
0

source
text

editor

~ GRI Computer Corporation
320 NEEDHAM STREET, NEWTON, MASSACHUSETTS 02164

Price $3.75

GRl-909

Source Text Editor

GRI Computer Corporation, 320 Needham Street, Newton, Massachusetts 02164

Copyright © 1971 by GR! Computer Corporation

72-44-001-B
0371

CONTENTS

1 THE GRI-909 SOURCE TEXT EDITOR ... 1-1

1.1 Introduction . • • . 1-1

1. 2 System Conventions . • . • • 1-1

1. 3

1.4

Source Text Line (1-2)
Error Recovery (1-2)
Source Text Block (1-3)

Modes of Operation

Command Mode (1-4)
Text Mode (1-4)

Command Structure

1-3

1-4

1. 5 Off-Line Operations . 1-5

2

2.1

2.2

OPERATING COMMANDS

Editing Commands

Append (2-2)
List Buff er (2-2)
List Line (2-3)
List Lines (2-4)
Get Line(s) (2-4)
Delete Line (2-5)
Delete Lines (2-5)
Kill Buffer (2-6)
Insert Line (s) (2-7)
Change Line (2-8)
Change Lines (2-8)
Move Line (2-9)
Move Lines (2-10)
Exchange Within Lines
Paper Tape Commands

Punch Buffer (2-15)
Punch Line (2-16)
Punch Lines (2-17)
Block (2-17)

(2-11)

Punch Blank Tape (2-17)
Read Block (2.-18)
Read Lines (2-19)
Skip Block (2-19)
Skip Lines (2-20)
Copy Tape (2-20)
Copy Blocks (2-20)

2-1

2-1

2-15

iii

iv

3 USAGE NOTES

3.1 Character Set

3.2 Error Messages

Connnand Errors (3-2)
Line Truncation (3-2)
Full Buff er (3-3)

3-1

3-1

3-2

3.3 Search Strings • • • . . • . . • • • • • • • . • • • • • • . • • . • 3-3
Correcting Errors Within (3-4)

APPENDICES

A Operating Instructions Al

B Command Summary Bl

c Error Messages•...................................... Cl

·c HAP TE R 0 N E

THE GRI-909 SOURCE TEXT EDITOR

The GRI-909 software package includes a comprehensive source text editor which

provides the user with a convenient method for

generating source text on paper tape (the source

program input to an assembler is on paper tape)

correcting and updating source text tapes through

keyboard control from the teletype

listing source text tapes on the teletype

1.1 INTRODUCTION

Source text editors eliminate most of the problems associated with the use of

paper tape as an input medium. These problems arise from the limited flexibility

of teletypewriters and from the inability to re-arrange information on paper tape.

The GRI-909 EDITOR uses core memory as an extension to the teletype and allows the

manipulation of source text in distinct and independent one-line units.

The EDITOR reads lines of text (from paper tape or the ASR keyboard) into a

buffer in core memory where they are available for examination or manipulation. In

particular, the EDITOR supports both line and content-oriented commands to delete,

correct, preserve or add ASCII-coded text on source tapes. The lines entered into

the buffer may be individually operated upon in order to prepare a correct sequence

of text lines before they are punched onto paper tape.

1.2 SYSTEM CONVENTIONS

The GRI-909 EDITOR is designed as a part of a larger software system com

prised of the EDITOR and the FAST and BASIC Assembler Programs. These programs all

1-1

1-2

operate on source text and support the same conventions regarding its organization

as well as error-recovery mechanisms. These conventions apply throughout the system

to text being input either through the ASR keyboard or by a paper tape reader.

Source text is organized into variable length segments called lines and blocks.

Certain special characters are reserved to delimit lines and blocks and others

permit error recovery within a line.

1.2.1 SOURCE TEXT LINE

A source text line contains up to 80 ASCII characters and is terminated by a

carriage-return, denoted by A· The A may optionally be followed by a line-feed

character. The line is the basic unit of source text which is operated upon by

either the EDITOR or an Assembler.

When the EDITOR inputs a line through the keyboard, the user does not type a

line-feed after the carriage-return. The EDITOR inserts a line-feed after the

carriage-return when punching paper tape so that the tape may be listed off-line.

The EDITOR and the Assemblers ignore the line-feed when it is encountered on paper

tape.

1 .2.2 ERROR RECOVERY

When source text is input to one of the system programs, the special characters

rubout and back-arrow (+) are used to facilitate error recovery within a line of

text.

When ruhout is encountered, all previous characters in the current line will

be ignored. The current line begins with the next character after the rubout.

The back-arrow, ~, causes the input routine to ignore (backspace over) the

character which immediately precedes it. Two or more consecutive + characters

cause the input routine to ignore the corresponding number of characters preceding

the first +.

Note that the error recovery characters apply only to text contained within

the current line.

1-3

1.2.3 SOURCE TEXT BLOCK

A source text block contains one or more lines followed by a block terminator.

The number of lines in a block is at the discretion of the user - usually a block

will consist of a logical sequence of lines such as a separate source program routine

or a major segment of a routine. In order to facilitate subsequent re-editing of

a source tape, its blocks should be of manageable length; that is, at least short

enough so as to be wholly contained in the EDITOR's memory buffer (approximately

3600 characters assuming 80 character lines). The size of the buffer may be ex

panded for 8K machine users to extend down into the upper memory stack by changing

LOC 16238 from 1702448 (4K machines) to 1602448 (8K machines) giving the user ap

proximately 11,340 characters, assuming 80 character lines.

Lines within a block are implicitly numbered in decimal notation, beginning

with line number 1. Line numbers are not punched onto a source tape. When a

listing is generated by a GRI-909 Assembler, these implicit line numbers are printed

to the left of source text lines. When the block terminator is encountered, the line

numbering begins again at 1. Note that when a block is read into the EDITOR's buffer

the lines contained therein have the same implicit numbers as appeared on the assembly

listing.

The block terminator, which immediately follows the last line in the block, is

either the ASCII alt mode character or the ASCII esc character. On a standard tele-

type, the block terminator key is located directly above the ctrZ key on the left

side of the keyboard.

Blocks of source text are preceded and followed by at least four inches of

blank tape. This blank tape is ignored by system program input routines.

1.3 MODES OF OPERATION

The EDITOR is structured to operate in two distinct modes:

COMMAND Mode

TEXT Mode

In order to select an EDITOR function, the user enters the COMMAND mode. In

this mode, the user may issue any of a pre-defined set of commands (described in the

next chapter). The EDITOR interprets the command and takes all actions necessary

1-4

for command execution. Many of the commands cause the EDITOR to enter the TEXT mode.

In this mode, the user may input source text directly into the memory buffer.

Depending on the command, text is entered either through the teletype keyboard

or from a paper tape reader.

1.3.1 COMMAND MODE

At the completion of the initialization procedure (see Appendix A), the EDITOR

outputs an asterisk (*) to the teletype and places itself in CO:MMAND mode. In this

mode, pre-defined user commands are communicated through the teletype keyboard. At

the termination of each command execution, the EDITOR re-enters CO:MMAND mode and

causes output of an asterisk to the teletype.

1.3.2 TEXT MODE

Certain commands such as appending, inserting, or changing the lines in the

memory buffer cause the EDITOR to enter the TEXT mode. The EDITOR, when the TEXT

mode is entered, types a 3-digit line number on the teletype (except when the text

is appended from paper tape). This line number corresponds to the position of a

line location pointer within the memory buffer. In the TEXT mode, the user may

type consecutive lines of source text. At the beginning of each line of source

text, the EDITOR updates the line location pointer and prints the corresponding

line number. At any time, the user may exit from the TEXT mode by typing the

alt mode or esc character (alt/esc) on the teletype keyboard. This causes the

EDITOR to return to the COMMAND mode.

1.4 COMMAND STRUCTURE

EDITOR commands, which are entered from the keyboard, are of the following

general form:

[COMMAND CHARACTER] [OPTIONAL CO:MMAND PARAMETERS]

Spaces are not allowed in a command and optional command parameters are separated

by corrunas or, in the case of the MOVE and EXCHANGE commands, by a colon.

The command character is selected from the set of valid commands which are

described in the following chapter. Parameters each denote line numbers or counts

and may be composed of:

a. a string of ASCII characters enclosed in ctrl-L characters and

denoting the first line number in which the string is contained. The

ctrl-L character is echoed by the editor as the character \

(backslash) to avoid output confusion with the form-feed code

which is also defined as ctrZ-L The character backslash

which is generated by a shift-L is also echoed as \ but does

not serve to delimit a character string as does ctrZ-L

b. a line number (not greater than 999) denoting itself

c. the special character, period (.) which denotes the line

number corresponding to the current position of the line

location pointer, i.e. to the line last operated on.

d. the special character, slash (/) which denotes the line

number corresponding to the last line in the source buffer

e. a decimal number count (not greater than 32,767) denoting itself

1-5

Parameters may also be composed of meaningful combinations of the above separated

by the arithmetic operators pl-us (+) or minus

Examples of valid parameter forms are:

10

~
.+2

/-5

3,7

3,7:15

(\ ctrl-L)

\HLt\ +5, /-2 (/ = last line number)

1.5 OFF-LINE OPERATIONS

It is sometimes necessary to list a source tape off-line. Paper tapes prepared

using the GRI-909 EDITOR may be listed off-line using any ASR Teletypewriter. The

off-line listing will look exactly the same as if paper tape were listed on-line with

the EDITOR using the LIST conunand, except line numbers will not appear before each

line of printout.

Source tapes for input to one of the system programs may be prepared off-line.

The user types source lines on an ASR keyboard according to the conventions outlined

in section 1.2. The first block on the source tape must be preceded by a few inches

1-6

of blank tape.

Note - source tapes may be prepared on any teletype regardless of whether it

generates 8-bit or even-parity ASCII code. Although GRI-909 Software recognizes

only 8-bit ASCII code internally, text input routines logically OR in the high

order bit before.processing.

C H A P T E R T W 0

OPERATING COMMANDS

Commands to the EDITOR are grouped under two general headings

Editing Commands

Paper Tape Commands

An explanation and examples of the commands in the EDITOR command repertoire

are given in the following sections.

When the EDITOR is in COMMAND mode and the user types a command or command

parameter incorrectly on the keyboard (see 1.4), the EDITOR will respond with an

error message consisting of a question mark (?) and the command will be ignored.

Similarly, if the user desires to abort a command before execution of the

command is initiated (i.e., before the carriage-return is typed), the user need only

end the command statement with an invalid character. An exception to this rule

occurs when the user is typing a source string enclosed in ctrl-L 's. The alt/esc,

in this case, is the only character which will cause an abort.

2.1 EDITING COMMANDS

The following commands permit expanding, altering, deleting, and listing text

in the memory buffer.

Each section, containing one command, includes a detailed command description

and, in most cases, an example of command operation.

2-1

2-2

2.1 .1 APPEND

Function: ADD INCOMING TEXT FROM ASR KEYBOARD TO CONTENTS OF MEMORY BUFFER

Command: A'l

The EDITOR enters TEXT mode, the line location pointer is moved to the first

unused position in the memory buffer (line 1 if the buffer is empty), and the

corresponding line number is output to the teletype. User input from the keyboard

is appended to the memory buffer until the alt/esc is struck or until the buffer

becomes full.

EXAMPLE: Assume the source buffer to be empty prior to entering the following

command to the teletype. The information printed to the right is comment information

for example clarification.

*
AJ
001 AAAAA'l
002 BBBBB'l
003 CCCCC'l
004 DDDDDA
005 EEEEEE+~
006 FFFFF'l
007 HHHHHrubout
007 GGGGG'l
008 HHHHH'l
009 IIIIIl
010 JJJJJ'l
Oll alt/esc

*

APPEND command enters TEXT mode.
Line numbers are printed by the
EDITOR. Source text is entered by
the user.

Back-a:rarow deletes preceding character.

Rubout deletes entire line.
Note line no. is repeated.

* indicates return to COMMAND mode.

The aZt/esc places the EDITOR back in COMMAND mode. Upon termination of the

APPEND command, the line location pointer, denoted by period(.) (see section 1.4),

is set to the last line in the memory buffer, i.e. line number 10 in the example above.

2.1.2 LIST MEMORY BUFFER

Function: LIST THE CONTENTS OF ENTIRE MEMORY BUFFER

Command: Ll

The contents of the entire memory buffer are listed on the teletype. Line

numbers are inserted at the beginning of each line of listing. Upon termination of

2-J

the LIST command, the line location pointer is set to the beginning of the last line

in the memory buffer.

EXAMPLE:

2.1.1.

Assume the memory buffer to contain the text from the example in

*
L~
001 AAAAA
002 BBBBB
003 ccccc
004 DDDDD
005 EEEEE
006 FFFFF
007 GGGGG
008 HHHHH
009 IIIII
010 JJJJJ

*

The EDITOR lists the contents of
the memory buff er on the teletype
writer.

The line location pointer is set to line number 10.

Note that the + and text input in the

previous example.

2.1.3 LIST LINE

Function: LIST LINE (denoted by m)

Command: Lm'

The contents of the line denoted by parameter m are listed on the teletype.

A line number is inserted at the beginning of the line of listing. Upon termination,

the line location pointer is set to the beginning of the line listed.

EXAMPLE:

*
LS~
005 EEEEE

*
or

*
L \EEE\~
005 EEEEE

*

Assume the memory buffer to contain the text from the example in 2.1.2.

(\ = ctrl.,...L)

List line 5.

List the first line in the memory buff er
which contains the string "EEE".

2-4

2.1 .4 LIST LINES

Function: LIST LINES (denoted by m through n, inclusive)

Command: Lm,n~

The contents of the line denoted by parameter m through the contents of the

line denoted by parameter n are listed on the teletype. A line number is printed

at the beginning of each line of listing. Upon termination of the LIST lines

command, the line location pointer is set to the line number of the last line listed.

EXAMPLE:

in 2 .1. 2.

Assume the source buffer again to contain the text from the example

or

* L \AA\ , \ccc \ ~
001 AAAAA
002 BBBBB
003 ccccc
*

*
Ll, 3~
001 AAAAA
002 BBBBB
003 ccccc
*

List the first line in the memory
buffer containing the string "AA"
through the line containing the
string "CCC".

List lines 1 through 3.

The line location pointer is set to line 3 of the text in the memory buffer.

2.1.5 GET LINE(S)

Function: GET LINE(S) (denoted by character string)

Command: c\character string\;) <\ = ctrl-L)

The parameter associated with the GET is always a string of characters enclosed

in ctrl-L 's. All lines in the memory buffer containing this string are listed

on the teletype. Upon termination, the line location pointer is set to the beginning

of the last line listed.

EXAMPLE: Assume the source buff er to be empty prior to entering the following

commands.

*
A~
001 ABB~
002 BABBB ~
003 BAAB~
004 alt/esc

*
G\A\~
001 ABB
002 BABBB
003 BAAB
*
G\BB\~
001 ABB
002 BABBB

*
G\BBB \~
002 BABBB

*

Enter 3 lines.

Get all lines containing "A".

Get all lines containing "BB".

Get all lines containing "BBB".

After the last GET the line location pointer is set to line 2.

2.i.6 DELETE LINE

Function: DELETE LINE (denoted by m)

Command: Dm~

2-5

The contents of the line denoted by parameter m are deleted from the memory

buffer. All lines in the buffer following this one (if any) are moved up to fill

the vacated space. Upon termination of the DELETE line command, the line location

pointer is set to the beginning of the line preceding the one deleted. All lines

moved up are re-numbered according to their new relative position in the buffer.

2.1 .7 DELETE LINES

Function: DELETE LINES (denoted by m through n, inclusive)

Command: Dm,n~

The contents of the line denoted by parameter m through the contents of the line

denoted by parameter n are deleted from the memory buffer. All lines in the buffer

following the last one deleted (if any) are moved up to fill the vacated space. Upon

termination of the DELETE lines command, the line location pointer is set to the

line preceding the first one deleted.

2-6

EXAMPLE:

example in 2.1.2.

*
D/-4,9~

*
L~
001 AAAAA
002 BBBBB
003 ccccc
004 DDDDD
005 EEEEE
006 JJJJJ

*

Assume the contents of the memory buff er to be the ten lines of the

Delete lines 6 through 9, (/ denotes
the last line, number 10)
List to show buffer contents.

The original contents of lines 6 through 9 have been deleted from the memory

buffer. The characters formerly comprising line 10, 'JJJJJ', have been moved to line

6.

Note - Since lines moved up are re-numbered, the successive deletion of non

sequential lines is facilitated by making the deletions in reverse numeric order

(i.e., from bottom up).

2.1 .8 KILL MEMORY BUFFER

Function: KILL THE CONTENTS OF THE ENTIRE MEMORY BUFFER

Command: K~

The entire contents of the memory buff er are deleted and the position of the

line location pointer is set to the beginning of the buffer (line 1).

EXAMPLE:

commands.

*
A~
001 AAAAA)
002 BBBBB~
003 CCCCC)
004 DDDDD~
005 aZt/esc

*
K~

* Ln
*

Assume the source buff er is empty prior to entering the following

Build a four-line memory buffer.

Kill the buffer contents.

List the entire buffer contents.

The EDITOR replied to the LIST command with a question mark (?) since the

memory buffer is empty and cannot be listed to the teletype.

2.1.9 INSERT LINE(S)

Function: INSERT LINE(S) BEFORE LINE (denoted by m)

Command: Im~

The EDITOR enters the TEXT mode and types out the line number corresponding

2-7

to the parameter m. The user inputs one or more lines (through the keyboard) which

are inserted into the memory buff er at this point. The insertion causes lines

following those typed in to be moved down and renumbered. The command

terminates and COMMAND mode is entered if alt/esc is struck or if the memory buffer

becomes full. Upon termination, the line location pointer is set to the line number

of the last line inserted.

EXAMPLE:

commands.

*
A~
001 AAAAA'd
002 BBBBB)
003 EEEEE)
004 alt/esc
;'c

' \
I"'EE'~
003 CCCCC)
004 DDDDD)
005 alt/esc

*
L~
001 AAAAA
002 BBBBB
003 ccccc
004 DDDDD
005 EEEEE

*

Assume the memory buffer is empty prior to entering the following

Build a three-line memory buffer.

Insert new lines before the first
line containing the character
string "EE".

List the buffer as modified.

The INSERT command given above is equivalent to I3,.

2-8

2.1 .10 CHANGE LINE

Function: CHANGE LINE (denoted by m)

Conunand: Cm~

The contents of the line denoted by m are deleted from the buffer, the EDITOR

enters the TEXT mode, and the line number corresponding to m is output to the

teletype. The user inputs one or more lines (through the keyboard) which are

inserted into the buffer at this point. The command terminates and COMMAND mode is

entered if aZt/esc is struck or if the buffer becomes full. Upon termination, the

line location pointer is set to the line number of the last line inserted.

A CHANGE connnand is equivalent to a DELETE followed by either an INSERT or an

APPEND.

EXAMPLE:

*
C6~
006 11111~
007 22222~
008 aU/esc

*
L~
001 AAAAA
002 BBBBB
003 ccccc
004 DDDDD
005 EEEEE
006 11111
007 22222
008 GGGGG
009 HHHHH
010 IIIII
011 JJJJJ

*

Assume the buffer to contain the text from the example in 2.1.2.

Change 1 ine 6.

List new contents.

2. 1. 11 CHANGE LINES

Function: CHANGE LINES (denoted by m through n, inclusive)

Conunand: Cm,n~

The contents of the lines denoted by m through n are deleted from the buffer,

the EDITOR enters the TEXT mode, and the line number corresponding to m is output to

2-9

the teletype. The user inputs one or more lines which are inserted at this point.

Command termination is as above (2.1.10).

EXAMPLE:

*
C/-3,/-U
008 88~
009 99~
010 alt/esc

*
C\B \, 6~
002 BBB~
003 aZt/esc

*
L~
001 AAAAA
002 BBB
003 22222
004 88
005 99
006 JJJJJ

*

2.1.12 MOVE LINE

Assume the buffer to be as at the end of the previous example.

List new contents~

Function: MOVE LINE (denoted by m) BY INSERTING BEFORE LINE (denoted by p)

Command: Mm:p~

The contents of the line denoted by parameter m are inserted at a position in

the memory buffer denoted by parameter p. The line is deleted from its original

position.

EXAMPLE:

commands.

*
A~
001 AAAAA~
002 BEEBE~
003 ccccc~
004 EEEEE~
005 FFFFn
006 DDDDD~
007 alt/esc

*
M\DD\: 4-

Assume the memory buff er is empty prior to entering the following

Build a six-line memory buffer.

MOVE the first line containing the
character string "DD" to before line
number 4.

2-10

*
L~
001 AAAAA
002 BBBBB
003 ccccc
004 DDDDD
005 EEEEE
006 FFFFF

*

List the buffer contents.

2.1 .13 MOVE LINES

Function: MOVE LINES (denoted by m through n, inclusive) BY INSERTING

BEFORE LINE (denoted by p)

Command: Mm,n:p'

The contents of the line denoted by parameter m through the contents of the

line denoted by parameter n are inserted at a position in the memory buffer denoted

by parameter p. The lines are deleted from their original positions.

EXAMPLE: Assume the buffer contents to be as at the end of the previous

example (2.1.12).

*
Ml, .+2: /j
*
L~
001 DDDDD
002 EEEEE
003 AAAAA
004 BBBBB
005 ccccc
006 FFFFF

*

Move 3 lines to before last line_

List the buffer contents.

Note that when period (.) is encountered in the second parameter, it takes

on the value denoted by the first parameter.

EXAMPLE: Assume the buffer contents as above. To move lines 1 and 2 to

*
M3,/ :ll
*
L~
001 AAAAA
002 BBBBB
003 CC CCC
004 FFFFF
005 DDDDD
006 EEEEE

the end of the buffer

Note this was accomplished by moving the last half of the buffer before

the beginning.

2.1 .14 EXCHANGE

2-11

FUNCTION: EXCHANGE, in the lines m through n inclusive, the new character string,

a, for the old character string starting at b and ending at c.

COMMAND: Xm,n: \a \,b,c}

m and n are parameters that define the lines to be operated on. The first

field, a (delimited by ctrl..,.L 's), is always a character string. A null string

(no characters) may be denoted by two consecutive ctrl-L 's with no ASC characters

in between, e.g.\\ denotes a null string. b and c may be either character

strings (delimited by ctrl-L's) or integers and describe the old string in the

line(s) to be replaced by the character string, a, according to the following

conventions:

a) If b is a character string, the old string starts at the beginning of

b and ends (if no c field) at the end of b.

b) If b is an integer, the old string starts and ends (if no c field) at

the bth character in the line(s). ~means in front of the first charac

ter in the line.

c) If c is a character string, the old string end is further extended to

2-12

the end of c. The search for the character string c begins with the

character following the end of b.

d) If c is an integer, it defines the length of the old string by the

number of consecutive characters specified beginning at the beginning

of b.

Note: ·Tue command allows any character to be used to separate the

fields a, b, and c which are separated by commas in the command format

above.
b and c can each be a maximum of 15 characters, not including delimiters.

Shott forms of the command can be used by leaving out unnecessary parameters as

shown by the following format variations~ e.g.

Xm,n:\a\ ,b~

would in lines m and n inclusive, exchange the new string a for the old string

b. b may be a character string delimited by ctPZ~L 's or an integer (i.e.

insert the new string a in place of the bth character). Or,

Xm:\a \,bA

would in line m, exchange string a for the old string defined by parameter b.

EXAMPLES:

Suppose the text contains:

009 MSI 0 ,PIA

then,

X9 :\COUNT:\, 0 A changes line 9 to :

009 COUNT:MSI 0,PlA

The carriage return may be used as a character inside the delimited string.

NOTE: It is not possible to remove this character from the text buffer. The

assemblers require this character as a line delimiter and so %STE will detect

an error if the X command attempts to delete it. Hence, if a carriage return

appears in field b or c, it must also be part of the character string a.

EXAMPLE: Suppose line 5 of the text buffer contains

005 MSI 0 ,PIA

then

XS :\ ~ !NCR CTRl

\,\A

\ changes line 5 to

005 MSI 0,Pl;INCR CTRl

EXAMPLE: Suppose line 10 of the text buffer contains

010 ABCDEFGABCXYZl

then

010 ABC**CXYZl

EXAMPLE: Suppose line 21 of the text buffer contains

021 C AX Pl;---VALUEl

then

X21 ~\ \, 9 , 2) changes line 21 to

021 C AX Pl~-VALUEl

EXAMPLE: Suppose line 3 of the text buffer contains

003 ABCDEFGABCXYZ~

then

X3:**\, \cx\~3)
003 ABCDEFGAB**ZA

2-13

2-14

EXAMPLE1 Suppose line 7 of the text buffer contains

007 LOOP:AY TO AXA

then

X7 :\ Pl \ ,BA changes line 7 to

007 LOOP:AY Pl TO AXA

The most often useful form of the command is when field b is a character string

enclosed in ctrZ-L's and there is no field c. In this case, the first occurrance of

the character string b is replaced by the character string a in the line(s) speci-

fied, e.g. the last eKample above could have been done as

X7: \ Pl \ ,\ \A also changes line 7 to

007 LOOP:AY Pl TO AX~

Note the space on either side of the Pl enclosed in ctrZ-L's in the last two

examples. Both b fields specify deleting a space which is necessary to replace.

One can also use this command to change all references to a label in a buffer
'

e.g. Xl,/: \LABL\,\LABEL\A would replace the first (if any) occurrance of LABEL in

each line of the text buffer with LABL. (It is a good idea to issue a G LABEL\ first

to see if this is precisely what you want to do.)

A line can be truncated by replacing the character string b by a carriage return,

e.g. for the last line 7 above:

changes line 7 to 007 LOOP:AY PlA

2-15

2.2 PAPER TAPE COMMANDS

All EDITOR commands so far have been concerned with filling and manipulating the

contents of a memory buffer using only the teletype keyboard as the input device.

The following sections explain how the contents of the memory buffer are read from

or punched onto paper tape.

In general, the procedure for punching out a source tape depends largely on the

user's particular requirements. The EDITOR provides the user with commands which

help to satisfy these requirements. These commands enable the user to copy entire

tapes or portions of tapes, to punch lines to tape from the memory buffer, to punch

the entire contents of the memory buffer to tape, to punch blank tape (leader and

trailer), and to punch a paper tape into distinct and manageable blocks.

In this last regard, it is often convenient to punch a paper tape into blocks

or sections. In other words, the user may wish to separate certain portions of a

paper tape (subroutines, etc.) with a special block mark character which the EDITOR

provides (the alt/esa character). On input, when either the FAST or BASIC Assembler

Program encounters the block mark, an internal line location pointer is reinitial

ized and the next sequential line of assembler listing printout will contain 001 as

its line number. This insures consistency between EDITOR and assembler listings.

2.2.l PUNCH MEMORY BUFFER

Function: PUNCH MEMORY BUFFER TO PAPER

Command: P~

The entire contents of the memory buff er are punched onto paper tape through the

appropriate output device. The contents of the memory buffer are not deleted and

remain available. The appropriate output device is selected by setting the Switch

Register on the user console; bit 14 in the UP position indicates output on the

high-speed punch, the DOWN position indicates teletype output.

Upon termination of this command, the line location pointer is set to the last

line punched from the text buffer.

Note - In the paper tape command examples, items enclosed in quotes are manual

operations performed by the user.

2-16

EXAMPLE: Assume the source buffer to contain the text from the example in

2.1.2. Assume also that bit 14 of the Switch Register is set in the DOWN position

(indicating teletype output) and that the teletype punch is in the OFF condition.

*
p~ "set low speed punch in ON condition"~
AAAAA
BB BBB
ccccc
DDDDD
EEEEE
FFFFF
GGGGG
HHHHH
II III
JJJJJ "set low speed punch in OFF condition")

*
The entire contents of the memory buff er are listed on the teletype as they are

output to the low speed punch. This is a function of the ASR device. The carriage

return (or any character on the teletype keyboard) must be struck innnediately after

the low speed punch is set in the ON condition and once again after the low $peed

punch is set OFF. This safety procedure insures that the punch is off while the

user is typing commands on the teletype keyboard (if the low speed punch were set ON,

the commands as well as the input text would be punched on paper tape).

EXAMPLE: Assume the memory buffer contains the text inserted in section 2.1.2.

Assume output is to the high-speed punch (bit 14 of the Switch Register is set in the

UP position).

*
N
*
When the high-speed punch is the output device, the contents of the memory

buffer are not listed on the teletype and the safety procedure described above does

not apply.

2.2.2 PUNCH LINE

Function: PUNCH LINE (denoted by m)

Connnand: Pm~

2-17

The contents of the line denoted by the parameter m are punched onto paper tape

through the appropriate output device. The contents of the line are not deleted from

the memory buffer and remain available to the user. The appropriate output device is

selected as in the PUNCH buffer command in 2.2.1.

2.2.3 PUNCH LINES

Function: PUNCH LINES (denoted by m through n, inclusive)

Command: Pm,n~

The contents of the line denoted by the parameter m through the contents of the

line denoted by the parameter n are punched onto paper tape through the appropriate

output device. The contents of the lines are not deleted from the memory buffer and

remain available to the user. The appropriate output device is selected as in the

PUNCH buffer command in 2.2.1. Upon termination of this command, the line location

pointer is set to the last line punched.

2.2.4 BLOCK

Function: PUNCH BLOCK MARK

Command: B)

A block mark alt/esc plus four inches of blank tape is punched onto paper tape

through the selected output device. This mark defines the end of a block of text on

tape. The output device is selected as in the PUNCH commands.

EXAMPLE: Assume bit 14 is in the UP position (high-speed punch) and that the

buffer is not empty.

*
p~ Punch the buff er on the high-speed punch.

*
B~ Punch the block mark and blank tape.

*

2.2.5 PUNCH BLANK TAPE

Function: PUNCH BLANK TAPE (length, in inches, is denoted by q)

Command: Tq~

2-18

q inches of blank paper tape are punched through the selected output device.

The default value of q is 10 (i.e., when q is unspecified, 10 inches of blank tape

are punched). The output device is selected as in the PUNCH connnands.

EXAMPLE: Assume bit 14 of the Switch Register is in the DOWN position (low-

speed teletype output).

*
TS~ "set low-speed punch in ON condition"'

"set low-speed punch in OFF position when tape is punched"'

*
Once again the ~ (or any character on the keyboard) must be struck innnediately

after the low-speed punch is set in the ON condition and also after the low-speed

punch is set OFF (in order to avoid punching commands along with text).

2.2.6 READ BLOCK FROM PAPER TAPE

Function: READ BLOCK FROM PAPER TAPE

Command: R'

A block of text is read from the appropriate input device. Text is read and

appended to the memory buffer until a block mark is encountered, the memory buffer

becomes full, or the end of tape is reached. The input device is selected by setting

the Switch Register on the user console prior to the READ connnand; bit 15 in the UP

position indicates high-speed reader input, the DOWN position indicates low-speed

teletype input.

Upon termination of the READ BLOCK command, the line location pointer is set to

the first line of text in the memory buffer.

EXAMPLE: Assume the memory buff er contains the text from the example in

2.1.2. Assume also that the paper tape in the input device contains three lines of ·

text, followed by a block mark, followed by three more lines of text. Bit 15 of the

Switch Register is in the DOWN position indicating low-speed input.

* "set the teletype reader in start position"
R~ Read one block from tape.

*
L. ~ List the last line read.
013 PAPER TAPE

*

L~ List the entire buffer.

001 AAAAA
002 BBBBB
003 ccccc
004 DDDDD
005 EEEEE
006 FFFFF
007 GGGGG
008 HHHHH
009 IIIII
010 JJJJJ
011 Tttr.:sr.; THREE LINES WERE CONTAINED IN ONE BLOCK
012 AND WERE READ FROM
013 PAPER TAPE

*

2-19

Note that only the three lines of text preceding the block mark character were

read from paper tape. A second READ conunand would now read in and append the second

block to the memory buffer.

2.2.7 READ LINES FROM PAPER TAPE

Function: READ LINES (the number of lines is denoted by q) FROM PAPER TAPE

Command: Rq~

q lines of text are read from paper tape through the selected input device.

Text is read and appended to the memory buffer until q lines are read, a block mark

is encountered, the memory buffer becomes full, or end The

input device is selected as in the READ block conunand. Upon termination of the READ

lines command, the line location pointer is set to the first line of text in the

memory buff er.

2.2.8 SKIP BLOCK

Function: SKIP A BLOCK ON PAPER TAPE

Command: S~

The paper tape is advanced through the input device until a block mark is

encountered (i.e., a block is skipped) or end of tape is reached. No text is added

to the memory buffer. The input device is selected as in the READ block command.

2-20

2.2.9 SKIP LINES

Function: SKIP LINES ON PAPER TAPE

Command: Sq~

The paper tape is advanced through the input device until q lines are skipped,

a block mark is encountered, or end of tape is reached. No text is added to the

memory buffer. The input device is selected as in the READ block command.

2.2.10 COPY PAPER TAPE

Function: COPY PAPER TAPE

Command: N~

The sequence PUNCH, BLOCK. KILL. and READ is performed until the input tape

is entirely copied to the output tape. If the text buffer is empty when this

command is entered, the first "PUNCH, BLOCK" sequence above will be skipped.

Upon termination of this command, the memory buffer is left empty.

2.2.11 COPY BLOCKS FROM PAPER TAPE

Function: COPY BLOCKS (the number of blocks are denoted by q) FROM PAPER TAPE

Command: Nq~

The sequence PUNCH, BLOCK. KILL. and READ is performed until either q blocks

have been copied from the input device to the output device or until the end of tape

is reached. q specifies the number of blocks which will be punched.

EXAMPLE: Suppose a user desires to skip over the first two blocks on an

input tape, copy the third block, skip over the fourth block, and then copy the

remaining input tape. The following sequence will accomplish this. Assume the input

device is low-speed teletype and the output device is high-speed punch.

* "set the reader in start position"
S' Skip first block.

*
S~ Skip second block.

*
Nl~

*
Copy third block. (Also reads in the 4th bloc~

2-21

Kill fourth block.

Copy remaining input tape.

C H A P T E R T H R E E

USAGE NOTES

This chapter presents further operating features of the EDITOR and

constraints imposed upon text input.

3.1 CHARACTER SET

GRI-909 systems programs operate on full 8-bit ASCII characters when

processing text. The text input routines logically OR in the high order bit

when reading characters ~ the characters read may, therefore, be in 8-bit,

7-bit, even parity or odd parity code. All characters except back-arrow~

rvhout~ and alt/esc are valid for text input. (C.f. note at end of section 3.3.)

A complete tabulation of teletype codes and the corresponding characters

is contained in Appendix F, "GRI-909 System Reference Manual". The character

codes which have special meaning to the EDITOR are:

215

212

337

(carriage-return) - Terminates a source text

line (see section 1.2.1).

_(linefeed) .- ignored when encountered after a

carriage-return. Generated on output after a

215 is either printed or punched.

Cback~row) - Used for error recovery within

a source text line (1.2.2).

3-1

3-2

377

375

233

(ruhout) - Also used for error recovery within

a source text line (1.2.2).

{alt-mode) - Terminates a source text block

(1.2.3). Also causes EDITOR to pass from

TEXT mode to COMMAND mode (1.3.2).

(esc) - Treated identically to the 375 code.

3.2 ERROR MESSAGES

3.2.1 COMMAND ERRORS

If the EDITOR is in the COMMAND mode and the user types a command or

a command parameter (1.4) incorrectly, the EDITOR responds with a question

mark (?) and ignores the command. Examples of errors detected are:

a. the command character itself is invalid,

b. a list, punch or edit command has been issued and the

buffer is empty,

c. a parameter contains an invalid character (such as a

letter in a numeric field),

d. a line parameter does not address a line in the buffer -

the value of the parameter is negative or is larger than

the number of the last line in the buffer,

e. in the form m,n (denoting line m through n) the value of

n is less than the value of m, or

f. in the form m,n:p for the MOVE command the value of p does

not lie outside the group m,n.

g. no match could be found for a search string enclosed in ctrZ~Lts.

3.2.2 LINE TRUNCATION
A source text line may contain up to 80 characters followed by a

carriage-return (1.2.1). A longer line read from paper tape is truncated

to 80 characters plus a carriage-return and "TR" is printed by the EDITOR

upon return to the COMMAND mode. The "TR" indicates that at least one line

read was so truncated. If an attempt is made to enter a line longer than

3-3

80 characters from the keyboard, a carriage-return is issued and the EDITOR

proceeds as if it had been typed.

3.2.3 FULL BUFFER

When in the TEXT mode and before an input line is accepted (from paper

tape or via the keyboard) the currently available buffer space is checked to

see if a maximum length line could be contained therein. If not, the EDITOR

prints the message "FULL" and returns to the COMMAND mode. Note that this

check applies also to any editing command that might increase the number of

characters currently in the buffer.

3.3 SEARCH STRINGS

Any parameter m, n or p in the forms

m

m,n

m.: p

or m,n:p

may consis~ of a series of operands separated by operators,+ or - (1.4). Such

an expression has the conventional algebraic meaning. An operand may be a

search string - a sequence of characters enclosed in ctrl-L 's (\) • The

value of a search string is determined via a search performed by the EDITOR -

it is the number (in the buffer) of the first line encountered during the search

that contains the given sequence of characters.

If a search string operand is encountered when evaluating the parameter

m or the parameter p, the EDITOR search is begun at the first line in the memory

buffer. During evaluation of n, this search is begun at the next line after

the one addressed by the value of m. In either case, the search is begun

immediately after the rightmost ctrt-L of the operand is typed. If the given

character sequence is located, the EDITOR rings the teletype bell indicating

that further parameter input may continue. If the search was unsuccessful, the

EDITOR responds with a question mark and returns to the COMMAND mode - the

partial command is ignored.

3-4

Since the line terminator {carriage-return) is stored at the end of each

line in the buffer, it is possible to include it as the last character of a

search string and thereby address a line that ends with a given sequence of

characters. Since the EDITOR echoes a carriage-return with itself and a

line-feed, the rightmost quote of the operand will appear on the next line of

printout.

NOTE: Since the character ctrl-L (\) has special meaning regarding the

definition of character strings, it may not be searched for in text.

3.3.1 CORRECTING ERRORS WITHIN SEARCH PARAMETERS

If an erroneous character has been typed in the string following the

opening ctrl-L, it may be corrected if the closing ctrl-L has not yet

been typed. Rubout will delete all characters in the string following the

opening ctrl-L and the entire string may be re-typed. The rubout is

echoed but causes no physical spacing on the teletype, so although the

corrected string follows the erroneous string on the typed copy, the inter-

nal buffer contains only the characters typed after the rubout. Back~rrow { +)

may also be used in the same way as when editing text input - successive

back-arr(Jl;)s deleting characters one by one from right to left. However, the

ctrl-L itself cannot be deleted to get out of this mode. This can only be

accomplished by typing the alt/esc key.

APPENDIX A

OPERATING INSTRUCTIONS

I. Load the text editor with the Absolute Loader.

II. Transmit "O" to SC, or, if restarting, transmit "2" to SC to preserve the

contents of the buffer.

III. Set console switches as follows:

Bit 15 selects text input device
Bit 14 selects text output device

UP = High-speed
DOWN = Low-speed

IV. Press START

The text editor will respond with an asterisk (*) indicating that it is in

the command mode, awaiting a connnand.

NOTE: A connnand such as GET, PUNCH or LIST which causes many lines to be

output during execution may be aborted before completion by de

pressing the space bar on the keyboard. The EDITOR returns to the

COMM.AND mode after the next line is printed or punched. The line

location counter will point to the last line processed. In the

case of PUNCH, it is a good idea to issue a 'L. ito get the line

number of the last line punched so that if it is desired to punch

the rest of the buffer at some later time, it can be done by issuing

a tpn,/' where n is the number of the line following the one listed

by the 1 L.'.

Bl

A P P E N D I X B

COMMAND SUMMARY

COMMAND1
'
2 FUNCTION

I/0
DEVICE 3 REFERENCE

A

B

Cm

Cm,n

Dm

Dm,n

Append text to buff er

Punch block mark

Change line m

Change lines m through n

K

p

K

K

2.1.1

2.2.4

2.1.10

2.1.11

Delete line m 2.1.6

Delete lines m through n 2.1.7

G\cc ... c \ Get (and list) all lines containing the string

Im

K

L

Lm

Lm,n

Mm:p

cc ... c

Insert line(s) before line m

Kill (delete)-buffer contents

List entire buff er contents

List line m

List lines m through n

Move line m by inserting before line p

T

K

T

T

T

Mm,n:p Move lines m through n by inserting before line p

Perform sequence R,P,B,K until input tape exhausted R,P

2.1. 5

2.1. 9

2.1.8

2.1. 2

2.1. 3

2.1. 4

2 .1.12

2.1.13

2.2.10

2.2.11

2.2.1

2.2.2

2.2.3

N

Nq

p

Pm

Pm,n

R

Rq

s
Sq

T

Tq

Perform sequence R,P,B,K q times

Punch entire buffer contents

Punch line m

Punch lines m through n

1"\ - - ..J
,__, - _,_

Kea.u D..l.UCK.

Read q lines

Skip block

Skip q lines

Punch 10" of blank tape

Punch q" of blank tape

R,P

p

p

p

R

R

R

R

p

p

....,, r
L.L.O

Xm,n:\a\,b,c Exchange characters b thru c for a in lines rn thru n

2.2.7

2.2.8

2.2.9

2.2.5

2.2.5

2.2.14

NOTES:

1. Commands are terminated by a carriage-return, ~-

2. Parameters m,n,p represent line numbers, q represents a count--
(see section 1.4.), a represents a ch~rac~er string, b & c represent integers
or character strings enclosed in ct~t~L s. _

3. The device concerned with text input, output (or sKip in S
commands) is identified as follows:

K - Keyboard
P - Selected punch
R - Selected reader
T - Teleprinter

Bits 14 and 15 of the console switch register select the punch and reader
respectively: UP selects high speed, DOWN selects teletype.

1. ?

2. TR

3. FULL

A P P E N D I X C

EDITOR ERROR MESSAGES

Cl

search string not found, illegal parameter, illegal command,

command requires text and text buffer is empty.

line truncated to 80 characters and a carriage-return.

text buffer full.

0

---.o ID _______ _

0

~ GRI Computer Corporation
320 NEEDHAM STREET, NEWTON, MASSACHUSITTS 02164

TEL: (617) 969-0800

	001
	002
	003
	004
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	3-01
	3-02
	3-03
	3-04
	A-01
	B-01
	C-01
	xBack

