HP 3000 Computer Systems U2 cackaro
TurboIMAGE

Reference Manual

HP 3000 Computer Systems

TurbolIMAGE
Data Base Management System

Reference Manual

() o

19447 PRUNERIDGE AVE., CUPERTINO, CA 95014

Part No. 32215-90050 Printed in U.S.A. 12/85
E1285

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not
be liable for errors contained herein or for incidental or consequential damages in connection with the
furnishing, performance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that
is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are
reserved. No part of this document may be photocopied, reproduced or translated to another language
without the prior written consent of Hewlett-Packard Company.

Copyright © 1985 by HEWLETT-PACKARD COMPANY

PRINTING HISTORY

New editions are complete revisions of the manual. Update packages, which are issued between editions,
contain additional and replacement pages to be merged into the manual by the customer. The dates on
the title page change only when a new edition or a new update is published. No information is

incorporated into a reprinting unless it appears as a prior update; the edition does not change when an
update is incorporated.

The software code printed alongside the date indicates the version level of the software product at the
time the manual or update was issued. Many product updates and fixes do not require manual changes
and, conversely, manual corrections may be done without accompanying product changes. Therefore, do
not expect a one to one correspondence between product updates and manual updates.

First Edition. Dec 1985 32215C.00.00

DEC 85
iii

LIST OF EFFECTIVE PAGES

The List of Effective Pages gives the date of the most recent version of each page in the manual. To
verify that your manual contains the most current information, check the dates printed at the bottom of
each page with those listed below. The date on the bottom of each page reflects the edition or subsequent
update in which that page was printed.

Effective Pages Date

all o .. Dec 1985

DEC 85

PREFACE

This manual describes the TurboIMAGE/3000 Data Base Management System for HP 3000 computers. *
It is the reference document for all persons involved in designing and maintaining a data base and for
application programmers writing data base access programs.

This manual describes enhancements to IMAGE/3000 based on hardware and operating system
improvements along with information previous IMAGE/3000 users will find familiar. The first three
sections will prove helpful for new users of the IMAGE data base structure. TurboIMAGE utilities are
covered in a separate section which includes syntax and examples. New recovery processes and enhanced
MPE user logging are covered in a section which provides information on maintaining the data base.

Designers of TurboIMAGE data bases will find knowledge of the HP 3000 MPE operating and file systems
useful in determining the amount of system resources, such as disc space and computation time, needed to
maintain a specific data base. Because access to IMAGE data bases requires the use of a host
programming language, application programmers need familiarity with at least one of the programming
languages available on the HP 3000 computer: COBOL, FORTRAN, Pascal, SPL, BASIC, or RPG.

In addition to this manual, you may need to consult the following manuals:

BASIC Interpreter Reference Manual 30000-90026
BASIC/3000 Compiler Reference Manual. 32103-90001
COBOL/3000 Reference Manual 32213-90001
Console Operator'sGuide 30000-90013
DS/3000 Reference Manwal. 32190-90001
EDIT/3000 Reference Manual 30000-90012
Error Messages and Recovery Manual 30000-90015
FORTRAN Reference Manual. 30000-90040
General Information Manual 30000-90008
Machine Instruction Set Manual. 30000-90022
MPE Commands Reference Manual 30000-90009
MPE Intrinsics Reference Manual. 30000-90010
NLS/3000 Reference Manual. 32414-90001
Pascal/3000 Reference Manual _ . 32106-90001
QUERY Reference Manual 30000-90042
RPG/3000 Reference Manual. 32104-90001
System Manager/System Supervisor Manual 30000-90014
Systems Programming Language Reference Manual. 30000-90025
TurboIMAGE Profiler User Guide. 36914-91001

* This manual is for 3000 systems operating on MPE V/E or later versions.

DEC 85
vii

CONVENTIONS USED IN THIS MANUAL

NOTATION

nonitalics

italics

[]

{}

DESCRIPTION

Words in syntax statements which are not in italics must be entered exactly as
shown. Punctuation characters other than brackets, braces and ellipses must also be
entered exactly as shown. For example:

EXIT;

Words in syntax statements which are in italics denote a parameter which must be
replaced by a user-supplied variable. For example:

CLOSE filename

An element inside brackets in a syntax statement is optional. Several elements
stacked inside brackets means the user may select any one or none of these elements.
For example:

[g] User may select A or B or neither.

When several elements are stacked within braces in a syntax statement, the user must
select one of those elements. For example:

A
B User must select A or B or C.
C

A horizontal ellipsis in a syntax statement indicates that a previous element may be
repeated. For example:

[,itemname]...;

In addition, vertical and horizontal ellipses may be used in examples to indicate that
portions of the example have been omitted.

A shaded delimiter preceding a parameter in a syntax statement indicates that the
delimiter must be supplied whenever (a) that parameter is included or (b) that
parameter is omitted and any other parameter which follows is included. For
example:

itema[itemb][,iteme]
means that the following are allowed:

itema

itema,itemb

itema,itemb,iteme
itema, ,iteme

DEC 85
ix

CONVENTIONS (continued)

underlining

—J

CONTROL) char

DEC 85

When necessary for clarity, the symbol A may be used in a syntax statement to
indicate a required blank or an exact number of blanks. For example:

SET[(modifier)]A(variable);

When necessary for clarity in an example, user input may be underlined. For
example:

NEW NAME? ALPHA

In addition, brackets, braces or ellipses appearing in syntax or format statements
which must be entered as shown will be underlined. For example:

LET var[[subscript]] = value

Shading represents inverse video on the terminal’s screen. In addition, it is used to
emphasize key portions of an example.

The symbol (____) may be used to indicate a key on the terminal’s keyboard. For
example, indicates the carriage return key.

Control characters are indicated by followed by the character. For example,
(CONTROLY means the user presses the control key and the character Y simultaneously.

CONTENTS

Section 1

INTRODUCTION

TurboIMAGE L 1-1
TurboIMAGE Enhancements. 1-2

General Overview 1-3

Howto Use TurboIMAGE. 1-6

How to Use ThisManual. 1-8

Data Base Personnel 1-8

Section 2

DATA BASE STRUCTURE AND PROTECTION

Data Elements. 2-1
Dataltems 2-1
Compound Data Items. 2-2
Data Types. 2-2
Data Entries 2-2
DataSets-. 2-2
Data Set Typesand Relations 2-2
Master Data Sets 2-3
Detail Data Sets. 2-4
Paths 2-4
Automatic and Manual Masters, . . 2-6
Manual vs. AutomaticDataSets. 2-7
Primary Paths. 2-7
Sortltems. 2-7
The ORDERSData Base 2-9
DataBase Files. 2-11
RootFile 2-11
DataFiles. 2-11
Record Size. 2-11
Blocks oL 2-11
Protectionof the Data Base 2-12
Privileged File Protection. _ 2-12
Account and Group Protection. 2-12
User Classesand Passwords 2-12
Read and Write Class Lists. 2-13
Access Modes and Data Set Write Lists. 2-14
Granting a User Class ACCESS. v v v v v oo i e 2-14
User Classesand Locking 2-19
Protection in Relation to Library Procedures. 2-19
Protection Provided by the TurboIMAGE Utilities. 2-19

DEC 85
Xi

CONTENTS (continued)

DEC 85
xii

Section 3
DEFINING A DATA BASE

Data Base Description Language.« . oo 3-1
Language CONVENLIONS v v v v v v v v e v o e e e e e e e e e 3-2
Schema SEIUCLUTE . - « v v v o o e e e e e e e e e e e e e e e e e e e 3-2

PASSWORD PART o i i i e e e it it e e e e e e e e e e 3-3

ITEM PART . . o o o o e 3-4
Data Item Length. o oot 3-5
TurboIMAGE and Program Language Data Types 3-6
Dataltemsof Type P o o o o it 3-8

Complex NUmberS v v o v v vt e 3-8
QUERY and Data Types. o oo v oo v oo e 3-8
Data Item Identifiers« . .« o o e e e e e 3-9

SET PART (MAStEr) o v e e e vt i e e e e e e e e e e e e e e e 3-10

SET PART (Detail). o o v o o i i e e i e et e e e e e e e e e 3-12
Master and Detail Search Items. o oo oo 3-13
Data Set Identifiers.« « o o b i e e e e e e e e e e e e e e e e e e 3-13

Schema Processor Operation.« bt e e 3-14
Creating the Textfile« c oo o vt n e 3-15
The Data Base Creator v v v o v v v v v v et et e e e e e e e 3~16

Schema Processor Commands v v e e b e e e e e e e e e 3-17
Continuation RecordS. v v v vt vt it e e e e e e e e e e e 3-17

SPAGE. e e e e e e e e e e e e e 3-18

STITLE . . . o o o o e e e e e e e e e e e e e e 3-19

SCONTROL i e e e et et e e e e e e e e 3-20
Selecting the Block Size.« .o oo 3-21

Schema Processor Qutput e e e e e 3-22
Summary Informationo oo 3-22
SChema BITOIS & v v v o e 3-24
Schema Processor Example oo oo oo oo e 3-24

Section 4

USING THE DATA BASE

Openingthe Data Base.« oo v v v v i v i e et 4-1
Data Base Control Blocks. & . v v v o v i ot e e 4-1
Passwords . . o v v v e 4-2
ACCESS MOAES © . o v o e 4-2

Concurrent AccesSs MOdES« v v v it b e e e e e e e e 4-3
Data Base OpErations « o ¢ v v v o v v v e oo e e e e 4-4
Selecting an Access Modeo n e 4-5
Dynamic Locking o oo 4-6
Transaction LOZEING . . .« « « v v v v v o b e e e e 4-7

Entering Datainthe DataBase 4-7

Sequence for Adding Entrieso e 4-7

CONTENTS (continued)

Access Mode and User Class Number. 4-8
SearchItems 4-8
Reading the Data 4-9
CurrentPath 4-9
ReadingMethods 4-9
Directed Access. 4-11
Locking, 4-11
Serial Access 4-11
Locking 4-12
Calculated Access. 4-12
Chained Access 4-12
Locking 4-13
Re-Reading the Current Record 4-13
UpdatingData., 4-14
Access Modes and User Class Number 4-14
Updating Search and Sort Items 4-15
Deleting Data Entries 4-15
Access Modes and User Class Numbers 4-16
Using the Locking Facility. 4-16
Lock Descriptors, 4-17
How Locking Works 4-18
Conditional and Unconditional Locking 4-18
AccessModesand Locking, 4-19
Automatic Masters L, 4-19
Locking Levels 4-19
Deciding on a Locking Strategy. 4-20
Choosinga Locking Level. 4-20
Locking at the Same Level. 4-20
Length of Transactions 4-21
Locking During User Dialog. 4-21
Choosing an Item for Locking 4-21
Examples of Using the Locking Facility 4-22
Issuing Multiple Callsto DBLOCK 4-24
Releasing Locks. 4-24
Using the Logging Facility. 4-25
What Logging Does. 4-25
How Logging Works 4-25
Logging and Logical Transactions 4-26
Transaction Numbers. 4-26
Logging and Process Suspension. 4-26
Obtaining Data Base Structure Information. 4-27
Special Uses of DBINFO 4-28
Checking Subsystem Flag. 4-28
Closing the DataBaseora DataSet. 4-28
Checking the Statusof a Procedure 4-29
Interpreting Errors. 4-30
Abnormal Termination, 4-30

DEC 85
Xiii

CONTENTS (continued)

DEC 85
X1V

Section §
TurboIMAGE LIBRARY PROCEDURES

Using TurboIMAGE Library Procedures. 5-1
Intrinsic NUmMDETS. v o v v e i e e e e e e e e e e e e e e e e e e e 5-3
Data Base Protection « . v v v v v v e e e e e e e e e e e e e e e 5-3
Unused Parameters o v v v v e e e e e e e e e e e e e e e e e e e 5-3
The StAtUS ATTAY . . & o v v v e e e e e e e e e e e e e e e e e 5-3

DBBEGIN e e e e e e e e e e e e e e e 5-4

DBCLOSE . . . o o o o e e e e e e e e e e e e e e e e e 5-6

DBCONTROL o et e e e e e e e e e e e e s e e e e e e 5-9

DBDELETE o o o i e . 5-11

DBEND o o e e e e e e e e e e e e e e e e 5-14

DBERROR. . . . o o e e e e e e e e e e e e e e e e e e e 5-16

DBEXPLAIN. ot i i e 5-25

DBFIND o e e e e e e e e e e e e e e e 5-28

DBGET . . . o o o e 5-30

DBINFO o e 5-34

DBLOCK. o e 5-40

DBMEMO . . . o i o e 5-48

DBOPEN. . . . e e e e e e e e e e e e e 5-50

DBPUT. . . . o o e 5-56

DBUNLOCK. . . . o i o e 5-61

DBUPDATE o o v e 5-63

Section 6

HOST LANGUAGE ACCESS

T @0) 210) (7 e 6-2
OpenDataBase.« o i v v i e e e e e e 6-2
AdAdEDITY o e e e e e e e e e e e e e e e e e e e 6-3
Read Entry (Serially) o o o v e e 6-4
Read Entry (Directly).« o o o i v v i e e e e e 6-5
Read Entry (Calculated) o i i e 6-6
Read Entry (Backward Chain) it o e e 6-7
Update Entry o« o o o i et e e e e e e e e e e 6-9
Delete ENtry v i i e e e e e e e e e e e e e e e e e e 6-10
Lock and Unlock (Data Base). v v v v v v v v v v i it e e e e e 6-11

CONTENTS (continued)

Request Data Item Information. 6-12
Rewind DataSet 6-12
Close DataBase. 6-13
Print Error Lo 6-13
Move Error toBuffer. 6-13
Sample Cobol Program 6-14
FORTRAN. o 6-20
OpenDataBase. 6-20
Add Entry 6-21
Read Entry (Serially) 6-22
Read Entry (Directly). 6-24
Read Entry (Calculated) 6-25
Read Entry (Forward Chain) 6-26
Update Entry. 6-28
Delete Entry 6-29
Lock and Unlock (Data Base). 6-30
Lock (Data Entries). 6-31
Request Data Set Information _ .. . 6-32
Rewind Data Set 6-33
CloseDataBase. 6-33
PrintError L 6-34
Move Error toBuffer. 6-34
PASCAL. 6-35
OpenDataBase. 6-38
AddEntry L 6-39
Read Entry (Serially) 6-40
Read Entry (Directly). 6-41
Read Entry (Calculated) 6-42
Read Entry (Backward Chain) 6-43
Locate and Update Entry. 6-44
Delete Entry 6-45
Lock and Unlock (Data Base). 6-45
Request Data Item Information. 6-46
RewindDataSet 6-46
Print Error 6-47
Move Error toBuffer. 6-417
CloseDataBase. 6-47
SPL . . 6-48

DEC

85
XV

CONTENTS (continued)

DEC 85
Xvi

BASIC o e e e e e e e e e e e e 6-61
String Variables. 6-66
Type-Integer Expressions as Parameters 6-66
Doubleword Integer Parameterso e e 6-66
Readlist, Writelist, Descriplist Parameters 6-66
The Status Parameter. v o v v v e e e e e e e e e e e e e 6-67
OpenDataBase. e 6-68
AddENITY . . . o e e e e e e e e e e e e e e 6-69
Read Entry (Serially) o o e 6-70
Read Entry (Calculated) i o e 6-71
Read Entry (Backward Chain)o 6-72
Update ENtry. o 0 v v it i e e e e e e e e 6-73
Delete Entry (with Locking and Unlocking) 6-74
Request Data Set Information 6-76
Rewind Data Set v v i e e e e e e e e e e e e e e 6-77
Close Data Base. v i v i i e e e e e e e e e e e e e e e e e e e 6-78
Print BITOT . . .« o o o e 6-78
Move ErrortoBuffer.« . . e e e e e e 6-79

RPG. e e e e e e e e e e e e e 6-80
RPG Programs and TurboIMAGE 6-80

Section 7

MAINTAINING THE DATA BASE

Restructuringthe Data Base. o e e e 7-2
Allowed Structural Changes« .« o o e e e e e e 7-2
Conditional or Unsupported Structural Changes 7-3

Making a Data Base Backup Copy. oo oo 7-4

Data Base Recovery Options. v v v v b bt b e e e e 7-5

Intrinsic Level RECOVEIY.« o o v v v v v v e e e e e e e e e e e e 7-6
Using ILR. o . o o i e e e e e e e e 7-7
Special Considerationso e e e 7-1

Logical Transactionsand Locking. oo v v v 7-8
Locking Requirements i oo e e e e 7-9
Program Abort and Recovery Considerations. 7-12
Recovery Tables.« o o i i i s e 7-15

Logging Installation e 7-17
1. Acquiring Logging Capability oL 7-17
2. Acquiring Log Identifier.o 7-18
3. Setting Log Identifierand Flags.o o 7-19
4. Building a Logfile for LoggingtoDisc. 7-20

CONTENTS (continued)

Displaying Logging Status. _ . 7-21
Maintaining Logging., 7-22
Starting the Logging Process 7-22
Changelog Capability. _. 7-23
Setting Data Base Enable/Disable Flags 7-25
Ending the Logging Maintenance Cycle 7-25
NotesonLogging 7-26
Roll-Back Recovery. 7-27
Intrinsic Level Recovery (ILR) Requirements. 7-28
Enabling the Roll-Back Feature _ 7-28
Disabling the Roll-Back Feature 7-29
Performing Roll-Back 7-29
RunCommand. 7-30
Other DBRECOV Commands. 7-30
Control Command _ . . _ . 7-31
FileCommand. 7-32
Print Command 7-32
Roll-Forward Recovery _ .. _. 7-33
Intrinsic Level Recovery (ILR) Requirements. 7-34
Enabling the Roll-Forward Feature 7-34
Restoring the Backup Data Base Copy 7-35
Recovering Data Without a Backup Copy 7-36
Performing Roll-Forward _ . . 7-36
Post-Recovery Procedures 7-37
Recover Command. 7-38

Run Command. 7-38
Other DBRECOV Commands. 7-39
ControlCommand 7-39
FileCommand. 7-40
Print Command 7-40

The MirrorDataBase _ . . 7-41
DBRECOV STOP-RESTART Feature. 7-42
NotesonLogging 7-43
Transferring Log Files 7-44
Performing DBRECOV STOP-RESTART 7-46
Stopping DBRECOV 7-46
Storingthe Data Bases. 7-47
Restarting DBRECOV 7-48
Aborting DBRECOV. 7-50
Purginga RESTART File 7-53

DEC 85
Xvii

CONTENTS (continued)

Section 8
USING THE DATA BASE UTILITIES

Utility Program Operation.« « v o v o o v v v vt b b oo 8-3
Backup Files« .« o i 8-3
Error MESSAZES . .« « v v v o v o o e e e e e e e e e e e e e e e e e e 8-3
DBLOAD . . . o i e e e e e e e e e e e e e e e e e e 8-4
OPEration . . o v« v v v vt e e e e e e e e 8-4
Console MESSAZES. . . . v+« v o vt e e e e e e e e e e e e e e 8-6
Using Control Y o o v i vt e e 8-6
DBRECOV . o o o e 8-8
OPEration « v v v v i e e e e 8-8
CONTROL . . . o e e e e e e e e e e e e e e e e s e e e 8-11
Record Numbers and Table Overflow 8-14
EXIT . o o o e 8-15
FILE . . o e 8-16
PRINT . o o o e 8-19
RECOVER ‘. . . v i e 8-20
CONTROL ,. . . . o o oot i e e e e e e e e 8-22
RUN & v e 8-24
DBRESTOR . . . ot o i o e 8-26
OPEration . . . v v v o v v o it i e e e e e e e e 8-26
Operation DISCUSSION v . o v v oot e 8-26
Console MESSAZES. - « « v ¢ v v v v v v e e e e e e e e e e e e e 8-27
DBSTORE o o o i e 8-28
OPEIation v v v v v v ot e b e e e e e e e e e e e e e 8-28
Operation DISCUSSION v v v v v v v v v et e e 8-29
LOSZING .« v v v v v e 8-29
Console MESSAZES. . . - v« v vt v e e e e e e e e e e e e e 8-30
DBUNLOAD. . . o i e 8-31
OPEration . . . v ¢« v v v o e e e e e e e e e e e e e e 8-31
Broken ChaifiS . . « « & v v v v v v e e e e e et e e e e e e e e e e 8-32
Operation DISCUSSION . . « « v v v v v v v v v e o e e e e e e 8-32
Console MESSAZES. . . . - v v v b e e e e e 8-34
Using Control Y o o o v vt e e e e 8-34

Writing EITOTS o« o v o i e e e e e e e e e e e e e 8-34

DBUTIL . . o ot e 8-37
OPETation« v v v i e e e e e e e e e e e e 8-37
Operation DiSCUSSION v v v v e v v bt e e e e 8-37
ACTIVATE . . . o o o o e e e e e e e e e e e e e e e s e e e e e e e 8-38

Unexpected Results oo 8-38
CREATE . . . o o e 8-40
DEACTIVATE . . . o o o i i e e e e e e e e e e e e s e e e e e e s 8-42
DISABLE . . . o o e 8-43
ENABLE o o e 8-45

DEC 85

xviii

CONTENTS (continued)

ERASE 8-47
EXIT . ..o 8-48
HELP. ... 8-49
MOVE 8-50
PURGE. 8-52

Unexpected Results 8-53
RELEASE. 8-54
SECURE 8-55
SET . oo 8-56
SHOW. 8-59

Format of Show Device List. 8-62

Format of Show LocksList 8~-62
VERIFY. 8-65

Section 9

USING A REMOTE DATA BASE

Access Through a Local Application Program. 9-2
Method L. oo 9-2
Method 2. 9-3
Method 3. L 9-4

Filename. 9-8
User Identification. 9-8
Activating a Data-Base-AccessFile. 9-10
Deactivating a Data-Base-AccessFile. 9-11
Referencing the DataBase. | 9-11
UsingQUERY 9-13

Section 10
INTERNAL STRUCTURES AND TECHNIQUES

Data Set Structural Elements _ . 10-1
Pointers. 10-1
DataChains. 10-1
MediaRecords | 10-1
Media Records of Detail DataSets 10-2
ChainHeads 10-2
Primary Entries. 10-2
Secondary Entries. 10-2
Synonym Chains 10-2
Media Records of Master Data Sets. 10-3
Blocksand BitMaps 10-4

DEC 85
XiX

CONTENTS (continued)

DEC 85
XX

Run-Time TurboIMAGE Control Blocks« o v v oo oo oo e e 10-5
Local Data Base ACCESS . . « « « o o v v o v v o o o o m e e e 10-5
Remote Data Base ACCESS. . .« « o v o o o oo v o m s o o oo m e 10-6
Control BIOCK SIZES . « « v ¢ v v v v e v e e e e e e e e e 10-7

Internal TeChniQues « « v o v v o v v v v b e e e 10-8
Primary Address Calculation o o oo s e e 10-8
Migrating SECONdATies o« o o oo e s e e e e 10-9
Space Allocation for Master Data Sets oo e 10-9
Space Allocation for Detail Data Sets. oo o e e 10-9
Buffer MANAgement « o o o o o o o s e e s e s e e e s e e 10-10
Locking Internals. o v v o v ot e e e 10-10

Appendix A

ERROR MESSAGES

Schema Processor MESSAZES . . . o . v o v o v o v e e e e e e e e e e A-1

Library Procedure Error Messages.« « o oo o v oo e e e e A-12
Abort Conditions e e e e e e A-13

Utility Error MESSAZES. . . - - o+« o o o oo o o oo oo n e A-32

Appendix B

RESULTS OF MULTIPLE ACCESS

Results of Multiple ACCESS. . . « v v v v o v oo oo v o oo e B-1

Appendix C

SUMMARY OF DESIGN CONSIDERATIONS

Summary of Design Considerations oo e e e e Cc-1

Appendix D

MULTIPLE RIN SPECIAL CAPABILITY

Sort Sequence for Lock Descriptors o oo e e e e e e e D-2

Conditional LOCKS . . « v v v v o v e e e e e e e e e e e e e e e e e D-2

Remote Data Bases. . . .« . o v v v o v v b e e e e e e e e e e e D-3

CONTENTS (continued)

Appendix E
TurboIMAGE LOG RECORD FORMATS

TurboIMAGE Log Record Formats

Appendix F
MPE LOG RECORD FORMATS

MPE LogRecord Formats

Appendix G
RECOVERY AND LOGGING QUICK REFERENCE

Recovery Quick Reference.,
Intrinsic Level Recovery
Roll-Back Recovery

Recovery L
Logging Device Quick Reference
Sample JobStreams

Appendix H
TurboIMAGE CONVERSION (DBCONY)

Converting from TurboIMAGE to IMAGE/3000
Converting Using JobStreams
Error Message.

DEC 85
XX1

TABLES

Table Page
2-1. Sample Read/Write ClassLists _ 2-13
2-2. Granting Capability to User Class 11. 2-14
2-3. Enabling a User Class to Perform a Task 2-15
2-4. Sample Read and Write Class Lists 2-18
3-1. Additional Conventions. """ 3-2
3-2. TypeDesignators _. . """ 3-5
3-3. TurboIMAGE Type Designators and Programming Languages 3-7
3-4. Examplesof anltem Part. "7 3-9
3-5. Schema Processor Files~ 3-14
3-6. RUN and FILE Commands, Examples. 3-15
3-7. Data Set Summary Table Information 3-23
4-1. Access Mode Summary 4-3
4-2. Logged Intrinsics 4-7
4-3. Locking in Shared-Access Environments 4-23
3-1. TurboIMAGE Procedures = 5-2
3-2. Calling a TurboIMAGE Procedure 5-3
5-3. DBBEGIN Condition Word Values 5-5
5-4. DBCLOSEModes 2and 3. _ . . ~°° 5-7
5-5. DBCLOSE Condition Word Values 5-8
3-6. DBCONTROL Condition Word Values 5-10
5-7. DBDELETE Condition Word Values 5-13
3-8 DBEND Condition Word Values 5-15
5-9. DBERROR Messages. 5-17
5-10. DBEXPLAIN Message Format. 5-26
5-11. DBFIND Condition Word Values | 5-29
3-12. DBGET Condition Word Values. 5-33
5-13. DBINFO mode and qualifier Valuesand Results. 5-35
5-14. DBINFO Condition Word Values 5-39
- Locking mode Options 5-42
- Lock Descriptor Fields. | 5-45
DBLOCK Condition Word Values 5-47
- DBMEMO Condition Word Values. 5-49
- DBOPEN Condition Word Values 5-54
- Special list Parameter Constructs 5-58
- DBPUT Condition Word Values 5-59
DBUNLOCK Condition Word Values 5-62
DBUFPDATE Condition Word Values _ . 5-65
TurbolMAGE and Pascal Data Structures. 6-36
BIMAGE Procedure Calls. __ 6-62
BIMAGE Procedure Parameters. 6-64
Additional BIMAGE Condition Word Values. 6-67
TurboIMAGE Utility Programs. 8-1
Formulas for Approximating Control Block Sizes 10-7

DEC 85

XX1ii

TABLES (continued)

DEC 85
XXiv

Table Page
A-1. TurboIMAGE Schema Processor File Errorso« o oo ot A-2
A-2. TurboIMAGE Schema Processor Command Errors. A-3
A-3. TurboIMAGE Schema Syntax Errors.« . . oo oo v o A-4
A-4. TurboIMAGE Library Procedure File System

and Memory Management Errors. oo A-14
A-5. TurboIMAGE Library Procedure Calling Errors A-15
A-6. TurboIMAGE Library Procedure Exceptional Conditions A-26
A-7. TurboIMAGE Library Procedure Abort Condition Messages. A-31
A-8. TurboIMAGE Utility Program Conditional Messages. A-33
A-9. TurboIMAGE Utility Program Unconditional Messages A-52
A-10. TurboIMAGE Extended Utility Program Unconditional Messages A-57
B-1. Actions Resulting from Multiple Access of Data Bases B-2
C-1. Selected Prime Numbers« « o v o vt vt e e Cc-2
H-1. DBCONV Program Conditional Messages.« c v H-12
H-2. DBCONV Program Unconditional Messages« ... H-13

FIGURES

Figure Page
1-1. TurboIMAGE Flow Diagram 1-7
2-1. CUSTOMER Data Set Sample. 2-1
2-2. Master and Detail Data Set Relations. 2-3
2-3. Master and Detail Data Sets Example. 2-5
2-4. Adding an Entry toaSorted Chain. 2-8
2-5. ORDERS Data Setsand Paths. 2-10
2-6. Sample Entries for ORDERSData Sets 2-10
2-7. Security Flow-Chart 2-17
3-1. Data Base Definition Process 3-1
3-2. Sample Schema Creation Session 3-16
3-3. Schema Processor Batch Job Stream. 3-17
3-4. Data Set Summary Table 3-22
3-5. ORDERS Data Base Schema. 3-25
4-1. Sample Data Entries from ORDERS DataBase 4-8
4-2. Read Access Methods (DBGET Procedure) 4-10
4-3. Lock Descriptor List. 4-18
5-1. Sample DBEXPLAIN Messages 5-27
5-2. Qualifier Array Format. 5-44
5-3. Lock Descriptor Format. 5-44
6-1. Inventory Update Program 6-15
6-2. Sample RECEIVE Execution 6-19
6-3. Supplier Modification Program 6-49
6-4. Sample SUPPLMOD Execution 6-53
6-5. Purchase Transaction Display Program 6-54
6-6. Sample SHOWSALE Execution 6-60
6-7. Sales Transaction Display Program 6-82
6-8. Sample SALESI Execution 6-84
7-1. Transactions and Transaction Blocks 7-8
7-2. Suppression of Transactions Due to Inadequate Locking 7-10
7-3. Quiet Periods and Recovery Blocks 7-14
7-4. Transferring Log Files to a Secondary System. 7-45
9-1. Usinga Remote Program 9-1
9-2. UsingMethod 1. 9-2
9-3. UsingMethod 2. 9-3
9-4. UsingMethod 3. 9-4
9-5. Preparing a Data-Base-AccessFile 9-12
9-6. Using a Data-Base-AccessFile 9-13
10-1. Media Record for Detail Entry 10-2
10-2. Media Record for Primary Entry 10-3
10-3. Media Record for Secondary Entry 10-3
10-4. Block with Blocking Factor of Four 10-4
G-1. Sample Job Stream for Starting Logging Cycle. G-5
G-2. Sample Job Stream for Roll-Forward Recovery G-6
G-3. Sample Job Stream for Roll-Back Recovery G-17

DEC 85
XXV

INTRODUCTION

TurbolMAGE

This manual is a reference document for anyone involved in designing and maintaining a data base and
for application programmers writing data base access programs. This manual covers data base concepts
and design implementation useful to the first time IMAGE user. Previous IMAGE users will find familiar
information and instructions on how to convert current IMAGE/3000 data bases to TurboIMAGE.

TurboIMAGE provides improved data base performance, better recovery processes, and increased growth
capability. New recovery processes and enhanced MPE user logging aid in providing a data base that is
highly accessible and both logically and structurally consistent. To increase input/output rate and
performance, TurboIMAGE files may be specified to reside on different discs. The internal structure of
the control blocks has been altered to minimize application process time and improve concurrency and
performance. In addition, the lock area has been increased to an 8K word limit to enable better
concurrency for applications.

The structure of the root file and media records in master data sets has been changed in TurboIMAGE. In
addition, limitations on the number of data sets and items has been expanded to allow you to create larger
data bases. These enhancements make existing IMAGE/3000 data bases incompatible with
TurboIMAGE. An easy to use migration tool is provided which allows you to convert existing data bases
so you can take advantage of the new features in TurboIMAGE. This migration tool is a conversion
program that must be run against all IMAGE/3000 data bases before you can access them in
TurboIMAGE. There exists a temporary and potential permanent increase in disc space requirements
when converting the data base to TurboIMAGE due to TurboIMAGE’s expanded limit on chain entries. It
is recommended that you read the "Pre-Conversion Considerations" in Appendix H for more information.
It is also recommended, prior to running the conversion program, that you back up (DBSTORE) all data
bases. Appendix H contains all the information necessary to run the (DBCONV) conversion program.

DEC 85
1-1

Introduction
TurbolMAGE Enhancements

e Ability to specify, during schema definition, the device class on which each data set will reside.
e Expanded (199) data sets per data base.

e Expanded (1023) data items per data base and (255) data items per data set.

e The limit on data entries per chain and entries per data set has been expanded to 2,1 47,483,647
e The lock area has been expanded to 8192 words to increase concurrency.

e DBUTIL >>MOVE command which allows TurboIMAGE files to be moved across devices.

e A user may enable automatic deferred output for a specified data base using DBUTIL. This provides
the ability to speed processing time.

e A new tracing facility in TurboIMAGE passes information on the data base to a new data base design -
tool, TurboIMAGE Profiler. The information passed to Profiler is used to interpret the performance of
data bases and application programs. TurboIMAGE Profiler must be installed on the system in order to
use this tracing facility. (Refer to the TurboIMAGE Profiler User Guide for information on tracing
and use of Profiler.) ,

e Intrinsic Level Recovery provides recovery after a system crash which will redo an interrupted
intrinsic. Once enabled, use of ILR is automatic and transparent to the user.

e Roll-back recovery provides rapid recovery of a data base following a "soft" system crash. Data base
recovery can be done without a data base backup copy (DBSTORE).

e A new feature of DBRECOV called STOP-RESTART provides the ability to have two identical data
bases on two computer systems. The primary system’s data base can be constantly accessed while
regular maintenance and required recovery are applied to the secondary system’s data base.

o TurboIMAGE uses four different types of control blocks to improve concurrency and performance.
These control blocks will provide more buffer space to reduce 1/0 activity.

¢ The DBUTIL >>SHOW and >>HELP commands have been expanded to include information on these
new enhancements. '

DEC 85
1-2

Introduction
GENERAL OVERVIEW

A data base is a collection of logically-related files containing both data and structural information.
Pointers within the data base allow you to gain access to related data and to index data across files.

TurboIMAGE is a set of programs and procedures that you can use to define, create, access, and maintain
a data base.

The primary benefit of the TurboIMAGE data base management system is time savings. These savings are
typically provided in the following areas:

FILE CONSOLIDATION

Most information prdcessing systems that serve more than one application area contain duplicate data.
For example, a vendor’s name may appear in an Inventory File, an Accounts Payable File, and an Address
Label File.

The data stored in these three files probably varies slightly from file to file, resulting not only in wasted
file space but also inconsistent program output. Redundant and inconsistent information severely impedes
any system’s capacity to deal with large amounts of data.

File consolidation into a data base eliminates most data redundancy. Through the use of pointers,
logically related items of information are chained together, even if they are physically separated. In the
example of vendor names and addresses, only one set of data would be stored. Through the use of logical
associations, the data could be used by any program needing it. Since there is only one record to retrieve,
the work required for data maintenance is greatly reduced. Finally, all reports drawn from that item of
information are consistent.

PROGRAM FILE INDEPENDENCE

Conventional file structures tend to be rigid and inflexible. The nature of conventional file management
systems require that the logic of application programs be intricately interwoven with file design. When it
becomes necessary to alter the structure of a file, a program must be written to change the file, and
programs that access the file must be changed to reflect the file change. Since change is the rule rather
than the exception in data processing, a large percentage of total time and manpower is spent
reprogramming.

TurboIMAGE allows the data structure to be independent of the application program. Data item
relationships are independently defined. Changes in the data base structure need only be incorporated
into those programs that manipulate the changed data. User programs need view only that portion of the
data base description that pertains to each program’s processing requirements. Since all references to the
data base are resolved at execution time, only those programs affected by changes to the data base
description need be changed.

VERSATILITY

Conventional file organization techniques allow limited access to the data they contain. Most structures
allow single key access with additional relational access available only through the implementation of
extensive application level programming support. TurboIMAGE allows data to be accessed with multiple
keys as well as through a variety of other access methods.

DEC 85
1-3

Introduction

RAPID RETRIEVAL

Conventional file organization frequently requires the usc of multiple file extracts, sorts and report
programs to produce meaningful output data across file boundaries. One-time information requests
frequently require weeks to implement, during which time the usefulness of the requested data may have
eroded considerably.

QUERY, the Hewlett-Packard data base inquiry facility, or user-written inquiry programs which use the
TurboIMAGE procedures, allow instant interrogation of the data base by individuals with access to the
system.

DATA SECURITY

Conventional file management systems have extremely limited data security provisions. Access to
computer readable data may only be denied to individuals with system access by providing physical
protection for the media upon which the file is stored; for example, the use of a data vault for storage of
sensitive data stored on magnetic tape or disc.

TurboIMAGE provides security at the account, file group, and data item level. The implementation of
security at the item level allows sensitive data to be stored on-line under the control of TurboIMAGE, a
data base manager or designer, and system manager, with minimal regard for additional security
provisions. TurboIMAGE security provisions can limit even programmer or operator access to extremely
sensitive information.

When implementing a new application system, TurboIMAGE can be expected to save time «in the
following ways:

PROGRAM DEVELOPMENT

The data base structure can be defined and built without the use of special purpose application level
programming. Since control of the linkage portion of the data base is under TurboIMAGE software
control, the programmer need not be concerned with testing the structure and can concentrate on the
functional programming task at hand. If available, QUERY can be used to build test data as well as to
interrogate the results of program and system tests. This feature eliminates the requirement that
file-related programs be completed before meaningful functional programs can be written. It is no longer
necessary to hold up functional program testing until file building or file maintenance programs are
completed. In this manner, more modules of a given system can be tested in parallel.

A specific benefit in the COBOL environment is in the area of program coding time. The programmer
need only define File Division entries for those files which exist outside the control of TurboIMAGE.
Typically, such files are concerned with original entry into the processing cycle (data entry files) and with
report files. All data under the control of TurboIMAGE is implicitly defined in every program which
accesses the data base. The programmer need not code the data division entries associated with anything
except the detail data used by a given program. The time-savings generated in correct data definition the
first time the program is coded, as well as in the correct description of the physical location of the data to
be processed, will reap significant benefits in the program test cycle.

DEC 85
1-4

Introduction

PROGRAM MAINTENANCE

Throughout the life of a system, processing requirements evolve as the usefulness of the data is explored.
As file organization concepts change with the needs of the application, some data restructuring can be
done with little impact on existing programs. Changes to the structure of an existing data base affect
only those programs that process the changed data; no other programs in the system need be recompiled to
reflect the new data base structure.

The evolution of the data base is not limited by the need to balance the cost of changing an existing
system against the benefits to be derived from the new structure. It is not necessary to do a "where-used"
evaluation on a data item carried in multiple files to assess the impact of a data change on existing
systems.

Finally, the accessibility of data need not be limited by design decisions made during initial system design.
The structure of a data base can evolve with the needs of the application user. The application designer
no longer has to attempt to anticipate the needs of the user across the full life of the system.

TurboIMAGE has some effects on existing applications. Although the external interfaces remain
unchanged, some application programs developed for IMAGE/3000 may require modifications if they
were hard-coded with any of the old (IMAGE) limitations. BASIC programs which read the chain count
may need slight modifications. This is because TurboIMAGE uses a two-word chain count whereas
existing BASIC does not support double integers. Any software that reads or modifies the root file
(operates in privileged mode), or is hard~coded with IMAGE/3000 limits may not work on TurboIMAGE,
if the TurboIMAGE limitations are used.

SPECIAL INFORMATION NEEDS

The requirement for one-time information in a format that has never been requested before is no longer
the bane of data processing users. The user with a special data requirement can get to any subset of
information on the data base, frequently without the intervention of a programmer.

Volatile analytical data requirements can be filled in a minimal amount of time by the people who need
the data. The time savings in programming overhead and report specification generation can be
€Nnormous.

Native Language Support (NLS/3000) on TurboIMAGE enables localized applications to prompt the user
with symbols displayed in the native language of the end user. Programs can be designed to generate
multinational applications on data bases. NLS enhancements can be accessed via four TurboIMAGE
utilitiess DBSCHEMA, DBUTIL, DBUNLOAD, and DBLOAD. For more information refer to the
NLS/3000 Reference Manual or sections in this manual covering the utilities listed above.

In summary, effective use of TurboIMAGE can remove a large portion of the overhead associated with
integrated system design from the shoulders of application analysts and programmers. It affords the
opportunity to channel system design talents into functional rather than structurally-supportive design
tasks.

DEC 85
1-5

Introduction

HOW TO USE TurbolMAGE

The following five steps provide a summarized procedure of how to use TurboIMAGE. Refer to Figure
1-1 for an illustration of each of the following steps:

1. DESIGN OF THE DATA BASE. A data base designer (system analyst) or team of designers determine
what data is required by all the application projects that will share the data base. They determine
which data should be protected from unauthorized access and how the data will be used. These design
considerations and others described in Appendix C determine the data base content and structure.

2. DESCRIPTIONS OF THE DATA BASE. Once the design is complete, it is described using the
TurboIMAGE data base definition language. This external definition is called a schema. The data base
creator processes the schema using the TurboIMAGE Schema Processor which creates an internal
definition of the data base called a root file. Section 3 contains the description language syntax and
operating instructions for the Schema Processor.

3. CREATION OF THE DATA BASE FILES. DBUTIL, a TurboIMAGE utility program, builds the data
base files according to requirements of the data base structure specified in the root file. The files
contain no data initially.

4. STORAGE AND RETRIEVAL OF THE DATA. TurboIMAGE provides a set of library procedures
which can be called from COBOL, FORTRAN, Pascal, SPL, TRANSACT/3000, or BASIC language
application programs. TRANSACT/3000 will work with TurboIMAGE as long as the IMAGE/3000
limits are not exceeded. TRANSACT/3000 is being updated to accomodate the new limits of
TurboIMAGE. The data base can also be used with RPG programs but the Report Program Generator
issues the calls to TurboIMAGE procedures. The application project members can design and write
programs in the programming language which best suits their needs and call the TurboIMAGE
procedures to store, modify, retrieve, and delete data. These procedures rapidly locate the data,
maintain pointer information, manage the allocated file space, and return status information about the
activity requested. Each procedure is described in detail in Section 5 and examples of calling them
from the different languages are given in Section 6.

5. MAINTENANCE OF THE DATA BASE. The TurboIMAGE utility programs may be used to
maintain backup copies of the data base and perform other utility functions such as recovering or
restructuring the data base. These programs are described in Sections 7 and 8. You may also use the
TurboIMAGE procedures to write your own maintenance programs.

DEC 85
1-6

Introduction

1 Data Base Designand 2 Definition

4 Storage and Retrieval of Data

Design

AYaY
AW,

BEGIN DATA BASE X;
PASSWORDS:

Ef‘.lD W/ I'
PROCESSOR

Listing of
Schema

3 Data Base Creation

Data Base
Designers

Dala Base
Creator

[pBUTIL. -
- Wby
- (CREATE .
- -Commmand) .

- DBUNLGAD - / L

o Wiy

Dats Base
Creator

Data
Entries
Tape

Data Base Creator or
Other User with Maintenance Word

- DBLOAD. -
iy

]

DATA BASE

T ﬁ\':??r‘:sé?rdﬁs?:?

Application
Frogrammers

Data Base
Avplication Users

Application
Programs

N
VvV

LOG
FILE

- DBRECOV -
o Uity

Uity

- DBRESTOR -
.:._.:._-qﬁ|i_t)_'f-j

Backup

Dala Base Creator Tape

or Other User with
Maintenance Word

9a Maintenance {Restructuring)

9b Maintenance (Backup and Recovery)

Figure 1-1. Simplified Flow Diagram, How To Use TurhoIMAGE

DEC 85§
1-7

Introduction

HOW TO USE THIS MANUAL

The information in this manual is presented in the order in which the user will begin to use the various
TurboIMAGE modules. A text discussion of the overall purpose of a module and definitions of terms used
to describe the module precede the reference specifications, which are identified by large headings to
enable the user to locate them easily.

Each section assumes a knowledge of the material presented in preceding sections. Therefore, it is
recommended that the user read the manual the first time from beginning to end, possibly skipping the
discussion of topics which are already familiar.

The internal structure of TurboIMAGE elements and the methods used to perform certain functions are
presented in the last section, Section 10. This section can be referenced at any time if you want to know
exactly how something is accomplished by TurboIMAGE, but it is not necessary to understand the
material in this section to use TurboIMAGE.

If the system has Distributed System (DS/3000) capability, refer to Section 9 for information about
accessing a data base residing on another HP 3000 system.

Appendix A contains a description of the error messages issued by the various TurbolMAGE modules and
Appendix B provides additional information about sharing the data base. A summary of important
considerations when designing the data base is provided in Appendix C. Appendix D contains information
about the special multiple RIN capability relevant to locking. Appendices E and F contain TurboIMAGE
and MPE log record formats to aid in interpreting log and user recovery files. Appendix G represents a
quick reference guide to recovery and logging processes. Information on converting IMAGE/3000 data
bases to TurboIMAGE is given in Appendix H.

The conventions used in this manual are described on page ix.

DATA BASE PERSONNEL

The terms data base administrator or manager, data base creator, and data base designer may refer to one
or more persons. Designer refers to anyone who cooperates in the design of the data base. The creator is
defined by the MPE user name, account, and group used when executing the Schema Processor to create
the root file and when executing the DBUTIL program to create the data base files. The data base
administrator is responsible for coordinating data base use. This person knows the passwords and can
authorize others to use the data base by making a password available if it is needed for a particular
application. The data base administrator is also responsible for system backup and recovery. The data
base creator and administrator may be the same person. If not, the administrator will probably have access
to the user name and account in which the data base resides or to the maintenance word which is defined
in Section 7.

~

DEC 85
1-8

DATA BASE STRUCTURE
AND PROTECTION .

This section describes the various data elements and their relationships within the data base.

DATA ELEMENTS

A data base is a named collection of related data. It is defined in terms of data items and data sets.
Figure 2-1 shows a sample of one data set from a data base named ORDERS which will be used as an
example throughout this manual. The data set is named CUSTOMER. The information in this data set
pertains to the customers of a business. All the data about a particular customer is contained in a data
entry. Each piece of information such as account number or last name is a data item.

Data Items

A data item is the smallest accessible data element in a data base. FEach data item consists of a value
referenced by a data item name, typically selected to describe the data value. In general, many data item
values are referenced by the same data item name, each value existing in a different data entry.

For example, in Figure 2-1, the data item FIRST-NAME has the value JAMES in one data entry and
ABIGAIL in another data entry.

Cate Itom Nemes

RRST- CREDIT-RATING
Daty ACCOUNT LAST-NAME NAME INIMAL STREET-ADDRESS cIry STATE ZP \J/

7
f,z,? R345678 | MILER | JAMES |L| 1645MARSHALL AVENUE | GLENDALE |AZz| esior |34
I

96430301 | BRIGHTON | ABIGAIL | S.| 72 E. HAMPTON DRIVE CARMEL CA| 93921 | 6.7

Entriss

54777833 | GRAZIANO | ISABEL |M.| 113 SHASTA LANE SANTA CLARA |CA | 95050 | 58

Figure 2~1. CUSTOMER Data Set Sample

DEC 85
2-1

Data Base Structure and Protection

COMPOUND DATA ITEMS

A compound data item is a named group of identically defined, adjacent items within the same data
entry. Each occurrence of the data item is called a sub-item and each sub-item may have a value. A
compound item is similar to an array in programming languages such as FORTRAN and BASIC. A data
entry might contain a compound item named MONTHLY-SALES with 12 sub-items in which the total
sales for each month are recorded.

DATA TYPES

The data base designer defines each data item as a particular type depending on what kind of information
is to be stored in the item. It may be one of several types of integers, real or floating-point numbers, or
ASCII character information. The data types are described in detail in the next section and summarized
in Tables 3-2 and 3-3.

Data Entries

A data entry is an ordered set of related data items. You specify the order of data items in an entry when
you define the data base. Data entries may be defined with at most 255 data item names, none of which
is repeated. The length of the data entry is the combined length of the data items it contains.

Data Sets

A data base may contain up to 199 data sets. A data setisa collection of data entries where each entry
contains values for the same data items. For example, the CUSTOMER data set contains entries composed
of the same nine data items: ACCOUNT, LAST-NAME, INITIAL, STREET-ADDRESS, CITY, STATE,
ZIP, and CREDIT-RATING. Normally, each data set is associated with some real world entity such as
orders, customers, employees, and so forth.

Each data set is referenced by a unique data set name. Each data set is stored in one disc file consisting of
storage locations called records. When you describe the data base with the data base definition language,
you specify the capacity, or number of records, of each data set. Each record is identified by a record
number which can be used to retrieve the entry within it.

DATA SET TYPES AND RELATIONS

A TurboIMAGE data set is either a master or a detail data set. Figure 2-2 illustrates the relations
between and types of six data sets in the ORDERS data base. Master data sets are identified by triangles
and detail data sets by trapezoids. This convention is useful when diagramming the data base design.

DEC 85

Data Base Structure and Protection

Master Data Sets

Master data sets have the following characteristics:

o They are used to keep information relating to a uniquely identifiable entity; for example, information
describing a customer. The CUSTOMER data set in Figure 2-3 illustrates this type of information.

e They allow for rapid retrieval of a data entry since one of the data items in the entry, called the search
item, determines the location of the data entry. A search item may not be a compound item. In Figure
2-3, the CUSTOMER data set contains a search item named ACCOUNT. The location of each entry is
determined by the value of the customer’s account number.

e They can be related to detail data sets containing similar search items and thus serve as indexes to the
detail data set. The ACCOUNT search item in the CUSTOMER master data set is related to the
ACCOUNT search item in the SALES detail data set. The entry for a customer named Abigail
Brighton with account number 95430301 serves as an index to two entries in the SALES data set
which contain information about purchases she made.

CUSTOMER
Master

PRODUCT
Master

SUP-MASTER
Master

\'%

INVENTORY
Detail

SALES
Detail

Figure 2-2. Master and Detail Data Set Relations

Although there are unused storage locations in the CUSTOMER data set, TurboIMAGE disallows any
attempt to add another data entry with account number 95430301. The search item value of each entry
must remain unique. The values of other data items in the master data set are not necessarily unique.
This is because they are not search items and are not used to determine the location of the data entry.

DEC 85
2-3

Data Base Structure and Protection

Detail Data Sets

Detail data sets have the following characteristics:

e They are used to record information about related events; for example, information about all sales to
the same account.

o They allow retrieval of all entries pertaining to a uniquely identifiable entity. For example, account
number 95430301 can be used to retrieve information about all sales made to Ms. Brighton.

e The storage location for a detail data set entry has no relation to its data content. When a new data
entry is added to a detail data set, it is placed in the first available location.

e A detail data set may be defined with from zero to 16 search items (unlike a master data set which
contains at most one search item). The values of a particular search item need not be unique.
Generally, a number of entries will contain the same value for a specific search item.

The SALES data set contains four search items: ~ACCOUNT, STOCK#, PURCH-DATE, and
DELIV-DATE. Two entries in the example in Figure 2-3 have identical values for the ACCOUNT item
in the SALES data set.

TurboIMAGE stores pointer information with each detail data entry which links together all entries with
the same search item value. Entries linked together in this way form a chain. A search item is defined
for a detail data set if it is desired to retrieve together all entries with a common search item value, in
other words, all entries in a chain. The SALES entries with ACCOUNT equal to 95430301 form a
two-entry chain. A single chain may consist of at most 2,147,483,647 entries.

Paths

A master data set search item can be related to a detail data set search item of the same type and size.
This relationship forms a path. A path contains a chain for each unique search item value. In Figure
2-3, the ACCOUNT search item in CUSTOMER and the ACCOUNT search item in SALES link the
CUSTOMER master to the SALES detail forming a path. One chain links all SALES entries for account
number 95430301. The chain for account number 12345678 consists of one entry. Both chains belong
to the same path.

Since a detail data set can contain as many as 16 search items, it can be related to at most 16 master data
sets. Note that each master to detail relationship must be relative to a different detail search item. The
SALES data set is related to the CUSTOMER, PRODUCT, and DATE-MASTER data sets.

A detail data set may be multiply indexed by a master data set. For example, SALES is indexed twice by
DATE-MASTER. The DATE search item forms one path with the PURCH-DATE search item and one
path with the DELIV-DATE search item.

Each master data set may serve as an index, singly or multiply, to one or more detail data sets. No master
data set may be involved in more than 16 such relationships. For each such relationship, TurboIMAGE
keeps independent chain information with each master entry. This information consists of pointers to the
first and last entries of the chain whose search item value matches the master set entry’s search item value
and a count of the number of entries in the chain. This is called a chain head. The format of chain heads
is given in Section 10. For example, the DATE-MASTER data entries each contain two sets of pointers,
one for PURCH-DATE chains and one for DELIV-DATE chains. Chain heads are maintained
automatically by TurboIMAGE.

DEC 85
2-4

Data Base Structure and Protection

MANUAL MASTER DATA SET: CUSTOMER
CREDIT-

FIRST-
STATE ZIP RATING

ACCOUNT LAST-NAME NAME INITIAL STREET-ADDRESS CciTy
JAMES |L | 1645 MARSHALL AVENUE GLENDALE AZ | 85301 | 34

12345678 | MILLER

— 95430301 | BRIGHTON ABIGAIL |S.| 72E.HAMPTON DRIVE CARMEL CA | 93921 | 67

ISABEL |M.| 113 SHASTA LANE SANTA CLARA | CA | 95050 | 58

54777833 | GRAZIANO

DETAIL DATA SET: SALES

ACCOUNT STOCK# QUANTITY PRICE TAX TOTAL PURCH-DATE DELIV-DATE

95430301 | 35624AB3 1 450 27 477 90584 90584
95430301 35624AC5 3 1530 a3 1623 11584 11684
12345678 35624AB3 2 900 54 954 92784 92884 é
DATE
92884
AUTOMATIC MASTER DATA SET: DATE-MASTER
90584
92784

Figure 2-3. Master and Detail Data Sets Example

DEC 85
2-5

Data Base Structure and Protection

Automatic and Manual Masters

A master data set may be automatic or manual. These two types of masters have the following
characteristics:

MANUAL AUTOMATIC
May be stand-alone. Need not be related to Must be related to one or more detail data sets.
any detail data set.
May contain data items in addition to the Must contain only one data item, the search
search item. item.

You must explicitly add or delete all entries. A | TurboIMAGE automatically adds or deletes
related detail data entry cannot be added until entries when needed based on the addition or

a master entry with matching search item deletion of related detail data set entries.
value has been added. When the last detail When a detail entry is added with a search
entry related to a master entry is deleted, the item value different from all current search
master entry still remains in the data set. item values, a master entry with matching
Before a master entry can be deleted, all search item value is automatically added.
related detail entries must be deleted. Deletions of detail entries trigger an automatic

deletion of the matching master entry if it is
determined that all related data chains are
empty.

The search item values of existing master
entries serve as a table of legitimate search
item values for all related detail data sets.
Thus, a non stand-alone manual master can be
used to prevent the entry of invalid data in the
related detail data sets.

For example, in Figure 2-3 CUSTOMER is a manual master data set and DATE-MASTER is an
automatic master. Before the SALES entry for account 12345678 is added to SALES, CUSTOMER must
contain an entry with the same account number. However, the DATE-MASTER entries for DATE equal
to 92784 and 92884 are automatically added by TurboIMAGE when the detail entry is added to SALES,
unless they are already in the DATE-MASTER data set.

Note that DATE~-MASTER contains only one data item, the search item DATE, while CUSTOMER, which
is a manual master, contains several data items in addition to the search item.

If the SALES entry with account number 95430301 and stock number 35624AB3 are deleted and no
other SALES entry contains a PURCH-DATE or DELIV-DATE value of 90584, the DATE-MASTER
entry with that value is deleted automatically by TurboIMAGE.

Data Base Structure and Protection

Manual vs. Automatic Data Sets
Data base designers may use:
e Manual masters to ensure that valid search item values are entered for related detail entries.

e Automatic masters to save time when the search item values are unpredictable or so numerous that
manual addition and deletion of master entries is undesirable.

Whenever a single data item is sufficient for a master data set, the data base designer must decide between
the control of data entry available through manual masters and the time-savings offered by automatic
masters. For example, since DATE-MASTER is an automatic data set, erroneous dates such as 331299
may be entered accidentally.

Primary Paths

One of the paths of each detail data set may be designated by the data base designer as the primary path.
The main reason for designating a path primary is to maintain the entries of each chain of the path in
contiguous storage locations. You do this by occasionally using the DBUNLOAD utility program to copy
the data base to tape, the DBUTIL utility program to erase the data base, and the DBLOAD program to
reload the data base from the tape. When the data base is reloaded, contiguous storage locations are
assigned to entries of each primary path chain. Therefore, the data base designer should designate the
path most frequently accessed in chained order as the primary path. This type of access is discussed in
Section 4.

A primary path also serves as the default path when accessing a detail data set if no path is specified by
the calling program. This characteristic of primary paths is described with the DBGET procedure in
Section 4.

Sort Items

For any path, it is possible to designate a data item other than the search item as a sort ifem. If a sort
item is specified, each of the chains of the path are maintained in ascending sorted order, based on the
values of the sort item. Different paths may have different sort items, and one path’s sort item may be
another path’s search item. Only data items of type logical or character can be designated as sort items.

For example, chains in the SALES data set composed of entries with identical ACCOUNT values are
maintained in sorted order by PURCH-DATE. When information about sales to a particular customer is
required, the SALES data entries for that customer’s account can be retrieved in sorted order according to
purchase date. (For PURCH-DATE to be a meaningful sort item, dates must be stored in a properly
collatable form such as year-month-day rather than the order shown in preceding figures.)

The sorted order of entries is maintained by logical pointers rather than physical placement of entries in
consecutive records. Figure 2-4 illustrates the way in which sorted paths are maintained by
TurboIMAGE. When an entry is added to a detail data set it is added to or inserted in a chain. If the
path does not have a sort item defined, the entry follows all existing entries in the chain. If the path has
a sort item, the entry is inserted in the chain according to the value of that item.

DEC 85
2-7

Data Base Structure and Protection

ADD ENTRY
No sort — T~ Sort item
< item. is last item.
Add to end Sort item is not > Sort by
of chain, last item in entry. item only.
® %
@ Sort by If matches other
extended field. sort item, add
chronologically.
If matches other extended field,
@ add chronologically.
DATA ENTRY: | dataitem | .. | sortitem | data item data item
N /
. hvd
Examples: .
Chains {logical order) extended field

222 B

333 H

Mz entries in existing chain (no sort item)

444 B

222 7 | €«— New entry

@ MZ |€—— Sortitem and subsequent item in existing chain

222 A

<€—— New entry

2228

333H

4448

@ [z

222 A

222 A

> Sort item and subsequent item in existing chain

> Sort item and subsequent item in existing chain

<—— New entry (matches existing extended field)

333H

444 B

> Sort item and subsequent item in existing chain

@ 1M

222

222

333

444

-<—New entry

>Sort item last in entry
>‘ Sort item last in entry

Figure 2-4. Adding an Entry to a Sorted Chain

DEC 85

2-8

Data Base Structure and Protection

If the entry’s sort item value matches the sort item values of other entries in the chain, the position of the
entry is determined by an extended sort field consisting of the sort item value and the values of all items
following the sort item in the entry. If the extended sort field matches another extended sort field, the
entry is inserted chronologically following the other entries with the same extended sort field value. This
also occurs if the sort item is the last item in the entry and its value matches another entry’s sort item
value. Native Language Support does not support extended sort items. If the data base language is other
than ASCII, extended sort fields are not used.

If you are using extended sort fields to sort a chain, you should not call DBUPDATE to modify any of the
values in the extended sort fields because the chain will not be resorted automatically according to the
new data values. Instead, call DBDELETE and DBPUT to re-enter the records with modified values.

If you do not want TurboIMAGE to sort chains by extended sort fields, structure the data record so that
the sort item is in the last field of the record.

When the data base content is copied to magnetic tape using the TurboIMAGE utility program
DBUNLOAD, the pointers that define an entry’s position in a chain are not copied to the tape. When the
data is loaded back into the data base, the chains are recreated. Therefore, entries which were previously
ordered chronologically will not necessarily be in that same order. The new chronological ordering is
based on the order in which the entries are read from the tape. The chains of a primary path are an
exception; the order of these chains is preserved if the tape was created with DBUNLOAD in the chained
mode. (Section 8 contains more information about DBUNLOAD.)

NOTE

It is important to limit the use of sorted chains to paths consisting of
relatively short chains or chronologic sort items (for example, date) which
are usually added to the end of chain. It is not intended that sorted paths
be used for multiple key sorts, or for sorting entire data sets. These
functions are handled more efficiently by user-written routines or the MPE
subsystem, Sort/3000.

The ORDERS Data Base

Figures 2-5 and 2-6 illustrate the complete ORDERS data base. Figure 2-35 lists the data items that
define entries in each data set. The data type is in parentheses. (Data types are described in Section 3
with the item part of the schema.) Paths are indicated by arrows. CUSTOMER, SUPMASTER,
PRODUCT, and DATE-MASTER are master data sets and SALES and INVENTORY are detail sets.
Figure 2-6 shows a sample entry from each data set except DATE-MASTER for which it shows two
sample entries.

Chains of the path formed by CUSTOMER and SALES are maintained in sorted order according to the
value of PURCH-DATE. The primary path for INVENTORY is the one defined by SUPMASTER and
the primary path for SALES is the one defined by PRODUCT.

DEC 85
2-9

Data Base Structure and Protection

This path
Sort item
PURCH-DATE

DETAIL SET

SALES

ACCOUNT (J2)
STOCK# (UB) <<
QUANTITY it
PRICE W2

TAX (42}

TOTAL {2

PURCH-DATE (X6}
DEUV-DATE (X6)

primery path

MASTER SETS

CUSTOMER

ACCOUNT (2
LAST-NAME {X16)
FIRST-NAME (X0}
INITIAL U2)
STREET-ADDRESS (X26)
CITY (X12)

STATE (X2

Zip (X8
CREDIT-RATING (R2)

SUP-MASTER
SUPPUER (X18)
STREET-ADDRESS {X26)
ary (x12

STATE (2

P X6

PRODUCT
STOCK# (U8}
DESCRIPTION (X20)

mre-ms-r_in__l———>
DATE (X6)

primary path

DETAIL SET

~ INVENTORY

—> STOCK# U8
ONHANDQTY (2
SUPPUER (X16)
UNIT-COST (P8
LASTSHIPDATE (X6)
BINNUM Z2)

Figure 2-5.

ORDERS Data Sets and Paths

DETAIL SET
SALES

> 89393699
66500225
©
2000
120
2120
120564
120784

<1

/
<
<
<

MASTER SETS

CUSTOMER

89393899

CORCORAN

CUFFORD

X

6105 VALLEY GREEN DR,
CARMEL

CA

93921

6.732

SUP-MASTER

H & S SURPLUS
10111 SKYLINE BLVD.
PETALUMA

CA DETAIL SET
94952
INVENTORY
PRODUCT 66500225
66500225 29
BASEBALL BAT H8 S SURPLUS <
1500
> 120784

2

DATE-MASTER
120584
120784

Note: DATA-MASTER contains
two entries in this example.

Figure 2-6. Sample Entries for ORDERS Data Sets

DEC 85
2-10

Data Base Structure and Protection
DATA BASE FILES

Data base elements are stored in privileged MPE disc files. In addition to the root file which contains the
data base definition, other files called data files contain the data sets.

Root File

The root file is created by the data base creator when the Schema Processor is executed. It is catalogued
within the creator’s log-on group and account with a local file name identical to the data base name.
Thus, the name of the root file for the ORDERS data base is ORDERS. Refer to the MPE Commands
Reference Manual for more information about MPE account and log-on groups.

The root file is a single-extent MPE disc file: that is, the entire file occupies contiguous sectors on the
disc. It serves as a common point of entry to, and a source of information about the data base.

Data Files

There is one data file for each data set of a data base. The size of each record and number of records in
the file are determined by the contents of the root file. The data files are created and initialized with the
TurboIMAGE utility program, DBUTIL.

Each data file is catalogued within the same group and account as the root file. Local file names are
created by appending two characters to the local name of the root file. These two characters are assigned
to the data sets according to the order in which they are defined in the schema. For example, the
ORDERS data base is defined with CUSTOMER and DATE-MASTER as the first two data sets. These
data sets are in data files ORDERSOl and ORDERSO02. (For more information refer to "DBUTIL
>>CREATE" command in Section 8.)

Each data file is physically constructed from one to 32 extents of contiguous disc sectors, as needed to
meet the capacity requirements of the file, subject to the constraints of the MPE file system. Each data
file contains a user label in a disc sector maintained and used by the TurboIMAGE library procedures.
The label contains structural pointers and counters needed for dynamic storage allocation and
deallocation.

RECORD SIZE

Record sizes vary between data files but are constant within each file. Each record is large enough to
contain a data entry and the associated TurboIMAGE pointer information. The amount of pointer
information depends on the way the data set is defined. Pointer information is described in Section 10.
The maximum number of records in a data set file depends on the record size, the available disc space, and
the MPE file system constraints.

BLOCKS

The records in a data file are physically transferred to and from the disc in groups. Each group involved
in a single disc transfer is called a block. The number of records in each block is called the blocking
factor. The Schema Processor determines the blocking factor during creation of the root file. Section 3
contains more information about block size and blocking factors in the discussion of the set part of the
schema. The format of blocks is given in Section 10. '

DEC 85
2-11

Data Base Structure and Protection
PROTECTION OF THE DATA BASE

TurboIMAGE prevents unauthorized persons from gaining access to the data base. It provides external
protection through the MPE privileged file, account, and group structures and, in addition, provides the
data base designer and data base manager with devices for further protection of the d.ta base.

Privileged File Protection

All TurboIMAGE data base files are privileged files. (Refer to the MPE Intrinsics Reference Manual for
a description of the MPE privileged file capability.) Access by unprivileged processes or through most
MPE file system commands is not allowed. Therefore, non-privileged users are prevented from
accidentally or deliberately gaining access to the data base.

The use of MPE commands that permit copying of TurboIMAGE files to tape represent a potential breach
of data base privacy, and their use should be controlled. In particular, anyone who uses the :SYSDUMP,
:STORE, or :RESTORE commands should notify the data base manager. The :SYSDUMP and :STORE
commands permit system supervisors, system managers and other privileged users to copy files not
currently open for output to tape. The MPE RESTORE command may purge and replace a data base file
with a different file if it has the same name and is encountered on tape.

Account and Group Protection

In order to gain access to a TurboIMAGE data base, you must be able to access the files in the account and
group in which the data base resides. The system manager and account manager administer the security
levels for accounts and groups. The system manager is responsible for creating accounts and the account
manager for creating new groups and users. (The System Manager/System Supervisor Reference Manual
contains detailed information about the maintenance of MPE accounts and groups.)

The system and account managers can prevent members of other accounts from accessing the data base by
specifying access as user type AC (Account Member) for the account and group containing the data base.
They can prevent users who are members of the account, but not of the group, containing the data base
from accessing it by specifying GU (Group User) for the group. On the other hand, they can allow access
from other accounts by specifying user type ANY at both the account and group levels.

These MPE security provisions provide an account and group level of security controlled by the system
manager and account manager.

User Classes and Passwords

TurboIMAGE allows the data base designer to control access to specific data sets and data items by
defining up to 63 user classes and then associating the user classes with data sets and data items in read
or write class lists. This association determines which user classes may access which data elements and the
type of access that is granted.

DEC 85
2-12

Data Base Structure and Protection

Each user class is identified by an integer from 1 to 63 and is associated with a password defined by the
data base designer. For example, the ORDERS data base is defined with these user classes and passwords:

User Class Password
11 CREDIT
12 BUYER
13 SHIP-REC
14 CLERK
18 DO-ALL

The magnitude of the user class number has no relation to the capability it grants. When you initiate
access to the data base, you must supply a password to establish your user class. If the password is null or
does not match any password defined for the data base, the user class assigned is zero. This does not apply
if you are the data base creator and supply a semicolon in which case you have full access to all data sets
in the data base. TurboIMAGE uses the number 64 to identify the data base creator.

READ AND WRITE CLASS LISTS

When the data items and data sets are defined in the schema, a read class list and a write class list can be
specified for each item or set. Table 2-1 contains sample lists for the CUSTOMER data set and
CREDIT-RATING data item in the ORDERS data base.

Table 2-1. Sample Read/Write Class Lists

READ CLASS LIST WRITE CLASS LIST
CUSTOMER 1,14 11,18
CREDIT-RATING 14 14

User class numbers included in the write class list are, by implication, included in the read class list. Since
a write class list of 14 implies that user class 14 is in the read class list, the CREDIT-RATING read class
list is redundant. However, it may be included as a reminder in the schema of the total capability granted
to user class 14.

A distinction must be made between the absence of a read and write class list and a null list. When you
specify the lists in the schema, they are enclosed in parentheses and separated by a slash, for example,
(11,14/15). A null list may be one of the following:

(/) Both read and write class lists are null.
(11,14/) The write class list is null.

Since the existence of a write class list implies a read class list, there is no situation where only the read
class list is null.

DEC 85
2-13

Data Base Structure and Protection

The absence of both a read and write class list, and the parentheses and slash, yields the same result as a
read class list containing all user classes and write class list which is null. For example:

(0,1,2,3,...63/)

The effect of null and absent lists is illustrated later in this section.

Access Modes and Data Set Write Lists

Before you can gain access to a data base, you must open it specifying a password that establishes your
user class number and an access mode that defines the type of data base tasks you want to perform.
Access modes are described in Section 4 with the instructions for opening a data base. At this time it 1s
necessary only to note that some of the eight available access modes nullify the data set write list. If the
data base is opened in access mode 2, 5,6, 7, or 8 all data set write class lists are effectively null. This
effect should be considered when you are designing the security scheme for the data base.

Granting a User Class Access
Tables 2-2 and 2-3 illustrate the use of read and write class lists from two different perspectives. Table

2-72 shows what capability user class 11 has if it appears in the lists as shown. The same rules apply to
any user class. The access mode must be as indicated.

Table 2-2. Granting Capability to User Class 11

LIST CAPABILITY LIST | CAPABILITY | LIST CAPABILITY
Control at (/1) Total access {1 No access (11) Cantroiled
Data Set or to set if to set or at item
Level (1/11) access mode absent level
1, 3,0rd list

ll

Vv

Control at (M) Update and {1) | No access (1) Read item
Data Item or read item to item or
Level (1) absent

list

A null read and write class list can be used by the data base creator at the data set level to deny access to
the data set by all user classes; that is, only the data base creator will be able to use the data set.

DEC 85
2-14

Data Base Structure and Protection

Table 2-3 presents the same rules organized by the task which the user class is to perform. It lists the
required access modes and the security rules at both the data set and data item level. For simplicity
assume there are always read and write class lists even if they are the default lists (0, 1, 2,...63 /) resulting
when the lists are not actually specified in the schema (absent lists).

Table 2-3. Enabling a User Class to Perform a Task

TASK

READ DATA ITEM

UPDATE DATA ITEM

ADD OR DELETE
DATA ENTRIES

Access Modes 1-8 1-4 1,34
If access mode 1, 3, 4: If access mode 1, 3, 4: User class in
User class in write list User class in write list data set
write list.
OR OR
Data Set User class in read list User class in read list
Security and pass data item and pass data item
Rules security. security.
If access mode 2, 5-8: If access mode 2:
User class in read or User class in read or
write list and pass write list and pass
data item security. data item security.
Data Item User class in read User class in write list.
Security or write list.
Rules

DEC 85
2-15

Data Base Structure and Protection

In summary, the data base designer can grant access to a data set 1n the following ways:

¢ SPECIFY THE USER CLASS NUMBER IN THE DATA SET WRITE CLASS LIST. If the data base is
opened in access mode 1, 3, or 4, this grants the user class complete access to the data set. Users in this
class can add and delete entries, update the value of any data item that is not a search or sort item, and
read any item, regardless of the data item read and write class lists. A user class number must be in the
data set write list in order to add and delete entries.

If the data base is opened 1n access mode 2, 5, 6, 7, or 8, this is the same as specifying the user class
number in the data set read class list only and the next rule applies.

e SPECIFY THE USER CLASS NUMBER IN THE DATA SET READ CLASS LIST (or omit both lists
entirely). This grants the user class a type access to the data set that is controlled at the data item level
as described below. If both read and write class lists are omitted, the user class is granted this type of
access since the lists are (0,1,2....63 /) by default.

e OMIT THE USER CLASS NUMBER FROM BOTH THE SPECIFIED READ AND WRITE CLASS
LISTS. This denies the user class any type of access to the data set.

Assuming the data base designer has established control at the data set level as summarized above,
control at the data item level is established in the following ways:

¢ SPECIFY THE USER CLASS NUMBER IN THE DATA ITEM READ CLASS LIST (or omit both lists
entirely). This grants the user class read access to the data item.

e SPECIFY THE USER CLASS NUMBER IN THE DATA ITEM WRITE CLASS LIST. This grants the
user class the ability to update or change the data item value, if it is not a search or sort item. Since
the user class is implied to be in the read ciass list, the user class can also read the item. A user class
number must be in the data item write list in order to change the value.

e OMIT THE USER CLASS NUMBER FROM BOTH THE READ AND WRITE CLASS LIST. This
denies the user class any type of access to the data item.

The protection of data set and data item values is designed so that the data base designer must explicitly
specify the user class number to allow that class to make any type of change to the data base. Read access
may be granted by default in some situations, for example, by omitting the lists entirely. To deny read
access to a data set or data item, the data base designer must specify a list, possibly a null one, and
deliberately omit the user class number.

Figure 2-7 provides a security flowchart. DBOPEN in modify access (modes 1, 3, and 4) has been passed.

DEC 85
2-16

Data Base Structure and Protection

ARE YOU YES FULL ACCESS TO SET
CREATOR? [READ ONLY FOR SORT
AND SEARCH ITEMS)
READ/
YES READ ACCESS
TE UST
owrrenar > | oty 10 seT
NO ACCESS
TO SET
FULL ACCESS
TO SET
NO ACCESS
TO SET
ITEM USER
YES LIST EMPTY? CLASS # s
, (" ON ITEM? o~
NO KEY NQ
NO ACCESS ITEM UST YES UPDATE
TO ITEM OMITTED? °f‘T;n°“T —> | access
TO ITEM
\l/ves YES
READ ACCESS READ ACCESS
TO ITEM TO ITEM <
Figure 2-7. Security Flow~Chart
DEC 85

2-17

Data Base Structure and Protection

For example, in the ORDERS data base only user classes 11 and 18 can add and delete CUSTOMER data
entries since these are the only user class numbers in the data set write list as shown in Table 2-1. To do
so, they must open the data base in access mode 1, 3, or 4.

User class 14 can update the CREDIT-RATING data item in the CUSTOMER data set because it is in the
data item write list and the data set read list.

Table 2-4 contains more illustrations of the effects of read and write class lists. The data base creator
and user class 9 (in access mode 1, 3, or 4) have complete access to data set 1 but only the creator has
complete access to data set 2. Complete access includes the ability to read and update all items and add
and delete entries.

Table 2-4. Sample Read and Write Class Lists

Data Set 1 (0,18,13/9) item Read Access Item Update Access
Data Item A 0,13,18,9 o
Data Item B (/13) 13, 9% 13, 9%
Data Item C (/) % g
Data Item D (/9) e} 9
Data Item E (18/13) 13, 18, 9= 13, O%
Data Item F (/13, 18) 13, 18, 9% 13, 18, 9*
Data Item G (12/0) 0, O 0, 9%
Data Item H (13/) 13, 9% g
Data Set 2
Data Item A 0, 1, ..., 63
Data Item 1 (13/9) 13, 9 9
#Only if DBOPEN access
mode is 1, 3, or 4.
None of these items
are search or sort
items.

DEC 85
2-18

Data Base Structure and Protection

User Classes and Locking

TurboIMAGE does not consider user classcs when locking a data base entity. Any data set or any data
item can be referenced in a lock request by any user of a data base regardless of his or her user class.

Protection in Relation to Library Procedures

There is one Data Base System Control Block (DBS) for an entire system. All access to a data base is
achieved through a Data Base Global Control Block (DBG), the Data Base Buffer Aiea Control Block
(DBB), and one or more Data Base User Local Control Blocks (DBU) which reside in privileged extra data
segments not directly accessible to data base users. Since no user process can read or modify these control
blocks, TurboIMAGE guarantees protection of the data base from unauthorized programmatic access.
Refer to the description of the DBG, DBU, DBB and DBS in Section 10. For more information about data
segments and privileged mode, refer to the MPE Intrinsics Reference Manual.

All TurboIMAGE library procedures that structurally modify the data base execute in critical mode. This
defers any requested process termination while modifications are in progress. If any file system failures
occur during such data base modification, TurboIMAGE causes process termination since the data base
integrity is suspect.

The DBB contains buffers which are used to transfer data. All buffers whose content has been changed to
reflect a modification of the data base are always written to disc before the library procedure exits to the
calling program. This guarantees data base integrity despite any program termination that might occur
between successive procedure calls. However, output deferred mode allows the user to override this
scheme. When output deferred or AUTODEFER mode is enabled, buffers are retained within the buffer
area and are flushed only when required by space constraints or when DBCLOSE is called. For
information on output deferred mode (AUTODEFER) refer to Section 8, DBUTIL >>ENABLE command.

Protection Provided by the TurboIMAGE Utilities
The TurboIMAGE utilities perform various checks to ensure data base integrity.

o They acquire exclusive or semi-exclusive access to the data base being processed. (Section 4 contains
more information about types of access in the discussion of opening a data base.)

¢ Only the data base creator or a user supplying. the correct maintenance word can execute the utilities.
The data base creator defines the maintenance word when the data base is created with the DBUTIL
utility program. (Refer to Section 8.) In addition, anyone running the utility programs other than
DBRECOV must be logged on to the group in which the data base resides.

e Unrecoverable disc or tape problems are treated as functional failures rather than limited successes and
result in program termination.

DEC 85
2-19

DEFINING A DATA BASE

Once the data base has been designed, it must be described with the

processed by the Schema Processor to create the root file.
data base.

data base description language and
Figure 3-1 illustrates the steps in defining the

___é D SCHEMA

PROCESSOR

SCHEMA
FILE

Ny

V

~
> |
FILE
DATA BASE DESIGN

Figure 3-1. Data Base Definition Process

DATA BASE DESCRIPTION LANGUAGE

The data base description, called a schema, may exist in the MPE system as an ASCII
magnetic tape, or as a catalogued disc file. Regardless of the actual physical record size o
Schema Processor reads, prints, and processes only the first 72 characters of each record.

character positions in the record are available for
information.

file on cards,
f the file, the
Any remaining
your convenience, to be used for comments or collating
The data base description language is a free-format language; you can insert blanks
anywhere in the schema to improve its appearance except within symbolic names and reserved words.

DEC 85
3-1

Defining A Data Base

Language Conventions

The conventions used in describing the data base language are the same as those described on the
conventions sheet at the beginning of this manual. In addition, the conventions in Table 3-1 apply.

Table 3-1. Additional Conventions

PUNCTUATION All punctuation appearing in format statements must appear
exactly as shown.

COMMENTS Comments take the form: <<comment>>

They may contain any characters and may appear anywhere in the
schema except embedded in another comment. They are included
in the schema listing but are otherwise ignored by the

Schema Processor program.

DATA NAMES Data names may consist of from 1 to 16 alphanumeric characters,
the first of which must be alphabetic. Characters after the first
must be chosen from the set:

letters A - Z, digits 0 - 9, or
+-*/VHLE@

UPSHIFTING All alphabetic input to the Schema Processor is upshifted (converted
to upper case, with the exception of passwords which may
contain lowercase characters).

Schema Structure
The overall schema structure is:

BEGIN DATA BASE:data base namel,LANGUAGE=language);
PASSWORDS: password part

ITEMS: item part

SETS: set part

END.

The data base name is an alphanumeric string from 1 to 6 characters. The first character must be
alphabetic.

The language is the native language definition name or number for the data base. Refer to the Native
Language Support Reference Manual for further information. The default language is the US ASCII
character set.

The password part, item part, and set part are described on the following pages. Figure 3-5 contains a
complete schema for the ORDERS data base that is used in the examples in this manual.

DEC 85
3-2

PASSWORD PART

The password part defines user classes and passwords. Section 2 contains a description of user classes and
how they are used to protect data elements from unauthorized access.

Syntax

user class number [password];

user class number [password];

Parameters
user class number an integer between 1 and 63 inclusive. User class numbers must be unique
within the password part.
password from 1 to 8 ASCII characters including lower case and excluding carriage
return, slash, semicolon, and blank. Blanks are removed by the Schema
Processor.
Example
14 CLERK
12 BUYER
11 CREDIT
Discussion

If the same password is assigned to multiple user class numbers, the highest numbered class is used. It is
not an error to omit the password, but the Schema Processor ignores lines containing only a user class
number.

DEC 85
3-3

ITEM PART

The item part defines data items including the data item name, length, and the user classes that have
access to the item. The data set(s) in which the data item appears is defined in the set part definition.

Syntax

item name, [sub-item count] type designator [sub-item length]

[(read class list/write class list)];

Parameters

item name

sub-item count

type designator

sub-item length

read class list

write class list

Example

the data item name. It must be a valid TurboIMAGE data name as
described in Table 3-1. It must be unique within the item part.

an integer from 1 to 255 that denotes the number of sub~-items within an
item. If omitted, by default it equals one. A data item whose sub-item
count is 1, is a simple item. If the sub-item count is greater than one, it is
a compound item.

defines the form in which a sub-item value is represented in the computer.
The type designators I J, K, R, U, X, Z, P are described in Table 3-2.

an integer from 1 to 255. It is the number of words, characters, or nibbles
(depending on the type designator) in a sub-item. If omitted, it is equal to
1 by default.

a group of user class numbers between Oand 63, inclusive, separated by
commas. User class numbers are described in Section 2.

a group of user class numbers between 0 and 63, inclusive, separated by
commas.

FIRST-NAME, X10 (12,14/11);

Discussion

There can be no more than 1023 data items in a data base. A data item name can appear in more than
one data set definition. For example, a data item named ACCOUNT appears in both the CUSTOMER and
SALES data sets of the ORDERS data base.

DEC 85
3-4

ITEM PART

Data Item Length

Each data item value is allotted a storage location whose length is equal to the product of the item’s
sub-item length and its sub-item count. The unit of measure for the length depends upon the type
designator and may be a word, byte, or nibble. A word is a 16-bit computer word, a byte is eight bits or a
half-word, and a nibble is four bits or a half-byte. Table 3-2 defines the various type designators and
specifies the unit of measure used for each.

Table 3-2. Type Designators

WORD DESIGNATORS: I A signed binary integer in 2’s complement
form.
J Same as I but QUERY allows only numbers

conforming to specifications for COBOL
COMPUTATIONAL data to be entered.

K An absolute binary quantity.
R A real (floating point) number.
CHARACTER DESIGNATORS: u An ASCII character string containing no
lowercase alphabetic characters.
X An unrestricted ASCII character string.
z A zoned decimal format number.
NIBBLE DESIGNATOR: P A packed decimal number.

A data item must be an integral number of words in length regardless of the type designator and its unit
of measure. In other words, data items of type U, X, or Z which are measured in bytes must have a
sub-item length and sub-item count such that their product is an even number. If a data item is defined
as U3, it cannot be a simple (item) and must have an even numbered sub-item count so that the data item
length is an integral number of words. Data items of type P which are measured in nibbles must have a
sub-item length and sub-item count such that their product is evenly divisible by 4, since 4 nibbles equal
1 word.

A data item cannot exceed 2047 words in length. The entire item, whether simple or compound, is always
handled as a unit by TurboIMAGE.

DEC 85
3-5

ITEM PART

TurbolIMAGE and Program Language Data Types

The type designator, sub-item count, and sub-item length you specify for a data item defines its length.
TurboIMAGE does not perform any conversions of data or examine the item to check its validity as it is
being added to the data base. The only data item values that TurboIMAGE checks are those specified as
part of a lock descriptor in calls to the DBLOCK procedure. (Refer to the discussions on locking in
Section 4.; There are no rules that a specific type of data defined by a programming language must be
stored in a specific type of TurboIMAGE data item.

Table 3-3 relates TurboIMAGE type designators and sub-item lengths to the data types typically used to
process them in the available programming languages. Some BASIC language restrictions are noted.

Note that the UNIT-COST item in the INVENTORY data set is easier to process with COBOL or RPG
programs than with the other languages since packed data is a standard data type in COBOL and RPG.
However, the CREDIT-RATING data item in the CUSTOMER data set is easier to process with
FORTRAN, SPL, or BASIC programs since real numbers can be arithmetically manipulated in these
languages. As actual data base may be designed so that some data sets are processed by programs coded in
one language and others by programs coded in another language. Another data set may be conveniently
processed by programs written in any of the languages.

In order to specify a doubleword integer in BASIC, define a two-word array in which the first word
contains the high-order digits of values greater than 32767, or zero, and the second word contains the
low-order digits of values greuter than 32767 or the entire value if it is less than 32767.

DEC 85
3-6

ITEM PART

Table 3-3. TurboIMAGE Type Designators and Programming Languages

COBOL FORTRAN RPG SPL BASIC
| COMPUTATIONAL INTEGER Binary INTEGER INTEGER *¥*
S9 to $9(4)
12 COMPUTATIONAL INTEGER * 4 Binary DOUBLE INTEGER
S9(5) to 59(9)
14 COMPUTATIONAL Binary
SHH10) to SHIQ)
J COMPUTATIONAL INTEGER Binary INTEGER INTEGER *¥*
S9 to S9(4)
J2 COMPUTATIONAL INTEGER * 4 Binary DOUBLE INTEGER
$9(5) to S9(9)
Jé COMPUTATIONAL Binary
SHI0) to SK18)
K1 LOGICAL LOGICAL ald
Ro* REAL REAL REAL X¥**
R4 DOUBLE PRECISION LONG LONG **¥**
U DISPLAY CHARACTER Character BYTE String
PICTURE A
X DISPLAY CHARACTER Character BYTE String
PICTURE X
b4 DISPLAY Character
PICTURE 9
p COMPUTATIONAL-3 Numeric
* Real numbers must have a length of 2 or more words; R and R1 lexplicitly) are not supported by TurbolMAGE.
** BASIC integers cannat have the value -32768
¥¥% Type LOGICAL items > 32767 which are accessed as type INTEGER in BASIC programs are treated as
negative integers.
okl BASIC REAL and LONG data cannot have the value 10 -78

Refer to Section 6 for Pascal and TurboIMAGE type designators.

DEC 85
3-7

ITEM PART

Data Items of Type P

The bits used to represent the sign of a packed decimal value can vary depending on whether the value 1s
entered using QUERY, a COBOL program, or an RPG program. Here is a2 summary of what happens in
each case:

o For Values Entered Using QUERY:

NO Sign Specified: Sign is 1111
PLUS Sign Specified: Sign is 1100
MINUS Sign Specified: Sign is 11012

e For Values Entered Using COBOL:

PICTURE Clause Specifies NO Sign: Sign is 1111
PICTURE Clause Specifies PLUS Sign: Sign is 1100
PICTURE Clause Specifies MINUS Sign: Sign is 11012

e For Values Entered Using RPG:

NO Sign or PLUS Specified: Sign is 1100

MINUS Sign Specified: Sign is 11012

When using TurboIMAGE to locate all packed data items with a particular value (as described in a later
section), you must be aware that TurboIMAGE differentiates between unsigned, positive, and negative
data items with the same absolute value. For example, if you search for all data items with the value +2,
TurboIMAGE will not retrieve any items with the unsigned value 2.

In general, TurboIMAGE treats any two values with different binary representations as unequal regardless
of their type.

COMPLEX NUMBERS

Applications programmed in BASIC or FORTRAN can define and manipulate complex numbers by using
data type R2 with a sub-item count of 2, storing the real part in the first sub-item and the imaginary
part in the second sub-item.

QUERY AND DATA TYPES

QUERY supports only a subset of the available data item types. If you intend to use QUERY you should

consult the QUERY Reference Manual for specific information about the way QUERY handles the various
TurboIMAGE data types, including compound data items.

DEC 85
3-8

ITEM PART

Table 3-4. Examples of an Item Part

ITEMS:

A,I2; <<32 BIT SIGNED INTEGER>>

MELVIN,3I(1,20/44); <<COMPOUND ITEM. THREE SINGLE WORD SIGNED INTEGERS.
READ CLASSES ARE 1 AND -20; WRITE CLASS IS 44.#>>

BLEVET,J; <<SINGLE-WORD SIGNED INTEGER éETWEEN -9999 AND
9999. >>,

COSTS,2X103 <<COMPOUND ITEM. TWO 10-CHARACTER ASCII STRINGS.>>

DATE,X6; <<SIX-CHARACTER ASCII STRING.>>

VALUES,20R2(1/8); <<COMPOUND ITEM. 20 2-WORD REAL (FLOATING-POINT)
NUMBERS. READ CLASS IS 1;WRITE CLASS IS 8.#>>

PURCHASE-MONTH,U8; <<EIGHT-CHARACTER ASCII STRING WITH NO LOWER CASE
ALPHABETICS.>>

MASK,K2; <<32 BIT ABSOLUTE BINARY QUANTITY.>>

TEMPERATURE , 17R4; <<COMPOUND ITEM. 17 FOUR WORD REAL (FLOATING-
POINT) NUMBERS.>>

SNOW##@, 24 <<FOUR-DIGIT ZONED DECIMAL (NUMERIC DISPLAY)
NUMBER. >>

POPULATION,P12; <<11 DECIMAL DIGITS PLUS A SIGN IN THE LOW ORDER
NIBBLE. OCCUPIES THREE WORDS.>>
*WRITE CLASSES CAN ALSO READ.

Data Item ldentifiers

When using the TurboIMAGE procedures described in the next section, you can reference a data item by
name or number. The data item number is determined by the item’s position in the item part of the
schema. The first item defined is item 1, the second is item 2, and so forth.

It is more flexible to use data item names since a change in the order of the item definitions or the
deletion of an item definition from the schema might require changes to all application programs
referencing the data items by number. Thus, to maintain program file independence, it is recommended
that you use data item names if possible.

DEC 85
3-9

SET PART (Master)

The set part of the schema defines data sets. It indicates which data items listed in the item part belong
to which sets and links the master data sets to the detail data sets by specifying them as search items.

Syntax

{S:AME :} set name,

ENTRY:
E:

{CAPAC ITY:
C:

} item name [(path count)],

item name |[(path count)];

} maximum entry count;

SMIANUAL])

\A[UTOMATIC][[(read class list/write class list)]

[,device class];

Parameters

set name

MANUAL (or M)

AUTOMATIC (or A)

read class list

write class list

device class
item name

path count

DEC 835
3-10

the data set name; must be a valid TurboIMAGE data name as described in
Table 3-1.

denotes a manual master data set. FEach entry within a manual master
must be created manually and may contain one or more data items.

denotes an automatic master data set. Each data entry within an
sutomatic master is created automatically by TurboIMAGE and contains
only one data item.

a group of user class numbers between 0and 63, inclusive, separated by
commas. User class numbers are described in Section 2.

a group of user class numbers between 0and 63, inclusive, separated by
commas.

is an MPE device class name on which the data set file resides.
the name of a data item defined in the item part.

an integer between 0 and 16, inclusive, which is used with the search item
only. It indicates the number of paths which will be established to various
detail data sets. (Refer to Section 2 for more information about paths.) A
path count must be specified for one, and only one, item in the master set.
A zero path count may be used with a manual master data item to indicate
the search item. A manual master defined in this way is not linked to any
detail data set. An automatic master has one item that must have a path
count greater than zero.

SET PART (Master)

maximum entry count the maximum number of entries the data set can contain, the data set’s
capacity. It must be less than 231 -1 (2,147,483,647).

Example
NAME : SUP-MASTER,MANUAL (13/12,18),DISC1;
ENTRY : SUPPLIER(1),
STREET-ADD,
CITY,
STATE,
ZIP;

CAPACITY: 200;

Discussion

The example above shows the data set SUP-MASTER which will reside on Discl. Assigning the device
class where a data set will reside can provide greater performance for the TurboIMAGE data base and
may aid in better utilitizing system resources. An understanding of how to spread the data set files over
multiple disc devices may be obtained from your system manager. Your system manager will be able to
give you a listing of logical devices and their corresponding device class names (each logical device may
have up to eight names).

To retrieve information on where each data set resides after specifying device classes in the schema you
may run the MPE LISTDIRS utility (after the data base is created). This utility lists the device type,
logical device number, and the device class name for each data set file in the data base. DBUTIL
>>SHOW may also be used to display the devices on which data set files reside.

DEC 85
3-11

SET PART (Detail)

The following provides the detail set part syntax and parameters.

Syntax

N:

ENTRY:
E:

{CAPACITY:
C:

{”AME‘} set name, DIETAIL] [(read class list/urite class list)]

} item name [(['] master set name [(sort item name)])l],

item name [(['] master set name [(sort item name)])];

} maximum entry count;

[,device class];

Parameters

set name

DETAIL (or D)

read class list

write class list

device class

item name

! (exclamation point)

master set name

DEC 85
3-12

the data set name. It must be a valid TurboIMAGE data name as defined
in Table 3-1.

denotes a detail data set.

a group of user class numbers between 0and 63, inclusive, separated by
commas. User class numbers are described in Section 2.

a group of user class numbers between 0and 63, inclusive, separated by
commas.

is an MPE device class name on which the data set file resides.

the name of a data item defined in the item part. Each item defined as a
search item must be a simple item. Up to 16 items may be search items.
(Refer to master set name for more information about search items.)

denotes a primary path. Only one path in each detail data set can be
designated as a primary path. If no path is designated as primary, the first
unsorted path is the primary path by default. If all of the paths are sorted,
the default primary path is the first sorted path.

the name of a previously defined master data set. When a master set name
follows an item name, it indicates that the data item is a search item
linking the detail set to the named master. Up to 16 search items can be
defined for a detail data set. If no data items have a master name
following them, the detail is not related to any master. In this case, the
combined length of all data items in the data set must equal or exceed two
words.

SET PART (Detail)

sort item name the name of a detail data item of type U, K, or X which is a part of the
data set being defined. A sort item defines a sorted path. Each entry
added to a chain of a sorted path will be linked logically in ascending order
of the sort item values. If sort item is omitted, the path order is
chronological, that is, new entries are linked to the end of chains. For
performance reasons, sorted chains should be kept short. (Refer to "Sort
Items" in Section 2.)

maximum entry counts the maximum number of entries allowed in a data set (data capacity); must
be less than 231 -1 (2,147,483,647).

Example

NAME : SALES,DETAIL(11/14,18),DISC1;
ENTRY: ACCOUNT (CUSTOMER (PURCH-DATE)),

STOCK# (! PRODUCT) ,

QUANTITY,

PRICE,

TAX,

TOTAL,

PURCH-DATE (DATE-MASTER),

DELIV-DATE (DATE-MASTER);
CAPACITY: 500;

Master and Detail Search Items

The master and detail .search items that define a path between two data sets must have identical type
designators and sub-item lengths when they are defined in the item part. Since the same data item name
may appear in more than one data set, you may use the same data item name and definition for both the
master and detail search items. For example, the data item ACCOUNT is used as the search item in both
the CUSTOMER master and SALES detail data sets.

If you want to make a distinction between the search items, however, they may be defined separately. An
example of this technique is found in the ORDERS data base. The search item DATE links the
DATE-MASTER data set to the SALES data set through two paths, and two search items, PURCH-DATE
and DELIV-DATE. These three data items look like this in the item part:

DATE, X6;
DELIV-DATE, X6 (/14);
PURCH-DATE, X6 (11/14);

Each data item has type designator X and sub-item length 6. The item names, read class lists, and write
class lists differ however.

Figure 3-5 at the end of this section contains the listing printed by the Schema Processor when the
ORDERS data base schema is processed. Refer to this f igure for examples of the schema parts.

Data Set Identifiers

Like data items, data sets may be referenced by name or number. The data set number is determined by
the set’s position in the set part of the schema. It is more flexible to use data set names, however, in order
to maintain program file independence.

DEC 85
3-13

SCHEMA PROCESSOR OPERATION

The Schema Processor is a program which accepts a textfile containing the schema as input, scans the
schema and if no errors are detected, optionally produces a root file. The Schema Processor prints a
heading, an optional list of the schema, and summary information on a listfile.

The Schema Processor executes in either MPE job or session mode. For further information about sessions
and jobs, refer to the MPE Commands Reference Manual. In either case, you must use the following MPE
command to initiate execution of the Schema Processor:

:RUN DBSCHEMA.PUB.SYS
Table 3-5 lists the formal file designators and default actual file designators which the Schema Processor
uses for textfile and listfile. The input/output devices to which $STDINX and $STDLIST refer depend

upon the way the system is generated. However, $STDINX is the standard job or session input device and
$STDLIST is the standard job or session output device.

Table 3-5. Schema Processor Files

FILE USE FORMAL FILE DEFAULT ACTUAL
DESIGNATOR FILE DESIGNATOR
textfile Schema and Schema DBSTEXT $STDINX

Processor Commands

listfile output listing DBSLIST $STDLIST

If you want to equate these files to some other actual file designator, you can use the MPE FILE
command. If a :FILE command is included in the job stream, you must inform the Schema Processor of
this in the :RUN command in the following way:

+RUN DBSCHEMA.PUB.SYS;PARM=n
where

n =1 if an actual file designator has been equated to DBSTEXT.

n=2 if an actual file designator has been equated to DBSLIST.

n=23 if actual file designators have been equated to both DBSTEXT and DBSLIST.

DEC 85
3-14

Table 3-6 shows sample combinations of :RUN and :FILE commands which can be used to initiate
DBSCHEMA execution.

Table 3-6. RUN and FILE Commands, Examples

:RUN DBSCHEMA. PUB.SYS Uses all default files. Prompts for
lines of schema in session mode.

+FILE DBSTEXT=ORDERSSC Processes schema from a user disc
:RUN DBSCHEMA. PUB.SYS;PARM=1 textfile named ORDERSSC.
¢FILE DBSLIST;DEV=LP Outputs the listing to a line
:RUN DBSCHEMA.PUB.SYS;PARM=2 printer.

Sebid .
:FILE DBSTEXT=OjRDE/R»SSC Processes schema from user textfile
:FILE DBSLIST;DEV=LP named ORDERSSC; outputs the listing
:RUN DBSCHEMA.PUB.SYS ;PARM=3 to a line printer.

Only the first 72 characters of each textfile record are processed.

If you request a root file, and the schema is error-free, it is created, given the same name as the one
specified for the data base in the schema, initialized, and saved as a catalogued disc file.

Creating the Textfile

A convenient method for creating the input file is to use the text editor, EDIT/3000, to enter the
commands and schema in a disc file. Figure 3-2 illustrates this process in a sample session which also
executes the Schema Processor. (Refer to EDIT/3000 Reference Manual for information about the
Editor.)

The steps followed in the sample in Figure 3-2 are:

1 Initiate an MPE session by logging on with the appropriate user name and account.

2 Initiate text editor execution. Enter an Editor ADD command in response to the first prompt.

3 Enter Schema Processor commands and the schema itself into records of the Editor work file.

4 Save the work file in a disc file named ORDERSSC. Then terminate the Editor.

5 Use the :FILE command to equate the formal file designator DBSLIST to the line printer and
DSBTEXT to the disc file ORDERSSC.

6 Initiate execution of DBSCHEMA and indicate that the textfile and listfile have been defined in
‘FILE commands. When the Schema Processor has finished processing the schema it prints the
number of error messages and verifies that the root file has been created.

Figure 3-3 illustrates the order of commands and other input required when executing the Schema

Processor in batch mode. The job can also be stored in a disc file and executed from a terminal.

DEC 85§
3-15

1

2

:HELLO USER.ACCOUNT
HP3000 / MPE V/E G.00.00. FRI, DEC 7, 1984, 2:07 PM

:EDITOR

HP32201A.7.15 EDIT/3000 FRI, DEC 7, 1984, 12:07 PM
(C) HEWLETT-PACKARD CO. 1983
/ADD

1 $PAGE "SCHEMA OF DATA BASE ORDERS"

2 $CONTROL ERRORS=5, BLOCKMAX=256

3 BEGIN DATA BASE ORDERS;

59 END.
60 //

/KEEP ORDERSSC
JEXIT

:FILE DBSLIST;DEV=LP
:FILE DBSTEXT=ORDERSSC
:RUN DBSCHEMA.PUB.SYS;PARM=3

HP32215C.00.00
NUMBER OF ERROR MESSAGES: 0
ROOT FILE ORDERS CREATED

END OF PROGRAM
:BYE

Figure 3-2. Sample Schema Creation Session

The Data Base Creator

The person who creates the root file is identified as the data base creator and can subsequently create and
initialize the data base. To do so, the data base creator must log on with the same account, user name, and
group that he or she used to create the root file and execute the TurboIMAGE utility program DBUTIL.
This program is described in Section 8.

DEC 85
3-16

SCHEMA PROCESSOR COMMANDS

TurboIMAGE provides several commands which you may use anywhere in the schema to specify cptions
available while processing the schema. The commands are: $PAGE, $TITLE, and $SCONTROL. The $
must always be the first character of the record, immediately followed by the command name, which must
be completely spelled out.

If a parameter list is included with the command, it must be separated from the command name by at
least one blank. Parameters are separated from each other by commas. Blanks may be freely inserted
between items in the parameter list.

Command records may not contain comments.

tJOB USER.ACCOUNT <«——— Job command

!RUN DBSCHEMA. PUB.SYS <«——— Run command

$PAGE <——— Schema Processor Commands (optional)
$TITLE

$CONTROL

BEGIN DATA BASE B; <«——— Schema

fEOD <«——— EOD command

1EQJ <«——— EOJ command

Figure 3-3. Schema Processor Batch Job Stream

Continuation Records

To continue a command to the next record, use an ampersand (&) as the last non-blank character in the
current record. The following record must begin with a $. The records are combined and the $ and &
are deleted and replaced by one blank character. A command name or parameter cannot be broken by &.
Characters beyond the 72nd character of each record are ignored.

DEC 85
3-17

$PAGE

The $PAGE command causes the listfile to eject to the top of the next page, print character-strings which
you may optionally specify, and skip two more lines before continuing the listing.

Syntax

$PAGE [["character-string"],...]

Parameters

character-string a list of characters enclosed in quotes. When the command is executed, the
quotes are stripped and the character-strings are concatenated. A quote
mark within a character-string is specified by a pair of quotes.

Example

$PAGE "ORDERS DATA BASE SCHEMA", "VERSION 3"

$PAGE "MASTER DATA SETS"&
$,"ACCOUNTING APPLICATION"

$PAGE

Discussion

The $PAGE command is effective only if the LIST option of the SCONTROL command is on. The LIST
option is on by default until a SCONTROL command sets NOLIST. The $PAGE command itself is not
listed.

The contents of the character-strings replace those specified by a previous $PAGE or $TITLE command.
If no character-strings are specified, the character-strings specified in the preceding $PAGE or $TITLE
command, if any, are printed at the top of the next page. '

DEC 85
3-18

$TITLE

The $TITLE command specifies a list of characters to be printed each time a headihg is printed on a new
page. It does not cause a page eject.

Syntax

$TITLE [["eharacter-string"l,...]

Parameters

character-string a list of characters enclosed in quotes. When the command is executed, the
quotes are stripped and the character-strings are concatenated. A quote
mark within a character-string is specified by a pair of quotes.

Example

$TITLE"""PRELIM""ORDERS DATA BASE"

$TITLE "ORDERS DATA BASE SCHEMA JUNE, 1984"

Discussion

The $TITLE command may be overridden by a subsequent $TITLE or $PAGE command. If no
character-string is specified, no title is printed after the command is encountered until another $TITLE or
$PAGE command specifies one.

DEC 85
3-19

$CONTROL

The SCONTROL command allows you to specify options in relation to processing the schema.

Syntax
LIST _ _ ,ROOT
$CONTROL [NOLIST] [ERRORS=nnn] [,LINES=nnnnn] [,NOROOT]
_ ,TABLE
[,BLOCKMAX=nnnn] [’ NOTABLE |
Parameters
LIST causes each source record of the schema to be printed on the listfile.
NOLIST specifies that only source records with errors be printed on the listfile. An
error message is printed after these records.
ERRORS=nnn sets the maximum number of errors to nnn. If more than nnr errors are

LINES=nnnnn

ROOT

NOROOT

BLOCKMAX=nnnn

TABLE

NOTABLE

DEC 85
3-20

detected, the Schema Processor terminates. nnr may have a value between
O and 999, inclusive. The default value is 100.

sets the number of lines per page on the listfile to nnnan which can be
between 4 and 32767, inclusive. The default value is 60 if listfile is a line
printer and 32767 if it is not.

causes the Schema Processor to create a root file if no errors are detected in
the schema.

prevents the Schema Processor from creating a root file.

sets the maximum physical block length (in words) for any data set in the
data base. nnan may have a value between 128 and 2048, inclusive. The
default value is 512. This is an important parameter and is discussed in

greater detail below.

causes the Schema Processor to write a table of summary information about
the data sets to the listfile device if no errors are detected.

suppresses the TABLE option.

$CONTROL

Discussion

The default parameters are LIST, ROOT and TABLE. If no $CONTROL command is used, the results are
the same as if the following SCONTROL command is used:

$CONTROL LIST, ERRORS=100,LINES=60, ROOT , BLOCKMAX=512,TABLE

The parameters may be placed in any order but must be separated by commas.

Selecting the Block Size

The data set records are transferred from the disc to memory in blocks. (The block format is described in
Section 10.) When you specify a maximum block size with the $CONTROL command you should
consider:

¢ Efficient disc space utilization.
¢ Minimum disc access.

e Program execution time which can be affected by the size of a privileged data segment in which
TurboIMAGE maintains a Data Base Buffer Area Control Block. (Refer to Section 4 for a definition
of the DBB.) Buffers in the DBB must be as large as the largest block of the data base, therefore, the
larger the block, the larger each buffer must be.

The Schema Processor determines the number of data records which fit in a block. Larger blocks
minimize disc access by enabling the transfer of more records at one time. In selecting a block size, the
following considerations may apply:

e If the applications using the data base will be run as batch jobs at times when few other users are
competing for system resources, particularly memory space, you may choose to use large blocks. This
will reduce the frequency of disc access if an application is accessing data sets serially, or along chains
whose members are physically contiguous or close.

o If the application programs are large and will be run while many users are operating in session mode,
large blocks and the resulting large DBG and DBB data segments may cause the program to execute
more slowly since a larger area of memory is required to execute the programs. In this case, you may
want to decrease the block size. If the application programs are small, this may not be necessary.

Note that DBSCHEMA chooses a blocksize (less than or equal to the maximum blocksize) which makes the
best use of disc space, and which may be substantially less than the maximum blocksize (as specified by
SCONTROL BLOCKMAX, or the default of 512 words). If the record size is greater than 512 words,
BLOCKMAX must be set greater than or equal to the record size.

Other factors may depend on the application requirements and a certain amount of tuning is sometimes
necessary to determine the best block size. In general, the default block size of 512 words yields
reasonable performance and should be changed only with good reason.

DEC 85
3-21

SCHEMA PROCESSOR OUTPUT

The Schema Processor prints the following heading on the first page of the listing:
PAGE 1 HEWLETT-PACKARD 32215C.00.00 TurboIMAGE/3000 MON, DEC 10,1984, 4:32 PM

If your standard output device ($STDLIST) is different from listfile, an abbreviated product identification
is also printed on $STDLIST. Subsequent pages of listfile are headed by a page number, the data base
name if it has been encountered, and the title most recently specified by a $TITLE or $PAGE command.

If the LIST option is active, a copy of each record of the schema is sent to the listfile. However, if the
textfile and listfile are the same, as for example they are when you enter the schema source from your
terminal in session mode, the records are not listed. If you are entering the schema in this way, the
Schema Processor prompts for each line of input with a >.

Summary Information

After the entire schema has been scanned, several types of summary information may be printed on the
listfile.

e If not all of the items defined in the item part are referenced in the set part, and if no errors are
encountered, the message UNREFERENCED ITEMS:list of items is printed to the listfile. The list
includes all items defined but not referenced in a data set. Although they are not considered errors,
these extraneous items should be removed to reduce the size of the tables in the root file and the size of
the extra data segment used by the library procedures.

e If no errors are detected in the schema, the Schema Processor prints a table of summary information
about the data sets. Figure 3-4 contains a sample printout of this information. Table 3-7 describes
the information contained in the summary. The NOTABLE parameter of the SCONTROL command
suppresses printing of this table.

DATA SET TYPE FLD PT ENTR MED CAPACITY BLK BLK DISC

NAME CNT CT LGTH REC FAC LGTH SPACE
EMPLOYEE M 4 1 7 17 500 30 512 T2
PROJECT-MASTER M 2 1 10 20 75 19 382 15
LABOR D 4 2 10 18 10024 28 506 1436

TOTAL DISC SECTORS INCLUDING ROOT: 1532

Figure 3-4. Data Set Summary Table

DEC 85
3-22

Table 3-7. Data Set Summary Table Information

DATA SET The name of the data set. CAPACITY The maximum number of
NAME entries allowed in the data
set. For detail data sets, this
number may differ from the
TYPE A for automatic, M for number of entries specified in
manual, or D for detail. the schema itself, because the
capacity of each detail is
adjusted to represent an even
multiple of the blocking
factor (see below).
FLD CNT The number of data items in BLK FAC The number of media records
each entry of the data set. which are blocked together
for transfer to and from the
disc.
PT CT Path count. For a master data
set, this is the number of
paths specified for the data BLK LGTH The total length in words of
set search item. For a detail the physical block as defined
data set, it is the number of in BLK FAC. This includes
search items defined for each the media records and a bit
entry of the data set. map. Bit maps are discussed in
Section 10.
ENTR LNGTH The length in words of the DISC SPACE The amount of disc space (in
data portion of the data entry 128-word sectors) occupied
(not including any of the by the MPE file containing
TurboIMAGE pointers or the data set.
structure information
associated with a data entry).
MED REC The total length in words of a TOTAL DISC The total number of
media record of the data set. SECTORS 128-word disc sectors which
This length includes the entry INCLUDING will be occupied by the data
length plus any of the ROOT: nnnn base, when created using the
TurboIMAGE pointers DBUTIL program.
associated with the data
entry. Media records are
discussed in Section 10.

e Two lines of summary totals are printed on the listfile. For example:

NUMBER OF ERROR MESSAGES: ©
ITEM NAME COUNT: 22 DATA SET COUNT: 6

The error count includes both errors in the schema and in the Schema Processor commands. The error
count 1s also sent to $STDLIST, if it is different from the listfile.

DEC 85
3-23

e If no schema syntax or logical errors are encountered, a third line is printed. The form of this line is:
ROOT LENGTH: r BUFFER LENGTH: b TRAILER LENGTH: ¢

ROOT LENGTH is the length in words of the body of the root file. BUFFER LENGTH is the length
in words of each of the data buffers which TurboIMAGE allocates in an extra data segment (the DBB)
for use in transferring data set blocks to and from disc. TRAILER LENGTH is the length in words of
an area in the extra data segment used by TurboIMAGE to transfer information to and from a calling
program’s stack.

e If no errors are detected and the ROOT option is active, the following message is sert to the listfile:
ROOT FILE data base name CREATED

data base name is the name given in the BEGIN DATA BASE statement in the schema.

Schema Errors

When the Schema Processor detects an error it prints a message to the listfile. If the LIST option is active,
it is printed immediately after the offending statement. If NOLIST is active, the current line of the
schema is printed and then the error message.

Schema Processor error messages are explained in Appendix A. The root file is not created if any of the
listed errors are detected. However, the Schema Processor attempts to continue checking the schema for
logical and syntactical correctness.

One error may obscure detection of subsequent errors, particularly if it occurs early in a data set. It may
be necessary to process the schema again after the error is corrected to find subsequent errors.
Conversely, some errors early in the schema can generate subsequent apparent errors which will disappear
after the original error has been corrected.

If schema errors prohibit creation of the root file, the following message is sent to the listfile, and to
$STDLIST if it is not the same as the listfile:

PRECEDING ERRORS -- NO ROOT FILE CREATED
A few conditions, including the number of errors exceeding the total number allowed, cause immediate
termination of the Schema Processor without the normal summary lines. In this case, the following

message is printed:

SCHEMA PROCESSING TERMINATED

Schema Processor Example

Figure 3-5 contains the listfile output printed when the schema of the sample ORDERS data base is
processed. The data base has 5 passwords and contains 23 data item definitions and 6 data set definitions.
The Schema Processor summary information is printed following the schema.

DEC 85
3-24

PAGE 1

HEWLETT-PACKARD 32215C.00.00 IMAGE/3000: DBSCHEMA FRI,DEC 7
$CONTROL LIST,LINES=46
$PAGE "SCHEMA FOR DATA BASE ORDERS"
BEGIN DATA BASE ORDERS;

PASSWORDS:
14 CLERK; << SALES CLERK »>>
12 BUYER; << BUYER - RESPONSIBLE FOR PARTS INVENTORY »>>

11 CREDIT; << CUSTOMER CREDIT OFFICE >>
13 SHIP-REC; << WAREHOUSE - SHIPPING AND RECEIVING >>
18 DO-ALL; << FOR USE BY MGMT »>>

ITEMS: << IN ALPHABETICAL ORDER FOR CONVENIENCE >>
ACCOUNT, J2 ; << CUSTOMER ACCOUNT NUMBER>>
BINNUM, z2 (/13); << STORAGE LOCATION OF PROD>>
CITY, X12 (12,13,14/11); << CITY>>
CREDIT-RATING,R2 (/14); << CUSTOMER CREDIT RATING>>
DATE, X6 ; << DATE (YYMMDD))>>
DELIV-DATE, X6 (/14); << DELIVERY DATE (YYMMDD)>>
DESCRIPTION, X20 ; << PRODUCT DESCRIPTION>>
FIRST-NAME, X10 (14/11); << CUSTOMER GIVEN NAME>>
INITIAL, u2 (14/11); << CUSTOMER MIDDLE INITIAL>>
LAST-NAME, X16 (14/11); << CUSTOMER SURNAME>>
LASTSHIPDATE, X6 (12/); << DATE LAST REC D(YYMMDD)>>
ONHANDQTY, J2 (14/12); << TOTAL PRODUCT INVENTORY>>
PRICE, J2 (14/); << SELLING PRICE (PENNIES)>>
PURCH-DATE, X6 (11/14); << PURCHASE DATE (YYMMDD))>>
QUANTITY, I (/14); << SALES PURCHASE QUANTITY>>
STATE, X2 (12,13,14/11); << STATE -- 2 LETTER ABB>>
STOCK#, us ; << PRODUCT STOCK NUMBER>>
STREET-ADD, X26 (12,13,14/11); << NUMBER AND STREET ADD>>
SUPPLIER, X16 (12,13/); << SUPPLYING COMPANY NAME>>
TAX, J2 (14/); << SALES TAX>>
TOTAL, J2 (11,14/); << TOTAL AMOUNT OF SALE>>
UNIT-COST, P8 (/12); << UNIT COST OF PRODUCT>>
ZIP, X6 (12,13,14/11); << ZIP CODE>>

SETS:

NAME : CUSTOMER,MANUAL (14/11,18) ,DISC; <<CUSTOMER MASTER>>
ENTRY: ACCOUNT (1),

LAST-NAME,

FIRST-NAME,

INITIAL,

STREET-ADD,

CITY,

STATE,

ZIP,

CREDIT-RATING;
CAPACITY: 200;

Figure 3-5. ORDERS Data Base Schema

DEC 85
3-25

PAGE 2 SCHEMA FOR DATA BASE ORDERS

NAME :
ENTRY:
CAPACITY:
NAME:
ENTRY:

CAPACITY:
NAME:
ENTRY:

CAPACITY:
NAME:
ENTRY:

CAPACITY:
NAME :
ENTRY:

CAPACITY:
END.

DATA SET

NAME

CUSTOMER
DATE-MASTER
PRODUCT
SALES
SUP-MASTER
INVENTORY

DATE-MASTER,AUTOMATIC,DISC1 <<DATE INDEX>>
DATE(3);

211;

PRODUCT,MANUAL(14,13/12,18),DISCE;<<PRODUCT INDEX>>
STOCK#(2),

DESCRIPTION;

3003

SALES,DETAIL(11/14,18),DISC1; <<CREDIT PURCHASE>>
ACCOUNT(CUSTOMER(PURCH-DATE)),

STOCK# (PRODUCT) ,

QUANTITY,

PRICE,

TAX,

TOTAL,

PURCH-DATE (DATE-MASTER) ,

DELIV-DATE (DATE-MASTER) ;

500;

SUP-MASTER,MANUAL (13/12,18) ,DISC1; <<SUPP MASTER>>
SUPPLIER(1),

STREET-ADD,

CITY,

STATE,

ZIP;

200,

INVENTORY,DETAIL(I2,14/13,18),DISC1; <<PROD SUPPLY>>
STOCK# (PRODUCT) ,

ONHANDQTY,

SUPPLIER(!SUP-MASTER), <<PRIMARY PATH>>

UNIT-COST,

LASTSHIPDATE (DATE-MASTER),

BINNUM;

4503

TYPE FLD PT ENTR MED CAPACITY BLK BLK DISC

CNT CT LGTH REC FAC LGTH SPACE

M 9 1 41 52 200 7 365 90
A1 3 3 26 211 18 486 52
M 2 2 14 31 300 16 497 80
D 8 4 19 35 504 14 491 148
M 5 1 31 42 200 12 505 T2
D 6 3 20 32 450 15 481 124

TOTAL DISC SECTORS INCLUDING ROOT: 583

NUMBER OF ERROR MESSAGES: O
ITEM NAME COUNT: 23 DATA SET COUNT: 6

ROOT LENGTH:

1176 BUFFER LENGTH: 505 TRAILER LENGTH: 256

ROOT FILE ORDERS CREATED.

DEC 85

3-26

Figure 3~5. ORDERS Data Base Schema (Continued)

USING THE DATA BASE

After the data base is designed, the root file created, and the files built, application programs can be
written that will be run to enter and use the data. Programs written in COBOL, FORTRAN, Pascal, SPL,
or BASIC gain access to the data base through calls to TurboIMAGE procedures. RPG programs contain
specifications used by the Report Program Generator to make calls to the TurboIMAGE procedures for
you. This section contains a text discussion of the procedures used to open the data base, enter, read,
update, and delete data, as well as information on locking, transaction logging, checking procedure status
and interpreting errors. Use this section together with Section 5§ which gives details about each procedure
call, its parameters, and status information.

NOTE

Before application programs can be executed, the data base must be created
using DBUTIL TurboIMAGE utility program described in Section 8.

OPENING THE DATA BASE

Before you can gain access to the data, the process you are running must open the data base with a call to
the DBOPEN procedure. (A process is a unique execution of a particular program by a particular user at
a particular time, as described in the MPE Intrinsics Reference Manual.) In opening a data base, DBOPEN
establishes an access path between the data base and your program by:

¢ verifying your right to use the data base under the security provisions provided by the MPE file system
and the TurboIMAGE user class/password scheme.

e determining that the access mode you have requested in opening the data base is compatible with the
access modes of other users currently using the data base.

e opening the root file and constructing the control blocks to be used by all other TurboIMAGE
procedures when they are executed. The root file remains open until the data base is closed.

Note that DBOPEN does not open the individual data sets that compose a data base.

DBOPEN also determines if the operating system supports the native language as defined in the root file.
An error message "Language is not supported” will be returned if the language attribute of the data base is
not supported by the current system configuration. Refer to Appendix A for more information.

Data Base Control Blocks

TurboIMAGE executes using data stored in four different types of dynamically~constructed control
blocks resident in privileged extra data segments. The Data Base System Control Block (DBS), the Data
Base Globals Control Block (DBG), the Data Base Buffer Area Control Block (DBB), and the Data Base
User Local Control Block (DBU). The Data Base System Control Block is created when the first user opens
any data base on the system. The DBS is used as a system wide table to locate the current DBG and DBB
for any opened data base. There is only one DBS per system.

DEC 85
4-1

Using the Data Base

TurboIMAGE creates the Data Base Globals Control Block (DBG) and the Data Base Buffer Area Control
Block (DBB) for a particular data base when the first user’s process calls the DBOPEN procedure to open
the data base. Both will remain allocated until the last user closes the data base (DBCLOSE).

The DBG contains global information required by TurboIMAGE intrinsics during run-time. There is
exactly one DBG for each open data base regardless of the number of concurrent access paths to the data
base. All TurboIMAGE procedures on a particular data base (except DBERROR and DBEXPLAIN)
reference the DBG. In addition, the DBG contains the lock table which holds user level locking
information.

The DBB contains a set of buffers which may contain data from any of the data sets. Global information
regarding logging and recovery is also contained within the DBB. The DBB is used to retrieve, log and
update data located in the data set files on disc.

There is one Data Base User Local Control Block (DBU) for each user who accesses a data base. In other
words, a unique DBU is created each time DBOPEN is successfully called. A DBU contains information
pertaining to the user’s own individual access to the data base. The privileged extra data segment
containing the DBU is associated with the user’s process.

All TurboIMAGE intrinsics process on the DBU except accesses for global and buffer area information
found in the two global blocks (DBG and DBB). The DBU is released when the user’s process calls
DBCLOSE to close the data base.

Passwords

When you open the data base you must provide a valid password to establish your user class number. If
you do not provide one, you will be granted user class number 0. If you are the data base creator and
supply a semicolon as a password, the number 64 is used to grant you unlimited data base access privileges.
Passwords and user classes are discussed in Section 2.

Access Modes

There are eight different access modes available and each mode determines the type of operation that you
can perform on the data base as well as the types of operations other users can perform concurrently. To
simplify the definition of the various access modes, the following terminology is used:

o read access allows the user to locate and read data entries.

e update access allows read access and, in addition, allows the user to replace values in all data items
except search and sort items.

o modify access allows update and, in addition, allows the user to add and delete entries.
The procedures that can be used with each type of access are:

¢ read DBFIND and DBGET.

¢ update DBFIND, DBGET, and DBUPDATE.

e modify DBFIND, DBGET, DBUPDATE, DBPUT, and DBDELETE.

DEC 85
4-2

Using the Data Base

Table 4-1 summarizes the type of access granted in each access mode, provided the MPE security
provisions and your password permit it. Access modes 3 and 7 provide exclusive access to the data base; all
other modes allow shared access.

Table 4-1. Access Mode Summary

ACCESS TYPE OF ACCESS CONCURRENT SPECIAL
MODE GRANTED ACCESS ALLOWED REQUIREMENTS

1 modify modify Locking must be used for
(with locking) update or modify.

2 update update

3 modify none

4 modify read

5 read modify TurboIMAGE does not
(with locking) require locking but it

should be used to
coordinate access with users
who are modifying.

6 read modify
7 read none
8 read read

CONCURRENT ACCESS MODES

A data base can only be shared in certain well-defined environments. The access mode specified when a
process opens a data base must be acceptable for the environment established by others who are already
using the data base. Here is a summary of the acceptable environments:

s multiple mode | and mode $ users.

e multiple mode 6 and mode 2 users.

¢ multiple mode 6 users and one mode 4 user.

¢ multiple mode 6 and mode 8 users.

e one mode 3 user.

e one mode 7 user.

DEC 85
4-3

Using the Data Base

Subsets of these environments are also allowed. For example, therc may be all mode 6 users or all mode 8
users. There may be one mode | user or all mode § users and so forth.

If 2 mode 3 or mode 7 user is currently accessing the data base, it cannot be opened until that user closes
the data base. This is true any time an attempt is made to open a data base in a mode which is not
compatible with the modes of others using the data base.

DATA BASE OPERATIONS

The descriptions below explain in detail exactly what occurs when a data base is opened in a particular
mode. Locking is available in all modes. In the discussion that follows, brief suggestions are given as to
when locking may be used. Refer to the discussion of the locking facility for more information.

e ACCESS MODE 1. The data base is opened for shared modify access. Opening in mode 1 succeeds only
if all other current users of the data base have access modes 1 or 5.

All TurboIMAGE procedures are available in this mode. However, a program must obtain temporary
exclusive control of the data entries before calling any procedure that changes them, such as
DBUPDATE, DBPUT, or DBDELETE. In this way, changes to the data base are synchronized and
carried out properly. This exclusive control must subsequently be relinquished to permit other access
mode 1 or mode S users to access these entries. Acquiring and relinquishing is referred to as locking
and unlocking, respectively. These functions are supplied by the TurboIMAGE library procedures,
DBLOCK and DBUNLOCK. The locking requirements may be met by locking the affected entries, the
sets containing the entries, or the whole data base.

A mode 1 (and mode 5) user who has all or part of the data base locked is assured that no concurrent
user is modifying that part of the data base.

It is possible to read entries in the data base using calls to DBFIND and DBGET without locking but
the calling program must provide for the possibility that another process may be simultaneously
modifying the data base. This can result in an entry being deleted from a chain which the calling
program is reading.

e ACCESS MODE 2. The data base is opened for shared update access. The opening succeeds only if all
current users of the data base have access modes 2 and 6. All TurboIMAGE procedures are available to
the mode 2 user except DBPUT and DBDELETE which are permanently disabled in this mode.
Therefore, the mode 2 user is able to read and update data entries but is not permitted to add or delete
data entries in any data set.

The programmer must be aware of the possibility that other mode 2 users are simultaneously updating
data entries. In many applications, it may be possible to arrange for each user process to update unique
data entries or data items so that the data base will correctly reflect all changes, even data items in the
same entry updated by different processes. On the other hand, if two or more processes update the
same data items of the same entry, the data base will reflect only the latest values. Locking may be
used, if desired, to coordinate update sequences to an entry or to coordinate with mode 6 readers.

e ACCESS MODE 3. The data base is opened for exclusive modify access. If any other users are

accessing the data base, it cannot be opened in this mode. All TurboIMAGE procedures are available to
the mode 3 user. No other concurrent process is permitted to gain any type of access to the data base.

DEC 85

Using the Data Base

¢ ACCESS MODE 4. The data base is opened for semi-exclusive modify access. Only one mode 4 user
can access the data base and all other current users must be in mode 6 (read only). The mode 4 user is
permitted to call any TurboIMAGE procedure and has complete control over data base content. This
mode differs from mode 3 only in that other read-only users are permitted concurrent access to the
data base. Locking may be used to coordinate with mode 6 readers.

e ACCESS MODE 5. The data base is opened for shared read access. All other concurrent users must be
in mode 1 or mode 5. Mode 5 operates in exactly the same way as mode 1 except the procedures that
alter the data base, DBUPDATE, DBPUT, and DBDELETE, are disabled for the mode $ user. Locking
can be used, if desired, to ensure that data is not being modified while you are reading it.

e ACCESS MODE 6. The data base is opened for shared read access. Concurrent users must be in mode
2, 4, 6, or 8 This mode can also be used while the data base is being stored with the TurboIMAGE
utility program, DBSTORE. Some of these modes are incompatible with each other as shown in the
discussion of concurrent access modes above. All TurboIMAGE procedures that alter the data base are
disabled. Locking can be used to synchronize with users who are concurrently updating.

Mode § and 6 are appropriate for inquiry-type applications if they can tolerate the possibility of data
base modifications taking place simultaneously, since mode 1, 2, and 4 users can make such changes.

o ACCESS MODE 7. The data base is opened for exclusive read access. No other users may access the
data base concurrently. Mode 7 operates in exactly the same way as mode 3 except the procedures that
alter the data base are disabled for the mode 7 user.

e ACCESS MODE 8. The data base is opened for shared read access. Concurrent users must be in mode
6 or 8 or using the TurboIMAGE utility DBSTORE. TurboIMAGE procedures that alter the data base
are not permitted. Since mode 8 allows only concurrent readers, a user program with this access mode
can be assured that the data base values it reads are unchanging.

SELECTING AN ACCESS MODE
When deciding which access mode to use, two important considerations are:

e Use the least capability that will accomplish the task. For example, select a read only access mode
(5,6,7, or 8) if the program does not alter the data base in any way.

o Allow concurrent users as much capability as is consistent with successful completion of the task. If
the task is merely browsing through the data base, producing a quick report, or accessing an unchanging
portion of the data base, choose a mode which allows concurrent users to make data base modifications
to other parts of the data base. Allowing concurrent read-only access (modes 2, 4, and 8) may be
appropriate in many situations. For programs that must be assured there will be no concurrent
structural changes but can tolerate simultaneous updates to entries, mode 2 may be particularly
suitable. Locking may be used to control simultaneous updates to a data entry. If it is absolutely
necessary to make structural changes to a data base from concurrent multiple processes, modes 1 and $
must be used. Fully exclusive operation (modes 3 and 7) are available if needed.

DEC 85

Using the Data Base

The following mode selection guidelines are organized according to the task to be performed. For some
tasks, one of several modes may be selected depending on the concurrent activity allowed with each mode.

e Programs that perform all data base operations, including adding and deleting entries, should open with
mode 1, 3, or 4. Choose:

mode 1

mode 4

mode 3

if it is necessary to allow other processes to add and delete entries
simultaneously. In this case, the affected parts of the data base must be locked
while performing updates, additions, or deletions.

if exclusive ability to change the data base is required but it is possible to allow
mode 6 processes to read the data base while changes are being made.

if the program must have exclusive access.

e Programs that locate, read and replace data in existing entries but do not need to add or delete any
entries, and do not want any other processes to do so, should open the data base in mode 2. Locking can
be used to coordinate updates.

e Programs that only locate and read or report on information in the data base should open with one of
the read only modes. In this case, the mode selected depends upon either the type of the process
running concurrently or the need for an unchanging data base while the program is running. Choose:

mode 5

mode 6

DYNAMIC LOCKING

if concurrent processes will operate in modes 1 or 5. Parts or all of the data
base may optionally be locked to prevent concurrent changes during one or more
read operations.

if it is not important what other processes are doing to the data base. In this
case, mode 2 processes can replace entries, one mode 4 user can replace, add or
delete entries, or mode 6 or mode 8 users can read entries while the program 1S
using the data base.

Refer to the discussion of locking and unlocking later in this section for some special considerations.

DEC 85
4-6

Using the Data Base

Transaction Logging

Users accessing the data base in access modes | through 4 are affected by the transaction logging facility
if the data base administrator has enabled the data base for logging (a procedure described in Section 7).
In this case, calls to the TurboIMAGE intrinsics listed in Table 4-2 are automatically logged to a logfile.
Note that nothing is logged for programs opening the data base with read only access (modes 5-8),
regardless of the data base having been enabled for logging. (The logging facility is described more fully
later in this section and in Section 7.)

Table 4-2. Logged Intrinsics

DBBEGIN DBCLOSE DBDELETE DBEND

DBMEMO DBOPEN DBPUT DBUPDATE

ENTERING DATA IN THE DATA BASE

Data is added to the data base, one entry at a time, using the DBPUT procedure. You may add data
entries to manual master and detail data sets. Entries are automatically added to automatic master data
sets when you add entries to the associated detail data sets.

To add an entry, you specify the data set name or number, a list of data items in the set, and the name of
a buffer containing values for these items. Values must be supplied for search and sort items but are
optional for other data items in the entry. If no value is supplied, the data item value is set to binary
Zeroes.

Sequence for Adding Entries

Before you can add an entry to a detail data set indexed by a manual master data set, the manual master
must contain an entry with a search item value equal to the one you intend to put in the detail. If more
than one manual master is used to index the detail, entries which have a search item value identical to the
detail search item value for the same path must exist in each master. To illustrate, consider the ORDERS
data base again. Figure 4-1 contains sample data entries in four of the ORDERS data sets.

Before the SALES data entry can be added to the data set, the CUSTOMER manual master data set must
contain an entry with ACCOUNT equal to 12345678 since ACCOUNT is the search item used to index
the SALES detail. Similarly, the SALES data set is indexed by the PRODUCT manual master through the
STOCK# search item, so the entry with STOCK# equal to 34624AB3 must be added to PRODUCT before
a sales transaction for that STOCK# can be entered in SALES.

Once the entry for customer account 12345678 has been entered, the next sales transaction can be
entered in the SALES detail set without changing the CUSTOMER master. This entry will be chained to
the previous entry for the account. If a different customer buys a bicycle tire pump, the PRODUCT data
set will not require any additional entries, but if the customer’s account is not yet in the CUSTOMER data
set it must be added before entering the sales transaction in SALES,

DEC 85
4-7

Using the Data Base

When the entry for account 12345678 and stock number 35624AB3 is added to SALES, TurboIMAGE
automatically adds entries to the DATE-MASTER with a DATE item value of 92775 and 92875 if such
entries do not already exist. If the entries do exist, each chain head is nodified to include the entry added
to the chain.

Access Mode and User Class Number

An entry cannot be added to a data set unless the user class number established when the data base is
opened grants this capability. The user class number must be in the data set write class list.

The data base must also be opened with an access mode allowing entries to be added. These access modes
are 1, 3,and 4. If it is opened with access mode 1, the DBLOCK procedure must be used to establish a
lock covering the entry to be inserted. For detail data sets, this may be a data entry, data set, or data base
lock.

Note that the locking mechanism will accept a request to lock a data entry that does not yet exist,
therefore, you may lock a data entry before you add it.

Manua! Master CUSTOMER Data Entry

|—12345678 (MILLER JAMES ||_| 1645 MARSHALL AVENUE GLENDALE fAzl 85301 |14 |
Path dofined by ACCOUNT Search Item
do/ined by oarch Automatic Master

Path defined by PURCH-DATE .

-MASTER
a0 DATE S s DATE-MASTER Data Entries
Detail SALES Data Entry W/ 92775
[re3esers | 3secaanm3 [2 [900 |84 954 | 9ar7s | ooers | j
92875
Path defined by DELIV-DATE
Path definsd by STOCK Search ltem and DATE Ssarch ftems

Manual Master PRODUCT Data Entry
35624AB3 BICYCLE TIRE PUMP

Figure 4-1. Sample Data Entries from ORDERS Data Base

Search ltems

TurboIMAGE performs checks on the values of search items before adding an entry toa data set. If the
data set is 2 manual master, TurboIMAGE verifies that the search item value is unique for the set, that no
entry currently contains a search item with the same value. If the data set is a detail, TurboIMAGE
verifies that the value of each search item forming a path with a manual master has a matching value in
that master. It also checks that there is room to add an entry to any automatic master data sets linked to
the detail if a matching search item value does not exist.

DEC 85
4-8

Using the Data Base

READING THE DATA

When you read data from the data base you specifv which data set and which entry in that data set
contains the information you want. If the user class number with which you opened the data base grants
you read access, you may read the entire entry or specific data items from the entry. You specify the
items to be read and the array where the values should be stored. You can read items or entries in any
access mode if your user class grants read access to the data element.

To understand the various ways in which you can select the data entry to be read, it is important to know
a little about the data set structure. Each data set consists of one disc file and each data entry is a logical
record in that file. Each entry is identified by the relative record number in which it is stored. The first
record in the data set is record number 1 and the last is record number n, where » is the capacity of the
data set.

At any given time, a record may or may not contain an entry. TurboIMAGE maintains internal
information indicating which records of a data set contain entries and which do not.

Current Path

TurboIMAGE maintains a current path for each detail data set and for each accessor (access path). The
current path is established by the DBFIND procedure, or if no call has been made to this procedure, it is
the primary path for the data set. Each time an entry is read, no matter what read method is used,
TurboIMAGE saves the entry’s backward and forward chain pointers for the current path. For more
information about how the current path is used, refer to the discussion of chained access later in this
section.

If an entry is read from a master data set, the chain pointers are synonym chain pointers and have no
relationship to a path.

Reading Methods

The methods for requesting a data entry are categorized as

o directed access

o serial access

o calculated access

o chained access

All of these methods are available through the TurboIMAGE library procedure DBGET. The chained

access method also requires the use of the DBFIND procedure. Figure 4-2 illustrates the access methods
using two data sets from the ORDERS data base.

DEC 85
4-9

Using the Data Base

INVENTORY Detail Data Set
STOCK# ONHANDQTY SUPPLIER
i
2 66500225 9% H&S SURPLUS ~<--.- B -:
—p 3| 430m13p 32 ACME L
] '
4 o
5| 6650F228 75 HaS SURPLUS <-4
1
6 3739A14F 8 JAKE'S SHOP :
7 |
]
8 !
_____ I
9 7391222F 12 H&S SURPLUS <_ -
10 I
1
]
t
t
]
SUP-MASTER Master Data Set :
]
SUPPLIER STREET-ADDRESS :
|
1| JAKE'S SHOP I
—> 2 ACME \
[}
3 !
i
4 !
]
5 | H8S SURPLUS _ _ 1 Contsins pointers
to beginning
6 and ending
___’ 7 BAY PAPER CO. chain entrries.
8
——Jp» Directed Access
—% Serial Access (Forward)
—{> Calculated Access
- _> Chained Accass lof Details). See Section 10 for illustration of synonym chains.
Figure 4-2. Reading Access Methods (DBGET Procedure)
DEC 85

4-10

Using the Data Base

Directed Access

One method of selecting the data entry to be read is to specify its record number. This method is called
directed access. If any entry exists at the record address specified by the calling program, TurboIMAGE
returns the values for the data items requested in the calling program’s buffer. If no such entry exists, the
program is notified by an exceptional condition return such as end-of -file or beginning-of -file.

This access method can be used with any type of data set and is useful in situations where the calling
program has already determined the record number of the entry to be read. For example, if a program
surveys several entries using another access method to determine which one it wants to use in a report, it
can save each record number and use the record number of the entry it selects to read the entry again
using the directed access method.

If a program performs a directed read of record 3 of the INVENTORY data set, the entry marked with a
solid black arrow in Figure 4-2 is read. If a directed read of the SUP-MASTER data set record 7 is
performed, the entry in that set marked with the same type of arrow is read.

LOCKING

If concurrent users are allowed to add to or delete from this data set, locking should be used during the
search and report sequence to ensure the record numbers do not change before they are used. In this type
of application, a data set lock is usually the most appropriate.

NOTE

When using this type of access with master data sets, you should be aware
of migrating secondaries. These are described in Section 10.

Serial Access

In this mode of retrieval, TurboIMAGE starts at the most recently accessed storage location for the data
set, called the current record, and sequentially examines adjacent records until the next entry is located.
Data items from this entry are returned to the calling program, and its location becomes the current
record.

You may use both forward and backward serial access. Forward serial access consists of retrieving the
next greater-numbered entry and backward serial access consists of retrieving the previous
lower-numbered entry. If no entry is located, TurboIMAGE returns an end-of -file if requested access is
forward, or a beginning-of -file if it is backwards.

Since there is no current record the first time a program requests an entry from a data set, a request for
forward serial access causes TurboIMAGE to search from record 1. Similarly, a backward serial retrieval
begins at the highest numbered record.

DEC 85
4-11

Using the Data Base

The entries connected by a solid line in Figure 4-2 are read by a program using the serial access method.
If a forward serial read is performed on the INVENTORY data set before any other type of read, the
entry in record number 2 is read. If another forward serial read is performed on the same data set, the
entry in record 3 is read. On the other hand, if a serial read is performed and the current record is 6, the
entry in record 9 is read. The next forward serial read returns an end-of -file.

The serial access method can be used with any type of data set and is very useful if most or all of the data
in the data set is to be retrieved, for example, to be used in a report. It is efficient to retrieve all the data
serially, copy it to a file, and sort it with routines external to TurboIMAGE before printing the report.
The availability of serial access effectively allows you to use a data set in the same way you would use an
MPE file. Thus, you have the advantages of TurboIMAGE data base organization and the efficiency of
serial access.

LOCKING

If concurrent users are allowed to modify the data set (access mode 1), you may wish to lock the data set
or data base before you begin the serial access sequence. Locking will prevent entries from being added,
modified, moved or removed by the other processes.

Calculated Access

The calculated access method allows you to retrieve an entry from a master data set by specifying a
particular search item value. For example, the SUP-MASTER data entry for the supplier Acme shown in
Figure 4-2, can be retrieved with this method since SUPPLIER is a search item in the SUP-MASTER data
set. TurboIMAGE locates the entry in the data set whose search item value matches the requested value.
The exact technique used to perform calculated access is described in Section 10.

Calculated access can be used only with master data sets. It is very useful for retrieving a single entry for
some special purpose. For example, a program used infrequently to get information about a particular
customer or supplier could use calculated access to quickly locate the information in the ORDERS data
base.

Chained Access

The chained access method is used to retrieve the next entry in the current chain. To perform chained
access of detail data set entries, you must first locate the beginning of the chain you want to retrieve, and
thus establish the current chain, by calling the DBFIND procedure. The calling program specifies the
name of the detail search item that defines the path to which the chain belongs and a value for the item.
TurboIMAGE determines which master set forms a path with the specified search item and locates the
entry in that master data set whose search item value matches the specified value. The entry it locates
contains pointers to the first and last entries in the desired chain and a count of the number of entries in
the chain. This information is maintained internally and defines the attributes of the current path.

DEC 85
4-12

Using the Data Base

If a program uses chained access to read the INVENTORY data set entries pertaining to the supplier H&S
SURPLUS shown in Figure 4-2, it must first call the DBFIND procedure to locate the chain head in the
SUP-MASTER data set. The program specifies the INVENTORY data set, the SUPPLIER search item in
the INVENTORY data set and the value H&S SURPLUS for that item. TurboIMAGE uses a calculated
read to locate the SUP-MASTER entry with a search item value of H&S SURPLUS. If the program then
requests a forward chained read using the DBGET procedure, the entry in record 9 of INVENTORY,
which is set at the beginning of the chain, is read. If a hackward chained read is requested, the entry in
record $ is read.

If the last call to DBGET used chained access to read the entry in record 9, the next forward chained read
reads the entry in record 2 of the INVENTORY data set.

Once a current path, and chain, has been established for a detail data set, the calling program can use the
chained access method of retrieving data. You may use both forward and backward chained access. In
either case, if there are no more entries in the chain when you request the next one, DBGET returns an
exceptional condition, beginning-of-chain or end-of-chain for backward and forward access
respectively.

£l

Chained access to master data sets retrieves the next entry in the current synonym chain. The use of
synonym chains applies to only a limited number of special situations. They are discussed in Section 10.

Chained access to detail data sets is particularly useful when you want to retrieve information about
related events such as all inventory records for the H&S Surplus supplier in the ORDERS data base.

LOCKING

If concurrent users are allowed to modify data entries in the chain you are currently accessing, you may
use locking to ensure data consistency. For example, suppose a chain consists of several data entries, each
containing a line item from a particular order. If user A is performing a series of chained reads while
user B is cancelling the order by deleting data entries one by one, user A may retrieve an incomplete
order. To prevent this from happening, a lock may be established covering the group of data entries to be
retrieved (the chain, in this case). This can usually be done with a single DBLOCK call. (Refer to the
discussion of the locking facility later in this section.)

Re-Reading the Current Record

The DBGET library procedure allows you to read the entry from the most recently accessed record again.
You may want to do this in a program that has unlocked the data entry and locked it again and needs to
check if the contents of the current entry have been changed.

Note that if a DBFIND procedure call has been made, the current record is zero and a request to re-read
the entry causes DBGET to return an exceptional condition indicating that the current record contains no
entry. Refer to the DBGET procedure Table 5-12 for more information.

DEC 85
4-13

Using the Data Base

UPDATING DATA

TurboIMAGE allows you to change the values of data items that are not search or sort items if the user
class number with which you opened the data base grants this capability to you. Before you call the
DBUPDATE library procedure to change the item values, you must call DBGET to locate the entry you
intend to update. This sets the current record address for the data set. The DBUPDATE library
procedure uses the current record address to locate the data items whose values are to be changed.

A lock may be established before the call to DBGET to guard against accidental modification of the
record by another user. This is recommended in any shared access mode (as discussed below).

When the program calls DBUPDATE it specifies the data set name, a list of data items to be changed, and
the name of a buffer containing values for the items. For example, if a program changes the street
address of a customer in the CUSTOMER data set of the ORDERS data base, the program can first locate
the entry to be changed by calling DBGET in calculated access mode with the customer’s account number
and then calling the DBUPDATE procedure to change the value of the STREET-ADDRESS data item in
that entry.

Access Modes and User Class Number

To update data items, the data base must be opened in access mode 1, 2, 3, or 4. If it is open in access
mode 1, the data entry, data set, or data base must be locked while the update is happening.

TurboIMAGE guarantees that all updates to a data entry will be carried out even if they are requested by
different users concurrently and locking is not used. To ensure this, TurboIMAGE always completes the
processing of one DBUPDATE request before it begins processing under another. However, data
consistency problems may still occur if an update is based on data values that are not current. For
example, while withdrawing 10 items from the stock, two users may read the same data entry from the
INVENTORY data set. If the current value of ONHANDQTY is 30 and they each subtract 10 from it
and then update the entry, both updates will operate successfully but the new value will be 20 rather than
10. To prevent errors such as this, a lock covering the data entry can be put in effect before it is read and
released after it is updated.

TurboIMAGE attempts to enforce this locking technique for users in mode 1 by checking to see if an
appropriate lock is in effect before executing an update. However, to have its proper effect, the lock
should be made before the call to DBGET.

The password you use to open the data base must grant update capability to the data items you intend to
change. The user class number associated with the password must either be in the write class list of the
data set containing the items to be updated or in the read class list of the data set and in the write class
list of the data item.

DEC 85
4-14

Using the Data Base

Updating Search and Sort Items

You cannot use the DBUPDATE library procedure to update a search or sort item. To change such items,
you must first delete the selected entry with DBDELETE (see "DELETING DATA ENTRIES" below), and
then write a new entry to the data base with DBPUT.

The new entry must be complete. That is, you cannot delete an entry and then add a new entry with only
the item you want changed. If you do this, the rest of the entry will be set to binary zeros by DBPUT.
Furthermore, make sure the current list is truly current when using an asterisk (¥) to reference the list;
otherwise, if items have been added or deleted, you may cause DBPUT to write binary zeros over existing
data. Note that using the commercial "at sign" (@) to write all the items in a data entry avoids this
problem.

DELETING DATA ENTRIES

To delete an entry from a data set, you must first locate the entry to be deleted by reading it with the
DBGET library procedure, or the DBFIND and DBGET procedures if it is advantageous to use chained
access to locate the entry. You then call the DBDELETE procedure specifying the data set name.
TurboIMAGE verifies that your password and associated user class number allow you to delete the current
entry of the specified data set.

If the detail data entry deleted is the only member of a detail chain linked to an automatic master, and all
other chains linked to the same automatic master entry are empty, TurboIMAGE automatically deletes
the master entry.

If the data entry is in a manual master data set, TurboIMAGE verifies that the detail chains associated
with the entry’s search item, if any, are empty. If not, it returns an error condition to the calling
program. For example, if a program attempts to delete the SUP-MASTER entry in Figure 4-2 that
contains a SUPPLIER value of H&S SURPLUS, an error condition is returned since a three-entry chain
still exists in the INVENTORY detail data set.

To delete the CUSTOMER data set entry with ACCOUNT equal to 75757575, the program can call
DBGET in calculated access mode specifying the CUSTOMER data set and the search item value
75757575, If the procedure executes successfully, the program then can call DBDELETE specifying the
CUSTOMER data set to delete the current entry provided no chains in the related SALES detail data set
contain search item values of 75757575.

DEC 85
4-15

Using the Data Base

Access Modes and User Class Numbers

To update data items, the data base must be opened with access mode 1, 3, or 4. If it is opened with access
mode 1, the DBLOCK procedure must be used to lock the detail data entry, data set, or data base before
an entry can be deleted and DBUNLOCK should be called after one or all desired entries have been
deleted. As a general rule, the lock should be established before the whole delete sequence, in other words,
before the call to DBGET that establishes which record is to be deleted. This will ensure that another
user does not delete the data entry between the call to DBGET and the call to DBDELETE.

An entry cannot be deleted from a data set unless the user class number established when the data base is
opened is in the data set write class List.

USING THE LOCKING FACILITY

The DBLOCK procedure applies a logical lock to a data base or one or more data sets or data entries. The
DBUNLOCK procedure releases these locks.

Locking can be viewed as a means of communication and control to be used by mutually cooperating
users. The locking facility provides a method for protecting the logical integrity of the data shared in a
data base. With the DBLOCK procedure, application programs may isolate temporarily a subsection of
the data base in order to perform a transaction against the isolated data. Locking is not required to
protect the structure of the data base. TurboIMAGE has internal mechanisms that do this.

If a program opens the data base in access mode 1 and locks a part of the data base, it can perform the
transaction with the certain knowledge that no other user will modify the data until the application
program issues 2 DBUNLOCK call. This is because TurboIMAGE does not allow changes in access mode 1
unless a lock covers the data to be changed. If one process has the data base opened in access mode 1,
TurboIMAGE requires that all other processes that modify the data base must also operate in access mode
1.

The DBLOCK procedure operates in one of six modes. Modes 1 and 2 may be used for locking the data
base and modes 3 and 4 for locking a data set. In modes 5 and 6, you describe the data base entity or
entities to be locked using lock descriptors.

At the data entry level locking is performed on the basis of data item values. For example, suppose a
customer requests a change in an order he has placed. The data entries for his account that are in the
SALES data set may be locked while his order is changed and other data base activity may continue
concurrently.

DEC 85
4-16

Using the Data Base

Lock Descriptors

A lock descriptor is used to specify a group of data entries that are to be locked. It consists of a data set
name or number, a relational operator, and an associated value. For purposes of this discussion, the
notation dset : ditem relop value is used. For example, the lock descriptor SALES:ACCOUNT = 89393899
requests locking of all the data entries in the SALES data set with an ACCOUNT data item equal to
89393899. Note that the result of specifying a single lock descriptor may be that none, one or many
entries are locked depending on how many entries qualify.

The following relational operators may be used:

¢ less than or equal (<=).

e greater than or equal (>=).

e equal (= # or # =). # indicates a space character.

The value must be specified exactly as it is stored in the data base. A lock will succeed even if no data
item with the specified value exists in the data set; no check is made to determine the existence of a
particular data item value. This allows you to use techniques such as issuing a lock to cover a data entry
before you actually add it to a data set.

With the exception of compound items, any data item may be used in a lock descriptor; it need not be a
search item.

TurboIMAGE does not require that you have read or write access to a data set or data item in order to
specify it in a lock request.

A process may specify any number of lock descriptors with a single DBLOCK call. For example, the
following lock descriptors may be specified in one DBLOCK call:

CUSTOMER: ACCOUNT = 89393899
SALES: ACCOUNT = 89393899

SUP-MASTER: STATE = AZ
INVENTORY: ONHANDQTY <
INVENTORY: ONHANDQTY >

100
1500

NOTE

Multiple calls to DBLOCK without intervening calls to DBUNLOCK are
not allowed unless the program has Multiple RIN (MR) capability. (Refer
to "Issuing Multiple Calls to DBLOCK" later in this section.)

DEC 85
4-17

Using the Data Base

How Locking Works

The internal implementation of locking does not involve reading or writing to the data base element to be
locked. TurboIMAGE keeps a table of everything that is locked by all processes that have the data base
opened. One table is associated with each data base. This table serves as a global list of lock descriptors.
In locking mode S or 6, a data base lock is specified with the descriptor @@ and a data set lock with
dset:@. If you call DBLOCK in locking mode 1, 2, 3, or 4, TurboIMAGE sets up the appropriate lock
descriptor and puts it in the lock descriptor table. Figure 4-13 jllustrates the contents of this list in a
situation where one process has locked all SALES data entries with ACCOUNT equal to 12121212 or
equal to 33334444, Another process has locked all INVENTORY data entries with STOCK# equal to
6650D22S. A third process has locked the whole SUP-MASTER data set. The figure illustrates what the
table represents, not the actual internal format.

When a lock request is made, TurboIMAGE compares the newly specified lock descriptors with those that
are currently in the list. If a conflict exists, TurboIMAGE notifies the calling process that the entity
cannot be locked or, if the process has requested unconditional locking, it is placed in a waiting state until
the entity can be locked. If there are no conflicts, TurboIMAGE adds the new lock descriptors to the list.

SALES: ACCOUNT = 12121212
SALES: ACCOUNT = 33334444
INVENTORY: STOCK# = 6650022S

- Qindicates enti
SUP-MASTER: @ < 4ata set Is locked.

Figure 4-3. Lock Descriptor List

Conditional and Unconditional Locking

You may request conditional or unconditional locking. If you request unconditional locking,
TurboIMAGE returns control to your calling program only after the specified entity has been locked. If
you request conditional locking, TurboIMAGE returns immediately. In this case, the condition code must
be examined to determine whether or not the requested locks have been applied. If multiple lock
descriptors are specified, the status area indicates the numbers that have been applied. The calling
program should call DBUNLOCK only if a subset of the requested locks succeeded.

DEC 85
4-18

Using the Data Base

Access Modes and Locking

It is anticipated that access mode | will typically be used by applications implementing a locking scheme.
In this mode, TurboIMAGE enforces the following rules:

e To modify (DBPUT, DBDELETE, or DBUPDATE) a data entry, you must first issue a successful lock
covering the affected data entry. It may be a data entry, data set, or data base lock

e To add to or delete from (DBPUT or DBDELETE) a master data set, you must first successfully lock the
data set or data base. To update (DBUPDATE) a master data set, data entry level locks are sufficient.

If your application opens the data base in access mode 2, it is recommended that you use locking to
coordinate updates with other users.

TurboIMAGE does not prevent any process from reading data even though another process holds a lock on
it. If you want to ensure that no modifications are in progress while you are reading from the data base,
you should place an appropriate lock on the data before starting. Therefore, you may want to use locking
in access modes 2, 4, 5, and 6 to coordinate the reading and modifying sequences and ensure that they do
not occur concurrently.

Since access mode 3 and 7 users have exclusive control of the data base and access mode 8 users allow
concurrent reading only, locking need not be used in these modes.

Automatic Masters

When adding or deleting entries from a detail data set, you need not have locks covering the implicit
additions or deletions that occur in any associated automatic masters.

Locking Levels

Locking can be viewed as operating on three levels: the whole data base, whole data sets, or data entries.
TurboIMAGE allows mixed levels of locking. For example, one user may be locking data entries and
another locking the data set. In this situation, a request to lock the data set cannot succeed until all the
currently locked data entries have been released. Subsequent requests to lock data entries, those that are
made while the data set lock is pending, are placed in a queue behind the data set lock.

This principle is followed for data base locks also. If data set or data entry locks are in effect at the time
a data base lock is requested, the data base lock must wait until they are released and all subsequent
locking requests must wait behind the pending data base lock.

In either case, if the request is for a conditional lock, an exceptional condition is generated. (Refer to
Table 5-15.)

DEC 85
4-19

Using the Data Base

Deciding on a Locking Strategy

It is important, especially for on-line interactive applications, to establish a locking strategy at system
design time. In general, locking is related to the transaction, the basic unit of work performed against a
data base. Typically a transaction consists of several calls to TurboIMAGE intrinsics to locate and modify
data. For example, a transaction to add a new order with three line items may require several reads to
locate customer information and several DBPUT calls to add the order detail records.

One characteristic of a transaction is that the data in the data base is consistent both before and after the
transaction, but not while it is in progress. For example, a user reading the detail data set being modified
by the above order transaction may only see some of the line items and may get no indication that the
transaction is incomplete. This type of problem is refered to as logical inconsistency of data and can be
prevented by using the locking facilities.

The general principle that should be applied for any transaction in a shared-access environment is: A¢ the
start of any transaction, establish locks that cover all data entries that you intend to modify (DBPUT,
DBDELETE, or DBUPDATE) and/or all data entries which must not change during the transaction.

Choosing a Locking Level

Because TurboIMAGE needs more information to lock data entries than to lock the whole data base,
program complexity tends to increase the lower the level of locks employed. Locking the whole data base
or a single data set is the simplest operation, followed in increasing order of complexity by locking
multiple data sets and locking data entries. At system design time, a compromise must be made between
the benefits of low-level locking and the extra programming effort required.

Data entry locking should give the best performance; however, there are situations in which the extra
programming effort for data entry locking is not worthwhile. Performance is least optimum at the higher
level of the lock. Performance and programming effort should be considered, some other considerations
that may effect your choice of locking level are discussed below.

LOCKING AT THE SAME LEVEL

All programs concurrently accessing a data base should lock at the same level most of the time. For
example, one process locking a data set will hold up all other processes that are attempting to lock entries
in that set. Therefore, the attempt by the process locking at the data entry level to allow other processes
to share the data base is nullified by the process locking at the data set level and the effect is as if all
processes were locking at the data set level. The rule of locking at the same level may be violated for
infrequent operations such as exception handling or rare transactions.

DEC 85
4-20

Using the Data Base

LENGTH OF TRANSACTIONS

Generally, the longer the lock is to be held, the lower the level it should be. In other words, if you are
performing lengthy transactions (more than about 8 TurboIMAGE calls), vou should probably lock at the
entry level. For transactions shorter than this, data base or data set locks will give approximately the
same results.

An extreme case of a long transaction is one in which user dialog takes place while a lock is held. For
example, a program may read some data entries, interact with a terminal operator, and modify some or all
of the entries. A lock to cover this transaction may last several minutes which is an unacceptable amount
of time to stop all data base or data set activity. In this situation, data entry level locking should be used.

Since the length of different transactions varies, the longest transaction (that is also frequently used)
should guide the choice of locking level.

LOCKING DURING USER DIALOG

In the situation described above, where a lock is held during interactive dialog with a terminal operator,
the terminal timeout feature of MPE may be used to avoid having the locked entity inaccessible when the
terminal operator is interrupted in the middle of the dialog. The timeout feature may be used to cause
the terminal read to terminate automatically if no response is received within a certain time period.
Refer to the discussion of "FCONTROL" in the MPE Intrinsics Manuals.

Choosing an Item for Locking

An important convention to follow in designing a locking scheme is that all programs sharing the data
base concurrently use the same data item to lock data entries in a particular data set. At any one time,
TurboIMAGE allows no more than one data item per data set to be used for locking purposes. However,
several values of the data item may be locked at the same time. For example, if one process has
successfully locked SALES:ACCOUNT=54321000, another process may lock
SALES:ACCOUNT=11111111. If a request is made to unconditionally lock SALES:STOCK#=8888X22R,
the requesting process will be made to wait until all entries locked by ACCOUNT number are unlocked.
Furthermore, any new requests for locking other SALES:ACCOUNT values will wait until
SALES:STOCK#=8888X22R is successfully locked and unlocked again.

With this in mind, it is apparent that it is more efficient if all processes locking data entries in the SALES
data set use the same data item since it is much less likely that one process will have to wait until another
process finishes using the data. Therefore, at system design time, decide which item will be used in each
data set for lock specification purposes. (It may be useful to add comments in the schema indicating which
item is the locking item for each set.)

DEC 85
4-21

Using the Data Base

Examples of Using the Locking Facility
The following examples list the order in which TurboIMAGE intrinsics may be called when using the
locking facility while performing various transactions. The examples refer to the ORDERS data base
described in Figures 2~5 and 2-6.
e Add a New Customer

1. DBLOCK the Customer data set or the whole data base.

2. DBPUT new data entry in CUSTOMER data set.

3. DBUNLOCK.

TurboIMAGE requires a data set or data base lock to cover addition of an entry to a master data set.

» Update an INVENTORY data entry to increase UNIT-COST for part 66503225 by 12 percent

1. DBLOCK INVENTORY: STOCK#=6650D22S. (Alternatively, the INVENTORY
set or the whole data base can be locked.)

2. DBFIND and DBGET the data entry that is locked in step 1.
3. Compute new UNIT-COST = UNIT-COST + .12 * UNIT-COST.
4. DBUPDATE the data entry that is locked.
5. DBUNLOCK.
e Insert a new product with a new supplier
1. DBLOCK the PRODUCT master data set.

2. DBPUT new product data entry in PRODUCT master data set. (For example: 4444A33B
CALIPER).

3. DBUNLOCK.

4. DBLOCK the SUP-MASTER data set.

S. DBPUT new supplier data entry in SUP-MASTER data set.

6. DBUNLOCK.

7. DBLOCK INVENTORY: STOCK# = 4444A33B.

8. DBPUT new data entry in INVENTORY data set for STOCK# = 4444A33B.

9. DBUNLOCK.

This has been done in three transactions. If the user did not want other users to see the data base with

the supplier record present but with no inventory shown, one transaction with the data sets locked in
two calls to DBLOCK with modes 3 or 4 can be performed.

DEC 85
4-22

Using the Data Base

¢ Interactively modify an order for customer account 89393899
1. DBLOCK SALES: ACCOUNT = 89393899.

2. DBFIND the CUSTOMER master data set entry with ACCOUNT = 89393899 in order to prepare to
read the chain of SALES data entries with the same ACCOUNT value.

3. DBGET each entry in the chain and display it to user until the correct order is located.
4. Modify the contents of the data entry according to the user’s request.
5. DBUNLOCK.

All data entries for ACCOUNT 89393899 in the SALES data set are locked. Note that these locks are
held while a dialog takes place with the terminal operator, therefore, the lock may be held for several
minutes. For this type of transaction, it may be best to first perform a conditional lock to determine if
the records are accessible. For example:

1. DBLOCK SALES: ACCOUNT = 89393899 with mode 6.

2. If the lock does not succeed, the following message is displayed:
RECORDS BEING MODIFIED. WANT TO WAIT?
If the response is NO then go to other processing. If YES, call DBLOCK again with mode .

Table 4-3 contains guidelines that may be helpful in designing locking schemes for shared-access
environments which include users who might modify the data base. Although data entry level locks are
recommended in this table and illustrated in the examples above, data set or data base locks may be more
appropriate for similar tasks depending upon other application requirements.

Table 4-3. Locking in Shared-Access Environments

ACTION

RECOMMENDED LOCKS

Chained DBGET calls

Serial DBGET calls

Update a data entry
(DBUPDATE)

Directed reads
(DBGET calls)

Add a data entry to a
detail data set (DBPUT)

Add to or delete from a
master data set
(DBPUT and DBDELETE)

Lock all data entries in the chain. This usually requires one
lock descriptor.

Lock the data set.

Lock the data entry before calling DBGET to read the data
entry. Unlock after the update.

These are not recommended in a shared environment. Lock the
data set before determining which data entry is needed.

Any lock which covers this data entry, but preferably uses
the data item that was decided on as the "lock item"
for the data set.

Lock the data set or data base. This is mandatory if the
data base is open in access mode 1.

DEC 85

4-23

Using the Data Base

Issuing Multiple Calis to DBLOCK

In order to guarantee that two processes cannot deadlock, once a call to DBLOCK is made by any process
in a session or job, TurboIMAGE does not allow a second call to be made unless the locks are cancelled
with a call to DBUNLOCK first. There are two exceptions to this rule:

e A redundant call may be made to lock the whole data base with DBLOCK mode 1 or 2 provided the
call relates to the same access path. The redundant call will have no effect. (This is allowed in order
to maintain compatibility with earlier versions of IMAGE.)

e More than one DBLOCK call may be made if the program from which multiple DBLOCK calls are
issued has Multiple RIN (MR) capability. (A user cannot prepare such a program unless they also have
this capability. Refer to the System Manager/System Supervisor Reference Manual for more
information.)

The DBLOCK procedure is similar to MPE global RIN locks (no RINs are actually involved) in that it may
put a process into a waiting state and thus, may cause a deadlock to occur. For example, a deadlock may
occur if process A is waiting for a global RIN to be freed by process B, and process B is waiting for a data
base entity to be unlocked by process A. Therefore, issuing a DBLOCK in conjunction with a lock applied
by MPE intrinsics such as LOCKGLORIN or FLOCK or by the COBOLLOCK procedure requires MR
capability. (The use of MR capability is not recommended unless absolutely necessary.)

Users whose programs have MR capability and issue multiple DBLOCK calls are responsible for deadlock
prevention. This type of locking must be done very carefully. Recovery from a deadlock requires a
restart of the operating system.

No matter how many descriptors are listed in a single DBLOCK call, TurboIMAGE guarantees that
deadlocks will never occur provided that no executing program that accesses the data base has MR
capability. Programs that execute successfully using TurboIMAGE locks in a single process environment
will not execute in a process-handling environment without MR (Multiple RIN) capability. (Refer to
Appendix D for more information on the MR capability.)

Releasing Locks

The locks held by a process for a particular access path of a data base are relinquished when the process
calls DBUNLOCK, or automatically when the process closes the data base, terminates, aborts, or is aborted
by an operator.

Failure of a program to release locks will result in other programs waiting indefinitely for any conflicting
locks. These programs, while in a waiting state, cannot be aborted by the operating system. An attempt
to abort such a waiting process will result in the abort taking effect as soon as the process obtains the lock
for which it was waiting.

NOTE

Any program that executes a DBGET in modes 5 or 6 should lock the data
base. This will prevent the execution of any DBPUTs or DBDELETES in the
detail data set and will help prevent broken chains. The program should
also lock the chain in a detail set to prevent the next or previous chain in a
detail set from being DBDELETEd.

DEC 85
4-24

Using the Data Base

USING THE LOGGING FACILITY

TurboIMAGE has the capability of recovering a data base from a transaction-oriented logfile in the event
of a system failure. Transaction logging and recovery is fully discussed in Section 7, however, some
considerations relevant to applications are discussed here.

What Logging Does

The TurboIMAGE logging and recovery facility enables all data base modifications to be logged
automatically to a tape or disc logfile. In the event of a system failure the logfile is read to re-execute
transactions or identify incomplete transactions, depending on what type of recovery process is being used.
In addition, the transaction logging system can be a useful tool for auditing. The logfile is actually a
record of all modifications to the data base. The intrinsic DBMEMO, capable of logging user text,
facilitates interpretation of the logfiles for future reference.

The data base administrator is responsible for enabling or disabling the logging and recovery processes and
generating backup data base copies, thus making logging a global function controlled at the data base level
rather than at the individual user level.

A process is said to be logging if all of the following are true:
e The data base has been enabled for logging by the data base administrator.
* A logging process has been initiated from the system console.

o The user is accessing the data base in one of modes 1 through 4.

How Logging Works

The following TurboIMAGE intrinsics are automatically logged when the data base is enabled for logging
and a user opens the data base in a mode which permits modifications: DBOPEN, DBCLOSE, DBPUT,
DBUPDATE, DBDELETE, DBBEGIN, DBEND, and DBMEMO.

TurboIMAGE calls the MPE logging intrinsics OPENLOG, WRITELOG, and CLOSELOG in order to log
information to the logfile. When a data base is opened, DBOPEN calls the OPENLOG intrinsic using the
log identifier and password stored in the data base root file. If this call succeeds, DBOPEN calls
WRITELOG to log a DBOPEN log record containing information about the data base and the new user.

The WRITELOG intrinsic is also used to log information when the TurboIMAGE intrinsics DBPUT,
DBDELETE, and DBUPDATE are called. WRITELOG is called after all error checks are made, but
before actually modifying the working data base. Consequently, a log record is not written until the
TurboIMAGE procedure has committed itself to succeed. WRITELOG is also used by the TurboIMAGE
intrinsics DBBEGIN, DBEND, and DBMEMO.

DBCLOSE (mode 1) calls WRITELOG to log out a DBCLOSE log record, and then calls CLOSELOG to
terminate access to the logfile. If a transaction initiated with DBBEGIN fails to call DBEND, DBCLOSE
causes a special DBEND log record to terminate access to the logfile. DBCLOSE also causes a special
DBEND log record to be written if the program is aborting with a transaction unfinished.

DEC 85
4-25

Using the Data Base

Logging and Logical Transactions

A transaction can be considered as the basic work unit performed against a data base. A transaction
could consist of a single modification, but more typically might consist of several calls to TurboIMAGE
intrinsics which lock, read, modify, and unlock information. Logical transactions transfer the data base
from one consistent state to another, but in the midst of a multiple-step transaction, the data base could
be temporarily inconsistent with itself. (For an example, see Section 7.)

In the event of a system failure and subsequent recovery, only complete logical transactions are
re-executed, returning the data base to a consistent state. Therefore, it is essential that an application
program mark the beginning, and end of a sequence of calls which constitute a single logical transaction
with the intrinsics DBBEGIN and DBEND.

For reasons explained more fully under "Logical Transactions and Locking" in Section 7, the following
sequence of operations should be followed as closely as possible when performing modifications:

1. Call DBLOCK to lock all data which must not change durmg the transaction. This includes data to be
read and data to be modified.

2. Read data using DBFIND and DBGET to determine the necessary modifications.
3. Call DBBEGIN to declare the beginning of modifications.

4. Make modifications using DBPUT, DBDELETE, or DBUPDATE.

5. Call DBEND to declare the end of the modifications.

6. Call DBUNLOCK to release all of the locks.

Transaction Numbers

TurboIMAGE maintains a double word transaction number for each user’s access to the data base.
Transaction numbers enable the DBRECOV recovery program to associate log records with a particular
transaction. This number is initialized by DBOPEN and incremented each time DBBEGIN is called, or for
each single call to DBPUT, DBUPDATE, or DBDELETE if it is not included in a transaction delimited by
DBBEGIN and DBEND. Transaction numbers are included in all DBBEGIN, DBPUT, DBUPDATE,
DBDELETE, DBMEMO, and DBEND log records. The transaction number is always incremented as
described, regardless of whether the user process is actually logging. A user process may determine its
transaction count (and whether the data base and user is logging) by calling DBINFO using mode 401.

Logging and Process Suspension

The MPE logging intrinsics will suspend a calling process if the logging buffers become full.
Consequently, a user process which calls TurboIMAGE may become suspended, for example, if a tape
logfile reaches the end of a reel and logging buffers become full before a new tape can be mounted.

DEC 85
4-26

Using the Data Base

OBTAINING DATA BASE STRUCTURE INFORMATION

5

The DBINFO library procedure allows you to acquire information programmatically about the data base.
It provides information about data items, data sets, or data paths. The information returned is restricted
by the user class number and access mode established when the data base is opened.

Any data items, data sets, or paths of the data base inaccessible to that user class or in that access mode are
considered to be non-existent. For example, if the access mode grants only read access, this procedure will
indicate that no data sets may have entries added. The information that can be obtained through separate
calls to DBINFO is summarized below.

In

In

In

relation to data items, DBINFO can be used:

To determine whether the user class number established when the data base is opened allows a specified
data item value to be changed in at least one data set, or allows a data entry containing the item to be
added or deleted.

To get a description of a data item including the data item name, type, sub-item length, and sub-item
count. This information corresponds to that which is specified in the item part of the schema.

To determine the number of items in the data base available to the current user and to get a list of
numbers identifying those items. The numbers indicate the position of each data item in the item part
of the schema. The type of access, for example read-only, can also be determined.

To determine the number of items in a particular data set available to the current user and get a list of
those item numbers and the type of access available for each one.

relation to data sets, DBINFO can be used:
To determine whether the current user can add or delete entries to a particular data set.

To get a data set description including the data set name, type, length in words and blocking factor for
data entries in the set, number of entries in the set, and the capacity.

To determine the number of data sets the current user can access and get a list of the data set numbers
indicating the position of the data set definition in the set part of the schema. The type of access to
each set is also indicated.

To determine in which data sets a particular data item is available to the current user. The number of
data sets, a list of data set numbers, and the type of access available for each set is returned.

relation to paths, DBINFO can be used:

To get information about the paths associated with a particular data set including the number of paths.
If the data set is a master set, the information includes the data set number, search item number, and
sort item number for each related detail. If the data set is a detail set, the information includes the
master data set number of the related master data set, the detail search item number and sort item
number for each path.

To determine the search item number of a master data set or the search item number for the primary
path of the detail and the data set number of the related master. In either case, if the search item is
inaccessible to the current user, no information is returned.

DEC 85
4-27

Using the Data Base

Special Uses of DBINFO

If the application program uses data items and data set numbers when calling the other TurboIMAGE
procedures, it is good practice to determine these numbers by calling DBINFO at the beginning of the
program to set up the numbers. It is not practical to code the numbers into the program since a change to
the data base structure might require extensive changes to the application programs. Likewise, it is
inefficient and time consuming to call DBINFO throughout the program to determine these numbers.
Many application programmers prefer the convenience and flexibility of using the data item and data set
names in procedure calls.

DBINFO is useful when writing general inquiry applications similar to the QUERY data base inquiry
facility. DBINFO may also be used to obtain infor nation regarding the logging facility. In relation to
Native Language Support (NLS), DBINFO can be used to get the MPE number code that defines the native
language supported by the data base. (Refer to "Data Base Description Language" and "Schema Structure",
in Section 3.)

Checking Subsystem Flag

A subsystem flag can be set by the DBUTIL program’s >>SET command. This flag indicates whether
subsystems, including user programs, can access the TurboIMAGE data base and, if access is allowed,
whether it is read only or both read and write. Because the flag does not actually allow or prevent access,
the subsystem or user program must include a call to DBINFO to test this flag.

CLOSING THE DATA BASE OR A DATA SET

After you have completed all the tasks you want to perform with the data base, you use the DBCLOSE
library procedure to terminate access to it. When DBCLOSE is used for this purpose, all data set files and
the root file are closed and the data segment containing the DBU is released to the MPE system. If there
are no other concurrent users of the data base, the extra data segments containing the DBB and DBG are
also released. All locks that you still have on the data base through the closed access path are
automatically released.

The DBCLOSE procedure can also be used to rewind or close, access to a data set. Rewinding consists of
resetting the dynamic status information kept by TurboIMAGE to its initial state. If a detail data set is
closed or rewound, the current path does not change when the status information is initialized.

The purpose of closing a data set completely is to return the resources required by that data set to the
MPE system without terminating access to the data base. A typical reason for rewinding a data set is to
start at the first, or last, entry again when doing a forward or backward serial read.

It is important to close the data base before terminating programs operating under control of the BASIC
Interpreter since termination of your BASIC program does not coincide with termination of the BASIC
Interpreter process.

DEC 85
4-28

Using the Data Base

CHECKING THE STATUS OF A PROCEDURE

Each time a procedure is called, TurboIMAGE returns status information in a buffer specified by the
calling program and sets the condition code maintained by MPE in the status register. The condition code,
or the condition word (described later), should be checked immediately after TurboIMAGE returns from
the procedure to the calling program.

A condition code is always one of the following and has the general meaning shown:

Condition Code General Meaning

CCE The procedure performed successfully. No
exceptional condition was encountered.

CcCG An exceptional condition, other than an
error, was encountered.

CcCL The procedure failed due to an invalid
parameter or a system error.

The first word of the status information returned in the calling program’s buffer is a condition word
whose value corresponds to the condition code as follows:

Condition Code Condition Word Value
CCE 0
CCG >0
CCL <0

The calling program must check either the condition code or the condition word to determine the success
or failure of the procedure. The condition word is also used to indicate various exceptional conditions and
errors. These are summarized in Appendix A.

The other words of status information vary with the outcome of the call and from one procedure to
another. The content of these words is described in detail with each procedure definition later in this
section and in Appendix A, which describes error conditions.

DEC 85
4-29

Using the Data Base
INTERPRETING ERRORS

TurboIMAGE provides two library procedures, DBEXPLAIN and DBERROR, which can be used to
interpret status information programmatically. DBEXPLAIN prints on the $STDLIST device an English
language error message which includes the name of the data base and the name of the procedure that
returned the status information. DBERROR performs a similar function but returns the information in a
buffer specified by the calling program. :

These procedures are intended primarily for use in debugging application programs rather than in
interpreting errors in the production environment where more specific application messages are necessary.

ABNORMAL TERMINATION

Under certain conditions, the calling process may be terminated by TurboIMAGE. Conditions giving rise
to process termination and a description of the accompanying error messages are presented in Appendix A.

DEC 85
4-30

SECTION

5

TurbolMAGE LIBRARY PROCEDURES

USING TurbolIMAGE LIBRARY PROCEDURES

This section contains the reference specifications for the TurboIMAGE procedures, arranged

alphabetically. Table 5-1 gives a summary of the procedures with a brief description of their function in
logical order.

On the following pages, the calling parameters for each procedure are defined in the order in which they
appear in the call statement. Each parameter must be included when a call is made since a parameter’s
meaning is determined by its position.

DEC 85
5-1

TurboIMAGE Library Procedures

Table 5-1. TurboIMAGE Procedures

PROCEDURE FUNCTION

DBOPEN Initiates access to a data base. Sets up user’s access mode and user
class number for the duration of the process.

DBLOCK Locks one or more data entries, a data set, or an entire data base
(or a combination of these) temporarily to allow the process
calling the procedure to have exclusive access to the locked
entities.

DBFIND Locates the first and last entries of a data chain in preparation for
access to entries in the chain.

DBGET Reads the data items of a specified entry.

DBBEGIN When logging, designates the beginning of a transaction and
optionally writes user information to the logfile.

DBMEMO When logging, writes user information to the logfile.

DBPUT Adds new entries to a data set.

DBUPDATE Updates or modifies the values of data items that are not search or
sort items.

DBDELETE Deletes existing entries from a data set.

DBEND When logging, designates the end of a transaction and optionally
writes user information to the logfile.

DBUNLOCK Releases those locks obtained with previous calls to DBLOCK.

DBCLOSE Terminates access to a data base or a data set, or resets the
pointers of a data set to their original state.

DBINFO Provides information about the data base being accessed, such as
the name and description of a data item.

DBEXPLAIN Examines status information returned by an TurboIMAGE
procedure that has been called and prints a muiti-line message on
the $STDLIST device.

DBERROR Supplies an English language message that interprets the status
information set by any callable TurboIMAGE procedure. The
message is returned to the calling program in a buffer.

DBCONTROL Allows process operating in exclusive mode to enable or disable the
"deferred update" option.

DEC 85
5-2

TurboIMAGE Library Procedures

Table 5-2 illustrates the forms of the call statements for the four languages that can be used to call the
procedures. Section 6 contains examples of using the procedures and specifications for declaration of
parameters for each language. It also provides a sample RPG program.

Table §-2. Calling a TurboIMAGE Procedure

COBOL CALL "name" USING parameter,parameter,...,parameter
FORTRAN CALL name (parameter,parameter,...,parameter)

SPL | name (parameter ,parameter,...,parameter)

BASIC linenumber CALL name (parameter,parameter,... sparameter)
PASCAL name (parameter,parameter,...,parameter)

All procedures may be called directly from programs in any of the five host languages. However, when
using BASIC it is recommended to use the BIMAGE interface procedures. (Refer to Section 6 for more
information.) Since they are not TYPE procedures, they do not use the SPL OPTION VARIABLE
capability, and all parameters are call-by-reference word pointers.

Intrinsic Numbers

An intrinsic number is provided for each procedure except DBEXPLAIN and DBERROR. This number,
which uniquely identifies the procedure within TurboIMAGE and the MPE operating system, is returned
with other status information when an error occurs. You can use it to identify the procedure that caused
the error.

Data Base Protection

When each procedure is called, TurboIMAGE verifies that the requested operation is compatible with the
user class number and access mode established when the data base is opened.

Unused Parameters

When calling some procedures for a specific purpose, one of the parameters may be ignored, however, it
must be listed in the call statement. An application program may find it useful to set up a variable
named DUMMY to be listed as the unused parameter in these situations, as a reminder that the value of
the parameter does not effect the procedure call.

The Status Array

The status array is a communication area. If the procedure executes successfully, the contents reflect this
as described in this section. If the procedure fails, standard error information is returned as described in
Appendix A.

DEC 85
5-3

DBBEGIN

INTRINSIC NUMBER 412

Designates the beginning of a sequence of TurboIMAGE procedure calls which are to be regarded as a
single logical transaction for the purposes of logging and recovery. Text area may be used to log user
information to the logfile.

Syntax

DBBEGIN, base, text ,mode ,status,textlen

Parameters

base is the name of the array used as the base parameter when opening the data
base. The first word of the array must contain the base id returned by
DBOPEN. (Refer to DBOPEN for more information about the base id.)

text iS an array up to 256 words long which contains user ASCII or binary data
to be written to the logfile as part of the DBBEGIN log record. The text
argument is used to assign each particular transaction a distinct name.,
(Refer to "Discussion" below for more information.)

mode must be an integer equal to 1.
status is the name of a ten-word array in which TurboIMAGE returns status
information. If the procedure executes successfully, the status array
contents are:
Word Contents

| Condition word is O.

2-4 Unchanged from previous procedure call using this
array.

5-10 Procedure call information. Refer to Appendix A for a
description of this information.

Table 5-3 lists the contents of Word | when the procedure does not
succeed.

textlen is an integer equal to the number of words to be logged in the fext
parameter, or if negative, equal to the number of bytes. Length may also
be zero.

DEC 85
5-4

DBBEGIN

Discussion

DBBEGIN is called to designate the beginning of a sequence of TurboIMAGE procedure calls which are
jointly considered as a single logical transaction. (The end of such a sequence is designated by a matching
call to DBEND.) If the calling process is logging, DBBEGIN causes a log record to be written to the logfile
which includes such information as the time, date, and user text buffer. DBBEGIN log records are used
by the data base recovery program DBRECOV to identify the beginning of logical transactions.

If TurboIMAGE Profiler is used to gain information on the effectiveness of program calls, the text
argument is used to identify the name of each logical transaction. If text is left blank, Profiler assigns the
program name to the logical transaction. To gain the greatest use of Profiler define each logical
transaction with a name in the text argument of DBBEGIN. (Refer to the TurbolMAGE Profiler User
Guide for further information.)

DBBEGIN will return an error condition if it is called twice without an intervening call to DBEND,
whether the process is actually logging or not.

Table 5-3. DBBEGIN Condition Word Values

CALLING ERRORS: -11 Bad data base reference.
-31 Bad mode.
-151 Text length too large.
-152 Transaction already in progress.
COMMUNICATIONS -102 DSWRITE failure.
FAILURES: -106 Remote data inconsistent.
-107 DS procedure call error.
EXCEPTIONAL 0 Logging not enabled for this user.
CONDITIONS: 62 DBCB cannot expand.
63 Bad DBG.
LOG SYSTEM -111 WRITELOG intrinsic failure.
FAILURES:
Consult Appendix A for more
information about these condition codes.

DEC 85
5-5

DBCLOSE

INTRINSIC NUMBER 403

Terminates access to a data base or terminates, temporarily or permanently, access to a data set, or rewinds
a data set.

Syntax

DBCLOSE , base ,dset ,mode ,status

Parameters

base is the name of an array used as the base parameter when opening the data
base. The first word of the array must contain the base id returned by
DBOPEN. (Refer to DBOPEN for more information about the base id.)

dset is the name of an array containing the left-justified name of the data set to
be closed or is an integer referencing the data set by number if mode equals
2 or 3. If mode equals 1, this parameter is ignored.

The data set name may be 16 characters long or, if shorter, terminated by a
semicolon or blank.

mode is an integer indicating the type of termination desired. If mode equals 1,
access to the data base is terminated. Any locks through the closed access
path are released.

If mode equals 2, the data set referenced by the dset array is closed, but
locks held in the data set are not released.

If mode equals 3, the data set referenced by the dset array is reinitialized
but not closed.

status is the name of a ten-word array in which TurboIMAGE returns status
information about the procedure. If the procedure executes successfully,

the status array contents are:

Word Contents

1 Condition word is 0.

2-4 Unchanged from previous procedure call using this
array.

5-10 Procedure call information. Refer to Appendix A for a
description of this information.

Table $-5 lists the contents of Word 1 when the procedure does not

succeed.

DEC 85
5-6

DBCLOSE

Discussion

You must call DBCLOSE mode 1 to terminate access to the data base when you have completed all the
tasks you want to perform. If a process has issued multiple calls to DBOPEN for the same data base, only
the access path specified in the DBCLOSE base parameter is affected by the call to DBCLOSE.

The capability to reset and close a data set is provided to perform functions such as reinitializing dynamic
status information for a process accessing a particular data set and returning system resources. In both
modes 2 and 3, status information is reinitialized, but system resources are returned in mode 2 only.
Table 5-4 summarizes the functions performed in each mode.

Table 5-4. DBLCOSE Modes 2 and 3

FUNCTION MODE 2 MODE 3
Reinitialize dynamic status information for the data
set:
such as the chain count, forward and backword pointers, YES YES

current record number and last condition word

quiesce the data set in addition YES NO
Close the data set and return system resources YES NO
Release locks held within the data set NO NO

Since mode 3 does not close and re-open a data set, it is more efficient than mode 2 if the data set is to be
accessed again before the data base is closed.

If the process is logging, a mode | DBCLOSE will cause a DBCLOSE log record to be written to the
logfile. DBCLOSE log records contain such information as the time, date, and user log identification
number. A DBCLOSE log record is also written if the process aborts or terminates without closing the
data base. If the process aborts before competing an active transaction, a special DBEND log record is
written prior to the DBCLOSE.

DBCLOSE will return an error condition if the process has not completed an active transaction, in other
words, has called DBBEGIN without a matching call to DBEND. Transactions which abort in this manner
are not automatically suppressed by DBRECOV during recovery in order to salvage as many subsequent
transactions that may depend on the aborted transaction as possible.

DEC 85
5-7

DBCLOSE

Table 5-5. DBCLOSE Condition Word Values

FILE SYSTEM AND -2 FCLOSE failure.
MEMORY MANAGEMENT
FAILURES:
CALLING ERRORS: -1 Bad bases parameter.
-21 Bad data set reference.
-31 Bad mode.
COMMUNICATIONS -101 DSCLOSE failure.
ERRORS: -102 DSWRITE failure.
-106 Remote data inconsistent.
-107 DS procedure call error.
LOGGING SYSTEM =111 WRITELOG intrinsic failure.
FAILURES: -112 CLOSELOG intrinsic failure.
-152 Transaction is in progress.
ILR LOG FILE ERROR: -171 Cannot close ILR log file:
file system error na.
EXCEPTIONAL 63 Bad DBG.
CONDITIONS:
Consult Appendix A for more information
about these condition codes.
DEC 85

5-8

DBCONTROL

INTRINSIC NUMBER 411

Allows a process accessing the data base in exclusive mode (DBOPEN mode 3) to enable or disable the
"output deferred" option.

Syntax

DBCONTROL ,base ,qualifier,mode,status

Parameters
base is the name of the array used as the base parameter when opening the data
base. The first word of the array must contain the base id returned by
DBOPEN. (Refer to DBOPEN for more information about the base id.)
qualifier is currently ignored by DBCONTROL.
mode must be an integer equal to 1 or 2, indicating the following:
Mode 1: Turn on output deferred option (see note below).
Mode 2: Turn off output deferred option (see note below).
status is the name of a ten-word array in which TurboIMAGE returns status

information. If the procedure executes successfully, the status array
contents are as follows:

Word Contents

1 Condition word is O.

2-4 Unchanged from previous procedure call using this
array.

5-10 Procedure call information. Refer to Appendix A for a

description of this information.

Table 5-6 lists the contents of Word 1 when the procedure does not
succeed.

DEC 85
5-9

DBCONTROL

Discussion

In the default mode of operation, TurboIMAGE writes all data base modifications (calls to DBPUT,
DBUPDATE, and DBDELETE) to the disc before returning to the calling program. In the output deferred
mode of operation, however, TurboIMAGE will only write out modifications when necessary to free a
TurboIMAGE buffer for further use.

NOTE

If AUTODEFER is enabled on the data base (using DBUTIL >> ENABLE
command), then modes 1 or 2 are overridden by the automatic output
deferred option. AUTODEFER is disabled only by using the DBUTIL
>>DISABLE command.

A program which opens the data base exclusively may call DBCONTROL (mode 1) to enter the deferred
mode of operation. In deferred mode, data base modifications caused by calls to DBPUT, DBUPDATE, or
DBDELETE may not be written to the disc (or may only be partially written) upon return from these
procedures. Although TurboIMAGE generally operates more efficiently in this mode, a system failure
while the data base is operating in this mode has a very high probability of causing internal structural
damage to the data base.

A call to DBCONTROL (mode 2) will turn off the deferred mode of operation and will write the contents
of all modified buffers to disc.

Table 5-6. DBCONTROL Condition Word Values

FILE SYSTEM FAILURES: -4 FREADLABEL failure.
CALLING ERRORS: -1 Bad data base reference.
-14 Illegal intrinsic in current access mode.
-31 Bad mode.
-80 Output deferred not allowed when ILR enabled.
COMMUNICATIONS -102 DSWRITE failure.
FAILURES:
EXCEPTIONAL 63 Bad DBG.
CONDITIONS:
Consult Appendix A for more information about
these condition codes.

DEC 85
5-10

DBDELETE

INTRINSIC NUMBER 408

Deletes the current entry from a manual master or detail data set. The data base must be open in access

mode 1, 3, or 4.

Syntax

DBDELETE, base ,dset ,mode ,status

Parameters
base

dset

mode

status

is the name of the array used as the base parameter when opening the data
base. The first word of the array must contain the base id returned by
DBOPEN. (Refer to DBOPEN for more information about the base id.)

is the name of an array containing the left-justified name of the data set
from which the entry is to be deleted or is an integer referencing the data
set by number. The data set name may be 16 characters long or, if shorter,
terminated by a semicolon or a blank.

must be an integer equal to 1.
is the name of a ten-word array in which TurboIMAGE returns status
information about the procedure. If the procedure executes successfully, the

status array contents are:

Word Contents

1 Condition word is 0.

2 Zero.

3-4 Unchanged current record address.
5-6 Number of entries in a chain.

If master data set, the number is zero unless the deleted
entry was a primary entry with synonyms. In this case,
the number is one less than its previous value.

If detail data set, the number is unchanged from the
preceding procedure call.

7-10 Unchanged preceding and succeeding record numbers of
a chain. If master data set and the new synonym chain
count is greater than zero, the numbers reference the
last and first synonym chain entries respectively.

DEC 85
5-11

DBDELETE

Discussion
When deleting entries from master data sets, the following rules apply:

e All pointer information for chains indexed by the entry must indicate that the chains are empty. In
other words, there must not be any detail entries on the paths defined by the master which have the
same search item value as the master entry to be deleted.

o If the data base is open in access inode 1, a lock must be in effect on the data set or the whole data
base.

Because of the way TurboIMAGE handles synonym chains, it is possible to write a routine to read and
delete all the entries in a master data set and still leave some entries in the set. If the deleted entry is a
primary with synonyms, TurboIMAGE writes the first synonym in the chain to the deleted primary’s
location. A subsequent DBGET will read the next sequential entry, leaving an entry (the new primary) in
the previous location.

A solution to this problem is to check words 5 and 6 of the status parameter following each DBDELETE
call. If the synonym count in these words is not zero, reread the location (using DBGET, mode 1) and call
DBDELETE again. Repeat the reread and DBDELETE until the count is zero, then continue reading and
deleting serially. (Refer to Section 4 for a discussion of serial access and to Section 10 for a discussion of
synonym chains.)

TurboIMAGE performs the required changes to chain linkages and other chain information, including the
chain heads in related master data sets. If the last member of each detail chain linked to the same
automatic master entry has been deleted, DBDELETE also deletes the master entry containing the chain
heads - in this case, the synonym chain information for the automatic master is set to zero (refer to
Section 10 for more information).

If the data base is open in access mode 1, you must establish a lock covering the data entry to be deleted
before calling DBDELETE.

The current record is unchanged. If a primary data entry with synonyms is deleted from a master data
set and a secondary migrates, the backward and forward pointers reflect the new primary. In all other
cases, the backward and forward pointers are unchanged when an entry is deleted.

If the process is logging, a call to DBDELETE will cause a log record to be written, which includes such
information as the time, date, user identification number, and a copy of the record to be deleted.

DEC 85
5-12

DBDELETE

Table 5-7. DBDELETE Condition Word Values

FILE SYSTEM AND -1 FOPEN intrinsic failure.
MEMORY MANAGEMENT -3 FREADDIR failure.
FAILURES: -4 FREADLABEL failure.
CALLING ERRORS: -11 Bad base parameter.
-12 No lock covers the data entry to be deleted.
(Occurs only if open in access mode 1.)
-14 Illegal intrinsic in current access mode.
-21 Bad data set reference.
-23 Data set not writable.
-31 Bad mode.
COMMUNICATIONS -102 DSWRITE failure.
ERRORS: -106 Remote data inconsistent.
-107 DS procedure call error.
LOGGING SYSTEM -111 WRITELOG intrinsic failure.
FAILURES:
EXCEPTIONAL 17 No entry.
CONDITIONS: 44 Chain head.
63 Bad DBG.
Consult Appendix A for more information
about these condition codes.

DEC 85
5-13

DBEND

INTRINSIC NUMBER 413

Designates the end of a sequence of TurboIMAGE procedure calls which are regarded as a single logical
transaction, for the purposes of logging and recovery. Text area may be used to log user information to
the logfile. ’

Syntax

DBEND, base, text ,mode,status,textlen

Parameters

base is the name of the array used as the base parameter when opening the data
base. The first word of the array must contain the base id returned by
DBOPEN. (Refer to DBOPEN for more information about the base id.)

text , is an array up to 256 words long which contains user ASCII or binary data
to be written to the logfile as part of the DBEND log record.

mode must be an integer equal to 1 or 2.
Mode 1: End of logical transaction.

Mode 2: End logical transaction and write contents of the logging
buffer in memory to disc.

status is the name of a ten-word array in which TurboIMAGE returns status
information about the procedure. If the procedure executes successfully,
the status array contents are as follows:
Word Contents

1 Condition word is 0.

2-4 Unchanged from previous procedure call using this
array.

5-10 Procedure call information. Refer to Appendix A for a
description of this information.

Table 5-8 lists the contents of Word 1 when the procedure does not
succeed.

textlen is an integer equal to the number of words to be logged in the TEXT
parameter, or if negative, equal to the number of bytes. Length may be
Zero.

DEC 85
5-14

DBEND

Discussion

DBEND is called to designate the end of a sequence of TurboIMAGE procedure calls which are
collectively considered as a single logical transaction. (The beginning of such a sequence is designated by a
previous call to DBBEGIN.) If the process is logging, DBEND causes a log record to be written to the
logfile which includes such information as the time, date, and user text buffer. DBEND log records are
used by the data bas> recovery program DBRECOV to identify the end of logical transactions. Failure to
call DBEND will not cause a transaction to be suppressed in the event of a program abort and subsequent
data base recovery.

If you call DBEND with mode equal to 2, DBEND will force the writing of the log buffer from memory
to disc before returning to the calling process. This flush of the log buffer occurs after the intrinsic has
logged the end of the logical transaction. Try to use this option only for critical transactions; too many
mode 2 DBEND calls can degrade performance by causing a disc access each time a logical transaction
ends.

DBEND will return an error condition if it is called without a prior matching call to DBBEGIN, whether
the process is actually logging or not.

Table 5-8. DBEND Condition Word Values

CALLING ERRORS: -1 Bad data base reference.
-31 Bad mode.
-151 Text length too large.
-153 No transaction in progress to end.
COMMUNICATIONS -102 DSWRITE failure.
FAILURES: -106 Remote data inconsistent.
-107 DS procedure call error.
EXCEPTIONAL 0 Logging not enabled for this user.
CONDITIONS: 62 DBG cannot expand.
63 Bad DBG.
LOG SYSTEM -111 WRITELOG intrinsic failure.
FAILURES: -113 FLUSHLOG returned error number
nn to DBEND.
Consult Appendix A for more information
about these condition codes.

DEC 85
5-15

DBERROR

Moves an English language message, as an ASCII character string, to a buffer specified by the calling
program. The message interprets the contents of the status array as set by a call to a TurboIMAGE
procedure.

Syntax

DBERROR, status,buffer,length

Parameters

status is the name of the array used as the sfatus parameter in the TurboIMAGE
procedure call about which information is requested.

buffer is the name of an array in the calling program’s data area, at least 36 words
long, to which the message is returned.

length is an integer variable which is set by DBERROR to the positive byte length
of the message placed in the buffer array. The length will never exceed 72
characters.

Discussion

Like DBEXPLAIN, DBERROR messages are intended and appropriate for use while debugging application
programs. The errors they describe are, for the most part, errors that do not occur in a debugged and
running program.

Some errors or exceptional conditions are expected to occur, even in a production environment. For
example, the MPE intrinsic DBOPEN may fail due to concurrent data base access. In this case, printing
the DBERROR message:

DATA BASE OPEN EXCLUSIVELY
may be perfectly acceptable, even to the person using the application program. However, in many cases a
specific message produced by the application program is preferable to the one produced by DBERROR. A
DBFIND error generated by the application program, such as:

THERE ARE NO ORDERS FOR THAT PART NUMBER
would be more meaningful to a user entering data at a terminal than the DBERROR message:

THERE IS NO CHAIN FOR THE SPECIFIED SEARCH ITEM VALUE
Table 5-9 lists all messages that can be returned by DBERROR with their corresponding condition word
values. Several messages may correspond to one condition word and the interpretation of the code

depends on the context in which it is returned. Variable information is represented by a lowercase word
or phrase.

DEC 85
5-16

DBERROR

Table 5-9. DBERROR Messages

CONDITION
WORD

DBERROR MESSAGE

0

-1

-1

-12

-14

SUCCESSFUL EXECUTION - NO ERROR

NO SUCH DATA BASE

DATA BASE OPEN IN AN INCOMPATIBLE MODE

BAD ACCOUNT REFERENCE or BAD GROUP REFERENCE
BAD ROOT FILE REFERENCE

VIRTUAL MEMORY NOT SUFFICIENT TO OPEN ROOT FILE
DATA BASE ALREADY OPEN FOR MORE THAN READ

DATA BASE IN USE

DATA BASE OPEN EXCLUSIVELY

MPE SECURITY VIOLATION

MPE FILE ERROR decimal integer RETURNED BY FOPEN

ROOT FILE
r

ON \0ATA SET # decimal intege

MPE FILE ERROR decimal integer RETURNED BY FCLOSE

ROOT FILE }
r

ON \DATA SET # decimal intege

MPE FILE ERROR decimal integer RETURNED BY FREADDIR

ROOT FILE
r

ON \DATA SET # decimal intege

MPE FILE ERROR decimal integer RETURNED BY FREADLABEL

ROOT FILE }
r

ON \DATA SET # decimal intege

MPE FILE ERROR decimal integer RETURNED BY FWRITEDIR
MPE FILE ERROR decimal integer RETURNED BY FWRITELABEL
PREVIOUS MPE FILE ERROR decimal integer FOUND IN DESIRED BUFFER

MPE ERROR %octal integer RETURNED BY GETDSEG OF decimal
integer WORDS

BAD DATA BASE NAME OR PRECEDING BLANKS MISSING
BAD DATA BASE REFERENCE (FIRST 2 CHARACTERS)

IMAGE procedure name CALLED WITHOUT COVERING LOCK IN EFFECT

CALLS TO TurboIMAGE procedure name NOT ALLOWED IN ACCESS MODE
decimal integer

DEC 85
5-17

DBERROR

Table 5~-9. DBERROR Messages (Continued)

CONDITION DBERROR MESSAGE

WORD

-21 BAD PASSWORD - GRANTS ACCESS TO NOTHING
DATA ITEM NONEXISTENT OR INACCESSIBLE
SPECIFIED SET IS NOT ALLOWED ON A MASTER SET
DATA SET NONEXISTENT OR INACCESSIBLE
BAD MAINTENANCE WORD (CONTAINS COMMA OR DOES NOT MATCH)

-22 MAINTENANCE WORD REQUIRED

-23 USER (CLASS) LACKS WRITE ACCESS TO DATA SET

-24 OPERATION NOT ALLOWED ON AUTOMATIC MASTER DATA SET

-31 DBGET MODE decimal integer ILLEGAL FOR DETAIL DATA SET
DBGET MODE decimal integer BAD--SPECIFIED DATA SET LACKS CHAINS
BAD (UNRECOGNIZED) TurboIMAGE procedure name MODE:
decimal integer

-32 UNOBTAINABLE ACCESS MODE: AOPTIONS REQUESTED: %octal integer,
GRANTED: %octal integer

-51 LIST TOO LONG OR NOT PROPERLY TERMINATED

-52 ITEM SPECIFIED IS NOT AN ACCESSIBLE SEARCH ITEM IN THE

SPECIFIED SET
BAD LIST - CONTAINS ILLEGAL OR DUPLICATED DATA ITEM
REFERENCE

-53 DBPUT LIST IS MISSING A SEARCH OR SORT ITEM

-60 ILLEGAL FILE EQUATION ON ROOT FILE

-80 OUTPUT DEFERRED NOT ALLOWED WITH ILR

-90 ROOT FILE BAD: UNRECOGNIZED STATE: %octal integer

-91 ROOT FILE (DATA BASE) NOT COMPATIBLE WITH CURRENT TurboIMAGE
INTRINSICS

-92 DATA BASE REQUIRES CREATION (VIRGIN ROOT FILE)

-94 DATA BASE BAD: WAS BEING MODIFIED WITH OUTPUT DEFERRED,
MAY NOT BE ACCESSED IN MODE decimal integer

-95 DATA BASE BAD: CREATION WAS IN PROCESS (CREATE AGAIN)

-96 DATA BASE BAD: ERASE WAS IN PROCESS (ERASE AGAIN)

DEC 85

5-18

DBERROR

Table 5~9. DBERROR Messages (Continued)

CONDITION DBERROR MESSAGE

WORD

-97 DATA BASE BAD: ILR ENABLE IN PROCESS

-98 DATA BASE BAD: ILR DISABLE IN PROCESS

-100 MPE ERROR decimal integer RETURNED BY DSOPEN

-101 MPE ERROR decimal integer RETURNED BY DSCLOSE

-102 MPE ERROR decimal integer RETURNED BY DSWRITE

-103 REMOTE 3000 STACK SPACE INSUFFICIENT

-104 REMOTE 3000 DOES NOT SUPPORT TurboIMAGE

-105 REMOTE 3000 MPE ERROR %octal integer RETURNED BY
GETDSEG OF decimal integer WORDS

-106 REMOTE 3000 DATA INCONSISTENT

-107 DS/3000 SYSTEM ERROR

-110 OPENLOG RETURNED ERROR NUMBER NN TO DBOPEN
LOGGING ENABLED AND NO LOG PROCESS RUNNING (3)
DATA BASE CONTAINS INVALID LOG ID PASSWORD (8)
LOG FILE CAN’T OBTAIN NECESSARY DISC SPACE (12)
MAXIMUM USER COUNT PER LOG PROCESS REACHED (13)
END OF FILE ON LOGFILE (15)
DATA BASE CONTAINS INVALID LOG IDENTIFIER (16)

-111 WRITELOG RETURNED ERROR NUMBER AN TO DBPROCEDURE
LOG PROCESS TERMINATED (3)
LOG FILE CAN’T OBTAIN NECESSARY DISC SPACE (12)
END OF FILE ON LOGFILE (15)
(Refer to the MPE WRITELOG intrinsic for additional error numbers)

-112 CLOSELOG RETURNED ERROR NUMBER NN TO DBCLOSE
LOG PROCESS TERMINATED (3)
LOG FILE CAN’T OBTAIN NECESSARY DISC SPACE (12)
END OF FILE ON LOGFILE (15)

-113 WRITELOG RETURNED ERROR NUMBER NN TO DBEND

-120 INSUFFICIENT STACK SPACE FOR DBLOCK

-121 ILLEGAL LOCK DESCRIPTOR COUNT

-122 BOUNDS VIOLATION ON DESCRIPTOR LIST

DEC 85
5-19

DBERROR

Table 5-9. DBERROR Messages (Continued)

CONDITION DBERROR MESSAGE

WORD

-123 ILLEGAL RELATIONAL OPERATOR

-124 DESCRIPTOR LENGTH ERROR: MUST BE 9 OR MORE

-125 ILLEGAL SET NAME OR NUMBER IN DESCRIPTOR

-126 ILLEGAL ITEM NAME OR NUMBER IN DESCRIPTOR

-127 ILLEGAL ATTEMPT TO LOCK ON A COMPOUND ITEM

-128 VALUE FIELD TOO SHORT FOR THE ITEM SPECIFIED

-129 P28 IS LONGEST P-TYPE ITEM THAT CAN BE LOCKED

-130 ILLEGAL DECIMAL DIGIT IN TYPE P’ DATA VALUE

-131 LOWERCASE CHARACTER IN TYPE “U” DATA VALUE

-132 ILLEGAL DIGIT IN TYPE “Z’ DATA VALUE

-133 ILLEGAL SIGN CHARACTER IN TYPE "Z’ DATA VALUE

-134 TWO LOCK DESCRIPTORS CONFLICT IN SAME REQUEST

-135 DBLOCK CALLED WITH LOCKS ALREADY IN EFFECT IN THIS
JOB/SESSION

-136 DESCRIPTOR LIST LENGTH EXCEEDS 2047 WORDS

~151 TEXT LENGTH GREATER THAN 512 BYTES

-152 DBCLOSE CALLED WHILE A TRANSACTION IS IN PROGRESS
DBBEGIN CALLED WHILE A TRANSACTION IS IN PROGRESS

-153 DBEND CALLED WHILE NO TRANSACTION IS IN PROGRESS

-160 FILE CONFLICT: A FILE ALREADY EXISTS WITH THE ILR LOG FILE
NAME

~161 CANNOT CHECK FOR ILR LOG FILE CONFLICT: FILE SYSTEM ERROR nn

-162 CANNOT BUILD ILR LOG FILE: FILE{SYSTEM;EBRoéfhE SN

-163 CANNOT INITIALIZE ILR LOG FILE: FILE SYSTEM ERROR nn

~164 CANNOT INITIALIZE ILR LOG HEADER: FILE SYSTEM ERROR nn

DEC 85

5-20

Table §-9. DBERROR Messages (Continued)

DBERROR

CONDITION DBERROR MESSAGE
WORD
-165 CANNOT SAVE ILR LOG FILE: FILE SYSTEM ERROR nn
-166 CANNOT PURGE ILR LOG FILE: FILE SYSTEM ERROR nn
-170 CANNOT OPEN ILR LOG FILE:FILE SYSTEM ERROR nn
-171 CANNOT CLOSE ILR LOG FILE: FILE SYSTEM ERROR nn
=172 CANNOT READ ILR LOG FILE: FILE SYSTEM ERROR nn
-180 ILR LOG INVALID - INTERNAL FILE NAME DOES NOT
MATCH ROOT FILE
-181 ILR LOG INVALID - INTERNAL GROUP NAME DOES
NOT MATCH ROOT FILE
-182 ILR LOG INVALID - INTERNAL ACCOUNT NAME DOES
NOT MATCH ROOT FILE
-183 ILR LOG INVALID - INTERNAL CREATION DATE
DOES NOT MATCH ROOT FILE
-184 ILR LOG INVALID - INTERNAL LAST ACCESS DATE
DOES NOT MATCH ROOT FILE
-185 CANNOT GET EXTRA DATA SEGMENT OF SIZE
%XXXXX FOR ILR
-187 ILR ALREADY ENABLED FOR THIS DATA BASE
-188 ILR ALREADY DISABLED FOR THIS DATA BASE
-192 INVALID DBU
-193 DBU CONTROL BLOCK IS FULL
-194 INVALID DBB
-195 INVALID DBG
-196 DBB CONTROL BLOCK IS FULL
-197 DBG CONTROL BLOCK IS FULL

DEC 85
5-21

DBERROR

Table 5-9. DBERROR Messages (Continued)

CONDITION DBERROR MESSAGE
WORD
-200 DATA BASE LANGUAGE NOT SYSTEM SUPPORTED
-201 NATIVE LANGUAGE SUPPORT NOT INSTALLED
-202 MPE NATIVE LANGUAGE SUPPORT ERROR nn
RETURNED BY NLINFO
-203 DSCB EXTENSION FULL
-204 STACK OVERFLOW WHILE RECOVERING IN DBOPEN
-205 INCOMPATIBLE DS/3000 VERSION WHILE IN DBOPEN
-206 REMOTE TurboIMAGE DATABASE EXCEEDS IMAGE/3000 LIMITATION
-3xx% INTERNAL TurboIMAGE ERROR RETURNED (#n)
3 GENMESSAGE ERROR: SET NOT IN CATALOG
4 GENMESSAGE ERROR: MESSAGE NOT IN CATALOG
10 BEGINNING OF FILE
11 END OF FILE
12 DIRECTED BEGINNING OF FILE
13 DIRECTED END OF FILE
14 BEGINNING OF CHAIN
15 END OF CHAIN
16 THE DATA SET IS FULL
17 THERE IS NO CHAIN FOR THE SPECIFIED SEARCH ITEM VALUE
THERE IS NO ENTRY WITH THE SPECIFIED KEY VALUE
THERE IS NO PRIMARY SYNONYM FOR THE SPECIFIED KEY VALUE
NO CURRENT RECORD OR THE CURRENT RECORD IS EMPTY
(CONTAINS NO ENTRY)
THE SELECTED RECORD IS EMPTY (CONTAINS NO ENTRY)
DEC 85

5-22

Table 5-9. DBERROR Messages (Continued)

DBERROR

CONDITION DBERROR MESSAGE
WORD
18 BROKEN CHAIN - FORWARD AND BACKWARD POINTERS
NOT CONSISTENT
20 DATA BASE CURRENTLY LOCKED BY ANOTHER USER
SETS OR ENTRIES LOCKED WITHIN DATA BASE
22 DATA SET ALREADY LOCKED
23 CANNOT LOCK SET DUE TO LOCKED ENTRIES WITHIN IT Conditional
24 ENTRIES CURRENTLY LOCKED USING DIFFERENT ITEM Locks Only
25 CONFLICTING ENTRY LOCK ALREADY IN EFFECT
41 DBUPDATE WILL NOT ALTER A SEARCH OR SORT ITEM
42 DBUPDATE WILL NOT ALTER A READ-ONLY DATA ITEM
43 DUPLICATE KEY VALUE IN MASTER
44 CAN’T DELETE A MASTER ENTRY WITH NON-EMPTY DETAIL
CHAINS
50 USER’S BUFFER IS TOO SMALL FOR REQUESTED DATA (ONLY
RETURNED IF BUFFER IS TOO SMALL AND THE DATA TRANSFER
WOULD WRITE OVER STACK MARKERS IN THE USER’S STACK)
60 DATA BASE ACCESS DISABLED
61 PROCESS HAS THE DATA BASE OPEN 63 TIMES;
NO MORE ALLOWED
62 IMAGE DATA BASE CONTROL BLOCK FULL
63 DBG DISABLED; POTENTIAL DAMAGE;

ONLY DBCLOSE ALLOWED

DEC 85§
5-23

DBERROR

Table 5-9. DBERROR Messages (Continued)

CONDITION DBERROR MESSAGE

WORD

64 NO ROOM FOR DBG ENTRY IN PCBX (MPE PORTION OF STACK)

66 DBG POINTED TO BY ROOT FILE DOES NOT MATCH

67 DBU DISABLED; POTENTIAL DAMAGE; ONLY DBCLOSE
ALLOWED

68 DBB DISABLED; POTENTITIAL DAMAGE; ONLY DBCLOSE
ALLOWED

71 LOGGING NOT ENABLED FOR THIS USER

1xx THERE IS NO CHAIN HEAD (MASTER ENTRY) FOR
PATH decimal integer: xx

2xx THE CHAIN FOR PATH decimal integer: xx
IS FULL (CONTAINS 2,147,483,647 ENTRIES)

3xx THE AUTOMATIC MASTER FOR PATH decimal
integer: xx IS FULL

Others UNRECOGNIZED CONDITION WORD: decimal integer

For Condition Words -9xx, 944, 947, and 948 returned by DBERROR, please refer to the TurbolMAGE
Profiler User Guide.

DEC 85
5-24

DBEXPLAIN

Prints a multi-line message on the $STDLIST device which describes a TurboIMAGE procedure call and
explains the call’s results as recorded in the calling program’s status array.

Syntax
DBEXPLAIN, status
Parameters
status is the name of the array used as the stafus parameter in the TurboIMAGE
procedure call about which information is requested.
NOTE
The base, qualifier, dset, and password ‘parameters, if required by the
procedure which put the results in the status area, must be unchanged when
the call is made to DBEXPLAIN since information is taken from them as
well.
Discussion

Table 5-10 contains the general format for lines 2 through 6 of the message which is sent to $STDLIST.
Elements surrounded by brackets are sometimes omitted. Braces indicate that only one of the choices
shown will be printed. Lines 5and 6 are printed only if, during the preparation of lines 2, 3, and 4,
TurboIMAGE detects that the status array contents are invalid, unrecognizable or incomplete, or if a
message must be truncated to fit on a single line.

If the status array contents appear to be the result of something other than a TurboIMAGE procedure call
or if the array is used by the called procedure for information other than that discussed here, the second
choice for line 3 is printed. This would be the case for a successful call to DBGET which uses all ten
status words to return a condition word, lengths, and record numbers.

If the status array contains an unrecognized error code, the second line 4 choice is printed.

If the condition word is greater than or equal to zero, the word, ERROR in line 2 is replaced by RESULT
because non-negative condition words indicate success or exceptional conditions such as end-of -chain.
Condition word values are explained in Appendix A.

You can use the offset information to locate the specific call statement that generated the status array
contents if the call is made with a programming language which enables you to determine displacements
of program statements or labels within the code. The identity of the code segment is not printed because
it cannot be determined by DBEXPLAIN. Therefore, you need to be familiar with the program’s
functioning in order to locate the correct call. The offset portion of line 2 is printed only if the status
array appears to be set by a TurboIMAGE library procedure call and contains valid offset information.

DEC 85
5-25§

DBEXPLAIN

Table 5-10. DBEXPLAIN Message Format

LINE FORMAT
i (a blank line)
ERROR
2 TurboIMAGE [AT offset]: CONDITION WORD=conword
RESULT
3 intrinsicname ,MODE x,ON[setname OF |basename
[; PASSWORD=password]
TurboIMAGE CALL INFORMATION NOT AVAILABLE
4 message
UNRECOGNIZED CONDITION WORD: conword
5 [OCTAL DUMP OF STATUS ARRAY FOLLOWS]
6 [octal display]
7 (a blank line)
PARAMETER EXPLANATION
offset is the octal PB-relative offset within the user’s code segment of the
TurboIMAGE procedure call. See the MPE Intrinsics Reference Manual for
a discussion of PB (program base) relative addresses.
conword is the condition word (from the first word of sfafus) printed as a decimal
integer and corresponding to the condition words described in Appendix A.
intrinsicname is the name of the TurboIMAGE library procedure (intrinsic) which was
called and which set the contents of the sfafus array.
x is the value of the mode parameter as a decimal integer.
setname is the value of the second parameter, usually a data set name or number, as
passed to the procedure which set the status array contents. The second
parameter can be a data item name or number if the procedure in question
is DBINFO. If the procedure is DBOPEN, DBLOCK, DBUNLOCK, or
certain modes of DBINFO or DBLCOSE, setname is omitted.
password is printed at the end of line 3 only if the error relates to the password
parameter of DBOPEN.
basename is the data base specified in the procedure which was called and set the
status array contents.
DEC 85

5-26

DBEXPLAIN

Table §-10. DBEXPLAIN Message Format (Continued)

LINE FORMAT

message is an English language description of the result based on the condition word
and other status array information. The message is generated by the
DBERROR procedure which is also described in this section. See Table 5-2
for all possible line 4 messages.

octal display is a listing of each word of status printed as a string of 6 octal digits.
Adjacent status words are separated by a blank and the entire line is 69
characters long.

Figure $-1 contains four examples of messages generated by DBEXPLAIN.

IMAGE RESULT AT %001103: CONDITION WORD=0 DBLOCK=intrinsic name
DBLOCK,MODE1, ON ORDERS ORDERS=data base name
SUCCESSFUL EXECUTION - NO ERROR NO ERROR=message

IMAGE ERROR AT %001057: CONDITION WORD=-12
DBPUT,MODE1, ON DATE-MASTER OF ORDERS DATE~MASTER=data set name
DBPUT CALLED WITH DATA BASE NOT LOCKED

IMAGE RESULT AT %001057: CONDITION WORD=16
DBPUT,MODE1, ON #1 OF ORDERS #1=data set number
THE DATA SET IS FULL :

IMAGE RESULT: CONDITION WORD=5349

IMAGE CALL INFORMATION NOT AVAILABLE

UNRECOGNIZED CONDITION WORD: 5349

OCTAL DUMP OF STATUS ARRAY FOLLOWS:

012345 054321 011111 022222 033333 044444 055555 066666 077777
......................... octal display..............ccoocooviiiiiiiiiini..l.

Figure 5§-1. Sample DBEXPLAIN Messages

DEC 85
5-27

DBFIND

INTRINSIC NUMBER 404

Locates master set entry that matches the specified search item value and sets up pointers to the first and
last entries of a detail data set chain in preparation for chained access to the data entries which are
members of the chain. The path is determined and the chain pointers located on the basis of a specified
search item and its value.

Syntax

DBFIND, base ,dset ,mode ,status,item,argument

Parameters
base is the name of the array used as the base parameter when opening the data
base. The first word of the array must contain the base id returned by
DBOPEN. (Refer to DBOPEN for more information about base id.)
dset is the name of an array containing the left—justified name of the detail
data set to be accessed or is an integer referencing the data set by number.
The data set name may be 16 characters long or, if shorter, terminated by a
semicolon or blank.
mode must be an integer equal to 1.
status is the name of a ten-word array in which TurboIMAGE returns status
information about the procedure. If the procedure executes successfully,
the status array contents are:
Word Contents
1 Condition word is O.
2 Zero.
3-4 Doubleword current record number set to zero.
5-6 Doubleword count of number of entries in chain.
7-8 Doubleword record number of last entry in chain.
9-10 Doubleword record number of first entry in chain.
item is the name of an array containing a left-justified name of the detail data
set search item or is an integer referencing the search item number that
defines the path containing the desired chain. The name may be 16

characters long or, if shorter, terminated by a semicolon or blank. The
specified search item defines the path to which the chain belongs.

DEC 85
5-28

DBFIND

argument contains a value for the search item to be used in calculated access to locate
the desired chain head in the master data set.

Discussion

The current values of chain count, backward pointer, and forward pointer for the detail data set
referenced in dset are replaced by the corresponding value from the chain head. A current path number,
which is maintained internally, is set to the new path number and the current record number for the data
set is set to zero. Refer to Section 10 for further information about chain heads and internally
maintained data set information.

Note that although a master set entry exists with the specified search item value, the data set chain may
be empty.

Table 5-11. DBFIND Condition Word Values

FILE SYSTEM AND ~1 FOPEN intrinsic failure.
MEMORY MANAGEMENT -3 FREADDIR failure.
FAILURES: -4 FREADLABEL failure.
CALLING ERRORS: -11 Bad base parameter.
-21 Bad data set reference.
-31 Bad mode.
-52 Bad item.
COMMUNICATIONS -102 DSWRITE failure.
ERRORS: -106 Remote data inconsistent.
-107 DS procedure call error.
EXCEPTIONAL 17 No master entry.
CONDITIONS: 63 Bad DBG.
Consult Appendix A for more information
about these conditions.

NOTE

A call to DBOPEN does not open individual data sets. Thus, a call to
DBFIND (or DBGET) that accesses a data set for the first time (or after the
data set has been closed), must open the data set. This causes extra
overhead not incurred by subsequent calls to the same data set by DBFIND
or DBGET.

DEC 85
5-29

DBGET

INTRINSIC NUMBER 405

Provides eight different methods for accessing the entries of a data set.

Syntax

DBGET , base ,dset ,mode,status,list ,buffer,argument

Parameters
base

dset

mode

DEC 85
5-30

is the name of the array used as the base parameter when opening the data
base. The first word of the array must contain the base id returned by
DBOPEN. (Refer to DBOPEN for more information about base id.)

is the name of an array containing the left-justified name of the data set to
be read or is an integer referencing the data set by number. The data set
name may be 16 characters long or, if shorter, terminated by a semicolon or

blank.

contains an integer between 1 and 8, inclusive, which indicates the reading

method. The methods are:

Mode

1 Re-read

2 Serial Read

3 Backward Serial
Read

4 Directed Read

5 Chained Read

Method

Read the entry at the internally maintained
current record address (argument parameter
is ignored).

Read the first entry whose record address is
greater than the internally maintained
current address (argument parameter is
ignored).

Read the first entry whose record address is
less than the internally maintained current
address (argument parameter is ignored).

Read the entry, if it exists, at the record
address specified in the argument parameter
(argument is treated as a doubleword record
number).

Read the next entry in the current chain, the
entry referenced by the internally
maintained forward pointer (argument
parameter is ignored).

Mode

DBGET

Method

6 Backward ChainedRead the previous entry in the current chain,

Read

7 Calculated Read

8 Primary
Calculated Read

status

internally
argument

the entry referenced by the
maintained backward pointer.
parameter is ignored.

Read the entry with a search item value that
matches the value specified in argument.
The entry is in the master data set specified
by dset.

Read the entry occupying the primary
address of a synonym chain using the search
item value specified in argument to locate
the entry. If the entry is not a primary
entry in a master data set specified by dset, it
is not read. (Refer to Section 10 for
synonym chain description.)

is the name of a ten-word array in which TurboIMAGE returns status

information about the procedure. If the procedure executes successfully,
the status array contents are:

Word

1

2

3-4

5-6

7-8

9-10

Contents
Condition word is 0.

Integer word length of the logical entry read into the
buffer array.

Doubleword record number of the data entry read.
Doubleword zero, unless the entry read is a primary
entry in which case it is the number of entries in the

synonym chain.

Doubleword record number of the preceding entry in the
chain of the current path.

Doubleword record number of the next entry in the
chain of the current path.

Table 5-12 lists the contents of Word 1 when the procedure does not

succeed.

list

is the name of an array containing an ordered set of data item identifiers,

either names or numbers. The values for these data items are placed in the
array specified by the buffer parameter in the same order as they appear in

the list array.

DEC 85
5-31

DBGET

buffer

argument

Discussion

The list array may contain a left-justified set of data item names, separated
by commas and terminated by a semicolon or blank. No embedded blanks
are allowed and no name may appear more than once.

When referencing by number, the first word of the list array is an integer »
which is followed by n unique data item numbers (one-word positive
integers).

The list not only specifies the data items to be retrieved immediately but is
saved internally by TurboIMAGE as the current list for this data set. The
current list is unchanged until a different list is specified in a subsequent
call to DBGET, DBPUT, or DBUPDATE for the same access path and data
set.

Some special list constructs are allowed. These are described in Table 5-20
with the DBPUT procedure. List processing is a relatively high overhead
operation which may be shortened in subsequent calls by using the asterisk
construct to specify that the current list is to be used. Use of this construct
can save considerable processing time. However, be sure a current list exists
before using the asterisk or TurboIMAGE will assume a null list.

is the name of the array to which the values of data items specified in the
list array are moved. The values are placed in the same order as specified
in the list array. The number of words occupied by each value corresponds
to the number required for each data type multiplied by the sub-item
count.

is ignored except when mode equals 4, 7, or 8.
If mode is 4, argument contains a doubleword record number of the entry to
be read. (Refer to Section 6 for suggestions on using a doubleword

parameter in a BASIC program.)

If mode is 7 or 8, argument contains a search item value for the master data
set referenced by dset.

The internal backward and forward pointers for the data set are replaced by the current path’s chain
pointers from the entry just read. If the data set is a master, they are synonym chain pointers (refer to
Section 10). If it is a detail with at least one path, the current path is the one established by the last
successful call to DBFIND, or if no call has been made it is the primary path. If there are no paths
defined, the internal pointers are set to zeros.

The location of the entry just read becomes the current record for the data set.

DEC 85
5-32

DBGET

NOTE

A call to DBOPEN does not open individual data sets. Thus, a call to
DBFIND (or DBGET) that accesses a data set for the first time (or after the
data set has been closed), must open the data set. This causes extra
overhead not incurred by subsequent calls to the same data set by DBFIND

or DBGET.

Table 5~12. DBGET Condition Word Values

FILE SYSTEM AND

FOPEN intrinsic failure.

MEMORY MANAGEMENT -3 FREADDIR failure.
FAILURES: -4 FREADLABEL failure.
CALLING ERRORS: -11 Bad base parameter.

-21 Bad data set reference.

-31 Bad mode.

-51 Bad list length.

-52 Bad list or bad item.
COMMUNICATIONS -102 DSWRITE failure.
ERRORS: -106 Remote data inconsistent.

-107 DS procedure call error.
EXCEPTIONAL 10 Beginning of file. (mode 3)
CONDITIONS: 11 End of file. (mode 2)

12 Directed beginning of file. (mode 4)

13 Directed end of file. (mode 4)

14 Beginning of chain. (mode 6)

15 End of chain. (mode §)

17 No entry. (modes 1, 4, 7, 8)

18 Broken chain. (modes § or 6)

50 Buffer is too small (will only be returned if buffer
is too small and the data transfer would write over
stack markers in the user’s stack).

62 DBG full.

63 Bad DBG.

Consult Appendix A for more information
about these conditions.

DEC 85

5-33

DBINFO

INTRINSIC NUMBER 402

Provides information about the data base being accessed. The information returned is restricted by the
user class number established when the data base is opened; any data items, data sets, or paths of the data
base which are inaccessible to that user class are considered to be non-existent.

Syntax

DBINFO, base ,qualifier ,mode,status,buffer

Parameters

base

qualifier

status

buffer

DEC 85
5-34

is the array name used as the base parameter when opening the data base;
must contain the base id returned by DBOPEN. (Refer to DBOPEN for
additional base id information.)

is the name of an array containing a data set/data item name or an integer
referencing a data item/data set, depending on the value of the mode
parameter (refer to Table 5-13 for mode/qualifier relationship). This
parameter form is identical to dset and item parameters for DBPUT and
DBFIND.

is an integer indicating the type of information is desired. Refer to Table
5-13 for mode integer information (data item modes lnn, data set modes
2nn, path modes 3nn, logging modes 4nn, subsystem modes Snn).

is the name of a ten-word array in which TurboIMAGE returns status
information about the procedure. If the procedure executes successfully,
the status array contents are:

Word Contents

1 Condition word is O.

2 Word length of information in buffer array.

3-4 Unchanged from previous procedure call using this
array.

5-10 Information about the procedure call and its results.
Refer to Appendix A for a description of this
information.

Table 5-14 lists the contents of Word 1 when the procedure does not
succeed.

is the name of an array in which the requested information is returned.
The contents of the buffer array vary according to the mode parameter
used. They are also described in Table 5-13.

DBINFO

Table 5-13. mode and qualifier Values and Results

moge PURPOSE qualifrer buffer ARRAY CONTENTS COMMENTS
101 Defines type of data item word if negative, data item
access available name or 1 + data item number can be updated or entry

for specific item, number containing it can be
added or deleted in at
least one data set.

102 Describes specific data item word
data item. name or ;
number

Left-justified and padded
data item name with blanks, if necessary.

0J.KRUXZP)

datatype A A indicates blank

———

10 sub-item length

i1 sub-item count

2 0 integers
13 0
103 Kentifies all data (ignored) word
items available in
1 n =
data base and type } n r?:mber Of,ld:lta
of access allowed. 2 | * data item number fems avaiiable
Arranged in data item
number order,
If positive, read—only
access. If negative, up-
date or modify access
in at least one data set,
n+ T data item number
104 ldentifies all data data set (Same as made 103) (Same as mode 103 ex-
items available in name or ceot arranged in order
specific data set number of occurrence in data
and type of access entry.)
allowed.

DEC 85
5-35

DBINFO

Table 5-13. mode and qualifier Values and Results (Continued)

/mode PURPOSE qualifier buffer ARRAY CONTENTS COMMENTS
201 Defines type of data set word
access a.v-anlable name or 1 + data set number If negative, entries can
for specific data number be added or deleted.
set.
202 Describas specific data set word -
data set. name or i
number Left-justified and
data set name padded with b'anks-
if necessary.
8
9 set type A } (M|A,D) A\ indicates
biank
10 entry word-length
1 blocking factor int
12 0 integers
13 0
14 number of entries
15 in set
doubleword integers
16 .
capacity of set
17
203 identifies all data (ignored) word
sets available in 1 n } n = number of data
data base and type sets available
of access allowed. 2 | % data set number Arranged in data set
number order.
If positive, read and
. possibly data item up—
date access.
If negative, modify
nH | ¥ data set number accass allowed.
204 identifies all data data item {Same as mode 203) {Same as mode 203)
sets available which name or
contain specified number
data item and type
of access allowed.

DEC 85
5-36

DBINFO

Table $§-13. mode and qualifier Values and Results (Continued)
/mode PURPOSE qualitier buffer ARRAY CONTENTS COMMENTS
301 identifies paths data set word
defined for name or
1 n n = number of paths
specified data number] P
set. 2 data set number
3 search item number Repeat for each path.
) It quatiier refers to
4 sort item number master, set number is
for detail. If quatifier
refers to detail, set
number is for master.
ltem numbers identify
items in detail.
3n-1 data set number Path designators pre-
3n search item number sented in order of their
arance in schema,
3n+ sort item number appe
Note: |f sort item is zera, none exists or it is inaccessible.
A path designator is not included if user does not
have access to search item.
word
302 identifies search master data :
item for specified set name 1 search item number In master set, zero if
data set. or number 2 0 inaccessible
OR
word
: In detail set.
. 1 data item number
detail data } For primary path,
set name 2 data set number } Of related master.

Both are zera if search
item is inaccessible.

DEC 85
5-37

DBINFO

Table 5-13. mode and qualifier Values and Results (Continued)

/mode PURPOSE qualiier buffer ARBAY CONTENTS COMMENTS
o ']) word
401 ?‘I‘;tai'"s ;2’?"“?:"" ignored 1 ot Left-justified and
elating ta logging | os dentier padded with blanks
4' ame if necessary.
) 1 if data base enabled
§ | DataBase Log Flag § for logging, otherwise 0.
1if user is logging,
6 User Log Flag } otherwise O.
ion Fi) 1if user has a transaction
7 | Transaction Fag § inprogress, otherwise 0.
8)
User Transaction
Number Doubleword
9
. word
402 Returns information (ignored) 1if data base enabled
about ILR 1 ILA Log Flag for ILR, otherwise O,
Date ILR enabled
2 Calendar Date } {mmddyy).
3 . Time ILR enabled,
Clock Time 2 words (hhmmsst®),
4
1if ILR was used,
5 | ILRused } otherwise O.
. A P=DBPUT; D=DBDELETE
6 Intrinsic A\ indicates blank.
7 When ILR used, 8 words.
Data Set Name Left-justified and
padded with blanks
. if necessary.
14 Otherwise, words 6
through 14 are ASCII
15 blanks.
Reserved
16
DEC 85

5-38

DBINFO

Table §-13. mode and qualifier Values and Results (Continued)

mode PURPQSE qualitier buffer ARRAY CONTENTS COMMENTS
word
501 To check subsystem (ignored) 0 = no access
:ccess(tno ftehetdata 1 Subsystem Access } 1 = read access
ase. (Refer to :
3 = readiwi
DBUTIL SHOW/SET readfwrite access
commands for more
information)
word
a0t To obtain the Native (ignored)
Language attribute of 1 Language ID
the data base,

Returns MPE code for
language attribute

Table 5-14. DBINFO Condition Word Values

FILE SYSTEM AND -1 FOPEN intrinsic failure.
MEMORY MANAGEMENT -4 FREADLABEL failure.
FAILURES:
CALLING ERRORS: -1 Bad base parameter.
-21 Bad base item reference.
-31 Bad mode.
COMMUNICATIONS -102 DSWRITE failure.
ERRORS: -106 Remote data inconsistent.
-107 DS procedure call error.
EXCEPTIONAL 50 Buffer too small (will only be returned if buffer
CONDITIONS: is too small and the data transfer would write over
stack markers in the user’s stack).
63 Bad DBG.
Consult Appendix A for more information
about these conditions.

DEC 85
5-39

DBLOCK

INTRINSIC NUMBER 409

Applies a logical lock to a data base, one or more data sets, or one or more data entries.

Syntax

DBLOCK , base ,qualifier ,mode,status

Parameters
base is the name of the array used for the base parameter when opening the data
base. The first word of the array must contain the base id returned by
DBOPEN. (Refer to DBOPEN for more information about base id.)
qualifier Modes 1 and 2: Ignored.
Modes 3 and 4: An integer variable referencing the data set number
or the name of an array containing a data set name.
Could also be "@", applying a data base lock.
Modes 5 and 6: The name of the array containing the lock
descriptors. The format for lock descriptors is given
in Figure 5-2.
Use care when changing modes. The qualifier
parameter may also change.
mode contains an integer indicating the type of locking desired (refer to Table
5-15).
status is the name of a ten-word array in which TurboIMAG:. returns status
information about the procedure. If the procedure executes successfully,
the status array contents are:
Word Contents
1 Condition word is O.
2 The number of lock descriptors that were successfully
applied in the DBLOCK request. For successful locks in
modes 1 through 4 this will be 1.
3 If condition word = 20, this word contains O if data base
locked, 1 if data set or entries locked.
DEC 85§

5-40

DBLOCK

4 Reserved: Contents undefined.

5-10 Information about the procedure call and its results.
Refer to Appendix A for a complete description of this
information.

Table 5-17 lists the contents of Word 1 when the procedure does not
succeed.

NOTE

Concurrent processes running in a process-handling environment must have
MR capability if they are calling DBLOCK.

Discussion

The format of the array containing a list of lock descriptors is illustrated in Figure 5-2 and applies only
for Locking Modes 5 or 6. The number of lock descriptors (n) is a one-word binary integer. Only the
first n lock descriptors are processed. If n is zero, DBLOCK returns without taking any action. The
format of a lock descriptor is illustrated in Figure 5-3, and the lock descriptor fields are described in
Table 5-16.

The shortest possible descriptor is 9 words long consisting of the length field and a dset field containing @.
Although the dset field only contains an at-sign, it must still be 8 words lorig. The length of the entire
descriptor array may not exceed 2047 words.

Lock descriptors are sorted by data set number, then by value provided for the lock item. TurboIMAGE
does not sort by item within the set, because more than one item per data set consititutes a conflicting
lock descriptor (TurboIMAGE error -134). :

DEC 85
5-41

DBLOCK

Table 5-15. Locking mode Options

LOCK
MODE

LOCK
LEVEL

LOCKING
TYPE

DESCRIPTION

Base

Base

Set

Set

Unconditional

Conditional

Unconditional

Conditional

DBLOCK applies an unconditional lock to the
whole data base, returning to the calling program
only after the lock is successful (or if an error
occurs). The qualifier parameter is ignored.

DBLOCK applies a conditional lock to the data
base and returns immediately. A condition word of
zero indicates success. A non-zero condition word
indicates the reason for failure. (Refer to Table
5-17.)

DBLOCK applies an unconditional lock to a data
set. The qualifier parameter must specify the name
of an array containing the left-justified name of
the data set or the name of an integer referencing
the data set number. The data set name may be 16
characters long or, if shorter, terminated by a
semicolon or blank.

The data set need not be accessible for read or
write access to the user requesting the lock.

DBLOCK applies a conditional lock of the same
type as mode 3. It always returns to the calling
program immediately. A condition word of zero
indicates success and a non-zero condition word
indicates a reason for failure. (Refer to Table
5-17.)

DEC 85

5-42

DBLOCK

Table 5§-15. Locking mode Options (Continued)

LOCK LOCK LOCKING DESCRIPTION
MODE LEVEL TYPE
5 Entry Unconditional DBLOCK applies unconditional locks to the data

entries specified by lock descriptors. The qualifier
parameter must specify the name of an array
containing the lock descriptors. The format of the
array is shown in Figure 5-2. It returns only when
all the locks have been acquired.

6 Entry Conditional DBLOCK applies conditional locks of the same
type as mode 5. If multiple lock descriptors are
specified, a return is made when DBLOCK
encounters a lock descriptor that it cannot apply.
All locks that have been applied until that point
are retained.

Since the locks are not executed in the order
supplied by the user, it is not predictable which
locks are held and which are not after an
unsuccessful mode 6 DBLOCK. Status word 2
indicates how many lock descriptors were actually
successful. It is recommended that a DBUNLOCK
be issued after any unsuccessful mode 6 DBLOCK.

NOTE: Be careful when changing modes. The
qualifier parameter may change.

DEC 85
5-43

DBLOCK

array word
1 » = number of lock descriptors
2 2~ lack descriptor 1 ~
T ° 3
2{; lack descriptor 2 2%
~ lock dascriptor ~
g P >

} Length of lock descriptors
varies. Refer to figure 5-3.

Figure 5-2. Qualifier Array Format For Locking Modes 5 and 6

lock descriptor word
1
.2

10

17
18

1 = length h 1
2
dset
. L Lock
ditem descriptor 1
10
relop
value
—
1 = length
18
dset 19
Lock
descriptor 2
dset 2

EXAMPLE
2
S A
L E
s ;
A A
N A
A N
A A
A A
s T
0 c
K #
; A
N N
A A
N A
A A
FAN =
6 6
5 0
D 2
2 S

DEC 85
5-44

Figure 5-3. Lock Descriptor Format

DBLOCK

Table 5-16. Lock Descriptor Fields

FIELD NAME DESCRIPTION

Length is a one-word binary integer specifying the physical length in words of the
lock descriptor, including the length field itself.

dset is always 8 words long and describes the data set in which locks are placed. It
may be one of the following:

A data set name, left-justified, 16 characters long or, if shorter,
terminated with a blank or semicolon. For example: SALES;

A data set number, a binary integer in the range of 1 to 199 stored in the
first word.

An at-sign (@) stored in the first byte of the dset and a lock descriptor
length of two will indicate that the whole data base is to be locked. All
unusual bytes are ignored. In this case, the ditem, relop, and value fields
are ignored and may be omitted if desired.

A blank or semicolon (first byte) or binary zero (first word) indicating
that the whole lock descriptor is to be ignored. (It is counted as one of the
n descriptors.)

The data set, if specified, need not be accessible for read or write access to the
user requesting the lock.

ditem is always 8 words long unless an @ is stored in the first byte. It may be one of
the following:

A data item name, left-justified, 16 characters long or, if shorter,
terminated with a blank or semicolon.

A data item number stored as a binary integer in the first word. It may
be in the range of 1 to 255.

An at-sign (@) stored in the first byte of the dset indicating that the
whole data set specified in dsef is to be locked. All unused bytes are
ignored and may be omitted if desired.

The data item need not be a search item, nor does it have to be accessible to
the user requesting the lock. However, it cannot be a compound item or a
P-type item longer than P28.

relop is one word long and contains one of the three relational operators
represented as two ASCII characters:

<= less than or equal
>= greater than or equal
=A or A = equal (A indicated space character)

DEC 85
5-45

DBLOCK

Table 5-16. Lock Descriptor Fields (Continued)

FIELD NAME DESCRIPTION

value is the value of the data item to be locked. It must be stored in exactly the
same way as it is stored in the data base. IMAGE extracts as many words as
required by the corresponding data item definition (in the schema). The rest
(if any) are ignored.

If you specify a data item of type P, U, or Z 1n a lock descriptor, TurboIMAGE checks that the value is
valid for that data item type. The following checks are made:

e If the data item is type P, the right half of the rightmost byte must contain a sign and all preceding
nibbles must contain decimal digits represented in Binary Coded Decimal (BCD) format. For example,
if a data item is defined as type P with a length of 20, the format must be:

1 2 10 <—orte
i 2 3 18 19 20 < nibble

D D D D D S
D = digit S = sign

This would be declared in COBOL as 19 digits plus a sign or 20 nibbles (P20 in the schema):
S9(19) COMP-3
Type P data item used in a lock descriptor may not exceed 28 nibbles (7 words) in length. The locking
system treats all sign digits other than 1101 528 identical. 1101 2 is assumed to be a negative sign.
o If the data item is type U, the value must not contain any lowercase alphabetic characters in the range

of a through z (for non-native language use only).

e If the data item is type U or X, and a lock specifies an inequality, the language of the data base will be
used.

o If the data item is type Z, each byte preceding the last one must contain an 8-bit digit represented in
ASCII format and the last byte must contain a value representing a digit and a sign. (Refer to the
description of packed decimal numbers in Section 3 of the Machine Instruction Set Manual.)

DEC 85
5-46

DBLOCK

Table 5-17. DBLOCK Condition Word Values

FILE SYSTEM AND -7 FLOCK failure.
MEMORY MANAGEMENT
FAILURES:
CALLING ERRORS: -1 Bad base parameter.
-31 Bad mode value.
-120 Not enough stack to perform DBLOCK.
-121 Descriptor count error.
-122 Descriptor list bad. Is not entirely
within stack.
-123 Illegal relop in a descriptor.
-124 Descriptor too short. Must be greater than
or equal to 9.
-125 Bad set name/number.
-126 Bad item name/number.
-127 Attempt to lock using a compound item.
-128 Value field too short in a descriptor.
-129 P-type item longer than P28 specified.
~-130 Hlegal digit in a P-type value.
-131 Lowercase character in type U value.
-132 lllegal digit in type Z value.
-133 Illegal sign in type Z value.
~-134 Two descriptors conflict.
-135 DBLOCK called with locks already in effect in
this job/session.
-136 Descriptor list exceeds 2047 words.
COMMUNICATIONS -102 DSWRITE failure.
ERRORS: -103 Remote stack too small.
-106 Remote data inconsistent.
-107 DS procedure call error.
EXCEPTIONAL Applicable Modes
CONDITIONS: 20 Data base locked or contains locks (2,4,6)
(Status word 3:0 = data base locked
1 = data set or entries locked) (2)
22 Data set locked by another process (4,6)
23 Entries locked within set (4)
24 Item conflicts with current locks (6)
25 Entry or entries already locked (6)
62 DBG full*. (3,4,5,6)
63 Bad DBG.
Appendix A contains more information
about these condition codes.

*NOTE: If error 62 occurs when multiple lock descriptors are specified, some of the descriptors may have
been successfully completed. If so, they are not unlocked by TurboIMAGE before returning the error.
Therefore, issue a DBUNLOCK after any positive~-numbered error unless you have reason to do otherwise.

DEC 85
5-47

DBMEMO

INTRINSIC NUMBER 414

Used to log user data (ASCII or binary) to the log file.

Syntax

DBMEMO, base, text ,mode ,status,textlen

Parameters

base

text

mode

status

textlen

Discussion

is the name of the array used as the base parameter when opening the data
base. The first word of the array must contain the base id returned by
DBOPEN. (Refer to DBOPEN for more information about the base id.)

is an array of up to 256 words which contains user data (ASCII or binary)
to be written to the logfile as part of the DBMEMO log record.

must be an integer equal to 1.
is the name of a ten-word array in which TurboIMAGE returns status

information. If the procedure executes successfully, the status array
contents are:

Word Contents

1 Condition word is O.

2-4 Unchanged from previous procedure call using this
array.

5-10 Procedure call information. Refer to Appendix A for a

description of this information.

Table 5-18 lists the contents of Word | when the procedure does not
succeed.

is an integer equal to the number of words to be logged in the fext
parameter, or if negative, equal to the number of bytes. Length may be
Zero.

DBMEMO is used to log user data to the logfile when the user process is logging. No action occurs if the
process is not logging. DBMEMO may be used to add additional auditing information to the logfile or to
facilitate the identification of transactions in the event of a failure and subsequent recovery.

DEC 85
5-48

DBMEMO

Table 5-18. DPBMEMO Condition Word Values

CALLING ERRORS: -11 Bad data base reference.
-31 Bad mode.
-151 Text length too large.
COMMUNICATIONS -102 DSWRITE failure.
FAILURES: -106 Remote data inconsistent.
-107 DS procedure call error.
EXCEPTIONAL 0 Logging not enabled for this user.
CONDITIONS: 62 DBG cannot expand.
63 Bad DBG.
LOG SYSTEM -111 WRITELOG intrinsic failure.
FAILURES:
Consult Appendix A for more information
about these conditions.

DEC 85
5-49

DBOPEN

INTRINSIC NUMBER 401

Initiates access to the data base and establishes the user class number and access mode for all subsequent

data base access.

Syntax

DBOPEN, base ,mode ,status

Parameters
base

DEC 85
5-50

is the name of a word array containing a string of ASCII characters. The
string must consist of a pair of blanks followed by a left-justified data base
name (maximum 6 characters) and terminated by a semicolon or blank (),
for example, "AAorders;" If the data base is successfully opened,
TurboIMAGE replaces the pair of blanks with a value called the base id.
The base id uniquely identifies this access path between the data base and
the process calling DBOPEN. In all subsequent accesses to the data base,
the first word of base must be this base id; therefore, the array should not
be modified. Note that the base id contains a number that distinguishes
between the 63 access paths allowed for each process for accessing a given
data base.

NOTE

The access path to the data base is defined by
the base id returned by DBOPEN together
with the PIN of the calling process. As the
PIN defines the data base access path for that
particular process, the base id cannot be
passed between processes in an attempt to
reduce the quantity of required DBOPEN
calls.

To access a data base catalogued in a group other than the user’s log-on
group, the data base name must be followed by a period and the group
name; for example, ORDERS.GROUPX. If the data base is in an account
other than the user’s account, the group name must be followed by a period
and the account name; for example, ORDERS. GROUPX. ACCOUNT1.

You may use a :FILE command before executing the application program to
equat~ the data base name or the data-base-access file name to another
data base or data-base-access file name. Only the formal file designator,
actual file designator, and the DEV= parameter may be used.

password

mode

DBOPEN

is the name of a word array containing a left Justified string of ASCII
characters consisting of an optional password followed by an optional user
identifier.

The following constructs are valid for the password and user identifier (aA
stands for a blank):

A[/USERIDENT] Access Class Zero (0).
;s [/USERIDENT] Creator Access.
password[/USERIDENT] Password Access.

If either the password or the user identifier strings are less than eight
characters long, they must be terminated with a semicolon or blank.

The password establishes a user class number as described in Section 2. A
semicolon supplied as the password implies creator class 64. The user
identifier is used by the program DBRECOV to distinguish between users
logged on under the same name and account.

The following are valid examples:

9

CLERKA
CLERK;
CLERK; /JOE;
CLERKA/JOE 3
A/DBA

is an integer between 1 and 8, inclusive, corresponding to the valid
TurboIMAGE access modes described in Section 4. Here is a brief
summary:

Access Associated Capabilities Concurrent

Mode Modes Allowed
1 Modify with enforced locking. LS
Allow concurrent modify.

2 Update, alléw concurrent update. 26

3 Modify exclusive. none

4 Modify, allow concurrent read. 6

5 Read, allow concurrent modify. 1,5

6 Read, allow concurrent modify. 6 and either 2, one

4, or 8
7 Read, exclusive. none
8 Read, allow concurrent read. 6,8

DEC 85
5-51

DBOPEN

The table in Appendix B summarizes the results of multiple access to the
same data base. If a data base cannot be opened successfully in a particular
mode, this table can be used to determine the problem and to select an
alternate mode.

status is the name of a ten-word array in which TurboIMAGE returns status
information about the procedure. If the procedure executes successfully,
the status array contents are:

Word Contents
| Condition word is O.
2 User class number, O to 63 (or a 64 if data base creator

with "} password).

3 Current word size of the DBG.
4 Word size of the DBU.
5-10 Information about the current procedure call and its

results. This same information is returned for all
TurboIMAGE procedures if an error occurs. It is
described in Appendix A with the summary of condition
words.

Table 5-19 lists the contents of Word 1 when the procedure does not
succeed.

Discussion

A process may concurrently use the data base through independent, unique access paths by issuing as many
as 63 calls to DBOPEN and specifying different base arrays in each call. Subsequent calls to other
TurboIMAGE procedures must use the appropriate base array so that the correct base id is used.

The data base activity controlled on one access path relates to that controlled on other access paths in the
same way the data base activity of one process relates to that of another. The access modes established by
each DBOPEN call must be compatible but otherwise the activity controlled by each access path and the
pointers maintained by it are completely independent. The only exception to this access path
independence relates to locking. If a process makes a lock request on one access path it cannot issue a lock
on another access path unless the program has multiple RIN capability (CAP=MR) or first calls
DBUNLOCK to release the locks on the first access path.

DEC 85
5-52

DBOPEN

If the data base is enabled for logging, and the program calls DBOPEN in one of modes 1- 4, then
TurboIMAGE will attempt to access a logfile using the MPE OPENLOG intrinsic. OPENLOG will
succeed only if the following have been completed:

1. A valid log identifier and log password have been set into the data base root file using
the DBUTIL >>SET command,

2. A corresponding system log process has been initiated by the console operator to handle
any calls to the logging system.

If OPENLOG fails, DBOPEN will also fail and return an appropriate error condition. If OPENLOG
succeeds, DBOPEN will cause a log record to be written which includes such information as time, date,
user name, user program, mode, and security class. (Refer to Appendix E for a full description of log
record contents and formats.)

A process is logging if it successfully opens a data base in one of modes 1-4, and the data base is enabled
for logging. A program does not log if it opens in one of modes 5-8, or if the data base is not enabled for
logging.

If the data base is enabled for Intrinsic Level Recovery (ILR), by using the DBUTIL >>ENABLE command
the first DBOPEN for the data base also opens the ILR log file associated with the data base. At this time,
DBOPEN performs the following steps:

1. Opens the ILR log file and allocates an extra data segment (the ILCB or Intrinsic Level Control Block)
to be used for Intrinsic Level Recovery and run time storage.

2. Verifies that the ILR log file. matches the data base root file; to match, the ILR log file must have the
same name as the root file with two ASCII zeros added to the end. For example, if the root file is called
ORDERS, the associated ILR log file is called ORDERSOO. In addition, the ILR log file must have the
same creation date as the root file and the same last access date.

3. Checks whether a prior system failure interrupted a DBPUT or a DBDELETE to the data base. If 5O,
TurboIMAGE performs the Intrinsic Level Recovery by removing any change made by the incomplete
DBPUT or DBDELETE.

4. Checks whether the data base is opened for read-only access. If so, TurboIMAGE closes the ILR log file
for that user and releases the extra data segment. Otherwise the ILCB remains allocated because it is
used by DBPUT and DBDELETE for storage of blocks.

DEC 85
5-53

DBOPEN

Table 5-19. DBOPEN Condition Word Values

FILE SYSTEM -1 FOPEN intrinsic failure.

AND MEMORY -2 FCLOSE failure.

MANAGEMENT -3 FREADDIR failure.

FAILURES: -4 FREADLABEL failure.
-9 GETDSEG failure.

CALLING ERRORS: -1 Bad base parameter.
-21 Bad password.
-31 Bad mode.
-32 Unobtainable mode.
~80 Root file bad: Unrecognized state: % octal integer.
-91 Bad root modification level.
-92 Data base not created.
-94 Data base bad: Was being modified with output

deferred, may not be accessed in mode decimal integer.

-85 Data base bad: Creation was in process (create again).
-96 Data base bad: Erase was in process (erase again).
-97 Data base bad: ILR enable in process (enable again).
-98 Data base bad: ILR disable in process (disable again).

COMMUNICATIONS -60 Illegal file equation on root file.

ERRORS: -100 DSOPEN failure.
-101 DSCLOSE failure.
-102 DSWRITE failure.
-103 Remote stack too small.
-104 Remote system does not support TurboIMAGE.
-105 MPE intrinsic GETDSEG failure on remote HP3000.
-106 Remote data inconsistent.
-107 DS procedure call error.

LOGGING SYSTEM -110 OPENLOG intrinsic failure.

FAILURES: -111 WRITELOG intrinsic failure.

DEC 85

5-54

Table 5-19. DBOPEN Condition Word Values (Continued)

DBOPEN

INTRINSIC LEVEL -163 Cannot initialize ILR log file:file system
RECOVERY FILE error decimal integer.
ERRORS: -164 Cannot initialize ILR log header: file
system error decimal integer.
-170 Cannot open ILR log file: file system
error decimal integer.
-171 Cannot close ILR log file: file system
error decimal integer.
-172 Cannot read ILR log file: file system
error decimal integer.
-180 ILR log file invalid - internal file
name does not match root file.
-181 ILR log file invalid - internal group
name does not match root file.
-182 ILR log file invalid - internal account
name does not match root file.
-183 ILR log file invalid - internal creation
date does not match root file.
-184 ILR log file invalid - internal last
access date does not match root file.
-185 Cannot get extra data segment of size 4XXXXX for ILR.
-200 Data Base Language not system supported.
-201 Native Language Support not installed.
-202 MPE Native Language Support error nn
returned by NLINFO.
EXCEPTIONAL 60 Data base access disabled.
CONDITIONS: 61 This data base opened more than 63 times by
the same process.
62 DBG full.
63 Bad DBG.
64 PCBX data segment area full.
66 The current DBG for the data base does not

appear correct (TurboIMAGE internal error).

Consult Appendix A for more information about
these conditions and Appendix B for results of
multiple access.

DEC 85
5-55

DBPUT

INTRINSIC NUMBER 407

Adds new entries to a manual master or detail data set. The data base must be open in access mode 1, 3,
or 4.

Syntax

DBPUT, base ,dset ,mode ,status,list ,buffer

Parameters

base is the name of the array used as the base parameter when opening the data
base. The first word of the array must contain the base id returned by
DBOPEN. (Refer to DBOPEN for more information about base id.)

dset is the name of an array containing the left-justified name of the data set to
which the entry is to be added or is an integer referencing the data set by
number. The data set name may be 16 characters long or, if shorter,
terminated by a semicolon or a blank (4), for example: CUSTOMER; or
SALESA.

mode must be an integer equal to 1.

status is the name of a ten-word array in which TurboIMAGE returns status
information about the procedure. If the procedure executes successfully,
the status array contents are:

Word Contents

1 Condition word is 0.

2 Word length of logical entry in buffer array.

3-4 Doubleword record number of new entry.

5-6 Doubleword count of number of entries in chain. If
master data set, chain is synonym chain. If detail data
set, chain is current chain of new entry.

7-8 If master, doubleword record address of predecessor on
synonym chain. If detail, doubleword record number of
predecessor on current detail chain.

9-10 If detail, doubleword record number of successor on
current chain. If master, doubleword zero.

Table 5-21 lists the contents of Word 1 when the procedure does not
succeed.
DEC 85

5-56

list

buffer

DBPUT

is the name of an array containing an ordered set of data item identifiers;
names or numbers. The new entry contains values supplied in the buffer
array for data items in the list array. Search or sort items defined for the
entry must be included in the list array. Fields of unreferenced items are
filled with binary zeros.

The list array can contain a left-justified set of data item names, separated
by commas and terminated by a semicolon or blank. No embedded blanks
are allowed and no name can appear more than once. Example:
ACCOUNT,LAST-NAME CITY STATE;

When referencing by number, the first word of the lisf array is an integer n
that is followed by r single positive integers identifying unique data item
numbers. Example: 4 1 10 3 16 lists for the four data item numbers 1, 10
3,and 16.

>

The list specifies data items for which values are supplied in the buffer
array, and is saved internally by TurboIMAGE as the current list for the
data set. The current list is unchanged until a different list is specified in a
subsequent call to DBGET, DBPUT, or DBUPDATE for the same access
path and data set.

Some special list constructs are allowed. These are described in Table 5-20
and illustrated in the SPL programs in Section 6. List processing is a
relatively high overhead operation which may be shortened in subsequent
calls by using the asterisk construct to specify that the current list is to be
used. Be sure a current list exists before using the asterisk construct, or a
null list is assumed.

is the name of an array containing data item values to be added. The
values are concatenated in the same order as their data item identifiers in
the list array. The number of words for each value must correspond to the
number required by its type; for example, 12 values must be 2 words long.

DEC 85
5-57

DBPUT

Table 5§-20. Special lis¢ Parameter Constructs

CONSTRUCT list ARRAY CONTENTS PURPOSE

Empty 0;or OAor;or A Request no data transfer.
(Note: Zero must be ASCII)

Empty 0 (n, length of data item Request no data transfer.
Numeric identifier list, is zero)
Asterisk * or *A Requests procedure to use previous list and

apply it to same data set. This construct
saves TurboIMAGE processing time,
especially if more than one or two items

are being dealt with. If "*" is used to

define the list in the first call to DBGET and
DBPUT, TurboIMAGE will treat it as a zero.

Commercial @; or @A Requests procedure to use all data items
At-Sign of the data set in the order of their

occurrence in the entry.

(Note: A indicates blank.)

Discussion
When adding entries to master data sets the following rules apply:
o The data set must be a manual master.

e The search item must be referenced in the list array and its value in the buffer array must be unique in
relation to other entries in the master.

e There must be space in the master set to add an entry.

e The order of data item values in the new entry is determined by the set definition in the schema and
not by the order of the items’ occurrence in the list and buffer arrays.

e Unreferenced data items are filled with binary zeros.

e The caller must have a lock on the data set or the data base if the data base is opened in access mode 1.

DEC 85
5-58

Table §-21. DBPUT Condition Word Values

DBPUT

FILE SYSTEM AND

FOPEN intrinsic failure.

MEMORY MANAGEMENT -3 FREADDIR failure.
FAILURES: -4 FREADLABEL failure.
CALLING ERRORS: -11 Bad base parameter.
-12 No lock covering entry to be added.
(DBOPEN mode 1 only.)
-14 Illegal intrinsic in current access mode.
-21 Bad data set reference.
-23 Data set not writable.
-24 Data set is an automatic master.
-31 Bad mode.
-51 Bad list length.
-52 Bad list or bad item.
-53 Missing search or sort item.
COMMUNICATIONS -102 DSWRITE failure.
ERRORS: -106 Remote data inconsistent.
-107 DS procedure call error.
LOGGING SYSTEM -111 WRITELOG intrinsic failure.
FAILURES:
EXCEPTIONAL 16 Data set full.
CONDITIONS: 43 Duplicate search item.
62 DBG full.
63 Bad DBG.
1xx Missing chain head for path number xx.
2xx Full chain for path number xx.
3xx Full master for path number xx.

Refer to Appendix A for more
information about these conditions.

DEC 85
5-59

DBPUT

When adding entries to detail data sets the following rules apply:

The data set must have free space for the entry.
If the data base is opened in access mode 1, the caller must have a lock covering the entry to be added.
All search and sort items defined for the entry must be referenced in the list array.

Each related manual master data set must contain a matching entry for the corresponding search item
value. If any automatic master does not have a matching entry, it must have space to add one. This
addition occurs automatically.

The order of data item values in the new entry is determined by the set definition in the schema and
not by the order of the items’ occurrence in the list and buffer arrays.

Unreferenced data items are filled with binary zeros.

The new entry is linked into one chain for each search item, or path, defined according to the search
item value. It is linked; to the end of chains having no sort items and into its sorted position according
to the collating sequence of the sort item values in the chain. If two or more entries have the same sort
item value, their position in the chain is determined by the values of the items following the sort item
in the entry.

The position of an entry on a sorted chain is determined by a backward search of the chain beginning
at the last entry. The position is maintained by logical pointers rather than physical placement in the
file.

Maintains proper Native Language collating sequence for chain sorting.

The record in which the new data entry is placed becomes the current record for the data set. The
forward and backward pointers reflect the new entry’s position. Refer to the description of status words
7 through 10.

If the process is logging, a call to DBPUT will cause a log record to be written, which includes such
information as the time, date, user identification number, and a copy of the new record to be added.

DEC 85

5-

60

DBUNLOCK

INTRINSIC NUMBER 410

Relinquishes the locks acquired by all previous calls to DBLOCK. Redundant calls are ignored. If the
calling process has the same data base open multiple times, only those locks put into effect for the
specified access path are unlocked.

Syntax

DBUNLOCK, base ,dset ,mode ,status

Parameters

base

dset

mode

status

is the name of the array used for the base parameter when opening the data
base. The first word of the array must contain the base id returned by
DBOPEN.

is currently unused. Use the DUMMY variable as recommended at the
beginning of this section or any dsef array used for other procedures.

must be an integer equal to 1.
is the name of a ten-word array in which TurboIMAGE returns status
information about the procedure. If the procedure executes successfully,

the status array contents are:

Word Contents

1 Condition word is 0.

2 Number of lock descriptors released by this call. Each
data set lock or data base lock is counted as one
descriptor.

3-4 Reserved for internal use.

5-10 Information about the procedure call and its results.
Refer to Appendix A for more information on condition
words.

Table 5-22 lists the contents of Word 1 when the procedure does not
succeed.

DEC 85
5-61

DBUNLOCK

Table 5-22. DBUNLOCK Condition Word Values

CALLING ERRORS:

-1

Bad base parameter.

DEC
5-62

-31 Bad mode.
COMMUNICATIONS -102 DSWRITE failure.
ERRORS: -106 Remote data inconsistent.
-107 DS procedure call error.
EXCEPTIONAL 63 Bad DBG.
CONDITIONS:
Appendix A contains more information
about these conditions.
85

DBUPDATE

INTRINSIC NUMBER 406

Modifies values of data items in the entry residing at the current record address of a specified data set.
Search and sort item values cannot be modified. The data base must be open in access mode 1,2 3 or 4
The update will always be carried out correctly against the latest version of the data, regardless of
modifications that may be made by other users.

Syntax

DBUPDATE , base ,dset ,mode ,status,list ,buffer

Parameters

base is the name of the array used as the base parameter when opening the data
base. The first word of the array must contain the base id returned by
DBOPEN. (Refer to DBOPEN for more information about base id.)

dset is the name of an array containing the left-justified name of the data set to
be read or is an integer referencing the data set by number. The data set
name may be 16 characters long or, if shorter, terminated by a semicolon or
blank.

mode must be an integer equal to 1.
status is the name of a ten-word array in which TurboIMAGE returns status
information about the procedure. If the procedure operates successfully,
the status array contents are:
Word Contents
1 Condition word is O.

2 Word length of the values in buffer.

3-10 Same doubleword values set by preceding procedure call
which positioned the data set at the current entry.

Table 5-23 lists the contents of Word 1 when the procedure does not
succeed.

list is the name of an array containing an ordered set of data item identifiers,
either names or numbers. Values supplied in the buffer array replace the
values of data items occupying the same relative position in the list array.
The user class established when the data base is opened must allow at least
read access to all the items included in the list array.

DEC 85
5-63

DBUPDATE

buffer

Discussion

If the corresponding buffer array values are the same as the current data
item values, the list array can include data items the user can read but is
not permitted to alter, as well as search and sort items. This feature
permits reading and updating with the same list array contents as well as
search and sort items.

The list array may contain a left-justified set of data item names, separated
by commas and terminated by a semicolon or blank. No embedded blanks
are allowed and no name may appear more than once.

When referencing by number, the first word of the list array is an integer n
followed by # unique data item numbers (one~word positive integers).

The list not only specifies the data items to be updated immediately but is
saved internally by TurboIMAGE as the current list for this data set. The
current list is unchanged until a different list is specified in a subsequent
call to DBGET, DBPUT, or DBUPDATE for the same access path and data
set.

Some special list constructs are allowed. These are described in Table 5-20
with the DBPUT procedure. List processing is a relatively high overhead
operation which may be shortened substantially in subsequent calls by using
the asterisk construct to specify that the current list is to be used.

is the name of an array containing concatenated values to replace the
values of data items occupying the same relative position in the list array.
The number of words for each value must correspond to the number of
words required by its type multiplied by the sub-item count. Search and
sort items must not be included in this update list.

Before performing an update for a data base opened in access mode 1, TurboIMAGE verifies that locks are
in effect to cover the data entry both before and after it is modified.

The current record number, forward and backward pointers are unchanged. (Refer to the description of

status words 3 through 10.)

If the process is logging, a call to DBUPDATE will cause a log record to be written, which includes such
information as the time, date, user identification number, and a copy of both the old and new data item

values.

DEC 85
5-64

DBUPDATE

Table 5-23. DBUPDATE Condition Word Values

FILE SYSTEM AND -1 FOPEN intrinsic failure.
MEMORY MANAGEMENT -3 FREADDIR failure.
FAILURES: -4 FREADLABEL failure.
CALLING ERRORS: -11 Bad base parameter.
-12 No locks cover entry to be udpated.
(DBOPEN mode 1 only.)
-14 Illegal intrinsic in current access mode.
-21 Bad data set reference.
-31 Bad mode.
-51 Bad list length.
-52 Bad list or bad item.
COMMUNICATIONS -102 DSWRITE failure.
ERRORS: -106 Remote data inconsistent.
-107 DS procedure call error.
LOGGING SYSTEM -111 WRITELOG intrinsic failure.
FAILURES:
EXCEPTIONAL 17 No entry.
CONDITIONS: 41 Critical item.
42 Read only item.
62 DBG full.
63 Bad DBG.
Appendix A contains more information
about these conditions.

DEC 85
5-65

HOST LANGUAGE ACCESS

This section is divided into six separate discussions, each covering the use of TurboIMAGE with a specific
programming language: COBOL, FORTRAN, Pascal, SPL, BASIC, and RPG.

The examples in each language are designed to illustrate simply and directly the way TurboIMAGE
procedures are called. They are not intended as modules of the best way to code the task which is
illustrated since this will vary with the application requirements and an individual programmer’s coding
methods.

A knowledge of the programming language is assumed. If you have questions about the language itself,
consult the appropriate language manual:

COBOL/3000 Reference Manual

FORTRAN Reference Manual

System Programming Language Reference Manual
Pascal/3000 Reference Manual

BASIC Interpreter Reference Manual

BASIC/3000 Compiler Reference Manual

RPG/3000 Compiler Reference and Application Manual

All examples presented in this section perform operations on the ORDERS data base. Figures 2-5 and
2-6 in Section 2 and Figure 3-5 in Section 3 should be consulted if questions about the data base
structure arise in relation to the examples.

DEC 85
6-1

COBOL

To illustrate the use of TurboIMAGE procedures through COBOL programs, sample lines of code that
perform a specific task are given. The TurboIMAGE procedure calling parameters are described by the
way they are defined in the data division and their value when the procedure is called or, in some cases,
after it is executed. All parameters must start on word boundaries.

The BASE-NAME record is described only in the first two examples. Once the data base has been opened
and the data base identifier has been moved to the first word as shown in the ADD ENTRY example, it
remains the same for all subsequent calls illustrated.

The DB-STATUS record is defined in the same way for all examples but its content varies depending upon
which procedure is called and the results of that procedure. The DB-STATUS record is defined as:

05 DB-STATUS. PIC $S8999 COMP.
05 CONDITION-WORD PIC S8989 COMP.
05 STAT1 PIC S9(9) COMP.
05 STAT2-3 PIC S9(9) COMP.
05 STAT4-5 PIC S9(9) COMP.
05 STATG-T PIC S9(9) COMP.
05 STAT8-9 PIC S9(9) COMP.

The DUMMY parameter appears as a reminder when a parameter is not used by a procedure performing
the task being illustrated. DUMMY can be defined as PIC $9999 COMP.

When GOTO ASK-FOR-IP appears in the code, it indicates that the program continues and prompts the
user for further instructions, for example, it may request the type of data base operation the user wants to
perform.

Open Data Base

PROCEDURE DIVISION.
FIRST-PARAGRAPH-NAME.
CALL "DBOPEN" USING BASE-NAME, PASSWORD, MODE3, DB-STATUS.
IF CONDITION-WORD NOT = O DISPLAY "DBOPEN-FAIL"
CALL "DBEXPLAIN" USING DB-STATUS STOP RUN.

PARAMETER DEFINITION VALUE
BASE -NAME PIC X(10) "AAORDERS ;"
PASSWORD PIC X(8) "DO-ALL;A" or "DO-ALLAA"
MODE3 PIC 9999 COMP 3

In this example, the ORDERS data base is opened in access mode 3 with the password DO-ALL that
establishes user class number 18. The value of PASSWORD may be specified in the data division or it
may be requested from the application program user and moved into PASSWORD. If the password is
fewer than 8 characters it must be followed by a blank or semi-colon. In this program, the first word of
the DB-STATUS array, CONDITION-WORD, is tested and if it is not zero a failure message is printed
and the DBEXPLAIN procedure is executed.

DEC 85
6-2

COBOL

Add Entry

CALL "DBPUT" USING BASE-NAME, DATA-SET-P, MODE1,
DB-STATUS, ALL-ITEMS, PR-BUFFER.
IF CONDITION-WORD = 43 DISPLAY "DUPLICATE STOCK NUMBER"
GO TO ASK-FOR-IP.
IF CONDITION-WORD = 16 DISPLAY "DATA SET FULL"
GO TO ASK-FOR-IP.
IF CONDITION-WORD = -23 DISPLAY "CANNOT ADD WITH CURRENT PASSWORD"
GO TO ASK-FOR-IP.
IF CONDITION-WORD NOT = 0 GO TO DISPLAY-STATUS.

PARAMETER DEFINITION VALUE
BASE -NAME PIC X(8) "23 ORDERS;" (data base identifier
in first word)
DATA-SET-P PIC X(8) " PRODUCT 3"
MODE 1 PIC 9999 COMP 1
ALL-ITEMS PIC X(2) '@
PR-BUFFER
STOCK-NO PIC X(8) “T4742742"
DESCRIPTN PIC X(20) "ORANGE CRATEAAAAAAAA"

This sample code adds a data entry to the PRODUCT manual master data set. Note that the first word of
BASE-NAME now contains the data base id. ALL-ITEMS contains an "@" sign indicating that
PR-BUFFER contains a value for all items in the data entry. The values for the STOCK# and
DESCRIPTION data items are concatenated in PR -BUFFER.

A program may be designed to prompt for both the data set name and the data item values that are
moved into PR-BUFFER and added to the data set. In the example, the condition word of the status
array is tested for a value of 43, indicating that an entry with the search item value 7474Z74Z already
exists in the data set, or 16, indicating that the data set is full. If the user class is not in the data set write
class list, a condition word of -23 is returned.

If an entry is to be added to a detail set, the program may first check to see if the required entries exist in
the manual masters linked to the detail set. Values must be provided for all search items and the sort
item, if one is defined, of a detail data set entry.

DEC 85
6-3

COBOL

Read Entry (Serially)

READ-NEXT.

CALL "DBGET" USING BASE-NAME, DATA-SET-C, MODE2, DB-STATUS,
LIST-OF-ITEMS, CU-BUFFER, DUMMY.

IF CONDITION-WORD = 11 PERFORM REWIND
GO TO READ-NEXT.

IF CONDITION-WORD = -21 DISPLAY '"NO READ ACCESS TO DATA"
GO TO ASK-FOR-IP.

IF CONDITION-WORD NOT = 0 GO TO DISPLAY-STATUS.

(Process entry and decide whether or not to continue.)

PARAMETER DEFINITION VALUE
DATA-SET-C PIC X(10) "CUSTOMER;"
MODE2 PIC 9999 COMP 2
LIST-OF-ITEMS PIC X(80) "ACCOUNT ,FIRST-NAME, LAST-NAME;. . "
CU-BUFFER
ACCT PIC 9(9) COMP 12345678
F-NAME PIC X(10) "GEORGE" values which are read.
L-NAME PIC X(16) "PADERSON"

To read the next entry of the CUSTOMER data set, a mode of 2is used. This directs the DBGET
procedure to perform a forward serial read. In the example, LIST-OF-ITEMS contains the names of
three data items. After DBGET returns to the calling program, CU-BUFFER contains the values shown.
If an end-of -file is encountered, the condition word is set to 11. In this case, the routine rewinds the data
set and tries the read again. A rewind routine is shown later in the examples of the DBCLOSE procedure.
The rewind reinitializes the current record pointer so that the next request for a forward serial read will
read the first entry in the data set. If the condition word -21 is returned, the user’s password does not

grant read access to data.

The DUMMY variable merely signifies that the argument parameter is not used with mode 2.

DEC 85
6-4

COBOL

Read Entry (Directly)

CALL "DBGET" USING BASE-NAME, DATA-SET-I, MODE4, DB-STATUS,
ALL-ITEMS, IN-BUFFER, RECORD-NUMBER.

IF CONDITION-WORD = 12 OR = 13 DISPLAY "INCORRECT RECORD NUMBER"
GO TO DISPLAY-STATUS.

IF CONDITION-WORD = 17 DISPLAY "RECORD CONTAINS NO DATA ENTRY"
GO TO DISPLAY-STATUS.

IF CONDITION-WORD NOT = O DISPLAY "'DBGET FAILURE"
GO TO DISPLAY-STATUS.

PARAMETER DEFINITION VALUE
DATA-SET-1I PIC X(10) "INVENTORY;"
MODE4 PIC 9999 COMP 4
ALL-ITEMS PIC X(2) '@y
RECORD-NUMBER PIC 9(9) COMP 33
IN-BUFFER
STOCK-NO-1I PIC X(8) "3333A33A"
QTY PIC 9(9) cOMP 452
SUPPLIER PIC X(16) "H & S SURPLUS "
UNIT-COST PIC S9(7) COMP-3 0000349E (3495 in 8 nibbles)
LASTSHIPDATE PIC X(86) "841214"
BINNUM PIC X(2) “o3"

The code in this example reads all data items of the entry in record number 33 of the INVENTORY data
set using a directed read, mode 4. The program may have saved the record number while reading down
the chain of all data entries with STOCK# equal to 3333A33A looking for the latest LASTSHIPDATE.
It then reads all data items of the entry which has the desired last shipping date. It is more efficient to
read it directly than to search down the chain again.

If the record number is less than 1, the condition word is set to 12. If it is greater than the highest
numbered record in the data set, the condition word is set to 13. The condition word is 17 if the record

contains no data entry.

DEC 85
6-5

COBOL

Read Entry (Calculated)

CALL "DBGET'" USING BASE-NAME, DATA-SET-P, MODE7, DB-STATUS,
LIST-OF-ITEMS, DESCRIPTN, STOCK-SEARCH.
IF CONDITION-WORD = 17 DISPLAY "NO SUCH STOCK NUMBER"
GO TO ASK-FOR-IP.
IF CONDITION-WORD = -21 DISPLAY "NO SUCH READ ACCESS TO DATA"
GO TO ASK-FOR-IP.
IF CONDITION-WORD NOT = 0 GO TO DISPLAY-STATUS.

PARAMETER DEFINITION VALUE
DATA-SET-P PIC X(8) " PRODUCT ;"
MODE7 PIC 9999 COMP 7
LIST-OF -ITEMS PIC X(80) "DESCRIPTION;"
PR-BUFFER
STOCK-NO PIC X(8) L
DESCRIPTN PIC X(20) "CLIPBOARD "
STOCK-SEARCH PIC X(8) "2222B22B"

To locate the PRODUCT data set entry which has STOCK# search item value of 2222B22B, a calculated
read is used. The mode is 7 and the item to be read is DESCRIPTION. After DBGET returns control to
the calling program, the description of stock number 2222B22B is in the DESCRIPTN buffer. If no entry
exists with STOCK# equal to 2222B22B, the condition word is 17. If the user does not have read access

to the DESCRIPTION data item, condition word -21 is returned.

DEC 85
6-6

COBOL

Read Entry (Backward Chain)

CALL "DBFIND" USING BASE-NAME, DATA-SET-S, MODE1, DB-STATUS,
ITEM-NAME, ITEM-VALUE.

IF CONDITION-WORD = 17 DISPLAY "NO PURCHASES ON THAT DATE"
GO TO ASK-FOR-IP.

IF CONDITION-WORD = -21 OR -52

DISPLAY "PASSWORD OR ACCESS MODE DOES NOT GRANT ACCESS"
GO TO ASK-FOR-IP.

IF CONDITION-WORD NOT = O DISPLAY "DBFIND FAILURE"
GO TO DISPLAY-STATUS.
NEXT-IN-CHAIN.

CALL "DBGET" USING BASE-NAME, DATA-SET-S, MODES, DB-STATUS,
ALL-ITEMS, SA-BUFFER, DUMMY.

IF CONDITION-WORD = 14 DISPLAY "NO MORE PURCHASES ON THIS DATE"
GO TO NEXT-ACCOUNT.

IF CONDITION-WORD = 0 GO TO REPORT-SALES.

REPORT-SALES.
(Routine to print sales information)

GO TO NEXT~IN-CHAIN.

DEC 85
6-7

COBOL

PARAMETER DEFINITION VALUE
DATA-SET-S PIC X(6) "SALES:"
MODE1 PIC 9999 COMP 1
ITEM-NAME PIC X(12) "PURCH-DATE;"
ITEM-VALUE PIC X(&) "841214"
MODEG6 PIC 9999 COMP 6
ALL-ITEMS PIC X(2) '@
SA-BUFFER
ACCOUNT-S PIC (9) COMP 12345678)
STOCK-NO-S PIC X(8) "o222B22B"
QUANTITY PIC 9998 COMP 3 sample values
PRICE PIC 9(8) cOMP 425 > read from one
TAX PIC 9(9) COMP 25 entry in chain
TOTAL PIC 9(9) COMP 450
PURCH-DATE PIC X(6) "841214"
DELIV-DATE PIC X(6) "841220"

First the DBFIND procedure is called to determine the location of the first and last entries in the chain.
The call parameters include the detail data set name, the name of the detail search item used to define a
path with the DATE-MASTER data set, and the search item value 841214 of both the master entry
containing the chain head and the detail entries making up the chain. If no entry in the
DATE-MASTER has a search item value 841214, the condition word will be 17. If the user’s password or
access mode does not allow read access to the data, condition word -21 or -52 is returned.

If the DBFIND procedure executes successfully, a call to the DBGET procedure with a mode parameter of
6 reads the last entry in the chain. Successive calls to DBGET with the same mode read the next-to-last
entry and so forth until the first entry in the chain has been read. A subsequent call to DBGET returns
condition word 14, indicating the beginning of the chain has been reached and no more entries are
available. If an entry has been successfully read, the program executes the REPORT-SALES routine and
prints the information. It then goes to the NEXT-IN-CHAIN routine and reads another entry.

If no entries exist in the chain, the condition word is also 14.

DEC 85
6-8

COBOL

Update Entry

CALL "DBGET" USING BASE-NAME, DATA-SET-C, MODE7, DB-STATUS,
ITEM-NAME, ADDRESS-VALUE, ACCT-SEARCH.

(Determine if entry successfully read, print current address, and prompt for new address.)

CALL "DBUPDATE" USING BASE-NAME, DATA-SET-C, MODE1, DB-STATUS,
ITEM-NAME, ADDRESS-VALUE.
IF CONDITION-WORD = 42 DISPLAY "NOT ALLOWED TO ALTER THIS ITEM"
GO TO ASK-FOR-IP.
IF CONDITION-WORD NOT = 0 GO TO DISPLAY-STATUS.

PARAMETER DEFINITION VALUE
DATA-SET-C PIC X(10) "CUSTOMER; "
MODE7 PIC 9999 COMP 7
MODE1 PIC 9999 COMP 1
ACCT-SEARCH PIC 9(9) CcOMP 12345678
ITEM-NAME PIC X(16) "STREET-ADDRESS ;"
ADDRESS-VALUE PIC X(26) "12 SUTTON PLACE "

In order to update an entry it must first be located. In this example, the entry is located by using a
calculated DBGET to read the STREET-ADDRESS item in the CUSTOMER data set. The entry is
located by using the ACCOUNT search item with a value of 12345678. If the read is successful, the
current address is printed and the application program user is prompted for the new address which is
moved into ADDRESS-VALUE. The DBUPDATE routine is then called to alter the STREET-ADDRESS
data item in the entry.

If the current user class number does not allow this item to be altered or the access mode does not allow
updates to take place, the condition word 42 is returned.

A null list can be used when calling DBGET to locate an entry to be updated.

DEC 85
6-9

COBOL

Delete Entry
(Locate appropriate entry as with DBGET.)

CALL "DBDELETE" USING BASE-NAME, DATA-SET-C, MODE1, DB-STATUS.
IF CONDITION-WORD = 44
DISPLAY "SALES ENTRIES EXIST, CANNOT DELETE CUSTOMER"
GO TO ASK-FOR-IP.
IF CONDITION-WORD = -23 DISPLAY "PASSWORD DOES NOT ALLOW DELETE"
GO TO ASK-FOR-IP.
IF CONDITION-WORD NOT = O GO TO DISPLAY-STATUS.

PARAMETER DEFINITION VALUE

DATA-SET-C PIC X(10) "CUSTOMER;"

Before an entry can be deleted, the current record of the data set must be that of the entry to be deleted.
This record may be located by calling DBGET. In this example, the program may have requested the
account number of the customer to be deleted and then used a calculated DBGET to locate the
appropriate entry. If entries in the SALES data set exist which have the same account number as the
entry to be deleted, the condition word is set to 44 and the entry is not deleted. Condition word -23
indicates that the user does not have the capability of deleting an entry from the CUSTOMER data set.

A null list can be used when calling DBGET to locate an entry to be deleted.

DEC 85
6-10

COBOL

Lock and Unlock (Data Base)

CALL "DBLOCK" USING BASE-NAME, DUMMY, MODE2, DB-STATUS.

IF CONDITION-WORD = 20 DISPLAY "DATA BASE IS BUSY. TRY AGAIN LATER."
GO TO CLOSE.

IF CONDITION-WORD = 0 GO TO USE-BASE.

DISPLAY "DBLOCK FAILURE" GO TO DISPLAY-STATUS.
USE-BASE.

CALL "DBUNLOCK" USING BASE-NAME, DUMMY, MODE1, DB-STATUS.
IF CONDITION-WORD NOT = 0 DISPLAY "DBUNLOCK FAILURE"
GO TO DISPLAY-STATUS.

PARAMETER DEFINITION VALUE
MODE2 PIC 9999 COMP 2
MODE1 PIC S999 COMP 1

In this example the program calls DBLOCK to lock the data base. Since mode 2 is used, the program must
check the condition word when DBLOCK returns control to verify that the data base is locked. If it is
locked the condition word is 0; if it is busy the condition word is 20.

If the data base is successfully locked, the program goes to the USE-BASE routine. After the data base
operations have been completed, the program unlocks the data base by calling the DBUNLOCK procedure.

An example of data entry locking appears in the sample COBOL program, Figure 6-1.

DEC 85
6-11

COBOL

Request Data Item Information

CALL "DBINFO" USING BASE-NAME, ITEM-NAME, MODE, DB-STATUS,

INFO-BUFFER.

IF CONDITION-WORD NOT = O DISPLAY "DBINFO FAILURE"
GO TO DISPLAY-STATUS.

INFO-BUFFER

NAM-TYP
SUB-LENG
SUB-COUNT

PIC X(18)
PIC 9999 COMP
PIC 98989 COMP

PARAMETER DEFINITION VALUE
ITEM-NAME PIC X(12) "PURCH-DATE ;"
MODE PIC 9899 COMP 102

"PURCH-DATE X"
6
1

The procedure call in this example obtains information about the PURCH-DATE data item by specifying
mode 102. The item name and type are returned in the first 9 words of INFO-BUFFER and the
sub-~item length and sub~-item count in words 10 and 11.

Rewind Data Set

REWIND

CALL "DBCLOSE" USING BASE-NAME, DATA-SET-C.

IF CONDITION-WORD NOT = O DISPLAY "DBCLOSE FAILURE"
GO TO DISPLAY-STATUS.

PARAMETER DEFINITION VALUE
DATA-SET-C PIC X(10) "CUSTOMER; "
MODE3 PIC 9999 COMP 3

To rewind the CUSTOMER data set, a call to DBCLOSE is made with mode equal to 3. The dynamic
status information in the DBU for CUSTOMER is reset, including the current record number. If a serial
read request encounters an end-of -file, this call resets the current record to the beginning of the data set

and another serial read request will read the first entry in the data set.

DEC 85
6-12

MODE3, DB-STATUS.

Close Data Base

CLOSE.

CALL "DBCLOSE" USING BASE-NAME, DUMMY, MODE1,DB-STATUS.

COBOL

IF CONDITION-WORD NOT = O CALL "DBEXPLAIN" USING DB-STATUS.

STOP RUN.
PARAMETER DEFINITION VALUE
MODE 1 PIC 9999 COMP 1
Print Error

DISPLAY-STATUS.

CALL "DBEXPLAIN" USING DB-STATUS.

GO TO CLOSE.

The call to DBEXPLAIN prints a message on the $STDLIST device which interprets the contents of the
DB-STATUS array. This routine may be used while debugging the application if a procedure call fails.

Move Error to Buffer

CALL "DBERROR" USING DB-STATUS, ERR-BUFFER, LENGTH.

PARAMETER DEFINITION VALUE
ERR-BUFFER PIC X(72) "DATA BASE IN USE "
LENGTH PIC 9999 COMP 16

In this example, a call to DBERROR has returned one of the messages appropriate when the condition
word is equal to -1. The length of the message is 16 bytes as indicated by the value of LENGTH

returned by DBERROR.

DEC 85
6-13

COBOL

Sample Cobol Program

Figure 6-1 contains a sample data base application, a program to update the inventory records, which is
coded in COBOL. The program is called RECEIVE and updates on-hand quantities and adjusts unit costs
in the INVENTORY data set of the ORDERS data base. The data base is opened in mode 2. Sample
output from RECEIVE is illustrated in Figure 6-2.

Locking is performed at the data entry level to ensure that two users do not attempt to modify the same
data entry simultaneously. Also, presuming that transactions against the data base are being logged to a
logfile, DBBEGIN and DBEND are used to mark the beginning and end of the transaction. This
technique should always be used to delimit a multiple-step logged transaction. It is used in this example
to illustrate the proper order of calling the procedures, as outlined in Section 5.

DEC 85
6-14

COBOL

HAERRRRR IR RERFRERERERRRRRRERR R AR RR AL RRRRRR R RRRRRIRRRRRR R AR R RNRRRN

FOR ENTERING TRANSACTIONS.

Ok K K K % F X X X F ¥ %X Kk X X ¥ X %

THIS PROGRAM ILLUSTRATES THE USE OF COBOL CALLS TO IMAGE.
IT USES THE DATA BASE "ORDERS", ACCESSING THE DETAIL DATA SET
"INVENTORY" TO UPDATE THE ON-HAND QUANTITY AND UNIT COST TO
REFLECT THE RECEIPT OF A NEW SHIPMENT. NOTICE THAT THE PASS-
WORD USED WAS "BUYER" SINCE THE TWO FIELDS BEING CHANGED HAVE
2 AS A WRITE CLASS. NOTICE ALSO THAT THE DATA BASE IS OPENED
IN MODE 2, WHICH IS ADEQUATE FOR READING AND UPDATING THE TWO
FIELDS INVOLVED, WHILE ALLOWING OTHERS TO ACCESS THE DATA BASE
CONCURRENTLY. THE USER CAN ONLY MODIFY ENTRIES WHOSE STOCK#
AND SUPPLIER HAVE ALREADY BEEN ESTABLISHED IN THE PRODUCT
MANUAL MASTER AND SUP-MASTER MANUAL MASTER RESPECTIVELY.

TO KEEP THIS EXAMPLE SIMPLE THE "ACCEPT" VERB HAS BEEN USED

ENTRY LOCKS ARE USED TO ENSURE THAT TWO USERS DO NOT ATTEMPT
TO MODIFY SIMULTANEOUSLY AN EXISTING ENTRY BASED ON ITS OLD
CONTENTS. CALLS TO DBBEGIN AND DBEND ARE USED TO INDICATE
THE BEGINNING AND END OF A LOGICAL TRANSACTION ON THE
LOGFILE FOR THE RECOVERY SYSTEM IF IT IS EXECUTED.

% £ % %X ¥ % %k % % K % % % k % % %k %

HERARRR AR R RR R RRRE R RSB R RERRRR AR SRR RERRRE RN RRRKRRE RN RRN RN RN

IDENTIFICATION DIVISION.
PROGRAM-ID. RECEIVE.
DATE-COMPILED.

FRI, DEC 7, 1984, 11:30 AM.

ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 IMAGE-FIELDS.

05 BASE-NAME PIC
05 LIST-OF-ITEMS PIC
05 PREVIOUS-LIST PIC
0S5 PASSWORD PIC
05 MODE1 PIC
05 MODE2 PIC
05 MODES PIC
05 TEXT-LENGTH PIC
05 SEARCH-ITEM PIC
05 DATA-SET PIC
05 TEXT1 PIC
05 TEXT2 PIC

05 DB-STATUS.
10 CONDITION-WORD PIC
10 STATH PIC

X(10)
X(20)

X(02)
X(10)
S9(4)
S9(4)
S9(4)
$9(4)
X(08)
X(10)
X(18)

X(16)

$9(4)
S9(4)

VALUE " ORDERS;".
VALUE

"ONHANDQTY ,UNIT-COST;".

VALUE "#;",

VALUE "BUYER;".
COMP VALUE 1.

COMP VALUE 2.

COMP VALUE 5.
COMP.

VALUE "STOCK#; ".
VALUE "INVENTORY;".
VALUE

"BEGIN STOCK UPDATE".
VALUE

"END STOCK UPDATE".

COMP.
COMP.

Figure 6-1. Inventory Update Program

DEC 85
6-15

COBOL

PROCEDURE DIVISION.

10-FIRST-PARAGRAPH-NAME.

10 STAT2-3 PIC S9(9) COMP.
10 STAT4-5 PIC SS(9) COMP.
10 STAT6-7 PIC S9(9) COMP.
10 STAT8-9 PIC S9(9) COMP.
01 LOCK-DESCRIPTOR.
05 NUM-OF-LOCKS PIC S9(4) COMP VALUE 1.
05 LOCK-STOCK-ENTRY.
10 WORD-LENGTH PIC S9(4) COMP VALUE 22.
10 LOCK-SET-NAME PIC X(16) VALUE "INVENTORY; ",
10 LOCK-ITEM-NAME PIC X(16) VALUE "STOCK#; "
10 RELOP PIC X(02) VALUE "="
10 LOCK-VALUE PIC X(08)
0t ACCEPT-FIELDS.
05 STOCK-NO PIC X(08)
05 NEW-QUANTITY PIC 9(08)
05 NEW-COST PIC 9(08)
01 EDIT-FIELDS.
05 EDITED-COST PIC $$.$$$,5%5,88%.99.
05 EDITED-VALUE PIC $$.$$%,$%$5,$%%.99.
05 EDITED-QTY PIC z(8)9.
01 IP-BUFFER.
05 ON-HAND-QTY PIC 9(9) COMP.
05 UNIT-COST PIC S9(7) COMP-3.

CALL "DBOPEN" USING BASE-NAME, PASSWORD, MODE2, DB-STATUS.

IF CONDITION-WORD NOT = O
DISPLAY "DBOPEN-FAIL"
PERFORM 90-DISPLAY-STATUS
STOP RUN.

20-ASK-FOR-IP.

MOVE SPACES TO STOCK-NO.

DISPLAY "ENTER 8 CHARACTER STOCK NUMBER OR TYPE EXIT".

ACCEPT STOCK-NO FREE.

IF STOCK-NO = "EXIT"
GO TO FINISH.

PERFORM 30-FIND-STOCK-RECORD.

IF CONDITION-WORD = 17 OR = 15
DISPLAY "NO SUCH STOCK NUMBER"
PERFORM T7O-UNLOCK
GO TO 20-ASK-FOR-IP.

DISPLAY "NOW ENTER QUANTITY RECEIVED - ".

ACCEPT NEW-QUANTITY FREE.

DEC 85

6-16

Figure 6-1. Inventory Update Program (Continued)

COBOL

DISPLAY "NOW ENTER UNIT COST IN CENTS - “.
ACCEPT NEW-COST FREE.

PERFORM 60-UPDATE-STOCK.

PERFORM 50-DISPLAY-NEW-STOCK.

DISPLAY " " DISPLAY " "

GO TO 20-ASK-FOR-IP.

30-FIND-STOCK-RECORD.
MOVE STOCK-NO TO LOCK-VALUE.
CALL "DBLOCK" USING BASE-NAME, LOCK-DESCRIPTOR, MODES,
DB-STATUS.
IF CONDITION-WORD NOT = O
DISPLAY "LOCK FAILED"
PERFORM 90-DISPLAY-STATUS
GO TO FINISH.
CALL "DBFIND" USING BASE-NAME, DATA-SET, MODEt1, DB-STATUS
SEARCH-ITEM, STOCK-NO.
IF CONDITION-WORD = 0
PERFORM 40-GET-STOCK-RECORD
ELSE
IF CONDITION-WORD NOT = 17
DISPLAY "FIND FAIL"
PERFORM S0-DISPLAY-STATUS
GO TO FINISH.

40-GET-STOCK-RECORD.
CALL "DBGET" USING BASE-NAME, DATA-SET, MODES, DB-STATUS,
LIST-OF-ITEMS, IP-BUFFER, STOCK-NO.
IF CONDITION-WORD NOT = 0 AND NOT = 15
DISPLAY “GET FAIL"
PERFORM SO-DISPLAY-STATUS
GO TO FINISH.

50-DISPLAY-NEW-STOCK.
MOVE ON-HAND-QTY TO EDITED-QTY.
COMPUTE EDITED-COST = UNIT-COST / 100.
COMPUTE EDITED-VALUE = ON-HAND-QTY # UNIT-COST / 100.
DISPLAY "NEW ON HAND QUANTITY = ", EDITED-QTY.
DISPLAY "NEW UNIT COST = ", EDITED-COST.
DISPLAY "NEW STOCK VALUE = ", EDITED-VALUE.

60-UPDATE-STOCK.
COMPUTE UNIT-COST = (UNIT-COST * ON-HAND-QTY + NEW-QUANTITY
* NEW-COST) / (ON-HAND-QTY + NEW-QUANTITY).
COMPUTE ON-HAND-QTY = ON-HAND-QTY + NEW-QUANTITY.
MOVE -18 TO TEXT-LENGTH

Figure 6-1. Inventory Update Program (Continued)

DEC 85
6-17

COBOL

CALL "DBBEGIN" USING BASE-NAME, TEXT1, MODE1, DB-STATUS,
TEXT-LENGTH.
IF CONDITION-WORD NOT = O
DISPLAY "DBBEGIN FAIL"
PERFORM 90-DISPLAY-STATUS
GO TO FINISH.
CALL "DBUPDATE" USING BASE-NAME, DATA-SET, MODE1, DB-STATUS,
PREVIOUS-LIST, IP-BUFFER.
IF CONDITION-WORD NOT = O
DISPLAY "UPDATE FAIL"
PERFORM 90-DISPLAY-STATUS
GO TO FINISH.
MOVE -16 TO TEXT-LENGTH
CALL "DBEND" USING BASE-NAME, TEXT2, MODE1, DB-STATUS,
TEXT-LENGTH.
IF CONDITION-WORD NOT = 0
DISPLAY "DBEND FAIL"
PERFORM 90-DISPLAY-STATUS
GO TO FINISH.
PERFORM T70-UNLOCK.

70-UNLOCK.
CALL "DBUNLOCK" USING BASE-NAME, LOCK-DESCRIPTOR, MODE1,
DB-STATUS.
IF CONDITION-WORD NOT = 0
DISPLAY "UNLOCK FAIL"
PERFORM 90-DISPLAY-STATUS
GO TO FINISH.

S0-DISPLAY-STATUS.
CALL "DBEXPLAIN" USING DB-STATUS.

FINISH.
CALL "DBCLOSE" USING BASE-NAME, DATA-SET, MODE1, DB-STATUS.
IF CONDITION-WORD NOT = O
DISPLAY "DATA BASE CLOSE FAILED"
PERFORM 90-DISPLAY-STATUS.
STOP RUN.

Figure 6-1. Inventory Update Program (Continued)

DEC 85

6-138

COBOL

:RUN RECEIVE

ENTER 8 CHARACTER STOCK NUMBER OR TYPE EXIT
4397D13P

NO SUCH STOCK NUMBER

ENTER 8 CHARACTER STOCK NUMBER OR TYPE EXIT
12345678

NO SUCH STOCK NUMBER

ENTER 8 CHARACTER STOCK NUMBER OR TYPE EXIT
6650DD2S :

NO SUCH STOCK NUMBER

ENTER 8 CHARACTER STOCK NUMBER OR TYPE EXIT

6650D22S

NOW ENTER QUANTITY RECEIVED -

100

NOW ENTER UNIT COST IN CENTS -

150

NEW ON HAND QUANTITY = 306

NEW UNIT COST = $2.44

NEW STOCK VALUE = $746.63
ENTER 8 CHARACTER STOCK NUMBER OR TYPE EXIT
6650D22S

NOW ENTER QUANTITY RECEIVED -

5000

NOW ENTER UNIT COST IN CENTS -

1500

NEW ON HAND QUANTITY = 5306

NEW UNIT COST = $14.27
NEW STOCK VALUE = $75,716.62
ENTER 8 CHARACTER STOCK NUMBER OR TYPE EXIT
2457A11C

NOW ENTER QUANTITY RECEIVED -
10000000

NOW ENTER UNIT COST IN CENTS -

4000

NEW ON HAND QUANTITY = 11001345

NEW UNIT COST = $50.31
NEW STOCK VALUE = $553,477,666.95

ENTER 8 CHARACTER STOCK NUMBER OR TYPE EXIT
EXIT
END OF PROGRAM

Figure 6-2. Sample RECEIVE Execution

DEC 85
6-19

FORTRAN

In the FORTRAN examples which follow, all variables are integer unless declared otherwise. The
DUMMY parameter is an integer and appears when a parameter is not used by the procedure for the task
which is being performed.

The code at statement 9900 closes the data base. It is not included in each example but is implied to be
there.

Since TurboIMAGE requires that the parameters be at word addresses, they must be integer arrays
equivalenced to character strings if necessary. For example, the BASE integer array is 5 words long and is
equivalenced to the CS1 character string which is 10 bytes long. This array contains the name of the
ORDERS data base preceded by one word of blanks to which a data base identifier within the control
block is moved when the data base is opened.

Open Data Base

PROGRAM FTIM1
IMPLICIT INTEGER (A-Z)
DIMENSION STATUS(10),PASSWORD(5),BASE(S)
CHARACTER#10 CS1,CS2
EQUIVALENCE (BASE(1),CS1),(PASSWORD(1),CS2)

CS1 = " ORDERS;"

CS2 =. " "

DISPLAY "ENTER PASSWORD "
ACCEPT CS2

DISPLAY "ENTER ACCESS MODE (1-8) "
ACCEPT MODE
CALL DBOPEN (BASE,PASSWORD,MODE,STATUS)
IF (STATUS(1).NE.O) GOTO 9300
DISPLAY "DATA BASE OPENED"
GOTO 9900

9300 DISPLAY "DBOPEN FAILURE"

9310 CALL DBEXPLAIN (STATUS)

In this example the ORDERS data base is opened in the access mode entered by the application user and
with the user class number corresponding to the password entered. For example, the access mode may be
3 and the password DO-ALL. Since TurboIMAGE parameters must have word addresses, the character
string must be equivalenced to an integer array before being passed to the TurboIMAGE procedure.

If the procedure fails, the first word of STATUS is an integer other than zero. In this case, the sample
program prints a message and executes DBEXPLAIN to display status information.

If the password is less than 10 characters long, it must be followed by a semicolon or blank. Therefore,
the character string CS2 is initialized to 8 blanks.

DEC 85
6-20

L FORTRAN

Add Entry

PROGRAM FTIM2
IMPLICIT INTEGER (A-Z)
DIMENSION STATUS(10),PASSWORD(5),BASE(S)
DIMENSION DSETP(4),PRBUFF(14)
CHARACTER DESCRIPN#20,ALLITEMS#*2
CHARACTER#*10 CS1,CS2,CS3,STOCKNO
EQUIVALENCE (BASE(1),CS1), (PASSWORD(1),CS2)
EQUIVALENCE (DSTEP(1),CS3), (PRBUFF(1),STOCKNO),

c (PRBUFF (5) ,DESCRIPN), (AI ,ALLITEMS)
€St = " ORDERS;"

Csz - 1 n

CS3 = “PRODUCT;"

MODE1=1

ALLITEMS = "@;"
(code to open data base in access mode 1, 3, or 4 and prompt for data item values)

CALL DBPUT (BASE,DSETP,MODE1,STATUS,AI,PRBUFF)
IF (STATUS(1).NE.43) GOTO 120
DISPLAY "DUPLICATE STOCK NUMBER"
GOTO 110
120 IF (STATUS(1).NE.16) GOTO 130
DISPLAY "DATA SET FULL"
GOTO 9900
130 IF (STATUS(1).NE.-23) GOTO 140
DISPLAY "PASSWORD DOES NOT ALLOW ADDING ENTRIES"
GOTO 9900
140 IF (STATUS(1).NE.O) GOTO 160
DISPLAY "NEW PRODUCT HAS BEEN ENTERED"
GOTO 9300
160 DISPLAY "DBPUT FAILURE"
GOTO 9310
9300 DISPLAY "DBOPEN FAILURE"
9310 CALL DBEXPLAIN (STATUS)

This sample code adds a data entry to the PRODUCT manual master data set. The first word of the BASE
array now contains the number of the data base identifier. ALLITEMS contains an "@" sign indicating
that PRBUFF contains a value for all items in the data entry. The values for the STOCK# and
DESCRIPTION data items are concatenated in PRBUFF, for example, 7474Z74ZORANGE
CRATEAAAAAAAA

DEC 85
6-21

FORTRAN

A typical application will prompt for the data item values which are moved into PRBUFF and added to
the data set. In this example, the condition word of the STATUS array is tested for a value of 43,
indicating that an entry with search item value 7474Z74Z already exists in the data set, or 16, indicating
that the data set is full. If the user’s password does not allow entries to be added, condition word -23 is
returned.

If an entry is to be added to a detail set, a value must be provided for all search items and the sort item if
one is defined The program may first check to see if the required entries exist in the manual masters
linked to the detail data set, or it can check for condition word lxx after attempting to add the detail
entry.

If the access is mode 1, the data base must be locked before an entry can be added.

Read Entry (Serially)

PROGRAM FTIM3

IMPLICIT INTEGER (A-Z)

DIMENSION STATUS(10),PASSWORD(5) ,BASE(S)

DIMENSION DSETC(S),LIST(15),CBUFF(15)

CHARACTER CS4#10,CS5#30,FNAME*10,LNAME*14

CHARACTER#10 CS1,CS2

EQUIVALENCE (DSETC(1),CS4), (LIST(1),CS5), (CBUFF(3) ,FNAME),

c (CBUFF(8),LNAME)
EQUIVALENCE (BASE(1),CS1), (PASSWORD(1),CS2)
CcS1 = " ORDERS;"
cs2 = " "
CS4 = "CUSTOMER; "
CS5 = "ACCOUNT,FIRST-NAME,LAST-NAME; "
DUMMY = 1
MODE2 = 2

(Code to open data base.)

200 CALL DBGET (BASE,DSETC,MODE2,STATUS,LIST,CBUFF,DUMMY)
IF (STATUS(1).NE.11) GOTO 210
DISPLAY "CONTINUE"
ACCEPT 1
IF (I.EQ.0) GOTO 9900

DEC 85
6-22

FORTRAN

(Code to determine whether to continue, if so, rewind data set.)

210 IF (STATUS(1).NE.—21.AND.STATUS(1).NE.-52) GOTO 220
DISPLAY "YOU DO NOT HAVE ACCESS TO DATA"
GOTO 9900
220 IF (STATUS(1).EQ.0) GOTO 230
DISPLAY "DBGET FAILURE"
GOTO 9310
230 WRITE (6,*) FNAME,LNAME,CBUFF(1)
GOTO 200
9300 DISPLAY "DBOPEN FAILURE"
9310 CALL DBEXPLAIN (STATUS)

To read the next entry of the CUSTOMER data set, a mode of 2is used. This directs the DBGET
procedure to perform a forward serial read. In the example, the LIST array contains the names of three
data items. After DBGET returns to the calling program, CBUFF contains values such as:

CBUFF (1)—CBUFF(2) 12345678 (double integer)
CBUFF (3)—CBUFF (7) GEORGEAAAA
CBUFF (8)—CBUFF(14) PADERSONAAAAAA

If an end-of -file is encountered the condition word is set to 11. In this case, the routine rewinds the data
set and tries the read again. A rewind routine is shown later in the examples of the DBCLOSE procedure.
The rewind reinitializes the current record pointer so that the next request for a forward serial read reads
the first entry in the data set. If the user does not have read access to the data items, condition word -21
is returned.

The DUMMY variable signifies that the argument parameter is not used with mode 2.

DEC 85
6-23

FORTRAN

Read Entry (Directly)

PROGRAM FTIM11

IMPLICIT INTEGER (A-2)

DIMENSION STATUS (10),PASSWORD(5),BASE(5)

DIMENSION DSTEP(4), PRBUFF(14)

CHARACTER#10 CS1,C$2,CS3,STOCKNO

CHARACTER DESCRIPN#20, ALLITEMS*2

EQUIVALENCE (BASE(1),CS1), (PASSWORD(1),CS2)

EQUIVALENCE (DSETP(1),CS3), (PRBUFF(1),STOCKNO),
(PRBUFF (5) ,DESCRIPN), (AI,ALLITEMS)

INTEGER#4 RECNO

cS1 = " ORDERS;"

cse = " "

€cS3 = "PRODUCT;"

ALLITEMS = "@;"

MODE4 = 4

(Code to open data base.)

210

270

280

290

9300
9310

DISPLAY "REC"

ACCEPT RECNO

IF (RECNO.EQ.0) GOTO 9900

CALL DBGET (BASE, DSETP, MODE4, STATUS, AI, PRBUFF, RECNO)
IF (STATUS(1).EQ.12.0R.STATUS(1).EQ.13) GOTO 280
IF (STATUS(1).NE.17) GOTO 270

DISPLAY "RECORD CONTAINS NO DATA ENTRY"

GOTO 210

IF (STATUS(1).EQ.0) GOTO 290

DISPLAY "DBGET FAILURE"

GOTO 9310

DISPLAY "INCORRECT RECORD NUMBER"

GOTO 210

DISPLAY DESCRIPN

GOTO 210

DISPLAY "DBOPEN FAILURE"

CALL DBEXPLAIN (STATUS)

The code in this example reads all data items of the entry in the specified record number of the

PRODUCT data set using a directed read, mode 4. If the condition word is equal to 12 or 13, the record
number is not within the range of records in the file. If the condition word is 17 the record contains no

entry.

DEC 85
6-24

NOTE

This is not the normal method for using directed reads but is used to
simplify the example.

FORTRAN

Read Entry (Calculated)

PROGRAM FTIM4

IMPLICIT INTEGER (A-2Z)

DIMENSION STATUS(10),PASSWORD(5),BASE(5)

DIMENSION DSETP(4),LISTA(6),PRBUFF(10),STOCKSRCH(4)
CHARACTER#10 CS1,CS2,CS3,CS7

CHARACTER DESCRIPN#20, CS6#%12

EQUIVALENCE (DSETP(1),CS3),(PRBUFF(1),DESCRIPN),

C (LISTA(1),CS6), (STOCKSRCH(1),CST)
EQUIVALENCE (BASE(1),CS1), (PASSWORD(1),CS2)
CS1 = " ORDERS;"

Csz = " "

CS3 = "PRODUCT;"

CS6 = "DESCRIPTION;"
MODET = 7

(Code to open data base.)

20 DISPLAY "STOCK NUMBER"

ACCEPT CS7
CALL DBGET (BASE,DSETP,MODE?,STATUS,LISTA,PRBUFF(1),STOCKSRCH)
IF (STATUS{1).NE.17) GOTO 300
DISPLAY "NO SUCH STOCK NUMBER"
GOTO 20

300 IF (STATUS(1).NE.-21) GOTO 310
DISPLAY "PASSWORD DOES NOT GRANT ACCESS TO DATA"
GOTO 9900

310 IF (STATUS(1).EQ.0) GOTO 320
DISPLAY "DBGET FAILURE"
GOTO 9310

320 (Code to use data from entry just read.)

9310 CALL DBEXPLAIN (STATUS)

A calculated read is used to locate the PRODUCT data set entry which has the STOCK# search item value
entered in CS7. The mode is 7 and the item to be read is DESCRIPTION. After DBGET returns control
to the calling program, the description for the specified stock number is in DESCRIPN. If no entry exists
with STOCK# equal to the specified value, the condition word is 17. If the user does not have read access
to the DESCRIPTION data item, the condition word is -21.

DEC 835
6-235

FORTRAN

Read Entry (Forward Chain)

DEC
6-26

PROGRAM FTIMS

IMPLICIT INTEGER (A-Z)

DIMENSION STATUS(10),PASSWORD(S5),BASE(5)

DIMENSION DSETS(3), INAME(6), IVAL(3), SABUFF(19)
CHARACTER CS8#6, CS9#12, CS10%#6, SASTOCK#8, PURCHDT#8,
C DELIVDT#8, ALLITEMS#*2

CHARACTER#10 CS1,CS2

EQUIVALENCE (BASE(1),CS1),(PASSWORD(1),CS2)

EQUIVALENCE (DSETS(1),CS8), (INAME(1),CS9), (IVAL(1),CS10),

(o4 (SABUFF (1) ,ACCTS), (SABUFF(3),SASTOCK),
C (SABUFF(7),QTY), (SABUFF(8),PRICE),
Cc (SABUFF(10) ,TAX), (SABUFF(12),TOTAL),
Cc (SABUFF (14) ,PURCHDT) , (SABUFF(17) ,DELIVDT), (AI ,ALLITEMS)
INTEGER#4 ACCTS, PRICE, TAX, TOTAL

CS1 = " ORDERS;"

cs2 =" "

CS8 = "SALES;"

CS9 = "PURCH-DATE; "

CS10 = "760314" «———Program would normally prompt for this value.
ALL ITEMS = "@;"

MODE1 = 1

MODES = 5

(Code to open data base.)

345

355

360

365

CALL DBFIND (BASE,DSETS,MODE1,STATUS,INAME,IVAL)

IF (STATUS(1).NE.17) GOTO 345

DISPLAY "NO PURCHASES ON THAT DATE."

GOTO 9900

IF (STATUS(1).NE.-21.AND.STATUS(1).NE.-52) GOTO 355
DISPLAY "PASSWORD OR ACCESS MODE DOES NOT GRANT ACCESS"
GOTO 8900

IF (STATUS(1).EQ.0) GOTO 360

DISPLAY "DBFIND FAILURE"

GOTO 9310

CALL DBGET (BASE, DSETS, MODE5, STATUS, AI, SABUFF, DUMMY)
IF (STATUS(1).NE.15) GOTO 365

DISPLAY "NO MORE PURCHASES ON THIS DATE"

GOTO 9900

IF (STATUS(1).NE.O) GOTO 380

(Code to use sales information from entry, for example, in a report.)

380

9300
9310

85

GOTO 360

DISPLAY "DBGET FAILURE"
GOTO 9310

DISPLAY "DBOPEN FAILURE"
CALL DBEXPLAIN (STATUS)

FORTRAN

First the DBFIND procedure is called to determine the location of the first and last entries in the chain.
The call parameters include the detail data set name, the name of the detail search item used to define a
path with the DATE-MASTER data set, and the search item value 760314 of both the master entry
containing the chain head and the detail entries making up the chain. If no entry in the
DATE-MASTER has a search item value of 760314, the condition word will be 17. If the user’s password
or access mode does not grant read access to the data set or data items, condition word -21 or -52 is
returned.

If the DBFIND procedure executes successfully, a call to the DBGET procedure with a mode parameter of
S reads the first entry in the chain if one exists. Subsequent calls to DBGET with the same mode read the
succeeding entries to the chain until the last entry in the chain has been read. If the condition word is 15
the end of the chain has been reached and no more entriés are available, or no entries exist in the chain.

>

If an entry is successfully read the program uses the information and then returns to statement 360 to
read another entry in the chain. After an entry has been read the SABUFF array contains information
like this:

SABUFF(1) - SABUFF(2) ACCTS 12345678 (doubleword integer)
SABUFF(3) - SABUFF(6) SASTOCK 2222B22B (character string)
SABUFF(7) QTY 3 (integer)

SABUFF (8) - SABUFF(9) PRICE 425 (doubleword integer)
SABUFF(10) - SABUFF(11) TAX 25 (doubleword integer)
SABUFF(12) - SABUFF(13) TOTAL 450 (doubleword integer)
SABUFF(14) - SABUFF(16) PURCHDT 760314 (character string)
SABUFF(17) - SABUFF(19) DELIVDT 760320 (character string)

DEC 85

6-27

FORTRAN

Update Entry

PROGRAM FTIMG

IMPLICIT INTEGER (A-Z)

DIMENSION STATUS(10),PASSWORD(5),BASE(5)
DIMENSION DSETC(5), INAME2(8), ADDVAL(13)
INTEGER*4 ACCTSRCH

CHARACTER CS4#10, CS11%#16, ADDSTRING*26
CHARACTER#10 CS1,CS2

EQUIVALENCE (BASE(1),CS1), (PASSWORD(1),CS2)
EQUIVALENCE (DSETC(1),CS4), (INAME2(1),CS11),

c (ADDVAL(1) ,ADDSTRING)
CS1 = " ORDERS;"

cs2 = " "

CS4 = "CUSTOMER; "

CS11 = "STREET-ADDRESS; "
MODEt = 1

MODET = 7

ACCTSRCH = 12345678
{code to open. data base in access mode 1, 2, 3, or 4)
CI;\LL DBGET (BASE,DSETC,MODE7,STATUS,INAME2,ADDVAL,ACCTSRCH)
(Code to dete.rmine if read is successful and print current address.)

DISPLAY "NEW ADDRESS"
ACCEPT ADDSTRING
CALL DBUPDATE (BASE,DSETC,MODE1,STATUS,INAME2,ADDVAL)
IF (STATUS(1).NE.42) GOTO 420
DISPLAY "YOU ARE NOT ALLOWED TO ALTER THIS ITEM"
GOTO 9900
DISPLAY "DBUPDATE FAILURE"
GOTO 8310
440 DISPLAY "ADDRESS CHANGED"

GOTO 8800

9300 DISPLAY "DBOPEN FAILURE"

9310 CALL DBEXPLAIN (STATUS)

Before an entry can be updated it must be located. In this example, the entry is located by using a
calculated DBGET to read the STREET-ADDRESS item in the CUSTOMER data set. The entry is
located by using the ACCOUNT search item with a value of 12345678. If the read is successful, the
current address is printed and the application program user is prompted for the new address which is
moved into ADDRESS-VALUE. The DBUPDATE routine is then called to alter the STREET-ADDRESS
data item in the entry.

If the current user class number does not allow this item to be altered or the access mode does not allow
updates to take place, the condition word 42 is returned.

A null list can be used with DBGET to locate an entry to be updated.

DEC 85
6-28

FORTRAN

Delete Entry

PROGRAM FTIMT

IMPLICIT INTEGER (A-2Z)

DIMENSION STATUS(10),PASSWORD(5),BASE(5)
DIMENSION DSETC(5), INAME2(8), ADDVAL(13)
INTEGER#4 ACCTSRCH

CHARACTER CS4#10, CS11#16, ADDSTRING#*26
CHARACTER#10 CS1,CS2

EQUIVALENCE (BASE(1),CS1),(PASSWORD(1),CS2)
EQUIVALENCE (DSETC(1),CS4), (INAME2(1),CS11),

C (ADDVAL (1) ,ADDSTRING)
Cs1 = " ORDERS;"

cs2 = " "

CS4 = "CUSTOMER; "

cs11 = "y "

MODEt1 = 1

MODET = 7

(Code to open data base in access mode 1, 3, or 4.)

20

530

540

560

9300
8310

DISPLAY "ACCOUNT OR ZERO TO TERMINATE"

ACCEPT ACCTSRCH

IF (ACCTSRCH.EQ.0) GOTO 9900

CALL DBGET (BASE,DSETC,MODE7,STATUS,INAME2,DUMMY,ACCTSRCH)
IF (STATUS(1).NE.O) GOTO 9310

CALL DBDELETE (BASE,DSETC,MODE1,STATUS)

IF (STATUS(1).NE.44) GOTO 530

DISPLAY "SALES ENTRIES EXIST, CUSTOMER CANNOT BE DELETED"
GOTO 20

IF (STATUS(1).NE.-23) GOTO 540

DISPLAY "PASSWORD DOES NOT GRANT ACCESS TO DATA SET"

GOTO 8900

IF (STATUS(1).EQ.0) GOTO 560

DISPLAY "DBDELETE FAILURE"

GOTO 9310

DISPLAY "CUSTOMER ENTRY DELETED"

GOTO 20

DISPLAY "DBOPEN FAILURE"

CALL DBEXPLAIN (STATUS)

Before an entry can be deleted, the current record of the data set must be that of the entry to be deleted.

This record

may be located by calling DBGET. In this example, the program may have requested the

account number of the customer to be deleted and then used a calculated DBGET to locate the

appropriate

entry. If entries in the SALES data set exist which have the same account number as the

entry to be deleted, the condition word is set to 44 and the entry is not deleted.

A null list can be used with DBGET to locate an entry to be deleted.

If the access

mode is 1, the data base must be locked before the entry is deleted.

DEC 85
6-29

FORTRAN

Lock and Unlock (Data Base)

PROGRAM FTIM8

IMPLICIT INTEGER (A-2)

DIMENSION STATUS(10),PASSWORD(S),BASE(S)
CHARACTER#10 €S1,CS2

EQUIVALENCE (BASE(1),CS1), (PASSWORD(1),CS2)
cS1 " ORDERS;"

cse = " "

(Code to open data base in access mode 1 or §5.)

640

680

8300
9310

In this example, the program calls DBLOCK to lock the data base. Since mode 2 is used, the program must
check the condition word when DBLOCK returns control to verify that the data base is locked and the
calling program has exclusive access. If this is so, the condition word is 0; if it is busy the condition word

is 20.

If the data base is successfully locked, the program performs the necessary data base operations and then
unlocks the data base by calling the DBUNLOCK procedure. In the example the programs terminates

MODE1 1

MODE?2 2

CALL DBLOCK (BASE,DUMMY,MODE2,STATUS)

IF {STATUS(1).NE.20) GOTO 640

DISPLAY "DATA BASE IS BUSY. TRY AGAIN LATER."
GOTO 9800

IF (STATUS(1).EQ.0) GOTO 680

DISPLAY "DBLOCK FAILURE"

GOTO 8310

(Code to use data base.)

CALL DBUNLOCK (BASE,DUMMY,MODE1,STATUS)
IF (STATUS(1).EQ.0) GOTO 9900

DISPLAY "DBUNLOCK FAILURE"

GOTO 9310

DISPLAY "DBOPEN FAILURE"

CALL DBEXPLAIN (STATUS)

after unlocking the data base.

DEC 85
6-30

FORTRAN

Lock (Data Entries)

PROGRAM FTIMBA

IMPLICIT INTEGER (A-Z)

DIMENSION STATUS(10),PASSWORD(5) ,BASE(5),IP(40)

CHARACTER#10 CS1,CS2,VAL

CHARACTER#2 RELOP

CHARACTER#16 SETNAME , ITEMNAME

EQUIVALENCE (BASE(1),CS1), (PASSWORD(1),CS2),
(NUM,IP(1)),
(LENGTH,IP(2)),
(SETNAME, IP(3))
(ITEMNAME , IP(11
(RELOP,IP(19)),
(VAL,IP(20))

CS1 = " ORDERS;"

cs2 "

MODE1 = 1

),

OOOOOOO0

(Code to open data base.)

NUM=1
LENGTH=22
SETNAME="INVENTORY "
ITEMNAME="STOCK# "
RELOP="= "
VAL="6650D22S"
CALL DBLOCK (BASE,IP,5,STATUS)
640 IF (STATUS(1).EQ.0) GOTO 680
DISPLAY "DBLOCK FAILURE"
GOTO 9310
680 (Code to modify the locked data entry or entries.)

9310 CALL DBEXPLAIN (STATUS)

This example illustrates locking at the data entry level. All data entries in the INVENTORY data set
with a STOCK# value of 6650D22S are locked unconditionally (mode 5). If the lock request succeeds, the
condition word is 0. If the DBLOCK procedure detects a calling error or an exceptional condition such as
DBCB full, the DBLOCK failure message is displayed and DBEXPLAIN is called.

DEC 85
6-31

FORTRAN

Request Data Set Information

PROGRAM FTIM9

IMPLICIT INTEGER (A-Z)

DIMENSION STATUS(10),PASSWORD(5),BASE(5)
DIMENSION INFOBUF (8)

CHARACTER#10 CS1,CS2

EQUIVALENCE (BASE(1),CS2), (PASSWORD(1),CS2)
€cS1 = " ORDERS;"

cs2 = " .

{Code to open data base.)

MODE=203
CALL DBINFO (BASE,DUMMY,MODE,STATUS, INFOBUF)
IF (STATUS(1).EQ.0) GOTO 700
DISPLAY "DBINFO FAILURE"
GOTO 8310
700 (Code to use data set numbers returned in INFOBUF.)

GOTO 8900
9300 DISPLAY "DBOPEN FAILURE"
9310 CALL DBEXPLAIN (STATUS)

The procedure call in this example obtains the numbers of the data sets available to the current user class
by specifying mode 203. If the user class number is 12, after the call has been successfully executed the
INFOBUF array contains:

INFOBUF (1) 4 Access to 4 data sets.

INFOBUF (2) 2 Read access to data set 2.

INFOBUF (3) -3 Modify access to data set 3

INFOBUF (4) -5 and data set S.

INFOBUF (5) 6 Read and possibly update access to data set 6.

If the user class number is 8 it contains:

INFOBUF (1) 6 Access to 6 data sets.

INFOBUF (2) -1 Modify access to data set 1.

INFOBUF (3) 2 Read access to data set 2, an automatic master.
INFOBUF (4) -3 Modify access to all other data sets.

INFOBUF (5) -4

INFOBUF (6) -5

INFOBUF (T7) -6

Refer to the schema in Figure 3-5 to help you interpret this procedure call in relation to the ORDERS
data base.

DEC 85
6-32

FORTRAN

Rewind Data Set

PROGRAM FTIM3

IMPLICIT INTEGER (A-Z)

DIMENSION STATUS(10),PASSWORD(5),BASE(5)

DIMENSION DSETC(5),LIST(15),CBUFF(15)

CHARACTER CS4#10,CS5#30,FNAME*10, LNAME*14

CHARACTER#10 CS1,CS2

EQUIVALENCE (DSETC(1),CS4), (LIST(1),CS5), (CBUFF (3) ,FNAME),
c (CBUFF (8) ,LNAME)

EQUIVALENCE (BASE(1),CS1),(PASSWORD(1),CS2)

Cs1 " ORDERS;"

cs2 "

Ccs4

"CUSTOMER; "

MODE3 = 3

CALL DBCLOSE (BASE,DSETC,MODE3,STATUS)
IF (STATUS(1).EQ.0) GOTO 200

DISPLAY "DBCLOSE FAILURE"

GOTO 9310

To rewind the CUSTOMER data set, a call to DBCLOSE is made with mode equal to 3. The dynamic
status information in the DBU for CUSTOMER is reset, including the current record number. If a serial
read request encounters an end-of -file, this call resets the current record to the beginning of the data set
and another serial read request will read the first entry in the data set.

Close Data Base

9900 MODE1 = 1
CALL DBCLOSE (BASE,DUMMY,MODE1,STATUS)
IF (STATUS(1).EQ.0) GOTO 9980
DISPLAY "DBCLOSE FAILURE"
CALL DBEXPLAIN (STATUS)
9980 STOP
END

This call closes the data base. It is issued after the program has completed all data base operations and
before program termination.

DEC 85
6-33

FORTRAN

Print Error

A call to DBEXPLAIN prints a message on the $STDLIST device which interprets the contents of the

STATUS array.

CALL DBEXPLAIN (STATUS)

9980 STOP

END

Move Error to Buffer

In this example, a call to DBERROR returns one of the messages appropriate to the condition word
returned by the DBOPEN procedure if it fails. For example, the message in ERSTRING may be DATA
BASE OPEN IN AN INCOMPATIBLE MODE if the condition word is =1. The value of LENG in this
case is 38.

DEC 85
6-34

9300
9310

PROGRAM FTIM10

IMPLICIT INTEGER (A-Z)

DIMENSION STATUS(10),PASSWORD(S5),BASE(S)
DIMENSION ERBUFF (36)

CHARACTER ERSTRING*T2

CHARACTER#*10 CS1,CS2

EQUIVALENCE (BASE(1),CS1), (PASSWORD(1),CS2)
EQUIVALENCE (ERBUFF(1),ERSTRING)

CcS1 = " ORDERS;"

Cs2 = " n

DISPLAY "ENTER PASSWORD "
ACCEPT CS2

DISPLAY "ENTER ACCESS MODE (1-8) "
ACCEPT MODE

CALL DBOPEN (BASE,PASSWORD,MODE,STATUS)
IF (STATUS(1).NE.O) GOTO 9300

DISPLAY "DBOPEN FAILURE"
CALL DBERROR (STATUS,ERBUFF,LENG)
DISPLAY ERSTRING [1:LENG]

PASCAL

Sample lines of code that perform a specified task are given below to illustrate the use of TurboIMAGE
procedures through Pascal programs.

Type and variable declarations are defined at the beginning of the sample program. TurboIMAGE
intrinsics must be declared for Pascal as external procedures. The procedure name is followed by the word
INTRINSIC. No significant error verification is performed on the parameters by the Pascal compiler.
Because TurboIMAGE parameters do not have a fixed format, calling TurboIMAGE intrinsics in Pascal is
non-standard. Warning messages will be printed against procedure statements when the Pascal program is
compiled.

Type declarations declare names for data structure forms that will be used in allocating variables. Type
declarations may be used as parameters to procedures also. Variable declarations allocate the variables of
the program. Variables are defined with precise types or forms. Pascal string literals are delimited with
single quotes (’). Variable name and field name are separated with a dot (), when referenced. For
example, "base_ name. baseid".

Table 6-1 displays TurboIMAGE type designators and sub-item lengths and the data types typically used
to process them in Pascal. For more information on TurboIMAGE data item lengths and type designators
refer to Section 3.

DEC 85
6-35

PASCAL

Table

6-1. TurboIMAGE and Pascal Data Structures

IMAGE PASCAL TYPE

J1 -32766 .. 32767 [Subrange]

J2 Integer

I1 -32766.. 32767 [Subrange]

12 Integer

K1 BOOLEAN (must be either TRUE or FALSE)
TRUE = odd number; FALSE = even number

K2 Integer *

P4 Packed Array [1..2] of CHAR *

P8 Packed Array [1..4] of CHAR *

R2 Real

R4 Longreal (is an extension for four-word floating point)

Zn Packed Array [l..n] of CHAR *

Xn Packed Array [l..n] of CHAR
*NOTE: Type does not correspond with the TurboIMAGE type,
however, storage is allocated correctly.

The following is an example of defining type declarations, variable declarations and TurboIMAGE
intrinsics in the sample Pascal program in this section:

DEC 85
6-36

$TABLES ON$

$CODE_OFFSETS ON
PROGRAM Pascal T
LABEL 100; { Err

TYPE
{ Set up Turbo

single_integer
base_type

password_type
status_type

$
urboIMAGE (input,output);
or Exit }

IMAGE parameter date type }

= -32768,.32767;

RECORD
baseid : PACKED ARRAY [1..2] OF char;
name_only : PACKED ARRAY [1..18] OF char;
terminator: PACKED ARRAY [1..2] OF char;

END;

PACKED ARRAY [1..10] OF char;

ARRAY[1..10] OF single_integer;

ds_name_type
list_type
buffer_typel

buffer_type?2

buffer_type3

info_buff type

sa_buff_type

key_type
item_type

VAR
base_name
db_password
mode
db_status
dataset name
item list
item_name
item_value
ds_data_buff1
ds_data_buff2
ds_data_buff3
repeat_prompt
yes_no
argument

PACKED ARRAY [1

PACKED ARRAY [1

RECORD
stock_no
description:

END;

RECORD
acct
f_name
1 name

END;

RECORD
stock_no I
qty
supplier
unit_cost
lastshipdate:
binnum

END;

RECORD
nam_typ
sub_leng
sub_count
dummy 1
dummy?2

END;

RECORD
account_s
stock_no_s :
quantity
price
tax
total
purch_date
deliv_date :

END;

PACKED ARRAY [1

PACKED ARRAY [1.

: base_type;

password_type;

: single_integer;
¢ status_type;
! ds_name_type;

list type;

: PACKED ARRAY [1..
PACKED ARRAY [1.

buffer_typel;

: buffer_type2;

buffer_type3;

¢ boolean;

: PACKED ARRAY [1.
: PACKED ARRAY [1.

..12] OF chary
..80] OF char;

PACKED ARRAY [1.
PACKED ARRAY [1.

integer;

: PACKED ARRAY [1.
: PACKED ARRAY [1.

: PACKED ARRAY [1.

integer;

: PACKED ARRAY [1.

real;

PACKED ARRAY [1.
: PACKED ARRAY [1.

: PACKED ARRAY [1..
: single_integer;
: single_integer;
: single_integer;
¢ single_integer;

: single_integer;
PACKED ARRAY [1.
: single_integer;

integer;
integer;
integer;

: PACKED ARRAY [1.
PACKED ARRAY [1.

.40] OF char;
.8] OF char;

16] OF char;
.26] OF chary

{*}
.3] OF chary
.8] OF char;

.8] OF char;
.20] OF chary

.10] OF char;
.18] OF char;

.8] OF char;

16] OF char;

.6] OF char;
2] OF charg

18] OF char;

.8] OF char;

.6] OF char;
.6] OF char;

PASCAL

DEC 85
6-37

PASCAL

err_length : single_integer;

err_buffer : PACKED ARRAY [1..80] OF char;
record _no : integer;

stock_search : PACKED ARRAY [1..8] OF char;
sa_buffer : sa_buff_type;

info_buffer : info_buff_type;

acct_search : integer;

PROCEDURE dbopen; INTRINSIC;
PROCEDURE dbclose; INTRINSIC;
PROCEDURE dbget; INTRINSIC;
PROCEDURE dbput; INTRINSIC;
PROCEDURE dbfind; INTRINSIC;
PROCEDURE dbexplain; INTRINSIC;
PROCEDURE dberror; INTRINSIC;
PROCEDURE dbdelete; INTRINSIC;
PROCEDURE dbupdate; INTRINSIC;
PROCEDURE dblock; INTRINSIC;
PROCEDURE dbunlock; INTRINSIC;
PROCEDURE dbinfo; INTRINSIC;

* Type BOOLEAN variables must be either TRUE or FALSE (False = 0, True = 1).
Open Data Base

BEGIN
{ Initialize intrinsic parameters }

prompt ("ENTER DATA BASE NAME)3
readln(base_name.name_only);

base name.baseid:= "~
base_name.terminator:= R
db_password:= ‘DO-ALL;";
mode:= 3;

dbopen(base_name, db_password, mode, db_status);
IF db_status[1] <> O THEN
BEGIN
writeln(DBOPEN-FAIL");
GOTO 1003
END;

In the above example, the user is prompted for the data base name. The data base is then opened in mode
3 with the password DO-ALL. If the password is less than 8 characters it must be followed by a blank or
mmbwbn'Memmwmdﬁdmjmwnnwmdmdﬁnmnmzwmﬁﬁhmm&mgmpﬂmw.

DEC 85
6-38

PASCAL

Add Entry

dataset_name:= "PRODUCT;”
item_list:= ‘@;";
mode:= 1;

prompt ("ENTER STOCK-NO)3
readln(ds_data buff1.stock _no);
prompt (” ENTER DESCRIPTION),
readln(ds_data_buffi.description);

dbput(base name, dataset_name, mode, db _status, item list,
ds data _buff1);

IF db_status[1] <> O THEN
BEGIN
CASE db_status[1] OF

43: writeln(DUPLICATE STOCK NUMBER") 3
16: writeln(”DATA SET FULL’);
-23: writeln("CANNOT ADD WITH CURRENT PASSWORD”);

OTHERWISE BEGIN
writeln(’DBPUT failure’);
GOTO 1003
END;
END; {Case}
END; {If}

This sample code adds a data entry to the PRODUCT manual master data set. The item __list contains an
at-sign (@) which requests TurboIMAGE to return all fields of the data set in the order defined in the
data base schema. Other valid lists are the null list (0;) which returns no data, and same list ('*) which
returns the same fields as were listed in the previous call.

The user will be prompted to enter a STOCK# and corresponding DESCRIPTION. These data items will
be moved into the specified ds__data__buffl. In the example above, the condition word of db__ status is
tested for a value of 43, 1nd1cat1ng the entry already exists in the data set, 16, indicating that the data set
is full, or =23, mdlcatmg that the add cannot be performed with the current password entry.

DEC 85
6-39

PASCAL

Read Entry (Serially)

mode:= 2;

item_list:= "ACCOUNT,FIRST-NAME,LAST-NAME;";

WHILE db_status[1]= 0 DO

BEGIN

dbget(base name, dataset_name, mode, db_status, item_list,
ds_data buff2, argument);

IF db_status[1] = O THEN
BEGIN
{ Display data }
writeln("ACCT : “, ds_data_buff2.acct);
writeln("F-NAME : ’, ds_data_buff2.f_name);
writeln("L-NAME : “, ds_data_buff2.1 name);
END;

END; { WHILE db status }

IF db_status[1] <> O THEN
BEGIN
IF db__status[1] = -21 THEN
writeln(’NO READ ACCESS TO DATA");

END;

To read the next entry of the CUSTOMER data set, a mode of 2 is used. This directs DBGET to perform
a forward serial read. Item__list contains the "ACCOUNTFIRST-NAME LAST-NAME" data items.
After DBGET returns to the calling program, the ds_data_ buff2 contains ACCT, F-NAME and
L-NAME. Argument is a dummy parameter for this read mode. Condition word -21 is returned if the
user’s password does not grant access to read the data.

DEC 85
6-40

PASCAL

Read Entry (Directly)

mode:= 4;

record no:= 33;

dataset _name:= "INVENTORY;”;
item_list:= "@;";

dbget (base_name, dataset name, mode, db_status, item_list,
ds_data_buff3, record_no);

IF db_status[1] <> O THEN
BEGIN
CASE db_status“] OF

12,13: writeln(”INCORRECT RECORD NUMBER”);
17 : writeln(“RECORD CONTAINS NO DATA ENTRY');

OTHERWISE writeln("DBGET FAILURE");

END;
END; {If db_status)

This example reads all data items of the entry in record number 33 of the INVENTORY data set using
mode 4, directed read. The program may have saved a record number while reading down the chain
looking for the latest LASTSHIPDATE (in ds__data__buff3).

If the condition word is set to 12 or 13 the message "INCORRECT RECORD NUMBER" will be printed.
If the condition word is set to 17, "RECORD CONTAINS NO DATA ENTRY" will be printed.

DEC 85
6-41

PASCAL

Read Entry (Calculated)

mode:= T;

dataset_name:= "PRODUCT;”;
stock_search:= "22B22B”;
item list:= "DESCRIPTION;”;

dbget (base_name, dataset_name, mode, db_status, item_list,
ds_data_buff1.description, stock_search);

IF db_status[1] <> O THEN
BEGIN
CASE db_status[1] OF

17: writeln(” NO SUCH STOCK NUMBER");
-21 writeln(’NO SUCH READ ACCESS TO DATA");

OTHERWISE writeln(DBGET FAILURE);

END; {Case}
END; {If}

To locate the PRODUCT data set entry which has a STOCK# search item value of 22B22B, a calculated
read is used. Mode 7 is used and the item to be read is DESCRIPTION (item__ list). If 22B22B does not
exist condition word 17 is returned "NO SUCH STOCK NUMBER". If the user does not have read access
to this data item, condition word -21 is returned and the corresponding message is printed.

DEC 85
6-42

PASCAL

Read Entry (Backward Chain)

dataset name:= “SALES;”
mode:= 1;

item_name:= "PURCH-DATE;”;
item_value:= "8412107;

dbfind(base_name, dataset name, mode, db _status, 1tem _name,
item value);
IF db_status[1] <> 0 THEN
BEGIN
CASE db_status[1] OF

17: writeln(’NO PURCHASES ON THAT DATE’);
-21,-52: writeln("PASSWORD OR ACCESS MODE DOES NOT GRANT ACCESS ")

OTHERWISE writeln(DBFIND FAILURE’);
END; { CASE }

prompt ("CONTINUE? “);
readln(yes no);

IF NOT((yes_no[1]="Y") OR (yes _no[1]l="y"))
THEN GOTO 100
END;

mode:= 6;
item_list:= "@;";
WHILE db _status[1] = 0 DO
BEGIN
dbget (base _name, dataset_name, mode, db _status, item_list,
sa_buffer, argument {dummy});

IF db_status[1] = 14 THEN
writeln(’NO MORE PURCHASES ON THIS DATE")

IF db_status[1] = 0 THEN
BEGIN

{ Report of sales }
END;

END;

In the above example the DBFIND procedure is called to determine the location of the first and last
entries in the chain. In this program the detail dataset _ name is SALES, the detail search item is
PURCH-DATE (used to define a path with the DATE-MASTER data set), and the search item value is
841210. These call parameters belong to both the master entry containing the chain head and the detail
entries making up the chain. If no entry in DATE-MASTER has the search item value of 841210,
condition word 17 is returned. Condition word -21 or -52 is returned if the user’s password or access
mode does not allow read access to the data.

DEC 85
6-43

PASCAL

If DBFIND is successful, a call to DBGET with mode 6 reads the last entry in the chain. Successive
DBGET calls with the same mode read the next-to-last entry and so forth, until the first entry in the
chain is read. The next call to DBGET will return the message "NO MORE PURCHASES ON THIS
DATE".

Locate and Update Entry

mode:= T;

dataset_name:= "CUSTOMER; "3
item_name:= "STREET-ADDRESS; "3
item_value:= "12 SUTTON PLACE ’;
acct_search:= 12203

dbget(base_name, dataset_name, mode, db_status, item_name,
item value, acct_search);
IF db_status[1] <> O THEN

BEGIN
writeln(“ITEM NOT FOUND’);
GOTO 1003

END;

{Update entry}

mode:= 1;

BEGIN

prompt (“ENTER NEW ADDRESS”);

dbupdate(base _name, dataset_name, mode, db_status, item_name,
item value);

if db_status[1] = 42 THEN

BEGIN
writeln(NOT ALLOWED TO ALTER THIS ITEM");
GOTO 100;

END;

The entry to be updated must be located first. In this example, the entry is located by using a calculated
DBGET to read the STREET-ADDRESS (item__name) in the CUSTOMER data set. For example, the
entry is located by using the ACCOUNT item with a value of 1220. If the read is successful, the current
address is printed and the user is prompted for the new address. The new address is moved into
item__value. The DBUPDATE routine is called to alter the STREET-ADDRESS data item in the entry.

Condition word 42 is returned if the current user class number does not allow this item to be altered, or
the access mode does not allow updates to take place.

DEC 85
6-44

PASCAL

Delete Entry

mode:= 1;
dbdelete(base_name, dataset_name, mode, db_status);

IF db_status[1] <> O THEN
BEGIN
CASE db_status[1] OF

44: writeln(”SALES ENTRIES EXIST, CANNOT DELETE CUSTOMER ") 3
-23: writeln(“PASSWORD DOES NOT ALLOW DELETE’);

OTHERWISE writeln(DBDELETE FAILURE’);

END; {Case}
END; {If}

Before an entry can be deleted, the current record of the data set must be that of the entry to be deleted.
In this example, the program may have requested the account number of the customer to be deleted and
then used a calculated DBGET to locate the appropriate entry. Condition word 44 is returned if the
entries in the data set do not exist and the entry is not deleted. "PASSWORD DOES NOT ALLOW
DELETE" will be printed if the user does not have the capability of deleting an entry from the specified
data set.

Lock and Unlock (Data Base)

mode:= 2;
dblock(base name, argument {dummy}, mode, db_status);
IF db_status[1] = 20 THEN
BEGIN
writeln("DATA BASE IS BUSY, TRY AGAIN LATER”);
GOTO 1003
END;
IF db_status[1] <> O THEN
BEGIN
writeln(‘DBLOCK FAILURE’)
GOTO 1003
END;

mode:= 1;
dbunlock(base name, argument {dummy}, mode, db_status);
IF db_status[1] <> O THEN
BEGIN
writeln("DBUNLOCK FAILURE”)
GOTO 1003
END;

DEC 85
6-45

PASCAL

This program calls DBLOCK to lock the data base. The program must check the condition word when
DBLOCK returns control to verify that the data base is locked, since mode 2 is used. If the data base is
locked, condition word O is returned. If the data base is busy, condition word 20 is returned.

After the data base operations have been completed, the program unlocks the data base by calling the
DBUNLOCK procedure.

Request Data item Information

mode:= 1023
item_list:= "PURCH-DATE;";

dbinfo(base_name, item_list, mode, db_status, info_buffer)3
IF db_status[1] <> 0 THEN
BEGIN
writeln("DBINFO FAILURE’);
GOTO 1003
END;3

The procedure call in this example obtains information about the PURCH-DATE (item__list) data item by
specifying mode 102. The item name and type are returned in info__buffer.

Rewind Data Set

mode:= 33
dataset_name:= "CUSTOMER';

dbclose (base name, dataset_name, mode, db_status)s
IF db_status[1] <> O THEN
BEGIN
writeln(DBCLOSE FAILURE);
GOTO 1003
END;

To rewind the CUSTOMER data set, a call to DBCLOSE is made with mode 3. The dynamic status
information in the DBU for CUSTOMER is reset, including the current record number.

DEC 85
6-46

PASCAL

Print Error

IF db_status[1] <> O THEN
dbexplain(db_status);

The call to DBEXPLAIN prints a message on the $STDLIST device which interprets the contents of
db__status. This routine may be used during debugging if a procedure call fails.

Move Error to Buffer

IF db_status[1] <> 0 THEN

BEGIN
dberror(db_status, err_buffer, err_length);
writeln(err_buffer);

END;

In the above example, a call to DBERROR has returned one of the messages appropriate when the
condition word is not equal to zero.

Close Data Base

mode:= 1;
dbclose(base_name, dataset_name {dummy}, mode, db_status);
IF db status[1] <> 0 THEN

dbexplain(db_status);

END.

The data base is closed using mode 1. The program ends with a period.

DEC 85
6-47

SPL

Figures 6-3 and 6-35 illustrate the use of TurboIMAGE procedures with SPL programs. The program in
Figure 6-3 is called SUPPLMOD. It opens the data base in access mode 1 and allows the user to update,
add, and delete entries of the master data set containing information on suppliers. Sample output from
SUPPLMOD is illustrated in Figure 6-4.

Figure 6-5 contains a program called SHOWSALE, which displays credit card purchase transactions from
the detail data set containing these entries. SHOWSALE opens the data base in access mode 6 thereby
avoiding the necessity of locking and unlocking the data base. Figure 6-6 shows the output from
SHOWSALE. The following numbered sequence corresponds to the numbered call-outs in Figure 6-3 and
Figure 6-35.

1

DEC
6-48

TurboIMAGE procedures must be named in an INTRINSIC statement or, alternatively, declared as
EXTERNAL procedures.

OPEN DATA BASE. The ORDERS data base is opened with access mode 1 and BUYER password.
If the condition code is not zero, an error message is printed and the program terminates. (See (13)
for another example of opening a data base.)

MOVE ERROR TO BUFFER. A message explaining the condition word returned by DBOPEN is
moved to OUTBUF and I is set equal to the number of characters or length of the message.

REQUEST DATA SET INFORMATION. A call to DBINFO with mode 201 and data set name
SUP-MASTER returns the data set number in DSET. For efficiency, this is done only once at the
beginning of the program. (See (14) and (16) for other DBINFO examples.)

LOCK DATA SET. If the condition code is not CCE, the status information is printed indicating
that the lock could not be obtained.

READ ENTRY (CALCULATED). This call locates an entry in the SUP-MASTER data set based
on the search item value in SUPBUF. The entry need not be read since it is to be updated or
deleted, therefore, the list is null and no data is actually transferred. SUPBUF is also used as the
buffer parameter since no data is moved into it. If the condition word is 17, there is no search item
with the specified value. Since the BUYER password allows access to the data, it is not necessary to
check for condition word -21.

DELETE ENTRY. The entry located with DBGET is deleted. If the condition word is 44, the
detail data sets linked to SUP-MASTER contain entries with the specified search item value,
therefore, the master entry cannot be deleted. Since the BUYER password and access mode 1 allow
the user to delete SUP-MASTER entries, it is not necessary to check for condition word -23.

85

SPL

BEGIN

CCRERERRRRRRRRRERRER R BRI RRRRRRRRRRRERRRRERRERRRRRRRRRRRRREHRRD)
<<THIS PROGRAM OPENS THE "ORDERS'" DATA BASE IN MODE 1 AND ALLOWS>>

<<THE USER INTERACTIVELY TO ADD, DELETE, OR UPDATE (CHANGE >>
<<ADDRESSES OF) SUPPLIERS IN THE SUP-MASTER DATE SET. THE >>
<<USER IS PROMPTED FOR THE DESIRED FUNCTION AND THEN FOR THE >>
<<NECESSARY FIELD VALUES. >>
<<THE PROGRAM CAN BE RUN FROM MULTIPLE TERMINALS (SESSIONS) >>
<<SIMULTANEOUSLY, AND CAN ACCESS THE DATA BASE CONCURRENTLY WITH>>
<<OTHER PROGRAMS WHICH HAVE MODE 1 OR MODE 5 ACCESS TO IT. >>

CARERRERRREREEARRFRERRRRRRERRR AR LR RRLRRARRERNRRRRRASERLRRRRRERRD)

INTEGER MODE1 =1, <<MODES FOR >>

MODE4 = 4, <<USE IN >

MODET =7, <<IMAGE CALLS>>

MODE201 1= 201,

DSET, <<NUMBER OF SUP-MASTER DATA SET>>

I;
LOGICAL NULL’LIST = My <<SPECIAL "NO DATA" LIST>>
LOGICAL FULLREC = "@;"; <<SPECIAL "COMPLETE ENTRY" LIST>>
ARRAY SBASE(0:4) := " ORDERS;"; <<DATA BASE >>
ARRAY PASSWORD(0:2) = "BUYER;"; <<QUALIFIER - PASSWORD >>»
ARRAY DSETNAME(0:5) = "SUP-MASTER;" ; <<QUALIFIER-DATA SET NAME>
ARRAY STATUS(0:9); <<KSTATUS AREA >>
ARRAY SUPBUF(0:30); <<BUFFER >>
ARRAY INBUF(0:4); <<INPUT BUFFER;FOR USER TO>>
BYTE ARRAY FUNCTION(#*)=INBUF; <<INPUT DESIRED FUNCTION>>
ARRAY OUTBUF(0:39); <<OUTPUT BUFFER; FOR >>
BYTE ARRAY BOUTBUF (*)=OUTBUF; <<MESSAGES TO USER >>

ARRAY FPROMPT(0:4) :
ARRAY PROMPT(0:18) :
ARRAY NOSUCH(0:7)
ARRAY CHAINS(0:21) :
ARRAY SETFULL(0:17):
ARRAY DUPE(0:16) :

"FUNCTION? ";

“SUPPLIER? STREET? CITY? STATE? ZIP? “;

“NO SUCH SUPPLIER";

"CAN’'T DELETE:PRODUCT(S) STILL IN INVENTORY";
“CAN'T ADD: SUPPLIER DATA SET IS FULL";
"CAN’T ADD: DUPLICATE SUPPLIER NAME";

Figure 6-3. Supplier Modification Program

DEC 85
6-49

SPL

INTRINSIC DBOPEN,DBINFO,DBLOCK,DBGET ,DBUPDATE,DBPUT, 1
DBDELETE ,DBUNLOCK,DBCLOSE ,DBEXPLAIN ,DBERROR;
INTRINSIC READ,PRINT,QUIT,TERMINATE;
<<BEGINNING OF MAIN PROGRAM>>

DBOPEN (SBASE , PASSWORD ,MODE 1 ,STATUS) ; 2
<<OPEN ORDERS DATA BASE IN MODE 1.>>
IF STATUS <> O THEN
BEGIN
3 DBERROR (STATUS ,OUTBUF,1); <<GET ERROR MESSAGE>>
IF STATUS <> O THEN GO TO DBFAIL; <<EVEN DBERROR FAILED>>
PRINT(OUTBUF,-1,0);

TERMINATE;
END;
4 DBINFO(SBASE,DSETNAME ,MODE201,STATUS,DSET) ; <<GET NUMBER>>
IF STATUS <> 0 THEN GO TO DBFAIL; <<OF SUP-MASTER>>
DSET :=\DSET\; <<KMAKE SURE DSET# IS POSITIVE>>
ASK: PRINT(FPROMPT,0,0); <<KSKIP A LINE>>
PRINT(FPROMPT,5,%320); <<ASK FOR FUNCTION>>
I := READ (INBUF,-10); <<READ DESIRED FUNCTION>>
IF > THEN GO TO OUT; <<EOF - MIGHT AS WELL LEAVE>>

IF I = 0 THEN GO TO ASK; <<NO INPUT OR I/O ERROR>>
IF FUNCTION = "/E" THEN GO TO OUT; <<SPECIAL "END" SIGNAL>>
IF FUNCTION <> "A" AND FUNCTION <> "D"
AND FUNCTION <> "C" THEN GO TO ASK;
<<FUNCTION MUST BE "ADD" OR "DELETE" OR "CHANGE'>>

SUPBUF := " "; <<BLANK SUP-MASTER >>
MOVE SUPBUF(1) := SUPBUF,(30); <<BUFFER>>
PRINT (PROMPT ,5,%320) ; <<REQUEST AND READ>>
READ(SUPBUF ,-16) ; <<SUPPLIER NAME >>
IF FUNCTION = "D" THEN GO TO LOCKIT; <<DELETE:GO DO IT>>
PRINT(PROMPT(5),4,%320) ; <<REQUEST AND READ>>
READ(SUPBUF (8) ,-26) ; <<STREET ADDRESS »>>
PRINT(PROMPT(9),3,%320) ;

READ(SUPBUF (21),-12); <<CITY, >>
PRINT(PROMPT (12),-7,%320);

READ(SUPBUF (27) ,-2); <<STATE, >>
PRINT (PROMPT (16),-5,%320);

READ(SUPBUF (28),-5); <<AND ZIP CODE >>

Figure 6~3. Supplier Modification Program (Continued)

DEC 85
6-50

SPL

LOCKIT:DBLOCK(SBASE,DSET ,MODE4,STATUS) ;<<ADD:GO TO DBPUT>> §
IF STATUS <> O THEN GO TO DBFAIL;
IF FUNCTION = "A" THEN GO TO NEWSUP; <<ADD: GO TO DBPUT>>

6 DBGET (SBASE ,DSET ,MODE7,STATUS ,NULL "LIST,SUPBUF ,SUPBUF);
<<PRIOR TO UPDATING OR DELETING, MUST GET>>
<<ASSOCIATIVE READ; SEARCH ITEM VALUE IN>>
<<SUPBUF ;. TRANSFER NO DATA>>

IF STATUS <> 0 THEN
IF STATUS = 17 THEN
BEGIN
PRINT (NOSUCH,8,0); <<NO SUCH SUPPLIER IN SUP-MASTER>>
GO TO UNLOCKIT;
END
ELSE GO TO DBFAIL;

IF FUNCTION = "D"

THEN DBDELETE (SBASE,DSET,MODE1,STATUS) 7
8 ELSE DBUPDATE (SBASE,DSET ,MODE1,STATUS,FULLREC,SUPBUF) ;
<<DELETE OR CHANGE (UPDATE),DEPENDING ON REQUEST>>

IF STATUS <> 0 THEN
IF STATUS = 44 THEN PRINT(CHAINS,-43,0) <<CAN'T DELETE>>
ELSE GO TO DBFAIL;

GO TO UNLOCKIT;:

NEWSUP: DBPUT (SBASE ,DSET ,MODE 1 ,STATUS ,FULLREC ,SUPBUF) ; 9
IF STATUS <> 0 THEN
IF STATUS = 16 THEN PRINT(SETFULL,18,0) <<NO ROOM >>
ELSE IF STATUS = 43 THEN PRINT(DUPE,17,0) <<DUPLICATE>>
ELSE GO TO DBFAIL;

UNLOCKIT: DBUNLOCK(SBASE,DSET,MODE1,STATUS); 10
IF STATUS = 0 THEN GO TO ASK;

DBFAIL:<<COME HERE ON UNEXPECTED OR IRRECOVERABLE ERROR>>
<<RETURNED BY ANY IMAGE PROCEDURE. THIS IS >>
<<APPARENTLY A PROGRAM BUG, SO PRINT ALL AVAIL- >>
<<ABLE INFORMATION ON THE ERROR BEFORE QUITTING.>>

DBEXPLAIN(STATUS); ©11

QUIT(1); <<IRRECOVERABLE: GET OUT.>>
ouT: DBCLOSE (SBASE ,DSET,MODE1,STATUS) ; 12

IF STATUS <> O THEN GO TO DBFAIL;

END.

Figure 6-3. Supplier Modification Program (Continued)

DEC 85
6-51

SPL

10

11

12

DEC
6-52

UPDATE ENTRY. The entry located with DBGET is updated with the data in SUPBUF. The user
is prompted for this data prior to the call to DBGET. FULLREC contains @; which indicates the
entire entry is to be updated. In this case, the search item value must equal the value that is already
in the entry. Since the BUYER password and access mode 1 allow updates to this data set, it is not
necessary to check for condition word 42.

ADD ENTRY. This call adds an entry to the SUP-MASTER data set using the data in SUPBUF.
The list parameter in FULLREC is @; specifying that values are provided for all data items in the
entry. If the condition word is 16, the data set is full and, if it is 43, there is already an entry with
the specified search item value. Since the BUYER password and access mode 1 allow adding entries
to the data set, it is not necessary to check for condition word -23.

UNLOCK DATA SET. This call unlocks the data set. The DSET parameter is ignored. If the call
is successful, the condition code is CCE and the program branches to ASK.

PRINT ERROR. A call to DBEXPLAIN prints a message interpreting the STATUS array
contents.

CLOSE DATA BASE. This call closes the ORDERS data base. The DSET parameter is ignored in
mode 1.

85

SPL

:RUN SUPPLMOD

FUNCTION? ADD
SUPPLIER? ACME
STREET? 2587 BIRD ST.
CITY? INDIANOLA
STATE? IA

ZIP? 50125

FUNCTION? ADD

SUPPLIER? ACME

STREET? 140 CORYDON AVE.

CITY? BROOKLYN

STATE? NY

ZIP? 11208

CAN’T ADD: DUPLICATE SUPPLIER NAME

FUNCTION? CHA

SUPPLIER? ACME

STREET? 140 CORYDON AVE.
CITY? BROOKLYN

STATE? NY

ZIP? 11208

FUNCTION? DELETE
SUPPLIER? ACME

FUNCTION? DEL
SUPPLIER? ACME
NO SUCH SUPPLIER
FUNCTION? /E

END OF PROGRAM

Figure 6-4. Sample SUPPLMOD Execution

DEC 85
6-53

SPL

BEGIN

CCHRRBERFRRRRERHHRARRRRHER IR RN RRRRRRRRRBRRRRRRRRERRERERRERRHRRRRHRHD D
<<THIS PROGRAM OPENS THE "ORDERS' DATA BASE IN MODE & >>
<<AND ALLOWS THE USER INTERACTIVELY TO REQUEST DISPLAYS OF SALES>>
<<TRANSACTIONS FROM THE SALES DATA SET. FOR EACH TRANSACTION, »>>
<<THE ITEMS FROM WITHIN THE CORRESPONDING ENTRY WHICH ARE >>
<<DISPLAYED ARE ACCOUNT, QUANTITY, STOCK#, TOTAL (TOTAL PRICE >>
<<IN PENNIES), PURCH-DATE, AND DELIV-DATE. ALSO, THE DESCRIP- >>
<<TION OF THE PRODUCT IS OBTAINED FROM THE PRODUCT DATA SET AND >>
<<PRINTED NEXT TO THE STOCK#. AFTER THE SALES LINES, A GRAND >>

<<TOTAL PRICE LINE IS PRINTED. >>
<<THERE ARE FIVE WAYS OF SELECTING SALES ENTRIES TO BE PRINTED. >>
<KTHEY ARE: 1) ALL SALES TRANSACTIONS IN THE DATA SET >>
<< 2) ALL SALES TO A PARTICULAR ACCOUNT (CUSTOMER) >>
<< 3) ALL SALES OF A PARTICULAR STOCK# (PRODUCT) >>
<< 4) ALL SALES WITH A PARTICULAR PURCHASE DATE >>
<< 5) ALL SALES WITH A PARTICULAR DELIVERY DATE >>
<<FOR (1) ABOVE, THE DATA SET IS READ SERIALLY, WITH EACH ENTRY >>
<<ENCOUNTERED BEING PRINTED. THE OTHER SELECTION METHODS >>

<<REQUIRE A SPECIFIC VALUE FOR A CERTAIN ITEM WITHIN THE ENTRY. >>
<<SINCE ALL OF THE ITEMS IN QUESTION ARE SEARCH ITEMS WITHIN THE>>
<<SALES DATA SET, THE PROGRAM MERELY CALLS DBFIND FOR THE >>
<<PARTICULAR ITEM AND VALUE, ‘AND THEN DOES CHAINED DBGETS TO >>
<<RETRIEVE THE DESIRED ENTRIES. BEFORE DOING SO, OF COURSE, THE>>

<<PROGRAM PROMPTS THE USER FOR THE ITEM NAME AND ITS VALUE. >>
<<THE PROGRAM CAN BE RUN FROM MULTIPLE TERMINALS (SESSIONS) >>
<<SIMULTANEOUSLY, AND CAN ACCESS THE DATA BASE CONCURRENTLY WITH>>
<<OTHER PROGRAMS WHICH OPEN IT IN MODE 2, 4, 6, OR 8. >>

(A RHRRRRRRARRERRRERERXRBRABARRRPRRRRAREERRRRERREBRRARRRFRERRRNRHRD D

INTEGER MODE,

MODE1 =1, <<MODES >>
MODE2 =2, << FOR >>
MODE3 :=3, << USE >>
MODE4 :=4, << IN >>
MODES :=5, << TurboIMAGE >>
MODE7 =7, <« CALLS »
MODE201 :=201,
SALES, <<DATA SET NUMBER - SALES>>
PRODUCT, <<DATA SET NUMBER - PRODUCT>>
ARGLGTH,
I; <<HANDY-DANDY VARIABLE>>
LOGICAL SAMELIST := "#;"; <<SPECIAL "SAME AS LAST TIME" LIST>>

Figure 6-5. Purchase Transaction Display Program

DEC 85
6-54

SPL

DOUBLE GRANDTOTAL;

ARRAY SBASE(0:4) := " ORDERS;"; <<DATA BASE>>

ARRAY PASSWORD(0:2) := "CLERK;"; <<QUALIFIER - PASSWORD>>
ARRAY SALENAME(0:2) := "SALES;"; <<QUALIFIER-DATA SET NAME>>
ARRAY PRODNAME(0:3) := "PRODUCT;"; <KQUALIFIER-DATA SET NAME>>
ARRAY STATUS(0:9); <KSTATUS AREA>>

ARRAY SALESLIST(0:25) :

"ACCOUNT ,QUANTITY,STOCK#,TOTAL,",
"PURCH-DATE ,DELIV-DATE;";

ARRAY PRODLIST(0:5) := "DESCRIPTION;";
ARRAY ITEM(0:8); <<ITEM NAME FOR DBFIND>>
ARRAY SALESBUF(0:14); <<BUFFER - SALES DATA SET>>

DOUBLE ARRAY ACCOUNT(#)=SALESBUF;

DOUBLE ARRAY TOTALCOST (#)=SALESBUF(7);

BYTE ARRAY BSALESBUF (#)=SALESBUF;

ARRAY ARG(0:4); <<ARGUMENT FOR DBFIND>>
DOUBLE ARRAY DARG(*)=ARG;

BYTE ARRAY BARG(#*)=ARG;

ARRAY INBUF(0:7); <<INPUT BUFFER;FOR USER TO>>
BYTE ARRAY SELECT(#)=INBUF; <<ENTER SALES SELECT TYPE>>
ARRAY OUTBUF(0:39); <<OUTPUT BUFFER; FOR>>

BYTE ARRAY BOUTBUF (#)=0UTBUF ; <<MESSAGES TO USER>>

BYTE ARRAY WORKBUF(0:10);
ARRAY SPROMPT(0:7) "ALL SALES FOR? ";
ARRAY WPROMPT(0:5) "WHICH ONE? ";

INTRINSIC DBOPEN,DBINFO,DBCLOSE,DBFIND,DBGET,DBEXPLAIN,DBERROR,
READ,PRINT,ASCII,QUIT,DASCII,DBINARY,TERMINATE;

<<BEGINNING OF MAIN PROGRAM>>

MODE := 6;

DBOPEN (SBASE , PASSWORD ,MODE ,STATUS) ; 13
<<OPEN ORDERS DATA BASE IN MODE 6>>

IF STATUS <> O THEN

BEGIN

DBERROR(STATUS ,OUTBUF ,I); <<GET OPEN ERROR MESS.>>
IF. STATUS <> 0 THEN GO TO DBFAIL; <<DBERROR FAILED>>
PRINT(OUTBUF,-1,0);

TERMINATE ;
END;

Figure 6-5. Purchase Transaction Display Program (Continued)

DEC 85
6-55

SPL

DBINFO(SBASE,SALENAME ,MODE201,STATUS ,SALES) ; 14
<<FOR EFFICIENCY, GET NUMBER OF SALES DATA SET>>
IF STATUS <> 0 THEN GO TO DBFAIL;
SALES :=\SALES\; <<KMAKE SURE DSET# IS POSITIVE>>
DARG :=0D;

15 DBGET (SBASE,SALES,MODE4,STATUS ,SALESLIST,OUTBUf ,DARG) ;
<KSET UP LIST FOR FUTURE DBGET CALLS ON SALES DATA>>
<<SET. THIS DIRECTED READ OF ENTRY #0 SHOULD FAIL,>>
<<BUT ONLY AFTER INTERNALLY RECORDING SPECIFIED >>
<<LIST. NO DATA WILL BE TRANSFERRED. >

IF STATUS <> 12 <<DIRECTED EOF>> THEN GO TO DBFAIL;
DBINFO(SBASE , PRODNAME ,MODE201,STATUS ,PRODUCT); 16
IF STATUS <> 0 THEN GO TO DBFAIL;
PRODUCT :=\PRODUCT\;
DBGET (SBASE , PRODUCT ,MODE4,STATUS ,, PRODLIST ,OUTBUF ,DARG); 17
IF STATUS <> 12 THEN GO TO DBFAIL;
<<ALSO SET UP FOR DBGETS FROM PRODUCT DATA SET>>

NEXT: GRANDTOTAL :=0D;

PRINT (SPROMPT,-15,%320) ; <<ASK FOR SALES SELECT TYPE>>
I := READ(INBUF,-15); <<READ IT>>
IF > THEN GO TO OUT; <<EOF - MIGHT AS WELL STOP>>
IF I = 0 THEN GO TO NEXT; <<NO INPUT OR I/O ERROR>>
IF SELECT = “/E" THEN GO TO OUT; <<SPECIAL STOP INPUT>>
IF SELECT = "/C" THEN GO TO ALL; <<SPECIAL ALL SALES RQST>>
IF SELECT = "A" THEN

BEGIN

MOVE ITEM := "ACCOUNT;";

ARGLGTH = -10;

END
ELSE IF SELECT = "S" THEN

BEGIN

MOVE ITEM := "STOCK#;";

ARGLGTH = -8;

END
ELSE IF SELECT = "P" THEN

BEGIN

MOVE ITEM := "PURCH-DATE;";

ARGLGTH = -6

END

Figure 6-5. Purchase Transaction Display Program (Continued)

DEC 85
6-56

SPL

ELSE IF SELECT = "D" THEN

BEGIN
MOVE ITEM := "DELIV-DATE;";
ARGLGTH = -6
END
ELSE GO TO NEXT; <<UNRECOGNIZED SELECT TYPE>>

<<AT THIS POINT, THE SELECT TYPE (SEARCH ITEM) HAS BEEN >>
<KSPECIFIED. THAT IS, THE USER HAS REQUESTED TO SEE ALL »>>»
<<(SALES TRANSACTIONS FOR AN ACCOUNT OR A STOCK NUMBER OR>>
<<A PURCHASE DATE OR A DELIVERY DATE. NOW, ASK FOR THE >>
<<KVALUE OF THE SEARCH ITEM. >>

SIVALUE: ARG := " ";

18

ALL:

b
MOVE ARG(1) := ARG, (4);
PRINT (WPROMPT,-11,%320); <<REQUEST AND READ>>
I := READ(ARG,ARGLGTH); <<SEARCH ITEM VALUE>>

IF > THEN GO TO OUT; <<EOF - MIGHT AS WELL STOP>>

IF < THEN GO TO SIVALUE}; <<I/0 ERROR - ASK AGAIN>>
IF SELECT = "A" THEN

BEGIN <<ACCOUNT NUMBER:TRANSLATE>>

DARG := DBINARY(BARG,I); <<TO INTERNAL BINARY FORM>>
IF <> THEN GO TO SIVALUE;
END;

<<SEARCH ITEM NAME IS NOW IN ITEM AND SEARCH>>
<<ITEM VALUE IS IN ARG. >>
DBFIND(SBASE,SALES ,MODE1,STATUS ,ITEM,ARG);
<<GET TO HEAD OF CHAIN OF INTEREST>>
IF STATUS <> 0O THEN

IF STATUS = 17 THEN GO TO WRAPUP <<NO CHAIN FOR THIS VALUE>>

ELSE GO TO DBFAIL;

MODE := MODES5; <<PREPARE FOR CHAINED DBGETS>>
GO TO GETNEXT; <<GO RETRIEVE AND REPORT>>
<<COME HERE TO REPORT ALL SALES TRANSACTIONS, RATHER>>
<<THAN A SELECTED SUBSET. >>
MODE := MODE2; <<PREPARE FOR SERIAL DBGETS>>
DBCLOSE (SBASE ,SALES ,MODE3,STATUS) ; 19

<<REWIND SALES DATA SET>>
IF STATUS <> 0 THEN GO TO DBFAIL;

Figure 6-5. Purchase Transaction Display Program (Continued)

DEC 85
6-57

SPL

20

DA
AS

21

IF
I

PR

GO

WRAPUP:

DBFAIL:

ouT:

GETNEXT:

DBGET (SBASE ,SALES ,MODE ,STATUS ,SAMELIST ,SALESBUF ,ARG) ;
<<GET NEXT SALES TRANSACTION. THIS IS EITHER A >>
<<SERIAL (MODE2) OR CHAINED (MODES) DBGET. IN »>>
<<EITHER CASE, ARG IS IGNORED. >>

IF STATUS <> 0 THEN

IF STATUS = 11 OR STATUS = 15 THEN GO TO WRAPUP <<NO MORE>>
ELSE GO TO DBFAIL;

<<WE HAVE A SALES TRANSACTION; FORMAT IT FOR PRINTING>>
OUTBUF := " "3 <<BLANK OUTPUT >>
MOVE OUTBUF(1) := OUTBUF,(35); <<BUFFER >>

SCII (ACCOUNT, 10,BOUTBUF); <<ACCOUNT NUMBER>>
CII(SALESBUF(2),-10,BOUTBUF(13)); <<QUANTITY >>

MOVE OUTBUF(8) := SALESBUF(3),(4); <<STOCK# >>

BGET (SBASE , PRODUCT ,MODE7 ,STATUS ,SAMELIST ,OUTBUF (13),

SALESBUF(3)); <<GET DESCRIPTION FROM PRODUCT>>
STATUS <> O THEN GO TO DBFAIL; <<DATA SET >>
= DASCII(TOTALCOST,10,WORKBUF); <<TOTAL COST >>

MOVE BOUTBUF(55-1) := WORKBUF,(I); <<RIGHT JUSTIFY >>
MOVE BOUTBUF (57)
MOVE BOUTBUF (65)

BSALESBUF (18),(6); <<PURCHASE DATE>>
BSALESBUF (24),(6); <<DELIVERY DATE>>
INT(OUTBUF,-71,0); <<OUTPUT SALES TRANSACTION>>

GRANDTOTAL := GRANDTOTAL + TOTALCOST; <<ACCUMULATE TOTAL>>

TO GETNEXT; <<GO GET NEXT SALES>>

OUTBUF := " "

MOVE OUTBUF (1) OUTBUF, (15)

MOVE OUTBUF(16) := " GRAND TOTAL: "

I:= DASCII(GRANDTOTAL 10, WORKBUF) ; <<GRAND TOTAL >>
MOVE BOUTBUF(55-1) := WORKBUF,(I); <<RIGHT JUSTIFY>>
PRINT(OUTBUF,-SS,%EOE); <<OUTPUT GRAND TOTAL & SKIP LINE>>
GO TO NEXT; <<GO ASK FOR NEXT REQUEST>>

<<COME HERE ON UNEXPECTED OR IRRECOVERABLE ERROR>>
<<RETURNED BY ANY TurboIMAGE PROCEDURE. THERE IS >>
<<KNOTHING TO DO BUT TERMINATE, SO PRINT ALL >>
<<INFORMATION ABOUT THE ERROR ON $STDLIST. >>
DBEXPLAIN (STATUS) ;

QUIT(1); <<IRRECOVERABLE: GET OUT>>

DBCLOSE (SBASE ,SALES ,MODE1,STATUS) ;

IF STATUS <> O THEN GO TO DBFAIL;

END.

DEC 85
6-58

Figure 6-5. Purchase Transaction Display Program (Continued)

13

14

15

16

17

18

19

20

21

SPL

OPEN DATA BASE. The ORDERS data base is opened in mode 6 with password CLERK.

REQUEST DATA SET INFORMATION. The data set number for SALES is requested. Note that
SALENAME is an array containing "SALES;" and the data set number is stored in the SALES
variable.

READ ENTRY (DIRECTLY). This call requests a directed read of the entry in record 0.
Although this read fails and returns condition word 12, the internal list of items is set up to include
ACCOUNT, QUANTITY, STOCK#, and TOTAL. No data is transferred. Subsequent calls to read
an entry from the SALES data set can use the special list construct *; indicating the list is the same
as the one used in this call. This technique saves processing time since the list is set up only once
during program execution.

REQUEST DATA SET INFORMATION. The data set number for PRODUCT is requested.

READ ENTRY (DIRECTLY). This call is the same as {15) except the data set name is PRODUCT
and the list includes only the DESCRIPTION item.

READ ENTRY (CHAINED). A call to DBFIND locates the pointers for a chain in the SALES data
set. In the preceding code, the user is prompted for the search item (ACCOUNT, STOCK#,
PURCH-DATE, or DELIV-DATE) and its value. ITEM contains the search item name and ARG
contains the search item value. If the condition word is 17, there is no chain with the requested
value. The read is performed with the call described below in (20).

REWIND DATA SET. A call to DBCLOSE with mode 3 rewinds the SALES data set to prepare
for serial reads of all entries in the set. If the rewind fails, the condition code is CCL or CCG.

READ ENTRY (SERIAL OR CHAINED). This call is coded so that it performs either a forward
chained (mode 5) or forward serial (mode 2) read of the SALES data set. The data is read into
SALESBUF and the list is *; indicating it is the same list that was set up in calls (15) and (17). ARG
is ignored in both modes 2 and 5. If the end of the data set is reached while doing a serial read, the
condition word is 11. If the end of chain is reached while doing a chained read, the condition word
is 15. Since access mode 6 and password CLERK allow the user to read all items in the SALES and
PRODUCT data sets, it is not necessary to check for condition word -21.

READ ENTRY (CALCULATED). A calculated read (mode 7) is performed using the search item
value for STOCK# that is in SALESBUF(3) and (4). The data set is PRODUCT and the list
parameter is ¥, The description is read into OUTBUF(1 3) through OUTBUF(22).

DEC 85
6-359

SPL

:RUN SHOWSALE

ALL SALES FOR? /C

24536173 4 5405T14F BAR STOOL 10300 840318

24536173 1 3586T14Y BIRDHOUSE 630 840319

24536173 2 4397D13P DRAIN OPENER 189 840320

24536173 1 7391Z22F PORTABLE WB KIT 24273 840321

54283545 27 6650D22S BASEBALL BAT 12567 840321

10293847 1 3739A14F CONVERTIBLE KIT 41722 840319

54283545 1 4397D13P DRAIN COVER 90 840322

82463761 1 3586T14Y BIRDHOUSE 630 840318

82463761 1 2457A11C NEHRU JACKET 271 840318

10293847 1 4397D13P DRAIN OPENER S0 840322

90542176 1 66500225 BASEBALL BAT 517 840320

44556677 2 5404T14F BAR STOOL 5150 840319
GRAND TOTAL: 96375

ALL SALES FOR? ACCOUNT

WHICH ONE? 10293847

10293847 1 373%A14F CONVERTIBLE KIT 41722 840319

10293847 1 4397D13P DRAIN OPENER 90 840322
GRAND TOTAL: 41812

ALL SALES FOR? STOCK#

WHICH ONE? 4397D13P

24536173 2 4397D13P DRAIN OPENER 138 840321

54283545 1 4397D13P DRAIN OPENER 90 840322

10293847 1 4397D13P DRAIN OPENER 90 840322
GRAND TOTAL: 369

ALL SALES FOR? PUR

WHICH ONE? 740320

90542176 1 6650D22S BASEBALL BAT 517 840320
GRAND TOTAL: 517

ALL SALES FOR? D

WHICH ONE? 740320

10293847 1 3739A14F CONVERTIBLE KIT 41722 840319

24536173 4 5404T14F BAR STOOL 10300 840318

44556677 2 5405T14F BAR STOOL 5150 840318
GRAND TOTAL: 57172

ALL SALES FOR? ST

WHICH ONE? 9999F99F
GRAND TOTAL: 0

ALL SALES FOR? /E

END OF PROGRAM

840320
CARRY
CARRY
840322
840322
840320
CARRY
CARRY
840322
CARRY
CARRY
840320

840320
CARRY

CARRY
CARRY
CARRY

CARRY

840320
840320
840320

DEC
6-60

85

Figure 6-6. Sample SHOWSALE Execution

BASIC

To simplify your access to a TurboIMAGE data base through BASIC language programs, it is
recommended that you use the BIMAGE interface procedures provided with the TurboIMAGE software.
These routines convert all parameter byte addresses to word addresses as required by TurboIMAGE. In
addition to calling the necessary TurboIMAGE procedure, the BIMAGE procedures perform the following
functions for your convenience:

¢ Automatically pack, into a buffer, a list of expressions before calling the DBPUT or DBUPDATE
procedures. '

e Automatically unpack, from a buffer to a list of BASIC variables, the values of items returned by
DBGET or the values returned by DBINFO.

¢ Automatically update the logical length of string variables to which data is transferred from the data
base to reflect the length of the string actually transferred.

Table 6-2 lists the BIMAGE interface procedures with the TurboIMAGE procedures to which they
correspond. The parameters are described in Table 6-3. The corresponding TurboIMAGE procedure
parameter is listed next to the BIMAGE parameter.

DEC 85
6-61

BASIC

Table 6-2. BIMAGE Procedure Calls

BIMAGE

CORRESPONDS TO:

XDBOPEN (B$,W$,mode,status(#))

XDBPUT (B$,{3$},mode,status(*),{é$},writelist)
XDBFIND (B$,{Z$},mode,status(*),{§$},{2$})

XDBGET (B$,{3$},mode,status(*),{é$},readlist,{2$})
XDBUPDATE (B$,{Z$},mode,status(*),{é$},writelist)
XDBDELETE (B$,{§$},mode,status(*))

XDBLOCK (B$,{descriplist},mode,status(*))
XDBUNLOCK (B$,{Z$},mode,status(*))

XDBCLOSE (B$,{3$},mode,status(*))

XDBBEGIN (B$,7$,mode,status(*))

XDBMEMO (B$,7$,mode,status(#))

XDBEND (B$,T$,mode,status(*))

XDBINFO (B$,{§$},mode,status(*),readlist)
XDBEXPLAIN (status(#))

XDBERROR (status(*) ,M$[,length])

DBOPEN

DBPUT

DBFIND

DBGET

DBUPDATE

DBDELETE

DBLOCK

DBUNLOCK

DBCLOSE

DBBEGIN

DBMEMO

DBEND

DBINFO

DBEXPLAIN

DBERROR

DEC
6-62

85

BASIC

Table 6-2. BIMAGE Procedure Calls (Continued)

BIMAGE CORRESPONDS TO:
XDBEND (B$,7$,mode,status(+)) DBEND
XDBCONTROL (B$,{3$},mode,status(*)) DBCONTROL
DEC 85

6-63

BASIC

Table 6-3. BIMAGE Procedure Parameters

BIMAGE** IMAGE

A$ argument May be any string expression.

a argument May be a numeric expression or numeric array of any
data-type.

8$ base Must be a simple string variable. Value should not be altered
between calls to XDBOPEN and XDBCLOSE.

D$ dset May be any string expression.

d dset May be a type-INTEGER expression. *

descriplist qualifier Has same form as writelist. You should ensure that once
BASIC has concatenated the component variables, the result is
a valid lock descriptor list (or set name) as defined for
DBLOCK. (Parameter ignored for DBLOCK modes 1 and 2).

l$ item May be any string expression.

i item May be a type-INTEGER expression. *

L$ list May be any string expression or a string array. If it is a string
array, all of the string elements are concatenated to form one
string whose length may not exceed 255 characters. The
concatenated string must form a syntactically correct list
parameter. Commas must be placed appropriately.

l list May be an array of type INTEGER.

length length Must be a simple or subscripted type-INTEGER variable (if
not, parameter is ignored.) Parameter is optional but if
present, total length of TurboIMAGE message is returned.
Value may exceed length of message by BIMAGE procedure if
MS is too small and message is truncated. Not needed when
M3 is a string variable.

M$ buffer Should be a simple or subscripted string variable without
substring designators. If message is larger than M$, message is
truncated on the right. Logical length of M3 is set to length
of message returned by BIMAGE and may not be equal to
length if message is truncated.

mode mode Must be type-INTEGER expression. *

Q¢ qualifier May be any string expression.

q qualifier May be a type-INTEGER expression.

DEC 85

6-64

BASIC

Table 6-3. BIMAGE Procedure Parameters (Continued)

BIMAGE** IMAGE

readlist buffer Has form similar to ifem list of BASIC READ or MAT READ
statement. May consist of one or more string or numeric simple or
subscripted variables or arrays separated by commas. String
variables with substring designators and the "FOR -loop" construct
are not permitted.

status(*) status Must be a type-INTEGER array containing at least ten active
elements.

7$ text Must be a simple string variable.

w$ password May be any string expression.

writelist buffer Has form similar to item list of BASIC PRINT or MAT PRINT
statement. May consist of one or more string or numeric
expresstons or arrays separated by commas. "FOR-loop" not
permitted. Substring designators are permitted.

* See discussion of type-INTEGER expressions as parameters.

*%

Note that if you specify an array as a parameter you must obey BASIC syntax rules and append

parenthesis and asterisks, for example, L$(* *) or A(¥).

Refer to the TurboIMAGE procedure descriptions in Section 4 for details regarding the purpose of a
procedure and its parameters as well as available options.

BIMAGE provides some extensions to the TurboIMAGE procedure calling sequences to simplify your

access to the data base:

¢ BIMAGE allows you to enter a list of expressions in place of the buffer parameter. The list is
automatically packed into or unpacked from a temporary buffer constructed by the BIMAGE
procedures. This facility is also available to construct lock descriptor lists.

e String or numeric expressions are accepted for many parameters. For example, the dset parameter may
be a string expression when specifying the data set by name or a numeric expression when specifying
the data set by number.

DEC 85
6-635

BASIC

String Variables

The physical length of a string variable determines the number of characters (bytes) read by the XDBGET
procedure and the logical length of a string variable determines the number of characters written by the
XDBPUT and XDBUPDATE procedures. Thus, you should ensure that the physical length of a string
variable specified in a DIM or COM statement exactly matches the size of the item to be read by a call to
XDBGET.

On the other hand, the same string variable can be used to write items of varying sizes. Substring
designators should be used to ensure that the actual string passed to XDBPUT or XDBUPDATE fills the
item to be written. For example, if the item is 8 characters long, and substring S$(3) is 2 characters long,
S$(3,10) or S$(3;8) fills the item with the S$(3) substring and appends 6 blanks.

If the string variable is an array, the length of each string element or of the concatenated string elements
should correspond to the length of the item or sub-item to be written. You can ensure this by specifying
substring designators when assigning values to elements of the string array in your BASIC program.

Type-Integer Expressions as Parameters

Since BASIC treats integral numeric constants as type~-REAL, expressions involving constants cannot be
passed directly to a type-INTEGER parameter of a BIMAGE procedure. You can define a function such
as the following to ensure that a type-INTEGER expression is passed:

10 DEF INTEGER FNI(X)=X
When a procedure call is made, the function is used in this way:
50 CALL XDBLOCK(B$,D$,FNI(expression),S(#))

The function FNI converts expression to type~-INTEGER.

Doubleword Integer Parameters

In order to specify a doubleword integer in BASIC, define a two-word array in which the first word
contains the high-order digits of values greater than 32767, or zero. The second word must contain
low-order digits of values greater than or equal to 32767, or the entire value if it is less than or equal to
32767.

Readlist, Writelist, Descriplist Parameters

When specifying string expressions in a readlist, writelist, or descriplist, each string expression should
correspond to a data item or sub-item, or groups of items or sub-items in the case of string arrays. You
should not specify several string expressions as the source or destination of one item or sub-item. The
transfer of strings to or from the data base always begins on a word boundary of the buffer. Therefore,
writing from or reading into two odd-length strings is not the same as writing or reading into one
even-length string.

DEC 85
6-66

BASIC

The Status Parameter

If the status parameter is a type-INTEGER variable, a condition word is returned in the first word and
the second word is set to zero if sfatus is at least a two-element array. The condition word will have a
value equal to those listed for the corresponding TurboIMAGE procedure and, in additon, may contain one
of the conditions listed in Table 6-4.

If the status parameter is not type-INTEGER, the BIMAGE procedures cannot return a condition word

for the common error: failure to declare the status variable type-INTEGER. This error will usually
result in the BASIC message UNDEFINED VALUE the first time the status array contents are examined.

Table 6-4. Additional BIMAGE Condition Word Values

EXCEPTIONAL CONDITIONS PROCEDURES
51 Insufficient stack for temporary buffer. XDBGET , XDBPUT,
XDBINFO,XDUPDATE

52 Invalid number of parameters.

All procedures except
53 Invalid parameter. XDBERROR and XDBEXPLAIN

54 status array has less than 10 elements.

DEC 85
6-67

BASIC
Open Data Base

10 DIM B$[10],P$[8]

20 INTEGER S[10],M

30 B$=" ORDERS;"

40 INPUT "ENTER PASSWORD: ",P$[1:8]

50 INPUT "ENTER ACCESS MODE (1-8): ".M
60 CALL XDBOPEN(B$,P$,M,S[*])

70 IF S[1]<>0 THEN 9300

(code to use data base)

9300 PRINT "DBOPEN FAILURE"
9310 CALL XDBEXPLAIN(S[*#])
9320 STOP

In this example, the ORDERS data base is opened in the access mode entered by the user and with a user
class number corresponding to the password entered by the user and stored in the P$ string. If the
password is less than 8 characters the P$ string is padded with blanks. The first word of the status array,
S, is tested to determine whether the procedure executed successfully. If not, an error message is printed.

DEC 85
6-68

BASIC
Add Entry

10 DIM B$[10],P$[8],A$[8],C$[20]

20 INTEGER S[10],M,M1

30 B$=" ORDERS;"

40 INPUT "ENTER PASSWORD: ",P$[1;8]

50 INPUT "ENTER ACCESS MODE (3,4): ",M

60 GOTO M OF 70,70,90,90

70 PRINT ''CANNOT ADD ENTRIES IN THIS ACCESS MODE"
80 GOTO 50

90 CALL XDBOPEN(B$,P$,M,S[*])

100 IF S[1]<>0 THEN 9300

110 INPUT "ENTER STOCK# OR / TO TERMINATE: ",A$[1;8]
120 IF A$[1,1]="/" THEN GOTO 9900

130 INPUT "ENTER DESCRIPTION: ",C$[1;20]

140 M1=1 '

150 CALL XDBPUT(B$,' ' PRODUCT;" ,M1,S[*],"@;" ,A$[1;8],C$[1;20])
160 IF S[1]¢<>43 THEN 190

170 PRINT "DUPLICATE STOCK NUMBER"

180 GOTO 110

190 IF S[1]<>16 THEN 220
200 PRINT "DATA SET FULL"
210 GOTO 8900
220 IF S[1]<>0 THEN 250
230 PRINT "NEW PRODUCT HAS BEEN ENTERED"
240 GOTO 110
250 IF S[1]=-23 THEN 290
260 PRINT "DBPUT FAILURE"
270 CALL XDBEXPLAIN(S[#])
280 GOTO 9900
290 PRINT "YOUR PASSWORD DOES NOT ALLOW YOU TO ADD ENTRIES"
300 GOTO 9900

9300 (code same as example above)
9900 (close data base)

This sample code adds an entry to the PRODUCT manual master data set. Note that the BS string used to
open the data base is the base parameter in this call. It should not be changed after the call to XDBOPEN
since this call saves a data base identifier in the first word of BS$. This list of items to be added is
specified as @; which indicates that values are specified for all items in the entry. The values for the
STOCK# and DESCRIPTION data items are stored in A$ and C$. Sample values are "7474Z74Z" and
"ORANGE CRATEAAAAAAAA".

In the example, the condition word of the status array is tested for a value of 43, indicating that an entry
with the specified STOCK# search item value already exists in the data set, or 16, indicating that the data
set is full, or -23, indicating that the user’s password does not grant write access to the data set.

If an entry is to be added to a detail set, the program may first check to see if the required entries exist in
the manual masters linked to the detail set. Values must be provided for all search items and the sort
item, if one is defined, of a detail data set entry.

DEC 85
6-69

BASIC

Read Entry (Serially)

10
20
30
40
50
60
70
80
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370

900

9300

9900

To read the next entry of the SUP-MASTER data set, a mode of 2 is used. This directs the XDBGET (and
DBGET) procedure to perform a forward serial read. In the example, the list in the L1$ string specifies
two data items to be read. After returning to the calling program, the S1§ string contains the STOCK#
data item value and S2$ contains the DESCRIPTION data item value.
ignored if mode equals 2, therefore, a null string may be used for this parameter.

If an end-of-file is encountered, the condition word is set to 11. In this case, if the user wants to
continue, the routine rewinds the data set and tries the read again. A rewind routine is shown later in the
examples of the XDBCLOSE procedure. The rewind reinitializes the current record pointer so that the
next request for a forward serial read will read the first entry in the data set.

If the user’s password does not allow read access to the data, a condition word of -21 is returned.

DEC 85
6-70

DIM B$[10],P$[8],D1$[14],L1$[20],S1$[16],528[2]

INTEGER S[10],M,M1,M2

B$=" ORDERS;"

M1=1

INPUT "ENTER PASSWORD: ",P$[1:8]
INPUT "ENTER ACCESS MODE (1-8): ",M
CALL XDBOPEN(B$,P$,M,S[*])

IF S[1]<>0 THEN 8300

M2=2

D1$="SUP-MASTER;"

L1$="SUPPLIER,STATE;" <
CALL XDBGET(B$,D1$,M2,S[*],L1$,51$,52%,)
IF S[1]<>11 THEN 270

GOSUB 900

GOTO 230

IF S[1]<>0 THEN 320

PRINT "STOCK#= ",S1$,"DESCRIPTION= ",S2$
INPUT "CONTINUE (Y OR N)? ",X$

IF X$[1,1]="Y" THEN GOTO 230

GOTO 9900

IF S[1]=-21 THEN 360

PRINT "DBGET FAILURE"

CALL XDBEXPLAIN(S[*])

GOTO 9900

PRINT "YOU DO NOT HAVE ACCESS TO THIS DATA"

GOTO 9900

(routine to rewind data set)
(same as XDBOPEN example)

(close data base)

readlist

The argument parameter is

BASIC

Read Entry (Calculated)

10
20
30
40
S0
60
70
a0
90
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440

9300

9900

DIM B$[10],P$[8],c$[20],50$[8]

INTEGER S[10],M1,M

B$=" ORDERS;"

M1=1

DEF INTEGER FNI(X)=X

INPUT "ENTER PASSWORD: ",P$[1;8]

INPUT "ENTER ACCESS MODE (1-8): ",M

CALL XDBOPEN(B$,P$,M,S[*])

IF S[1]<>0 THEN 9300

INPUT "ENTER STOCK# OR / TO TERMINATE: ",S0$[1;8]
IF so$[1,1]="/" THEN GOTO 9900

CALL XDBGET(B$,"PRODUCT ",FNI(7),S[#],"DESCRIPTION;",C$,S0$)
IF S[1]<>17 THEN GOTO 360

PRINT "NO SUCH STOCK NUMBER"

GOTO 300

IF S[1]=0 THEN GOTO 410

IF S[1]=-21 THEN 430

PRINT "DBGET FAILURE"

CALL XDBEXPLAIN(S[*])

GOTO 9900

PRINT S0$,C$

GOTO 300

PRINT "YOUR PASSWORD DOES NOT GRANT ACCESS TO DATA REQUESTED"
GOTO 9900

(same code as XDBOPEN example)

(close data base)

To locate the PRODUCT data set entry which has a STOCK# search item value equal to the one entered
in SO$ by user, a calculated read is used. The mode is 7 and the item to be read is DESCRIPTION. After
XDBGET returns control to the calling program, the description is in C$. If no entry exists with the
specified STOCK# value, the condition word is 17. If the user does not have read access to the requested
data, a condition word of -21 is returned.

DEC 85
6-71

BASIC

Read Entry (Backward Chain)

10 DIM B$[10],P$[8],11$[6],A$[8],A1$[16]

20 INTEGER S[10],M1,M,M6

30 B$=" ORDERS;"

40 M1=1

50 M6=6

60 INPUT "ENTER PASSWORD: “,P$[1:8]

70 INPUT "ENTER ACCESS MODE (1-8): ",M

80 CALL XDBOPEN(B$,P$,M,S[*])

90 IF S[1]<>0 THEN 9300
300 INPUT "ENTER LASTSHIPDATE (YYMMDD) OR E TO EXIT: ",I1$[1;6]
310 IF I1$[1,1]="E" THEN GOTO 9900
320 CALL XDBFIND(B$,"INVENTORY ",M1,S[*],"LASTSHIPDATE;",I1$)
330 IF S[1]<>17 THEN GOTO 360
340 PRINT "NO SHIPMENTS ON THAT DATE"
350 GOTO 300
360 IF S[1]=0 THEN GOTO 410
370 IF S[1]=-21 OR S[1]=-52 THEN 480
380 PRINT "DBFIND FAILURE"
390 CALL XDBEXPLAIN(S[*])
400 GOTO 9900
410 CALL XDBGET(B$,"INVENTORY;",M6,S[*],"STOCK#,SUPPLIER;",A$,A1$)
420 IF S[1]<>14 THEN GOTO 450
430 PRINT "NO MORE SHIPMENTS ON THIS DATE"
440 GOTO 300
450 IF S[1]<>0 THEN GOTO 500
460 PRINT A$,A1$
470 GOTO 410 ,
480 PRINT "YOUR PASSWORD OR ACCESS MODE DOES NOT GRANT ACCESS TO DATA"
430 GOTO 9900

500 PRINT "DBGET FAILURE"
510 GOTO 390

9300 (same as XDBOPEN example)
9900 (close data base)

First the XDBFIND procedure is called to determine the location of the first and last entries in the chain.
The call parameters include the detail data set name, the name of the detail search item used to define a
path with the DATE-MASTER data set, and the search item value of both the master entry containing
the chain head and the detail entries making up the chain. The search item value is requested from the
user and stored in I1§, for example, the user may enter 841214.

If no entry in the DATE-MASTER has a search item value entered, the condition word will be 17. If the
user does not have read access to the data, a condition word of =21 or -52 is returned.

If the XDBFIND procedure executes successfully, a call to the XDBGET procedure with a mode parameter
of 6 reads the last entry in the chain. Subsequent calls to XDBGET with the same mode read backward
through the chain until the first entry has been read. If the condition word is 14, the beginning of the
chain has been reached and no more entries are available, or there are no entries in the chain.

If an entry is successfully read, the program uses the STOCK# value stored in A$ and the SUPPLIER

value stored in A1$ and then returns to statement 350 to read another entry in the chain.

DEC 85
6-72

BASIC

Update Entry

10
20
30
40
50
60
70
80
80
100
200
210
220
230
240
250
260
270
280
290

300
310
320
330
340
350
360
370
380
390
400
410
420
430
440

9300

9800

DIM B$[10],P$[8],D1$[12],12%$[16],A5$[26],59%$[16]
INTEGER S[10],M

B$=" ORDERS;"

DEF INTEGER FNI(X)=X

D1$="SUP-MASTER "

12$="STREET-ADDRESS;"

INPUT "ENTER PASSWORD: ",P$[1;8]

M=3

CALL XDBOPEN(B$,P$,M,S[*])

IF S[1]<>0 THEN 9300

INPUT "ENTER SUPPLIER OR / TO TERMINATE: ",S9$[1;16]
IF S9$[1,1]="/" THEN GOTO 290

CALL XDBGET(B$,D1$,FNI(7),S[*],12$,A5$,59$)

IF S[1]=-21 THEN GOTO 290

IF S[1]=0 THEN GOTO 310

IF S[1]=17 THEN GOTO 430

PRINT "DBGET FAILURE"

CALL XDBEXPLAIN(S[#*])

GOTO 9900

PRINT &

"YOUR PASSWORD OR ACCESS MODE DOES NOT ALLOW ACCESS TO THIS DATA"
GOTO 9900

PRINT "CURRENT ADDRESS: ",AS$

INPUT "ENTER NEW ADDRESS: ",AS5$[1;26]

CALL XDBUPDATE(B$,D1$,FNI(1),S[*],12$,A5$)

IF S[1]<>42 THEN GOTO 370

PRINT "YOU ARE NOT ALLOWED TO ALTER THIS ITEM"
GOTO 200

IF S[1]=0 THEN 410

PRINT "DBUPDATE FAILURE"

CALL XDBEXPLAIN(S[#])

GOTO 8900

PRINT "ADDRESS CHANGED"

GOTO 200

PRINT "NO SUCH SUPPLIER"

GOTO 200

(same as XDBOPEN example)

(close data base)

Before an entry can be updated it must be located. In this example, the entry is located with a calculated
XDBGET that reads the STREET-ADDRESS item in the SUP-MASTER data set. The entry is located by
using the SUPPLIER search item with a value supplied by the user. If the read is successful, the current
address is printed and the application program user is prompted for the new address which is moved into
AS5S$. The XDBUPDATE procedure is then called to alter the STREET-ADDRESS data item in the entry.

DEC 85
6-73

BASIC

If the current user class number does not allow this item to be altered or the access mode does not allow
updates to take place, the condition word 42 1s returned.

A null list can be used with DBGET to locate an entry to be updated.

Delete Entry (with Locking and Unlocking)

10 DIM B$[10],P$[8],D1$[12],59%[16],A5$[16]

20 INTEGER S[10],M2,M1,M4

30 B$=" ORDERS;"

40 DEF INTEGER FNI(X)=X

50 D1$="SUP-MASTER "

60 INPUT "ENTER PASSWORD: ",P$[1;8]

70 Mi1=1

80 M2=2

85 M4=4

80 CALL XDBOPEN(B$,P$,M1,S[*])

100 IF S[1]<>0 THEN 9300
110 INPUT "ENTER SUPPLIER OR / TO TERMINATE: ",S9$[1;16]
120 IF s9$[1,1]="/" THEN GOTO 9900
130 CALL XDBLOCK(B$,D1$,M4,S[*])
140 IF S[1]<=0 THEN 170
150 PRINT "DATA SET IS BUSY. TRY AGAIN LATER."
160 GOTO 8900
170 IF S[1]=0 THEN 210
180 PRINT "DBLOCK FAILURE"
190 CALL XDBEXPLAIN (S[*])
200 GOTO 8900
210 CALL XDBGET(B$,D1$,FNI(7),S[#*]," "SUPPLIER;",A5$,S9$)
220 IF S[1]=0 THEN 330
230 IF S[{1]=-21 THEN 280
240 IF S[1]=17 THEN 310
250 PRINT "DBGET FAILURE"
260 CALL XDBEXPLAIN(S[*])
270 GOTO 290
280 PRINT "YOUR PASSWORD DOES NOT GRANT ACCESS TO DATA SET"
290 GOSUB 9000
300 GOTO 9900
310 PRINT "NO SUCH SUPPLIER"
320 GOTO 430
330 CALL XDBDELETE(B$,D1$,FNI(1),S[*])
340 IF S[1]<>44 THEN GOTO 370
350 PRINT "INVENTORY ENTRIES EXIST, SUPPLIER CANNOT BE DELETED"
360 GOTO 430
370 IF S[1]=0 THEN GOTO 420
380 IF S[1]=-23 THEN 280
390 PRINT "DBDELETE FAILURE"
400 CALL XDBEXPLAIN(S[*])
410 GOTO 9900
420 PRINT "SUPPLIER DELETED"
430 GOSUB 9000

DEC 85
6-74

BASIC

440 GOTO 110

9000 CALL XDBUNLOCK(B$,"" ,M1,S[*])
9010 IF S[1]=0 THEN RETURN

9020 PRINT "DBUNLOCK FAILURE"

9030 CALL XDBEXPLAIN(S[#])

9040 GOTO 9800

9300 PRINT "DBOPEN FAILURE"

9310 CALL XDBEXPLAIN(S[#])

9320 STOP

9900 CALL XDBCLOSE(BS$,"" ,FNI(1),S[*])
9910 IF S[1]=0 THEN STOP

9920 PRINT "DBCLOSE FAILURE"

9930 GOTO 9310

9998 END

In the example above, the program calls XDBLOCK to lock the SUP-MASTER data set. Since mode 4 is
used, the program must check the condition word when DBLOCK returns control to verify that the data
set is locked and the calling program has exclusive access to it. If this is so, the condition word is 0.

If the data is successfully locked, the program performs the necessary data base operations. In this case, it
deletes an entry. Before the entry can be deleted, the current record of the data set must be that of the
entry to be deleted. This record may be located by calling XDBGET. The program may request the name
of the supplier whose record is to be deleted and use XDBGET in calculated mode to locate the
appropriate entry. If entries in the INVENTORY data set exist that have the same SUPPLIER value as
the entry to be deleted, the condition word is set to 44 and the entry is not deleted.

After the entry is deleted, the data set is unlocked by XDBUNLOCK.

A null list can be used with DBGET to locate an entry to be deleted.

DEC 85
6-75

BASIC

Request Data Set Information

10
20
30
40
50
60
70
300
310
320
330
340
350
360
370
380
380

9300
9800

DIM B${10],P$[8]

INTEGER S[10],D2[7],M

B$=" ORDERS;"

INPUT "ENTER PASSWORD: ",P$[1:8]
INPUT "ENTER ACCESS MODE (1-8): ",M
CALL XDBOPEN(B$,P$,M,S[*])

IF S[1]<>0 THEN 9300

M=203

CALL XDBINFO(B$,"",M,S[#*],D2[*])

IF S[1]=0 THEN 350

CALL DBEXPLAIN(S[*])

GOTO 9900

PRINT "YOU HAVE ACCESS TO ";D2[1];"DATA SETS AS FOLLOWS:"
FOR I=2 TO D2[1]+1

PRINT D2[1]

NEXT I

GOTO 9900

(same as XDBOPEN example)
(close data base)

The procedure call in this example obtains the numbers of data sets that are available to the current user
class by specifying mode 203. If the user class number is 12 and the procedure executes successfully, the

D2 array contains:

DEC 85
6-76

D2(1)
D2(2)
D2(3)
D2(4)

D2(5)

4 Access to 4 data sets.
2 Read access to data set 2.
-3 Modify access to data set 3
-5 and data set S.
6 Read and possibly update access to data set 6.

BASIC
Rewind Data Set

10 DIM B$[10],P$[8],D1$[14],L1$[20],51$[16],52%$[2]
20 INTEGER S[10],M,M1,M2

30 B$=" ORDERS;"

40 M1=1

.

(open data base)
210 D1$="SUP-MASTER;"
(read data set serially)

900 INTEGER M3

910 M3=3

920 CALL XDBCLOSE(B$,D1$,M3,S[*])
930 IF S[1]=0 THEN RETURN

940 PRINT "DBCLOSE FAILURE"

950 CALL XDBEXPLAIN(S[#])

960 GOTO 9900

9900 (close data base)

To rewind the SUP-MASTER data set, a call to DBCLOSE is made with mode equal to 3. The dynamic
status information in the DBU for SUP-MASTER is reset, including the current record number. If a
serial read request encounters an end-of-file, this call resets the current record to the beginning of the
data set and another serial read request reads the first entry in the data set.

DEC 85
6-77

BASIC

Close Data Base

10 DIM B$[10],P$[8]

20 INTEGER S[10],M

30 B$=" ORDERS;"

40 DEF INTEGER FNI(X)=X

9900 CALL XDBCLOSE(B$,"",FNI(1),S[#*])
9910 IF S[1]=0 THEN STOP

9920 PRINT "DBCLOSE FAILURE"

9930 GOTO 9310

9999 END

This call closes the data base. It is issued after the program has completed all data base operations and
before program termination.

Print Error

10 DIM B$[10]
20 INTEGER S[10]

9310 CALL XDBEXPLAIN(S[#])
9320 STOP

A call to DBEXPLAIN prints a message on the $STDLIST device which interprets the contents of the
status array, S. This is the routine which is called to display the status in the preceding examples.

DEC 85
6-78

BASIC

Mbve Error to Buffer

10 DIM B$[10],P$[8],M$[72]

20 INTEGER S[10],M,M1

30 B$=" ORDERS;"

40 M1=1

50 INPUT "ENTER PASSWORD: ",P$[1:8]

€0 INPUT "ENTER ACCESS MODE (1-8): ",M
70 CALL XDBOPEN(B$,P$,M,S[*])

80 I S[1]<>0 THEN 9300

90 PRINT "DATA BASE OPENED"

100 GOTO 9900

9300 PRINT "DBOPEN FAILURE"
9310 CALL XDBERRORS(S[#*],M$)
9320 PRINT M$

8330 STOP

In this example, a call to DBERROR returns one of the messages appropriate to the current condition
word. For example, if the condition word is equal to 16, the message returned in M$ is THE DATA SET
IS FULL. Note that the length parameter need not be included since the logical length of M$ is set by
XDBERROR.

DEC 85
6-79

RPG

The following restrictions apply to TurboIMAGE data bases used with RPG:

1. Data is added and retrieved as complete entries, in other words, you cannot read or modify single items
through RPG. Therefore, if the RPG program is to read an entry from a data set, the specified
password must correspond to a user class number allowing read access to all data items in the entry. If
the RPG program is to write an entry to a data set, the password must correspond to a user class
number allowing write access to all data items in the entry.

2. Since entries are handled in this way, data sets to be used with RPG programs are sometimes defined
with one-item entries. However, if you intend to use QUERY with the data set you may need to
define more items.

3. Only one search item can be used to reference a data set in a program unless the data set is defined as
more than one file, or you are doing an ISAM simulation and processing between limits. (Consult the
RPG /3000 Reference Manual for more information.)

4. RPG supports all the DBGET procedure input modes except reread. It provides two additional modes:

e Simulated indexed sequential read, forward and backward.
¢ Read down chain until key changes.
5. Since RPG file names cannot exceed 8 characters and can contain no special characters, a file

specification for the SUP-MASTER data set or DATE-MASTER data set should have file names such
as SUP and DATE with the full names given in a data set name record.

CAUTION

RPG versions prior to A.06.04 allow only 1 to 15 characters for data set
and data item name, not the 1 to 16 characters as allowed by
TurboIMAGE.

RPG Programs and TurbolMAGE

To use a TurboIMAGE data base through RPG application programs you must describe the data base with
File Description specifications. A data set may be described by more than one File Description
specification to allow you to access it in more than one way, for example, performing both serial and
chained reads or using two different search items (keys). The File Description specification and its
continuation records specify:

a TurboIMAGE file by naming both the data base and a data set within it.
a search item name.

an access mode.

a password.

an input/output mode for the file.

DEC 85
6-80

RPG

In addition, you can add and delete entries with special RPG Output specifications.

Complete instructions for using a TurboIMAGE data base through RPG programs are given in the
RPG/ 3000 Reference Manual,

Note that an RPG program can use any of the three modes of locking allowed for a TurboIMAGE data
base: data base locking, data set locking, and data entry locking. For a discussion of how to select and
implement the correct locking mode, refer to the RPG reference manual. (Note that the data entry
locking is called "record level locking" in the RPG manual.)

Figure 6-7 contains a sample RPG program which reads the SALES entries associated with a particular
stock number and prints the contents in a report. The File Description specifications include:

e line 0003--a description of the SALESDS file as a chained input file with fixed length records 38
bytes long. The processing mode used for the data set is random. The key field is 8 bytes long and
contains alphanumeric data. The file organization code M signifies a TurboIMAGE file. The
SALESDS file name is a logical data set name, in other words, it can be a reminder of the actual SALES
data set name (see discussion of line 0007 below).

e line 0004--a data base name record specifying the ORDERS data base, an access (open) mode of 3
(exclusive access), and input/output mode C (chained sequential read).

e line 0005--an ITEM name record specifying the STOCK# search item as the key.
e line 0006--a LEVEL identification record specifying the DO-ALL password.

¢ line 0007--a DSNAME data set name record specifying the SALES data set. This is the actual data set
name and overrides the file name (SALESDS), which is a logical name identifying the data set.

e line 0008--a description of the INPUT file as a demand file with fixed length records 8 bytes long.
The file’s device is designated as $STDIN. A file equation may also be used to alter the INPUT and
PRINT files.

o line 0009--a description of the PRINT file as an output file of variable length records which are at
most 80 characters long. The file’s device is designated as $STDLIST. Printing will be done at the
user’s terminal screen, if the program is run interactively. A file equation may also be used to alter the
device designation.

The input specifications describe:

e lines 0010 through 0018--a SALES data entry with five binary, two numeric (ASCII), and one
character (ASCII) data items.

e lines 0019 through 0020--an INPUT record of 8 bytes with a field named ISTOCK.

e lines 0021 through 0032--Calculation specifications, request input from the INPUT file which was
specified $STDIN in line 0008. The INPUT file may be specified outside the program, using the MPE
‘FILE command before executing the program. They also read the SALES entries with values equal to
the stock number entered, print the information, and, when the end of chain is encountered, request
another stock number. Note that in line 0030, indicator 12 (in columns 54-55) is set on whenever no
record is returned by the CHAIN operation, and indicator 11 (in columns 56-57) is set on when the end
of chain is encountered.

DEC 85
6-81

RPG

0001 $CONTROL USLINIT,NAME=SALES1
0002 H L
0003 FSALESDS IC F 38R 8AM DISC
0004 F KIMAGE ORDERS3C
0005 F KITEM STOCK#
0006 F KLEVEL DO-ALL
0007 F KDSNAMESALES
0008 FINPUT ID F 8 $STDIN
0008 FPRINT O V 80 $STDLST
0010 ISALESDS AA
0011 I B 1 40ACCT
0012 I 5 12 STOCK#
0013 I B 13 140QTY
0014 I B 15 182PRICE
0015 I B 19 222TAX
0016 I B 23 262TOTAL
0017 I 27 320PDATE
0018 I 33 380DDATE
0018 IINPUT BB
0020 I 1 8 ISTOCK
0021 c SETOF 1211
0022 c SETON 15
0023 c EXCPT
0024 c SETOF 15
0025 C READ INPUT LR
0026 C SETON 16
0027 C NLR EXCPT
0028 C SETOF 16
0029 c LooP TAG
0030 C NLR ISTOCK CHAINSALESDS 1211
0031 C NLR EXCPT
0032 C NLRN11N12 GOTO LOOP
0033 OPRINT E 2 16
0034 0 10 "ACCOUNT"
0035 0 19 "STOCK#"
0036 0 28 "QUANTITY"
0037 o} 36 "PRICE"
0038 0 43 “"TAX"
0039 0 52 "TOTAL"
0040 0] 62 "PURCHASED"
0041 0 72 "DELIVERED"
Figure 6-7. Sales Transaction Display Program
DEC 85

6-82

RPG

0042 0 E 1 N11N12

0043 0 ACCT 2 10

0044 0 STOCK# 18

0045 0 TOTAL J 52

0046 o TAX J 44

0047 0 PRICE J 36

0048 0 QTY J 26

0049 0 PDATE Y 62

0050 0 DDATE Y 72

0051 0 E 22 12

0052 o 15 "NO SUCH STOCK#"
0053 0 E 21 15

0054 o 20 "ENTER STOCK# OR :EOD"

Figure 6-7. Sales Transaction Display Program (Continued)

e lines 0033 through 00 50--Output specifications, describe a report with column headings for each item
and one-line records for each entry. The ACCT item is edited with a Z edit specification, the TOTAL,
TAX, PRICE, and QTY items with a J edit specification, and the PDATE and DDATE items with 2 Y
edit specification.

¢ lines 0051 through 0054--last Output specifications, describe the message to be printed if there is no
entry with the requested stock number value and the message which prompts for the stock number or
the end of program..

The following figure shows SALES1 program execution. The user is prompted to enter stock number and
is given a report heading and data pertaining to the SALES data set records which contain stock
information.

DEC 85
6-83

RPG

:RUN SALES1
Program: SALES!

ENTER STOCK# OR :EOD

1"

ACCOUNT STOCK# QUANTITY
1111 30
12 1 2
12 1 35
11 11 12
11 1 13

ENTER STOCK# OR :EOD

16
ACCOUNT STOCK# QUANTITY
12 16 20
ENTER STOCK# OR :EOD
15
ACCOUNT STOCK# QUANTITY
10 15 32
11 15 10
10 15 150

ENTER STOCK# OR :EQD
19

NO SUCH STOCK#

ENTER STOCK# OR :EOD

17
ACCOUNT STOCK# QUANTITY
10 17 100
12 17 10
13 17 10
13 17 10

ENTER STOCK# OR :EOD
:EOD

Pgm-End: SALES1

= SALES.TEST.IMAGE

PRICE
100.00
110.00
115.00
117.00
130.00

PRICE
120.00

PRICE
15.00
10.00
17.00

PRICE
16.50
16.50
17.50
17.70

= SALES.TEST.IMAGE

TAX
6.05
6.50
6.70
6.90
7.50

TAX
6.86

TAX
1.29
.90
1.42

TAX
1.36
1.36
1.48
1.52

MON, DEC 31, 1984,

8:32 AM

TOTAL PURCHASED DELIVERED

106.05 12/06/84 12/17/84
116.50 10/11/84 12/10/84
121.70 9/11/84 9/15/84
123.890 12/03/84 12/05/84
137.50 10/30/84 11/02/84
TOTAL PURCHASED DELIVERED
126.86 12/10/84 12/24/84
TOTAL PURCHASED DELIVERED
16.29 12/04/84 12/17/84
10.90 12/04/84 12/06/84
18.42° 10/31/84 11/05/84
TOTAL PURCHASED DELIVERED
17.86 10/11/84 11/01/84
17.86 10/11/84 10/27/84
18.98 12/10/84 12/17/84
19.22 11/29/84 12/01/84
MON, DEC 31, 1984, 8:40 AM

Figure 6-8. Sample SALES1 Execution

DEC 85
6-84

MAINTAINING THE DATA BASE

The TurboIMAGE data base is initialized and maintained through various TurboIMAGE utility programs.
The utility programs include the following:

DBUTIL A utility program used to create and maintain the data base.

DBUNLOAD Copies data to specially formatted tape or serial disc volumes.

DBLOAD Loads data from backup volumes (DBUNLOAD tape or serial disc) into the data
base.
DBSTORE Stores data base to tape or serial disc.

DBRESTOR Copies data base from backup volumes (DBSTORE tape or serial disc) to disc.

DBRECOV Recovers data base from a log file.

This section contains a discussion of the procedures to be followed in performing tasks such as
restructuring the data base, logging transactions, and recovering the data base in the event of a system
failure. Use this section together with Section 8 which gives the syntax of the various utility programs
and commands.

Utility programs may be run in either job or session mode. DBUTIL, DBSTORE, DBRESTOR,
DBUNLOAD, and DBLOAD all require the user to be logged on in the group and account which contains
the data base root file. Consequently, these programs may not be used with a remote data base unless you
initiate a remote session and run the utility as part of that session. These programs do not allow you to
use the :FILE command to equate a data base or data-base-access file. DBRECOV is an exception, since
‘FILE commands are permissible, and since you need not be logged on under the same group and account
as the log file. However, DBRECOV has the same remote session requirement for remote data base access
as the other utility programs.

You may operate the utility programs as long as you are the data base creator, or know the maintenance
word. If no maintenance word is defined, only the data base creator can execute the other utility
programs and the DBUTIL commands that require a maintenance word.

DEC 85
7-1

Maintaining The Data Base
RESTRUCTURING THE DATA BASE

It is possible to make certain changes to the structure of an existing data base without having to write
special programs to transfer data from the old data base to the new one. The general sequence of
operations which you use to do this is:

1. Run DBUNLOAD on the old data base, copying all the data entries to tape or serial disc.

2. Purge the old data base using DBUTIL >>PURGE.

3. Redefine the data base using the same data base name and create a new root file with the Schema
Processor.

4. Use the DBUTIL >>CREATE command to create and initialize the data sets of the new data base.

5. Run DBLOAD on the new data base using the tape or serial disc created in step 1 to put the old data
into the new data base.

The above procedure provides only limited structural changes to the schema. DBLOAD does not prohibit
other changes, however there is no guarantee the data will be consistent. Schema changes that yield
correctly transformed data bases and always result in a good transformation follow (Allowed Structural
Changes).

Allowed Structural Changes

Any of the following schema changes, alone or combined, which are acceptable to the Schema Processor
will always result in a successfully transformed data base:

¢ Adding, changing, or deleting passwords and user class numbers.

Changing a data item or data set name and all references to it.

Changing data item or data set read and write class lists.

Adding new data item definitions.

e« Removing or changing definitions of unreferenced data items.

Increasing data set capacities.

Adding, deleting, or changing sort item designators.

DEC 85
7-2

Maintaining The Data Base

Conditional or Unsupported Structural Changes

The following structural changes are legitimate only in some circumstances and may result in data set
discrepancies or lost data:

e Changing primary paths.

¢ Adding new data items to the original end of a data entry definition.
¢ Removing data items from the original end of a data entry definition.
¢ Changing an automatic master to a manual master or vice versa.

¢ Changing the native language definition for the data base.

¢ Adding or deleting a data set at the end of the schema.

These are the unsupported schema changes. DBLOAD does not prohibit other changes, however there is
no guarantee that the data will be consistent. A change must be judged in light of the particular data
base and the functioning of DBUNLOAD and DBLOAD, described later in this section. Basically, all
entries from an old data set are put into the corresponding data set, except that no entries are directly put
into automatic masters. The entries are truncated or padded with binary zeros as necessary to fit the new
data set’s entry length. DBUNLOAD and DBLOAD always handle full entries, without regard to item
positions or lengths. If the new data set’s entry is defined with the items in a different order than the old
data set, DBLOAD may not fail but the data set content will nevertheless be invalid. For example, data of
type real may now occupy the position of a character type item.

In some circumstances, the load completes, but data is lost, for example, if a data set’s capacity has been
reduced in the new data base to a number less than the number of that data set’s entries on the tape or
serial disc.

An unsupported or conditional schema change is adding or deleting data sets. As data sets are loaded by
number, additions and deletions should be made to the end of the schema. The number of the data set is
determined by the sequence of order the data sets were entered in the schema file. Data set one would
correspond with the first data set appearing in the schema (or root file) DBLOAD will always return a
warning if it detects a descrepancy between the number of data sets defined in the schema and the
number of data sets on the DBLOAD media, but you can allow the DBLOAD to continue after the
warning if you are confident that the data base is not corrupted.

DEC 85
7-3

Maintaining The Data Base

MAKING A DATA BASE BACKUP COPY

A backup copy of the data base should be made prior to using the data base whenever there is a possible
need for recovering the data base following a system failure. The data base administrator uses the
DBSTORE TurboIMAGE utility to store a copy of the data base with flags (access disabled, recovery
enabled, logging enabled) set as specified in Logging Installation, later in this section. In addition, since
the correspondence between log files and backup data bases is crucial, DBSTORE sets a DBSTORE flag in
the data base root file before storing the data base, along with a time stamp designating the date and time
of the DBSTORE operation.

The DBSTORE flag is cleared by the first modification to the data base (DBPUT, DBDELETE, or
DBUPDATE) indicating that the data base no longer corresponds to the stored copy. Before logging is
enabled, DBUTIL checks the DBSTORE flag to ensure that the working data base is the same as the
backup copy data base. For example, suppose a data base is stored and some modifications to the data base
are made before logging is enabled. If the administrator then tries to enable logging, DBUTIL, seeing that
the DBSTORE flag has been cleared, prints a message warning that the present state of the (modified) data
base does not correspond to the stored version. If the message is ignored, the resulting log file will not
contain all of the transactions that actually occured against the working data base. Consequently, a
recovery using the stored copy and the incomplete log file may fail or yield erroneous results. The
following is an example of how to run DBSTORE.

:RUN DBSTORE.PUB.SYS
WHICH DATA BASE? ORDERS
DATA BASE STORED

END OF PROGRAM

When multiple data bases and files are involved, you can use the MPE command STORE to collectively
copy them to tape or serial disc and, if necessary, collectively restore them by using the MPE command
RESTORE. However, all data bases and files must reside in one group or account and you must have
account manager and privileged mode (PM) capability to use this method. Note that when using the
‘STORE command no time stamp (signifying the date and time the backup copy was made) will be set in
the data base. For additional MPE command information refer to the MPE Commands Reference
Manual.

DEC 85
7-4

Maintaining The Data Base

DATA BASE RECOVERY OPTIONS

Two levels of data base recovery following a system failure are provided within TurboIMAGE: Intrinsic
Level Recovery (ILR), and Roll-Back Recovery or Roll-Forward Recovery at the transaction level. These
recovery options ensure the physical and logical integrity of the data base following a system interruption
or possible system failure. The level of recovery to be used is determined by the data base administrator,
and is based upon available data base backup and logging resources in addition to user performance
requirements.

In addition to the recovery methods mentioned above, a system can be set up for constant access or "high
availability" and have a controlled maintenance using a new feature of DBRECOV called
STOP-RESTART. Backups and down-time can be regulated with a maintenance method called the
mirror data base. This method consists of two identical data bases on two separate computer systems.
The mirror data base resides on the secondary system and is maintained with user logging, DBRECOV, and
periodic DBSTORE's.

Intrinsic Level Recovery provides recovery of intrinsics that were interrupted during execution. Execution
of ILR is automatic and transparent to the user. Roll-back and roll-forward recovery require the use of
the user logging facilities and the TurboIMAGE utility DBRECOV. Execution of the roll-back and
roll-forward recovery options are directed by the data base administrator. Appendix G "Recovery and
Logging Quick Reference" offers a brief description of the recovery options. This appendix also lists
benefits and disadvantages of logging to disc and logging to tape, and gives sample job streams for recovery
and logging cycles. Appendix G may be used, along with information given in this section, to determine
which type of recovery to use.

DEC 85
7-5

Maintaining The Data Base

INTRINSIC LEVEL RECOVERY

When Intrinsic Level Recovery (ILR) is enabled, TurboIMAGE automatically logs each DBPUT and
DBDELETE to an internal ILR file. Since ILR is only concerned with data base structure, only the most
recent (or last) DBPUT or DBDELETE is noted in the ILR file.

The ILR file is created when ILR is enabled. TurboIMAGE opens the ILR file the first time a user
program opens the data base for access. When the last user process closes the data base, TurboIMAGE
automatically closes the associated ILR file. If recovery is needed the next time the data base is opened,
TurboIMAGE recovers the data base automatically.

A single extra data segment called the Intrinsic Level Control Block (ILCB) is allocated upon the first
DBOPEN of the data base. The ILCB is used as an intermediate staging area for the buffers that will be
modified by each DBPUT or DBDELETE. If the data base is enabled for ILR, the first access of the data
base by DBOPEN will examine the ILR file. If recovery is necessary, the buffers logged in the ILR file
are posted to the data sets and the interrupted intrinsic is redone at the end of the DBOPEN time.

If a DBPUT or DBDELETE intrinsic is interrupted by a system failure or abnormal termination of
TurboIMAGE and fails to complete execute, TurboIMAGE completes the intrinsic so that the newly
opened data base appears as if the interrupted intrinsic had completed normally. Chains are reconstituted
automatically so that the internal structure of the data base remains consistant.

As TurboIMAGE does not allow a program abort to interrupt a DBPUT or DBDELETE, ILR is not needed
following an abnormal program termination (user program abort). An interrupted DBUPDATE, however,
does not require the use of ILR, as DBUPDATE completes execution in one autonomous write.

The following is an example of enabling a data base for Intrinsic Level Recovery.
:RUN DBUTIL.PUB.SYS

>>ENABLE dbname FOR ILR
ILR is enabled

NOTE

ILR is enabled automatically when the roll-back feature is enabled, but
must be manually disabled (using DBUTIL) when roll-back is disabled.
Roll-forward recovery does not require ILR to be enabled, but it is
recommended in order to eliminate the possibility of broken chains since
ILR ensures physical consistency of the data base. If using roll-forward
recovery do not restart logging following a system failure until after the
roll-forward recovery process has completed. Use of ILR alone may cause
inconsistency in the log file if logging is restarted without first running
roll-forward recovery. ILR must be both manually enabled and disabled
when used with the roll-forward feature.

DEC 85
7-6

Maintaining The Data Base

Using ILR

To enable a data base for ILR, run DBUTIL and use the >ENABLE command. This causes TurboIMAGE
to build and initialize an ILR file for the specified data base. At this time, TurboIMAGE sets a flag in the
data base root file, and also sets a date and time stamp in both the ILR file and in the root file. This
ensures a method of matching information logged to the ILR file with the appropriate data base root file.

The ILR file is a privileged file used only by TurbolMAGE. Its name is derived by adding two ASCII zeros
to the root file name (root file name is "ORDERS", ILR file name is "ORDERS00").

To determine if ILR has been enabled for a data base, either use the DBUTIL command >>SHOW or
programmatically call DBINFO in mode 402.

When ILR is enabled, the ILR file is stored or restored along with the data base by the the DBSTORE and
DBRESTOR utilities. This happens automatically to ensure that the ILR file is retained during data base
backups.

To discontinue using ILR on a data base, use the DBUTIL command >>DISABLE. When ILR is disabled
by the user, TurboIMAGE first checks the ILR file to see if the data base needs recovery. If ILR recovery
is pending and required, TurboIMAGE uses the existing ILR file to recover the data base, then purges the
ILR file and clears the flag in the data base root file.

Special Considerations
Before using ILR, consider the advantages and limitations of this type of recovery:

e Recovery after a system failure requires no more overhead than a single DBPUT or DBDELETE.
However, logging the intrinsics increases the overhead on each DBPUT and DBDELETE. Logging
DBPUT and DBDELETE intrinsics requires additional memory to move and write buffers to the ILCB.

e Output Deferred can not be used with ILR to defer writing modifications to the data base. However,
Output Deferred should not be used when the primary objective is to assure the structural integrity of
the data base. If you have enabled the AUTODEFER option in DBUTIL, ILR can not be used as the
recovery method on the data base. The following message will be printed at the terminal if the user is
attempting to enable ILR when AUTODEFER is already enabled on the data base:

AUTODEFER MUST BE DISABLED BEFORE ILR CAN BE ENABLED

The user should disable AUTODEFER and enable LR using DBUTIL >>ENABLE command. (For more
information on AUTODEFER refer to Section 8.)

DEC 85
7-7

Maintaining The Data Base
LOGICAL TRANSACTIONS AND LOCKING

Both the roll-back and roll-forward features operate at the transaction level and are designed to restore
data bases to a consistent state, both structurally and logically following a system failure. The concept of
a "logical transaction" is central to this process. A logical transaction is defined as a sequence of one or
more procedure calls begun with a DBBEGIN and concluded with a DBEND. If DBBEGIN and DBEND
are not used, TurboIMAGE considers each DBPUT, DBDELETE, and DBUPDATE as a single logical
transaction. While a transaction is executing, the data base is considered to be in an inconsistent state.

For example, consider the manual master data set CUSTOMER in the ORDERS data base, with the
addition of a new field, YTDSALES, indicating the total value of the year-to-date sales for each
customer. A one-step transaction might involve updating a particular customer’s address. However,
adding a new sales item for a customer, which involves addition of an entry to the SALES detail data set
as well as updating the YTDSALES item in the CUSTOMER master set, is a two-step transaction. The
data base is consistent before the transaction begins, because the YTDSALES value corresponds exactly
with the sum of the TOTAL values in the SALES detail set that are chained to that particular customer’s
account number. However, after the first modification, which might be adding the new SALES entry, this
correspondence no longer holds, so the data base is said to be inconsistent with itself. After the second
step, modifying the YTDSALES item in the CUSTOMER data set, the data base is returned to a consistent
state.

If the system fails while the data base is being modified, two forms of damage to the data base could
result. A logical inconsistency might result if the failure occurs between modifications of a multiple-step
transaction, as the above example illustrates. Secondly, structural damage (such as broken chains) can
result if the failure occurs during the execution of a TurboIMAGE procedure.

Since the recovery system is designed to restore the data base to a consistent state, those modifications
belonging to transactions that failed to complete due to a system failure are suppressed by the recovery
system. Consequently, although one or more data base modifications may be lost upon recovery, the
resulting data base will be consistent. To this end, each user application should indicate the beginning and
end of each transaction in the log file by appropriate use of the TurboIMAGE intrinsics, DBBEGIN and
DBEND. (See Section 4 for more information.)

DBOPEN
DBPUT <

DBDELETE <<
DBBEGIN

: < | TRANSACTIONS

TRANSACTION
BLOCK

DBEND
DBUPDATE <
= DBCLOSE

Figure 7-1, Transactions and Transaction Blocks

DEC 85
7-8

Maintaining The Data Base

Locking Requirements

DBRECOV requires that all multiple~intrinsic data base transactions execute independent of all other
transactions. Transaction independence within the data base may be insured in a user program by
releasing locks on data after a DBEND is called, thus eliminating the possibility of another user modifying
the same data at the same time. An example may clarify the need for locking data to be modified.

Suppose transaction A consists of adding two records to the data base which are later modified by
transaction B. Transaction B is dependent upon transaction A, as records must exist before they can be
modified. Recall that a transaction is defined as a sequence of one or more modifications that transfer the
data base from one consistent state to another. A data base may be in an inconsistent state during a
transaction. Therefore, if transaction A and B are executing concurrently, transaction B may be viewing
the data base in an inconsistent state and consequently could be generating invalid results. If transaction
A is completed properly, this problem is avoided since transaction B cannot access the data until
transaction A has released 1ts locks.

A second problem due to inadequate locking affects suppression of transactions by the recovery system (see
Figure 7-2). Suppose transaction A intends to add six records to the data base, and after adding three
records, transaction B is executed by another process. Transaction B concurrently modifies one of the
records added by transaction A and then completes. Suppose that at this time, the system fails and
recovery is executed. Since transaction A failed to complete, all of its record additions will be suppressed.
Since transaction B is dependent upon the suppressed transaction A, it cannot be recovered. DBRECOV is
forced to suppress transaction B, even though it successfully completed during real-time processing. This
potential problem could be avoided if transactions modifying the data base employ locking correctly.
Transactions attempting to access the same data concurrently are serialized by the locking mechanism.

DEC 85
7-9

"\

SUPPRESSED

A6

CRASH

SUPPRESSED

\ 5 N . // NN N // N\ N < // AN 3
RTINS NN NN N
T ANy g Ry
N AN N N\ NN
N ////// NN NN ARNRR IS NATNIR IS
NRNRSNSNNN ASONNNRARIRNRNNN NV RNARESY N
N NNV OO w NN W
R O NANYY W\ NN & RN >
\ AN AN QNN RN ARRMANNY
NN N\N N AREN WANARNASYY
NS OO\ NN NN €T FONOD
NN UNN///N//M//////,W//NNU N 3 N /,/0/ 0/0 NS m
RN N\ N RS -
NNVCANN /////////////////NN I 2 IONRNISY] 7
o NANN NN O\ ///// /// N o NN N N \ \
< RN /N/ NNSOONNEESN O AN S
r ﬂ/ NN //N/ N N////ﬂ////////////// N ////// // N m
NRNARRNI AN S IINNRENY SIMNNTR
N
< - -
(=] 0
& 5 @
< < 0O g @
L w
Z o« o u
o< e g . O
N\ @ < - o
288
Y $83004d

Maintaining The Data Base

> TIME

Figure 7-2. Suppression of Transactions Due to Inadequate Locking

DEC 85

7-10

Maintaining The Data Base

The following provides examples of two recommended schemes for locking.

Single Lock Strategy

DBLOCK for account 2,18,34

DBBEGIN << begin may precede DBLOCK call »>>
DBGET data for account 2

DBUPDATE data for account 2

DBPUT data for account 34

DBGET data for account 18

DBDELETE data for account 18

DBEND

DBUNLOCK for all accounts << DBUNLOCK must be last call >>

Multiple Lock Strategy

DBLOCK account 2,34

DBBEGIN

DBGET data for account 2

DBUPDATE data for account 2

DBPUT data for account 34

DBLOCK for account 34

DBGET data account 18

DBDELETE data account 18

DBEND

DBUNLOCK for all accounts << DBUNLOCK must be last call >>

CAUTION

Use extreme caution when employing a multiple lock strategy requiring
Multiple RIN (MR) capability (refer to Appendix D). Hewlett-Packard does
not accept responsibility for possible deadlocks or system lockouts that
could result from improper use of the MR capability.

In the first example (above) calling DBLOCK before DBBEGIN makes the transaction shorter in duration.
It is recommended to call DBLOCK first since there is no way of knowing how long DBLOCK will have to
wait to acquire the lock after the transaction is begun. For additional locking information refer to
Section 4, "USING THE LOCKING FACILITY". ‘

DEC 85
7-11

Maintaining The Data Base

Program Abort and Recovery Considerations

The TurboIMAGE logging and recovery system is not intended to be a solution for transactions which fail
to complete in real time due to a program abort. Since subsequent transactions may be dependent on a
transaction interrupted by a program abort, the recovery system will not suppress transactions that fail
for this reason. Instead, TurboIMAGE will log a special DBEND to the log file so that the transaction can
be recovered. This mechanism can be overridden with the NOABORTS control option in DBRECOV as
long as all processes are stopped immediately after a program abort and the data base is restored and
recovered. Any delay in executing recovery with the NOABORTS option could result in erroneous data or
recovery failure due to transaction interdependence. Alternatively, when using roll-forward recovery the
STOPTIME option could be used to restore transactions that logged up to a time preceding the program
abort. (See Section 8, "DBRECOV".)

The utility DBRECOV can also recover transactions interrupted by an abnormal program termination if
the NOABORTS option is used. This utility also allows you to create individual user recovery files. The
information from these files then enables you to inform each user where to resume transactions within
the data base.

Overhead required by the logging process depends on the number and type of modifications that are
logged and the data base structure. The time needed for recovery depends on the number of transactions
that were written to the log file following the last backup of the data base. Overhead and recovery time
also depends on the type of recovery being used.

As a secondary function, the transaction logging system can be a useful tool for auditing. The log file is
actually a programmatically accessible journal of all modifications to items in the data base, providing
information about previous entries as well as the current state of the data base. The logging intrinsic
DBMEMO, containing user text, provides a method of accessing and interpreting the log files for future
reference.

The data base administrator is responsible for enabling or disabling the logging and recovery processes,
generating backup data base copies, and for making logging a global function controlled at the data base
level rather than at the individual user level.

The TurboIMAGE logging and recovery system is based upon the MPE user logging system. For further
details of operation, and for the data format of log files on tape or disc, refer to MPE System
Manager/System Supervisor Reference Manual, Console Operator's Guide, MPE Commands Reference
Manual, and the MPE Intrinsics Reference Manual.

¢ RECOVERY FROM A STREAM FILE. A stream file may specify all of the data bases logging to one
log file for recovery. If one of the data bases has not been restored at the time the stream file is run,
recovery for that data base is prevented because recovery for that data base is disabled if the
recommended procedures have been followed. (Refer to "Roll-Forward Recovery" later in this section
for more information.) Recovery can be completed for all of the other specified data bases that have
been restored from a backup copy with recovery enabled, as long as >CONTROL ERRORS is set
appropriately. This means that ERRORS must be increased by one for each data base disabled for
recovery, since an error message occurs each time a data base specified in the >RECOVER command is
not enabled for recovery.

DEC 85
7-12

Maintaining The Data Base

¢ LOCKING AND TRANSACTION INTERDEPENDENCE. In order to maximize the extent of

recovery, locking should be employed while also logging in order to eliminate concurrent transaction
interdependence. Locking by logical transaction (DBBEGIN, intrinsics, DBEND) guarantees the logical
consistency of the data base. Locking by logical transaction is required for roll-back recovery in order
to ensure that all incomplete transactions are backed out of the data base. Transaction locking is
recommended for roll-forward recovery. Intrinsic Level Recovery logs the most recent (or last)
intrinsic to a log file, and therefore does not utilize transaction interdependence.

QUIET PERIODS, RECOVERY BLOCKS AND STAGING DISC FILE. A log file quiet period occurs
at a point in time when no transactions are in progress on the log file. The log records between one
quict period and the next is called a recovery block (see Figure 7-3).

The recovery system reads recovery blocks into a temporary staging disc file before actually
re~executing the transactions. The recovery process then applies all transactions which were not active
(or in progress) at the time of the system failure. Only transactions within the same recovery block can
possibly be suppressed due to concurrent transaction interdependence.

It is desirable to shorten the length of the recovery blocks and maximize the number of quiet periods.
This may prove helpful in minimizing the number of transactions lost during recovery and in
preventing record table overflow (see "DBRECOV >CONTROL" command in Section 8 for more
information).

The average size of a recovery block will be a function of the number of concurrent processes running,
the transaction rate, and the average elapsed time of each transaction.

In the event that the recovery system fails due to inadequate disc space for the staging disc size, a file
equation specifying the formal designator TEMPLOG can be used to change the default staging disc
size. The TEMPLOG is created with a default of 160,000 records. If recovery fails due to inadequate
staging disc space then create TEMPLOG with 80,000 records (or half the size of the file). Then
DBRECOV can be run again.

EXAMPLE

¢FILE TEMPLOG;DISC=40000 «—— number of records

MULTIPLE DATA BASE TRANSACTIONS. Although the concept of a transaction has been specified
only in terms of a single data base, certain applications will undoubtedly execute transactions that
’span’ two or more data bases. There is currently no mechanism within TurboIMAGE to provide for
the declaration of multi-data base transactions. Programmers may be tempted to call DBBEGIN twice
(once for each data base), update both data bases, and then call DBEND twice in an attempt to
implement this capability. However, a system failure during the *window’ between the two final calls to
DBEND will result in the recovery of the transaction for one of the data bases, and its suppression on
the other. Consequently, an application which uses this strategy should also have the capability to
examine the recovery files to determine if this problem occurred, and if so, back out one of the data
bases as needed, using >CONTROL STOPTIME or >CONTROL EOF.

DEC 85
7-13

Maintaining The Data Base

¢ MPE CLEANUP MODE. In the event of a system failure and subsequent "warmstart', MPE will
attempt to clean-up any log files that were open at the time of the failure. The cleanup procedure
involves writing any records left in the log system disc buffer file to the end of the log file. (When
using roll-forward recovery records left in the memory buffer will still be lost.) The console operator
has the option to cancel this cleanup procedure if the log file is on tape. The advantage of the
procedure is that fewer log records written just prior to the failure are lost. The disadvantage for tape
files is the time it takes for the tape to be rewound and sequentially scanned until the end-of -file is
detected so that the remaining records can be appended to the end. In addition, a dedicated tape drive
is required when logging to tape. The TurboIMAGE recovery program DBRECOV does not require the
clean-up to be performed. If it is not performed, however, DBRECOV will most likely report a
sequence or checksum error when the discrepancy caused by the failure is encountered. This will cause
DBRECOV to assume the end-of -file has been reached.

"QUIET ' "QUIET '
!
I o
i I
PROCESSES: I [CRASH
I I
o I <
] | L1
A I o
[[
I o
[|
B || | N
I |
I .
[i i
I I
o |
C — - 1 %
I |
I N\ -/ P N /
I bl I | I I
I |
RECOVERY | RECQOVERY BLOCK | : RECOVERY
BLOCK (. P BLOCK
>~ L ~, TIME ~ 1 1~ ~
= = = = = N

Figure 7-3. Quiet Periods and Recovery Blocks

DEC 85
7-14

Maintaining The Data Base

Recovery Tables

The first three of the following four tables are returned by every execution of the recovery system. The
last table is returned only if the user recovery file feature is used.

HHBRRRRERRERAERRLRRRRERRERRRRRRRREARHRRIARARARRRRRERRERRRRARRRREARL AR RRRRNN

1 PROCESS STATISTICS *
#* #*
#LOG# TIME NAME ACCOUNT PROGRAM DATABASE TRANS PUTS DELS UPS #
Fmmmm mmmmm gy e mmme e %
1 15.45 TST MKTG INVENTRY ORDERS 145 145 0 0 *
* 2 15.47 TST MKTG ORDENTRY ORDERS 431 431 0 0 *

HHARFRHRNNREXRRRRERERERRBRERERERRBRRRERRARRRRRRRRRRRRRRRR AR RN NN RN RN

RERRERRERRXFERRBRXRERRRRERERRRNERERRRERRRRRRRERRRERRRERRXRRRRRFRERERE R RNN

* 2 DATABASE STATISTICS *
* *
* NAME GROUP ACCOUNT OPENS TRANS PUTS DELETES UPDATES #
* mmem mmmms emmmmem= mmma— =eeea- fmm e mmmmmmn mmmmee o *
* ORDERS TST MKTG 2 576 576 0 0 %

RN RRERRBRRARERERBERRERLRERIRRERARBARR R LR EAFEXRERRRRLRRRRNNN NN RNNNRE NN

HRRRRRURERERRRRERRRERBRERRRHRRBEARERRERFRRRARR KL RRRXBRRRRRRERRRE R RSN RRN

3 LOGGING SYSTEM » #*
#
...CREATOR.... RECORDS DEV LOGFILE........
LOGID NAME ACCOUNT PROCESSED TYPE NAME GROUP ACCOUNT
—m-- mmmm mmmmmmm mmeee - ——— S
ORDERLOG TST MKTG 640 DISC ORDEROO1 TST MKTG

RWRBRRDRRRERRNRERREERRRERRRERBRRRERRFRFRERRRRRRRRRFRRRRRRRRRRRR RN SRR R RN

RAEBRRRRRBUEARRBBRBBRBRNRBERRRRERFRRHFRERRRFRBRRRERBRRXERRRBRR RN RRR R RNN

* 4 RECOVERY SYSTEM *
* *
FILE REFERENCE USER IDENT RMODE FMODE
cmmcmcccmcmcecemem—e mmemmmmmmm—mm= mmmmem memme e *
PART1 SYS MKTG TST MKTG P1D1 1 1 ®
PART2 SYS MKTG TST MKTG P1D2 1 1 »
PART3 SYS MKTG TST MKTG P1D3 1 1

HRWRRERRBRERERERBRARRRRBARRERLRRBRRRERRERERRRRRRRENRRRERRRRRR R ARXBRRRN®

END OF PROGRAM

DEC 85
7-15

Maintaining The Data Base

The tables provide the following information:

1

DEC
7-16

The PROCESS STATISTICS table lists the log number assigned to each process by the OPENLOG
intrinsic, the logon name and account, program name, and transaction statistics. In this table there is
one entry for each process that logged transactions to the log file. An asterisk will appear for any
process that issued a DBOPEN without a corresponding DBCLOSE before the system failure. In
roll-forward recovery the columns "TRANS, PUTS, DELS, UPS" indicate the number of transactions
recovered. In roll-back recovery these columns and numbers indicate the number of transactions
rolled-out.

In the table of DATABASE STATISTICS, the total number of transactions are given for each data
base recovered. The columns "TRANS, PUTS, DELS, UPS" indicate the number of transactions
recovered in roll-forward recovery, or rolled-back if using roll-back recovery.

The LOGGING SYSTEM table should have only one entry. It lists the log identifier for the log file
that was accessed by the recovery system. The creator is the user who created the log indentifier
with the :GETLOG command. The number of records processed is usually greater than the number
of transactions given in the other tables because some transactions require more than one log record,
and there are header records and trailer records in each log file.

The RECOVERY SYSTEM table references the file to which the records were returned, the user
name and identifier, and the rmode and fmode parameters specified in the :FILE commands. Note
that all of these tables can be returned without recovering a data base by using the >CONTROL
STATS option when running the recovery program. Roll-back recovery ignores the rmode
parameter. ¢

85

Maintaining The Data Base

LOGGING INSTALLATION

In order to prepare a data base for transaction logging, you must set a log identifier (logid) into the data
base root file. The log identifier could be one associated with an existing log file, in which case you can go
directly to Step 3 (below) if you know the log identifier and password. Note that, in order to recover a
data base from the log file, you must either be the creator of the logid or have system manager capability.
Assuming you intend to create a new log identifier, you should take the following steps:

Acquire logging capability.

Acquire log identifier.

Set log identifier into data base, along with appropriate flags.

Store a backup copy of the data base. (This step is required when using roll-forward recovery,
recommended when using roll-back recovery.)

e Build log file if logging to disc.

NOTE

This is a one-time procedure. The logging maintenance operations are
performed on regular basis, perhaps daily (refer to "Maintaining Logging"
below).

1. Acquiring Logging Capability

A user must have logging capability in order to use the following MPE commands: :GETLOG, :RELLOG,
:ALTLOG, :CHANGELOG, :LISTLOG, and :SHOWLOGSTATUS. Logging capability is acquired through
the MPE system manager and account manager commands. First the system manager provides the
account logging capability by using the command :NEWACCT, or the command :ALTACCT if a new
capability is being assigned to an established account:

:NEWACCT acctname ,mgrname;CAP=capability list (include LG)
:ALTACCT acctname;CAP=capability list (include LG)

The account manager then can provide logging capability to individual users through the command
:NEWUSER, or the command :ALTUSER if a new capability is being assigned to an established user:

:NEWUSER username;CAP=capability list (include LG)
:ALTUSER username;CAP=capability list (include LG)

For example:

:NEWACCT CAPE,RICK;CAP=LG,AM,AL,GL,SF,ND,IA,BA
:NEWUSER ILSA;CAP=LG,AL,GL,SF,ND,IA,BA

(CAP=LG must be included to provide logging capability)

Refer to the MPE Commands Reference Manual for other MPE user logging commands, including

:RELLOG (removes a log identifier), :ALTLOG (alters an existing log identifier), and :LISTLOG (lists the
current log identifiers).

Any errors or messages that are followed by (ULOGERR#) or (ULOGMSG#) are returned by MPE. Refer

to the MPE Console Operator's Guide for more information.

DEC 85
7-17

Maintaining The Data Base

2. Acquiring Log ldentifier

A log identifier (logid) is an eight-character logical name that identifies a system logging process to which
log records are passed. Acquire the log identifier from MPE by using the command ‘GETLOG. Other
users can be allowed access to the log file by notifying them of the logid and its password. Users accessing
the logging system directly through MPE must supply the identifier and the password on the OPENLOG
intrinsic, in addition to having logging (LG) capability.

Syntax

:GETLOG logid;L0G=Llogfile,{DISC/TAPE/SDISC/CTAPE}

[;PASS=password] [;{AUTO/NOAUTO}]

Parameters

logid is the logging identifier to be established on the system. A string of up to
eight characters that are meaningful to the user application.

password is the password to be associated with the logging identifier. This parameter
protects the log file from unauthorized access. Up to eight characters are
allowed.

logfile is an MPE file reference that identifies the actual file to which the log
records are written. If the AUTO option is specified, the last three digits
are numeric (from 001-999). The first log file created with :GETLOG
must end with the last three digits equal to 001 if the AUTO option is used.
(A warning message will be issued if the logfile does not end in 001.)

DISC/SDISC is the device on which the log file is to reside. If the log file specified for
the logid is a serial file then the AUTO/NOAUTO option will be ignored.

TAPE/CTAPE is the device on which the log file is to reside.

AUTO performs an automatic CHANGELOG when the disc log file becomes full.

NOAUTO is the default. No CHANGELOG will be performed when the disc log file
becomes full.

Example

:GETLOG ORDERLOG;LOG=ORDER0OO1,DISC;PASS=PASSLOG

When the disc log file becomes full the file is closed and logging is shut down. If the AUTO option is used
user logging will initiate a CHANGELOG when the current log file becomes full. A new log file will be
created with the same logfile name incremented by one in the last digit (ORDERO002). This enables
logging to continue uninterrupted, also creating a sequence of log files or a log file set.

DEC 85
7-18

Maintaining The Data Base

3. Setting Log Identifier and Flags

The two previous commands were executed through the MPE user logging system. At this point, the data
base administrator must interface TurboIMAGE to the MPE user logging system by storing the log
identifier and password into the data base root file, using the DBUTIL program >>SET command, as
shown in the example below:

:RUN DBUTIL.PUB.SYS
>>SET ORDERS LOGID = ORDERLOG
PASSWORD? #%#%xs#%

DBUTIL checks the validity of the logid with MPE, and reports a warning if the log identifier is not valid
or the password is incorrect:

WARNING: non-existent LOGID

Once the log identifier has been set into the data base, the log identifier parameters should not be altered
in order for the logging and recovery system to function correctly.

Next, the data base administrator uses DBUTIL to set three flags in the root file indicating that the data
base is enabled for logging, the data base is disabled for user access, and the data base is enabled for
recovery. Each of these flags is discussed below.

ENABLE LOGGING FLAG. Enabling logging ensures that a journal of all data base modifications will
be logged and available for later use by the recovery system, if necessary. When the data base
administrator enables the data base for logging, DBUTIL checks whether a backup data base copy has been
stored with DBSTORE; if not, it issues a message warning the data base administrator to store the backup
copy. When logging is first installed, since the data base is stored after logging has been enabled, the
DBUTIL warning message can be interpreted as a prompt to store the data base. The command to enable
logging if using roll-forward recovery:

>>ENABLE dbname FOR LOGGING
WARNING: data base modified and not DBSTORED

If using roll-back recovery, >ENABLE dbname FOR ROLLBACK. Once the logid is set and the log file
built, the >ENABLE command for roll-back automatically enables logging and ILR for the data base.

DISABLE ACCESS FLAG. By disabling the data base for user access, the administrator ensures that
modifications can not be made to the data base. Any attempt to open the data base with an otherwise
valid call to DBOPEN will return an error message. Access to the data base should be disabled before
storing the backup copy, so that in the event of a system failure the data base will be restored with access
disabled. This will prevent users from opening the data base and making modifications before recovery is
executed.

Disabling access to the data base is also useful as a general security measure to prevent data base access at
unauthorized times. The DBUTIL command for disabling access is shown below:

>>DISABLE dbname FOR ACCESS
ENABLE RECOVERY FLAG. Enabling the data base for recovery gives the TurboIMAGE recovery
system access to the data base. The data base is stored with recovery enabled so that when it is restored, it

will be ready for recovery. The DBUTIL command for enabling recovery is:

>>ENABLE dbname FOR RECOVERY

DEC 85
7-19

Maintaining The Data Base

A DBSTORE can be done after the preceding flags have been set in the data base. A backup copy of the
data base is highly recommended. Logging status can be checked by referring to the procedure in
"DISPLAYING LOGGING STATUS", later in this section.

4. Building a Logfile for Logging to Disc

If the log file is to reside on disc rather than tape, the data base administrator must build the new file and
allocate space for it on disc by using the MPE command :BUILD.

Syntax

:BUILD logfile;CODE=LOG;DISC=[numrec] [, [numextents][,initialloc]]])

Parameters

logfile is the name of the log file being built, as specified in the :GETLOG
command.

numrec is the maximum number of logical records. Maximum value allowed is
2,147,483,647. Default is 1023.

nhumextents is the maximum number of disc extents; a value of from 1 to 32. Default is
8.

initialloc is the number of extents to be initially allocated to the file at the time it is
opened; a value of from | to 32. Default is 1.

Example

¢+BUILD ORDEROO1;CODE=LOG;DISC=200000,20,7
(This step is required only when logging to disc)

If the default NOAUTO option is specified in the :GETLOG command care should be taken to ensure that
disc log files are of sufficient size to prevent the end-of-file from ever being reached. This is because
MPE does not automatically switch to a new disc file, but instead causes the associated log process to
terminate when the log file is filled to capacity. Subsequent calls to TurboIMAGE intrinsics that require
log records to be written will therefore fail. If this event occurs in the middle of a transaction, the data
bases will be left in an inconsistent state. It will then be necessary to recover transactions with
roll-forward or roll-back recovery. Reaching the end of a disc log file is therefore similar in effect to a
system failure and should be carefully avoided. Consequently, disc log files should be built with a total
capacity far exceeding their required size and consisting of many extents (up to 32) of which only enough
to satisfy the expected capacity are initially allocated. The command :SHOWLOGSTATUS can be used to
determine when to perform a :CHANGEILOG to open a new log file.

DEC 85
7-20

Maintaining The Data Base

DISPLAYING LOGGING STATUS

The DBUTIL >>SHOW command can be used to display the log identifier and the status of the flags for
access, recovery, and logging. The following example illustrates roll-forward recovery and the commands
used to set the logid and flags into the data base, as presented in this section. If the steps regarding
Logging Installation have been followed the data base can be stored. (Note that passwords will not appear
on the terminal screen).

:RUN DBUTIL.PUB.SYS
HP 32215C.00.00 TurboIMAGE: DBUTIL (C) COPYRIGHT HEWLETT-PACKARD CO. 1984

>>SET ORDERS LOGID=ORDERLOG
PASSWORD ###%%%%

LOGID: ORDERLOG IS VALID
PASSWORD IS CORRECT

>>DISABLE ORDERS FOR ACCESS
Access is disabled
>>ENABLE ORDERS FOR RECOVERY, LOGGING
WARNING: Data base modified and not DBRESTORed
Recovery is enabled
Logging is enabled

>>SHOW ORDERS ALL
For data base ORDERS

Maintenance word is not present.

Access is disabled.

Autodefer is disabled.

Dumping is disabled.

Rollback recovery is disabled.

Recovery is enabled.

ILR is disabled.

Logging is enabled.

Data base last stored on MON, DEC 10, 1984, 1:09 PM
Data base has not been modified since last store date.
Restart is disabled.

Subsystem access is READ/WRITE.

LOGID: ORDERLOG is valid
password is correct
The language is O:NATIVE-3000.

BUFFER SPECIFICATIONS:
30(1/120)

No other users are accessing the data base.
>>

DEC 85
7-21

Maintaining The Data Base
MAINTAINING LOGGING

Each data base administrator should determine a log maintenance cycle for the data base. For example,
suppose the data base is maintained on a daily cycle. This means that at the beginning of each day, the log
process is initiated from the console with the :LOG command and flags are set by the data base
administrator (see below). At the end of the day, the console operator stops the log process and the
administrator resets the flags for storage of the backup data base. Note that the duration of this
maintenance cycle depends on at least two considerations: the amount of time needed to store the data
base periodically, and the amount of time required to recover the data base from the log file using
DBRECOV if the system fails. The more often the data base backup copy is stored, the smaller the log file
and recovery time will be. Regular backup of the data base is recommended, however a data base backup
copy is not needed when using roll-back recovery. Refer to Appendix G for a brief overview of the
disadvantages and benefits of logging to disc and logging to tape. This appendix includes sample job
streams for the logging cycle.

Starting the Logging Process

After a data base backup copy has been stored as described earlier in "LOGGING INSTALLATION", a
logging process must be allocated to the log identifier so that it can be activated. A log process is an MPE
system process responsible for buffering log records in memory. If the log file is on tape, the log process
also buffers the log records on disc before writing them to the log file. The operator initiates this process
from the console by using the command :LOG.

Syntax

START
:LOG logid,{ RESTART
STOP

Parameters

logid is the name of the logid to be activated; the logid has been set into the data
base root file previously.

START initiates a log process for the first time.

RESTART initiates a log process when appending new log records to an old log file.

STOP terminates a log process. Termination does not take effect until all current
users have closed the log file by calling the CLOSELOG intrinsics.

Example

:LOG ORDERLOG, START

DEC 85
7-22

Maintaining The Data Base

Note that if the log process is stopped using the :1.OG command, but a backup data base copy is not
generated at that time, the console operator should use the RESTART option in order to resume logging to
the same log file.

To determine whether or not a log process is running, use the MPE command :SHOWLOGSTATUS to
determine the log identifiers of active log processes. :SHOWLOGSTATUS will display the percentage of
records in the log file if the logid output is to disc. This additional information may prove helpful in
gaining a better idea when to perform a :CHANGELOG.

Example
: SHOWLOGSTATUS
LOGID CHANGE AUTO USERS STATE CUR-RECS MAX-REC %USED CUR-SET
DUMMYLOG NO NO 4 INACTIVE 100 1000 10% 1
TAPELOG YES 1 INACTIVE 5738 1
ORDERLOG ~ YES YES 2 INACTIVE 500 1000 50% 2

Changelog Capability

The MPE CHANGELOG feature provides a continuous MPE user logging process, with the ability to
change log file tape or disc files when they reach capacity without stopping the user logging process. User
logging will also keep track of the order of the files in the log file set. Parts of the changelog record
contain the file set number (001-999) and device type of the file names in the record. In addition, there
are records for the previous file in a set, first file in a set, and current file in a set. This format will allow
recovery to always start at the beginning of the file set, or at any point within the file set if the sequence
number is used, and reopen the log files on the same device type that they were created. The user issuing
the :.CHANGELOG command must be the creator of the logid. If the user issuing a :CHANGELOG is not
the creator of the logid either LG or OP capability is required. If the mirror data base method
(DBRECOV STOP/RESTART) is being used, CHANGELOG makes logging without interruption on the
primary system possible.

Syntax

:CHANGELOG logid|;DEV=device]

Parameters
logid is the name of the currently active logging process.
device is the device name of the new log file (DISC, TAPE, SDISC, CTAPE). If the

device specified is DISC, the file will be created in the logid creators logon
group and account.

DEC 85
7-23

Maintaining The Data Base

Example
: CHANGELOG ORDERLOG; DEV=DISC

Note that the logid specified must be that of the currently active logging process. If the logfile is changed
using :ALTLOG no linkage of the log file set is provided. CHANGELOG can only be performed on a
logid set up with the :GETLOG command. The CHANGELOG command will terminate if the logging
process state is RECOVERING, STOP, INITIALIZING, or CHANGELOG is already pending. The
following message will be displayed on $STDLIST:

INVALID STATE OF PROCESS

After issuing the :CHANGELOG command, if the logid is valid, changelog records are posted to the
current log file. The current log file is closed and the new log file is opened. A message similar to the
following message is displayed on the $STDLIST and the console to confirm the change:

Log file for logid ORDERLOG has been changed from ORDEROO1 to ORDEROO2

If the new log file is a serial file the following message will appear on the console requesting the mounting
of a new log file, in this case the logid is ORDERLOG:

Mount new {tape/cartridge tape/serial disc} for logid ORDERLOG

If a :LISTLOG command is executed while the logging process is performing a CHANGELOG, the file
name displayed will be that of the current log file. The log file name will not be updated until the
CHANGELOG sequence successfully completes. The :SHOWLOGSTATUS command may be used to
display the current status of a logging process to determine if a CHANGELOG is taking place.

The following example shows the display of :LISTLOG. A CHANGELOG is currently taking place on log
file ORDEROO1, since the CHANGELOG to ORDERO002 has not yet successfully completed, ORDERGO!
is displayed:

Example
:LISTLOG
LOGID CREATOR CHANGE AUTO CURRENT LOG FILE
DUMMYLOG DATA.SYS NO NO DUMMY.PUB.SYS
TAPELOG DATA.SYS YES TAPEOO1
ORDERLOG TST.MKTG YES YES ORDEROO1.MKTG.SYS
DEC 85

7-24

Maintaining The Data Base

Setting Data Base Enable/Disable Flags

The data base administrator now can allow users to modify the data base by running DBUTIL and
enabling data base for access. The administrator should also disable recovery at this time. This provides a
safeguard against unintended recovery if DBRECOV is executed from a stream file against several data
bases simultaneously.

Example

:RUN DBUTIL.PUB.SYS

>>ENABLE ORDERS FOR ACCESS
Access is Enabled

>>DISABLE ORDERS FOR RECOVERY
Recovery is Disabled

Ending the Logging Maintenance Cycle

At the end of the specified maintenance cycle (e.g., the end of the day) the above maintenance steps are
reversed; that is, the console operator stops the logging process, and the data base administrator disables
access, enables recovery, and stores a backup data base copy (required for roll-forward recovery).

Example

:LOG ORDERLOG,STOP

:RUN DBUTIL.PUB.SYS

>>DISABLE ORDERS FOR ACCESS
Access is Disabled

>>ENABLE ORDERS FOR RECOVERY
Recovery is Enabled

>>EXIT

END OF PROGRAM

:RUN DBSTORE.PUB.SYS
WHICH DATA BASE? ORDERS
DATA BASE STORED

END OF PROGRAM

DEC 85
7-25

Maintaining The Data Base
Notes on Logging

e« LOG RECORDS. The result of installing logging as described above is that all data base modifications
(DBPUT, DBUPDATE, DBDELETE) are logged, and in modes 1 through 4 calls to DBOPEN, DBCLOSE,
DBBEGIN, DBEND, and DBMEMO are logged to the log file. Each DBBEGIN and DBEND cause a log
record to be written to the log file which includes such information as time, date, and user buffer.
These log records are used by DBRECOV to identify logical transactions. All TurboIMAGE log records
are contained within MPE WRITELOG records.

DBOPEN log records contain a time stamp in the data base root file, indicating the date and the time
of the last DBSTORE (this time stamp is referenced by DBRECOV roll-forward recovery). DBOPEN
log records also include the user identifier, log identifier, and the name, group, and account of the user,
data base, and program.

DBUPDATE log records include both the new and the old data (before and after images); DBDELETE
includes a copy of the deleted data (before image); DBPUT includes the record being added (after
image).

« LOG FILE TIME STAMPS. There are two different log file time stamps; the DBSTORE time stamp set
at the time the last data base backup copy was made (used by roll-forward recovery), and the roll-back
time stamp created at the time the first DBOPEN is executed against the data base. The DBSTORE
time stamp is fixed and does not change once the data base backup copy has been made. The roll-back
time stamp is updated to the real time of the first DBOPEN following each close of the data base,
providing a roll-back termination point should a roll-back recovery be required.

« LOGGING TO TAPE OR DISC. It is the choice of the data base administrator whether to log to tape
or disc. The overhead required by the logging operation is comparable on disc or tape. However there
are other factors that should be considered. Logging to tape is the more secure option, since a log file
residing on tape is less susceptible to damage from possible system failure than a disc log file. (Refer to
Appendix G for considerations when logging to disc and tape.)

In terms of allocating resources, logging to tape requires that the system be able to make a tape drive
available as long as the data base is accessible for modification. If the decision is made to log to disc,
you must use the MPE command :BUILD to create a new file and allocate space on disc. This allocation
must be generous enough to avoid any possibility of filling the log file to capacity, as described earlier
in "Building A Logfile For Logging To Disc".

e DISABLING LOGGING. While the transaction logging and recovery system is being used, logging is
constantly enabled. However, in the event that logging is disabled and it is to be re-enabled, storing the
data base with DBSTORE before re-enabling logging is recommended. This ensures that the DBSTORE
flag and time stamp set when logging was first enabled are not reset when logging is re-enabled. This
applies to roll-forward recovery only.

+ ERASING THE DATA BASE. The execution of utility programs is not logged. If DBUTIL is used to
erase the data base, the >>ERASE command automatically disables logging, ILR and roll-back
recovery. Therefore, if the data base is erased, store the erased data base with DBSTORE before
enabling the data base for logging once again.

DEC 85
7-26

Maintaining The Data Base
ROLL-BACK RECOVERY

Roll-back recovery provides rapid recovery of data base data integrity following a "soft" system crash
(e.g., system failure or loss of working memory). The roll-back feature is invoked through the DBRECOV
utility and requires only the current data base log files in order to restore data integrity. A data base
backup copy is not required for roll-back recovery. Regular backup of the data base is recommended,
however, and is always required for roll-forward recovery in the event of a more serious problem (e.g., a
disc head crash or problems occurred while roll-back recovery was in progress).

When invoked, the roll-back recovery feature will "roll-back", or undo, any incomplete data base
transaction as shown in the log file following a soft system crash. Intrinsic Level Recovery (ILR) must
also be enabled when using the roll-back feature to prevent the possibility of broken chains within the
data structure. ’ '

In the event of a system failure, any multiple-intrinsic data modifying transaction that was incomplete
could cause the data base contents to be logically inconsistent.

With roll-back enabled prior to the time of system failure, a record of each user transaction, in the
sequence of occurrence, is available to determine which transactions were incomplete at the time of
failure. Following a system failure all incomplete transactions as shown in the log file must then be
undone, or rolled-back.

The following diagram illustrates the transactions of three different users at the time of a system failure:

*
user 1 * SYSTEM
user 2 *
user 3 * FAILURE

JERBUERER BENENEEE *

*

time ——»

In the above illustration the first user has completed one transaction (T1) and aborted another (T4) prior
to the system failure. Both users two and three have completed two transactions each and each has one
incomplete transaction at the time of failure. Individual data base transactions T1, T2, T3, TS, and T6
were completed and are properly reflected in the data base following system failure. Transactions T7 and
T8, however, were incomplete at the time of system failure, causing an incomplete modification of data to
be reflected in the data base. These incomplete transactions (T7 and T8) will then be rolled-back to their
beginning, returning all affected data in the data base to their state before T7 and T8 began execution.

When transaction T4 is aborted, TurboIMAGE completes the transaction by issuing an abnormal end
(DBABEND). This transaction is then seen as completed by the roll-back feature and is not normally
rolled-back. If the aborted transaction is also to be rolled-back, the following DBRECOV command
string must be issued before issuing the DBRECOV command >RUN (refer to Section 8, "DBRECOV"):

>CONTROL NOABORTS

The above command string causes the aborted transaction to be treated as an incomplete transaction
during transaction roll-back. When >CONTROL NOABORTS is issued, TurboIMAGE only rolls-back
aborted transactions which occurred during the last recovery block before the system failure. Refer to
Section 8 ,DBRECOV >CONTROL, "RECORD NUMBERS AND TABLE OVERFLOW" for considerations
when using >CONTROL command.

DEC 85
7-27

Maintaining The Data Base

Intrinsic Level Recovery (ILR) Requirements

To ensure correctness of the data base physical data links, ILR must be enabled when using the roll-back
feature. With ILR enabled when a system failure occurs TurboIMAGE will automatically reconstitute
chains. Without ILR enabled, a system failure may cause a loss of physical integrity and, as the roll-back
feature does not repair broken chains, recovery of the data base would then be difficult. Intrinsic Level
Recovery is enabled automatically when roll-back is enabled, but ILR must be manually disabled when
disabling roll-back. Refer to "Using ILR", covered earlier in this section. Since roll-back recovery
enables ILR, output deferred mode may not currently be enabled on the data base. If the data base is
enabled for AUTODEFER (output deferred mode), the following message will be printed after the user
attempts to enable ROLLBACK:

AUTODEFER MUST BE DISABLED BEFORE ILR CAN BE ENABLED

(Refer to DBUTIL >>ENABLE in Section 8 for more information).

Enabling the Roll-Back Feature
To enable the roll-back feature complete the following sequence:

1. Set the logid and build a log file (if logging to disc) as shown in "Logging Installation", steps 1 through
5, earlier in this section.

2. Enable the roll-back feature for each particular data base by entering the DBUTIL command string:
>>ENABLE dbname[/maintenance word] FOR ROLLBACK.

3. Start the logging process and enable user access to the appropriate data bases as shown in "Maintaining
Logging" earlier in this section. Once the logid has been set and log file built, DBUTIL will
automatically enable logging and ILR when roll-back is enabled. Note that logging and ILR must be
disabled manually.

If the logid was not set and/or the log file not built before issuing the >>ENABLE command for
roll-back, a WARNING message that the logid is non-existent will be printed on the screen.

When roll-back is enabled, DBUTIL sets a roll-back flag to indicate that roll-back is enabled for the data
base. DBUTIL also reserves six words in the root file for the roll-back time stamp (three words for the
previous time-stamp and three words for the current time stamp). The roll-back time stamp is updated
and logged in the log file and in the root file when the data base is first opened. Roll-back recovery then
uses the time stamp during recovery to verify the correct log file for each data base.

CAUTION

In the event of a system failure, do not restart logging before running the
recovery system. Log records may have been lost due to the system failure.
If logging is r:sumed without a recovery, the resulting discontinuous log file
would cause invalid results in the event of a subsequent recovery.

DEC 85
7-28

Maintaining The Data Base

Disabling the Roll-Back Feature

In order to disable the roll-back feature, each involved data base must be in a quiet state with no user
accesses in progress. Disable the roll-back feature by entering the DBUTIL command string:

>>DISABLE dbname FOR ROLLBACK

When roll-back is disabled DBUTIL resets the roll-back flag and roll-back time stamp.

[cauTIoN]

DO NOT DISABLE ROLLBACK IF ROLLBACK RECOVERY MUST BE
USED LATER. This action will reset the logging time stamp. Once the
logging time stamp is reset (when roll-back is disabled). Roll-back
recovery cannot be performed with the current log file on the named data

base. The data in the data base is considered correct and therefore cannot
be rolled-back.

When the roll-back >>DISABLE command is issued, DBUTIL prompts a warning to remind you that the
time stamp will be erased and prompts for a response as follows:

WARNING: ROLLBACK time stamp will be erased.
Please type Y to confirm your disable command>>

If you enter Y, DBUTIL will then continue the roll-back disable process. If Y is not entered the

>>DISABLE command is not performed.

Performing Roll-Back

To complete the transaction roll-back process following a system failure, perform the following steps:

1. Following a restart to bring-up the operating system, locate the applicable log file media to be used for
transaction roll-back. If logging to tape, the correct tape will need to be applied. If using the
CHANGELOG feature of MPE and there are multiple log file tapes, this will be the first tape of the
series. If logging to disc, TurboIMAGE will automatically locate the applicable log file by checking the
beginning of the root file for the logid.

2. Backup of the data base is recommended, in case a system failure occurs during the Tecovery process.

3. Enter the MPE command string:

:RUN DBRECOV.PUB.SYS

4. Enter the following DBRECOV command (where dbname is the name of individual data bases to be
rolled-back):

>ROLLBACK dbname [,dbname2,.... sdbnameN]

DEC 85
7-29

Maintaining The Data Base

5. Enter all other desired DBRECOV commands (>FILE, >CONTROL, and >PRINT). Note that the >FILE
command optional parameter rmode is not used with the roll-back feature. (Refer to Section 8 for
more information.)

6. Enter the DBRECOV command:

>RUN

Following entry of the >RUN command, DBRECOV will ask you to mount the log tape (if the log file

media is tape). Continue the roll-back process as directed by messages returned to both the console and

the terminal screen. If using the :CHANGELOG command or ‘GETLOG AUTO option the following
message will be returned to both console and terminal screen:

Reply CONtinue on console when logfile is ready

The response CON would be given at the console.

RUN COMMAND

After the >RUN command is given, the DBRECOV program recovers the specified data bases, creates
specified user recovery files, and terminates. - The DBRECOV program could be terminated alternatively
without any recovery taking place with an >EXIT command.

For recovery to succeed, the person running DBRECOV (usually the data base administrator) must have
access to the log file. This implies having system manager capability or being the creator of the log
identifier with read access to the log file if it resides on disc in a different logon group and account. If the

log file is on tape, the user must be able to provide the volume identifier to the operator mounting the
tape.

Other DBRECOV Commands
Other DBRECOV commands available include:
¢ >CONTROL

e >FILE

¢ >PRINT

DEC 85
7-30

Maintaining The Data Base

CONTROL COMMAND

The >CONTROL command is used to specify the conditions for recovery. If the >CONTROL command is
not issued, the following conditions must be met for recovery to succeed:

e The data base time stamp must correspond with the time stamp in each DBOPEN log file record.
e No errors are allowed in job (batch) execution.
e Transactions which are incomplete due to program aborts are rolled-out.

The >CONTROL command can be used to override these conditions. Each override option can be negated
by specifying its default option, and vice versa:

OPTION DEFAULT OPTION
NOABORTS ABORTS
MODE4 MODEX

STATS NOSTATS
ERRORS=nnnn ERRORS=0
EOF =nnnn *EOF=nnnn

*The initial default condition is that no end-of-file is imposed on recovery. Once a particular record
number has been specified by EOF, it can be changed by specifying a new record number.

The following provides an example of the override:
>CONTROL MODE4
MODE#4 allows users read access to the data base while recovery is in process.

For discussion of options and form of the >CONTROL command, refer to the >CONTROL command
under the utility program DBRECOV.

Note that the >CONTROL command does not specify a data base. Therefore, all CONTROL options apply
to all data bases being recovered.

DEC 85
7-31

Maintaining The Data Base

FILE COMMAND

The recovery file facility is an interface between the recovery system and the application program. With
the >FILE command, DBRECOV sorts the log file by individual users and/or user identifiers, and
designates an MPE file as the destination for the log records for each user.

The recovery file facility is based on the concept of transactions within transaction blocks. A transaction
block consists of all transactions between a call to DBOPEN and DBCLOSE. Within each transaction
block, a transaction is defined as either:

1. A single call to DBPUT, DBUPDATE, or DBDELETE if not preceded by a call to DBBEGIN, or

2. A sequence of calls beginning with a call to DBBEGIN, followed by any number of calls to DBPUT,
DBUPDATE, or DBDELETE and ending with a call to DBEND.

For each transaction block, the >FILE command returns the initial DBOPEN log record to the user
recovery file. The DBCLOSE record is returned as well, unless either:

1. Not all of the transactions within the block could be recovered, or

2. There was no DBCLOSE log record for this block on the log file. This happens when the system fails
while the data base is open.

Consequently, an application can determine the outcome of recovery to some extent by examining the
number of DBOPEN and DBCLOSE or pairs of DBBEGIN and DBEND log records returned to the user
recovery file. If there are as many calls to DBCLOSE as to DBOPEN, it is likely that all transactions were
successfully recovered. However, there is a possibility that an entire transaction block was lost due to the
system failure if the block was very short. Fewer calls to DBCLOSE indicate the possibility that some
transactions were lost and need to be re-entered. More information about recovery can be inferred from
the recovery file by using the optional fmode parameter to return transactions to the user recovery files in
addition to the intrinsics DBOPEN and DBCLOSE. Fmode refers to transactions that were rolled-out.
Refer to the DBRECOV command >FILE for details of operation.

PRINT COMMAND

The >PRINT command is an option used to display information before actually initiating recovery with
the >RUN command. If DBTABLE is specified in the command, the names of data bases specified for
recovery by >RECOVER commands are returned. If FILETABLE is specified, file references, user
references, and fmodes specified by >FILE commands are returned. These tables, along with other
statistics, are also printed when recovery is complete.

DEC 85
7-32

Maintaining The Data Base

ROLL-FORWARD RECOVERY

The roli-forward recovery system can be executed to bring data bases back to a likeness of their state at
the time of a hard system failure (e.g., disc head crash). This requires that a backup copy of the data base
has been stored and the log file is available. (Refer to "Logging Installation”, earlier in this section, for
roll-forward logging information.)

When executing roll-forward recovery following a hard system failure, the TurboIMAGE utility program
DBRECOV recovers the data base physical and logical integrity by suppressing any incomplete
transactions. A backup copy of the data base is updated with the completed transactions that were
written to the log file.

Recovery of the data base requires restoring the backup copy and running the recovery system to
re-execute the data base modifications from the log file. In addition, a transaction-oriented file facility
can be used by the data base administrator to route log records back to individual user recovery files and
to return information regarding the successful recovery or suppression of transactions. Following recovery,
an application program can use these files to inform each user where to resume transactions. (Refer to the
"DBRECOV >CONTROL" command in Section 8.)

Although the logging and recovery system is designed to successfully re-execute transactions that
completed before the system failure, there is a possibility that some transactions will not be recovered.
The possible causes of this situation include the following:

¢ One or more records could be lost in the log system buffers if the system fails before they are written to
the log file.

¢ A transaction may have originally failed to complete due to the failure, and is therefore suppressed on
purpose.

¢ A transaction may depend upon some data base modification that was suppressed. This condition
indicates inadequate locking between processes.

e An incorrect data base was restored. Recovery will yield invalid and erroneous results or a record table
overflow if this occurs.

If any transaction fails to be recovered, all subsequent calls within the same transaction block are
suppressed as well. (For information about transaction blocks refer to "FILE Command", later in this
section.)

CAUTION

In the event of a system failure, do not restart logging before running the
recovery system. Log records may have been lost due to the system failure.
If logging is resumed without a recovery, the resulting discontinuous log file
would cause invalid results in the event of a subsequent recovery. The same
is true for making modifications to the data base. The data base should be
disabled for user access until recovery has completed. Follow the
recommended steps when performing a DBSTORE. (Refer to "Making a
Data Base Backup Copy".)

DEC 85
7-33

Maintaining The Data Base

Intrinsic Level Recovery (ILR) Requirements

When using roll-forward logging for the purpose of recovery following a system failure, it is not necessary
to enable the Intrinsic Level Recovery (ILR) feature as roll-forward logging provides recovery of both
intrinsics and transactions following a system failure.

If roll-forward logging is enabled and being used to provide a log file for audit purposes only, ILR should
be enabled to ensure correctness of the data base physical data links. Without ILR enabled (when using
roll-forward logging for audit only), a system failure may cause a loss of physical integrity within the log
file due to broken chains. If logging is restarted before running roll-forward recovery on the data base,
an inconsistent log file will result. ILR should not be used as a recovery method when the data base is
enabled for roll-forward recovery.

Enabling the Roll-Forward Feature
To enable the roll-forward feature complete the following sequence:

1. Set the logid and build a log file (if logging to disc) as shown in "Logging Installation”, steps 1 though 5,
earlier in this section.

2. Enable the roll-forward feature for each particular data base by entering the DBUTIL command
string:

>>ENABLE dbrname FOR LOGGING

3. Start the logging process and enable user access to the appropriate data bases as shown in "Maintaining
Logging", earlier in this section. The Intrinsic Level Recovery (ILR) feature must be manually enabled
at this point if desired. Use of ILR is recommended as it eliminates possible problems with Broken
chains within the data base. (Refer to "Using ILR", earlier in this section.) If used, ILR must be
manually disabled.

DEC 85
7-34

Maintaining The Data Base

Restoring the Backup Data Base Copy

Before roll-forward recovery can begin, the data base administrator must restore the data base to the state
at which logging was enabled. This is done by running the DBRESTOR program after purging the
damaged data base or by using the MPE facility :RESTORE. Keep in mind that to use RESTORE all data
bases and files must reside in the same group and account, and you must have account manager capability.
You should ensure that recovery is enabled and access disabled to prevent user modifications before the
recovery system executes (refer to the DBUTIL command >>SHOW). If the flags were set as recommended
prior to storage of the backup copy, no changes will be needed.

Several data bases can log to the same log file simultaneously since each call to DBOPEN specifies the
fully qualified name of the data base. If all data bases that logged to the same log file are to be recovered
simultaneously, then all backup copies must be restored prior to running the recovery system. However, if
the recovery system begins execution before a data base has been restored, accidental recovery is prevented
if recovery has been disabled on the working data base, as specified earlier in "Maintaining Logging".

Example

:RUN DBRESTOR.PUB.SYS
WHICH DATA BASE? ORDERS
DATA BASE RESTORED

END OF PROGRAM

:RUN DBUTIL.PUB.SYS
>>SHOW ORDERS FLAGS
For Data Base ORDERS
Access is Disabled
Dumping is Disabled
Logging is Disabled
Recovery is Disabled
>>EXIT

END OF PROGRAM

CORRESPONDENCE BETWEEN BACKUP COPY AND LOGFILE

The TurboIMAGE logging and recovery systems depend upon the exact correspondence between the stored
backup data base copy and the working data base on disc at the time logging was initiated. The DBSTORE
flag and timestamp, properly used, will enforce this condition. Therefore, it is strongly recommended that
you always use DBSTORE to generate backup copies.

For flexibility, in the event that you might use :STORE or :SYSDUMP to store the backup, the capability
exists to defeat the timestamp and DBSTORE flag mechanism, using the NOSTAMP and NOSTORE
options of the >CONTROL command. In this case, you must assume responsibility for maintaining the
correspondence between backup copy and the log file. Note that a data base recovered with the wrong log
file causes DBRECOV to generate erroneous data in the data base and that this condition cannot always
be detected. Modifications to the data base with logging disabled will also cause the the recovered data
base to be incorrect. DBRECOV may also abort with a record table overflow due to the necessity of
moving transactions from the old record number to a new record number when modifications have been
made.

DEC 85
7-35

Maintaining The Data Base

Recovering Data Without a Backup Copy

If a data base structure is damaged, and no backup copies are available, it may be possible to salvage most
or all of the data by serially reading the data entries, writing them to a tape or a disc file, recreating the
data base, and reloading the data. If structure damage is detected by an abnormal termination of the
DBUNLOAD program running in CHAINED mode, or by a discrepancy between the number of entries
unloaded and the number expected from one or more data sets, it may be possible to unload the data base
by running DBUNLOAD in SERIAL mode, which does not depend on internal linkages. These
DBUNLOAD modes are discussed in the next section.

If all necessary existing manual master data entries are written to tape or serial disc, reloading the data
base using the DBLOAD program, after erasing the data base using DBUTIL, results in a structurally
intact approximation of the original data base.

Performing Roll-Forward

To complete the transaction roll-forward process following a hard system failure, perform the following
steps:

1. Following a restart to bring-up the operating system, locate the applicable log file media to be used for
roll-forward recovery. If logging to tape, the correct tape will need to be applied. If using the
changelog feature of MPE and there are multiple log file tapes, this will be the first tape in the series.
If logging to disc, TurboIMAGE will automatically locate the applicable log file by checking the
beginning of the root file for the logid.

2. Enter the following MPE command string:
:RUN DBRECOV.PUB.SYS

3. Enter the DBRECOV command below (where dbname is the name of the individual data bases to be
recovered):

>RECOVER dbname |[,dbname?,. .. ,dbnameN]

4. Enter all other desired DBRECOV commands (>FILE, >CONTROL, and >PRINT). Of the available
DBRECOV commands, only the >RECOVER and >RUN commands are necessary for recovering a data
base.

5. Enter the DBRECOV command >RUN. Following the entry of the >RUN command, DBRECOV will
ask you to mount the log tape (if the log file media is tape). Continue the roll-forward process as
directed by messages returned to both the console and the terminal screen.

6. If using the :CHANGELOG command or :GETLOG AUTO option and logging file media is tape, the
following message will appear on the terminal screen and the console:

Reply CONtinue on console when logfile is ready

The response CON would be replied to at the console.

DEC 85
7-36

Maintaining The Data Base

Post-Recovery Procedures

After a recovery has been completed, the data base administrator and system manager have three
procedural options. The option chosen determines the recovery procedure in the event of a second system
failure. Together, the data base administrator and system manager or console operator should agree upon
the best post-recovery procedure in order to avoid confusion at recovery time. The options available after
recovery include:

1. The data base administrator stores a new backup data base copy, and the system manager or operator
starts a new log file from the console. In the event of a subsequent system failure, the new backup data
base is restored and recovered against the new log file. This option allows for a straightforward
recovery procedure but delays users from accessing the data base until the new backup copy has been
generated.

2. A new backup data base is not generated; the system manager or operator resumes transaction logging
to the same log file using the RESTART option. In the event of a subsequent system failure, the old
data base copy is restored and recovered against the log file.

This procedure is the same as the original recovery, but takes longer due to the additional log file
records. Users can access the data base after the first system failure without waiting for it to be stored.

Do not restart a log file before the data base bas been recovered after a system failure. Otherwise, since
some log records could have been lost in the system failure, the log file may not be consistent with the
true state of the data base. A recovery is necessary to bring the data base and log file into agreement
before restarting the log process.

3. A new backup data base is not generated; the system manager or operator initiates logging to a new log
file. In the event of a system failure, the old data base copy is restored and two recoveries are executed:
the first against the old log file, the second against the new log file.

Until a new data base backup copy is generated, if the system manager or operator consistently starts
logging to a new log file after a system failure, a total recovery preceded by n failures requires n
executions of the recovery system.

Note that the second and subsequent recoveries of a data base against more than one log file will be
refused unless the DBSTORE flag is disabled. This is because the first modification re-executed from
the first log file clears the DBSTORE flag from the data base rootfile. Subsequent calls to DBRECOV
can only succeed by specifying the >CONTROL NOSTORE option. Furthermore, the data base
administrator must ensure that the log files are recovered in the proper order.

This procedure is not recommended if option #2, above, is available.

DEC 85
7-37

Maintaining The Data Base

RECOVER COMMAND

The >RECOVER command designates the name of a data base to be recovered. If more than one data
base has logged to the same log file, they can be recovered concurrently by typing the data base names
separated by a comma.

If the data base copy was stored with a procedure other than DBSTORE (for example, MPE RESTORE),
the DBSTORE flag will not have been set in the data base root file. If you are sure you have restored the
correct, unmodified version of the data base, and wish to use it for recovery, the >CONTROL NOSTORE
option must be entered before the >RECOVER command can succeed (refer to >CONTROL).

Other conditions necessary for success of the >RECOVER command include:

e The data base must be accessible to you from your logon group and account.

e The log identifier must not have been altered since the log file was generated (see Setting Log Identifier
and Flags In Data Base).

e The data base must be enabled for recovery.

e All data bases specified for recovery must contain the same log identifier.

e You must be the creator of the log identifier, unless you have system manager capability.
e No other users are accessing the data base.

The last condition, above, can be overridden if users are given read access during recovery (refer to the
>CONTROL MODE4 command in "DBRECOV").

If the >RECOVER command succeeds, recovery can be initiated by typing the >RUN command.

RUN COMMAND

After the >RUN command is given, the DBRECOV program recovers the specified data bases, creates
specified user recovery files, and terminates. The DBRECOV program could be terminated alternatively
without any recovery taking place with an >EXIT command.

For recovery to succeed, the person running DBRECOV (usually the data base administrator) must have
access to the log file. This implies having system manager capability or being the creator of the log
identifier with read access to the log file if it resides on disc in a different logon group and account. If the
log file is on tape, the user must be able to provide the volume identifier to the operator mounting the
tape.

DEC 85
7-38

Maintaining The Data Base

Other DBRECOV Commands
Other DBRECOV commands available include:
>CONTROL
>FILE

>PRINT

CONTROL COMMAND

The >CONTROL command is used to specify the conditions for recovery. If the >CONTROL command is
~ not issued, the following conditions must be met for recovery to succeed:

» The data base time stamp must correspond with the time stamp in each DBOPEN log file record.
¢ The DBSTORE flag must be set in the data base root file.

¢ No errors are allowed in job (batch) execution.

¢ Transactions which are incomplete due to program aborts are recovered.

The >CONTROL command can be used to override these conditions. Each override option can be negated
by specifying its default option, and vice versa:

OPTION DEFAULT OPTION

NOSTAMP STAMP

NOSTORE STORE

NOABORTS ABORTS

MODE4 MODEX

STATS NOSTATS

ERRORS=nnnn ERRORS=0
STOPTIME=dateX timeX #STOPTIME=dateY timeY
EOF=pppp #EOF=qqqq

* The initial default condition is that no stoptime or end-of-file is imposed on recovery. Once a
particular date or record number has been specified by STOPTIME or EOF, it can be changed by
specifying a new date or record number.

The following provides an example of the override:
>CONTROL NOSTAMP,STAMP

Since STAMP was entered after NOSTAMP, STAMP negates NOSTAMP, so that recovery proceeds with
the timestamp check intact.

For discussion of options and form of the >CONTROL command, refer to the >CONTROL command
under the utility program DBRECOV. Note that the >CONTROL command does not specify a data base.
Therefore, all CONTROL options apply to all data bases being recovered.

DEC 85
7-39

Maintaining The Data Base

FILE COMMAND

The recovery file facility is an interface between the recovery system and the application program. With
the >FILE command, you sort the log file by individual users and/or user identifiers, and designate an
MPE file as the destination for the log records for each user.

The recovery file facility is based on the concept of transactions within transaction blocks. A transaction .
block consists of all transactions between a call to DBOPEN and DBCLOSE. Within each transaction
block, a transaction is defined as either:

1. A single call to DBPUT, DBUPDATE, or DBDELETE if not preceded by a call to DBBEGIN, or

2. A sequence of calls beginning with a call to DBBEGIN, followed by any number of calls to DBPUT,
DBUPDATE, or DBDELETE and ending with a call to DBEND.

For each transaction block, the >FILE command returns the initial DBOPEN log record to the user
recovery file. The DBCLOSE record is returned as well, unless either:

1. All of the transactions within the block could not be recovered (refer to the first page of Roll~Forward
Recovery), or

2. There was no DBCLOSE log record for this block on the log file. This happens when the system fails
while the data base is open.

Consequently, an application can determine the outcome of recovery to some extent by examining the
number of DBOPEN and DBCLOSE or pairs of DBBEGIN and DBEND log records returned to the user
recovery file. If there are as many calls to DBCLOSE as to DBOPEN, it is likely that all transactions were
successfully recovered. However, there is a possibility that an entire transaction block was lost due to the
system failure if the block was very short. Fewer calls to DBCLOSE indicate the possibility that some
transactions were lost and need to be re-entered. More information about recovery can be inferred from
the recovery file by using the optional rmode and fmode parameters. These parameters return transaction
information to the user recovery files in addition to the intrinsics DBOPEN and DBCLOSE. Rmode and
fmode refer respectively to transactions that succeeded and failed to be recovered. Refer to the
DBRECOV command >FILE for details of operation.

PRINT COMMAND

The >PRINT command is an option used to display information before actually initiating recovery with
the >RUN command. If DBTABLE is specified in the command, the names of data bases specified for
recovery by >RECOVER commands are returned. If FILETABLE is specified, file references, user
references, fmodes and rmodes specified by >FILE commands are returned. These tables, along with other
statistics, are also printed when recovery is complete.

DEC 85
7-40

Maintaining The Data Base

THE MIRROR DATA BASE

Transaction logging and regular backups are good maintenance. However, if data bases must be accessible
at all times, and cannot be down, even for maintenance, then a new maintenance method is needed. A
system can be set up for constant access or "high availability", and still have controlled maintenance.

The mirror data base is the fundamental element in creating a high availability data base system. This
system consists of two identical data bases on two separate computer systems. One data base is housed on
a primary system and is constantly accessible to users and application programs. The other "mirror" data
base resides on the secondary system and is used for maintenance.

To establish a mirror data base, the following requirements are necessary:

e Two identical copies of the data base(s) is needed, one copy on the primary system, one on the secondary
system.

e All transactions on the primary system must be logged to a permanent file.

e Move (or copy) the file containing the transactions to the secondary system, and update the data base(s)
on the seconary system using the transactions files.

Once the secondary system is established, it can be used to make backups of the data base. The primary
system never has to be brought down for maintenance.

DEC 85
7-41

Maintaining The Data Base

DBRECOV STOP-RESTART FEATURE

MPE CHANGELOG and GETLOG AUTO option make logging without interruption on the primary
system possible, thus increasing the availability of the data bases.

After the log files are transferred to the secondary system of the mirror data base system, they are applied
to the mirror data bases using the DBRECOV roll-forward recovery process. DBRECOV has been
modified to make the mirror data base a workable maintenance method. The STOP-RESTART feature of
DBRECOV adds the capability to CONTINUE or STOP the recovery process on the secondary system if
DBRECOV cannot find the next log file in the log set. This STOP-RESTART feature is the key to the
mirror data base system. Whenever DBRECOV cannot find the next log file in a log set, the recovery
process on the secondary system can be stopped, the data bases can be backed up, and then recovery can be
restarted from the point it was stopped. The primary system never has to be brought down for backups.

DBRECOV applies the chained log files starting with the first log file created when logging was enabled.
It continues to process each log file in the log set consecutively until it cannot find the next log file in the
set. It then prompts the user to CONTINUE or STOP the recovery process.

If the reply is CONTINUE, DBRECOV will keep searching for the next log file. When the next log file is
found DBRECOV resumes roll-forward recovery on the mirror data base. The CONTINUE or STOP
prompt will appear as long as DBRECOV cannot find the next log file in the log set. DBRECOV is
stopped if the reply STOP is entered and a RESTART file containing all the necessary information to
restart recovery is created.

Once the DBRECOV process is stopped, backup of the data base in a consistent state can be done and
limited data base maintenance on the secondary system can be performed. Some DBUTIL functions can
not be performed while the DBRECOV process is stopped. If the data base is in RESTART mode then the
following DBUTIL processes cannot be performed:

e Access is not allowed in order to keep the data base logically consistent.

e Resetting the maintenance word is not allowed. If the maintenance word were reset then RESTART
would be impossible.

e Purging or erasing the data base is not allowed. If either of these options were used in DBUTIL then
the recovery process would be invalidated. (The user must run DBRECOV,ABORT or
DBRECOV,PURGE before purging or erasing the data base.)

DBRECOV RESTART will restart the roll-forward recovery process from the point it was stopped.
DBRECOV uses the information in the RESTART file to restart recovery. DBRECOV will continue until,
once again, it cannot find the next log file in the log set. The prompt to CONTINUE or STOP will be
displayed and backup of the data base can again be done.

If RESTART recovery from the current STOP point cannot be done, DBRECOV,ABORT can be used.
Recovery can no longer be restarted from the same point that it was stopped once ABORTed because the
RESTART file is purged. The data base flags are returned to the same settings as before the recovery
process was started.

If ABORT fails to abort recovery because of an inconsistent RESTART file, DBRECOV,PURGE can be
used to delete the current RESTART file before beginning the mirror data base process again.

DEC 85
7-42

Maintaining The Data Base

Notes on Logging

Backups on the secondary system are made more efficient by controlling the logging processes on the
primary system. There are some important factors to consider before enabling logging on the primary
system.

e Logging to tape eliminates the step of storing log files with the data bases once they are rolled forward
on the secondary system. However, keeping track of which log file tapes go with which data base and
RESTART file backup tapes is required. Logging to tape requires a dedicated tape drive.

e Logging to disc enables storing log files and the data bases on a single tape using an MPE STORE rather
than a DBSTORE command. When logging to disc, the user must remember to backup all log files that
were processed after the last DBRECOV,RESTART along with the data bases and RESTART file.
Private volume may also be used and may be faster since you can transfer to last log file without
waiting for the primary system to be warmstarted.

e Naming conventions make storing the data bases much easier and eliminate the use of several different
tapes for the log files. If naming conventions are followed (refer to "Maintaining Logging") an MPE
STORE using the "@" can be used to store the log files, data base and RESTART file.

* You can either let the :GETLOG AUTO option switch to the next log file automatically and/or
manually issue a :CHANGELOG command to close the current log file and open the next file in the log
set.

e When using the STOP-RESTART option, the log file name and the logid must be different.

The data base administrator must determine how big to make the log files, based on how far behind the
secondary system will be, and how often backups will be done. To keep the secondary system as close to a
mirror image of the primary data base as possible, log files should be made small so that they will be filled
quickly and can be sent to the secondary system frequently. Of course, making the log files small means
spending more time transferring log files from the primary to the secondary system.

However, there is a disadvantage to having several small log files in the application of STOP-RESTART.
DBRECOV will only prompt to CONTINUE or STOP recovery if it is between log files in a log set, and it
cannot find the next log file. Therefore, if there are several small log files, the prompts to CONTINUE or
STOP are more frequent.

Another logging option would be to set the log file size very large and just manually change to the next
log file by issuing the :CHANGELOG command. The idea is to continually fill the log file with
transactions, and when the user is ready to copy the log file over to the secondary system, change to the
next log file and copy the current one over. This method requires someone at the system console to
monitor the logging and data base maintenance processes. If the user wants to schedule backups on the
secondary system around certain times of the day, say at the beginning and end of a work day, use this
logging procedure on the mirror data base. The user can log a full shift’s transactions and then manually
issue a :CHANGELOG at the system console to create a new log file in the log set. (If the :GETLOG
AUTO option was specified when logging was enabled, a manual :CHANGELOG command can also be
issued at any time.) Then the closed log file is transferred to the secondary system and the DBRECOV
roll-forward recovery process continues on the secondary data bases.

DEC 85
7-43

Maintaining The Data Base

Once the log file has been processed, it will look for the next log file in the log set. If it is still logging to
that next log file on the primary system, the user is prompted by DBRECOV to CONTINUE or STOP. At
this point, recovery can be stopped and the secondary data base can be stored and await the arrival of the
next log file at the end of the shift. Remember to store the RESTART file and the current, unprocessed
log files with the data bases.

Transferring Log Files

The :GETLOG AUTO option and :CHANGELOG provide the capability to schedule secondary system
backups through various methods of logging. The data base administrator can control the way the log
files are transferred from the primary system to the secondary system. The method chosen should depend
on the maintenance needs. Four ways of copying log files from the primary to the secondary system
follow:

1. Copying files over a direct DSLINE from the primary to the secondary system.

2. Logging to a serial disc and physically transporting the disc to the secondary system.

3. Logging to (private or system) disc and copying disc to tape and transporting the tape over to the
secondary system.

4. Logging directly to tape and mounting the tape on the secondary system.

DEC 85
7-44

Maintaining The Data Base

THE DSLINE

PRIVATE DISC VOLUMES

PRIMARY SECONDARY
SYSTEM SYSTEM
Users
DBRECOV
Application
Programs

Using the DSCOPY program, you con transfer yaur log
flles from the primary system to the secondary
system,

DISC TO TAPE

: PRIMARY SECONDARY
: SYSTEM SYSTEM
Users

DBRECQV
: Application

: Programs

© You can copy a closed log file to a private volume
- and move it from the primary system to the

. secondary system. Run DBRECOV on the secondary
. systern using the log file on the private volume.

Removable Disc Volume

DIRECT TO TAPE

PRIMARY SECONDARY
SYSTEM SYSTEM
Users
DBRECOV
Application
Programs
T R)

(=)

Once o log file is closed it can be copied from disc
to tape. RESTORE the log files from tape ta the
secondary system and run DBRECOV. Meanwhile
logging can continue to disc on the primary system,

: PRIMARY SECONDARY

: SYSTEM SYSTEM

: Users

: DBRECOV
Application

Programs

2 W log o

: When logging directly ta tope, you must mount o new
- tape whenever the log file closes or end—of—-tape is

: reached, Otherwise, those transactions which

. overflow the log file buffer in memory will be lost.

Figure 7-4. Transferring Log Files to the Secondary System

DEC 85
7-45

Maintaining The Data Base
Performing DBRECOV STOP-RESTART

After the mirror data base system is set up the DBRECOV STOP-RESTART feature is used to maintain
the secondary data base. To start the initial DBRECOV procedure, the user must make sure logging is
enabled on the primary system and that either the MPE GETLOG AUTO option or CHANGELOG is
being used. For more information on logging options refer to “Installing Logging" and "Maintaining
Logging" earlier in this section. Appendix G provides a brief outline of logging to disc and logging to
tape.

STOPPING DBRECOV

DBRECOV will roll forward all log files in the log set on the secondary system, one at a time. When
DBRECOV cannot find the next log file in a log set, it will print this message on the console:

DBRECOV - Reply CON or STOP when filexxx isready.
A message for the user is displayed in the $STDLIST file:

UNABLE TO OPEN LOG FILE filexxx
REPLY ‘CONTINUE’ OR “STOP” ON CONSOLE.

The filexxx is the log file that DBRECOV is trying to find. If that log file has been closed on the
primary system and is ready to be moved over to the secondary system, transfer it to the secondary system
and reply CON or CONTINUE on the console. DBRECOV will look for filexxx again. The
roll-forward process will continue as long as the next log file has been copied over correctly and is
available to DBRECOV.

The next log file may not be ready yet. For example, the primary system might still be logging
transactions, the log file might have been renamed, or it might be on a tape that was not mounted. This
provides an opportunity to STOP recovery and perform maintenance on the data base. (Refer to "Storing
The Data Bases" on the next page.) To stop recovery simply reply STOP at the console. A list of the data
bases involved in recovery are displayed in the $STDLIST file. At this point, DBRECOV creates a
RESTART file containing all the necessary information to continue the recovery process when the
RESTART option is requested.

DATA BASE(S) WITH RECOVERY SUSPENDED:
basel.group.acct
base2.group.acct

This is a list of the data bases that are in the RESTART file. These data base names are specified later on
when either the RESTART or ABORT options are used. The RESTART file name is the same as the logid
name entered when logging was enabled on the primary system.

DEC 85
7-46

Maintaining The Data Base

DBRECOYV will then print the name of the log file it will need to restart recovery, the record number at
which the quiet block begins in the current log file, the number of records currently in the staging file
and the actual file name of the RESTART file for that recovery process:

b

RESTART RECOVERY WITH LOG FILE: filexxx
QUIET BLOCK BEGINS AT RECORD recordnumber
NUMBER OF RECORDS IN STAGING FILE numrecs
RESTART FILE NAME: filename

The user is returned to MPE. DBUTIL >>SHOW data base name FLAGS displays the recovery state,
whether the data base in recovery has been set for RESTART.

When running multiple recovery processes from the same log file the user needs to equate the logid, which
is the formal file designator for the RESTART file, to a unique file name for each recovery process. The
new file name is the RESTART FILE NAME for that specific recovery process.

STORING THE DATA BASES

The data bases can be backed up at this time. It is important to store all files involved in recovery since
the last successful RESTART. In other words the data base administrator should store the data bases, the
current RESTART file, and all log files that were processed since the last successful
DBRECOV RESTART. If the RESTART file is not stored with the data base backups, it will be modified
once recovery is restarted. Without the previous RESTART file or the log files, the backup data bases
cannot be used to RESTART recovery in case the current RESTART fails.

The RESTART file and the data bases have time stamps inside them which tell DBRECOV which
RESTART file goes with which data bases. Once DBRECOV is restarted, the time stamp in the RESTART
file is changed. If the RESTART file is not stored, the time stamps will not match, and the RESTART
will not be successful.

The method used to store the data bases, RESTART file, and log files depends on the medium that the user
is logging to.

If logging to tape, the log files are already stored on a transportable medium and backing them up is not
necessary. However, the user must keep the log files grouped with the data base and RESTART file
backups. If recovery must be restarted from a backup, the user will need to restore the tapes containing:

¢ the data bases

¢ the RESTART file

¢ all log files processed since the last successful RESTART

DEC 85
7-47

Maintaining The Data Base

If the user does not keep track of which log files go with which data bases, the RESTART of recovery
from the backups is not possible.

If logging to disc, remember to store the log files that were rolled forward since the last successful restart
along with the RESTART file and the data bases. Logging to disc makes it easier to keep the log files
grouped with the data bases and RESTART file because all the log files can be stored at the same time
when recovery is stopped. Use an MPE STORE with the "@" option (rather than a DBSTORE) to backup
all the files on a minimum number of tapes. If it 1s necessary to restart from a backup all the necessary
files will be together.

Using naming conventions makes storing the files to tape much easier. The logging naming conventions
should be used. For example, if the data base is ORDERS, name the logid ORDERRS (RS for RESTART),
and the log file ORDEROGO1. The user can MPE STORE all the files with one command: “:STORE
ORDER@".

NOTE

To avoid incompatible time stamps it is important to store the RESTART
file at the same time that the data bases are stored. If logging to disc, also
make sure to store all log files processed since the last successful restart.

RESTARTING DBRECOV

To RESTART the recovery process after the next log file in the set is transferred, or the data base
maintenance is completed, type the run command:

:RUN DBRECOV.PUB.SYS,RESTART
DBRECOV will request the name of one of the data bases in the RESTART file:
WHICH DATA BASE?

If the user types in the name of a nonexistent data base, another prompt for the data base in the
RESTART file will appear. Once again enter the name of a data base in the RESTART file. From the
data base name that is entered, DBRECOV determines the name of the RESTART file, tries to open it, and
restart the recovery process. If the RESTART file is successfully opened, but is not a RESTART file the
following error message is printed:

filename is not a DBRECOV RESTART file.

and returns the user to the MPE prompt. This error usually occurs when another file with the same name
as the RESTART file has been created on the system. Make sure the file is a RESTART file, and try the
RESTART again. :

If the RESTART file cannot be located, go back to the previous tape, restore the data bases, which should
have their own RESTART file and log files stored with them, and run DBRECOV RESTART from that
point. The log files between the previous and the current STOP point will be reprocessed and the
roll-forward process will continue with the current log file.

DEC 85
7-48

Maintaining The Data Base

When the correct RESTART file is opened, DBRECOV will look at the file to make sure that the version
numbers are compatible with the version of DBRECOV being run. If the version numbers do not match,
DBRECOV will print the error message:

RESTART FILE NOT COMPATIBLE WITH THIS VERSION OF DBRECOV

and the user is returned to the MPE prompt. This message means that another version of DBRECOV is
running other than the version which created the current RESTART file. Install the correct version of
TurboIMAGE and run DBRECOV,RESTART again.

If the user logon is not the same as the logon when DBRECOV was suspended, the following message is
printed:

must be logged on as same user and account where DBRECOV was suspended.

Log on as the same user and account that was used when DBRECOV was originally suspended and run
DBRECOV again.

Once the RESTART file is opened, DBRECOV will try to open all data bases identified in the RESTART
file. For each data base that cannot be opened, DBRECOV will display the message:

Can’t re-open DATABASE basename

RESTART will be terminated and the user is returned to the MPE prompt. Make sure the correct data
bases are on the system. If the data bases are the correct ones, but they still cannot be opened, use the
DBRECOV,ABORT command and RESTART recovery from the previous STOP point.

When all the data bases have been opened, DBRECOV then checks to make sure all the data bases in the
RESTART file are set for RESTART. When DBRECOV encounters a data base not in RESTART mode it
displays the message:

DATA BASE basename IS NOT IN RESTART MODE.
RESTART TERMINATED.

RESTART is terminated and the user is returned to the MPE prompt. Make sure the correct data bases
are loaded on the system. If the data bases are the correct, but RESTART is still unaccepted recovery, use
the DBRECOV,ABORT command and RESTART from the previous STOP point.

The following options should be used to start the recovery process again:

¢ Find out why the data bases are not in RESTART mode and try to correct the problem. If the problem
is irretrievable then take either of the following steps:

1. Go to the previous STOP point and use the data bases and RESTART file stored to restart
roll-forward recovery.

2. ABORT the current RESTART process. Disable user access on the primary data bases and make a
copy for the secondary system. Begin a new logging process on the primary system and a new
recovery process on the secondary system.

DEC 85
7-49

Maintaining The Data Base

If all data bases are found, and they are in RESTART mode, then the time stamps in the data base root
file will be compared to the time stamp in the RESTART file. If they do not agree, the following
DBRECOV error message is printed:

RESTART TIME STAMPS DON’T AGREE WITH DATA BASE TIME STAMPS

This indicates incompatibility of the RESTART file and the data bases The user is returned to the MPE
prompt. Use the same steps given above to recover from a time stamp error.

Once all the compatibility checks have passed, DBRECOV will print a table of the data bases to be
recovered:

DATA BASE(S) TO BE RESTARTED:
basel.group.acct
base2.group.acct

The user is then be prompted to confirm the restart:
CONTINUE WITH RECOVERY (N/Y)?

Respond "Y" or "YES" to continue, or type "N" or "NO" (or carriage return) to return to the STOP point. If
any of the data bases cannot be opened during recovery, an MPE file error is returned and DBRECOV
RESTART is terminated. When this happens, go back to the previous STOP point and use the data bases,
log files, and the RESTART file to RESTART recovery.

ABORTING DBRECOV

If a log file in the log set has been damaged or the user cannot RESTART recovery for any reason,
ABORT the current recovery process and begin the mirror data base process again. Once the recovery
process terminates, the user is returned to the MPE prompt. There are two ways of continuing to mirror
the data bases:

1. Go to the previous STOP point and use the data bases, log files, and RESTART file stored to restart
roll-forward recovery. This option is not valid if there is a missing or damaged log file.

2. Disable user access on the primary data bases and make a copy for the secondary system. Begin a new
logging process on the primary system and a new recovery process on the secondary system.

'WARNING

When recovery is aborted, the current RESTART file is purged and
RESTART must be done from the previous STOP point.

DEC 85
7-50

Maintaining The Data Base

To run the ABORT option:
:RUN DBRECOV.PUB.SYS,ABORT

Just like the RESTART option the prompt for a data base in the RESTART file appears:
WHICH DATA BASE?

If the name of a nonexistent data base is entered an error message is printed and the user is prompted once
again to enter the name of a data base in the RESTART file. From the data base entered, DBRECOV
determines the name of the RESTART file and tries to open it. If the file is opened and is not a
RESTART file the following DBRECOV error message is printed:

filename is not a DBRECOV RESTART file.

and the user is returned to the MPE prompt. This error usually occurs when another file has the same
name as the RESTART file has been created on the system. Make sure the file is a RESTART file and try
running DBRECOV,ABORT again.

When the correct RESTART file is opened, DBRECOV will look at the file to make sure that it has the
same version numbers as the version of DBRECOV being run. If the version numbers do not match then
DBRECOYV will print the error message:

RESTART FILE NOT COMPATIBLE WITH THIS VERSION OF DBRECOV
and the MPE prompt is returned. This message means another version DBRECOV is running other than

the version that created the current RESTART file. Install the correct version of TurboIMAGE and run
DBRECOV,ABORT again.

If the user logon is not the same as the logon when DBRECOV was suspended, the following message is
printed:

must be logged on as same user and account where DBRECOV was suspended.

Log on as the same user and account that was used when DBRECOV was originally suspended and run
DBRECOYV again.

When the RESTART file is successfully opened, DBRECOV will identify all the data bases in the
RESTART file, and verify that they are in restart mode. DBRECOV will then check the time stamps in
the RESTART file and the data bases to make sure they match. If the time stamps do not match, the
following message is printed:

RESTART TIME STAMPS DON’T AGREE WITH DATA BASE TIME STAMPS

This indicates incompatibility of the RESTART file with the data bases. The MPE prompt is returned.
Locate the correct RESTART file, and run DBRECOV,ABORT again.

DEC 85
7-51

Maintaining The Data Base
Once the RESTART file is opened, DBRECOV will try to open all data bases identified in the RESTART
file. For each data base that cannot be opened, DBRECOV will display the message:

Can’t re-open DATABASE basename
CONTINUE WITH ABORT (N/Y)?

DBRECOV then allows the user to double check to be sure that the ABORT is desired. If not all data
bases are in the RESTART file, it may mean that this a different set of data bases. Respond "Y" or "YES"
to continue the ABORT, and "N", "NO" (or a carriage return) to stop the ABORT.

DBRECOV then checks to make sure all the data bases in the RESTART file are set for RESTART.
When DBRECOYV encounters a data base not in RESTART mode it prompts:

DATA BASE basename IS NOT IN RESTART MODE
CONTINUE (N/Y)?
Respond "Y" or "YES" to continue the ABORT, and "N", "NO" (or a carriage return) to stop the ABORT.
Once all compatibility checks have passed, DBRECOV will display all data bases in the RESTART file:
DATA BASE(S) WITH RECOVERY TO BE ABORTED:

basel.group.acct
base2.group.acct

If not all of the data bases can be opened, DBRECOV prints an MPE file error and prompts the user to
continue with the ABORT:

CONTINUE WITH ABORT (N/Y)?
Respond "Y" or "YES" to continue the ABORT, and "N", "NO" {(or a carriage return) to stop the ABORT.
Once ABORT is successfully completed, the current RESTART file is purged and the MPE prompt is

returned. The user can issue a DBUTIL >>SHOW command. The RESTART flag is disabled and the data
base access flag has been reset to what it was before DBRECOV was run.

DEC 85
7-52

Maintaining The Data Base

PURGING A RESTART FILE

If the RESTART option fails at the current STOP point, the user can ABORT the current recovery process
and RESTART the data bases from the previous STOP point. However, if the ABORT option fails the
DBRECOV PURGE command can be used as a last resort to delete the useless RESTART file before
restarting with a backup of the data bases and RESTART file.

WARNING

When using PURGE on a RESTART file, RESTART must be done from
the previous STOP point.

:RUN DBRECOV.PUB.SYS, PURGE
DBRECOV will prompt you for the name of the RESTART file:
ENTER RESTART FILENAME?

Enter the filename displayed when DBRECOV was stopped. DBRECOV will open the file and verify
that it is actually a RESTART file. If DBRECOV is unable to open the RESTART file, an error message
is printed and DBRECOV is terminated. The user can either determine that the file is not a RESTART
file and delete it, or can RESTART recovery from a previous STOP point. When a RESTART file is
restored from a backup, the previous RESTART file writes over the current RESTART file.

If the RESTART file is successfully opened, DBRECOV will display the table of data bases in the
RESTART file:

RESTART FILE CONTAINS FOLLOWING DATA BASE(S):
baset.group.acct
base2.group.acct

All the data bases will be opened, and DBRECOV will check if they are all enabled for RESTART. If
they are all in RESTART mode, the following message is printed and DBRECOV is terminated:

DATA BASE basel.group.acct IS IN RESTART MODE.<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>