()

Proceedings

MG TR N T Pt vel A1 JWR IS sz

FUTURA PRESS, INC. :: 512/442-7836 :: BOX 3485 :: AUSTIN, TX 78764

.

TABLE OF CONTENTS

Section 1 — SYSTEM MANAGEMENT
6 Overview of Optimizing (On-Line and Batch)
Robert M. Green
16 Thoughts Concerning
“How Secure Is Your System?”
Jorg Grossler

35 Private Volume Experiences
Bruce Wheeler
42 System Resource Accounting: An Overview
of Available Software
Wayne E. Holt
Amy J. Galpin
43 On-Line Database:
Design and Optimization
Robert B. Garvey

48 Power Line Disturbances and Their
Effect on Computer Design and Performance
Vince Roland

58 System Disaster Recovery: Tips and Techniques
Jason M. Goertz
70 System Performance and Optimization
Techniques for the HP3000
John Hulme

Section 2 — DATABASE SUPPORT
5 Auditing with IMAGE Transaction Logging
Robert M. Green

34 Transaction Logging and Its Uses
Dennis Heidner

52 RAPID/3000
Nancy Colwell

53 Information Management:
An Investment for the Future

David C. Dummer
64 Successfully Developing On-Line
RPG/3000 Applications
Duane Schulz
71 An Experimental, Comprehensive
Data Dictionary
Thomas R. Harbron

74 Considerations for the Design of
Quality Software

Jan Stambaugh

Section 3 — UTILITIES

2 LOOK/3000: A New Real-Time
System Performance Monitoring Tool

Kim D. Leeper

3 QHELP: An On-Line Help System
David J. Greer

15 Modular Programming in MPE
Jorg Grossler

31 A Universal Approach as an
Alternative to Conventional Programming
Bill McAfee
Craig Winters

61 Business Graphics: An Efficient
and Effective Tool for
Management Decision Making

Gavin L. Ellzey

62 Automatic Calling with the HP3000
Paul W. Ridgway
81 Programmatic Access to
MPE’s HELP Facility
Jon Cohen

85 Management Options for the 80’s
Giles Ryder

86 Transaction Processor for the HP3000
David Edmunds

Section 4 — LANGUAGE SUPPORT

1 RISE — An RPG Interactive System
Environment for Program Development
Gary Ow

4 IMAGE/COBOL: Practical Guidelines
David J. Greer
12 Using COBOL, VIEW and IMAGE:

A Practical Structured Interface
for the Programmer

Peter Somers

13 PASCAL? ADA?? PEARL!!
Klaus Rebensburg
27 Applications Design Implications of

PASCAL/3000 Dynamic Variable Allocation
Support — or How to Use the HEAP

Steven K. Saunders

30 Process Sensing and Control
Nancy Kolitz
36 Putting the HP3000 to Work
for Programmers
Tom Fraser

83 RPG: A Sensible Alternative
Steve Wright
90 Techniques for Testing On-Line
Interactive Programs
Kim D. Leeper

Section 5 — DATA & TEXT PROCESSORS

57 The Technology of the QUAD Editor,
Part 2

Jim Kramer
65 The Automated Office —
Example: Producing A Newsletter
Eric A. Newcomer
73 Integrated Data and Textprocessing
With HP3000
Joachim Geffken

79 Computerized Typesetting: TEX on the HP3000
Lance Carnes

Section 6 — PERIPHERAL SOFTWARE

40 Everything You Wanted to Know About
Interfacing to the HP3000
— Part I and Part IT —

Ross Scroggs
John Tibbetts

69 Programming for Device Independence
John Hulme

Section 7 — BUSINESS

18 Selectings Application Software
and Software Suppliers
Steven J. Dennis

20 Office of the Future — Starting Today
Mark S. Trasko

21 Job Costing on the HP3000

Steve Perrin
Robert Lett

24 Is a Packaged Program the Answer?
A Compromise to MM3000

James G. Raschka, CPIM

49 Management Reporting with
Hewlett-Packard’s Decision Support Graphics
William M. Crow

55 Business Graphics Applications Using DSG/3000
Cecile Chi
59 Tips and Techniques for
Data Interface to DSG/3000
Jason M. Goertz

72 Project Management With the HP3000
Nichols and Company

80 Using the HP3000 for
Decision Support Systems

Bob Scavullo

Section 11 — MISCELLANEOUS
17 The Truth About Disc Files
Eugene Volokh

25 Data Communications Troubleshooting
Pete Fratus

26 Financing Quality Solutions
Melissa J. Collins
28 Tips and Techniques in Writing
for the HP3000 IUG Journal

John R. Ray
Lloyd D. Davis

33 Management: Key to Successful
Systems Implementation

Gary L. Langenwalter
38 An Overview — Networking Cost
Performance Issues
Russell A. Straayer

41 Microcomputer-Based Distributed Processing
John Tibbetts

63 Software Management Techniques
Janet Lind
75 Understanding Hewlett Packard--
A View from the Inside
Jan Stambaugh

84 Structured Analysis
Gloria Weld

88 An On-Line Interactive Shop Floor Control
And Capacity Planning System
Walter J. Utz, Jr.

3

AUTHOR INDEX

Class No.
Cames,lancecevvevveeennn 5 79
Chi,Cecilecovvviiieennnannn 7 55
Cohen,Jonccvvviiiiiiinnnnnnnns 3 81
Collins, MelissaJ.c.c..t. 11 26
Colwell, Nancycceiveiuvennns 2 52
Crow,William M.covv0 7 49
Davis,Lloyd D.coovveiiten 11 28
Dennis, Steven J.ciiiiiinen 7 18
Dummer,DavidC. 2 53
Edmunds,David 3 86
Ellzey,GavinL., 3 61
Fraser, Tomcoiivineenenns 4 36
Fratus,Peteccivvvvnvnenes 11 25
Galpin, Amy J.coiiiiiiiiiiiiinnn, 1 42
Garvey,Robert B.c..0. 1 43
Geffken, Joachim 5 73
Goertz,Jason M. ...t 1 58
7 59
Green,Robert M.ut. 2 5
1 6
Greer,DavidJ.ccc0ivuen 3 3
4 4
Grossler,Jorgcovvvviniiiinn, 3 15
1 16
Harbron, Thomas R. 2 7N
Heidner,Denniso00ueee. 2 34
Holt, Wayne E.ccovvttt 1 42
Hulme,Johncccovvivviinnennns 6 69
1 70
Kolitz, Nancyccccvvveveeennnnes 4 30
Kramer,Jimcccvvivviirececnans 5 57
Langenwalter, Gary L. eveeeeeees 11 33

Class No.

Leeper, KimD.cooiih. 3 2
4 9

Lett, Robertccoiviivinnns 7 21
Lind,Janetccvivieiiiiinnennns 11 63
McAfee, Bill ool 3 31
Newcomer, Eric A.cciivveen 5 65
Nichols and Company 7 72
OW,Garyccovivnniernnnnanenennns 4 1
Perrin, Stevecciiiiiiiieiian 7 21
Raschka, James G,CPIM 7 24
Ray,JohnR.ccciiiiiiiinnn 11 28
Rebensburg, Klaus 4 13
Ridgway, Paul W. 3 62
Roland, Vinceccociinieevnesn 1 48
Ryder,Gilescooiinnnnnn, 3 85
Saunders, Steven K. 4 27
Scavullo,Bobciiiiie, 7 80
Schulz,Duanecivvnenen 2 64
Scroggs, Ross e tieeieeneees 6 40
Somers, Petercciiiiiiiiinanns 4 12
Stambaugh, Jan 2 74
11 75

Straayer, Russell A. 11 38
Tibbetts,Johncocvvnnntn 6 40
11 41

Trasko, Mark S.ceiieiii... 7 20
Utz, Walter J.,Jr.cccivveeen... 11 88
Volokh, Eugenecco0ovuvunenn 1 17
Weld,Gloriacenvviiiiiiennnnns 11 84
Wheeler, Brucecovevvneenes 1 35
Winters, Craigccooiviveivennns 3 31
Wright, Steveciiiiiiiiiiinn 4 83

Overview of Optimizing
(On-Line and Batch)

Robert M. Green
Robelle Consulting Ltd.

SUMMARY

The performance of many HP3000 installations can
often be improved significantly. There are general prin-
ciples for delivering better response time to on-line us-
ers, and other principles to speed execution of produc-
tion batch jobs. As long as users continue to consumer
the extra horsepower of new HP3000 models by loading
them with new applications, there will continue to be a
need for optimizing knowledge and tools. And, if inter-
est rates remain at current levels, many managers may
not be able to upgrade to faster computers as soon as
they would like.

CONTENTS

I. How to Improve On-line Response Time
A. Make Each Disc Access Count
B. Maximize the Value of Each “Transaction”
C. Minimize the Run-Time Program *Size”
D. Avoid Constant Demands for Execution
E. Optimize for the Common Events
II. On-line Optimizing Example: QEDIT
. QEDIT and “Disc Accesses”
. QEDIT and “Transaction Value”
. QEDIT and “Program Size”
. QEDIT and “Constant Demands”
. QEDIT.and “Common Events”
Results of Applying the Principles to QEDIT
ow to Increase Batch Throughout
. Bypass Inefficient Code (CPU hogs)
. Transfer More Information Per Disc Access
. Increase Program Size to Save Disc Accesses
. Remove Structure to Save Unneeded Disc Ac-
cesses
. Add Structure for Frequent Events

atch Optimizing Example: SUPRTOOL

. SUPRTOOL and “‘Bypassing Inefficient Code”
SUPRTOOL and “Transferring More Informa-
tion”

SUPRTOOL and “Increasing Program Size”

. SUPRTOOL and “Removing Structure”
SUPRTOOL and “Adding Structure”

moOw>»

III.

wm gow>»mT™

Iv.

MYO wp

Copyright 1982, All rights reserved.

Permission is granted to reprint this document (but NOT for profit), provided
that copyright notice is given.

This document was prepared with QGALLEY, a text formatter distributed
with software to all Robelle customers.

F. Results of Applying Batch Rules to
SUPRTOOL

SECTION 1
HOW TO IMPROVE
ON-LINE RESPONSE TIME

I have identified five general principles which help in
optimizing the performance of on-line programs:

® Make each disc access count.

® Maximize the value of each *“transaction.”

® Minimize the run-time program *‘size.”

® Avoid constant demands for execution.

® Optimize for the common events.

On a systems programming project, such as a data
entry package or a text editor, you should be able to
apply all five of these principles with good results. That
is because systems software usually deals with MPE
directly and most of the sources of slow response are
under your eontrol. Applications software, on the other
hand, usually depends heavily upon data management
sub-systems such as IMAGE and V/3000. The optimiz-
ing principles proposed here may not be as easy to
apply when so many of the causes of slow response are
beyond your control. However, there are still many
ways in which you can apply the guidelines to applica-
tion systems (monitoring program size, designing your
database and laying out your CRT screens). Relying
upon standard software not only increases your pro-
grammer productivity, it also provides an unexpected
bonus: any improvements that the vendor makes in the
data management tools will immediately improve the
efficiency of your entire application system, with no
re-programming or explicit “optimizing” on your part.

I. A. Make Each Disc Access Acount

Disc accesses are the most critical resource on the
HP3000. The system is capable of performing about 30
disc transfers per second, and they must be shared
among many competing ‘‘consumers.” (This can in-
crease to 58 per second under the best circumstances,
and can degrade to 24 per second when randomly ac-
cessing a large file.) MPE IV can double the maximum
disc throughput for multi-spindle systems by doing
“look-ahead” seeks, but only for the Series II/Series
ITI, not the Series 30/33/44.

1—6—1

-The available disc accesses will be *‘spent” on several
tasks:

® Virtual memory management (i.e., swapping).

® MPE housekeeping (logon, logoff, program load,

etc.).

® Lineprinter spooling.

® Accesses to disc files and databases by user pro-

grams (the final payoff).
If the disc accesses are used up by overhead opera-
tions, there will not be sufficient left to provide quick
response to on-line user transactions. Some examples
of operations that consume disc accesses on the HP3000
are:
® Increasing the number of keys in a detail dataset,
thus causing IMAGE to access an extra master
dataset on each DBPUT. Also, making a field a key
value means that a DBDELETE/DBPUT is re-
quired to change it (which is 10 times slower than a
DBUPDATE).

® Increasing the program data stack by 5000 words,
thus causing the MPE memory manager to perform
extra, swapping disc accesses to find room in
memory for the larger stack.

® Improperly segmenting the code of an active pro-

gram, causing many absence traps to the memory
manager to bring the code segments into main
memory.

® Constantly logging on and off to switch accounts.

® Defining a database with a BLOCKMAX value of

2000 words, thus limiting IMAGE to about 13 data
buffers in the extra data segment that is shared by
all users of that database. With such a small
number of buffers, there can be frequent buffer
“thrashing.” This effectively eliminates the bene-
fits of record buffering for all users of the database,
and greatly increases disc accessing.

Much of the remainder of this document is devoted to
methods of “‘saving the precious resource — disc acces-
ses.”

I. B. Maximize the Value of Each “Transaction”

This principle used to read, “Maximize the Value of
Each Terminal Read,” but I have generalized it to
“transaction’ to take into account the prevalence of
V/3000, DS, MTS and other “communications” tools.
In the terms of MPE IV, a ‘“transaction” begins when
the user hits the ‘return’ key (or Enter) and ends when
the user can type input characters again. This includes
the time needed to read the fields from the terminal (or
from another HP3000), to validate them, perform
database lookups and updates, format and print the re-
sults, and issue the next ‘‘read” request.

Each time a program reads from the terminal, MPE
suspends it and may swap it out of memory. When the
operator hits the ‘return’ key, the input operation is
terminated, and MPE must dispatch the user process

1—6—2

again. If MPE has overlaid parts of the process, they
must be swapped back into main memory again. Due to
the overhead needed to dispatch a process, a process
should get as much work done as possible before it
suspends for the next terminal input.

The simplest way to program data entry applications
is to prompt for and accept only one field of data at a
time. This is also the least efficient way to do it. Since
there is an unpredictable “pause” every time the user
hits ‘return’ (depending upon the system load at the
moment), consistently fast response cannot be guaran-
teed. The resulting delays are irritating to operators.
They can never work up any input speed, because they
never know when the computer is ready for the next
input line. If response time and throughput are the only
considerations, it is always preferable to keep the
operator typing as long as possible before hitting the

* ‘return’ key. Multiple transactions per line should be

allowed, with suitable separators, and multiple lines
without a ‘return’ should be allowed. If you are using
V/3000, the same principles applies: each high-volume
transaction should be self-contained on a single form,
rather than spread out over several different forms.

I. C. Minimize the Run-Time Program “Size”

The HP3000 is an ideal machine for optimizing be-
cause of the many hardware features available at run-
time to minimize the effective size of the program. Even
large application systems can be organized to consume
only a small amount of main memory at any one time.
Each executing process on the HP3000 consists of a
single data segment called the “stack,” several extra
data segments for system storage, such as file buffers,
and up to 63 code segments. All segments (code and
data) are variable-length and can be swapped between
disc and main memory.

Program code which is not logically segmented makes
it harder for the memory manager to do its job, causing
disc accesses to be used for unnecessary swaps. Proper
code segmentation is a complex topic (more like an art
than a science), but here is a simplified training course:
write modular code; don’t segment until you have 4000
words of code; isolate modules that seldom run; isolate
modules that often run; aim for 4000 words per seg-
ment, and group modules by ‘‘time’ rather than “func-
tion;” if you reach 63 segments, increase segment size,
but keep active segments smaller than inactive ones.

Although every process is always executing in some
code segment, the code segment does not belong to the
process, because a single copy of the code is used by all
processes that need it. Since code is shared, it does not
increase as the number of users running a given pro-
gram increases. Most of your optmizing should be di-
rected to the data areas (which are duplicated for each
user). A 3000 can provide good response to more termi-
nals if most data segments are kept to a modest size
(5000 to 10,000 words). To keep stacks small, declare

most data variables ‘“‘local” to each module
(DYNAMIC in COBOL), and only use “global’ storage
(the mainline) for buffers and control values needed by
all modules. Dynamic local storage is allocated on the
top of the stack when the subroutine is entered, and is
released automatically when the subroutine is left. This
means that if the main program calls three large sub-
routines in succession, they all reuse the same space in
the stack. The stack need only be large enough for the
deepest nesting situation. By inserting explicit calls to
the ZSIZE intrinsic, you can further reduce the average
stack size of your program.

You can also minimize stack size by ensuring that
constant data items (such as error messages and screen
displays) are stored in code segments rather than in the
data stack. Since constants are never modified, there is
no logical reason that they should reside permanently in
the data stack. By moving them to the code segment,
one copy of them can be shared by all users running the
program. In SPL, this is done by including =PB in a
local array declaration or MOVEing a literal string into
a buffer. In COBOL, constants can be moved to the
code segment by DISPLAYing literal strings in place of
declared data items. In FORTRAN, both FORMAT
statements and DISPLAYed literals are stored in the
code.

A frequently overlooked component of program
“size” is the effect of calls to system subroutines (IM-
AGE, V/3000, etc.). These routines execute on the cal-
ler’s stack, and the work they do is ‘“‘charged” to the
caller. In many simple on-line applications (dataset
maintenance program, for example), 90% of the prog-
ram’s time and over 50% of the stack space will be
controlled by IMAGE and V/3000. You should be
aware of the likely impact of the calls that you make. Do
you know how many disc accesses a particular call to
DBPUT is. going to consume? As an example of how
ignoring the ‘“‘extended size” of a program can impact
response time, consider the following case:

An application with many functions can be im-
plemented with one of two different strategies. The
first, and simplest, strategy is to code the functions as
separate programs and RUN them via a UDC (or
CREATE them as son processes from a MENU pro-
gram). Each function opens the databases (and forms-
file, etc.) when you RUN it, and closes them before
stopping.

The second strategy is to code each function as a
subprogram that is passed in the previously opened
databases (and forms-file, etc.) as a parameter from a
mainline driver program. If the application requires fre-
quent movement from function to function (performing
only a few transactions in each function), the *“process”
strategy will be up to 100 times slower than the “sub-
program” strategy. The resources required to RUN the
programs, open the databases, close the databases, and
perform other “overhead” operations will completely

swamp the resources needed to perform the actual
transactions.

I. D. Avoid Constant Demands for Execution

The HP3000 is a multi-programming, virtual-memory
machine that depends for its effectiveness on a suitable
mix of processes to execute. The physical size of code
and data segments is only one factor in this “mix.” The
‘“size” of a program is not just the sum of its segment
sizes; it is the product that results from multiplying
physical size by the frequency and duration of demands
for memory residence (i.e., how often, and for how
long, the program executes). A given 3000 can support
many more terminals if each one executes for one sec-
ond every 30 seconds, rather than 60 seconds every two
minutes. Each additional terminal that demands con-
tinuous execution (in high priority) makes it harder for
MPE to respond quickly to the other terminals.

Here are some examples of the kind of operation that

can destroy response time, if performed in high priority:

e EDIT/3000,a GATHER ALL of a 3000-line source
file.

® V/3000, forms-file compiles done on four terminals
at once.

® QUERY, a serial read of 100,000 records (or any
application program that must read an entire
dataset, because the required access path is not
provided in the database).

® SORT, a sort of 50,000 records.
® COBOL, compiles done on four terminals at once.

You should first try to find a way to avoid these oper-
ations entirely. (Can you use QEDIT instead of EDIT/
3000? Would a new search item in a dataset eliminate
many serial searches, or could you use SUPRTOOL to
reduce the search time? Are you compiling programs
just to get a clean listing?)

After you have eliminated all of the “bad” operations
that you can, the remainder should be banished to batch
jobs that execute in lower priority (this works better in
MPE IV than III). Since jobs can be *“streamed’” dynam-
ically by programs, the on-line user can still request the
high-overhead operations, but the system fulfills the re-
quest when it has the time. The major advantage of
batch jobs is that they allow you to control the number
of “bad” tasks that can run concurrently (set the JOB
LIMIT to 1 for best terminal response).

L E. Optimize for the Common Events

In any application where there is a large variation
between the minimum and maximum load that a
transaction can create, the program should be optimized
around the most common size of transaction. If a pro-
gram consists of 20 on-line functions, it is likely that
four of them will be most frequently used. If so, your
efforts should be directed toward optimizing these four
functions; the other functions can be left as is. Because
the HP3000 has code segmentation and dynamic stack

1—6—3

allocation, it is possible for an efficient program to con-
tain many inefficient modules, as long as these modules
are seldom invoked.

Since MPE will be executing a great deal of the time,
you should become competent at general system tuning.
Learn to use TUNER, IOSTAT, and SYSINFO (and
the new :TUNE command in MPE IV). Any improve-
ment in the efficiency of the MPE ‘‘kernel” will improve
the response time of all users.

You do not have infinite people-resources for op-
timizing, so you must focus your attention on the fac-
tors that will actually make a difference. There is no
point in optimizing a program that is seldom run. The
MPE logging facility collects a number of useful statis-
tics that can be used to identify the commonly accessed
programs and files on your system. Learn to use the
contributed programs FILERPT and LOGDB (Orlando
Swap). If you are using IMAGE transaction logging, the
DBAUDIT/Robelle program will give you transaction
totals by database, dataset, program, and user (total
puts, deletes, updates, and opens). Such statistics help
in isolating areas of concern.

You can optimize application programs around the
average chain length for detail dataset paths (the con-
tributed program DBLOADNG will give you this in-
formation). Suppose you need to process chains of en-
tries from an IMAGE dataset. If your program only
provides data buffers for a single entry, you will have to
re-read each entry on the chain each time you need it
(extra disc I/0!!). Or, if you provide room for the
maximum chain length, the data stack will be larger than
needed most of the time (the maximum chain length is
often much larger than the average). The larger data
stack may cause the system to overload, eliminating the
benefits of keeping the records in your stack. You
should provide space in the stack for slightly more than
the average number of entries expected. This will op-
timize for the common event.

SECTION II
ON-LINE OPTIMIZING EXAMPLE: QEDIT

QEDIT is a text editor for the HP3000 that was de-
veloped by Robelle Consulting Ltd. The primary objec-
tive of QEDIT is to provide the fastest editing with the
minimum system load. Other objectives include con-
servation of disc space, similarity to EDIT/3000 in
command syntax, ability to recover the workfile follow-
ing a system-crash or program abort, and increased pro-
grammer productivity.

QEDIT is an alternative to a hardware upgrade for
users who are doing program development on the same
HP3000 that they are trying to use for on-line produc-
tion. Every optimizing paper in recent years by an HP
performance specialist has recommended avoiding
EDIT/3000. They usually recommend the ‘‘textfile-
masterfile” approach to program development. (You do
not actually edit your source program; instead, you
create a small “textfile” containing only the changes to

1—6—4

your “masterfile,” then merge the two files together at
compile-time). QEDIT allows you to have “real” edit-
ing on your HP3000, with less overhead than the
“textfile masterfile” method, and still give good re-
sponse time to your end-user terminals.

II. A. QEDIT and “Disc Accesses”

In order to reduce disc accesses, QEDIT eliminates
the overheads of the TEXT, KEEP and GATHER ALL
commands of EDIT/3000. These three operations have
the most drastic impact upon the response time of the
other users. QEDIT attacks the problem of KEEPs by
providing an interface library that fools the HP compil-
ers into thinking that a QEDIT workfile is really a *“‘card
image” file. As a result, it is never necessary to KEEP a
workfile before compiling it. Since KEEPs are rarely
used, most TEXTs are eliminated. The LIST command
was given the ability to display any file (e.g., /LIST
DBRPT1.SOURCE), so that a TEXT would not be re-
quired just to look at a file. TEXT is only needed when
you want to make a backup or duplicate copy of an
existing file. Since most users choose to maintain their
source code in QEDIT workfiles (they use less disc
space), the TEXTing of workfiles is optimized (by using
NOBUF, multi-record access) to be four to seven times
faster than a normal TEXT of a card-image file. The
GATHER ALL operation is slow because it makes a
copy of the entire workfile in another file. QEDIT re-
numbers up to 12 times faster by doing without the file
copy.

Disc accesses during interactive editing (add, delete,
change, etc.) are minimized by packing as many con-
tiguous lines as possible into each disc block. Leading
and trailing blanks are removed from lines to save
space. The resulting workfile is seldom over 50% of the
size of a normal KEEDP file, or 25% of the size of an
EDIT/3000 K-file (workfile). Most QEDIT users
maintain their source programs in workfile form, since
this saves disc space, simplifies operations (there need
be only one copy of each version of a source program),
and provides optimum on-line performance.

QEDIT always accesses its workfile in NOBUF
mode, and buffers all new lines in the data stack until a
block is full before writing to the disc. Wherever possi-
ble in the coding of QEDIT, unnecessary disc transfers
have been eliminated. For example, the workfile
maintains only forward direction linkage pointers,
which reduce the amount of disc I/O substantially. Re-
sults of a logging test show that reducing the size of the
workfile and eliminating the need for TEXT/KEEP re-
duce disc accesses and CPU time by 70-90%.

II. B. QEDIT and “Transaction Value”

Like EDIT/3000, QEDIT allows either a single com-
mand per line (/ADD), or several commands on a line,
separated by semi-colons (/LIST 5/10;M 6;D 5). The
principle of maximizing transaction value has been
applied with good results to the MODIFY command. In

‘D

EDIT/3000, several interactions may be needed to mod-
ify a line to your satisfaction. QEDIT allows you to
perform as many character edits as you like on each
transaction; many users can perform all of their changes
in a single pass. For complex character editing, such as
diagrams, version 3.0 of QEDIT will provide ‘‘visual”
editing in block-mode.

II. C. QEDIT and “Program Size”

QEDIT is a comletely new program, written in highly -

structured and modular SPL. The code is carefully
segmented, based on the knowledge of which SPL pro-
cedures are used together and most frequently. Only
two code segments need be resident for basic editing,
and the most common function (adding new lines) can
be accomplished with only a single code segment pre-
sent.

QEDIT uses a modest data stack (3200 words) and no
extra data segments. The stack expands for certain
commands (especially the MPE :HELP command), but
QEDIT contracts it back to a normal size after these
infrequent commands are done. All error messages are
contained in the code, isolated in a separate code seg-
ment that need not be resident if you make no errors.

Use of CPU time is th eother dimension to program
“size.” QEDIT is written in efficient SPL and con-
sumes only a small amount of CPU time (compared with
the COBOL compiler, or even EDIT/3000). Because
QEDIT does its own internal blocking and deblocking
of records, it can reduce the CPU time used in the ile
system by opening files with NOBUF/MR access.

IL. D. QEDIT and “Constant Demands”

Most QEDIT commands are so fast that they are over
before a serious strain has been placed on the host ma-
chine. For example, a 2000-line source program can be
searched for a string in four seconds. For those opera-
tions that still are too much load, QEDIT provides the
ability to switch priority subqueues dynamically. In
fact, the system manager can dictate a maximum prior-
ity for compiles and other operations that cause heavy
system load. '

IL. E. QEDIT and “Common Events”

The design of QEDIT is based on the fact that pro-
gram editing is not completely random. When a pro-
grammer changes line 250, he is more likely to require
access to lines 245 through 265 next, than to lines 670
through 710. This observation dictated the design of the
indexing scheme for the QEDIT workfile. There are
many examples of optimizing for the most common
events in QEDIT:

® Each block of a QEDIT workfile holds a “screen-

ful” of lines, with leading and trailing blanks elimi-
nated.

® QEDIT has built-in commands to compile, PREP

and RUN (sinceé these functions are frequently
used by programmers).

® QEDIT has a fast /SET RENUM command (it can
renumber 600 lines per second), instead of a slow
GATHER command.

® QEDIT can TEXT a workfile much faster than a
KEEP file (since most text will end up in QEDIT
workfiles).

® QEDIT can “undo” the DELETE comniand (be-
cause programmers are always deleting the wrong
lines).

IL. F. Results of Applying the Principles to QEDIT

In less than seven seconds, QEDIT can text 1000
lines, renumber them, and search for a string. Com-
mands are 80% to 1200% faster than EDIT/3000, pro-
gram size is cut in half, and disc I/O and CPU time are
reduced by up to 90%. There are now more than 350
computers with QEDIT installed, in all parts of the
world. Recently, we asked the QEDIT users what they
would tell another user about QEDIT. Here are some of
their answers:

“If he’s doing program development, he
needs QEDIT.” (Gerald Lewis, Applied
Analysis, Inc.)

“Would not live without it. SINCLUDES in
FORTRAN; one file or dataset per include-
file.” (Larry Simonsen, Valtek, Inc.)

“Fantastic product.” (Lewis Patterson,
Birmingham-Southern College)

“Buy it. The productivity advantages are
tremendous and don’t cost anything i1: ma-
chine load. The disc savings in a larg: (13
programmers) shop will pay for it.” (Jim
Dowlirig, Bose Corp.)

“It’s great. We usually get into QEDIT and
just stay there for a whole session. Compiles
and PREPs are very easy. I really like FIND,
LIST, and BEFORE commands. QEDIT is
very fast. It is great for programmers.” (Larry
Van Sickle, Cole & Van Sickle)

“It’s a tremendous tool and should be used
by any medium-sized shop. I use it to produce
an index of all source or job streams for an
account.” (Vaughn Daines, Deseret Mutual
Benefit Assoc.)

“QEDIT is the best editor I've used on the
market. It makes a programmer extremely ef-
ficient and productive. In rewriting an exist-
ing system completely, the on-line compile,
flexible commands, and savings of disc space
all contributed to bringing the system up very
rapidly.”’ (Glenn Yokoshima, HP Corvallis)

‘“Excellent product. Increases programmer
productivity dramatically (morale too!).”
(David T. Black, The John Henry Company)

“FAST, convenient. No need to TEXT and
KEEP. Somewhat dangerous for novice, be-
cause changes are made directly. [It worked
well for us in] conversion of SPSS, BMDP,
and other statistical packages to the

1—6—S5

HP3000.” (Khursh Ahmed, McMaster Uni-
versity)

“If you are writing a lot of programs, you
should get QEDIT. It is much easier than
EDITOR for this purpose. Program source
files demand complex editing capabilities,
which QEDIT has. I shudder to think of hav-
ing to work on a 4000-statement SPL source
using EDITOR rather than QEDIT.” (Bud
Beamguard, Merchandising Methods)

“Excellent product. Anyone using the HP
editor more than 6 times per day (or more
than 1 hour/day average) should not be
without QEDIT!” (T. Larson, N. J. McAllis-
ter and Associates Ltd.)

“Easier to use than HP editor and much
more efficient. I do not have to leave QEDIT
to RUN, PREP.” (Myron Murray, Northwest
Nazarene College) :

“Takes a great load off the mind (i.e., the
‘“electronic brain”). There have been occa-
sions when heavy editing would have killed
our system if we had been using EDITOR.”
(Mike Millard, Okanagan Helicopters Ltd.)

“Very good product — works well in de-
velopment environment. Compilation of
source programs without leaving QEDIT is
very nice for debugging.” (David Edmunds,
Quasar Systems Ltd.)

“Use it. It is so much better than HP editor
that there is no comparison.” (Ilmar Laasi,
TXL Corp.)

“Fast text editor.” (F. X. O’Sullivan,
Foot-Joy, Inc.)

“In one word. Fantastic.” (Tracy Koop,
Systech, Inc.)

“Superb tool. Far better than EDIT/3000.
Also, information about HP3000 that is
supplied gratis is very useful.” (James
McDaniel, The UCS Group Ltd.)

“I would highly recommend it over EDIT/
3000. In benchmarks and actual use, it has
proven to be much less load on the computer.
In a University environment, we have many
students and faculty editing programs at one
time. QEDIT allows us to run with a high ses-
sion limit and still get decent batch
turnaround.” (Dan Abts, University of Wis-
consin — La Crosse)

“QEDIT is an excellent product for the
price, and is one of the easiest ways to in-
crease programmer productivity. The LIST
command has been invaluable for cross-
referencing data items in COBOL source pro-
grams.” (Mark Miller, Diversified Computer
Systems of Colorado)

“Absolutely. QEDIT has allowed us to con-
trol the development of systems (requiring
off-line compiles, audit trails for source modi-
fications) while actually increasing program-
mer productivity.” (Jean Robinson, Lease-
way Information Systems, Inc.)

1—6—6

“Get it! It’s great. Cheap at twice the

price.” (Willian Taylor, Aviation Power Sup-
" ply, Inc.)

“QEDIT is THE ONLY text editor that
you should use in a development environ-
inen)t.” (Craig T. Hall, Info-tronic Systems,
nc.

“Much better than HP’s editor, well sup-
ported, well documented and continually im-
proving. An excellent product. We activate
QEDIT from our job file generator and acti-
vate SPOOK from QEDIT for editing and
testing output and job streams.” (Patrick Hur-
ley, Port of Vancouver)

“Excellent — can do more than Editor, fas-
ter, and saves disc space. In searching for a
specific literal, QEDIT finds them all in one
command [e.g., LIST “literal”].” (Larry Pen-
rod, Datafax Computer Services Ltd.)

“We could probably not operate if QEDIT
were not available.” (Winston Kriger, Hous-
ton Instruments)

“Buy it, or another computer (a second
HP3000, of course)”” (John Beckett, Southern
Missionary College)

“Best software package I've bought for our
shop.” (James Runde, Furman University)

SECTION III
HOW TO INCREASE
BATCH THROUGHPUT

By a “batch job” I mean a large, high-volume, long-
running task, such as a month-end payroll or financial
report. Why is there any problem with this type of task?
Because the batch job is only a poor, neglected cousin
of the on-line session. “On-line” is “with it,” new, Sili-
con Valley, exciting; “batch” is old, ordinary, IBM, and
boring. The best people and most of the development
resources have been dedicated to improving the on-line
attributes of the HP3000. The result is predictable:
batch jobs are beginning to clog many HP3000 proces-
sors. The overnight jobs are not completing overnight
and the month-end jobs seem never to complete.

The methods for maximizing the throughput of a
single batch job are not the same as for maximizing the
response time of a large number of on-line users. The
biggest difference: for an on-line application, it is sel-
dom economical to optimize CPU usage. There isn’t
enough repetition to amount to much CPU time. But, a
batch process may repeat a given section of code
100,000 or a million times. CPU time matters.

I have identified five general principles for increasing
batch throughput. Not surprisingly, they differ signifi-
cantly from the principles used to improve on-line re-
sponse time:

® Bypass Inefficient Code (CPU hogs).

® Transfer More Information Per Disc Access.

® Increase Program Size to Save Disc Accesses.

n

® Remove Structure to Save Unneeded Disc Acces-
ses.
® Add Structure for Frequent Events.

For each optimizing principle, there are three differ-
ent tactics you can apply, with three levels of complex-
ity and cost:

® Changes in the Data Storage (simplest and

" cheapest, since no programming changes are
needed).

® Simple Coding Changes (still inexpensive, since
these are “mechanical” changes which do not re-
quire re-thinking of the entire application).

® Changes to the Application Logic (the most com-
plex and expensive, since the entire application
may have to be re-designed).

III. A. Bypass Inefficient Code (CPU hogs)

Elimination of inefficient code is the simplest way to
produce big throughput improvements, assuming that
you can find any code to eliminate that is inefficient (or
more general-purpose than needed).

For a number of reasons, IMAGE is usually more
efficient than KSAM as a data management method. If
you don’t need “indexed sequential” as your primary
access method, convert from KSAM files to IMAGE
datasets. Or, if you don’t need “keyed” access to the
data, convert all the way from a data management sub-
system to an MPE flat file, and use sequential searches.
The more powerful the data access method, the more
CPU time is required to maintain it.

Bypassing inefficient code is simply a matter of re-
coding parts of programs to substitute an efficient alter-
native for an existing method that is known to have poor
performance. For example, the MPE file system is
CPU-bound when handling buffered files, so converting
to NOBUF access will save considerable CPU time
(you transfer blocks and handle your own records). In
IMAGE, use the “*” or “@” field list instead of a list of
field names. In COBOL, re-compile your COBOL68
programs with the COBOL-II compiler and they will
run faster. The FORTRAN formatter is a notorious
“CPU hog™’; either bypass it completely or learn its
secrets. The third-party software tool, APG/3000 (ap-
plication profile generator), should be helpful in identi-
fying the portions of an application where the CPU time
is spent (APG was written by Kim Leeper of Wick Hill
Associates). Once APG has identified the key section of
code, you might want to recode it in SPL/3000 for
maximum efficiency.

As is usually the case, the biggest improvements are
obtained by re-evaluating the logic of the application.
For example, you should periodically check the dis-
tribution of all reports to see if anyone is reading them.
If not, don’t run the job at all — that is an infinite per-
formance gain.

II1. B. Transfer More Information Per Disc Access

Besides CPU time, the other major limit on
throughput is the access speed of the discs. One way to
transfer more information per disc access is to build
files with larger blocksizes. The “block™ is the unit of
physical transfer for the file. A larger blocksize means
that you move more records per revolution of the disc.
However, there is a trade-off: increased buffer space
and impact on other users. In on-line applications, you
usually want a small blocksize. Below, I will explain
NOBUF/MR access, which is a technique that allows
you to ‘“have your cake and eat it, too!”

Another way to transfer more useful information per
disc access is to ensure that the data is organized so the
records that are usually required together are in the
same disc block. Rick Bergquist’'s DBLOADNG pro-
gram (contributed library) reports on the internal effi-
ciency of IMAGE datasets. For example, if it shows
that the work orders for a given part are randomly dis-
persed throughout a detail dataset (necessitating
numerous disc accesses), you can ensure that they will
be stored contiguously by doing a DBUNLOAD/
DBLOAD (assuming that part number is the primary
path into work orders). For master datasets,
DBLOADNG shows you how often you can find a spe-
cific entry with only a single disc read (the ideal). If
DBLOADNG shows that multiple disc reads are often
needed for a certain dataset, you may be able to correct
the situation by increasing the capacity of the dataset to
a larger prime number or by changing the data type
and/or internal structure of the key field.

Don’t overlook the obvious either. If you can com-
press the size of an entry by using a more efficient data
type (Z10 converted to J2 saves six bytes per field), you
can pack more entries into each block and thus reduce
the number of disc accesses to retrieve a specific entry.

You can often increase the “average information
value” of each disc access by re-thinking your applica-
tion. For example, suppose you must store transactions
in a database in order to provide some daily reports,
many monthly reports, a year-end report, and an occa-
sional historical report covering several years. If you
store all transactions in a single dataset, the daily jobs
will probably take three hours to find, sort, and total 100
transactions. Why not put today’s transactions in a sep-
arate dataset and transfer them to the monthly dataset
after the daily jobs are run? When the monthly reports
are completed, you can move the data to a yearly
dataset, and so on. This is called “isolating data by fre-
quency of access.” The fewer records you have to
search to find the ones you want, the more information
you are retrieving per access.

It is theoretically possible to transfer more informa-
tion per second by reducing the average time per disc
access. Typically, you attempt to improve the “head
locality™ (i.e., keep the moving “heads” of each disc
drive in the vicinity of the data that you will need next).

1—6—7

Although it is hard to prove, it does seem that using
device classes to keep spooling on a different drive from
databases, for example, does improve batch
throughput. Under MPE IV, you can also spread ‘vir-
tual memory”’ among several discs. The next *“logical
step” is to place masters and details on separate drives.
However, in all tests that I have run with actual datasets
and actual programs, there was no consistent difference
in performance between having the datasets on the
same drive or on different drives. The dynamics of disc
accessing on the HP3000 are very complex. Unless you
have the time to do a RELOAD afterwards, don’t move
files around; the moving process itself (:STORE and
:RESTORE) may fragment the disc space and eliminate
the potential benefit of spreading the files. Remember
Green’s Law: “The disc heads are never where you
think they are.” :

You can also improve overall batch throughput by
recovering wasted disc accesses. The disc drives re-
volve at a fixed speed, whether you access them or not.
Any disc revolution that does not transfer useful data is
wasted. Multiprogramming attempts to use these
wasted accesses by maintaining a queue of waiting
tasks. Unfortunately, maximum throughput under MPE
IIT coincided with JOB LIMIT = ONE (no multiprog-
ramming!). Under MPE IV, however, I have obtained a
25% decrease in elapsed time on the Series III by run-
ning two or three jobs concurrently. Try it.

II. C. Increase Program Size to Save Disc Accesses

In on-line optimizing, we are always trying to reduce
the size of the program (code, data, and CPU .usage), so
as to allow the system to provide good response time to
more users at once. In batch optimizing, we do not want
better response time (we won’t be running 36 batch jobs
at a time, so we don’t have to worry about mix); we
want better throughput. Since most of the on-line tricks
actually make the program slightly slower, we should
avoid them. Batch tricks usually consist of trading off a
larger program size for a faster elapsed time.

You can often save disc accesses by storing data in
larger “chunks,” keeping more data in memory at any
time. Larger blocks will accomplish this, as will extra
buffers. MPE file buffers can be increased above the
default of two via :FILE, but doing so actually appears
to degrade throughput. KSAM key-block buffers are
increased via :FILE (:FILE xx;DEV=,,yy :MNS where
xx is the KSAM data file and yy is the number of key-
block buffers), which will help for empty files (KSAM
cannot deduce how many buffers it will need unless the
B-tree already exists). IMAGE buffers are increased via
the BUFFSPECS command of DBUTIL; this can be
effective for a stand-alone batch job, but only if it works
with a large number of blocks concurrently (i.e., puts
and deletes to complex datasets with many paths).

Pierre Senant of COGELOG (the developer of ASK/
3000) has an ingenious method for ‘‘increasing program
size” dramatically. He has implemented ‘‘memory

1—6—8

files.” An entire file is copied in main memory and kept
there. For a small file that is frequently accessed (e.g.,a
master dataset containing only a few edit codes that
must be applied to many transactions), Pierre’s method
should save enormous numbers of disc accesses.

NOBUF access to files was mentioned above as a
way to save CPU time. If you use NOBUF with MR
access, you can save disc accesses also, but at the cost
of a larger data stack. MR stands for “multi-record,”
and gives you the ability to transfer multiple blocks per
access, instead of just one block. With a large enough
buffer, you will reduce the number of disc accesses
dramatically.

Since multi-block access is faster only if each block is
an exact multiple of 128 words in length, you should
always select a recordsize and blockfactor such that the
resulting blocksize (recordsize times blockfactor) is
evenly divisible by 128 words. The resulting blocksize
need not be large; it need only be a multiple of 128 (i.e.,
256, 384, 512, . . .). As I promised earlier, here is your
way to have the best of both worlds. Build your files
with 512-word blocks (i.e., 4 times 128, 8 times 64, 16
times 32) for on-line use, and redefine the blocksize to
8192 words in batch programs via NOBUF/MR access.

For a “stand-alone batch” job, you may as well set
MAXDATA to 30,000 words. This allows sorts to com-
plete with maximum speed and provides other oppor-
tunities for optimization. With a larger stack you can
keep small master datasets in the stack (e.g., a table of
transaction codes). When you have exhausted the
30,000 words of your data stack, there are always extra
data segments, which can be thought of as ‘“fast, small
files.”

Re-evaluate your view of the data. Databases are
usually set up to make life easy for the on-line user
(rightly). Their organization may not be optimum for
batch processing. In order to provide numerous enquiry
paths, a single word order may be scattered in pieces
among seven different datasets, and may require up to
20 calls to DBFIND and DBGET for assembly. In a
batch job, if you are going to have to re-assemble the
same order many times, it may be more efficient to
define a huge, temporary record for the entire order,
assemble it once, and write it to a temporary file. Then
you can sort the temporary-file record numbers in
numerous ways, and retrieve an entire order with a
single disc read whenever you need it. Of course, this
wastes disc space (temporarily) and increases your pro-
gram size.

III. D. Remove Structure to Save
Unneeded Disc Accesses

“Structure” for data means organization, lack of ran-
domness, and the ability to quickly find selected groups
of records. It takes work to maintain a *“structure,” and
the more structure there is, the more work (CPU time
and disc accesses) it takes.

Study your data structures critically. Can you reduce

o

the number of keys in a record? A serial search may be
the fastest way to get the data. Can you eliminate a
sorted path? Overall, the application may be faster if
you sort each chain in the stack after reading it from the
dataset (Ken Lessey’s SKIPPER package has this
capability), but only if you don’t use the COBOL SORT
verb.

Another type of *“structure” is consistency. IMAGE
is a robust data management system because it writes
all dirty data blocks back to the disc before terminating
each intrinsic call. You can make IMAGE faster, but
less robust, if you call DBCONTROL to defer disc
writes (only after a backup). Another IMAGE idea:
don’t use DBDELETE during production batch jobs.
Just flag deleted records with DBUPDATE and
DBDELETE them later, when no one is waiting for any
reports. When you can, use a DBUPDATE in place of
DBDELETE and DBPUT.

For KSAM, if you are planning to sort the records
after you retrieve them, use ‘‘chronological access”
(FREADC) instead of default access (FREAD). Default
KSAM access is via the primary key; KSAM must jump
all over the disc to get the records for you in this sorted
order, just so you can re-sort them in another order!
Also for KSAM, try to keep only one key (no alternate
keys), do not allow duplicates (much more complex),
and avoid changing key values of records.

I am grateful to Alfredo Rego for pointing out a useful
way to “eliminate structure” from IMAGE. When you
are loading a large master dataset, use a Mode-8
DBGET prior to the DBPUT in order to find out if the
new entry will be a primary entry or a secondary entry.
Load only primaries on the first pass, then go back and
load the secondaries on a second pass. This effectively
turns off the IMAGE mechanism known as ‘“migrating
secondaries,”” which although essential, is time-
consuming when filling an entire dataset.

III. E. Add Structure for Frequent Events

I saved this for last because it is one of the most
powerful ideas. Batch tasks usually repeat certain key
steps numerous times. Batch tasks have patterns of
repetition in them. If you make that key step faster by
adding structure to it, or re-structure the application so
that “like-steps” are handled together, you can make
the whole task faster. Extra structure (code complexity
or data complexity) is justified in the most frequent op-
erations of batch processing.

Check your data structures for patterns that you
could capitalize on. For example, if you have a file of
transactions to edit and post to the data base, could the
task be made faster if the file were sorted by transaction
type (only do validation of the transaction type when it
changes) or by customer number (only validate the cus-
tomer number against the database when it changes)?

Here are more examples of adding structure. If you
sort by the primary key before loading a KSAM file,
you can often cut the overall time in half. When erasing

an IMAGE detail dataset, sort the record numbers by
the key field that has the longest average chain length
and delete the records in that order. When loading a
detail dataset with long sorted chains, first sort by the
key field and the sort field. In all of these examples,
throughput is increased by adding code structure to
match the structure of the data.

If you frequently require partial-key searches on
IMAGE records, use an auxiliary KSAM file (or a
sorted flat file and a binary search) to give you
“indexed-sequential” access, rather than only serial ac-
cess, to your IMAGE dataset. (Mark Trasko’s IMSAM
product enhances IMAGE by adding an indexed-
sequential access method to the other access methods
of IMAGE.)

If you have used many IMAGE calls to find a specific
record, remember its record number. Then, when you
need to update it, you can retrieve it quickly with a
Mode 4 DBGET (directed read), instead of doing the
expensive search all over again. If certain totals must be
recalculated each month, why not re-design the
database so that they are saved until needed again? If
something takes work to calculate, check whether you
will need it again. '

The general principle is: look for patterns of repeti-
tion and add structure to match those patterns.

SECTION IV.
BATCH OPTIMIZING EXAMPLE: SUPRTOOL

SUPRTOOL is a utility program for the HP3000 that
was developed by Robelle Consulting Ltd. The objec-
tives of SUPRTOOL are to provide a single, consistent,
fast tool for doing sequential tasks, whether in produc-
tion batch processing, file maintenance, or ad hoc de-
bugging. Example tasks that SUPRTOOL can handle
are: copying files, extracting selected records from
IMAGE datasets (and MPE files and KSAM files), sort-
ing records that have been extracted, deleting records,

“and loading records into IMAGE datasets and KSAM

files. SUPRTOOL can’t do everything yet, but we are
adding new capabilities to it regularly (the most recent
enhancements are a LIST command to do formatted
record dumps and an EXTRACT command to select
fields from within records). SUPRTOOL embodies
many of the batch optimizing ideas discussed in the
previous section of this document.

IV. A. SUPRTOOL and
“Bypassing Inefficient Code”

By doing NOBUF deblocking of records,
SUPRTOOL saves enough CPU time to reduce the
elapsed time of serial operations visibly. For MPE files,
NOBUF is now fairly commonplace (although it still
isn’t the default mode in FCOPY — SUPRTOOL is 6 to
34 times faster in copying ordinary files). Where
SUPRTOOL goes beyond ordinary tools is in extending
NOBUEF access to KSAM files (a non-trivial task) and
to IMAGE datasets (very carefully). By making only a

1—6—9

few “large™ calls to the FREAD intrinsic, instead of
many “small” calls to DBGET (each of which must ac-
cess two extra data segments, look up the dataset name
in a hash table, re-check user access security, and then
extract a single record), SUPRTOOL quickly cruises
through even enormous datasets with only a minimal

SUPRTOOL/Robelle

>BASE ACTIVE.DATA,5

>GET LNITEM

>IF ORD-QTY>10000

>XEQ

IN=60971. OUT=14479.
CPU-SEC=56. WALL-SEC=133.

Notice that SUPRTOOL used 1/9th as much CPU
time and 1/6th as much elapsed time. And, the QUERY
FIND command only builds a file of record numbers; to
print the 14,479 records, QUERY must retrieve each
one from the dataset again. SUPRTOOL creates an
output disc file containing the actual record images, not
the record numbers. With suitable prompting,
SUPRTOOL can do this task even faster (see below for
the BUFFER command).

IV. B. SUPRTOOL and
“Transferring More Information”

SUPRTOOL transfers more information per disc ac-
cess by doing multi-block transfers between the disc

FCOPY/3000

consumption of CPU time.

For example, here is a comparison of SUPRTOOL
and QUERY, selecting records from a detail dataset
containing 60,971 current entries which are spread
throughout a capacity of 129,704 entries.

QUERY/3000

>DEFINE

DATA-BASE =>>ACTIVE.DATA
>FIND LNITEM.ORD-QTY>10000
USING SERIAL READ

14479 ENTRIES QUALIFIED
(CPU-SEC=520. WALL-SEC=763.)

and the data stack in main memory. If records are 32
words long and stored as four per block (for a blocksize
of 128 words), reading multiple blocks can make a big
difference. For 20,000 records, one block at a time re-
quires 5000 disc accesses. Using a 4096-word buffer and
reading 32 blocks at a time reduces the number of disc
accesses to 157!

SUPRTOOL has an option (SET STAT,ON) that
prints detailed statistics after each task, so that you can
see how it was done and where the processing time was
spent. For example, suppose you want a formatted
dump in octal and ASCII of all the records from the file
described above for the order *“228878SU.” Below are
the commands and times for SUPRTOOL and FCOPY:

>FROM=SUMMRY ; TO=*¥SUPRLIST;SUBSET="228878SU",1;0CTAL;CHAR
EOF FOUND IN FROMFILE AFTER RECORD 19999
3 RECORDS PROCESSED *#¥*¥% Q0 ERRORS

(CPU-SEC=78. WALL-SEC=114.)

SUPRTOOL/Robelle
>SET STAT,ON
>DEFINE A,1,8

>IN SUMMRY

>LIST '
>IF A="228878su"
XEQ

IN=20000. OUT=3. CPU-SEC=11.

¥%¥ OVERALL TIMING ¥*¥
CPU milliseconds:
Elapsed milliseconds:
¥% TNPUT *%
Input buffer (wds):
Input record len (wds):
Input logical dev:
Input FREAD calls:
Input time (ms):
Input records/block:
Input blocks/buffer:

Notice that SUPRTOOL was using its default buffer
size of 4096 words. FCOPY had to make 5000 disc
transfers, while SUPRTOOL only had to make 157.

1—6—10

WALL-SEC=16.

10854
16254

That is one of the reasons why SUPRTOOL finished in
1/7th the time and used 1/7th the CPU time.

IV. C. SUPRTOOL and “Increasing Program Size”

SUPRTOOL gets a great deal of its performance edge
by doing its own deblocking: allocating a large buffer
within its data stack, reading directly from the disc into
the buffer, and extracting the records from the blocks
manually. SUPRTOOL trades a larger program size for

SUPRTOOL/Robelle
>BUFFER 8192

>IN SUMMRY

>LIST

>IF A="228878Su"

>XEQ

CPU-SEC=10. WALL-SEC=13.

By combining SUPRTOOL with IMAGE, you can
have small data blocks for on-line access and large data
blocks for batch sequential access. Here is the same

SUPRTOOL/Robelle
>BUFFER 14336

>BASE ACTIVE.DATA,5
>GET LNITEM

>IF ORD-QTY>10000
>XEQ

a faster elapsed time. But you don’t need to stop with
the 4096-word buffer that SUPRTOOL normally allo-
cates. Using the BUFFER command, you can instruct
SUPRTOOL to work with buffers of up to 14,336 words
and observe the results with SET STAT,ON. Here is
the same selective file-dump that took 16 seconds with
4096-word buffers, done with 8192-word buffers:

[An additional savings of 3 seconds]

database extract as done above (in the QUERY vs.
SUPRTOOL test). Instead of using 4096-word buffers,
we will increase the buffer space to 14,336 words:

IN=60971. OUT=14479. CPU-SEC=46. WALL-SEC=104. [Saved 29 sec.]

IV. D. SUPRTOOL and “Removing Structure”

SUPRTOOL can optimize batch operations by “re-
moving structure.”” NOBUF deblocking of MPE files
and IMAGE datasets provides faster serial access by
saving CPU time and reading larger chunks of data, but
NOBUF deblocking of KSAM files does that and more:
it also eliminates structure. When you read a KSAM file
serially by default, the KSAM data management system
does not return the records to you in *“physical” se-
quence; it returns them to you ‘“‘structured” by the pri-
mary key value, and this takes work — a lot of work.

KSAM must search through the primary B-tree to
find the sequence of the key values, and must then re-
trieve the specific blocks that contain each records.
Quite often, logically adjacent records may not be phys-
ically adjacent; in the worst case, each logical record
requires at least one physical block read. The
SUPRTOOL NOBUF access to KSAM files cuts
through all of this and returns the raw records to you in
physical order; the savings in time can be impressive
and, if you are planning to sort the records anyway,
there is no loss of function. SUPRTOOL only removes
the structure that you were not going to use.

Another example of removing structure in
SUPRTOOL is the SET DEFER,ON command. When
used in conjunction with the PUT or DELETE com-
mands, the DEFER option causes SUPRTOOL to put
IMAGE into output-deferred mode (via a call to
DBCONTROL). Normally, IMAGE maintains a consis-

tent and robust ‘“structure’ in the database after every
intrinsic call. If you are planning to make a large
number of database changes and can afford to store the
database to tape first, you may be able to cut the
elapsed time in half (or more) by leaving the physical
database in an inconsistent state after intrinsic calls.
(DBCONTROL makes the database consistent again
when you are done.)

Here is an example use of SUPRTOOL to find all
work orders that are completed (status=*X"’) and old
(dated prior to June 1st, 1982), delete them from the
dataset, sort them by customer number and work-order
number, and write them to a new disc file. SET DE-
FER,ON is used to make the DELETE command fas-
ter:

SUPRTOOL/Robelle

>BASE FLOOR.DATA

>GET WORKORDER

>IF WO-STATUS="X" AND WO-DATE<820601
>DELETE

>SORT CUSTOMER-NUM;SORT WORKORDER-NUM
>O0UTPUT WO08206

>SET DEFER,ON

>XEQ

Another way to look at SUPRTOOL is as follows: if a
serial search is fast enough, you may not need to have
an official IMAGE “path” in order to retrieve the re-
cords you need. On the Series III, SUPRTOOL selects

1—6—11

records at a rate of two seconds per 1000 sectors of
data.

IV. E. SUPRTOOL and “Adding Structure”

SUPRTOOL can optimize batch tasks by “adding
structure” to data. One way to add structure is to sort
data. Experiments have shown that sorting records into
key sequence can cut the time to load a large KSAM file
in half. SUPRTOOL easily reorganizes existing KSAM
files by extracting the good records, sorting them by the
primary key field, erasing the KSAM file, and writing
the sorted records back into it — all in one pass.

You can also add “structure” to raw data by defining
a record structure for it (QUERY can access IMAGE
entries because they have a structure defined by the

SUPRTOOL/Robelle

>BASE FLOOR

>INPUT WO8206 = WORKORDER
>IF CUSTOMER-NUM="Z85626"
>LIST

>XEQ

And, since SUPRTOOL has access to the IMAGE
database that the entries originally came from,
SUPRTOOL can still format the entries on the linep-
rinter with appropriate field names and data conver-
sions (similar to REPORT ALL in QUERY).

IV. F. Results of Applying
Batch Rules to SUPRTOOL

Just before completing this paper, we sent a ques-
tionnaire to the users of SUPRTOOL, asking them what
they would tell other HP3000 sites about SUPRTOOL.
Here are their replies:

“I always recommend SUPRTOOL with any new
system. Without programming, I duplicated a master
file from one application to another application. I set up
a job stream to do this on a weekly basis (i.e., purge the
old dataset entries and add the new dataset entries eas-
ily). SUPRTOOL creates files with different selection
criteria to feed the same program.” (Terry Warns,
BPL Corp.)

“An essential package for efficient operation of a sys-
tem. Most of our job streams include a SUPRTOOL
function.” (Vaughn Daines, Deseret Mutual Benefit As-
soc.)

“Excellent. We had an application that serially
dumped a dataset of 185,000 records (4 hours) and then
sorted the 114-byte records in 6 hours (provided we had
the disc space needed). We changed to SUPRTOOL
with the OUTPUT NUM,KEY option and a modified
program using DBGET mode 4 and maximum
BUFFSPECS. The result was 4 hours altogether.”
(Bobby Borrameo, HP Japan)

“SUPRTOOL is an excellent utility for copying stan-
dard MPE files and databases very quickly . . . extract-
ing and sorting records from a database (i.e., 40,000
records of 60,000), copying files across the DS line

1—6—12

schema). Normally, regular MPE files are not thought
of as having the same kind of record structure as
IMAGE datasets. Why is this so? Because you cannot
access the fields of the file’s records by name in tools
such as FCOPY, even if the structure exists. In
SUPRTOOL, you can.

If you use SUPRTOOL to archive old entries from
IMAGE datasets to MPE disc or tape files, you can later
do selective extracts, sorts, and formatted dumps on
those MPE files, using exactly the same field names as
you did when the entries were in the database. (In fact,
you can even put selected records back into a tempor-
ary database with the same structure and run QUERY
reports on them.) Here is how SUPRTOOL associates
structure with raw MPE files:

[implied record structure!]

(much quicker than FCOPY), copying tape to disc and
disc to tape.” (Dave Bartlet, HP Canada)

“We couldn’t operate without it. We are a heavy
KSAM user and SUPRTOOL has cut our batch proces-
sing by at least 1/3.” (Jim Bonner, MacMillan-Bloedel
Alabama)

“All sorts of marvelous things. [SUPRTOOL] is re-
ally nice (and fast) to copy a database for test pruposes
or to make minor changes (instead of DBUNLOAD/
LOAD) — even major changes, using a program to ref-
ormat the SUPRTOOL-created file.”” (Susan Healy,
Mitchell Bros. Truck Lines) ’

" “Just last night I told a friend that, after working with
different sorts on IBM (DPD- and GSD-level machines),
Burroughs sorts, and even HP sorts, SUPRTOOL is the
best sort tool I have ever used.” (Robert Apgood,
Whitney-Fidalgo Seafoods)

*“Get it. Runs much faster than SORT. Cheap at twice
the cost.” (Willian Taylor, Aviation Power Supply, Inc.)

“Fast and functional. SUPRTOOL is deeply embed-
ded in our applications, most extracts are done with
SUPRTOOL. Ad hoc inquiries [via SUPRTOOLY], in-
volving pattern matching on our customer file, extract
the appropriate keys, which are then passed to the re-
port program.’’ (Patrick Hurley, Port of Vancouver)

“SUPRTOOL is a product which no shop that uses
IMAGE and does batch report generation should be
without. By changing certain reports to use
SUPRTOOL instead of traditional selection techniques,
a savings of 60% in CPU and wall time was obtained.”
(Vladimir Volokh, VSI/Aerospace Group)

“SUPRTOOL is a great timesaver when used with
BASIC (or RPG) to modify IMAGE datasets and place
them in another dataset or the same dataset.” (John
Denault, Datafax Computer Services, Inc.)

ﬂ

(_)

Thoughts Concerning
How Secure Is Your System?

Ingenieurburo Jorg Grossler
1JG, Berlin

WHAT DATA SECURITY MEANS

® To be able to rebuild the file system in case of a
disaster

® To restrict access on various type of data.

STANDARD FILE BACKUP
FACILITIES IN MPE

® Sysdump, Reload (based on magnetic tape)
® Store, Restore (tapes)

® User Logging (based on disc or tape)

® Private volumes (disc)

PROBLEMS WITH STANDARD
FILE BACKUP

® Tape read error during RELOAD
— system cannot be started
— next action “must be RELOAD”
measures:
— change disc packs before RELOAD
— RELOAD with “ACCOUNTS-only” then RE-
STORE the remaining files (very time consum-
‘ ing)
® Tape read error during RESTORE
— all files 'stored behind error point cannot be re-
stored
measure:
— use RESTORE or GETFILE?2 program
® User logging causes system overhead
measure:
— consider special logging during program design

PROSPECTS FOR
TAPE-BACKUP SYSTEM

® GETFILE-facility will be improved
® Special STORE-RESTORE system is considered

(this possibility includes features like UPDATE
and APPEND)

RESTRICTIONS IN DATA ACCESS

® Account-system (users, groups, accounts with dif-
ferent passwords)

® User capabilities (SM, PM, PH, etc.)

® Filenames with passwords

® Privileged files

® File access capabilities on user/group- and file-

level

RELEASE/SECURE-commands

SEVEN POSSIBLE WAYS
TO CRACK THE SYSTEM

1. FIELD.SUPPORT
measure:

Password on SUPPORT-account
Or remove SUPPORT-account from the system.
2. Jobs in PUB.SYS-group
measure:
Password on job-file or
Put job into other SYS-group.
3. LISTUSER@.@;LP
measure:
Log-on-UDC or perform command
Not in PUB.SYS-group.
4. Open all files of the system
measure:
Special analysis of system logging
5. Read terminal buffers (PM-capability needed)
measure:
Remove PM-capability
6. Reading tapes
measure:
Keep track of all tape-transactions also using
system logging
7. FOPEN on terminals
measure: ??

1—16—1

-

(

Private Volume Experiences

Bruce Wheeler
Accounting Systems Group Cupertino, California

ABSTRACT

The MIS group which supports the accounting func-
tion within the Computer Systems Division of
Hewlett-Packard has utilized private volumes for over
two and one half years. This presentation will discuss
actual user experiences as related to the following
areas.

1. Strategy — where and how to successfully utilize
private volumes. A discussion of tapes, system domain
discs, and private volumes for storage of files will be
included.

2. Backup — A comparision between serial disc bac-
kup and tape backup

3. System Integrity — Enhancing system integrity
and lowering exposure to catastrophic errors. Tips to
minimize exposure to disc errors and reloads will be
included.

4. Performance — Performace considerations and
trade-offs. Actual measurements on various HP3000
machines will be reported.

S. Operator Considerations — Simplifying the
operator’s assignment and improving the reliability of
your data center.

BACKGROUND

The Accounting Systems Group of CSY reports to
the CSY Controller and handles all accounting data
processing for CSY. Our role within the Accounting
Department is to support and develop computerized ac-
counting systems. In addition to support we have be-
come heavily involved and dedicated to:

1. Testing new HP products — both hardware and
software. This includes not only doing pre-release test-
ing for functionality and reliability but also utilizing
these products to develop our distributed environment.

2. Fully utilizing HP software and hardware to im-
plement a “distributed” data processing environment,
i.e., one in which the computing power is where the
people and problems are. This includes addressing the
problems of system security and operatorless-
computers.

We currently have our applications spread across
three HP3000 systems, a SERIES 44 and SERIES 40
and SERIES 64 as Alpha test sites, with a total of about
1100 Mb of disc storage (seven of our disc drives are
Private Volumes). One 2619A does the printing for all

machines (we use DS/3000 to copy spoolfiles from the
Series 40 and 44 to the Series 64). We have one HP125
microcomputer in the department. OQur systems group
of 11 professionals supports an accounting department
of 40 people.

INTRODUCTION

The central objective of utilizing private volumes has
been to increase system reliability, maximize computer
throughput and minimize total operating costs. The
mannner in which these objectives have been obtained
are described in detail below. However, to fully appre-
ciate the potential of these objectives, a clear under-
standing of private volumes and serial discs must first
be realized. A disc spindle configured as a private vol-
ume provides an independent disc domain complete
with its own directory. This domain may be moved from
computer to computer with the requirements that like
disc drives (i.e., 7920’s on each system) be available and
the same account structure exists. As a serial disc, the
spindle assumes the nature of a tape drive. The spindle
may be configured as both a serial disc and private vol-
ume at the same time. The current status of the drive is
then dynamically allocated depending on the disc label
of the particular pack which is mounted. This pack
would be either a private volume or a serial backup
disc.

RELIABILITY

System reliability is enhanced for a number of rea-
sons when utilizing private volumes. As a storage
medium, our experience has shown fewer catastrophic
read errors from disc as opposed to tape. Although
tapes do provide for storage of multiple files, it is cer-
tainly less cumbersome to retrieve a single file from disc
then tape. And discs provide for direct as well as se-
quential access. In addition, if a segment of a disc is
unreadable, it is possible to salvage the undamaged
data, flag the offending tracks through VINIT, and
reuse the pack. Only the data in the unreadable area is
lost. Another advantage of private volumes is their
transportability between machines. By establishing
selected groups and accounts that contain critical data
for processing, it is possible to freely move disc packs
between computers if the primary machine is down.
And within the same machine, if a system domain drive
becomes inoperative, the system pack may be moved to
a private volume spindle, the unit number dial on the

1—35—1

disc drive changed, and you are running with a
warmstart. A more subtle advantage to private vol-
umes, is that the master volume contains its own direc-
tory of the files in its volume set. This directory is inde-
pendent of the system directory. In the event of a sys-
tem failure that requires a reload, simply turn the pri-
vate volume disc off, and reload the system with no loss
of data on the private volumes.

THROUGHPUT

Private volumes provide a means of maximizing the
system through put by replacing large sequential files on
tapes. First, I/O to a disc is generally faster than that of
a tape. By creating groups on private volumes for your
production jobs that run at night which normally re-
quired tapes, the elapsed run time will decrease. And by
having the VMOUNT ON,AUTO parameter activated,
there is no wait time as would occur when the operator
finally replies to the tape request. By having the private
volumes mounted at the start of your nights processing,
your operator does not have to be present for the job’s
execution. The groups mentioned above could be off-
loaded during the day and replaced with groups that
contain your source files for program development.

COST MINIMIZATION

In this area, both private volumes and serial discs
provide a benefit. As mentioned above, by replacing
tape files with those on private volumes, the operator
does not have to be present for the job’s execution. This
may provide the possiblity of expanding processing to a
second or third shift without the requirement for
additonal support personnel. In addition, since private
volumes have a directory that is tied to the group/
account structure, it is not possible to have the wrong
pack mounted and a data file read into your database as
could easily happened with an unlabeled tape. For fur-
ther insurance, by building a dummy file on the pack at
the beginning of a job’s execution, if the pack is not
mounted, the job can abort in a controlled manner. For
example:

:PURGE CHKMOUNT.PRIVOL.ACCT
:BUILD CHKMOUNT.PRIVOL.ACCT

In the above example, these JCL statements would be
included in the beginning of the job stream. If the pri-
vate volume was not mounted, the BUILD statement
would fail so that a restart would only require restream-
ing the job. Backup time is reduced and the procedures
simplified by using serial discs. A comparison between
7970 tape drives and a 7925 serial disc backup showed
that the 7925 took aprroximately two thirds the elapsed
time of the 7970. In additon, since a 7925 will store over
three tape reels of data, the operator intervention for

1—35—2

tape replies are reduced by a factor of 3 to 1. The
operator is now required to perform the one task of the
serial disc mount and then is free to proceed with other
activites for approximately 1/2 hour.

START UP

The System Supervisor manual provides a detailed
description of private volumes and serial discs in sec-
tions 4:10-4:13 and I:1-1:24. Listed below is a short
summary of what it takes to establish a private volume
and some tips in the utilization of this feature.

1. Setup the configuration through SYSDUMP. It is a
good idea to have the class established for the disc to be
both PVDISC and SDISC. This provides greater flexi-
bility.

2. Create the volume set/class

3. Use VINIT to format the pack. Remember to flag
those tracks as defective that have been listed on the
tag. If you don’t have the tag, then print the information
with VINIT before you format and init the pack.

4. First span the account and then the group to link
the system directory with the directory on the private
volume. It is necessary to span at the account level even
if only selected groups within the account are on the
private volume.

5. For automatic recognition of the pack being
mounted, have VMOUNT ON,AUTO set when you re-
start the system. In dismounting a pack, first do a VSU-
SER to verify that the volume set is not currently being
accessed. Then down the LDEYV to prevent further ac-
cess and insure that the pack can be dismounted by
doing a DSTAT: and checking that the state is not
DOWN,PND.

APPLICATION FITS

® Large temporary files as in sorts. Create a group
called SPACE that is an empty disc pack. With a
7925, these provide 120 MB’s of free space by just
mounting the pack.

® Offset your large nightly batch processing files with
the program development source files during the
day.

®] arge Databases. Some databases, such as those in
accounting, are cyclical in nature such that they are
initialized every month. By having each month be
on a separate pack, prior months can be retained
for review if necessary.

® Security sensitive databases such as payroll and
accounts payable can be off-loaded from the sys-
tem and physically secured.

® Redundancy databases and IMAGE log files can
reside physically on separate disc drives.

™

~—

System Resource Accounting:
An Overview of Available Software

Wayne E. Holt
Director of Computer Services
Union College
Schenectady, New York

INTRODUCTION.

Far too often in the minicomputer environment, the
concept of system resource accounting (frequently
called “‘job accounting™) is overlooked by upper man-
agement. Such machines are cheap in comparison to
mainframes, and the incentive to closely monitor usage
is marginal. .

There .inevitably comes a day, however when th
cheap little machine must do expensive and importarit
work for too many people, resulting in slower
throughput and performance. And that is when upper
management confronts the DP manager with the ques-
tion *““Say, who is using up the time? Run us a report that
pinpoints the problems.”

Most DP managers will have already experimented -
with some of the resource accounting software available -

through the Contributed Software Library. Few, how-
ever will have a well defined philosophy or methodol-
ogy of resource accounting that is well supported by the
proper software. Usually, upper management will have
denied the requests to invest manpower into such an
unnecessary system. In the worst cases, accounting
needs will have been so overlooked, that when the DP
manager rushes to test some of that library software, he
will discover that the MPE logging facility hasn’t been
enabled! Logfiles, notorious for disc space consump-
tion, might also have been quickly purged by the
operator.

It is a premise of this paper that accurate and timely
information regarding system resource usage is essent-
ial for data processing management. The HP3000 Con-
tributed Software Library contains numerous programs
and software packages to aid in the collection and
evaluation of job accounting data. This paper will exam-
ine the available library software, summarizing the
strengths and best usages for each. In addition, Whit-
man College will serve as the example in a case study
illustrating the complimentary nature of using in-house
developed software with externally acquired programs.

Only software available on Release 07 of the Contrib-
uted Software Library, or on the ORLANDO Swap
Tape will be discussed. In addition, it should be noted
that several organizations and vendors now have gen-

Amy J. Galpin
Project Analyst
Whitman College Computer Services
Walla Walla, Washington

eral resource accounting software available for sale.
One can gain information about such software by read-
ing the advertisements in Interact, or by asking the HP
sales representative to check his software reference
guide. It is our understanding that HPIUG will be offer-
ing such a guide sometime in 1982, as will several pri-
vate parties. One should also note those software pac-
kages, in the Release 07 Guide, with an “F” by the page
number of the corresponding index entry. This indicates
that the software is available by contacting the vendor
appearing in the abstract, although a fee is charged.

The term “system resource accounting” was chosen
to title this paper because classic “job accounting” im-
plies keeping records on job or session activities, includ-
ing such information as start time, stop time, CPU us-
age, disc I/O counts, etc. This does not encompass the
full spectrum of information available on MPE logging
records, e.g., powerfail information and console mes-
sages. Furthermore, externally developed data such as
manually maintained timesheets, although pertinent, is
ignored.

The balance of this paper will be split into four
sections, with an appendix following. Section I will dis-
cuss software that processes ‘“special” MPE log rec-
ords. Section II will cover the simpler series of pro-
grams that yield traditional job accounting information,
while Section III will deal with more complex
methodologies and software systems. Finally, Section
IV is a case study of the approach Whitman College has

taken to begin satisfying its system resource accounting
needs.

In each of the three sections, the general purpose of
the software will be described, its similarities or dif-
ferences to other software will be discussed, and if ap-
propriate, comments will be made concerning how to
run the software. Finally, an asterisk occuring by the
software package name indicates that sample results
may be found in Appendix A. Before continuing, the
reader might take time to review the summary of MPE
logfile record types, located in the HP manual.! In order
to facilitate your evaluation of the results, the same log-
file, LOG2345.PUB.SYS, has been used in all software

1—42—1

runs. The following types of logging are enabled on our
system:

Type of Logging producing Record Type No.

Logging Enabled 0,1
Job Initiation

Job Termination
Process Termination
File Close

System Shutdown
Power Fail

Spooling

1/O Error 1

Note that the console logging is disabled. We do not
perform statistical analyses on this information and
have found a hardcopy console log to be more useful in
monitoring this *“scene of action”.2

00 AW bhWN

SECTION I:
SOFTWARE FOR “SPECIAL”
MPE LOG RECORDS

Software which processes “special” log records, such
as powerfails and console messages will be discussed in
this section. Special software performing utility func-
tions will also be discussed. Programs falling into this
category tend to be standalone (with a few exceptions)
and their operation is fairly straightforward. In most
cases, it is advisable to examine the source code to
ensure that the utility is applicable to your system’s
configuration. Modifications in such things as equated
constants, often those that reflect logfile record size, as
well as others, may be necessary to make the software
run properly.

CLISTLOG?®

This program provides a report of all console log rec-
ords (type 15) in the MPE logfiles . The format of the
report is in chronological sequence, using perhaps only
1/3 of the paper consumed in HP’s LISTLOG?2 report of
type 15 records. No statistical analysis on the log rec-
ords is performed. The utility is similar to JLISTLOG,
SLISTLOG and LISTLOG?2 in both operation and func-
tion. While JLISTLOG and SLISTLOG report on
predetermined logfile record types, LISTLOG2 allows
the User to specify the type of records desired at run
time. All four of the utilities are capable of traversing
across a range of logfiles. The User is prompted for the
number range of LOG####.PUB.SYS to be searched.
The User is also given the option of purging the logfiles
after the search. This utility could be quite useful at a
site where a hardcopy console log is not used and man-
agement wishes to peruse/review this realm of system
activity at a later time. The User may direct output by
equating the file CLOGLIST to the desired output de-
vice. Console logging MUST be enabled for this pro-
gram to serve its purpose.

1—42—2

CONSLOG*

This contribution produces a report of those console
log records occurring in MPE logfiles for a given date/
time range. The User is not only able to select records
by date, but also by defining a character string which
must occur in the type 15 records. Output may be di-
rected to a device other than $STDLIST, and the pro-
gram is capable of building files on disc if a non-existent
file is specified for output; input will also be accepted
from a command file.

The program prompts the User for a starting date and
time to be used as the beginning point of the search, as
well as an output file and search string. The program is
capable of continuing the search across logfile bound-
aries, up to the current logfile. The author suggests per-
forming a: SWITCHLOG before running the program, if
the User wishes to examine the current logfile (requires
OP capability). As mentioned above, the console log-
ging must have been enabled during system configura-
tion to produce the type 15 records the program
searches for.

This program would also be useful for installations in
which a hardcopy console is not employed, or where
management wishes to monitor the appearance of spe-
cific users, job/session names, etc. on the system. Be-
cause output may be directed to a disc file, the User
may develop his own procedures to sort, reformat, or
edit the output, according to his needs.

COSTPROG®*

This utility calculates the cost of data center services
by considering the CPU seconds, connect minutes, and
disc sector usage of a group. The report is broken down

by account and group across the three elements listed

above, and is similar in format to the listing produced by
the MPE: REPORT command. The User is able to
specify his own cost parameters.

The program does not read MPE logfiles, but instead
reads a data file produced by previously issueing the:
REPORT command, where output was directed to a
disc file. The User is prompted for the cost factors, and
can direct output by equating formal file designators to
the desired device. The input file equation should be set
before running the program.

The User is limited to producing figures only for those
accounts he has the capablity to: REPORT on (to: RE-
PORT on all accounts requires SM capability).

JLISTLOG3*

Belonging to the family of CLISTLOG and
SLISTLOG, this program produces a report of all job
initiation and job termination records (types 2 and 3)
within a given range of logfiles. The listing is formatted
in chronological sequence, and again, consumes approx-
imately 1/3 of the paper consumed by a LISTLOG2
listing of the same records. A page break occurs with
each new date.

D

~_

The User is prompted for the starting and ending log-
file numbers; the program looks for them in PUB.SYS.
The User is also given the option of purging the logfiles
after the search, and will be asked if he wishes to run the
program again. Currently accessed logfiles are not
available to the program. While LISTLOG2 requires
SM capability, JLISTLOG does not.

The contributor recommends that the source code be
examined, to ensure that the logfile record size of your
installation coincides with that in the source code;
modifications should be made before attempting to run
the program.

LISTLOG2°¢*

While this utility does not appear on either the library
release or swap tapes, it is an HP product universally
available to HP3000 users, and seems appropriate for
review. This MPE utility produces an ASCII listing of
any number of logfile record types across a given range
of logfiles. The report is chronologically ordered and
record entries are separated by hyphenated break lines.

Operation of the utility is similar to that of the
CLISTLOG family. Indeed, this utility is the general
version after which the specialized CLISTLOG family
is modeled. The User is prompted for which types of
logfiles, if not all, he wishes to report. He must also
specify the beginning and ending numbers of the logfiles
he wants searched, and has the option of purging the
specified logfiles after the search. The User is asked if
he wishes to run the program again before its termina-
tion.

The program is versatile in that output may be di-
rected to any file on any device (e.g., disc or mag tape
file as well as line printer). The program is restricted to
Users with SM capability.

LOGPURGE’

This utility purges a given range of logfiles
LOG####.PUB.SYS. The User is prompted for the
beginning and ending numbers of the logfile range. The
logfile being currently accessed will not be purged.

The program is similar in function to PURGELOG of
the DREEACTG software package.

PFAILIST®

This program scans logfiles within a given range, and
prints the date and time of each logged powerfail. The
User is asked to input the starting and ending logfile
numbers.

This program could be especially useful to a site in
which there is no hardcopy console log to record pow-
erfail messages.

PORTSTATS*

PORTSTAT will scan a given range of logfiles, per-
forming statistical analysis to produce a report on the
usage of various ports on the system. Total CPU sec-

onds and connect minutes, as well as the average figure
per job/session and standard deviation are broken out
against the ldev number. A combined CPU sec/connect
minute figure (presumably weighted) is also given. The
report heading gives the date/time range of the logfiles
scanned. The User is prompted for the logfile number
range. The port number range is controlled by equated
constants and should be tailored to your site’s config-
uration. Output is to $STDLIST.

READLOG?®

This utility will carry on a dialogue with the User,
scanning a logfile for records selected according to the
User criteria input. Logfile records may be sought out
by criteria such as such as record type, ldev origination,
date, and time range, or in combination. The program
will also summarize the number of occurrences of each
record type before terminating. By asking for an audit of
the logfile, the first and last records will be displayed
(handy for finding date/time range of logfile). The User
may specify a new logfile to be scanned, without having
to reiterate the criteria.

The program opens the logfiles as LOGXXXX.PUB,
and therefore should be run in the SYS account. This
program could be very useful as a ‘lead” in monitoring
system activity. Only summarizations are performed by
the program. While the program does recognize all log-
file record types, it does not decode all data items to
ASCII format.

SCANUSER"

This program produces a report of all activity for
which a log record was produced relating to a particular
or generic group of Users.

The program issues a prompt for the User name in
question (or generic user.acct) , and then for a logfile
number. The program is capable of handling up to 15
concurrent users, and is most informative when most
logging functions are enabled.

SLISTLOG?*

This program is another member of the CLISTLOG
family, its function being to seek out spool file close log
records (type 8) within a given range of logfiles. The
report produced is in chronological sequence, and
formatted with uniform column headings which break
out each type of data element occuring in the log record.
A page break occurs upon each new date encountered.

The User is prompted for a logfile range to be
searched, and is given the options of purging the log-
files, and/or running the program again.

SECTION II:
“SIMPLE” SOFTWARE
FOR JOB ACCOUNTING

This section will discuss the “simpler” software that
can be used to derive job accounting information. The

1—42-—3

software in this area is generally easy to use, and re-
quires the least amount of preparation. Relatively little
statistical analysis or summarization is performed on
the data, and results tend to be of a highly detailed
nature.

LOGDB!

Briefly summarizing, this software system is designed
to read system logfiles, loading them into an IMAGE
database. The structure of the database is one that al-
lows for simple report generation via QUERY or appli-
cation programs. Some summarizations are performed
upon the data. It is loaded in nearly “raw” form to the
database, with the conversion of some data elements to
ASCII format. The system is also capable of “rationali-
zation” which eliminates a good deal of redundant data.

The system, as it is available on the Orlando swap
tape, includes “first time” jobstreams, intended to com-

pile all source code and initially create the database.
Daily procedures are also incorporated into several job
streams which jointly serve to read the logfiles, load the
database, and produce reports while performing any
“housekeeping” necessary to accomplish this. The re-
ports provided are generated by QUERY through the
execution of several command files. While highly de-
tailed in nature, the reports may serve well as skeletons
by which a site can tailor its own reports.

In a little greater detail, the general structure of the
database is as follows: Paths are defined by several
automasters, however one manual

“job-head” master exists which holds information
needed for several of the detail sets. There is a detail
data set for each type of log record encountered in sys-
tem logfiles, with these exceptions:

1.- Console log records are written to a console log.

2." Job initiation and job termination records (types 2
and 3) are combined into one detail set. This is the
JOB-INIT/TERM data set which also houses sev-
eral count fields. The set has been designed to
facilitate billing from one set.

The detail data sets are loaded on a one entry per log
record basis, except for the JOB-INIT/TERM set men-
tioned above, which houses some summary fields, and
the LOGICAL-MOUNT set which contains only one
entry for each job or session, and holds a total field.
Entries are also not created for certain types of file
closes, although they might be added to I/0 count fields.

No duplicate job/session numbers are allowed on the
database, thus if the loading program encounters dupli-
cate numbers within a group of logfiles, it assumes the
most recently encountered as the current job/session.
This problem can, for the most part, be avoided by pro-
cessing logfiles on a daily basis rather than in large
groups. The data set capacities are currently set to
acommodate approximately four logfiles. This may be
altered to your site’s needs. Overall, the input to the
system consists of log files. Output consists of a loaded

1—42—4

database, a hardcopy console log (assuming console
logging has been enabled), and an error listing to
$STDLIST. An in flight processing summary report
may also be output to a terminal by using a control-y
interrupt; the last logfile to be processed, and the logfile
being currently processed are displayed. The system
also creates a few working files which ensure continu-
ous processing of logfiles between daily runs.

SECTION III:
“COMPLEX” SOFTWARE
FOR JOB ACCOUNTING

The use of software appearing in this section is
perhaps not as straightforward as that in the preceding
section. Proper use of the software to yield meaningful
results requires that a an accompanying methodology be
developed and followed on a regular basis. These pac-
kages are capable of performing a greater amount of
statistical analysis on the data accumulated, producing
reports of a higher summary level. The packages gener-
ally also provide opportunities to produce highly de-
tailed reports, depending at which phase of the process
one finds oneself.

DREEACTG2*

This software system actually tracks system utiliza-
tion in two manners, the first via the processing of MPE
logfiles, producing job/session information, and the sec-
ond recording disc storage utilization using data created
by the: REPORT command. The two systems are inde-
pendent, however they both consist of a series of daily
procedures which accumulate information, with another
series of periodic (monthly) procedures designed to
summarize and present the data in various formats. The
modular structure of the system allows a site to use the
software in its entirety, or to utilize those portions of the
package applicable.

The system is capable of a large amount of statistical
analysis, producing highly detailed reports which ac-
company the daily data accumulation, as well as pe-
riodic summary reports which break out the data in sev-
eral manners. The reports could be highly useful to an
operations staff in monitoring system resources, to ac-
count managers and/or project leaders by informing
them of system activity associated with their ‘“domain,”
as well as to DP management in holding various cost
centers accountable for system usage.

While the method of cost center assignment is specif-
ically geared toward the account structure found at the
contributor’s site, this logic module is a self contained
subroutine which could easily be altered to a site wish-
ing to apply its own philosophy of cost center assign-
ment.

Cost computations are performed using weighting
factors held in an initialization subroutine, as well as a
cost limiting factor; these factors can also be easily re-
viewed and modified by a site wishing to weight or limit
computations in a different manner.

In a slightly more detailed consideration of the job/
session processing portion of the package we see that
the daily procedures involve two steps. The first is per-
formed by the program ACUMLOG, which functions to
summarize by job/session all activity accounted for in
the MPE logfile under that job/session number. Sum-
mary files produced in the first step are then read by the
program LOGRPT, which appends cost fields to the ac-
tivies, producing a monthly summary file in the second
step. It might be useful to note that only log record
types 2,3,4,5,8 and 9 are considered. Only summary
records for job/session numbers less than 1000 are pro-
cessed by LOGRPT; this can also be altered for sites
whose job/session numbers commonly surpass this
limit. It might also be worthy to note that one must take
care to manually ensure that summary files for different
months are kept separate.

Reports produced include logfile summary reports,
- job/session detail reports and monthly reports, pro-
duced from the monthly summary files, are broken out
by account and at the group level, and cost center level.
Invoices may also be produced, broken out primarily by
cost center, and at a secondary level by the account
structure within.

The disc storage utilization portion of the package gen-
erates reports in a manner similar to those mentioned
above. Data is obtained from directing the output of a:
REPORT command to a disc file. The data thus ob-
tained is then accumulated on a daily basis by the pro-
gram ACUMDISC which creates a monthly master file
after cost fields have been appended. The disc charge
rate is hard coded into the program and can be easily
changed.

Extended documentation of the system can be ob-
tained. This outlines detailed operating procedures,
most of which are incorporated into jobstreams.

This package is an example of the incorporation of
another library contribution, ACUMLOG? into an in-
house tailored job accounting system.

LOGUTIL!3*

This user oriented and highly versatile software pac-
kage is designed to serve four general functions. It
facilitates the storage of logfiles in a randomly accessi-
ble format, it scans logfiles, selecting and displaying log
record types chosen by the User, it summarizes various
types of activity logged within the file, and it analyzes
such summaries in terms of job/session activity, file ac-
tivity, or device I/O errors. The program is versatile in
its ability to accept input and output both to and from
disc or tape, or in combination. This is controlled
through file equations. Various report options are given
the User within each generic type of report. Options
include such items as detail level, sort-item, and rank
item within sort item.

The package consists of the three programs
LOGUTIL, LOGREPT and FILERPT; a data file is

also required which reflects your site’s configuration.
LOGUTIL is the central program of the system, per-
forming the storage, summary, and scanning functions,
as well as the evaluation of 1/O errors. The other two
programs, LOGREPT and FILERPT, analyze the sum-
mary files produced by LOGUTIL, to produce the vari-
ous job/session and file activity reports.

Briefly, the program LOGUTIL allows for the selec-
tion of three functions. Logfiles may be copied to tape
in a consolidated fashion (multiple reels are supported),
an audit review of the logfiles performed, or an I/O error
analysis reported. Output depends upon the option
selected and may include a ‘““loaded” tape, a listing of
the number of records in each logfile, starting and stop
time, a listing or file of summaries for each job/session,
summaries file, a file activity summary file, and a sum-
mary listing showing the number of occurances of each
record type in the logfile. Logfiles may be optionally
purged, if the User has SM capability.

The program LOGREPT analyzes the job/session
summary file produced by LOGUTIL. The User is
prompted for such selections as the listing device, the
input file name, the report date range, whether to ana-
lyze by groups or users, any groups or users to be
excluded from analysis, and the detail level of the report
(long or short); the program can also provide account
summaries.

The program FILERPT carries on a healthy dialogue
with the User, in a triple nested loop fashion. The file-
activity report produced may be “viewed” by files ac-
cessed, by name or rank of access, and by User acces-
sing the files. Likewise, the report may be presented
primarily by Users accessing files, by name or rank of
access, and with or without the files accessed being
listed. There are several sort items from which the User
may choose to “rank” output. Counts and totals are also
given. .

The contributor recommends that the source code of
LOGUTIL and LOGREPT be examined and modified
to handle your system’s configuration.

The operation of the system is quite well
documented.

SECTION 1V:
A CASE STUDY OF WHITMAN'’S
SYSTEM RESOURCE ACCOUNTING

Since its beginning in mid-1977, the Computer Serv-
ices organization has kept records of work performed
for the various offices on campus. These records in-
cluded some computer-generated information on
machine and paper usage, as well as manually main-
tained records on human resource usage.

Frankly, upper management cared little about such
records. Most resources were adequate, and User con-
cerns centered around when they would “get their
turn.”’The Computer Services Office used available
software to occasionally monitor the system usage, and

1—42—5

correctly predicted the inevitable shortfall of computer
resources. The software mentioned above included a
rudimentary Manpower Accounting System, dating to
mid-1978, created using student labor. This had been
planned as one part of a larger Job Accounting system,
however manpower was never made available to com-
plete the task. Thus, the Center relied upon such pac-
kages as DREE to monitor actual computer usage.
While these packages were more than adequate to get a
measure of system activity, they did little to provide
comprehensive evaluations of the overall impact of var-
ious User offices.

The onset of lack of resources forced a change in
most everyone’s thinking. In pursuing the creation of a
five-year plan for computer usage on campus, the Com-
puter Policy Committee recognized the need for usable,
consistent data for planning. While the aforementioned
Manpower Accounting reports were of help, most of the
computer-generated information was simply not in a
*“digestible”” form. This resulted in some justifiable crit-
icism of the material presented in support of the pro-
posed five-year plan. The supporting figures were
primarily directed toward manpower usage, with only
highly technical information available on machine utili-
zation. The support and maintenance functions were
not delineated from development functions, and at
times, were aggregated with both the User and the
Computer Center itself. No actual dollar figures tied
back to real expenditures were presented. In general,
the User was left with an incomplete picture of the
amount and type of activity on the computer.

Development of a “diary” database, and supporting
programs then ensued. The resulting system resource
accounting system, called the DIARY, was designed to
fulfill information needs in three areas. It accounts for
manpower resources, computer resources, and material
resources, such as paper. The three areas taken into
account are made unique from each other in the level
and type of data collected, as well as the collection
methods used. The areas also have several common fea-
tures, namely the resulting derived data and the
philosophical approach used in deriving summary level
data. Unique requirements are addressed by logic
modules designed to meet those needs. The common
requirements are fulfilled by the conversion of usage
figures into standardized units, useful in analysis.

It would perhaps be best to briefly summarize the
philosophy of the DIARY, and then proceed with a
more detailed description of the software and methods
used in its support.

We wished to present system resource accounting in-
formation in a manner which would correlate not only
the types of resources being used with the application
system receiving the benefits of such usage; it was
necessary to indicate whether the resources were in-
vested in production work within a system, mainte-
nance of the system, or development of an entirely new
system. Furthermore, the activities of the Computer

1—42—6

Center staff needed to be represented in a way which
delineated between the general overhead needed to
maintain the organization, and services rendered ac-
countable to specific offices. It was also necessary to
separate usage figures generated by administrative func-
tions from those generated by academic functions.
While many shops might be able to keep accurate fig-
ures by strictly designating logon accounts to be used
for specific purposes, we wished to gather more detailed
data, in terms of computer resources. While Whitman
College does not employ actual charge-back, the struc-
ture of the database preserves this as a viable alterna-
tive for the future.

The three logic modules of the DIARY are named by
the type of information which they address. They are
the Unit of Manpower (UOM),.the Unit of Processing
(UOP), and the Unit of Resources (UOR) modules.
While the UOM is daily in orientation, the UOP and
UOR modules summarize data by the month. The
unique features of each module will be discussed after
examining the set of common “unifying” codes which
are derived from the various types of data encountered
in each module. The authors acknowledge the fact that
while the following codes presented are applicable to
the specific information needs of Whitman College, they
may not be entirely appropriate for shops in a different
environment. It would be helpful in the discussion that
follows, to examine the examples, in Appendix B, of
how these codes are employed in our shop.

® Activity Area — denotes a general type of activity,
(Production, Maintenance, Primary or Secondary
Development. Primary development involves the
creation of a new system; secondary development
involves the addition of new programs or functions
to an existing system.)

® Sector — makes a general distinction between ad-
ministrative, academic and computer center func-
tions

o Office — Designates a particular administrative of-
fice, or academic division. (Registrar, Admissions,
Division of Social Sciences, etc.)

e System — an application system in which work is
being performed. Each system is “assigned” to an
office which is held accountable for the system.
(Payroll, General Ledger, Class Grading, etc.) Each
academic department also is assigned its own sys-
tem code (Physics)

e Project (SR) — Project numbers are assigned to
any production or maintenance work which is per-
formed in response to a service request, and is per-
formed by a computer center staff member. A proj-
ect may affect several User systems, and the
format of the number allows evaluation on either a
project or system orientation.

The office code is functionally analogous to the cost

center. Due to the heirarchical structure of the codes,
those at the top may be derived simply by ‘“climbing the

B

ladder.” While this may appear redundant, the design of
the system was partially dictated by the ad hoc inquiry
tools available, such as QUERY* and QUIZ!. Efforts
could then be concentrated upon creating systems to
load the database, rather than in creating report pro-
grams.

Separate tables drive the software that tags and iden-
tifies the aforementioned codes to each job accounting
record. Some of these tables require a minimal amount
of manual maintenance. Such maintenance might be due
to the creation of a new account, or to the installation of
a new system. While the assignment of codes and cost
centers may be completely by defaults, the tables allow
for proper assignment of codes in exceptional cases.

The UOM records the actual hours worked within the
computer shop by all staff. The UOM is the straight-
time dollar/hour rate of an employee, multiplied by the
hours reported. Whether the employee is of exempt or
non-exempt status is ignored, resulting in a ‘“‘weighted”
charge for services depending upon the person provid-
ing it. All hours are designated to a system code, and an
activity code; the activity code is more specific than the
activity area, however can be mapped to the activity
area after considering the system/activity code combi-
nation. A project number might also be optionally rec-
orded, provided it is compatible with the activity code
(e.g., a maintenance project code would not be compat-
ible with a system undergoing primary development).
Data in this module is handled in a fairly specific man-
ner. Accountablilty goes even to the program number
being worked on, where the program number takes the
place of an activity code. Reports can be generated by
employee, by system, by activity, and by project. Such
detailed reports may not be of great interest to upper
management, but are useful to staff members in visualiz-
ing where their efforts are spent. It is important to em-
phasize that unless staff members reports all hours
worked, regardless of whether or not they are paid, the
accuracy of the UOM module as a planning tool is con-
siderably degraded.

The Unit of Processing module provides comprehen-
sive information relating to machine utilization. The
UOP is a derived figure making use of weighting factors
built into the accounting processor obtained from the
Department of Regional Economic Expansion (DREE).
A portion of the DREE software is used in the first step
towards loading the UOP leg of the DIARY. The DREE
package is used to summarize raw data from the log-
files, by session and by job, and to append cost fields to
the activities represented. Because our philosophy in
assigning cost centers is different from that of DREE,
in-house developed software then performs the remain-
ing steps in loading the database. The following para-
graph briefly describes our method of assigning cost
centers.

While DREE incorporates the cost center code into
the User name, we have found that cost centers are not

so “cut and dried” in our shop. It is relatively safe to
assume that any work performed in an administrative
User’s account is production work, as well work per-
formed in student or faculty accounts as being
academic. However, accountability as to the software
system being used is lost. The major problem is in track-
ing the type of work being performed by Computer
Center staff members, which may be development,
maintenance, or in support of User production. We
have resorted to extensive use of standardized job/
session names which vary according to the type of work
the staff member intends to perform when logging on.
The combination of job/session name, user name, and
logon account is checked against the code assigning ta-
bles mentioned previously. From the tables, the cost
center is derived. The structure of the job/session name
is either of the form of a specific project number, or of
the format *“‘system code/general activity area.” Thus
we are able to account for work performed on the com-
puter down to the system level; the type of work is
inherent in the project number, or in the activity area,
whichever is used. The UOM module also accounts for
activity under project number, and activity codes are
mapped to general activity areas, as mentioned before.

Using ad hoc inquiry methods, reports can be gener-
ated that delineate between production, development,
or maintenance work; The amount of each type of work
taking place within application systems can also be re-
ported. And most certainly, reports may present in both
text and graphical forms the comparative usage of pro-
cessing power, as well as staff manpower, by adminis-
trators, faculty, and students.

The Unit of Resource (UOR) module provides data
relating to paper usage. The UOR is a derived figure,
relating to the print-line count obtained from MPE log-
files, and summed by DREE software employed.

The DIARY database is diagrammed in Appendix B -
I.1. Software should be run on a regular basis to sum-
marize and transfer data between the sets. The em-
phasis is upon running timely detail reports, and then
eliminating any accumulation that is unnecessary.

Unless Users know how much it costs to provide
them services, it will be difficult to prioritize or separate
actual needs from “wish lists.” Cost values are main-
tained for UOM, UOR and UOP, although they are ap-
proximate until the close of the fiscal year. Such data
relating actual expenses to Computer Center activities
is a necessary planning tool for Users, and is helpful
only if made available on a timely basis.

The investment in software for all of this is actually
very modest. The “lions share” is for the load pro-
grams, and those that handle summarization. Of course,
reports of greater precision will ultimately be de-
veloped. Because the system was targeted for ad hoc
reporting, the software investment shall continue to be
minor. The following is a summary of current programs

1—42—7

and their functions in the flow of information within the
DIARY:

JA120 — UOM Staff Activity Report Input Sc-

reen
JA202 — Summarizes UOM-DTL, loading
ACTIVITY-DTL '

JA204 — Summarizes UOM-DTL and UOP-DTL,
loading the SUMMARY-DTL

JA234 — Transfers DREE records to UOP-DTL,
adding record heads -

JA323 — UOM Monthly Manpower Report by
Employee

JA325 — UOM Monthly Manpower Report by
System

JA327 — UOM Monthly Manpower Report by
Activity

JA329 — UOM Monthly Summary of Employee
Hours

JA405 — UOP Monthly Summary of Machine
Utilization by Sector

JA640 — SUMMARY-DTL Report of UOM,
UOP, and UOR against activity area,
within system, within office

In addition:

The PROJECT-MST, EMPLOYEE-MST, and
BUDGET-DTL are manually maintained via
DBENTRY.

CONCLUDING REMARKS

The classic concept of ““job accounting’ is inadequate -

to provide management with a proper understanding of
the cost involved in providing total service to Users.
Only total ‘“system resource accounting,” which in-
cludes manpower, equipment, and material resources
can hope to provide the divergent types of data needed.

While few shops will find free or fee-charged software

1—42—38

that adequately meets their needs, there is a wide vari-
ety available to begin with. Much of this is free to mem-
bers of the Users Group. It is important that shop man-
agement recognize the need to gather such data, before
confrontations with upper management prompt the
need. Certainly, each shop will need to tailor any gen-
eral purpose accounting software system to their own
environment. Better to start early, for a large base of
historical data is usually required to establish trends.

All of the above reinforces the need to plan early. The
authors of this paper hope that the material and consid-
erations presented will help you formulate the appro-
priate course of action for your shop.

REFERENCES
Detailed information on logfiles may. be found in the HP System
Manager/System Supervisor Manual, Section VI.

2See ““The Hardcopy Console: A Tool for Installation Management,”
by W.E. Holt, Montreux Proceedings, 1980.

3Contributed by Linford Hackman, Vydec, Incorporated. ‘Contrib-
uted by S.G. Joerger, Armament Systems Incorporated.

SContributed by Bill Klages, DE Systems, Incorporated.

8An HP product; see the MPE System Utilities manual, Sect. IV, for
operating instructions.

7An anonymous contribution.

&Contributed by Jon Falconer, Pacific Union College.
®Contributed by John A. Maus, Hewlett-Packard.
1°0On Orlando Swap tape, Bob Dunn programmer.
1Contributed by The Bose Corporation.

ZContributed by Serge Bazinet, Department of Regional Economic
Expansion, Govt. of Canada.

13Q0riginal author was Gerry Wade, contributed by Brent J.

- -Thompson, The Development Office, BYU, with some

modifications.

4 An HP product for on-line inquiry. See IMAGE and QUERY manu-
als.

5Produced by Quasar Systems Ltd.

16An IMAGE-VIEW interface program, contributed by Bruce Kau,
Tours, Incorporated.

APPENDIX A
Table of Contents

I. COSTPROG
Procedures and ReSUTtSeeceecoececscscosoacesoescsccsscasccss 1

II. JLISTLOG

J.log].ist........l......Q‘............C......lﬂ........'..... 1

ITT. LISTLOG2

LOg].ist.'.....................I...IQ.....................I.. 1

IV. PORTSTAT :
Partia] Report..........l...’............................ll. 1

V. SLISTLOG

S]og]ist...‘...............l....l..l..'.l...........l....... 1

VI. DREEACTG
Logfile Summary Rpt and Whitman's ModificationSeeeeccesccocss
Account Manager RepOrtececececceeccocccsscssssccsceccscccnscs
MTHACTG INVOTCEuuesessesscsocscasvcscccscsscoscnsssscscsnces

TN =

VII. LOGUTIL
LOGUTIL Job/Session Audit SUMMArY..eceeeceececoscccscccceccane
LOGREPT Job/Session Summary (ShOrt).eeececececsccccccccsaass
FILERPT File Activity Report by File (ShOrt)eeeeeeecesceccsee
LOGUTIL I/0 Error SUMMAry.eeecceccecceccsccsccesccsccsccssnss

WwwrH

1—42—9

1RUILD RRR;EFCRe72,,,ASCTIsDEVaDISC3DISCE1000
tFILE RRR,NLD;DEVSDISE

___$REPOPT A,LIN,w¥2FR
tFTLE FTYCIzERP,OLD
SFILE FTNA7;DEVCONLP

__tFUN COSTPRUG;STACK=2000

_. ENTEP COST PFR CPU_SEC IN DNOLLARS 29,001

EXTER COST PRR COAMNECT MINUTE IN DOALLARS 20,09

TTENTER COST FER SECTOR IN DOLLARS 71,00

-..F"D_OF PRAGRAM
tFILE OUTFILE;DRVaCOMLP
tRUN PSCREEY UTIL,IPIS

__LOCKWORD:; PSCEREEM,UTIL,IRIS?

___&SCREEN CONTENTS Ay WED, JAN 6, 1982, 1108 AM

ACCOUNT FILESPACESECTARS CPU=SECONDS CONNFCT=MINUTES DOLLAR
/GROUP COUNT LIMIT COUNT LIMIT count LIMIT __CHARGES .
LI13 168R8 - 2555 e 2645 *® §$16,917,00
. /DATA 589 PO @ w18 _ we 38569,20 _ .
/nuC 783 [13 17 11} 191 e $784,99
/J0R 132 e 0 127 0 L 4] §3132,00
A 10244 s 2185 it 2374 »e $10,269,93
T /SOURCE 5140 ') 269 [62 #% $5,140,89
Appendix A - 1.1

1—42—10

Im—ww—1I

T'I - V xipuaddy

TIVE

13333:50:3
1314030032
1334130029
13241385625
13342:51139
1334321125
1314323629
13343:551:5
13344:10:8
13145:0812
1324521031
13345:1324
13345:35:1
1324523923
13347:25:6
13:147:38134
13349232622
13849:57:7
1335135587
1315230934
13:52:14:8
13352:41:9
13152:4534
13354:58:2
13:55:09:2
13:56313:9
1335781322
1335721927
13:57:32:2
13159:02:9
1410152235
1430122736
14802:50:7
14:03:G039
14303:14:0
14303:5735
14:04:23:0
1430433432
14:05:5136
14:06:59:1
14808:14:2
1430921121
14209:21:4
14309:41:6
14:09:42:2
142162155
1481033123
143113833:5
14212:3026
1433331422
14313:33:4
1431422433
14211532730
1421525833

-1413631334

JORy

¢J590
£J691
852893
8J691
852952
#53098
832583
853100
07662
8J690
852694
#8J693
8J692
#J694
£853102
¢J694
$J69S
853108
852877
253108
eS3113
87695
£J696
8J696
8J697
1J697
853113
fJ69R
983124
£53126
#JA9R
8J699
£S53124
8J659
sJ700
$J693
853126
153132
8J701
£J700
£J702
tJ701
3702
£J793
£J704
852896
£53147
¢53151
¢J704
eJ703
£J79S
8J706
852996
8J70S
8J707

ON/OFF

o
o
OFF
OFF
OFF
ON
OFF
ON
ON
OFF
OFF
ON
OFF
oN
ON
OFF
oN
oN
OFF
OFF
OoN
OFF
own
OFF
oN
OFF
OFF
oN
ON
ON
OFF
oN
OFF
OFF
ON
OFF
OFF
[s]]
oN
OFF
ON
OFF
OFF
oN
ON
OFF
oN
ON
OFF
OFF
oN
OoN
OFF
OFF
ON

B

JLISTLOG A,00,00 DATE: FRI, DEC 4, 1981, 13133 PM LOGFILF: 2345

FDOEV,NYHAGEN ,WCCS,N13 PRI=DSy CPUzUNLIM3 INPRI=Ry OUTFRI=0Nj JIN=103 JLIST=2)
UFUPDTCA BUSENTRY AT:MIN,RUSTINESSy PRI=DS; CPU=5000: 1'iPRI=A3 OUTPRI=8; JINS10; JLISTBI?

C""-ﬁFC 43; ELAPSED=4INz=433 MAXPRI=0N3 NUMeCREATIUMS=1S

CPJ=SEC=73 ELAPSED=MT!=23; “AXPRIZ0; NUMeCREATIOAS:=3

CPU=SEC=333 ELAPSED«MIN2233 MAXPRI=(03 NUMeCREATIONS=28
SA"DFRCR STU84R,SANPERCRy PRI=CSy CPUsUMLIM; INPRI=@3 OUTPRI=O0y JIN=533 JLIST=S3

CPU«SEC=1403 ELAPSFDeMINS903 MAXPRI=03 NUVaCRFATINWSZ48
LUTTGEJC ,STUBSB,LUTTGEJCs PRI=CSy CPUSUNLIM; INPRI=B; OUUTPRI=0; JIN=473 JLIST=47
UFUPDTCA,BUSFENTRY,ADMIN,RUSINESSs PRI=DSy CPU=S0003 INPRI=83 OUTPRI=Ry JIN=103 JLIST=17

CPUSSEC=523 ELAPSEDP=MIN=123 MAXPRIZ03 NUMCREATIOLSS¢

CPU=SEC=183 ELAPSED=MIN3473; MAXPR1z0j NUMeCREATIO“S=1
FDDEV, KELSEY WCCS,Kis PRI=DS; CPU=I'NLIM; INPRI=8y OUTPRI=03 JIN=i{0s3 JLIST=2)

CPlleSEC=8; FLAPSEDReMIl=23; MAXPRI=0j NUM«CREATIONS=3
GL1AJOR,BATCH,ADMIN,BUSINESSs PRI=DSy; CPUsSUMNLIM; INPRIeg3 OUTPRI=0; JIN=10} JLIST=31?
MICHELSO,APMIN,ALUMNI; PRI=CS; CPU=IINLIMs TNPRI=gp OUTPRI=Q; JIN=573 JLIST=47

CPUaSEC=153 ELAPSFD=MINz23 MAXPRI=0j; NUMeCRFATINNUS=T
GL3AJOB,BATCH,ADMIN,BUSINESSy PRI=DS; CPUsUNLIM3 INPRIZ=43; OUTPRI=O03 JIMN=103 JLIST=17
FDDEV,NYHAGEN ,WCCS,YHAGFNy; PPI=CS3; CPUsSUNLIM$HIPRIj; QUTPRI=0j; JI%N=27y JLIST=27

CPUeSFC=43 ELAPSED~MIN=1233 MAXPRI=0) NUMCREATIO%S=1

CPU=SFC=4) FLAPSENeMIN=3y MAXPRIz(j NUM«CREATINDNS={
FDDEV,NYHAGEN ,WCCS,N1; PRI=CS; CPUsUNLIMyHIPRIs GUTPRI=0s JIN=27y JLIST=27

CPU=SFC=14) ELAPSEDeMIN=43 MAXPRI=03 NUM«CPEATIONS=?
FDDEV,MANAGER ,WCCS,CUMMONy PRI=DS; CPUsUNLIMg IMPRI=Rj; OUTPRT=0; JIN=3103; JLIST=23

CPUSEC=14; FLAPSEDeMIN=33 MAXPRI=(} NUM-FREATIO S=31
FDDEV,MANAGER ,FINDEV,PURs PRI=NS3y CPUsUNLIMg INPRI=83 OUTPRI=0g; JIW=103 JLIST=23

CPU=SEC=S53 ELAPSEDeNIN=2p MAXPRI=0N3 NUM=CREATIONS=)

CPU«SEC=S3 ELAPSED=MJNz=63 MAXPRI=Nj; NUM<CREATIOXSal
GL1AJOB,BATCH,ADYIN,BUSINFESSy PRI=DS; CPU=UNLIM; INPRI=4; OUTPR1=03 JI#=103 JLIST=17
COTTPEF1,STU84B,COTTREFMy PRI=CS3y CPU=UNLIM; INPRI=83 OUTPRI=0y J1%=44; JLIST=44
FDDEV,NYHAGEN ,WCCS,%13 PRI=CS; CPUSUNLIMyHIPRI; OUTPRI=03 JIN=273 JLIST=27

CPU-SEC=13y FLAPSED*MIN=S3; MAXPRI=0j HNUMeCRFATINNS=T
UFUPDTCA,BUSENTRY ,ADMIN,KUSI%ESSy PRI=DS; CPU=50003 IWPRI=83; OUTPRI=8; JINS103 JLIST317

CPU=SEC=113 FLAPSED=MIN=6; MAXPRI=03 NUMCREATIONS=4

. CPIeSFC=7; FLAPSEDeMINZ2y MAXPRI=0j NIUMaCREATIONS=3
GL1AJOB,BATCH,ADMIN,RUSTINESS: PRT=NS; CPU=sUNLIM; INPRI=gy OUTPRI=Q3 JInN=103 JLIST=1?

CPUSEC=125; ELAPSED=MIN=193 MAXPRI=z0; MUMeCREATIGNS=4

CPU~SFC=43 ELAPSED=¥INzp; MAXPRIzZNy NUMeCREATIONS=i .
FDDEV,MANAGER,WCCS,BATCHy PRI=CS3 CPUSUNLIM; INPRI=R; UUTPRIz0j; JINm27; JLIST=27
UFDSJENT,BUSENTRY ,ADMIN,BUSIMFSS; PRI=DSs CPU=5000s IlFRI=Ry OUTPRI=dy JIN=10p JLISTa17

CPUeSEC=25; ELAPSED=MIN=43 PAXPRI=0j; NUMeCREATIONS=7
FDDEV,MANAGER,FINDEV,PURy PRI=DS; CPUalUNLIM; INPRI=A; OUTPRI=0y JIN=ing JLIST=23

CPllaSFC=19; FLAPSECe“INz43 MAXPRI=03; NUMeCREATIONSSS

CPU=SFEC=5; FLAPSEDeMIN=23 MAXPRI=0g NUM«CREATIONS=]

FDDEV,KELSEY ,wCCS,K1s PRI=DS; CpUsUNLIM; INPRI=g3 OUTPRI=Qy JIN=10; JLIST=23
FL1JOB,BATCH,ADMIN,BUSINESSs PR1=DS3; CPYsUNLIMg INPRI=63 OUTPRI=03 JIN=103 JLIST=1?

CPHwSEC=4R3 FLAPSEND=MIN=713 MAXPRI=Ng NUMeCREATIUNS=2]
HANFORET,STUB2,HANFORET; PRI=CS; CPU=UNLIMy; IKPRT=83 OUTPRI=0s; JIN=44; JLTST=44
ORPROD ,MANAGER ,ADMIN,CNMMON3 FRI=CSy CPU=UNLIMJHIPRI3 GUTPRI=03 JIN=453 JLIST=45

CPU=SFC=93 ELAPSEDeMIN=3); MAXPRI=03 NUM<CREATIONS=z4

CPU«SFC=153 ELAPSFDeMINz43; MAXPRI=03 NUMeCREATIONS=Z)
FDDEV,MANAGER ,FINDEV,PUBsy PRI=DSy CPUSUNLIM; INPRI=83 OUTPRI=0; JIN=10j; JLIST=23
ARPROD,KELSEY,WCCS,K1; PRI=DS; CPUsUNLIM; INPRI=Qj; OUTPRI=0j; JIN=§03 JLIST=23

CPU«SEC=823 ELAPSED=MIN=563; MAXPRI=03 NUMeCREATIOAS=10

CPUeSECS103 ELAPSEDeMIN=3; MAXPRIz0j NUMeCRFEATIONS=1
FL2JOR,BATCH,ADMIN,BUSINESS; PRIaDS; CPUzUNLIM; INPRI=6j OUTPRI=0; JIN=10; JLISTs1?

A—ww—1

: LOGFILE: 2345

TIME TYPE JOBs coo,00 DATE: FRI, DEC, 4,1981
® @ ® T 6 v e e " e e e " e e e e e aT T TR e e ® e e e "% e e e e P "% B e e e @ " e
—— oo - FILE NAME _ « DISP # DO! « SECTORS __# DEV T/s & RECORDS_ _« __ BLOCKS__ « -
1235 35132 FILE J 684 $STDLIST,BATCH «ADMIN 0 1 1280 32 /0 26 0 .
& e ® ® e e w " e P e " e e ® e e BT e " 8 e B " e ®® ® e ® T e > ® " B ® " D . ® » e e e 0w e e
PROG SEG # SL SEG # MAX STACK # MAX DS # VIRT ST & _} _ e
1235 35134 PROC J 684 0 0 2772 14 147 h .
© ©o 0 ® ¢ ® 0 B e B e e e Y e T e e T A% e e e AP 5 e e e e e ® 9 e 5 e % e e " e e W e e e ® e
o FILF MAME __» DISP & DDM #_ SECTORS __ # DFEV T/s s RECORDS _® _ BULOCKS__ & __
1235 :5136 FILE J 684 QUISPUDC,PUR +IRIS 0 1 2 o /11 3 1 .
¥ ® @ e e e e P e e e e R e e e P " e BT e R e O P O B Y e e " T O B e ® O e W e e " W ® e e " O e
—— e wowoo ... FILE NAME _ # CISP # DOM # SECTORS _ « DEV T/#¢ # RECORDS __® __ BI-OCKS s
12315 351:7 FILE J 684 sYsunc ,puam «SYS 0 1 35 o /13 93 6
. # ® 0 @ O = e = e e e P e e e O " P e D e T P T e 9 e " P T B e S e 8w e ® e e e e e e e .
- ‘e FILE MAME _ ___ # DISP # DOM & SECTOPS___ s DFV T/# e FPECURDS ¢ RLOCKS _ & . _ _ _____
1215 3S52:4 FILE J 684 AD310S13,BRATCH «ADMIN 4 2 1604 o /11 0 (1]
% o ® e e e e e ® B e B e e P e PP e T BT RS @ T e P e T e e B e e D e ® P e E T ® P e e W e e e " ®w
- MAX PRY ¥ CREAT # CPU TIME(S) ® ELAPSED (M) #_ S
1215 35235 OFF J 684 0 2. 175 9
P @ v 0 @ O e " T e e e e e e e T B D e Y BT @ T BT P B e O PP " % B S P O e e ® % e R e P e e " e w
... FILE NAME__ _____ # DISP » DOY # SECTORS__ # DEV T/s_«_ RECORDS _ BLOCKS__ & -
> 12:5 :5315 FILE J 684 §STOLIST,BATCH +ADMIN 0 a 36) 32 /0 33 2
® ® ® ® © T 6o P T S e R PO T O e T e T e G e T B Y e e ® S e " 6O R " > e e e ® ® e " ® O " ® @
=2 I _..... FILE NAME___ __ # DISP % DOM # SECTORS __e DEV T/# » RECORDS # BLOCKS __ #
EE 12i5 15317 FILE J 684 §STDIN ,BEACON ,IRIS 4 1 8 24 /0 14 i
@ ® ® ® o ® 0o W O O B S R P e e e T e e Y BT PP PP e e T P B e e T B E e W R e % ® e e % aw
- FILE NAME_____ # DISP # DOM # SECTORS__ # DPEV T/2 s RECORDS _# _ RLOCKS _ - —_
=3 1235 155:9 FILE S 2879 SNEWPASS,WEISSHC ,STUBSB 0 (4 201 . o /13 21 21
> # @ ® 5 ® @ * e e e P e e e e e T e " e " e e T T e T E e e e e e w e e e Y ® P e e e 9 ® e " " e e " =
. e e e oo FILE MAME & DISP ¥ DOM # SECTORS & DEV T/s &« RECORDS ¥ RBLICKS __» e e
E 1235 356t2 FILE S 2879 FTNIC +WEISSHC ,STUBSB 4 0 256 ¢ /13 12 12
¥ ® @ ®» ® 0o ® o © P Ve e PP P e e T e R P P Y e T O R T B e e P E T P E T O ® e " ® e ®® e e ® .
- _.__..__FILE NAME ___ _____ « DISP & DOM & SECTORS _ « DEV T/¢ s RECORDS & RLOCKS & -
1235 35633 FILE S 2879 FTNUTYL L®ETSSHC ,STURSB 4 o 9 0 /13 6]
@ w e ee e e w T R w e w e P P e D e e WP T W G E e U S e R ® " W e S " 6w B e ® e " " O 8 " " e
e e i e FILE NAME _ _ _# DISP & DO¥ » SECTORS & DEV T/¢ # FECOPDS, # BLOCKS __# e e
1215 :56:4 FILE S 2879 PROJY +WEISSHC ,STUBSS 0 1 33 0 /13 Q5 32

® ® © ® @ ® 9 ° @ O P e e R P e e e Y e T PP OO AT O e T P e e e ® e e ® ® ae e 608 " e e e " e

NAME_ % DISP & POM »

. - 1 0 0 16 761

SECTORS _ @ DEV_T/# s RECORDS &,

_RLOCKS __e
201

201

® ® ® @ B e . e e e e e e e e e e e e e e R G R T R e R e ® e P e T % o e ® e " e W e O e " e e

e o ... FILE
1215 356:4 FILE S 2879 FTNLIST ,
e N , PROG SEG_ # §

12:5 :56:4 PROC S 2879 22
* o o w ®» o ®o o

.FILE

1235 35635 FILE S 2879 $STDIN

*® o w ®© o o © «

FILE NAME ... DISP s DO! #

771215 35615 FILE S 2879 §STOLIST,

FILE

T 71215 15735 FILE S 2879

SEGPROC ,PUR
% ® ® ® @ e ® -

FILE

TTT{21s 15935 FILE S 2879

$NEWPASS WEI

L SEG # MAX STACK & MAX DS # VIRT ST s
5 6932 8 276
NAME_ .+ DISP & DOM & SECTORS _ & DEV T/&_
. 0 0 0 16 /61

. 0 0 0
*® & ® @ o » o e
NAME .
«SYS 0 1 144 0o /1
® ® " 9 ®P e e e e P e e NS 8" e " e ® > o ®a
NAME_ . # DISP e DOM & SECTORS
SSHC ,STUBSB 0 0 15

16 /61

L

0o /2

SECTORS ___« DEV T/# # RECORDS ¥

DISE # DOM # SECTORS __# DEV T/s s RECORDS

DEV T/8 s RECORDS

RECORDS _# BLOCKS -
20y 201

. BLOCKS &

201

- ® ® ® o ® ® o P ® ® " ® ® & ®© ® o ® e

¢ _.BLOCKS _ »

9 9

- ® ® @ W @ 9 e e =" S 8@ 9 O e " e
BLGCKS___ #

28

201

28

'-----------..--...--..-_..--I...\-.--.-.---.'...--.-.--
kY

J

(\ﬁ@

J

TFHT, DECT 4, 1981 " T12305 PN TO T UFRI, DECT 4, 1981 2157 PN

TUFROMY
_.LPEV_JOB COUNT JOB CPU SEC,/COMNECT MIN, . J0B CPU SECONDS ___ _ __JOB_CONNECT MINUTES
TOTAL TOTAL™ JOB AVE $TD,DEV, TOTAL AVERAGE ~STD,DEV, TOTAL ~ AVERAGE ~ STD,DEV,
.e cTeovoeow L L LT LT3 oeowveswuw oeowesew PPOwceew oveveReew veosPvesees oeoeew Ll AL L1 T 1 1) oTeoeersenee
L2
21
22
.23
34
25
26
27
28
.29
30
31
32
33
L34
.35
36
37
g
1
40
_41
42
43
.“.._4.___._

»83 283,00 s 5,00 200 6 6,00 .00
1.61 1.5 1,06 106 13,25 12,92 66 8,25 6,78

1,19 1,19 00 121 121,00 200 102 102,00 200

o715 o715 «00 60 60,00 .00 80 80,00 «00
e 980 496 262 47 8,40 4,88 il 15,60 15,83

‘= ol o ojo o vlo oolt o oloom-ooloocoio

Appendix A - IV.1

1—42—13

i—w—1

I'A - V xipuaddy

SLISTLOG A,00,00 DATEg FRI, PEC 4, 1981, 12306 PM LOGFILEs 2345
TIME JOBs - DFID FILENAME® JSNAME, USFR , ACCOUNT ORIGeJs NUMel/0 8SFCT COP PRI SPé DeT (CeC DIS
TT12:0A219:7 2152379 #N6296 FTNB2 YEISSHC,STH8SR 51 40 0 S 18 32 0K O
12:0734621 £352346 #76249 QUADLIST WINTRRJ,FAC 5445 884 0 8 6 326X 0
_12:08305:5 852963 _ 806250 FTHS0 . RIORUD,WHITUAN e 2781360 8 _ 6 _ 32, Ok__O
1210930789 2J677 ¥N62S51 SSTOLIST CR212J0B,RATCH,ADMIN ’ 39 32 n 8 6 32 w0
1210831126 852866 B06259 Y OHPROD,MANAGER,STUSSB 4s 44 0 8 6 32 0Kk 0
__1210R31619 #S2967 _ #06261 Y1 _ ____ OHPROD,MANAGER,STISS .- RY . S6 ___ 0 __ 8 ___6__ 32 _0K_0 e
12:10R321:8 952368 #M5263 Y1 OHFPROD,"“ANAGER,STUBS 78 52 0 8 6 32 0K o
1230832529 #S2R569 sNE26S Y1 OHPROD,MANAGER,STUR4S 45 44 0 8 6 32 0K 0
__ 12310733022 852370___ B0RJAT Y1 . ORPROD,MANAGER,STUS3 84 56 0.8 _ 6 _ 32 _OK__ 0. __
12:08:31:S #JhRO 206268 $STDLIST FRTRL,RICH“0OSL,STAFF 15 32 0 8 6 32 ok 0
12:08:36:0 £S2871 806271 Yi OHPROD,MPNAGER,STIIB2 70 52 0 8 6 32 0K o
_ 1230934430 ¢JRTO0___ 806214 __ §STDPLIST____FDDEV,MANAGER,FIKDEYV . 136 4R 0 8.___ 6 32 0K 0
12:0R34514 52873 #N6276 Y1 CHPROD,MANAGER,STU828 11 32 [} 8 6 32 0K o
1210814717 #Jh8Y #06270 SSTDLIST CR210JOR,RATCH,ADMIN 39 32 0 8 6 32 0k 0
__12308:5514 #J6894 ___ #0629 __ F422WIDPE__ AD310J"R,BATCH,ADHMIN 123, (1] 9__ 8. __ 6 ___32_0k_ 0 L
12:108:5716 #J684 #N€290 $STDLIST AD310JGR,BATCH,ADMIN k1 36 0 8 6 32 6K o
1211230422 4J683 806289 SSTDLIST FODEV,KELSEY,WCCS 3190 916 0 8 6 32 0K o
_ 1231231037 #S2562 #05299 _EDPTLIST __ PFTSOLL,STURE 182 60 0. __ 8 _ 18 32 _ OK__ o
12:23:2612 852892 806303 FTHg?2 VEISSHC,STUBSH S1 40 0 8 18 32 oK 1}
1212634213 $S2682 #06304 EDTLIST vEISSHC ,STURSA 133 52 0 8 18 32 0Kk o
_ 1284217431 #52846 __ 806306 __ LP . WINTERJ,FAC . 134 40 _._ 0 e 18 32 __ 0K 0 e
1284835187 #J677 806252 PRINTER CR212J0R,BATCH,ADMIN 14 456 7 12 6 32 0k g
12149159:0 852862 806310 PFTSOLL,STUR4 7 32) 8 18 32 0K o
_.. 1235021629 #3677 ____ #N&2S52 _ PRINTER __ CR212J0R,RATCH, ADMIN 1299 456 __ 1 12 & 32 0K __o___
1215123131 £52362 #06312 ENTLIST PFTAOLL,STUIRY 198 64 . 0] i8 32 oK [}
12:51:35:5 #J€77 #1252 PRIITER CR212J0P,RATCH ADMIN 1299 456 6 12 6 32 0K o
12152:5136 $JATT __ €N6252 _ PRINTER __ CR212JNR,BATCYH,ADNIN 1299 456 _ S 12 6 32 OK___ 0 .
12153354538 952885 #0D631) FTH99 HAVYFORET,STH82 37 35 [} 8 18 7 32770k o
1235630830 #J677 806252 PRINTER CR2{2J0R,RATCH,ADMIN 1299 4s6 4 12 6 32 0K o
_. 1235532317 #J677 __ #N6252 _ PRIXTER _ CR212J0R,RATCH ADMIN 1299 456 3 12 _ 6 32 0K 0
1215613913 #J677 806252 PRINTER CR212.J0R,RATCH, ACMIN 1299 456 2 12 6 327 0Kk 0
1215715725 8J677 #N6252 PRINTER CR212J0R,BATCH ADMIN 1299 456 1 12 6 32 0K o
. 1235931730 #J677 __ 06252 _ PRINTER _ CR2{2JOB,RATCH,ADMIN 1299 456 0 12 6 32 _OK__oO0____ . _
1310031317 #JhRY 806277 PRINTFR CR210J0R,BATCH,ADMIN 764 384 7 11 "6 32 ok o
1310130838 #J681 8N6277 PRINTER CR210.JOB,RATCH,ADMIN 764 384 6 11 6 32 0Kk o
13:02:0733 2J681 _ 806277 _ PRINTER _ CR210.JR,BATCH ADMIN 768 ' 384 __ S 11 _6__ 32 _OK o e
13:03:05:6 #J631 #0277 ~ PRINTER CR210J0OR,BATCH ADMIN 764 3ng 4 1176 32 0K "o
13:04:01:3 #Jh81 8Ne217 PFINTER CR21OJOR,RATCH ADYIN : 764 394 3 11 6 32 0K 0
1310435738 #J681 806277 PRINTER _ CR21OJNDA,RATCHADMIN 764 384 - 2 _ 11 _ 6 32 K o
1310583511 852903 806329 EDTLIST HOWELULAC,STU84R 57 36 0 8 18 32 0k o
13:0524837 #S28R8 aN6330 FTHS2 WEISSHC,STURSRA S1 40 0 8 18 32 0K o
13105:5434 #0491 #N6277 PRINTER __ CR210JOR,RATCH,ADMIN 764 384 - { 11 6 32 0k o0 .
13:0625038 #J691 806277 PRINTER CR210.TOR,BATCH,AD¥IN 764 3847 0. 116 32 76Kk o
1310°24022 ¢Jh8S Y3720 SSTDIN UFATCHCR,BUSENTRY ,ADMIN $52798 9 8 0 0 1t 0 K ¢
13:10325:5 9JAh35 _ 806334 IP _ UFBTCHCR,BUSFNTRY,APMIN 119 " 96 (] 8 19 32 ok o
1351033130 ¢J6385 806333 §STDLIST UFBTCHCR,RUSEMTRY,ADMIN T 36 36 770778 19 732 Tuk e)
1311233311 #J686 $13721 §STDIN " FBTRL,RICHYOSL,STAFF #52904 25 12 0 0 11 0 0K o
01311234220 #9637 413722 SSTDIY FL9JOR,RATCH,ADMIN $52798 8 8 0 0 2 0 oK o
13:13:0233 £J666 #06335 $STDLIST ~ FBTRL,PICHMOSL,STAFF 7~ 77y 32 0 8 6 T327TokT 0T
1331415939 52381 N300 STENOPLT FILLADF ,STAFF 166 6R 0 8 24 32 0K o
_ 13:15:0614 47687 806337 PRINT F1,9J08,BATCH,ADMIN 260 176 0 8 19 32 0K o
1311521188 '#J687 306336 SSTPLIST ~ FL9JOR,RATCH,ADMIN " 35 32 07TTe TTTI9 T TR T T T T
1311933955 #52888 $06340 FTNG2 WEISSHC,STUBSB 51 . 40 0 8 18 32 o0k 0
1331914834 #J688 813759 ¢STDIN _ FBTRL,RICHMOSL,STAFF 452904 26 8 0__©0 13 0 oK o

) N |))

<

DEPARTMENT OF REGIOMAL ECONOMIC EXPANSION

OTTAWA

WED, JAN 6, 1982, 10322 PN
. LOGFILE SYM“ARY FOR.

Appendix A - VI.1

Whitman College Computer services

Job Accounting System

Summary for: L0G2345,pPUB

L0G2345,PUB start Timeg FRI, DEC 4, 1981, 12105 PM
TYPE KO, TYPE ¢ RECORDS Stop Times FRI, DEC 4, 1981, 2357 PK
@ LOG FATLURE, K
TYPE NO, TYPE s RECORDS
1 SYSTEM STARTUP 0
e . e 0 LOG FAILURE 0
"2 JOB INITIATION 86
1 SYSTEM STARTUP 0
3 _JOB_TERMINATION ___ . 76_.__.
2 JOB INITIATION 86
4 PRNCESS TERMINATION 735
U e e e e 3 JDB TERMINATION 76
s FILE CLOSE 7732
4 PROCESS TERMINATION 735
. .. 6 . _.__ SYSTEM SHUTDOWN U SO
s FILE CLDSE 7132
7 PONER FAILURE 0
. 6 SYSTEM SHUTDOWN 0
) SPODLING LOG RECORD 232
] POWER FAILURE 0
9 _LINE DISCONNECTION _ . . O__ .
-] SPNOLING LOG RECORD 232
10 LINE CLOSE 0
. L) 9 LTNE PISCONNECTION 0
i 1/0 ERFOR ry
. 10 LINE CLONSE 0
o 32 _DISC PHYS MNT/DSMNT .0
11 1/0 ERRNR 0
13 DISC LOGICAL MNT/DSMT 0 .
e e e e e e e e e o 12 DISC PHYS MNT/DSMNT 0
14 LABELLED TAPE
13 DISC LOGICAIL MNT/DSMT °
TrmemTmen T seetr 14 LABELLED TAPE 0
START TIVEp FRI, DEC 4, 1981, 12305 P¥__ _ exens
61
STOP TIME: FRI, DEC 4, 1981, 2357 PM
SYSTEM KECORDST 650 ~ USER ~RECORDST ~ 82iy SYSTEM Recordsy 650
USER Recordss 8211
T :) . 8861
Trmr T - o T - Date Processeds WED, DEC 30, 1981, $5126 PM

L0G234S,PUB

1—42—15

II—r—1

T'IA - V xipuaddy

PAGE 1 DEPARTMENT OF REGIONAL ECONOMIC EXPANSION WED, JAN &, 1962, 11347 P¥
cosoeoseow
cew ccecscan SUMMARY REPORT FOR ADMIN FOR OCTABER 1981
__.COST CENTREgH42_ ___ _ . GROUPJBUSTWESS . S
Joa DATE TIME JORNAME USER 0 Cpl/Ss CaN/M PRNC CD/SEG SWAP PROCe1/0 CAST Jna CCsT
U685 4 /12781 1318 UFBTCHCR BUSENTRY D 12 I T S TT T 80,75 T
DISCs 26 FILES 1253 BLOCKS TERMINALY 0 PECORDS .
PRINTERY. 2 _FILES 155_LINES __ CARD READERf _ __O FILES _______ 0 _RECORDS _ __$1,00_ $1.75
J687 4 /12781 13312 FLOJOB BATCH D 8 2 5 49 482 50,81
.DISCt_.___17 FILES_____ 320 BLOCKS ____ TERYIMAL1 O RECORDS . _ . __. I
PRINTERS 2 FILES 295 LINES CARD READERj o FILES 0 RECORDS 50,00 8081
...J689_4./12/81_13129_UFBATCHO. BUSFTRY_D 8. 2 4. 23 691 _ — $0.61 _
nISCy 24 FILES 479 BLOCKS TERMINALY 0 RECORDS
PRINTER] 2 FILES 132 LINES CARD READER: 0 FILES 0 RECORDS $0.00 $0.61
J691 4 712781 13140 UFUPDTCA BUSENTRY D 7 3 24 790 $0.62 o
DISCe 28 FILES 263 BLOCKS TERMIMALY 0 RECORDS
— _.PRINTERg ____ 2 FILES ____ S4 LINES _ CARD READFRy _______0 FILES 0. RECORDS _ _ 50400 . _$0a82___
J692 4 /12/81 13144 UFUPDTCA BUSESNTRY D 8 2 4 24 790 56,63
P . DISCy .28 FILES _ . 250 BLOCKS. __ TERMITALR________0 RECORDS ___ _ . e
PRINTFERS 2 FILES 64 LINES CARD READERS o0 FILES 0 RECOKDS §0,00 $0e03
. J694_4_/12/81 13145 GLIAJOB BATCH __ D0 _ 2.892....1382 e e S 81,91 e
pIsci 4i Yies 396 BLOCKS FaaNTNALT 0 FECORDS
PRINTERS 3 FILES 227 LINES CARD READER} 0 FILES 0 FECOFDS 80,00 $1,.51
73695 & /12781 13349 GL1AJOB BatcH pT ‘14 & 8 7T Te2 Tiize T T s1.50 77
nIsCs 41 FILES 524 BLOCKS TERMINAL: 0 RECOFRDS
—_ A PRIUTERg __ 3 FILES____ 241 LIMES ____CARD READER: O FILES 0 PECORDS___ $0,00______$1,50
J698 4 /12/81 13157 GLIAJOB BATEM D 13 5 8 92 1136 $1,50
e et o oo DI1SCy___ 41 FILES __278 BLOCKS ___ TERMINALy_______ 0 RECORDS __ ____
PRINTER; 3 FILES 162 LINES CARD READER$ o FILES o RECOPDS ™~ T§9.060 $1.5v
..J699 4 /12/81 143y _UFUPDTCA BUSENTRY D 7 2 4. 24_ _ 1090 I —— $Ue02 - .
DISC: 28 FILES 218 ALOCKS TERMIMALY o RECORDS
PRINTER: 2 FILES 50 LIMES CARD PEADER: 0 FILES 0 FECURDS 0,00 30,62
'J700 4 £12/81 1433 GLIAJOR BATCH b 25 & T s T 7927 1136 T e S Y D
D1SC3 41 FILES 969 BLOCKS TERFINALS 0 RECORDS
e e PRINTERs___ 3 FILES 549 LINES _ CARD REFADERj) O FILES 0 RECORDS __ $0.00 _ _ §1,66 __
J701 4 /12/81 1415 UFDSJENT BUSFNTRY D 19 6 44 1093 $1.13
e .. PISC3___ 36 FILES __ 2924 BLOCKS__ TER“INALg 0 RECORDS o
PRINTER} 3 PILES 376 LINES —~CARD READER} 0 FILES o RECOKDS ™ 83,60 $3.13
..J704 4 /12/81 1439 FL1JOB _BATCH D 9 3 S §3 465 e e e _ ... 80087 L
DISCH {9 FILES 313 BLOCKS TERMINALY 6 RECORDS
PRINTERS 1 FILES 34 LINES CARD READER] 0 FILES 0 RECORDS $0.00 $0.87

/\)
|

LI1—v—1

- V xipuaddy.

€

i
'
R

PAGE 3 DEPAPTHENT OF REGIONAL ECONOMIC EXPANSION WED, JAN 6, 1982, 11347 PN
_ -—- - SUMMARY REPORT FOR ADMIN FOR OCTOBERK 1981
__COST CENTRE;H42 ___ _ GROUP;BUSIXESS. . emeesses R
JCB MATE TIYE JOBKAME USFR ¢ CPUI/S CON/M PROC CD/SEG SWAP PRNC=1/2 COST JOB COSI
TTTTTTTBUSINESS GROUP TOTALS 0 361 CPU/SEC 78 COM/MIN 151 PROCESSES T e
1540 CODE/SEG 22718 SWAP 24 JORS 0 SESSIC™s
. L _ DISCy___ 786 FILES __39RR3 RLOCKS ___ TERMIMALy _ N PECORDS.____ . _ . . .
PRIMTER: 61 FILES 5960 LIMES CARD READEFS 0 FILFS 0 RECORDS
PROCESSTNG COSTS $28,48 I/D COSTS3 89,00
T TTTTH42 €0ST CENTRE TOTALS 361 CPU/SEC 78 CON/MIN 18y PROCESSES 0T
1540 CODE/SEG 22718 SWAP .24 JORS 0 SESSIONS
__DIsCy 786 FILFES __ 19883 BLOCKS _ TEPMINALy _ Q RECORDS .. _ .. ._
PRINTER} 61 FILES 5980 LINES CARD READER o FILES ® RECORDS
PROCESSING CNSTS: §28,48 I/0 COSTS: $9,00
e e e an et ———— o it e = 1 1t a8 o b fe e e e . . PR . - . 4 a ———— = am e A —— e
ADMIN ACCOUNT TOTALS 361 CPU/SEC 78 CON/MIN 151 PROCFSSES
e _.1540 CODE/SEG _ 22718 SWAP _ 24 JCRS 0 SESSIONS = . e e
DISCs 786 FILES ~ 19A83 BLNCKS TERMINALG 0 RECORDS
PRINTER} 61 FILES 5980 LIKES CARD FEADERG 0 FILES 0 RECORDS
— — ... PROCESSING COSTSs____ _$28.48__1/0 COSTS1 89.720_.

SI—v—1

- V xipuaddy

v

PASE 4 DEPARTAENT OF REGIOMAL ECO%N-IC EXPANSION WEC, JRs 6, 1932, 11347 2~
oo ceccnvee SUMMARY REPORT FOR ADMIN FOR OCTORER 1981
.—.COST CENTPR; ___GROUPg _ . . mweemsen - . - —_—
oew sSeooeoww
JOB DATE TIME JOBNAME USER Q CPU/S CON/M PRNC CD/SEG SWaP PRUCeI,D CIST JOB COSIT
NAME JoBs “Joss SESSIONS SESSIONS
(COUNT) cosT (COUNT) cosT
USER_TOTALS; BUSENTRY 8 816,17 [\ $0,00
BATCH 16 $21,38) $0,00
NAFE JORS JOBS SESSIONS SESS1IONS
e . __(COUNT) ~ .COST (COUNT) cOST .
—Jod ~ YOTALS: UFRTCHCR 1 $1,7% 0 80,00
FL9JOR 2 81,57 0 $0,C0
UFRATCHO 1 80,61 Q $0,00
UFUPDTCA 3 $1,87 0 $0,00
GL1AJOB 11 $17,07 0 $0,00
IIFDSJEH'I_' 1 53.13 0 $0,00 - —
FL1J0B 1 $0,87 0 $0,00
FL2JNR 2 $1,80 0 $0,00
UFDISTAR 1 $1.49 0 $0,00 e
UFUPDTPY 1 $7.32 0 $0,00

HeP PROCESSING THVOICE FOR COST CENTRE H42, OCT 1981

WED, JAN 6, 1982, 11343 PM

. ACCOUNT ___ GRQUP cosT

ARA

u

13
10

§1.,53

UB - 83eS3_

BUSINESS $37,48

ADMIN - $37,48

ecerensescsnanonnn

CQ“HDN 85,38

PUB £$3.81

FINDEV 87,19

Ll LA LLLLLL S Ll

FILLADF £4.70

"RICHMOSL 84,70

STAFF 89,40

ceeioneeeaseeeces

—e—eo_GILLILLX $10.66

HANFORET $6.69

RITCHEKD 85,21

L8TUB2 . _.§22.56

ccresmrenesemanan

e HODELDB §49,00

ROSIKSL £2.56
T8FUsY T T T T 881,56

eccavavesascananen

T T T PENGRADS $2,03

._8TU84 e §2403

COTTREFM $63.16

HANSONJA 81,41

HURSTSA 841,55

HOWELLAC™ 80,38

Appendix A - VLS

1—42—19

Z——1

I'TIA - V x1puaddy

12:56 PRICESS

CLNSE #52RR3
F CINSE 852883

12:56 SPOCL FILE
. 32:56 FILE cLnsE

E_CLOSE 852883 LOFV=S

12 PRDG-SEGVENTS,
LDEYV=61
‘LDEYV=61
LLEV=61
LPEV=6]

LCEV=S

LDEV=S5

_LDEVa3

12:56 FILE CLOSE 352883 LDEVs)y

¥DISC, K3381255,00TTREFM STUR4B IRECOANS=3 $3LOCKS =]
POMAING OLD NISPUSITIC:: DFLETE ¥SECTUFS=224
0 SL=SEGVENTS, 133 VIRTUAL=MEM«SECTORS,
TERM $STDIN % .. ___ WRECORDS=2054 _ _ SRLOCKS=2054
TEAN $STDLIST, S$RECOPNS=2054 4ELOCKS=2354
TERM ECTITOUT IRECURDS=2054 sBLOCKS=2954
TERY EDITIN o *RECCRTS=2054 _ #HLNCKS=2054
MD1SCT FORTRAY pus™ 7 SYS #RECORDS=15 7777 gmLOCKS=1S
DO“AINg CLD DISPCSITION: N0 CHANGE tSECTORS=3R¢4
MPISC FTUUSL ,COTTREFM,STUR4R #RECURCS=0 #$RLNCKS=0
T 7T DOMATME BEW * DISPOSITION: nf) CHAMGE ™~~~ &SECTORS=11
206252 PRINTER CR212JOF,RATCH CATMIN coples=2 ,PRI=12,RECS=1299
MDISC <BATCH JALHMIH YRECORNS=1297 #8LOCKS=107
TUTTTTTTTDOSALNY O OLDTT T T TDISPUSITIONY 0 CHANGE T §SECTORS=456
MDISC §NEWPASS,COTTREFM ,STUS4B $RECORDS=17 4BLOCKS=17
DOMAINg NEW DISPOSITION: NO CHANGE $SECTORS=201

DAMATY

ILD

CISPNSIT1OM:

#{ CHAMNGE

TIVE TYPE JNRe RN R E R nn s FRU,) DEC 4, 1981 # ¥ % % % % % & % % % % % & # % % % 4 % # & # &« # @ LNG2345 # #
12:55 FILE CLNSE 452883 LCEV=13 #DISC Bj «COTTREFM STUB4R #RECORNS=69 tHLOCKS=23
e . ____ DDMAINs OLD NYSPOSTITINNG NO CHAMGE 9SKCTORS=24 e
12:55 FILE CILOSF ¢52983 LDEV=S ~ MDISC K3381255,.COTTREFM,STURIR FRECGADS=90 #RLOCKS=11
DOGYUMATHg aLn DISPOSITIOM: ni CHAMGF eSECTNLS=224
__!7=§5.5“"“L FILE eJ677 #06252 PRINTER CR212J04,BATCH _ ADMIN COPIFRS=3 ,PRI=12,REC55120G #SECTCRS=496 e
12:55 FILE CLAsk” sYs LDEV=3" 1nIscC JRATCH JADMTA #RECURNS=1297 $3LNCKS=107
: DOMATM: OLD PISPGSITIONG N CHAXGE ¥SECTORS=456
._!}=ii_F!PEHQLQSE_EqﬁEA“HLPEME&__"?Q¥S§_WC“"F"ATA PUR _____ .SYS = ___ #PECORDS=2 _ . $ELNCKS=6
POMATN: ouLD DISPASITION: M0 CHARGE #SECTNRS=25
12:55 FILE CLOST #5553 LDEV=i MDISC CUNFDATA,PUB .SYS sPECARDS=? #RLACKS=6
e DOMAINg OLD. DISPOSITION; 0 CHANGE __ sSECTORS=2S5 e
12356 PRNCESS 852395 0 PROG=SRGMEANTS, 0 SL=SEGHENTS, 166 VIRTUAL=ME{=SECTORS, FAX«STACK <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>