
~
\ .-

Proceedings

I '.,

FUTURA PRESS,.INC. :: 512/442-7836 :: BOX 3485 :: AUSTIN, TX 78764

TABLE OF CONTENTS

Section 1 - SYSTEM MANAGEMENT
6 Overview of Optimizing (On-Line and Batch)

Robert M. Green

16 Thoughts Concerning
"How Secure Is Your System?"

Jorg Grossler

3S Private Volume Experiences
Bruce Wheeler

42 System Resource Accounting: An Overview
of Available Software

Wayne E. Holt
Amy J. Galpin

43 On-Line Database:
Design and Optimization

Robert B. Garvey

48 Power Line Disturbances and Their
Effect on Computer Design and Performance

Vince Roland

58 System Disaster Recovery: Tips and Techniques
Jason M. Goertz

70 System Performance and Optimization
Techniques for the HP3000

John Hulme

Section 2 - DATABASE SUPPORT
S Auditing with IMAGE Transaction Logging

Robert M. Green

34 Transaction Logging and Its Uses
Dennis Heidner

S2 RAPID/3000
Nancy Colwell

S3 Information Management:
An Investment for the Future

David C. Dummer

64 Successfully Developing On-Line
RPG/3000 Applications

Duane Schulz

71 An Experimental, Comprehensive
Data Dictionary

Thomas R. Harbron

74 Considerations for the Design of
Quality Software

Jan Stambaugh

Section 3 - UTILITIES
2 LOOK/3000i A New Real-Time

System Performance Monitoring Tool
Kim D. Leeper

3 QHELP: An On-Line Help System
David J. Greer

15 Modular Programming in MPE
Jorg Grossler

31 A Universal Approach as an
Alternative. to Conventional Programming

Bill McAfee
Craig Winters

61 Business Graphics: An Efficient
and Effective Tool for
Management Decision Making

Gavin L. Ellzey

62 Automatic Calling with the HP3000
Paul W. Ridgway

81 Programmatic Access to
MPE's HELP Facility

Jon Cohen

8S Management Options for the SO's
Giles Ryder

86 Transaction Processor for the HP3000
David Edmunds

Section 4 - LANGUAGE SUPPORT
1 RISE - An RPG Interactive System

Environment for Program Development
Gary Ow

4 IMAGE/COBOL: Practical Guidelines
David J~ Greer

12 Using COBOL, VIEW and IMAGE:
A Practical Structured Interface
for the Programmer

Peter Somers

13 PASCAL? ADA?? PEARL!! 24 Is a Packaged Program the Answer?
Klaus Rebensburg A Compromise to MM3000

27 Applications Design Implications of James G. Raschka, CP/M

PASCAL/3000 Dynamic Variable Allocation 49 Management Reporting with l~

Support - or How to Use the HEAP Hewlett-Packard's Decision Support Graphics
.....

Steven K. Saunders William M. Crow

30 Process Sensing and Control 55 Business Graphics Applications Using DSG/3000
Nancy KoUtz Cecile Chi

36 Putting the HP3000 to Work 59 Tips and Techniques for
for Programmers Data Interface to DSG/3000

Tom Fraser Jason M. Goertz

83 RPG: A Sensible Alternative 72 Project Management With the HP3000
Steve Wright Nichols and Company

90 Techniques for Testing On-Line 80 Using the HP3000 for
Interactive Programs Decision Support Systems

Kim D. Leeper Bob Scavullo

Section 5 - DATA & TEXT PROCESSORS
57 The Technology of the QUAD Editor, Section 11- MISCELLANEOUS

Part 2 17 The Truth About Disc Files
Jim Kramer Eugene Volokh

65 The Automated Office - 25 Data Communications Troubleshooting
Example: Producing A Newsletter Pete Fratus

Eric A. Newcomer
.~26 Financing Quality Solutions

73 Integrated Data and Textprocessing Melissa J. Collins
With HP3000

Joachim GefJken 28 Tips and Techniques in Writing
for the HP3000 lUG Journal

79 Computerized Typesetting: TEX on the HP3000 John R. Ray
Lance Carnes Lloyd D. Davis

Section 6 - PERIPHERAL SOFfWARE
33 Management: Key to Successful

Systems Implementation
40 Everything You Wanted to Know About Gary L. Langenwalter

Interfacing to the HP3000
38 An Overview - Networking Cost- Part I and Part II -

Performance Issues
Ross Scroggs

Russell A. StraayerJohn Tibbetts

69 Programming for Device Independence 41 Microcomputer-Based Distributed Processing

John Hulme John Tibbetts

63 Software Management Techniques

Section 7 - BUSINESS Janet Lind

18 Selectings Application Software 75 Understanding Hewlett Packard-
and Software Suppliers A View from the Inside

Steven J. Dennis Jan Stambaugh

20 Office of the Future - Starting Today 84 Structured Analysis
Mark S. Trasko Gloria Weld

'~
21 Job Costing on the HP3000 88 An On-Line Interactive Shop Floor Control

Steve Perrin And Capacity Planning System
Robert Lett Walter J. Vtz, Jr.

AUTHOR INDEX

Class No.

Carnes, Lance 5 79
Chi, Cecile 7 55
Cohen, Jon 3 81
Collins, Melissa J 11 26
Colwell, Nancy 2 52
Crow, William M. 7 49
Davis, Lloyd D. 11 28
Dennis, Steven J. 7 18
Dummer, David C. 2 53
Ekknunds,David 3 86
Ellzey, Gavin L. 3 61
Fraser, Tom 4 36
Fratus, Pete 11 25
Galpin, Amy J. 1 42
Garvey, Robert B. 1 43
GefEken,Joachim 5 73
Goertz, Jason M. 1 58

7 59
Green, Robert M. 2 5

1 6
Greer, David J. 3 3

4 4
Grossler, Jorg 3 15

1 16
Harbron, Thomas R. 2 71
Heidner, Dennis 2 34
Holt, Wayne E. 1 42
Hubne,John 6 69

1 70
Kolitz, Nancy 4 30
Kramer, Jim 5 57
Langenwalter, Gary L. 11 33

Class No.

Leeper, Kim D. 3 2
4 90

Lett, Robert 7 21
Lind, Janet 11 63
McAfee, Bill 3 31
Newcomer, Eric A. 5 65
Nichols and Company 7 72
Ow, Gary 4 1
Perrin, Steve 7 21
Raschka, James G, CPIM 7 24
Ray, John R. . 11 28
Rebensburg, Klaus 4 13
Ridgway, Paul W. 3 62
Roland, Vince 1 48
Ryder, Giles 3 85
Saunders, Steven K. 4 27
Scavullo, Bob 7 80
Schulz,[)uane 2 64
Scroggs, Ross 6 40
Somers, Peter 4 12
Stambaugh, Jan 2 74

11 75
Straayer, Russell A. 11 38
Tibbetts, John .. . 6 40

11 41
Trasko, Mark S. 7 20
Utz, Walter J., Jr. 11 88
Volokh, Eugene 11 17
Weld, Gloria 11 84
Wheeler, Bruce 1 35
Winters, Craig 3 31
Wright, Steve 4 83

'.

:.

Overview of Optimizing
(On-Line and Batch)

Robert M. Green
Robelle Consulting Ltd.

SUMMARY
The petformance of many HP3000 installations can

often be improved significantly. There are general prin­
ciples for delivering better response time to on-line us­
ers, and other principles to speed execution of produc­
tion batch jobs. As long as users continue to consumer
the extra horsepower of new HP3000 models by loading
them with new applications, there will continue to be a
need for optimizing knowledge and tools. And, if inter­
est rates remain at current levels, many managers may
not be able to upgrade to faster computers as soon as
they would like.

CONTENTS
I. How to Improve On-line Response Time

A. Make Each Disc Access Count
B. Maximize the Value of Each "Transaction"
C. Minimize the Run-Time Program "Size"
D. Avoid Constant Demands for Execution
E. Optimize for the Common Events

II. On-line Optimizing Example: QEDIT
A. QEDIT and "Disc Accesses"
B. QEDIT and "Transaction Value"
C. QEDIT and "Program Size"
D. QEDIT and "Constant Demands"
E. QEDIT.and "Common Events"
F. R:esults of Applying the Principles to QEDIT

III. How to Increase Batch Throughout
A. Bypass Inefficient Code (CPU hogs)
B. Transfer More Information Per Disc Access
C. Increase Program Size to Save Disc Accesses
D. Remove Structure to Save Unneeded Disc Ac­

cesses
E. Add Structure for Frequent Events

IV. Batch Optimizing Example: SUPRTOOL
A. SUPRTOOL and "Bypassing Inefficient Code"
B. SUPRTOOL and "Transferring More Informa-

tion"
C. SUPRTOOL and "Increasing Program Size"
D. SUPRTOOL and "Removing Structure"
E. SUPRTOOL and "Adding Structure"

Copyright 1982, All rights reserved.
Permission is granted to reprint this document (but NOT for profit), provided

that copyright notice is given.
This document was .prepared with QGALLEY, a text formatter distributed

with software to all Robelle customers.

F. Results of Applying Batch Rules to
SUPRTOOL

SECTION 1
HOW TO IMPROVE

ON-LINE RESPONSE TIME
I have identified five general principles which help in

optimizing the petformance of on-line programs:
• Make each disc access count.
• Maximize the value of each "transaction."
• Minimize the run-time program "size."
• Avoid constant demands for execution.
• Optimize for the common events.
On a systems programming project, such as a data

entry package or a text editor, you should be able to
apply all five of these principles with good results. That
is because systems software usually deals with MPE
directly and most of the sources of slow response are
under your control. Applications software, on the other
hand, usually depends heavily upon data management
sub-systems such as IMAGE and V/3000. The optimiz­
ing principles proposed here may not be as easy to
apply when so many of the causes of slow response are
beyond your control. However, there are still many
ways in which you can apply the guidelines to applica­
tion systems (monitoring program size, designing your
database and laying out your CRT screens). Relying
upon standard software not only increases your pro­
grammer productivity, it also provides an unexpected
bonus: any improvements that the vendor makes in the
data management tools will immediately improve the
efficiency of your entire application system, with no
re-programming or explicit "optimizing" on your part.

I. A. Make Each Disc Access Acount

Disc accesses are the most critical resource on the
HP3000. The system is capable of performing about 30
disc transfers per second, and they must be shared
among many competing "consumers." (This can in­
crease to 58 per second under the best circumstances,
and can degrade to 24 per second when randomly ac-

I cessing a large file.) MPE IV can double the maximum
disc throughput for multi-spindle systems by doing
"look-ahead" seeks, but only for the Series II/Series
III, not the Series 30/33/44.

1-6-1

.The available disc accesses will be "spent" on several
tasks:

• Virtual memory management (i.e., swapping).
• MPE housekeeping (logon, logoff, program load,

etc.).
• Lineprinter spooling.
• Accesses to disc fdes and databases by user pro­

grams (the final payoff).
If the disc accesses are used. up by overhead opera­

tions, there will not be sufficient left to provide quick
response to on-line user transactions. Some examples
ofoperations that consume disc accesses on the HP3000
are:

• Increasing the number of keys in a detail dataset,
thus causing IMAGE to access an extra master
dataset on each DBPUT. Also, making a field a key
value means that a DBDELETE/DBPUT is re­
quired to change it (which is 10 times slower than a
DBUPDATE).

• Increasing the program data stack by 5000 words,
thus causing the MPE memory manager to perform
extra, swapping disc accesses to find room in
memory for the larger stack.

• Improperly segmenting the code of an active pro­
gram, causing many absence traps to the memory
manager to bring the code segments into main
memory.

• Constantly logging on and off to switch accounts.
• Defining a database with a BLOCKMAX value of

2000 words, thus limiting IMAGE to about 13 data
buffers in the extra data segment that is shared by
all users of that database. With such a small
number of buffers, there can be frequent buffer
"thrashing." This effectively eliminates the bene­
fits of record buffering for all users of the database,
and greatly increases disc accessing.

Much of the remainder of this document is devoted to
methods of"saving the precious resource - disc acces­
ses."

I. B. Maximize the Value of Each "Transaction"

This principle used to read, "Maximize the Value of
Each Terminal Read," but I have generalized it to
"transaction" to take into account the prevalence of
V/3000, DS, MTS and other "communications" tools.
In the terms of MPE IV, a "transaction" begins when
the user hits the 'return' key (or Enter) and ends when
the user can type input characters again. This includes
the time needed to read the fields from the terminal (or
from another HP3000), to validate them, perform
database lookups and updates, format and print the re­
sults, and issue the next "read" request.

Each time a program reads from the terminal,' MPE
suspends it and may swap it out of memory. When the
operator hits the 'return' key, the input operation is
terminated, and MPE must. dispatch the user process

1-6-2·

again. If MPE has overlaid parts of the process, they
must be swapped back into main memory again. Due to
the overhead needed to dispatch a process, a process
should get as much work done' as possible before it
suspends for the next terminal input.

The simplest way to program data entry applications
is to prompt for and accept only one field of data at a
time. This is also the least efficient way to do it. Since
there is an unpredictable "pause" every time the user
hits 'return' (depending upon the system load at the
moment), consistently fast response cannot be guaran­
teed. The resulting delays are irritating to operators.
They can never work up any input speed, because they
never know when the computer is ready for the next
input line. If response time and throughput are the only
considerations, it is always preferable to keep the
operator typing as long as possible before hitting the
'return' key. ,Multiple transactions per line should be
allowed, with suitable separators, and multiple lines
without a 'return' should be allowed. If you are using
V/3000, the same principles applies: each high-volume
transaction should be self-contained on a single form,
rather than spread out over several different forms.

I. C. Minimize the Run-Time Program "Size"

The HP3000 is an ideal machine for optimizing be­
cause of the many hardware features available at run­
time to minimize the effective size of the program. Even
large application systems can be organized to consume
only a small amount of main memory at anyone time.
Each executing process on the HP3000 consists of a
single data segm·ent called the "stack," several extra
data segments for system storage, such as fde buffers,
and up to 63 code segments. All segments (code and
data) are variable-length and can be swapped between
disc and main memory.

Program code which is not logically segmented makes
it harder for the memory manager to do its job, causing
disc accesses to be used for unnecessary swaps. Proper
code segmentation is a complex topic (more like an art
than a science), but here is a simplified training course:
write modular code; don't segment until you have 4000
words of code; isolate modules that seldom run; isolate
modules that often run; aim for 4000 words per seg­
ment, and group modules by "time" rather than "func­
tion;" if you reach 63 segments, increase segment size,
but keep active segments smaller than inactive ones.

Although every process is always executing in some
code segment, the code segment does not belong to the
process, because a single copy of the code is used by all
processes that need it. Since code is shared, it does not
increase as the number of users running a given pro­
gram increases. Most of your optmizing should be di­
rected to the data areas (which are duplicated for each
user). A 3000 can provide good response to more termi­
nals if most data segments are kept to a modest size
(5000 to 10,000 words). To keep stacks small, declare

most data variables "local" to each module
(DYNAMIC in COBOL), and only use "global" storage
(the mainline) for buffers and control values needed by
all modules. Dynamic local storage is allocated on the
top of the stack when the subroutine is entered, and is
released automatically when the subroutine is left. This
means that if the main program calls three large sub­
routines in succession, they all reuse the same space in
the stack. The· stack need only be large enough for the
deepest ne~ting situation. By inserting explicit calls to
the ZSIZE intrinsic, you can further reduce the average
stack size of your program.

You can also minimize stack size by ensuring that
constant data items (such as error messages and screen
displays) are stored in code segments rather than in the
data stack. Since constants are never modified, there is
no logical reason that they should reside permanently in
the data stack. By moving them to the code segment,
one copy of them can be shared by all users running the
program. In SPL, this is done by including =PB in a
local array declaration or MOVEing a literal string into
a buffer. In COBOL, constants can be moved to the
code segment by DISPLAYing literal strings in place of
declared data items. In FORTRAN, both FORMAT
statements and DISPLAYed literals are stored in the
code.

.A frequently overlooked component of program
"size" is the effect of calls to system subroutines (IM­
AGE, .V/3000, etc.). These routines execute on the cal­
ler's stack, and the work they do is "charged" to the
caller. In many simple on-line applications (dataset
maintenance program, for example), 90% of the prog­
ram's time and over 50% of the stack space will be
controlled by IMAGE and V/3000. You should be
aware of the likely impact of the calls that you make. Do
you know how many disc accesses a particular call to
DBPUT is. going to consume? As an example of how
ignoring the "extended size" of a program can impact
response time, consider the following case:

An application with many functions can be im­
plemented with one of two different strategies. The
first, and simplest, strategy is to code the functions as
separate programs and RUN them via a UDC (or
CREATE them as son processes from a MENU pro­
gram). Each function opens the databases (and forms­
file, etc.) when you RUN it, and closes them before
stopping.

The second strategy is to code each function as a
subprogram that is passed in the previously opened
databases (and forms-file, etc.) as a parameter from a
mainline driver program. If the application requires fre­
quent movement from function to function (performing
only a few transactions in each function), the "process"
strategy will be up to 100 times slower than the "sub­
program" strategy. The resources required to RUN the
programs, open the databases, close the databases, and
perform other "overhead" operations will completely

swamp the resources needed to peIform the actual
transactions.

I. D. Avoid Constant Demands for Execution

The HP3000 is a multi-programming, virtual-memory
machine that depends for its effectiveness on a suitable
mix of processes to execute. The physical size of code
and data segments is only one factor in this "mix." The
"size" of a program is not just the sum of its segment
sizes; it is the product that results from multiplying
physical size by the frequency and duration of demands
for memory residence (i.e., how often, and for how
long, the program executes). A given 3000 can support
many more terminals if each one executes for one sec­
ond every 30 secol)ds, rather than 60 seconds every two
minutes. Each additional terminal that demands con­
tinuous execution (in high priority) makes it harder for
MPE to respond quickly to the other terminals.

Here are some examples of the kind of operation that
can destroy response time, ifperformed in high priority:

• EDIT/3000, a GATHER ALL of a 3000-line source
ftIe.

• V/3000, forms-file compiles done on four terminals
at once.

• QUERY, a serial read of 100,000 records (or any
application program that must read an entire
dataset, because the required access path is not
provided in the database).

• SORT, a sort of 50,000 records.
• COBOL, compiles done on four terminals at once.
You should first try to find a way to avoid these oper-

ations entirely. (Can you use QEDIT instead of EDIT/
3000? Would a new search item in a dataset eliminate
many serial searches, or could you use SUPRTOOL to
reduce the search time? Are you compiling programs
just to get a clean listing?)

After you have eliminated all of the "bad" operations
that you can, the remainder should be banished to batch
jobs that execute in lower priority (this works better in
MPE IV than III). Sincejobs can be "streamed" dynam­
ically by programs, the on-line user can still request the
high-overhead operations, but the system fulfills the re­
quest when it has the time. The major advantage of
batch jobs is that they allow you to control the number
of "bad" tasks that can run concurrently (set the JOB
LIMIT to 1 for best terminal response).

I. E. Optimize for the Common Events

In any application where there is a large variation
between the ·minimum and maximum load that a
transaction can create, the program should be optimized
around the most common s~e of transaction. If a pro­
gram consists of 20 on-line functions, it is likely that
four of them will be most frequently used. If so, your
efforts should be directed toward optimizing these four
functions; the other functions can be left as is. Because
the HP3000 has code segmentation and dynamic stack

1-6-3

allocation, it is possible for an efficient program to con­
tain many inefficient modules, as long as these modules
are seldom invoked.

Since MPE will be executing a great deal of the' time,
you should become competent at general system tuning.
Learn to use TUNER, IOSTAT, and SYSINFO (and
the new :TUNE command in MPE IV). Any improve­
ment in the efficiency of the MPE "kernel" will improve
the response time of all users.

You do not have infmite people-resources for op­
timizing, so you must focus your attention on the fac­
tors that will actually make a difference. There is no
point in optimizing a program that is seldom run. The
MPE logging facility collects a number of useful statis­
tics that can be used to identify the commonly accessed
programs and ftIes on your system. Learn to use the
contributed programs FILERPf and LOGDB (Orlando
Swap). Ifyou are using IMAGE transaction logging, the
DBAUDIT/Robelle program will give you transaction
totals by database, dataset, program, and user (total
puts, deletes, updates, and opens). Such statistics help
in isolating areas of concern.

You can optimize application programs around the
average chain length for detail dataset paths (the con­
tributed program DBLOADNG will give you this in­
formation). Suppose you need to process chains of en­
tries from· an IMAGE dataset. If your program only
provides data buffers for a single entry, you will have to
re-read each entry on the chain each time you need it
(extra disc I/O!!). Or, if you provide room for the
maximum chain length, the data stack will be larger than
needed most of the time (the maximum chain length is
often much larger than the average). The larger data
stack may cause the system to overload, eliminating the
benefits of keeping the re~ords in your stack. You
should provide space in the stack for slightly more than
the average number of entries expected. This will op­
timize for the common event.

SECTION II
ON-LINE OPTIMIZING EXAMPLE: QEDIT
QEDIT is a text editor for the HP3000 that was de­

veloped by Robelle Consulting Ltd. The primary objec­
tive of QEDIT is to provide the fastest editing with the
minimum system load. Other objectives include con­
servation of disc space, similarity to EDIT/3000 in
command syntax, ability to recover the workfile follow­
ing a system-crash or program abort, and increased pro­
grammer productivity.

QEDIT is an alternative to a hardware upgrade for
users who are doing program development on the same
HP3000 that they are trying to use for on-line produc­
tion. Every optimizing paper in recent years by an HP
performance specialist has recommended avoiding
EDIT/3000. They usually recommend the "textfile­
masterfile" approach to program development. (You do
not actually edit your source program; instead, you
create a small "textfile" containing only the changes to

1-6-4

your "masterfile," then merge the two ftIes together at
compile-time). QEDIT allows you to have "real" edit­
ing on your HP3000, with less overhead than the
"textfile masterfile" method, and still give good re­
sponse time to your end-user terminals.

ll. A. QEDIT and "Disc Accesses"

In order to reduce disc accesses, QEDIT eliminates
the overheads of the TEXT, KEEP and GATHER ALL
commands of EDIT/3000. These three operations have
the most drastic impact upon the response time of the
other users. QEDIT attacks the problem of KEEPs by
providing an intetface library that fools the HP compil­
ers into thinking that a QEDIT workfile is really a "card
image" file. As a result, it is never necessary to KEEP a
workfile before compiling it. Since KEEPs are rarely
used, most TEXTs are eliminated. The LIST command
was given the ability to display any file (e.g., /LIST
DBRPfl.S0URCE), so that a TEXT would not be re­
quired just to look at a ftIe. TEXT is only needed when
you want to make a backup or duplicate copy of an
existmg file. Since most users choose to maintain their
source code in QEDIT workfiles (they use less disc
space), the TEXTing of workfiles is optimized (by using
NOBUF, multi-record access) to be four to seven times
faster than a normal TEXT of a card-image ftIe. The
GATHER ALL operation is slow because it makes a
copy of the entire workfile in another ftIe. QEDIT re­
numbers up to 12 times faster by doing without the file
copy.

Disc accesses during interactive editing (add, delete,
change, etc.) are minimized by packing as many con­
tiguous lines as possible into each disc block. Leading
and trailing blanks are removed from lines to save
space. The resulting workfile is seldom over 50% of the
size of a normal KEEP ftIe, or 25% of the size of an
EDIT/3000 K-file (workfile). Most QEDIT users
maintain their source programs in workfile form, since
this saves disc space, simplifies operations (there need
be only one copy of each version of a source program),
and provides optimum on-line performance.

QEDIT always accesses its workfile in NOBUF
mode, and bUffers all new lines in the data stack until a
block is full before writing to the disc. Wherever possi­
ble in the coding of QEDIT, unnecessary disc transfers
have been eliminated. For example, the workfile
maintains only forward direction linkage pointers,
which reduce the amount of disc I/O substantially. Re­
sults of a logging test show that reducing the size of the
workfile and eliminating the need for TEXT/KEEP re­
duce disc accesses and CPU time by 70-90%.

II. B. QEDIT and "Transaction Value"

Like EDIT/3000, QEDIT allows either a single com­
mand per line (/ADD), or several commands on a line,
separated by semi-colons (/LIST 5/10;M 6;D 5). The
principle of maximizing transaction value has been
applied with good results to t~e MODIFY command. In

EDIT/3000, several interactions may be needed to mod­
ify a line to your satisfaction. QEDIT allows you to
perform as many character edits as you like on each
transaction; many users can perform all of their changes
in a single pass. For complex character editing, such as
diagrams, version 3.0 of QEDIT will provide "visual"
editing in block-mode.

II. C. QEDIT and "Program Size"

QEDIT is a comletely new program, written in highly
structured and modular SPL. The code is carefully
segmented, based on the knowledge of which SPL pro­
cedures are used together and most frequently. Only
two code segments need be resident for basic editing,
and the most common function (adding new lines) can
be accomplished with only a single code segment pr~­

sent.

QEDIT uses a modest data stack (3200 words) and no
extra data segments. The stack expands for certain
commands (especially the MPE :HELP command), but
QEDIT contracts it back to a normal size after these
infrequent commands are done. All error messages are
contained in the code, isolated in a separate code seg­
ment that need not be resident if you make no errors.

Use of CPU time is th eother dimension to program
"size." QEDIT is written in efficient SPL and con­
sumes only a small amount of CPU time (compared with
the COBOL compiler, or even EDIT/3000). Because
QEDIT does its own internal blocking and deblocking
of records, it can reduce the CPU time used in the He
system by opening files with NOBUF/MR access.

II. D. QEDIT and "Constant Demands"

Most QEDIT commands are so fast that they are over
before a serious strain has been placed on the host ma­
chine. For example, a 2000-line source program can be
searched for a string in four seconds. For those opera­
tions that still are too much load, QEDIT' provides the
ability to switch priority subqueues dynamically. In
fact, the system manager can dictate a maximum prior­
ity for .compiles and other operations that cause heavy
system load.

II. E. QEDIT and "Common Events"

The design of QEDIT is based on the fact that pro­
gram editing is not completely random. When a pro­
grammer changes line 250, he is more likely to require
access to lines 245 through 265 next, than to lines 670
through 710. This observation dictated the design of the
indexing scheme for the QEDIT workfile. There are
many examples of optimizing for the most common
events in QEDIT:

• Each block of a QEDIT workfile holds a "screen­
ful" of lines, with leading and trailing blanks elimi­
nated.

• QEDIT has built-in commands to compile, PREP
and RUN (since these functions are frequently
used by programmers).

• QEDIT has a fast /SET RENUM command (it can
renumber 600 lines per second), instead of a slow
GATHER command.

• QEDIT can TEXT a workfile much faster than a
KEEP fde (since most text will end up in QEDIT
workfiles). .

• QEDIT can "undo" the DELETE command (be­
cause programmers are always deleting the wrong
lines).

II. F. Results of Applying the Principles to QEl)IT

In less than seven seconds, QEDIT can text 1000
lines, renumber them, and search for a string. Com­
mands are 80% to 1200% faster than EDIT/3000, pro­
gram size is cut in half, and disc I/O and CPU time are
reduced by up to 90%. There are now more than 350
computers with QEDIT "installed, in all parts of the
world. Recently, we asked the QEDIT users what they
would tell another user about QEDIT. Here are some of
their answers:

"If he's doing program development, he
needs QEDIT." (Gerald Lewis, Applied
Analysis, Inc.)

"Would not live without it. $INCLUDEs in
FORTRAN; one rde or dataset per include­
fde." (Larry Simonsen, Valtek, Inc.)

"Fantastic product." (Lewis Patterson,
Birmingham-Southern College)

"Buy it. The productivity advantages are
tremendous and don't cost anything iv ma­
chine load. The disc savings in a larg;·,~ (13
programmers) shop will pay for it." (Jim
Dowlmg, Bose Corp.)

"It's great. We usually get into QEDIT and
just stay there for a whole session. Compiles
and PREPs are very easy. I really like FIND,
LIST, and BEFORE commands. QEDIT is
very fast. It is great for programmers. " (Larry
Van Sickle, Col~ & Van Sickle)

"It's a tremendous tool and should be used
by any medium-sized shop. I use it to produce
an index of all source or job streams for an
account." (Vaughn Daines, Deseret Mutual
Benefit Assoc.)

"QEDIT is the best editor I've used on the
market. It makes a programmer extremely ef­
ficient and productive. In rewriting an exist­
ing system completely, the on-line compile,
flexible commands, and savi~gs of disc space
all contributed to bringing the system up very
rapidly." (Glenn Yokoshima, HP Corvallis)

"Excellent product. Increases programmer
productivity dramatically (morale too!)."
(David T. Black, The John Henry Company)

"FAST, convenient. No need to TEXT and
KEEP. Somewhat dangerous for novice, be­
cause changes are made directly. [It worked
well for us in] conversion of SPSS, BMDP,
and other statistical packages to the

1-6-5

HP3000." (Khursh Ahmed, McMaster Uni­
versity)

"If you are writing a lot of programs, you
should get QEDIT. It is much easier than
EDITOR for this purpose. Program source
files demand complex editing capabilities,
which QEDIT has. I shudder to think of hav­
ing to work on a 4000-statement SPL source
using EDITOR rather than QEDIT." (Bud
Beamguard, Merchandising Methods)

"Excellent product. Anyone using the HP
,editor more than 6 times per day (or more
than 1 hour/day averag~) should not be
without QEDIT!" (T. Larson, N. J. McAllis­
ter and Associates Ltd.)

"Easier to use than HP editor and much
more efficient. I do not have to leave QEDIT
.to RUN, PREP." (Myron Murray, Northwest
Nazarene College)

"Takes a great load off the mind (i.e., the
"electronic brain"). There have been occa­
sions when heavy editing would have killed
our system if we had been using EDITOR."
(Mike Millard, Okanagan Hel~copters Ltd.)

"Very good product - works well in de­
velopment environment. Compilation of
source programs without leaving QEDIT is
very nice for debugging." (David Edmunds,
Quasar Systems Ltd.)

"Use it. It is so much better than HP editor
that there is no comparison." (Ilmar Laasi,
TXL Corp.)

"Fast text editor." (F. X. O'Sullivan,
Foot-Joy, Inc.)

"In one word. Fantastic." (Tracy Koop,
Systech, Inc.)

"Superb tool. Far be~ter than EDIT/3000.
Also, information about HP3000 that is
supplied gratis is very useful." (James
McDaniel, The UCS Group Ltd.)

"I would highly recommend it over EDIT/
3000. In benchmarks and actual use, it has
proven to be much less load on the computer.
In a University environment, we have many
students and faculty editing programs at one
time. QEDIT allows us to run with a high ses­
sion limit and still get decent batch
turnaround." (Dan Abts, University of Wis­
consin - La Crosse)

"QEDIT is an excellent product for the
price, and is one of the easiest ways to in­
crease programmer productivity. The LIST
command has been invaluable for cross­
referencing data items in COBOL source pro­
grams." (Mark. Miller, Diversified Computer
Systems of Colorado)

"Absolutely. QEDIT has allowed us to con­
trol the development of systems (requiring
off-line compiles, audit trails for source modi­
fications) while actually increasing program­
mer productivity." (Jean Robinson, Lease­
way Information Systems, Inc.)

1-6-6

"Get it! It's great. Cheap at twice the
price." (Willian Taylor, Aviation Power Sup­

. ply, Inc.)
"QEDIT is THE ONLY text editor that

you should use in a development environ­
ment." (Craig T. Hall, Info-tronic Systems,
Inc.)

"Much better than HP's editor, well sup­
ported, well documented and continually im­
proving. An excellent product. We activate
QEDIT from our job fIle generator and acti­
vate SPOOK from QEDIT for editing and
testing output andjob streams." (Patrick Hur­
ley, Port of Vancouver)

"Excellent - can do more than Editor, fas­
ter, and saves disc space. In searching for a
specific literal, QEDIT finds them all in one
command [e.g., LIST "literal"l." (Larry Pen­
rod, Datafax Computer Services Ltd.)

"We could probably not operate if QEDIT
were not available." (Winston Kriger, Hous­
~on Instruments)

"Buy it, or another computer (a second
HP3000, of course)" (John Beckett, Southern
Missionary College)

"Best software package I've bought for our
shop." (James Runde, Furman University)

SECTION III
HOW TO INCREASE

BATCH THROUGHPUT
By a "batch job" I mean a large, high-volume, long­

running task, such as a month-end payroll or fmancial
report. Why is there any problem with this type of task?
Because the batch job is only a poor, neglected cousin
of the on-line session. "On-line" is "with it," new, Sili­
con Valley, exciting; "batch" is old, ordinary, IBM, and
boring. The best people and most of the development
resources have been dedicated to improving the on-line
attributes of the HP3000. The result is predictable:
batch jobs are beginning to clog many HP3000 proces­
sors. The overnight jobs are not completing overnight
and the month-end jobs seem never to complete.

The methods for maximizing the throughput of a
single batch job are not the same as for maximizing the
response time of a large number of on-line users. The
biggest difference: for an on-line application, it is sel­
dom economical to optimize CPU usage. There isn't
enough repetition to amount to much CPU time. But, a
batch process may repeat a given section of code
100,000 or a million times. CPU time matters.

I have identified five general principles for increasing
batch throughput. Not surprisingly, they differ signifi­
cantly from the principles used to improve on-line re­
sponse time:

• Bypass Inefficient Code (CPU hogs).
• Transfer More Information Per Disc Access.
• Increase Program Size to Save Disc Accesses.

• Remove Structure to Save Unneeded Disc Acces­
ses.

• Add Structure for Frequent Events.

For each optimizing principle, there are three differ­
ent tactics you can apply, with three levels of complex­
ity and cost:

• Changes in the Data Storage (simplest and
. cheapest, since no programming changes are

needed).
• Simple Coding Changes (still inexpensive, since

these are "mechanical" changes which do not re­
quire re-thinking of the entire application).

• Changes to the Application Logic (the most com­
plex and expensive, since the entire application
may have to be re-designed).

DI. A. Bypass Inefficient Code (CPU hogs)

Elimination of inefficient code is the simplest way to
produce big throughput improvements, assuming that
you can find any code to eliminate that is inefficient (or
more general-purpose than needed).

For a number of reasons, IMAGE is usually more
efficient than KSAM as a data management method. If
you don't need "indexed sequential" as your primary
access method, convert from KSAM files to IMAGE
datasets. Or, if you don't need "keyed" access to the
data, convert all the way from a data management sub­
system to an MPE flat fIle, and use sequential searches.
The more powerful the data access method, the more
CPU time is required to maintain it.

Bypassing inefficient code is simply a matter of re­
coding parts of programs to substitute an efficient alter­
native for an existing method that is known to have poor
performance. For example, the MPE file system is
CPU-bound when handling buffered files, so converting
to NOBUF access will save considerable CPU time
(you transfer blocks and handle your own records). In
IMAGE, use the u*" or u@" field list instead of a list of
field names. In COBOL, re-compile your COBOL68
programs with the COBOL-II compiler and they will
run faster. The FORTRAN formatter is a notorious
"CPU hog"; either bypass it completely or learn its
secrets. The third-party software tool, APG/3000 (ap­
plication profIle generator), should be helpful in identi­
fying the portions of an application where the CPU time
is spent (APG was written by Kim Leeper of Wick Hill
Associates). Once APG has identified the key section of
code, you might want to recode it in SPL/3000 for
maximum efficiency.

As is usually the case, the biggest improvements are
obtained by re-evaluating the logic of the application.
For example, you should periodically check the dis­
tribution of all reports to see if anyone is reading them.
If not, don't run the job at all- that is an infmite per­
formance gain.

III. B. Transfer More Information Per Disc Access

Besides CPU time, the other major limit on
throughput is the access speed of the discs. One way to
transfer more information per disc access is to build
fIles with larger blocksizes. The "block" is the unit of
physical transfer for the fIle. A larger blocksize means
that you move more records per revolution of the disc.
However, there is a trade-off: increased buffer space
and impact on other users. In on-line applications, you
usually want a small blocksize. Below, I will explain
NOBUF/MR access, which is a technique that allows
you to "have your cake and eat it, too!"

Another way to transfer more useful information per
disc access is to ensure that the data is organized so the
records that are usually required together are in the
same disc block. Rick Bergquist's DBLOADNG pro­
gram (contributed library) reports on the internal effi­
ciency of 'IMAGE datasets. For example, if it shows
that the work orders for a given part are randomly dis­
persed throughout a detail dataset (necessitating
numerous disc accesses), you can ensure that they will
be stored contiguously by doing a DBUNLOAD/
DBLOAD (assuming that part number is the primary
path into work orders).. For master datasets,
DBLOADNG shows you how often you can fmd a spe­
cific entry with only a single disc read (the ideal). If
DBLOADNG shows that multiple disc reads are often
needed for a certain dataset, you may be able to correct
the situation by increasing the capacity of the dataset to
a larger prime number or by changing the data type
and/or internal structure of the key field.

Don't overlook the obvious either. If you can com­
press the size of an entry by using a more efficient data
type (Z10 converted to J2 saves six bytes per field), you
can pack more entries into each block and thus reduce
the number ofdisc accesses to retrieve a specific entry.

You can often increase the "average information
value" of each disc acces's by re-thinking your applica­
tion. For example, suppose you must store transactions
in a database in order to provide some daily reports,
many monthly reports, a year-end report, and an occa­
sional historical report covering several years. If you
store all transactions in a single dataset, the daily jobs
will probably take three ~ours to find, sort, and total 100
transactions. Why not put today's transactions in a sep­
arate dataset and transfer them to the monthly dataset
after the daily jobs are run? When the monthly reports
are completed, you can move the data to a yearly
dataset, and so on. This is called "isolating data by fre­
quency of access." The fewer records you have to
search to find the ones you want, the more information
you are retrieving per access.

It is theoretically possible to transfer more informa­
tion per second by reducing the average time per disc
access. Typically, you attempt to improve the "head
locality" (i.e., keep the moving "heads" of ea:ch disc
drive in th~ vicinity of the data that you will need next).

1-6.-7

Although it is hard to prove, it does seem that using
device classes to keep spooling on a different drive from
databases, for example, does improve batch
throughput. Under MPE IV, you can also spread "vir­
tual memory" among several discs. The next "logical
step" is to place masters and details on separate drives.
However, in all tests that I have run with actual datasets
and actual programs, there was no consistent difference
in performance between having the datasets on the
same drive or on different drives. The dynamics of disc
accessing on the HP3000 are very complex. Unless you
have the time to do a RELOAD afterwards, don't move
fIles around; the moving process itself (:STORE and
:RESTORE) may fragment the disc space and eliminate
the potential benefit of spreading the ftIes. Remember
Gr~en's Law: "The disc heads are never where you
think they are."

You can also improve overall batch throughput by
recovering wasted disc accesses. The disc drives re­
volve at a fixed speed, whether you access them or not.
Any disc revolution that does not transfer useful data is
wasted. Multiprogramming attempts to use these
wasted accesses by maintaining a queue of waiting
tasks. Unfortunately, maximum throughput under MPE
III coincided with JOB LIMIT = ONE (no multiprog­
ramming!). Under MPE IV, however, I have obtained a
25% decrease in elapsed time on the Series III by run­
ning two or three jobs concurrently. Try it.

Ill. C. Increase Program Size to Save Disc Accesses

In on-line optimizing, we are always trying to reduce
the size of the program (code, data, and CPU.usage), so
as to allow the system to provide good response time to
more users at once. In batch optimizing, we do not want
better response time (we won't be running 36 batch jobs
at a time, so we don't have to worry about mix); we
want better throughput. Since most of the on-line tricks
actually make the program slightly slower, we should
avoid them. Batch tricks usually consist of trading off a
larger program size for a faster elapsed time.

You can often save disc accesses by storing data in
larger "chunks," keeping more data in memory at any
time. Larger blocks will accomplish this, as will extra
buffers. MPE rtIe buffers can be increased above the
default of two via :FILE, but doing so actually appears
to degrade throughput. KSAM key-block buffers are
increased via :FILE (:FILE xx;DEV="yy :MNS where
xx is the KSAM data file and yy is the number of key­
block buffers), which will help for empty files (KSAM
cannot deduce how many buffers it will need unless the
B-tree already exists). IMAGE buffers are increased via
the BUFFSPECS command of DBUTIL; this can be
effective for a stand-alone batch job, but only if it works
with a large number of blocks concurrently (Le., puts
and deletes to complex datasets with many paths).

Pierre Senant of COGELOG (the developer of ASK/
3000) has an ingenious method for "increasing program
size" dramatically. He has implemented "memory

1-6-8

ftles." An entire ftle is copied in main memory and kept
there. For a small file that is frequently accessed (e.g., a
master dataset containing only' a few edit codes that
must be applied to many transactions), Pierre's method
should save enormous numbers of disc accesses.

NOBUF access to files was mentioned above as a
way to save CPU time. If you use NOBUF with MR
access, you can save disc accesses also, but at the cost
of a larger data stack. MR stands for "multi-record,"
and gives you the ability to transfer multiple blocks per
access, instead of just one block. With a large enough
buffer, you will reduce the number of disc accesses
dramatically.

Since multi-block access is faster only if each block is
an exact multiple of 128 words in length, you should
always select a recordsfze and blockfactor such that the
resulting blocksize (recordsize times blockfactor) is
evenly divisible by 128 words. The resulting blocksize
need not be large; it need only be a multiple of 128 (Le.,
256, 384, 512, ...). As I promised earlier, here is your
way to have the best of both worlds. Build your fIles
with 512-word blocks (Le., 4 times 128, 8 times 64, 16
times 32) for on-line use, and redefine the blocksize to
8192 words in batch programs via NOBUFIMR access.

For a "stand-alone batch" job, you may as well set
MAXDATA to 30,000 words. This allows sorts to com­
plete with maximum speed and provides other oppor­
tunities for optimization. With a larger stack you can
keep small master datasets in the stack (e.g., a table of
transaction codes). When you have exhausted the
30,000 words of your data stack, there are always extra
data segments, which can be thought of as "fast, small
files. "

Re-evaluate your view of the data. Databases are
usually set up to make life easy for the on-line user
(rightly). Their organization may not be optimum for
batch processing. In order to provide numerous enquiry
paths, a single word order may be scattered in pieces
among seven different datasets, and may require up to
20 calls to DBFIND and DBGET for assembly. In a
batch job, if you are going to have to re-assemble the
same order many times, it may be more efficient to
define a huge, temporary record for the entire order,
assemble it once, and write it to a temporary rue. Then
you can sort the temporary-file record numbers in
numerous ways, and retrieve an entire order with a
single disc read whenever you need it. Of course, this
wastes disc space (temporarily) and increases your pro­
gram size.

Ill. D. Remove Structure to Save
Unneeded Disc Accesses

"Structure" for data means organization, lack of ran­
domness, and the ability to quickly fmd selected groups
of records. It takes work to maintain a "structure," and
the more structure there is, the more work (CPU time
and disc accesses) it takes.

Study your data structures critically. Can you reduce

the number of keys in a record? A serial search may be
the fastest way to get the data. Can you eliminate a
sorted path? Overall, the application may be faster if
you sort each chain in the .stack after reading it from the
dataset (Ken Lessey's SKIPPER package has this
capability), but only if you don't use the COBOL SORT
verb.

Another type of "structure" is consistency. IMAGE
is a robust data management system because it writes
all dirty data blocks back to the disc before terminating
each intrinsic call. You can make IMAGE faster, but
less robust, if you call DBCONTROL to defer disc
writes (only after a backup). Another IMAGE idea:
don't use DBDELETE during production batch jobs.
Just flag deleted records with DBUPDATE and
DBDELETE them later, when no one is waiting for any
reports. When you can, use a DBUPDATE in place of
DBDELETE and DBPUT.

For KSAM, if you are planning to sort the records
after you retrieve them, use "chronological access"
(FREADC) instead of default access (FREAD). Default
KSAM access is via the primary key; KSAM must jump
all over the disc to get the records for you in this sorted
order, just so you can re-sort them in another order!
Also for KSAM, try to keep only one key (no alternate
keys), do not allow duplicates (much more complex),
and avoid changing key values of records.

I am grateful to Alfredo Rego for pointing out a useful
way to "eliminate structure" from IMAGE. When you
are loading a large master dataset, use a Mode-8
DBGET prior to the DBPUT in order to fmd out if the
new entry will be a primary entry or a secondary entry.
Load only primaries on the first pass, then go back and
load the secondaries on a second pass. This effectively
turns off the IMAGE mechanism known as "migrating
secondaries," which although essential, is time­
consuming when fIlling an entire dataset.

Ill. E. A4d Structure for Frequent Events

I saved this for last because it is one of the most
powerful ideas. Batch tasks usually repeat certain key
steps numerous times. Batch tasks have patterns of
repetition in them. If you make that key step faster by
adding structure to it, or re-structure the application so
that "like-steps" are handled together, you can make
the whole task faster. Extra structure (code complexity
or data complexity) is justified in the most frequent op­
erations of batch processing.
Chec~ your data structures for patterns that you

could capitalize on. For example, if you have a ftle of
transactions to edit and post to the data base, could the
task be made faster if the rue were sorted by transaction
type (only do validation of the transaction type when it
changes) or by customer number (only validate the cus­
tomer number against the database when it changes)?

Here are more examples of adding structure. If you
sort by the primary key before loading a KSAM ftle,
you can often cut the overall time in half. When erasing

an IMAGE detail dataset, sort the record numbers by
the key field that has the longest average chain length
and delete the records in that order. When loading a
detail dataset with long sorted chains, frrst sort by the
key field and the sort field. In all of these examples,
throughput is increased by adding code structure to
match the structure of the data.

If you frequently require partial-key searche's on
IMAGE records, use an auxiliary KSAM file (or a
sorted flat file and a binary search) to give you
"indexed-sequential" access, rather than only serial ac­
cess, to your IMAGE dataset. (Mark Trasko's IMSAM
product enhances IMAGE by adding an indexed­
sequential access method to the other access methods
of IMAGE.)

If you have used many IMAGE calls to fmd a specific
record, remember its record number. Then, when you
need to update it, you can retrieve it quickly with a
Mode 4' DBGET (directed read), instead of doing the
expensive search all over again. Ifcertain totals must be
recalculated each month, why not re-design' the
database so that they are saved until needed again? If
something takes work to calculate, check whether you
will need it again.

The general'principle is: look for patterns of repeti­
tion and add structure to match those patterns.

SECTION IV.
BATCH OPTIMIZING EXAMPLE: SUPRTQOL

SUPRTOOL is a utility program for the HP3000 that
was developed by Robelle Consulting Ltd. The objec­
tives of SUPRTOOL are to provide a single, consistent,
fast tool for doing sequential tasks, whether in produc­
tion batch processing, file maintenance, or ad hoc de­
bugging. Example tasks that SUPRTOOL can handle
are: copying files, extracting selected records from
IMAGE datasets (and MPE files and KSAM files), sort­
ing records that have been extracted, deleting records,

. and loading records into IMAGE datasets and KSAM
fIles. SUPRTOOL can't do everything yet, but we are
adding new capabilities to it regularly (the most recent
enhancements are a LIST command to do formatted
record dumps and an EXTRACT command to select
fields from within records). SUPRTOOL embodies
many of the batch optimizing ideas discussed in the
previous section of this document.

IV. A. SUPRTOOL and
"Bypassing Inefficient Code"

By doing NOBUF deblocking of records,
SUPRTOOL saves enough CPU time to reduce the
elapsed time of serial operations visibly. For MPE fues,
NOBUF is now fairly commonplace (alt.hough it still
isn't the default mode in FCOPY - SUPRTOOL is 6 to
34 times faster in copying ordinary files). Where
SUPRTOOL goes beyond ordinary tools is in extending
NOBUF access to KSAM files (a non-trivial task) and
to IMAGE datasets (very carefully). By making only a

1-6-9

few "large" calls to the FREAD intrinsic, instead of
many "small" calls to DBGET (each of which must ac­
cess two extra data segments, look up the dataset name
in a hash table, re-check user access security, and then
extract a single record), SUPRTOOL quickly cruises
through even enormous datasets with only a minimal

SUPRTOOL/Robelle
>BASE ACTIVE.DATA,5
>GET LNITEM
>IF ORD-QTY>10000
>XEQ
IN=60971. OUT=14479.
CPU-SEC=56. WALL-SEC=133.

Notice that SUPRTOOL used 1/9th as much CPU
time and 1/6th as much elapsed time. And, the QUERY
FIND command only builds a ftIe of record numbers; to
print the 14,479 records, QUERY must retrieve each
one from the dataset again. SUPRTOOL creates an
output disc file containing the actual record images, not
the record numbers. With suitable prompting,
SUPRTOOL can do this task even faster (see below for
the BUFFER command).

IV. B. SUPRTOOL and
"Transferring More Information"

SUPRTOOL transfers more information per disc ac­
cess by doing multi-block transfers between the disc

consumption of CPU time.
For example, here is a comparison of SUPRTOOL

and QUERY, selecting records from a detail dataset
containing 60,971 current entries which are spread
throughout a capacity of 129,704 entries.

QUERY/3000
>DEFINE
DATA-BASE =»ACTIVE.DATA
>FIND LNITEM.ORD-QTY>10000
USING SERIAL READ
14479 ENTRIES QUALIFIED
(CPU-SEC=520. WALL-SEC=763.)

and the data stack in main memory. If records are 32
words long and stored as four per block (for a blocksize
of 128 words), reading multiple blocks can make a big
difference. For 20,000 records, one block at a time re­
quires 5000 disc accesses. Using a 4096-word buffer and
reading ~2 blocks at a time reduces the number of disc
accesses to 157!

SUPRTOOL has an option (SET STAT,ON) that
prints detailed statistics after each task, so that you can
see how it was done and where the processing time was
spent. For example, suppose you want a formatted
dump in octal and ASCII of all the records from the fIle
described above for the order "228878SU." Below are
the commands and times for SUPRTOOL and FCOPY:

FCOPY/3000
>FROM=SUMMRY;TO=*SUPRLIST;SUBSET="228878SU",1;OCTAL;CHAR
EOF FOUND IN FROMFILE AFTER RECORD 19999
3 RECORDS PROCESSED *** 0 ERRORS
(CPU-SEC=78. WALL-SEC=114.)

SUPRTOOL/Robelle
>SET STAT,ON
>DEFINE A,1,8
>IN SUMMRY
>LIST
>IF A="228878SU"
XEQ
IN=20000. OUT=3. CPU-SEC=11. WALL-SEC=16.

** OVERALL TIMING **
CPU milliseconds:
Elapsed milliseconds:

** INPUT **
Input buffer (wds):
Input record len (wds):
Input logical dev:
Input FREAD calls:
Input time (ms):
Input records/block:
Input blocks/buffer:

Notice that SUPRTOOL was using its default buffer
size of 4096 words. FCOPY had to make 5000 disc
transfers, while SUPRTOOL only had to make 157.

1-6-10

10.854
16254

4096
32
12
157
6304
4
32

That is one of the reasons why SUPRTOOL fmished in
1/7th the time and used 1/7th the CPU time.

~..,.- ..

f

IV. C. SUPRTOOL and "Increasing Program Size"

SUPRTOOL gets a great deal of its petformance edge
by doing its own deblocking: allocating a large buffer
within its data stack, reading directly from the disc into
the buffer, and extracting the records from the blocks
manually. SUPRTOOL trades a larger program size for

a faster elapsed time. But you don't need to stop with
the 4096-word buffer that SUPRTOOL normally allo­
cates. Using the BUFFER command, you can instruct
SUPRTOOL to work with buffers of up to 14,336 words
and observe the results with SET STAT,ON. Here is
the same selective file-dump that took 16 seconds with
4096-word buffers, done with 8192-word buffers:

SUPRTOOL/Robelle
>BUFFER 8192
>IN SUMMRY
>LIST
>IF A="228878SU"
>XEQ
CPU-SEC=10. WALL-SEC=13. [An additional savings of 3 seconds]

By combining SUPRTOOL with IMAGE, you can
have small data blocks for on-line access and large data
blocks for batch sequential access. Here is the same

database extract as done' above (in the QUERY vs.
SUPRTOOL test). Instead of using 4096-word buffers,
we will increase the buffer space to 14,336 words:

SUPRTOOL/Robelle
>BUFFER 14336
>BASE ACTIVE.DATA,5
>GET LNITEM
>IF.ORD-QTY>10000
>XEQ
IN=60971. OUT=14479. CPU-SEC=46. WALL-SEC=104. [Saved 29 sec.]

IV. D. SUPRTOOL and "Removing Structure"

SUPRTOOL can optimize batch operations by "re­
moving structure." NOBUF deblocking of MPE ftles
and IMAGE datasets provides faster serial access by
saving CPU time and reading larger chunks of data, but
NOBUF deblocking of KSAM files does that and more:
it also eliminates structure. When you read a KSAM [lie
serially by default, the KSAM data management system
does not return the records to you in "physical" se­
quence; it returns them to you "structured" by the pri­
mary key value, and this takes work - a lot of work.

KSAM must search through the primary B-tree to
find the sequence of the key values, and must then re­
trieve the specific blocks that contain each records.
Quite often, logically adjacent records may not be phys­
ically adjacent; in the worst case, each logical record
requires at least one physical block read. The
SUPRTOOL NOBUF access to KSAM files cuts
through all of this and returns the raw records to you in
physical order; the savings in time can be impressive
and, if you are planning to sort the records anyway,
there is no loss of function. SUPRTOOL only removes
the structure that you were not going to use.

Another example of removing structure in
SUPRTOOL is the SET DEFER,ON command. When
used in conjunction with the PUT or DELETE com­
mands, the :DEFER option causes SUPRTOOL to put
IMAGE into output-deferred mode (via a call to
DBCONTROL). Normally, IMAGE maintains a consis-

tent and robust "structure" in the database after every
intrinsic call. If you are planning to make a large
number of database changes and can afford to store the
database to tape first, you may be able to cut the
elapsed time in half (or more) by leaving the physical
database in an inconsistent state after intrinsic calls.
(DBCONTROL makes the database consistent again
when you. are done.)

Here is an example use of SUPRTOOL to fmd all
work orders that are completed (status="X") and old
(dated prior to June 1st, 1982), delete them from the
dataset, sort them by customer number and work-order
number, and write them to a new disc flle. SET DE­
FER,ON is used to make the DELETE command fas­
ter:

SUPRTOOL/Robelle
>BASE FLOOR.DATA
>GET WORKORDER
>IF WO-STATUS="X" AND WO-DATE<820601
>DELETE
>SORt CUSTOMER-NUM;SORT WORKORDER-NUM
>OUTPUT W08206
>SET DEFER,ON
>XEQ

Another way to look at SUPRTOOL is ~s follows: ifa
serial search is fast enough, you may not need to have
an official IMAGE "path" in order to retrieve the re­
cords you need. On the Series III, SUPRTOOL selects

1-6-11

records at a rate of two seconds per 1000 sectors of
data.

IV. E. SUPRTOOL and "Adding Structure"

SUPRTOOL can optimize batch tasks by "adding
structure" to data. One way to add structure is to sort
data. Experiments have shown that sorting records into
key sequence can cut the time to load a large KSAM ftle
in half. SUPRTOOL easily reorganizes existing KSAM
ftIes by extracting the good records, sorting them by the
primary key field, erasing the KSAM ftIe, and writing
the sorted records back intQ it - all in one pass.

You can also add "structure" to raw data by defining
a record structure for it (QUERY can access IMAGE
entries because they have a structure defined by the

SUPRTOOL/Robelle
>BASE FLOOR
>INPUT W08206· = WORKORDER
>IF CUSTOMER-NUM="Z85626"
>LIST
>XEQ

And, since SUPRTOOL has access to the IMAGE
database that the entries originally came from,
SUPRTOOL can still format the entries on the linep­
rinter with appropriate field names and data conver­
sions (similar to REPORT ALL in QUERY).

IV. F. Results of Applying
Batch Rules to SUPRTOOL

Just before completing this paper, we sent a ques­
tionnaire to the users of SUPRTOOL, askmg them what
they would tell other HP3000 sites about SUPRTOOL.
Here are their replies:

"I always recommend SUPRTOOL 'with any new
system. Without programming, I duplicated a master
[tIe from one application to another application. I set up
ajob stream to do this on a weekly basis (i.e., purge the
old dataset entries and add the new dataset entries eas­
ily). SUPRTOOL creates files with different selection
criteria to feed the same program." (Terry Warns,
B P L Corp.)

"An essential package for efficient operation of a sys­
tem. Most of our job streams include a SUPRTOOL
function. " (Vaughn Daines, Deseret Mutual Benefit As­
soc.)

"Excellent. We had an application that serially
dumped a dataset of 185,000 records (4 hours) and then
sorted the 114-byte records in 6 hours (provided we had
the disc space needed). We changed to SUPRTOOL
with the OUTPUT NUM,KEY option and a modified
program using DBGET mode 4 and maximum
BUFFSPECS. The result was 4 hours altogether."
(Bobby Borrameo, HP Japan)

"SUPRTOOL is an excellent utility for copying stan­
dard MPE [des and databases very quickly ... extract­
ing and sorting records from a database (i.e., 40,000
records of 60,000), copying files across the DS line

1-6-12

schema). Normally, regular MPE files are not thought
of as having the same kind of record structure as
IMAGE datasets. Why is this so? Because you cannot
access the fields of the file's records by name in tools
such as fCOPY, even if the structure exists. In
SUPRTOOL, you can.
. If you use SUPRTOOL to archive old entries from

IMAGE datasets to MPE disc or tape [tIes, you can later
do selecti.ve extracts, sorts, and formatted dumps on
those MPE files, using exactly the same field names as
you did when the entries were in the database. (In fact,
you can even put selected records back into a tempor­
ary database with the same structure and run QUERY
reports on them.) Here is how SUPRTOOL associates
structure with raw MPE files:

[implied record structure!]

(much quicker than FCOPy), copying tape to disc and
disc to tape." (Dave Bartlet, HP Canada)

"We couldn't operate without it. We are a heavy
KSAM user and SUPRTOOL has cut our batch proces­
sing by at least 1/3." (Jim Bonner, MacMillan- Bloedel
Alabama)

"All sorts of marvelous things. [SUPRTOOL] is re­
ally nice (and fast) to copy a database for test pruposes
or to make minor changes (instead of DBUNLOADI
LOAD) - even major changes, using a program to ref­
ormat the SUPRTOOL-created file." (Susan Healy,
Mitchell Bros. Truck Lines) .
. "Just last night I told a·friend that, after working with

different sorts on IBM (DPD- and GSD-levelmachines),
Burroughs sorts, and even HP sorts, SUPRTOOL is the
best sort tool I have ever used." (Robert Apgood,
Whitney-Fidalgo Seafoods)

"Get it. Runs much faster than SORT. Cheap at twice
the cost." (Willian Taylor, Aviation Power Supply, Inc.)

"Fast and functional. SUPRTOOL is deeply embed­
ded in our applications, most extracts are done with
SUPRTOOL. Ad hoc inquiries [via SUPRTOOL], in­
volving pattern matching on our customer ftIe, extract
the appropriate keys, which are then passed to the re­
port program." (Patrick Hurley, Port of Vancouver)

"SUPRTOOL is a product which no shop that uses
IMAGE and does batch report generation should be
without. By changing certain reports to use
SUPRTOOL instead of traditional selection techniques,
a savings of 60% in CPU and wall time was obtained."
(Vladimir Volokh, VSI/Aerospace Group)

"SUPRTOOL is a great timesaver when used with
BASIC (or RPG) to modify IMAGE datasets and place
them in another dataset or the same dataset." (John
Denault, Datafax Computer Services, Inc.)

Thoughts Concerning
How Secure Is Your System?

Ingenieurbiiro Jorg Grossler
IJO, Berlin

WHAT DATA SECURITY MEANS
• To be able to rebuild the fIle system in case of a

disaster
• To restrict access on various type of data.

STANDARD FILE BACKUP
FACILITIES IN MPE

• Sysdump, Reload (based on magnetic tape)
• Store, Restore (tapes)
• User Logging (based on disc or tape)
• Private volumes (disc)

PROBLEMS WITH STANDARD
FILE BACKUP

• Tape read error during RELOAD
- system cannot be started
- next action "must be RELOAD"
measures:
- change disc packs before RELOAD
-RELOAD with "ACCOUNTS-only" then RE-

STORE the remaining files (very time consum-
, ing)

• Tape read error during RESTORE
- all files 'stored behind error point cannot be re­

stored
measure:
- use RESTORE or GETFILE2 program

• User logging causes system overhead
measure:
- consider special logging during program design

PROSPECTS FOR
TAPE-BACKUP SYSTEM

• GETFILE-facility will be improved
• Special STORE-RESTORE system is considered

(this possibility includes features like UPDATE
and APPEND)

RESTRICTIONS IN DATA ACCESS
• Account-system (users, groups, accounts with dif-

ferent passwords)
• User capabilities (SM, PM, PH, etc.)
• File'names with passwords
• Privileged fIles
• File access capabilities on user/group- and fIle­

level
• RELEASE/SECURE-commands

SEVEN POSSIBLE WAYS
TO CRACK THE SYSTEM

1. FIELD.SUPPORT
measure:

Password on SUPPORT-account
Or remove SUPPORT-account from the system.

2. Jobs in PUB.SYS-group
measure:

Password on job-file or
Put job into other SYS-group.

3. LISTUSER@.@;LP
measure:

Log-on-UDC or penorm command
Not in PUB.SYS-group.

4. Open all files of the system
measure:

Special analysis of system logging
5. Read terminal buffers (PM-capability needed)

measure:
Remove PM-~apability

6. Reading tapes
measure:

Keep track of all tape-transactions also using
system logging

7. FOPEN on terminals
measure: ??

8....

1-16-1

~. '

Private Volume Experiences
Bruce Wheeler

Accounting Systems Group Cupertino, California

ABSTRACT
The MIS group which supports the accounting func­

tion within the Computer Systems Division of
Hewlett-Packard has utilized private volumes for over
two and one half years. This presentation will discuss
actual user experiences as related to the following
areas.

1. Strategy - where and how to successfully utilize
private volumes. A discussion of tapes, system do~ain

discs, and private volumes for storage of fdes will be
included.

2. Backup - A comparision between serial disc bac­
kup and tape backup

3. System Integrity - Enhancing system 'integrity
and lowering exposure to catastrophic errors. Tips to
minimize exposure to disc errors and reloads will be
included.

4. Performance - Performace considerations and
trade-offs. Actual measurements on various HP3000
machines will be reported.

S. Operator Considerations - Simplifying the
operator's assignment and improving the reliability of
your data center.

BACKGROUND
The Accounting Systems Group of CSY reports to

the CSY Controller and handles all accounting data
processing for CSY. Our role within the Accounting
Department is to support and develop computerized ac­
counting systems. In addition to support we have be­
come heavily involved and dedicated to:

1. Testing new HP products - both hardware and
software. This includes not only doing pre-release test­
ing for functionality and reliability but also utilizing
these products to develop our distributed environment.

2. Fully utilizing HP software and hardware to im­
plement a "distributed" data processing environment,
i.e." one in which the computing power is where the
people and problems are. This includes addressing the
problems of system security and operatorless­
computers.

We currently have our applications spread across
three HP3000 systems, a SERIES 44 and SERIES 40
and SERIES 64 as Alpha test sites, with a total of about
1100 Mb of disc storage (seven of our disc drives are
Private Volumes). One 2619A does the printing for all

machines (we use DS/3000 to copy spoolftles from the
Series 40 and 44 to the Series 64). We have one HP12S
microcomputer in the department. Our systems group
of 11 professionals supports an accounting department
of 40 people.

INTRODUCTION
The central objective of utilizing private volumes has

been to increase system reliability, maximize computer
throughput and minimize total operating costs. The
mannner in which these objectives have been obtained
are described in detail below. However, to fully appre­
ciate the potential of these objectives, a clear under­
standing of private volumes and serial discs must fll'st
be realized. A disc spindle configured as a private vol­
ume provides an independent disc domain complete
with its own directory. This domain may be moved from
computer to computer with the requirements that like
disc drives (i.e., 7920's on each system) be available and
the same account structure exists. As a serial disc, the
spindle assumes the nature of a tape drive. The spindle
may be confIgured as both a serial disc and private vol­
ume at the same time. The current status of the drive is
then dynamically allocated depending on the disc label
of the particular pack which is mounted. This pack
would be either a private volume or a serial backup
disc.

RELIABILITY
System reliability is enhanced for a number of rea­

sons when utilizing private volumes. As a storage
medium, our experience has shown fewer catastrophic
read errors from disc as opposed to tape. Although
tapes do provide for storage of multiple ftles, it is cer­
tainly less cumbersome to retrieve a single fde from disc
then tape. And discs provide for direct as well as se­
quential access. In addition, if a segment of a disc is
unreadable, it is possible to salvage the undamaged
data, flag the offending tracks through VINIT, and
reuse the pack. Only the data in the unreadable area is
lost. Another advantage of private volumes is their
transportability between machines. By establishing
selected groups and accounts that contain critical data
for processing, it is possible to freely move disc packs
between computers if the primary machine is down.
And within the same machine, if a system domain drive
becomes inoperative, the system pack may be moved to
a private volume spindle, the unit number dial on the

1-35 -1

disc drive changed, and you are running with a
warmstart. A more subtle advantage to private vol­
umes, is that the master volume contains its own direc­
tory of the ftles in its volume set. This directory is inde­
pendent of the system directory. In the event of a sys­
tem failure that requires a reload, simply tum the pri­
vate volume disc off, and reload the system with no loss
of data on the private volumes.

THROUGHPUT
Private volumes provide a means of maximizing the

system through put by replacing large sequential ftles on
tapes. First, I/O to a disc is generally faster than that of
a tape. By creating groups on private volumes for your
production jobs that run at night which normally re­
quired tapes, the elapsed run time will decrease. And by
havip.g the VMOUNT ON,AUTO parameter activated,
there is no wait time as would occur when the operator
fmally replies to the tape request. By having the private
volumes mounted at the start of your nights processing,
your operator does not have to be present for the job's
execution. The groups mentioned above could be off­
loaded during the day and replaced with groups that
contain your source ftles for program development.

COST MINIMIZATION
In this area, both private volumes and serial discs

provide a benefit. As mentioned above, by replacing
tape fdes with those on private volumes, the operator
does· not have to be present for the job's execution. This
may provide the possiblity of expanding processing to a
second or third shift without the requirement for
additonal support personnel. In addition, since private
volumes have a directory that is tied to the group/
account structure, it is not possible to have the wrong
pack mounted and a data ftle read into your database as
could easily happened with an unlabeled tape. For fur­
ther insurance, by building a dummy ftle on the pack at
the beginning of a job's execution, if the pack is not
mounted, the job can abort in a controlled manner. For
example:

:"PURGE CHKMOUNT.PRIVOL.ACCT
:BUILD CHKMOUNT.PRIVOL.ACCT

In the above example, these JCL statements would be
included in the beginning of the job stream. If the pri­
vate volume was not mounted, the BUILD statement
would fail so that a restart would only require restream­
ing the job. Backup time is reduced and the procedures
simplified by using serial discs. A comparison between
7970 tape drives and a 7925 serial disc backup showed
that the 7925 took aprroximately two thirds the elapsed
time of the 7970. In additon, since a 7925 will store over
three tape reels of data, the operator intervention for

1-35-2

tape replies are reduced by a factor of 3 to 1. The
operator is now required to perform the one task of the
serial disc mount and then is free to proceed with other
activites for approximately 1/2 hour.

STARTUP
The System Supervisor manual provides a detailed

description of private volumes and serial discs in sec­
tions 4:10-4:13 and 1:1-1:24. Listed below is a short
summary of what it takes to establish a private volume
and some tips in the utilization of this feature.

1. Setup the configuration through SYSDUMP. It is a
good idea to have the class established for the disc to be
both PVDISC and SDISC. This provides greater flexi­
bility.

2. Create the volume set/class
3. Use VINIT to format the pack. Remember to flag

those tracks as defective that have been listed on the'
tag. Ifyou don't have the tag, then print the information
with VINIT before you format and init the pack.

4. First span the account and then the group to link
the system directory with the directory on the private
volume. It is necessary to span at the account level even
if only selected groups within the account are on the
private volume. .

5. For automatic recognition of the pack being
mounted,have VMOUNT ON,AUTO set when you re­
start the system. In dismounting a pack, frrst do a VSU­
SER to verify that the volume set is not currently being
accessed. Then down the LDEV to prevent further ac­
cess and insure that the pack can be dismounted by
doing a DSTAT· and checking that the state is not
DOWN,PND.

APPLICATION FITS

• Large temporary ftles as in sorts. Create a group
called SPACE that is an empty disc pack. With a
7925, these provide 120 MB's of free space by just
mounting the pack.

• Offset your large nightly batch processing ftles with
the program development source files during the
day.

• Large Databases. Some databases, such as those in
accounting, are cyclical in nature such that they are
initialized' every month. By having each month be
on a separate pack, prior months can be retained
for review if necessary.

• Security sensitive databases such as payroll and
accounts payable can be off-loaded from the sys­
tem and physically secured.

• Redundancy databases and IMAGE log fues can
reside physically on separate disc drives.

System Resource Accounting:
An Overview of Available Software

Wayne E. Holt
Director of Computer Services

Union College
Schenectady, New York

INTRODUCTION.

Far too often in the minicomputer environment, th'e
concept of system resource accounting (frequently
called "job accounting") is overlooked by upper man­
agement. Such machines are cheap in comparison to
mainframes, and the incentive to closely monitor usage
is marginal.

There. inevitably comes a day, however when the
cheap little machine must do expensive and importarlt
work for too many people, resulting in slower
throughput and performance. And that is when upper
management confronts the DP manager with the ques­
tion "Say, who is using up the time? Run us a report that
pinpoints the problems."

Most DP managers will have already experimented·
with some of the resource accounting software available·
through the Contributed Software Library. Few, how­
ever will have a well defined philosophy or methodol­
ogy of resource accounting that is well supported by the
proper software. Usually, upper management will have
denied the requests to invest manpower into such an
unnecessary system. In the worst cases, accounting
needs will have been so overlooked, that when the DP
manager rushes to test some of that library software, he
will discover that the MPE logging facility hasn't been
enabled! Logfiles, notorious for disc space consump­
tion, might also have been quickly purged by the
operator.

It is a premise of this paper that accurate and timely
information regarding system resource usage is essent­
ial for data processing management. The HP3000 Con­
tributed Software Library contains numerous programs
and software packages to aid in the collection and
evaluation ofjob accounting data. This paper will exam­
ine the available library software, summarizing the
strengths and best usages for each. In addition, Whit­
man College will serve as the example in a case study
illustrating the complimentary nature of using in-house
developed software with externally acquired programs.

Only software available on Release 07 of the Contrib­
uted Software Library, or on the ORLANDO Swap
Tape will be discussed. In addition, it should be noted
that several organizations and vendors now have gen-

Amy J. Galpin
Project Analyst

Whitman College Computer Services
Walla Walla, Washington

eral resource accounting software available for sale.
One can gain information about such software by read­
ing the advertisements in Interact, or by asking the HP
sales representative to check his software reference
guide. It is our understanding that HPIUG will be offer­
ing such a guide sometime in 1982, as wili several pri­
vate parties. One should also note those software pac­
kages, in the Release 07 Guide, with an "F" by the page
number of the corresponding index entry. This indicates
that the software is available by contacting the vendor
appearing in the abstract, although a fee is. charged.

The term "system resource accounting" was chosen
to title this paper because classic "job accounting" im­
plies keeping records on job or session activities, includ­
ing such information as start time, stop time, CPU us­
age, disc I/O counts, etc. This does not encompass the
full spectrum of information available on MPE logging
records, e.g., powerfail information and console mes-.
sages. Furthermore, externally developed data such as
manually maintained timesheets, although pertinent, is
ignored.

The balance of this paper will be split into four
sections, with an appendix following. Section I will dis­
cuss software that processes "special" MPE log rec­
ords. Section II will cover the simpler series of pro­
grams that yield traditional job accounting information,
while Section III will deal with more complex
methodologies and software systems. Finally, Section
IV is a case study of the approach Whitman College has
taken to begin satisfying its system resource accounting
needs.

In each of the three sections, the general purpose of
the software will be described, its similarities or dif­
ferences to other software will be discussed, and if ap­
propriate, comments will be made concerning how to
run the software. Finally, an asterisk occuring by the
software package name indicates that sample results
may be found in Appendix A. Before continuing, the
reader might take time to review the summary of MPE
logfile record types, located in the HP manual. 1 In order
to facilitate your evaluation of the results, the same log­
file, LOG2345.PUB.SYS, has been used in all software

1-42 -1

runs. The following types of logging are enabled on our
system:

T_y-..;;p~e_o_f_L_o-.;:g::;.;;::g~in...;:g~__.producing Record Type No.
Logging Enabled 0, 1
Job Initiation 2
Job Termination 3
Process Termination 4
File Close 5
System Shutdown 6
Power Fail 7
Spooling 8
I/O Error 11

Note that the console logging is disabled. We do not
perform statistical analyses on this information and
have found. a hardcopy console log to be more useful in
monitoring this "scene of action" .2

SECTION I:
SOFIWARE FOR "SPECIAL"

MPE LOG RECORDS
Software which processes "special" log records, such

as powerfails and console messages will be discussed in
this section. Special software' performing utility func­
tions will also be discussed. Programs falling into this
category tend to be standalone (with a few exceptions)
and their operation is fairly straightforward. In most
cases, it is advisable to examine the source code to
ensure that the utility is applicable to your system's
configuration. Modifications in such things as equated
constants, often those that reflect logfile record size, as
well as others, may be necessary to make the software
run properly.

CLISTLOG3

This program provides a report of all console log rec­
ords (type 15) in the MPE logfiles . The format of the
report is in chronological sequence, using perhaps only
1/3 of the paper consumed in HP's LISTLOG2 report of
type 15 records. No statistical analysis on the log rec­
ords is performed. The utility is similar to JLISTLOG,
SLISTLOG and LISTLOG2 in both operation and func­
tion. While JLISTLOG and SLISTLOG report on
predetermined logfile record types, LISTLOG2 allows
the User to specify the type of records desired at run
time. All four of the utilities are capable of traversing
across a range oflogfl1es. The User is prompted for the
number range of LOG####.PUB.SYS to be searched.
The User is also given the option of purging the 10gfI1es
after the search. This utility could be quite useful at a
site where a hardcopy console log is not used and man­
agement wishes to peruse/review this realm of system
activity at a later time. The User may direct output by
equating the file CLOGLIST to the desired output de­
vice. Console logging MUST be enabled for this pro­
gram to serve its purpose.

1-42-2

\

CONSLOG4

This contribution produces a report of those console'
log records occurring in MPE logfiles for a given date/
time range. The User is not only able to select records
by date, but also by defining a character string which
must occur in the type 15 records. Output may be di­
rected to a device other than $STDLIST, and the pro­
gram is capable of building files on disc if a non-existent
file is specified for output; input will also be accepted
from a command file.

The program prompts the User for a starting date and
time to be used as the beginning point of the search, as
well as an output file and search string. The program is
capable of continuing the search across logfile bound­
aries, up to the current logfile. The author suggests per­
forming a: SWITCHLOG before running the program, if
the User wishes to examin'e the current logfile (requires
OP capability). As -mentioned above, the console log­
ging must have been enabled during system configura­
tion to produce the type 15 records the program
searches for.
, This program would also be useful for installations in

which a hardcopy console is not employed, or where
management wishes to monitor the appearance of spe­
cific users, job/session names, etc. on the system. Be­
cause output may be directed to a disc file, the User
may develop his own procedures to sort, reformat, or
edit the output, according to his needs.

COSTPROG5*

This utility calculates the cost of data center services
by considering the CPU seconds, connect minutes, and
disc sector usage of a group. The report is broken down
by account and group across the three elements listed'
above, and is similar in format to the listing produced by
the MPE: REPORT command. The User is able to
specify his own cost parameters.

The program does not read MPE logfiles, but instead
reads a data file produced by previously issueing the:
REPORT command, where output was directed to a
disc file. The User is prompted for the cost factors, and
can direct output by equating formal file designators to
the desired device. The input file equation should be set
before running the program.

The User is limited to producing figures only for those
accounts he has the capablity to: REPORT on (to: RE­
PORT on all accounts requires SM capability).

JLISTLOG3*

Belonging to the family of CLISTLOG and
SLISTLOG, this program produces a report of all job
initiation and job termination records (types 2 and 3)
within a given range of logfiles. The listing is formatted
in chronological sequence, and again, consumes approx­
imately 1/3 of the paper consumed by a LISTLOG2
listing of the same records. A page break occurs with
each new date.

The User is prompted for the starting and ending log­
ftle numbers; the program looks for them in PUB.SYS.
The User is also given the option of purging the logftles
after the search, and will be asked ifhe wishes to run the
program again. Currently accessed logfiles are not
available to the program. While LISTLOG2 requires
SM capability, JLISTLOG does not.

The contributor recommends that the source code be
examined, to ensure that the logfile record size of your
installation coincides with that in the source code;
modifications should be made before attempting to run
the program.

LISTLOG26*

, Wh.ile this utility does not appear on either the library
release or swap tapes, it is an HP product universally
available to HP3000 users, and seems appropriate for
review. This MPE utility produces an ASCII listing of
any number of logfile record types across a given range
of logfiles. The report is chronologically ordered and
record entries are separated by hyphenated break lines.

Operation of the utility is similar to that of the
CLISTLOG family. Indeed, this utility is the general
version after which the specialized CLISTLOG family
is modeled. The User is prompted for which types of
logfiles, if not all, he wishes to report. He must also
specify the beginning and ending numbers of the logfiles
he wants searched, and has the option of purging the
specified logfiles after the search. The User is asked if
he wishes to run the program again before its termina­
tion.

The program is versatile in that output may be di­
rected to any file on any device (e.g., disc or mag tape
fde as well as line printer). The program is restricted to
Users with SM capability.

LOGPURGE7

This utility purges a given range of logfiles
LOG####~PUB.SYS.The User is prompted for the
beginning and ending numbers of the logfile range. The
logfile being currently accessed will not be purged.

The program is similar in function to PURGELOG of
the DREEACTG software package.

PFAILISTS

This program scans logfiles within a given range, and
prints the date and time of each logged powerfail. The
User is asked to input the starting and ending logfile
numbers.

This program could be especially useful to a site in
which there is no hardcopy console log to record pow­
erfail messages.

PORTSTATS*

PORTSTAT will scan a given range of logfiles, per­
forming statistical analysis to produce a report on the
usage of various ports on the system. Total CPU sec-

onds and connect minutes, as well as the average figure
per job/session and standard deviation are broken out
against the Idev number. A combined CPU sec/connect
minute figure (presumably weighted) is also given. The
report heading gives the date/time range of the logfiles
scanned. The User is prompted for the logfile number
range. The port number range is controlled by equated
constants and should be tailored to your site's config­
uration. Output is to $STDLIST.

READLOG9

This utility will carry on a dialogue with the User,
scanning a logfile for records selected according to the
User criteria input. Logfile records may be sought out
by criteria such as such as record type, Idev origination,
date, and time range, or in combination. The program
will also summarize the number of occurrences of each
record type before terminating. By asking for an audit of
the logfile, the frrst and last records will be displayed
(handy for finding date/time range oflogfile). The User
may specify a ne'w logfile to be scanned, without having
to reiterate the criteria.

The program opens the logfues as LOGXXXX.PUB,
and therefore should be run in the SYS account. This
program could be very useful as a "lead" in monitoring
system activity. Only summarizations are performed by
the program. While the program does recognize all log­
file record types, it does not decode all data items to
ASCII format.

SCANUSER10

This program produces a report of all activity for
which a log record was produced relating to a particular
or generic group of Users.

The program issues a prompt for the User name in
question (or generic user.acct) , and then for a logfile
number. The program is capable of handling up to 15
concurrent users, and is most informative when most
logging functions are enabled.

SLISTLOG3*

This program is another member of the CLISTLOG
family, its function being to seek out spool fue close log
records (type 8) within a given range of logfiles. The
report produced is in chronological sequence, and
formatted with uniform column headings which break
out each type of data element occuring in the log record.
A page break occurs upon each new date encountered.

The User is prompted for a logfile range to be
searched, and is given the options of purging the log­
files, and/or running the program again.

SECTION II:
"SIMPLE" SOFTWARE

FOR JOB ACCOUNTING
This secti9n will discuss the "simpler" software that

can be used to derive job accounting information. The

1-42-3

software in this area is generally easy to use, and re­
quires the least amount of preparation. Relatively little
statistical analysis or summarization is performed on
the data, and results tend to be of a highly detailed
nature.

LOGDB 11

Briefly summarizing, this software system is designed
to read system logfiles, loading. them into an IMAGE
database. The structure of the database is one that al­
lows for simple report generation via QUERY or appli­
cation programs. Some summarizations are performed
upon the data. It is loaded in nearly "raw" form to the
database, with the conversion of some data elements to
ASCII format. The system is also capable of "rationali­
zation" which eliminates a good deal of redundant data.

The system, as it is available on the Orlando swap.
tap.e, includes "fIrst time" jobstreams, intended to com-'
pile all source code and initially create the database.
Daily procedures are also incorporated into several job
streams which jointly serve to read the logfiles, load the
database, and produce reports while performing any
"housekeeping" necessary to accomplish this. The re­
ports provided are generated by QUERY through the
execution of several command files. While highly de­
tailed in nature, the reports may serve well as skeletons
by which a site can tailor its own reports. .

In a little greater detail, the general structure of the
database is as follows: Paths are defined by several
automasters, however one manual
"job-head" master exists which holds information
needed for several of the detail sets. There is a detail
data set for each type of log record encountered in sys­
tem logftles, with these exceptions:

1.~J Console log records are written to a console log.
2: Job initiation and job termination records (types 2

and 3) are combined into one detail set. This is the
JOB-INIT/TERM data set which also houses sev­
eral count fields. The set has been designed to
facilitate billing from one set.

The detail data sets are loaded on a one entry per log
record basis, except for the JOB-INIT/TERM set men­
tioned above, which houses some summary fields, and
the LOGICAL-MOUNT set which contains only one
entry for each job or session, and holds a total field.
Entries are also not created for certain types of file
closes, although they might be added to I/O count fields.

No duplicate job/session numbers are allowed on the
database, thus if the loading program encounters dupli­
cate numbers within a group of logfiles, it assumes the
most recently ~ncountered as the current job/session.
This problem can, for the most part, be avoided by pro­
cessing logfiles on a daily basis rather than in large
groups. The data set capacities are currently set to
acommodate approximately four logfiles. This may be
altered to your site's needs. Overall, the input to the
system consists of log files. Output consists of a loaded

1-42-4

database, a hardcopy console log (assuming console
logging has been enabled), and an error listing to
$STDLIST. An in flight processing summary report
may also be output to a terminal by using a control-y
interrupt; the last logfile to be processed, and the logfile
being currently processed are displayed. The system
also creates a few working files which ensure continu­
ous processing of logfiles between daily runs.

SECTION III:
"COMPLEX" ~OFfWARE
FOR JOB ACCOUNTING

The use of software appearing in this section is
perhaps not as straightforward as that in the preceding
section. Proper use of the software to yield 'meaningful
results requires that a an accompanying methodology be
developed and followed on a regular basis. These pac­
kages are capable of performing a greater amount of
statistical anaiysis on the data accumulated, producing
reports of a higher summary level. The packages gener­
ally also provide opportunities to produce highly de­
tailed reports, depending at which phase of the process
one fmds oneself.

DREEACTG12*
This software system actually tracks system utiliza­

tion in two manners, the first via the processing ofMPE
logfiles, producing job/session information, and the sec­
ond recording disc storage utilization using data created
by the: REPORT command. The two systems are inde­
pendent, however they both consist of a series of daily
procedures which accumulate information, with another
series of periodic (monthly) procedures designed to
summarize and present the data in various formats. The .
modular structure of the system allows a site to use the
software in its entirety, or to utilize those portions ofthe
package applicable.

The system is capable of a large amount of statistical
analysis, producing highly detailed reports which ac­
company the daily data accumulation, as well as pe­
riodic summary reports which break out the data in sev­
eral manners. The reports could be highly useful to an
operations staff in monitoring system resources, to ac­
count managers and/or project leaders by informing
them of system activity associated with their "domain,"
as well as to DP management in holding various cost
center~ accountable for system usage.

While the method of cost center assignment is specif­
ically geared toward the account structure found at the
contributor's site, this logic module is a self contained
subroutine which could easily be altered to a site wish­
ing to apply its own philosophy of cost center assign­
ment.

Cost computations are performed using weighting
factors held in an initialization subroutine, as well as a
cost limiting factor; these factors can also be easily re­
viewed and modified by a site wishing to weight or limit
computations in a different manner.

In a slightly more detailed consideration of the job/
session processing portion of the package we see that
the daily procedures involve two steps. The first is per­
formed by the program ACUMLOG, which functions to
summarize by job/session all activity accounted for in
the MPE logfile under that job/session number. Sum­
mary files produced in the first step are then read by the
program LOGRPT, which appends cost fields to the ac­
tivies, producing a monthly summary file in the second
step. It might be useful to note that only log record
types 2,3,4,5,8 and 9 are considered. Only summary
records for job/session numbers less than 1000 are pro­
cessed by LOGRPT; this can also be altered for sites
whose job/session numbers commonly surpass this

. limit. It might also be worthy to note that one must take
care to manually ensure that summary files for different
months are ~ept separate.

Reports produced include logfile summary reports,
. job/session detail reports and monthly reports, pro­

duced from the monthly summary files, are broken out
by account and at the group level, and cost center level.
Invoices may also be produced, broken out primarily by
cost center, and at a secondary level by the account
structure within.
The disc storage utilization portion of the package gen­
erates reports in a manner similar to those mentioned
above. Data is obtained from directing the output of a:
REPORT command to a disc file. The data thus ob­
tained is then accumulated on a daily basis by the pro­
gram ACUMDISC which creates a monthly master file
after cost fields have been appended. The disc charge
rate is hard coded into the program and can be easily
changed.

Extended 4ocumentation of the system can be ob­
tained. This outlines .detailed operating procedures,
most of which are incorporated into jobstreams.

This package is an example of the incorporation of
another library contribution, ACUMLOG7 into an in­
house tailored job accounting system.

LOGUTIL13*

This user oriented and highly versatile software pac­
kage is designed to serve four general functions. It
facilitates the storage of logfiles in a randomly accessi­
ble format, it scans logfiles, selecting and displaying log
record types chosen by the User, it summarizes various
types of activity logged within the file, and it analyzes
such summaries in terms ofjob/session activity, file ac­
tivity, or device I/O errors. The program is versatile in
its ability to accept input and output both to and from
disc or tape, or in combination. This is controlled
through file equations. Various report options are given
the User within each generic type of report. Options
include such items as detail level, sort-item, and rank
item within sort item.

The package consists of the three programs
LOGUTIL, LOGREPT and FILERPT; a data file is

also required which reflects your site's configuration.
LOGUTIL is the central program of the system, per­
forming the storage, summary, and scanning functions,
as well as the evaluation of I/O errors. The other two
programs, LOGREPT and FILERPT, analyze the sum­
mary files produced by LOGUTIL, to produce the vari­
ous job/session and file activity reports.

Briefly, the program LOGUTIL allows for the selec­
tion of three functions. Logfiles may be copied to tape
in a consolidated fashion (multiple reels are supported),
an audit review of the logfiles performed, or an I/O error
analysis reported. Output depends upon the option
selected and may include a "loaded" tape, a listing of
the number of records in each logfile, starting and stop
time, a listing or file of summaries for each job/session,
summaries file, a file activity summary file, and a sum­
mary listjng showing the number of occurances of each
record type in the logfile. Logfiles may be optionally
purged, if the User has 8M capability.

The program LOGREPT analyzes the job/session
summary file produced by LOGUTIL. The User is
prompted for such selections as the listing device, the
input file name, the report 'date range, whether to ana­
lyze by groups or users, any groups or users to be
excluded from analysis, and the detail level of the report
(long or short); the program can also provide account
summaries.

The' program FILERPT carries on a healthy dialogue
with the User, in a triple nested loop fashion. The file'
activity report produced may be '-'viewed" by files ac­
cessed, by name: or rank of access, and by User acces­
sing the files. Likewise, the report may be presented
primarily by Users accessing files, by name or rank of
access, and with or without the files accessed being
listed. There are several sort items from which the User
may choose to "rank" output. Counts and totals are also
given.

The contributor recommends that the source code of
LOGUTIL and LOGREPT be examined and modified
to handle your system's configuration.

The operation of the system is quite well
documented.

SECTION IV:
A CASE STUDY OF WHITMAN'S

SYSTEM RESOURCE ACCOUNTING
Since its beginning in mid-1977, the Computer Serv­

ices organization has kept records of work performed
for the various offices on campus. These records in­
cluded some computer-generated information on
machine and paper usage, as well as manually main­
tained records on human resource usage.

Frankly, upper management cared little about such
records. Most resources were adequate, and User con­
cerns centered around when they would "get their
turn. "The Computer Services Office used available
software to occasionally monitor the system usage, and

1-42-5

correctly predicted the inevitable shortfall of computer
resources. The software mentioned above included a
rudimentary Manpower Accounting System, dating to
mid-1978, created using student labor. This had been
planned as one part of a larger Job Accounting system,
however manpower was never made available to com­
plete the task. Thus, the Center relied upon such pac­
kages as DREE to monitor actual computer usage.
While these packages were more than adequate to get a
measure of system activity, they did little to provide
comprehensive evaluations of the overall impact of var­
ious User offices.

The onset of lack of resources l forced a change in
most everyone's thinking. In pursuing the creation of a
five-year plan for computer usage on campus, the Com­
puter Policy Committee recognized the need for usable,
consistent data for planning. While the aforementioned
Manpower Accounting reports were of help, most of the
computer-generated information was simply not in a
"digestible" form. This resulted in some justifiable crit­
icism of the material presented in support of the pro­
posed five-year plan. The supporting figures were
primarily directed toward manpower usage, with only
highly technical information available on machine utili­
zation. The support and maintenance functions were
not delineated from development functions, and at
times, were aggregated with both the User and the
Computer Center itself. No actual dollar figures tied
back to real expenditures were presented. In general,
the User was left with an incomplete picture of the
amount and type of activity on the computer.

Development of a "diary" database, and supporting
programs then ensued. The resulting system resource
accounting system, called the DIARY, was designed to
fulfill information needs in three areas. It accounts for
manpower resources, computer resources, and material
resources, such as paper. The three areas taken into
account are made unique from each other in the level
and type of data collected, as well as the collection
methods used. The areas also have several common fea­
tures, namely the resulting derived data and the
philosophical approach used in deriving summary level
data. Unique requirements are addressed by logic
modules designed to meet those needs. The common
requirements are fulfilled by the conversion of usage
figures into standardized units, useful in analysis.

It would perhaps be best to briefly summarize the
philosophy of the DIARY, and then proceed with a
more detailed description of the software and methods
used in its support.

We wished to present system resource accounting in­
formation in a manner which would correlate not only
the types of resources being used with the application
system receiving the benefits of such usage; it was
necessary to indicate whether the resources were in­
vested in production work within a system, mainte­
nance of the system, or development of an entirely new
system. Furthermore, the activities of the Computer

1-42-6

Center staff needed to be represented in a way which
delineated between the general overhead needed to
maintain the organization, and services rendered ac­
countable to specific offices. It was also necessary to
separate usage figures generated by administr~tive func­
tions from those generated by academic functions.
While many shops might be able to keep accurate fig­
ures by strictly designating logon accounts to be used
for specific purposes, we wished to gather more detailed
data, in terms of computer resources. While Whitman
College does not employ actual charge-back, the struc­
ture of the database preserves this as a viable alterna­
tive for the future.

The three logic modules of the DIARY are named by
the type of information which they address. They are
the Unit of Manpower (UOM),. the Unit of Processing
(UOP), and the Unit of Resources (UOR) modules.
While the UOM is daily in orientation, the UOP and
UOR modules summarize data by the month. The
unique features of each module will be discussed after
examining the set of common "unifying" codes which
are derived from the various types of data encountered
in each module. The authors acknowledge the fact that
while the following codes presented are applicable to
the specific information needs of Whitman College, they
may not be entirely appropriate for shops in a different
environment. It would be helpful in the discussion that
follows, to examine the examples, in Appendix B, 0'
how these codes are employed in our shop.

• Activity Area - denotes a general type of activity,
(Production, Maintenance, Primary or Secondary
Development. Primary development involves the
creation of a new system; secondary development
involves the addition of new programs or functions
to an existing system.)

• Sector - makes a general distinction between ad­
ministrative, academic and computer center'func­
tions

• Office - Designates a particular administrative of­
fice, or academic division. (Registrar, Admissions,
Division of Social Sciences, etc.)

• System - an application system in which work is
being petformed. Each system is "assigned" to an
office which is held accountable for the system.
(Payroll, General Ledger, Class Grading, etc.) Each
academic department also is assigned its own sys­
tem code (Physics)

• Project (SR) - Project numbers are assigned to
any production or maintenance 'Work which is per­
formed in response to a service request, and is per­
formed by a computer center staff member. A proj­
ect may affect several User systems, and the
format of the number allows evaluation on either a
project or system orientation.

The office code is functionally analogous to the cost
center. Due to the heirarchical structure of the codes,
those at the top may be derived simply by "climbing the

ladder. " While this may appear redundant; the design of
the system was partially dictated by the ad hoc inquiry
tools available, such as QUERY14 and QUIZ15. Efforts
could then be concentrated upon creating systems to
load the database, rather than in creating report pro­
grams.

Separate tables drive the software that tags and iden­
tifies the aforementioned codes to each job accounting
record. Some of these tables require a minimal amount
ofmanual maintenance. Such maintenance might be due
to the creation of a new account, or to the installation of
a new system. While the assignment of codes and cost
centers may be completely by defaults, the tables allow
for proper assignment of codes in exceptional cases.

The UOM records the actual hours worked within the
computer shop by all staff. The UOM is the straight­
time dollarlhour rate of an employee, multiplied by the
hours reported. Whether the employee is of exempt or
non-exempt status is ignored, resulting in a "weighted"
charge for services depending upon the person provid­
ing it. All hours are designated to a system code, and an
activity code; the activity code is more specific than the
activity area, however can be mapped to the activity
area after considering the system/activity code combi­
nation. A project number might also be optionally rec­
orded, provided it is compatible with the activity code
(e.g., a maintenance project code would not be compat­
ible with a system undergoing primary development).
Data in this module is handled in a fairly specific man­
ner. Accou~tablilty goes even to the program number.
being worked on, where the program number takes the
place of an activity code. Reports can be generated by
employee, by system, by activity, and by project. Such
detailed reports· may not be of great interest to upper
management, but are useful to staff members in visualiz­
ing where their efforts are spent. It is important to em­
phasize that unless staff members reports all hours
worked, regardless of whether or not they are paid, the
accuracy of the UOM module as a planning tool is con­
siderably degraded.

The Unit of Processing module provides comprehen­
sive information relating to machine utilization. The
UOP is a derived figure making use of weighting factors
built into the accounting processor obtained from the
Department of Regional Economic Expansion (DREE).
A portion of the DREE software is used in the first step
towards loading the UOP leg of the DIARY. The DREE
package is used to summarize raw data from the log­
rues, by session and by job, and to append cost fields to
the activities represented. Because our philosophy in
assigning cost centers is different from that of DREE,
in-house developed software then performs the remain­
ing steps in loading the database. The following para­
graph briefly describes our method of assigning cost
centers.

While DREE incorporates the cost center code into
the User name, we have found that cost centers are not

so "cut and dried" in our shop. It is relatively safe to
assume that any work performed in an administrative
User's account is production work, as well work per­
formed in student or faculty accounts as being
academic. However, accountability as to the software
system being used is lost. The major problem is in track­
ing the type of work being performed by Computer
Center staff members, which may be development,
maintenance, or in support of User production. We
have resorted to extensive use of standardized job/
session names which vary according to the type of work
the staff member intends to perform when logging on.
The combination of job/session name, user name, and
logon account is checked against the code assigning ta­
bles mentioned previously. From the tables, the cost
center is derived. The structure of.the job/session name
is either of the form of a specific project number, or of
the format "system code/general activity area." Thus
we are able to account for work performed on the com­
puter down to the system level; the type of work is
inherent in the project number, or in the activity area,
whichever is used. The UOM module also accounts for
activity under project number, and activity codes are
mapped to general activity areas, as mentioned before.

Using ad hoc inquiry methods, reports can be gener­
ated that delineate between production, development,
or maintenance work; The amount of each type of work
taking place within application systems can also be re­
ported. And most certainly, reports may present in both
text and graphical forms the comparative usage of pro­
cessing power, as well as staff manpower, by adminis­
trators, faculty, and students.

The Unit of Resource (UOR) module provides d~ta

relating to paper usage. The DOR is a derived figure,
relating to the print-line count obtained from MPE 199­
files, and summed by DREE software employed.

The DIARY database is diagrammed in AppendixB­
1.1. Software should be run on a regular basis to sum­
marize and transfer data between the sets. The em­
phasis is upon running timely detail reports, and then
eliminating any accumulation that is unnecessary.

Unless Users know how much it costs to provide
them services, it will be difficult to prioritize or separate
actual needs from "wish lists." Cost values are main­
tained for UOM, UOR and UOP, although they are ap­
proximate until the close of the fiscal year. Such data
relating actual expenses to Computer Center activities
is a necessary planning tool for Users, and is helpful
only if made available on a timely basis.

The investment in software for all of this is actually
very modest. The "lions share" is for the load pro­
grams, and those that handle summarization. Of course,
reports of greater precision will ultimately be de­
veloped. Because the system was targeted for ad hoc
reporting, the software investment shall continue to be
minor. The following is a summary of current programs

1-42-7

and their functions in the flow of information within the
DIARY:

JA120 - DOM Staff Activity Report Input Sc­
reen

JA202 - Summarizes DOM-DTL, loading
ACTIVITY-DTL

JA204 - Summarizes UOM-DTL and UOP-DTL,
loading the SUMMARY-DTL

JA234 - Transfers DREE records to UOP-DTL,
adding record heads '

JA323 - UOM Monthly Manpower Report by
Employee

JA325 - DOM Monthly Manpower Report by
System

JA327 - UOM Monthly Manpower Report by
Activity

JA329 - UOM Monthly Summary of Employee
Hours

JA405 - UOP Monthly Summary of Machine
Utilization by Sector

JA640 - SUMMARY-DTL Report of UOM,
UOP, and UOR against activity ~ea,

within system, within office
In additio~:

The PROJECT-MST, EMPLOYEE-MST, and
BUDGET-DTL are manually maintained via
DBENTRy16.

CONCLUDING REMARKS
The classic concept of "job accounting~' is inadequate

to provide management with a proper uQ.derstanding of
the cost involved in providing, total service to Users.
Only total "system resource accounting," which in­
cludes manpower, equipment, and material resources
can hope to provide the divergent types ofdata needed.

While few shops will find free or fee-charged software

1-42-8

that adequately meets their needs, there is a wide vari­
ety available to begin with. Much of this is free to mem­
bers of the Users Group. It is important that shop man­
agement recognize the need to gather such data, before
confrontations with upper management prompt the
need. Certainly, each shop will need to tailor any gen­
eral purpose accounting software system to their own
environment. Better to start early, for a large base of
historical data is usually required to establish trends.

All of the above reinforces the need to plan early. The
authors of this paper hope that the material and consid­
erations presented will help you formulate the appro­
priate course of action for your shop.

REFERENCES

1Detailed information on logfiles may· be found in the HP System
Manager/System Supervisor Manual, Section VI.

2See "The Hardcopy Console: A Tool for Installation Management,"
by W.E. Holt, Montreux Proceedings, 1980..,

3Contributed by Linford Hackman, Vydec, Incorporated. 4Contrib­
uted by S.G. Joerger, Armament Systems Incorporated.

5Contributed by Bill Klages, DE Systems, Incorporated.
6An HP product; see the MPE System Utilities manual, Sect. IV, for
operating instructions.

7An anonymous contribution.
8Contributed by Jon Falconer, Pacific Union College.
9Contributed by John' A. Maus, Hewlett-Packard.

lOOn Orlando Swap tape, Bob Dunn programmer.
llContributed by The Bose Corporation.
12Contributed by Serge Bazinet, Department of Regional Economic

Expansion, Govt. of Canada.
130riginal author was Gerry Wade, contributed by Brent J.
'rThompson, The Development Office, BYU, with some

modifications.
14An HP product for on-line inquiry. See IMAGE and QUERY manu­

als.
15Pr<X!uced by Quasar Systems Ltd.
16An IMAGE-VIEW interface program, contributed by Bruce Kau,

Tours, Incorporated. ..

APPENDIX A

Table of Contents

I. COSTPROG
Procedures and Results •••••••••••••••••••••••••••••••••••••• 1

II. JLISTLOG
Jloglist••••••••••••••••••••••••••••••••••••• o •••••••••••••• 1

III. LISTLOG2
Loglist ••• 1

IV. PORTSTAT
Partial Report •• 1

V. SLISTLOG
Sloglist•• 1

VI. DREEACTG
Logfile Summary Rpt and Whitman's Modifications ••••••••••••• 1
Account Manager Report ••••••••••• ~ •••••••••••••••••••••••••• 2
MTHACTG Invoice ••• 5

VII. LOGUTIL
LOGUTIL Job/Session Audit Summary••••••••••••••••••••••••••• 1
LOGREPT Job/Session Summary {short) ••••••••••••••••••••••••• 3
FILERPT File Activity Report by File (short) •••••••••••••••• 3
LOGUTIL I/O Error Summary••••••••••••••••••••••••••••••••••• 3

1-42-9

It'ttIt,n R~~:~:Y:-C=."2" ,AseTI ,nEV;aOISC,D1SCl:l000
,FILr RR~,~L~:~EV=OISC

_! R.r~~)~T.. ~. ~J?, ~.~~~ _u_._._...__.. __._.__. . .."_.. ..__. .__._
IF"TLF. FT~IOI=J:~P.,tjLO

IrIL~ rT~"7Jr~V=CO~L~

__.!F_t!l!-.~ !~~_,!_~.~~r.l ~J.~.~~~_~9_0rt. __. ._ _.._ ..__ .._..__.__.__. .._.__. ._ ._._,_.0 __..__

... e:~t~~..~O~T .. ~.F:Rc~~ ..~~~__ ~.r~_.~qt41JA~S. ... ?~ •.~Q.A. .

E~!EP COST r~R cn~NECT ~IMUTE IN Dn~LARS 70,01

--~E~TEJi-·COs-T-··rF.R SECTOR iii-DOLLARS 71,00

.:tlO OF PROGR a"
----i'r1"L£ "'·0UT'y' i f;E-:-()~V =C 0MLP

IRIJN PSCPEE~'.tJTtL.IPrS
.._.J..q.;j<_~5.?~.LPSCF.Ee·J. UT U!...~.!.~.,.-. _

FJL~SPACE·Sf.CTnRS CON~FCT.MINUTES nOLLAP

1-42-10

LIS 169A8.. 2555 •• 2645 •• Sl~,917.00

InATA 589 •• 24 .* 18 _...... 15&9,20-----iDt:)C----·--··--- ..'Q"i _"_,__.__o.**'~"'_" " 77·_ .. ·_·_..··- *. 191 •• '"94,99

IJOR 132.* 0 •• 0 ** 5132,00
Ir~~ t n244 .* 21A5 •• 2314 •••10,269.93

-·-"·-··---·'isouRc"~-----,·,_oS·140---··-·.i-_o·26·9·----.'.---0--';2-----••'·'" SS~t40~'89----

Appendix A • 1.1

'-

tDDEV,NYHACEN.WCCS,N1J PRl=DS, CPU=U»LJM, I~PPt=A, OUTP~I=OJ JIN=tn, JLJSTs23
UFt:JPDTCA,8USENTRY.Ar:MTN,RtJSJNf:S5, PPI=OS, C·PU=5000, l~iPPI=A, OIlTPRJ=9, JIt\:IO, JLIST-,.,

C!'U-~FC=41, ELAPSEO·:AIN=43, t"AXI'~I=0 r NUM.CREATIO~!s=1 5
CP~J.SFC=7, ELAPSEt>·l~T ~'=2, !-'AXPR 1::0 J t.J"~·CPF:ATIOII:Sc3

CPU-Sf:C=l), ELAPSED.~·1IrJ:l23J ~AXPP11:0, NU~·CRtATJO"JS=8

SA~DERCR.STU84~,SANrFRCRJ rRI=CS, crU=U~LIM, INPRI=8, OUTPRIcO, JTN=~3J JLIST=Sl
crtJ-SEC~t40J EL"rSF.O.MIt~=90J MAXP~I=OJ NU~.C~~·ATl{l'~~=48

LUTTCEJC.STU9SB,LUTTGEJC, PPI=CS, C~U=UNLI~J I~rRI.AJ OUTPRlmo, JI~=47, JLIST~47

UFUPDTCA,8US~NTRY.ADMIN,RU51NESSJPRJ=DS, cPu=sooo. INPRI=8, Ot'TPRJ=R, JJN:l0, JLI&Ta17
CPU.~EC=~2. ELAP5F.1'·'~lN=12, Jo4AXPRI c O, NUPot·CREATIOr;S=4
cru.sfC=18, ~LAPSEO·MIN=47r MAXPRlcO. NUM·CREATIO~S=l

FDnEV,KELSEY.WCCS,Kl, PR1=OS. CPU=PNLIM, INPRl=9, OllTPRt~n, Jt~.to, JLISTz21
cpn-SEC=8: F:LAPSEO.Ml t~=2, HAXPP I cO, NUM-CREATIO~Ssl

CLIAJOR,8ATCH.ADMIN,AUSI~ESS, PRJ=DS, CPU=U~LT~J INPRI~AJ OUTPRI=O, JJN=10J JLIST-17
MICHELSO.A~HI~,ALUMNIJ PRI=CS, CPU~'NLI~, TNPRl=R, OUTPRI=O, JIN=S7, J~JST=57

CPU.S~:C=15, ELAF'SF:O-Mlfoi=2f ~AXP~I=O, NtJ"'·CRF:ATIr.l:J~=7

CLIAJ08,8ATCH.ADMIN,BUSI~ESS,PRT=DS, CPU=UULIM, INPRI=4, OUTPRt=O, JI~=lnJ JLISTa17
rDDEV,NYHAGEN.WCCS,~YHAGF.NrPPI=CS, CPU=UNLIM,HIPRI, OUTPRlco, JI~=27, JLIST=27

CPU.SFC=4, ELAPSED.~IU=12l, ~AXPRI~O' NU~·CPEArl0~S=1

CPU.~Fr=4J FLArStO.~IN=), ~AXPPlco, NUM·CREATIO~S=l

FODEV,NYHAGEN.WCCS,r:t, rPI=CS, cpu=tnJLJ~JHIPR], OUTPFtJ=O, JIN:27J JL15T=27
CPU.SfC=t4, ELAPStD·~IN=4J ~AXPPI=OJ NU~·CPEATJO~5=7

FDOEV,MANAGEP.WCCS,CU~~ONJPRJ=DS, CPU=UNLt~1 I~PRI=~J ourPRT=~: JI~=tO, JLIST=2J
CPU.SEC=14: F.LAP~ED·~I»=), M~XP~J=(I, NU~·r.RE~TIO~5=t

FDDEV,MANAGER.FINDEV,rllf', ~PI=ns, CPUz:tHJI.IM, INPPI:8, (HJTPRI=O, JIi~:tn, JLIST=23
CPU.5f:C=S, ELAPSED.:~I t~=2, ~'AXPR t=", NUM-CPEATIOt;S: 1
CPU.:;EC=S J ELAPSED.r~J tJ=6 J -""XPR ll:(l J ~UM·CPF.ATIO~JS31

GL1AJOR,aATCH.AD~IN,8U5I~~55, P~I=DS, CPU=uuLt~f I~PPI=4f OUTr~l=O, JIN:l0, JLIST=l'7
COTTPEFM.STU848,COTTREFM, PRI=CS, CPU=UNLl~, INPRI=8. DUTPRI=o, Jl~=44, JL15T=44
rDD£V,NYHAG£tJ.~CCS,t:1J PRIces, CPtJ:tl~l.l~,HIPRI, OUTPRI=OJ JI'~=27, Jt.J.ST=21

CPU.SEC=13, ~LAPSED.MIN=S, ~AXPPI=OJ UUM·CR~ATI~~S=7

UfUPOTCA,8USENTRY.AP"'Ir:,f;U5I··~ESS:PRI:DS, CPTJ=SOOC)J I'"JP.RI=8' OlJTPRl=8, JI~=10J JLIST;J17
CrlJ.5~:C=1 t J "~L"P5f:O"~IN::~J }-'AXPRI=O, t{Ut~·CPEATIC".~=4

• CPlf.Sf.C=7J f.LAPSEO·~~IN=2, ?'t1AXPRJ=O, NUM ..r.R~ATI0'·~S=l
GLIAJOB,BATCH.AD~IN,RUSt~EfiS:PPT=ns, CPU=U~LI~, INPP1=6, OUTPRI=O, Jl~=l~' JLISTm17

CPtI.~EC=125: F.t.ArS.ED.~'I~1= 19 J t'A XPP.l =0: t.U~.CRf~ATlr.~.S=4

CPU.SFC=4, tLAPSEO.~IH=&t MAXPPl=O, NU~·CPEATIONS=l .
FOOEV,'tANAGER.WCCS,AATCH, pRI=CS, r.PlJ=t1~~r,lM, INPPI=9J OUTPRI=O, JINIZ27, JLI5T=27
Urf)SJENT,BtJSENTRY.AIH"IN,Rl'ST~?F.SSJPRI=OS: cpu=sooo,. l,irRI=8, f\tJTftPI=itr JI~=10J JLIST.17

CJ)u.sr.r=25 J EI,APSF.D·',1 I N= 4 J r' AXPR I =0 J NU~.CREATI O~S=7

FDDEV,t.1AtJACER.FINDEv,rU~1 PRI=DS, Cru:alnJLI"', It.PRI=~, OUTPRI=o, JTN=10J "LIST=23
Cptr.sr.c: t 9 J F:f.APSED.V. I N=4, ,.. AXPRI =0 J NU~.C ~EAT J (l!';s=~

C'P"-~F.C='i J F:LAPSEO." J N:2, MAXPR I =n, Nl'~4-CPEATro'''s=1
FDOEV,KELSEY.hCCS,Kl, pnI=OS, CPU=U~LIMJ I~PRI=8, Ot,rpPI=O, JIN=10, JLISTs2l
FLtJOB,BATCH.ADMIN,BU5IN~S~JrRlcOS, CP~aUNLt~r INPRI=6, OUTPRI=O, JIN=SOr JLISTK17

crlf-SEC:4A, r.l'''PSED.'~IN=11' MAXPRI:n. NU~.CPE.ATIU"'S=2l

HANrO~ET.STU92,NAnrORF.TJPRI=CS, CPU:UNLIM, I~rRT:8, OlJTPRI=O, JIN:44, JLTSTm44
ONPROD,MANACEP.ADHIN,cnM~ON, PRI=CS, CPU=U~Ll~,~lPRIJ OUTPRJ=O, JIN=45, JLIST=45

CPU-~F.r.=9, EJ.,APSEO.JlotItJ=l, MAXPRI=O, NUM·CREAT10US=4
CPU.S~C=j5J ELAPS~D·~INa4J MAXPPI=O, NUM.CpEATIO~S=3

FDDEV,MANAGER.FJNDEV,PUBt PRJ=DS, CPU=lINLIM, I~PRI=8, nUTPRl~O. JIN=10, JLIST=23
ARPROD,KELSEY.WCCS,K1J PRI:OSr CPUaUNLIM, INPRI=A., OUTPRl=O, JIN=10, JLIST=21

CPU.SEC=S2, ELAPSED-MINz56, MAXPRI=O, NU~·CREATIO~SclO

CPU-SECQ10, ELAPSED-MINa]. MAXPRIaO, NUM.CREATIONS:l
FL2J08,BATCH.ADMIN,BUSINESS, PRI-DS, CPUaUNLIM, JNPRl.', .OUTPRI.O, JINal0, JLISTgt7

TI \~F: JO£" ON/OFF'

13133:50:] 'J690 Of;

13140:00:2 '·'691 o~~

13141100:9 .5299] orF
t).: 41 : 56 I 5 IJ691 OF'
t3147:5119 152952 orr
13:4):tI15 ,Sl09S ON
13141:'16:9 '521;.,3 orF'
13143:"515 .Sl100 ON
13144:10:8 .J"92 ON
13145:0812 .Jb<lO OFr
J3145110:1 .5'694 OFF
13145:13,4 .J69l ON
!]145.3S:1 .J692 OFr
13:45s3Q:J 'J694 ON
13147;25:6 153102 OtJ
'314"7:38:4 '.7694 OFF
13:49:26:2 *J695 Ortl
13149:57.7 t53108 ON
13:51:5517 152877 OFF

~
1315210914 '51108 OFF
1315':1411 '5)113 O~

i
13:52:41:9 '~1695 OrF
t115,:45:4 IJ696 OtJ

=' 13:54:58:2 .J696 OFF
Q.. 13:55:09:2 .J6f.a7 ONRe

13:5":13:9 aJ697 O"F
> 131571t3:2 .51113 OF'
• 13:57:19:7 .J69A. O~

r= 13:57:]2:2 ,S3t24 ON
llsSQ:02t9 .5]126 ON

~
14101:22:5 .,J"99 OFr
14102:27.6 .Jf-9Q ON
t4tO':!'O:7 153J24 (IFF'
14103:('·0:9 aJ699 OFr
14103:14:0 .J700 ON
~410J:5715 aJ691 OFF
14104:23:0 .S]126 OFf'
24104:]'1:2 .53132 ON
14:05:51:& .J7ot ON
14:06:';9:1 .J700 OrF'
14s0PJ:14:2 .J702 ON
14109:11:1 eJ701 OFF
1410Q:?'1:4 .J7 /J2 OPF
14t09:~t:6 ,J71J] ON
14:0Q:42:2 cJ704 ON
14111):15:5 IS2a96 orr
14110:31:3 1:;]141 ON
14111:)1:5 IS3t51 ON
14:1-2:]016 'J704 OFF
14:13:14:2 ,J70) orF
~4113:l)14 ,J70S ON

~ 14:14:24:3 .J706 orJ

1 14115:27,0 .52956 orF

~
14115158:) .J705 orr

.1411611314 '''''0'7 ON

I·
~.....

JLISrLOG A.no.oo OATE. FRI, DF.C 4, 1981, Ill] PM LOGFJI"F.I 2345

______ ,__, ,_, __ , .. _.•·lLT:: N~."!~... ._. _ ..._OISP_ .. Dor~ .. *_.. SF:C'TORS .. _. ~. DEV T/.
--f2:5:'Sl,2 FILE J 684 $STOLIS~.f1ATCH .AO·~IN 0 1 12Pt) 32 If)

·. - -. -. .

F'tL~ tJAME
-12-,s-:5t:6-···FiL"E·-··-J--6S·4 -.- --OU"rSPUDC. PU~ • IRIS

·. . .
.

-------_..•__._---

.~";CO~.D~ .__~ __ . _Rt.Ot:;.KS__
u
~._. •• _ •• __•• ._

3 1

.-._--_ __ .. -........•._- _._------

• J~Eco~ns __ • ... I\IIQc;,;~. __._.__· .__. . _
26 0

• • • • • • • • • • r •

LOGPILE: 2345

• OJSP _. nop~ .~_...SECrO~~. .!.. l)r.V T~~
o t 2 0 lit

O"TEI r~l, DEC,

SL SE~ - MAX STACK *.M~X DS -.VtRT ST *
o 2772 14 141 .',

coo.Of'JOB.TYPE

---------_._----
TI~'E

___•• .•• _ ••• u.__.PROq .SEC *
1215 ,5114 PROC J 684 0

* • - •

I
t
I

·.. - '

SVStJDC
---------- _..•__ ...

rILE J 684
rIl,E NA.i~_~.__ . __ . .._~..o~s..f' ..~.. ~Q~__~ $~C"t9JtS__! ...~~t:Y _'r/._ REC.OFP§ _~ ~J'.Q~~~__! . _
.PU~ .SYS 0 1 35 ~ 113 93 6

* • • - • - - • • • • • - • • • • • • - • • • • • • • • • • • • • •
;JI.£ NAME • OISP * DO~. SECTOPS • OF.V T/'. PECOR~~L .~ .._ ..F\J"O~~~_.__._~ __..__• ._ . .__.__ ._.--1'215152:-'-,it-r-rii·:4-iDllo·s"ij.BATcH '~'i"DMiN--"---' 00-'4 ·---···--2· '·_--·'--·16';4 .. 00_.__.._(\. ···'ii··--·-··o 0

* • • • • • • • • • • • • • • - - ~
.__ ..!1A~ .J:~Rt ...~ C~EAT_ .. ~. CP~!. TI~~EC.S)._~. ~L~p..$.~..Q._.t~J_, ~_. .. .__ . .. __ oo • • ••• •

1215 15215 OFF J 684 0 2 175 9
----_•._-----

* - - • • - • • • • • - • • - • • • • • • • • • - • • • • • • • • - • - • • • • • • • • • • • - • • - • • •

a~,).~.~~___!. .__._.. _
12

BLOCKS •-·2'- _..... ----..---.----.-.-----

*

•

.RECORqS
12

FILE ~~P4E • DISI:'__!.....P9~~ ..~ ..S~c:TQ~~ __...._~._.DEV T/.I •
S 2879---- FfNlc-·- -. WF,Isstic '~s'T"lf958-"" ..._- 4 0 256 0 III

* • - • • • • - • • - - • • ~ • • • • • • • • • - - e. • • • • • • - - - • • • • • - • • • • • • • • • • • •

·-. -. - . -. . . - -. --. -. -.
f'IL~ NAMF. • DISJ:'_.~_-PQ~._!._._ SECTORS • DEV T/. * RECORDS * FH.lOCf(5 •

-T215-·IS-5i9FILES2879--SNEWPAS~f.t':EISSHC '~ST'(J9-58~----'-' 0 0 201 ·····-----···0· li3----" -21' ... ---21'·'- -....-.--.------.---.-.--...--.--·. - . . - - . . - ~ . -- . . .- -- . - . . . - . -
·. . - . -- - -. - . - . - . -.

~ FTLr. NAME • DISP • DO~. S£CTO~S • P£V T/.. RECOPDS • RLOCKS •--i2'515613 FILE S 2879-·--·P'TNUff-·.\\ETSSHC ··;sTuiis8-------4 "--'·--0 "--'-'9 . -_. "--'''0 i1j-·---·oo6··-.----..-.-~ - -.- ... _- ------ --------
* • • • • • • - - • • • • • • • • • • • • - • • • • ~ • - • • • • - • • • • • - - • - • • - - • • • • • • •

SECTORS • DEV T/.. FECOPDS. * BLOCKS •'33 _ 0 ·i13 -.- ····qs· _ - "''''32 -.-.-------- ..---..-.--.--.-.. -.-

S~CTOPS • OEV Til. RECORDS • ~LOCKSo .. - ----- 16 "'6"i' -- "'-2()1 . --_. -.... '201- ..u_ •
. - .

* DISP • 00'" •... i . 0

rILE NAME • OISP * DaM •
• WF:ISSHC· ~'STU8SB-'''''-'' (\ ····.. ···1 ... -·. . . .

·- . - - - - -. - --.. - --. - ..
·. -. . - - - -

_..fILE. NAM.~ •__h ••_. .~•• DISP * DOM. SE~TOR~ ~ DEV Tit. RECO~&>~ • BLOCKS __* ... _
··i2·is:·S·6,S---'i"LES-·iif,·g·--·-·S·STDI).J • 0 0 0 16 i6t ·····-201 ·__ ····_·-2·01-···..

* - • • • • • • • • • - - - - • • • • • • • • - • • • • • • • • • • • • • • • • • • • - • • • • - • • • • •
FILE NA~.~.__._._.. _ .. _ ..._. _~...OI~P .~ DO~~_.~.. SECTORS * DEV T/.. RECOFDS * flLOCKS *ifis·i"s,·,s-·-fiLEs·--2S·"--- SS'TDl,"tST~" ..._--. • 0 0 0···· .----.... i6 "/6\·'·_·'-'-201 ··············201- .. ---.--..-.-.------.- ------·. - -. .
rILE NAME • DIsr * DOM. SECTORS • DEV T/' * RECOROS • 8LOCKS •- - i 2"i5-', 5-' 15--YILET2'il19'--" S~GPROC •PUS····.. . ..~·Sys .. - -.-- -- ----0 -.. -. -f. -'--"1"4'4- . - . ---- -'0" .)1 ----g,..._. __.....- '-9" u •• -.-.-----------. - --•• ---·. . -. -. . . - . . - . -. - . - -. .
FILE NAME * DISP • DO~. SECTORS * DEV Til * ~ECORDS * BLOCKS •

----·f2i5-i59-.5FI·LE-&28-j9----jNEwPAss~wEIssaic·-·~s;,u"B"s-B--·---·cf··-----·O···--·-----1S···-----···-·---o· -·'·2-----·-2·9 . ,-_. '·"--'---2'8' .---.-..----.-----.--.·- --.-. - --. ~ -\- .. - - .
\

J J

.......•....• . .
------------_.__.._~._----_._----------------_. _... _--_.._-21) 0 _

21 --"--'-0.
22 0
23 0

~"-"'24'---0------------
25 0
26__..__J-.~_l J ..'-.~_~_._ ...J_O~ .._..... $ ~$.1 Q.~Q.O .• 6.•.9.9. •.Q.Q _

... -", '7 ' 8 1 • 61 1 • 5 4 1 • 06 I 06 13 • 25 12 • 8 2 66 8 • 25 6 • 18
28 0
2·9 I 0

'-"io-- 0

31 0
)'2 0.---··3i··--·-----O--·------------·-·--·--
34 0

• 35 0
"--36-- ~

31 f)

39 O'- ... ·-jq---·-·-----O---.----------

40 0
4 t I 1 ...!' 1.t..t.9 ~..Q..L.. l~.t__.!!L,_~Q... •.9.0 !.~_~__..J.c~.~,.9.!L._ •.9_o__..·---4-2-----0--~-~
43 t .75 .'5 .00 60 60.00 .00 80 80,00 .00

__ .44..... . "'~' "h_. ~.O_.... __..I!!.__I.l_2 rr 9...t_~_O ~ ..!8_ ..2_8__.__.l~_t..~~__._.1..'-.J! ~ _

Appendix A • IV.I

1-42-13

I
t
I SLISTLOG A.OO.~O DATE; FPI. ~EC 4, 1981, 12,06 PM LOGP'JLE, 2345

TIME JOB. DFIll rILtNAME~ J5NA~E, USrR • ACCOUNT ORIC-J. NUM-I/O .sF.CT COP PRI SP. D-l C-C DIS

-"-'t1io~'zt9i1 1~2~19 ,r)6296 "rrr!82' .__.. "'EI~St-'C.5T1J8S~ --.-------.. - -. 51 40 "'-"'0 '---"9" u

" 18' 32 .._- 0((·--·-0--------··----
t't~7:46rl .S'-~46 '~h'4q QUADtIST WJ~Tr.RJ.rAC 5445 894 0 8 6 32 OK 0
12:('8:1\5:5 . t51q(\4 .062!)O F'Ti4sn ~lOF\tJn.~HIT'tAtJ ._.__._ __. ..•.... 279 _ t36 0 8 6.]2~ ..01< _ _..0._.. ..

-·i210~S(\719 .J677 .n~7S1 SSTOJ..tST CP21lJOB,RATCH.AD MIN]9 12 t) 9 6 32' iJK 0
'2'.'911116 152866 .O(,2SQ Yl OHrpnD,p.''\~AGER.~TU85B 4S 44 f) 8 6 32 uf(' 0
1210 A z16.9 'S'Q"7 '01;26\ Y1 ..__ ... OJlPROD,l4AN,at:ER.STt195 __. A7 56 0 8 6 32 OK 0

-"t210 A I2t:8 'S2~68 '(\6'63' Yl o~rpOO'··'A"'~c';F:~.STU84 79 52 ·__ -0-·-····8· ·6-----32 ··-·01(··-0---·-----
17:~~:'5:0 IS2~69 .n6?~~ Y1 O~FRnn,~ANAGgR.SrU84a 45 44 0 a 6)2 UK 0
12:0~:31):2 IS2R70_... '06'~7 VI . _ oHr~OO,t-1~'I,\Gl:;R.5TU63 (44 ..56 _. O... __ ._.e .__ 6 . 32 .. _.01< .0_.__ ._. .
12:0 A:31:S 'J~8~ '06'6~ SSTDLIST r~TRL,RICH~OSL.STArF 15 32 0 8 6 32 OK 0
12: 08: 36 r·O '52871 106'-7 t Y1 OHPROD, ~~ "'Ar.F.:~ .5TfJ 92 70 52 0 8 6 32 OK 0

_ .. ! 21 t)Q; 4411). ~J~"'O__ . '06'14. SSTnt.,IST._.._.FDI"\F.V ,~ANAGF.:P .FT~nEV 136 .4A..__O__.$. ..~ __ 32 OK. .O_, _
t':OAI4514 '5287] ,n6276 Yl OHPRnD,MA~AGER.STV82B 11 32 0 8 6]2 OK 0
12t()8147r7 'J68t 106210 'STOLIST CR21(l,JO~,~~TCH.A0!-1Itl 39 32 0 9 ~ 32 Of('0
t 2: 08 :551 4 IJft"14 '~629t. __ ~4'1'4IPE. AD], OJn~,8~TCJ.{.ADMI~ 123.. __ .68. Q , .•.. .. ~._ .__ .3~._ .. _Q~_.__ .o. _
12109:5716 .J684 '''6290 SSTOLIST AOJ10JOR,8ATCH.AT)P04IN 35 36 0 8 6· 32 uK 0
12112:0412 'J6B3 .06289 SSTOLIST FDDfV,KF.LSEY.WCCS 3190 916 0 8 6]2 uK 0
t2r1':t~:7 '5'.862 '06299 £nTT... TST PF.TSOLL.STtJA4 '82. .~O ...Q 8 ..._ .. 18.. __.]2 ...__.9~__j) .
t 2 : 2 4 : 26 I 2.... IS 2 Bq 2 • 0 6 ~ () 3 - ',... T'J 9 2 -_.-. ,,: p; ISSHe • s"lH~ 5 R 5 1 4 (\ . 0 e 18 32 OK 0
1 2 r26 : 42 I 3 • ~ i 8 8 2 , 06] 04 EDTL 1ST ~: F: I ~site. 5 TU ~ 5 ~ 1 33 52 0 8 18 32 OK 0
t 2c42 t'41 t 'S2~46 .06306 I"p _"_ wI~ITF.lh.T.rAc .134. .. 40 . ._.... .. (\ .~... __ 1'.__ .. 32 pK __ !/ _
1214~15117 .J677 .06252 PRINTER C~2'2JOR,RATCH.ADMIN 14 456 7 12 6 3' OK 1
1214915910 ,S'@62 106110 PF.T50LL.STUA4 7 32 0 8 18 32 OK 0
1215":1619 'J677 'O~'52 ._ PRT~rTEA__ CP2!2JO~,RATCH.~[):-'I~__ 129~ 456 '! t2 ~ 37. IJK._~._ Q .__
12.5t:]llt '5'3';2--'0&11'2 EOTLIST pF.Tsr1t.lt,.STt.'~4 1~5 64· I) A 1~ 32 OK 0
":51:]5:5 IJ~77 '06252 PRl~TER CP2t2JOP,RATC".AO~IN 1299 456 6 12 6 32 OK 0
12r52:511~ 'J~71 .~62S2 PP.I~TEP C~212Jnp.BATC".AD~I~ 1299 456- 5 12 6 32 OK 0
i21531 4 S18 '!;2~~5---' .0631) fT,.q') -_. }'A'~"ORET.~T"82 .. - 37 36 ···--·o··----·P· .-. 18'''' 32 OK----·O--··-----
t2:54:~~IO IJ677 .06252 PRT~TE~ CR2t2JOR,RATCH.AD~IN 1299 456 4 12 6 32 OK 0
12'55:2]17 IJ"77 .t:'6252 PRI~:TEP CP2'2,JOR,~A"CH.AOJ.fI~ 1299 4')6 3 12 6 32 OK 0
12S5~13ql) .J677 -·--··'C"6152 PRI~T€~' CR212.JOR,J\ATC~.ACMIN 1299 456'--"-2--12 6 32--·0K··---O---------
'2IS11~ltS IJ677 '"6'52 PRJN~€R CR2t2JO~,BATCH.AD~I~ 1299 456 1 12 6 . 32 OK 0
12:59:17,0 'J677 '06252 PRI!\JT~R Cf.l212,JOa,R~TcH.AOwIN._.__.__. . _;..__ .129~. __ ._._. 456..... n ..__._... t2 6.·... ~2 01< __._.(). •._ .. _
13100:1317 'J~A1 'Oh'77 PRI~T~R CR210Jn~,8ATCH.AD~IN 7&4 384 7 11 & 32 OK 0
13:01:41":8 .J681 -"6'71 PRT~ITEP ('R2t(l,JO~,RATCHtlDt·'IN 764 394 6 11 6 32 OK 0
')102:1)713 'J~8t 'O~217 PPTtJTF;R CR2tO.1r.P.,8ATCH.AO\<IN 764 384 5 11 6 32 OK 0
13103:0Srft t T~8' '01;277 PRI'JTEq CP2tO"('~,·~ATCH."D~IN ----.--.-.-.--..- -,- 764 3~4 4 11 .,_._;; .---- 32 oJ< -·0----------
1 3 : 04 I 0 1 :) • J 6 8 1 • "b ? '7 7 P F t rJ"'.'EReR 2 , {'" 0 R , RATC' n• An ~: J .J 7 6 4 3 CJ 4] 1 1 6 3 , 0 K 0
13:04:5,,9 'J6Qt 106?77 PRI~TER CR2'~JOR,~ATC~.AO~IN 7~4 3A4· 2 It 6 32 UK 0
13105135.1 .52903"· 106329 [DTLIST HO~"ELt.AC.STt'84B -.-_._...__., --"--'-"'-' 'S7 36 ·"-'-"0 9 18" 32 OK ---..0-----···-·-·--
1310514911 tS28A8 ~n63]n prQs2 WEISSHC.STUASR 51 40 0 8 18 32 O~ 0
'31051~414 .J~ql .n6,77 ppr~TER CP2tOJOP,~~TCH.AD~tN 764 384, 1 It 6 32 OK 0
t3ECf;:150:8 IJf)~1 106277 I'RIt~TEq CP2tO·10~,~A"CH.AD\lI~~·_.-------.--- '764 384- 0---0' -----1-1---4 6]2 OJ(··--0 ..··-------··----_·_··-- ..
13tOP:4~:2 'J~A~ 'T172~ s5TnI~ uFRTr~cR,RU5E~TRY.~DMIN '52'98 9 9 0 0 11 0 UK 0
13ItO:'5:5 'Jh~5 '06334 r,P U.... BTCHcA,8u:;r'iTRY.An M!N 119 96 0 8 19]2 UI< 0
13:101]11(\ 'JoBS .06333 SSTDJJIST tJFBTCHC'R,~fJSE~,TRYtAD~'IN··--·-·····-······-· _ 36 ._ _._ ~6·"--···· '0'- ····8 19 .. - 32 U" 0 -.._._._.~.._ -.

13112'3]11 tJ686 .1372t SSTDI~ F~TRL,RICH~OS~.STAFF 'S2~04. 2S 12 0 0 11 0 OK 0
13112.42:0 .J687 '13'22 SSTOyn FL9,JO~,PATCH.ADMIN ,52198 8 8 0 0 2 0 OK 0
13111: 02 r 1 tJ6&6 .06335 S5TDLIst---- '~TPL,PtrHHOSLtSrArr-------':----._- i 5 ··----·-·32· ----0----' .--_.. 6 ·····_·J2·_·-·0K-··O· ----.---.
t31141~9r9 'S2~81 .~6JOO STr.~OPLT FXLLAnF.STAFF !66 6A 0 8 24 32 OK 0
t3't5:~614 .J687 '06337 P~I~T FL9JOD,B,aTCH.ADMIN 26~ 176 0 ~ 19 32 O~ 0
13 r 15: 111 A . 'J687 .06336 SSTOt.1ST -'FL9JOR, RA-rCH.AOMIN ··-·-..·----·-·----..··----35 ---... _0032- -_·_·o-·_oo·_····s· . --.. -19 ·_·· ..]2 "--"'Qj('---'-o .~._-..._._-_.-

13119a3Q,S 1528P8 .06340 FT~82 WEISSHC.STl'858 51 40 0 8 18 32 OJ{ 0
_. _~_~.!1~ 14 814 •.~_~_a_~.__, ~_!!.~9 SS~.~.~!!-..._ ..~~T.~L..~ ~I~H.M._~.S~ .•~!.~~ ._.~J.!~.~~:.~._.~!. ._~, ~ ~ !.~..__o__._~~ .: _

DEPARTMENT 0' 'EGIO~AL ECONOMIC EXPANSION Whitman Col1eQe Computer servlee.

OTTAWA Job Aceount.1no System
...... - ~ _ __ __ .. 0'-'-

6, 1982, 10122 PM

____ ...• _, .. _ ~I)Gr.TLE st)~··~~py.. rOR~ _ __ _ __ .~
Summary for: tOG2J4S.PtJB

LOG2345.PUB

-Typi-n~·-----·TYPE----------.·~£c-ORDS--

....._._Q., Lq~ r~IJ.fJJC~._. .,_.__ .O_._

start T1me, FRI, DEC 4, 1981, 12105 PM

Stop Times FRI, DEC 4, 1981, ~IS' PM

TYPE NO. TYPE • RECO~DS

0 LOG FAILUPE 0

SYSTEM STARTl'P 0

2 JOB INITIATION 86

'3 JOB T!P'''lN~TION 16

4 PROCESS TEP~INATIOn 735

5 FILE CLOSE "'.)2
6 SYSTEM ~HtJTDOWN 0

7 POWER FAILURE 0

A spnOLl~G LOG R[CORD 232

9 LItlE f'I5CONNr.CTION 0

10 ~IrIF. C'LOSE: 0

1I 110 ERROR 0

12 DISe PHYS MNT/DSMNT 0

13 DISC LOGIC AI. MNT108M,. 0

14 LA8ELLED TAPE 0

.....
8861

SYSTEM peeordsi 6sn
USER Records; 8211

o

o

'35

o

. __._ ... 886'i _.H._

... _.__ _ 0. __.._._.

LIN! CLOSE

DISC LOGICAL HNT/DS~T

F t L.E elias r. _ ,--..---. --'."'---".",.j2""---'

POWER FAILURE

P~OCE5S TER~INATION

SYSTE~ STARTUP

4

1)

10

. 7

. ··-,····_···_·..···JOr; IP~rTIATI·O;.;..--_··_·--·_-····__ •__·86-'-

__ 3 ... \108 ...TER.J~.INi\TtQN_. . 76

----'1 i----Ijo--j:qpcfR-·- -.----- .----... --'--'0-'--

.... _._... 12...._....._ QI5C .PHlS .foHIT~DS'H4T..• .._._.... 0._ ._....

....__.._ .._ ..9_._.__ LINE.__~lSC.O.N~ECTIO.r~._ ..._. , _ ._.__......(). .

..... ~rlAT ...~.~~~ ,_FR,I,...~~~__ .._4.l_.J9~~, .. ~ 2Jo,... ,,~ __._.. __ ._._
STOP TIME. rRJ, DEC 4, 1981, 2157 p~

SYSTE\4 FtECORDS·i·--~6·5·0······_· .. USER' . ~ECOR'DS'I'- s'2fl---'--'

8861

Date Pro~el.edl WED, DEC 30, 1981, 5.26 PM

LOG2J45,PUB

Appendix A • VI. I

1-42-15

I
t
I

PACE DEPARTMENT or REGIONAL E:ONO~IC EXPANSION ~ED, JAN ~, 19b2, 11147 PM

.. ._ -- _..- -- - -._ -- _.- -_...•- ._.
SUM~APY PEPORT FO~ ADHtN

__ .. COST J;E~TRE I H" 2.._.. .. _.... <;ROlJP I BUS t 'H:SS .. _... ..._
FOR OCTnBER 198t

JOR OAT~ a CPUIS CON/~ PRne CDISEC PROC·i/O CrJSl
-_.. - -. -._-_ .. _-_ -- - - _--~ ' _- " _...... '.. .__ ..- -_ _. .. _ ~.. _.- - .. ' -._. _. ---_.._-_ _-_.&_ _---------_ .. _._-~_._-_. _._-_..__._- _-

J685 4 112/81 13&8 U'8TC~CR 8USEMTRY D 12 2 4 . 31 810 10,75
DISC, 26 FILES 1251 BLOCKS TERMINAL. 0 P[CORDS

p~I.wrf.~ L_'__.2J-II,£.5. 15.5 __ lI.! ~tS ...__CAR~ _~.~J\Oro;RI. ~_. FILf;S . ..!LPtcpn.OJ.__ 51 •.00 .11. 75_

J687 4 112/8! tlis2 FLqJOB 8ATCH D 8 2 5 49 4~2 SO,81
__... _ DISCI. -17._fILF;S __.__.320 ..8L(lCKS.. T.tR:1I~:"LI O_.RECCJRO.&..__.__ ._.__ ... _.. _._..

. PRJ~TERt 2 FILES 295 LINES CARD R£AnE~1 0 fILES 0 P£COPOS SO.OO SO.81

..."69'.. 4.-'12/81.-1.3 1.2,_.~~rBATC.HO..B~~Sr.·'T~r_.D __ 8_ ..__-2.__._4..23.__._691 .. _
OI~CI 24 FILEs 4R~ BLOCKS TER~IUALJ

r~INT~R. 2 FILES t32 LJMES CARD R~An!HI

. . ._.SO.aL__.__. ... _ ..
o RECORDS
o FILES 0 RF.CQROS $0.00 60.61

81.1)0

J698 4 112/81 Ill57 GLtAJOB

·-~,-69i4112/ji13140··-U'll·prricA-B'jSF.:~'TRy·-D--······,··-····---2---··'4·-··--2·4-----,90· ··----------·---·---·-·-·---.O·.b2---·--·-·--·
. DIsci 28 rILES 263 BLOCKS TER~InALs n RF.COROS

__ _._ _ __. . _ _. _. _pRI"TER 1. __ __.. 2.. F'ILF;S .._. 54 LINES. . CARD RF.AIlFR J .. .__ 0 ~.It.,F.:S. _n_ .. _ !' .. J~FCO"P~ .._.._ J~.O\l.._u_._$Q.52._

J692 4 112/8t 13144 uruPOTCA B1JSE~JTRY 0 8 2 4 24 190 so.t\)
_.___...... _... nISCI. .. 29 FIL~S .. _. _.. 2SQ BLoCKS .. _._Tf:~·1Tl'''LI.. O_. ~ECOROS . __•___. _ .__.. _.. _. _q •• •.•••

PRINTF.R, 2 FILLS 64 LIfJES CARD REA[.EPa 0 fILES 0 RECOtiOS 50.,->0

.:._~f»'4._.!..1.l~l.$..1._lJ.i4'_.__~~.1A~.O~ "~Tr.K -1). __ . _IS .u _2 _ .._., . e._." _ 9~ .1)P2 .. ._.. _ .. ll.~.l. .._ .. _
OIse, 41 VILE~]96 ~LOCKS TERMInAL: 0 PECORDS

PRI"Tf.R. 3 Frr.,F.~ 227 LINES CARD REAOF.R, 0 rILES (J PECOr-OS su.oo SI.51

. --'-'j69S' ,- 112/81"-'1'3i-49- CL,"JOB - BATClt ··.. ··-0·.._·- '14 --,--' 8 ·_· .. ·_···-92··_· ···-"iii·6· --.-.------- .
nIsCI 41 FILES 524 BLOCKS TER~INAL: 0 ~ErO~oS

__••••___ •__ u .. __.• •• ••. _ .. _ ..PRJ~'T~R1__. .3. FILF.S__._.. ~4' LIP:F.S.. c~pn .~F.'AnF.R.r ...P._.~ILES ... _. .t> ..p~~O~.O~__.$.91.QO .._f 1.!)Q. __._.

BATr:H 0 1] ~ 8 '2 lt3b Sl.S\l

__ .. _.n H·.· .. --'_.' .---..- .. ----..-- •• - -----•.. -. PRI~~~~: ._. __ .4~. ~~t~~·· ~.. _.~~: ~~~~~S_-····Cip~E:~~~~~:- .._---_.- ~ ;i~~:DS._.__---... 0 REC·OPOS·_·---$-O~o-o·----$·i"~~~

..... J699 .4 .!.1~18t.._1..4i l __Y.r.~!~D~.CA BUSF:t1TRY. n 7 . ..__.2_ 4 _ 24.._. _ _,()t) _.. _._ .._ .. ._._._. __ • .'9 •.~~._._ _ _ .
DISC, 28 rILES 218 f\LClCKS TEP~(I~·ALI 0 RECORDS

PPINT~R: 2 FILES 5~ tI~ES CARO PFAO~RI 0 flLFS 0 FEC~RDS so.oa '0.62

J701 4 112/81 t4iS UFDSJENT RUSr-UTRY n 19
nIsei 36 FILES.. _- __··._._. ·u_....__.. . ._.__ P~JNTERi-----···') V"ILES

4BATcn
DISC.

_... _.. . .. _. __ _.... PRI ~TER,

'0 ..- .'25

41 'ILE~

3 FILES

8 _ .. - 9'2' '1"t 3ft .__.__ _.... .. - n._._ .-- - ·· .._-··--.. $1 ~bb·--·--·-·-·---"·_···

969 8LOC~S TER~INALI 0 P[COPDS
549 ..Ll~ES .._ ...~ ~RO_Rt~AnE~J. J! ..~IL~.~ ..__')__~F.COR~S..__ ._.'O •.O~ ._' 1. 66

4 6 44 1093 Sl.13
29~4 BLOCKS TEput~ALI 0 ~ECO~DS

376' LINes ·--···CARD ~EAOF.:~i·-----·o FiLES···-·---··---·-n··REca~os·-··- "'$2~OO---"---$3~lJ

"_ .'t~o~ ..i_l!.2l*1..J~~! .. _~.~.1.J9~ .. __ . BATCH D 9 3 5 53 465DIsci" ...- 1"2- .. tLE~-·· . "--313' 'BLCfcks ·······_·--TE·Rti.INAL·i -·---·-·O·"RECO·ROS· --.
PRINTERs 1 FILES 34 LINES CARD READER. 0 FILES

J

._._---.._...._------------- ------------------_.-------_ .._---- -.. - _•.__.-._-------_ ..• __._-

(J

P~GE DEPAPT~ENT OF ~EGIO~AL ECONOPIC EXPANSIO~ W~~, JA~ 6, 1982, 11.47 PM

SUM~ARY REPORT FOR AD~IN FOJ' OCTOfjE~ 1981

JCB T)lTE TI~E JOBNA~~ US~~ C CPu/S CON/~~ PROC CO/SEC p~nC.l/iJ C\1.sr J(.'~ COSI

BUSINESS GROUP TOTALS

H42 COST CENTRE TOTALS

I
t
I

j~l CPU~SEC 78 CCn/~TN 151 prOCESSES
1540 COPE/SEC 22718 SKAP 24 JQ~S 0 SE5SrO~S

______.. __ OISC, __.u 7Rft F'tT,E~ .__ 19R A l .RLOCI'S. .._ TE~~··t~')tJI._ .._ .._.__ ._H ..n PECOR DS ...__. .._._..__.._. . _
PPl~T~R: 61 FtL~S 59S~ LI~ES CARD PEAnErS 0 ,rL~~ 0 RECOPOS

rROC~SST~C COST51 S28.4 R J/aCOSTSS 89.00
_________ .•••__ ._ •• T". ._

361 CPU/SEC 78 CON/r-tIN 15t PROCESSES
1540 cnor/SEC 22718 SWAP ,24 JORS 0 SESSIONS

Qt.S·(:~I__-' ~6 Fiir.s. .19~8 3_...~LoC~.s.__ ._...lEP~41 ~A L :'_. .0...~f;CCPD5 . .__ .. _
PRINTER' 61 f"ILF.S 5980 LIr-.F.S CARD REA['EPa 0 rIl,ES 0 RECOPDS

PPOCF.SSINC COSTS: 129.49 I/O COST5, $9.00
.. --_ .•.._ -_.__ ._--_..- ---_.__._-----_ ~----- -------------_.__ .._..

AO~IN ACCOUNT TOTALS 361 CPU/SEC 78 CON/MIN 15t p~ocrSSES

.. __._...__..._._. ._. .._.. J5.40.. CODE/SEG.._... 22719 S'I1A.P . .. _ .. 24 ~CRS .. 0 . SESSIONS .
DISCI 786 FILr.S 19AR) BLoCKS TER~IHALa 0 RErORDS

P~INTERI ~t 'IL~S S98~ LI~f,S CARD PEAnERI 0 rILES 0 RECOPDS
__ .__.. ~.__..P~Oc ESSING..COST$1__..J.2.8..&.4.8_.._1.IJJ u_c.os1..$..1- ..9&tlO__ ._._. ._. .__.__._.__ ._.., .. '.

I
t
I...co

DEPART~E~T OF FECIO~AL £CO~O~IC [XPA~SION

--_._~~ ..•_---- _.._------~

JOB DAtE

SUM~ARY REPO~T FOR ADMIN

o CPU/S CON/M PRoC CD/SEC

FOR OCTOSER 1981
------------- ---_._-- .

-----------------_._- _. ---_._-- •....._._-_. _.__--------

-.."ME----JOns-----·J08S SESSIONS sEssinws--
(COUNT) COST (COUNT) COST

-!lS~p TOTlLS...' 8USE'ITRY , 816. ,-1'7~ JLO fQ.OO _
BATCH 16 121.]1 0 SO.OO

HArE Jn~s JOBS SESSIO~S SESSIons
__ (~PUNT' __..COST (CO.UtlT). C05T

-~rATCHCR '1.'5 0 SO.OO
FL9JOA 2 11.51 0 sn.eo

___________UrAATCHO .I. 1".61 0 $\\.O~_. _

urUPDTCA 3 51.87 0 $0.00
CLtAJOa 11 '17.07 0 10.00

______tlFr)SJF.Ur 1 $3. t] 0 .In, 0o ---------------------
FL1JOB 1 SO.87 0 SO.OO
FL2JOA 2 SI.80 0 10.00

__________ UFDISTlR t _J.4' 0 _$1).• 00:- _
UrUPDTPY I '7.32 0 10.00

H.' PPOCESSING tnvOICE FOR COST CENTPE H42, OCT 1991
wtD, JAN 6, 1982. 11.43 PM

_).~~~Y.~ T q~.Q.u.t! .__.CqSJ'__ ., _

__. .r.v~__ ._.__ ...__ .. $1 .53.__._....__ _

AAl Sl.s]
-----~.~~~.~......~.~.~...~... _.._---

RUSIN£5S 537.48

........•.........
C(fr-fMO-N---85-~]"

______._.__t'I:'.1t. _..

FINDEV

___'J.,_~
'7.19........•.......•.---_._-- _._-----_._ ---------------

F"ILLAOF 84,70

.. RicifM(lS'L"---'-.'4'~,0

'~I.r ., ,.~...~o ---:- _..................
_ •. ~~ ...LJ~.~~__$.t.0...~6 _

HANrOR!T 86.69

-----RITCHE·KO--.' ~'2'i

.,_.S!~!_'L., _._.__ .•a2 , $.1. _..................
___.__._.... H9t'£~~~ .__"~9 •.~Q _

RnSIKSL &2.56

......•.•.•.....•.
--..----.-.... P;'tlGRADS··-- "'2~o3'--

._~JU8_4__.._.. __...__.__ $2 If. Q.~,_. . _..................

....__.-:.-_..~o.!r~~~!4__,~~.•,J6

HANSONJA st.lt

.Appendix A • VI.S

1-42-19

-------- ---_.._.-

--------_._-----_ .

,St::CTO~S=456

• * ~ * * * * * * * * * • FRt, nEe 4, 1991 * I * * * •• * * * * ••• * •• * •••• * * •• LOG234S * •

~ 2 : S~ FI {. r:;.. ~Ln5E ..Y.~ 2~ ~J_..~r- r: v=s

---_ ..__.--------

12:55 FILE CLn~g 152883 LCEV=13 hDIsC ~1 .CQTTREF~.STU94~ 'RECQRnS=~Q '&LOCK~=23

.."n~!.INJ. flLt? _ nJ~p(lSITln"il "'0 CH~:"r,~ ,SECTOPS=24
-fii'55 ·'FILF.··c·ws-r,·-t5i~83·LDEV=5-··--~·D-ISC-·· fl3381255 .CQTTRErH .STUR·Hi tRr.CG~nS=90 Jli-1LnCI<S=1!)

on'IAr:·': ntl r• I)ISPO~ITI:)~:: ~.. li CH~~·.GF: I!s~:crr)I~~=224

___.!7: ~~. ~~~.o..L._..~·r[,.r.:lhl6 7..?.._.'~')61~.~ ...P~I~;!~:H ...CfJ212Jr>rJ, ClA'rCH . _.....1 An'n!'~ . .. '.P? I F:5=) , f'''l1=12, ~ECS=12 ~t) ...1..St:r.TO.~S.=4 5..~ 00_.__.•.__.. _' _._.... .•.__ •

12:55 fIf.E CI,ns ..: SY5 LDEV=l :~nISC .F:.A1CH .Ar'~l\ a~t.C(lRr.S=1297 *~LOCt<S=10'

DOMAt~: OLD PISPOSITI1~: ~n CHA~GE 'SECTV~S=4S&

_~.?: ~~.. _~;_L.E_. ~.r'~~ ..:_!!.,:l_55.l..__.~P_~Y_=.t __. ~~.~S~__ .~O~rf'~'T~.p~I.~ .I~"(S. " .'~ECq~l'S=' _... . ._ ftE'LnCK:;=6 __. . . _
nO~41(T~: aLo nI~)POsITIO... : .'In CHA,~C;E 'SECTOHS=25

12:1)5 rILE CLns~ #v553 LOF.:V=l 10inISC cot.:I:f.lAT,\.PUB .SYS 'PEC()~DS=2 .Hl.ncj'.~="

""_ ._ _.._. _J?9~.:.Al'~ '- ..9~Q _ J)~Sr.O~ITT JI; ; .. &",1 .CH~~G1:~ .__ 'Sf:CTOFS=25 _. .__ _. .._ ..
12'56 PRncr:ss .S2;1QS 0 PROG-Sf.G"·ENTS, 0 SL-SEC:"ENTS, 166 VIRTUAl,·~1f;P·5F.CTOr:.5, t·tAX.~TJ\Cte(~-'Rt>S)=2172 ,f.~"X.XUS(5ECTORS)=14

12156 FILE CLOSE .S2895 LCEV=5 MOI~C ODCSTU .PUR ,IRIS 'RECQ~OS=72 ~~LOCKS=lt
onl~~I.'J: OLO DlSPOSITJU~!1 ".0 CHANGE *SECTOPS=24 ... _._._...__

.m·"f.iis6F'it'EcI.fi'SE'S·2·p·eS-L-n'E\i";:fj-- -~~"I~C --SYSlIDC ~PUB'--"'-"""~-5"Ys""...... '~H::CQP'(\S='3 . - ... ·-----·-·zrhLr.CKS=6 ..

• J)(l~1~.t~~f nr,D DlSPOSITIOf\: '~n CHA~~GE dSF:CTO~S=35

_.__ ,"-2.: .!;_~_~_~!~~_c;~ __r:_~~ J_~2.~! ~t.!-.!2fi.Y.:: ~., ~·O.T 5C._ ... ~ ~l Lf: Pr\~5. BA'1 ~.o~ E.T •.STv 82 . .•Rf:C UR os=0 _ # t;LOC K5= f: _
DO~AI~1 NE~ OJ~POSITIQ~: DfLETE -SECTORS=10

12r56 JOB TEPM .S2R8S \2 PROCES~ES PU~, 25 CPU s~c USEO, J4 ELAPSED ~INUT~S

. ..J2 t 5_~_~ I~.~_c..~9..~~.~ ~~_~ ~_oo~D F.:Y.= 4?__..TE~.~ __.._..~ 5 TOL I.$ T , _. __. .. ,. 00_'_"'_" _. # REC ORD5=A16... _ '_00'_' ~ aLaC K~=8 16_...
12:56 FYLE CJ,OS~ i52R~S LOEV=17 Trp~ 'STOIN. • .RECuRCS:~16 .aLoC~S=Blb

••JOB SIJMHARi" ** .S2RP.5 r,~Ev=~ 7 ~A -:fOREr • STU R' 12: 42-12: 5 f' PROG-RU "JS= 1 3 ST'"CK: 824C=MA.(, 536 C=AVG J CPU=25
T~A J:~F F.:l~~-r '-7 ~E('o~ns TO PEV ICE 1 -'0\1 I:\:G HE~n n ISC
T~.~:·:-SFf::J-~REl) 635 t\F:r:r.lpDS TO f'r·" ICE 2 ~~n·~ I!:G Hl':AD else· -- ---.--..-.-....---..---:-.-.-------------------..-- ..-

TR~~sr~RRED 417 RECOqns TO PEVICE 3 ~nVING HEAO nIsc
TR~~'F~P~~O 4n9 PECOPDS TO DEVICE S ~OVI~G H~~n DISC

-----·--------·T~A';Sr·c:RR~~i\--·----~69· ·PECi)Po.S ·TO·j)FVICF. 'ii"-' t.iOVT~~G HtAD OISC·------·..-··-·-----·---------·-----·--..··--···-·

TRA~J 5 r F: P~En. 5 <) 1 nr,C G\) 0 S T f) DF.' V TeE 1 3 v. 0 V I ': (; HE An PI fie
T~li:s,.F.pprD 37 PFC!.lDDS Ttl n:::VICF. lQ LI'lE PPI~JTf.R

... _ .._ _- .- .. -·--··.. --·------·.. -·--TR1,::Sf·t::RRI::I) "-_·_'··-'''2·1·049· RF:CORr:·S T'J·- ft~·VICE 47' TEp:·,lJ\:,\L __._ ..

12155 rII,E CLfJSE cS2R83 LDEV=5 '·,OJSC R2 .cnTTf<F.F~4.STt.'P.~B IPECO~D5=O '~LOCJ(~=ri

DO'·,\JN: '<So: ..., DlSrnSlT!:J~;: r-·;O CH~NGf:: 'SECTO~S=S-- --'2: 5·6··' t·L~-t··L;)S·F:-.s-2·A-R3-ULbt-'i-=-i-j--?\"·tsc-._~ i· -- -.Cl'T-i'PEF'M·~··STU~ ~h . c J: ECLJR"S:l} IIH 1.-~)CI':S=(~ _.- ._-_._-~------

Dn.·~,~r~;: 01,n. 0) SPOSJT I 'V! : eFY.. fo:TF. 'S~:CTO~5=~4

...1.2_: 5~ .F'.t tJ.~_.;.~J_q~_~._~ ~2P.~ 3_ !J.!-'~:.Y.~_~ __.....~..:D I Sc J(3] 8' 255. COTTP ErM. STI.J B48 "p I=:CD~1)S=~9 18Lr)CK5= 16
Dll~·tAI~Ji 01,'0 00 DlSPOSITlorJi NO CtiANGE 'SC::CTUPS:2,'4" .-.. -.00----.-- ..._u . oo _.

12:56 fILE CLOSE 'S2883 LOEV=11 MOIse 81 .CnTTREFM.STU~48 #RF.CQR~S=69 'HLQCKS=23
nrvAI'~: '!Eh1 DISPosltIn~il Sf,VF: 'S~CTOt'S=24

--12:5'6' -'Ftj~~:-ctli-SE-..is2R-9jL[itv·=s···--.. ~:4iir5C-·-··r J3~ 1255 .cnTtpEFif~·STua4B 1iR"COR"t'S=l oa··--·--· .. -..• ~I :1CKS=12 ---.-00-.-.-.--.--------.·----- .
Dn u A T~J: OLT) DISPflS I T I :l~!: l~n CHA tJGE • S~~('Tn~s=1'4

~O~.5.C:;.. K33Pt2~S.r.orT~F.~~,~'!(~R4B ~~ECC~r.5=.J. .ar~OC~:;=3-
rhl \1 AI NI ('I L!') 0 I S P0 5 I T 1 O!: J 1) ELET;:; • SFCTi,j F 5 =2 7. 4

12:5& PR'CES5 'S29B) 12 PROG-SEG~E~T5, 0 SL-SEG~ENTS, 133 VIRTUAL·~~~-S£CTORS, ~AX.STAC~(~RDS)=8240 ,MAX-XOS(5ECTORS)=14
12:!)~ ;JLE CJ,.n::;F. ._~S2~~~ .L_~EV=6t. Tt~R~_._ ... SSTOI~ .•.. __00'_' '-'00' ._.-....• RF.:COROS=2nS4 'RI10CK~=2,154 ..__._.. _ .._ .._._00_._00 • _
12:56 FIrE Ct~S~ -S2A83 LnEV=6t T£~~ SSTDLIST. 'PECop~s=,n~4 '~HLOC~5=2054

12:5~ F'Il~ CT,0S:::: ilS2 AR3 Lrr,V:61 !ER"'l ECll'OUT. ;~"~Cl)I<I/~=2054 .~LOCK.S=2·)54

12:56 riLF. ClnsF. e~2R81 LrrV=61 !f.r<-1 [f)ITTt: • • ItPF:CCRfS=2054 .~LnCi<5=2()'54
"12: 5'6- r ILF, ·Cl

1
nsg-·-.S2 A'P :f''LCt='~'=5' '---1-1[' 15C'--" FOPTRA'ol . ~ pun ·.SYS ,Rf:CO;:<DS= 15 IHLnCI<5= 15 .. _.__ 00 ---.-------•••

nO·~AI!:: OLD OISPC5ITIO~~: NfJ CHANGE tSECTO~S=3A4

, 2: 56 ~IL~._.ct ~~~_ ~.S2~ ~.~_._~~J:;Y~.5_._ . ~~n I SC f'T';l1~L .C"TTnFF~t .STiJR 4B 'R~:COPCS=O • RLne K5=0
oor·~/'T~~1 t:E\tJ· OISPOSITJO'\!: I~r) CtiA~fGr; a.SI-:CTOR5:1t····--·---··----·-..·-----···------..------ .

12:56 SPOGL FILE .J677 '06252 P~I~TER CP212JOP,AATCH .Ar~l~ CO?IfS=2 ,PPI=12,RECR='299
12:56 FIt·!; CLnSE SIS LOr-V=) !-HlISC .l1ATCH .Ar,MI;·j #Rt;CCRPS=1297 IBI"OCKS=107

._.. "- • __ •• _u •• _.-00.... - ... ----.-. h_ - -···..·_· __ ..·--·--·-bb,;AI:"·'.. OLO----·----··-·OISp·~s11·10~J·I·· ;;0 CHANG~····-··_-··.S;.~CTO~S=45'·---· u __• •__. • __

12:56 FILE CLOSE ,5298) LDEV=11 ~DISC SNE~PASS.COTTP.EF~i.STU84B .RECOROS=\7 IBLOCKSzl1
00'_' . . _.__• D£.~~~.l._ ~~~ DI~PO!.~!}_~~~.~HA~~__~.!~~~_=_2~.L _

I
.t
I
~

"

J

"

* • * * • * * * • * •• * FRl, DEC 4, 1981 •• * * •• * ••• * •• * ••• * • * * * • * •• LOG2J45 ••

I
t
I
~...

12:57 fILE CLOSE ,s2SQn LO~V=ll MrI5C GUA~nll .GUAPD ,IRIS .R~CORDS=, tBLCCKS=1
_. __ .. _.. ._._._ __ . .u __ ~O.'··A]Nt OlIn . [)ISPOSITtON; rHl CHANGt: _S~CTOJ(S=468 ..__._ . ._ ..__.

12:57 FILE CLOSl-: '52890 LDE\,:11 H'-~ISC GU~~D12 ··.l}lIAR5·--·'-~jRJS·' ~FECURbs=, 1n)LoCtc~=1 ----
00 ') AI ,'~ : 0 I.. :) nJ SP(i S1 ,. ION: r-H) C1'1 A~.: GEllS I:C1" 0 ~ S=j (\

__.l~J.?! fJ..~_~_.~: .. ~!S!.: .'.~).~_90_.L.~!:.Y=.1~~. __ ._~~.nrs~_ _r;flA"Dt3 ..• GUA8r ..• ~~)S.... flP~Cq~DS=t . . _..ttBLnCI\~=.l __ _ _ __._. ._. .__ __ .
DO~·'Al~J: OLD O!SrOSlTl:JN: ,~O CHAi'lGE tSECTORS=o4

n T.OG FILS ER~ORS

10 JG~ I:TTIATIn~S
------ii ·j'J-S·-·TFJ;:·!r~lATJb'iS-----_..-

111 ?RPCF:»5 COV.pLf~·TIONS

1295 r 1. LF. CL·OSES
---- --3-f --sfoa f"L-t- -tI:ffs in:0

------_._---------

,,\r::.r.F;p. .~A~ 0 t .1" .Ot .01 .1)1 5P'-11 4·321 2 ·22&. 0 0 0 \:
_.~I~r~:~~ ... ~I:.C .. _. 9__t_.2.• 32 . .__ .00. al.1 ..1323~._5015. 4.~09S •._. ~579 .. _. __. 0_. 0.._ .~ ...0._ .._

HA·;fOR~'T' .Sil'R2 0 1 .23 .OJ .01 .01 9240 5360 13 2578. 37 '0 0 (;
~EISSHC .sr~85a 0 2 .33 .Ot .01 .Ot 8240 5591 8 11327. 235 0 0 0

_N_YHAGEN .~ccs 0 t •.1.Q~ .I...:::O..xO, ~•.~.O--ajJO-_S.S.'_~_._~.l.~5_---.-2 .3.~?.a. -.-D_ O--__tL-. Q..•._,.p 0 6 3.18 .02 .02 .S3 13231 5229 29 1945~. 5851 ~ 0 0

US£R.ACCOUST , • CONNECT --.-.--•••---CPU TIME CHOU~S) ••••_••••_•••••STACK.... rIse
___._.__.__. ~_Q~_L~1;!).~. __i!Q~R.S ~~ ~~~ . I?~__J;s.__ .~.P~.t.~.~_"rPT_A', _ ~:tAX . AVE: _ PRqC ._u.JCFCt)~OS

·1
t
I
~

12/ 4/~J THPU 12/ 4181 ~~ALYZED OH WED, JAM 6, 1982, 12108 A~

P~I~TE~ MAG TAPe ~~ADP PU~Ch

LI"·ES .B..t;.c_qp'~s.. _r,.A.~.os _eli fJCS

1 SU~~ARY or 1/0 ~RRORS...-.•.......•......-.....

._------_.._---_._--------_ __ . -.

------- ---------_._--_._--------_._._----_ ..-_

2:57 p~4, 1981,

--_._----_. ----

~ST ..Jc:Er~ FPl# nEe ~, 19~1, 12:0') Pl~ • FNI. llf.C
Tl~r.~i:: -,:~:r.E " pn":ER FA r-J,UP~5---·r"HE· SiST-t:'·!···k'·~s···~ SH·uT·· no ...'N - 0 Ti~"!ES~---" .-------------.-..------..-.---.---.----.- .---.-----.-- -_.-...__..__.__..- ._._-~.....__.- -- -.--- -..~_.-.__._.- -'---' .__ .- .
THE SY5TF.~ ~~s RESTA~TED 0

--_._._--_._-----------------------------

REPORT F~O~ SU~~ARY rILE FILrsu~.L~GFtL~S.SYS F~t, o~c 4, 19B1, 12105 PM
~E~, J~~ 6, 19~1, 12106 A~ sHanT FILE ACTIVITY ~~PORT BY FILE NA~f

to FRI, OEC 4, 19r1, t21~1 p~

PAGE 1

cr. T~ 1·nr. •P.J F\ • ~ys P t.~ P:.\ , :;AM~ 9 t c 4 4 57':' 57 ·i J b J b
_.~~;~~·:;\:!D:r~I;.~.~!S _.._. .__.__.. r~~~,s:i~:~-.. -.). 168. 'J 9 4\ ._ 41 .34 ..__ ._. .__... $4

""\l.,f('~T.,.?·.'il.,')yS P 1'... r·· ,5.",'·''-' t ·'25 52---·--5-2------_···---··----1 f)4 104 J12 110
Er.ITc~.?t.!e,.SvS PER1~,SA:cE 2 2Qc} 29 29 2&1 261 2&1 2~1
F'C-~T~;\t:.pit~.~yS Pr.:R~-',SA~E 5 l~4 15 1.5 225 .~2S .2.25. 22~._

_.__.t r· r. 2344 • ~ :y~; ~ SY5 PgR~" ~ 5 ~ ~ t -- -Ii -- 2 ~ ~ 6 i i a2'; 1(J 22
L0r.2315.~UR.SyS n~~,V~R~ 11 128 1 ~ 0
~tt;::~y.Vt!R,S·(S . P€R"L5,V"~:: U-)71 2 1 1~~ ._-__ _3.4_.__--1.5.&. _ ... 34..__

-Sf.G p i: be '.-Plib ~ SYS P~~R·,; ,SA~1E'- 1 i 44 t 7 17 153 153 153 15 J
srL.PU8.SYS P~RM.~~~€ 2 372 19 10 1965 300 1965 300

___~~~1!~T~,!'.'~J..:R.~5~S _~.t~!~.l~~'~~__!--!~_3 to __ .-LQ__ ._. __78 .__. ._.~.~:. 1.4 ~ ._ 7 ..
SYStJDC.F"JB.SYS PE:RM,SA:I,£ 13 3S 12 2 10 1123 193 930 73 20J ';<f

APPENDIX B

Table of Contents

I. DIARY Data Base •••••••••••••••••••••••••••••••••••·•••••••••••• 1

II. Code Tables and Examples

System Code Table•• 1

Project/Activity Codes •••••• ~ •••••••••••••••••••••••••••• 2

III. Sample Reports

UOM Monthly Manpower Report by Employee••••••••••••.•••••• 1
\

UOP Monthly Summary by Sector/Office••••••••••••••••••••• 2

1-42-23

The DIARY Data Base

EMPOATE-MST

o
PROJECT-MST

JA-PFCO,,1-CODE
JA-ppn"T-l,.! T
,JA-PPO ..J-STATl'S
J A• PP0,,1 -r o,~ I') L
J A-PP0 ~T -c r.- 5 T

J A7ROJ

.HO_l-'R-S---l--.:._

FY-MST

(3)

slItwt.,y-O AT€
t!atI. .. ~!~Pt,.Ct"0 €

J~··Sf;CTOR·cnnE

L1A-orf·tc~-CnOE

J A-S vs TE'f.~ -CODE
" A·nr.1'F.~

OOi\i·ACTIV·COOE
SUP-4 ..F"Y·PATE
SU~.~OUPS

SU~·COST

(4)(1)

t
tfQr~ ...E}f~ fJ -e00 F.:
uOH-EI·1PL-RATE

tJO~ ..~MPL.cnDE \lA-S~CTO~·COOE JA ·S~:CTnp-c(Jl'E ,11, -Sf·CTC1R -CODE
ub.'•RunG~T- A'IT ,-T A- fl r PIC y:: -en[\ E' J A• Or FTC E• c: oo,,~ J A• (.) F" FTC E- CI)0 F.:unM.8UDG€ T..0 AT~; ,1 A• Sv5" F: M-C 0nE ~J ,~ • sYSTE:·" -e00 e: J A... SY5 TEM.CO" E
tJOtl..DllDGET.l\CTL J~ -.Ij.CT I V-~P~~A J A-Ac'rTV.J\~EA JA-I\~TJV-AP.F.A

JA-~~T~ JA-P~OJ·CODE Jr-PROJ-COOE
''('It.~ .~:JI\PL-CnDE ,,7 ~ -~ A1'F J 1\ -r· ~ rfi:
un~."ATE POP-JDL.YR SUM-~Y·n~TE

UO;..f~ACr IV ..COOE UOP-\.HJTJ-OY SlJM ..U(P~
uo~-rROC.NUM 'troP-PF:C-TYPE SUM.HOP
tJOM..,.HOiJI\S uop-(a~nup SU~~-'.'OP
J~-puo,.l.C:OOE U~P .. 1\CCT sut·f.cpn
ubr·',,~o I'1' .. KEY [l('Jp ..PSFo~R 5UH"CO~'~?;ECT

tJOM ..COST lJOP ...]fl(\-NAME SUr.A·NU!.t-p~nc~ss

· . llOP ..Cptt . SUMlltnt~C-F~JJES

l,op.corJ:~ECT ~UjlA.nISC-I0

tJbp.~}U~.1.PROCF:SS~UM -pp JNT-Rprs
,'Ic..P -I" I ~c.r t [.gs SUM .PP I rv T-r, I NES
no p • 0 I S C-I b ! tJ'" • T., (1 GOtJ S
UOP.PRINT-RPTS \
U~)P·PR r~~T·rII t:ES

lIClP-COST '"
UOP-l,OGONS '"

\
~ATE-MST

o

Appendix B· 1.1

1-42-.24

M.A.R.C.U.S. Utilit.ies Syst.em
Student Ad~lss1ons S1ste~

Alu~nl Records System
Accounts Payable System

Accour, t s Pece 1Vnb 1e
Academic Support System

Art
Astronomy

BUdget Analysis System
Beacon/Guardian systerr.

Biology
Blbllog~aPhlc Petri~val System

Class Grdding System
Ct)cmlstry

Contact Loq Sy~te~

General Purpose Consulting System
·Class Reg1stration Syst~m

Central SUpplY Inventory System
Drama

'Econorr.lc5
F:ducat1on

Envlronnicnt~l Studies
Employ~e Pecords System

Student Flnu~cial Aid System
r inane 1a 1 Deve lop;nent sys te n.

FISL Maintenance ~y~tem

I"~r'es~rr:an Seminar
Geology

General Led9cr system
Gift Records Systp~ 07/02/~1·06/30/B2

History
Interdepal tment.al 8111i.ng System

TROIKA -- HP3000 Computer Jo~ Accounting
Langui\qes

Library Circulation System
Mathematics

Central f- ial ~ ing system
Music

NOL Malntf?nc1nCe System
Overhead

PsYCholo'lY
PhYSj.Ci.l! Er3Hcatlon

PhilosoPhy
POl1t1ial Scl~nce

General P)otter/Gr~~h1cs System
Payroll System

Pt1ysics
kellg10n

SoClo1o~Y/Anthropology

Treasurer's Securities System,
Student Housing s~istem

,.
TABLE flO. 993

91
AD
AL
AP
AR
A~

AT
AY
RD
E(;
BJ
FJP
CG
CU
CL
CO

.CI<
CS
DR
EC
ED
EN
EP

~
FA
FD
FL
FS
GE
GL
GR
HI
18
JA
LA
LC
MA
r~L

MU
NL
OH
PC
PE
PH
PS
PT
py
PZ
RE
SA
SC
511

~

Whlt~an ColleQe Co~puter Center

Whitman College System ~arnes

December 11, lYH!

Appendix B - 11.1

I
~

I
~

~ ~ '=' ~
)::t

i-1:. n, M-

~
,
~

_.
~ ~

<-..~ M-
t<

W '":' ~
~

0() C)
. :::I:

l1) \1\, "\ .~
0
c:,
CJ)

--f
0

"'-c-+- "~ ~
-os
0

::r:
u..

~
en

0 n
c:: - M-
~
V)

r ~ ~ ~
~~ ~~ t·c... ~.:

~ n
~

~'
0

~ ~

, ~'
f1)

~ ~
::s
c-t'

I ~

t
CJ)

~ ~~
~. ~
~

l' ~....

~

~r
~

:::
:::::s-

M-
V) 3
M- Ol
01 ~
-+,
-+, n
)::t ~
n -'"
M- m-. lQ
< C1)-.M- n« 0

3
::0 ""C
f1) c:

""C c-t'
0 en
-os -os
t+

n
C1)

='
M-
f1)
-s

Type of Work Staff Activity ReportICarr'. Job/Session. logon .

PRODUCTION SS-PS* SS-G f

SS-K SS-TS 1 !YDDDnSS (after sys install)I
OH-A OH-AM I SSPROD (before or after inst)tr--

OH-SM OH-f

illi-l OH-~
SSnnnJOB (after sys install)

OH-VS OH-~

DEVELOPMENT SS-p** SS-SA** Q.YDDDnSS (after sys. install)

SSnnn** SS-Q.** SSDEV (before installed)

MAINTENANCE SS-MA SS-Q.*** riYDDDnSS

SS-p*** 5Snnn*** SSLOOK (after sys install)

Underlinipg indicates literal value
* - SR number may accompany activity code

** - abscence of SR namber implies development on uninstalled sys

***-- SR number must accompany activity code

General·Fonmat of Service Request (SR) numbers XYDDDNSS, where

X= "0" (development)
"M" (maintenance) or
"P" (production)

y= "O~ through 119 11
t the current year of thejdecade in which SR was approved

000= Julian day of the year Y
N= ~equence number of an SR recieved on the Julian day

SS= any valid system code t indicating the system in which work is
being perfonmed on behalf of SR

The other 1090ns SSLOOK, SSDEV, and SSPROD are appropriate where SRs

are not, as shown above.

(

~

LOGO~ • I ftSR79 JA~·:HOD

REPORT : JAJ23/F906
PRIVACY : CO~FJOENTIAL

RPT DATE:"07/0R/81

~

\eJh-1 tman College Computer Center

~onthlY Ma"power Summary by EmPloyee

.~

USER I f·1AN I\GF~R

RUN UATE: 07/0B/Al
RUN TIME, 11106:39

P~AG~ I 10

*******.- _ .
January 1981 • June 1981

Amy Galpin

................

~
1
Q.
Re

=
~....

ManhourS

89,5
29,0

,5
2R,n

t .0
25,0
14.0
5.5
8~O
2.0
6,0

64.t)
2 J ,(\
43.0

4,0
10.5
4,0

.5
,5

%

25.2
7.A

• 17.R
,2

7,t)
3,9
1.5
2,2

,5
1.6

tR,O
5.9

12.1
1 , 1
2.9
1.1

• 1
• t

Code

C1110.3
CL310
CL4t18
JA-l\M
JA-C
JA·K
JA-MA
JA**"
JA-SA
JA-r
OH-G
(}H·~A

OH***
OH-T
OH.'fS
5H170
SRt7S
UT·f-1A
UT145

ActIv1ty

Contact Loq System ProQram~1ng

Contact I,Iog Svstem Pro~rarnm1nq

Contact J,Og ::;yst~m Proqr~m,"1ng

Job Accountlna System Snop ~~anagement/Meetlnq

Joh ACcol1T"tlnq System COJt'puter Operation
Job Accountl~q System Key Entry/Clerical support
Job AccountlnQ System ~alntenance Analy~1s/Meet1"q

Job Accountlnq Syst@m Programming
Job Accountlnq System System Deslgn/Analys1s/Meet1n
Job Accountlna System Tralnn~/Educatlon/Profess1ona

Overhead General Act1v!ties
Overhead Maintenance Analysls/Me~tlng

Overhead Progra~mlng

Overhead Tralnng/F.:dueatlon/PrOf e S S !ona
Overhead TeChnician support
Student RecordS System proqraromlng
student Records System Program~lng

Computer Center Utilit1es Maintenance Analysis/Meeting
Computer Center Utilities programro1ng..._ _ ---•.•.•..•........_-.-_.............•.....•........----......•.........

...
I
~

I
~

355.0 Total Manhours

.....
I LOGON • I 1540(\/.531 TROIKA •• HP3000 Computer Job Account1ng USE,R: G~Ll'tN
~ REPORT . JA40S/F'602 Whitman Colleqe Co~puter Center RUN DATI-:: ot/03/82
~ .
I

PRIVACY I CONFIOF.:NTIAL RUN T IMf.~: 19145149
RPT DATE. 01/03/82 F602 - UOP Monthly Summary by Area PAGE: 1

~
QO Actual Usaqe for December 1981,

• RUNS CON/M CPU/S I RPTS PRINT LINES • FILES DISC I/O

Administrative Production

Admissions Office 117 1,3S4 2,251 124 6,958 1,268 62,260

The p.eqlstrar 247 5,566 4,377 91 68,800 1,612 203,282

Financial Aid Servlces 11 31 lq4 2 2,815 S9 11,236

Financial Develop".ent 388 2,OQl 15,381 104 102,4.56 2,348 878,625

Houslnq Offlce 3 40 8 .1 20 27 1&7

Business Office 1,168 3,.004 5,269 424 64,670 7,341 378,390

>
SUbtotal 1,934 12,086 27,480 '746 245,719 12,655 1,533,980

~ Academic 5upJ)ort
i
=' Faculty 533 4,410 7,969 123 38,196 4,R.QO 231,282Q.
~.

Students 5,593 21,349 22,100 859 102,119 30,98.' 568,780= Currleulum/Oroanlzatlons 218 941 788 15 J,511 1,012 1.5,979
53 SUbtotal 6,344 26,706 30,85'7 997 141,816)6,849 816,041N

Computer Services

Software Development 969 6,273 9,790 269 137,450 6,834 257,619

Overhead support 387 2,965. 5,38.0 142 31,693 2,417 79,890

SUbtotal 1,356 9,238 15,160 411. 175,143 9,251. 337,509

a41scel1aneous

HP users Group 1 1 1 0 0 t 2

Other 0 0 0 0 0 0 0

SUbtotal 1 0 0 t 2

...~......_..........•-..............._........•............•..._...._-...•................-.._-..-_.....-...•....•.•.•.
Total for toionth 9,6.lS 48,031 7) ,·4Qa 2,154 562,678 58,156 2,687,532.......-......•.........._.............................•...........•.••..............•.•.•..........•..............-....
Batch JobS 1,563 2,338 26,672 721 330,134 8,577 1,421,646

tnteractlv. Terminal Sessions 8,072 45,693 46,826 1,43] 232,544 50,179 1,265,88&

()....
.. A:

(tnGO~ •
RE:PfJRT
PRtVACY
RPT OATE

15400/_511
JA40S/rb·02
CO~lt.. J ['~ ~:T I AJ~

01/03/82

TROIKA •• HPJOOO Computer Job AccountlnQ
whltma~ Colleqe Computer Center

F602 ~ UOP Monthly Su~marY by Area

Percentaqe US~Qe for December , 1981

USI-:P
RUN DAIF:
RU~ TIME

PAGF~

GALP1N
01/03/82
19:45:50

2

.- _--.- - -.._- --- _ _............•........-.._- -........•....- _ _.

.....------ ----.._.......•....-.-.--..- - _ __..•....•.........•..-.._._---._ _.-.__._--- --._.
.....
I
~

I
~
\C

>
~

1
Q.Re

=
a
~

Administrative production

Admissions Office

The Reqistrar

Financial Aid Services

FinanCial Development

Houslnq Office

Business Office

SUbtotal

Academic su~oort

Faculty

Students

Currlculum/orQanlzatlons

SUbtotal

Co~puter Services

Software Development

OVp.rhead support

SUbtotal

~lscellan~ous

HP Users Group

Other

SUbtntal

Tota·l tor '~ontt"

Batch JobS

Interactive Terminal SeSSions

• RU~JS

1.2

2.5

.1

4.0

.0

12.1

20.0

5.5

58.0

2.2

65.8

10.0

4.0

14.0

.0

.0

.0

100.0

16~2

83.7

CON/~t

2.8

11.5

.0

4.3

.0

6.2

25.1

9.1

44.4

1.9

55.6

13.0

6.1

19.2

.0

.0

.0

100.0

4.&

95.1

CPU/S

3.0

5.9

.2

20.9

.,0

7.1

37.3

10.8

30.0

1.0

41.'

13.3

7.3

20.6

.0

.0

.0

100.0

36.2

63.7

• RPTS

5.7

4.2

.0

4.8

.0

19.6

34.6

5.7

39.8

.6

46.2

12.4

6.5

19.0

.0

.0

.0

100.0

33.4

66.5

PRINT LINES

1.2

12.2

.5

18,2

.0

11.4

43.6

6.7

18.1

,2

25.2

24.4

6.6

31.1

.0

,0

,0

100.0

58.6

41.3

• FILES

2 •.1

2.7

.1

3.9

.~

12.4

21.5

8.3

52.5

1.8

62.7

11,6

4.1

15.7

,0

,0

.0

100.0

14,5

85.4

DISC 1/0

2.3

7,S

.4

32.6

.0

14.0

57.0

8.6

21.1

.5

30.3

9.5

2.9

12.5

.0

.0

,0

100.0

52.8

47,1

'--

Online Database:
Design and Optimization'

Robert B. Garvey
Witan Inc.

Kansas City, Missouri

CONTENTS
A. The Foundations

1. GOALS; A System Language and Methodology
2. ~ystem Principles

a. Elements
1. Components
2. Relationships

b. Use in System Phases
(1) Analysis
(2) File Design

. (3) General Design
3. Information System Architecture

(a) General System Architecture
(1) Detailing
(2) Development
(3) Implementation

(b) Use of IMAGE and VIEW
4. Interactivity and Control

(a) Menu Programs
(b) C,ontrol Tables
(c) Data Area Control
(d) Quiet Callability

B. Dynamically Callable Programs
1. SLs & USLs
2. Effect of called programs on the stack

C. SPL Standards

FOUNDATION
A system language, GOALS, will be introduced to

render systems and components.
A general set of principles will be presented incor­

porating the components and structures inherent in a
structured system. The use of these components in the
system life cycle and as a documentation system will
evolve.

A general system architecture will be presented and
an approach to interactivity will be discussed.

The detailed use of callable programs in the 3000 en­
vironment will be discussed with emphasis on im­
provement of system performance.

I am going to assume that you are frrst time users of a
3000 that you want to write online database systems,
that you do not hav~ some of the more typical real

© Copyright Witan Inc. 64113

world problems like a conversion from another machine
and that you are going to use VPLUS and IMAGE. I
don't care what language you use unless it is RPG in
which case much of what I say will not be true.

GOALS: A System Language

GOALS was designed to meet the following criteria:

• Provide good documentation throughout the
lifecycle

• Ease maintainence
• Expedite development
• Provide users early understanding of System

functions and restraints
• Improve project management and reporting
• Reduce resources required
• Optimize System performance and quality
Many of the above criteria can be achieved through

reasonable structuring of the system. However many of
the structuring techniques that are now popular are
simply more trouble than they are worth. Yourdon,
Jackson and certainly IBM's HlPO involve more work
involve more work in their maintainence than rewards
merit. Warnier comes closest to being worthwhile but
cannot be reasonably maintained in machine sensible
form.

GOALS will be described as a methodology only be­
cause it does what the popular "Methodologies" tout,
and much more. We do not feel that any of the meth­
odologies should be considered ends in themselves and
more sacred than the system at hand. Once the princi­
ples are learned and applied the implications should be
obvious and the apparent need for a methodology for­
gotten.

Documentation
General Statement

The purpose of documentation is to assist in the
analysis, design, program design, maintenence and op­
eration of a system. To those ends software documenta­
tion must be flexible, easily modifiable, current and
easy to read. Witan has developed a system of
documentation called GOALS which uses simple text
ftles associated through control numbers to meet the
criteria listed above. The following sections describe

1-43 -1

GOALS Primitive Structures

1
1-------------1
! PROCESS 1 1
1-------------1

1

1 PROCESS 2

! PROCESS 3

>

>

END

BEGIN

SEQUENCE

<

<

1 PROCESS 1
2 PROC·ESS 2
3 PROCESS 3

FLOW

GOALS

the general features of the structural notation used in
GOALS and the General system structure used in sys­
tem projects.

GOALS is used throughout the life of a project. It is
used:

1. To state requirements
2. Render flow and components in the analysis phase
3 To develop, test and render a general design
4. As a pseudo code or structured English for detail

design
5. As a high level programming language
6. As a project network descriptor.

GOALS: Structural Notation
Formal structuring permits three primitive opera­

tions: Sequence, Repetition and Alternation. Structural
Notation was developed to meet the criteria of fonnal
systems in a generalized way and was guided by the
assumption that systems must be rendered in.a machine
sensible form. GOALS relies upon text sequences and
key words as its basis. Structural Notation is the basis
of the syntax of GOALS.

Following are the representations of the primitive
structures using flowcharts and GOALS. The word
PROCESS is used to represent a step, a process or an
item depending on the use of the notati~n at the time.

ALTERNATION

FLOW

< BEGIN >
----~,-.----

!
*

* *
* 'It

* IF X * ---
* *

* *
*

false
!

*
'It *

1-------------1. .
true----->! PROCESS 1 1---

1-------------1. .

'It * 1-------------!
* IF Y * ---true------>! PROCESS 2 !---

* * 1-------------1
* *

'It

false
!
'It

* *

* 'It 1-------------1 1. .
~

'It IF Z *---true------->! PROCESS 3 1---1
'It 'It 1-------------1

* *

*

1-43 -2

false
1
1<-------------------------------------<-
1

< end >

GOALS IF X IS TRUE
PROCESS 1

IF y IS TRUE
PROCESS 2

IF Z IS TRUE
PROCESS 3

REPETITION

FLOW

< BEGIN

1

*
* *

* *

>

<-false---<*
1
1
1

< END >

IF Y *----true----
* * 1

* * 1
* !1---------------!
1<----------1 PROCESS 1 !

1---------------!
GOALS WHILE Y« IS TRUE »

PROCESS 1
PROCESS lA
PROCESS 18
PROCESS IC

The exclamation point is used to signify control in the
WHILE loop. If the condition is met the control passes
to the statement following the (!) on the same level. If
the condition is met the control passes to the first
statement following the condition. Processes 1A
through 1C were added to show a simple subsequence.

Data Structuring

GOALS is also used to represent data structure. As
with control structure there are three general structures
which can be represented.
Data items listed line after line represent sequence:

I. item-I
2. item-2
3. item-3
Subsequences are represented as sequences on a

level below the item of which they are are a part.

1. item-1
IA: item-IA
lB. item-1B
IC. item-1C
2. item-2
3. item-3

Repetition in data structuring can be represented by
"(S)" at the end of the item name which is repeated, this
can take the form an expre.ssion [Le., (0)s<15)].

item-I(S)
item-1

Example: a fue of accounts
Account File

Account(s)
Account
Account number

1-43 -3

Name
Address(s)

Address type (h=home, w=work)
Street number
Direction
Street name
AtIIX

Amount due
Order(s)

Order number
Item(s)

Item

Alternation

Alternation is represented with the IF control word or
with the notation (1,0).

IF segment descriptive code = I
material

IF segment descriptive code = 2
supply

This convention is seldom used because the WHILE
handles most situations for the case ofdata structuring.

The other type of alternation is within a string of data
items where the item can either exist or not exist.
.Another way of representing a non-required item.

I. item-I
2. item-2
3. item-3(1,0)
This says that items I and 2 must exits or are required

and item 3 is optional.

Discussion

The highest level of repetition within a data structure
is assumed to be the key to the ftIe or at least the major
sort sequence. If additional keys are required they can
be represented with the word KEY [i.e., item-3 (KEY)]
or an additional data structure can be presented to rep­
resent the structure repres~ntedwhen the KEY is used.

GOALS can be used to represent logical structures as
well as the physical implementations. It is important
that the required logical views of data be derrived and
documented before any physical structures be planned.
A goal in system design is to have a one to on~ relation­
ship between the physical and the logical structures of
the system. The coding complexity is reduced appreci­
ably as wellas the maintainence activity. An additional
byproduct is the ability to use Query or other general
inquiry languages in a more straight forward fashion.

LEVELS: are represented graphically with the use of
indentation. The fIrst character in a line is considered to
begin.an "A" level subsequent levels are indented an
additional three spaces each.

Succe~sively lower levels (higher value characters
and more deeply indented) represent subordinate pro­
cesses. As will be seen in the general system structure
the highest most levels are controled by increments of

1-43 -4

time; years, quarters, months, days, etc. while lower
levels are controlled by events or conditions.

CONTROL NUMBERS: The control numbers used
in GOALS are developed by alternating the use of num­
bers and letters to represent sucessively lower levels
within the system. The system is similiar to English
outlining except that only capital letters and numeric
characters are used. For a given statement there is no­
thing to indicate its position in the hierarchy unless the
entire control number is dipicted or the starting control
number on the page is given. When GOALS statements
are machine stored the entire control number is either
stored or is assumed.

Principles

An Information system is distinguished from operat­
ing systems, command interperters, compilers and the
like. An Information System is that set of communica­
tions, operations, rdes and outputs associated with a
single conceptual "file."

I am not talking about a single program. Historically I
am talking more about an application area.
Elements
Components

First an analogy:' All purely mecanical devices are
made up of elemental components; the incline plane, the
wheel and axle, the lever and the chamber. The physics
of these basic components and the materials from which
they are constructed defme the limits of their applica­
tion. You may be saying, that list does not sound cor­
rect or "what about the screw." In listing elemental
components certain definitions are inherent. I define the
screw as a "rolled incline plane."

For information systems I assert that the list is:
Communications, ftIes, operations and outputs. The lim­
its for such systems are defined by the ordering of the
elements using the primitive structures (sequence, al­
ternation and repetition).

As a note; to date the list of elemental components
may have been input, process and output without regard
to structure. T~is is more elemental considering all
computer processes but is unbounded. This makes a
general system design technique very difficult. Adding
hierarchy to the above does not enhance these primi­
tives to any great extent.
Relationships

With these boundries and definitions in hand, lets
look at the relationships that develop.
. There is generally a one to one relationship between
ftIe structure and operations structure, between com­
munications structure and operations structure, be­
tween output structure and operations structure. In
other words the operations or control structure mimics
the other components of the system and each componet
is related to the other in structure. Structure begins with
the file structure.

Example; if you have a fde· of accounts and you want

"'\

to report them; the report program may need tq be
structured exactly the same as the rue or database to
report all the data in the file. Most often there is a one to
one relationship between files and outputs. In the report
example the report structure could be expected to look
exactly like the file. If the report is to look different than
the fue there would be in intervening operation usually a
sort or selection to convert an intermediate output to
the final output.

The same is true of communications which on the
data processing level are the transmissions to the uses,
the screens and the messages. The structure of a com­
munication is generally the same as the operation struc­
ture which is the same as the data structure and thus the
communication structure is the same as the data struc­
ture. This substantiates the theory that systems can be
completly described knowing only the data structure.
True but limited. Knowing the structure of any part
should in theory give you the whole.

If everything describable about a system can be de­
scribed in simple structures (and thus in GOALS) and
the components of a system include only communica­
tions, files, operations, and outputs and GOALS can be
used in all system phases then we have a framework for
a general system covering conception through
maintainence.

Lets look at any application. Traditionally you would
begin with a requirements statement and do an analysis
of the existing system. Forget flowcharts, classic narra­
tives, and other charting techniques. Think of prog­
ressively decomposing the system using simple english
outlining starting with the functions. Functions fit into
the operations structure discussed. You will note that as

, you get down a level or two you will encounter repetit­
ive tasks dependant on. conditions, add WHILE and IF
to your outlines and keep describing. Remember that
users can understand outlines and repetition and alter­
nation are not difficult to understand.

Operations will include existing machine processes,
manual proceedures, paper flows, sorting processes etc.
As you are going through the operations keep a list of
the files that are mentioned and note the file keys (and
sorts) and any advantages or r~questsfor multiple keys.

List any outputs or reports prepared by the organiza­
tion or required in the future.

Communications will be minimal at this stage but

note any memos that may go from one section to
another of a "file" of notes used as crossreference or
duplicate of any more perminent fuel

Your documentation is now shaping up; your
notebook and I assume that the whole world has change
to 8~"SII", should be divided into communications,
file, operations and outputs.

The starting point for design is the detailing of the
files in your file list. You will want to reduce the fnes as
much as possible to a single file. By way of naming
conventions the "file" should have the same name as
the system at hand.

You will notice that many of the manual fnes are
really communications in that they are "views" of the
file that are required in a particular subfunction.

The design of the conceptual fue must be validated
against the required operations. I am going to leave this
hanging for a moment to discuss a General Syst~m

Structure.

General System Structure

A General System Structure is presented on the fol­
lowing page in Goals.

This structure is not applicable in all systems but is
used as a pattern for system discription, design and
understanding.

The key elements of design of this structure are:
I. File unity; a system with this structure has only

one conceptual ftIe. It may have any number of
datasets of or physical files but they must be for­
malized into one.

2. Journalizing or logging; all changes made to data
items can be (and normally should be) logged.

3. Last action dating; incorporated as part of logging,
permits an omine log.

One detailed implication of this is need to have a date
stamp in each detail set and a master date stamp in the
master file.

Note: sleeper from the contributed library is a must.
A standard job stream to prepare the system for shut­
down and to bring it back up to production mode is also
recommended. Allocation of application programs a de­
sirable feature is the reason for this and also a good way
to get sleeper going again.

\.

General System Architecture

Begin system
WHILE NOT EOSystem

WHI LE NOT EOYear
WHILE NOT EOQuarter

WHILE NOT EOMonth
WHILE NOT EODay

WHI LE ONLINE
Begin online
identify operator and security

1-43 -s

Open system file
Open current files
WHILE Communication

IF control transfer
transfer control

IF batch request
initiate request

IF update , add or delete
Begin
Memo to LOG
LOCK
Update ,add or delete
UNLOCK
End

IF inquiry
perform communication operation

End Onl ine
Begin daily batch
Perform daily batch processing
Run LOG analysis
If end of week

Perform Monthly Processing

ROLL FILES

perform Monthly processing

Perform Quarterly processing

Perform end of year processing

Close system
End

.~
.)'

A GENERAL DESIGN
With this Architecture and database design complete

we have the basis for the development and implementa­
tion of any application.

Step 1 is inquiry into our fde; if there is only one
search criteria then we calculate into to fue and return
the master data or a summary. Once positioned in a
master we can chain through our detail sets or follow
appropriate programatic paths.

The master screen (a communication) should provide
inquiry, update, and addition ability.

Each detail set should have a screen providing the
same update add and inquiry ability. Our screens will be
one for one with the detail sets. Think of a detail set as
having a buffer that will correspond to communication
(VPLUS) buffer. Moving data within one program is
facilitated with this concept.

The list of detail sets becomes a list of programs
which must be written to handle the retrieval, update,
addition, deletion and editing of data for the detail set.

When this is complete you will have a functioning
system; it will not function well. I have intentionally

1-43 -6

oversimplified. The office proceedures which may be in
place or will evolve will dictate what combination of
sets will appear on a screen but no effort was be lost in
developing the barebones system according to this
method. Each set (detail set) should have its own pro­
gram to handle retrieval and update. When require­
ments demand inclusion the programs can usually be
used with few changes. You can take this one step fur­
ther to include a general scheme to handle multiple data
sets on one screen.

The question then becomes; "How do I tie this all
together?"

Interactivity and Control

Let's say that we have written a system composed of
a series of programs that correspond to our data sets.
The way in which we implement interactivity is through
a control program called MENU. 4A Menus

A master data set will exist at the top of the concep­
tual fIle and the primary search path will be the ftle key.
Other search paths will be provided through subsystems
such as "Name Family" or through automatic masters.
For all detail sets associated to the master there will be

a program to handle that data set. Your analysis will
dictate all the processes that the operator may wish to
perform.

As other requirements develop associating more than
one data set the code can be combined and new screens
developed.

The menu control program provides transfer of con­
trol. It can do this either "quietly" or "loud." Loud is
the obvious implementation; the operator choses a data
set from a menu screen, the control is transferred via a
"call" to a dynamic subprogram the data set is accessed
updated, etc. and control returns to the controlling
menu. But let us give the operator the ability to "tell"
the system where he wants to go next. If he does a
common area flag can be set to say don't display the
menu simply transfer control to some other subprog­
ram. We call are common area for data SYSBLK and
out flag(s) Ql, Q2, etc. (you are not limited to one level
of menu).

A menu structure may look like this:

MAIN MENU
WHILE NOT PARENT OR END OF SYSTEM

IF LOUD
GET MAIN MENU SCREEN
SEND (SHOW) SCREEN
WHILE EDITS'FAILED

EDIT FIELD
IF EDITS FAIL.

SEND SCREEN

SET MODE TO QUIET
IF QUIET

IF NEXTPROCEEDURE=A
CALL A

IF NEXTPROCEEDURE=B
CALL B

IF NEXTPROCEEDURE =N
CALL N

ELSE
CALL CONTROL 'NUMBER 'TABLE

Through this technique those programs which are not
being used are not using memory resources. The CON­
TROL NUMBER TABLE refers to implementations
which have levels of menus. If the control reference is

. not handled at that menu level control is appropriately
passed to the proper level where a control program can
handle it.

The quiet "CALL" technique can be used for any of
the data set programs discussed by putting the quiet call
structure "around" the program and requiring the pass­
ing of appropriate data into or from the communication
buffer. Ifyou need to pass data from one subprogram to
another and you want to release the calling program
stack space you can do so with extra data segments
(DMOVIN, DMOVOUT) or message fIles or scroll files

(logical device dependant files) that you set up in the
application program Le. BUILD SCROL033;rec=­
80,16,f,ascii.

Pitch for the use of intrinsics; we have found that
most 3000 users do not take advantage of some of the
very rich intrinsics in MPE. They are simple calls, well
documented and even those that require bit settings are
fairly easy to implement in any language.

The COMMAND intrinsic, for example lets you issue
MPE command line, commands programatically. We
use this to create stream jobs then kick off the job from
online programs. A report menu can be used this way.

Effect of called programs on the Stack

The effect of using properly implemented called pro­
grams is simple and dramatic. You reduce the amount
of stack (that normally translates into main memory)
that is required by each user of an application program.
Jim Kramer HP SE Saint Louis (Quad Editor Fame)
calls it timesharing the stack.

Usually the outerblock program carves out the re­
quired amount of data area to be shared by all subprog­
rams in the "system"; this would normally include a
database area, a VPLUS area and an area for the system
at hand. MPE then carves out some data area for Image
and VPLUS. Using a simple menu concept as dis­
cussed, as each program is called it will require its own
data area and thus addition stack on top of the common
(Q relative) data area, when the program returns to the
menu this stack space will be unused but as soon as the
next program is called this same space will be used by
that program for its space.

COBOL sections do not do the same thing. They
create data areas for all declared data in the data divi­
sion. Sectioning permits smaller code segmentation but
this is a shared resource on the 3000 anyway. Note that
with stack sharing per user that the reduction in mem­
ory requirements is greatly enhanced over code optimi­
zation.

You will also find that editing code is much easier
with smaller source files, that compilation is faster and
more concise code is written.

SL's and USL's

SL's

• Modules, entry points and called Programs require
1CST entries if they are not already referenced in a
running process.

• Code is sharable by all programs. The PUB.SYS
SL is avalable to all p~ograms. Account and group
SL's are available to programs being run out of that
Account or group.

• You may exclusive access to the SL to make an
entry in it.

• When SL entries are made you do not need to pre­
pare the SL. It is available after you have exited
the sefZmenter.

1-43 -7

USL's
• Programs compiled 'into. a USL must be' prepared

before they are runnable.
• Many programs may be compiled into the same

USL. When a program is run the system will look
to the USL for resolution of called programs~ it
then looks to the PUB.SYS SL unless a library' is
specified in the RUN. (RUN prog;LIB=G)

• All USL resolved entries create XCST'entries ex­
cept the outer block.

CST's and XCST's

• T~ere are 192 CST entries available to user proces­
ses

• There are 102.8 XCST entries available to user pro­
cesses.

COMPILE INTO A USL COBOL/3000 Example

**
**
**

only needed
for

COBOL/3000

**
**
**

IJOB JOBNAME,username/userpass.aeeountname/aeeountpass;OUTCLASS=
1COSOL p·rogname, $NEWPASS, $NULL
1SEGMENTER
USL $OLDPASS
NEWSEG progname,progname'
PURGERBM SEGMENT,progname'
USL yourusl
PURGERBM SEGMENT,progname
AUXUSL ~OLDPASS

COpy SEGMENT,progname
EXIT
ITELL user.aeet; yourprog ---) yourusl
lEOJ

PREPOFUSL

IJOB DyourUSL,user/userpass.aeeount/aecountpass;PRI=ES;OUTCLASS=
IPURGE yourrun
lCONTINUE
IBUILD yourrun;DISC=2500,1,1;CODE=PROG
!SEGMENTER
USL yourusl
PREPARE yourrun;MAXDATA=16000;CAP=MR,DS
EXIT
ITELL user.aeet; yourrun ---) yourrun
lEOJ

CALLABLES INTO SL's

1JOB D1SL , user/use rpa ss. aceoun t/accountpa ss ;OUTC LASS=, 1
1COBOL yourprog,$OLDPASS,$NULL
1SEGMENTER
AUXUSL ~OLDPASS

sL SI.
ADDSL yourprog
EXIT
1TELL user.aeet; yourrun ---) yourrun
1EOJ

MENU

REPEAT until parent or end of system
IF loud

get menu screen
show screen
REPEAT until edits pass

edit fields
IF ed it fa il

send screen
1 •
set mode to quiet

1-43 -8

IF quiet
IF nextprocedure =

CALL "0" USING
IF nextprocedure =

CALL I'll' USING

110"
., ., .
"I"
., ., .

IF nextprocedure = "n"
CALL lin" using ., ., •

ELSE
CALL "CONTROLNUMBERTABLE" using nextprocedure

Goals-SPL Standards

Section Title

1 General

2 Procedures and Decl'ara t,ions

3 Moves

4 IF Control

5 REPEAT Control

6 Witan include files

7 Coding rules

GOALS-SPL STANDARDS

General

Indentation of three spaces indicates the beginning of
a new level. If the next line is indented six spaces it
indicates a continuation of the previous line.

Assignment is done with the ":=."
Comparison is done with the "=".
The astrisk is used to indicate that the address re­

quired in a statement has aIfeady been loaded on the
stack. This has general applicability but we will limit its
use to moves where the previous move has used the
stack decrement option leaving the ending address on
TOS. In a MOVE WHILE there is a stack decrement

feature, a ",1" following the A, AN or N indicates that
the final destination address is left on TOS.

The asterisk in parenthesis (*) indicates a backrefer­
ence to another data item causing a redefmition of the
area in the data stack. This back reference does allocate
one word of the stack as a pointer.

Parameters should always be on word boundries thus
BYTE ARRAYS should not be used as parameters.

Procedures and Declarations

Procedures parameters should all be called by refer­
ence not by value.

The form for an outer block program is:

~CONTROL USLINIT [ERRORS=5, LIST,
BEGIN «SOURCE»

Lglobal data declarations]
Lprocedures/intrinsics]
Lglobal-subroutines]
Lma in-body]

END.« SOURCE »

The form for a subprogram is:

1-43 -9

~CONTROL SUBPROGRAM [ERRORS=5, LIST, •••]
BEGIN « SOURCE »

Lcompile time constructs]
Lprocedures/intrinsicsl

END. «SOURCE»

The form of a sample subprogram using the Witan INCLUDE files found in the appendix follows:

$CONTROL SUBPROGRAM, ERRORS=5, NOLIST, NOWARN, SEGMENT=S·EGNAM
BEGIN « SOURCE »
~INC['UDE INCIG.T

« BEGIN EXTERNAL PROCEDURE DECLARATIONS »
~INC LUDE STDINTR. T « STANDARD EXTERNAL PROC EDURE DEC LARATIONS >
PROCEDURE BLANK(WINDOW,VI);

VALUE VI;
I~ WINDOW;
IN VI;
OPTION EXTERNAL;

« END EXTERNAL PROCEDURE DECLARATIONS »

PROCEDURE SEGNAM(VBLK,SYSBLK,RTN'CDE);
IA VB LK, SYSB LK;
IN RTN 'CDE;

BEGIN « SEGNAM »

« BEGIN DATA »
SINCLUDE VBLK.T
SINC LUDE SYSB LK. T
I A I B LK (0 : 0) ;
SINCLUDE SUBGLOB.T « USING SUBGLOB.T REQUIRES THAT VBLK,IBLK

SYSBLK HAVE BEEN INCLUDED IN THIS PROCE
EITHER AS PASSED PARAMETERS OR AS NULL
ARRAYS. »

« OTHER DATA LOCAL TO PROCEDURE »
LG KEEP 'GOIN;
IN VI;
IN MIse;
IA (O:9)TEN'WORDS;
« END DATA »

« BEGIN SUBROUTINES »
SUBROUTINE PUT'WINDOW;

BEGIN « PUT'WINDOW »
V'PUT'PAUSE(VBLK,2);
BLANK(WINDOW,30);
WINDOW' LEN: =60;
VPUTWINDOW(VBLK,WINDOW'LINE,WINDOW'LEN);
VSHOWFORM (VB LK) ;

END; « PUT 'WINDOW »
« END SUBROUTINES »

«************************************»
BEGIN «CODE»

KEEP 'GOIN: =TRUE;
WHILE KEEP'GOIN DB

KEEP 'GOIN: =FALSE;
END'REP;

END; « CODE »
END; « SEGNAM »
END; « SOURCE »

1-43 -10

"'-----

Moves

General Forms:
MOVE destination: = source, (length)[,stack de­

crement];
Literals:
Length need not be specified in the move ~f a literal If

successive moves are anticipated to build a string or
concatenate into a buffer then the stack decrement op­
tion of 2 can be used. Example:

MOVE OUTBUF:= "Hello",2
MOVE *;=" Everyone";
Non-Literals:
SPL requires type compatibility in moves, therefore

general buffers should be defmed in words and in bytes.
The word buffer name should end with "'W." The byte
buffers will have the just name without an identifying
Soflx.

.The length parameter in the move should specify a
name equated to the length in bytes or words depending
on the type of move. The equate will generally be gen­
erated by DBUF. Byte lengths will begin with "BL' ",
word lengths with "WL'."

Example:
MOVE OUTBUF:=

ACCOUNTNO,(BL'ACCOUNTNO);
Some moves may embed procedure to insure type

compatibility and at the same time perform the appro­
priate conversion.

IF Control

The control structure for the IF will follow directly

the structure enforced in GOALS. All IF's will be fol­
lowed by a condition which may be compound and may
extend to subsequent lines (note; continuation line dis­
ciple in general standards).

Following an "IF" condition a TB will be inserted,
which is defined as a "THEN BEGIN." SPL does not
require a BEGIN if the following statements are not
compound, i.e., a lone statement. However, the "BE­
GIN" is required to bracket the sequence and to enforce
the use of an "END" on the same level as the beginning
"IF." If there are subsequent "IF's" on the same level
(mutually exclusive IF's - programmer enforced) the
IF should be converted to an IF'G which is defmed in
INCIG as an "END ELSE IF." This is not called a
"IF" in GOALS. It is refered to as an "IF string"
(mutually exclusive conditions).

Nested IF's:
If"IF's" are nested, the nested IF may begin any time

after the "TB" of the preceding IF and will be indented
to show its nesting. The rules for the nested IF are
exactly the same as the IF; TB required.

ELSE
When the trailing ELSE is required in an IF string,

the preceding end for the IF must not have a semicolon.
The ELSE requires a BEGIN-END pair to enforce the
terminating "END" at the end of the IF string.

Nested IF strings, where trailing elses come together
may cause some confusion, but do not require any spe­
cial rules.

Example:

IF --condition-- TB« THEN BEGIN »
IF --condition-- TB

--statrn't--;
--statm't--;

IF'G --condition-- TB
--statm't--;
--statrn't--;

ELSE 'G
--statm't-­

END'IF;
ELSE 'G

--statrn't--;
--statrn't--;

END'IF;

Repeat

General Form:

WHILE --condition--
--statm't--------)
--statm't---------

END'REP;

DB

The REPEAT in the GOALS-SPL is used as
documentation and is defmed as a null statment. RE­
PEAT must be followed by WHILE and a condition or
compound condition. Following a WHILE condition a
"DB" is required which is DEFINED in INCIG as a
"DO BEGIN." As in the IF construct a "BEGIN" is
required to enforce a terminating "END'REP."

1-43 -11

SUBGLOB.T

BYTE POINTER
BP «USED FOR TEMPORARY POINTER, NOT SAVED »

;
EQUATE

RTN = 13 «CARRIAGE RETURN IN ~SCCI »
,ESC = 27 «ESCAPE CHAR~CTER IN ASCII »
;

INTEGER I,J,K,LEN80,OLD'LANGUAGE;

DA IBLK'D (*) = IBLK;
SA IBLK 'B (*) = IBLK;

D~ SYSBLK'D (*) = SYSBLK;
BA SYSBLK'B (*) = SYSBLK;

DA VBLK'D (*) = VBLK;
SA VBLK '8 (*) = VBLK;

DEFINE
EL =i= END ELSE#

, END' IF = END#
,END'REP = ENDI

INCIG.T
This INCLUDE is used for abbreviation ofdata types

and some constructs for GOALS presentation SPL
compilations.

DEFINE «USED TO ABBREVIATE DATA TYPES»
IA = INTEGER ~RRAY#

, IN = INTEGER#
, DI = DOUBLE #
, LA = LOGICAL ARRAY#
,DA = DOUBLE ~RRAY#

, BA = BYTE ARRAY#
, RA = REAL ARRAY#
,XA = LONG ~RRAY#

,LP = LOGICAL PROCEDURE#
, DB = DO 8 EG IN #
,TB = THEN BEGIN#
, LG = LOGICAL#
, REPEAT = #
,G'IF = END ELSE IF#
,G'ELSE = END ELSE BEGIN#
,IF'G = END ELSE 1Ft
,ELSE'G = END ELSE BEGIN#

IBLK.T

« IA I B'LK (0 : 42) ; » MODE 4 = IS LK (29) i,
DEFINE MODE~ = IBLK (30) #, .

COND'WORD = 18 LK #, MODE6 = IBLK (31) i,
STAT2 = IB LK (1) i, MODE7 = IBLK (32) i,
STAT3' 4 = IB LK 'D (1) i, MODE8 = IBLK (33) i,
STAT5 '6 = IB LK '0 (2) i, ALL'ITEMS = IB LK (34) #,
STAT? '8 = IB LK 'D (3) i, PREV'LIST = IS LK (35) i,
STAT9'10 = IB LK '0 (4) i, NULL'LIST = IB LK (36) i·,

~BASE = IBLK (10) i, DUM'ARG IBLK(37) i,
MODEl = IB LK (26) i, NUM'BASE = IBLK (38) i,
MODE2 = IB LK (27) i, IBLK'LEN = 43 i
MODE 3 = IBLK (28) i,

1-43 -12

IBLKG.T MODE4 := 4;
The following is initilization code to be included in MODES := 5;

the outer block program to set IBLK fields : MODE6 := 6;
MODE7 := 7;
MOVE ALL'ITEMS := "@; ";

MODEl : = 1; MOVE PREV'LIST := "*. "., ,
MODE2 := 2; MOVE NULL'LIST := "0;";
MODE3 : = 3; DUM'ARG := 0;

VBLK.T

« THIS ASSUMES THAT VBLK IS DECLARED 11\ VBLK(O:51) >
« VBLK IS MADE UP OF COMAREA AND THE OLD VBLK >
« CALLS TO VIEW INTRINSICS WILL USE VBLK AS THE COMAREA. PARM >

«SPL DECLARATIONS FOR COMAREA»
DEFINE

COM'STATUS = VBLK (0) i,
COM'LANGUAGE = VBLK (1) i,
COM 'COMAREALEN = VBLK (2) i,
COM' USRBUF LEN = VBLK (3) i,
COM 'CMODE = VBLK (4) i ,
COM'LASTKEY = VBLK (5) i,
COM'NUMERRS = VBLK (6) i,
COM'WINDOWENH = VBLK (7) i,
COM' LABELSOK = VBLK (9) i,
COM'CFNAME = VBLK 'B (10 *2) i,
COM'NFNAME = VBLK 'B (18 *2) #,
COM'REPEATAPP = VBLK (26) i,
COM'REPEATOPr = VBLK (26) i,
COM'FREEZAPP = VBLK (27) i,
COM 'CFNUMLINES = VBLK (28) i,
COM' DB UF LEN = VBLK (29) i,
COM' DELETEF LAG = VBLK (32) i,
COM'SHOWCONTROL = VBLK (33) i,
COM'PRINTFILNUM = VBLK (35) i,
COM'FILERRNUM = VBLK (36) #,
COM·'ERRFILNUM = VBLK (37) i,
COM'FM'STORE'SIZE = VBLK (39) i,
COM'NUMRECS = VBLK'D (21) I,
COM'RECNUM = VBLK'D (22) i,
COM'TERMFILENUM = VBLK (48) i,
COM'TERMMODE = VBLK (49) i,
COM'TERMALLOC = VBLK (50) i,
COM'DATAOVERRUN = VBLK (51) i,
COM' READT IMEOUT = VBLK (52) # ,
COM'OTHERDATAERR = VBLK (53) i,
COM' MAXRETR I ES = VBLK (54) i,
COM'TERMCONTROLOPT= VBLK (55) # ,
COM'TERMOPTIONS = VBLK (55) # ,
COM' ENVINFO = VBLK (56) i,
COM 'T IMEOUT = VBLK (57) I

;
EQUATE

COMAREALEN = 60,
COBOL 'LANG = 0,
VBLKLEN = 100,
SPL'LANG = 3,
MAXWINDOWLEN = 150,r- MAXMODELEN = 8,
NAMELEN = 15,
NORM = 0,
NOREPEAT = 0,

1-43 -13

V'REPEAT
REPEATAPP
ENTERKEY
PARENTKEY
KEY2
KEY3
REFRESH
PREV
NEXTKEY
INQ'ENT
EXITKEY

;
«SPL DEFINITIONS
DEFINE

WINDOW' LEN °

MODE 'LEN
WINDOW'LINE
WINDOW 'MODE
WINDOW
WINDOW'LINE'B
WINDOW'MODE'B
WINDOW'S

= 1 ,
2,

= 0,
= 1 ,
= 2,

~= 3,
= 4,
= 5,
= 6,
= 7,
= 8

FOR VBLK»

= VBLK (COMAREALEN+O) i,
= VBLK (COMAREALEN+1) i,
= VBLK (COMAREALEN+2) i,
= VBLK (COMAREALEN+2) i,
= VBLK (COMAREALEN+MAXMODELEN) i,
= VBLK 'B «COMAREALEN+2)*2) i,
= VBLK 'B «COMAREALEN+2)*2) i,
= VBLK 'B «COMAREALEN+MAXMODELEN) *2) i

SYSBLK.T

= SYSBLK i,
= SYSBLK(2) # ,
= SYSBLK (4) i,
= SYSBLK(6) # ,
= SYSB LK (7) i ,
= SYSB LK (8) #,
= SYSB LK (9) i ,
= SYSBLK(ll) i,
= SYSBLK (13) i,
= SYSB LK (16) i,

SYSBLK (21) :It,
= SYSBLK(22) i,
= SYSBLK (23) # ,
= SYSB LK (28) i,
= SYSBLK(43) i,
= SYSBLK (58) # ,
= SYSBLK(63)i « STARTING ON DOUBLE BOUNDRY

= SYSBLK'B i,
= SYSBLK 'B (2 *2) #,

SYSBLK 'B (2*4) i,
SYSBLK'B(2*9) i,
SYSBLK 'B (2*11) i,

= SYSBLK 'B (2*13) i,
= SYSBLK'B(2*16) i,
= SYSBLK'B(2*23) #

«IA SYSBLK(O:114) SPACE ALLOCATED IN MAIN PROGRAM »
DEFINE

CNTRL 'NUM
LST 'PROC
NXT 'PROC
Q1
Q2
Q'NEXT
OPER'ID
SEeU'TY
SSC
CNUM
L'FLNUM
M' FLNUM
FLAGS
DQSTAoT'SB
GLSTAT'SB
TERMID
MSBLK'SB

DEFINE
CNTRL 'NUM' B
LST 'PRoe '8
NXT 'PROC 'B
OPER' ID 'B
SECU ITY IB
sse'B
CNUM'B
FLAGS 'B

4,
= 4,

4,
= 4,
= 4,
= 6,

.,
EQU~TE

CNTRL 'NUM 'BL
LST 'PROC 'BL
NXT 'PRoe 'BL
OPER' ID 'BL
SECU 'TY 'BL
sse 'BL

1-43 -14

CNUM'SL
FLAGS tSL

= 10,
= 10

Coding Rules

All agorithms should frrst be done in GOALS without
concern for the SPL structure. SPL constructs will be
used for individual statements and conditions but the
control structure should be in GOALS.

This complete:
1. Replace all ELSE's with G'ELSEs or ELSE'Gs.
2. Locate all "IF's that are on the same level as a

"·running" IF. Replace each running IF with an
IF'G or G'IF.

3. Replace all "."'s with an END'IF;
4. Insert a THEN BEGIN or "TB" following every

IF condition.
5. Replace all "!" with an END'REP;.
6. Insert a "DB" or DO BEGIN after every REPEAT

condition.

An Example using the rules on the preceeding page

WHILE ------------
IF -----------

IF -----------

,ELSE

IF -----------

IF -----------

IF -----------

ELSE

« SPL RULE »
WHILE ------------ DB « DO BEGIN 6 »

IF ----------- TB « TH~N BEGIN 4 »
----------~-_ ...

IF ----------- TB « THEN BEGIN 4 »

ELSE 'G « END ELSE BEGIN 1 »

END I IF; « END I IF 2 ».

***(20) ERROR ***
LINE
1490
TRUNCATED BY 4 CHARACTER(S)

IF'G ---------- TB « END ELSE 2 » « THEN B

END I IF; « END'IF 3 »
IF ----------- TB « THEN BEGIN 4 »

r --------------
***(20) ERROR ***

LINE
1495
TRUNCATED BY 4 CHARACTER (8)

1-43 -15

IF'G --------- TB « END ELSE 2 » « THEN B

--------~-----
ELSE'G « END ELSE BEGIN 1 »

END' IF; « END'IF 3 » ~END'REP; « END'REP 5 »

Note: work the top example yourself using the rules
and see if it matches the completed program. Note the
count of the begins and ends match for SPL. Do the

1-43 -16

algorithm correctly in GOALS and the SPL code will
follow.

Power Line Disturbances
And Their Effect On

Computer.Design and Performance
Vince Roland

The following is extracted from an article in the Au­
gust 1981 Hewlett Packard Journal, by Vince Roland
and Art Duell.

One of the earliest and continuing problems with
computer systems is ac power line disturbances on cus­
t~mer premises. The computer manufacturer is becom­
ing increasingly concerned about the ac line transient
and grounding environment that a computer system is
subjected to at a customer site.

. The resolution of problems caused by ac power dis­
turbances requires characterization of the ac power
source and determination of the computer system's sen­
sitivity to such anomalies. The effect of any possible
solution on the manufacturer and the customer must be
evaluated. If the manufacturer incorporates devices to
protect the computer against all of the possible ac dis­
turbances the initial cost of the computer increases sig­
nificantly. A dilemma arises if, to keep purchase costs
low, this is not done. In the purchase of any computer
system, the cost of ownership must also be considered.
The customer wants and should expect maximum use
with a minimum of maintenance and downtime. If the
computer is unable to handle power anomalies, the
downtime and maintenance can become excessive and
the cost of ownership increases dramatically.

Therefore, some compromise is required to minimize
the overall cost to the customer. The customer should
help by improving the environment for the c~mputer

system installation. The manufacturer should correctly
and economically specify the environment required and
educate the customer about this specification in addi­
tion to incorporating economical design features that
improve the computer system's resistance to ac power
line disturbances.

CHARACTERIZATION OF
POWER SOURCES

Improving the immunity of a computer system to
electrical noise requires adequate characterization of
the ac power source. The terms frequently used to de­
scribe power line anomalies are discussed at the back of
this paper. The noise present on an ac line can be gener­
ated by conditions unique to the customer's environ­
ment and by variations typically found on any power
line supplied by .a public utility. Wiring codes developed

by regulatory agencies to insure the safety of the user
are often in conflict with line confIgUrations designed
for noise reduction.

Computer manufacturers and users cannot influence
or change these facts significantly. To place these con­
ditions in proper perspective, note that statistics show
that computer systems and other sensitive control loads
represent less than 0.01% of the total utility load. Con­
sequently, it is understandable that a utility will not try
to prevent power disturbances affecting computers.
Wiring codes are also generated with respect to the gen­
eral consumer. Generally wire sizes and grounding
specifications are based on electrical loads associated
with major appliances and heavy electrical machinery,
and do not take into consideration the low impedances
that are required when computer systems are switching
at millisecond speeds.

Factors describing the quality of an ac power line are
nominal line voltage, service voltage, utilization vol­
tage, statistical distribution of transients generated by
the utility and the customers, and regulatory body spec­
ifications. In the U.S.A. there are national standards
developed by American National Standards Institute
(ANSI), and these specifications are typically used by
u.S. utilities to permit better networking and inter­
change of power.

Nominal line voltage is the level close to the average
value expected during normal operation. This value,
measured at the outlet, varies with geographic location.

The most important parameter that the utility must
adhere to is the service voltage - the voltage supplied
to the customer's meter. In the San Francisco Bay area
it is 114 volts minimum to 126 volts maximum. For
three-phase-wye distribution, it is 197 volts minimum to
218 volts maximum. Generally speaking, the three­
phase line voltage will be lower than the nominal 208
volts, but the power company is still within specifi­
cations as long as the line voltge does not go below the
minimum service voltage.

The utilization voltage (at the wall outlet) is 110 volts
minimum to 125 volts maximum. ~or three-phase-wye
distribution, it is 191 volts minimum to 216 volts
maximum. Herein lies a difficulty. The building owner
is responsible for all internal wiring within the building
from the meter to the wall outlet. Therefore, if there is a

1.-48-1

problem with the voltage, it is of little value to a user to
have the power company measure voltage at the wall
outlet because they have no control over the internal
wiring of a building.

To compound the problem, there are some studies
being made by U.S. utilities to change generating vol­
tages to conserve energy. The' federal government is
strongly suggesting to the utilities that there be a con­
servation voltage reduction. This is a systematic lower­
ing of distribution voltages to reduce energy consump­
tion by customers. The minimum service voltage would
remain the same but the maximum would be lowered.
Suggested ranges would be either 114 to 118 volts or 114
to 120 volts. When the generating margin narrows, the
utilities are forced to do more load switching. The result
is more transients.

It is impossible to quantize transients caused by
utilities switching loads during peak demand hours, or
by breaker action during some fault condition. A model
can be developed, but it is a function of such parameters
as line impedance, circuit breaker size, fault current,
and other widely varying factors. Obviously, the com­
puter installer and customer should be fully aware of
possible problems when the computer system is in­
stalled near a utility substation or switchyard.

CUSTOMER SITE CHARACTERISTICS
Noise on the power line can be generated in many

different ways at the computer user's site. Electric
clock systems signal-modulate the power distribution
within a· facility once an hour to update all electric
clocks. Flicker (momentary voltage dip due to the start­
ing of a large appliance) can occur typically 10 times per
hour and the duration can be from 160 to 670 ms. The
maximum amplitude of a transient is directly propor­
tional to the velocity with which a contact opens, and is
independent of power consumption. a 400-hp motor
(with large slow-moving contacts) produces transients
with one-tenth the amplitu.de of those produced by an
electric clock motor. Fluorescent light switching can
cause an extended transient of 2-MHz, 500V oscilla­
tions lasting for 20 microse~onds. Power characteristics
of an installation change with time even though good
site preparation is done initially. Vending or copy ma­
chines can be added inadvertently to circuits and
grounding that were initially wired exclusively for com­
puter systems.

The most common customer problems associated
with ac power are nonisolated grounds and improper
conductor sizes. These occur even when the grounding
and wiring are done according to code.

Two categories of ground systems must be consid­
ered:

1. Safety (dc conduction) - the electrical power
grounding system which includes all ac power, dis­
tribution and utility service power used for light­
ing, equipment power, et cetera.

1-48 -2

2. EMI (RF conduction) - signal circuit grounding
which includes all electronic and electrical control
circuits associated with a computer system.

In the first category, all neutral and ground line dis­
tributions are wired on separate buses and connected
together at the main power transformer entrance to the
building, making a single-point ground.1 In the second
category, the ground from the electronic equipment is
connected to the nearest steel structural beam to make a
multipoint ground (~ee Figure 1) from a facility view­
point.

Because computer systems typically use earth ground
as a reference within each cabinet and the entire system
is connected to the facility earth ground, it is very im­
portant that the computer system be connected to an
EMI grounding system. Figure 2 shows the system .
power and interface cable hookups and points where
common-mode noise (voltage between both lines and
ground) can e'xist. The net voltage difference between
any two points on the ground network usually will be
small (1 to 3 volts). However, the current through cer­
tain network paths can be on the order of 3 to 5 amperes
with occasional currents of 10 to 15 amperes.

For typical building wiring, electricians use water
pipes and conduit as ground. For safety and minimal
shock hazard, this is legal from an electrical code view­
point. For ~MI suppression it is inadequate because
lighting loads, vending machines, and other types of of­
fice equipment are connected to the same grounding
system. Another common contributor to stray ground
currents within a facility is the connection of the ac
neutral line to earth ground inside the branch panel.
Then the ground ·network becomes a part of the ac re­
turn line to the main building service entrance. The line
current will divide between the' neutral line and the
ground return network in inverse proportion to the im­
pedance of the two paths.

Because instantaneous power surges are required by
a computer system during tum-on and normal opera­
tion, wire sizes must be large enough to keep the voltage
from sagging. For example, during computer tum-on,
switching power supplies can require currents peaking
at 150A and decaying exponentially to 20A in less than
30 ms. If the wire size is inadequate, the input voltage
can sag below the required input voltage tolerance of
the computer for a period of 100 ms, causing the
power-control circuitry to detect a powerfail, thus shut­
ting the system off. Wire sizes specified by typical code
requirements are usually at least one size smaller than
required for computers. Suc'h code requirements make
it difficult for the computer manufacturer to convince
the customer and electrician that larger wire sizes must
be used if the computer system is to operate satisfactor­
ily.

COMPUTER SYSTEM SENSITIVITY
Circuits used in a modem computer system are ex­

tremely fast and more vulnerable to noise than circuits

used a few years ago. Because there is the same high­
frequency sensitivity in a peripheral as in the
mainframe, the same design parameters are used to im­
munize the total system from"outside disturbances. For
software, data integrity is protected from power line
transients by using various error correction codes
(ECC) in the tr~smittal of data between parts of a sys­
tem, and "disc retrys" are used on disc drives when
errors occur. Therefore, power line noise can be
masked by using software error-correction techniques.

IMPACT ON CUSTOMER
AND MANUFACTURER

Making positive determination that a computer instal­
lation problem is caused by power line disturbances can
be very difficult. The occurrence may be random, and
the effects on the system may be different depending on
the state of the electronics at the precise time of the
dIsturbance. Symptoms of such problems overlap with
those that may be caused by intermittent electrical con­
nections, electrostatic dischange (ESD) either directly
to the computer or indirectly via other objects in the
immediate vicinity, or even software program bugs. If
intermittent ac disturbances are suspected, isolating
them may require expensive monitoring equipment that
is installed for a period long enough to detect the next
occurrence.

The time required to analyze and repair an ac line
disturbance problem can be several times the duration
required for analysis and repair of other service prob­
lems. During the process of diagnosis machine time is
lost and the service engineer may have to visit a site
several times before proper remedies can be made. In
the case of ac power transients, which can be random
and are unpredictable," direct correlation of cause and
effect is extremely difficult to obtain.

DETECTION OF A NOISE
PROBLEM ON-SITE

The service engineer's objective is to prevent power
line disturbances from reaching the computer by dis­
cerning their characteristics, and then either remove the
source or isolate the computer from the source. A com­
prehensive set of site preparation guidelines is sent to
the customer prior to delivery of a computer system. If
the guidelines are followed, the likelihood of power line
disturbance problems is minimized. The service en­
gineer may participate in site preparation with the cus­
tomer. Whether during a site preparation or installtion,
or in troubleshooting an installed system, a service en­
gineer may proceed through the following steps:

• Look outside the customer's site. Check for major
industries in the area that consume large amounts of
electricity. Their operation can cause voltage variations
or transients to be propagated to other users sharing the
same output of the utility company's substation
transformer.

• Look within the customer's site for heavy electrical
equipment. A transient source within the site may affect
the computer installation more severely than a distant
source because nearby transients, especially fast-rise­
time pulses, do not dissipate significantly in the short
distance before they reach the computer.

• Note local weather conditions. Electrical storms
may cause transients by direct lightning hits on utility
lines or induced coupling through nearby earth strikes.
Besides the transients, the utility company's hardware
is sometimes affected, causing voltage variations or
powerfails.

• Check the wiring from the building's utility power
connection to the outlets in the computer room. Feed­
back from HP's systems specialists in the field indicates
that improper site wiring is often the major cause of
power line disturbance problems. With the help of an
electrician who is aware of local codes, check the build­
ing's electrical layout and look for load distributions
that overload any circuits, or branch circuits that allow·
other electrical devices to use the same circuit breaker
as the computer. Distribution and breaker panels must
have solid electrical connections, and breakers and wire
capacities must equal or exceed the computer's de­
mand.

• Check equipment layout at the computer installa­
tion. All devices must be plugged into their own wall
outlets. Extension cords with multiple outlet boxes
must not be used. If possible, avoid extension cords
altogether. Check especially for grounding of all devices
by having the electrician confmn that the ground wire is
continuous back to the building's service entrance. A
computer system can pollute its own power if these
procedures are not observed.

Up to this point all checks have been visual. If no
answers are obvious, measurement equipment is re­
quired. Tools for analyzing ac power become prog­
ressively more complicated and expensive as the prob­
lem becomes more difficult. First, wall outlets can be
checked for proper polarity of the lines and ground, and
for existence of ground by a receptacle-circuit tester. At
the same time, a ground loop impedance tester (GLIT)
can be used to test the integrity between the neutral line
and ground. However, it only checks impedance at the
line frequency, not at high frequency or RF.

When intermittents occur, the cost of the tool goes up
significantly and requires the user to have some skill
and training in its operation. Such a tool is a power line
monitor which can be left at a customer's site for sev­
eral days and will measure and record voltage surges,
sags, frequency variation, powerfails, and transients.
Measurements are logged on a printout with their times
of occurrence.

Throughout the measurement process, the service
engineer notes the nature of the disturbance and checks
it against factory-supplied specifications for the com­
puter.

1-48-3

Mter these checks are completed, a solution is likely
to be evident. It may be one of two types: 1) the prob­
lem source is identified and can be removed, or 2) the
source cannot be removed or ~annot be identified, but
the nature of the disturbance has been characterized
and a device to isolate the computer can be specified.

ISOLAnON DEVICES
Isolation devices are available with a variety of fea­

tures to match the needs of the problem site. Manufac­
turers offer product lines with varying degrees of pro­
tection and power handling capabilities. A qualitative
summary of features is given in Table I.

Isolation devices must be installed with full knowl­
edge of their capabilities in mind. Large computer sites
set up through subcontractors place no burden of instal­
lation (other than financial) on the customer. Customers
doing their own installation, however, must work with·
the service engineer to fulfill the prerequisites before
successful operation can happen. Isolation transformers
and line conditioners, in particular, are not panaceas

that are merely uncrated and connected between the
computer and the wall outlet. These devices have their
own input and output specifications that must be met, or
else a new set ofproblems will emerge to replace the old
ones. All devices in the computer system should be
isolated. Otherwise, as shown in Figure 3, an unpro­
tected system component can receive a transient on its
ac input and couple the noise to its chassis. Then the
noise is coupled to an I/O cable leading to the chassis of
the "prot~cted" computer.

ACKNOWLEDGEMENT
I would like to express my sincere thanks to Art Duell of General

Systems Division, who co-authored the original manuscript on this
topic with m~. We both express our thanks to Jim Gillette at the Data
Systems Division, whose detailed research and summarizing of vari­
ous papers, originated new thoughts on test and specification proce­
dQres. Larry Rea, formerly of the Customer Engineer Organization,
provided valuable inputs based upon experience with solving cus­
tomer problems, and Jim Brannan in our reliability group has been
instrumental in building the customized system-level test tools. Norm
Marschke, Computer Systems Division, has made significant contri­
butions in design of system noise immunity and power-control circuits
for new HP products.

Table I
Features of BC Line Protection Devices

Device Description Voltage Variation Frequency Powerfall Normal-Mode Common-Mode
Protection Variation Protection Transient Transient

Protection Protection Protection
~Shielded isolation A transformer with Input/output ratio None None Low. Transformer High. 120 dB CMR

transformer isolated, electro- can be manually windings may specifications are
statically shielded selected by jump- limit bandwidth, available.
primary and sec- ering windings. but pulses get
ondary windings. through.

Tap-switching A shielded isola- Good. For a broad None None Low to medium. High. 120 dB CMR
line conditioner tion transformer input range (;:=400/0 Additional filter- specifications are

regulating out- tolerance), the ing may be pro- available.
put voltage by output is kept vided by filter
automatically within a == 15% capacitors.
switching addi- range.
tional secondary
windings in or out.

Ferroresonant A shielded isola- Good. For a broad None, and will it- Low. Energy stor- High. Saturated High. 120 dB CMR
line conditioner tion transformer input range (==300/0 self malfunction age in the core core clamps all specifications are

using a saturated tolerance) the out- if frequency varies may help if the pulses. 120 dB available.
core to clamp put is kept within by more than a duration is less NMR specifica-
voltage to a set- a ==2% range. few Hz. than one cycle. tions are avail-
level, and recon- able.
structing the ac
sine wave in
the secondary.

Uninterruptible Either a motor- High. Alternate High. Alternate Very good. Dura- Total isolation. Total isolation.
power source generator set, power source cuts power source cuts tion protection is
(UPS) with a diesel in if ac line is in if BC line is a function of en-

engine backup, insufficient. insufficient. gine fuel reserve
or a solid-state or battery capacity.

~inverter powered
by de from stor-
age batteries.

1-48 -4

Definitions: ac PoW'er Anomalies

Power line disturbances may be classified into several types
(see Fig. 1):
Voltage variation: The supplied voltage deviates from the pre­
scribed input range. Input below the range is a sag, above is a
surge. Sags can be caused by deliberate utility cutbacks (brown­
outs) to lower power consumption, by customer loads for which
the utility cannot compensate, or by an excessive inrush starting
current to powered-up equipment. Surges originate from utility line
malfunctions or sudden changes in power demand (removal of
heavy loads) which cannot be corrected instantaneously.

Llne-ta-Llne or Llne-ta-Neutral Voltage

~
I ~---:a:--.-------------:ZC~--:2S:---~----A--------------------0.

L ~----,--,----?\---r\---'-y---r-\---n--n----------------tj-
~I :::.~V:::::\J:::::V:--:::::::Y:.---­

Time.

I Normal I Sag I Normal I Surge Ip~:~r I
<a)

J/\f\ f\ f\ f\ f\ f\ f\ f\
l vvVV\rV V V

I F:::~~Y I Fr~~:nCy I Fr::~~~~y
(b)

Ll-1

N~ ~ l

G~ Co';mon
(0) Mode

Fig. 1. Graph of the ac line voltage under (a) normal, sag,
surge, and powerfail conditions, (b) normal and abnormal
frequency conditions, and (c) 'with common-mode and
normal-mode transients.

Frequency variation: The frequency of the power line voltage
deviates from the prescribed input range. Sudden changes in
load to the utility, switching of power between utility companies, or
generator malfunction can cause such variations.
Powerfall: Total removal of the input voltage to the computer for at

Amplltude---,...",.

--.1 Duration
Rise Time-.I I~

Flg.2. Characteristics of transient noise on an ac power line.

least 5 ms. SWitching of power by utilities, either for the purpose of
redistributing loads or correcting short cir.cuits, will produce
power failures from a few cycles to several seconds. Power
equipment failure can result in outages of minutes to hours.
Transient: A disturbance of less than 5 ms duration. The
amplitude, rise time, duration, resultant oscillation (if any) and
repetition rate (see Fig. 2) determine the effect on the computer's
operation. We can classify transients into three types, distinguish­
ing them by their sources.

Transients from nearby sources (Within 50 feet of the computer)
have very fast rise times (nanoseconds) rich in high-frequency
content. The' power cord becomes a transmission line. and the
propagation of the transient is influenced by distance, conduit,
adjacent conductors (Into which these transients may be
coupled), flatness of the cord against the floor, and socket con­
nections. Because of high-frequency coupling between the con­
ductors in the cord, these transients are usually common-mode
by the time they reach the computer. Sources of this type of
transient are anything with mechanical breaker contacts, such as
coffee pots, electric typewriters, and clock motors.

Transients produced by distant sources will have slower rise
times (microseconds) and longer durations than the first type.
They are generated by any electrical device that produces
enough transient energy to propagate through the device's
circuit breaker and distribution panel back to the circuit breaker
feeding the computer. Elevator motors, industrial machinery
(either on the premises or a block away), and air conditioners are
possible sources. These transients are normal-mode or
common-mode.

Other transients with rise times similar to those of distant-source
transients and with a common-mode structure can be produced
by utility distribution faults and resultant arcing, or by lightning,
direct or induced, on the utility power pole.

Lighting

Building
Steel

(a) .-Earth Ground

LG=Loglc Ground

Fig. 2. Voltage differences between the logic grounds of
interconnected computer units can exist if ground imped­
ances and power needs differ between any two units.

Computer

Noise Coupled
to CPU

-A-.
-A-.

---1 Noise Coupled
to I/O Cable

Noise Removed
from ac Line

/

,,-------------, CPU
: : ~Chassis. .,
I

Printer
~ .'Chassis

, ;.Noise Cou~i~d--- -----'
to Chassis

Isolation
Device

\
Common

Mode
Pulse

h

G N L

Fig. 1. The grounding within a building can consist of both (a)
single-point (used for lighting, motors, and appliances) and.
(b) multipoint (used for computer systems) ground bus sys­
tems.

Fig. 3. All units in a computer system must be isolated from
the ac power line. Otherwise, an unisolated unit, the printer
shown here, can couple noise tb an isolated unit, the CPU
here, via the I/O interconnections.

1-48-6

System Disaster Recovery:
Tips and Techniques

Jason M. Goertz
Systems Engineer
Hewlett-Packard

Bellevue, VVashington

INTRODUCTION
Since its introduction in 1973, the HP3000 has proved

to be one of the most reliable computer systems ever
built. Hardware reliability is extremely good, with a
minimum of downtime in the case of most users. An
extensive field 'operation exists in the Customer 'En­
gineering Organization which, in most cases, can diag­
nose and repair failing hardware in a very short amount
of time. For the really sticky problem that does occur,
there exists a large team of engineers in the various
manufacturing divisions which backs up the field per­
sonnel. This, coupled with a computerized parts in­
ventory system in the field, assures the user that the
fastest possible repair will be made to his system.
Software reliability is also very good. This is due in a
large part to HP's policy that the operating system and
subsystems will not be modified by field personnel or by
customers, as i~ the case with many vendors. Along
with this, software distribution is handled by the local
Field Software Coordinator, giving the field a fair
amou~t of leeway in exactly what software is released
to an individual area,' while maintaining a reasonable
amount of central control.

Unfortunately, all things created by the hand of man
are built with imperfections, and this includes computer
systems. This paper will deal with the event that these
imperfections manifest themselves in such a way as to
destroy, or threaten to destroy, the integrity of the sys-

.tem and, of more importance, the data stored on the
computer system. This is always more valuable to the
owner of the computer than the machine hardware it­
self.

Causes of this system (and data) integrity loss are
many and varied. Usually, a severe hardware failure
such as a disc head crash, will cause data to be lost.
Many times" a natural occurence (an "Act of God" as
the service contract puts it) against which the hardware
cannot protect itself will be the culprit. An example
might be a severe lightning storm which causes power
fluctuations or surges. Software is not free from blame
either. Software failures are generally caused by a spe­
cific bug which has not been fIXed, usually in the operat­
ing system. A recent example of this is the PTAPE in­
trinsic. There were calls to ATTACHIO in PTAPE that

were hardcoded to writ~ data to areas in virtual memory
on LDEV 1. With the advent of multi-spindle virtual
memory on MPE-IV, this became a disasterous situa­
tion. A data segment could be built on LDEV 2 or
another system domain disc, but PTAPE would write it
to the corresponding location on LDEV 1, causing a
clobbered directory, system code etc. ,Many times
human beings are the cause of integrity' problems. A
good example of this is stopping the system while it is in
the process of coming up, for whatever reason. This
can, and usually does, result in a system which will not
boot at all.

In any case, loss of integrity results when the system
cannot be started. In other words, INITIAL will not
complete the startup procedure, and the user is left with
a system that will not come up, with all his data on disc
and apparently inaccessible. Or is it? This paper will
attempt to describe how to recover the system, and the
data.

In the following pages, we 'will discuss the following
topics:

1. How to prepare for a system disaster.
2. Reasons for loss of system integrity.
3. What to do to recover data.
4. Description of utilities to help prevent system

problems, and recover the system should this be­
come necessary.

It should be remembered that many' of the sugges­
tions presented in the following pages are the "ideal
case~" and are not absolutely necessary for a well man­
aged system. Many users, for reasons of economy or
time, cannot follow all of these suggestions to the letter,
and do quite well with their systems.

PREPARATION FOR DISASTER
The following are suggestions for what to do before

the system gets into a state where it is unusable. While
some of them may seem quite obvious, it is surprising
how the basics are often times overlooked. As with al­
most anything, "be prepared" is the rule of the day if
one is anticipating a bad situation.

In all but a few c~ses, a system which will not start
probably. has corrupt system ftIes and data. In a few

1-58 -1

spe,cific instances (covered later) this can be fIXed and
the system brought up. However, 95% of the time, a
reload is in order. It is important to realize this fact. A
reload may, and probably will, be necessary to recover
the system. This point cannot be emphasized enough.
The only good way to build a corrupt system, is not to
try to fIX ,what is wrong, but to totally start over and
build a new system from scratch. Many people try to
avoid this step and fmd themselves in an even worse
situation than before. It is very important that the sys­
tem manager who fmds himself having to recover the
system accept the fact that the system will be down for
a while.

Doing a reload may not be as bad as it sounds. There
are five options on a reload: SPREAD, RESTORE,
COMPACT, ACCOUNTS, AND NULL. A full de­
scription of what these do can be found in section 6 of
the System Manager manual. Briefly, though,
SPREAD, RESTORE, and COMPACT will attempt to
load allftles onto the system. Since the typical system
manager will be doing the recovery in the midst of angry
users ringing the phone off the hook, it is to everyone's
best interest to get the system up as soon as possible.
Thus, the ACCOUNTS or NULL option, which do not
load all fIles, should be used. A later section will deal
with exactly when to use which of these two options.

In order for a reload to be done, however, there must
be something to reload from. This brings us to the first
and by far the most important preparation to be per­
formed. That is, have a good Sysdump set available at
all times. Again, this point cannot be overemphasized.
We will defme a "good Sysdump" as being one that has
an intact and up to date version of MPE on it, a good
directory, and the most recent user fIles on it.

The most important contribution toward this goal is
to perform regular Sysdumps. A periodic schedule of
dumps is highly recommended, and must be adhered to.
A full Sysdump every day would be ideal, but many
users simply cannot afford this, in terms of system
down time, operator cost and tape cost. The next best
solution to this is to do a weekly Sysdump, then partials
to the last full on the other days of the week. Generally,
most users do the full dumps on Monday, Friday, or on
the weekend. This is the most common method, and
provides adequate Sysduqlp coverage at a minimum of
downtime and cost.

There is one additional thing the Sysdump provides
which many users overlook, and that is the listing that
comes out when the dump is over. This listing includes
the fde dumped, what disc it was on, what the disc
address was, and what reel of the dump it was stored
on. Appendix A contains a sample output. As we will
see later, this document is essential to being able to
recover data. Many times, people do not generate the
list because it is too bulky, etc. It is worth the trouble!
It's one of those things you will desperately need when
you can't get it. It is handy, too, for fmding which reel of
the dump a particular fIle is on when it is necessary to

1-58 -2

restore one during normal system operation. Store all
, listings for any Sysdump set that is currently valid. It is

a good idea to keep the full dump listings together with
other full listings, partial listings with partials.

I It is very important to have the Sysdump tapes, as
well as the Sysdump listings, stored in a location where
they are readily accessable to the person recovering the
system. Many users, just for safety, store the previous
full set offsite. This is a good idea, since a fife could
wipe out all hardware and tapes. An offsite copy would
insure that some kind of system could be rebuilt, even if
it were a week old.

The Sysdump is of little use, however, if the the data
on it is unreadable. Use newer tapes if possible for the
backups. At least keep the tapes cleaned regularly, and
don't use a tape more than a ,few times before being
cycled out of the Sysdump sets. This, of course, varies
with how often the tape is used and the quality of the
tape. There are a few programs in existence to verify
that a Sysdump tape set is good, which will be described
in detail later under UTILITIES. These, at best, only
give an idea that the tape is good, since only the fIle
labels are really checked for integrity. But at least parity
errors will usually be detected.

In addition to the Sysdump tape sets, the system cold
load tape should be kept onsite at all times. This tape is
a special form of the Sysdump tape, usually containing
only MPE, system and subsystem files (@.PUB.SYS).
This tape is generally made by the account SE at the
time a new version ofMPE is loaded onto the system. It
is advisable to keep the cold load tape for the current
version of MPE, as well as the previous version, just in
case it becomes necessary to go back one release. The
reason this tape is valuable is so that if problems arise, a
known, "good" version of MPE can be loaded onto the
system. This can be done with the UPDATE option.
Most users keep an additional cold load tape, this one
reflecting all configuration changes. This is a good idea,
although the UPDATE from the HP made cold load
tape will not affect the configuration. If this additional
'tape is desirable, an UPDATE from the HP made tape is
advisable before the configuration changes are made.
This is to prevent any "glitches" in the version ofMPE
on disc to propagate through the cold load tape(s).
'Along the same line, an update before each full sysdump
is also a good idea, for the same reasons. This has' an
additional benifit, that being that regular cold loads are
performed. My Customer Engineer friends tell me that
the customers that do a cold load regularly have fewer
problems than users who don't.

An absolutely necessary tape set to have is the diag­
nostic tape set. For Series 111111, this consists of two
tapes, a CPU diagnostic tape, and a Non-CPU diagnos­
tic tape. On the HP-IB machines (Series 30/33/44/64),
one tape or floppy is used, called the Diagnostic Utility
system (DUS). The DUS contains both CPU and
peripheral diagnostics, including SADUTIL and
SLEUTH, combined. CPU diagnostics are used almost

exclusively by the CE's, while the Non-CPU diagnos­
tics can be utilized by users. Indeed, this paper deals
primarily with that very subject. Again, this diagnostic
tape or tapes must be created when the system is opera­
ble. Waiting till "later" to make the tape could spell
trouble. Whenever a new version of MPE is installed, a
new set of tapes (or DUS) should be created. This is
because the diagnostics are updated along with MPE
and the subsystems.

Finally, it is a good idea to keep some sort of list of
accounts, groups, etc that the system currently has. A
:REPORT listing would serve very nicely. While this
would not be necessary to recover the system, it will
'fierve as reference from which to decide which accounts
to reload frrst. This would be the case if production
accounts were to' be brought back online before devel­
opment. Some suggestions as to what to put on this list
would be:

1. Prioritization of accounts, groups etc that are to be
recovered, so that the most critical can be brought
back frrst.

2. A list of all critical files that might have to be re­
covered. This should be a list of MPE ftIe names,
so databases should be listed as DBOl, DB02, etc.

REASONS FOR LOSS OF INTEGRITY

We have seen the types of things that. are necessary to
prepare for a system integrity loss. We will now discuss
exactly what causes the system to become inoperable,
and what we can do to bring the system back, and re­
cover all the data.

As has been said before, the time when danger of
system integrity loss i~ highest is when the system is
down and will not come up. While it is possible to have
a running system and have most of the data corrupt, at
least MPE is still running, and we have the aid ofit and a
host of utilities, plus the ability to restore older versions
offtIes , etc. Most sites do not routinely bring the system
down at night. Instead, they leave all ~ardware powered
on and MPE running. The question is really one of how
the system gets to, the down state. The most common
cause here is the system interruption, or more specifi­
cally, the system failure, system hang, and system halt.

A system failure occures when some part of the MPE
system calls a procedure called SUDDENDEATH. An
integer number is passed to SUDDENDEATH, which
is printed in a system failure message along with the
current hardware status and return addres~ of the cal­
ling entity. These calls are placed in the code by the
MPE lab purposely, and are used when an "impossible"
situation is encountered, and MPE cannot continue
running. The system hang can be caused for an infmite
number of reasons. It usually ends up being caused by a
hardware resource which ceases to function. Eventu­
ally, every user on the system asks for that resource,
causing everyone to wait. A slightly different variation

i~ when a hardware device ties up a system table, and
everyone suspends when they try to access that table. A
silent halt is similar to a system hang, except that the
hardware is in a state in which it cannot run. During a
system hang, the hardware will run, but since everyone
is suspended, it is never asked to. Silent halts are gener­
ally caused by bad hardware, although there are a few
software problems that can canse them.

The standard way to recover from any of the above
three system problems is to:

1. Take a memory dump.
2. WARMSTART.
3. Print off all spoolftIes.
4. Load system with UPDATE option from a good

cold load tape.
5. Log failure and recovery action.

Step four is one reason why it is a good idea to keep a
good cold load tape available. rhe cold load will get the
system back to a known good copy of MPE, which may
remove the source of the problem. If the failure then
re-occurs, a more serious problem is indicated, and the
local PIeS center should be consulted. Step 5 is often
overlooked in the haste of the moment. It is important
to keep track of what kind of failure occured, and what
actions were taken in case the problem escalates in sev­
erity. The Gold book supplied with the system is a good
place to log these facts, and places are provided under
"Historical Records." This becomes very valuable to
the SE/CE who must try to piece together a history of
the system's problems in order to locate any trends.
This history is absolutely essential to correcting certain
very sticky system problems.

One thing to be noted here is that the failure (hang,
halt) is not necessarily the cause for the system integrity
loss. In other words, the ·failure itself does not go out
and cause data to be corrupted. What the failure can_do
is indicate the source of the problem. For instance,
something might have, at some point in time, caused the
ftIe label of a system file to be destroyed. When the
system tried to access that system fde, a system failure
occured. If the ftIe is a critical one, such as an 10 driver,
it is probable that the system would not come up. The
failure did not cause the system ftIe corruption, but in­
dicated that the ftIe was, indeed, corrupt. In the pro­
cess, the system got into a state in which it could not or
would not start. A variation of this is when the system
interruption occurs during the updating of a critical re­
source. The net result is the same: a corrupt system.
The system is now down and will not come up. In the
above example, a cold load may have solved the prob­
lem. But let us assume it would not. We now have a
system which has a corrupt operating system, and will
not come up unless the system is rebuilt from scratch.
In other words, we have to do a reload. Thus, system
failures can lead to the situtation in which user data
must be recovered.

1-58 -3

WHAT DO WE DO NOW?

Before discussing how we would save the fues, a
couple of special "system won't come up" cases should
be discussed. One is the situation in which the system
was stopped in the middle of a startup. This usually
happens when the person doing the startup is in a hurry,
and'in his haste aborts the startup before it has com­
pleted. When another start is attempted, INITIAL dis­
plays a message saying something to the effect of:
"ALL VOLUMES NOT PRESENT. MOUNT COR­
RECT VOLUMES OR RELOAD," or "VOLUME
TABLE DESTROYED - MUST RELOAD." The ,rea­
son for this is that in the startup process, INITIAL does
several things to insure that the system is in a startable
state. It updates the Cold Load ID, which is a number
that is stored in the system and changed every time the
system is started. The Cold Load ID is kept in many
places, and only at the end of the startup procedure can
we be sure that all places have been updated with the
new number. One of the locations the Cold Load ID is
kept is the Volume Table, which has a listing of all disc
volume names. If the Cold Load ID in the Volume
Table does not match the Cold Load ID kept in the disc
volume label, (sector 0 of the disc), then INITIAL as­
sumes something is awry, and will not let the system
come up.

In most cases, the system can be brought up safely at
this point. The problem is to get INITIAL to ignore the
Cold Load ID's. This is done by zeroing out the cold
load id's, using the HP utility SADUTIL, which will be
discussed in detail a little later. Below is a list of the
locations of the Cold Load ID that INITIAL checks,
plus a few other things that should be set on disc.

1. Word 7 of Sector 0 of every system domain disc.
2. Word %12 of the Disc Cold Load Table, located on

LDEV 1.
3. Word 1 of the Volume Table (on disc). The Vol­

ume Table is pointed to by words %124-125 of the
Cold Load Information Table.

4. Word %32 of the Disc Cold Load Table contains
bits which tell what the previous load was. While
not absolutely necessary, this should be zeroed
out.

A full summary of this procedure is in Appendix B of
this paper. It should be noted that this procedure will
not always work, and the locations of the data on disc
can·be changed by the·MPE lab at any time. This is, at
best, a kludge which can get a system up and running in
very few cases.

Another special case is that the directory itself is cor­
rupted in such a way as it needs to be rebuilt. In this
case, it is necessary to build an empty directory (which
the ACCOUNTS option does not do) and then rebuild
the accounting structure. The easiest way is to use a
utility called BULDACCT. This creates two
jobstreams. The first builds all the accounts, and the

1-58-4

second logs on as the manager of all those accounts and
builds users, groups, private volumes, etc. The full se­
quence of events for this would be:

1. Do a full Sysdump. This will have a corrupt direc­
tory ,on the tape, but that doesn't matter.

2. Log on as MANAGER.SYS,PUB and run BUL­
DACCT. This creates two fues, JOBACCT and
JOBACCTB.

3. :STORE these two fues on a separate tape.
4. RELOAD from the full Sysdump, using the NULL

option. This builds a system with PUB.SYS,
MANAGER.SYS and only system fues.

5. :RESTORE the two files off the tape.
6. :STREAM JOBACCT. This will build the ac­

counts, then stream JOBACCTB, which builds the
rest of the account structure.

7. :RESTO~E @.@.@ from the full'sysdump.
Again, thi~ is only a special case. Usually, the system

can't be patched together like this, and a reload is in
order. It should be noted that BULDACCT is a user
written, unsupported utility.

What happens when, after all you try to do, the sys­
tem still won't come up? How can data be recovered?
The main thing that can be done at this point is to reload
the system using an ACCOUNTS option, then restore
the most critical user fues fIrst, and get the most impor­
tant applications up and running. To do this, use the list
of accounts, ftIes, and users that was discussed in Prep­
aration for Disaster. The critical issue is how to recover
any data that may have been updated since the last
backup. In some cases, there may have been no updat­
ing of files, then there is no problem. Another case may
be that the transactions lost may be easy enough to
recreate that recovery with SADUTIL is not warranted.
In either case, bring the system up as quickly as possi­
ble.

At this point, data recovery of the system is critical.
To take the data off of disc and store it to tape, we use a
utility called SADUTIL. This is a standalone utility
which is on either the non-CPU diagnostic tape (Series
IIIII!) or the Diagnostic Utility System Tape/Floppy
(HP-IB machines). SADUTIL is written so that all the
important functions of MPE, such as the ability to talk
to 10 devices, read and write to disc, and interpret
commands are all contained in one program. Indeed,
SADUTIL is essentially a small MPE. In addition, it
must fit in Bank 0 of memory. For this reason,
SADUTIL does have some limitations, which will be
discussed later.

SADUTIL has many functions, but the primary ones
that we are concerned with are the SAVE function,
which takes fues off of disc and writes them to tape; the
PDSK function, which prints areas of disc; and the
EDIT function, which allows disc locations to be mod- ~

ified. SADUTIL, as well as several other very handy
MPE utilities, is fully documented in the MPE
UTILITIES manual.

We will assume that the diagnostic tape/DUS is
made, (which won't be possible if the system is down)
the fIrst step is to load SADUTIL. On Series 111111, this
is done by the front panel. On the HP-IB machines, the
LOAD button is pressed, and the DUS is loaded into
memory. SADUTIL is then selected, and is run by the
diagnostic loader. SADUTIL then asks if any configura­
tion changes are to be made. All discs, including floppy
drives, must be configured at this point. SADUTIL
does not look at the MPE configuration fIles, but rather
has its own internal configuration array. This array can
be changed later by using the CONF command. Mer
all configuration changes have been made, SADUTIL
prompts the user for a command. This could be a
SAVE, PDSK, EDIT or any other SADUTIL com­
mand. These commands are listed in the MPE Utilities
manual SADUTIL section. Some commands require
additional dialog, while others do not.

To save files, enter the ·SAVE command, and
SADUTIL prompts for either the file name, or the disc
address. Notice that using the fIle name assumes the
directory is intact. It is better to use the disc Idev and
address, which can be obtained by the Sysdump listing.
If the file is one that has been created since the last
Sysdump, then it will be necessary to use the fue name,
or use the PFIL command to obtain the disc address.
Both of these options assume the directory is intact.

One of SADUTIL's limitations should be mentioned,
as it can affect the way recovery can be done. First,
SADUTIL cannot handle tape switching. This means
that if a file set is given which will span more than one
reel of tape, the recovery will terminate. The list of
important fues to recover rnentioned in the Preparation
section should include a fuesize for each fIle listed. This
is so the proper amou~t of tape can be estimated. It is
very iJnportant to back large files one at a time, putting
them on a separate tape. It is possible to enter the
names one at a time to the SAVE command, and only
terminate the list when the end of the tape is near. If a
fde does spillover, then SADUTIL must be restarted.
The file will not be damaged on disc, but the copy on
tape cannot be used. Therefore, that fIle must be saved
again on another tape. Be sure and keep a'written log of
what ftIes are saved in what order on what tapes. This is
useful later when these tapes are used to restore the
fdes.

After' all fIles have been saved by SADUTIL, the sys­
tem must be reloaded. As a rule, the ACCOUNTS op­
tion is the fastest way to reload and get applications
back online. Before starting the reload, there is one
thing that should be done to insure that a complete re­
load is penormed. INITIAL will not reload all of MPE
(ie, it assumes that some MPE on disc is valid) if the
disc volume label is good. Therefore, it is a good idea to
force initial to bring all of MPE offof tape by destroying
the volume labels on the system volumes. This is done
by using SADUTIL's EDIT command, or use
SLEUTH(Series II/III) or SLEUTHSM(HP-IB ma-

chines). Appendix C has a sample dialog of how this is
done with SLEUTHSM. SLEUTHSM is documented
in the Diagnostic Manual Set.

After the ACCOUNTS reload is done, the fIles are
:RESTORED back to disc, partial tapes fIrst, then the
full tapes. The full tape should be restored with the
KEEP option on the :RESTORE, to insure that fIles do
not get written over by older versions of the same ftIes.
This is where the prioritized list of fIles, accounts,
groups, etc, comes in handy. Restore the fIles in order
of prioritization, and this will guarantee the shortest
time to applications being back online. This list may be
deviated from, since how critical an application is can
vary drastically. An accounts payable application will
not be as critical if bills were payed the day before as it
might be otherwise. After the restore(s) are done, the
files must be restored from the tape(s) created by
SADUTIL. This is done using the utility RECOVER2.
RECOVER2 will prompt for fIle sets and names, and
give the option of keeping fIles already on disc. Always
overwrite the version on disc, since the ftIe on the
SADUTIL tape will always be more current than' the
version on the last partial. Appendix D has a full
SADUTIL dialog, showing how to list and save fIles,
then how to run RECOVER2 when the system is up.

UTILITIES
As we have seen, in order to recover files off of disc

and perform other functions, proper softwar~ tools must
be used. We have discussed two of these, SLEUTH and
SADUTIL. These, however, are of use only when the
system is being recovered. It should be emphasized that
prevention is more important than cure, and that all
bases must be covered before disaster strikes. The fol­
lowing is a list of the Utilities that exist for prevention,
and their function. Some are not HP supported', and
should be used with the same caveats as any other un­
supported utility, such as SOO, IOSTAT, etc.
SLEUTH - Standalone diagnostic that exercises

peripheral devices. Used primarily to format disc
packs. HP supported.

SADUTIL - Standalone diagnostic that allows ftIe re­
covery when system is down. Also allows ~odifi­

cation of disc areas, disc condensation, printing of
ftIe information (variation of :LISTF). HP sup­
ported.

RECOVER2 - Used to restore the tape created by
SADUTIL. Used after system is up and running.
HP supported.

BADLABEL - Checks validity of disc fIles. Tells if
anything is wrong with a file label, including
whether or not the extents point to free space, or
to the extents of another ftIe. Used as preventative
measure. User written, privileged.

VALIDATE - Checks sysdump tape to see if ftIe
labels are valid. Checks to see if parity of direc­
tory or MPE portion of tape is good. Also prints

1-58-5

out creator data, etc. Similar to old utility, STAN.
User writ~en. .

BADFILE - Used to tell what the last fIle on a Sys­
dump tape is, if Sysdump aborts. User written.

FLUTIL3 - Used to display and modify any portion of
a fde label on disc. Used also to Pllrge any bad
files. User written, privileged.

BULDACCT - Used to rebuild accounting structure of
system. Will not always work if directory is cor­
rupt. User written.

GETFILE2~ Used to restore fdes off of :STORE and
Sysdump tapes if creator does not exist on the
system. If run with PARM=I, a SADUTIL tape
can be restored. User written, privileged.

DISKED2 - Utility which performs the SADUTIL
EDIT function. Allows online mo.dification of disc
locations. HP supported.

CONCLUSION

In summary, there are several st~ps which lead to

maintaining system integrity, and to recover it if lost:
1. Do consistent, regular backups. Validate tapes to

insure that they are readable· to the system.
2. Maintain a library of all documents and software ~

necessary to recoverthe system. This includes full
listings from. Sysdumps, current diagnostic tapes,
and listings of critical application information (file
names, etc.)

3. Keep accurate records of all system interruptions,
and what action was taken.

4. If the system won't come up, use SADUTIL and
. SLEUTH to recover ftles.

S. Reload system using ACCOUNTS option, then re­
store critical ftles first. Use RECOVER2 to restore
ftles saved with SADUTIL.

Following these suggestions' will, along with some
common sense, provide the necessary procedures to in­
sure that the 'HP3000 provides quality service to the
users. My sincere wish is that no one will ~ver have to
use the information in this paper.

APPENDIX A

The following is a sample output listing of Sysdump. and what reel of the dump it was stored on.
This shows the ftIe dumped, where it ~s located on disc,

FILE al~ROUF' , AI:COUt~T '_DN ADDRES;S '~lOLUME

8A()LABEL t PfJB .I~OERTZ 1 ~73067 1
~

8At·~tiER · FaiJE: · I~CIERTZ 1 ;·:73143 1
C:OPYL 18 • F'IJ'B , J~r:fERTZ 1 ~~73400 1
r:;JP)·'L I Bf(, F'fJE: .I~OERTZ 1 ~75754 1
I:RASH t F'fJB .GOERTZ 1 ~~7334 0 1
C:RASH2 · FlUB aI~CIERTZ 1 ~'~73351 1
I:RASH2P , FlUB ,I~OERTZ 1 ~·:77257 1
,:RASHP • F'UB •I~OERTZ 1 ~77324 1
,I::RASHU I FlUB I CiOERTZ 1 ~; 146011 1
[)8BLIFFER. F'LIE: , CiC'ERTZ 1 ;-:77371 1
(>8l..r IZARD. F'IJB , CjlJERTZ 1 ~-~774 07 1
[)ECOM3 I F'ljE: .I::;OERTZ 1 ~.~ 14c;,322 1
()ECOMF'6 I F'IJ8 , '~C'ERTZ 1 ;.: 146453 1
() J Rt-1ATCH , F"JB , (~OERTZ 1 ;':73223 1
[) I ~3CADDR . PijE: , GI)ERTZ 1 ~~775 07 1
():~C;At~ • F'fJE: , '~OERTZ 1 ~~77522 1
i)SCAt~TST • PfJB al~OERT2 1 ~146604 1
[)UAt4E , F'lIB aCi(tERTZ 1 ~146616 1
()Wt~TST aF'IJS ,GOERTZ 1 ~147156 1
()l\lt~TS TP • F'fJE: • J~IJERTZ 1 ;':147175 1
Et'~TR'lPt~T , FalJB aJ~OERTZ 1 :~147203 1
E··lERI~Rt4 , F'fJB ,I~OERTZ 1 ;~ 14721 3 1
E~<At'1F'LE aPfJB I J~OERTZ 1 :'--:147275 1
E~'{At1PLEP • PiJE: •I~CIERTZ 1 :'-;:147465 1
FLABEL • PiJB ,I~OERTZ 1 ;~ 147476 1
FLltr1IT · F'fJB .GOERTZ 1 :':147642 t
FLUTIL3 · F'lfB II~OERTZ 1 ~147705 1
FORTRAN .PUB · J~OERTZ 1 ;.: 147764 1

1-58 -6

FTHLIST .PUB •t~OERT2 1 ~227775 1
FTNt~E:W •PIJB •J~OERTZ 1 ~77614 1
FTt~USL .PUB .GOERTZ 1 ;'::232341 1

r GETSTRt~G • PIJB .1~OERT2 1 ~: 15 0564 1
GRDSCHMA,PUB ,I~OERTZ 1 ~~ 150572 1
J:iRDTEST ,F'IJB · ':;CIERTZ 1 ~~154731 1
t:;RDTSTF .PUB ,1~OERT2 1 ~154740 1
ID • F'IJB .I~OERTZ 1 ~.; 154755 1
I DI~I:;Et~ ,PLJB .GOERTZ 1 ~154766 1
K:=:Ar1RBLD, PIJB · J:;OERTZ 1 ,:232652 1
LAB JOB • PLiE: · I~I)ERTZ 1 :.~ 154777 1
LIBREST , PIJB · '~('ERT2 1 ~232714 1
LIMI:HHG , F'IJB · I~'JERTZ 1 ~~155006 1
L=3TALL'JC: . F'IJB , (~C'ERTZ 1 ~.~ 1 If. 2677 1
PIes · PiJB ,I~OERTZ 1 ;~162707 1
PI (::32 , PIJB •'~CIERTZ 1 ;~162714 1
PICTEST • PJJB .I~OERTZ 1 ;~ 162720 1
PICTEST1 . F'IJB ,1:-iOERTZ 1 ~~233025 1
FIR I t4TER I F'fJB · I~OERTZ 1 ~~23304 0 1
.)D I SPLAY, PIJB · I~OERTZ 1 ~233054 1
RiM:=< • PIJ8 ,GOERTZ 1 ~~233140 1
SE'~P~:OG • PfJB , I~')ERTZ 1 ~234675 1
~3EF'32S' , F'IJB , '~C'ERTZ 1 ~'~23471 0 1
SETC(tBCJL . F'iJB , J~OERTZ 1 ~'~234716 1
SETTDPC , PIJB ,I:;OERTZ 1 ;~234723 1
SL • F'IJB , CiOERTZ 1 ~~234731 1
:3t.2 • F'IJ8 t (iLIERTZ 1 ;.~ 2 3 5 07 If. 1
SLPr1AP · PijE: ,GOERTZ 1 ~~235243 1

.r' =3LF'1'1APF' , PiJti I i~CiEk:TZ 1 ~~23544 I) 1
:3LPt'1AF'I~ · F'tjE: , J:iOERTZ 1 :"~2354E,6

St1 • F'IJE: , i~ (I E f;~ TZ .1 ~';235646 1
SO(- • F'IJE: , Ci(IERTZ 1 ~'~2377 04 1
SP[)48 00 • F"JE: , r~CIEF:TZ 1 ~'~235f,63 1
~:PL • F'ljE: , GCIERTZ 1 ~'~24 0347 1
~::f'L2 · F'iJE: , GIJERTZ 1 ~'~235E, 71 1
SPLLAB , F'IJB · J~OERTZ 1 ~'~24 I) 073 1
SPLLAB2 , FlUE: I (~OERTZ 1 ~235715 1
~iF'LLAB3 • F'IJB , J~OERTZ 1 ~'~241327 1
:=:F'LSTD I F'JJE: · GC'ERTZ 1 ~'~240117 1
SPLXREF , PIJE: , I~OERTZ 1 ~~241542 1
SU~3T~:ACK • PiJB • I~CIERTZ 1 :'~241620 1
St.JITCH • F"JE: · '~OERTZ 1 ~~241650 t
TAF'ELAB • F"JE: , C~CIERTZ 1 ~:241664 1
TERt1 I D · PiJE: , l~t)ERTZ 1 :"~241676 1
TEST · F'UE: · ':l!)ERTZ 1 ~~241704 1
TESTER , F'ijB , (~('ERTZ 1 :'-~24 171 1 1
TE~:; iF I LE , F'tJE: , ':;CIEF:.TZ 1 ;'~241 71 7 1
TE=3TVr1 · PiJE: , CiCtERTZ 1 :"~244257 1
'JDC · F·tIE~ I GCtE~:TZ 1 ~'~27524 7 1
'J[.'C:CPL t FtIJE: .GOERTZ 1 ~'~235731 1
U[)C:LIT I L I F'iJE: ,GOERTZ 1 ~~244435 1
tjLf)SET , PIJE: · GIJ£RTZ 1 ;'~275325 1
fJSER I t·j IT. FrijE: .GOERTZ 1 ~'~275336 1r IJT817 · F'tlE: , GCiERTZ 1 :',:275350 i
;<>{>-~ · PLI8 , J':;;C'ERTZ 1 :':27541 7 1
~<>~~<p , F'lIE: , l~f)ERT2 1 ~'~275601 1
x"lZP · PIJE: , (~r)ERTZ 1 ~'~2756 i 1 1

1-58-7

event that a load was aborted. This dialog was done on a
Series 44 with one 7925 disc.

o, TYPE= 0, SUBTYPE= 9

100: ·, • I I I I • • , , ·• • • ,
110; • .• • • I , , • I • • , • • •
120: I , ·I • • I • I • • I I • I •
~.30 : · I • ·I I • ·• I , I • I I'

1401 I I , I ·I I I · I · I ···· ~150: ·I , · I I I I I , , I ·I I •
1(,0 : ·.. · , ··.• I ·• • ·I , ·170: I . I , I • I · I · I , ·I I I

APPENDIX B

The following is a sample dialog showing how to use
SADUTIL to set the cold load id's on disc. This is in the

-)start
,,:~ -.. ')'':

J-.IP32033C. FO I D3
Wl-fIel-1 OPTJON <~JARMSTART/CO(11..START>? COO
ANY CI-IANGES'?
STACK MARKER TRACE

1 3SS2 ~0003S 174 MAINSEGi
o '13 iOj037 4 BOOTSTRAP

ER R'OR :1J:20 1 VOI_UMF: T'AB1...E DESTR OYED - MlJST RELOAD

rtAl_T 4
.l~)·b.Q.~.Jl ~~
p.... , ..

l> 1Q nll.9.Ji.tli";LjJ t l.l:~.U....:c:!.Vi.t1:..~_R.L~tll' 1 OIl':'_Q...L...Q.J~ , '
".r.~n;t~.r~.....,Y..Q.IJ.!-e.U..9.r..!!t'L~..r:L~.L_tlY..P..f_.l:tr~l.:f._t:.~~r.,,-,~.llgr....9.t.'_J_n.f:JlJ:!''''~..l!.o n).

~,~ ,l.SADUT IL. ,
Disc: lJ·t.ll.lty· AO~o' O~ (C) 1"1ewlet,'r"Pf.1cJ(l1rd Co I' ,.~.97(:)

LIST LO~lCAL DEVI~E~? Y , ,
LpEV DRTi. \ l'NIT TYPE:' Sl.lftTYPE

DISC CONF1GURAT10N 'CHANGES?, Y
1_0GI CAt. D.1::VICE? '~.
DRT'? .89
UNI'T?" 0
TYP'E? 0
SUBTYPE? "9
LOGICAl. nr::VICE?
LIST l..OGI1CAt_ DEVICES,? ,Y

LDEV DRT UNIT i l'YPE' SlJBTVf.)E

1 89 0 0 9
SERIAL DEVrCE C~ANGES? y
DRT-? 73 ;
UNI:T·? 0
TYPE? 24
SUBTYPE? 0
ENTER FUNCTION I PDSK' 1

ENTER ADDRESS':r 0, 1 ; A'
LDEV= 1, DRT= -89, UNIT=
SECTOR % 0

0: SYSTEM DISC I I II

10& 3000MH792SUO. I II

20 1 • I I I I I I •• I I I I • I I

30: I 1'1' • 1.1.1.1' ••

40: I" I' • 1" I I I I • I'

SO: I I I •• I I , •• I I I • I I

60: . 1.1 I I • 1.1 1.1 •• I

7 0 ~ •• I I •• I , • I • I I I , ,

1-58-8

ENTER AI)DRESS: U , .L .> W

SECTOR % 0
0: 0·51531 05:1.524 042S1.'S 020104 044S23 041440 OOOOij. 001007

10: 031460 0300/-,0 04i)S1.0 O~~547i O~j.O(,S OS2'~()O 000000 000000
20: 000000 000000 000000 OOOO()() 000000 000000 000000 000000
30: 000000 000000 000000 000000 000000 000000 000000 000000
40 : 000000 000000 000000 000000 000000 000000 000000 000000
SO: oonooo 000000 000000 000000 000000 aooooo 000000 000000
bOt 000000 000000 000000 000000 000000 000000 000000 000000
70: 000000 000000 000000 000000 000000 000000 000000 000000

100: 000000 000000 000000 000000 000000 000000 000000 000000
110: () 0 00 0'0 000000 oaoooo 000000 000000 000000 000000 000000
120: 000000 aonono 000000 000000 0(10000 000000 000000 000000
i30~ 000000 000000 000000 000000 ()(l(}OOO 000000 O(l(l()OO ()(l(lOOO
140: 000000 000000 000000 000000 000000 000000 :000000 000-000
iSO~ 000000 000000 000000 000000 000000 000000 000000 000000
160: 000000 ooonon 000000 O(lOOOO 000000 000000 oooooa OOOOOtl.
170: 000000 000000 000000 000000 000000 OOOO(}(l 000000 000000

ENTE:r~ '~DDRESS'I 28,1}0
SECrfJR % 34

o: 000056.000136 000026 000020 '0',43600 1·7301,0 030·263 .026674
10: () ~:.! 'f:) (,74' 0 0 0 011 OOtOO'7 (l 0 1. 1. '7 j. O',() 0 (l (1 0 000 j.3(") 000000 (l~?; ~~ () 0 0
20, 000003 000020 000000 O~.37i(:) 013560 024()()O o(l 0.0 00 o(l () 0 O~)

30 ~ 000264 000020 000000 002004 oonooo o0 O:1.3~ :000000 O~~:~O40
40, 000000 03:5120 oaoooo 03~3320j. 000400 033~)3~} 000400 03:5S40
SO~ 000000 o~.372:'5 000000 (1:1 ~~72~) 0 0 0 (l 0~3 000003 000220 o:~fJl,1 '7
601 000000 . 0322~J2 ooo~:?oo 04~~30 0 000000 O:~2i=Si 002000 0403'0 (l
70: 000000 032252 000200 042500 000000 O:~2276 000400 042700

1001 000000 032277 000007 (} 3~)(:) j. 0 000000 07 j. ,·SO 000060 037037
. 110 1 000000 071(,75 000170 "03711.7 000000 07t701 OOOOS~:; () 373~O 7

120: 000000 071713 000:1.0(') 0375S4 OOOO()() 07t741 000170 03'7:'564
130: (l00000 0'71 7~~7 030~~63 04:5(,00 000000 07t770 003S44 i '74~~'O 0
1401 000000 000004 01.4 j. 0 0 1(:>Oj.OO 000000 0:1.3'731 02~)·744. 1321.00
150: 000000 014012 004t20 125700 000000 01.4142 oOSO(,O 1 ~~ (} ()~O 0
j.60: 000000 o1.4i~.)3 003734 ii4f)OO OO()(lOO o:l.4~:?1.0 o0 i)t~~)4- 1. Of,30 0
170, 000000 014230 003S44 i O~?SO 0 :0. 000() 0 :. ,,0 j. 4 ~~62 003024 077400

':"ENTER t!~DD'R Es'sfi %717~i';:i ;0
SECT()R' % 7174j......

oI 000004 001007 000000 000:000 000000002016 001010 000000
101 000000 000000 000000 000000 000000 000000 04(,S10 033'171
201 03~ OoS OS24~,O 000000 000000 000000 000000 000000 O~~~i\O0
30: 000000 024000 00041.0 000000 000000 000000 OOOO()() 000000
401 000000 000000 000000 000000 000000 000000 000000 000000
SO : 000000 000000 000000 000000 000000 000000 000000 000000
60 t 000000 000000 000000 O(lOOOO 000000 000000 000000 000000
70 : 000000 000000 000000 000000 000000 000000 000000 000000

'100: 000000 000000 000000 000000 000000 OO{)OOO 000000 oonooo
110: 000000 000000 000000 000000 000000 000000 000000 OOtlOOO
120: 000000 000000 000000 000000 000000 000000 000000 000000
130: 000000 000000 000000 000000 000000 000000 000000 000000
140: 000000 000000 000000 nooooa 000000 000000 000000 000000
150: 000000 000000 000000 000000 ooonoo 000000 000000 000000
1601 000000 000000 000000 000000 000000 JOOOOOO 000000 000000
170: 000000 000000 000000 000000 oooooa 000000 000000 onoooa

1-58-9

ENTEI~ ADJ)r~ ESS :
ENTER FlJNCTION": EDIT

....' -h)'MOD I F'y" ~:-6;'~:~':7 ; j,

SECTOR % 0
7: 001 007 1"= 0 00 O~O 0

WRITTEN
>MODIFY.28,%12,1
SECTOI~ % 34

-·----·i-2..1--0·0·~-0_0_7_~_O~- "WR'ITT-EN' _.....,_.._...._. "
"·-->"M·b-~["i::Y-.~ 28) "32, 1

'. SECTOR % 34
'" 32: OOOOO·O·~·~OO·OOOO

WRITTEN
.. ">MODIFY ':>:7174':1.,1,'1
---. "sE(~TOr~ % 7.~.741

i: 001010':=000000
WRITTEN.' . ~ >

ENTER FUNCTION: STOP
END OF PROGRAM.
E;11.tt"!r Your PrograM NaMe (type HELP Tor prograM .inforMation)

:~">StART .
IS IT OK TO ABORT SYSTEM (Y OR N)?Y

r i. ")

t-IP32033C • FO •D3
WHICH OPT10N '(WARMSTART/COOLSTART>? COO
ANX CHANGES:?
WARNING DEFAULT VIRTUAL,MEMORY SIZES ~EING US~D .

DAT~ (M/~/Y)?t/3/82

TIMF: (H:M:->?i6t36
SUN, JAt~ 3, 19~12,. 4:;36 PM? (Y/N)Y

..LOG····FII.E···NUMBER 634 ON
···--·*WE:·i~COMF:*

I HE1_L.() OPFRATOR. ~YS) I-IIPRI
16:36/i?/SPt6/SPOOLED OUT
i6136/~S~/~3/'-OGON FOR~ OPERATOR.SYS,OPERATOR ON LDEV t20
1-1P3000 / MPJ=:: IV C.FO.D3. Sl.IN, ,TAN 3, 1982 , 4:3~ PM

1-58-10

APPENDIX C

The following is a sample dialog using SLEUTHSM
to zero out the volume label on a disc. The dialog for
SLEUTH, used on Series nlIII machines, is simil~.·

-)LOAD
Ipl

The method of loading the diagnostic is different, since
SLEUTHSM is run as a program under AID, while
SLEUTH is a standalone diagnostic.

Dlagnostic/UtllJty SysteM Revlsion 01.01
Enter Your PrograM NaMe (type HELP for pro~raM JnforMatlon)
:AID

AID 01,01

) 10 LOAD SLEUTHSM
Pro CJ r Q ,"'t ,_ (l 0 ded' !
The Ne>:t (.~.vQ.i.l(:Jbl\~ S.tateMt")nt NUMber 1s
)5000 DEV ~>1i,i>100)O

)S010 DB AA,128.,O
>SO 2 0 ·WD 0 1 AA (0)) 3 >0) 0) 0
>S030 END
>S040 RUN

End of AID user prograM
>5040 EXIT
Coli·P J. r~ M you Wr.t n t t 0 F:RASE the cur r en t pro gr Q M (Y 0 r N)? Y

D.L a<;J n 0 $ t .i c /lJ t 1 J J t Y ~Ys·t eM Re \' J$.l 0n 01 • 0 i
Enter Your Pragr"Qf\' NaMa (1·ype 1~'~l"P ·For' progrr.tf"e .i,,·ParMatlon)
:SADUTIL
Disc UtJlJty A01.03 (C) Hewlett-Packard Co., 1976
LIST LOGICA1.. DEV:rCES?
DISC CONFIGURATION CHANGES? Y
LOGICAL DEVICE? 1
DRT? 89
UNIT? 0
TYPE? 0
SUBTYPE? 9
LOGICAL. n'::VICE?
LIST LOGICAl.. DEV1CES? N
SERIAL D~VJCE CHANGES? Y
DRT? 73
UNIT? 0
TYPE? 24
SU'E(1·YPE? 0
SYSTEM DIRe UNJNJTIALIZED

1-58 -11

ENTER FlJN(:TION: PD~H(1
ENTI:::R (.,I)DRESS I O>1~A
LDEV:-.:. i, DRT:-.:: (}9, UN:r.Tr.:: 0, TYI' ,:::-.:: o, ~)UBTYPE= 9
SECTllR % 0

o~ 000000 000000 000000 000000 OOOO()O 000000 000000 000000
iO~ 000000 000000 0,000,00 000000 OOOO()(l 000000 000000 000000
20: 000000 000000 000000 000000 ,OOOO()() 000000 000000 000000

.,

30r 000000 o0 () 00 0, 000000 000000 O(l(lOOO 000000 (l·OOOOO 000000
40: 000000 000000 000000 000000 000000 000000 000000 000000
SOl 000000 OOOO(l() 000000 000000 (}(lOOOO 000000 000000 000000
(:)0 : 000000 000000 000000 000000 000000 000000 000000 000000
701 000000 000000 000000 (l00000 000000 000000 000000 O(}(l(lOO

100: 000000 000000 000000 000000 ()()(lOOO 000000 000000 000000
1iO~ 000000 000000 OOOO(}O 000000 000000 o() p·O (l 0 000000 (lOOO(l(l

i20~ 000000 000000 (l 0 () 0.0 (l 000000 000000 OOOO(l() 000000 000000
130: 000000 000000 000000 O(}(l(}OO 000000 000000 000000 O()(l()(l{l

140~ 000000 OO(}OOO 000000 000000 ()(10000 o() 0 (l 00' '000 () 00 O(}(lOOO
1S01 000000 000000 .. 0000.00 000000 O(l(lOOO ,000000 000000 000000
j.£"O \ 000000 oon.oo()' o(l 0 0' (10 {l()OOOO O{)OOOO 000000 .000000 000000
1'70 ~ OO(lO(}(} OtlOO()(} 0000.00 O()()OOO 000000 000000 000000 000000

ENTER AnDRESS:
ENTE:I~ FlINCTION: $TOP
END OF PROGRAM.
~nter Your Progrot... Nr.1Me ("t YP\~ I,EL,P ·r~ 0 r pr"ogra,.,. .i.n·P:OrMQ t! on)

-)LOAD
IS IT OK TO ABORT SYSTEM (Y OR N)?Y
)

l-IP32033C. FO ,D3
WHIC1"l OPTJON <C01.DSTART/R'~LO("'D/UPDATE >? REL .
WH I C1-i orT:r ON <SP RF:AD/COMPAC1' /R F:STOI~F:'/AC(~r)l.lNTS/NlJLL) l' Ace
ANY CI·IANGES?
NON-SYSTEM VOI_UME ON LDEV 1
ADD TO SYSTEM VOI..l.tMI:: SE'r? Y
ENTER VOI..UME: NAME'? MH7(l~~~:)U()

LOGICA1_ PACI< S:rZI:: :rN CYI_:tNDt:'~S = 81S,?
SUSPECT TRK LDEV i1 CYL=23 1..IEAD=6 (SECTORS %32S0'O-%32577)

,.PELETE OR REASSIGN? DEL
BANK 0 DEPENDENT MEMORY USED - 26884

DATt=: (M/D(Y)? :t/3/.82
TIME (H:M)?16:!7
SUN, J~N 3, i98~, 4157 PM? (Y/N)Y
LOG FIL.F: NUMBEJ~ 633 ON
WE'_COMF:
lHELLO OP~RATOR.SYS;HIPRI

16:S7/1~/SPt6/SPOOLED OUT
16:S7/:U:S1/'3/LOGON FOR: OPERATOR.,SYS,QPERATOR ON LDEV :ft:20
.HP3 0 0 0 / MPF: .1 V C, F 0.• D3 • SUN,:rAN 3, ~ 982 , 4 I S7 PM

~ FILE T >DE=VTAPE ~ !, :
FILE: T,DEV=TAPE
. : R,ESTOR E *T"} (~ ,(~ • @') OLDDATI~
?16 : S7/,:1I:Si/.i3/1.J)EV:}'r FOR liT II ON TAPE (NUM)?·
=REP1_Y 13, 7'
i~ : S7/9 /'VOl_ \JNL.AIcEI..I_ED MOlJNTF:D ON '_Tll:::V:U: 7

1-58-12

FILE·S I~ ESTOI~F:J) j.86

FILF:.S NOT RF:Sl'Or~ '~'D
_.

~:!.~)

FILl::: • GROlJP •AC~('llJNT FI '_I:::~31::T RF:A~~ON

CATAt.OG •P tJFi .SYS 1 E(U~;Y

C:ONl=JlATA •PlJEI • Sy~:\ ~ E~lJF~Y

DE~)RCC •P lJr~ •SYF~ i EH.I~3Y

I-IIOl_PRTO •PlJfl • Sy~~ i E«lJ~~Y

1-1 I nr1T>BC1. •P lJB .SYS i ·OUSy
J.-l I 01' ("",PEO •P lJJ:"t • ~1YS 1 r{l.l~~Y

HlnTl~RMO • PlJT:t .SYS i 1) I..J SY
INlr~ • ':)lIB .SYS i E~LJ~3Y

INI'fIAL •PlJrc , f3YS :t I~l.J ~3Y

Ii • l.OA.P " I~J.J):(•~?YR :t l:H'~~ y

LOAD~I("'P •PlJFt • Sy~\ :t l~lJf:~Y

I... OG • PlrF.c ISYS 1 'l:(lJ~)Y

MAI<rCAT • PlJfc • SYf~ 1. ItU~3Y

MEMI .. OGP. •PtJB ,SYS i l:{LJSY
PF (ool I I.. I 1:) I..JJ~ .SYS :t EtlJ~~Y
PROr;l;-N •PlJEI •~3YS i E(U~3Y

PVPRC1C •PlJB •r:>Y~3 i E(Llf,Y
SDFCI..1CCI(I P lJf~ • ~3Yf) 1 I(U~~Y

ST>FCOM •PlJB .SYS i 1)1 J~3Y

SDI=-GEN •PtJE< • f.{YS 1 BlJSY
SDFL.OAD •PlJr-t .SYS i E<lJ~,Y

SEGJ)Vl~ •PUE~ • f3Y~~ 1 BLJ~3Y
Sr::r;PROC • PlJB .SYS 1 BlJSY
SYSDUMP •PlJB .SYS 1 EIU~~Y

lJCOP .PUB .SYS i I:H.JSY

:BYE

CPU=4S. CONNECT=9. SUN, JAN 3, 1982, 5:06 PM
17 t 06/:1:8 j /1 3/1_0GOFF

=SHUTDOWN

H.e.LT 0..
::l.

1-58-13

APPENDIX D

The following is a sample dialog showing how
SADUTIL can be used to list and recover disc ftIes.

=SI-IUTDOWN

These are then restored using RECOVER2.

SESSION ~DORTED BY SYSTEM MANAGEMENT
CPU=i. CONNECT=~. SUN, JAN 3, '982, 4~36 PM
16 l3(:)/:r..s~ 11 ~3/1 .. 0GOFF
16: 36/:1 lAt... '.. JOEc~) l..rlGGED OFF
SHUT

D1Qg '"' 0 ~ t .t c / lJ t .i J J t y Sy1; t e M Rev.l ~ .i. 0 n O:t. (),j.
En t ~~ ,.. 'y' 0 ur Pr\ () ~J r~ r.J c·, Nil M~! (t \' fJ \~~ 1"11:: 1_P ·r 0 r~ p Y" ag r (3 "l .i I'·P 0 r M r.J t .i 0 n)
1SADlJTIL
D15c UtJIJty AOi.03 (C) Hewlett-Packarrl Co., 1976
LIST LOGICAL. DI::V:rCES? N
DISC t~oNr::rGlJRA"rJ(lN (~I·IANGES? y
LOG.:r Cf'l... Dt:"~J I CE? 1
DRT? 89
UNIT? 0
TYPE? 0
SUBTYPE? 9
LOG:r Cf.,I. DC~'ICE?

LIST L.C1GJCAI.. Dl::-V1CES? N
SER1Al DFVICE CHAN~ES? y
DRT? 73
UNIT? 0
TYPE? 24
SUBTYPE? 0
DRT ~09) UNIT ~o NOT READY
DRT CC9, UNIT 10 NOT READY
ENT~R FUNCTIONI PFIL
ENT~R' NAME~ @.PUB.GOERTZ

ACCOllNT = GOERTZ GRnUr := PUB

BADI_(.lF:E 1...
CRAR1·12P
DECnr'tPl,
DWNTC1"
FLAEc[L
FTNlJSL
IDG~t:N

PIes
RTMX
SL2
SPD4·E:OO
SPLs·rI)
TEST
UDClJl·IL
XYZp

1-58 -14

FcANN'~R

CRAr~I"lr

DJ RMf..lTCI·1
D~JN·r~~Tr'

Ft.IMrT
(~I~T~31·r~NG
1(8AMR"F:I_J)
p:rcs~

SE(1)ROG
SI.PM?,P
SPL.
SPI_XREF
·fESTER
lJI~Dsr:·r

COPYL. :rFc
(~,~ At31·n.l
D:r SCADI)'~
ENTl~YPN"r

FI.. l.rrJ I. :\
Gl~nf)(~,·n·IA

I.. AFI,TOF:
p:r CTF:~T
SEP3?9
SI_PMAPP
SPL~~

SUSTR(~CI(

TE~3TF·:r 1..r:
lJSEr~ J N:r or

COP YL rr·lI(
DIt Ec lJ 1::- ,~ 1:-- I~
D8(~AN

I~Vl::1~ (~R N
I=OR 'rR (.,N
GRDTr::~l"

L. r ffl~ I::~~·r

p:r CT1:;'~Ti
SE:T(~or:(l'

SI..PM(',P(~
~)P I_I.. f.)!:
S1JJJT(:I·1
TF:ST\'~'
l.tT8~ 7

CRASH
Dffl~:r Z(-\~ D
DS(,~(",N°l ~rr

EXAMPL 1::
FTN'_J~~l·

GRDTr~Tr·

I..IMCI·ING
PR r Nl'r:R
SET'fI)r' t~
f.4M
SPI...I..f.lf:c
TAPI=:I.AFc
UDC
xxx

CRASH2
DI~:cor·1~?

DlJANr:
I-;'X('~Mr L.er
FTNNr:~J

. :rn
I..STAI.I.OC
QJ.) I'SP l. (.lY
SI.
SOO
SP L.I_f.lI::i
TF:RMJn
1.11)C~Cr l.
XXXP

1:.N'1' EI~ NAM E :' E~ (4 f~ i\C I;;. f\ • I·.r W.t·:c , (.~ (] r:~ RTZ .r; 1

ACCOl.tNT = GOERTZ GROlJP = PUB

BANN1:--1~ 1

ENTER NAME: BANNER,PUB,GOERTZ,2

ACCOlJr~T = GOERTZ GROlJP = PUB

BANNF:R j.2/ 1/81 121 1181 121 ~/81

.~- .. _ - -~--_ -._-- .-.._.- _... . .." --_. ~-~._.._~ _,....,E'Nr' E-'~" "-NAf-{E"i"-'-- " _... .. .
..... ·EN·T·F:'1~- ·Flji~(~T·IOj\fi· .. h SAVE -_·_·· ..·T····· .•

r~ EADY sr..:,~:r AI_ DEV leI:: F:'OR WR I l'E~

FI LF: r~(,~I1~ (OR t.D1:V:P:, %Sl::(~'ro,~ ~~DDR ESS)?,w"i -;··%·73(j'j~·7· - ..
BADI_(,r:r1. ,PlJEc ,G()1:::'~T7 - CflN'rF:N'r~;~ OF' I..ABE1_
RETRIEve THIS FJLr (YIN)? Y
BADI...(..,r-cr~I_. PlJFc • Gt:lF:I~TZ 1 7~O(17

FILE NAME (OR LPeV*,%SECTOR ADDRESS)? BANNER,PUB.GOERTZ
DATE?·
BANNER ,PUB tGOERT~ i %73~43

FILr==: NA~\l~~ (OR L.DF:V:p:~%Sr::(~TOR ADDRESS)? COPYLII~,PUB,GOERTZ

DATE? .
COPY1_:tF~ .PlJB ,GOI:RTZ 1 "7:~400

~ILE NAME (OR In[V~,%SECTOR ADDRESS)? 1,%75754
COPVL.J I:1(,PlJI~ . GOr"~RTi: - CON'rENTS (lr I_ABEL
RETRIEVE THIS FJlF (YIN)? Y
COPY1.JFCK t PlJEc t GOERTZ :t 75'7S4
FI'_E N(\ME (OR' t.DE\hP=,,%SECTOR ADDRESS)?

ENTER 'FUNCTION', STOP
END OF PROGRAM.
Enter Your PrograM NOMe (type H~lP far progroM Jr,forMatlon)
1
-)SSTART
INVA'.ID - lJSE I-IELP

InvolJd CoMMand ~r input
Enter Your PrograM NaMe (type HELP for pragra~ Jnf~rMQtlon}

-)START
IS IT OK TO ABnRT SYSTEM (Y OR N>?Y
)

HP32033C.FO.D3
WHlf;I-I OPTION <WARMSTART fenDI..START >1 coo
ANY CI'IAN~E'S?

DATE (M/D/Y)?1/3/82
TIMI=: (H:M)?16:43
SUN) J~N 3, 198c) 4:4~ PM? (Y/N)Y
LOG FIt.1=: NUMBER 635 ON

~ *WE1_COr·,E*
\

1-58 -15

MOl.1Nl'F:D ON 1...J.)t~V:1: 7
i 001 000'72'733
i 00j. 000'7 ~~ 0 :t 0
j. 0010027(:>217
:1. 00100073071

TAPE (YIN)? N

: HEI.. 1... 0 01' F:R ATOR • Sy~~ ; '--lIP RI
16:43/1~/SPt6/SPOOLED OUT
i6:43/ISj/13/LOGON FOR~ OPERATOR.SYS,OPERATOR ON LDEV 120
~'IP3000 / MPE I\J (~.F().D3, E)l.tN, JAN :3, ~(7~)2, '.~4~~ PM
:HELLO MANAGER.SYS

CPU=i. CONNECT::::j. SlJN, JAN 3,1982, 4:43PM
i 6 : 43/:1:8 ~ / ~ 3/L.(J(~(11:'1::

16 ~ 43/:P:S~/14/1..0r;(1N FOR: MANAGER. SY~l, Pl.Jf{ ON LDEV :11:20
HP3000 1 MPE IV C,FO.D3. SUN, JAN 3, '982, 4:4~ PM
:RUN RECOVER2,PUB.SYS

RECOVER~ COO.OO (C) HEWLETT-PACKARD ~O., 1976
WISH oro l<F:l:::P E:XJSTJNG cop:rl:~f.~ OF F:rL.I:::~~ (Y/N)?N
? 16 : 43/:':82/:t S/I_l)I:-:~J:l~ FOR "r~ F:~O~)TP It Clt'l T (.\1:) 1~ (NIJM)?
=REPLY 15,7
16: 43/9/VllL. UNL.AfCl;:L.I_ED
BADL.AElF::l_ •PlJB , GOF:J~TZ
E(ANNFI~ •PUEc ,r::OI:-'RTZ
COPYLIB .rUB .GOERTZ
COPYLIBK.PUB ,GOCRTZ
IS THERE ANOTHER RECOVERY

END OF 'PRC1GRAM... ~ _..

CPU=9. CONN~CT=~, SUN, JAN ~3, 1982, 4~44 PM
16:44/tS~/14/LOGOFF

1-58 -16

~.

System Perfonnance and Optimization
Techniques for the HP3000

John E. Hulme
President of Applied Cybernetics, Inc.

INTRODUCTION
The purpose of this paperl is to introduce the reader to

certain techniques which can improve system perfor­
mance, throughput, and run-time efficiency on HP3000
computers. These improvements will typically reduce
response time substantially and generally increase data
processing productivity.

This paper will not simply tell you what to do and
what not to do. In many cases there are trade-offs in­
volved and it is more important to understand the prin­
ciples behind the techniques than the techniques them­
selves. And because analogies often help us to learn by
giving us a new perspective, we will make use of a non­
data-processing illustration.

SOME BASIC PRINCIPLES
The first thing to understand is that any given com­

puter can execute a fmite number of instructions in a
fIXed amount of time. When that theoretical limit is
reached, no amount of tuning can "squeeze" extra in­
structions into the computer. For the most part, how­
ever, computers do not bog down because we ask them
to do too much, but rather because we cause them to
trip over themselves in the process of doing it.

This leads to the second important principle: At any
moment the computer is either (1) doing productive
work; (2) getting ready to do productive work; or (3)
waiting on some external action before it can proceed
with productive work. As a program is initiated, thereby
causing a certain sequence of instructions to be exe­
cuted, we will call the execution of those instructions
"productive work." Whether the "productive work" is
really necessary or not, and whether it is efficiently or
inefficiently organized, are issues to be addressed later.
But a more significant fact of computer life is that usu­
ally only a small percentage of the computer's time is
spent executing application program instructions.

A CRUDE MODEL

To illustrate these principles, imagine a "library for
the blind." The librarian sits behind the desk waiting for
a blind person to walk into the library. This is the "wait­
ing period." When the blind person arrives, the "getting
ready" period begins. The blind person tells the libra­
rian which book to retrieve and by one method or

another the book is retrieved. The librarian now begins
the "productive work" phase, reading to the blind per­
son from the selected book. When the reading is com­
pleted, the librarian may return the book to the shelf or
leave it on the desk. Then a new waiting period begins.

If the library is a busy one, we can imagine that one or
more assistants might be hired to transport the books
between the librarian's desk and the book shelves. Let's
imagine that there is one assistant for each wing of the
library. The librarian can do more productive work
(reading to the patrons), spending less time getting
ready (still look things up in the card catalog, but now
dealing with the assistants instead of transporting book­
s). A new type of waitirig is introduced, however: wait­
ing for assistants to bring books back.

In this analogy, the librarian represents the com­
puter's central proce~sing unit (CPU), by which all the
~roductive work is accomplished. Like our imaginary
lIbrary, the HP3000 has only one CPU. To improve
throughput we must maximize the CPU's productive
time.

Each patron represents a log-on session or job. The
librarian's desk represents the computer's main mem­
ory. It is of a limited size, merely a workspace, in com­
parison to the stacks of book shelves which correspond
to the mass storage devices. Finally, each assistant rep­
resents an I/O channel transferring data to and from
disc, for example.

While illustrating some important concepts, this anal­
ogy does not accurately model the run-time environ­
ment of the HP3000, or any other computer. How could
we refine the model to make it more realistic?

THE MODEL REFINED
At the risk of distorting the human situation, let me

suggest four refmements which make our model more
nearly resemble the actual computer processes:

1. The "library" should be regarded as a collection of
(a) read-only instruction manuals and reference tables
(programs and constants) and (b) numerous loose leaf
volumes (files) containing sheets of current figures and
d~ta (records) which may be periodically replaced, re­
VIsed, removed, or added to.

2. The 'librarian's" job should be generalized to in­
clude any type of service that can be performed on the

1-70-1

basis of preprinted instructions and supplied data.
3. The computer always deals with a copy of

whatever is stored on the disc, and usually just a few
records at a time. So let's imagine that instead of asking
a library assistant to fetch a particular book, the libra­
rian will specify a limited number of paragraphs or data
sheets and will ask the assistant to bring a photocopy of
the desired paragraphs (colored paper for instructions;
white paper for data).

4. Because the processing speeds of a computer are
so great, our model operates in slow-motion by com­
parison. Allowing that the librarian can do in one hour
what "an HP3000 can do in one second (i.e., using the
scale of one hour for each second), the assistant could
handle 20 to 60 requests per hour, and the equivalent ~f
a 6O-word-per-minute typist could enter one character
every 12 minutes. A 2400-baud rate would be equivalent
to a maximum of 5 characters transmitted per minute,
and a 600-line-per-minute printer would correspond to
one line every 6 minutes.

SLOW MOTION PERFORMANCE
SIMULATION

Visualize this scenario from the patron's point of

view (refer to Figure 1): You walk into the library, fmd
an empty cubicle (terminal), and make yourself com­
fortable. You begin to formulate and transmit your li­
brary card number and password (log-on) at the rate of
no more than 5 characters per hour. (If it will relieve the
agony, you may im~gine that you spend the time draw­
ing very large, very elaborate block letters). Depending
on the facilities available in the cubicle, you will either
transmit each letter as it is formulated or accumulate
several characters (maybe even hundreds) and transmit
them in a burst. In either case, you transmit each letter
separately by ringing a bell, and, when you have the
librarian's attention, holding up the card with the letter
on it. The librarian records each character of your mes­
sage on a notepad corresponding to your cubicle, then
continues with hi$ other business. Finally you send a
character which means "that's the end ofwhat I'm send­
ing you."

The librarian eventually verifies that you are a qual­
ified user of the library and sends you back a standard
message which allows you to proceed. This process
may require the librarian to send his assistant to the
book shelves several times, e.g., to get a procedures
manual, index of users, table of passwords, welcome

. message, etc.

1 1

I 1

I I
I]

V\.Q..\"e~

I [I
~

I I I
!

I [I
I r I

~,

Figure 1. The Library

1.-70-2

Next, you painstakingly tell the librarian the name of
an instruction manual (program) you want him to follow
in performing some service for you. He has the assistant
get him a copy of the frrst paragraph (segment) of the
instruction manual (unless a copy happens to be sitting
somewhere on the desk already). He also gets a copy,
your own personal copy, of a worksheet (your data
stack) associated with the specific instruction manual
you have specified.

In case there is not enough empty space on the desk
for these papers, the librarian first clears some space by
either (a) throwing away one of the instruction sheets,
(b) having his assistant put the worksheet for some
other patron in a special holding fIle (virtual memory),
or (c) having his assistant take one of the data sheets
back to the loose-leaf it was copied from and replace the
original with the new version.

The librarian now goes to work following the instruc­
tions you have requested. This will continue until (a) he
comes to a point in the instructions which specifies he is
to send certain information to you and/or ask you for
additional input; (b) he comes to the end of the page or
is otherwise instructed to refer to another page, one
which is not currently on the desk; (c) the instructions
require that information be fetched from the book
shelves, taken there to be [tIed, or sent to some output
device; (d) a predefined length of time elapses (a 500
microsecond quantum corresponds to one-half hour in
our model); or (e) the librarian completes his assign­
ment and disposes of your worksheet.

In any of these cases, the librarian will go back to
work for one of the other patrons, provided he has all
the resources necessary to do so. If not, he will wait
(until the necessary information is fetched by the assis­
tant or transmitted by one of the patrons). Depending
on what you've asked the librarian to do, and how busy
he is doing things for the other patrons, it may take
hours or even days before he gets back to you. But then
again, it may take days for you to formulate the equiva­
lent of one screen of input, too (at the rate of 5 charac­
ters per hour).

THROUGH THE EYES OF THE CPU .
Now let's reverse roles and look at the situation from

the librarian's perspective. Try to imagine yourself as a
calm, unemotional, purely methodical being who is
never responsible for mistakes because he does pre­
cisely as he is told. You couldn't care less if someone
gets poor response time; you aren't to blame, because
you only 'rest when there's nothing for you to do. In
fact, you purposely set things aside during peak demand
periods to do in your spare time. But you can't take
credit for that either - you're only following directions
from the MPE handbook.

. 2:08:17 Ring! There's the bell in cubicle five. He's hold­
ing up the letter "R." Write it down on memo
pad #5 (line buffer).

2:08:20 Here's the library assistant with the record ses­
sion #12 requested. Oops! The worksheet for
session #12 has been set aside (swapped out to
the system disc). Send the assistant for it and
wait a minute.

2:08:24 A ring from cubicle #8. That's a carriage re­
turn. Time to reinitiate session #8. Make a note
to send the assistant for the worksheet when he
gets back.

2:08:29 Wait some.
2:09:00 Wait some more.
2:09: 16 Oh good, something to do (the observer's

feelings, not yours). A ring from cubicle #3. A
"7". Write it down.

2:09:20 Here's the assistant. Put worksheet #12 on the
desk. Send him back for worksheet #8 - no,
there's not room for it. Give him the worksheet
for session #5 and send him to ftIe it (we're
waiting for input from cubicle #5). We'll send
him for worksheet #8 next· time.

2:09:24 Okay, now to get to work on task #12. First set
the timer for 30 minutes. Now add I to J and put
the result in K.

2:09:28 Move W6 to W2.Move ... hold it, there's
another ring from #3.. Say, that's only a few
seconds . . . must be a block-mode terminal.
Write down the "9" and go back to work. Move
X to Y. Call the procedure "XFORM." Oh, it's
on the desk already - it hardly ever gets
thrown out, that's becau~e nearly every pro­
gram uses it.

2:09:40 Another ring from cubicle #3. This time it's a
minus sign. Continue with "XFORM." Convert
the frrst letter ofY to upper-case. Now the sec­
ond letter. Now the third. Now the fourth.
That's all. Return to the main program. It's still
in memory. Move the n~w Y to F3.

2:09:52 Another ring from cubicle #3. A field
separator. Resume task #12. Perform
FLAG-SET subroutine. It's in another seg­
ment, one that's not in memory. Make a note
to send for it. Suspend task #12 for a minute.

2:10:04 Cubicle #3 again. Just a blank, but write it
down anyway. That's "7-9-minus-field
separator-space" so far.

2:10:14 The assistant has fmished fIling worksheet #5.
Send him now for worksheet #8.

2:10:16 Cubicle #3. Another space.
2: 10: 19 Interrupt from the printer saying the last line

has printed successfully. Now reactivate the
spooler job - it's instructions are still on the
desk and so is the buff~r containing the print­
line. Initiate I/O transfer.

2: 10:26 2-second wait.
2:10:28 Cubicle #3. A third space~

12-second wait.
2:10:40 Cubicle #3. A fourth space. 12-second wait.
2:10:52 Cubicle #3. A fifth space. 12-second wait.

1-70-3

2:11:04 Cubicle #3. A field-separator. 5-second wait.
2:11:09 Worksheet #8 is here. Send assistant to get a

copy of FLAG-SET routine. Now to process
this input from cubicle #6.
Edit first field. OK. Edit second field. OK.
Move first field to Rl.

2:11:16 Cubicle #3. The letter "H".
Move second field to K2. Edit third field. Isn't
numeric but should be. Transfer to error
handler in same segment.

2:11:28 Cubicle #3. The letter "0".
Prepare output to tell cubicle #8 about error.
Comment: It's a shame, but since he's in
block~mode, he'll have to·retransmit the whole
screen again, after correcting the· error in field
3. And Who. is to say o~er errors. might not be
detected after that? An~ you, the librarian, can
receive those 873 charactets, one 'every 12. sec­
onds for nearly thr~e ~ours, B;ut yo,u dQn't
mind. It's only ajob. ., .

2:11:40 Cubicle, #3. The letter "V": ' . ,
. Finish. putting error, messa~e in· the o~tp.ut\buf­

fer. Initiate transf~r to cubicle #8. Mark .task
#8 eligible to b~ swapped ~ut.

2:11:47 Cubicle #11. The letter "P"..
2:11:52 Cubicle #3. T'he letter "'E".

FLAG-SET routine is here.' Continue with task
#12. Move 1 to FLAG. Add 1 to COUNT. Exit
back to mainline. What! The assistant had to
fetch a separate segment just so we could do
that? .

2:11:59 Cubicle :/f11. Oh, oh. Two block-mode·d~vices

transmitting at oncerRecord' the letter "I".
2:12:04 Cubicle #3. The letter "R".
Comment Stop, I've had enough of dinging bells! This

place sounds like a hotel lobby, not a library!

OBSERVATIONS

As this analogy iitdicat~s, there are three factors
which reduce overall system performance:

1: Unnecessary disc 1/0' (most serious);
2~ Unnecessary terminal 110 (too' common); and
3. Unnecessary CPU usage (rarely the problem in

an on-line environment.

Excessive Disc I/O

The primary cause of excessive disc 1/0 is in­
adequate main memory to hold the required work space
(stack and data segments) for each concurrent process,
plus all frequently referenced program segments, plus a
reasonable mix of infrequently referenced program
segments.

The HP3000 is very good at handling multiple concur­
rent users, even when they won't all fit in memory to­
gether. In fact, the use of virtual memory, combined
with a well-designed algorithm for selecting which seg­
ment to overlay, allows the system to operate efficiently

1~70-4

even in cases where a single program exceeds the limits
of main memory.

The thing to remember, however, is that code seg­
ments put a relatively small load on the system while
data segments put a potentially disastrous load on the
system. In the first place, code segments can be split up
and made as small as the programmer wants them to be.
Secondly, they do not have to be rewritten to virtual
memory when the main memory space is to be re-used;
they are simply·overlaid. Data segments, on the other
hand, tend to expand, and can be split only with difficul­
ty. Since their contents may change, they must be re­
written each time the process is swapped out, and re­
read each· time it is swapped back in. Finally, whatever
data space is required must be repeated for each pro­
cess that is active. Therefore, if you are supporting 20
terminals, any reduction in data requirements would
produce 40 times' the:· benefit that an equivalent -reduc­
tion in code requirements would produce.

ASide from upgrading to a larger machine., a shortage
of main me~mory can be. averted by; .

1. Reducing the, numbe~ of concurrent processes (not
an attractive.option);, .

2. Red~cing the ~verage stack or data seg~ent size;
. 3. Reducing the siZ~ of th~ average program' seg-

,Dient; . ' .
4.

0

Orgmizingprogram segments better so that out­
of-segment transfers occur less often to non­
resident segments and so that' often-used code' is
collected in compact segment$' that are likely to
stay in' memory, or

5. Sometcombination of the above..

When adequate main memory is available, swapping
i~ unnecessary, and disc accesses (whic~.,a(e very· ex­
pensive in terms. of time) will be expe~~e~ strictly for
data retrieval and st9rage. Once swapping begins, the
computer's "produc'tive" activities are· at the ,- m~rcy· of
"waiting." In the worst case, "threshing" occurs, which
means that every time a session gets a tum at execution,
either the program segment has been overlaid or the
session's work space has been· swapped out.

It is worth noting that the use of IMAGE (or- of
KSAM) causes the allocation of extra data segments.
Specifically, each IMAGE database that is. open re­
quires a data segment large enough to hold one copy of
the root file plus four complete database buffers. If a
program accesses multiple databases, or if the root file
or buffers are large, the memory requirements will be
substantial, and with many terminals running database
applications, the memory requirements can add up very
quickly. Granted, the advantages of using a powerful
access method may outweigh the costs of additional
memory demands, but such tools should be. used care­
fully and not indiscriminantly.

It should also be noted that the use of block-mode
requires extensive buffers in the stack (at least as large
as the largest screen to be transmitted). The use of

~
~'j

VIEW/3000 may add another 6000 bytes of buffer in
each user's stack, not to mention the extra data seg­
ments created by its use of KSAM. If you have 20 us­
ers, this amounts to 120K extra bytes of memory or
more.

Excessive Terminal I/O

Major causes of excessive terminal I/O include the
following:

1. Transmitting unnecessary characters (trailing
spaces, leading zeroes, insignificant digits, etc.) to
the computer, a necessary consequence of fIXed­
format or block-mode input.

2. Transmitting the same data to the computer more
than once, as occurs in block-mode when a whole
screen is retransmitted to correct an error in a
single field.

3. Retransmitting to the computer data which has not
been changed since it was received from the com­
puter. This too is the result of block-mode
transmission.

4. Repeatedly displaying prompts at the terminal in­
stead of using protected background forms.

Since each character of input consumes critical re­
sources, every effort should be made to ensure that only
significant data is transmitted (no extraneous zeroes or
spaces and only those .fields that are new or have been
modified).

It is not only wasteful of computer power, but also
destructive of operator morale, to wait until a whole
screen of data has been entered and transmitted to the
computer before discovering that the .screen is invalid
due to a duplicate key or an unrecognized search-item
value, etc.

It is equally ineffici~nt (for the computer, that is) to
display a screen of data, have the operator update a
smgle'value and transmit the whole screen back to the
computer. In an extreme case, this could amount to
over a thousand characters transmitted just to change
one or two characters.

Excessive CPU Usage

Besides the costly I/O overhead, it is altogether pos­
sible that a retransmitted screen will be completely re­
edited, values packed and unpacked, and fields refor­
matted even though only a single field was updated, and
maybe even ifnothing was updated. This is one cause of
unnecessary CPU usage.

Most editing and reformatting done in COBOL sub­
routines requires excess usage to begin with, and it is far
better to allow such work to be done in SPL sub­
routines, where it can be done efficiently. Including
such subroutines in the COBOL programs also causes
bulkier segments, which is likely to increase the need
for swapping. The best solution is to incorporate all
editing within the terminal-handling module itself, since
it is already being shared by all on-line programs and is
therefore likely to remain constantly in main memory.

There are a multitude of factors which can unnecessar­
ily increase the so-called "productive work" which the
CPU has to do. Because computers are seldom CPU­
bound in an on-line environment, few people exert the
effort to truly optimize CPU performance anymore.
Whenever it is a problem, more careful analysis of the
program(s) in question will usually yield a more efficient
method of solving the application problem.

Often, more careful analysis will also yield a better
solution from the point of view of disc I/O as well, both
in terms of swapping, code-segment switching, and data
retrieval and storage. One word of warning, however:
more efficient solutions (CPU-wise) are very often more
complex, and to the extent that they increase stack
space, or code~segment size, or they require more
transfers from one code-segment to another, they may
prove counter-productive.

One situation in which heavy CPU usage can be very
detrimental is when on-line processes are competing
with batch applications for CPU resources. This can be
yividly illustrated by running a COBOL compile, an
Editor GATHER ALL, a sort, or the BASIC interpreter
at the same time on-line programs are running. Block­
mode applications exhibit many of these same tenden­
cies and can severely impede response time for
character-mode applications when both types are run­
ning concurrently.

SPECIFIC OPTIMIZATION TECHNIQUES
1. Resegment programs so that no segment exceeds

%5000 words.
2. Set the blockmax parameter on IMAGE schemas as

low as possible.
3. Use extra data segments where possible and free

them up when fmished, rather than increasing stack
space for large temporary buffers.

4. Don't keep files open unnecessarily.
5. Don't abuse IMAGE:

a.eliminate sorted chains where possible.
b.carefully evaluate tradeoffs of increasing or

eliinating secondary paths in detail data sets.
c. use "@;" or at least "*;" for item lists

wherever possible.
d.only use binary keys (in master ftIe) when

overlapping keys can be avoided.
e.don't let synonym chains get very long.
f. when loading master data sets, store only

primaries on the frrst pass, makng a second
pass for secondaries.

g.keep master data sets less than 85% filled.
h.periodically reorganize detail data sets that

have long chains associated with a
frequently-accessed path (puts consecutive
records in the same physical block).

i. keep the number of data sets in a database as
small as practical without requiring many
programs to open multiple databases.

j. keep IMAGE record lengths to a minimum.

1-70-5

6. Have operators exit programs when not in use.
7. Use a field-oriented terminal handler which per­

forms standard edits for you.
8. Use formatted screens with protected background

whenever the application is appropriate to such
use.

9. Keep terminal I/O buffers small; if possible, elimi­
nate block-mode I/O altogether. (Don't use block­
mode and character-mode I/O at the same time.)

1-70-6

10. Don't use VIEW without a lot of memory.
11. Don't use DEL at all.
12. Run CPU-intensive jobs (mcluding compiles, preps,

and Editor GATHER ALL) when on-line applica- ~
tions are not running, or at least run them in a .,
lower-priority subqueue.

13. Set the system quantum for a shorter priod than
recommended in the MPE manual (but don't overdo
it - some experimentation may be necessary).

Auditing with IMAGE Transaction Logging
Robert M. Green

Robelle Consulting Ltd.
Aldergrove, B.C., Canada

SUMMARY
The transaction logging of IMAGE is not just for re­

covery of lost transactions; the t~ansaction log-files
contain a vast array of information that is useful for
auditing purposes. Reports generated from these rues
can answer basic audit inquiries (WHO, WHEN,
WHERE, WHAT and HOW), can provide statistics that
are useful for performance tuning (which dataset has the
most puts and deletes?), and ca~ aid in program debug­
ging (what does this program actually .change in the
M-CUST dataset?)

CONTENTS
1. Introduction
2. Selecting and Formatting the Transactions
3. Other Useful Information
4. Summary Totals and Statistics

5. Future Possibilities
6. Hints on Transactio~ Logging

INTRODUCTION
Since MPE release "1918," the IMAGE/3000

database system has had the ability to "log" database
changes to a disc or tape file. Although the format of
these log-files is somewhat obscure (and not
documented accurately or completely), they can pro­
vide a great deal of information that is useful for audit­
ing. DBAUDIT (a proprietary software product of
Robelle Consulting Ltd.) will analyze transaction log­
ging files and print transaction audit reports from them.

Here are two sample IMAGE transactions (a DBO­
PEN and a DBPUT), as printed by DBAUDIT, which
show the auditing information that is available from
transaction logging:

OPEN 17 AUG81 11:38 N:3 L:1
U:BOB.GREEN,PUB P:QDBM.PUB.GREEN
B:TEST.PUB.GREEN Mode:1 Security:64
Logon device:28 as a session. Userid:None.
Last dbstore:17 AUG81 11:15

R: 10

L: 1
P:QDBM.PUB.GREEN

DE:DCOM

=
= 11111111

5
= 55

PUT 17 AUG81 11:38 N:4
U:BOB.GREEN,PUB
B:TEST.PUB.GREEN
Data-Added:
ORD-NUM
COM-NUM
COM-DESC

Eac~ transaction has a date and time stamp (17
AUG81 11:38), a unique transaction number assigned
by MPE (N:3), a unique logging access number for each
user who does a DBOPEN (L: 1), a logon account, group
and user name (U:BOB.GREEN,PUB), a program
name (P:QDBM.PUB.GREEN), a base name
(B:TEST.PUB.GREEN), a logon device number and
batch/session indicator, an optional userid (an extra
identifier that can be passed to DBOPEN as part of the
password, and acts to distinguish between different
users who happen to be logged on with the same MPE

user name), the dataset type and name (DE:DCOM is a
detail dataset), the data entry's physical record number
(R: 10), the key-field value (for master dataset entries),
the fields that were added, deleted or changed (with
field names), plus before and after data values that have
been converted from binary to ASCII where necessary
(ORD-NUM = 11111111).

Logging Answers Basic Questions

As you can see, logging provides answers to many
questions:

2-5-1

WHO (logon user name and user id)
WHEN (date and time)
WHERE (database and dataset)
WHAT (data fields changed)
HOW (terminal number and program name)

The only question that cannot be answered is WHY?

!wo Types of;LOg-file~

There are two basic types of logging files that can
contain IMAGE transactions: raw log-files (on disc or
tape) which are filled by IMAGE as transactions occur,
and user recovery files generated by DBRECOV during
transactioQ recovery. ,

The original log [tIes have fixed-length re~ords,' with
large transactions split over several records.

The user recovery :files !hold'the transactions 'as
variable-length re~or~$, (one ~ FeGq~4: p~r transaction).
User recovery files' are usually generated for
transactions th:at DBRECOV could"not recover},:' (and
which you must recover by hand). User'recovery files
contain one extra field which is riot found in regular
log-files: a recovery flag that indicates whether each
transaction was successfully recovered or not ('OK' or
'NO').

SELECTING AND FORMATTING
THE TRANSACTIONS

Since a great deal of paper can be consumed in print­
ing every detail of every transaction, DBAUDIT has

commands to restrict which transactions are selected
and what data is printed for the selected transactions (if
any).

The SELECT' command allows you to select
transactions for specified bases, datasets, programs, us­
ers, time periods, and a range of record numbers.

>SELECT BASE TEST
>SELECT DATASET TEST,DCOM
>SELECT USER BOB.GREEN
>SELECT BEFORE 1132
>SELECT NFROM 212

. The LIST command allows you to control which
transactions are printed (LIST CALLS) and which field
values are printed for the transactions (LIST FIELDS).
In order to print only the date and time of DBOPEN
transactions, these commands would be used:

>LIST CALLS NONE
>LIST CALLS 0+
>LIST FIELDS NONE
>LIST FIELDS D+T+

Here are the full options of LIST:

.' I

>LIST FIELDS N+D+T+C+L+U+P+B+S+R+K+F+M+X+
These flags determine how much information is
printed for each transaction:
L: unique id number assigned by DBOPEN
U: . user~~ccount,group name
P: progr~~.group.account

B: basename.group.account
S~ set name/type; MA=master, DE=detail
R: IMAGE record number of entry
D: date of transaction
T: time of transaction
N: sequence number assigned by user logging
C: call type (OPEN, CLOSE, ...)
F: field values
K: key-field value
M: memos from DBMEMO, DBBEGIN, DBEND
X: extra fields on DBOPEN (mode, etc.)

>LIST CALLS O+C+P+D+U+B+E+A+M+T+L+
These flags enable/disable listing of the different
IMAGE and MPE intrinsic CALLS in the log-file.

O=open C=close,P=put D=delete U=update B=begin E=end
A=abort of program between BEGIN and END calls
T=te~mination of program without calling DBCLOSE
L=1oggirigstatus records (header, trailer, ...)

2-5-2

OTHER USEFUL INFORMATION
DBAUDIT also provides three other useful pieces of

information for the auditor or database administrator:
1. Reliability of the log-files for recovery purposes.

DBAUDIT checks each log-file to ensure that
transactions are in the proper sequence (for date,
time, transaction number and logging access
number). If there are any inconsistencies in the
log-file, they are detected and reported. Without
DBAUDIT, the only way to test a log-file is to
restore the original database and actually run a
logging recovery. DBAUDIT's double-checking
feature has already detected a number of bugs in
IMAGE transaction logging.

2. Detection of program aborts.
D.BAUDIT reports program aborts separately
from regular program DBCLOSEs. By selecting
only the abnormal termination transactions, you
can see which programs are aborting. This can be
helpful in ensuring program quality.

3. Detection of program "abends."

DBAUDIT reports programs which terminate with
an unmatched DBBEGIN. This can happen be­
cause the program aborted during a logical
transaction, because the programmer forgot to
terminate the logical transaction with a DBEND,
or because the system crashed during a logical
transaction. DBAUDIT gives you a quick sum­
mary count of the number of ABENDs in the fIle
(it should normally be zero), plus additional details
if the count is non-zero (where in the fIle the
ABENDs occur, whether the DBBEGIN has a
put, delete, or update after it, etc.).

SUMMARY TOTALS AND STATISTICS
From this basic transaction data, it is possible to gen­

erate a number of useful summary statistics.

Transaction Breakdowns

One way of analyzing the transactions is to break
them down into the different types of transactions, and
then total them by program, user, base and dataset:

For all bases, current: entries 20 maximum.
TEST.PUB.GREEN
0: 1 X: 1 P:2 D:O U:O

DeOM P:2 D:O U:O

For all progs, current: entries 200 maximum.r QDBM.PUB.GREEN
0: 1 X: 1 P:2 D:O u:o

For all users, current: entries 200 maximum.
BOB.GREEN,PUB
0: 1 X: 1 P:2 D:O U:O

In these tables, 0 equals DBOPENs, X equals
DBCLOSEs, DBBEGINs, DBENDs, and DBMEMOs,
P equals DBPUTs, D equals DBDELETEs, and U
equals DBUPDATEs. Note that for datasets (such as
DCOM), only P, D and U totals are collected.

Summary Totals

Here are the types of summary totals provided by
DBAUDIT:

Logging Records Read from File 32
Transactions that were Selected 6

Transactions read but not Selected 0
Transactions· Selected and Printed 6

Transactions Selected, not Printed 0
Transactions,but no OPEN (should be 0) 0
Inconsistencies in File (should be 0) 0
Number of ABENDs in file ,(should be 0) 0

FUTURE POSSIBILITIES
Information that could be generated from the log­

fIles, but is not currently collected by DBAUDIT, is the
total "changes" to a given numeric field, such as
ACCOUNT-BALANCE in a CUSTOMER-MASTER
entry. By periodically summing the field values in the
entire database and comparing changes in this sum with

. the incremental changes to that field (as recorded in
transaction logging), it should be possible to ensure that
all transactions are being logged (i.e., the database is in
balance with the transactions).

One problem is the database in which IMAGE
schema does not accurately describe the actual data
fields. This situation usually happens when users over-

2-5-3

flow the 255 item name limit of IMAGE; it is especially
common among users of QUIZ/QUICK (from Quasar
Systems Ltd.), IMACS/RAPID (Hewlett-Packard's
new tool acquired from David Dummer) and PROTOS
(COBOL Generator from Cole and Van Sickle), since
these tools use some form ofdata dictionary to re~defme

the IMAGE data entries. It is likely that DBAUDIT will
be enhanced in the future to provide a user hook (via
LOADPROC) to allow non-IMAGE examination and
.formatting of each transaction.

There is one change to the IMAGE transaction log­
ging that HP could make to improve the audit potential.
For DBUPDATE transactions to detail datasets,
IMAGE logs only the record number and the data fields
that were actually changed. Since the search it~ms and
sort items can never be altered by a DBUPDATE, they
are not included in the values that are logged. In some
applications, this can make it very <:iifficult to determine
which record was actually changed (i.e., which cus­
tomer). For master datasets, the key-field value is
always logged. For DBPUTs and DBDELETEs, the
critical fields are always logged.

HINTS ON TRANSACTION LOGGING
1. The frrst thing you need in order to use transaction

logging is: answers to a lot of questions. Here is
where to look:

a. PAPERS.QLIBDOC.ROBELLE; this file
(which is included on all Robelle product
tapes) contains several interesting articles
about transaction logging, including informa­
tion on performance and answers. by HP to
the most commonly askeq questions.

b. IMAGE MANUAL; this HP manual de­
scribes the transaction logging and recovery
system, DBRECOV, DBUTIL commands to
enable/disable logging and recovery, the
DBBEGIN·, DBEND and DBMEMO intrin­
sics, the IMAGE' log record format and MPE
log record format (do riot trust this informa­
tion completely).

c. MPE INTRINSICS MANUAL; this manual
describes the User Logging Facility (upon
which IMAGE logging rests), the
OPENLOG, WRITELOG and CLOSELOG
intrinsics.

d. MPE SY~TEMSSUPERVISOR MANUAL;
this manual describes the ALTACCT and
ALTUSER commands which are needed to
give out LG capability (needed by user/
account to access the logging facility).

:HELLO MANAGER.SYS
:RUN LISTDIR2.PU~.SYS

>LISTACCT GREEN

e. MPE COMMANDS MANUAL; this manual
describes the GETLOG, RELLOG, ALT­
LOG, LISTLOG and SHOWLOGSTATUS

. commands (these require LG capability) and
the User Logging Facility.

f. MPE CONSOLE OPERATOR MANUAL;
this manual describes the LOG command,
which can only be executed on the master
console and which is needed to start and stop
the actual logging process.

2. Should I log t.o disc or tape?
a. The log-file may reside on either disc or tape.

b. If on disc, the integrity of the log-file may be
no better than that of your data. If you reach
EOF on disc, logging stops, subsequent
transactions are rejected, and d~tamay be in­
consistent.

c. If on tape, the tape drive is dedicated to log­
ging for the duration of the logging process. If
logging to tape, transactions go to disc tem­
porarily to, smooth the data flow. If EOT is
reached, transactions go to disc while the
operator mounts another reel.

3. Power Fail Recovery (Tape)
a. .After power is back on and the system is run­

ning, the console will receive a NOT READY
message for the tape.

b. Press the following buttons on the tape drive
in this order:

LOAD
RESET
ONLINE

c. After the ONLINE button is pressed, the
tape will move back to the beginning of data
and move forward to recover the log records.
The system will then resume logging.

4. Getting Started in Transaction Logging
a. You will need the cooperation of your system

manager, your account manager, and some­
one at the master console. Arrange this coop­
eration first, or you will be very frustrated. In
this example, it is assumed that you wish to
turn logging on for a single database, generate
a number of-transactions, then disable logging
and experiment with printing aud~t reports via
DBAUDIT.

b. Have the system manager give LG capability
to your account, and your account manager
give LG capability to your user name.

CAP: AM,AL,GL,ND,SF,IA,BA,PH,DS,MR

2-5-4

>EXIT
:ALTACCT GREENjCAP=AM,AL,GL,ND,SF,IA,BA,PH,DS,MR,LG
:BYE

:HELLO MGR.GREEN
:ALTUSER MGR.GREEN;&
:CAP=AM,AL,GL,ND,SF,IA,BA,PH,DS,MR,LG
:ALTUSER BOB.GREEN;&
:CAP=AM,AL,GL,ND,SF,IA,BA,PH,DS,MR,LG
:BYE

c. Log on with LG capability, build a log-file on
disc, acquire a log identifier with the GET­
LOG command and link it to the log-file. If
you are already logged on, don't forget to log

off and log back on (otherwise, you will not
have the LG capability that you have given
yourself above).

:BUILD TESTLOGjDISC=3000,8,1;CODE=LOG
:GETLOG AUDIT;LOG=TESTLOG

d. Use DBUTIL to link your database to the log identifier.

:RUN DBUTIL.PUB.SYS
>SETTEST LdGID=AUDIT
>EXIT

e. The first three steps are one-time operations;
you do not have to do them again (for this
combination of user, account, 10g-fUe, log
identifier,. and database). At a later time, you
can link other databases to this log identifier.
The steps that follow are repeated for each
"cycle" of transactions that you wish to cap­
ture.

(assume base=TES1)

f. Ensure that no one is accessing the database,
then use DBUTIL to enable LOGGING for
the database. Once you have done that, no
one can open the database until the 10g­
identifier has been "activated" at the master
console.

:RUN DBUTIL.PUB.SYS
>ENABLE TEST FOR LOGGING
>EXIT
:LISTLOG

LOGID CREATOR LOGFILE
AUDIT BOB.GREEN TESTLOG.PUB.GREEN

:SHOWLOGSTATUS
NO LOGGING PROCESS CURRENTLY RUNNING (CIWARN 1230)
:RUN. APPLPROG.PUB.GREEN
**** UNABLE TO OPEN DATABASE: TEST '***
LOGGING ENABLED AND NO LOG PROCESS RUNNING

g. Now comes the hard part, unless you are lo­
cated at the computer site. Convince some­
one to do a :LOG AUDIT;START command
at the 'console. Perhaps a phone call to an
influential friend would be useful at this
point.

:LOG AUDIT;START

h. You can tell if logging has been started with
the :SHOWLOGSTATUS command.

i. Now log on a number of terminals and gener­
ate changes to the TEST database using
QUERY, application programs, o.r
SUPRTOOL/Robelle. All of these changes
will be logged to the file TESTLOG.PUB.G­
REEN as they occur.

j. Once again, contact the console and have a
command entered to stop the log-file.

:LOG AUDIT;STOP

2-5-5

k. Terminate the programs that are generating
the transactions; when the last database ac­
cessor has closed the database, MPE will
terminate the log process and close the log­
ftIe. Now, use DBUTIL to disable logging to
this database (so that DBAUDIT can access
it!).

:RUN DBUTIL.PUB.SYS
>DISABLE TEST FOR LOGGING
>EXIT

1. Run DBAUDIT and specify TESTLOG as
the source of input records. If you do not
want the report on the lineprinter, you can
use a :FILE command to the file
DBREPORT to redirect it to $STDLIST or to
a disc file.

:FILE DBREPORT=$STDLIST;REC=-79
:RUN DBAUDIT.PUB.ROBELLE
>INPUT TESTLOG
'>EXIT

2-5-6

5. Users report that the system load of transaction
logging may not be as bad as was frrst rumored.
Considering the performance improvement that is
likely to accompany MPE IV, now may be a good
time for users to consider activating transaction
logging for their databases.

6. In one of the releases of MPE IV, IMAGE was
changed in a way that can affect user programs.
Previously, a user program could invoke the
DBBEGIN, DBEND or DBMEMO intrinsics
whether or not logging was active for the database
in question. The intrinsics ,always returned
STATUS=O, as long as the parameters were legal.
Now, these three intrinsics return an error (non­
zero STATUS) if logging is not active at the time
of the call (i.e., the DBBEGIN, DBEND or
DBMEMO could not be logged). User programs
that d0I1:'t care whether logging is running, must
not check the STATUS result. User programs that
wish to ensure that the operator has activated log­
ging can now do so by checking the STATUS from
these intrinsics.

Transaction Logging and Its Uses
Dennis Heidner

Boeing Aerospace Company
Seattle Washington

For some time database users have been concerned
about the integrity of their databases and methods to
prevent them from being corrupted. Another concern is
performance measurement. When H-P introduced
MIT-1918, they also introduced "Transaction Log­
ging." Transaction logging is intended to provide a
means of repairing databases which are either damaged
or are suspected of being so.' There are however many
additional benefits to be'derived from transaction log­
ging including automatic audit trails, historical records
of the database users, and information on the database
penormance.

The purpose of is paper to discuss the basic concepts
of transaction logging, its benefits, and drawbacks. Var­
ious logging schemes, such as long logical blocks, and
multiple IMAGE databases are discussed. Several dif­
ferent database logging cycles and HP recommended
recovery procedures are discussed, and a method of
recovering and synchronizing multiple databases is
proposed.

Finally this paper covers a user written program
which has been used to monitor the database perfor­
mance, to validate and debug new user-written applica­
tion software, and provide a complete audit trail for
future reference.

INTRODUCTION
Many computers are justified only because they can

keep track of large quantities of information in "real
time" databases. In such cases it becomes extremely
important that the integrity of this information remains
consistent.

The database can be destroyed or corrupted in a
number of ways. These include program errors, person­
nel errors, and computer hardware problems. A consid­
erable amount of time and resources can be expended to
eliminate most of the program errors, but it is almost
impossible to guarantee a perfect program. The second
source of inconsistencies is people. While it is possible
to protect the information from human error by increas­
ing the complexity of the program or by eliminating the
human contact with the machine and its peripherals,
both are often undesirable. Finally the third cause is
system failures. System failures can be caused by
numerous events including such things as fires,
earthquakes, vandalism, hardware problems, power
failures, and of course, MPE flaws.

We can take steps, however, to protect our invest­
ment in the database. There exist several very good
programs,! such' as DBCHECK and DBTEST, which
will look for and can correct minor structural problems
caused by crashes. But what about the user who must
update a critical path in IMAGE:?; To do so requires a
DBDELETE followed by a DBPUT. If the system
crashes between the two, there will be no structural
damage to be found. Ifyou don't mind losing a $50,000
item or a $100,000 check, .you have no worries... An
effective database protection method is transaction log­
ging. Logging takes many forms, the simplest of which
only requires that we file away the paperwork used to
generate the modifications to the database. Although
this is convenient, it is a poor approach when it comes
to recovering the database from a crash or system fail­
ure. For instance let's assume that we have a failure
after two or three thousand transactions have been en­
tered from terminals at several locations. Who wants to
re-enter all the old data, while all the normal work is
stacking up?

A better method is to have the computer keep dupli­
cate copies of the information used to make the
changes. Then it would only be necessary to instruct the
computer to use the duplicate to reconstruct the
database following a crash.

There are several ways that computers can be used to
generate these duplicate copies. The most efficient
method is to write the programs with an intrinsic
transaction-logging system. This logging system can
either be supplied by HP or could be a custom logging
scheme. The problem with custom schemes is that they
generally require as much or more design time as many
of the applications programs that will use them. Since
this work is not readily visible to either the end user or
management, there is a temptation to do a quick job.
The resultant lack of planning causes poor database and
system performance. Additionally, in-house logging
schemes only work with the in-house programs. If we
use externally-written software (such as QUERY), we
may find it difficult or impossible to get these routines
to use our logging schemes.

TRANSACTION LOGGING (USERLOGGING)
HP recognized this need for database protection, and

developed a version of transaction logging which runs
on the HP3000.2-3 HP's transaction logging is actually a

2-34 -1

process which runs under the control of the MPE
operating system. If the database is enabled for logging,
a logging process then attaches itself to the database
when it is opened up for any update access. If, the
database is opened up in a read-only mode, the logging
process is not attached. When the logging process is
running it intercepts transactions after the IMAGE
check has been made, yet before the actual transaction
has been made in the database. This captured data (old
and new values) are then blocked up in a buffer in mem­
ory. When the memory buffer fills up, the transactions
are moved out to a logging fde on the disc. If we are
logging to the disc only, then this becomes our duplicate
copy of the transactions. If we are logging to the tape
drive, then the disc buffer is periodically moved out to
the tape drive (see figure 1).4

If we have a system failure (or any other event which
could cause a database inconsistency) then we use a
database recovery procedure which uses a good copy of
the database and the duplicate copy of the transactions
to restore the information in the database to its condi­
tion only moments before the crash.

The recovery' program which HP supplies is called
DBRECOV. The program literally re-works all the
transactions in the same sequence as originally made;
this repetition assures that the database structure is cor­
rect and undamaged.

Once the database has been corrected and brought
back into a consistent state, a backup copy is made and
a new logging media is used. The act of making a bac­
kup copy and using a new logging media is known as
beginning the logging cycle.

In order to implement transaction logging, HP intro­
duced several new user-callable DBMS procedures:
DBBEGIN, DBEND, DBMEMO, WRITELOG, BE­
GINLOG, ENDLOG, OPENLOG, and CLOSELOG.
These new procedures are extremely useful because
they let us define 'how transactions are logically
grouped.a

To illustrate the importance of logical grouping of
transactions, assume we have two mutually-dependent
pieces of information. It is important that if any change
is made to one item, the change that is made to the
second item must also be made. If either item is not
changed, then neither should be modified. We can do
this by using DBBEGIN to mark the beginning of the
dependent changes, and DBEND to mark the end (see
ftgUre 2). The intrinsic routines ensure that if there is a
system crash or failure between the DBBEGIN and the
DBEND, neither transaction is made. While transaction
logging does not guarantee that we will not have
crashes, it does provide some relief in recovering from
their effects.

Now let's talk about the drawbacks. Anytime we ask
the CPU to perform additional work, there is an in­
crease in the overhead cost for our process. The object

2-34-2

is to balance the additional workload on the computer
with the benefits that we hope to gain.

Every time the memory buffer is moved out to disc,
or the disc buffer is moved to magnetic tape, these
transfers tie up the disc controller. Although this may
be for very short periods of time, one of the biggest
problems plaguing many HP3000 sites is slow response
time due to a large number of disc accesses. '

If we install logging then, our response time may be­
come worse. Your alternative of course is to use abso­
lutely no logging at all! Thus transaction loggings may
be one of the necessary evils in life.

LOGGING STRATEGIES
The placement of the calls to DBBEGIN and,

DBEND can playa crucial role in the success or failure
of logging. Since each call to DBBEGIN or DBEND
causes a logging record to be written, and thus
additional overhead, it is tempting not to use these at
all. The people in the logging laboratory at HP wrote
DBRECOV to handle both blocked and unblocked
transactions (QUERY does not block its transactions).
However while this is ideal for existing programs, we
may be losing some very valuable information about our
databases.

By properly placing the DBBEGIN and DBEND it is
possible to measure the performance of our database.
This information can .later be used to tune-up our appli­
cations programs. Additionally proper placement of the
calls enhances our crash recovery procedures.

The worst possible thing that we can do is to take the
easy way out, calling DBBEGIN when we open up the
database and calling DBEND as we close the database.
This results in large recovery blocks. As long as we
never have a crash everything works fme. However the
first time we must recover after a crash, we might find
that DBRECOV is unable to help us out. This is be­
cause the recovery process tries to resolve all
transactions made between periods when the database
is inactive. With the long blocking scheme the database
is almost always active. DBRECOV will attempt to
build a monstrous file to look for dependent
transactions, and inevitably fail!

HP recommends that we make all the necessary locks
on the database, call DBBEGIN, make the transaction,
the call DBEND before unlocking (see Figure 3A). This
will ensure that we have a minimum chance of large
concurrent blocks. 6

Another strategy that appears to work well is to call
DBBEGIN, then lock the database or sets, and make
our updates. Conversely we would unlock, and then call
DBEND (see Figure 3B). This method allows us to
measure the time between the begin and the end, which
reflects the performance of our database. This proce­
dure works quite well, as long as the following condi­
tions are met:

• Always use ASSIGN LOCK OPTION OFF in
QUERY

• Our transactions are made by terminals, and de­
signed so that they collect the data from the screen,
perform edits, then -go through the DBBEGIN,
DBLOCK, updates, pBUNLOCK, DBEND.

If you cannot operate under these conditions, then
stay with HP's recommendations.

MULTIPLE DATABASES
When HP fIrst introduced transaction logging, they

did not make any provisions for synchronizing
transactions which span multiple databases. The
DBBEGIN and DBEND intrinsics work only for a
single database at a time.7 However with MIT 2028, HP
introduced the BEGINLOG and ENDLOG intrinsics.
These new intrinsics now make it possible to develop a
method for synchronizing multiple database
transactions. This is done by calling BEGINLOG be­
fore any multiple database transaction, and ENDLOG
at the completion of the transaction (see figure 4). A
user-written program could then scan the trans.action
log for complete BEGINLOG-ENDLOG lblocks and in­
dentify. the record number of the last complete transac­
tion.

To recover the database you then run DBRECOV
and specify @@CONTROL EOF=recordnum. " It may
be necessary to run DBRECOV for each database that
was involved.

LOGGING CYCLES
The method and length of our logging cycles depends

heavily on the application and previous experience with
the computer system's reliability. There were several
possible methods proposed by HP during the MPE 1918
update course. These include:

• DBSTORE, then start a new logfile
• DBSTORE, start a log tape, when it fills start a new

one, when it fills start another
.• SYSDUMP, start a logfile
The first logging cycle method is the perferred meth­

od. It-is straightforward, the recovery procedure is easy
to follow, and in the event of a: system failure, downtime
is limited to the time needed to recover one logfile.

The second type of logging cycle should only be used
on databases which require backing up, but have very
little activity. This is because each logfile complicates
the recovery procedure, and adds a considerable
amount of time to recover each logfile.

The third logging cycle option omits the DBSTORE.
We have found that a DBSTORE takes about 2 minutes
for 3 megabytes of database (1600 bpi tape, series 33
computer). At first glance it would appear that the use
of DBSTORE wastes time. However DBSTORE sets
some internal flags and time stamps which SYSDUMP
does not. These internal stamps and flags are used by
DBRECOV to provide added protection against using

logfiles from the wrong time period.
If you use a SYSDUMP tape, you must remember to

request SYSDUMP store all the fues. If partial backups
are done, the database must be restored from the latest
full backup, then restored from each succeeding partial,
before DBRECOV is used. Because the time stamp and
flags were not set by SYSDUMP, we must then specify
that DBRECOV is to ignore all time stamps and flags.
This is often difficult or dangerous to do, especially if
your system operators are inexperienced.

SYSDUMP should only be used as a backup for the
previous two logging methods. If you do not want to
have your database stored on your backup tapes, then
you should look into Alfredo Rego's STORENOT pro­
gram. STORENOT allows the creator of a database to
"tie it up" so that it is not stored by full or partial
backups.
The logfile can reside on either the disc or magnetic
tape. It is faster to log to the disc; however, if the reason
for the system failure is a disc hardware or free space
problem, you could lose both your database and the
backup copy of the transactions. The other choice is for
the logfile to reside on tape. This has two drawbacks:
first, it ties up the tape drive, and second, it periodically
requires the CPU to move the logging buffer from the
disc to tape. If the system is already heavily loaded this
can only worsen the problem.

If you decide to log to a disc ftIe, you should be care­
ful to build the logfile large enough to hold all of your
expected transactions plus a reserve . You can obtain a
rough estimate of the log size by:

:# of sectors = 4*number of database opens
+ (number of updates ale up­

date rec len)
+ (number of puts * put re­

cord length)
+ (number of deletes ale de­

lete rec len)
+ 1 for DBEND
+ 1 for DBBEGIN

update rec len (in sectors)
= (:# of items in list

+ update buffer size)/256
delete rec len (in sectors)

= (:# of items in list
+ delete buffer size)/256

put record length (in sectors)
= (:# of items in list

+ put buffer size)/256

If the buffer sizes are not known - use the
media record size . . . you can get that
from a DBSCHEMA compilation.
You can count the :# of items in the item
list or if "@;" was used then just use the
item count in that particular set.

If you are not sure you calculated the size correctly

2-34-3

then use the :SHOWLOGSTATUS command to
monitor the number of records in the log. If you run out
of space in a disc fde while logging, you can put the
database in a state similar to a crash; this may require
that you go through a complete database recovery pro­
cedure!

CRASH RECOVERY

HP implies that a recovery procedure must be fol­
lowed every time there is a database crash. 8 This can be
disastrous. On one occasion we followed the recom­
mended crash recovery procedure, purged the
database, restored the database, and started
DBRECOV. It bombed, and upon investigation we dis­
covered that approximately 500 transactions had been
lost because the logtape was blank due to a tape drive
malfunction. Moral of the story: You should frrst de­
termine the cause of the crash, then verify that the log­
file is good via LOGLIST or DBAUDIT.

We also found that it is important to write your appli­
cations program's so that they abort to prevent further
transactions if they detect a logging problem. It is pos­
sible for the program to pass the IMAGE checks for
DBDELETES, delete an item, then fmd out there is a
logging problem! The end result is one less item in the
database. This becomes especially critical ifyou are one
of the many IMAGE users who have to update critical
items by deleting and re-adding.

If the crash is because the logfile was too small and
fdled up, then the end result of trying to recover is that
your data-entry personnel spend hours reconstructing
previous transactions. Itis better to run a program such
as LOGLIST, and fmd out what data have been ef­
fected. Then run DBSTORE, build a new, larger logfde,
and start a new logging cycle. One note of caution: we
found that parity errors on the tape drive cause a crash
whose symptoms are almost identical to those of one
caused by running out of space on a disc logfile.

If the crash is because of a system failure, the correct
procedure is:

• Perform a memory dump for HP
• WARMSTART (if possible); this causes MPE to

try to recover the transactions in the internal disc
buffer. (THIS IS VERY IMPORTANT!)

• SHUTDOWN
• COOL or COLDSTART
• Run LOGLIST or DBAUDIT to determine who,

what, when and how bad the crash is.
• If the database was not open in an update or modify

mode then simply start a new logging cycle and get
your users back on.

• If the database was open in an update or modify
mode, then purge the database using DBUTIL, re­
store the database using DBRESTOR and recover
using DBRECOV. BE SURE TO START A NEW
LOGGING CYCLE!

2-34-4

ADDIT TRAILS

Good data processing applications have some form of
built~in controls which allow for the verification of the
accuracy of the database. This is especially true if the
application is in the banking, inventory control, or gov­
ernment fields. In many applications some form of an
electronic "paper trail" is mandatory.

The information which is logged by IMAGE exceeds·
most audit requirements and can provide the required
electronic trail. Transaction logging records information
about who, when, where, and how an item or entry was
modified. This information can be extracted in several
ways. Bob Greene has a package called DBAUDIT
which can analyze the log.9 I have contributed a similar
pr~gram called LOGLIST (via lUG 1982 swaptape)
whIch can expand the transaction log per directions. It
is describe.d in a appendix to this paper.

The audit trail recorded by transaction logging can be
enhanced by carefully planned use of the 'text' area on
DBBEGIN, DBEND and DBMEMO. We record the
information which leads to a transaction when we call
DBBEGIN. The results of the update or special error
conditions are logged on the DBEND. If needed,
DBMEMO is used to record special remarks and initials
of the person making the change.

If you foresee a requirement for frequent analysis of
the transaction log, it is also important to include a
time-stamp as an item in individual data entries. This
forces IMAGE to log both the present time-stamp and
its previous value. The value of this information is ap­
p3fent ~hen trac~g the history of a specfic data entry.
WIth a tune-stamp on your data entries, it is possible to
pull and analyze only those logfiles which contain the
time interval about the time-stamp of interest. Since
analysis of a transaction log takes about 10-15 minutes
for 40,000 records, the time saved in this manner can be
considerable.

Perhaps more importantly from a programmer's point
of view, we can use the audit trail as a method ofprovid­
ing continuous software monitoring. The concensus
among data-processing people is that it is virtually im­
possible to guarantee that a complex program will cor­
rectly handle all cases regardless of what data is fed to
it. When an error does occur at our site, experience
indicates that it is generally several months before we
notice that something is wrong. By maintaining transac­
~ion logfiles for a sufficient length of time (6 months), it
IS possible to locate the source of most errors. This
makes it much easier to correct latent program errors.
In addition we have found that if the problem was
caused by human error, the hard-copy printout that can
be generated from the log tape goes a long way toward
refreshing the memory of the person who made the mis-
~e. .

For users at sites whose software must be accepted
by Quality Assurance, audit trails have an additional
advantage. As part of the acceptance testing on new

releases of our applications programs, we DBSTORE
the database, then run the test programs and fully
analyze the log. This enables us to provide a visual
check on fields and items in a manner easier than using
QUERY..

After using the transaction log as an audit trail and
debugging aid during the last two years I would estimate
that we have saved probably a hundred man-hours
which would otherwise have been spent looking for the
cause of "freak errors."

As with all good things in life there is a "Catch-22."
IMAGE3000 is structured as a closely-knit group offtIes
tied together with the root file. When modifications are
made to' the database , only the set number, item
number and item buffer are logged. If the root ftIe is
altered (by using ADAGER, DBGROOM, etc.), then
the link between the database and the transaction log is
broken. The most obvious problem occurs when the
order of data sets is changed with ADAGER's DE­
TSLIDE. Suddenly your Employee-Detail becomes
your Part-Master and the log analysis program either
bombs or gives ridiculous answers. You have two
choices: either don't use ADAGER (not a very realistic
choice), or use ADAGER's SCHEMA to generate a
dummy version of the database structure as it appeared
before changes were made. Then use the editor to
shrink the capacity of all the sets down to 3 or 5. Assign
this schema some version number and identify on all
logfiles under which version of the schema the 10gftIe
was made. I have set up a separate group in our account
for these "old, shrunk databases." Then when I need to
look at an old logfile, I set up a file equation referencing
the old "database" and run LOGLIST under that condi­
tion.

TRANSACTION-LOGGING PERFORMANCE
There is a great emphasis on designing systems with

better response time. For this reason any type of over­
head (regardless of how beneficial) is generally shun­
ned. To make matters worse, when HP introduced
transaction logging with MIT 1918, they had indicated
that there would be a "through-put reduction of 30% for
large modication-intensive online applications running
10 or more concurrent processes."10 Unfortunately the
test environment used for that statement was not com­
pletely explained. During the past two years we have
been using transaction logging on a Series 33 with 768
kbytes and typically 11 active processes. Our experi­
ence has shown that there was probably less than 10%
reduction in throughput. So, what is the overhead cost
of transaction logging?

In order to find out, I wrote a program (DBPERF)
which allows me to benchmark IMAGE transactons
with and without logging. The benchmarks are deliber­
ately run with as light a load as possible in order to
isolate the overhead caused by logging from the effects
of other users' activities (see APPENDIX: DBPERF).
The results of the tests are shown in Figures 5-7. In

F~gure 5 we see the comparison of the time to DBPUT
verses pathcount, on series 33 and 44 CPU's. As seen in
Figure 5 the added overhead caused by transaction log­
ging, is marginal. The anomalies on series 44 data was
caused by a user logging on and using FCOPY during
the benchmark test. Figure 6 shows the comparison of
the time to DBDELETE verses pathcount, on the series
33 and 44 CPU's. The overhead caused by transaction is
marginal, again the anomalies on the series 44 data was
caused by a user logging on and using FCOPY during
the benchmark test. Figure 7 shows comparisons of the
time to DBOPEN, DBUPDATE and block transactions
with DBBEGIN and DBEND. Earlier I mentioned that
logging blocks up the IMAGE transactions (approxi­
mately 32 transactions), then moves this buffer out to
disc. The overhead caused by this movement is com­
parable to the roll-in and -out of an inactive user process
by the memory manager (MAM).

In most on-line applications the overhead added to
the transaction is considerably less than the threshold
point at which the system becomes overloaded. How­
ever batch jobs are generally another story, if you have
batch jobs which require a considerable amount of sys­
tem resources, run them without logging. Store your
database before the job begins, stream the job, and
when it completes, then store the database and start a
new logging cycle. If you have a crash during the unpro­
tected batch jobs it will only require that you DBRES­
TOR and rerun the jobs.

PREDICTION OF RESPONSE TIMES
At this point it will be worthwhile to discuss a little

queueing theory and how it is used to estimate response
times so that we can illustrate the effects of transaction
logging on the system. A queue is just a waiting line.11
When we analyze queueing systems, we talk about such
things as number of servers, arrival rate, transaction
rate and number of users. The classical example of
queues in operation. is the waiting lines at banks. With
only one cashier (number of servers), if the customers
arrive at a rate of one per hour (arrival rate) and the
cashier takes only 15 minutes to complete an average
transaction (transaction rate), then there will be no wait­
ing line and the cashier can perform some overhead
functions such as washing windows while waiting for
the next customer. If, on the other hand, customers
arrive every 15 minutes, then we can expect to find a
person at the cashier constantly. The windows start to
collect dirt and grime since the cashier no longer has
time to wash them. When the arrival rate of the custom­
ers increases to one every 10 minutes, we soon fmd that
a line is forming. If sufficient time is allowed to pass,
customers start to switch banks, the cashier demands a
raise and the windows now appear to have several
layers of dirt and grime and strange creatures crawling
on them.

Transaction processing on an HP3000 performs in a

2-34-5

similar manner. As long as the arrival rate is sufficiently
slower than the transaction rate, MPE is able to perform
its necessary overhead functions and the response time
is good. Unfortunately the HP3000 cannot ignore its
overhead as the cashier did, so as the arrival rate ap­
proaches the transaction rate, response time begins to
suffer.

It is possible to estimate the response time. of the
computer if you are able to estimate the number of us­
ers, the average time each user "thinks" about what
needs to be done, and the time required to complete the
transaction. The average "think time" is equal to:

Transaction response time=

arrival rate
Think time = ---------------

number of users

For example:
The XYZ Company has an HP3000 'Series 33 com­

puter on which they wish to implement an application
which will support 10 users. The "think time" of these
users is about 30 seconds each per transaction. The
transactions consist of a DBDELETE and a DBPUT on
a detail set with four paths. What will their transaction
response time be?

The transaction response time is equal to:

Queue length * transaction rate

Queue length = the greater of
1

or
number of users * transaction rate

think time

Using .the IMAGE benchmark results, we then determine:

Transaction response time = Queue length * 1.3 sec

Queue length =
10*1.3 13

=
30 30

; as noted above, use 1

then Transaction response time = 1.3 sec

If XYZ adds logging, it will be:

Queue length =
10*1.4 14

=
30 30

; as noted above, use 1

then Transaction response time = 1.4 sec

tion. The time available for the computer was approxi­
mately:

Our model works well as long as the computer has
time to perform its· overhead functions, i.e. code­
segment swapping, MAM function, and garbage collec-

User think time
Computer idle time = --------------­

number of users
- transaction rate

In the case of the XYZ company this averaged 1.6
seconds per user transaction (with logging).

The overhead that was added due to transaction log­
ging is:

tran sacti on
time with
logging

tr an sac tion
- time without

logging
Added overhead = ---------------------------- * 100

transaction time without
logging

or, fo r XYZ,

(1 • 4-1 .3)
Added overhead = --------- * 100 = 7.6%

1.3

2-34-6

If 7.6% overhead is enough to cause XYZ's machine
to have problems, can you imagine what an additional
user using QUERY, the editor, or any of the compilers
would do?

An additional benefit from transaction logging is that
we are able to collect the arrival rates, transaction rates,
and number of users during our actual production en­
viroment. With this knowledge we can make more ac­
curate design decisions when developing new and
additional applications.12

CRASH-PROOF?

How crash-proof is your database? Damage to
databases can be caused in several ways. The typical
cause of damage is a crash occurring while adding or
deleting an item to or from a detail set. If th~ DBPUT or
DBDELETE was manipulating the internal pointers in
the database, then you can probably count on having at
least one broken chain. Other types of database crashes
occur when MPE or some "neat" privelege-mode pro­
gram adds its own kind words to a random data set!

When discovered, this error has the same symptoms as
a broken chain; however, you may also be missing a
considerable amount of data.

Perhaps the worst kind of database crash is the one
you can't flOd. That is, OBTEST, DBCHECK, AD­
AGER and even DBUNLOAD-DBLOAD say every­
thing is ok. These errors occur when the data set has a
critical path which must be updated. Since IMAGE will
not let us update critical paths, we have to delete and
re-add. If a crash occurs after the DBDELETE is com­
plete and before the DBPUT re-adds the item, then we
have lost an entry in the database though the database
structure remains intact (see Figure 8). DBTEST,
DBCHECK and the other routines have no way of test­
ing for or detecting this error. If your HP3000 is an
accounting system, this is intolerable. This type of error
could be prevented by using transaction logging and
placing the DBBEGIN at the start of the tr~sactionand
DBEND at its finish.

It is possible to estimate your chances of having some
form ofdamage to your database in the event of a crash.
This Crash Figure of Merit (CFOM) is given by:

(transaction rate * number of users)
CFOM = ------------------------------------ * 100

think time

If your CFOM is high, say 20 or 30 percent, then it is
probably worth the effort to run DBTEST and
DBCHECK on every database that was open when a
crash occurred. It may also be very much worthwhile to
try transaction logging. If the CFOM is very low (one to
two percent), then it is probably easier to manually COf­

rect errors and run DBCHECK at some convenient
time.

SUMMARY

This paper discusses the merits and drawbacks of
transaction logging, and provides some basic guidelines

to aid in the successful implementation of transaction
logging. Since most applications are designed to "earn"
money, it is only fair to treat transaction logging in the
same manner. As summarized in fIgure 9, the decision
to log or not to log should be made only after a careful
review of the associated system costs, its performance
cost, alternatives, and by establishing values for the in­
tangibles such as improved data security, benefits from
audit trails, etc.

ACKNOWLEDGEMENT

I wish to thank the HP sales office in Bellevue, Washington, for
,allowing me to run DBPERF on their Series 44.

A P PEN D I X LOGLIST

LOGLIST is a logfile analysis program written by the
author; it has the following capabilities:

A. Show who, what, when, and how a database
which was running with transaction logging
was accessed.

B. Trace the changes made to the database and
expand the values in a format similar to
QUERY so that the dump is easily readable.

C. Selectively track user-requested database
items which fall within user-specifIable limits.

D. Show when the log was opened, closed, or re­
started and identify all users that were acces­
sing the database during a crash!

E. Provide statistics showing the database activi­
ty, transaction elapsed time, detail sets acces­
sed, the ratio of BEGIN-ENDS to database
transactions, average transaction times, and
worst-case transaction response time.

F. F. Identify (if any) the processes which had
"broken" transactions.

Running LOGLIST

LOGLIST should be run in the same account and
group in which the database resides. If the log to be
examined is on disc, then that fIle must also be accessi­
ble. LOGLIST cannot analyze a logtape that is cur-

2-34-7

rently active. Finally, the log analysis consumes con­
siderable CPU time (even though the elapsed time ofthe
analysis may be very short).' It is advisable the log
analysis be either streamed in a low JOBPRIORITY
(DS or ES) or run during periods of low computer us­
age.

LOGLIST Commands

LOGLIST commands are listed below, each followed
by a short summary of its function.
HELP - print additional instructions
DATABASE= [dbname[.group[.acct]]]

(if not specified the values are set to @.@.@ and no
expansion of the log records may be done. Only the
Log User Summary and histograms will be gener­
ated.)

PROCESS= [program[.group[.acct]]] ,
(if not specified the values are set to @.@.@)

LOGON= [user[.group[.acct]]]
. (if not specified the values are set to @.@.@)

LIST[= range]
expand the transactions made to the database (in the
QUERY report format) showing:

the user that made the modification
if an UPDATE, what was changed
if a DELETE, what was deleted
if a PUT, what was added

The transactions are outlined in asterisks (*) to in­
dicate indicate "logical transactions." When the
beginning or end of a transaction cannot be deter­
mined, the program leaves the outlined block open
(see Figure 10). On such blocks, the LOGID of the
process is printed and it is possible to rerun the
analysis - specifying that those items be ex­
panded separately.

RANGE - The range field is optional, and is in the
following form:
LIST= startingrecord:,endingrecord
If the ending record is not supplied then LISTLOG
will continue to expand until the end of the log fIle.

NOLIST disable expansion of the transactions made to
the database

DATE=ml/dl/yl [TO m2/d2/y2]
look only for transactions made between and includ­
ing the specified dates. The default for m2/d2/y2 is
99/99/99.

TIME=Hl:Ml [TO H2:M2]
look only for transactions made during the specified
time interval. The default for H2:M2 is 24:00.

FIND dset.itemname (EQ,LT,GT[,IB])
'valuel '[,'value2']

look only for transactions made to dset.itemname and
falling within the bracketed area as specified by the •
relational operators.

FIND dset record#'
look only for transactions made to record#' of dset.

2-34-8

t TAPE;LABEL=label }
LOGFILE={ }

t f i 1 en am e [•9 r 0 up [• ace t]] }

if a filename is specified, you must have exclusive
read-access to the file. If tape is specified, you must
be able to use this non-sharable device.

RUN - begin processing the transaction log.
EXIT - exit the program and return to MPE.
SHOW - display current parameters.
INIT - initialize the files, plots and data back to the

way they were when LOGLIST fIrst started. Any
data accumulated so far will be sent to the LP.

LIMIT - limit and identify the "worst" transactions.
This causes all transaction response-time data which
exceeds 20 times the current running average to be
thrown out. The time of day, user and process are
printed on $STDLIST. This command has no effect
until ten logical transactions have been completed. It
is useful in locating deadlocks.

'<CONTROL Y> - ("CNTL" and "Y" keys pressed
simultaneously) interrupt the program (sessions
only). The program will give the the time and date of
the transaction which it is currently processing and
ask if you wish to continue. A "Y" or "N" is ex­
pected.

Interpretation of the
Log User Summary (see Figure,tl)

USER - Logon user name
GROUP - Logon user's group
ACCT - Logon ·user's account
DBASE - Database that was accessed
PROCESS - Process run by user
GROUP - Group in which the process resides
ACCT - Account to which the Process belongs
LOGON TIME - Time the process began
LOGOFF TIME - Time the process closed the

database
LG#' - LOGID #' for the process (assigned by MPE)
DEV - Logical device from which the process was run
o - Database open mode
CAPABILITY - User's capability (see WHO intrinsic

of MPE)
UP - Number of DBUPDATES
PUT - Number of DBPUTS
DEL - Number of DBDELETES
#BLKS - NUmber of complete logical transaction

blocks

Inferences from the LOGLIST Statistics

Several histograms and charts are derived from the
data; these are provided by LOGLIST to aid in the
interpretation of the data.
DATABASE ACTIVITY (see Figure 12)

The DATABASE ACTIVITY histogram plots the
number of transactions on the y-axis and the time ofday
(in 15 minute intervals) on the x-axis. This histogram
can be useful in determining when the peak database
loads occur.
DATABASE RESPONSE TIME (LOG10) (see Figure
13)
The LOGI0 plot is a useful tool in determining if a pro­
cess or processes are suffering from very bad response
time or may be causing database deadlocks. The
LOGI0 plot covers the range from .1 sec to 10,000 sec­
onds.
DATABASE RESPONSE TIME (LINEAR) (see Fig­
ure 14)

The LINEAR plot is a useful in determining if a pro­
cess or processes are suffering from poor database
response times. The y-axis represents the number of
transactions made. The x-axis represents the time,
from 0 to 30 seconds.

LOGICAL BLOCK SIZE (see Figure 15)
The LOGICAL BLOCK SIZE histogram is useful in
evaluating the effectiveness of the transaction block­
ing of a process. This chart may also be used to de­
termine if a program is calling the DBBEGIN­
DBEND pair only at the beginning and end of pro­
cesses or after making single database modifications.

DATABASE RESPONSE TIME (AVERAGE) (see
Figure 16)
The AVERAGE histogram can be useful in evaluating
modifications made to existing programs by aiding in
the determination of whether or not the system (as seen
by the database users) is getting slower or faster.
DATABASE RESPONSE TIME (WORST CASE) (see
Figure 17)

The WORST CASE histogram is useful in locating
processes that may have caused database deadlocks.
The histogram is also useful in determining if there
are certain times during the day in which stream jobs
may be run with little or no impact on the response
time for on-line users.

TRANSACTION FREQUENCY (see Figure 18)
The TRANSACTION FREQUENCY histogram is a
measure of the time between logical blocks, often
called the user's "think time." This plot, in conjuc­
tion with the database response time charts, can be
helpful in determining if and/or how improvements
can be made to the application programs and the sys­
tem.

ADD-DELETE-UPDATE TO BEGIN-END RATIO
(see Figure 19)

The ratio of DBPUTS, DBDELETES, and DBUP­
DATES to DBBEGINS and DBENDS is a good in­
dication of how the transactions are blocked by the
user's application programs. The desirable range is
o< .[PUTS + DELETES + UPDATES] / [BEGINS
+-ENDS] < 100.
If the ratio is less than one, this usually indicates that

there is a process or processes which are making only
one database transaction per BEGIN-END set. Al­
though this is not harmful, it does not fully utilize the
benefits of transaction logging, resulting in more
overhead during the logging process and during re­
covery.

AVERAGE + STANDARD DEVIATION
LOGLIST provides the averages for the response
time and block lengths. With the averages and the
standard deviations which are also supplied, it is pos­
sible to determine your chances of attaining desired
response times or block lengths. For instance, the
interval covered by the sum of the' average plus one
standard deviation includes approximately 85% of all
data base transactions logged.

DETAIL SET (DATA BASE) SUMMARY
The DETAIL SET summary provides totals based on
the actual activity in the sets. As 'shown in Figure 20,
this information includes the number of DBDE­
LETES, DBPUTS, and DBUPDATES. The capacity
and number of entries are also printed.

How WGLIST Works

When processes are using the "USER LOGGING"
facility of MPE, the process opens up a path to the
transaction log for each process and each database ena­
bled for logging. As part of this "opening" procedure
the user's name, acct, process name, capability, LDEV,
and database (if one) are logged in a special record.
LOGLIST looks for these records and builds its internal
working tables from them.

As processes make transactions to their databases,
the logging process intercepts a copy of the changes,
adds a time and date stamp then routes them to the
logging fde. LOGLIST uses the time stamp from the
DBBEGIN and DBEND records to determine the total
elapsed transaction time. (If you don't use DBBEGIN
or DBENDS then you can never measure your response
times with LOGLIST!)

Broken transactions can be located by looking for a
special "ABNORMAL END" record, and by checking
to make sure that all process issued a DBEND b~fore

closing the log and terminating.
If the process did not (or was unable) to close the log

before terminating, and LOGLIST detects an EOF on
the log then it is assumed that there has been a system
crash. System crashes can also be determined by look­
ing for the crash marker which was written out at the
time of a WARMSTART recovery.

Transactions are expanded by using the information
gathered when the process first opened up the log, and
the actual data- base "change" records. (These re~ords

are marked with "DE," "PU" or "UP.") LOGLIST
uses the item-list recorded as part of the transaction and
calls DBINFO to determine the types and lengths of the
individual items logged.

2-34-9

A P PEN D I X DBPERF

c.

D.
E.

F.
G.

nify that that are changes which are dependent.
The time required to perform the BEGIN-END block

is measured and plotted on a separate chart. It should
be noted that since DBBEGIN and DBEND do not re­
quire immediate access to the disc drives, the ti~e re­
quired to perform these intrinsics is very low. The can
however add a significant number of records to the
memory buffer, which of course means that there is an
additionaly load on the I/O channel which controls the
disc driv~s.

REFERENCES

IF. AlfredQ Rego, uDATABASE THERAPY: A practitioner's expe­
riences," in HPGSUG 1981 Orlando Florida Proceedings, Vol 1, pp.
B12-01 to B12-13 .

2P. Sinclair, "MPE 1918: A BONANZA OF ENHANCEMENTS,"
in COMMUNICATOR issue 23, pp. 4-17

3HP, "MPE III 1918 USER UPDATE COURSE"
4HP, "MPE III Intrinsics Reference Manual," pp. 3-92 to 3-96
5HP, "IMAGE Data Base Management System reference manual,"
pp. 4-22 to 4-23

eHP, "IMAGE Data Base Management System reference manual,"
pp.4-23

7P. Sinclair, "MPE 1918: A BONANZA OF ENHANCEMENTS,"
in COMMUNICATOR issue 23, pp. 14

8HP, "MPE III 1918 USER UPDATE COURSE," pp. 60
9Robert M. Green, Robelle Consulting Ltd., S42110th Avenue, Suite
130, Delta, British Columbia V4M 3T,. Canada.

lOHP, "MPE III 1918 USER UPDATE COURSE," pp. 71
llA. O. Allen, "Queueing Models of Computer Systems," in COM­

PUTER, pp. 13-24, Apr. 1980 (an IEEE publication)
12C. Storla, "MEASURING TRANSACTION RESPONSE TIMES," .

in 1981 lUG Orlando Florida Proceedings, Vol. 1, pp. C7-01 to C7-08

Disable the database XYZ for logging
Perform 50 DBOPEN's and DBCLOSE's to
measure time to initially startup the logging
process. (NOTE: this will really clobber the
response time for"everybody else.)
Perform 50 DBPUTS to a detail set which con­
tains a single path and various data types. The
data used for these operations is generated
using the RAND function from the compiler
library.
Perform 50 DBDELETES to the detail set.
Setup a loop so that we can perform 50
DBPUTS and DBDELETES on detail sets
which contain from 0 to 15 paths.
Generate the plots and data summaries.
G) Enable database XYZ for logging, then re­
peat steps B) thru F)

The database modifications are performed without
signaling the start of the transactions with DBBEGIN or
the end with DBEND. This was done so that the com­
parison could be made, without the overhead added by
the BEGIN-END blocking. This type of test is fair since
the DBBEGIN and DBEND calls are made only to sig-

This program was written to benchmark the time re­
quired to perform a wide range of DBPUTS,DBDE­
LETES and DBUPDATES. The primary area of inter­
est was the overhead added to IMAGE/3000 when the
user is using transaction logging.

The benchmark process follows the procedure listed
below:

A.
B.

========
= user =
=program
=
========

=
===================== ======= =====

= ========== = n
======== = = data base = s

= = = a
= = managemen t = c

======== = = = t
= user = = = system = i
=program = = = 0
= -- = = n

= i =
===) s ==)= Tape
= = s = = (if
= = = =used)=

========
= user =
=program

=
= =
= = IMAGE

= T
= r
= a

= =
= = 8

L = = K B
0 = = u
9 = M f
9 ===) e f
i = = m e
n = = 0 r
9 = r

= = y
= =

= =
= =
= =
= =

= =
= =
= =

=
=
=

D =

=

=

======== ===================== ======= =====
=
=

\/
==========
= disc =
= drive =
==========

Figure 1. IMAGE transaction logging flow

2-34-10

CALL DBBEGIN (BASE, • • •)
CALI. DBLOCK(BASE, •••

CALL OBOE LETE (BASE, •••

o
o
o
o

change made to search item

o
o
o

CALL DB PUT (BASE, •••

At this point,
if there is a crash we lose
this data entry!

o

CALL DBUNLOCK(BASE, •••
CALL DBEND(BASE,...)

this item has now been re-ndded

Figure 2. Dependent Changes

CALL DB LOCK (• ••)
CALL DBFIND(•••)
CALL DBGET (• ••)

** MAKE CHANGES TO ITEM VALUES HERE **

CALL DBBEGIN (• ••)

DBPUT
CALL {DB UPDATE } (...)

DBDELETE

CALL DBEND (•••
CALL DBUNLOCK (•••)

Figure 3A

CA·LL DBFINO(•••)
CALL DBGET (• ••)

** MAKE CHANGES TO ITEM VALUES HERE **

CALL DBBEGIN (• ••)
CAL [, DB LOC K (• ••)

nSPUT
CALL{DBUPDATE} (•••

DBDE LETE

CALL DBUNLOCK (•••
CALL DBEND (• ••)

Figure 3D

2 -34-11

2-34-12

CALL BEGIN LOG (• ••)

CALL DBFIND(BASEl, •••)
CALL DBGET (BASE l, • ••)

** MAKE CHANGES TO ITEM VALUES HERE **

CALL DBBEGIN(BASEl, •••)
CALL DBLOCK(BASEl, •••)

DBPUT
CALL{DBUPDATE} (BASEl, •••

DBDELETE

CALL DBUNLOCK (BASEl, •••
CALL DBEND(BASEl, •••)

CALL DBFIND(BASE2, •••)
CALL DBGE'r(BASE2, •••)

** MAKE CHANGES TO ITEM VALUES HERE **

CALL DBBEGIN(BASE2, •••)
CALL DB LOC K (SA SE2, • ••)

OBPUT
CALL{DBUPDATE} (BASE2, •••

DBDELETE

CALL DBUNLOCK (B~SE2, •••
CALL DBEND(BASE2, •••)

CALI ENDLOG (••• ')

Figure 4

IMAGE-3aaa BENCHMARK RESULTS
THE MEASURED TJME TO PERFORM DBPUT'S.

SERIES 33
VInarr LOGGING

SERIES 33
WITH LOGGING

SERIES 4..
VITHWT LOGGING

SERIES
'11TH LOGGING

15 181413121118788

PArmCPUNT

653218

8.5

1.5

2. • ...-.-----------------------------------....

Figure S

2.-34 -13

IMAGE-3~~~ BENCHMARK RESULTS
THE MEASURED TJME TO PERFORM DBDELETE'S.

SERIES 33
WInon LOGGING

SERIES 33
WITH LOGGING

SERIES 44
"J1lIIJT LOGGING

SERIES «
WITH LOGGING

12 13 14 15 1818 11987853218

8.5

1.5

2.8.------------------------------------.

PATHCClJNI'

Figure 6

2 -34 -14

IMAGE-3000 BENCHMARK RESULTS
MEASUREMENTS OF DBUPDATE AND DBBEGJN-DBEND

WI THOUT LOGGltG WITH LOGGING

1.211.....-------------------------------.

&15

I LIB

I..

Figure 7

2-34-15

CALL DBBEGIN (BASE, • • •)
CALL DBLOCK{BASE, •••

CALL DBDELETE{BASE, •••) <structural damage,if crash occurrs>
< for a detnil set with 5 paths>
< the 'critical' time could be >
< a half second or more! >

a
o
o
o

change made to senrch item

o
o
o

At this point,
if there is a crash we lose
this data entry!

CALL DB PUT (BASE, •••

o

CALL DBUNLOCK(BASE, •••
CALL DBEND(BASE,...)

<structural damage, if crash occurrs>
< for a detRil set with 5 paths>
< the 'critical' time could be >
< ~ half second or more! >

The item has now be re-added

2-34-16

Figure 8. Crash Modes

Benef i ts 0 f Logg ing

AUDIT TRAIL
Who, What, When and How
Ability to list Sets and
fields which are modified.

REC OVERABLE DAT~

Ability to recover
mo s t i f not a 11
transactions, upto the
time of the crash.

PERFORMANCE INFO
Information available
which cnn lead to better
application designs
in the future.

LOGGING OF ALL CHANGES
MADE TO DATA BASE
REGARDLESS OF PROGRAM

You can use any vendor
software and still
maintain an "audit trail".

HP SUPPORT OF LOGGING

VS Co st 0 f Logg ing

REDUCED THROUGHPUT?
Dependent on your
application, and system
load.

COST OF ADDITIONAL MEMORY?
May need more memory
to maintain current

system throughput.

TAPE DRIVE OR DISC
DEDICATED TO LOGGING?
Valuable disc space
or tape drive can be
tied up with logging.

STARTUP AFTER CRASH
MORE COMPLICATED

Trai~ing and "test
recoverys" may be
required to familiarize
the programmers and
operators with the
new system restart
procedures.

===

/ \
/ \

/ \

Figure 9

2-34-17

Figure 10

..
• OfFICE lAC lE1"5 ACCTPROGItAC 1El"S TUE. DEC 29. 1981, 8158 PIt •
• 1 ZalICE •• •• lOOJDl1 1 TRANSACTION. - 4 DELETEING ItEM IN EQUIP-DElL DBfllE RECORDI' 23277 •
• PROP. [U12] D 1 •
• ttODELCOD [U1..]. OOOJFIDDLE •
• NOMNCODE [11 J. 3 •
• EDUJPlOC tIl] • 10
• PRQOTAG Cll:1 • 0
• CURRUSER [U10 :J. 0000000100
• NEXTUSEI [U10]. MOHE
• PD-S£RIES [UlO] • NONE
• JIOLDf'OR [Ul0]. NOME
• IOIROW£R [U10 J. NOMEI 'IIItUlER [U10]. NONE

I l;D9lTAG m~: il12~
I ALI tlU0 :I. SERIAL

. T [12:1 • 11 •
XPEN [U2] • E •

• IEWS£D tU2:1 • It •
• 188UEDAT t12] • 811220 •
• ADCODE tU2] • At •
• PUDAT£ [12 J. 11111S •
• IlEXTSTD1 [12] • 0 •
• .X181D2 t12 2. 0 •
• HOlDATE [12] • 0 •
• IEXT£"D1 [12:1 • 0 •
• NEXTEND2 [12] • 0 •
• ITARTCYClE [12 J. 0 •
• RElMDA1E ~J2] • 0 •
• BORROWDT 12] • 0 •
• MESSTAOl Jl:1 • 0 •
• tlE8STAB2 [II J. 0 •
• IESST~3 [11:1 • 0 •
• ACCESTAG [11:1 • 0 •
• DPTJNTAO [X2:1 • ItA •
• IPECCODE tJl:1 • 0 •
• =TIL [U2:1 • YE •
: TUrollDtl ltu~~TI~68~21SO 4 ADDING ITEM TO EGUIP-DEll BarILE RECORDII 23277 :
• PROP. tU12 :I 1 •
• BLCOD IU14 :I 0003FIDILE •
• DE 11 J 3 •
• aUIPLOC 11] 10 •
• PlOGTAG [11] 0 •
• ~USER [UlO :I 5172870970 •

: ;a..~~li8 iH18 ~ III :
• MOLDfOR tUl0 J NONE ,
• IORROWER [US0] NONE •
• FROKUS£R [U10 3 NOME •
• MF8 [11 3 0 •
: ~1i'lTM il~ ~ Im~ I
I lI~hlT ~y~o ~ trIAL I
f- nl~ M ~ I· I
• 18SUEDAT [12] 811220 •
• MeODE [U2:1 At •

i fit iii Ir1l5

I'
• ITARTCYClE [12:1 0
• R£TNDATE [12:1 0 •
• MItROWDT [12] 0 •
• .8I1M! [11] 0 •

I JlIIJ:B~ fll ~ I J
• ACCESTAO [11] 0 •
• OPTINT ItO [X2] Nt •

I m,Cfi¥YE (~~ ~ 'E I
• LAltUlER [Ul0] 5176822150 •
• It58 PM •...........- ._ _ .
• IfFIC£ lAC TEl"' ACCTPIOBIAC TEIM lUE. DEC 29. 19a1, 115'''' •• •• •• L06JDtI 1 TRMIACTIOMI - S UPDATING ITE" 111 £DOIP-DETL DBflLE lEaltHI 23277 •

• MEW VM.lEBS •
• tALDt\TE [12] • 0 •
• ADCODE [112] • ItA •• •
• OlD UALUES' •• CAlDATE [12] • 811225 •
• ADCODE [U2] • At •
• 8159 PIt •..

LOOIDI& 1 TRMSAClJONI - 1 UPDAlING ITE" IN EQUIP-DElL DIFILE R£caRDll 232n
NEW VALlEBI
ItFG [11 J. 3

ILD VAlUESI
IF' [11 :J. 0.,

2 -34 -18

USER CROUP ACCT DBASE PROCESS GROUP ACCl LoeOH Tl"E LOGOFF TIME LCI OEY 0 CAPABIlITV UP PUT DEL .elKS
-------~---~----------------------

OFFICE BAC' TEIMS TEU'" QLlEPV pue SVS WE[>,HO\l 25,'991, 1 :S5P HOY 25~ 2:02P '63 25 4020300611 1 (I (I 0
B"L BAC TEIMS TEII11 HAPROG BAC TEl"'S WEO,HOY 25,198' , 1 :50P HOY 2~, 2:0~P 162 37 0060300601 9 3 3 3

WED, HOY 2:5, 1981, 2: 13 p" PROCESS ABORTED ••• PLTIJ BAC TEIrtS
PLTII BAC T£I"S TEI"' HAPROG BAC TEI"5 WEO~HOY 25,198', 210SP NOY 25~ 2: ,JP 16. 36 00203006" 3 1 , 11
OFFICE BAC TEl"S TEl"' QUERV PUB SVS WEO~HOY 25,1981, 2:0'1P NOY 25, 2.,04P 165 25 .02030061 , 1 0 0 0
DC BAC TEII'IS TEl"' HAPROG BAC TEIMS WEO,HOV 25, '98', 8101A MOY 25, 2,,7P 132 34 0020300611 98 50 38 38
lAC BAC TEU'S TEl"' ACCTST BAC TEl"S WED, HOY 25,'981, 2119P HOY 2~, 2120P '69 26 53603006'3 0 0 0 0
DC BAe TEI"S TEl'" HAPROG BAt. TEl"S WED,NOY 25,1981, 6:S5A NOY 25~ 2136P '2'1 39 00203006' , .,~ 54 .2 42
PR I filAR" SAC TEU15 TEl"' QAPROG BAC TEIMS WED1HOY 25, '98', 2,09P NOV 251 2138P 166 37 002030061 , ,e 6 6 6
PRJ"ARV BAC TEII'IS TOOLS QAPROC BAC T£II'IS blED, HOY 25,1981, 2109P HOY 25, 2,38P '67 31 002030061 , 0 0 0 Oatr
8A BAC TEI"S TEIr" QAPROC BAC T£I"5 WED,HOY 2~,'981, 6lJ2A HOY 25~ 2152P '22 32 002030061' 251 99 99 99
CIA BAC TE1"$ TOOLS QAPROC SAC TEIMS WED,HOV 2',1981, 6:J2A HOV 25, 2.52P '23 32 00203006' , 0 0 0 o.
QA BAC TEI"'S TEI,." QAPROG BAC TElfIIS WED,HOV 25,1981, 2:53P NOY 2~, 2f~6P 172 32 00203006' • 0 0 0 0
8A BAC TE1"S TOOLS Q,.PROG BAC TEIMS blED,HOY 25, '98', 21S3P NOV 25, 2.56P '73 32 002030061 I 0 0 0 o.
CIA BAC TEl"S TEl ... 1 QA~ROG BAC TEIMS WEO,HOY 25, '98', 2:58P NOY 2S~ 2.59P 17. 32 00203006' , 0 0 0 0
IA BAC TE1"S TOOLS QAPROG BAC TEI"S blED,HOV 25 , 1981, 2:58P HOY 2~, 2,S9P 175 32 002030061' 0 0 0 0-
BAC BAC TEI"S TEl"' QLIER'" PUB SVS WED,HOY 25,'98', 2:~3P HOV 25, 3:04P t'1l 26 53603006'3 0 .2 1 0
PL.TIJ SAC TEI..,S TEl"' HA~ROG SAC TEI!1S ~ED,N('lY 25, '981, 2: 16P HOV 25, 310SP '68 36 002030061 , 49 23 '8 '8
KENT BAC TEI"S TEIN' HAPROG BAC TEl"S WED,NOY 25,198', 6:39A NOV 25, 3108P '24 33 002030061 , 220 97 78 83
DC BAC TEI"S TEl"" HAPROG BAC TEl,..S WED, HOV 25, 1981 , 2:3?P HOY 25, 3120P 170 34 0020300611 16 8 6 6
kENT SAC TEI"$ TEIM' HAFROC BAC TEIMS WED 1 NOV 25, 198' , 6:26A HOY 25, 3,204P 120 3' 00203006' 1 185 99 ?1 71
KENT BAC TEIMS 1El1'11 HHPROG BAC TEIMS blEe> , HOY 25, 198' , 3:09P HOV 25, 3:26P '77 32 002030061' 12 8 S 5
BAC BAC TEIMS TEl"" ACCTPROGElAC TE1,..5 WEt; , HOV 2S, '981 , 3:04P HO'¥' 25, 3,39P 176 26 536030(l~13 4 , 1 4

WED. HOV 2~. '9S'1 ':!.44 F'f'Il PPOCESS A~OP.TE~ ••• TEI':STAFFEtAt.:' TEJrtS
TEKSTAFFBAC TEI,..S TEl .. ' TECHPROG8AC lEU1S WED,HOV 25, '981 , '2 : S8P HOV 25, 3i ..~f 'S9 21 OO~030061 , '09 20 1 98?
OFFICE BAC TEII'tS TEi!':' ACCTPRo~e~c TEIMS WECl,NOV :!5, 1981 , 12 , 1JP HOV 25, J;47P "~ 25 4020300611 '36 76 73 21~

BAC BAC TEII'1S TEl"' ACCTST BAC TEI"5 WEC·. NOV 25,1981, 3:5SP HO\l 25, 4 f OOP 178 26 5360300613 0 0 0 0
BAC 8AC TEIMS TEII'I' HAP~OG &AC TEIP1S WE[l .' HOV 25,'98', ~:27P HOY 25, 4:45P '79 31 1 53603(10613 (I 0 0 0

INDICAT£~ P~OCESS DID NOT QUAL IF" IN SELECT lYE SEARCH ? - BROKEN TRAHSAC TI Ot~

Figure 11

'000 I
I
I
I
I
I

• I
I

o 1
F t

800 -I
T I
R I
A I
H I
• I
A I
C I
T I
I t
o 600 -I
H I
S I

I
I
I
I
I
I
1

400 -I
I
1
I
I
I
I
I
I •••••••e

I •••••••m. • •••••••c •••••••••••••

200 -I .=m_=.ama ••a ••••mE ••c •••••••c ••

I D ••••••• am••m.a.... • ••••••••••••

I •••••gm.aaa••••••a. • ••••••••••••

I •••Dmzm==D.~.D=••DC ••••a •••••••a

I .D•••••• D••e •••••m. • •••••••••c ••

I ••••••••••••••••••• • ••••••••••••
I ••••cu............. ...•.......•...
I ••••••••••••••••••• •••••••••••••••
I ••••••••••••••••••• • •••••••••••••••
I ••••c a.......... . .

-0--
I I

.00 2400.00
EACH BAR IS t5 "IHUTES

560.0 "IN IS ,0 SCALE FACTOR: 20,0 Aye

.: Figure 12

"'.86 Y AXIS ~Xi 1000 TOTAL. 1M ALL CELLS: 't,e6

2-34-19

2000 1
1
1
I
1
I

.' 1I
o 1
F I

1600 -I
T I
R I
A I
N 1
S I
A I
c 1
T I
I 1
o laOO-1
N I
S I

I
I •
I -=
I •
I •
I •I sa

800 -I.
I :I

1 •
I •
I •
I •
1 •
I •
I •
I •

.. 00 -I •
I •
1 •
1 •
I •
I •
I •I
1 •••••••••I....... ..•.•....m•••

-O-~------------------------------~---
II I I I I', I I 1 I I I I I I I

.1 .5 t 2 '5 10 20 SO 100 200 100 tE3 2£3 53 1E...
RESPONSE TIME IN SEC.<LOGtO)

.0 .SCALE FACTOR: 40.0 Aye : 37.06 '(A)(JS ttA)(: 2000 TOTAL. JH ALL CELLS: 3706

:0((

'Figure 13

•
o
F

T
R
A
H
S
A
C
T
J
o
N
S

2000 I
I
I
I
I
I
I,.
I
I

1600 -I
I
I
I
1
1
I
I
I
I-

1200 -I-
I­
Ie
I­
I­
Ie
I­
I­
I­
I·

800 -l­
Iz:
t­
tc,­
I­
I­,­
I­
I·

400 -I-
I­
I·
I­
I­
t··
I-
I_ ea"••
,... .aD•••••
,.... • CU •

-O------------------------------------~---I I I I I I I I I I • I I I I I I I I I I I I , I I I I I I I I I I
.10 . 30.00

lltESPOHSE TJ"E IN 8EC.(LltEM")

MAKJ~ VALUE: 1272.0 "IN JS .0 SCALE FACTOR: 40.0 Aye : 37.06 V A)CIS M)(: 2000 TOTAL' IN ALL CELLS-: 3706

Figure 14

2-34-21

•
o
F

t
R
A
N
S
A
C
T
I
o
H
S

2000 I
I
I
I
I
I
I
I
I
I

t600 -,
I
I •
I ­
I ­
I -
I ­
I ­I sa

I -1200 -I.
I •
I •
I •
I •
I •
I •
I •
I •
I •

800 -I •
I •
I •
I •
I •
I •I CD

I •
I •
I •

400 -I •
I •
I •
I •
J - ••

I· -­t
I ••
I •• ••,._...

-.---~-------~--I I I I I I I , I I
••0 too.OO

LENeTH OF LOGICAL aLOCK

·~

"'-

o SCAL.E FACTOR I 40.0 .,.VC I 37.06 Y AMIS MAM~ 2000 TOTAL' IN ALL CELLS I 3706

2-34-22

T
R
A
H
S
A
C
T
I
o
H

R
E
S
p
o
H
S
E

I
H

S
E
C

to I
I
I
I
I
I
I
I
I
1

8 -I
I
I
I
1
I
I
I
I
1

6 -I
I
I
1
I
I
I
I
I
I ••••• • •

4 -I ••••••• c

I ••Dae=ma•••=
I ••D.a•••••a •••••••••••••

I •••••••••••••••••••• • ••••••••••••
I •••=a•••••••c ••••ame •••••••a •••••
1 •••am...............•....
I ••a................. •...aa•••••••
I ••••••ama.a.a.•..••e ••aaa•••••••_
I •••••••••••••••••••• • ••••••••••••
I •••••••••••••••••••• • ••••••••••••

2 -I ••••••••••ac........ ..a••••••••••
I •••••••••••••••••••• • •••••••••••••
I •••••••••••••••••••• ..a.•.•••.....
I ••••••••••••••••••••• • •••D ••a ••••••
I • •••••••••••••
I ••••••••••••••••••••• • •••••••••••••
I • •••••••••••••
I • •••••••••••••
I • •••••••••••••
I • ••••••••••••••••

-0--
I I

.00 2.00.00
E~CH BAR IS tS "IN. WIDE

MMUtU" YALUE: .0 SCALE FACTOR: .2 Aye :

Figure 16

1.60 V A)(JS MA)(: to TOTAL. IN ALL CELLS: '60

2-34-23

.,
o
R
8
T

T
R
A
N
S
A
C
T
I
o
N

R
E
S
P
o
N
S
E

J
N

5
E
C

soo

400 -I
1
I
1
I
1
I
I,
I

300 -I
t
I
I
1,
I
I
I
I

200 -I
I 'II:'

I
1
I
1
I
1
I
I

tOO -I
I

I •I
I
I ••

t .'.'t •••• •••
I •• ;............. ,

-0--I I I I I I' I " I'" I I I I 1 I I 'I I' I I I I " 'I
.00 24'00.00

EACH BAR IS tS MIH. WIDE

',,---,

235.4 "IH JS t .0 SCRLE FACTOR: 10.0 Aye : 9.87 V A~IS "R~: SOO TOTAL' IN ALL CELLS: 987

Figure 17

2,-.34-24

,~
'--- -

•
o
F

T
R
A
H
S
A
C
T
I
o
N
S

200 I
I
I
I
I
t
I
I
I
I

'60 -I
I,
1
I
I
1
I
I
I

120 ..•..•.
..................
...................

••••••a.a••

80
............
•••••DIII•••a •

• m••m•••••c.c.............
• m••••••a ••••••••a.............................a....... .

.........................
I • •••••••••••••••••••••••••

40 -I.a a••••••a••••••••••••
I·· .
I·· ••••••••••••••••••••••••••••••••••••
I.. • ••••••m.a •
I.. • •••••••••m •,.. . .
I.. ••• • m .,....... . ..,....... . .,.......... . .

-0--II t " 1 lit I I I I I , I
.1 .'S 12 S '0 20 SO , •• 100 ••0 'E3 2£3 5£3 'E4

TRANSACT JON JMTERYALS LOG' 0

M)(IfW" YALUE: 155.0 "IN JS J .0 SCALE FACTOR: 4.0 Aye I 36.25 V AXIS NAX: 200 TOTAL' IN ALL CELLS: 3625

Figure 18

2-34-25

...
• ~~ER OF RECORDS PROCESS 12112 •
• PUTI # DELETES ~ UPDATES 1 t 186 ,..,
... NBEG I H8 .. MENDS' 74' 5 •
• AVERAGE TRANSACTION TI"E 1.60 •
... 8TD DEYIATION 4.17 •· AY£RAGE TRANSACT ION I NTERYAL 182 • M •
• 8rD DEVIATION 645." ...· ...• aVERAGE 8LOC~ LENCTH '.49 •
• STO DEVIATION 2.01 ...
.. • OF LOGICAL ,LOCIC. 1628 •...

Figure 19

·~TA-SET(8A81) .UPDATES 'DE~ITE8 .PUTI CAPACITV ENTRIIS P&ReENT FULL
"-

2-34-26

CR088REFJOS
OPTION-DElL
8£.\I-DElL
UTIL-oETf..
EQUIP-DETL
HOItCL-DETL
U&ER-DETL
HOMH-DETL
IPEe-DETL
USEVITH-MREF
WHM£HOUSELOC

o
o

210
759
184
399

3732
12

229
o
o

8
o

120
.5

2015
1
o
1
5

'0a4

7
1

129
532

a821,s
o

13
48

106
21

Figure 20

50036
987

30994
30990
34986

S004
1704
1S12

34986
1014
5031

... 355
36'

21705
74.3

27363
3970
"40
697

16389
101

as18

82.65
37.39
70.05
24.02
78.21
1'9.3.
66.90
46.10
46.84
9.96

se.os

RAPID/3000
Nancy Calwell
Hewlett-Packard

OVERVIEW

RAPID/3000 is a new product that has been introdued
by Hewlett-Packard. The RAPID/3000 product package
contains four components. Together, these components
make up a powerful productivity tool when used in con­
junction with existing HP3000 application development
software. This product increases the productivity of
both programmers and end users by effectively separat­
ing their needs for data. Thus, the database adminis­
trator and the end user are provided with a set of tools
to solve each of their respective data processing needs.

The components of RAPID/3000 are broken down as
follows:

• HP TRANSACT/3000
• HP REPORT/3000
• HP INFORM/3000
• HP DICTIONARY/3000

• Dictionary/Directory
• utilities

The remainder of this discussion will deal with a more
comprehensive view of the four RAPID/3000 compo­
nents.

TRANSACT/3000

TRANSACT/3000 is a high level programming lan­
guage that allows access to all MPE data files. It has the
ability to call subroutines written in COBOL, PASCAL,
SPL, and even TRANSACT. The flexibility exists to
call MPE intrinsics. TRANSACT supports all of the
data types that exist on the HP3000. It also has a "built­
in" interface to VPLUS. A single TRANSACT com­
mand has the ability to replace many VPLUS intrinsics
that currently the programmer must code.

Because of the ability to quickly code solutions with
TRANSACT, the area of "prototyping" is a natural for
this language. Feedback can be given to the application
designer before a lot of time is spent on a possible mis­
communication.

There is a feature in TRANSACT/3000 that allows
dynamic debug capabilities while designing or maintain­
ing a program. System and program errors are returned
to the program for local handling with no need to return
to the system environment.

REPORT/3000
REPORT/3000 is a nonprocedural report writer. This

means that the statements within the report may be
coded in any order. REPORT has the capability to re-

trieve information from IMAGE, KSAM, and MPE
files. Now simple reports can be produced by using the
defaults ofREPORT/3000. By using the more advanced
commands, customized reports can be written.

INFORM/3000

INFORM/3000 is a menu driven report generator. It
is geared towards the entire company by providing an
ad hoc inquiry ability to even the most unsophisticated
user. Additionally, INFORM/3000 allows a relational
type access to any IMAGE, KSAM, or MPE fue that is
defined in the Dictionary.

DICTIONARY13000

The Dictionary is an IMAGE data structure that con­
tains information about your production data. It pro­
vides a single place to go for data physical attributes,
responsibility, descriptions, and various other forms of
documentation.

Information about your data can either be interac­
tively entered or automatically transferred from existing
IMAGE root fues into the Dictionary. Reports on the
Dictionary contents into the Dictionary contents can
easily be generated by using Dictionary commands.

DICTIONARY/3000 supports user views of data. In
addition to documenting the physical nature of the in­
formation system, the DICTIONARY also documents
and makes available through Inform, relational views of
the data.

Included in the Dictionary package is a set of utilities
that assist in the maintenance of IMAGE databases.

A Data Dictionary
and Directory Facility

Have any of the following situations happened to
you?

You have been using a centrally maintained database.
All of a sudden, a program that has been running suc­
cessfully for six months fails. The reason? Over the
weekend, the database administrator changed the defi­
nition of a data element. You were not notified.

You are responsible for a centrally maintained
database. You are requested by the Information Sys­
tems Manager to change the definition of a data ele­
ment. You proceed to run yourself ragged locating all of
the users that will be affected by this change. After a
week of playing Sherlock Holmes, the change is done.

2-52-1

Monday morning you find ten angry users who were not
notified.

You spend months developing a series of programs
only to find out that a large part of the data produced by
the new system is already available.

You find that the space on the system is starting to be
worth more than a troy ounce of gold. Upon investiga­
tion of the problem, you fmd there are several fues that
look conspicuously alike. The problem? Data redun­
dancy.

The problems mentioned above are only a few of
those that annoy and waste the valuable time of data
processing people every day. DICTIONARY/3000 is
the answer not only to the problems above, but to many
situations that become problems in the wonderful world
of data processing.

What is DICTIONARY/3000?

A dictionary must supply the answers to the ques-
tions (

Who ?
What ?

Where ?
When ?

WHO is responsible for the data elements and fues.
WHAT is their physical properties.
WHERE is their location.
WHEN is their usage.
The Dictionary should not only be used as a reference

document, it is a tool to simplify documentation. It con­
tains the description and directory information of the
data. The data itself is still managed by, IMAGE,
KSAM, and MPE. Additionally, DICTIONARY/3000
may be used to describe systems, programs, subprog­
rams, and procedures. It is also· possible to document
the entire corporate organization (i.e., an organizational
chart). Data may be gathered into logical groups to
quickly generate reports. This is done with the help of
INFORM/3000. Also included with the purchase of
DICTIONARY/3000 is a set of high powered utilities
that assist in the maintenance of not only the Dictionary
but production IMAGE database's as well.

When Should DICTIONARY/3000 Be Considered?

If you have a database, you should be considering
DICTIONARY/3000. If you have a lot of data or a need

2-52-2

to minimize the cost of application modification or de­
velopment you should be considering DICTIONARY/
3000. If you have a need to quickly link the data that
resides in more than one IMAGE, KSAM, or MPE ftle.
If you truly want to stop data redundancy. If you truly
want to stop programmer time redundancy. If you have
a HP3000.

A Closer Look

This section will deal more with the specifics on
DICTIONARY/3000. The following outline indicates
the topics that will be covered with respect to
DICTIONARY/3000, IMAGE/3000 and other MPE
files. The presentation will be slide/lecture and will span
the -full hour. Time will be given at the end of the pre­
sentation for a question and answer period.
I. DICTIONARY/3000

A~ A set 9f powerful tools
1. Descriptive tool

a. Composition of items
b. What types of files use these items.

2. Logistical tool
a. Who uses which fdes
b. Where are these files located

3. Operational tool
a. Databases can be created thru the Dictio­

nary
b. Dictionary entries can be created thru a

database.
B. -Dictionary Structure

1. Physical structure
2. Logical structure

a. physical entities (i.e., items, fdes, security)
b. entity linkages

, C. Physical entities
1. What are all of the physical entities available

in the Dictionary
2. How are the entities used?

a. entities whose usage is program defined
b. entities whose usage is user defmable

II. DICTIONARY UTILITIES
A. What are they

1. A list of the utilities
2. A closer look at what they do

B. IMAGE utilities vs. DICTIONARY utilities
1. IMAGE utilities still needed
2. IMAGE utilities possibly replaced

Information Management:
An Investment for the Future

David C. Dummer
IMACS Systems Corporation

Los Angeles, California

We are all witnesses to the current inforination explo~

sion that affects every aspect of our lives. Some of us
may well wonder if this explosion can be contained and
controlled.

Computer technology has nurtured the evolution of
devices that perform data storage and manipulation
functions at reasonable costs. Government, industry
and commerce have rapidly made use of such devices in
an effort to improve information systems for decision­
making processes. The better the quality and timeliness
of information, the more powerful and competitive the
user can become.

Unfortunately, the technologies that support the ef­
fective utilization of information systems have trailed
the dramatic advances in computer hardware and
software. There is still not a general awareness that data
is an organizational resource that requires management
control, administration and involvement. Figure 1
draws an analogy to other resource management areas
in an organization; namely that good data management
will directly benefit information systems needed for
decision-making. Data management is,however, a far
less developed area than. either fmancial or personnel
management. Very few organizations that have at­
tempted to establish a corporate database resource have
been completely successful. The history of integrated
management information systems contains many fail­
ures and, in some cases, the downfall of the organiza­
tion.

Like many technological advances, those related to
information handling are full of promise, yet also hide
many dangers and pitfalls. Failures can generally be
attributed to two major causes: the incomplete and in­
correct application of the technologies and resulting in­
formation handling facilities; and the lack of necessary
changes to the organizational structure to complement
the integrated information structure.

It is relatively easy for senior executives to decide
upon a data resource management strategy, but it is a
far different matter to understand all of the different
components necessary for the success of the strategy.
These problems are compounded by the fact that there
are still very few professionals in this area with
adequate levels of experience.

Figure 2 highlights the resistance that corporate man-

agement typically meets in the introduction of database
technology. Resistance can occur in both data proces­
sing and uSer departments as the need for new respon­
sibilities and procedures becomes evident. Few execu­
tives are equipped with all of the correct rebuttals to the
criticisms that result from the resistance. So intense can
the resistance become that often the database approach
is introduced in a compromised manner and one that is
far from being optimal for the organization.

Corporate opportunities that can be realized by the
database approach are immeasureable and there is an
ever. increasing responsibility on the data processing
profession to ensure that the approach is -fully under­
stood and supported. Figure 2 also enumerates the re­
spective benefits that can accrue to the organization
but, in order to achieve these benefits, the organization
must be willing to invest the necessary developmental
resour~es into the database approach.

On~ei the database approach has been adopted as a
means of achieving data resource management, it is im­
portant,to realize that a data sharing concept has been
introduce~ within the organization. That is, the com­
mon. data in the corporate database is to be shared by all
those,~ the organization that have a right and need to
access. the data. The major technical facility that sup­
ports data sharing is a database management system
(DBMS). Such a system is often presented as a solution
to the problem of data sharing but, in reality, it is simply
just one of the facilities needed to achieve data sharing
in a resource management environment.

Crucial to the success of data sharing is data adminis­
tration, sometimes referred to as database administra­
tion. Data administration encompasses other facilities,
procedures and tools needed to manage the corporate
database. Figure 3 shows the major aspects of data ad­
ministration. The degree to which an organization ad­
dresses and implements facilities in these areas should
depend on the complexity, integration and value of tile
data together with any reasonable limitations imposed
by the budget available for data management.

First and foremost of the required data adminstration
facilities is a data dictionary and directory (Dictionary).
The Dictionary is essentially an information system
about the data and data processing systems used in the
organization. To the person or persons responsible for

2-53 -1

data administration, it represents a tool to document
and control the corporate database facility. If database
driven information systems are an integral part of the
operations of the organization then the database will
normally have to be flexible and changeable in order to
reflect and support the business dynamics. The Dictio­
nary should be designed and organized to provide for
this type of environment.

For some organizations the Dictionary will evolve
into the hub, or nerve-center, of their data processing
facilities. It will control, monitor and service the corpo­
rate database together with the associated information
systems.

There are many other data administration facilities
which complement the Dictionary. Some of them are
still in the evolutionary stage but collectively they ad­
dress such considerations as ensuring that the corporate
database is always organized in the most efficient man­
ner; is normally available for access; and is recoverable
in the event of system failures and errors.

A further important aspect of information systems
concerns auditability and penormance measurement.
These are typically topics that are considered only at
system implementation but, a data administration func­
tion can ensure that system audit becomes a design
parameter during system analysis and development.

Figure 4 shows the responsibitities of the person
(Data Administrator) or persons penorming the data
administration function. Like other resource managers,
the Data Administrator must be placed in an organiza­
tional structure such that he or she can be held respon­
sible for all of the technical and administrative compo­
nents needed to effect the data sharing. The Data Ad­
ministrator is responsible to the corporate executives to
inform them of matters and situations that demand their
participation and decision-making; and then to enact
and ·administer the resulting policies and data control
measures. The Data Administrator is responsible to the
data processing users in terms of responding to queries,
service requests and the provision of facilities to make
the data more accessible and useable by those having
the right to share it. The Data Administrator intenaces
with the systems group in order to obtain hardware and
software required to provide and support the database
and processing environment for which he or she is re­
sponsible. The fourth and fmal intenace within the or­
ganization is to the corporate data management system
which encompasses all of the facilities needed to pro­
vide the control and administration of the corporate
database.

With a perception of these data administration re­
quirements the specification of a suitable Dictionary
can be detailed. Figure 5 lists the major components of a
data dictionary and directory. The content and com­
plexity of the Dictionary should again be a reasonable
balance between the requirements and budget of the
organization. The Dictionary contents cover the
documentation of how data is perceived in the organiza-

2-53 -2

tion (documents, forms, usage by function or depart­
ment, etc.); how data is structured in the database and
fIle designs; and how data is used in the data processing
systems. Supporting these directories are dictionary en­
tries which document the attributes of the data proces­
sing components, specify any data validation and secu­
rity rules, and detail any data processing component
alias naming conventions.

Figure 6 depicts the role of the Dictionary in the or­
ganization. It is the tool by which the Data Adminis­
trator documents, controls and administers the corpo­
rate database and information systems. It is a source of
information and a design capture facility for database
and information system designers. It is a source of in­
formation and a change capture facility for the
maintenance group as existing databases and informa­
tion systems are modified and enhanced. It is a source
of information to data processing users who can dis­
cover what data and processing systems are available
without the need to contact the 'data administration
staff. This is particularly true of an online Dictionary
supporting ad-hoc user queries.

One data administration topic currently receiving a
lot of attention is data security and privacy. Figure 7
contains a list of items needing protection considera­
tions and a list of events that can constitute a threat to
data and system security. The first list highlights the
fact that security measures applied to databases and
files are of little value if complementary security meas­
ures are not applied to the compiIter memory and stor­
age devices used during data processing; the hard copy
data listings and reports distributed within the organiza­
tion; the data transmission lines used by remote termi­
nals, work stations and computers; and the security
measures themselves. In a similar manner to security
provided by a lock and key, database and processing
security is only a deterrent and each extra level of secu­
rity will typically involve exponential increases in the
cost and time of the security measure implementation
and practice. These extra measures should only be
applied where warranted by the sensitivity of the par­
ticular data or process.

The second list in figure 7 covers the major threats to
the security and availability of the corporate database.
These are important considerations in a data sharing
environment since the data has been organized in a logi­
cally or physically central location and it is collectively
more vunerable to security violation. One of the most
crucial tasks for the Data Administrator is the achieve­
ment of a correct balance between data accessibility
and security for the organization.

The challenge facing most organizations at this time is
the effective creation of the data sharing environment.
It requires an investment in terms of people, funds and
organizational change; but the future benefits of a well
managed data resource to aid and make possible
decision-making are immeasurable.

The presentation of the paper will enlarge upon these

topics and suggest various methods of evaluating and
implementing data administration facilities and proce-

Figure 1. Resource Management

dures in the HP3000 computer system environment.

+------------+
FINl\NCES ----) 1 FIN~NCIA[' 1 ----) FINANCIA.L RETURN

! MANAGEMENT 1
+------------+

+------------+
EMPLOYEES ----) ! PERSONNEL ! ----) MarIVATION & PRODUCTIVITY

! MANAGEMENT !
+------------+

+------------+
DAT~ ----) 1 DATA ! ----) INFORMATION (DECISION-MAKING)

1 MANAGEMENT !
+------------+

Figure 2. Introducing Database Technology to an Organization

RES ISTANCE TO:

- CHANGE IN METHODS AND
PROCEDURES

- LOSS OF DATA OWNERSHIP

- LOSS OF DATA CONTROL

- CHANGE IN POWER STRUCTURE

- CHANGE' IN THE ST~TUS OF
DATA PROCESSING USERS

- CHANGE IN STAFF REQUIREMENTS

Figure 3. Data Sharing Requirements

CORPORATE OPPORTUNITY:

- IMPROVED ~ETHODS AND
PROCEDURES

- CORPORATE DATA MANAGEMENT

- CORPORATE CONTROL ST~NDARDS

- PROFESSIONAL DATA MANAGEMENT

- IMPROVED DATA UTILIZATION

- REDUCED COST ~ND ~BILITY

TO CONTROL

DATA SHARING -------------------) DATA BASE MANAGEMENT SYSTEM
!
1
+--) D~T~ ADMINISTRATION --) - DATA DICTIONARY & DIRECTORY

- BACKUP & RECOVERY

- SECURITY CONSIDERATIONS

- MAINTENANCE CONSIDERATIONS

- EFFICIENCY CONSIDERATIONS

- AUDITING CONSIDERATIONS

- USAGE STATISTICS

2-53 -3

Figure s. Role of the Data Administrator

+---------------+
1 CORPORATE. 1

+->1 EXECUTIVES 1--+
+---------------+

INFORMATION &
INTERPRETATION

POLIC IES &
CONTROLS

+------------+
1 DATA~ DIeT. 1
1 & DIRECT. 1
+------------+

1

+---------------+ +------------+
+---------+ REQ' S +--! 1(-+ CONTROL 1 1

1------------>1 DATA 1------------->1 CORPORATE 1
USERS ! 1 1 1 DATA 1

1<------------1 ADMINISTRATOR 1<-------------1 MANAGEMENT
+---------+ INFO. +--1 1<-+ INFO.! SYSTEM

+-----------~---+ +------------+
1

SPECIFICATIONS SYSTEMS & !
TOOLS

+---------------+
+->1 SYSTEMS 1--+

! GROUP 1
+---------------+

Figure 6. Data Dictionary & Directory Contents

+------------+
1 CORPORATE
1 DATA BASE
+------------+

- DICTIONARY & DIRECTORY OF THE NATURAL DATA ITEMS
AND DATA ITEM GROUPINGS IN AN ORGANIZATION

- DIGTIONARY & DIRECTORY OF THE DAT~ STRUCTURES
DESIGNED FOR THE CORPORATE DATA BASE(S)

- DICTIONARY OF THE A'rTRIBUTES OF DATA ITEMS,
DATA FILES, D~TA PROCESSES, ETC.

- DICTIONARY OF DATA ITEM VALIDATION RULES

- DIRECTORY OF DATA ITEM AND FILE SECURITY RULES

- DIRECTORY OF DATA ITEM SYNONYMS (ALIASES)

DIRECTORY OF RELATIONSHIPS BETWEEN DATA ITEMS,
DATA BASES, DATA FILES, DATA PROCESSES, DOCUMENTS,
FUNCT IONS, .PHYSIC1\L STORAGE DEVICES, ETC.

2-53 -4

Figure 7. Role of the Dictionary & Directory ;

+-----~-----------+
! DATA !
! ADMINISTRATOR !
+-----------------+

!
!

+---------------+ +-----------------+ +-~-------------+
USERS !-----1 DATA DICTIONARY 1-----! MAINTENANCE

! !.& DIRECTORY! ! GROUP
+---------------+ +-----------------+ +---------------+

!
!

+-----------~-----+
! SYSTEMS !
! GROUP !
+-----------------+

2-53 -s

~.

Successfully Developing
On-Line RPG/3000 Applications

Duane Schulz
Hewlett-Packard Company

Wilsonville, Oregon

INTRODUCTION
Why do people laugh when I talk about interactive

RPG/3000 applications? This paper will focus on the
unique nature of RPG as an on-line language on the
HP3000 computer system, identify the difficulties to be
anticipated in learning how to best use the HP3000 with
RPG as the primary language, and attempt to outline a
clear path to success in this area, with attendant sup­
pression of the abovementioned laughter ~ Hopefully,
RPG users who review this paper will be able to identify
and alleviate any current problems they are experienc­
ing as interactiveRPO users, and new users will be able
to make the transition to the HP3000 smoothly.

To accomplish this, it will fJIst be necessary to profJ.1e
the probable assumptions of a new RPO/3000 user, out­
line the nature of the HP3000 computer, and identify
any dissimilarities between the two. Once this is done, a
series of steps designed to reconcile differences be­
tween RPO users' understanding of computers and the
nature of the HP3000 will be presented. The reconcilia­
tion of these differences is the only true obstacle to
success as an RPG/3000 user, though this basic fact is
usually ianored while technical symptoms of the prob­
lem are addressed instead. the goal of the presentation
is to help RPO users to finally come to grips with the
struggle which is the inevitable result of conversion to
the HP3000 while still relying on ideas and concepts
which do not apply to the HP3000.

A USER PROFILE
In order to avoid stereotyping, I will describe my per­

sonal background at the time I first selected the HP3000
as a replacement to an IBM GSD computer. This back­
ground is very common, given the vast number of IBM
System/3 and /34 systems currently installed. Also note
that I'll assume that RPG/3000 users received their in­
itial programming experience on IBM equipment; they
set the de facto industry standard. The following state­
ments summarize the computing concepts I employed
at the time of my fIrst conversion (please don't assume
that these matched my philosophy about computing or
my experience in actual implementation...):

• Transactions enter the computer (from the data
, processing department) in batches which must be

100% correct before the resulting data (usually a

report) was returned to the user, again via data
processing personnel.

• Each system was controlled by one user, and was
90% unrelated to other systems on the computer.
Sharing common data was rare.

• Most technical solutions and learning was vendor­
provided. User groups served other (social, system
back-up) purposes.

• Interactive updates were best performed on
dummy fues, with the real updates performed dur­
ing off-hours in a batch fashion.

• The system was best used for serial I/O.
• Multiple tasks were accomplished through fIXed

memory partitioning or special control programs
(ie. CCP, etc.).

• Databases involve high overhead and long learning
processes.

• Knowledge of operating system internals is not re­
lated to successful application development.

• Efficient programs were related to avoidance of
high-overhead calculations and program logic.

• Data structures, screen handlers, and internals
were best learned through RPO interfaces to such
facilities. Knowledge of the specific facility on its
own was not necessary (or, in some cases, possi­
ble).

HP3000: BASIC ASSUMPTIONS
Thought we all understand or have learned at least

some of the following assumptions, it is important to
note the nature of the HP3000 as compared with the
mind set described above. Again, this is a ,list of state­
ments or descriptions highlighting the important con­
cepts behind the HP3000. These things must be learned
before we can develop applications for the 3000 and
expect them to be stable or efficient.

• The HP3000 is designed to be an interactive, user­
driven computer, with transactions occurring ran­
domly, usually with little involvement on the part
of the data processing department.

• Most application systems will be (logically if not
physically) relatec;l to one another.

• Learning and technical solutions are provided by

2 -64-1

the vendor, a number of user groups, appropriate
third-party assistance, and especially through self­
teaching and exploration on the user's part.

• The system is designed for for interactive use. Ser­
ial I/O is one of the least efficient 1/0 techniques.

• The operating system includes a memory manager
and dispatcher which allow dynamic memory shar­
ing between users.

• IMAGE provides provides the most efficient data
and I/O structure for the environments described
above; VPLUS provides the most efficient method
of communication with users (terminals). Both
should be learned on their own, not through learn­
ing RPG interfaces.

• Knowledge of the file and operating system intrin­
sics is related to the success of applications.

• Efficient programs are related to efficient calcula­
tions and logic. RPG/3000 is externally driven, and
there is no specific correlation between a given cal­
culation and a specific set of machine instructions.

BRIDGING THE GAP
Understanding how to use RPG is the key to under­

standing how to use IBM GSD computers, because it
was desgined to allow opti~um use of those operating
systems and instruction sets. This is clearly not the case
with the HP3000. MPE was written as a language­
independent (except.on: SPL) operating system with
independent constructs, as were IMAGE, VPLUS,
KSAM and other subsystems. Obviously, our success
in developing successful RPG/3000 applications lies, not
as it did with IBM, in understanding MPE and its sub­
systems fIrst, then learning how RPG interfaces with
these things. The mistake made by the bulk of the RPG
user community (at first) is to continue to rely on RPG
as the window through which to peer into the computer;
this is precisely what has earned us our reputation. The
remainder of this paper will outline the steps involved in
adopting MPE and its subsystems as language­
independent constructs. Though this outline is not abso­
lute, all of these steps must be taken in some fashion.
There are no shortcuts that lead to anything other than
unstable, costly to maintain systems.

1: Identify Your Resources

As early as possible, learn about any resources which
are available to help you in completing the tasks out­
lined below. If you don't do this, being an HP RPG user
will feel very lonely (let's face it, RPG is used by a
minority of HP3000 customers). There are 4 sources of
assistance:

HP: Read your support contract and understand what
it buys you, and what is your own responsibility. If
there are misunqerstandings, clear them up before you
proceed. Be sure your SE can help you with RPG learn­
ing and problems. He/she need not be an RPG expert to
get you help. Find out who the closest RPG SE is, and

2-64-2

arrange a path to that specialist through your SEe Learn
about HP Consulting products and try to anticipate
when you'll need these as you learn more about the
3000. This can be indispensable, and is also a good way
to gain access to RPG specialists at HP. Finally, learn
how to properly use PICS for RPG questions - an RPG
specialist need not be on PIeS for you to receive satis­
factory response and resolution.

THIRD PARTY ASSISTANCE: When you need pro­
longed hand-holding and long-term help, there are
sometimes third-party software suppliers who can pro­
vide help in RPG/3000 expertise. These are scarce, but
nonetheless, have your sales representative check with
your local third-party sales representative.

USER COMMUNITY - Locate all user groups who
can provide a forum for discussing RPG-related topics,
and provide a network you can call upon when neces­
sary. HPGSUG, local RUGs, and a. special interest
group can all help, especially in providing you with an
RPG toolbox. No special interest group currently
exists. If you think it should, then help form one.

SELF TRAINING - This is probably the most im­
portant single difference between being an IBM GSD
user and an HP3000 user. MPE is easily accessed by
RPG users, and you can frequently solve your own
problems by reading reference manuals, HPGSUG pa­
pers, etc. I have been very successful with this, and it
allows you to share your solutions with others as you
develop them. Again, talk to your SE to learn about all
of the information that's already in your own installa­
tion.

2: Adopt MPE as a Design Determinant

Anything you do will at some point invoke MPE
code. If you learn as much as possible about MPE and
subsystems early, you will not be fighting with them
later in debugging your RPG applications. As was stated
before, this is the single most important key point in
being successful with RPG/3000 - RPG calls all of the
same intrinsics that COBOL, BASIC, etc. call. Here are
the things you should master, along with suggested re­
sources necessary to master them:

MPE INTRINSICS: Learn about the MPE Intrinsics
- these are the basis for just about every function per­
formed by the system. The MPE Intrinsics reference
manual will provide enough information; there are sec­
tions related to Using the Intrinsics which contain good
explanations of what they're useful for. Without a
CALL verb, RPG can't do much with these directly, but
this will still be very valuable knowledge in design and
debugging. HPGSUG proceedings and HP consulting
can help to solidify this knowledge.

FILE SYSTEM: Though it is actually part of the in­
formation in the Intrinsics manual, learn how the ftIe
system works. Your RPG code calls file system intrin­
sics for you, so you should know what you're asking
MPE to do, as well as what it can do in general. Sepcifi­
cally, focus on FOPEN as it applies to RPG. This will

help you learn about the three biggest problems in RPG
conversions: Buffering, Sharing, and Locking. If you
understand how MPE does these things, it is much
easier to ask RPG to do what you want. Again, HP
consulting can be helpful here, as are issues 24 and 25 of
the HP3000 Communicator.

SPECIAL CAPABILITIES: Again a subset of MPE
intrinsics, two special capabilities can provide you with
help in designing and converting on-line RPG systems.
These are Multiple Rin (MR), which allows multiple
concurrent .

FLOCKS (and should be unnecessary in new sys­
tems), and Process Handling (PH), which allows your
program to run another (son) program and suspend until
it has completed execution.

STACK ARCHITECTURE: Learn what happens
when you run a program, in terms of Code Segments,
Data Stacks, Extra Data Stacks, what these terms mean
in the first place (it's really very simple), and how they
will affect you in the future. General reading and SE
assistance will explain these things.

IMAGE: Though your converted systems will not
employ IMAGE, the earlier you begin to use it, the
more stable your environment will become. IMAGE is
the most reliable and efficient data structure available
on the 3000. Needless to say, the IMAGE course should
be the first step you take, followed by RPG/IMAGE
consulting, reading, and a small-scale project to let you
become comfortable before you embark upon any sig­
nificant new development project whcih will employ
IMAGE. Converting old applications to IMAGE usu­
ally doesn't make sense, though it can be done easily
and will improve your application stability.

3: Understand the Elements
of Interactive Systems

Again, the choice of an HP3000 implies a change in
the general approach you will be taking, and one of the
most important differences is the interactive nature of
the new systems you will be developing. When you
offer a user an interactive system, you will need more
protection against error, better recovery capability, and
improved up-time. Technically, this re-alignment will
require you to understand how to best use and control
all peripheral equipment you will place in the hands of
the user. This will involve your mastering two basic
areas:

DEVICE CONTROL: Terminals and printers can be
controlled directly through the use of a subset of MPE
intrinsics, especially FCONTROL. Again, learn how
you can control devices within the constraints of RPG.
Many large systems isolate the user from MPE by using
terminal monitoring and control programs which make
it impossible for the user to get to a colon prompt.
Though this is not possible with RPG, a terminal
monitoring facility could launch RPG applications when
a terminal response is requested. RPG allows you to

read/write to $STDIN/$STDLIST; try all of the possi­
ble File specifications you could use to do this, and
settle on one you're most comfortable with (I prefer to
define an input demand and an output fIle). Finally,
learn about escape sequences for terminal control, and
all of the techniques you could use to send these to the
terminal. This is easily done from RPG programs,
though many RPG users are not aware of this capabil­
ity.

VPLUS: Like IMAGE, a thorough understanding of
VPLUS is essential to development of terminal-based
RPG/3000 applications. This is probably the most con­
troversial RPG interface, but you can be relatively suc­
cessful in writing VPLUS/RPG code by following the
same steps suggested earlier for IMAGE. If you try to
learn RPG/VPLUS on your own and without the
VPLUS class and SE consulting, chances are that you
will be very frustrated, with unhappy users and unstable
programs.

4: Re-Think Your RPG Design
and Programming Techniques

Finally, once you've absorbed all of the material pre­
sented in the above pages, it is also beneficial to review
the kind of programming guidelines you've used in the
past. What you've learned about the possibilities of the
HP3000 will allow you to be much more creative with
your programs than you might have been in the past.
Again, the following basic areas should be explored:

STRUCTURED DESIGN/PROTOTYPING: Pro­
grammers iJ). other environments have been benefiting
from two major design techniques, Structured Design
and Prototyping. Do some general reading to familiarize
yourself with these concepts, and determine whether
either might not be of some benefit. Though interest in
this technique seems to be waning, structured design
does allow you to begin to start thinking in terms of
small modular programs, an idea which MPE will allow
you to employ easily. Modular applications allow you to
develop your system as a tree of processes which you
can develop, test and debug in a "top-down" fashion,
which is far easier than traditional RPG development
techniques. Secondly, prototyping is an idea which is
becoming increasingly more prevalent because of the
attendant low development costs associated with it.
HP's RAPID products employ these techniques, and
RPG shops who develop general programs and routines
could also employ the same technique, though with not
nearly the speed of development. Since RPG is a cryp­
tic, table-driven language, it fits well with the idea of
procedural brevity which is required in prototyping.
Again, general reading and contact with user groups can
help you learn more about these ideas.

CYCLE CONTROL: Because RPG/3000 is internally
very different from IBM's RPGII, it is possible to use
RPG similarly to other languages by eliminating au­
tomatic I/O (cycle driven files), and doing reading, writ-

2-64-3

mg, and calculations all within your calc. specifications.
This is a heated argument elimination of automatic I/O
does not mean you are in total control, but some users
prefer this technique. Overhead in this case is not
higher, as it is in IBM environments.

PROGRAM STRUCTURE: IBM indexes program
efficiency to avoidance of high- overhead calculations.
On the HP3000, the lowest overhead program is the
program with the fewest statements and most logical
calculation structure. If you use straightforward
mainline code with nested subroutines, this will usu~ly
result in less object code. It will be important for you to
learn about the RPG compiler internals and segmenta­
tion if this is important to you. Communicator #24 con­
tains an interesting article related to RPG segmentation.
Your SEGMENTER is the best tool you can employ to
see what happens when you write a certain type of
code. Be careful not to expect this to be as important as
it was on IBM GSD equipment - all RPG/3000 code is
not compiled, and MPE lets sloppy code execute
quickly...

EXITING RPG: RPG doesn't take total advantage of
MPE (neither does any other language); sometimes it
makes sense to use the EXIT calculation to invoke a
procedure written in another language. For instance, if
you need to execute an MPE command from an RPG
program, you could simply EXIT to a simple SPL,
routine which calls the COMMAND intrinsic (this could
also be written in other languages), passing the com­
mand from your RPO program. This technique is almost
indispensable in successful RPO/3000 systems. To learn
more about this, look in the RPO reference manual, and
get a copy of the REALRPO facility from the HPOSUG

2-64-4

library, release 08. Very few HP3000 shops are
monolingual.

CONCLUSION
Programming languages are simply vehicles to make

computers Because of this, it is important to focus on
the architecture and constructs used in the computer
you're using to be successful in using a language make
your computer "go fast." In the case of RPG users, we
learned how to program without understanding what the
programs were asking the computer to do, except in
general terms. Hopefully, this paper will re-emphasize
the importance of understanding the relationship of
success to an understanding the HP3000 on its own
terms. If the methodology outlined above is employed
in an RPG/3000 installation, regardless of the age of the
installation, I am quite certain that the user will be to­
tally successful in developing high-quality interactive
systems on the HP3000. As in any endeavor, attitude
and organization will eventually determine how suc­
cessful that endeavor is.

BIBLIOGRAPHY
1. Walmsley. David E.• "RPO/3000 Programming Efficiency."

HPGSUO Proceedings. September 1977. pp 42-48.
2.Todoroff. Gary. "RPO II: Report Writer of Programming Lan­

guage," NOWRUO Presentation, May 1980.
3.KinS, David. "Current Methodolosies in Structured Design." Com­

puterworld. September, 1981. pp 1025·44.
4.Schulz, Duane, "Living in an RPO/3000 Enviro~ent." HPOSUG

Proceedings, February, 1980, pp 2/75·83.
5.Schulz. Duane, Cumminss, Randy. and Stevens, Brian. "RPO/3000

Application Development Course," HP SEO, Wilsonville. ORlKinS
or Prussia, PA, December, 1981.

An Experimental, Comprehensive
Data Dictionary

Thomas R. Harbron
Professor of Computer Science

Anderson College
Anderson, Indiana

ABSTRACT
This paper describes an experimental Comprehensive

Data Dictionary (CDD). The purpose of the CDD is to
describe all data objects precisely, from bits to
databases, so that programs may manipulate these ob­
jects without continually redefming them.

The most complex part of the description concerns
the ways in which data objects relate to each other. By
precisely describing these. relationships, the eDD al­
lows relatively simple processors to perform the
functions of database management systems (IMAGE),
screen drivers (V/3000), report generators, query pro­
cessors (QUERY) and other subsystems.

Application programs may be developed with rela­
tively little effort since all descriptions, relationships,
and conversions are described by the eDD and need not
be included in the program.

The experimental CDD is described in detail and the
experience of mapping applications into it is shared.
Strengths and weaknesses are assessed and the direc­
tion of future developments indicated.

INTRODUCTION

Centrality of Data

A mature view of data processing is that programs are
functions operating on data. This idea may be expressed
in mathematical notation as:

Y:=F(X)
where Y is the set of output data, X is the set of input
data and F is the function of the program.

Very often the function is fairly simple and, when the
program is examined, one fmds that most of the pro­
gram is concerned with describing either the data in sets
X and Y, or elementary transformations between them.
The actual, functional parts of the program constitute a
relatively small portion of the total code. The problem is
compounded by the need to repeat the data descriptions
and elementary transformations in each and every pro­
gram.

It is the purpose of a Comprehensive Data Dictionary
to provide these descriptions in one central location.
This has three immediate benefits for programs. First it

Christopher M. Funk
President, C. M. Funk & Co.

Lafayette, Indiana

eliminates the need to repeat the descriptions in each
program, thereby consiqerably shortening the pro­
grams. Second, it provides a single, consistent descrip­
tion for all programs, thus eliminating conflicts. Third, it
makes it possible to build general-purpose programs
such as query processors, report generators, etc.,
thereby eliminating the need for most programming.

Traditional Weakness of Data Descriptions

The problem may not have begun with FORTRAN,
but as the fast popular, high-level language, FORTRAN
did much to promote the idea that code was the main
problem of data processing and data was only incidental
to the code. Early FORTRAN compilers not only didn't
require data declarations but, except for arrays, did not
even permit them. Variables were "declared" simply by
mentioning their names in the program. Data type was
determined .by the first letter of the variable name.

Later languages such as COBOL, and most recently
PASCAL, have done much to restore data descriptions
to their proper position where data within the program
is concerned. Likewise systems developed in the last
decade have included descriptions of data external to
programs such as the schema of IMAGE and forms fIle
of V/3000.

Each of these data descriptions, however, has only
spanned a small and specific portion of the data used by
an application. Not only does this result in a fragmented
description, but numerous problems are created when
the various descriptions do not totally coincide at the
boundaries b~tween them.

The Comprehensive Data Dictionary

The purpose of the Comprehensive Data Dictionary
(CDD) is to provide a single source for descriptions of
all data elements in an application. This includes simple
data items, aggregations such as arrays, records, inter­
nal fIles including databases, and external fIles including
reports and screens. Although not properly part of the
data descriptions, it is easy to add access and security
information to the CDD as well.

It is important to implement the CDD in such a way
that it can be easily read by an automatic processor

2-71-1

NAME

USER-NAME,
APP-NAME

USER-APP

NAME,
APP-NAME

FILE-Ace

PROGRAM

FILE-NAME,
USER-NAME,
Ace-NAME

FILE-NAME,
PGM-NAME,
ACC-TYPE-NAM

NAME,
DEV-CLASS

GRP

O\-1NER-FILE­
NAME

MBR-FILE-!'IAM
IT~1-NAME

NAME,
FILE-NAt-IE

K ..
NAME,
FILE~NAME,

TYPE,
UNIQUE

REC-FMT

RECORD-NAl-IE,
ITEM-NAME,
ORDINAL-POS,
FORMAT

KEY-ITEM
ITEM-NAME,
KEY-NAME,
ORDINAL-POS

TYPE-FUN ITEM RECORD FILE ACC-FUN ACCESS-TYPE
AME, NAME, FILE-TYPE-

NAME, ATA-TYPE- NAME FILE-TYPE- NAME, NAME
DATA-TYPE- NAME,

NAME ACC-TYPE-NAMCCURENCES(3)NAME DEFAULT UNIT REC-NAME FUNCTION

DATA-TYPE
NAJ.'tE. BITS,
MIN,MAX,CHEC
FIX,INEX,EXI

I
~

GRP-FMT
REC-NAME,
GRP-NAME,
CONTROL

SEL-RULE
PREDICATE,
FlJNCTION,
FATHER-GRP-

NAME
SON-GRP-NAME

ITEM-ACC
REC-NAME,
ITEM-NAME,
USER-NAME,
ACC-NAME

NAME,
PASSWORD

Figure 1

(report generator, query processor, program generator,
etc.) as well as by people. Typically, the processor
would read and store internally the descriptions rele­
vant to the particular function being performed at the
time.

f The Experiment

There comes a point where theoretical work must be
reconciled with the "real world." That is the purpose of
this experiment. The CDD model has been derived on a
solid theoretical basis. The model conforms to that of a
normalized network database. It has been implemented
using a relation database system.

The CDD, thus implemented, has been used to, fITst,
describe itself, a non-trivial exercise. Next a variety of
applications, drawn from a production environment,
have been described in the CDD. Some weaknesses

have been uncovered by this process, as well as some
things that work very well.

THE COMPREHENSIVE
DATA DICTIONARY

A data structure diagram is used to describe the COD
as shown in Figure 1. This model, with its 22 entities, 29
relationships, and 37 attributes, is too detailed to de­
scribe as a whole. Instead, it will be described in six
parts in the following sections. The reader may, how­
ever, wish to refer to Figure 1 from time-to-time to see
how the various parts are related.

Data-Item Part

This part of the CDD describes data items, their
aggregations, and their components. This part of the
CDD is shown in Figure 2'.

DATA-TYPE ITEM
NAME. BITS, NAME,
MIN,MAX,CHEC.........DATA-TYPE-
FIX,INEX,EXI OCCURENC~~~)

RECORD

NAME

NAME,
DATA-TYPE-

. NAME

Figure 2

Before data items can be defmed, it is necessary to
define the basic data-types. Data-types may be defmed
in terms of their descriptions and the operations that
may be performed on them. The descriptions and a
basic set of functions are contained in the DATA-TYPE
entity. Arithmetic, logical, and other functions are
named, but not described in the TYPE-FUN entity.

An item may be a single occurrence of a date-type, or
an array of up to three dimensions. A record is an
aggregation of items and may be either an internal fue,
such as a disk fue or database, or an external fIle such as
a screen or report.

Record-format describes how items are related to re­
cords including position and format.

The following contains a description of each entity,
its attributes, and relationships for this part.

ENTITY: DATA-TYPE

This entity describes a fundamental data-type such as
byte, integer, real, etc. Only rarely should it be neces­
sary to add a data-type once the basic set is in place.
However, provision is made to describe new data-types

in terms of their attributes. No semantic descriptions
are provided. .
Attribute: NAME

An ASCII character string of eight bytes containing
the name of the ,data-type. This name will be referenced
from other entities.
Attribute: BITS

The number of bits required by this data-type. Data­
types will be assumed to start on word boundaries (high
order end) except where assembled into arrays where
they may be packed.
Attribute: MIN

This is the minimum value allowed for data of this
type. Sixty-four bits are allowed for its representation.
However, only the number of bits specified by the
"BITS" attribute are used. If the numeric value of MIN
cannot be represented in sixty-four bits or less, the
value will be left justified and all truncated bits will be
assumed to be zeroes.
Attribute: MAX

This is the maximum value allowed for data of this
type. Storage is the same as for "MIN." If the numeric
value of MAX cannot be represented in sixty-four bits

2-71-3

or less the value will be left justified and all truncated
bits will be assumed to be zeroes.
Attribute: CHECK

This is the name of a procedure which will check
representations of this data-type to see if they contain
legal values. It returns only a true/false indication.
Attribute: FIX

This is the name of a procedure which will check
representations of this data-type to see if they contain
legal values. In case of an illegal value, it will replace
the illegal value with a default value appropriate to the
illegal value. It may also return an indication of the
error.
Attribute: INEX

This is the name of a procedure which will convert an
internal representation of this data-type to an external
(ASCII) form. In addition to the value of the data-item,
it may also use a format description (see REC-FMT) to
specify options in the conversion.
Attribute: EXIN

This is the name of a procedure which will convert an
external representation of this data-type to an internal
form. Again, a format description may be used to
specify options in the conversion.
Relationship: TYPE-FUN

DATA-TYPE is related I:N to TYPE-FUN. Each re­
lated TYPE-FUN is a legitimate function to use with
this DATA-TYPE. The linking data-item is DATA­
TYPE-NAME.
Relationship: ITEM

DATA-TYPE is related I:N to ITEM. Each related
ITEM is of this DATA-TYPE. The linking data-item is
DATA-TYPE-NAME.

ENTITY: TYPE-FUN

This entity represents each function that is associated
with a data-type.
Attribute: NAME

An ASCII character string of eight bytes that gives
the name of the function.
Attribute: DATA-TYPE-NAME

The name of the data-type for which this is a function.
Relationship: DATA-TYPE

DATA-FUN is related N:l to DATA-TYPE. The
linking data-item is DATA-TYPE-NAME.

ENTITY: ITEM

This entity describes each unique data-item. The item
may be a simple variable, or an array in 1,2, or 3 dimen­
sions.
Attribute: NAME

An ASCII character string of 12 bytes containing the
name of the item.
Attribute: DATA-TYPE-NAME

The data-type of which this item is one occurrence.

2-71-4

Attribute: DEFAULT
A default value which is to be used for this item when

no other value is available. Sixty-four bits are allowed
for its representation, but only the bits required are
used. In the case of array items, only the value for one
element of the array is given.
Attribute: OCCURRENCES

This is a triple valued attribute which gives the three
dimensions of the array if this item is an array. For a
simple data-item, this attribute will have the value 1,1,1.
For a one-dimensional array of order N, it will have the
values N ,1,1. For a two-dimensional array, values
M,N,I; for three dimensions, values L,M,N.

Attribute: UNIT
This attribute is an ASCII string of eight characters

used to indicate the unit of measurement, such as feet,
yards, meters, etc. if no units of measurement are re­
quired, this field will be null.
Relationship: DATA-TYPE

ITEM is related N:l to DATA-TYPE. Each item is of
exactly one DATA-TYPE. DATA-TYPE-NAME is the
linking data-item.
Relationship: REC-FMT

ITEM is related I:N to REC-FMT. The linking data­
item is ITEM-NAME.
Relationship: KEY-ITEM

ITEM is related I:N to KEY-ITEM, with ITEM­
NAME as the linking data-item. This relationship indi­
cates which items are used as keys.

ENTITY: RECORD

This entity names a logical record which can be a part
of one or more fues. The record contains one or more
data-items and may be of internal or external value.
Attribute: NAME

An ASCII character string sixteen bytes long contain­
ing the name of the record. This name will be referenced
by other entities.
Relationship: REC-FMT

RECORD is related l:N to REC-FMT, with
RECORD-NAME as the linking data-item. This rela­
tionship dermes the items contained in the record, their
location, and their format.
Relationship: FILE

RECORD is related I:N to FILE, and the linking
data-item is RECORD-NAME. This relationship exists
only for internal fIles and identifies the ftles in which
each record occurs.
Relationship: GRP-FMT

RECORD is related I:N to GRP-FMT, with the link­
ing data-item being RECORD-NAME. This rel~tionship

exists only for external fues and identifies the groups
(and ultimately files) in which each record occurs.

ENTITY: REC-FMT

This entity (record format) represents the unique in-

tersection of one item and one record. The entity con­
tains information on how the item is related to the re­
cord.
Attribute: RECORD-NAME

The record name of which REC-FMT is a member.
Attribute: ITEM-NAME

The name of the item being described.
Attribute: ORDINAL-POS

An integer stating the ordinal position (1st, 2nd, 3rd,
etc.) of the item in the record.
Attribute: FORMAT

This is a description of the format of the item for this
particular record. This attribute will be used to deter­
mine dollar signs, commas, and other external features.
The internal representation is indicated by a default
format.
Relationship: ITEM-ACC

RECORD

REC-FMT is related l:N to ITEM-ACC, and the
ITEM-NAME provides the link. This relationship
exists as part of the security provisions and determines
the access allowed each user-class to each item within
each record.
Relationship: ITEM

REC-FMT is related N:l to ITEM. The linking data­
item is ITEM-NAME.
Relationship: RECORD

REC-FMT is related N: 1 to RECORD, with
RECORD-NAME providing the linkage.

* * *

Internal File Part

This portion of the CDD describes internal ftles in­
cluding disk files, databases, etc. This part of the CDD
is shown in Figure 3.

FILE

NAME

ITEM-NAME,
KEY-NAME,
ORDINAL-POS

NAME,
.... FILE-TYPE-

NAME,
REC-NAME

NAME,
FILE-NAME,....~-.... TYPE ,UNIQUE

Figure 3

RELATIONSHIP
WNER-FILE-

NAME,
MBR-FILE-NAM
ITEM-NAME

Each record type occurs in one or more ftles. Each
rtIe, usually has one or more keys by which records may
be identified and retrieved. Each key, in tum, may con­
sist of one or more ·data-items. The relationship be­
tween keys and data items is described by the entity
KEY-ITEM.

The entity RELATIONSHIP is used to describe the
relationship between records in one ftle and records in
another ftle. For a given relationship, a ftle is either the
owner or a member of the relationship. If a ftle is the
owner of a relationship, the following conditions pre­
vail:

1. Each owner record is related to zero or more re­
cords in the member rtle.

2. Each owner record shares with its member records
a common value of the linking data-item.

3. An owner record may not be deleted if it is related
to one or more member records.

The reader may recognize IMAGE "master" records
as being owner types. In IMAGE the relationships are
indicated by "chains" of pointers. Likewise, from the

following constraints on member records, it may be
seen that IMAGE "detail" records are member records.

1. Each member record is related to exactly one
owner record in the relationship.

2. All member records share with their owner record
a common value of the linking data-item.

3. A member record may not be added if no owner
record exists with which it shares a common value of
the linking data-item.

These rules not only define how a relationship is es­
tablished between records in different rtIes, but also
prevent the infamous insertion and deletion anamolies
from occurring in a normalized database. A file may
simultaneously be a member of zero or more relation­
ships and the owner of zero or more relationships. Note
that in data structure diagrams, such as Figure 1, the
arrow always points from the owner to the member in a
relationship.

This description of internalIties with keys and rela­
tionships, is equivalent to a database schema. Thus the

2-71-5

CDD subsumes the part of the database management
system.

The entities not previously described are as follows:

ENTITY: FILE

The entity FILE describes a unique fIle of a given
name. Files can be external in form, such as reports and
screens, or internal in the form of disk and other storage
medium files. External fIles may contain a variety of
records and these records are collected into groups. The
entities GRP and GRP-FMT are used to relate records
to external ftIes. Internal fIles normally contain one type
of record. This relationship is shown by the l:N rela­
tionship from record to file. An internal fIle may have
one or more keys and relationships between' internal
fdes are given by the RELATIONSHIP entity. .

Attribute: NAME
An ASCII character string with a maximum of

twenty-six bytes containing the fIle name, group name,
and account name necessary for accessing the fue. This
name will be referenced by other entities.
Attribute: FILE-TYPE-NAME

The name of the fde-type to which a given fIle be­
longs.
Attribute: RECORD-NAME

The name of the record which occurs repeatedly to
form the ftle. This attribute is valid only for internal fIles
and will default when the file is of external form.
Relationship: FILE-TYPE

FILE is related N: 1 to FILE-TYPE. The linking
data-item is FILE-TYPE-NAME. This relationship in­
dicates the file-type and, by implication, the functions
for each file.
Relationship: FILE-ACC

This is a l:N relationship between FILE and FILE­
ACC with a linking data-item 'of FILE-NAME. The re­
lationship indicates the access modes allowed to spe­
cific user-class for this fde.
Relationship: PGM-ACC

FILE is related l:N to PGM-ACC. The linking data­
item is FILE-NAME. This relationship indicates the
access mode used by a given program for each ftIe.
Relationship: RECORD

FILE is related N:l to RECORD with the linking
data-item being RECORD-NAME. This relationship is
valid only for files of an internal form and shows the
normal pattern of one record type for an internal fIle.
Relationship: KEY

FILE is related l:N to KEY and the linking data-item
is FILE-NAME. Entity KEY and this relationship are
valid only for internal ftIes. Each key is a legitimate
search item for the related ftIe.
Relationship: GROUP

FILE is related l:N to GROUP with the linking data­
item being FILE-NAME. This relationship is valid only

2-71-6

for external files and indicates the groups of records
that are included in this file.

Relationship: OWNER-RELATIONSHIP
FILE is related to the entity RELATIONSHIP on the

order of I:N with OWNER-FILE-NAME being the
linking data-item. This links each owner fde to its corre­
sponding relationships.
Relationship: MEMBER-RELATIONSHIP

FILE is related to the entity RELATIONSHIP on the
order of I:N with MEMBER-FILE-NAME being the
linking data item. This links each member ftIe to its
corresponding relationship.

ENTITY: RELATIONSHIP

Attribute: OWNER-FILE-NAME
An ASCII string of 26 bytes that names the ftIe which

"owns" the relationship.
Attribute: MEMBER-FILE-NAME

An ASCII string of 12 bytes that names the fde which
is a "member" of the relationship.
Attribute: ITEM-NAME

An ASCII string of 12 bytes that names the data-item
whose value is shared by the owner record and member
records in this relationship.
Relationship: OWNER-FILE

RELATIONSHIP is related N:l to FILE with
OWNER-FILE-NAME being the linking data item.
This links each member fde to its corresponding rela­
tionships.
Relationship: MEMBER-FILE

RELATIONSHIP is related N:l to FILE with
MEMBER-FILE-NAME being the linking data-item.
This links each member file to its corresponding rela­
tionships.

ENTITY: KEY

This entity identifies any and all keys for each inter-
'nal file. The entity contains infoimation on the name of
the key, the file name to which it belongs, and the type
of key.
Attribute: NAME

An ASCII string of 16 bytes containing the name of
the key. This name will be referenced by KEY-ITEM.
Attribute: FILE-NAME

The name of the file to which a given key belongs.
Attribute: TYPE

This attribute is used to define the method of acces­
sing a record by using the key. The type will differ
according to whether the file is a sequential file,
database file, etc.
Attribute: UNIQUE

This attribute has a value which is either true or false.
If true, then each value of the key must be distinct from
all other values of the key.

Relationship: KEY-ITEM
KEY is related l:N to KEY-ITEM, with KEY­

NAME providing the linkage. Any given key consists of
one or more occurrences of KEY-ITEM. This allows a
key to consist of composite data-items.
Relationship: FILE

KEY is related N:l to FILE, with FILE-NAME pro­
viding the linkage.

ENTITY: KEY-ITEM

This entity represents the unique intersection of one
key and one item. The entity contains information on
how the item is related to the key.
Attribute: ITEM-NAME

The name of the item being described.
Attribute: KEY-NAME

The key name of which KEY-ITEM is a member.
Attribute: ORDINAL-POS

An integer stating the ordinal position (1st, 2nd, 3rd,
~tc.) of the item in the key.

E
NAME,
FILE-TYPE­

NAME
REC-NAME

N~E

Relationship: KEY
KEY-ITEM is related N:l to KEY, with KEY­

NA:M;E being the linking data-item.
Relationship: ITEM

KEY-ITEM is related N:l to ITEM, with ITEM­
NAME being the linking data-item.

"If "If "If

External File Part

External rues are those which are displayed exter­
nally from the computer system and generally are in­
tended to be read and/or written by people as well as
machines. Included in this category are formatted sc­
reens, reports, and graphical presentations.

Unlike internat'rI1es, wh~ch normally contain only one
type of record, external files typically contain a variety
of records. Organizing and sequencing this variety of
records is the principal challenge in this part. The en­
tities concerned in this organization are shown in Figure
4.

NAME,
FILE-NAME

SEt-RULE
REC-NAME,
GRP-NAME,
CONTROL

PREDICATE,
FUNCTION,
FATHER-GRP-

NAME
SON-GRP-NARE

Figure 4

Each file consists of an aggregation of "groups"
(GRP). A group is a group of records. The placement of
each record within the group is controlled by the entity
"group-format" (GRP-FMT).Since, typically, the rules
for determining which group follows the previous one
are data dependent, 'provision is made for a "selection
rule" (SEL-RULE) to determine the sequence of
groups within the file.

Descriptions of the entities from this part are as fol­
lows:

ENTITY: GROUP

This entity exists for external fdes only and names
each specific group of records which are part of a given

fIle. An external fIle consists of one or more groups,
each group containing one or more records.
Attribute: NAME

An ASCII character string of 16 bytes that names
each group.
Attribute: FILE-NAME

The name of the file to which the group belongs.

Relationship: GRP-FMT
GROUP is related l:N to GRP-FMT, with GROUP­

NAME providing the link. Any given group consists of
one or more occurrences of GRP-FMT. This relation­
ship defines the records con~ained in the group.
Relationship: SEL-RULE

GROUP is related l:N to SEL-RULE, with the link-

2-71-7

ing data-item being GROUP-NAME. SEL-RULE
(selection rule) determines if the current group will be
repeated or a new group will be selected.
Relationship: FILE

GROUP is related N:l to FILE, with the linking
data-item being FILE-NAME.

ENTITY: GRP-FMT

This entity (group format) represents the unique in­
tersection of one record and one group. It contains in­
formation on how the record is related to the group.
Attribute: RECORD-NAME

The name of the record being described.
Attribute: GROUP-NAME

The group name of which GRP-FMT is a member.
Attribute: CONTROL

An ASCII string of eight bytes used to indicate the
placement of the record within the group.
Relationship: RECORD

GRP-FMT is related N: 1 to RECORD, with
RECORD-NAME being the linking data-item.
Relationship: GROUP

GRP-FMT is related N:l to GROUP, with GROUP­
NAME being the linking data-item.

vious group (this option is designed for
use with screens).

NEXTA Next group, appended; this function
obtains the next group and appends it
to the previous group.

NEXTC Next group, cleared; this function ob­
tains the next group and will clear the
screen (or go to the top' of the next
page) before displaying the group.

TERMINATE End of file; no new groups are ob­
tained.

Attribute: FATHER-GROUP-NAME
The GROUP-NAME of the father of the current

group. This attribute is used when the rule references
the previous group.
Attribute: SON-GROUP-NAME

The GROUP-NAME of the son of the current group.
This attribute is used when the rule references the next
group.
Relationship: GROUP

SEL-RULE is related N:l to GROUP, with the
GROUP-NAME providing the linkage. The GROUP­
NAME can be either the father of the current group or
the son of the current group.

* * *
ENTITY: SEL-RULE

This entity (selection rule) is used to determine if the
current group will be repeated, a new group will be
s~lected,or the file terminated. The entity contains in­
formation on which group is to be selected and which
function to use (append, replace, add, 'etc.).
Attribute: PREDICATE

An ASCII string of 28 characters which is tested to
determine which rule will be selected. The following
conditions prevail:

1. Each predicate is a proposition which is either true
or false when tested.

2. The predicates are tested in the order given, and
the fIrst predicate found true prevails. Subsequent pre­
dicates are not tested. '

3. Each predicate consists of a ,data-item name, an
operator, and either a constant or another data-item
name.

Access Part

Like data-items, a complete description ,of fues must
include the functions that operate upon them. These are
the access functions which this section is concerned
with. The relevant entities are shown in Figure 5.

FILE-TYPE ACCESS-TYPE

NAME,
DEV-CLASS NAME

FILE .~ ACC-~ , FUN
NAME, FILE-TYPE-
FILE-TYPE- NAME,

NAME, ACC-TYPE-NAME
REC-NAME FUNCTION

Figure S

Each file must be of a type described by FILE-TYPE.
These types may include sequential, direct access
(hashing), indexed (KSAM, RELATE), IMAGE or
other rtles. Each file contains an attribute which links it
to a previously defined file type.

Likewise, there is a set of generic functions for ftIes
including read only, append only, update, read/write,
etc. These are described in ACCESS-TYPE.

For each rde-type and access-type, there is usually
one function which provides that mode of access for

Repeat, appended; this option repeats
the current group and appends it to the
previous group.
Repeat, overlayed; this option repeats
the current group and overlays the pre-

REPEATO

4. Data-items must be described in the CCD. All con­
stants and variables must be of the same data-type.
Operators are >, =, <, >=, <=, <>.
Attribute: FUNCTION

An ASCII string of eight characters containing the
function to be used. The following functions are avail­
able:
REPEATA

2-71 ~8

that particular ftIe type. Not all ftIe-types support all
modes of access.

The descriptions of these entities are as follows:

ENTITY: FILE-TYPE

This entity specifies the type of each rtIe, and by rela­
tionship, the access function for each file type.
Attribute: NAME

An ASCII character string of eight bytes used to
name the various file types.
Attribute: DEV-CLASS

An ASCII character string of eight bytes which con­
tains the device class name on which the ftle type resid­
es.
Relationship: FILE

FILE-TYPE is related I:N to FILE, with FILE­
TYPE-NAME being the linking data-item. Thisrela-
tionship links all files of a given type. .
Relationship: ACC-FUN

FILE-TYPE is related I:N to ACC-FUN, with
FILE-TYPE-NAME being the linking data-item. This
relationship indicates the functions for access of a given
ftle-type.

ENTITY: ACCESS-TYPE

This entity represents the various access modes that
are available for items, files, and programs. In the at­
tribute ACCESS-TYPE, each bit of the integer repre­
sents an access function. If the bit corresponding to a
given function is set to 1 then that function is allowed in
the access type. An access type can consist of one or
more functions. The functions - and their correspond­
ing bit positions - available as part of the dictionary
are:

Bit Function Explanation
7 Exclusive Access to data is given to this

user only
8 Read User is allowed to read data
9 Append User may append new data

10 Update User may modify existing data
11 Delete User may delete records
12 Create User may create rtIes
13 Purge User may delete fdes
14 Execute User is allowed to execute or

stream files
15 Locking Files or items may be locked to

prevent concurrent access
Examples are shown below.

Decimal
Access Type Bit Pattern Value

Read only shared access OOOOOOOO10000000 128,.. Read, update shared
access with locking OOOOOOOO10100001 161

Read, append, update
exclusive access 00000oo111100000 480

Attribute: NAME
An integer containing the bit code representing the

corresponding access type. NAME is referenced from
other entities.
Relationship: ACC-FUN

This is a I:N relationship between ACCESS-TYPE
and ACC-FUN which indicates the functions which are
used for data manipulation when a particular access
mode is prevalent. The linking data-item for this rela­
tionship is ACCESS-TYPE-NAME.
Relationship: PGM-ACC

ACCESS-TYPE is related I:N to PGM-ACC with the
linking data-item being ACCESS-TYPE-NAME. This
relationship indicates the mode of access used by a
given program to a given rue.
Relationship: FILE-ACC

The entity ACCESS-'TYPE is related I:N with
FILE-ACC and has a linking data-item of ACCESS­
TYPE-NAME. This relationship indicates the files
which are accessible by a given user.
Relationship: ITEM-ACC

The entity ACCESS-TYPE has a I:N relationship to
ITEM-ACC which represents the items which are ac­
cessible by a particular user. The linking data-item is
ACCESS-TYPE-NAME.

ENTITY: ACC-FUN

This entity represents the function· that is used with a
given access mode to reference a certain fde type.
Functions are external to the Data Dictionary and will
be referenc~dwhen a file access is requested.
Attribute: FILE-TYPE-NAME

The name of a rue type for which a function is used.
Attribute: ACC-TYPE-NAME

The name of an access type for which a function is
used. '

Attribute: FUNCTION
The ASCII character string of eight bytes which

names the function.
Relationship: ACCESS-TYPE

ACC-FUN is related N:l to ACCESS-TYPE with a
linking data-item of ACCESS-TYPE-NAME. This rela­
tionship indicates the functions which are used by a
given access type.
Relationship: FILE-TYPE

This is an N:l relationship between ACC-FUN and
FILE-TYPE which indicates the functions that are used
by a given fIle type. The linking data-item is FILE­
TYPE-NAME.

* * *

Application Part

Although not properly a part of the data descriptions,
it is helpful to have information on programs and appli­
cations in the CDD. Particularly useful is knowledg~ of

2-71-9

the relationships between programs and fIles; which
programs use which ftIes and in which mode of access. .

This information is stored in the application part of the
CDD as shown in Figure 6.

APPLICATION PROGRAM FILE
NAME,

NAME ... NAME, FILE-TYPE-
- APP-NAME NAME,

REC-NAME

,. PGM-ACC ~ ~

FILE-NAME,
PGM-NAME,
ACC-TYPE-

NAME

Figure 6

Each application area is given a name which is re­
corded in the entity APPLICATION. Each application
owns a set of programs which are named in the PRO­
GRAM entity. For each file accessed by each program,
there is an entry in PGM-ACC which shows the mode of
access for that particular program-file pair.

Since ftIes commonly bridge application boundaries,
there is no attempt to assign fues to applications. The
linkage exists implicitly through the programs.

The application part entities are described as follows:

ENTITY: APPLICATION

The entity APPLICATION represents the various
applications whose data is described by the Data Dic­
tionary. The users allowed to access an application are
shown by the relationship to USER-APP.
Attribute: NAME

An ASCII character string of eight bytes containing
the name of an application. This name will be refer­
enced from other entities.
Relationship: PROGRAM

APPLICATION is related l:N to PROGRAM with a
linking data-item of APPLICATION-NAME. This rela­
tionship indicates the programs included in an.applica­
tion area.
Relationship: USER-APP

This is a l:N relationship between APPLICATION
and USER-APP which indicates the user's given access
to an application. The linking data-item is APP-NAME.

ENTITY: PROGRAM

This entity gives the name of each program which is
currently part of the Comprehensive Data Dictionary.
The entity will also indicate the relationship any pro­
gram has to an application area. The relationship be­
tween PROGRAM and PGM-ACC shows the access the
program has to ftIes.

2-71-10

Attribute: NAME
The ASCII character string of a maximum 26 bytes

which contains the program name, group name, and ac­
count name necessary for accessing the fue. This name
will be referenced by other entities.
Attribute: APP-NAME

The name of the application to which this program
belongs.
Relationship: APPLICATION

PROGRAM is related N:l to APPLICATION. The
linking data-item is APPLICATION-NAME. This rela­
tionship indicates the application area to which a pro­
gram belongs.
Relationship: PGM-ACC

This is a l:N relationship between PROGRAM and
PGM-ACC which indicates the various access allowed
between files and programs. The linking data-item is
PROGRAM-NAME.

ENTITY: PGM-ACC

This entity is the unique intersection between
ACCESS-TYPE, FILE, and PROGRAM. The entity
represents the allowed ftIe accesses for a given pro­
gram. This entity is used to determine the mode of ac­
cess allowed by each program to each fue.
Attribute: FILE-NAME

The name of the file being accessed.
Attribute: PROGRAM-NAME

The program name of the program accessing the ftle.
Attribute: ACCESS-TYPE-NAME

The access type name which indicates the access
mode for the access being defined.
Relationship: PROGRAM

PGM-ACC is related N:l to PROGRAM with a link­
ing data-item of PROGRAM-NAME. This relationship
indicates which program is given access to the given
ftIe.

Relationship: FILE
This is a N:l relationship between PGM-ACC and

FILE which indicates the fIle which can be accessed by
the program. The linking data-item is FILE-NAME.
Relationship: ACCESS-TYPE

The entity PGM-ACC is related N:l to ACCESS­
TYPE with a linking data-item of ACCESS-TYPE­
NAME. This relationship indicates the type of access
the program may use when referencing the file for a

given PGM-ACC.

Security Part

As with the,application part, security is not properly a
part of the data description. However, it is a necessary
part of any application using the CDD and may conve­
niently be accommodated here. This information is con­
tained in the part of the CDD shown in Figure 7.

USER-CLASS,

NAME,
PASSWORD

ITEM-ACC ~ ~FILE-ACC USER-APP
REC-NAME, FILE-NAME,
ITEM-NAME, USER-NAME, USER-NAM~,

USER-NAME, ACC-NAME APP-NAME
ACC-NAME

~ r. 4~ ~~

REC-FMT FILE ~PPLICATION

RECORD-NAME, ~AME,

ITEM-NAME, FILE-TYPE- NAME
ORDINAL-POS, NAME,
FORMAT ~EC-NAME

Figure 7

Users of the CDD, or applications described therein,
are identified by their USER-CLASS-NAME. Each
such name has a password associated with it to verify
authenticity. The name and password are recorded in
the USER-CLASS entity.

The applications, and hence programs, to which a
given user-class has access are determined by entries in
the USER-APP entity. An entry must occur here for
each user-class/application pair that is allowed.

Data access is controlled at two levels. A user must
be allowed access at both levels to be successful. Where
a conflict exists between the levels, the most restrictive
case prevails.

Access to fIles is controlled by the FILE-ACC entity.
For each allowed user-class/file pair, an entry names
the user-class, fde, and acces mode allowed.

Access to individual data-items is controlled within
the context of records. For example, a certain user­
class may be allowed to read the data-item
EMPLOYEE-NAME within the context of a produc­
tion record but not allowed to see the same item in the
context of a payroll record.

Data-item access is controlled by the ITEM-ACC en- '
tity. The item, record, user, and access mode are iden-

tified to allow the user access to the specified item
within the specified record.

The'security part entities are as follows:

ENTITY: USER-CLASS

This entity represents the different classes of users
that will be able to reference the data described by the
Data Dictionary. Each user class is allowed access to a
limited set of applications, fIles, and data-items. The
type of access is controlled in each case.
Attribute: NAME

An ASCII string of eight bytes containing the name of
a user classification. This name will be referenced from
other entities.
Attribute: PASSWORD

An ASCII string of eight bytes containing the
password which controls the availability of specific user
classification accesses.
Relationship: USER-APP

The entity USER-CLASS is related l:N to USER­
APP with a linking data-item of USER-CLASS-NAME.
This relationship indicates which applications are ac­
cessible by a user classification, and the modes of ac­
cess allowed.

2 -71-11

Relationship: FILE-ACC
USER-CLASS is related l:N to FILE-ACC. The

linking data-item is USER-CLASS-NAME. The fIles
accessible by a user classification and the mode of ac­
cess are indicated through this relationship.
Relationship.' ITEM-ACC

USER-CLASS is related l:N to ITEM-ACC and the
linking data-item is USER-CLASS-NAME. The items
accessible by a user classification and the mode of ac­
cess are indicated through this relationship.

ENTITY: USER-.APP

This entity represents the unique intersection be­
tween a user classification and an application. The in­
tersection shows a user classification that is allowed
access to a given application.
Attribute.' USER-CLASS-NAME

The name of a user classification for which an appli­
cation access is being defined.
Attribute.' APP-NAME

The name of an application for which an access is
being defined.
Relationship.' USER-CLASS

This is a N:l relationship between USER-APP and
USER-CLASS. The linking data-item is USER­
CLASS-NAME. The relationship indicates the user
classification which is given access to an application.

Relationship.' APPLICATION
USER-APP is related N:l to APPLICATION with

the linking data-item of APPLICATION-NAME. The
relationship indicates the application to which a user
classification is given access.

ENTITY: ITEM-ACC

This entity represents the unique intersection of three
entities REC-FMT, USER-CLASS, and ACCESS­
TYPE. The intersection defines an access by indicating
which user classification can reference an item in a par­
ticular record and what mode of access is permitted.
Attribute: ITEM-NAME

The name of the item for which an access is being
defmed.
Attribute.' RECORD-NAME

The name of the record for which an access is being
defined.
Attribute.' USER-NAME

The name of the user classification for the access
being defined.
Attribute: ACCESS-TYPE-NAME

The name of the access type or mode for the item
access being defined.
Relationship: USER-CLASS

ITEM-ACC is related N:l to USER-CLASS with the

2-71-12

linking data-item being USER-CLASS-NAME. This re­
lationship indicates the user classification that is given
access to an item.

Relationship.' ACCESS-TYPE
This N:l relationship between ITEM-ACCESS and

ACCESS-TYPE indicates the access mode allowed in
referencing the item. The linking data-item is
ACCESS-TYPE-NAME.
Relationship.' REC-FMT

ITEM-ACCESS is related N: 1 to REC-FMT and the
relationship indicates which item of a particular record
will be referenced through the access defmed. The link­
ing data-items for this relationship are RECORD­
NAME and ITEM-NAME.

ENTITY: FILE-ACC

This entity is the unique intersection of USER­
CLASS, ACCESS-TYPE and FILE. This entity repre­
sents the modes of access allowed in referencing a given
fIle by a user class. The access is defined by the differ­
ent relationships that are present in this entity.
Attribute.' FILE-NAME

The name of the ffie for which the access is being
defined.
Attribute.' USER-CLASS-NAME

The name of the user classification for which the ac­
cess is being defined.
Attribute.' ACCESS-TYPE-NAME

The access type name which defmes the fl1e access.
Relationship: FILE

This is a N:l relationship between FILE-ACe and
FILE. The linking data-item is FILE-NAME. This rela­
tionship indicates the ffie which will be referenced
through the access defined.
Relationship: USER-CLASS

FILE-ACC is related N:l to USER-CLASS and the
relationship indicates the user classification that is
given access to a fde. The linking data-item is USER­
CLASS-NAME.
Relationship.' ACCESS-TYPE

FILE-ACCESS is related N:l to ACCESS-TYPE
with a linking data-item of ACCESS-TYPE. The access
mode allowed by the defined access is indicated by this
relationship.

IMPLEMENTATION
Implementation of the CDD, done to date, is in three

phases. First, a database is built to hold the data of the
CDD. Second, the CDD is used to describe itself - a
non-trivial exercise. Third, the CDD is used to describe
some real-world applications.

The strengths and weaknesses of this CDD are as­
sessed, based on the limited experience gained to date.
Finally, future developments are briefly discussed.

Mapping the Model to a Database

The model of the CDD, described in the previous
section, is in the form of a normalized, network,
database. Thus, it is only natural to seek a database
management system (DBMS) with which to implement
it. Although IMAGE is based on the network model, it
was rejected because of its rigidity and the limits of its
two-level structure. Instead, RELATE/3000,* a rela­
tional DBMS was selected.

In mapping the model into RELATE, each entity be­
comes a Relation, or file. These files may each be inde­
xed on any combination of keys. Attributes become
data-items. Relationships cannot be explicitly shown in
a relational DBMS, but are implicitly linked by shared
data-item values.

Mapping the CDD into Itself

As a fIrst exercise in mapping applications into the
eDD, it was decided to map it into itself; Le., use the
CDD to describe itself. Since the CDDcontains 22 en­
tities, 37 data-items, and 29 relationships, the exercise is
not trivial.

The initial mapping of the CDD into itself, using RE­
LATE, is shown in Appendix A. Notice that some fdes
are empty because the corresponding entities are not
needed in this application. For example, at this time,
there are no external fdes associated with the CDD, so
the corresponding entities are empty.

Several small problems were encountered in this
exercise. Several of the data-item and entity names had
to be modified to conform to the naming conventions of
RELATE. Since a full set of functions was not immedi­
ately defined for the standard data types, the TYPE­
FUN entity was left empty. Likewise no programs were
intially associated with the CDD.

Some problems of greater significance also appeared.
One, that will doubtless reoccur in other applications, is
that of composite data-items used as links in entity rela­
tionships. For example, both record-name and item­
name are used as the'linking item between REC-FMT
and ITEM-ACC. Neither alone is sufficient. Yet provi­
sion is made for only one linking item in the RELA­
TIONSHIP entity.

Another is the magnitude of records that can occur in
some entities. For example, ITEM-ACC is limited only
by the product of the number of records in ITEM, RE­
CORD, ACCESS-TYPE, and USER-CLASS. At one
time the number of records in these entities were 37, 22,
13, and 2 respectively giving a potential of 21,164 re­
cords in ITEM-ACC. While the actual number was only
284 it is still too large. Some kind of "wild-card" nota­
tion is being considered to reduce the number of re­
cords.

Another troublesome area is the representation of the

*RELATE is a trademark of Computer Resources Incorporated, 2570
El Camino Real, Mountain View, CA 94040.

values of MIN and MAX in DATA-TYPE, and DE­
FAULT in ITEM. The intention is that the binary or
internal representations of these values be stored.
However, this would require that these items be of dif­
ferent data-types in different records - a complexity
beyond the ability of ,most DBMSs to handle. Two al­
ternatives are apparent; either store them in external
form, in which case all are stored as ASen character
strings; or declare them type long and left justify the
actual value within the 64 bits.

Mapping Applications to the CDD

The press deadline for submission of this paper oc­
curred too soon to allow much experimentation with
real applications. The authors will be able to share these
experiences when the pap~r is presented.

However, on the basis of early work done, some
things have become obvious, and several changes or
redefinitions are clearly indicated.

First, there is a substantial weakness in the area of
composite data types. An additional entity needs to be
created to link a composite data-type with its compo­
nents. This will have several advantages over the pre­
sent mechanism..

1. Arrays of any number of dimensions can be de­
clared.

2. Composite types may have components of several
different types.

3. Composite types may become components of
more complex types.

Second, the whole access area is proving trouble­
some. Several issues need to be better defmed includ­
ing:

1. Better definitions of access modes and allowed
combinations of modes.

2. A notation for item access that does not require a
separate entry for eac~user-record-itemintersec­
tion.

Third, some minor changes are needed in GROUP
and GRP-FMT to accommodate the structure clash be­
tween external ftIes and physical pages and screens. An
attribute (LINE-NBR) can be added to GROUP to indi­
cate the last line on which that group is allowed to be­
gin. A current line number greater than this will trigger a
new page.

Likewise a standard group must be added to each
external file which will be inserted whenever a new
page is triggered. This same group will also, automati­
cally, begin each external file, thus eliminating initializ-
ing problems. .

On the whole, real applications appear to be mapping
in with very few other problems. In particular, the
group structure for external ftIe descriptions seems to
work well. A final judgment must, however, await trials
with "strange" external fIles as well as more standard
ones.

2 -71·-13

Future Developments

The ne~t, step is to complete the current development
.phase, Le.,;testing the model against a variety of appli­
cations and refming it as indicated.

The next phase is to develop a "front-end" program
to interface between the CDD and its manager. This
program would perform the functions of adding, delet­
ing, and modifying the contents of the CDD while
checking for consistency. It would also provide format­
ted reports on the contents of the CDD.

To this point, the CnD will not ,have been used by
processors to do production data processing. While it
m~y ~rove very useful for documentation purposes, the
pnnclpal value of the CDD is in; its: use in production.,
The development of the processors require<t to apply
the CDD to production can proceed in thre.e phases.
While there is some overlap and interaction, they may
proceed somewhat independently. ~. .

The fIrst processor is a query/report/screen proces-
sor. It will move data between internal and external
flies. Thus, to produce a new report,~it is only necessary
to describe the report in the CDD.1The processor can
then produce the report from internal flies. Likewise
data could be transmitted between screens and internal
fdes.

The second processor integrates the DBMS with the
CDD. As mentioned earlier, presently available DBMSs'
~ac~ have a separate "schema" which describes only

the data in the database. This processor combines the
DBMS with the CDD so that internal fl1es are described
in only one place. .

The third processor is a program generator which re­
lies on the CDD for all data descriptions~ This may
either- be a compiler or interpreter. In either case very
h~gh-Ievelstatements would allow most progi-ams to be
expressed in a fraction of the number of state'ments re­
quired by typical languages. By removing the data de..
scriptions and conversions from the program, only the
functional parts need be expressed. .

CONCLUSION
The CD!? .ha~', initially, shown the capacity to contain

the total d~t~descriptions' needed for applications.
Thus, it is ;~ ~uitable base on which to build sophisti­
cated processors which will greatly reduce the need for
applications:' programming. .
Researc~ :wilJ continue, in this direction. Meanwhile,

it is hoped'tltat ~thers will benefit by this study and, in
turn, contribute their experiences with data dictionaries
to the common body of knowledge..

: ACKNOWLEDGEMENT
The authors wisli to thank Steve Beasley and Ken Knepp for the

considera~le ~ime ~d effort they have contributed to this project. The
typing was dQne by Maxine Loeber whose accuracy is greatly appre­
ciated. Finally, support for this project by C. M. Funk &. Co. and
Anderson College is gratefully acknowledged.

APPENDIX A

INITIAL MAPPING OF THE'
COMPREHENSIVE DATA DICTIONARY

INTO ITSELF USING
RELATE/3000

FILE: DATATYP

ITEMS: DATATYP BITS MIN MAX CHECK FIX INEX EXIN

INTEGER
REAL
LONG
BYTE
LOGICAL
DOUBLE

2-71-14

16
32
64

8
16
32

-32768
-1.15792*10 76

-1.15792*10 76

o
o

-2147483648

32767
1.,15792*10 76

1.15792*10 76

255
65535

2147483648

ASCII BINARY
'INEXT ' EXTIN
, INEXT 'EXTIN

ASCII BINARY
DASCII DBINARY

FILE: ITEM

ITEMS: ITEM OA1AlYP UCCLJR OCCU~ OCC1J~ Utf~lJLl UNIT

f OA"TArYtJ 81f"t ij 1 1
bITS l:\I'TEGEW 1 t 1
MIl\, LUI~G 1 1 1 0
MAx La OJ\JG 1 1 1 U
CHtcK ~YlE 8 1 1
FIX oYlE. ij 1 1
INEx HYTE. 8 1 1
t:X!N tjYlE 8 1 1
Ilt.M dV"ft: 1~ 1 1
KE·Y ijYlE lb 1 1
~US! TIllt\t IN Tf.l;t.W 1 1 ·1 1
FILE livrE 2& 1 1
fYf't aVlt 6 1 1
UNlWUt; bYlf. 1 1 1 T
oWN!_ F' J, L £ 6YTl: ~b 1 1
t-'J8R_F" ll~ 8YTt 2b :1: 1
PWOGk AIV~ tiVTt: ~b 1, I
ACCIYPt 1 f'lTEGlR 1 1 1
APPl-ICi' tjYTE 8 1 1
lVPt:.f-Ut~ byTE. 8 1 1
OCCU~l jhlTt.blk 1 ; , 1 1 1
UCCUk2 !h.Tt:.GtR 1 1 1 J.
UC(;Uk3 INr~bt.W 1 1 1 1
ot. F AlJL '1 dY 'I E ti 1 1
lJl\~ 1 'l ay J"E ~ 1 1
~ECUkU BY'E 1n 1 1
FILE:lYP fjYTI:. ti 1 1
fUNC1IOht i;y'ff 8 1 1
f O~""A l 8YTt 20 1 1
bt(UUP ijYlE 1& 1 1
UtV_CLAt'S livrE 8 1 1
lJ 5 t.'k ~YlE 8 1 1
CUN rR()l. 61 "E ~ 1 1
PRt:uICAlt B'(Tl:. 28 1 1
f' "T t-1 ~ b W~.: ~Yll: 10 1 1
::)O"Jbkt-' tiYlE 1& 1 1
PASShOt(D tiYTt:: ij 1 1

FILE: RECORD

ITEMS: f<lCUkU

~C·UA' #4 'I ~'~

kC·1Y~t~·Uf\4

~C"llE~.

RC"WECli~()

RC-Hf:.CFe·I~'. 'f
RC·F lLt~

~C-Gf<UUP

we "l;t<Pf t'·/~1

t(C·~t.LwUL(

RC-f.lL·l '\1SHP
RC·"EY

HC-KE.YiltM
HC·PGMACC
kC-ACCf u'"
RC·flLt.1YIJ
~c• .l Tt.1~1 Ate
RC-~~UbkAIW\

I<C-APPLJCA
RC-ACCIYPt
We-FILl-ACt;
f-lC-U5f.kAPP
RC-uSEt<ClS

2-71-15

FILE: RECFMT

ITEMS: ~E.COkU ITE.M POS FOkMA'T

~C"UA'l ~ Tyf-l OA l~A l' ~ p 1 ~
k(;-OA 1 A 'I' Yf) I:JllS e.
RC-VATAIYP MIN 3
~C·OAT~~·l yp MAX 4
RC ... UA" A t YP CHECK 5
RC-DA1AfYP FIX b
RC .. OA TA'l YP INE)(7
HC·UA', AT YP EXIN 8
RC",,'I YPLfUN TYPEFUN 1
k C... '(' YPl f U i'4 UAlAl'YP 2
~C·1TE.~~ ITEM 1
t< C-1 1t,l;, OAl'A1YP a
HC-lllf~1 UCCUf'll 3
RC -I TEj'~ OCCUH2 4
HC- '1 Tl: I~; UCCUt<3 ~

RC-ll ttl,; Of::fAULl b
RC"llE-,.f'.l tJNll 1
we· t< t. LlJ t, 0 t<~CO~O 1
RC-kt.C~'Ml f~t~CUHO 1
kC·RE·,Cf'l·~IT 1 TEf\:. i
He· ~ t, Cf 104 'J POSIlION :3
~C• k t:. Cf '~t l' FOkMAT 4
t(C·f- 1Lt.. FILt: 1
f<C·F1L.t. F1LE'fYt> 2
RC-f'lLt HfCUHu 3
we ·Gt~Ul)P l,ROLJP 1 ~
ij C• b ~ ULJ t,) F lLt, 2
kC -GkPf.~ T .kt:COHU 1
~C"GRPt t\·rl Gr<OUP 2-
kC"GkPf ;V\'T' CUN'r~OL :5
f.< C• (; RP f~ I·'! l' PUSI1IUN q

,Wf; • 5 l L k ~J Lt. PRfOlCATE 1
RC-~tl.,.~uL~ F UI~C "lON 2
kC·SI:.t."l)L~ F'l HWGkP :5
RC-~tL."LfLE. SON&WP 4
Ht;"~L ThiStiP OWN_f

w ILE, 1
~C• ~ L. ll'~ ~ 11 ~ t-1 dR..f- 1LE 2
~C-ri~ r i\4t)tiP 1 r t::t~ 3
RC-K[Y KE: Y 1
kC-Kf,Y Flt,..t 2
t<C~Kt:.Y lYPt. 3
~(;·KE.Y UI'~lQlJE 4
RC-K,t.. Y! I t..t\f1 Il'ltvt 1
WC"Kt~j.I'f..~ KEY C
kC·KE.YITE.M POSITION :s
kC·PGfviA~C F1LI:. 1
t<C·PbMAl,C Pt<UGk A~1 2
W(;-PGMACC Ace TYfit: 3
~C-ACCt l.JN FILE.TYP 1
t~ C- Ace t" li t'i ACCTYPE 2

~
-

2-71-16

FILE: RECFMT

ITEMS: ~t:.CUf.lU Ill:.~1 PO~ F()~MAT

HC~ACC"ljt~ FUNCTION 3
HC·FILl'lYP FIlETVP 1
RC .. flLt.1YP OE.V_Cl,.ASS 2
we ~ 1 I t:. lltj Ace WI:.COkD 1
~c-rTtMACC ITl:.M c
,~c "llt.I~IA cc· us£~ 3
~C'" 1 rf ~I Ace ACC1YP£ 4
kC-PHUbkAtV: Pt<OG~AM 1
wC·PRO(ikAM APPLICA 2
R(;"A~Pl.l(;A A~fJLICA. 1
kC-ACLIYPt ACClYPt 1
Re-f'lL(:ACC FILE 1
RC-F-ILLACC USlt< 2
t(C- F' ,I L t, Ace ACC1YPt· ~

RC .. lJStkAPP USE.k 1
~CwUSEkAPP APPLICA ... 2
~C"'U~t.kl:LS uS~~ 1

·t<(;-USt.R,-CS PASS~OJo<U 2.

FILE: FILE

ITEMS: t 1. L t: FILETYP kECOhU

uAlAlVt,",
., y p E. f-' LJ f\l

11 t:.M '
REeF JJJ 1
Rt.CukO
FILl::
(it-<UUfl

liwPFIVll
:;t Lri UL t'~

RL 1f\lShf-l
K£Y
t< E YI l E~"

PlifttlACC
I\CCfUN
F 1Lt I' YP
Ilt.MACL:
PkOGkAr(1
AtJPLICA
ACCTYPt.
FIL.E-ACe
USt:.fl APf'
U5L:.HCLti

RELATE..
RfLA'Tt:.
Rt:LATE
Rt:.LATt:.
RllAll:.
RELATl.
RI:.LA1E
kt.lATE.
~tLAll

~t:LATl:.

ReLATE
kEl.ATt.
kE.L..ATf...
I<ELAll:
RE.LATE:
RELA1E'~

RI:.LAJ't:.
J.lELA'l1:
HlLATt:
RELAlE
RE.LAlt:~

J\:lLATt:

RC .. OAlATVP
f-iC·lYPE:fUl\i
J.<C-lltM
t-<C-Rt.(;f'Ml
J<C.ktCOk(J.
~C-FIL[

RC.GkUUP
WC"GK~)ff\'11

~C ..~lLHLJLE
RC·WL 1NStiP
~C·~I:.Y

kC-I\t:YIlEM
~C·PbMACC

kC .ACCf ut~

~C-FJ.Lf.1YP

J<C.l TE.f\iIACC
~c ·P·k UGk Af'!'l
f.<C-Af-olPLICA
RC.ACCTYPE.
RC-f-!L.t.ACC
RC .. USt.kAPP
RC-lJ~t:kCLS

2-71-17

FILE: RLTNSHP

ITEMS: UWl't_F 1L. t .,~ BR_,., 1LE ITEM

OAI'A1YP 'TYPEfUN DA1ATYP ~
OAlATY~~ Ilt:M UAT'ATYP
ITt.M Ht:.CFMJ ITEM
lltM KEYIlt:M ITEM
Rl:.CF '~11 ITt:.MACC ITt:.M
k£CUt<D R£Cf'MT Rl.Cl)RO
Rc.CUttU GRPfMT HECORD
ktC(JkD fILE klCORD
fJ.LE. GROUP flL£
F'lLE PG~IACC fILE
FIL.t: Hl.lNSHP UWN_f-

1 ILf.
FILt. HllN~HP MtlR..F l,l.f
FiLl:. KE.Y F I L't:
Kt,Y klY1TE.~ KE.Y
GROUP GkPF'MT GkOUP
G~UUP SlLRULE F rt,iRGWP
flLE FILEACC FiLE
A~PllCA PkU(;RAM Af'PLICA
fI t< UGk A1\", fJ :;~'AC C PROGRAM
APPLICA USERAPP APPLICA
U~t:.kCLS USEHAPP USER
USt:.kCL~ FILEACC USlR
USE.WCl~ ITlMACC USE.~

Ace l VPl, F'llEACC ACCTYPE
ACt; r YPt. 1'1 EMAce A,CC'TYPE
ACClYPI; ACCFUN A'C CT YfJ t. ~Acc"r VPt, P:iMACC ACCTYPE
FILE.TYt' ACCFUN f'lLEl'YP
F' lLt.l Vt-- FILE F"lLETYP

2-71-18

FILE: ACCFUN FILE: ACCFUN

ITEMS: F' lLE TYF-' ACCTY FU,\tC TiON ITEMS: FILElYP Ace J' y FUNCTION

r SEt:tIUtN 1~8 KSA~l ~O8
5EUUEN b4 IMAGE.-'ltA 128
S£~UEf\4 1&0 IMAG ~ -1"iA bQ
SE.GlUEN t!2t.& IJ\IIAGt:.-MA lbO
StbiUtN al4U It"'AGEr-l~tA i!24
StQUt.f\a 129 IMAGl·~\A 240
SE~utN b~ 1MAG E..,vJA 1~9
SE. QlJ,thl 101 l~lAGt:.·~lA &5
SEbiut:.N 225 1MA(;E. .. tv:A 1~1
~t GJ U.,t. N ~41. IMAGt-MA 225
:~E tJ "il:.N 3b4

. ,

, I !MAG~"'f'.l.A ~41
~t. ~ u;£ ~ 320

t . .1MAG~",wiA j8'l
SE.wU'l:N ql&

~ i
1MAG E. .- IVi A 3iO

5t:.,~U.t:.j'J 480 IC·\AGE-Mirl 41&
S~'~Ut.N 4qb

i If..., AGt: - ,~; A 460
st:. ~ U,t.I~ 504 , 1·'''\ At.; t. - r--~ A 49b,
St:l~Ut..l·~ SOb

I \ 1MAG t.. .t~·~A ~o~.
Olk-ACC 1~8 lr4AGf-"':iA ~t)8
Olt< .. ACC 1>4 . ; ! MAGE.-l/t, 1~8
Ul~-ACt 1b () IMAGt-Ul: &4olk-AC,C ~c4.& i'~At;E-L,E lbO . :
OlH·ACl; 240 j.MAl.:'E-L;t. ceq
Ol~-ACL' 1~9 .IMAGE-lit: ~40
Olf<-ACt; 'b~ lMAb~"I..,it lee)

r ulw-ACL: Ibl 1MAGt.-l/t~ ' :b5
o1R·:~CL ~~!J !IVt AGt: -l) t. 161
'01 tot .. AC L ~41 1tvl A b t:. -ll L ~~~
Ul~~At.C 384 l~'~G£-t;t:. ~41:

Ul~-ACC 3r20 1t'ltAGl "'uf~ 3(;4
Olt-<·ACC 41b 1 f~\ AGt:. - 0 t j~O

Olk-ACC 400 11\11 Ab t till \J l: 416
Dlt<-ACC 4C1b It~AGE·ut 4t>O
OlW·ACC ~U4 IMAGt.-Ul 49b
Ol~-ACC ~O6 I f';l A(~ i.:. ·l) t. So~

KSAM 1~8 ~o~

KSAM b4 "t.l,.A·lt 128
KSAM 1bO kELAlt:. 64
KSA~' ~2'1 , . ,~t:.L.Alt. le,o
KSAM t!,40 ~tLAlt 224
KSAl'tt lc9 RtLAlf 240
K S Ar" b~ kELA "1 t. 12q
KSAt-'t 1&1 ~E.LA1E. b~
KSAM ~c5 kELAlE. 1&1
t\~AM 241 wi:. L·A Tt. 2~5
KSAI~t 3tiq HE..LAlt=. ~41.
KSAl'tl 320 RELATE. 384
K S AfV\ 41b ~l.LAlE. 3~o
t\ SA~t 480 t(ELAlE. 41b
KSAM 49b. ~t.LAlt. 480
KSAM 4jij4 k~LA1E:. 1.19b.r

·2 -71 ~ 19

2-71-20

FILE: ACCFUN

ITEMS: F'lLE'TYP AC(;lY FUNCTION
~

H~LArf
....._-

~O4

.<EL.,Alf. 508
PI-< UG wAiw~ 1~8

PkUGt-iAM b4
PkUG~AiYl lbO
P~UGkAivl 22q
PRUG~AFi cqO
Pt< OGR Ar+'; 1~9

P 10((J GI~ Apit b5
PRUGkAiVi lbl
Pw()GkAIV} 2a~

PR OG K Ar:~ 241
Pk U(, f(A Ji~i 384
PkUG~Ai~i 3~O

P~UbkAlJi 41b
P~OGt(AI·.r, ~liO

Pt' UGI< A(:i 496
PI-< Ob t(Af~'. ~O4

Pt(OG~Atl) SOd
JCl 1~8

JCL b4
Jet.. lbO
JCL 2C?4
JCL ~~o

~JCL 1~9

JCL b~

JCL lbl
JCL 225
JCL 2ql
JCL 3~4

JC~ j~O

JCL 41b
JCL 'ldU
JCL 496
JCL 5u4
JCL 508

FILE: ITEMACC

ITEMS: ITtM WECORO ACClY USERr
lJA l' Al YP RC.OATA1YP 508 MAf~AGt:.f~

~.l 15 wC"'OATATYP 508 \4ANAGt:.H
MIN RC .. UATAlYP 506 MANAbtk
tV1A X WC-OATAlYP 508 MANAbER
CHE.CK RC-OAlATYP 508 MAt"AGlR
f' 1)(WC"OAlP.TYP 508 MAJ~AGtk

INEX RC~VATATYP 508 MANAGEI<
EX!N RC-OATATYP SU8 MANAblR
lYPE:.FUt~ ~C·" YPtf-UN ~O8 MANAGtf<
OATA1'tfJ RC- TYPt: FUt~ 508 MANAG~1'l

ITlM ~C-ITlM ~O8 tt'IAI'JAGlk
OAfA1YP kC·ITf;,M 508 \1ANAGfR
OC.CUR 1 k t: - I 1E.t-1 508 MANAGt:k
OCCUf<~ He-ITEM 508 '4ANAGEt(
OCCUR) ~c.;-.1TeM 508 MAI~AGtH

Ot:FAULl kC-ITtJ~ 508 \1ANAGtR
UNIT HC~! Tt: 1"1 508 MANAbt:.k
kEC()Wl) RC-wt.C~)RU 506 MANAGt.R
Rt(;OkU kC-HECF'MT 508 MANAGt.R
IT t'" RC-Rt.CFM'T 508 MANAGER
PUS! 11 Ot~ RC .. RE.CfMT 508 MA(\JAGt~
fOkMA ,. ~C~~tCFMl ~Oij MAt~Abf~~

fILE wC-FILt. ~O8 MA~AGER

flLE"'YF RC-FILE S08 MANAGt.R

~
Ri;CORO KC-FILE. 508 'M'ANAGEt-i
bHUUP kC-GROlJP 506 MANAGER
FILt RC-GkOlJP 506 MANAGt.t<
HECURU kC·G~fJFMl ~O6 \1ANA(Jfk
GRUUP RC.GkPFMl ~O8 MANAGER
l;Ui\4Tt<UL kC-Gt<Pf'oMT S06 MANAtiE.fo<
PUSl' Iln~ RC-bRiJFMT ~o~ MANAGE.k
fit<t.ulCArE wC-SfLwULE 506 MANAGER
FUNCllu;~ HC-Sf.LkULl 508 MANAbtR
flHt<(,kP r<C-SELkULE ~()8 MANAbt:k
~UJ"GkP ~C-St:.LRULt: 50~ MAI~AGl:w

OWN_fILl Rll'NSHP 508 MANAGt.R
MajR_FIll RLTN5HP ~o6 MAi~AGE.R

ITEM WL Ti~SHP 508 MANAGt.R
t<EY We-KEY 508 MANAGtR
fILE. RC-KtY 508 MANAGt:.t<
'J Yf-'t. I-<C-KlY 508 MANAGt.R
U.NIy.ut' kC-KtY S08 MANAGlW
ITEM RC-KEYITEM 506 MANAGt:~

K£.:Y HC-t\lYllEM ~O8 ~ANAGlR

pos I" lUt~ RC- K t: y 1 Tt. Ivi 5u8 tt'ANAbt: k
FILE. RC-PGMACC 50ij ~ANAbE~

PROGkAtA RC-PGMACC 508 MANAGE~

ACC·lYPl. RC·PGMACC 508 MANAGEW
f'.lLErVp kC-ACCFUN 508 MANAbl:.R
ACCTYPL ~C~ACCFU~ 508 MAI'iAGEt<.r'

2-71-21

FILE: ITEMACC

ITEMS: ITt:.M tlECO~O ACCl~ USE.R

F UI\JC II 0(\4 RC-ACCF l.JN 508 MANAGtk ~
FILE1YP i-CC-fIL.E1YP 508 MANAGtR

'Ot V_CLA~S t<C-F lLE" yp 508 MANAGER
IJEM RC-ITEMACC 508 MANAGI::.~

f-<E.COkU RC~lTEMACC 50a MANAGER
ACClYP[kC- I 1 t. tvl Ace 508 MANA(;Ek
USEf< f<C-ITE.MACC 508 MANAGtR
PRUbkA\1 f<C-PROGf<AM !i08 ;~ANAGEf-(

APPLICA RC-Pt<UGt<AM 508 MANAGt~

APPLICA. '~C-APPl-.ICA 508 VlANAGtJ<
ACC1YPt RC-ACCTVPE 508 MA r\fAGER
FILE RC-FILtACC 50l; \i1ANAbE:.R
USlR RC-flLf:.ACC 508 MANAGt.R·
ACCl"YPL RC-FILEACC ~O8 MANAGER
UbEk kC-US£WAPP 50~ MA"'AGL~
APPLICA RC-USfRAPP 50'8 MANAGt.W
USER RC-USERCL5 508 ~lANAGt:R

PASS,\JOhli RC-USE.WCLS ~O6 MANAGE~

FILE: FILEACC

ITEMS: FILt:

OAl'ATYf·4

TVPlf Ur~

l'l[M
t<tCfI Ml
I~ECOk()

flLt:
GkuUIJ
Gk fJf tii I
SE:.LRULl
~L 'N ~t';t'

KEY
'K E. YII t i\tl
PGMACC
ACCFUN
F lLf:. TYt·~

l'('t,IVlACC
Pt-<OGk Ai¥:
APPLICJ\
ACCrY~t.

FILEACC
UStRAPP
USEf~CLb

USER

MANAGE~

r~ANAC;ER

MANAGt~

iv1ANAGER
MANAGt.R
''''ANAGEk
t'rlANAGt::.R

. ~~ ANAG t f(

MANAGER
~'IANAG£R

rt1ANAGER
MANAGER
IvlANAG£R
tvl ANAG EF(

rv'fANAG~R

MANAGf:.W
MANAc.;f:.R
MANAGi::.R
~~.ANAGtR

MANAGt:R
MANAGE.R
tvlANAGER

ACCTY

506
506
508
SOc;
506
508
508
500
50~

SOl)
508
S() ij

~Oti

508
508
S08
508
508'
SOb
SOd
~,08

508

The following files have trivial contents at this time, being either
empty or having only one entry:

2-71-22

TYPEFUN
GROUP
GRPFMT

SELRULE
PROGRAM
APPLICA

USERCLS
KEY
KEYITEM

PGMACC
USERAPP

Considerations for the Design
of Quality Software

Jan Stambaugh
Hewlett-Packard Company
Business Computer Group

The design of software, like the design of hardware, is
a science and not an art. Computer programming is a
discipline and, as such, must be disciplined. There are
specific procedures and considerations which can help
to ensure reliable, high quality, software products.

What is meant by quality? Quality is the basic charac­
teristic·or property of something. A particular property
could be physical, such as weight, size, and color, or
chemical, such as composition. For example, the prop­
erties of a batch of chocolate fudge might be stated in
terms of the hardness, the sweetness, the size and shape
of the pieces, and so on. Any element that can be used
to define the nature of a product can be called a quality
characteristic.

How then can we defme software quality? Software
quality can be looked at in two ways: first, the q:uality of
the design itself and, second, the quality of the con­
formance to the design. The fIrst classification deals
with the degree of excellence of the ideas which defme
the product design. The second classification relates to
the degree of excellence to which the product conforms
to the design specifications.

The goal in software development is to create
software that performs reliably, meets user require­
ments, and does nothing that it is not supposed to do.
However, there is currently no standard defmition of
what qualities should be considered in developing
software. There is no standard means for measuring
quality quantitatively. Because the production of
software is fmally making the transition from an art to
an engineering discipline, quality is now being given
more objective and less subjective consideration. While
the current state-of-the-art in software design imposes
specific limitations on our ability to automatically
measure quality, software researchers and developers
are beginning to fmd ways to evaluate the quality of
software quantitatively.

How can quality be designed into software? There are
three primary considerations. The fIrst is the establish­
ment and adherence to standards for the use of a (1)
STRUCTURED .SYSTEMS DEVELOPMENT
METHODOLOGY.

At Hewlett-Packard, software products developed by
the R&D labs follow a product lifecycle plan. Many of
the elements of this plan are appropriate and relevant to

the design of applications software by our users.
The software product lifecycle plan stresses the im­

portance of scheduling by frrst defming all the tasks
which need to be done. It suggests that software proj­
ects are frequently late because the amount of work
required to complete the entire project is not made ob­
viou~ from the start. A software project must be divided
into as many identifiable operations as possible. The
product lifecycle helps to simplify scheduling by identi­
fying the milestones which are common to all software
projects and by explaining how to determine other fac­
tors which may be unique to a particular project.

Documentation is necessary for the long term success
of any software effort. The product lifecycle proposes a
standard for documentation which defmes what needs
to be recorded as well as when it should be. It also
addresses the archiving of these documents' so that they
can be easily. referenced at a later date.

The. project review cycle advocated by the lifecycle
plan defines formalized sign-offs during the progression
of a ,product's development from one phase to the next.
The review cycle provides a check and balance function
to ensure that what is being developed is in fact what
will be needed.

The lifecycle plan describes two types. of project
classifications for every software project. These
classifications provide guidelines to the project man­
agement team in establishing priorities. The first
classification deals with the value of the project relative
to all concurrent efforts in each of the functionally re­
sponsible areas. The second classification is a develop­
ment category. Each project is tagged as an enhance­
ment, a new product, or the conversion of an existing
product. This second classification conveys the extent
to which previous projects may reduce the development
effort.

The software product lifecycle stresses a~ iterative
design philosophy. The design of a product is continu­
ally rermed throughout the product's pre-release cycle.
Rather than fm~izing the external specifications and
then beginning the internal design, the software product
lifecycle proposes that both be outlined early on and
refined as the project progresses. This allows the proj­
ect team to maintain a global perspective of both sides
of the development effort.

2-74-1

Project review policies and procedures are defmed
explicitly in the product lifecycle plan. A lab review
team, chosen by lab management, is responsible for the
evaluation of one specific project from start to fInish.
The product team members are chosen from marketing,
manufacturing, the R&D lab, and product assurance
and the responsibilities of each member are defmed in
detail.

Each project utilizes the software development net­
work, a generalized PERT-like scheduling tool designed
to aid in project planning and control. It provides an .
overview of the mile"stones to' be met and an indication
of their relative timing.

Each software project goes through five phases: in­
vestigation, design, implementation, testing, and re­
lease. During the investigation phase, a propo'sal is de­
veloped which describes a possible area for a software
contribution, suggests a software project team, and sets
a date for reviewing the research fmdings. The investi­
gation report describes the results of the research and
identifies pertinent issues which have a bearing on the
decision of whether to continue with the development
of a product. A product datasheet is generated to pro­
vide a quick overview of the product's key points. Dur­
ing ~e .investigation phase sign-off review, the fact that
a complete investigation has been conducted by the
product team is verified. A decision can now be made as
to whether or not to proceed to the design phase.

The design phase of product development is where
the product is defined in detail. Two major documents
are produced during,this phase: the design outline and
the external specifications. The design "outline is·a frrst
draft description of the internal structure necessary to
implement the product. It establishes the basic system
modules and identifies key shared data structures and
tables. It also establishes a plan for the detailed design
of the product. The external spe~ifications describe the
functions of a product and how to use it. rhey provide
the basis fOf the internal design of the product. The
external specifications include hardware requirements
and restrictions, software requirements and restric-.
tions, user documentation requirements, detailed -"-'.
functional specifications, individual function descrip­
tions, the user intetface, compatibility specifications,
security specifications, installation instructions, per­
formance predictions, reliability/recoverability specifi­
cations, special capabilities and features, and error mes­
sages, meanings, and actions. A 'resource and schedule
summary is -created at this stage, outlining the fmancial
cost of the project at each major milestone ~d and
updating previous estimates for project completion. The
design phase sign-off review provides a formal review
of the external characteristics of the proposed product
to ensure that the product team is in agreement that
what is being proposed is in fact the appropriate solu­
tion to the problem being addressed.

The implementation phase involves the creation of
the internal design document. This document describes

2-'74-2

in detail the algorithms and the data structures to be
used in implementing the product. It serves as the inter­
nal documentation for the product throughout the re­
mainder of its lifecycle. During the implementation ph­
ase, test sites are selected. There are three types of test
sites: Alpha, Beta, and foreign language. An Alpha site
is internal to HP; a Beta site is typically external; a
foreign site may be either, depending on the scope of the
project. For a product to go to Alpha test, it must be
functionally complete and have very few known bogs.
For a product to go to Beta test, there must be no
known bugs that would seriously impede the user, and
the preliminary documentation must be complete. Just
prior to the development phase sign-off review, the
product team is responsible for making a presentation to
the lab which serves as a brief introduction to the use of
the product. Once again the resources and schedule
summary is updated to outline the fmancial cost of the
project at this stage and to establish updated estimates
for project completion. .

A product cannot be developed and then tested. Con­
sequently, testing is not really a phase but an integral
part of the development and release of a 'high quality
software product. The goal of testing is to uncover er­
rors and deficiencies at the earlie"st possible moment,
thus eliminating the possibility of fatal surprises. The
majority of the test effort is aimed at ensuring that the
end product fulfIlls the original specifications and that
the particular implementation of the product is well
executed. Many different testing techniques and pro­
cesses are used. A code inspection is a set of proce­
dures and error-detection techniques for group code
reading. The general procedure involves the distribu­
tion of a program listing and related design specifi­
cations to participants several days in advance of the
inspection session. The programmer narrates, state­
ment by statement, the logic of the program. Questions
are raised to determine if errors exist. The program is
analyzed with respect to a checklist of historically
common programming errors. The errors identified are
also analyzed and used to refme the error checklist to
improve the effectiveness of its future use.

The structured walkthrough, like the inspection, is a
set of procedures and error-detection techniques for
group code reading. Rather than reading the program or
using error checklists, the walkthrough participants
"play computer." A person who has been designated as
the tester comes to the meeting armed with a small set
of paper test cases for the program or module. During
the meeting,·each test case is mentally executed.

Module testing, or unit testing', is a process of testing
the individual subprograms, subroutines, or procedures
in a program.

Incremental testing or integration is a method of
combining the next module to be tested with the set of
previously tested modules before it is tested. Incremen­
tal testing has two strategies: top-down testing and
bottom-up testing. The top-down strategy starts with

the initial module in the program. The rule for the next
module to be eligible as the next module to be tested is
that at least one of the module's calling modules must
have been previously tested. The bottom-up strategy
starts with the terminal modules in the program, the
modules which do not call other modules. Here the rule
for a module to be eligible as the next module to be
tested is that 311 of the modules it calls must have been
tested previously. Top-down testing requires the gener­
ation of stub modules and bottom-up testing the genera­
tion of driver modules.

Function testing is the process of attempting to un­
cover discrepancies between the program or system and
its external specifications. It is not intended to check
out the interactions between functions, but rather the
functions themselves.

System testing isa process used to compare the sys­
tem or program to its original objectives. It is a set of
tests to verify that all components work together har­
moniously. System testing includes the following: facil­
ity testing, volume testing, stress testing, usability test­
ing, security testing, performance testing, storage test­
ing, configuration testing, compatability/conversion
testing, installability testing, reliability testing, recovery
testing, serviceability testing, documentation testing,
and procedure testing.

Acceptance testing is the process of c~mparing the
program to its initial requirements and the current needs
of its end users. This testing is accomplished·by the test
sites.

Installation testing takes place as a means of fmding
installation emors. The test cases check to ensure that
a compatible set of options has been selected, that all
parts of the system exist, that all fdes have been created
and contain the nec~ssary contents, and that the
hardware configuration is appropriate.

The testplan is a crucial part of the testing process. It
outlines the types of test which will be used by the
project team and specifies any non-standard tests, as
well as the frequency to be used for repetitive opera­
tions such as walkthroughs. It should defme a set of
tests which will be sufficient to guarantee the quality of
the finished product upon r~lease from the lab. The
testplan is developed as an integral part of the design
and implementation phases, and not as an afterthought.

The automated test specification documents individ­
ual test programs, data sets, and procedures. It de­
scribes the purpose of each test as well as providing
some detail about the internal workings.

The release phase involves reliability certification,
performance specification and tuning, and turning con­
trol of the product over to manufacturing. Up until this
phase, performance has been an issue of prediction and
calculation. Now it is an issue of measurement. What
the end user will see must be quantified, and the internal
quantities which might affect these tangible values must
be identified. The manufacturing release sign-off review

establishes the product's completion and readiness for
sale and distribution, and signals its release from the
R&D lab and its entry into the maintenance phase of the
product lifecycle. Six months after the product has been
released to the field, a post release review meeting is
called for the purpose of reflecting on the acceptability
of the product in the marketplace. All members of the
product team are required to attend.

The second consideration for the design of quality
software is the use of (2) QUALITY-ENHANCING
TOOLS AND TECHNIQUES. Some of the tools for
enhancing quality are: database management systems,
data dictionaries, report generators, graphics products,
software monitors and optimizers, flow analyzers,
cross-reference generators, languages, preprocessors,
·debugging software, program and test data li~raries, an
interactive programming facility, rue maintenance sys­
tems, and project management systems.

Some of the techniques which can be utilized to en­
hance quality include structured walkthroughs, struc­
tured testing, development support libraries, excessive
training, follow-on consulting, project audits, and
software quality checklists.

The third and perhaps the most important considera­
tion for ensuring the design of quality software is the (3)
INTELLIGENT MANAGEMENT OF PEOPLE. The
best structured systems development methodology
combined with the best tools and techniques will be of
little value if there is a lack of appropriate maDagement.

Demonstrate leadership by example. Show that you
care. Clearly define and communicate strategy and go­
als, but don't define every tactical step. Encourage your
employees to participate in planning tasks. Allow·them
to be a part of the decision-making process. Ensure that
they have adequate professional training. Provide them
with feedback and recognition. And develop a con­
structive spirit of teamwork and cooperation.

To summarize, the three factors which most greatly
influence the design of quality software are: the use of a
structured systems development methodology, the use
of quality-enhancing tools and techniques, and the intel­
ligent management of people.

BIBLIOGRAPHY
Cho, Chin-Kuei. An Introduction to Software Quality Control. John

Wiley & Sons, Inc., 1980.
Crowley, John D. "The Application Development Process: What's

Wrong With It?" 1981 ACM Workshop/Symposium on Measure­
ment and Evaluation of Software Quality. JDC Associates, 1979.

McCall, James A. "An Introduction to Software Quality Metrics." In
Concepts of Software Quality, 1978. .

Myers, Glenford J. Software Reliability Principles and Practices. John
Wiley & Sons, Inc., 1976.

Myers, Glenford J. The Art of Software Testing. John Wiley & Sons,
Inc., 1979.

Welburn, Tuler. Structured Cobol Fundamentals and Style. Mayfield
Publishing Company, 1981.

Zachmann, William F. Keys to Enhancing System Development
Productivity. Amacom, 1981.

2-74-3

Characteristics of Software Quality. TRW Systems and Energy, Inc.,
North-Holland pUblishing Co., 1978.

"Program Design Teclmiques." In EDP Analyzer, March, 1979, Vol.
17, No.3. . .

2-74-4

"The Production of Better Software." I~ EDP Analyzet:, Feb111ary
1979, Vol. 17, No. 2. .

Software Product Lifecycle. Hewlett-Packard Company, March,
1981.

.LOOK/3000
A New Real-Time System Performance Monitoring Tool

Kim D. Leeper
Wick Hill Associates Limited

INTRODUCTION

All programs resemble one another. This might seem
to be a rash statement but let us examine the facts.
Programs were designed to perform the same task over
and over again; in order to do this, one must design the
program to iterate through a set of data. This is true
even on interactive programs. Each screen could be
thought of as an input step in preparation for future
major loop in the system. This paper will deal with how
to identify these loops without having seen the applica­
tion code.

If the reader directs his/her attention to Figure 1, slbe
will see a generic application flowchart. The application
in question has five loops labelled A, B, C, D and E. The
number of times each loop is executed is also noted
beside each loop. In order to transform this generic ap­
plication flowchart into a program, the chart must be
turned into a linear diagram. A linear diagram is re­
quired because a computer executes a single thread of
instructions. A programmer's job is to be able to
translate the two dimension flowchart into a linear se­
ries of instructions. This diagram may be seen in Figure
2.

If we were to examine the execution of this generic
program over a period of time, we would find that the
amount of time spent at a given location of memory
would be proportional to the number of times we exe­
cuted the corresponding program loop. This is
graphically demonstrated in the time graph of Figure 3.

Some obscure law of computing, probably one of
Murphy's Laws, tells us that the linear diagram as de­
scribed above is going to be too long to fit inside the
physical- constraints of the computer we are program­
ming for. This restriction presents us with an interesting
problem - how to divide up the program so we can
execute it on our machine. On the HP3000 this act of
dividing the program up is called segmentation. Before
delving into segmentation in depth, let us examine a
mathematical/graphical explanation of the subject of
locality.

What is Locality?

Locality is a measure of how well segmented your
program is. I define it as the ratio of the number of
intemalPeALs to the number of external PeALs on a

percentage basis. In equation form it would be the fol­
lowing:

number of internal peALs in a segment .
number of external PeALs in the same segment

The word PCAL stands for procedure call. It is the
instruction generated by the language compiler when, in
your application program, a CALL is made to a library
routine in COBOL, a SECTION is PERFORMed or a
named procedure is executed in SPL. See Figure 4 for
visual assistance in understanding this concept.

Why is Locality Important?

I am sure that you have all heard the following com­
ment on segmentation: "Once in a segment stay there;
Once out stay out." This comment is very appropriate
to the HP3000 because of the significant difference in
execution time between an internal PeAL and an exter­
nal PCAL. Once you get into a segment, the program is
advised to stay there because internal PeALs are twice
as fast in execution compared with external PCALs. An
internal PeAL/EXIT pair takes about 13 micro-seconds
to execute on a Series IIIIII. An external PCAL/EXIT
pair takes approximately 27 micro-seconds to execute
on a Series II/III if the target code segment is in mem­
ory. If the code segment has to be read externally from
the disk, then a disk access has to be added which
brings the execution time up to 35-45 milli-seconds.
This is obviously a significant time difference.

It is now possible to appreciate that ill-advised seg­
mentation can have a. significant adverse effect on the
performance of the application program in question.
You should aim to program for a maximum number of
internal PCALs per segment. If you don't, you will
waste time. To optimize your system from the time
point of view, you must therefore segment your pro­
gram appropriately.

How Do You Identify If Your Program
Is Appropriately Segmented?

One can use four different methods to identify ifyour
program is properly segmented. The methods are as
follows:

3-2-1

4

generic application

flol~chart

Figure 1

3-2-2

linear -flow
diagram

Figure 2

increasing time

time graph

Figure 3

Seg # o. t
with respect to this segment~

internal peAls
----------------» 1
external peAls

internal PCAls
---------------- ~ 1
external PCAls

c
c-t.....
....J.....
N
~

c+.....
e
:3

c:
c-t.....
....J.....
N
~

c-t'.....
e
:::3

Seg # 0 ~

with respect to this segment

63

;nterna1 PCAls
---------------- <:<: 1
external PCAls

~

c
c-+.....
--'.....
N
g"
c-t'.....
e
::s

Seg # 0 t
with respect to this segment~

locality Diagrams

Figure 4

63

3-2-3

1. use PROGSTAT out of the contributed library
2. use your eye
3. use programmer placed counters in the code
4. use LOOK/3000

PROGSTAT is an interesting program designed to
provide a picture of how a program is segmented. It
produces a list of external system references that the
program under examination calls. It gives a separate
count of external segment references that are satisfied
within the program file itself. It also gives the segment
lengths both actual and in a graphic form so one can
balance the code lengths. PROGSTAT, unfortunately,
does not provide a count of internal calls per segment so
the designer may not calculate the locality profIle as
described earlier. PROGSTAT does not provide enough
information to properly resegment one application pro­
gram.

The oldest method available to the designer to seg­
ment hislher application code is to use the eye. This
technique is dependent upon the experience of the indi­
vidual using it. It is. prone to error. The technique is
time consuming. It is always biased. The designer might
not realize that the data flow occuring in real life is not
the way slbe imagines it to be. If the designer does not
correctly segment the program for the flow of data
emanating from the user, then the program might as well
not be segmented. But how does the designer determine
the character of the data flow? This brings us to the next
method.

Placing counters in the code is a way of· gathering
information to help in the determination of appropriate
segmentation. By judicious placement of the counters,
we may determine an execution profile to assist us in
proper segmentation. However, this technique is
fraught with problems as well. The counters need to be
initialized; they will need debugging; they will require
stack space, and they will interfere with execution. The
worst problem they introduce is that in a tight applica­
tion program, placing counters in the code might require
resegmentation just to get the program to run.

If we can use this method, we do gather some infor­
mation as to how the data flow is causing the program to
execute in a particular number of segments. The data
from the counters could be used to draw some locality
diagrams to assist in the resegmentation process.

The last method of determining if your program is
segmented correctly is to use a system called LOOK/
3000. This is a software tool provided by Wick Hill
Associates Limited. LOOK produces the locality dia­
grams as· shown on the next few pages. The biggest
advantage LOOK provides is to allow the designer to
watch the way the application is really being used with
real data in real time, so when s/he resegments the ap­
plication slbe has some assurance that the segmentation
corresponds to the way the program is really being
used. See Figures 5-9 regarding the displays LOOK
produces.

Figure 5 is the display which allows the user to pick
out the program/process that slhe wishes to examine in
depth. This display is called the "SPECIFY PRO­
GRAM SCREEN." The user identifies the process that
slbe wants to examine by noting the PIN of that pro­
cess. The PIN is known as the process identification
number and is the number by which MPE manages your
program. This PIN is entered and LOOK starts to ac-

. quire data regarding the process so identified. Every 10
seconds the display is updated. After the user enters the
PIN of the process to be examined, the next screen is
shown.

The next screen is called the "SEGMENT MAP SC­
REEN." This screen may. be seen in Figure 6. It is the
Locality Diagram of the program which was identified
,in the previous screen. This display helps the user to
gain an understanding of the interaction between seg­
ments that make up the program under examination.
This screen will be updated every 10 seconds. The user
is now required to choose which segment slbe wishes to
examine more closely. In this example segment number
5 was chosen.

The display shown next is Figure 7. It is called the
"UNIQUE SEGMENT SCREEN." It is an overall map
of CPU activity in this segment. In this example the
user was only able to get two data points in this seg­
ment. Had the user waited longer, s/he would have ac­
quired more data regarding segment number 5. The dis­
play shows that since the user chose to examine this
segment, the CPU has executed two instructions in this
segment. The first instruction is located between %1000
and %1377. The second instruction is located between
%2400 and %2777. The user may choose any location to

16 1 144
20 42 (I

~?- .. ~g ... _.g?~ -
24 (I 0
27 2 4643
30 4 413'·
32 (I 0··
33 . - '-f-" E.2

?TA.C~<. . ;·HJN CF'U
..g..J~?tt .?~?E P I.t·4.* s.~t;'iS TINE

USE~

HAME

SI HON ,CQ~~~ .. ~ ... S~S':' ...4924
SIMON .• GOLUB ~ S38~. 11036

. ...SII'10H ,GO'-l!~.. ...C.. S3~.~ _'_7r~4.__ ..
~. ~IMON ,GOLUB C ?4.07. ~o~~

... _..~ I ~Ot~i' GOL~~ _ .I?__ ~~ 1..?_ .;361?
MA~~AGER .' '''11~..... " .__.~" .. 54.06.. _g~684

) MANAGER ,SVS C 5380 2140
-- SIMON "-.~.. ~.~. ~9h.~~_~~ ... (: .$4'03" .- 4924'.SltS

.GOLUB
,1.dHA

FILE
.r~~~H~.~I_~II. .-_.------------------------
s: __ ._ENTR'r' ,PUB .' SYS .
•r-=- ..ORDRNTR'(. SKORDS ,GOLUB
'1--.-- .O.RDRUTRY, St\ORDS •GOLU~.
" c , I. ' (LISTF
1~ .. _._. $ARJ3~Q_ •PUB
'1 APLi3 • PUB
'i .._.. C.' I , (Rf=:PL Y J Q_,.7
'''! gt~TR'.· ,PUB

Figure 5

·:3 - ..2-4

PROGRAM NAME = uRORNTR'(. SKOf([JS •GOl.UB TOTAL HUMBER OF SEGMEHTS = 42
. .

... Lg~qT.~. ~.F .~~f!ti.~~i.I u= :~ ~ ~31 4~,I". ~eC;M;;iT HUHBER = :~05
'~~'~-'" " ~
'!_ uJiDt).R£.$$ • ~002400.,
)r' -.. -. - -. .t - ..IHl~ .. PRU\lRAI't WAS_. RUN Qt~. A ..sERIEs...~II_. " ..._..__u·· .-

:' .. HlG I •
'i. 95 I *
';. .n'.'. 90 I *

I.J! 85 I *
II ._ ..__ _. 8 0 i •
II: 75 I *
::~..~ _~_"H . 70 l.. .. •... . _..__ ._ .., _. ._ .. __.__ p _ __ ••• ",_" "'_' H_" .

t-.. 65 I * .
nf-'..:~-' TJ~,E ~Q I _~_ -..- _.__ '_.__ .' .._.. __. _.. .. .__.. _.__._ _
,,~_:?p.~!~r_. S5 I * _ _..__ _.__._._ _._u._ _. '" ".' .. _._._.
17~__AT__ SQ. J.. . _. _. __!. _.__. _. .. _ ~._ ._._ ._..__._._.__. ..
"r .AQQ.~~$.$ 45 I . . *.. _.._ _.._ -_. .__. . _. ._ _ _ _.._._.._.
"t----- _.. ~Q....l- ...- - ..-!.--....-._ _ _.- .------ -.._ - _ _.__._-.
":.. _ __ __ 35.. I.... ,.. .!. _.. _..' _ _.. _ _ .. ._~. __ ..__ __.. __ _ __ . " ._ _ .__
JI~_ ;J..Q. .• l .. _. ._... __......:!'_.. . __.__ . . . _____
n~- .. - -- -. 2~ J _. . .._*._- _.._. _~_ .. _ .._- __.. .__ __._._.. _ _ __._
JJ~ ••• ---2fLL__.. _ * _ . ._.__._. . -........_

:\.- ~~~==..::.. tl~.t~==~~ ~~~:--;--=~=_=.~~=--_..-.-.._--.~==---==-_=_= ..=_-=~~~~~-~~~.~~~~.====J6L _ _. _.' _.. _~ t _..... . _.~. _ u •._ _._ _ ••• __ ••• _ ••__._ •.• _ •.•••__ _ •••• -._••••__ ._ • ._ __•• •__••

JlL..-J:..Q_~.f!.IION JH+--:=~-_-:-.:-:":"::.::=_:.=.~:_:.~:.::.::=::=_-:.-:::_~:.::.:.:__===_=_:__=.:__=.:.::_-~-::.:_:..:.:::::=.=.:.::._:__=__:..:.. _
ul SEGMENT -> 000000001111111122222222333333334444444455555555666666667777777711;=··-C.-QiiQ~~·~~ ..jl_~_i~~ 7_Qi2.~~.~~-?j i 2~4-5e01~~456701·2·345·67·of2j4 ~6·~·of~34 56~7-01j3'i ~§j_~ .-=..~.~~=
»

":' -··Toi~~~~Ur1BEIt.OF.~_~~p~g.~.:.Js.·~.i.~=-·~.~~ ..~~=-~'~===~~~.-'-''''-''-~=~=~-==~~~~=~.~.-~ ..~=~~ _=~.-=

Figure 6

PROGR~M HAME = ORDRHTRV.SKORDS .GOLUB TOTAL HUMBER OF SEGMENTS = 42

'! .SEGrIEHT. .,iiUHEcER = :~ 05
%1 .

3! ._lie) [~Rf S.S .. = :~ " "24 0 0
~ ;
i· .

s. ._IHIS fROGRAr, .t.... AS RUN OH _A. SERIES.....llJ ..,.

---_._.-.-------_....-------_.__.

.. :
1 OU I
9S I
gO .I

I'" 95 I
II ao I
11 7S I .
lJ 70 J ..
u; .._.. . t$5 .. I
I) r-~-'! .lM.E... ~ 0 J. _ ... -- .----- -.-..-_._.. ------ -. -.__.._-- .._.. .---. - ...__.-_.-_..__.
1'~._.,;2pf;:trr__ .55 J ". .. - . _.. -. - _ -.--------. - ----.-- -.-.--.--- -.-- - -
"~T SQ.._.I -* ._-* ,-.... _ --_ - .---.-- ---------..----- -..---.---.----.---.-- --
,·~ .._AOQE~$~ .. ~~._l.-. * .* .. - .-._- - .. ,-.- ..-..--------.--- ..------------..... - -.- ..----- .,.-. --- --.----..- -....
"L_-_.. u_ ••• !t9_.J.... -~ - ! -..- -.._- .. - ..-----..---. ---- --..---- ..- ----- - --.. -
20~._. . . .35 -..1. .* * .. ,,__ .__ __.__.. .__ .~ .._._.__ __ -._._.-- - - - ._
1', ~Q._l._ ..* * _. .. __ .._.__ .._._._. ..._u .__. . .__.__ ._._ ..__
J2~. ., .•._ . __ .•?5. t *. * _ _ ._. ._._._ .__.__.__._._.. _.__ _.._.. __ " _..__ .
::r. }~-.l -:....-: .. -.-.-. ._- -. . -"--- .----.---------.- --------

.............. _.... __.I....-.--.----.-----...-.... -.--.---.--..---.--.--.....----... -_. -_.--_.-._ ... _ ..
15. .1_~.~,!-_--,! _. _ ••._.._.. .. . - ..__.__. _

a'L. ._._. __ ..~ _I. * *. __ ._ .._ _ - -._ _ - _ --... . -..-..-- _ -.- --_ - .
III +~~-~-~~--~~--~-~~-~-------~~-~~~-~~-~----~--~~---~------------~--~~,.iLac-AT fot~JH-'-'----' ..- -_.- ---'1' "'1 iilTffl-1w l"1-·,-fI222222·222222·2-2223·33333-333j·33333'3-'----'-,_... - _.._ . _.._ _. . .__._.._._._ _n . ._. _.- ..__-..__ __ .
n~ECt1~J:lT__-=~ oQ1 '.~.~.~~445_~~~~7 ~QJ t~2.:$1~~.~~~67l9~.! 12_~~:t.,_~~_~~.?!.9..QJJ.~~~.~~~_~~!~.?L _ _.. __
att._. __~ l.Q..9 . (1_4 (J Q.~ (14 04 94 Q~ 9~o~ c,~ ~~.rl.i~~ 9~.9_i.q!tqi9~.9~.94.2..4 o~ 9_~_Q...~~~gi9_~ 9..~S!~9.~.~.~.9. "'.'__ ._ __
SI •..---.... _. __...._-_....-._....... _.....__ . _ .
~~\ ..__IQ1B.L. tiIJt1.6EB..Qf._.$At1Pl.ES .IS..~ .. _ _ __..__._.._ . __.__. _.. __ . . _

Figure 7

PROGRAM NAME = ORORHTRV.SKOROS .GOLUB TOTAL NUI18£R OF SEGHEHTS = 42

:I~= J~E.{!Ijl;t:lT l"U\18~R .. Y. OS

:t=._.f.4P~R~S£l ~ Youu24uu

, TH IS F'icOGJ<AM WAS RUN.. OH .A _$_~R.I~$ t' I J~ __ ~_~..'.:'_~' _.. ~ "
'I~'- .-.- ... ~_..... .-...... -- .
J 1__ " , U~I 1 . *.__.".._._. __ .
" 95 I *
tj 90 I * _. _ .If' .. _.... 8S' 1 III

Hi'. __ . 80 I *
u: 75 I *
I;, •.70. J.. *._ _ _.. . _ __ _ _.._.._ _. _ _ _ .
14:... .6~ .. 1 * _ _ _ _.. __ __ __'_'." __ ..
::\:-~pl~~~···~~··.l : _.... "':-".: ..~.~.~ ~=-~ ..~:~:-.=~_.~._~_~~~::-~~.~~=~~~_~_~~::::-.~.-.---~~~~_ -.. ~.~~ .
"r;-~T-.. . ~o. .1 -n· ••- • - ••- ~_.--•.• -.-.- --••• - .--••------ ••_.-.-._- ••__••.•••_-

" ~Q..P.~E~_~. ~5 .1 _. .. " ._~. __ _ . . ._.._ _._ _ _ ._..: __ __ __.

::! --.-'=.-::~..':;;' ~ t. _.... .. -.:~.~: .~:.::. _.:- ~:.=~:=.~.'.-= .~.~~:=~~~~==~:= ..~~= .~---:~:~~~: ..-~ _~.~." _:=~.~

.UI--CcjcA·fioH·-iH- .. ·..· --~--OOi-..22·Jj4455667-7·----·----·Ci·o_(f223·j·4455667·7--i"H-----···-- ---··-·
2iI: '-SE'CMEt~T-' .~> .002000+ 04'0-404 04'04 0'404'04 .0'(1300 0+-04 ij40·4·0·40~fo40·4 (j·4- ..--..0CTAC--·..·..···· _.-- .---

I· .-.--.---- .. __.•..•..... --.-----.--.--.•--------------••- ...•-----------.---- _-
~i. _. '" ...-~·9 QQQ9~.Q. ~_oQ_9.~o 09 .._.._00 •• __90 ~.~~_o~..Q.Q~ 0 0 0~o_.__ _..._._.

:1':-.!9fA..L"-i~.~H~~E~if.:QF-·s.~l'!PIl;fJ:§_.(~~ ..·=====~-:.=--=-~-==~~:-==='=-.=-==:
.-'

Figure 8

.~

.....

PROGRAM HAME = O~ORHTRV.SKORDS .GOLUB TOTAL HUMBER OF SEGMEHTS = 42

f. SEq~lgtn .. Hu'1'l6ER .. Y.05 .. ~L..!;~CiTK..OF.. S~.qME~(·.';''' .1tO.~.3(~0

:I..~.~ ..B~~R~.$.$.= ~uCl24QO • '''_'H'•. H'"

:1~_~~H.1S...PI<QG.QAi'1 .WAS. RUt~ OH ~ .$.~.J.~~._.ll L ~ ~~:~~~.:~_ :.. ~':~':'.'.".

:I~' ._- '..~ ~ (II '" . . --.-_._... :'. . -'.' .~~- :.'- -. ~~~~ ~ ~ .:~ '..' .:'
t ..__ ._._._ _ 'Q~ I _ . _ .__ _. __ __ .n.. .
,. 85 .1 .. . _ _..
II _. u_ 8Q .. 1 __ __ _ _ __ .
II. .?~. 1 . . ." _ _ _..
\St.-._ .. __ _ 70 1 ._.__ .__ ._. .. .__._.. __ ._._._._ _ .
'~'l" '. .. 6.~. I. . .. '~I-- .-_ _.. .. - -..~ .
u ~.. r..~ ,.,S-..__~.~ j _ _ .__ ._ _ _.. . _ __ . _ . ._ _ _ _._.._.__._. .
"1_ .. ~f'.gt~T .. 5.~ I. . _._. ._ _ __ _._._ _.. . .__. .._.. _._ .
::~~.~CMEI~.T ..;~.J .. -.--.-._.. . - ---.. -. ------.- -.-.---.--.--------..
~:i~~=~~·jrt~~··· .-~.-- - --_.. _: -=~.~:~~:.==~~~~=~~~~~_-~.~~~- ..~ .~~ .. -~..~-_=.~=.~~~_~~~~.- ~.~

t=~I~~~~~~~l~~
2. __ •... __• _.__.§..__J._._ _ ~ ~ ~ ~ _. _.__ _ _ .. __._~!..__. __.. .. ._.. __ _ _ _ __._.

11 +------~---2. 'sifcMEHTi - -·---··i- ..----2·--··-j·· . 4 5 --6--' 7 ---
n --·FROM·-PMAP=·~·· 0 1'2'~56~~~~~~~1!~~'456?"ci f ~fJ'4S'6'71ii ~f345670i2J45-~7 O·1-2·3~r5·6·70f:ij·4-56----.=

II --····TOTA·L H~MBER' OF~~~~.Pb.~~.~.I s__!~..~: ._'_':~.'=~ .._-_..__.....-----.----.-.......-.-----.-- --.-..--..._..... _-....­
. Figure 9

3-2-6

~;",
' - ~

look at but in this example slbe chose to examine the
octal location 2400. This value is input and the user is
now shown a more detailed display located_ ar~und the
location %2400.

This more detailed screen is called the "KILO­
WORD WINDOW ON SEGMENT." Figure 8 shows
this display very clearly. This display allows the user to
determine if slbe wishes to continue examining this 10- ­
cation in greater detail or whether s/he wants to move to
another. The next screen shows this location at an ex­
panded scale.

The new display is called the "CENTI-WORD WIN­
DOW ON SEGMENT" screen. It gives such a detailed
view of what is happening in the segment that the user
may read off the actual address of where LOOK caught
your-application program. This is shown graphically in
Figure 9. The address of the data point is %2415. This is
where LOOK found the application program. If one ex­
amined the program over a longer period of time, then
one could obviously get a much better picture of where
the program under examination is spending its time.

By judicious use of LOOK/3000, one may locate
down to the instruction address, where the application
program is spending its time. Once this fact has been
discovered what can be done about it?

ACTION PLAN

Three things can be done in order to improve the
locality characteristics of an application program.
These are as follows:

1. recode parts of the application code more effi­
ciently

2. duplicate code modes by making them internal
PCALs with judicious use of INCLUDES or
COPYLIBS

3. resegment your application code
Where do we direct our attention to begin with? This

is where the proprietary software tool called LOOKI
3000 is invaluable. LOOK displays clearly where the
application program is spending a large percentage of its
execution time. As other authors have noted, programs
spend 900/0 of their time executing 10% of the code. The
trick is to identify which portion of the code you are
spending your time in.

Once the offending part of the code is identified you
could recode that part of your application. You might
find your code executing a particular· DBGET in the
application program. Closer examination reveals the
DBGET is acting on a data with a sorted chain that you

thought had been removed months ago. You modify the
schema to remove the sorted chain and the program
now has a different profile because the application is not
waiting for IMAGE to read down the chain.
Alternatively one could fmd the application code con­
stantly calling another segment in your application.
Closer examination would possibly· indicate that the
routine in constant use is a small one. The decision
could be made to put this routine iQ a COPYLIB or
INCLUDE fde that could be inserted at compile time by
the language translation. ·This action would make the
code segment slightly larger but would remove an ex­
ternal PeAL.

LOOK/3000 can also help in the process of resegmen­
tation of an existing program with an outdated design,
Le., where the application usage has changed.

CONCLUSION

As this paper has shown, poor segmentation on the
HP3000 is an important contributor to poor application
performance. We have seen various techniques to iden­
tify where a program is spending its time. We have seen
the transformation between locality diagrams and seg­
mentation. Various techniques have been offered re­
garding the evaluation of segmentation of a given appli­
cation program. The most straightforward way of de­
termining where you are spending your execution time
is to use LOOK/3000. This is a proprietary software
tool available from Wick Hill Associates, Ltd.

REFERENCES
1. Author unknown, "Segmentation for Maximum Efficiency of Sys­

tem Tape Programs," Communicator Number 5.
2. Author unknown, "Segmentation in COBOL," Communicator

Number 12.
3. Author unknown, "Software Optimization Through Segmenta­

tion," Proceedings of lUG, February 1975.
4. Robert Green, "Principals for Optimizing Penormance ofOn-Line

Programs," HPGSUG Vol. II, No.2, 1978.
S. Jim Squires and Ed Splinter, "System Penormance Measurement

and Optimization," Proceedings of lUG, November 1978.
6. Gerry Wade, "Programming for Survival," Proceedings of lUG,

November 1978.
7. Rodney V. Smith, "Application Design for the HP3000," Proceed­

ings of SCRUG, September 1980.
8. Robert Green, ·'HP3000/0ptimizing Batch Jobs," Proceedings of

lUG, April 1981.
9. Author unknown, U Application Design Course," HP Part #

22808A, November 1980.
10. Author unknown, "Application Design and Optimization for the

HP3000," SE reference document, June 1978.
11. Jon W. Henderson, "Design and Segmentation Techniques for

Large SPL Programs," Proceedings of lUG, February 1980.

3-2-7

~..... -- ~

QHELP: An On-Line Help System
David J. Greer

Robelle Consulting Ltd.

SUMMARY

QHELP is a software tool that provides an interactive
help facility for on-line programs. QHELP is designed
to be easy to set up and maintain, efficient at run time,
and convenient for the end users. QHELP eliminates
duplication by allowing the .user manual and the help
text to be the same file. A series of keywords defines a
"tree" which is used to allow the end user easy access
to any part of the help text.

Contents

1. Introduction
2. Structure of a QHELP File
3~ Interaction With QHELP
4. Using QHELP From COBOL
5. Advanced QHELP File Structure

INTRODUCTION

Most application subsystems and software utilities
would benefit from an on-line HELP facility for users.
QHELP is such a facility, and it does not require a great
deal of system or programmer resources. QHELP
makes it easy to maintain help text in an external
QEDIT file.

For utility tools (i.e., QEDIT, SUPRTOOL, etc.), the
HELP file would primarily .explain the commands
available in the tool" but would also give examples,
uses, sample results and news of recent changes. One
reason we developed QHELP was to allow Robelle
software products to have a greatly expanded "HELP"
capability.

For application programs, a HELP fIle would docu­
ment what ach module in an application is supposed to
do, in language the end user can understand. The be·ne­
fits of using HELP ftIes are: (1) they can be part of the
specifications during the design stage of a project; (2)
they assist in user training, eliminating many questions;
(3) they are more accessible than written documentation
and are much easier to keep up-to-date.

Ad hoc HELP systems tend to skimp on information
for the user and are often out of date because they are
not easy to maintain. A standard HELP system should
be flexible, easy to program, low in overhead and
hierarchical (many key levels), with many indices for
quick retrieval by the user.

QHELP provides an easy means for the COBOL pro­
grammer (or the SPL or FORTRAN programmer) to

code the HELP capability into an application program.
The structure of the HELP text gives the user access to
the information which is immediately necessary to the
task at hand. In addition, QHELP is designed to con­
sume a minimum of system resources when it isn't being
used.

. Why Not Use the MPE
HELP Facility?

The MPE HELP facility has several problems that
make it awkward to use. One problem is that the HELP
text can only be organized on two levels. Many applica­
tions will be easier for the user to understand if the help
material can be decomposed into more than two levels
'of detail. "Subdivision" should make it easier to
maintain the documentation (increasing the probability
that maintenance will actually be done).

The MPE HELP system is not designed to be used
from a COBOL program. Without writing some SPL
interfaces, it is not possible for the COBOL program­
mer to access the MPE HELP facility. In addition, the
MPE HEL~ files must be updated with user documen­
tation every time an update is done to MPE.

With the MPE HELP facility, HELP text cannot be
broken down into different files. Ideally, every pro­
grammer should maintain the HELP documentation for
each module/program that he writes. This is done most
easily by having one HELP ftIe per module/program;
but it should be easy to connect all of the HELP fIles
and make them look like an integrated whole to the
user.

Is QHELP Any Better?

QHELP solves all of the problems mentioned above.
Within QHELP, entries can be organized into as many
as ten levels 'of keyword indices. QHELP keeps the
help files open and saves indices at every level of the
HELP file so that searches are fast. QHELP uses
QEDIT work files, which consume less disc space and
are more efficient than regular KEEP files. QHELP
provides m9dular files (similar to $INCLUDE) so that a
system of HELP files can be easily integrated into one
HELP package. Finally, the programmatic interface to
QHELP is flexible. The FIND and UNFIND com­
mands, for example, allow an application subprogram to
position the HELP file pointers to the HELP text for
that subprogram, without knowing anything about

3-3-1

"higher" levels in the HELP fde (Le., QHELP provides
relative indexing).

QHELP is distributed to all users of Robelle software
products as part of the QLIB contributed library (no
extra charge). Users are authorized to merge QHELP
into their own software, without restriction. QHELP
works only with QEDIT ftIes. There, are four reasons
for this: (1) QEDIT ftIes provide data compression (re­
ducing the cost of the help facility); (2) QEDIT ftIes can
be easily and efficiently modified (if you have QEDIT);
(3) QEDIT ftIes provide fast random access (as required
for the recursive tree structure); and 4) we may sell
more copies of QEDIT by tying QHELP to it.

\BEGlNKEY QEDIT

STRUCTURE OF A QHELP FILE

The basic structure of a QHELP ftIe consists of a key
(e.g., QEDIT), some text'about the key, and, optionally,
lower level keys (e.g., NEWS, Add, Change' ...). The
structure is recursive: lower level keys can also have
text and more keys. A new key is specified by the \BE­
GINKEY command. The end of a key is indicated by
the \ENDKEY command. Everything between the
\BEGINKEY command and the \ENDKEY command
is considered to be part of the key.

The following is an extract from an early HELP fde
for QEDIT: '

IS LANG=COB
ITEXT SRC2=S.RC1
IOPEN SRC2
ILIST 3/13
ILlST SRC1 5/10
ILIST \BAL-DUE\
IMOD [];D 63.'5
IADD 5
IADD 50 = 70/78
IADD 40 < 20/30
IADD 20 = TXT4
IC "XY"ABC"@
I:COBOL *
I:PREP
I:RUN
I:STREAM *
Special keys:

IHELP INTRO
IEXIT

QEDIT Capsule Summary

Select COBOL as the current 'language'.
Make a new QEDIT file SRC2 and copy SRC1 into it.
Select SRC2 as the current workfile for editing.
Display lines from SRC2 (current workfile).
List lines 5 thru 10 of SRC1 (not current file).
List all lines of the workfile with' BAL-DUE in them.

'Modify FIRST and LAST ([]) lines, delete line 63.5.
Add new lines to workfile at or after line 5.
Make a copy of lines 70 thru 78 after line 50.
Move lines 20 thru 30 to after line 40.
Copy all of the file TXT4 after line 20.
Change each string "XX" to "ABC" in ALL lines.
Compile the current workfile, listing on terminal.
Preps $OLDPASS into $NEWPASS; see IS OPT MAX.
Runs $OLDPASS (result of :PREP); see IS OPT LIB.
Stream the IOPEN workfile as a batch job.
Control-Y (stop commands), Control-X (cancel input),
Control-S (suspend listing until Control-Q).
Pr int more HELP (try IH NEWS" IH ADD, etc.).
Leave QEDIT and return to MPE for :BYE.

'",,---

\BEGINKEY INTRO
QEDIT: Introducing Terms

Term: Explanation:
Workfile? File built via NEWITEXT that QEDIT edits (code=111)

QEDITSCR is the default, temporary file if none spec.,
Current Workfile? The QEDIT file that is currently IOPEN for editing.
External File? Not the current workfile; QEDIT can ILlST any file.
Language? Each file has 'lang' attached to it (COB,RPG,FTN,SPL,

JOB,TEX1 for >80 columns,COBX to use comment field).
Command? Defined by first ,letter (A=add), lower-case is okay,

and semicolon(;) sets off multiple commands per line.
ADD DELETE GALLEY LIST OPEN REPLACE USE
BEFORE EXIT HELP MODIFY PROC SET VERIFY
CHANGE FIND KEEP NEW Q TEXT ZAVE

Command Option? Second char modifies comm~nd action (LQ, AJ, KJ)
T: template option (prints column headings)
Q: quiet option (without linenumbers or without printing)

3-3-2

J :
MPE Command?
Rangelist?
Range?
String?
Window?
User Manual?

justified (/ADD), jumping (/L), window only (/K)
Needs a colon(:), I:LISTF, I:STREAM, I:RUN, I:PREP.
List of ranges (5/7,9) or string match ("bb" [range]).
Lines: 5, 5/7, @=ALL, [=FIRST, *=c~rr, 5/=5/LAST.
Char in quotes("bb",-bb-,\bb\) to find or change.
~here/How to match strings: IS W=(1/50,SMART).
Enter /GALLEY QMANUAL.DOC.ROBELLE LP to print manual.

\ENDKEY INTRa
\BEGINKEY NEWS

NEWS about the latest version of QEDIT.

\ENDKEY NEWS

\BEGINKEY A

The ADD command is described here.

\ENDKEY A

The rest of the QEDIT commands are entered here.

\BEGINKEY S

A general description of the SET command goes here.

\BEGINKEY GENERAL

This key belongs to the SET command. It describes all
parts of the set command except·for ISET OPTION.

\ENDKEY GENERAL

\BEGINKEY OPTION

Each of the ISET OPTION parameters is described here.

\ENDKEY OPTION

\ENDKEY S

\BEGINKEY Z

The ZAVE command is the last one in the HELP file.

\ENDKEY Z

\ENDKEY QEDIT

-There are several important points to note: 1) The
\BEOINKEY command and the \ENDKEY command
may be spelled iii any combination of upper- and
lower-case letters. Within 'QHELP, all key names are
upshifted~ 2) The key for this HELP fde is QEDIT (the
fIrst line in the fIle must contain a \BEGINKEY com­
mand). The keys that belong within QEDIT are INTRO,
NEWS,A, ... , Z. 3) Each \BEGINKEY command

has a matching \ENDKEY command. The key name on
.the \BEOINKEY command and \ENDKEY commands
must be identical~

Any key may have sub-keys associated with it. For
example, the SET command above contains "GEN­
ERAL" and "OPTION" as keys. These two keywords
are then associated with the SET command rather than
with QEDIT.

3-3-3

Using QHELP with QGALLEY

·Any lines in the HELP fIle that start with a backslash,
but do not contain one of the HELP cominands (BE­
GINKEY, ENDKEY, BEGININDEX, ENDINDEX),
are retained, but ignored, by the QHELP system. This
allows you to embed QGALLEY (a modified version of
GALLEY) commands in the HELP fue to specify for­
matting. Thus, the HELP fIle can be used as part of the
user manual.

Example:
\BEGINKEY QEDIT
\FORMAT

(text)
\IMAGE

(list of commands)
\ENDKEY QEDIl'

Any text between one \ENDKEY and the next .\BE-

GINKpY will be ignored by QHELf, but will be picked
up by.QGALLEY and PROSE. A useful technique is to
"include" the help fIle into the file for the user manual,
thus separating the title page and the table of contents
from the actual text. The OUTQ command of QGAL­
LEY should be used to "cleanup" any help fdes that
you have modified (in order to adjust lines so that they
again fit neatly within the margins). Then, the fIle
created by OUTQ can be processed through the
QHELP compiler.

INTERACTING WITH QHELP
Assuming that you have RUN QHELP.QLIB and

asked for the help file named QEDIT.HELP­
.ROBELLE, what happens next? QHELP prints the
initial block of text from the help file (the text between
\BEGINKEY QEDIT and \BEGININDEX INTRO, the
fJ.r~t nested key word):

:HELLO user.account
:RU~ QHELP.QLIB.ROBELLE

QHELP/QLIB/ROBELLE Consulting Ltd.(C) 1981
(Version 0.2)

Enter HELP Filename? QEDIT.HELP.ROBELLE

QEDIT Capsule Summary

IS LANG=COB
ITEXT SRC2=SRC'1

.
IHELP INTRO
IEXIT

Select COBOL as the current 'language'.
Make a new QEDIT file SRC2 and c~pySRC1 into it .

Print more HELP (try IH NEWS, IH ADD, etc.).
Leave QEDIT and return to MPE for :BYE.

LO: Keywords Under: QEDIT

INTRO,NEWS,A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,Y,W,X,Y,Z

>NEWS

QHELP prompts with a U>" character for the user to
enter a keyword or a special command. If the user en­
ters a valid keyword, all of the information for that
keyword is displayed, along with a list of any sub-keys.
In the example above, the user may type NEWS to get
information ·on new features of QEDIT.

The user need not type 'the entire key word, since
QHELP'noQllally matches on any leading sub-string of
the key (this feature can be disabled with a SET com­
mand). In this example, the user could have typed N,
NE, or NEW to get NEWS (notice one disadvantage of
this feature: the user cannot get to the N keyword for
the \N command; some care must be given to the nam­
ing and ordering of key words).

Whenever QHELP is printing text, the user may
strike Control-Y to interrupt the printout. QHELPwill

3-3-4

usually prompt for another key word.
The user leaves QHELP by typing 'exit', or by typing

a circumflex (A), instead of a key name. Because the
user may be several levels deep into the HELP flle
structure, he may have to type 'exit' several times (once
for each level). Alternatively, several circumflexes (A)
may be typed in a row; QHELP will return one level for
each circumflex (e.g., entering >AA exits two levels).
. There are several special commands that may be en­

tered when the user interacts with QHELP. One of
these is the circumflex (A), which is used to exit the
interact mode ofQHELP. The question mark (?) prints
information on the QHELP special commands. Another
special command is the dollar sign ($), which is exactly
the same as the QHELP SET command (e.g., $ LP ON
equals SET LP ON).

Sometimes it is desir~ble to print all of the informa­
tion under a specific level. The "at" sign (@) is a special

~.···:1

r

QHELP command (and key word) to do this.
The following example illustrates the use of these

special commands. Starting at the node for QEDIT,

LO: Keywords Under: QEDIT

output is directed to the line printer. Next, all of the
information under QEDIT is printed on the line printer;
then output is directed back to the terminal.

INTRO,NEWS,A,B,C,D,E,F,G,H,I,J,K,L,M,.N,O,P,Q,R,S,T,U,V,W,X,Y,Z
>1 LP ON

LO: Keywords Under: QEDIT

I.NTRO, NEWS, A, B, C,D, E, F ,G, H, I , J ,K, L, M, N,0, P,Q, R, S, T, U, V, W, X, Y, z
>@

LO:Keywords Under: QEDIT

INTRO,NEWS,A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z
>1 LP OFF

Suppose you want to see the help text associated with
the key word GENERAL, nested under the key word S
(for \SET command). One way to get this would be to
enter the S keyword, wait for the S text and sub-keys to
print, then enter the GENERAL key word, read the
desired material and, finally, enter an "exit". Or, at the
entry level to QHELP (i.e., level 0), you could enter
both the key word and the sub-key, separated by com­
mas; QHELP will follow the indicated path through the
HELP rde tree and print only the lowest level (then exit
back to the original level).

>S,GENERAL

Suppose you want to see everything on the SET
command. You can use the multiple key word option

01 QHELP-AREA.
05 QHELP-COMMAND
05 QHELP-RESULT

88 QHELP-OK
88 QHELP-MISSING-KEY

05 QHELP-BUFFER-LENGTH
05 FILLER

To make maintenance easier, this area is normally
declared in the COPYLIB, and copied into the source
program with the COpy statement. All QHELP com­
mands are moved into the QHELP-COMMAND buffer
before calling QHELP, and QHELP returns the status
of each call in the QHELP-RESULT variable. Like

plus the "@" option to request all information under ~he
S key word (Control-Y will bring you back to the origi­
nallevel immediately):

USING' QHELP FROM COBOL
QHELP is designed to make "help" information

available to the end user with the minimum .amount of'
involvement by the applications programmer. The
COBOL programmer invokes QHELP by using a series
of commands that are passed to the QHELP procedure
through a standard communication area. The layout of
the communication area is:

PIC X(80).
PIC S9(4) COMP.
VALUE ZEROS.
VALUE 6.
PIC S9(4) COMP VALUE 200.
PIC X(200).

IMAGE, QHELP must be opened and initialized before
it can be used. The OPEN command is used to start up
the QHELP system, and to tell QHELP the name of the
QHELP rtIe. The following COBOL fragment opens a
HELP rtIe called EXAMPLE.HELP and initializes the
'QHELP system.

MOVE "OPEN EXAMPLE. HELP" TO QHELP-COMMAND.
CALL "QHELP" USING QHELP-AREA.
IF NOT QHELP-OK THEN

DISPLAY "ERROR: CANNOT OPEN HELP FILE"
MOVE FALSE TO QHELP-INITIALIZED-FLAG

ELSE
MOVE TRUE TO QHELP-INITIALIZED-FLAG.

3-3-5

· The applications program must check the user com­
mands to-see if the user requests help. When the user

asks for help, the applications program must make one
more call to QHELP, using the PRINT command.

MOVE "PRINT" TO QHELP-COMMAND.
CALL "QHELP" USING QHELP-AREA.
IF NOT QHELP-OK THEN

DISPLAY "ERROR: FAILURE OF QHELP ", QHELP-RESULT
PERFORM END-OF-PROGRAM.

On the terminal, the result of the PRINT command
would be as described above under "Interacting With
QHELP".

The following example program demonstrates the use

of QHELP. The program prompts the user for a com­
mand, and executes a separate module for each com­
mand. One of .the valid commands is "HELP", and
when the user types "HELP", QHELP is called.

$CONTROL SOURCE,E~RORS=5,LIST

IDENTIFICATION DIVISION.
PROGRAM-ID. EXAMPLE.
AUTHOR. DAVID GREER, ROBELLE CONSULTING LTD.

ENVIRONMENT DIVISION.'

DATA DIVISION.
WORKING-STORAGE SECTION.
01 TRUE
01 FALSE

01 QHELP-INITIALIZED-FLAG
88 QHELP-INITIALIZED

01 ACCEPT-BUFFER
88 ANSWER-SPACES

PIC X VALUE "T".
PIC X VALUE "F".

PIC X.
VALUE "T".

PIC X(80).
VALUE SPACES.

01 ACCEPT-BUFFER-1 REDEFINES
05 ACC-ONE

88 ACC-COMMAND-EXIT
88 ACC-COMMAND-ADD
88 ACC-COMMAND-CHANGE
88 ACC-COMMAND-DELETE
88 ACC-COMMAND-HELP

05 FILLER

ACCEPT-BUFFER.
PIC x.
VALUE "E".
VALUE "A".
VALUE "C".
VALUE "D".
VALUE "H".
PIC X(79).

SECTION.

PIC X(80).
PIC S9(4) COMP.
VALUE ZEROS.
VALUE 6.
PIC S9(4) COMP VALUE 200.
PIC X(200).

01 QHELP-AREA.
05 QHELP-COMMAND
05 QHELP-RESULT

88 QHELP-OK
88 QHELP-MISSING-KEY

05 QHELP-BUFFER-LENGTH
05 FILLER

PROCEDURE DIVISION.
OO-MA~N

PERFORM 05-INITIALIZE
THRU 05-INITIALIZE-EXIT.

IF QHELP-INITIALIZED THEN
MOVE SPACES TO ACCEPT-BUFFER
PERFORM 10-MAIN-PROCESSING

THRU 10-MAIN-PROCESSING-EXIT
UNTIL ACC-COMMAND-EXIT.

PERFORM 95-FINISH-UP
THRU 95-FINISH-UP-EXIT.

3-3-6

~
'. -- -~ '

OO-MAIN-EXIT. GOBACK.

$PAGE "[05] INITIALIZE"
OS-INITIALIZE SECTION.

SECTION.

TO ACCEPT-BUFFER.

MOVE "OPEN EXAMPLE.HELP" TO QHELP-COMMAND.
CALL "QHELP" USING QHELP-AREA.
IF NOT QHELP-OK THEN

DISPLAY "ERROR: CANNOT OPEN HELP FILE"
MOVE FALSE TO QHELP-INITIALIZED-FLAG

ELSE
MOVE TRUE TO QHELP-INITIALIZED-FLAG.

05-INITIALIZE-EXIT. EXIT.

$PAGE "[10] ·MAIN PROCESSING"
10-MAIN-PROCESSING

MOVE SPACES

PERFORM 10-10-GET-COMMAND
. UNTIL NOT ANSWER-SPACES.

IF ACC-COMMAND-HELP THEN
PERFORM 10-20-CALL-QHELP

ELSE
IF ACC-COMMAND-ADD THEN

PERFORM 20-PROCESS-ADD-COMMAND
THRU 20-PROCESS-ADD-COMMAND-EXIT

ELSE
IF ACC-COMMAND-CHANGE THEN

PERFORM 30-PROCESS-CHANGE-COMMAND
THRU 30-PROCESS-CHANGE-COMMAND-EXIT

ELSE
IF ACC-COMMAND-DELETE THEN

PERFORM 40-PROCESS-DELETE-COMMAND
THRU 40-PROCESS-DELETE-COMMAND~EXIT

ELSE
IF NOT ACC-COMMAND-EXIT THEN

DISPLAY "ERROR: UNKNOW COMMAND NAME".

GO TO 10-MAIN-PROCESSING-EXIT.

10-10-GET-COMMAND.
DISPLAY "ENTER COMMAND NAME".
ACCEPT ACCEPT-BUFFER.

10-20-CALL-QHE·LP.
MOVE "PRINT" TO QHELP-COMMAND.
CALL "QHELP" USING QHELP-AREA.
IF NOT QHELP-OK THEN

PERFORM 99-FATAL-ERROR
THRU 99-FATAL-ERROR-EXIT.

10-MAIN-PROCESSING-EXIT. EXIT.

$PAGE "[20] PROCESS ADD COMMAND"
20-PROCESS-ADD-COMMAND SECTION.

DISPLAY "PROCESSING FOR THE ADD COMMAND".

20-PROCESS-ADD-COMMAND-EXIT. EXIT.

$PAGE "[30] PROCESS CHANGE COMMAND"
30-PROCESS-CHANGE-COMMAND SECTION.

3-3-7

DISPLAY "PROCESSING FOR THE CHANGE COMMAND".

30-PROCESS-CHANGE-COMMAND-EXIT. EXIT.

$PAGE "[40] PROCESS DELETE COMMAND"
40-PROCESS-DELETE-COMMAND SECTION.

DISPLAY "PROCESSING FOR THE DELETE COMMAND" .

.40-PROCESS-DELETE-COMMAND-EXIT. EXIT.

$PAGE "[95] FINISH UP"
95-FINISH-UP SECTION.

MOVE "CLOSE" TO QHELP-COMMAND.
CALL "QHELP" USING QHELP-AREA.
IF NOT QHELP-OK THEN

DISPLAY "ERROR: UNABLE TO TERMINATE QHELP SYSTEM".

95-FINISH-UP-EXIT. EXIT.
$PAGE "[99] FATAL ERROR"

99-FATAL-ERROR SECTION.

DISPLAY" ".
DISPLAY "ERROR: FATAL TERMINATION OF THE PROGRAM EXAMPLE".

STOP RUN.

99-FATAL-ERROR-EXIT. EXIT.

This example d~es not cover all of the QHELP com­
mands available to the COBOL programmer. It is pos­
sible, with the FIND and UNFIND commands, to posi­
tion the internal QHELP pointers to various levels of
the help tree. These commands could be used to posi­
tion the HELP fde to the HELP text associated with the
add command, when processing the. add command in
the example above.

There is also a QHELP set command, which allows
various QHELP defaults to be overridden. These in­
clude options such as the number of lines on a screen,
and the type of pattern matching that QHELP should
use when looking for keywords.

ADVANCED QHELP FILE STRUCTURE
The basic fde organization of QHELP fdes is one fue

with many \BEGINKEY and \ENDKEY commands,
where \;BEGINKEY commands can be nested up to a
level of 10. For very large systems this is too cumber­
some. It is necessary to have separate HELP fdes for
each major system module.

\BEGINKEY SET

QHELP permits a single "logical" HELP fue to be
separated into several physical files (which can also act
as stand-alone "logical" files). This is done by including
an entire \BEGINKEY - \ENDKEY pair in one file. In
the QEDIT example above, assume that all of the in­
formation having to do with the set command was to
end up ina file called SET.HELP.ROBELLE. The
primary QEDIT HELP file would then include the fol­
lowing entry:

\BEGINKEY SET [SET.HELP.ROBELLE]
\ENDKEY SET

Any key can be in another file, but nesting of files is
only permitted to five levels. The [>]. indicates that the
key is located in the fIle specified inside the [>]. The file
SET.HELP.ROBELLE is the file which contains all of
the H~LP information about the QEDIT SET com­
mand. This file is a regular QHELP file, which starts
with \BEGINKEY SET and ends with \ENDKEY SET.

The layout of the SET rue would look like this:

~":'""'7
'----

General information on what the /SET command does.

\BEGINKEY GENERAL

This key belongs to the 'SET command. It describes all
parts of the set command except /SET OPTION.

3-3-8

\ENDKEY GENERAL

\BEGINKEY OPTION

Each of the /SET OPTION parameters is described here.

\ENDKEY OPTION

\ENDKEY SET

The SET HELP fIle can also be used as an individual
HELP fI1e,in addition to acting··as the entry for the SET

key in the QEDIT HELP ftIe.

3-3-9

r Modular Programming in MPE
. .

Ingenieurbiiro Jorg Grossier
IJG, Gbgh, Berlin

MODULAR PROGRAMMING
- There is no final definition yet
- A module can be embedded into any environment

knowing its interface but not the algorithm used.
example:

sin (X)

the user must know:
- x must be of type "REAL"
- sin (X) will be of type "REAL"
- sin (3.1415) = 0 .
-1.2E-50 < X < 4.5E+55
- what happens in case of error

the user must not know:
- the method how sin (X) is calculated

SOME MORE ASPECTS

- A module can be constructed without knowing the
environment it will be used in

- The module interfaces should be as simple as pos­
sible

WHAT MODULES CAN OFFER
- Procedures

e.g.: sin(X)

- Data
e.g.: INTEGER ARRAY A

- Files
e.g.: Data-base

- Any mixture of the three above

MODULE INTERFACES
- Information flow between modules
- Described by:

- The type of information (data, procedure,
file)

- The access rights for each communication
direction:

a:

b:

c:

d:

3 -15-1

Examples for Module Interfaces

a: BEGIN
INTEGER I;

PROC EDURE P.I;
BEGIN

I: =0;
WHILE (1:=1+1) < 10 DO

BEGIN •••• END;
END;

I: *EQLO;
WHILE (I: =1+1) < 10 DO

BEGIN

PI;
END;

PROCEDURE UPDATEDATA (BUFFER, LENGTH);
INTEGER ARRAY BUFFER;
V1\LUE LENGTH; INTEGER LENGTH;
OPTION EXTERNAL;

BEGIN
'copy contents of BUFFER into
data segment';

END

Solution No. 1

PROCEDURE INITDATA (BUFFER, LENGTH);
INTEGER ARRAY BUFFER;
VALUE LENGTH; INTEGER LENGTH;

c:
END;

SUBROUTINE SUB

INVAL·=IT~MP (10)

END

BEGIN
'allocate data segment';
IF 'data segment already exists'

THEN 'copy contents into BUFFER'
ELSE 'initialize BUFFER with O'f

END;

MODULE REQUIREMENTS
- Control of information flow (specification of im­

ported and exported objects)
- Check of interfaces (some checking done by

SEGMENTER, but not for all types)
- Hidden information (to keep information within

the module - problems with stack-structure;
ftIe-access)

- More possibilities to restrict access on data, pro­
cedures and ftIes

- Comfortable to handle (library-problem)

Example: Own Data in SL-Routines

PROBLEM: The principle of hidden information re­
quires that local data is not deleted between two proce­
dure calls. This causes problems when procedure has to
be put into a SL.

WHAT WE WANT: A module which stores local
data into an extra data segment before exit and re­
freshes the data after call.

SPECIFICATION FOR MODULE
"OWN DATA"

PROCEDURE INITDATA (BUFFER, LENGTH);
INTEGER ARRAY BUFFER;
VALUE LENGTH; INTEGER LENGTH;
OPTION EXTERNAL;

BEGIN
IF ~first time used'

THEN 'initialize BUFFER with 0'
ELSE 'refresh BUFFER with data

stored in data segment';
END;

3 -15-2

a

PROCEDURE UPDATEDATA (BUFFER, LENGTH);
INTEGER ARRAY BUFFER;
VALUE LENGTH; INTEGER LENGTH;

BEGIN
'allocate data segment';
'copy contents of BUFFER into
data segmen t' ;

END;

But
- Extra data segment has to be "global."
Therefore:
- Other users ofmodule "OWN DATA" will use the

same data segment
- Data segment is not automatically deallocated

when program terminates. So no initialization will
happen after the module has been used once.

Solution No. 2

PROCEDURE INITIALIZEDATE;
OPTION PRELUDE;

BEGIN
'allocate extra data segment';
'mark user within data segment';
'initialize info part';

END;

r

PROCEDURE INITDATA (BUFFER, LENGTH);
INTEGER ARRAY BUFFER;
V~LUE LENGTH; INTEGER LENGTH;

BEGIN
'allocate extra data segment';
IF 'used first time (info part)'

THEN
BEGIN

'initialize BUFFER with 0';
'change info part';

END
ELSE 'copy contents into BUFFER';

END;

PROCEDURE UPDATEDATA (BUFFER, LENGTH);
INTEGER ARRAY BUFFER;
V'LUE LENGTH; INTEGER LENGTH;

BEGIN
'allocate extra data segment';
'copy contents of BUFFER into
data segmen t ' ;

END; .

PROCEDURE FREEDATA;
OPT I ON POST LUDE ;

BEGIN
'allocate extra data segment';
'delete module user from info

pa r t' ;
'free extra data segment';

END;

3 -IS-3

''--..:

r Business Graphics: An Efficient
and Effective Tool for

Management Decision Making
Gavin L. Ellzey
Systems Engineer
Hewlett-Packard

Kenner, Louisiana

ABSTRACT
Presently, one of the major dilemmas facing manage­

ment is the communication of pertinent business infor­
mation. In this paper we will address the subject of
computer graphics as an efficient and effective solution
to the problem of the "Information Explosion" faced by
today's manager.

INTRODUCTION
Yosemite. To any of us who have been there, the

name conjures up vivid recollections of the majesty of
California's High Sierra. The stark, granite majesty of
EI Capitan rising over 3000 sheer, vertical feet from the
floor of a pristine valley fed by the clear waters of the
Merced River. Beautiful? Certainly, but for those
who've seen the magnificence of the Yosemite Valley,
or any other natural wonder, we realize that mere words
fall far short of actually presenting a clear, concise men­
tal image which does justice to the reality.

Although words have served admirably throughout
man's history for the cataloging and storage of informa­
tion in printed form, in today's complex and ever­
changing business environment they frequently fall far
short of presenting the full picture of the business
event(s) they represent.

If you agree with this perception, then read on, for
you are ready for the new age in computers, the
"Graphics Age."

Graphics, as we know them, are not an invention of
the twentieth century, or for that matter even the
nineteenth century! In fact,_. graphics can trace its ori­
gins beck to 1786 when William Playfair first published
,The Commercial and Political Atlas in which he pre­
sented what he called ·"lineal arithmetic,"! the prog­
enitor of modem graphics.

Being practical, as most businessmen are, we may
now ask ourselves, "Good, but how do graphics relate
to me and my business?" The answers to that question
lie in the following pages.

Presently, the computer industry is in a perpetual
state of flux as new technological advances allow the

'. costs of computer hardware to steadily decline, bringing

computerization well within the budgets of even the
smallest businesses. .

The old adage, "The inore you got, the more you
want," still holds true; as the data storage cost of com­
puters decreases and capacity increases, the volume of
"neccessary" data increases also, thus giving rise to a
major dilemma facing today's manager, the "Informa­
tion Explosion."

Today's manager is essentially the same as his coun­
terpart of fifty years ago, a decision maker. However,
the complexity of the present business environment is
substantially greater and increasing daily!

Managers, being decision makers, are under extreme
pressure to assimilate information, delineate that infor­
mation which is useful and use it to make crucial busi­
ness decisio~s as quickly as possible.

Keying on this we see that the most valuable com­
modity to today's manager is time. With the advent of
computers and the birth of the "Information Explo­
sion," managers are fmding themselves buried under
mountains of computer printouts containing the vital
statistics of their businesses. Studies have shown that
'the average human can read at 600 to 1200 words per
minute, with exceptions at both extremes.4 Combining
this with the time it takes the brain to correlate and
interpret the information read, we can see that it could
take quite a while to delineate the trends contained in a
50 page line printer listing of business statistics.

Today, however, the old man-computer interface
channel of the line printer listing can be rendered much
more effective by being augmented with computer
graphics. Given our previous example of a 50 page
printout, the information can be mapped onto one well
designed graph which only takes up a single page! Fur­
thermore, when presented graphically trends can be
spotted immediately, thus greatly minimizing the deci­
sion making time. Thus, where it once may have taken a
manager two hours to make sense out of a printout, he
can now do it at a glance!

It can now be seen that computer graphics provides
managers with two fundamental benefits. Primarily, it

3 -61-1

saves on the one resource always in short supply to all
managers - time.

Secondly., computer graphics greatly enhances the ef­
fectiveness of the decision making process by making
pertinent information easier to understand and trends
easier to recognize.

USING BUSINESS GRAPHICS
There exist, primarily, two types of graphics report­

ing categories. First there are the special one-time uses
such as forecasting, customer presentations and specific
problem analyses, to cite some examples. Second, there
are the management reporting functions. These provide
a periodic set of charts which present a clear "state of
the business" picture to the managers who use them.

Having defined the two primary areas of chart use,
we must now ask ourselves, "How do I begin?" There
are some preliminary criteria which must be satisfied by ,
any enterprise attempting to implement a business
computer graphics system. Familiarity with the data
which forms the building blocks of the system is
paramount, also the designer must choose specific
quantities for measurement which correspond to defi­
nite measureable goals.

An easier way to approach it may be from the
standpoint of the "5-Ws and H;" Who, What, Where,
When, Why and How.

• WHO - Who will the intended audience be, an
executive vice-president or a shop foreman.

• WHAT - What quantities are going to be meas­
ured, cash flow or inventory on hand.

• WHERE - What area of my business am I in­
terested in, where among some or all of my divi­
sions are my questions centered.

• WHEN - When, what 'time or associated interval
do I want to survey;' do I want a monthly compari­
son orjust a daily trend analysis for a given month.

• WHY - For what reason do I want to investigate
these quantities and their various relationships,
waht are my fundamental goals and what benefits
will be derived.

• HOW - How will the data be, presented, in linear
form, pie or bar chart.

• These questions must be carefully and intelligently
resolved by ajoint effort between Management and
the'DP Staff prior to any graphics system im­
plementation. You must know where you want to
go in order to choose the right path and proper
means of transportation.

Once the objectives have been set and the method of
accomplishment determined, the next step is the design
of what is called a "Graphics Operations Portfolio."

A Graphics Portfolio is simply a predetermined set of
charts generated on a regular basis to provide manage­
ment with a clear and concise overview of the business.
It should include not only charts, but their supporting

3 -61-2

text and tabular data arranged such that they comple­
ment each other and are optimized for maximum effec­
tiveness. It should be remembered during the entire
process that there are some forms of data which do not
lend themselves to graphical' presentation; those where
the absolute value of the quantity is the important crite­
rion. Anyone can see that rmding appropriate answers
to the "5-Ws" is not too difficult for any manager well
versed in his business. Experience has shown that an­
swering the "How" is where most people begin to lose

.themselves, therefore we will now explore the various
comparisons and their associated chart types.

There are five major types of comparison which may
be used to define most data sets:

1. COMPONENT - compare relative magnitude of
a particular segm~nt in relation to the whole.

2. ITEM - compare the ranking of i~dividual items.
3. TIM·E relative & absolute - compare the varia­

tion over a given time interval of an item(s).
4. FREQUENCY DISTRIBUTION - compare how

a quantity is distributed among various categories.
5. CO-RELATIONSHIP- present a view of how an

item varies in relation to variation in another item.
In general, most management reporting functions can

be fulfilled by the three most fundamental types of
charts ~ pie, bar (normal, stacked, comparative) and
linear. Ecah chart type functions as a means to depict a
specific type of comparison thus serving a different
purpose when an element of the Graphics Portfolio.

We Will now examine the various comparisons and
their associated chart types.

Component

Component comparisons show the relative. impor:·
tance of any particular component in relation to the
whole. There are two basic types of chart which lend
themselves effectively to the representation of compo­
nent comparisons: pie charts and stacked bar charts.

PIE CHARTS - Many mathematicians consider the
circle the "perfect" geometric figure, and if we look at
the anatomy of a circular or "pie" chart we can see that
since progression flows continuously from start to fm­
ish, a pie provides us with an exceptionally vivid im­
pression of a "whole," making it an ideal figure for the
representation of precentage type comparisons. An im­
portant rule to remember when designing a pie chart is
to use as few "slices" as neccessary, preferably less
than. 7.

STACKED (100%BAR/COLUMN) BAR CHARTS:
The stacked bar provides us with the "skyscraper" -ef­
fect, with the various segments being the "floors." This
is a great type of chart to show numerical component

. comparions among multiple components.
A question now arises as to when a pie or a stacked

bar chart should be used. Generally, due to the human
tendency to think of things circular as "complete" a pie
chart gives a more concise impression of a whole, fur-

"---

saves on the one resource always in short supply to all
managers - time.

Secondly., computer graphics greatly enhances the ef­
fectiveness of the decision making process by making
pertinent information easier to understand and trends
easier to recognize.

USING BUSINESS GRAPHICS
There exist, primarily, two types of graphics report­

ing categories. First there are the special one-time uses
such as forecasting, customer presentations and specific
problem analyses, to cite some examples. Second, there
are the management reporting functions. These provide
a periodic set of charts which present a clear "state of
the business" picture to the managers who use them.

Having defined the two primary areas of chart use,
we must now ask ourselves, "How do I begin?" There
are some preliminary criteria which must be satisfied by ,
any enterprise attempting to implement a business
computer graphics system. Familiarity with the data
which forms the building blocks of the system is
paramount, also the designer must choose specific
quantities for measurement which correspond to defi­
nite measureable goals.

An easier way to approach it may be from the
standpoint of the "5-Ws and H;" Who, What, Where,
When, Why and How.

• WHO - Who will the intended audience be, an
executive vice-president or a shop foreman.

• WHAT - What quantities are going to be meas­
ured, cash flow or inventory on hand.

• WHERE - What area of my business am I in­
terested in, where among some or all of my divi­
sions are my questions centered.

• WHEN - When, what 'time or associated interval
do I want to survey;' do I want a monthly compari­
son orjust a daily trend analysis for a given month.

• WHY - For what reason do I want to investigate
these quantities and their various relationships,
waht are my fundamental goals and what benefits
will be derived.

• HOW - How will the data be, presented, in linear
form, pie or bar chart.

• These questions must be carefully and intelligently
resolved by ajoint effort between Management and
the'DP Staff prior to any graphics system im­
plementation. You must know where you want to
go in order to choose the right path and proper
means of transportation.

Once the objectives have been set and the method of
accomplishment determined, the next step is the design
of what is called a "Graphics Operations Portfolio."

A Graphics Portfolio is simply a predetermined set of
charts generated on a regular basis to provide manage­
ment with a clear and concise overview of the business.
It should include not only charts, but their supporting

3 -61-2

text and tabular data arranged such that they comple­
ment each other and are optimized for maximum effec­
tiveness. It should be remembered during the entire
process that there are some forms of data which do not
lend themselves to graphical' presentation; those where
the absolute value of the quantity is the important crite­
rion. Anyone can see that rmding appropriate answers
to the "5-Ws" is not too difficult for any manager well
versed in his business. Experience has shown that an­
swering the "How" is where most people begin to lose

.themselves, therefore we will now explore the various
comparisons and their associated chart types.

There are five major types of comparison which may
be used to define most data sets:

1. COMPONENT - compare relative magnitude of
a particular segm~nt in relation to the whole.

2. ITEM - compare the ranking of i~dividual items.
3. TIM·E relative & absolute - compare the varia­

tion over a given time interval of an item(s).
4. FREQUENCY DISTRIBUTION - compare how

a quantity is distributed among various categories.
5. CO-RELATIONSHIP- present a view of how an

item varies in relation to variation in another item.
In general, most management reporting functions can

be fulfilled by the three most fundamental types of
charts ~ pie, bar (normal, stacked, comparative) and
linear. Ecah chart type functions as a means to depict a
specific type of comparison thus serving a different
purpose when an element of the Graphics Portfolio.

We Will now examine the various comparisons and
their associated chart types.

Component

Component comparisons show the relative. impor:·
tance of any particular component in relation to the
whole. There are two basic types of chart which lend
themselves effectively to the representation of compo­
nent comparisons: pie charts and stacked bar charts.

PIE CHARTS - Many mathematicians consider the
circle the "perfect" geometric figure, and if we look at
the anatomy of a circular or "pie" chart we can see that
since progression flows continuously from start to fm­
ish, a pie provides us with an exceptionally vivid im­
pression of a "whole," making it an ideal figure for the
representation of precentage type comparisons. An im­
portant rule to remember when designing a pie chart is
to use as few "slices" as neccessary, preferably less
than. 7.

STACKED (100%BAR/COLUMN) BAR CHARTS:
The stacked bar provides us with the "skyscraper" -ef­
fect, with the various segments being the "floors." This
is a great type of chart to show numerical component

. comparions among multiple components.
A question now arises as to when a pie or a stacked

bar chart should be used. Generally, due to the human
tendency to think of things circular as "complete" a pie
chart gives a more concise impression of a whole, fur-

"---

"thermore simple experimentation for ourselves will
show us that the relative sizes of component segments
are easier to determine accurately when arranged in a
circular arrangement as opposed to a "cubed" stack of
variable sized cubes, thus making the pie chart ideal for
presenting the components of a single total. However,

sometimes we have the need to show the components of
several totals simultaneously and for this the stacked
bar chart is the ideal chart since multiple component
comparisons can be placed adjacent to each other more
easily than the pie chart. For example take the following
data:

DIVISION
1980 XYZ COMPANY SALES

SALES $ QTR1 QTR2 QTR3 QTR4

A
B
C

100
300
2.50

30
101

50

30
59
35

20
40
65

20
100
100

---~--------------~-----------------~~--~----------~----~-----------~----~--

If we look at Figure 3 & 3A we can see how this item

Looking at Figure 1 we see that the pie chart provides
a better measure of the relative magnitude of the respec­
tive sales divisions. Figure 2 depicts a component com­
parison on a quarter by quarter basis by division. It can
be easily seen that had we tried to use pie charts for this
it would have taken four charts and been rather un­
wieldy, but more importantly not as effective.

Item Comparison

The item comparison treats two or more items and
compares their relative sizes or quantities to each other.
Bar charts, both horizontal and vertical, are the chart
types best suited to the representation of this type of
comparison. Much discussion has taken place concern­
ing the relative advantagesldisadvantages of using the
vertical or horizontal bar chart over its counterpart. The
primary argument against vertical bar charts is that
~9~e_.people tend to read in a time dependant relation­
ship. It is for the chart designer to decide which type of
bar chart to use in order to best suit the need of his
audience. I have included examples of both in Figures 3
& 3A. We will now look at an example. Take the follow­
ing,data:

DIVISION

A
B
C
D

ABC COMPANY
FISCAL 1980 SALES

SALES $

342
109
226
374

comparison maps into both a horizontal and a vertical
bar chart.

Time Comparison

Time comparison shows how a quantity fluctuates
over a specified time interval; relative or absolute. The
primary goal of a time comparison is to emphasize
trends and their associated patterns by showing fluctua­
tions in a quantity's value. Fundamentally, two types of
charts are suited to the presentation of time compari­
sons: linear charts and bar .charts (normal & compara-

. tive).

BAR CHART - The anatomy of a bar chart is such
. that when we are dealing with a minimal or small

number of time periods, such as a 12 month analysis,
then it is ideally suited for our presentation vehicle.
Furthermore if we wish to compare several components
per interval, the comparative bar chart is an excellent
choice. The.reason we do not wish to use bar charts for
comparisons involving many time intervals is that after
a certain point, the chart becomes cluttered with too
many bars. Also, due to the visual perception of figures
versus lines, if there exist large fluctuations is the data
then the mental conceptualization of the trend is
superior when it is represented by a bar chart than if a
linear chart is used.

LINEAR CHART - Linear charts are usually drawn
on Cartesian or Logarithmic axes. Due to the nature of
these charts, a linear chart lends itself well to represent­
ing large numbers of data points.

Let us look at an example based on the following
data:

KLN WIDGETS, INC.
YE~R SALES$ QTR1 QTR'2 QTR3 QTR4
===
1971 301 100 60 40 100
1972 400 75 95 100 130
1973 411 80 71 150 100
1974 401 200 100 70 30
1975 511 100 20 300 80

(" 1976 494 100 204 100 90
1977 509 75 125 159 150
1978 564 264 100 110 90
1979 580 280 100 200 80
1980 600 174 176 100 150

3 -61-3

"thermore simple experimentation for ourselves will
show us that the relative sizes of component segments
are easier to determine accurately when arranged in a
circular arrangement as opposed to a "cubed" stack of
variable sized cubes, thus making the pie chart ideal for
presenting the components of a single total. However,

sometimes we have the need to show the components of
several totals simultaneously and for this the stacked
bar chart is the ideal chart since multiple component
comparisons can be placed adjacent to each other more
easily than the pie chart. For example take the following
data:

DIVISION
1980 XYZ COMPANY SALES

SALES $ QTR1 QTR2 QTR3 QTR4

A
B
C

100
300
2.50

30
101

50

30
59
35

20
40
65

20
100
100

---~--------------~-----------------~~--~----------~----~-----------~----~--

If we look at Figure 3 & 3A we can see how this item

Looking at Figure 1 we see that the pie chart provides
a better measure of the relative magnitude of the respec­
tive sales divisions. Figure 2 depicts a component com­
parison on a quarter by quarter basis by division. It can
be easily seen that had we tried to use pie charts for this
it would have taken four charts and been rather un­
wieldy, but more importantly not as effective.

Item Comparison

The item comparison treats two or more items and
compares their relative sizes or quantities to each other.
Bar charts, both horizontal and vertical, are the chart
types best suited to the representation of this type of
comparison. Much discussion has taken place concern­
ing the relative advantagesldisadvantages of using the
vertical or horizontal bar chart over its counterpart. The
primary argument against vertical bar charts is that
~9~e_.people tend to read in a time dependant relation­
ship. It is for the chart designer to decide which type of
bar chart to use in order to best suit the need of his
audience. I have included examples of both in Figures 3
& 3A. We will now look at an example. Take the follow­
ing,data:

DIVISION

A
B
C
D

ABC COMPANY
FISCAL 1980 SALES

SALES $

342
109
226
374

comparison maps into both a horizontal and a vertical
bar chart.

Time Comparison

Time comparison shows how a quantity fluctuates
over a specified time interval; relative or absolute. The
primary goal of a time comparison is to emphasize
trends and their associated patterns by showing fluctua­
tions in a quantity's value. Fundamentally, two types of
charts are suited to the presentation of time compari­
sons: linear charts and bar .charts (normal & compara-

. tive).

BAR CHART - The anatomy of a bar chart is such
. that when we are dealing with a minimal or small

number of time periods, such as a 12 month analysis,
then it is ideally suited for our presentation vehicle.
Furthermore if we wish to compare several components
per interval, the comparative bar chart is an excellent
choice. The.reason we do not wish to use bar charts for
comparisons involving many time intervals is that after
a certain point, the chart becomes cluttered with too
many bars. Also, due to the visual perception of figures
versus lines, if there exist large fluctuations is the data
then the mental conceptualization of the trend is
superior when it is represented by a bar chart than if a
linear chart is used.

LINEAR CHART - Linear charts are usually drawn
on Cartesian or Logarithmic axes. Due to the nature of
these charts, a linear chart lends itself well to represent­
ing large numbers of data points.

Let us look at an example based on the following
data:

KLN WIDGETS, INC.
YE~R SALES$ QTR1 QTR'2 QTR3 QTR4
===
1971 301 100 60 40 100
1972 400 75 95 100 130
1973 411 80 71 150 100
1974 401 200 100 70 30
1975 511 100 20 300 80

(" 1976 494 100 204 100 90
1977 509 75 125 159 150
1978 564 264 100 110 90
1979 580 280 100 200 80
1980 600 174 176 100 150

3 -61-3

In Figure 4 we see that since we are looking at only 5
discrete time intervals, then the bar chart is superior in
representing magnitude of the item fluctuation, over the
linear chart in Figure 4A. Figure 5 gives us an example
of how a comparative bar ch-art can be used to show the
fluctuation of several items ov~r several time intervals.
Looking at Figure 6, we can see that this time series
comparison of a quarter by quarter sales record over ten
years is ideally suited to a linear chart representation.
Had we tried to depict these trends in a bar chart two
things would have occurred: the bars would have been
miniscule arid the chart would have been so cluttered as
to be quite difficult to effectively interpret.

Frequency Distribution

This type of comparison shows how the given quan­
tity fluctuates over a given distribution. T-h~ _key to this
is that broad categories are used to defme a'distribution
over which the data values are "dispersed, rather than
specific events. Two types of chart are suitable for rep­
resenting this comparison, bar charts or linear charts.
As with the tine frequency comparison, when many
points need to be grapheq the linear chart is most effec­
tive. For a small number of categories, the bar chart is
the most effective format. Bar charts used in this man­
ner are commonly called Histograms. Figure 7 shows a
sample histogram for the following data:

KLO WELDING
1980 EMPLOYEE ILLNESS

YEARS SERVICE DAYS ILL

Co-relationship Comparison

This type of comparison functions to highlight perti­
nent patterns in the relative fluctuation of one item with
respect to another. Scattergrams - linear charts with
figures representing each data point - are the major
chart type for representation of these types of compaii­
sons.

SUMMARY

Summing up, we have seen that graphics, when prop­
erly understood and implemented can provide a }Jower­
ful tool for a manager. Choosing the proper chart format
and comparison for the relationship desired 'involves
careful forethought and planning; just as a well designed
Graphics Portfolio is a valuable managerial asset, a
poorly designed one is almost useless. In closing, we
can see that graphics, if properly implemented, greatly
increases the efficiency and effectiveness of the deci­
sion making process.

BIBLIOGRAPHY
lSchmid, Calvin F. and Stanton E., Handbook o/Graphic Presen'ta­
tion.

"Business Week, June 1980.
3Cook, Peter G. ,25 Years ofComputer Graphics, IOC Conference for
MIS and Computer Graphics, February 1978.

4Patterson, Marvin, Graphic Representation ofNumeric Data.

============~=================

o - 55
5 - 10
10 - 15
15 +

3 -61-4

50
150
75
40

ACKNOWLEDGEMENT
The author would like to express his appreciation to the following

people for their invaluable assistance in locating sources of infomta­
tion for this paper: Bruce Woolpert & Peggy Wyman: HP San Diego,
and Rich Simms, HP General Systems Division. "

In Figure 4 we see that since we are looking at only 5
discrete time intervals, then the bar chart is superior in
representing magnitude of the item fluctuation, over the
linear chart in Figure 4A. Figure 5 gives us an example
of how a comparative bar ch-art can be used to show the
fluctuation of several items ov~r several time intervals.
Looking at Figure 6, we can see that this time series
comparison of a quarter by quarter sales record over ten
years is ideally suited to a linear chart representation.
Had we tried to depict these trends in a bar chart two
things would have occurred: the bars would have been
miniscule arid the chart would have been so cluttered as
to be quite difficult to effectively interpret.

Frequency Distribution

This type of comparison shows how the given quan­
tity fluctuates over a given distribution. T-h~ _key to this
is that broad categories are used to defme a'distribution
over which the data values are "dispersed, rather than
specific events. Two types of chart are suitable for rep­
resenting this comparison, bar charts or linear charts.
As with the tine frequency comparison, when many
points need to be grapheq the linear chart is most effec­
tive. For a small number of categories, the bar chart is
the most effective format. Bar charts used in this man­
ner are commonly called Histograms. Figure 7 shows a
sample histogram for the following data:

KLO WELDING
1980 EMPLOYEE ILLNESS

YEARS SERVICE DAYS ILL

Co-relationship Comparison

This type of comparison functions to highlight perti­
nent patterns in the relative fluctuation of one item with
respect to another. Scattergrams - linear charts with
figures representing each data point - are the major
chart type for representation of these types of compaii­
sons.

SUMMARY

Summing up, we have seen that graphics, when prop­
erly understood and implemented can provide a }Jower­
ful tool for a manager. Choosing the proper chart format
and comparison for the relationship desired 'involves
careful forethought and planning; just as a well designed
Graphics Portfolio is a valuable managerial asset, a
poorly designed one is almost useless. In closing, we
can see that graphics, if properly implemented, greatly
increases the efficiency and effectiveness of the deci­
sion making process.

BIBLIOGRAPHY
lSchmid, Calvin F. and Stanton E., Handbook o/Graphic Presen'ta­
tion.

"Business Week, June 1980.
3Cook, Peter G. ,25 Years ofComputer Graphics, IOC Conference for
MIS and Computer Graphics, February 1978.

4Patterson, Marvin, Graphic Representation ofNumeric Data.

============~=================

o - 55
5 - 10
10 - 15
15 +

3 -61-4

50
150
75
40

ACKNOWLEDGEMENT
The author would like to express his appreciation to the following

people for their invaluable assistance in locating sources of infomta­
tion for this paper: Bruce Woolpert & Peggy Wyman: HP San Diego,
and Rich Simms, HP General Systems Division. "

I

J-I

I•II
I

-
-

II
II

(I-
II

II
-

.-4

..II
-
~

..
.~

2

I
I

I
fott

;..I

>-z«0..
~0UN>-Xa:

~
0LL(f)
W.....J
«(f)

.....J
«t-Ot-O

r":
CDm

.
~

3
-
6

1
-
5

1980 TOTAL SALES FOR XYZ COMPANY

SIll.....

•
amgC

•
SIIJJI - ...

•
[Vl'lj •
_I

•
rllZJ •

•
IIlIJSILII IB.II

•
•
•

CN

I
0\
~

I
u. Figure 1

CN

l 1980 TOTAL SALES FORXYZ COMPANY BY QUARTER
~

I
0\

SALES IJII.URS IN MILLI•

UIITER 3UATEA 2URTER t

50

•

•

•
. .-.----------------------~

150

100

DMSIIit C

DMSIIMI

DMSIOtI A

DMSlCII

Figure 2

,J

CN

l 1980 TOTAL SALES FORXYZ COMPANY BY QUARTER
~

I
0\

SALES IJII.URS IN MILLI•

UIITER 3UATEA 2URTER t

50

•

•

•
. .-.----------------------~

150

100

DMSIIit C

DMSIIMI

DMSIOtI A

DMSlCII

Figure 2

,J

D

c

•

A

FISCAL 1980 SALES FOR ABC COMPANY BY DIVISION

SALES DOLLARS

I I I I

o 100 200

DMSION

Figure 3

400 100

3 -61-7

D

c

•

A

FISCAL 1980 SALES FOR ABC COMPANY BY DIVISION

SALES DOLLARS

I I I I

o 100 200

DMSION

Figure 3

400 100

3 -61-7

z0-en~Q1ii~2000
<

~
I

ffI)

i
~

.,..

~
~

enLaJ

~0COm.-gen

I
-LL.

II
I

8
0

..

3
-
6

1
-
8 I

00

FISCAL 1980 SALES FOR ABC COMPANY BY DIVISION

SALES DOUMS
800 ...-------------------------------------

400

100

O I6IIlI IIMI__ lIII6~ --~ ~~ -- --.

Figure 3A

IJ

• E..

to

I
•

I
I

I
•

I.. I E..&.. I..

8..

••II
I

I
I

I
I

U
)
-~z<enau-I
(}ja:L5>-II)

r
•uz-e8I;

3
-
6

1
-
9

KLN WIDGETS. INC. 5 YEAR SALES ANALYSIS

11,.t877 1171

.....

•

~

•

• .

•

•

o

-
"·DIS CF I,.

-

-

I
\C) Figure 4

f.N

I
0\
~

KLN WIDGETS 5-YEAR SALES ANALYSIS

~o

100

110

110

S40

uo

eoo

111011,.117111771171
77777

"l7a
FISCAL YEAR

Figure 4A

KLN WIDGETS 5-YEAR SALES ANALYSIS

1110117111711177117.410------....-----.....-----.......-----~------1171

Figure 4A

r

(I)

~:..J
<Z<~0::
~~<::::>0

~
II)

0::
e

~
I

~..
r'.

>-
~

It)•
0z- ..~C

)
c

I
-~Z..I
~

I
E..

II
0

3
-
6

1
-
1

1

KLN WIDGETS,INC. 5 YEAR QUARTERLY ANALYSIS

QJR1

(:.-:.-:.....-:.-j
Q1R2

f7Z//Lj
QJR4

1:",,:",,:1

~
0

187. 1177 1.,. 1'7. 1810
I
0\ FISCAL YEAR...
~.~ Figure 5...

'
/

I
/
'

/
"

I

"
I

U
l

"
H

'>J
I

U
l

>-
II

...J
«

/,\J
i

z«>-
/

'\
...J

,
a:

"
"
"
.
~

U
J

""".
,

,
I-

""".
<

,
a:

~
/

«
~

\C

-::J
~

/
i

CJ
~

i
~
~

-,
...J

A
«u

\
\

I
tnt--t

\",
LL.

a:
I

«UJ>
I

I
I

I
I

I
•

0
•

I
•

~

..
N

I
I

...
•

I
I

I
II

I
I

3
-
6

1
-
1

2

•
-t

10 YEAR FISCAL QUARTERLY ANALYSIS
I
~

~

-
.-------------------------_I

_2 - ". - - - / \
_a / \- / \/, "/ \ /---

\• .,
/ /" ,,/ /_.~

/' />cl / "-!._/• ~
/

.." ""II ,/
I _I - - -~ IIJI - -

Figure 6

, ,
KLO WELDING: EMPLOYEE ILLNESS DISTRIBUTION

.....COiiiiii".."C..INE......DW..SI.L---------------------.

I...
w

..

o-a a- to

WMS OF SERVICE

Figure 7

fi Ji.,

.\..... -

Automatic Calling with the HP3000
Paul W. Ridgway

Systems Engineer
Hewlett-Packard Company

Houston, Texas

INTRODUCTORY SUMMARY
The purpose of this paper is to introduce HP'3000

users to the concepts and benefits of computer con­
trolled call origination. Accurate information manage­
ment is one of the foundations for a successful business
and as businesses grow geographically, accurate infor­
mation management between businesses becomes in­
creasingly important.

The topic of information management between busi­
nesses has been addressed through the communications
network concept with each vendor supplying their own
competitive network design. In this paper, I will discuss
methods of automating the existing communications
network capabilities of the HP3000 and will propose
new ideas of automating the communication of elec­
tronic information.

The body of the paper will consist of two sections.
The first will be a technical discussion aimed at the
non-technical individual. It will describe the compo-

. nents involved and how they interface the HP3000 with
the outside world. Also, the first section will examine
the software required and will give examples of how to
integrate the software into existing network modules.
The second section will deal with the concepts of au­
tomatic call origination and will include a discussion on
the need for automatic information transfer and a sum­
mary of existing and proposed appplications which are
suited to the HP3000.

To conclude, we will work out the economics of au­
tomatic call origination and compare its advantages to
other methods of networking.

INTRODUCTION
I am an observer of the Cosmos to use Dr. Carl Sa­

gans' word to mean that I get input for my thinking from
every source of information known to man. For exam­
ple, if I want information about the universe, I select a .

source of that information, say a book, and read. If I
want information about the state of politics overseas, I
select a television channel that is displaying that infor­
mation and watch. In these cases, I know what kind of
information I want, I know where to get it and I have the
ability to make contact with the source of information
through my actions.

This seeking out, absorbing and updating of data is
called information management and is an integral part of
human existance as well as of modern business. For
example, a company with employees that are. paid
weekly has a data entry method for giving the computer
information about the number of hours worked, sick
leave and vacation earned or taken, pay rate increases
and so forth. Once each Friday, the payroll program
runs, extracts the information and produces output in
the form of paychecks. For a single office business with
few employees, (and small quantities of information)
this scheme works fme. However, if the business has a
home office and several branch offices across the conti­
nent, the communication of information becomes a for­
midable and costly overhead operation.

This paper will address two facets of information
communication: the ability to select the information
source or destination and the timliness of communica­
tion with regard to cost effectiveness. To clarify these
facets: automatic selection of source or destination is
analogous to me as an observer; I can select a book or
television as the source, depending on what I need to
know. The timliness of communication is analogous to
the idea that I can select the source or destination when
I need it and in the case of the home office - branch
office example, when it costs less to transmit or receive
the information.

HARDWARE and SOFfWARE
Let's now take a look at the ftrst part of the discus­

sion, the autodialer hardware. Consider this typical en­
vironment:

3 -62-1

1 consol,e 1
1 1
---------~-

1 1
() () () () () ()
) () () () () () (

------ ------ --------~-------------------1 '
1

1 1 1 ·1
Idiscl Idiscl
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 , 1

HP3000

1
1
1

----------1
1 INP -)

-~--------1
1
1
1

---r MODEM 1 -) -) dial-up line

1
\

\ telephone

Using H·P's Distributed Systems software and the'In­
telligent Network Processor (lNP), a user of this system
can manually place a call to another HP3000 of similar
configuration having 'auto-answer capability and
transfer data in eitl1.er direction by issuing the right

! consol e 1
1 1

1 1
.() () () () () ()
) () () () () () (

commands. Neither system has any' special capability
and call origination is done manually by the operator.

To apply an autodialer to the system, the diagram
would look like this:

I I I PORT 22-)
I 1 ----------1--_.._- -....__..

1
1 1 I I I --_..------1
Idll1cl Idllol I 9P3000 I INP ..)
1 I I I I __ ,.a=-·18I:11==_1

I I I I I
I I I I 1
I I I :I I

---I INT~RrACE I -) AUTOMATIC I
------------- CALLING . I

UNIT I

_a_I MOOIM 1 -) -) -) -)\/
___~~a~_~ \/

to
phone
line

The additional hardware is the Autodialer Interface
and the Automatic Calling Unit (ACU). Within the
ACU is a special mechanical switch which determines
whether it or the modem is connected to the dial-up
line. This iwitch has two states: "ready" and ··busy."
When the line is not being used the switch is in the
"ready" state and connects the phone line to the ACU.
When a communications link has been established with
another system, the switch is in the "busy" state,and the

, modem is connected to the line.

The effect of the autodialer (consisting of the inter­
face and ACU) is to remove the manual operation of 0

picking up the phone, dialing and waiting for a modem
to answer and placing the data set online. 'Control and
monitoring of die autodialer is done entirely through

3-62-2

software which sends and receival control codes
through the asynchronous port 22. Note that the actual
data exchange between the two computers has not
chanpd; 'existins DS software is used IS before.

The ACU is the workhorse in that it is responsible for
siezins the line, acknowledging a valid dial tone, send­
ins 'Il sequence of tone pairs down the line (the phone
number) and recognizins the response. Typical re­
sponses from dialing a number are: no response, no
answer, busy signal, human' voice answers or a valid
modem answers. In the case of a modem answering the
line, the ACU can tell what type of modem responded
by the carrier frequency placed on the line by the
modem. The ACUs job is to tell the interface what re­
sponse occurred. If a modem of the right type answers,
the ACU must also flip its internal ~witch tran$ferring

control to the local modem. The inteIface and ACU
communicate with each other using a protocol called
RS-366, the paralell equivalent to the familiar serial
RS-232C standard. Thus, the interfaces' job is to
.translate RS-366 to RS-232C ASCII and vice versa such·
that the HP3000 can control the ACU. The HP3000

software does this by sending a string of ASCII charac­
. ters to the port and reading the port for t~e response as
though it were a'simple file.

For a look now at the software side, this is a skeletal
flowchart for a procedure that would connect any two
systems together:

PROCEDURE DIAL (PHONE'NUMBER , RETURN'CODE);

START
!
1

READ INTERFACE STATUS
!

IS LINE OCCUPIED? YES -> RETURN'CODE := 1 -> RETURN;
1 NO
1

SEND A PHONE NUMBER
1

(ERROR)

1
READ INTERFACE STATUS

1
STATUS = "A" ?

1
1

STATUS = "Btl ?
1
!

STATUS = "C" ?
!
!

HAS 30 SECONDS ELAPSED?
1
1

END PROCEDURE DI~L

YES -> RETURN 'CODE := 0 -> RETURN; (NO ERROR)
(MODEM ANSWERED)

YES -> RETURN ;CODE := 2 -> RETURN; (ERROR)
(BUSY NUMBER)

YES -> RETURN 'CODE := 3 -> RETURN; (ERROR)
(INC OMPLETE DIAL)

YES -> RETURN'CODE := 4 -> RETURN; (ERROR)
(NO RESPONSE)

A program containing higher level software would see
the autodial process as a simple procedure or intrinsic
call to the system and would pass and receive data
through a parameter list. In the case of any error re­
sponse, the calling program would have to decide what
to do next; possibly retry the call or give the user a

PROGRAM 'DRIVER'

START
!
!

DIAL REMDrE MODEM

GET A LOGICAL OS LINE NUMBER
!
!

LOG ON THE
REMmE SYSTEM

!
!

choice of actions. If the"A'" response is given, the
program would proceed by logging on the remote sys­
tem and commencing a data transfer operation. The
flowchart for a "driver" program would appear as fol­
lows:

SCAN THE 'AGENDA'
FILE ON BarH

SYSTEMS
!
!

PERFORM INDICATED
D1\TA TRANSFERS

!

LOG OFF THE
REMDrE SYSTEM

!
!

CLOSE THE OS LINE
!
!

END PROGRAM 'DRIVER'

3-62-3

Within the driver program, the actions of scanning the
agenda fIles and performing the indicated operations
steps would have been previously set up according to
the application using the autodialer.

CONCEPfS
This part of the discussion will deal with the concepts

of automatic calling. The autodialer may be viewed as a
special "hook" into a network of computers. The term
"network" can· apply to both existing connections be-

. tween systems as well as possible connections between
systems. In any case, the ability to share and thus man­
age electronic information lies in networking theory. To
illustrate, let me present a quote from a popular small
systems journal: "Some people forsee electronic infor­
mation as the currency of the future: those who have it
will use it to get more and those who don't have it will
be exploited. Actually, money will probably continue to
be the currency for years to come,but the computer will
be the primary tool for controlling its flow. The key to

this flow lies in computer n~tworks. With the price of
individual computers dropping, more businesses are
solving their problems with distributed processing of
computer networks rather than with a single large com­
puter. "1

If we accept this concept of dependence on the net­
work, automatic access to' the network is certainly a
step in the positive direction. Giving a single system the
capability of automatic access creates what I will call an
'Intelligent Node', one that can make unattended deci­
sions based on access to the network. The intelligent
node is actually a "smart" piece of software consisting
of several logical modules, each having a specific re­
sponsibility. One such module is the autodial process.
Another would be the one that logs on the remote sys­
tem and another the one that handles file transfer and so
on. A special feature of the intelligent node is that it is
invisible to the network process. As an example, con­
sider this diagram of a hypothetical warehousing and
distribution business:

(MRJE)
-)-)-)-)-)-)-)

1

EXTRA INFORMATION SOURCES
- COMPUTER BULLITEN BOARD
- STOCK MARKET DATA
- CREDIT BUREAU SYSTEM

MAINFRAME
SYSTEM (s)

HP3000
BRANCH OFFICE

CHICAGO

HP3000
HOME OFFICE

HOUSTON
INTELLIGENT

NODE
AUTODIALER

MR·JE/DS

(OS) HP3000
->-)-)-)-)-)~ BRANCH OFFICE
1 1 SAN FRANCISCO
! ------------------------------
!
1
1 (DS)

=)-------)-)-)-.)

(OS)
-)-)-)-)->-)1

1
/-\

SATE LITE
LINKU P

\-j
-)-)-)-)-)-)-)

In this drawing, a business with distributed data pro­
cessing is outlined. The home office is the "hub" or
center of the network and has an INP configured for
DistIibuted Systems and Multileaving Remote Job
Entry use and an autodialer module. Surrounding the
home office are the four branch offices each having a
smaller HP3000 with DS and autoanswer modems. The

3 -62-4

HP3000
BRANCH OFFICE

NEW YORK

HP3000
BRANCH OFFICE

LONDON

London office is contacted through a commercially
available satellite link such as Telnet and is accessed by
the home office via the normal dial-up method.

Consider the following scenario:
Business function: Sales, warehousing and distribu­

tion of an industrial product or service 'which varies in
cost, supply and demand on a daily basis.

Sales and product stocking are carried out at the
branch offices while administrative and purchasing op­
erations are handled by the hoine office. Data for pric­
ing and sales volume need to be sent to and received
from the branch offices on a daily basis to maintain the
competitive edge. General electronic infprmation about
the stock market and credit information on the com­
pany's customers is stored on one or more systems
which are not owned by the company but are used as
extra information sources. The cost of the extra. infor­
mation depends on the demand based on the time of
day; daytime access costs more than nightt~e access.

Problem: The company is paying for an extra system
operator whose only function is to manage the daily
task of establishing contact with the remote systems
and transferring the data to and from them. The cost of
data transfer is high since all transactions take place
between 8:00 am and 5:00 pm when the telephone rates
are highest. The extra information sources charge high
rates since access to them is made during prime time
hours. The process is error prone since the operator
follows a changing schedule which is often inaccurate.

Solution: The installation of an autodialer in the home
office system removes the task of manually establishing
contact with the remotes thus allowing the operator to
perform a more valuable function for the company.
Since all the systems are running 24 hours a day, data
communications take place at night when phone rates
are lowest and the extra information systems cost less
to access. The process of contacting each system and
performing the data exchange operations is done
through a software "script"; a ftIe of instructions for the
intelligent node software to follow. Since the human
element of error is removed, more accurate data
transfers take place and the phone line use is optimized.

Operation: Every night beginning at 10:00 pm the
Houston office automatically dials and connects with
each remote system. The sales pricing and stocking data
are exchanged with the remote systems such that when
the next days work begins, every office has recent and
accurate data. The extra information systems mayor
may not be contacted nightly depending on the need for
that information. For example, if an employee in the
London office wants credit information about an Amer­
ican client, shelhe would put a request for that informa­
tion in an "agenda" ftle on the London system. When
Housto calls London that night, its software would scan
the agenda ftle on the London system and receive the
request' for credit data. Then, the Houston system
would contact the credit data system and extract the
necessary information. When that transaction is com­
plete, Houston would re-dial London and transmit the
file to disc via DS software. Also, the software would
make an entry to a log ftIe documenting the exchange.
The next day (or afternoon) the London employee
would look at the log ftIe, note that the data tranfer had
taken place and find the name of the disc file containing
the information she/he needs.

Results: The company has made more valuable use of
an employee by removing a remedial task and assigning
herlhim a greater responsibility. The cost of communi­
cation has been reduced through the advantage of l~wer
long distance rates at night. The extra information cost
is also reduced since the non-owned systems are con­
tacted during non-prime time hours. The company has
increased its competitive edge since the remote systems
always have accurate and up to date data conceqting
sales and stock.

The operational procedure of the intelligent node
software running on the Houston system is the heart of
the entire process and would be capable of dealing with
any predefmed situation that could occur. For instance,
if any system being contacted did not respond or if a
data transfer error occurred, the software would
"know" what to do: warn the system manager, retry the
transmission or attempt some corrective action.

Well, so much for a hypothetical example. Now I will
describe two existing applications which use autodial­
ers. The frrst is an HP3000 user who sells time on their
system to' clients for general business accounting use.
One particular client is a local business that is a branch
of a company that uses very large mainframe computer
systems. The local branch office has only a terminal and
communicates with the HP3000 with a 1200 baud acous­
tic coupler. In operation, the client maintains an
IMAGE database containing data about the local
branch activity. On an as-needed basis, the client will
run a program which uses the autodialer to establish a
dial-up link between the HP3000 and one of three
mainframes located in distant cities. Then the MRJE/
3000 subsystem is used to transmit the database to the'
host mainframe. Since the MRJE software is designed
to automatically submit pending files and JCL
whenever a data link is established, the process is very
adaptable to the control of an autodialer. Without the
autodial capability, the client would be limited as to
when ~he mainframes could be accessed since an
operator would have to be on duty at the HP3000 and
would have to be trained in the operation of the dial-up
link. This additional overhead would be an extra ex­
pense for the HP3000 owner and would be passed on to
the client. Since the client is a small branch office, this
additional, recurring cost would make the entire opera­
tion unfeasible.

The second example is an in-house application within
Hewlett-Packard. This system uses autodial to com­
municate with other HP offices as well as with sup­
ported accounts having the DS capability. Software was
written to allow a user of an in-house system to estab­
lish contact with other HP3000s on a named basis. For
example, when I need to get a fue from a system at our
factory in Cupertino, I log onto my system and enter a
single command with a parameter that is the "name" of
the system desired. The command is actually a UDC
which runs the software.

3 -62--5

The program then fmds the specified name in a data­
base nd extracts the phone number of the remote
modem and checks the user's security code. If the user
attempting contact is not authorized to use the au:­
todialer, he is denied access and an entry of the illegal
attempt is logged to the database. This is a sec':lrity
measure designed to protect the remote systems by
never allowing the users to know the phone numbers
stored in the database. If the user is authorized to con­
nect with the remote, the autodialer places the call and
the link is established. Finally, the software gets a logi­
cal DS line number by calling the COMMAND intrinsic
and prompts the user for a valid HELLO command.
When the remote HELLO operation is successful, con­
trol is returned to the user. In all cases, the software
logs the operation in the database, allowing us to meas­
ure the use of the communication facility. In the event
of a user requesting access to an unknown system
name, the program enters an heuristic mode where the
'user is prompted for the new phone number and a secu-'
rity code which defmes what other HP3000 users may
call the new remote system. The new name, number and
secunty code are then verified for accuracy and entered
in the database for future use.

CONCLUSIONS
As has been shown, the autodial hardware is capable

of giving users of the HP3000 quick, easy and accurate
access to other sources of information. With the cost of
communication on the rise and the ability to get and
manage electronic information becoming more crucial
to todays business, the autodialer certainly has a niche
in the data processing field.

One topic of concern is the economics of autodialing.

3-62-6

How much does it cost? In the earlier days,· about 5
years ago, Bell Laboratories introduced the model 801
automatic calling unit and leased it to qualified accounts
for a monthly fee between $30 and $60. A Bell modem
was also requjred and cost anywhere between $100 and
$400 per month plus a healthy installation charge. In
more recent times, with Bell removing the direct con­
nection restriction to their phone lines, several vendors
have introduced their own versions of datacomm
equipment and Bell equivalent modems. One such ven­
dor of autodial equipment is Racal-Vadic, offering an
ACU for a one-time charge of about $750. Their ACU
works with any modem they make and is ready for di­
rect connection to the HP3000 and the phone line.
Furthur, one ACU may be instructed to do the dialing
for up to 16 modems of different types. With this ability,
a local HP3000 using autodial to connect to the console
port of a remote system throilgh an asynchronous
modem could' in fact control the remote system com­
pletely - from performing file backup to actually shut­
ting the system down and restarting it.

The concepts presented here are not new to the
mainframe systems; they are new to the mi~i-computer

users. This is due to recent quantum leaps in communi­
cations technology for minis and the increasing impor­
tance of electronic information management between
businesses who use minicomputers.

If having access to information is the lock to a suc­
cessul business, then teaming computer systems with
autodialers is the key to that lock.

BIBLIOGRAPHY

tpeter B. Reintjes, "Network Tools, Ideas for Intelligent Network
Software," BYTE magazine, vol. 6 no. 10 October, 1981, pg. 140

r
Programmatic Access to

MPE's HELP Subsystem
John Cohen

HELPROC is the programmatic interface to MPE's
HELP facility. It is callable from user mode programs.
This ERS documents the usage of HELPROC for any
users interested in adding a HELP facility to their appli­
cation program.

HELPROC is not currently an intrinsic; it i~ a
system-callable procedure. We will be considering add­
ing it to the system intrinsic set in the near future.
HELPROC has been in the system for many years;
thus, we cannot consider changing its externals without
considering backwards-compatability issues.

TABLE OF CONTENTS
Abstract
Overview
HELPROC Specifications

Syntax
Parameters
Operation
Helpful Hints

Internal Catalog Format
Example Source Catalog
Preparing the Catalog
Known Errors in the HELP Facility
SUll;UIlary and Conclusions

ABSTRACT
MPE's HELP facility has a programmatic access that

is callable from user mode programs. This access may
be used with a previously prepared HELP catalog (such
as CICAT.PUB.SYS) to provide a HELP facility for
application programs. This document describes the
usage of this system feature ..

OVERVIEW
MPE's HELP command provides documentation on

all MPE commands as well as some additional MPE
features. A user may access this information in one of
two ways:

1. The user may specify no parameters to the HELP
command; in this case, the user will enter the
HELP subsystem mode in which all command en­
tries will be requests for additional information on
the entered command (The user leaves the subsys­
tem mode by entering "EXIT").

2. The user may specify one or two parameters to the
HELP command; in this case, the user will receive

the information requested and will be returned to
the user's command interpreter for the next com­
mand entry.

The information displayed by the HELP command is
stored in a catalog ftle called CICAT in PUB.SYS. This
file is a regular, numbered EDITOR ftle that has been
prepared as a HELP catalog by the HELP entry to
MAKECAT.PUB.SYS. Unlike CATALOG.PUB.SYS,
this file is not opened by the system; rather, it is opened
only when needed (i.e., when a HELP command has
been issued on the system). Thus, replacing the sys­
tem's HELP catalog is done by purging the old
CICAT.PUB.SYS, preparing a new catalog by running
MAKECAT.PUB.SYS,HELP, and renaming the resul­
tant ftIe CICAT.PUB.SYS. The internal format of the
HELP catalog and the usage of MAKECAT.PUB.SYS
to prepare the catalog will be discussed later.

The Command Interpreter executes a HELP com­
mand by performing the following steps:

1. It opens CICAT.PUB.SYS,
2. It calls the procedure, HELPROC, passing it

(among other things) the ftlenumber of CICAT,
and

3. It closes CICAT.PUB.SYS when HELPROC is
done.

HELPROC is a system procedure that is callable
from user mode. It requires a ftlenumber of an opened,
prepared catalog file as one of its parameters. Thus, a
user wishing to add a HELP facility to an existing appli­
cation program need only to do the following:

1. He must create a catalog file with the information
to be displayed to the user,

2. He must prepare the catalog file with
MAKECAT.PUB.SYS,HELP, and

3. He must modify the application program to do the
following:

a. It must open the prepared catalog,
b. It must call HELPROC, and
c. It may close the catalog when done.

The HELP facility in'the application program will
then behave in a manner similar to MPE's HELP facili­
ty. Thus, depending on the call, the application's HELP
facility will either operate in "subsystem mode" or will
return to the application program once specific informa­
tion has been displayed.

The remainder of this document covers

3 -81-1

1. The specifications of the procedure, HELPROC,
2. The internal format of a HELP catalog file, and
3. The methods used to prepare a HELP catalog with

MAKECAT.PUB.SYS.
Note: some users may wish to merge information on

various tools and applications with the system catalog,
CICAT. These users may accomplish this by appending
the desired information to the file and running

MAKECAT again and replacing CICAT.PUB.SYS
with the new, resulting file. In this way, the MPE HELP
command can access information on that users' applica­
tions.

HELPROC Specifications
Accesses the MPE HELP f~cility.

Syntax

IV IV SA SA I LV
HELPROC(catnum, listnum, comimage, combase, err, onecharprmpt);

HELPROC accesses the HELP catalog specified by
catnum and will display the information specified by
comimage and combase to the file specified by listnum.
Additionally, according to the information in comimage
and combase, the HELP facility may be invoked in
"subsystem mode" in which additional information may
be requested until the user enters "EXIT" (which would
then cause HELPROC to return to the calling proce­
dure). This subsystem mode access is further specified
in the Parameters section, below.

NOTE: The HELP catalog rue must have been previ­
ously prepared by MAKECAT.PUB.SYS. The catalog
file must be opened with foptions old, permanent,
ASCII (foptions 5), and with aoptions nobuf and multi­
record access (aoptions %420).
Functional Return: None.
Restrictions: No split stack calls.

Parameters

catnum - integer by value (required). A word identifier
supplying the file number of the HELP catalog
rtIe. See NOTE above.

listnum - integer by value (required). File number (re­
turned by FOPEN) of the file to which all HELP
text is listed. Note that error messages and input
prompts are always printed to the $STDLIST of
the calling process. If listnum = 0, then all HELP
text is printed to the calling process's $STDLIST.

comimage - byte array (required). This parameter
points to a byte array character "string" specify­
ing the information requested for this invokation
of the HELP facility. This array must be termi­
nated by a carriage return. If this string consists of
any number of blanks followed by a carriage re­
turn, then the HELP facility enters "subsystem
mode," in which the user will continuously re­
quest information until the HELP facility is termi­
nated by the "EXIT" command. See description
below in the Operation section for information on
the expected format for information specification.
Additional information may be found in the de­
scription of the internal catalog format.

combase - byte array (required). This parameter
points to the "base" of the string used to invoke

3 -81-2

the HELP facility. Thus, if the user had entered
"HELP SHOWOUT, ALL", this parameter
would point to the "H" and comimage would point
to the "S." This array is reused by subsystem
mode.

err - integer (required). Word value to which an error
number is returned if an error is detected by the
HELP facility. These errors are those errors con­
sidered fatal to HELPROC; HELPROC can
handle non-fatal errors like bad syntax in the in­
put. HELPROC prints its own error messages for
all errors detected. These fatal errors are

42-+End-of-fileon $STDIN.
51-+Error detected in reading catalog rue.
52-+No user labels for directory in catalog.

(Catalog file may not have been prepared by
MAKECAT.PUB.SYS). ~.

53-+No diFectory in catalog file user labels.
(Catalog file may not have been prepared by
MAKECAT.PUB.SYS).

54-+Bad format of directory in catalog file user
labels or error detected in attempting to read
directory. (Catalog file may not have been pre­
pared by MAKECAT.PUB.SYS).

55-+Unable to open $STDIN.
56-+Error detected in attempting to read from

$STDIN.
57-+Error detected in attempting to write to the

HELP text list file.

If no fatal errors are detected by HELPROC,
a zero is returned to err.

onecharprmpt - logical by value (required). Logical
word value that specifies that a one character
prompt was used with the command invokation of
the Help facility. If a one character prompt was in
fact used, then any error messages may have a
caret ("f''') printed under the part of the invoka­
tion in error. If some other number of characters
was used for the prompt, then the Help facility will
not be able to place the caret in the correct loca­
tion - thus, if FALSE is the value specified for
this parameter, no caret is printed with any error
message.

Condition Codes
Not returned by this procedure.

Operation

This section discusses the operation of the
HELPROC procedure; refer to later sections for infor­
mation on how to format a catalog file and how to pre­
pare the file for use.

Information in a help catalog is organized in an
heirarchical structure. The help catalog consists of a set
of entries; each entry has optional header information
and an optional number of items; each item has optional
header information and an optional number of subitems.
Additionally, each catalog has a special table of con­
tents entry (typically called "HELPMENU") - this
entry is printed by default when the HELP facility is
entered in subsystem mode. This entry is always' the
frrst entry in the catalog; its item and subitem names are
considered part of the table of contents.

Invokation of the HELP facility may take many
forms. These are specified by the contents of the
parameter, comimage. The varieties of the different
calls and a brief description of each are presented be­
low. Note that comimage is always terminated by a car­
riage return.
Comimage contents Description
(blank line) - Print table of contents entry header, and

enter subsystem mode. Keyword list consists of
all the item and subitem names of the table of con­
tents entry.

Table of Contents-Item Name - Print all the informa­
tion in that item's header and all the information in
all the associated subitems. Keyword list consists
of all the item and subitem names of the table of
contents entry. H.ELPROC terminates when print­
ing is done.

Table of Contents-Subitem Name - Print all the in­
formation in that subitem's block. Keyword list
consists of all the item and subitem names for the
table of contents entry. HELPROC terminates
when printing is done.

"ALL" - Print all the information in the table of con­
tents entry including all item and subitem informa­
tion. Keyword list consists of all item and subitem
names of the table of contents entry. HELPROC
terminates when printing is done.

Entry Name - Prints all the information in the header
for the associated entry. Keyword list consists of
all the item and subitem names for that entry.
HELPROC terminates when printing is done.

Entry Name, Item Name - Prints all the information in
the indicated item's header as well as any informa­
tion in that item's subitems. Keyword list consists
of all the item and subitem names for that entry.
HELPROC terminates when printing is done.

Entry Name, Subitem Name - Prints all the informa­
tion in the indicated subitem. Keyword list con-

sists of all the item and subitem names for that
entry. HELPROC terminates when printing is
done.

Entry Name, ALL - Prints all the information in the
indicated entry including all item and subitem in­
formation. Keyword list consists of all the item
and subitem names for that entry. HELPROC
terminates when printing is done.

In subsystem mode, the HELP facility performs the
same as above with two exceptions: (1) HELPROC
does not terminate after printing information - the user
must enter. "EXIT" to terminate the procedure; and (2)
a blank line will cause the next block of information to
be printed - thus, when the user enters an entry name,
that entry's header information is printed; if the user
then enters a blank line, that entry's first item informa­
tion will be printed (after the last item has been printed,
a blank line will cause the next entry header to be
printed). Any fatal error will terminate subsystem
mode; note that being unable to find the requested in­
formation is not considered a fatal error.

In all cases, HELPROC will open $STDIN, but
$STDIN is only used in subsystem mode - HELPROC
reads user requests for information from $STDIN into
combase.

Helpful Hints

1. Testing your catalog file: You need not have your
program ready in order to determine whether your
catalog is formatted correctly. Format your ftIe
with MAKECAT.PUB.SYS (documented in a
later section). IfMAKECAT determines that your
catalog file is syntaxically correct, you may use
MPE's HELP command to view it. Suppose the
resultant catalog file from MAKECAT is called
"MYHELP." Enter the following :FILE com­
mand:

:FILE CICAT.PUB.SYS = MYHELP

Then, for the rest of your session (or until you
:RESET the :FILE equation), HELP commands
will open your catalog instead of MPE's HELP
catalog. It is often useful to view your catalog file
in this manner after running MAKECAT.PUB.
SYS. In order to restore MPE's HELP command
back to its original condition, enter the command

:RESET CICAT.PUB.SYS

Note that this method of testing only effects your
session. Other jobs and sessions will be able to
access CICAT.PUB.SYS while you are testing
your catalog.

2. Testing your program: Similarly, you need not
have your catalog ready in order to test the HELP
facility in your program. Assuming the same

3 -81-3

names in the example above, you may issue the
following :FILE command

:FILE MYHELP = CICAT.PUB.SYS

Since you FOPEN of the catalog ftIe in your program
should allow :FILE equations, this command would
open MPE's HELP catalog instead. This is often useful
in testing your program.

Stack Size: The HELP facility uses a directory to fmd
information in the catalog file. This directory must fit on
the process's stack. The· space needed by the HELP
facility currently is 3650 words. Use of the intrinsic,
ZSIZE, before a call to HELPROC can assure that
there is sufficient stack space for HELPROC.

rnTERNALCATALOGFORMAT
Overview: The source file for a catalog ftIe should be

either another catalog file or a standard, numbered
EDITOR ftIe. MAKECAT creates the resulting ftIe as a
new file; thus, the group which holds the resulting
catalog file should have ample file space. Further,
MAKECAT inserts new records into the file in certain
circumstances (see CONTINUE, below). Thus, it is
advisable to have ample line number space between the
lines of the source EDITOR ftIe.

All record lines that have a backslash ("\") in column
one are considered to be an internal directive to
MAKECAT and HELPROC. Thus, no text lines can
have a backslash in column one. The backslash is fol­
lowed immediately by a keyword and some other
parameters. The current keyword list and a brief de­
scription is given below; a more detailed description for
each follows.

Keyword
\ENTRY
\ITEM
\SUBITEM
\STOPHELP
\STARTHELP
\SUBSET

\CONTINUE

\ALL

Desc r i pt ion
Start of the next entry text block.
Start of the next item text block.
Start of the next subitem text block.
Initiates skipping of text in building catalog_
Undoes the effect of previous \STOPHELP.
Causes text between \STOPHELP and \STARTHELP to

be removed from resulting catalog.
Provided by MAKECAT to handle overflowing \ENTRY

lines. .
Indicates the end of the catalog file.

MAKECAT modifies these records freely. The syn­
tax reported below is the syntax expected in the source
catalog. The discussion for each keyword explains the
modifications made by MAKECAT. In all cases,

\ENTRY

MAKECAT can take a prepared catalog as its source
catalog - MAKECAT ignores its own modification
present in the source catalog.

Syntax: \ENTRY=<entryname> [, <other information>]

The presence of this record terminates the text to the
previous entry; the next non-keyword record (a line not
starting with a "\") is the first line of the entry text for
an entry called "<entryname>." other information pre­
sent on this record in the source catalog file will be
ignored.

MAKECAT echoes this line in the resulting catalog
fIle with some modifications. The keyword list (i.e. all
item and subitem names) for this entry is appended to
the end of the line. If the keyword list overflows the
line, MAKECAT will create a CONTINUE line to
hold additional keywords. If sufficient line number
space is not available following the ENTRY record for
any needed CONTINUE rec,ord, MAKECAT will not
be able to format the catalog; an error message is issued
in this case.

\ITEM

Syntax: \ITEM=<itemname>

If this keyword record is the first keyword record
following a ENTRY record (exception: see STAR­
THELP and STOPHELP), then this record terminates
the "header" text for that entry; otherwise this record
terminates the text for the previous item or subitem.
The following non-keyword records will comprise the
text for the item called "<itemname>." This text, in
tum, will be terminated by either the next ITEM re­
cord, the next ENTRY record, or the end of the ftIe,
whichever comes fIrst.

"<itemname>" becomes a keyword for the previous
entry and gets added to the ENTRY record or the
associated CONTINUE record.

\SUBITEM

Syntax: \SUBITEM=<subitemname>

If this keyword record is the fIrst keyword record
following a ITEM record (exception: see STAR­
THELP and STOPHELP), then this record terminates

r
the "header" text for that item; otherwise this record
terminates the text for the previous subitem. The fol­
lowing non-keyword records will comprise the text for
the subitem called u<subitemname This text is consid­
ered part of the text for the previous ITEM record, and
is, in tum, terrmnated by the next SUBITEM record,
the next ITEM record, the next ENTRY record, or
the end of the file, whichever comes first.

"<subitemname>" becomes a keyword for the pre­
vious entry and gets added to the ENTRY record or
the associated CONTINUE record.

\CONTINUE

by both MAKECAT and HELPROC. This feature is
used to void blocks of text from the source catalog.

\STARTHELP

Syntax: \STARTHELP

The presence of a STARTHELP record will cause
MAKECAT and HELPROC to resume processing the
text and keyword records in the source catalog. Note
that a STARTHELP record need not follow a
STOPHELP; thus, a single STARTHELP can be

used to void a single line in the source file.

\SUBSET

\At,L

Syntax:

Syntax:

\SUBSET

This record terminates the source catalog. It must be
the last record in the source rUe.

EXAMPLE SOURCE CATALOO
The following is an example of a smalllource catalos.

The line numbers are added for reference and may be
assumed to be BDITOR line numbers.

The presence of a SUBSET record will stop the
copying of text between a STOPHELP and a STAR·
THELP (as well as all STOPHELP an~ STAR­
THELP records themselves) from the source rlle to the
resulting flle. This is used to compress the file size.

Syntaxl \STOPHELP

The presence of a STOPHELP record will cause
MAKBCAT to ignore records in the source catalog until
it finds the next STARTHELP record. These records
will be copied to the resulting file (exception: see
SUBS!!), but the text and the keywords are ignored

1 \ontryeholpmenu
2 This 1s the text for tho "hlad8r" ot the
3 catalog. This tAxt will be printed when the
4 HELP facility 10 ontored in subsystem modo.
S \leems jobs
6 This 1s the text for the "header" of an
7 item called "jobs".
8 \subltem~llmit

9 Subltem "limit" text.
10 \subltem=logon
11 Subltem "logon" texto
12 \item=sessions
13 Irhis Is the text for the next item, which
1 4 1s calI ed, "se s s ion s" •
15 \stophelp
16 ~ll text here is ignored and is unaccessable
17 from the HELP facility.
18 \starthelp
19 This text 1s the continuation of text for the
20 item call .. sessions" •
21
22 \entry=usage
23 This is a new entry heading.
24
25 The next \line will terminate the help catalog,
26 these lines are text for "usage".
27 \all

Syntax: \CONTINUE,<keywordltst>

The presence of a CONTINUE record in the source
catalog is ignored by MAKECAT. These records are
created when the keyword list for a ENTRY overflows
the ENTRY record. MAKECAT attempts to place the
CONTINUE record directly after the ENTRY re­

cord, or if other CONTINUE records have already
been created, after the last CONTINUE record. If line
number space does not exist for the creation of the
CONTINUE record, MAKECAT prints an error mes·

sase and terminates.

\STOPHELP

3 -81-5

The appearance of the resulting file once
MAKECAT.PUB.SYS in run will be essentially the

same as above with the exception of line 1. This line will
appear in the following form:

1 \entry=helpmenu,jobs,limit,logon,sessions

Had a" subset" line been added at line number 0.1
(and if the SUBSET facility was working properly), the
resulting file would have had lines 0.1, and lines 15
through 18 deleted.

PREPARING THE HELP CATALOG
WITH MAKECAT.PUB.SYS

The system utility program, MAKECAT, (typically
residing in PUB.SYS) is used to prepare a catalog for
use by HELPROC. Unless you are replacing the system
HELP catalog, CICAT.PUB.SYS, no special
capabilities are needed to use MAKECAT. The
"HELP" entry point must be used.

Preparation of the catalog consists of syntax checking
of the catalog format and the creation of a entry direc­
tory to be stored in the user labels of the resulting
catalog file.

MAKECAT uses two formal file equations in prepar-

ing help catalogs. The file called INPUT is the source
catalog, and the rue called HELPCAT is the resulting
catalog that may be used with HELPROC. Thus, if a
user has a rtIe called SCATI that he/she wishes to use as
a help catalog and if the user wishes the resulting help
catalog to be called HELPTEXT, then the following
command sequence prepares the catalog:

: FILE INPUT = SCAT 1
:FILE HELPCAT = HELPTEXT
:RUN MAKECAT.PUB.SYS,HELP

If MAKECAT produces the message, "VALID
MESSAGE FILE," then the file called HELPTEXT
(produced by MAKECAT) can be used with
HELPROC. IfMAKECAT is unable to produce a valid
catalog file, it will produce an error message and termi­
nate in the error state. The error conditions reported by
MAKECAT for HELP catalog preparation include

** FILE ERROR ON INPUT: Unable to either open or access the file
associated with the formal designator, INPUT.

** FILE ERROR ON CATALOG: Unable to open, close, 9r access the file
associated with the formal designator, HELPCAT.

** FILE ERROR ON LIST: MAKECAT opens a file called LIST (default
to $STDLIST unless overridden by a :FILE equation). This
error is reported if MAKECAT cannot open the file.

** CONTINUATION FREADDIR ERROR and
** CONTINUATION FWRITEDIR ERROR: MAKECAT needs to shuffle around the

directory in order to make room for \CONTINUE records.
This error is reported in MAKECAT has trouble accessing
the directory in the file's user labels.

** INSUFF. LINE # SP~CE FOR CONTINUATION: MAKECAT creates extra
lines for \CONTINUE records after \ENTRY (or other
\CONTINUE) records by incrementing the eight character
sequence number in the last eight positions of the
record line. This sequence error occurs when the next
record's sequence number does not allow the creation
of the new record. The solution in this case to to
text the file into the EDITOR and renumber the file with
a "GATHER ALL" command. (Note: EDITOR line numbers when
viewed as the eight character sequence number at the end
of record are incremented by 1000 between int~ger line
numbers--this is more than ample space for the \CONTINUE
records which would be incremented by .001 as the EDITOR
does line numbering.)

** KEYWORD LIST WON'T FIT: MAKECAT detected a keyword too large to
fit onto the \ENTRY or \CONTINUE record.

** OVERFLOWS DIRECTORY. REC=: MAKECAT produces a directory for HELP
catalogs to be placed in the user labels of the resulting

3 -81-6

file. The original HELP catalog file is created with a
default number of user labels for the directory--if more
user labels are needed, a new catalog file is created.
This error is reported if the directory cannot fit into
the maximum number of user labels per file (255).

** UNABLE TO OPEN LARGER FILE
** UNABLE TO READ DIRECTORY
** ENLARGED DIRECTORY TOO SMALL
** COPYING ERROR (DIRECTORY)
** UNABLE TO 'REWIND' OLD FILE
** READING ERROR WHILE ENLARGING
** ENLARGED FILE TOO SMALL
** COPYING ERROR (FILE): As mentioned above MAKECAT has to open a new

file when it needs to enlarge the number of user labels
for the directory. When this new file is opened, the
information in the old file, both directory (user labels)
and records, has to be copied to the new file. The old
file is then deleted. These errors may be reported for
situations in this operation.

** MISSING '\ALL' AT THE END OF HELPSET: The \ALL record was missing
from the end of the source file.

Refer to the System Manager/System Supervisor
Manual for more information on running MAKECAT.

KNOWN ERRORS IN
THE HELP FACILITY

1. The SUBSET facility does not work - the pres­
ence of a SUBSET will render the rest of the
catalog following the next STOPHELP useless.

2. When MAKECAT cannot format a catalog for any

reason, it should terminate in the error state
(thereby setting the system-defined JCW to a
value greater than FATAL).

3. As of this writing, HELPROC is not an intrinsic,
but it is a system procedure that can be called from
user mode. In order to call it, HELPROC needs to
be declared as an EXTERNAL procedure. Here is
an example of how to declare HELPROC:

PROCEDURE HE LPROC(CFN, LFN, CIM, CBASE, ERR, PRMPT);
VALUE CFN, LFN, PRMPT ;
INTEGER CFN, LFN, ERR;
BYTE ARRAY elM, CBASE;
LOGICAL PRMPI';

OPTION EXTERNAL;

4. The error reporting in MAKECAT should be im­
proved.

5. HELPROC need falling-off-the-end-of-the-world
checking to insure a carriage return in the byte
array.

6. HELPROC should check that catalog was opened
correctly.

7. HELPROC should only open $STDIN in subsys­
tem mode.

8. HELPROC mak~s no check for split stack calls.
9. Listfile parameter is always ignored. All output

goes to the caller's $STDLIST.

SUMMARY AND CONCLUSIONS
The user may use HELPROC with a prepared catalog

as a help facility for application programs. Catalogs are
prepared with the HELP entry point of
MAKECAT.PUB.SYS. In order to use (his help facili­
ty, the user should

1. Create a source text catalog file in the documented
format,

2. Prepare the catalog by running MAKECAT.­
PUB.SYS,HELP and,

3. Modify the application program to
a. Open the prepared catalog file,
b. Call HELPROC,
c. Optionally close the catalog file when done.

The Help Facility is designed to general and flexible.
Use of MPE's Help Facility can be extended for appli­
cation programs.

3 -81-7

'(1

"-..-;'

Management Options For The 80's
Giles Rider

Project Manager Rex Development

Mr. Rider has been reponsible for development of
PAL - the User-friendly Front-end to REX/3000,
Gentry, Inc. 's general purpose programming language
and report writer. Gentry, Inc. is a HP OEM and Con­
tracting company in Oakland, Ca. Mr. Rider was edu­
cated at MIT' and the University of Connecticut. Prior
to joining Gentry, Mr. Rider was an independent con­
sultant.

INTRODUCTION

HP's choice of the phrase "Interactive Information
Management" as it's theme for the beginning of the
1980's reflects the changing emphasis and the quicken­
ing pace of the industry as a whole. By the middle of the
decade much of today's hardware and software will be
obsolete, and many traditional DP concepts will also
have fallen by the wayside. The continuins rush of
hardware developments cc=s increasing speed and reduc­
ins cost per calculation == make it practical to cost·
justify new applications dally. New powerful software
=- Data Dictionaries, report Generators, turnkey appli­
cations =::I holds out a lot of promise for simplifyins
application development. Yet each new application prea

sents risks a both personal ones, in terms ofjob security,
and company risks, in terms of survival and growth of
the business.

In this paper we seek to identify guidelines and prina

ciples that can be followed to minimize these risks ==

guidelines that' will also help to identify new oppor­
tunities as they arise, and to exploit them fully. We will .
examine each of the areas that are mentioned in the title
and attempt to provide ideas for action that are both
practical and useful. These ideas are intended to sup­
plement, rather than to supplant the conventional wis­
dom on each of the following subjects, while providing a
unified viewpoint - a grand scheme - from which it all
makes sense.

Before we begin the detailed analysis of the areas, a
few general remarks are in order. Economics indicates
that the scarcity of a resource determines its price, and
that cheaper resources are always substituted for more
expensive ones when they are available. When the CPU
was the most expensive component of a system and
software was cheap, it made sense to use keypunches
and run alljobs in batch mode; now it doesn't. Now that
maintenance of old applications is the single largest
people cost in DP, does it still make sense to keep build­
ing applications that will need to be maintained in the

traditional ways? We saw that CPU power was substi­
tuted for people power in the transition from batch to
on-line; doesn't it make sense economically now to
begin to substitute CPU power for people power in the
area of system maintenance?

Applications development is another area where peo­
ple cost is the major expense - and this isn't because
applicat~on development is the kind of "creative" activ­
ity where only "artists" can do the work. More often
than not, the main reason for the cost is that suitable
automated tools either do not ~xist or are not used, so
that manual reports are the mainstay of most develop­
ment projects. Many automated project control systems
stress accounting for the cost of the project more than
supportins the design and implementation activities,
which reflects DP's traditional accounting-support func­
tion and orientation.

The use of Data Dictionaries in applications, devel­
opment represents another application of CPU power to
reduce the effort involved in application development
-==- and in maintenance as well. In application develop­
ment, the use of dictionaries tends to bring dis­
asreements' about the use and meanins of the data out
early enough in the project so that the contlicts can be
resolved in the system deslsn. rather than by after-the­
fact administrative procedures and manual forms, In the
maintenance area, where about 70% of the program­
ming dollars are currently spent, a properly constructed
dictionary can result in enormous savings, as the dictio­
nary is the only place changes to applications have to be
made by hand. and proper safeguards c~ be set up and
followed to ensure that the integrity of the databases is
not compromised.

Application packages can also help to ensure that the
limited DP budget buys the most in DP service. Appli­
cation packages cost so much less than "home-made"
programs that the justification of "in-house" program­
ming for common applications like AIR is very difficult,
especially for new users. Another powerful reason for
moving to packages is that the shortage of programmers
makes it disadvantageous to waste them on re-inventing
a General Ledger system, when they could be creating a
new system for your company that could give it a lead
on its competition. Programmers know this too, and are
more likely to stay with companies that promise them a
future working on new development and "state-of-the­
art" projects than with companies that offer
maintenance of an obsolete GIL system.

3 -85-1

Contract programmers are about the only ones who
are willing to get involved with maintenance program­
ming as a steady diet, and if you use them properly, they
can benefit your company, allowing you to make more
profitable use of your regular employees, while not
causing salary riots because of their higher rates, be­
cause they are doing the work that no one else wants to
do.

Microcomputers in user departments are often seen
as a symptom of DP department unresponsiveness - a
"sagebrush rebellion" in the user area. There's an old
saying that a problem is just the wrong way of looking at
an opportunity, and that's especially true of the Mi-·
crocomputer. A proper response to the Micro invasion
can actually improve the situation, both for the DP de­
partment, and for the users; cutting costs while building
user confidence in your DP expertise.

Programmer productivity tools, software tools, Pro­
grammer's workbench - all of these buzzwords carry
thru the concerns that we've previously mentioned ­
how to apply CPU power to make the programmer's job
easier. But there's two sides to' this one, and there's
good reason for caution. Here's where the approach
that de-skills the programming function can cause the
same kind of worker problems that plague the assembly
line factory and the so-called "office of the future." Yet
good productivity tools do exist, and should be used
whenever,. possible to reduce the drudgery and repeti­
tion that is often found in programming. Programmers
are one of your most expensive resources, and to watch
one using a. line editor can be a real eye-opener.

DATA DICTIONARIES:
Rule #0: Select the right data dictionary for your envi­
ronment.

Data Dictionaries differ in capabilities and in their
interlaces to the outside world. Ideally, you want a Dic­
tionary that allows you to create your application code
via the most powetful application generator that your
environment will allow (this could be a manual applica­
tion generator - Le. a programmer - or an automated
one that produces COBOL or other source code.)

Your dictionary will also be a central place for man­
ual changes - when the length of a data item changes,
for instance, you should only have to change the entry
in the data dictionary, not in the programs that access
the data. You'll see the importance of this when you
remember that in many shops these kinds of
maintenance costs make up 70% of the programming
bills.
Rule #1: Get a technJcally strong and personally
forceful person in charge of the Data Dictionary.

The "Data Administrator" is the person who is going
to have to tell a lot of people in your company that they
can't have what they want, and that their use of a data
element conflicts with another use of the element. A
person who' is too weak to do this can result in your

3-85.-2

dictionaries and applications becoming complex very
quickly. He's also going to have to deal with sneaky
programmers who will try to use data elements in
strange and undocumented ways; he has to be forceful
enough to show them that they can't get away with it.
Rule #2: Use the data Dictionary at the beginning of
the development Phase to detect and resolve conflicts in
requirements.

If each data element is added to the dictionary as it is
defined you can use the dictionary's reports to detect
conflicts and in-consistencies. Here's where your
strong "data administrator" gets called in to resolve the
conflicts, before your programmers go ahead and build .
the conflicts into the application, or devise some arcane
method to get around the conflicts that will work until
they leave.
Rule #3: Create and enforce standards and procedures
for the Dictionary.

Your statIwon't give the dictionary any more respect
than you give it; if you make it important and vital, they
will follow you. Dictionary updates should be in the
hands of the data administrator only; this will give him
enough power to deal with the programmers and
analysts. Standards for development that ensure that
no-one can by-pass the dictionary are also vital to
proper maintenance of the developed systems. Ideally,
nothing should go into production that isn't fully de­
scribed in the dictionary.
Rule #4: Retrofit existing systems into the dictionary in
order of their estimated lifetime.

"Doomed" systems should go in first, if they are to be
replaced. Stable, low maintenance systems have lowest
priority, while systems due for extensive maintenance
should be dictionarized before the maintenance is
started (see rules 2-3 for why this is a good idea.)

APPLICATION PACKAGES:
Rule #5: Let your users select the package they want,
from the best ones that you know are available.

With any new application, there will be problems. If
your staff is programming the application for the user,
the problems will be your problems, affecting your
budget and your schedule. If you can avoid being the
cause of problems, you'll be able to continue to be of
service to your company.
Rule #6: Select a strong member of your group to serve
as liason to the user group.

Ideally, this will be someone strong enough to be
promoted out of your group and into user management,

. where he can carry your message into areas that you
can't reach, and help build support for you in the vari­
ous user departments. Remember, your representative
speaks with your voice, so don't send a pure technician;
send a heavyweight.

Rule #7: Ensure that the users contract with the pack­
age vendor for maintenance.

This is important enough to justify rule #6, for users
are never happy with the OP's response to maintenance
requests. They hate all the paperwork involved. Manag­
ing maintenance is a classic "no win" situation - no
matter how it's handled, users are never satisfied, so
whenever possible, let the vendor handle it. The fIrst
task of your "strong" liason person is to convince the
user to go with a vendor maintenance contract; let him
know that if he fails, he's going to be doing the
maintenance for the user.

MICROCOMPUTERS IN
END-USER DEPARTMENTS

Many OP shops see Micros as a real menace to the
OP department's control of the corporate information
resource. They try to make it difficult or impossible for
end-users to get and use Micros by blocking any pur­
chases or evaluations of them.

This "dog-in-the-manger" approach to the situtation
will be self-defeating in the long run, with serious con­
sequences to the OP department's credibility and sta­
ture within the organization. It's far better to encourage
end-users to use Micros properly, and to support them
in their efforts. You can build your credibility within the
organization, while improving the profitablity of the the
company by supporting the judicious use of the proper
mixture of computer resorces.

Rule #8: Don't fight user-owned Micros - encourage
them, instead.

Development of a system is a small part of the total
effort involved; maintenance and operations are far big­
ger pieces of the job. What happens in the long run is
that the systems that the users develop on their micros
become prototypes for systems that can be developed
on the mainframes, if the users have developed a suc­
cesful system. ~f their development effort was a failure,
it is buried within the user department; the only systems
that the DP department will have to support will be the
succesful ones that .have outgrown their micro, and

. need a larger machine to work on.

Rule #9: Encourage your technical people to get in­
volved with micros. This is one rule that it probably will
be easy to enforce. Let your programmers help out the
users with their technical questions about their micros;
encourage your technical people to become familiar
with the succesful applications, so that when the time
comes to put that application up on the mainframe,
they'll know how to do it.

Rule #10: Use micros yourself if you haven't already.
Tryout the HP-125; the VISICALC package can

make your budgeting easier. You will also get a better
understanding of why your users want to by-pass the
whole DP department applicatio development process
with its paperwork and problems.

APPLICATION GENERATORS:

You already have some manual ones in your shop­
the programmers. They can be used to create both sim­
ple, repetitive reports or complex applications systems,
but they can't do both at the same time. They can also
be your liason with the user departments, or write sim­
ple, repetitive reports and database update programs.
An application generator can free them up to do the
things that are more important for the long-range suc­
cess of the department and the company. It can also
shift some of the report-creation into the user depart­
ments and out of your budget.
Rule #11: Identify and forecast your programming
needs.

If a substantial part of your work is either
A. Ad-hoc report requests or
B. Moderately complicated systems,

then an 'application generator can ease your burden and
reduce your costs. (If your applications needs are sim­
ple, you probably should be looking more towards
packaged software than to applications generators.)
Rule #12: Select a generator that can be used by both
programmers and end-users.

End-users who can produce their own reports using
applications generators and who can do their own data
entry, are getting what they need from the computer
without involving the DP department. Their applica­
tions are part of their budget, not yours. Programmers
who can use an application generator will typically use
it like a ladder, to extend their reach. An application
generator tl).at can handle most of the boring detail work
reduces the number of programming errors dramatically
because boredom causes errors. Application generators
can also be very useful with trainee programmers, to
take them thru the process of writing a program from
specifications by examples.
Rule #13: Select an application generator that is com­
patible with your Data dictionary.

The application generator should make the maximum
practical use of the data dictionary to reduce the
drudgery of programming and to control the access to
the data in some standardized way. Ad-hoc report
generators that interface to the dictionary must provide
for separate logical views for each user, as most users
have different reporting needs, and do not need ex­
traneous detail.

USING CONTRACT PROGRAMMERS

Many shops are reluctant to use contract program­
mers but the proper use of contract people can multiply
your productivity. One criticism of contract people is
that the expertise goes away with them; this criticism
conceals an error about what is important. The exper­
tise that is important to the business is the knowledge of
the applications, not the knowledge of the computer and

3 -85-3

its processes. At any time, you could switch computers,
but the business will continue to do what it has been
successful at.

This fundamental truth underlays many of the rules
that I have suggested so far - that you try to build a
staff of people that know the business. This is why con­
tract people can be useful, because you can bring them
in to do work that is only technical- language conver­
sions, maintenance, etc, while your stronger staff peo­
ple work with your users to develop an understanding
for and appreciation of the business.
Rule #11: Hire the company, not the program~er.

Find a contracting company that understands your
business and your needs and build a long-term relation­
ship with them. You'll soon find that a seasoned profes­
sional contractor costs less in the long run than a trainee
employee, unless your plan for the trainee is user­
support work. Hiring trainees to do maintenance is a
sure plan for building plenty of fires to flght, and lots of
turnover in the long run.
Rule #12: Use contractors as followers,'not leaders.

The best use for contract people is on temporary jobs
that have a clearly defined beginning and end; in devel­
opment projects, they should code programs, set up
databases, do documentation, or even be project
leaders, but they should not be in charse of defining the
user's requirements, as you want to keep the business
expertise in-house.

It's also lood to put contract people on maintenance
work, to reduce your employee tum-over, and the cost
should always be billed back to the user department
budget. This can be a positive morale-booster for your
resular people, who will be setting only the interesting
work.If one of your regular employees wants to leave
you to become acontractor, with the hope of makins biS
money doinS maintenance work, then you're probably
better off, because that's not the kind of employee that
you should be trying to develop.

PRODUCTIVITY TOOLS
A software tool is a computer program that a pro­

grammer uses to do something useful for someone. The
first programmer tools were thinss like COBOL and
SORT programs, while current programmer tools in­
clu·de preprocessors that generate programs from
pseudocode. The basic thrust is to automate some sim­
ple, but repetititous part of the programmer's job, as
opposed to the alternative approach of breaking the job
down into simple parts and using an assembly-line tech­
nique to do the work.

Programmers like software tools because their jobs
become less boring; most people are drawn to prog­
ramming because of the creative aspects of the job, and

3 -85-4

a properly crafted tool multiplies their power to create.
In addition, tools can substitute for other changes in
working conditions by providing a work atmosphere
that is more pleasant, in the sense of less boring work.
Rule #13: Start with the Data Dictionary.

The role of the Data Dictionary is so central to system
development that it is the one productivity tool that you
shouldn't try to do without. (see rules #0-#4 for clarifi­
cation) A properly used dictionary can create savings
far in excess of its cost, while reducing development
time proportionately. The Dictionary can be so power­
ful a tool, that the question becomes not "Should I get a
Dictionary" but "Which dictionary should I get"?
Rule :#14: Get a preprocessor that inenaces to the Dic­
tionary.

The combination of a dictionary and an preprocessor
can reduce your programming effort by 30-70% almost
immediately, allowing you to get rid of your backlog of
user requests quickly, without hiring additional staff.
One very important point is a compiler-data dictionary
interface, so that the physical location and characteris­
tics of each data item are taken from the data dictionary
at compile-time - which effectively eliminates most
maintenance programming.
Rule *15: Enforce structured programmins, via a pre­
processor or use of a PASCAL-like lansuase.

Structured programming, in the narrowest sense of
OOTO-Iess coding, results in easier-to-maintain code
and I easier-tolldebus applications. Programmers, how­
ever, are lazy and will use a OOTO anytime they think
themselves into a comer in a program and can't find a
simple logical way out. That's one big reason why
aOrOllless coding is easier to maintain m==r p~Olrammers

don't set to take the easy way out in the first place.
PASCAL and it's relatives are what is being taught in

school these days, so usinS a PASCAL-like lansuase
otTers the added benefit of not havins to train prosram­
mers in COBOL, while offering a "state-ot-the-art"
programmins shop as a morale-builder and PASCAL
offers the GOTO-Iess syntax that enforces structured
programming painlessly.

CONCLUSION
The set of rules given above is based on the idea that

your people, and their knowledge of your company's
business, constitute your most important resource. The
technical aspects of computing are constantly changing,
while the business changes much more slowly. The sec­
ret to success is to offer your people an environment
where their professional growth is directly related to the
growth of the business, and to realize that you can't be
promoted until you've found someone who can take
your place.

'----

r Transaction Processor For The HP3000
Godfrey lee

Project Manager
Quasar Systems Ltd.

I am sure that each of us has had the need to manipu­
late fdes, or perform bulk updates of an application
database, and found that the existing methods are either
incomplete (Le. FCOPY) or too troublesome (Le.
COBOL) to use. Most application systems involve sev­
eral standard batch functions which require custom
programming. Yet the task involved is so standard one
should be able to specify it in a simple, logical and
straightforward manner.

These functions can include:
• Daily, weekly, or monthly rollovers,
• Reformatting a file,
• Producing a summary file,
• Selectively copying based on some condition,
• Copying elements from one file to another,
• Reformatting a database.

File manipulation tasks are a common requirement in
developing as well as running most application systems.
While excellent productivity tools now exist for large
seglI)ents of application development and maintenance,
batch processing programs still have to be prepared in
the same tiresome manner.

The paper introduces the concept ,pf a powerful
batch-oriented data manipulation tool called a
TRANSACTION PROCESSOR, which will keep pace
with and interface with current state-of-the-art prod­
uctivity tools. '

The TRANSACTION PROCESSOR will be called
QTP and will complete Quasar Systems' family of ap­
plication generator products, which currently include
QUIZ for reports and QUICK for screen-based input.
With this family, users will be able to generate entire
applications in a consistent easy-to-use style.

This paper will discuss:
1. QTP in relation to an application dictionary
2. Design objectives
3. QTP in operation (some examples)
4. QTP in the production environment
5. Design considerations.

TRANSACTION PROCESSOR AND
THE APPLICATION DICTIONARY

The transaction processor will be able to operate as
an independent product in association with Quasar Sys­
tems' application dictionary. In essence, QTP will have
two components:

1. QSCHEMA

The schema processor compiles a description of data
fIles and element characteristics including data valida­
tion and display specifications. The compiled schema
functions as an application dictionary, providing central
administrative control and freeing users of QTP from a
great deal of repetitive programming.

2. QTP

Under the control of specification statements which
can be used by both programmers and non­
programmers, QTP will carry out two major functions:

• standard batch applications
• fde manipulation.

DESIGN OBJECTIVES

The design objectives of QTP are:
• to support the standard maintenance functions of

add, change and delete against all data permanently
on fIle

• to support standard editing of input including, type
checking, value range checking, and pattern match­
ing

• to support the copying of elements from one ftIe to
another

• to allow the reformatting of ftIes and databases
• to be able to produce summary files
• to support these summary options: sum, count, av­

erage, maximum, minimum, percentage and ratio
• to be able to specify the sorting and selection of

input files
• to support any combination of IMAGE, KSAM and

MPE fIles
• to reference the structure, composition and ele­

ments of fues in a central independent schema

• to use concise specification statements in simple
free-form syntax.

The Transaction Processor in Operation

To show the scope of the QTP in operation, here are
four short examples of situations which occur fre­
quently and which normally require specially written
programs.

1. New product number

3-86-1

The manager of inventory control wants to assign a
new product series "M" to all series "8" product num-

bers greater than 6000. With QTP, this task could be
accomplished by entering the following statements:

>1\CCESS PRODUCTS
>SELECT IF PRODUCT-cODE = "S" AND PRODUCT-NUM > 6000
>FILE PRODUCTS UPDATE
> ITEM PRODUCT-cODE FINAL "M"
>GO

The ACCESS statement specifies which ftle(s) are to
be read-in this case, the ftIe PRODUCTS. The SELECT
statement then restricts the selection of records from
the product ftIe to those records to be changed. The
FILE and ITEM statements specify the changes to be
made to selected records. The GO statement causes the
QTP request to be executed.

2. Organizational change
The San Francisco branch has been reorganized and

is n~w part of California branch. All reference to San
Francisco is to be deleted and. all records for San
Francisco employees are to be updated to reflect their
new status as records of California branch employees.

>ACCESS BRANCHES LINK TO EMPLOYEES LINK TO BILLINGS
>SELECT IF BRANCH-NO OF BRANCHES = "SF"
>FILE EM~LOYEES UPDATE
> ITEM BRANCH-NO FIN1\L "CA"
>FILE BILLINGS UPDATE
> ITEM BRANCH-NO FINAL "CA"
>GO

The ACCESS statement in this example illustrates
multi-file access. Keyed linkages between files can typ­
ically be performed automatically, using information in
QSCHEMA. The ITEM statements in this example set
BRANCH-NO to "CA" in the selected EMPLOYEES

and BILLINGS records.
3. Culling obsolete data
A company wants to streamline their customer ftle

and delete anyone on their mailing list who hasn't corre­
sponded for over a year.

>ACCESS MAIL-LIST
>SELECT IF 365 < (DAYS (SYSDATE) - DAYS (RESPONSE-DATE»
>FILE MAIL-LIST DELETE
>GO

The FILE statement in this example deletes all re­
cords ofMAIL-LIST that have satisfied the condition in
the SELECT statement.

4. Reformatting a fue
QTP will be ideally suited to pro~lems involving the

reformatting of files. Assume for instance, that the old
customer file shown in Figure 1 is obsolete. The

OLD CUSTOMER MASTER

"PYR-SALES" (previous years sales) item is to be
dropped; "YTD-SALES" (year to date totals) is to be
expanded for larger dollar volumes; item
"CUSTOMER-ID" is to be expanded; an item
"SALESMAN-CODE" is to be added; and all items are
to be re-ordered.

NEW CUSTOMER MASTER

CUSTOMER-NAME
CUSTOMER-ID
CUSTOMER-ADDRESS
PYR-SALES '
YTD-SALES

X(20)
X(6)
X(60)
9(6)
9 (6)

CUSTOMER-ID
CUSTOMER-NAME
CUSTOMER-ADDRESS
S~ LE SMAN -C ODE
YTD-SALES

X(IO)
X(20)
X(60)
X (6 >'
9 (10) COMP

Figure 1

3-86-2

The steps needed to format the new customer ftIe are:
(a) Unload the master fIle.

>ACCESS CUSTOMER
>SUBFILE TMP OUTPUT CUSTOMER
>GO

(b) Change the schema, purge and recreate the cus­
tomer file (details not shown).

(c) Reload the new master fIle.

>.ACCESS *TMP
>FILE CUSTOMER ADD
>GO

(d) Purge the temporary file.

:PURGE TMP

The SUBFILE statement creates an ad-hoc ftIe con­
taining specified information. Subfiles automatically
contain their own schema. and are therefore self-

describing. In this example SUBFILE creates a tem­
porary file TMP containing a copy of the customer mas­
ter file.

QTP automtically peIforms the following manipula-
tions for commonly named items in the two fIles:

• changes item type
• changes item size
• changes item order.

QTP IN THE PRODUCTION ENVIRONMENT
The following two examples look in detail at how

QTP might handle two common month-end production
situations.

1. Adding 1% interest to all invoices over 30 days due
To expand on a typical accounts receivable situation,

assume a company has. reached the due date for
monthly accounts receivable. The account manager
wants to ·add 1% interest to all outstanding accounts and
update the master ftIe. QTP peIforms this task in fewer
than 20 specification lines.

>ACCESS ACCOUNT-MASTER LINK TO ACCOUNT-DETAIL
>SORT ON ACCOUNT-NO, INVOICE-NO
>TEMPORARY INVOICE-DATE RESET AT INVOICE-NO &
> INITIAL DATE OF ACCOUNT-DETAIL &
> IF TYPE OF ACCOUNT-DETAIL="INVOICE"
>TEMPORARY INVOICE-BALANCE RESET AT INVOICE-NO INITIA·L 0
>SUM AMOUNT OF ACCOUNT-DETAIL INTO INVOICE-BALANCE &
> IF TYPE OF ACCOUNT-DETAIL = "INVOICE" OR'&
> TYPE OF ACCOUNT-DETAIL = "INTEREST"
>SUM AMOUNT OF ACCOUNT-DETAIL INTO INVOICE-BALANCE NEGATIVE &
> IF TYPE OF ACCOUNT-DETAIL = "PAYMENT"
>FILE ACCOUNT-DETAIL ALIAS INTEREST AOD AT INVOICE-NO &
> IF DAYS(SYSDATE) > DAYS (INVOICE-DATE) + 30
> ITEM AMOUNT FINAL INVOICE-BALANCE * 0.01
> ITEM TYPE FINAL "INTEREST"
>FILE ACCOUNT-MASTER UPDATE AT ACCOUNT-NO
>SUM AMOUNT OF INTEREST INTO BALANCE OF ACCOUNT-MASTER
>GO

The account .details are accessed and sorted on ac­
count number and invoice number.

Two temporary items, INVOICE-DATE and
INVOICE-BALANCE are created to hold the date and
accumulated outstanding balance of each invoice.

The two SUM statements accumulate the outstanding
balance.

The first FILE statement together with the following
two ITEM statements create a new detail record for the
interest if the invoice is past due.

The last FILE statement and following SUM state­
ment update the account balance to reflect the new
interest change.

2. Standard Batched Update

The standard batch update is probably the most uni­
versal QTP application. At the end of each day, a com­
pany wants to total all money received and prepare for
the next day's transactions. With QTP, this assignment
could be peIformed in ten specification lines.

>ACCESS BATCH-HEADER LINK TO TRANS
>SELECT IF TOTAL-ENTERED = TOTAL-CALCULATED
>SORT ON ACCOUNT-NO
>FILE ACCOUNT-DETAIL ADD
> ITEM TYPE INITIAL "PAYMENT"
>FILE ACCOUNT-MASTER UPDATE AT ACCOUNT-NO
>SUM AMOUNT OF TRANS INTO BALANCE OF ACCOUNT-MASTER
>FILE BATCH-HEADER DELETE
>FILE TRANS DELETE
>GO

3 -86-3

The ACCESS, SELECT and SORT statements re­
trieve transactions from balanced batches and sort them
by account number.

The FILE statement for ACCOUNT-DETAIL
creates payment records from the transactions.

The FILE statement together with the following .
SUM statement update ACCOUNT-DETAIL to reflect
the new payments.

The [mal two FILE statements delete all processed
batches and transactions. .

TRANSACTION PROCESSOR STATEMENTS
The major specification statements used in QTP will

be as follows:
ACCESS: specifies the ftIes to be read, the order in

which they should be read and linkage between ftIes.
BUILD: takes all requests defmed up to the BUILD

statement and saves these requests into a named
MPE ftIe for future use.

CHOOSE: specifies an explicit set of data by key for
retrieval.

DEFINE: used to define a frequently used expression.
EDIT: specifies that input ftIes be edited according to

editing defme.d in QSCHEMA.
FILE: defmes an output action to be performed on a

ftIe. These actions are:
ADD add if record does not exist
UPDATE add if record does not exist, else re­

place
REPLACE replace if record exists
DELETE delete if record exists.

ITEM: indicates specific items to be assigned initial or
fmal values, or to accumulate totals.

RESET: resets status control options to original status.
SELECT: restricts selection of records for processing

to those which satisfy a condition.
SORT: specifies the order in which records are sorted.
SUBFILE: creates a sequential ftIe (MPE).
Does not require the ftIe to exist in the QSCHEMA.

Will produce its own schema information in the
header of the file, and be accessible to both QTP and
QUIZ.

3 -86-4

TEMPORARY: creates a temporary-item which does
not exist in the database.

DESIGN CONSIDERATIONS
To arrive at a smoothly functioning product, certain

design considerations were uppermost in the thoughts
of the development team.
• The desirability of a specification based language to

insulate users from procedural constructs.
• The need to support complicated production runs as

well as ad-hoc ftIe maintenance functions.
• The need for efficient run time peIformance. Since

QTP will run repetitively against bulk volumes of
data, its design will differ significantly from a data
entry system which requires a high degree of user
interaction.

• The need for effective interaction with QUICK to
allow class data changes in conjunction with data en­
try.

• The automatic insulation of users from migrating sec­
ondary and other fue positioning problems inherent in
IMAGE and KSAM ftIe updates.

SUMMARY
Application systems on the HP3000 are typically

composed of numerous data entry screens, numerous
reports and a relatively small number of batch proces­
ses which run on a regular basis at day-end, month-end
and year-end. Significant progress has been made to-

. wards eliminating the need to custom program data
entry and reporting functions. Very little attention has
been paid to the development of productivity tools to
perform standard batch processing functions. The
transaction processor is designed to penorm most stan­
dard batch operations as well as a wide range of fIle
manipulation functions. QTP, together with its compan­
ion products QUIZ, QUICK, and QSCHEMA, will
form a complete application generator for the HP3000.
Complete systems can be built using these components
with major savings in programmer resources applied to
development and maintenance, and with real gains in
data integrity, system consistency and flexibility.

RISE
An RPG Interactive System Environment

for Program Development
Gary Ow

Hewlett-Packard
Information Networks Division

I. ABSTRACT
RISE is a specialized editor dedicated to the creation

and modification of programs written in RPG. Its ulti­
mate purpose is to significantly increase RPG pro­
grammers' productivity by presenting a single, friendly
user interface to a development environment in which a
user may easily edit source code as well as compile,
prepare, and run the program. This paper will discuss
some of the key features of RISE such as the visual
forms that represent the RPG Specification Record
forms and direct screen editing.

II. INTRODUCTION
RPG is a computer programming language in a class t

of its own. Some programmers boast of never using it,
others are embarrassed to admit using it, while there are
those individuals)Vho are proud of using it. Whatever
personal opinion these programmers may have, they all
must admit that RPG can very effectively accomplish
their data processing tasks no matter how complex.

RPG has proven to be extremely successful in the
commerical data processing market. It is a higher-level
specification language and, as such, it is very practical
and easy to implement applications quickly. Simple no­
tation provides easy management ofcomplex I/O opera-

. tions. Specifically, Hewlett-Packard's RPG/3000 offers
automatic interfaces to Image, V/3000, and KSAM
which are often crucial elements in a commerical appli­
cation.

Although the language appears to be perfect for
commercial processing, it has one major flaw . . . its
column dependent syntax leads to tremendous diffi­
culties during program creation and modification.

RPG programmers are all too fimiliar with these diffi­
culties. But no longer must they fight these problems,
sitting through long, tedious program development ses­
sions, because now they have RISE.

RISE presents RPG programmers with a single work­
ing environment in which they may easily edit RPG
source code using special forms that resemble the RPG
Specification Record forms to alleviate column count­
ing and confusion. Furthermore, RISE allows users to
compile, prepare, and run programs as well as execute

many MPE commands and execute any program rue.
RISE enhances the power of RPG, eliminating RPG's
syntactic flaw, providing a friendly user interface. RISE
is totally dedicated to RPG users as illustrated in the
next section.

III. RISE
The RPG· Interactive System Environment offers

these features:

• Visual editing with images that represent the RPG
Specification Record forms.

• Command I menu and special function keys
(softkeys) for a broad range of uses.

• Page-at-a-time direct screen editing.
• Ability to call the RPG compiler as well as the

Segmenter and manipulate the compiled listing
using a split screen.

• Choice of editing a file directly or editing a copy of
that file. '<l

• Ability of execute MPE commands and run any
program file.

• Help facility.
.• Ability to create a comment banner in which a user

may type documentation.
• Renumbering command wbich also allows a user to

renumber the lines of the RPG source program in
columns 1-5.

• Add mode which allows a user to change RPG
Specification Record forms, and to DELETE,
LIST, or MODIFY lines while in Add mode.

• Recoverability feature to restore deleted lines.
• Automatic instructive guided tour to quickly ac­

quaint a new user with the system.

Together, these features have been carefully inte­
grated into RISE, resulting in a productivity tool essen­
tial to all RPG programmers.

Friendliness and powerful capabilities were guiding
principles in design. The following example illustrates
one of RISE's friendly aspects. When RISE detects an
error in the user's entered command, it tries to return an
error message which describes what exactly is wrong
and possibly how to correct it. For instance, if a user
entered just the letter "e", RISE will respond "Can't

4-1-1

23. RUN
24. SHOW

11. GET
12. HELP
13.INCR
14. JOIN
15. KEEP
16. LINE
17. LIST
18. MENU
19. MODIFY
20. MOVE
21. PRINT
22. RENUM

distinquish CHange, COMment, or COPy command".
This message is far more informative then the usual
"Unrecognized command" message.

However extensive a user's experience is, however
technical the job at hand, with this full command set a
user may easily direct RISE to accomplish editing and
data processing goals.

Add Mode

RISE offers an Add Mode similar to Edit/3000 to
allow a user to enter new text. However, RISE's Add
Mode is significantly spiced up to more thoroughly meet
the user's needs of source code creation.

While in Add Mode, a user may perform any of the
following operations:

1. Change RPG, Specification Record forms
2. Display a column indicator form
3. Enter the DELETE, LIST, or MODIFY command
4. Direct RISE to prompt for new text starting at col­

umn 6 instead of 1 to skip over the entering of the
optional RPG line numbers in columns 1-5

The ability to enter the DELETE, LIST, or MODIFY
command while in Add Mode is often very valuable and
time-saving. For instance, suppose a user is entering
new source lines and discovers that the previous line
was entered incorrectly. No problem ... for the user
may immediately access the line and modify it and sim­
ply continue on with the additions. This is all accom­
plished without the user switching out and back into
Add Mode which can be quite bothersome.

Modify Mode

Moreover, RISE offers a Modify Mode for interactive
line editing similar to Edit/3000 but with added im­
provements. The first improvement is that the record to
be modified can be automatically displayed with its as­
sociated RPG Specification Record form for guidance
while editing. Another is a recovery feature which al­
lows a user to type Control-Y to restore the record in
the form before any modifications were made to it. Fi­
nally, the last improvement was implemented for visual
consistency. Unlike Edit/3000, when RISE displays a
record for modification, it appears formatted on the sc­
reen exactly as records created in Add Mode and re­
cords listed with the "LIST" command appear. In oth­
erwords, the line number will always appear to the left
of a record whenever a user creates it, modifies it, or
lists it.

Show Mode

RISE's Show Mode displays an RPG Specification
Record form at the top of the screen followed by a page
of RPG source code in Block Mode for direct screen
editing. A user need only use the terminal's cursor con­
trol keys to position the cursor on the page and directly
type in the changes. The user could also depress the
Tab key to quickly skip across the source record to
important columns of interest.

With this feature, the editing procedure is tremen­
dously simplified for what is visible on the screen will

When creating new source lines, a user may direct
RISE to display any of the RPG Specification forms,
and whep. modifying existing lines, RISE will automati­
cally display the appropriate form with the line for mod­
ification.

-add new lines
-start editing a new file
--change oldstring to newstring
--create a comment banner
-duplicate lines
-delete lines
-end system
-edit file directly
-locate a string
-display an RPG Specifica-

tion Record form
-execute commands from artIe
-explain commands
-set default increment value
-append or merge a file
-save the work [tIe
-enter Line Mode
-list lines
-display Command Menu
-modify lines
-transfer lines to new location
-print lines omine formatted
-renumber editor sequence

numbers or RPG source
line numbers

-run a program [tIe
-display a page for direct

screen editing
25. TEXT -edit copy of a file
26. UNDEL -restore last deleted lines
27. VERIFY --compilation or preparation
28. XPAND -expand the work file size
29. :MPEcommand-execute MPE command

The following is a summary of all commands which
RISE offers:

1. ADD
2. BEGIN
3. CHANGE
4. COMMENT
5. COpy
6. DELETE
7. EXIT
8. FILE
9. FIND

10. FORM

IV. KEY FEATURES OF RISE
RISE offers a multitude' of features dedicated to the

development and maintenance of RPG source code. In
this section, a presentation on some of RISE's major
features is given.

RPG Specification Record Forms

Part of RISE's user interface consists of a communi­
cation system which utilizes special forms that are
equivalent to the "RPG Listing Analyzer." Using
graphic guides, these forms explain the semantics of
every column so that the RPG source code is under­
standable as well as easy to edit. This eliminates confu­
sion and extensive column counting.

4-1-2

duplicate what is stored in the rue so that "what you see
is what you'll geto"

The special function keys or softkeys are also inte­
grated into Show Mode, giving the user even more flex­
ibility. Descriptive softkey labels appear at the top of
the screen to inform the user of the function of each
softkey. Some of the functions performed by the
softkeys are variations on scrolling such as Scroll For­
wards, Scroll Backwards, Scroll to First Page, and
Scroll to Last Page.

With this scrolling power, a user could page through
the rue, making any necessary changes directly on the
screen. The RPG Specification Record form will au­
tomatically change on the screen whenever the next
form type changes.

Help Facility

Like all high quality, interactive software systems,
RISE includes a Help Facility which provides a sum- .
mary of all commands and detail descriptions of each
command. Each detail description shows a command's
syntax, explains its operation, and gives examples.

Command Menu

Besides entering commands to RISE based on syntax
rules, a user may select the next command to be exe­
cuted with a "Command Menu." The Command Menu
displays the options for a command so that a "fill out
the blanks" on the menu to express the next command,
ignoring the syntax rules. This is added convenience
since the menu also functions as an implicit help guide
by documenting the parameters of a command, proving
beneficial to new users.

Some Useful Commands

Other than just the normally expected editing com­
mands supported in standard editors such as the COPY,
MOVE, FIND, and CHANGE commands, RISE offers
three additional commands designed for user conveni­
ence and deletion recovery.

The COMMENT command will create a comment
banner composed of a rectangle of asterisks to be
placed anywhere in the user's source code. The banner
is displayed in Show Mode, allowing a user to directly
type in documentation on the screen within the banner.
Because this feature makes documentation of source
code less troublesome, it will encourage programmers'
to more thoroughly perform this task.

The RENUM command not only renumbers the se­
quence numbers of the file being edited, but it also can
renumber the RPG line numbers of the source code in
columns 1-5 so that a user never has to type in the
numbers.

Finally, the UNDEL command will restore all lines
that were deleted by the last DELETE command, pro­
tecting a user from accidental or erroneous deletions.

This feature, at times, can save many hours of work lost
due to incorrect editing actions.

Compilation, Preparation, and Execution

Within the RPG Interactive System Environment, a
user may compile, prepare, and execute the program to
ensure its compile-time and run-time correctness. With
this ability to invoke the RPG compiler, a user could
immediately catch all compilation errors without having
to switch back and forth between the operating system
and RISE.

After compiling a user's program, RISE will automat­
ically manage the compilation listing so that a hard copy
listing need not be printed. By pressing softkeys, a user
could scroll through the listing at the terminal, page by
page, for inspection. Moreover, RISE has a unique
capability to allow a user' to view the listing in a split­
screen mode, displaying two different portions of the
listing at once. By pressing a softkey, a user could split
the screen into a top and bottom portion and scroll
either. Essentially, a user could simultaneously have
two "windows" to view the compilation listing. In this
fashion, a user may display the compiled source code in
the top window and the compiler generated error mes­
sages in the bottom window.

Actually, RISE can do this automatically for a user.
By simply depressing the "Find Error" softkey, a user
can direct RISE to automatically locate the next source
line in error and display it in the top window along with
its corresponding error message displayed in the bottom
window. Using this powerful feature, a user could
quickly locate problems in the source code and correct
them all wHile in the same development environment.

After developing the RPG program to compile suc­
cessfully into a USL file, the user may command RISE
to prepare the USL file into a program file. To accom­
plish the preparation, RISE invokes the Segmenter.

At this stage, before executing the program file with
RISE's RUN command, the user may issue any file
equations necessary for the proper runtime execution of
the program using RISE's ":MPEcommand". Finally,
the user is all set to execute the program.

Incidentally, a user may execute any program file
within RISE such as the system utilities FCOPY and
SPOOK.

RISETOUR

Another instructive feature is RISETOUR which is a
self-paced, interactive, guided tour of RISE most bene­
ficial to new users. Generally, it is always very difficult
for a new user to become accustomed with a new in­
teractive software package. However, in the case of
RISE, a user could sit down at a terminal and
RISETOUR will guide the user through the major fea­
tures of RISE, giving demonstrations, explanations, and
diagrams. This gives a new user first hand experience
with a new product, easing the learning process so that
the user may become competent with it more quickly.

4-1-3

V. CONCLUSION
RISE presents RPG programmers with a single, cohe­

rent program development environment dedicated to
their production needs. The RPG Specification Record
forms allow users to edit their source code in a friendly
and easy manner. Direct screen editing further
simplifies the editing procedure. The ability to generate
comment banners encourages more thorough documen­
tation of the source code. An online Help Facility,
Command Menu, and RISETOUR all effectively ac­
quaint new users to the system. The ability to compile

4-1-4

the program with automatic management of the listing
in split-screen mode detects errors immediately for cor­
rection. And finally, the ability to issue many MPE
commands as well as execute any program ftle is a pass­
age way to other utilities from RISE.

Together, these features and many more have been
smoothly integrated into a productivity tool vital to all
RPG programmers. They can finally "rise" out of their
confusing, tedious, and time-consuming development
problems using the RPG Interactive System Environ­
ment.

IMAGE/COBOL: Practical Guidelines
David J. Greer

Robelle Consulting Ltd.
Aldergrove, B.C., Canada

SUMMARY

This document presents a set of practical "rules" for
designing, "accessing, and maintaining IMAGE
databases in the COBOL environment. This document
is designed to ~d systems analysts, especially ones who
are new to the HP3000, in producing "good" IMAGE
database designs. Each "rule" is demonstrated with ex­
amples and instructions for applying it. Attention is paid
to those details that make using the database trouble­
free for the COBOL programmer, and maintaining the
database easier for the database administrator.

CONTENTS

1. Database Design
2. Polishing Database Design
3. The Schema
4. Establishing the Programming Context
S. Database Maintenance
6. Bibliography

Copyript 1981. All rishts reserved.
Permission is sranted to reprint this document (but not for profit), provided

that Copyl'isht notice is siven.
This document was prepared with Prose, a text formatter distributed with

software to all Robello customers.

DATABASE DESIGN

IMAOE/3000 is the database system supplied by
Hewlett-Packard;8 it is used to store and retrieve appli­
cation information. A database does not suddenly ap­
pear out of thin air; it develops through a long and in­
volved process. At some time, a logical database design

must be translated into the actual schema that imple­
ments a physical IMAGE database. This phase is the
most difficult of the database development cycle. 7 The
IMAGE/3000 Reference Manuale contains a sample
database called STORE, which demonstrates most of
the attributes of IMAGE.- Throughout this document,
the STORE database will be referenced when examples
are needed.

Logical Database Design

The foundation of a new database is a logical design,
which is created by examining the user requirements for
input forms, for on-line enquiries, and for batch reports.
The database should be viewed as an intermediate stor­
age area for the information that comes from the input
forms and is eventually displayed on the output re­
ports.9 10

Database design is normally done from the bottom
up, as opposed to structured program design, which is
usually done from the top down. The starting point for a
database is the elements (items) that will be stored in
the database. These data elements represent the user's
information. In the early stages, the size and type of
these elements are not needed, only the name and val­
ues.

Rule: Start your logical database design by naming
each data item, then identify what values it can
have and where it will be used.

Here is an example of a subset of data items for the
STORE database:

CUST-STATUS

DELIV-DATE

ON-HAND-QTY

PRODUCT-PRICE

J

Two characters, attached to each customer record.
Valid values are: 10=advanced, 20=current,
30=arrears and 40=inactive.

Six numeric characters; Date, YYMMDD, attached to
every sales order as the promised delivery date.

Sev~n numeric characters, attached to every inventory
record to show the current quantity of an
inventory item available for shipping.

Eight numeric characters, (6 whole digits, 2 decimal
places), attached to every sales record. This is
the price of a product sold, on the date that
the sale was made.

4-4-1

As the logical database design develops to deeper
levels of detail, the elements needed should eventually
reach a stable list. These elements should then be com­
bined into records by grouping logically related items
together.

It is important that "repetition" be recognized early
in the design. An example of this is a customer's ad­
dress. The most flexible method of implementing ad­
dresses is a variable number of records associated with
the customer account number. Another method is to
make the address field an X-type variable (e.g., X24)
repeated 5 times (e.g., 5x24). Repeated items are often
the most natural way to represent the user's data, so the
use of repeated items is encouraged.

Mter the records are designed, enquiry paths must be
assigned. During the early stages of database design, it
is important to use elements that are readable and easy
to implement with the tools at hand. This permits test­
ing of the database using tools such as QUERY, AQ,
and PROTOS.

Physical Database Design

Mter the local database is designed, the IMAGE
schema must be developed. The restrictions of IMAGE
must now be worked into the database design.

IMAGE requires that all items needed in the database
be defined at the beginning of the schema, and a size
and type must be associated with each. Initially, declare
each item as type X (display); later, the data type may
be altered.

Records are implemented as IMAGE datasets. Start
by treating each record format as a master dataset.

Rule: If a record is uniquely identified by a single key
value, start by making it a master dataset (e.g.,
customer master record keyed by a unique cus­
tomer number).

The STORE database assumes that each CUST­
ACCOUNT field is unique. Furthermore, there is only
one customer record for each CUST-ACCOUNT. All of
the information describing one customer is gathered to­
gether to result in the M-CUSTOMER dataset:

NAME: M-CUSTOMER,
ENTRY:

CITY
., CREDIT-RATING
,CUST-ACCOUNT(1)
,CUST-STATUS
,NAME-FIRST
,NAME-LAST
,STATE-CODE
,STREET-ADDRESS
,ZIP-CODE

MANUAL (1/2);

«KEY FIELD»

«PREFIX = MCS»

,
CAPACITY: 211; «M-CUSTOMER,PRIME; ESTIMATED»

Rule: Ifa "natural" master dataset will require on-line
retrieval via an alternate key, drop it down to a
detail dataset.

The detail dataset will have two keys: the key field of
the original master dataset, and the alternate key. You
will have to create a new automatic, master for the origi­
nal key field, and you may have to create an automatic

master for the alternate key (unless you already have a
manual master dataset for that item).

Take the M-CUSTOMER dataset as an example. As­
sume that in addition to needing on-line access by
CUST-ACCOUNT, it is also necessary to have on-line
access by NAME-LAST. The following dataset struc­
ture would result:

NAME: A-CUSTOMER,
ENTRY:

CUST-ACCOUNT(2)

AUTOMATIC (1/2),

«KEY FIELD»

«PREFIX = ACS»

NAME-LAST(1)

,
CAPACITY: 211 ;

NAME: A-NAME-LAST,
ENTRY:

«PREFIX = ANL»

,
CAPACITY: 211 ·.'

«A-CUSTOMER, PRIME; ESTIMATED»

AUTOMATIC (1/2),

«KEY FIELD»

«A-NAME-LAST,PRIME; CAP(A-CUSTOMER»>

4-4-2

NAME: D-CUSTOMER, DETAIL (1/2); «PREFIX = DCS»

ENTRY:
CITY

,CREDIT-RATING
,CUST-ACCOUNT(IA-CUSTOMER)
,CUST-STATUS
,NAME-FIRST
,NAME-LAST(A-NAME-LAST)
,STATE-CODE
,STREET-ADDRESS
,ZIP-CODE

«KEY FIELD, PRIMARY»

«KEY FIELD»

,
CAPACITY: 210; «D-CUSTOMER; CAP(A-CUSTOMER»>

Rule: If an entry can occur several times for the pri­
mary key value, store it in a detail dataset.

Detail datasets are for repetition and multiple keys.
Master datasets 'can only contain one entry per unique
key value. An example of repetition in a detail dataset is

a customer address field. The customer address can be
stored as a repeated field in a master dataset, but even­
tually there will be an address that will not fit into the
fixed-size repeated field. Instead of a repeated field, use
a detail dataset to store multiple lines of an address. For
example:

ADDRESS-LINE,

CUST-ACCOUNT·,

LINE-NO,

X24;

Z8;

X2;

« An individual line of address. This
item is used in D-ADDRESS to provide an
arbitrary number of address lines for
each customer.

»
« Customer account number. This field

is used as a key to the M-CUSTOMER

IMAGE/COBOL: Practical Guidelines

and D-ADDRESS datasets.
»
« Used to keep address lines in D-ADDRESS

in the correct order. This field also
provides a unique way of identifying
each address line for every
CUSTOMER-ACCOUNT.

»

NAME: .D-ADDRESS
ENTRY:

DETAIL (1/2); «PREFIX.: DAD»

ADDRESS-LINE
,CUST-ACCOUNT(IM-CUSTOMER(LINE-NO))
,LINE-NO

«KEY FIELD, PRIMARY PATH»
«SORT FIELD»

,
·CAPACITY: 844; «D-ADDRESS; 4 * CAP(M-CUSTOMER»>

Dataset Paths

The following definition of PATHs and CHAINs
comes from Alfredo Rego: 11

A PATH is a relationship between a MAS­
TER dataset and a DETAIL dataset. The
master and the detail must contain a field of
the same type and size as a common "bond,"
called the SEARCH FIELD. A path is a
structural property of a database.

A CHAIN, on the other hand, contains a
MASTER ENTRY and its associated DE-

TAIL ENTRIES (if any), as defined by the
PATH relationship between the master and
the detail for the particular DETAIL
SEARCH FIELD.... A chain is nothing
more than a collection of related entries (for
instance, a bank customer would be the mas­
ter entry and all of this customer's checks
would be the detail entries; the "chain" would
include the master AND all its details; the
chain for customer number 1 would be com­
pletely different from the chain for customer
number 2).

4-4-3

.i

Paths provide fast access at a certain cost: adding and
deleting records on the path is expensive. The more
paths there are, the more expensive it gets. 1 Another
restriction of paths is that there can be a maximum of
64,000 records on a single path for a single key value.
This sounds like a large number, but it can be very easy
to expand a chain to this size if a key is specified for a
specific, reporting summary program (e.g., billing cycle,
in monthly billing transactions).

Rule: Avoid more than two paths into a detail dataset.

There are some instances where three paths are nec­
essary, but these should be avoided as much as possi­
ble. Before adding a path, examine how the path is
going to be used. If it is added just to make one or two
batch programs easier to program, the path is not jus­
tified. The batch programs should serially read and sort
the dataset, then merge the sorted dataset with any
other necessary information from the database.

The date paths of the SALES dataset of the STORE

database are good examples of unnecessary paths. Be­
cause the chain lengths of paths organized by date are
almost always very long, such a chain is rarely allowed.
Also, users are often interested in a large range of dates
(such as a month, quarter or year), not just a specific
day.

In order to obtain the same type of reporting by date,
it is possible to do one of the following: (1) read the
database every night and produce a report of all records
entered every day; (2) keep a sequential file of all re­
cords added to the dataset on a particular day. This fIle
can then be used as an index into the database. .

These are not the only solutions to removing the date
paths, but they indicate the kind of solutions that are
possible. Because of the high volume and length of the
average chain, date paths are prime candidates for re­
moval from a database.

The following example demonstrates how the SALES
dataset should hav'e been declared:

« The D-SALES dataset gathers all of the sales records
for each customer. The primary on-line access is by customer,
but it is necessary to have available the product sales
records. The PRODUCT-PRICE is the price at the time
the product is ordered. The SALES-TAX is computed based
on the rate in effect on the DELIV-DATE.

»
DETAIL (1/2);NAME:

ENTRY:
D-SALES,

CUST-ACCOUNT(IM-CUSTOMER)
,DELIV-DATE
,PRODUCT-NO(M-PRODUCT)
,PRODUCT-PRICE
,PURCH-DATE
,SALES-QTY
,SALES-TAX
,SALES-TOTAL

·«PREFIX = DSA»

«KEY FIELD, PRIMARY PATH»

«KEY FIELD»

.,
CAPACITY: 600; «D-SALES; 3 * CAP(M-CUSTOMER»>

Rule: Avoid sorted paths.

Because sorted paths can require. very high overhead
when records are added or deleted, they should be
avoided as much as possible. There are some instances
when a sorted path makes the system and program de­
sign much easier, but this convenience must be traded,
offagainst the highest cost ofmaintaining sorted chains.

The most important criteria in evaluating sorted
chains are: (1) whether the chain is needed for batch or
on-line access. In batch, it is possible to read and sort

i the dataset, rather than relying on sorted chains. In an
j' on-line program, this is usually not possible, so sorted
, chains are required. (2) How long is the average chain

going to be? The longer the chain, the more expensive it
I is to keep sorted. If chains have fewer than 10 entries

per key value on average, sorted chains can be permit-

4-4-4

ted. (3) How are records being added to the dataset? Ifa
sorted chain is present, and data is added to the dataset
in sorted order, there is very little extra overhead in the
sorted chain. If, on the other hand, data is added in
random fashion, there is a very high cost associated
with the sorted chain. II - 13

Locking Strategy

Early in the database design, it is important to iden­
tify the locking necessary for the application. The
easiest choice is to use database locking. Unless spe­
cific entries are going to be modified by many users,
database locking should work. Remember: locking is
only needed when updating, adding, or deleting entries
from the database, not when reading entries. Never
leave the database locked when interacting with the
terminal user.

The next level of locking to be considered is dataset
locking. This takes more programming, but provides for
a more flexible locking strategy.

.Rule: Never permit MR capability to programmers,' in­
stead, use lock descriptors (and a single call to
DBLOCK) to lock all data~ets needed.

For very complicated systems (e.g., an inventory sys­
tem with inventory levels that must be continually up­
dated), record locking should be used. The database
design should help the application programmer by mak­
ing the easiest possible locking strategy available for
each program. 2

Passwords

Most application systems go overboard in their use of
database passwords. The simplest scheme to implement
is a two-password system. The database is declared
with one password for reading and one for writing. Each
password is applied at the dataset level; and item-level
passwords are not used.

Rule: Use the simplest password scheme that does not
violate the database integrity.

The advantages to this scheme are that there are
fewer passwords to remember, IMAGE is more effi­
cient (because all security checks are done at the
dataset level, instead of the data item level), and the
user can still use tools such as QUERY, by being al­
lowed the read-only password.

In sensitive applications, a separate dataset or
database can be used to isolate data requiring special
security. This still permit~ the simplest password
scheme pos$ible, with an extra level of security. The
following example shows how to declare passwords for
read-only access and read/write access on a dataset
level:

PASSWORDS: 1 READER;
2 WRITER;

Rule: Build your test databases early. Use an applica­
tion tool to verify that the database design is cor­
rect.

In some cases, the end user may not be able to access
the database, but the database designer must go through
this testing process. This examination of tl:)e database
design may uncover design flaws which can be fIXed
easily at this early stage. After the logical database de­
sign has been roughly packaged as an actual IMAGE
database and verified against the user requirements, the
design should be 'optimized and the finishing touches
added (see next section).

Very Complex Databases

IMAGE has a number of size restrictions that it im­
poses on the database design. For example, the number
of items in a database is liinited to 255, and the number
of datasets in a database is limited to 99. For many
applications, these limits pose no problems; but with the
larger databases being designed today, it is not difficult
to imagine databases which exceed these lmits" What
can you do to get around this problem?

Bottom-Up Design

The design method outlined above must be extended.
For small projects, it is adequate to simply group related
data items into datasets, because the entire application
will fit into one database. However, for large projects,
another step is required: related datasets must be
grouped into separate databases.

Multiple databases introduce new problems for the
application. programmer. These include larger pro­
grams, which result in larger data stacks, as well as
problems with locking. In designing a multiple database
system, it is best to minimize the number of programs
that must use more than one database.

If an application decomposes into independent sub­
units, few programs will require more than one
database. The design of the system and the database
may have to be revised to increase the independence of
the sub-systems.

The declarations for the M-CUSTOMER and the
D-SALES datasets contain "(t2)" on the line that de­
clares the name of the datasets. The "(Yl)" indicates
that the READER and WRITER passwords are in effect
for the whole dataset.

Early Database Testing
The early database design should allow the user or

analyst to experiment on the database design with test
data. User tools such as QUERY or AQ should be used
to access the database. At this stage, the item types may
be left approximate, so long as the user or analyst gets a
chance to interact with the database design. The analyst
should check that all requirements of the user can be
met by the database design.

POLISHING DATABASE DESIGN
The database designer has two main concerns in

completing the database design. Will the application
programs be able to access the database within the de­
fined limits of the .HP3000? Does the database take best
advantage of COBOL and other tools avail­
able?3-:-8-11-13

Overall Performance

Rule: Always make a formal estimate of on-line re­
sponse times and elapsed times for batchjobs.
If the project is going to require additional
hardware resources, it is better to know it be­
fore the project goes into production.

The following material is taken from On Line System

4-4-5

Design and Development, 9 with comments and exam­
ples to expand on the original. The HP3000 is able to
perform approximately 30 I/Os .per second. On various
machines under different operating systems, it may be
possible to obtain more than this. Because it is ex­
tremely difficult to obtain the theoretical maximum of
30 I/Os per second, it is best to plan for a maximum of
20 I/Os per second.

Each IMAGE procedure results in a specific amount
of I/O. Before going ahead with a large application, the

total I/O required for the application must be computed
and compared against the maximum. This is done by
estimating the I/O for each on-line function, then sum­
ming the I/Os of the functions that might reasonably
occur concurrently. Also, the total elapsed time for
batch jobs must be estimated to ensure that they will
complete in the time available.

The following gives an approximate measure of the
number of I/Os necessary for each IMAGE procedure
in an on-line environment:

-'-

Procedure I/O

DBGET 1
DBFIND 1
DBLOCK a
DBUNLOCK a
DBUPDATE 1
DBPUT 2 + 2 * Number of keys in the dataset.
DBDELETE 2 + 2 * Number of keys in the dataset.

The figures for DBPUT and DBDELETE do not take
into account sorted chains. If sorted chains are kept
short, the above figures will work. If sorted chains are

long, the following formula gives an approximate meas­
ure of how many I/Os are tequired to add records in
random fashion to a sorted chain:

2 + 2 * number of keys + (average chain length / 2)

Serial DBGET I/Os = number of records / blocking factor

All of the above figures for the number of I/Os for
each IMAGE procedure are the same in batch, with one

If the batch program also does a sort of all of the
selected records from the serial DBGET, the number of
I/Os will be increased.

Batch Calculation Example

exception. If a batch program reads a dataset serially,
the I/Os required will be:

The following example computes how long a specific
batch program will take to run; the program makes the
following IMAGE calls:

,-- .. '

125,000 DBGETs serial; blocking factor is 5.
80,000 DBPUTs to a detail dataset with two keys.
80,000 DBFINDs.
80,000 DBGETs to the dataset with the DBFIND.
80,000 DBUPDATEs.

Total l/Os required =

I/Os for DBGET (205,000 / 5) plus
I/Os for DBFIND (80,000 X 1) plus
I/Os for DBPUT (80,000 X 6) plus
l/Os for DBUPDATE(80,000 X 1).

equals 681,0001/Os.

We can do approximately 20 l/Os a second so

681,000
= 34,050 seconds = 9.5 hours

20

4-4-6

If the batch program also is intended to run overnight,
but is unlikely to finish in one evening, because time is
also needed for backup and other daily functions.

Improving Performance

How can the total time of this program example be
reduced to 3.9 hours? One way is to replace the DBPUT
with a DBUPDATE. In many instances it is possible,
through changes in the application and database design,
to use a DBUPDATE instead of a DBPUT. This is
especially true in environments where there are recur­
ring monthly charges, which change only slowly over
time.

There is another advantage to using DBUPDATE.
For each DBPUT, a record is added to the database,
and this record must later be deleted using DBDE­
LETE. Because it takes as long to delete the record as it
did to add it in the first place, the DJBUPDATE can
provide as much as an eight-fold decrease in running

time, compared with DBPUT/DBDELETE.

COBOL Compatibility

When designing a database, keep in mind how the
database is going to be used (COBOL, QUERY, AQ,
PROTOS, etc.). The following rules apply to item types
and should be used throughout the database.

Numeric Fields

When the database was first designed, all fields were
initially declared as type X (display). By now you
should know the likely maximum value for each data
item. Once the size of each data item is fIXed, the time
has come to specify a more efficient data type for
numeric fields.

The type of field used for numeric values depends on
the maximum size of the number to be stored (Le., the
number of digits, ignoring the sign). The following table
should be used in determining numeric types:

Number of Digits

<5
<10

>=10

IMAGE Data type

J 1
J2

Packed-decimal of the appropiate size.

Rule: For numeric fields, use J1 for fewer than five
digits; use J2 for fewer than ten digits; otherwise,
use a P-field (packed-decimal) ofthe appropriate
size.

In COBOL, an S9(2)V9(2) COMP variable is consid­
ered to have a size of 4, or Jl. The one exception to this
rule is sort fields. All sort fields must be type X. If a
numeric sort field is required, it must be declared as
type X and redefined as zoned in all COBOL programs.
Remember that packed fields in IMAGE are always de-

clared one digit larger than the corresponding COBOL
picture (S9(11) COMP-3 becomes P12) and must be al­
located in multiples of four.

COBOL databases must not contain R-fields, because
R-fields ha~e no meaning in the COBOL language. In­
stead of an R-type field, a J-type or P-type field must be
used. The STORE database contains an R-type field,
CREDIT-RATING, which should have been declared
as:

CREDIT-RATING, J2; « Customer credit rating. The larger
the number, the better the customer's
credit. Used to five decimal places.

»

Key Types

Every key, whether in a master or detail dataset, must
be hashed to obtain the actual data associated with the
key value. Hashing is a method where a key value, such
as customer number 100, is turned into an address. The
method used tries to generate a different address for
every key value, but in practice this is never possible.
The choice of the type ofkey has a large bearing on how
well the hashing function will work.

Rule: Always use X-type, V-type, or Z-type keys, and
never use J-type, R-type, P-type, or I-type keys.
Type X, type U, and type Z keys give the best
hashing results.

When using a Z-type for a key, leave it as unsigned in
all COBOL programs. Because key values rarely have
negative values, there is no effect on the application by
removing the sign from a zoned field. The advantages to
leaving off the sign are: (1) displaying the field in
COBOL or QUERY results in a more "natural"
number, and (2) problems between positive, signed, and

.unsigned zoned numbers are avoided.

Date Fields

Rule: Dates must be stored as J2 (89(6) COMP) in
YYMMDD format.

This format provides the fastest access time in
COBOL and takes the least amount of storage. Use a

4-4-7

standard d.ate-editing routine to convert from internal to
external format and vice versa.4

The only exception to this is when .a detail chain must
be sorted by a date field. Because IMAGE does not
allow sorting on J2 fields, X6 is used. For the chain to be
sorted correctly, the date must still be stored in
YYMMDD format.

Other Item Types

The only item types that should be used are J- or
P-types for numeric values, and X-, U- or Z-types for

keys. The K-, 1- and R-types should never be used in a
commercial application where COBOL is the primary
development language.

Example

Earlier, in the discussion of logical database design,
four items were described: CUST-STATUS, DELIV­
DATE, ON-HAND-QTY, and PRODUCT-PRICE. The
following example gives the actual IMAGE declaration
for each of these items, according to the rules of this
section:

CUST-STATUS,

DELIV-DATE,

ON-HAND-QTY,

PRODUCT-PRICE,

X2;

J2;

J2;

J2;

« Defined state of a particular customer
account. The valid states are:
10 = advance
20 = current
30 = arrears
40' = inactive

»
« Promised delivery date.
»
« Amount of a specific product currently

onhand. Only updated upon
confirmation of an- order.

»
« Individual product price, including

two decimal points.
»

Primary Paths

Rule: Assign a primary path to every detail dataset.

IMAGE organizes the database so. that accesses
along the primary path are more efficient than along
other paths. The primary path should be the path that is
accessed most often in the dataset.

If there is only one path in a detail dataset, it must be
the primary path. If there are two paths that are acces­
sed equally often, but one is used mostly in on-line pro­
grams and the other mostly in batch programs, assign
the primary path to the one that is used in on-line pro­
grams. A primary path is indicated by an exclamation
point (!) before the dataset name that defmes the path.
A path with only one entry per chain should not be
selected as a primary path.

The Schema
The IMAGE schema is the method by which you tell

both IMAGE and the programmers what the database
looks like. The schema should be designed with
maximum clarity for the programmer, because IMAGE
is only partly concerned with the schema's layout.

Rule: The schema file name is always XXXXXXOO,
where XXXXXX is the name of the database.

\ This naming convention makes locating the schema
easier for all staff. The file is always located in the same

4-4-8

group and account as the database. If the database
name was STORE and t~e STORE database was built in
the DB group of the USER account, the schema name
would be STOREOO.DB.USER.

Layout

A clear layout of the schema makes the programmer's
job easier. Some requirements of the layout are im­
posed by IMAGE, but there are still a number of things
that the database designer can do to make the schema
more understandable.

Every database schema should start with a SCON­
TROL line. The SCONTROL line must always contain
the TABLE and BLOCKMAX parameters. The default
BLOCKMAX size of 512 should always be used when
first implementing the database. Later, after careful
consideration, the BLOCKMAX size may be changed.
When first designing the database, $CONTROL
NOROOT should be used.

The $CONTROL line should be followed by the name
of the database. This is followed by a header comment.
This comment describes the designer of the database,
the date, the conventions used in designing the schema,
abbreviations that ar-e used within IMAGE names, and
sub-systems with which the database is compatible and
incompatible.

The following are the opening lines of the example
STORE database:

",-,,"

$CONTROL TABLE,BLOCKMAX=512,LIST,NOROOT
BEGIN

DATA BASE

«

AUTHOR:

DATE:

STORE;

STORE DATABASE FROM THE IMAGE MANUAL

DAVID J. G~EER, ROSELLE CONSULTING LTD.

DECEMBER 15, 1981

CONVENTIONS:

This schema is organized. in alphabetic order. All master datasets are
listed before detail datasets, and automatic masters come before
manual master datasets.

All dates are stored as J2, YYMMDD, except where they are used as
sort fields. If a date is a sort field, it is stored as X6, YYMMDD.

The following abbreviations are used throughout the schema:

NO
CUST
QTY

= Number
= Customer
= Quantity

This database can be accessed by COBOL, QUERY', AQ and PROTOS. Note
that the STREET-ADDRESS field is incompatible with QUERY, but AQ
can correctly add and modify the STREET-ADDRESS field.
»

Naming of Items and Sets

Rule: Names must be restricted to 15 characters; the
only special character allowed in names is the
dash (-). This ensures that the names are compat­
ible with V/3000 and COBOL.

The percent sign (%) should be replaced with the ab­
breviation "-PeT", and the hash sign (#) should be re­
placed with the abbreviation "-NO".

Item Layout

The easiest layout to implement, maintain and under-

stand is to declare everything in the database sorted in
alphabetic order. The items in the database should
begin with a'$PAGE command to separate the items
from the header comment. Each item appears sorted by
its name, regardless of the item's type or function.

In many IMAGE applications, the schema also acts
as the data dictionary. For this reason, it is very impor­
tant that every part of the database design be com­
pletely documented in the schema. Document each item
as it is declared'. To make each item stand 'out, the fol­
lowing layout should be used:

CUST-NO, Z10; « The customer number is used as a
key field in the M-CUSTOMER dataset.
It is also the defining path in
the D-ORDER-DETAIL dataset.

»

The item name, its type, and the comment start in the
same column for every item. Each part of the item defi­
nition will stand out, and because the item names are in
sorted order, the applications programmer can easily
fmd a particular item.

Dataset Layout

Every dataset declaration must be preceeded by a .
header comment that describes the use of the dataset
and any special facts that the programmer should be

aware of.
When accessing the dataset from a COBOL program,

it will be necessary to have a COBOL record which
corresponds to the dataset. In order to prevent confu­
sion between two occurrences of the same item as a
field in several datasets', a prefix will be assigned to each
of the variables in the COBOL buffer declaration. This
prefix is selected by the database .designer and must
appear on the same line as the name of the database.
For example:

4-4-9

« The M-CUSTOMER dataset gathers all of the static information
about each customer into one dataset. A customer must exist
in this dataset before any sales are permitted to the
customer. This dataset also provides the necessary path
into the D-SALES dataset.

»
NAME: M-CUSTOMER, MANUAL (1/2); «PREFIX=MCS»

The AUTOMATIC, MANUAL or DETAIL keyword
must always appear in the same column. This makes
reading the schema easier, and by searching the file for
a string (by using \L"NAME:" in QEDIT) it is possible

to produce a nice index of dataset names, their types,
and their prefixes. The following example prints an
index of the STORE dataset names:

:RUN QEDIT.PUB.ROBELLE
ILQ STOREOO.DB "NAME:"
NAME: M-CUSTOMER, MANUAL (1/2); «PREFIX = MCS»
NAME: M-PRODUCT, MANUAL (1/2) ; «PREFIX = MPR»
NAME: M-SUPPLIER, MANUAL (1/2); «PREFIX = MSU»
NAME: D-INVENTORY, DETAIL (1/2); «PREFIX = DIN»
NAME: D-SALES, DETAIL (1/2); «PREFIX = DSA»

Rule: Automatic master datasets have names that start
with UA_".

They must be declared immediately after the ite~

declarations, separated from item declarations by a
$PAGE command, and they must appear in alphabetic
order.

Rule: Manual master datasets have names that start
with UM_".

The manual master datasets follow the automatic
master datasets, again preceded by a $PAGE command.
Like the automatic masters, the manual master datasets
must be declared in alphabetic sequence.

Rule: Detail dataset names start with uD_".

The detail datasets follow the manual master
datasets, and the two are separated by a $PAGE com­
mand. The detail datasets also appear in alphabetic or­
der.

Field Layout

Without exception, the fields in every dataset must be
declared sorted alphabetically. There is a strong ten-

dency to try to declare the fields within a dataset in
some other type of logi~al grouping. Because this logi­
cal grouping exists only in the mind of the database
designer and cannot be explicitly represented in IM­
AGE, it should never be used. By declaring" fields in
sorted order, the applications programmer can work
much faster with the database, since no time has to be
spent searching for fields within each dataset.

The database designer can still group fields together
in a dataset by starting each field with the same prefIX.
If a dataset contains a group of costs, they might be
called VAR-COSTS, FIX-COSTS and TOT-COSTS. To
group these items together in the dataset, call them
COSTS-VAR, COSTS-FIX and COSTS-TOT. This
maintains the sorted field order in each dataset, while
allowing for logical grouping of fields.

Most datasets contain one or more key fields. A key
field is specified by following it with (). Because the ()
pair is sometimes hard to see, a comment should be
included beside every key field, indicating that the field
is a key. In a detail dataset, the primary key should
include a comment to that effect. The following exam­
ple shows how to declare the fields in a dataset:

« The D-SALES dataset gathers all of the sales records
for each customer. The primary on-line access is by customer,
but it is necessary to have available the product sales
records. The PRODUCT-PRICE is the price at the time
the product is ordered. The SALES-TAX is computed based
on the rate in effect on the DELIV-DATE.

»
NAME: D-SALES,

4-4-10

DETAIL (1/2); «PREFIX = DSA»

ENTRY:
CUSt-ACCOUNT(!M-CUSTOMER)

,DELIV-DATE
,PRODUCT-NO(M-PRODUCT)
,PRODUCT-PRICE
,PURCH-DATE
,SALES-QTY
,SALES-TAX
,SALES-TOTAL

«KEY FIELD, PRIMARY PATH»

«KEY FIELD»

,
CAPACITY: 600; «D-SALES; 3 * CAP(M-CUSTOMER»>

Capacities

Analysis of the data flow of the application should
result in an approximate capacity for each dataset.

Rule: The capacity ofmaster datasets must be a prime
number.

To see if a number is prime :RUN the PRIME pro-

gram contributed by Alfredo Rego. Master datasets
should never be more than 80% full (see DBLOADNG
below, under "Database Maintainence"), and detail
datasets should never be more than 90% full.

The line with the capacity must be formatted in the
following way:

CAPACITY: 211 ; «M-CUSTOMER,PRIME; ESTIMATED»

The comment after the capacity gives a method for
determining the approximate capacity of the dataset.
Most detail datasets have a capacity that is related to
the master datasets having paths into the detail
datasets. These relationships should be described in the
capacity comment.

By doing a \L"CAPACITY", it is possible to obtain

quickly an index of the capacity of each dataset in the
schema. Because the capacity is always the last line of
each dataset declaration, doing a \L"M-CUSTOMER"
will identify the beginning and ending declarations for
the M-CUSTOMER dataset. The following example
lists the capacity of the datasets in the STORE
database:

:RUN QEDIT.PUB.ROBELLE
/LQ STOREOO.DB "CAPACITY:"
CAPACITY: 211; «M-CUSTOMER,PRIME; ESTIMATED»
CAPACITY: 307; «M-PRODUCT;PRIME; ESTIMATED»
CAPACITY: 211; «M-SUPPLIER,PRIME; ESTIMATED»
CAPACITY: 450; «D-INVENTORY; 2 * CAP(M-SUPPLIER»>
CAPACITY: 600; «D-SALES; 3 * CAP(M-CUSTOMER»>

Final Checkout

Mer the schema is entered into a file, it must be

:RUN through the schema processor, and any typing
mistakes should be eliminated:

:FILE DBSTEXT=STOREOO.DB
:FILE DBSLIST;DEV=LP;CCTL
:RUN DBSCHEMA.PUB.SYS;PARM=3

The table produced at the end of the schema should
be studied. The following anomalies should be checked:

1. Large-capacity master datasets with a blocking
factor less than four (either' increase the
BLOCKMAX size to 1024, or change the master
dataset to a detail dataset with an automatic mas­
ter dataset).

2. The blocksize is too small (IMAGE optimizes the
blocking factor to minimize disc space); use RE­
BLOCK of ADAGER to increase the blocking fac­
tor. The blocksize of all dataset blocks should be

as close to the BLOCKMAX size as possible.
3. Are there more than two paths into a detail

dataset? If there are, can some of them be deleted?

Establishing the Programming Context

By using IMAGE, the COBOL programmer's job
should be simplified, since all access to the database is
done through the well-defined IMAGE procedures.
Like most powerful tools, IMAGE (and COBOL) can
be abused by the unsuspecting user.

Rule: Define a standard IMAGE communication area

·4-4-11

and put this area in the COPYLIB.

The starting point for using IMAGE is the standard
parameter area, which includes the IMAGE status area,

the various access modes used, a variable for the
database password, and a number of utility variables
which are needed when using IMAGE. For example:

05 DB-ALL-LIST PIC X(2) VALUE "@ ft.

05 DB-SAME-LIST PIC X(2) VALUE "* "
05 DB-NULL-LIST PIC S9(4) COMP VALUE o.
05 DB-DUMMY-ARG PIC S9 (4) .
05 DB-PASSWORD PIC X(8) .
05 DB-MODE1 PIC S9(4) COMP VALUE 1.
05 DB-KEYED-READ PIC S9(4) COMP VALUE 7.
05 DB-STATUS-AREA.

10 DB-COND-WORD PIC S9(4) COMP.
88 DB-STAT-OK VALUE ZEROS.
88 DB-END-OF-CHAIN VALUE 15.
88 DB-BEGIN-OF-CHAIN VALUE 14.
88 DB-NO-ENTRY VALUE 17 .
88 DB-END-FILE VALUE 11 .
88 DB-BEGIN-FILE VALUE 10.

10 DB-STAT2 PIC S9(4) COMP.
10 DB-STAT3-4 PIC S9(9) COMP.
10 DB-CHAIN-LENGTH PIC S9(9) CaMP.

88 DB-EMPTY-CHAIN VALUE ZEROS.
10 DB-STAT7-8 PIC 39(9) CaMP.
10 DB-STAT9-10 PIC S9(9) COMP.

Rule: Establish naming standards for all variables as­
sociated with IMAGE databases.

Standard prefixes must be used on all database var­
iables, including the database, dataset, data field and
dataset buffer declarations. A suggestion is to start all

01 DATASET-M-PRODUCT.

05 DB-SET~M-PRODUCT

05 DB-BUFFER-M-PRODUCT.
10 MPR-PRODUCT-DESC
10 MPR-PRODUCT-NO

Field Lists

The selection of the type of field lists depends on the
answer to this question: Can your total application be
recompiled in a weekend?

Rule: Use "@" field list is you can recompile in a
weekend (prepare a COPYLIB member for each
dataset); use u*" field list otherwise and hire a
DBA!

If the answer to the question is "yes," the at ("@")
field list and full buffer declarations should be used
when accessing the database. This method requires that
all dataset buffers be declared and added to the
COPYLIB. If a dataset changes, the buffer declaration
must be changed in the COPYLIB, and all affected pro­
grams must be recompiled. The simplest solution is to
recompile the complete application system whenever a
dataset changes.

4-4-12

database variables with "DB-", all data,set names with
"DB-SET-", and all database buffer declarations with
"DB-BUFFER-". Data field names are prefIXed by the
special dataset prefix (which the designer established in
the schema), so that each field has a unique name. For
example:

PIC X(10) VALUE "M-PRODUCT;".

PIC X(20).
PIC 9(8).

There must be two complete COPYLIBs available for
every application. One is for production, and one is for
development.

Rule: Use a test COPYLIB during development.
Double-check that all existing programs will re­

, compile and :RUN correctly before moving the
new COPYLIB into production!

When a database is restructured, the buffer decla­
rations are fIrst changed in the development COPYLIB.
When the new database is put into production, the de­
velopment COPYLIB is also moved into production, as
well as any programs that required modification or re­
compilation.

If the application system is so large that it cannot be
recompiled in a weekend, it should use partial field lists
and the same ("*") field list. This requires that an appli­
cation program declare a matching field list and buffer

"---

area for each dataset that it accesses. The field list de­
clares the minimum subset of the dataset that the appli­
cation program needs.

Because partial field lists are more expensive at run
time, the applications programmer must code a one­
time call to DBGET for every dataset that the applica­
tion program will use. The same ("*") field list is used
on all subsequent DBGET calls. Note that this can
cause problems if a common subroutine is called that
uses one of the same datasets, but with a different field
list.

In order to maintain an application with partial field
lists, there must be a way to cross reference every
program/dataset relationship. When a dataset changes,
the cross reference system is checked to see which pro­
grams use the dataset. Each of these programs must be
examined to see if it is affected by the change to the

01 DB-BUFFER-M-CUSTOMER.
05 MCS-CITY
05 MCS-CREDIT-RATING
05 MCS-CUST-ACCOUNT
05 MCS-CUST-STATUS

88 MCS-CUST-ADVANCE
88 MCS-CUST-CURRENT
88 MCS-CUST-ARREARS
88 MCS-CUST-INACTIVE

05- MCS-NAME-FIRST
05 MCS-NAME-LAST
05 MCS-STATE-CODE
05 MCS-STREET-ADDRESS
05 MCS-ZIP-CODE.

10 MCS-ZIP-CODE-1
10 MCS-ZIP-CODE-2

Repeated items should be declared with an occurs
clause, or sub-divided, whichever the application re­
quires. For example, a cost field may be declared as a
repeated item ~epresenting fIXed, variable, overhead,

dataset. It is not enough to fix the COPYLIB and re­
compile, since the field declarations are in the individual
so~rce files, not in the COPYLIB fIle.

Dataset Buffers

The database designer assigns a short, unique prefIX
to each dataset of each database. These prefixes are
used in the declaration of the database buffers for the
datasets. In addition, dataset buffer declarations must
include all 88-level definitions for flags, and sub­
definitions for IMAGE fields that are logically sub­
divided within the application.

The following is the full buffer declaration for the
M-CUSTOMER dataset of the STORE database. Note
that each variable is prefix~d with "MCS-", which is the
prefiX that was assigned by the database designer..

PIC X(12) .
PIC S9(4)V9(5) COMP.
PIC 9(10).
PIC X(2).

- VALUE "10".
VALUE "20".
VALUE "30".
VALUE "40".
PIC X(10).
PIC X(16).
PIC X(2).
PIC X(25) OCCURS 2.

PIC X(3).
PIC X(3).

and labor costs. Rather than declare the costs field as a
repeated item in the actual buffer declaration-, sub­
divide it into the four costs. For example, assume a
declaration for costs such as:

COSTS, 4J2; «Cost of an item. Each cost has two
decimal points and the cost item
is broken down as follows:
COSTS(1) = Variable costs
COSTS(2) = Fixed costs
COSTS(3) = Overhead costs
COSTS(4) = Labour costs

»

Assuming that the COSTS field was declared in the
D-INVENTORY dataset, which has a prefix of "DIN",

01 DB-BUFFER-D-INVENTORY.
05 DIN-COSTS.

10 DIN-VARIABLE-COSTS
10 DIN-FIXED-COSTS

10 DIN-OVERHEAD-COSTS
10 DIN-LABOUR-COSTS

the following buffer declaration would be used for the
COSTS field:

PIC S9(1)V9(2) CaMP.
PIC S9(1)V9(2) CaMP.

IMAGE/COBOL: Practical Guidelines

PIC S9(1)V9(2) COMP.
PIC S9(7)V9(2) CaMP.

4-4-13

Rule: Prepare sample COBOL calls to IMAGE in
source files, with one IMAGE call per file.

The sample IMAGE calls should be organized with
one parameter per line. When programming, these
template IMAGE calls must be copied into the COBOL
program and modified with the database name, dataset
name, and any other necessary parameters.

General purpose SECTIONS, declared in the

COPYLIB, should NOT be used for the IMAGE calls.
These SECTIONS obscure the meaning of the COBOL
code. In addition, they can cause unnecessary branches
across segment boundaries.

A scheme for handling fatal IMAGE errors must be
declared, and the sample IMPAGE calls should refer to
the fatal-error section. Here is a sample call to the
IMAGE routine DBFIND:

CALL "DBFIND" USING DB-
DB-SET­
DB-MODE1
DB-STATUS-AREA
DB-KEY­
DB-ARG-

IF NOT DB-STAT-OK AND NOT DB-NO-ENTRY THEN
PERFORM 99-FATAL-ERROR.

The fatal-error section (99-FATAL-ERROR) should
call DBEXPLAIN. It should also cause the program to
abort, and the system job-control word should be set to
a fatal state. Note that just using STOP RUN Will not

set the system job-control word to a fatal state. The
following is an example of a fatal-error section. The
routine MISQUIT calls the QUIT intrinsic, which
causes the pr~gram to abort.

$PAGE "[99] FATAL ERROR"
*******************************••*********************1*1**1**
* THIS SECTION DOES THE FOLLOWING: *
* 1. CALLS DBEXPLAIN WITH THE IMAGE STATUS AREA. *
* 2. CALLS MISQUIT TO ABORT THE PROGRAM. *
* ** NOTE: THIS MODULE MUST ONLY BE CALLED AFTER A FATAL ERROR'
* HAS OCCUR.ED WHEN CALLING AN IMAGE ROUTINE. *
* ****I*I1***I**I I I I I I 1.*****I **I***1* *I I*******I****I I*I****I*I I*

99-FATAL-ERROR SECTION.

CALL "DBEXPLAIN" USING DB-STATUS-AREA.

CALL "MISQUIT" USING DB-COND-WORD.

99-FATAL-ERROR-EXIT. EXIT.

Rule: Avoid tricky data structures, especially if they
cannot be easily retrieved arid displayed with the
available tools (QUERY, AQ, PROTOS, QUIZ,
etc.).

Some examples of data structures to avoid: (1) julian
dates; (2) bit maps; (3) alternate record structures (RE­
DEFINES); (4) implied and composite keys/paths; and'
(5) implied description structures. The more compli­
cated the database structure, the more .likely. it is that
programming or system errors willbe created as a result
of the database design.

Database Maintenance

There are a number of steps that the database admin­
istrator must take in order to guarantee that a database

4-4-14

remains clean after it is implemented. A number of
standard programs must be run against each production
database at least once a month; others must be run
daily.

Backup

A number of other people have commented on the
backup problem of databases,12 but the problem is im­
portant enough to deserve comment again. Most
HP3000 shops do a full backup once a week and a par­
tial backup once a day. This is normally sufficient for
most purposes (e.g., source fdes, PUB.SYS, utilities),
but it is not adequate for most IMAGE applications. An ~
IMAGE database consists of several interrelated fdes. 7
A database that is missing one dataset is nearly useless.

Rule: EVERY backup tape should include ALL of the

files of ALL of the database that are used in
day-to-day applications.

There should be an easy way to store complete
databases onto partial backup tapes, without having to
do selective stores. The BACKUP program (available
from the San Antonio Swap Tape) helps solve this prob­
lem. The BACKUP program is run once a day against
every production database. It accepts the database
name as input and causes the last-modified date to be
changed to today's date on every file of the database.
This causes the entire database to be included on the
daily partial b.ackup.

In addition, the BACKUP program prints a listing
with the following information: the dataset name, the
current number of ~ntries in the dataset, and the capac­
ity of the dataset. Further, the BACKUP program ex­
amines the relationship between the number of entries
and the capacity of each dataset, and prints a warning if
it thinks the capacity is too small. This listing must be
checked daily, in order to have time to expand the
capacity of a dataset before it is exceeded.

Measuring Database Performance (DBLOADNG)

The penormance of a given database will change as
the database matures.

Rule: The performance of every application database
should be' measured at least once a month.

There is one program that will measure, in great detail,
the performance of an IMAGE database. This program
is DBLOADNG,I-12 and it is available from the HPIUG
contributed library.

DBLOADNG examines the performance of both
master and detail datasets, and reports a large number
of statistics. The most important are the perceqtage of
secondaries in master datasets, and the elongation of
detail datasets.

If there are a large number of secondaries in master
datasets, either the hashing algorithm is not working
well, or the capacity of the dataset needs to be in­
creased. Note that the hashing performance of a key,
such as customer number, can be improved by adding a
check digit'to every customer number.

The "elongation" of a detail dataset indicates whether
logically related records are being stored physically ad­
jacent. For primary paths, the elongation factor should
be very small (l=perfect), since IMAGE tries to place
records of a primary-path in the same disc block (see
the DBLOADNG documentation and Optimizing IM­
AGE: An Introduction. 1

If the performance of detail datasets is very poor be­
cause logically related records have been spread around
the disc, there is only one solution: RELOAD the
database using DBUNLOAD/DBLOAD. This will
cause the detail dataset to be organized along the pri­
mary path, and could result in significant performance
improvements.

Logical Database Maintenance

During the design phase of an IMAGE database,
many logical assumptions are made about the data in
the database. Some assumptions might be: (1) status
fields, which are two characters long in a detail dataset,
but have a long description in a master dataset; (2) keys
that are stored in detail datasets, but do not have an
explicit path into a master dataset; and (3) IMAGE
chains that are limited to a specific length (e.g., one
address per customer) or a range of lengths (e.g., no
more than 10 items per order).

Rule: When designing a database, keep a list oflogical
assumptions.

These assumptions are dangerous, because they must
be maintained by the application software, n~t by IM­
AGE.

Rule: A' program to check logical assumptions should
be implemented for every application system.

This program is often called DBREPORT, and its
purpose is to check these logical assumptions.
DBREPORT is often left until last, and often never im­
plemented. This is unfortunate, since the DBREPORT
program is the most important program in an applica­
tion system.

In Alfredo Rego's paper, DATABASE THERAPY: A
practitioner's experiences 12, he describes periodic
checkups for a database. The following is taken from his
paper:

Please notice that a good diagnosis system
must be nasty and sadistic by nature. It has as
its primary objective to FIND ERRORS, not
to certify a system as being error-free (there is
no such system anyway!). A good diagnosis
system must also be extremely patient and
humble, since it will fail many times. Please
keep in mind that there is a psychological in­
version in effect here: A good diagnosis sys­
tem fails if it does not detect any errors. And
most of the time it will not detect any errors,
since we hope and assume that the entity
being tested is reasonably error-free."12

The DBREPORT program must be designed with Al­
fredo's philosophy in mind. It should check EVERY
dataset in an application, and it should check EVERY
r~cord for logical consistency. This includes simple
checks to see that every field in every dataset is within a
reasonable limit. Examples of this are status fields that
take on values from 1 to 10, but which are implemented
as Jl. A Jl variable can take on values from - 32768 to
+32767, which is certainly a larger range than 1 to 10.

The DBREPORT program must check all logical
dataset relationships. What happens if every customer
record has its address in a detail dataset? If the system
crashes while the user is adding a new customer, the
address record may not be added. DBREPORT must

4-4-15

check for these types of relationships (what will your
billing program do when it can't find an address?).

ADAGER

Rule: If an application system is going to depend on
IMAGE, ADAGER is a requirement, not an op­
tion.

ApAGER provides all of the restructuring facilities
necessary to maintain IMAGE databases; these
transformations cannot be accoplished with
DBLOADIDBUNLOAD. Without ADAGER, nu~er­

ous conversion programs must be written.

While DBLOAD/DBUNLOAD can be used for some
simple database restructuring, it is prone to err. AD­
AGER is designed to be friendly to the end user, but,
more importantly, ADAGER guides the user through
every phase of the database restructuring process.

ADAGER provides a powerful facility, but it can also
be misused by the unsuspecting. In order to make AD­
AGER changes effectively, test them first on a devel­
opment database. Following changes to the database
structure, the application programs must be recompiled
(with buffers changed in the development COPYLIB),
and each program must be tested against the new
database.

Currently, ADAGER cannot be run from batch (at
least, not conveniently), nor does it produce a hard­
copy audit trail of the changes to a database.

Rule: ADAGER must be run on a printing terminal.

Keep the listing of the ADAGER changes to the test
database. Use it to verify that the changes to the prod­
uction database match exactly the changes to the test
database. After changing the production database,
move the development COPYLIB into production and
recompile all affected programs. File the hard-copy list-

4-4-16

ing of the ADAGER changes and keep it for future ref­
erence.

Because the schema is also used as the data dictio­
nary, it must be modified to indicate the new database
design. ADAGER's SCHEMA function can be used to
double check that all schema changes were made prop­
erly. When modifying the database schema, be sure to
apply all of the rules in the Schema section of this pa­
per.

BIBLIOGRAPHY
To gain a complete understanding of IMAGE, study the references

in this bibliography. A suggested order of study is: References 6, 7, 9,
10 and 11 for more ideas on database design; S for some hints on
common programming errors; arid 1, 3, 8, 12 and 13 for notes on
optimizing IMAGE databases and application systems in general.
Reference 1 is an excellent introduction to database optimization, and
it includes a discussion of the DBLOADNG program.
IRick Bergquist, Optimizing IMAGE.' An Introduction, HPGSUG
1980 San Jose Proceedings.

IGerald W. Davidson, !mage Locking and Application Design, Jour­
nal of the HPGSUG, Vol. IV, No.1.

3Robert M. Green, Optimizing On-Line Programs, Technical Report,
second edition, Robelle Consulting Ltd.

4Robert M. Green, SPLAlDS2 Software Package, contains date edit­
ing routine (SUPRDATE) available from Robelle Consulting Ltd.

5Robert M. Green, Common Programming Errors With IMAGE/
3000, Journal of the HPOSUG, Vol. I, No.4.

8Hewlett-Packard, IMAGE/3000 Reference Manual.
~Karl H. Kiefer, Data Base Design - Polishing Your Image,
HPGSUG 1981 Orlando Proceedings.

8Jim Kramer, Saving the Precious Resource - Disc Accesses,
HPGSUG 1981 Orlando Proceedings. .

9Ken Lessey, On Line System Design and Development, HPGSUG
198·1 Orlando Proceedings.

lOBrian Mullen, Hiding Data Structures in Program Modules,
HPGSUG 1980 San Jose Proceedings.

llAlfredo Rego, Design and Maintenance Criteria for IMAGE/3000,
Journal of the HPGSUG, Vol. Ill, No.4.

12Alfredo Rego, DATABASE THERAPY: A practitioner's experienc­
es, HPGSUG 1981 Orlando Proceedings.

13Bernadette Reiter, Performance Optimization for IMAGE,
HPGSUG 1980 San Jose Proceedings.

Using COBOL, VIEW and IMAGE
A Practical Structured

Interface for the Programmer
Peter Somers
Cape Data, Inc.

INTRODUCTION

VIEW or V/3000, Hewlett-Packard's screen handler
offers a convenient and versatile method of data collec­
tion. To fully utilize the capabilities of VIEW requires
the application programmer to go beyond the routines
available using the ENTRY program. Ideally the data
entry routine will include complete editing including
IMAGE data base checking and comprehensive error
messages. The routine should allow the programmer to
quickly "plug in" new applications and easily perform
maintenance. Additionally the program will provide
utility routines for data confirmation, screen refreshing,
paging,' etc.

At our shop, Cape Data, we developed a general pur­
pose VIEW and IMAGE interface program. This pro­
gram written in structured COBOL allows new applica­
tions to go up, with custom editing, in a fraction of the
time previously required. The following discussion will
cover this interface routine and its application. I will
assume that the user has basic knowledge of both
VIEW and COBOL.

TABLE OF CONTENTS
1. Screen Design Tips

A'. Err~r Messages
B. VIEW Editing
C. Screen Titles

2. Function Keys
3. COBOL Application Program

A. General
B. Data Division Considerations
C. Main Program Loop
D. Program Text

4. SPL Forced Read Subroutine

1. Screen Design

When designing your VIEW input screens using
FORMSPEC, the following techniques will help you get
the most out of VIEW.

A. Error Message Fields: Add error message fields
during form design wherever needed. Place the error
message field next to or under the corresponding data
field. The error message fields will remain invisible un-

J

less your program writes a message to the field. Create
the field with an enhancement of B (blink) and a field
type ofD (display) and an initial value of spaces (Fig. 1,
Field 3). The last 24th line of the screen is reserved for
program error messages.

B. VIEW Editing: As a general rule let VIEW do as
much editing as possible. On numeric fields let VIEW
zero fill and test for numeric input during the FIELD
portion of VIEW's editing. On alpha-numeric input
fields allow VIEW to leftjustify the data and optionally
upshift lower case characters (Fig. 1, Field 2).

C. Title.' We reserve a Title area on all forms using
Field # 1. The title field is initialized by VIEW to a save
field value. The VIEW forms file can contain the title
and any other constants in SAVE FIELDS.

Function Keys

When using a formatted screen program with a
Hewlett-Packard 2640-2645 type terminal, a special set
of function keys are used by the programs. The 8 func­
tion keys are located on the upper right hand side of the
terminal's keyboard. They are labeled with blue letters
f1 through 18 in 2 rows. A blank Hewlett-Packard
template labels the function keys (#7120-5525). On the
2620 family of te~minals, the keys are labeled program­
matically.

•SKIP CLEAR HELP REFRESH

[£1] 1,"-£_2_I~[!4 I

MAIN
CONFIRM NEXT MENU EXIT

~1~~I:...--f_8_I
Function Keys

The function keys are used as follows in the interface
program: /1 SKIP - This key will cause the cursor to

4 -12-1

skip to the next block of data. This is useful if you have
a number of fields to skip. The tab key only skips a field
at a time where the SKIP key will skip to the next block
of data.

f2 CLEAR (RESET) - This key causes the screen to
clear all fields and set the initial field values (usually
blanks). This key is useful if you have created a mess on
the screen and want to start over again.

/3 HELP - This key will cause the program to dis­
play an instruction screen. A special set of instructions
can be displayed relating to the particular form on the
screen when the HELP key was pushed. When you
have finished reading the HELP instructions, push the
ENTER key to return to the last form or the MENU (fi)
KEY to return to the MAIN MENU.

/4 REFRESH - This key resets the terminal, erases
the screen and brings up a fresh copy of the form. If you
loose your form due to a power or line failure or the
temlinal hangs up, the REFRESH KEY will restore the
terminal to normal operation.

/5 CONFIRM - This key is used when you have
changed a record in the EDIT mode, or if the program
wants confirmation that the data on the screen is ac­
ceptable. The program will prompt with a message at
the bottom of the screen when a CONFIRM is desired.
Before a CONFIRM is requested the data must pass all
normal program edits.

Note:
The terminal normally does not read data when the

function keys are pushed. If you need to read the screen
contents after a function key has been pushed call the
IMMVREADFIELD Subroutine to force a read.

/6 NEXT - This key will cause the program to go to
the NEXT form or next step.

f7 MAIN MENU - This key causes the program to
display the MAIN MENU SELECTION form. Use this
key to change from one program mode to' another.

/8 EXIT - This key ends the program.

3. COBOL Application Program

A. General: The attached COBOL program has suffi­
cient structure to allow the programmer to readily plug
in applications without having to spend additional time
coding VIEW procedures. At Cape Data, I have used
this program layout to do extensive data entry routines
which edit against the IMAGE data base, and provide
detailed error messages and help routines. The program
procedure division consists of 3 parts:

1. Opening
2. Main Loop
3. Closing

The program contains routines which call the VIEW
procedures listed in Fig. 7. The program also contains
special VIEW data fields in working storage.

1. Opening - The program opens the terminal, forms
file, the data base and displays the MENU screen.

4-12-2

2. Main Loop - After opening the program performs
the Main Loop until either the 18 (exit) function key is
pushed, or the program encounters a fatal error. The
Main Loop consists of 3 parts:

a. Read Keys and Screen
b. Edit Input
c. Process Input (if valid) and Refresh Screen

3. Closing - The program closes the terminal ftle,
forms file and data- base.

B. Program Data Division Considerations: The work­
ing storage·area contains the buffers needed by the var­
ious VIEW procedures used. Every VIEW procedure
called uses the VIEW-COM buffer (Fig. 2). Most of the
fields' useful to the programmer have self-explanatory
names. Remember the V-Language field must be set to
zero for a COBOL program.

The data area passed between the program and
VIEW (using VGETBUFFER and VPUTBUFFER
calls) is defined as DATA-BUF (Fig. 3). This Buffer is
redefined for each screen layout. Note the title field and
error message fields.

The program uses a forms table which contains the
MENU selection character, form number, next form
number, and help form number for each routine. When
the user makes a selection from the Screen Menu, the
program scans this table to find the corresponding sc­
reen references (Fig. 4). The program picks up the Form
Name corresponding to the Screen Number from the
Form Name Table (Fig. 6). Additional routines and
forms can quickly be added by making additional en­
tries in the tables.

3. Program Main Loop

The program goes to the MAIN LOOP and remains
there until the user pushes the 18 (exit) function key.
The program performs a terminal read (VREAD­
FIELDS) each time either a function key or the enter
key is depressed. The program then tests to see if any
function keys were pushed (VIEW returns the key
number pushed into the last key field of the VIEW­
COM buffer).

If the ENTER key was pushed (key zero) the pro­
gram will perform the edit routine corresponding to the
screen routine selected. Within each edit routine the
program does the following steps (Fig. 5):

1. Zeros the field error array and set the field count.
2. Petforms VIEW edits (VFIELDEDITS).
3. Get the data buffer from VIEW (VGETBUFFER)
4. Clear the error message fields.
5. Performs any user defined edits (if an error is de­

tected, a flag is set in the field error array and a
message is moved to the appropriate error field)

6. The data area is sent back to VIEW (VPUTBUF­
FER)

7. Perform VIEW edits again (VFIELDEDITS). This
zero fills and justifies data.

8. The field error array is scanned and any error
fields are set to blink (VSETERROR).

9. The screen is updated and displayed (VSHOW­
FORM).r--------

4. SPL Forced Read Subroutine

If the routine passes all edits, the program then goes
to the corresponding valid record routine. If an error
exists or a function key was depressed, the program will
do the appropriate error and screen enhancing routines.

1 SCONTROL SUuFROGRA~

2 « KEPT AS i~MR[AD »
3 « THIS ~OUTINE IS CALLED TO FORCE »
4 «AN IMMEDIATE READ (RE-R£AD FOR DATA) »
5 «IN PARTICULAR CASES WHERE THE USE~ »
6 «USlD A SOFT KEY TO INDICATE ACTIONS »
7 «HE/SHE ~ANTS PERFORMED WITH THE'DATA »
8 « THAT HAS BEEN ENTER~O ON THE SCREEN »
9 « SINCr THE HITTING OF A SOFT KEY DOES »

_. '10 «NOT TRANSFER TtlE ACTUAL BUFFER DATA »
11 «A CALL TO THIS ROUTINE OR ONE LI~[»
12 «IT IS NEEDLO TO GET THE SCREEN DATA »

_. ·13 «INTO THE PR OGRAM WHERE IT CA N BE »
'1~ «WORKED UPON »
15 « IN COBOL, THE CAll WOULO BE »

'-'-16· _... « CAllL "IKMVREAO.FIELDS"· USIN~ VCONT »
11 «WITH VCONT BEING·THE V/JOOO CONTROL »
18 «A~EA)~

---19 « IN THE USER .PROGRAM, THIS SHOULD BE »
··20 «TREATED lXACTLY AS IF IT HAD BEEN A »
:21 «CAll TO ·VREADFIELDS· »

-·22 . -'BEGIN PROCF"DURE IM~VREAOFIELDS.(CONT);

'23 . INTEGER ARRAY CONT;
·24 BEGIN

- 25 PROCEDURE VREADFIELOS(C);
26 INTEGER ARRAY C;
21 OPTION EXTERNAL;

--'-28 CONT(55')G(13:2):='~li

. 29 VREAOFIELDSCCONT);
30 CONT(S5).(13:2':=O;

.-- 31 END;
32 END.

4-12-3

FO~~SPEC V~RSl~~ A.UU.01
F 0 ~ ~ S F 1L£: ~ U0 C; F0 ~ ,., • UEVE LOP • F f) Eo ~ l L np

FO~'1: VE\J 1)O"<_')AT4
~ EP£ ATOP 1 J 0 t~: N

NEXT FOR~ ,OPTION: C
NEXT FOQM: aUO~AINT_HELP

VENDOR MASTER SPECIFICATO~S, INP~T & EDITING
********* ********* ********* ********* *t*_.**** ********* ********* **********

11lL~ ~~~ ~ -~ ~ ~ -- ~~ - __
V END 0 R ~ ~ AS' E H I N FOR MAT I 0 ~

VE~DOR NUMtSER

VE~DOR'S NA~E ~t~~_~!~~~ ~ ~ ~ _
VENDOR ADDRESS ~t~Q_!~i- p __

~~~-AQQi~ ~. ~ ~__
VE~DOR'S CITY ~t~Q-'lll___________ STATE: 11· ZIPI ~-11e_~

PAY~ENT ADD~ESS e_!Q~Rt~~- ~ _
e_!~QaEa~~ _

I PAV~EN' CIT1 f_tlll__- - STATE: ea lIP: e-11e --

(PAYMENT ADD~ESS USED ONLY IF 10U ~AN' ~AY~E~TS GO TO A DIFFkRERNT AqONESS)

VENDOR'S P~ONE NlIM8ER: (11:.-) tlc.·et!Q~

IO~~ CODE 1~ VENDOR CODE ~, VENDOR STArus ~l.
~~~t.tl!_- ~ --- 11!lua_tB!--__~•• ~-

********* t·t******* ********* ********* ttt****** ********* ********* **********

FJELDI TITLE
~U~I 1 LENI b~ ~A~E: TITLE
INIT VALUEI

*** PROCESSING SPECIFICATIONS ***
INIT
SET TO SFTITLE

FIELDI V.NBR
NUMa ~ LENa & ~A~EI V_N8R
I~IT VAL.UE:

*** PM 0CESSING SPEe J FIe ATJ0 j~ 5 ***
FIELD
JUSTIFY ~I~"'l

FILL LEAOI~G "0"

E~~I NO~E ,'YPEI 0 DTY~EI C~AR

l~~1 1 FTYPE: R OTYPEI OJG

FIELO: VE~D_E~~

NlJ\1: 3 LEN: 2&
INIT VALUE:

F' I EL(): vt .,~ D_.~ AME

~u~: ~ L(~: 3u
IN!T VALUE:

Figure 1

E 'J ~ : t

FTYPE:» OTYPE: C~A~

FTYPE: ~ f)TYfJE: C"'A~

4-12-4

b.4
b.5 01 v IE,,, - C (J l'.. i •
h.b " 05 v.. ~; r A I LJ S PIC Sq l (~) COtvtP VALUE If:.~U.

6.1 U':) V"L A I'.JG lJ~ C;E tJJC Stl(tI) COMP VALUE ZERO.,
b.~ 05 V.. CU ,'vl- A~ t:. A.. LE'\J PIC ~9(£l) CO~p ,VALUE 60.
b.q 05 FILLt.~ PIC Sq ('"&) Cf)"1P VALUE ZE~().

7 O~ V I E~~ - r~ {,) 0 E ~IC 59(4) CO\1P "At fJE ZERO.
1 • 1 ()~ LAST .. t<EY PIC ~~(~) CO"1P VAl.• lJE lERO.
I .2 OS V.. ;\J 1.1.v1- E~ ~ 5 PIC 59(4) COM? VALlJE ZERO.
1.3 (j:J V .,,,~ J .'J Dar~ .. l':>\J H PIc 59(4) COMP VAl.UE ZERll.
1.4 05 FILLt~ t'IC S'q (4 J co~~p V41..tJE lERO.
I .5 OS ~tLLt.K fJl.C SC)f.4) C()~P VALUE ZfRO.
'I." 05 v.. Cf- 1\1 A~E IJIC X(1.S) VALUE SPACES.
7.7 o~ FILLf:t-t PIC x VALU'E St·iA CES.
7.R o5 .v.. j\J F" I~~ A \·1 E PIC)((15) VALUE SPACES.
7.9 0:' Fll..Lf:~ PIC x VALUE SPACES.
8 ()~ v-~f:Pl:AJ-OPT pre Sq(~l COMP VALUE ZE~ll.

8.1 dS V-NF-UPT PIC S4(lJ) co~p VALUE ZERO.
8.2 ...(J ~ V-N~~-L[NES PIC 59(4) COMP VALUE ZERO.
B.3 u':) V-Ut3

'
JF-LEN ~IC 59(<<.) co~p VALUE ZE~O.

13.4 u~ fILLt.~ PIC SQ(4) CO:\1P VALUE ZERO.
8.5 05 FILLE~ PIC 59(4) COMP VALUE ZERO.
8.& OS -V-DELE TE-f:LAG PIC Sq(tI) COMP VALIJE ZERO.
8.1 OS V·SHO~·CONTROL PIC SQ(4) COMP VALUE ZERO.
8.8 05 ~'lLLEH PIC sq(q) co~p VAL lJE ZERO.
6.9 05 FILLf.~ PIC 59(4) CQMP VALUE ZERO.
q C)!) FILLER PIC SQ(4) COMP VALIJE ZERO.
'l.t os F1LLe:~ PIC 59(4) co~p VALUE lERO.
9.2 OS FILl..E~ PIC SQ(4) COMP VALUE ZERO.
9.3 o~ FILL.t:~ PIC S9t4) COMP VAl.UE ZERO.
9.4 0) FlL.LE~ PIC S9(4) CO\1P VALUE ZERO.
CJ.5 0" FILL.ER f-Irc 59(4) co~p VALUE ZERO.
~.ft O~ V·NU~~·RECS PIC SQl&) C(l~P VALlJE ZERO.
CJ.7 05 V·~EC·,\J~R PIC SCJ(b) co~p VALUE ZERO.
q.B 01) FILLE~ PIC S') (".) CO"1P VALLIE ZERO.
q.9 05 F!LLc.w PIC SQ(4l COMpo VALue' ZERO.

10 O~ V·1ERM-FILE-NtlR PIC 99(4J CO'1P VALtJE ZERO.
10. 1 05 Fll.L.t::R PIC SCJ(4) COMP VALUE ZERU.
10.2 05 F·lI.LE~ PIC SQ(4) CtlMP VALUE lEAO.
10.3 os FILLE~ ~IC Sq (II) co~p VAL.UE ZERO.
10.4 05 FILLE~ ~Ic SQ(4) CQMP VAllJE ZERO,
10.15 05 FILLfR PIC SQ(4) COMP VALUE ZERO.
10.& 05 FILLE~ PIC, 59(4) co~p VALUE ZERO.
10.7 05 F 1LLtf< PIC 59(4) COMP VALUE ZERO.
lO.8 05 FILLf:W PIC SQ(4) COMP VALUE ZERO.
1t). q OS FILLt:~ PIC S9(4) COMP VALUE ZERO.
11 05 FILLER PIC 59(4) CQ\1P VALlIE ZERO.
1 t • 1 05 FILLEH PIc SQ(4) CQMP VALUE ZERO.
11.2

Figure 2

4 -12-5

01 VE~D-IN REOEFINES
O~ FIllER
o5 Vt:. NO -1'1 dR
05 Vt"'D-NBQ-E~R

05 Vt.NO-N·A'4E
O~ S-AUO~E5S'

05 S··AO()~ESS2

os S-ClI'V
05 5-sTArE

.05 ::i-LIt->
O:i P-AL)O~ES5

05 P-AOORESS2
05 P-CITY
05 P-STATE
05 P-ZIP
05 JlHONE.-NBR.

10 PHONE-AC
to PHONE-EX
10 PHONE-,\JO

05 FLAG-109CJ
05 VEt\lO-CODE
05 'VtNOOR-S TATUS
05 VEND-CODE-ERR
05,vENO-STATUS-ERR

016'JDG-IN
05 FILL.eR
o5 Ace 1" --N 8 H '

. 05 8tJDG-r~8R-ERR

05 aUOG-NY-AMT

1.s.3
1~.4

\3.':;
13.6
1 .5. ,
1~.8

13.9
I 4
14.1
tq.2
14.5
lq.q
14.5
14.&
lq.7
1~.6

lq.9
15
15.1
15.2
1S·. 3
15.4
15.5
15.&
15.1
15.8
15.9
1&
1&.1
16.2
16 •.~
1&.4
16.5
lb~6

1&.7
1&.8
1&.9
17
17 • t .
11.2

0.1 OA rA-dUF.
(J~ ·FILLE~

I)') UAfA-!"J

01 MENU-OATA
05 FILL£~

()~ Sl:LEer-IN
o'j ~ELE.Cl-tRR

foJJC X(b~J.

PIC· rJ..(4U3).

~EDEFrNES DAlA-liUF.
PIC X(&q).
PIC X.

P l' C .x (~ b) •

·f.,> A1 A.. 8 UF •
PIC 'X (6 q) •
t) Ie')((b) •

PIC X(i'.6).
folIC)«30).
PIC X(30).
PIC·, X (30) •
fJIC x(20J.
~.tC X(2).
~IC }((lO).
flC x(~O).

PIC X(~~·O) •
PIC)«(20).

PIC X(21.
PIC X(lO) .•

PIC)((3).
PIC XC)).
PIC)((4).
PIC)((2).
PIC X(2).
PIC X(2).
PIC X(2&l.
PIC)((2f,).

REDEFINES DATA~BUF.

PIC X(&9).
PIC)((20).
PIC X(2&).
PIC X·(13).

4-12-6

Figure 3

1~ o 1 fU~\1-IA';Lt...

19. J O~ fo Ut<i'•• - J •
19.2 J U f-' I LLE.~ PIC X VALUE II l".
t q. ~ 10 F-iLLt~ PIC l}(lJ) COMp VALUE t •

".,
19.q 1U fILL(K PIC q (I~) COMP VALuE 1 •
19.5 1U FILLE~ PIC q(~) C01\1.1 VALUE 14.
19.& 05 F OR~l-2.
lq.7 1 0 FILLt::.~ PIC X VALUE. II A.'.
lq.8 10 FILLt.~ PIC 9(Q) COMP VALUE 2.
19.q 10 FILLER PIC 9(Q) co~~p VALUE 1 •
20 10 FILLER PIC q(4) COMP VALUE 13.
20.1 05 FO~M"3.

20.2 10 FILLER PIC X VALUE •• B".
20.3 10 FILLER PIC q(4) COMP VALUE· 3.
20.4 10 FILLER PIC 9(4) CO'-1P VALUE t •
20.5 10 FIL~ER PIC 9(4) CUMP VALUE 13.
20.& 05 FORM-4.
20.7 10 FILLER PIC X V·ALlJE ItC".
20.8 to FILLt:.R PIC q(q) COMP VALUE 4.
20.9 10 F1LLER PIC q(4) COMP VALUE t •
21 10 FILLER PIC q(l.I) COMP VALUE 1 \ •
21.1 ()5FO~M"~.

21.2 10 FILLt:R PIC X VALUE "0".
21.3 10 FILLE.t-l PIC 9(4) COMP VALUE 2.
'21.4 10 FILLER PIC 9(4) COMP VALUE t •
21.5 10 FILLER PIC q(4) COMP V·ALUE 13.
21.& 05 FORMe".
21.1 10 FILLI:.~ PIC)(VALUE "E".
21.8 10 FJLLt~ PIC q(a) COMP VALUe 5.
21.9 10 FILLER PIC q(4) COMP VALUE 1 •

(" 22 10 FILLER PJC 9(4) COMP VALUE 12.
22.1 os FURM-'.
22.2 10 FILLER PIC X VALUE "Z".
22.3' .10 FJLLf~ PIC 9(/.&) COMP vALUE 1 •
22.4 10 FILLt:.R PIC 9(Q) COMP VALUE 1.
22.5 10 FILlE.R PIC 9(4) COMP VALUE 12.
22.& 05 FuRM-8.
22.1 10 FILLE~ PIC)(VALUE " Z .~ •
22.8 to FILLEQ PIC 9(q) COMP VAL'IJE t •
22.9 10 f 1L·L t.K PIC q(4) COMP VALUE 1 •
23 10 FILLER PIC q(lJ) COMP VALUE 14.
23.1 05 FO~M..q.
23.~ 1. 0 F 1LLt l~ PIC X VALUE "Z".
23.3 10 FILLf:rl PIC q(l.l) CO~·1P VALUE 1 •
25.~ 10 flLL£~ PIC q(4) CO'1P VALtJE t •
23.5 10 ~lLLE~ PIC 9(L!) CO\f1P VALUE Ill.
23.& 05 FO~M"10.

23.1 1 () F1LLE~ PIC x VALliE .. /. ...
23.8 lu FILLf.~ PIC q(4l co~p VALUE t •
2 s. q 1 0 FILLtt-l PIC 9 (.,,) COI~P VALUE 1.•
211 1 0 FILl.l:~ PIC q (4) cu~p VALUE 1 ~ •
2q.1
2(J.2 01 F n~ ~- SPf:.C.- A~f~ A-(~Ef)EFINES FORM-TABLE.
2~.3 OS FUR(~"SPt:CS occu~s 10 lI\1ES.
24. a ' 10 F (J ~ M-!l) PIC X•,.. 24.~ 10 F-' OK!"'-"~d~ PIC 9(~l Cov,p.
24.& 1U FOwt\1-\JE~T PIC q (l,) COMP.
21.1.7 1 lJ F 0 ~ 1"1- -i r. L P PIC q (I~) COMP.

·Figure 4

4-12-7

2,:".9 01 FOK"'l~!\JA:\Af::" f Al~LE.
25 or; FOk:\1-t.
t?~. 1 1.0 FILLtf..l PI.C X(15) VALUE "6U()~A I I\JT _~E.~JtJ I' •
~~.2 10 FJ.l.ltr< PIC q(<<) COMP VALi),E <}h.
25.3 05 FORM-2.
2s.a 10 F lLL.ER PIC .'C (15) VALliE "vEI\Jf)OR_f)AT'A " •
25.~ 1u F JL-Lt: ~ PIC q '(tI) CO\1P VALt.JE .iS7.
25.0 05 FO~f\1-:S.

25.7 '.0 FILLER PIC X(lS) VALUE ,. 8 ANf(_ "1ST R..0 ATA
,.
•

25.8 10 FILl.ER PIC 9(lf) CQ'1P VALUE 325.
25.9 05 FO~M-4.

2& 10 FILL.ER PIC X(15) VALUE "BUDGET_LOAO It •
2&.1 10 FILLER Ple Q(4) CO\1P VA l.lJE 128.
2&.2 OS FORM-5.
26.3 10 FILLER PIC)((15) VALUE ., n •
2&.4 10 FILLER PIC q(4) COMP V~LtJE 96.
2&.5 05 FORM-b.
26.·6 10 FILLEH PIC X(15) VALUE ,. " •
26.7 ' .10 fILL.ER PIC 9(4) COMP VALUE .96.
2&.8 05 FORM-7.
2&.9 10 FILLER PIC X (15) VALUE " "•
21 10 FILLER PIC 9(4) COMP vAI. t.IE CJ&.
27.1 05 FORM-S.
27.2 1 0 FILI.t;R 'PIC)(15) VALUE " II •
27.·3 1'0 FILLER PIc 9(ll) COMP VA llJE 9&.
27.4 05 FURM-9.
21.'5 10 FILLt:.~ PIC: lC(lS) VALUE •• " •
27 .,6 10 FILLER PIC 9(") co~p VAI.t,jE q6.
27.7 OS FU~M-1O. '-..-

21.8 10 FILl.ER PIC)((15) VALUE ,. I' •
27.9 10 FILLE~ PIC 9(4) COMP VALUE q6.
28 0'.5 FO~M-l1.

28.1 10 FILLEt-l PIC)((15) VALUE "HELP_BANK_OAT_ "•
~8.2 10 FILLE~ PIC .9 (q) COMP VALUE fjCJ.
as.] 05 ,FORM.l~.

28.4 10 FILL.ER PIC)((J 5). VALUE "HELf'_BUOG..LOAO ••
28.5 10 FILLER PIC 9(4) COMP VALUE &9.
28.6 OS FORM.-13.
28.7 10 FILLER PIC X(I?) VALUE ""'ELP_VENOOH "•
28.8 10 FILLER PIC ~(U) COMP VA LtJE f)q.
l8.9 05 FORM-\Q.
29 10 FILLtij PIC)((15) VALUE n8IJD~A I NT _HELP "•
29.1 10 FIlLE~ PIC: q(4) COMP VALtJE &9.
<9.2 05 FURM-l'i.
29.3 10 F·lLLI:.J.l PIC X(151 VALUE "HELP_CREOl1~SUP".

29.4 lO fILLER PIC q(u) COMP VALUE 6q.
aq.5
29.& 01 F(JR\1·i~AME-AR~AV REtlEFINES FORM-j\lAME-l ABL.E.
29.7 05 FURM-NA'~I:.-tNFO OCCURS 15 TI~ES.

2q.R 10 F" 0 t< ;'1 - '\I Arvl E PIC X(1~) •
29.9 10 F0 to(;'4 - i) ATA- LE. :'1 PIC q(q) COM?
30

~

Figure 4a

4-12-8

1

48.3
~8.4

48.5
48.&
46. "
48.8
48.q
49
49.1
49.2
49.3
49.4
4q.5
49.&
4CJ.7
49.• 8
49.9
50
50.1
50.2
50.3
50.4
50.5
50.6
50.7
50.8
50.9

.. 51
51.1
·51.2
51.3
51.4
51.5
51.6
51.·7
51.~

51.9.
S2
52.1
52.2
52.3
52.4
52.5
52.&
52.7
52.8
52.q
5.3

l 0200ij-l:u.l r -A.
MJVt lEWO TO C~ECK~RESUL~.

MOV~ lE~~ TO FIELn-ZtRO.
MO~E 16 TO FIELU-C~T.

PERF O~M 805000-V lE'I~-EDIl.
PERFORM 8nl000-GET·BUFFE~.

MOVE SPACES TO VE~O-NBR-E~R, VEND-STATUS-ERR.
PERFOR~ l02100·CK-VENO-N6R.
PERFORM 102200-CK-VENO.COOE.
PERFORM 102300~CK.VEND-STATUS.

PERFORM 102400-CK-VENO-I0Q9.

PERFORM 809000-PUT .. aUFFER'.
PERFORM 805000-VIEw·EOI1.
iF· V-NUM-ERRS NOT = ZER'O ~OVE 1 TO CHECK-RESULT.
MOVE ZERO TO FIELD~LOC. .
PERFORM 813000-SET-ERROR-FIELDS FIELD-eNT TIMES.

102100-CK-VENO-NBR.
MOVE VENO-N8R OF VEND-IN TO ARGUMENT.
PERFORM 831000-GET-VENO-MSTR.
IF: CONO·WORD = 17 NEXT SENTENCE

ELSE MOVE "INVALIDI DUPLICATE NUMBER" TO VENO-NBR·ERR
MOVE 1 TO FIELn-ERR (2)
MOVE 1 TO CHECK-RESULT.

102200-CK-VENO-CODE.
1F VEND ... COD E 0F VENO. IN' :: . n VN• 0R = .. VM" 0R .: It 0P"

NExt SENTENCE
ELSE MOVE "I NVAL I 0 VENDOR' CODE I" TO· VENO-CODE-ERR

MOVE 1 TO FIELO·ERR (19)
MOVE 1 TO CHECK.RESULT.

'10230 O-CK-VENO-S TAT US.
IF VENDOR-STATUS OF VEND-IN = ·CR" OR ~ ·xx·

NEX T SENTENCE·
ELSE MOVE "INVAL:ID STATUS CODE·!" TO VEND-STATUS.ERR

MOVE 1 TO FIELO-ERR (20)
MOVE 1 TO CHECK-RESULT.

102400-CK-VENO-I0QQ.
IF, FLAG-l099 OF VENO-IN = SP,ACES OR = .y "

NEXT SENTENCE
EL.SE

MOVE 1 TO ~IELO·ERR (18l
MOVE 1 TO CHECK-RESULT.

Figure 5

4-12-9

PROCEDURE

Summary of VIEW Procedures

FUNCTION -"--. -~ .

VCLOSEBATCH

VCLOSEFORMF

VCLOSETERM

V.ERRMSG

VFIELDEDITS

VFINISHFORM

VGETBUFFER

VGETFIELD

VG.ETNEXTFORM

VGETtYpe

VINITfORM

VOPENBATCH

VOPENFORMF

VOPENTERM

VPRINTFORM

VPUTBUFFER

VPUTFIELD

VPUTty·pe

VPUTWIN'DOW

VREADBATCH

VREADFIELDS

VSETERROR

VSHOWFORM

VWRITEBATCH

4-12-10

Closes batch file.

Closes forms file.

Closes terminal file.
.,

Returns message associated with error code.

Edits field data and perf~rms other field pr~sslng.

Perf~rms final processing specified for form.

Reads contents of da·ta buffer Into user program.

Reads field from dlta buffer Into user program.

Reads next form Into form definition area of memory; window and data buffer ere not
effected•

. Reads field from data buffer to user program, converting d~ta to specified type.

Sets data buffer to initial values for form.

Opens' batch file for processing.

Opens forms file for processing•

. Opens ten:ninal, file fo~ processing.

Prints current form and data on offline list device.

Writes data from user program to data buffer.

Writ,es data from user program' to field jn data buffer.

Writes data of specified type from user program to data buffer, converting data to ASCII.

Writes message from user program to window area in memory for later display.

Reads record from bate'" file into data buffer.

Reads input from terminal into data buffer.

Sets error flag for data field in error; and moves error message to window arei.

Updates terminal screen, merging the current form, any data in buffer, and any message
in window.

Writes data from data buffer to batch file.

Figure 6

DATA DIVlSlUt\J.

SECT 10"'.
PIC ~(13) VALUE. n 8lJDGET.PfJ8J".
PIC X(8) VALUE "A8Ct23~,".

PTC XCtb) VALUE SPACES.
PIC X(2l VALUE "OJ".
PIC XC.tbJ VALUE. SPACf$.
PIC X(30) VALUE- SPACES.
PIC X(2) VALUE "if".
PIC X£,2), VALUE ".,".
PIC X(20)·V4LUE SPACES.
PIC Q(4) COMP VALUE 1.
PIC 9(4) CO~P VALUE 2.
PIC q (~) CO \1 P VALUE .3.
PIC q(4) CO'MP VALUE 5.
PIC q(4) co~p VALUE 7.
PIC X.
PIC q(4) CQ\1P.
PIC Q(4) COMP.
P1C q(4) COMP.
PIC C)i
PIC 9.
PIC q •
PIC S9«(~) CQMP.
PIC· X V4LUE h ".

01 STATUS-AREA.
05 CONO-I'40~O PIC S9(~) C.l.)i~'" •
t) ~ D-L PlC Sq(tI) COl"1P.
05 ~-t\J PIC SQ(9) co~p.

Q~ C-L PIC SQ(9l co~p.

OS .ti-A PIC S9(q~ COMP.
OS F-A pte Sq(q) COr.1P.

U1. v I EI'J-C.Uf\1.
05 V-STAJ:JS PIC S9(Ll) C() ~1 P VALUE 7t:HO.

4 -12-11

~UWKl~G·STO~AGE

77 FBASE
17 . PASS~ORD
'17 nSf r-NAMe
77 NO-itEM
77 I rt.:M
77 LIST
7'7 AL.L-I1EMS
77 SA\1E-ITEMS
71 ARGUMENT
7'7 MODE 1
77 MODE2
'77 MOOE3
17 MODES
17 MODEl
77' MODE-FLAG
17 LOC-FORM
77 LOC-FORM-NAME
71 LOC-FJND
77 FLJllJRt:-FLAG
77 NE/J-FLAG
77 l-4Sr-KESlJLT
1'/ CHEC~-RE.SLJLr

01 BELL

COBOL VIEW Application Source Program

:1) C0 i\J , J~ DL LIS I , '''oj l) Sl.l u~ CE , u~ L J ~\J I , , 8 () 1.1 \J f) 5
1 ,) EN I .1 FIe A , J U;\I 0 1v I S l n '''1 •

P i~ 0 (; RA '" - 1 L) •

t.AYOUT.
**THI5 PROGRAM ~ROVIOES A LAYOUT FOR USING VIEW FORMS WITH coeOL~

* 1t THE PK() G~ AfYl i) ISfJL AV5, EO ITS, A N·D UP 0 ATE 5 ~ Ai" Y FOR'~S•
*** VE~SO.OO ~PRIL Q,t Q80.

AUTHOR.
p SOi~E~S.

INSTALLATION.
CAPE DATA INC.

•** (C) CO fJ 1RIG HT. 1q 80 CJ\ PE () ATA INC. CAP E MAY, ,"IEtJ JER5 EY 0 8.c 0 4
DATE-COMPILED.
ENVIRONMENT DIVISION.
CONFIGURATIUN SECTION.
SOUHC E-c OMPU TER. tiP·,3000.
,OBJECT-COMPUTER. HP-3000.
INPUT·UUTPut SECTION.

1
] • 1
1.2
1.3
1 • l~

1~5

1.n
1.7
1.8
1.9
2
2,. J
2.2
2.3
2.4
2.5
2.&
2'.7
2.8
2.9
3
3.1
3.2
3.3
3."
3.5
3.&
3.7
3.8
3.9
4
4.1
4.2'
4.3
4.4
4.5
4.&
4.7
4.8
4.9
5
5.1
5.2
S • ,~

S,. q

5.~

5.0
5.7
S.d
5.q
&

b.'
b.2
&.3
6.·Q
b.';
,6.~

h.7 0:-' V - L '\ i\i (; U AGE PIC Sg(4J CO \1P VALUE l E~ ~J •.
6.Ji O~ V- CU fVl - A~ EA- LEo j\J ~IC 5 q (II) C()\1P VAL~JE bO.
h.q 0';) F J. LLE.h' PIC ~q(4) COViP VALUt:. lFt~u.

1 05 VIE V~ .. il/l () i) E PTe Sq (it,) C() ~~ p VhLIJE ZER(J.
7 • 1 05 LAST-"'El' PIC S9(l.l) COMP VALUE 7E:RO.
7.2 05 V-NLJf\tl- EQ RS PiC S9(4) COMP VALUE ZERO.
7.3 0') \I - rA~ 1N0 0 IJ - E 1\1 H PIC S 9 ((!) COMP VALUE ZERO.
1.ll 05 FILLf:.~ PIC SQ(4) cnMP vALlJE ZE~O.

7.5 05 FILLER P1.C SQ(4) COMP VALUE ZE~O.

'T.l, 05 V-CFI\JA\1E PIC X(15) VALUE SPACES.
7.7 05 FlllE.R PIC x VALUE SPACE.S.
7.8 05 V-NFI'4A~E PIC x (15) VA,LUE SPACES.
7.9 05 FILLER PIC X ,VALUE SPACES.
8 05 V-REPE AT-.UP T PIC Sq(q) COMP VALUE lERO.
8.1 O~ V-NF-l)PT PIC SQl4) COMP VALUE ZER,O.
8.2 05 V-I~BR"'L.lNES PIC S q, (/J) co~p VAL.UE lERO.
8.3 05 V-OBUF-L,EN PIC S9(Q) CO\1P V~LUE ZERO.
8.U 05 FILl.ER Pte 59(4) COMP VALUE ZERO.
8.5 05 FILLER PIC Sq(~) COMP VALUE 7ERO.
8.& 05 V-OELI::TE-FLAG PIC Sq(iJ.l CQMP VALUE ZERO.
8.7 05 V·SHO~·COf'4 TI~Ol PIC SQ(4) co~p VALUE ZERO.
8.8 05 FILLER PIC 59(4) COMP VALUE ZERO.
8.9 05 FiLLER PIC SQ(4) COMP VALUE ZERO.
q o~ FILLER PIC Sf.J(4) COMP VALUE ZERU.
9.1 0'5 FILLEt< PIC SQ(4) CQMP vA·L liE ZERO.
9'.2' 05 fo'iLlER PIC 59((1) COMP VALUE ZERO.
9.3 OS'FILLE~ PJ.C Sq(q) co~p VALUE lERU.
9.4 05 FILLEK PIC sq (JJ) COMfo' VALUE ZERO.
9.5 05 FILLER PIC 59(4) COMP VALUE ZERO.
9.& 05 V-NUM-RECS PIC S9(&) COMP VALUE ZERO.
9.7 05 V-RE.C- r\l6R PIC 59(&) COMP VALUE ZERO.
9.8 05 FILLEW PIC SQ(4) COMP VALUE ZERU.
9.9 05 FILLER PIC S9(Ql co~p VALUE ZERO.

10 05 V-TERM.FILE~NBR PIC SQ(4) COMP VALUE ZERO.
10.1 05 FlLLER PIC 59(4) COMP VALUE ZERO.
10.2 05 FILLER PIC SCJ(4) COMP v A,_ UE ZERO.
10.3 ,05 FILLE~ PIC S9(1J) CO\1P VALUE ZERO.
10.4 OS FILL.Ef< PIC Sq (il) COMP VALUE ZERO.
10.5 05 FILLER PIC Sq (4') co~p VALUE ZERO.
10.& 05 FILLtR PIC 59(4) COMP VALUE ZERO.
10.7 05 FILLE.~ PIC 59 '(4) CO'1P VA'L tJE ZERO.
lCJ.8 OS FILLEf(PIC S9(4} COMP VALUE 1ERO.
10.Q t) S FILLf:R PIC ~ q (1.1) CO'1P VALUE ZERO.
1 t 05 F.I L Lt: t~ PIC sq(,~) co~~p \lALUt ZERO.
1 1 • 1 05 flLL£t-l PIC Sq(LI) COVIP VALUE lE~O.

11.2
11.3 01 V.. FJLt:.-NAME PIC)((~ib).

11.~

11 .5 0\ t~~-\'E:;.. dUF PIC)((1b).

1 \ • & OJ. L E .~ - E~ R.. h UF PIC S9(LJ) CD~P VALtJF: 7b.
11 • 7" , 01 L E·\J - E~ ~ "~-1E S PIC ~q(4) CO''''P VALUE It:Rn.

'11.8 01 lt~~-FlLf. PIC)((8) VALUE SPACES.
tl.q 01 OAl"A"LEN PJC 5 q(.'~) co~p •
12 01 F1.EL.U-NB~ PTe SQ(4) CO\1P VI\LUE lEt-lO.
12.1 01 ACT-FIEL{)-LcN PIC 5 q (ii) ClJ~P VALUE ZE~O.

t2.i? 01 f\I to: xT.. f L£ L f) - f-J " R PIC S9(4l CO\1P VALUE lE.~O.

1 ~ • ,~ . u1 NO-\1t:S~AGt PIC Sq (I~) CO\1P VAL,UE -1.

4-12-12

1~ • ij ot :'J UVI- .L I~ Ple A(t~).

It!.'5 l.Il 1\t1J~-UU r Pl.C Sq(q) V'~'I.

r lc.~ UJ. NU '4-L) 1 ::iP"l.~ PIC -.--.----9.q9.
12.1
1~.8

t ~'. q 01 ACCT-M~lt-? COt'y ACCTMS1R.
13
13.\ 01 VE,\10 ·,\rlS 1 R COpy VE'JDMSJR.
1:S.2
13.3 01 UATA-t3Uf'.
13.4 OS FILLtW PIC)((&9).

13.5 05 DATA-IN PIC)«(443).

13.&
13.7' 01 MENU-OATA 'RE()EF INES UATA-BUF.
13.8 OS FILLE~ PIC X(bQ.).
13.q 05 SELt:CI"-l.N PIC x.
14 05 5ELEC'T-ERR PIC X(2'6) •

14.1
14.2 01 VE\JO-IN RE()EFINES OAlA-~lJF.

14.3 05 FILLEU PIC X(f,CJ).
14.4 '05 VENO"NBR PIC X(b).
14.5 OS 'IE NO .. i'JtiR'·ER R PIC X(2&).
14.6 05 VE.~O"NAME PIC X (,3 ()) •
14.7 05 S-AOf.)RESS PIC x(30).
14.8 05 S-AOURESS~ PIC X(30).
14.~ 05 S-Cll'V PIC X(2(l)~

15 05 S-STAIt:: PIC x (2) •

1'5.1 Oti S-ZlP PIC X (10) •

~ 15.2 05 P-ADDRESS PIC)«(30).
15.3 OS P-AUORES52 PIC X(30).
15.4 05 P-CITY PIC)((20) .•
15.5 05 P-STATE PIC x(2).
15.& 05 P"ZIP PIC X(10).
15.7 05 PHONE-NaR.
1S.8 10 PHOI\lE-AC PIC X(3).
15.9 10 PHU,\tE-EJC PIC X (3) •
1& 10 PHONE-\JO PIC)«(4).

1&.1 OS FLAG-I0qq PIC X(2).
1&.2 05 VENO-CODE PIC X(2).
1&.3 OS VE t'J f.) £) R- STAT t.' 5 ~' I C ~ (2) •
1&'.4 05 VEi~D-COOE-E~R PIC X(2&).
16.5 05 VE.ND-STATUS-ERR PIC)(2&l.
1&. b'
1&.1 01 8UOG-!N REOE:FINE5 DATA-AUF.
1&.8 05 F 1LLE'~ PIC)((6~l.

1&.9 O~ ACCT-NtiJ-l PIC X(20J.
17 05 aUDG-Nt3~-fRR PIC x(2&l.
17. 1 05 8 u0 G- I\J V- At¥1 T I-lIC X(l~).

17.2
11 • i ****.***.***************.***~*******.*.**.***** ••
17.a *** F-Oili\o1 TA~LE LAYOur:
17.5 *** SELECTIOhl CHARAC1E:R
17.6 .*. F() R\1' i'J lJ t~ HE l~

17.1 *** I\lE X T FO"M I\J lJ \1 ~ E~

t7.R *** HELP fORM NU"18E.R
1 7 .,q If*.
.t~ ********._*****.*********************.*.****.*.* •

4-12-13

1 ii • 1
1 t}. ~ ***.*~**.*.*•• ******.,.***.***.*.***.*'** •• ******
lJ3.~ **. FUK''I1 j\JA .~ E l A·tiL E LAYOUl:
16.4 1t .. * FORM I\JAf'1E (V1[~4~ FOK"1 f\JA~f:)

18.5 'It.* LEf\JGTH OF DATA F IELf)S
18.6 ***
18.1 **.******.**.******.******.**********~**.***.****
16. t~

18.9
19 01 FORM-TABLE.
19.1 05 fORI\1-1.
19.2 10 FILLER PIC X VAl.UE "Z".
.19.3 10 FILL.t.K PIC 9(4) COMP VALUE 1 •
1q .• 4 10 FILLE~ PIC 9(4) co~p: VALUE t •
19.5 10 FILLER PIC 9(4) COMP VALUE 14.
19.& 05 FORM-~.

19".7 10 FI L.LER PIC X VALUE "A".
19.8 10 FILLE~ PIC 9(1J) COMP VALUE 2.
19.9 10 FILL.ER PIC 9(1J) COMP VALUE ,.
20 1 0 FILLER PIC 9(1.1) COMP VALUE 13.
2U.l 05 FORM-3.
20.2 10 fILLER PIC X VALUE It A" •
20.3 10 FILLER PIC 9(4) COMP VALUE 3.
20.4 10 FILLER' PIC '} (/.1) co~p VALUE 1•
20.5 10 FILLE.R PIC: q(ll) ·COMP VALUE 13.
20.6. OS fO~M"4.

20.7 10 FILLER PIC X . VALUE "C ".
20.8 10 F lLl'E:~ PIC q(4) COr.1P VALUE 4.
20.9 10 FILLER PIC 9(q) co~p VALtJE 1.
21 10 F'ILLER PIC 9(4) co~p VALUE 11 •
21.1 05 FORM-5.
21.2 10 Fl.LLt:~ PIC x· VALUE .In ".
21.3 1 0 FILLE'~ PIC q(l.I) COMP VALUE 2.
21.4 10 FILLE.R PIC q(4) COMP VALUE 1 •
21.5 lO'FILLER PIC 9(4) COMP VALUE 13.
21.& '05 FURM-b.
21.7 10 FILLE.R PIC X VALUE "E ,••
21.8 10 FJLLE~ PIC 9,(a) CO~1P VALUE s.
21.q 10 FILLEq . PIC q (4) COMP VALUE 1 •
·22 10 FILLE~ PIC 9(4) COi't1P VALUE 12.
22. J 05 FOKM-I.
22.? 10 F lLL.ER PIC x VALUE "7".
22.3 10 FILLE~ PTe QCtI) COMP VALUE t •
22.6 10 FILLt:~ PIC 9. (4) COMP VALUE 1 •
'22.5 10 FILLt.~ PIC ~(~) COMp VALUE 12.
22.6 05 F' () Rf~l" 6 •
22.1 lO FILLlR PIC X VALUE "I.".
22.8 J 0 FJLLt.~ P1C 9(/~) .COMP VALUE 1 •
22.9 1U FIt. LE ~ PIC q(~) COMP VAL fJE 1 •
2.i 10 FILLt:~ PJC ~(a) COMP VALUE 1 /,£ •

~3.1 os FUt<M-9.
23.2 10 ·FILlE~ PIC t VALUE "I".
23.3 10 FILLf:~ PIC 9(a) COMP VALlJ~ ,..
23. t. 10 FILLEK

.' J C
9(a) COMP VALUE 1•

2 3. c; 1 U FlL.Lt:.~ PIC q(4) C'O~p VALUE 14.
23.& 05 r 0 R~1~ 10 •
2~.7 ll) FILLt.:(PIC x \/,ALUE "I".

4·-12-14

23.h 10 FILLtK PJC q(U) CO'1P VALl.Jf: 1.•
23.9 10 FILLt:~ PIC 9(lJ) COMp VALUE ,..
24 1U F j LL t.;< PIC ~("') CLJ;'.,.,P VALUE. ItJ.
24.l
24.2 0\ FO~vt-SPEC-A~~AV R~OEFlI\iES FUR~-TABLE.

24.3 OS FORM"SPECS OCCURS 10 TI~E.S •.
24.q 10 F()~tvl-ID PIC x.
2U.5 10 F O.~M-;''Ja~ PIC 9(q) CQMP.
24.& 10 FORM-·"EX T PIC q(4) COMP.
24.7 10 FORM-HELP PIC q(4) COMP.
24.8
24.CJ 01 FOR~-NAME-rA8LE.

25 05 FO~M-l.

25.1 10 FILLER PIC)((15) VALUE "8'.IDMA I NT _MENU "•
25.2 10 FILLER PIC q(4) co~p VA LIJE qb.
25.3 05 FORM-2.
25.4 10 f'llLER PIC)((lS) VALUE ,. VEND 0R_0 ATA "•
25.5 10 FILLER Ptc q (·4)' COMP VAl.UE 3'i7.
~5.& 05 FO~~1-3.

25.7 10 fILLER PIC X(15) VALUE It tJ ANK_MS TR...VA'T A' "•
25.8 10 F'ILLER PIC 9(4) COMP VALIJE .325.
25.q OS FORM-4.
2& to FILLER PIC)((15) VALUE "BUDGET_LOAD "•
2&.1 10 FILLER PIC q(q) COMP VALUE 128.
2&.2 05 FURM-S.
2&.3 10 fJLL~.R PIC ·)((1~) VALUE "

n
•

2&. (~ 10 fll.lt:.R PIC q(4) COMIJ. VALuE q6.
2~.S 05 FORM-b.
2&.& 10 fILLER PIC X(15) VALUE " "r' •
2&.1 10 FILLER PIC q(4) COMP VALUE q6.
2&.8 05 FURM-7.
2&.9 10 FILLER PIC X(15.) VALUE " it •
27 10 FILLER PIC 9(4) COMP VALUE q6.
27.1 05 FORM-8.
21.2 10 FILLE~ PIC X(15) VALUE It .. •
27.3 10 FILLER PJC 9(4) COMP VAL1.JE 'lb.
27.4 05 FOR~-9.

21.5 10 FILLfR PIC XC1Sl VALUE II " •
21.& 10 FILLER PJC 9(4) co~p VALtJE qb.
27.7 05 FURM-IO.
27.8 lU FJLLER PIC X(15) VALUE " " •
27.q 10 fILLE~ PIC 9(4) COMP VAL IJE q6.
28 05 FOf~M-l1.

?8.t 10 FILLE.~ PlC XClfj) VALUE "HELP_H4NK.;.OATA I' •
28.-2 10 FILLtR PIC ~(4) CllMP VALliE 6q.

. 28.3 05 FU~M-12•
28.4 10 FILLER PIC)((15) VALUE I. HEL P..8UOG_l OAD " •
2~.S 10 rlLLt~ prc q(4) COMP VALtJf ~q.

2~.~ () ') FOR!~-1.3.

~8.7 1 (J F.ILLE~ PIC xC'IS) vALUE '· ... FLP .;.VE'''DUR " •
~8.8 10 FILlE~ PIC q(4) CflMP VALlJE &q.
2~.q OS F- OR ~1-1 q •
29 1 () f.ILLER PIC)((1'5) VALUE "3"OMAINT_HEL,P " •29.1 10 FILLER PIC 9(tl) COMP VALtJE t,q.r-- 2q.2 05 FuRM-l';.
2'Q • '~ 10 FILLt~ p~c X (\ 'l) VALliE "HFLP_CREO!T~5UP".

?9.'" 1 0 FILLl~ PIC 9(4) CO\1P VAL IJE &9.

4-12-15

~************.*.*.***.***************.*** •• *********.*******
SPAGE

o1 F () ~ \1- f'J A~~1 E.. ~ ~ ~ AV ~ E0 Ef- Jf\l F S FOR M - \1 A ~ t - TA~ LE •
O~ F0~M-NA~f~I~FO uCCU~S 1~ TIMES.

1 0 F 0 ~ iV' - N"ME'P 1. C)((1 5 J •
10 FOR~-DATA-LEN PIC 9(Q) CO~p.

PROCEDURE DIVISION •
OOOOOO-MAIN-PART SECTION 01.
OOOOOO-P~OGRA~-LOGIC.

PERFO~M qOOOOO-OPEN-P~OGHA~.

PERFU~M l()OOOq--REAO-LOOP lINlJL LASr-KfY = A.
PERFORM 910000-CLOSE-PROG~AM.

STOP RUN.

1 (l () 0 () 0- ~ l:. Ar.> - Luf.) P •
PERfO~M H01000-~fAO~'ERM.

IF LAst-KEY = ()
i\l t. Jt 1 ~ E. \I , E t\f CE

ELSE IF LAST-~~Y = 1
PE~FiJk'v1 881000-t<EY-l

ELSE If LA~I-~EY .= ~
PtKfOt-<\1 ~H~n()O-t(EY-2

ELti~ IF LAST~K~V = 3

PIC 9.
PIC)((5&).

PIC 99 COMP.
PTe 99 CO.'4P.

OCCURS 5& TI\1ES
REOEFINES ERROR-4RRAY

01 FO~\1Al·CN'1. COpy FORMTCTL.

0·1 FOQ~AT"13.

05 FILLE~ PIC 59(4) COMP VALUE I •
05 FILLER PIC SCl(4) COMP VALUE 13.
05 FlLlER PIC SQ(4) COMP VALUE o.
05 FIL.LER PIC)(VALUE " " •
05 F ILL'ER PIC X VALUE SPACES.
05 U13';"fO~\1AT.

10 FILLE~ PIC 59(a) COMP VALUE 11 •
10 FILLER PIC 59(4) COMP VALIJE ZERO.
10 FILLER PIC X VALUE SPACES.
1 0 Flt:L~R PIC)(VALl.JE "N".
10 FILLER PIC X VAL tJE "1 " •
lU FIl.LEf.l PIC)(VALUE "2".

01 FIEl.D-cr~T

01 FIE~O-.LOC

'01 ERROf-l-ARwAY.
05 FIE.LD--ER~

01 ·FIELD-ZERO

~9.5

2Q.f:.
2q.7
2q.A
29.q
3u
30.\
30.2
30.3
30.4
30.5
30.&
30.7
30'.8
30.Q
31
31.t
31.2 .
31.3
31.4
31.• 5
31.&
31.7
31.8
31.9
.32
32.1

,32.2
32.3
32.4
32.';
32.&
32.1
32.8
32.9
33
33.1
33.2
33.3
33.4
33.5
33~b

33.7
33.R
33.q
31.&
34.1
34.2
.~t.I. 3
3~ ./J
3q.5
34.b
31~. 7
:S.4.8

.. 34. q
31)
35.1

4-12-16

.3 ~.?
~rj _ .i
3~.c.I

35.5
3~.b

35.1
3';).8
35.9
3&
3&.1
3&.2
3b.3
3&.4
3&.5
3&.&
3&.7
3&.8
3&.9
37
37.1
37.2
37.3
37.4
37.5
37.&
37.1
31 • ''\
37.9
38
38.,\
38.2
38.3
38.4
38.5
38.&
38.7
38.8
38.q
3"
3q.l
39.2
39.3
~'t.I. t.I
3Q.r:,
3q.b
39.7
3q.8
'Sq. q
4'0
40. 1.
40.2
40.3
40. '4
40.';
40.6
qQ.7 .
4U.f\

tJ t. ~ r lJ R \1 ii 8 ,~ 0 CJ 0 - t< E Y- ~

ELS~ IF LAST-KEY = 4
PtRFUt~V, fitit.tOOU-Kt. Y-Q

ELSt IF ~AST-KEY = 5
P~~Fl)R'v1 ti85000-KEY-5

ELS~)F LAST-KEY = b
PtRfO~M 8~&OOO-KEV-~

ELS~ IF LA5T~KEY = 7
PERFORM'887000-~EY-7

EL.S'E
PERFOR~ 888000-KEY-8.

IF CHECK-RES~LT NOT = 0 OR LAST-(EV = S
NEXT SENTENCE

ELSE IF LOC-FORM = t
PER FOHM 10, 1P0 0• E() I T- MEN' J

ELSE IF ~OC·FORM: 2
PERFOR~ l02000-EOIT-A

ELS£ IF LOC-FORM = 3
PERFOWM 1()30()O-EDIT-~

ELSE IF ~OC·FORM = q
PER f a~ .\1 1 () I. 0 0 0 - E0 I T- C

ELSe IF LOC-FORM = 5
PERFO~~ 105000-EDIT-O

ELSE I"'· LOC-FO~~ = &
PE~FO~~ 10&OOO-~OIT-E

El.-Sf.
MOV~ 4 fO CHECK-RESUL1.

IF CHEC~·RE5ULT NOT = ZERO
NExT SENTENCE

ELS~ IF LOC-FORM = 1
PERFUH~ 150000-VALIO-MENU

ELSE JF LOC·FOR~ = 2
. PERFOR~ 151000-VALIO-A
ELSE IF LOC-~ORM = 3

PERFOR~ 152000-VALlo·a
ELSE IF ~OC-FOR~ = u

PERFO~M l~]OOO·VALID-C

EL.St: I ~ L.OC -F O~M = b'
P~RFO~M 15S000-VALID-E

. EL~t If LAST-KEY NOT = 5
PERFOR~ 6aqOOO-A5K-CONFIR~

E.LSE l~ L.OC-FOR:\1 = Ij

PtRFOR~ 154000-VALIO-O
'ELSE

\10\lE 4 TO CHECK-RESULT.

IF Crl E: Cr< .. Rt. S l.J L' =3 P f=. ~F0 'l ~-1 8 ~ t (I 0 0 - REF RES H- TERM•
IF C'-iECK--RESUL T = (J r~oVE 3 '0 V-5HO~-CON1ROL

~0 vE 't l II '0 '..t1 0 f) E- FL Ar; •
IF·CrtECK-~ESULl = n PERf-ORM 811000-FORM-INTTIALIZE.
IF CHECK-~ESULT = 2 O~ : a O~ = b PERFOQ~ A52000.NEXT.FO~~~

IF C~i~Ct(-KESULT NOT = Q

Pi:.RfOR'", HO/~()OO-SHOW-F()~\1

PEtol F U~,~ x0 30 \) 0 - CLEA ~ - IV I '~a £.) ~ •

4-12-17

,.. () .. q

41
4) • 1
41.2
1J1.3
41.1I
4 ,I • ')
a 1.• b
41.7
41.~

41.9
42
42.1.
42.2
42.3
q2.4
42.5
1.&2.&
42.7
42.8
42.9
43
43.1
43.2
43.3
43. tI
43.5
43.&
43.7 ,
43.8'
43.9
44
44.1
44.2
44.3
44.~

44.5
4~.b

Q4.7
~4.8

44.9
45
tiS. 1
45.'2
45.~

45.4
45.5
45.6
as.7
45.~

45.9
4&
46.1
4&.2
4b.3
q'f.,. ~
'Jb.5

t,01000·t.l)ll-~E\JU.

MJVE ZERO TLI CrlECt<-RESULf.
PERFOHM 80~OOO-VIEW-EDI'.

PE~FO~M 807000-GET-RUFFER.
MOvE SPACES TO SELEC1-EWR.
IF SELECT~lN = "X" MOVE 8 TO L~ST-KEY

, MO VE 9 roc HEC t(-RE St,JL T
EL.:SE

PERFOR~ 101100-EDIT-MENU-OATA.

101100-EDll-MENU-OATA.
PERFO~M 101110-MENU-SCAN VARYING LOC·Fl~D FROM 1 By 1

UNTIL LOC~FINO > 15
OR S~LECT·IN = FORM-IO (LOC-FINO).

IF LOC-FIND > 15 PERFO~M 1~1120·MENU-ERROR

ELSE PEWFORM 803000-CLEAR-~INDO~.

J01110-MENU-SCAN.
EXIl.

l01120-MENU-ERRO~.

MOVE.
"PLEASE SELECT ONE OF THE A60VE LETTERS AND RE-E~TER"

10 E~R-MEs-aUF.

MOv~ 51 TO LEN-ER~-BUF.

MOvE 2 TO FIELO-NBR.
PERF ORM 812000-51: T,-ERROR.
AOD 1 TO V~NUM-ERRS.

MOVE 1 ro CHECI<-RESUL T.

*********" *J\' ****** '" ********. *****0. **." ***.******** **** .. *****.**
* MODE SFLECIIO!\JS *

* A = ADO VEi\JOOR MASTER ~ -' *-
1t 6 = ADD fjANt< ""ASTER 0 - ••-.. c = ADO NExt' YR.6UOGEr p = *
'* 0 = cOLT· VENOOR MASTER Q ~ *-
* E - LllAD ~UOGET R - *- ..
* F = 5 - 'Ie-
* G = r = *
* H = U - *-
* ° I = V : *
* J = N - *-
1{ K =)(- EXIT PROGRAM -.-
* L = y = *
1c ,'1 = 1 - MAIN ~ENtJ *-
* ..
.. *
*A****.*******.******~*****.*~*.*.****************************

**************'***
•• * C~~tCK QESl.JLT CODES ***
,'If** u = iJU ER~O~S 5 = ***

4-12-18

llb.6
lab.l

46.H
46.9
47
47.1
47.2
IJ'I.3
47.q
I~ 7 • '5
47.&
47.7
47.8
47.9
48
QS.l
48.2
48.3
46.4
48.5
48.&
48.7
48.8
48.q
49
qq.1
49.2 ·
4q.~

49.U
.4Q.5
49.&
49.7
49.8
49.9
50 .
50. t
50.2
SO.~

50.4
50.5
50.b
50.7
50.8·
'jO.Y
'i1
51.\
51 .2
51.3
51 •.:1

51.'i
51..b
51 • 7
51.ti
51.q
52
52.1
52.2

'Ie 'Ie ~ 1. = ~~ ~ k' 0 ~ S, R t" - ~ t " I.) h = \I EXT F DJ< i~ * * 11

* * * ~ = d ~ J :'J G U ~, f\j E ,'.J F UJ? '" l = .***
*** 3 = ~bF~ESH rER~I~AL 6 = ~**

** '/(4 = t< t rUR.\I T0 ;-4 A I i\J ~'I E,. ~J U ~ = Ext l' PRO GRAM ***
*** ***
.************

.******~*******.******.****•• ****~*****.****.****.**********
~** FUNCTION KEY CODES ***
*** Fl = S~IP FS = CONFIR~ ENtRY ***
-** F2 = CLEAR (INITIALIZE) F& = NEXT FORM ***
*** F3 = HELP F7 = M~IN ~ENU ***
*** Fq = REFRESH SC~EEN Fe = EXIT ***
*** ***
*******************.**

102000-EDIl-A •.
MOVE ZERO TO CHEC~-RESULr.

MOVE ZE~O TO FIELD-lE~O.

MOVE 16 fa FIELD-eNT.
PERFORM 805000-VIEW-EnIT.
PERFO~M 8U7000-GET-BUFFE~.

MOVE SPACES TO VENO-NBR~ERR, VEND-S1ATU5-E~R.

PERFUR~ 10~lOO·CK-VENO-NBR.

PERFORM l02200-CK-VEND-COOE.
PER f 0 ~ f\rl 1 l) 2 3 (j 0 - Ct(- VENO - STAr us.
PEKFUR r~ 1 () 2 q 0 0 - CK- VENO - 10 qq.

PERFORM 80qOOO~PUT~BUFFE~ •
PE~FORfV1 8n50()O-VIE~·EOI'.'

IF V-NUM-ERRS NOT = ZERO MOVE 1 TO CHEC~.RESULT.

MOvE ZERO TO FIELQ-LOC.
PERFORM 813000-SET-ERROR-FIELDS F]ELD·cr~l TIMES.

102100-CK-VENO-NBR.
~OVE VEND-NBR OF VENO-TN TO ARGU~ENT.

PERFORM 831000-GET-VENO-MST~.

IF CONU-~O~D = 11 NEXT SENTENCE
.EL. SE {'10 VE "I i\I VAL I O! 0 lJ PLIe ~ TE ~ lJ \1 HER It T0 vEND - NB~ - ERH
~OVt 1 10 FIELO-ERR (2)
\1 0 \I E 1. r (J CHECr(- HE5 tJLT.

1 0 2 2 0 \) - CK- VE. .\J D.. COO t •
1 F vt. ND.. COD t:: 0 F VF fJ f) - I i~ = ,. Vi\l " 0 ~ = ., VM" 0 R = II np "

NE~ r 5 t i\J TEi\l CE .
ELSE MOvE "I'\JVALlf) VENDOR COOE!I' TO VE"o-conE-ERR

\.10vE:. 1 TO FIELO"E::Rtl (t'l'
~OVE 1 TO Crl~CK-~ESUL.T.

10230 0 - C" - VEND - S TAT lJ S •
I F VE 1\1 00 R- S "f A Tu.s' () F- VEND -1:\1 = '1 C~.. 0 R = .. xX.,

;" E)(' ~ t:. ;" TE r\j CE
ELS E !\,10 VE ., I :'J VAL lOS T A , t.J S COO E 1 II T0 VE ~j n- S TAl U5-ERR

\tlUVE 1 TO F I.ELi)-E~~ (20) .

'vl0vE 1 'd Cr1ECK-~ESUL r •

4-12-19

52. ~~ .
5~. ,~

52.~

52.h
52.7
5t!.A
52.q
5.3
53.1
53.~

53.3
53.Q
53.5
53.&
53.7
53.6
53.q
5Q'
54.1
54.2
54.3
54.q
54.5
54.&
54'.7
54. M'
5q.9
55
55.1
55.2
55.3
55.4
55.5
55'.6

, 55.7
55.8
S5~9
56
5&.1
5&.2'
5&.3
5&.4
5&.5
Sb.&
5&.7
5&.8
5&.9
51
57.1.
57.~

51.3
57.4
51. ~
5"1.&

57 • "'
5"1.8
5/.9

4-12~20

lOr? 1.1 nIJ - CK~ Vt: i\J f) - 1 ,') qq.
1 F t= LAG - 1 u 4 ".J () F V f-- N f) - I I" = SPA CE5 (j ~ = "y "

\I to x, ~ t>\I !I t.:;" C[
EL~t

MUVt 1 TO FIELQ-E~R (18)
,ytUVE 1 TO CHECK-RESlJL T.

103000-EOI·T-8.
MOV~ ZERO. TO C'HECt<-RESlIL.T.
MOV~ Z~HO fG FIELO-ZERO.
MOVE 3 TO FIELD-eNT.
PERFURM 80~OOO-VIEW-EOlr.

PERFORM 807000-GET-BUFFE~.

P.ERF ORM t 03'1 OO-,CK-VENO··N8R.
PERFOkM 102200-CK~VENO~COOE.

':',' P:E.ffF OJ~ M '102 ~o 0 -ie K'· VENO'·,S TA f US.
PE~FORM l02qOO-C~·VENO-1Uqq.

PERFORM 809000-PUT-8UFFER.
PERFORM 605000-VJE~·EOIT.

IF V-NUM.ERR5 NOT = ZERU
MOVE 1 TO CHECK-RE~ULT.

MOVE ZEkO '1'0 F IE.LO-LOC.
PERFURM 813000-SEr-ERRoR-FIEL05 FIELO-C~T TIMES.

103100·CK-~END·~BR.

IF NEw-FLAG = ZERO NEXT SENTENCE
ELSElF, VEt\l l) - N8R 0F VEND • JN '= VE NO-NBR 0F VEND - MSTR

MOVE 1 TO NE~-FLAG

EL.Sf MOVE lEHO! TO NEw-FLAG.
MOVE VeN{)·N~H OF VENU-JN TO ~RGlI~eNT.

,:," :' ';' PER FOR M- 8 3 10 00• GET • VEND • MSTR•
IF COND·WO~D = ZERO AND NEW-FLAG • I

NEX'T SENTENCE .
E~SE IF COND-~ORU ~ ZERO

PE~FORM 103110~SE'UP·V'ENDOR

EL.SE
MOV,E It NON-E)(1STEN T VEf\tOOR NUM8ER 1" TO VENO-N8R-EAR
MOVE 1 TO FIELO-ERR (2)
~OVE 1 TO CHECK·R~SUL'.

10 311u· ~ETlJ P~ VE~~ f) () ~ •

M0 VE. CU~ R VE ~\J f) - 1\.1 ST~ r0 \J E. Nf) • 1N•
MQV£ 1 TU I\lE~-FLA(;, CHl:.CK-RESlJLT.

lOQOOO-t:.l>ll-C.
~" 0 vEl (~ {J Toe H EC.(- ~ ESltL r •
M (J vEL Er(uri.,) FIt: 1. 0 - l t: Rl.) •

MtlVt: j J'J fIELO-eNT'.
PERFOh'M 8fJSO()O-\1 IEw-EDJ T.
PE~FO~~-1 n07000-(iET .. t3lJF-'FER.

* tit Dv.E 5 PAC E. S TI) E t~ ~ n R DIS PLA1 F J EL0 5
* P t. r< F U t(~1 ,t:. ,) I' R f) UfIN ES

PE~ .F UR f\.1 ~ tJ 9 0 0 0 - ~ur • fj UF F E. w•
PEt< f- ,U R :w1 dO., 0 0 () - V I E~ - En I , •

~.

.~.,.".... ,..•.
~,'.

511
~~. 1
51-3.2
513.3
S,8. I~

';8.5
fi8.6
5t4.7
58.8
58.9
59
'59.1
59.2
59.3
Sq.q'
59.5
59.&
59.7
59.8
5'1.9
&0
60.1
&0.2
60.3
&0.4
&0.5
&0.&
&0.7
&0.8
&O,.q ,
&1 '
61.1
&1.2
&1.3
&1.4
61.5
&l.b
61.7
&1.8
&1.~

&2
&2.1
&2.2
&? .~

&2.4
&2.5
&2.1,
62.7
b2.8
O~.~

&3
& 5.1
&"5.2
&3.3
03. !.J
63.,
&"3."

1 F V - ,'\J t..J "1 ~ E i(,~ S J'J 0 l = 7E~ lJ

i'4 LJ" t t ,() CHE. Ct(· ~ ERI.IL T•
MOVE l£RU 10 Flf:.LD-LOC.
PERFO~M 81.S000-SET-ERR()f.l-FIELllS FIELD-eNT '1:4[8.

105000-1::01l-0.
r~ovE ZERO ,TO CtfECt<-RESUL'l.
MOVE ZERO TO FIElO-ZERO.
MOvE 3 TO FIELo-eNT.
PERFO~M ~05000-VIEW-EDIT.

PERFORM 807000-GET-BUFFER.
* MOVE SPACES TO ERROR OISPLAY fIELDS
* PERFO~M EDIT RUUltNE5

PERFOWM 809000-PUT-aUFFEH.
PEQFORM ~05000-VIE~-E()IT .•
1F· V- NUM- ERR S, i~ () T = ZER0

MOVE 1 VO CHECK-RESULT.
MOVE Z~RO TO FJELO-LOC.
PERFO~M 813000-ser-ERHnH-FIELDS FIELo-eN' tIMES.

10&OOO-fDIT-I:..
MOVE ZERU T(l CHECK-RESIJL T.
MOVE ZE~O TO FIELO-ZERO.
MOVE 3 TO FIELO-CNT.
PERFlJRM HOSOOO-VIF:iN-Enl T.
PERFORM 807000-GET-BtJF'FI::R.

* ~OVE S~ACE5 TO ER~OR OIS~LlY FJELOS
~ PERFO~M EDIT ROUTINES

PERFORM 809000-PUT·~UFFtR.

PERFO~M 805000-VIEW-EOIT.
IF V-NUM-ERRS NOT = ZE~O

'MOvE 1 TO CHECK-RESULT.
MOVE ZERO TO FIELD-LOC.
~ERFOHM 813000-SET-ERROH-FIELUS 'IELD-eNT TIMES.

150000-VALID-RECORD SECTION 03.
150000·~ALID·~~NU.

MOVE 2 ,·u CHECK·~ESIJL T.
,MOVE LOC-FINO TO LOC-FORM.
MOV~ lE~O fO NEW-FLAG.

151000-VALID-A.

t 52000-\lAL I ()-~.

t 5'3000-vAL ID-e.

154000~VALJ,D-D.

15snOO-VALID-E.

AuoOOU-UrlL.IIlES SfCIION fl2.

4-12-21

h 5. I
b.~. ~

n3.9
bq
6 (j • 1
b~.2

6q.3
btl.4

&4.5
bq.&
&4.7
64.8
&4.9
bS
&5. t
&5.2
&5.3
&5.4
&5.5
&5."
&5.7
&5.8
&5.9
6&
&6.1
&&.2
&&.3
66.4
&&.5
&&.b.
&b. 7.
E»&.8
&&.9
&7
&7.1
&7.2
67.3
&7.I,i
&1.5
&7.6
&7.7
&'7 .1;

bl.CJ
&8
&8.1
08.2
b8.3
&8.4
b8.5
b8.b
b8.7
&8.8
b~.q

bq

69. 1
f)'I.~

nq.3

H0 1. 0 \) 0 - r< t. A Il - ,. Et< '~1 •
C4\LL ·'v~lAOFIE:.LiJS" ljSlt~G V1E.~-CO~.

1 F \I - S I A 1 LJ S :" 0' =- l) P E"" f- 0 RM q q 2 a0 n- V I EIN - ERR 0 R•

602000-PUT-~lNOO~.

CALL •• VPLJ T ~'i I NnOIJ It US J NG VI EIJ-CO \1 EqR-ME5-~UF LEN-E:RR-BUf.

803000-CL~AR-WINOU~.

MO~E SPACES TO EW~-ME5-HUF.

PERFORM 802000-PUT~WINOU~~

804000-SHOW-FORM.
CALL "VSHO~FOR~" USING VIEW-COM.
IF V-S1ATUS NOT = 0 PERFORM QQ2000-VIEw-ERROR.

805000-VIEw-EOIT.
CALL "VFIELDEOITS" USING VIEW-CO~.

80&OOO-FINlSH-FORM.
CALL "VFINIS.-tFOR~" USIN(i·VIE'N·CO~.

807-00 O-GE T-eUFFER.
CALL "VGETBUFFE-~" USING VIEW-CO\4 DATA-BUF V-OBUF-LEN.
IF V-STATUS NOT = 0 PER·F()~M Q920UO-VIEW-ERROR.

609000-pur.BUFFER.
CALL "VPUTBUFFER" USING VIEw~COM O~TA·aUF V·D8UF~LEN.

I.F V-STATUS r\jOT =.~ PERF'ORM 992000-VIEW-ERROR.

8JOOOO-G~T-FO·R~-FILE.

·MOvE 0 10 V-REPEAl-OPT.
MOVE 0 'ro ·V-NF-OPT.
CALL "VGETNEXTFORM" USING VlEw-COM.
IF V~STArU5 NOT = 0 PERFORM ·992000-VIEW-ERROR.

811000~FORM-INlrlALIZE~

. '~OvE o~ TO V-wI~OOW-ENH.

CAI.l "V 1 f~ J. t FOR M" tJ.S I f~ G .vlEw • co", •
* ADD INUlvIDUAL fORMS IN.JIALIlATIO~ HERE AS REa.

IF V-STAT.US NOT = 0 'PER~OR~ ~92000-VJEw-ERRhR.
PER FUR ~" ij fJ 30 0 () - eLf AR- ~J I Non ~ •
MOvE - 1 IO·~A5T-.~E5lJL1.

R12000-Stl-t~RO~.

CALL "vSETER~OR" USING VJE~-CO~ FIELD-N8R ERR-MES-8UF
LEN-EHR-BUF.

IF V-S1AIU5 NOT = 0 PERFO~~ qq2000-VIE~-ERROR.

813000-51:" -E~ROt<-FIEL£'S.
ADD 1 TO FIELO~LOC.

IF Fl~LO-ER~ (FIELD-LOC) = 1
CAL L II V5 E TE~ R0 ~.. US J Nr; v J. E' W- C0 ~1 of JEL 0 - L0 C ERR - Mt:. S• lill f
NU"'\lif:.SSA(jE

] t- V- 5 T A- r us ~J 0 r = It: R0
Pt~FO~~ q92000-VI~~-ER~U~

~

~

~

·4-12-22

~ w I

o\.l./J

bq.~

&~.b

. bq. 1
&q.~

69.q
10
-, 0 ,. t
7'0.2
70.3
70.4
70.~

70.6
70.1
'10.8
70.Q
71
71.1
71.2
71.3
71.4
71.5
71.&
71 • 7
71.8
71.9
72
72.1
72.2
12.3
72.4
72.~

72.&
12.7
72.8
72.9
13
73.1
73.2
13.3
73.4
13.S
73.6
75.7
73.A
73.q
74

"~ • 1
'/4. i?
1 q •.~
.1 q • /J

74.5
"4.1)
7/~. 7
11.1.Fi
14.9
75

ELSt
I\J t: XT SEN r t:: ,'J CE

EL~f:

Nr:.Xl SE:'JTEI'~CE •

8 1 it 0 U0 -: CON FIR M·· R£ A0 •
CALL "!f'#1MVREl\DFIELOS" USING VIllJ"'COM.
IF V-5lAfUS NOT = ZERO PERFORM QQ2000-.V1EW-ERQOR.

620000-5PACE~NUMBER.

MOvE FO~MAT.13 TO FORMAT~CNTL.

CALL "CAPE'ENTRY" USING FORMAT-CNTL NUM-IN NUM-OUl'.
IF CFIELO-ERR ftJ = ZERO ANO CENTRY-ERR = ZERO

M0 VE f~ lJ M- nUT TON lJ M- 0 I 5 p.- t 3
ELSE MOVE 1 TO CHECK-RESULT.

8JOOOO-GET-ACCT-~STR.

MOVE "ACCOUNT-MSTR:" TO OSEt-NA~E.

CALL "L)eGEl" USING FRASE DSEr-NA:\1E MODE7 s'rATUS-ARE~

ALL-ITEMS ACCT-MSTR ARGU~ENT.

IF· CONO.wORO NOT = ZEWO ANO .'JO r = 17 .
PERFORM Q91000-STATUS-CK

ELSE
NEXT SENTENCE.

831000-GEI-VEND-~STR.

MOvE "VENOO~-MSTR:" TO DSET-NAME.
CALL "Dt3GET" USING F6ASE OSET-~JA'4E MODEl STATtJ5~AREA

ALL-ITEMS VEND-MSTR ARGUMENT.
IF CUNU-WO~O = ZERO OR : 17

r~EXT SENTENCE
EL"SE

PE~FOH~ 9ql000~STATUS-C~.

841000-0a-LOCt(.
CALL "O~L()CK" 'ISING FRASE DSE'T-"NA~E MODE3 STATlJS-AREA.
I F C9N0 - W0 R() (\I or = ZER0 PER FOR ~ q 9 10 0 0 - 5 l ATlJ 5 - Ct(.

8 Q20 0 0 ·"DB-UI'JL OCt<.
CALL "DHUNLOCK t' USING F8ASE OSET-NAME MODEl STATUS.AREA.
I F CON 0 - :,'J 0 R IJ NO 1 = ZE i~ 0 PER FOR ~ q q too 0 • STAT US - CK •

8 r; toO 0 - wt FRES H- TE,Q·~ •
PE~FORM 980000~CLOSE-TE~M.

PERFU~M qU2000-0~EN~TERM.

~1') vE ~s '0 " .. s (] ~ ~C() (J Tw(lL •
P E~ FOR '-4 iJ 1 1 \J (J c) - F () ~ "1" I NIT I ALI IE •

8 5 2 0 o' 0 .. i~ t:. x1- F 0 ~ ~1 •
tF CHf.Ct<4IIt~ESULT = 4 MoVE 1 lO LOC-FOR\t1.
M0 vE F () R£"1 - ;\J f1 ~ <. LaC - F (rR M) TO. L UC- F 0 QM- f\I A "1 E •
MJ y t:: F 0 KM - '\J A :\1 E lL () C~ F 0 ~ ~, - l'oJ A\1 E) T0 V.. f\J F i'\J A \1 E •
PER f UJ.l fl}, ij 1 0 () () \) .. GEl - F0 ~ M- F 1LE •
P E~ F (J t'('M 8 1 1 000 - F I) ~ "1" I hi TTl AL Tl E •

4-12-23

7 '). 1
/').?
1 r:; • :S
7'5.LJ
"').5
75.0
75.7
,7'i.8
"15.9
7&
7&.1
7&.2
7&.3
'7&.4
7&.5
7&.&
7&.7
7&~8

16.9
77
17.1
77.2
77.3
77.4
11.5
77.&
77.7
71.6
7'7. q
78
"78.1
78.2
78.3
78.4
78.5
78.&
78.1
78.~

18.'l
79
79,t
79.i?
1q.3
7q.~

7'J.5
7').&
'7Q.7
7q.8
79.9
au
80.1
80.~

8U.3
80.1.1
dO.S
8U.6
8U.7

H~ 30 v0 - t. LJ I 1 - t. Ri(f.) j~ •

CAl. L .. Vl:. ~ R.", SG" t.J S .J i\J G V1E ~~ - C0 ~"I E~ ~ - '-1 E5 .. fj UF LE roJ - f: WR.. B LJ F
L. Er~ ..E.~ ~ - ;v1 ES•

I F V-5 'r AT I.,JS .\)O T = (J .)E~FOR \1 q 92 0 0 0 - V I E.~-ERR{)R.
CAL-L "VPdliNli"I)()L~" ,IJSII'~r; VJE,~-CO,\t1 E.RR·~ES-Bt.JF LF.:N-I:RR~BUF.

8S~OOo·pur-rl'LE.

* MOVE 1 TO FIELD-N6R.
* CALL "VPUTFIELO" USING VIEW-CO~ FIELO-~BR TITLE-BUF
* TITLE~LEN ~CT-FIELO-LEN' NExr-FIELD-NBR.
* I F v- 5 fAT USN0 T .= 0 PER FnRM q q 20 0o· VlEw - ERR 0R•

8bOOOO-START-HELP.
MOVE FO~M~HEL~ (LOC-FORM) TO LOC-FORM-NAME. '
MOvE FORM-NAME (LOC·FOWM·NA~E) TO V·NF~AME.

6& 100 O-HELP-O I SP(,'A Y•
PERFORM 810000-GET-FORM-FIlE.
PERFORM 6S4000-PUT-TITLE.
PERFORM dOqOOO-SHUw-FQRM.
CALL "VREADFIELDS" USING VIEw-COM.
IF V-STATUS NOT = ~ PE~FOR~ q92000·VIE~-ERROR.

IF LASr-KEY = A
MUVE 9 TO C~ECK·RESULT

ELSE IF ~AST·KEY = 7
MOVE 4 TO CHECt(-R~5ULT

ELSE IF LAST-~EY = 4
MOVE 3 TO CHECK-~ESlJL T'

EL.Sf
MOVE 2 TO CtiECt<-REStJL T.

8&5000-1NITIAL-VENOOH.
- MOV~ VEND·~8R OF VENO-MsrR-TO VEND-NBR" OF VEND-tN.
• MOVE VENO.NA~E· OF, Vl:,NO-M5TR TO VEND-NAME OF VENO-IN.
* .p ERF OR M 80 q 0 0 0 ·PlJ T'-H llFF EH•

'"
~70000·U~UA'E.ACCT·MST~.
. ' CAL. '- " () ij UP0 AtE II LJ 5 I NG Fij ASE l) 5ET- ~~ A"1 E MOD E1

STAIU&-A~EA ALL-ITEMS ACC1-~5T~.

I F' C() ~J 0 - ~ ~ ~ I) = Zt:: ~ 0 Nf X r SE \J rENC.E
ELSE PERF ORM ' qq i 00 () -S'T A rUS·,; K.

~810()()-~t.Y-l.

MO\jE t TO CHECf(-~f:SULT.

Ma " E II 1N V ALlOt< E t S ELEe rED, I G~'J 0 ~ ED" TOE Q ~ - '1 E5 - AUF- •
MO~~ zq ro LEN.~~R·~UF.

~ c. RF Ut'l M ~ \J ~ 0 () 0 - fJ U T- -AJ I f'J () 0 ~I •

~"20()U-~E.Y-a..

j"l J vt: 1 rue d t: ct<· ~ ES1,I t r •

4-12-24

rl.O • R
80 .. ')
f.\t
81..t
81.2
Hl.3
81.4

,81.5
81.&
61.7
8t.8
81'.9
82
82.1
82.2
82.3
82.4

,82.5
82.&
82.7
82.8
82.9
83
83.1
83.2
83.3
83.4
83.5
83.&
83.7
83.8
83.9
84
84.1
84.2
8"1.3
84.4
84.5
84.&
84.7
81.1.A
84.q
85
6~.1

65.2
85.3
85.4
65.5
85.b
85.7
85.8
HS.Q
86
80.1
86.~

8&.3
Elf,. '.!

8~30t)O-~EY-~.

PERF Ut< ''''I fjb I) () () 0 -s T A~ T-HEL ~ T~~ lJ 8 b 100 O-t"'E LP"O I 5PL AY•

~84l)()O-KEY-4.

MOVE ~ 10 CHECK-RESIJLT.

885000-t<EY-5.
IF LASl'-~ESULT = ZERO

PERFOR~ 814000-CQNFJRM-READ
MOVE 5 TO LAST-KEY
MOVE ZERO TO CHECK-~ESULT

ELSL-:,
PERFOR~ 6qOOOO-INVALIO·CONFIR~.

88&OOO-t<EY-b.
MOVE b TO CHEC~·RESULT.

. MOVE FORM.NEXT (LOC-FORM) TO LOC-FORM.

887000 ··K EY-7 •
MOVE "Z" TO MODE-FLAG.
MOVE a TO CHECK-WESULT.

888000-KEY-A.
MavE q 1" 0 C~i ECr<.- RESlJLT.

88qOOO-ASK-CONFl~M.

MOVE ,
II VALl U RECOR 0, P t.J 5H C0 ~J FIR \1 KEY (F 5) TOP 0 5 T ASSH0 IJ N"

TU E~R·~ES-BUF.

MOVt 52 TO ~EN·ERR-BUF.

PERFORM 802000-PUT-WINDOW.
MOVE 1 TO CHECK-RESULT.

·MOVE ZERO TO LAST-RESULT.

.89 00 00 - 1NVALl () - C() NFl KM•
.MOvE 1 TO CH~CK-RESULT.

MOVE'
"lN~ALIO USE OF CONFIR~ KEYl CONFIRM NOT REQUESTEO!"
TO ~RR-f~'ES-8Uf.

fvlO\lE ':>2 TO LEN-E~R .. BI.Jf-.
f) ERf U~M 8(21) (,) n-PU l .. JJ I !'JDO~.

~****.*-***************.*******.**.******************

qO,OOOu-5'IAf~T-STOP SECTION 51.
q 0 0 0 (l 0 - 0 PE f\J - P~ () Gt~ A~ •

DISPL.A'r uvI£\f\}/COHOL LAyOUT PROGRA"1 VEWS.O.Ot".
~ E~FOR t~1 q () 1 O.lJ I) - 0 P E 1\1 - 0 AT A- 8 ASE•
PERF(jf.t~) 90200U-OPEN-lE~M.

PERFONM qOjOOO-OPEN-VFORM.
p E~ FOR M q 0 i~ C) 0 C) .. S J' AR r- tv1 F N U •

q () 1 () 0 \) - 0 P f:. ," - UA r A- "\ ASf.
CAL L It Dl' t) P E I'~" US I :.J'G ' F t3 ASEPA SS~ 0 ~ () M0 () E 1 ~ TAr US .. AWE. A •

4-12-25

~~.~

8b."
86.1
86.i3

·8&.9
'61
a".1
81 .2
81.3
87.4
87-. S
87.&
87.1
81.8
81.9
88
88. J.
88.2
88.3
88.4
88.5
88.&
88.7
88.8
88.q
89
89 •.1
89.~

89.3
89.4
89.5
89.&
89.7
'89.8
89.9
90
qO.1
90.2
90.3
90.4
90.5
qU."
90.7
QO.13 .

90.Q
91
91.1
ql.2
9t.3
91.4
ql.5
91.&
q"t.• 7
91.8
ql.9
q2
92.1

4-12-26

I Feu "J " - ~'" \J ;.< () = 7E~ n
:~ t: XJ Sf ·\1 I f. raj CE

EL~E

PER F U to< \., q 9 1 0 0 U.. 5 TAT IJ S- C<
S I () P K IJf~ •

902~OO-UpcN-TE~~.

MOVE lE~U roo V-S TATUS, V'-~ANGLJAGE,

VIE~-MUOE,' LAS'T-t<EY, V-NIj\1-ERRS, V-REPEAT-OPT
V-NF-OPl.

CAL.L "VOPENTERM" USING "I·E~~·COM rER\1-:FIL.E.
IF V-STATUS = ZE~O

NeXT SENTE!'fCE
ELSE

PERFOR~ 992000-VIEW-ERROR
CALL "VCLOSEFORMF" USING VIEtJ-COM
DISPLAY ERR·~ES-BUF "STOPPING QUNI "
PERFORM qqOOOO-STOP·PAR.

903000-0PEN-VFORM.
MOVE "BUDGFORM.RUDGET.P~OGLIB" TO V~FILE·NAME.
CALL "VOPENF()~MF" USING VIEiN.C:O~ V-FILE-NAME.
IF v·STATUS = ZERO

NEXT SENTENCE
EL.SE

PERFO~~ qq2000-VIEw-EH~OR

CALL "VCLOSETEJ~~" USING VIE~-CO~

DISPLAY ERR-ME5-f:~lJF ,. STOPPING RUN! "
PERFO"~ qqOOOO-STOP.PAR.

q04000-START-~ENU.

MJVEl l 0 LaC - FOR ,~ •
PE~FORM 85200~-NE~T·FORM.

PERFO~M 804000-SHO~-FORM.

MOVE ZERO TO CHECK-RESlJLl.

q70000-CL05E-P~OG~AM.

PERFORM 9ijOOOQ-CL05E-TERM.
PERFORM 98tOOO-CLOSE-VFOH~.

PERFORM qqOOOO-STOP-PAR.

q80000-CLOSE-T[R~.

CALL "VCLOStTE~M" I.JSlf\Jr; VTf.N-CO'1.
IF VeST A' US NO' = () PERF ()R"l QQ2000-V IE~AJ-ER~U~.

q81000-CLOSt-vFO~~.

CALL "VCL05EFO~MF" USING VIE~-CO~.

1 F V- Sl ATUS r'oJ 0 T = 1 E~ U p £ ~ F0 ~ M q q 2 () 0 0 - V]' EL~ - ERR 0 R •

q q 0 0 (I 0 - S lOP .. P A~ •
CAl.L "08CLOSf" LJSI,I\JG FBASE DSE.·T-.~A\1E MODEl STATIJS-A~.EA.

STOP ~ \.J.\J.

92.~

q2.3
~2.a

Q2.'5
92.&
92.7
92.8
~2.q

93
93.1
93.2
.93.~
93.4
93.5

fJ E~~ d~;VI y ~ () II 0 O'-CLOSt: - T~' KM.
P E:. ~F O~ rv1 9111 () () ()"CLOSE-VF O~ ~-1.

CALL "OdExPLAIN" USJrJ(; 5TATUS"A~EA.

PE~FU~M q9n()()(l-Sr()~-~AR.

CALL "VE~~M5G" USING VIE~-COM ER~·~ES-BUF LEN-ERR-8UF
L.EN-EHR-\tE5.

OISPLAY BELL "VIE~ ERROR!!!".
DISPLAY ERR-MES-aUF. .
DISPLAY BELL "PROGRAM TER~JNATEO DUE TO A80VE ERRO~!.ll" •
PERFORM 99UOOO-SrOP-PAR.

4 -12-27'--

~"'-.....:

PASCAL? ADA?? PEARL!!!
Process and Experiment Automation Realtime Language

in Industrial and University's Environment
PEARL on HP3000/HPlOOO Networks

Klaus Rebensburg
Technical University of Berlin (West Germany)

INTRODUCTION

Steadily increasing software costs and the inherent
risks computer automation projects made it necessary
to replace the obsolete technology of assembler prog­
ramming by structured programming in a high-order
real-time language. At present, PEARL is the world's
most powerful and advanced high-order real-time lan­
guage used .for industrial process automation.

PEARL has been developed for application en'­
gineers. In comparison to system implementation lan­
guages like Concurrent PASCAL, MODULA or ADA,
PEARL is the only real-time language which the user
can learn quickly and apply readily. In contrast to
(Process-) FORTRAN, PEARL is a homogeneous lan­
guage which e.g. has built-in language elements for pro­
cess input/output and for task-scheduling. Thus
PEARL offers a higher degree of portability than any
other language for process automation.

At the Technical University of Berlin PEARL is im­
plemented on a HP3000 Series II and HPI000 F in
autonomous versions and in the university's pro­
cess-control network as cross-version between
HP3~HPl000computers.

PASCAL?
PASCAL offers good tools for structured program­

ming. For a lot of applications the user needs tasking
facilities and process-input/output. Built-in language
elements are the best solution to program such prob­
lems. PASCAL does not have these scheduling and I/O
elements.

ADA??
ADA is a high order programming language for so­

called "embedded systems." ADA was developed in
order and under control of the Department of Defense
(DOD) and is supposed to be'come a widely spread
programming language. ADA offers good tools for
structured programming. Especially the attempt to de­
fme the compiler environment is a good approach for
cost-effective software-production.

Multiprogramming facilities are provided with a min­
imal set of basic operations. No attempt is made to
define special features covering the large range of
input/output applications. The language facilities are
designed in a way that the user has' to 'provide I/O
packages to define special process-I/O features.

That means there is no standardization for process­
I/O in ADA. Until now there is no official ADA­
compiler system running. Software producers have to
wait - how long? There are some problems to make
ADA learnable for application engineers, especially the
so-called rendesvouz-concept might be difficult to map
it on real technical processes. There are some other
problems to develop ADA programs on minicomputers
as ADA is designed for cross-software development on
big computer systems.

How many years must a HP-user wait for ADA3000
or ADAI000?? Remember - PASCAL was defined in
1971, now in the 1980s we will look forward to use the
'official PASCAL on HP3000. ADA was defmed 1979.

PEARL !!!

• Algorithmic language elements
• Abstract data types
• Modular program structure
• Real-time language elements
• Description of the hardware-configuration /

Input/output language elements
• Who uses PEARL
• Standardization of PEARL
• Availability of PEARL for Hewlett-Packard Com­

puters

What Are the Characteristics of PEARL?

PEARL offers all language characteristics which the
user needs in order to solve his industrial automation
problems. Some software houses use PEARL as im­
plementation language for all kinds of greater
software-problems, like database-management, big
software-packets.

4-13 -1

Algorithmic Language Elements

The language elem'ents for the formulation of al­
gorithms and procedures correspond to the state of the
art of modem programming languages (e.g., PASCAL).

Algorithmic elements can be written as declarations

variable := expression;
GOTO identifier;
CALL proc iden ti fier;
RETURN (expression);
INDUCE signal_identifier;

ON signal identifier: statement;

BEGIN declarations
statements

END;

IF condition
THEN, sta temen ts
ELSE statements

FIN;

CASE expression
AI.T statements

OUT sta temen"ts
FIN;

FOR variable
FROM expr BY expr TO expr
WHILE condition

REPEAT declaration list
,statements

END;

Abstract Data Types

The modem concept of data types in PEARL enables
the user to define problem oriented, composite data
types and new operators. These abstract data types

basic types: FIXED
FLOAT
BIT
CHAR

REF
CLOCK, DURATION
SEMA, BOLT

structures: array (dynamic)
STRUCT
bit chain
DATION

of procedures, functions, and user-defined operators (!)
and tasks (!). (The last two features are e.g. not pro­
vided by PASCAL.)

Tasks are elements for parallel execution.
List of PEARL statements:

assignation)

procedure call)
return from procedure,function
raise an exception)

reaction on exception)

block)

(if-then-else construct)

(case construct)

for-while-Ioop construct ')

permit a great number of checks at compile time and
contribute to a refined modular program structure
(strong typing).

fixed)
floating point
bit)
character

pointer)
real-time !!)
semaphores, bolts 11

(standard and user-defined
peripherals)

"_.

(structures can be nested)

allocation of variables:
at address determined by compiler
RESIDENT attribute indicates fast access

4-13 -2

access to variables:
by name or reference

standard operators:
many standard operators are defined in the langage,
e .g ., AS S, LWS, TOF IXED, TOF LOAT, 'TOB IT, TOC HAR,
and CSHIFT.

Modular Program Structure

A PEARL program is composed of separately com­
pilable modules with exactly defmed interfaces. This
structure greatly facilitates communication between the

members of a project team and supports the modular
composition of complex program-systems.

Example:

MODULE (reportwriter); /* written by programmer A */"
SYSTEM;

/* contains description of configuration */
PROBLEM;

/* specification of imported objects ;
declaration of tasks,procedures,operators,data,types,dations */....,

MODEND; /* end of module reportwriter */

MODULE (brewery control); /* written by programmer B */
PROBLEM; -

MODEND; /* end of module brewery_control */

Real-time Language Elements /
Multiprogramming Facilities of PEARL

For programming task scheduling, PEARL contains

real-time language elements, which can be learnt and
applied easily.

Example:

AFTER 5 SEC ALL 7 SEC DURING 106 MIN ACTIVATE relay PRIORITY 5;
(5 seconds after the execution of this statement the computing
process 'relay' is activated with priority 5 every 7 seconds
for a total period of 106 minutes)

extended time specification ACTIVATE task; (scheduling)
TERMINATE task;
SUSPEND task;
time spec CONTINUE task;
time-spec RESUME task;
PREVENT task;

operations on semaphores:
REQUEST, RELEASE

operations on bolt variables:
RESERVE, FREE, ENTER, LEAVE

operations on.interrupts:
DISABLE, ENABLE, TRIGGER

synchronization, communication)

multiple reader-writer problems)

interrupt-handling

WHEN interrupt_identifier task_control_statement;

operations on signals:
ON signal: statement;
INDUCE signal;

Example: At 16:00:30 RESUME task;

except ions)
react upon exception
raise an exception)

delay

WHEN interrupt id AFTER 10 SEC EVERY 20 MIN UNTIL 15:20:00
ACTIVATE task_Td;

4-13-3

tion by user defmed identifiers. This capability greatly
enhances documentation value and portability of
PEARL programs.

Example:

Description of the Hardware-configuration /
Input/output Language Elements

In the System-Division of PEARL the hardware con­
figuration, especially process peripherals, can be de­
scribed independently of the special hardware realisa-

MODULE (demo); 1* this module contains a PEARL - program *1

SYSTEM;

display: stdio(l); 1* display is the identifier used in the
program for standard-I/O. stdio(1) is a
system defined name for the HP3000
implementation *1

disk disc(3); 1* the user disk *1

engine

PROB LEM;

prog_cont;l* engine is the identifier used in the
program for 16 Bit I/O. The HP3000 knows
it as programmable controller interface *1

1* we start with the specification of the peripherals *1

SPECIFY display
disk
engine

D~TION INOUT ~LPHIC CONTROL(ALL),
DATION IN ~Lr. DIM(,) CONTROL(ALL),
D~TION OUT BASIC;

1* now we use these peripherals *1
STARTtest: TASK;

DECL~RE on
off

INV BIT(16) INIT ('0000000000000111'),
INV BIT(16) INIT ·('0000000000000001');

°f* let's switch the engine *f

SEND on TO engine;
AFTER 2 MIN RESUME; 1* continue 2 minutes later *f
SEND off TO engine;
PUT 'we have stopped the engine' TO display by 'SKIP,A(30) ,SKIP;,

END; 1* end of task STARTtest *f

MODEND; f* end of module *f

Another example for PEARL I/O:

TAKE pressure FROM pressure_sensor;

SEND open TO valve; f* output of the value 'open' to device
'valve' */

Input and output features: Data-stations (DATIONs),
generalizing real or virtual peripherals or I/O channels.
Interfaces, mapping data-stations with different prop­
erties onto each other to offer the possibility to define
formatting routines (objects of type CONTROL).

Most of these PEARL systems don't use Hewlett­
Packard computers (?). PEARL compilers are offered
by many (mostly European) computer manufacturers
and software houses.

4-13 -4

An object of type DATION represents in general a set
of one to four channels:
Data channel (transfer values of PEARL objects)
Control channel (transfe(s values of type CON-

TROL)
Interrupt channel (signals events of type INTER- ~

RUPT)
Signal channel (signals events of type SIGNAL)

Who Uses PEARL?

PEARL is already widely used (with applications
mostly in W-Germ Process computer projects in many
different areas have been sucessfully programmed with
PEARL.

The following table is a survey of PEARL activities
(1980):

Field of Application Number of PEARL Systems

Metal Processing, Rolling Mills 41
Power Distribution 36
Power Generation 5
Raw Materials, Chemical Industry 21
Water Supply 14
Other Industrial Applications 21
Mail Order Houses, Warehouses 12
Television, Transport, Aerospece

Applications 21
Development and Education 32

204

Following computer systems are available with
PEARL compilers: AEG 80-20, AEG 80-60, Data Gen­
eral NOVA, DPI000/1500 by BBC PDP 11 family,
Krupp-Atlas EPR 1100/1300/1500, Hewlett-Packard
HPl000 and HP3000, Interdata 7/32, INTEL 8086, LSI
11, Micronova MUCI61, MUDAS 432, MULBY 3,
NORD 10 by Norsk Data, Digital Equipment PDPl1
family, PDP 11/34, Siemens 300,310,404/3, VAX 11/780,
ZSO, MOTOROLA MC68000.

Standardization of PEARL

The standardization of PEARL ensures its uniformi­
ty. The draft standard DIN 66253 part 1 "BASIC
PEARL" has been available since 1978. Draft standard
DIN 66253 part 2 "FULL PEARL" followed in August
1980. Parallel to these activities, PEARL has been sub­
mitted'to ISO for international standard'ization (TC97/
SC5/WGl)~ For these purposes PEARL was described
completely with petri-nets and attributed grammars
(formal syntax and semantics).

Ava~lability of PEARL for UP Computers

The Technical University of Berlin uses PEARL in
three different ways. The' university's real-time
process~controlcomputer network consists of 1HP3000
series II 512 KByte, 16 HP1000 computers (M,E,F) and
30 microcomputer systems. The central computer
HP3000 is used for program-development, documenta­
tion, cross-software, statistics, graphics, education,
whereas the decentral HP1000 systems are used for
process-control applications.

a) PEARL3000 is the autonomous PEARL Program­
ming System on HP3000. It is used for program devel­
opment and training courses. Typical courses are vis­
ited by 18 persons each, 3-4 teachers 7 terminals, 5 days
mixed theory, practical work, discussions. Participants
are BDP leaders, engineers, programmers from industry
and university.

The Technical University Berlin is responsible for
design and execution of the official PEARL courses,
offered by the VDI (Verein der Ingenieure) Germany
and by the PEARL Association Duesseldorf.

In connection to the compiler system a PEARL
Testsystem on language level is available. It simulates,
e.g., tasking, checks for deadlocks, I/O. PEARL3000 is
running under MPE4 on HP3000 Series II/III com­
puters.

b) PEARL1000 is the autonomous PEARL Program­
ming System on HPIOOO. It is used for program devel­
opment, training courses, real-time and process-control
applications. Most of the PEARLl000 implementation
was developped by the Technical University of Berlin.
The implementation was sponsored by the Ministry of
Research and Technology of (West-) Germany.
PEARLI000 is running under RTE4B with HPl000 F
Computers (256 KBytes)
c) PEARL3000/1000 is the Cross PEARL System for
HP3000/HPI000 networks. Compilation, interface­
check, relocation is done on HP3000 with the obvious
advantage that during the coding phase many program­
mers can work simultaneously.

The cross-version supports small HPl000 configura­
tions, core-resident systems which are autonomous in
process-control and loosely coupled with V.25 lines to a
HP3000 multiplexor for transfer of relocated code to
HPlOOO and process-data to HP3000. PEARL3000/1000
supports HPIOOO computers under RTEM3 operating
systems.

The HP3000 has proven to be a good development
computer system for all kinds of other computers. We
not only use it for HPlOOO computers but also for more
than 14 different types of microprocessors.
In all three cases the same PEARL compiler is ·used.
Code generation in each case is adapted to the target­
computer. Of course runtime routines and operating
system kernel are tailored to the different HP standard
operating systems.

No change of MPE or RTE operation system was
necessary for the implementation. (Cross-version has
some minor changes of RTEM3 operating system.)

Use and handling of the PEARL Compilation Sys­
tems is easy and comparable to FORTRAN3000 or
other HP subsystems.

REFERENCES
1. DIN 66253 Part 1 "BASIC PEARL" (draft standard, language:

English). 1978 Beuth Verlag GmbH Berlin 30, W-Germany.
2. DIN 66253 Part 2 "FULL PEARL" (draft standard, language:

English). 1980 Beuth Verlag GmbH Berlin 30, W-Germany.
3. Werum, Wulf: Windauer, Hans; PEARL Process and Experiment

Automation Realtime Language. 1978 Vieweg Verlag
Braunschweig; Book, which describes HP3000/HPlOOO PEARL
language. Language: English and German

4. Kappatsch, A.; Mittendorf, H.; Rieder, P. PEARL Systematic

4-13-5

description for the application engineer. R. Oldenbourg Verlag
Muenchen Wien 1979. Language: German

s. Kappatsch, A., PEARL Survey of language features.
Kernforschungszentrum Karlsruhe KtK-PDV 141 August 1977.
Language: English

6. Martin,T.; PEARL AT THE AGE OF THREE. 4th International
Conference on Software-Engeneering, September 17-19, 1979
Munich, Gennany IEEE No.79 CHI479-SG. Language: English.

7. Martin, T.; PEARL AT THE AGE OF FIVE. Updated Version,
published in Computers in Industry, Vol. 3, Number 2, 1981. Lan­
guage: English.

8. Hommel,G.; Experience with PEARL in Industrial Applications.
VDE-Congress, Berlin 6.-9.10. 1980. Language: German.

9. Windauer, H.; Development and Implementation of Portable
Compilers for Realtime Languages. Proceedings of Real-Time
Data 79 Berlin Oct. 1979. Language: English.

10. Martin,T.; Realtime Programming Language PEARL Concepts
and Characteristics. Proceeding 2nd Computer Software and Ap­
plications Conf., Chicago, 1978, pp 301-306 IEEE Cat.No.78CH
1338-3C.

11. Brinkkoetter, H., Groessler,J., Nagel, K., Nebel, H., Kneuer,E.,
Rebensburg, K.; PEARL on Hewlett-Packard Computers 1m-

4-13 -6

plementation and Demonstration. 27.4.1981 Berlin. Language:
German.

12. Rebensburg, K.; Real-time Computing with the Process-Control
Computer Network of the Technical University Berlin. Lan­
guage: English.

13. Brinkkoetter, H., Nagel, K., Nebel, H., Rebensburg, K.; Sys­
tematic Programming with PEARL. PEARL Training Course
Handbook, WI/PEARL Association, 1981 Berlin. Language:
German.

14. PEARL Association; PEARL-RUNDSCHAU. Official bi­
monthly publication by the PEARL Association Verein. Contains
contributions of PEARL applications, software-houses, educa­
tional aspects, scientific applications, PEARL' News etc. Lan­
guage: German.

All information about PEARL can be obtained from the author and
from:

PEARL Association
Graf-Recke-Strasse 84

4000 Duesseldorf 1

P.S. PEARL information is also available in Spanish, Portuguese,
Chinese, French and Serbocroatic languages.

, .

Application Design Implications of
PASCAL/3000 Dynamic Variable

Allocation Support
or

How to Use the HEAP
Steven Saunders

Information Networks Division
Hewlett-Packard Company

Cupertino, California

ABSTRACT
This paper is intended to introduce PASCAL/3000's

dynamic variable allocation support. This introduction
is used as a basis for a discussion of application design
issues relating to the PASCAL/3000 support environ­
ment. The details of the PASCAL/3000 implementation
which are needed to interface to existing applications
are presented.

The dynamic allocation of variables is provided·
through memory-management routines operating on an
area called the HEAP. The PASCAL language and sup­
port environment provide a means of explicitly controll­
ing the allocation and deallocation of variables in the
HEAP. These features provide the programmer with
the ablity to implement designs which combine a high
degree of adaptability and reliability.

Approaches for making design and implementation
decisions based on the capabilities of dynamic variable
allocation in PASCAL/3000 are presented. Examples of
good and bad use of these capabilities are discussed.
The knowledge gained in the design and implementation
of the PASCAL/3000 compiler is used as the basis for
this discussion.

A good working knowledge' of dynamic variable allo­
cation can provide the application designer with insights
into producing designs that are more adaptable to the
user's needs. The application or systems programmer
can use knowledge of the PASCAL HEAP to more ef­
fectively implement quality software.

INTRODUCTION
The programming language PASCAL has a large

number of features that are provided by other prog­
ramming languages available on the HP3000. There are
also some significant features that are unique to PAS­
CAL, such as strong type checking and dynamic vari­
able support features.

The strong type checking feature, which will not be

covered in this paper, permits improved compiler ver­
ification of data abstractions and module·inteIfaces.

This paper discusses the dynamic variable support
features which facilitate the creation of programs which
are adaptable and versatile, yet ·simple.

The discussion of PASCAL's dynamic variable sup­
port features is broken into three sections:
The frrst section introduces the concepts of dynamic
variable support, and explains the terminology used in
this paper. The concepts are presented in the context of
the PASCAL/3000 implementation. The defming' occur­
rence of each new word of terminology is capitaIiz~d in
the text.

The second section reexamines these concepts in the
context of application design. This context is used to
contrast design approaches employing PASCAL's
dynamic variable support to more "conventional" ap­
proaches used with languages like FORTRAN or
COBOL.

The third section discusses the interaction of the lan­
guage features,'implementation details, and design ap­
proaches. That interaction is examined in the context of
problems that application designers and implementors
might encounter with the use of dynamic variables.

I. DEFINITION AND USE OF
DYNAMIC VARIABLES IN PASCAL/3000

The DYNAMIC VARIABLE support feature of
PASCAL allow a program to allocate on demand any
number of global variables, irrespective of the prog­
ram's block structure. Dynamic variables are global, in
contrast to static variables that are local to the block in
which they are declared. This reflects the most impor­
tantaspect of dynamic variables, the separation of the
declaration and allocation of storage for a variable. The
PASCAL/3000 implementation provides this basic
dynamic variable support along with several exten­
sions.

4 -27-1

Sample Program

The following sample program is used throughout this
paper to illustrate PASCAL/3000 syntax. The program
builds a linked list with dynamic variables, and then
traverses and prints the list. The numbers contained in

the comments to the left of each line are used to refer­
ence that line in the text of the paper. The lines contain­
ing "{HP}" near the right margin are extensions defmed
by the Hewlett-Packard PASCAL standard.

INTEGER;
Pointer_Type;
Record_Type;

{LINE}
{ O} $HEAP DISPOSE ON, HEAP COMPACT OFF$
{ l} PROGRAM IUG~Example (OUTPUT);

{ 2} TYPE
{3} Pointer_Type = A Record_Type;

{4} Record_Type = RECORD
{ 5} .Integer_Field INTEGER;
{ 6} Pointer_Field : Pointer_Type;
{ 7} END;

{ 8} CONST
{9} Integer_Const = 27;
{lO} Pointer_Const = NIL;

{ll} Record_Const = Record_Type [
{12} Integer_Field: 0,
{13} Pointer_Field Pointer_Const
{14}];

{15} VAR
{16}. Integer_Var
{17} Pointer Var
{18} Record_Var

{19} BEGIN
{20} Integer_Var:- Integer_Const;
{21} Pointer Var :- Pointer Const;
{22} Record_Var:= Record_Const;

{23} NEW (Pointer_Var);
{24} Recqrd_Var .P·ointer_Field :- Pointer_Var;

{25} WHILE Integer Var) 0 DO
{26} BEGIN -
{27} Pointer_VarA .Integer_Field := Integer_Var;
{28} Integer_Var := PRED(Integer_Var);

{29} NEW (Pointer Var A .Pointer Field);
{30·} Pointer_Var A

- Pointer_FieldA
: = Record_Const;

{31} Pointer_Var := Pointer_Var A
• Pointer_Field;

{32} END;

{33} Pointer Var := Record Var .Pointer Field;
{34} WHILE Pointer Var <> NIL DO -
{35} . BEGIN - .
{36} WRITELN (Pointer_VarA .Integer_Field);
{37} Pointer_Var := Pointer_Var A

• Pointer_Field;
{38} END;
{39} END.

4-27-2

{HP}

{HP}

{HP}
{HP}
{HP}
{HP}

{HP}
{HP}

{HP}

Dermition and Use of
"Conventional" Static Variables

STATIC VARIABLES can be characterized as
named storage areas that exist only during the execu­
tion of the procedure or function that in which they are
declared. 'Their existence can be determined by simply
looking at a. program listing. This static nature means
that the number of static variables and the size of each
static variable are fIXed when the program is compiled.
Thus, the storage for static variables can be allocated
when their declarations are processed. This is how
PASCAL implementations handle static·variables; stor­
age for them is allocated when the block containing
their declarations is entered.

The fIXed number and size of static variables forces
designers and implementors to wastefully reserve stor­
age for rarely used and/or large data structures (e.g.,
data structures for year-end versus month-end proces-

, sing). However, static variables are very useful for hold­
ing frequently computed results.

The variables declared in lines 16 through 18 in the
sample program are global static variables. GLOBAL
STATIC VARIABLES are the same as any other (local)
static variables, except that they are allocated before a
program begins execution and exist as long as it is
executing.

Aspects of Dynamic Variables

The separation of declaration and allocation of stor­
age for dynamic variables has one key implication: the '
number of dynamic variables is NOT fIXed when the
program is compiled. The size of an individual dynamic
variable is fIXed when the program IS compiled,just as
it is for a static variable, but the number of dynamic
variables can change. The changable number of
dynamic variables enables application designers and'
implementors to provide storage for rare, and/or large
data structures without much effort.

A dynamic variable is defmed as being pointed to by a
pointer which can only point to a single unique type,
which is the type of the dynamic variable. Line 3 of the
sample program shows the ,declaration of the type
"Pointer_Type" that points to dynamic variables of the
type "Record-Type". Line 17 shows the declaration of
"Pointer-Var," a static variable of this type.
"Pointer-Var" 's value can be used to access a dynamic
variable, but it is not itself a dynamic variable.

Line 6 shows a component, "Pointer_Field", of the
structured type "Record-Type", whose value can be
used to access a dynamic variable of the same struc­
tured type. This form of declaration can be employed to
build linked data structures.

Usage Of Dynamic Variables

Dynamic variables must be explicitly allocated and
deallocated by a program. Thus, the existence of

dynamic varjables depends on the dynamic (execution)
behavior of a program. The number and arrangement of
dynamic variables cannot be determined statically (by
simply looking at a program listing). In contrast to static
variables, dynamic variables do not have actual names.
Dynamic variables' "names" are just unique values
generated by the dynamic storage allocation mecha­
nism.

Dynamic variables are allocated in PASCAL by cal­
ling the system-supplied procedure NEW. This proce­
dure selects a storage area for the requested type of
dynamic variable from an area called the HEAP. Lines
23 and 29 of the sample program show the use of New to
allocate dynamic variables of the type "Record-Type".
New sets the values of "Pointer_Var" and
"Pointer_Field", in lines 23 and 29, respectively.

Dynamic variables are deallocated in PASCAL/3000
by one of two mechanisms. The fIrst, standard to all
PASCAL implementations, is the system-supplied pro­
cedure DISPOSE. This procedure'deallocates a single
dynamic variable at a time.

The second mechanism is a Hewlett-Packard PAS­
CAL extension. This extension provides two additional
system-supplied procedures, Mark and Release. The
procedure MARK creates a generic pointer value that
describes the state of the HEAP. The STATE OF THE
HEAP can be characterized as a temporal reference
point. All allocations of dynamic variables can be un­
ambiguously classified as occurring either before or
after this reference point. A GENERIC POINTER
VALUE can be the value of any pointer, irrespective of
the type of dynamic variable it is declared to point to.
Any pointer having a generic pointer value does not
point to any dynamic variable. The procedure RE­
LEASE uses a generic pointer value created by a previ­
ous call to Mark to restore the state of the HEAP. This
results in the deallocation of all 'dynamic variables allo­
cated after the reference point denoted by the generic
pointer value. Put very simply Release deallocates all
dynamic variables allocated after the corresponding call
to Mark.

PASCAL supplies a generic pointer value NIL which
can and should be used to indicate pointers that are not
currently pointing to any allocated dynamic variable.

The value of any dynamic variable can be inspected
or modified by DEREFERENCING any pointer point­
ing to that dynamic variable. The up-arrow "A" or the
at-sign "@" are used to syntactically denote dereferenc­
ing. Line 30 of the sample program shows an assign­
ment to the dynamic variable pointed to by the
"Pointer_Field" component of the dynamic variable
pointed to by the static variable "Pointer_Var". All de­
references take this form of starting the dereferencing
sequence with some static pointer variable (e.g.,
"Pointer-Var" in line 27). Lines 31, 33, 36, and 37 show
the use of dereferencing to inspect the value of a com­
ponent of a dynamic variable.

4-27-3

Implementation of Dynamic
Variables in PASCAL/3~

The HEAP area of any PASCAL/3000 program is the
DL-DB area of the stack segment of the process execut­
ing that program. Static variables are stored in the DB-S
area of the same stack segment. The value of a pointer
to an allocated dynamic variable is the word address of
the first word of that dynamic variable.

The generic pointer values created by Mark are of a
form known only to the PASCAL/3000 implementation.
The generic pointer value Nil is equal to the word ad­
dress +32767, the theoretical upper limit of a HP3000
stack segment.

The allocation of dynamic variables 'in PASCAL/3000'

can involve one or two methods of "finding" storage
space for a dynamic variable. The basic method essen­
tially amounts to moving DL futher away from DB to
get the needed storage area.

The second method requires that the compiler option
"HEAP-DISPOSE ON" be specified (e.g., line 0 of
sample program). If it is, a free list of deallocated areas
is searched for the first area large enough to store a
dynamic variable of the type requested. If this search
fails then the basic method is used.

The deallocation of dynamic variables in PASCAL/
3000 by the Dispose procedure depends on compiler
options as shown in the decision table below:

$HEAP DISPOSE ON$ I True True False
$HEAP-COMPACT ON$ I True False
- - - - --:- ~ - - - - I - - - - - - -,- - - - - - - - - - -
Do nothing I X
Insert area into free list I X X _
Combine wi adjacent free areas I X

It should be noted that the "Do nothing" action in the
table above is what the Dispose procedure does in many
PASCAL implementations. The "Insert area. into free
list" and "Combine w/adjacent free areas" actions re­
quire the system to have one (1) word of overhead for
each'dynamic variable allocated. -

The deallocation of dynamic variables in PASCAL/
3000 by the Release procedure amounts to moving DL
to where it was when Mark was called. The operation of
this procedure is independent of all compiler options.

Limitations of Dynamic
Variables in PASCAL/3000'

The basic limitations of dynamic variables In
PASCAL/3000 are that the 'number of variables that can
be allocated is limited, and that each has its size fIXed
when the program is compiled. The limited number is
the result of the HEAP residing entirely within the stack
segment, which is limited to 32,767 words. That is felt to
be the most realistic design choice simply because of
the large overhead associated with randomly accessing
data'not stored in the ·stack segment. All implementa­
tions have some sort of upper limit on their dynamic
storage, and this is the upper limit that makes sense on
the HP3000. This limitation makes it necessary to de­
sign and implement most applications with some use of
dyn'amic variable deallocation.

The second limitation is common to all PASCAL im­
plementations and can be overco,me by proper design.

II. DYNAMIC VARIABLE DESIGN
CONSIDERATIONS AND IMPLICAnONS
The most effective way to use dynamic variables in

4-27-4

an application is to consider their use when designing
the application. The two key aspects of this approach
are decomposing a program's data into indivisible data
items and choosing between alternative allocationl
deallocation models. The flexibility and expressiveness
of dynamic variables are also- important design consid­
erations.

Constrasting.Concepts of
What a Data Item Is

The data items used in applications written in lan­
guages without dynamic variables tend to be thought of
as counters, temporaries, buffers, and tables. The fast
three of these can be easily implemented as static var­
iables. But data items used as tables can have limited
flexibility if implemented as static arrays, excessive im­
plementation complexity if they are implemented as ad­
justable or virtual arrays, and poor petformance if im­
plemented as ftIes.

The problem is not the limitations of these methods of
implementing tables. The problem is simply that think­
ing of data items as tables does not always reflect the
reality of application's intended function. Instead of
thinking of a data item as a monolithic table, a designer

. could decompose it into small pieces, each piece repre­
senting a "chunk" of information. Each of these pieces
would be related to the other pieces in well-defmed
ways. This way of organizing information lends itself to
the dynamic variable approach. The benifits of this ap­
proach are that the number of dynamic variables is not
fIXed as is the number of elements in a static array, ~d
that well-defined relationships can be easily im­
plemented by pointers.

This is not to imply that all tables should be replaced

with structures composed of linked dynamic variables.
But any "table" data items that must support dynamic
insertion and/or deletion of "element" data items are
good candidates for implementation with dynamic var­
iables.

The application implementor could, independently of
the designer, convert any static table to a structure
composed of dynamic variables. This will work ac­
ceptably in some cases, but fail in others (e.g., convert­
ing a randomly-accessed table to a simple linked list).
The designer can, as part of the decomposition process,
make suggestions on the use of dynamic variables. But
an even more promising benefit of using dynamic var­
iables is that the whole structure of an application could
be improved. A designer that understands how dynamic
variables permit an adaptive implementation will no
doubt create more versatile designs.

Models of Dynamic Variable
Allocation/Deallocation

The limitations of the PASCAL/3000 implementation
require that most applications employing dynamic vari- .

Compiler Options
System Procedures

2. Stack Model
The STACK MODEL of deallocation requires that

the system can save and restore the state of the HEAP.
An application employing the stack model can maintain
its own free lists. This model is useful for designing
applications that will allocate new data items in groups
and then will deallocate the groups in reverse order of

Compiler Options
System Procedures

3. Pool Model
The POOL MODEL of deallocation requires that the

system is able to place deallocated dynamic variables in
a pool of free storage and allocate new dynamic var­
iables from this pool. An application employing the pool
model should not maintain its own free lists. This model
is useful for designing applications that will allocate and
deallocate data items more or less simultaneously. An
example of an application employing this model would
be a shop floor simulation program. The simulation

Compiler Options

System Procedures

..

able allocation also employ some form of dynamic deal­
location. This requirement can be met by considering
allocation/deallocation models as part of the application
design. The choice of the proper model can maximize
the number of available dynamic variables while
minimizing the system overhead. Four basic models
will be presented here, in order of increasing flexibility
and overhead.

1. Fire Sale Model
The FIRE SALE MODEL, the simplest model, does

not require any system support of deallocation. The
name of this model is used in analogy to the nonreturn­
able nature of items purchased in a frre sale. An applica­
tion employing the frre sale model can maintain its own
free lists, one list for each type of dynamic variable.
This model is useful for designing applications that will
allocate new data items, but seldom, if ever, need to
deallocate them. An example of an application employ­
ing the model is a PERT analysis program. The program
builds the PERT graph and then analyzes it. The frre
sale model makes use of the following compiler options
and system-supplied procedures:

- $HEAP_DISPOSE OFF$
- New

allocation. An example of an application employing this
model is the PASCAL/3000 compiler. The compiler
groups the allocation of data items based on the block
structure of the source program, processing and then
deallocating the innermost block frrst. The stack model
makes use of the following compiler options and
system-supplied procedures:

- $HEAP_DISPOSE OFF$
- New

Mark/Release

would allocate, process, and deallocate job, task, and
event data items in an interleaved manner. The
PASCAL/3000 implementation will support two var­
iations of this model. The frrst does not combine con­
tiguous free storage blocks, and will only work well
when very few unique types of dynamic variables are
used. This variation of the pool model makes use of the
following compiler options and system-supplied proce­
dures:

- $HEAP DISPOSE ON$
$HEAP=COMPACT OFF$

- New
Dispose

4 -27-S

The second variation does combine contiguous free
storage blocks, and will work well in all cases, but suf­
fers more execution time overhead. This variation of

Compiler Options

System Procedures

4. Hybrid Model
The HYBRID MODEL of deallocation requires that

the system support both the stack and pool models of
deallocation. An application employing the hybrid
model should not maintain its own free lists. This model
is useful for designing aplications that will allocate and
deallocate data items simultaneously as well as in
groups. An example of an application employing this

Compiler Options

System Procedures

The User's Input CAN Determine
The Number of Data Items

The major advantage that the use of dynamic var­
iabl~s can offer to the designer is adaptability. For ex­
ample, someone designing an information retrieval sys­
tem for employee data would not have to make arbitrary
decisions about the maximum number of employee de­
pendents that the system could handle. Rather, the de­
signer would simply describe the employee and depen­
dent data items and their relationship. With dynamic
allocation, the required number would be allocated
when the application was run.

The flexibility of dynamic variables was a key tool in
designing the PASCAL/3000 compiler. The compiler
was designed not to have any arbitrary limits save for
the HEAP size limit. Thus, a programmer need not, for
example, be worried that Case statements could have
no more than 1023 case label values. This general free­
dom from limits without increased complexity could
greatly enhance the usability and useful life of many
applications.

Natural Implementation of
Algorithms and Data Structures

The implementation of many algorithms and the data
structures they operate on is significantly easier with
dynamic variables. This is simply because many al­
gorithms for peforming operations on complex data
structures were designed with dynamic variables in
mind (e.g., insertion to, deletion from, and searching of
height-balanced binary trees). Thus designers, and
especially implementors, can take advantage of the

4-27-6

the pool model makes use of the following compiler
options and system-supplied procedures:

- $HEAP DISPOSE ON$
$HEAP-COMPACT ON$

- New -
Dispose

model would be a natural language query processor.
The program would allocate and deallocate data items
to build a model of the world and the necessary queries.
When a set of queries is completed, the world model
data items would be deallocated as a group. The hybrid

. model makes use of the following compiler options and
system-supplied procedures:

- $HEAP DISPOSE ON$
$HEAP=COMPACT ON$

- New
Mark/Release
Dispose

work of others to achieve better results without having
to "re-invent the wheel." As mentioned before, the re­
sults of decomposing an application's data items can be
readily expressed with dynamic variables.

Direct Representation of Data Item Relationships

The representation of the relationship between two or
more static variables can only be described by the logic
of the program. The relationship between two or more
dynamic variables can be partially represented by the
d.eclaration of pointers as components of the dynamic
variables. Thus, much of the relationship information
for dynamic variables can be maintained inside the vari­
able, while the same information for static variables is
maintained outside of the variables. All this, plus the

. added adaptability resulting from the data item decom­
position design approach make dynamic variables a
superior way t~ represent data item relationships.

III. DYNAMIC VARIABLE PITFALLS
TO BE AVOIDED

Dynamic variables can provide improvements in
software quality, but they can also be used in ways that
can seriously degrade quality. These pitfalls can take
the following forms:

• A design l;1sing a bad choice of allocation/
deallocation model.

• Interfacing with external routines that do not re­
spect the integrity of the HEAP area.

• Design or implementation flaws resulting in at­
tempts to access deallocated variables.

',---

r
• Deliberate or accidential modification of a pointer

by accessing the wrong variant of a record.
• Simply attempting to ·allocate more variables than

can fit into a HP3000 stack segment.
While these are not all the possible pitfalls, experi­

ence shows they are the most common.

Poor Selection of
Allocation/Deallocation Model

The selection of an allocation/deallocation model that
is poorly matched to the application design can increase
the complexity or reduce the dynamic variable capacity
of the application program. If a program employs a fife
sale or stack model, uses a great many dynamic variable
types and maintains free lists for each of them, then the
complexity of the program must increase and more
storage may be wasted in free lists than would be used
by the system overhead from employing a pool or hyb­
rid model. The solution would be to switch from the rrre
sale or stack model to either the pool or hybrid model
(e.g., use $HEAP_DISPOSE ON$).

The reverse could also be true, that only a few
dynamic variable types would need free lists, each con­
taining a few deallocated variables. The solution would
then be to switch to a model that used the
"HEAP-DISPOSE OFF" compiler option.

Using External Routines
That Alter DL-DB Area

The PASCAL/3000 implementation assumes it has
total control over the DL-DB area. But many library ·or.
utility routines implemented in SPL/3000 make free use
of this area (e.g., VPlus/3000 and DSG/3000 previously
used this area). The solution was for PASCAL/3000 to
provide the intrinsics GETHEAP and RTNHEAP that
function just like New and Dispose. These intrinsics can
only solve the problem if the routines were designed, o~
can be modified, to request storage in independent
chunks whose individual location is unimportant. There
is one further constraint on using this solution with
either the stack or hybrid allocation/deallocation mod­
els: all areas that an external routine allocates after
Mark is called must be deallocated before the corre­
sponding call to Release (e.g., a correct sequence is
Mark, GetHeap, RtnHeap, Release).

Accessing Deallocated Dynamic Variables

Dynamic variables that have been deallocated either
by Dispose or MarklRelease cannot be accessed. That
is the rule, but given that pointer values in PASCALI
3000 are implemented as word addresses, any pointer to
a deallocated dynamic variable that has not been mod~

ified still points to "something"! Some form of this
DANGLING POINTER PROBLEM exists in almost all
PASCAL implementations (e.g., it does not exist for
implementations that only support the fire sale model).
The software failures (bugs) caused by this problem

range from bounds violations to obscure, seemingly
random, failures in totally unrelated parts of a program.
Clearly, at least from the experience of implementing
the PASCAL/3000 compiler, this problem must be de­
signed out, not debugged out. The solution to this prob­
lem is very application-dependent. It represents the
dynamic variable pitfall that the designer should be
most concerned about. Below is an incomplete list of
several partial solutions that can be incorporated into
applications as the designer sees fit.

1. Never have more than one pointer to any dynamic
variable.

2. Never have pointer components of dynamic var­
iables point to other dynamic variables allocated
after successive calls to Mark.

3. Doubly-link all data structures so that all pointers
to a dynamic variable can be set to Nil before the
variable is deallocated.

4. Maintain a count of the number of pointers to a
dynamic variable in that variable and never deal­
locate it if the count is greater than 1.

5. Study, document, and analyze the deallocation
portions of an application very carefully.

6. Never deallocate any dynamic variable.

Pointers in the Variant Parts of Records

The dangling pointer problem's frrst cousin is the
CLOBBERED POINTER PROBLEM. The problem
can occur only when a pointer is a component of the
variant part of a record and some component of another
variant is modified. This is the worst of the variant re­
cord problems because the destruction can spread with
very little trace of the source of the bug. For example,
an ordinal component of one variant is modified and
then a pointer in another variant is dereferenced to mod­
ify the dynamic variable it points to. This dynamic vari­
able may now be the record length cOQlPonent of a .ftle
control block. The next Read call for this ftle will fail
with an strange error.

The solution is to always use tag fields when declar­
ing variant r~cord types and always check the tag field
before inspecting or modifing any component of the as­
sociated variant. A simpler but less-widely-useful solu­
tion is to never declare any pointer components in any
variant part.

Allocating Too Many Dynamic Variables

If dynamic variables are used to implement very ver­
satile applications, then these applications can be made
to allocate more dynamic variables than will fit into a
stack segment. This HEAP OVERFLOW condition can
only be relieved by the deallocation of some dynamic
variables. The condition can be prevented by reducing
the number or the size of dynamic variables that need to
be allocated. These two solutions, reacting to and pre­
venting HEAP overflow, are explored below.

The first requirement of any design that attempts to

4-27-7

handle HEAP overflow is that the application must be
notified of the condition. This is provided by
PASCAL/3000 through the MPE library trap mecha­
nism. The application designates a library trap handler
procedure which is called when an allocation attempt
causes a HEAP overflow. The trap handler procedure
can take whatever action is deemed appropriate by the
designer. For example, when the PASCAL/3000 com­
piler detects a HEAP overflow, it simply reports the
condition and terminates processing.

The design flexibility of preventing a HEAP overflow
is much greater than reacting to it, but it can increase
application complexity. The approaches for preventing
HEAP overflow fall into two broad classes: improving
allocation/deallocation efficiency, and allocating some
dynamic variables outside the HEAP. .

The improvement of allocation/deallocation effi­
ciency depends on reducing the lifespans, peak number,
and sizes of dynamic variables used by an application.
Reducing the lifespans can usually be best accom­
plished by using individual deallocation (Dispose) in­
stead of group deallocation (Mark/Release). Reducing
the peak or maximum number of dynamic variables al­
located is very application-dependent and requires
modelling alternative designs. Reducing the size of
dynamic variables can be accomplished by impoving

PROGRAM Allocate_Outside_Heap;
TYPE

typel_Ptr = 0 .. 32000;
typel_Rec = RECORD

data BOOLEAN;
END;

the decomposition of the data items (safe way) and/or
by allocating the smallest variant needed in each case
(dangerous way).

The approach of allocating dynamic variables outside
the HEAP results in increased application complexity
because much of the work performed by system­
supplied procedures and language syntax must be du­
plicated in the application. The most flexible approach
is to adopt coding conventions that permit migration of
dynamic variables from inside to outside the HEAP
with little modification to the application. The sample
program shown below illustrates a coding convention
that allows dynamic variables to be allocated inside or
outside of the HEAP. The main advantage of this cod­
ing convention is that it localizes any changes to three
procedures and one function for each dynamic variable
type (e.g., -New, _Dispose, _Modify, & -Access). The
main disadvantage of this convention is that it necessi­
tates a function call, a procedure call, and moving the
value of an entire dynamic variable five (5) times just to
modify a single component of it. This convention basi­
cally replaces dereferences with procedure and function
calls. The sample shows identical operations on two
dynamic variable types, prefixed "typel_" and
"typeL", one allocated in a ftIe and the other allocatee'
in the HEAP.

type2_Ptr = A type2_Rec;
type2_Rec = RECORD

data BOOLEAN;
END;'

CONST
typel_Nil = 0;
typel_Const = typel_Rec [data: FALSE];

~ype2_Nil = NIL;
type2_Const = type2_Rec [data: FALSE];

VAR
typel_Heap : RECORD

Heap_Limit typel_Ptr;
Heap_Store : FILE OF typel_Rec;

END;

typel_Ptrl., typel_Ptr2: typel_Ptr;
type2_Ptrl, type2_Ptr2: type2_Ptr;

PROCEDURE typel_New (VAR ptr: typel_Ptr);
BEGIN
WITH typel_Heap DO

4-27-8

BEGIN
Heap_Limit := SUCC (Heap_Limit);
Ptr := Heap_Limit;
END;

END;

PROCEDURE type2_New (VAR Ptr: type2_Ptr);
BEGIN
NEW (Ptr);
END;

PROCEDURE typel_Dispose (VAR ptr: typel_Ptr);
BEGIN
Ptr := type1_Nil;
END;

PROCEDURE type2_Dispose (VAR ptr: type2_Ptr);.
BEGIN
DISPOSE (ptr);
Pt.r : = type2_Nil;
END;

FUNCTION typel_Aeeess (ptr: type1_Ptr): typel_Ree;
VAR

typel_T~mpl : typel_REC;

BEGIN
WITH typel_Heap DO

BEGIN
ASSERT (Ptr <> typel_Nil, 0);
ASSERT (Ptr <= Heap_Limit, 1);
READDIR (Heap_Store, Ptr, typel_Templ);
.typel_Aeeess : - typel_Templ;
END;

END;

FUNCTION type2_Aeeess (ptr: type2_Ptr): type2_Ree;
BEGIN
type2_Access :- ptrA

;

END;

PROCEDURE typel_Modify (ptr: typel_Ptr; Ree: typel_Ree);
BEGIN
WITH typel_HeapDO

BEGIN
ASSERT (Ptr <> typel_Nil, 0);
ASSERT (Ptr <= Heap_Limit, 1);
WRITEDIR (Heap_Store, Ptr, Ree);
END;

END;

PROCEDURE type2_Modify (Ptr: type2_Ptr; Rec: type2_Rec);
BEGIN
ptrA

:- Rec;
END;

4-27-9

PROCEDURE Examplel_Procedure (Ptrl, Ptr2: typel_Ptr);
VAH

typel_Templ : typel_Rec;

BEGIN
typel_Templ := typel_Access (Ptrl);
WITH typel_Access (Ptr2) DO

BEGIN
(* omitted *)
END;

typel_Modify (Ptrl, typel_Templ);
typel_Modify (Ptr2, typel_Access (Ptrl»;
END;

PROCEDURE Example2_Procedure (Ptrl, ptr2: type2_Ptr);
VAR

type2_Templ : type2_Rec;

BEGIN
type2_Templ := type2_Access (Ptrl);
WITH type2_Access (Ptr2) DO

BEGIN
(* omitted *)
END;

type2_Modify (Ptrl, type2_Templ);
type2_Modify (ptr2, type2_Access (Ptrl»;
END;

BEGIN
.WITH typel_Heap DO

BEGIN
Heap_Limit := typel_Nil;
OPEN (Heap_Store);
END;

typel_New (typel_Ptrl);
typel_Modify (typel_Ptrl, typel_Const);
typel_New (typel_Ptr2);
typel_Modify (typel_Ptr2, typel_Const);
Examplel_Procedure (typel_Ptrl, typel_Ptr2);
typel_Dispose (typel_Ptrl);
typel_Dispose (typel_Ptr2);

type2_New (type2_Ptrl);
type2_Modify (type2_Ptrl, type2_Const);
type2_New (type2_Ptr2);
type2_Modify (type2_Ptr2, type2_Const);
Example2_Procedure (type2_Ptrl, type2_Ptr2);
type2_Dispose (type2_Ptrl);
type2_Dispose (type2_Ptr2);
END.

4-27-10

'--..

SCMMARY

This paper introduced dynamic variables as sup­
ported by the PASCAL/3000 implementation. The con­
cepts and models needed to use dynamic variables in
designing more adaptive applications were covered. Fi­
nally, some possible pitfalls designers and implementors
using dynamic variables might encounter were dis­
cussed. The inter~sted reader might consider the follow­
ing two publications.

for experts:
Pascal13000 Program Language

Reference Manual
Hewlett-Packard Company
Part No. 32106-900001

for beginners:
Programming in PASCAL with

PASCAL11000
Peter Grogono
Addison-Wesley Publishing

Company Inc.
Special thanks to Wendy Peikes for her editoral

suggestions.

4 -27.-11

....

'--..'

r Process Sensing and Control
Nancy Kolitz

Hewlett-Packard Company
Cupertino, California

I. INTRODUCTION

Various MPE intrinsics on the HP3000 allow a user to
create processes, to obtain information about them, and
to control them. This paper will describe the process
sensing and control capabilities available to a user,
through illustrations and examples. The paper will also
introduce a new intrinsic, PROCINFO', currently being
developed by the MPE lab.

II. WHAT IS A PROCESS?

All user programs run as processes under MPE. A
process is the unique execution of a program by a par­
ticular user at a particular time, and is the entity within
MPE which can accomplish work. A process is also the
mechanism which allows system resources to be shared
and a user's code to be executed. Each process consists
of a private data stack and code segments, shared by all
processes executing the same program.

As the system is brought up, the Progenitor (PRO­
GEN) is the frrst process created by MPE. One of the
various system processes that Progen creates is the
User Controller Process (UCOP),. which creates a User
Main Process (UMAIN) as a session or job logs on.
Then when a user (orjob) runs a program, a User Son of
Main (USONM) process is created. If other processes

. are subsequentiy cre~ted from this program, User pro­
cesses are established. (See Figure 1.)

A process will be in one of two states once it has been
created: Wait or Active. If it is in a wait state, it is
waiting for some event (I/O, RIN acquistion, etc.) to
occur before it will run again. If it is in an active state,
the process is running or ready to run.

A standard MPE user has no control over his proces­
ses. The operating system creates, controls, and kills
the processes for the user. However, if the user's pro-

PROGEN
I

"UCOP
/ I \

/ I \
/ I \

/ I \
UMAIN UMAIN UMAIN

I
USONM

/ I \
/ I \

USER USER USER •••••

Figure 1

gram has Process Handling (PH) capability, it can, to
some degree, manage its own processes. In fact, it can
even control processes in its family tree.

III. PROCESS CREATION

In MPE, there are two intrinsics that a user with PH
capability can use to create a process: CREATE and
CREATEPROCESS.

The intrinsic CREATE will load a program into vir­
tual memory, create a new process, initialize the stack's
data segment, schedule the process to run, and return
the process identification (PIN) number to the process
requesting the creation. Once the process is estab­
lished, it will have to be activated by the creating pro­
cess. The command syntax is:

BA BA I IV LV IV IV
CREATE(progname,entryname, pin, param, flags ,stacksize,dlsize,

IV LV IV o-v .
maxdata,priorityclass,rank).

4-30-1

The last parameter RANK (in the CREATE intrinsic)
is not used by the intrinsic and is only there for com­
patibility with previous versions of MPE.

CREATEPROCESS is the other intrinsic that can be
used for creating processes. Its format is:

I I BA IA LA o-v
CREATEPROCESS(error,pin,progname,itemnums,items).

The parameter ITEMNUMS indicates the options to
be applied in creating the new process, and the parame­
ter ITEMS provides the necessary information to be
used for each option specified· in ITEM~UMS.

With CREATEPROCESS, a son maybe activated
immediately upon creation or may be activated as a
process is with CREATE (via the ACTIVATE intrin­
sic). A user may also specify an entry point into a pro­
gram, define $STDIN and $STDLIST to be any fIle

other than the defaults (the defaults are the creating
father's $STDIN and $STDLIST), control stack size,
and control the process' priority queue. Some of these
can also be done with CREATE.

The example that follows illustrates the intrinsic
CREATEPROCESS. It will create a process, indicate
that the father should be awakened upon completion of
the son, and then activate the new process.

BEGIN
«CREATEPROCESS example»

INTEGER ERROR, PIN;
BYTE ARRAY EXAMPLE(O:7) := "EXAMPLE It;
INTEGER ARRAY OPTNUMS{O:10);
LOGICAL ARRAY OPTIONS{O:10);

·intrinsic CREATEPROCESS,TERMINATE;

«set up options»
OPTNUMS(O) := 3; OPTIONS (0) := 1;
OPTNUMS(l) := 10; OPTIONS{l) := 3;
OPTNuMS(2) := 0; «terminator»

CREATEPROCESS(ERROR,PIN,EXAMPLE,OPTNUMS,OPTIONS);

if <> then TERMINATE;

.---

When calling MPE intrinsics., a good programming
practice is to check the condition code returned, and the
error parameter, if one is used. In the case of
CREATEPROCESS, if the condition code is less than
zero the process was created, but some event occurred
to cause the operating system to give a warning to the
creator. If the condition c~de is greater than zero, an
error has occurred and the process was not created. If
the error· occurred because of a ftle system problem
(error number retu·med is 6), a user can use the intrinsic
FCHECK with a parameter of zero to obtain more in­
formation as to why the p.rocess creation failed.

4-30-2

IV. SENSING PROCESSES
Each process in MPE has a large amount of informa­

tion abOut it that can be useful, providing a process can·
access it. There are various intrinsics that will return
this information once a process has been created. How­
ever, a program must have PH capability to use these
intrinsics.

A user may determine the PIN number of the process
that created it via the intrinsic FATHER. Its syntax is:

I
pin := FATHER.

The parameter NUMSON is. a integer value that

Once again, a programmer should check the condition
code that was returned. In this case, it will tell what
type of process the father is. Through specific codes, it
will specify whether the father is a system process, a
user main process, or a user process.

To obtain the PIN number of any of his son proces­
ses, a program may use the intrinsic GETPROCID. The
command is:

I
pin :=

IV
GETPROCID(numson).

specifies which son a father wants to know the PIN
number. For example, if a father has created three sons
and wants to know the PIN number of the second son,
he will supply GETPROCID with a parameter of two.

The WHO intrinsic provides the access mode and
attributes of the user running a program. The rde access
capabilities (save rde (SF)~ ability to access nonsharable
devices (ND), etc.), user attributes (OP, SM, etc), and
user capabilities (PH, DS, etc) can be obtained. Also
information about the user, his logon group name and
account name, his home group, and the logical device of
his input rde may be returned. The command syntax for
WHO is:

L D D BA BA BA BA L o-V
WHO(mode,capability,lattr,usern,groupn,acctn,homen,termn).

The intrinsic GETORIGIN will return, to a re­
activated process, the origin of its activation. The value
returned will specify if the PIN was activated from a
suspended state by a father, a son, or another source
(interrupt or timer). GETORIGIN looks like:

I
source := GETORIGINo

Other information about a son or father may be ob­
tained from the intrinsic OETPROCINFO. Its format is:

D IV
statinfo := GETPROCINFO(p1n).

A double word is passed back giving the process'
priority number and priority queue, its activity st~te

(active or waiting), its suspension condition and source
of next activation, and the origin of its last activation.
The process number, passed as a parameter, specifies
which process you want information about. If PIN=O,
then information is returned for the father; otherwise,
the information is for a son process.

A new intrinsic currently under development in the
MPE lab is called PROCINFO. This intrinsic returns
general information about processes that is currently
unavailable, unless you have privileged mode capabil­
ity. It should simplify some of the uses of process re­
lated intrinsics because a large amount of information
may be retrieved in one call to PROCINFO. Its com­
mand syntax is:

I. I IV I SA o-v
PROCINFO(errorl,error2.pin[,itemnuml,iteml]

[,itemnum2,1tem2]
[,itemnum3,1tem3]
[.itemnum4,item4]
[,1temnumS.itemS]
[,itemnum6,item6]).

This intrinsic is formatted similar to FFILEINFO in
order to maintain ease of use and extensibility. It can
return to a program the process number of the process
itself, its father, all its sons, and all its descendants. It
can also supply information about the number of de­
scendants and generations in a family tree, the name of
a program that a specified process· is running, the pro­
cess' state, and the process' priority number.

The first error word is used to return the type of error
incurred when executing the intrinsic. The second error
word returns the index of the offending item number.
The program name is returned in a byte array that is a
minimum of twenty eight bytes long. It is in the format
of <filename.group.account>.

The following example will help to illustrate the use
of the PROCINFO intrinsic:

4-30-3

BEGIN «procinfo example»

INTEGER ERRORl, ERROR2, PIN;

BYTE ARRAY ITEMVAL1 (0:1),
ITEMVAL2 (0:1),
ITEMVAL3 (0:1),
ITEMVAL4 (0: 1) ,
ITEMVAL5 (0:1);

INTEGER ITEMNUM1» ITEMNUM2, ITEMNUM3, ITEMNUM4, ITEMNUM5;

INTRINSIC PROCINFO;

PIN := 0;
ITEMNUMl := 1;
ITEMNUM2 : = 3;,
ITEMNUM3 : = 4 ;"
ITEMNUM4 := 2;
ITEMNUMS := 5;

«seek information about ourselves»
«request our pin #»
«how many sons we have»
«how many descendants we have»
«pin number of our father»
«how many generation,s we have»

4-30-4

PROCINFO (ERROR1, ERROR2, PIN, ITEMNUM1, ITEMVAL1,
ITEMNUM2, ITEMVAL2,
ITEMNUM3, ITEMVAL3,
ITEMNUM4, ITEMVAL4,
ITEMNUM5, ITEMVAL5);

IF <> THEN GO PROCE.RROR;

PROCERROR:
«print message and error number»
RETURN;

END. «procinfo example»

If the previous program was executed by pin 45 in the
process tree offIgUre 2, the (ollowing information would
be returned:

item number
1
3
4
2
5

information
45
2
5
12
3

Pin 12
/ \

/ \
/ \

Pin 23 Pin 45
/ \

/ .\
/ \

Pin 22 Pin 34
/ I \

/ I \
/ I \

/ I \
/ I \

Pin 38 Pin 21 Pin 30

Figure 2

,.''.

v. CONTROLLING PROCESSES
Once a program has created a process, it can control

its activity. As mentioned before, it can activate its sons
via the intrinsic ACTIVATE. However, only a father
can activate a newly created process. ACTIVATE is
called with the following parameters:

IV IV o-v
ACTIVATE (pin, susp).

The process' pin number is required, but the susp
parameter is not. If susp is provided and not equal to
zero, then the calling process will be suspended and the
specified process will be activated. Otherwise, the
father process continues to run and the activated pro­
cess becomes ready to run. The activated process will
execute when the dispatcher selects it as the highest
priority process to launch.

A process may also suspend itself. Via the intrinsic

SUSPEND, a process may place itself in a wait state
and state its expected origin ofactivation. The intrinsic
calling sequence is:

LV IV O-V
SUSPEND (susp,rin).

The RIN parameter is the Resource Identification
Number that will be locked for the process until it sus­
pends again. The RIN allows a process to have exclu­
sive access to a particular resource at a particular time.
This is one way to synchronize processes and their re­
sources running under the same job.

One other process control intrinsic is GETPRIOR­
ITY. When a process is created, it is given the same
priority as its father. This intrinsic allows a program to
change its own process' priority or that of a SOD. The
process cannot, however, request a priority outside of
its allowable priority class. GETPRIORITY is called as
follows:

IV LV IV o-V
GETPRIORITY(pin,priorityclass,rank).

\

\
4-30-5

sequence, and then request that its father takeaway its
stack. The two intrinsics used for termination are:

The parameter in the KILL intrinsic is the pin
number of the process' son that it wants deleted. TER­
MINATE can only be used for the calling process.

The following is another example using these various
intrinsics. This example illustrates the CREATE, AC­
TIVATE, GETPRIORITY and TERMINATE intrin­
sics:

The priorityclassparameter is a 16-bit word that con­
tains two ASCn characters. Depending on the priority
queue desired, the parameter is "AS," "BS," "CS,"
"DS," or "ES." (If a user has privileged mode, he can
supply an absolute number for the priority ·parameter
instead of the ASCII characters. It is done by supplying
the parameter "xA where "x" is an integer value and
"A" is the ASCn character A.) The rank parameter,
once again, is not used except for compatibility with old
versions of MPE.

The last two intrinsics to be discussed are used for
process termination. When a process is terminated, it
must return all the system resources that it is holding,
stop its sons from running and start their termination

IV
KILL(pin) and TERMINATE.

BEGIN

ARRAY NAME(O:15) := "EXAMPLE.PUB.SYS It;
BYTE ARRAY BNAME (*) ='NAME;
INTEGER PIN;

INTRINSIC CREATE,ACTIVATE,TERMINATE,GETPRIORITY;

CREATE(BNAME"PIN"l);

IF <> THEN TERMINATE;

ACTIVATE(PIN, 2) j

IF <> THEN TERMINATE;

GETPRIORITY(PIN.tlDStI)j

IF <> THEN TERMINATE;

END.

«create the new process. reactivate »
«the father when this one finishes.»

«kill process because of error in»
«creation sequence »
«activate process' and tnen Teactivate»
«calling process by the son »

«process not activated due to error»

«change priority of, son process»

«new priority not granted»

VI. SUMMARY
This paper has summarized various intrinsics that can

be used to' create new processes, obtain information
about them, control them, and·then terminate them. A
new intrinsic, PROCINFO, was also introduced which
can provide the user with more information about pro-

4-30-6

cesses without requiring privileged mode capability.
MPE is a process oriented operating system, and with.8
better knowledge and understanding of how processes
operate, a user can enhance his applications and their
performance on the HP3000.

Putting the HP3000 to Work
For Programmers

Thomas L. Fraser
Forest Computer Incorporated

. East Lansing, MI

I. THE OPPORTUNITY
The demand for software is exploding as businesses

and other organizations which use computers strive to
be more productive, control costs, and improve the
quality of management information. The acceleration of
this demand is forecasted to continue throughout the
early 1980s.

Software is produced for the most part by people,
skilled people. These "programmers" are a limited re­
source. If the increasing demand is to be met, either the
size of this resource must be increased or the prod­
uctivity of the resource must be improved.

Looking at the issue from the viewpoint of an indi­
vidual DP shop, increasing the size of the resource
means hiring people. Skilled people are expensive, and
costs are going up. Especially expensive are program­
mers, due to the already existing shortage. This short­
age also makes it difficult to rmd quality people. So
increasing the size of the resource is not always easy
and is very costly.
. Another trend that is evident is the decreasing cost of

computer hardware. This contributes to the increasing
demand for software, and thus is part of the problem.
However, it can be made part of the solution by putting
computers to work for the programmers.

This is the opportunity. Use the computer to increase
the productivity of programmers. Provide software
tools which allow the people to work efficiently and
quickly. The expensive and scarce programmer should
not have to wait for or adapt to the increasingly inex­
pensive computer. In a word, the computer needs to be
made more friendly toward the programmer.

II. THE HYPOTHESIS
In the specific environnient of the HP3000, program­

ming is usually done online. A majority of the programs
are written in COBOL with FORTRAN also popular.
There are several types of tools which can be intro­
duced to this environment. Report generators, high

. level file systems, COBOL generators, forms
generators, and very high level languages' such as
RAPID/3000 can all help. }Jowever, in most shops pro­
grammers still spend a large amount of time at a termi­
nal working with source code. This therefore ·is the first

place to look when considering how to get the HP3000
~orking for the programmer.

By far the most prevalent software tool used by pro­
grammers is the HP editor. Compared- to the primeval
batch methods of source input and maintenance,
EDIT/3000 is vastly superior. Because the editor is in­
teractive, changes can be viewed as they are made
within the context of the rest of the program. Also the
editor provides many features such as searches and
global changes .previously unavailable. And best of all
there is no problem keeping card decks in sequence.

However, the new features and capabilities come
with a price, that of increased demand on the system
resources. The programmers are competing with each
other, as well as with production users, for precious
disk accesses and CPU time. An' obvious result of any
delay in system response is lower productivity. This
applies to all users of the system, including program­
mers.

EDIT/3000 is not without weaknesses. It is a line-by­
line editor. This is a logical carryover from the days of
cards. (Remember, the VDT was originally intended as
a keypunch replacement.) All I/O is organized around
the line as a standard unit. I/O from the terminal inter­
rupts the hardware once for each character because of
lack of block-mode handling. Moreover, the software
must let involved each time "RETURN" is hit; this is a
minimum of once per line with the exception of the
"C'HANOE" command, and with many commands can
be several times per line. Disk I/O is blocked, but the
binary search used to locate the card-image formatted
records i very expensive in terms of disk accesses. This
line orientation has obvious negative performance im­
plications. Moreover, it means that the programmer
must work with a line at a time. Despite the ability to
display 20 lines on a single CRT screen, only one line at
best can be entered or changed per transmission except
for the noted exception.

Believing that the overall demand on resources might
be reduced, and system performance improved, there
still remain other areas to be investigated when seeking
to improve upon the editor. For example, the "TEXT"
and "KEEP" commands are very slow due to the fact
they are actually file copying commands.

4-36-1

One of the nice features of EDIT/3000, that of being
able to see the changes in context, is mitigated against
by two major factors. The fIrst is screen clutter. Unless
one repeatedly does "LIST" commands, the screen be­
comes full of old source lines and already executed
commands as well as current source lines. The second
is the inability to access everything on the screen.

Performing some operations, even on a single source
line, require several commands to be transmitted. This
makes more effort by the programmer necessary, and.
slows the coding process. This, together with the other
factors, are seriously impairing the speed of software
development and system performance.

Thus the hypothesis, that a full screen block-mode
editor, written for maximum features with minimum
demand on machine resources, would dramatically im­
prove programmer productivity. Improved response
time for other users could also be anticipated.

III. THE METHOD
To test the hypothesis a full screen, block-mode

editor was designed and written. The result of this ef­
fort, called "CHICKEN" by its architects, was a
COBOL and SPL program which can be used to edit
source code, documentation, stream-files, and other
text. No operating system modifications are required,
and the program runs in ordinary session-mode.

Block-mode transmissions dramatically reduce the
overhead of terminal I/O. This is especially true when
the line is driven from the Asynchronous Data Com- .
munications Controller (ADCC). The number of
transmissions is also reduced making life easier for the
programmer. The terminal has a microprocessor;
block-mode enables taking advantage of this to reduce
load on the HP3000. Ifone has paid for a "smart termi­
nal," it behooves one to use It. By the way, CHICKEN
can automatically switch the terminal between block­
mode and character as needed. Implicit is that the VDT
being used is an HP compatible terminal with block­
mode capability.

Full screen access is another way of putting the ter­
minal to work. With the new editor, all twenty-four lines
of the screen are used. One line is for entering com­
mands, one line for error messages, and the other
twenty-two are used to display source lines. The pro­
grammer can change, delete, or insert lines of code any
place on the screen by using just the terminal
capabilities. Only after completing 'an entire screen, is
the source transmitted to the HP3000. At that time
CHICKEN will determine which lines should be de­
leted, changed, or added to the file. There is no need to
use commands to tell it what is a change, delete, etc.

The disk organization of source files also effects .sig­
nificant advantag~s. Standard MPE files are used, but
CHICKEN has its own access techniques. The old
card-image format is replaced by a compressed format
which is designed to maximize peIformance while using
less disk space. Because of the file organization and

4-36-2

G.

access methods, CHICKEN can retrieve any single line
of source code in one disk access, and any twenty-two
consecutive lines in an average of 1.4 seeks with a
maximum of two required. This single technique has
great performance implications.

Ease of use is always an important design considera­
tion and CHICKEN is easy to use. The command set
uses language similar to EDIT/3000 to make it easy to
quickly get acquainted. Any command can be issued at
any time. Moreover, it is seldom necessary to issue mul-

o .tiple commands to accomplish a single task. Recall also,
that the software frequently will figure out what you
want done without having to be specifically told. Prob­
ably the biggest factor in ease of use, though, is the full
screen access. A simple list of commands is below.

CHICKEN has other features which contribute to
improved productivity:

• Screens are automatically formatted for COBOL,
FORTRAN or SPL source if desired.

• The programmer has access to most MPE com­
mands from the editor.

• Compiles can be submitted without leaving the
editor.

• Special passwords are put on source files.
• An optional log of changes provides a means of

recovery and a means of "backing out" modifi­
cations. This also can be used to provide an audit
trail.

Several commands are listed below to show general
syn~ax and to compare their operation with the similar
commands available in EDIT/3000. In general, the
commands follow a standard format as shown here:

CMD <starting-line <ending-line» required-params
<optional-params> .

CMD <starting-line <ending-line>> required-params
< optional-params>

Most command key-words are the same as found in
EDIT/3000, and all can be invoked by entering only the
first letter. For instance, "LIST 120.5" can be entered
as "L 120.5".

CHICKEN attempts to give the user as much flexibil­
ity in entering a command as possible, so as to accom­
modate differing user styles acquired through exposure
to various other editors. Thus the following commands
would all have the same effect If entered:

DELETE 20/30
D (20.00:30.00)
DEL 2030
DELETE 20,30

. The goal here is to make the editor easy to learn by
not requiring strict adherence to particular syntax rules,
and easy to remember by keeping command formats
simple and regular.

Following are some representative commands:
TEXT. edit-file < NEW < mpe-source-file > >

This command opens and grants access to an edit-file.

If another edit-file is currently open and being worked
on, it is automatically closed. If the NEW option is
entered, a new edit-file is created. The "mpe-source­
ftIe" refers to an EDIT/3000 source file which can be
copied to the CHICKEN edit-file. This command exe­
cutes very quickly because there is no copy operation
from a source file to a work file as in EDIT/3000, except
when an MPE source fue is copied in, which happens
only rarely.

KEEP < A < B > > mpe-source-file < PURGE >
This command makes a copy of the currently acces­

sed edit-file to an EDIT/3000 formatted source fue.
Normally all lines will be copied. If line A is specified,
all lines from line A through the end of the edit-file will
be copied. If line B is specified, the copy will only in­
clude the lines from line A through line B. If the
PURGE option is entered, the edit-file is closed and
purged from the system after a successful copy opera-

, tion.
This command is used infrequently, usually for bac­

kup purposes. Since compiles can be implemented di­
rectly from within the editor on the existing edit-files,
there just isn't much need to KEEP files. If one edit-file
is TEXTed in and modified, a second TEXT automati­
cally closes the frrst edit-file with changes intact. The
improvement in response time to access edit-files can
be dramatic even on only a moderately loaded system.

LIST < { A 1LAST} >
A simple LIST command without parameters will

display the first 22 lines of text in the edit-file. Sub­
sequent transmission will display the next 22 lines, in
effect paging through the text. If line .A is specified, then
line A and the next 21 lines of text following line A will
be displayed. Again, paging applies after entering the
command once. If "LAST" is specified, then the last
line of text and 21 blank lines are displayed.

This is where some of the power and flexibility of a
full screen block-mode editor can be seen. The user can
now be free to move the cursor anywhere on the screen,
modifying, inserting, and deleting lines. Changes can be
reviewed in context of the surrounding text. Even line
numbers can be changed simply by typing over the old
ones displayed. All of this goes on without bothering the
host computer. Of course, this frees up the HP3000 for
other tasks at hand.

FIND < A < B > > *textl* < ALL>

This command performs a search for the next occur­
rence of textl and displays the line containing the textl
along with the following 21 lines of text. If line A is
specified, the search will begin at line A and continue
until a match is found or the end of the fue is reached. If
line B is. specified, the search will only encompass lines
A through B. The asterisks surrounding textl represent
delimiters, which can be any non-alphanumeric charac­
ters including a space.

Examples:

FIND MEN <spaces as delimiters>
FIALL MENI <slashes ·as delimiters ... space

is part of the search string>
The ALL option will cause the editor to attempt to

find all occurrences of textl and display all correspond­
ing lines. If 22 occurrences are found before the search
line limit, the lines containing occurrences of textl are
displayed along with a message stating that the search is
not finished. The user can modify any of the lines on the
screen. To resume the search, the user only needs to
enter "F", and the editor picks up the search where it
left off. The user can even begin a search and then use
other commands such as LIST or CHANGE, add and
delete lines, etc., and will still be able to resume a
search.

RENUMBER < A < B > > < BY N >
Renumbers the edit-file. If no parameters are entered,

all text lines are renumbered. If line A is specified, the
numbering will begin at line A and continue through the
end of the file. If line B is specified, the renumbering
will only be done on lines A through B. The BY N
option allows the user to override the default line
number increments used by CHICKEN in a renumber
operation.

The renumbering is done to the fue in place, rather
than through a copy procedure. This significantly
speeds up the operation in comparison to, say, EDITI
30oo's GATHER command.

Other commands found in EDIT/3000 as well as many
other line editors, are either unnecessary or have their
utility reduced with a full screen editor. The ADD
comm·and in EDIT/3000 is a good example. With
CHICKEN lines are inserted right on the screen be­
tween other lines of text, and transmitted back to the
editor. The line number does not even have to be in­
cluded. The editor identifies the surrounding text and
calculates a line number for the new line. To add text at
the end of a file, the user enters L LAST. CHICKEN
displays the last line of text followed by 21 numbered
blank text lines. Along the same vein, line deletes can
be handled on the screen simply by placing the letter
"D" before a displayed line of text. The DELETE
command itself is only needed for global deletes, as in D
100/200.

The above are just a sampling of the full screen
editor's command list. As was mentioned previously,
command keywords have, for the most part, been kept
the same to facilitate learning to use CHICKEN. Thus
the user will find such familiar key-words as GATHER,
JOIN,. HOLD, CHANGE, EXIT, etc., along with a few
new commands, such as ZIP which initiates a compile
for an edit-file without having to either exit the editor or
KEEP the source code.

THE RESULT
(A Personal Digression)

The most notable difference upon the installation of

4-36-3

CHICKEN was not programmer productivity, it was
programmer euphoria. After using it for even a short
tin;te, one gets hooked. In our shop we have a mixture of
block-mode ~nd character-mode terminals used for pro-

. gram development. To say that the character-mode
terminals are collecting dust would be an exaggeration,
but we have noticed people arriving quite early in the
morning to stake claim to a "CHICKEN" terminal.

The productivity, response tirrie, and performance
improvements are ,also accomplished. As of this writing

4-36-4

(December 1981), quantitative data are not available.
Anyone desiring more inforination of this nature, or
having any further interest in learning more about
CHICKEN can write to:

Tom Fraser
Forest Computer

P.O. Box 1010
East Lansing, Michigan 48823

or call (517) 332-7777.

"~

RPG - A Sensible Alternative
Steve Wright

PREFACE
The main purpose of this talk is not to present evi­

dence of one programming language being better or
superior to another~ The decision ofprimary language is
most likely already been made in your operation. This
talk, however, is designed to make the statement that
RPG is being used successfully in the HP world and
should not be ignored becuase ofdominate usage of any
other language. Also, I want to present some uses that
you may not have considered. Please bear with me on
some elementary topics. But, I feel that some users
have not been exposed to them, and hopefully will be
beneficial.

FACTS (AND HISTORY)
Consider the following:
• The most common programming language by far is

not RPG.
• RPG to COBOL conversions are commonplace

and packages that will perform 99% of the work are
available from several vendors.

• Several former RPG users were told to switch to
COBOL to get the most out of HP machines (mainly
with support considerations).

• The person next to you at lunch today sneered at
you when he heard that you used the RPG compiler.

WHY DO WE INSIST ON
USING SUCH AN ANIMAL?

Consider the .following:
• COBOl shops are experiencing low productivity

levels and are seeing report writers as an escape route.
• Operations that escaped the IBM System 3 world

with excellant track records are using HP equipment to
enhance a thing that is already good.

• Managers are fmding out that matching program­
ming languages with the assigned task can be a reward­
ing adventure.

My own personnel experience with Hewlett Packard
equipment and available programming tallent has led to

the following situation'. I have 90% of my programs in
RPG, 8% In COBOL and 2% In FORTRAN. I am using
FORTRAN In heavy math oriented problems, COBOL
for mass data entry programs and RPG for all batch and
Quicky Del routines. The heavy terminal usage pro­
grams are In COBOL and FORTRAN, and therefore
are the heaviest used. But the RPG programs that sup­
port edits, update and reporting are the real workhorses
that support every system.

My reasons for using RPG in so many batch programs
is the speed at which the programs can be written,
tested and Implemented. The run time difference be­
tween RPG and COBOL in batch routines for the most
part has not been substantial and the implementation
schedule of entire systems can be speeded up. Batch is
not a daily task for the most part and therefore can be
paid for in machine cycles instead of programming
dollars.

Most programming managers have grown to love
compiler languages with the ability to go between ma­
chine lines with minimal difficulty. The report writers of
today are very impressive. I have looked very carefully
at one very good one, and I still may ask Santa Claus for
one.next year, but if I were a small shop with limited
programmirig resources (salary dollars not talent), I
would have to consider RPG for everything from batch
to data entry programs.

HOW I DO IT
Below are some tricks of the trade that I use effec­

tively to enhance my operation. Again, some of these
items are elementary to many who will read this paper,
but I fmd most people will fmd one or two things that
will be new to them.

RPG supports only one-dimentionial arrays. I use
some algorithms to make two-dimentionial arrays work.
Suppose I wanted an array of 12 years data on the total
of6 product lines. To defme the array, specify 72 entries
(execution time array). To load the entries use X=year
to load, Y=Product Code (1-6). The following code will
locate the element. .

*
*
*
*

~
*
*
*
*
*

X SUB 1 X
X MULT 12 X
X ADD Y X

USE THE X ELEMENT OF THE ARRAY

TO FIND THE MEANING OF THE ELEMENT SPECIFIED BY THE
VARIABLE "WORK", USER THE FOLLOWING:

4-83 -1

* WORK DIV 12 X (NOT HALF ADJUST)

* X MULT 12 y

* X ADD 1 X

* WORK SUB Y y

* ~* THUS X= YEAR LO.~DED Y= PRODUCT CODE

*

You may choose to print the results out using a 6
element array running down the loaded 72· element
array by element and printing when you have filled up
the 6 element array. I use just such a routine to look at
the past 10 years history for product trends.

R.A.F. (Random Access Files) (Addrout)

HP has released "Xsort" that will sort only using the
key fields and the relative record number and dropping
the large data portions of the record and leaving a fde
that contains only the relative record number of the
records in the fde arrainged in the order the file would
be in if the entire record was carried along. The scheme
allows very fast sorting of very large data fues. This
discussion is fully explained in the communicator #26.
Use it. It can be a life saver and a hero maker. In case
this all sounds familiar, It is the System 3 Addrout pro­
cessing. Also, in processing files by random access (no
keys) do not be afraid to declare a MPE fde file as input
chained and ~imply read it by relative record number. I
do it all of the time to position myself back and forth
within the file. "Chained" does not always mean
"keyed."

DSPLY

When using the DSPLY command, the limit of 8
characters for a constant in factor one is annoying. I use
a compile time array at the end of the program to detail
my prompts, giving me all of the characters I need
without many cumbersome moves. Also keep i~ mind
that y'ou can send escape sequences in the DSPLY
command to manipulate the terminal as well as ring a
few bells. Very fast data entry programs can be. written
using DSPLY. I wrote one data entry program using
DSPLY in two hours thinking that it was going to be a
one-time program. It is still in use two years later with
no changes.

SETLL

The "SETLL" command is very useful in either
KSAM or IMAGE fde. Everywhere you have a user
screaming for a name search routine, use the name as a
duplicate key (or automatic data set) and use processing
limit (SETLL) and the read command to give amazing'
results. The following code is an example:

ASKNM
'NAME? I

NAME
LOOPER

*
*
*
*
*
*
*
*
*
*
*
*
*

99

98

TAG
DSPLY TERM
SETLLMASTER
TAG
READ MASTER
GOTO ASKNM

FULLNM DSPLYTERM
'CONTINUE'DSPLYTERM
ANSWER CaMP 'y'

GOTO LOOPER
'STOPPED'DSPLYTERM

GOTO ASKNM

NAME

ANSWER

99

98 ,

"LET ME CALL YOU SPL­
(OR COBOL OR FORTRAN)"

The HP RPG compiler allows exits (calls) to external
routines that can written in other languages. If you feel
this is needed, keep in mind that it is available. The
Orlando swap tape has such routines (such as calls to
system intrinsics) can be very useful.

INTERACTIVE WITHIN
THE PRODUCT LINE

RPG and V/3000 is not a bad combination. The main
reason I used COBOL with DEL was the ability ,of

4-83 -2

COBOL to read only one field at a time (a real time
saver). However, the main thrust ofV/3000 is in reading
the entire screen at once and allow the V/3000 routines

. handle screen painting and repainting. (It does a pretty
slick job at times.) RPG looks like a natural for usage
with VIEW. V/3000 uses more screen dependent con­
trols that insulate the programmer from the messy calls,
that one should try it in RPG.

"HOW ABOUT A DATE
GOOD LOOKING?"

Communicator #24 tells of how the RPG programmer
can specify "F" in column 17 of the header spec to

allow himlher to specify the sysdate from other sources
than the system clock. One may use a disc fIle, or re­
quest the user enter the date as he runs the program.
Also, the time2 command is explained in the #24 com­
municator. This command will .return to the user the
date in the format of "THU, JAN 10, 1980 9:25 AM
JULIAN:OIO." This can be very useful in that the com­
piler allows you to select which fields in the above for­
niat you want to see, thus reducing the moves that
would normally be associated with it.

"CHECK PLEASE" (MOVEA)
I have a rather classy check protection routine that I

am contributing to the swap tape. Use it in good health.
The routine uses "MaYEA" extensively. The.
"MaYEA" usage is worth going through with beginner
programmer types and intermediate types who have not
been exposed to it. The full usage of arrays can enhance
their productivity.

CIRCLES AND CYCLES
The RPG programmer whether beginner or advanced,

must, must, must, must know the RPG cycle. If he/she
is not taught early, you simply have a COBOL or As­
sembler programmer with very restricted limits. The
main attraction of the language is having the cycle do all
of the grunt work for you. If you still think that total
time processing occurs after a break instead of before a

break, (there is a differance) you need to spend some
serious time with the cycle flowchart in your HP or IBM
Reference Manual.

"WHERE DO WE GO
FROM HERE??"

RPG programmers are a sturdy lot, but with the ad­
vantages of an international user group at our disposal,
we should be doing more in the area of sharing ideas. At
the San Jose meeting, several RPG users wanted to get
together and start a special interest group, or a
newsletter. The interest was high but no one kept the
momentum going. I am open for suggestions for ways to
start such a group. Some suggestions I have heard for
the users are as follows:

• Have a newsletter with shared ideas as the em:.
phasis

• Start a special interest group for addressing HP
• Set up a network of "help-lines" for RPG users
• Have special user group meeting before or after the

international user group meeting each year.
One other item that I think may help is using some of

the system 3, 34, 38 aids. That includes getting free
subscriptions to such publications as Small Systems
World. It is a monthly publication that has been well
accepted by many small systems users. If you want the
address to ask for the free subscription, please contact
me.

4-83 -3

Techniques for Testing On-Line
Interactive Programs

Kim D. Leeper
Wick Hill Associates Ltd.

Kirkland, Washin~ton

ABSTRACT
This paper will describe various strategies for testing

on-line interactive programs. These strategies include
acceptance/functional testing, regression testing and
contention testing. The paper will also discuss the me­
chanics of testing including testing by human interven­
tion and various forms of automated testing. This in­
formation will allow you 'to create a viable test plan for
software quality assurance in your shop.

INTRODUCTION
Program Testing. Those two words undoubtedly con­

jure up thoughts of long boring hours sittig in front of a
terminal typing in all kinds of data looking at error m~s­
sages produced by the program. This paper will present
alternatives to this type of program testing. It will also
describe a prototype test plan or quality assurance cycle
which may provide the reader with ideas for implement­
ing his/her own test plan for his/her own shop.

We must make sure we are all talking the same lan­
guage so some definitions are in order at this point.

f

What is Testing?

Software testing may be thought of as a series of data
items which when presented to the program under test
(PUT) cause the software in question to react in a pre­
scribed or expe,cted fashion within its intended envi­
ronment. The purpose of testing is to expose the exis­
tence of mistakes in the program or to show the absence
of any such bugs. If the soft:ware does not act in'the
expected way then one has found a bug or mistake in
the program.

Vocabulary

SCRIPT - a list of inputs or data items given to the
PUT for testing purposes.

DATA CONTEX OF BUG - the collection of inputs
required to cause the PUT to fail or return results which
are not expected.

TYPES OF TESTING

Acceptance/Functional Testing

This type of testing is used to demonstrate that the
various functions of a given software package actually

works as described in its documentation. This is not
exhaustive testing as it only examines one or two
transactions per function. This is the typical type of
testing the vast majority of users perform now.

Regression Testing

This type of testing can be used to test all the various
logical paths within a given software system. Regres­
sion testing tries all the data extremes per function that
the program could be expected to respond to. This type
of testing is rarely performed because it i's resource, that
is to say hardware and personnel, intensive.

Contention Testing

This type of testing is used to determine if the
database or file locking strategies that are used in your
application programs actually work. Two programs are
executed at the same time, one performs a transaction
which locks a given item in the database. The second
program attempts to access this same data that is sec-

,ured by the lock via another transaction type different
than the one used in the first terminal. The designer in
this instance is interested in the message of action of the
software to this challenge. This type of testing becomes
particularly relevant when the installation has many
programmers implementing many systems dealing with
the same database.

THE TEST PLAN OR
QUALITY ASSURANCE CYCLE

The keystone of any successful testing program is to
have a viable test plan. This plan should describe all the
phases a software development project goes through
and then ties all the phases together in one comprehen­
sive flow of data and actions. The plan should exten­
sively use feedback loops so that when problems are
discovered there are clear paths for the problem rectifi­
cation process to follow. One possible quality assurance
cycle that can be proposed may be seen in Figure 1.

The diagram indicates that the test script should be
generated along with the design of the software. 'Many
times in the design process the designer realizes some
weakness in the design and will want to specify a special
test in the scriptfile. S/he is encouraged to do so. Many
companies that use this methodology specify programs

4-90-1

by a test script and V/3000 screens.
Examining this diagram more closely one can see that

the flow of debugging actions is closely tied to the
design/maintenance of the original test script. The rea­
son for this is to force the implementors to keep track of
the bugs they discover and place them in the test script.
This script should then be run against the application
program whenever a new fIX or correction has been
applied to the original program. This script will con­
stantly force the program to re-execute all the previous
transactions which caused bugs to occur in the past, to
assure the program maintenance team that no additional

start

!
design software

~
design test script

·t
implement software

mistakes h~ve been introduced by fIXing the last bug.
In this version of the QA cycle the users are always in

a mode of testing the delivered software. Eventually the
users will fmd a bug which will start the whole cyclic ~
process over again. If they don't find a bug, don't think"'"
it is not for trying. The users have eight hours per day
per person to fmd bugs. It does not take very long be-
fore they have more execution time on the application
software than the designer/implementator has. This is
the time when more bugs can and will be found which
will start the cycle once again.

modify test script

to include bug

I
implement fix

I

acceptance test

p t I_F---------~W;
contention test

p tIF ---.l

deliver to users

users find bugs

y

Figure 1
Quality Assurance Software Cycle

THE MECHANICS OF TESTING
Obviously, the type of testing that is currently being

used is, human intervention testing. This is where a pro­
grammer of analyst sits in front of a terminal and simu­
lates a user by following a handwritten script. This ap­
proach to testing is less than desirable for a number of
reasons, among those being:

, 1. input data error due to arrogance/boredom in ap­
plications tester;

4-90-2

2. non-repeatability of exact timing due to human
tester;

3. the tester might not record everything happening
off the screen;

4. an expensive employee is being utilized for testing
purposes when s/he could be designing/
implementing more applications

A possible solution to the dilemma outlined above is
to mechanially examine the software by exhaustively

r

testing all the paths in the program by computer. Using
completely random data types as input you could auto­
mate the testing process. However, as there is only so
much time available during a 24 hour day it might take
all day to exhaustively test a very small application pro­
gram. This technique is machine bound in terms of both
creating the random data and testing all the paths in the
application code.

A saner approach would be to combine the above two
techniques into a testing procedure that utilizes a
human being's capacity for creative thought and a ma­
chine's capacity for highly efficient repetition. This
technique would rest in the programmers designing the
scripts used for automated testing at the same time as
they design the application itself. Once the test script is
produced then the machine itself tests out the applica­
tion program under the watchful eye of a human. In fact
the script can be used as a specification for implement­
ing the system. As Yourdon has written, "What we are
interested in is the minimum volume of test data that
will adequately exercise our program. "1

It is now possible, using VTEST/3000, to automate
this testing procedure and achieve a real manner of
quality control. VTEST/3000 includes full V/3000 test­
ing capability. The compiled code runs as though it
were in a live situation with VTEST/3000 providing full
documentation of all errors occurring on the screen of
the terminal.

In order to use VTEST effectively one must appreci­
ate the diagram in Figure 2. There are two types of tests
that VTEST can perform, block mode testing for those
programs that use V/3000 and non-block mode testing
for those not .using V.

The frrst type of test~g that will be discussed is non­
block mode application testing. In this case VTEST
looks like a non-block mode glass TTY terminal. The
script file contains the actual commands and data that a
user would normally type into the screen of a real ter­
minal, everything between and including HELLO and

BYE. This script ftIe is built and maintained by the
standard HP EDITOR. The script file is input to
VTEST. VTEST transmits this file a line at a time to the
application and VTEST prints out a report of the termi­
nal screen before the return key was depressed and
after along with the number of seconds that the re­
sponse took to come back to VTEST.

The second type of testing that will be discussed is
block mode application testing. In this case VTEST
looks like a HP2645 block mode terminal. The script ftIe
is the same as above with an important extension. The
script file now can tell VTEST when it must transmit
data to a V screen. The data for a V screen must come
from a different type of file. This file is called the
BATCH file. This BATCH file is created and
maintained by another program called CRBATCH.
CRBATCH allows the user to specify the formftIe name
and the form to be displayed. Data is then entered and
CRBATCH reads the screen and puts the data into a
BATCH file. CRBATCH allows the user to insert sc­
reens, to delete screens and modify the data in screens
already in the BATCH file. It is a general purpose
maintenance program or editor for BATCH files.
Whenever the application program under test wants
some block mode data the next record is read from the
BATCH fue. VTEST then transmits this record com­
plete with all the special characters that V requires to
the application. VTEST prints out a report for every
transaction before the ENTER key was depressed and
after the next screen was received along with the
number of seconds that the response took to come back
to VTEST.

One can see quite easily that VTEST fits right into a
well designed quality assurance cycle.

REFERENCES
lEdward Yourdon, "Techniques of Program Structure and Design,"
"Prentice-Hall, 1975.
2Software Research Associates, "Testing Techniques Newsletter,"
(415) 957-1441.

4-90-3

V3000
FORMSPEC

CRBATCH

Atcompletion, a fully documentedprint-out is
produced.

EDIT 3000

4-90-4

VTEST

APPLICATION

Figure 2

~--~........])
ATC/ADCC

LINK

A Universal Approach an an Alternative
to Conventional Programming

!Jill McAfee and Craig Winters
Futura Systems

Austin

Some two years ago we set about to fmd a shortcut to
programming, a way to simplify'and speedup the actual
coding, to eliminate all or nearly all .of the housekeep­
ing, and to improve the reliability and maintain-ability
of our work. We wanted to be able to deal with any
problem in terms of the logical operations to solve it,
rather than with a sequence of detailed programming
statements.

We identified approximately 100 routines to handle
input, validation, conversion, formatting, and other
functions not provided in the System Library. We de­
signed an English-like language and compiler to invoke
these operations as well as those in the SL and to pass
them parameters; and we designed a driver to execute
all operations in a reliable, consistent manner.

Our primary objectives were:
• to define data types by the significance of their

contents (date, phone, zip code, quantities, mone­
tary amounts, etc.) and to perform data entry, vali­
dation, conversion and formatting automatically,
regardles's of storage type.

• to provide a very -high-level English-like language
that would be both easy to learn and self­
documenting.

• to be able to use any number and type of fdes
simultaneously including multiple databases,
datasets, KSAM, printer, etc.

• to automatically store' and load tables to supply
values needed at run-time.

• to simplify declarations and eliminate the dull, bor­
ing redundant part of programming, where most
errors are made

• to provide text specification syntax, including lit­
eral text, program variables and control characters,
for use as program messages, report output, head­
ings, etc.

• to work equally well for interactive and batch ap­
plications.

We wrote the system in SPL. It has been in daily
operation for just over two years, during which time
ther~ have been two major rewrites and many additions
and enhancements designed to further simplify its use
and improve performance. Presently we are just putting
the fmishing touches on the fmal version which will

incorporate all the things we have learned from these
past two years of use and will reflect at every step what
we feel will be the best design and coding available.

Since this is a new and unique approach to program­
ming, there is no generic for it. We call it The Futura
System, and it consists of a language, compiler, driver
and an extensive procedure library. We have attempted
to give it the ability to do anything, and when we have
discovered something it would not do, we have added it.
And while our primary intent was to use it for applica­
tions programming, we have found that it is equally
strong and valuable as a powerful, versatile utility that
is able to supplement and round-out the various system
utilities quite handily.

Programming using FUTURA consists of Initializa­
tion Commands and Mainline Commands. The compiler
reads and validates these, checks their parameters, pro­
vides default values where desirable, builds the
Mainline binary command module, and formats and
prints a program listing in one of several styles. The
binary command module resides in the data stack and
drives and controls the entire program execution.

InitCommands include:
STACK~ which sets the total space the program will

require. It has a default value of 3500 bytes, which
will handle most utility needs as well as quite a lot
of applications.

ALLOCATE - which dimensions the various buffers,
should the defaults not be quite right.

BASE - used to open an IMAGE database.
SETS~ for identifying the DataSets to be accessed.
FILE - for opening MPE and KSAM rues.
TABLE - declares and loads a table, taking care of

data conversion, statistics and storage automati­
cally.

PRINTER - opens a printer ftIe according to your
specifications, including headlines, page numbers
and location, forms-message, and all other
parameters used with the line printer.

LOAD - which initializes any area in the data stack
with any string or binary value.

INTEGERS - used to load a string of binary single­
word integers at any location.

5 -31-1

j

IDENTIFY - an InitCmmd that may be used or im­
plied by the syntax, it sets up a table of identifiers
for use throughout your program.

All InitCmmds that may be required must precede the
Mainline.

Mainline Commands are names of logical operations
such as ADD, MOVE, UPDATE(datatype), BINARY,
etc. They may have up to five parameters, some of
which are required and some optional. There are
MainCmmds to do everything, and frequently there are
several, giving the programmer meaningful options on
how to accomplish a step. For interactive applications
there are a dozen-or-so UPDATE (datatype) com­
mands, such as U~DALFA, UPDNMBR, UPDZIP,
UPDSSNO, etc., whic·h not only accepts, validates,
formats and displays, and stores the data, but also gives
the programmer complete control and recognizes up to
8 special characters that permit backing up one or more
fields, begin record over, check for mail, etc.

The fact that commands are the names of logical op­
erations rather than language requirements means that
when you have logically solved the problem you have
also largely written the program.

Many MainCmmds return one or more values to the
program such as the Condition Code, Length,
DBStatus, Returned Value, etc. as may be needed.

Text strings to be used as prompts for interactive
operations are passed automatically to the program, as
the compiler counts them and stores them together with
any control characters needed to handle the screen and
make an eye-appealing presentation. Text needed for
any other purpose is also passed, counted, stored, and
recalled with little or no effort on the part of the pro­
grammer.

The MainCmmds themselves, the Identifiers, and the
way the text strings are h~dled all provide a great deal
of self-documentation right where it is needed in a pro­
gram, and other doc~mentation and comments may be
added at any point. There. is an index-building facility
that produces an index for the documentation consisting
of the program name and all of the comments in each
program.

Many commands provide for testing and branching.
They are processed unifoqnly by a subroutine,. and

S -31-2

L

branching may be either to a label or to another instruc­
tion. Subroutines may be nested up to 20 deep; they
may call themselves, and they may reside anywhere in
the Mainline. There are both Init and Mainline $IN­
CLUDE commands, allowing routines to be stored sep­
arately where they may be used by several programs by
including only the reference table.

The binary module together with any tables and initial
values may be automatically saved and used again
without recompiling by simply adding "$" to the
STACK command ($STACK). This binary file may be
purged any time changes are made, and it will be re­
compiled and saved at next compile if the "$" is in
place.

In the handout pages we have included examples
showing the program [tIe as it ~s keyed using EDITOR,
the normal program listing provided by the compiler
which formats this Editor file and prints the permanent
documentation, and a look as the terIninal screen as·
each of these programs would appear when run, and a
sample of the printer output where applicable.

These are some of the programs that were used to
produce the Proceedings and the Exhibit and Confer­
ence Guide. While we asked that the papers for the
Proceedings be keyed in cap and lower case using the
EDITOR, with standard 72-byte records, the facts are
that everyone used his/her own method - with record
lengths from 60 to 160 bytes and some embedded con­
trol characters that would completely snarl our typesett­
ing computer if they were not removed.

These are mostly small, simple programs that will il­
lustrate the truly -universal nature of the Futura System
as a powerful and versatile utility. I have also brought
the documentation for the Automatic TimeSharing Ac­
counting and Billing System (ATSABS) which will
show how it can be used for a large, complex system.

This will also show the automatic indexing and sys­
tem documentation features that are available. We
would be glad to have you all look this over and discuss
it either at our booth or at other times and places by
arrangement. This system totally automates our
TimeSharing accounting and billing. It required approx­
imately 5,000 lines of FUTURA code, and we estimate
it would have required more than 30,000 of SPL.

The Technology of the
QUAD Editor, Part II

Jim Kramer
Hewlett-Packard

St. Louis, Missouri

INT"RODUCTION
The QUAD editor is a text editor that was contrib­

uted to the Users Group library last year at the Orlando
Users Group meeting. It has several features which
make it notable and useful, the most important of which
are that it texts files instantaneously and that it can
undo any or all editing changes. A paper in the proceed­
ings of that meeting, titled "The Technology of the
QUAD Editor," described the implementation of these
features.

In the past year QUAD has acquired many new
capabilities, including the ability to maintain multiple
versions of a file, to cancel the effects of the preceding
command, and to compile programs. The purpose of
this paper is to describe the implementation of these
new capabilities.

A BRIEF DESCRIPTION

QUAD is a line-oriented editor similar to EDIT/3000
and TDP/3000. Its most important capability is instan­
taneous texting, and sometimes instantaneous keeping
of files. A file is texted just by opening it and changes
are kept in a separate work file. If the only changes to a
ftIe are modifications of existing lines, then keeping is
done by posting the changes back to the texted fIle.
Since changes are kept in a separate work file it is easy
to undo any or all changes just by removing them from
the work file: QUAD's UNDO command does this.

It is important that .QUAD be able to fmd lines in the
texted ftIe quickly. QUAD starts out with no knowledge
of the location of lines in the file, and must find re- "
quested lines using binary search. However, QUAD
keeps a record of all blocks read during the search pro-·
cess and uses this record to shorten subsequent
searches. The method is described in "a paper titled "A
New Tool for Keyed File Access (Sometimes)" in the
proceedings of the Users Group's 1980 North American
meeting in San Jose.

Features that are new to QUAD in the past year in­
clude the following:

1. Operating directly on changes to the work ftIe, by
means of the MODS key word in a line range.
Changes can be listed, kept, and otherwise oper­
ated on. For example, "List Mods" lists all
changes that have been made to the current file,

and "Keep Modfile(Mods)" saves the modifi­
cations in a file named Modfile..

2. Cancelling the most recent command which mod­
ified the file. The Cancel command does this.

3. Maintaining multiple versions of the ftIe being
edited. The Freeze command prohibits further
changes to the current version and starts a new
current version. Prior versions can be read at any
time, but not modified, by using the VERSION
keyword. For example, "List Version 1" lists the
first version, and "Keep Filename(Version 1)"
keepts it.

TICKET FILES

The important characteristics of QUAD work fdes ­
variable length keys and data and re-use of space - are
provided by a file access method which I call ticket
files.

With most ftIe access methods, the user who wants
data stored specifies where it is to be stored - a record
number. With ticket files the user does not specify; in­
stead he just supplies the data to the access method and
receives back a "ticket" telling him where the data has
been stored. In order to retrieve the data at a later time,
he must supply the ticket.

It is important to recognize that this technique gives
enormous flexibility to the ftIe access manager. The
data can be put in the most convenient spot, for exam­
ple a block that is already in a buffer in main memory.
Within the block the record can be placed wherever
there is space. With ticket files a record need not even
be placed contiguously within the block - it can be
broken into pieces.

Ticket files turn out to be peIfectly suited to those
applications in which data is found through pointers:
tickets are really just pointers.

In order to make ticket ftIes satisfactory as work fIles,
it was necessary to implement a keyed sequential ac­
cess method based on ticket ftIes. The implementation
is significantly different from KSAM and actually more
poweIful: both keys and data Can be variable length,
space is re-used, and keyed sequential access can be
either forward or backward.

When a key is stored, a ticket is stored with it. The

5 -57-1

J

ticket points to data. Thus storing data by key is a two­
step process:

1. Store the data and receive a ticket.
2. Store the key and the ticket.

.Retrieving data by key reverses the two stC5Ps:
1. Supply the key and receive the associated ticket.
2. Use the ticket to retrieve the associated data.

THE WORK FILE BEFORE
MULTIPLE VERSIONS

Before describing how the current QUAD maintains
multiple versions of a ftle, I will describe how earlier
versions maintain the work fde.

A ticket file is used as a work ftle, and contains two
types of keys within the key structure: keys describing

deleted ranges, and keys describing new or changed'
data.

To do a deletion, QUAD makes a single entry in its
work ftle which is just a 17 character key. The first
character is a "0" (for delete), the next 8 characters are
the lower line number in the range, and the last 8 are the
upper line number.
. Since deletion is achieved with a single work fue en­

try, it is very fast, and the speed is independent of the
number of lines being deleted.

A change entry consists of both a key and data. The
key isjust the letter "C" followed by the 8 character line
number, and the data is the line of text corresponding to
that line number.

Schematically this structure is as follows, with an
arrow representing a ticket hel~ with the key and point­
ing to the data.

Change key -----------------> Data
Delete key

. IMPLEMENTING MULTIPLE VERSIONS

Multiple versions were implemented by introducing a

version record for each key, as follows:

•

Change key ----~---> Version Record --------> Data
1 1 1 1---------> Data
1 • •.• 1 1-----------> Da ta
1 1-------------> Data
I
I •
t~--------------------) Data

Again the arrows represent tickets. In this case a tic­
ket is stored with the key and points to a record called
the version record, which itself contains one or more
tickets pointing to data. With each such ticket there is a
number identifying the version to which the data be­
longs.

Using this structure QUAD can, for each line number
. (represented by the change key in the figure), maintain

multiple versions of each line.
Version records are themselves variable length, each

being large enough to hold tickets for all versions of the
corresponding line. There are generally many fewer
versions of a particular line than there are ftIe versions,
because a given line will not· change with each version
of the ftle. A version record is restricted by QUAD
internal buffering to 31 versions, but in general this will
allow hundreds of file versions.

To operate on a version of the ftIe, QUAD must inte­
grate all deletions and changes for that version and all
previous versions with the originally texted ftIe. The
algorithm to accomplish this is one of the most difficult I
have had to write, and is complicated by trying to op-

5 -57-2

timize performance. One performance problem that
arises is that modifications to early versions which have
since been deleted can slow down access to later ver­
sions.

.: .

, IMPLEMENTING THE CANCEL COMMAND

The Cancel command cancels all changes made by
the most recent command to change the fue. Two con­
secutive Cancels have no net effect: the second cancels
the effects of the first.

The Cancel command was almost trivial to implement
once multiple versions had been implemented. The
technique used was to reserve space in each version

. record to save a version number and ticket. Then when
a command changes a line, the previous version number
and ticket can be saved in this space. The Cancel com­
mand· then just restores the saved version number and
ticket to its prior place.

The only other implementation requirement for the
Cancel command was to link together all the changed
version records. This was easily accomplished using the
tickets of the version records.

COMPILING FROM WITHIN QUAD·
QUAD allows compiling for five languages: COBOL,

FORTRAN, RPG, SPL and PASCAL. The syntax of
the commands for compiling is identical to the syntax
for the corresponding MPE command. However to
compile from the fde currently being edited, it is neces­
sary to replace the text file part of the command with a
line range enclosed in quotes. For example:

/SPL (ALL),$NEWPASS
/FORTRAN (2B/4B),USL,*LP

The ability to compile from the fde being edited turns
out to' be especially useful for FORTRAN, because it
permits compilation of single subroutines.
. All compilations are done by invoking the requested
compiler as a son process. File equations are set up for
all specified fdes, and the compiler is passed a PARM to
tell it which fdeswere specified.

Whenever a line range is being compiled, QUAD
passes the line range to the compiler through a message
fde. Message fdes are a new fde type for MPE as of
MPEIV.

This was my first experience with message fdes, and I
encountered the following problems:

1. Unless the message rde is built to contain only a
single block, all blocks are posted to disc. QUAD
uses a single block message ftle to prevent this
posting.

2. If QUAD fdls the message rtle before the compiler
opens the ftle, QUAD's next write will fail with an
end-of-ftle error. In this case, QUAD must loop,
pausing and trying to write until the compiler gets
the ftle open. Once this occurs QUAD will au­
tomatically be suspended by the fde system on
trying towrite to a full ftle, as long as the compiler
has the file open.

3. QUAD must be careful not to send a null ftle (no
records) to the compiler, because the fIle system
will suspend the compiler indefmitely on its frrst
attempt to read a record regardless of whether the
ftle has any writers.

CONCLUSION
QUAD was created to quickly list ftles and make

simple ·changes. I believe it or a similar tool belong in
every 3000 shop as a significant resource saver.

A few users now use QUAD rather than EDIT/3000.
This pleases me because I think QUAD deserves it,
although there are still things that EDIT can do which
QUAD cannot. However, I suspect that most users of
these tools would quickly abandon' them for ·general
editing were a good full-screen editor to appear. I know
I would.

If there is any permanent significance to QUAD, I
believe it is to be found in the ticket rde access method,
which I have found to be enormously flexible and easy
to use. QUAD does not take full advantage of its flexi­
bility, and I am looking for an application that does.

5 -57-3

'--;.-

\

The Automated Office
Example: Producing a Newsletter

Eric A. Newcomer
Documentation Specialist

Criminal Justice Information Systems Division
Illinois Law Enforcement Commission

Chicago, Illinois

INTRODUCTION
The day of manual typing and fuing of original letters,

memos, and other short documents is coming to a close.
The day of automated typing and fuing will take its
place.

Everyone knows that. The so-called "office of the
future" has been the subject of countless articles, semi­
nars, and sales presentations. Manufacturers such as
Xerox, Savin, and Wang are busy producing and selling
what they call "executive work stations."

These trends reflect the desires of managerial, profes- .
sional, and executive personnel to join the data proces­
sing revolution. Most likely, this is the next step in the
evolution of the office of the future.

This paper examines these trends in light of our expe­
rience with creating an "automated office" - providing
computer capabilities to our professional, managerial,
and executive staff. In brief, we found we:

• Reduced or eliminated paperwork and fuing
• Used our resources more efficiently
• Saved on personnel costs
• Increased productivity.
The how and why of these fmdings will be presented

in the following pages. An example of the way the au­
tomated office works is provided through a discussion
of our method for producing a newsletter with the assis­
tance of our computer. A discussion also is included of
how this method is applied to produce some of our user
documentation.

This paper is organized into the following seven sec­
tions:

• Background Information. This section provides
background information on the Criminal Justice In­
formation Systems Division.

• Hardware Configuration. This section briefly de­
scribes the hardware configuration in operation at
the CJIS office.

• File Group and Account Structures. This section
describes the fue group and account structure in
use on the CJIS HP3000.

• Organization of the Automated Office. This sec-

tion describes the way the CJIS office became au­
tomated, the way it operates, and the way it should
operate in the future.

• Producing a Newsletter. This section presents the
example of the automated office in producing a
newsletter with the assistance of the HP3000. De­
sign tips are included.

• Producing User Documentation. This section de­
. scri~es how the method used to produce the

newsletter can be used also to produce user
documentation.

• Conclusions and Observations. This section pre­
sents some observations and conclusions about the
automated office in general, based on our specific
experience with it.

For the purposes of this paper, original text is defmed
as the document produced as a result of a person's de­
sire to tum thoughts into written words.

I. BACKGROUND INFORMATION
The Criminal Justice Information Systems Division

(CJIS) of the Illinois Law Enforcement Commission
functions as a computer consulting agency for other
state and local Illinois criminal justice agencies.
CJIS also maintains a Statistical Analysis Center that
develops statisticc;U analysis methodologies and applies
those methodologies to data collected by the software
systems we design, as well as to data from other
sources, such as the Uniform Crime Reports.

CJIS staff provide technical assistance to criminal
justice agencies interested in acquiring data processing
services and equipment. CJIS also designs, develops,
and implements transaction-driven, real-time manage­
ment information systems for state and local criminal
justice agencies.

Recently CJIS developed and implemented an elec­
tronic transfer of inmate data between the Cook County
Department of Corrections and the Illinois Department
of Corrections. Both agencies use CJIS's .Correctional
Institution Management Information System (CIMIS)
to collect and maintain their inmate data. The electronic
transfer is timed to coincide with the weekly transfer of

5 -65-1

PRINTSPOWERFILE

ILLINOIS
BUREAU OF

IDENHF ICAlION

18H 360

NAT IONAl
CRIHE

I NfORHAT ION
CENTER

-m-rn
rn
18" 3032

ILLINOIS
DEPARTHENT OF

LAW ENFORCEHENT
LERDS

~

.~

Figure 1. ens hardware configuration

DISC

HOT FILES
CCH • J -UCR

NLETS

~­
UJ

DISC

360 "BTTES

HP 3000/111 ~

~E~::"i~ (Q~~ flO_
NETNDRK

PRDMIS

oaTA8~SE ~ DISTR~~~SCOURT {JQo
TRANSACTION -w ~ PTB .
PaDCESS.R ~ .' ~ L.t:::::J I I~ .-.=n.

I TAPES DISC PRIMTEf;I

HP2621

.. ftPE. tmlSOLE

ILLINOIS
CRIMINAL JUSTICE

INFORMA110N SYSTEMS
NElWORK

c&l-OJ-~
HP 3000/33

"ODfRATElT
INTELLIGENT

BRCKEND
PROCESSOR

DISC

SHHE Gf
. IlliNOIS

COMPUTER
fAtlLITT

PRIIITERS

ItP 3000/JII

COOK COUNTY
DEPARTHENT OF

CORREC11 ONS
CIH!S

rn

", 3000/111

IlliNOIS
DEPARTHENT OF

CORREC TIONS
CIHJS

[BQ rn~n- liJ
r '
I H

HP SOOOIIII

IlLlNIHS
DEPARTHENT OF

CORREClI ONS
BACKUP

--Giil'~:~ Criminal Justice Information Systems
·"fJI~· . DIVISion of the illinoIs Law Enforcement CommJssaon

't. "..,.

Ut

I
0\
Ut

·1
N

~

~
DISC

~------
lIP 21111

Fll3Jlr-~NO

PRm:ESSDR
IttS138IJD

~
lIP 21"1

FR~NT -["0
PROCESSOR
"(~/300D

1600 BPI INO HBYTES

~
DiSC

.,00 lPH

25 I18TTES 50 MBYT[S ,.
NDRD PROCESSOR

XEROX 850
XEROX 860ra t!rJ-CQi..._. (Q TE88'_' ro

NT. ••• FI5CA' ~
GDANTS

0[' CO"'.LE ..,- ...r~'~~TAT"ENr

ReCOUNTING

RSTNCHRONGUS
TEA"INAlS

COHP-U-SCAN

caTE".'NALS
PRIDE/lOGIK mRAHHING

~~~~ISmR'. """ CIIIl5IILE
ANALYSIS .

SC8llll£" .....-.s

S;EJDIlIrJILS

Q&l
(Q

J J J



inmates from the Cook County Jail to the Joliet Correc­
tional Center. The inmates' records arrive before t~ey

do.
Other systems currently under development include

one for the Cook County State's Attorney's Office, one
for the Police Training Board, one for the Illinois Attor­
ney General, one for small and medium-sized Illinois
police departments, and one to monitor the activities of
juvenile detention centers throughout the state.

CJIS's 45 employees include 20 technical people, nine
professionals, eight managers, and eight clerical staff.

II. HARDWARE CONFIGURATION
ClIS hardware configuration is represented by Figure

1. We operate two HP3000 Series Ills, one for system
development and back-up, and the other for system
production.

Our in-house computer functions are handled by the
development computer. Our on-line users are handled
by the production computer.

Our office hardware configuration is centered around
the development computer. We use about 35 CRT ter­
minals for input operations, software testing, and sys­
tem demonstrations. About 30 operate under MPE. The
remainder are block-mode terminals used to test or
demonstrate the systems we develop.

Of the 30 MPE terminals, about half are used by pro­
grammers and analysts; the other half by managers and
professionals.

We have an optical-character-recognition scanner,
but fmd it more efficient to type original text directly
onto the computer using a C~T terminal.

For output we have two HP upper-case drum line
printers, an upper and lower case dot-matrix Printronix
line printer, two Agile 4210 letter-quality daisywheel
printer/terminals, two Xerox daisywheel word proces­
sors with local storage and reformatting capabilities,
and a Versatec 1200A electrostatic printer/plotter. Fig­
ure 2 illustrates this configuration.

Documents input on anyone of the 30 or so CRTs can
be output on anyone of these output devices.

A person typing a letter or other document has the
option to direct it to a line printer, to tell a word proces­
sor operator to print it out, or to use one of the AGILE
printer-terminals to print it out himself.

As you can see from Figure 1, our HPs are connected
to all sorts of other computers. This brings up an in­
teresting sidelight to the discussion on the automated
office - the transmission and reception of text and
documents across communication lines. Already cer­
tain of our staff send and receive messages to and from
Springfield, Washington, D.C." the Cook County Jail
and the Illinois Department of Corrections.

Soon managers and professionals will enjoy the bene­
fits of this kind of communication technology. Today's
electronic mail and electronic database systems are,
only a small indication of the sort of assistance to come.

III. GROUP AND ACCOUNT STRUCTURE
Our group and account structures make allowances

for text and document processing.
Most of the accounts on the HP are set up according

to the software systems under development. The pro­
grammers and analy'sts working on the Polic'e Infomia­
tion Management System (PIMS), for example, log on
the PIMS account. The Attorney General's system peo­
ple log on the AG account. And so on.

Each of these accounts includes a group specifically
set 'aside for documentation and text files, usually called
"DOCUMENT." .

Managers and professionals, unconnected with any
one particular software system log on a generic "eJIS"
account. Within this account are two groups set aside
for text ftles - one for software documentation, and
one for short documents such as letters, memos, and
reports. The word processor operators log on this
group, the "DOCUMENT.CJIS" group.

*********************". ***************************~***************
* *
* *
* ** --EXAMPLE 1-- *
* *
* ** Word processor operators sign on: *
* ** HELLO <name>/<password>.CJIS *
* ** and are automatically placed in the DOCUMENT group. *
* 'Managers and professionals are provided with similar *
* log on procedures. " *
* *
* *
*****************************************************************

S -65-3



VERSATEC 1200A ELECTROSTATIC
PRINTER/PLOTTER

rn
HP-3000 SERIES III

XEROX 850

XEROX 860

AGILE 4210 PRINTER/TERMINALS

WORD PROCESSORS, LOCAL
STORAGE AND REFORMATTING

PRINTRONIX

LINE PRINTER

HP 2617A

LI!~E PRINTER

Figure 2. A person creating a letter, memo· or other document has the option to direct it to a line printer, to tell a
word processor operator to print it out, or to use the Agile printer/terminal to print it out himself. The plotter is
used to produce charts and graphs.

,J



This structure simplifies ftIing and recall of docu­
ments by segregating text ftIes into separate groups
within the various accounts. Furthermore, it provides a
separate group within the "administrative" ac~ount

specifically for short documents such as letters, memos,
and brief reports.

This provides ease of permanent storage on magnetic
tape. The whole group of ftIes can be stored at once
each month to provide a permanent record, if desired.
We generally rely on twice-weekly system dumps and
daily date dumps to provide back-up.

So far, this account structure is the only formal
method of organizing and maintaining text fdes we use.
Each office user is responsible for preserving, naming,
-and maintaining his or her own files within these
groups, and is responsible for ordering separate mag­
netic tape storage, if any. Generally speaking, the sys­
tem storage and dump procedures are reliable enough
so that these back-up and permanent fding procedures
aren't used very of~en.

In the future some sort of additional text fde structur­
ing according to function may be implemented to keep
onftle letters, memos, and reports of interest to future
employees, or that provide historical reference.

As of today, the account structure allows the person­
nel to use the text fIles to supplant and supplement their
own personal files, and to facilitate and direct document
flow between personnel inside and outside the office.

IV. ORGANIZATION OF THE
AUTOMATED OFFICE

During the past three years, our programming and
analyst staff tripled. Our statistical staff doubled. Our
clerical staff did not increase.

Yet we are getting more done, more quickly, and
more efficiently. We are using the computer to elimi­
nate wasteful and redundant paperwork and fuing pro­
cedures.

Part of the reason CJIS professionals and managers
use the computer is because our boss, eJIS Director J.
David Coldren, uses one in his office. We were pro­
vided with a top-level example of how it could help.-

When office workers fmd out how the using the com­
puter can help them with their jobs, they ask to have
terminals installed in their offices. They notice for
themselves how using the computer can help them get
their work down faster and more efficiently.

This fact was brought home to us by the realization
that we never seem to have enough terminals to go
around, no matter how many we order. Someone else is
always asking for one.

Now that we've recognized the trend, we're in the
process of studying and evaluating it, and planning for
the future.

The way it works is illustrated by the following:
An administative assistant finds he must handle and

generate a great deal of paperwork to fullfill the
functions of his job. Letters, memos, brief reports,

. budget statements, etc.
He has a CRT terminal on his desk, which he re­

quested about a year ago when he realized how much
the computer could help him with his work.

One of his tasks is to prepare and distribute monthly
progress reports on allCJIS activities. He created a text
file on the computer using the TDP/3000 text processing
subsystem. He keeps this text on rue, calling it up each
month to cb.ange only those parts of the report that
require updating. He has entered formatting commands
once, and shouldn't have to enter them again.

Each month he enters the changes, stores the new
fde, and tells the word processor operator the name of
the new file. She prints it out, makes copies, and dis­
tributes it.

He rarely asks for draft copies anymore, so confident
is he of his abilities to correctly type in, proofread, and
fonnat the monthly report.

* :RUN TDP. PUB. SYS
*
* /ADD
*

!('" * 1 text .
* 2
* 3
* 4 etc. .
*

******************~**********************************************

* *
* *
* ** --EXAMPLE 2-- *
* *
* ** To create a text file for a memo the manager types: *
* *
* *

*
*
*
*
*
*
*
*
*

5 -65-5



*
*
*
*
* ~
*
*
*
*
*
*
*
*
*
*

.*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
'It

(to g~t a working copy)

(etc. )

:RELEASE MEMO

:RELEASE MEMO

:RUN TDP.PUB.SYS

:-RUN TDP. PUB. SYS

/TEXT MEMO
/MODIFY 1/4
/KEEP
/EXIT

/KEEP MEMO,UNN
/PRINT ~LL, OFFLINE
/MODIFY 1/4
/KEEP
/EXIT

/LISTQ MEMO
/EXIT

:BYE

To modify a text file for a memo the manager types:

The manager tells the word processor operator to print
~ file· called "MEMOn on the standard memo form. She
logs on and types:

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* She stores the file on a floppy disk, and prints it out. *
* TDP formatting commands would not be used in this case. *
* If any reformatting were necessary, the word processor *
* operator .would do it on the word processor. *
* *
* *
*****************************************************************

When this administrative assistant replies to a letter
of inquiry, he types his response into a text fIle, edits it,

. and stores it..He tells the word processor operator the
name of the ftIe, and instructs her to print it out on
letterhead. She does so, addresses the envelope, and
brings the letter to him for his signature.

Again, rarely does he request a draft copy to check,
except for the most delicate and important letters.

What's eliminated in terms of paperwork is the draft;
what's eliminated in terms of ftIing is fding working
copies of the monthly report.

*****************************************************************
* ** *.
* ** --EXAMPLE 3-- *
* *
* ** The manager also can go to one of the Agile printer/ *
* terminals and print out the memo himself. He types: *
* *
* *

5 -65-6



*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

:RUN TDP.PUB.SYS

/SET TERM AGILE15
/FINAL FROM MEMO
/EXIT

To do this he would add the following TDP formatting
commands to the beginning of his text file:

\LFT 10
\RHT 75
\TOP 12
\BOTTOM 12

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

* *
* ** This prints standard 65-character margins in 10 p~tch, *
* leaving 1" on each side of the paper, and 2" margins at the *
* top and bottom of the page. *
* ** TDP provides automatic paragraph compaction and optional *
* hyphenation. Options also are available to print in 12 *
* pitch or proportional space (using the Agile or the Xerox), *
* force page feeds (\NEW), double-space, indent, underline, *
* and specify headings and page numbers. *
* ** And he has a final-quality copy of his text file in hand. *
* He gives this to a secretary to photocopy and distribute. *
* *
* *
*****************************************************************

Another illustration comes from the Statistical
Analysis Center. An analyst recently completed two
lengthy reports based on information gathered from the
Cook County CIMIS we designed.

He typed the reports onto computer text ftles, com­
plete with tables. He used the interactive and batch
statistical analysis programs to formulate his results,

and used our interactive graphics program to produce
graphs and charts to illustrate his fmdings.

He formatted the document himself using the EDIT2
subsystem. He printed out draft copies using EDIT2 on
the Agile printer/ terminal. A word processor operator
will print out the fmal copy, using the same text fIle and
the same text-processing subsystem.

*****************************************************************
* *
* ** --EXAMPLE 4-- *
* *
* ** To format the long file, to print drafts on the Agile and *
* finals on the Xerox 860, the statistician preparing the *
* report used the following EDIT2 commands: *
* *
* ** »SET PAGESIZE=66 *
* »SET TOPSPACE=2,6 *
* »SET SarTOMSPACE=2,6 *
* »SET HEADING=OFF *
* »SET FOOTING=CENTER,#PAGE *
* *
* ** This sets the pagesize to 66 lines, or 11 inches, sets the *
* page numbers to print in the center, and leaves margins at *

5 -65-7



* the top and bottom of each page of 1-1/2 inches (9 lines)'. *
* EDIT2 leaves a blank line for the heading when it's turned *
* "off," and uses one line to print the page number at the *
* bottom of the page. These commands provide room for 48 *
* lines of text on each page. *
* ** Each time ,the statistician wishes to force output to the top *
* of a new page, he enters: *
* *
* ** .NEWPAGE *
* ~

* ** The ".NEWPAGE" command is executed through the PRINT *
* command when output is produced. *
* ** This will set up the file to print on the AGILE. EDIT2 is *
* ,different than TDP in that some of the formatting commands *
* are ente~ed as' workflle options, instead of ent'ered into *
* the text file. Some defaults, such as page size (60) also *
* are different. *
* ** To accept this formatted output on the Xerox 860's local *
* storag~ f~~ppy disks: *
* ** I, *
* '0 Th~ margin~ are set to 10 and 75 (ED~T2' defaults) *
'~ *
* 0 ·Pagesize an'd pagel ength a re set to 66 to match *
* .** 0 Pi tch ,i s se!t to; 10 (computer defaul t) *
* *
* ** The word processor oper~tor logs on, accesses the EDIT2 *
* file, an'd'executc;!s a PRINT co'mmand. The report is printed *
* onto the fl~ppy disk; exactly the way the statistician wants *
* it -- exactly; the way ,the word processor will print it out. *
* *
* *f :

************'* **.'*,************************************************

'--,

These procedures were' implemented· using the
EDIT2 and,TDP subsystems developed by HP. We also
use the QEDIT subsystem developed by Robelle Con­
sulting. In the near future we hope to convert all text
processing to HP's new TDP/3000. We've found it to be
a more powerful, versatile subsy~tem. It'll also save
CPU time and ftle space hogged by EDIT2.

In the future we plan to make more use of secretaries
to input original documents and to make changes to
existing ones, to use the Agiles for fmal output, to im­
plement the sheet-feeder function on one of the Agiles
to produce documents on letterhead, and to develop and
implement formatting programs and use ftles that will
automatically fonnat and print various types of docu­
ments.

ClIS Director l. David Coldren recently developed
and implemented a new SPOOLER for use with output
fdes. The new SPOOLER allows fdes to be printed au­
tomatically on specific device types, such as line or
character printers, and to programatically control the

S ~6S-8

input and output of text files.
The new SPOOLER will allow us to take text input

from any user, format it according to document type
(such as letter, memo, or report), and automatically
print it out.

The documentation specialist will design, establish,
and implement standards for formatting and organizing
documents, and write subroutines and useftles to au­
tomatically produce those documents. A person would
then enter the necessary text, and issue the command to
print it.

A combination'of the capabilities of the TDP subsys­
tem and the Agile printer/terminals will allow us to pro­
duce documents with a minimum of formatting work
and a maximum of standardization.

No operator would be necessary, other than regular
computer room operators.

This is what we're working toward, and this is what
the new text processors are increasingly allowing us to
do.



*****************************************************************
* *
* *
* ** --EXAMPLE 5-- *
* *
* *
* ** The Old Way The New Way *
* ** 1. Write out by hand 1. Type into text file *
* 2. Get WP to type draft 2. Get WP to print final *
* 3. Proof & correct draft *
* 4. Get WP to type corrections *
* 5. Proof revision *
* 6. Get WP to print final *
* *
* ** The New Way eliminates draft copies. *
* *
* *
*****************************************************************

This saves the WP operator time, which she can
spend printing other people's documents, and saves
personnel costs because one WP operator can print out
as many documents as two or three can type and print
out. It takes the manager about the same amount of time
to create an original document each way, and less for
updates to periodically-issued documents which only
need revision.
V. PRODUCING A NEWSLETTER

The computer is used to produce charts and graphs to
illustrate articles from the Statistical Analysis Center, to
gather, edit, and produce copy ready for the printer's
camera, to produce review copies of the articles, and to
keep the articles on rtIe in case they're ever needed
again. See Figure 3.

An interactive graphics package ellS developed
makes use of our Versatec electrostatic plotter to pro­

.duce line, bar, and pie charts, shaded maps of the state
of Illinois, and Hudson algorithm graphs. HP Versaplot
and Fortran software are used.

Staff members are assigned to write articles about
projects they work on when there's a new development
such as a new release of software or a new report.

An editorial board was formed of the agency's super­
visors and managers, who assign articles and approve

rmal drafts for publication. Staff members are responsi­
ble for placing their articles in text rtIes, and releasing
those text rtIes for access by the editor.

The editor edits them for style and grammar only, a
much less time-consuming and complicated procedure
than editing them for content as well, which he used to
do before the procedure was computerized.

The authors' text rtIes, residing in their home ac­
counts and groups, are copied over into one big text rtIe
in the editor's home account anQ group for editing, for­
matting, an~ printing out.

The basic idea is the editor works on-line, as do the
authors of the articles. The authors enter the articles
they write into text rtIes, p~t them out for review by
their supervisors,' and when approved, release them to
the editor. The editor edits them on-line using TDP, and
makes use of various output options to assist him.

He uses the line printer to produce drafts with line
numbers for editing, the Agile to produce review drafts
for approval,and the Xerox 860 to reformat the articles
into 3"-wide justified columns of proportional space
type for paste-up.

In addition,. authors generate graphs and charts to
illustrate their articles, or the editor generates them on­
line using the Versatec.

*****************************************************************
* *
* *
* ** --EXAMPLE 6-- *
* *
* ** To gather and output a copy of the articles requires the *
* following TDP commands: *
* *
* *

5. -65-9



CHARTS & GRAPHS

PLOTTERa-----~

REFORMAT,
TYPESET & FILE

LP

HP-3000CREATE,
MODIFY & FILE

...
o

Figure 3. Steps in producing a newsletter with the assistan~eof the computer. (1) The author assigned to write an
article creates a text rIle and prints out a copy for the supervisor's approval. Rewriters are done with the assistance
of a text-processing subsystem. (2) The editor copies the article into a larger text rJle with other articles, prints out a
working copy with line numbers on the line printer and prints out a copy ofthe edited file for review by the editorial
board. (3) The approved articles are copied onto a local rile on the word processor, reformatted, and typeset into
justified columns. (4) Charts and graphs produced by the plotter are added during paste-up as illustrations for some
of the articles. Variations of the procedure can be used to produce user documentation and other office documents
and reports.

I'J



*

*
*
*

*
:RUN TDP.PUB.SYS*

** /TEXT A.RTICLEl."GROUP.A.CCOUNT
* /JOIN ARTICLE2.GROUP.ACCOUNT
* /JOIN ARTICLE3.GROUP.ACCOUNT
* /JOIN...... (etc.) *
*. *

* ** To produce a copy with line numbers for editing, modify the *
* file, and store it: *
* *
* ** /LIST ALL, OFFLINE *
* /MODIFY.... (etc.) *
* /MOVE.... (etc. ) *
* /REPLACE.... (etc.) *
* /KEEP EDITFILE,UNN *
*, *
* /EXIT *
* *
* ** The editor then goes to one of the Agile printer/terminals *
* and prints out copies for review. He issues the following *
* format commands (these can be typed in on-line or stored *
* 'at the beginning of the file itself): *
* *
* *
* \LFT 10 ."
* \RHT 65 *
* \LINESPACE 2 *
* \PAGENO I,CENTER *
." \TOP 12 ."
." \BOTTOM 12 *
* \COPIES 3 ."

* *'II 'II

'II This will print out three copies of the edited articles, 'II

'II' with 55-character margins, double-spaced to provide plenty *
'II of room for notes ~ndcorrections. Two inches are left *
* at the top and bottom of each page. ~be default pagelength *
* in TDP is 66. TDP automatically fills or compacts the te~t *
." to fit within the specified margins. The psgenumbers will 'II

* start with "1" at the bottom center of the page. *
* ** Other commands allow the editor to do such things as affix *
* a heading displaying the time and date of the print-out, or *
* to indent or underline items of special importance. These *
* commands can be found in the TDP manual, or produced on-line *
* through 'TDP's "HELP" command. *
* *
* *
*****************************************************************

Articles reside in the home groups and accounts of
the authors, in a ftle in the editor's home group and
account, and on a floppy disk on the 860. If any question
arises at any step in the procedure as to original word­
ing, it can easily be resolved by printing out a copy of
one of the ftles. If any ftle is accidentally lost or dam­
aged, it can easily be replaced or recovered. The articles
remain on ftle until purged by the authors, and until
purged by the editor, generally about two months later.

Any can be stored permanently on magnetic tape.
Furthermore, if the authors want to use their articles

for other purposes, such as including them in a report or
memo they're writing, they can use a text processing
subsystem to copy their original ftles, modify them, or
extract from them the sections they need.

If an article is rejected for one issue, it remains on rde
for the next one.

5 -65 -11



September, 1981
the Compiler

Volume 3, Number 2

Statistica:l Analysis Center. Criminal Justice Information Systems. Illinois Law Enforcement Commission
120 South Riverside Plaza, Chicago, Illinois 60606 (312) 454-1560

o
c

c:i
~ _ .._-------------------------

ILLINOIS INDEX CRIME RATES: 1971-1980

Correction
o
c
c:i
r;;,-t-----------------------------

o
c

o
~~------------------------------

~~ //'''''" -//
~; I ~._-/ --
~~ 7 _..-
~g
00
o~;--------I---------------------·-··--

~g J-0
O:(\I+-------/-r----------------- -----------
LAJ::t'
Q..

~g /.
~g
~rn~--------J
u..
00o

o. ~-+--------, ..__u_"' __ • __•.__•• •.__ •••__• .__,_

oo
o
~-r----~------------------------

oo
c:i
f9::t:::1:-:-1---:-:19:"t:1~~2 ---:-:19:-t:~)-:-3 --19""1)-4--19"'1~-5 --19-'1'-6--.....,191""""77--1.....,.~r--7P-,--1---.~r--7q----.19RO

YEFfR

ILfC/CJlS--S1AlIS1IOll ANAL T515 CENTfA (,ARPH

Figure 1. The graph shows the pattern illinois index crime rates have followed
from 1971 through 1980.

In the previous issue of the COMPILER
(June, 1981) an article appeared on Page 3
entitled, "Council Audit Finds BOI Rec­
ords Lacking." In that article we errone­
ously attributed to Bureau Chief Gary
McAlvey, of the Department of Law En­
forcement's Bureau of Identification, the
statement that the County of Cook has
not reported any felony dispositions to the
Bureau since 1978.

A review of the transcripts of the Illinois
Criminal Justice Information Council
meeting at which we claimed McAlvey
made that statement clearly shows that
he did not. He indicated instead that the
Bureau of Identification has not posted
any felony dispositions received from
Cook County since 1978. We extend our
sincere apologies to both McAlvey and the
Office of the Clerk of the Cook County
Circuit Court for this error.

In the same article, we accurately attri­
buted another statement to McAlvey that
the County of Du Page is not currently
reporting criminal case dispositions to the
Bureau. However, on June 24, Clerk of
the Du Page Circuit Court John Cockrell
told the Council that there is a misunder­
standing. The Bureau has been receiving
dispositions from Du Page County but not
enter ing them into the system due to
technical difficulties.

We hope this correction and the story
appear ing on Page 3 sets the record
straight.

"'.

Indexcrime in Illinois

up 3.3percent in 1980;

up 9 percent in U.S.

by Larry Dykstra
SAC Analyst

Index crime in Illinois increased by 3.3 percent between 1979
and 1980. Violent crime increased by 4.2 percent, while
property crime increased by 2.2 percent.

In comparison, index crime in America increased by 9 percent.
Violent crime increased by II percent, and property crime
increased by slightly more than 9 percent.

These figures are taken from recently-released 1980 Illinois
Uniform Crime Report (lUCR) data and 1980 nationwide
figures released by the FBI.

(continued on next page)

Figure 4. Sample cover of our newsletter shows type set using our word processor and graph produced usinK
our plotter, both of which are connected to our HP3000 Series m.·

5 -65 -12



Ifmultiple copies ofproofcopies or lay-out copies are
required, they can be produced simultaneously.

While the articles are being reviewed, the lay-out

process can begin. Minor last-minute changes can be
made on the word processor, and cut and pasted in. See
Figure 4.

*****************************************************************
* *
* *
* ** --EXAMPLE 7-- *
* *
* *
* To reformat and typeset the articles on the Xerox 860 word *
* processor, the WP operator logs on, and types in: *
* *
* ** :RUN T DP • PUB. SYS *
* ** /LISTQ EDITFILE *
* /EXIT *
* ** :BYE *
* *
* ** Now the text is on the floppy disk, unformatted except for *
* the page breaks the word processor puts in automatically. *
* ** To reformat the text into 3"-wide, justified, proportional- *
* space columns, the WP operator calls up the stored document, *
* and changes its recordable format block options to the *
* following: *
* *
* ** Margins: 10 46 (36 chars. = 3" PS) *
* Pi tch: PS (Proportional Space) *
* Justify: X (on) *
* KB/PW: Standard (from ASCII, used for comm.) *
.* *
* ** The operator exercises the reformatting software options *
* available on the 860 to effect the changes. She marks the *
* options she wishes to reformat: *
* *
* ** 0 Marg ins *
* 0 Pi tch *
* 0 Justify *
* 0 KB/PW (i.e., character set) *
* 0 Page Lay-Out *
* 0 Page Labels (i.e., beCAuse of narrow columns) *
* *
* ** Entering these options initiates the interactive hyphenation *
* routine. The WP operator hyphenates, stores the reformatted *
* columns, and prints them out. The editor waxes the backs of *
* them, cuts them out, and pastes them up. *
* ** The above options can be used in varying combinations to *
* produce columns of virtually any size, type in different *
* pitches, or ragged-right text. *
* *
* ******************************************************************

5 -65 -13



In the future we'd like to increase the efficiency of the
formatting commands, format the articles on the Agile,
and eliminate the step of local storage and reformatting
at the word processor (860). Eventually we'd like to
format the articles for transmission to an on-line
typesetting service, and figure out the entire lay-out in
advance (how many pages, how long each article will
be, what the sizes of the illustrations will be, etc.).

Articles are automatically rded for the authors, and
may be produced at will. Word processors are used as
output devices rather than input/output devices, and
more efficient use is made of resources. Producing
copies for review and proofreading and editing is a pro- ~
cess of exercising format options of the text processing
subsystems.

*****************************************************************
* *
* *
* ** --NEWSLETTER PRODUCTION TIPS-- *
* ** *
* Choose a two- or three-column design or a combination. *
* Figure out the width of your columns by figuring the size *
* of your page minus margins. Work at 125 percent of original *
* size and have the lay-out sheets reduced to 80 percent at *
* the printer's. *
* ** Size graphs, photographs, and drawings with a reduction *
* wheel. Paste up on non-repro blue gr~ph paper, using a *
* waxer to supply the paste and a light table to line *
* everything up. *
* *
* Use Letraset or Kroytype letters for headlines, Rapidographs *
* and Chartpak tape for lines, and cut and paste by-lines, *
* page numbers, and cutlines. *
* *
* *
*****************************************************************

VI. PRODUCING USER DOCUMENTATION
Many of the same procedures and methods we use to

produce the newsletter with the assistance of the com­
puter we use also to produce some of our user
documentation.

We use our letter-quality printers to prepare copy
ready for the printer's camera. CRT screen forms are
printed out by a special program that reads the various
forms flies and formats them for output on the Agile or
the Xerox 860.

The programming, analyst, and managerial staff take

part in the production of documentation by doing the
initial writing for the systems they work on.

The documentation specialist texts the fdes from the
others' accounts and groups into his own, edits them,
does any additional writing that may be required (such
as introductions and glossaries), and formats them for
printing out.

He makes the changes in the documents, and has a
secretary with a terminal enter them into a text flle. He
checks the ftIe, then has the secretary or word proces­
sor operator print it out.

*****************************************************************
*
*
*
*
*
*
*
*
*
*
*
*
*

5 -65 -14

--EXAMPLE 8--

To format and print our user documentation, we use the
following TOP commands, embedded at the beginning of and
throughout the file where needed:

(:RUN TDP.PUB.SYS)

*
*
*
*
*
*
*
*
*
*
*
*
*



*
*
*
*
*
*
*
*
*
*
*
*
*
*

\LFT 10
\RHT 75
\PAGENO "A- 1", CENTER
\PAGENOLINE 60
\BOTTOM 10
\TOP 12
\HEAD "INTRODUCTION", RIGHT
\HEADLINE 6
\IMAGE

/FINAL FROM USERMAN*
*
*
*
**'
*
*
*
*
*
*
*
*
* ** These commands result in 65-character output (6-1/2" wide), *
* with a top margin of 12 lines (2 inches) and a bottom margin *
* of 10 lines (1-2/3"). The heading will be printe~ flush *
* right, and reads "INTRODUCTION." It will be printed on line *
* 6, leaving an inch before the start ot the text. The page *
* numbers will start with A-I, and will appear at the bottom *
* center, 6 lines (1 inch) from the bottom. The "\IMAGE" *
* command causes text to be printed out exactly the way it *
* was typed in. The defaul t setting on TDP, "\FORMAT", *
* compacts and compresses text. Our documentation follows *
* a strict format, and the FORMAT setting can easily distort *
* it. *
* ** New pages are specified by "\NEW" commands imbedded in the *
* tex t. *
* ** New page numbers are specified by a \P~GENO "8- 1" command, *
* for example. *
*. *
* New headings are specified by II \HE~D "'SECTION 1", RIGHT *
* command, for example. *
* *
• TOP also provides a capability to automatically generate a *
• table of contents~ *
* •
• *
••••**•••**************************.***************************~*

In the old days one person did everything, much like
the newsletter. The new system saves research and
writing time, and increases the amount of documenta­
tion than can be produced in a given amount of time.

In the future we'd like to ~xtract more information
from the computer, through our automated system de­
sign methodology. We'd also like to do more piecing
together of new documentation from old documenta­
tion, making such things as glossaries and introductions
standard.

VII. CONCLUSIONS AND OBSERVATIONS
The benefits of placing programmers on~line and al­

lowing them to write code on-line are obvious and gen­
erally accepted. The benefits of placing managers, re­
searchers, writers, and other office professionals on-line
are just as obvious, but not as generally accepted.

The problem often comes up in this way: When con-

fronted with the question of how office paperwork is
handled, many managers respond, "That's what sec­
retaries are for."

That's like saying, "That's what keypunch operators
are for." It's realistic, but short-sighted.

The important thing is the product. That's what work
is all about. Providing managers and professionals with
on-line access to the computer results in more product
in less time and at a smaller cost, just as providing pro­
grammers on-line access to the computer does.

Managers must produce the original documents of
their office paperwork, just as programmers must pro­
duce the original code.

Hardware costs continue to decline while personnel
costs steadily increase. The more use an office can
make of its' computer hardware and software to help
generate its products, the less money that office will
have to spend on personnel costs.

5-65-15



With a little training and practice, managers and pro­
fessionals can create and enter original documents into
text ftIes in about as much time as takes for them to
write them out by hand or dictate them.

For some this is a difficult process to get used to.
There are al~ays those who like their way of doing
things and will. not change. Even they can be made more
productive by taJting their handwritten or dictated
documents and having a~ secretary enter them onto one
of the HP's text editing subsytems.

The original document should be created on the com­
puter, where it c.an be processed by text processing sub­
systems, directed to various devices for output, au­
tomatically ftIed, backed-up, and stored, and for all in­
tents and, purposes be considered permanent. ;

Once an original docu~~nt is on the computer, what's
done to it becomes a choice of electronically-controlled
options. Those options include priilting it out on the
word processor.

****'*'..***********.***'.**********:** ********;****************'*******.
* *
* *

~',,". ,,' *l:/:: ':." , , *
~•.. '." -~TEXT FILE OPI'IONS'--' *.
*!":.:';' *
* *

':.X}.'. * ,0... 'C;=reating Ori.gina~· Documents *
* 0 ~utom,.atic ..·Fl~ing, . *

'.. :*'.~.. 0 M~~t~.ple ..Output;.· Op,tJ·ons, * .;'
:d';~ 1i t

." ~"o Forma'·t'ting arid"EditlngSoftwar:e Y<;. *.
·fOi , : /~;*,: '0' Auditirlg ~and::'Back-up" .*.,

,....J )~ ... :.: 6 I:,arg'e', 'File O~pacity' ,.f .' *.
,,* "<0.,: .Pass o·r ··Send·;;·Fil·e: to Others. *
~; (.,1, ;, .' I *

~ .• *
"'\ ....""-.: '.' ..' , . ' .

.• ~·x'e,rGi;sing. ~hese opti(in's·on. the comp~t~r. e.limina,te d.raft *
.. ;~.,; ',t, copies and fil ing,~' . save time and therefore personnel *

* costs, 'and' 'i'n'cr'e'a'~e the ;'amount of"w'ork'th'a't can be ' *
* produced d'uring a given amount of time. The document's *
* on file if it's ever needed again, and can be automatically *
* located. It can be used again, copied and modified, *
* extracted from, or incorpor~ted into a larger piece. *
* ** .*
****************************************************************

.~

The word processor should be used to produce the
fmal product as much as possible, not to input it.

That's what the word processor is for - nice output.
Concentrate on getting as much nice output from it as

. possible.
The disadvantages of typing original text on word

processors outweigh the advantages. Local storage de-

vices such as floppy disks are unreliable; fde structure
is neither logical or centralized; and options for making
use of the fde in other ways are limited.

It's much better to connect the word processors up to
the computer, type the original text on the computer,
then print it out on the word processor.

--TO SUM UP--

Word processors are better used as output devices than
as input/output devices.

*
*
*
*
*
*

It takes the same amount of time (or less) for managers *
and professional staff to type short original documents *
into text files as it does for them to write them· out *

"by hand or dictat~ them. *
*
*
*

o

o

*****************************************************************
*
*
*
*
*
*
*
*
*
*
**.
*

5 -65 -16



* *
* 0 Regular CRT te~minals are good enough "executive work *
* stations." *
* ** Q ·It. is more efficient to enter original text onto the *
* computer and transmit it to a word processor than it *
* is to type it on a word processor. *
* ** 0 Once an original document is on the computer, printing *
* and filing it become matters of exercising' options. *
* *
* *
************~*********~*************~****************************

Perhaps in the future, we'll be able to place the
letter-quality printers under the supervision of the regu-,
lar computer ,operators, and print final documents
semi-automatically, as line printers do.

The office of the future will include a terminal on
everyone's desk. The terminals will receive and display
messages from ,around the world, and will accept input
of messages, reports, communiques, tables, charts, and
graphs for communication to somewhere else, local or
otherwise. Much more paperwork and fding will be
eliminated.

The small steps we have taken toward that eventual­
ity bear this out. Our professional and managerial per­
sonnel clamor for convenient use of a terminal. Most

now have them in their offices. Those who don't ask for
them. They fmd they can do their work more efficiently
on the terminal in the amount of time they used to spend
getting someone else to db it for them.

The .tr~nd toward developing and marketing "execu­
tive work statioQs" is obvious~ -Wang' came out with
one. Xerox has one. Savin is coming out .with one. .
Xero~. advertises their~ as "for business profession­

als, engineers, analysts, researchers," and so on. It
handles electronic .mail, aids in constructing tables,
charts, and graphs, and handles fding, they say.

Well, that all sounds very impressive, 'especially to a
new user. But the fa~t is we do all that with our HP3000,

. ~egular CRTs, and good 'software.

5-65-17



1bdaJexecutives
~ push buttons, too. &'~ ~e
4-60110 . I O\.,,\~

~~~ ~~~ .
d Pl-i ' ~\liO~"~

odllCtil'. I . t o~ .A :\
Non-Tech Execs Can Use 'Maps' 'It)' /".. a.\l.eii it'~ ~ ~~

dl 1\~ \,~O. l!Jectl-i C>~ fJ..p
Nestor Upgr(J,I ~., ~..~.....J °llic Offl \9'~4)\(~()
Uspd JJJG71 ~ ~~~Area Nets 'Ice; .,~e....· ~ --- t::..f;~' ~~n 1& .- 8ition ~ #

v tJ __--"--'---T;Pbotocotnll'l ."~ ~,,,
F. --. "Q W¥ · .~ ~

IDaDce AdVJe , NBS Offers Elect. Mail Standard
~~ - Sor S wp Pl 'In

ugs toEJe T
Need For TypewritersAs PrinterS I ct. yPewriter
Creates Small Niche In WP Mart

Headlines such as these reflect the growing trend toward providing computer
power to managers and professionals to assist them with their office work.

5 -65 -18

Integrated Data - and

Testproeessin If with lap 3000

JOACHIM GEFFKEN
RECHENZENTRUM
HERBERT SEITZ KG
GRONENSTRASSE 11/12
2800 BREMEN 1

5 -73-1

5-73-2

c:) Introduction

c:) File access

c:) ·Data.election
, ; \ I ;; It: ~ "~,:'" ,:

c) Correction aid

\1

c). CustoBlizer

c) Supervisor

c:) Interlace

The Herbert Seitz Company is ...

, t

A REALTIME DATAPROCESSING SERVICE BUREAU

AND SOFTWAREHOUSE .~ .
. , ~. :- ' ~

AND HEWLETT PACKARD OEM

" ',. ;:l~i~ .. <(I.8I) ,..:.'X" ~
",::

. { ': '. f~

1\ .

c::> 7 OWN HP 3000 (.SE·R IESlll AND 44)
IN OUR BREMEN AND PFORZHEIM BRANCH

'.j

! ~'. ;.

Local ion of:

o own Computers

.' ..
• ~ • t..

AND 10 HP 3000 ..SERJ ES I 1.1 'j N
I .. ,'. .

ASSOCIATED CO,I1\PANIES
:~ '..~

WITH APPROX I 356 'TE;RM'INALS SPREAD

OVER GERMANY CONNECTED VIA HARD­
WIRED LEASED LINE~/DIALED LINES

• Associated Companies

5-73-3

WE PROVIDE OUR SERVICES IN GERMANY AND FRANCE FOR COMMERCIAL
APPLICATIONS LIKE .. ,

~ ACCOUNTING

JH 'PAYROLL

=~ MATERIAL MANAGEMENT

JH SHOP FLOOR CONTROL,
CAPACITY PLANNING

JH TOOLS FOR HP 3000
OPERATION, SOFTWARE-DESIGN
AND DOCUMENTATION

~
'"

OUR USERS ARE ...

~> WORKMEN

=*> DATA TYPISTS, CLERKS

=*> MANAGERS

ONLY AFEW OF THEM ...

~ ARE SPEAKING (HP-)ENGLISH

~ HAVE DP EXPERIENCE'

~ HAVE SEEN ANY TERMINAL BEFORE

5 -73-4

THIS PRESENTATION IS A GENERAL DESCRIPTION OF SOME
TECHNIQUES OF INTEGRATED DATA- AND TEXTPROCESSING ON
HP3000 COMPUTERS AS THEY ARE IMPLEMENTED IN IDT3000.·
THIS IS NOT A COMPLETE PRODUCT OVERVIEW.

IDT3000 IS A DATA- AND TEXTPROCES'SING SOFTWARE ·PACKAGE

DESIGNED'BY HERBERT SEITZ KG WITH:

- AN IMAGE TEXTDATABASE AND DICTIONARY

POWERFUL TEXTEDITING AND FORMATTING FEATURES
FOR BUSINESS LETTERS AND REPORTS

FILE ACCESS TO· IMAGE-, KSAM- AND MPE-FILES

- A SELF LEARNING DICTIONARY AND AN ON-LINE
CORRECTION AID

- MULTILINGUAL SCREENS, MESSAGES AND HYPHENATION
ALGORITHMS

- A CUSTOMIZER FOR CHARACTER SETS, TERMINAL- AND
PRINTERTYPES, DATAFILES, DATADEFINITIONS AND
OPERATING ENVIRONMENTS

INTERFACES TO DATAPROCESSING AND DATACOMMUNI­
CATION

- A DA I LY, REPORT OF THE OUTGO I NG LETTERS AND RE­
PORTS

- A TRACKING MECHANISM FOR RENEWED SUBMISSIONS

- A BATCH PROCESSING INTERFACE

5-73-5

~-------------........... ; ...• ,....-- .

CORRECTION AID / DICTIONARY (1)

~ENERAL CONSIDERATIONS:

THE USE OF A DICTIONARY MAKES ONLY SENSE IF TH~

VOCABULARY IS' SUFFICIENT I

~

~

- A VOCABULARY OF APPROX IMATE LV 150.000 WORDS IS; A
REA$ONABLE COMPROMISE (VOCABULARY, DISC SPACE ~ND

ACC~ESS .TIME)

- A STAT~$TICAL EVALUATION OF THE VOCABULARY DURING
. " .

THE SELECTION-PROCESS IS ADVISABLE

~> U·SER ACCESSIBL·E

AND

~ SELF LEARNING

'.

; 5.....·.73-6

'.... ' .. -. SEE NEX·T :PAGES

,

ICORRECTION AID / DICTIONARY (2) I

~
,

Form 4 .Haintenanance correction aid

~ieTtrl-endli nes~ .__...

word : ~ ------]-----_. --------

, ..o (X) Copy di~pJay to pr'inter

please-enter new word-for YQuf__ dlc-t ion.--aT.....y_~1. . . ,_J.

CIt

I
cJ
f

-...I

THE USER MAY ENTER OR UPDATE DICTIONARY ENTRIE.S WHENEVER NECESSARY @.

UII

I
~

. CM

I
QD ICORRECTION AID / DICTIONARY (3) I

from 1 tex t name' I J ®®L _J
Printer No. 0(3) Print correction aid totally

(4) Print hyphenation exceptions totally

(5)' Vocabu.lary from HPE-f i le _. © _
into correction aid

<6> Vocabulary from MPE-file
into hyphenation exceptions file

(7) Copy correction aid into MPE-file ~
(8) Copy hyphenation exceptions into MPE-file

(1) Vocabulary into corr~ction aid
(2) Only from section:

o

-- ._--_._-~

NEW VOCABULARY MAY BE ENTERED FROM THE TEXTDATABASE ® OR ONLY SOME SECTlONS ®
OR MPE-FILES ~. IF THE TEXT IS CAREFULLY CHECKED IN THE FIRST PERIOD OF USE THE
DICTIONARY WILL BECOME MORE AND MORE SUFFICIENT FOR THE SPECIFIC APPLICATION. THE
DICTIONARY MAY BE RESTORED TO MPE FILES ® FOR BACKUP PURPOSES OR STATISTICAL
EVALUATIONS.

(.
.-6

CORRECTION AID / DICTIONARY (4)

.~~~.~~~~~~~~~-. -~-- tOT 30~Form 1&3 T e J(t It a J _n _t~..!l_.~.I!-~~ .._._~_._~----- -----------------------_._- -

r~ll-F i le

L ~

71

o

Correction aid
11 21

2> print on
printer
renLlmber

1

Text name J.QRB~ Section~ Password [~ __J
l!J <J) text entry (4) insert at

<5> modify from
<6> display from line f ~
(7) delete all, or from f ine__ to
(8) dl.lplica.te !irle ._ .._1___ to
(0) L tt from~ searCll pa ern .__. _
(0) copy 1 . .1_______ to

31 41 Sl 61

~1ar.t*
ThiS is

in irJver~e

P1~ase cFteck your t~x t _a.Bd correct error~JJ ------~~~---:=J

THE CORRECTION AID CAN BE ENABLED THROUGH THE USER (8) AND WORKS DURING TEXTENTRY
OR UPDATE (]D. UNKNOWN (NOT NECESSARY WRONG)WORDS ARE MARKED ~ AND THE USER IS

~PROMPTED FOR RECHECKING AND CORRECTING (]D.
I

-...I
eM

I
\C

I"

CORRECTION Aln-I DICTIONARY (5)

Form 3

Word
Hyphenation at

Mai r. tenarlceof "hyphenat f on-excep t ·i ons . lOT 3000

®--I
(~) Normal hyphenation after this colu~n

CK). for ck·to k-k hyphen3.tion <special feature f')f german)
(V) for consonant dU.I=,li·catjon· (special feature for german)

existing definitions will be displaYed

o (X) Copy -screen to lineprint~r

pI~ase mark' where You war,t a hypheItatioJi_' .. _

THE USER MAY ENTER OR ALTER EXCEPTIONS FOR THE HYPHENATION ALGORITHM ® WHEN
NECESSARY. IN TH I SWAY THE S'TANDARD PRECISION OF APPROX. 95% MAY BE INCREASED >99%
FOR "A SPECIFIC APPLICATION WITH ITS TYPICAL SET OF VOCABULARY AND SIZES -OF THE

, .-

FORMATTED TEXT.

CORRECTION AID~/ DICTIONARY "(6)=

Pattern Maintenance IDT 3GOO

No.
~

Pattern ~ (§D
tp<IDT 3000 the' intet.lrat"ed "Oata- and TextprOCesSin9 Softwari$l------""I

Existing patterns wi 11 be "disp"Cayed

o <X> Copy screen to lineprinter·

• r _ ~ _ i
,..... ~ ,

": 'lo.. .~" , ,

Please enter or modify pattern! _________________, ---.J -

......

COMPLEX TEXT EXPRESSIONS "MAY"BE DEFINED AS TEXT PATTERNS@, IF NECESSARY WITH
TEXT FORMATTING COMMANDS <R>. PATTERNS ARE CALLED WITH THE COM~~ND &nnn
-(nnn = PATTERN NO.) i . - "

IF I LEA CC ES S (1) I

THE JNTEGRATION OF DATA- AND TEXTPROCESSING REQUIRES:

- COMFORTABLE ACCESS TO DIFFERENT FILE TYPES
(IMAGE, KSAM, MPE)

- USER ACCESS TO ALL FILES WITH READ ACCESS

- UNLIMITED USER ACCESS TO THE CONFIGURATION
OF THE OPERATING ENVIRONMENT

- EASY MODIFICATION OF DATA FORMATS AFTER
LAYOUTCHANGES

- DATA ACCESS VIA 'DATA DICTIONARIES

SEE EXAMPLES NEXT PAGES ••.

5 -73 -12

,
IF I LEA C C E S S (2) I

F i Ie COftf .igu..ra t j 0o__

Specification of Address-~ile: FiJename

...__--I.IJr~Q]

KDSTAH __" . .--I

Filetype
rn (1) IMAGE-[)B ~DRSTA . " __-.J Pa~.-=.I.1Jord f1GR

Searc~litem ~ORf~R :1 <Detail Dataset)

@(2) KSAM-Flle (Access via Primary-Key)
A <3> HPE-File (sequentJal, only for Seria.l Letters>

<4> Adress-File not used

.=t

Specification of the prder o=J File F i lenamt? mJD1.

Filetype
ill (I) IMAGE -DB pRODO I ._~ F)as~.word ~lr·.

Searc~,j tern [DTfJR :J <.Detai! Data~.€'t) --

®(~42» KSAM-File (Access vIa Primary-Key)
Second Master-File not used

o <X) Copy screen to lineprinter

p.lease ~nter data and press -ENTER~ _.__._.__==t

THE USER MAY DEFINE OR CHANGE FILENAME AND TYPE FOR AN ADDRESSFILE (8) AND
ANOTHER USER SELECTABLE FILE (B).

I F' I LEA C C E: S S

Forrr.5 Custcmili,ng data a~cess (ad.:ress-fj Ie ar\d ,rnaster-(i 1.:.2> I[)T 3000,

'A 'CAl C'u.stomiz.ing adrE-~.s-ri"le (9) CllstomTlirl9 master-file 2-

In this form y,)U may I::llstomize YOIJ.r At:ire~~'3- file

You will 'have to describe each field (1 - 50>.
Exis,ting descriptions bJi 11 be shown.

Field Fieldname '8' Start Data-(I) S1ze(2) Format(3) ®
NO?7\\ \81. Col. Typo?
12~N~e ~ ~ 0 ~ [~'~;;~-----------~-_J

-(1' P4-P12 packed numeric iten© @ ® (3) 'X' place for 1 alphanumeric
C2-C10 binary coded nl.lmeric item , ..- character
F alpha-numeric item 'z' supress 2eros

the last digit must be
an 'X' f6r a sign
character (numeric-iten,

ease enter ie· . ormat! . ----- .~. ._____.J

<2> Size:
you may need one digit' for a
sign character!
(X) Copy screen to lineprinter

UP TO 100 FIELDS PER USER AND/OR SESSION CAN BE CONFIGURED . ®. THE NAME ®,
POSITION ~,DATA TYPE <!D, SIZE <E) AND OPTIONAL EDIT MASKS (f) CAN BE
DEFINED AND MODIFIED WHEN NECESSARY.

J IJ

IF I LEA C C E S S (4)1.

FOrm 2
.~ ---

CIt

I
~

I

EJ aese enter the requi red opt ions and press _-_E_NT_E_R_- :l

THE FILEACCESS (AND THE DATA ,SELECTION) CAN BE DONE DURING THE TEXT FORMATTING ~.
DATA MAY BE SELECTED AND INSERTED FROM THE ADDRESSFILE ® AS WELL AS FROM THE
MASTER FILE 2 ©.

IFILEACCESS

[arm 4

Text name I .-J
Bus j flesslet ters.

Section c=J
_________.__. 1_01_]OOr)

Password L_.-J
o (1) From unformatted text or (2) formatted fIle to printer No. 0
o (1) A letter to addressee: _ ~

<2> without accessinq the address-file
~ (3) A letter to all addres~es of the-address-file

(4) Only selected addresses with field _c==J fIeld _

o <X> Using letterhead:

<X> With data of Order
.. (X) Marg i n al ignment

dated for r~ed slilimlssion

Master-fil~ of ~
Co}ttmr.-(on}y printer 260T)"-------

Your sign YOtlr letter Ollr sign Date

please enter the req~ired processing/selection ~tlo~ ~n~~ress -ENTER~_~__~l

THE FILEACCESS (AND THE DATA SELECTION) CAN BE DONE DURING THE PRINTING /
SELECTING OF BUSINESS LETTERS ~. DATA MAY BE SELECTED AND INSERTED FROM
THE ADDRESSF ILE ® AS WELL AS FROM THE MASTER FILE 2 © e.

(J

r ID A. T A S E LEe T ION (1) I

THE SELECTION OF DATA OUT OF THE ABOVE MENTIONED DATA FILES
CAN BE DONE IN THE FOLLOWING WAYS:

- THROUGH LOGICAL COMPARE COMMANDS DURING THE
"'BUSINESS LETTER PRINTING (SELECTED LETTERS)

- THROUGH DATA(BASE) INQUIRY LANGUAGES AND/OR
REPORT GENERATORS (QUERY, REPORT3000, ASK,
QUIZ, QUICK, GENEASYS ETC,) PROVIDING THE
SELECTED DATA iN A IDT3000 BATCH INTERFACE
FILE

- THROUGH BATCH- OR SESSION MODE APPLICATION
PROGRAMS PROVIDING tHE SELECTED DATA IN AN
IDT3000 BATCH INTERFACE FILE

SEE EXAMPLES NEXT PAGES ...

5 -73 -17

•
I
~

I...
QD I D A T A S E L E'C T I 0 N(2) I·

.- 0" -".- .;- -".• ' ., ','.-----------

Q <I) From unformat~ed text or (2): formatted file to printer No. ~

m (1)' A letter· to addressee:. '. 100000S®. '. . _' _
(2) without accessing the address-file,·

A (3) A letter t.o all addresses: o'f 'the address-file
(4) Only selected addresses with'fip)d, _'" =-- _ .._~.'

c=J r ield _ =.

a ' <X) Using letterhead:

X (X) With dat~ of Order
(X) Harg-i n al i gnmen t

std1 date'd for renetated submission : '020381

- .t1asteor-f·ile of ~35-001/21C© " _
___ Column (onlv printer 2601)

You.r sign Your letter Our sign Date
5. 8 •. 1981

please enter the required processing/selection options and press -ENIER- =:J

THE ?ELECTION OF DATA CAN B,E ,DONE IN THE TEXT FORMATTING MODULE OR DURING THE

PRINTING OF SELECTED BUSINESS LETTERS ® WITH DATA ELEMENTS OF THE SPECIFIED
ITEMS ® + ©... '.

J

In AT A S E LEe T I 0 if _: (3):-1

____T ext m.~_~_ e nan C e lnT 3~

the

o
(2) print on

printer
(3) renumbe r

Te~t name ~Q~ Sectjon~ Password I~ __rn (1) text entry (4) Insert at
<5> modify from
<6> display from line c==J
(7) delete all, or from line___ .to:-
<8> dtlPl icate I ine __~/___ : '. to
(9) search pattern __ from

_ <X) Korrektur <0> copy '._..··'_-_.1-..;..... __ to .. ·L__l
1 .• 11 • 21 • 31. • . 41 . .- ','5'1 -. ,; 1 .' 71

~ut* .. ~ ... -- :. .~ _
This is an itamPle of IDT300's datainsertion feature.

·Dear Hr. &AI2.
t.nank YOlL for Your letter and 'Yol~r 'irltere~t irl -Ollr neljJ &831. The
'pri~e of. &8.35 is very .attract·ive..
~'Out local representative Mr.&DSAlESMAN ttl i 11- contact Yo.u ..-1 t~, in
~~xt few days and pro~ide fllrth~r i.~rma.tionsfor You •.
Sl ncer lyYoufSRR&VSlgnerSR.&Vtl tIe @.. .

DATA ELEMENTS CAN BE DEFINED BY IDT3000 INTERNAL FIELD NUMBERS (8) (REFERRING TO
THE,CUSTOMIZED FILE-ENVlRONMENT)DR;BY DATA ELEMENT NAMES OF A DATA DICTIONARY ®
(D.ICTION·ARY. '..3000).

leu S TOM I Z E R (1) I

lOT 3000

<4> Espa.rlol
(It) E.sparro 1

(3) Fral1ca is
(3) Francais

ifinter jype Device-Class

(8) Lineprinter 2613/2617/2619
<D) as Device

- <F) as Device
<6> Laserprinter 2&80

as Hardcopyo <x> Copy screen to lineprinter

Cus torn i ze r f () r ~lardl.l.arecon f i gu.ra t i or,

(H) Qlympia ESW100RO

har.Set : <I> ASCII/UK <2> Deuts~h(ISO)

ang~age : <1> English <2> Deutsch
C . ®

X) A~ditfile ~sed. E addressee in field No.
<x> "Database for Hyphenation-Exceptions used
<X) Correction-Aid used®

Printer Type Device-Class F

t i . ®
(A) Terminal-Printer
<C> Hatrixprinter 2608/2631 as Hardcopy
<E) Daisywheelprinter 2601 as Hardcopy

E}ease enter data and pr~s~ -ENTER_- _ __________=:1

THE INTEGRATION OF DATA- AND TEXTPROCESSING .REQUIRES THE OPTION OF TEXTPROCESSING
WITHIN THE EXISTING DATAPROCESSING (HARDWARE-)ENVIRONMENT (8) INCLUDING CHARACTER
SETS ®, LANGUAGES ©, DATA LAYOUTS aD AND THE PROCESSING ENVIRONMENT ® + ®.

J (J

o

o

ISUPERVISORI

Form Da]Iy Report(Renewed ~ubmis~ion

(I) Print daily report ® .
(2) daily report only for business letters
(3) check list for renewed slmmission ~

<A> Totally
(B) Date of beginning c====J_ ©
(C) From this date up to c====J

____I_Of '300g

Pr 1Titer ~jo. 0

Sort item
1st []
2nd
3rd =1>'
4th _ ~

Optional

Comment :

<A) Print date (D) Text name
(8) Date of renewed s'-1.bmisslon <E)· Adressee
<C> User

on 1y • tex·t na.rne·
only user

THE SUPERVISOR FEATURE ALLOWS SOME KIND OF PROCESSING FUNCTIONS LIKE DAILY REPORTS
OF OUTGOING LETTERS A~ REPORTS ~ OR RECORDS OF RENEWED SUBMISSIONS, THAT .ARE
DUE FOR NEW ACTIONS (]D. BOTH REPORTS MAY BE TOTAL OR A PARTIAL SELECTION «)
WITH DIFFERENT SORT CRITERIA <ID.

II NT ERF ACE S I .

INTEGRATED DATA- AND TEXTPROCESSING REQUIRES SEVERAL INTER­
FACES BETWEEN THE TEXTPROCESSING AND

- THE COMPUTER FILES (MPE, KSAM, IMAGE)

- DATA DEFINITIONS (TRADITIONAL F·IL·E LAYOUTS,
.DATA BASE SCHEMAS, DATA DICTIONARIES)

- THE BATCH PROCESSING

- DATA SELECTIONS OUT OF QUERY, ASK, REPORT,
APPLICATION PROGRAMS ETC.

- VARIOUS TYPES OF PRINTING HARDWARE (FROM
TYPEWRITER TO LASER PRINTER)

- . DATA. E~XCHANGE AND DATA COMMUNICATION
(MAGNETIC TAPES, MICROFICHES, POINT TO
POINT DATA COMMUNICATION. ·MULTIPOINT DATA­
COMMUNICATION, COMPUTER-COMPUTER COMMUNICA­
TION, ELECTRONIC MAIL ...)

5 -73 -22

.'---

Computerized Typesetting:
TEX on the HP3000

Lance Carnes
Independent Consultant
Mill Valley, California

ABSTRACT
TEX is a program which allows the ordinary user to

produce professional quality typeset output. TEX was
developed by Donald E. Knuth of Stanford University
and is currently used throughout the world for typesett­
ing both technical and. non-technical material. This
paper will describe the use of TEX and show some ex­
amples of its output. The transportable version ofTEX,
written in PASCAL, has been successfully moved to the
HP3000. The second part of the paper describes the
tasks involved in this process.

INTRODUCTION

1. What is TEX?

Tau Epsilon Chi (TEX) is a system for typesetting
technical books and papers. It can also be used for ordi­
nary non-technical material. The system does not re­
.quire the user to have a knowledge of typesetting rules
or conventions.

The original TEX system was developed at Stanford
University by Donald E. Knuth. Frustrated in his at­
tempts to print a second edition of The Art ofComputer
Programming in the same printing style as the first edi-

tion, he looked for alternatives in the area of com­
puterized typesetting. Finding nothing that suited him,
he embarked on a project which was to become the
TEX system. This system is described in detail in his
informative and hu.morous book, TEX and METAFONT
[Knut79].

The TEX system is currently used throughout the
world, partly for technical work in mathematics and
physics, and partly for various other uses. The Journal
of the American' Mathematical Society now accepts
TEX input files for publication. Some major corpora­
tions and universities use it for typesetting their internal
documentation, user manuals, newsletters, etcs. The
TEX Users Group accepts ·articles and letters for their
Journal in TEX format.

2. How Does It Work?

The TEX program accepts an input file consisting of
text and control sequences, aild generates a device in­
dependent output file (DVI file) which contains com­
mands for driving a raster printer device. Once TEX has
processed the input and produced a DVI file, it is up to a
device driver program to interpret the commands in the
DVI file and produce printed output. This sequence of
events is shown in Figure 1. .

input
file program

DVI
file

Device
driver'

program
Device "--_.i1�

Figure 1. Functional Diagram of the TEX System

Most of the typesetting is done by TEX automati­
cally. TEX operates on many levels, composing pages,
paragraphs lines and words. All of these are interre­
lated, with the intention of producing professional qual­
ity printing. In cases where TEX needs to be guided, for
example in printing the TEX logo, the user intervenes
by specifying a control sequence (see 3 below).

The TEX system does not" typeset a single word or a
single line at a time. Rather, it typesets a page or more
at a time. This is done for a variety of reasons. Mainly,

we want the printed page to consist ofpleasantly spaced
paragraphs, lines and words. Also we want to avoid
other unwanted phenomena, such' as "widow" lines. A
widow Ime is the first line of a paragraph appearing at
the bottom of a page with the paragraph continuing on
the next page. To eliminate widows, TEX returns to the
paragraphs already layed out and expands them slightly
so as to use one more line on the page. This forces the
widow line to the top of the next page.

Paragraphs are composed to reduce the number of

5 -79-1

hyphenations and so as not to leave a single word
stranded in the last line. In addition, the spacing be­
tween words is equalized throughout the paragraph.

Lines of text are composed of words and other sym­
bols (e.g., mathematical formulas) with the space be­
tween words equalized.

Words are typeset with the letters placed one charac­
ter width apart. Unlike standard computer printers
which print all characters in the same width (usually 1/10

inch), typesetting separates characters by the exact
width of the character, depending on the "font" or
character style used. In addition, TEX will place
characters closer together or farther apart in accor­
dance with traditional typesetting rules~ For 'example,
when typesetting the word "AVIATOR" the "A" and
"V" are placed closer together; this is called "kerning."
Notice in the word "find" that the "f" and "i" are
pushed together to form the "ligature" fie Thes'e
typesetting conventions and more are known to TEX,
freeing the user from having to memorize them.

The basic concepts TEX uses are "boxes" and
"glue." A box contains something which is to be
printed, and glue specifies the spacing between boxes.
For example, a character is a box, a word is a collection '
of character boxes, a line is a group of word boxes, a
paragraph is a collection of line boxes, and a page is a
box composed of paragraph boxes. The space between
boxes can expand or contract by carefully defined
amounts, called the stretchability or shrinkability of the
glue. For example, when TEX composes a paragraph
that has a hyphenation it tries to back up and redistri­
bute the spacing of the words in the paragraph to avoid
the hyphenation. It does this by increasing or shrinking
the space or glue between the boxes by allowable
amounts.

For further details on the inner workings of TEX, see
[Knut79] or [Spiv80].

3. Submitting an Input File to TEX

The input file for TEX is edited using any text editor.
The text and any control sequences are contained in this
file. When TEX is run, this file is designated as the input .
file.

Basically, text is entered in a standard fashion with
spaces between words, and one blank line between par­
agraphs. The input need not be formatted in any particu­
lar manner beyond this. Control sequences are defined
as a" "followed by a word or symbol. They allow the
user to specify a special command. For example, "\it
IMPORTANT" would cause the world IMPORTANT
to be set in italic font.

The TEX system can be run in either interactive or'
batch mode. In interactive mode, if TEX finds an error
the user is allowed to make modifications on the fly. For
example,
!Undefined control sequence
\iy

5 -79-2

IMPORTANT..
The TEX program is indicating that it does not know

the control sequence "\iy" and shows what it has scan­
ned on the first line, and what it has not yet scanned on
the following line. At this point the user may correct the:
input by typing "1" to erase one symbol or control se- .
quence, and then "I" to insert the correct sequence "\
it". Any corrections made in this manner are recorded
in an errors file for future reference.

As TEX is processing the input, it is writing to the
DVI file. After the input is successfully processed, the
DVI file is ready for the device driver program.

Two other important facilities are available with
TEX. These are alternate input files and macro defini­
tions. Alternate input files are TEX input IDes which are
read in conjunction with another input file. For exam­
ple, if a paper has an abstract and three sections, and
each is in a separa~e file, a main file would draw them all
together as follows:
% paper on TEX for the HP3000

, \input basic % basic control sequences
. \input texabs % abstract file
,.\input sect1
. \input sect2
: \input sect3
\end

Each of the alternate input files could have had \input
commands also. The max·imum nesting depth is nine.

Macro definitions allow the user to specify a common
sequence by defining it and giving it a name. For exam­
ple, the logo TEX was specified by inserting" \TEX".
.\TEX was previously defined' as
\def TEX{\hbox{lowercase{\:a

, \uppercase{T} hskip-2pt\lowerl.94pt
\hbox{\uppercase{E}}\hskip-2pt \uppercase{X}}}}
It is much easier to write "\TEX" than to insert the
above expansion.

4. Fonts

A font is a, specific design of an alphabet and as­
sociated symbols. Most typewrites have Pica or Elite
type fonts. The different "balls" or "daisy wheels" on
some printers allow the user to change fonts.

The TEX system allows up to 64 different fonts to be
specified within the same job. A control sequence is
given to switch from one to the other. Naturally you
must have a device which can support all of these dif­
ferent fonts.

Knuth also wanted to define his own fonts and
created a system called METAFONT to do this. Using
METAFONT one can design a font which is coded into
a file for use by TEX. For more information on
METAFONT see [Knut79].

5. The DVI File

The DVI file consists of a series of 8-bit ,codes which

.~

fIiII"'h'
\

. tells a device driver how to typeset the job. The format
of the DVI files is given in Appendix B.

Basically, a DVI file command is of the form "set the
letter d and advance the character width" or "change to
font 3" or "advance vertically 12 rsu's". No inherent
intelligence on the part of the device is assumed. In fact,
TEX gets along best with devices which have no inter­
nal programming, such as proportional spacing or
typesetting firmware.

6. Device drivers.

The assumed printer is a raster scan printing device.
This implies that all spacing between characters and
lines is u,ser specified. A typical computer line printer is
not a raster device since it will always print 10
character/inch~ and six lines/inch (or some variation of
this). Most of the daisy wheel terminals available now
can be used as raster devices. The actual device TEX is
'aimed at is a commercial computer-driven typesetting
device, such as a Xerox Graphics Printer, a Mergen­
thaler Linotron 202, or an HP2680 Laser Printer.

The TEX program has no knowledge of any particular
printing device. It creates the same DVI file regardless
of the output device. It is the job of the Device Driver
program to interpret the DVI commands and produce
output ona specific device. While there is only one
TEX program, there will be one Device Driver program
for each output device.

TEX ON THE HP3000

1. TEX in PASCAL

The TEX system was originally written in a language
called SAIL (Stanford University Artificial Intelligence
Language). The SAIL compiler and the original TEX
system ran on the DEC-20 computer only. TEX is in the
public domain, but was not even remotely transport­
able. Due to the popularity of the system, a project was
undertaken to translate the TEX system into a com­
puter language which was available on most modem
computer systems.

The language chosen for the transportable system
was PASCAL. The method for translating the system
was as follows. First, a well documented pseudo­
PASCAL source was developed. This source has only a
slight resemblance to a PASCAL program and was in­
tended to serve mostly as documentation, and to give all
the algorithms. This file is often referred to as the DOC
file.

The second step was to produce syntactically correct
PASCAL source code from the DOC file. There is a
program called UNDOC which performs this step. The
resulting PASCAL source is distributed to anyone
wanting to transport TEX to another computer.

The DOC file is actually typeset, and a photocopy is
provided with the distribution tape. The PASCAL
source is almost unreadable, but will compile. Exam­
ples of both of these files is in Appendix C.

2. Moving TEX to the HP3000

The Stanford TEX-in-PASCAL project brought the
system to a point where it could be transported to other
computer systems. The transportation process, how­
ever, requires a good deal of time and a patient systems
programmer.

At the time of writing, this author has successfully
transported TEX to the HP3000. The project was by no
means trivial, as will be shown.

Bringing TEX to the HP3000 had a lot of problems
right from the outset. First, there was no supported
PASCAL compiler at the time this project was begun.
Second, the design of the TEX program assumes a large
address space, something on the order of 600K words of
addressable memory. .

The tasks broke down ~s follows:
a. Edit the PASCAL sources. While the system was

translated to a "Standard" PASCAL, there are still
many variations and assumed extensions which had to
be accounted for. With 23,000 lines of PASCAL source
this took considerable time and effort.

b. Rewrite the "System dependent" routines. These
are the procedures and functions which inteIface TEX
with the file system, terminal I/O and other traits par­
ticular to the host system. About 25 routines had to be
modified or rewritten.

c. Implement a virtual memory scheme. TEX refer­
ences several large arrays throughout, some as large as
50,000 elements with 4 32-bit words per element. An
addressing scheme was developed to allow the .array
contents to reside in secondary storage.

d. Revise· the PASCAL compiler to allow 32-bit inte­
gers and to compile large array references. TEX as­
sumes 32-bit integers throughout, and the Portable P4
compiler from the HP Users Contributed Library was
modified to allow them.

e. Optimize the performance of the system. When the
above tasks were completed and the system first ran on
the HP3000, it was incredibly slow. Where the original
TEX system at Stanford processed a document ~ less
than two minutes, the initial HP3000 TEX took 40 min- .

. utes. By analyzing TEX's operation, some optimiza­
tions have been made reducing the run time to about 6
minutes. Additional optimizations will be made to allow
the system to run as fast as possible. One tool which has
been particularly useful for identifying inefficient code
is APG/3000 from Wick Hill Associates.

3. Device drivers

A device driver for a daisy wheel printer has been
developed for use on the HP3000. While only one font is
available at a time with this device, satisfactory results
have been obtained. The output is suitable for internal
documentation, and for proofing a document. Future
plans are to develop a driver for the HP2680 Laser
printer.

However, it is not necessary to have a high quality

S -79-3

printing device on-site. There is one commercial print­
ing house in San Francisco which uses TEX for
typesetting on a Mergenthaler Linotron 202; the output
from this device is camera ready. DVI files produced by
TEX on the HP3000, once proofed on the daisy wheel
printer, will be sent to this commercial printer.

CONCLUSIONS
This is a truly remarkable system. It ·gives the ordi­

nary person the ability to print professional quality
copy. The user will not have to explain to a typographer
what is wanted, but will have personal control.

The HP3000 implementation of TEX will be a boon
for any organization desiring to improve the quality of
documentation, .user manuals and other printed mate­
rials. Good results can be obtained with an inexpensive
daisy wheel printer. Where camera-ready copy is de~

sired, several higher quality devices are commercially
available.

Hopefully more org~nizations will begin to use TEX
for documentation,manuals, annual reports and
newsletters. Perhaps one day soon the HP General Sys­
tems Users Group will accept papers for publication in
TEX format.

5 -79-4

ACKNOWLEDGEMENT
My thanks to Prof. Luis Trabb-Pardo and Charles Restivo of Stan­

ford University for their assistance in learning the TEX system; and to
GENTRY, INC. of Oakland, California, for providing time on the
H~OOO. .

REFERENCES
[Knut79] Donald E. Knuth, TEX,and METAFONT. New Directions in

Typesetting. Digital Press, 1979.
This is a beautifully printed book, an acknowledgement of the TEX

system. Don Knuth's writing style is at once brilliant and'witty.,lt
contains a User's Guide to the TEX and METAFONT systems
and a paper on Mathematical Typography.

[Spiv80] Michael SpiVak, The Joy of TEX. A Gourmet Guide to
Typesetting Technical Text by Computer. Verson -1. American
Mathematical Society, 1.980.

This is a real book. It gives a lighthearted introduction to the use of
AMS-TEX, the version ofTEX used by the AMS.

TUGboat, The TEX Users Group Newsletter. Published by the Amer­
ican Mathematical Society.

The TEX Users Group is sm~ currently, but enthusiastic and
helpful. For information on membership write to:

TEX Users Group
c/o American Mathematical Society

P.O. Box 6248
Providence, Rhode Island 02940

\noindent {\bf ABSTRACT:} \TEX\ is a program which allows
the ordinary user to produce professional quality
typeset output.
\TEX\ was developed by Donald E. Knuth of Stanford
University an~ is currently used throughout the world
'for typeset'ting both technical and non-technical material.
This paper will describe the use of \TEX\ and show
some examples of its output.
The transportable version of TEX, written in Pascal,
has been successfully moved to the HP3000.
The second part of the paper describes the tasks involved
in th is process.

\vskip 0.4 cm
\noinden~ {\bf I. INTRODUCTION}

\vskip 0.3 cm
\noindent l\bf 1. What is \TEX\ ?}

\vskip 0.1 cm
{\it Tau Epsilon Chi} (\TEX\) is a system for typesetting
technical books an dpapers.
~t can also be used for ordinary non-technical material.
The system does not require the user to have a knowledge of
typesetting rules or conventions.

The original \TEX\ system was developed at Stanford University
by Donald E. Knuth.
Frustrated in his attempts to print a second edition of
{\it The Art of Computer Programming} in the same printing
style as the first edition, he looked for alternatives in the
area of computerized typesetting.
Finding nothing that suited him, he embarked on a project

ABSTRACT: 'lEX is a program which allows the ordinary user to produce professional
quality typeset output. 'lEX was developed by Donald E. Knuth of Stanford University and
is currently used throughout the world for typesetting both technical and non-technical
material. This paper will describe the use of '"J."EX and show some examples of its output.
The transportable version of TEX, written in Pascal, has been successfully moved to the
I-IP3000.· The second part of the paper describes the tasks involved in this process.

I. INTRODUCTIO'N

1. What is lEX ?

Tau Epsilon Chi (lEX) is a system for typesetting technical books and papers. It can
also be used for ordinary non-techni'cal material. The system does not require the user to
have a knowledge of typesetting rules or conventions.

The original 'lEX system was developed at Stanford University by Donald E. Knuth.
Frustrated in his attempts to print a second edition of The Art of Computer Progra"!1ming
in the same printing style as the first edition, he looked for alternatives in the area of
computerized typesetting. Finding nothing that suited him, he embarked on a project

APPENDIX A
A PORTION OF THE TEX INPUT FILE

5 -79-5

Command Name Command Bytes
Description

VERTCHARO o
Set 'c.haracter number' 0 from the curreDt font luch that,
its reference point is at the current position on the page,
and then increment horilontal coordinate by the character'.
width.

VERTCHAR1 1.
Set character Dumber 1, etc.

VERTCHAR127 127
Set character number 127, etc.

NOP 128
No-op, do nothing, ignore. Note that NOPs come between
commands, they may not come between a command and
its parameters, or between two parameters.

BOP 129 cOr4] c1[4] ... c9[4] p[4]
Beginning of page. The parameter p is a pointer to the
BOP command of the previous page in the .OVI file (where
the first BOP in a .OVI file has a p of -1, by convention).
The ten cts hold the values of 'lEX's ten \counters at the
time this page was output.

5-79-6

EOP

PUSH

POP

HORZRULE

130
The end or all commands for the page bas been reached.
The number of PUSH commands on this page should equal
the number or POPa.

132
Push the current values of horizontal coordinate and vertl·
cal coordinate, and the current W-, S-, y-, and ,-amount,
onto the stack, but dOD't alter them (so an XO after a PUSH
win get to the same spot that it would have had it bad been
given just before the'PUSH).

i33
Pop tbe 1-, Y-, X-, and w-amounts, and vertical coordinate
aDd horizontal coordinate ofT the stack. At no point in a
.DVI file will there have been more POPs than PUSHes..

135 h[4.] w(4)
Tl'peset a rule of height h and width w, with its bottom left
corner at the current position on the page. If either h < 0
or w< 0, no rule should be set.

APPENDIX B
DVI COMMANDS

~
.....--

VERTRULE

HORZCHAR

FONT

X2

X3

X4

xo

W2

W3

W4

. WO

134 h(4) .[4]
Same as HORZRULE, but also increment horilontal eoor­
dinate by w when done (even 'if h S 0 or • SO).

136 ell]
Set character c just as if we'd gotten the VERTCHARc
r-ommand, but don't change the current position on the
page. Note that c must be in the range [0..127].

137 t [4]
Set current font to f. Note that this command is not
currently used by 'JFI{-it is only needed if f is greater than
63, because or the FONTNUM wmmands below. Large
font numbers are intended for use with oriental alphabets
and for (possibly large) illustrations that are to appear in a
document; the maximum legal number is 232

- -2.

144 m(2]
Move right mrsu's by adding mto horizontal coordinate, and
put minto x-amount. Note that m is in 2'8 complement, 80

this could actuaUy be a move to the left.

143 m[3]
Same as X2 (but has a 3 .byte long mparameter).

142 m[4)
Same as X2 (but has a 4 byte long mparameter).

145
Move right x·amoun~ (which can be negative, etc).

140 m[2]
The same as the X2 command (i.e., alters horilontal coor­
dinate), but alter w-.mount rather than x-amount, so that
doing a WO commud can have different results than doing
an XO command.

139 m[3]
As above.

138 m[4]
As above.

. 141
Move right w-amount.

148 n[2]
Same idea, but now it's I'down" rather than "right", &0

vertic.al c.oordinate changes, as does y-amount.

5-79-7

5 ~79-8

Y3

Y4

YO

Z2

147 n(3)
As. above.

146 n(4)
As above.

149
Guess.

152 m[2]
Another downer. Meets vertical coordinate and ,-amount.

.~

18 'Jt?C: SYST~M D~PUNDENCIES §36

36. The procf:durc print takes an integer as argunlcnt and prints the
corresponding strngpool entry both in the terulinal and in the errors file.

procedure Print(mes : integer);
var i : Integer; { index in the string}

c : asciiCode;
begin i := strng (mes]i c := strngpool(i);
while c <> null do

begin t~TOutl := chr(c); err/ill := chr(e); put(tcrOut); put(err/il);
lncrement(i); c := strngpool(i)
end;

end; .
procedure J'rintLn (fIles : integer);

{ l,ikc Print, but beginning at a new line. }
begin terO-ut T ':= ,hr (cQTriageTtturn); err/ill :=- terOut t; putt tcrOut).
put(errfil); terOutl := chr(linc/eed); err/ill:= terOuttj put(terOut);
put(err/ill; Print(me!)
cud;

1224 PROCEDURE PRINT(MES: INTEGER);
1224 VAR I: INTEGER;

3 S: ASCIICODE;
5 8

1224 I:=
1233 C: =ST
1247 BEGIN
1247 TEROUT":= HR();
1251 ER FIL":= HR();
1255 PUT (T P UT);
1257 PUT (ERPFIL);
1259 1:=1+1;
1263 C:=STRNGPOOL[l]
1270 ENDi
1274 END;
1275 PROCEDURE PRINTLN(MES: INTEGER);
1275 BEGIN
1275 PRINT(MES)
1279 iWRITELN (TEROUT);
1282 WRITELN(ERRF1L);
1284 END;

APPENDIX C
FRAGMENTS OF TEX DOC AND

PASCAL SOURCE

5-79-9

5 -79-10

APPENDIX D
AN EXAMPLE OF TECHNICAL TYPESE'ITING

Everything You Wanted to Know
About Interfacing to the HP3000

PART I
Ross Scroggs

The Type Ahead Engine Company
Oakland, California

INTRODUCTION
It is important to realize that the information

presented in this paper is my interpretation of the facts.
The interpretation is not perfect, for surely I have in­
cluded incorrect statements. If you believe that some­
thing here is incorrect, bring it to my attention. If I
believe that you are wrong I will try to set you straight,
but I will not argue about anything. I have included a list
of references at the end of this paper from which I have
obtained most of the information included here. If you
desire to make all ofyoufterminal attachments success­
ful, obtain all of the references and read them. The most
important piece of information I can give you is to start
planning early when attaching terminals to the HP3000
and don't believe anything you read, if you haven't seen
it work yourself, plan on having to solve a few 'prob­
lems. This paper is a guide to solving those problems,
but it won't solve them for you.

Most of the experiments outlined in this paper were
performed with the Bruno release of MPE-IV, I have
subsequently been informed that the C release of
MPE-IV fixed many terminal driver problems as­
sociated with the ADCC.

Asynchronous terminals are attached to the HP3000
Series I, II, and III through the Asynchronous Terminal
Controller (ATC) and to the Series 30, 33, 40, and 44
through the Asynchronous Data Communications Con­
troller (ADCC). This paper addresses issues involved in
making a successful connection to one of these two de­
vices. Terminals attach to the Series 64 through the Ad­
vanced Terminal Processor (ATP) which should make
all of our lives simpler (though expensive) in the coming
years. In its earlier versions the ATP will act much like
the ATC in terms of interfacing to terminals. It features
two major advances over the previous terminal control­
lers. First, there is a microprocessor controlling each
terminal line, this removes considerable work from the
CPU, the "character interrupt" problem. Second, the
ATP can use either the RS-232 or RS-422 interface
standards. RS-422 is a completely new electrical and
mechanical interface that supports very high data rates
over great distances with no errors, a typical example
would be 9600 baud at 4000 feet. What this flexibility

costs you is about $200 extra per terminal to provide a
RS-232 to RS-422 adapter. These won't be required
when terminals provide RS-422 interfaces.

Termmals attached to the ATC or ADCC are acces­
sed primarily in two ways: as a session device or as a
programmatically controlled device. A session device is
one on which a user logs on with the HELLO or ()
commands and accesses the HP3000 through MPE
commands. A programmatic device is one which is con­
trolled by an application program that is run indepen­
dently from the device. These two access methods are
not mutually exclusive, a session device can. be acces­
sed programmatically and many MPE commands' can be
executed on behalf of a user who is accessing the sys­
tem programmatically.

SESSION DEVICES
Attaching- a terminal as a session device is typically

the easier of the two methods. You must set the termi­
nal speed, parity, subtype, and termtype correctly and
provide the proper cable to complete the hookup.

Terminal Speed

The speeds supported by the ATC are 110, 150,300,
600, 1200, and 2400 baud. The speeds supported by the
ADCC are those of the ATC plus 4800 and 9600 baud.
Unfortunately these two higher speeds can not be
sensed by the ADCC and thus you must log on at a
lower speed and use the MPE SPEED command to ac- .
cess the higher speed. (Use of subtype 4 and specifying
any speed will allow a terminal to log on at that speed
only, this includes 4800 and 9600. Note however, that if
you use the :SPEED command the new speed specified
will be required at your next logon.)

Terminal Parity

The format of characters processed by the HP3000 is
a single start bit, seven data bits, a parity bit, and one
stop bit (two at 110 baud). The parity bit may always be
zero, always be one, computed for odd parity, or com­
puted for even parity. Choosing the proper parity set­
ting has been complicated by differences between the
ATC and ADCC. The ATC inspects the parity bit of the

6-40-1

initial carriage return received from· the terminal and
sets'parity based on that bit. If the bit is a zero the ATC
generates odd parity on output, if it is a one the ATC
generates even parity on output. In either case the par­
ity of incoming data is ignored and the parity bit is al­
ways set to zero before the data is passed tothe request­
ing program. The ADCC also sets parity based on the
parity bit of the initial carriage return but does so with a
slight, but nasty twist. If the bit is a zero the ADCC
passes through the parity bit supplied by the application
program on output, if it is a one the ADCC generates
even parity on output. If pass through parity was
selected the parity of the incoming data. is passed
.through to your program buffer ~ If even parity was
selected the input data is chec~ed for proper even par­
ity. :rhus, you shoul9.not use odd or force to one parity
on the ADCC. The odd parity will be int~rprete<;tas pass
through and the pari~y bits will wind up in your. data
buffer, string comparisons will fail because of the parity
bits. Force to one p~rity .will be interpreted as even an.d
all input will cause parity errors. .

Subtype

The ATC ,supports subtypes 0, 1, 2, 3, 4,5,6,7,. the
ADCC support subtypes 0,1,2,3,4,5. Subtypes 2,3,6,
7 concern half duplex modems and not me, so I will
ignore them. Subtype 0 is the standard for directly at­
taching t~rminals without modems. (Note that terminals
that are attached to multiplexors can fit in this category,
the modem .involved is managed by the multiplexor, not
the HP3000.) S~btype.l is the standard for attaching
tetrilinals that use full duplex modems such as Bell 103,
212',and Vadic 34xx. Both subtypes 0 and 1 speed sense
on the initial carriage return. Sub~ype 4 is .for direct
attach terminals that will not be speed sensed, they will
run at a fixed speed that is" Siet at configuration time.
This subtype is often used to prevent the' HP3000 froin
trying to speed sense garbage, this sometimes occurs
when using short-haul modems (line-drivers) that do not
have a terminal attached to the other end. Subtype 5 is
for modem attached terminals that will not be speed
sensed.

Termtype

The ATC supports terminal types 0, 1, 2, 3, 4, 5, 6, 9,
10, 12, 13, 15, 16, 18, 19,31, the ADCC supports terminal
types 4, 6, 9, 10, 12, 13, 15, 16, 18, 19. Termtype 4 is for
Datapoint 3300 terminals, it outputs a DC3 at the end of
each output line and respond's to backspace with a
Control-Y, truly bizarre. (Termtype 4 on the ADCC
does not output DC3s at the end ofeach line.) Termtype
6 is for low speed printers, it outputs a DC3 at the end of
each line but responds to a backspace with a linefeed.
(The linefeed is· on the first backspace of a series, this
allows you to type corrections under the incorrect
characters.) Termtype 9 is the general purpose non-HP
CRT terminal type. No DC3s are output at the end of
the line (whew!!) and nothing strange happens on
backspace, the cursor backs up just as you would ex-

6-40-2

pect. Termtype 10 is the standard for HP-26xx termi­
nals. Termtype 13 is typically for those terminals at a
great distance from the HP3000 for whic~ 'some local
intelligence echos characters and the 3000 should not.
(Telenet and Tymnet charge you for those echoed
characters, that's reason enough not to have the HP3000
echo them.) Termtypes 15 and 16 are for HP-263x prin­
ters. 'rermtype 18 is just like termtype 13 except that no
DC1 is issued on a terminal read. Certain termtypes less
than 10 specify a delay after carriage control characters
are output to the terminal. The ATC handles this by
delaying for the designated number of character times
b~t does not output any characters. The ADCC actually
outputs null charact,ers. The most extreme case is
termtyp~ 6 whi~h causes 45 nulls to be output after a
crllf 'at 440lcPS.

Cable

Direct attach terminals, .subtypes 0 and ~,·use only
three signals in the cable: pin 2, Transmit Data, pin 3,
Receive, Data, and .pin(7, Signal.Ground. (Note that all
signal names .are given. from the point of view· of the
terminal, not the modem or. the HP3QOO which acts like a
modem.) Typically the cable will conneot-pin 2 ~t the
terminal end to pin 2 at the HP3000, pin 3 at the terminal
to pin 3 at the HP3000 and pin 7 at the terminal to pin 7
at the HP3000. This is not tq say that·your terminal does
no.t require other signals, it just says that the H~3000 is·
not going to provide them, you must. If your termjnal
requires signals' like Data Set .Ready, Data Carrier De- .
tect, or Clear To Sen<;f, you can. usually supply these
signals to' the ter~iIlal with a simpl~, cable patch..
Jumper pin 4, E,equest To Send to pin 5, Clear To Send.
Jumper pin 20, Data Terminal Ready to pin 6, Data S~t

Ready and pin. 8,Data Carrjer Detect. These two jum­
pers cause ,the tel1l1inal to, supply its required signals to
itself. .'. ,

Modem attach t.erminals, subtypes 1 and 5, use seven
signals in the cable: pin 2, Transmit Data; pin 3, Receive
Data; pin 4, Request To Send; pin 6, Data Set Ready;
pin 7, Signal Ground; pin 8, Data Carrier Detect; and pin
20, Data Terminal Ready. Naming the signals gets com­
plicated since the ·HP3000 is acting like a modem and it
is being attached to a modem. Typically, the cable that
connects the HP3000 to the modem will connect pin 2 at
the modem end to pin 3 at the HP3000, pin 3 at the
modem to pin 2 at the HP3000, pin 4 at the modem to pin
8 at the HP3000, pin 6 at the modem to pin 20 at the
HP3000, pin 7 at the modem to pin 7 at the HP3000, pin 8
at at the modem to pin 4 at the HP3000, and pin 20 at the
modem to pin 6 at the HP3000.

The cable that attaches your terminal to a modem
should be specified in your terminal owners manual,
consult it for proper connections.

Flow Control

Flow control is the mechanism by which the speedl
amount of data from the HP3000 to the terminal is con-

trolled. The HP3000 supports two flow control
methods, ENQ/ACK and XON/XOFF. The ENQ/ACK
protocol is controlled by the system, after every 80 out­
put characters the systems sends an ENQ to the termi­
nal and suspends further output until and ACK is re­
ceived back from the terminal. The suspension is of
limited duration for termtypes 10 to 12, output resumes
if no ACK is received in a short amount of time. The
suspension is indefinite for termty.pes 15 and 16, the
ENQ is repeated every few seconds until an ACK is
received. (It is the ENQ/ACK protocol that fouls up
non-HP terminals that attempt to access the HP3000
through a port that is configured for an HP terminal.
Most terminals do not respond to an ENQ with an
ACK, you must do it manually by typing Control-F
which is an ACK. An ENQ is generated by the HP3000
when the initial carriage return is received from the ter­
minal, thus you get hung immediately. But, hit
Control-F, and logon and specify the proper termtype in
your HELLO command.)

The XON/XOFF flow' control protocol is controlled
by the terminal. When the terminal wishes to suspend
output from the HP3000 it sends an XOFF (Control-S or
DC3) to the HP3000 and sends an XON (Control-Q or
DCl) to resume output. Unfortunately the HP3000
sometimes fails to properly handle one of the two
characters and you either overflow your terminal or get
hung up. This is particularly nasty when your terminal is
a receive-only printer and you can't supply a missing
XON~ You're 'really dead if the HP3000 misses the
XOFF. Termtype 13 has in my experience been the best
termtype to use if your terminal requires the XONI
XOFF flow control protocol. You can tum the echo
back on with ESC :.

A special note on XON. If you inadvertently send an
XON (DCl) to the HP3000 when output is not sus­
pended, surprise you are now in paper tape mode and
backspace, Control-X, and linefeed will act most
strangely. Hit a single Control-Y to get out of this mode,
the Control-Y will not be received by your program.

begin

Some terminals perform flow control by raising and
lowering a signal on their interface, the HP3000 can not
handle this. You must either run the terminal at a low
enough speed to avoid overflowing it or provide
hardware to convert the high/low signal to ENQ/ACK
or XON/XOFF, a costly affair.

A form of flow control used by HP terminals when
inputting data to the HP3000 is the DC2IDC1 protocol.
When the enter key is pressed on the terminal, aDC2 is
sent to the HP3000 to alert it to a pending block mode
transfer. When the HP3000 is ready to receive the data
it sends a DC1 back to the terminal to' start the data
transfer. (Your program does not handle the DC2/DC1,
but see below FCONTROL 28, 29.) This works fine
except in certain circumstances. In certain modes the
HP actually sends DC2 carriage return when the enter
key is pressed. This is no problem unless the DC2 and
CR do not arrive together. The CR may be seen as-the
end of the data if it comes sufficiently far behind 'the
DC2, .your program completes its request for data 'with
nothing and the real data bites the dust when it finally'
shows up. The separation of the DC2 and CR can occur
when using statistical multiplexors or when using Tele­
net or Tymnet. Be aware, this problem is infrequent, but
unsettling when it occurs.

PROGRAMMATIC DEVICES ' ,
Attaching a terminal as a programmatic device is usu- ,

ally done when you want to attach a serial printer, in- :
strument, data collection device, or other strange beast
to the HP3000. An application program you write will
typically cOlltrol all access to the device, a user will not
walk up to it, hit return, and log ·on. I will explain the
various intrinsics that are used to access programmatic
devices and will give short (incomplete) program seg­
ments that illustrate the access method.

Declarations

The following declarations will be assumed for. all
pr~gram segments shown.

in teger
ilen,
olen,
pfnum:=O,
pifnum:=O,
pofnum:=O,
precsize:=-256; «** pick a number large enough for the

maximum data transfer **»
log ical

fcontrol'parm:=O,
prev'echo;

logical array
ibuff' (0:255),
obuff' (0: 255),

6-40-3

byte array
. pfname(O:7):="PROGDEV";

byte array
pdevice(O:7):="PROGDEV";

byte array .
pifname(O:7):="IPROGDV ";

byte array
pidevice(O:7):="IPROGDV ";

byte array
pofname(O:7):="OPROGDV ";

byte array
podevice(O:7):="OPROGDV";

define
fs'error'on'ccl= if < then file'error(#,
fs'error'on'ccne=if <> then file'error(#;

procedure print'message(enum);
value

enum;
integer

enum;
option external;

intrinsic
fclose,f control ,fopen, f read,f setmode ,f~r i te ,pr i-nt' fi Ie' info,
getprivmode,getusermode,iowait,terminate;

subroutine file'error(fnum,enum);
value

fnum,enum;
integer

fnum,enum;
begin

«** simple file error handling subr?utine, basic, not fancy
or very good. **»

print'file'info(fnum);
print'message(enum); «** supply something, but remember your

cliches, make it user-friendlyl **»
terminate «** simple·, (flrect, not too graceful **»

end; «* file'errnr *»

\,."----

FOPEN
You must call FOPEN to gain access to the device, I

always use a formal file name to allow control of the
open with file equations. If the device is unique in the
system, I use its device name as the file name. The
foptions specify CCTL, undefmed length records, AS­
CII, and a new file. The aoptions specify exclusive ac­
cess and input/output. Choose a record size that is
larger than the maximum data transfer that will take
place.

ATC - Opening a terminal with an HP termtype
causes an initial ENQ to be output to the device on the
fIrst output, there must be an ACK reply from the de­
vice or your program will wait until the ENQ time-out
occurs.

ADCC

For devices that are to be used exclusively in pro­
grammatic mode it is recommended that you REFUSE
the device so that extraneous carriage re~ums from .the
device will not be speed sensed by the HP3000.

pfnum:=fopen(pfname,%604,%104,precsize,pdevice);
fs'error'on'ccl(pfnum,l);

6-40-4

FCLOSE

You call FCLOSE to release access to the device,
some FCONTROL options exercised while the device
was open are not reset by FCLOSE.

ATC - MPE sends a crllf to the device if it believes

that the "carriage" is not at the beginning of the line,
Le., the last character output was not a linefeed.

ADCC - MPE sends a cr/lfto the device if it believes
that the "carriage" is not at the beginning of the line,
Le., the last character output was not a linefeed or
formfeed.

fclose(pfnum,O,O);
fs'error'on'ccl(pfnum,9);
pfnum:=O; «** I do this for error handling purposes **»

FREAD

You call FREAD to get data from the device, many of
the FCONTROL calls shown below affect how FREAD
works. End-of-file is indicated by a record that contains
":EOF:". Any record with a colon in column one is an
end-of-file to $STDIN, ":EOD", ":EOJ", ":JOB",
":DATA", and ":EOF:" are end-of-file to $STDINX.
You should avoid linefeeds that follow carriage returns
because garbage characters will be echoed to the termi­
nal. (The inbound linefeed collides with the outbound
linefeed coming as a result of the carriage return.)

ilen:=fread(pfnum,ibuff' ,precsize);
fs'error'on'ccl(pfnum,2)i
if >

then i «** handle eof **»

You may want to trap' certain errors returned by
FREAD to your program: 22, software time-out; 31, end
of line (alternate terminator); and 33, data lost.

ATC - The characters NULL, BS, LF, CR, DC1,
DC3, CAN (Control-X), EM (Control-Y), ESC, and
DEL are stripped from the input stream for both session
and programmatic devices.

ADCC - The characters BS, LF, CR, CAN
(Control-X), and EM (Control-Y) are stripped from the
input stream for session'devices. The characters BS,
CR, and CAN (Control-X) are stripped from the input
stream for programmatic devices.

The default parity cases are handled quite differently
between the ATC and ADCC, you should exercise ex­
treme caution when dealing with parity on the ADCC.

ATC - If the ATC is in the odd/out, no check/in
mode all incoming characters have their parity bits set
to zero. The same is true for even/out, no check/in
mode.

ADCC - If the ADCC is in pass thru/out/in mode all
incoming characters retain their parity bits, they are not
set to zero. All special characters must have a zero
parity bit to be recognized. If the ADCC is in even/out,
check even/in mode the incoming characters must have
proper even parity and their parity bits are set to zero.
The second time you open this terminal the ADCC has
switched to pass thru mode and all incoming characters
retain their parity bits!!!

Each time you issue an FREAD to the terminal MPE
sends a DC1to the terminal to indicate that it is ready to
accept data. Most devices ignore, totally, the DC1. If
your a device reacts negatively to the DC 1, use
termtype l~ which suppresses the DCI on terminal re­
ads. The device must not send data to the HP3000 until
it has received the DCI, otherwise the data will be lost.
If the device does not wait for the DCI you must supply
external hardware that will provide buffering and wait
for the DC 1or you can solve the problem on the HP3000

. by using two ports to access the device. One port is
opened for reading and the other for writing. A no-wait
read is issued before the write that causes the device tc
send data, then the read is completed.

getprivmode; «** necessary for nobuf, no-wait i/o W*»
pifnum:=fopen(pifname,%204,%4404,precsize,pidevice)i
if <

then begin
getusermode;
file'error(pifnumvl)

end;
getusermodei
pofnum:=fopen(pofname v%604,%404,precsize,podevice)i
fs'error'on'ccl(pofnum,l)i

ilen:=fread(pifnum,ibuff' ,precsize)i
fs'error'on'ccl(pifnurn,2)i
fwrite(pofnum,obuff' ,-olen,%cctl)i
fs'error'on'ccne(pofnum,3)i
iowait(pifnum,ibuff' ,ilen);
fs'error'on'ccne(pifnum,22)i

6-40-5

When you attach your device to the two ports, con­
nect pin 2, Transmit Data of the terminal to pin 2 of the
read port, connect pin 3, Receive Data of the terminal to
pin 3 of the write port, and pin 7, Signal Ground of the
terminal to pin 7 of both ports. (This two port scheme
was first introduced to me by Jack Armstrong and Mar­
tin Gorfinkel of LARC.)

FWRITE

You call FWRITE to send data to the device. The
carriage control (cctl) value of %320 is often used to
designate that MPE send no carriage control bytes, such
as crllf, to the device. Some FCONTROL calls shown
below affect how FWRITE works. Control returns to
your program from FWRITE as soon as the data is
loaded into the terminal buffers, it does not wait until all
data has been output to the device.

ATC - Carriage control %61 is output as carriage
return, formfeed (termtype 10).

ADCC - Carriage control %61 is output as formfeed
(termtype 10).

The default parity cases are handled quite differently
between the ATC and ADCC, you should exercise ex­
treme caution when dealing with parity on the ADCC.

ATC - If the ATC is in odd/out mode all outgoing
characters are given odd parity, even parity is generated
when the mode is even/out. Simple.

ADCC - If the ADCC is in pass thru/out mode all
outgoing characters retain their parity bits as passed to
FWRITE. If the ADCC is in even/out mode all outgoing
characters are given even parity. The second time you
open this terminal the ADCC has switched to pass
thru/out and all outgoing characters retain their parity
bits!!!

fwrite{pfnum,obuff' ,-olen,%cctl);
fs'error'on'ccne{pfnum,3)i
«** eof here is probably an error, I mean what is going on? **»

FSETMODE - 4 - Suppress carriage return/
linefeed

In normal operation a line feed is sent to the terminal
if the input line terminates with a carriage return, a cr/lf
is sent to the terminal if the line terminates by count,
and nothing is sent if the line terminates with an alter­
nate terminator. FSETMODE 4 suppresses these
linefeeds and carriage returns. FSETMODEO r~turns to
normal line termination handling, an FCLOSE also re­
turns the device to the normal mode.

fsetmode(pfnum,4);
fs'error'on'ccl(pfnum,14);

FCONTROL
FCONTROL is the workhorse intrinsic for manag­

ing a programmatic device on the HP3000. Each use
ofFCONTROL which be shown separately but it will
usually be the case that several calls will be used.

Most calls are required only once, but the timer calls
are required for each input operation. Each call will
be identified by the controlcode parameter that is
passed to FCONTROL.
FCONTROL - 4 - Set input time-out

This option sets a time limit on the next read from the
terminal. It should always be used with devices that
operate without an attached user to prevent a "hang." If
something goes wrong with the device, your program
will not wait forever, control will be returned to your
program. The FREAD will fail and a call to FCHECK
will return the errorcode 22, software time-out. No data
is returned to your buffer in the case of a time-out, any
data entered before the time-out is lost. If you issue a
timeout for a block mode read the timer is stopped when
the DC2 is received from the terminal, a new timer is
then started which is independent of the timer set by
this FCONTROL call. See the section below on
enabling/disabling user block mode transfers.

fcontrol'parm:=30; «** 30 second time-out **»
fcontrol{pfnum,4,fcontrol'parm);
fs'error'on'ccl(pfnum,413)i
ilen:=fread{pfnum,ibuff' ,precsize);
if <

then begin
fcheck(pfnum,erroreode);
if errorcode <> 22

then file'error{pfnum,errorcode*100+2); «** something else **»
«** handle time-out **»

end;

FCONTROL -10,11 - Set terminal input/output speed

These FCONTROL options allow you to change the
terminal input and output speeds. FCONTROL 37 can
also be used to set terminal speed, it sets termtype as

6-40-6

well and is the method that I prefer.
ATC - Split speeds are allowed.
ADCC - Split speeds are not allowed, FCONTROL

10 and 11 set both input and output speed.

FSETMODE 4 completely turns off input echoing.
(Control-X is handled separately.) Echoing is not re­
stored when a file is closed so you should always put
echo back the way it was found.

FCONTROL -12,13 - Enable/disable input echo
These FCONTROL options allow you to enable and

disable terminal input echoing. Many devices that at­
tach to the HP3000 do not expect or desire echoing of
the characters they transmit. This option along with

fcontrol(pfnum,13,prev'echo)i
fs'error'on'ccl(pfnum,1313)i

«** turn echo back on if it was previously on **»
if prev'echo = 0

then begin
fcontrol(pfnum,12,prev'echo)i
fs'error'on'ccl(pfnum,1213)

endi

FCONTROL -14,15 - Disable/enable system break
The break key is typically disabled when terrible

things will happen if the user hits break and aborts out
of a program. You, the programmer, always seem to
need break for debugging purposes and discover that
you have it turned off. System break can only be
enabled for session devices, it is not allowed for pro­
grammatic devices. If break is entered on a session de­
vice the data already input will be retained and provided
to the user program after a resume and the completion
of the read. If a break is entered on a programmatic
device a null will be echoed to the device but no data is
lost.
FCONTROL-16, 17 -Disable/enable subsystem break

Subsystem break is recognized only on session de­
vices, it can be enabled on programmatic devices but
has no effect. Ifa Control-Y is entered during a read, the
read terminates and the data already input will be re­
tained and provided to the user program after the
Control-Y trap prodedure returns. If Control-Y is dis­
abled any Control-Y will be stripped from the input but
no trap procedure is called and the read continues.
Control-Y trap procedures are armed by the XCON­
TRAP intrinsic. A subsystem break character other
than Control-Y may be specified when unedited termi­
nal mode (FCONTROL 41) is used.

ATC - In progra~atic mode Control-Y's are al­
ways stripped from the input.

ADCC - In programmatic mode Control-Y is not
stripped from the input if subsystem break is enabled.
FCONTROL -18,19 -Disable/enable tape mode

ATC - This is effectively an FSETMODE 4, an
FCONTROL 35, and suppression of backspace echoing
all rolled into one.

ADCC - Tape mode can not be enabled.
FCONTROL - 20, 21, 22 - Disable/enable terminal
input timer, read timer

These options can be used to determine the length of
time it took to satisfy a terminal read. It is not a time­
out, 'that is FCONTROL 4. The manual states that you
must enable the timer before each read so why is there a
disable option? If you read the timer without enabling

the timer, you get the tim~ of the most recent read that
did have the timer enabled. The number returned is the
length of the read in one-hundreths of a second. Condi­
tion code> implies that the read exceeded 655.35 sec­
onds.

fcontrol(pfnum,21,fcontrol'parm)i
fs'error'on'ccl(pfnum,2113);
ilen:=fread(pfnum,ibuff' ,precsize)i
fs'error'on'ccne(pfnum,2)i
fcontrol(pfnum,22,fcontrol'parm);
fs'error'on'ccl(pfnum,2213);

FCONTROL - 23, 24 - Disable tenable parity checking
This option enables parity checking on input for the

parity sense specified by FCONTROL 36. Parity·check­
ing is overridden by binary transfers (FCONTROL 27)
or unedited.mode (FCONTROL 41).

ATC - This option affects input parity checking
only, output parity generation is controlled by FCON­
TROL 36.

ADCC - This options controls both input parity
checking and output parity generation, FCONTROL 36
only specifies the type of parity.
FCONTROL - 25 - Define alternate line terminator

This option is used to select an alternate character
that will terminate terminal input in addition to carriage
return. It is useful if your device terminates input with
something other than return.

ATC - Backspace, linefeed, carriage return, DCl,
DC3, Control-X, Control-Y, NULL, and DEL are not
allowed as terminators. The manual claims that DC2
and ESC are not allowed as terminators but they work.
Ifa DC2 is the first input character from an HP termtype
terminal the HP3000 drops the DC2 and sends a DCl
back to the terminal, it thinks a block mode transfer is
starting. Any other DC2 is recognized as a terminator if
enabled. By enabling user block mode transfers
(FCONTROL 29) a DC2 as the first character will also
be recognized as a terminator when enabled. For
non-Rp termtype terminals a DC2 is always recognized
as a terminator when enabled.

ADCC - Backspace, linefeed, carriage return,

6-40-7

.Control-X, Control-Y, and NULL are not allowed as
terminators. The manual claims that DCI, DC3, ESC,
and DEL are not allowed as terminators, but they work.
DC2 is allowed as a terminator but produces bizarre
results unless unedited terminal mode (FCONTROL 41)
is also enabled in which case the DC2 is recognized as a

terminator in any position.
If a line terminates with an alternate terminator, it will

be included in the input buffer and length and an error
will be indicated for the read. You must call FCHECK
to determine that the read terminated with the alternate
character.

fcontrol'parm:=[8/0,8/"."]; «** period is alternate terminator **»
fcontrol(pfnum,25,fcontrol'parm);
fs'error'on'ccl(pfnum,2513);

ilen:=fread(pfnum,ibuff' ,precsize);
if <

then beg in
fcheck(pfnum,~rrorcode);

if errorcode <> 31
then file'error(pfnum,errorcode*lOO+2); «** something else **»

«** handle alternate terminator **»
end;

FCONTROL -26,27 -Disable/enable binary transfers
Binary transfers can be used to transmit full 8-bit

characters to and from the terminal. On input a read will
only be satisfied by inputting all characters requested, a
carriage return or alternate terminator will not terminate
the read. No cr/lfis echoed to the terminal at the end of
the read. Thus, you must always know how many
characters to read on each input from the terminal.
Enabling binary transfers also turns off the ENQ/ACK
flow control protocol and carriage control on output.
No special characters are recognized on input. See the
note under FCONTROL 25 about DC2 as the first input
character on a line. If a session device is being accessed
in binary mode, a break will remove the terminal from
binary mode but it will not be returned to binary mode
when a resume is executed.
FCONTROL -28,29 -Disable/enable user block mode
transfers

As described above the normal sequ.ence of events in
a block mode transfer from an HP terminal to the 3000 is
for the HP3000 to send a DC1 to the terminal indicating
it readiness to accept data, the terminal sends a DC2
when the enter key is struck to indicate that it is ready
to send data, the HP3000 responds with another DC I
when it is really ready to take the data, and the terminal
sends the data. All of this is transparent to your program
which just issues a big read. If your would like to par­
ticipate in this handshake you e,nable user block mode
transfers and MPE relinquishes control of the hand­
shake. Your program would issue a small read, get the
DC2, and issue another read to accept the data. This
allows you to meddle around before the data shows up.

The terminal driver only supports block mode trans­
fers with HP termtypes and performs one other function
during block mode transfers. Normally you wouldn't
put a timeout (FCONTROL 4) on a block mode read
because the user can take an indefinite amount of time
to fill a screen; but you would like to avoid terminal
hangs because the block terminator from the terminal

6-40-8

gets lost. This situation is handled by the driver for you,
the portion of the read after the second DCI is sent to
the terminal is timed for (#chars in read/#chars per
sec)+30 seconds. If the terminator is lost and the read
times out, the read will fail and FCHECK will return
error 27.

fcontrol(pfnum,29,fcontrol'parm);
fs'error'on'ccl(pfnum,29l3);

ilen:=fread(pfnum,ibuff' ,-1);
fs'error'on'ccne(pfnum,2);
«** meddle/muddle **»
ilen:=fread(pfnum,ibuff' ,precsize);
fs'error'on'ccne(pfnum,2);

FCONTROL - 30, 31 - Disable/enable V/3000 driver
control

This option is an undocumented option in which the
terminal driver provides low level support for V/3000
use of terminals. When V/3000 issues a read to the ter­
minal the driver outputs a DCI; the terminal user hits
enter which causes a DC2 to be sent to the 3000; the
driver responds with ESC c ESC H DC1 which locks
the keyboard and homes the cursor; it appears that the
driver also enables binary transfers because the second
read only terminates by count, not by terminator. The
portion of the read following the second DC I is timed as
described under FCONTROL 28, 29.

FCONTROL - 34, '35 - Disable/enable line deletion
echq suppression

This option suppresses the !! !cr/lf echo whenever a
Control~X is received from the terminal, the Control-X
still deletes all data in the input buffer.
FCONTROL - 36 - Set parity .

This FCONTROL option sets the sense of the parity
generated on output and checked on input. The four
possibilities are: 0, no parity, all 8 bits of the data are
passed thru; 1, no parity, the parity bit is always set to

one; 2, even/odd, even parity is generated if the original
parity bit of the data was a zero, otherwise odd parity is
generated; and 3, odd parity, odd parity is generated on
all characters.

ATC - FCONTROL 36 sets the parity sense and
enables output parity generation. FCONTROL 24 must
be called to enable parity checking on input. An un­
documented effect of this FCONTROL call is that the
previous parity setting is returned in the controlcode
parameter wiping out its original value!

ADCC - FCONTROL 36 sets the parity sense only.
FCONTROL 24 must be called to enable output parity
generation which results in input parity checking as
well. An undocumented effect of this option is that the
previous parity setting is returned in the controlcode
parameter wiping out its original value!

Parity is not reset to th,e default case when a device is
closed. This can be useful if you have a session device
that can not run with the default parity. Each time the
system is started run a program that opens the device,
sets the parity, and closes the device. It can then be
accessed as a session device with the required parity.

ATC - The following results were obtained when
parity generation was enabled on output. All options
performed as described in the manual.

ADCC - The following results were obtained when
parity generation was enabled on output. Option 0, par­
ity pass thru, resulted in even parity on all characters.
Option 1, parity forced to one, resulted in odd parity on
all" characters. Option 2, even/odd parity, resulted in
even parity on all characters regardless of the original
parity bits of the characters. Option 3, odd parity, re­
sulted in odd parity on all characters. Only option 3
performed as expected.

ATe, ADCC - The following results were recorded
I when parity checking was enabled on input. Option 0,
parity pass thru, resulted in parity errors on all input
except that with even parity. Option 1, parity forced to
one, resulted in pari~y errors on all input except that
with odd parity. Option 2, even/odd parity, resulted in
parity errors on all input except that with even parity.
Option 3, odd parity, resulted in parity errors on all
input except that with odd parity. Options 2 and 3 per­
formed as expected, options 0 and 1 did not. In all cases,
parity bits are always set to zero before the data is
passed to your program buffer.

HP has told" me that the following is the parity story as
of the C-delta version of MPE-IV.

ATC - Options 0 and 1 will not check parity on
input, everything else as described above.

ADCC - Option 0 and 1 will be parity pass thru,
everything else as described above.
FCONTROL - 37 - Allocate a terminal

In the old days you had to allocate a programmatic
terminal before it could be used. Now you don't even
though the manual claims that you do. This option is
still useful because it allows you to set the termtype and

terminal speed with one FCONTROL call. Common
sense, mine at least, says to set termtype and speed each
time a device is opened even if the proper values are
configured in the i/o tables. Using this option allows use
of a file equation redirecting the program to another
device that might not be properly configured.

fcontrol'parm:=[11/speed,5/type];
fcontrol(pfnum,37,fcontrol'parm)i
fs'error'on'ccl(pfnum,37)i

FCONTROL - 38 - Set terminal type
This option allows you to set the terminal type, but

use FCONTROL 37 and set type and speed all in one
shot.
FCONTROL - 39 - Obtain terminal type information

Before changing the t~rminal type, get the current
value and reset it when you are through.
FCONTROL - 40 - Obtain terminal output speed

Before changing the terminal speed, get the current
value and reset it when you are through.
FCONTROL - 41 - Set unedited terminal mode

Unedited terminal mode is about the most useful
FCONTROL option used to communicate with pro­
grammatic devices. It allows almost all control charac­
ters to pass through to the HP3000 but does not require
reads of exact length as in binary transfers. Input will
terminate on a carriage return or an alternate terminator
if specified. The subsystem break character, replacing
Control·Y, can also be specified.

ATC - Unedited terminal mode overrides input par­
ity checking, no checking is performed and all input

, parity bits are set to zero. Output parity generation is
performed normally.

ADCC - Unedited terminal mode processes parity in
the same manner as edited mode, see the section on
FREAD for an explanation.

Binary transfers enabled overrides unedited terminal
mode enabled. If the input terminates with the end-of­
record character or alternate terminator no cr/lf is sent
to the terminal. If the input terminates by count a crllf is
sent to the terminal unless an FSETMODE 4 has been
done. Unedited mode does not turn off the ENQ/ACK
flow control protocol on the ATe or ADCC. See the
note under FCONTROL 25 about using DC2 as a ter­
minator.

PTAPE

The manual describes PTAPE as the intrinsic to use
to read paper tapes. (A fancy data-entry media that is
becoming increasingly popular.) It can be used on the
HP3000 to access devices that send up to 32767 charac­
ters all in one shot subject to a few limitations. The data
must be record oriented with carriage returns between
records, MPE will cut the data into 256 character rec­
ords if there are no returns, and the whole mess must be
terminated by a Control-Y. Certain buffering terminals
allow you to fill their memory off-line, connect to a

6-40-9

computer, and transmit all the data. This could save
considerable time and money over dial-up phone lines.

DEBUGGING
If you have a requirement to attach a programmatic

device to the HP3000 the worst strategy is to write some
code on the 3000, plug the device in and start testing.
Murphy says it won't work and it won't. The method I
use is to test the device, then the code, and then the
code and device together. I test the device by plugging it
into an HP-2645 (or equivalent) terminal, turning on
monitor mode, and simulate the HP3000 by typing on
the keyboard. (Remember that you are hooking two
terminals together, you will probably hook device pin 2
to 2645 pin 3, device pin 3 to 2645 pin 2, and device pin 7
to 2645 pin 7.) You can stimulate the device and observe
all responses quite simply. Any strange behavior can be
noted at this point. The next step is to write the code on
the HP3000 to access the device in the manner deter­
mined by the first tests. Then plug the HP-2645, not the
device, into the HP3000. Now type on the 2645 to simu­
late the device, continue until your code is debugged.
Now you can plug the device into the HP3000 and you

6-40-10

have a good (modulo Murphy) chance.of actually getting
it to work.

REFERENCES

Communications Handbook, Hewlett-Packard Company, April 1981
Part #30000-90105. This manual supersedes the HP Guidebook to
Data Communications and the Data Communications Pocket
Guide.

Don Van Pernis, "HP3000 Series II Asynchronous Terminal Control­
ler Specifications," Computer Systems Communicator, # 15, De­
cember 1977, page 2. This explains the terminal subtypes and sig­
nal requirements for the ATC.

Charles J. Villa, Jr., U Asynchronous Communications Protocols ,"
Journal of the HP General Systems Users Group, Volume 1, #6,
March/April 1978, page 2. Good introductory material.

John Beckett, "Poor Man's Multidrop," Journal of the HP General
Systems Users Group, Volume 2, #1, May/June 1978, page 7. How
to hook several terminals to the same port.

Tom Harbron, "Lightning, Transients and the RS-232 Interface,"
.Journal of the HP General Systems Users Group, Volume III, #3,
Third Quarter 1980, page 14. How to avoid being zapped.

MPE Intrinsics Manual, Hewlett-Packard Company, January 1981
Part #30000-90010. Chapter 5 discusses most of the FCONTROL
options that are applicable in terms of the ATe, it is often inaccu­
rate in describing the ADCC.

~.,n.......

")

Everytlring You Wanted to Know
About InteIfacing to the HP3000

PART II
John J. Tibbetts

Vice President, Research & Development
The DATALEX Company

INTRODUCTION
The title of the this talk is "Everything You Wanted

to Know about Interlacing to the HP3000-Part II." In
Part I, Ross Scroggs described in great detail charac­
teristics of the internals of the asynchronous communi­
cations protocol, especially for the benefit of those who
would wish to tie foreign devices onto an HP3000
through the asynchronous port. This talk - the second
part - is intended to take that discussion into a specific
direction and discuss how, specifically, to connect in­
telligent devices, in particular microcomputers, to the
asynchronous communications protocol of the HP3000.
Note immediately that we are restricting our discussion
of microcomputer communication to the asynchronous
communications protocol. The reason for this is simply
that most microcomputers are easily configurable to
communicate asynchronously. Few microcomputer
hardware and software packages have been assembled
so far which will use bisynchronous communications
protocol. Consequently, the reality of the current state
of microcomputers suggests that asynchronous com­
munications protocol will be the standard way of hook­
ing up your microcomputer to the HP3000.

This talk will have two major parts. In the first part,
we will discuss what is at issue in terms of features and
capabilities in a remote communications program. We
will discuss in some detail what our standard ap­
proaches to handling such capabilities as terminal emu­
lation, sending and receiving files, simultaneously print­
ing to a local printer, and control of the communications
protocol from either the local end - that is, the mi­
crocomputer end - or from the remote computer end.
In this talk we will refer to the local side as being the
microcomputer and the remote side as being the remote
or the host computer.

In the second part of the talk we will describe how
you can actually get such a program running on your
own machine. The choices are twofold: either buy one
or write one. By using the criteria we have established
in part one of the talk, we will try to outline some of the
considerations of doing either of these.

One final note before we begin is that the remote

communications capabilities tend to be a very
hardware- and software-specific part of· microcomput­
ing. Whereas one can usually take a CPM program writ­
ten in BASIC, for instance, and run it on most or all
CPM implementations, one cannot expect to do the
same with remote software. Remote software usually
has to talk to pieces of your microcomputer which the
operating system tends not to know anything about.
During the course of the talk we will periodically make
reference to a specific capability that is required for the
remote program and in the published paper we will an­
notate them as a capability bullet that you will need to
either have supplied to you or you will have to imple­
ment on your microcomputer to get this particular
capability to be implemented for your remote program.

TERMINAL EMULATION
The first and perhaps the easiest capability to imple­

ment on your microcomputer is the emulation of a sim­
ple terminal.

• Capability - handling the remote port. Any of the
operations we will be discussing for remote com­
munications program presume that your mi­
crocomputer has a separate usable asynchronous
communications port. Your program should be
able to perform the following operations on that
port:
• read a character
• write a character
• test to see if a character is ready to be read.
This last capability is the one that is usually missing
in the standard microcomputing operating
environments. In particular, CPM implements the
read and write character routines as the reader and
punch devices, respectively, but do not have a
standard driver entry for testing the status of the
remote port. Usually, you have to specifically write
this capability for your own hardware if it hasn't
been provided to you by someone else.

The standard procedure for implementing a terminal
emulator is to write a polling loop. In the polling loop a
very tight program loop tests to see if a character has

6 -40-11

been entered, either at the remote port or at the
keyboard. If the character has been entered on either
one, the character is then read and written to its oppo­
site port. Thus, a character entered at the keyboard of
the microcomputer, when sensed, would be written to
the remote port and vice versa. It is important to make
the polling loop as quick as possible. No code should be
included in that loop unless it is absolutely necessary.
Especially if you are writing in a high level language and
especially if that language is interpretive, such as BA­
SIC, you may have speed problems when trying to emu­
late a terminal at higher baud rates, say over 240Q baud.
When writing in assembly language this is usually less
important and you will find that you can support
virtually any standard baud rate.

When emulating a half duplex terminal, any character
entered at the keyboard should be immediately written
back to the screen, thus providing the local echo. If
terminal emulation requirements stopped here, a termi­
nal emulator would be a very easy piece of. software to
write. Unfortunately, there are usually a few special
problems with the terminal emulator.

The first problem is handling the break key. Many
timesharing systems do not require break keys, but as
any member of the HP3000 audience knows, the break
key is a very crucial part of terminal handling on the
HP3000. Unfortunately, the break key is not a character
in the way any other keystroke on the terminal is. When
depressed, the break key actually changes the electrical
state of the transmit pin.

• Capability - sending a break. Most mi­
crocomputer communication ports have a mecha­
nism by which the output port can be put into a
break state. It almost always requires assembly
language programming to implement a break key
function. The actual reasoning behind break key
handling goes beyond the scope of this talk. Suffice
it to say that the preferred technique of break key
transmission is, when the break key ofa terminal is
sensed, to put the output port into the break state
until either 200 milliseconds have elapsed or a
character comes in on the remote port.

Thus, to properly handle the br~ak key our polling
loop now needs to be expanded to test to see if the value
entered from the keyboard is the break signal. When the
break signal is sensed, the polling loop should then, in­
stead of sending that character, invoke the send break
routine to send a break.

The second capability which makes the terminal
emulator more difficult relates to simultaneous printing
of the terminal interactions on a printer which is hooked
up to the microcomputer. The whole issue of printers,
and especially printers that might hold up communica­
tions flow, is dealt with in a subsequent section.

SENDING AND RECEIVING FILES
ProbablY the main, useful work we would like for a

6-40-12

communications program is to send files from our mi­
crocomputer to our HP3000 and receive files from the
HP3000 down to the microcomputer. At first glance this
may seem to be a rather simple operation. To send the
file we should simply read the file from the local storage
medium on the microcomputer and write it out the re­
mote port. To receive a file we should simply read from
the remote port and write to the diskette. If it were only
so simple . . . There are three issues which will signifi­
cantly complicate the issue of sending and receiving
files. They are:

1. The vast majority of computers need time for
themselves. What I mean by this statement is that at
various times in the life of a.computer it needs time to
handle data it has been sending or receiving. On an
HP3000, if you should try to type characters into it be­
fore it has put a prompt character up, you know that you
will lose those characters. On a microcomputer, if you
try to enter characters into most microcomputers while
it is reading and writing a diskette file, for example,
those characters will be lost. These phenomena reflect
the fact that most computers are not designed to be able
to handle communications of their terminal or remote
ports at any time they are activated. A newer line of
more commercially oriented microcomputers are begin­
ning now to feature interrupt systems that do have full
functioning typeahead systems which greatly ameliorate
these problems. However, these microcomputers are
definitely in the minority. Thus, our communications
program needs to somehow be able to allow each com­
puter to have time for itself when it needs it.

2. Communications lines tend to be rather noisy,
especially if we are using the telephone system to
tr~smit ·our data. Since file integrity is usually im­
portant, we need to come up with some kind of error
checking protocol which can detect errors in the trans­
mission of the data being sent or received. Interestingly
enough, most of the programs running now on mi­
crocomputers for sending and receiving data do not
handle error detection. The reason is that so far most
microcomputer users who are using communications
programs are doing so to make use of timesharing net­
works such as The Source for sending and receiving
programs. As more, real, data processing functions,
which might relate to shared databases or distributed
data entry, are being built, clear data transmission pro­
tocols will become very important.

3. Most systems have some kind of difficulty with
binary transmissions. This may not be a problem in ap­
plications. in which only textual data needs to be sent.
As time goes on, one finds the need to send "binary data,
for instance, to distribute object code of programs
through the communications program. Thus it becomes
desirable to be able to send binary files.

This is a summary of the problems - now let's take a
look at some of the possible solutions.

'-.

MESSAGE HANDLING
Message handling is the general title by which we

refer to the problem of the traffic control of the data
being passed back and forth between the micro and the
HP3000. The message handling protocol determines
when data can safely be sent or received so that we
never go faster than either of the machines can accom­
modate. The very first thing that becomes apparent
after some investigation and experimentation is that the
send and receive case are quite different from one
another with this pair of computers. This is unusual
when compared to communications software usually
existing between microcomputer and microcomputer.
In that case, the communications message handling is
usually symmetric; that is, whatever convention is used
to control data flow on the send side is also used sym­
metrically in the other direction to control it on the re­
ceive side. We have to do extra work on the HP3000
since none of it asynchronous communications protocol
was designed for access by an intelligent terminal, and it
ends up having some asymmetric properties which we
have to deal with.

First, let's consider the case of sending data from a
microcomputer to an HP3000. The first fact one must
always be aware of when trying to send data to an
HP3000 through its asynchronous communication port

. is that it can only read data from a device when a read is
up; that is, when a read has been issued from a program.
If you try to type ahead on an HP3000, the data is lost.
Fortunately, in the HP3000 communications software a
character is always sent whenever a read is put up. That
character is the Control-Q or the DCl character. Thus t

any device trying to send data to the HP3000 can simply
wait until it sees a DCI and then send its record of data
terminated by a carriage return. This type of data inter­
locking is the preferred method of sending data.to an
HP3000. For instance, this is the mechanism that
LINK-125 uses in its protocol. It simply invokes
FCOPY, and when FCOPY puts up its first read, it
hands a record of data to it, terminates it with a carriage
return, and proceeds with file transmission in that fash­
ion.

But this is not always good enough. Consider this
case: a message has been transfered to the HP3000, a
carriage return sent following it, the HP3000 has issued
another read, has sent the DCl back along the phone line
and suddenly there is a noise burst on the phone line.
The DCI coming back to the microcomputer is lost. The
microcomputer is waiting there to transmit its next rec­
ord of data with the DCI and then deadlocks because it
never sees the DCI. This type of deadlocking is charac­
teristic of trying to make too much out of a simple inter­
locking protocol. What we really find as more desirable
is to write a communications program on the HP3000
which talks to the program on the microcomputer. This
will allow the microcomputer program and the HP3000
program to issue reads with timeouts which would re-

-
quire that after a certain amount of time we give up on a
particular read because of lost protocol characters or a
dropped line. In the particular case of the missing DCI
- and this is only one of the pathological conditions
that can arise - the microcomputer program can sim­
ply, after a certain amount of time, send a message up
the line which says something like, "Hey, are you still
there?" to which the HP3000 program will response,
"Yes, I am still here and here is another DCl" or may
not respond at all if the machine has crashed or the line
has gone down. This concept of using programs on both
sides is really what differentiates very simple dumping
of files up and down the line from more sophisticated
communications protocols. I feel that this approach is
required for any serious use of communications, espe­
cially with any bulk of data transmission which we
would like to move reliably back and forth. Using this
"program-to-program" approach, we can also perform
some other more sophisticated error checking which we
will get into shortly.

As we leave the send case, note this important fact.
Make sure that after a record has been sent to the
HP3000 with its carriage return the very next piece of
work the microcomputer does is to tum around and wait
for the DCI before it does anything else. One might be
tempted to put up the next read to the diskette to pull
the next record off while waiting for the DCI. If your
microcomputer has the appropriate communications
typeahead software on its remote port, you might be
able to get away with this. However, in general the
micrcomputer needs to wait for that interlock character
to come back before it tries to do any other useful work.
Otherwise, ·you will start missing. DCls and your pro­
gram will get hung up ~

RECEIVING FILES
Just as we have done with the send case t let's exam­

ine the most trivial method of receiving files which
would not rely on a program being run on the HP3000
side. The basic fact of life when receiving files is that the
remote computer - the HP3000 - will be instructed to
start sending down a file; perhaps we use FCOPY or the
editor to start sending a file to us. The microcomputer is
going to periodically need to write out the buffer it is
accumulating to the disk drive. When it does this there
will usually be a second in which it can't receive any
data. The first approach is to just receive small files, in
which case the microcomputer never writes out its data
until it has collected the full file in memory. This of
course limits the size of the file you can receive to the
amount of available memory on the microcomputer,
usually somewhere between 10,000 and 40,000 bytes.
Obviously, this is an unsatisfactory method of receiving
files unless your application is very limited. The next
idea that comes to mind is making use of the X-on/X-off
characteristics of the HP3000 to control this flow. As a
human user, sometimes when a listing is coming out too
quickly onto the CRT, we stop the flow by typing the

6-40-13

X-off key which is a Control-S and most of the time the
HP3000 stops its transmission flow until you have done
what you wanted and then you hit a Control-Q and the
scrolling of the data output continues. Maybe we could
have the microcomputer perform this function for us as
a simple interlocking method.

The answer is that "Yes, we can," however, it is not
the preferred method of receiving files. The reason for
this is that, surprisingly, Control X-on/X-off protocol
seems to have some holes in it on the HP3000 side.
Someone told me that after some extensive testing they
found that one out of five X-off characters seems to
drop into a hole when sent to the HP3000. I have abso­
lutely no way of verifying this other than to tell you it
has happened a number of times to me. This doesn't
make the use of this mechanism impossible, it simply
complicates it somewhat. .

Using this technique then, what you need to do is:
1. Build a large receive buffer.

~. Start receiving data until the buffer gets to 80% or
90% full.. .

3..Send an X-off character to the HP3QOO but keep
receiving ~he characters onto your mi­
crocomputer.

4. After some predetermined timeout time - perhaps
a second of no characters coming in - assume it
has fmally absorbed the.X-off character, and then
you can proc~ed with your disk writes of the buf­
fer.

But, if 4 or 5 characters have passed without stop­
ping, send the X-off character again. Repeat these steps
until the data transmission actually stops.

Just like the send file case, I recommend the use of a
program on both sides. Using this technique we will
simulate the kind of data interlocking protocol that the
HP3000 uses. That is, every time the microcomputer is
ready to issue a read to the remote HP3000 it will issue a
character, perhaps for symmetry's sake a Control-Q, or
any character of your choice. When that character is
received by the program on the far side, that program
will then send down the next record of data to the mi­
crocomputer followed by some standard termination
character. After the message has been received, the mi­
crocomputer can set to work writing that message to the
disk or doing whatever other housekeeping it would like
to do. It then issues the next interlock character, and
proceeds. This protocol also allows for the kind of time­
out mechanisms that I described in the send case so that
you can recover from lost transmission and especially
lost protocol transmission. It will also easily accommo­
date the kind of error checking we will be talking about
in the next section.

As always, there is a complication and a warning.
Even in the case we have just described, we have not
really built a symmetric communications protocol to the
HP3000. The interlock character itself, which is going to
be sent to the HP3000, has to be read by an HP3000

6-40-14

read. Of course, that HP3000 read will have a DCI com­
ing right before it and any. attempt to write the protocol
character up the line before the HP3000 is able to read it
results in a lost protocol character. Thus, some real
world experimentation is usually needed in which some
delay is required after the record has been received
from the HP3000 so that it will have had time to finish
writing the record and then put up the read which will
read the next character interlock. It's for reasons like
these, incidentally, that interfacing microcomputers to
the HP3000 has not always been the simplest and the
least frustrating of tasks.

The other item of note is that on reading characters
into the microcomputer it 'is usually wise to strip out
occurrences of the protocol characters that have ac­
cumulated in the asynchronous communication chip.
These characters would'be the line feed character which
the HP3000 will usually tag onto the end of the carriage
return unless you turn that off, and also the DCl charac­
ter itself. Although these characters will be flying
around during the transmision of the data, you don't
want to include them into the data stream itself. They
should be filtered out of the actual data flow.

'ERROR HANDLING
Now that we have described the actual methods by

which data can be sent and received, let's go on to the
second defined problem in our data communications
task - error handling.

The fact is that there are very few asynchronous
communications. protocols which go to this level, and I
fmd this fact to be extremely regrettable. No serious
large-scale interface of microcomputers to any kind of
data processing network can be accomplished· without
real error checking. However, once we have built the
proper send and receive frameworks with the right
kinds of i~terlocking and assuming there is some in­
telligence and flexibility on both ends, it becomes rather
easy to add the error handling phase. What are some of
the usual techniques for adding error handling to the
send and receive cases that we've described?

The standard mechanism, of course, is to add to each
message sent or received some kind of check character
or checksum which is used to check out the validity of
the data. The simplest form of a checksum is an addition
of the various character values of the message. For in­
stance, if one record of data I am sending to the HP3000
is 40 characters long, the microcomputer can run
through those 40 characters, add up the ASCII value of
the 40 characters, and then produce a new character for
the string and tag it onto the beginning or the end of that
string. The HP3000 on the other end, when it has re­
ceived the data, will go through the very same operation
except that this time it will strip the character off and
compare it with its own calculation of that string and see
if they match.

There are some problems with the simple add-ern-up

checksum and there are many other sophisticated al­
gorithms around - I can refer you to literally any book
on communications for a description of CRC al­
gorithms. The problem with CRC algorithm is that it's
usually a fairly difficult algorithm to execute quickly
enough on a microcomputer unless you are programm­
ing in an assembler language. The algorithm I have
found to be very simple but very effective is an al­
gorithm which adds and shifts the bits as the characters
roll in. In this algorithm each character is added on to
the checksum and then the checksum is multiplied by 2
which shifts all the bits to the higher order by one bit.
Then it receives the next character and repeats the pro­
cess. This final 16-bit quantity is then tagged onto the
message.

You have to remember not to freely insert binary in­
tegers into the communications stream. Some adjust­
ment of the value must be done when we are sending it
to the HP3000 to make certain we are not sending a
character it Will have difficulty receiving.

Once a message has been sent to the other side with a
checksum on it, the other side has the opportunity to
examine that message and respond. The typical re­
sponse is for the receiver to send back some
predetermined character message which says· either: the
data was received successfully and you should proceed
to the next block; or, alternatively, the data was not
received correctly so retransmit the block just transmit­
ted. I usually include a third state in this message traffic
which indicates that something terrible has happened on
one end or the other and to abort the entire transmission
process altogether. You can include in this function the
ability for the user to hit some kind of escape key and
abort the communicatons traffic.

One other item I have found to increase reliability is
to add sequence numbers on each of the messages sent
or received. This would ensure that in some pathologi­
cal case we don't actually get the blocks out of order;
that is, in a case wher~ an entire block has dropped out
of the communications traffic. Although this is fairly
rare, there are actually certain conditions which can
cause something like that to happen. A sequence
number which is checked on both sides for each block
transmitted can protect against this possibility.

BINARY TRANSFERS
We have mentioned previously that it is generally un­

reliable to transmit 8-bit binary characters from a mi­
crocomputer up to an HP3000. What are the possible
ways around this problem? The standard way is to sim­
ply convert the 8-bit binary traffic into hexadecimal
strings, that is convert a binary character 255 into the
ASCII string FF, etc. Of course, you would probably
immediately see this means that there is a 50% reduc­
tion in communications efficiency. This technique is
usually simple to perform and it is useful when the bi­
nary traffic is somewhat limited. A technique that I
prefer is to translate seven 8-bit bytes into eight 7-bit

bytes. This is quickly accomplished by gathering the 8th
level bit of the 7 bytes input and building another byte
and tagging it onto the back end of each 7-byte block.
This effectively chops the 8th level off the communica­
tions stream at transmission time and is then reassem­
bled on the far side. If this technique is used on the
entire message, including checksums, sequence num- .
bers or any kind of message identifier on the block, the
whole communications interface becomes considerably
simpler.

USING PRINTERS
It is often desirable in a communications protocol to

log the data to the printer. For instance, on receiving a '
file to a microcomputer you may want to get a listing of
it. Alternatively, you may· wish, during terminal emula­
tion, to get a copy of that session onto a hardcopy
printer..

Like everything else mentioned in this talk, there are
hidden catches. It seems simple enough to be able to put
in a switch in the software - for instance, in the polling
loop of the terminal emulator - that when a character
has been sent or received, it should be sent to the printer
port. However, many printers don't print at the com-'
munications speed. We will therefore distinguish be­
tween a fast printer and a slow printer. In this context,
fast and slow do not have any absolute meaning to

.them. Fast means that the printer operates faster than
the current communications context, and slow means
that the printer operates slower than the current com­
munications context. For example, in a 300-baud
environment most printers (for example, an Epson mat­
rix printer or a TI-810) will be fast printers. However, at
1200 baud most of the inexpensive matrix printers are
slow printers, that is, they cannot keep up with the
1200-baud stream. Surprisingly, even printers such as
the TI-810 which are rated at from 120 to 150 characters
per second often cannot keep up with the 1200-baud
flow of data. Therefore, the determination of whether a

. printer is a fast or slow printer can only be done by
running a series of tests.

As you might now be able to suspect, there is very
little difficulty with a true, fast printer in our communi­
cations program. Any characer we wish to print we
simply output to the printer port. However, on a slow
printer we have to do more resource balancing in that
there is now another resource in the communications
environment which needs time of its own. Adding a
slow printer to a communications program can easily
double the complexity of the communications environ­
ment.

At this point let me summarize a few of the major
elements of printer integration: .

• If the communications program has been im­
plemented, as I have been suggesting, with a pair of
programs on either end which have an interlocking
mechanism, the simplest approach of integrating a slow

6-40-15

printer is to print out the block of data during the time
that the program is performing activities such as writing
to the diskette or reading from the diskette. That is,
after the message has been sent or received and before
the interlock causes the pair ofprograms to proceed, the
buffer of data sent or received can be put to the printer.
An unfortuante side effect of thiS approach is that the
printer is only printing between records. This does not
take advantage of the fact that there may be sufficient
time during the actual communications transmission to
have the printer doing soine useful work.

• Improvement on this scheme requires a new capa-
bility:

Capability - Printer Ready - The printer ready
capability says that our communications software
can sense when the printer is available; that is,
when a character can be written to the printer in
such a way that the, printer buffer will absorb the
character instantly.

With a printer-ready capability in our software, we
can build a more sophisticated operating environment in
which we have, in effect, a small spooler being oper-·
ated. That is, any data which has been successfully sent
or received and is ready to print can be added to a print
buffer. This buffer is metered out to the printer when
the printer is ready. It is important that the remote
communications facility always have top priority. The
other mechanism that needs to be in effect in this type of
environment is that as the printer buffer gets close to
being full, a flag will go up which will hold'the interlock
the next time around until the print buffer has been
totally cleared. Although this mechanism sounds
somewhat obtuse, it actually provides a very effective
method of integrating a slow printer into a communica-
tions environment. '

• Integrating a slow printer into the terminal
emulator mode can be accomplished by using the
X-on/X-off character techniques I described in the re­
ceive section. That is, if printing is active, a mechanism
will go into effect, during terminal emulation mode, such
that the microcomputer dispatches X-on/X-off to con­
trol the characters coming from the remote computer
into the microcomputer.

BIDIRECTIONAL CONTROL
The last major capability we will discuss in our com­

munications program is the ability for the remote com­
puter to assume control of the communications pro­
gram. This can be very desirable in applications in
which an operator may activate a communications pro­
gram and get online with an HP3000 and perhaps start a
DDC. At that point the UDC might take over all control
of the microcomputer through the communications pro­
gram such that it can request files to be sent and re­
ceived. The following are a couple of points concerning
bidirectional control:

• The basic concept in bidirectional control. is that
the remote computer can have some escape character

6-40-16

which it can send to the microcomputer during terminal
emulation that will cause the remote computer to as­
sume command of the microcomputer. Commands can
then be dispatched by the remote computer directly to
the microcomputer. Be sure that all of the issues
previously mentioned about interlocking and protocol
are also supported by any direct interaction between the
remote computer and the microcomputer.

• It is very useful to be able to have a capability
whereby the remote computer can ask for directory list­
ings directly from the microcomputer. This gives the
remote computer a list of what files may need to be sent
or received.

• You may wish to give the remote program the abil­
ity to actually terminate the communications session
itself and to remove the user from the terminal emulator
mechanism.

IMPLEMENTATIONS
The best thing you can do with communications

software is to buy it rather than develop it. Unfortu­
nately, this assumes that someone has developed the
type of software running on the type of machine you
desire. As we've indicated during the course of this talk,
remote communications software tends. to be more
hardware dependent than almost any other software
running on your computer. Not only is it hardware de­
pendent, it is also operating system dependent. Thus, on
a single machine - for instance, the Apple which can

. run the Apple DOS, the PASCAL operating system, and
CPM. (if the CPM card is added) - each of these three
operating systems has a different file system and each
has different requirements for its communications pro­
gram. This means that no one program will solve all of
your problems.

Let's consider some of the available implementations.
Under CPM, there are a couple of programs fairly well
known in the CPM community for doing file-to-file
transfers. They are a program called CROSSTALK and
a program called COMMX. Both of them are available
through the major CPM software distributors. Both of
the programs feature a non-protocol mode and a pro­
tocol mode. In the non-protocol mode you can easily
make the software talk to your HP3000 by setting the
DCI character to the interlock character. Unfortunately,
on both of these programs the protocol mode which
includes the checksumming algorithms is only usable
when the program is talking to another CPM program of
its own type. Clearly, these programs are written for
CPM systems to talk to other CPM systems, not to
another computer system. This means that if you do
wish to tum one of these systems into a protocol
checked operating environment, you need to do a little
extra work on it. If you have an HP125 you can acquire
LINK-125 which does a good, but not error-checked,
link with the HP3000. .

None of the programs I have s~en feature bidirec­
tional control which would allow, as I have described in

the talk, the remote computer to assume the control of
the microcomputer.

If you are running some variant of the UCSD PAS­
CAL or UCSD p-System operating environment, then,
with all due modesty, there is no better communications
software available than that provided by our own com­
pany. It incorporates in a table-driven fashion, ready­
to-run for the HP3000, all of the capabilities described in
this talk, that is: full error-checked protocol, the ability
to support fast and slow printers, full bidirectional con­
trol, and blank compression of the data. All of the
.software for communicating with an HP3000 has been
worked out in great detail. Incidentally, we also support
protocol-oriented communication for other p-Systems
- that is, for p-System to p-System communication ­
as well as communication with the IBM 370 interactive
operating system such as CMS, CSS, or TSO, and
DEC-10, -11, and -20 support.

Something new is that the software distributors for
the UCSD p-System now have a CPM file compatibility

mode which, when available, will mean that we can also
use our communications software to send and receive
CPM files as well.

CONCLUSION
If there is any theme for a discussion of communica­

tions software, it is t(There is More Than Meets the
Eye." As I have repeatedly stressed, the very best way
of solving your communication problems is finding
someone else who has already solved them and acquire
the software from them. This is my very strong recom­
mendation when attempting to establish a remote com­
munications network for your system.

I would also refer to the other talk I am giving at this
meeting which 'encompasses distributed processing ap­
plications using micrQcomputers. It is entitled.
"Microcomputer-based Transaction Processing with
Your HP3000" and it goes' into some detail about the
state of the art in microcomputer software for distrib­
uted processing.

6-40-17

r
/

~'''--.'

.~.

.._--~-~:::--

Programming for Device Independence
John Hulme

Applied Cybernetics, Inc.
Los Gatos, California

INTRODUCTION
The purpose of this presentation is to discuss tech­

niques and facilities which:
1. Isolate the programmer from specific hardware

considerations
2. Provide for data and device independence
3. Allow the programmer to deal with a logical rather

than a physical view of data and devices
4. Allow computer resources to be reconfigured, re­

placed, rearranged, reorganized, restructured or
otherwise optimized either automatically by sys­
tem utilities or explicitly by a system manager or
databse administrator, without the need to rewrite
programs.

The evolutionary development of these techniques
will be reviewed from a historical perspective, and the
specific principles identified will be applied to the prob­
lem of producing formatted screen applications which
will run on any type of CRT.

WHAT IS A COMPUTER?
As you already know, a computer consists of one or

more electronic and/or.electromechnical devices, each
capable of executing a limited set of explicit commands.
For each type of device some means is provided to
allow the device to receive electrical impulses indicat­
ing the sequence of commands it is to execute. In addi­
tion to commands, most of these devices can receive
electrical impulses representing bits of information
(commonly called data) which the device is to process
in some way. Nearly all of th~se devices also produce
electr~cal impulses as output, which may in turn be re­
ceived as commands and/or data by other devices in the
system.

Nowadays, most devices also have some form of
"memory" or storage media where commands or other
data can be recorded, either temporarily or semi­
permanently, and a means by which that data can later
be received in the form of electrical impulses.

The tangible, visible, material components which
these devices are physically made up of is generally
called computer hardware. Any systematic set of in­
structions describing a useful sequence of commands
for the computer to execute can be called computer
software. As we will see later, software can be further
subdivided into system software, which is essentially an

extension of the capabilities of the hardware, and appli­
cation programs, which instruct the computer how to
solve specific problems, handle day-to-day applica­
tions, and produce specific results.

Originally it was necessary for a computer operator to
directly input the precise sequence of electrical signals
by setting a series of switches and turning on the cur­
rent. This process was repeated over and over until the
desired sequence of instructions had been executed.

By comparison with today's methods of operating
computers, those earlier methods can truly be called
archaic. Yet the progressive advancement of computer
systems from that day to this, however spectacular, is
nothing more than a step-by-step development of
hardware and software building blocks, an evolutionary
process occurring almost entirely during the past 25
years.

ENGINEERING AND AUTOMATION
I think we mostly take for granted the tremendous

computing power that is at our fmgertips today. How
many of us, before running a program on the computer,
sit down and think about the details of hardware and
software that make it all possible? For that matter, who
stops to figure out where the electrical power is coming
from before turning on a light or using a household
appliance? Before driving a car or riding in an airplane,
who stops to analyze how it is put together?

Probably none of us do, and that is exactly what the
design engineers intended. You see, it is the function of
product engineering to build products which people will
buy and use, which usually means building products
which are easy to use. The fact that we don't have to
think about how something works is a measure of how
simple it is to use.

Wherever a process can be automated and incorpo­
rated into the product, there is that much less that the
consumer has to do himself. Instead of cranking the
engine of a car, we just tum a key. Instead of walking up
30 flights of stairs, we just push a button in the elevator.

It's not that we are interested in being lazy. We are
interested in labor-saving devices because we can no
longer afford to waste the time; we have to meet dead­
lines; we want to be more efficient; we want to cut
costs; we want to increase productivity. We also want
to reduce the chance for human error. By automating a

6-69-1

complicated process, we produce consistent results,
and when those results are thoroughly debugged, error
is virtually eliminated. We can rely on those consistent
results, which sometimes have to be executed with split
second timing and absolute accuracy. Without reliable
results there might be significant economic loss or
danger to life and limb. Imagine trying to fly modem
aircraft without automated procedures.

Automation also facilitates standardization, which al­
lows interchangeability of individual components. This
leads to functional specialization of components, which
in tum leads to specialization of personnel, with the
attendant savings in training and maintenance costs.
And because the engineering problem only has to be
solved once, with the benefits to be realized every time
the device is used, more time can profitably be spent
coming up with the optimum design.

BUILDING BLOCKS
In my opinion, the overwhelming advantage of au­

tomating a complicated process is that the process can
thereafter be treated as a single unit, a "black box," if
you will, in constructing solutions to even more compli­
cated processes.

Later, someone could devise a better version of the
black box, and as long as the functional parameters re­
main the same, the component could be integrated into
the total system at any time in place of the original
without destroying the integrity of any other compo­
nents.

It is this "building-block" approach which has permit­
ted such remarkable progress in the development of
computer hardware and software. As we review the
evolution of these hardware/software building blocks,
keep in mind that the chronological sequence of these
developments undoubtedly varied from vendor to ven­
dor as a function of how each perceived the market
demand and how their respective engineering efforts
progressed. .

ONE STEP AT A TIME
·Even before the advent of electronic computers, var­

ious mechanical and electro-mechanical devices had
been produced, some utilizing punched card input. Be­
sides providing an effective means of input, punched
cards and paper tape represent a rudimentary storage
medium. Incorporating paper tape and card readers
into early computer systems not only allowed the user
to input programs and data more quickly, more easily,
and more accurately (compared with flipping switches
manually), but on top of that it allowed him to enter the
same programs and data time after time with hardly
more effort than entering it once.

The next useful development was the "stored pro­
gram" concept. Instead of re-entering the program with
each new set of data, the program could be read in once,
stored in memory, and used over and over.

6-69-2

This concept is an essential feature of all real com­
puters, but it would have been practically worthless ex­
cept for one other essential feature of computers known
as internal logic. We take these two features so much
for granted that it's hard to imagine a computer without
them. In fact, without internal logic, computers really
wouldn't be much good for anything, since they would
only be able to execute a program in sequential order
beginning with the first instruction and ending with the
nth. Internal logic is based on special hardware com­
mands which provide the ability frrst of all to test for
various conditions and secondly to specify which com­
mand will be executed next, depending on the results of
the test. In modem computer languages, internal logic is
manifest in such constructs as IF statements, GO TO
statements, FOR loops, and subroutine calls.

But at the stage we are discussing there were no mod­
em programming languages, just the language of elec­
trical signals. These came to be represented as numbers
(even letters and other symbols were given a numeric
equivalent) and programs consisted of a long list of
numbers.

Suppose, for example, that the numbers 17, 11, and 14
represented hardware commands for reading a number,
adding another number to it, and storing the result, re­
spectively, and suppose further tbat variables A through
Z were stored in memory locations 1 through 26. Then
the program steps to accomplish the statement "give Z a
value equal to the sum of X and Y" might be expressed
as the following series of numbers, which we will call
machine instructions:

-17,24,11,25, 14,26
In essence, the programmer was expected to learn the

language of the computer.
A slight improvement was realized when someone

thought to devise a meaningful mnemonic for each
hardware command and to have the programmer write
programs using the easier-to-remember mnemonics, as
follows:

READ, 24, ADD, 25, STORE, 26
or perhaps even
READ, X, ADD, Y, STORE, Z.

After the programmer had described the logic in this
way, any program could be readily converted to the
numeric form by a competent secretary. But since the
conversion was relatively straightforward, it would be
automated, saving the secretary some very boring
work. A special computer program was written, known
as a translator. The mnemonic form, or source program
as it was known, was submitted as input data to the
translator, which substituted for each mnemonic the
equivalent hardware command or memory location,
thus producing machine instructions, also known as ob-
ject code. Translators required two phases of execu­
tion, or two passes, one to process the source program
and a second to execute the resulting object code. Once
the program functioned properly, of course, it could be

executed repeatedly without the translation phase.
It would have been possible for the hardware en­

gineers to keep designing more and more complicated
hardware commands, and to some extent this has been
done, either by combining existing circuitry or by de­
signing new circuits to implement some new elemental
command. Each new machine produced in this way
would thus be more powerful than the last, but it would
have been economically prohibitive to continue this
type of development for very long and the resulting ma­
chines would have been too large to 1:?e practical any­
way.

E.ngineers quickly recognized that instead of creating
a more powerful command by combining the circuitry
of existing commands, the equivalent result could be
achieved by combining the appropriate collection of
commands in a miniature program. This mini-program
could then be repeated as needed within an application
program in place of the more complex command. Or
better yet, it could be kept at a fIXed location in memory
and be accessed as a subroutine just the same as if it
were actually a part of each program.

Another approach was to use an interpreter, a special
purpose computer program similar to a translator. The
interpreter would accept a source program in much the
same way as the translator did, but instead of convert­
ing the whole thing to an Qbject program, it would cause
each hardware command to be executed as soon as it
had been decoded.

Besides requiring only one pass, interpreters had the
added advantage of only having to decode the com­
mands that were actually used, though this might also
be a disadvantage, since a command used more than
once would also have to be decoded more than once.

The chief benefit of an interpreter lay in its ability to
accept mnemonics for commands more complex than
those actually available in the hardware, and to simulate
the execution of those complex commands through the
use of subroutines. In this way, new commands could
be implemented without any hardware modifications
merely by including the appropriate subroutines in the
interpreter. This step marked the beginning of system
software.

In addition, source programs for nearly any computer
could be interpreted on nearly any other computer, as
long as someone had taken the time to write the neces­
sary interpreter. Interpreters could even be written for
fictional computers or computers that had been de­
signed but not yet manufactured. This technique,
though generally regarded as very inefficient, provided
the first means of making a program transportable from
one computer to another incompatible computer.

It is possible, of course, to apply this technique to
translators as well, allowing a given mnemonic to repre­
sent a whole series of commands or a subroutine call
rather than a single hardware instruction. Such
mnemonics, sometimes called macros, gave users the

impression that the hardware contained a much broader
repertoire of commands than was actually the case.

Implementing a new feature in software is theoreti­
cally equivalent to implementing the same function in
hardware. The choice is strictly an economic one and as
conditions change so might the choices. One factor is
the universality or frequency with which the feature is
likely to be used. Putting it in hardware generally pro­
vides more efficient execution, but putting it in the
software is considerably easier and provides much
greater flexibility.

The practice of restricting hardware implementation
to the bare essentials also facilitated hardware stan­
dardization and compatibility, which was crucial to the
commercial user who wanted to minimize the impact on
all his programs ifhe should fmd it necessary to convert
to a machine with greater capacity. Beginning with the
IBM 360 series in 1964 IIfamilies" of compatible
hardware emerged, including the RCA Spectra 70 seri­
es, NCR Century series, and Honeywell 200 series,.
among others.

Each family of machines had its own operating sys- .
tem, software monitor, or executive system overseeing
the operation of every other program running on the
machine. In some systems, concurrent users were al­
lowed, utilizing such techniques as memory partition­
ing, time-sharing, multi-threading, and memory­
swapping. Some form of job control language was de­
vised for each operating system to allow the person
submitting the jobs to communicate with the monitor
about the jobs to be executed.

Introducing families of hardware did not solve the
problem of compatibility between one vendor and the
next, however, a problem which could only be solved
by developing programming languages which were truly
independent of any particular piece of hardware.

Since the inventors of these so-called higher-level
languages were not bound by any hardware con­
straints, an effort was made to make the languages as
natural as possible. FORTRAN imitate the language of
mathematical formulas, while ALGOL claimed to be
the ideal language for describing algorithmic logic;
COBOL provided an English-like syntax, and so on.

Instead of having to learn the computer's language, a
programmer could now deal with computers that under­
stood his language. Actually, it was not the hardware
which could understand his language, but a more
sophisticated type of translator-interpreter known as a
compiler.

To the degree that a particular language enjoyed
enough popular support to convince multiple vendors to
implement it, programs written in that language could
be transported among those machines· for which the
corresponding compiler was available.

The term compiler may have been coined to indicate
that program units were collected from variou's sources
besides the source program itself, and were compiled

6-69-3

into a single functioning module. Subroutines to per­
form a complex calculation such as a square root, for
example, might be inserted by the compiler whenever
one or more square root operations had been specified
in the body of the source program.

Embedding subroutines in the object code was not
the only solution, however. It became more and more
common to have the generated object programs merely
"CALL" on subroutines which were external to the
object progr~, having been pre-compiled and stored in
vendor-supplied Itsubroutine libraries." This concept
was later extended to allow users a means of placing ,
their own separately-compiled modules in the library
and accessing them wherever needed in ~ program.

I should mention that an important objective of any
higher level language should be to enable a user to de­
scribe the problem he is solving as clearly and concisely
as possible. Although the emphais is ostensibly on mak­
ing the program easy to write, being able to understand
the program once it has been written may be an even
greater benefit, particularly when program maintenance
is likely to be performed by someone other tha,:l the
original author.

It is well-known that program maintenance occupies
a great deal of the available time in the typical data
processing shop. Some studies estimate the figure at
over 50% and increasing. In order to be responsive to
changing us~r requirements, it is essential to develop
m~thods which facilitate rapid and even frequent pro­
gram changes without jeopardizing the integrity of the
system,and without tying up the whole DP staff.

To avoid having to re-debug the logic every time a
change is made, it is often possible to use data-driven or
table-driven programming techniques. The portion of
the program which is likely to change, and which does
not really affect the overall procedural logic of the pro­
gram, is built into tables or special data files. These are
accessed by the procedural code to determine the effec­
tive instructions to execute.

The most common example in the United States, and
perhaps in other countries as well, is probably the table
of income tax rates, which changes by law now at least
once a year. The algorithm to compute the taxes
changes very rarely, if at all, so it does not have to be
debugged eac~ time the tables change. In simple cases
like this, non-programmer clerks might safely be permit­
ted to revise the table entries.

In more sophisticated applications, tables of data
called logic tables may more directly determine the
logic flow within a program. The program becomes a
kind of interpreter, and elements in the logic table may
be regarded as instructions in some esoteric machine
language. Such programs are generally more difficult to
thoroughly debug, but once debugged provide solutions
to a broad class of problems without ever having to
revise the procedural portion of the program.

Sometimes, logic-controlling information is neither

6-69-4

compiled into the program nor stored in tables, but is
provided to the program when it is first initiated or even
during the course of execution, in the form of run-time
parameters or user responses. The program has to be
pre-programmed to handle every valid parameter, of
course, and to gracefully reject the iDvalid ones, but this
method is useful for cutting down the number of sepa­
rate programs that have to be written, debugged, and
maintained. For example, why write eight slightly dif­
ferent inventory print programs, if a single program
could handle eight separate formats through the use of
run-time options?

Incidentally, program recompilations need not always
cause alarm. Through the proper use of COpy code,
programs can be modified, recompiled, and produce the
new results without the original source program ever
having to be revised. This is made possible by a facility
which allows the source program to contain references
to named program elements stored in a COpy library
instead of having those elements actually duplicated
within the program. A COpy statement is in effect a
kind of macro which the compiler expands at the time it
reads in the source program.

For example, if a record description or a table of val­
ues appears in one program, it is likely to appear in
other programs as well. It is faster, easier, safer, and
more concise to say "COpy RECORD-A." or "COpy
TABLEXYZ." than to re-enter the same information
again and again. And if for some reason the record lay­
out or table of values should have to be changed, merely
change it in the COpy library, not in every program.

By changing the contents of a COpy member in this
way and subsequently recompiling selected programs in
which the member is referenced, those programs can be
updated without any need to modify the source. If pro­
cedure code is involved, the new COpy code only need
be debugged and retested once rather than revalidating
all the individual programs.

Where blocks of procedural code appearing in many
progr~ms can be isolated and separately compiled,
however, this would probably be better than using
COpy code. For one thing, the separate modules would
not have to be recompiled every time the procedural
code was revised.

BITE-SIZE PIECES
Breaking a complex problem into manageable inde­

pendent pieces and dealing with them as separate prob­
lems is a valuable strategy in any problem-solving situa­
tion. Such a strategy has added benefits in ,a program­
ming environment:

1. Smaller modules are typically easier to under­
stand, debug, ~d optimize.

2. Smaller modules are usually easier to rewrite or
replace if necessary.

3. Independent functions which are useful to one ap­
plication are often useful to another application;

using an existing module for additional applica­
tions cuts down on programming, debugging, and
compilation time.

4. Allowing applications to share a module reduces
memory requirements.

5. Having only one copy of a module ensures that the
module can be replaced with a new version from
time to time without having to worry that an un­
discovered copy of an older version might still be
lurking around somewhere in the system.

The fact that a routine only has to be coded once
usually more than compensates for the extra effort that
may have to go into generalizing the routine. The more
often it's used, the more time you can afford to spend
improving it.

SYSTEM SOFfWARE
Functions which are so general as to be of value to

every user of the computer, such as 1/0 routines, sort
utilities, rue systems, and a whole host of other utilities,
are usually included in the system software supplied by
the hardware vendor. Just what facilities are provided,
how sophisticated those facilities are, and whether the
vendor Charges anything extra for them, is a matter of
perceived user need and marketing strategy. Sometimes
vendors choose to provide text editors and other devel­
opment tools, and sometimes they don't. So'metimes
they provide a very powerful database management
system, sometime only rudimentary rue access com-
mands. And so on. .

When hardware vendors fail to provide some needed
piece of software, it may be worthwhile for the user to
write it himself. If the need is general enough, software
vendors may rush in to ftll the void; or perhaps user
pressure will eventually convince hardware vendors to
implement it themselves.

In this way, many alternative products may become
available, and the user will have to evaluae which ap­
proach he wishes to take advantage of, based on such
factors as cost, efficiency, other performance criteria,
flexibility of operation, compatibility with existing
software, and the comparative benefits of using each
product.

PRINCIPLES OF GOOD SYSTEM DESIGN

In case you may need to design your own supporting
software, or evaluate some that is commercially avail­
able, let's summarize the techniques which will permit
you to achieve the greatest degree of data, program, and
device independence. I have already given illustrations
of most of the following principles:

1. Modularity - Conceptually break everything up
into the smallest modules you feel comfortable dealing
with.

2. Factoring - Whenever a functional unit appears
in more than one location, investigate whether it is feas­
ible to "factor it out" as a separate module (this is

analogous to rewriting A*B+A*C+A*D as
A*(B+C+D) in math).

3. Critical Sections - Refrain from separating mod­
ules which are intricately interconnected or subdividing
existing modules which are logically intact.

4. Independence - Strive to make every module
self-contained and independent of every external factor
except as represented by predefmed parameters.

5. Interfacing ~ Keep to a minimum the amount of
communication required between modules; provide a
consistent method of passing parameters; make the
interface sufficiently general to allow for later exten­
sions.

6. Isolation - Isolate all but the lowest-level mod­
ules from all hardware considerations and physical data
characteristics.

7. Testing - Test each individual module by itself as
soon as it is completed and as it is integrated with other
modules.

8. Generalization - Produce modules which solve
the problem in a general way instead of dealing with
specific cases. Be careful, however, not to over­
generalize. Trying to make a new technology fit the
mold of an existing one may seem like the best modular
approach, and the easiest to implement, but the very
features for which the new technology has been intro­
duced must not become lost in the process.

EXAMPLE - When CRTs were fIrst attached to
computers they were treated as teletypes, a class of110
devices incompatible with two of the CRT's most useful
features: cursor-addressing and the ability to type over
existing characters. Putting the CRT in block-mode and
treating it as a fixed-length file represents the opposite
extreme: the interactive capalities are suppressed and
the CRT becomes little more than a batch input device,
a super-card-reader in effect.

9. Standardization - Develop a set of sound prog­
ramming standards including structured programming
methods, and insist that each module be coded in strict
compliance with those standards.

10. Evaluation - Once the functional characteristics
have been achieved, use available performance meas­
urement methods to determine the areas which most
need to be further optimized.

11. Piecewise Refinement - Continue to make im­
provements, one module at a time, concentrating on
those with the largest potential for improving system
performance, user acceptance, andlor functional
capabilities.

12. Binding - For greater flexibility and indepen­
dence, postpone binding of variables; for greater effi­
ciency ofexecution, do the opposite; pre-bind constants
at the earliest possible stage.

BINDING
As the name suggests, "binding" is the process of

tying together all the various elements which make up

6-69-5

an executing program. Binding occurs in several differ­
ent stages ultimately making procedures and data ac­
cessible to one another.

For example, the various statements in an application
program are bound together in an object module when
the source program is compiled. Similarly, the various
data items comprising an IMAGE database become
bound into a fixed structure when the root file is
created. A third case of binding involves the passing of
parameters between separately compiled modules.

Remember that at the hardware level, where every­
thing is actually accomplished, individual instructions
refer to data elements and to other instructions by their
location in meory. The "address" of these elements
must either be built into the object code at the time a
program is compiled, be placed there sometime prior to
execution, or be provided during execution. Likewise,
information governing the flow of logic can be built into
the program originally, placed in a flle which the pro­
gram accesses, passed as a parameter when the program
is initiated, or provided through user interaction during
execution.

Binding sets in concrete a particular choice ofoptions
to the exclusion of all other alternatives. Delayed bind­
ing therefore provides more flexibility, while early bind­
ing provides greater efficiency. Binding during execu­
tion time can be especially powerful but at the same
time potentially critical to system performance. In gen­
eral, variables should be bound as early as possible un­
less you specifically plan to take advantage of leaving
them unbound, in which case you should delay binding
as long as it proves beneficial and can still be afforded.
Incidentally, on the HP3000, address resolution be­
tween separately-compiled modules will occur during
program preparation (PREP) except for routines in the
segmented library, which will be resolved in connection
with program initiation. If your program pauses initially
each time you run it, this run-time binding is the proba­
ble cause.

A SPECIFIC APPLICATION

About five years ago, we were faced with the problem
of developing a system of about 300 on-line application
programs for a client with no previous computer experi­
ence. Their objective was to completely automate all
record-keeping, paper-flow, analysis, and decision mak­
ing, from sal~s and engineering to inventory and man­
ufacturing to payroll and accounting. The client had' or­
dered an HP3000 with 256K bytes of memory and had
already purchased about 20 Lear-Sigler ADM-l CRTs.
About 12 terminals were to be in use during normal
business hours for continuous interactive data entry;
the remaining eight terminals were primarily intended
for inquiry and remote reporting. Up-to-date informa­
tion had to be on-line at all times using formatted sc­
reens at every work station. Operator satisfaction was
also a high priority, with two- to five-second response
time considered intolerable.

6-69-6

DISCUSSION QUESTIONS
Based on the "principles of good system design"

summarized earlier, what recommendations would you
have made to the development team?

At the time, HP's Data Entry Language (DEL)
seemed to be the only formatted screen handler avail­
able on the HP3000. Consultation with DEL users con­
vinced us it was rather awkward to use and exhibited
very poor response time. Also it did not support
non-HP character-mode terminals.

We elected to write a simple character-mode terminal
interface, which was soon expanded to provide internal
editing of data fields, and later enhanced to handle
background forms. We presently market this product
under the name TERMINAL/3000. You've probably
heard of it.

The comP8:Ct SPL routines reside in the system SL
and are shared by all programs. The subroutine which
interfaces directly with the terminals is table-driven to
ensure device-independence. By implementing
additional tables of escape sequences, we have added
support for more than a dozen different types of termi­
nals besides the original ADM-I's. .

Ifwe were faced with a similar task today, would your
recommendations be any different?

After completing most of the project, we did what
. should have been done much earlier: we implemented a

CRT forms editor and COBOL program generator
which together automate the process of writing
formatted-screen data entry programs utilizing
TERMINAL/3060. We call this approach "results­
oriented systems development"; the package is called
ADEPr/3000. Programs which previously took a week
to develop can now be produced in only half a day.

Since we were using computers to eliminate
monotonous tasks and improve productivity for oUf
clients, it was only natural that we should consider
using computers to reduce monotony and increase
productivity in our own business, the business of writ­
ing application programs. If you write application pro­
grams or manage people who do, you also may wish to
take advantage of this approach.

What features ofVIEW/3000 would have made it un-
suitable for this particular situation?

• not available five years ago
• HP2640 series of terminals only
• block-mode only (not interactive field-by-field)
• requires huge buffers (not enough memory avail­

able)
• response time and overall system performance in­

adequate

From what you know of TERMINAL/3000 and
ADEPT/3000, how do these products enable a pro­
grammer to conform to the principles of good system
design?

TERMINAL/3000 itself: modular, well-factored,
single critical section, device-independent, independent
of external formats, simple I-parameter interface,
table-driven hardware isolation, well-tested,
generalized, optimized for efficiency, run-time binding
of cursor-positioning and edit characteristics.

ADEPr/3000: produces COBOL source programs
that are modular, well-segmented, device-independent,
and contain pre-debugged logic conforming to user­
tailored programming standards; built-in interfaces to
TERMINAL/3000 and IMAGE/3000 (or KSAM/3000)
isolate the programs from hardware considerations and

provide device and data independence.

BmLIOGRAPHY
Boyes, Rodney L., Introduction to Electronic Computing: A Man­

agement Approach (New York: John Wiley and Sons, Inc., 1971).
Hellerman, Herbert,Digital Computer System Principles (New York:

McGraw-Hill Book Co., Inc., 1967).
Knuth, Donald E., The Art of Computer Programming (Reading,

Mass.: Addison-Wesley Publishing Company, 1968).
Swallow, Kenneth P., Elements of Computer Programming (New

York: Holt, Rinhart and Winston, Inc., 1965).
Weiss, Eric A. (ed.), Computer Usage Fundamentals "(New York:

McGraw-Hill Book Co., Inc., 1969).

6-69-7

Selecting Application Software
and Software Suppliers

Steven J. Dennis
Smith, Dennis & Gaylord

~.
\

We begin by looking at some of the data regarding the
assumptions that have evolved regarding standard
software packages and the software package industry.

THE MYTHS
Following are some of the myths - beliefs ("beliefs"

are assumptions which mayor may not reflect reality)
- which have evolved over the past decade or so of
application packages evolution:

• Myth: We can safely go ahead with our hardware
purchase since there MUST be plenty of good software
systems available.

• Fact: There are surprisingly few firms nationally
that have developed truly viable packages. And fewer
still that will be able to meet YOUR requirements.

In fact of the literally, tens of thousands of software
firms, barely a dozen have sales of more than
$10,000,000 annually. And of these, the largest barely
tops $35 million ... hardly international giants!

• Myth: Since all packages are essentially the same,
we will budget for the low priced one . . . that will help
keep the costs low.

• Fact: Costs certainly aren't the most accurate in­
dicator of how good the software is ... but you don't
typically put retread tires on a brand-new Mercedes.
Quality software - a system which has the quality you
would expect help manage your organization effectively
- is going to be a little higher priced.

There are lots of factors which go into software price
- and probably only about 25% of them have anything
to do with writing the programs (more on this in Part
III).

• Myth: One great thing about a package is that we
can install quickly . . . get it running in a month . . .
maybe get several packages running in a month or
so....

• Fact.· For one thing, remember that quality
software rums are busy too . . . their schedules may not
fit exactly with yours.

For another YOU have to learn the package BE­
FORE your users do. You should run parallel (or at

This paper is an excerpt from the book A Success Plan . .. for
Software/Implementation by Steven J. Dennis and Barry Barnes.
Published by Barry Barnes & Company, 1982.

least develop a good test case). Your objective should
NOT be just to see if the package works - but does it
work for YOU.

Take your time ... do it right! After all, your organi­
zation will probably spend many months deciding on
the right hardware - surely you can allow an extra
month or two to make sure the software is operating
properly.

• Myth: Our organization can't be TOO different
from everyone else - we should be able to fit into a
STANDARD General Ledger ... STANDARD Ac­
counts Receivable ... a STANDARD Order Manage­
ment System . . . a STANDARD . . .

• Fact: Data Processing should work for YOU ...
not the other around. Companies ARE different.
Packages ARE different. Approaches ARE different.
Features ARE different . . . and some are critical. A
large multi-national firm doesn't just go changing its
chart of accounts because THAT'S THE WAY THE
SYSTEM WORKS!!!!!!!!

• Myth: Most applications are easy, straight-forward
systems.

• Fact: Anyone who feels this way needs to design
and implement from scratch just ONE Payroll system
. . . just one INTEGRATED General Ledger to realize
that there are NO easy applications.

If you find yourself saying to the software or
hardware firms you are talking to, "We just need a stan­
dard AlP system. . ." catch yourself and re-think. You
may be identifying yourself as the classic "easy mark."
And easy marks have a way of giving their money and
time to people who give little in return.

• Myth: The terms General Ledger, Accounts Re­
ceivable, Accounts Payable, Purchasing, Materials
Handling, Resources Requirements Planning, Financial
Modeling, and Inventory Control are universal ... they
mean the same thing to everyone.

• Fact: While your technical staff may think that
General Ledge was probably just promoted from Col­
onel, ONLY your financial staff will be able to deter­
mine the features that are needed. Be careful ... don't
assume anything.

General Ledger does NOT necessarily include fman­
cial statements. Accounts Receivable systems don't
always let you apply cash to ANY account (not just to

7 -18-1

J

an open receivable). Order Management differs radi­
cally for manufacturers vs. distributors.

Many systems do not allow for much FLEXIBILITY
in your chart of accounts. Few packages allow you to
customize the software to your organizations's own
UNIQUE requirements (short of an almost complete
rewrite of the software).

• Myth: A package is a system that is operating suc­
cessfully at some other company . . .

• Fact: Wrong! Packages are WRITTEN to be
PACKAGES!!! They are not - NOT - custom sys­
tems which happen to work at an organization which
may be in the same industry as yours.

And, remember a package is also not something that
is SCHEDULED to be done. . . it is something that IS
done.

A TRUE software package is one developed to be a
package by a firm that has 'as its business developing
and supporting PACKAGES!

• Myth: All software packages obviously contain the
proper audit trails and accountancy . . .

• Fact: Make sure your controller, chieffmancial of­
ficer, administrator, vice president of fmance, business
manager, or your CPA takes a good look at the package
, , , we have heard of too many audits that insisted on
changes to existing software , , , expensive changes
, , , to include fundamental audit trails (the ones
everybody assumed were there in the first place).

The people who write software don't always under­
stand accountancy considerations . . . on the other
hand, just because the firm has strong accounting cre·
dentials, doesn't mean that their software adheres. ASK
about controls, audit trails, security, and the philosphi·
cal underpining of the softw~e products.

• Myth.' Just because you have a com"puter or are
setting a computer . . . just because management feels
that EVERYTHING should be automated ... just be­
cause there are relatively inexpensive packages crying
to be bought, we should surely bring ALL applications
in-house.

• Fact,' Some applications require careful analysis
before a final decision is m8de to go in-house. Payroll is
the best example: For small companies we have often
recommended against the hassels of maintaining their
own payroll, , . changes in tables, government forms,
minimum wages, unions, etc., require a heavy in-house
investment . . , well worth it for many organizations ­
but definitely not for everyone , . ,

Be appropriate. Automate when there's some defina­
ble distinct advantage to the organization. Automate
when you expect to be able to see results.

• Myth: For those of you whose organizations have
an in-house data processing staff, "there just isn't
ANYONE out there who can develop a system better
than we can right here in our own organization" (also
known affectionately as the "Not Invented Here" syn-

7-18-2

drome ... or, often, more accurately, as the "Kiss of
Death" or "Results Not Yet In" syndrome).

• Fact: First off, you are probably viewing it from
the technical side . . . and from that viewpoint there
may well be some truth. After all who better knows the
DP philosophy, particular hardware configuration,
internal politics, etc., better than your own data proces­
sing department.

In fact, the software house you select should be an
expert in PARTICULAR applications - they know
General Ledger, Order Management, Payroll, Medical
Billing, Financial Modeling . . . and in the long run
THAT's what you need.

And, by the way, (to the surprise of the DP staff) a
good software package will often be impressive techni­
cally as well). This is much truer now than in the past.
"Mature" packages are often relatively new - and
often written using software development tools that
simply weren't available a few years ago.

• Myth: With a wealth of new systems and lan­
guages, programming is now much easier than before
... surely I can write my own applications.

• Fact: Programming is not so terribly difficult ...
but desig a particular function - or an entire system ­
requires the experts. The main benefit of the advent of
powerful software development tools is that they free
up time to do a more comprehensive job of DESIGN
and that's fundamentally why packages are so suddenly
such a viable altemative.

Learnins to speak another language is one thing . . .
writing a novel using this new language is quite anotherl
And, writing that novel error-free? ...

Programming is only approxiamtely one-sixth of the
total ~ffort ... the whole picture looks something like: ,

• Design one-third
• Programming one-sixth
• Test/Debug one-third
• Training & Documentation one-sixth

• Myth.' We MUST have our programs written in
COBOL, or some other such language.

• Fact.' Arguing for a particular computer language is
usually ridiculous. It's like arguing for French, Spanish
or German - all of which are excellent languages.

Properly used - FORTRAN, RPG, COBOL,
BASIC, and many other user-oriented high-level lan­
guages can provide excellent solutions.

Remember, even though you may think English or
Danish, or whatever is the world's best language, mil­
lions speak others . . . write others . . . get results in
others.

• Myth: Choice of language doesn't matter AT ALL
... choice of fue handling technique doesn't matter AT
ALL ... as long as it WORKS!!!!

• Fact: Buying something completely non-standard

can be a disaster . . . insist on complete documentation
for anything that looks a little out of the ordinary.

• Myth: Since my company deals with a single­
person (or small) law firm ... or a single-person or
small CPA ftrm, it's okay to get my software from a very
small software house ... or even from an individual.

• Fact: This is a tough one ... certainly there are
many, many excellent, well-qualified software fIrms.
Remember, though, our industry does not yet have a bar
exam or any accepted professional certification like the
CPA ... nor are there ANY levels of standards
throughout the industry which compare with the stan­
dard "generally accepted" accounting practices that all
CPA's follow.

On the other hand, if your small (one, two ... five­
person ftrm) KNOWS their business - and yours ­
they may well be far superior to the 100-person com­
pany which views you as a small fish in a big pond. We
know of a company - one of the 10 largest in the world
- which actually PREFERS to work with small (orie to
ten-person) software firms.

Put this test to work . . . if my CPA went out of
business, where would I be? Probably all right - there
are others who could step right in. NOW if my software
consultant/supplier went out of business then what???

• Myth: There are software firms to whom I can tum
over complete responsibility for my implementation
. . . total turnkey solutions . . . software houses which
will sign a contract guaranteeing success . . . with pe­
nalty clauses . . .

• Fact.' There ARE firms which will tell you that
they'll take on all responsibilities. But let's face it ...
whose system is this? Theirs? Unless you take the re­
sponsibility for the solution to work . . . invest the time
. . . invest the enersy . . . adopt the right attitude . . .
you will be developing all the ingredients for failure.

And, remember, desperate people will sian anything.
A fum that knows how to do business doesn't have to
sisn your attorney's document in blood - they'll drop
you like a hot potato and move on to someone else who
knows how to get results.

• Myth: Custom software is never necessary or if it
is, it should always be done in-house.

• Fact: Not true! Custom software IS quite often re­
quired.

For example: We have worked with a large client
which fabricates and erects steel for many of the really
large, modem high-rise office buildings and hotels in the
Western U.S.A. Recently, a custom system was devel­
oped (by an outside ftrm) for this steel fabricator - one
that estimates, to the nut and bolt level, the steel re­
quirements for a 4O-story office building determines
the best source throughout the world for that steel . . .
how to transport it ... and how long it'll take ... and
cost. That doesn't exactly lend itself to a pac~age.

SUMMARY
There is an emerging - definite - context for stan­

dard application software packges. The degree to which
workable solutions and procedures evolve for the suc­
cessful incorporation of this new field into our business
life directly affects the results we can expect for the
near future .

The use of the data outlined in this presentation can
assist in initiating the process of getting RESULTS ...
for your organization and for others.

Now, let's move on to an examination of the process
of assessing software, selecting the software supplier~

and implementing the software system.

PART II
SELECTING A SOFfWARE SUPPLIER

INTRODUCTION

The approach outlined in this section of this book is
most appropriate for companies in the $10,000,000 to
$10 Billion annual revenues categories. Smaller com­
panies tend to be able to fit extremely well into totally
"standard" packages - often being able to change their
mode of operation to fit the package. Larger organiza­
tions - particularly when they hit to $25,OOO,OOO/year
level- tend to have developed unique operating styles,
unbendable procedures, inflexible managerial require­
ments, or just plain strong preferences.

In general, very small organizations can ignore a lot
ofwhat we propose in this book. Yet ... the fundamen­
tal underpinning of RESPONSIBILITY for results - a
commitment to beina successful- will still serve well!

CONTEXT - A VARIETY OF VARIABLES
Packased software has become the m~or area of

focus in the information systems field. Yet, the industry
called "Packased Software Firms" has no equivalent of
a FORTUNE 500. In fact, only recently has the situa­
tion arisen where there are more than a dozen com·
panies in the world which have annualized sales of more
than $10 million (and those few have only recently at­
tained that level).

The vast majority of software fums - including the
QUALITY ones - are small companies doing between
one-half million and five or six million dollars per an­
num. And, small businesses are sometimes subject to
radical ups and downs.

Thus, the selection of a software firm needs to be
based on a set of criteria which optimize the potential
for success. It may well be the case that thefirm supply­
ing the software is as important - or more so - than
the software itself.

The important point to know . . . and acknowledge
. . . and accept - whe you like it or not - is this: In
selecting a software supplier, you are .establishing a
long-term business relationship! And, if you do your job
WELL, you'll establish a really long-term relationship.

7 -18-3

So DO your job well. Exercise the same care you'd use
in selecting your CPA firm and your Corporate attor­
neys.

PURPOSE - A TOOL FOR MEASUREMENT
This set of guidelines encompasses what we've

learned from our own experience as consultants and as
software suppliers. It is developed from a variety of
viewpoints. We offer it as a tool to use to measure any
software firm which offers standard application
software packages.

GUIDELINES - CHECKLISTS
& PROCEDURES

Following are a series of "bullet-item" guidelines.
These can be greatly expanded: These lists are by no
means meant to be all-inclusive . . . they're simply a
good start.

Give the software suppliers you deal with an oppor­
tunity to present their story to you - in their own way;
then use these items as a checklist.

Don't expect anyone firm to get an A+ on all items.
We know that we're not "There" on them all ... and we
probably never will be! A score of 70 to 80% is "Excel­
lent"; 90%, "Superior"; 100% ... well ... come on ...

THE SELECTION COMMITIEE
Application software packages should NEVER be

purchased by a single person ... and that's not an in­
dictment that individuals can't adequately make the de­
cision. Some can.

The truth is: Software must be implemented by a va­
riety of people at different levels in different functions
within the organization. The wise organization will get a
variety of viewpoints from the start.

In general, the Committee Model doesn't work in this
world (as governments strive ernestly - and repeatedly
- to prove). Yet, here is an example where a team of
well-chosen effective people can make a real significant
contribution.

Ideally, the Selection Committee should include rep-
resentatives of the following functions . . .

• Organizational Management
• Functional Management
• User/Operator
• Data Processing/Technical
• System Implementor - the person who will have

the responsibili of successfully implementing the
system once it's chosen.

• System Coordinator.
A properly selected (and operating) Selection Com­

mittee can achieve tremendous results for the organiza­
tion. It·should meet frequently during the buying cycle.
Each member should diligently fulfill assigned respon­
sibilities.

7 -18-4

THE SOFTWARE/SYSTEM ACQUISITION
PROCESS OVERVIEW

We can't say what works for everybody ... but in
our experience as managers, users, consultants and
software suppliers, we've found the following proce­
dure to be a valid one:

Organizing Yourselves

• Define the Selection Committee
• Define the overall, broadbrush implementational

schedule
• Develop a brief Selection Committee charge and

guidelin
• Develop a brief background and requirements

document fo the software suppliers

The Review Process

• Define the software packages to evaluate
• Poll your colleagues for additional ones
• Call your friends
• Ask around at social occasions and cocktail parties
• Poll the computer vendors for others
• Contact your CPA (and other consultants)
• Preview the various directories
• Defme acceptable computer vendors
• Collect literature & documentation
• Contact the software suppliers
• Contact the hardware vendors
Our recommendation is an unusual one. We recom­

mend that you do the front-end work yourself (preview­
ing brochures, telephoning software suppliers, calling a
few of their resources), and quickly narrow it down to
three to five finalists which you'll then visit ... and
then send your RFP (if you use one) to only those. It
saves you a lot of time and energy in the long run, while
letting you be sure that the supplier who responds with
a proposal actually knows something about your busi­
ness.

The Preliminary Evaluation Process

• Develop a preliminary set of selection criteria for
the software packages (Software Requirements
Checklist)

• Develop a. preliminary set of selection criteria for
the software firm

• Find out more about the software firm (by tele-
phone)

• Find out more about the application packages
• Procure the software supplier's client lists
• Telephone the software ftrm's references
• Select three to five (3-5) finalist firms
• Visit the fmalist software firms
• Visit the computer vendors

The Interim Evaluation Process

• Analyze the findings of the visits
• Expand the Software Requirements Checklist
• Adopt the budget for software, hardware, etc.
• Develop the Request for Proposals (if appropriate)

The Final Evaluation Process

• Receive and review the proposals
• Prepare the Comparative Requirements Analysis
• Review the responses (entire Selection Committee)
• Review the responses with your users
• Review the responses with the software suppliers
• Select and advise the software supplier
The next step may be the most important part of the

process. Make s you get to know ALL the people with
whom you'll be working ... and that they get to know
- and like - all your key people. This is a people­
oriented business. The better you know, and under­
stand each other, the better will be the overall level of
affinity and communication and reality when the going
gets tough ... and it will, at one time or another, get
tough!

Establishing the Client/Software
Firm Relationship

• Complete the fmancial requirements & procedures
• Complete the legal/contractual requirements
• Establish the technical support contact points
• Establish the software training procedures
• Establish the documentation update procedures
• Establish the user support procedures
In general, it's the hardware vendor who will maintain

the computer equipment and the operating system.
DON'T rely on the sales representative ... he or she
has other sales to bring in! Get to know the people who
d~~~. .

Establishing the Hardware Vendor Relationship

• Establish the relationship with the hardware ven­
dor's operating software and hardware
maintenance staff (SE's & CE's)

• Complete the legal and financial requirements with
the hardware vendor

• Issue a purchase order for the required computer
hardware and operating software

Implementation Planning

• Define the Implementation Review Committee
(may be the same as the Selection Committee)

• Adopt a requested Implementation schedule
• Present the requested schedule to the software

supplier for review and resolution
• Review the software supplier's recommended Im­

plementation Plan

• Mutually resolve discrepancies to achieve an
Adopted Implementation Plan

General Application Preparation

• Schedule applications training
• Schedule technical training (if appropriate)
• Review procedures for potential modification
• Conduct weekly or bi-weekly Implementation

Committee review sessions
• Procure the software supplier's final recommenda­

tion of the hardware configuration
• Finalize the hardware configuration

General Computer Hardware Preparation

• Conduct the site review for the computer
• Prepare the computer site as appropriate
• Analyze & define CRT and hardcopy printer loca­

tions
• Arrange for cabling and modem installation
• Conduct Implementation Committee review

meetings

Final Implementation Preparations

• Initiate applications training
• Initiate hardware training
• Initiate other technical training
• Conduct project activities for special/custom work
• Conduct Implementation Committee review meet­

ing

Implementation

• Install the computer
• Install the software module(s)
• Load/convert data to the new software
• Conduct application testing
• Conduct Implementation Committee review meet­

ing
• Conduct end-user operational training
• Implement the application(s) on a "live" basis

On-going Review

• Conduct periodic review sessions with end-users
• ~onduct periodic Implementation Committee re­

view meetings
• Conduct periodic software firm review meetings
• Conduct periodic hardware vendor review

meetings
This checklist is one way to acquire software. It's

surely not the ONLY one . . . it just works! Try it . . .
or modify it. But whatever you do, have a commitment
to get results; develop a a Plan ... then WORK the
plan.

7 -18-S

THE SOFrWARE REQUIREMENTS
CHECKLIST

(THE STATEMENT OF REQUIREMENTS)
The Software Requirements Checklist (also known as

the Statement of Requirements) is the common thread
for the Functionality of the software to be chosen. Most
of what should go into this document is a list offeatures
which you want or need ... thus, it's impossible at this
time to descri exactly what should be on it. Following,
though, is a set of guidelines for preparing it:

• Don't overlook the obvious ... don't "assume"
that what want will automatically be in all packag­
es.

• Clearly state your requirements. Avoid lots of text
... it doesn't get read; use lists or checklists,
where possible.

• Rank your requirements. Don't get too fancy ...
"A" for Must-haves; "B" or "3" for Highly­
Desirable; "e" or "2" for Nice-to-Haves or Tie
breakers.

• Include philosophical or approach requirements­
things like on-line vs. batch ... language ... op­
tions ... decentralized vs. centralized manage­
ment style . . . growth . . . plans . . . security re­
quirements . . . accounting batches . . . auditabil­
ity ...

• Include interface or customization .requirements
• Ask about product expansion - are updates pro­

vided? How How often? What happens if you cus­
tomize? Interface? Is a software support agreement
available?

• Ask about documentation - what's provided?
How readable is it? Who writes it? How often is it
updated? Do you ,et ·it? How many levels of
documentation are there?

• Ask about training - what's provided? How of­
ten? Who attends? Are there standard classes? Do
you set the training materials? Who conducts the
training? Who attends the training?

• .Ask about Installation procedures - what
checklists wil you have? What procedures will be
provided? What assistance will you get?

• Find out about support - what happens when you
get in trouble? How do you report software bugs?
What facilities exist for phone consultation? How
often is user documentation updated? What proce­
dures exist for follow-up on your requests? How d~

you suggest changes and the "wouldn't it b.e nice
... ," enhancements or extensions? Does the ftrm
have a standard support program and a standard
support contract?

• Describe your organization - tell the software
ftrm abo your objectives (lists - not narrative); get
each functional unit's requirements; get alignment
so that you11 all be using the same terms . . . ex­
pecting the same results.

7-18-6

A well-designed Software Requirements
Checklist should have terse one- and two-line
features/requirements statements with a place to
the right (or left) for the software supplier to enter a
short yes/no/"*" response. Each grouping of fea­
tures should be followed by a "*,, blank space to
write responses, exceptions, n rates, quotations for
custom work, future release dates, etc. In other
words, make it EASY to USE.

WHAT ABOUT CUSTOMIZATION?

No matter how much you may desire otherwise, your
application may well have requirements that just aren't
available from a standard package. We've seen requests
for such applications as railcar tracking, event schedul­
ing, loan tracking, event-driven action item manage­
ment, and such - applications which are mainstream to
the company, and which must reflect the specific ap­
proach of the .organization.

The need for customization need not be a catastrophe
... IF ... you understand the implications. Learn how
to define the need:

• Check against the Statement of Requirements for
alternative approaches. .

• Use the software firms' consultative assistance ­
they have s~ggestions as to how others have solved
the same problem.

• Seek out parameter-driven software - it may be
tailorab your need.

• Re~evaluate your need ... if there's no packl8e
availajust may be that you're doing thinss too dif­
ferently.

• Don't be afraid to stick to your requirements . ..
perh organization's way - non-standard as it is ­
is the one which sets results!

• Determine whether standard package modifi­
cations required a structural or are general en­
hancements ... that is ... are you adding a room
. . . or repainting . . . do you need a new founda­
tion. IF the changes are structural- go custom (or
buy the package to use as a building block for a
custom system, with the understanding that you
must take ownership of the resultant system).

• If 'you've found a "fit" or a near-fit for other
applicati discuss with the software firm their inter­
est in developing your custom requirements . . . or
their recommendations . . . or how cooperatively
they'd work with another firm which you might
engage.

Most software requirements can be met from a pack­
age ... but NOT ALL ... not even all the "of course
THAT would be in a standard package" requirements
for a given function may be in the package you like best
(and it may still be the best package to buy).

THE SOFfWARE DEMONSTRATION
Seeing the software work is extremely important.

Software -like the people who design and use it - has
a personality. Ask for a software demonstration!

The demonstration is best done at the software fInn
itself (assuming it -has its own computer). ,.

• Define in advance which modules you want to see.
• Send the software firm a copy of your Statement of

~equirem in advance.
• Get the RIGHT people there.
• Come prepared.
• Give the software firm an extra hour or two to tell

their story.
• Take th.e software firm's advice.
'. Allow sufficient time.
• Ask for an extra hour or so - at the end of the

session to unanswered questions handled.
• Tell what you expect to accomplish.

• Keep an Open Mind!
• Keep on Track.
• Be courteous.
• Ask Questions.
• Look at the Audit Trails.
• Look at the User Documentation.
• Look at the Technical Documentation..
• Look at the human engineering.
• Expect to have a reasonably good fit - (75% to

85% is considered a good fit; 90% is considered
excellent; 100 is rare!).

• Expect to fmd gaps.
• Beware of the Everything's Great Syndrome.

• Be professional.
• Meet the user support staff.
• Don't demand to spend lots of time with the techni­

cal staff
• Follow up on Unanswered questions.
A good software demonstration can enlighten you as

to omitted items on your Statement of Requirements.
Also, it's an opportunity to interact with key people in
the software firm who may end up being your contacts
for years to come.

Use the demo effectively . . . then go back home and
update your Statement of Requirements. Have a Selec­
tion Committee meeting after each such visit.

THE REQUEST FOR PROPOSALS
This is probably the area in which the most mistakes

are made . . . by the requestor!
In the fIrst place, use an RFP where it's appropriate.

If you fmd a package during the preliminary search
which meets your needs ... offered by a flllJl that fits
all the selection criteria, then, WHY go through the

misery of an RFP? And, the RFP is as much work for
you as for the software fInn (ifyou're. doing it properly).

Admittedly, it is a controversial stance to recommend
against RFP's ... but more TIME - and, often,
MONEY - is spent by some prospective buyers, going
through the drudgery (and motions) of Proposal Re­
quests than is often spent on acquiring and implement­
ing the software itself!

Let's look in more detail at the purpose of the Re­
quest for Proposals.

What an RFP Isn't

• It is NOT a way ofjustifying an already-made deci­
sion.

• It isn't a guarantee (those are up to YOU!)
• It isn't a fancy way of covering shoddy selection

processes.
• -It isn't a "test" for the software supplier (quality

soft ftrms throwaway the ones which look like
"tests").

• It isn't a way of badgering others into doing things
your way.

• It isn't a document more than ~" to Y2" thick (any­
thing thicker is a request for free consulting servic­
es).

• It is NOT something to be tied into a contract (most
software firms which will agree to tie the RFP and
their response to the contract 'aren't capable of liv­
ing up to a court challenge; who can deliver what
they say aren't interested in complicating their
legal agreements . . . on strong counsel of their
own attorneys!).

• It isn't, in summary, much more than a statement of
requirements . . . than a statement of requirements
. .. a Statement of Requirements.

What an RFP IS

• A Statement of Requirements.
• An opportunity for the software frrm to tell its story

(in own way).
• A place for summarization of costs.
• A place for summarizatio~ of potential implemen­

tation sched dates and events.'

Guidelines for the RFP

• Make itfriendly!
• Make sure you personally contact the firms you

send it REPEAT: Personally telephone - or, bet­
ter yet, VISIT - the software suppliers you want
to respond.

• Send it to NO MORE than three to five frrms.
• Tell about your organization (briefly).
• Give a brief background of the situation for which

you're seeking solutions.
• Include the Statement of Requirements.

7 -18-7

• Allow the software finn to answer in its own style.
• Attach an outline of what you want to know about

the softwa fInn. Keep it to the "need to know"
level.

• Avoid rigid formatting requirements.
• Don't demand all sorts of contractual modifications

. . . suppliers just aren't interested in doing
business that way (no matter what counsel you get
otherwise) .

• Don't ask the supplier to tie their response to a
contract good fInns spend enough time on their
contractual agreements to do business well - and
their attorneys counsel them heavily against such
modifications.

On the other hand, if the software fInn has shabby­
looking or weak contracts, you're entitled to ask for
contractual modifications . . . but . . . do you really
want to do business with such a finn?

• Remember: The software fum is busy - particu­
larly if they're competent. If you ask for two weeks
worth of work to respond to an RFP, you'll only get
the software suppliers who aren't in demand. .

• Get competent assistance in evaluating the re­
sponses.

• READ and ANALYZE the responses.

As a summation, regardless of whether you agree
with us on the value of an RFP, don't let the RFP be a
substitute for human interaction, client reference­
checking, . . . software finn visits . . . and just plain
hard work. If it's worth doing, it's worth spending some
time doing right.

EVALUATING THE SOFTWARE FIRM
It is almost as - maybe even more - important to

carefully assess the software supplier as the package
itself.

REMEMBER: You are establishing a long-term busi­
ness relationship. Just because this is a highly technical
field, don't be bamboozled into anything. Look for the
same organizational attributes that you'd look for in
ANY company!

The successful software organization has to know
their business . . . and must be committed to supporting
clients using standard software products.

Following are some checklist items we've come
across. Perhaps you can extract several items and de­
velop a weighting/evaluating schema which will work
for you.

• Look at Outward Appearances: How does the
software fmn va itself. What evidence is there that
they've been around for a while ... survived the
magical "New Company Mortality" syndrome?
How have they invested in the future? Look for
"gut-level" feeling. DO they look like winners?
Check these attributes:

• Facilities

7-18-8

• Equipment
• Furnishings
• Clients
• Checklists & Procedures
• Documentation
• How the people view things (values)
• Organizational Structure

• Look at the People who Create the Packages:
Again, use gut-level approach. Would you want
them working for your organization?

• Look ·at the Firm's Background: More gut-level
stuff. Lo them and their experiences ... and don't
assume there's anyone "right" way. Listen care­
fully to their story.

• Look at the Knowledge Level of the People: How
have the all together? Does the fum have what it
takes to succeed in ALL its areas (not just the
technical)?

• Look at their Guidelines and Standards: Examine
.the evi of commitment. Written standards are
statements of intention, stability, permanence.
They're important!

• Look at their orientation: This is incredibily impor­
tant ... this is the finn's real purpose. Ask candid,
yet open, friendly questions.

• Look at the Firm's Target Marketplace(s)
• Check for Internal Procedures: These are the in­

dicators attention to detail. And, that's critical in l~
the software field.'Y

• Look at the Support Apparatus: This will be your
contac AFfER the sale. You only interface with
the sales or business development function BE­
FORE you sign up ... IF you select the right fum.

• Look at What Goes Into Product Price: The differ­
ence in price is immense. There are, in many cases,
equally-developed software packages available
from different firms at vastly differing prices.
What's the difference between a $3,000 Order Pro­
cessing system and a $40,000, $50,000, or even a
$100,000 one? Generally, there ARE features dif­
ferences ... but not always. The difference may
well be in the fIrm. How does a fll1l1 selling their
product for ten times that of another one of equal
"features" survive? Generally, because they ap­
peal to organizations which value long-term com­
mitments.

• Look at the Software Firm's Sales Style: Here's
where a of the true values of a fInn show up ... to
the extremes. If the sales representatives act like a
stereotyped salesperson, then there's probably
something behind the scenes which supports such
an approach. On the other hand, if the people re­
sponsible for business development show good ~

knowledge, experience, and a consultative ap-"j
proach which demonstrates genuine concern for
your success, they're probably reflecting som~

very solid and fundamental philosophies and
policies of the firm ... latch onto them.

• Look at the Implementation Planning Assistance:
The understanding of implementational considera­
tions is one of the most positive indicators of a
real-world, results-oriented firm.

If the flll1l begins talking implementation, listen
to them. Chances are, if they've passed the other
tests, they know far more about how to implement
a system than you. After all, they're probably doing
it between ten and a couple of hundred times per
year!

• Look at the Legal/Contractual Instruments: If you
get a double-spaced typewritten page for a con­
tract, feel free to take a hatchet and an army of
attorneys to it.

On the other hand, if you get a typeset, well­
structured document that provides for mutual pro­
tections and which incorporates and documents
business procedures, then expect the f1l11l to be
relatively resistant to modifying it.

• Look at the Firm's Growth: The software industry
is in explosive environment.

Unfortunately, even organizations with shoddy
products and shabby outlooks can survive - even
grow rampantly! Growth is a tough thing to handle
... and it's roughest on the firm which is commit­
ted to quality.

• Look at the Company's Management Style: De­
spite all the growth, the firms which will truly suc­
ceed (for themselves and for you) are the ones
which MANAGE themselves well ... just as in
any field, good management pays off.

• Look at the Company's Business Ethics
• Look at the Software Firm's References: Ask for

references . . . AND ... then contact them.
• Talk to th~ Software Firm - This has to be the

most imp criteria of all. Talk to the software frrm as
you would to ANYBODY who could truly assist
you; don't worry about giving too much of yourself
and your values to them ... if they're unethical,
they'll definitely try to take advantage of you - be
mature enough to be willing to fmd that out be­
forehand.

Choose the software firm as you would your
CPA firm or corporate attorneys. Choose them
using the same criteria you would if your organiza­
tion were going to acquire them . . . or if you were
going to invest in them.

AFTER YOU SELECT THE PACKAGE
... THEN WHAT?

There are several steps which should be taken. The
important thing is NOT to assume that you're "there"
... indeed, the journey is still somewhat in its infancy.
In fact, you're just beginning! There's some more inter-

nal organizational analysis that needs to be done . . .
• Determine what people-problems you will have

with software tha cuts across organizational lines
· . . Order Processing for example can affect
marketing, sales, credit, customer service, produc­
tion control, manufacturing, shipping, quality as­
surance, AND accounting ... what will your peo-
ple problems be?

Develop a plan for handling the inevitable . . . it
WILL occur!

• If you have to modify procedures to fit a selected
package, try it manually first. Get the resistance
out of the way ... PRIOR to having the computer
to blame.

• Get the user to sign off on the system . . . the Ac­
counts Re supervisor will be much happier if he or
she blesses the system in advance.

• Take ownership of the system . . . and make sure
everybody - including management - expects re­
sults . . . and is committed to doing whatever it
takes to GET results. Finger-pointing and blame
and "reasons" just simply have no place in the im­
plementation phase. If they crop up, acknowledge
them for what they are (the things people do when
they're NOT getting results) and MOVE ON! (to
getting results).

• If you haven't already done it, list your required
enhancem Have the software vendor quote/
recommend how these enhancements should be
done.

• Develop workarounds for all the functions which
aren't exac the way you'd like the package to work
- and inform everybody, so there won't be the
excuse of: "Well, this package just isn't the way we
should be doing things."

• Make sure you get completely trained on the
software (from perspectives: User ... technical
· .. and standards). Make certain the user is fully
trained ... that there's the ability and willingness
to understand. .

• BE PREPARED - remember that users CAN
damage themselves thr no fault of the software
house or the software.

Or even: "Advised of a schedule change??? Call
the dispatcher."

Convert some or all of the members of the Selec­
tion Committee into an Implementation Commit­
tee.

Identify ONE person (for each module) as the
System Implementor - that one person who has
the ability and the responsibility for getting results
· . . and who is recognized and respected by others
as able and willing to make it happen. Have a meet­
ing of the key players at least once every two
weeks.

Once the selection has been made, there's the

7 -18-9

cumbersome job of getting things rolling. And
that's where the software firm's many experiences
can assist you ... that's where Implementation
Planning and Project Control procedures come into
play.

THE PURPOSES REVISITED
The purposes of this document are plain and simple:

To provide at least one quality, honest, "wha~'s so" step

7 -18 -10

forward. Specifically, we offer a considerable amount of
data, several methodologies or processes, and a sharing
of experiences which may support you and your organi­
zation in attaining the successes you want. The only
real value you can get from this book is a willingness to
look at things as they are . . . followed by using
whatever portions of our data, methods, and experi­
ences which prove to be useful for you.

Office of the Future - Starting Today
Mark S. Trasko

Dynamic Information Systems Corporation
Denver, Colorado

INTRODUCTION
Through the past several decades, computer

hardware and software have evolved and expanded to
meet our various needs. Scientific data processing, pro­
cess and manufacturing control, database management
are three domains where computers are predominant.
In the 80's, a fourth area of application will rapidly
emerge: the realm of inter- and intra-company com­
munication, often referred to simply as "office automa­
tion." Electronic mail, word processing, automated
message systems and time management tools are some
of the many functions of office automation systems that
will increase productivity.

This paper surveys current activities in the office au­
tomation field. It then explores some future directions
for this technology, and implementation potential on the
HP3000. Finally, the paper focuses on a product,
DATADEX/3000, intended to serve as a cornerstone of
office automation systems.

THE PRESENT
Currently, office automation tools are available for

most computer systems. These products provide a va­
riety offunctions, with emphasis in the following areas:

• Word processing, often with access to an on-line
dictionary for spelling error detection and correc­
tion and word hyphenation.

• Electronic mail facilities to distribute documents
that exist on the system (potentially a computer
network). Most mail systems provide for verifica­
tion that a document has been received, replies, the
inclusion of comments prior to routing to further
destinations, etc.

• Electronic memo systems which are similar in
capabilities to the mail systems just described, ex­
cept that text is generally brief, and is entered in­
teractively by the sender. As with mail systems,
most electronic memo facilities allow routing to
multiple destinations, adding of comments, etc.

• Electronic scheduling. This includes personal time
management tools and the scheduling of meetings
and shared resources such as conference rooms
and equipment.

The above office automation facilities are available
on computer systems provided by several manufactur­
ers, including IBM, DEC, Prime, Wang and others. As

of January of 1982, Hewlett Packard had introduced
word processing hardware and software. Given HP's
publicly announced commitment to the "interactive of­
fice," it is likely that they will soon release additional
tools in the office automation area. In addition, inde­
pendent HP3000 software vendors are likely developing
products aimed at this market which will soon be avail­
able.

Beyond the four categories of commonplace office
automation tools just discussed, some more advanced
products are available from two vendors that indicate
possible future directions for office automation.

Xerox has the Star Work Station, an expensive but
powerful system that allows the manipulation of docu­
ments and other textual information through the use of
icons. Icons are graphic representations of either actual
physical devices or physical equivalents of logical en­
tities such as fIles. For example, a disc rde might be
represented as a rde folder or letter, depending on
whether the fde contained one or several documents. A
Star terminal includes a "mouse" to facilitate easy
movement of the cursor among the several icons typi­
cally displayed on a screen. Placing the cursor on an
icon and pushing a button on the mouse designates the
device or entity associated with that icon as the source
,or destination in an operation.

One icon can father several other icons, similar to a
menu screen. Thus, an operator can start with a view of
the whole office, then focus all the way down to an
individual character in one document. Since common
visual associations are used, little training is required
before an operator can command a wide variety of op­
erations. However, the high cost of the system may
have to be reduced before the savings in training costs
justify its widespread usage.

A second advanced office automation facility has
been announced by Wang. Called "DVX" (Digital
Voice Exchange), it is an audio version of an electronic
memo system. DVX is faster and for most people easier
to use than textual memos, and may well be more effec­
tive since faithful reproduction of the speaker's voice is
preserved. Wang is also developing a system to process
digitized speech, allowing direct editing of speech with a·
fair degree of flexibility. However, word processors
have far more flexible editing capabilities, so individuals
that use a dictaphone almost exclusively and wish to

7-20-1

edit their own speech are the most likely candidates for
this system.

The facilities just described are predominant areas of
concentration in the office automation field today. Their
use will grow rapidly throughout the next several years,
and it is likely that HP or third party vendors will pro­
vide products in these areas to meet the needs of
HP3000 users. The current state of the art in office au­
tomation emphasizes productivity and efficiency gains
at two levels:

• Making clerical staff more effective.
• Reducing the time spent by management on com­

munications "overhead."
For example, word processing systems provide signif~

icant time savings and productivity gains for clerical
help, particularly when all or part of a document is used
on more than one occasion. These systems also reduce
the time spent by management and staff in the interac­
tion required to rmalize a new document, because edit­
ing, formatting, and printing operations can all be ac­
complished more quickly.

Similarly, electronic message systems and scheduling
facilities reduce the time spent by management and staff
in numerous non-productive but otherwise necessary
activities. Message systems allow efficient communica­
tions within a company, helping to eliminate much of
the "telephone tag game" that is usually prevalent.
Scheduling systems can greatly reduce the time re­
quired for the iterative process of scheduling a meeting,
especially if attendees maintain an on line schedule of
times they are available.

Generalizations are almost always dangerous. How­
ever, viewing office automation as the implementation
of various tools to increase the efficiency and reduce
the cost of communication seems appropriate. Nearly
all the office automation tools currently available deal
with the generation, manipulation, or distribution oftex­
tual information. (Speech is grouped with written text
since they share a common purpose in office systems.)
The one exception, electronic scheduling, still falls in
the category of communication in the broad sense.
Scheduling systems reduce the communication time re­
quired to arrange meetings, and ~eetings themselves
are interactive communication!

THE NEED
Close examination of the current state of the art in

offi~e automation reveals a significant deficiency.
Available systems de'al primarily with "outbound"
communications - textual information that will be dis­
seminated. This certainly is a crucial function. All busi­
nesses must communicate information to other busi­
nesses. Large companies must also communicate in­
formation from office to office. And individuals in all
but the smallest organizations often must communicate
on other than a "live" basis.

However, these tools do not address the equal, or

7-20-2

potentially greater, need to manage "inbound" com­
munications. Most communication is bidirectional, with
a high likelihood that as much or more information is
received as is transmitted. Correspondence, legal
documents, periodicals, books, data sheets, brochures,
catalogs, all are examples of textual information that
usually originates from outside the office area. This in­
formation is not only very important, but is received in
large and ever increasing quantities. Yet current office
automation tools can do little to support the manage­
ment of this information. They are addressing only half
of the need.
What is meant by "manage information?" The implica­
tions are the same as in the phrase "database manage­
ment system." A DBMS organizes data so that a de­
sired subset of the data can be retrieved quickly when
required. The larger the database, the greater the need
for efficient retrieval capabilities. Similarly, the more
!extual information a company must manage, the more
Important rapid access to that information becomes.

Even if the information has been internally generated,
or has been received by electronic mail and thus can be
stored on-line, the difficulty in managing it is nearly as
great as with hard copy documents received from out­
side sources. Whether the information resides in com­
puter files or rue cabinets makes little difference. The
key issue' that must be addressed is: Can needed infor­
mation be retrieved quickly and easily, or must exhaus­
tive searches of all documents be performed to retrieve
the ones desired?

Unfortunately, database managers such as IMAGE
cannot by themselves meet this need. Textual informa­
tion is excellent for communication, but poorly suited
for storage and retrieval using conventional database
.managers. Text is unstructured and free format,
whereas database managers are optimized for storage
and retrieval of structured, formatted data. A new
strategy is required if information of a textual nature is
to be managed.
. Before considering such a strategy, a pertinent ques­

tion should be answered: How great is the need to man-
:age such information? The ability to harness the wealth
of information that a company receives on a daily basis,
to eliminate duplication of effort in creating, maintain­
ing, and retrieving such information, will provide a
company with a significant competitive edge..

Information is important at all levels of a company.
Executives and managers must have access to a wide
range of information so that they can base decisions on
the most accurate, up to date information that exists.
The efficiency and productivity of staff personnel de­
pends on fast, flexible access to·itlformation pertinent to
their activities and responsibilities. Technical profes­
sionals function in a constantly changing technological
environment. The quality and competitive standing of
products that they design are impacted by their ability
to access state of the art information in their fields.
Successful support of delivered products is heavily de-

pendent on the availability of up to date product infor­
mation to personnel in the field.

THE INFORMATION BASE CONCEPT
Meeting the needs of those who must have access to

information can be termed Information Base Manage­
ment. Facilities that support this function will be a key
cornerstone to future office systems. The ideal informa­
tion base provides fast, flexible access to the wide range
of information vital to a company's operation.

As noted earlier, the scope of information that a com­
pany must deal with is very broad. Most of it comes

.from outside the immediate office area. Periodicals, let­
ters, brochures, data sheets, catalogs, many legal docu­
ments, all are examples of such information. Docu­
ments that were not created internally or received
through electronic mail cannot be maintained on-line,
but instead must be physically ftIed. Again, whether a
document is physically or electronically flied matters
very little. The crucial issue is whether or not docu­
ments containing the required information can quickly
be located among the huge store of textual information
that a company must maintain.

Thus, a powerful method to index or "key" docu­
ments is required in order to ensure retrieval. The via­
bility of the information base concept hinges on the
strength of its keyed retrieval capabilities. Specific re­
quirements are discussed in the Implementation section
later in this paper. However, assuming that sufficiently
powerful keyed retrieval is available, a serious question
arises. How should these documents be keyed? By
company name? Person name? Subject? Date? Filing by
only one key provides little assurance that desired
documents can always be found. For example, a flle
organized by company name is of little value in in­
stances where only a company representative's name is
known. One option is to maintain multiple physical
copies of the documents, each flied under a different
key. But the cost of Il)aintaining multiple copies can be
prohibitive, and the likelihood of inconsistencies be­
tween the fdes grows quickly. How does an information
base solve this dilemma?

An information base frees a company from inflexible
physical fding strategies. A document is physically (or
electronically) filed using a unique document number
(or name) that is assigned to it. The document is then
electronically catalogued in an information base by
those keys that provide optimum retrieval flexibility for
the type of information being fded. Thus, the document
number, several keys, and typically a one or two line
document summary might be stored in the information
base.

To retrieve a document, it is frrst located in the infor­
mation base catalog via the key that is most appro­
priate. Document summaries would aid in the screening
process, especially if several documents qualify based
on the key and key value used. The document's unique

identification number is then used to retrieve it from the
physical flle in which it resides.

Documents can be flied by any mix of keys desired;
the mix can be varied from fde to ftIe. Company name,
person name, date, subject, contract, phone number, zip
code, author, publisher, product - all are examples of
potential keys. No matter how many keys are used,
only one physical copy of the document is needed.

Document management is an excellent information
base application for several reasons:

• The m~ority of documents that a company has in
its possession are hard copy. Little has been done
to date to apply computer hardware and software
solutions to the problem of hard copy document
management.

• The term "document,~'as used throughout this pa­
per, is a very broad one. It includes correspon­
dence, periodicals, data sheets, brochures, books,
catalogs, contracts, etc. Documents that must be
managed originate both from within and without
the company.

• The wealth of information contained on hard copy
documents that a company customarily receives is
virtually limitless. By employing information base
management techniques, far more of this informa­
tion can now be exploited than ever has in the past.

Although document management is huge in scope, it
is only one of many potential information base applica­
tions. Some examples of other applications include:

.• On-line Rolodex-type ftIes.
• Corporate directories, including phone "books."
• Human- resource or component-product informa­

tion bases.
These applications would likely maintain all data on­

line, unlike the sample document cataloguing system,
which typically maintains the bulk of the data in physi­
cal flies. Regardless of whether physical rtIes are used
or not, there is no logical distinction between the two
strategies. An information base is not constrained to be
totally resident on one computer system, but can be the
integration of several information stores into one logical
entity.

INFORMATION BASE IMPLEMENTATION
To implement an information base as conceptualized

in this paper, the following conditions must be satisfied:
• Keyed sequential access must be available to en­

tries in the information base. Keyed sequential ac­
cess includes generic retrieval, ascending sequen­
tial retrieval, and ifpossible, descending sequential
retrieval.

• The ability to key (index) information by multiple
keys is required. Typically, 3-5 keys are sufficient,
but an upper limit of 8 or possibly more might be
required in some situations.

• A catalog approach to managing textual data is

7-20-3

needed to manage hard copy documents, and op­
tionally, on-line documents. Use of this technique
makes an information base invariant to whether
documents are stored on or off line.

• Data security, high performance in multi-user envi­
ronments, and high reliability must be ensured.

• A convenient query facility must exist for user
interface to the information base.

By definition, flexible and powerful retrieval.
capabilities are the essential element of the information
base concept. An information entry must be accessible
even when the exact value of its key is not known. For
example, a search for a document by the author's name
must be ensured of success even if the name is not fully
specified. There are several reasons why retrieval by'
partial key, known as "generic" retrieval, is extremely
important:

• The correct, full key value may not be known ­
frequently the case with names of all types.

• The correct key value may be known, but the in­
formation may have been originally entered with
the key value incorrectly spelled.

• Lengthy keys are time consuming to enter fully and
precisely. Often, the first 4 or 5 characters of a key
are sufficient to select the desired entry. For ex­
ample, "HEWL" is sufficient to uniquely select
"HEWLETT PACKARD" if no other company in
the information base has a name beginning with
those four letters.

Keyed sequential access, which includes both generic
and sequential retrieval, is an absolute necessity when
information is keyed by names of any type. Without it,
information can easily be lost if key values are incor­
rectly spelled during entry. Correct spelling is a severe
restriction with names, because it implies exact punctu­
ation, use of spaces, etc., not just correct spelling of
each component of a name. For example, "TRAS­
KO,MARK S," "TRASKO,MARK S.," and "TRASKO
MARK S" are worlds apart if generic access is not
available. Thus, an exhaustive search of the information
base is required to locate entries with misspelled keys
unless the incorrect spelling can be exactly guessed.
With keyed sequential access, a reasonable guess can
be made (generic retrieval) to get close, in alphabetic
order, to the desired entry. Then, names can be scanned
in forward or backward order until the desired name is
found, similar to searching for a name in a phone direc­
tory.

The need for keyed sequential access is met by
IMSAM/3000, the IMAGE Sequential Access Method.
IMSAM, an enhancement to Hewlett Packard IMAGE,
provides keyed sequential access, including generic re­
trieval and ascending and descending sequential access,
to entries in IMAGE data sets. An IMAGE database
enhanced with IMSAM/3000 serves as an excellent fa­
cility for an information base, meeting the fIrst four im­
plementation criteria outlined at the beginning of this

7-20-4

section. Entries in an IMAGE database may be keyed
by up to 16 items, any number of which can be desig­
nated to have IMSAM access. Since IMSAM is totally
implemented under the IMAGE umbrella, all of IM­
AGE's data security, performance, and reliability fea­
tures are maintained. In addition, existing IMAGE ap­
plication programs and tools may be used to access the
information base.

The fifth requirement for an "information base ap­
proach to information management is met by Datadexl
3000. Datadex, a specialized query facility employing
IMSAM, provides a powerful and convenient way to
access information in an IMAGE database enhanced
with IMSAM. Datadex provides a full set of commands
that allow information to be added, deleted, modified
and retrieved in several different ways~

Five commands are available to exploit 1MSAM ac­
cess capabilities. The Datadex Find command allows
retrieval by partial key, while using any of the five rela­
tional conditions (=, >, >=, <, <=) to control the
retrieval. For example:

F COMPANY = HEW fmds the first company
whose name starts with "HEW."

F COMPANY > HEW finds the first company
whose name starts with "HEX" or higher.

F COMPANY <= IN fmds the first name in de­
scending order (the highest) starting with "IN"
or less.

F COMPANY-REP < SN fmds the first name in
descending order (the highest) starting with
"SM" or less.

Unlike Query, which allows similar operations, an
entry is retrieved immediately by Datadex, because
IMSAM supports keyed sequential access. The capabil­
ity to do relational Find operations is thus built into the
structure of the database. With Query, a Find that does
not specify a key value fully or does not use the "="

. relational condition requires an exhaustive serial read of
the data set. This can take hours to complete on a large
database.

The Datadex Next and Previous commands are often
used following a Find command. Next and Previous
allow the user to browse forward or backward in se­
quence of any key desired, examining entries one at a
time. The List command allows listing of a range of
entries, in ascending or descending key sequence, on
the line printer. For example, all companies starting
with the letters I through M could be listed by:

L COMPANY = I / M for a listing in ascending
key order.

L COMPANY = M / I for a listing in descending
key order.

The Xfer command works much like the List com­
mand, except that entries may be transferred to an MPE
ftle, another database, or the terminal screen, and data
is not formatted. This command allows a range of en-

tries to be transferred to a holding rde or data set, then
reported on using Query or a vendor supplied or user
written program.

Datadex provides a turn-key facility that can be used
to implement numerous information base applications.
All functions required to maintain and access on-line
Rolodex-type files, corporate directories, document
cataloguing, and many other applications are provided
by Datadex. Design an IMAGE database to fit your
needs, and Datadex will do the rest.

CONCLUSION
The information base concept will play a crucial role

in future office environments. It may well surpass con­
ventional, outbound communications office automation
tools in importance. Information bases provide needed
information to individuals at all levels of a company.
The resultant increases in productivity and efficiency,
and the ability to base decisions on the best information
that exists, will provide a company with a competitive
edge.

Using IMAGE as a foundation, adding the power of
keyed sequential access with IMSAM/3000, and em­
ploying Datadex as a query facility, an information base
can be implemented with capabilities that equal or sur­
pass any facility on any computer system available to­
day.

7-20-5

Job Costing on The HP3000
Steve Perrin and Robert Lett

Bellamah Corporation
Albuquerque, New Mexico

Bellamah Corporation is one of the Southwest's lead­
ing diversified real estate developers with operations in
Arizona, New Mexico, Colorado, Oklahoma, and Tex­
as. Our construction management information require­
ments cover Land Development, General Contracting
(light commercial), and Housing Divisions. Our Job
Cost System was developed to be a management and
operations tool in controlling costs and financing proj­
ects under construction. This system is a user-oriented
operating system and was designed cooperatively with
participating management and staff from the above divi­
sions. The Information Services Department coordi­
nated the development, design, and implementation of
the approximately sixty stream and twenty screen
COBOL Programs on our HP3000-II1 System. At pre­
sent, three divisions and one major land joint venture
are using the system across a multi-state operating envi­
ronment.

The main objective of the Job Cost System is to assist
divisional management in maintaining control of
numerous jobs while maximizing the profitability of
each job under construction. The system is capable of
supporting these objectives for the following types of
projects:

• General Contracting
• Housing
• Joint Ventures
• Lots
• Multiple Family Units
• Projects
• Subdivisions
• Tracts
In addition, the system is on-line oriented and au­

tomatically supports our other corporate information
systems. A database has been developed to facilitate
the use of advanced query and report writers such as
QUIZ which is currently installed. The system should
have the capability to interface with the following future
expansion requirements:

• Purchase Orders (installed in housing)
• Projection Analysis on Prices, Costs, and Esti-

mates (installed in housing)
• Percentage Completion Reporting
• Estimating
• Bill of Materials
• Scheduling

• Cash Flow Analysis
• AlA Billing Calculations
• Retention Calculations
• Customer ProfIles
• Unit Cost Control
Before proceeding with a look at some of the output

reports, let's take a brief look at the information flow
and job cost database.

(See Page 2)

The three accounting based systems, general ledger,
payroll, and accounts payable, gather financial
transactions that are fed to the job cost and general
ledger databases. At the present time we are processing
these systems in an on-line data capture environment.
As you can see from the diagram, non-financial transac­
tion information may be entered into the system by
project managers, estimators, division administrators,
project engineers, brokerage and marketing personnel.
The non-financial data elements break out primarily by
functional area such as changes in construction status,
marketing status, tax rates, zoning, estimates, sale
dates, etc.

Principle data sets of the job cost database are shown
in the following diagram:

(See Page 3)

The job master data contains information for each
job/project/parcel and various control levels such as
subdivision, city, function, and region for housing. Gen­
eral contracting and land differ, but are basically simi­
lar. These records are created by processing a start
order or through file maintenance. The cost code master
summarizes data by cost code within a job/project/
parcel. These records are read from the plan master and
loaded at the time start orders are processed or through
ftIe maintenance. The transaction master holds all fi­
nancial transactions for each job by cost code. The pur­
chase order data set contains all outstanding purchase
orders for each job and is presently used only by the
Housing Division. The manager data set is used to
measure performance and summarize information by
project manager. The plan master data set contains es­
timates and information by cost code and phase for each
model elevation under housing and a standard set of
cost codes with no estimates for land. These estimates
are entered by fIle maintenancing the parcel later. Gen-

7 -21-1

7-21-2

JOB COST SYSTEM
INFORMATION FLOW

* ** GENERAL LEDGER *
* SYSTEM *
* *******************

*
*
*
*

* * ** JOB COST *
* SYSTEM *
* * *

* *
* *
• *
• *

••••*.*••••***.* * * *.*•••*.*•••••••
* • * * * •
* DIVISION ***** *****GENERAL LEDGER*
* ADMIN. * * * * ENTRY *
* * * * * *
**************** * * ****************

* ** *
* *
* ***************** * * ****************

* * * * * ** PROJECT ***** ***** ACCOUNTS *
*MANAGER/ENGR. * * * *PAYABLE SYSTEM*
* * * * * ***************** * * ****************

* *
* *
* *
* ***************** * * ****************

* * * * * *
* ESTIMATORS ***** ***** PAYROLL *
* * * * ***************** * ****************

*
*
*
*

**************** *
* * ** BROKERAGE OR *****
* MARKETING *
* *

"-

JOB COST DATA BASE

************* ******************
* * * *
* MANAGER **** JOB/CONTROL *
* MASTER * * MASTER *
* * * *
************* ******************

* * * *
* * * *
* * * *
* * * *

************* ****************** *************
* * * * * *
* PURCH~SE **** COST CODE **** PLAN *
* ORDER MST * * MASTER * * MASTER *
* * * * * *
************* ****************** *************

*
*
*
*

* ** TRANSACTION *
* MASTER *
* *

eral Contracting loads their estimates by file
maintenancins the cost code and estimate after the start
order hal been entered lince each project il unique.

We wUI now look at lome of the output reports
srouped by ROUlins, General Contractlns, and Land
Development. The orientation will generally be from
senior management to divisional administrative person­
nel.

HOUSING
Housing divisional management uses the job cost sys­

tem to maximize unit profit, control costs and jobs, and
fmance jobs under construction. To review unit profit a
Profit Analysis (Fig. 1, Appendix A) is prepared show­
ing the gross profit amount, gross profit as a percentage
of sales, profit per square foot, and net profit estimated
along with column subtotals. To get an overa11 look at
each housing job, a Job Cost Status (Fig. 2, Appendix
A) can be run anytime. To examine the construction
and marketing status, a Sales Analysis (Fig. 3, Appen­
dix A) is used to see what stage construction and
marketing are in. To project a sales price based on hard
and lot costs, factors for gross receipts tax, profit and
overhead, interest costs, closing costs, marketing com­
missions, discount points, lot cost, and marketing price
may be entered by subdivision and a Housing Inventory
Price Projection (Fig. 4, Appendix A) run by subdivi­
sion. These projected sales prices are compared to

those entered by brokerage marketins showing dift'er­
enees with appropriate subtotals. Factors may be varied
for ditYerent "what if" situations used In examlnins sella
ins pricel and costs. ABuilders' Risk Insurance Report
(PiS 5, Appendix A) is run to determine the value of all
open houles under construction. This value il then
submitted to our insurance company for purposes of
determining insurability under our builders' risk policy.

To assist divisional management in financins housins,
an Appraised Value Report (Fig. 6, Appendix A) is pre­
pared and siven to our various lending institutions. This
allows us to borrow up to a negotiated percentage of the
total loan value. This report shows the lending institu­
tion the status of each job and our total costs to date by
each job with column totals by subdivision and city. In
addition to the Appraised Value Report, a Housing In­
ventory Evaluation Report (Fig. 7, Appendix A) is pre­
pared showing the lot fair market value, construction
cost, total costs, market value, and sales price for each
job under construction grouped under sold houses, un-
sold houses, and vacant lots with appropriate subtotals.

Although housing division middle management and
project management have access to most of the previ­
ously described reports, they make a large number of
decisions base on data at the cost code level within a
job.

The Housing Work In Process Report (Fig. 8, Appen­
dix A) summarizes charges for each cost code by major

7 -21-3

category such as subcontract, labor, materials, and oth­
er. The cost codes are totalled and compared to a base
estimate to develop a variance amount which is printed
in the right hand column if it exceeds a predetermined
amount. Subtotals are taken on hard costs for subcon­
tract, labor, material, other, total costs, total estimate,
and total variance. Job totals are also taken on the
above plus non-hard costs. At this point variance fig­
ures are calculated for subcontract, labor, materials,
other, and total costs. Various information regarding
job status is printed at the top of this single page per job
report. A manager may find it necessary to look at the
transactions for a particular cost code. If further detail
is needed, a Job Cost Ledger Report (Fig. 9, Appendix
A) can be requested showing a complete transaction
history by cost code by job. Cost code totals are again
compared to base estimates developing variances. An
option exists to select only cost codes having variances
if desired. The detail transaction run is occasionally
used' by accounts payable personnel to verify that a
certain vendor has received payment.

In addition to the above, an individual cost code may
be displayed showing a summary of its charges, esti­
mate, variance, and outstanding purchase orders. Detail
transactions are displayed below the summary line fol­
lowed by outstanding purchase orders.

The plan master data set is used to load master base
estimates for a particular housing model and elevation.
Estimators and project managers are primarily con­
cerned with the use and upkeep of this data set. The
Plan Master Listing (Fig. 10, Appendix A) shows the
individual cost code amounts by subcontract, labor, ma­
terial, and other along with subtotals by major category
and other miscellaneous data by model and elevation.
Cost codes are loaded into the cost code master either
at the time a start order is processed or by entering ftIe
maintenance. The Plan Master Phase Listing (Fig. 11,
Appendix A) is a fmer break out showing all phases
under cost codes within a particular model and eleva­
tion. We use the phase codes to print the purchase or­
ders. In addition to hard copy, a cost code and its as­
sociated phases may be displayed on a terminal. The
estimators or project managers also have the ability to
compare different model cost codes by amount and
dollars· per square foot to see if anything looks out of
line using the Plan Master Cost Code Comparison (Fig.
12, Appendix A). For a quick overall summary, they can
run a Job Cost Estimate Listing (Fig. 13, Appendix A).

QUIZ can be used to display and print numerous
combinations of existing data elements from the plan

7 -21-4

master,job cost master, cost code master, and purchase
order master data sets. Using a generalized query!
report writer greatly enchances the ultimate use of the
system.

GENERAL CONTRACTING
General Contracting management requests a Work In

Process Summary (Fig. 14, Appendix A) to review their
overall condition. Middle management and project
managers generally refer to a Work In Process Cost
Code Summary (Fig. 15, Appendix A) to review
charges, base estimates, variances, contract amounts,
percent complete, and balances to complete figures by
cost code for a particular job. If further investigation is
needed, a General Contracting Ledger Report (Fig. 16,
Appendix A) may be run to examine the transactions
supporting each cost code. Copies of report may be
requested by the owner or architect on some jobs. Indi­
vidual cost codes may be displayed here as described in
the Housing Section. The facilities of QUIZ are also
available to the management in General Contracting.

LAND
Land Division management can request a Vacant

Land Inventory (Fig. 17, Appendix A) to get an overall
picture of their operations or to use with potential
buyers, lending institutions, and at periodic pricing
meetings. Land Division management and project en­
gineers may obtain a Job CostNariance Report (Fig. 18,
Appendix A) which contains a detail listing of charges
by cost code with appropriate subtotals by cost code,
parcel, city, and state. Summary figures are compared
to base estimates which are loaded at the time start
orders are entered or later fde maintenanced to deter­
mine variances. Miscellaneous information is printed at
the top of the page such as zoning status, number of
acresllots, etc. Individual cost codes may be displayed
here as previously referred to in the Housing Section..
Again, the full facilities of QUIZ are available. An Ap­
praised Value Report by lot is available and is similar to
the one described in Housing.

These are some of the ways that Bellamah uses its
Job Cost System to monitor costs, control projects, and
fmance projects on our HP3000. We have left the Pur­
chase Order Subsystem for another time due to the
length of this presentation. It covers the area of man­
ager performance and additional disbursement analysis.

Thank you for your interest in our area. We would be
happy to answer any questions you may have.

Is a Packaged Program the Answer?
A Compromise to MM3000

James G. Raschka CP/M
Key Tronic Corp,

Spokane, Washington

OVERVIEW
Many software vendors selling expensive inflexible

packaged manufacturing systems lack the incentive for
a pre-sale investigation to ensure success. As a result,
the successful installation of manufacturing packages
nationwide has been less than 10 percent. This paper
will present a compromise as it relates to a real experi­
ence. It should be of interest to software vendors, man­
ufacturing users, as well as the system designers and
programmers.

Key Tronic Corporation supplies 38 percent of the
world's custom terminal keyboards. The company was
founded in 1969 by Mr. Lew Zirkle in Spokane, Wash­
ington. The company is privately held and has ex­
panded to 1,200 exployees located in five locations
around the city. Sales are increasing at 30 percent per

, year with three times the present business forecasted by
1985. During the past nine months we have been work­
ing hard to establish a better information system to
handle the high volume of orders for both now and in
the future. One of the main reasons for our position in
the marketplace is our rapid turnaround from customer
drawing to a quality fmished product. Some of our cus­
tomers include IBM, Wang, Xerox, Exxon, Tandy,
Memorex, as well as many others. Our typical order
through manufacturing cycle looks like Figure 1.

Manufacturing is very vertically integrated - mean­
ing that practically everything on the keyboard is made
from raw material. The keytops and switches are made
from raw plastic pellets, printed circuit boards are cut
from large sheets of laminate and etched in our own
tanks, and most parts are inserted with the aid of auto­
mated equipment. All piece parts must be ready to go
together at fmal assembly according to a predetermined
schedule. Herein lies the complex data handling prob­
lem. There are over 100,000 parts and 350,000 structure
relationships that must be coordinated with the 16 week
backlog of piece part and keyboard orders.

The use of computer systems to aid in the tracking of
information for the company has evolved through a
number of minicomputers and stand-alone word pro­
cessing systems. Until a few years ago a central com­
puter system tracked mainly accounting and some of
the 2,500 electronic parts requirements. Small systems

such as a Burroughs, two IBM/32's, and an IBM/34
were used. For three years we searched for a packaged
manufacturing system to meet our growing needs. In
November of 1980, a Hewlett-Packard 30001111 com­
puter was installed with the Materials Management/
3000 software developed by HP. We will trace the initial
failures, eventual successes, and present status of this
installation. The fmal step was to scrap the programs
from MM/3000 and write our own to the database that
had been created.

In conclusion we will discuss how vendors might bet­
ter sell packages, especially in the light of past failures.
We will discuss preliminary system study, programming
needs, educational needs (outside of HP), and follow-on
consulting. This will be a constructive presentation and
should help future HP3000 manufacturing systems to be
brought up successfully.

DETAIL
We tried to start out right. One of the flfSt things the

MRP gurus tell you is the need for education from top
management on down. The only training class that is
offered with this package is System Administration.
The S.E.'s will tell you that this course is for one person
in the company, the one who will manage the database,
programs, and train the users. We' sent the Director of
Engineering, Manager of M.I.S., an Mfg. Project
Leader, a Systems Manager and a Programmer. As time
went by only the Director is still involved with the pro­
gram. Our present MM/3000 system manager has never
taken the class. Looking back the money would have
been better spent sending the line supervisors to a
generalized course such as Oliver Wight's five day MRP
class or some of the local American Production & In­
ventory Con~rol Society (APICS) training classes.

The next misjudgement made was in the estimate of
the database size and the amount of hardware, espe­
cially disk space that would be needed. Coupled with
the fact that no one was yet using MM/3000 and the
designers never planned to have it access such a large
database, we had a great deal of difficulty trying to
make a successful MRP run. The present database takes
one and one-half 120 megabyte disc drives. As an ex­
ample of miscalculation, it took us five days to load the

7-24-1

-...I

I
~.

I
~

1----1
Custaner
Service

I I
Scheduling

1--- ----------I
Ergineering (0-4)

1---------------------1
Tooling (5)

I -------1*
Purchasing & St:ores (8-10+)

I-----------------------
Printed Circuit Boards (8)

1-------------------
Sheebn~tal (5-6)

1-----------------
Mold Shop (3-5)

12 WEEK MANUFACTURING CYCLE
KEYBOARD MANUFAcruRING

-----1*

---1*

1*

1----1
Kitting

I 1*
Assembly

NOTE: *Quality Control Figure 1

database running twenty-four hours a day. As soon as
the MRP generation starts, it needs 1,000,000 bytes of
free space. It is efficient in the sense that it cleans up

_rdes as it goes. We often had more free space after a run
than before. The system·also keeps track of the size of
temporary rdes from run to run. A typicall run takes 14
hours even ifwe have only ten master scheduled items.

As time rolled on it became apparent that factory help
was needed. For nearly three months we were seldom
successful at making the system run properly. We had

- little help from PICS because nobody had a lot of expe­
rience since MM/3000 was new. After a while we had
direct access to the writers of MM/3000. It should be
noted here that the vertical rather than horizontal inte­
gration of the HP local and regional offices made it diffi­
cult to get all the right people together to resolve the
-problems. Some of the surprises we found were that
you can only have 64,000 parts per key. It took two days
to break this down to smaller sets, after we crashed.
The system did not have the capability to copy one bill
ofmaterial to another. We rmally wrote our own routine
to do it after HP had tried for eight months. MM/3000
and in MPE IV eat up 80-90% of the CST's. Even the
addition of MPE IV does not show any improvement.
As far as we have been told the HP3000/64 computer
upgrade won't help initially here either as it will have
the same number of CST's in the initial operating sys­
tem.

With all these start up problems we still feel we are on
the road to success. As the president of the company
put it, however, had it not been for the recession that
moderated our annual growth to only 30%, we would
never have been able to keep up with the business. Now
we should begin to look at datelines to see what events
were set in motion to help build a useful information
database.

4/1/81: With the help of a local HP/3000 with a card
reader the keypunched card structure database was put
on tape. During the same period packages were bought
for the accounting department. Database conversions
were made from IBM eight inch floppies. This included
the OIL, AIR, AlP, Payroll, and fIXed asset systems.

4/20/81: Layed out a three year MIS plan and hired a
manager to make it go.

5/1/81: The Key Tronic MRP system for electronic
parts was rewritten and completed on the HP/3000
(MRPIKTC). We didn't want to change this until we
were satisfied that MRP/MM3000 could handle it. One
week after he frrst converted it, the programmer left us
and went to work for HP.

5/1/81: Turned the IBM system off.
5/15/81: Sold and shipped the IBM/34.
6/15/81: Started our first month-end accounting

close.
7/1/81: Started our frrst year-end accounting close.

During the past two months it became obvious that with
32 us~rs the response time was going to heck in a hand

basket. HP has some penormance charts that show you
what happens.

8/1/81: Installed our second HP3000 system and split
out accounting and manufacturing.

9/15/81: Hired a senior programmer to help write a
better MRP system (MRPINEW). He did reduce the 14
hour run to less than an hour plus he fixed some prob­
lems HP had not been able to solve.

11/5/81: Installed an HP3000/33 for development
work.

Since then we have continued to rewrite the software.
Here are some of the items we' are redoing.

• Because of the length of time it takes to get a report
out we made our own MRP explosion module.

• Our company was more familiar with a "bucketed"
MRP report rather than a "bucketless," so we
made it bucketed.

• The structure and parts fde editors locked entire
data sets rather than items. This made the data
entry operators very frustrated because they were
forced to re-enter a data item over and over.
Therefore, we went to a two step approach. The
first was to use the MM/3000 batch data entry
capability. We then rewrote all the editors since we
did not have source code. Used PROTOS and the
VIEW screens that had been established. Also
used a "Father-Son" approach to programs so that
the "Son" program worked with the database and
the "Father" worked with the user.

•. By efficiently wliting our own code and taking the
MM/3000 programs off, we reduced the CST's
being used and, therefore, opened up the machine
to more users. In two years there will be 60 to 70
terminals on three HP3000's.

CONCLUSION
No matter what manufacturing system is used,

packaged or self-written, it takes up to two years to get
MRP working. A packaged system may help prepare
the database but it often is too generalized to meet spe­
cific company needs. The best thing for a vendor to do
is to sell a skeleton system that will let the user easily
build his own custom package. It would be better to
spend $5,000 for the skeleton and $20,000 for six months
ofconsulting to educate and write the fmished software.
HP charged us $25,000 for the package and an additional
$11,000 for consulting.

In my experience with IBM, DEC and HP there usu­
ally are similar areas that sales people fall short when
proposing their equipment.

1. The initial hardwre cannot handle the database.
2. The software is too generalized and cannot be cus­

tomized.
3. The combination of hardware and software does

not meet the response time expectations of the
user.

7-24-3

· Hewlett-Packard hardware was our choice because it
could be expanded as the company grows without re­
writing software. IBM and DEC usually fall short here.
The software is now our own so it can be customized.
Response time got pretty bad, but it looks like our add­
ing CPUs and rewriting more efficient software will get
us over this last problem. We also feel that the
HP3000/64 will be our next computer upgrade, espe­
cially if a better operating system (but upward compati­
ble to MPE IV) is developed.

7-24-4

All in all it has been a struggle, but we feel we are
seeing the light at the end of the tunnel. For a company
whose people had seen very little real time database use
of a computer we have come a long way since May 1,
1981. We have been called by a number of companies
for assistance and fmd there are many out there with
similar problems. We look forward to working with the
HPIIUG Manufacturing Interest Group in the future
and hope that many of you will do the same.

Management Reporting
With Hewlett-Packard's

Decision Support Graphics
William M. Crow

Director, Systems Development
Austin Information Systems

A Division of The Austin Company

Hewlett Packard's Decision Support Graphics Sys­
tem for the HP3000 family computers (DSG/3000) pro­
vides an effective tool for preparing line, bar, and pie
charts to graphically represent numerical data. Austin
Information Systems has implemented DSG/3000 for
internal reporting to the Corporate Management of The
Austin Company. This is the first of a three phase pro­
gram to provide graphic reporting as a component of
user application systems. This paper details the results
of this project.

THE AUSTIN COMPANY
The Austin Company is an international Design, En­

gineering and Construction Company headquartered in
Cleveland, Ohio with offices throughout North Amer­
ica, South America, Europe and Australia. The Com­
pany specializes in all types of industrial and commer­
cial construction, providing the owner a single point of
contact for all phases of the project from feasibility
study through occupancy. This "Austin Method" of in­
tegrating design, engineering, and construction provides
the client very rapid turnaround, allowing earlier occu­
pancy and providing a faster return on investment.

Throughout its one hundred year history, The Austin
Company has delivered 90% of all projects on time and
within budget and has built a solid reputation on innova­
tion, reliability, and quality. The Company's motto of
"Results, Not Excuses" speaks for itself.

AUSTIN INFORMATION SYSTEMS
To continue to provide its clients the best possible

service using state-of-the-art technology, The Company
created Austin Information Systems (AIS) in 1978. AIS
is chartered with providing computer based applications
for The Austin Company. This charter includes Infor­
mation Systems, Office Systems, and Engineering Sys­
tems. The current AIS network of 10 computers and
over two hundred terminals serves 12 domestic offices
of The Company and over 20 construction field loca­
tions. The primary Information Systems are online, in­
teractive applications for Project Management: Cost
Estimating, Cost Control, and Scheduling.

A computer assisted approach to project management

applications dramatically enhances the capability of
The Company. Multiple alternatives can be evaluated in
the cost estimate. Major changes in the preliminary de­
sign can easily be priced and evaluated in much less
time than was required by manual techniques. The es­
timate typically provides greater detail than those pre­
pared by hand because of the ability of the computer to
comfortably process large volumes of data. The Cost
Control System provides a significant improvement in
turnaround for the preparation of periodic job condition
statements. Cost data is continually collected at the
project site and posted to the database and, combined
with the Scheduling System, project trackability is no­
ticably enhanced. This provides the client improved vis­
ibility and allows The Company to respond faster to
potential cost or schedule problems.

THE REQUIREMENT FOR
COMPUTER GRAPHICS REPORTING

Now that these major applications have been in place
in most offices for over two years, AIS is actively de­
veloping the next evolutionary enhancements. The im­
plementation of graphics to further improve the quality
of information presented to the client is considered as
one of the next logical steps.

Since graphics hardware is already in place in some
offices to meet requirements for engineering applica­
tions, this will ease part of the cost burden for imple­
menting the first project management applications.

The ideal operational mode for these applications
would allow the user to generate a graph or chart of a
predefmed format as easily as a numeric report of a
predefmed fonnat is produced. The majority of the con­
trol provided "to the user is for the selection of the subset
of data to be included in the chart. The specific format,
axis conventions, legends, titles, colors, patterns and
other specific formatting variables that are part of a
typical chart would be predefmed in much the same way
that report titles, column headings, numerical format
and column positions are predefmed for numerical re­
ports. This allows the user to concentrate on the data
and not be burdened with the intricacies of computer
graphics.

7-49-1

INITIAL ALTERNATIVES FOR
GRAPHICS REPORTING

While graphics have been used for several one-time
requirements in the past, the systems did not lend them­
selves well to operation in a "production mode" under
user control. This would be required to satisfy the de­
sign objectives for integration with the interactive Es­
timating and Cost Control System (ECCO).

An interactive" chart preparation system (MULTIP­
LOT) is provided by Hewlett Packard for standalone .
operation on the intelligent graphics terminal in use at
Austin. While this system was able to generate the de­
sired charts, its mode of operation required the user to
prepare the specific data to be graphed and respond to
several questions derming chart "format. While usable
for one-time applications by an operator familiar with
the system, it did not provide any reasonable interface
to ECeO for the end user.

The development of custom routines to generate the
required charts could be designed to provide the neces­
sary user interfaces but the cost involved in this custom
programming combined with the inflexiblity of the rmal
product did not make this alternative very attractive.

HEWLETT PACKARD'S DECISION
SUPPORT GRAPHICS SYSTEM

HP's announcement of OSO/3000 in late 1980 pro­
vided a reasonable alternative to meet our design objec­
tives for implementing production graphics with the
ECCO System. Additionally, it appeared to be capable
of addressing the volume of one-time graphs currently
being prepared for other requirements.

DSO/3000 provides the capability to prepare several
variations of line charts, bar charts, and pie charts. The
chart specification is prepared through a friendly in­
teractive system utilizing "fill-in-the-blank" formatted
screens.

Data is extracted·from sequential rtles that can be
easily prepared from a database using a report writer.
Once a chart is defined, it can be used again and again
with different sets of data without the need to redefme
"the chart parameters. Scaling can be fIXed by the user or
automatically scaled by the system to fit the data. Out­
put can be displayed on a graphic CRT terminal or
routed to any of several HP hard copy devices: pen
plotters, thermal plotters or dot matrix printer/plotters.

D80/3000 provides the user with capabilities to select
subsets of the data ftle to be included on the graph. This
allows extreme points to be deleted easily or several
different charts to be prepared from a single data ftle.
The user fIrst assigns variable names to the fields of the
data fIle (either fIXed or free format). Additional var­
iables can then be defmed by expressions using previ­
ously defined variables. Finally, conditioned ex­
pressions that control which data is actually used can be
dermed using any of these variables.

For one-time applications, 080/3000 provides a for-

7~49-2

matted screen that allows the user to enter data interac­
tively. This data can be edited and saved for later use.

The documentation provided with OSO/30OO is very
good. A comprehensive User Reference Manual pro­
vides the detailed description of the system while a brief
User's Guide answers most questions for the user while
working at the terminal. An optional self-paced training
package leads a user with no previous computer experi­
ence through the full capabilities of the OSO/3000 in­
teractive system. This course typically requires about
ten hours of reading and terminal time.

DSG/3000 provides the fundamental capabilities to
meet the dermed requirements because of the distinct
separation of data, chart, and output dermition inherent
in its architecture. The user may independently derme
the data structure, the parameters which control the
type and format of the chart, arid the output scaling and
destination. Any of these can be updated for the specific
requirements independent of the others. This allows the
system analyst to develop the required chart format
definitions and data interface appropriate for the input
rtle. The user must only derme the specific data to be
included in the data rtle and the output destination for
the chart.

DSG/3000 can be integrated directly with the ECCO
System (or any other user application) because all of the
functions of OSO/3000 that are available through in­
teractive, formatted screens are also available as pro­
gram callable intrinsics. This provides the system de­
signer all the capabilities of DSO/3000 while also allow­
ing the user to be completely insulated from all of the
graphics controls. This allows graphics to be im­
plemented in a truly production mode.

A PHASED IMPLEMENTATION PLAN
While DSO/30oo appeared on the surface to provide

all the mechanical tools necessary to meet the design
objective, several questions regarding types of graphs,
data to be graphed, output mechanism, hardware con­
figuration, and user reaction had to be answered for our
specific application, environment, and user community.
To accomplish this, a three phase plan was dermed lead­
ing up to the implementation of DSG/3000 with the
ECCO System:

Phase I - DSO/30oo to be implemented in an interac­
tive mode to prepare charts for AIS management report­
ing to Austin Corporate Staff. Data to be" charted in­
cludes system utilization, revenue and operating costs.

Phase II - OSO/3000 to be implemented in a pro­
gram callable mode as part of the AIS computer ser­
vices chargeback system. This will provide clients
graphic reports of computer services utilization, dis­
tribution, and costs.

Phase III - OSO/3000 to be implemented as a pro­
gram callable component of the ECCO System as de­
scribed earlier.

AI8 has been using OSG/3000 for several months as

part of our Phase I program. Currently it is being im­
plemented into the next major release of the chargeback
system and following that release, DSO/3000 will be
incoporated with the ECCO System.

HARDWARE REQUIREMENTS
A surprisingly minimal hardware configuration is re­

quired to implement graphics in a production environ­
ment. Since the user is not designing charts, but only
generating charts based on predefmed chart defmitions,
there is little requirement for a graphics display terminal
to preview the output. The application program is oper­
ated through standard block mode alphanumeric termi­
nals and the graphic output is routed to a four pen plot­
ter. (HP now sells their plotters with eight pens instead
of four but none of these newer models are currently
installed at Austin.) The plotter is equipped with a roll
paper, automatic chart advance option that allows the
device to be operated while unattended. In actual prod­
uction use, the plotter will require little more attention
than a spooled printer serving users with printed output.
The HP model 7220S plotter used at The Austin Com­
pany costs approximately $7250.00.

While not required for all users, a graphics display
terminal can be made available in each office to facili­
tate the use of DSG/3000 as an interactive tool as well as
allow charts to be previewed before plotting when re­
quired. At Austin, we are currently using HP 2647A
Intelligent Graphics Display Terminals. Configured
with the required options and interfaces, the HP 2647A
costs just under $10,000.00. The primary use for these
devices is currently for engineering applications; sev­
eral unique requirements justify the cost of this sophis­
ticated terminal. Hewlett-Packard recently announced
that their 2623A Graphics Terminal provides the ideal
capability set for the Austin environment. At $3750.00
this terminal· provides extensive graphics capabilities
for the same price of an alphanumeric terminal of 2
years ago. Also available is an integral thermal printer
option for $1210.00.

AIS is currently using an HP 7310A thermal printer/
plotter to produce fast, black & white graphics output
for both preview and reporting. While this particular
product has been discontinued by HP, there are other
devices within the product line that provide similar
capabilities.

The chart in fIgure la was produced on the 7220S pen
plotter (the original used 5 different colors) while figure
Ib shows the same chart displayed on the 7310A ther­
mal printer/plotter.

PHASE I RESULTS
Because of its use on an interactive basis during the

fIrst phase, D8G/3000 has not truly been implemented
in a production mode. While many standarized charts
are produced monthly, some charts are still produced
on an as-required basis. However, the exercise has pro­
vided insight to many of the issues that must be ad-

dressed to implement graphics as a component of an
online, user-based application system. The charts pro­
duced required minimal· effort once the initial defi­
nitions were established and have been very well re­
ceived by the target audience: Corporate Staff mem­
bers. The operation of an Information Systems Division
within a construction company introduces unique man­
agement problems and graphics has provided better in­
sight at the Corporate level. The enhanced clairty of the
data yields measurable improvements in the ability to
effectively report on the operations of the division.
Graphic reports have also been instrumental in a cur­
rent AIS project re-evaluating and redefming the entire
computer services cost chargeback procedure. .

The project has uncovered several avenues by which
graphics can overburden or obscure the decision mak­
ing process. Like any other tool, graphic reporting must
be used intelligently to be effective. The user must
understand the capabilities and limitations of the media
to secure any reasonable advantages.

HOW, WHAT, WHO, WHEN

Significant in the effective use of any tool is an under­
standing ofhow to use it, what it should be used on, who
it should be used for, and when it is appropriate to be
used. Computer Graphics' offers no exceptions.

Virtually any type of data will lend itself to attractive
graphic representation. Common sense provides the
best guideline to choosing the type of chart to use. Data
plotted against time can best be represented with a line
or bar chart. Stacked bar segments can show an
additional dimension of distribution within each period.
Multiple dependent variables can be represented with
multiple lines plotted on a common axis or with clusters
of bars at each discrete period defmed by the indepen­
dent variable. The former allows comparisons of trends
while the latter allows comparison within each period.
Care must be exercised in using line graphs with a c;lis­
crete independent variable because the chart will tend
to show trends that imply the data is continuous. Pie
charts show percentage distribution of a single data
element. The pie chart can be misused if it is not appro­
priate to describe the total data set as the sum of the
discrete data elements represented.

While certain classes of data may lend themselves to
an attractive graphic portrayal, it may not be appro­
priate to graph if it provides no new insight to the data.
This is best described by considering

Crow's First Maxim of· Graphic Reporting:
"Graphing certain classes of data is like
teaching a gorilla how to speak . . . It can be
done, but will it tell you anything you didn't
already know?"

A graph that offers no new information can only add
confusion to a decision making process.

The use of colors and fill patterns can be used to
dramatically enhance the asthetic appeal of a graph but

·7-49-3

again, common sense must dictate their use. If the graph
will be reproduced for distribution, it must not depend
on colors to convey vital information. While different
line patterns and ftIl textures can be used to differentiate
data, an excessive use may generate more confusion
than clarity. One must maintain simplicity in the data to
use colors and textures effectively in a production
mode. Too much information portrayed on one graph
soon becomes meaningless. The age old T-SHIRT rule
of presentations holds true:

"If it's too much information to fit on the
front ofa T-SHIRT, it's too much information
to put on a presentation graph."

The goal of graphics is to lend clarity and insight into
otherwise confusing or involved data. An effective
graph will make its point at frrst glance and not require
the user to study it in detail.

The choice of chart type, colors, textures, and data
scaling can be powerful tools in controlling the desired
reaction to the data. Charts can exagerate, emphasize,
diminish, or obscure the information but they will not
change the basic facts presented. While it may be desir­
able to use these tools to create an intended response,
sometimes the attempt only yields confusion. In a prod­
uction mode, where each graph is not given individual
design consideration, the choice of these display
parameters must be made carefully to be effective. The
best chart is one that relys on the data for the message,
not the surrounding clutter of legends, colors, fill pat­
terns and titles.

Knowing the intended audience for graphic reporting
is essential in preparing an effective chart. A skilled
manager familiar with the data that is to be presented
can digest far more information in a single chart than
can a client to whom one is presenting new and complex
information for the frrst time. While computer graphics
can be very impressive, if they present confusion then
the over all result will be negative. In some environ­
ments, graphic reports may not be appropriate at all. A
senior executive that is skilled in interpreting periodic
numeric reports may not gain any significant benefit
from graphs of the same data. This individual's man­
agement style and mode of operation is well defined and
most likely very effective. Unless there is a recognized
difficulty in digesting data in a numeric form, a graphic
report may not be appropriate. This situation is typi­
cally much more pronounced if the user is to use a
system interactively to produce graphics on an ad-hoc
basis. The best target users for this type of tool are
young executives or middle managers who have not de­
veloped a complete management style and are receptive

7-49-4

to tools that can improve their performance. A senior
executive has allready developed an effective manage­
ment style using the tools currently available. Unless
there is difficulty with the present management ap­
proach, the senior executive is not likely to adopt new
tools or techniques.

The decision of when to use graphic reports need only
address the cost effectiveness of the intended applica­
tion if the afforementioned issues have been analyzed
properly. The cost of preparing the graphs, including
one time costs and operating expenses, must be
weighed against the value of the graphic reports. This
analysis is no different than assessing the value of any
other computer based application. If it provides a direct
replacement for a task previously done .by manual tech­
niques then it can most likely be expressed in a fIrm cost
comparison. If the graphics reports provide a new re­
source to the organization, the value of this resource
must be assessed objectively to be compared against the
cost of implementation.

DSB/3000 LIMITATIONS
While OSO/30oo provides the fundamental tools re­

quired, it has limitations which reduce its potential ef­
fectiveness. As a system designed to be used either as
an interactive application for ad-hoc reports or a prod­
uction system for presentation graphs, it has compro­
mised at both extremes by positioning in the middle
ground. The volume of forms that must be completed to
produce a single chart is confusing for the frrst time or
casual user. The effort of preparing the graph soon ec­
lipses the usefullness of the fmal product. OSO/3000
lacks sophisticated capabilities for easily preparing
mulitple charts on a single page, overlaying line and bar
charts, or utilizing a variety of character fonts; these are
vital functions for preparing formal presentation
graphics. The data selection and qualification capability
of OSO/30oo is very useful, but too limited. The user
must typically extract specific data for each graph. It
would be very useful to provide DSO/30oo a direct
interface to the HP/3000 IMAGE database system and
eliminate the need of a report writer to extract the data
to a sequential ftIe.

SUMMARY

OSO/3000 has opened a significant door in allowing a
straightforward implementation of graphics reporting a
successful frrst step toward implementing this system as
a powerful enhancement to existing online, interactive
applications.

, ")

AIS Computer Usage Summary _. 1980

.~

Monthly Usoge by Application - All Users

COST CON]ROL SCHEDUUNGESTIMATING

RIll ~ W41

ENGINEERING

-
Thousands of CPU Seconds

~. .
200

150

1980

Prepared by: Austfn Informatfon Systems

-...J

I
~
\0

I
til

~i-
ri...
I»

100

50

o
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV

7/81

DEC

~IS Computer Usage Summary 1980
Monthly Usage by Appli,ation - All Us.rs

ESTIMATING COST .CONTROL SCHEDULING ENGINEERING

......iIiiIIIiIII...

JAN rEB MAR APR MAV JUN JUL AU; SEP OCT NOY DEC
198a

Pr.par.d by. Austin Information Syst.~s 7/81

58

ise

lea

aae

t!~
Thous.nds of CPU S~conds

2Se .---------------------------...

Figure Ib

TOTAL ESTIMATE S 126020
TOTAL ESTIMATE 7 188450
TOTAL ESTIMATE 8 73933
TOTAL ESTIMATE 9 106439
TOTAL. ESTIMATE 10 107962
TOTAL ESTIMATE 11 67009
TOTAL ESTIMATE 12 76091
TOTAL ESTIMATE 0 12828020
TOTAL COSTCNTL 1 102265
TOTAL COSTCNT'L 2 79981
TOTAL COSTCNTL 3 123160
TOTAL COSTCNTL 4 137017
TOTAL COSTCNTL 5 111 038
TOTAL COSTCNTL S 91635
TOTAL COSTCNTL 7 125874
TOTAL COSTCNTL 8 130609
TOTAL COSTCNTL S 105769
TOTAL COSTCNTL 10 109804

A Portion oT data T11 e DATAPLT3

Figure 2

7-49-6

.' .': -:~ ~. ~ ",' . .. '.'

Operatio,n Char t· Name Char t F t 1e Name

-----------------------------------~-

R - Add new chart

M - Mod;fy or recall chart

P - Purge chart

I - Display/supply chart information

8 - Browse chart f1 le

Q - aUERY.PUB.SYS

F - BUild/modify data Tile

E - Exit

D - Draw chartCs) (DIU - No pauses)
Device ID UIIIIID
HP-IB tt ••••••••••••••••• .,--

c - Copy chart from:
Chart name•....•••..
Char t f, le .••.••......••_ ..._- ----

Figure 38

Enter S.lectten: DID
··DAtA TO BE GRAPHED·················

F • Create/modtfy data ftll
~ • Select data ftle to b. graphed
T • Tr_n8fQrm data ftl.

··CHART RND DRTA SELECTION···········

C • Choose chart type: umg
P - Pte
L - Line or Soattergr~m

B - Barchart
S-Sltde

DIU - Initialtze chart

Figure 3b

··ENHANCEMENTS·················

x • A~el Icaltn;, ticks, grtd.
~ • ~.g.nd., colore, t.~turl.

I · Tttl ••
A • Annotations

-·OTHER········-_·--·-·--······
G - Graphics devtce .election

and centrol
E • Exit

--_....
7-49-7

Data File Name

M;ssing Data Value DiFPBS'IIU

VARIABLE NAME DATA TYPE
(F RE E)
Field

DATA FORMAT
(FIXED)

Offset Length

or

Data types: N=Numer1c, T-Text-_.... _ ..--..
Figure 3c

GRAPH (A.·OO~·OO)···Dat.a ..!ransf"ormat ions···.· . I " .' :.

New vartable Mathematical expression of old variables
----~----------------------~-----~-------------------------

--------------~--

........
Common F~nctions:

--------------~---
MOVEAVG (var,n)
CUMULATE (var)

Special Functions:

ASS (expr)
SORT (expr)

LOG (expr)
LN (expr)_ ..

Operators:

+,-,*,/,**
MOD

Figure 3d

7-49-8

Y Axis
Variables

X Axis
Variable

Plot

Options: ~ - Clustered Bars
UIU - Hori=ontal Bars

Data Subset Sp~cjficatton (optional)

Figure 3e

Var;able Qual iflcation

[T~U .;:::.,~".:.::... "!:~J >".:~: ;'::;:;.;·::l

-

I' if]

Figure 3f

7 -49-9

Y AXIS X AXIS

Type CL-Ltnear,O-Log) •••..•.••.•.•.•
Min t mum ••••••••••••••••
Max i mum ••••••••••• ~ ••••
Interva 1 size .••••••••••••••••••.

Variable III MONTH
Mi n 1mum •.•.••••••••.•.•• I' ..
Number of bar s •.•...........

Number oT minor per major ticks ••••
Draw t1cka on right axis ••.••••.•.••
Drawgrfd lines •••••••••••••••••••••
Draw minor grid lines (logs only) •••
Number of t f ck mar ks per 1abe 1 •••••
Label type (N,P) ••••.•••.••.•.••...•

Number of bars between grid
lines (default a Q) ••• I ••••••~

Bar label type CN,P,W,trl,Q,Y) •••
Calendar Label Start .
Ca 1endar Labe 1 Length••••••

(A-Abbreviated,F=Full)

W - Weekdays (1-7)
M - Months (1-12)

Valid Label Types:
N - Numeric (calculate)
P - Prompt for· labels

--_..
Q - Quarters (1-4)
Y - Years

........
Figure 3g

(~I~'II 'II (11_ ()(,_ ()()) It~,r (~tl.. r t 1Lf~~lt:r"j:·~ I !" {Jill'n~I: .11 IIU II~Z

V,,.tabl.
Calcr
(0-4)

TI)Ciure
CO-a) L.esend TI)(t

-_.... _

11II
11II

-­III
11II
11II
11II
11II

I. I (]"l-'l ". ,'. .]

II CI·tll .I

I ,.. ', .'t . : .'" . '. " : .. J

1 I LI 'II ~ ' . , .1

Figure 3h

7-49-10

Main Title:

Subtitle:

or using smaller text

Left Y Rxis Title:
[]'housands~-:iO-f:r

X AXis Title:

Footnote:
[Prepared ~ by: ~: Rust 1n" In-formatli on;'.:Sys~ems;·· .,' .;':' ". " , :".n ,,\:,; .'~: ", ~~~?". ','.,.",. :,,-,~,'" -,':', :,.-.:', -, ••: 7/81 J

--_.. _
Figure 3i

(~I~.II·II (11_ ()()_ ~)()) l'lrar .. a t~·, t .or.=·; I _" (J,U U~ .. : .u I Itl u~./

Addl'Mcdtfyl'Oellte annet.ttc" Cf; or M or D) •••••••••••••••••••••••••••

. . I....
.........................
..............................

Type (A-Arrow, ~·~tn., imBox, T·TI~t)

Co 1Qr (0- 4) •••••••••••••••••••••••
Te)(ture (O-e)

If Adding or Modtfytng then:

IT Text the,n:

Text ••••••••
Size (1-50) .
Rngle (0-359)
Text Justification

• • • • • II ••••••••••

CL,C,R)

Figure 3j

7 -49.-11

Device:

I D •••••••••
Speed ••••••
Text ..".....

Plotting Area:

~
'4.

(F=Fast, S=Slow)
(ScSoftware, H=Hardware)

HP-IB Address .
Copies •••••••••••••••••

Eoundary type •...•....• (E:zEnglfsh, M=Metric, D=Data, C=Chart)

Lower 1eft ••••••.•••••
Upper right .

(mf l11meters)
(mil 1 i me t e r s)

Suppress Options:

Titles II -Labels
Legends - Data
Chart Advancement

Figure 3k

7 -49-12

•

II -Axes
- Frame

-_....

1~;J;).;a';B·!·JI[·!·J";!!I;PJiliiiDS!B1i,fjj+l'lla

-

..• ·4 .•••••••••••••••••••••••••••••••••••••.

~ ---.-t .
'~~:-;:.:.. .'.: : :

: IJDi:I ~
~~·• •••• 0 •••••••••••••••••••••

·· .

••Qua l:j~\jcat j ons

·· .

•
. miD

.•. w:mi..­~
L'i ~e.~~i.Char::t
·~L~gends:~.:i

BIll· .-• • . • : • I . I. - . .
· .· .•-
• • •

Bar ~ ..Ch~ar t
Legends

'. Bar7 chair t . and .
L j n~char[t' ;:Ti t·) es

Figure 4a

GRAPH's purpose ;s to visually display information in a data file.
Piecharts, linecharts, and barcharts can NOT be made without a data file I

To make a chart, complete the following steps:

1) If you do not already have a data file then you should select
the ifF" operation and press ENTER to build a data fi leo

2) ENTER "D" to attach GRAPH to a particular data file to be
graphed.

3) After the data file has been attached then you can ENTER lie"
to make a char t, and choose II pll, II L", or II B" as the char t type.
Marking the initialize option will clear all. variables, quallficat1ons,
aXis settings, legends, titles, and annotations for the chart.

ENTER "G" to select another graphics device (like a plotter).
operations are optional and described on other help menus.

Figure 4b

All other

--
7 -49-13

,_

1.•

i;

';..' .-.

','

:1

'''-.--

another copy is required, or an updated version with
new data is requested, or the chart definition is used as
the basis for a revised design or for the next graph to be
designed. People are more productive when the graph
and data are ready and waiting to be redrawn or
changed.

The occasional or periodic user sometimes requests
documentation of the chart design already developed
and sav~d in order to plan the next revision"while wait­
ing for the terminal to become available, or to refer to
while designing another chart on the screen. A 26310
printer attached to the 2647A graphics terminal via the
HP-IB is used for this purpose. The DSO screens can be
transferred to the printer by using the 2647A's Com­
mand mode. Before enabling Command mode, the cur­
sor must be positioned in the upper left comer of the
screen. Homing the cursor will get it to the first unpro­
tected field, and using the cursor arrow keys to get it to
the beginning of the window will make it possible to
print the screen title. Pressing the CNTL key anod the 55
key simultaneously releases the protected fields, mak­
ing it possible to copy them to the printer. The sequence
required to print a copy of the screen is "

Business Graphics Applications
Using DSG/3000

Cecile Chi

The value ofgraphs as an effective method ofpresent­
ing information is widely acknowledged. As a result,
many graphs are being produced manually or at service
bureau charges are growing rapidly. The HP3000 with
the Decision Support Graphics (DSG) software package
to the rescue!

Some graphics requirements are of the one-time,
type-in-the-data variety, using either paper or trans­
parencies. These are drawn by managers, professionals,
or secretaries using the Multiplot package on the
HP2647/2648 standalone graphics system or DSG/3000.
My experience has been that people are not willing to
take the time to read through the booklets and try the
examples in the Self-Paces DSG course. It's always
"Just show me how to start this thing!" followed by
"What does it want now?" and "How do I tell it to do
what I want?" Half an hour of explanation and
question-answering is usually enough to get a new user
going on the first application, and after that it's a matter
of being available to answer questions from time to
time. A major advantage of DSG over Multiplot is that
neither graph design nor data disappear when the user
goes on to the next graph or turns off the terminal. A
one-time graph is seldom really a one-time graph. Either

[;C)MMANI)
(~ (] p Y (·r ~:_~)
AI...L (·f:·3) for Ol"r

1>:r ~:)P L.AY (·f~~)
t () ~i P _. I :c.:{ (·f 7) :II:
f.) (0 r wh <~ t e ..., e r y () U r p r' :i. n 1: era cl (j r" (~ ~::. ~:; :i. ~:~)
;~ E·rlJI~ N .

Pressing the COMMAND key disables Command
mode, and pressing the CNTL key and /4 key simul­
taneously turns on the V13000 field protection, getting
you back into DSG. It is necessary to get out of Com­
mand mode and into the DSG in order to get to the next
screen to be printed. Paging of the printer must be done
manually, since the Copy command does not cause a
page eject. Two screens will fit nicely on a page, with a
few blank lines to separate them. Similary, the graph
drawn on the screen can be transferred to the printer
using .the sequence

C: {] t1 M{~ i\! I)
next(·fl)
n f:~ ~ t (f"1)

·rl~ ANE)FE:~?"(·f3)
(.~I 1...1... (f' ~3) ·f r' t:J '"

c; r~ AP 1--1 I C~:) (·f 4)
t 0 HP I 1·:< (:ro17) :IJ:
I:) (p r "i. n t (~.~ r' ~:l d d f" r.... E" -t:;)
Rr: or t..,l Ri'~ >

Use COMMAND to get back to DSG. The Transfer
command does cause a page eject on the printer at the
end of the graph. We end up with documentation which
tits on 8~"x 11" paper, ready to go into the user's fIle
folder or loose-leaf notebook.

DSG contains an option (which is implemented from
the Main Control menu) to draw each graph in a chart
file, with or without a pause between graphs. The

7-55-1

graphs may be directed to either the screen of the
graphics terminal or to the plotter. Drawing all of the
charts from a file to the plotter requires either an
operator to change the paper between plots or a scrol­
ling option on the plotter to advance the roll of plot
paper between graphs.

Another option for unattended production of the
series of graphs contained in a chart file is to use the
printer. Printer graphs are black and white, without
anywhere near the resolution of a plotter graph, but for
screening or quick reference they are frequently worth'
the savings in time and cost. The GRAFPRNT program .
on the swap ~ape for this conference is a generalized
graph-printing program~ It is run from a graphics termi­
nal which has a graphics printer (26310) attached via
the HP-IB; it temporarily resets the device destination
and chart size and then produces all charts in any given
chart fIle on the terminal screen and then transfers them
to the printer. The COBOL source cod'e is included,
since the compiled version includes directions to a
2647A graphics terminal and a printer on HP-IB address
6; these.may need to be changed to fit your hardware. A
pause is required to allow time for transferring the graph
from the screen to the printer; the call to "FPAUSE"
calls a FORTRAN subroutine which calls the PAUSE
intrinsic. The PAUSE intrinsic can't be called from
COBOL because it requires a REAL parameter, an.d HP
COBOL does not support data type REAL. The 40­
sec9nd pause used in this program has been adequate
for all applications I've implemented so far; it may not
be the optimum length of time.

The methods discussed so far have required designing
. each individual graph using OSG. However, there are

many. applications in the business world which require
sets of graphs identical in design except for a few vari­
ables. One variable is usually a title line, and another
would probably be either the data fIle name or the data
subset specification. Labels and additional title lines
may also be variables. An example of this method is the
Sales Graph system illustrated with a flowchart (Exhibit
1) and UOC:

~:) (=~) L. t:: C~ i~~ ,~:, F
F I L. f::: TIT L. E~;) :::: ~:; (~ 1...1::: i'! I~~ ivl [:
F I LEt· (~ T{~t::' I t... E::: ~~ AI." E~ I) p, T(.:,
r~ tJ J\! I::: :=< 'f F~ I::,CT ;. P r~' r~ M:::: :;~~ l 0 0 0 0 ()
F I Lf::: [.~'x t':~F F' I L,E:~:: l)Fi\1r:)C;I~ ('~F

RtJ i'~ DI~ A1.1..' JL. :r I~; :::: t·; ~ P '~:II~ 11 :::: :;{. 'J 0 (I (I 0 0

PI Rt~ f~~ !~~I F'
F I L. t;:: TIT 1... E:: f:) :::: (.:ll~~ N(.~ ~1 f:::
F:' I I... !::: l) (.~ '1' AF' I L. E: :::: AI~ 1) i~~ 't (:~f

I~ I..) N E)(T ,~~ (.:1 C: T ;. PPI ,~ Iv} :::: ;f, ~:? [I 0 () {}
F· J J.. E: G!~ ~,I::'F' I 1... [~~:I)J~~:i"i{]Gl~ "~IF

Rl 'N Df~~ Al,J > I... I E~ ::~. G~ ..~ P f~f ~~ M:~~: ~{. ~:) 0 ("t 0 0

The title file, which may be created and maintained

with EOIT/3000, contains the graph titles. It also

7 -55-2

specifies the plants for which data is to be extracted
from the database and controls the order in which
graphs are drawn. The EXTRACT program retrieves
the specified data for the plants listed in the title file and
arranges it in appropriate format for OSG. The PARM
parameter on the RUN command sets a software ~witch

which is used· by the EXTRACT program to identify the
account code to be used for extracting data from the
database, and by the draw program to identify the chart
name to retrieve from the chart file. This program may
be replaced by QUERY if the database is designed in
such a way that QUERY is adequate, or by AQ if it is
implemented at your site and will handle your needs.
The major limitation of QUERY is that it can acce.ss
only one data set at a time. AQ can access and concate­
nate m~ltiple data sets, and the added flexibility may
make it possible to use it in place of an Extract program.
Of course, if you need a linear regression on your data,
you need' a program. Using whichever method is most
appropriate, a date file is created, containing data in
DSG format.
. Then a graph drawing program, DRAW, is initiated by
the UOC. This program retrieves the appropriate chart
from the chart file and then reads through the title fIle.
There are optional methods of writing this program, de­
pending upon whether the plotter being used has the
sprolling option. If it is a scrollable.plotter, the program
can just cycle through the title file, setting the title and
data subset specifications and drawing a graph for each
record in the title file. Ifthe scrolling optio~ is ~ot avail­
able on the plotter being used, the program is written to
senq a m~ssage to the termin~l each time it reads a
record in the title fIle, asking the operator whether it
should draw a graph for the current title and reminding
him or her to change the paper on the plotter.

Some applications consist of groups of very similar
. charts, such as graphs of budget versus actual over time

for each of many departments or divisions, for each of a
number of measures. Multiple copies are requried in
many cases. Since the quantities run to dozens or hun­
dreds per monthly batch, it is not practical to draw them
on a pen plotter without a scrolling option, which re­
quires someone to change the paper after each plot.
Color plots and high resolution are not necessary for
screening large numbers of graphs, looking for trends
and exceptions, so the cost of a scrollable plotter would
not be considered justifiable.

The next option handles the batches of graphs which
need to be repeated for multilple groups and multiple
measures. The method illustrated in Exhibit 2 uses data
which is retrieved through RJE from a non-HP main­
frame using a report tabulating utility program. The util­
ity is run on the mainframe to produce a "printed" re­
port according to pre-defined specifications such as no
titles and the use of identification codes as column
headers, with the report routed to the HP3000. Then the
report is read onto a disc file using RJE. A COBOL
program is used to read this disc file and flip the matrix,

~
\'

producing a data file in a format suitable for DSG and
printing a format listing of the data file to be used for
data defmition. At this point, the user designs a set of
graphs in one chart file, using DSG, with the graphs in
the same order as the data. The title file, containing the
identification codes to be used for data subset specif­
ications and the variable title line, is arranged in the
order in which the graphs should print. Then the
graph-:drawing program MULTGRAF is initiated. This
program cycles through the chart file, drawing a graph
for each location for each chart. If multiple copies are
requested, it starts over. More efficient utilization of the
computer would be achieved by doing multiple transfers
of each screen; in our case, it was decided to use more
machine time to redraw the additional copies in·order to
avoid the clerical time required to sort the graphs. By
printing them in the proper order, the whole run can be
fed through a burster and then separated into groups for
attachment to reports. Once the data file has been
created and the chart designs done, any given individual
graph can be selected interactively by setting the subset
specification and the title on the DSG menus and then
drawing the graph on the screen and transferring to the
printer or drawing it on the plotter to get colors and
better resolution.

Our largest monthly production run so far consists of
4 copies of graphs for 17 locations on 18 to 20 different
measures, for a total of over 1200 graphs. This run takes
over 24 hours, so it is either run on a weekend or run
with 2 copies on two nights. ~ven a scrollable plotter
would require approximately 5 minutes per graph, or
100 hours, which is not acceptable tum-around time.
The best service bureau bid, based on large volume reg-

ularly, was $10 per graph and 4-day turnaround.
A frequent question from management or profes­

sional users is, "Can't you print the data under the
graphs?"; the answer is "Well, yes, but it requires some
custom programming." The method illustrated in Ex­
hibit 3 requires two programs and two passes of the
paper through the printers. The REPORT program gen­
erates reports with about eight lines of title and heading
information, a lot of blank space, and then the labeled
lines of data, and footnotes. This program also creates
the title file and data file for DSG. If the application, did
not require so many heading lines, the titles could be
printed from DSG rather that the Report program. The
paper containing the reports is fed into the graphics
printer, and another version of MULTGRAF is used to
print the graphs in the blank spaces on the reports. It
would be possible to draw plotter graphs on the reports
instead of printing graphs, by setting the graph dimen­
sions appropriately and changing the paper after each
graph. Keeping everything in the right order would re­
quire an operator's undivided attention, however, and
thus is probable not practical for production runs ofany
size.

The methods of utilizing DSG programatically· de­
scribed here are early experiments at improving office
productivity by providing better tools. The fact that
these tools are being used as fast as they are developed
demonstrates that they fill a need, and should encourage
continued development ·of better tools. The release by
the HP lab of their Contributed Graphics Library
(CGL/3000) or graphics intrinsics will provide pro­
grammers with the opportunity to develop new sets of
tools.

7 -55-3

EXHIBIT 1

EXTRACT
Program

ID CODE
DATE

1-------1

BUDGET AMOUNT
ACTUAL AMOUNT

----------lID CODE
TITLE

DRAW ~ ~~ Graphics
Program Terminal

GRAPHS

7 -55-4

EXHIBIT 2

Format.

Routed
PRINT
Fi Ie

Tabulating
Utility

TERMINAL

SORT

MULTGRAF

GRAPHS

7 -55-5

EXHIBIT 3

Re9uest
Parameters

REPORTS

,REPORT
Program

MULTGRAF
Program

GRAPHS

7 -55-6

Tips and Techniques for
Data Interrace to DSG/3000

Jason M. Goertz
Systems Engineer
Hewlett-Packard

Bellevue, Washington

INTRODUCTION
In the last several years, businesses have seen an

increasing awareness and use of computer generated
graphics. While the military, along with the auto and
aircraft industries, has en- joyed the use of computer
graphics since the early 1960's, it has only been recently
that graphic hardware and software has been in the cost
range for the small or medium sized business. This is
primarily due to the drastic lowering of the cost of
minicom- puters and peripherals in the past few years.
So great is the awareness and visibility of computer
graphics that even Webster now lists one dermition of
the noun graphic as "a graphic representation dis­
played by a computer (as a CRT)."

Hewlett-Packard has shown to be a leader in this re­
volution of "affordable graphics." Calcomp and other
companies have been building large bed and drum plot­
ters (at a large cost) for many years, while HP entered
the market with small bed pen plotters and other
graphic output devices which cost only few thousand
dollors. HP's largest plotter, while not ~he largest on the
market, is half the cost of any plotter of comparable size
and petformance. Today, HP's graphic output devices
take one of five forms:

1. Digital 8 pen plotters, such as the 7221C and
9872C.

2. Digital thermal printer-plotters, such as the 7245.
3. Raster hardcopy devices, such as the 7310.
4. Raster CRT devices, such as the 2647, 2648, 2623

terminals.
5. Desktop computers with raster CRT output, in­

cluding the 9845C, with color CRT graphics. We
will not deal with this in this paper.

Digital devices are those that receive data in a digital
form, such as characters sent via a modem, or HP-IB
link. This is different that an analog device, which plots
databased upon changing voltage, current, or some
other data source whose range of values is a continuum,
rather than discrete points. Raster devices are those
whose graphic output is formed by a matrix of dots,
either turned on or off. All HP CRT terminals use raster
technology. If the reader is unfamiliar with these terms,

a very good computer graphics "primer" is available
from Hewlett-Packard, called Becoming Comfortable
with Computer Graphics. This is a small document pub­
lished by HP's San Diego Division.

Computer hardware is, of course, useless without
software to drive it. Hewlett-Packard's graphic
software offerings are many and varied, with software
available on all of the computers built. HP has even
written it's own graphics languages, such as HP-GL,
which most of the 8 pen plotters use as an intemallan­
guage, and AGL, a high level language which is stan­
dard among many of HP's computers. HP has used
these languages to write several applications, such as
the graphics package on the HPI000 ("BRUNO"), and a
package, aimed at the business market, which runs on
the HP3000, called Decision Support Graphics, or
DSO/30oo.

DSO/3000 is a high level application software pack­
age. It is optimized to easily derme and generate graphic
plots that are commonly used in the business world.
These plots are line charts, scattergrams, bar charts and
pie charts. DSO is also capable of producing slides plots
with only textual data, commonly referred to as
"slides." DSG is not capable of petforming so-called
"technical" graphics functions, such as computer map­
ping, Computer Aided Design, or real-time graphics.
However, the functions that DSG is designed to per­
form it performs very well, and is easy to learn to use.

The primary advantage of DSG is that it runs on the
HP3000, and thus has access to all of the data storage
capabilities of the HP3000. This is ideal for business
graphics, which usually deals with sales figures,
forecasts, budgets, and other data that a business would
normally store in a computer. The purpose of this paper
is to show how DSG can be interfaced to the data stor­
age technologies available on the HP3000, and thus
utilize the full potential DSG to help a business's mana­
gers make decisions. While this paper is not intended
to be a primer on the use of DSO, a few of the functional
aspects of the package will necessarily have to be men­
tioned. For those who would like to learn more about
the actual use of DSG, the reference manual is excel­
lent, and a self study course is available.

7 -59-1

DSG'S VERSION OF
THE GRAPHICS WORLD

DSG defmes everything it does in terms of a chart.
Charts are contained in a fue called a Chartfue. It has a
unique fue type, and is known to MPE as the file "type
GRAPH, and ftle code 1083. This is directly analogous
to the way VPLUS/3000 deals with forms within a
forms ftIe. The program GRAPH.PUB.SYS is used to
defme all of the characteristics of the charts within the
ftle. These characteristics are all entered via menus (sc­
reens), and include things such as what type of chart it is
(bar, line, or pie), what color pens will be used to draw
the chart, how the axes will be labeled and scaled, etc.
One other characteristic that is associated with the
chart is the name of the data fue that will be used in the
plot. Currently, the only means of data input into the
plot is via this ftle.

In addition to derming the name of the file, we must
also describe the contents of the fIle. Both of these
functions are done with the Data Defmition Menu in
GRAPH. In this menu, we defme what the variable
names are (to be used· in another menu), what columns
(or field number) of the fue the data is in, and whether
the data is numeric or textual. Up to eight variables can
be defmed on this menu. Every type of chart (bar, line,
etc) has a specific menu associated with it. It is on this
menu that the specific variables that are to be plotted
are defined. Only those that are to be plotted need be
defmed, even though the fde may contain more. This
implies that one data file can be used for multiple
charts. All that has to be done is defme different data
items to be plotted, but the same data rue name.

The question at this point is how do we put data into
this fIle? Really, this is the issue that this paper deals
with. There are as many ways to create this ftIe as there
are programs and programmers. We will deal with a few
of the basic ones.

First, the GRAPH itself allows the user to build a file
of data. In fact, this is in some ways the most conve­
nient way to build the ftIe, since GRAPH build·s what
HP calls a 'self-describing ftIe, a rue type that will be
used more and more in the future. This is a type offtIe in
which the fue itself contains the informaton just men­
tioned, that being what the variabie names are, what
type they are, and where in the record they.are located.
These data are contained in the user labels of the ftIe,
and are dermed by using the Data Prompt Menu of
GRAPH. This allows the menu screen·to automatically
derme the data items to be plotted as soon as the data
ftIe name is keyed in. While this may seem the best way
to derme the ftIe, there are a few drawbacks. First, all
the data must be entered into the GRAPH screen.
Therefore, if the data resides in another fIle structure,
the data must be listed and keyed by hand. Only one
screen of data can be entered, thus limiting the number
of data points to twelve. In addition, only five variables
can be en- tered on this screen. If the chart is going to be
used repeatedly, a lot of time will have to be spent

7-59-2

keying the data into GRAPH. This menu is very useful
for graphs in which there is a small amount of data, the
data is not resident anywhere else in the computer, and
the graph is going to be used only once or twice.

For charts that are going to be used only once or
twice, but requires more than twelve data points or five
variables, the next best method for building the data file
is to use EDITOR. HP's editor can be used, or any of a
multitude of other text editors and word processors
available, such as QEDIT, QAD, EDIT2, TDP (LARC),
HPWORD, HPSLATE, etc. While this will not build a
self describing rue like GRAPH, it is a cheap way to
build an ASCn ftIe of data. Every system has at least
the HP EDITOR, and most have at least one other. It is
only a matter of learning how to use whatever editor is
desired, and build a fue. With this method, the Main
menu for each type of graph will have to be used to
define the data items, lengths, etc.

Another software package that can be used for this
function that virtually every site has is VPLUS/3000. It
is a relatively simple matter to defme a form with fields
for the desired data. Using ENTRY, this form can be
used to key the data into a Batch fIle, then reformatted
to a DSG compatable format by using REFSPEC and
REFORMAT. All of these tools are currently provided
with every &·ystem as part of the Fundamental Operating
Software.

Many, if not most, of the charts that are defmed are
used more than once. Usually, the charts are used on a
periodic basis to plot data. For example, a bar chart of
monthly sales for the last 12 months is generated every
month with the current month's data added and the data
from a year ago deleted, or a pie chart showing ex­
penses for the last quarter. When this type of chart is
used, it is often desirable to extract data directly from
the files which contain them, such as an IMAGE
database or KSAM file. The trick is to get the data from
the native data struc- ture into Graph's sequential ftIe in
the format and record locations defmed in the chart.

If the data fde is stored in a sequential fIle or a KSAM
ftIe, and if it is all stored as ASCII characters (as op­
posed to binary data, such as COMP or COMP-3), then
DSG can directly access the data rue. All that is neces­
sary is to derme the sequential or KSAM fue in the Data
Definition Menu, and process the graph. However the
ftIe will, most cases, contain too much data for one plot.
For instance, a sales file might contain not only a record
of total sales for a product for the last month, but also a
record ofevery sale. It is not desirable to plot every sale
record, but just the summary records. This can be done
by using the Data Subset Specification on the appro­
priate chart Main Menu, which is the same menu used
to specify which variables are being plotted. Perhaps a
better way is to FCOPY the records into another,
smaller, sequential ftIe. By using the ;SUBSET option
of the FROM=;TO= command, the proper records can
be chosen. The fIle that these are copies is the one
defined on the Data Defmition Menu.

The most common form of data storage on most
HP3000's used today is the IMAGE database. Indeed,
many people buy the 3000 just for this feature, and use it
heavily. Since the database fues are privileged, and are
formatted in a very special way, one cannot extract data
from them quite as simply as from a sequential or
KSAM ftle. Either a program must be written using
IMAGE intrinsics that will extract and format the data,
or an existing report-writing program must be used. HP
currently has three of these report-writers: QUERY,
INFORM and REPORT. INFORM and REPORT are
part of the 4 module system called RAPID/3000. At this
writing, REPORT and INFORM are announced but not
yet released by HP. Therefore, they will only be men­
tioned here. There are currently many others that are
marketed by OEM's, third parties, and software houses.
Among these are ASK, QUIZ, AQ, and REX, to name a
few.

It should be mentioned that there is a contributed
utility call DB2DISK that takes data from a data set and
writes it, as is, to a sequential fuel At this point, the data
can be treated like any other sequential file. However,
DB2DISK does no formatting of the data, and if any of
the data is in binary format, DSG will not be able to
utilize it for a plot. Also, because of the nature of an
IMAGE database, desired data will reside in multi- pIe
data sets, and DB2DISK will not be able to combine the
data in the desired fashion. Therefore, DB2DISK can be

useful if all the desired plot data resides in a single data
set.

The main problem with using these programs is that
most are designed to write a hardcopy report. Few, if
any, are designed to write to a sequential ftle. The trick
is to get the report writer to think it is generating a
printed report, when it is really writing to a normal MPE
ftle. Fortunately, this is made very easy by the nature of
the MPE fIle system.

Anyone of the report writers mentioned above
always writes its report to an entity that MPE defmes as
a "file." A fIle is a "hole" that a program either reads
data from or writes data to. The program, when opening
the file, asks for the ftIe to reside on a specific hardware
device, such as a terminal, line printer, or disc. After the
open, it reads and writes data normally. As long as the
data looks correct, the program is satisfied. It is possi­
ble to externally redefme the device on which the fIle re­
sides, along with many other fIle characteristics such as
record size and type. This is done via the MPE :FILE
command. The main bit of knowledge that must be
gained is the name of the file that the report writer uses
for its output. Once this is known, it is a simple matter
to define a :FILE equation which will redirect the out­
put file to a disc file. This can then be used by DSG as
has been discussed before.

The following is an example of how the output of
QUERY would be redirected to a DSG sequential ftIe:

:BUILD DSGFILE;REC=-lOO,5,F,ASCII;DISC=lOOO

:FILE QSLIST=DSGFILE,OLD;DEV=DISC

:RUN QUERYePUB.SYS

>ou1r PUT =LP
>XEQ DSGRPr

>EXIT

« GENERATES REPORT TO GRAPH
D~T~ FILE. »

The main point to be noted is that the fue name that
QUERY uses is QSLIST. This is necessary for the
:FILE equation. The file must be defmed as being on
Device=Disc, as QUERY will default to a line printer,
and that is an OLD file. Every other report writer has
ftle name, that would be used in the same fashion. Also,
because QUERY will attempt a page break after 60
lines, the NOPAGE option must be used in the report.
The reference manual for that report writer should be
consulted for this type of information.

All of the above methods are, of course, dependent
upon the format of the application's data structure. If
the fUe has binary data, or if no summary records
exists, then a program will have to be written to extract
and summarize the data to a form that DSG can read.
Since this requires a great deal more effort than using

QUERY, FCOPY or some other existing utility, things
can get a bit more complicated. Many shops have a
degree of red tape that must be dealt with in order to get
a program developed. Whether or not this type of effort
will be required is a very important consideration when
developing a graphics application.

TREATMENT OF DATA
Before concluding, one thing should be mentioned

about data treatment. It has been said that one can
prove anything with statistics, and this adage is true also
in business graphics. It is very important that a business
manager understand exactly what he is looking at. In
other words, what a chart says can often be misinter­
preted because the person looking at it does not under­
stand what the numbers on it mean. An example of this

7 -59-3

could be a chart of net change in sales dollars. Assume
that sales had been growing by lOOK every month, from
1.1 Million to 1.7 Million in 6 months. The net change is
what was plotted. If this data was read as sales dollars,
the person seeing this plot would think that the com­
pany had only sold lOOK each month, when it had been
selling close to a'million. This is, or course, a somewhat
absurd example. But the point is that represented data
must be clearly labeled and clearly understood by the
intended audience, or the plot is worse than meaning­
less. It can be disasterous!!

7-59-4

CONCLUSION
We have seen that DSG can utilize the data stored on

the HP3000 very well. All that is necessary is to put the
data into a format that DSG can read, that format cur-
rently being a sequential fIle. All that is then necessary ~
is to define the data file name and the data variable
names, along with the type of data and locations within
the record. With this method of data interface, DSG
becomes a very powerful tool, giving managers graphic
representation of what their business is doing, thusal-
lowing decisions to be easily made.

Project Management with the HP3000
Nichols & Company

N5500 is easily the simplest,. most convenient and
most flexible Project Planning and Control System
available for the HP3000 user community. N5500 offers
three levels of planning and control: strategic for the
construction industry and other large scale efforts, tac­
tical for manufacturing and plant maintenance and dis­
patch for individual professional efforts in such fields as
Engineering, Research and Development, and Man­
agement I~formation Science.

N5500 is the third fully implemented project planning
and control system developed by Nichols and Co., Inc.
The product has been in use for more than five years by
over two hundred and fIfty companies. Over the past
ten years, Nichols & Company has alone invested more
than fIfty man years in N5500 and its related options.
The Company's corporate office is located in Culver
City, California just minutes north of the Los Angeles
International Airport. It has branch offices in New Jer­
sey, London, Manila, Mexico City and Stockholm.

N5500 was introduced after an intensive analysis of
current industry needs. It is a highly versatile, yet ex­
tremely easy to use package. There are no redundant
input formats or complex requirements. It is simple,
direct and logical. But N5500's greatest strength is its
versatility of application and overall usefulness.
Nichols and Company has built and fully supported
N5500 to make it a viable tool for all project oriented
groups.

MANUALS. N5500 instruction materials are com­
plete but not o~erwhelming.Our manual is clear, con­
cise, easily understood and logically presented. It starts
from the general and moves easily to the detailed, using
frequent illustrations and meaningful examples. It con­
tains a table of contents and a complete index. Terms
and concepts of project management are dermed and
illustrated. Though five full days of training and assis­
tance are provided with N5500, several clients have
been able to implement the system and use it success­
fully with no vendor assistance, other than the informa-

. tion provided in the manual and installation guide.
EASY ENTRY OF DATA. Whether in interactive or

batch mode, N5500 offers easy and simple entry. There
are no redundant entries, complex codes or difficult
manipulation. For planning, there are only two input
formats, where other products range from eight to over
thirty. Any number of standard projects can be pre­
loaded and recalled at any time. This repetitive ap­
proach can save days of effort and prevent coding er­
rors. All standard resource data can be preloaded and
automatically allocated to incoming plans as needed. If

_the interactive entry option is used, data is validated
and fully edited on input. Errors are identified and cor-"
rections are made easily.

EASY RETRIEVAL OF INFORMATION. Again,
whether interactively or in batch, N5500 is superior to
others. Accurate information is easily accessible via
standard or custom formats. But even the standard re­
ports have countless variations that support a wide va­
riety of information needs. Individual reporting var­
iations can be preloaded and called out at will. Support
schedules can be established to suit an organization's
recurring normal requirements based on any given var­
iance such as weekly, monthly, quarterly or yearly cy­
cles.

FULL PERT/CPM CAPABILITY. Precedent net­
working is standard. Node (I/l) processing is optional.
N5500 produces late start, early start, expected start,
late fmish, early fmish, expected fmish, and negative
float calculations. The system also enables the planner
to specify varied task relationships such as start to start,
start to fmish, fmish to start, fmish to fmish, start plus/
minus days, fmish plus/minus days and spacers. Tasks
can be scheduled at any level of effort in numerous
periodic variations such as once weekly or once month­
ly. Unlimited weekly cycle and holiday calendars can
be applied. Critical path analysis is standard and is con­
stantly recalculated to portray a changing environment.

GRAPHICS. It is usually easier to interpret an illus­
tration. Graphic representation ofdigital data allows the
interpreter to see ranges and variations in better
perspective. Nichols' product produces graphic infor­
mation on both line printers and graphics plotters.
Printer information includes bar charts and trend
analyses. Plotter displays report the intricacies of a
network, especially over extended periods of time and
highlight the critical path directly.

SIMULATION. Whenever a plan is entered into
N5500, the system instantly identifies and highlights the
conflicts and discontinuities of schedules, as well as
providing an accurate cost analysis. The plan can be
simulated as a stand alone element, or just as easily as a
dynamic part of the inprocess load. In other words,
N5500 can show the impact of adding one or more proj­
ects to the current schedule and workload without per­
manent modification of an inprocess load. It will display
displacement and overload situations easily.

CAPACITY PLANNING. The awareness of what
resources are needed to support and accomplish either a
simple or complex workload is essential in today's ever
changing environment. N5500 tells when work will be

7 -72-1

accomplished if there is a limitation in available re­
sources and suggests what resources are required to
meet schedule demands. Mixed variation on both
themes are easily established using selected force load­
ing options or by force loading the critical path. When
load leveling, NSSOO uses the significant accuracy of a
daily loading pattern without any additional demands on
the planner.

PROGRESS REPORTING. Most systems fail com­
pletely when an ea'sy and. routine mechanism for
periodic maintenance of project progress is not avail­
able. NSSOO, however, automatically provides a special
turnaround document or video screen for the entry of
project accomplishment. The hours or days worked
may be entered as individual or group efforts in any
increment from tenths of hours to man weeks. Money,
materials or other units consumed may be reported
also. This progress data automatically updates the net­
work and produces a series of forecasts and an "earned
value" calculation. NSSOO even produces a detailed
analysis of estimated versus actual penormance on a
project, dividing the work into classes or types and re­
porting it across projects by assignee.

ACCOUNTING. Once actuals are assimilated and
validated, a wide assortment of reports can be gener­
ated. NSSOO handles labor, materials, equipment and
cost accounting easily and quickly. It provides both
gross and net continuous expenditure reporting by re­
sponsibility area or by type of effort. Invoicing can be
handled directly from the system. Cost data from other
systems can be integrated easily into N5500. N5500 can
feed general ledger or journal entries. Actual versus
planned expenditures over days, weeks, months and
years can be readily assessed.

EDUCATION. Nichols and Company believes well
trained clients are the most successful users and suc­
cessful users profit greatly from planning with NSSOO.
Upon purchase of NSSOO, you receive five days on-site

7-72-2

training at our expense. We want your NSSOO system
running smoothly. Many organizations fmd that ongo­
ing education enhances the effectiveness of managers
and planners alike. We therefore provide General Proj­
ect Planning and Control Concept seminars. This con-
tinuous belief in education helps people live up to their ~
true potential. They should never lack a basic under­
standing of the project management discipline. We also
provide tutorial and general consulting services for
those organizations who simply lack the appropriate
manpower to monitor their projects. At each point, we
are at your side, to provide whatever is needed to make
your project management effort a success.

SERVICE. Closely allied to education, is Nichols and
Company's overall service orientation. Our consulting
and technical staff are readily available by phone in
either our New Jersey or California offices. If needed,
we provide immediate assistance to help in an emergen­
cy. We provide computer backup, plotter services and
technical advice. For those organizations, not yet ready
to install their own N5500 system, we have several out­
standing tiI,le-sharing services with dial-up access to
N5500. Finally, for those who want to assess NSSOO
fully and gain hands-on confidence, we conduct free
monthly workshops. At these workshops, you bring
your projects and load them into N5500 yourself to see
how N5500 can work for you throughout the project
management process.

FINALLY. N5500 is a full capability product. It can
be used in any environment from Construction to En- ~
gineering, Manufacturing or MIS. The system provides
Strategic (linear projecting), Tactical (group loading),
and Dispatch (individual loading) planning in an easy to
learn, easy to use format. The product is known for its
simplicity, convenience and flexibility. It has more use-
ful features than any other project management system
in the HP3000 market today.

,.~

Using the HP3000
for Decision Support ·Systems

Robert Shelley
Noesis Computing Company

WHAT ARE DECISION SUPPORT SYSTEMS?
Decision Support Systems have been around us all

for ~any years, but it only recently that we have been
using the term. I believe that DSS appropriately de­
scribes the management oriented use of interactive
datalJases, financial models, graphics and statistical
analysis in meeting the day-to-day information needs of
decision makers. The principal characteristics of a DSS
are:

• It is in an interactive or on-line environment;
• It can be developed (at least the [Irst phase) in less

than a month. .
• With minimal training, it can be maintained by the
.' end-user.
• It does not post to a general ledger.
• It allows the user easily and quickly to change as­

sumptions about the data and produce reports re-
flecting those changes.

I think that "Management Information System" was
originally intended to describe what is now referred to
as DSS. But the problem with MIS is that the term grew
in usage and scope over the years to the point that it no
longer really means anything. To wit, a manager of MIS
is often responsible for all computer operations, prog­
ramming, technical support, and most recently even for
word processing! Thus the need for a term like DSS
which is more restrictive and focused.

Typical DSS applications are:
• Customer, employee, or equipment tracking sys-

tems
• Cashtlow projection systems
• Merger/acquisition models
• Budgeting models
• Detailed analyses of particular functional areas

(e.g., A/P, AIR, Foreign Exchange)
• Dun and Bradstreet marketing databases
• And much more.

HOW DSS DIFFERS FROM
TRADITIONAL DP AND WHY

The orientation of data processing has traditionally
.been toward operational control and audit trails, and
this is as it should be. These controls imply the need for
systems development projects with a great deal of plan­
ning and structure, as well as an emphasis on efficiency

of processing due to the volume of data that has to be
handled. The tools and techniques used to meet the
needs of transaction processing systems are dictated by
the objectives of these systems.

But by their very nature tools like COBOL and tech­
niques l~e batch processing are not adequate to meet
the information needs of a mid-level or senior manager.
Typically a manager needs information on an ad-hoc
basis in order to help solve a problem (i.e., put out a
fIre) or to investigate an opportunity. For this kind of
objective, higher level languages than COBOL are
needed and the computing environment has to be in­
teractive. Ideally you should be able to access an exist­
ing data file and select out and report on specified sub­
sets of data. The emphasis here is on getting out only
the relevant data; how it is presented is less important.
You should also be able to create an ad-hoc system to
address a specific question, knowing that the system
will be thrown away after it has done its job. The whole
cycle could be less than a week.

In summary, because the objectives and needs of
managers are so different from those of operations staff,
it follows that the types of programming languages and
the computing environment chosen to meet their goals
will also be different.

THE IMPORTANCE OF DSS
USER SUPPORT

If and when an organization begins using Decision
Support Systems, it will be necessary to develop a sup­
port program that can meet the on-going needs of the
DSS user community. This program includes: training
users, addressing day-to-day questions of users, provid­
ing access to the computer for new users, and more.
Any part of this (or even all of it) can be achieved by
using resources outside of your own organization.

User training classes should be no more than two
days long. This is because few users have the time to
break away from their regular activities for more than
two days at a time, and also because, in my experience,
if the software product cannot be taught in two days .
then it is not a user-oriented DSS product. At the end of
the class users should be able to return to their offices
and start producing simple reports, models or graphs.
User training is often provided by the company selling

7-80-1

the software (e.g., HP or a software house). Sometimes
classes are available locally which makes user training
e~sier to fulfill. When local training is not available then
the choices are sending a user to a training class at
another location, bringing a trainer into the organization
to train a group of users, or developing a training capa­
bility within your organization. A quick cost/benefit
analysis will lead you in the right direction.

Since time is often a critic1factor when a DSS system
is used, a responsive user assistance program is most
important. This can be provided either by the software
vendor or from within an organization. The choice is

. most often dictated by the number of DSS users within
an organization. Because DSS users are generally out­
side the DP area, the people providing DSS user assis­

. tance need somewhat different capabilities and back­
grounds from what you might expect in a data proces-
sing support group. They include: .

• An ability to avoid computer jargon and communi­
cate effectively with those who know very little
about computers.

• Some background in the business side of the or­
ganization. This can be either from work experi­
ence (in the case of someone who is interested in
transferring into a systems department), or through
education (for example, a programmer who has
gotten an MBA degree).

User support also means insuring that new DSS
users have access to the computing resources. This
includes assistance in getting the right terminal for
the intended application and when necessary work­
ing with the phone company or any data common­
carrier in setting up a leased line or dial-up access.

WHY THE HP3000 IS GOOD
FOR THE DSS-TYPE SYSTEMS

Stated simply, the HP3000 is an excellent choice for a
Decision Support System. The computing environment
and operating system of the HP3000 meet one of the
fundamental requirements of any DSS - they are con­
figured to make interactive computing straightforward
and easy for a user.

Just as important, both HP and others offer good
DSS-oriented software for the HP3000. In reviewing the
available products, I will categorize them into four main
groups: database management, financial modeling,
graphics, and statistical analysis. As you know the
IMAGE database management system provided by HP
with all HP3000 computers is an excellent DBMS prod­
uct. When IMAGE is coupled with a user-oriented re­
port writer and screen generator like RAPID/3000 or the
products of Quasar Systems (Le., QUIZ and QUICK), a
user can easily do the kind of ad-hoc reporting that is
characteristic of any DSS.

Financial modeling software has been around for
quite a while, though it has only recently gained a great
deal of attention due to the success of VISICALC, a

7-80-2

popular personal computer software product. HP does
not offer a fmancial modeling product at present but
there are a growing number of software houses that do.
Among the products I am aware of are Dollar Flow, the
Interactive Financial Planning System (IFPS), and
EPS-FCS. Most of the providers of this kind of software
will have an information booth at this conference.

Almost all of the currently available graphics
software comes from HP. Decision Support Graphics
(DSG) is a very user-oriented package that makes it
quite easy to get out meaningful graphs with minimal
effort. PLOT/21 is another HP product but is really a set
of program callable subroutines that allow complete
control over a plotting device. PLOT/21 is essentially a
programmer's tool. And then there is SMOCK, a
graphics product which is generally adequate for many
users and is available from the HP Users Group Con­
tributed Library.

In the area of statistical analysis software, there are
three widely used products for the HP3000. Statistical
Package for the Social Sciences (SPSS) has been on the
market for a long time but is batch oriented. A product
called IDA was developed by the University of Chicago
Graduate School of Business and stresses interactive
usage, forecasting, and regression. Also available is the
BMDP statistical package from UCLA which is batch
oriented but good at multivariate techniques and
analysis of variance.

FUTURE TRENDS IN DSS
Looking at the future, there are a number of devel­

opments that will have an impact on the DP and DSS
user communities. Among them are:

• The increasing presence of personal computers;
• The sharing of data between various parts of an

organization;
• The growth of electronic mail;
• The migration of DSS languages and techniques

into the DP community
With this audience I am sure I do not have to discuss

at length the recent growth of microcomputers - we
have all seen it fIrst-hand. However there are some sub­
tler changes taking place that deserve to be mentioned.
Microcomputers are rapidly accomplishing what so
many of us have tried so hard to do for many years, and
that is to demystify computers and programming. A
single product - namely VISICALC - has unleashed
the imaginations of uncounted managers and analysts.
The challenge for us is to maintain their enthusiasm and
at the same time ensure that their expectations are in
line with what is possible.

Sharing data, as well as the responsibility for
maintaining it, can provide significant savings to any
organization. As you know, database management sys­
tems have done so much to eliminate redundant data
among different files by using keys to facilitate sharing
data. In the same way we are also seeing a growing need

for departments to share databases instead of each de­
partment expending the time and effort to maintain its
own version of identical data. And the security features
of DBMS and screen handlers make this sharing possi­
ble even when one department's data must be kept en­
tirely within the department's control.

Electronic mail is usually associated more with "of­
fices of the future" than with DSS, but in my experience
the same computing environment that supports DSS
should also be able to support electronic mail require­
ments. Until recently I worked for a large commercial
bank that had an electronic mail product available on its
interactive computer. This computer was accessible
from all major offices throughout the world. On a daily
basis I was in touch with five distant groups that I was
managing. I can assure you that having electronic mail
available made it possible for me to keep on top of what
was happening in the field and address any issues as
they surfaced. Also, many of the executives of the bank
who traveled extensively found that electronic mail was
the best and cheapest way' for them to stay in contact
with their offices and with others who needed to reach
them.

Lastly, I think that in the long run there will be a
number of tools and techniques that will migrate from
the DSS environment to the DP environment. As they
mature and grow, user-oriented report writers are al­
ready being used by both DP and DSS users who find
them so successful in increasing productivity. Another

example is the building of a prototype system in the
earliest stage of systems development. This concept is
far from new, but it is my observation that it is more .
consistently used in developing DSS applications than
in DP. Because the use of a prototype is fundamental in
insuring that user and developer understand each other,
I hope that this technique also will fmd its way into
more and more DP projects.

CONCLUSION
The HP3000 provides an excellent computing envi­

ronment for Decision Support Systems, when coupled
with the proper user-oriented software. The discussion
above has tried to bring together what DSS is, how it is
being used, what software products are available, and
some of the issues that can affect DSS users and pro­
viders. Other software products and other issues are
surely out there. In order to provide a forum for them, a
new Special Interest Group - SIGDSS - is being
formed now and will meet for the first time at this con­
ference. Look for the meeting time and place in your
conference schedule. If you cannot attend but have an
interest in the group please contact me for further in­
formation:

Bob Shelley
Noesis Computing Company

615 Third Street
San Francisco, CA 94107

(415) 495-7440

7-80-3

.i

.(

The Truth About Disc Files
Eugene Volokh

VESOFr Consultants
Los Angeles, California

110, IIO~ it's off to disc we go ...
(modem rendition of Walt Disney)

ABSTRACT
The disc fde is probably the most important part of

MPE; however, due to the large number of different
options and considerations inherent in disc ftIes, these
objects are often "under-understood" - this paper will
try to present the truth and nothing but the truth (the
whole truth will not be printed owing to lack of paper)
about disc fdes, which will hopefully remedy this situa­
tion.

CHAPTER I
FILE STRUCTURE

Where It's At

Before discussing disc ftles themselves, we must take
a moment to point out some terms, probably already
known to you, regarding the physical medium on which
disc fdes reside - the disc. This disc consists of a lot of
128-word SECTORS, and is assumed to be conflgured
on the system as one logical device.

Some considerations. to be judged when referring to
these discs are: (1) space - each disc has an ever so
fmite amount of sectors on it, the number of which va­
ries from disc to disc, but is, by Murphy's Law, never
enough ...:..... and (2) speed of access, which is typically on
the order of 30 disc accesses per second.

The discs typically used with the HP are' ones that
constantly rotate in order for all parts of the disc to be
accessible by the unrotating PISC HEAD. It is this ro­
tation of the disc that is the culprit in the slowness of
disc accesses. Similar considerations can be applied to
the two other significant types of hardware: memory
(which is very, very fast yet lamentably liriUted - up to
4 MegaBYTES on a Series 44) and tapes (which are
virtually infmite yet quite slow).

The above hardware considerations, though elemen­
tary, will be of paramount importance in further discus­
sion.

The Extent Question

Let us start at the beginning - the creation of the ftIe.
We will examine what the MPE operating system has to
do to create a ftIe. For example, let us say that you ask
MPE to build you a data fde, which is to have room for

at most 100,000 records of 128 words each (note ~at 128
words is the size of a sector, and thus a good value for
simplicity). This would be done, perhaps, by an MPE
command akin to ":BUILD ING;DISC=100000" (MPE
will automatically assume 128 words as the record size).
Now, what does MPE do?

Well, of course, MPE must allocate some disc space
for that fde. In this particular case, MPE must allocate a
whopping 100,001 sectors (the 1 extra sector is for the
file label, a place where MPE holds internal fl1e informa­
tion like the lockword, etc.) all at one time. But, wait a
minute! There may be 100,001 sectors out there on your
disc (or discs), but it's possible that there is no one
single gap that large out there. Moreover, maybe you
don't really need all that space. Quite probably, you'll
never use more than 10% of it! So, we are faced with a
dilemma - if MPE were to allocate the space for that
file nicely and simply, in one big chunk, it may not have
enough space on disc; or, if it does, most of that space
will probably be wasted, as (for a time, at least) you will
not use all of that space.

Let us look at the other "extreme" solution. Why
don't we, perhaps, allocate only one sector of space at a
time - one in the beginning, for the file label, and one
every time the user needs one. That way, even if the
disc is hopelessly fragmented (i.e., there are very many
I-sector pieces of free space out there, but no large
ones), we can probably fit a sector - ifwe can't, time to
buy another disc; moreover, we do not allocate any disc
space until we really need it. This was, perhaps, a de­
cent solution in the "good old days" when disc space
was very expensive. But, now, the operating system
would have to maintain 100,001 pointers to enable ac­
cess to that file, which makes the above method un­
workable.

Enter the EXTENT! The extent is a reasonable com­
promise between the two extreme methods outlined
above. A file can consist of anywhere from 1 to 32 ex­
tents (the default number is 8). Now, when we build the
above fl1e (with 8 extents), we will only have to allocate
around 12,500 sectors in the beginning (a savings ofdisc
space) and allocate new extents only every 12,500 re­
cords (a savings of disc accesses). We could, however,
allocate the fIle with only 1 extent, thus losing out on
disc space but gaining on disc accesses (but, of course,
the savings on disc accesses is rather small compared to
the incredible wastage ofdisc space), or with 32 extents,

11-17 -1

thus saving disc space at the expense of a few extra disc
accesses.

Two other considerations come into play, however­
one is that accessing files with a lot of extents FRAG­
MENTS THE DISC (i.e., increases the number of small
holes at the expense of large holes), thus making new
files harder to allocate in the future, and another is that
it is better to run out of disc space when building a disc
fde, than when allocating a new extent in the middle of
the program (precious time and internal data consis­
tency may be lost this way). The former can be handled
best by decreasing the number of extents (at the ex­
pense of, of course, disc space) and the latter by allocat­
ing at :BUILD-time all of the specified extents (but only
if you are sure you will use all of the space). Note that
the number of extents (maximum and initially allocated
may be specified on the :BUILD command's DEV
keyword, whose format is "DEV=device[,maxexts]

-\ .[Jnitalloc]", where maxexts defaults to 8 and initalloc to
1.

For Those With Multiple Discs

If you are the proud owner of several disc drives,
another factor comes into play. For example, let us say
that you build a file with the command ":BUILD
ING;DISC= 100000" (note that the maximum number
ofextents defaults to 8, 1 initially allocated), and start to
wonder about which disc your fIle resides on. Well,
MPE, has adopted the so-called "eeny, meeny, miney,
moe" algorithm. That is, if you succeed in filling all 8
extents of your file, you may well fmd that that file does
not reside on just one disc; rather, it resides on the discs
of the DEVICE CLASS "DISC" (which are special sets
of different devices, not necessarily discs, configured at
system set-up time). Each extent, of course, resides
wholly on one disc; but, the extents may reside on dif­
ferent discs - thus, a file with 8 extents may well find
itself with 4 extents on disc # 1, 2 on disc #2, 1 on disc
#3, 1 on disc #4, and 0 o~ disc #5. If you, however,
want that file to reside exclusively on disc #4, "no
sweat" (as is said in the vernacular)! Merely :BUILD
the fde with the "DEV=4" parameter. Or, if you set up
another device class called PRODDISC which will con­
tain discs #3, #4, #5, building the file on DE­
V=PRODDISC will ensure that all extents of that fIle
will be located on one of those devices. What, you may
ask, is the importance of this? Well, the word that has
leaked down from HP is: SPREAD OUT YOUR FILES
- for instance, if you have two heavily accessed fIles, it
might be wise to put them on two different discs.

This is done for the following reason. Let us assume
that you have two disc drives, each one able to perform
approximately 30 I/Os per second, and you spread out
your files in such a way that each disc gets about 30 I/O
requests per second. Those requests will be executed
within one second. But, if there are 20 I/O requests per
second to one disc and 40 to the second disc, the fIrst
disc will not perform up to capacity, and 10 of the re-

11-17 -2

quests to the second disc will have to wait for a second
or more, thus degrading system performance.

Another promising idea is to configure all of your
devices except the system disc as device class "DISC,"
thus keeping files off the system disc, and thus reducing
the amount of access to the system disc, which already
has the operating system and the virtual memory on it.
However, with MPE IV, in which you will be allowed to
spread virtual memory over several devices, this may
not be as important. Note that for easy [de disc location
handling, MPEX/3000's %LISTF ,4 and %ALTFILE
commands and ADAGER's DBCREATE and SET­
MOVE functions should be used.

The Logical File Structure

Besides the physical fue structure described above ­
extents, sectors, etc. - MPE fIles also have an internal
logical structure, not enforced in most ways by the ac­
tual ftle contents but rather by certain logical fIle de­
scriptors like the record size, the blocking factor, the
block size, the file type, and the like. First of all, we will
discuss the simplest sort ofMPE file - the fixed-record
length fue.

The Fixed Record Length File

A file is more than just a collection of data placed out
on disc. It usually has certain logical relationships
within it. One of the most frequent and fundamental
relationships is one in which data is organized into
chunks (called RECORDS) of a fixed length; for in­
stance, if you have a data file which contains, for each
customer, the customer code (6 characters), customer
name (30 characters), and the amount owed you by the
customer (8 zoned decimal characters), you have a 44­
character entry for each customer. Therefore, it would
be logical, for the sake of ease of access, to build that
fIle with 44-byte (or 22-word) records, having one re­
cord per customer. So, to build that file, you would
perform a BUILD c011)mand with the RE­
C=-44"F,ASCII parameter (- stands for bytes and F
for ·fIXed record length).

The Block

A familiar example of fixed record length disc fIle is
your usual EDITOR /KEEP-NUMBERED file, a fIle
with a record size of 80 bytes = 40 words. However, do
you know that in your EDITOR keep files more than 6%
of all disc space they occupy is wasted? This may not
sound like much, but if you are running short on disc
space, this can be a lot. What's more, that disc space
can be saved (for large files) by merely specifying a
certain :FILE equation for the [de to be kept. What, you
may ask, is the reason for this wastage? Well, the an­
swer lies in the secrets of the BLOCK.

The fundamental unit of disc I/O (as far as MPE is
concerned) is the SECTOR (128 words). Practically all
disc I/O ends up as multiples of 128 words. 40, of
course, is not a multiple of 128. So, if MPE decided to

place 40 words per sector, it would waste not 6%, but
69% of each sector! So, you ask, why not pack three
40-word records into one 128-word sector. Well, that's
exactly what MPE does; but because 128 is not a multi­
ple of 40, either, it still wastes 6% of the file's disc space
(although 6% may not sound like much, for some un­
lucky files which have different record lengths, it can be
worse, with up to 50% wasted space!). But, there is light
at the end of the tunnel! We can very snugly fit 16
4O-word records into 5 128-word sectors - a perfect fit.

From the above labyrinth come the notions of the
BLOCKING FACTOR and the BLOCK. The BLOCK­
ING FACTOR is, very simply, the number of records
that we choose to fit into a multiple of 128 words - in
the above "snug fit" scenario, this is 16; in the 6% was­
tage method that MPE uses, the blocking factor is 3 (3
records to 1 sector); in the (ugh!) 69% wastage at 1
record to 1 sector, the blocking factor is 1. The BLOCK
therefore, is BLOCKING FACTOR records - Le.,
when the blocking factor is 16, the block is 16*40 = 640
words = 5 sectors.

In general, MPE chooses the blocking factor as fol­
lows. If the record size of a file is less than one sector
(128 words), the blocking factor = 128/recordsize = the
number of records that will fit into one sector; if the
record size of a file is greater than 128 words, the block­
ing factor is always 1. A good example of the possible
wastage is when a record is 65 words long; then, 128/65
= blocking factor of 1, wasting 63 words for every 65
words used - a wastage of 49%! If that record was,
however,64 words long, then the blocking factor would
be 2, with NO wastage.

By the way, it happens that the blocking factor for a
new rde can be defined in a :BUILD or :FILE command
- always as the second subparameter (between the re­
cord size and the F, V, or U record format) of the
REC= keyword. Thus, if you want to eliminate the 6%
waste due to the blocking factor of 3 on EDITOR keep
files, just execute an equation of the form ":FILE
filename;REC= ,16" right before keeping the fl1e as
"filename," and presto! out comes a file with a blocking
factor of 16. For already existing fl1es, some disgust­
ingly complicated tricks can be used - or, if you are
blessed with a copy of MPEX/3000, just use the
BLKFACT= keyword of the %ALTFILE command.

Now, you may wonder, what leads MPE to choose a
default blocking factor calculation system that leads to
considerable wastage in perhaps one of the most com­
mon forms of files? Well, for one, it would be unfair not
to remark at this point that the "NO wastage" schemes
described above really DO waste some space (although
not a lot). The reason for this is that a fl1e (in fact, each
extent of a file) must be an integral number of blocks. If
it isn't, a full block is allocated for less than "BLOCK­
ING FACTOR" records. Thus, if you have a ftIe con­
taining 50 80-byte records with a blocking factor of 16, it
would use up 4 blocks, the last one having only 2 actual
records - this file will thus use 21 sectors; however, if

that file is built with a blocking factor of 3, it would use
up 17 blocks (the last one also having only 2 records),
and would thus use only 18 sectors of disc space. How­
ever, this consideration is less important for larger fl1es.
Another reason for MPE's default blocking factor
strategy is that the block and the blocking factor govern
more than just disc space usage - they also control
certain parameters of buffered file access (see the chap­
ter on FILE ACCESS). However, for most files (espe­
cially large ones!) it is beneficial to' select your own
blocking factors (with the use of the contributed
BLOCK program, for instance).

The Variable Record Length File

Let us take a hypothetical EDITOR COBOL-format
file. At the :beginning of each line there is a 6-digit line'
number; the other 74 characters contain the line,
blank-padded. Now, those trailing blanks, especially in
large source, fues, convey absolutely no information to
anybody, and (since the average length of a line could
be estimated at half of 74 characters) will cause a was­
tage of APPROXIMATELY 50% OF THE DISC
SPACE USED BY THOSE FILES! But, you reply, if
EDITOR built the fue with a record length of, say, 40
characters, all of my lines that are longer than 40
characters will get truncated. Well, you're right - but
that is not what is to be done! Wouldn't it be nice if
EDITOR and/or the file system allowed, you to 'have
files not with a FIXED record length, but with a VARI­
ABLE record length - i.e., lines that are 74 characters
long will use 74 characters and lines that are 10 charac­
ters long will use 10 characters? Well, it does!

In fact, if you type in the little-known /SET VARI­
ABLE command in EDITOR, it will'instruct EDI~OR
to keep the workfile as a variable length record fue
(WARNING: USE THIS ONLY FOR COBOL AND
DATA FILES, NEVER FOR NUMBERED FOR­
TRAN OR SPL SOURCES, OR THOSE SOURCES
WON'T BE COMPILER READABLE!!!), thus letting
it ignore those trailing blanks, but still keep the file for­
mat transparent to other programs that read these files
- for example, compilers. In your own programs (not
just in EDITOR), you can read variable record length
fues without changing your programs at all- COBOL's
or FORTRAN's READ command can read variable re­
cord length files. You can write them without any
changes either - if you write a 10-character record to a
fIXed record length file of 80 characters, the record will
be padded with 70 blanks or nulls; if you write that
record to a variable record length file, the record will
not be padded by anything, thus saving the space re­
quired for the padding. To build a variable record length
file, specify the third subparameter of the REC=
parameter of the :FILE or :BUILD command as "V"
(e.g., REC=-80"V). The record size specified is now no
longer the actual record size of each record but rather
the maximum; whether the file is ASCII or BINARY
now really does'n't matter. Also, do not call in the Na-

11-17 - 3

tional Guard (or PICS) when you see on a :LISTF that
the END OF FILE for that file is GREATER THAN
ITS FILE LIMIT - it can happen with variable record
length files.

Therefore, with COBOL source files (especially) and
unnumbered data files, variable-length records are usu­
ally the way to go; again, however, we must warn you
that numbered default-format (e.g., SPL or FORTRAN
source) files SHOULD NEVER BE KEPT WITH THE
/SET VARIABLE OPTION SET or else they will not
be readable by the compiler.

However, as the old proverb says, "EVERY
SILVER LINING COMES WITH A CLOUD AT­
TACHED TO IT," variable record length ftIes have
some drawbacks. For one, they can not ,be accessed
directly (for instance, with the FREADDIR,
FWRITEDIR, or FPOINT intrinsics, or FORTRAN's
READ/WRITE (fnum @ record) construct); i.e., you
can read their records sequentially, but you can not ask
to get, for instance, the 17th record of the file.
Moreover, they cannot be accessed by many ftIe copiers
using the fast MR NOBUF file access method (see
under FILE ACCESS in this paper), such as HP's own
DSCOPY, MPEX's %FCOPY "FAST/DSLINE,
MPEX's %ALTFILE, SUPRTOOLIROBELLE, etc.
Also, before MPE IV, append access to variable record
length files was not supported; it is supported starting
with MPE IV.

Another important consideration to keep in mind
when using variable record length ftIes is that when you
build a new variable record length ftIe with record size
RECSIZE and blocking factor BLKFACT, the resultant
block size of the file will be not RECSIZE*BLKFACT
(as in fixed record length files), but rather RE­
CSIZE*BLKFACT + (BLKFACT+l)*(2 bytes). Thus,
ifyou build a variable record length ftle ofrecord size 80
bytes and blocking factor 3, the file will actually have a
block size of (80*3+4*2)=248 bytes. However, if the
same file is built witli a blo~king factor of 16, the block
size will end up being (80*16+17*2)=1314 bytes, not
1280 bytes! The end result is that AN OPTIMAL
BLOCKING FACTOR FOR A FIXED RECORD
LENGTH FILE MAY BE FAR FROM OPTIMAL
FOR VARIABLE RECORD LENGTH FILES!

Incidentally, MPE IV's new INTER-PROCESS
COMMUNICATION features (i.e., Message and Circu­
lar files) rely EXCLUSIVELY on variable record
length fdes (q.v. COMMUNICATOR issue 26 - the C
Mm.

Undefined Record Length Files

There exists another type of disc file - the undefined
record length file. These are rather bizarre specimens
which are not intended to be and should not be used as
disc files, but are rather supposed to be utilized as tape
fdes and terminal files, which are beyond the scope of
this paper. ASCII VS. BINARY FILES When using

11-17 -4

fIXed record length files, it often happens that you may
write a 30-character record into a file with a record
length of 80. Then, what happens to the other 50 charac­
ters of the record? Well, for some files (for instance
source files) that contain simple text data, you would
typically want to initialize it to spaces because of the
nature of the file. If that is what you want, you would
build that file (EDITOR will build it that way for you) as
an ASCn file. This parameter can be specified as the
fourth subparameter of the REC= parameter of the
:FILE or :BUILD command, e.g., REC=",ASCII.
However, for some data files, you may want to pad the
records with binary zeroes (nulls). Files built in such a
way are called BINARY files, and can be built by
specifying the BINARY parameter as the fourth sub­
parameter of the REC= parameter of the :FILE or
:BUILD command, for example REC=,,,BINARY.
Note that this. is usually not necessary as BINARY is
the default ftIe mode. Also note that since no record
padding is done in variable record length fIles, the
ASCn vs. BINARY distinction is usually irrelevant to
them.

The File Code

If you do a :LISTF mode 1 or 2 on a group of fIles,
you may notice that some files have a [tIe code of 0
(blanks), some ofPROG, USL, EDTCT, KSA M, PRIV,
and assorted numeric codes. These filecodes, for the
most part, are merely for the sake of ftle identification
- they have no physical influence on the actual con­
tents of fdes. If you change the fdecode of a ftle (for
example with MPEX/30 OO's %ALTFILE
fIlename;CODE~ command), the contents of the fIle
will not magically change. However, the filecode is use­
ful for identification purposes - for instance, the MPE
loader knows that fIles offdecode PROG are :RUNable
program fdes, the EDITOR knows that files of code
EDTCT are /SET FORMAT=COBOL files, QEDIT/
ROBELLE knows that files of code 111 are its rtIes. In
fact, you can set up your own file identification system
for source or data files - you can build ftles with a
certain file code (via the CODE= parameter of a :FILE
or :BUILD command), alter the file code (with MPEX/
3000 or by copying the file), and examine the file code
(via the :LISTF command or, programmatically, with
the FGETINFO intrinsic). Certain tools like MPEX
also allow you to LISTF files by fIle code. An example
of this kind of file identification system (recently im­
plemented by us) is to set the file code to be the Julian
date of the day on which it was created, or some other
important date.

Note that the fIle code of each file is in reality a
number - for example, program files (PROG) have a
rde code of 1029, but they are listed in a :LISTF output
as PROG. Also, KSAM files do not actually have a
numeric fde code that identifies them as such -- they can
in reality have any numeric rde code. However, KSAM
fIles which have a ftIe code of0 (which usually shows up

as blanks on a :LISTF listing) will be printed as having
code = KSAM. Files that are listed as having file code
= PRIV are in reality files that have NEGATIVE fue
codes (like IMAGE files). Unlike usual rues, they can
only be accessed by programs running in
PRIVILEGED MODE. This is handy, for instance, for
IMAGE fues, to ensure that an ordinary user can not
physically change an IMAGE file without going through
the existing IMAGE utilities/intrinsics.

User Labels

It is often desirable or necessary to store information
in a fde in such a way that it can later be retrieved, but is
nonetheless transparent when you read it in an ordinary
fashion. The concept of USER LABELS provides this
capability. With it, you can write special label records
(the maximum number of which is specified at open
time, defaults to 0, and can be up to 254) with the
FWRITELABEL intrinsic, read them with the
FREADLABEL intrinsic, but have them be transparent
to any user who reads or writes ordinary records to that
fde. These labels are used by IMAGE, KSAM, and the
message system file (e.g., CATALOG and CICAT).
Another advantage of user labels is that you can write
user labels when you open the file for read access, can
read user labels when you open the file for write access,
and can open the file for OUT access (see access modes
below) which will else all of the file's records but not its
user labels.

Carriage Control Files,
Relative I/O Files, Message Files,

Circular Files, KSAM Files,
IMAGE Files, and Other Monsters

That Inhabit the HP3000

This paper will not talk about the above types of fues
(for want of time, will, and disc space). However,
maybe sooner or later you will hear the truth about
them, too!

CHAPTER II
FILE ACCESS

Once a fue is built, it really isn't much good if you
can't access it - read it, write it, append to it, etc. In
this chapter we will discuss the different methods of
accessing files that MPE provides for you.

Buffered File Access

A while back we referred to the concept of the
BLOCK. Well, it turns out that the block is more than a
convenient way of storing records on disc. In fact, it

. plays a very important role in the default mode of fue
access called BUFFERED FILE ACCESS. Let us as­
sume that" you are reading a 10,OOO-record disc file
which has a record size of 40 words (80 bytes), a block­
ing factor of 16, and thus a block size of 640 words. Let
us assume that you had to do one disc I/O for each

record - this would come up to a total of 10,000 disc
I/O s, quite a lot!

So, MPE implemented a rather ingenious idea called
fde buffering. Each file opened as a buffered rue has
allocated for it a certain amount (default 2, changable at
open time with the FOPEN intrinsic or the BUF=
parameter of a :FILE equation) of buffers, each of
length equal to the file's block size (in this case 640
words). These buffers are placed in an Extra Data Seg­
ment (because extra data segment access is faster than
disc access) and accessed there. They are read from or
written to disc only when a record that is not in the
buffer is requested. Thus, for the file described above,
only 10,000/16 disc I/O's = 625 disc I/O's is necessary
- a considerable savings! The advantage of having
more than 1 buffer is that then you can access, for in­
stance, records 17-32 (in one buffer) and 49-64 (in the
other buffer) without necessitating a disc I/O each time
you switch from one record range to the other. How­
ever, if you then read in record 100, the contents of
buffer 1 will be flushed out to disc and buffer 1will then
contain records 97-112. In general, with buffering, one
disc I/O is required for every (BLOCKING FACTOR)
records - in this case, one disc I/O is needed for each
16 records.

In the discussion above, we advised that you set up
blocking factors so that BLOCKING FACTOR * RE­
CORD SIZE be an even multiple of lZ8; thus, for in­
stance, 16 was chosen for files with records of length 40
words. But, there is more than one way to skin a block­
ing factor! In fact, since 16 * 40 is a multiple of 128, 32 *
40 certainly is too! Very little disc wastage will result
from changing the blocking factor from 16 to 32, but
each buffer will now be not 640 words long, but rather
1280 words long, and now only 313 (= 10,000/32) disc
I/Os will be necessary to read the file! A blocking factor
of 64 will require less than 160 I/O's, and so on. This will
not necessarily halve the time used by the read, but it
sure will decrease it. Of course, the same thing can" be
said for writing to files. We must, however, point out
that memory space will be used much more heavily by
fdes that have large blocking factors. Also, the total size
of the buffers must be less than or equal to 8,192 words
(or 14,000 words starting with the D MIT version of
MPE). Since the default number of buffers is 2, this puts
an upper limit of 4,096 words (or 7,000 words starting
with the D MIT) on the block size of a fIle. However,
you can increase that maximum to 8,192 words (or
14,000 words starting with the D MIT) by opening the
fIle with 1 buffer (by specifying BUF= 1 on a fIle equa­
tion).

Multiple Record Non-Buffered
Access (MR NOBUF)

The buffering method described above is rather good,
but is still not optimal; first of all, access to the extra
data segment in which the buffers are located is faster
than disc access, but nonetheless not as fast as access to

11-17 -S

your own stack. Moreover, as was pointed out above,
certain memory usage considerations .forbid the buffers
from being more than 5K to 10K words, which is also
not optimal. Wouldn't it be truly wondeIful if one could
read not just single records, not just blocks of 16 or so
records, but 4,000 words at one shot? Well, one can,
through the magic of MR NOBUF, probably the MOST
POWERFUL AND FASTEST FILE ACCESS
METHOD NOW AVAILABLE! MR stands for Multi­
ple Record I/O (do not confuse this with the Multiple
RIN capability, also abbreviated MR), and NOBUF
stands for No Buffering (this is a bit of a misnomer - it
means that it is you, not MPE who will provide the
buffer space needed). Note that MR must be used with
NOBUF!

Certain factors to beware of when using MR NOBUF
are: for one, this method is rather hard to use with vari­
able record length files. Also, the efficiency of this
method is best with a buffer size of 4,096 words.
Another factor is that when the block size (BLOCKING
FACTOR * RECORD SIZE) is not a multiple of 128
words, MR NOBUF is not that much more efficient
than ordinary ftle access, and simple NOBUF access
should be used instead.

By far, the best application of MR NOBUF is with file
copying. FCOPY, which uses ordinary buffering meth­
ods, is often 10 to 20 times slower than MR NOBUF
copiers like HP's own DSCOPY, MPEX/3000s
%FCOPY "FAST/DSLINE or %ALTFILE com­
mands, SUPRTOOLIROBELLE, and numerous other
programs. However, you can do MR NOBUF reading
and writing from your own programs by specifying the
MR NOBUF access options when accessing the file (or
specifying the MR or NOBUF parameters on the :FILE
equation - however, a bug present on some versions of
MPE forces you to specify MR in the FOPEN because
it ignores the MR :FILE equation parameter; see
"ANOTHER MPE FEATURE (BUG)" in SCRUGlet­
ter, Jan 1981 Vol 4 #1). This will allow you to read more
than one record (always at least one block, however) at
a time, and also lets you do direct I/O (e.g., with
FREADDIR and/or FWRI TEDIR) on a block number
rather than record number basis.

However, reading files MR NOBUF in your own pro­
grams is rather hard to do because of many concerns
that have to do with doing deblocking of records. Be­
cause of this, it is suggested that you either do most of
your record selection outside of your program (with
SUPRTOOLIROBELLE, for instance), develop your
own MR NOBUF I/O routines that can be easily called
from your applications programs, or use David Brown's
FAST I/O procedures.

MR NOBUF I/O can therefore really cut down the
execution time and CPU time demands of your disc
I/O-heavy programs. The only problems with MR
NOBUF are that it is hard to apply it to variable record
length files and KSAM ftIes and that it may (because of

11-17 -6

the large in-stack buffers necessary) use up a lot of
stack space and much memory space.

The Access Types for Disc Files

In the access options parameter of the FOPEN intrin- .~
sic or in the ACC= parameter of the :FILE command
you can specify the so-called access type which defmes
whether a program will read the file, write to the file, do
both, or append records to the file. There are 7 legal
access types, which can be very useful if used properly.
The default access type is IN access. This is read-only
access - all attempts at writing records to fIles opened
with IN access will fail with File System Error 40 ­
OPERATION INCONSISTENT WITH ACCESS
TYPE. If you only want to read the file, you should
open it with this access type; this will prevent your
program accidentally writing over the file; it will work
even if somebody else has the file opened in Share or
Exclusive Allo'w Read mode (see the SHARING FILES
chapter) and it will also work if the file's security pre-
vent you from doing anything but reading that file.

Another type of access is OUT access. OPENING·
OLD FILES WITH THIS ACCESS TYPE WILL
ERASE THEM! If you do not want that to happen, you
should open th e file with OUTKEEP access. However,
ifyou want to erase the file, or the file is new, or you do
not care about its old contents anyways, this is the ac­
cess type that should be specified. Note that you need
WRITE access to the file to open it in this mode. OUT­
KEEP access is useful for opening files to write to
them, but NOT DESTROYING THEIR OLD CON­
TENTS (as OUT access would do). You need WRITE
access to the file to open it with this access type.

Often you do not need to write over the old contents
of a file - you merely need to add new records to it. In
that case, APPEND access is for you - it forces the
record pointer to be positioned at the end of the file and
only permits you to append records to the file. Another
advantage of it is that it requires that you have only
,APPEND access (not WRITE access) to the file to open
it thus. So, if you wish to permit users to only append
and not overwrite data in a given file, they should be
allowed only APPEND and not WRITE access to this
file. For instance, VESOFT's SECURITY/3000 permits
APPEND access to its security violation log file, but not
WRITE access (so user's can not obliterate the record
of their violations).

The above access types permit you either to READ
ONLY or WRITE ONLY, but never both. INOUT ac­
cess lets you both READ and WRITE to the fIle. All
intrinsics (except FUPDATE) can be used against that
file in this mode. Note that you need READ and
WRITE access to open a file in this way.

There is also a special form of access called UPDATE
access that is PRECISELY the same as INOUT access
except that it permits the usage of the FUPDATE in­
trinsic. Since this is apparently no less expensive than
INOUT access, and requires no extra access to the file,

CHAPTER III
SHARED FILES

CLOSE IT. This is, of course, somewhat of a problem if
that file is intended to be read and written by many
different users. There are several ways to get around
this dilemma.

Sharing Files With
Input/Output Access

Merely specifying SHR access when opening the file
will get you where you are going - it will allow you and
anybody else who opens the file with SHR access to
read and write to this file. But, let us suppose the follow­
ing situation: two processes have opened one file for
IN/OUT acc.ess in SHR mode, and the following hap­
pens:

Writes the record back
In the above scenario, process A reads the record

before process B reads the same record but writes it
back out after process B reads it in! That way, process
A's changes WILL NOT BE REFLECTED IN THE
FILE because of the inteIference of process B. In fact,
what is needed is a method of "LOCKING OUT" all
other writers of the file while the file is being updated!
Well, MPE's FLOCK and FUNLOCK intrinsics pro­
vide this method.

Reads the same record

PROCESS B

Changes the record
Writes the record back

PROCESS A
Reads a record

Changes the record

Exclusive Allow Read Access

One of those ways is Exclusive Allow Read (EAR)
access. This permits you to forbid all other users from
writing to a file, while letting them read that file. Also,
this access (unlike EXCLUSIVE) access will be
granted to you even if the fue is already being accessed
for read access (but not for write access) by someone
else. This can be specified by setting the appropriate
bits in the access options of the FOPEN call, or issuing
a FILE equation with the EAR keyword. TRUE
SHARED ACCESS But, you sometimes want not just
to have one writer of a file, or one writer and several
readers, but MORE THAN ONE PERSON WRITING
TO A GIVEN FILE. This can be accomplished with
SHARED ACCESS (to use, specify the appropriate bits
in the FOPEN call or append the SHR keyword to the
file equation for that file), which is the default mode for
read only access, but has to be explicitly specified and
handled when writing to a file. Shared access is a very
complicated form of access, one at which we will look
closer in the next chapter.

Posting End of File to Disc

As was mentioned before, each file has a special re­
cord called "the fIle label" (which contains all sorts of
information about the file, such as its type, name, and,
among other things, its end of file, which is the number
of records which the file contains). Now, if every time
that you wrote a record to the file, MPE would have
updated that file's file label, your programs would run
quite slow - after all, that would mean extra disc I/Os
to handle. For this reason, MPE does not post the end
of file to disc until a record write would cause it to
allocate a new extent (in which case it would have to
change the file label anyway), thus saving the extra
I/Os.

This is all fine and dandy, provided that MPE will
actually get a chance to post the end of file to disc
sometime. But, what if the system crashes after you
wrote the record but before MPE posted the end of file?
Then, even though the record (or records, as the case
may be), are already out on disc, MPE does not know
about it because the end of file pointer does not reflect
this. So, you've just lost all those records that were
written before the system crashed. You can, however,
minimize your losses through a little-known feature of
the file system by calling the FCONTROL intrinsic (see
System Intrinsics Manual) with a parameter 6 (WRITE
END OF FILE) which lets you post the end of file to
disc. Ifyou do this after you write each record, the most
records that you will ever lose due to a system failure is
one! Of course, this will triple" the number of disc I/Os
that you'll have to do, so this is not advised for large
batch runs; however, if you are updating a disc file in­
teractively, the time it takes to input all of the data from
the screen will dwarf the time it will take to do the extra
I/O to such a degree that that the posting of the end of
fde will be virtually free in terms of time, and may save
you hours of re-entering vital data.

When You Are Not Alone

When you use any of the access types listed above
except read only (IN) access, the fIle specified will be
opened EXCLUSIVELY; that is, you can not open it if
anybody else has it opened, but, once you have it
opened, NOBODY ELSE CAN USE IT UNTIL YOU

it is suggested that this option be used instead of the
INOUT access type because it is more powerful and no
more dangerous.

Another access, permissible only to programs that
run in Privileged Mode (Ohmigod!), is EXECUTE ac­
cess; its advantages are twofold. For one, it requires
only EXECUTE access to a file, not READ access;
moreover, it allows you to write to loaded program or
SL files. This is listed only for the sake of complete­
ness, and all you nice non-privileged users out there
don't even need to know about it. For a discussion of
privileged mode, see PRIVILEGED MODE: USE VS.
ABUSE, SCRUGletter July 1981, Vol 4, #4.

11-17 -7

Record 3 written;
buffer flushed

Note that, by the principles of buffering, the actual
disc I/O is not done until the third record is written and
the buffer is flushed out to disc. But, because of that,
when it is flushed out to disc, the buffers from process A
and process B interfere with each other, and data can be
lost. Therefore, the rule for locking when appending (or

Sharing Files with Append Access

In some cases, however, locking does not really help.
For example, if two writers are just writing to a fde (no
reading, etc.), the "logical transactions" like the ones
described above are composed of merely one write. For
these transactions, it does no good to lock the file. One
of the most common example of this type of file access
is shared append access to a file by two or more writers.

In fact, if the file has a blocking factor of 1, there is no
need to do anything but the write. However, look at
what happens when the file has a blocking factor other
than 1, for example 3; consider process A and process
B, both writing to the same file:

Dynamic Locking and Unlocking
for Shared Files

In order to use dynamic locking, the process that
opens the file must open it with dynamic locking ena­
bled (the LOCK parameter on the :FILE equation ­
together with the IN/OUT SHR access, the fue equation
would now look like :FILE file;LOCK;SHR;ACC=
INOUT - or the appropriate bit in the access options
of the FOPEN intrinsic call). Then, before each "logical
transaction" (a period in time in which the data in the
ftle is not consistent - in the above example, while the
record is being changed, the current state of the file'
does not reflect the true intended state; therefore, the
fue must be locked before the read and unlocked after
the write) the file must be locked and then be unlocked
after the end of the transaction (note that opening a fde
with dynamic locking enabled does not 'actually lock the
ftle). This will ensure that there will be no inconsisten­
cies like the one shown above. Note that THIS WILL
WORK ONLY IF ALL WRITERS LOCK THE FILE
IN APPROPRIATE CASES - this locking arrange­
ment only works for programs that honor it.

PROCESS A

Record 1 written;
kept in buffer

Record· 2 written;
kept in buffer

Record 3 written;
buffer flushed

PROCESS B

Record 1 written;
kept in buffer

Record 2 written;
kept in buffer

performing any other such operation in which each
transaction contains only one operation) is: LOCK
WHEN THE BLOCKING FACTOR IS GREATER
THAN 1; IF THE BLOCKING FACTOR IS 1, LOCK­
ING I S UNNECESSARY.

MUltiple File Access

Another way to ensure that no data is lost while writ­
ing to a [tie is with a useful tool (which is even more
useful under MPE IV) called MULTIPLE FILE AC­
CESS. With multiple file access in shared mode, the
internal file control information and the I/O buffers are
shared, as well as the file itself, thus avoiding many
problems of ordinary shared access.

So, if process A and process B (IN THE SAME
JOB/SESSION) access a file SHARED, APPEND, and
MULTI, then their internal end of file and buffer
pointers are shared; thus, the risk of one's fIle I/O inter­
fering with the other's is eliminated. To specify
MULTI-access, set the appropriate bit in the FOPEN
parameters or specify the ;MULTI keyword on a :FILE
command for the file in question.

So, very many of the problems and complicated lock­
ing strategies discussed above can be avoided if
MULTI-access to that file is used. However, there are
two things that you must keep in mind when using
MULTI-access; for one, ordinary sequential reads and
writes to that fde will not behave as expected. Why?
Well, the current record pointer is among those values
that is shared with MULTI-access and thus ifprocess A
reads a record sequentially and then process B requests
to read a record sequentially, process B will get the next
record because the record pointer was already in­
cremented by A's read. Thus, if the two processes read
the file sequentially with MULTI-access, each one will
read approximat~ly half the file instead of the full fde!

MPE III vs. MPE IV

Another problem for all you unlucky people who still
do not have MPE IV, MULTI-ACCESS IS PERMIS­
SIBLE ONLY WITHIN ONE JOB/SESSION UNDER
MPE III! However, under MPE IV, you can use the
GMULTI (Global MULTI access), which can be
specified in the FOPEN parameters or with the
GMULTI keyword of the :FILE equation, to have
MULTI-ACCESS ACROSS JOBS/SESSIONS, with
which you can avoid most of the problems of shared fde
access very easily.

More About Locking

There are two methods of locking files: UNCONDI­
TIONAL, which means "if the file is already locked by
somebody else, wait for them to unlock it, and then
establish the lock" and CONDITIONAL, which means
"if the fde is already locked by somebody else, return to
me immediately with an error condition." The UN­
CONDITIONAL method is usually the most useful, al­
though the CONDITIONAL option is handy when you

."-..

11-17 -8

do not want to take the risk of waiting a long time (if the
program that has it locked won't unlock it for a while).
Needless to say, the file should not be locked for a long
time, and SHOULD NEVER BE LOCKED WHILE A
TERMINAL READ IS GOING ON unless you do not
mind the fact that if the terminal operator goes to lunch,
everybody else who tries to unconditionally lock the ftIe
will hang.

Locking Multiple Files,
Or The Secrets of Multiple Rins (MR)

Let us consider another hypothetical circumstance:
Process A locks File 1; meanwhile Process B locks File
2. Then, Process A tries to unconditionally lock File 2
and is then impeded until Process B unlocks File 2.
Meanwhile, Process B tries to unconditionally lock File
1 and is then impeded until Process A unlocks File 1.
·Thus, Process A is waiting for Process B and Process B
is waiting for Process A. Result: Deadlock. Both pro­
cesses are hung until the system is re-started. The sages
ofCupertino thought of that when designing the system;
in fact, their solution (which may not sound like much of
a solution, but is better than nothing) is TO FORBID
PROGRAMS TO LOCK MORE THAN ONE FILE AT
A TIME. But, one may object, what if I have to lock
more than one rue at a time? Well, the answer to that
problem is that you can get around (but at your own
risk) that restriction if the program that does the locking
has Multiple RINs (MR - not to be confused with Mul­
tiple Record access) capability (i.e., was :PREpped
with it. By the way, RIN stands for Resource Identifica­
tion Number. These programs can, IF THEY REALLY
HAVE TO, lock two or more files at a singl~ time.
Needless to say, this capability should not be freely
given to everybody and his brother, but only to people
who really need it, and smart enough to use it without
causing deadlocks.

That brings us to the problem of: How do you get
around the deadlock problem? Well, you may have al­
ready noted that the reason why the programs got into a
deadlock was that one locked File 1 before File 2 and
the other locked File 2 before File 1. If they had only
kept a consistent locking arrangement (e.g., File 1 must
ALWAYS be locked before File 2), they would not have
had the problem - this is probably the best way to
avoid the deadlocks. Another way is to lock the ftles
CONDITIONALLY, and if the lock fails, do something
else (or even go into a loop, which can at least be broken
out of by aborting the job or doing a break/:ABORT,
rather than re-starting the system).

Summary of Locking
And Locking Strategy

The following are the 10 commandments of locking:
1. Thou shalt lock around logical transactions which

involve two or more operations. For example, that kind
of a logical transaction would be a read of a record
followed by a modification of that record followed by a

write. If you do not lock around this, you stand the risk
of losing data consistency.

2. Thou shalt also lock around all logical transactions
that involve a file which you share with somebody who
has transactions which involve two or more operations.
That means that if process A's transactions are just
single writes and process B's transactions are reads fol­
lowed by writes, both process A AND process B must
lock around their transactions.

3. Thou need not lock a shared file if all its writers'
transactions involve just one operation and its blocking
factor is 1. Thus, if process A and process B are writing
to a shared file, and their transactions are merely single
writes (e.g., they are appending to a ftIe), neither one
has to lock the file.

4. Thou shalt use GMULTI access under MPE IV
when you are appending to a shared/ile. This can save
you time, worry, and your neck.

5. Honor thy locking arrangements. This means that
if it has been decided that a shared file is to be locked by
its writers, all writers must lock it. If so much as one
writer fails to lock the file, all of the locking arrange­
ments will be useless.

6. Thou shalt not keep a file locked while a terminal
read is in progress. If you did, then the file will be
locked down until something is entered, which could
mean an indefinite waiting period for any othe~ program
that wants to lock the file. "

7. Thou shalt not lock more than one file at the same
time without MR Capability. The second flle lock will
fail unless your program was :PREpped with MR capa­
bility.

8. Thou shalt protect thyselffrom deadlocks by estab­
lishing a fixed file locking sequence if you use MR
capability. Thus, if process A locks fUe 1and then flle 2,
process B must lock in the same order, i.e., file 1 and
then fUe 2 (not fUe 2 and then me 11).

9. Thou shalt not give MR capability tojust anybody.
MR capability can cause big trouble, and thus should be
passed out sparingly.

10. Thou shalt use IMAGE/JOOO if thy file locking
arrangements get too complicated. IMAGE/3000 has
ftle locking capabilities far superior to MPE's ftle lock­
ing features. If you find that your locking arrangements
are getting too complicated or programs are waiting in­
ordinate amounts of time to get at a shared file, think
about converting it to an IMAGE file - it may be worth
your while.

CHAPTER IV
FILE DOMAINS AND EQUATIONS

Permanent and Temporary Files

Most of the ftles that we discussed in previous sec­
tions were usual PERMANENT rues - files that, once
built, exist until they are :PURGEd or somehow de­
leted. There is, however, another type of file, one that is

11-17 -9

also often quite useful. This is the JOB/SESSION
TEMPORARY FILES. These files, once built (by plac­
ing the ;TEMP keyword on the :BUILD or :FILE
command), exist until they are :PURGEd (by perform­
ing a ":PURGE filename,TEMP") OR UNTIL THE
JOB OR SESSION IN WHICH THEY WERE
CREATED LOGS OFF. Why are these rtIes desirable?
Imagine, for instance, that you want to create a certain
file that you want to stream. After the ftIe is streamed
(in the same job or session that it was built in), you no
longer need it. If you were to create that ftIe as a perma­
nent fue and then purge it, it is quite possible that some­
body else may have built a file with the same name; for
instance, if the same program is being run on another
terminal and that file is created there.

However, if you create it as a temporary fIle, you can
be certain that creating it will not interfere with any­
body else; the nature of job/session temporary files is
such that two different jobs or sessions can create
within them temporary files with the same name which
do not interfere with each other.

Most MPE commands either attempt to open the file
given to them as a temporary file and then (if the tem­
porary open fails) as a permanent file (e.g.,
:STREAM,:COBOL,:RUN, etc.), thus being able to ac­
cept both temporary and permanent files, or have spe­
cial keywords that instruct them to open the ftIe as a
temporary file (e.g., PURGE file,TEMP). Programs that
open files as permanent can be instructed to open the
file as job/session temporary by issuing a fIle equation
of the form ":FILE fil ename,OLDTEMP". Note that
some commands and subsystems (e.g., :BASICOMP,
:PREP, :SEGMENTER's -BUILDUSL command)
build files as temporary files; others can be instructed to
build files as temporary by using a file equation like
":FILE fIlename ;TEMP".

If you need to keep a temporary fIle as a permanent
file with the same name, you can do a ":SAVE fil
ename"; if you want'to keep it as one with a different
name, do a ":RENAME oldfile,newfile,TEMP" and a
":SAVE newfile". The names of your temporary files
can be listed with LISTEQ2 or (in a more complete,
:LISTF-like format, with MPEX/3000's %LISTF
ftIeset: TEMP command).

$NEWPASS and $OLDPASS

Two other useful critters are the system-defmed ftIes
called $NEWPASS and $OLDPASS. Consider, for in­
stance, the :COBOL command. When the USL fIle is
omitted on this command, it is usually followed by a
:PREP command that is to prepare the resultant USL
file into a program fue. But, what intermediate USL rtIe
should be used? Well, if you use a permanent or tem­
porary fIle you run the risk of having a fIle with that
name already in existence. This is where $NEWPASS
and $OLDPASS come in. $NEWPASS is apeculiarftle
that, when closed, magically turns into $OLDPASS. So,
once you open $NEW PASS, write to it, and close it,

11-17 -10

you can then open $OLDPAS~, and read it.
So, in the case of the :COBOL and :PREP, the USL

file parameter of the :COBOL command defaults to
$NEWPASS. The USL file is closed, and, presto!, it
becomes $OLDPASS. Now, you can execute a com­
mand of the form ":PREP $OLDPASS,progfile", and
that USL will be :PREPed into the specified program
fIle. If you really want to be fancy and you don't need
the program file to be a temporary or permanent ftIe,
you can do a ":PREP $OLDPASS,$NEWPASS", and,
after this is done, the program file (which was specified
as $NEWPASS) becomes $OLDPASS. Now, you can
just ":RUN $OLDPASS". Note that $OLDPASS con­
tains the USL file from :COBOLPREP (or
:FORTPREP, :SPLPREP , etc.) and the program fIle
from :COBOLGO (or :FORTGQ, :SPLGO, etc.).

If you decide that you want to save the contents of
$OLDPASS in a permanent file, just do a ":SAVE
$OLDPASS,fIlename". A rather bizarre undocumented
feature is that to save $OLDPASS as a TEMPORARY
file, you can do a ":RENAME $OLDPASS,fIlename"!
Of course, $OLDPASS vanishes as soon as you :BYE
off.

The Care and Feeding
of :File Equations

Perhaps one of the single most important and least
understood tools in handling files is the :FILE equation.
The fIle equation allows one to re-define certain open
parameters of old and new files. For example, let us say
that you are keeping a file with EDITOR, and you want
to keep it with blocking factor 16 and 32 extents. Then,
you would issue the file equation ":FILE filename;RE­
C= ,16;DEV= ,32". Note that THIS DOES NOT
BUILD THE FILE! However, when you execute the
/KEEP command (and EDITOR therefore opens the
fIle) or when you open it from your own or any other
program as a new ftIe, it will be opened with blocking
factor 16 and 32 extents.
If, however, the specified file already exists and has a
blocking factor of 3 and 8 extents and you issue the file
equation in hopes that the equation will magically
transform it, you're in for a letdown. This is because if
that file already has a blocking factor of 3, it will always
have a blocking factor of 3 even if you say on the :FILE
equation or when opening the file that it has a blocking
factor of 16. Its blocking factor is 3 and merely opening
it with another blocking factor changes nothing. To
truly change the blocking factor, record size, number of
extents, fIle limit, or anyone of the other file paramet­
ers, you need to either rebuild the file (remember, these
parameters can be redefined when you are building a
new fIle) and copy the old contents of the fIle into it, or
use utilities such as MPEX/3000.

However, some options can be redefined for OLD
fIles. These are not the file options (like CCTL or REe)
but the access options (like ACC, BUF, MR, etc.),
which are not inherent parts of the file, but rather at-

l

tributes of the access, defined when the file is opened.
These can therefore be redefined for OLD or NEW
fIles. Another class of :FILE equation parameters gov­
erns actions that are to be performed not at OPEN time,
but rather at CLOSE time. The only parameters in this
class are disposition parameters. The SAVE option in­
structs the program to close the file as a permanent file;
the TEMP option tells it to close the fue as ajob/session
temporary file (q.v. TEMPORARY vs. PERMANENT
FILES); and, the DEL option will delete the file refer­
enced when it is closed. Note that although all :FILE

equation parameters correspond to some FOPEN or
FCLOSE parameter, not all FOPEN and FCLOSE
parameters can be redefined with a :FILE equation; for
instance, the number of user labels (on open), or the flag
that indicates whether space between end of fue and
fIle limit is to be released (on close) can not be redefmed
with :FILE equations.

If you do not want the user to be able to re-define the
open or close parameters of a file, you should open the
ftIe with the Disallow File Equations bit in the FOP­
TIONS parameter of the FOPEN intrinsic set.

APPENDIX B

A Glossary of Common Disc File Handling Terms

ACCESS-MODES - The file's ACCESS MODE (one
of IN, OUT, OUTKEEP, APPEND, INOUT,
UPDATE, or execute) that is defined at file
open time and restricts the actions that can be
performed on the file. This can be redefined
with the ACC= parameter of the :FILE equa­
tion. See APPEND ACCESS, IN ACCESS,
INOUT ACCESS, OUT ACCESS, OUTKEEP
ACCESS, UPDATE ACCESS.

ACCESS-OPfION - The ACCESS OPfIONS are a
parameter to the FOPEN intrinsic (q.v.) that
define the access mode, sharing status, dynamic
locking flags, etc. See FOPEN.

ASCII - ASCII files are fIXed/undefined length files
that are padded or initialized to blanks instead
of zeroes. That is, writing a record that is
shorter than the record size causes the result to
be blank-padded. To create, use ASCII as the
4th subparameter of the REC= parameter of
the :FILE/:BUILD command. See BINARY.

BINARY - BINARY fIles are fixed/undefined length
files that are padded or initialized to zeroes
(nulls). To create, use BINARY as the 4th sub­
parameter of the REC = parameter of the
:FILE/:BUILD command. See ASCII.

BLOCK - A BLOCK is the unit in which data is
transferred between I/O devices and file buffers
on disk. 1 BLOCK = BLOCKIN G FACTOR
records. Each block always starts on a sector
boundary, and thus, for disc space usage effi­
ciency should be equal to an integral number of
sectors whenever possible. See BLOCKING
FACTOR, BLOCK SIZE.

BLOCKING-FACT - The BLOCKING FACTOR is
the number of records per block. To optimizing
disc space usage, set the blocking factor such
that BLOCKING FACTOR * RECORD SIZE
is a multiple of 128 words. To optimize file ac­
cess speed, set the blocking factor as large as
possible. To minimize memory usage, set the

h

blocking factor as small as possible. To set the
BLOCKING FACTOR for new files, specify it
as the 2nd subparameter of the REC= parame­
ter of the :FILE or :BUILD command. See
BLOCK, BLOCK SIZE.

BLOCK-SIZE - For fixed record length files, BLOCK
SIZE = BLOCK FACTOR * RECORD SIZE.
For variable record length files, BLOCK SIZE
= BLOCK FACTOR * RECORD SIZE +
(BLOCK FACTOR + 1) * (2 bytes). The most
efficient disc space usage occurs when the
block size of a ftIe is equal to an integral number
of SECTORS. See BLOCK, BLOCK FAC­
TOR.

BUFFERING - The default mode of fue access is
BUFFERED FILE ACCESS - in this mode
records are not immediately read from or writ­
ten to disc, but rather kept in an extra data seg­
ment which contains (BUFFERS) buffers of
length (BLOCK SIZE) words each. See BUF­
FERS, NOBUF ACCESS.

BUFFERS - When a file is accessed in buffering
mode, a certain number of BUFFERS is allo­
cated, each one of length (BLOCK SIZE)
words, in one extra data segment. The default
number of buffers is 2, and can be redefmed
with the BUF= parameter of a file equation.
See BUFFERING.

DEADLOCK - A situation in which two processes are
hung, each one waiting for the other to do some­
thing. This can happen when several fues are
locked by processes with MR capability. See
LOCKING FILES, MR CAPABILITY.

DEVICE - The DEVICE on which a disc file resides
can be a single disc (specified by placing its
device number in the FOPEN call or as the 1st
subparameter of the DEV= keyword of the
:FILE equation) or a device class, a collection
of disc devices grouped under a generic name
(specified in the same place as the device

11-17 -11

number). All of the eKtents of the ftIe are placed
on this device or device class.

DOMAIN - The DOMAIN of a fue can be PERMA­
NENT or TEMPORARY. This can be specified
on a :BUILD command (;TEMP indicates
TEMPORARY, omission of it means PERMA­
NENT) or a :FILE command (for old files,
:FILE filename,OLD means PERMANENT
and :FILE filename,OL DTEMP means TEM­
PORARY; for new files, :FILE filename;TEMP
means TEMPORARY and ;SAVE means per­
manent). See PERMANENT, TEMPORARY.

EAR - EAR (short for Exclusive Allow Read) is an
access mode that permits a user to open a fue .
for write access, but still allow other users read
access to the file. See EXCLUSIVE ACCESS,
SHARED ACCESS.

END-OF-FILE - The END OF FILE is usually the
number of records that have been written to a
given file. It is usually less than the fue limit
(q.v.), which is the maximum number of re­
cords in a fue, but could be greater than it in
variable record length fues (q.v.).

EXCLUSIVE - EXCLUSIVE ACCESS to a fue is an
access mode in which the accessor forbids
everybody else to access that fue while he is
accessing it. This mode is the default mode for
all non-read access. It can be specified in the
access options of an FOPEN call or in a :FILE
equation with the EXC parameter. See EAR
ACCESS, LOCKING, SHARED ACCESS.

EXTENT - An EXTENT is a collection of blocks that
occupies contiguous space on a given disk.
There can be up to 32 such extents in a file, but
the default is 8. See EXTENT SIZE,
MAXIMUM EXTENTS, NUMBER OF EX·
TENTS.

EXTENT-SIZE - The extents of any rue must all be of
equal length (in sectors), except the last one,
which may be of smaller length. For formulae
for these lengths, see APPENDIX B - DE·
TERMINING DISC SPACE USAGE. See
EXTENT.

FILE-CODE - The FILE CODE of a flle is an integer
which describes the type of this file; some of the
more common codes have special mnemonics
corresponding to them (e.g., PROG = 1029 =
file code of program files). These mnemonics
show up on :LISTFs of that rue, and can also be
specified on· a :BUILD or :FILE command.
The code, whether mnemonic or numeric, can
be placed on the CO DE = parameter of a
:BUILD or :FILE command.

FILE-EQUATION - A file equation is a useful tool
that allows a user to redefine certain open or
close parameters of the ftIe (e.g., the fue code
(CODE), the access type (ACC), the close dis-

11-17 -12

position (SAVE/TEMP), etc.). It can be
specified through the MPE :FILE command.

FILE-LABEL - The FILE LABEL of a rue contains
information about that file (e.g., file name,
creator id, ftIe code, record size, extent infor­
mation, etc.) needed by MPE. Ordinary users
need not worry about this entity.

FILE-LIMIT - The maximum number of records per­
mitted in a file, necessary for knowing how
much disc space to allocate, specified at ftle
creation time. Note that the END OF FILE can
actually exceed the FILE LIMIT for variable
record length files. The file limit can be
specified in a :BUILD or :FILE command as
the first subparameter of the DISC= keyword.

FIXED-LENGTH - FIXED RECORD LENGTH ftles
are files whose records have a fIXed length - if
a record of smaller length is written to the file,
the record is padded on the right with an appro­
priate number of blanks (ASCII fues) or nulls
(BINARY fIles). An example of this kind offlle
is the usual EDITOR file which has a fIXed
length of 80 bytes. To build fIXed record length
flies, specify F as the third subparameter of the
REC= parameter on a :BUILD or :FILE com­
mand (e.g., REC=-80"F). See VARIABLE
RECORD LENGTH, UNDEFINED RECORD
LENGTH.

FOPEN - FOPEN is a system intrinsic that permits its
caller to open a file. BASIC, COBOL, FOR­
TRAN, and RPO users need not be concemed
about this intrinsic because their languages
provide file access features already (this is
therefore mostly used by SPL programmers);
however, we often allude to this intrinsic in this
paper because all rue open commands in all lan­
pages eventually translate out to this intrinsic.

OMULTI-ACCESS - OMULTI access is an extended
form of MULTI access (q.v.) available only on
MPE IV. Its usage (which can be specified by
appending the OMULTI keyword to the :FILE
equation) together with SHR and ACC=AP·
PEND provides a painless way of appending to
shared fdes. See MULTI, SHARED ACCESS.

LOCKING - MPE's DYNAMIC FILE LOCKING
mechanism (available through the FLOCK and
FUNLOCK intrinsics) gives users a way to
have more than one program write to a ftIe
without jeopardizing data consistency. In order
to call FLOCK and FUNLOCK, the ftle must
have been previously opened with the dynamic
locking access option set (which can be done in
the FOPEN call or using the LOCK parameter
of the :FILE command). See DEADLOCKS,
MULTIPLE RINS, SHARED ACCESS.

MAX-EXTENTS - The MAXIMUM NUMBER OF
EXTEN TS defines into how many extents

(q.v.) a file is to be split. Note that (usually) not
all of these extents are allocated at the time a
file is built - the default is 1(although more can
be allocated initially by specifying their number
as the 3rd subparameter of the DISC= keyword
of the :FILE command). The maximum number
of extents can be specified as the 2nd sub­
parameter of the DISC= keyword of the :FILE
command, and defaults to 8. See EXTENTS,
NUM EXTENTS.

MULTI-ACCESS - MULTI access is a form of access
that is very useful for sharing files. It permits
you to share not just the files but also internal
ftIe control information and file buffers. It can
be specified by placing the MULTI keyword on
a :FILE command. See GMULTI ACCESS,
SHARED ACCESS.

MULTIPLE-RINS - The MR (MULTIPLE RINS)
capability is an account, ftIe, group, and user
capability that governs a program's ability to
have more than one file locked at at a time. In
order for a program to be permitted to do this, it
must have been :PREpped with MR capability
by a user who had MR capability, and it must
reside in a group that has MR capability. See
DEADLOCKS, LOCKING.

MULTI-RECORD - MULTI-RECORD ACCESS
(abbreviated MR) is a mode in which a file ac­
cessor can read more than one record at a time,
thus greatly speeding up file access. This option
must be used together with the NOBUF option
(see NOBUF ACCESS). It can be specified on
a :FILE equation as the MR parameter. See
NOBUF ACCESS.

$NEWPASS - SNEWPASS is a special system­
defined temporary file that, when closed, turns
into $OLDPASS (q.v.). This fUe (and SOLD­
PASS) disappear (along with all job/ session
temporary files) at logoff time. See SOLD­
PASS, TEMPORARY FILES.

NUM-BUFFERS - The NUMBER OF BUFFERS is
the number of I/O buffers allocated for buffered
file access (q.v.). This number can be specified
with the BUF= parameter of a :FILE equation.
See BUFFERING.

NUM-EXTENTS - The NUMBER OF EXTENTS is
the number of extents that that are currently
allocated in the file; this starts out as the in­
itially allocated number of extents (see EX­
TENTS), and is increased by 1 whenever a re­
cord is written to the file which will not fit into
the currently allocated number of extents. See
EXTENTS, MAXIMUM EXTENTS.

$OLDPASS - $OLDPAS.S is a special system-defined
temporary file that was the last $NEWPASS
(q.v.) file closed. This file disappears at logoff
time, but can be saved with the MPE :SAVE

command. See $NEWPASS, TEMPORARY
FILES.

PERMANENT-FILE - A permanent file is a disc fIle
that is accessible by all users in the system (that
have the proper access to it, of course) and re­
mains until it is :PURGEd, as opposed to a
temporary fde (q.v.) that can be accessed only
by the session in which it was created and is
automatically deleted when that session logs
off. The fact that a file is to be accessed as an
OLD permanent ftIe can be specified by execut­
ing a file equation of the form ":FILE
filename,OLD"; the fact that a file is to be
saved as a NEW permanent fde can be specified
by placing the SAVE keyword on a :FILE
equation for that file. See TEMPORARY
FILES.

RECORD-LENGTH - The RECORD LENGTH of a
fde is the length of each records in that file if it
is afIXed or undefined record length ftIe, and
the maximum length of the records in that ftIe if
it is a variable record length fIle. This parameter
can be specified as the 1 st subparameter of the
REC= parameter on a file equation. See
FIXED RECORD LENGTH, UNDEFINED
RECORD LENGTH, VARIABLE RECORD
LENGTH.

SECTOR - A SECTOR is 128 words of disc space.

SHARED-ACCESS - Files open in SHARED AC­
CESS mode can be written by more than one
program at the same time. This option can be
specified in a :FILE equation with the SHR
parameter. It is imperative for data consistency
that the dynamic locking (q.v.) facility be used
by all programs that write to a file shared by
two or more writing programs. See EAR AC­
CESS, EXCLUSIVE ACCESS.

TEMPORARY-FILE - A temporary rue is a disc rue
that can be accessed only by the session that
created it, and is automatically purged when
that session logs off. It can, however, be saved
as a permanent fde (q.v.) with the MPE :SAVE
command, and purged before the session logs
off with the PURGE filename ,TEMP command.
The fact that a file is an OLD temporary fl1e can
be specified by using a fIle equation like" :FILE
filename,OLDTEMP"; the fact that it is to be
saved as a NEW temporary fue can be specified
by appending the TEMP keyword to a :FILE
equation for that file. See PERMANENT
FILES.

UNDEFINED-LEN - Undefined record length rues
are not intended to be used as disc fdes. Use
instead fixed / variable 'record length files. See
FIXED RECORD LENGTH, VARIABLE
RECORD LENGTH.

USER-LABELS - User labels are records which, al-

11-17 -13

though they are parts of the file, are transparent
to the normal reader of that ftIe, and can only be
accessed via the FREADLABEL and
FWRITELABEL intrinsics.

VARIABLE-LEN - Variable record length ftIes are
ftIes in which not all records have to have the
same length. When records of length less than
the record length (which, incidentally, is the
maximum length of any record in that ftle) are
written to the file, no padding is done (which

means that the ASCII / BINARY distinction
has no meaning here), but rather the size of the
record to be written becomes the record length
of that particular record. A result of this is that
no space is wasted due to padding, which makes
these ftIes much more efficient users of disc
space than fixed record length files (q.v.). See
FIXED RECORD LENGTH, UNDEFINED
RECORD LENGTH.

APPENDIX B

Determining Disc Space Used By Files
Given File Parameters

Perhaps because there are so many different file
parameters (record size, blocking factor, end of file, fue
limit, etc.) that are involved in determined the disc
space used up by a certain file, the formula for this
calculation is hard to come by and is quite complicated.
However, we will attempt to list it together with all its
interesting ramifications below. Note that this method
will work only for FIXED RECORD LENGTH FILES
that are to be WRITTEN IN A SEQUENTIAL FASH­
ION (i.e., no directed writes). The parameters needed
for this algorithm are the RECORD SIZE (in words),
BLOCKING FACTOR, END OF FILE, FILE LIMIT,
NUMBER OF USER LABELS, and MAXIMUM
NUMBER OF EXTENTS REQUESTED. This method
will yield the NUMBER OF SECTORS USED BY
THE FILE, THE EXTENT SIZE OF MOST EX­
TENTS, THE EXTENT SIZE OF THE LAST EX-

TENT OF THE FILE, THE MAXIMUM NUMBER
OF EXTENTS GRANTED, THE NUMBER OF EX­
TENTS ACTUALLY USED, and THE BLOCK SIZE
OF THE FILE.

Blocking Considerations

The first parameter that must be determined for this
calculation is the BLOCK SIZE, in SECTORS, which
we will denote by the "variable" name BLKSIZE.
Using standard SPL notation, the names BLKFACT =
blocking factor and RECSIZE = record size"and keep­
ing in mind that ALL DIVIDES PERFORMED BY US
FROM NOW ON WILL BE "CEILING" DIVIDES,
i.e., DIVIDES IN WHICH THE RESULT IS THE
SMALLEST INTEGER THAT IS LARGER THAN
OR EQUAL TO THE FRACTIONAL DIVIDE RE­
SULT (e.g., 5/2=3, 20/4=5), we get the following for­
mula:

'-'

BL. KS I ZE : =):~ RE CS I ;lE~+: BLI(FAC T)/1 28 i « R~cord ~jZE IN WORDS »

of the ftIe. The formulae for this (note FLIMIT = fue
limit, ULAB = number of user labels allocated) are:

Next, we must find out the number of blocks (not
records, but blocks) that ar~ used up by the data portion
of the fue and the label (user label and file label) portion

[)fl T~iBL.KS ; ~Ft .. I ~l.l T./BLI<FAC T ;
LABBlKS:=(ULAB+1)/BLKSIZE; «the 1 is for the file label »
lOlAt.Bl..KS;~()A"~1F::i.~<SioL .. AE:Bl.I<~.j «blc.ck~ U$€d b~J bc·i.-t"c >}

Extent Considerations

At this point, we can determine the extent size (in
blocks or in sectors) of each file extent. The formula is

(given MAXEXTS is the maximum number of extents
requested by the file creator at creation time) as fol­
lows:

EX rs I ZE I Bl. OCKS : =TOTAl.BLKS/MA)~EXT~ J << i,. b 1 c.ck so) >lOY'

EXTSIZE~SECTOR8:=EXT812E~BLOCKS*BLKSIZEj «in s€ctor~ »

For our purposes, we will use the
EXTSIZE'BLOCKS-in-blocks formula. Now, let us
digress for a moment. As we have said before, the
maximum number of extents of a given file can be
specified on a :BUILD or :FILE command, and de-

11-17 -14

faults to 8. But, the maximum number of extents actu­
ally granted (this is NOT the number of extents actually
used!) may be smaller than the maximum number of
extents requested in this way! In order to explain the
reason for this, we must first recall a fact that will be of

paramount importance to us in this entire discussion:
ALL EXTENTS OF A FILE MUST BE OF THE
SAME LENGTH, EXCEPT THE LAST ONE,

. WHICH MAY BE OF SMALLER LENGTH. Let us
suppose that you try to :BUILD a file with 100 blocks
and 16 as the maximum number of extents (for instance,
with an MPE command like :BUILD
MYFILE;DISC= 100,16). No.w the file system must fit
an integer number of blocks into one extent. Now, how
many blocks can fit into one extent? Well, the number is

7 (the ceiling of 10 0/16). But, by the rule stated above,
all extents of a fIle except the last one must be of the
same length. Thus, each extent except the last one must
be 7 blocks long. But, only 14 such extents can fit into
100 blocks, leaving 1 2-block extent! So, the fIle system
can not possibly grant you a maximum number of ex­
tents larger than 15, even though you asked for 16! n
short, the "real" number of maximum extents granted
turns out to be:

REAlMAXEXTS;=TOTALBLKS/EXTSI2E'BLOCKS;
where TOTALBLKS and EXTSIZE'BLOCKS werQ defined above.

where TOTALBLKS and EXTSIZE'BLOCKS were
defined above.

Now, the above statements have yet to use the END
OF FILE parameter. Nevertheless, this parameter is a

vital one to our calculation. It permits us to determine
another crucial factor, the number of extents currently
used (USEDEXTS), through the following formula:

is the real maximum number of extents, Le., all of the
file's extents are allocated, the number of sectors used
can be found by the following:

tJ!:;E[)E~·::TS : ~;.:. L. ABBl_t(S +EOF' /BLI(FAC. T)1 E~"; TSIZE ~ E;LOC.KS i

The above takes the number of blocks actually used
by the fIle and divides it by the number of blocks per
extent, thus getting the number of extents actually used.
Now, we have the answer: if the number of extents used

SECTOf;.:S: =T.jTFlf.. BLKS*BLKS I ZE;

If, however, some of the extents of the file remain
unallocated, we can fmd the number of sectors used

with this formula:

the following algorithm:

SEC TC'RS : :: IF tjS EDE:X:T S:::RF.Ai. J'1f.l:t{EX TS THEt~

TCtTALBLt<S*BLKS I ZE << if' all extent.s a I"" £ all ocate:d)- >
ELSE

USEDEXTS*EXTSIZE /BlOCKS*BLKSIZE;

The Facts in a Nutshell

In short, the above rantings and ravings boil down to

(\lariables:
MAXEXTS = maximum numbar of extents requested
RF-~('~SJ:ZE: - r··e~ot"'d ~'i.~:€: (in \·..ord~·) c.'f the file
BLKFACl = blocking f~ctor of th£ fil€
FLIMIT = the fil€'s filE limit
EOF = thE file~s end of fila
ULAB = the number of user labels allocat€d in that file)
BLKSIZE:=(RECSIZE*BLKFACT)/128J
DATABt.. KS : -FL.l f\1 I Tt,rBL.KF(~C T ,
l.ABBLKS : =(l.IL.(~E:+1),.JBl.. KS I ZE J
TOTAlBLKS: ~[)~~T~)BLKS+Lft8BLKS;
EXTSIZE IBl.OCKS: =TC.TALBLKS./MA>~E)<TS;
REALMAXEXTS~=TOTALBLK8/EXTSI2E'BLOCKS;

USEDE~T8:=(LABBLKS+EOF/BLKFACT)/EXTSIZE/BLOCKS;

SECTORSJ=IF USEDEXTS~REALMAXEXTS THEN
TOTAL RLKS:i<BLKS 17F

ELS~

USEDEXTS*EXTSIZE'BLOCKS*BLKSIZE;

11-17 -15

Let us analyze an example case (you can verify it yourself!):

MAXE~TS - e extEnts
RECSIZE - 40 word$
BLKFACl - 3 record~ per block
FLIMIT ~ 'il~ limit ~, 10000
EDt- _. 46 00 r· ecor' dz
lIt AS - (I user- 1at\e 1s
BlKSIZE := (40*3)/128 = 1 sectorJ
DATABlKS := 10000/3 = 3334 blocksJ
LABBLKS :~ 1/1 ~ 1 blockJ
l'(ITALBl...KS : ~ 3334+ 1 = 3335 block!"
EXTSIZE / BI..Of:K:3 ::~. 3335,'8 =~ 417 bloc.ksJ
REALMAXEXTS := 3335/417 = B QxtentsJ
USEDEX1S := (1+4600/3)/417 = 4 extents;
SECTORS := since USEDEXTS (4) <> REALMAXEXTS (8), then

4*417*1 = 1668 sector$;

APPE~DIX C

A Summary of Methods to Save Disc Sp~ce

The following is a summary of some of the possible
methods of saving disc space without deleting (des or

I~ saving~ J method

making them unreadable (methods are arranged in order
of descending average percentage savings):

'-~------~-t--~--------~-----------------~~------~----------~~---~--t
2S>~ -7 t):~ C.:.' rJ ·tI E;: ~.. t. g 0 'J r c: e: f' i 11,~~' t Q Qe~ 0 I 'T' l R0 Et E: LL. E f (.t r mtit t. J

this 'o~m&t is vary .'ficient in ~a~ms of djsc space
usagQ yet still rGadab18 bV compilars,

25~-50~ Convert dat~/CoeOL riles to varjable ~.cord length)
1 th i. scan t.e: ac~ompl i sruld with ED J 'l'OR '. ISET VAR I t:lBLE
I c:on,mand.

O~-5~~ ,Imp~ov. blocking factor of 'tl.~)

J a 'ila ' • block size should be a multipla 0' 128 wo~d~

'lor' disc sr~..t~(:Q will be. wast.ld.
O~-25~ J Set file limit or filas to end of rilaJ

I if th~ rile limit of a ril. is not its end 0' fila
J disc space is probably baing Jost, Note that for data
~ 'iles J th~ fil. limit should ba greater than end or

file to allow for expansion.
: ----------,-~--------~---_._--------~--------------------~----~-----,, .

These operations can be performed on fdes one by one, or en masse using MPEX/3009.

11"-17 -16

APPENDIX D

A Suminary of Methods to Speed Up File Access

The following is a summary of some possible methods descending average percentage savings of rue access
of speeding up disc rue access, arranged in order of time:

1----------:--- :
J 5 O>~-95~

5"-10%

Use MR NOBUF access for file readina/writinaJ
for eagy use of this acc€ss method~ ·Oavid Brown's
FAST 1/0 routines are sUQOQstad.
Increas€ the block facto;-of filQ~J
this will increase the block size J and thus the buf'~r

size or files accessed with buffering, and thus
decrease the numbEr of disc Il0s ne~ded to accass them,:
Make the block size as large as possible J but no more
than 8 J OOO. Set BUF~1 (only 1 buffer) to avoid getting:
tile systam error 57 (OUT OF VIRTUAL MEMORY).

:----------J-------~--;

APPENDIX E

Related Papers I Useful Programs

As we could not (and never intended to) say every­
thing there is to say about disc files, we would like to
refer you to the following useful reference documents
and utility programs:

PAPERS
"Another MPE Feature (BUG)." A discussion of a bug

in Multi-Record file access by Vladimir Volokh,
.VESOFT Consultants. SCRVGletter, Volume 4,
Issue 1 for January 1981.

"How to Avoid Problems With MPE Carriage Control
(CCTL)." All there is to know (well, almost) about
Carriage Control. Robert M. Green, Robelle Consult­
ing Ltd., 27597-32B Avenue, Aldergrove, B.C. Can­
ada VOX lAO.

HP3000 Computer Systems MPE Commands Reference
Manual. Section VI - MANAGING FILES.

HP3000 Computer Systems MPE Intrinsics Reference
Manual. Section III - ACCESSING AND ALTER­
ING FILES.

HP3000 Computer Systems MPE IV Intrinsics Refer­
ence Manual. Section III - INTERPROCESS
COMMUNICATION AND CIRCULAR FILES.
Section X - ACCESSING AND ALTERING
FILES.

"Privileged Mode - Use and Abuse." What is
privileged mode and how to use it safely by Eugene
Volokh, VESOFT Consultants. SCRVGletter, Vol­
ume 4, Issue 4 for June 1981 .

SOFTWARE
"FAST I/O (aka BLOCK·ED I/O)." A product that

permits fast, easy MR NOBUF ftIe access available
from EASY Software Co., 410 Chipeta Way, Re­
search Park, Salt Lake City, UT 84108.

"MPEX/3000." Many useful extensions to MPE avail­
able from VESOFT Consultants.

"QEDIT/ROBELLE." A superior editor, with disc
space-saving features available from Robelle Con­
sulting Ltd., 27597-32B Avenue, Aldergrove, B.C.
Canada VOX lAO.

AP'PENDIX F

Cryptic File System Error Message De-Crypted

In addition to its other failings, the System Intrinsics
Manual does not explain the exact reason for and/or
work-around for most fde system errors. In fact, most
file system error messages are very hard to understand.
The following is an attempt at an adequate explanation
of the causes, effects, and work-arounds for different
fde system errors that pertain to disc ftIes:

o END OF FILE (FSERR 0): This error is encoun­
tered when a program attempts to read beyond the
end of file or write beyond the file limit.
WORKAROUND: Change the program or the
fue.

I ILLEGAL DB REGISTER SETTING (FSERR
1): Should never occur for non-privileged mode

11 ~ 17 -17

programs. For privileged mode programs, this
means that the programmer attempted to do an
FFILEINFO, FGETINFO, FOPEN, or FRE­
NAME in split-stack mode (i.e., after a call to the
EXCHANGEDB or SWITCHDB procedures).
WORKAROUND: Do not perform the function in
split-stack mode.

2 ILLEGAL CAPABILITY (FSERR 2): A function
that requires privileged mode capability (e.g.,
open fIle for NOWAIT 1/0, open fIle for EXE­
CUTE access, etc.) was attempted without
privileged mode capability. WORKAROUND:
Enter privileged mode before executing the func­
tion or do not attempt to execute it at all.

8 ILLEGAL PARAMETER VALUE (FSERR 8):
Parameters specified on the FOPEN call are
mutually contradictory; for instance, an attempt
to open a ftIe NOWAIT on a serial disc was de­
tected, or the program tried to open a new KSAM
file without specifying the FORMALDESIG­
NATOR or KSAMPARAM parameters on the
FOPEN. WORKAROuN'D: Correct the parame­
ter.

9 INVALID FILE TYPE SPECIFIED IN FOP­
TIONS (FSERR 9): The file type field of the
FOPEN file options is not one of 0 (STD = stan­
dardftIe), 1 (KSAM ftIe) , 2 (RIO ftIe) , 4 (CIR = cir
cular file), or 6 (MSG = message file).
WORKAROUND: Correct the file type field.

10 INVALID RECORD SIZE SPECIFICATION
(FSERR 10): The record size requested was more
than 32767 bytes. WORKAROUND: Specify a
smaller record size.

11 INVALID RESULTANT BLOCK SIZE (FSERR
11): If the user request were honored, the. block
size (BLOCK FACTOR * RECORD SIZE) of the
resultant ftIe would be greater than 32767 bytes.
WORKAROUND: Specify a smaller record size
or block factor~

12 RECORD NUMBER OUT OF RANGE (FSERR
12): The user passed a negative record number to
the FPOINT, FREADDIR, or FWRITEDIR in­
trinsic - this is illegal. WORKAROUND: Cor­
rect your program.

22 SOFTWARE TIME-OUT (FSERR 22): The user
tried· to read an empty message fIle or write to a
full message fIle, an action which would cause the
user to be impeded until the file stopped being
empty or full, respectively (see MPE IV INTRIN­
SICS MANUAL). However, a time out was set
with the FCONTROL intrinsic (mode 4) and the
request timed out before it could be honored.
WORKAROUND: Do not set the time out or en­
sure that the request can be serviced before it
times out.

26 TRANSMISSION ERROR (FSERR 26):
Hardware failure. WORKAROUND: Call your
CE.

11-17 -18

30 UNIT FAILURE (FSERR 30): Hardware failure.
WORKAROUND: Call your CE.

40 OPERATION INCONSISTENT WITH ACCESS
TYPE (FSERR 40): The access type specified at
FOPEN time does not permit this operation; fori
nstance, an FWRITE is not permitted when a ftIe
is opened with ACC=IN. WORKAROUND:
Specify an access type at FOPEN time that per­
mits this operation or do not perform the opera­
tion at all.

41 OPERATION INCONSISTENT WITH RE­
CORD TYPE (FSERR 41): It seems that this error
should never show up and is merely a left-over
from a previous version of MPE.

42 OPERATION INCONSISTENT WITH DEVICE
TYPE (FSERR 42): The program tried to execute
an operation that is incompatible with the device

. that it is' trying to perform it on; for instance, it is
trying to read the line printer or change th~ baud
rate of a disc drive. WORKAROUND: Do not
execute the operation.

43 WRITE EXCEEDS RECORD SIZE (FSERR 43):
An attempt was made to write a record that would
not fit in the destination file, e.g., to write a 100­
byte record into a fIle of record length of 80 bytes.
WORKAROUND: Change the fIle's record size,
change the length of the record to be written, or
open the ftIe with the Multi-Record (MR) access
option.

44 UPDATE AT RECORD ZERO (FSERR 44): The
FUPDATE intrinsic (which is equivalent to the
COBOL REWRITE statement) was called with
the record pointer at record 0, which indicates that
no record has been read and thus no record can be
updated. WORKAROUND: Call FPOINT or
FREAD before the FUPDATE call.

45 PRIVILEGED FILE VIOLATION (FSERR 45):
A program attempted to open a privileged ftIe (one
with a negative file code; e.g., an IMAGE fIle)
while specifying a filecode not equal to the [tIe's
filecode or while not in privileged mode.
WORKAROUND: Enter privileged mode before
the call or specify the correct filecode.

46 OUT OF DISC SPACE (FSERR 46): The device
class on which this [tie resides (if this error is got­
ten at extent allocation time) or is requested to
reside (if this error is gotten at file creation time)
does not have enough contiguous disc space to
accommodate this file; i.e., if NUMEXTS is the
number of extents to be allocated and EXTSIZE
is the size (in sectors) of one extent, this device
class does not have NUMEXTS contiguous
chunks of EXTSIZE sectors each. WORK­
AROUND: Move the file to another, less full, de­
vice class, decrease the requested rtIe size, or de­
crease the extent size by increasing the number of
extents in the file.

47 1/0 ERROR ON FILE LABEL (FSER R 47): The
internal fIle label of this fIle can not be accessed.
Most likely, the file is totally cloberred and will
return INVALID FILE LABEL (FSERR 108)
when it is subsequently accessed. WORK­
AROUND: None.

48 OPERATION INVALID DUE TO MULTIPLE
FILE ACCESS (FSERR 48): One of the following
conditions is true: 1) The program is trying to
purge (i.e., close with disposition DEL) a fIle that
is currently loaded or being storedlrestored, 2)
The program is trying to rename (with the FRE­
NAME intrinsic) a file that it does not have exclu­
sive access to, or 3) The program is trying to open
with LOCK access a fIle that someone else has
opened with NOLOCK access or vice versa.
WORKAROUND: 1) Don't purge the file or wait
for the file to become purgeable again, 2) Don't
rename the file or open the file with EXC access,
or 3) Open the fIle with LOCK or NOLOCK ac­
cess (whichever is the one with which the other
program has the file open).

49 UNIMPLEMENTED FUNCTION (FSERR 49):
The program specified an invalid parameter value
in a file system intrinsic call; e.g., a disposition of
5,6, to 7 at FCLOSE time or a file type of RIO on
pre-Athena systems (ones which do not support
RIO files). WORKAROUND: Correct your pro­
gram.

50 NONEXISTENT ACCOUNT (FSERR 50): An
attempt was made to open a file in an account
which was not configured in the system.
WORKAROUND: Correct the filename or build
the account.

51 NONEXISTENT· GROUP (FSERR 51): An at­
tempt was made to open a file in a group which
was not configured in the system.
WORKAROUND: Correct the filename or build
the group.

52 NONEXISTENT PERMANENT FILE (FSERR
52): An attempt was made to open a fIle which
does not exist. WORKAROUND: Correct the
program or build the file.

53 NONEXISTENT TEMPORARY FILE (FSE~R

53): The program tried to open a temporary fIle
which does not exist. WORKAROUND: Correct
the program or build the file.

54 INVALID FILE REFERENCE (FSERR 54): The
program tried to open a file whos e fIlename was
invalid; for instance, the file, group, or account
name was longer than 8 characters long, an invalid
system-defined file was specified (e.g., $XYZZy),
or no fIle equation was found for a back-refenced
file (e.g., *MANSION with no file equation for fIle
MANSION). WORKAROUND: Correct the
filename specified. NEED

56 INVALID DEVICE SPECIFICAnON (FSERR

56): The device number or device class on which
the file was to be opened is not configured on the
system. WORKAROUND: Correct the program.

57 OUT OF VIRTUAL MEMORY (FSERR 57): The
buffer size (NUMBER OF BUFFERS * RE­
CORD SIZE * BLOCKING FACTOR) of the fIle
to be opened exceeds 8,192 words (or 14,000
words starting with the D MIT version of MPE).
WORKAROUND: Decrease number of buffers
(by specifying BUF= 1 on a :FILE equation, for
instance), decrease the record size of the file, or
decrease the blocking factor of the fIle.

58 NO PASSED FILE (FSE RR 58): The program
attempted to open $OLDPASS, but no $OLD­
PASS fde exists. WORKAROUND: Correct the
program or build a $OLDPASS file.

60 GLOBAL RIN UNAVAILABLE (FSERR 60):
The program requested dynamic locking at fIle
open time, but the RIN (Resource Identification
Number) necessary for dynamic locking could not
be gotten. WORKAROUND: Free some global
RINs (with the :FREERIN command), fIle RINs
(by closing fIles opened with LOCK access), open
the file with NOLOCK access, or enlarge the RIN
table.

61 OUT OF GROUP DISC SPACE (FSERR 61):
The program tried to allocate more disc space
than is allowed for a given group; e.g., it tried to
build a 10,OOO-sector file in a group which already
had 95,000 sectors and was limited to 100,000 sec­
tors. WORKAROUND: Decrease the amount of
disc space used by fIles in that group (by purging
or squeezing files) or a ask the account manager to
increase the group disc space limit.

62 OUT OF ACCOUNT DISC SPACE (FSERR 62):
The program tried to allocate more disc space
than is permitted for the account in which it tried
to allocate it. WORKAROUND: Decrease the
amount of disc space used by fIles in that account
(by purging or squeezing files) or ask the system
manager to increase the account disc space limit.

64 USER LACKS MULTI-RIN CAPABILITY
(FSERR 64): The program was not :PREPed with
MR (Multi-Rin) capability, yet tried to lock a file
when another file (or RIN) was already locked by
that program. WORKAROUND: :PREP the pro­
gram with MR capability or do not try to lock a
fIle when you have already locked another one.

71 TOO MANY FILES OPEN (FSERR 71): The
program attempted to open a fIle, but there was
not enough room in the system area (PCBX) of the
program's stack for the information for that fIle.
WORKAROUND: Clo.se some no longer neces­
sary files before trying the open, or run the pro­
gram with the ;NOCB keyword on the :RUN.

72 INVALID FILE NUMBER (FSERR 72): An at­
tempt was made to access (e.g., read or write) a

11-17 -19

ftle that has not been opened or that is a privileged
ftle; for instance, a read was requested against file
number 10, but no fde is opened as ftIe number 10.
WORKAROUND: Correct your program or enter
privileged mode before trying to access the fde (if
the file is privileged).

73 BOUNDS VIOLATION (FSERR 73): You are at­
tempting to read or write more data than could fit
into your I/O buffer (e.g., you are trying to read
100 words into an SO-word array). WORK­
AROUND: Decrease the length of the data you
are trying to read or write or enlarge your prog­
ram's I/O buffer.

74 NO ROOM LEFT IN STACK SEGMENT FOR
ANOTHER FILE ENTRY (FSERR 74): See fIle
system error number 71 above.
90 EXCLUSIVE VIOLATION: FILE BEING
ACCESSED
(FSERR 90): Exclusive access was requested to a
file which is already being accessed; thus, exclu­
sive access cannot be granted. WORKAROUND:
Specify SHR (shared) or EAR (exclusive - allow
read) access when opening the file or wait for the
accessor to close the file.

91 EXCLUSIVE VIOLATION: FILE BEING AC­
CESSED EXCLUSIVELY (FSERR 91): Access
was requested to a fde which is being accessed
exclusively by some other user. WORK­
AROUND: Wait for the accessor to close the fde.

92 LOCKWORD VIOLATION (FSERR 92): An in­
valid lockword was specified at fde open time or
when the ftIe system prompted the user for a
lockword. WORKAROUND: Specify a correct
lockword or remove or change the lockword on
the disc fue.

93 SECURITY VIOLATION (FSERR 93): Permit­
ting the user to access this fde in the specified
access mode would be a breach of ftIe security.
WORKAROUND:Change the access mode
specified in the program to one which is permitted
or ask the file's creator to :RELEASE or
:ALTSEC the file.

94 USER IS NOT CREATOR (FSERR 94): An at­
tempt was made to :RENAME or FRENAME a
file by someone other than the file's creator.
WORKAROUND: Do not perform the :RE­
NAME orFRENAME, ask the creator of the file
to do the :RENAME, or (if you have read and
write access to the fde and are a user of MPEX/
3000) use MPEX's %RENAME command.

96 DISC I/O ERROR (FSERR 96): Hardware failure.
WORKAROUND: None.

100 DUPLICATE PERMANENT FILE NAME
(FSERR 100): The program tried to save (close
with SAVE disposition) a new or temporary fue
as a permanent fue, but a permanent file with that
name already exists. WORKAROUND: Purge

11-17-20

the other file with that name.
101 DUPLICATE TEMPORARY FILE NAME

(FSERR 101): The program tried to save as tem­
porary file (close with TEMP disposition) a new
file, but a temporary ftle with that name already
exists. WORKAROUND: Purge the other tem­
porary file with that name.

102 DIRECTORY I/O ERROR (FSERR 102): The di­
rectory (or part of it is cloberred. You're in big
trouble. WORKAROUND: None.

103 PERMANENT FILE DIRECTORY OVER­
FLOW (FSERR 103): There is no more room in
the system file directory for this fue (the system
fde directory typically allows approximately 1200
files per group). WORKAROUND: Purge some
of the files in the group in .which you wish to build
the file.

104 TEMPORARY FILE DIRECTORY OVER­
FLOW (FSERR 104): There is no more room in
your job/session temporary fde directory for this
file. WORKAROUND: Purge some temporary
fdes or :RESET some :FILE equations or :CRE­
SET some :CLINE equations.

105 BAD VARIABLE BLOCK STRUCTURE
(FSERR 105): The variable record length file
being accessed has an inconsistent structure or
would have an inconsistent structure if this access
were to go through (if you are writing NOBUF).
WORKAROUND: If you are writing NOBUF, .
correct your program; otherwise, none.

106 EXTENT SIZE EXCEEDS MAXIMUM
(FSERR 1(6): The program attempted to build a
file which would have extents larger than 65534
sectors, the maximum permitted. WORK­
AROUND: Increase the number of extents in the
file or decrease the extent size by decreasing the
record size or file limit of the fIle.

107 INSUFFICIENT SPACE FOR USER LABELS
(FSERR 107): The maximum number of user
labels for a file is 254. WORKAROUND: De­
crease the number of user labels requested by the
program.

108 INVALID FILE LABEL (FSERR 108): The fIle
is inaccessible because the fue is invalid (probably
irrecoverably destroyed). WORKAROUND:
None.

109 INVALID CARRIAGE CONTROL (FSERR
109): The program tried to do a write with a CCTL
code of 1 (imbedded CCTL) but with a buffer
length of 0; or, the program attempted an FCON­
TROL mode 1 (transfer CCTL code) with a
parameter of 1. WORKAROUND: Correct the
program.

110 A'ITEMPT TO SAVB PERMANENT FILE AS
TEMPORARY (FSERR 110): An attempt was
made to close a permanent file with temporary

(TEMP) . disposition; this is illegal.
WORKAROUND: Correct the program.

148 INACTIVE RIO RECORD (FSERR 148): An
FPOINT, FREADDIR, or FSPACE positioned
the record pointer at an inactive record in an RIO
(Relative I/O) file. WORKAROUND: None nec­
essary.

149 MISSING ITEM NlfMBER OR RETURN­
VARIABLE (FSERR 148): An item number was
specified without a corresponding variable or vice
versa in an FFILEINFO intrinsic call.
WORKAROUND: Correct the program.

ISO INVALID ITEM NUMBER (FSERR IS 0): An
item number specified in an FFILEINFO intrinsic

call is invalid. WORKAROUND: Correct the
program.

lSI CURRENT RECORD WAS THE LAST RE­
CORD WRITTEN BEFORE THE SYSTEM
CRASHED (FSERR lSI): The current record in
the MSG (message) file was the last one written
before the system crashed and may contain in­
valid information.

ACKNOWLEDGEMENT
Praises and kudos GOTO: Robert Saunders (of the HP lab)

for much important infonnation; Vladimir Volokh (of VES·
OFf Consultants), Robert Green (of ROBELLE Consulting),
and many others for comments, questions, criticisms, sugges­
tions, and overall moral support.

11-17 -21

" ,,-.

· ~

?'" I.'

t.;

.• ~. 1

Data Communications Troubleshooting
Pete Fratus

Information Networks Division
Hewlett-Packard Company

PREFACE
Data communication problems can be extremely dif­

ficult to solve. They can also be solved very simply.
Why the differences? Let's look at modem medicine for
a few examples.

A patient complains of a sore arm. The doctor takes
his temperature (they always take your temperature),
examines his arm, asks some questions about past med­
ical history and sends him to X-ray. Looking at the
x-rays, she sees an obvious crack in the bone and places
a cast on his arm. That was a fairly simple solution.
Now take the same patient back to 18th century
Europe. Tools for diagnosing broken arms were lack­
ing, but there was always blood-letting. If that didn't
work, the doctor could try irritants, Phrenology, mag­
netism and magic.

Had the doctor possessed the proper tools to do the
job, the time between complaint and correct treatment
would have been shortened considerably.

The type of problem, the tools available, and the
technique applied can shorten or lengthen the time re-

quired to solve the problem. This presentation will help
you understand the problem, become aware of the
tools, and improve your techniques.

From the viewpoint of most computer users, there are
four types of malfunctions. They are usage, protocol,
digital and analog. Usage problems are those arising
from improper use of an otherwise working data comm
link. Protocol problems go beyond the users' immediate
control and involve the software that handles the link.
Digital problems involve the interface between the data
terminal equipment (DTE) and the data communica­
tions equipment (DeE). Analog problems are limited to
the data communications facility, which is the wires be­
tween the modems or data sets.

There are many approaches to troubleshooting. The
process of elimination by replacing equipment, stepping
through software, and circuit checks by the halving al­
gorithm are some ways. Symptomatic troubleshooting
does not eliminate any of these methods, but it does
reduce the time necessary by quickly pointing out the
area of the malfunction.

HEATERS AND AIR CONDI~IONERS 24-23

SYSTEM COOLS INTERMITTENTLY

Symptoms

Electrical

1. Unit operates
intermittently.

2. Clutch disengages
prematurely during
operation.

Mechanical

Possible Causes

1. Defective fuse, relay
blower switch, or blower
motor.

2. Improper ground, loose
connection, or partial
open in clutch coil.

1. System operates 1. Compressor clutch slip.
until head pressure
on builds up at
which time clutch
starts slipping; may
or may not be noisy.

Example: Troubleshooting guide from auto repair manual.

11-25-1

An example of symptomatic troubleshooting can be
found in nearly any automobile repair manual. You may
fmd a,flowchart or table in which the axes are labeled
SYMPrOM and PROBABLE CAUSE. The idea is to

fmd the probable causes for the condition (or problem)
encountered,then by testing or a process ofelimination,
discover the remedy. Newer methods have been devel­
oped which can suggest solutions.

AUTOMATIC TRANSMISSION 21-30

General Diagnosis Chart

Causes (see list below)

Symptoms

HARSH ENGAGEMENT FROM
NEUTRAL TO D OR R

DELAYED ENGAGEMENT FROM
NEUTRAL TO D OR R

123

x

x

456

x

x X X

789

X X X

RUNAWAY UPSHIFT x x x x
, -

~---------------------~---- -----~----- ----------~ --~-----~-~

NO UPSHIFT

3-2 KICKDOWNRUNAWAY

'NO KICKDOWN OR NORMAL
DOWNSHIFT

SHIFTS ERRATIC

SLIPS IN FORWARD DRIVE
POSITIONS

X

x

x

x

x

x

x

x

X

x

x

x

x

x

X X X

X X X

1 Engine idle speed too high
2 Hydraulic pressures too low
j Low-reverse band out of adjustment
4 Valve body malfunction or leakage
5 Low-reverse servo, band or linkage malfunction
6 Low fluid level
7 Incorrect gearshift control linknge adjustment
8 Oil filter clogged
Y Faulty oil pump~

Example: Symptom/Cause Chart from auto repair manual

Let's get back to the computer. Think of all of the
possible problems one can have with a data communica­
tions network: hangs, disconnects, errors in the data,
delays, retries, and on and on. What could be the possi­
ble causes of these problems? Noise, fade, delay, pro­
gram bugs, faulty equipment, operator error, and more
can all cause aggravating malfunctions.

This is what you need to know to solve these prob­
lems in a timely manner:

A. The Basics - what is the environment,
what was supposed to happen

B. The Symptoms - what did happen
C. The Causes - why
D. The Tests - what tests will give the right

information

11-25 -2

E. The Tools - what tools will do the tests
F. The Solution - what action to take

This presentation will help you learn how to get from
A to F.

EXCERPf
Let me give you an example to show how knowledge

of the symptoms, tests, and tools can make problem
solving easier. A problem occurred at a site where the
symptoms were terminal hangs and garbage on the sc­
reen sometime after the session started. There was
never any problem signing on. This was a point-to-point
terminal on a switched line using BELL 212A modems.

Three things were done in an attempt to resolve the

problem: the MPE I/O configuration was checked, the
modem options were verified, and a 1640 data scope
was put into the line. The 1640 showed that a DC1 was
received followed by garbage. This was either printed
as garbage or hung the terminal. The assumption that
followed was that something was wrong with the termi­
nal. The configuration of the terminal showed that it
was "providing clock," as was the 212 modem. At this
point, it was decided that the modem options listed in
the Data Comm Handbook must be wrong.

This bit of troubleshooting had gone way off on a wild
goose chase. No attempt was ever made to test the most
basic part of the network, the telephone line. Simple
modem self-tests and loop backs were completely ig­
nored. The 1640 served no useful purpose at this point.

A more reliable approach would have been to start by
defming the exact symptoms, determining the possible
causes, and making some appropriate tests. Using the
new information gained through this technique, troub­
leshooting would have been more directly related to the
problem.

The Basics
HP262X terminal
Point-to-point terminal connection to a port
Switched public line
Full duplex modem with good complement of diag­

nostics

The Symptoms
Apparently random terminal hangs and garbage oc­

curs only on one line
The Causes

Fortuitous line problems
Faulty modem
Faulty terminal

The Tests
Modem loop back with test pattern
Modem self-test
Terminal data comm test

The Tools
None needed

The Solution
Switched lines are susceptible to noise and other

problems. Since each new connection uses a dif­
ferent route, conditioning is not available (and
would not help noise anyway). Therefore, the ter­
minal should be reset if it is hung or the data re­
transmitted if it was garbaged. If that doesn't help,
redial the connection.

SUMMARY
This excerpt is an example of what my presentation

will cover in much more detail. I am currently working
on flowcharts and decision tables to make solving data
comm problems easier by encouraging the use of symp­
tomatic trouble shooting. This should lead to using the
proper tools in the proper order.

11-25 -3

Financing Quality Solutions
Melissa J. Collins

Is your manager a fIre-breathing dragon? Does your
budget get thrown in the dungeon year after year? Ifyou
answered "yes" or even thought twice about one of
these questions, you are not alone.

The Data Processing manager faces many challenges
and pitfalls in operating his or her department. One such
pitfall is the budgeting and fmance area. This paper will
discuss solutions and methods to deal with department
monies (or lack thereof) and interaction with a non­
technical manager.

THE SUCCESSFUL DATA PROCESSING
DEPARTMENT EQUATION

Good Equipment + Good People + Money = Quality
Solutions

All of you have made an excellent choice in equip­
ment. If you don't have the good people, they are out
there for the hiring. Now all you need is the money and
the management's support and Quality Solutions will be
within your grasp.

So where does the DP manager fit into the money part
of the equation? The manager submits a budget of his
monetary wants/needs for a fixed period of time. Of
course, just because he asked for a million dollars,
doesn't mean he gets that amount. The DP manager
must convince the upper management that the monies
requested are sound investments in the company's goals
and futures. This is where the hard part comes into
play. HOW DO YOU convince the upper management,
who has little or no computer training, that your budget
goals are not unrealistic?

GETIING YOUR BUDGET APPROVED
First of all, you must face three facts. Once you come

to grips with them, the outlook will not be so gloomy.
1. Your management is not against you or your de­

partment.
2. Getting the monies necessary to fmance any DP

project is sometimes harder than bleeding a rock.
3. Anything truly worthwhile is worth a small battle.
The first step to insure approval of your budget is to

be realistic about your requests. But, at the same time,
do not under-budget your department. This is a fme line
to walk, but it can be done. It is always nicer to come in
under budget than over budget, but if a department is
consistently under budget, then a manager can be ac­
cused of"padding the budget." A few guidelines to con­
sider about budgeting items other than normal expendi-

tures (salaries, maintenance contracts, consumables,
etc.):

1. If there is the slightest chance that you will need a
new piece of equipment, budget for it.

2. Be sure you have sufficient justification for new
equipment.

3. If using the budget as a tool for justification of new
employees, provide good evidence of need. (Such
as project time tables, department workload, etc.)

4. As a tradeoff - instead of new employees, budget
for programmer productivity tools whenever pos­
sible. Offer this as an alternative to your manager.
If the same results are achieved, the lower cost
alternative will always be chosen.

If a manager is dealing with a non-DP superior, hav­
ing his support is very helpful. The time you spend
educating a non-DP manager is time well spent. If your
manager knows what a disc is and what its uses are,
getting approval for a new one is not quite as painful.
The Data Processing department is surrounded by an
aura that threatens some managers. The high technol­
ogy and computer "buzz words" are enough to scare off
anyone who doesn't know what is going on. By working
with your manager and educating him, you will fmd that
he will support you more. The old adage, "You can lead
a horse to water, but you can't make him drink," applies
here. Some managers could care less about learning
more about the DP department. Subtle tactics can be
used to educate a non-technical manager. Such tactics
include, but are not limited to, inviting your manager to
participate in your weekly staff meetings, taking him on
a tour of your facility BEFORE you present your
budget requests, or taking him to a regional user group
meeting. These actions may prick his interest to learn
more about the DP department.

Interaction with users may not seem really important
in attaining your fmancial goals. But consider this; if the
users are unhappy with the DP department, this attitude

. will fIlter up to the managers of said users. The mana­
gers will, in tum, convey this attitude to the higher man­
agement who may ultimately be in the position to ap­
prove or disapprove your budget. You can't expect
your users to be happy all of the time, but shoot for
making them happy as much as you can. It will help
around budget time.

USING YOUR BUDGET FUNDS
Now that your budget is approved, you don't have a

11-26 -1

free reign in distributing the monies awarded to your
department. This is a fact everyone has to face. This
problem has a name well known to all of us - RED
TAPE. The government doesn't hold a monopoly on the
man-made phenomenon. But, there are ways to circum­
vent its nasty powers. Take purchase orders for in­
stance.

Instead of filling out two tons of paperwork for a

purchase order number, have the vendor submit a bill to
you that you can sign off. The end result is the same;
you get product/services and the vendor gets the money
(probably in shorter time). If you can follow the chart
below, you can trace the path of the purchase order
request. Ifa bill was sent to you, you could eliminate all
of these steps.

PURCHASE ORDER PROCESS

weeks .to as long as
decide Manager

I
Manager I yes Finance

1========== >
approve I approve

? I ?

\\ II
\\ II
\\ II
\\ II

No \\ II No
\\ II
\\ II
\\ II
\\ II
\\ II
\\11
\1·

c
0
n
s
i y
d e
e s
r

y
/~

0
u
r
s
e
1
f

L
u
c
k
Y

II
II
II No
II
II
\1

Try

Again
?

Yes
< ••================

IIIII1 I
1I111I P.o. I
1IIII1 1========== >
IIIIII FORMS I
111III I

hours to fill out

1\
II
II
II
II
II
II
\\ s
\\ T
\\ A
\\ R
\\ T
\\
\\ 0
\\ V
\\ E
\\ R

STOP STOP

maybe next
year.

Most, if not all, managers have a monetary limit for
which they are allowed to sign without having their
managers approval. Using this limit will help you elimi­
nate not only the purchase order request cycle, but will

also help you acquire products/services without the ap­
proval cycle. If you want a vendor's product that is
$7,500, but don't have said product in the budget for this
year, don't give up hope. Use the art of fmagle. First

11-26-2

and foremost, check your budget very carefully to see if
you have any extra money anywhere. If there is some
money, but not enough, consider cutting something out,
like a tape cabinet. Then, working with the vendor, try
to agree on some fmancial arrangement that will get you
your product, the vendor his money, and, most impor­
tant, not get you fired. Most vendors will work with you
on this. Instead of not making a sale, they will gladly bill
you on an installment plan.. As long as these install­
ments are under the amount you are allowed to sign for,
you will all be getting what you want.

However, it is not wise management to practice the
art of fmagle all of the time. The more you use it, the
more likely you are to get in trouble. It is to be used
when the political climate of your company is not con­
ductive to spending, or when you know that there is no
other way to get what you want. Dealing "under the
table," so to speak, is a tool you have available to you as
long as you do not abuse it.

FIGHTING BATILES
So what if it's in your budget? Your manager could

change his mind by the time the purchase order hits his
desk. What recourse do you have except retreat? You
can stand up and fight for what you want, diplomatically
of course.

Di-plo-ma-cy (di plo'me se) n. 1. the conduct­
ing of relations between nations 2. the skill of
doing this 3. skill in dealing with people; tact
SYN. see TACT

According to Webster, the art of diplomacy is based
on the skill of dealing with people. For a manager to
achieve his goals, he must know how to deal with peo­
ple. When a proposal is rejected, it can be very difficult
for a manager to understand why his request was turned
down. The first reaction is usually one of anger or frus­
tration, which if vented on your manager, will leave
little or no chance for a reverse decision.

When you have an important request turned down,
analyze the situation. What was the reasoning behind
the decision? The political climate of your company
may have wreaked havoc on your proposal. Or you did
not justify it in a way that your manager could appreci­
ate your true need for your request. Try to see the situa­
tion from your manager's point of view. Discuss it with
him, and ask him why the request was turned down. Try
not to put him on the defensive about his actions. If any
of his doubts can be resolved, do so as soon as possible
while the situation is fresh in his mind. If this fails, you
still have ways in your grasp to continue the fight.

The battleground is already set. You want something
you feel you need, and your manager told you that you
cannot have it. Whatever his reasoning was for denying
your request, ifyou still feel very strongly that you need
this request, sound the charge.

For an example, you have requested $3750.00 for a.

new memory board and your manager says no. Exam­
ine your reasons for this request. Obviously you feel the
machine is slow, and your users are starting to recog­
nize this fact. With your continued development work,
the, situation will only grow worse. Direct a memo to
your manager explaining the situation as clearly as pos­
sible. Include in your comments that the users are start­
ing to show dissatisfaction with the response time of the
machine and that the situation will get worse. Other
points to consider for mention are a slump in prod­
uctivity and decreased throughput. If your General
Ledger is coming up on end of month close, illustrate
the consequences of productivity slumps and decreased
throughput. That will make him stand up and take no-
tice. 1

The memo serves two purposes: one, it informs your
manager of the consequences of the denied request,
and, two, should the situation not resolve itself, when
the complaints start pouring in, you have documented
proof that you tried to rectify the situation.

When the users do start to complain, and they will,
tell them what the problem is and what you have tried to
do about it. Be sure that you do not, under any circum­
stances, criticize your manager in this discussion. Even­
tually, the user attitude will be translated up the line to
other managers and the pressure will be shifted onto
your manager. This is the long way to go around the
mountain, but you will eventually get what you want/
need without stepping on anyone's toes.

Should this approach fail, give your manager alterna­
tives. Instead of getting another memory board, con­
sider optimizing your machine. In presenting this con­
cept to your manager, provide as many solutions as
possible. You could hire another programmer to op­
timize all of your code. You could buy OPT/3000· and
train one of your staff to interpret its data and optimize
where necessary. Or you could hire a consultant and let
him figure it out. All of these are alternatives. When
presented to your manager, he will realize that these are
all costly alternatives, much more than a memory
board. So in order to save the company money, you will
most probably get your original request'.

Ifall other efforts fail, start a memo blitz. Every week
or so, send your manager yet another memo concerning
the subj~ct. Be sure that these memos are inoffensively
worded or the heat will tum against you. You may get
your request just because your manager wants the
paper barage to stop or he doesn't want to be bothered
anymore.

One fmal word on the subject. If you are informed
that the answer is still NO after all of your efforts, it
may be best to hold off for a while until the smoke has
settled and then try, try again.

IIeNot to be considered an endorsement of this product.

11-26 -3

Tips and Techniques in Writing
for the HP3000 lUG Journal

Dr. John R. Ray
Editor, HP3000 lUG Journal

University of Tennessee
Knoxville, Tennessee

WHY WRITE?
If you are not a writer by profession, you may be

hesitant about writing for a professional publication
such as the HP3000 lUG Journal. The fact of the matter
is that your professional skills are more important than
your writing skills. Like many professional publica­
tions, The Journal builds its reputation on being written

. by professionals in the field for other professionals.
If you have experience, then we encourage you to

share your knowledge through a Journal article. To help
you get your thoughts down on paper, we have put to­
gether some tips on writing for non-writers. The profes­
sional and personal benefits derived from writing an
article are of major importance.

What are the benefits to be derived from writing an
article? For one thing, having an article published in the
Journal generates publicity for both the author and the
author's fum. The author benefits by being recognized
as having expertise on the topic. Your firm benefits by
being recognized as having leading professionals on its
staff and by having its name brought to the attention of
professionals nationwide.

Another benefit of writing an article is the personal
satisfaction that comes from having contributed to the
betterment of· the profession through sharing your
knowledge. There is also the satisfaction of seeing your
name and your ideas in print.

THE REVIEW PROCESS

Reviewers evaluate all articles basically on content,
not grammar or literary style. For each article, the re­
viewers ftIl out an evaluation form and recommend that
the article be either: (1) published; (2) revised and pub­
lished; (3) revised and reviewed again; or (4) not pub­
lished. Articles that are original, timely and previously
unpublished, devoid of sales or promotional material,
and of national interest and value to a significant
number of 'readers have the best chance of being pub­
lished.

The review process usually takes four to six weeks.
As soon as the reviewers' evaluations are received, the
author is notified of their decision. If the reviewers rec­
ommend that an article be revised, the author will be
provided with specific recommendations.

Dr. Lloyd D. Davis
Associate Editor, HP3000 lUG Journal

University of Tennessee
Chattanooga, Tennessee

If the information in the article could easily become
dated, the author should note this in a letter attached to
the article when the article is submitted for publication.
The staff will then make a special effort to publish the
article before the information becomes out of date and
will, if necessary, contact the author for updated infor­
mation immediately before publication.

Most articles will require some degree of editing be­
fore publication. The staff may suggest refinements in
the areas of literary style and organization. If there are
corrections in the areas of spelling, punctuation, gram­
mar, or word choice, these will be noted on the article.
The article with annotated remarks will be returned to
the author for approval prior to publication unless
editorial changes are minor.

On occasion, the staff may telephone an author and
ask a question about the information in an article. Al­
though the editorial reviewers do review articles for ac­
curacy of information, the author is still responsible for
the accuracy of his or her article. Also, publication of an
article does not mean that the ideas expressed in the
article are endorsed by the HP3000 International Users
Group and/or its Journal editors.

MANUSCRIPf REQUIREMENTS
Most articles submitted for publication in the Journal

are four to eight double-spaced, typewritten pages, but
articles longer and shorter than this have been pub­
lished. Very long articles of twenty pages or more may
be published in parts as a series.

To estimate the number of pages an article will be
when published, have the article typed with 50 to 55
characters on each line. This will give you the approxi­
mate number of lines the article will be when published.
The Journal uses a two column format with about 55
lines per column. Hence divide the total line count by
110 (two columns of 55 lines make one page). This quo­
tient is your rough page count.

If space is required for exhibits such as formulas,
tables, charts, diagrams, and figures, then the page
count should be revised upward to reflect that space.

All articles submitted for publication in the Journal
should be double-spaced, typewritten on one side of

11-28-1

8~x 11" white paper. Ample margins of at least 1 to 1~
inches should be left on all sides. Articles typed with
about 53 characters on each line would be appreciated,
but this is not mandatory. Subheadings should be in­
serted where appropriate in the article, but again, this is
not mandatory. Footnotes, tables, and figures should be
on sheets of paper separate from the article. Indicate
the placement of tables and figures within the article by
giving each table, figure, etc., a number and using this
number within the text.

Footnoting has as its goal the conveying of necessary
information to enable the reader to accurately identify
the location of the material to which reference is being
made within the article. The most important traits of
footnoting are accuracy, completeness, and style con­
sistency. If you are not familiar with footnoting tech­
niques,several good style guides are available to serve
as references. These include:

1. Publication Manual of the American Psychological
Association, second edition 1979;
Copies may be ordered from
Publications Sales
American Psychological Association
1200 Seventeenth Street, N.W.
Washington, D.C. 20036

2. Form and Style - Theses, Reports, Term Papers
William Oiles Campbell
Stephen Vaughn Ballou
Houghton Miftlin Company, Boston, 1974

3. A Manual for Writers
of Term Papers, Theses, and Dissertations
Kate L. Turabian
Fourth Edition
University of Chicago Press, Chicago, 1973.

The above references give you the standards for
footnoting. In practice when writing for our Journal or
most other professional journals, read the journal in
question for the style of footnoting used in thatjoumal.
By utilizing the examples found therein as a guide for
your required footnotes (you may not need any), you
can easily handle yours with a high probability of being
correct and complete.

All pages containing copy, footnotes, tables and fig­
ures should be numbered sequentially, with tables and
figures being the last of the pages. Numbering pages is
important in case the pages do get out of sequence.

Black and white photographs to accompany the arti­
cle are welcomed. An explanation of each photo (a cap­
tion) should be submitted with each photo. A caption
can be written on the back of the photo or on a sheet of
paper. If written on a sheet of paper, the sheet of paper
should be numbered as the last page of the article, and if
there is more than one photo, the caption should be
numbered to indicate with which photo it is associated.
Photos cannot be returned.

A short author's biography, including title, firm,
membership in professional societies, special accom-

11-28 -2

plishments and honors, should be submitted with the
article.

If the article has been submitted to another publica­
tion or has been previously published, this should be
noted in a letter accompanying the article. As men­
tioned before, if the information in the article can be­
come dated soon, then this also should be noted.

Before mailing your article, read it over carefully.
Recheck all figures and mathematical computations.
Sometimes mistakes occur in typing. Remember, you
are responsible for the accuracy of your article.

After you are certain that your article is accurate and
to your liking, make a copy of it. Keep one copy for
your records and mail the other to the Journal. All arti­
cles submitted to the Journal and all correspondence
regarding publishing in the Journal should be addressed
to:

John R. Ray
University of Tennessee

Dept. of Curriculum and Instruction
312 Claxton Education Building

Knoxville, TN 37996-3400

TIPS ON WRITING FOR NON-WRITERS
Often the task of writing seems too formidable to

undertake. The ancient Chinese proverb states "Each
journey of a thousand miles begins with the first step."
This is also true in writing. You must eventually start
placing words on paper or equivalently on other media.
But how do you get started? We have listed several
points that we believe will be helpful to those without
previous, extensive writing experience.

1. Have something to say. When writing an article
for the Journal, what you have to say is more im­
portant than how you say it. Ask yourself what
subject you want to write about and what you
want to say about it.

2. Make a list of the points you want to discuss in the
article, then arrange these points in the tentative
order you want to discuss them. This will give you
an outline of your article. Use single words and
phrases rather than complete sentences. If the list
becomes too long or unwieldy, the subject may be
too broad to be covered in the space of one article.
In such a case, limit the subject and eliminate sev­
erallesser points.

3. Ask yourself who, what, when, where, why and
how. This is another method of preparing an out­
line for your article. You could also compile a list
of questions you will answer in the article.

4. Pretend you are writing a long business letter on
the subject or preparing a report for your ftrIn.

5. Write as you speak. If you have difficulty getting
your thoughts down on paper, try dictating them
into a dictaphone or tape recorder.

6. Don't worry about saying it right the first time.
Concentrate on your thoughts, not the words.
Once your thoughts are written down on paper or
transcribed from a dictaphone or tape recorder,
you can go back and revise your wording.

7. Try "The purpose of this article is . . ." if you
have difficulty starting the article. You can change
this first sentence later ifyou want, although this is
an acceptable way to begin an article. "In sum­
mary" and "in conclusion" are acceptable and
easy ways to end an article.

8. If all else fails, consider having a professional
writer write your article for you. Your frrm may
have a public relations firm on retainer or a public
relations writer on staff you could use. Do make
sure, though, that you provide the writer with in­
depth information that is current and topical and
that you review the article for accuracy and value
upon completion. Otherwise, the article probably
will not be of interest and value to the readers of
the professional (HP3000) journal and therefore
runs the risk of not being suitable for publishing.

FORMAT
There is no absolute format, standard, or arrangement

that must be followed in preparing an article for a pro­
fessional journal. Items that might be appropriate for
one article might be totally inappropriate in another.
Mter the author has selected those things about .which
to write, the 'format or physical arrangement (headings)
can be determined. To aid the writer, sections with ap­
propriate headings and subheadings might be selected
from the following list (in about the same order):

Report Title
Introduction

Background
Problem Statement
Information Sources

Procedures
Design of experiment or solution
Sample Selection
Equipment
Measures Used

Findings (Data)
Presentation of facts and data
Interpretation of fmdings
Limitations of "facts" meanings

Summary and Conclusions
Short restatement of goals for article
Brief statement of findings
Any conclusions
Suitable recommendations

References (Bibliography)
Appendix (if any)

Again we stress that the above list is a very formal list
of topics that might be found in some research papers.
Rarely would all of these be found in the averagejoumal

article. However, some of these may provide an outline
or skeleton upon which you may structure your writing
and aid you in a readable, logical organization for your
paper. Select from the topics on the list a topical outline
that suits your article; utilize headings and structure to
augment or replace these topics as your article requires.

STYLE AND READABILITY
Articles for professional journals sometimes suffer

from being too stiff and rigid and/or from being awk­
wardly worded. Authors should strive for a style that is
clear, direct, and effective. Word choice should be ap­
propriate for the populace that reasonably might be ex­
pected to read the article. Therefore word choice should
be chosen so as to both convey the problem and its
solution and as well not. require the reader to use a
dictionary for frequent translation. Articles should be
written in a direct, straightforward manner without
being overly elaborate and structurally complex. Al­
though, as earlier mentioned, there are writing conven­
tions common to writing for professional journals, these
should not interfere to the point of making good writing
bad. Rather each author should utilize his/her individual
skills in communications to convey meaning to the re­
ader. Several methods (3:41-3) for improving readability
follow:

1. Appeal and interest increase readability.
2. Personalization means putting human interest into

the report: through a review of previous investiga­
tions as a story of other persons' successes and
failures, an account of how the author collected
and treated the data, illustrative cases, and devia­
tions from central tendencies.

3. Pattern or design should be made plain to the re­
ader.

4. Through appropriate emphasis the reader should
get the important points.

5. Too great density or concentration of ideas may
make reading difficult, requiring some expansion
or dilution.

6. Plain words are important in making a report read­
able.

Remember that style is to foster clear and effective
communication, not to confuse it. Carter Good reports
(2:409) "As long as young scientists and scholars write
accurately, clearly, and attractively, their differences in
expression may render science a happier way of life for
them and for the reader."

SUCCESS
We have stressed those points that we believe impor­

tant in writing a journal or other professional article.
Many of these are somewhat mechanical and pro forma;
others are good sense types of points. It all requires an
idea, a suggestion, a fresh point of view, something im­
portant enough to justify your writing and others read­
ing. You may say, "But no one has ever heard of me

11-28 -3

before. What chance have I to write something and see
it published?" Not surprisingly, what you have to share
and say is more important than who you are or where
you are from. Thomas Frantz (3:384-386) surveyed the
editorial boards of six professional journals and asked
these editors to rank order criteria commonly used in
evaluating manuscripts for journal publication. His
findings follow in tabular form.

REFERENCES
1. Frantz, T. F. "Criteria for Publishable Manuscripts," Personnel

and Guidance Journal, 47 (1968), 384-386.
2. Good, C. Essentials of Educational Research, New York:

Appleton-Century Crofts, 1966.
3. Strang, R. "Principles of Readability Applied to Reporting Re­
. search," Improving Educational Research. Washington: American

Educational Research Association, 1948. p. 41-43.

13. Reputation of author 12.6 1.9
20. Instituional affIliation 13.5 0.9

The above research reports that the contribution to
knowledge the article makes is of primary importance.
Also, as the article reports, among the top six criteria
are objectivity, topic selection, writing style and reada­
bility, and practical applications. Of least importance
are the author's reputation and institutional affdiation.
The moral here is that "who you are" is not important;
rather "what you say, what it means, and how it reads"
are all nearly equally important.

Don't get discouraged if your article is not accepted
for publication. Usually, the reason an article is not
accepted for publication is that it is too general in scope
and does not provide enough in-depth information to.be
valuable to other professionals. Keep in mind that many
famous authors have had articles rejected for publica­
tion but did not quit. trying. As the saying goes, if at fast
you don't succeed, try, try again.

S.D.
1.2
2.1
2.3
2.9
2.7
3.3
2.5
2.7
2.3
2.3
1.6
1.9

TABLE 1

Summary of 14 Criteria for Evaluation of
Manuscripts Ranked in Importance by SS

Members of the Editorial Boards of Six Journals

Mean
Rank

1.8
3.5
4.7
5.5
5.7
6.4
6.5
7.0
7.2
8.1

10.2
11.5

. Criteria
1. Contribution to knowledge
2. Design of study
3. Objectivity in reporting results
4. Topic selection
5. Writing style and readability
6. Practical implications
7. Statistical Analyses
8. Theoretical Model
9. Review of the literature

10. Clarity of tabular material
11. Length
12. Punctuation

11-28 -4

Management: Key to
Successful Systems Implementation

Gary A. Langenwalter
Manager,MIS

Faultless Division
Bliss & Laughlin Industries

Evansville, Indiana

When I arrived at Faultless four years ago, the new
on-line Order Entry system was supposed to be com­
pletely operational. I found a completed general design,
some detail design, and 10 programs coded. The
hardware vendor (not HP) had promised Faultless man­
agement that they would contribute one person for one
year, we would do likewise, and the result would be a
state-of-the-art order entry system. We fmished 1~

years late, with an investment of 6+ years of effort. We
are currently replacing our old hardware with an
HP3000, and replacing all our software. This conversion
was scheduled to take 14 months, fInishing November
30, 1981. Our best current projection is August 1982. In
all fairness, I must mention that the Master Scheduling
package that we bought three years ago was installed on
time, under budget, and it met our expectations.

We at Faultless are not alone. Consider the following
three disasters, all of which occurred in Fortune SOO
companies in 1980:

"A major industrial products company dis­
covers one and a half months before the in­
stallation date for a computer system that a
$15 million effort to convert from one man­
ufacturer to another is in trouble, and installa­
tion must be delayed a year. Eighteen months
later, the changeover has still not taken place.

"A large consumer products company
budgets $250,000 for a new computer-based
personnel information system to be ready in
nine months. Two years later, $2.5 million has
been spent, and an estimated $3.6 million
more is needed to complete the job. The com­
pany has to stop the project.

"A sizable fmancial institution slips $1.5
million over budget and 12 months behind on
the development of programs for a new fman­
cial systems package, vital for day-to-day
functioning of one of its major operating
groups. Once the system is fmally installed,
average transaction response times are much
longer than expected." (McFarlan, p. 142)

Ollie Wight, the leading consultant in the manufactur­
ing systems field, estimates that there are fewer than 25
"Class A" MRP users in the country! That number
compares poorly to the multiple thousands of com-

panies that have tried to implement manufacturing sys­
tems, each with the intent to succeed. We are one of the
"thousands"; we are working to become "Class A."

The major risks of systems implementation can be
categorized as follows:

1. Failure to obtain all, or even any, of the antici­
pated benefits.

2. Costs of implementation that vastly exceed
planned levels.

3. Time for implementation that is much greater than
expected.

4. Technical performance of the resulting systems
that turns out to be significantly below expecta­
tion.

S. Incompatibility of the system with the selected
hardware and software. (McFarlan, p. 143)

Three faotors that determine the degree of risk are
listed below:

1. Project size. The larger the size, the greater the
risk. Size is also relative - a $500,000 project has
much greater risk for a $20,000,000 company with
a 3 person MIS staff that has never installed any­
thing of its size, than for a $200,000,000 company
with 20 programmer/analysts.

2. Experience with the technology. Unfamiliarity
with the computer in question, or its operating sys­
tem, or database, or TP monitor and terminals in­
creases the risk.

3. Project structure. Having clearly defmed inputs
and outputs, which all users agree upon be­
forehand substantially reduces the project risk. I
have not yet seen this, but it is theoretically possi­
ble. Conversely, when people are still changing
basic systems functions and designs midway .
through the project, that project is doomed to
overrun both temporal and fmancial budgets. The
military is particularly adept at this (aided and
abetted by the contracters).

My current experience, plus my previous background
as an educator and consultant with a major DP
hardware vendor, support the hypothesis that forms the
basis for this talk:

11- 33-1

HYPOTHESIS
The single factor most responsible for success or fail­

ure of' system implementation is management. Good
management requires identification and minimization of
risk of failure, plus continual execution of the three
basic management principles: Planning, Organizing, and
Controlling.

The implementation of a system will be successful if,
and only if, it meets three basic goals which are the
converse of the risks listed above:

1. On-time completion.
2. Qn-budget completion.
3. The completed and installed system must meet

both its specifications, and the users' expecta­
tions.

Let us review in some detail how each of the basic
management techniques can be used to insure success­
ful systems implementation.

PLANNING
Perhaps the best way to approach the topic of plan­

ning is with a cursory overview of the techniques avail­
able. Both PERT charts (or CPM charts, or "Bubble
charts") and bar charts have been widely used for
years. Appendix B includes a sample of each. In gen­
eral, computer programs are a tremendous help in han­
dling complex PERT charts, and recalculating critical
paths.

Time estimating is perhaps the biggest stumbling
block to proper systems implementation time and cost
projections. Various articles suggest that each person
on a project be scheduled at only 70% efficiency, and
that one should allow 2-3 weeks for a user decision. My
own personal experience indicates that one should
allow 1-2 months for vendor feedback (to an RFP, for
example), and for scheduling vendor presentations and
reference visits. Also, if a person is managing others,
20% of his time should be allotted for each person man­
aged, subject to the discretion of the estimator. Finally,
an estimator needs to allow "Contingency time" of 20­
200%, depending on the tightness of the other estimates,
and the degree of risk inherent ill: the project - the
contingency factor should increase proportionally with
the risk.

Now, down to the actual planning itself. In myopin­
ion, the only intelligent way to implement a large system
is to break it into four phases, with management, the
users, and MIS mutually agreeing to the functions, cost,
benefits, and time estimates at the end of each phase.
This minimizes the risks involved, and maximizes the
probability that the user department will implement the
fmished product successfully. We will examine each
phase below.

1. Initiation Phase

This phase includes the preliminary survey, a rough
estimate of potential costs and benefits, and the selec-

11-33 -2

tion of the alternative perceived to be the most attrac­
tive (make vs. buy, Vendor A vs. Vendor B, etc.). It
culminates in a presentation to top management of the
Systems Proposal written jointly by the user depart­
ment manager and the MIS Manager. If top manage­
ment approves, the system implementation enters phase
2. If not, it can be reworked or dropped, with minimal
expenditures of resources to date.

This phase is the most important of all; it creates the
basic expectations of system functionality in the minds
of users and management. It should be noted that the
basic system functions are defined by the person who
will use them in his daily work, not by the MIS depart­
ment representative. "Systems are tools for the man­
ager, not toys for the technician." (Wight, p. vii)

Some of the topics which are covered in the Systems
Proposal (or Management Overview) are management
summary, major system benefits, economic justifica­
tion, and schedule. Appendix Al contains a more com­
prehensive list of topics included in the Systems Pro­
posal.

One other topic which needs consideration
throughout the implementation of a new system is the
fear of change of the part of some people in the com­
pany. Some will be afraid that they will lose their jobs;
others that they will not be able to measure up to the
new expectations; and still others that they will lose
their status with their peer groups, and/or that their
work groups will be reorganized. These fears, unless
addressed, can result in passive or active resistance to
the new system on the part of the people whose daily
enthusiastic cooperation is an absolute requirement.
They must, therefore, be actively addressed and over­
come.

2. Analysis Phase

This phase starts with a study which examines in
greater detail all major assumptions and promises of the
original proposal. Greater attention must be paid to any
area that includes major uncertainty (response times
with the particular hardware, application, and database
under consideration, for example). Cost and benefits
estimates are updated with the· new information. My
experience indicates that costs almost invariably in­
crease; and benefits almost equally invariably decrease.
Finally, the MIS department writes the Functional
Specifications for the proposed system, and has them
approved by the user department(s) affected. After they
all agree, they jointly present them to the Steering
Committee, with updated costs and benefits. If man­
agement approves, the project continues; if not, it is
either discontinued, or revised. At this stage still, there
has not been a major expenditure of corporate re­
sources.

The Functional Specifications (or General Design)
document can include the major logic chart, proposed
input and output layouts, a training plan, future
capabilities, and a contingency plan, to name but a few

of the many topics. A more complete list appears as
Appendix A2.

3. Design Phase

This phase defines how the system will be built. It is
fmished upon the completion of two major documents:
the Design Specifications (or Detail Design), and the
User's Manual.

Some topics that the Detail Design Specifications in­
clude are a detailed system flowchart, with input and
output defmed for each program, security, detailed pro­
gram functions, specifications, and logic, and a detailed
project implementation schedule. Appendix A3 con­
tains a more exhaustive list.

One item that must be covered in appropriate detail is
the Contingency Plan. All hardware, even HP's, and all
software, even Faultless', will eventually fail. Such an
event cannot be allowed to totally stop a critical de­
partment from functioning.

The User's Manual includes pictures and descriptions
of all input and output screens, and reports, with expla­
nations of all fields - what they mean, and how to
change their contents, if appropriate. It also includes
operating instructions (how to sign on to the system,
what to do in case of problems, etc.). It must be written
in language that the person in the functional department
will easily understand.

These two major documents, plus Contingency Plan,
are jointly presented by the user department manager
and the MIS manager to the Steering Committee, with
the re-revised cost/benefits data. If management ap­
proves, the system enters the fmal phase of implementa­
tion. If not, the minimum resources possible have been
expended thus far; the project can be either revised or
dropped. At this stage, all parties involved will have
agreed on the details of the new system; there should be
no "surprises" from here on out. There should be no
reservations about technical capabilities, or about what
the system will do.

4. Construction Phase

This phase is the one that includes the actual prog­
ramming, testing, and documentation. In a well­
managed project, more than 50% of the time should
already have been spent designing. This minimizes
changes, revisions, etc. that are the bane of efficient and
effective systems. Let us discuss each subphase inde­
pendently.

Programming is a complex enough topic that it war­
rants books, talks at this convention, and week-long
training courses. Let me outline my views briefly, and
then continue with the subject at hand. All program­
ming should be top-down, structured, and modular.
Each program or module must be tested and
documented as soon as it is completed. It is then, and
only then, that it can be included in the account that
contains completed programs.

I will knowingly raise a controversy by suggesting
that users should design their own screens (with
V/3000, where applicable), and write their own reports
(we are using REX for that purpose). To me, the data
belongs to the user. Assuming that he understands the
contents and implications of the numbers that exist in
the database (and he should, for in most cases we hold
him responsible for their accuracy), then he should be
given the tools to generate the reports and inquiries that
will allow him to manage his portion of corporate re­
sources optimally. In other words, I refuse to perpetrate
an "IBM" (International Brotherhood of Magicians)
image with regard to my department.

The Systems Manual is a major document. It needs to
follow predetermined specifications and formats, and,
more importantly, must be updated throughout the life
cycle of the system. There are very few things more
dangero~s than a slightly outdated Systems Manual in
the hands of a programmer who is trying to maintain a
system.

The Operations Manual is a must, whether your MIS
department has a formal operations group or not. This
document tells the operator how to run the batch jobs,
back up the syst~m, recover in the event of failure,
where to send the output, etc. It defines expectations. If
there is no formal document, the person who normally
runs the job is generally the only person in the company
with that information. The fmancial risk that represents
to a company increases with the importance of the ap­
plication (for example, weekly payroll).

Training cannot be overemphasized. The responsibil­
ity for training users lies with the Project Manager (the
user department· manager) rather than with MIS, be­
cause the head trainer becomes the person who knows
the application better than anyone else in the organiza­
tion. In smaller organizations, the Project Manager will
train users directly; in large organizations, he will train
other managers, who will then train their own people.

Training can and must commence as soon as the first
few programs are finished. After the Project Team has
trained itself, it is time to start familiarizing other per­
sonnel with the screens and reports they will be using
soon. These people can often suggest invaluable im­
provements, some of which take almost no time to in­
corporate. The ones that involve much time must be
prioritized, and approved by the Steering Committee
prior to inclusion. The end users will also spot program
flaws that escaped everybody else.

All user training and all program testing, except vol­
ume and response time testing, must be performed on a
small test database, preferably one distilled from your
real live database. My user personnel respond much
more favorably to reports which include casters that
they do to reports which feature bicycles.

Training is the one place that most people grossly
underestimate the time and resources required for a
proper implementation. Most people also underestimate

11-33 -3

the numbers of people that must be trained, and perhaps
even educated. Training materials can be acquired from
the vendor, if the software is purchased, and from
video-tape training companies such as ASI and Deltak.

One has three choices for fmal testing: Parallel testing
(which works well for fmancial systems, for example),
Pilot testing (which can be used for some manufacturing
systems implementations), and None (which I cannot
recommend; the only cold turkey that I like is that
which is left over from Thanksgiving dinner).

Final testing also quickly unearths any latent run time
or response time problems. Although painful, and em­
barrassing, it is better to discover those problems at this
stage than to try to squeeze 25 hours of processing into
a 24 hour day after the old system has been cut off!

Mter the fmal testing is complete, one faces the ac­
tual conversion. Although this sounds simple ("Just
take the old data and load it into the new database."), it
can be most complex. Each type of data to be converted
must be examined. Each outstanding piece of paper
must be considered (Do we leave it there? Replace it?
How do we fmd them all? What about the ones we
miss?). To illustrate the complexity of such a task, con­
sider that it took us at Faultless the entire Labor Day
weekend, running around the clock, to cut our MRP
database over from our other (non-HP) computer to the
Series III. The process involved over 30 steps. The pro­
cess and programs were so complex that we ran test
runs on the ·conversion programs themselves several
times.

ORGANIZING

Since the most important person in an implementa­
tion effort is the Project Manager, let us· start by briefly
defining his (her) attributes and responsibilities.

The -Project Manager, in my opinion, .must come from
the department most affected by the project (that is, the
one that will gain the most if it succeeds, and lose the
most if it does not). It should ,be the person who will
manage that function on a day-to-day basis after the
system is successfully installed. The MIS Manager
should be Assistant Project Manager, to insure that
what the user wants is technically feasible. On a major
project, the Project Manager position involves a full­
time effort, especially when training co~mences. I
know that in the "Real World," those people are often
totally busy just keeping the company running on a
day-to-day basis. But nobody else has the intimate
knowledge of how that department really functions on a
daily basis that is required for successful design and
implementation of the new system. Faultless top man­
agement backs this philosophy 100%, by saying that if a
department is not interested enough to furnish a Project
Manager, the project will not commence.

The Project Manager is responsible for writing the
functional specifications at the commencement of the
project. They form the basis for all subsequent devel­
opment. In my opinion, if a company does not have the

11-33 -4

time to write its own Functional Specification, (or
RFP), and feels that it must hire a consulting frrm to give
birth to a 250-page document, that company has no
business trying to implement any system that arises
from that document, because it will not be "their" sys- ~
tem. That system stands, in my opinion, a better than
90% chance of failure.,

The Project Manager must plan, organize, and control
(in other words, Manage) the day-to-day efforts of the
project. He must continually check to make sure that
detailed designs will meet the needs of his (and others')
departments. He must monitor progress to schedule,
and adjust the schedule to the realities that intrude on
the best plans. He must control requests for changes by ,
sitting on most of them, and presenting the few worthy
ones to the Steering Committee. He must chair the
Project team at its weekly meetings, and the' Steering
Committee at its bi-weekly meetings. As mentioned ear- .
lier, the Project Manager is also the head trainer, and
trains either user personnel directly, or their managers
who in turn train their subordinates).

The Project Team is comprised of the Project Man..i
ager (Chairman), MIS Manager (Assistant Chairman),
managers of all departments affected, and the analysts
and programmers assigned to the project. It is responsi­
ble for resolving differences of opinion that do. not in­
volve policy or fundamental operating philosophies,
recommending policy and operations changes to the
Steering Committee, ensuring that the project prog­
resses as scheduled and results in the ben~fits prom­
ised, and prioritizing the myriad requests for changes,
modifications, enhancements, etc. that occur in such
projects. It must also monitor the creation andinstalla­
tion of intern'al controls, and contingency: plans.

To be effective, the Project Team needs to meet
weekly (a standing ~e,eting time and place is usually
appropriate). They need to keep a fo~mal "Problem
List," with the status ofeach problem, including its fmal
resolution and date. This will ensure that a problem
does not get ignored until it becomes extremely costly
to resolve. The Project Team must send minutes of its
meetings to the Steering Committee, with the Outstand­
ing Problem sheet attached, annotated to show how
each problem will be resolved. Finally, the members of
the Project Team must be the ones who train on the new
system first, and best. They will be assisting their sub­
ordinates to use the system correctly; they need to
understand well how it works. They also need to know
the inner workings of the new system so that the many
decisions that must be made during an implementation
will be the best possible.

The Steering Committee is comprised of the Project
Manager (Chairman), MIS Manager (Assistant
Chairman), the top executive of each department af-
fected ("mahogany row," if you will), and the person to ~

whom those executives report (the "comer office").
This committee should meet bi-weekly (more frequently
during a "crunch"), to monitor progress, set policy,

commit resources as needed, resolve any differences of
opinion that could not be resolved by the Project Team,
and approve/disapprove Project Team recom­
mendations. It should not get involved in the day-to-day
implementation effort; that is why the Project Team
exists. The Steering Committee must also ensure that
adequate contingency plans, internal controls, and
documentation exist as the system is being designed and
installed.

CONTROLLING
There can be no control without adequate plans, for

one must control to a predefined goal. There can be no
controls without proper organization, for there would
be no person held responsible. Given, however, that
plans and organization exist, control is absolutely man­
datory. Without control, there is no feedback to inform
management of deviations from plan to allow them to
redirect the implementation efforts appropriately, or to
measure the performance of the persons involved. Of
the three management functions, controlling is the most
difficult, and the one that is least well executed, in my
experience. More implementation efforts fail from lack
of adequate control than from the other two functions
combined.

We have discussed earlier that the Project Manager,
and Project Team, must control the project on a daily
basis. They must monitor progress against each of the
major·requirements:

1. Time. To do this, each project must be subdivided
into tasks so small that each of them takes one
person no longer than two weeks. Each of these
tasks needs to be identified on a PERT ch~, staf­
fed, and tracked. This avoids the surprise of Ieam­
ing, one week before scheduled conversion, that
the project is six months late. Progress must be
reviewed weekly.

2. Budget. The easiest way to monitor this is to use
project control software. Expenditures must be
reviewed weekly, in concert with progress and
projected completion dates.

3. Benefits. These need to be followed also, for if
they are not going to be achieved, the project
should be considered for immediate discontinua­
tion by the Project Team and Steering Committee.

4. System Performance. Same as Benefits. If the sys­
tem will not perform as expected, implementation
should be stopped unless reapproved by the Steer­
ing Committee.

5. Internal Controls, and Contingency Plans. In the
euphoria of system development, nobody wants to
think about such things. They are absolutely es­
sential. Internal controls can, and do, highlight
system deficiencies. After our new Order Entry
system had been installed for a year, our Con­
troller insisted on installing another simple internal
control. It revealed that on a very few occasions,

we were not invoicing our customers for goods
shipped! Contingency plans are required, because
the hardware will eventually fail. (Murphy was
correct; ours failed during our monthly close.) We
are still in business because we had developed
contingency plans.

Let me reemphasize that the Project Manager and the
Project Team need to continually keep the project
boundaries in fInn focus. I suspect that more projects
have floundered and finally sunk from the mid-stream
addition of features, enhancements, etc. than from any
other single cause. Once the Functional Specification is
approved, there should be no major changes without
Steering Committee approval. Once the Detail Design is
finalized, there should be few if any changes allowed.

If a package is being installed, requests for change
should be segregated into three categories: a) Must
Have B~fore Implementation, b) Should Have As Soon
As Possible, and c) Nice To Have. There should be
very, very few changes in category a); these are the
ONLY changes that should be permitted before im­
plementation of the standard package. Once the pack­
age is installed and running, over half the requests in
categories b) and c) will disappear; they will no longer
be necessary. Each change that is permitted to delay the
installation of the package delays the benefits that will
be derived from installation, and increases future
maintenance problems.

The Steering Committee must measure progress
against plan for all major dimensions outlined above,
and ensure timely completion to specification. They
must resist the overwhelming urge to modify, or en­
hance, unless the benefits are extremely attractive.
They must be willing to scrap the project if the costs
grow, as is usually the case, and the benefits shrink, as
is also usually the case, to the point at which it is no
longer financially attractive, as "is fortunately the case
only occasionally. Finally, they must ensure that old
systems are left intact until the new system has proven
that it really works. I visited a company some years ago
that demonstrated the validity of this last point. They
had destroyed the old system; the new one had not
worked for two months. The people in the plant were
playing cards.

CONCLUSIONS
Systems do not implement themselves; people im­

plement them. To succeed, a systems implementation
effort must be managed effectively, by applying stan­
dard -management principles (Planning, Organizing, and
Controlling) with the intent to minimize risk. This is
accomplished by using a time-phased commitmentap­
proach that provides management three separate oppor­
tunities to review costs and benefits and schedules, and
to discontinue the effort with only the minimum possi­
ble resources having been expended at each of those
decision points.

11-33 -s

It is imperative that we, as MIS professionals, cause
systems to be implemented properly in our respective
companies. Our companies cannot afford the disaster of
systems implementation failure. We cannot afford the
continued negative publicity, and the resultant scepti­
cism concerning our professional competence. Or, to be
more blunt, a manager is only as good as his ability to
deliver on his promises; we have :proved for 20 years
that we still lack that a:bility. It is tiine for us to acquire
it, or face the consequences.

BIBLIOGRAPHY

Bliss &, Laughlin Industries. Corporate Data Processsing Standards
Manual. Oakbrook, Illinois. -

Edson, Norris W., "The Realities of Implementing MRP," 23rd An-

nual Conference Proceedings (1980), American Production and In­
ventory Control Society, Inc., Washington, D. C.

Jones, Gary D., "Pitfalls to Avoid in Implementing MRP," 21st An­
nual Conference Proceedings (1978), American Production and ID- .
ventory Control Society, Inc., Washington, D. C. ~

Lasden, Martin, "Turning Reluctant Usera On To Chanse," Computer -u''j
Decisions, January 1891, pages 92-100.

McFarlan, F. Warren, "Portfolio Approach to Information Systems,"
Harvard Business Review, September/October 1981, Plies 142­

. ISO.
Olsen, Robert E., "MRP Implementation - Doing It The User Way,tI

21st Annual Conference Proceedings (1978), American Production
and Inventory Control Society, Inc., Washington, D. C.

Orr, Kenneth T., "Systems Methodologies for the SOs," Infosystems,
June 1981, pages 78-80.

Salmere, Mitchel B., "How to Improve a Management Information
System," Infosystems, November 1981, page 90.

Wight, Oliver. The Executive's New Computer, Reston Publisbiq
Company, Reston, VA, 1972

APPENDIX Al

The Functional Specifications can include any and all of the following topics:

• General Background • Proposed System Description
• Management Summary • Economic Justification
• Problem Defmition •. Detailed Plan of Action
• Present System Description ,. Responsibilities
• Major System Objectives • Proposed Schedule

APPENDIX A2

Functional Specifications for a system can include
the following topics:
• Major Logic Chart(s)
• System Narrative
• Design Notes and Concepts
• Proposed Input and Output Layouts
• Proposed Controls
• Anticipated Throughput Volumes
• Future Capabilities

• Environmental Constraints on Expansion
Capabilities

• Hardware and Software Considerations
• Proposed Training Plan
• Cost Considerations and Assumptions
• Intetface Considerations
• Audit Considerations
• Contingency Plan

APPENDIX. A3

These items should be included in a Detail Design
Specification; others may be added at your discre­
tion:
• Detailed System Flowchart, defining input .and

output for each program
• Detailed Narrative for each section of the

flowchart
• Program Run Sequences
• Audit Measures
• Quality Control Measures
• Internal Control Measures
• Security

11-33 -6

• File and Data Conversion from the Present System
• Recovery Procedures
• Programming Conventions
• Test Specifications
• Test Standards
• Hardware/Software Environment
• Program Narratives
• Program Functions
• Program Specifications
• Program Logic

. • Detailed Project Implementation Schedules

SYS'l'DI IMPLEMENTATION MILESTONE CHART

(Assumes BLI approval not later than 8/1/80)

REMOVEPLACE
ORDER

fNTE 8/80 9 10 11 12/8(] 1/81 2 3 4 5 6 7 8 9 10 11

L_ _..

la..........--_._...
..~ --.......

. ~

~_.

-

---- ,- - - aJIL-.JI

---

I

MO

FINANCIAL
General Ledger
A~coun~s Payable
Accounts Receivable
Fixed Assets
Payroll
FORESIGHT

MARKETING
COSIS
Sales Analysis

TRAIN STAFF

PREPARE COMPUTER SITE

MANUFACTURING
CRP

Labor Reporting
Dispatching

MATERIALS MANAGEMENT
Parts and Bills
Routings
Stockroom
MRP

Master Scheduling
Order Release
Purchase Orders

PERSONNEL

'.lIle 'Allft •

An Overview ­
Networking Cost Petformance Issues

Russell A. Straayer
President, Data Communications Brokers, Inc.

Champaign, Illinois

The purpose of this paper is to give managers a con­
ceptual overview of several key issues in datacommuni­
cations networking. We will focus on several practical,
useful guidelines. At the end we will address what is
practical and sensible today for most applications. As
managers, you cannot wait for the promises of 10 years
or even 5 years from now. A basic principle we will
stress is response time for the terminal user.

Response time will be stressed because the major
function of an HP3000 is to serve a human being, a
person using the computer through a computer termi­
nal. As human beings, we demand fast response times.
We take our cars instead of waiting for the bus. We take
the plane because the train or car is too slow for long
distances. We eat at fast food restaurants. We read
newspapers because we can scan vast amounts of in­
formation, pages and pages, in just seconds. We are
equally demanding of fast response and convenience
from our computers.

Getting to some practical information we can use to­
day, we will first look at 10 specific topics, and cover
them in rapid fire order. The 10 items could be full
blown topics in their own right. What we as managers
want to get out of the 10 points, however, are the practi­
cal guidelines. The technical staff folks and the vendors
all have their technical pitches, and we must distill out
sensible solutions that work today.

The 10 points, then are:
1. Telephone line cost trends
2. Data communications hardware cost trends
3. Technology trends of datacommunications hard-

ware
4. Local networking alternatives
5. Packet protocol caveats
6. Satellite communications caveats
7. Importance of fractional second response time
8. Bits per second versus speed
9. Point to point versus multipoint cost/performance

considerations
10. One large, efficient network

We will look at each one of these 10 points and high­
light the important points using a few charts, graphs and
illustrations. After we get through the 10 points, we will
have a better basis for quickly getting to some firm net-

work approaches. While there are many choices, many
of them correct, most fall within a narrow range of prac­
tical solutions. In the end, it is then the responsibility of
the manager to choose a s~lution that works. There will
be no right or wrong decisions, just some that fit better
than others. The ones that fit the best will be those made
by management that has a good idea of the direction in
which it is going and the destination it wishes to reach,
and then asks the right questions to get most directly to
the destination.

POINT 1. The trends in telephone company com­
munications line costs. The trend in costs is up. Costs
for lines are increasing at about 16 percent annually. We
have an example of Illinois local private line rates. In
1970, a local private line cost just $3.50 per month, went
to $15.00 by 1975 and is n<?w up to $35.00 per month.
That is for a line that may just go across a street. Tele­
phone company charges for toll calls have not gone up
much at all in the same time frame. Take note, however,
that the phone company is slowly but surely working to
put even local calls on a usage charge basis. The local
call usage charges are already in place in Chicago, New
York, Washington and other cities, both in the United
States and elsewhere in the world.

The upward price pressure is clearly on dedicated
facilities. Today, many areas in the United States have
not yet caught up to Illinois, but will. You can look upon
the Illinois example as a benchmark for where rates will
go throughout the United States. The telephone com­
p~ies are going to the state public utility commissions
and gradually raising these private line rates.

Guidelines we can draw from this ar"e:
1. Economize on lines using statistical multiplexers
2. Economize on lines using split stream modems
3. Be aware that local dial up lines can become much

more expensive
4. Satellite and private local facilities may not yet be

less expensive than telephone company private lines.
POINT 2. Datacommunications hardware trends.

Users have been spared the full impact of the rising
phone line rates by the reduction in the prices of
datacommunications hardware. You are all probably
familiar with the constant reduction in the prices of CRT
displays and printing terminals. The prices for modems
and multilexers, two key datacomm ingredients for on

11- 38-1

line networks, have also seen prices come down. In
1970, a 9600 bits per second modem cost about $10,000,
or "a buck a bit." Today, some 9600 bps modems can be
purchased for as little as $3,000,. The prices of 4800 bps
modems have dropped from $5,000 in 1970 to half or less
than half of that price. Statistical multiplexers, a prod­
uct just about 3 years old now, has seen a 25% price
reduction in its young product life.

Guidelines we can draw from the hardware trends
are:

1. Expect these approximate hardware costs;
• 0 to 300 bps dial up modems now cost $200 to $300

per unit,
• 1200 bps full duplex dial up modems, $700 to $900

per unit,
• 2400 bps synchronous 201 type modems, $700 to

$1,200 per unit, .
• 4800 bps sync 208 type modems" $2',000 to $4,000

per unit,
• 9600 bps sync 209 or V.29 modems, $3,000 to

$6,000 per unit, _
• 4 channel statistical multiplexers, $1,500 per unit,
• 8 channel statistical multiplexers,,$2,400 per unit,
• Short haul synchronous modems, $600.per unit,
• Short haul asynchronous m~d~ms, $300 per unit,

2. Expect prices to come down, f~atures to be added,
or both.

POINT 3. Technology trends. The technology trends
of datacommunications hardware have' also· been at
work to spare the user th~ full impact of'rising phone
line rates. The statistical multiplexer just mentioned is a
perfect example. The stat mux, as it is called, has im­
proved the pri~e performance of 'ASCII CRT's and prin­
ters by.more than a factor of two. The stat mux makes
more erncient use ot the 'phone line, lets the asyne
ASCII terminal run faster than it could before, and often
at lower costs than sonte slower, leIS efficient methods.

Another technology improvement of just a few years
ISO that we already take for granted is the 1200 bps full
duplex dial up modem, equivalent to the Bell model 212.
The 212 has been around for just about a half dozen
years. Look for 2400 bps full duplex dial up equipment,
at an affordable price, in the very near future.

The technology in datacommunications is making
more efficient use of existing facilities, facilities are get­
ting faster and more reliable, we are getting more con­
trol over the equipment, and more features. Mi­
croprocessors are showing up in more datacommunica­
tions equipment every day. We can do more and more
for less and less. Just look at how vendors are scrambl­
ing to stay profitable in the face of this trend by giving
you more and more features for the same prices, or even
lower prices. That is good news for all users.

It is useful to look at the changes in technology over
the years 1970, 1975, today, and what we may see in
1985.

11-38 -2

1970
• Frequency division multiplexers (FDM)
• Time division multiplexers
• 103.113 type 300 bps modems
• 202 type 1200 bps modems
• 201 type 2000 to 2400 bps modems
• 208 type 4800 bps modems

1975
• Same as 1970 plus
• 212 type 300 to 1200 bps modems
• 209 type 9600 bps modems
• Short haul modems
• Coaxial cable modems
• First diagnostic tools

1980
• Same as 1975 plus
• Statistical multiplexers
• Integrated technical control systems
• Satellite
• Value Added Networks (VAN)

1985
• More software in datacomm 'products
• More features
• More cost effective local network products
• More cost effective fiber optics
• 2400 bps full duplex dial up modems
Guidelines drawn from technology trends:
1. Expect hardware to be very reliable, 20,000 to

50,000 hours Mean Time Between Failures
(MTBF)

2. Look for simple to use features. For example, test
functions that are useful but not too detailed if you
or your staff do not use the functions daily. What
sood is it to know your bit error rate is 1 in 10 to
the 6th, if you are not sure if that is good or bad.

3. As time goes on, look for more features for you
money.

POINT 4. Local networkln,. Before we set to some
ot the details about local networking, take note that
many local network products are still more promise
than reality. Most installations today cannot yet take
advantage of local networking technolosy because of
the costs, or lack of interface compatibility.

Local networking alternatives include protocol op­
tions such as ethemet collision/detection, token passing
methods, time division or frequency division. Links
available include coaxial cable, twisted pair, infrared,
microwave, and fiber optics. Hardware includes short
haul modems, coaxial cable modems, ethemet type of
interfaces, PABX's with data channel capability, and
more hardware appears with increasing regularity. A
good local networking overview article can be found in
the December, 1981 issue of Datacommunications
Magazine.

Guidelines concerning local networking:
1. For the HP3000, short haul modems are the most

practical local network product.

'~

2. Fiber optics are usually too expensive.
3. Ethernet type solutions are usually too expensive

yet today.
4. Coaxial modems are often more expensive that

short haul modems.
5. The short haul modem solution is practical today

only within several miles of the computer. Beyond
that, long haul modems are usually required.

POINT 5. Packet Protocol Caveats: Packet protocols
that you hear about today include X.25, HDLC·, SDLC,
and many of the protocols found in the Value Added
Network services such as Telenet and Tymnet. These
protocols have a place, but are not going to be a com­
plete solution. These protocols are:

• Designed mainly for message transfer, packets,
electronic mail

• Too slow for full duplex operation
• Not suitable for the HP ENQ/ACK terminal to

CPU handshake

As a practical guideline:
1. The packet protocols may have a place for

mainframe to mainframe communications.
2. The packet protocols are rarely practical for ter­

minal to mainframe communications.

POINT 6. Satellite Communications Caveats. The
basic fact to consider abvout satellites is that they sit in
a stationary orbit about 25,000 miles above the earth. It
is that physical fact that contributes to the plus and
minus features of satellites. First of all, satellite costs
are not milease sensitive. It matters not whether you so
across the street or across the country, the cost is the
same. Keep in mind that because it is not milease sensi­
tive, satellite is cost effective only on links of 500 miles
or more.

Am~or consJderation for satellite is local distribution
of the data one" you let it oft of the satelUte. From one
m~or point to another maJor point, lat,llites can be COlt
'eftective, but not from many diverle points to many
other diverse points.

Satellites are not very lood for hishly interactive
data. Any transmission using satellite is bound by the
speed of light, 186,000 miles per second. A round trip
for data, via satellite, is 100,000 miles. Figure the round
trip time to be almost 3/4 second.

Guidelines for satellite transmission:
1. Because of the round trip delay time, satellite is

not suitable for the HP ENQ/ACK handshake or
polled terminals (MTS).

2. You may wish to use satellite to connect main­
frames, but not to connect terminals on line.

POINT 7. Importance offractional second response
time. At first glance, it may seem improbable that peo­
ple need a 1/4 second response time or less to be em-

cient in interactive applications. It is in fact rather diffi­
cult to really grasp just how long 1/4 is.

To illustrate the importance of such small portions of
time, consider the' example of a radio call in show. We
have all heard the person who calls in, and while listen­
ing to himself on a background radio, gets confused.
The announcer says, "Please tum your radio down."
Callers hear their own voices, fed back over the radio,
but the delay disorients and confuses the caller.

To site another example, a user typing at a terminal
will become very inefficient if the typed characters
echoed back are delayed by just 1/4 second. The termi­
nal user types ahead of the display rate of the characters
and experiences what feels like a spongy keyboard.
When a mistake is made at the keyboard, extra charac­
ters must be erased and retyped just to get back to the
incorrect character. .

When .users are on line, say in a telephone order situa­
tion, it is important, if the person is to work at maximum
efficiency, to get feedback for each keypress in 1/4 sec­
ond or less. Typing at just 45 to 50 words per minute
requires a key press every 1/4 second. When the keys
do not get echoed back by the computer within that 1/4
second time window, the user slows down to match the
echo time.

Keep in mind at this point that a high bits-per-second
rate does not automatically mean fast response time.
This fact can be easily illustrated by considering a 300
megabyte disk that we send by mail. If the post office
delivers the disk in just 3 days, the transfer rate equals
9600 bits per second.

Guidelines for considering response time:
1. Response time over the communications link

should be measured in milliseconds for interactive
use. If the user operating a local terminal sees no
delay, then the remote terminal· user should see no
delay. either.

2. For batch work, for fDe transfers and electronic
maD, response time is lell important than the
bits-per-second transfer rate. .

POINT 8. Bltl per second verlu, ,peed. It may seem
contradictory at first, but 9600 bits per second may not
be as fast as 2400 bits per second. The difference is
response time difference.

,A Bell 2400 bps modem, model 201 allows for much
faster polling in an MTS environment than does a 9600
bps modem, model 209. The difference in response time
is accounted for in the Request To Send/Clear To Send
delay functions of these modems. In a multipoint polled
(MTS) environment, the RTS/CTS delay allows the
modem at the central computer site to "tune" itself to
the incoming signals from modems at anyone of several
remote sites.

The 2400 bps modem has an RTS/CTS delay ofonly 7
milliseconds, while the 9600 bps modem has a delay of
147 milliseconds. Given a typical poll of 12 characters
and a 3. character response (a total of 15 characters), the

11-38 -3

2400 bps modems allow, for 3 times as many polls per
second. For short message traffic, the lower speed
modem may be a good bit faster.

Guidelines regards bits-per-second versus speed:
1. In a polled (MTS) environment, 2400 or 4800 bps is

often the best you can do for your money.
2. File transfers to an RJE station or mainframe to

mainframe can benefit from the 9600 bps' modems,
since there is usually no concern about the RTS/
CTS delay.

3. Using statistical multiplexers and asynchronous
term~als, the typical best speed is 2400 bps for the

. terDlinals, and 4800 bps for the composite modem
link, for up to 8~te.~inals. 9600 bps may be called

. ',! for if print~rs are 'heavily used. . . , . .

~·POINT'9. Point to poirlt versus multipoint (MTS). In
"an' 'HP3000 environment; point 'to ~ point u'sua11y means
using asynchronous CRT's and' prititers. Multipoint is
the MTS environment. What we want to do here is look
at the differences from the datacomm point of view.

We have a case study to look at comparing MTS with
point to point using statistical multiplexers. The user is
in Dundee, Michigan. The test involved 2 CRT's and 1
printer, running on 4800 bps Bell 208 modems. The spe­
cific test was to evaluate how the user saw response
time, and to measure actual output volumes.

The results were clearly in favor of the statistical mul­
tiplexer method of operation, even when terminals were
slowed from 4800 under MTS to 2400 bps async. Meas­
ured output was more than double for the async mode
of operation. The users at terminals saw noticeable re­
duction in response time when the printer was running,
but not when using the asynchronous mode and statisti­
cal mul~iplexers.

It should be noted, too, that the async terminal opera­
tion is usually easier to set up, easier to diagnose, easier
to maintain.

Guidelines on point to point versus multipoint:
1. In most cases on an HP3000, point to point asyn­

chronous operation proves to be the most cost and
performance effective.

2. You may wish to consider MT8 (polled terminals)
if you do very little printing along with CRT dis­
plays at remote sites and your response time can
reduced by a few seconds. The printer is the major
consideration.

POINT 10. One large efficient network. The network
we will examine here is the United States switched
phone network, the one we use when dialing local or
long distance calls. The US phone network, managed
primarily by AT&T, is well developed, efficient, and
employs the princples of good networking.

Examining the routing of a phone call from Cham­
paign, Illinois to San Antonio provides a good look at
the structure of the network. A typical call is routed:

11--38 -4

1. From the local telephone station, over a station
loop to the central or end office.

2. The end office connects to a toll office via a toll
connecting trunk.

3. The .1911 office, say in Champaign, connects to
another toll office via an intertoll trunk. There are
several classes of toll offices in the network
hierarchy.

4. To avoid going through the entire chain of toll of­
fice command, the call may be routed from one
lower level office to another, close to the destina­
tion. The lower level offices, are connected via
high useage trunks (HUT's).

5.' The toll office close to or actually in San Antonio
connects the c~l,l to the end offic~ in the city,
whi~h rings the 109al phone.

6. The call is completed when you pick up the phone.

This entire process is referred to as circuit switching,
since the call connection uses actual, physical circuits.
Packet switching, on the other hand, does not make a
connection via actual circuits, but packages up the data
and routes the databased on destination addresses in­
cluded in the packages.

Suggested guidelines based on the phone network:
1. Think of your HP3000 as though it is a PABX on

location in a business. Its purpose is to connect
terminals to fIles and terminals to terminals.

2. Terminals will almost always be connected to the
HP3000 the way phones are connected to a PABX
or central office, with one port per terminal,just as
there is one physical line per phone number or
extension.

3. Access through the HP3000 should be as standard
and simple as possible.

At this point, we will look at a specific network on an
HP3000. The user here is Johnson and Staley of
Nashville, Tenessee. This network takes all this infor­
mation and illustrates the kind of datacommunications
most practical for 90% of all HP3000's.

The Johnson and Staley application is on line order
entry and inventory maintenence for a distributer of
school supplies.

The Johnson and Staley application embodies our 10
points in the following ways:

1. The line configuration is designed to keep the
phone line costs to a minimum.

2. The links between the multiplexers are 4800 bps,
about the best in price for the bits-per-second rate
needed. Five years ago Johnson and Staley would
probably have decided that the modem and multip­
lexer costs were to high to go on line.

3. The DDS, bandsplitting of DDS, and the stat
mux's are all late 1970's technology.

4. Local networking is not applicable here.

. '---

5. Satellite links are not c~st or penormance effec­
tive here.

6. Packet networks are not cost or penormance ef­
fective here.

7. The on line order entry activity required very fast
response times.

8. A link of9600 bps per terminal grouping would not
improve penormance in this application. The vol­
ume of data is small for this application. The need
is for instant access to the inventory and order
records.

9. Line cost savings that might otherwise be avail­
able only thru multidrop networking are acheived
by bandsplitting.

10. Terminals are connected on a per port basis to the
HP3000, much like extensions to a switchboard.

SUMMARY OF HOW 90% OF ALL
HP3000'S COMMUNICATE

HP3000 to HP3000 or larger mainframe:
• Synchronous facilities
• Private line
• 2400, 4800 or 9600 BPS
• Digital Data Service (DDS)
• Very few satellite links
HP3000 to terminals:
• Hardwired or within 100 miles of the mainframe
• Asynchronous, with dial up, single modems or stat

mux's
• Speeds of 1200 or 2400 BPS

In conclusion, for all the choices and possible confu­
sion surrounding HP3000's in a data communications
environment, 9O%·of all systems have the same comJg­
urations~ with minor variations.

11-38 -5

LOCAL PRIVATE PHONE LINE RATES
ILLINOIS

$35

30

25
V')
L.LJ
C!'c== 20ex:
:J:
u

>-
-J

: 15::I:.-
z:
a

• <.- '{ .E
.. 4

10 I: .•

5

1970 1975 1980

$10, 000 COST TRENDS Op..

DATA COMMUNICATIONS HARDWARE,
9,000

--
9600 BPS Modems . ~.:

8,000·

7,000

6,000

5,000

4,000

3,000

2,000
~har1nel St'at Mux

1,000

1970 1975 '78 '80

11-38-6

.,1

Delay
characteristics
of packet
switching and
satellite.

PACKET PROTOCOL
MUX

PACKET PROTOCOL
MUX

c.e.I.81

........
I ~

~ /'I .
.--.1

I HEWLETT-PACKARD
ENQ/ACK HANDSHAKE

~. 80 1

30 SEC•
900 CHARS

......
I
w
00

I
aD

The Postman delivers 9600 b·ps.

CPU

M
---u

X

3
DAYS

'M
U
X CRT

DISK
PACK

(300MB)

THE POSTMAN

- 9600 bps average
transfer rate

- Good for large volume
several day delivery

C.C.I.81

!J

• 'I. ~ ~- .I ,

BENCHMARKEO 12-79
..

2 network· ,a Iternatives

C.C.I.SI

Asynchronous stat muxed terminals'"'

POI NT TO POINT:···· .

Polled

MULTIDROP/ MULTIPOINT

HP
3000 DE-4

.....•.

DE-4· --
HP

3000

- .

TESTEO AT .,DuNDEE CEMENT DUNDEE, MICHIGAN.
w "

-.

listing on Iy -
280 CPS Average

Same modems, terminals, dat.a . ..
output - ASYNC Interactive

listing only ­
115 CPS Average

.. Same mbd~·msJ~.tetminals,data

. output-SYNCHRONOUS Polled

Tort
Office

Interto"
Trunk

Toll­
ConnectillU

Trunk

End
Office

End
Office

Inter·
Office
Trunk

Station Loop

CITY A
CHAMPAIGN, IL

CJTY B

SAN ANTONIO, TX

Station Loop

End
Office

Totl­
CUllnecting

Trunk, Toll
.Office

Typical Routing for Connections

11-38-10

3CRTs
I PRINTER

3CRTs
I PRINTER

4800

4790

DSU WITH
BANOSPLITTER

BOSTON,
MASSACHUSETTS

BALTIMORE,
MARYLAND

9600 BPS

D.D.S. LINK

DSU· WITH
BANDSPLITTER

HP3000
SERIES III

NASHVILLE,TENNESSEE

DE-8

I
w
co

I

3CRTs
I PRINTER

RICHMOND, VIRGINIA
ANALOG,
OR D.D.S.-----

. ~

. I ~

. :

. ~ ','

Microcomputer-Based Distributed Processing
John J. Tibbetts

Vice President, Research & Development
The DATALEX Company

INTRODUCTION

If one were to attempt to list the major technological
changes of the last decade, surely at the top of that list
would be the so-called microcomputer revolution. Over
the last 10 years intelligent devices have jumped from
the research and development labs out into the hands of
scientists and engineers and then into business and then
into small business and the home. I believe that the
depth to which microcomputers have penetrated our
society would have surprised even the most adventur­
ous of futurists of 10 years ago. Nor does it appear that
this wave of change is at all slowing down. Projections
show very rapid growth, both in the home and business,
over the next five years.

Also interesting to observe is the evolution of the
packaged microcomputer as it exists today. Ten years
ago the frrst microprocessor chips were just coming out.
A few years later, a few poorly capitalized companies
originated the packaged microcomputer with a mi­
croprocessor, support chips, power supply, and a lim­
ited amount of memory. Over the next couple of years
the microcomputer was really in the hands of the elec­
tronics buff and the amateur radio operator with very
little emphasis being placed on software. The profes­
sional computer person of five years ago approaching a
microcomputer was faced with theprospect of working
with a virtually bare machine in terms of professional
software tools. "But in the last five years there has been
a rapid growth of professional software, including
commercial-grade operating systems, languages, and
some applications software packages. Where a few
years before the microcomputers were the province of
the hardware junkies, now even the major mi­
crocomputer manufacturers had very much awakened
to the role of software in selling computers.

A striking poster that is now being distributed by
Apple internally as well as to its sales outlets, says in
massive letters "SOFfWARE SELLS SYSTEMS."

However, despite the large number of software prod­
ucts that are now avialable, there are actually a rela­
tively small number of applications represented. Pick
up a BYTE magazine (that is, if you can. What started
out a a pamphlet now runs 500 pages, most of which are
ads) and perform the following exercise. Take a clean
sheet of paper and start writing down software prod­
ucts, grouping them according to function. You will fmd
an interesting pattern. There will be a large number of

games. There will be a number of packages which are
small business accounting packages. There will be a
preponderance of word and text processors, some of
which are quite good. There will be some fmancial
modeling software in the Visicalc and Plan 80 sense,
used for limited, but very interactive, fmancial modeling
applications.

There will finally be a group of programs calling
themselves database management systems. I hesitate to
call true database management systems in the classical
sense of the word. Some of them are certainly capable
file management systems.

What seems to be almost totally missing are products
which are important to the kind of people who attend
these meetings, that is, people with larger computer
needs. What is missing is software that emphasizes the
nonpersonal use of personal computers. Let's examine
what a few of these software product categories might
be:

1. Communications software.
Communications software accurately moves
transactions or fIles of data back and forth from
your microcomputer to your corporate computer.
It is true that there are some communications
packages which do exist for microcomputers, but I
would assert that very few of them are oriented
toward commercial grade data handling chores
which should include such features as error detec­
tion and retry, bidirectional control of the com­
munications stream from either the mi­
crocomputer or the host computer, and the ability
to accommodate full binary transfers of data.
These matters are discussed in much greater detail
in another talk which I am giving at this meeting.

1. Intelligent terminal software.
By intelligent terminal software, I mean software
which can format and edit transactions of data as
they are being entered and before they are submit­
ted to your corporate data processing machine or
network. Nearly all online, realtime applications
which are performed onto an HP3000 are per­
formed via dumb terminals. Consequently, all of
the editing and transaction formatting needs to be
done by the central computer. Not only can this be
slow from a processing point of view, it can also be
very slow from an apparent operator speed point
of view. The use of intelligent terminals software

11-41-1

running on industry standard microcomputers
would allow increased capability and a higher per­
formance in interactive applications.

3. Data entry software.
By data entry software I mean software similar to
the intelligent terminal software just described but
which can act independently of the remote com­
puter entirely. That is, the tra~s~tionsas they are
gathered are stored locally - usually on a diskette
on a microcomputer - and are maintained on the
microcomputer until such time that all of the data
has been entered. This type of software solves the
standard data entry needs of data-intensive com­
mercial applications.

In this talk, I will address myself to microcomputer
software being used as intelligent terminal and data
entry sc;>ftware and relate to you some of my experi­
ences in this regard.

BUILDING BLOCKS
Before we can discuss the particulars of intelligent

terminal and data entry software, it would be important
to first define some of our terminology in terms of
industry-standard microcomputers and industry­
standard software for "microcomputers. In this section,
we will defme 'some of the assumptions we have used in
the building of our software systems.

Let Us first consider hardware. Microcomputers can
of course come in many sizes and shapes, all the way
from the little $200 Sinclair Microcomputer on the low
side to the very expensive microcomputers bordering
on" minicomputers on the high side. In general, I feel
that the standard minimum confIguration for a general
purpose data entry based microcomputer to be a 64K
system or greater, with floppy disk support. The reason
I recommend a full64K system for your microcomputer
is simply that the cost of main memory has dropped to
the point where the software costs associated with
working in smaller memory sizes outweigh the amount
you spend on memory unless you' are producing a
special-purpose, high volume data entry product. It is
interesting to note that many of ,the microcomputer
manufacturers have moved from a position of giving
you whatever memory size you would like, to recom­
mending and then strongly recommending 64K systems,
and now some of them are selling only that configuratin.
Although Winchester disk technology is a very exciting
element in today's microcomputing, for data entry and
intelligent terminal based applications it usually isn't
necessary except in two specific cases: one in which
you have multiple systems, perhaps more than 3 or 4 in
the same location, which you would like to share the
common systems software from a single Winchester
drive; or two, in cases in which there are going to be
keyed lookups into larger data structures which would
required the "performance you can get from a Winches­
ter drive rather than a floppy disk drive. Printers are

11-41-2

sometimes useful in certain distributed applications but
in most cases don't seem to be required.

You will notice that I make no specific recom­
mendations on hardware manufacturers. This is be­
cause I have come to the conclusion that the main real­
ity about microcomputer hardware is that it is in a very
dynamic state. What you want in microcomputer
hardware for distributed processing applications is
hardware that is maintainable, reliable, and, probably,
from a large-name vendor. Beyond that no specific rec­
ommendations on my part are advisable. The fact that I
am preparing this talk two mont~s in: advance of giving
it leaves plenty' of room for more significant an­
nouncements to be made before the talk is even pre­
sented.

Perhaps even more important than the selection of
hardware for a distributed processing application is the
selection of your software operating system. I say this
for two reasons:

1. If the operating system is portable enough, it will
" alow you to change your decision about hardware

during the development of your application or dur­
big different stages of its implementation.

2. The operating system has a much greater influence
over the programming techniques and systems
capabilities than does the hardware in which it is
packaged.

Now, what kind of microcomputer operating systems
can we expect to fmd these days? Let's perform a men­
tal exercise. I will entitle this exercise, "Name That
Operating System." OK, name this operating system:

• Runs in a Stack Environment
• "Segmented" Architecture
• Non-Von Neumann --+ Code Segments

Separate from
Data Segments

• Up to 256 Code Segments of 65K Bytes
Apiece

• Process-handling
• "Intrinsic" Procedures to Implement Super­

visor Calls
• Inter-linkable Languages

Do you have the name of that operating system fixed
in your minds? Good. Now, let me add a few more
attributes to the list.

• Runs on 8080, 8085, 8086, 8088, Z80, Z8000,
6800, 68000, 6502, LSI-tt, TI-9900

• Has 70,000 licensed users
• Supports PASCAL, FORTRAN-77, BASIC

(interlinkable)
. Do you still have the same operating system in mind

now? The operating system I have been describing has
many attributes asociated with the HP3000 MPE ar­
chitecture and the Burroughs architecture before it.
This operating system is the UCSD p-System, so-called
because it originally developed from the PASCAL lan-

"guage project from the University of California-San Di-

ego. It is now marketed worldwide by Soffech MI­
crosystems. I consider this operating system to be the
most professional of the 9-bit/16-bit microcomputer
operating systems. It gives the deveoper a capability
approaching the power of MPE running in a portable
microcomputer environment.

The word "portability" can't be stressed 'enough
when dealing with microcomputing. I meantioned pre­
viously that hardware is in an extremely dynamic state
in the microcomputer industry. Thus, the notion of pro­
tecting your software investment which HP has always
preached to their customers is extremely important in
the microcomputer domain. After all, in the mi­
crocomputer domain your software investment is often
many times the cost of the hardware for small hardware
configurations and the importance of protecting it
against the extremely volatile hardware changes we fmd
in the microcomputer area is very important. UCSD
p-System portability means that we can take compiled,
running systems and 'move them from microcomputer to
microcomputer, even running different processors, and
have them immediately execute. This is true portability.

Another building block we need for distributed pro­
cessing type applications is good, commercial-grade
communications software. We need software that can
move transactions or files of data back and forth to the
HP3000 with full error detection. Our approach has
been to write compatible communicatiolIls programs,
both on the microcomputer and the HP3000, which pro­
vide for sending checksummed packages of data and
messages back and forth between the two processors.
Thee is a great deal more versatility and reliability when
you have interlinked programs running on both sides.
These programs will run very effectively even over
noisy telephone lines or in environments in which
characters, such as the important DCl character, may
suddenly disappear. The programs have the ability to
time-out after priods of no communications so that the
error recovery can be graceful. The programs also have
the ability to allow either side - that is, either the local
microcomputer or the remote HP3000 - to control the
communications. Thus, for instance, we have built ap­
plications in which the operator simply starts up an
HP3000 UDC, the UDC starts up perhaps a COBOL
transaction processor which polls the microcomputers
for the filenames which they need to send and then
requests that the files be sent.

The last building block needed for distributed proces­
sing systems is a comprehensive forms language. To
date, such software has not been available on mi­
crocomputers and consequently we have spent the last
couple of years building it ourselves. The forms lan­
guage tends to have many of the attributes of the V/3000
approach of forms building; to wit, draw a pickture of
the form in a screen editor and then proceed to specify
attributes, such as range checks, table lookups, optional
fields and so forth about the form. The significant dif­
ference between a forms language that can be written on

a dedicated microcomputer and one that can be written
on a larger shared processor is in the greater degree of
user interaction that can be accomplished on a mi­
crocomputer. On a keystroke-by-keystroke basis, the
microcomputer can do instantaneous editing of the
data, rather than waiting to gather up a whole block of
data and then transmit it to some computer somewhere
else for editing. This means that the microcomputer
forms have a very high apparent speed, no matter what
the speed of the remote processor.

Other form attributes that have been implemented
are:

• A "dup" key. This key immediately copies the pre­
viously typed entry to the curr~nt data value.

• Function keys which can cause immediate action in
the data, such as default values or clearing a field.

• Data verification in the IBM sense of retyping the
data exactly the same way (just the way your key
punchers have been trained to do it).

With these building blocks we have the tools needed
to build very innovative and effective data processing
nodes onto existing information network.

INTELLIGENT TERMINALS
Our approach to writing intelligent terminal soft~are

has been to use our forms language to build, compile,
and maintain the forms on a microcomputer. The com­
piled forms can be stored on the host HP3000 for dis­
tribution. These are periodically distributed to the vari­
ous nodes through the communications software. The
applications program, say a COBOL program written
on the HP3000, controls the microcomputer by sendmg
down very simply formatted ASCII strings to the mi­
crocomputer to give it its instructions. Since there are
no special control character sequences, the screen
commands can be dispatched by any language, not just
COBOL. They can even be dispatched by UDCs. For
instance, the ASCII string ".CS" tells the remote mi­
crocomputer to clear the screen. The command ".LF
PRODUCT" tells the remote microcomputer to load the
form named "PRODUCT" from the floppy disk into
memory. Since the forms live locally on the' mi­
crocomputer, a form change command represents only
10 characters transmitted from the HP3000 to the mi­
crocomputer. Compare this' with the 1,000 to 2,000
characters that are usually required to change a form on
a non-intelligent computer. On a typical floppy disk sys- I

tem we usually can store from tens to hundreds of
forms, depending on the capacity of the floppy disk.
Once the application has displayed the form on the mi­
crocomputer, it can give them a simple command such
as ".OF" to get the form. This command causes the
microcomputer to issue ~ read for that form and does all
of the local form editing and the microcomputer without
any involvement by the host computer. Tb.e result i$ a
very high apparent screen speed that is being controlled
by the remote computer.

11-41-3

There is a very close parallel between the intelligent
terminal command strings and the equivalent sub­
routine calls that one would issue from a V13000 sys­
tem~ Thus, one can either read or write whole forms or
individual fields or any· combination of them. In addi­
tion, using intelligent terminal software, one can do
some fairly intelligent operations on the screen. For in­
stance, we can request that only modified fields on a
form be sent back to the host computer with some iden­
tifier on each field. Another intelligent operation is the
reformatting of the record on the fly, such that the fields
themselves can be shifted in position with various con­
stant data inserted into the transmision stream.

There are a couple of easily definable benefits' from
using this kind of intelligent terminal software:

1. Performance.
Using an intelligent terminal improve's the perfor­
mance of the program on the HP3000 in that' it
does not need to be burdened with a lot of editing

, operations that can be done immediately by the
local microcomputer. By the time the data is s'ent
to the HP3000, it is as clean as local editing can
provide. This system also performs very well for
the operator who gets the benefits of immediate
error checking on those fields that have had de-
'fmed local·microcomputer;editing. '

2. Portability .
This system is very portable both with respect to
the program running on the host computer~ that
is, the HP3000- and to the program running on
the microcomputer. For the host computer, since
all of the commands for the screen operations are
simple ASCII strings, the COBOL programs tend
to be far more portable than COBOL p'rograms
with embedded forms control procedures. If one
wished to take a COBOL prograrri and move it to
an IBM main frame, the only conversion required
would be the standard conversion of any COBOL
program from an HP3000 to an IBM system. On
the microcomputer side, the intelligent terminal
software - since it has already been defined to be
very portable on microcomputers - can be run­
ning on an HP125 or on an AP~LE II or any of the
other microcomputers which support the
p-System operating system. This means that the
same application program can drive a variety of
microcomputer-based intelligent terminals, de­
pending on the preference of the system imple­
menter or perhaps what hardware might be exist­
ing in the office that this system is running into.

One last note on the intelligent terminal software.
Even with the benefits I have just described, unless a
user has some particular need for portability or higher
performance, my best guess is that the advantages
would not be sufficient to cause someone to establish an
intelligent terminal network instead of using dumb ter­
minals. The real usefulness of this intelligent terminal
software will come to light when we begin talking about

11-41-4'

~ '.

omine uses of the microcomputer and especially their
hybrid usages.

OFFLINE DATA ENTRY
Perhaps the single most significant application of the

new microcomputer technology for users of existing in­
formation networks is doing omine data capture. This
means that we can have our microcomputers sitting
either in our data entry departments or in remote offices
omine from our HP3000, gathering data, putting it onto
floppy disks, doing local editing as previously de­
scribed, perhaps performing batch balancing, perhaps
generating proof listings of the data' so that it can be
visually verified, or rekey verified by the data entry
operators, and then. have. the batches closed and
transmitted for processing to the remote computer.

We see two major users of microcomputer-based data
entry. The first is in collecting volume data' typically
entered by the data entry function of your information
system. Let's quickly compare a microcomputer solu­
tion to the standard existing solutios for gathering data:

1. Compare to collecting data on cards or with a
key-to-diskette system such as the 3741, the mi­
crocomputer can--do a much more comprehensive
job of editing the data. It not only can do checks
on the type of the data but also on particular val­
ues of the data or by comparing values in several
fields of the data and so forth. Furthermore, the
microcomputer using a formatted CRT-type
technology can much more readily be operated by
users than just by the professional data' entry
operators. A recent survey by a professional data
entry association shows that approximately 70%
ofcorporate data processing departments are shift­
ing to user data entry from centralized data entry.
In terms- of peIformance, the speed of key entry
into a microcomputer usually exceeds, and some­
times by a considerable factor, the entry speed
through cards and key-to-diskette systems (due to
the fact that fairly smart duping operations can be
programmed which can minimize the key strokes
that need to be entered).

2. Compared to intelligent key-to-disk systems, the
microcomputer would roughly equal them in terms
of key entry performance since these machines
also are intelligent and programmable and can
provide for very smart data collection algorithms.
The principal disadvantages of the key-to-disk sys­
tems, which are usually characterized by a
'minicomputer with a cluster of terminals, is that
the per-terminal cost of the microcomputer is con­
siderably less than the per-terminal cost of the
clustered mini when you are dealing with fewer
than' 8·or 10 terminals in a specific location. For
large scale data entry chores, one would probably
still favor a clustered mini for doing the data entry
chores. For operations with only a few stations or
where the stations are distributed, the mi-

crocomputer again comes out as being a more
favorable solution.

3. Compared to online data entry using V/3000 or
some other online screen formatted technology,
the microcomputer scores much higher in keys­
troke performance and operator performance as
well as not burdening the machine with keystroke
intensive work. I think it is the common experi-

, ence of the HP3000 community that having several
data entry operators entering data online dispro­
portionately burdens that system's performance.

Again the issue of portability and versatility needs to
be made in a comparison of data entry approaches. Vir­
tually all other data entry gear is single purpose equip­
ment. If you buy a key punch machine, or a 3741, or a
key-to-disk system such as the Data 100 data entry sys­
tem, you are buying specific hardware for a data entry
chore oriented towards the data entry profession. A mi­
crocomputer data entry system carries with it all of the
same benefits of an intelligent data entry system, but
running on a general purpose piece of hardware that can
be used for word processing, or running Visicalc, or
other programs. Furthermore, the microcomputer­
based data entry software, in general, tends to be more
user-oriented and more oriented towards spreading ap­
plications out to the user rather than keeping the data
entry function local to the data processing department.

HYBRID SYSTEMS

The most exciting systems on the horizon are those
which are combining the online and omine capabilities
which we have been describing; that is, systems that
may operate sometimes online or omine depending on
the desired properties of the system. Imagine an office
of your company that has an APPLE or IBM Personal
Computer or an HP125 sitting in it, perhaps performing
word processing or financial modeling, but which can
also be used as a data gathering station. What are some
of the kinds of hybrid applications that we could make
use of with this configuration?

Perhaps the most trivial example of a hybrid applica­
tion is in performing a function we call error turnround
handling. Imagine an order entry application that may
have a variety of forms associated with it, perhaps rep­
resenting an order header, repeating line items, and re­
peating partial shipments for each line item. Imagine
that these transactions are gathered using the standard
omine data entry software and are put into a batch, are
checked and perhaps listed, perhaps batch totaled and
are finally transmitted to the transaction processing
HP3000. Clearly, there are going to be some database
semantic errors which cannot be checked on the local
microcomputers: credit limits might overflow, certain
products need to be checked against the major
database, and so forth.

The conventional solution for correcting these kinds
of errors is to generate an error listing, send it back to
the data entry operator, and have it rekeyed in the next

batch. Our software provides an error turnaround
mechanism by which the data that is sent to the transac­
tion processor can have a tag put on each data segment
that shows where it came from in the original source
batch. When it detects an error in a record, the transac­
tion processor can strip off this header fragment and
write it to an errors fIle and gather up a file which repre­
sents all of the errors that were found. For example, out
of 100 sales orders entered, three of them may have
database failures which require further information to
be entered. Using our communications software, this
errors file can be sent back down to the microcomputer
where a utility that we provide automatically runs that
errors file against its original batch and creates an errors
batch with only the three error records. Furthermore,
the errors are now marked with the database codes such
that the user can simply take them back into data entry
system where a "Correct" command will automatically
lead them to the field in error with an error message
reported from the remote computer. This means that
error turnaround information is not rekeyed but is sim­
ply sent back down and automatically creates a new
errors-only batch. When this batch is corrected, it can
then be sent up again to the transaction processor for
reprocessing.

A more exotic second example which can accomplish
the same function is as follows. Imagine the same data
entry application except that at transmission the
transactions are going into the transaction processor as
they are being sent by the microcomputer. Thus, a re­
cord segment of an order is transmitted and immedi­
ately checked against the database in real time. As an
error is detected, the transaction processor immediately
brings the form back up on the remote computer and
instructs the operator to repair it immediately. Notice
very carefully that the very same form is being used in
the online as well as the omine case to gather, correct,
maintain, and modify the data. The operator learns only
one interaction protocol whether operating in an omine
or online environment. Using this mechanism errors
can be corrected as soon as they are found.

The most interesting concept for hybrid systems in­
volves an interactive transaction processor. Imagine a
transaction processor which lives on the HP3000 and
which can recognize transactions coming into it. Those
transactions can either be in a batch or one at a time. In
this type of a system, the software could be designed in
such a way that depending on the preference or the
needs or the requirements of the application a user may
be omine or online. Again, consider our order entry
example. An operator types in orders omine for an hour
or two in the morning when suddenly a high priority
order comes into the office. Using our hybrid system
the operator can immediately put the microcomputer
into an online mode, invoke the transaction processor
and enter one order. The order is then entered immedi­
ately. The operator then drops omine, and continues
entering more orders in the batch. Later, the operator

11-41-.5

again makes contact with the remote computer and now
invokes the very same transaction processor and dumps
in the morning batch.

You can .see from these exaples that there are an
inf'mite variety of hybrid applications. The important.
thing to recognize is the fact that the difference- between
online and omine is a distinction that has been made out
of historical necessity. Microcomputer-based systems
suggest that the microcomputer is the real interface to
the user's information network. How the mi­
crocomputer chooses to handle the transactions - that
is, whether online or omine - merely becomes an
applicatin dependency or a priority dependency. As'
time goes-on, we will see that the importance of these·
hybrid systems will make for very user friendly systems
for which the user need not get involved in many of the
details· that we now consider essential.

CONCLUSION
I remember as a child getting up early in the morning

to watch physics programs on 19S0-style educ.ational
television. At that time the concept o~ educational TV

11-41-6

was that a television camera would be placed in a studio
that looked like a classroom. A teacher, with a desk in
front and a blackboard in back, with a pointer for the
blackboard, would make an of the motions of a teacher
teaching a class and the TV was merely an observer to
the classroom. Compare that technology with the
technology of a "Nova" or a "Cosmos" in which sud­
denly television is recognized as being a medium with
its own powers of communication, with properties far
different than the classroom teacher.

We have witnessed this very same phenomenon in
the growth of microcomputer software. Microcomputer
software has simply assumed the role of minicomputer
and main frame software without our examining the
special attributes of the new medium. Small computers
add something dramaticaily new into the computer pic­
ture. It is important for us to recognize those things that
they do well, not so that we an.exclude certain types of
software applications from a small computer, but to fIg­
ure out how we can use the particularly strong
capabilities of the microcomputer to work in a friendly,
compatible environment with our exist~g communic3:­
tions networks.

Software Management Techniques
Janet Lind

There is currently much information available to
document the fact that the· cost of hardware is decreas-~,

ing dramatically, but the cost of software continues to
cliInb~ When questioning the source of this problem, it
is nec~ssary to consider that ·many hardware functions
are now·being implemented in software or fll11lware. It
is also· true that computers are constantly being used in
new applications, and computer users have increasingly
sophisticated needs.

Today's software systems suffer from a variety of
problems. Often they are delivered later than originally
scheduled. The systems may cost more than the original
projections. The software may not meet the user's re­
quirements, or may be unreliable. When the need arises
to correct or upgrade the system, the cost involved may
be in excess of the cost of the original system. 18

One of the most pressing problems in software proj­
ect management is 'the lack of a well-developed struc­
ture for guiding the individual programmer. Instead of
directing the programmer's activities, the manager can
often only manage an idea until all parts of the project
are completed. This problem arises from the fact that
the only clearly defined point in the programmer's work
is completion. More definition of the process is
needed.1

There is no reason why software development should
be exempt from the formats found in other engineering
fields. Lab notebooks, design reviews, and failure and
reliability analysis have proved their value.

The lack of a disciplined approach to software devel­
opment may produce programs which ar~ difficult to
understand or maintain, affecting overall cost.
Therefore it is important to develop a more rigorous
framework to delineate the several steps in the prog­
ramming process. Knowing the proper· steps to follow
will allow a programming team to develop more com­
mon objectives about the problem solution. This will
improve the product and the group motivation by allow­
ing the programmers to focus on more immediate goals.

Even though the approach being taken is to defme a
series of programming steps, it is always important to
allow feedback to improve the product. A sequential
description of program development steps will be de-

fmed here, but a problem found· may cause a redefmi­
·tion in preceeding; steps to provide a more correct solu­
tion. 8

When first approaching. a software project, it is nec­
essary to perform a problem analysis. Here the inputs
and outputs must be specified and the relationships be­
tween them must be described., A programming
notebook should be kept to indicate how decisions were
reached.4

Part of the problem,analysis includes decisiQns about
the resources available. This includes both' people and
computer power. When considering the hardware used,
it is no longer strictly correct to consider implementing
everything possible in software. To increase prod­
uctivity and to simplify code requirements, it may be
worthwhile to purchase or develop hardware to meet
the problem.

Another choice would be the use of multiple proces­
sors, which gives greater flexibility than implementing a
fun~tion in· hardware. This could also decrease the
complexity of a given program, for it will no longer be
responsible for as many portions of the function. Pro­
grams could also run concurrently, reducing timing con­
straints on a single system. This would make program­
ming in higher level languages more attractive because
the added processor capabilities offset the less efficient
code produced. After completion of problem analysis, a
·walkthrough should be performed.

The solution design is driven by the 1/0 and their
relationships defined in the problem analysis. Several
different documentation techniques and evaluation
criteria can be used in the structured design. Data flow
diagrams can be used at the high level abstraction to
·model the flow of data through.the system.'

Higher order software notation, or HOS, which was
developed as part of the Apollo Program at Draper labs,
defmes a very useful flowcharting technique. Each con­
trol structure has a horizontal block showing the pro­
gram flow in that structure. This type oftlowchart does
not show extra arrows, and allows easy identification of
each possible branch. This notation also uses the same
identation as should appear in the actual code.3

11-63 -1

ELSE~ ~

SI

1 DO-WHILE I •
I ••

I So

So+1

IF

S3

THEN
SI

S2

nos Example

Some of the evaluation criteria used in structured de­
sign include decisions about the possible program de­
;v~Jop~ent tpols available. Certain programming lan­
guages may provide .b~tter support for the data'stmc­
ture~ to be used. They may also affect the" amount of

.coup,ling ~required between modules. It is importahi!to
,consider the capabilities of the coniputer system' on
~hich the program will be run, including memory man-

. agement te~~niques and 1/0, capabilities. '
!', , When doing struct~re,d, design, the' design team is
:p~eri 't~~p~ed ~o perf~ml just t~e top ·leyel abstra~tion
as a team, des'igning the lower levels individually.'There
are some important reasons for doing a single integrated
design of the entire application. First, subdivision of the
design may result in excessive coupling of the major
systems. The resulting packaging into programs from a
subdivided design'may be suboptimal. A complete
'overaIl,structural design could' produce more efficient
a~d convej}ient packaging. Subdividing the design work
~i11 v~ry often result in duplicat~~ pro8r~ming., It is
particularly unfortunate when minor changes.occur in a
few structures, yielding a new system which' could have
shared entire subsystems and many levels of modules.9

Even though there are reasons for completing the en­
tire structural design as a single unit, this is not always
possible. In thatcase it would be best to produce a high
level abstraction, of the program ,flow and· identify the
more independent subsections. Those with 'few, un­
complicated interconnections could ,be treated indepen­
dently. To avoid duplication of code, frequent mutual
design walkthroughs and cross-checks should be per­
fornied.

Either while the structured design is being developed,
or after its completion, the testing must be planned. It is
necessary to design the test cases before the coding is
begun. This allows peer review to verify that the de­
signed code can be tested.

If the HOS flowchart notation is used, each program
branch can be easily identified, and therefore tests can
be designed to exercise each branch. If each program
branch is numbered, a test matrix can be developed to
indicate which tests execute which branches. The input
and output to each test must also be specified.4

11-63 -2

Both the structur~d code design and the test design
should be carefuJly:reviewed via structured
walkthrough techniques. When considering
walkthroug~s,'itis necessary to determine if it is more
e~onomical for an etr0r to be found by tQ~ programmer,
or by a group'~of 3 to 5 people. Part of the cost-benefit
calculation is the turnaround time for repairing errOfS.
Recent studies indicate that it is roughly ten times more
expensive to fix a design errQf after it has been coded
than to repair an error detected in design phase. It is
also quite possible that wQ.en .looking for errors, the
programme~ can repeat' a logic error and never fmd the
bug. Walkthroughs can help avoid this. 10:'

Test Case Input Branch Output

VI V2 I 2 3 4 5 VI V3 V4
1 0 0 X 0 '0 0

2
0 1 X X 0 0 2
1 0 X X 0 2 1

3 1 1 X X X 1 1 1

Test Matrix Example

There are other walkthrough benefits 'which must be
weighed against the cost. The product quality is im­
proved. The walkthrough participants are better trained
in the product and are able to exchange important in­
formatio,:\. 'This exchanged information increases the
probability that the prQduct can be salvaged if a pro­
gramm~r leaves before completion. A walkthrough is
also a good environment for feedback into other areas.

After the designs have been accepted, coding and de­
bugging can begin. Here structured programming tech­
niques should be both understood and applied. Using
the HOS flowchart technique makes program flow and
structuring obvious at coding time.

It is too simple to believe that code without "GO-TO"
commands is always good. The language being used
should be well comprehended by the programmers to
ensure that the proper constructs are used. The code
within each module must be structured. Concurrent
documentation should also be kept.

With developing and testing code, it is also necessary

. 1

to choose between a top-down or bottom-up approach
to the overall structure. If hardware is being developed
concurrent with software development., the lower level
modules may be needed fIrst to verify the hardware. In
most other cases, a top-down approach can provide a
more obvious visual presentation. This technique also
allows modules to be tested together sooner. The inter­
face between a node and its predecessor can be tested
as soon as the lower level node is developed, allowing
design or implementation errors to be detected and cor­
rected earlier.9

A librarian function is helpful during coding and test­
ing. The librarian can be an appropriately trained per­
son, or an automated system. The librarian should
maintain source programs and listings, as well as or­
ganizing all other technical information.

An automated system would avoid mixing media,
which could be helpful in keeping a very accurate re­
cord of what changes are made. A record kept during
edit phase could record what lines were modified and
which variables were affected. A time stamp on this
information could help other programmers know which
version of code they were using. The knowledge that
this system is being used will encourage a programmer
to carefully analyze each change.

When the code can be tested, the test case matrix
should be used to direct the tests applied. It may be
useful to have the test run by the librarian. The test

TOP-DOWN
1. Code and debug A
2. Code and debug B1
3. Test 11
4. Code·and debug B2
5. Test 12
6. Code and debug B3
7. Test 13

A

Example
BOTTOM-UP

Code and debug B1
Code and debug B2
Code and debug B3
Code and debug A
Test 11
Test 12
Test 13

results should match those predicted, and a run log
should be kept to document the test results. The pur­
pose of the run should be stated, followed by an analysis
of the run in terms of that purpose. This allows feed­
back for code correction and avoids haphazard modifi­
cation. Any corrective actions which must be taken by
the programmer should also be recorded.5

It may also be valuable to keep a time log to sum­
marize the time needed for each step. This forces the
programmer to review the actual effort expended in a
task, and helps for making more realistic future esti­
mates.

Throughout all activities, an independent auditing
function can be performed. This will help detect errors
unnoticed by the development team, and provides feed­
back.

The system described here is relatively involved and
may be 4ifficult to implement all at once. A pilot project
could be chosen to use structured coding, structured
design, and informal walkthroughs. As the process is

. implemented, it may be valuable to measure certain as­
pects such as the number of debugged lines of code
produced per day and the number of bugs found after
release. This can aid in future estimates. The amount of
time spent in each walkthrough and the number of bugs
found there should also be measured to help improve
the techniques used.6

BIBLIOGRAPHY
IF. T. Baker, "Chief Programmer Team Management of Productin
Programming," IBM SYST. J., vol. 11, No.1, 1972.

2F. T. Baker,."Structured Programming in a Production Environ­
ment," IEEE Trans. Software Eng., pp. 241-252, June 1975.

3M. Hamilton and S. Zeldin, "Higher Order Software - A Meth­
odology for Defining Software," IEEE Trans. Software Eng., vol.
se-2, pp. 9-32, Mar. 1976.

4P. Hsia and F. Petry, "A Framework for Discipline in Program­
ming," IEEE Trans. Software Eng., vol. se-6, no. 2, pp. 226-232,
Mar. 1980.

sp. Hsia and F. Petry, "A Systematic Approach to Interactive Prog-
ramming," Computer, pp. 27-34, June 1980. 0

8M. Page-Jones, The Practical Guide to Structured Systems Design,
Yourdon Press, New York, N.Y., pp. 267-284, 1980.

7C. H. Reynolds, "What's Wrong with Computer Programming Man­
agement?," On the Management ofComputer Programming, G. F.
Weinwu~, Ed., Auerbach, Philadelphia, Pa., pp. 35-36, 1971.

8M. Walker, Managing Software Reliability - the Paradigmatic Ap­
proach, A. Salisbury, Ed., North Holland, New York, N°.Y., pp.
32-41, 1981.

'E. Yourdon, Managing the Structured Techniques, Prentice-Hall,
Inc., Englewood Cliffs, N.J., pp. 10-88, 1979.

IOE. Yourdon, Structured Walkthroughs, Prentice-Hall, Inc., En­
glewood Cliffs, N.J., pp. 87-100, 1979.

11-63 -3

~. I , ..~.

"'-'

Understanding .Hewlett-Packard:
A View From the Inside

Jan Stambaugh
Field Marketing· Support Manager

Business Computer Group

This paper is a description of the presentation tc;> be
given at the Users Group meeting in San Antonio. It is
not reflective of the actual information to be conveyed
for two primary reasons. First, the presentation begins
with a short, fun quiz. The answers to the questions in
the quiz are revealed throughout the presentation. Since
prizes will be given to the winner or winners, pre­
publishing the answers did not seem to be advisable.'
Second, the information I wish to share with you is
particularly volatile; it changes so frequently that I hesi­
tate to submit three months in advance a paper which I
know will be obsolete when you read it. .

Several years ago I saw a movie entitled "The Uni­
verse" in which the camera began somewhere out in the
universe, then focused in on the galaxy, the planet
earth, the North American continent, a state and so on,'
all the way down to a molecule and then an atom. This

movie is analagous to the way in which I will present my
inside view of Hewlett-Packard.

I will begin by describing the company as a whole, its
domestic and international operations, the distribution
of its sales orders, the distribution ofits sales dollar, and
its corporate goals. From there I will describe the com­
pany's organizational structure, its six major product
lines, its groups, divisions, and operations, and how one
relates to the other.

I will talk extensively about the Business Computer
Group, that part of the company which is responsible
for the HP3000 hardware and software. I will review the
customer interfaces to the company and tell you how
you, as a user, can make yourself heard.

NOTE: Those who attend the presentation will re­
ceive copies· of the overhead transparencies.

11-75 -1

Structured Analysis
Gloria Weld

Hewlett Packard Corporation

In any programming project, there are three areas of
partition: Analysis, Design, and Implementation. All
three of these areas can benefit from a systematic,
structured approach.

Today we will discuss Structured Analysis. In our
discussion, our underlying assumption will be that we
are called upon to design (automate) a new system in
order to replace an existing system.

ALL OF US WHO ARE INVOLVED WITH
PROGRAMMING AND PROGRAMMERS ARE
CONCERNED WITH MAKING SURE THAT
THE CODE WHICH IS WRITTEN
ADEQUATELY AND APPROPRIATELY
REPRESENTS THE SYSTEM WHICH IS
TO BE· AUTOMATED.

STRUCTURED ANALYSIS IS A METHOD
TO ACHIEVE THAT GOAL.

Our Goal:
The program written must truly

represent the system to be automated.

System
to be

automated

11-84-1

11-84.-2

. .

SONE' TOOLS OF

S TRueTUREO ANAL YSIS

o OA TA FLOIr OIAGRANS (OFO'S)

o OATA OICTIONARY

o STIlt/CTt/IlEO ENGLISH

DFD
NOTATION

1·. DATA FLOWS, REPRESENTED BY NAMED
ARROWS

x
--:>

2. PROCESSES. REPESENTED BY NAMED
CIRCLES I.E. (-BUBBLES-)'

(]
3. FILES. REPRESENTED BY NAMED STRAIGHT

LINES

4. DATA SOURCES AND SINKS. REPRESENTED
BY NAMED BOXES

I. A LANGUAGE

II. AN EXCELLENT TECHNIOUE FOR
UNCOYERINGNISUNOERSTANOINGS
DURING THE ANAL YSIS PHASE OF
A PROJECT.

COMMENTARY

HOW DO YOU ANALYZE A SYSTEM?

YOU TALK. YOU TALK TO THE PEOPLE

WHO ARE PART OF THE SYSTEM. YOU

ASK THEM WHAT IT IS THAT THEY DO.

Discussing "how things work" with a participant in a
system can often lead to confusion. Quite naturally,
there are multiple views of the system. Each participant
in the system views the situation from his own vantage

point. Thus, analysis derived from discussion with one
participant will often conflict with analysis derived from
discussion with another participant.

For example:

11-84 -3

DESCRIPTION OF A
-HOSPITAL SYSTEM-

A PATIENT IDES INTO 1tE HDlPITAL AtIJ DtEaCI IN.
IF IE 18 REALLY lICK. IE lXElNeT CI£CI(IN HItELF
BUT tEes PUT INTO A Il£ELCHAIA AtIJ lENT RIIHT III
TO A IIJOM ClH.ESS tEeS AN _-ADaM PATIENTJ.
1tEN 1tE DDCTGA CREAl ALL 1tE LAB TESTS tE tEEDS.

-.rIMES MATaRTY PATIENTS III TO 1tE LAllClHELIVERY
PART IF 1tE HDBPITAL IUIHT WY.

_ IIJOM PATIENTS HAVE TO IlAIT IN 1tE EMEAIEtcY
IIDDM &H.E8S' Tt£Y tEED TIWICA CARE IUIHT WY.

AFTER TEBTI AtIJ X-RAYS AfE TAKEN. CClPIEI ID INTO 1tE
CHARTAtG A IXPY ICES TD IEDleAL RECCRJI.

, >

J AM CHIEF caaK IN TtE HDSPITAL ICITOEN. .ALL FGaD
IICIEI 1lRUiH tE. EVERY DAY lIE caaK IIAEAICFAITI L.Uat
AtG DIttER. IE caaK SPECIAL FCXIII FaA PEaPLE IIID AlE
aN SPECIAL DIET&. .TGD. THATII TtE twaIT PAFITI

From this description"we can derive a "Top Level" of analysis:

HIGHEST LEVEL
:OF

''HOSPITAL SYSTEN II "

HOSPITAL -PA TIENTS

~

• .: : ,J .

" ' ~': :.: • ; f.

• • .'.' ~ ,~'. ~ f .,

~
DISCHARGED-PATIENTS

11-84 -4

A "First Pass" DFD representing the HOSPITAL SYSTEM might look like this:

DFD of "Hospital System"
Pass I (Taken from Verbal Report

of a Participant)

Expectant
mother

As you can see, there are many empty spaces in our
(lrst pass D'FD. From the description given us by our
participant, we have created a DFD with data-flows en­
tering process bubbles and no data exiting. We also
have data flows coming out of process bubbles where
no data ever entered.

Our "Tests for Correctness" which point out an in­
correct DFD immediately point out to us that our
understanding of this system is conceptually incorrect.
And we (for the most part) know exactly what it is we
don't understand.

DFD of "Hospital System"
Pass I (Taken from Verbal Report

of a Participant)

Expectant
mother ~

11-84 -,5

QUESTIONS WHICH COME UP WHEN TAYING
TO ANALYZE THIS PASS S DFD

o WHAT HAPPENS TO A PATIENT WHO IS NOT VERY SICK?
AFTER HE CHECKS IN. "HAT DOES HE DO?

o DOES A PATIENT WHO IS TOO SICK TO CHECK IN
HIMSELF EVER GET CHECKED IN?

o DO EMERGENCY ROOM PATIENTS MHO DON'T NEED
TRAUMA CARE EVER GET OUT OF THE EMERGENCY ROOM?

o HOW DOES A PATIENT (EITHER A REGULAR PATIENT.
MATERNITY PATIENT. OR EMERGENCY ROOM PATIENT)
EVER GET OUT OF THE HOSPITAL?

o HOW DOES THE KITCHEN KNOW WHAT SPECIAL FOODS
ARE NEEDED? WHERE DOES THE FOOD GO ONCE IT
LEAVES THE KITCHEN?

Mter asking those questions, we come to a DFD like rial representation of our system, a tool for discussion
this. True, it appears confusing. However, it is a picto- between the analyst and the participant.

DFD of "Hospital System"
Pass II

11-84 -6

We might wish to expand one of our process bubbles,
in this case bubble number 5. (LAB AND XRAY

TESTING OF PATIENTS).

Expansion of Bubble #5 in
"Hospital System"

"'
8d/

cal

~~
Diagram 5.0: Lab and X-Ray Testing 01 Data

Our "Test for Correctness" of this expanded DFD
shows us that in the higher level DFD we had one input
to process bubble #S (TEST-ORDERS), and one output
(TEST-RESULTS).

Here, however, we see two outputs! (TEST­
RESULTS and BILL-TO-PATIENT).

Once again ~e immediately recognize an area of mis­
understanding, and we return to talk to the participant

in order to fmd out how the system really does work.

As we have seen, areas of misunderstanding can
occur in data-flow path analysis. Also, there can be con­
fusion about the exact defmition of a particular data­
flow rde, or process bubble.

Structured Analysis contains a tool called the Data
Dictionary, which attempts to eliminate ambiguity of
definition.

DATA DICTIONARY
A SET OF DEFINITIONS FOR:

o DATA

o FILES

o PROCESS BUBBLES

USED IN DFD
11-84 -7

Here are some examples of Data-flow defmitions in the Data Dictionary.

EXAMPLES OF DD ENTRIES
FOR

"HOSPITAL SYSTEM"

HOSPITAL-PATIENT
(COMPOUND OR GROUP)

DOCTORS ORDERS
(ALIAS)

• SICK PATIENT OR
EXPECTANT MOTHER OR
EMERGENY-ROOM PATIENT OR
VERY SICK PATIENT

= TEST ORDERS

EMERGENCY-ROOM-PATIENT - -FLU·
(PRIMITIVE DATA -AUTO-ACCIDENT-
ELEMENT) -HEART-PROBLEM-

HIGHEST LEVEL
OF

''HOSPITAL SYSTEN"

HOSPITAL -PA TIENTS

~

~
OISCHARGEO-PATJENTS

11-84 -8

DFD of "Hospital System"
Pass II

~.
NOm.........

II
It
I

Aegutar.foodl

Expansion of Bubble #5 in
"Hospital System"

~~
Dlagrem 5.0: Lab and X-Ray Te.tlng of Data

11-84 -9

DFD of "Hospital System"
Pass II

II
J

EXAMPLES OF DD ENTRIES
FOR

"HOSPITAL SYSTEM"·

HOSPITAL-PATIENT
(COMPOUND OR GROUP)

DOCTORS ORDERS
(ALIAS)

• SICK PATIENT OR
EXPECTANT MOTHER OR
EMERGENY-ROOM PATIENT OR
VERY SICK PATIENT

a TEST ORDERS

11-84-10

EMERGENCY-ROOM-PATIENT - -FLU·
(PRIMITIVE DATA -AUTO-ACCIDENT-
ELEMENT) -HEART-PROBLEM-

DFD of "Hospital System"
Pass II

--...,.
room.......

COMMENTARY

r' . As we level our DFD for a system, each level of ex-
pansion shows more detail until we reach a level show­
ing the primitive operations that act upon the data.

PRIMITIVE FUNCTIONS

PROCESS BUBBLES WHICH CAN NO LONGER BE EXPANDED
REPRESENT PRIMITIVE FUNCTIONS WHICH ACT UPON THE DATA

EXAMPLE:

SHOELACES-IN-SHOES

SHOES---

EXAMPLE:

HAND-WITH-UNPOLISHED
NAILS~

HAND-WITH-POLISHED
~ NAILS

11-84 -11

Elements in the Data Dictionary which contain in­
formation about the process bubbles which are primi..
tive functions are called Mini-Specs. Mini-Specs are
written in Structured English.

Structured English

An Orthogonal Subset of English:

• Provides the minimum set of constructs needed to
describe rules governing transformation of data
flows for any functional primitive

• Provides one, and only one, possible way to de­
scribe rules governing transformation of data flows
for any functional primitive

Policy for Preparing Foods

For each order-to-kitchen-from-regular area:

• For each special order:
-Collect foods needed to ftIl order
-Prepare foods
-Send special foods back to appropriate room

• For each regular order:
-Prepare foods
-Send regular foods back to appropriate room.

11-84 -12

,

In summ8.ry, structured specification consists of:

• DFDs - pictorially shows relationship within·the
system

• Data Dictionary - dermes the data acted upon by ~

the system
• Minispecs- describes the primitive function

which make' up the system. These are written in
Structured English.

Our Data Dictionary is' a rigorous description/
definition' of all Data Flows, files and primitive
functions which occur in the DFD which was derived
from our Structured Analysis of a system.

Structured Analysis is a large topic. In preparing this
paper, the most difficult task was in deciding what i~­

formation to leave out.

I would suggest if you have further interest in the
topic of Structured Analysis and feel the techniqu~

could be of use to you that you consult the following
references:

• Structured Analysis and System Specification by
Tom De Marco, foreword by P. J. Plauger

• The Practical Guide to Structured Systems Design
by Meilir-Page-Jones, foreword by Ed Yourdon.

An On-Line Interactive Shop Floor
Control and Capacity Planning System

Walter J. Vtz, Jr.
Lab Section Manager

Hewlett Packard

.'Production Management/3000, the newest HP Man­
ufacturer's Productivity Network Application Product,
was announced in the summer of 1981 with frrst installa­
tions in the fall of 1981. Production Management/3000 is
an interactive application system for managing the
production planning and control functions of a manufac­
turing operation.

This paper describes the major functions of the prod­
uct, the contributions of ~he product, and the actual
experiences at several test sites as the users integrated
interactive shop floor control into their daily opera­
tions. The paper expl~s the uniqueness of the product,
and the potential productivity gains which are inherent
in the effective utilization of the product.

The challenges of managing production are very fam­
iliar to production managers (Slide 1). The efficient use
of available resources to meet production requirements
at the lowest total cost is a key to successful production
management. HP's goal was to produce an interactive
application system to manage production planning and
control.

The process of improving manufacturing productivity
through the effective management of production re­
sources can be viewed as a cycle of causes and effects
as illustrated (Slide 2). In the past, one of the major
obstacles to successt\ll management was getting timely
information on inventories, work-in-process, and capac­
ity requirements.

The six functional modules of Production
Management/3000 are routings and workcenters, work
order scheduling, work order tracking, shop floor dis­
patching, work-in-process, and capacity requirements
planning. The environment best suited for Production
Management/3000 is a manufacturer with workorders
for fIXed quantities of specific products with individual
start or completion dates (Slide 3).

Data collection on the shop floor is available via the
standard terminals, or through the factory data capture
terminals (Slide 4). These special terminals are suited to
users who are unfamiliar with computers or typing; they
utilize a set ofpre-defined functions keys and prompting
lights to assist users with each transaction. The factory
data capture tenriinals can be equipped with bar-code
reading wands? badges, punched cards, or magnetic

card readers in order to streamline certain types of data
entry on the shop floor.

Production Management/3000 also features a cus­
tomizable user inteIface, with features similar to those
offered in Materials Management/3000. (Slide 5). The
user is able to customize data, screens, reports, secu­
rity, system values, "help messages," and processing
specifications, without programming. Customization of­
fers the user increased flexibility, shorter implementa­
tion time, and a lower maintenance burden.

These features highlight a brief summary of the
functional capability of Production Management/3000.
Let us now examine the ways in which this application
tool can be used on the shop floor.

The physical appearances and layouts of discrete
manufacturing shop floors varies widely, but the
functional requirements are similar. The discrete envi­
ronment is characterized by the workcenter; a typical
example is shown in this picture (Slide 6). In this .envi­
ronment, the work is dispatched to a workcenter,-the
specified tasks are performed, and the work moves to
the next assigned workcenter. Production
Management/3000 has sophisticated scheduling
capabilities, but they are not discussed in this paper.
The point to be noted here is that the workcenter man­
ager can review the work-in-process, priorities, status,
etc. The workcenter manager can also track the work"
completed, rework, scrap, exceptions, labor data, and
routing lists. In other words, the manager has an on-line
system which eliminates the need for most written re­
ports, although printed reports are available, if desired.
Our test sites have now learned to check the terminal in
order to resolve all questions regarding work-in­
process, as well as scheduled work. They h3:ve also
learned to quickly scan status information to look for
potential trouble spots.

In a typical installation, every workcenter ould have a
CRT, plus one or more factory data collection units. It
should be noted that the system can be run entirely with
CRTs, but the factory data collection units offer
specialized features w~ich make them attractive in
many situations. Work order tracking would typically
involves one or more data collection stations at each
workcenter (Slide 7); a workcenter is composed of one
or more workstations. The idea here is to allow the

11-88 -1

employees to record work completion, labor, and status
information. Our experience has been that one data col­
lection station typically can support 15-25 employees,
although there are exceptions where factors such as dis­
tance must be considered. The key point is to place t~e

data collection stations where they are ea~y to reach. In
those instances where employees have expressed dis­
content, it has almost always been resolved by moving a
station closer to the employee, or adding another sta­
tion.

Employee training is the key to acceptance of the
system and the data collection concept. The best tech­
nique for training the shop floor employees is to con­
duct the training in small groups of 3 or 4. This gives
each person a chance to ask questions, to try the termi­
nal or data collection unit, and to' understand what is
really happening. Large training labs usually result in
one or two 'self appointed leaders doing all of the termi­
nal operation, while the others stand back and watch.
Our original estimates of training were not enough; we
have worked with our test sites in developing training to
a point where it is most effective.

The workcenter managers pose a slightly different
training problem. 'Many of them have been doing very
good work for years, and they are somewhat resistant to
change. Why fix it if it works? The ~anagers are often
quick to change their position as they come to realize
that this on-line tool can really improve their productivi­
ty. In many cases they become ardent converts who
then sing the praises of the system.

Here is where the realization of the uniqueness of this
application becomes apparent. The manager can now
see exactly what happened during the shift that just
ended. If action is required, it can be taken in time to be
,effective. If a problem is developing today which will
affect fmal assembly areas' next week, the managers
know about it now. The manager can also use capacity
planning to determine potential trouble spots ahead of
time. He can know that his workcenter faces a demand
that is 150% of capacity four weeks from now. In the
past the manager was not able to see this potential over­
capacity problem. The flfst time the capacity report is
available, the capacity problem may come as a shock.
The manager's initial reaction is not to know what to do;
however, the manager soon learns to modify his man­
agerial skills to react to situations now, rather than
being forced to wait until the problem has reached
epidemic proportions. When the system is first in­
stalled, the managers have mixed reactions. As the sys­
tem has had six to twelve weeks of operation, they be­
come highly favorable. At the end of this period, they
begin to wonder how they managed to operate the old
way (Slide 8). The ability to know what is going on at all
times and modify the course of events before things go
wrong allows a degree of fme tuning which appeals to
the skilled manager.

This degree of success requires that everyone uses
the system. Our test sites have reported up to 98% ac-

11-88 -2

,f

curacy in all shop floor transactions. This very high
degree of accuracy allows management to use the sys­
tem with the highest degree. of confidence. The system
is currently running in environments ranging from single
shift to three shifts in production around the clock.
. One of the best ways to improve productivity on the
shop floor is through the use of capacity requirements
planning. (Slide 9) The bottom line of the manufacturing
productivity equation is the full utilizatio,n of ~ssets

without the need for idle equipment and inventory.
Capacity planning permits the evaluation of the produc­
tion plan before material and other resources are com­
mitted to production. In this way capacity planning al­
lows you to smooth the production plan. The ability to
track production on the shop floor allows management
to ensure that day to day operations are following the
capacity plan.

Prior to this time one of the ways in which to ensure a
constant flow of product seemed to be to "flood"
workorders into the front end of the system, in hopes
that sufficient production would result. The excess of
workorders could result in complications which were
worse than the cure which was intended. (Slide 10)
Production Management/3000 uses both open work or­
ders and suggested work orders (from Materials
Management/3000, or some other system) in the capac­
ity plan. This results in a projection of workload over
time for each·workstation. An analysis of this load pro­
ftIe allows management to focus attention on potential
trouble spots.

As we mentioned earlier, our experience with test
sites has been that capacity planning has opened a
whole new vista of planning. The frrst reaction is to
assume that perhaps the application is simply furnishing
data which outlines some potential trouble that might
never occur. But the users quickly come to believe that
the predicted will indeed become reality, if they do not
take action. They have also come to understand that
monitoring of day to day operations, and comparing
them to the plan, is essential in order to keep production
flowing smoothly.

Production Management/3000 can be run with Mate­
rials Management/3000, or it can be run standalone with
orders entered from an external system. (Slide 11) Our
test sites are running the product in both modes. The
only difference that we have noted here is that those
users who already have Materials Management fmd it
quite easy to implement Production Management as
they are used to the screen formats, customization,
monitor, and the other features of the system. In any
event, the training require~ents for the shop floor per­
sonnel remain the same, as Materials Management does
not use factory data collection units on the shop floor.

We have briefly discussed customization earlier in
this paper. Customization is a major technological con­
tribution which cannot be given the recognition it de­
serves in this paper. However, it should be noted that
our approach in Production Management/3000 was to

put all of the product features in, and let the users re­
move those features which they did not require (Slide
12). This is evident in the screens as all of the features of
the product are addressed. Out test sites have been
pleased with this approach, and they fmd it easier to
tailor existing screens to their needs, than to try and put
in numerous additional functions. The editing has been
done by the users running the customizer, and the pro­
cess does not require computer specialists.

The same situation has been experienced in opera­
tions, where persons with a minimum of computer ex­
perience have been able to operate the system. In fact,
one of the test site operators has become skilled in using
Query to generate. additional reports as needed.·

In general, the test sites were pleased to discover that
their own non-EDP type manufacturing personnel could
learn to use the system quite easily.

When Production Management/3000 was in the de­
sign stages, we knew that we w~re developing a major
new product which should make a significant contribu­
tion. What we did not realize was the discrepancy be­
tween the environment of many shop floors and the
solution which we were inventing. Many of the existing
systems are batch oriented with reports appearing long
after there is any time to do anything about it. In fact,
workcenter managers have developed their own survi­
val techniques for this environment which include bank­
ing some of the punched cards during good weeks for
submission at a later date during a bad week. The con­
cept of having all production information on-line, and
updated at all times, comes as a bit of a shock. (Slide 13)
The managers quickly discover that the new environ­
ment works to their advantage, but this conversion is

The Challenges of
Managing Production

Balance Production Issues to
Increase Manufacturing Productivity

Slide 1

complete only after the system has been in place for a
month or two..

Another area of surprise comes when the routings
and workcenters are being entered into the system. At
this point the managers take a look at their operation
and discover that in some cases it is far from efficient.
One example is where the transit time between two
workcenters greatly exceeds the actual time in the
workcenter. The managers are tempted to change their
shop floor based upon these initial insights into poten­
tial inefficiencies. Our advice to the users as been to go
ahead and implement the application based upon the
present shop floor, rather than try to correct things
now. Mter all, production as been working, and too
many changes all at once could complicate matters be­
yond repair. Better to get the application up and run­
ning, make a detailed study of all of operation based
upon data gathered by the system, and then make im­
provements.

Production Management/3000 can be used to solve a
variety of problems. The potential offered by customi­
zation gives great flexibility to the product. The locali­
zation of the product into many .foreign languages ex­
pands the potential even further. Our initial experiences
with test sites have indicated great satisfaction with the
functionality of the product, and a wide variety of bene­
fits which have resulted from its implementation. As the
number of installations grows, the users will develop the
expertise which will enable them to gain the greatest
benefits. (Slide 14) We have seen the awareness of the
potential of this new application begin to emerge, and
we are anxious to work with the users to bring the prod­
uct to its full potential.

Production Planning and
Control Helps

Slide 2

11-88 -3

Production Managementl3000
~ tndcs, and pBw capecIty using

WOItlontera
tar

tIx8d quantItIea
01

epectfIc pFoducta
'wlih

individual ,tart or completion....

Slide 3

Factory Data capture Terminals
• E8sy to use • Alphabetic keyboard I8yout
• Desktop orwan mounted • Prompting lights
• Munl-medl8lnput • Function keys

Int~gratedFactory Data Collection

Slide 4

Routings and Workcenters
flexible two IwIJ lId'tty deftnltlon .

WOAKCENTEA

eustOmizab1e User· Interface
ModIfy HP_119Systems .

• Customize d8tll base

• Customize d8t8 entry and retrtev8I screens

• CustomIz8 reports
• Customize data 8nd device securtty

. • Customize system values

• Customize uHeIp" messages
• Customize processing specfflcatlons WIMbtIItton 112

••• without programming

Slide 5

11.-:-88 -4

Match your equipment layout AND your orgenlz8tlon

Slide 6

~..r

Work OrderTracking

• 0n-IIne....,c:ecompIeIIan repoI1IItg
• Rework end 8CnIP d8ta conectIon
• Exceptlan dIM collection
• l8bor d8ta coIlectton

• RoutIng II..

Accunde shop status Is available at all times

Slide 7

Capacity Requirements Planning
Helps you evaluate the production pl.

§.
@.=:rI}.o.

. 0

(==::1

Realistic Production Schedules

Slide 9

\York-In-Process Control
• EVIIIu8Iem8nUf8cturtng_

•~Mop.... • fine tune...production pIM

r.=;'\~ ~"••-il
~ • ~-t;;f).
~ •.. ' ~
~ ~

B3I8nce-Issues
to IncreaseMan~rtng Productivity

Slide 8

capacity Requirements Planning
• WortcstatIon Io8d profiles • Altern.. load meeSUNS

• exception reporting • Warkcenter labor .urntMrY

- Upper limit

------------ ...,...ftmlt

Predict Laborand Equipment Requirements

Slide 10

11-88 -s

Production Management/3000
CornpIetM the Manufacturing Planning" Control Cycle Customize Screens

..~

Users can •••

•••with HPManufacturing Systems

• Change afetlng ecreene

• DesIgn new 1CnIIII..

• Ch8nge eequence of lCreen.
~

I
I

\

Slide 11

Manufacturing Information
is Timely and Accessible

• On-lIneentry
• On-lIne dat8 base upeIatw
• On-lIne Information retrteYIII

@.
0IMJne
..............II~~_ewe.....

Make DecIsions with Most Current Information

Slide 13

11-88 -6

Slide 12

HP Manufacturing Systems

Interactive Application Products to
Increase the Productivity of Manufacturers

Slide 14

~---

.~

	Table of Contents
	Author Index
	Section 1—System Management
	Overview of Optimizing (On-Line and Batch)
	Thoughts Concering "How Secure Is Your System?"
	Private Volume Experiences
	System Resource Accounting: An Overview of Available Software
	Online Database: Design and Optimization
	Power Line Disturbances And Their Effect On Computer Design and Performance
	System Disaster Recovery: Tips and Techniques
	System Performance and Optimization Techniques for the HP3000

	Section 2—Database Support
	Auditing with IMAGE Transaction Logging
	Transaction Logging and Its Uses

	Section 3—Utilities
	LOOK/3000: A New Real-Time System Performance Monitoring Tool
	QHELP: An On-Line Help System
	Modular Programming in MPE
	Business Graphics: An Efficient and Effective Tool for Management Decision Making
	Automatic Calling with the HP3000
	Programmatic Access to MPE's HELP Subsystem
	Management Options For The 80's
	Transaction Processor For The HP3000

	Section 4—Language Support
	RISE—An RPG Interactive System Environment for Program Development
	IMAGE/COBOL: Practical Guidelines
	Using COBOL, VIEW and IMAGE: A Practical Structured Interface for the Programmer
	PASCAL? ADA?? PEARL!!!: Process and Experiment Automation Realtime Languagein Industrial and University's Environment: PEARL on HP3000/HP1000 Networks
	Application Design Implications of PASCAL/3000 Dynamic Variable Allocation Support—or How to Use the HEAP
	Process Sensing and Control
	Putting the HP3000 to Work For Programmers
	RPG—A Sensible Alternative
	Techniques for Testing On-Line Interactive Programs

	Section 5—Data & Text Processors
	A Universal Approach as an Alternative to Conventional Programming
	The Technology of the QUAD Editor, Part II
	The Automated Office—Example: Producing a Newsletter
	Integrated Data and Textprocessing with HP3000
	Computerized Typesetting: TEX on the HP3000

	Section 6—Peripheral Software
	Everything You Wanted to Know About Interfacing to the HP3000—PART I
	Everything You Wanted to Know About Interfacing to the HP3000—PART II
	Programming for Device Independence

	Section 7—Business
	Selecting Application Software and Software Suppliers
	Office of the Future—Starting Today
	Job Costing on the HP3000
	Is a Packaged Program the Answer? A Compromise to MM3000
	Management Reporting With Hewlett-Packard's Decision Support Graphics
	Business Graphics Applications Using DSG/3000
	Tips and Techniques for Data Interface to DSG/3000
	Project Management with the HP3000
	Using the HP3000 for Decision Support Systems

	Section 11—Miscellaneous
	The Truth About Disc Files
	Data Communications Troubleshooting
	Financing Quality Solutions
	Tips and Techniques in Writing for the HP3000 lUG Journal
	Management: Key to Successful Systems Implementation
	An Overview— Networking Cost Petformance Issues
	Microcomputer-Based Distributed Processing
	Software Management Techniques
	Understanding Hewlett-Packard: A View from the Inside
	Structured Analysis
	An On-Line Interactive Shop Floor Control and Capacity Planning System

