is added to the
group from a pool of available space. This additional frame is linked into the
group to increase the length of the logically sequential group. Additionally,
if a delete or update causes the group to shrink, any unused frames outside the
primary area are returned to the pool of available space.

6-15

88A00757A

6.6 FILE ITEM STRUCTURE

To summarize, all files consist of one or more items. Each is identified by a
keyword, the item-id, that can be located quickly through the hashing
algorithm. An entire item is, in reality, a string of attributes delimited by
the character" ". The first attribute, attribute zero, serves as the key and
functions as the item-ide

An important concept to remember is that dictionaries are also files. Their
structure follows the same pattern of item-id followed by attributes, like any
other file. Dictionaries achieve special significance by following a
relatively rigid structure, unlike data files which follow whatever structure
the data is suited to.

Dictionary files reserve certain characters for attribute 1. If one of these
reserved characters appear as attribute 1 in the item, then the item-id and the
following attributes in that item take on special significance in the
definition of the item and its purpose.

There are three classes of items that can appear in a dictionary file. These
classes are discussed in the following sections, with emphasis and lengthy
description of attribute definition items 7 and 8, conversion and correlative
factors.

All classes of items are listed in the Table 6-3.

6-16

88A00757A

Table 6-3. Summary of File and Attribute Definition Items

I File Synonym Attribute
Attributel Definition Definition Definition

Number I Name I Item Item I Item
---------+-------------+----------------+---------------+----------------------

I I I I
o lItem Iden- I Item-id I I

I tification I I I
---------+-------------+----------------+---------------+----------------------

liD/CODE ID,DX,DY,DC, I Q I A,S,X
I I DCX,DCY I I

---------+-------------+----------------+---------------+----------------------
2 IF/BASE or I Base FID of I Account-name I Attribute Mark Count,

lA/ACCOUNT or I file I I AMC
IA/AMC I I I

---------+-------------+----------------+---------------+----------------------
3 IF/MOD or I Modulo of file I Synonym I Tag or Heading

IS/FILE or I I file-name I
IS/NAME I I I

---------+-------------+----------------+---------------r----------------------
4 IF/SEP or I Separation of I Not used I Controlling/Dependent

IV/STRUC I file I I (C/O) structure codes
---------+-------------+----------------+---------------+----------------------

5 IL/RET I Retrieval lock code(s) I Reserved
---------~-------------+--------------------------------+----------------------

6 IL/UPD I Update lock code(s) I Reserved

---------+-------------+--------------------------------r----------------------
7 IV/CON I Reserved I Conversion

I I I specification
---------+-------------+--------------------------------+----------------------

8 IV/CORR I Reserved I Correlative
I I I specification

---------+-------------r--------------------------------+----------------------
9 Iv/TYP I Justification code

---------+-------------+---
10 lV/MAX I Maximum field length for item-id

---------+-------------+---
11 I Reserved

---------+---
12 I Reserved

---------+---
13 IF/REALLOC I Reallocation I Reserved

I I during file- I
I I restore I

6-17

88A00757A

6.6.1 FILE DEFINITION ITEMS (D)

File definition items are used to define lower-level dictionary files or data
files. They are created automatically by the CREATE-FILE verb (Section 4.1).

At the System Dictionary level, file definition items are used to define the
Accounting File and each user's ~~ster Dictionary. File definition items in
the MD are used to define the file level dictionaries, which in turn may
contain one or more file definition items which define the associated data
file(s). The item-id and each attribute of the file definition item contains
required and optional information which describes (and 'points to') the lower
level dictionary file or data file:

Attribute 0,
Item-id

Attribute 1

Attribute 2

Attribute 3

Attribute 4

The item-id of a file definition item is the file name
of the dictionary or data file being pointed to. If the
item is pointing to a data level file, then the item-id
must be the same as the name of the data level file.

This is the D/cODE attribute. It must contain one of
the fpllowing: D, DC, DX, DY, DCX, or DCY. where:

D identifies the file as a lower level dictionary file
or a data file. When the file is created, the
CREATE-FILE processor will place a D in this
attribute. One or two letters may follow the D to
indicate:

C the file contains binary data. (Used only by the
system POINTER-FILE and BASIC files.)

X do not save this file on filesave tapes. (The file
will not exist after a file restore.)

Y do not save the data in this file on filesave
tapes. (On a file restore, the file will be
recreated in an empty state.)

F/BASE is the base frame identification (FID). It must
contain the base FID (as a decimal number) of the defined
file.

F/tIDD is the modulo of the file being defined. The
modulo must be a decimal number.

F/sEP contains the separation (SEP) of the file being
defined. The separation must be a decimal number.

CAUTION: Attributes 2, 3, and 4 must never be altered. Doing so will
result in file corruption and possibly the system will crash.

6-18

88A00757A

\ \ ,

Attribute 5 LIRET is the retrieval lock code, a form of password
protection discussed in Section 7.2, System Security.

Attribute 6 L/UPD is the update lock code, a form of password
protection discussed in System Security.

Attribute 7 Reserved.

Attribute 8 Reserved.

Attribute 9 The V/TYP attribute contains the justification code
for values in the attribute ('L' or 'R' for flush left
or flush right).

Attribute 10 The v/~~ attribute contains the maximum length for
values in this attribute in decimal.

Attribute 11, 12 Reserved.

Attribute 13 Attribute 13 contains the new modulo and separation to be
used when the file is reallocated during the system
restore process, called file-restore. If the modulo andl
or separation of a file needs to be changed, the user
puts the new values in this attribute. The next file
restore will examine these values and reallocate the file
accordingly.

The following file definition item example defines the file level dictionary
for an INVENTORY data file.

This item has the item-id INVENTORY and is stored in the user's ~ID. The
example also shows the file definition item which defines the data area of the
INVENTORY file. This item also has an item-id of INVENTORY, but is stored in
the dictionary level file and points to the data level file.

6-19

88A00757A

The user should note that in a single level (dictionary) file, the file
definition item (e.g., INVENTORY) may be absent from the file dictionary or it
may be present and point to the dictionary itself.

T .. ". __ TA
..L~~l.Ll .'"

D/CODE
F /BASE
F/MOD
F/SEP
L/RET
L/UPD
V/CONV
V/CORR
V/TYP
V/MAX

INVENTORY (in MD)

001 0
002 17324
003 3
004 1
005
006
007
008
009 L
010 10

INVENTORY (in DICT INVENTORY)

001 0
002 17573
003 373
004 1
005
006
007
008
009 R
010 7

Note that the item "INVENTORY" in the Master Dictionary has definitions
relating to the items in the dictionary of the INVENTORY file (such as V/TYP
of "L" and V/MAX of "10"; the item "INVENTORY" in the INVENTORY dictionary has
definitions relating to the items in the data section, such as V/TYP of "R" and
V/MAX of "7".

6-20

88A00757A

6.6.2 FILE SYNONYM DEFINITION ITEMS (Q)

When an item in a dictionary file is used to define another "lower level" file,
the item-id, or attribute 0, of the item becomes the name of the file being
defined. It is sometimes convenient to give a file more than one name, for
example, giving the file "INVENTORY" the name "INV" for short. File synonyms
can also be useful in a l1aster Dictionary to alter the command language
terminology and/or create abbreviations. The operating system makes this
possible with the File Synonym Definition item. Aside from giving a file an
alternate name within the same user account, the file synonym definition item
can also point "outside" its account and reference files in other accounts,
provided security restrictions are met. The item-id of the synonym definition
item is the new version of the name. The "real" name is placed in attribute 3.
The following is a summary of the attributes in a file synonym definition item.

Attribute 0,
The Item-Id

Attribute 1

Attribute 2

~ttribute 3

Attribute 4

Attribute 5

Attribute 6

Attribute 7

Attribute 8

The item-id becomes the synonym name of the file being
defined. If the synonym item is being used to point to a
file in another account, the item-id is the "real" name
of the file.

This is the D/CODE attribute. It must contain a "Q".

The S/ACCOUNT attribute contains the account name in
which the file "pointed to" by the Q-Item is located.
This can be used to set up access to a file in another
account. In this case, the name for both the original
file, the D-Item, and the new synonym, the Q-Item are the
same. Thus, the ability of a Q-Item to become a synonym
is not used, only its ability to "point" to a file in
another account. Access is still controlled by the
security system. If attribute 2 is null, the file being
pointed to is assumed to be in the same account.

The S/FILE attribute contains the name of the file as
defined by the D-Item. When referring to a file by its
Q-Item name, the system will search back to the original
file definition item for the base frame, modulo, separa
tion and other attributes for purposes of file access.
If this attribute is null, the synonym file is the ~m.

Not used.

The L/RET attribute may contain retrieval lock codes.

The L/UPD attribute may contain update lock codes.

Reserved.

Reserved.

6-21

Attribute 9

Attribute 10

Attribute 11

Attribute 12

Attribute 13

88A00757A

This is the V/TYP attribute. It contains the
justification code. V/TYP defaults to 'L' if it is null.

This is the V/MAX attribute. It contains the maximum
length in decimal for values in the attribute being
defined. V/MAX defaults to to if it is null.

Reserved.

Reserved.

Reserved.

A synonym file definition item is required in order to access a file in
another account. In addition, there are many cases where it is convenie~t to
reference a file within the same account by more than one name. In this case
also, a Q-Item must be created with attribute 2 of the Q-Item null. This is a
better method of creating a synonym file pointer than by creating duplicate
D-pointers.

A Q-Item to another user's Master Dictionary should have the user's
account-name in attribute 2, and a null attribute 3. This allows faster access
than if the file-name "MOil is placed in attribute 3.

Q-Items are created by using the EDITOR. The items are edited into the Master
Dictionary using the form:

EDIT MD item-id

where item-id is the synonym name being defined.

There is also a standard PROC (SET-FILE) that creates a temporary Q-Item called
QFILE) which may be used to set up a pointer quickly. This PROC is described in
the Utilities manual.

The following example illustrates a sample INVENTORY file synonym definition
item which allows the user access to the file in the account named SMITH; the
user can reference this file via the synonym file name INV. It also shows
sample Q-Items that point to another user's Master Dictionary and to a file
within the same account.

(Item-Id)

D/CODE
S/ACCOUNT
S/FlLE
F/SEP

lID

001 Q
002
003
004

INV

001 Q
002 SMITH
003 INVENTORY
004

6-22

USER3

001 Q
002 SMITH
003
004

SAMPLE

001 Q
002
003 SA..~LE-FILE
004

88A00757A

These Q-items are in the i1aster Dictionary of user "JONES", Item "INV" is a
synonym pointer to the file "INVENTORY", which is defined as a file in the
iotas ter Dictionary of user "SMITH". Note that the item MD must be "'001 Q'" and
that the Q-pointers to other MDs do not have MD ... in attribute 3. Item "USER3"
refers to the Master Dictionary of user "SMITH", since attribute 3 is null.
Item "SAMPLE" is a synonym to the file "SAMPLE-FILE", defined in the Master
Dictionary of JONES, since attribute 2 is null.

An example, using the EDITOR to create the Q-Item called "INV":

)EDIT MD INV (CR]
NEW ITEM
TOP
. I [CR]
001 Q [CR]
002 SMITH [CR]
003 INVENTORY (CR]
004. [CR]
005. [CR]
006. (CR]
007. [CR]
008. [CR]
009 L [CR]
010 15 [CR]
011 [CR]
TOP
• R 99 /. / / [CR]
004
005
006
007
008
EOI 011
.FI [CR]

"'INV'" FILED.

Note that null attributes may not be filled with blanks. Since a null input
(carriage return or line feed only) will cause the EDITOR to exit the input
environment, it is necessary to place a temporary character in the "null"
attributes and later replace that character with a null via the REPLACE (R)
command. (See the EDITOR manual for further detail.)

6-23

88A00757A

6.6.2.1 Q-Pointer Flexibility

If attributes 2 and 3 of the file synonym definition item are null, the
Q-pointer is a pointer to the file in which it is stored. This case has two
applications. If you type ED MD MD, you will find that the MD item contains
only a Q in attribute 1. This is sufficient and any other definition is less
efficient. Specifically, the MD entry should not be a D-pointer. The same
follows for ~{D or the account name entry.

The second use is in the definition of a dictionary-only file. If you want to
reference the file without typing 'MD' each time, an entry with the same name
as the D-pointer to the dictionary in the Master Dictionary is inserted in the
file dictionary whose only content is a Q.

An example of the uses of Q as the only attribute:

In the Master Dictionary

lID
001 Q

File reference to MD.
Reference back to 'where you are now'.

In the dictionary of the file FILENAME

FILENAME

001 Q

The name referenced by the name FILENAME
in the Mas ter Dictionary.
Reference back to the dictionary itself.

The name of the Q-pointer is discarded as soon as the first D-pointer is
encountered. That is, a reference to QFILENAME which points to the file
FILENAME will look for the D-pointer FILENAME in the dictionary of FILEN~m.
It will not look for a pointer by the name of QFILENAME. A partial exception
to this is in ACCESS which will attempt to obtain the conversion, length, and
justification from the Q-pointer.

If the Q-pointer does not contain them, then the ACCESS compiler will search
the D-pointer for them. If the D-pointer does not contain them, then the
conversion will default to null, the justification to 'L', and the field length
to 9 bytes.

It is, therefore, possible to specify various formats for the item-id field
for purposes of sorting and listing.

6-24

88A00757A

6.6.2.2 Account Specification

Attribute 2 of any Q-pointer references an account name. If attribute 2 is
null, then the Q-pointer references a file in the account onto which you are
logged. If attribute 2 is not null, the file-open processor will search the
system dictionary for a definition of the account name.

If the processor does not find a D-pointer in the system dictionary, the
system will respond with the following message:

[201] 'Contents of attribute 2 of QFILENAME' IS NOT A FILE N~1E.

It is possible to reference files in the account onto which you are logged by
putting the name of the D-pointer to the account in attribute 2 of the
Q-pointer definition, but this will cause the system unnecessary work.

To reference the Master Dictionary of another account, the name of the
D-pointer to the account (account-name) is placed in attribute 2 and a null in
attribute 3.

A file or an account may be protected from access. (See Section 7.2, System
Security.) If a user creates a Q-pointer to a file or an account which he is
not authorized to access, the system will deny him that capability. An error
message stating that the file or account is protected will be returned.

6.6.2.3 File Specification

Attribute 3 contains the name of the file referenced by the Q-pointer. If
attribute 3 is null, then the default is to the Master Dictionary specified by
attribute 2.

In general, the file name referenced in attribute 3 of the Q-pointer
definition must be a D-pointer in the rlaster Dictionary of the account
referenced in attribute 2.

6-25

I
88A00757A

6.6.2.4 Extensions to File-name Reference

The contents of attribute 3 of the Q-pointer definition may contain file-name,
data-name. In this case, the Q-pointer will reference the data in data-name
only, and will ignore the other data files referenced in the dictionary of
file-name. The result is a considerable simplification of the BASIC programs
and PROCs which reference the various data sets in a multiple data file
structure.

The following example shows a Q-pointer that will reference the data file
SCREW-DRIVERS in the dictionary of HARDWARE in the account INVENTORY:

QFILENAME
001 Q
002 INVENTORY
003 HARDWARE,SCREW-DRIVERS

A file dictionary does not need to reference a data file with the same name as
the dictionary. It may be convenient to create the file as a dictionary-only
file which contains a Q-pointer that points to itself. The dictionary may then
be referenced without typing 'MD', which is useful if there is to be extensive
developaent of data definition items. It is also convenient if there is to be
several data-level files, since each may be given a recognizable name.

6-26

\

88A00757A

6.6.3 ATTRIBUTE DEFINITION ITEMS (A)

A PICK data file consists of items identified by item-id, followed by 1-n (or
zero) attributes. The purpose of the Attribute Definition Item in the file
dictionary is to define the nature of the data within a particular attribute
for use by ACCESS processors. Each Attribute Definition Item has an Attribute
r~rk Count (AMC) which is a pointer to the data field (data item attribute) it
is defining. For example, an AMC of 5 means the Attribute Definition Item
"defines" atribute 5 of the data items. An attribute definition item defines
the attribute specified by AMC, for all items in the related data file(s). In
addition, the Attribute Definition Item provides a name for an attribute. For
example, the user could refer to "LIST-PRICE" rather than "Attribute 14".
Attribute Definition Items are constructed as follows:

Attribute 0,
Item-Id

Attribute 1
(D/CODE)

Attribute 2
(A/AliC)

The item-id is the name desired for the defined attribute.
attribute. This name would be used in ACCESS input
statements to reference the defined attribute.

Within a dictionary file, an item that has the character A
in attribute 1 indicates attribute definition. It means that
the following attributes define the nature of the data in
the file or files the dictionary points to. An item with S
in attribute 1 instead of an A indicates synonym attribute
definition. This means the attribute is a duplicate of
another, but is using a different symbolic name.

An item with X in attribute 1 instead of an A means to
skip this attribute for the time being. The number
position of this attribute will be held open so that an
attribute may be inserted here at a later time.
Meanwhile, the number continuity of attributes beyond
this attribute will be kept so that they may be listed
in ACCESS retrievals. However, when you do not wish
to skip this attribute, the X must be changed to A.

Attribute 2 is the attribute mark count, or AMC
attribute. It refers to the number of the attribute in
the data file to which the attribute definition item
refers. Remember, the item-id gives the mnemonic label
the user will refer to the attribute by; this is the
actual numerical pointer the system will use to identify
the attribute. Since the item-id is attribute ° for
every item, attributes l-n are logically referred to by
the AMC of 1-n. If the AUC is 0, then the item-id is
being defined.

A "pseudo" AMC which is higher than the actual number of
attributes In the file being referenced can be used to
manage data that is computed, but not really stored in
the file.

6-27

Attribute 2
(Cont)

Attribute 3
(S/NAME)

Attribute 4
(V/STRUC)

88A00757A

For instance, the attribute "DEALER PRICE" might not be
stored in the file, but would be computed by taking the
real attribute "AVERAGE COST" and multiplying it by the
real attribute "DEALER-MARKUP". Once defined, this
"virtual data," which is never really stored, becomes as
"real" and useful for the user as any stored data. In
addition, an !MC of 9998 is used to access the current
item counter (item sequence number), and an AMe of 9999
is used to access the size or count field of the item.

Attribute 3 contains an optional tag or heading label
that is used for LIST and SORT statement printouts. To
save keystrokes, the item-id of the attribute definition
item, which is normally the label, might be "PH".
Attribute 3 could contain "INTERNAL INVENTORY PART
NUMBER CODE" to make the printout more readable for the
occasional user. The heading can be defined as having
more than one line. If this attribute is null, the item
id will be used for the heading.

To specify tags for multiple column listings, mUltiple
headings separated by a value mark, Control-], should be
stored in this attribute.

Attribute 4 contains the associative structure code.
This code can be used to identify "controlling" and
"dependent" attributes. This relationship is used
primarily in printout formatting. For instance, if the
controlling attribute is suppressed during printout, the
dependent attributes will be suppressed too. This
relationship extends to attributes containing multiple
values. If the 28th value of a controlling attribute is
suppressed, the 28th values of each dependent attribute
will be suppressed. Subvalues contained within values
are controlled according to the value in which they are
contained. A controlling attribute can control many
dependents; a dependent attribute can only have one
controller.

When defining a controlling attribute and the one or more
dependent attributes it controls, the format is "CIt
followed by the attribute mark count or "AMe" of each of
the dependent attributes (e.g., C;amc;amc; etc.).

When defining dependent attributes, the code Djamc is
used in attribute 4 of the definition item of each depen
dent attribute to identify the one attribute that it is
controlled by. (The AMC is the attribute mark count of
the controlling attribute.) See the ACCESS manual for
more detailed information.

6-28

(

(

Attributes 5 and 6

Attributes 7 and 8
(V/CONV and V/CORR)

Attribute 9
(V/TYP)

Attribute 10
(V/!1AX)

88A00757A

Unused.

The conversion and correlative attributes aFe
described in Section 6.7, which follows.

Attribute 9 contains the output justification
specifications for the line printer or terminal screen
(flush left or right) which are also taken into
consideration during sorting. This defines how the
data for the attribute being defined will print in
reports and listings that are generated. This may be
either "L", "R", "T" or "UH. V/TYP defaults to "L"
if it is null.

L is used to specify left-justified text.
If the data for this attribute exceeds the
length specified (in attribute 10), then the
data will be folded at the end of the field
(column) and excess characters will be
printed on the next line. L also means that
all sorts will be performed in left-to-right
sequence.

R is used to specify right-justified output and
right-justified numeric sorts (even for
alphanumeric fields).

T will cause output to be left-justified.
If the data exceeds the specified maximum
length, it will be folded at the last blank
space in the field, and the remaining
characters will be placed on the next line.

U will cause output to be left-justified, but
there will be no folding on overflow. If
overflow occurs, excess characters will run
into the next column.

Attribute 10 contains the maximum length of values for
the attribute in decimal. This maximum is for
columnar printout purposes and does not represent a
limitation on the length of the stored data. If you
uish to suppress the listing of a control-break field
on detail lines, a zero should be entered. V/HAX
defaults to 10 if it is null.

Attributes 11-14 Reserved for system use.

6-29

88A00757A

Examples of attribute definition items which define different fields for an
INVENTORY file:

(Item-Id) QUANTITY LIST-PRICE EXTENDED-PRICE

D/CODE 001 A 001 A 001 A
A/lUC 002 4 002 5 002 300
S/NAME 003 003 LIST PRICE 003
V/STRUC 004 004 004

005 005 005
006 006 006

V/CONV 007 007 l1R2$, 007 MR2$,
V/CORR 008 008 008 A;4*5
V/TYP 009 R 009 R 009 R
V/MAX 010 7 010 8 010 10

6-30

88A00757A

6.7 CONVERSION AND CORRELATIVE CODES

Within the PICK operating system, data can be stored on disk in a variety of
ways. For instance, a date is stored as a four-byte code; time is stored as

• the number of seconds since midnight. Also, data can be stored in one format,
but can be converted in a variety of ways for output. A check register might
store check amounts in decimal form, but a printout would include a leading
dollar sign. The actual check might require a number of leading asterisks. A
summary financial report might use that data base, but round up or down to even
the dollar amounts. Both attributes 7 and 8 provide the ability to convert
from a stored format to a processing format.

Using these features, data can be altered from a stored format to an
intermediate format for computation, and then to another format for output.
Since these functions operate on an attribute-by-attribute basis, different
data within one file can be manipulated with complete flexibility.

Lines 7 and 8 of dictionary attribute definition items define the conversion
and correlative codes. Conversion codes appear on line 7, correlative codes
appear on line 8. Processing codes may be specified as either Correlative
codes or Conversion codes depending upon when the user wants the codes to be
applied to the data.

During execution of an ACCESS sentence, the data in the items being listed is
represented in three different formats. The first is the "stored" format,
which is the format of the attributes exactly as they appear in the items in
the file. Whenever a piece of data is retrieved from a file it is picked up in
stored format.

The Correlative code, if any, may then be applied to the data, converting it
to "intermediate" format.

The intermediate format is used whenever:

1. The attribute name is part of a sort key.

2. The data is compared to a selection criterion.

3. The attribute name has a print limiter.

4. The attribute name has a TOTAL or GRAND-TOTAL connective.

5. The data produces a control-break.

6. The data is printed·(except on break lines) •

6-31

88A00757A

Conversion codes are applied as output conversions to the intermediate format
data whenever the data is printed, including break lines. This transforms the
data from "intermediate" format to "external" format. The data is printed in
external format.

If a Conversion code is specified for an attribute name which is followed by a
selection criterion, the conversion is applied as an input conversion to the
values in the ACCESS sentence to form the selection criterion value.

There may be more than one conversion or correlative code. If so, they are
stored as multivalues separated by value marks. A value mark is a right
bracket (l) which may be initiated by Control] (ASCII 253).

Conversions may be written in an attribute definition item for the purpose of
acting upon the data in that item. (Date conversions, for example.) They may
be written in another attribute definition item which has the same AMC as an
attribute which contains data to be used in the conversion or correlative.
This is typical of translate conversions that use the value of the attribute as
the item-id in another file.

A conversion may also be used as part of an F or A correlative in an attribute
definition item which has no value of its own. In this case, the values of
other attributes are used in calculations by referencing their AMCs. Also, when
this is done, the attribute definition item with the correlative should have a
dummy AMC on line 2. (99 in the example below.)

5 SEC CSZ
001 A 001 A 001 A
002 5 002 5 002 99
003 ZIP 003 SEC 003 CSZ
004 004 004
005 005 005
006 006 006
007 007 007
008 008 Tl,3 008 F3;", I, ; : j 4 ;" "; 5
009 R 009 R 009 L
010 5 010 3 010 30

In the above example, the ZIP code is stored in attribute 5. Another
attribute, SEC, is a synonym of 5 (has the same AMC) and extracts the first
three digits of attribute 5 for the postal sectional center. Yet another
attribute, CSZ, concatenates attribute 3, 4, and 5 with a comma and space
between 3 and 4 and a space between 4 and 5. (3 is city, 4 is state and 5 is
zip.)

6-32

88A00757A

Note that CSZ has a "dummy" attribute number of "99". Although CSZ is an
attribute definition item, it never has a value of its own. Its value is
derived from other attributes (3, 4, 5) ~~hich do have values.

General guidelines in the use of conversion, correlative codes:

1. If there are both a correlative and a conversion, the correlative is
processed first.

2. Correlatives convert the stored data to a processing format and conversions
convert processing format to output, or external format. In some cases,
the internal format and the processing format is the same (dates for
example), in which case, the conversions convert the internal format
directly to the external format. Likewise, sometimes the processing format
is the same as the output format and no conversion is required.

3. Be aware that SELECTS and SSELECTS will ignore line 7, but will act upon
the results of conversions and correlatives on line 8.

4. As a general rule, date and time conversions should be on line 7 and all
other processing codes on line 8.

5. An F or A correlative may include other conversions or correlatives as
elements.

6-33

88A00757A

The following is an overview of the correlative and conversion codes with a
brief description of each.

Code

A

C

D

F

G

Description

ARITHMETIC or ALGEBRAIC. Allows required mathematical steps
such as addition, subtraction, multiplication and division to
be performed in algebraic form. For example:

A("lO"+5)*25

adds 10 to value of attribute 5 then multiplies that total by
the value of attribute 25.

CONCATENATE. Used to join attribute values and/or constants
into a string. For example:

C10;" "j11

takes the value of attribute 10, 2 spaces, and the value of
attribute 11 and makes them into a string.

DATE. Converts dates from internal format to external format.

FUNCTION or STACK PROCESSOR. Invokes the function processor
which allows manipulation and arithmetical processing of
attribute values and constants.

GROUP. Used as a correlative to extract one or more fields
from a multiple field attribute value. For example:

G2*1

would extract one field of data following the second *
contained in the value of the attribute. A G correlative may
also be used as part of a F correlative to extract fields from
another attribute.

Fj6(Gl*2)

would extract two fields following the first * in attribute 6
even though the correlative itself was in an attribute other
than 6.

6-34

L

MC

ML

MR

MT

MX

P

R

S

88A00757A

Description

LENGTH. Used to place constraints on what kind of data will be
returned, based on data length. For example:

LO

returns the number of characters in the attribute value.

L25

returns the attribute value if it is 25 characters long.

L15,25

returns the attribute value if it is between 15 and 25
(inclusive) characters in length.

MASK CHARACTER. Used to convert an attribute value to all
upper and lowercase letters Qr to extract all numeric or all
alphabetic or all non-numeric characters from an attribute
value.

t1ASK DECIMAL. Used to format and scale numbers and dollar
amounts; left-justified.

MASK DECIl!AL. Same as ML only right-justified.

MASK TIME. Used to convert internal time of day to external
format.

MASK HEXADECIMAL. Causes ASCII data in attribute to be
printed as its hexadecimal equivalent.

PATTERN MATCH. Used to restrict return to only ~hose values
which match the specified pattern.

RANGE. Returns only items whose attribute values fall within
a specified range.

SUBSTITUTION. Can be used to substitute the value of another
attribute if the value is not null or zero, and can substitute
a specified value if the value is equal to null or zero.

6-35

Code

T

Tfile

u

88A007S7A

Description

TEXT EXTRACTION. Used to extract only characters in a certain
position in a value. For example:

T3,S

will return 5 characters starting with the third.

TRANSLATE. Used to convert data by translating it from
another file. For example:

TINV;C;;4

If the above were used as a conversion or correlative in
attribute 6, it would use the value of attribute 6 as the
item-id in the INV file and return the value of attribute 4
in that item. If attribute 6 were multi valued, it would look
in INV for item-ids with those values and return the value of
attribute 4 from each of them.

USER-DEFINED. Causes an assembly language routine to be
performed.

6-36

88A00757A

6.7.1 THE ARITHMETIC CODE (A)

The Arithmetic code 'A' is designed to perform the same function as the F-code,
but its format is both simpler to write and easier to understand than the
format of the F-code. The general form of the A-code is:

A(expression)

~ihere an expression is made up of operands, functions and operators, as
described below.

6.7.1.1 Operands

1. AMC Numbers - An attribute Hark Count (AMe) is specified by putting the
number in the A-code, just like in the F-code. An AMC of 0 (zero) will
indicate the Item-Id. The special ~~Cs 9999 and 9998 retain their original
functions and can be legally inserted into an A-code. An AMC can
optionally be followed by the letter "R", which indicates repetition of the
value just like in F-codes.

2. AMC Names - An attribute name can be used instead of an AMC in an A-code,
as long as the name exists in the dictionary of the file being listed. The
dictionary name is used as an argument to the "N" function of the A-code.
The format of the "N" function is N(attribute-name). For example, if the
name INVOICE-AMOUNT exists in the dictionary, the corresponding "N"
function would be N(INVOICE-AMOUNT).

The operation of the "N" function is:

The attribute-name is referenced in the dictionary of the file and an error
message is printed if it is not found. The AMC of the dictionary item
(attribute 2) is used as the AMC in the A-code.

Any correlatives existing in attribute 8 of the dictionary item, whether
F-codes or A-codes, will be used in the A-code. If an A-code or F-code exists
in attribute 8 of the dictionary item, the AMC from attribute 2 is ignored.

Note that an A-code can call another A-code by name and that the second A-code
can specify a third A-code, and so on. However, no attempt is made to assure
that an A-code does not call itself. If this is attempted, or any time that
"nested" calls are made more than seven levels deep, the ACCESS compiler will
abort with a RTN STACK FULL message.

3. Literal Numbers - A number is specified by enclosing the number in quotes,
either single (') or double ("). For example, the number 10 could be
specified by "10" or '10'. Any integer, whether positive, negative or zero
is legal inside quotes.

6-37

88A007S7A

4. Literal Strings - Any literal string, enclosed 1n single quotes (') or
double quotes C') is a legal operand.

5. Special Operands - The A-code has several special system operands which
are the same as special F-code operands (Section 6.7.4.1).

Nt is the item counter
NV is the value counter
NS is the subvalue counter
ND is the detail-line counter
NB is the break level counter
LPV is the load previous value
D is the system date (in internal format)
T is the system time (in internal format)

These special operands can be used exactly like an AMC, attribute name or
literal. Also, any of the above legal operands preceded by a minus sign,
(-) is a legal operand.

6.7.1.2 Functions

1. Remainder Function: "R n
- The remainder function takes two expressions as

operands and returns the remainder of the first operand divided by the
second. The format of the "Rn function is R(expression,expression). For
example, R(2, "5") returns the remainder when the value of attribute 2 is
divided by 5.

2. Summation Function: tIS"~ - The summation function takes one expression as an
operand and works the same way as the S operator in the F-codes. For
example, S(4) will sum any multi values of attribute 4. The summation
operator may appear anywhere in an A-code. A maximum of two summations
is allowed.

3. Substring Function - A subtring may be specified by using square brackets.
The numbers inside the brackets may be literal numbers, AMes, or entire
expressions. For example, 1 ["2" " 3'] means the 3-character long string
starting at position 2 of attribute 1. The expression 1["1",'99'*(2-4)]
will evaluate to the value of attribute one, unless attributes two and four
are different, in which case the expression evaluates to a null string.

6-38

!
88A00757A

6.7.1.3 Operators

1. Arithmetic Operators - The operators +, -, * and/ denote addition,
subtraction, mUltiplication and division, respectively. All of the
arithmetic operators take two expressions as operands, and return the sum,
difference, product or quotient of the two operands. It is important to
note that division in an A-code always returns an integer result, just like
in F-codes, so that "3"/"2" evaluates to 1, not 1.5.

2. Relational Operators - The relational operators >, <, >-, <-, ., and #
denote the logical relations greater than, less than, greater than or equal
to, less than or equal to, equal and not equal, respectively. Each of the
relational operators takes two expressions as operands, and evaluates to
1 (TRUE) or 0 (FALSE) depending whether or not the indicated relation holds
between the two operands. For instance, "1">-"2" evaluates to 0 (FALSE)
because the number 1 is not greater than or equal to the number 2.
Expressions involving these and other A-code operators are written much
like BASIC expressions.

NOTE: The precedence of the operators is important to keep in Qind when
writing an A-code. In the absence of parentheses to indicate the order
in which operators are to be applied, multiplication and division
have greater precedence than addition and subtraction, ~<lhich in turn
have greater precedence than the relational operators. If two operators
have the same precedence, they are applied from left to right. For
example, 1*2+3<4 will evaluate as «1*2)+3)<4, but 1>-2-3/4 will
evaluate as 1>-(2-(3/4». Also, 1+2-3 will evaluate as (1+2)-3, and
4/5*6 will evaluate as (4/5)*6. 20 levels of parentheses nesting
are allowed in A-codes.

A-Code operator examples:

A-Code Meaning

Al+2 Adds attributes 1 and 2.

An 10"*3 Multiplies the value of attribute 3 by 10.

AS(4+"25") Adds 25 to each value of attribute 4, then sums
the multi values.

AN (INV-AMT)-N (BAL. DUE) Subtracts the value of the attribute defined by
BAL.DUE in the dictionary from the value of the
attribute defined by INV-k~.

AN(SS-NUM) ('4','2'] Returns the 4th and 5th digits of the attribute
specified by SS-NUM.

6-39

88A00757A

6.7.2 THE CONCATEBAXION CODE (C)

The concatenation code 'c' provides the facility to join two or more strings of
data into one string. For example, names are often stored with last name in
one attribute and first name in another attribute so that sorting may be done
on the last name. However, to address a letter, you would want the name to
appear as John Doe and this is done with concatenation.

The general form of the 'c' code is:

C x op x {op x op ••• } or C op x op {x op x ••• }

where:

C

x

op

is the code name.

is the character to be inserted between the concatenated
attributes and/or literals. A semicolon (;) is a reserved
character that means no separation character is to be used.
Any non-numeric character (except a system delimiter or an
asterisk) is valid, including a blank.

is an attribute mark count (amc) or any string enclosed in
single quotes ('), double quotes (") or backslashes (~), or
is an asterisk (*) which specifies the last generated value
(from a previous conversion or correlative operation).

Concatenation may be accomplished with the 'F' code, which will be described
later, or with the 'c' code. The C code may be used either as a correlative or
as a conversion. Data will sort correctly if it is a correlative and used as
the sort key, but will be ignored as a sort key if in line 7.

Attributes which create a string or value by concatenating with the C code
must have an attribute mark count (AMe) of 0 (zero). Attributes containing a C
code have no value of their own, but are given a value as a result of the C
code action.

The strings, or elements, which are joined together may be values from
attributes specified by using the attribute numbers, or specified literals
enclosed in single quotes ('), double quotes (tI), or backslashes (~).

The elements in the resulting string may be separated by any non-numeric
character including a blank, but excluding a semicolon (j) an asterisk (*), or
a system delimiter. The semicolon is used to show tha there is to be no
separation. If a semicolon is to be in the resulting string, it must be
enclosed in quotes as a literal.

The asterisk is reserved to indicate an element consisting of the value
generated by a preceding conversion or correlative.

6-40

Examples of 'c' code use:

1. ATTRIBUTE VALUES

014 Sr-tITH
015 JOHN H.

C CODE

C; "NAME": 14,15

2. ATTRIBUTE VALUES

001 DIME
002 DOZEN

C CODE

C;1/2

3. ATTRIBUTE VALUES

001 DOE
002 t1ARY JANE
003 121 MAIN ST
004 TULSA
005 OK
006 74101

C CODE

C2 1
C1,2
C1;',' 2
C1;', ';2
C2 l]C* 1
C2 1 1
C; "NAME:"; 1,2
C "NAME: "; 1; ", "; 2

88A00757A

RES UL TING OUTPUT

NAME:SMITH,JOHN H.

RESULTING OUTPUT

DIME/DOZEN

RESULTING OUTPUT

MARY JANE DOE
DOE,MARY JANE
DOE, MARY JANE
DOE, MARY JANE
I~Y JANE DOE DOE
MARY JANE DOE DOE
NAME:DOE, MARY JANE
NAME: DOE, MARY JANE

6-41

88A00757A

6.7.3 THE DATE CODE (D)

The date code '0' provides the facility for converting dates to or from a
compact internal format. Dates may be stored in items as numbers, and may be
printed in any of several different formats in a listing, by using the '0'
(Date conversion) code. This allows you to store dates with fewer bytes of
disk space and to perform mathematical calculations involving stored dates.

The internal format of any date is the integer number of days between that
date and the zero date, December 31, 1967. Dates before 12/31/67 are stored as
negative numbers; dates after 12/31/67 are stored as positive numbers. The
following table of dates compares both internal and external (listing) format:

INTERNAL FORMAT
-100
-10
-1
o
1

10
100

1000
10000

EXTERNAL (LISTING) FORMAT
22 SEP 1967
21 DEC 1967
30 DEC 1967
31 DEC 1967
01 JAN 1968
10 JAN 1968
09 APR 1968
26 SEP 1970
18 MAY 1995

Some external formats which may be specified for the '0' code are given below:

D CODE INTERNAL FORMAT EXTERNAL (LISTING) FORMAT
D 5744 22 SEP 1983
D/ 5744 09/22/1983
0- 5744 09-22-1983
DO 5744 22 SEP
DO/ 5744 09/22
02* 5744 09*22*83
0%1 OUEi.5744 DUE%22 SEP 1983
D%l/ BAL%5744 BAL%9/22/1983
0111- CHGII5744 CHGI09-22-1983
00$1 SALE$5744 SALES$22 SEP
DO SALE$5744 SALE$5744
D4- 5744 09-22-1983
DY 5744 1983 (4-digit year)
D2Y 5744 83 (2-digit year)
DQ 5744 3 (3rd quarter)
DD 5744 22 (22nd day of month)
DM 5744 9 (9th month)
DMA 5744 SEPTEMBER
DJ 5744 265 (265th day of year)
DW 5744 4 (4th day of week)
DWA 5744 THURSDAY
DI 9/22/83 5744 (reverse conversion)
D1]D2 9/22/82 22 SEP 83 (multi value conversion)

6-42

88A00757A

The 'D' code has the following general form:

D{n}{*m}{s}

where:
D is the code name

n is an optional single digit number which specifies the number of digits
to occur in the year on output. If 'n' is 0, no year will appear in the
date. n - 0, 1, 2, 3, or 4 is valid; if 'n' is omitted, n - 4 is
assumed.

* Stands for any single non-numeric character which specifies the
delimiter between fields for group extraction. (* may not be a system
delimiter.)

m is a single digit number that must accompany * (if * is specified).
m specifies the number of fields to skip for group extraction.

s stands for either any single non-numeric character that may be
specified to separate the day, month and year on output, or a special
sub-code, either M, D, Y or Q. If's' is specified, the date will be
in the format 12-31-1967. If's' is not specified, the date will be in
the format 31 DEC 1967. If a sub-code is specified, then only the
number of the quarter, year, month or day is listed.

Note the use of the '*m' option which will perform a Group Extration before
applying the date conversion. (See GROUP EXTRACTION CODE 'G'.) A special note
for using the 'D' code on input: if no year is specified, the current year
~11 be used. If only two digits are specified for the year, then years
entered as 30 to 99 will be stored as 1930 through 1999, and years entered as
00 to 29 will be stored as 2000 through 2029. Additional formats for the D
code may be used as shown in the following Date Conversion chart.

D Code

D
D-
DO (D zero)
DO- (D zero -)
DD
DI
DJ
DM
D~fA

DQ
DW
D~lA

DY

Conversion Format

DD MMM YYYY
DD-MMM-YYYY
DD MMM
MM-DD
Day of month
Internal
Julian
Month (numeric)
Month (alp ha)
Quarter (numeric)
Day of week (numeric)
Day of week (alpha)
Four digit year

6-43

88A007S7A

6.7.4 THE FUNCTION CODE (F)

The "function code 'F' is used to perform mathematical operations on the
attribute values of an item, or to manipulate strings.

All operations -specified by an 'F' code operate on the last two entries in a
pushdown stack. This pushdown stack may be visualized as follows:

STACKl

STACK2

STACK3

STACK4

STACKS

etc.

STACKl is the top position in the stack, STACK2 is the next position, etc. As
a value is pushed onto the stack, it is pushed into position STACKl; the
original value of STACKl is pushed down to STACK2; and so on.

An 'F' code is comprised of any number of operands or operators in reverse
Polish format separated by semicolons. When an operand specification (a
numeric attribute number or constant, or a string) is encountered, the value is
"pushed" onto the top of the stack. When an operator is encountered, the
specified operation is carried out on the top one or two entries in the stack,
depending upon the operator. When the entire 'F' code has been processed, the
value printed is the value in the top of the stack.

The general form of the 'F' code is as follows:

Felement;element;element •••

An "element" may be any of the following: a numeric Al.fC specifying an
attribute value to be pushed onto the stack (optionally followed by an "R" to
specify that the first value or subvalue of an attribute is to be used
repeatedly when USing it against a multivalued value or subvalue).

An element may also be of the form 'Cn' where 'n' is a numeric constant to be
pushed onto the stack; a 'D' which specifies that the current date 1s to be
pusbed onto the stack; a 'T' which specifies that the current time is to be
pushed onto the stack; a special 2-character operand; or an operator which
specifies an operation to be performed on the top two entries in the stack.
The operators are listed in Table 6-4.

6-44

88A00757A

Table 6-4. 'F' Code Operators

• Operator Operation
----------+--

*{n} Multiplication of the top two entries in the stack. If the
optional "n" is used, the result is "descaled" by n, that is,
it is divided by 10**n.

/ Division of STACK2 by STACKl, result to STACKl.

R Same as "/'" but remainder is returned to top of stack
(instead of quotient).

+ Addition of the top two entries in the stack, result to STACK1.

[]

S

p

(...)

Subtraction of STACKl from STACK2, result to STACK1.

Concatenate; the string value from STACKl is concatenated
onto the end of the string value from STACK2.

Substring; a subset of the string value from STACK3 is
extracted using STACK2 as the starting character position, and
STACKl as the number of characters to extract; the result is
placed on top of the stack. This is equivalent to the BASIC
[m,n] operator, where "m" is in STACK2 and 'n' in STACK1.

A total sum of all previous computations is placed at the top
of the stack.

(Underline.) Exchanges top two positions in stack.

Pushes the top stack value back onto the stack; that is,
it duplicates the top stack value.

Conversion operator; a standard conversion operator such as n
(date), G (group), etc. may be specified within parentheses and
will operate on the top stack value; the result will replace
the original top stack value.

The following operators operate on the top 2 stack entries, and a result
of zero or one is placed on the top of the stack, depending on whether the
condition is not or is satisfied.

<
>
/I
[
]

"Equal" relational operator.
"Less than" relational operator.
"Greater than" relational operator.
"Not equal" relational operator.
"Equal to or less than" relational operator.
"Equal to or greater than" relational operator.

6-45

88A007S7A

The relational operators compare StACKl to STACK2; after the operation, STACKl
will contain either a 1 or 0, depending upon whether the result is true or
false, respectively (e.g., 1£ the 'F' code were FiC3;C3i- then STACK 1 would
contain a 1). This comparison is often followed by a multiplication of the new
contents of STACK 1, (1 or 0), and the contents of STACK 2 (previously STACK
3). If the comparison was true, the result is a 1, so after the multiplication
the contents of STACK 2 moves up to STACK 1 and is available for further
processing. If the result was false, the result was 0 and the multiplication
result would leave a zero in STACK 1. Examples of Fare:

F2;3;4;*i+ is equivalent to:

(attribute3 * attribute4) + attribute2

F23;24;*iC100;+;PiCOi<i* is equivalent to:

(attribute23 * attribute24) + 100 ;
If this result is < zero, final result is zeroi else the above value
is returned as the result. (The above value is generated, and is
repeated in the stack via the P operator; it is then compared to zero,
which gives a result of 0 or 1 depending on whether it was less than
zero or not; this is mu1iplied by the original value, giving a zero
or the original value.)

F3;4i*;6Ri+;S is equivalent to:

(attribute3 * attribute4) + attribute6
If attributes 3 and 4 are mu1tiva1ued, and 6 is not, the single value
in attribute 6 will be used repeatedly in the addition (if the "R" is
not present, it will be used only once, and zeros will be used for
other computations); a sum of such computations for all mu1tiva1ues
in attribute3 or attribute4 (whichever has the greater numb.er of
mu1tiva1ues) is returned.

F3;" n;:;4;:;S;C1jCI0;[];: is equivalent to:

attribute3:" ": attribute4: attributeS [1,10]
That is, the value from attribute 3 is concatenated to that from
attribute 4, with a space between them; the first through the
10th characters from attribute S are then concatenated to the
end of that result.

6-46

88A00757A

6.7.4~1 Special 'F' Code Operands

The 'F' code operands may be multivalued, may contain conversion
specifications, or may be a special 2-character operand specifying one of
several counters. Different interpretations are given to an 'F' correlative
versus an 'F' conversion for an attribute with a TOTAL modifier.

Multivalued F code operands. When arithmetic operations are performed on two
multivalued lists (vectors), the answer will also be multivalued and will have
as many values as the longer of the two lists. Zeros will be substituted for
the null values in the shorter list. For example, suppose the attribute with
AMC-I0 had a value of "5]10]15" and the attribute with AMC-15 had a value of
"20]30]40]50"; if the correlative F;lO;15;+ were processed, the result in
STACKl would be "25]40]55]50". If a single valued attribute is to be
repetitively added (or subtracted, etc.) with a multivalued attribute, then the
single letter R should immediately follow the AMC in the 'F' code (e.g.,
F;10;25R;+).

Any conversion may be specified in the body of a Function correlative. The
conversion specification must be enclosed by parentheses. Examples of F
correlation with conversions:

Fjl0jll;(TDICT SALES;Xj3;3);*

Places the data from attribute 10 in the stack; translates the data
from attribute 11 through the dictionary of file-name SALES and stacks
it; then mUltiplies the two numbers together.

FjD;(DY)j3j(DY);-

Computes the difference in years between the current date and the
date in attribute 3.

F; 1 ; (ML 11 10) ; 2 j :

Concatenates the data in attribute 2 with the result of applying the
format string "LI110" to attribute 1.

6-47

88A00757A

Special 2-character operands may be used as 'F' code elements as listed below:

Operand

NI

ND

NV

NS

NB

LPV

For example:

FjND;3;/

Description

Current item counter (number of items listed or selected).

Number of Detail lines since last BREAK on a Break line. On a
detail line it has a value of 1. On a grand-total line, it
equals the item counter. (Used to generate averages in
conjunction with control breaks.)

Current multivalue counter for columnar listing only.

Current submultivalue counter for columnar listing only.

Current Break level number; 1 - lowest level breakj this has a
value of 255 on the grand-total line and a value of zero at
detail time. The lowest level control-break, the one on the
right in the sentence, will have a value of 1.

The Load Previous Value operand (see following section)
will load the result of the last conversion onto the stack.

On every detail line, this returns the value from attribute 3; on every Break
line (including the grand-total line), the average value of the data in
attribute 3 is returned. (This must be specified as a conversion in line 7.)

The Function code operates in two different fashions on an attribute with a
TOTAL modifier, depending on whether it is specified as a correlative or as a
conversion. As a correlative, the function is applied before the accumulation
of the total, and is ignored on the Break data line; therefore, the total of
the functioned value is computed. As a conversion, the function is ignored on
detail lines, and is applied only on the Break data line and other subtotal
fields in the output. Therefore, the function of other totaled values is
obtained. If the function is specified as a conversion, the numeric operand
(AMe) in the Function code must correspond to an attribute that is being
totaled within the statement. If such an attribute does not exist, a value of
zero is returned. Note that the numeric operators may be dummy AMCs in that
they may reference other attributes within the statement that have function
correlatives.

6-48

88A00757A

6.7.4.2 The Load Previous Value (LPV) Operator

The function processor commences operation with no prior data. If attribute 8
commences with an F-correlative, there is no prior data set up by any processor
in the system. Entering attribute 7 there is the result of attribute 8 or at
least the data retrieved from the item according to the specification in
attribute 2 of the data definition item. It is possible to load this data into
the function correlative stack using the LPV instruction. Since a conversion
may call a function correlative, you may also load the last result of a series
of conversions within a given attribute definition line into a function which
follows the conversion in the line. For instance:

DATA DEFINITION ITEM
001 A
002 3

007 F;LPV;"lOO"j/

008 F;2;3;*

Data definition item mark.
Specifies data attribute 3.

Will divide the result of
attribute 8 by 100.
Contents of data attribute 2
times the contents of data
attribute 3.

If this data definition item is totaled, the total generated will be loaded
into attribute 7 and divided by 100 prior to output on the break line.

002 5 Data attribute 5.

008 G*1]l~%8] F ;LPV j" 52" jR j "*C" j :] TFILE jC; ; 3

This has rather less motivation, since it is equivalent to:

008 Fj5(G*1]l-fR.%8) j"52";R;"*C";: j (TFILEjC; ;3)

The LPV should not be used as the first operator in a F-correlative, because
it has the effect of loading the contents of the temporary data ~rea into the
stack. If the LPV is used at other points in an F-correlat1ve, strange things
will happen.

The LPV operator is available for use in A-correlatives.

6-49

88A007S7A

6.7.4.3 Summary of F Code Stack Operations

The following operands are pushed onto the stack, and all other stack elements
are pushed down one level.

Operand

n{R}

Cn

"String"

'String'

D

T

p

NI

ND

NS

NB

Action

The attribute value for the corresponding attribute number
(where 'n' is a decimal number) is stacked. The optional R
specifies that the value is to be repeated if it is a single
value and there are multiple values in other attributes which
are part of the stack operation.

The integer constant In' (where In' is a decimal number) is
stacked.

The literal string enclosed in double quotes is stacked.

The literal string enclosed in single quotes is stacked.

The current date (in internal format) is stacked.

The current time (in internal format) is stacked.

The top stack element is pushed back onto the stack.

The current item counter is stacked.

The number of detail lines since the last control break is
stacked. (This number is 1 on detail lines, and is the same
as the item counter on grand-total lines.)

The current submultivalue counter 1s stacked.

The current control-break number 1s stacked.

The following operator pops three entries off the stack, computes a result,
and pushes it onto the top of the stack.

[] The substr1ng from the string value in the first stack element
is extracted, starting from the character position defined in
the second element, and ending at the character position
defined in the third element.

For example, the operation F4;C5;C8;[] extracts the values 1n
the Sth through 12th character positions from the string in
attribute 4.

6-S0

88A00757A

The following operators pop the top two operands from the stack, compute a
result, and push the result onto the stack. All other stack elements are
popped up one level.

+

*{N}

/

R

The top two elements are added together and the sum is stacked.

The first stack element is subtracted from the second and the
difference is stacked.

The top two elements are multiplied and the result is stacked.
If n is specified, the result is divided by 10**n before it
is stacked.

The second stack element is divided by the top stack element
and the dividend is stacked.

The second stack element is divided by the top stack element
and the remainder is stacked.

The top stack element is concatenated onto the end of the
second stack element and the resultant string is stacked.

The following relational operators compare the two top elements of the stack,
pop them both off the stack and then push a I (TRUE) or 0 (FALSE) onto the
stack.

•

>

<

The top two elements of the stack are compared, a 1 is stacked
if they are equal, a 0 is stacked if they are not equal.

Stacks a 1 if the top two stack elements are unequal; stacks
a 0 if they are equal.

Stacks a 1 if the top stack element is greater than the second
stack element, stacks 0 otherwise.

Stacks a 1 if the top stack element is less than the second,
a 0 otherwise.

Stacks 1 if the top element is greater than or equal to the
second element, 0 otherwise.

Stacks 1 if the top element is less than or equal to the second
element, 0 otherwise.

The following operators function on just the top one or two stack entries and
have no effect on the rest of the stack.

s Sums the multiple values (if any) of the top stack element.

(Underline.) Exchanges the first and second stack elements.

6-51

88A00757A

6.7.5 THE GROUP EXTRACTION CODE ~G'

The group extraction code ~G' is used to extract one or more fields from an
attribute value.

If an attribute value consists of multiple fields separated by a delimiter,
the 'G' code can be used to extract one or more
form of the ~G' (Group Extraction) code is:

G{m}*n

where:

G is the capital letter G (the Group Extraction code).

m optionally specifies the number of fields to skip.
If m is not specified, zero is assumed and no fields are skipped.

* represents any single non-numeric character, except a minus sign
(-), which is the field separator, or any system delimiter.

n is a decimal number which is the number of contiguous fields to
be extracted.

Sample usage of 'G~ code:

G Code Attribute Value Out2ut Value

G/1 04/02/1956 04
G1/1 04/02/1956 02
G2/1 04/02/1956 1956
G/2 04/02/1956 04/02
G1/2 04/02/1956 02/1956

GO*l 123*888*444 123
G1*2 123*888*444 888*444
G2*1 123*888*444 444
G3*1 123*888*444 (null)

G1*1 *WRITTEN 21 DEC 1977 WRITTEN 21 DEC 1977

6-52

88A00757A

6.7.6 THE LENGTH AND RANGE CODES 'L', 'R'

The length code 'L' and the range code 'R' place restrictions on output based
on the length and the range of a value.

The Length code places length constraints on what kind of data will be
returned, or returns the length of the data. The user may select a fixed
length Ln (number of characters) necessary to meet output criteria, or a length
range Ln,m.

The L code may be used as follows:

LO

Ln

Ln,m

Returns the length of the data string submitted to the
length processor.

Returns the data value if it is less than or equal to n
characters long. If the data does not meet the criteria
then null is returned.

Returns the data value if it is greater than or equal to n
characters long or less than or equal to m, where n<m.

The R code returns data values which fall within the specified ranges, where
multiple ranges are allowed.

The format of the R code is:

Rn,m{ ;n,m ••• } Returns the data value if it falls within the range of n
to m. Multiples of ranges may be specified as shown, in
ascending order. Note that when negative range sets are
used, the core negative number must be stated first.

Note that any delimiter (except system delimiters) fJaY be used to separate the
numbers in a range. However, for the sake of clarity, a minus sign should not
be used, as the minus sign may refer to the number(s) in the range.

In all cases, if the range(s) specifications are not met, null is returned.

6-53

88A00757A

6.7.7 THE MASK CHARACTER CODE 'MC'

The mask character code 'MC' allows the user to change attribute data to upper
or lowercase or to select certain classes of characters.

The following is a list of the forms of the l-IC code and their function:

MCU Converts data to uppercase. Will change all lowercase letters to
uppercase; has no effect on uppercase letters or non-alphabetic
characters.

MCL Converts data to lowercase. Will change all uppercase letters to
lowercase; has no effect on lowercase letters or non-alphabetic
characters.

MCT Converts uppercase characters to lowercase, starting with the
second character in each word.

MCP Converts all nonprintable characters (X'OO' - 'lF', '7F' - 'FF')
to periods.

MCA Extracts and prints all alphabetic characters, either uppercase or
lowercase; non-alphabetic characters will be deleted from the data.

MCN Extracts all numeric characters (0-9) from the data; deletes all
other characters.

MC/A Extracts all non-alphab,etic characters from the data; deletes all
alphabetic characters.

MC/N Extracts all non-numeric characters; deletes all numeric
characters.

Sample usage of the MC (Mask Character) code:

Value MC Code OutEut Value

JOHN SMITH 1234 MCL john smith 1234
John Smith 1234 MCU JOHN SUITH 1234

John Smith 1234 MCA JohnSmith
John Smith 1234 MCN 1234

572-08-2394 MCN 572082394
(714) 552-4275 MCN 7145524275

abc123$%XYZ MC/A 123$%
abc123$%XYZ MC/N abc$%XYZ

6-54

88A00757A

6.7.8 THE MASK LEFT AND MASK RIGHT CODES 'ML', 'MR'

The mask left 'ML' and mask right 'MR' codes allow special processing and
formatting for numbers or dollar amounts. For be~t results, these codes should
be used in the conversion attribute (attribute 7) of the item dictionary.

The ACCESS MR and ML codes function exactly like the 'R' and 'L' format strings
in BASIC. The general form of the ~m and ML codes is:

ML
{n{m}}{Z}{,}{C/D/M/E/N}{$}{(format-mask)}

I·m

where:

M

n

m

is the code name. MR specifies the number to be right justified;
ML specifies left justification. Note that the L or R justification
specification in attribute 9 of the dictionary item will override the
ML or MR except when a format-mask is also used.

is a single decimal digit (0-9) which specifies the number of digits to
be printed to the right of the decimal point. If 'n' is not specified,
a is assumed. If a is assumed or specified, no decimal point will be
printed.

is a single digit number (0-9) which specifies that the number on file
is to be 'descaled' (divided) by that power of ten. (That is, if m-2,
the number is divided by 100, if m-3, the number is divided by 1000,
and so on.) The number 'm' is the number of implied digits to the
right of the decimal point for the number as it is stored in the file.
If m>n, then the number will be rounded off, either up or down, to
'n' digits.

Z is the optional zero-supp·ress parameter. If "'z' is specified, the
a (zero) numbers will be printed as blanks.

specifies insertion of commas every three digits to the left of the
decimal point.

C causes negative values to be followed by the letters CR.

D causes positive values to be followed by the letters DB.

M causes negative numbers to be followed by a minus sign (-).

E causes negative numbers to be enclosed inside angle brackets « and ».
N causes the minus sign on negative numbers to be suppressed.

$ appends a dollar sign ($) to the number before justification.

6-55

88A00757A

The format mask specification, which is enclosed in parentheses, consists of
format codes and literal data. A format code is one of the characters I, *, or
%, optionally followed by a number to indicate that number of repetitions of
the characters.

Format Mask
lin specifies data to be justified .4_ a ~"-'...I ~~

,
n

,
blanks. J.Ll L. ,L.C,L.Y. VJ.

*n specifies data to be justified in a field of
, n' asterisks (*).

%n specifies justification in a field of 'n' zeros (0).

Any amount of alphabetic data may also be specified inside the parentheses in
the format mask specification. The data will be printed exactly as specified
in the format mask, with the number being processed appearing either right or
left justified in the place of the #'s, *'s, or %'s. Any #'s, *'s, or %'s not
overwritten by the number will appear either to the left or right of the number
as specified.

Note the $ option apends a dollar sign to the number and then justifies the
number, so the dollar sign will always appear just before the first digit of
the number on output.

Sample usage of the MR and ML codes:

12.ru. Conversion Result

1234 MR2 12.34
1234 MR 1234
1234 UR(%10) 0000001234
1234 tnt(*10) ******1234

12345678 MR2,E 123,456.78
-12345678 MR2,E <123,456.78>
-12345678 tofR.2,C% $123,456.78CR

572082394 UR24 57208.24 (Note rounding)
572082394 MR2,$(1I20) $5,720,823.94
572082394 MR2,($1I20) $ 5,720,823.94
572082394 MR2,$(*20) *******$5,720,823.94

572082394 ML (111111-1111-11111111) 572-08-2394
572082394 r:fR(13-12-114) 572-08-2394
572082394 ML(1I3-114 EXT.1I2) 572-0823 EXT.94

6-56

88A00757A

6.7.9 THE MASK TIME CODE 'MT'

The mask time code 'MT' provides the facility for converting time to or from a
compact internal format suitable for arithmetic processing. Additional date
formats are also described in this section.

The internal time format is the number of seconds from midnight. The external
time is 24 hour military format (e.g., 23:25:59) or 12 hour format (e.g.,
11:25:59PU). The general form of the MT code is as follows:

!fl'{H} {S}

where:

11T is the Mask Time code specification

H is the capital letter H which optionally specifies 12 hour format.
If 'H' is omitted, 24 hour (military) format is assumed.

S is the capital letter S which optionally specifies seconds on output.
If'S' is omitted, seconds are not listed on output.

When codes MTH and MTHS are used, 12 hour external format is specified. For
input conversion, then, the time is entered with AM or PM immediately following
the numeric time (AM is optional). On output, AM or PH is always printed
immediately following the numeric time.

NOTE: 12:00 AM is considered midnight, and 12:00 PH is considered noon. AM
and PM will be ignored on input if code MT is specified. Illegal values are
converted to null on input. Sample usage of HT:

MT CODE INPUT VALUE STORED VALUE OUTPUT VALUE

MT 12: 43200 12:00
HTH 12AM 0 12:00AM
MTS 12AL'f 0 00:00:00
UTHS 12AM 0 12:00:00AH
HT 12: 15A!1 900 00:15
MTH 12: 15Al1 900 12:15AM
MT lAM 3600 01:00
t·1TH lAM 3600 01:00AM
MT 6AM 21600 06:00
~1TH 6AU 21600 06:00AM
MT 1PH 46800 13:00
UTH 1PM 46800 01: OOP~1
MT 13: 46800 13:00
MTH 13: 46800 01:00PH
~1T XYZ 0 00:00:00

6-57

88A00757A

6.7.10 THE MASK HEXADECIMAL CODE 'MX'

The mask hexadecimal code 'MX' is used to convert strings to or from their
hexadecimal equivalents.

The MX code specifies that character strings are to be converteq, one
character (byte) at a time, into their hexadecimal (base sixteen)
representations. Each character will be converted to a 2-digit (one byte)
hexadecimal number.

This feature is useful in finding non-printable characters in data strings.
The general form of the MX (Mask Hexadecimal) code is:

MX

The mask decimal code may be combined with the mask character code as shown
below:

Action

MCDX Converts decimal data value to its hexadecimal equivalent.

MCXD Converts hexadecimal data value to its decimal equivalent.

Sample usage of the t{K (Mask Hexadecimal) code:

INPUT VALUE

ABC
JOHN
john
HI THERE

CONVERTED VALUE

414243
4A4F484E
6A6F686E
4849205448455245

6-58

88A00757A

6.7.11 THE PATTERN AND SUBSTITUTE CODES 'P', 's'

The pattern match 'P' and substitute'S' codes place restrictions on output
based on P(attern) matching and S(ubstitution) of the value of an attribute.
The Pattern Match code returns data values which match the specified pattern.
If the data does not match the specified pattern, then null is returned.
The general form of the Pattern Match code is:

P(matchstring){j(matchstring)}

The Pa ttern ~latch consists of any combination of the following:

P(nN) An integer number followed by the letter 'N', which
tests for that number of numeric characters.

P(nA) An integer number followed by the letter 'A', which
tests for that number of alpha characters.

P(nX) An integer number followed by the letter 'X', which
tests for that number of alphanumeric characters.

P('literal') A literal string, which tests for that literal string.

For example, if the user wished to have only social security numbers returned,
the following Pattern Matching code could be used:

P(3N-2N-4N)j(9N)

This specifies that only those data values comprised of 9 numeric or a string
match of 3 numeric, a hyphen, 2 numeric, a hyphen, 4 numeric are returned.
The general form of the Substitute code is:

Sjattribute-number'text'

The Substitution code substitutes the data value of the referenced attribute
number if the current data value is not null or zero. If the data value is
null or zero, it will be substituted with a literal string specified by the
user. For example:

S;4j'XXX'

This specifies that if the data value is not equal to zero or null then it
will be replaced by the contents of attribute 4. If it is equal to zero or
null, it will be replaced by the string 'XXX'. An additional feature of the
Substitution code is that if it is used in junction with the Function
Processor, it may serve to test for null or zero and take different actions
according to what kind of data it encounters. For exatnple:

F1(S j *; 'NOmlAL VALUE')

This specifies that if attribute 1 is null or zero, the string "NORMAL VALUE"
will be used, otherwise the contents of attribute 1 will be used. Note that
the S code should only be used in attribute 8.

6-59

88A00757A

6.7.12 THE TEXT EXTRACTION CODE 'T'

The text extraction code 'T' is used to extract a fixed number of contiguous
characters from an attribute value. This is useful for fixed field data, or
for truncating data when you wish to prevent folding. Note that the attribute
value that contains the characters to be extracted may not exceed 500 bytes.

An attribute with a T code has no value of its own but gets it value by
extracting characters from the value of another attribute.

Used by itself, it will extract characters from the attribute of which it is a
synonym.

Used in an F correlative, the T code can extract characters from any attribute
in the item.

The general form of the 'T' (Text Extraction) code is:

T{m,}n

where:

T is the code name

m is the optional starting column number

is the separator necessary between 'm' and 'n'
if 'm' is specified

n is the number of characters to extract

If the form 'Tn' is specified, 'n' characters will be extracted, either from
the left or the right, depending upon the attribute definition item's V/TYP
(line 009). If the V/TYP is 'L', the 'Tn' form of the Text code will extract
the first 'n' characters of the attribute value. If the V/TYP is 'R', the'Tn'
code will extract the 'n' rightmost characters of the attribute value.

If the form 'Tm,n is specified, then 'n' characters, starting at column 'm',
will be extracted. The 'Tm,n' form always counts columns and extracts
characters from left to right. This means that the extraction will be from
left to right, regardless of the attribute definition item's V/TYP.

6-60

88A00757A

Examples of T code:

T CODE ATTRIBUTE VALUE JUSTIFICATION

T3 ABCDEF L
T3 ABCDEF R
T3,5 HELLO OUT THERE L
T3,5 HELLO OUT THERE R

Tl,ll THIS IS A LONG STRING L

T2,9 *12 DEC 77 L

T4,7 123SMITH CR L
T4,7 848JOHNSONDB L
T3 123SMITH CR L
T3 848JOHNSONDB L
T2 123SMITH CR R
T2 848JOHNSONDB R

(* The bb represents two blanks)

Another example of the T code:

1
001 A
002 1
003 CITY, ST ZIP
008
009 L
010 30

ZIP
001 A
002 1
003 ZIP
008 TS
009 R
010 S

A listing of a file with the above attributes would give:

CITY, ST ZIP

DALLAS, TX 7523Q
BARTOW, FL 33830
LOS ANGELES, CA 90061

ZIP

75230
33830
90061

VALUE OUTPUT

ABC
DEF
LLO 0
LLO 0

THIS IS A L

12 DEC 77

SMITHbb *
JOHNSON
123
848
CR
DB

Thus, using the T code, you could store the city, state and zip in the normal
fashion and still be able to sort it by ZIP.

It is also possible to select or sort on state in the above example using the
T code if you combine it with the G and F codes.

Fjl(Gl,1);(T2,2)

The G code extracts" CA 90061" and the T code extracts two characters from the
group starting with the second (blank is first) to give CA.

6-61

88A00757A

6.7.13 THE TRANSLATE FILE CODE 'Tfile'

The translate file code 'Tfile' code provides a facility for converting a value
by translating through a file. The value to be translated is used as an
item-id for retrieving an item from the defined translation file. The
translation value is retrieved from the specified attribute of the item. The
general form of the Tfile (Translate) code is:

T{DICT}file;c{n};i-amc;o-amc{;b-amc}

where:

T is the code name.

file is the name of the file through which translation takes place,
The file name may be preceded by "DICT" to indicate a dictionary.

c is the translate subcode, which must be one of the following:

V Conversion item must exist on file, and the specified attribute
must have a value. Aborts with an error message if translation
is impossible.

C Convert if possible; use original value if item in translate
file does not exist or has null conversion attribute.

I Input verify only (functions like 'V' for input and like
'c' for output).

o Output verify only (functions like 'c' for input and like
'V' for output).

X Convert if possible; otherwise return a null value.

n is an optional value mark count specification. If the c element is
followed by a number, the translate will return only the value in
VMC n, instead of the complete collection of values concatenated
together with blanks. Subvalues will be returned with included
blanks.

i-amc is the decimal attribute number for input conversion (in BASIC or
BATCH). The input value is used as an item-id in the specified
file, and the translated value is retrieved from the attribute
specified by the i-amc. (If the i-amc is omitted, no input
translation takes place.)

o-amc is the attribute mark count for output translation. l~en ACCESS
creates a listing, the attribute values will be looked up in the
specified file, and the attribute specified by the o-amc will be
listed instead of the original value.

b-amc if specified, will be used instead of o-amc during the listing of
break-on and total lines.

6-62

88A00757A

Sample usage of the Tfile (Translate) code:

Item CARDS in DICT MUNCH is:

001 S
002 4
003 CREDIT CARDS
004
005
006
007 TCARD-FILE;C;;l
008
009 L
010 20

Data section of MUNCH file is:

Item-id:
001 :
002:
003:
004:

COCOS CARLS-JR
HAMBURGERS HAMBURGERS
MAC ARTHUR BLVD. BRISTOL STREET
5583233 9792231
MC]V NONE

Data section of CARD-FILE is:

Item-id:
001:

MC
l1ASTER CHARGE

V
VISA

MEYERHOFS
SANDWICHES
S.COAST VILLAGE
8830002
MC]V1BA

BA
BANKAMERICARD

>LIST MUNCH "COCOS ""CARLS-JR" "MEYERHOFS " CARDS HDR-SUPP [CR]

COCOS MASTER CHARGE
VISA

CARLS-JR !'lONE
~YERHOFS MASTER CHARGE

VISA
BANKAMERICARD

6-63

88A00757A

6.7.14 THE USER-DEFINED CONVERSION CODE "U"

The "u" code specifies an entry point into a user-written piece of software.
The general form of the "U" (user-defined) code is:

where:

U is the code name.

n is the entry point number.

xxx is the hexadecimal FlO (Frame ID) of the frame containing the
user's assembly code.

WARNING: Do not use the U code unless you fully understand its action at
the assembly-code level.

6-64

83A00757A

support processors

This is the final section of the PICK Operator Guide. Last, but not least,
the subjects covered are utility verbs and processors, system security levels
and verbs which can be used to obtain statistics reports.

7.1 UTILITY PROCESSORS

7.1.1 CT PROC

This PROC is invoked by typing:

CT file-name item-list {(options)}

The item(s) specified will be copied to the terminal. Options recognized by
the copy verb may be added.

7.1.2 LISTACC PROC

The LISTACC PROC is invoked by typing:

LISTACC {account-name} •••

This PROC lists accounting data for the account-name(s) specified. If no
account-name(s) are specified, accounting data for all users will be listed.

7.1.3 LISTCONN PROC

This LISTCONN PROC is invoked by typing:

LISTCONN {(P)}

This PROC sorts all connectives in any dictionary and lists them on the
terminal (or the line printer if (P) is specified).

7-1

7

88A00757A

7.1.4 LISTDICT PROC

The LISTDICT PROC sorts all attribute definition items in any dictionary and
lists them on the terminal (or the line printer if (P) is specified). If
file-name is not specifie~, Master Dictionary items are listed. The general
form is:

LISTDICT {file-name} {(P)}

7.1.5 LISTPILES PROC

The LISTFILES PROC sorts all file or file synonym definition items in any
dictionary and lists them on the terminal (or on the line printer if (P) is
specified). If file-name is not specified, Master Dictionary files are
listed. The general form is:

LISTFILES {file-name} {(P)}

7.1.6 LISTPROCS PRoe

The LISTPROCS PROC sorts all PROC's in any file or dictionary and lists them
along with a brief abstract on the terminal (or the line printer if (P) is
specified). The general form is:

LISTPROCS {file-name} {(P)}

7.1.7 LISTU PROC

-The LISTU PROC lists the account name of the users currently active on the
system, along with their logon time and channel number. The general form is:

LISTU or LISTUSERS

7.1.8 LISTVERBS PRoe

The LISTVERBS PROC sorts all verbs (not PROC's) in any dictionary and lists
them on the terminal (or on the line printer if (P) is specified). The general
form is:

LISTVERBS {file-name} {(P)}

7-2

88A00757A

7 .2 SYSTEM SECURITY

Security codes may optionally be placed in the L/RET and L/uPD attributes of a
dictionary item to restrict access and update. At logon time, each user is
assigned the set of security codes which are in his user identification item.
During the session, whenever an L/RET or L/UPD code is encountered, a search is
made of the user assigned codes for a match; if no match is found, the user is
denied access. A security code may consist of any combination of legal ACSII
characters.

7.2.1 L/RET AND L/UPD

Both file definition (lt~'' code) and synonym file definition ("Q" code) items
have L/RET (retrieval locks) and L/UPD (update locks) attributes. lihenthese
attributes have values stored, they are known as security codes. Although
there is no prohibition against multiple values for these attributes, only the
first attribute value is used for matching against the user aSSigned codes.
Since each file may be individually locked for both update and retrieval, a
user must be aSSigned multiple codes to that set of data he is allowed to
access. Using this feature, a complex "mask" can be constructed for each user,
giving each user a different subset of files which he may access. •

Security at the file level is invoked at the processor level. The following
processors are assumed to be updating processors and, therefore, require a
match on the L/upo atttribute in the file definition item: COPY, EDIT, BASIC
if writing a file, RUN and the Assembler. Other processors are assumed to be
retrieval processors and require a match on the L/RET attribute in the file
definition item. BASIC requires a match against L/RET code when the file is
opened, and a match against the L/UPD if data is changed in the file.
Failure to match one of the user security codes with either the L/RET or L/uPD
attribute value will generate the following message and return control to TCL:

[210] FILE xxx IS ACCESS PROTECTED

7.2.2 USER ASSIGNED CODES

Each user identification item in the System Dictionary (see Section 5.2.1, USER
IDENTIFICATION ITEMS) contains the list of security codes assigned for that
particular user. These codes are values for the attributes L/RET and L/UPD.
The lock code in the user-identification item and the lock code in the file
being verified oust match.

Security codes may be assigned initially when an account is created via the
use of the CREATE-ACCOUNT (PROC Security codes may be added or deleted by
updating the appropriate security codes); however, updates to the user
identification itam should only be performed when no one else is logged onto
the system.

7-3

88A00757A

7.2.3 SECURITY CODE COMPARISON

Security codes are verified comparing the value in the file dictionary against
the corresponding string of values in the user identification item. Characters
are compared from left to right. An equal (verified) compare occurs when the
value in the file dictionary is exhausted and all characters match up to that
point. Sample security code comparisons:

FILE DICTIONARY CODE

123
12
123
XYZ
AQZ

USER IDENTIFICATION CODE

123
123
12
XYZ5
AQ

RESULT

Match
Match
No 11atch
Match
No ~latch

When referencing a file using a Q synonym, a security code match is made at
all levels (i.e., SYSTEM, MD and file dictionary) and, therefore, a
correspondence must be maintained at all levels in order to process the Q
synonym files. Since the user identification item for the account containing
the primary file is verified for security codes, the user referencing the Q
synonym must have a code defined in this user identification item which will
verify with the first code in the equated account's user identification item.
Therefore, in a user identification item, only the first code is used to
protect the account from Q synonym accesses, while all the codes in the item
are assigned to the user when he logs on.

7-4

88A00757A

7.3 FILE STATISTICS REPORT

The File Statistics Report is a valuable tool for data base management. This
Report is automatically generated by running a FILE-SAVE, or may be generated
at any time by using the LIST-FILE-STATS processor.

The FILE-SAVE process creates one item in the STAT-FILE for each D-pointer
saved on the FILE-SAVE tape or cartridge disk. A listing of the STAT-FILE is
created at the end of every FILE-SAVE. The same listing can be generated from
TCL by the LIST-FILE-STATS PROC.

The statistics report adds data security by providing a list of file Base,
Modulo and Separation parameters and by recording the order of files on a
FILE-SAVE tape or cartridge disk.

The report is broken down by account with a line of information generated for
each line in the account that includes:

1. Total and average item size.

2. Total and average number of items per group.

3. Utilization of file-space.

4. Actual data stored and "pad" space used in the file.

A total line is generated for each account showing the total:

items
bytes (characters)
frames (includes linked)
group format errors

Creation of the STAT-FILE dictionary and data areas is part of the SYS-GEN
procedure. STAT-FILE is contained on the System Programmer (SYSPROG) Account.
As it is normally updated from this account, there is no need for STAT-FILE on
any other account.

Alternatively, the file may be created via the following:

CREATE-FILE STAT-FILE 1,3 29,1 [CR]

When a FILE-SAVE is started, the STAT-FILE data area is cleared and the
current file statistics information is written into the data area.

The STAT-FILE data area will also be empty after a file restore is done,
because attribute 1 of the file definition is a DY. This is desirable since
the statistics are no longer applicable.

7-5

88A00757A

It is helpful to make synonym accounts in the System Dictionary Q-pointers so
that there is only one D-pointer for each account. This way, the data for the
account will be saved under the one account name that is a D item in SYSTEM.

The item-id in the STAT-FILE is of the form:

t:n

where "t" is the tape reel or cartridge number where the file was dumped (this
will be 0 if the SAVE was run without dumping data to the tape or cartridge
disk) and 'On" is the FILE-NUMBER. This file-number is used in the selective
restoration of files using "SEL-RESTORE".

Note that files in the listing that have a SIZE field of zero are synonym
D-pointer files; that is, a previously found D-pointer caused the data in the
file to be dumped.

The NAME field of the items in the STAT-FILE contains data in the form:

account-name*dict-name*data-name

where one, two, or all three of the fields may be present depending on whether
the file is an account, a dictionary, or a data file.

7-6

88A00757A

7.4 FILE CHANGE VERIFICATION (CHECK-SUM)

The CHECK-SUM command generates a checksum for file items, thus providing a
means to determine if data in a file has been changed. A checksum is the
arithmetic total, disregarding overflow, of all bytes in the selected items.
The general form is:

CHECK-SUM {DICT} file-name {item-list} {attribute} {selection-criteria}

A checksum is generated for items in the specified file, or subset of items if
the optional "item-list" and/or "selection-criteria" appear. Furthermore, the
checksum may be calculated for one specified attribute.

If no attribute is specified, the first default attribute will be used. If
there is no default attribute, or if the AMC is 9999, the entire item will be
included. The checksum will include the binary value of each character times a
positional value.

This yields a checksum which has a high probability of being unique for a
given character string. The dictionary portion is checksummed if the "DICT"
op t ion ap pears.

A message is output giving checksum statistics in the following form:

BYTE STATISTICS FOR file-name (or attribute name):
TOTAL - t AVERAGE - a ITEMS - i CKSUM - c BITS - b

where:

t is the total number of bytes in the attribute (or item) included

a is the average number of bytes

i is the number of items

c is the checksum

b is a bit count

The attribute mark trailing the specified attribute (or item) will be included
in the statistics.

To use checksums, the user should issue CHECK-SUM commands for all files or
portions of files to be verified and keep the output statistics. Subsequently,
the CHECK-SUM commands can be reissued to verify that the checksum statistics
have not changed. The checksum must be recalculated whenever the user updates
the file.

7-7

88A00757A

7.5 FILE STRUCTURE INQUIRY

File structure inquiries can be made under form commands. The ITEM and GROUP
commands provide information about the item and group structure of PICK files.
Output can be displayed at the terminal or optionally directed to the line
printer.

ISTAT and HASH-TEST commands are verbs that produce file hashing histograms;
ISTAT for specified file items and HASH-TEST on the basic of a user specified
test modulo.

7.5.1 ITEM COMMAND

The ITEM command has the following general form:

ITEM file-name item-id {(options)}

This command displays the base FID of the group into which the specified
item-id hashes. If the item is not already on file, the message "ITEM NOT
FOUND" is displayed. In addition, every item-id in that group is listed along
with a character count of the item (in hex). At the end of the list, the
following message is displayed:

n ITEMS m BYTES p/q FRAMES

where:

n is the number of items in the group

m is the total number of bytes used in the group

p is the number of full frames in the group

q is the number of bytes used in the last frame of the group

Valid options for this command are as follows:

p Direct output to line printer.

S Suppress item list.

7-8

88A00757A

An example of the use of the ITEM command:

)ITEM MD A [CR]

27121
0022 FILE-DOC
001C bd
0009 A
0011 T-ATT
OOOF DUMP
0018 B/ADD
OOOF DIVX
0014 EDIT-LIST
0028 V/CONV
0022 LISTU
0019 V/MIN
0018 ACCOUNT-RESTORE
0010 D/CODE
0028 SL
0023 INST-INDEX
0047 SAL
0072 TB
OOOE SAVE
18 ITEMS 591 BYTES 1/91 FRAMES

7.5.2 GROUP COHMARD

The GROUP command has the following general form:

GROUP file-name {(options)}

This command displays the base FlO of each group in the specified file. In
addition. every item-id in the group is listed along with a character count of
the item (in hex). At the end of the list for each group, the following
message is displayed:

n ITEMS m BYTES p/q FRM-lES

where:

n is the number of items in the group
m is the total number bytes used in the group
p is the number of full frames in the group
q is the number of bytes used in the last frame of the group.

Valid options for this command are as follows:

I Suppresses output of null groups.
P Direct output to line printer.
S Suppress item list.

7-9

88A00757A

7.5.3 ISTAT COMMAND

ISTAT is an ACCESS verb. Its general format is:

ISTAT {DICT} file-name {item-list} {selection-criteria}
{modifiers} {(options)}

An ACCESS sentence using the ISTAT command is:

>ISTAT PARCEL [CR]

The ISTAT command provides a file hashing histogram for the selected items in
the selected file as illustrated by the following example:

FILE- PARCEL MODULO- 3 SEPAR- 1
FRAMES BYTES ITEMS

13:50:42 22 MAR 1982

000002 00757 027 *»»»»»»»»»»»
000002 00836 030 *»»»»»»»»»»»»>
000002 00785 028 *»»»»»»»»»»»

ITEM COUNT-
AVG. ITEMS/GROUP-

85, BYTE COUNT-
28.3, STD. DEVIATION-

2378, AVG. BYTES/ITEM-
1.5, AVG. BYTES/GROUP-

27.9
792.6.

If you wish to suppress the histogram for the selected items, include an S in
the options parameter.

7-10

88A00757A

7.5.4 HASH-TEST COMHAHD

HASH-TEST produces a file hashing histogram as a result of a user-specified
test modulo. The general form of this ACCESS verb:

HASH-TEST {DICT} file-name {item-list} {selection-criteria}
{modifiers} {(options)}

An example of HASH-TEST:

>HASH-TEST PARCEL [CR]

TEST MODULO: 9 [CR]
FILE- PARCEL MODULO- 9 SEPAR- 1
FRAMES BYTES ITEMS

13:50:55 22 MAR 1982

000001 00256 009 *»»»»>
000001 00281 010 *»»»»»
000001 00255 009 *»»»»>
000001 00229 008 *»»»»
000001 00248 009 *»»»»>
000001 00251 009 *»»»»>
000001 00272 010 *»»»»»
000001 00307 011 *»»»»»>
000001 00279 010 *»»»»»
ITEM COUNT-
AVG. ITEMS/GROUP-

85, BYTE COUNT-
9.4, STD. DEVIATION-

7-11

2378, AVG. BYTES/ITEM
.8. AVG. BYTES/GROUP-

27.9
264.2

88A00757A

7.6 PICK SYSTEM VERIFICATION

The VERIFY-SYSTEM verb checks the system software.

The general form is:

VERIFY-SYSTEM {n{-m}}

where n-m represents a range of frame numbers to verify. If VERIFY-SYSTEM is
entered without frame number(s), it generates a check-sum for every frame of
software, from 1 to 399. These check-sums are compared with those in the
ERRMSG file, in an item named ··CHECK-SUM". This item contains the correct
check-sum for all system software frames. Each line in the item contains a
check-sum for one frame of code, optionally followed by one or more hexadecimal
limits. If the limits are present, the check-sum is generated only for bytes
within the limits. If no limits are present, the check-sum is generated for
bytes 0-2047. This is done because some frames contain tables which change
from time to time, such as the system overflow table. Note that only assembly
code is check-summed; table entries are not.

If all the program frames verify, message 341 is printed:

[341] ZEBRA PICK REV m.n SYSTEM VERIFIED.

If a frame generates a check-sum which does not match the check-sum for that
frame in the "CHECK-SUM" item, the FlO of the f-rame, the generated check-sum
and the stored check-sum from the item are printed, and message 342 is printed
at the end of the check run:

[3421 ***ZEBRA PICK 'A' SYSTEM DOES NOT VERIFY***
THERE ARE 'B' FRAMES WITH MISMATCHES

where 'A' is the revision number and 'B' is the number of frames whose
check-sums do not match.

If frame number(s) are specified and they verify, message 343 is printed:

, A' SYSTEM.
FRAMES(S) 'B' VERIFIED

If the frame(s) do not verify, message 344 is printed:

FRAME(S) 'B' DO NOT VERIFY!!
THERE ARE "'C' FRAMES WITH MISMATCHES

A VERIFY-SYSTEM should be run whenever it is suspected that the system
software is in error.

If a mismatch is found, the software can be restored by mounting the SYS-GEN
tape and using the A option after pressing RESET.

7-12

88A00757A

ERRMSG (error messages) A
PICK ERROR MESSAGES

ID No. Message

2 UNEVEN NUMBER OF DELIMITERS ('").
3 VERB?
4 "'A'" IS NOT AN ACCOUNT NAME.
5 THE WORD "A" IS ILLEGAL.
7 A VALUE MUST FOLLOW THE HEADING, FOOTING, TAG OR GRAND-TOTAL

CONNECTIVE.
9 SYSTEM DL/ID MISSING.

10 FILE NAME MISSING.
11 FRAME LOCKED AT LOCATION X' A' •
13 DATA LEVEL DESCRIPTOR (FILE-NAME IN DICTIONARY) IS MISSING.
15 THE FILE-NAME IS PRECEDED BY AN ILLEGAL CONNECTIVE.
16 CURRENT SOFTWARE RELEASE IS: ABS:A MONITOR: B.
17 "WITHIN" IS VALID ONLY IN COUNT/LIST/SUM OR STAT STATEMENTS.
18 THE LAST WORD HAY NOT BE A CONNECTIVE.
19 A VALUE WITHOUT AN ATTRIBUTE NAME IS ILLEGAL.
20 ERROR IN THE "USING" SYNTAX.
21 MEANINGLESS ITEM-ID IN STATEMENT.
22 "TO" BEFORE ITEM-ID VALID ONLY IN A CHANGE STATEMENT.
24 THE WORD "A" CANNOT BE IDENTIFIED.
25 THE CONNECTIVE "WITH" MAY NOT IMMEDIATELY PRECEDE A VALUE.
26 ATTRIBUTE VALUES MAY NOT BOTH PRECEDE AND FOLLOW AN ATTRIBUTE NAME.
29 AT LEAST ONE ITEM-ID MUST BE SPECIFIED FOR A "WITHIN"-TYPE STATEMENT.
30 FORMAT ERROR IN M/DICT ENTRY DEFINING VERB.
32 MAG TAPE ATTACHED TO LINE ... A
34 DISK CARTRIDGE ATTACHED TO LINE ... A
39 YOU MUST BE ON SYSPROG TO CHANGE THIS PASSWORD.
40 PASSWORDS CAN ONLY BE DELETED ON SYSPROG.
41 STRANGE ACCOUNT POINTER. PASSWORD CANNOT BE CHANGED.
45 YOU MUST BE ON THE SYSPROG ACCOUNT FOR THIS FUNCTION!!!
47 YOU MUST BE ON LINE 0 FOR THIS FUNCTION!!!
53 SET IN MD7/8/18: ITEM-ID LIST REQUIRED FOR WITHIN
60 ACCOUNT "'A' CANNOT BE DELETED.
61 'A' IS NOT AN ACCOUNT.
62 A "'Q'" TYPE ACCOUNT CANNOT BE DELETED.
63 ACCOUNTS CAN ONLY BE DELETED ON SYSPROG.

A-I

88A00757A

10 No. Message

71 AN ILLEGAL CONNECTIVE MODIFIES THE WORD "A".
72 THE VALUE "A" IS MEANINGLESS.
79 THE NUMBER OF SEPARATE AND CLAUSE SETS CANNOT EXCEED 9.
80 A SYSTEM ERROR HAS OCCURRED IN MODE; 'A' THIS ~~y BE DL~ TO

SORT-KEyeS) PRECEDING SELECTION CRITERIA.
82 YOUR SYSTEM PRIVILEGE LEVEL IS NOT SUFFICIENT FOR THIS STATEMENT.
84 VERB IS ONLY VALID FOR 1/2" TAPE.
85 AT BEGINNING OF 1/4" TAPE BUFFER.
87 TAPE TRANSFER NOT COMPLETED. ERROR CODE: A
89 VERB IS NOT A VALID 1/2" TAPE OR CARTRIDGE DISK VERB.
91 END TAPE CHECK - 'A' FlLE(S).
92 END OF RECORDED DATA - 'A' FlLE(S).
93 ATTACH THE TAPE UNIT.
94 END OF FILE.
95 TAPE ATTACHED TO LINE 'A'.
96 BOT
97 END OF TAPE
98 PARITY ERROR!

102 MONITOR AND ABS DUMP COMPLETED.
103 TAPE ERROR.
104 DEI CARTRIDGE TAPE ASSIGNED.
105 ARCHIVE CARTRIDGE TAPE ASSIGNED.
118 THE FORM "WITH ATTRIBUTE AND ATTRIBUTE" IS UNDEFINED.
120 'A' NEGATIVE BALANCE NOT PERMITTED.
158 AN ILLEGAL CONNECTIVE OF THE FORM ttA" MODIFIES "B".
163 AN A-, F-, OR T-CORRELATIVE HAS FAILED COMPILATION.
164 TOTAL OR CONTROL-BREAK CONNECTIVE NOT SUCCEEDED BY ATTRIBUTE

DEFI NIT ION •
166 THE A-CORRELATIVE ATTRIBUTE NAME 'A' IS ILLEGAL.
167 MISSING TERMINAL QUOTE C'I') IN A-CORRELATIVE: 'A'.
1'68 ILLEGAL A-CORRELATIVE: 'A'.
169 HISSING LEFT PAREN IN A-CORRELATIVE: 'A'.
170 MISSING RIGHT PAREN IN A-CORRELATIVE: 'A'.
173 ~HSSING SEMI-COLON IN A-CORRELATIVE.
192 THIS IS AN ERRONEOUS OBJECT STRING.
193 BASIC OBJECT CODE CANNOT BE COPIED TO AN ITEM.
194 DON'T COpy TO THE SAME ITEM IN THE SAME FILE.
196 'A' IS TOO LARGE TO BE AN ITEM.
197 THIS GET-LIST OR SAVE-LIST SPECIFICATION IS INCORRECT.
198 THE LIST POINTED TO BY POINTER ITEM 'A' IS DEFECTIVE.
199 INSUFFICIENT WORK SPACE FOR ITEM 'A'.
200 FILE NAME?
201 'A' IS NOT A FILE NAME.
202 'A' NOT ON FILE.
203 ITEM NAME?

A-2

88A00757A

ID No. Message

204 FILE DEFINITION 'A' IS MISSING.
205 NO STATEMENTS TO BE ASSEMBLED.
208 ERROR IN ITEM-ID LIST.
210 FILE 'A' IS ACCESS PROTECTED.
211 'A' NO ASSEMBLED CODE CAN BE FOUND.
212 'A' HAS NO FRAME STATEMENT
213 'A' LOCATION COUNTER ERROR AT LINE NO. 'E'.
214 'A' OVERFLOWS FRAME A AT LINE NO. 'E'.
215 'A' HEX ERROR AT LINE NO. 'E'.
216 'A' LOADED; FRAME· B SIZE· C CKSUM • D.
217 'A' VERIFIED; FRAME· B SIZE - C CKSUM - D.
218 'A' FRAME· B HAS F MISMATCHES.
219 ILLEGAL COMMAND: 'A'.
220 'A' EXITED.
221 'A' FILED.
222 'A' DELETED.
224 'A' IS A POINTER ITEM. IT MAY NOT BE LOADED INTO A NON-POINTER FILE.
225 TSYM MUST BE DICT & DATA MOD/SEP 1,1 37,1 SORRY FOR INCONVENIENCE.
226 TAPE FORMAT ERROR.
234 ITEM SIZE EXCEEDS 32,000 BYTES.
235 ATTEMPT TO WRITE INTO UPDATE PROTECTED FILE!
239 'A' LIST SAVED. 'B' FRAME(S) USED.
240 A "SELECT" OR "SSELECT" MUST BE USED PRECEDING A 'SAVE-LIST'

STATEMENT!
241 PROGRAM 'A' COMPILED; 'B' FRAMES USED.
242 'A' DECATAtOGED.
243 'A' LIST SAVED - 'B' FRAME(S) USED.
244 'A' CATALOGUED!
245 'A' LIST DELETED.
246 'A' IS NO LONGER A LIST OR NO LONGER ON FILE.
247 'A' IS BASIC OBJECT CODE.
249 AN 'F' OPTION IS NOT VALID WITH THIS VERB.
260 INVALID BATCH LOCK COMMAND: 'A'.
265 PROC STACK OVERFLOW.
267 PROC TRANSFER TO 'A' CANNOT BE COMPLETED.
268 DESTINATION OF PROC "GO" STATEMENT: 'A'. CANNOT BE FOUND.
269 PRIMARY INPUT BUFFER HAS EXCEEDED 300 BYTES.
270 FORMAT ERROR IN THE PROC STATEMENT: 'A'.
272 A VALUE EXISTS FOR THE ATTRIBUTE REFERENCED BY THE ELEMENT: A.
273 ERROR IN COLUMN-NUMBER/FIELD-WIDTH OR FORMAT SPECIFICATION AT: 'A'.
274 UNRECOGNIZABLE BATCH-STRING ELEMENT: 'A'.
275 Y OR F SUB-ELEMENT ERROR AT BATCH-STRING ELEMENT: 'A'.
276 D-2 UPDATE WITHOUT D-1 BEING SPECIFIED, AT BATCH-STRING ELEMENT: 'A'.
277 J ELEMENT MISSING AT BATCH-STRING ELEMENT: 'A'.
278 ERROR IN PROCESSING SECONDARY BATCH-STRING ELEMENT: 'A'.
279 INCORRECT SCALING FACTOR IN F* BATCH-STRING ELEMENT: 'A'.
280 FILE-DEFINITION BATCH ELEMENT ERROR AT: 'A'.

A-3

88A00757A

ID No. Message

281 D1 MUST HAVE Y11 STORAGE CORRELATIVE ••• ERROR AT: 'A'.
282 INVALID PARAMETER FOR SELECT LIST.
289 TERMINAL PRINTER:

PAGE WIDTH: a b
PAGE DEPTH: c d
LINE SKIP: e
LF DELAY: f
FF DELAY: g
BACKSPACE: h
TERM TYPE: i

290 THE RANGE OF THE PARAMETER "AM IS NOT ACCEPTABLE.
293 TOTAL NUMBER OF CONTIGUOUS FRAMES: 'A'.
298 FORMAT ERROR IN SPECIFICATIONS.
316 NUMERIC PARAMETER MISSING.
331 THE ACCOUNT FILE IS MISSING.
335 «<R80 GENERAL AUTOMATION REV. 3.0»>

«<time ZEBRA date»>
336 < LOGGED OFF AT time ON date >
337 USER IS NOT LOGGED ON.
338 ACCOUNT FILE STATISTICS WERE NOT UPDATED DUE TO EITHER:

1. INSUFFICIENT WORK-SPACE TO CONTAIN THE ACCOUNT FILE ITEM, OR
2. SYSTEM DICTIONARY CHANGED WHILE YOU WERE LOGGED ON.

340 < CONNECT TIME • A MINS.; CPU • B UNITS; LPTR PAGES - C >.
341 ZEBRA PICK 'A' SYSTEM VERIFIED!!!
342 *** ZEBRA PICK 'A' SYSTEM DOES NOT VERIFY!

*** THERE ARE 'B' FRAMES WITH MISMATCHES.
343 'A' SYSTEM. FRAME(S) 'B' VERIFIED!!
344 'A' SYSTEM 'B' FRAMES DO NOT VERIFY! !

THERE ARE 'c' FRAMES WITH MISMATCHES.
390 'A' LOADED.
391 'A' VERIFIED.
398 THE MAXIMUM OF 20 LEVELS FOR A "WITHIN"-TYPE STATEMENT HAS BEEN

EXCEEDED.
399 THE FILE OR DL/ID REQUIRES A V(ERTICAL) CORRELATIVE FOR THIS

STATEMENT.
401 NO ITEMS PRESENT.
402 ITEM 'A' IS A '0' POINTER IN THE SECONDARY FILE.
403 END OF LIST.
404 'A' ITEMS SELECTED.
405 'A' ITEMS LISTED.
406 ITEM COUNT • a, BYTE COUNT • b, AVG. BYTES/ITEM - c

AVG. ITEMS/GROUP - d STD. DEVIATION - e, AVG. BYTES/GROUP - f.
407 'A' ITEMS COUNTED.
408 ONE ITEM COUNTED.
410 A SYNONYM (Q-TYPE) FILE CANNOT BE SPECIFIED IN THIS STATEMENT.
411 'DICT' OR 'DATA' MUST BE SPECIFIED IN A CLEAR-FILE STATEMENT.

A-4

88A00757A

ID No. Message

412 INSUFFICIENT DISK SPACE AVAILABLE FOR THE FILE.
413 THE FILE NAME ALREADY EXISTS IN THE MASTER DICTIONARY.
414 ILLEGAL OR MISSING MODIFIER USED IN DEFINING THE FILE AREA(S).
415 'A' EXISTS ON FILE.
416 RANGE ERROR IN MODULO OR SEPARATION PARAMETER.
417 FILE 'a' CREATED; BASE • b, MODULO • c, SEPAR • d.
418 FILE DEFINITION ITEM 'A' NOT COPIED~
419 THE SPECIFIED FILE CANNOT BE CLEARED OR DELETED.
420 DICTIONARY FILE DELETION CANNOT BE DONE WITHOUT DELETION OF

DATA-SECTION(S) FIRST.
421 STATISTICS OF a: TOTAL • b AVERAGE· c COUNT - d.
422 BYTE STATISTICS FOR: 'A' TOTAL • b AVERAGE· c ITEMS - d

CKSUM • e BITS· f.
423 TOTAL OF 'A' • 'B'.
424 FRAME ID: a DEVICE ADDRESS b UNIT NUMBER c CYLINDER

d HEAD e SECTOR f.
425 INVALID FRAME-ID REQUEST.
426 DATA FILE ALREADY EXISTS.
427 THERE IS NO DATA SECTION FOR THIS FILE.
428 'A' OBJECT POINTER NOT FOUND.
429 'A' PROGRAM OBJECT VERIFIES.
430 'A' PROGRAM OBJECT DOES NOT VERIFY.
432 A' ITEM-N~~ USED IN PROGRAM-FILE DICTIONARY, COMPILE ABORTED.
522 BLOCK-CONVERT FILE MISSING OR IMPROPERLY DEFINED.
524 THE LETTER 'A' IS NOT IN THE BLOCK-CONVERT FILE.
525 INPUT CHARACTER 'A' IS IMPROPERLY FORMATTED IN BLOCK-CONVERT FILE.
530 ALREADY LOGGED ON.
531 PROCESS ROADBLOCKED.
532 ILLEGAL USER ID.
533 LOGON SUCCESSFUL.
534 LOGOFF SUCCESSFUL.
535 ILLEGAL LINE NUMBER.
536 ALREADY LOGGED OFF.
550 A REQUIRED NUMERIC PARAMETER IS MISSING OR INVALID.
552 ITEM 'A' HAS INVALID FORMAT.
654 ILLEGAL OUTPUT STRING LENGTH!
700 RUN-TIME F-CORRELATIVE ABORT.
701 INVALID FUNCTION CORRELATIVE DEFINITION: 'A'.
705 ILLEGAL CONVERSION CODE: 'A'.
706 TRANSLATE CONVERSION-CODE: 'A' IS ILLEGAL.
708 'A' CANNOT BE CONVERTED.
781 'A' ADDED.
782 'A' UPDATED.
783 'A' DELETED.
802 'A' ITEMS DUMPED.

A-5

8fA00757A

ID No. Message

803 'A' ITEM(S) LOADED.
80S 'A' ITEMS COPIED.
806 'A' ITEMS UPDATED.
807
850
851
852
853
854
861
900

901
911
990
992
993
999

1001
1002
1011

1050

1051

1100
1101
1102
1103
1104
1105
1106
1107·
1108
1109
1110
1111
1113
1114

1115
1116

1117

'A' ITEM(S) DELETED.
NODE NOT AVAILABLE.
SENDING ACCOUNT MISSING %%SELP%% VERB.
INVALID NODE ID.
UNEXPECTED MESSAGE RECEIVED.
NO LAN PROCESSOR ON THIS MACHINE.
NO LAN CONTROLLERS PRESENT.
PROBLEM HAS OCCURRED IN THE CREATE-ACCOUNT PROCESS.

PLEASE START OVER.
, A' ACCOUNT CREATED.
UNABLE TO RUN BINARY SAVE - OTHER USERS STILL LOGGED ON.
ERROR IN ABS-DUMP FRAME LIMITS SPECIFICATIONS.
'A' ITEM(S) RAVE BEEN RESTORED.
ACCOUNT NAME MUST BE SPECIFIED.
time date
CORE LINES PCBO WSSTART WSSIZE SYSBASE/MOD/SEP ~~FID AVAIL. OVERFLOW

AK BCD E F G H I
COUPLED SET SPECIFICATION ERROR.
WINDOW AND TAG CONNECTIVES NOT ALLOWED.
SYSTEM ERROR IN THE SELECTION PROCESSOR. TRY TO GENERATE A

REPRODUCIBLE CASE. CONTACT YOUR SYSTEM SUPPORT ANALYST.
THAT IS AN OBSOLETE BASIC VERB (RUN OR CATALOG). PLEASE OBTAIN THE

CURRENT DEFINITION.
THAT IS A PROGRAM CATALOGED UNDER PRE-R80 PROTOCOLS.

PLEASE RECATALOG THE PROGRAM.
START CODE LOCKED.
NULL PRINTER NUMBER.
PRINTER NUMBER TOO BIG.
NO FORM NUMBER.
ILLEGAL CHARACTER.
PRINTER MUST BE STOPPED.
FORM NUMBER TOO BIG - EXCEEDS 125.
TOO MANY PAGES IN THE PAGE SKIP - EXCEEDS 9.
NEGATIVE NUMBER.
TOO MANY OUTPUT QUEUES.
ILLEGAL PRINTER TYPE - MUST BE S.
ILLEGAL LINE NUMBER.
ILLEGAL SERIAL PRINTER NUMBER.
THE LINE WHICH YOU SPECIFIED IS BEING USED AS ANOTHER PRINTER ON THE

SYSTEM.
ALLOCATION ATTEMPTED ON UNINITIALIZED PRINTER.
THERE IS NO JOB ENQUEUED FOR OUTPUT ON THE FORMS YOU SPECIFIED,

THEREFORE ALIGNMENT IS IMPOSSIBLE.
YOUR ALIGN WAS JUST ABORTED BY SOMEONE. YOU MUST START THE ALIGN

PROCESS OVER.

A-6

ID No.

1118

1119

1121
1123
1127
1129
1130

1131

1132
1133
1134

1135
1140
1141

1143
1144
1145
1147
1148
1150
1160

1161
1162
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179

88A00757A

Message

THE PRINTER CONTROL BLOCK HAS BEEN INITIALIZED. CHECK FOR CORRECT
PRINTER FORM AND LPI.

YOU ARE ATTEMPTING TO START PRINTER 'A' ON LINE 'B', WHICH IS NOT
STOPPED.

YOU ARE IMPROPERLY LOGGED ON.
LINE # 'A' IS ALREADY LOGGED ON.
ILLEGAL PRINTER NUMBER. MUST BE 0-19, INCLUSIVE.
'A' FORM QUEUE ELEMENTS UNLINKED.
PRINTER LIST ELEMENTS: date time

STAT LK LN CURPOS BEGFID CP FO
FRMS DATE TIME ACCT

PRINTER LIST ELEMENTS: date time
I STAT LK LN STATUSES CP FO
FRMS DATE TIME ACCT

'A' QUEUE ELEMENTS.
'A' FRAMES IN USE.
PRINTER ASSIGNMENTS:
PRINTER OUTPUT QUEUES PAGE DEV OR STATUS
TYPE NUMBER SKIP LINE #
FORM QUEUE 'A'.
YOUR OPEN FILES WERE CLOSED.
LINE STATUS COP FORM

IES #
ALIGN TERMINATED; PRINTER STOPPED.
TAPE NOT AVAILABLE AT THIS TIME.
ILLEGAL SPECIFICATION NUMBER 'A'.
TAPE NOT ATTACHED.
TAPEOUT TERMINATED BECAUSE OF ASSIGN T OR NULL ASSIGNMENT.
THERE IS SOMETHING WRONG WITH THE SYNTAX OF YOUR VERB'S OPTIONS.
YOUR OUTPUT SPECIFICATION IS NO OUTPUT.

REASSIGN YOUR LINE IF YOU WISH TO OUTPUT A HOLDFILE.
END OF REQUESTED PRINT FILES.
END OF PRINT FILE CONTROL BLOCK.
ILLEGAL PRINTER NUMBER. MUST BE BETWEEN 0 AND 7 INCLUSIVE.
PRINTER # 'A' SET TO STOP +.
AND IS INACTIVE.
BUT IS STILL ACTIVE.
PRINTER # 'A' CONTROL BLOCK HAMMERED, CLEARED TO NULL.
IS UNALLOCATED.
PARALLEL PRINTER # 'A' HAS BEEN DELETED.
SERIAL PRINTER # 'A' HAS BEEN DELETED, AND ITS PROCESS SENT TO LOGON.
PRINTER # 'A' IS INACTIVE.
JOB BEING OUTPUT ON PRINTER # 'A' IS NOT YOUR PRINT FILE.
JOB ABORTED ON PRINTER # 'A'.

A-7

ID No.

1180
1181
1182
1183

1184
1200
1201
1202
1203
1204
1209

1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1222
12·29
1230
1231
1232
1233
1234
1235
1239
1240
1241
1242
1243
2003
2004
2401
2402
2403
2404
2405
2406

88A00757A

Message

PRINT FILE U 'A' WAS NOT UNLINKED BECAUSE IT IS BEING OUTPUT.
PRINT FILE' 'A' WAS NOT UNLINKED BECAUSE IT IS UNUSED.
PRINT FILE n 'A' WAS NOT UNLINKED BECAUSE IT IS NOT SPOOLED.
PRINT FILE # 'A' WAS NOT CREATED ON THE ACCOUNT ONTO WHICH YOU ARE NOW

LOGGED.
PRINT FILE' 'A' WAS UNLINKED AND IS AVAILABLE AS A HOLD FILE.
THE SPOOLER IS INACTIVE.
THE SPOOLER IS ACTIVE.
NEEDS TO START PRINTERS.
NEEDS TO LOG DISK ERRORS.

CONTROL BLOCK FOR PRINTER # 'A' IS IN AN AMBIGUOUS STATE.- DELETE THE
PRINTER FROM THE SPOOLER SYSTEM.

PRINTER' 'A' IS +.
UNALLOCATED.
SERIAL +
PARALLEL +
, INACTIVE +
, ACTIVE +
, STOPPED +
, AND ON LINE
, AND OFF LINE
••• THE PRINTER CABLE IS OFF • •••
••• THERE IS NO CONTROLLER FOR THIS PRINTER • • ••
THE PRINTER IS RUNNING ON LINE 'A'.
PRINT FILE BEING OUTPUT IS ELEMENT 'A, A' +.
AN OPEN FILE FOR LINE U 'A'.
CLOSED FILE FOR LINE' 'A'.
GENERATED ON ACCOUNT 'A' +.
, WHICH IS a FRAMES LONG.
AND THE OUTPUT IS CHOKED.

NO OUTPUT QUEUES ASSIGNED TO PRINTER.
ASSIGNED OUTPUT QUEUES: 'A'+.
,'A' +.
,'A' +.
NUMBER OF INTER-JOB PAGES TO EJECT IS 'A'.
ON!
OFF!
EXECUTE INITIALIZED. 'A' WORKSPACES PRE-ALLOCATED.
THE NUMBER OF WORKSPACES TO BE ALLOCATED MUST BE IN THE RANGE 0-250.
THE NUMBER OF NESTED LEVELS MUST BE IN THE RANGE 0-15.
THE EXECUTE-CONTROL FILE (IN SYSTEM) MUST HAVE A D/CODE OF "DCY".
THE EXECUTE-CONTROL FILE (IN SYSTEM) CANNOT BE OPENED.
THE MAXIMUM NUMBER OF NESTED EXECUTE STATEMENTS HAS BEEN EXCEEDED.

A-8

ID No.

B1
B10
B11
B12
B13
B14
B15
B16
B17
B18
B19
B20

B21
B24
B25
B27
B28
B29
B30
B31
B32
B33

B34
B35
B36
B42
B100
B101

B102
B103
B104
B105
B106

88A00757A

PICK/BASIC E~OR MESSAGES

Message

RUN-TIME ABORT AT LINE 'A'.
LINE 'A' VARIABLE HAS NOT BEEN ASSIGNED A VALUE; ZERO USED.
LINE 'A' TAPE RECORD TRUNCATED TO TAPE RECORD LENGTH.
LINE 'A' FILE HAS NOT BEEN OPENED.
LINE 'A' NULL CONVERSION CODE IS ILLEGAL; NO CONVERSION DONE.
LINE 'A' BAD STACK DESCRIPTOR.
LINE 'A' ILLEGAL OPCODE: 'C'.
LINE 'A' NON-rWMERIC DATA WHEN NUMERIC REQUIRED; ZERO USED.
LINE 'A' ARRAY SUBSCRIPT OUT-OF-RANGE.
LINE 'A' ATTRIBUTE NUMBER LESS THEN -1 IS ILLEGAL.
LINE 'A' ILLEGAL PATTERN.
LINE 'A' COL1 OR COL2 USED PRIOR TO EXECUTING A FIELD STATEMENT; ZERO

USED.
LINE 'A' HATREAD: NUMBER OF ATTRIBUTES EXCEEDS VECTOR SIZE.
LINE 'A' DIVIDE BY ZERO ILLEGAL; ZERO USED.
PROGRAM 'c' HAS NOT BEEN CATALOGED.
LINE 'A' RETURN EXECUTED WITH NO GOSUB.
LINE 'A' NOT ENOUGH WORK SPACE.
CALLING PROGRAM MUST BE CATALOGED.
LINE 'A' ARRAY SIZE MISMATCH.
LINE 'A' STACK OVERFLOW.
LINE 'A' PAGE HEADING EXCEEDS MAXIMUM OF 1400 CHARACTERS.
LINE 'A' PRECISION DECLARED IN SUBPROGRAM 'C' IS DIFFERENT FROM THAT

DECLARED IN THE MAINLINE PROGRAM.
LINE 'A' FILE VARIABLE USED WHERE STRING EXPRESSION EXPECTED.
'MO' INVALID OBJECT OF 'CLEARFILE'; IGNORED.
SYSTEM DICT ILLEGAL OBJECT OF 'CLEARFILE'j ABORT.
NOT ENOUGH DESCRIPTOR SPACE.
LINE 'A' COMPILATION ABORTED: NO OBJECT CODE PRODUCED.
LINE 'A' MISSING "END". "NEXT". "WHILE". "UNTIL". "REPEAT" OR "ELSE";

COMPILATION ABORTED, NO OBJECT CODE PRODUCED.
LINE 'A' BAD STATEMENT.
LINE 'A' LABEL 'C' IS MISSING.
LINE 'A' LABEL 'C' IS DOUBLY DEFINED.
LINE 'A' 'C' HAS NOT BEEN DIMENSIONED.
LINE 'A' 'C' HAS BEEN DIMENSIONED AND USED WITHOUT SUBSCRIPTS.

A-9

ID No.

B107
B10S
B109
BllO
Bill
Bl12
Bl13
Bl14
BllS
Bl16
Bl17
Bl18

Bl19
B120
B12l
B122
B123
B124
B12S
B126
B127
B128
B1S4
B199
B209
B2l0
BSSO
BSS3
BSS4

88A007S7A

Message

LINE 'A' "ELSE" CLAUSE MISSING.
LINE 'A' "NEXT" STATEMENT MISSING.
LINE 'A' VARIABLE MISSING IN "NEXT" STATEMENT.
LINE 'A' 'END' STATEMENT MISSING.
LIN""E '-A- "UNTIL" OR "'WnlLE" MISSING IN "LOOP" STATE.\,fENT.
LINE 'A' "REPEAT" MISSING IN "LOOP" STATEMENT.
LINE 'A' TERMINATOR MISSING.
LINE 'A' MAXIMUM NUMBER OF VARIABLES EXCEEDED.
LINE 'A' LABEL 'c' IS USED BEFORE THE EQUATE STATEMENT.
LINE 'A' LABEL 'c' IS USED BEFORE THE COMMON STATEMENT.
LINE 'A' LABEL 'c' IS MISSING A SUBSCRIPT LIST.
LINE 'A' LABEL 'c' IS THE OBJECT OF AN EQUATE STATEMENT AND IS

MISSING.
LINE 'A' WARNING - PRECISION VALUE OUT OF RANGE (IGNORED).
LINE 'A' WARNING - MULTIPLE PRECISION STATEMENTS (IGNORED).
LINE 'A' LABEL 'c' IS A CONSTANT AND CAN NOT BE WRITTEN INTO.
LINE 'A' LABEL 'c' IS IMPROPER TYPE.
PROGRAM CONTAINS AN EQUATE WHICH CANNOT BE RATIONALIZED.
LINE 'A' LABEL 'c' HAS LITERAL SUBSCRIPTS OUT OF RANGE.
LINE 'A' LABEL 'c' HAS A JUMP GREATER THAN 32K BYTES.
OBJECT CODE EXCEEDS 6SK.
OBJECT CODE AND SYMBOL TABLE EXCEED 6SK.
LINE 'A' LABEL 'c' EQUATED ARRAY SUBSCRIPT OUT OF RANGE.
FOR STATEMENT WITH NO NEXT STATEMENT.
FORMAT ERROR IN SOURCE FILE DEFINITION.
LINE 'A' FILE IS.UPDATE PROTECTED.
LINE 'A' FILE IS ACCESS PROTECTED.
NODE NOT AVAILABLE.
UNEXPECTED MESSAGE RECEIVED.
NO LAN PROCESSOR ON THIS MACHINE.

A-IO

88A00757A

PICK/ACCU-PLOT ERROR MESSAGES

ID No. Message

G90 THE ACCUPLOT ACCOUNT HAS BEEN INITIALIZED.
THE FRAME ASSIGNMENTS NEED TO BE VERIFIED.
THE MODES NEED TO BE LINKED.
THE DEVICES NEED TO BE LINKED.
THE MODES NEED TO BE LOADED.

G91 THE ACCUPLOT FRAMES HAVE BEEN ASSIGNED.
THE MODES NEED TO BE LINKED.
THE DEVICES NEED TO BE LINKED.
THE MODES NEED TO BE LOADED.

G92 THE ACCUPLOT MODES HAVE BEEN LINKED.
THE DEVICES NEED TO BE LINKED.
THE MODES NEED TO BE LOADED.

G93 THE ACCUPLOT MODES AND DEVICES HAVE BEEN LINKED.
THE MODES NEED TO BE LOADED.

G94 ACCUPLOT IS OPERATIONAL.

A-ll/A-12

88A00757A

ASCII codes B
The ASCII codes used by the Pick System are:

DEC Hex Character DEC Hex Character

------+---------+------------------+------------+---------+------------
0 0 NULL 36 24 $
1 1 SOH 37 25 %
2 2 SIX 38 26 &
3 3 E'l'X 39 27
4 4 EOT 40 28 (
5 5 ENQ 41 29)
6 6 ACK 42 2A ..
7 7 BEL 43 2B +
8 8 Bs1 44 2C
9 9 HT1 45 2D

10 A LF1 46 2E
11 B VT1 47 2F /
12 C FF1 48 30 0
13 D CR1 49 31 1
14 E SO 50 32 2
15 F 51 51 33 3
16 10 DLE 52 34 4
17 11 DC1 53 35 5
18 12 DC2 54 36 6
19 13 DC3 55 37 7
20 14 DC4 56 38 8
21 .15 NAK 57· 39 9
22 16 SYN 58 3A
23 17 ETB 59 3B j

24 18 CAN 60 3C <
25 19 EM 61 3D •
26 1A SUB 62 3E >
27 1B ESC 63 3F ?
28 1C FS 64 40 @

29 1D GS 65 41 A
30 1E RS1 66 42 B
31 1F US 1 67 43 C
32 20 SPACE 68 44 D
33 21 69 45 E
34 22 70 46 F
35 23 II 71 47 G

B-1

1

2

88A00757A

DEC Hex Character DEC Hex Character

------+---------+-----------------+------------+---------+------------
72 48 I H I 104 68 I
73 49 I I I 105 69 I
74 4A I J I 106 6A I
-,.; I. 'D V I 107 6B I I j .. U ~" I

76 4C L I 108 6C I
77 4D M 109 6D
78 4E N 110 6E
79 4F O. 111 6F
80 50 P 112 70
81 51 Q 113 71
82 52 R 114 72
83 53 S 115 73
84 54 T 116 74
85 55 U 117 75
86 56 V 118 76
87 57 W 119 77
88 58 X 120 78
89 59 y 121 79
90 SA Z 122 7A
91 5B [123 7B
92 5C \ 124 7C
93 5D] 125 7D
94 5E 1\ 126 7E
95 SF 127 7F
96 60 ,
97 61 a
98 62 b
99 63 c 251 FB

100 64 d 252 FC
101 65 e 253 FD
102 66 f 254 FE
103 67 g 255 FF

For special use on LSI-11 and -12 terminals:
BS Cursor Backspace FF Cursor Forward
HT Cursor Tab CR Cursor Carriage Return
LF Cursor Down RS Cursor Home
VT Cursor UP US Cursor New Line

For special use by PICK:
SB Start buffer

SVM Secondary value mark (displays \)
VM Value mark (displays])
AM Attribute ~rk (displays 1\)

SM Segment mark (displays _)

B-2

h
i
j
k
1
m
n
0

p
q
r
s
t
u
v
w
x
y
z
{

}
1\1

DEL

SB2

SVM2

VM2
AM2
SM2

88A00757A

ZEBRA series firmware executives c
C.1 UTILITIES AND DIAGNOSTICS

This section describes the use of the General Automation ZEBP~ Utilities/
Diagnostics package in EPROM2, model numbers 70-01447A02 and 70-01447A04. The
invocation and operation of Utility/Diagnostic functions, and procedures for
the use of extended, non-resident functions are described.

C.1.1 OVERVIEW

The utilities and diagnostics programs are based upon a menu-driven system with
formatted input/output to the console terminal port A (CPU board, Figure C-1).
The resident portion resides in EPROM2 on the CPU board, starting address
$400000. Only the EPROM utilities will be covered in this section. Extended
non-resident portions may be loaded into memory, via serial port B (CPU board),
from cartridge tape or disk. The resident portion may operate with reduced
capabilities without the non-resident portion in memory. This resident portion
contains utilities necessary to load the non-resident portions, boot the
operating system, and save and restore the disk(s) on tape.

In addition, default responses are available in almost all cases and are
indicated by bracketing them with greater-than and less-than signs (i.e.,
<default value».

Additionally, valid ranges of responses are given if not self-evident,
generally assuming a minimum value of zero or one as appropriate (i.e.,
<=value).

The type of response may be a single character, a string of characters (leading
blanks ignored, blank delimiter or carriage return terminator), or a value in
either decimal format (16 bits maximum) or hexadecimal format (indicated in the
prompt by the dollar sign, which is not entered as part of the user response).

The format control characters are expressly designed for the Dialogue 80
terminal. Other terminals may be used; however, the display formatting for
other terminals is not provided at present.

C-l

88A00757A

C.l.2 OPERATION

The minimum hardware requirements for the operation of this package are powered
Hulti-Bus backplane. a fully operational CPU board, and a terminal (Dialogue 80
or equivalent) with the necessary cables. The assumption is made that the
onboard monitor (version A only) has been run and that the memory maps and
device initialization remain as set by the basic utility system. This minimum
system provides the resident features of the package. Extended or non-resident
features must be loaded into memory by a utility in the resident package before
they may be used (see Menu items #5. #6, and #7. Table C-l).

The extended features provide comprehensive status messages (Section C.l.3) as
well as the bulk of the functions. If an attempt to access these functions is
made before they are loaded. the user is notified. Since the program is still
under development, some functions listed in the menus may not be available.
The system detects this and notifies the user. The resident functions should
allow troubleshooting of at least one of the possible sources for extended
features loading.

When RESET is pressed, the sign-on message is sent to the console:

'GENERAL AUTOHATION ZEBRA RESIDENT UTILITIES - VERSION X.X. xxxx Kbytes of RAM'

The RO~1 resident version number is displayed, followed by the decimal number
of kilobytes of RAM memory. Note that the ROM version number must match the
version number of the extensions in the portion preceding the decimal point.

After the sign-on message is displayed, bit 0 (pins land 2) of connector J2
on the ZEBRA CPU board (Figure C-l) is tested. If no jumper is installed, then
the utilities are entered. If a jumper is installed between pins land 2, then
the automatic boot takes place, first displaying the message:

'Beginning automatic boot of operating system'

This reads in the PICK or XENIX operating system loader and executes it.
(Refer to Section 2.0 of this document.) If the boot fails, the disk status is
displayed and the utilities are entered, so that diagnostics can be selected
for anaylsis of the failure.

The Utilities Diagnostics package is invoked via the RESET button. Exit from
the Diagnostics package to the basic utility system is either by 'QUIT'ing from
the first (top) level menu or by generating a break from the terminal (control
BREAK on the Dialogue 80 terminal). Return from the basic utility system to the
Diagnostics package can be accomplished via the 'G400000' command.

C-2

EXECUTIVE
(OR MONITOR)

EPROM 1

DIAGNOSTIC
EPROM 2

PORTS
Aaa
I

88A00757A

AUTOBOOT
JUMPER

Figure C-l. ZEBRA CPU Board

C-3

88A00757A

When the package is first entered, the user is prompted for the terminal type:

Dialogue 80 terminal or equiv. «y)/n):

The Main Menu is then displayed (Table C-1):

Table C-1. Main Menu Items

SYSTEM UTILITIES

1. QUIT
2. BOOT OPERATING SYSTEM
3. BACK-UP DISK TO TAPE
4. RESTORE TAPE TO DISK
5. LOAD EXTENSIONS FROM SERIAL PORT B
6. ,LOAD EXTENSIOtlS FROM DISK
7. LOAD EXTENSIONS FROM TAPE
8. SAVE EXTENSIONS TO'DISK
9. SAVE EXTENSIONS TO TAPE

10. CPU TESTS
11. CPU DIAGNOSTICS
12. ADES TESTS
13. ADES DIAGNOSTICS
14. COMMUNICATION TESTS
15. COMMUNICATION DIAGNOSTICS
16. CAPRO TESTS
17. CAPRO DIAGNOSTICS

The extended features (Menu item #8, #9, and #14 through #17) are automatically
disabled. Loading these features is always required when the package is first
entered, even if they already reside in memory. The message "PROGRAM NOT
LOADED" will appear if the extensions are not loaded and the feature is
selected.

The user is prompted for selection of a system utility as follows:

Enter program number «1»:

Note that the default is utility number 1 (QUIT). Defaults for all prompts
are indicated by bracketing with greater-than and less-than signs. All prompts
will terminate with a colon (:), and user input will be ignored until this
character appears. Note that one character is buffered, but will not be echoed
until the prompt is displayed. The following subsections detail the operation
of each function available via the main menu. These functions may have
submenus; when this is the case, they are described. (Note: In some cases the
only submenu item may be "QUIT". This is temporary; the expansion of these
menus is planned.)

C-4

88A00757A

C.l.2.l Quit (Menu Item 1)

Returns the user to the basic utility system.

C.l.2.2 Boot Operating System (Menu Item 2)

Provides the initial loader for the PICK or XENIX operating system. One sector
is read from sector 0, cylinder 0, head a of disk unit 0 into memory. If this
operation is successful, program execution continues at the start of the
freshly loaded memory, which contains the operating system specific loader.

If unsuccessful, disk status is displayed and the user is given the opportunity
to retry the boot, otherwise, the main menu reappears. The ADES Diagnostics
may be used to determine and rectify the problem (Section C.l.2.l3).

C.l.2.3 Back-Up Disk to Tape (Menu Item 3)

Provides the means to make multi-volume (unlabeled) cartridge (1/4-inch) tape
backups from any of the four disks which may be connected to the ADES
controller. The user is prompted for the disk unit number and the size of the
disk is then determined. The number of 2K blocks to backup and approximate
number of tapes required are displayed, followed by a prompt for the tape unit
number. (You may use fewer than the number of tapes displayed to suit system
requirements.) The user is prompted to insert the next tape and hit the return
key, otherwise, the main menu reappears. The tape is retensioned and backup
continues until end of tape or completion of the backup. Tape is then rewound
causing a file mark to be written. The process continues until the backup is
complete.

If unsuccessful, disk and tape status are displayed and the user is given the
opportunity to retry the backup, otherwise, the main menu reappears. The ADES
Diagnostics may be used to determine and rectify the problems.

C.l.2.4 Restore Tape to Disk (Menu Item 4)

Provides the means to make multi-volume (unlabeled) cartridge tape restores to
any disk connected to the ADES controller. The user is prompted for the disk
unit number and the size of the disk is then determined. The number of 2K
blocks to restore and the approximate number of tapes required are displayed,
followed by a prompt for the tape unit number. Then, as required, the user is
prompted to insert the next tape and hit the return key, otherwise, the main
menu reappears. The tape is retensioned and then restoration continues until a
file mark or the completion of the restore. Tape is then rewound. The process
continues until the restore is complete.

If unsuccessful, disk and tape status are displayed and the user is given the
opportunity to retry the restore, otherwise, the main menu reappears. The ADES
Diagnostics may be used to determine and rectify the problem.

C-5

88A00757A

C.1.2.5 Load Extensions from Serial Port B (Menu Item 5)

This utility is intended for use only by programmers who are developing new
diagnostic extensions. It performs the most basic form of non-resident program
loading since serial port B is used, which is available on the CPU board
itself, and requires no additional hardware for the load other than a source of
serial data in Motorola'S' record format. No hardware or software handshaking
is required up to the maximum rate of 9600 baud. The user is given the option
to set the baud rate (default 9600) before the transfer. Other characteristics
are set as originally initialized by the basic utility system. The user may
exit after setting the baud rate but before the transfer is initiated, which
provides an alternate means of setting port B baud rate. If the user continues
with the download, type 1 through 3 records are input until a type 7 through 9
terminator record is received, or an input conversion error is detected. In
any case, the actual number of bytes downloaded will be displayed prior to
return to the main menu.

C.1.2.6 Load Extensions from Disk (Menu Item 6) .

Provides the fastest means of non-resident program loading froIn any disk
connected to the ADES controller. The user is prompted for the disk unit
number and the first sector, starting at sector 1, cylinder 0, head 0 is read
into memory. The revision number is verified, and if correct, the extensions
are loaded.

If unsuccessful, disk status is displayed and the user is given the
opportunity to retry the load or return to the main menu. The ADES Diagnostics
may be used to determine and rectify the problem.

C.1.2.7 Load Extensions from Tape (Menu Item 7)

Provides the backup means of non-resident program loading from any tape
connected to the ADES controller. Used to load new extensions from a
distribution or backup tape into memory and from there to disk via the SAVE
EXTENSIONS TO DISK utility. The user is prompted for the tape unit number, the
tape is rewound and the first block is read into memory. The revision number
is verified, and if correct, the remainder of the extensions are loaded.

If unsuccessful, tape status is displayed and the user is given the opportunity
to retry the load or return to the main menu. The ADES Diagnostics may be used
to determine and rectify the problem.

88A00757A

C.l.2.8 Save Extensions to Disk (Menu Item 8)

Saves extensions loaded into memory from another source onto any disk connected
to the ADES controller. The user is prompted for the disk unit number.

If unsuccessful, disk status is displayed and the user is given the
opportunity to retry the save or return to the main menu. The ADES Diagnostics
may be used to determine and rectify the problem.

e.l.2.9 Save Extensions to Tape (Menu Item 9)

Saves extensions loaded into memory from another source onto any tape connected
to the ADES controller. The user is prompted for the tape unit number and the
tape is retensioned. When the save is complete, tape is rewound.

If unsuccessful, tape status is displayed and the user is given the opportunity
to retry the save or return to the main menu. The ADES Diagnostics may be used
to determine and rectify the problem.

C.l.2.l0 CPU Tests (Menu Item 10)

Provides access to a submenu of CPU tests. These will continuously test
various CPU hardware blocks to verify the hardware and determine its
reliability over an extended period of time. The submenu for this feature is:

CPU TESTS

1. QUIT
2. RAM MEMORY
3. SEGMENT MAP
4. PAGE MAP
5. ALL

1. Quit - Returns the user to the main menu.

2. RAM Memory - Continuously and non-destructively exercises RAM by writing a
user-selected test pattern (default $FFFF) and its complement, in word
increments, throughout memory. The amount of memory tested is displayed.
The user is given the option of halting on an error. Entering any
character from the keyboard will terminate the test at the completion of
the current pass.

C-7

88A00757A

3. Segment Map - Continuously and non-destructively maps two megabytes of
logical address space into two megabytes of physical address space for each
context proceeding from context 0 to context 15, and within each context
from segment map entry 0 to segment map entry 63. The user is given the
option of halting on an error. Entering any character from the keyboard
will terminate the test at the completion of the current pass~

4. Page r~p - Continuously and non-destructively maps all pages as
non-accessed, non-used local memory. The user is given the option of
halting on an error. Entering any character from the keyboard will
terminate the test at the completion of the current pass.

5. All - Continously runs all the above tests in sequence until terminated by
any character from the keyboard or by halting on an error (if that option
has been selected).

C.1.2.11 CPU Diagnostics (Menu Item 11)

Provides access to a submenu of diagnostic functions that will test various CPU
hardware blocks for the purpose of troubleshooting. The submenu for this
feature is:

CPU DIAGNOSTICS

1. QUIT
2. RAM MEMORY
3. SEGMENT MAP
4. PAGE MAP
5. ALL

1. Quit - Returns the user to the main menu.

2. RAM Memory - Non-destructively verifies RAM by writing a user-selected
pattern (default $FFFF) and its complement, in word increments, throughout
memory. The amount of memory tested is displayed upon completion of the
diagnostic.

C-8

88A00757A

3. Segment Map - Non-destructively verifies segment mapping capability by
mapping two megabytes of logical address space into two megabytes of
physical address space for each context proceeding from context 0 to
context 15, and within each context from segment map entry 0 to segment map
entry 63.

4. Page Map - Performs a rudimentary non-destructive verification of the page
map by mapping all pages as non-accessed, non-used local memory.

5. All - Performs all the above diagnostic functions in sequence.

C.1.2.12 ADES Tests (Menu Item 12)

Provides access to a submenu of test functions that will continuously test
various ADES hardware blocks to verify the hardware and determine its
reliability over an extended period of time. The submenu for this feature is:

ADES TESTS

1. QUIT
2. DISK/TAPE EXERCISE

1. Quit - Returns the user to the main menu.

2. Disk/Tape Exercise - Exercises the ADES interface, controller, and the
specified disk and tape drive(s). This test is destructive of data on the
media and should only be perfomed after the disk is backed up and a scratch
tape inserted. Each tape drive must have a corresponding disk drive (same
unit number), but disk drives may be tested without tapes. The user is
prompted for the fill byte, ID byte, and maximum number of retries. Then
the user is prompted for disk unit O. (Default is <no> meaning tape only.)
If the user responds 'yes', the disk is to be tested and the user is
prompted to test the corresponding tape unit O. No tape unit is prompted
for if the disk unit is not to be tested. This process is repeated for
disk units 1, 2, and 3.

Note that if the utility extensions are not loaded, the message
"UNRECOGNIZED COMPLETION CODE" will appear. The message should be ignored.

C-9

88A00757A

The following is the test sequence:

1. Format disk pack(s).

2. Rewind tape(s).

3. Burst backup 255 2K blocks on tape(s).

4. Format track 0, head ° with complement of user fill byte on disk(s).

5. Rewind tape(s).

6. Burst restore 255 2K blocks on disk(s).

7. Read the first four sectors on track 0, head ° and compare with user fill
byte used to format disk(s).

Each operation is completed on each unit before the next operation is begun.
The unit number and operation are displayed before the operation is begun.

The completion code text is displayed after each operation. The program may
be halted at any time by pressing any key on the terminal keyboard. This
termination occurs only after the present operation is complete, thus in the
case of a format pack operation, several minutes may pass before the
termination is recognized. The character typed is otherwise ignored.

The total of each non-zero completion code is then displayed for each unit
along with the last defect map. The total number of transfer errors (transfer
count mismatch from format pack and read disk) and read compare errors (item 7)
are also displayed. Disk units not enabled will show no completion codes and
zero defects.

After the data on all units is displayed, the user has the option of
continuing or exiting the test.

C-IO

88A00757A

C.1.2.13 ADES Diagnostics (Menu Item 13)

Provides access to a submenu of diagnostic functions that will test various
ADES hardware blocks for the purpose of troubleshooting or disk maintenance
operations. Refer to ADES/GYPSY Interface (Appendix E) for additional
information on ADES Diagnostics. The submenu for this feature is:

ADES DIAGNOSTICS

1. QUIT
2. WRITE COMMAND
3. WRITE COMMAND QUICK
4. WRITE DATA
5. READ DATA
6. READ STATUS
7. READ STATUS QUICK
8. INITIALIZE DEFECT MAP
9. FORMAT PACK

10. VERIFY PACK

1. Quit - Returns the user to the main menu.

2. Write Command - Allows the user to issue any command to the ADES
controller. This command function is usually used for convenience, but
it may be used when no explicit functions are available. The user is
prompted for each command byte (default value is zero) and is given the
opportunity to abort the command before it is actually output to the ADES
controller. Since this function waits for all direct and transparent
operations to complete before issuing the new command, it may be classified
as a synchronous function. (All diagnostics are synchronous, except where
indicated.) Note that a READ DATA or WRITE DATA function may be required
to follow this function if the command requires data transfer. The READ
STATUS or READ STATUS QUICK function may be used to properly terminate the
operation.

3. Write Command Quick - This function is identical to the tTRITE CO~1AND
function described above except the command is issued regardless of the
present state of the ADES controller, and thus may be classified as an
asynchronous function. When used with READ STATUS QUICK, it may be used to
start a foreground (direct) task after issuing a background (transparent)
task.

C-ll

88A00757A

4. Wri te Data - This function is used after issuing a tlRITE COMMAND or WRITE
COMMAND QUICK, in order to fill a buffer with user data and output it to
the ADES controller. The user is prompted for the buffer size (maximum and
default is 4096 bytes), which must be an even hexadecimal value. Either
data presently in the buffer (from the last read or write) or new data may
be specified. New data is entered by specifying the number of words in a
pattern (default buffer size) and supplying that number of hexadecimal
words via the keyboard. This word pattern is then used to fill the
remainder of the buffer. This function will write data to the ADES
controller until 'busy' is removed, satisfying all data transfer requests
even if more or less than the buffer size. If the transfer count does not
match the buffer size, a warning is displayed indicating the actual number
of transfers. For this reason, this function may not be used for
bi-directional transfers (i.e,., FORMAT TRACK WITH FIFO DATA AND CRC
VERIFY) •

5. Read Data - This function is used after issuing a WRITE COMMAND or WRITE
COMMAND QUICK, in order to read data from the ADES controller into a
buffer. The number of bytes input (hexadecimal) is displayed followed by
eight lines of eight hexadecimal words each, which display the contents of
the buffer. The next block of 64 liords may be displayed by pressing the
carriage return. Once all the valid data has been displayed, blanks will
be displayed. The user has the option to review the data as many times as
required before leaving this function.

6. Read Status - This function allows the user to read the 15 ADES status
bytes. It is used in conjunction with the previously defined diagnostic
functions. If extended functions have been loaded, status byte 0 is
decoded and messages are displayed for each active bit, and the completion
code (status byte 1) is displayed as a message. Since this function waits
for all direct and transparent operations to complete before reading
status, it may be classified as a synchronous function. Note that a READ
DATA or WRITE DATA function must be used before this function if the
command requires data transfer.

7. Read Status Quick - This function is identical to the READ STATUS function
described above except that status is read regardless of the present state
of the ADES controller. It may thus be classified as an asynchronous
function.

C-12

88A00757A

8. Initialize Defect Map - This function initializes the last few cylinders
on the selected disk connected to the ADES controller. These cylinders
are used by the ADES controller for the disk defect map. After the user
enters the ID byte to be used, the command is issued and the defect map is
read into the buffer. This takes approximately 10 seconds for a 35M byte
disk after the disk has been sequenced up. Status is then read and the
applicable registers are displayed. If the completion code indicates a
fatal error, the function terminates at this point with an error message.
Otherwise, the user is prompted to continue and the total defect count is
displayed. If there were no defects, the function then terminates. If
defects were found, the number of defects per head is displayed followed
by a ten line listing of the defect head, cylinder, sector (displays ALL
for track defects), and the alternate head, cylinder and sector. If more
than ten defects were found, pressing the return key causes the next ten
defects to be displayed, and so on. When all defects have been displayed,
the user has the option to review the list from the start. Before
exiting, the ADES controller is reset.

9. Format Pack - This function formats all but the last few cylinders on the
selected disk. The user supplys the fill and ID bytes and the maxilnun
number of retries, after which the command is issued and the defect map is
read into the buffer. This takes approximately 7 minutes for a 35M byte
disk after the disk has been sequenced up. The remainder of this
function is identical to the INITIALIZE DEFECT MAP function.

10. Verify Pack - This function verifies all cylinders on the selected disk.
This takes approximately 35 seconds for a 35M byte disk after the disk has
been sequenced up. The remainder of this function is identical to the
INITIALIZE DEFECT MAP function.

Submenu Item

8.
9.

10.

INITIALIZE
FORMAT
VERIFY

DISK TIMING

20MB

5 sec.
4 min.

30 sec.

35MB

10 sec.
7 min.

35 sec.

C-13

70MB

13 sec.
12 min.
70 sec.

158MB

70 sec.
23 min.
90 sec.

88A00757A

C.1.2.14 Communication Tests (Menu Item 14)

This extended function provides access to a submenu of test functions that will
continuously test various multi-port communications controller hardware blocks
in order to verify the hardware and test its reliability over an extended
period of time. The submenu for this feature is:

1. QUIT

1. Quit - Returns the user to the main menu.

C.1.2.1S Communication Diagnostics (Menu Item 15)

This extended function provides access to a submenu of diagnostic functions
that will test various multi-port communications controller hardware blocks for
the purpose of troubleshooting. The submenu for this feature is:

1. QUIT

1. Quit - Returns the user to the main menu.

C.1.2.16 CAPRO Tests (Menu Item 16)

This extended function provides access to a submenu of test functions that will
continuously test various CAPRO magnetic tape controllers and drive hardware
blocks in order to verify the hardware. and test its reliability over an
extended period of time. The submenu for this feature is:

1. QUIT

1. Quit - Returns the user to the main menu.

C.1.2.17 CAPRO Diagnostics (Menu Item 17)

This extended function provides access to a submenu of diagnostic functions
that will test various CAPRO magnetic tape controllers and drive hardware
blocks for the purpose of troubleshooting. The submenu for this feature is:

1. QUIT

1. Quit - Returns the user to the main menu.

C-14

88A007S7A

C.l.3 PROCEDURE

To follow this procedure, you must have model 70-01447A ROM which requires
revision H or higher of the PIa GYPSY interface adapter board.

C.l.3.l Loading Disk from 1/4" Tape

The following steps should be followed when loading a new operating system from
tape:

1. Initialize Defect Map - Main Menu = 13, Submenu = 8.

2. Format Pack - Main Menu = 13, Submenu = 9.

3. Res tore Tape to Disk - }lai n Menu = 4.

4. Verify Pack - }lain ~lenu = 13, Submenu = 10.

C.1.3.2 Utility Extensions

The utility extensions can be provided on a separate tape or on the operating
system tape.

The user must load the extensions into memory from the main menu (item 6 or
7). If the extensions are provided on a separate tape, the user may load
extensions from tape (main menu = 7), and then save extensions to disk (main
menu =- 8).

At this time, the only feature in the extensions is a description of the
"status byte" and "completion code" (see Sections C.1.4.1.1 and C.1.4.l.2),
with the ADES messages. The Communication and CAPRa tests and diagnostics
functions now only have one submenu item, "QUIT".

C-lS

88A00757A

C.1.3.3 ZEBRA 1500 Winchester Disk (RODIME) Initialization

This procedure is necessary to record the characteristics of a 5-1/4"
Winchester disk prior to any other operation. This procedure is necessary only
when the drive is first placed in service and will normally be performed by
General Automation when the system is assembled.

1. POWER UP the machine.

2. DEPRESS RESET

(Jumper J2 Pin 1-2 not installed on CPU board).

3. After that, CRT will display:

"GENERAL AUTO~1ATION ZEBRA UTILITIES-VERSION 3.0 256K BYTES OF RAN

DIALOGUE 80 TERMINAl or equivalent (Y or N)

TYPE: Y [CR]

(The terminal will display a menu and request for entry.)

4. TYPE: 13 [CR] (ADES DIAGNOSTICS)

(Now, a new menu (Diagnostics Menu) will be displayed.)

5. TYPE: 7 [CR] (READ STATUS QUICK)

(You must read STATUS-BO, COMPLETION=SO which means that a controller
reset has occurred.)

TYPE: N [CR]

6. TYPE: 2 [CR]

TYPE: (SEQ) Al
o

(WRITE CO~RtAND)

[CR]
[CR]

TYPE: [CR] until "ABORT COMMAND" message appears.

7. TYPE: 7 [CR] (READ STATUS QUICK)

(Must read STATUS=90, COMPLETION=OO).

TYPE: N [CR]

C-16

88A00757A

8. TYPE: 2 [CR] (WRITE COMMAND)

TYPE: A8 [CR]
0 [CR] (0 = first drive; 1 - second drive)
3 [CR]
2 [CR]

80 [CR]
0 [CR]
2 [CR]

81 [CR]
2 [CR]

81 [CR]
3 [CR]

20 [CR]
1 [CR]
0 [CR]
0 [CR]

[CR]

9. TYPE: 7 [CR] (READ STATUS QUICK)

(Must read STATUS-90, COMPLETION=OO)

TYPE: N [CR]

After the preceding steps have been completed, the operating system should be
loaded as described in Section C.1.3.1.

C-17

88A00757A

C.1.4 EXTENDED STATUS MESSAGES

This section summarizes messages which can result from extended features loaded
by main menu items #5, #6, and #7.

C.l.4.1 ADES Messages

C.1.4.1.1 SR 0 (Status Byte)

Bit Description

o Transparent command overrun
1 Direct command overrun
2 Transparent command complete
3 Transparent busy
4 Direct command complete
5 GYPSY busy
6 Not used
7 Data transfer request (active low)

C.1.4.1.2 SR 1 (Completion Code)

Code Description

00 Good execution
01 Good execution; seek retry after seek fault error
02 Good execution; seek retry after cylinder mismatch error
04 Good execution; data retry after 1D checksum error
05 Good execution; data retry after CRC error
08 Good execution; tape read operation complete,

terminated by file mark
13 Drive seeking
18 Rewind; position command in progress
19 Erase tape; position command in progress
1A Retention; position command in progress
1B Advance file mark command in progress
1e Transparent backup in progress
ID Transparent restore in progress
20 Disk drive not present
21 Seek fault
22 Cylinder mismatch error
23 Sector not found
24 1Dchecksum error
25 Data eRe error
28 Disk write protected

e-18

88A00757A

Code Description

30 Invalid GYPSY command
31 Invalid disk drive
32 Invalid head
33 Invalid cylinder
34 Invalid sector
36 Invalid drive 10
37 Invalid sector size
38 Disk (cylinder maximum) overrun
39 Disk fault
40 Bad sector detected by CRC verify routine
41 Defect exists
42 Defect map full
43 No defect map
44 No space for alternate
45 Defect not found
60 Tape drive not present
61 Tape cartridge write protected
62 File mark detected
63 Block in error not found
65 Hard data error
68 Cartridge not in place
69 End of tape
6A Tape not online
6B Reset occurred
6C Bottom of tape
6D No data detected
6E Illegal command (to tape drive from GYPSY)
70 Invalid command with tape write mode set
71 Invalid command with tape read mode set
73 Tape not available (currently being used in transparent command)
80 Controller reset has occurred
FO No command awaiting acknowledgement
F4 Transparent command not complete
F8 No transparent command in progress

C-19

88A00757A

C.1.4.1.3 SR 9 (Tape Exception Byte 0)

Code Description

o File mark detected
i
2
3
4

Block in error not found
Hard data error
End of tape
Tape write protected
Drive not online 5

6
7

Cartridge not in place
Exception flag (see other bits)

C.1.4.1.4 SR A (Tape Exception Byte 1)

Code Description

o Tape reset has occurred
1 Not used
2 Not used
3 Beginning of tape
4 Not used
5 No data detected
6 Illegal command
7 Exception flag (see other bits)

C-20

88A00757A

C.2 1500 - 5500 FIRMWARE EXECUTIVE

The ZEBRA 1500 through 5500 Series CPU board is equipped with EPROMs (see
Figure C-1) containing the Firmware Executive. The Firmware Executive has a
set of commands to aid the user in general operation, programming, system test,
and diagnostics.

NOTE

Command descriptions and display examples
in the following text are based upon July
1984 release of EPROMs 70A01561A01, A03, and
70A01562A02, A04.

Command descriptions will contain an underlined portion of keywords (Section
C.2.2), indicating the minimum abbreviation that will be recognized. Any
remaining portion of the keyword may be entered for clarity. Keywords are
displayed in uppercase, but may be entered in upper or lowercase.

Bracketed portions of command formats indicate optional arguments. In most
cases, these arguments may be entered in any order. A qualifier (byte, word,
or long word) is indicated with a '.q' which will default to word size. Only
long-word size is valid for address registers or register-addressed memory.
Spaces shown must be entered, but the number of spaces does not matter as long
as it is at least one. Multiple commands may be entered on one line when
separated by a semicolon (j). Interactive commands may only appear at the end
of a multiple command line. The backspace key performs a destructive back
space. The console bell will ring if an attempt is made to backspace past the
beginning of input. The rubout/delete key performs a destructive backspace to
the beginning of the input line. Commands will be listed in the order the
command processor searches for them.

C-21

88A00757A

C.2.1 EXECUTIVE INITIALIZATION

Following a RESET, the Executive establishes the initial operating environment.
During this process, configuration information is displayed, allowing the user
to verify that all system hardware has been detected and properly initialized.
The following example illustrates the display for a ZEBRA consisting of the
68000 CPU, one Winchester disk drive, one 1/4" cartridge tape drive and ten CPU
system ports.

GENERAL AUTOMATION EXECUTIVE - VER n.n, pIN 1561-X

CPU Type: 68000
Local RAM: 256 Kaytes
Disk Drive 0: 138,852 KBytes*
Disk Drive 1: No Drive Present*
Cartridge Tape Drive 0: Drive Present
Cartridge Tape Drive 1: No Drive Present
Ports Present: 10

Enter BOOT, BACKUP or RESTORE

Ok,

In this example, the AUTO BOOT jumper (CPU board connector J2, pins 1 and 2)
(see Figure C-1) is installed, causing automatic startup of the operating
system, which will generate additional display information. If the jumper was
not installed, or Disk Drive 0 was not detected, the Executive is entered and
the 'Ok,' prompt is displayed. If no key is depressed within 10 to 15 seconds,
AUTO BOOT will occur.

*Each disk must be ready before this message is written, and only one drive at
a time is sequenced up. On a system with 128MB drive, this could take up to 2
minutes per drive. Doing so would prevent a boot, backup, restore, load, etc.

C-22

88A00757A

C.2.2 1500 - 5500 EXECUTIVE COMMANDS

The Executive commands are:

BACKUP
BOOT
COMMANDS or HELP or ?
CONNECT
CONTEXT
DIAGNOSTIC
DUMP
ERASE
GOTO
LOAD
MEMORY
PAGE
REGISTER
RESET
RESTORE
RETENSION
REWIND
SAVE
SEGMENT
SRECORD
SYSTEM

C.2.2.l BACKUP Command

The BACKUP command provides for image backup of disk to 1/4" cartridge tapes
(CT) or 1/2" magnetic tapes (MT). The user will be prompted with the following
message:

Hount Tape N (y /n): _

N is the tape number to mount. If there is a problem with the tape, the user
will be prompted with an error message and asked again. For cartridge tape,
the completion code is displayed as a part of the error message. If there is a
disk error, it is fatal and the completion code will be displayed and the
monitor reentered. Note that the backup will not exceed the size of the disk,
no matter what the FOR count specified is.

C-23

88A00757A

C.2.2.1.1 1/4" Cartridge Tape BACKUP

The BACKUP command format for cartridge tape is as follows:

BACKUP [unit] CT [unit] [FROM sector] [FOR blocks]

The unit has a default value of zero. The FROM sector address (relative sector
number) has a default of zero (beginning of disk to backup). The FOR blocks is
the number of 2K byte (4 sector) blocks to backup. The default number of
blocks is the size of the disk. Note" that the backup will become truncated to
an integral multiple of the 4. Do not use this command to back up multiple
disk systems that do not meet this requirement. It is not possible to write a
partial block to the cartridge tape. Note that tapes are not automatically
rewound or erased. The user should "ERASE" all tapes before beginning this
procedure. Also, multiple disks may be backed up on one or more tapes.

C.2.2.1.2 1/2" Tape BACKUP

The BACKUP command format for 1/2" tape is as follows:

BACKUP [unit} HI [unit] [!!OM sector} [FOR sectors] [BLOCK bytes]

The unit has a default value of zero. The FROM sector address (relative sector
number) has a default of zero (beginning of disk to backup). The FOR sectors
is the number of sectors to backup. The default number of sectors is the size
of the disk. The BLOCK bytes is the number of bytes per tape block which may
not be greater than 8000 (hex) and must be a multiple of sector size. The
default is 4000 (hex) (16K bytes). A partial end block will be written for the
residual. If the tape is write protected, offline, or not ready, an error
message will be displayed and the user will be allowed to continue after
rectifying the problem.

Each tape begins with a standard 80-character PICK label, which contains the
block size, user label, and tape number. Note that the first tape is not
automatically rewound at the start nor the last tape at the end, in order to
allow multiple disk backups on one or more tapes. The user must REWIND the
first tape.

All tapes are terminated with two filemarks. Note that this program uses RAM
space for buffering and also relocates itself to RAM for maximum speed. This
means you cannot depend on the contents of RAM after the operation. The number
of recoverable write errors (retries) will be displayed after each tape has
been rewound. If after eight retries, the tape block cannot be successfully
written, an error message will be displayed with the contents of tape register
1. Note that 1/2" tape backup is two to four times faster than cartridge tape
and much more reliable.

C-24

88A00757A

C.2.2.2 BOOT Command

The BOOT command is similar to the load command, except BOOT begins execution
of the data after the load. The command format is as follows:

BOOT [DISK] [unit]
BOOT CT [unit]
!OOT MT [unit]

Additional text will appear as the operating system starts up. Note that the
boot-up default occurs from the first sector of disk 0 and reads in a single
sector operating system loader.

C.2.2.3 COMMANDS (1, HELP) Command

The COMMANDS (1, HELP) command displays the valid commands for a particular
version of the Executive, as the command set is selected as assembly time and
may vary from one application to another. The full command names are listed in
uppercase from left to right, top to bottom in the order they are searched for.
This allows the determination of the minimum abbreviation for a command. The
command format is as follows:

COMMANDS
1

The following is an example of the listing of the full standard command set.
Additional commands would probably appear at the end for a particular
application.

1 BOOT BACKUP COMMANDS CONNECT CONTEXT DIAGNOSTIC DUMP ERASE
GOTO HELP LOAD MEMORY PAGE REGISTER RESE RESET RESTORE
RETENSION REWIND SAVE SEGMENT SRECORD SYSTEM

Note the RESE command. This command would result in a 'Not Found" , message.
This is because this command was included to force the full 'RESET' command to
be entered with no abbreviation. There might be other such instances of dummy
commands, depending on the application.

C-25

88A00757A

C.2.2.4 CONNECT Command

The CONNECT command provides for transparent communication between the console
and host ports. An optional termination string may be specified. Termination
will occur when the termination string or an enabled break condition is
received from the console or the host. The entire termination string is sent
to the destination before termination. The command format is as follows:

CONNECT [terminator]

C.2.2.5 CONTEXT Command

The CONTEXT command allows examination and modification of the Context
Register. The Context Register is a four-bit register that selects 1 of 16
unique sections of the Segment Map. If no hexadecimal context is entered, the
current context is displayed and a new context may be entered or, if nothing is
entered (return only), no change is made. If a context is entered when the
command is entered, the context is changed but not displayed. The command
format is as follows:

CONTEXT [number]

C.2.2.6 DIAGNOSTIC Command

The DIAGNOSTIC command invokes the diagnostics package. Refer to ZEBRA
Hardware Reference Manual, 88A00775A, for menu and descriptions of
diagnostics. The command format is as follows:

DIAGNOSTIC

Entry of the top menu item {QUIT)·of Diagnostics returns control to the
Executive.

C-26

88A00757A

C.2.2.7 DUMP Command

The DUMP command will display in hex and ASCII format 16 bytes per line. The
hex format may be either byte, word, or long word (default word). If the
terminating condition is not entered, 16 lines (256 bytes) are displayed
followed by a colon (:) each time the return key is entered. Any other
character followed by a return will terminate the command. The terminating
condition may be either FOR a count or UNTIL an address. The command format
is as follows:

DUMP[.q]address
DUMP[.q]address FOR count
DUMP[.q]address UNTIL address

An example of a word display line format follows:

00001000 4455 4D50 2057 4F52 4420 4C49 4E45 ODOC DUMP WORD LINE •••

Periods are disp,layed for the non-printing ASCII codes. The display always
consists of 16 bytes of data per line.

C.2.2.8 ERASE Command

The ERASE command will erase data from a 1/4" cartridge tape. The tape will
then be positioned at BOT. The command format is:

!RASE [CT]

This command is valid only for cartridge tape.

C.2.2.9 GOTO Command

The GOTO command is used to initiate a user program under Executive control.
If the program has not already been run and terminated by the Executive
normally, tne address must be specified. Otherwise, the state at the time of
the program break is restored. After reset, the Executive initializes the user
registers to all ones (l~s), the supervisor and user stack pointers to the top
of local memory, and the status register with 2700 hex. The command format is
as follows:

GOTO [address]

C-27

88A00757A

C.2.2.l0 LOAD Command

The LOAD command is used to read data into memory from disk, 1/4" cartridge
tape (CT), or 1/2" magnetic tape (Ml'). The command format is as follows:

LOAD [DISK] [unit] [TO address] [FROM address] [FOR sectors]
~OAD CT [unit] [10 address] [FOR blocks] -
~OAD MT [unit] [10 address] [!£R bytes] [BLOCK bytesj

The unit has a default value of zero and the default device is the disk. The
TO address has a default of 31000 (hex). The address is set in the user's 'PC'
register so that the start of the loaded memory may be jumped to with a simple
GOTO command. The FROM sector address has a default of zero and is only
applicable to disk. The FOR sectors/blocks/bytes is the number of sectors/
blocks/bytes to load. Block size is defined as the block size of the source
device, which is one disk sector (512 bytes) or CT block (2048 bytes) or MT
bytes. It is possible to read a partial block into memory only from MI. The
default FOR count is one (1) except for MT, whose default is to the next
filemark. Magnetic tapes must have standard PICK labels. Tapes must be
rewound or retensioned before use.

C.2.2.ll MEMORY Command

The MEMORY command is used to display and modify memory data anywhere in the
address space in byte, word, or long-word format. If the address is not
entered, zero (0) is assumed. The default size is word. The command format is
as follows:

!:!EMORY[.q] [address]

This is an interactive command. The address and value are displayed and the
processor waits for user input. If no value is entered, the location is not
changed and the next address and value are displayed. If a slash (/) is
entered without a value or after a value, the previous address and value are
displayed. If a comma (,) is entered without a value or after a value, the
present address and value are redisplayed. If a period (.) is entered without
a value or after a value, the command terminates. If an at sign (@) is entered
without a value or after a value, the long word at the present address is the
next address. A qualifier may follow the at sign. An example of the display
format follows:

Ok, ~ORY.L 2000
00002000-001F0800:
00002004-142135F9:
00002000-001FOOOO:
0OO02000-001FOOOO:
001FOOOO-17: •

Ok,

OOlFOOOO
/
,
@.B

C-28

88A00757A

C.2.2.12 PAGE Command

The PAGE command allows examination and modification of the Page }1ap. If the
page number is not part of the command, page zero (0) is assumed. Each page is
displayed and the processor then waits for console input. If a value is
entered, that value is stored and the next page is displayed. If nothing is
entered (return only), no change is made to the data. If a period (.) is
entered, the processor is exited. If a period is entered after a value, the
processor is exited after the new value is stored. If a slash (/) is entered,
the previous page is displayed. If a slash is entered after a value, the
previous page is displayed after the value is stored. If a comma (,) is
entered, the same page is displayed. If a comma is entered after a value, the
page is displayed after the value is entered. An example of the command and
its effects follows:

Ok, PAGE 3DE
Page 3DE-21DE, L-IEFOOO, XX, Multibus Mem, P-OEFOOO:
Page 3DF-21DF, L-IEF800, XX, Multibus Mem, P~OEF800:
Page 3EO-FOOO, L-IFOOOO, UD, Multibus I/O, P~OOOOOO:

Ok,

In the above example, the address and contents of the page are displayed. The
'L-' displays the associated logical memory address. Note that this logical
address actually corresponds to the segment map physical address. In the first
two lines, the 'XX' indicates that the 'Used' and 'Dirty' bits are false, but
in the third line they are true (UD), indicating that that page has been
written to. Next, the type of memory assignment is displayed. Finally, the
'P-' displays the physical address of that memory assignment.

C.2.2.13 REGISTER Command

The REGISTER command is used to display or alter the contents of the user
registers. If no register is entered, all registers and exception information
are displayed and the command terminates. If a register name is entered, that
is the first register displayed for modification. The command format is as
follows:

REGISTER [register]

This is an interactive command. The register and value are displayed and the
processor waits for user input. If no value is entered, the register is not
changed and the next register and value are displayed. If a slash (/) is
entered without a value or after a value, the previous register and value are
displayed. If a period (.) is entered without a value or after a value, the
command terminates. If an at sign (@) is entered without a value or after a
value, the long-word value in the register is used as the next address in the
MEMORY mode. A qualifier may follow the at sign. Exception information cannot
be altered. If the last register (PC) or first register (DO) is reached,
wraparound is performed.

C-29

88A00757A

An example of the display format follows:

Ok, REGISTER DO
DO~FFFFFFFF: 0/
PC-00002000: @.W
00002000-4E71: •

The registers displayed when no register name is entered include any special
registers as a result of an exception. The registers displayed also depend on
the processor type (68000 or 68010). The following is a list of all register
mnemonics:

00-07
AO-A6
A7
US
SR
PC
VO
SS
AA
OB
IB
IR

32-Bit Data Registers
32-Bit Address Registers
32-Bit Supervisor Stack Pointer
32-Bit User Stack Pointer
16-Bit Status Register
32-Bit Program Counter
16-Bit Vector Offset (68010 only)
16-Bit Special Status Register (Bus/Address Exception only)
32-Bit Access Address(Bus/Address Exception only)
16-Bit Output Buffer (68010 Bus/Address Exception only)
16-Bit Input Buffer (68010 Bus/Address Exception only)
16-Bit Instruction Register (Bus/Address Exception only)

C.2.2.14 RESET Command

The RESET command reinitializes the Executive. This is different from a
hardware reset. The purpose of this command is to reset the serial ports and
Executive variables without destroying the contents of memory. The command may
not be abbreviated. The command format is as follows:

RESET [DT] [PORTS] [VECTORS]

The DT option resets only the disk/tape (not 1/2" tape) subsystem. The PORTS
option resets the Executive serial ports. The VECTORS option reinitializes
the exception vector table. If no options are specified, a complete reset
is performed.

C-30

88A00757A

C.2.2.15 RESTORE Command

The RESTORE command provides for image restore of disk from 1/4" cartridge
tapes (CT) or 1/2" tapes (MT). The user will be prompted with the following
message:

Mount Tape N (y/n): _

N is the tape number to mount. After entry, the tape label will be displayed.
If there is a problem with the tape, the user will be prompted with an error
message and asked again. For cartridge tape, the completion code is displayed
as a part of the error message. If there is a disk error, it is fatal and the
completion code will be displayed and the Executive reentered. Note that the
restore will not exceed the size of the disk, no matter what the FOR count
specified is.

e.2.2.15.1 1/4" Cartridge Tape RESTORE

The RESTORE command format for cartridge tape is as follows:

RESTORE [unit] CT [unit] [10 sector] [FOR blocks]

The unit has a default value of zero. The TO sector address (relative sector
number) has a default of zero (beginning of disk to restore). The FOR blocks
is the number of 2K byte (4 sector) blocks to restore. The default number of
blocks is the size of the disk.

C.2.2.15.2 1/2" Tape RESTORE

The RESTORE command format for 1/2" tape is as follows:

RESTORE [unit] MT [unit] [10 sector] [FOR blocks] [BLOCK bytes]

The unit has a default value of zero. The TO sector address (relative sector
number) has a default of zero (beginning of disk to restore). The FOR blocks
is the number of blocks to restore. The default number of blocks is the size
of the disk. The BLOCK bytes is the maximum tape block size which may not be
greater than 8000 (hex) and must be a multiple of sector size. The default is
4000 (hex) (16K bytes). A partial end block will be read for the residual. If
the tape is offline or not ready, an error message will be displayed and the
user will be allowed to continue after rectifying the problem.

Each tape begins with a standard 80-character PICK label, which contains the
block size, user label, and tape number. Note that the first tape is not
automatically rewound at the start nor the last tape at the end, in order to
allow multiple disk backups on one or more tapes. The user must REWIND the
first tape.

C-31

88A00757A

If the tape number is incorrect or the block size too large, an error message
will be displayed and the Executive reentered. Note that this program uses RAM
space for buffering and also relocates itself to RAM for maximum speed. This
means you cannot depend on the contents of RAM after the operation. The number
of recoverable read errors (retries) will be displayed after each tape has been
rewound. If, after eight retries, the tape block cannot be successfully read,
an error message will be displayed with the contents of tape register 1.

C.2.2.16 RETENSION Command

The RETENSION command will retension the 1/4" cartridge tape. The tape will
then be positioned at BOT. The command format is:

RETENSION [unit] CT

This command is valid only for cartridge tape.

C.2.2.17 REWIND Command

The REWIND command will rewind the 1/4" cartridge tape or 1/4" mag tape. The
tape will then be positioned at BOT. The command format is:

REWIND [unit] CT or MT

C.2.2.18 SAVE Command

The SAVE command is used to write out to disk or cartridge tape data from
memory. The command format is as follows:

SAVE [DISK] [unit] [FROM address] [TO sector] [FOR sectors]
SAVE CT [unit] [FROM-address] [FOR blocks]
~VE MT [unit] [FROM address] [FOR bytes] [BLOCK bytes]

The unit has a default value of zero and the default device is the disk. The
FROM address has a default of 31000 (hex). The TO sector address has a default
of zero and is only applicable to disk. The FOR sectors/blocks/bytes is the
number of sectors/blocks/bytes to save. Block size is defined as the block
size of the destination device, which is one disk sector (512 bytes) or a CT
block (2048 bytes) or MT bytes. It is possible to write a partial block
from memory only to MT.

C-32

88A00757A

C.2.2.19 SEGMENT Command

The SEGMENT command allows examination and modification of the Segment Map. If
the segment number is not part of the command, segment zero (0) is assumed.
Each segment is displayed and the processor then waits for console input. If a
value is entered, that value is stored and the next segment is displayed. If
nothing is entered (return only), no change is made to the data. If a period
(.) is entered, the processor is exited. If a period is entered after a value,
the processor is exited after the new value is stored. If a slash (I) is
entered, the previous segment is displayed. If a slash is entered after a
value, the previous segment is displayed. If a slash is entered after a value,
the previous segment is displayed after the value is stored. If a comma (,) is
entered, the same segment is displayed after the value is entered. An example
of the command and its effects follows:

Ok, SEGMENT 20
Segment 20-F20, L-IOOOOO, S-rwx, U-rwx, P-IOOOOO:
Segment 21-F21, L-I08000, S-rwx, U-rwx, P-I08000:
Segment 22-F22, L-IIOOOO, S-rwx, U-rwx, P-IIOOOO:

Ok,

In the above example, the address and contents of the segment are displayed.
Note that the address and contents are for the present context. The 'L-'
displays the associated logical memory address. The 'Sa' and 'U-' display the
protection mode for the supervisor and user mode respectively (r • read access,
w - write access, and x • execution access). Finally, the 'P-' displays the
physical address that drives the page map.

C-33

88A0757A

C.2.2.20 SRECORD Command

The SRECORD command is used to load, via the host unit, standard Motorola'S'
record format absolute load modules. All Motorola record types are recognized.
An error will cause an error message to be displayed, but loading will continue
until terminated by the end record or a user break. It might be desirable to
copy host input to the console to see the records received. This is done ~ith
the 'HOST INPUT-console' command. If the rest of the command line is not null,
the remainder of the line is sent to the host. This might be used to initiate
the transfer. The command format is as follows:

SRECORD [text]

All three address size formats (16, 24, and 32) are recognized. Further, the
head record, record count record, and end record cause a message to be printed
to the console as shown in the following example:

Ok, SRECORD cat main.sav
Header Record Received: HDR
Records Read: 625
End Record, Bytes Read: 12542, Start Address: 00020000

Ok,

Note that the string 'cat main.sav' is sent to the host in order to initiate
the transfer. This particular example is typical of aXE NIX host. The start
address is stored in the user's program counter (PC).

C.2.2.2l SYSTEM Command

The SYSTEM command works the same as the REGISTER command with no arguments.
The register values displayed are those at the last exception when in the
Executive mode (user program not running). If there has been no exception,
nothing is displayed. Registers may not be altered. This function is mainly
used to determine the cause of Executive faults. The command format is as
follows:

SYSTEM

C-34

88A00757A

C.3 ZEBRA 700/750 FIRMWARE EXECUTIVE

The ZEBRA motherboard is equipped with EPROMs containing Executive and
Diagnostics firmware. The Firmware Executive has a set of commands to aid the
user in general operation, programming, system test. Diagnostics, which is
called by the Executive, invokes the testing of selected ZEBRA subsystem.

NOTE

Command descriptions and display examples in
this section are based upon Executive EPROMs
70A01563A01, 02 and Diagnostic EPROMs
70A01304A01, 02 shown in Figure C-2.

25·PIN
CONNECTOR

SERIAL I/O
CHANNEL 9·PIN
CONNECTORS 7201

MPSC

.. - IiI' .. _ ... _~I_ ... _III·.·· ... I) ~ •• ~ , ••••• ~,
~ · ~. e....... t->::.:·'. ~~.. ·

• '.: c... a , • , '.~ -•

o a·~Q.D·tm:j~-ca::o ~O •• ~ c!~IJ:~~: ril·===:::::), • • • ~ L!I
~~. .-.......,---- I

.. ;a;j CS!j I~ r;:::::=. ::: " I Ii ... :
•• '. :~. I~ ·r.;::==:::=>·,: ,.:.,
'.~ . ij~ ': -r;:::::t±:::::=iJ,: ,~
. ~ ~:;:;;.,~ . r
:.~ y;~ ., •• e. t

.-

.eu.

:.'"S .. ~~:O ' •. S.. .' UIID

• I'~ ~ • ' a~
~. wnnw ifnhi • • • oC> <s r ·se-o itS · ~ :1m5X: ~"'l'

• -A~" ~ ~.. n .~-: :; • .:......... ..: •• ~.: ~
l"l.ltlIU: ,,~ • ."..- .. ." "JJ~

Figure C-2. 700/750 Motherboard - 31P03322A03

C-35

MC68000L 10 (750)
MICROPROCESSOR

• MC68010L 10 (700)
• MICROPROCESSOR

J5

88A00757A

Underlined text, shown in interactive command examples, is generated by the
Executive. Keywords are displayed in uppercase, but may be entered in upper or
lowercase.

Bracketed portions of command formats indicate optional arguments. In some
cases, these arguments may be entered in any order. A qualifier (byte, word,
or long word) is indicated with a '.q' which will default to word size. Only
long-word size is valid for address registers or register-addressed memory.
Spaces shown must be entered, but the number of spaces does not matter as long
as it is at least one. Multiple commands may be entered on one line when
separated by a semicolon (;). Interactive commands may only appear at the end
of a mUltiple command line. The backspace key performs a destructive back
space. The console bell will ring if an attempt is made to backspace past the
beginning of input. The rubout/delete key performs a destructive backspace to
the beginning of the input line.

In commands referencing a SASI device, the DU (Device/Unit) specification is in
the form 'device,unit'. The device is the address of the particular SASI
controller and the unit is the Logical Unit Number (LUN) of the device attached
to that controller. Devices may have a number from 0 to 7 (default 0). The
range of logical unit numbers depends upon the controller. If only one number
is entered, it is assumed to be the unit. The DU specification must follow the
device specification (e.g., DISK, CD, CT).

C.3.l EXECUTIVE INITIALIZATION

Following a RESET, the Executive establishes the initial operating
environment. A sign-on message will then be displayed:

GENERAL AUTOMATION EXECUTIVE - VER n.n., pIN lS63-X

Enter BOOT, BACKUP or RESTORE

Ok,

"VER" identifies the latest release of the Executive; "nnnn" will be the amount
of RAM existing in the system. If no keyboard input is entered within 30
seconds following Ok, automatic boot (AUTO BOOT) will take place.

C-36

88A00757A

C.3.2 EXECUTIVE COMMANDS

Commands may be entered with an underlined portion of keywords, indicating the
minimum abbreviation that will be recognized. Any remaining portion of the
keyword may be entered for clarity. A summary of the Executive commands is:

BACKUP
BOOT
COMMANDS or HELP or ?
CONNECT
CONTEXT
DIAGNOSTICS
DUMP
ERASE
FORMAT
GO TO
LOAD
MEMORY
PAGE
REGISTER
RESET
RESTORE
RETENSION
REWIND
SAVE
SEGMENT
SRECORD
SYSTEM

C.3.2.1 BACKUP Command

The BACKUP command provides for image backup of disk to another disk (DISK),
1/4" cartridge tape (CT) or cartridge disk (CD). If removable media is used,
the user will be prompted with the following message:

Mount Cartridge N (yIn):

N is the cartridge number to mount. If there is an error, the error code and
logical address will be displayed and the Executive reentered. Note that the
backup will not exceed the size of the disk, no matter what the FOR count
specified is. For either fixed or cartridge disk, the first eight sectors will
be skipped as they contain information particular to that disk.

C-37

88A00757A

C.3.2.1.1 1/4" Cartridge Tape BACKUP

The BACKUP command format for cartridge tape is as follows:

BACKUP [unit] CT [unit] [DU device, lun] [FROM sector] [FOR sectors]

The unit has a default value of 0 for the source (disk) and 0 for the
destination (tape). The FROM sector address (relative sector number) has a
default of 8 (beginning of disk to backup). The FOR sectors is the number of
sectors to backup. The default number of sectors is the size of the disk.

C.3.2.1.2 Fixed or Cartridge Disk BACKUP

The BACKUP command format for fixed disk or cartridge disk is as follows:

BACKUP [unit] CD [unit] [DU device, lun] [FROM sector] [!O sector]
[FOR sectors]
BACKUP [unit] DISK [unit] [DU device, lun] [!!OM sector] [!O sector]
[~R sectors]

The unit has a default value of 0 for the source (disk) and 0 for the
destination (disk or cartridge disk). The FROM sector address (relative sector
number) has a default of 8 (beginning of disk to backup). The FOR sectors is
the number of sectors to backup. The default number of sectors is the size of
the disk.

C.3.2.2 BOOT Com.and

BOOT uses the same format as LOAD (Section C.3.2.1l), but will immediately
execute the loaded code upon completion.

C-38

88A00757A

C.3.2.3 COMMANDS (1, HELP) Command

The COMMANDS (1, HELP) command displays the valid commands for a particular
version of the Executive, as the command set is selected at assembly time and
may vary from one application to another. The full command names are listed in
uppercase from left to right, top to bottom in the order they are searched for.
This allows the determination of the minimum abbreviation for a command.. The
command format is as follows:

COMMANDS
?
HELP

The following is an example of the listing of the full standard command set.
Additional commands would probably appear at the end for a particular
application.

1 BACKUP BOOT COMMANDS CONNECT
FORMAT GOTO HELP LOAD MEMORY
RETENSION REWIND SAVE SEGMENT

CONTEXT DIAGNOSTIC
PAGE REGISTER RESE
SRECORD SYSTEM

DUMP ERASE
RESET RESTORE

Note the RESE command. This command would result in a 'Not Found'· , message.
This command was included to force the full 'RESET' command to be entered with
no abbreviation, THUS AVOIDING AN ACCIDENTAL SYSTEM RESET. There may be other
such instances of dummy commands, depending on the application.

C.3.2.4 CONNECT Command

The CONNECT command provides for transparent communication between the console
and host ports. An optional termination string may be specified. Termination
will occur when the termination string or an enabled break condition is
received from the console or the host. The entire termination string is sent
to the destination before termination. The command format is as follows:

CONNECT [terminator]

C.3.2.5 CONTEXT Command

The CONTEXT command allows examination and modification of the Context
Register. It is valid only for ZEBRA 700 systems containing an MMU board. The
Context Register is a four-bit register that selects 1 of 16 unique sections of
the Segment Map. If no hexadecimal context is entered, the current context is
displayed and a new context may be entered or, if nothing is entered (return
only), no change is made. If a context is entered when the command is entered,
the context is changed but not displayed. The command format is as follows:

CONTEXT [number]

C-39

88A00757A

C.3.2.6 DIAGNOSTIC Command

The DIAGNOSTIC command invokes the diagnostics package. Refer to ZEBRA
Hardware Referance Manual, 88A00775A, for menu and descriptions of
diagnostics. The command format is as follows:

DIAGNOSTIC

C.3.2.7 DUMP Command

The DUMP command will display in hex and ASCII format 16 bytes per line. The
hex format may be either byte, word, or long word (default word). If the ter
minating condition is not entered, 16 lines (256 bytes) are displayed followed
by a colon <:) each time the return key is entered. Any other character
followed by a return will terminate the command. The terminating condition may
be either FOR a count or UNTIL an address. The command format is as follows:

~UMP[.q]address

DUMP[.q]address FOR count
~UMP[.q]address UNTIL address

An example of a word display line format follows:

00001000 4455 4D50 2057 4F52 4420 4C49 4E45 ODOC DUMP WORD LINE ••

Periods are displayed for the non-printing ASCII codes. The display always
consists of 16 bytes of data per line.

C.3.2.8 ERASE Com.and

The ERASE command will erase data from a 114M cartridge tape. The tape will
then be positioned at BOT. The command format is:

!RASE [CT]

This command is valid only for cartridge tape.

C-40

88A00757A

C.3.2.9 FORMAT Command

The FORMAT command is used to configure and format the selected disk drive
connected to the OMTI disk controller. The command has two formats, one for
new disk types and one for known disk types.

FORMAT device [DISK CD] [unit] [WIDTH number] [PERIOD number]
--yMODE number] HEADS number CYLINDERS number [REDUCE number]

TYPE number SECTORS number [INTERLEAVE number]

FORMAT device unit MODEL number [modifiers]

The default unit is O. The step pulse width may be from 0 to FF. The default
step pulse width is 2 (microseconds). The step period may be from 0 to FF.
The default step period is 1 (50 microseconds). The step mode may be from 0 to
2. The default is 0 (buffer stepping). The number of heads may be from 1 to
7F. The number of cylinders may be from 1 to 7FFF. The cylinder at which to
reduce write current may be from 0 to FF. The default cylinder at which to
reduce _write current is 0 (no reduced current). The type may be from 0 to 7.
The number of sectors may be from 1 to 7F. The default interleave is 2. The
interleave must be less than the number of sectors.

Standard configurations for different manufacturers' disk models have the
following assignments:

Model Manufacturer Sectors Heads C~linders caEacit*
-0- IOMEGA BETA-5 52 -1- 94(7) 5,151,7 4

1 IMI 5018 32 6 306(6) 14,745,600
2 RODlME 202 32 4 320(6) 10,289,152
3 RODIME 202E 32 4 640(12) 20,578,304
4 RODIME 204E 32 8 640(12) 41,156,608

Defective track alternates are mapped to the last cylinders on the disk. the
number of reserved cylinders appears in parentheses after the number of
cylinders. The maximum number of data cylinders is the total cylinders minus
the reserved cylinders. The number of reserved cylinders is 2% of the number
of cylinders (rounded down) or 254 tracks, whichever is less.

If the model is specified first, its characteristics may be used for defaults
and new values substituted.

During formatting, the defective head and track numbers are displayed. When
formatting is completed, the number of defective tracks is displayed and the
user is prompted to enter additional tracks from the manufacturer's defect
list. The format of the response is defined as follows:

Add Defect (Head, Cylinder): [I] head cylinder

The user responds with the head and cylinder number of the additional defective
track. If the numbers are preceded with an exclamation point (I), they are
taken to be decimal. A null input will terminate the defect list and all
defective tracks are then remapped. After mapping, a 2048-byte configuration
table/defect map are written into the first sector on track 0, head O. The
format of the disk record is defined on the following page.

C-41

88A00757A

-------------+--------------
o 1 STEP WIDTH 1 STEP PERIOD \ 1

1------------+-------------\
2 I STEP MODE \ 3

\--------------------------\
4 \ HEADS PER DISK \ 5

1--------------------------1
6 1 CYLINDERS PER DISK i 7

1------------+-------------1
8 1 RED WR CYL \ TYPE 1 9

1---------+------------1
10 1 SECTORS PER TRACK 1 11

1-----------------1
12 1 INTERLEAVE 1 13

\-------------------------1
14 1 DATA CYLINDERS PER DISK 1 15

1------------- --I <-- BEGINNING OF MAP
16 1 DEFECT 0 1 17

1------ LOGICAL ---------1
18 1 ADDRESS 1 19

1--------------------------1
20 1 ALTERNATE 0 1 21

1------- LOGICAL ------1
22 1 ADDRESS 1 23

----------------------1
24 1 25

.
1

-------------------------1
DEFECT N 1

-------- LOGICAL ------1
ADDRESS 1

--------------------------1
ALTERNATE N 1

1------- LOGICAL ---------1
1 ADDRESS 1
1---------+------------1 <---- END OF MAP
1 E5 1 E5 1

1------------+-------------1
1 1

C-42

88A00757A

C.3.2.10 GOTO Command

The GOTO command is used to initiate a user program under Executive control.
If the program has not already been run and terminated by the Executive
normally, the address must be specified. Otherwise, the state at the time of
the program break is restored. After reset, the Executive initializes the user
registers to all ones (1's), the supervisor and user stack pointers to the top
of local memory, and the status register with 2700 hex. The command format is
as follows:

GOTO [address]

C.3.2.11 LOAD Command

The LOAD command is used to read in from disk or cartridge tape data into
memory. The command format is as follows:

LOAD [DISK] [unit] [DU device, lun] [TO address] [FROM address]
- [FOR sectors] --
LOAD CD [unit] [DU device, lun] [TO address] [FROM address] [FOR sectors]
~OAD CT [unit] [DU device, lun] [!O address] [FOR sectors] -

The default load device is the disk (default unit 0). The default cartridge
tape or disk unit is O. The TO address has a default of 8000 (hex). The
address is set in the user's "PC" register so that the start of the loaded
memory may be jumped to with a simple GOTO command. The FROM sector address
has a default of 8 and is only applicable to disk. The FOR sectors is the
number of sectors to load with default of 2.

NOTE: The BOOT command format is identical to the above, with display
of "BOOT" rather than "LOAD". BOOT will immediately execute
following completion of the LOAD.

C-43

88A00757A

C.3.2.12 MEMORY Command

The MEMORY command is used to display and modify memory data anywhere in the
address space in byte, word, or long word format. If the address is not
entered, zero (0) is assumed. The default size is word. The command format is
as follows:

MEMORY[.q] [address]

This is an interactive command. The address and value are displayed and the
processor waits for user input. If no value is entered, the location is not
changed and the next address and value are displayed. If a slash (I) is
entered without a value or after a value, the previous address and value are
displayed. If a comma"(,) is entered without a value or after a value, the
present address and value are redisplayed. If a period (.) is entered without
a value or after a value, the command terminates. If an at sign (@) is entered
without a value or after a value, the long word at the present address is the
next address. A qualifier may follow the at sign. An example of the display
format follows:

Ok, MEMORY.L 2000
00002000-001F0800:
00002004-142135F9:
00002000-001FOOOO:
00002000-001FOOOO:
001FOOOO-17: •

Ok,

OOlFOOOO
I
,
@.B

C-44

88A00757A

C.3.2.13 PAGE Command

The PAGE command allows examination and modification of the Page Map. It is
valid only for ZEBRA 700 system with MHU board. If the page number is not part
of the command. page zero (0) is assumed. Each page is displayed and the
processor then waits for console input. If a value is entered. that value is
stored and the next page is displayed. If nothing is entered (return only). no
change is made to the data. If a period (.) is entered. the processor is
exited. If a period is entered after a value. the processor is exited after
the new value is stored. If a slash (/) is entered. the previous page is
displayed. If a slash is entered after a value. the previous page is displayed
after the value is stored. If a comma (.) is entered. the same page is
displayed. If a comma is entered after a value. the page is displayed after
the value is entered. An example of the command and its effects follows:

Ok. Page 3DE
P·age 03F-003F, L-01F800. XX, Multibus Memory, P-OlF800:
Page 040-1000, L-020000, XX, Invalid Memory, P-OOOOOO:

Ok,

In the above example, the address and contents of the page are displayed. The
'L-' displays the associated logical memory address. Note that this logical
address actually corresponds to the segment map physical address. In the first
two lines, the 'XX' indicates that the 'Used' and 'Dirty' bits are false, but
in the third line they are true (UD), indicating that that page has been
written to. Next, the type of memory assignment is displayed. Finally, the
'P-' displays the physical address of that memory assignment.

C-45

88A00757A

C.3.2.14 REGISTER Command

The REGISTER command is used to display or alter the contents of the user
registers. If no register is entered, all registers and exception information
are displayed and the command terminates. If a register name is entered, that
is the first register displayed for modification. The command format is as
follows:

REGISTER [register]

This is an interactive command. The register and value are displayed and the
processor waits for user input. If no value is entered, the register is not
changed and the next register and value are displayed. If a slash (/) is
entered without a value or after a value, the previous register and value are
displayed. If a period (.) is entered without a value or after a value, the
command terminates. If an at sign (@) is entered without a value or after a
value, the long word value in the register is used as the next address in the
MEMORY mode. A qualifier may follow the at sign. Exception information cannot
be altered. If the last register (PC) or first register (DO) is reached,
wraparound is performed. An example of the display format follows:

Ok, REGISTER DO
OO=FFFFFFFF: 0/
PC-00002000: @.W
00002000-4E71: •

Ok,

The registers displayed when no register name is entered include any special
registers as a result of an exception. The registers displayed also depend on
the processor type (68000 or 68010). The following is a list of all register
mnemonics:

00-07
Ao-A6
A7
US
SR
PC
VO
SS
AA
OB
IB
IR

32 Bit Data Registers
32 Bit Address Registers
32 Bit Supervisor Stack Pointer
32 Bit User Stack Pointer
16 Bit Status Register
32 Bit Program Counter
16 Bit Vector Offset (68010 only)
16 Bit Special Status Register (Bus/Address Exception only)
32 Bit Access Address(Bus/Address Exception only)
16 Bit Output Buffer (68010 Bus/Address Exception only)
16 Bit Input Buffer (68010 Bus/Address Exception only)
16 Bit Instruction Register (Bus/Address Exception only)

C-46

88A00757A

C.3.2.15 RESET Command

The RESET command reinitializes the Executive. This is different from a
hardware reset. The purpose of this command is to reset the serial ports and
Executive variables without destroying the contents of memory. The command may
not be abbreviated. The command format is as follows:

~ [DT] [PORTS] [VECTORS]

The DT option resets only the disk/tape (not 1/2" tape) subsystem. The PORTS
option resets the Executive serial ports. The VECTORS option reinitializes
the exception vector table. If no options are specified, a complete reset
is performed.

C.3.2.16 RESTORE Command

The RESTORE command provides for image restore of disk from another disk
(DISK), 1/4" cartridge tape (CT) or cartridge disk (CD). If removable media is
used, the user will be prompted with the following message:

Mount Cartridge N (y/n): _

N is the cartridge number to mount. If there is an error, the error code and
logical address will be dispiayed and the Executive reentered. Note that the
restore will not exceed the size of the disk, no matter what the FOR count
specified is. For either fixed or cartridge disk, the first 8 sectors will be
skipped, as they contain information particular to that disk.

C.3.2.16.1 1/4" Cartridge Tape RESTORE

The RESTORE command format for cartridge tape is as follows:

~ORE [unit] CT [unit] [DU device, lun] [!O sector] [FOR sectors]

The unit has a default value of 0 for the destination (disk) and 0 for the
source (tape). The TO sector address (relative sector number) has a default of
8 (beginning of disk to restore). The FOR sectors is the number of sectors to
restore. The default number of sectors is the size of the disk.

C-47

88A00757A

C.3.2.16.2 Fixed and Cartridge Disk RESTORE

The RESTORE command format for fixed or cartridge disk is as follows:

RESTORE [unit] CD [unit] [DU device, lun] [FROM sector] [TO sector]
[FOR sectors]

RESTOP~ [unit] DISK [u~~t] [DU device J lunJ [FROM sector] [TO sector]
[FOR sectors]

The unit has a default value of 0 for the destination (disk) and 0 for the
source. The TO sector address (relative sector number) has a default of 8
(beginning of disk to restore). The FOR sectors is the number of sectors to
restore. The default number of sectors is the size of the disk.

C.3.2.17 RETENSION Command

The RETENSION command will retension the 1/4" cartridge tape. The tape will
then be positioned at BOT. The command format is:

RETENSION [CT]

This command is valid only for cartridge tape.

C.3.2.1S REWIND Command

The REWIND command will rewind the 1/4" cartridge tape. The tape will then be
positioned at BOT. The command format is:

REWIND [CT]

This command is valid only for cartridge tape.

C.3.2.19 SAVE Command

The SAVE command is used to write out to disk or cartridge tape data from
memory. The command format is as follows:

!AVE [DISK] [unit] [DU device, lun] [FROM address] [!O sector]
[FOR sectors]

SA~CD [unit] [DU device, lun] [FROM address] [TO sector] [FOR sectors]
!AVE CT [unit] [DU device, lun] [FROM address] (FOR sectors]-

The default load device is the disk (default unit 0). The default cartridge
tape or disk unit is O. The FROM address has a default of 8000 (hex). The TO
sector address has a default of zero and is only applicable to disk. The FOR
sectors is the number of sectors to save.

C-48

88A00757A

C.l.2.20 SEGMENT Command

The SEGMENT command allows examination and modification of the Segment Map. It
is valid only for ZEBRA 700 system with MHU board. If the segment number is
not part of the command, segment zero (0) is assumed. Each segment is
displayed and the processor then waits for console input. If a value is
entered, that value is stored and the next segment is displayed. If nothing is
entered (return only), no change is made to the data. If a period (.) is
entered, the processor is exited. If a period is entered after a value, the
processor is exited after the new value is stored. If a slash (/) is entered,
the previous segment is displayed. If a slash is entered after a value, the
previous segment is displayed. If a slash is entered after a value, the
previous segment is displayed after the value is stored. If a comma (,) is
entered, the same segment is displayed after the value is entered. An example
of the command and its effects follows:

Ok,- SEGMENT 20
Segment 2a-F20, L-100000, S-rwx, U-rwx, P-100000:
Segment 21-F21, L-108000, S-rwx, U-rwx, P-108000:
Segment 22-F22, L-110000, S-rwx, U-rwx, P-110000:

Ok,

In the above example, the address and contents of the segment are displayed.
Note that the address and contents are for the present context. The 'L-'
displays the associated logical memory address. The 'Sa' and 'U-' display the
protection mode for the supervisor and user mode respectively (r - read access,
w - write access, and x - execution access). Finally, the 'P-' displays the
physical address that drives the page map.

C-49

88A00757A

C.3.2.21 SRECORD Command

The SRECORD command is used to load, via the host unit, standard Motorola'S'
record format absolute load modules. All Motorola record types are recognized.
An error will cause an error message to be displayed, but loading will continue
until terminated by the end record or a user break. The command format is
as follows:

SRECORD [text]

All three address size formats (16, 24, and 32) are recognized. Further, the
head record, record count record, and end record cause a message to be printed
to the console as shown in the following example:

Ok, SRECORD cat main.sav
Header Record Received: HDR
Records Read: 625
End Record, Bytes Read: 12542, Start Address: 00020000

Ok,

Note that the string 'cat main.sav' is sent to the host in order to initiate
the transfer. This particular example is typical of aXE NIX host. The start
address is stored in the user's program counter (PC).

C.3.2.22 SYSTEM Command

The SYSTEM command works the same as the REGISTER command with no arguments.
The register values displayed are those at the last exception when in the
Executive mode (user program not running). If there has been no exception,
nothing is displayed. Registers may not be altered. This function is mainly
used to determine the cause of Executive faults. The command format is as
follows:

SYSTEM

C-50

88A00757A

creating a SYSGEN cartridge 0
tape or disk for ZEBRA 750

0.1 USING THE SYSGEN PROGRAM

SYSGEN is a program that allows on-line creation of a formatted operating
system cartridge tape or disk. This tape or disk may then be used for both
operating system load and FILE-RESTORE.

The SYSGEN account will be supplied on a separate cartridge disk for cartridge
disk 750s and will be included on the 3.0 release tape for 750s with 1/4-inch
tape. The account consists of the following four files:

1. STRAP. SO, which contains the bootstrap object code,

2. MON.SO, which contains the monitor object code,

3. SYS-OBJ, which contains the ABS object code, and

4. PROCS, which contains the program that creates the SYSGEN cartridge
tape or disk.

The item-ids of the SYS-OBJ file are in the format FRMxxx where xxx is a
decimal frame number. The ABS frames are loaded from a list which resides in
the dictionary of the SYS-OBJ file and is called FRMN.LIST. You may add to or
replace this list to tailor the ABS frames to your own applications. The
item-ids you use may be in other than FRMxxx format. Just add them to
FRMN.LIST using the editor. Note that FRHN.LIST will dump the ABS section in
numerical order, although this is not a requirement. If you have item-ids with
duplicate frame numbers, the last one on the SYSGEN media will overwrite all
previous versions of that frame on disk.

If you have changed an ABS frame that will cause the CHECK-SUM item to differ
from the one supplied on the SYSGEN account, you must edit the item CHECK-SUM
in the dictionary of the SYS-OBJ with the correct checksum for that frame.

The format of the SYSGEN cartridge tape or disk is as follows:

BOT --) LOADER
MONITOR
ABS
SYSTEM ACCOUNTS

0-1

88A00757A

The SYSGEN program performs the SAVE of the system accounts in the same way as
a FILE-SAVE except that there is no T-DUMP of the STAT-FILE because this file
is not generated. Therefore, if you wish to select which accounts are to be
placed on the SYSGEN tape, you must edit the SYSTEM file and change the code
for the account pointers in attribute 1 to 'DX' for those accounts which you do
not want on the tape. Be sure that all accounts you wish on the tape do not
have 'DX' pointers.

When you log on to the SYSGEN account or type in 'SYS-GEN' from TCL, you will
be given the following prompt:

(C)artridge tape or (D)isk cartridge (C,D,X)?

If you respond with a 'C', a SYSGEN tape cartridge will be created.

If you respond with a 'D', a SYSGEN disk cartridge will be created.

If you respond with an 'X', you will terminate the remainder of the SYSGEN PROC
and return to TCL.

If you responded with a 'c' or 'D', you will receive the following prompt:

Do you wish to update the CHECK-SUM item in the ERRMSG file (Y,N,X)?

Answer Y(es) if the ABS on your system will cause the CHECK-SUM item to differ
from the one supplied on the SYSGEN account.

An 'X' response will place you at TCL.

D.2 USING A SYSGEN CARTRIDGE TAPE OR DISK

The procedure for use of a SYSGEN cartridge tape or disk is exactly the same as
described under System Startup, starting with Section 2.1.2, "ZEBRA 750."

D-2

88A00757A

system-cursor definition utility

The System-Cursor Definition Utility provides the user a means to customize
the System-Cursor functions for his particular needs. The utility includes
an editor, selection process, and "compiler." A menu-driven BASIC program
creates, maintains, compiles, and selects up to 26 different terminals for
inclusion in the System Cursor. Although only 26 terminals may be selected for
inclusion in the System Cursor at one time, any number of terminals may be
defined by this utility.

E.1 USER SEQUENCE OF OPERATION

Enter the command "DEFINE-CURSOR" at TCL. A display and menu will be prr-sented
on the terminal. Figure E-1 shows a sample display and the menu.

System Cursor Definition Utility

The following terminals are defined. Terminals marked
with an asterisk (*) are selected to be included in
your System Cursor Definition.

*A ADDS *H HONEYWELL *0 VT100
*B BEEHIVE *1 IBM3010 *p MIME
*C DTC *K VT52 *Q TEC
*D
*E
*G

DATAMEDIA *L LSI *R REGENT
EMULOG200 *M AMPEX *S SOROC
GTC *N ENVISION *T TV950

1) Create Terminal Definition
2) Uodify Terminal Definition
3) Delete Terminal Definition
4) Add Terminal to Selected Definitions
S) Delete Terminal from Selected Definitions
EX Exit without updating System-Cursor
FI Update System-Cursor to selected terminals

Enter Selection (l-S) or EX or FI:

Figure E-1. Display and Henu

E-l

*U TV920
*V VIEWPOINT

V VIEWPOINT2
*W WYSE50
*X DATAGRAPHIX
*y WYSE100

E

88A00757A

The following choices may be made from the menu (see Figure E-1).

1) Create Terminal Definition

Selection 1 will allow the creation of a new terminal definition. A terminal
definition consists of a series of parameters that control a particular termi
nal (type, size, control codes, etc.). After you enter the menu selection 1,
the routine will prompt for the terminal name to be defined. It wl!! then
check if that name already exists. If so, you may opt to modify the existing
definition, or enter another name. If you opt to modify the existing
definition, the routine will proceed as in Selection 2.

If the name is new, you will be asked if you want to use a copy of an existing
terminal definition for the initial values for the new definition. If so,
you will be prompted for the name of the existing terminal to be used as a
"template." This is useful for defining terminals which are similar to another
existing terminal. If you do not choose to use an existing terminal definition
as a "template," the routine proceeds to prompt for each of the parameters for
the new definition. (See Section E.2, Defining the Terminal Tables, for a
description of these parameters.) Otherwise, the routine proceeds as in
Selection 2.

2) Modify Terminal Definition

Selection 2 will allow you to modify existing terminal definitions. After you
enter menu selection 2, the routine will prompt for the name of the termi-
nal definition to be modified. If the name does not exist, you may opt to
create it. If you opt to create a new definition, the routine proceeds as in
Selection 1. Otherwise, the routine proceeds as described below.

In the terminal definition modification mode, the set of parameters for the
terminal 1s broken into page-size blocks for display and modification. First,
a section of the existing definition is displayed, then the prompt "Modify
Lines?" is issued. You may answer YES, NO (default), or give a list of line
numbers to modify. If you answer YES, you will be prompted for the list of
line numbers; if you answer NO, the next section of the existing definition is
displayed and the process repeats until the entire definition has been
reviewed. Otherwise, you will be prompted to enter new data for each of the
selected lines.

At each of these prompts, the following special entries may be made. First, a
carriage return (null value) will cause the data for the line to be unchanged.
Second, an entry of any number of spaces will cause the data for the line to be
changed to null. Third, an entry of a single question mark (?) will display a
brief explanation of the contents of the line and then a prompt for input.

E-2

88A00757A

Once all sections have been reviewed, you will be asked if the terminal
definition is correct. If not, the review and modify process will be repeated
or you may exit without saving any modifications. If the definition is
correct, an attempt will be made to "compile" it. If the compilation detects
errors, you may have to correct the errors via the modification process.
Otherwise, you may select the terminal to be included in the list of terminals
for your System Cursor. Figures E-2, E-3, and E-4 show sample display portions
of the modification mode.

After all the lines have been prompted for, the routine returns to the
selection menu.

3) Delete Terminal Definition

Selection 3 allows you to delete terminal definitions. After you enter menu
selection 3, you will be prompted for the name of the terminal to be deleted.
If the terminal definition is on file, it will be deleted.

4) Add Terminal to Selected Definitions

Selection 4 allows you to add a terminal to the list of terminals to be
included in your System Cursor. After you enter menu selection 4, you will be
prompted for the name of the terminal to be added to the list of selected
terminals. If the name exists, the routine will check if that type of terminal
has already been selected. If not, the desired terminal will be selected.

If the type of the desired terminal has already been selected for another
terminal, you will be asked if you want to replace the previous selection with
the new selection. If so, the previous selection tJill be deleted from the lis t
of selected terminals and the new selection added.

5) Delete Terminal from Selected Definitions

Selection 5 allows you to delete a terminal from the list of terminals to be
included in your System Cursor. After you enter menu selection 5, you \-1ill be
prompted for the name of the terminal to be deleted from the list of selected
terminals. If the name you enter is in the list, it will be deleted.

EX Exit without updating System-Cursor

This choice (EX) quits the definition process without updating the operating
System Cursor. However, all your modifications and selections are preserved,
so that when you re-execute the System Cursor Definition Utility, all defini
tions and selections will be displayed just as they were when the routine was
EXited.

FI Update System-Cursor to selected terminals

This choice (FI) updates the operating System Cursor with the new selections
and then quits the definition process.

E-3

88A00757A

Terminal - TV920

1 • TYPE. • U
2. SCREEN SIZE •••••••••••.........••• 80,24
3. CURSOR ADDRESS CODE ••••••••••••••• L
4. @(X) CURSOR POSITIONING ••••••••••• CR STR(CHAR(12),X)
5. @(X,Y) CURSOR ADDRESSING •••••••••• ESC "." Y X
6. @(-1) CLEAR SCREEN & HOME ••••••••• CHAR(26)
7. @(-2) CURSOR HOME ••••••••••••••••• CHAR(30)
8. @(-3) CLEAR TO END OF PAGE........ ESC '·Y'·
9. @ (-4) CLEAR TO END OF LINE........ ESC '·T"

10. @(-5) START BLINK ••••••••••••••••• ESC "A"

11. @(-6) STOP BLINK.................. ESC "q"
12. @(-7) START PROTECT ••••••••••••••• ESC ")"
13. @(-8) STOP PROTECT •••••••••••••••• ESC '.("
14. @(-9) CURSOR BACK ••••••••••••••••• BS
15. @(-10) CURSOR UP •••••••••••••••••• VT

Modify lines? NO

Terminal - TV920

16. @(-ll) SLAVE ON •••••••••••••••••••
17. @(-12) SLAVE OFF ••••••••••••••••••
18. @(-13) START REVERSE VIDEO •••••••• ESC tt j"
19. @(-14) STOP REVERSE VIDEO ••••••••• ESC "k"
20. @(-15) START UNDERLINE •••••••••••• ESC "1'·
21. @(-16) STOP UNDERLINE ••••••••••••• ESC tom "
22. @(-17) ENABLE PROTECT MODE •••••••. ESC "&It

23. @(-18) DISABLE PROTECT MODE ••••••• ESC
24. @(-19) CURSOR FORWARD ••••••••••••• CHAR(12)
25. @(-20) CURSO R DOWN •••••••••••••••• CHAR(18)
26. @(-99) EMBEDDED VISUAL ATTRIBUTES? YES

Modify lines? NO

Is table for terminal TV920 correct? YES

Figure E-2. Sample Portion of Modification Mode Display (TV920)

E-4

88A00757A

Terminal - AMPEX

1. TYPE ••••••••••••.••••••••••••••••• M
2. SCREEN SIZE ••••••••••••••••••••••• 80,24
3. CURSOR ADDRESS CODE ••••••••••••••• L
4. @(X) CURSOR POSITIONING ••••••••••• CR STR(CHAR(12),X)
5. @(X,Y) CURSOR ADDRESSING •••••••••• ESC "." Y X
6. @(-l) CLEAR SCREEN & HOME ••••••••• ESC "*,.
7. @(-2) CURSOR HOME ••••••••••••••••• CHAR(30)
8. @(-3) CLEAR TO END OF PAGE •••••••• ESC "y"
9. @(-4) CLEAR TO END OF LINE •••••••• ESC "T"

10. @(-5) START BLI NK ••••••••••••••••• ESC "A" ESC ,.
n ,.

11- @(-6) STOP BLINK •••••••••••••••••• ESC "0" ESC " a"
12. @(-7) START PROTECT ••••••••••••••• ESC It)"

13. @(-8) STOP PROTECT •••••••••••••••• ESC "(tI

14. @(-9) CURSOR BACK ••••••••••••••••• BS
15. @(-10) CURSOR UP •••••••••••••••••• VT

Modify lines? NO

Te rminal - AliPEX

16. @(-11) SLAVE ON ••••••••••••••••••• HEX(IB4A)
17. @(-12) SLAVE OFF •••••••••••••••••• HEX(IB4B)
18. @(-13) START REVERSE VIDEO •••••••• ESC "A" ESC " j"
19. @(-14) STOP REVERSE VIDEO •••••.••• ESC "~kIf

20. @(-15) START UNDERLINE •••••••••••• ESC "1"
21. @(-16) STOP UNDERLINE ••••••••••••• ESC "m"
22. @(-17) ENABLE PROTECT MODE •••••••• ESC "&"
23. @(-18) DISABLE PROTECT MODE ••••••• ESC
24. @(-19) CURSOR FORWARD •••••••••••.• FF
25. @(-20) CURSOR DOWN ••••••••.••••••• LF
26. @(-99) EMBEDDED VISUAL ATTRIBUTES?

Modify lines? NO

Is table for terminal AMPEX correct? YES

Figure E-3. Sample Portion of Modification Mode Display (AMPEX)

E-5

88A00757A

Terminal • VIEWPOINT2

1. T'YPE •••••••••••••••••••••••••••••• V
2. SCREEN SIZE ••••••••••••••••••••••• 80,24
3. CURSOR ADDRESS CODE ••••••••••••••• A
4. @(X) CURSOR POSITIONING ••••••••••• CHAR(16) X
5. @(X,Y) CURSOR ADDRESSING •••••••••• CHAR(11) Y CHAR(16) X
6. @(-1) CLEAR SCREEN & HOME ••••••••• FF
7. @(-2) CURSOR HOME ••••••••••••••••• CHAR(11) ... t CHAR(16) NUL
s. @(-3) CLEAR TO END OF PAGE •••••••• ESC "k"
9. @(-4) CLEAR TO END OF LINE •••••••• ESC "K"

10. @(-5) START BLINK ••••••••••••••••• SO ESC "OB"
1I. @(-6) STOP BLINK •••••••••••••••••• SI
12. @(-7) START PROTECT •••••••••••••••
13. @(-s) STOP PROTECT ••••••••••••••••
14. @(-9) CURSOR BACK ••••••••••••••••• CHAR(21)
15. @(-10) CURSOR UP •••••••••••••••••• CHAR(26)

Modify lines? NO

Terminal - VIEWPOINT2

16. @(-11) SLAVE ON ••••••••••••••••••• HEX(1B33)
17. @(-12) SLAVE OFF •••••••••••••••••• HESC(1B34)
18. @(-13) START REVERSE VIDEO •••••••• CHAR(14) ESC "OP"
19. @(-14) STOP REVERSE VIDEO ••••••••• CHAR(15)
20. @(-15) START UNDERLINE •••••••••••• CHAR(14) ESC "0'"
2I. @(-16) STOP UNDERLINE ••••••••••••• CHAR(15)
22. @(-17) ENABLE PROTECT MODE ••••••••
23. @(-18) DISABLE PROTECT MODE •••••••
24. @(-19) CURSOR FORWARD ••••••••••••• CHAR(6)
25. @(-20) CURSOR DOWN •••••••••••••••• LF
26. @(-99) EMBEDDED VISUAL ATTRIBUTES?

Modify lines? NO

Is table for terminal VIEWPOINT2 correct? YES

Figure E-4. Sample Portion of Modification Mode Display (VIEWPOINT2)

E-6

88A00757A

E.2 DEFINING THE TERMINAL TABLES

The System-Cursor Definition Utility is used to define the Terminal Tables
(menu choices 1 and 2). Some of the required fields in the Terminal Table are
explained in the following sections.

E.2.1 TERMINAL TYPE

The Terminal Type is a single uppercase letter (A to Z) which identifies the
terminal to the system. Usually, it is set up at logon with the TERM command.
The Terminal Type field in the terminal table corresponds to the type as set
with the TERM command. Up to 26 different types are available.

E.2.2 SIZE

The Size field defines the screen size in columns and rows. The size is
entered as two numbers separated by a comma; the first number represents
column, the second number represents row (e.g., 80,24). The size is used to
limit the range of cursor addresses which may be produced by the System-Cursor
routine. If a value exceeds the size, the maximum size is substituted.

E.2.3 CURSOR ADDRESSING TYPE

The Cursor Addressing Type is usually a single letter (A, L, T, H, D). The
types are "A" for Adds type addressing, "L" for Lear-Siegler type addressing,
"T" for TEC type addressing, "H" for Hazeltine type addressing, and "0" for
decimal type addressing. All types except "0" produce binary column and row
addresses, with a single byte used for each. "0" type addressing produces one
to three digits for column and row addresses. If "0" type addressing is used,
the code may be followed by two digits (22, 23, 32, 33) to force padding to the
desired number of digits (e.g., "032" will produce decimal addressing with
three digits used for the column and two digits for the row (leading zeros
added to force the length». "0" alone will use "floating" decimal numbers of
one to three digits.

All cursor addressing codes may be followed by a plus sign (+) to add 1 to the
column and row addresses before generating the address codes. This allows for
terminals that define the upperleft corner of the screen as "1,1" instead of
"0,0". Thus, decimal addressing for a three-digit row and column address
numbered from "1,1" is "033+".

To determine the proper binary cursor addressing type (A, L, T, H), use Table
E-1. This table shows the column or row address and the associated code (con
trol code or ASCII character) for each of the addressing types. The formula
for each binary type follows:

(A)DDS

(H)AZE

COL - CHAR«INT(X/IO)*6)+X)
ROW - CHAR (Y+64)

COL - CHAR(X)
ROW =- CHAR(Y)

E-7

(L)SI COL - CHAR(X+32)
ROW - CHAR(Y+32)

(T)EC COL - CHAR(-(1+X»
ROW - CHAR(-(l+Y»

88A00757A

Table E-1. Binary Cursor Addressing

I ADDS I ADDS I LSI I TEC I HAZE I ADDS I ADDS I LSII TECI HAZE
xl yl COL I ROW I I I xl yl COL I ROW I I I

--+---+------+-----+------+----+----------+-----+--+-----+-----+----+----+-----
I I I 1 I ! I I I I I

01 01 nul I @ spacel dell nul 401 @ H W (
11 11 soh I A ! I - I soh 411 A I V)
21 21 stx I B I } I stx 421 B J U *
3\ 3\ etx I C 1/ 1 I I etx 431 C K T + I

41 4\ eot I D $ I { I eot 44 D L 5
51 51 enq 1 E % 1 z I enq 45 E M R
61 61 ack I F & I y I ack 46 F N Q
71 71 bel I G x I bel 47 G 0 p /
81 8 bs I H (w I bs 48 H P 0 0
9 9 ht I I) v I ht 49 I Q N 1

101 10 dIe I J * u I If 50 P R M 2
111 11 dcl I K + t vt 51 Q 5 L 3
121 12 dc2 I L s ff 52 R T K 4
131 13 dc3 \ M I - r cr 53 5 U J 5
141 14 dc4 I N I • q so 54 T V I 6
151 15 nak I 0 I / p s1 55 U W H \ 7
161 16 syn I p I 0 0 dIe 56 V X G 1 8
171 17 etb I Q 1 1 n dc1 57 W Y F I 9
181 18 can I R I 2 m dc2 58 X Z E I
191 19 em I 5 I 3 1 dc3 59\ y [D I ;
20\ 20 space I T 4 \ k dc4 60 , C \ <
211 21 I U 5 I j nak 61 a] B I a

221 22 " I V 6 I i syn 62 b A I >
231 23 1/ I W 7 \ h etb 63 c @ I ?
241 $ I 8 I 64 - ? I @ g can d ...

251 % \ 9 I f em 65 e a > I A
261 & I \ e sub 66 f b a 1 B
271 1 ; \ d esc 67 g c < 1 C
281 (\ < 1 c fs 68 h d \ D
29\) \ a I b gs 69 i e I E
301 0 \ > I a rs 70 p f 9 1 F
311 1 I ? I ... us 71 q g 8 I G
321 2 I @ I space 72 I r h 7 I H
33\ 3 \ IA \"7 ! 73 I 5 i 6 I I
34\ 4 I I ~ I] 74 I t j 5 I J
351 5 I \ C \, II 75 I u k 4 I K
36\ 6 I I D I [$ 76 1 v 1 3 I L
371 7 I 1 E 1 z % 77 I w m 2 \ M
381 8 I I F 1 y & 78 1 x nl 1 I N
391 9 \ I G I X 79 I y 0 I 0 I 0

E-8

88A00757A

E.2.4 CURSOR CODE STRINGS

Cursor Code Strings are expressions that produce the control and escape
sequences used by the terminal defined. The syntax of the expressions is
similar to BASIC syntax, except that a blank may be used between elements in
these expressions as well as a colon. Cursor code strings may consist of the
following fields, each separated by blanks or colons:

1. Defined control character (e.g., ESC, BS, DEL, NUL, etc.)
2. String literal in quotes (e.g., fiAtt, ' [0', etc.)
3. Character function (e.g., CHAR(2l»
4. Hexadecimal string (e.g., HEX(lB41»
5. String function (e.g., STR(NUL,5) or STR(CHAR(12),X»
6. Cursor address variable (e.g., X, Y, or Z)

The cursor address variables (X, Y, Z) cause the specified address (byte or
decimal string) to be inserted into the control string at the specified
posi tion. The variable X contains the column', Y contains the row, and Z
contains the row previously referenced in an @(X,Y) code (or zero, if the last
reference was @(-1) or @(-2».

The symbolic name for the control codes and their decimal and hexadecimal
equivalents are shown in Table E-2. Any of these codes may be included in the
cursor code string. Note that it is often easier to reference the backspace
character as BS instead of CHAR(8), or NUL instead of CHAR(O).

Table E-2. Control Codes with Decimal and Hexadecimal Equivalents

CODE DEC HEX CODE DEC HEX
-------+---------+------------+-------------+---------+------
NUL 0 00 DCl 17 11
SOH 1 01 DC2 18 12
STX 2 02 DC3 19 13
ETX 3 03 DC4 20 14
EOT 4 04 NAK 21 15
ENQ 5 05 SYN 22 16
ACK 6 06 ETB 23 17
BEL 7 07 CAN 24 18
BS 8 08 EM 25 19
HT 9 09 SUB 26 1A
LF 10 OA ESC 27 1B
VT 11 08 FS 28 lC
FF 12 OC GS 29 10
CR 13 00 RS 30 1E
SO 14 OE US 31 lF
SI 15 OF SP 32 20
OLE 16 10 DEL 127 21

E-9

88A00757A

E.2.5 SPECIAL CURSOR CODE STRINGS

Most of the cursor code strings are self-explanatory and consist of control
characters, escape sequences, and other obvious codes. Some of the code
strings are not as obvious and require further explanation.

E.2.5.l Column-only Cursor Positioning

Many terminals do not support the column-only cursor positioning. Terminals
which do support column-only positioning (e.g., ADDS) may use the terminal's
normal control sequence (e.g., (CHAR(16) X». For terminals without column
only positioning, the function may be simulated in two ways. Using the first
method, the cursor can be positioned to column zero of the current line
(carriage return), followed by a cursor-right code for the number of columns
required (e.g., CR STR(CHAR(12),X». VT-100 type terminals may use a sequence
like: CR ESC "[" X .. C " BS, where the decimal value of X is part of the cursor
right escape sequence.

The second method of simulating column-only positioning is less desirable,
but may be effective in some instances. It uses the dummy cursor address
variable Z in place of the Y address in a normal X-Y cursor address code
(e.g., ESC "." Z X).

E.2.5.2 Clear Screen & Home @(-l)

The Clear Screen & Home code may consist of two different terminal control
sequences (one for clear screen and one for home). This is the case for VT-IOO
type terminals. Many other terminals combine these two control sequences into
one.

E.2.5.3 Embedded Visual Attributes @(-99)

The special cursor function @(-99) normally disables pagination and clears the
system's line counter. It retains this function, but also passes a value back
to the user program that defines whether the terminal uses embedded (1) or non
embedded (0) visual attributes. This is important for application programs
that require precise screen layout. If a terminal has embedded attributes
(i.e., a screen location is required to turn the attribute on and to turn the
attribute off), answer YES to the prompt for this field.

NOTE: If the @(-99) function is used to turn off pagination, it should be used
in a variable assignment statement (D~1Y - @(-99» instead of a print state
ment (PRINT @(-99». The reason for this is that if the print statement is
used and if the embedded visual attribute field is answered with a YES, PRINT
@(-99) will turn off pagination, but will also print out a 1; if the embedded
visual attribute field is answered with a NO, PRINT @(-99) will turn off
pagination and print out a o.

E-IO

88A00757A

E.3 CUSTOMIZING THE CURSOR DEFINITIONS

Besides defining terminal types and the control sequences used for each, you
may also define new cursor control functions. Functions @(-2l) to @(-98) are
available for user definition.

To define your own function, create an attribute definition item in the
dictionary of the CURSOR file with a numeric lTEM-ID, and a D/CODE of S or A.
Normally, determine the ITEM-ID by adding 5 to the function desired (e.g., for
@(-30), the ITEM-ID is 35). Special definitions are assigned to attributes 15,
19, and 20 of the dictionary item. Attribute 15 may contain a multisubvalued
list of pattern match specifications. Attribute 19 may contain a multisub
valued description (which is printed in response to '1' during the definition
process). Attribute 20 may contain the value '1' to cause a "page break" in
the definition process (e.g., a dictionary definition item with a 1 in AMC 20
will be the last field prompted for before the "Modify lines?" query and
display of additional blocks).

E.4 INITIALIZATION DURING COLD-START

The COLD-START proc in SYSPROG-PL should be modified to reinitialize the
System-Cursor routine during the COLD-START procedure. To do this, add the
command "INIT-CURSOR CURSOR *" to the COLD-START proc.

E.5 RESETTING TERMINAL TYPE TABLE FOR BINARY BACKUP

It is beneficial to use the RESET-CURSOR verb before making a binary system
backup or ABS tape. It ensures that, on a restore or ABS load, the terminal
type pOinters will not point to an invalid location. This procedure will not
have any effect if the command "INIT-CURSOR CURSOR *" is done at COLD-START
time.

E-ll/E-12

88A00757A

Tel stacker

The TCL Stacker allows you to display, modify, correct, and execute TCL
commands that you have previously executed or entered. All of the TCL stacker
commands are preceded by a period and may be entered in uppercase or lowercase.
The TCL stacker will stack up to the last 40 TCL commands entered, and, unless
otherwise specified, display only the last 20 commands. However, it will not
stack a command that is the same as the previous command entered.

Also, the TCL stacker includes a Help screen that describes all the different
TCL stacker commands. Each port has its own stack from which to operate from
and the Help screens that list executable TCL stacker commands are dependent
upon system privilege level.

F.1 TCL STACKER COMMANDS

The following sections describe the TCL stacker commands and give instructions
on how to use them.

F.1.1 DISPLAYING HELP SCREEH: ? OR .H{ELP} COMMAND

The general format for this command is:

>.?H{P}
>.H{elp}{P}

This command will display the Help screen on the terminal (or printer, if P is
specified) •

There are three different Help screens, one for each of the system's three
different privilege levels (0, 1, or 2). This command functions at all three
system privilege levels.

F-1

F

88A00757A

F.1.2 LISTING THE TCL STACK TO THE TERMINAL: .L COMHAND

The .L command will list the last 20 TCL commands entered by the user. The
general format for this command is:

>.L
>.L{n}{,m}{(p)}

If parameter n is used, then only the last n number of commands will be
listed. If parameter m is entered, then the last n (default • 20) commands
will be listed starting at command m. The p parameter is used for displaying
line p's last TCL commands. Use of the p parameter requires a system privilege
level of 2. With the exception of the p parameter, the .L command functions
under all three system privilege levels.

F.1.3 EXECUTING A TCL STACKED COHHAND: .X COHHAND

The .X command is used to execute a TCL stacked command. The general format
for this command is:

>.X
>.X{n}

When n is omitted, the default is command 1, or the last TCL command entered.
Otherwise, n will specify which command to execute. The.X command will allow
execution of SELECTed items and works with SELECTed lists. The.X command
functions under all three system privilege levels.

F-2

88A00757A

F.1.4 DISPLAYING THE STATUS OF THE TCL STACKER: .Q COMMAND

The .Q command will display the status of the TCL stacker for your port. It
will display the following:

pi STK U/C
-- -- ---
002 On Off

where:

pI gives the port number
STK tells whether your stack is on or off
U/C tells whether uppercasing of TCL commands is in effect.

The general format for this command is:

>.Q
>.Q{A)

The 'A' option will display the status of all the lines, but this is a system
privilege level 2 function only.

F.1.5 TOGGLING THE TCL STACKER ON OR OFF: .0 COMMAND

The .0 command will toggle the TCL stacker on or off depending on its present
state. It will respond with ON! or OFF! to let the user know the new status.
When the TCL stacker is off, the only TCL stacker commands that will function
are: .1 (Help), .0 (TCL stacker on or off), .U (toggle uppercasing on/off),
and .Q (display TCL stacker status). The general format for this command is:

>.0
>.O{n)

The n parameter willI allow toggling of another port's TCL stacker on or off,
but you must have a system privilege level of 2 to use this function.

F-3

88A00757A

F.1.6 TOGGLING THE UPPERCASING FUNCTION ON OR OFF: .U COMMAND

The .U command will toggle the automatic uppercasing of TCL commands on or off
depending on its present state. It will respond with ON! or OFF! to let the
user know the new status. When the uppercasing function is off, everything
runs as normal. But when the uppercasing function is on, all TCL commands that
are entered will be uppercased before being executed. This allows TeL commands
to be entered in either uppercase, lowercase, or a combination of uppercase and
lowercase. The general format for this command is:

>.u
>.U(n)

The n parameter allows toggling of another port's TCL stacker on or off, but
you must have a system privilege level of 2 to use this parameter. The.U
command requires a minimum system privilege level of 1.

F.1.7 DELETING THE TCL STACK: .K COMMAND

The .K command is used to delete your entire stack. When this is executed, all
of your last stacked commands (up to 40) will be deleted. The.K command
requires a minimum system privilege level of 1. The general format for this
command is:

>.K

F.1.8 BRINGING TCL STACKED COMMAND TO TOP-oF-STACK: .T COMMAND

The .T command will put command line n on the top of the stack for ease in
executing the same command. The general format for this command is:

>.Tn

Command line n must be specified and greater than 1 or no change will take
place. The.T command requires a minimum system privilege level of 1.

F-4

88A00757A

F.1.9 REPLACING OR MODIFYING TCL STACKED COMMAND: .R COMMAND

The .R command allows you to replace and modify TCL stacked commands. The
general format for this command is:

>.R{n}/old text/new text
>.R{n}U{m}/old text/new text
>.R{n}{,m}/old text/new text

The .R command functions like the Editor replace command. Parameter n gives
the starting line number for modification. If parameter n is omitted, it will
default to line 1. Parameter m gives the number of lines to modify. If
parameter m is omitted, it will default to 1 line. The U parameter is used to
modify all cases of old text, with new text just like the Editor Replace
Universal (RU) function. The.R command requires a minimum system privilege
level of 1.

F.1.10 DELETING A TCL STACKED COMMAND: .D COMMAND

The .0 command allows you to delete TeL commands from the TCL stacker. The
general format for this command is:

>.O{E}
>.D{E}{n}{,m}{A)

Parameter n gives the number of lines to delete. If parameter n is omitted,
it will default to 1 line. Parameter m gives the starting line number to begin
deleting. If parameter m is omitted, it will default to line 1. The.O
command requires a minimum system privilege level of 1.

F.1.11 EDITING THE TCL STACKER: .! COMMAND

The .E command allows you to edit the Tel command stacker using all the
functions of the PICK Editor. The general format of this command is:

>.!
>.E{n}

If parameter n is specified, the editing will begin from line n. If omitted,
parameter n will default to line 1. The.E command requires a minimum system
privilege level of 1.

F-5/F-6

88A00757A

ABS frames 5.1, Figure 5-1
ABS RESTORE, 750 2.1.2.2
Active file maintenance 5.4
Accounting History file 5.3.1 thru 5.3.1.4
Accounting History file clearance 5.3.1.4
Accounting History items 5.3.1.2
ACCOUNT-RESTORE PROC 4.5.2.2
ACCOUNT-SAVE PROC 4.5.2.1
Active User items 5.3.1.1
Arithmetic (A) Code 6.7.1
Assembly language assembly, enabling 5.4.3
Attributes 1.4.1, 1.4.2, 6.4.1
Attribute ~lark Count (AMC) 6.6.3
Available space 5.1, 5.1.2

Backup, binary, 750 2.1.2.3
Backup, system 4.5
Base 6.3.1
Base, selecting 6.3.2
BASIC, program file 5.5
Block printing file 3.6.5
BLOCK-CONVERT file 5.3.2
BLOCK-PRINT command 3.6.5.1
BLOCK-PRINT verb 5.3.2

Cartridge disk, attachment 3.7.1.1
Cartridge disk, format 2.1.2.5
Changing baud rate 3.6.2.2
CHARGES 2.2.3.3
CHARGE-TO 2.2.3.2
CHECK-SUM command 7.4
CLAIM verb 5.1.5.2
Clearing files 4.2.1
CLEAR-FILE processor 4.4.2.1
Concatenation (C) code 6.7.2
Conversion codes 6.7
COpy processor 4.3.1
COpy processor options 4.3.2, Table 4-1
Copying file data 4.3.1 thru 4.3.3
Correlative codes 6.7
CREATE-ACCOUNT PROC 5.4.1
CREATE-FILE processor 4, 4.1
CREATE-PFILE 4.1
Creating new files 4.1
CT PROC 7.1.1

I-I

index
Date (D) code 6.7.3
Debug commands 3.8
DEBUG, entry to 3.8
Deleting files 4.2.2
DELETE-ACCOUNT PROC 5.4.2
DELETE-FILE processor 4.2.2
Delimiters for values, subvalues
1.4.1, 6.1, 6.4.1

I

Dictionaries 1.1, 1.2, 1.2.1, 1.2.2, 6.2
Dictionary attributes 1.4.2.1
Dictionary files 1.2.3, 1.4.2.1
Dictionary, sharing 6.2.1
Disk, format 2.1.2.5
Disk space, freeing 5.1.6
DUMP verb 5.1.3.1

ECHO verb 3.6.4.1
ERRMSG file 5.6.1, 5.6.1.1
Error, group format 4.4.3 thru 4.4.3.3
real 4.4.3.2
recovery 4.4.3.3
transient 4.4.3.1

Error messages, PICK Appendix A

File access 6.1
File area 5.1.2
File change, verification 7.4
File Definition (D) Items 1.4, 2.1,
6.6.1, Table 6-3

File Item, structure 6.6
File level dictionary 1.2.2, 1.4.2.1
File Management processors 4
File Statistics Report 7.3
File structure 1.3, 6.3
File structure, inquiries 7.5
File Synonym Definition (Q) Items 1.4,
2.1, 6.6.2, 6.6.2.1, Table 6-3

Files 1.1, 1.2, 1.2.4, 1.3, 1.4.1
Files, clearing 4.2.1
Files, creating new 4.1
FILE-SAVE procedure 4.5.1 •
Format, cartridge and hard disk 2.1.2.5
Frame Format display 5.1.3.1
Frame Identifier (FID) 5.1.3
Frames disk space 5.1.6

88A00757A

Function (F) Code 6.7.4 thru 6.7.4.3

GROUP command 7.52
Group Extraction (G) Code 6.7.5

Hashing algorithm
HASH-TEST command

IPL 2.1

7.5.4

ISTAT command 7.5.3
ITEM command 7.5.1
Item storage 6.5
Item structure, logical 6.4.2
Item structure, physical 6.4.1
Item-id 1.4.1

Length (L) Code 6.7.6
LISTACC PROC 7.1.2
LISTCONN PROC 7.1.3
LISTDICTS PROC 7.1.4
LISTFILES PROC 7.1.5
LISTPROCS PROC 7.1.6
LISTU PROC 7.1.7
LISTVERBS PROC 7.1.8
Load, operating system, 2.1.1.1, 2.1.2.1
Load Previous Value instruction 6.7.4.2
LOCK-FRAME verb 5.1.3.2
LOGOFF 2.2.2
LOGON 2.2.1
LOGON PROC 2.2.4
Logon Processor 2.2
LOGTO 2.2.3.1
LIRE! (retrieval locks) Code 7.2.1
L/UPD (update locks) Code 7.2.1

Mask Character (MC) Code 6.7.7
Mask Hexadecimal (MX) Code 6.7.10
Mask Left (ML) Code 6.7.8
Mask (Right (MR) Code 6.7.8
Mask Time (MT) Code 6.7.9
Master Dictionary (MD) 1.2.2, 6.2
Master Dictionary, verb definition for 3.4
MAXFID 5.1.2
Memory structure 5.1
MESSAGE verb 3.6.6.4
Messages, general system 2.2.4
Messages, sending 3.6.6.4
Messages, System File 5.6
Modulo 1.3.1, 1.3.2, 6.3.1
Modulo, selecting 6.3.2

1-2

Operating System
binary backup, 750 2.1.2.3
load 2.1.1.1
load 750, 2.1.2.1
restore 750 2.1.2.2

5 .. 1 .. 5.1,

Pattern (P) Code 6.7.11
PICK Error Messages Appendix A
PICK Operating System, see operating system
PICK System verification 7.6
POINTER-FILES 5.4.3
POVF verb 5.1.2
Primary Space 1.3.1
PRINT-ERROR verb 5.6.2
Process Control Block (PCB) 5.1
PROCLIB File 5.2.2.4, 5.3.4
Program Interruption (DEBUG) 3.8

Q-Pointers 6.6.2.1 thru 6.6.2.4

Range (R) Code 6.7.6
Relinking Workspace 5.1.1
Reset Switch Options 2.1.1
Restoring file data 4.4, 4.4.1

SAVE verb 4.5.1
Security, System 7.2

Code verification 7.2.3
Codes, user 7.2.2
LIRET (retrieval locks) Code 7.2.1
L/UPD (update locks) Code 7.2.1

SEL-RESTORE 4.4.1
Separation 1.3.1, 1.3.2, 6.3.1
SET-BAUD 3.6.2.2
SET-1/2 3.7.1
SET-1/4 3.7.1
SET-CD 3.7.1.1
SET-CT 3.7.1
SET-HT 3.7.1
SETUP-ASSY PROC 5.4.3
SLEEP verb 3.6.6.3
Stack, pushdown 6.7.4
STRIP-SOURCE verb 5.1.6
Substitute (S) Code 6.7.11
Subvalues 1.4.1, 6.4.1
System backup 4.5
SYSTEM dictionary 1.2.1, 5.2
SYSTEM file 5.2.2
System level files 5.2.2, 5.3

88A00757A

System security, see Security System
System startup 2.1
System status, display of 5.1.4
System structure 1.1
System verification 7.6
SYSTEM-ERRORS file 5.2.2.5

Tab stops, setting 3.6.3
Tape Operation 3.7
Tape size, setting 3.7.1
TCL Stacker Appendix F
TCL (Terminal Control Language),
definition 3

TCL Type I verb statement
TCL Type II verb statement
TCL I verbs 3.6.6
TCL verb attributes 3.2

3.5.1
3.5.2

TCL verb list 3.3, Table 3-1
TCL verb types 3.1
TERM command 3.6.2
Terminal Control Language, see TCL
Terminal controls, keyboard 3.6.1
Terminal/printer controls, setting 3.6.2
Text Extraction (T) Code 6.7.12
TIME verb 3.6.6.1
Translate File (Tfile) Code 6.7.13

UNLOCK-FRAME verb 5.1.3.2
User identification items 5.2.1
User security codes 7.2.2
Utility processors 7.1

Values 1.4.1, 6.4.1
Verb definition for Master Dictionary 3.4
Verbs 3.1 thru 3.3, Table 3-1, 3.5.1,
3.5.2, 3.6.6, also see TCL verbs

VERIFY-SYSTEM PROC 7.6

WHAT verb 5.1.4, 5.1.4.1
WHERE verb 5.1.4, 5.1.4.1
WHO verb 3.6.6.2
Work area 5.1, Figure 5-1
Workspace, additional 5.1.1

ZEBRA 1500, 2500, 3500, 5500 2.1.1
ZEBRA 750 2.1.2

1-3/1-4

