
PICK BASIC
reference manual

--~i 88AOO778A02

"'':: .

CCIl ICOOI 01 I Tn OTlnll I

RECORD OF REVISIONS

Title: PICK BASIC Reference Manual

DOOlment No. 88A00778A02

Da te Revis ion Record

--------------+---
Mar 84 Original Issue

Feb 85 Revision A02 - Change Package (85A00517A01)

THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION WHICH SHALL NOT BE
REPRODUCED OR TRANSFERRED TO OTHER DOCUMENTS OR DISCLOSED TO OTHERS,
OR USED FOR MANUFACTURING OR ANY OTHER PURPOSE WITHOUT PRIOR WRITTEN
PERMISSION OF GENERAL AUTOMATION, INC.

ii

PICK BASIC
reference manual

88AOO778A02

Copyright CI by Gener,' Automation. Inc.
1045 South East Street P.O. Box 4883

An,heim. Ca'ifornia 92803
(7141778-4800 (800)854-6234

TWX 91 ().591.1695 TELEX 685·513

RECORD OF REVISIONS

Title: PICK BASIC Reference Manual

Document No. 88A00778A02

I
\ Da te I Revis ion Record I
\--------------+---1
I 1 \
1 Mar 84 1 Original Issue I

I I
\ Feb 85 I Revision A02 - Change Package (85A00517A01)
1 I
\ I
\ I
\ I
\ I
I I
I I
I I
I I
1 I
I I

THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION WHICH SHALL NOT BE
REPRODUCED OR TRANSFERRED TO OTHER DOCUMENTS OR DISCLOSED TO OTHERS,
OR USED FOR MANUFACTURING OR ANY OTHER PURPOSE WITHOUT PRIOR WRITTEN
PERMISSION OF GENERAL AUTOMATION, INC.

ii

88A00778A

FOREWORD

This document is one of a family of ZEBRA reference manuals devoted to PICK
processors that are on call within the PICK operating system. Before reading
this document and using the processor described, it is recommended that you
first become familiar with the PICK terminal control language and file
structure. These subjects are thoroughly covered in 88A00782A, listed below
with other documents covering PICK processors.

Document No.

88A00757A
88A00758A
88A00759A
88A00760A
88A00774A
88A00776A
88A00777A
88A00779A
88A00780A
88A00781A
88A00782A
88A00783A

Title

PICK Operator Guide
ACCU-PLOT Operator Guide
COMPU-SHEET Operator Guide
Quick Guide for the PICK Operating System
PICK Utilities Guide
PICK ACCESS Reference Manual
PICK SPOOLER Reference Manual
PICK EDITOR Referance Manual
PICK PROC Reference Manual
PICK RUNOFF Reference Manual
Introduction to PICK TCL and FILE STRUCTURE
PICK JET Word Processor Guide

!MACCU-PLOT is a trademark of ACCUSOFT Enterprises

TMcOMPU-SlmET is a trademark of Raymond-Wayne Corporation

!MpICK is a trademark of PICK Systems

TMZEBRA is a trademark of General Automation, Inc.

iii/iv

Section

1

2

3

4

88A00778A

TABLE OF CONTENTS

Title

INTRODUCTION • • • • • • • • • • • • •
1.1 THE BASIC LANGUAGE. • • • • • •••
1.2 BASIC FILE STRUCTURE. • • • • • •••• . . .

1.2.1 CREATING BASIC FILES: CREATE-PFILE •
1.3 BASIC PROGRAMS • • • • • • • • • • • • • • • • • •

1.3.1 BASIC StATEMENTS. • • • • • • • • • • •
1.3.2 COMMENTS WITHIN THE BASIC PROGRAM. • • ••
1.3.3 SPECIAL PICK USE OF BASIC. • • • • ••••••

1.4 CREATING AND COMPILING WITH BASIC. • • • • • • •
1.4.1 FORMAT VERB. • • • • • • • • • • • •
1.4.2 BASIC COMPILER OPTIONS •••••••••

1.5 EXECUTING BASIC PROGRAMS • • • • • • • • • •
1.5.1 RUNNING BASIC PROGRAMS FROM A PROC • • • •
1.5.2 ALTERING EXECUTION TIME: RQM AND SLEEP STATEMENTS.

1.6 PROGRAM SHARING. • • • • • • • • • • • •
1.6.1 CATALOG VERB.
1.6.2 DECA1ALOG VERB •

DATA REPRESENTATION ••••••••••••••
2.1 CONSTANTS AND VARIABLES.
2.2 ASSIGNING VALUES TO VARIABLES ••

2.2.1 SIMPLE ASSIGNMENT STATEMENT.
2.2.2 CLEAR STATEMENT. • • • • • • • •
2.2.3 EQUATE STATEMENT • •

2.3 MULTIPLE DATA REPRESENTATION •
2.3.1 ARRAyS ••••••
2.3.2 DIM STATEMENT ••••

2.4 ASSIGNING VALUES TO ARRAYS •

.
2.4.1 MAT ASSIGNMENT STATEMENT •••••••
2.4.2 MAT COpy STATEMENT •

. . .
. . . .

. . .

2.5 SELECTING NUMERIC PRECISION: PRECISION DECLARATION •

FORMING EXPRESSIONS. • • • • • • • • •
3.1 ARITHMETIC EXPRESSIONS
3.2 STRING EXPRESSIONS ••
3.3 RELATIONAL EXPRESSIONS •••••

3.3.1 PATTERN MATCHING ••
3.4 LOGICAL EXPRESSIONS. • •

PROGRAM CONTROL AND OPERATION. • • • •
4.1 UNCONDITIONAL BRANCHING.

4.1.1 GOTO STATEMENT.
4.2 COMPUTED BRANCHING ••••

4.2.1 ON GOTO STATEMENT.
4.3 CONDITIONAL BRANCHING. • •

4.3.1 SINGLE-LINE IF STATEMENT.
4.3.2 MULTI-LINE IF STATEMENT.
4.3.3 CASE STATEMENT ••••••

v

.

. . .

1-1
1-1
1-3
1-3
1-4
1-4
1-5
1-5
1-6
1-7
1-8
1-10
1-11
1-12
1-13
1-13
1-14

2-1
2-1
2-3
2-3
2-3
2-5
2-7
2-7
2-8
2-9
2-9
2-9
2-11

3-1
3-1
3-4
3-6
3-8
3-10

4-1
4-1
4-1
4.-2
4-2
4-4
4-4
4-6
4-8

Section

5

6

4.4

4.5

4.6

4.7

88A00778A

Title

NO OPERATIONS. . .
4.4.1 NULL STATEMENT ••••
PROGRAM LOOPING. • • • • •
4.5.1 FOR AND NEXT STATEMENTS.

4.5.1.1 WHILE and UNTIL Clauses.
4.5.1.2 Nesting.

4.5.2 LOOP STATEMENTS.
PROGRAM TERMINATION. • •
4.6.1 END, STOP AND ABORT STATEMENTS.
PROGRAM SECURITY • • • •
4.7.1 BREAK AND ECHO STATEMENTS.

SUBROUTINES AND INTERPROGRAM COMMUNICATION •
5.1 INTERNAL SUBROUTINES •

5.1.1 GOSUB STATEMENT.

. .
. . .

· .

5.1.2 COMPUTED GOSUB STATEMENT •
5.2

5.1.3 RETURN AND RETURN TO STATEMENTS.
EXTERNAL SUBROUTINES •
5.2.1 CALL STATEMENT •••••••
5.2.2 SUBROUTINE STATEMENT • . . .
5.2.3 ARRAY PASSING AND INDIRECT CALLS •
5.2.4 EXECUTE STATEMENT.

5.2.4.1 EXECUTE Statement I/O •

. . .

5.2.4.2 Allocating EXECUTE Workspaces and
Nested EXECUTE Levels • •

5.2.4.3 Environment Changes After Using the

5.3
EXECUTE Statement • • • • •

INTERPROGRAM COMMUNICATION • •
5.3.1 CHAIN STATEMENT.
5.3.2 DATA STATEMENT •••••
5.3.3 COMMON STATEMENT
5.3.4 ENTER STATEMENT.

.

INTRINSIC FUNCTIONS.
6.1 NUMERIC FUNCTIONS.

6.2

6.3

6.1.1
6.1.2
6.1.3

ABS ••
INT.
REM AND MOD.

6.1.4 SQRT ••••
6.1.5 RND ••
TRIGONOMETRIC FUNCTIONS.
6.2.1 COSINE.
6.2.2 SINE.
6.2.3 TANGENT.
6.2.4 LOGARITHM.
6.2.5 EXPONENTIAL.
6.2.6 POWER.
LOGICAL FUNCTIONS.
6.3.1 NOT.

. .
6.3.2 NUM AND ALPHA.

. . .

.

.

vi

· . .

· .

Page

4-10
4-10
4-11
4-11
4-13
4-14
4-15
4-17
4-17
4-19
4-19

5-1
5-1
5-1
5-1
5-3
5-5
5-5
5-5
5-7
5-9
5-9

5-11

5-12
5-14
5-14
5-16
5-18
5-20

6-1
6-1
6-1
6-1
6-1
6-2
6-2
6-4
6-4
6-4
6-4
6-4
6-5
6-5
6-6
6-6
6-6

88A00778A

Section Title

7 FILE HANDLING • • • • • • • • • • • • • • 7-1
7.1 FILE SELECTION FOR I/O • • • • 7-1

7.1.1 OPEN STATEMENT. • • • • • • • • 7-1
7.2 CLEARING A FILE. • • • • • • • • • • • • • • • • 7-3

7.2.1 CLEARFILE STATEMENT. •• • • • • • • 7-3
7.3 ACCESSING FILE ITEMS • • • • • • • • • • • • 7-5

7.3.1 READ STATEMENT. • • • • • • 7-5
7 .3.2 SELECT STATEMENT • • • • • • • • • • • 7-7
7.3.3 READNEXT STATEMENT. • • • • • • • • 7-9

7.4 MODIFYING AND DELETING FILE ITEMS. • 7-11
7.4.1 WRITE STATEMENT. • • • • • • • • • . 7-11
7.4.2 DELETE STATEMENT. • • • • • • • • • • • • • 7-11

7.5 ACCESSING AND UPDATING SINGLE ATTRIBUTES. 7-13
7.5.1 READV STATEMENT. • • • • • • • • • • . • • • 7-13
7.5.2 WRITEV STATEMENT. • • • • • • • • 7-15

7.6 ACCESSING AND UPDATING MULTIPLE ATTRIBUTES. 7-17
7.6.1 MATREAD STATEMENT. • • • • 7-17
7.6.2 MATWRITE STATEMENT. • • • • • • • • 7-17

7.7 MULTIUSER FILE AND EXECUTION LOCKS. • • • • 7-19
7.7.1 BASIC LOCKS. • • • • • • • • • • •• 7-19

7.7.1.1 LOCK Statement. • • 7-19
7.7.1.2 UNLOCK Statement. 7-19

7.7.2 READ WITH LOCK FOR UPDATING: READU, READVU,
AND MATREADU STATEMENTS. • • • • • • • • • • 7-21

7.7.3 WRITE WITH LOCK FOR UPDATING: WRITEU, WRITEVU,
AND MATWRITEU STATEMENTS • • • • • 7-23
7.7.3.1 RELEASE Statement. • • • • 7-23

7.8 PROC I/O • • • • • • • • • • 7-25
7 .8. 1 PROCREAD STATEMENT • • • • • 7 -25
7.8.2 PROCWRITE STATEMENT. 7-25

7.9 TAPE I/O • • • • • • • • • • 7-26
7.9.1 READT STATEMENT. • • • • • • • 7-26
7.9.2 WRITET STATEMENT. • • • • • • • 7-26
7.9.3 WEOF AND REWIND STATEMENT. 7-27

7.10 STRING HANDLING. • • • • • • • • 7-28
7.10.1 STRING SEARCHING: FIELD, COL1 AND COL2 FUNCTIONS. 7-28

7.10.1.1 FIELD. • • • • • • • • • • • • • • • •• 7-28
7.10.1.2 COL1, COL2 • • • • • • • • • • • • • • • 7-28

7.10.2 SEARCHING FOR A SUBSTRING: INDEX FUNCTION. • • • • 7-30
7.10.3 COUNTING OCCURRENCES OF A SUBSTRING: COUNT FUNCTION 7-32
7.10.4 COUNTING DELIMITED VALUES: DCOUNT FUNCTION. 7-33
7.10.5 STRING SPACING: SPACE AND TRIM FUNCTIONS. • • • • 7-34

7.10.5.1 SPACE. • • • • • • • • • • • • • • • • • 7-34
7.10.5.2 TRIM. • • • • • • • • • • • • • • 7-34

7.10.6 STRING REPETITION AND LENGTH DETERMINATION 7-36
7.10.6.1 STR. • • • •• •••• • • 7-36
7.10.6.2 LEN. • • • • • • • • • • • • • • • • 7-36

vii

Section

8

9

10

7.11

88A00778A

Title

DYNAMIC ARRAY OPERATIONS • •
7 • 11. 1 DYNAMIC ARRAY STRUCTURE.
7.11.2 LOCATE STATEMENT.
7.11.3 EXTRACT FUNCTION •••••••
7.11.4 REPLACE FUNCTION.
7.11.5 INSERT FUNCTION.
7.11.6 DELETE FUNCTION.

TERMINAL AND PRINTER INPUT AND OUTPUT.
8. 1 TERMINAL INPUT • • • • • • • • • • •

8.1.1 INPUT AND PROMPT STATEMENTS.
8.1.2 MASKED INPUT • • • • • • • • • • •
8.1.3 OTHER INPUT FOR}tS •••••

8.2 SYSTEM OUTPUT: DEVICE SELECTION.
8.2.1 PRINTER STATEMENTS •••
8.2.2 PRINT STATEMENT ••••••

8.3

8.2.2.1 Tabulation and Concatenation in
PRINT Statement •

8.2.3 CRT STATEMENT. • • • • • • • • • • • • •
OUTPUT FORMATTING. • • • • • • • • • • • • • • •
8.3.1 TERMINAL CURSOR CONTROL AND SCREEN FUNCTIONS: @ ••
8.3.2 FORMAT STRINGS: NUMERIC AND FORMAT MASK CODES.
8.3.3 HEADING AND FOOTING STATEMENTS • • • • • •
8.3.4 PAGE STATEMENT ••••
8.3.5 CURRENT TIME AND DATE: TIME, DATE, AND

TIMEDATE FUNCTIONS • • • • • • • •
8.3.6 QUERYING CURRENT VALUE OF SYSTEM FUNCTIONS: SYSTEM
8.3.7 INPUT AND OUTPUT CONVERSION: ICONV AND OCONV •
8.3.8 FORMAT CONVERSION: ASCII, EBCDIC, CHAR AND SEQ

DEBUGGING BASIC PROGRAMS • • • •
9.1 THE BASIC DEBUGGER •••
9.2 USING THE BASIC DEBUGGER.

9.2.1 THE TRACE TABLE.
9.2.2 BREAKPOINT CONTROL.

, . .

9.2.3 EXECUTION CONTROL •••••
9.2.4 DISPLAYING AND CHANGING VARIABLES.
9.2.5 SPECIAL CO~tMANDS •••••••

9.3 SUMMARY OF THE BASIC DEBUGGER COMMANDS •
9.4 BASIC DEBUGGER MESSAGES •••••••••••••

GENERAL CODING TECHNIQUES AND SAMPLE PROGRAMS.
10.1 GENERAL CODING TECHNIQUES.
10.2 ~AMPLE PROGRAMS ••••••••••••••••

APPENDIX A
APPENDIX 8
APPENDIX C

ASCII CODES •••••••
COMPILER ERROR MESSAGES.
RUN-TIME ERROR MESSAGES.

viii

7-38
7-38
7-40
7-42
7-44
7-46
7-48

8-1
8-1
8-1
8-3
8-4
8-5
8-5
8-7

8-9
8-11
8-12
8-12
8-14
8-18
8-20

8-21
8-23
8-24
8-26

9-1
9-1
9-3
9-5
9-6
9-8
9-9
9-10
9-11
9-13

10-1
10-1
10-3

A-1
B-1
C-1

88A00778A

introduction

1.1 THE BASIC LANGUAGE

BASIC (Beginners All-Purpose Symbolic Instruction Code) is a simple yet
versatile programming language suitable for expressing a wide range of
problems. Developed at Dartmouth College in 1963, BASIC is a language
especially easy for the beginning programmer to master.

The extended PICK BASIC has the following features:

Optional statement labels (statement numbers)
Statement labels of any length
Multiple statements on one line
Computed GaTO statements
Complex IF statements
Multi-line IF statements
Priority case statement selection
String handling with variable length strings up to 32,267 characters
External subroutine calls
Direct and indirect calls
Magnetic tape input and output
Fixed point arithmetic with up to 15 digit precision
ACCESS data conversion capabilities
PICK access and update capabilities
File level or group level lock capabilities
Pattern matching
Dynamic arrays

Table 1-1 lists the BASIC statements. The BASIC intrinsic functions are
listed in Table 1-2.

1-1

1

88A00778A

Table 1-1. BASIC Statements

ABORT END INPUT MATWRITEU PROMPT RQM

BREAK ENTER INPUT@ NEXT READ SELECT

CALL EQUATE I NPUTERR NULL READ NEXT SLEEP

CASE EXECUTE I NPUTNULL ON GOSUB READU STOP

CHAIN FOOTING INPUTTRAP ON GOTO READT SUBROUTINE

CLEAR FOR LOCATE OPEN READ V UNLOCK

CLEARFILE GO LOCK PAGE READVU WEOF

COMMON GOSUB LOOP PRECISION RELEASE WRITE

CRT GOTO MAT PRINT REM WRITEU

DATA GO TO MATREAD PRINTER RETURN WRITET

DELETE HEADING MATREADU PROCREAD RETURN TO WRITEV

DIM IF MATWRITE PROCWRITE REWIND WRITEVU

ECHO

Table 1-2. BASIC Intrinsic Functions

@ COUNT ICONV NUM SPACE

ABS DATE INDEX OCONV SQRT

ALPHA DCOUNT INSERT PWR STR

ASCII DELETE INT REM SYSTEM
CHAR EBCDIC LEN REPLACE TAN

COL1 EXP LN RND TIME
COL2 EXTRACT MOD SEQ TIMEDATE

COS FIELD NOT SIN TRIM

1-2

88A00778A

1.2 BASIC FILE STRUCTURE

A fixed structure is established for BASIC source files. The file MUST have a
dictionary and a separate data level. The BASIC source programs are stored in
the data level of the file. The compiler writes the object and the symbol file
as one record into the dictionary. This makes it much simpler to manipulate
the program source. It can be LISTed, T-DUMPed, T-LOADed, and so on, without
having to select the source items. The object record has the same format as a
pointer-file record and so the dictionary "D" pointer must have a '·DC" in
attribute one. The advantages of this format are:

1. The object can be protected with access/update locks.

2. The object saves/restores with the account on account-saves.

3. The CATALOG function is not necessary for run time efficiency.

4. BASIC Debug can tell the name of the item and verify the object code
integrity.

1.2.1 ClEATING BASIC FILES: CREATE-prILE

The CREATE-PFILE verb should be used to create your BASIC files and
dictionaries. CREATE-PFILE performs in the same manner as CREATE-FILE except
that it automatically places a "DC" in attribute 1 of the dictionary. The
general form of CREATE-PFILE is:

CREATE-PFILE file-name m1{,sl} m2{,s2}
or dict-name,data-name m1{,sl} m2{,s2}
or OICT file-name gl{,sl}

This will create a file for the file-name specified and its associated
dictionary. The modulo and separation values for the dictionary are given
first (m1,sl) and the values for the file lost (m2,s2). If s is not specified,
s-l is assumed.

The form dict-name,data-name must be used if file-name describes one of
multiple files which use the same dictionary.

A dictionary may be created without a data file .by using the DICT form shown.

1-3

88A00778A

1.3 BASIC PROGRAMS

1.3.1 BASIC STATEMENTS

A BASIC program consists of a sequence of BASIC statements optionally
terminated by an END statement. BASIC statements begin with a keyword which
performs a specific task. For example:

WRITE 100*5 ON "RATE"

More than one BASIC statement may appear on the same program line if the
statements are separated by semicolons. For example:

PRINT Ij GOTO 50; *PRINT THE VALUE OF I

Any BASIC statement may begin with a statement label.
that a statement may be referenced by another statement
statement label may be any whole number. If may not be
character or combination of alphabetic characters. The
optional.

The label is used so
in the program. A
any alphabetic
use of a label is

BASIC statements may contain arithmetic, relational, and logical expressions.
These expressions are formed by combining specific operators with variables,
constants, or BASIC Intrinsic Functions. The value of a variable may change
dynamically throughout the execution of the program. A constant, as its name
implies, has the same value throughout the execution of the program. An
Intrinsic Function performs a predefined operation upon the parameter(s)
supplied.

Except where specifically prohibited (which will be shown in the following
sections of this manual) blank spaces may appear in the program line. You
should use them freely throughout the program to enhance the appearance of the
program.

1-4

88A00778A

1.3.2 COMMENTS WITHIN THE BASIC PROGRAM

A helpful feature when writing BASIC programs is the REMARK statement. By
using a REM (REMARK) statement, you may place comments anywhere in the program
without affecting program executing.

A REMARK statement may be specified in three ways:

1. By the letters REM.
2. By an asterisk (*).
3. By an exclamation point (!).

Any of these, when placed at the beginning of a statement, will allow you to
use any combination of characters up until the end of the line. In this way,
you may explain or document your program to any extent you wish. There is no
limit to the number of comment lines you may use. Brief comments may be
appended to or may prefix BASIC program lines.

A sample BASIC program with and without the use of the REMARK statement is
given below:

1-1
5 PRINT I

IF 1-10 THEN STOP
I - 1+1
GOTO 5
END

REM PROGRAM TO PRINT THE NUMBERS
* FROM ONE TO TEN
*

1-1; * START WITH ONE
5 PRINT I; * PRINT THE VALUE

IF 1-10 THEN STOP; * STOP IF FINISHED
I - 1+1; * INCREMENT I
GOTO 5; * START OVER
END

1.3.3 SPECIAL PICK USE OF BASIC

A BASIC program, when stored, is a file item. It is referenced by its
item-name (or item-id) which is the name it is given when created by. the
F~ITOR. An individual line within the BASIC program is an attribute.

1-5

88A00778A

1.4 CREATING AND COMPILING WITH BASIC

A BASIC program is created like any other data-file item by using the EDITOR.
Once this source code item has been filed, it is compiled by issuing the
COMPILE or the BASIC verb. To enter the EDITOR, you issue the following verb:

ED (or EDIT) file-name item-id

The EDITOR processor will then be entered, and you may begin entering your
BASIC program. For ease of instruction indentation, you may use the FORMAT
verb (see Section 1.4.1) or set tab stops (either at the TCL level or while the
EDITOR processor is in control).

The program name is specified by 'item-id' and the program is to be stored in
the file specified by 'file-name'. Users will typically have a file exclusively
devoted to the storage of BASIC programs. The BASIC compiler stores the object
code in the same file, but not in the same item as the source code.

Once the BASIC program has been entered and filed, it may be compiled by
issuing the COMPILE verb. COMPILE is a TCL-II verb which creates two new file
items: one contains the compiled BASIC program (the object code), and the other
contains a symbol definition table of the variables used in the program. All
three items (source, object and symbol table) are stored in the same file. The
COMPILE command format is:

COMPILE file-name item-list {(options)}
or

BASIC file-name item-list {(options)}

The file-name is the name of the file containing the BASIC program(s). The
'item-list' consists of one or more item-id's (program names) separated by one
or more blanks. The 'options' parameter is optional and if used, must be
enclosed in parentheses. Multiple options should be separated by commas.
Valid options are listed below. Detailed descriptions of each are provided in
the following section.

A Assembled code option
C Suppress End of Line (EOL) opcodes from object code
E List error lines only
L List BASIC program
M List map of BASIC program
P Print compilation output on line printer
S Suppress generation of symbol table
X Cross reference all variables

1-6

88A00778A

An example of a BASIC program ("COUNT") that is originated via EDIT, then
filed and compiled:

*)TABS I 4,8,12 [CR]

*)ED BP COUNT [CR]

NEW ITEM
TOP

* .I [CR]

<----------- User sets input tabs at TCL level

<----------- User edits item 'COUNT' in file 'BP'
(BASIC Programs)

<----------- User enters input mode and begins
to enter program

* 001*
* 002
* 003
* 004
* 005
* 006
TOP

PROGRAM COUNTS FROM 1-10 * [CR]
FOR I • 1 TO 10 [CR] <---- Entered with [C] I (or TAB key)

PRINT I [CR] <------ depressed once for indentation
NEXT I [CR] I to first tab stop.

END [CR] I
[CR]

* . FI [CR]

"'COUNT' FILED

<------
I

[C1 I (or TAB key) depressed
twice for second tab stop
indentation

------ User files item

* >COMPILE BP COUNT [CR] <------ User issues compile command

PROGRAM "'COUNT' COMPILED! n FRAMES USED.

1.4.1 FORMAT VERB

You may use the FORMAT verb to automatically indent IF ••• THEN ••• ELSE,
FOR ••• NEXT, LOOP ••• DO ••• REPEAT aDd CASE statements. It has the general form:

FORMAT

There will be a prompt BASIC FILE NAME? for you to enter the name of the file
storing your BASIC program. You will then be prompted:

OUTPUT TO S(CREEN), P(RINTER) OR N(O)?

Enter S, P, or N for formatted output to terminal, printer, or no output,
respectively. You will then be asked:

BASIC PROGRAM NAME?

After the program name is entered, your output will be processed as specified.
Note that FORMAT may be used both before and after a COMPILE.

1-7

88A00778A

1.4.2 BASIC COMPILER OPTIONS

This section describes the options available when issuing the BASIC or COMPILE
compile statement. The options parameter must be enclosed in parentheses with
individual options separated by commas.

Options Description

A Assembled code. Generates a listing of the source code line numbers,
the labels and the BASIC opcodes used by the program. This is a
'pseudo' Assembly code listing which allows the user to see what
BASIC opcodes the program has generated. The hexadecimal numbers on
the left of the listing are the BASIC opcodes and the mnemonics are
listed on the right. See the example for the assembled code listing
of the BASIC program "COUNT'· (from Section 1.4).

C Catalog. Suppresses the end-of-line (EOL) opcodes from the object
code item. The EOL opcodes are used to count lines for error
messages. This eliminates 1 byte from the run time object code for
every line in the source code. This option is designed to be used
with debugged cataloged programs. Any run-time error message will
specify a line number of 1.

E List Error lines only. Generates a listing of the error lines
encountered during the compilation of the program. The listing
indicates line number in the source code item, the source line itself
and a description of the error associated with the line.

L List program.
compilation.
indicated.

Generates a line by line listing of the program during
Error lines with associated error messages are

~l Map. Generates a variable map and a statement map. both of which are
printed out after compilation. These maps show where the program
data has been stored in the user's workspace. The variable map lists
the offset in decimal (from the beginning of the seventh frame of the
IS buffer) of every BASIC variable in the program, i.e., the form: 20
xxx 30 Y11 shows that the descriptor of variable 'xxx' starts on byte
20 and the descriptor of variable 'yyy' starts on byte 30 of the
seventh frame of the IS buffer. Descriptors are 10 bytes in length.
The statement map shows which statements of the BASIC program are
contained in the frames of the OS buffer. If the program is run,
frame number '01' refers to the seventh frame of the OS buffer.
If the program is cataloged, frame 01 will be specified in the
catalog pointer item in the POINTER-FILE. The statement map may
be used to determine if frequently executed loops cross frame
boundaries.

P Printer. Routes all output generated by the compilation to the
printer.

1-8

88A00778A

S Suppress symbol table. Suppresses the symbol table item which is
normally generated during compilation. The symbol table item is used
exclusively by the BASIC Debugger for reference, therefore, it must
be kept on file only if the user wishes to use the Debugger.

X Cross reference. Creates a cross reference of all the labels and
variables used in a BASIC program and stores this information in the
BSYM file. A BSYM file must exist (a modulo and separation of 1,1
should be sufficient). The "X" option first clears the BSYM file
information in the BSYM file then creates an item for every variable
and label used in the program. The item-id is the variable or label
name. The attributes contain the line numbers of where the variable
or label is referenced. An asterisk will precede the line number
where a label is defined, or where the value of the variable is
changed. No output is generated by this option. An attribute
definition item should be placed in the dictionary of the "BSYM" file
which allows a cross reference listing of the program to be generated
by the command:

>SORT BSYM BY LINE-NUMBER LINE-NUMBER

An example of a BASIC A option listing for "COUNT":

Source
Code
Line No

001
002
002
002
002
002
002
002
002
002
002
002
003
003
003
004
004
004
005
006

BASIC Pseudo
Object Assembly
Code Code

01 EOL
03 LOAD A
FD LOAD.
20 ONE
2D SUBTRACT
SF STORE

*1001
05 LOADN
03 LOADA
20 ONE
28 FORTEST
01 EOL
5D LOAD
50 PRINTCRLF
01 EOL
06 BRANCH

*2001
01 EOL
01 EOL
45 EXIT

[BO] LINE 6 COMPILATION COMPLETED

1-9

I
1

10
I

*2001

I

*1001

88A00778A

1.5 EXECUTING BASIC PROGRAMS

A compiled BASIC program is executed by issuing the RUN verb. The command
forcat is:

RUN file-name item-id {(options)}

The "file-name" gives the name of the file where the compiled BASIC program is
stored and "item-id" specifies the name of the program to be executed. The
"options" parameter is optional. If used, it must be enclosed in parentheses
with multiple options separated by commas. Valid options are given below:

Options Description

A Abort. Inhibits entry to the BASIC Debugger under all error
conditions. Instead, the program will print a message and terminate
execution.

D Run-time Debug. Causes the BASIC debugger to be entered before the
start of program execution. The BASIC debugger may also be called at
any time while the program is executing by pressing the BREAK key on
the terminal.

E Errors. Forces the BASIC run time package to enter the BASIC
Debugger whenever an error condition occurs. The use of this option
will force the operator to either accept the error by using the
Debugger or exit to TCL.

I Inhibit initialization of data area. The "I" option should only
be used in the "CHAIN" statement. (Refer to BASIC CHAIN statement.)

N Nopage. Cancels the default wait at the end of each page of output.

P Printer on. This has the same effect as a BASIC PRINTER ON
statement; directs all program output to the printer.

S Suppress. Suppresses run-time warning messages.

An example of the execution of sample BASIC program:

*)RUN PROGRAMS TEST [CR]

THIS IS

A TEST

1-10

88A00778A

1.5.1 RUNNING BASIC PROGRAMS FROM A PROC

A BASIC program may be run from a PROC. The following example illustrates the
use of a BASIC program in conjunction with the ACCESS SSELECT verb. A PROC
named LISTBT is written as follows:

PQ
HSSELECT BASIC/TEST
STON
HRUN BP LISTIOS
P

A BASIC program named LISTIDS is written as follows:

OPEN ",'BASIC/TEST' ELSE PRINT 'FILE MISSING'; STOP
10 N - 0
20 REAnNEXT 10 ELSE STOP

PRINT ID 'L#"#'#"""""":
N - N + 1
IF N>- 4 THEN PRINT; GOTO 10
GOTO 20
END

By typing in the following:

LISTBT

at the TCL level, the PROC LISTBT selects the item-id's contained in the file
BASIC/TEST and invokes the BASIC program LISTIDS to list the item-id's
selected, four to a line.

For further information, refer to the PROC Manual.

1-11

88A00778A

1.5.2 ALTERING EXECUTION TIME: RQK AND SLEEP STATEMEHTS

The RQK (Release Quantum) statement terminates the executing program's current
quantum (time-slice). The RQM statement may be used to alter program execution
speed. The SLEEP statement follows the same form and performs the same
functions as the RQM statement. The general form of the RQM and SLEEP
statements:

RQM {time}
SLEEP {t ime }

where time is either an integer specifying the number of seconds to sleep or
is in the format "hh:mm:ss" specifying the time until which to sleep. Note
that the "hh:mm:ss" format is a 24-hour military time, and requires the use
of quotes.

The time-shared environment of the PICK system allows several programs to
execute together with each program executing for a specific time period (called
a time-slice or quantum) and then pausing while another program continues
execution. Since the RQM and SLEEP statements terminate a program's current
time-slice, they may be used in time-consuming program loops to allow increased
execution speed to other concurrently executing programs. They may also be
used to cause pauses in program execution.

Examples of the use of RQK:

Correct Use

*PROGRAM SEGMENT TO SOUND
*TERMINAL "BELL" FIVE TIMES.

*
BELL-CHAR(7)
FOR 1-1 TO 5
PRINT BELL:
RQM
NEXT I
END

Incorrect Use

Xl-'TEST'
RQM Xl

Explanation

RQM statement allows enough
time for bell to be heard as
discrete "beeps".

Explanation

Only a numeric time parameter is
allowed with the RQM statement.

1-12

88A00778A

1.6 PROGRAM SHARING

BASIC programs may be shared by users on various accounts by creating a
Q-pointer to the BASIC program file in the users' accounts.

1.6.1 CATALOG VERB

A BASIC program may be evoked at the TCL level by the creation of a catalogued
program. This is done by using the CATALOG instruction. The verb has the
following general form:

CATALOG file-name item-id

The '"file-name" refers to the BASIC program file which stores the program and
'"i tem-id" specifies the previously compiled BASIC program which is to be
accessed from TCL. If there are no conflicts. the system will respond with:

, I tem-id' CATALOGED

Once a program is cataloged, it is 'run' simply by issuing the program name at
the TCL prompt. The TCL-II verb which is added to the user's Master Dictionary
(if not already present) has the following form:

1) P
2) E6
3)
4)
5) XXXXX

where XXXXX is the BASIC program file name. If an item already exists in the
user's Master Dictionary which is not in the above form, the system will
respond with:

[415] ITEM 'Item-id' EXISTS ON FILE

and the program will not be cataloged.

1-13

88A00778A

1.6.2 DECATALOG VERB

In order to delete the object code of a BASIC program, the DECATALOG verb has
been provided, which has the following form:

DECATALOG fi1e-name item-id

where "file-name" is the name of the file containing the BASIC proram and
"item-id" 1s the name of the program.

An item is maintained in the dictionary of the BASIC program file for each
compiled BASIC program. The DECATALOG statement will delete that item from the
dictionary, return all of the overflow space, and delete the BASIC program name
verb from the user's Master Dictionary. Note that it will not delete the
program from the file, so it may be recompiled and recata10ged at a later time.

After deletion, verbs executed from other accounts will receive the message:

'Item-id' NOT ON FILE

The CATALOG and DECATALOG verbs are TCL-II verbs. This means that they require
the BASIC program fi1e-name and one or more explicit item-ids, or a '*'
(meaning all), or that a list be in effect. It also means that you can catalog
all of the BASIC programs in one file by using the CATALOG verb only once, and
decata10g them similarly with the DE CATALOG verb.

The effect of the CATALOG verb is to point to the file which contains the
pointer to the object code.

The primary purpose of the DE CATALOG verb is to remove the object code string
from the system. This string is pointed to by the pointer record in the
dictionary of the BASIC program file where the proram resides. The program
does not need to be cataloged in order to use the DE CATALOG verb. It will also
remove the pointer left in the Master Dictionary by the CATALOG verb if there
is one.

Note that with both of these verbs, the BASIC program file name and the program
name are the only parameters used by the system. The BASIC program name is
transferred to the object code pointer as its name, and to the Master
Dictionary pointer to the dictionary of the BASIC file. Similarly, the object
pointer will reside in the dictionary of the file which contains the source
program in the data section, and the pointer which results from the CATALOG
verb will point to that file.

1-14

88A00778A

data representation

2.1 CONSTANTS AND VARIABLES

There are two types of data within PICK; numeric and string. These data types
are represented within the BASIC program as either constants or as variables.

Numeric data consists of a series of digits and represents an amount, such as
255. String data consists of a set of characters, for example, a name and
address:

JOE DOE, 430 MAIN, ATOWN, CA.

Both numeric and string data types may be represented within the BASIC program
as either constants or variables. A constant, as its name implies, has the
same value throughout the execution of the program. A numeric constant may
contain up to 15 digits, including a maximum of 4 digits following the decimal
point and must be in the range:

If the precision (see Section 2.5, Selecting Numeric Precision) of the program
is 4 digits; by setting the PRECISION to a value less than 4, the range of the
allowable numbers is increased accordingly.

The unary minus sign is used to specify negative constants. For example:

-17000000
-14.3375

A string constant is represented by a set of characters enclosed in single
quotes, double quotes, or backslashes. For example:

"THIS IS A STRING" , ABCD123411.' 'HELLO'

If any of the string delimiters ('," or ') are to be part of the string, then
one of the other delimiters must be used to delimit the string. For example:

"THIS IS A 'S.TR.ING' EXAMPLE"
\THIS IS A "STRING" EXAMPLE\

A string may contain from 0 to 32,267 characters, which is the maximum length
of a PICK file item.

2-1

2

88A00778A

A number of valid and invalid string constants examples:

Valid String

"ABC%1231*4AB"

... 102Z

"A "'LITERAL'" STRING"

... A "LITERAL" STRING'"

(indicates the empty string)

\ JOHN PROGRAMMER"

Invalid String

ABC123
(quotes are missing)

"'ABC%QQR"
(either two single quotes or

two double quotes must be used)

"12345678910
(terminating double quote

missing)

Data may also be represented as variables. A variable has a name and a
value. The value of a variable may be either numeric or string, and may change
dynamically throughout the execution of the program. The name of a variable
identifies the variable (the name remains constant throughout program
execution). Variable names consist of one alphabetic character followed by
zero or more letters, numerals, periods, or dollar signs. A variable name may
be from 1 to 64 characters lons. A number of valid and invalid variable names:

Valid Variable Name Invalid Variable Name

A5 ABC 123
(no space allowed)

ABCDEFGHI
5AB

QUANTITY.ON.HAND (must begin with letter)

R$$$$P$ Z., $
(comma not allowed)

J1B2Z
A-B

INTEGER ("-" not allowed)

THIS.IS.A.NAME

For example:

X QUANTITY DATA. LENGTH B$ •.

The variable X, for example, may be assigned the value 100 at the start of a
program, and may then later be assigned the value "THIS IS A STRING". Note
that BASIC keywords (words that define BASIC statements and functions) may not
be used as variable names. BASIC keywords are listed in Tables 1-1 and 1-2,
Section 1.1.

2-2

88A00778A

2.2 ASSIGNING VALUES TO VARIABLES

The Simple Assignment statement is used to assign a value to a variable. The
CLEAR statement is used to initialize all variables to a value of zero.

2.2.1 SIMPLE ASSIGNMENT STATEMENT

The general form of the Simple Assignment statement is:

variable • expression

The resulting value of the expression becomes the current value of the
variable on the left side of the equality sign. The expression may be any
legal BASIC expression. For example:

ABC - 500
X2 - (ABC+100)/2

The first statement will assign the value of 500 to the variable ABC. The
second statement will assign the value 300 to the variable X2 (i.e., X2 -
(ABC+100)/2 - (500+100)/2 • 600/2 - 300). String values may also be assigned
to variables. For example:

VALUE - "THIS IS A STRING"
SUB - VALUE [6,2]

The first statement above assigns the string "THIS IS A STRING" to variable
VALUE. The second statement assigns the string "IS" to variable SUB (it
assigns to SUB the 2 character substring starting at character position 6 of
VALUE) •

2 .2.2 CLEAR STATEMENT

The CLEAR statement initializes all possible variables to zero (it assigns the
value 0 to all variables). The CLEAR statement may be used in the beginning of
the program to initialize all variables to zero, or may be used anywhere within
the program for reinitialization purposes.

The general form of the CLEAR statement:

CLEAR

2-3

Examples of Assignment and CLEAR:

Correct Use

X-s

X-X+1

ST-"STRING"

ST1-ST[3,1]

TABLE (I,J)-A(3)

CLEAR

Incorrect Use

-10+Z

CLEAR A

88A00778A

Explanation

Assigns S to X.

Increments X by 1.

Assigns the character string "STRING" to ST.

Assigns substring "R" to STl.

Assigns matrix statement from vector element.

Assigns 1 to A if "B-O" is true.*
Assigns 0 to A if "B-O" is false.

Assigns the value 0 to all possible
variables.

Explanation

Expression is missing.

Variable is missing.

Illegal format.

A variable is not allowed with CLEAR
statement.

*A relational expression evaluates to 1 if the relation is true and to 0 if the
relation is false. See Section 3.3, Relational Expressions.

2-4

88A00778A

2.2.3 EQUATE STATEMENT

The EQUATE statement allows one variable to be defined as the equivalent of
another variable. The general form of the EQUATE statement is:

EQUATE or EQU variable TO equate-variable {, variable TO equate-variable ••• }

The variable must be a simple variable. The equate-variable may be a literal
number, string, character, array element or CHAR function. Note that the CHAR

. function is the only function allowed in an EQUATE statement.

The EQUATE statement must appear before the first reference to the
equate-variable.

The EQUATE statement differs from the ASSIGNMENT Statement (where a variable
is assigned a value via an equal sign) in that there is no storage location
generated for the variable. The advantage this offers is that the value is
compiled directly into the object-code item at compile time and does not need
to be reassigned every time the program is executed.

The EQUATE statement is therefore particularly useful under the following two
conditions:

1. Where a constant is used frequently within a program, and therefore the
program would read more clearly if the constant were given a symbolic name.
In the fourth example on the next page, "AM" is the commonly used symbol
for "attribute mark", one of the standard data delimiters.

2. Where a MATREAD statement is used to read in a entire item from a file and
disperse it into a dimensioned array. In this case, the EQUATE statement
may be used to give symbolic names to the individual array elements, which
makes the program more meaningful. For example:

DIM ITEM(20)

EQUATE BIRTHDATE TO ITEM(l), SOC.SEC.NO. TO ITEM(2)

EQUATE SALARY TO ITEM(3)

In this case, the variables BIRTHDATE, SOC.SEC.NO. and SALARY are rendered
equivalent to the first three elements of the array ~TEM. These meaningful
variables are then used in the remainder of the program.

2-5

Examples of the use of EQUATE:

Correct Use

EQUATE X TO Y

EQUATE PI to 3.1416

EQUATE STARS TO "* •• **,.

EQUATE AM TO CHAR(254)

EQUATE PART TO ITEM(3)

Incorrect Use

EQUATE 2.7182 TO E

EQUATE PRICE(9) TO X

88A00778A

Explanation

Variable X and variable Y may be used
interchangeably within the program.

Variable PI is compiled as the value 3.1416
at compile time.

Variable STARS is compiled as the value of
five asterisks at compile time.

Variable AM is equivalent to the ASCII
character generated by the CHAR function.

Variable PART is equivalent to element 3
of array ITEM.

Explanation

Variable must appear first.

Only simple variables (not array elements)
may appear after the word EQUATE.

2-6

88A00778A

2.3 MULTIPLE DATA REPRESENTATION

Multiple valued variables are called arrays. Before arrays may be used in a
BASIC program they must be dimensioned via a DIM statement.

2.3.1 ARRAYS

A variable with more than one value associated with it is called an array. Each
value is called an element of the array and the elements are ordered.

3 1---- The first element of A has value 3

8 1---- The second element of A has value 8
Array A:

1-20.31---- The third element of A has value -20.3

1 ABC 1-- The fourth element of A has string value "ABC"

The above example illustrates a one-dimensional array (called a vector). A
two-dimensional array (called a matrix) is characterized by having rows and
columns. For example:

COL.1 COL.2 COL.3 COL.4

Row 1 1 3 1 XYZ 1 A 1 -8.2 1 1------------------
Array Z: Row 2 1 8 1 3.1 1 500 1 .333 1

1----------------------------
Row 3 1 2 1 -5 1 Q123 I 84 1

An array element may be accessed by specifying its position in the array.
This position is like an offset from the beginning of the array. When
specifying an element, the user must have one offset or subscript for each
dimension of the array. For example:

Array B:

1 -7 1-------- Element B(l)
\------1
1 23 1--------- Element B(2)
1------1
IXYZABCI------- Element B(3)

In this example, element B(l) has a value of -7, while element B(3) has a
string value of "XYZABC". For a two-dimensional array (matrix) the first
subscript specifies the row, while the second specifies the column. In array Z
above, element Z(l,l) has a value of 3, while element Z(2,3) has a value of
500. Before an array may be used in a BASIC program, the maximum dimension(s)
of the array must be specified to set aside the correct amount of space for
storage. This is done via a DIM statement, which is discussed in the next
section.

2-7

88A00778A

2.3.2 DIM STAlEMENT

Before an array may be used in a BASIC program, it must be dimensioned using a
DIM statement. For this reason, DIM statements are usually placed at the
beginning of the program. (Arrays need only be dimensioned once throughout the
entire program.) The DIM statement has the general form:

DIM variable(dimensions){,variable(dimensions)} •••

The dimensions of any array are specified as constant whole numbers, separated
by commas. A dimension of 1 is not allowed. Several arrays may be dimensioned
via a single DIM statement. The following statement, for example, declares
array A1 as a 10 by 5 matrix and declares array X as a 50 element vector:

DIM A1(10,5), X(50)

Examples of the use of DIM:

Correct Use

DIM MATRIX(10,12)

DIM Q(10),R(10),S(10)

DIM M1(50,10),X(2)

Incorrect Use

DIM VECTOR

DIM MATRIX(10 10)

DIM X(10) Y(10,50)

DIM X(l)

Explanation

Specifies 10 by 12 matrix named MATRIX.

Specifies three vectors named Q, R, and S,
each to contain 10 elements.

Specifies 50 by 10 matrix named M1, and
two-element vector named X.

Explanation

Dimension subscript is missing.

Comma is miSSing between dimension subscripts

Comma is missing between the X and Y array
declarations.

Dimensions of 1 are illegal.

2-8

88A00778A

2.4 ASSIGNING VALUES TO ARRAYS

MAT Assigment and MAT Copy statements are used to assign values to each element
in the array.

2.4.1 MAT ASSIGNMENT STATEMENT

The MAT (matrix) Assignment statement is similar to the Simple Assignment
statement. It assigns a single value to all elements in an array. The general
form of the MAT Assignment statement is:

MAT variable • expression

The resulting value of the expression (which may be any legal expression) is
assigned to each element of the array. The array that is being assigned is
specified by the "variable'· parameter. Note that the specified array must have
been previously dimensioned via a DIM statement. The following statement
assigns the current value of X+Y-3 to each element of array A:

MAT A • X+Y-3

2.4.2 MAT COpy STATEMENT

The MAT Copy statement copies one array to another. The general form of the
HAT Copy statement is:

MAT variable • HAT variable

The first element of the array on the right becomes the first element of the
array on the left, the second element on the right becomes the second element
on the left, etc. Each variable name must be previously dimensioned, and the
number of elements in the two arrays must match; if not, an error message
occurs.

Arrays are copied in row major order (which means that the rows are filled
first, therefore, the second subscript (column) will vary first).

Program Code

DIM X(5,2), Y(10)
FOR 1-1 TO 10
Y{I)-I
NEXT I
MAT X • MAT Y

Resulting Array Values

X(l,l) • Y{l) • 1
X(1,2) - Y(2) - 2
X{2,1) - Y(3) - 3

X{5,2) - Y(10) - 10

The above program dimensions two arrays that each have ten elements (5x2-10),
initializes array Y elements to the numbers 1 through 10, and then copies array
Y to array X, giving the array elements the indicated values.

2-9

88A00778A

Examples of MAT Assignment and liAT Copy:

Correct Use

MAT TABLE-l

MAT XYZ-A+B/C

0111 A(20), B(20)

MAT A - MAT B

Explanation

Assigns a value of 1 to each element of array
TABLE.

Assigns the expression value to each element
of array XYZ.

Dimensions two vectors of equal length, and
assigns to elements of A, the values of
corresponding elements of B.

DIM TABl (10,10), TAB2(50,2) Dimensions two arrays of the same number of
elements (lOxlO-SOx2), and copies TAB2 values
to TABl in row major order.

MAT TABl - MAT TAB2

Incorrect Use

MAT-45/Q

DIM A(2,2), B(2,2)
MAT A - B

DIM AR(3,6), SAVE(20)
HAT AR - HAT SAVE

Explanation

Variable is missing after MAT.

Word "MAT" is missing after equality sign.

The two arrays are not dimensioned to the
same size and thus cannot be made identical.

2-10

88A00778A

2.5 SELECTING NUMERIC PRECISION: PRECISION DECLARATION

The PRECISION declaration allows the user to select the degree of precision to
which all values will be calculated within a given program.

The default precision value is 4. This means that all values are stored in an
internal form with 4 fractional places, and all computations are performed to
this degree of precision. However, you may specify the number of fractional
digits you desire within the range of 0-4 by using a PRECISION declaration.

The general form of the PRECISION declaration is as follows:

PRECISION n

where n is a number from 0-4.

Only one PRECISION declaration is allowed in a program. If more than one is
encountered, a warning message is printed and the declaration is ignored.

Where external subroutines are used, the mainline program and all external
subroutines must have the same PRECISION. If the precision is different
between the calling program and the subroutine, a warning message will be
printed.

Note that changing the precision changes the acceptable form of a number; a
number is defined as having a maximum of "nIt fractional digits, where "n" is
the precision value. Thus, the value:

1234.567

is a legal number if the precision is 3 or 4, but is not a legal number if the
precision is 0, 1 or 2.

A precision of zero means that all values will be treated as integers.

2-11

Examples of the use of PRECISION:

Correct Use

PRECISION 0
A • 3
B • A/2

PRECISION 1

PRECISION 2

PRECISION 3

Incorrect Use

PRECISION 5
PRECISION -2

PRECISION 2
A • B + C
PRECISION 3

PRECISION 2
CALL SUBA

SUBROUTINE SUBA
PRECISION 3

PRECISION 2
A • 12.247

88A00778A

Explanation

All numeric values in the program will be
treated as integers. The value returned for
B will be 1, not 1.5.

All numeric values in the program will be
calculated to one fractional digit.

All numeric values in the program will be
calculated to two fractional digits.

All numeric values in the program will be
calculated to three fractional digits.

Explanation

PRECISION must be set within the range of
0-4.

PRECISION may be set only once within a given
program. Otherwise, a warning message is
issued and the second PRECISION declaration
is ignored.

PRECISION must be the same for the mainline
program and any subroutine it calls.
Otherwise, a warning message is issued and
the second PRECISION declaration is ignored.

Variable A is assigned with more fractional
digits than allowed by the PRECISION
declaration.

2-12

88A00778A

forming expressions

3.1 ARITHMETIC EXPRESSIONS

Expressions are formed by combining operators with variables, constants, or
BASIC Intrinsic Functions. Arithmetic expressions are formed by using
arithmetic operators.

3

When an expression is encountered as part of a BASIC program statement, it is
evaluated by performing the operations specified by each of the operators on
the adjacent operands (i.e., the adjacent constants, identifiers, or intrinsic
functions). Arithmetic expressions are formed by using the following arithmetic
operators:

Operator Symbol

+

*
/
+

Operation

unary plus
unary minus
multiplication
division
addition
subtraction

Precedence

1 (high)
1
2
2
3
3 (low)

The Simplest arithmetic expression is a single numeric constant, variable, or
intrinsic function. A simple arithmetic expression may combine two operands
using an arithmetic operator. More complicated arithmetic expressions are
formed by combining simple expressions using arithmetic operators.

When more than one operator appears in an expression, certain rules are
followed to determine which operation is to be performed first. Each operator
has a precedence rating. In any given expression, the highest precedence
operation will be performed first. Note that the + and - signs both perform
two different operations. The first, which has the highest precedence,
establishes the positive or negative value of an expression. Because this type
of + and - will only have an expression on one side, this is called the unary
plus and minus. The + and - which perform ordinary addition and substration
(the lowest precedence) will have expressions on both sides. If there are two
or more operators with the same precedence (or an operator appears more than
once) the leftmost operation is performed first.

3-1

88A00778A

For example, consider this expression: -R/A+B*C. The unary minus is
evaluated first (-R • Result 1). The expression then becomes:

Result 1 1 A+B*C

The division and multiplication operators have the same precedence; since the
division operator is leftmost it is evaluated next (Result 1 1 A • Result 2).
The expression then becomes:

Result 2 + B*C

The multiplication operation is performed next (B*C • Result 3). The Result 2
+ Result 3 • Final Result.

Placing some figures in the above expression, for example, -50/5+3*2,
illustrates that the expression evaluates to -4.

Any subexpression may be enclosed in parentheses. Within the parentheses, the
rules of precedence apply, therefore, the parenthesized subexpression as a
whole has highest precedence and is evaluated first. For example:
(10+2)*(3-1) • 12*2 • 24. Parentheses may be used anywhere to clarify the
order of evaluation even if they do not change the order.

If a string expression containing only numeric characters is used in an
arithmetic expression, it is considered as a decimal number. For example, 123
+ "456" evaluates to 579. Note that at this time, "." is considered a decimal
point and has the value o. In a future release of the system, "." will be
nonnumeric.

If a string value containing non-numeric characters is used in an arithmetic
expression, a warning message will be printed (refer to Appendix C, BASIC
RUN-TIME ERROR MESSAGES) and zero will be assumed for the string value.

For example, 123 + "ABC" evaluates to 123.

3-2

88A00778A

Examples of the use of arithmetic expressions:

Correct Use

2+6+8/2+6

12/2*3

12/(2*3)

A+75/25

-5+2

-(5+2)

8*(-2)

5 * "3"

Incorrect Use

A+/B

(Ql+5) (8+Z)

IO-VAL+

66*"ABC"

EX2lanation

Evaluates to 18

Evaluates to 18

Evaluates to 2

Evaluates to 3 plus the current value of variable A

Evaluates to -3

Evaluates to -7

Evaluates to -16

Evaluates to 15

EX2lanation

Operand is missing between "+" and "/".

An operator is missing between the two
parenthesized subexpressions.

Trailing operand is missing.

Illegal expression (evaluates to 0).

3-3

88A00778A

3.2 STRING EXPRESSIONS

A string expression may be any of the following: a string constant, a variable
with a string value, a substring, or a concatenation of string expressions.
The general form of string expressions is:

variable [expression,expression]

A substring is a set of characters which makes up part of a whole string. For
example, "S.", "123", and "ST." are substrings of the string "1234 S. MAIN
ST." Substrings are specified by a starting character position and a substring
length, separated by a comma and enclosed in square brackets. For example, if
the current value of variable S is the string "ABCDEFG", then the current value
of 5[3,21 is the substring "CO" (the two character substring starting at
character position 3 of string S). Furthermore, the value of S[l,1] would be
"A", and the value of S[2,6] would be "BCDEFG".

If the "starting character" specification is past the end of the string value,
then an empty substring value 1s selected (if A has a value of 'XYZ', then
A[4,1) will have a value of "). If the "starting character" specification is
negative or zero, then the first character is assumed (if X has a value of
'JOHN', then X(-S,1] will have a value of 'J').

If the "substring length" specification exceeds the remaining number of
characters in the string, then the remaining string is selected (if B has a
value of '123ABC', the B[S,lO] will have a value of 'BC'). If the "substring
length" specification is negative or zero, then an empty substring is selected
(B[5,-2] and B[5,01 both have a value of ").

Concatenation operations may be performed on strings. Concatenation is
specified by a colon (:) or CAT operator. The concatenation of two strings (or
substrings) is the addition of the characters of the second operand into the
end of the first. For example:

"AN EXAMPLE OF " CAT "CONCATENATION"

evaulates to:

"AN EXAMPLE OF CONCATENATION"

The precedence of the concatenation operator is higher than any of the
arithQetic operators. So if the concatenation operator appears in the same
expression with an arithmetic operator, the concatenation operation will be
performed first. Multiple concatenation operations are performed from left to
right. Parenthesized subexpressions are evaluated first. The concatenation
operator considers both its operands to be string values; for example, the
expression 56:"ABC" evaluates to "S6ABC".

3-4

88A00778A

Examples of STRING expressions:

NOTE: For the following examples, assume that the current value of A is
"ABCl23", and the current value of variable Z is "EXAMPLE".

Correct Use

Z[1,4]

A : Z[l,l]

Z[l,l] CAT A[4,3]

5*2:0

A[6,l]+5

Z CAT A : Z

Z CAT " ONE"

Incorrect Use

"AB" CAT "CD" + 5

43 * 15 CAT "J"

Explanation

Evaluates to "EXAM".

Evaluates to "ABC123E".

Evaluates to "E123".

2:0 is evaluated first and results in the
string "20" (the concatenation operator
assumes both operands are strings). 5*"20"
is then evaluated and results in 100 (the *
operator assumes both operands are numeric).
Final result is 100.

Evaluates to 8.

Evaluates to "EXAMPLEABC123EXAMPLE".

Evaluates to "EXAMPLE ONE".

Explanation

"AB" CAT "CD" evaluates to "ABCD";
but "ABCD" + 5 is illegal.

15 CAT "J" evaluates to ,o15J";
but 43 * "l5J" is illegal.

3-5

88A00778A

3.3 RELATIONAL EXPRESSIONS

Relational expressions are the result of applying a relational operator to a
pair of arithmetic or string expressions. The relational operators are listed
below. A relational operation evaluates to 1 if the relation is true, and
evaluates to 0 if the relation is false. Relational operators have lower
precedence than all arithmetic and string operators; therefore, relational
operators are only evaluated after all arithmetic and string operations have
been evaluated.

Operator Symbols

< or LT
> or GT
<- or LE or -<
>- or GE or ->
- or EQ
or <> or NE
MATCH or MATCHES

Operation

Less than
Greater than
Less than or equal to
Greater than or equal to
Equal to
Not equal to
Pattern matching (this relational operator is
discussed in Section 3.3.1).

For clarity, relational expressions may be divided into two types: arithmetic
relations and string relations. An arithmetic relation is a pair of arithmetic
expressions separated by anyone of the relational operators.

3 < 4
3 - 4.0
3 GT 3
3 >- 3
5+1 > 4/2

(3 is less than 4)-(TRUE)-1
(3 is equal to 4)-(FALSE)-O*
(3 is greater than 3)-(FALSE)-0
(3 is greater than or equal to 3)-(TRUE)-1
(5 plus 1 is greater than 4 divided by 2)-(TRUE)-1

A string relation is a pair of string expressions separated by anyone of the
relational operators. A string expression containing only numeric characters
is treated as an arithmetic expression in a relational expression (see Section
3.3.1, Pattern Matching, for a description of string relations with these type
of strings. A string relation may also be a string expression and an arithmetic
expression separated by a relational operator. If a relational operator
encounters one numeric operand and one string operand that does not contain
only numeric characters, it treats both operands as strings.

To resolve a string relation, character pairs (one from each string) are
compared one at a time from leftmost characters to rightmost. If no unequal
character pairs are found, the strings are considered to be 'equal'. If an
unequal pair of characters are found, the characters are ranked according to
their numeric ASCII code equivalents (refer to Appendix A, ASCII CODES). The
string contributing the higher numeric ASCII code equivalent is considered to
be "greater" than the other string.

*At an earlier time, "." was evaluated as 0 and caused 0-. to evaluate TRUE.
In release 2.1, "." is nonnumeric and 0-..... evaluates FALSE.

3-6

88A00778A

Consider the following relation:

"AAB" > "AAA"

This relation evaluates to 1 (TRUE) since the ASCII equivalent of B (X'42') is
greater than the ASCII equivalent of A (X'41').

If the two strings are not the same length, but the shorter string is
otherwise identical to the beginning of the longer string, then the longer
string is considered "greater" than the shorter string. The following
relation, for example, is TRUE and evaluates to 1:

"STRINGS" GT "STRING"

Examples of the use of relational operators:

Correct Use

4 < 5

"D" EQ "A"

"D" > "A"

"Q" LT 5

6+5 - 11

Q EQ 5

"ABC" GE "ABB"

"XXX" LE "XX"

Incorrect Use

"BB" ET "AB"

5 EQ GT Z

6+5>

Explanation

Evaluates to 1 (TRUE).

Evaluates to 0 (FALSE).

ASCII equivalent of D{X'44') is greater than
ASCII equivalent of A{X'41'), so expression
evaluates to 1.

ASCII equivalent of Q{X'51') is not less than
ASCII equivalent of 5(X'35'), so expression
evaluates to O.

Evaluates to 1.

Evaluates to 1 if current value of variable
Q is 5; evaluates to 0 otherwise.

Evaluates to 1 (C is "greater" than B)

Evaluates to o.

Explanation

ET is not a relational operator

EQ and GT may not appear adjacent to each
other.

Second operand is missing.

3-7

88A00778A

3 .3.1 PATTERN MATCHING

BASIC pattern matching is a relational expression which allows the comparison
of a string value to a predefined pattern. Pattern matching is specified by
the MATCH or MATCHES relational operator. The general form of the pattern
matching relation is:

expression MATCH "pattern"

or

expression UATCHES "pattern"

The MATCH or ~~TCHES relational operator compares the string value of the
expression to the predefined pattern (which is also a string value) and
evaluates to 1 (TRUE) or 0 (FALSE). The pattern must be enclosed in quotes and
may consist of any combination of the following:

An integer number followed by the letter N (which tests for that number of
numeric characters).

An integer number followed by the letter A (which tests for that number of
alphabetic characters).

An integer number followed by the letter X (which tests for that number of
any characters).

A literal string enclosed in quotes (which tests for that literal string
of characters).

Consider the following expression:

DATA MATCHES "4N"

This relation evaluates to 1 if the current string value of variable DATA
consists of four numeric characters.

If the integer number used in the pattern is 0, then the relation will
evaluate to TRUE only if all the characters in the string conform with the
"specification letter" (with N, A, or X). For example:

X MATCH "OA"

This relation evaluates to 1 if the current string value of variable X
consists only of alphabetic characters. As a further example, consider:

A MATCHES "1A4N"

This relation evaluates to 1 if the current string value of variable A
consists of an alphabetic character followed by four numeric characters.

3-8

88A00778A

Examples of the correct and incorrect use of pattern matching:

Correct Use

Z MATCHES '9N'

Q MATCHES "ON"

B MATCH '3N"-"2N"-"4N'

B-"4N1A2N"
C MATCHES B

A MATCHES "ON' • 'ON"

"ABC" MATCHES "IN"

"XYZ" MATCHES "A"

"XYZ1 ,. MATCH "4X"

X MATCHES "

o MATCH , , .

Incorrect Use

DATA MATCH "3M"

Z MATCHES "X"

Q MATCH "3AN"

Explanation

Evaluates to 1 if current string value of
variable Z consists of 9 numeric characters;
evaluates to 0 otherwise.

Evaluation to 1 if current value of Q is any
unsigned integer; evaluates to 0 otherwise.

Evaluates to 1 if current value of 8 is any
social security number; evaluates to 0
otherwise.

Evaluates to 1 if current string value of C
consists of four numeric characters followed
by one alphabetic character followed by two
numeric characters; evaluates to 0 otherwise.

Evaluates to 1 if current value of A is any
number containing a decimal point; evaluates
to 0 otherwise.

Evaluates to O.

Evaluates to 1.

Evaluates to 1.

Evaluates to 1 if current string value of
X is the empty string; evaluates to 0
otherwise.

Evaluates to O •

Explanation

"3M" is not a legal pattern specification.

An integer number must precede X.

An integer number is missing between A and N.

3-9

88A00778A'

3.4 LOGICAL EXPRESSIONS

Logical expressions (also called Boolean expressions) are the result of
applying logical (Boolean) operators to relational or arithmetic expressions.
The logical operators are:

Operator Symbol Operation

~D

OR
Logical ~D operation
Logical OR operation

Logical operators operate on the true or false results of relational or
arithmetic expressions. (Relational expressions are considered FALSE when
equal to zero, and are considered TRUE when equal to one; arithmetic
expressions are considered FALSE when equal to zero, and are considered TRUE
when not equal to zero.) Logical operators have the lowest precedence and are
only evaluated after all other operations have been evaluated. If .two or more
logical operators appear in an expression, the leftmost is performed first.
Logical operators act on their associated operands as follows:

a OR b

a~b

is TRUE (evaluates to 1) if a is TRUE or b is TRUE or both
are TRUE;
is FALSE (evaluates to 0) only when a and b are both FALSE.

is TRUE (evaluates to 1) only if both a and b are TRUE;
is FALSE (evaluates to 0) if a is FALSE or b is FALSE or
both are FALSE.

Consider the following logical expression:

A*2-5)B AND 7)J

The multiplication operation has highest precedence, so it is evaluated first
(A*2 • Result 1). The expression then becomes:

Result 1 - 5)B AND 7)J

The subtraction operation is next (Result 1 - 5 • Result 2). The expression
then becomes:

Result 2) B AND 7)J

The relational operators are of equal precedence, so the leftmost Is evaluated
first (Result 2) B • Result 3, where Result 3 has a value of 1 indicating
TRUE. or a value of 0 indicating FALSE). The expression then becomes:

Result 3 AND 7)J

3-10

88A00778A

The remaining relation operation is then performed (7)J - Result 4, where
Result 4 equals 1 or 0). The final expression therefore becomes:

Result 3 AND Result 4

which is evaluated as TRUE (1) if both Result 3 and Result 4 are TRUE, and is
evaluated as FALSE (0) otherwise.

The NOT function may be used in logical expressions to negate (invert) the
expression or subexpression (refer to the description of the NOT Intrinsic
Function). Examples of the use of logical expressions:

Correct Use

1 AND A

8-2*4 OR Q5-3

A>5 OR A<O

1 AND (0 OR 1)

J EQ 7 AND I EQ 5*2

"XYZ1" MATCH "4X"
AND X

Xl AND X2 AND X3

Incorrect Use

B-5 AND

A AND OR X<9

A ORB

Explanation

Evaluates to 1 if current value of variable A is
non-zero; evaluates to 0 if current value of A
is O.

Evaluates to 1 if current value of Q5-3 is non
zero; evaluates to 0 if current value of Q5-3 is O.

Evaluates to 1 if the current value of variable A
is greater than 5 or is negative; evaluates to 0
otherwise.

Evaluates to 1.

Evaluates to 1 if the current value of variable J
is 7 and the current value of variable I is 10;
evaluates to 0 otherwise.

Evaluates to 1 if the current value of variable X
is non-zero; evalutes to 0 if current value of
X is O.

Evaluates to 1 if the current value of each
variable (Xl, X2, and X3) is non-zero; evaluates
to 0 if the current value of either or all
variables is O.

Explanation

Second operand is missing.

Operand is missing between "AND" and "OR".

A blank space is missing between "OR" and "Btl.

3-:-11/3-12

88A00778A

program control and operation

4.1 UNCONDITIONAL BRANCHING

4.1.1 GOTO STATEMENT

The GOTO statement unconditionally transfers program control to any statement
within the BASIC program. The general form of the GOTO statement is:

GOTO statement-label or GO statement-label

Execution of the GOTO or GO statement causes program control to transfer to
the statement which begins with the specified numeric statement-label. If a
statement does not exist with the specified statement-label, an error message
will be printed at compile time (see Appendix B, CO~IPILER ERROR MESSAGES).
An illustration of correct use of the GOTO statement is given below. (Note
that statements to test and end repetition are assumed in the body of the
program.)

.... --> 100 A-D

REM BRANCH TO STATEMENT 500
200 GOTO 500 --+

I
I

+------------------+ I
+-> 500 A-B+C

0-100

REM REPEAT PROGRAM
GOTO 100 -+

The flow of program control is illustrated by the arrows_ Note that control
may be transferred to statements following the GOTO statement, as well as to
statements preceding the GO TO statement. An example of incorrect use of the
GOTO statement:

100 A-a

--> 200 GO TO 200 --

+------~---=-----+

Explanation

Program will permanently "hang", keep
reexecuting this statement.

4-1

4

88A00778A

4.2 COMPUTED BRANCHING

4.2.1 ON GOTO STATEMENT

The ON GOTO statement transfers control to one of several statement-labels
selected by the current value of an index expression. The general form of the
ON GOTa statement is:

ON expression GOTO statement-label, statement-label, •••

Upon execution of the ON GOTO statement, program control is transferred to the
statement which begins with the numeric statement-label selected by the'
expression. Statement-labels in the list are numbered 1, 2, 3, •••• In
executing the ON GOTO statement, the expression is evaluated and then the
result of the expression is truncated to an integer value. Consider the
following example:

ON I GOTO 50, 100, 150

50

100 •

150 •

(Note that the labels in the label list may precede or follow the ON GOTO
statement.) If the current value of variable 1-1, control transfers to the
first statement-label, (i.e., the statement with label 50). If 1-3, control
transfers to the third statement-label, (i.e., statement 150).

If the value of the expression evaluates to less than one or greater than the
number of statement-labels, no action is taken, which means that the statement
immediately following the ON GOTO will be executed next.

4-2

Examples of the usage of ON GOTO:

Correct Use

ON M+N GOTO 40, 61, 5, 7

ON C GOTO 25, 25, 20

IF A GE 1 AND A LE 3 THEN
ON A GOTO 110, 120, 130

END

Incorrect Use

ON A 100, 200

ON MAX GOTO M(10)

ON H+N-1 GOTO 40, 61, 5, 7

88A00778A

Explanation

Transfer control to statement 40, 61, 5, or
7 depending on the value of M+N being I, 2,
3, or 4 respectively.

Transfer control to statement 25 if C - 1 or
2, to statement 20 if C - 3.

The IF statement assures that A is in range
for the computed GOTO statement.

Explanation

"GOTO" missing.

Invalid statement-label (must be numeric).

Index should be arithmetic, not logical,
quantity. This statement, if executed,
would cause an unconditional jump to
statement 40.

4-3

88A00778A

4.3 CONDITIONAL BRANCHING

4.3.1 SINGLE-LINE IF STATEMENT

The Single-Line IF statement provides the conditional execution of a sequence
of BASIC statements or the conditional execution of one of two sequences of
statements, which appear on a single line. The general form of the Single-Line
IF statement is:

IF expression THEN statement(s) {ELSE statement(s)}

If the result of the test condition specified by the expression is true (i.e.,
non-zero), then the statement or sequence of statements following the THEN is
executed. If the result of the expression is false (i.e., zero), then the
statement or sequence of statements following the ELSE is executed, unless the
ELSE clause is omitted, in which case, control will pass to the next sequential
statement following the entire IF statement. The expression may be any legal
BASIC expression.

The sequence of statements in the THEN or ELSE clauses may consist of one or
more statements on the same line. For example:

IF X>l THEN GOTO 50

In this example, control will be transferred to statement 50 if the current
value of X is greater than one. Since the ELSE clause is not used here,
control will pass to the next statement in the program if X is not greater than
one.

If more than one statement is contained in either the THEN or ELSE clause,
they must be separated by semicolons. Consider the example:

IF ITEM THEN PRINT X; X-X+1 ELSE PRINT X*5; GOTO 10

If the current value of ITEM is non-zero (i.e., true), then this statement
will print the current value of X, add one to the current value of X, and then
transfer control to the next sequential instruction in the program. If the
value of ITEM is zero (i.e., false), then the value of X*5 will be printed and
control will transfer to statement 10.

Any statements may appear in the THEN or ELSE clauses, including additional IF
statements. For example:

IF X THEN NULL ELSE IF C THEN GOTO 10

The THEN clause of an IF statement is optional if the ELSE clause is present.
However, one or the other must be present.

4-4

88A00778A

Examples of single line IF:

Correct Use Explanation

IF A-"STRING" THEN PRINT "MATCH" Prints "MATCH" if value of A is
the string "STRING".

IF X)5 THEN IF X<9 THEN GOTO 10 Transfers control to statement 10
if X is greater than 5 but less
than 9.

IF Q THEN PRINT A ELSE PRINT B; STOP The value of A is printed if Q is
non-zero. If Q-O, then the value
of B is printed and the program
is terminated.

IF A-B THEN STOP ELSE IF C THEN GOTO 20 Program is terminated if A-B;
control is passed to statement 20
if A does not equal B and if C is
non-zero.

Incorrect Use

IF AlB THEN 50

IF X)1 THEN ELSE GOTO 10

IF A - 10 GOTO 20

IF 0 THEN X-A+D GOTO 3

Explanation

The word "GOTO" is missing between "THEN" and
"50" •

At least one statement must appear between
"THEN" and "ELSE".

The word "THEN" is missing between 10 and
GOTO.

A semicolon is missing between "X-A+D" and
"GOTO 3".

4-5

88A00778A

4.3.2 MULTI-LINE IF STATEMENT

The ~tulti-Line IF statement functions in the same way as the Single-Line IF
statement. It provides the conditional execution of a sequence of BASIC
statements, or the conditional execution of one of two sequences of
statements. The statement sequences, however, may be placed on multiple
program lines. The general forms of this statement:

FORM 1:

FORM 2

FORM 3:

IF expression THEN
statements

END ELSE statements

IF expression THEN
statements

END ELSE
statements

END

IF expression THEN
statements ELSE

END

NOTE: In each of the above forms, the ELSE clause is optional.

The ~tulti-Line IF statement is actually an extension of the Single-Line
format. With this format, the statement sequences in the THEN and ELSE clauses
may be placed on multiple program lines, which each sequence terminated by an
END.

In each of the three forms, the ELSE clause is optional and may be included or
omitted as desired. Any statements may appear in the THEN and ELSE clauses.

4-6

Examples of Multi-Line IF:

Correct Use

IF ABC-ITEM+5 THEN
PRINT ABC
STOP

END ELSE PRINT ITEM; GOTO 10

IF VAL THEN
PRINT MESSAGE
PRINT VAL
VAL-100
END

10 IF S-"XX" THEN PRINT "OK" ELSE
PRINT "NO MATCH"
PRINT S
STOP
END

20 REM REST OF PROGRAM

I F X> 1 THEN
PRINT X
X-X+l

END ELSE

END

PRINT "NOT GREATER"
GOTO 75

Incorrect Use

IF X>-Y THEN B-1
ELSE B-2
PRINT Y
END

IF Q-l THEN
A-A+l
B-B+1

ELSE A-O; B-O

88A00778A

Explanation

The value of ABC is printed and the
program terminat.es if ABC-ITEM+5;
otherwise, the value of ITEM is printed
and control passes to statement 10.

If the value of VAL is non-zero, then
the value of MESSAGE is printed, the
value of VAL is printed, and VAL is
assigned a value of 100; otherwise,
control passes to the next statement
following END.

If the value of S is the string "XX",
then the message "OK" is printed and
control passes to statement 20;
otherwise, "NO MATCH" is printed, the
value of S is printed, and the program
terminates.

If X>l·the value of X is printed and
then incremented, and control passes to
the next statement following the second
END: otherwise "NOT GREATER" is printed
and control passes to statement 75.

Explanation

ELSE must appear at the end of the
first line rather than at the beginning
of the second.

END is missing (i.e., END must precede
ELSE in this example).

4-7

88A00778A

4.3.3 CASE STATEMENT

The CASE statement provides conditional selection of a sequence of BASIC
statements. The CASE statement has the following general form:

BEGIN CASE
CASE expression
statements
CASE expression
statements

END CASE

If the logical value of the first expression is true (i.e., non-zero), then
the statement or sequence of statements that immediately follows is executed,
and control passes to the next sequential statement following the entire CASE
statement sequence. If the first expression is false (i.e., zero), then
control passes to the next test expression, and so on. Consider the following
example:

BEGIN CASE
CASE A < 5
PRINT ~A IS LESS THAN S~
CASE A < 10
PRINT ~A IS GREATER THAN OR EQUAL TO 5 AND LESS THAN 10~
CASE 1
PRINT ~A IS GREATER THAN OR EQUAL TO 10~

END CASE

If A<S, then the first PRINT statement will be executed. If S<-A<10, then the
second PRINT statement will be executed. Otherwise, the third PRINT statement
w1ll be executed. Note that a test expression of 1 means "always true".

WARNING: Programs containing more END CASE statements than BEGIN CASE
stateQents will compile successfully, but will terminate with message "[B1S}
LINE ~A' ILLEGAL OPCODE: ~C~" when the extra END CASE statement is encountered
at run time.

4-8

Examples of the of CASE:

Correct Use

BEGIN CASE
CASE Y-B
Y-Y+1

END CASE

BEGIN CASE
CASE A-o; GOTO 10
CASE A<O; GOTO 20
CASE 1; GOTO 30

END CASE

BEGIN CASE
CASE ST MATCHES "lA"
MAT LET-1
CASE ST MATCHES "lN"
SGL-1; A.1{I)-ST
CASE ST MATCHES "2N"
DBL-1; A.2{J)-ST
CASE ST ~fATCHES "3N"
GOSUB 103

END CASE

Incorrect Use

CASE X-Y
GOTO 100

END CASE

BEGIN CASE
CASE SS-l, SS-o
CASE 1; SS-SS-l

BEGIN CASE A+B<C
A-C/2

END CASE

BEGIN CASE
CASE N-100
CASE N)100

END CASE

88A00778A

Explanation

Increment Y if Y is equal to B. Note that
this single-case example is equivalent to the
statement IF Y-B THEN Y-Y+1.

Program control branches to the statement
with label 10 if the value of A is zero; to
20 if A is negative; or to 30 if A is greater
than zero.

If ST is one letter, "1" is assigned to all
LET elements and the entire CASE is ended.
If ST is one number, "1" is assigned to SGL,
ST is stored at element A.1(I), and the
entire case is ended. If ST is two numbers,
"1" is assigned to DBL, ST is stored at
element A.2{J), and the entire case is ended.
If ST is three numbers, subroutine 103 is
executed.

Explanation

'BEGIN CASE' statement is missing.

'END CASE' statement is missing.

The case condition, A+B<C, must be a separate
statement preceded by its own word 'CASE'.

Executable statements are missing.

4-9

88A00778A

4.4 NO OPERATIONS

4.4.1 NULL STATEMEHr

The NULL statement specifies a non-operation and may be used in situations
where a BASIC statement is required, but no operation or action is desired.
Consider the following example:

IF Xl MATCHES "9N" THEN NULL ELSE GOTO 100

This statement will cause program control to branch to statement 100 if the
current string value of variable Xl does not consist of 9 numeric characters.
If the current string value of variable Xl does consist of 9 numeric
characters, then no action will be taken and program control will proceed to
the next sequential BASIC statement.

The NULL statement may be used anywhere in the BASIC program where a statement
is required. Examples of the use of NULL:

Correct Use

10 NULL

IF A-o THEN NULL ELSE
PRINT "A NON-ZERO"
GOSUB 45
STOP
END

READ A FROM '"ABC" ELSE NULL

Incorrect Use

NULL Xl

IF NULL THEN GOTO 5

NULL-45*B

Explanation

This statement does not result in any
operation or action; however, since it is
preceded by a statement label (10) it may be
used as a program entry point for GOTO or
GOSUB statements elsewhere in the program.

If the current value of variable A is non
zero, then the sequence of statements
following the ELSE will be executed. If A-D,
no action is taken and control passes to the
next sequential statement following the END.

File item ABC is read and assigned to
variable A. If ABC does not exist, no
action is taken (refer to READ statement,
Section 7.3.1).

Explanation

A parameter is not allowed with the NULL
statement.

"NULL" may not be used as an expression.

"NULL" may not be used as a variable name.

4-10

88A00778A

4.5 PROGRAM LOOPING

4.5.1 FOB. ABO NEXT STATEMENTS

The FOR and NEXT statements are used to specify the beginning and ending points
of a program loop. A loop is a portion of a program written in such a way that
it will execute repeatedly until some test condition is met. The general form:

FOR variable - expression TO expression {STEP expression}
I I I

NEXT variable I I I
------ ------- --------
I initial I I limiting I I increment I
I value I I value I I value I
----- ---------- --------

A FOR and NEXT loop causes execution of a set of statements for successive
values of a variable until a limiting value is encountered. Such values are
specified by establishing: 1) an initial value for a variable, 2) a limiting
value for the variable, and 3) an increment value to be added to the value of
the variable at the end of each pass through the loop. When the limit is
exceeded, program control proceeds to the body of the program following the
loop.

The expression preceding TO specifies the initial value of the variable, the
expression following TO gives the limiting value, and the optional expression
following STEP gives the increment. If STEP is omitted, the increment value is
assumed to be +1. The initial value expression is evaluated only once (when
the FOR statement is executed). The other two expressions are evaluated on
each iteration of the loop.

The function of the NEXT statement is to return program control to the
beginning of the loop after a new value of the variable has been computed.

Note that the variable in the NEXT statement must be the same as the variable
in the FOR statement. Gonsider the execution of the following statements:

150 FOR J-2 TO 11 STEP 3
160 PRINT J+5
170 NEXT J

Statement 150 sets the initial value of J to 2 and specifies that J thereafter
will be incremented by 3 each time the loop is performed, until J exceeds the
limiting value 11. Statement 160 prints out the current value of the expression
J+5. Statement 170 assigns J its next value (i.e., J-2+3-5) and causes program
control to return to statement 150. Statement 160 is again executed, and
statement 170 again increments J and causes the program to loop back. This
process continues with J being incremented by 3 after each pass through
the loop.

4-11

88A00778A

When J attains the limiting value of 11, statement 160 will again be executed
and control will pass to 170. J will again be incremented (i.e., J-11+3-14),
and since 14 is greater than the li~iting value of 11, the program will "fall
through" statements 160 and 170, and control will pass to the next sequential
statement following statement 170.

Examples of the use of FOR and NEXT:

Correct Use

FOR A-1 TO 2+X-Y

NEXT A

FOR K-10 TO 1 STEP -1

NEXT K

FOR VAR- 0 TO 1 STEP .1

NEXT VAR

Incorrect Use

FOR 1 TO 50 STEP 5

FOR X-1 STEP 2

FOR J-5 TO 1 STEP 2

FOR Y-l TO 10 STEP -1

Explanation

Limiting value 1s current value of
expression 2+X-Y; increment value is +1.

Increment value is -1 (variable K will
decrement by a value -1 for each of 10
passes through the loop).

Increment value is .1 (variable VAR WILL
increment by a value of .1 for each of
11 passes through the loop).

Explanation

Variable is missing.

Lim1~ing value is missing.

Increment value must be negative.

Increment value must be positive.

4-12

88A00778A

4.5.1.1 WHILE and UNTIL Clauses

The condition clauses WHILE and UNTIL may be used in the FOR statement. The
FOR statement may be used in the following extended forms:

FOR variable - expression TO expression {STEP
expression}{WHlLE expression}

FOR variable - expression TO expression {STEP
expression}{UNTIL expression}

The extended form of the FOR statement functions in the same way as the basic
FOR statement with the following additions.

If the WHILE clause is used, the expression specified in the clause will be
evaluated for each iteration of the loop. If it evaluates to false (i.e.,
zero), then program control will pass to the statement immediately following
the accompanying NEXT statement. If it evaluates to true (i.e., non-zero), the
loop will reiterate.

If the UNTIL clause is used, the expression specified in the clause will be
evaluated for each iteration of the loop. If it evaluates to true (i.e.,
non-zero), then program control will pass to the statement immediately
following the accompanying NEXT statement. If it evaluates to false (i.e.,
zero), the loop will reiterate.

The following FOR and NEXT loop, for example, will execute until 1-10 or until
the statements within the loop cause variable A to exceed the value 100:

FOR 1-1 TO 10 STEP .5 UNTIL A)100

NEXT I

4-13

88A00778A

4.5.1.2 Nesting

FOR and NEXT loops may be contained within the range of other FOR and NEXT
loops. These loops are called nested loops. An example of a nested loop;

FOR 1-1 TO 10
FOR J-1 TO 10
PRINT B (I,J)
NEXT J

NEXT I

The above statements illustrate a two-level nested loop. The inner loop will
be executed ten times for each of ten passes through the outer loop, i.e., the
statement PRINT B(I,J) will be executed 100 times, causing matrix B to be
printed in the following order: B(l,l), B(1,2), B(1,3), ••• , B(1,10), B(2,1),
B(2,2), ••• , B(10,10).

Loops may be nested any number of levels. However, a nested loop must be
completely contained within the range of the outer loop (i.e., the ranges of
the loops may not cross).

Examples of extended use of FOR and NEXT:

Correct Use

5T-"X"
FOR B-1 TO 10 UNTIL 5T-"XXXXX"
ST-5T CAT "X"
NEXT B

A-20
FOR J-l TO 10 WHILE A<25
A-A+l
PRINT J,A
NEXT J

A-O
FOR J-l TO 10 WHILE A<25
A-A+l
PRINT J,A
NEXT J

Incorrect Use

FOR X-6 WHILE B-O

FOR B-1 TO 7 UNTIL

FOR 1-0 TO 3 UNTIL X STEP .5

Explanation

Loop will execute 4 times (i.e., an "X"
is added to the string value of
variable 5T until the string equals
"XXXXX") •

Loop will execute 5 times (i.e.,
variable A reaches 25 before variable
J reaches 10).

Loop will execute 10 times (i.e.,
variable J reaches 10 before variable
A reaches 25).

Explanation

"TO expression" is missing.

Expression is missing after "UNTIL".

"STEP .5" must appear before "UNTIL X".

4-14

88A00778A

4.5.2 LOOP STAlEKENTS

Program loops may also be constructed by using the LOOP statement. The LOOP
statement may be used in either of the following two general forms:

LOOP {statements} WHILE expression DO {statements} REPEAT

LOOP {statements} UNTIL expression DO {statements} REPEAT

Execution of a LOOP statement proceeds as follows. First the statements (if
any) following "LOOP" will be executed. Then the expression is evaluated. One
of the following is then performed depending upon the form used:

When the "WHILE" form is used, the statements following "DO" (if any)
will be executed and program control will loop back to the beginning of the
loop if the WHILE expression evaluates to TRUE (non-zero). Otherwise,
program control will proceed with the next sequential statement following
"REPEAT" (control passes out of the loop if the expression evaluates to
FALSE, i.e., zero).

When the "UlnIL" form is used, the statements following "DO" (if any)
will be executed and program control will loop back to the beginning of the
loop if the UNTIL expression evaluates to FALSE (zero). Otherwise,
program control will proceed with the next sequential statement following
"REPEAT" (control passes out of the loop if the expression evaluates to
TRUE, i.e., non-zero).

Statements used within. the LOOP statement may be placed on one line separated
by semicolons, or may be placed on multiple lines. Consider the following
example:

LOOP UNTIL A-4 DO A-A+1; PRINT A REPEAT

Assuming that the value of variable A is 0 when the LOOP statement is first
executed, this statement will print the sequential values of A from 1 through 4
(i.e., the loop will execute 4 times). As a further example, consider the
statement:

LOOP X-X-10 WHILE X>40 DO PRINT X REPEAT

Assuming, for example, that the value of variable X is 100 when the above LOOP
statement is first executed, this statement will print the values of X from 90
down through 50 in increments of -10 (i.e., the loop will execute 5 times).

4-15

Examples of the use of LOOP:

Correct Use

J-O
LOOP

PRINT J
J-J+1

WHI LE J < 4 DO REPEAT

Q-6
LOOP Q-Q-1 WHILE Q
DO PRINT Q REPEAT

Q-6
LOOP PRINT Q WHILE Q DO
Q-Q-1 REPEAT

B-1
LOOP UNTIL 8-6 DO

B-B+1
PRINT 8

REPEAT

88A00778A

Explanation

Loop will execute 4 times (i.e., sequential
values of variable J from 0 through 3 will be
printed) •

Loop will execute 5 times (i.e., values of
variable Q will be printed in the following
order: 5, 4, 3, 2, and 1).

Loop will execute 7 times (i.e., values of
variable Q will be printed in the following
order: 6, 5, 4, 3, 2, 1, and 0).

Loop will execute 5 times (i.e., sequential
values of variable B from 2 through 6 will be
printed) •

Incorrect Use Explanation

LOOP UNTIL 8-5 DO B-B+1 "REPEAT" is missing.

LOOP DO K-K*K;PRINT K REPEAT "UNTIL" or "WHILE" (followed by an
expression) is missing.

A-5 Loop will execute indefinitely.
LOOP WHILE A)O DO

PRINT A
REPEAT

4-16

88A00778A

4.6 PROGRAM TERMINATION

4.6.1 END, STOP AND ABORT STATEMENTS

When the END statement is the last statement of the BASIC program, it
designates the physical end of the program. The STOP and ABORT statements,
which may appear anywhere in the program, designate a logical termination of
the program.

The END statement may appear as' the very last statement in the BASIC program.
It is used to specify the physical end of the sequence of statements comprising
the program. The general form of the END statement is:

END

The END statement is also used to designate the physical end of alternative
sequences of statements within the IF statement and within some of the BASIC
I/O statements.

The STOP and ABORT statements may be placed anywhere within the BASIC program
to indicate the end of one of several alternative paths of logic. Upon the
execution of a STOP or ABORT statement, the BASIC program will terminate. In
addition, the ABORT statement will terminate execution of any PROC which may be
active.

The STOP and ABORT statements may optionally be followed by an error message
name, and error message parameters separated by commas. The error message name
~s a reference to an item in the ERRMSG file. The parameters are variables or
literals to be used within the error message format. The general form of the
STOP and ABORT statements 1s:

STOP {errnum{,param, param, ••• }}

ABORT {errnum{,param, param, ••• }}

4-17

88A00778A

Examples of the use of STOP, ABORT and END:

*
*
*
A-500
B-750
C-235
0-1300
RL~ COMPUTE PROFIT:
REVENUE-A+B
COST=-C+O
PROFIT-REVENUE-COST
REM PRINT RESULTS
IF PROFIT > 1 THEN GOTO 10
PRINT "ZERO PROFIT OR LOSS"

STOP <---------------------------------
10 PRINT "POSITIVE PROFIT"

END <----------------------------------

PRINT 'PLEASE ENTER FILE NAME':
INPUT FN
OPEN ", FN TO FFN ELSE ABORT 201, FN

4-18

Explanation

If this path is taken, program
will terminate.
Physical end of program.

Explanation

This program requests a file name
from the user and attempts to
open the file. If an incorrect
file name is entered, the
standard system error message 201
"xxx IS NOT A FILE" will be
printed and the program
terminated.

88A00778A

4.7 PROGRAM SECURITY

4.7.1 BREAK AND ECHO COHMAHDS

BREAK OFF may be used in a BASIC program to disallow the use of the BREAK key,
which will prohibit users from entering the debugger. This may be cancelled by
using a BREAK ON command within the program, or it will be automatically
cancelled upon program termination.

These commands are cummulative. If two BREAK OFFs are executed, two BREAK ONs
must be executed to restore a breakable status. The general form of the
command is:

BREAK ON
BREAK OFF

The echoing of input on the terminal may be suppressed in a BASIC program by
issuing the ECHO ON command. It may be turned back on again with the ECHO
OFF. The general form of these commands are:

ECHO ON
ECHO OFF

Suppression of input to the terminal may be necessary when typing in sensitive
material, such as passwords or personnel recordse

4-19/4-20

,88A00778A

subroutines and
interprogram communication

S .1 INTERNAL SUBROUTINES

The GOSUB, COMPUTED GOSUB, RETURN, and RETURN TO statements provide internal
subroutine capabilities for the BASIC program. A subroutine is an integral
group of statements which handle a unique function or task. An internal
subroutine is a subroutine that is contained within the program that calls it
(i.e., it occurs before the END statement). The GOSUB statement transfers
control to the subroutine. RETURN or RETURN TO statements return control to
the main program.

S .1.1 GOSUB STATEMElIT

The general form of the GOSUB statement:

GO SUB statement-label

Upon execution of a GOSUB statement, program control is transferred to the
statement which begins with the specified numeric statement-label. Execution
proceeds sequentially from that statement until a RETURN or RETURN TO statement
is encountered. Either of these statements transfers control back to the main
program.

S .1. 2 COMPUTED GOSUB STATEMElIT

The Computed GOSUB statement is a combination of the Computed GOTO statement
and the GOSUB statement. Control is transferred to one of several statement
labels selected by the current value of an index expression. Control returns
to the statement following the computed GOSUB when a RETURN statement is
executed. The general form of the Computed GOSUB statement:

ON expression GOSUB statement-label{,statement-label •••• }

The expression is evaluated and truncated to an integer value. The result is
used as an index into the list of statement-labels. A subroutine branch is
executed to the statement-label selected.

If the expression evaluates to less than 1 or to a value greater than the
number of statement-labels, no action is taken, that is, the statement
immediately following the ON GOSUB will be executed next.

5-1

5

Examples of the use of GOSUB:

Correct Use

ON I GOSUB 100,150,200

<---------------------

88A00778A

Explanation

Control transfers here after return
from subroutine (directly if 1<1 OR
1)3).

100 <--------------------- Control transfers here if 1-1.

RETURN
150 <--------------------- Control transfers here if 1-2.

RETURN
200 <------------- Control transfers here if 1-3.

RETURN

Incorrect Use

ON GOSUB 100,200

ON A 100,200

Explanation

Expression following the "ON"
is missing.

"GOSUB" missing.

5-2

88A00778A

5.1.3 RETUIH ARD RlTORB TO STATEMENTS

The general forms of the RETURN statement:

RETURN

RETURN TO statement-label

The RETURN statement will transfer control from the subroutine back to the
statement immediately following the GOSUB statement. The RETURN TO statement
returns control from the subroutine to the statement within the BASIC main
program that has the specified statement-label.

The statements in a subroutine may be any BASIC statements, including another
GOSUB statement. To ensure proper flow of control, each subroutine must return
to the calling program by using a RETURN (or RETURN TO) statement, not a GOTO
statement. Also, a subroutine should not be executed by any flow of control
other than a GOSUB or ON GOSUB statement.

If the RETURN TO statement refers to a statement-label which is not present in
the program, an error message will be printed at compile time (refer to
Appendix S, COMPILER ERROR MESSAGES).

An example of correct use of subroutine statements:

1st Execution of Subroutine

10 GOSUB 30-···
····>15 PRINT Xl I

I
I
I

20 GOSUB 30 I
I
I

I
·>30 REM SUBROUTINE

IF ERROR RETURN TO 99
> 40 RETURN·-

I .. _
99 REM ERROR RETURN HERE

5-3

2nd Execution of Subroutine

10 GOSUB 30
15 PRINT Xl

20 GOSUB 30-···
...... > • I

.................
I
I
·>30 REl1 SUBROUTINE

IF ERROR RETURN TO 99
40 RETURN···

I _-.......... .
99 REM ERROR RETURN HERE

88A00778A

In the example, when statement 10 is executed, control will transfer to
statement 30 as illustrated in the left figure. The statements within the
subroutine will be executed and statement 40 will then return control to
statement 15. Execution will then proceed sequentially to statement 20,
whereby control will again be transferred to the subroutine as shown in the
right figure. The conditional RETURN TO path is taken instead of the normal
RETURN if the logical variable ERROR is TRUE (-1).

The following example illustrates incorrect use of the BASIC subroutine
capability.

A-1
GOSUB 100
A-A+1
GOTO 110 <----
100 PRINT A
110 B-A*D
PRINT B
RETURN

Incorrect Use

The GOTO statement should not be used to transfer
control to a subroutine. This statement will
transfer control into the body of the subroutine,
causing the "RETURN" to produce an error message:
"RETURN EXECUTED WITH NO GOSUB".

5-4

88A00778A

5.2 EXTERNAL SUBROUTINES

The CALL and SUBROUTINE statements provide external subroutine capbilities for
the BASIC program. An external subroutine is a subroutine that is compiled and
cataloged separately from the program or programs that call it.

5.2 • 1 CALL STATEMENT

The CALL statement has the following general form:

CALL name {{argument-list)}

The CALL statement transfers control to the cataloged subroutine ~name~. The
CALL ~argument-list~ consists of zero or more expressions, separated by commas,
that represent actual values passed to the subroutine. The SUBROUTINE
~argument-list~ consists of the same number of expressions, by which the
subroutine references the values being passed to it.

5 .2 .2 SUBROUTINE STATEMElIT

The SUBROUTINE statement has the following general form:

SUBROUTINE name {(argument-list)}

The SUBROUTINE statement is used to identify the program as a subroutine and
must be the first statement in the program.

There is no correspondence between variable names or labels in the calling
program and the subroutine. The only information passed between the calling
program and subroutine are the arguments. A sample external subroutine that
involves two arguments together with correctly formed CALL statements is:

CALL Statements

CALL ADD (A,B,C)
CALL ADD (A+2,F,X)
CALL ADD (3,495,Z)

Subroutine ADD

SUBROUTINE ADD (X,Y,Z)
Z-X+Y
RETURN
END

An external subroutine must contain a SUBROUTINE statement, a RETURN statement
and an END statement. GOSUB and RETURN may be used in the subroutine. When a
RETURN is executed with no corresponding GOSUB, control passes to the statement
following the corresponding CALL statement. If the subroutine~s END statement,
or a STOP or CHAIN statement is executed, control never returns to the calling
program. The CHAIN statement should not be used to chain from an external
subroutine to another BASIC program.

5-5

.88A00778A

Examples of CALL and SUBROUTINE statements:

Correct Use

CALL REVERSE (A,B)
SUBROUTINE REVERSE (I,X)

CALL REPORT
SUBROUTINE REPORT

CALL VENDOR (NAME, ADDRESS,
NUMBER)
SUBROUTINE VENDOR (NAME,
ADDR,NUM)

CALL DISPLAY (A,B,C)
SUBROUTINE DISPLAY (I,J,K)

Incorrect Use

CALL

CALL SUP (A B,C)

CALL COMP (X, Y, Z, RE S)
SUBROUTINE COMP (A, B, RES)

Explanation

Subroutine REVERSE has two arguments.

Subroutine REPORT has no parameters.

Subroutine VENDOR returns three values.

Subroutine DISPLAY accepts (and
returns) three argument values.

Explanation

Subroutine name is missing.

Comma is missing in argument list.

Number of arguments do not match.

5-6

88A00778A

S.2.3 ARRAY PASSIlfG AIm IWIRlCf CALLS

Arrays may be passed to external subroutines. The general form for specifying
an array in an argument list of CALL and SUBROUTINE statements is:

MAT variable

The 'variable' is the name of the array given in the DIMension statement. The
array must be dimensioned in both the calling program and the subroutine.
Array dimensions may be different, as long as the total number of elements
matches. Arrays are copied in row major order (the rows are filled first).
Consider the example:

Calling Program

DIM X(lO), Y(lO)
CALL COpy (MAT X, MAT Y)
END

Subroutine

SUBROUTINE COpy (MAT A)
DIM A(10,2)
PRINT A(lS)
RETURN
END

In this subroutine, the parameter passing facility is used to copy MAT X and
MAT Y specified in the CALL statement of the calling program into MAT A of the
subroutine. Printing A(lS) in the subroutine is equivalent to printing Y(5) in
the calling program. Additional examples of array passing:

Correct Use

DIM A(4,10),B(lO,5)
CALL REV (MAT A, MAT B)

SUBROUTINE REV (MAT C, MAT B)
DL~ C(4,10), B(50)

Incorrect Use

DIM TAB (100)
CALL SHORT (TAB)

DIM FOUR (2,2)
CALL GOF (MAT FOUR)

SUBROUTINE CAL(HA! NIX)
DIM NIX(S)

Explanation

Subroutine REV accepts two input array
variables, one of size 40 and one of size
50 elements.

Explanation

The word 'MAT' must precede array TAB in the
parameter list.

Corresponding arrays must have the same
number of elements in. the calling program and
in the subroutine.

5-7

88A00778A

External subroutines may be called indirectly by using the indirect form of
the CALL statement shown below:

CALL @name {(argument list)}

The 'name' is a variable assigned to the cataloged subroutine to be called.
The argument list performs the same function as in a direct call.

NAME • 'XSUB1'
CALL @NAME
NAME • 'XSUB2'
CALL @NAME

The first call invokes subroutine XSUB1. The second call invokes subroutine
XSUB2.

The following example illustrates the difference between a direct call and an
indirect call:

Direct Call

CALL SUB---·-
••• >.
I
I
I

END

I
I
I
I

I •••••••••••• -.-.
I I
I ·>SUBROUTlNE SUB
I
I
I
I
I

RETURN---
END I

I ._-._----_ .. -

Indirect Call

CALL @X·--·--I .-->.
I
I
I END

I
I
I
I

I --------.-----I I
I ->SUBROUTlNE SUB
I
I
I
I
I

RETURN--
END I

I

5-8

88A00778A

5.2.4 EXECUTE STATEMENT

The EXECUTE statement allows a BASIC program to temporarily suspend current
operation in order to execute any command that may be entered at TCL and to use
the results of that command later on in the BASIC program. Any TCL verbs or
PICK statements. such as ACCESS input statements. SPOOLER printer control
statements. utility verbs, as well as PROCs and cataloged BASIC programs may be
executed. After execution of the command, the BASIC program will continue with
the next statement following the EXECUTE statement.

EXECUTE statements may be serial or nested. There is no limit to the number of
serial EXECUTEs within a BASIC program. but only up to 15 nested levels of
EXECUTEs may be employed by a single user at one time. Also, the number of
nested EXECUTEs must be within the range that has been preset by SYSPROG using
the :TASKINIT verb (see Section 5.2.4.2 for details).

The EXECUTE statement may be used in two general forms:

EXECUTE expression {RETURNING variable-1} {CAPTURING variable-2}

EXECUTE expression {CAPTqRING variable-2} {RETURNING variable-1}

where:

expression

variable-1

variable-2

is a complete PICK TCL statement, PROC. or cataloged
BASIC program

is a variable that will contain error message numbers
after program execution (see Section 5.2.4.1.2).

is a variable that will be used to capture the output
from the executed command

RETURNING and CAPTURING phrases are optional. Both, either, or neither may be
used. Note that TCL P verb has no effect when used with the CAPTURING clause.

5.2.4.1 EXECUTE Statement I/O

Input may be passed to the TCL command using the DATA statement. This is
handled in the same manner as for the CHAIN statement. After the TCL command
has been completed, the data stack will be reset.

Input may not be passed to or picked up from a PROC during an EXECUTE. (The
EXECUTE turns off PROC stack.)

Output from the executed TCL command may be captured and placed in a variable
in the calling BASIC program by using the CAPTURING variable-2 clause in the
EXECUTE statement. If the command output is redirected back to the BASIC pro
gram. the output carriage-return/line-feed pairs will be converted to attribute
marks and the clear-screen sequences to the terminal will be deleted.

5-9

88A00778A

5.2.4.1.1 Passing Select-Lists

If a select-list is generated, it may be passed back from the executed command
to the BASIC program. The select-list may be assigned to the default SELECT
statement select-variable or to a specified select-variable (by using the
SELECT TO select-variable clause) for the next READNEXT statement.

If a select-list is active when the EXECUTE statement is executed, that list
will be passed to the TCL command that is executed. You may choose to EXECUTE
the SELECT verb, test for an active select-list, and then EXECUTE the SAVE-LIST
verb. Or, you may issue a SELECT verb from TCL, run a BASIC program that
EXECUTEs a LIST verb, and have the select-list that was generated at TCL passed
to the LIST verb.

Note that once a select-list has been referenced by a BASIC SELECT or READNEXT
statement, it may no longer be passed to another EXECUTEd TCL command.

5.2.4.1.2 Examining Error Message Numbers

You may examine error message numbers after the TCL command has been executed
by including the RETURNING variable-l clause in the EXECUTE statement. A
variable will then be assigned to the returned error message numbers with each
number separated by a blank.

You may also examine error message numbers by using the BASIC SYSTEM()
function. The following statement will return the error message numbers for
the executed TCL command with each message number separated by an attribute
mark:

SYSTEM(17)

Note that the output format of the error message for a BASIC EXECUTE statement
is the same as the error message format for a PROC. Therefore, when checking
for EXECUTE error messages, there may be times when you need to use the FIELD
statement in order to retrieve the desired error message. For example, after
attaching a tape using T-ATT 4000, the error message buffer will contain both
90 and 4000. With a PROC you could use

IF E • 90 0 TAPE ATTACHED

to test the message. However, with the BASIC EXECUTE statement, you would
first need to use the FIELD statement to extract the first field of the error
message. For example:

EXECUTE 'T-ATT 4000' RETURNING ERRMSG
• ERRMSG WILL BE EQUAL TO 90 4000 IF TAPE IS ATTACHED
TATT.MSG - FIELD(ERRMSG,' ',1)
IF TATT.MSG - 90 THEN PRINT 'TAPE ATTACHED'

5-10

88A00778A

5.2.4.1.3 Determining Current Nested EXECUTE Level

If the executing BASIC program needs to determine the current level of nested
EXECUTE statements (the statement that is now in process), the following func
tion should be used: SYSTEM(16). This will return the current level number.

5.2.4.2 Allocating EXECUTE Workspaces and Nested EXECUTE Levels

The EXECUTE process requires separate workspaces in order to function. These
workspaces are taken from the system Available Space (overflow) as needed and
maintained in a special Execute Workspace Table for use by this process. Each
workspace consists of 413 frames. When an EXECUTE statement is completed,
whatever workspaces it used are returned to the Execute Workspace Table, not to
system Available Space. These workspaces are then available for the next
EXECUTE statement.

If a workspace can be taken from the Execute Workspace Table instead of the
system Available Space, the EXECUTE process is not delayed. If workspaces need
to be taken from the system Available Space, there may be a delay of up to 30
seconds.

In order to ensure maximum efficiency of the EXECUTE process, its workspaces
may be preallocated. The :TASKINIT verb should be used to do this from the
SYSPROG account. The format for this verb is shown below.

:TASKINIT {workspaces}{,levels} {(U)}

where:

works paces

levels

(U)

is the number of EXECUTE workspaces to preallocate. If the
workspace number is not given, no workspaces will be added
to or deleted from the Execute Workspace Table. If the
workspace number given is less than the currently allocated
workspace number, then the extra workspaces will be returned
to the system Available Space when the :TASKINIT verb is
executed.

is the maximum number of nested EXECUTEs in a process for a
single user at one particular time. If this number is given,
it must be in the range 0 to 15. A level of 0 will disallow
use of the EXECUTE statement. If this number is omitted, the
previous :TASKINIT level number is used, or if no previous
:TASKINIT, the system default of 5 is used.

specifies that there should be unconditional reinitialization
of the EXECUTE process. Note that this should only be used
if there are severe problems in the EXECUTE environment that
cannot be corrected without reinitialization. If the (U)
option is used, only the port running the :TASKINIT verb
should be logged on when the verb is executed. (It 1s
imperative that no EXECUTE process be running when this
option is used.)

5-11

88A00778A

5.2.4.3 Environment Changes After Using the EXECUTE Statement

The EXECUTE statement preserves the current working environment before
executing a TCL statement, PROC or cataloged BASIC program, and restores it
after the execution is completed. However, there are certain parameters that
will not be restored if they have been altered by the EXECUTE statement when
the BASIC program requesting the EXECUTE is resumed. These are listed below.

1. Terminal characteristics will not be restored if they have been changed
by a TERM command.

2. A spooler assignment will not be restored if· it has been altered by a
spooler statement, such as SP-ASSIGN, SP-oPEN, SP-cLOSE, etc.

3. Current CPU usage charges will not be restored.

4. Tape attachment and tape record size will not be restored if they have
been altered by use of any of the tape verbs.

5. If the OFF or LOGTO verb is used in an EXECUTE statement, the BASIC
program that issued the EXECUTE statement will not be resumed. (When
these verbs are used, the EXECUTE statement acts exactly like the CHAIN
statement.)

6. If the Debugger was entered during the EXECUTE and an END or OFF command
was used, the BASIC program that issued the EXECUTE system will not be
resumed.

The following example prints item-ids of all PROCs in the Master Dictionary.

001 .BASIC
002 .EXECUTE STATEMENT, EXAMPLE 1
003 •
004 EQU TRUE TO 1, FALSE TO 0
005 OPEN iMDi ELSE STOP 201,'MD'
006 EXECUTE 'SELECT HD IF 1 "PQ"' RETURNING ERRMSG
007 IF ERRMSG-401 THEN STOP; • [401] NO ITEMS PRESENT
008 EXECUTE 'SAVE-LIST PROC. LIST' CAPTURING OUTPUT REnJRNING ERRMSG
009 IF ERRMSG-243 THEN;. [243] LIST SAVED
010 EXECUTE 'GET-LIST PROC.LIST' CAPTURING OUTPUT
011 IF SYSTEM(17)-202 THEN STOP; • [202] NOT ON FILE
012 EDI-FALSE
013 SELECT
014 LOOP
015 READNEXT ID ELSE EOI-TRUE
016 UNTIL EOI DO PRINT ID REPEAT
017 END

5-12

88A00778A

The example shown below prints the output of the WHAT verb using the CAPTURING
clause.

001 *BASIC
002 *EXECUTE STATEMENT, EXAMPLE 2
003 *
004 EQU AM TO CHAR(2S4)
005 EXECUTE "'WHAT'" CAPTURING OUTPUT RETURNING ERRMSG
006 NO.LlNES·OCOUNT(OUTPUT,AM)
007 FOR LlNE-1 TO NO. LINES
008 PRINT OUTPUT(LINE)
009 NEXT LINE
010 PRINT
all PRINT "'ERRMSG • "':SYSTEM(17)j * SEPARATED BY ATTRIBUTE MARKS
012 PRINT "'ERRMSG • "':ERRMSGj * SEPARATED BY SPACES
013 PRINT "'EXECUTE LEVEL • "':SYSTEM(16)

This example shows the use of the DATA statement to pass input to the TCL
command. The DATA statement selects the Master Dictionary and lists the first
five attributes of each item. The first five verbs it finds are then selected
by the EXECUTE statement using a TCL SELECT command with the (n) option.

001 X· ... SELECT MO'"
002 Y· ... LIST ONLY MD *A1 *A2 *Al *A4 *AS'"
OOl DATA X,t
004 EXECUTE "'SELECT MO IF 1 "PM (5)'"

S-ll

88A00778A

5.3 INTERPROGRAM COMMUNICATION

5.3.1 CHAIN STATEMENT

The CHAIN statement allows a BASIC program to execute any valid TCL command and
gives it the ability to· pass values to a separately compiled BASIC program
which is executed during the same terminal session. The general form of the
CHAIN statement is:

CHAIN "any TCL command"

The CHAIN statement causes the specified TCL command to be executed. The
CHAIN statement may contain any valid Verb or PROC name in the user's Master
Dictionary. Consider the following example:

CHAIN "RUN FILEl PROGRAMl (I)"

This statement causes the previously compiled program named PROGRAMl in the
file named FILEl to be executed. The I option specifies that the data area is
not to be reinitialized. This option must be used whenever values are to be
passed from one program to another.

The CHAIN statement can allow values to be passed to the specified program
since all BASIC programs which are executed during a single terminal session
use the same data area. However, the variables in one program that are to be
passed to another program must be in the same location. This is accomplished
via use of the DIM statement. Consider the following two BASIC programs:

Program ABC in File BP

DIH A(l,l), B(2)
A(1,1)-500
B(l)-l B(2)-2
CHAIN "RUN BP XYZ (I)"
E~

Program XYZ in File BP

DIM 1(2), J(l,l)
PRINT I(1),I(2),J(1,1)
E~

5-14

88A00778A

Program ABC causes program XYZ to be executed. The I option used in the CHAIN
statement specifies that the data area is not to be reinitialized, thus
allowing program ABC to pass the values "500", "1", and "2" to program XYZ.
Program XYZ, in turn, prints the values "500", "1", and "2". All dimensioned
variables form a long vector in row major order, and on the chain are assigned
left to right to the chained program~s dimensioned variables.

Note that control is never returned to the BASIC program that originally
executed the CHAIN statement.

Examples of the use of CHAIN:

Correct Use

CHAIN "RUN FNl LAX (I)"

CHAIN "LISTO"

CHAIN "LIST MYFlLE"

CHAIN "RUN PROGRAMS ABC"

A-LISTVERBS
CHAIN A

Incorrect Use

CHAIN

CHAIN RUN BP ABC (I)

CHAIN-O

Explanation

Causes the execution of program LAX in
file FN1. I option specifies that data
area is not to be reinitialized (i.e.,
the program executing the CHAIN state
ment will pass values to program LAX).

Causes the execution of the LISTU
SYSPROG PROC.

Causes the execution of the LIST
ACCESS verb.

Causes the execution of program ABC
in file PROGRAMS. Since I option is
not used, values will not be passed
to program ABC.

Indirect form of CHAIN. Lists all
verbs in user~s dictionary on terminal.

Explanation

Parameter is missing.

Quotes are missing around ""RUN BP
ABC (I)".

CHAIN cannot be used as a variable
name.

5-15

'88A00778A

5.3.2 DATA STATEMEIIT

The DATA statement is used to store data for queued input when using the CHAIN
statement. The general form of the DATA statement is:

DATA expression

where 'expression' may be any valid combination of variables, literals,
functions, etc.

Each DATA statement will generate one line of queued input. These input lines
are then used in response to input requests from other processes. The DATA
statement may be used to store queued input for ACCESS, TCL, PROCs, or other
BASIC programs.

The following example illustrates the procedure to exit a BASIC program, sort
select a file and begin execution of a second BASIC program. The variable
REF-DATE is passed to the second BASIC program. Assuming that no queued input
is currently present:

DATA 'RUN BP PROG'; DATA 'REF-DATE'

CHAIN 'SSELECT FILE WITH DATE "':REF.DATE:'" BY DATE'

The first statement queues two values (e.g., 'RUN BP PROG' and 'REF-DATE').
The second statement causes an ACCESS statement to be executed. This is
followed by input of the first value in the queue to the TCL prompt, beginning
execution of BP PROG. Note that the queue is a First In First Out (FIFO) type,
and therefore, the DATA statement must be processed before the CHAIN statement.

The second BASIC program (BP PROG) then performs the following:

INPUT REF-DATE

This instruction gets its input from the second value in the queue (i.e., the
value of REF-DATE from the first BASIC program).

Multiple expressions are allowed on the DATA statement. Each expression
becomes the response to one input request from the CHAINed process.
Multiple DATA statements take the form:

DATA x,x,x, •••

5-16

Examples of the use of DATA:

Correct Use

DATA A
DATA B
DATA C
CHAIN 'RUN BP TEST'

DATA 'RUN BP CHARGE-ACC'
DATA DATE
CHAIN 'SELECT ACC WITH AMT > 100'

DATA A,B,C

Incorrect Use

CHAIN 'RUN BP PROG'
DATA X

88A00778A

Explanation

Queues the values of A, B and C for
subsequent input requests. Program
'TEST' may have three input requests
which will be satisfied by the
queued input.

This causes the TCL command 'RUN BP
CHARGE-ACC' to be stored in the queue.
Control first exits to the ACCESS
processor to perform the SELECT, after
which the BASIC program is run with
DATE as queued input.

Multiple expressions may be queued by a
single DATA statement.

Explanation

The DATA statement must be processed
before the CHAIN statement.

5-17

88A00778A

5.3.3 COMMON STATEKElIT

The COMMON statement may be used to control the order in which space is
allocated for the storage of variables and to pass values between programs.
The general form of the COMMON statement is:

COK{KON} variable {,variable} •••

The purpose of the COMMON statement is to change the automatic allocation
sequence that the compiler follows, so that more than one program may have
specified variables in a predetermined sequence.

In the absence of a COMMON statement, variables are allocated space in the
order in which they appear in the program, with the additional restriction that
arrays are allocated space after all simple variables. COMMON variables
(including COMMON arrays) are allocated space before any other variables in the
program. The COMMON statement must appear before any of the variables in the
program are used.

The COMMON variable list may include simple variables, file variables and
arrays. Arrays may be declared in a COKMON statement by specifying the
dimensions enclosed in parentheses. For example, COKMON A(10) declares an
array "A" with 10 elements. Arrays that are declared in a COMMON statement
should not be declared again by a DIMENSION statement. All variables in the
program which do not appear in a COMMON statement are allocated space in the
normal manner.

The COKMON statement may be used to share
among main-line programs and subroutines.
variables refer to the same stored values
'I' option must be used with the RUN verb
reinitialization. For example:

COMMON X,Y,Z(5)
COt-IMON Q,R,S(5)

variables among CHAINed programs, or
This ensures that all 'COMMON'

in different programs. Note that the
in chained programs to inhibit

If the first statement is found in a main-line program and the second in a
subroutine call, the variables X and Q, Y and R, and the arrays Z and Swill
share the same locations. Note the second COMMON statement variables may be
regarded as a mask over the first. What associates Q to X, R to Y, and S to Z
is a matter of alignment. Thus, if the second statement had been "COMMON
Q(2),R(5)" then Q(l) would refer to the location where the value of X is stored
and Q(2) to the location where the value of Y is stored.

The COMMON statement differs from the argument list in a Subroutine Call in
that the actual storage locations of COKMON variables are shared by the
main-line program and its external subroutines; whereas the argument list in a
Subroutine Call causes the values to be pushed onto the stack. The COMMON
statement therefore provides a more efficient method of passing values.

5-18

Examples of the use of COMMON:

Correct Use

Item "MAINPROG"

COMMON A,B,C(10)
A - "NUMBER"
B - "SQUARE ROOT"
FOR 1 - 1 TO 10
C(I) - SQRT(I)

NEXT I
CALL SUB
PRINT "DONE"
END

Item SUBPROG

COMMON X(2),Y(10)
PRINT X(l), X(2)
FOR J - 1 TO 10

PRINT J, Y(J)
NEXT J
RETURN
END

Incorrect Use

COMMON A,B,C(10)
DIM C(10)

88A00778A

Explanation

Variables A, B and array C are allocated
space before any other variables.

Subroutine call to program SUBPROG.

The 2 elements of array X contain
respectively, the values of A and B from
the main-line program. The array Y contains
the values of C from the main-line program.

Returns to main-line program.

Explanation

A DIMENSION statement should not be used for
an array which has already been declared in a
COMMON statement.

5-19

88A00778A

5.3.4 ENTEll STADMElft

The ENTER statement permits transfer of control from one cataloged program to
another cataloged program. The program that executes the ENTER statement must
be executed via the cataloged verb in the user's MD. The two forms of the
ENTER statement are:

ENTER program-name

where program-name is the item-id of the program to be ENTERed and,

ENTER @variable

where variable has been assigned the program name to be ENTERed.

All variables which are to be passed between programs must be declared in a
COMMON declaration in all program segments that are to be ENTERed. All other
variables will be initialized upon ENTERing the program. It is permissible to
ENTER a program that calls a subroutine, but it is illegal to ENTER a program
from a subroutine.

Examples of the use of ENTER:

Correct Use

ENTER PROGRAK.l

N-2
PROG - "PROGRAM." N
ENTER @PROG

Incorrect Use

ITEM-"ABC"
ENTER ITEM

ENTER-150

Explanation

Causes execution of the cataloged program
"PROGRAK.l". Any COMMON variables will be
passed.to "PROGRAK.l".

Causes execution of the cataloged program
"PROGRAM.2". Any COMMON variables will be
passed to "PROGRAM.2".

Explanation

Would cause execution of the cataloged
program "ITEM", not "ABC". Must be the
indirect form (with "@") if program name
is stored in a variable.

ENTER cannot be used as a variable name.

5-20

88A00778A

intrinsic functions

6.1 NUMERIC FUNCTIONS

6.1.1 ABS

The ABS function generates the absolute numeric value of the expression. For
example:

A-lOa
B-25
C-ABS(B-A)

These statements assign the value 75 to variable C.

6.1.2 INT

The INT function returns the integer portion of the specified expression. (The
fractional portion of the expression is truncated after any operations have
been performed.) For example:

PRINT INT(5.37)

This statement causes a value of 5 to be printed.

6.1.3 REM AND MOD

The REM and MOD functions are the same. They return the remainder of the value
of the first expression divided by the value of the second expression. For
example:

Q-REM(11,3)

This statement assigns the value 2 to variable Q.

6-1

6

88A00778A

6.1.4 SQRT

The general form of the SQRT function is:

SQRT(expression)

The SQRT or Square Root function returns the positive square root of any
positive number (expression) that is greater than or equal to ° and less than
or equal to 41,073,748,835.5237. For example:

Y - SQRT(X)

6.1.5 RHO

° <- X <- M Assigns to Y the positive square root of the
positive number X. Returns ° if X < 0.

The general form of the RND function is:

RND(expression)

The RND function generates a numeric value for a random number between zero and
the number specified by the expression less one (inclusive), which must be
positive. For example:

NUMBER - ID{O(201)

This statement generates a random number between ° and 200 inclusive, and
assigns its numeric value to the variable NUMBER.

6-2

88A00778A

Examples of the use of these functions:

Correct Use

Y - RND(X)

A - ABS(Q)

A - 600
B - ABS(A-1000)

A =- 3.55
B - 3.6
C =- INl'(A+B)

J =- INl'(5/3)

Z • RND(ll)

R • 100
Q • 50
B • RND(R+Q+1)

Y =- RND(ABS(051»

Y - SQRT(36)

Incorrect Use

Y =- "ABCD"
Z =- ABS(Y)

X =- RND (101)

Explanation

Assigns to Y a random number between
o and X.

Assigns the absolute value of variable Q
to variable A.

Assigns the value 400 to variable B.

Assigns the value 7 to variable C.

Assigns the value 1 to variable J.

Assigns a random number between 0 and 10
(inclusive) to the variable Z.

Assigns a random number between 0 and 150
(inclusive) to the variable B.

Assigns a random number between 0 and 50
(inclusive) to the variable Y.

Assigns the value 6 to variable Y.

Explanation

Expression in ABS function must be numeric.

A space is not allowed between "RND" and "(It.

6-3

88A00778A

6.2 TRIGONOMETRIC FUNCTIONS

Trigonometric functions included in BASIC are SINE. COSINE. TANGENT. NATURAL
LOGARITHM, EXPONENTIAL, and POWER. The SINE, COSINE, and TANGENT functions
return the function of an angle expressed in degrees. In this section, M is
used to denote the integer 14,073,748,835.5327, which is the largest allowable
number in BASIC.

6.2.1 COSINE

The general form of the COSINE function is:

COS(expression)

The COSINE function returns the cosine of an angle expressed in degrees. The
given angle must be less than or equal to M and greater than or equal to -M.

6.2.2 SINE

The general form of the SINE function is:

SIN(expression)

To generate the sine of an angle expressed in degrees, the SINE function is
used. The given angle must be less than or equal to M and greater than or
equal to -u.

6.2.3 TANGENT

The general form of the TANGENT function is:

TAN(expression)

The TANGENT function will produce the tangent of an angle expressed in degreese
The angle must be less than or equal to M and greater than or equal to -M.

6.2.4 LOGARITHM

The general form of the NATURAL LOGARITHM function is:

LN(expression)

The LN function generates the natural (base e) logarithm of the expression.
If the value of the expression is less than or equal to zero, the LN function
returns a value of zero.

6-4

88A00778A

6.2.5 EXPONENTIAL

The general form of the EXPONENTIAL function is:

EXP(expression)

The EXPONENTIAL function raises the number 'e' (2.7183) to the value of the
expression. The EXPONENTIAL function is the inverse of the NATURAL LOGARITHM
(LN) function. If the value of the expression is such that 'e' to that power
is greater than M, the function returns a value of zero.

6.2.6 POWER

The general form of the POWER function is:

PWR(expression,expression)

The POWER function raises the first expression to the power denoted by the
second expression. If the second expression is zero, the function will return
the value one. Like the EXP function, if the first expression raised to the
power denoted by the second expression is greater than H, the function will
return unpredictable numbers. If the first expression is zero and the second
expression is any number other than zero, the function will return a value of
zero. Another way to express the PWR function is XAY where X is raised to the
Y power.

A summary of trigonometric functions and the acceptable range of expressions
is shown below. In this summary, M is used to denote the integer
14,073,748,835.5327, which is the largest allowable number in BASIC.

Function Ranse of X

COS (X) -M <- X <- M

SIN(X) -M <- X <- M

TAN(X) -t·t <- X <- M
-M <- RESULT <- M

LN(X) ° < X <- M
-H <- RESULT <- M

EXP(X) -l·1 <- RESULT <- H

PWR(X,Y) -M <- RESULT <- M

Description

Returns the cosine of an angle of X degrees.

Returns the sine of an angle of X degrees.

Returns the tangent of an angle of X degrees.

Returns the natural (bas"e e) logarithm of the
expression X.

Raises the number 'e' (2.7183) to the value
of X.

Raises the first expression to the power
denoted by the second expression.

6-5

88A00778A

6.3 LOGICAL FUNCTIONS

6.3.1 NOT

The general form of the nOT functions is:

NOT(expression)

The NOT function returns the logical inverse of the specified expression; it
returns a value of TRUE (generates a value of 1) if the expression evaluates to
0, and returns a value of FALSE (generates a value of 0) if the expression
evaluates to a non-zero quantity. The specified expression must evaluate to a
numeric quantity or a numeric string. The following statement, for example,
assigns the value of 1 to the variable X:

X • NOT(O)

As a further example, the following statements cause the value 0 to be printed:

A - 1
B - 5
PRINT NOT(A AND B)

6.3.2 NOM AND ALPHA

The general form of the NOM and ALPHA functions is:

NUM(expression)
ALPHA(expression)

The NOM function tests the given expression for a numeric value and the ALPHA
tests for an alphabetic value. For example, if the expression evaluates to a
number or numeric string, the NOM function will return a value of TRUE (i.e.,
generate a value of 1), while the ALPHA function will return a value of FALSE
(generate a value of 0). Inversely, an expression evaluating to a letter or an
alphabetic string will cause the NUM function to return a value of FALSE, while
the ALPHA function will return a value of TRUE. Consider the following:

IF NUM(expression) TI£N PRINT "NUMERIC DATA"

This statement will print the text "NUMERIC DATA" if the current value of
variable "expression" is a number or a numeric string.

IF ALPHA(expression) THEN PRINT "ALPHABETIC DATA"

This statement will print the text "ALPHABETIC DATA" if the current value of
variable "expression" is a letter or an alphabetic string. tn the case of a
non-numeric, non-alphabetic character or string (i.e., I, 1, etc.) a value of
FALSE would be returned for both functions. The empty string (") is
considered to be a numeric string, but not an alpha string.

6-6

88A00778A

Examples of the use of logical functions:

Correct Use

X-A AND NOT(B)

IF NOT(Xl)THEN STOP

Al-NUM(l23)

A2-NUM("l23 t1
)

A3-NUM("l2C tI

)

Explanation

Assigns the value 1 to variable X if current
value of variable A is 1 and current value
of variable B is O. Assigns a value of 0 to
X otherwise.

Program terminates if current value of
variable Xl is O.

Assigns a value of 1 to variable Al.

Assigns a value of 1 to variable A2.

Assigns a value of 0 to variable A3.

IF ALPHA(I·CAT J) THEN GOTO 5 Transfers control to statement 5 if current
value of both variables I and J are letters
or alphabetic strings.

PRINT NOT(M) OR NOT(NUM(N» Prints a value of 1 if current valu~ of
variable M is 0 or current value of variable
N is a non-numeric string. Otherwise prints
a zero.

Incorrect Use

PRINT NOT A

NUM(X)-5

IF NUM() THEN STOP

Explanation

Parentheses are missing around variable A.

Intrinsic functions may not appear on the
left side of the equality sign.

Expression is missing.

6-7/6-8

7.1 FILE SELECTION FOR I/O

7.1.1 OPER STATEMENT

88A00778A

file handling

The OPEN statement is used to select a PICK file for subsequent input. output
or update.

Before a PICK file can be accessed by a READ. WRITE. DELETE. MATREAD,
MATWlllTE. READV, or WITlV. etc •• statement. it must be opened via an OPEN
statement. The general form of the OPEN statement is:

OPEN {iOICT".} "file-oame" {TO file-variable} THEN/ELSE statements

The second expression in the OPEN statement indicates the PICK file name. If
the first expression is "DICT", then the dictionary section of the file is
opened. (The word DICT must be explicitly supplied to open a dictionary level
file.) Note that either single or double quotes may be used in the statement.
Consider the following statements:

OPEN file-oame THEN/ELSE statements
OPEN file-o THEN/ELSE statements

They are equivalent since the leading null expression is optional. In both
cases, the data section is opened. If the file is a multiple data file (that
is, multiple data files associated with a single dictionary), to open one of
the data sections. the format used is:

"dict-name.data-name" or " ","dict-name,data-name"

If the "TO file-variable" option is used. then the dictionary or data section
of the file will be assigned to the specified variable for subsequent
reference. If the "TO file-variable" option is omitted. then an internal
default file-variable is generated; subsequent I/O statements not specifying a
file-variable will then automatically default to this file.

Depending o~ whether the PICK file indicated in the OPEN statement exists, the
statement or sequence of statements following the THEN/ELSE will be executed.
The statements in the THEN/ELSE clause may be placed on the same line separated
by semicolons, or may be placed on multiple lines terminated by an END. The
THEN/ELSE clause follows the same format as the THEN/ELSE clause in the IF
statement.

7-1

7

88A00778A

There is no limit to the number of files that may be open at any given time.
Consider the following example:

OPEN "DICT","QA4" TO Fl ELSE PRINT "NO FILE"; STOP

This statement will open the dictionary portion of the file named QA4 and will
assign it to file-variable Fl. If QA4 does not exist, the message "NO FILE"
will be printed and the program will terminate. The data portion of a file
named TEST is opened as illustrated 'below:

OPEN ~TEST~ ELSE
PRINT "TEST DOES NOT EXIST"
GOTO 100
END

In this example, the file is assigned to an internal default file-variable.
The message "TEST DOES NOT EXIST" will be printed and control will pass to
statement 100 if the file named TEST does not exist. Examples of OPEN:

Correct Use

A·~DICT~

OPEN A, ~XYZ~ TO B ELSE
PRINT "NO XYZ"
STOP
END

OPEN ~ABC,X~ TO OS ELSE
STOP

X·~'

Y-'TEST1'
Z-'MY FILE'
OPEN X, Y THEN PRINT Z
GOTO 5

Incorrect Use

OPEN 'DICT~ TO Q ELSE STOP

OPEN ' ~ , ' ABC'

OPEN "F", "01" ELSE STOP

OPEN 'INC~ TO Cl ELSE
PRINT ~NO FILE'
X-Y+1
GOTO SO

Explanation

Opens the dictionary portion of file XYZ and
assigns it to file-variable B.
If XYZ does not exist, the text "NO XYZ" is
printed and the program terminates.

Opens data section X of file ABC and assigns
it to file-variable OS. If ABC,I does not
exist, program terminates.

Opens data section of file TEST1 and assigns
it to internal default file-variable. If
TESTl exists, "MY FILE" is printed and
control passes to statement S.

Explanation

Second expression (file name) is missing.

THEN/ELSE clause is missing.

First expression must be ~DICT~ or ~'.

END is missing after the statements in the
ELSE clause.

7-2

88A00778A

7.2 CLEARING A FILE

7.2.1 CLEARFILE STATEMENT

The CLEARFILE statement is used to clear out the data section of a specified
file. The general form of the CLEARFILE statement is:

CLEARFILE {file-variable}

Upon execution of the CLEARFILE statement, the data section of the file which
was previously assigned to the specified file variable via an OPEN statement
will be emptied. The data in the file will be deleted, but the file itself will
not be deleted. If the file variable is omitted from the CLEARFILE statement,
then the internal default variable is used (thus specifying the file most
recently opened without a file-variable).

Consider the following example:

OPEN 'AFILE' TO X ELSE PRINT "CANNOT OPEN"; STOP
CLEARFILE X

These statements cause th~ data section of the file named AFILE to be cleared.

The dictionary section of file cannot be cleared via a CLEARFILE statement.

Note that the BASIC program will abort with an appropriate error message if
the specified file has not been opened prior to the execution of the CLEARFILE
statement (refer to Appendix C, RUN-TIME ERROR MESSAGES).

7-3

88A00778A

Examples of the use of CLEARFILE:

Correct Use

OPEN 'FN1' ELSE PRINT 'NO FN1';STOP
READ I FROM '11'ELSE STOP
CLEARFILE

OPEN 'FlLEA' TO A ELSE STOP
OPEN 'FlLEB' TO B ELSE STOP
CLEARFILE A
CLEARFILE B

OPEN 'ABC' ELSE PRINT 'NO FILE';STOP
READV Q FROM 'IB3', 5 ELSE STOP
IF Q-'TEST' THEN CLEARFILE

Incorrect Use

CLEARFILE A+B

CLEARFILE A,B

OPEN 'DICT','F5' TO C ELSE STOP
CLEARFILE C

7-4

Explanation

Opens the data section of file
FN1, reads item 11 and assigns
value to variable I, and finally
clears the data section of file
FN1.

Clears the data sections of files
FlLEA and FILEB.

Clears the data section of file
ABC if the 5th attribute of the
item with name IB3 has a string
value of 'TEST'.

Explanation

A+B is not a legal variable.

Only one file can be cleared per
CLEARFILE statement.

The dictionary section of a file
cannot be cleared via a CLEARFILE
statement.

88A00778A

7.3 ACCESSING FILE ITEMS

7 .3.1 READ STATEMENT

The READ statement reads a file item and assigns its value to a variable. The
READ statement has the following general form:

READ variable FROM {file-variable,} item-name THEN/ELSE statements

The READ statement reads the file item specified by item-name and assigns its
string value to the first variable. The file-variable is optional; if used,
the item will be read from the file previously assigned to file-variable via an
OPEN statement. If file-variable is omitted, then the internal default
variable is used (thus specifying the file most recently opened without a
file- variable).

Depending on whether the item-name specifies the name of an item which exists,
the statement or sequence of statements following the THEN/ELSE will be
executed. The statements in the THEN/ELSE clause may appear on one line
separated by semicolons, or on multiple lines terminated by an END. The
THEN/ELSE clause takes on the same format as the THEN/ELSE clause in the IF
statement). Consider the example:

READ Xl FROM W,"TEMP" ELSE PRINT "NON-EXISTENT"; STOP

This statement will read the item named TEMP from the file opened and assigned
to file-variable W, and will assign its string value to variable Xl; program
control will then pass to the next sequential statement in the program. If the
file item TEMP does not eXist, the message "NON-EXISTENT" will be printed and
the program will terminate.

Note that the item-name should be surrounded by quotes if it directly
references an item, but that quotes are not needed if an indirect reference is
used.

Note that the BASIC program will abort with an appropriate error message if
the specified file has not been opened prior to the execution of the READ
statement (refer· to Appendix C, RUN-TIME ERROR I{ESSAGES).

7-5

Examples of the use of READ:

Correct Use

READ Al FROM X," ABC" THEN
PRINT "ABC"
GOTO 70
END

A-"TEST"
B-"l"
READ X FROM C,(A CAT B) ELSE STOP

88A00778A

Explanation

Reads item ABC from the file opened and
assigned to file variable X, and
assigns it value to variable Al. If ABC
exists, the text "ABC" is printed and
control passes to statement 70.

Reads item TESTl from the file opened
and assigned to file variable C, and
assigns its value to variable X.
Program terminates if TESTl does not
exist.

READ Z FROM "Q" ELSE PRINT X; STOP Reads item Q from file opened without
a file variable and assigns its value
to variable Z. Prints value of X and
terminates program if Q does not exist.

Incorrect Use Explanation

READ Xl ELSE STOP "FROM expression" is missing.

READ A+B FROM I, nCB" ELSE STOP A+B is not a legal variable name.

READ VAR FROM X, "ABC" THEN/ELSE clause is missing.

7-6

88A00778A

7 .3.2 SELECT STATEMENT

The SELECT statement allows you to select a set of item-ids or attributes
which, when used in conjunction with the REAnNEXT statement, may be used to
access single or multiple file item-ids or attributes within a BASIC program.
The general form of the SELECT statement is:

SELECT {file-variable}{TO select-variable}

The SELECT statement builds the same list of item-ids as an ACCESS SELECT
statement executed at the terminal without any selection criteria. If the
file-variable is used, a list of item-ids will be created for the file or item
previously assigned to file-variable via an OPEN or READ statement. If the
file-variable is omitted, then the internal default variable is used (thus
specifying the file most recently opened without a file-variable). For
example, the following BASIC program will print the item-ids in the file named
BP. This is equivalent to the ACCESS command 'SELECT SP' executed on the
terminal:

OPEN 'BP' ELSE STOP
SELECT

10 REAnNEX! ID ELSE STOP
PRINT ID
GOTO 10

There are six forms of the SELECT statement:

1. SELECT
Creates a list of item-ids from the file most recently opened without a
file-variable.

2. SELECT file-variable
Creates a select list of item-ids from the file opened to 'file-variable'.

3. SELECT var
Creates a select list from the attributes of the variable 'var'. The
select list will only include the first value of a multi-valued attribute.

4. SELECT TO select-variable
Creates a select list from the file most recently opened without a file
variable and assigns the selected list to 'select-variable'.

5. SELECT file-variable TO select-variable
Creates a select list from the file opened to 'file-variable' and assigns
the selected list to 'select-variable'.

6. SELECT var TO select-variable
Creates a select list from the attributes of the variable 'var' and assigns
the selected list to 'select-variable'.

7-7

88A00778A

Examples of the use of SELECT:

Correct Use

SELECT

SELECT BP TO BLIST,

READ A FROM FILEX,IALIST' ELSE STOP
SELECT A

Incorrect Use

SELECT A+B

Explanation

Builds list of item-ids using the
default variable of the last file
opened without a file-variable.

Builds a list of item-ids for the
file opened and assigned to
file-variable IBp l

• Assigns the
list to select-variable IBLIST'.

Creates a select list of the
attributes in item ALIST.

Explanation

A variable name (not an expression)
must be used in the SELECT
statement.

7-8

88A00778A

7 .3.3 READNEXT STATEMENT

The READNEXT statement reads the next ite~id from a selected list. If
multiple files have been selected, which list to read is specified by the
select variable. The general form of the REAnNEXT statement is:

READNEXT variable {,vmc}{FROM select-variable} THEN/ELSE statements

The four possible forms of the REAnNEXT are:

1. READtmXT variable THEN/ELSE statements
This will read the next Item-id of the last file selected without a
select-variable.

2. READNEXT variable,vmc THEN/ELSE statements
Here 'vmc' is used for the value mark count to be obtained from the
Exploding Sort (External SSELECT).

3. READNEXT variable FROM select-variable THEN/ELSE statements
This reads the next item-id of the file (or variable) selected and assigned
to the select variable.

4. READNEXT variable,vmc FROM select-variable THEN/ELSE statements
This is a combination of the previous two forms.

The READNEXT statement reads the next item-id and assigns its string value to
the variable indicated. The ite~1d is read from the list created by the most
recent program SELECT statement or SELECT, SSELECT, or QSELECT command issued
before the BASIC program execution. Depending on whether or not the list of
item-ids has been exhausted, or if selection has been performed, the statements
following the THEN/ELSE will be executed. The statements in the THEN/ELSE
clause may be placed on the same line separated by semicolons, or may be placed
on multiple lines terminated by an END. The THEN/ELSE clause takes on the same
format as the THEN/ELSE clause in the IF statement.

Consider the following example:

READNEXT VAR1 ELSE PRINT "CANNOT READ"; GOTO 10

This statement will read the next item-id and assign its string value to the
variable VAR1. If the list of item-ids has been exhausted (or if a program
SELECT statement, or a SELECT, SSELECT, or QSELECT command has not been issued
before the BASIC program execution), then the message "CANNOT READ" will be
printed and control will pass to statement 10.

7-9

Examples of the use of READNEXT:

Correct Use

REAnNEXT A FROM X ELSE STOP

READNEXT X2 ELSE
PRINT "UNABLE"
GOTO 50
END

FOR X-1 TO 10
READNEXT B(X) ELSE STOP

NEXT X

Incorrect Use

READNEXT Q5

REAnNEXT Z THEN

READ NEXT ELSE GOTO 500

88A00778A

Explanation

Specifies the list selected and assigned to
the select-variable X. Assigns the value of
that list's next item-id to variable A. If
item-id list is exhausted (or if no SELECT,
SSELECT or QSELECT executed), program will
terminate.

Specifies the last list selected without a
select-variable. Assigns the value of the
next item-id to variable X2. If unable to
read, "UNABLE" is printed and control
transfers to statement 50.

Reads next ten item-ids and assigns values
to matrix elements B(1) through B(10).

Explanation

THEN/ELSE clause is missing.

At least one statement must follow THEN.

Variable is missing.

7-10

88A00778A

7.4 MODIFYING AND DELETING FILE ITEMS

7 .4.1 WRITE STATEMENT

The WRITE statement is used to update a file item. The general form of the
WRITE statement:

WRITE expression ON {file-variable,} item-name

The WRITE statement replaces the content of the item specified by item-name
with the string value of expression. The file-variable is optional; if used,
the item will be replaced in the file previously assigned to file-variable via
an OPEN statement. If the file-variable is omitted, the internal default
variable is used (thus specifying the file most recently opened without a file
variable). If item-name specifies an item which does not exist, then a new
item will be created.

The following statements, for example, replace the current content of the item
named ~crz in the file opened and assigned to file-variable FS with the string
value "THIS IS AN EXAMPLE":

VALUE • "THIS IS AN EXAMPLE"
WRITE VALUE ON FS,"XYZ"

Alternatively, this example may have been specified as follows:

WRITE "THIS IS AN EXAMPLE" ON FS, "XYZ"

7.4.2 DELETE STATEMENT

The DELETE statement is used to delete a file item. The general form of the
DELETE statement is:

DELETE {file-variable,} item-name

The DELETE statement deletes the item which is specified by item-name and is
located in the file previously assigned to the specified file-variable via an
OPEN statement. If the file-variable is omitted, then the internal default
variable is used (thus specifying the file most recently opened without a
file-variable). For example:

DELETE AB, "TESTITEM"

This statement will delete the item named TESTITEM in the file previously
opened and assigned to file-variable AB.

No action is taken if a non-existent item is specified in the DELETE statement.
Note that if the item is directly referenced, the item-name must be in quotes.

7-11

88A00778A

The BASIC program will abort with an appropriate error message if the
specified file has not been opened prior to the execution of the WRITE or
DELETE statement.

Examples of the use of WRITE and DELETE:

Correct Use

WRITE "XXX" ON A, "ITEMS"

A-"1234S6789"
B-"XSS"
WRITE A ON FN1,B

WRITE 100*S ON "EXP"

DELETE X, "XYZ"

Q-ttJOB"
DELETE Q

Incorrect Use

WRITE "BBBB" ON F,

WRITE ON B,"XYZtt

DELETE X, "SIt, ELSE STOP

Explanation

Replaces the current content of item ITEMS
(in the file opened and assigned to variable
A) with string value "XXX".

Replaces the current content of item XSS (in
the file opened and assigned to variable FN1)
with string value "1234S6789".

Replaces the current content of item EXP
(in the file opened without a file variable)
with string value "soon.

Deletes item XYZ in the file opened and
assigned to variable X.

Deletes item JOB in the file opened without
a file variable.

Explanation

Second expression is missing.

First expression is missing.

ELSE clause not allowed.

7-12

88A00778A

7.5 ACCESSING AND UPDATING SINGLE ATTRIBUTES

7.5.1 READV StATEMENT

The READV statement is used to read a single attribute value from an item in a
file. The general form of the READV statement is:

READV variable FROM {file-variable,} item-name, attribute-number
THEN/ELSE statements

The READV statement reads the attribute-number from the item-name specified
and assigns its string value to the first variable.

The file-variable is optional; if it is used, the attribute will read from the
file previously assigned to that variable via an OPEN statement. If the
file-variable is omitted, then the internal default variable is used (thus
specifying the file most recently opened without a file variable).

If a non-existent item is specified, the statement or sequence of statements
following an ELSE will be executed; otherwise, the statement(s) following a
THEN will be performed. The statements in the THEN/ELSE clause may be placed
on the same line separated by semicolons, or may be placed on multiple lines
terminated by END. The THEN/ELSE clause takes on the same format as the
THEN/ELSE clause in the IF statement).

Consider the following example:

READ V A FROM F,"XYZ", 3 ELSE STOP

This statement reads the third attribute of item XYZ (in the file opened and
assigned to file-variable F) and assigns its value to variable A. If item XYZ
does not exist, the program terminates.

The BASIC program will abort with an appropriate error message if the
specified file has not been opened prior to the execution of the READV
statement.

7-13

Examples of the use of READV:

Correct Use

READV X FROM A, "TEST", 5 ELSE
PRINT ERR
GOTO 70
END

Incorrect Use

READV X*Y FROM F,"B",2 ELSE STOP

READV A FROM B, "Z3" THEN STOP

READV B FROM "XYZ" ,A+Q

88A00778A

Explanation

Reads 5th attribute of item TEST (in
the file opened and assigned to
variable A) and assigns value to
variable X. If item TEST is non
existent, then value of ERR is printed
and control passes to st'atement 70.

Explanation

A variable name (not an expression)
must appear between READV and FROM.

Attribute number is missing.

ELSE clause is missing.

7-14

..

88A00778A

7.5.2 WRlTEV STATEMENT

The WRITEV statement writes a single attribute value to an item in a file. It
is used to update attribute values. Its general form is:

WRITEV expression ON {file-variable,} item-name, attribute-number

Upon execution of the WRITEV statement, the value of the first expression
becomes the attribute specified by attribute number in the item specified by
item-name and in the file previously aSSigned to the specified file-variable
via an OPEN statement.

If file-variable is omitted, then the internal default variable will be used
(thus specifying the file most recently opened without a file-variable).

If a non-existent item name or attribute number is specified, then a new item
or attribute will be created. Consider the example:

Xl - "XXX"
WRITEV Xl ON A2, "ABC",4

These statements replace the 4th attribute of item ABC (in the file opened and
aSSigned to variable A2) with the string value "XXX".

The WRITEV statement will also allow the attribute mark count to have a value
of either zero or minus one, thus inserting data before the first attribute or
following the last attribute. For example:

WRITEV XX ON FILE, "ITEM", AMC

When AMC-O, the attribute XX is inserted at the beginning of the item ITEM.
All attributes in the item are shifted by 1 attribute and the attribute XX
becomes attribute 1.

When AMC--l, the attribute XX is appended to the end of the item ITEM. The
number of attributes in the item increase by 1 and all previously existing
attributes are undisturbed.

The BASIC program will abort with an appropriate error message if the
specified file has not been opened prior to the execution of the WRITEV
statement.

7-15

Examples of the use of WRITEV:

Correct Use

Y·"THIS IS A TEST"
WRITEV Y ON X, "PROG",O

WRITEV "XYZ" ON "A7",4

Incorrect Use

WRITEV I ON "ABC" J

88A00778A

Explanation

The string value "THIS IS A TEST" is
inserted before the first attribute
of item PROG in the file opened and
assigned to variable X.

Attribute 4 of item A7 (in the file
opened without a file variable) is
replaced by string value "XYZ".

Explanation

Comma is missing between "ABC" and J.

7-16

88A00778A

7.6 ACCESSING AND UPDATING MULTIPLE ATTRIBUTES

7 .6.1 MATREAD STATEMENT

The MATREAD statement reads a file item and assigns the value of each attribute
to consecutive vector elements. The t~TREAD statement has the following form:

l1ATREAD array-variable FROM {file-variable,} item-name THEN/ELSE statements

The MATREAD statement reads the file item specified by item-name and assigns
the string value of each attribute to consecutive elements of the vector
specified by the array-variable. If the file-variable is used, the item will
read from the file previously assigned to file-variable via an OPEN statement.
If file-variable is omitted, then the internal default variable is used (thus
specifying the file most recently opened without a file variable).

If a non-existent item is specified, then the statements following the ELSE
will be executed; otherwise, statements following the THEN will be performed.
The statements in the THEN/ELSE clause may appear on one line separated by
semicolons, or on multiple lines terminated by an END. The THEN/ELSE clause
takes on the same format as the THEN/ELSE clause in the IF statement. If the
item does not exist, the contents of the vector remain unchanged. Consider:

t1ATREAD IN FROM 'ITEM' ELSE STOP

This statement will read into array "IN" the item named "ITEM" from the file
most recently opened without a file variable. If ITEM does not exist, the
program stops. If the number of attributes in the item is less than the
DL~ensioned size of the vector, the trailing vector elements are assigned a
null string. If the number of attributes in the item exceeds the DIMensioned
size of the vector, the remaining attributes will be assigned to the last
element of the array.

7 .6.2 MATWRlTE STATEMENT

The t~TWRITE statement writes a file item with the contents of a vector. The
MATWRITE statement has the following general form:

MATWRITE array-variable ON {file-variable,} item-name

The 11ATWRITE statement replaces the attributes of the item specified by
item-name with the string value of the consecutive elements of the vector named
by the array-variable. If the file-variable is used, the item will be written
in t.he file previously assigned to file-variable via an OPEN statement. If the
file-variable is omitted, then the internal default variable is used. If the
item-name specifies an item which does not exist, then a new item will be
created. The number of attributes in the item is determined by the Dn~ensioned
size of the vector.

7-17

88A00778A

For example:

MATWRITE IN ON 'ITEM'

This statement will write the contents of array "IN" to the default file as
item "ITEM".

Examples of the use of MAT READ and MATWRITE:

Correct Use

DIM ITEM (20)
OPEN , "'LOG' TO F1 ELSE STOP
MATREAD ITEM FROM F1, "'TEST'" ELSE STOP

DIM ITEM (10)
OPEN , 'TEST'" ELSE STOP
FOR 1-1 TO 10
ITEM(I)-I
NEXT I
MATWRITE ITEM ON "JUNK"

Incorrect Use

MATREAD

MATREAD FROM A THEN GO TO 10

MATREAD X ON F1 ELSE STOP

MATWRITE M ON FL+ 1, "'ITEM'"

7-18

Explanation

Reads the item named TEST from
the data file named LOG and
assigns the string value of each
attribute to consecutive elements
of vector ITEM, starting with the
first element.

t-lrites an item named JUNK in
the file named TEST. The item
written will contain 10
attributes whose string values
are 1 through 10.

Explanation

Parameters missing.

First variable is missing.

Word should be FROM, not ON.

File name following ON must be
a variable, not an expression.

88A00778A

7.7 MULTIUSER FILE AND EXECUTION LOCKS

7.7.1 BASIC LOCKS

The LOCK and UNLOCK statements provide a file and execution lock capability for
BASIC programs. The LOCK statement sets execution locks while the UNLOCK
statement releases them.

7.7.1.1 LOCK STATEMENT

The LOCK statement sets an execution lock so that when any other BASIC program
attempts to set the same lock, then that program will either execute an
alternate set of statements or will pause until the lock is released (via an
UNLOCK statement) by the program which originally locked it. Execution locks
may be used as file locks to prevent multiple BASIC programs from updating the
same files simultaneously. There are 48 execution locks numbered from 0
through 47. The LOCK statement has the following general form:

LOCK lock-number {ELSE statements}

The value of the lock-number specifies which execution lock is to be set. If
the specified execution lock has already been set by another concurrently
running program (and the ELSE clause is not used), then program execution will
temporarily halt until the lock is released by the other program. If the ELSE
clause is used, then the statement{s) following the ELSE will be executed if
the specified lock has already been set by another program. The statements in
the ELSE clause may be placed on the same line separated by semicolons, or may
be placed on multiple lines terminated by an END. The ELSE clause takes on the
same format as the ELSE clause in the IF statement.

7.7.1.2 UNLOCK STATEMENT

The UNLOCK statement has the following general form:

UNLOCK {lock-number}

The value of the lock-number specifies which execution lock is to be released
(cleared). If the number is omitted, then all execution locks which were
previously set by the program will be released.

All execution locks set by a program will automatically be released upon
termination of the program.

7-19

88A00778A

As an overall example of the execution lock capability, consider the following
situation. Process A sets execution lock 42 before executing a section of code
that should be non-reentrant (that is, code which should not be executed by
more than one process simultaneously). Process B executing the same program
reaches the "LOCK 42" instruction, but cannot lock that section of code until
Process A has unlocked 42. This has made the code non-reentrant.

Examples of the use of LOCK and UNLOCK:

Correct Use Explanation

LOCK 15 ELSE STOP Sets execution lock 15 (if lock 15 is
already set, program will terminate.

LOCK 2 Sets execution lock 2.

LOCK 10 ELSE PRINT X; GOTO 5 Sets execution lock 10 (if lock 10 is
already set, the value of X will be printed
and the program will branch to statment 5).

UNLOCK 63 Resets execution lock 63.

UNLOCK Resets all execution locks previously set
by the program.

UNLOCK (5+A)*(8-2) The current value of the expression
(5+A)*(B-2) specifies which execution lock
is released.

Incorrect Use Explanation

LOCK Expression is missing.

LOCK 3,21 Only one lock may be set per LOCK.
statement.

UNLOCK (5+A)(B-2) Expression is illegal.

7-20

88A00778A

7 • 7 .2 READ WITH LOCK FOR UPDATING: READU, READVU, AND MATREADU STATEMENTS

The READU, READVU, and liATREADU statements allow you to lock a group of items
in a file prior to updating an item in the group. Using a group lock prevents
updating of an item by two or more programs simultaneously while still allowing
multiple program access to the file. These statements have the following
general form:

READU variable FROM {file-variable,} item-name THEN/ELSE statements

READVU variable FROM {file-variable,} item-name, attribute-number
THEN/ELSE statements

MATREADU array-variable FROM {file-variable,} item-name THEN/ELSE
statements

These statements function in the same way as the READ, READV, and MATREAD
statements, but in addition lock the group of the file in which the item to be
accessed falls. A group lock will prevent:

1. Access of items in the locked group of other BASIC programs using the
READU, READVU, and MATREADU statements.

2. Update by any other program of any item in the locked group.

3. Access of the group by the FILE-SAVE process.

The group will become unlocked when any item in that group is updated via a
WRITE statement by the process which has it locked, when the BASIC program is
terminated, or a RELEASE or DELETE statement unlocks the group. Items can be
updated to the group without unlocking it by the program that issued the lock
via the WRlTEU, WRITEVU or l-fA'l'WRITEU statements.

Other processes (such as those described in steps 1 through 3 above) which
encounter a group lock will be suspended until the group becomes unlocked.

The maximum number of groups which may be locked by all processes in the
system is 62. If a process attempts to lock a group when 62 locks are already
set, it will be suspended until some group is unlocked.

7-21

88A00778A

Examples of the use of these statements:

Correct Use

READU ITEM FROM INV, S5 THEN
GOSUB

READVU ATT FROM B, "REC" ,
6 ELSE STOP

f-tATREADU T FROM XM, "N4"
ELSE NULL

Incorrect Use

READU ELSE STOP

READVU X FROM FlO, "GOR" , 14

MATREADU M, N FROM "BOY"
ELSE STOP

Explanation

Locks group of items containing item
S5. Reads S5 to variable ITEM; if 85 is
read, executes the THEN clause. The
group remains locked until one of its
items is updated, or a RELEASE
statement unlocks the group.

Locks group of items containing item
REC. Reads attribute 6 to variable ATT
or, if REe is non-existent, executes
the ELSE clause. The group remains
locked as in the preceding explanation.

This example shows use of a null ELSE
clause to lock the group regardless of
whether the item is existent or not.

Explanation

Parameters between "READU" and "ELSE"
missing.

THEN/ELSE clause is missing.

Invalid parameter; only one array name
may follow "MATREADU".

7-22

88A00778A

7 • 7 • 3 WRITE WITH LOCK FOR UPDATING: WRITEU, WRlTEVU AND MATWRlTEU STATEMENTS

The WRITEU, WRITEVU, and MATWRITEU statements have the letter "u" appended to
them to imply update. These commands will not unlock the group locked by the
program, but they will update this group when used by the program that issued
the lock. The WRITEU, WRITEVU, MATWRITEU statements have the following general
form:

WRITEU expression ON {file-variable,} item-name
WRITEVU expression ON {file-variable,} item-name, attribute-number
}~TWRITEU array-variable ON {file-variable,} item-name

These commands are used primarily for master file updates when several
transactions are being processed and an update of the master item is made
following each transaction update.

If the group is not locked when the WRITEU, WRITEVU, or MATWRITEU statement is
executed, the group will not be locked by the execution of the command.

7.7.3.1 RELEASE Statement

The RELEASE statement unlocks specified groups or all groups locked by the
program.

The general form of the RELEASE statement is:

RELEASE ({file-variable,} item-name}

The RELEASE statement unlocks the group of the item-name specified. If the
file-variable is used, the file will be the one previously assigned to that
file-variable via an OPEN statement. If the file-variable is omitted, then the
internal default variable is used (thus specifying the file most recently
opened without a file-variable).

If the RELEASE statement is used without a file-variable or item-name, all
groups which have been locked by the program will be unlocked. This form is:

RELEASE

The RELEASE statement is useful when an abnormal condition is encountered
during multiple file updates. A typical programming sequence marks the item
with an abnormal status, updates it to the file and then RELEASEs all other
locked grou ps.

7-23

88A00778A

Examples of the use of these statements:

Correct Use

WR1TEU CUST.NAME ON CUST.FILE,lD

Explanation

Replaces the current contents of the
item specified by item-name ID (in the
file opened and assigned to file
variable CUST.FILE) with the contents
of CUST.NAME. Does not unlock the
group.

WRITEVU CUST.NAME ON CUST.FILE,lD,3 Replaces the third attribute of item ID
(in the file opened and assigned to
file-variable CUST.FILE) with the
contents of CUST.NAME. Does not unlock
the group.

MATWR1TEU ARRAY ON FILE.NAME,ID Replaces the attributes of the item
specified by ID (in the file opened and
assigned to file-variable FILE. NAME)
with the consecutive elements of vector
ARRAY. Does not unlock the group.

RELEASE Releases all groups locked by the
program.

RELEASE CUST.FILE, PART.NO Releases group containing item-name
PART.NO in file CUST.FILE.

Incorrect Use Explanation

WRITEVU LOC ON 1NC.FILE,PART.NO Expression denoting attribute number is
missing.

MATWR1TEU ARRAY(S) ON 1D MATWR1TEU takes entire array as a
parameter. Subscript is not allowed.

RELEASE CUST.FILE Item-name parameter is missing.

7-24

88A00778A

7.8 PROC I/O

7 .8.1 PROCREAD STATEMENT

The PROCREAD statement will read the entire contents of the Primary Input
Buffer of the controlling (currently running) PROC. The general form of the
PROCREAD statement is:

PROCREAD variable THEN/ELSE statements

The contents of the Primary Input Buffer will be assigned to the specified
variable. If the PROC is able to be read, the statement(s) following the THEN
will be executed; if the PROC cannot be read, the statements following the ELSE
will be executed. (The THEN/ELSE clause follows the same format as the
THEN/ELSE clause in the IF statement.)

7.8.2 PROCWltlTE STA'rEMEHT

The PROCWRITE statement will replace the current contents of the Primary Input
Buffer of the controlling (currently running) PROC with whatever the user
specifies. The general form of the PROCWRITE statement is:

PROCWRITE expression

where expression is whatever you wish to place in the Primary Input Buffer.

7-25

88A00778A

7.9 TAPE I/O

BASIC programs may specify magnetic tape or cartridge disk I/O operations
through the use of the READT (Read Tape Record), WRITET (Write Tape Record),
WEOF (Write End-of-File Mark), and REWIND (Rewind Tape Unit) statements. The
record length on the tape is the length specified in the most recent T-ATT
statement executed at the TCL level.

7 • 9.1 READT STATEMENT

The READT statement reads the next record from the tape or cartridge disk
unit. Its general form is:

READT variable THEN/ELSE statements

The next record is read and its string value is assigned to the variable
indicated. Depending on whether the unit has been attached, or an End-of-File
(EOF) mark is read, then the statement or sequence of statements following the
THEN/ELSE will be executed. For example:

or
READT X ELSE PRINT "CANNOT READ"; STOP

READT X ELSE

END

PRINT "END OF TAPE OR TAPE NOT ATTACHED"
STOP

Here the next tape or cartridge disk record is read and assigned to variable
x. If an EOF is read (or no unit is attached) then "CANNOT READ" or "END OF
TAPE OR TAPE NOT ATTACHED" is printed and the program executes.

7 • 9 • 2 WRITET STATEMENT

The WRITET statement writes a record onto tape or cartridge disk. Its general
form:

WRITET expression THEN/ELSE statements

The string value of the expression is written onto the next record of the tape
or cartridge disk. Depending on whether the unit has been attached, or the
string value of the expression is the empty string ("), the appropriate
statement(s) follOWing the THEN/ELSE will be executed. For example:

WRITET A ELSE STOP

This statement writes the string value of A onto the tape or cartridge disk.
The program terminates if A-" or if no unit is attached.

7-26

88A00778A

7 .9.3 WEOF AND REWIND STATEMEIITS

The WEOF statement writes two EOF marks on the tape or cartridge disk, then
backspaces over the second. This correctly positions the tape or disk for
subsequent WRlTET operations. The REWIND statement rewinds the tape unit to
the Beginning-of-Tape (BOT). On the cartridge disk, the head is positioned to
the first available sector. These statements have the following forms:

WEOF THEN/ELSE statements
REWIND THEN/ELSE statements

Depending on whether the tape or cartridge disk unit has been attached, the
statement(s) following the THEN/ELSE will be executed. Examples of the use of
Tape and Cartridge Disk I/O statements:

Correct Use

READT B THEN
PRINT -YES

GOTO 5
END

FOR 1-1 TO 5
WRlTET A(I) ELSE STOP
NEXT I

WEOF ELSE STOP

REWIND ELSE STOP

Incorrect Use

READT B+1 ELSE STOP

WEOF

REWIND

Explanation

The next tape or cartridge disk record is
read and its value assigned to variable B.
If the tape or cartridge disk unit is
attached and EOF is not read, then -YES"
i. printed and control passes to statement 5.

The values of array elements A(l) through
A(5) are written onto 5 tape or cartridge
di.k records. If one of the array elements
has a value of " (or if tape or cartridge
disk unit not attached), the program
will terminate.

Writes two EOF marks, then backspaces over
the second one.

Tape is rewound to BOT (cartridge disk head
is positioned to BOT).

Explanation

"B+1- 1s not a variable name.

THEN/ELSE clause is missing.

THEN/ELSE clause is missing.

7-27

. 88A00778A

7.10 STRING HANDLING

7 .10.1 STRING SEAllCBIlfG: FIELD J COLi, AND COL2 FUNCTIONS

The FIELD function returns a substring from a string by specifying a delimiter
character. The COLl and COL2 functions return the numeric values of the column
positions immediately preceding and immediately following the substring
selected by the FIELD function.

7.10.1.1 FIELD

The general form of the FIELD function is:

FIELD("string","del1miter",occurrencel)

The FIELD function takes a string and searches for a substring delimited by
the character specified in delimiter. Occurrencel specifies which occurrence
of the substring is to be returned. If the occurrence is 1, then the FIELD
function will return the substring from the beginning of the string up to the
first occurrence of the delimiter. For example, the statement below assigns
the string value of "XXX" to the variable A:

A • FIELD("XXX.YYY.ZZZ.555",".",1)

If occurrencel is 2, then the substring delimited by the first and second
occurrence of the specified delimiter character will be returned. A value of 3
for occurrenceH will return the substring delimited by the second and third
occurrence of the specified delimiter character, and so on for higher values of
the expression. For example, the statement below assigns the string value
"ZZZ II to variable c:

C • FIELD("XXX.YYY.ZZZ.555",".",3)

7.10.1.2 COL1, COL2

The COLl and COL2 functions have the following general form:

COL1()
COL2()

COL1() returns the numeric value of the column position immediately preceding
the substring selected via the most recent FIELD function. For example:

B • FIELD("XXX.YYY.ZZZ.555",".",2)
BEFORE • COL1()

7-28

88A00778A

These statements assign the numeric value 4 to the variable BEFORE (the value
"Yn." which is returned by the FIELD function is preceded in the original
string by column position 4). COL2() returns the numeric value of the column
position immediately following the substring selected via the most recent FIELD
function. COL2() returns zero if the substring is not found. For example:

B • FIELD("XXX.YYY.ZZZ.SSS .. , ,2)
AFTER • COL2 ()

These statements assign the numeric value 8 to the variable AFTER (the value
"YYY" which is returned by the FIELD function is followed in the original
string by column position 8). Examples of the use of string searching
functions:

Correct Use

T • "1234SA6789A9876SA"
G • FIELD(T,"A",l)

T • "1234SA6789A9876SA"
G • FIELD(T,"A",3)

Q • FIELD(IABCBA","B",2)
R • COL1()
S • COL2()

X • "77ABCXX"
Y - "$"
Z • "ABC"
IF FIELD(X,Y,2)- Z THEN STOP

Incorrect Use

A • FIELD("ABCDE","C")

COL1() =- FIELD("XYZ","Z",L)

Z =- COL2(A)

Explanation

Assigns the string value "1234S" to
variable G.

Assigns the string value "9876S" to
variable G.

Assigns the string value "C" to variable
Q, the numeric value 2 to variable R, and
the numeric value 4 to variable S.

The IF statement will cause the program to
terminate (the value returned by the FIELD
function is "ABC", which equals the value
of Z, thus making the test condition true).

Explanation

Occurrence expression is missing.

"COL1()" is an Intrinsic Function and may
not appear on the left side of an Assignment
statement.

A function parameter may not be used with the
COLl and COL2 statement.

7-29

88A00778A

7 .10.2 SEARCHING FOB. A SUBSTRING: INDEX FUNCTION

The ItIDEX function searches a string for the occurrence of a substring and
returns the starting column position of that substring. The general form of
the INDEX function is:

INDEX("string", "substring", occurrencell)

The INDEX function takes the string value of the first expression string and
searches for the substring specified by the second expression. The third
expression specifies which occurrence of that substring is sought. The
resulting numeric value of the INDEX function is the starting column position
of the substring within the string. A value of 0 is returned if the substring
is not found. Consider the following example:

START • INDEX("ABCDEFGHI","DEF",l)

This statement assigns the value of 4 to the variable START (the first
occurrence of the substring "DEF" starts at column position 4 of the string
"ABCDEFGHI"). Next consider the example:

A • INDEX("AAXXAAXXAA", "XX" ,2)

This statement assigns the yalue of 7 to variable A (the second occurrence of
substring "XX" starts at column position 7 of string "AAXXAAXXAA").

The following example assigns a value of 0 to the variable VAR because the
substring "Z" is not present within the string "ABC123":

Q • "Z"
R • "ABC123""
VAR - INDEX(R,Q,l)

Note that no blank space may appear between the function word "INDEX" and
"(". This rule is true for all BASIC Intrinsic Functions.

7-30

Examples of the use of INDEX:

Correct Use

A • INDEX("ABCAB", "A" ,2)

x =- 1
X =- "1234ABC"
Y =- "ABC"
IF INDEX(X,Y,l)-S THEN GOTO 3

Q - INDEX("PROGRAM","S",S)

S • "X1XX1XX1XX"
FOR 1-1 TO INDEX(S,"1",3)

NEXT I

Incorrect Use

B • INDEX (B CAT Z, "XX",2)

B • INDEX("QRS","S")

INDEX("ZZZ33Q","33",1)

88A00778A

Explanation

Assigns value of 4 to variable A
(2nd occurrence of "A" is at column
position 4 of "ABCAB").

The IF statement will transfer control
to statement 3 ("ABC" starts at
column position 5 of "1234ABC" which
makes the test condition in the IF
statement TRUE).

Assigns value of 0 to variable Q
(" S" does not occur in "PROGRAJ.\f").

The loop will execute 8 times (3rd
occurrence of "1" appears at column
position 8 of the string named S).

Explanation

No space allowed between "INDEX" and
"(It.

Third expression is missing.

An intrinsic function must appear as an
expression or part of an expression; it
may not be used as a stand-alone BASIC
statement.

7-31

88A00778A

7.10.3 COUNTING OCCURRENCES OF A SUBSTRING: COUNT FUNCTION

The general form of the COUNT function is:

COUNT('string','substring')

The COUNT function counts the number of occurrences of a substring within a
string. Any number of characters may be present in the substring. This
function is particularly useful for determining the number of attributes within
an item, or the number of mUltiple values or subvalues within an attribute.

The COUNT function returns a value of zero if the substring is not found, and
returns the number of characters in the string if the substring is specified
null. A null matches on any character. For example:

Command

x • COUNT('THIS IS A TEST','IS')
X • COUNT('THIS IS A TEST','X')
X - COUNT('THIS IS A TEST',")

Value of X

2
o

14

There are 14 characters in the string 'THIS IS A TEST'. Another example:

Command

X - COUNT('AAAA','AA')

There are 3 substrings within the string AAAA.

~

AA
AA

AA

STRING
SUBSTRING 1
SUBSTRING 2
SUBSTRING 3

7-32

Value of X

3

88A00778A

7.10.4 COUNTING DELIMITED VALUES: DCOUNT FUNCTION

The general form of the DCOUNT function is:

DCOUNT('string','delimiter')

The DCOUNT function counts the number of values separated by a specified
delimiter. The DCOUNT function differs from the COUNT function in that it
returns the true number of values by the specified delimiter, rather than the
number of occurrences of the delimiter within the string. For example:

AM - CHAR(254)
A" "ABC":AM:"DEF":AM:"GHI":AM:"JKL"

Command

x .. COUNT(A,AM)
X .. DCOUNT(A,AM)

Value of X

3
4

The DCOUNT function may be used to count the number of attributes in an item,
or the number of values (or subvalues) within an attribute. The DCOUNT
function returns a value of zero when a null string is encountered.

Examples of the use of COUNT, DCOUNT:

Correct Use

A - "1234ABC5723"
X .. COUNT(A,'23')

X - COUNT('ABCDEFG',")

AM .. CHAR(254)
A - "123":AM:"456":AM:"ABC"
X .. DCOUNT(A,AM)

VM .. CHAR(253)
A • "123]456":AM:"ABC]DEF]HIJ"
X .. DCOUNT(A,VM)

A - "ABCDEFG"
X • DCOUNT(A,")

Incorrect Use

A - "THIS IS A TEST"
X .. COUNT(A,IS)

X .. DCOUNT(A)

Explanation

Value returned in X is 2. (There are two
occurrences of '23' in the string A.)

Value returned in X is 7. (A null
substring will match any character.)

Value returned in X is 3. (There are three
values in the string separated by attribute
marks.)

Values returned in X is 4. (There are four
values in the string separated by value
marks.)

Value returned in X is O. (A null is
specified as the delimiter.)

Explanation

If a literal substring is used, it must be
enclosed in single or double quotes.

Both COUNT and DCOUNT functions must have
two expressions.

7-33

88A00778A

7.10.5 STRING SPACING: SPACE AND TRIM FUNCTIONS

The SPACE function generates a string value containing a specified number of
blank spaces. The TRIM function removes extraneous blank spaces from a
specified string.

7.10.5.1 SPACE

The general form of the SPACE function is:

SPACE (expression)

The SPACE function generates a string value containing the number of blank
spaces specified by the expression. For example:

PRINT SPACE(10):"HELLO"

This statement prints 10 blanks followed by the string "HELLO".

7.10.5.2 TRIM

The general form of the TRIM function is:

TRIM(expression)

The TRIM function deletes preceding, trailing, and redundant blanks from the
literal or variable expression. For example:

A-'
A-TRIM(A)
PRINT A

GOOD MORNING,

The PRINT statement will print:

GOOD ~IORNING, MR. BRIGGS

MR.. BRIGGS'

7-34

88A00778A

Examples of the use of SPACE, TRIM:

Correct Use

B • 14
A • SPACE(B)

DIU M(10)
MAT M • SPACE(20)

S • SPACE(S)
L - "SMITH"
C =- ,
F =- "JOHN"
N • S:L:S:C:S:F

M • TRIM(N)

Incorrect Use

Q • SPACE ()

P • SPACE+A

x =- TRIM(X,Y)

TRIM(A)

Explanation

Assigns to variale A the string value
containing 14 blank spaces.

Assigns a string consisting of 20 blanks to
each of the 10 elements of array M.

Assigns to variable N the concatenated string
consisting of S blanks, the name SMITH,
5 blanks, a comma, 5 blanks, and the name
JOHN.

Where N is the above string variable, assigns
to variable M a string consisting of the name
SMITH, 1 blank, a comma, 1 blank, and the
name JOHN.

Explanation

Expression is missing.

Argument and parentheses are missing.

Only one expression is allowed for TRIM
function.

Function cannot stand alone; it must appear
in a valid BASIC statement.

7-35

88A00778A

7.10.6 STRING REPETITION AND LENGTH DETERMINATION

7.10.6.1 STR

The STR function generates a string value containing a specified number of
occurrences of a specified string. The general form of the STR function is:

STR('string',occurrence#)

where 'string' specifies the string that is to be repeated the number of times
specified by occurrence number. Note that string may also be a variable to
which a string value has been assigned. The following statement, for example,
assigns a string value containing 12 asterisk characters to variable X:

X-STR('*',12)

As a further example, the following statement will cause the string value
"ABCABCABC" to be printed:

PRINT STR('ABC',3)

7.10.6.2 LEN

The LEN function gives the length of a string. The general form is:

LEN(expression)

The numeric value that gives the length of the string (number of bytes)
specified by the expression will be returned. For example:

A - "1234ABC"
B =- LEN(A)

These statements assign the value of 7 to variable B.

7-36

Examples of the use of STR, LEN:

Correct Use

VAR =- STR("A",5)

Q • LEN("123")

A =- 'BBB'
B =- STR("B",3)
C • B CAT A

x =- "123"
Y • "ABC"
Z • LEN(X CAT Y)

N • STR("1%?",4)

Incorrect Use

S • STR(NAME,2)

J • STR ("Z .. ,40)

W • LEN("Z",40)

88A00778A

Explanation

Assigns to variable VAR the string value
containing five A's.

Assigns the value 3 to variable Q (the
length of string "123").

Assigns to variable C the string value
containing six B's.

Assigns the value 6 to variable Z.

Assigns to variable N the string value
containing 4 consecutive occurrences of the
string "1%1".

Explanation

Quotes missing that should enclose string
NAME, unless NAME is a variable.

No space allowed between "STR" and "(".

Only one expression allowed for LEN function.

7-37

88A00778A

7.11 DYNAMIC ARRAY OPERATIONS

7.11.1 DYHAKlC ARRAY STRUCTURE

BASIC contains a number of statements and functions that are extremely useful
for accessing and updating PICK files. A brief description of the PICK file
structure as it concerns the BASIC programmer is appropriate at this point.

A PICK file consists of a set of items. When a PICK file item is accessed by
a BASIC program, it is represented as a BASIC string in item format. A string
in item format is called a dynamic array.

A dynamic array consists of one or more attributes separated by attribute
marks. An attribute mark has an ASCII equivalent of 254, which prints as "A".
An attribute, in turn, may consist of a number of values separated by value
marks. A value mark has an ASCII equivalent of 253, which prints as "lIt.
Finally, a value may consists of a number of secondary values separated by
secondary value marks. A secondary value mark has an ASCII equivalent of 252,
which prints as "\".

The general form of a dynamic array is illustrated below:

where:

"a a a a a a ••• a"
I

-----------------------------v]v]v]v]v]v]v]v]v] •••]v
I

a - attribute
v - value

sv sv sv sv sv sv ••• sv

sv - secondary value

An example of a dynamic array is:

"5 SA ABCDA 73 2XYZA 100000.33"

where "55", "ABCD" , " 732XYZ", and "100000.33" are attributes.

The following illustrates a more complex dynamic array:

"Q5"AAAA,,9 52] ABC] 12345AAAB"C] TEST'\12 1\9\99.3] 2A555"

where "Q5". "AMA", "952]ABC] 12345" , "A", "S", "CjTEST\121\9\99.3]2" and "555"
are attributes; "952", "ABC", 12345", "C", "TEST\12I\9\99.3", and "2" are
values; and "TEST", "121", "9", and "99.3" are secondary values.

7-38

88A00778A

Dynamic arrays can be directly manipulated by the BASIC dynamic array
functions. Dynamic arrays are called "arrays" because they can be referenced
by these functions using 3 subscripts. They are "dynamic" in the sense that
elements can be added and deleted without having to recompile the program, as
long as the item does not exceed 32,267 characters.

Further examples of correctly formed dynamic arrays:

123A456A789]ABC}DEF

1234567890

Explanation

"123", "456", "789}ABC}DEF" are attributes; "789",
"ABC" and "DEF" are values.

"1234567890" is an attribute.

Q561\3.22]3.56\88\B]CI\99 "Q56", "3.22}3.56\88\B]C", and "99" are attributes;
"3.22", "3.56\88\B", and "c" are values; "3.56",
"88", and "B" are secondary values.

A]B]C]OAE]F]G]HI\I]J "A]B]C]O", "E]F}F}H", and "I]J" are attributes;
"A", "B", "C", "0", "E", "F", "G", "H", "I", and
"J" are values.

7-39

88A00778A

7.11.2 LOCATE STATEMENT

The LOCATE statement may be used to find the index of an attribute, a value, or
a secondary value within a dynamic array. The elements of the dynamic array
may be specified in ascending or descending ASCII sequence, and sorted with
either right or left justification. If the specified attr'ibute, value, or
secondary value is not present in the dynamiC array in the proper sequence, an
index value is returned which may be used in an INSERT statement to place the
sought element into its proper location. The general form of the LOCATE
statement is:

LOCATE ('String', Item {, Attr' {, Vall}}; Var {; 'Seq'})
TlmN/ELSE statement

"String" is the element to be located in dynamic array "item". "Var" is the
variable into which the index of '·String" is to be stored. "Attrfl" and "Valli"
are optional parameters which restrict the scope of the search within "Item".
If neither parameter is present, "String" is tested for equality with
attributes in "Item", and "Var" returns an attribute number. If "Attr'" is
present, "String" is compared with values within the attribute specified by
"Attrll" of "Item", and "Var" returns a value number. If "Valli" is also
present, the search is conducted for secondary values of the specified
attribute and value of "Item", and "Var" returns a secondary value number.

If '''Seq'' has the value "A" (or any string value beginning with "A"), the
elements of "Item" are assumed to be sorted in ascending sequence. If "Seq"
has the value "0" (or any string value beginning with "0"), the elements are
assumed to be in descending sequence. All other values for "Seq" are ignored.

If the first character of ··Seq" is either "A" or "0" J the second character
determines the justification used when sorting the elements. If this character
is "R", right justification is used. (This is useful with numeric elements.)
If this value is "L" (or any other value, including null), left justification
is used.

LOCATE statements may be used to locate and/or insert controlling and dependent
associative attributes within dictionary items. The following example
demonstrates how a file may be searched for items which contain 'dependent'
associative attributes in attribute 4 and how, if the '0' is not located, it
will be inserted by the execution of the 'ELSE' clause:

LOCATE('D',ITEM,4jVAR) ELSE ITEM" INSERT(ITEM,4,VAR,0,'O')

This single statement eliminates the need for a loop which would have to
specifically extract and test the attribute and provide two consequent paths
before the next item could be searched.

The THEN/ELSE clause of the LOCATE statement operates exactly like the
THEN/ELSE clause of the IF statement.

7-40

88A00778A

Examples of the use of LOCATE statements:

Correct Use

LOCATE('55',ITEM,3,1;VAR;'AR') ELSE
ITEM - INSERT(ITEM,3,1,VAR,'55')
END

Incorrect Use

LOCATE(123,ITEM,2;VAR;AR)

LOCATE(' 123' , ITEl1, VAR, , AR')
ELSE STOP

Explanation

The third attribute, first value of
array 'ITEM' is searched for the
numeric literal '55'. 'VAR' will
return with the secondary value index
if the numeric is found, and will
return with the correct secondary value
index if the numeric is not found.

If it is not found, control passes to
the ELSE clause which inserts the
numeric into the correct position by
virtue of the index contained in
'VAR' •

The optional parameter 'AR' specifies
ascending sequence and right
justification.

Explanation

String 123 and AR must be surrounded
by quotes. Also the THEN/ELSE clause
is missing.

A semicolon must precede VAR and Seq;
C01QDJaS are used to separate STRING,
ITEM, ATTR#, and VALUe

7-41

88A00778A

7 .11.3 EXTRACT FUNCTION

The EXTRACT function returns an attribute, a value, or a secondary value from a
dynamic array. The general form of this function is:

value-da<exp{,exp}{,exp})

The dynamic array used by this function is specified by da. Whether an
attribute, a value, or a secondary value is extracted depends upon the values
inside the '<)'. The first expression specifies an attribute, the second
specifies a value, and the third specifies a secondary value. The second and
third expressions are optional. Consider the following example:

OPEN 'TEST' TO TEST ELSE STOP 201, 'TEST'
READ ITEM FROM TEST, 'NAME' ELSE STOP 202, 'NAME'
PRINT ITEM <3,2)

These statements cause value 2 of attribute 3 of item ITEM in file TEST to be
printed.

Another example:

OPEN 'ACCOUNT' TO ACCOUNT ELSE STOP 201, 'ACCOUNT'
READ ITEMl FROM ACCOUNT, 'IiEM1' ELSE STOP 202, 'IIEM1'
IF ITEM1<3,2,1)-25 THEN CRT "MATCH"

These statements cause the message "MATCH" to be printed if secondary value 1
of value 2 of attribute 3 of item ITEMl in file ACCOUNT is equal to 25.

Other EXTRACT function forms are:

EXTRACT(da,am,vm,svm) da<am)

where: da is dynamic array
am is attribute mark (count)
vm is value mark (count)
svm is secondary value mark (count)

Note that trailing subvalue or value mark counts are no longer required.

7-42

Examples of the use of EXTRACT:

Correct Use

A-3
B-2
Ql-ARR<A,B,A+l)

IF B<3,2,l)) 5 THEN
PRINT t-lSG
GOSUB 100

END

PRINT D<25,2)

Incorrect Use

ITEM-DA<3

ITEM-<3,2)

88A00778A

Explanation

Assigns attribute 2 of dynamic array X to
variable Y.

Assigns secondary value 4 of value 2 of
attribute 3 of dynamic array ARR to
variable Q1.

If secondary value of 1 of value 2 of
attribute 3 of dynamic array B is greater
than 5, then the value of ~'lSG is printed and
a subroutine branch is made to statement 100.

Prints value 2 of attribute 25 of dynamic
array D.

Explanation

There is no closing ~)' present.

Dynamic array name is missing.

7-43

88A00778A

7.11.4 REPLACE FUNCTION

The REPLACE function replaces an attribute, a value, or a secondary value in a
dynamic array. The general form of REPLACE function is:

da<exp{,exp}{,exp}>-VALUE
or

REPLACE(da,exp{,exp}{,exp};exp)

The dynamic array used by this function is specified by da. Whether an
attribute, a value, or a secondary value is replaced depends upon the values of
the first, second and third expressions. The first expression specifies an
attribute, the second specifies a value, and the third specifies a secondary
value. In the case of the second usage, the fourth expression is the new
data. The second and third expressions are optional in both cases.

The following example replaces attribute 4 of item NAME in file INVENTORY with
the string value "EXAMPLE":

OPEN 'INVENTORY' TO INV ELSE STOP 201, 'INVENTORY'
READ NAME FROM INV, 'NAME' ELSE STOP 202, 'NAME'
NAME<4>-'EXAMPLE'
WRI TE NAME ON INV, 'NAME'

Alternatively, this operation could have been written as follows:

OPEN 'INVENTORY' TO INV ELSE STOP 201,'INV'
READ NAME FROM INV,'NAHE' ELSE STOP 202, 'NAME'
WRITE REPLACE(NAME,4;'EXAMPLE') ON INV, 'NAME'

If the second, third, or fourth expression of the REPLACE function has a value
of -1, then insertion after the last attribute, last value, or last secondary
value (respectively) of the dynamic array is specified. For example:

OPEN 'XYZ' TO XYZ ELSE STOP 201, 'XYZ'
READ B FROM XYZ 'ABC' ELSE STOP 202, 'ABC'
B<3,-1>-'NEW VALUE'
WRITE B ON XYZ,'ABC'

These statements insert the string value "NEW VALUE" after the last value of
attribute 3 of item ABC in file XYZ. Other REPLACE function forms are:

REPLACE(da,am,vm,svm) da<am>

where: da
am
vm
svm

is dynamic array
is attribute mark (count)
is value mark (count)
is secondary value mark (count)

7-44

Examples of the use of REPLACE:

Correct Use

Y-REPLACE(X,4;")

VALUE-"TEST STRING"
DA<4,3,2)-VALUE

X·"ABC123"
Y<l,l , -l)-X

A-REPLACE(B,2,3; "XXX")

Incorrect Use

B<1,2,3-VALUE

V5-REPLACE(V4,4,O,O,'TEST'

REPLACE(X,3,3,3,'ABC')

88A00778A

Explanation

Replaces attribute 4 of dynamic array X with
the empty (null) string.

Replaces attribute 4 of dynamic array X with
the empty (null) string, and assigns the
resultant array to Y.

Replaces secondary value 2 of value 3 of
attribute 4 in dynamic array DA with the
string value "TEST STRING".

Inserts the value "ABC123" after the last
secondary value of value 1 of attribute 1
in dynamic array Y.

Replaces value 3 of attribute 2 of dynamic
array B with the value "XXX", and assigns
the resultant dynamic array to A.

Explanation

Closing ')' is missing.

Terminating parentheses is missing.

REPLACE is a function and may therefore not
appear as a stand alone statement.

7-45

88A00778A

7.11.5 INSERT FUNCTION

The INSERT function inserts an attribute, a value, or a secondary value into a
a dynamic array. The general form of this function is:

INSERT(da,exp{,exp} {,exp};exp)

The dynamic array used by this function is specified by da. Whether an
attribute, a value, or a secondary value is inserted depends upon the values of
the first, second and third expressions. The first expression specifies an
attribute, the second specifies a value, and the third specifies a secondary
value. The second and third expressions are optional. The value to be inserted
is specified by the fourth expression. Consider the following example:

OPEN 'TEST-FILE' TO TEST ELSE STOP 201, 'TEST-FILE'
READ X FROM TEST-FILE,'NAME' ELSE STOP 202,'NAME'
X • INSERT(X,lO;'XXXXX')
WRITE X ON TEST,'NAME'

These statements insert the value "XXXXX" before attribute 10 of item NAME,
thus creating a new attribute.

If the first, second or third expression of the INSERT function has a value of
-1, then insertion after the last attribute, last value, or last secondary
value (respectively) of the dynamic array is specified. For example:

OPEN 'FMl' TO FMl ELSE STOP 20l,'FMl'
READ B FROM FMl,'IT5' ELSE STOP 202,'IT5'
A • INSERT(B,-l;'EXAHPLE')
WRITE A ON FMl,'IT5'

These statements insert the string value "EXAMPLE" after the last attribute of
item ITS in file FMl.

Other INSERT function forms are:

INSERT(da,am,vm,svm,new) INSERT(da,am,new)

where: da is dynamic array
am is attribute mark (count)
vm is value mark (count)
svm is secondary value mark (count)
new is new data to be inserted

Note that trailing value and secondary value mark parameters are no longer
required. However, if they are omitted when using the INSERT function, a
semicolon must be used before the new data to be inserted.

7-46

Examples of the use of INSERT:

Correct Use

Y • INSERT(X,3,2;"XYZ")

NEW • "VALUE"
TEMP • INSERT(TEMP,9;NEW)

A • "123456789"
B • INSERT(B,3,-1;A)

Z • INSERT(W,5,1,1;"BtI)

Incorrect Use

B7 • INSERT (B7,1,1,1;"AA")

A • INSERT(B,4,1,1,1;tlXYZ")

B • INSRT(B,4,1,1,"XYZ tI)

88A00778A

Explanation

Inserts before value 2 of attribute 3
of dynamic array X the string value
"XYZ" (thus creating a new value), and
assigns the resulting dynamic array to
variable Y.

Inserts before attribute 9 of dynamic
array TEMP the string value "VALUE"
(thus creating a new attribute).

Inserts the value "123456789" after the
last value of attribute 3 of dynamic
array B.

Inserts the string value "B" before
secondary value 1 of value 1 of
attribute 5 in dynamic array W (thUS
creating a new secondary value), and
assigns the resulting dynamic array to
variable Z.

Explanation

A space must not appear between
"INSERT" and "(".

Too many expressions.

INSERT is spelled incorrectly.

7-47

88A00778A

7.11.6 DELETE FUNCTION

The DELETE function deletes an attribute, a value, or a secondary value from a
dynamic array. The general form of the DELETE function is:

DELETE(da,exp{,exp} {,exp})

The dynamic array used by this function is specified by da. Whether an
attribute, a value, or a secondary value is deleted depends upon the values of
the first, second and third expressions. The first expression specifies an
attribute, the second specifies a value, and the third specifies a secondary
value. The second and third expressions are optional.

If a value is deleted (i,e., the secondary value expression is zero), the
value mark associated with the value is also deleted. If an attribute is
deleted (i.e., the value and the secondary value expression are both zero), the
attribute mark associated with the attribute is also deleted. Consider the
following example:

OPEN 'INVENTORY' TO INV ELSE STOP 201,'INVENTORY'
READ VALUE FROM INV, 'IT.EM2' ELSE STOP 202, 'IIEM2'
VALUE • DELETE(VALUE,l,2,3)
WRITE VALUE ON INV,'ITEM2'

These statements delete secondary value 3 of value 2 of attribute 1 of item
lTEM2 in file INVENTORY. The delimiter associated with secondary value 3 is
also deleted. Consider the following example:

OPEN 'TEST' TO TEST ELSE STOP 201,'TEST'
READ X FROM TEST,'NAME' ELSE STOP 202,'NAME'
WRITE DELETE(X,2) ON TEST,'NAME'

These statements delete attribute 2 (and its associated delimiter) of item NAME
in file TEST.

Other forms of the DELETE function are:

DELETE(da,am,vm,svm) DELETE(da,am)

where: da
am
vm
svm

is dynamic array
is attribute mark (count)
is value mark (count)
is secondary value mark (count)

7-48

Examples of the use of DELETE:

Correct Use

Y - DELETE(X,3,2)

A-l;B-2;C-3
DA - DELETE(DA,A,B,C-A)

x • DELETE(X,7)

PRINT DELETE(X,7,l)

Incorrect Use

B - DELETE(CMS,"XYZ")

DELETE - A(5,5)

88A00778A

Explanatio~

Deletes value 2 of attribute 3 of
dynamic array X (and its associated
delimiter), and assigns resulting
dynamic array to Y.

Deletes secondary value 2 (and its
associated delimiter) of value 2 of
attribute 1 of dynamic array DA.

Deletes attribute 7 (and its
associated delimiter) of dynamic
array X.

Prints the dynamic array which results
when value 1 of attribute 7 of dynamic
array X is deleted.

Explanation

Strings such as "XYZ" are not allowed
in a DELETE function.

DELETE must not be used as a variable
name.

7-49/7-50

8. 1 TERMINAL INPUT

8. 1.1 INPUT AND PROMPT STATEMENTS

88A00778A

terminal and printer 8
input and output

The INPUT statement is used to request input data from the user's terminal.
The PROMPT statement is used to select the "prompt character" which is printed
at the terminal to prompt the user for input. The general form of the INPUT
statement is:

INPUT variable {,n}{:}

Upon execution of an INPUT statement, a "prompt" character will be printed at
the user's terminal. The user's response to the prompt will then be assigned
to the variable indicated in the INPUT statement. For example:

INPUT A

This statement will cause a prompt character to be printed at the user's
terminal. The data which the user thereupon inputs will become the current
value of variable A. If n is used, input is only accepted if less than or
equal to n characters. When the nth character is input, there will be an
automatic carriage return and line feed.

A colon may be used following the input variable to suppress the automatic
carriage return and line" feed that occur when a value is input. For example:

INPUT AMOUNT:

Via the PROMPT statement, the user may select any character to be used as the
input prompt character. The PROMPT statement has the following general form:

PROMPT expression

The expression used becomes the prompt character. For example:

PROMPT ": II

This statement selects the character ":" as the prompt character for
subsequent INPUT statements.

8-1

88A00778A

If the value of the expression is a numeric value of more than 1 digit, or a
string consisting of more than one character, only the most significant
character will be used. For example:

PROMPT tt ABC tt

This statement selects the character "A" as a prompt character. (Quotes are
needed if a string expression is used.) When a PROMPT statement has been
executed, it will remain in effect until another PROMPT statement is executed.
If a PROMPT statement has not been executed, the INPUT statement will use a
question mark (1) as the prompt character (i.e., "1" is the default prompt
character) •

Examples of the use of these statements:

Correct Use

INPUT VAR

PROMPT "@"

PROMPT A

Incorrect Use

INPUT

INPUT X,Y

INPUT "STRING"

PROMPT

PROMPT ..

Explanation

Will request a value for variable VAR at the
user's terminal.

Specifies that the character @ will be used
as a prompt character for subsequent INPUT
statements.

Specifies that the current value of A will be
used as a prompt character.

Explanation

Variable is missing.

Only one input may be specified per INPUT
statement.

"STRING" is not a variable name.

Expression is missing.

The character" must be enclosed in quotes.

8-2

88A00778A

8.1.2 MASKED INPUT

The general form of the Masked Input statement:

INPUT @(x,y):variab1e mask

This is a very complex input function. It is capable of replacing as many as
20 lines of BASIC code used in screen input. Its functions include cursor
addressing, output masking, editing, error messages, input masking, and
exception trapping.

This command itself is used for the actual entry of the data. Ancillary
functions can be performed by the commands described below. In the general
form above, "variable" represents the name of the variable being input, and
"mask" represents a standard PICK format mask. If the variable being used
already has a value, it will be displayed at the specified cursor address using
"mask" as the output mask. Regardless, the cursor is positioned one character
back of "x" in the "@(x,y)" specification, the prompt character is printed and
input is requested. If the user presses the return key, then whatever default
value was there before will be accepted. Otherwise, the input will be verified
against the mask, and if acceptable, will be assigned to "variable". If the
mask contains a decimal digit specification and/or a scaling factor, then
numeric checking will be performed. If the mask contains a length
specification (for example, Rl10), then length checking will be performed. If
the mask is 'D' (or any other valid date mask), then a date verification will
be performed.

Note that data is converted on output and input. Thus, if you wish to input a
date, the default should be stored in internal format. It will be displayed and
input in output format and will be placed back in the variable in internal
format. Note also that the '%' is a numeric character verification symbol.
Thus, if the statement executed is INPUT @(20,10):SOC.SEC '%%%-%%-%%%%' and the
data entered is 423-15-6897 then SOC.SEC will contain the value 423156897. If
an error condition is encountered, then a message is printed at the bottom of
the screen. Examples of Masked Input statements:

INPUT @(25,2):INV.DATE 'D'

INPUT @(35,7):AMOUNT 'R2,'

INOUT @(20,14):NAME 'LI40'

INPUT @(0,10):DESC

Inputs a date.

Inputs a dollar value.

Inputs a test field with a length
specification.

Inputs data with no mask.

8-3

88A00778A

8.1.3 OTHER INPUT FORMS

INPUTERR expr

INPUTTRAP 'character string' GOTO n,n,n,n •••
or

INPUTTRAP 'character string' GOSUB n,n,n,n •••

INPUTNULL ' x'

These are all support functions for the INPUT statement. They allow the user
to tailor the INPUT function to conform to local standards.

INPUTERR causes a message, specified by "expr", to be printed on the last line
of the screen. This differs from an explicit PRINT statement in that it sets a
flag indicating that a message has been printed. Thus, when the next valid
entry is made, the system will check the flag and clear the bottom line.

INPUTTRAP allows the user to set a trap for a particular character or
characters. Each character in the string specification corresponds to a label
in the GO TO or GOSUB clause. Thus, for example, if the statement INPUTTRAP
, X' GOTO 10,20 is executed, the subsequent entry of a ' , character will cause
a-branch to "10" and the entry of 'X' will cause a branch to "20". The GOSUB
form of this expression will cause a subroutine call to be issued instead.
CAUTION: The subroutine RETURN statement will cause a return to the statement
following the INPUTTRAP statement; not the one following the INPUT statement.

The INPUTNULL statement allows the user to define a character which is to
signify that whatever default value was present is to be replaced by the null
string. (This feature applies to masked input statements only.) Thus, if the
statement INPUTNULL '/' is executed, the subsequent entry of a '/' character
will cause a defaulted value to go to null. Note that the default character is

Examples of these INPUT forms:

INPUTERR 'INVALID DATA!'

INPUTTRAP '*/' GOTO 150,170

INPUTNULL '@'

Displays error message.

Causes branching if either '*' or '/' is
entered.

Causes the '@' character to null defaults
in masked INPUT statements.

8-4

88A00778A

8.2 SYSTEM OUTPUT: DEVICE SELECTION

8.2.1 PRINTER STATEMENTS

The PRINTER statement selects either the user's terminal or the line printer
for subsequent program output. The PRINTER statement takes on three forms:

PRINTER ON
PR!NTER OFF
PRINTER CLOSE

The PRINTER ON statement directs program output data specified by subsequent
PRINT, HEADING, or PAGE statements to be output to the line printer.

The PRINTER OFF statement directs subsequent program output to the user's
terminal.

Once executed, a PRINTER ON or PRINTER OFF statement will remain in effect
until a new PRINTER ON or PRINTER OFF statement is executed. If a PRINTER ON
statement has not been executed, all output will be to the user's terminal.

When a PRINTER ON statement has been issued, subsequent output data (specified
by PRINT, HEADING, or PAGE statements) is not immediately printed on the line
printer unless immediate printing is forced via the system SP-ASSIGN I option.
(See the SPOOLER Manual.) Rather, the data is stored in an intermediate buffer
area and is automatically printed upon termination of program execution.

The PRINTER CLOSE statement will cause all data currently stored in the
intermediate buffer area to immediately be printed. This is used then it is
necessary that the data be printed on the line printer prior to program
termination.

When a PRINTER OFF statement has been issued, subsequent output data i~ always
printed at the user's terminal immediately upon execution of the PRINT,
HEADING, or PAGE statements. The PRINTER CLOSE statement applies only to
output data directed to the line printer.

8-5

88A00778A

Examples of the use of PRINTER statements:

Correct Use

PRINTER ON
PRINT A
PRINTER OFF
PRINT B

PRINTER ON
PRINT A
PRINTER CLOSE
PRINTER OFF
PRINT B

PRINTER ON
PRINT A
PRINTER OFF
PRINT B
PRINTER CLOSE

Incorrect Use

PRINTER

PRINTER -500

PRINTER X

Explanation

Causes the value of variable B to be
immediately printed at the user's terminal,
and the value of variable A to be printed on
the line printer when the program is finished
executing.

Causes the value of variable A to be
immediately printed on the line printer, and
thereafter causes the value of variable B to
be printed at the user's terminal.

Causes the value of variable B to be
immediately printed at the user's terminal,
and thereafter causes the value of variable A
to be printed on the line printer.

Explanation

'·ON" , "OFF'·, or "CLOSE", is missing.

'·PRINTER'· may not be used as a variable name.

Illegal format.

8-6

88A00778A

8.2.2 PRINT STATEMENT

The PRINT statement outputs data to the device selected by the PRINTER
statement. The PRINT ON option allows output to multiple print files.
The general form of the PRINT statement is:

PRINT {ON expression} print-list

The PRINT statement without the ON option fs used to output variable or
literal values to the terminal or line printer, as previously selected by a
PRINTER statement. The print-list may consist of a single expression, or a
series of expressions, separated by commas or colons (these punctuation marks
are used to denote output formatting; refer to Tabulation and Concatenation in
PRINT Statement, which is discussed in the next subsection). An expression may
be any legal BASIC expression. The following statement, for example, will
print the current value of the expression X+Y:

PRINT X+Y

The PRINT ON expression version of the PRINT statement is used when PRINTER ON
is in effect to output the print-list items to a numbered print file. This is
usually done when building several reports at the same time, each having a
different number. The expression following ON indicates the print file number,
which may be from 0 to 254 (selected arbitrarily by the print file program).
Consider the following example:

PRINT ON 1 A,B,C,D
PRINT ON 2 E,F,G,H
PRINT ON 3 X,Y,Z

These statements will generate 3 separate output listings, one containing A,
B, C, and D values, one containing E, F, G and H values, and the third'
containing X, Y and Z values.

When the ON expression is omitted, print file zero is used.

The HEADING statement affects only print file zero. Pagination must be
handled by the program for print files other than zero. Lack of pagination
will result in continuous printing across page boundaries.

When PRINTER OFF is in effect, both PRINT ON and PRINT operate identically
(i.e., all output is to the terminal). The contents of all print files used by
the program, including print file zero, will be output to the printer in
sequence when a PRINTER CLOSE statement is given or on termination of the
program.

8-7

88A00778A

Examples of the use of PRINT statements:

Correct Use

PRINTER ON
PRINT X

PRINTER ON
PRINT ON 24 X

N-SO
PRINT ON N X,Y,Z

PRINTER ON
PRINT ON lS "100"
PRINT ON 40 "100"

PRINTER ON
PRINT A
PRINT B

PRINTER ON
PRINT ON 10 F1,F2,F3
PRINT ON 20 M,N,P
PRINT ON 10 F4,F5,F6

Incorrect Use

PRINT, C

PRINT ON A, B

PRINT ON 300

Explanation

Causes the value of X to be output to print
file O.

Causes the value of X to be output to print
file 24.

Outputs print-file to print file 50.

Causes the value 100 to be copied to both
print file lS and print file 40.

Print file 0 will contain the values of
A and B.

Print file 10 will contain the values of F1
through F6j print file 20 will contain the
values of M, N, and P.

Explanation

Extraneous comma.

Missing print file number.

Invalid print file number.

8-8

88A00778A

8.2.2.1 Tabulation and Concatenation in PRINT Statement

The print-list of the PRINT statement may specify tabulation or concatenation
when printing multiple items.

Output values may be aligned at tab positions across the output page by using
commas to separate the print-list expressions. Tab positions are preset at
every 18 character positions. Consider the following example:

PRINT (50*3)+2, A, "END"

Assuming that the current value of A is 37, this statement will print the
values across the output page as follows:

152 37 END

Output values may be printed continuously across the output page by using
colons to separate the print-list expressions. The following statement, for
example, will cause the text message "THE VALUE OF A IS 5010" to be printed:

PRINT "THE VALUE OF A IS ": 50: 5+5

After the entire print-list has been printed, a carriage return and a line
feed will be executed, unless the print-list ends with a colon. In that case,
the next value in the next PRINT statement will be printed on the same line as
the very next character position. For example, these statements:

PRINT A:B,C,D:
PRINT E,F,G

will produce exactly the same output as this statement:

PRINT A:B,C,D:E,F,G

8-9

88A00778A

Examples of the use of the PRINT statement print-list formatting:

Correct Use

PRINT A:B:
PRINT C:D:
PRINT E:F

PRINT A-1

PRINT A*100,Z

PRINl'

PRINT "INPUT":

PRINT ".. B

Incorrect Use

PRINT "RESULTS

PRINT X, Y, Z,

Explanation

Prints the current values of A, B, C, D,
E, and F contiguously across the output page,
each value concatenated to the next.

Prints 1 if ··A-1" is true; prints 0
otherwise.

Prints the value of A*l00 starting at column
position 1; prints the value of Z on the same
line starting at column position 18 (i.e.,
1st tab position).

Prints an empty (blank) line.

Prints the text "INPUT" and does not execute
a carriage return or line feed.

Prints the value of B starting at column
position 18 (i.e., 1st tab position).

Explanation

Terminating quote mark is missing.

Print-list must not terminate with a comma.

8-10

88A00778A

8.2.3 CRT STA7EMENT

The CRT statement outputs data on the terminal. It does so regardless of
whether a PRINTER ON statement is in effect or a 'P' option has been used with
the RUN statement. The general form of the CRT statement is:

CRT print-list

The print-list may consist of a single expression, or a series of expressions,
separated by commas or colons. The expressions may be any legal BASIC
expression. The following statement, for example, will print the current value
of the expression A+B-C on the terminal.

CRT A+B-C

The following expression will print the string in quotes on line 5 at column
position 3 on the terminal:

CRT @(3,S):"PROGRAM CENTERED"

8-11

88A00778A

8.3 OUTPUT FORMATTING

8.3.1 TERMINAL CURSOR CONTROL AND SCREEN FUNCTIONS: @

The @ function generates the terminal output codes required to position the
cursor to a specified position. When used with the negative values specified
below, the @ function generates cursor-control and screen formatting
characters. The @ function takes on three forms:

@(columnH)
@(columnH,lineH)
@(-u)

The first form generates the cursor address to position the cursor at the
column position specified by column I. (The line position will be the current
line.) The second form generates the cursor address to position the cursor at
the column position specified by column I, and the line specified by line H.
For example:

PRINT @(30): "HELLO"

This statement prints the message "HELLO" on the current line position of the
cursor, starting at column position 30. Another example:

X a @(lO,15):
PRINT X: "GOOD-BYE"

This statement prints the message "GOOD-BYE" on line 15, starting at column
position 10. The values of the expression(s) used in the @ function must be
within the row and column limits of the terminal screen.

When the @ function is used with a negative value specified by -n, it generates
the special cursor-control characters for the current terminal type (as defined
by the TERM statement in effect at the time). (Note that not every type of
terminal will support all features.) An explanation of negative cursor
function values is given below:

@(-1)

@(-2)
@(-3)
@(-4)
@(-S)
@(-6)
@(-7)

@(-8)
@(-9)
@(-10)

Generates the clear-screen character; clears the screen and
positions the cursor at 'home' (upper left corner of the screen).
Positions the cursor at 'home' (upper left corner).
Clears from cursor position to the end of the screen.
Clears from cursor position to the end of the line.
Starts blinking on subsequently printed data.
Stops blinking.
Initiates 'protect' field. All printed data will be 'protected',
that is, cannot be written over.
Stops 'protect' field.
Backspaces the cursor one character.
tfoves the cursor up one line.

8-12

@(-ll)
@(-12)
@(-13)
@(-14)
@(-lS)
@(-16)
@(~17)
@(-18)
@(-19)
@(-20)

Slave printer on.
Slave printer off.
Start reverse video.
Stop reverse video.
Start underline.
Stop underline.
Enable protect mode.
Disable protect mode.
Cursor forward.
Cursor down.

88A00778A

Examples of the use of cursor control:

Correct Use

x - 7
Y - 3
PRINT @(X,Y): Z

Q - @(3): lOB I"
PRINT Q

A - 5
PRINT @(A,A+5):A

PRINT @(-l)

Incorrect Use

PRINT @: "HI"

PRINT @(, 10)

X - (200,-92):

PRINT @(-ll)

I

Explanation

Prints the current value of variable Z at
column position 7 of line 3.

Prints "HI" at column position 3 of current
line.

Prints the value 5 at column position 5 of
line 10.

Clears the screen and positions the cursor
at 'home' position.

Explanation

Expression missing after @.

First expression is missing.

Expression values are out of range.

Cursor control character not defined.

8-13

88A00778A

8.3.2 FORMAT STl.INGS: NUMDIC AND FORMAT MASK CODES

Variable values may be formatted via the use of format strings. A format
string immediately following a variable name or expression specifies that the
value will be formatted as specified by the characters within the format
string. The format string may also be used directly in conjunction with the
PRINT statement.

The format string uses the same subroutines as the ACCESS Mask Conversion
Code. It may be used to format both numeric and non-numeric strings. The
format string has the following general form:

variable • variable "{j}{n}{m}{Z}{,}{c}{$}{(format mask)}"

The entire format string is enclosed in quotes. If the format mask is used,
it is enclosed in parentheses within the quotes.

The entire format string may be used as a literal, or it may be assigned to a
variable. In either case, the format string or variable immediately follows
the variable it is to format.

The numeric mask code (Tables 8-1 and 8-2) is represented by the symbols: j,
n, m, Z, comma (,), c and $, which control justification, preCision, scaling
and credit indication. The format mask code controls field length and fill
characters.

The formatted value may be aSSigned to the same variable or to a new variable
(as shown in the general form), or it may be used in a PRINT statement form:

PRINT X"format string"

The format mask code may be used separately or in conjunction with the numeric
mask.-

The format mask code (Tables 8-1 and 8-2) is enclosed in parentheses and may
consist of any combination of format characters and literal data.

The field length specified ('n') should not exceed 99. The format characters
are "II", "*", or "%", optionally followed by a numeric such as "113" or "%5".

Any other character in the format field, including parentheses, may be used as
a literal character.

Note that if a dollar sign is placed outside of the format mask, it will be
output immediately before the value, regardless of the filled mask. If a
dollar sign is used within the format field, it will be output in the leftmost
position regardless of the filled field.

8-14

88A00778A

Table 8-1. Explanation of the Format String Codes

Mask Code I Explanation
---------+---------------------~---

Numeric

$

j specifies justification. "R" specifies right justification.
'"L" specifies left justification (default). If "D" is specified in
this field, a standard system date conversion will be performed.

n is a single numeric digit defining the number of digits to print out
following the decimal point. If n.o, the decimal point will not be
output following the value.

m is an optional 'scaling factor' specified by a single numeric digit
Iwhich 'descales' the converted number by the 'mth' power of 10.
IBecause BASIC assumes 4 decimal places (unless otherwise specified by
la Precision Statement), to de scale a number by 10, m should be set to
Is, to de scale a number by 100, m should be set to 6, etc.
I

Z Ispecifies the suppression of leading zeros. Optional.
I
linserts commas between every thousands position of the value.
Optional.

c The following five symbol parameters are Credit Indicators. Optional.
C causes the letters 'CR' to follow negative values and causes two

blanks to follow positive or zero values.
D causes the letters 'DB' to follow positive values; two blanks to

follow negative or zero values.
M causes a minus sign to follow negative values; a blank to follow

positive or zero values.
E causes negative values to be enclosed with a "< •••••)" sequence;

a blank follows positive or zero values.
N causes the minus sign of negative values to be suppressed.

lappends a dollar sign to the leftmost position of the value, prior
Ito conversion. Optional.
I

Format I
I

In I specifies that the data is to be filled on a field of 'n' blanks.
I

*n I specifies that the data is to be filled on a field of 'n' asterisks.
I

%n Ispecifies that the data is to be filled on a field of 'n' zeros. (It
Iwill force leading zeros into a fixed field.)

Any other character, including parentheses, may be used as a field fill.

8-1S

88A00778A

Table 8-2. General Form and Summary of Format String Codes

General Form:

variable • variable"{j}{n}{m}{Z}{,}{c}{$}{(format mask)}"

Mask Code Implemented as Meaning
-------.-.f------~-~---~-----.-, . ---...-.---------------
Numeric

j

n

m

Z

c

$

R or L
D

Single numeric

Single numeric

Z

C,D,K, or E

$

Format (enclosed in parentheses)
I

$ I $
I
I

#n I #10
I

%n I %10
I

*n I *10
I
I

Right or left justification
(default is left justification).
D for date conversion.

Number of decimal places.

'Descaling' factor.

Suppress leading zeros.

Insert commas every thousands position.

Credit indicators.

Outputs dollar sign before value.

Outputs a dollar sign in the leftmost
position of field.

Fills data on a field of 10 blanks.

Fills data on a field of 10 zeros.

Fills data on a field of 10 asterisks,
or on a field of any other specified
character.

NOTE: If a dollar sign is placed outside of the format mask, it will be output
just prior to the value, regardless of the filled field. If a dollar
sign is used within the format mask, it will be output in the leftmost
position regardless of the filled field.

8-16

88A00778A

Examples of the use of format strings:

Unconverted Strin8 (X)

X • 1000

X • 1234567

X • -1234567

X • 38.16

X • -1234

X a -1234

X a -1234

X • 072458699

X • 072458699

X - SMITH, JOHANNSEN

Incorrect Use

V • X"MR26"

v • X"RL26"

V • X"R212"

v • X"L(#100)"

V - X"R(9%)"

V - X"L*32"

Format String

v • X"R26"

v • X"R27,"

V • X"R27,E$"

v • X"l"

V • X"R25$,M(*10#)"

V - X"R25,M($*10#)"

V - X"R25,M($*10)"

V - X"L(I##-##-###8)"

V • X"L(#3-#2-84)"

V • X"L«(l113»'"

Explanation

Result (V)

10.00

1,234.57

$<1234.57>

38.2

***$123.40-

$****123.40-

$***123.40-

072-45-5866

072-45-5866

(SMITH, JOHANN)

MR and ML is the code for ACCESS Mask
conversions. In BASIC, use only the R or L.

Both right and left justification cannot be
used.

The descaling factor may only be a single
numeric digit. If necessary, the Precision
aay be set to zero. This will eliminate
decimal places so that a desca1ing factor of
2 will desca1e by 100, etc.

Fill field should not exceed 99 characters.

Format code characters must precede the
numeric.

Format string must be enclosed in
parentheses.

8-17

88A00778A

8.3.3 HEADING AND FOOTING STATEMENTS

The HEADING statement causes the specified text string to be printed as the
next page heading. The FOOTING statement causes the specified text string to
be printed at the bottom of each page. The HEADING statement has the following
general form:

HEADING "text{'options'}{text{'options'}}"

The first HEADING statement executed will initialize the page parameters.
Subsequently, the heading literal data may be changed by a new HEADING
Statement, and the new heading will be output at the beginning of the next
page. The special heading option characters listed below may be used as a part
of a HEADING string expression.

Options

C
D
L
N
P{n}

PN{n}
T

Explanation

Centers the line
Prints current date
Carriage return and line feed
No stop at end of page
Prints current page number, right
justified, in field of 4 (or n) blanks.
Same as above, left justified
Prints current time and date

When used, these special characters will be converted and printed as part of
the heading. Option characters are enclosed in single quotes. For example:

HEADING "INVENTORY LIST 'T' PAGE 'PL'"

will print as:

INVENTORY LIST 13:30:15 02 NOV 1983 PAGE 1

The words "INVENTORY LIST", followed by the current time and date, followed by
the word "PAGE", followed by the current page number, followed by a carriage
return and line feed will appear at the top of each page. Page numbers are
aSSigned in ascending order starting with page 1.

The FOOTING statement has the following general form:

FOOTING "text{'options'}{text{'options'}}"

The same set of special option characters may be used in the FOOTING as in the
HEADING.

The footing literal data may be changed at any time in the BASIC program by
another FOOTING statement; this change will take effect when the end of the
current page is reached.

8-18

88A00778A

Examples of the use of HEADING and FOOTING statements:

Correct Use

HEADING "TIME & DATE: ... TL

HEADING "PAGE "'PL"'''

FOOTING " ... LTPL •

Incorrect Use

HEADING "OUTPUT

HEADING "ONE", "TWO"

HEADING

Explanation

The text "TIME & DATE:" will be printed
followed by the current time and date plus
a carriage return and line feed.

The text "PAGE" will be printed followed by
the current page number and a carriage
return and line feed.

The following footing will be printed: the
current time, date and page.

Explanation

Terminating quote mark is missing.

Only one expression is allowed in the
heading statement.

must be enclosed in quotes.

8-19

88A00778A

8.3.4 PAGE STATEMENT

The PAGE statement causes the current output device to page, and causes the
heading specified by the most recent HEADING statement to be printed as a page
heading. The page number may optionally be reset by the PAGE statement. The
general form of PAGE statement:

PAGE {expression}

The number of print lines per page is controlled by the current TERM command.
If a FOOTING statement bas also been used, the PAGE statement will cause the
footing to be printed out at the bottom of the page. If only a footing is
desired, a null heading should be assigned. Headings and/or footings must be
assigned before the PAGE statement is encountered.

If the PAGE statement has the optional expression, the expression is evaluated
and the resulting number becomes the next page number used. If a footing is in
effect at the time that the page number is changed, the footing will be printed
with a page number one less than the evaluated expression.

Examples of the use of PAGE statement:

Correct Use

HEADING "ANNUAL STATISTICS"
FOOTING "XYZ CORPORATION"
PAGE

PAGE 1

PAGE X+Y

Incorrect Use

FOOTING "ANNUAL STATISTICS"
PAGE

Explanation

The PAGE statement will cause both the
specified heading and footing to be printed
out when the paging is executed.

This statement will cause the current footing
if any, to print (with a page number of 0),
and the current heading, if any to print
with a page number of 1.

The current footing and heading will be
output, and the page number set to the
evaluated result of X+Y.

Explanation

The footing will be printed out only if a
HEADING statement has been used. (The
HEADING statement may be null.)

8-20

88A00778A

8.3.5 CURRENT TIME AND DATE: TIME, DATE, AND TIMEDATE FUNCTIONS

The TIME function returns the internal time of day. The DATE function returns
the current internal date. The TIMEDATE function returns the current time and
date in external format. The general form of these functions:

TIME ()
DATE ()
TIMEDATE()

The TIME function returns the string value containing the internal time of
day. The internal time is the number of seconds past midnight. For example:

x =- TIME ()

This statement assigns the string value of the internal time to variable X.

The DATE function returns the string value containing the internal date. The
internal date is the number of days since December 31, 1967. For example:

A =- DATE ()

This statement assigns the string value of the internal date to variable A.

The TIMEDATE function returns the string value containing the current time and
date in the external format. This format is:

HH:MM: 55 DD MMM YYYY

where: HH • hours
MM =- minutes
55 =- seconds
DD • day
MMM =- month
YYYY =- year

For example, the following statement assigns the string value of the current
time and date to variable B:

B =- TIMEDATE()

8-21

88A00778A

Examples of the use of TIME, DATE, and TIMEDATE:

Correct Use

A • TI}{E()

IF TlME() > 1000 THEN GOTO 10

Q • DATE()

PRINT TIMEDATE()

WRITET DATE() ELSE STOP

Incorrect Use

B • TIME(S)

DATE ()

x - TlMEDATE

x - TIME DATE()

Explanation

Assigns string value of current
internal time to variable A.

Branches to statement 10 if more than
1000 seconds have passed since
midnight.

Assigns string value of current
internal date to variable Q.

Prints the current time and date in the
external format.

Writes the string value of the current
internal date onto a magnetic tape
record.

Explanation

Expression is not allowed in TIME
function.

DATE() is a function and may therefore
not appear as a stand alone statement.

"()" is missing.

A space must not appear between "TIME"
and "DATE".

8-22

88A00778A

8.3.6 QUERYING CURREIT VALUE OF SYSTEM FUNCTIONS: SYSTEM

The SYSTEM function gives the PICK programmer the ability to determine the
current value or status of various system functions. The general format of the
SYSTEM function is:

SYSTEM(expression)

where expression is a number from 1 through 11 which specifies one of the
system function queries shown below.

Expression

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

System Function Queried

PRINTER ON statement. Returns a 1 if in effect,
a 0 if not.

TERM statement. Returns page width defined.

TERM statement. Returns page length defined.

TERM statement. Checks number of lines on page defined.
Returns number of lines remaining to be printed on
current page.

Page counter.

Line counter.

Returns current page number.

Returns number of last line printed.

TERM statement. Returns terminal type code defined.

Returns block size at which tape was last attached.
Returns 0 if not attached.

Returns current CPU millisecond count.

PROC stack. Checks current STONe Returns a 1 if stack
on; returns a 0 if stack off.

LIST function. Returns a 1 if a LIST is active; returns
o if not.

Returns time in milliseconds.

Forces RQM and returns a 1.

Returns number of bytes in terminal input buffer.

Returns current verb options as a character string.

Returns current level of nested EXECUTE statements.

Returns error message numbers for TCL commands executed
by EXECUTE statement with message numbers separated by
an attribute mark.

Note that system function queries 4, 5, and 6 may only be used if a BASIC
HEADING/FOOTING command is currently in effect.

8-23

88A00778A

8.3.7 INPUT A1ID OUTPUT CONVDSION: ICONY AND ocon

The ICONY and OCONY functions provide the PICK input and output conversion
capabilities to the BASIC programmer. The general form of these functions:

ICONY("string","input-conversion")

OCONY("string","output-converson")

The ICONY "input-conversion" specifies the type of input conversion to be
applied to the string value resulting from the first "string". The resulting
value is always a string.

The OCONY "output-conversion" specifies the type of output conversion to be
applied to the string value resulting from the first "string". The reSUlting
value is always a string.

The input and output conversion operations specified may include anyone of
the following:

D Convert date to internal format (for ICONV function) or to external
format (for OCONY function).

MT Convert time.

MCDX Convert ASCII to hexadecimal (for ICONV function) or
convert hexadecimal to ASCII (for OCONV function).

T Convert by table translation.

For a detailed treatment of these and other conversion capabilities, refer to
the ACCESS Manual.

WARNING: The ACCESS 'F' conversion cannot be called by these functions.
The ACCESS 'MR' and 'ML' conversion may be called by using the Format
string 'j' parameter (see Section 8.3.2, Format Strings). This
performs the same function and is preferable to using the ICONV or
OCONV functions in this case.

8-24

88A00778A

Examples of the use of input, output conversions:

Correct Use

IDATE - ICONV("2-11-83","D")

A - "5785"
B - "D"
XDATE - OCONV(A,B)

Incorrect Use

DATA - ICONV Ct ABC", "0")

x - OCONV ("123")

B - OCONV("123","X")

Explanation

Assigns the string value "5785" (the
internal date) to the variable IOATE.

Assigns the string value "02 NOV 1983"
(the external date) to the variable
XDATE.

Explanation

"ABC" is not a legal expression (i.e.,
it is not a date in external format).

Second expression is missing.

"X" is not a legal conversion
specification.

8-25

88A00778A

8.3.8 FORMAT CONVERSION: ASCII. EBCDIC. CHAR. AND SEQ FUNCTIONS

The ASCII function converts a string value of EBCDIC to ASCII. The EBCDIC
function converts a string value from ASCII to EBCDIC. The CHAR function
converts a numeric value to its corresponding ASCII character. The SEQ
function converts an ASCII character to its corresponding numeric value. The
general form of these functions:

ASCII(expression)
EBCDIC(expression)
CHAR(expression)
SEQ(expression)

The string value of the ASCII expression is converted from EBCDIC to ASCII.
For example:

A • ASCII(B)

The EBCDIC function performs the inverse of ASCII. The string value of the
expression is converted from ASCII to EBCDIC. For example:

B • EBCDIC(A)

The CHAR function converts the numeric value specified by the expression to
its corresponding ASCII character string value. For example, the following
statement assigns the string value for an Attribute Mark to the variable AM:

AM • CHAR(254)

The SEQ function performs the inverse of CHAR. The first character of the
string value is converted to its corresponding numeric value. The following
example will print the number 49:

PRINT SEQ('l')

For a list of ASCII codes, refer to Appendix A.

8-26

88A00778A

Examples of the use of the format conversion functions:

Correct Use

READT X ELSE STOP
Y .. ASCII(X)

B =- EBCDIC(A)

SM .. CHAR(255)

X .. 252
SVM =- CHAR(X)

DIM C(SO)
S - 'THE GOOSE FLIES SOUTH'
FOR 1-1 TO LEN(STRING)
C(I) - SEQ(S[I,l])
NEXT I

Incorrect Use

ASCII(VAL) - S

QS .. EBCDIC "A"

Z .. CHAR("C")

EL .. SEQ(P)

Explanation

Reads a record from the magnetic tape unit
and assigns value to variable X. Assigns
ASCII value of record to variable Y.

Assigns the EBCDIC value of variable A to
variable B.

Assigns the string value for a Segment Mark
to variable SM.

Assigns the string value for a Secondary
Value Mark to variable SYM.

Encodes in vector C elements the decimal
equivalents of individual characters of
character string S.

Explanation

Intrinsic functions may not appear on the
left side of the equality sign.

Parentheses are missing around "A".

The expression in the CHAR function must be
numeric.

A character expression in the SEQ function
must be a string enclosed in quotes.

8-27/8-28

88A00778A

debugging BASIC programs

9.1 THE BASIC DEBUGGER

The BASIC Symbolic Debugger facilitates the debugging of new BASIC programs
and the maintenance of existing BASIC programs. When a BASIC program is
compiled, a symbol table item is automatically generated unless the suppress
option (S) has been used. This item is used by the BASIC Debugger to reference
symbolic variables during program execution. Therefore, the symbol table must
be on file in order to use the BASIC Debugger effectively.

The BASIC Debugger may be entered at execution time by 1) depressing the
BREAK key, or 2) using the 'D' (debug) option with the RUN verb. Once the
BASIC Debugger has been entered, it will indicate the source code line number
about to be executed and will prompt for commands with an asterisk (*) as
opposed to the System Debugger prompt: '!' and the TCL prompt: ')'. The user
has at his disposal, the following general capabilities:

1. Controlled stepping through execution of program by way of single or
multiple steps.

2. Transferring control to a specified step (line number).

3. Breaking (temporary halting) of execution on specified line number(s) or on
the satisfaction of specified logical conditions.

4. Displaying and/or changing any variable(s), including dimensioned
variables.

5. Tracing variables.

6. Conditional entry to the System Debugger.

7. Directing output (terminal/printer).

8. Stack manipulation (displaying and/or popping the stack).

9. Displaying of specified (or all) source code line(s).

It should be noted that a user now requires SYS2 privileges to use the BASIC
debugger. This prevents users from making unauthorized changes to data during
reporting and data entry Debugger commands and functions are summarized
below:

9-1

9

88A00778A

Basic Debugger Function

1. Set breakpoint on logical condition where '0' is
<,>,.,#; 'v' is variable; 'c' is condition to be
met; or 'n' is line number where preceded by B$o.

2. Display breakpoint table

3. Escape to System Debugger

4. Single/multiple step execution

S. End program execution and return to TCL

6. Proceed from breakpoint to (specified line 'n')

7. Remove all breakpoints (specified breakpoint 'n')

8. Oisp1ay source code current line, 'n' lines from
current one, number of lines from m-n, all lines

9. Switch output from terminal to printer

10. Pass one breakpoint before stopping, or pass
'n'+1 breakpoints

11. Logoff

12. Inhibit output. Printer-close output to spooler

13. Pop return stack. Display return stack.

14. Switch turns trace table on/off.
Trace specified variable 'v'.

15. Remove all traces. Remove specified trace.

16. Request symbol table

17. Display next line number of source code

18. Print value of variable 'v', of element 'x'
in array 'm', of element 'x,y' in matrix 'm',
of entire array 'm', entire symbol table.

19. Set window, remove window setting

20. Replace symbolic variable

21. Display program name, line number and message
whether object code "verifies".

9-2

Related Command

BVoc{&voc} or B$on

D

DEBUG or DE

En

END

G, Gn

K, Kn

L, Ln, Lm-n, L*

LP

N, Nn

OFF

P, PC

R, S

T, Tv

U, Un

Z

$

lv, /m(x) , /m(x,y)
/m, /*

[x,y],

%x,y

?

88A00778A

9.2 USING THE BASIC DEBUGGER

The following is a step-by-step procedure for using the BASIC DEBUGGER. This
will demonstrate only a few of the commands to provide the user with an
introductory "feeling" for the use of the BASIC DEBUGGER.

A program "SAMPLE" is shown below followed by steps a user might take to debug
it.

SAMPLE

001 DIM ARRAY(10) ; * ARRAY HAS 10 SLOTS
002 FOR I • 1 TO 20 ; * BUG: LOOP SPECIFIES 20 PASSES, ARRAY HAS ONLY 10
003 ARRAY(I) =- I ; * EACH SLOT WILL BE FILLED WITH A CONSECUTIVE #
004 NEXT I
005 PRINT ARRAY(I)
006 END

"SAMPLE" compiles without any errors detected. Once it is run however, it
aborts with the error message "ARRAY SUBSCRIPT OUT OF RANGE" and traps to the
BASIC DEBUGGER. Supposing that the user cannot find the error, the following
steps could be taken for detecting the error using the BASIC DEBUGGER.

1. The user enters the command ·'Z" to the DEBUGGER prompt character "*".
The DEBUGGER responds with "FILE/PROG NAME?", the user enters the file name
followed by a space followed by the program name. This allows the DEBUGGER
access to the symbol table created during compilation. Alternatively, if
the user uses the debug option (D)" during run time, access to the symbol
table is already established, and use of the "Z" command is unnecessary.

2. To find out how far in the loop the program progressed, the user looks at
the variable "I" by entering "/1". The DEBUGGER responds with "11 .", at
which the user may change the value of "1" if desired. The user may then
want to look at all of the values in the array by entering "/ARRAY". The
DEBUGGER responds with "ARRAY(l)-l-", the user depresses return and the
DEBUGGER continues with the next "array slot" (i.e., "ARRAY(2)-2·", etc.).
Once "ARRAY(10)-10·" has been reached, the user presses return and the
DEBUGGER returns with the "*" prompt. The user knows that the array has
only 10 slots and the loop calls for 20, thus, he finds the error. The
user may then end ~he "session" with BASIC DEBUGGER by entering "END" and
repair the bug.

9-3

88A00778A

A summary of this interaction is:

[B17] LINE 3 ARRAY SUBSCRIPT OUT OF RANGE
*13
*[Z] FILE/PROG NAME?[BP/SAMPLE]
* [/1] [CR] 11-
* [/ARRAY] [CR] ARRAY(l)-l- [CR]

ARRAY(2)-2- [CR]
ARRAY(3)-3- [CR]
ARRAY(4)-4- [CR]
ARRAY(5)-5- [CR]

ARRAY(lO)-10- [CR]
*[CR]
* [END]

For purposes of clarity, whatever is entered by the user is shown enclosed in
square brackets "[]". These are not part of the commands; they are to
distinguish user entry from DEBUGGER response.

A carriage return will return control to the BASIC DEBUGGER prompted by H*'.
whereas a line-feed will return control to program execution until a
breakpoint, an error, or the end of the program is met.

9-4

88A00778A

9.2.1 THE TRACE TABLE

The trace table is used for the automatic printout of a specified variable or
variables after a break has occurred.

Up to six trace values may be entered in the table. Either the symbolic name,
or a line number and variable number may be used to reference the variable. In
addition, all variables in the last statement executed may be printed out. The
trace table may be alternately turned on and off by use of the tlTtI return
command.

Examples of the use of the trace table are shown below:

Tname

T%10,3

The value of the variable name will be printed out at each
breakpoint.

The value of the third variable in line number 10 will be
printed out at each breakpoint. If line number 10 contains
the statement "A-B+C+D" the value of "C" will be printed.

To delete a variable from the trace table use the "U" cocunand followed by the
trace variable to be deleted. For example, to delete the variable name from
the table, type in "Uname". "u" by itself followed by a return deletes the
entire trace table.

If a program calls an external subroutine, and the BASIC/DEBUGGER has been
entered previously, a complete symbol table will be set up for the external
subroutine. The table will have 4 breakpoints and 6 variable traces available,
as well as pointers to program source and object, which may be set up by the Z
command. Breakpoints set up for a subroutine are independent from breakpoints
set up in the main program or other subroutines; however, the execution
counters (E and N,) are global.

The use of multiple symbol tables allows the programmer to set up different
break points and/or variable traces for different subroutines.

9-5

88A00778A

9.2.2 BREAKPOINT CONTROL

The "B", "D", and "K" commands are used to set (B)reakpoints, (D)isplay, and
(K)ill breakpoints.

The breakpoint table may contain up to four conditions that, when satisfied,
will cause a break in execution. Logical expressions and special symbols are
used to set the break conditions. They are:

< less than
> greater than
- equal to
I not equal to
& used as a logical connector between conditions
$ a special symbol used to indicate that a line number is specified

rather than a variable name.

The basic forms of the "B" command are shown below:

B variable-name operator expression {& another condition}
B $ operator line-number {& another condition}

where 'variable-name' is a simple variable or an explicitly stated array
element and 'expression' is a variable, constant, or array element. If the
variable does not exist or if the wrong Symbol Table is assigned, the message
"SYM NOT FND" will be printed. String constants must be enclosed in quotes
using the same rules that apply to BASIC literals. Consider the examples:

BTAX-500

B$>15&X-3

Indicates that an execution break should occur when the
value of TAX is equal to 500.

Causes program to break when the line number is greater
than 15 and if X is equal to 3.

A plus sign will be printed next to the command if it is accepted. When the
condition is met, an execution break will occur and the Debugger will halt
execution of the program and print *Bn 1 where 'n' is one of the four Break
point Table entries and '1' is the program line number that caused the break.

9-6

88A00778A

The general form of the "0" command is:

o

The "0" command will display the trace and breakpoint tables.

The general form of the K command is:

Kn or K

The "K" command is used to delete breakpoint conditions from the table.

A minus sign will be printed next to the command to indicate that an entry has
been removed. "Kn" deletes the nth breakpoint condition where 'n' is 1 through
4. K deletes all breakpoint conditions.

Examples of the use of B, 0, K commands:

Correct Use

BX<42

BDATE-INV.DATE&$-22

1(2

BPRICE(3)11124.98

D

K

Explanation

Sets a break condition to halt execution when
X is less than 42.

Breaks when ADDRESS is null.

Breaks when variable DATE is equal to variable
INV.DATE and if the line number is 22.

Kills the second breakpoint condition.

Sets a break condition to halt execution when the
third element of the array PRICE is equal to 24.98.
Only individual array elements may be specified.

Displays the trace tables (1 through 6) and
breakpoint tables (1 through 4).

Kills all breakpoint conditions.

9-7

88A00778A

9.2.3 EXECUTION CONTROL

The "E", "G", and "N" commands in conjunction with the breakpoint table control
the execution of the program under debug control.

The "E" command will allow the execution of a specified number of lines before
returning control to the user. The number of statements to be executed is
selected by putting a numeric value after ··E". For example, "E3" will execute
three line statements before returning control to the user. "E" return will
turn off the "E" ~ommand.

Command

EIO

E

Result

Ten line statements will be executed before control
returns to the user.

Execution continues until interruption by the user,
by a breakpoint, or until program ends.

The "N" command will allow the user to bypass any number of breakpoints before
control is passed back to the user, however, the trace table variables will be
printed at each breakpoint. "NO" equals 'pass one breakpoint', "NI" equals
'pass two breakpoints', etc., and "N" return will set "N" to "NO".

Command

N3

N

Result

Four breakpoints are passed, although the trace table
values, if present, are printed out at each breakpoint.
Control is returned to the user after the fourth
breakpoint.

One breakpoint is passed.

The "G" command followed by a line number will allow control to be passed to
the line number indicated. The "G" return command will cause program to
execute the next command from the current line number and it will return
control depending on the breakpoint setup. G may be entered in either upper or
lower case.

Command

Gl53

G

Result

Control passes to line number 153, and thereafter to
user.

Control passes to next program line, and thereafter to
user.

9-8

88A00778A

9.2.4 DISPLAYING AND CHANGING VARIABLES

Variables and arrays can be displayed and changed in either decimal or string
formats. To display a variable, use the command 'Iv' where 'v' is a variable.
For example, to display the value of the variable 'NAME', you would enter /NAME
after the * prompt. The DEBUGGER will respond with the string in the NAME
field and an equal sign. If the variable is not to be changed, press return.
If the variable is to be changed, put in the new value of the variable desired
and press return. To display a complete array, just place the name of the
array after the slash. To display one value in the array, use the form '/M(x)'
or '/M(x,y)' where 'x' and 'y' are points in the array. The array point may
then be changed in the same way as a single variable.

A window may be placed after any variable selection by following the variable
with a ';' and the length of the window. For example, to limit the variable
name to eight characters, the command '/name;8' would be used. Numeric
variables will ignore any window commands.

The symbolic name of the variable may be replaced using the form '%x,y' where
'x' is the line number and 'y' is the number of the variable in that line.
Examples of displaying and changing variables:

/CITY IRVINE- The variable 'city' is displayed but not changed.

/STATE N.Y.aC.A The variable 'state' is displayed as 'N.Y.' and
changed to 'C.A.'

/FIELD(5) 10- The fifth point in array FIELD is displayed as 10 and
not changed.

/* All the symbols 1n the symbol table are displayed.

9-9

88A00778A

9.2.5 SPECIAL COMMANDS

1. I/O Control. Three commands "PC", "PH and "LP" control I/O.

The "PH command inhibits all BASIC program output so that the user may look
only at the DEBUGGER output. "PH return alternately turns "p" on and off.

The "LP" command forces all output to the line printer which can be used
for a fast trace or hard copy of a trace. "LP" return alternately turns
the line printer command on and off.

The "PC" command is the same as the BASIC printer close command. All data
that is waiting to be sent to the printer is output at this time.

2. Source Code Display. The '.$" command will print the next line number to
be executed.

The "L" command will display source code lines. "L" will display the
current line of source. "Ln" will display line 'n'. "Lm-n" will display
lines 'm-n'. '·L*" will display the entire source program.

3. Symbol Table. The HZ'· command will allow the operator to specify a symbol
table. After the user enters the file-name and program name, that symbol
table, if present, will be enabled.

4. String Windows. The string window" [n,m]'· will cause the output of all
variables to be limited to the substring selected. An example:

[3,2] sets the window for the third character position with a string length
of two. Any printout of x will be 34. Setting the window length to zero
or entering a left square bracket ([) will turn the string window command
off.

5. Escape to System Debugger. The "DEBUG'· command will pass control to the
System Debugger.

6. Termination. The "END" command will terminate the BASIC and DEBUG programs
and return control to TCL. '·END'· may be entered in either upper or lower
case.

A "1" will display the program name, the number of the last line executed, and
the error message.

9-10

88A00778A

9.3 SUMMARY OF THE BASIC DEBUGGER COMMANDS

The following is a summary of all the BASIC Debugger commands and their
descriptions.

Command Description

BVoc{&voc} Sets breakpoint on logical condition where '0' is logical operator
or <,), ., or Hj 'v' is variable; 'c' is condition to be met; or 'n'

B$on is line number where preceded by B$o.

D Displays breakpoint and trace tables.

DEBUG Escape to system debugger.

DE Short form of DEBUG.

En Step on N+1 instructions. E [CR] turns mode off.

END or end End execution of BASIC program and return to TCL.

G or g Proceed from breakpoint.

Gn or gn Go to line n.

K Kills all breakpoint conditions in table set by 'B' command.

Kn Kills breakpoint condition 'n', where 'n' is the breakpoint number
from 1-4.

LP All output forced to printer reverses status each time LP is
selected.

N Continue through one breakpoint before stopping.

Nn Continue through n+1 breakpoints before stopping.

OFF or off Log off.

P Inhibit BASIC program output.

PC Printer close - output to spooler.

R Pops return stack.

S Display subroutine stack.

T Turns breakpoint trace table alternately off and on.

Tv Set variable 'v' in trace breakpoint table.

9-11

Command

u

Uv

z

$

Iv

Im(x)

Im(x,y)

1m.

1*

[x,y]

-

88A00778A

Description

Remove all breakpoint trace table variables set by 'T' command.

Remove breakpoint trace variable 'v' from table.

Request symbol table.

Current statement number.

Print value of a variable 'V'.

Print value of a point 'x' in array
, ,
m •

Print value of point 'x,y' in array
, ,
m •

Print the entire array where 'm' is the array.

Dump entire symbol table.

String window where 'x' equals the start of the string and
'y' equals the length of the string. This command affects all
outputs of variables and has no effect on input.

Removes string window (setting string length to zero has the same
effect).

Equal sign prints out after the printing of a variable in any slash
command except '1m'. The value of the variable may be changed at
this point.

%x,y Replaces symbolic variable; 'x' is line number and 'y' is number
of variable i~ that line.

?

NOTES:

Displays program name, last line number executed, and reports
whether or not object code verifies with checksum generated at
compile time.

1. Carriage return terminates all controls.

2. A line feed equals G [CR]

3. BREAK key breaks to BASIC Debugger from BASIC program at end of line.

4. BASIC Debugger prompts with '*'.

9-12

88A00778A

9.4 BASIC DEBUGGER MESSAGES

The following informative, warning, or error messages are used by the BASIC
Debugger.

Message

*E x

*Bn x

*Nvar

CMND?

NSTATIF

SYM NOT FND

UNASSIGNED VAR

STACK EMPTY

STACK ILL

TBL FULL

ILLGL SYM

NOT IN TBL

NO SYM TAB

Description

Single step breakpoint at line number 'x'.

Table breakpoint at" line number 'x', 'n' equals number of
breakpoint.

Value of variable at breakpoint.

Variable not found in statement.

Command not recognized.

Statement number out of range of program.

Symbol not found in table.

Variable not assigned a value.

The subroutine return stack is empty.

Illegal subroutine return stack format.

Trace or break table full.

Illegal symbol.

Not in trace break table.

Symbol table not in file.

9-13/9-14

88A00778A

general coding techniques 1 0
and sample programs

10.1 GENERAL CODING TECHNIQUES

The PICK system uses standard attribute and value delimiters. These should be
defined once in the initialization portion of the program, and then referenced
by their variable name. For example:

AM - CHAR(254)
VM - CHAR(253)

SVM - CHAR(252)

Attribute Mark
Value Mark
Secondary Value Mark

Cursor positioning should be controlled by the following PRINT statements
uSing the @ functions:

Erase screen PRINT @(-1) Stop blink PRINT @(-6)
Home PRINT @(-2) Start protect PRINT @(-7)
Clear to end of screen PRINT @(-3) Stop protect PRINT @(-8)
Clear to end of line PRINT @(-4) Backspace PRINT @(-9)
Start blink PRINT @(-5) Up 1 line PRINT @(-10)

The OPEN statement is time consuming and should be executed as few times as
possible. All files should be opened to file variables at the beginning of the
program; access to the files can then be performed by referencing the file
variables. The size of programs can be reduced, with a corresponding increase
in overall system performance, by reducing the amount of literal storage.

200 PRINT 'RESULT IS ':A+B
210 PRINT 'RESULT IS ':A-B
220 PRINT 'RESULT IS ':A*B
230 PRINT 'RESULT IS ':A/B

These statements should have been written as follows:

MSG - 'RESULT IS'

200 PRINT MSG:A+B
210 PRINT MSG:A-B
220 PRINT MSG:A*B
230 PRINT MSG:A/B

10-1

88A00778A

Operations should be predefined rather than repetitively performed. This
operation, for example:

x - SPACE(9-LEN(OCONV(COST,'MCA'»):OCONV(COST,'MCA')

should have been written as:

E-OCONV(COST,'MCA')
X-SPACE(9-LEN(E»:E

In the same context, the following operation:

FOR 1-1 TO X*Y+Z(20)

NEXT I

should have been written as:

TEMP-X*Y+Z(20)
FOR 1-1 TO TEMP

NEXT I

The following LOOP construct could be used to access an unknown number of
multivalues from an attribute (including null values):

VM-CHAR(253)
READV ATTR FROM ID, ATTNO ELSE STOP
VND-O
LOOP

V tID-VNO+ 1
VALUE-FIELD(ATTR,VM,VNO)

WHILE COL2() #0 DO
PRINT VALUE

REPEAT

10-2

88A00778A

10.2 SAMPLE PROGRAMS

Examples to demonstrate the use of different BASIC programs are presented in
this section.

PYTHAG

**
* THIS PROGRAM FINDS PYTHAGOREAN TRIPLES
**

PRINT
PRINT 'SOME PYTHAGOREAN TRIPLES ARE:'
PRINT
FOR A-1 TO 40

FOR B-1 TO A-1
CC-A*A+B*B
GOSUB 50
IF C - INT(C) THEN PRINT B,A,C

NEXT B
NEXT A
STOP

* SQUARE ROOT SUBROUTINE
50 C-CC/2

END

FOR 1-1 TO 20
X-(C+CC/C)/2
IF C - X THEN RETURN
C-X

NEXT I
RETURN

10-3

88A00778A

GUESS

* THIS PROGRAM IS A GUESSING GAME

HEADING "
HISSCORE-O; YOURSCORE-O

10 PAGE
PRINT 'GUESS NUMBERS BETWEEN 0 AND 100'
PRINT 'MACHINE:':HISSCORE:' YOU:':YOURSCORE:
PRINT
NUM-RND(101)
FOR 1-1 TO 6

PRINT 'GUESS ':1:' ':
INPUT GUESS
IF GUESS-NOM THEN

PRINT

END

PRINT 'CONGRATULATIONS, YOU WONI'
YOURSCORE-YOURSCORE+1
GOTO 60

IF GUESS<NUM THEN PRINT 'HIGHER'
IF GUESS>NUM THEN PRINT 'LOWER'

NEXT I
PRINT
PRINT 'YOU LOST YOU DUMMY, YOUR NUMBER WAS ':NUM
HISSCORE-HISSCORE+1

60 PRINT

END

PRINT 'AGAIN?':
INPUT X
IF X - 'NO' THEN STOP
GOTO 10

10-4

88A00778A

INV-INQ

**
*
*
*
*
*
*
*
*

TIllS PROGRAM QUERIES AN INVENTORY FILE.
IT READS THE DICTIONARY OF FILE INV TO GET THE ATTRIBUTE
NUMBERS OF DESC (DESCRIPTION) AND QOH (QUANTITY-ON-HAND).
THE PROGRAM THEN PROMPTS THE USER FOR A PART-NUMBER WHICH
IS THE ITEM-ID OF AN ITEM IN INV.... AND USES THE ATTRIBUTE
NUMBERS TO READ AND DISPLAY THE PART DESCRIPTION AND
QUANTITY ON HAND. THE PROGRAM LOOPS UNTIL A NULL PART
NUMBER IS ENTERED.

**
* *--- GET ATTRIBUTE DEFINITIONS FROM DICTIONARY OF INVENTORY FILE

OPEN DICT , INV' ELSE PRINT CANNOT OPEN "DICT INV j STOP
READV DESC.AMC FROM DESC ,2 ELSE PRINT CANT READ "DESC" ATTR ; STOP
READV QOH.AMC FROM QOH ... , 2 ELSE PRINT CANT READ "QOH" ATTR"'; STOP

*- OPEN DATA PORTION OF INVENTORY FILE
OPEN "'''', 'INV'" ELSE PRINT "'CANNOT OPEN "INV' ; STOP

*--- PROMPT FOR PART NUMBER
100 PRINT

PRINT "'PART NUMBER ':
INPUT PN
IF PN • ".". THEN PRINT, '--DONE--"'j STOP
READV DESC FROM PN,DESC.AMC ELSE PRINT 'CANT FIND THAT PART"';GOTO 100
READV QOH FROM PN,QOH.AMC ELSE QOH-D

*--- PRINT DESCRIPTION AND QUANTITY-oN-HAND
PRINT DESCRIPTION - : DESC
PRINT ' QTY-oN-HAND - "': QOH
PRINT
GOTO 100

END

10-5

88A00778A

FORMAT

* THIS PROGRAM FOlU1ATS A BASIC PROGRAM TO
* DISPLAY BLOCK STRUCTURING BY INDENTING LINES.

*--- DEFINITIONS
10 sp· 6

ID • 3
; * LEFT MARGIN COLm-IN NUMBER
;* NUMBER OF SPACES TO INDENT

*--- INITIALIZATION
SPX • SP
LINE.NO • 0

*-- INPUT FILE NAME AND PROGRAM NAME
PRINT
PRINT
PRINT 'DATA/BASIC FILE NAME - ... :; INPUT FILE
IF FILE ., THEN STOP
OPEN ,FILE ELSE PRINT 'CANNOT OPEN FILE - ... : FILE; GOTO 10
PRINT "'BASIC PROGRAM NAME - ... :; INPUT NAME
IF NAME • THEN GOTO 10
NEW IT!!'! •
READ ITEM FROM NAME ELSE

PRINT 'CANNOT FIND THAT PROGRAM'"
GOTO 10

END
*--- GET NEW LINE, IF NONE - THEN DONE
100 LINE.NO· LINE.NO + 1

LINE • EXTRACT(ITEM,LINE.NO,O,O)
IF LINE • THEN

WRITE NEWITEM ON NAME
PRINT; PRINT; PRINT "'--DONE--"'; GOTO 10

END
LABEL -

*-- STRIP OFF LEADING/TRAILING SPACES
200 IF LINE[l,l] - THEN LINE • LINE[2,32767]; GOTO 200
210 IF LINE[LEN(LlNE),l] - THEN LINE • LINE[l,LEN(LINE)-l]j GOTO 210
--- LOOK FOR A CO~~NT ("'', "'1"', OR'REM')

IF LINE[l,l] - ... * ... THEN GOTO 1500
IF LINE[l,l] • "'!' THEN GOTO 1500
IF LINE[1,3] • "'REM' THEN GOTO 1500

*--- LOOK FOR "'FOR'"
IF LlNE[1,4]·"'FOR ' AND INDEX(LlNE,"'NEX "',1»0 THEN GOTO 2000
IF LINE[1,4]·"'FOR ... AND INDEX(LINE, "'NEXT ... ,1)-0 THEN GOTO 1000

*-- LOOK FOR 'END'"
IF LINE - 'END' THEN GOTO 1100
IF LlNE[1,4] • "'END ... THEN

IF LlNE[LEN(LINE)-4,5] - ... ELSE'" THEN GOTO 1200
END

10-6

88A00778A

*--- LOOK FOR 'NEXT'
IF LINE[1,5] - 'NEXT' THEN GOTO 1100

*-- EXTRACT LEADING NUMERIC LABEL
IF LINE[l,l] MATCHES 'lN' THEN

L - 2
300 IF LINE[L,l] MATCHES 'lN' THEN L-L+1; GOTO 300

LABEL - LINE[1,L-1)]
LINE • LINE[L,32767]
GOTO 200

END
*--- LOOK FOR LINE ENDING IN ' ELSE' OR ' THEN' ('IF' OR 'READ')

X • LINE[LEN(LINE)-4,5]
IF X·' THEN' THEN GOTO 1000
IF X·' ELSE' THEN GOTO 1000

*-- THIS IS JUST ANOTHER LINE, THEREFORE NO CHANGE
GOTO 2000

*-- INDENT ON SUBSEQUENT LINES
1000 SP • SP + ID
GOTO 2000
*--- OUTDENT ON THIS AND SUBSEQUENT LINES
1100 SP - SP - ID
*-- OUTDENT THIS LINE ONLY
1200 SPX • SPX - ID

GOTO 2000
*--- PRINT WITH NO INDENTATION
1500 SPX - ° *--- WITE NEW LINE
2000 NEW.LINE - LABEL: STR(' ',SPX-LEN(LABEL» : LINE

PRINT NEW. LINE

END

NEWITEM • REPLACE(NEWITEM,LINE.NO,O,O,NEW.LINE)
SPX - SP
GOTO 100

10-7

88A00778A

LOT-UPDATE

*

* THIS PROGRAM UPDATES DATA ON LOTS IN A HOUSING TRACT.
* ITEM-ID S IN "LOT" FILE ARE TRACT. NAME*LOO'. NUMBER

100* INITIALIZATION

PROMPT
CLEAR
DIM DESC(30),TYPE(30)
OPEN DICT , LOT ELSE

END

PRINT "CAN T OPEN DICT LOT"
STOP

200* GET DESCRIPTIONS, CONVERSIONS
FOR I • 1 TO 30

250*

*
*

*

READ DICT.ITEM FROM 1 ELSE

END

PRINT "DICTIONARY ITEM :1:" NOT FOUND"
GOTO 250

D • EXTRACT(DIC.ITEM,3,0,0) j* S/NAME-~DESCRIPTION
IF D I THEN DESC(I) • D:STR(......... ,15-LEN(D»
IF C[1,2] • MD THEN

TYPE(I) + NUM
GOTO 250

END
IF C[l,l] • 0 THEN TYPE(I) • DATE

NEXT I

OPEN ', LOT ELSE

END

PRINT "CAN T OPEN LOT FILE."
STOP

300* GET THE TRACT NAME
PRINT
PRINT "TRACT NAME ••••• ":
INPUT TRACT
IF TRACT • 'STOP OR TRACT • 'END THEN STOP
IF TRACT • THEN GOTO 300
READ INFO FROM TRACT ELSE

END

PRINT "TRACT :TRACT:" LOT ON FILE"
GOTO 300

10-8

88A00778A

*
400* GET A VALID LOT NUMBER

END

*
450*

*

*

PRINT
PRINT "LOT NUMBER ••••• ":
INPUT NUMBER
IF NUMBER • "THEN GOTO 400
IF NUMBER • 'END' OR NUMBER • 'STOP' THEN GOTO 300
IF NUM(NUMBER) • 0 THEN

END

PRINT "MUST BE A NUMBER"
GOTO 400

NUMBER • TRACT:'*':NUMBEZR
READ ITEM FROM NUMBER ELSE
ITEM • "
PRINT "NEW LOT"

NOT.SOLD • °
FOR I • 1 TO 30

GOSUB 1000 ;* UPDATES THE ('TH ATTRIBUTE
IF I • 10 THEN

IF EXTRACT(ITEM,10,0,0) • " THEN
NOT.SOLD • 1
I • 19

END
END

IF I • 21 THEN
IF OOT. SOLD THEN GOTO 500

END
NEXT I

VERIFY DATA & STORE
PRINT
PRINT" OK to:
INPUT OK
IF OK - " THEN

END

WRITE ITEM ON NUMBER
GOTO 400

IF OK • 'L' THEN
PRINT
FOR L • 1 TO 30

ATT • EXTRACT(ITEM,I,O,O)
IF ATT • " THEN GOTO 550
PRINT DESC(L):
IF TYPE(L) - 'DATE' AND NUM(DATE) THEN ATT • OCONV(ATT,'DO')
IF TYPE(L) • 'NUM' AND NUM(ATr) THEN ATT • 0.01 * AT!
PRINT ATT 'RUUUUUUHUUUUUHUUU'

10-9

88A00778A

550*

*

NEXT L
GOTO 500

END
GOTO 400

1000* UPDATE"'S THE I"'TH ATTRIBUTE OF "ITEM"
IF DESC (I) - THEN RETURN j* NOT NEEDED OR NOT FOUND
PRINT DESC(I):
CURRENT - EXTRACT(ITEM,I,O,O)

*
IF TYPE(I} - "'NOM'" THEN

1100* NEED A NUMBER (AMOUNT)

*

PRINT CURRENT*.Ol "'RUUUUUUUUUUUUUUUUU':
INPUT RESPONSE
IF RESPONSE - THEN RETURN ;*JUST LOOKING
IF RESPONSE - THEN

ITEM - REPLACE(ITEU,I,O,O,)
RETURN ; * DELETE THIS ATT.

END
IF NUM(RESPONSE) - ° THEN

PRINT "MUST BE A NUMBER"
GOTO 1100

END

END

ITEM - REPLACE(ITEM,I,O,O,RESPONSE*l00)
RETURN

IF TYPE(I) - "'DATE'" THEN
1200* NEED A DATE

1250*

PRINT OCONV(CURRENT,"'DO"') "'RUUUUUUUUUUUUUUUUUU"':
INPUT RESPONSE
IF RESPONSE - THEN RETURN ; * JUST LOOKING
IF RESPONSE - "'T'" THEN

END

DATE - DATE(}
GOTO 1250

IF RESPONSE - THEN
ITEM - REPLACE(ITEM,I,O,O,) ;*DELETE THIS ATT.
RETURN

END
DATE - ICONV(RESPONSE,"'D"')
IF DATE - THEN

END

END

PRINT "USE DATE FORMAT ... MONTH/DAY/YEAR/
GOTO 1200

ITEM - REPLACE(ITEM,I,O,O,DATE)
RETURN

10-10

88A00778A

1300* NO NECESSARY FORMATS
PRIIIT CURRENT 'RUUUUU##UUU#######':
INPUT RESPONSE
IF RESPONSE - " THEN RETURN
IF RESPONSE - " THEN RESPONSE - "
ITEM - REPLACE(ITEM I,O,O,RESPONSE)
RETURN

END

10-11/10-12

88A00778A

ASCII codes A
The ASCII codes used by the PICK System are:

DEC Hex Character DEC Hex Character
------+---------+------------------+------------+---------+------------

0 0 NULL 36 24 $
1 1 SOH 37 25 %
2 2 STX 38 26 &
3 3 ETX 39 27
4 4 EOT 40 28 (
5 5 ENQ 41 29)
6 6 AClt- 42 2A * 7 7 BEt 43 2B +
8 8 BS 44 2C
9 9 HIl 45 2D

10 A LFl 46 2E •
11 B VTl 47 2F /
12 C FFl 48 30 0
13 D CRl 49 31 1
14 E SO 50 32 2
15 F SI 51 33 3
16 10 DLE 52 34 4
17 11 DCl 53 35 5
18 12 DC2 54 36 6
19 13 DC3 55 37 7
20 14 DC4 56 38 8
21 15 NAK 57 39 9
22 16 SYN 58 3A
23 17 ETB 59 3B ;
24 18 CAN 60 3C <
25 19 EM 61 3D •
26 lA SUB 62 3E >
27 lB ESC 63 3F ?
28 lC FS 64 40 @

29 lD GS 65 41 A
30 lE RSl 66 42 B
31 . IF US l 67 43 C
32 20 SPACE 68 44 D
33 21 ! 69 45 E
34 22 " 70 46 F
35 23 , 71 47 G

A-l

1

2

88A00778A

DEC Hex Character DEC Hex
------+---------+-----------------+------------+------

72 48 H 104 68
73 49 I 105 69
74 4A J 106 6A
75 4B K 107 6B
76 4C L 108 6C
77 4D M 109 6D
78 4E N 110 6E
79 4F 0 111 6F
80 50 P 112 70
81 51 Q 113 71
82 52 R 114 72
83 53 S 115 73
84 54 T 116 74
85 55 U 117 75
86 56 V 118 76
87 57 w 119 77
88 58 X 120 78
89 59 y 121 79
90 SA Z 122 7A
91 5B [123 7B
92 5C , 124 7C
93 5D] 125 7D
94 5E 1\ 126 7E
95 SF 127 7F
96 60 -...
97 61 a
98 62 b
99 63 c 251 FB

100 64 d 252 FC
101 65 e 253 FD
102 66 f 254 FE
103 67 g 255 FF

For special use on LSI-11 and -12 terminals:
FF Cursor Forward BS Cursor Backspace

HT Cursor Tab
LF Cursor Down

CR Cursor Carriage Return
RS Cursor Home

VT Cursor UP US Cursor New Line

For special use by PICK:
SB Start buffer

SVM Secondary value mark (displays ')
VM Value mark (displays])
AM Attribute mark (displays 1\)
SM Segment mark (displays _)

A-2

Character
-~ .. ---

h
i
j
k
1
m
n
0

p
q
r
s
t
u
v
w
x
y
z
{

}

'" DEL

SB2

SV!2
VM
AM2
SM2

88A00778A

Decimal Hex Character SEecial Use in PICK
84 ~ T
85 55 U
86 56 V
87 57 w
88 58 X
89 59 y
90 SA Z
91 5B [
92 5C \
93 5D]
94 5E

" 95 SF
96 60
97 61 a
98 62 b
99 63 c
100 64 d
101 65 e
102 66 f
103 67 g
104 68 h
105 69 i
106 6A j
107 6B k
108 6C 1
109 6D m
110 6E n
111 6F 0

112 70 p
113 71 q
114 72 r
115 73 s
116 74 t
117 75 u
118 76 v
119 77 w
120 78 x
121 79 Y
122 7A z
123 7B {
124 7C
125 7D }
126 7E
127 7F DEL

251 FB SB Start buffer
252 FC SVM Secondary value mark (displays \)
253 FD VM Value mark (displays])
254 FE AM Attribute mark (displays,,)
255 FF SM Segment mark (displays _)

A-3/A-4

88A00778A

compiler error messages

This section presents a list of the error messages which may occur as a result
of compiling a BASIC program.

Error
No.

B100

B10l

B102

B103

B104

B10S

Error Message

COMPILATION ABORTED;
NO OBJECT CODE PRODUCED

MISSING "END", NNEXT" ,
NWHILE" , NUNTIL",
"REPEAT", OR NELSE";
COMPILATION ABORTED,
NO OBJECT CODE PRODUCED

BAD STATEMENT

LABEL "C" IS MISSING

LABEL "C" IS DOUBLY
DEFINED

"C" HAS NOT BEEN
DIMENSIONED

Cause

Compilation errors present.

Compilation error present.

Unrecognizable statement.

Label indicated by GOTO or GOSUB was not
found.

More than one statement was found beginning
with the same label.

Subscripted variable was not dimensioned.

B

B106 "C" HAS BEEN DIMENSIONED
AND USED WITHOUT
SUBSCRIPTS

Dimensioned variable used without subscripts.

B107

B108

B109

BllO

"ELSE" CLAUSE MISSING

"NEXT" STATEMENT MISSING

VARIABLE MISSING IN
"NEXT" STATEMENT

"END" STATEMENT MISSING

ELSE clause is missing.

NEXT statement is missing in FOR-rmXT loop.

Iteration variable is missing in NEXT
statement.

END statement is missing in multiline IF
statement.

B-1

Error
No.

B111

Bl12

Bl13

B114

Bl15

Bl16

Bl17

Bl18

Error Message

"UNTIL" OR "WHILE"
MISSING IN "LOOP"
STATEMENT

"REPEAT" MISSING IN
"LOOP" STATEMENT

LINE 'A'
TERMINATOR MISSING

MAXIMUM NUMBER OF
VARIABLES EXCEEDED

LABEL 'c' IS USED BEFORE
THE EQUATE STATEMENT

LABEL 'c' IS USED BEFORE
THE COMMON STATEMENT

LABEL 'c' IS MISSING A
SUBSCRIPT LIST

LABEL 'c' IS THE OBJECT
OF AN EQUATE STATEMENT
AND IS MISSING

B119 WARNING - PRECISION VALUE
OUT OF RANGE - IGNORED!

B120 WARNING - MULTIPLE
PRECISION STATEMENTS -
IGNORED!

B121 LABEL 'c' IS A CONSTANT
AND CAN NOT BE WRITTEN
INTO

B122 LABEL 'c' IS IMPROPER
TYPE

B123 THE PROGRAM CONTAINS AN
EQUATE WICH CANNOT BE
RATIONALIZED

B124 LABEL 'c' HAS LITERAL
SUBSCRIPTS OUT OF RANGE

88A00778A

Cause

UNTIL or WHILE clause is miSSing in a LOOP
statement.

REPEAT is missing in a LOOP statement.

Garbage was found following a legal
statement, or quote was missing.

Using the default descriptor size of 10, the
maximum number of variables (including array
elements) is 3274.

The equate-variable is referenced before it
has been defined.

A common variable was referenced before
it was put in common.

An array is referenced without a subscript
list.

Label 'c' referenced, but no label 'c' found.

B-2

88A00778A

Error
No. Error Messase Cause

B125 LABEL ' C' HAS A JUMP
GREATER THAN 32K BYTES

B126 OBJECT CODE EXCEEDS 65K

B127 OBJECT CODE AND SYMBOL
TABLE EXCEED 65K

B128 LABEL 'c' EQUATED ARRAY
SUBSCRIPT OUT OF RANGE

B154 FOR STATEMENT WITH NO
NEXT STATEMENT

B199 FORMAT ERROR IN SOURCE
FILE DEFINITION

B850 NODE NOT AVAILABLE

B853 UNEXPECTED MESSAGE RECEIVED

B854 NO LAN PROCESSOR ON THIS
MACHINE

B-3/B-4

88A00778A

run-time error messages c
This section presents a list of the error messages which may occur as a result
of executing a BASIC program. Warning messages indicate that illegal
conditions have been smoothed over (by making an appropriate assumption) and do
not result in program termination. Fatal error messages result in program
termination.

Error
No.

Bl

BIO

Bll

Bl2

Bl3

B14

BlS

Bl6

Error Message

RUN-TIME ABORT AT LINE A

VARIABLE HAS NOT BEEN
ASSIGNED A VALUEj ZERO
USED!

TAPE RECORD TRUNCATED TO
TAPE RECORD LENGTH!

FILE HAS NOT BEEN
OPENED

NULL CONVERSION CODE IS
ILLEGALj NO CONVERSION
DONE!

BAD STACK DESCRIPTOR

ILLEGAL OPCODE: 'c'

NON-NUMERIC DATA WHEN
NUMERIC REQUIREDj ZERO
USED!

Cause

[FATAL]

An unassigned variable was referenced.
(A value of 0 is assumed.) [WARNING]

An attempt was made to write more onto a tape
record than the tape record length. (The
record is truncated to tape record length.)
[WARNING]

File indicated in I/O statement has not been
opened via an OPEN statement. [FATAL 1

A string variable that should have a value is
actually null. [WARNING]

This error message is generated if the
lengths of the input-lists or output-lists in
the CALL and SUBROUTINE statements are
different, if an attempt is made to execute
an external subroutine as a main program or
if a file variable is used as an operand.
[FATAL]

Object code for item indicated by RUN verb
contains garbage. [FATAL 1

A non-numeric string was encountered when a
number was required. (A value of 0 is
assumed.) [WARNING]'

C-l

Error
No.

B17

B18

B19

B20

B21

B24

B25

B27

B28

B29

B30

B3l

B32

Error Kessage

ARRAY SUBSCRIPT
OUT-OF-RANGE

ATTRIBUTE NUMBER LESS
THEN -1 IS ILLEGAL

ILLEGAL PATTERN

COLl OR COL2 USED PRIOR
TO EXECUTING A FIELD
S'l'MTj ZERO USED!

MATREAD: NUMBER OF
ATTRIBUTES EXCEEDS
VECTOR SIZE

DIVIDE BY ZERO ILLEGAL;
ZERO USED!

PROGRAM 'B' HAS NOT
BEEN CATALOGED

RETURN EXECUTED WITH
NO GOSUB

NOT ENOUGH WORK SPACE

CALLING PROGRAM MUST BE
CATALOGED

ARRAY SIZE MISMATCH

STACK OVERFLOW

88A00778A

Cause

Array subscript is less than or equal to zero
or exceeds the row or column number indicated
by a DIM statement. [FATAL]

Attribute less than -1 specified in READV or
or WiITEV statement. [FATAL]

Illegal pattern used with MATCH or MATCHES
operator. [WARNING]

COLl or COL2 function used before FIELD
function used. (A value of 0 is assumed.)
[WARNING]

The number of attributes in the item exceeds
the dimensioned size of the array; the
remaining attributes are not used. [WARNING]

Division by zero attempted. (A value of 0
is assumed.) [llARNING]

The specified external subroutine must be
cataloged before appearing in a CALL
statement. [FATAL]

RETURN statement executed prior to GOSUB.
[FATAL]

Not enough work space assigned at LOGON to
run program. [FATAL]

An external call cannot be made unless the
calling program is also cataloged. [FATAL]

Array sizes in MAT Copy statement, or in CALL
and SUBROUTINE statements, do not match.
[FATAL]

The program has attempted to call too many
nested subroutines. [FATAL]

PAGE HEADING EXCEEDS Page heading is too long. [FATAL 1
MAXIMUM OF 1400 CHARACTERS

C-2

88A00778A

Error
No. Error Messaae Cause

BJJ PRECISION DECLARED IN Precision must be the same between calling
SUBPROGRAM 'C' IS programs and subroutines. [FATAL]
DIFFERENT FROM THAT
DECLARED IN THE MAINLINE
PROGRAM

B34 FILE VARIABLE USED [FATAL]
WHERE STRING EXPRESSION
EXPECTED

835 'M/DICT' INVALID OBJECT [WARNING]
OF 'CLEARFILE'j IGNORED!

B36 SYSTEM DICT ILLEGAL [FATAL]
OBJECT OF 'CLEARFILE'j
ABORT

B4l LOCK NUMBER IS GREATER [FATAL]
THAN 47

842 NOT ENOUGH DESCRIPTOR [FATAL]
SPACE

8209 FILE IS UPDATE PROTECTED [WARNING]

B2l0 FILE IS ACCESS PROTECTED [WARNING]

C-3/C-4

Accessing Multiple Attributes
7.6.1, 7.7.2

Accessing Single Attributes
7.5.1, 7.7.2

AND 3.4
Arithmetic Expressions 3.1
Array Passing 5.2.3
Arrays 2.3.1, 2.4
Arrays, Dynamic 7.11.1
ASCII Code List Appendix A
Assigning Values to Arrays 2.4
Assigning Values to Variables 2.2
Assignment, Simple 2.2.1
Attribute 7.11

BASIC Coding Techniques 10.1
BASIC Compilation 1.4
BASIC Ca.piler OptIons 1.4.2
BASIC Error Messages, Compiler
AppendIx B

BASIC Error Messages, Run-Time
AppendIx C

BASIC File Structure 1.2
BASIC Intrinsic Functions

ABS 6.1.1
ALPHA 6.3.2
ASCII 8.3.8
CHAR 8.3.8
COL1 7.10.1.2
COL2 7.10.1.2
COS 6.2.1
COUNT 7.10.3
DATE 8.3.5
DCOUNT 7.10.4
DELETE 7.11.6
EBCDIC 8.3.8
EXP 6.2.5
EXTRACT 7.11.3
FIELD 7.10.1.1
ICONV 8.3.7
INDEX 7.10.2
INSERT 7.11.5
INT 6.1.2

,LEN 7.10.6.2
LN 6.2.4

88A00778A

I-I

index I
BASIC Intrinsic Functions (Continued)

MOD 6.1.3
NOT 6.3.1
NUM 6.3.2
OCONV 8.3.7
PWR 6.2.6
REM 6.1.3
REPLACE 7 • 11. 4
RND 6.1.5
SEQ 8.3.8
SIN 6.2.2
SPACE 7.10.5.1
STR 7.10.6.1
SQRT 6.1.4
SYSTEM 8.3.6
TAN 6.2.3
TIME 8.3.5
TlHEDATE 8.3.5
TRIM 7.10.5.2
@ 8.3.1

BASIC IntrInsic Functions,
Table 1-2

BASIC Language 1.1
BASIC Program Execution 1.5
BASIC Programming Examples 10.2
BASIC Programs 1.3
BASIC Statements

ABOR.T 4.6.1
Assignment, Simple 2.2.1
CALL 5.2.1
CASE 4.3.3
CHAIN 5.3.1
CLEAR 2.2.2
CLEARFILE 7.2.1
COMMON 5.3.3
CRT 8.2.3
DATA 5·.3.2
DELETE 7.4.2
DIM 2.3.2
END 4.6.1
ENTER 5.3.4
EQUATE 2.2.3
EXECUTE 5.2.4
FOOTING 8.3.3
FOR 4.5.1
FOR ••• UNTIL 4.5.1.1

BASIC Statements (Continued)
FOR ••• WHlLE 4.5.1.1
GOSUB 5.1:1
GOTO 4.1.1 {
HEADING 8.3.3
INPUT .. 8. ~.1
INPT'@ -8~1.2
INPUTElUl 8. 1.3 . ~ '.
INPUTNULt 8.1.3
INPUTTRAP 8.1.3
IF, Kulti~line ,~.j.2
IF, Single-line '4.3.1"
LOCATE . .?11.1 .
LOCK 7 :7 ;1.1 - .

:;
':. ,-

LOOP ••• UNTIL ••• DO ••• REPEA~ .4.5.2
.,.' ': i --. ,"

LOOP ••• WHlLE.'. ;DO ••• REPEAT 4.5.2
MAT Aasignment 2.4.1
MAP Copy 2.4.2
MATREAD 7.6.1
MATllEADU 7 • 7 • 2
HATWlUTE 7.6.2
HATWRITEU 7.7.3
NEXT 4.5.1
NULL 4.4.1
ON GOSUB 5.2.1
ON GOTO 4.2.1
OPEN 7.1.1
PAGE 8.3.4
PRECISION 2.5
PRINT 8.2.2
PRINTER 8.2.1
PROCREAD 7.8.1
PROCWRlTE 7.8.2
PROMPT 8.1.1
READ 7.3.1
READ NEXT 7 • 3 • 3
READT 7.9.1
READU 7.7.2
READV 7.5.1
READVU 7.7.2
RELEASE 7.7.3.1
RETURN 5.1.3
RQM 1.5.2
SELECT 7.3.2
SLEEP 1.5.2
STOP 4.6.1
SUBROUTINE 5.2.2
UNLOCK 7.7.1.2
WEOF 7.9.3
WRITE 7.4.1

88A00778A

BASIC Statements
WRITE1; -- }4(9~1,
WRITEU 7.7.3
WRITEV 7.5.2
WRITEVU 7.7.3

(Continued)

. :"\"

, BASIC Statements Table; .1::4 ..

1-2

BASIC Verbs . \"~.: .~;"~"'i~""-
BREAK (ON/OF~F)- 4.7.1. .: i ~T ' •

.- ~ f, ~ .' _ .F _ • __

.: ,

CATALOG 1.6.1·
DECAIALOG 1.6.2
ECHO (ON/OFF) 4.7.1
FORMAT 1.4.1 "...... r...:' .', -

Boolean Expressions .3,.:4 ~ .
Branching, Conditio~l .4 .• 3. ~ .. '
Branching, Internal..· :$uhrQu.ttlU!S:,.~ 5.1

Branching, Unconditional 4.1
BREAK (ON/OFF) 4.7.1.¥ ~ ~~~~'~':~.,~~."

CATALOG 1 • 6 • 1 . ," ," .: ~ _ _, .. ~ :: _. .:'
Coding Techniques ~<O.l' . -::i:' .' --"':' ,

Compilation, Program 1.4
Compiler Error Messages Appendix B'
Compiler Options:. 1 ••• 2. ,' ... ' ~ :J'::~
Concatenating Printed Values : 8. 2:2 .• 1
Constants 2.1' " ",.,..~'.' .. " .-
Conversion, Format. 8.3.7
Conversion, I/O 8.3.6
Cursor Control 8.3.1

Date, current 8.3.5 .,
Debugger, BAS~<;: -: .. 9.:~:1 . thru- 9.4-- .. j : : ~j
Debugger Commands 9.2, -9..3·,:;. .. : .:. ~.:
Debugger Messages. 9.4 ' '~:,. ;~r:J2"', :,.'::
DECAT~qG 1.6.2 -.:·~L ; ·c
Dynamic Array Opera~iQ-'Qs ~ i:~ Pc.l1;:'i:Y :<:.
Dynamic Arrays 7. 11. ~; . ;:'c. ~ !l: ~«._ .

.. ' ::::... , __ ~~ 12.::::: !7i.c ~ ~:.
ECHO (ON/OFF) 4.7.1,'" _:i.'- ~' • .3 ;"Ji'~'
Error Messages, Co~pil~r~·.·~P1leQ<llJ:. B·:
Error Messages" .D_ebu.gge~. ·99.',4 .,;; -.. :.
Error Messages, R~n~Time ~lAppe:nc1ix' Co"
Executing BASIC Programs 1.5

File Structure .1._2
Files, I/O 7.1"
Format Strings: 8 .• 3.2
FORMAT verb 1.4.1 _ .

Indirec~ Calls 5.2.3

88A00778A

Intrinsic Functions, see~B~SIC
Intrinsic Functions

Item-id, selection 7.,3.2

Locating Att'rfbutes and 'Value's 7 .11. 2
Locking/Unlocking Progra,ms 7.7
Logical Expressions 3.4
Logical Functions ~.,
Looping 4.5 '

Masked Input 8.1.2
MATCH(ES) 3.3.1
Matrix 2;3~l, 2~3.Z
Multi-Ift"e- ,Data·' !R-epresentation 2.3

Nesting 4.5.1.2
No Operations 4.4
Numeric Functions
Numeric Mask Codes

ORJ..4'· s : r; ",

6.1
-ft.3.2

Output Editi~g '8.3.2~
Output Foot:tngs ;-8~3.3
Output Formatting 8.3
Output Headings 8.3.3

Paging 8.3.4
Passing Values to Another Program 5.3
Pattern Matching 3.3~1
Precedence'of,AtithCletic-
Oprations' 3.1

PRECISION Declaration ,2.5
ltROC, Running Programs from 1.,5'.1 ":,;'~
Program ,aataloging 1.6.1 ' ,;':: ;7~'
Program Comp.11ation 1.4· '~.~.' l"

Program Examples 10.2
~.~ r~: " Program Execution 1.5

Pf.ograltl"a.ring ':1.6' -~, ;!';

Program 'Permina'tion "-4.6.l~J'.:,,,:-"J
Piogr,a_f':~~ASIC., 'il.il' ~ "~,,t.·:t~~::, 'J"I'l~

~,;, < ,:: ,ii. ~{~' •. ,", ... ~ ~~ ~"I ,f :.~"

Relational Expressions 3.3 ,
Run-Time Error Messages ":A.ppend1?xC; ,,'

" .f ~, ..•

;..' . l ~

Screen Formatting &.3.1-,"'.'c :1;-. ',c'::
Secondary Value 7.1'1.'1' ''. !,t '

Statements, see BASIC Statements
String Expressions . ,j'.2,' ,:.,
String Handling 7.10
Subroutines, External 5.2

I-3/I-4

Subroutines, Intern~l 5~i'~
System Input 8.1 , .,'£:'"
System Output 8.2 8.3'~ " ~:T

J ~ . ~.,. :~ .. ' ,i : .. , :::., "iI-:
j t > 1 ~.:. ~' .i'~

Tabbing, printed output' '8.2.2~1:;.
Tape I/O 7.9' '" .<

Terminating Time-Sllee 1.5.~2" ~,~~,::
Time if Day 8.3 • 5;, ' 'I,'~ ,; ~.: ~,:,
Trace Table 9.2.1" ,:-' -
Trigonometric turi~fi~~~', ~:~ ,"~';;l~ ,:~

, ,- ,-' -- ~",. #,

1 "'-':"" • "', ...

Updating Multiple Attribtites, ,c; ~'i "",j

7 • 6 • 2, 7. 7 .3_ " " .~ ~
Updating ~1I;lgI~·Atti.~iDut,e.8, ~t' ",,~:'

7 .5.2, 7.7.3 ,,," ,", ,: '.r." ~',,-,,

~ .;!. '1''- ~,,: ~-, ;'C ~J~ •. ., :'.' :~.1 ., l'"

Value 7.11.1
Variables 2.1, 2.2
Vector 2.3.1, 2.3.2:,'"
Verbs, see BASIC verbs ~:' '

;.' '.' /~',:

