
INTER· LINK SYSTEMS
10601 Highway 85, Suite 212
Cupertino, Cal 1forn1a 95014
408/257-7165

0

basic
assembler

~ID GRI Computer Corporation
320 NEEDHAN1 STREET, NEWTOr't MASSACHUSETTS 02164

Price $ 3. 75

GRl-909

Basic Assembler

GRI Computer Corporation, 320 Needham Street, Newton, Massachusetts 02164

Copyright © 1971 by GRI Computer Coroorati on

71-44-001-B
0371

1

1.1

1.2

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

3

3.2

3.3

3.4

4

4.1

4.2

4.3

4.4

5

5.1

5.2

5.3

THE BASIC ASSEMBLER

Introduction

Assembler Output

LANGUAGE ELEMENTS

Character Set

Symbols

Labels

Parameters

Constants

Expressions

Comments

Statements

MACHINE INSTRUCTIONS

Function Generation

Function Testing

Data Testing

Data Transmission

CONTENTS

Non-memory Transmission (3-6)
Memory Reference Transmission (3-7)

ASSEMBLER INSTRUCTIONS

Data Definition

Text (4-1)
Word Values
Packed Bytes

Radix

Set Location

(4-2)
(4-2)

Program Terminators

USAGE NOTES

Subroutine Linkage

System Linkage

Pseudo Instructions

iii

1-1

1-1

1-3

2-1

2-1

2-3

2-4

2-4

2-6

2-6

2-7

2-7

3-1

3-2

3-3

3-4

3-5

4-1

4-1

4-3

4-3

4-4

5-1

5-1

5-3

5-3

iv

APPENDICES

A

B

c

Operating Instructions

Instruction Summary

Standard Symbol Table

Al

Bl

Cl

C H A P T E R 0 N E

THE BASIC ASSEMBLER

The GRI-909 Direct Function Processor is a highly modular, general-purpose

digital computer. Its programmability and functional architecture enable the

solution of a wide variety of system control and processing problems. An object

program to be run on the GRI-909 consists of a sequence of binary coded machine

instructions and data to be operated upon. GRI-909 basic machine instructions are

described by a single internal format:

15 10 9 6 5 0
SDA I MOD ODA

where: SDA is the source device address,

MOD contains modifier or function information, and

DDA is the destination device address.

In effect, information in the form of either data or control signals is

transmitted from the source device specified by SDA to the destination device at

DDA. The qualities of the transmission and/or the end result of the instruction is

influenced by the specification of MOD. A complete machine instruction consists

of either 1) a basic instruction in the above format or 2) a basic instruction

followed by a word containing a memory address or data for the instruction.

The assembly language supported by the Basic Assembler is oriented to the

functional organization of the computer itself. The foregoing SDA MOD DDA

format is employed throughout this manual to ill~strate the relationship between

an assembly language instruction and its equivalent in the object program.

1.1 INTRODUCTION

The Basic Assembler is an indispensable aid to the process of preparing

binary object programs for the GRI-909 Computer. The Assembler enables the writing

of programs in a terse and easily understood symbolic language, called the

assembly language. The symbolic form of a program is called the source program

and consists of a meaningful sequence of assembly language statements. The key

1-1

1-2

item in any statement is a mnemonic code which identifies the statement type. For

instance:

1) The code RM denotes the machine instruction, register-to-memory

data transmission,

2) The code ASC enables the insertion of ASCII text into the program

as data, and

3) The code END denotes the end of a program - this code represents a

directive to the assembler itself and does not cause the generation

of binary information for the object program.

The assembler interprets each such code and either generates the appropriate

binary object information or performs the implied assembler function.

A further advantage to assembly language progranuning is that instructions and

data values may be labeled with user symbols - this enables them to be easily

referenced from other points in the source program. The assembler performs the

tedious chore of associating actual memory addresses with instructions and data.

Lastly, complex data values to be inserted into the object program may be repre

sented by expressions which are evaluated by the assembler.

The assembler, then, translates an assembly language source program into its

equivalent binary object form. During this process the assembler maintains an

internal variable, called the LOCATION COUNTER, which continuously reflects the

object program memory address for which source statements are being assembled.

As each statement is read the LOCATION COUNTER is automatically updated by the

number of machine words that will be occupied by the assembled statement. As user

symbols are encountered, they are added to a symbol table. When a symbol is

encountered as a label for an instruction or data value, it is assigned the current

value of the LOCATION COUNTER. Since such a symbol may be used in a program

before its actual value is determined, the assembler must read the source program

once (PASS 1) in order to define all symbols introduced by the user. The source

program is read again (PASS 2) and the object program is generated. An optional

third pass yields an assembly listing as described in the next section.

Source programs on paper tape are prepared using the Source Text Editor

(Manual #72-44-001). The Text Editor is also used to ~enerate new versions of source

programs. When reading a source program from paper tape the assembler follows the

conventions as presented in section 1.2, "SYSTEM CONVENTIONS" in the Text Editor.

1-3

1.2 ASSEMBLER OUTPUT

Pass 2 of the assembler reads the source program, and using the table of

symbols defined during pass 1, generates the corresponding object program. The

basic version of the assembler punches the object program onto paper tape. The

assembler can easily be modified to accommodate the other standard peripheral

devices, however. The object program is subsequently loaded into the GRI-909

via the absolute loader (%ALD).

The optional third assembler pass generates an assembly listing. This

listing contains the source program statements and the object program data

generated from each statement. Although source input statements are of free

form, the assembler separates major source fields to enhance the legibility of

the listing. The program segment in the following listing example computes the

sum and difference of Xl and X2.

~ 'V

13 COMP:
002 00101 06 0000 11

00102 000203
003 00103 06 0000 12

00104 000204
004 00105 13 0000 06

00106 000201
005 00107 12 0110 12
006 00110 13 0000 06

00111 000202

MR "{.T1 A "tT
.A..L ,&A

MR X2,AY

RM AO,Yl

RSC AY,Pl
RM AO,Y2

{'.,,~
~~

a#
(J

;SELECT ADD FUNCTION

;STORE SUM

;TWO'S COMP X2
;STORE DIFF

Before the line number there will appear one or two single-character codes

if the assembler detected an error when interpreting the statement. The possible

error codes and their meanings are:

M - Multiply defined symbol; the statement contains a label symbol

that has been associated with more than one memory location.

U - Undefined symbol; the statement contains a symbol that has not

been assigned a value.

1-4

S - Syntax error; the statement is not formed according to the rules

as defined in this manual. The assembler generates two zero words

as object output in this case.

D - Decimal digit in octal field; a numeric constant contains an 8 or

9 and the assembler's radix is set to octal.

E - Expression error; an expression in the operands field is invalid.

> - Too many expressions; the general operands field is a comma

separated list of expressions - in this case, there were more

such expressions than required for the instruction.

< - Too few expressions in operands field.

V - Symbol table overflow; the number of user-introduced symbols has

exceeded the capacity of the assembler's symbol table.

The line number is a decimal sequence number generated by the assembler. For

paper tape input, this number corresponds exactly to the implicit line number in

the Source Text Editor buffer if the source program were to be updated using the

Editor.

The location field contains five octal digits representing the memory location

for which the associated data is being assembled. The generated data is presented

in one of two formats:

a) Machine instructions are printed as two octal digits (bits 15-10),

four binary digits (bits 9-6) and two octal digits (bits 5-0).

These sub-fields correspond to the SDA, MOD and DDA portions of

an instruction word.

b) Other data is printed as 6 octal digits where the first digit may

be only 0 or 1.

PASS 3 of the assembler also generatea a listing of user-introduced symbols

and their assigned values. A single symbol and its octal value appears on each

line. The error code U (above) is printed before a symbol if appropriate.

C H A P T E R T W 0

LANGUAGE ELEMENTS

This chapter describes the basic elements that are used to form assembly

language source statements. Throughout this manual the following notational

conventions will be employed when presenting general forms of language elements:

[] Brackets - used to contain an optional item.

The statement may be written with or without

the item - generally, the meaning of the

statement is changed when such an item is

omitted.

{ } Braces - used to contain alternate items. These

items will be arranged vertically within the

braces - the statement must include one, and only

one, of the alternate items.

Ellipsis - used to denote permissible repetition

of the immediately preceding language element.

When braces are enclosed within brackets, then either the entire form in

brackets is omitted or the form is included with the appropriate alternate item

selected.

2.1 CHARACTER SET

The GRI-909 basic assembler processes source statements composed of 8-bit

ASCII characters, and recognizes two distinct categories of characters: general

usage characters and reserved characters.

General usage characters are used to form symbols and simple numeric

constants:

2-1

2-2

CHARACTER EXTERNAL INTERNAL

Alphabetics A through z 301 through 332

Numerics 0 through 9 260 through 271

Dollar Sign $ 244

Percent Sign % 245

At Sign @ 300

Reserved characters are used to impart special meanings to the assembler,

or to separate or delimit certain language elements:

CHARACTER EXTERNAL INTERNAL

Carriage-return 215

Exclamation Point 241

Ampersand & 246

Plus Sign + 253

Comma 254

Minus Sign 255

Period 256

Colon 272

Semi-colon 273

Equals Sign = 275

Back-arrow 337

FUNCTION

Delimits source line.

Denotes logical "OR".

Denotes logical II AND".

Denotes Addition.

Separates machine
instruction operands
or general list elements.

Denotes Subtraction.

Represents the assembler's
location counter.

Separates a label from
the rest of the state
ment.

Separates comments from
the rest of the state
ment.

Separates a parameter
symbol from the
expression denoting its
assigned value.

Causes the first previous
input character not a
back-arrow to be ignored
by the assembler.

2-3

CHARACTER EXTERNAL INTERNAL FUNCTION

Block mark 375 or 233 Separates blocks of
source statements. Valid
only between lines -
causes the assembler to
reset the listing line
number to one (1).

Rubout 377

Space 240

Causes the previous
portion of the input
line to be ignored by
the assembler.

General delimiter.

NOTE: Although the assembler recognizes only 8-bit characters

internally the source tape input may be in either 8-bit

or even-parity code since the text input routine logically

OR's the high-order bit into each character read.

2.2 SYMBOLS

Assembly language symbols are used to represent memory addresses, device or

operator addresses, machine or assembler instructions, and simple numeric values.

Pre-defined symbols in the assembler's symbol table have mnemonic value: for

instance, the symbol RMID represents the machine instruction Register-to-Memory

Irnmediate-Deferred. User symbols, as defined in the source program, represent

either a statement label (2.3) or an assembly parameter (2.4). In order to enhance

the utility of assembly listings, the user should attempt to define his symbols

with mnemonic value as well.

A symbol consists of one or more non-blank general usage characters, the

first of which must not be numeric. Since only the first five characters are

stored in the symbol table, symbols of greater length must be unique in the first

five characters.

The following symbols are valid and could be used as a label or as a

parameter:

START

LOOP

N23@

PARAll

PARA21

2-4

The following symbols are invalid for the reasons given:

8ABC

LOOP*

GO;TO

AB LE

First character numeric

Invalid character (*)

reserved character (;)

Embedded blank

} Not unique in the first five characters

further cautioned not to define symbols identical to any of

those in the standard assembler symbol table (Appendix C) unless it is intended

to alter their meaning.

PARAMl

PARAM2

The user is

2.3 LABELS

A statement label is defined or established by the occurrence of

Symbol:

(a symbol followed by the reserved character:) as the first element of an assembly

language source statement. The assembler assigns the current value of the location

counter to this label - this will be the memory address of the first word

assembled from the statement with which the label is associated.

A label is used to symbolically reference a specific instruction or data

word from other points in the program. Therefore, a given label must not be

re-defined within the same program - an attempt to associate a label with two or

more different memory addresses will cause an error code to be printed on the

assembly listing.

EXAMPLES:

TYPE: RR AX,TTO

TABLE: WRD - 144, - 12, - 1

2.4 PARAMETERS

An assembly parameter is defined by the occurrence of

Symbol = e

(a symbol followed by the reserved character =, followed by an expression e) as an

assembly language statement. Expressions are defined in section 2.6. The value

of the parameter will be the assembled value of the expression with which it is

associated.

A parameter is used to represent device addresses, function generation pulse

codes, or function testing status codes (See chapter 3). A parameter may also be

used to represent a numeric value to be used in the formation of other expressions.

Note that no object code is generated by a parameter assignment statement - the

statement merely causes a numeric value to be assigned to the parameter symbol.

An assembly parameter may be redefined within the same program. If a

parameter does take on more than one value, then its initial value must be

established in the source program before it is first used to symbolically reference

a numeric value.

EXAMPLES:

TEN = 10

CR = 215

DIFF A-B

The expression used to specify the value of a parameter must be fully

resolvable by at least the end of pass 1 (so that it will have the correct value

during passes 2 and 3). In other words, the value of any symbol in the expression

must be established within at most one forward reference. For example, in the

sequence:

A B + 5

B 22

the value of A cannot be established when the statement is first encountered during

pass 1 since B is not yet defined. Nevertheless, when the definition of A is

encountered during pass 2, it will be assigned the correct value (27). On the

other hand, in the sequence:

A B + 5

B C 2

c 24

the value of A cannot be established until its definition is encountered during

2-5

pass 3 of the assembler. Since the assembler assigns a value of zero (0) to undefined

symbols, the values assigned to the symbols in this example when their defining

statements are encountered will be as follows:

Pass 1

Pass 2

Pass 3

A

5

3

27

B

-2

22

22

c

24

24

24

2-6

2.5 CONSTANTS

A simple constant is represented by one or more successive numeric

characters. The character string is converted into its equivalent binary value

according to the setting of the assembler's radix, which may be either decimal or

octal (see section 4.2). The range of a constant, so as not to arithmetically

overflow out of the fifteen magnitude bits of a signed machine word, is 0 to

32767 decimal or 0 to 77777 octal.

If a stand-alone constant is to be treated as an unsigned (magnitude only)

entity, the upper limits may then be 65535 decimal or 177777 octal.

2. 6 EXPRESSIONS

Compound numeric values may be formed in instruction fields or data words

by arithmetically and/or logically combining simple values in an assembly language

expression. An expression consists of a numeric operand or a series of operands

separated by arithmetic and/or logical operators, where the first such operand

may be preceded by an arithmetic operator (leading sign). Any given operand may

be one of the following:

and the permissible operators are:

+ Denotes

Denotes

& Denotes

Denotes

Space Used to

Label

Parameter

Constant

(representing the assembler's location
counter)

addition

Subtraction

logical "AND"

logical "OR"

imply logical "OR"

A general expression, e, is assembled into a 16-bit value. The formal

definition of e is:

Label + Label

[±] Parameter
&

Parameter

Constant Constant

Space

L

An expression is evaluated in a simple left-to-right scan: no priorities

are assigned to the operators.

EXAMPLES:

15

-237

A+ 5

. + B - 3

VALl !VAL2&VAL3

2.7 COMMENTS

User comments may be inserted in any line of the source program by separating

them from the rest of the line by the special character ; (semi-colon). A comment

must either be the last element of a source line or it must be the first and only

element.

EXAMPLES:

RSC AX, Pl ; NEGATE AX

; CONVERSION ROUTINE

(last element)

(only element)

Only as much of a comment as will fit will appear on the assembly listing -

the remainder of the comment, if any, will be ignored. There are no special rules

regarding the characters, or their spacing, that may be contained in the body of

a comment, except that:

1) a carriage-return terminates the source line

2) the back-arrow and rubout characters perform

the functions presented in section 2.1

2.8 STATEMENTS

A source program statement (a source line) is a meaningful arrangement of

basic language elements and is terminated by a carriage-return. A statement may

contain no more than 80 characters, including spaces (blanks). An assembly

language statement may take on one of the following general forms:

SYMBOL: INSTRUCTION OPERANDS

SYMBOL: INSTRUCTION OPERANDS

COMMENTS

2-7

2-8

SYMBOL: INSTRUCTION COMMENTS

SYMBOL: INSTRUCTION

INSTRUCTION OPERANDS COMMENTS

INSTRUCTION OPERANDS

INSTRUCTION COMMENTS

INSTRUCTION

SYMBOL = e ; COMMENTS

SYMBOL = e

COMMENTS

where an INSTRUCTION is a machine instruction, an assembler instruction, or

a pseudo instruction (described in Chapters 3, 4 and 5 respectively) and OPERANDS

is a comma - separated list of expressions.

Other than the order of the major elements, as shown above, there are no

formatting requirements imposed upon a source statement. The assembler isolates

the major elements of a free-form source statement and arranges them in columns

on the assembly listing.

The most basic elements (symbols) must, however, be separated or delimited

from each other. Since symbols consist solely of general usage characters (2.1),

a statement such as

VALU=Vl+V2-V3;DEFINE VALUE

is easily understood by the assembler. Therefore, the main rule to be observed

when preparing source statements is:

· When any two successive symbols are not separated by a

reserved character, then they must be separated by at least one

space.

C H A P T E R T H R E E

MACHINE INSTRUCTIONS

Although all basic GRI-909 machine instructions have the same format -- SDA

MOD DDA - (See Chapter 1), the assembler distinguishes four general classes of

instructions as follows:

Function Generation

Function Testing

Data Testing

Data Transmission --

Control pulses specified by MOD are transmitted

to the named destination device; the unique

combination of MOD and DDA defines the function

to be performed.

Status indicators associated with the named source

device are sensed and program flow is altered if

the test specified by MOD is true; flow alteration,

if any, consists of a skip over the next two memory

words.

Data in the named source device register is tested

and program flow is altered if the test specified

by MOD is true; flow alteration, if any, consists

of an absolute transfer (jump) to some new location

specified by the instruction.

Data is transmitted from the named source device to

the named destination device; binary modifications

to data in transit and, for memory-reference

instructions, addressing modes are specified by MOD.

An assembly language machine instruction consists of a mnemonic followed by one

to three expressions separated by commas. The expressions in the operands portion of

the instruction are arranged according to the SDA MOD DDA order, left to right. These

expressions provide values to be assembled into specific fields of the complete machine

instruction. For two-word instructions, either the leftmost or the rightmost expression

(as implied by the mnemonic) is assembled into the second word.

NOTE -- The value of any given expression to be packed into n bits

of an instruction is treated modulo 2n.

3-1

3-2

In order to render assembly language program listings more meaningful and to

minimize the amount of writing necessary for the specification of instructions, the

assembler's complement of mnemonics provides useful subdivisions within each of the

four machine instruction classes. These classes and their subdivisions are described

in the following sections. Machine word layouts presented with general forms detail

the contribution of statement components to the assembled instruction.

3 .1 FUNCTION GENERATION

Function generation instructions cause up to four pulses to be transmitted in

parallel to controllable destination devices. A general function generation instruction

is of the form:

FO 02. e., ez.

where bits 9-6 of MOD correspond to the four machine pulse control lines.

EXAMPLES:

FO 1, 77

FO 11, 76

FO 2,0

FO 4,13

START TTI READER

CLEAR FLAG, START HSR

SET LINK

SELECT ARITH. OPERATOR "AND"

Using standard assembler symbols (or user-defined symbols) for function codes and device

names, the previous examples might be written:

FO STRT, TTI

FO CLIF STRT, HSR

FO STL,0

FO AND, AO

The assembler provides mnemonics which imply a specific destination. These are of

the form:

- machine (control logic)

FOM e
02 e 00

- interrupt control

FOI e (02 e 04

- arithmetic operator

FOA e

EXAMPLES:

FOM STL

FOM HLT

FOI ICO

FOA ADD

FOA AND

02

SET LINK

HALT MACHINE

INTERRUPT CONTROL-ON

SELECT AO "ADD"

SELECT AO "AND"

3.2 FUNCTION TESTING

3-3

13

Function testing instructions enable the user to alter program flow based on the

setting of status indicators associated with a given device. If the specified test is

true, a skip over the next two words is performed. A general function testing

instruction is of the form:

SF 02.

where MOD (9-7) correspond to the three machine sensing lines, and MOD (6) is inter

preted as follows:

EXAMPLES:

0 Skip on the "OR" of the truth of the selected indicators.

1 Skip on the "AND" of the falsity of the selected indicators.

SF

SF

SF

SF

77 ,2

76,3

0,2

13,2

SKIP IF TTY OUTPUT READY

SKIP IF HSP NOT READY

BUS OVERFLOW SET?

SKIP AO OVERFLOW

Using standard symbols, the above examples are written:

SF TTI,ORDY

SF HSP, NOT ORDY

SF 0, BOV

SF AO, AOV

3-4

The assembler provides mnemonics which imply a specific source. These are of

the form:

- machine

SFM e 00 02

- arithmetic operator

SFA e 13 e 02

EXAMPLES:

SFM BOV BUS OVERFLOW SET?

SFM NOT BOV LNK

SFA AOV SKIP AO OVERFLOW

3.3 DATA TESTING

~

Data testing instructions enable the user to alter program flow based on the value

of data residing in a given device. The data is tested relative to algebraic zero. If

the specified test is true, a jump is performed to some new program location. A general

data testing instruction is of the form:

JC[D]
e,

where MOD (9-8) specify test conditions

if MOD (9)

if MOD (8)

1, test for less than zero

1, test for equal to zero,

MOD (7) is interpreted as follows:

0- jump on the "OR" of the truth of the selected test conditions.

1- jump on the "AND" of the falsity of the selected test conditions,

and the optional D, if included, sets MOD (6) which selects the deferred addressing mode.

Normally, the expression e2 will consist solely of one of the assembler's pre

defined test codes:

CODE VALUE CONDITION

ETZ 2 Equal to zero

NEZ 3 Not equal to zero

LTZ 4 Less than zero

GEZ 5 Greater than or equal to zero

LEZ 6 Less than or equal to zero

GTZ 7 Greater than zero

VVAMUT VC •
..L..J.L.\..Cl.J."J...L.l..JJ....IL.J.

JC AX,GEZ,LOOP+S

JC TTI,ETZ,AGAIN

JCD AO,LTZ,SUB+l

JC O,ETZ, .-7

The last example is an unconditional jump, since device zero is a source of a

zero data word. The assembler provides a mnemonic for unconditional jumps:

JU[D] e

EXAMPLES:

JU GO

JUD ADDR

00

JUMP TO·GO

2
I

e

JUMP DEFERRED THRU ADDR

3.4 DATA TRANSMISSION

3-5

Any machine instruction not specifically falling into one of the aforementioned

three classes implies the transmission of data from a source device, through the Bus

Modifier, to a destination device. Programmable data paths in the Bus Modifier enable

the selection of binary modifications to data as it passes between the source and

destination devices. The operands portion of every assembly language data trans

mission instruction contains an optional expression which, if included, is assembled

into MOD (9-8). The modifications that can be selected by MOD (9-8) and the standard

codes that may be used to invoke them are:

Pl Increment (add one)

3-6

Ll Shift left one bit

Rl Shift right one bit

Only one of the above modifications may be selected in any given data transmission

instruction. When data is incremented (Pl), the bus overflow indicator is set if, and

only if, the source data was equal to -1 (all ones). If such overflow did not occur,

then the overflow indicator will be cleared. After a transmission through the

incrementing path, the status of the bus overflow indicator can be sensed with a SFM

[NOT] BOV. Data is shifted (Ll or Rl) circularly through a one-bit link in the Bus

Modifier. After any shift, the new status of the Link may be sensed with a SFM [NOT]

LNK. If it is desired to shift a zero (or a one) into the word being transmitted, the

pre-transmission state of the Link may be ensured by a FOM CLL (FOM STL).

The zero or null device address may be used in data transmission instructions.

When used as a source, it provides a zero data word which is transmitted, with or

without modification, to the named destination. When used as a destination, the source

data may be transmitted and Bus Modifier status indicators subsequently tested without

modifying the source data itself or replacing the contents of some other device register.

Any data transmission instruction may be used to effect an absolute transfer of

program control (jump) by transmitting a memory address to the computer's sequence

counter (SC). Note, however, that if the transmission instruction is a one or a two

cycle instruction, then one less than the desired jump address must be transmitted.

3.4.1 NON-MEMORY TRANSMISSION

These instructions enable the transmission of data between non-memory registers

in system devices, and have the general form:

RR[C] e, I Ef z le lo!
where the optional c, if included, sets MOD (7) -- this bit, available only in non

memory transmissions, selects the ones complementation of data prior to another

modification selected (if any).

EXAMPLES:

RR

RRC

O,AX

AO,Pl,AX

; CLEAR AX

;2's CuMP OF AO TO AX

RR TTI,TTO

RR AX,Pl,AX

;TT! TO TTO

; INCREMENT AX

This last example involves the transmission of a register to itself. The assembler

provides the shorter form

E~\fPLES:

RS AX,Pl

RSC AX

RS AY,Ll

I E/f. I c. lol

; INCREMENT AX

;l's COMP AX

; SHIFT AY LEFT

e,

3-7

NOTE - Not all system devices may be both a source and destination for data. For

instance, AO, TTI, and HSR are source only, while TTO and HSP are

destination only.

As previously noted, registers may be cleared by transmitting to them from the

zero address. A further mnemonic is provided to facilitate this.

EXAMPLES:

ZR AX

ZR Pl,HSP

ZRC AY

00

;AX=O

;PUNCH A ONE

;SET AY TO ..-1

3.4.2 MEMORY REFERENCE TRANSMISSION

I Y' lcfof

These instructions enable the transmission of data either between a device register

and a memory location or from a given memory location to itself. In either case, the

optional characters I and D in the instruction mnemonic cause the selection of the

immediate and deferred addressing modes respectively.

Registers may be stored in memory using the general form:

[I ~lrlol

3-8

EXAMPLES:

RM AX,SAVEl

RM AO,Pl,Zl+5

RMI TRP,O

RMD AX,ADDR

;STORE OUTPUT+l

;STORE TRAP IMMEDIATE

The clearing of memory locations is facilitated by the form:

EXAMPLES:

ZM COUNT

ZM Pl ,SWl

I e, IIIDI o<a
I

;CLEAR COUNTER

;SET SWITCH

Registers may be loaded from memory using the general form:

EXAMPLES:

MR SAVEl,AX

MRI 215,TTO

MRD A,Ll ,AX

MRI -1,TRP

OCo

;RESTORE AX

;TYPE CARRIAGE-RETURN

;TRAP=-1

NOTE - The last example has SDA=06 (memory) and DDA=03 (TRAP). This is the only

instance where DDA=03 does not denote a data test instruction.

Memory locations may be modified through use of the general form:

EXAMPLES:

MS COUNT,Pl

MSI O,Pl

MS MULTP,Rl

06 le,z IIIDI

;INCREMENT COUNTER

;!NCR 2nd WORD OF INSTRUCTION

;ROTATE MULTIPLIER

C H A P T E R F 0 U R

ASSEMBLER INSTRUCTIONS

This chapter describes assembly language instructions that either enable the

insertion of data into the object program or merely act as directives to the assembler

during the assembly process.

4.1 DATA DEFINITION

The following instructions enable the insertion of data into the object program.

4.1 .1 TEXT

Consecutive characters of ASCII text are assembled into an object program using

the form:

ASC C.1 c 'Z.

CA

where d, the delimiter, is the first non-blank character after the instruction mnemonic -

the rightmost d must be the next character identical to the delimiter,

and the c. are text characters.
1

The text delimited by the d's is assembled into consecutive words, two ASCII

characters per word, as shown. If the text contains an odd number of characters, the

rightmost 8 bits of the last word assembled will be set to zero. Text characters may

be drawn from other than the general usage or reserved character sets. The reserved

characters carriage-return, back-arrow and rubout always perform their usual functions -

See section 2.1. Hence, a carriage return cannot be used within the delimiters of an ASC

statement. EXAMPLES:

MSG: ASC /MOUNT NEXT TAPE/

ASC 'A/B=LIMl'

ALRMl: ASC .ALARM 'l'.

A label associated with an ASC instruction may be used to reference the first word

assembled from the text.
4-1

4-2

4.1 .2 WORD VALUES

Full 16 bit values of assembly language expressions may be assembled into

consecutive words of the object program using the form:

e,

The values of one or more expressions are assembled into the corresponding

number of consecutive words.

EXAMPLES:

TABLE: WRD 1750,144,12

COUNT: WRD 0

WRD .+A-15

;POWERS OF 10

A label associated with a WRD instruction may be used to reference the first

word assembled therefrom.

NOTE - If the assembler location counter symbol (.) is encountered in

any expression in the list following WRD, its value will be the

address of the word into which that expression is to be assembled.

4.1.3 PACKED BYTES

A pair of character or expression values may be assembled into the left and right

halves of a word by using the form:

EXAMPLES:

PKB 17,31

PKB A+l,A-1

PKB 215,212

e,

The last example packed a carriage-return and a line-feed character into a

single word. Since the carriage-return cannot be included in the definition of

a message (see ASC, above), it is often useful to follow the message with the

foregoing packed character pair. Alternatively, one could write

CR=215

LF=212

PKB CR,LF

4:2 RADIX

4-3

The assembler converts constants (2.5) to their equivalent binary value according

to the setting of an assembler variable, called the RADIX. The statement

OCTAL

causes the assembler to interpret subsequently encountered constants as octal numbers.

The statement

DECIM[AL]

requests the assembler to interpret constants as decimal numbers.

The assembler•s RADIX is initialized to OCTAL at the beginning of each pass. Any

setting of RADIX by the user remains in effect until either the RADIX is reset or the

pass is completed.

4.3 SET LOCATION

The assembler's LOCATION COL~{TER, which continuously reflects the memory address

into which a source program statement is being assembled, can be set by the user with

the form:

LOC e

where e must contain no undefined symbols when it is first encountered (during Pass 1).

The LOC instruction is most of ten used merely to define the memory address into

which the first word assembled from a given program will ultimately be loaded. Other

wise, the first word will be located at zero (the LOCATION COUNTER is initialized to zero

at the beginning of each pass).
EXAMPLES:

LOC 100

LOC A+25

The LOC instruction may be used to specify the beginning address of various

segments of the same program. Also, a block of consecutive words may be reserved by

4-4

updating the LOCATION COUNTER relative to its current value. To reserve a block of 50

words and to label the first such word as AREAl, one would write

AREAl: LOC .+50

Note that the symbol AREAl is assigned its value before the LOCATION COUNTER is

updated.

4.4 PROGRAM TERMINATORS

The last statement of a source program must be

END

which causes the assembler to finalize all processing for the current pass and come to

a halt.

If a source program consists of segments residing on different tapes, then each tape

but the last should be terminated by the statement

EOT

which causes the assembler to pause for the insertion of the next tape into the reader.

C H A p· T E R F I V E

USAGE NOTES

This chapter describes conventions regarding subroutine linkage and presents

further features of the assembler itself.

5.1 SUBROUTINE LINKAGE

The standard transfer of control to a subroutine in the GRI-909 is via a data

test instruction. The JU (unconditional) or JC (conditional) jump instruction is

used as appropriate. When any data test instruction results in a jump, the processor's

sequence counter (SC) points to the second word of the jump instruction immediately

before the jump takes place -- at this point the SC is transmitted to the trap (TRP),

a hardware register associated with the data tester. Then the contents of the second

word (or the incremented contents of the word it points to if deferred addressing is

selected) is transmitted to the SC. The SC now points to the first (or entry)

instruction of the subroutine called -- this instruction is executed next by the

processor.

After any data testing jump is executed, the contents of TRP enables the return

of control to the calling program if the jump was to a subroutine. Note that the

address value in TRP is one less than that of next instruction in the calling program.

If the subroutine called does not alter the contents of the trap register, either with

a data test or a data transmission instruction, then the subroutine may return control

by executing the instruction

RR TRP,SC

Since the SC is automatically incremented after this instruction is executed,

an absolute return of control to the proper location is performed.

If, on the other hand, the contents of TRP is likely to be affected by the sub

routine itself, then the subroutine entry point instruction might be

SUB: RMI TRP,O

where the contents of TRP is stored into the second word of the entry instruction. The

5-1

5-2

I

subroutine may return control to the calling program via any one of the following

instructions:

JUD

JCD

or MR

SUB+l

device, test, SUB+l

SUB+l,Pl,SC

Since the last instruction (MR) is a three-cycle instruction, the automatic

incrementation of SC is completed before the instruction itself is executed -

therefore, the instruction must increment the value being transmitted to SC.

A subroutine usually performs some operation or operations on one or more

data items, called the arguments of the subroutine. Arguments are sometimes passed

to subroutines by loading them into specific hardware registers before calling the

subroutines. Also, arguments may be passed by following the subroutine call with a

list of word values which define the arguments:

JU SUB

WRD Vl

WRD V2

WRD V3

WRD Vn

where any Vi might be one of the following:

a) an address of data to be operated upon,

b) an actual data value to be operated upon,

c) an address to which return is made if errors

are detected by the subroutine, or

d) an address into which results are to be

stored.

If the subroutine entry instruction is

SUB: RMI TRP,O

then the first argument (Vl) can be loaded into the AX register by

MRD SUB+l,AX

The second and successive arguments can be fetched by executing similar instructions.

Note that the word at SUB+l is auto-incremented during each such deferred mode

5-3

instruction. When all the arguments have been picked up the word at SUB+l contains one

less than the normal return address -- the JUD SUB+l (or its equivalent) is used for

normal return of control to the calling program.

5.2 SYSTEM LINKAGE

When implementing and testing a large program which calls several user-generated

subroutines and/or selected GR! utility routines, both assembly time and assembler

symbol table space utilization may be minimized by assembling the subroutines together

as a separate package. This package· should contain only subroutines that have been

checked out and it should be located (4.3) so as to reside in a memory area other than

that occupied by the rest (main portion) of the program being developed. This process

yields two object tapes to be loaded when running the program -- the main program and

the subroutine package.

Once the subroutine package has been assembled, the entry point to each routine

is at a known memory address. When re-assembling the main portion of the program, it

is necessary to establish the linkage berween it and the subroutines in the package.

This is accomplished by preparing a series of parameter assignment statements (2.4) to

be assembled with the main program. Given a set of subroutines Si starting at the

corresponding locations Ni, the linkage to them is established by the statements

Sl=Nl

S2=N2

S3=N3

When assembling from paper tape, these parameter assignment statements should

be prepared on a separate source tape terminated with an EOT instruction (4.4) -

each time the main program is assembled it is only necessary to read these linkage

statements during PASS 1 of the assembly process.

5.3 PSEUDO INSTRUCTIONS

In addition to statements containing standard predefined machine instruction

codes, the assembler accepts statements of the form

[symbolj {c~;:~~J[~ ~ommen~

5-4

where the item in {) is called a pseudo instruction. The value of the constant or

symbol is assembled into a single word and is displayed on the assembly listing in

machine instruction format. The expression e, if present, is assembled into the next

word and is displayed as data. The value of a symbolic pseudo instruction must be

established via a parameter assignment statement (see 2.4).

The user may employ pseudo instructions to provide short and meaningful forms

for machine instructions. For example, the assembly language instruction "FOM CLL"

assembles as 02 0001 00 which has the octal value 004100. Redefining the standard

symbol CLL with the statement "CLL=OC4100", the user may now code the clear link

instruction by writing the pseudo instruction CLL. Such a redefinition must, of

course, be included in each program that uses this symbol as a pseudo instruction.

Another example is to replace the instruction "RR MSR,Ll ,O", which copies the bus

overflow indicator into the link, by a symbol such as BVLNK whose value would be

037000.

The more common function of pseudo instructions is to enable the coding of

commands that are arguments to interpretive subroutines. A call (JU) to an interpretive

subroutine is followed by a sequence of commands that are arguments for the subroutine -

the subroutine fetches and interprets each such command and performs the operation

implied by the command. The GRI-909 Floating Point Interpreter ($SFI) maintains a

software floating point accumulator. Floating point computations are invoked by commands

to ~SFI, where each command represents an operation to be performed on the software

accumulator and calling program floating point data. For instance, to compute

Y=AX2+BX+C in floating point, one would write the following assembly language instructions:

JU $SFI

FLDA A

FMPY x
FADD B

FMPY x
FADD c
FSTA y

FEXT

where the single-word pseudo instruction FEXT causes the subroutine to return control

to the calling program. The other pseudo instructions each assemble into two words

a command followed by the address of a floating point operand. For a complete

description of ~SFI and its commands, see the GRI manual 74-44-001, "Floating Point

Manual".

5-5

APPENDIX A

OPERATING INSTRUCTIONS

Passes 1,2 and 3 of the assembler perform user symbol definition, object

code output and listing output respectively. After Pass 1, the assembler will continue

to Pass 2 and then to Pass 3. Any time after Pass 1 has been completed, however, the

assembler may be re-started and either Pass 2 or 3 selected.

I. Load the assembler with the Absolute Loader.

II. Transmit "O" to SC.

III. Set console switches as follows:

Bit 15 selects source input device
Bit 14 selects object output device
Bit 13 selects listing output device

UP = High-speed

DOWN = Low-speed (teletype)

Bits 1-0 select Pass

01 Pass 1

}if Pass 1 previously completed. 10 Pass 2
11 Pass 3

IV. Ready source tape in reader (if TTI, set reader control to START).

v. Press START.

The assembler will halt after encountering an EOT mnemonic. Mount the next tape

segment and press START.

The assembler will halt after encountering an END mnemonic. If another pass is

either desired or necessary, remount the source tape (or the first segment thereof) and

a) press START to proceed to the next pass, or

b) select desired pass by starting at II, above.

At the beginning of pass 2 (before it is started), turn the punch ON if the object

output is on TTO and turn it OFF after the pass is completed.

NOTES:

1) If bits 14 and 13 have different settings, then

both the object code and the listing will be

generated during Pass 2. The listing may be

punched on the high-speed device and later printed

off-line.

Al

A2

2) If the user wishes to type in instructions to see

how various forms are assembled, precede as follows:

a) Perform I and II, above.

b) Perform III, selecting low-speed I/O

(bits 15, 14 ~ 13 of SWR down) and pass 3.

c) Press START

Statements (each followed by a carriage-return) may now be typed

on the TTY keyboard. The characters typed are not echoed on the

teleprinter as they are struck. After a statement is terminated

(carriage-return), the assembler responds with the corresponding

listing output.

3) Patch tapes to correct logical errors in an assembled program

may be created via the TTY keyboard as follows:

Note:

a) Perform I and II, above.

b) Perform III, selecting low-speed I/O

(bits 15, 14, 13 of SWR down) and pass 2.

c) Turn teletype punch "on".

d) Press START - punch will generate leader.

e) Type in patches, e.g.

LOC 100) () denotes carriage return)

RS AX,PlA

etc.

f) No keyboard output will appear. No object punching will

occur until another LOC statement or an END statement is

typed in.

g) Load object of original program.

h) Load object tape created above.

If high-speed equipment is available, do the same steps as

above except: in b) leave bit 14 up, in c) turn high-speed

punch "on", and f) will allow line typed in to be printed

out on the keyboard in assembly listing fonnat after the

carriage return is typed in.

A P P E N D I X B

INSTRUCTION SUMMARY

MACHINE INSTRUCTIONS

The following symbols represent assembly language expressions having context-

dependent meanings:

device - a source or destination device; SDA or DDA

pulse - a pulse output code; MOD

status - a status test code; MOD

test

path

- a data test code; MOD ·(9-7)

- a bus modifier path code; MOD (9-8)

location-a memory address or data value; full second word of
memory reference instruction.

Function Generate

- general

- to machine

- to interrupt control

- to arithmetic operator

Function Test

- general

- machine

- arithmetic operator

Data Test

- general

unconditional jump

Data Transmit

- register to register

- zero to register

- register to self

- register to memory

- zero to memory

- memory to register

- memory to self

B-1

FO pulse, device

FOM pulse

FOI pulse

FOA pulse

SF device, status

SFM status

SFA status

JC[D] device, test, location

JU[D] location

RR[C]

ZR[C]

device [,path] , device

[path,] device

RS[C] device [,path]

RM[I][D] device [,path], location

ZM[I][D] [path,] location

MR[I][D] location [,path], device

MS[I][D] location [,path]

B-2

ASSEMBLER INSTRUCTIONS

e - denotes general assembly language expression

Data Def in it ion

- transient parameter

- text

- word values

- packed bytes

Radix Selection

- octal

- decimal

Set Location

- general

- reserve n words

Program Terminators

- end tape segment

- end program

symbol = e

ASC dc1c 2c3 •.. cnd

WRD e [, e] ...

PKB e,e

OCTAL

DECIM[AL]

LOC e

LOC . + n

EOT

END

APPENDIX C

STANDARD SYMBOL TABLE

The following are the pre-defined parameters that are part of the assembler's

symbol table, to which user symbols are added.

INTENDED
CATEGORY

Device Addresses

Status Test Codes

Transmission
Path Codes

Pulse Output Codes

SYMBOL

ISR

TRP

SC

SWR

AX

AY

AO

MSR

HSR

HSP

TTI

TTO

AOV

sov
NOT

IRDY

ORDY

LNK

BOV

POK

Pl

Ll

Rl

CLL

STL

CML

HLT

VALUE

4

3

7

10

11

12

13

17

76

76

77

77

2

4

1

10

2

4

2

10

1

2

3

1

2

3

4

Cl

MEANING

Interrupt Status Register

Trap Register

Sequence Counter

Console Switch Register

Arithmetic Operator X-register

Arithmetic Operator Y-register

Arithmetic Operator

Machine Status Register

High=speed Reader

High-speed Punch

Teletype Input

Teletype Output

Arithmetic Overflow

Sum Overflow

Negation of Test Results

Input-ready Flag

Output-ready Flag

Bus Modifier Link

Bus Overflow

Power OK

Increment

Shift Left 1 Bit

Shift Right 1 Bit

Clear Link

Set Link

Complement Link

Halt Machine

C2

INTENDED
CATEGORY SYMBOL VALUE MEANING

Pulse Output Codes
ADD 0 Select AO "ADD" (continued)
AND 4 Select AO "AND"

OR 14 Select AO "OR"

XOR 10 Select AO "XOR"

STRT 1 General Start Pulse

CLIF 10 Clear Input Flag

CLOF 2 Clear Output Flag

!CF 1 Interrupt Control OFF

!CO 2 Interrupt Control ON

Data Test Codes ETZ 2 Equal to Zero

NEZ 3 Not Equal to Zero

GTZ 7 Greater Than Zero

GEZ 5 Greater Than or Equal to Zero

LTZ 4 Less Than Zero

LEZ 6 Less Than or Equal to Zero

Pseudo Codes NOP 0 No Operation

SYMBOL TABLE CAPACITY

The B revision of %BAS has 43
10

permanent symbols defined in it. The user

symbol table may be built up to lac. 76078 . Since symbols consist of three words

per symbol, the table has additional capacity for 19110 user defined symbols. The

number of symbols that make up the symbol table (including the permanent symbols)

is stored in NSMAX, loc. 63118 . For users with 8K of memory wishing to extend

their symbol table capacity down to loc. 176078 , for example, may do this by simply

changing the contents of loc. 6311 to 31008 . This would provide for up to 155710
user defined symbols. In summary:

LOG.

63118

63118

CONTENTS

3528

31008

BOTTOM OF SYMBOL TABLE

76078

176078

Any value may be calculated for this bottom location as follows:

NS MAX
8

(LA8-63128+1)/38 (NSMAX must be an integer)

C3

The number of user symbols (in octal) available is calculated as follows:

II user symbol8 = NSivIAX8 - 538

There were several minor bugs in the assembler, all of which have been

taken care of in the B revision tape.

0

____ om....____ ___ _

0

~m GRI Computer Corporation
'-....::/

320 NEEDHAM STREET, NEWTON, J\~ASSACHUSETTS 02164

TEL: {617) 969-0800

	001
	002
	003
	004
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	4-01
	4-02
	4-03
	4-04
	5-01
	5-02
	5-03
	5-04
	5-05
	A-01
	A-02
	B-01
	B-02
	C-01
	C-02
	C-03
	xBack

