
IBM System/360 Operating System

Fixed-Task Supervisor

Program Number 360S-CI-505

This publication describes the fixed
task supervisor, which performs task
management as a major part of the primary
control program of IBM System/360 Operating
system. In addition, this manual describes
the initial program loader (IPL) and the
nucleus initialization program (NIP).<

Program Logic Manual~ are intended for
use by IB~ customer eng1neers involved in
program maintenance, and by system program
mers involved in altering the program de
sign. Program logic information is not
necessary for program operation and use;
therefore, distribution of this manual is
limited to persons with program maintenance
or modification responsibilities.

Restricted Distribution

Y28-6612-2

Program Logic

Form Y28-6612-0,-1,-2., Page Revised by TNL Y28-2114, 4/10/61

PREFACE

This manual describes the internal design
of the fixed-task supervisor of IBM
System/360 Operating System. Although this
publication contains information concerning
the supervisor in environments with a fixed
number of tasks, this publication is issued
only in support of single-task environments
without protection. The external charac
teristics of this supervisor are described
in the IBM Systems Reference Library.

Information in this document is directed
to the customer engineer who maintains and
se~ices IBM System/360 Computing System
and who is responsible for field mainten
ance and updating of IBM System/360 Operat
ing system. This information may also be
used by the programming systems maintenance
programmer and the development programmer
who will expand the system.

This publication may be used to locate
those areas of the system to be analyzed or
modified. The information is presented to
enable the reader to quickly relate the
task management functions to the program
listings (coding) for those functions. The
comments in the listings provide informa
tion for thorough analysis and understand
ing of the coding.

PREREQUISITE PUBLICATIONS

Knowledge of the information
following publications is required
full understanding of this manual.

Third Edition (February 1967)

in the
for a

IBM System/360: Principles of Operation,
Form A22-6821

IBM System/360 Operating system: Con
cepts and Facilities, Form C28-6535

IBM System/360 operating System: Super
visor and Data Management services, Form
C28-6646

IBM System/360 Operating System: Super
visor and Data Management Macro
Instructions, Form C28-6641

IBM system/360 Operating system:
TESTRAN, Form C28-6648

IBM System/360 Operating System: Linkage
Editor, Form C28-6538

IBM System/360 Operating System: System
Programmer's Guide, Form C28-6550

IBM System/360 Operating System: System
Generation, Form C28-6554

IBM System/360 Operating System: Intro
duction to Control Program Logic, Pro
gram Logic Manual, Form Z28-6605

This is a reprint of Y28-6612-1, incorporating changes released in the
following Technical Newsletter:

Form Number Date

Y28-2161 September, 1967

Specifications contained herein are,subject to change from time to time.
Any such change will be reported 1n subsequent revisions or Technical
Newsletters.

This publication was prepared for production using an IBM computer to
?pdate ~he text and to control the page and line format. Page
1mpress1ons for photo-offset printing were obtained from an IBM 1403
Printer using a special print chain.

Copies of this and other IBM publications can be obtained through IBM
Branch Offices.

A form for readers' comments appears at the back of this publication;
It may be mailed directly to IBM. Address any additional comments
concerning this publication to Programming Systems Publications,
Department 058, PO Box 390, poughkeepsie, N. Y. 12602

Form Y28-6612-0,-1,-2, Page Revised by TNL Y28-2174, 4/10/67

INTRODUCTION. • • •• • •

Main Storage Organization. •
Partition Usage • • • • • •

7

7
7

Informational Control Blocks • 8
Request Block Queueing. • • • • 9

Active Request Block Queue' • 9
Loaded Program List. • • • • 9
Inactive Program List (Optional). 9

How the Fixed-Task Supervisor Is
Organized • • • • • • • • • •

Interruption Supervision. •
Task Supervision. • • • • •
Main Storage supervision. •
Contents Supervision. •
Program Fetch • • •
Overlay Supervision •
Time Supervision. • • •

Fixed-Task supervisor Control Flow

9
9

• ;.. 9
• • • 11

• • 11
11

• • • 11
• • • 11

• 11

CHAPTER 1: INTERRUPTION SUPERVISION
SERVICE ROUTINES. • • • • • 12

How Interruption Supervision is
Organized • • • • • • •

SVC Control I~formation. •
Relocation Table. • • • • •

• • • 12

13
• 13

• • • 13 SVC Table. • • • • •
Optional Extension • • • • • • 14

Interruption Supervision Control Flow. • 14
SVC Interruptions • •

SVC Entry Procedures • • • •
SVC Exiting Procedures • • •
Dispatcher • • • • • • • •
Re$ident Type 3 and 4 SVC

Routine Option. • • • • • •
Input/Output Interruptions. • •
Timer/External Interruptions ••
Program Interruptions • • • • •
Machine Check Interruptions • •

• • • 14
• 14

15
• .17

• • • 18
• • .18A
• • .18A

• 19
• • • 19

CHAPTER 2: TASK SUPERVISION SERVICE
ROUTINES. • • • 20

How Task Supervision Is Organized. 20
Task Modification • • • • • • • • 20
Task Termination. • • • • • • 20

Task Supervision Control Flow. • • • 20
-·-;"ATTACH. • • • • • • • 20

. EXTRACT • • • • • • • • • • • • 21
SPIE. • • • • • • • • • • • • • 21
WAI1;' -- Single Event. • • • • 21
WAIT -- Multiple Event. • • • • 21
POST. • • • • • • • • 22
Resident Abnormal Termination
Routine (ABTERM) • • • • • • • • 22

CONTENTS

• • • • 23
23

ABEND • • • • •
Normal End •
Abnormal End • • • • • • • 23

CHAPTER 3: MAIN STORAGE SUPERVISION
SERVICE ROUTINES. • • • • • 24

How Main Storage Supervision Is
Organized • • • • • • 24

Main Storage Supervision Control Flow. • 24
GETMAIN • • • • • • • • 25
FREEMAIN. • • •• • • • • • 25

CHAPTER 4: CONTENTS SUPERVISION
SERYICE ROUTINES. • • • • • • 26

How Contents Supervision Is Organized. • 26

CO~fi~ Supervision Control Flow. • • • 27
'f LINK.\. • • • • • • • • • • • • 27
l LOAD. \. •
~CTL,/ ••

• • • • • • • • 27
27

IDENTIFY. • • • • • • • • 28
DELETE ••
SYNCH ••

• • • • • • • • • • • • 28
• • • • 28

Common Subroutine (FINCH) 28

CHAPTER 5: PROGRAM FETCH SERVICE
ROUTINES. • • • 29

How Program Fetch Is Organized • • • • • 29

Program Fetch Control Flow
Initialization. • • •
Loading • • • • • • • • .•

Overlay Modules. • • •
End-of-Extent Appendage. •
Input/Output Err9rs •••

Relocation (Adjusting Address
Constants) • • • • •

Termination • • • • • • • • •

CHAPTER 6: OVERLAY SUPERVISION
SERVICE ROUTINES. • • • • • • • •

29
• • .29A

31
• • 33
• • 33
• • 33

• • 34
• • 34

• • • 35

Tables Used by Overlay Supervision • • • 35
Use of Segment Table. • • 35
Use of Entry Tables • • • • • • 36

Branching to a Segment Not in
Main Storage. • • • • 36

Branching to a Segment in Main
storage •• • • • • • • • • 38

How Overlay Supervision Is Organized • • 39

Overlay Supervision Control Flow
Initialization. • • •
Updating of Tables.
Segment Loading
Termination • • • • • • • •

• 39
40

• 40
• • 40

• • • 40

Form Y28-6612-0,-1,-2, Page Revised by TNL Y28-2174, 4/10/67

CHAPTER 7: TIME SUPERVISION SERVICE
ROUTINES (OPTIONAL) • • • • • 41

How Time supervision Is Organized. • • • 41

The Timing Algorithm

Time supervision Control Flow. •
STIMER. • • •• • • • •
TIME. • • • •
TTIMER. • • •
Timer SLIH. •

Queueing Subroutine. •
Dequeueing Subroutine. •

CHAPTER 8: SYSTEM ENVIRONMENT

41

• • 42
• • • 42
• • • 43

43
• 43

43
• 43

RECORDING -- MODELS 40, 50, 65, 75 ••• 44

How SER is Organized • 44

SERO • • 44
Load Nucleus

IFBSROOO ••
Link Library

IFBSEROO. •

Resident Module
44

Resident Module
• • • • 44

SER1 • • .44A

Environment Recording Area • ••• 44B

CHARTS • • • 45

APPENDIX A:
(IPL) •

INITIAL PROGRAM LOADER

How IPL Is Organized •

IPL Control Information.
IPL Tables. • •

• • • • 55

• • • • • • • 55

55
56

IPL Control Flow • • • • • 56
Nucleus Selection • • • 57
Hardware Initialization • • • • • 57
Nucleus Location. • • • • • • 57
Control Section Data Organization • • 57
IPL Relocation. • • • • 58
Nucleus Load.. •• • • •• • 58
RLD Relocation. • • 58
Common I/O. • • • • • 58

APPENDIX B: NUCLEUS INITIALIZATION
PROGRAM (NIP) • • • • • • • • • • • • • 60

NIP Control Flow • • • • • • • • • • 60
• • • • • 60 CVT Initialization. • • • •

Partition Initialization.
Boundary Box Initialization •
Free Area Queue Element

• 61
• • • • 61

Initialization • • • • • • • • • • • 62
UCB Table and Request Element Table
Initialization • • • • • • • • • 62

SYS1.SVCLIB, SYS1.LINKLIB, and
SYS1.LOGREC DEB Initialization ••• 63

SVC Table Extension (TTR Table)
Initialization • • • • • • • • • • • 63

Protection Key Initialization • • • • 64
Timer Initialization. • • • • • 65
Building a Resident Directory for

SYS1.LINKLIB •••••••••••• 65
Resident Access Method (RAM)
Initialization • 65

Resident Type 3 And 4 SVC Routine
Initialization ••••••••••• 65A

Resident Job Queue Initialization •• 65B

APPENDIX C: GUIDE TO THE LINKAGE
EDITOR MAP OF THE NUCLEUS • • • • 66

APPENDIX D • • • • • • • 68

Control Record - (Load Module) • • • • • 68

Relocation Dictionary Record - (Load
Module) • • • • • • • • • • • • • • 69

Control and Relocation Dictionary
Record - (Load Module) ••••••••• 70

Partitioned Organization Directory
Record - (as Received from BLDL) •••• 71

Module Attributes • • • • 72

APPENDIX E • • • • • • 73

Entry Table (ENTAB) •• • • 73

Segment Table (SEGTAB) • 74

APPENDIX F: SYSTEM ENVIRONMENT
RECORDING RECORD ENTRY FORMATS ••••. 74A

INDEX ••• • • • 75

Form Y28-6612-0,-1,-2, Page Revised by TNL Y28-217q, 4/10/67

FIGURES

Figure 1. Request Block Queues •
Figure 2. Relocation Table •••
Figure 3. SVC Table. • • • • •
Figure 3A. SVC Table Optional
Extension • • • • • • • • • • • • • 1q

Figure q. IRB Format Options •••••• 17
Figure 5. Program Interruption

Element (PIE) Format. • • • • • • 21
Figure 6. Main Storage Organization. 2q
Figure 7. Program Fetch Work Area •••• 30
Figure 8. Note List (in Main Storage) •• 30
Figure 9. Blocks and Tables Used by

Program Fetch • • • • • • • • • •
Figure 10. Typical Load Module

(Logical Format on Direct-Access
Device) • • • • • • .". • • • • •

Figure 11. Conditions Affecting
Channel Program Mode. • • • • • •

Figure 12. Typical Load Module
(Physical Format on Direct-Access

• 31

31

32

Device) • • • • • • • • • • • • • • • • 33

CHARTS

Chart 00. Fixed-Task supervisor
Control Flow. • • • • • • • • • • q5

Chart 01. Interruption Supervision
Control Flow. • • • • • • • • • • q6

Chart 02. Task Supervision Control
Flow. • • • • • • • • • • • • • • q7

Chart 03. Main Storage Supervision
Control Flow. • • • • • • ., • q8

Chart Oq. Contents Supervision Control
Flow •••••••••••••••••• q9

Chart 05. Program Fetch Control Flow • • 50
Chart 05A. PCI and Channel End

Appendages . • . • • • • • • • • •• 50A
Chart 06. Overlay Supervision Control

Flow. • • • • • • • • • • • • • • • 51
.Chart 07. Time Supervision Control

Flow. . • • • • • • • • • • • •• • 52

ILLUSTRATIONS

Figure 13. Single-Region Overlay
Structure • • • • • • • •

Figure 1q. Overlay Program Upward
35

Branch. • • • • • • • • • • • • • • • • 36
Figure 15. Branch to Segment Not in

Main Storage. • • . • • • . • • • • • . 37
Figure 16. Branch to Segment in Main
Storage • • • • • • • • • • • • • . • • 38

Figure 17. Chaining of ENTAB Entries
Used to Branch to a Segment • • • 39

Figure 18. Timer Queue ••• q2
Figure 19. Tirrer Queue Element (96
Bytes) •••••••• _ • • • • •• q2

Figure 20. IPL Error Types • • • • 59
Figure 21. Main Storage Initialization. 61
Figure 22. Boundary Box ••••••••• 61
Figure 23. Boundary Box Initialization • 61
Figure 2q. UCB Table Initialization ••• 62
Figure 25. Request Element Table
Initialization. • • • • • • • 62

Figure 26. DEB Initialization •.•••• 63

Chart 08. Initial Program Loader
Control Flow. • • • • • • • • • • 53

Chart 09. Nucleus Initialization
Program Control Flow. • • • 5q

Chart 10. SERO Link Library Resident
Module Control Flow •••••••••• 54A

Chart 11. SERO Link Library Resident
Module Control Flow (Continued) •••• 54B

Chart 12. SER1 Control Flow. • .5qC
Chart 13. SER1 Control Flow

(Continued) . • • • • • • • • •• 54D
Chart 1Q. SER1 Control Flow

(Continued) • • • • • • • •• • •• 54E
Chart. 15. SER1 Control Flow

(Continued) • • • • • • • • • .54F

The fixed-task supervisor is a group of
service routines that control the use of
the central processing unit and main stor
age of IBM System/360. This supervision,
called task management in the IBM System
Reference Library, includes supervising the
interfaces between processing programs and
the primary control program. The primary
control program is made up of the service
routines for task management, data manage
ment, and job management. The fixed-task
supervisor provides the following task man
agement functions:

• Overlap of
operations
activity.

central processing unit
with input/output channel

• Servicing of all hardware interrup
tions.

• Handling of
(SVCs).

all· supervisor calls

• Allocation of main storage for programs
and data.

• Dynamic loading of programs not in main
storage.

• Synchronous overlay supervision.

• Use of the hardware timer (optional).

The fixed-task supervisor is part of the
primary control program, which is used to
process batch jobs sequentially. The pri
mary control program r~uires a main stor
age capacity of at least 32,768 bytes, and
a m~n1IDum machine configuration that
includes direct-access auxiliary storage.

MAIN STORAGE ORGANIZATION

In the single-task environment of the
primary control program, main storage is
divided into two areas: the fixed or system
area, and the partition or processing pro
gram area. In expanded environments with a
fixed number of tasks to be performed, main
storage may be divided into the fixed area
and two partitions, with one task using
each partition, except when the higher
priority task (a teleprocessing task, for
example) temporarily requires both
partitions.

The fixed area is used for system rou
tines that perform control functions during

INTRODUCTION

the execution of a processing program. The
partition is used for a processing program
and its data, control blocks, and tables.

The fixed area is divided into the
nucleus and two transient areas. The
nucleus contains the more frequently used
SVC routines, the interruption handlers,
and other routines and control information.
The transient areas are two buffers into
which less frequently used system"routines
are brought from the system residence. The
first, called the SVC transient area, is
1024 bytes long and is used for SVC rou
tines. The second, called the I/O supervi
sor transient area, is 400 bytes long and
is used for the input/output supervisor's
error handling routines.

PARTITION USAGE

A processing program is loaded into the
lower section of the partition. Routines
that the processing program has brought
into main storage with a LOAD macro
instruction are placed in the upper section
of the partition, the section with the
numerically-greater main storage addresses.
These routines, which may be system or user
routines, remain in main storage for the
duration of the job-step that loaded them,
unless they are removed by using the DELETE
macro-instruction.

When the processing program issues a
LINK macro-instruction, the fixed-task
supervisor loads the requested routine into
main storage following the processing pro
gram. If this routine LINKs to another
routine, the second routine follows the
first in main storage. When one of these
routines issues a RETURN macro-instruction,
control returns to the program or routine
that issued the LINK. For example, if
routine A LINKs to routine B, routine B
finishes and returns to A, and routine A
then LINKs to routine C, the fixed-task
supervisor overlays routine B with routine
c. If routine A repeatedly LINKs to B, B
stays in main storage. However, if A LINKs
to C between uses of B, the supervisor
overlays B in the interim period.

A routine that" has been given control
through a LINK macro-instruction and that
has completed its operation and returned
control to the routine that issued the LINK
is termed inactive. A routine that is not
inactive is termed active, implying that

Introduction 7

Ferm Y28-6612-0,-1,-2, Page Revised by TNL Y28-2174, 4/10/67

the reutine is currently executing, er has
ceded centrel to. anether reutine but will
eventually resume centrel.

When a reutine issues an XCTL macre
instructien, the main sterage eccupied by
all inactive reutines is freed. If the
issuing reutine was net breught into. main
sterage with a LOAD macre-instructien, the
sterage eccupied by the issuing reutine is
also. freed. If the requested reutine is
net already in main sterage, it is breught
into. the lewer sectien ef the partitien.

INFORMATIONAL CONTROL BLOCKS

Precessing pregrams that eperate in a
fixed-task envirenment de so. as part ef a
task, a unit ef werk fer the cpu. There is
ene task centrel bleck (TCB) fer each
partitien, in which to. recerd the addresses
ef pertinent infermatien abeut the user's
pregrams. This TCB is initialized by the
nucleus initializatien pregram (NIP) prier
to. any actual precessing, and is used
sequentially fer each successive task
perfermed by the system within this parti
tien. (NIP is described in Appendix B.>

The TCB is 116 bytes leng, with an
additienal 8 bytes at the end when neces
sary to. suppert the timing eptien, and 32
bytes preceding the first byte when
required as a fleating peint register save
area. The fermat and centents ef the TCB
are given in the publicatien IBM System/360
Operating System: System Centrel Blecks.

There may be any number ef pregrams
(legically distinct sectiens ef cede) ready
to. be executed. Centrol passes frem ene
such pre gram to. another by any ef several
means including a branch, LINK, XCTL, er
ATTACH, er as the result ef an interruptien
fer which an asynchreneus exit has been
specified. Every transfer ef centrel ether
than a direct branch is handled by the
fixed-task superviser.

Handling such transfers requires the
maintenance ef infermatien allewing the
superviser to. return centrel threugh the
same sequence ef pregrams but in reverse
erder. Fer example, if A links to. Band B
links to. C, the superviser must have the
necessary informatien to. return centrel to.
B when C cempletes eperatien and then to. A
when B cempletes eperatien. The request
bleck (RB) is the repesitery fer such
infermatien.

Request blecks are chained tegether to.
indicate the transfer ef centrel. Each RB
peints to. the RB fer the pregram that will

8

receive centrel when the pregram geverned
by the first RB has cempleted eperatien.
The last element in the chain is the RB fer
the first pregram executed under the TCB.
This RB peints to. the TCB instead ef to.
anether RB. In the preceding example, the
RB fer pregram C peints to. the RB for
pregram B which peints to. the RB fer
pregram A, which peints to. the TCB. The
TCB itself peints to. the RB mest recently
added to. the queue, in this case the RB fer
pregram C.

Nermally, ene RB precedes the precessing
pregram and each requested reutine. RBs
are queued en the task centrel bleck.
These fer active reutines make up the
active request bleck queue~ these fer inac
tive reutines make up the inactive pregram
list.

The first RB is placed on the active RB
queue by NIP. An RB fer jeb management is
substituted fer this first RB when NIP
transfers centrol, via XCTL, to. jeb manage
ment.

In additien to. peinting to. anether RB er
to. the TCB, each RB centains the identifi
catien ef the requested pregram, the entry
peint, the resume (interrupted) PSW, the
size ef the request bleck and the pregram,
and the type ef request bleck.

There are six types ef request blecks:

• Proqram Reguest Bleck (PRB) -- used to.
centrel programs net previeusly leaded.

• Interruptien Request Bleck (IRB)--used
to. centrel system er user asynchreneus
exit reutines.

• System Interruptien Request Bleck
(SIRB) used to. centre I I/O supervi-
ser errer routines.

• Superviser Request Bleck (SVRB) -- used
to. contrel type 2 (resident), type 3
(nen-resident; unimedular), and type 4
(nen-resident, multimodular) SVC reu
tines. Types 2, 3, and 4 SVCs may be
enabled.

• Leaded Preqram Request Eleck (LPRB)-
used to. centrel pregrams that are LOAD
ed and are ATTACHed, LINKed, er XCTLed~
also. used to. centrel sectiens ef pre
grams that are specified by the IDEN
TIFY macre-{nstructien and are
ATTACHed.

• Loaded Request Bleck (LRB) -- shertened
ferm ef LPRB, used to. centrel lead
medules that have the "enly-Ieadable"
"attribute. (It is invalid to. ATTACH,
LINK, er XCTL to. these lead medules.>

Form Y28-6612-0,-1,-2, Page Revised by TNL Y28-2174, 4/10/67

The standard format for all request
blocks and a description of their contents
is given in the publication IBM System/360
Operating System: System Control Blocks.

REQUEST BLOCK QUEUEING

The TCB points to three RB queues: the
active request block queue, the loaded
program list, and the optional inactive
program list. (See Figure 1.)

Active Reguest Block Queue

The active request block queue is a
pushdown queue made up of PRBs, IRBs,
SVRBs, LPRBs, and the SIRB. There is one
RB for each program to be executed. The
TCB, through the pointer named TCBRBP,
points to the first (current) RB on the
queue, and the last RB points back to the
TCB. XRBLNK is the queueing field.

When there is an SIRB on the active
request block queue, it is always the first
on the queue (pointed to by the TCB). The
routine associated with the SIRB is always
the first executed.

Loaded Program List

The loaded program list contains LRBs
and LPRBs in a two-way chain. Each loaded
program is represented in this list. The
TCB, through the pointer named TCBLLS,
points to the first RB on the loaded
program list. The RBs on the list are
chained through the XRBSUC and XRBPRE
fields. XRBPRE for the first RB in the
queue points to the TCB. XRBSUC for the
last RB on the list contains zero.

An LPRB may also appear on the active
request block queue. In this case, it is
maintained on both queues simultaneously
through the two different sets of pointers.

Inactive program List (Optional)

The inactive program list, a pushdown
queue chained through the TCBJSE pointer in

the TCB, contains PRBs removed from the
active request block queue. The inactive
list shows only programs still in main
storage. The firs~ program represented on
the pushdown list is considered usable (if
it is a reusable program). XRBLNK is the
queueing field.

HOW THE FIXED-TASK SUPERVISOR IS ORGANIZED

The fixed-task supervisor is composed of
the following major components, each of
which is a functional grouping of supervi
sor service routines or subroutines: inter
ruption supervision, task supervision, main
storage supervision, contents supervision,
program fetch, overlay supervision, and
time supervision.

INTERRUPTION SUPERVISION

The interruption
routines handle all
first or introductory
they:

supervlslon service
interruptions on a

level. To do this

• Save information about the environment
(machine status) at the time of the
interruption so that the environment
may be recreated later.

• Determine what action needs to be taken
and set up the routines needed.

• Route control to the needed routines.

• Return to the interrupted environment.

TASK SUPERVISION

The task supervision service routines
maintain control information. They main
tain the current status of program and
interruption request blocks, task control
blocks, and event control blocks. The task
supervision
responsible

service routines are
for modifying task operations.

Introduction 9

r----------------------,
1 1
1 1 Active Request Block Queue

r.---,
1
1

TCBRBP~---~-----,
1 1 1
1 IXRBLNK~--~------,
1 1 1 1 1 r------,
1 1 1 1 XRBLNK ~--~------, r--~ XRBSUC ~---,
1 L ______ J 1 1 1 1 1 r-~ XRBPRE ~, 1
1 SIRB 1 1 IXRBLNK~-+-+~------~ 1 1
1 L ______ J 1 1 1 1 1 1

SVRB 1 1 IXRBLNK~-+-+~------,
L ______ J 1 1 1 1 1

IRB 1 1 1 1 XRBLNK ~----

Loaded Program List
1
1
1
1

r------, r------, r------, 1
TCBLLS ~---.j XRBSUC ~--+t XRBSUC ~-----t XRBSUC ~-J

/4----~ XRBPRE tc---~ XRBPRE tc---~ XRBPRE jc--
r~------~ ~------~ ~------~
1 1 1 1 1 1 I
1 1 1 1 1 1 1
1 1 XRBQ 1=0 1 XRBQ ~-, 1 1
1 1 1 1 1 I 1 1 1 L _____ J L ______ J 1 L _____ J

1 LPRB LPRB 1 LRB
1 (Minor) 1
1 1 L _____________________ J

L ______ J 1 1 1
LPRB 1 1 1

1 L ______ J

1 PRB
1
1
1

1
1
1
I
1
1
1 r------,
L+/ XRBSUC 1 =0

---~XRBPREI
~------~

1 1
1 1
1 1
I 1 L ______ J

LRB

Inactive Program List (Optional)

TCBJSE~---~------,
1 1 1
1 IXRBLNK~--~------,

1 I 1 I 1
1 1 I IXRBLNK~--~------,
1 I.-_____ J 1 1 1 I
1 PRB 1 1 IXRBLNK~--~------,

_____________________ 3 L ______ J 1 1 1 1

TCB PRB 1 I IXRBLNK~--~------l
L ______ J 1 I I 1

PRB I 1 IXRBLNKI=O
L ______ J 1 I

PRB 1 1
L ______ J

PRB
Figure 1. Request Block Queues

10

MAIN STORAGE SUPERVISION

The main storage supervision service
routines establish the availability of main
storage and dynamically allocate that stor
age to a task on ,request, within the
partition associated with that task.

CONTENTS SUPERVISION

The contents supervision service rou
tines maintain a record of the identity of
all programs and routines together with
their status and characteristics, within
each partition. The contents supervision
service routines initiate program fetch for
the dynamic loading of programs, and main
tain the active RB queue to represent
requests for the use of programs.

PROGRAM FETCH

The program fetch service routine is a
relocating loader which brings a program
module processed by the linkage editor from
secondary storage into a single area of
storage,.

OVERLAY SUPERVISION

The overlay superv1s10n service routines
monitor the flow of control between seg
ments of a program operating in an overlay
structure preestablished by the user
through linkage editor. These routines
ensure that all dependent program segments
are brought into main storage by program
fetch before the actual branch is executed.

TIME SUPERVISION

The time supervision service routines
set and maintain a clock, and " honor
requests for time intervals and exact time.

FIXED-TASK SUPERVISOR CONTROL FLOW

As shown in Chart 00, flow in the
fixed-task supervisor is in essence flow of
interruption supervision, with alternate
supplementary flow paths through other
fixed-task supervisor components and other
control program service routines those
of data fuanagement, input/output supervi
sion, job management, linkage editing, and
test translation.

All interruptions in the central pro
cessing unit, in the channels, or in the
devices ,attached to the channels,' that
affect control program processing,. are
placed before the interruption. supervision
service routines along with information
identifying the cause of the interruption.
These interruption handlers pass control to
those parts of the control program that
service individual interruptions,.

When the interruption has been properly
serViced, the interruption supervision ser
vice routines again receive control and
return the central processing unit to the
state in which it was operating before the
interruption.

The CPU continues processing, but until
another interruption occurs and brings it
back into the supervisor state, it cannot
execute 'privileged instructions --it can
not execute channel instructions, storage
protection instructions, or CPu-state
changing instructions other than SVC
instructions.

Introduction 11

Form Y28-6612-0,-1,-2, Page Revised by TNL Y28-2174, 4/10/67

CHAPTER 1: INTERRUPTION SUPERVISION SERVICE ROUTINES

Interruption superv1s10n performs first
level interruption handling: that is, the
passing of control from processing program
to control program and back again. To do
this, the interruption supervision service
routines must:

• Save the interrupted environment.

• Insulate interruption routines
each other.

from

• Exercise entry control to service rou
tines required because of the interrup
tion.

• Return control to the interrupted pro
gram at the completion of interruption
handling.

In addition, interruption superv1s10n
provides through the SVC handlers all
interface operations associated with the
four types of supervisor call routines:

12

• Type 1 SVC routines. These are always
resident and are executed disabled for
their entire length. They usually
effect return of control to the inter
rupted program without entering the
dispatcher. A type 1 SVC may only call
on other type 1 SVCs. Examples of type
1 routines are GETMAIN, FREEMAIN, EXCP,
WAIT, and EXIT.

• Type 2 SVC routines. These are also
resident; but they are partially ena
bled, or they calIon other than type 1
SVC routines. These routines are com
pletely reenterable. Examples are
LINK, LOAD, and XCTL.

• Type 3 SVC routines.
type 2 routines except
not resident. They
into the 1024-byte SVC
Examples are IDENTIFY,

These are like
that they are

are each brought
transient area.
WTO, and LOCATE.

• Type 4 SVC routines. These are
"multi-phase" type 3 routines. That
is, they are too large to be brought
into the transient area at one time and
must be brought in in phases, each
later phase overlaying an earlier one.
Transfer of control from one phase to
another is through XCTL. Examples are
OPEN, CLOSE, and EOV.

Note: Type 3 and 4 SVC routines can be
made resident. See "Resident Type 3
and 4 SVC Routine Option."

To achieve a high response time for
input/output interruptions, interruption
supervision has a software-implemented
disabling subroutine called the pseudo
disable routine. This routine allows
input/output interruptions to be processed
without the requesting routine losing con
trol -- the routine which was interrupted
regains control as soon as the input/output
supervisor. has processed the interruption.
Requesting routines include those system
routines, such as the job management write
to-operator routine, that must operate
enabled yet not lose control to another
routine.

HOW INTERRUPTION SUPERVISION IS ORGANIZED

Interruption supervision is made up of
the following service routines:

• SVC FLIH - The supervisor call first
level interruption handler does the
introductory work following an SVC
interruption., and prepares for the exe
cution of type 1 SVcs.

• SVC SLIH - The supervisor call second
level interruption handler monitors the
SVC transient area and prepares for the
execution of types 2, 3, and 4 SVcs.

• Type 1 Exit This routine is the
exiting procedure for type 1 SVCs.

• EXIT - This SVC routine is the exiting
procedure for types 2, 3, and 4 SVcs.

• Dispatcher - This routine passes con
trol from routine to routine, whether
system routine or processing program
routine. Through two subroutines, the
dispatcher sets up the mechanism to
handle asynchronous exits and monitors
the I/O supervisor transient area.

• I/O FLIH - The input/output first level
interruption handler does the introduc
tory work following an input/output
interruption and the clean-up work
after the input/output supervisor fin
ishes second level handling.

• T/E FLIH - The timer/external first
level interruption handler does the
introductory work following any
timer/external interruption and the
clean-up work after the second level
handling is completed.

• P FLIH - The program first level inter
ruption handler monitors all program
interruptions.

• PROLOG - This routine is used by P FLIH
to set up input parameters to the
ABTERM service routine of task supervi
sion.

• MK FLIH - The machine check first level
interruption handler routes all machine
checks to system environment recording
(SER) for second level handling, if SER
is supported in the given environment.
Otherwise, the machine is placed in a
wait state.

• Validity Check - This routine is used
as a common subroutine by other system
routines, such as program fetch. The
validity check routine prevents program
interruptions caused by invalid
addresses (those pointing beyond the
boundaries of main storage) passed to
the control program by a processing
program. In installations that have
selected the hardware protection
option, this routine also checks for
mismatch between the storage key of the
addressed block and the protection key'
of the TCB associated with the process
ing program.

SVC CONTROL INFORMATION

The supervisor maintains SVC control
information in the SVC table and the relo
cation table. These tables are in a module
called IEASVCOO, which is assembled at
system generation time.

RELOCATION TABLE

The relocation table is used to relate
the SVC code number with its corresponding
entry in the SVC table. This relocation
table consists of a number of 1 byte
entries each of which is addressed through
indexing based on the SVC code numbers.
Each entry contains an index factor. If it
is zero, then the associated SVC code is
invalid. If non-zero then the factor gives
the number of the entry in the SVC Table.

The relocation table is divided into two
sections. The first section contains
entries for IBM codes (that is, codes
assigned to IBM-provided SVC routines) and
there is one entry for each code number
from 0 to but not including "High IBM code"
in that order, whether or not that SVC code
is in -use in the system. The second

contains entries for user codes, with one
entry for each code number from 255 to but
not including . "Low User Code", in that
order" whether or not the SVC is in use in
the system.

The relocation table is variable in size
with a maximum size of 256 bytes. Both the
size and the contents of the table are
determined at System Generation based upon
the SVC routines included in the system.
The relocation table format is shown in
Figure 2.

I 1 byte I
r-------,
I I
~-------~
I I
~--------~
I I
~--------~
I I
~-------~
I I
~-------~
I I
~--------~
I I
~...:.-------~
I I
~-~-----~
I I
~------~
I I
~--------~
I I
I-------~
I I
~--------~
I I
~--------~
I I
~--...;-----~
I I
I--------~
I I
~-------~
I I
~--------~
I I
~--------~
1 I L ____ "'-___ J

Figure 2.

SVC TABLE

- - - - - - - - - - - - - - - 0

Each entry in this
section corresponds to
an IBM SVC code number

(Ranging upward
from 0 to highest)

Value in each entry
in both sections points
to an SVC table entry

High IBM Code

255

Each entry in this
section corresponds to a
user SVC code number

(Ranging downward
from 255 to lowest)

- - - - - - - ~ - Low User Code

Relocation Table

The SVC table is divided into two sec
tions. The first section consists of a
3-byte entry for each type 1 or type 2 SVC
routine. The second section contains a
i-byte entry for each type 3 or type 4 SVC
routine.

Chapter 1: Interruption Supervision Service Routines 13

Form Y28-6612-0,-1,-2, Page Revised by TNL Y28-2174, 4/10/67

Each 3-byte entry contains a 24-bit main
storage address with the three low-order
bits defined as zero. This address is the
address of an SVC routine,. The three
lo~order bits of this address are used as
a 3-bit field indicating the number of
double-words required for an extended save
area (ESA) in the RB. Each 1-byte entry
contains the ESA information in the last
three bits. If the three bits are zeros, a
type 1 SVC is indicated. The SVC table and
entry formats are shown in Figure 3.

r--------------------~---,
I 21-Bit Address I ESAI
~---------------------+---~
I I I
~-~-------------------+---~
I I I
~--~------------------+---~
I I I
~---------------------+---~
I I I
r---------------------+---~
I I I
~---------------------+---~
I I I
r---------------------+---~
I I I
~---------------------+---~
I I I

3-Byte
Entries for
SVC Types
1 and 2

L-----T---T-----------~---J - - - - - - - -
100000lESAI
~-----+---~
I I I
~-----+---~
I I I
~-----+---~
I I I
~-----+'---~
I I I
r-----+---~
I I I

l-Byte
Entries for
SVC Types
3 and 4

L-____ ~ ___ J - - - - - - - - - - - - - - - -

Figure 3. SVC Table

Optional Extension

The SVC table may be extended at system
generation time so that each entry is four
bytes long. The entry for a type 1 or 2
SVC routine contains a high order byte of
zeros and a 24-bit address which includes
the ESA information. Each entry for a type
3 or 4 SVC routine contains the track
address (TT) of the transient SVC routine
in the first field, the record number (R)
on the track in the second field, the
length of the first text record in the
third field, and the size Of the extended
save area in the last field. The format of
the SVC table with extended entries is
shown in Figure 3A.

Note: This option must be selected if the
resident type 3 and 4 SVC routine option is
chosen.

INTERRUPTION SUPERVISION CONTROL FLOW

The flow of control through interruption
supervision, shown in chart 01, starts with
an interruption. The five types of inter
ruptions are SVC, input/output,
timer/external, program, and machine check.

SVCINTERRUPTIONS

When an SVC interruption occurs, there
are two paths to the requested SVC routine.
These paths are described under SVC entry
procedures. When the SVC routine com
pletes, there are two possible paths of
return. These pathS are described under

1<---8 bits-->I<----------21 bits--------->I<--3 bits-->I
r-------------T----------------------------T------------,
I 00 I 21-Bit Address I ESA I
~-------------+----------------------------+------------~
I I I I
r-------------+----------------------------+------------~
I I I I L-____________ ~ ____________________________ ~ ____________ J

1<--10 bits-->I<--8 bits-->I<---ll bits--->I<--3 bits-->I
r-------------T------------T---------------T------------,
I TT I R I Length I ESA I
~-------------+------------+---------------+------------~
I I I I' I
r-------------+------------+---------------+------------~
I I I I I L-____________ ~ ___________ ~ _______________ ~ ____________ J

• Figure 3A. SVC Table Optional Extension

14

Entries for
SVC types
1 and 2

Entries for
SVC types
3 and 4

Form Y28-6612-0,-1,-2, Page Revised by TNL Y28-2174, 4/10/67

SVC exiting procedures. The dispatcher is
discussed after the entry and exiting pro
cedures, to show the flow back to the
processing program.

SVC Entry Procedures

Entry to SVC routines is handled by the
SVC FLIH and the SVC SLIH. The execution
of any SVC instruction causes the hardware
to give control to the SVC FLIH by loading
a new PSW that is disabled for all maskable
interruptions except machine check. The
SVC instruction contains an 8-bit code
which indicates to the SVC FLIH which
service routine is required.

All registers are stored in the SVC save
area. The SVC code is compared to the
largest valid IBM-provided value plus one.
If the code is equal to or larger than the
maximum, the code is analyzed to determine
whether the request is for a user-provided
SVC routine. Abnormal termination of the
task occurs if the requested SVC routine is
not defined in the particular system con
figuration. If defined but unsupported
(e.g., DETACH) it is treated as a no
operation (NOP).

Next, the SVC FLIH determines whether
the requested SVC routine is listed in a
resident SVC table. If listed, the address
of the SVC routine is picked up from the
table and used to enter the routine.

Chapter 1: Interruption Supervision Service Routines 14A

Form Y28-6612-0,-1,-2, Page Revised by TNL Y28-2174, 4/10/67

When the request is for other than a
type 1 SVC routine, the FLIH branches to
the SVC SLIH after moving the original
register contents to the TCB. The SLIH
creates SVRBs for types 2, 3, and 4 SVC
routines. If the routine is a type 2 SVC,
the SLIH passes control to the routine
directly. If the routine is a type 3 or
type 4, then control is passed only after
it has been placed in the transient area
via the FINCH routine (described in Chapter
4) •

Specifically, the SVC SLIH first
separates type 2 requests from types 3 and
4 so that the SLIH's SVRB creation and
initialization subroutine can be executed
immediately. For type 3 and 4 requests,
the SVC SLIH initializes and, if necessary,
fetches the required routines.

The SVRB creation and initialization
subroutine stores the requestor's PSW in
the current RB and then creates an SVRB for
the called routine. The size of the SVRB
is determined from the three low-order bits
of the address in a full word. The address
field of this full word is initialized by
the SVC FLIH for type 2 requests and by the
SLIH for type 3 and 4 requests, to contain
in the three low order bits a value between
1 and 7. This value minus one is equal to
the number of double-words of extended save
area required by the called SVC routine.

The SVRB creation and initialization
subroutine clears the three low-order bits
of the address and saves the address in a
register to preserve it across the GETMAIN
which is issued for the SVRB. After get
ting the storage for the SVRB, the subrou
tine initializes it and queues it on the
acti ve RB queue.

If the SVC routine is a type 2, reg
'isters 0, 1, and 15 are restored from the
save area of the SVRB, environmental reg
isters are loaded, and the type 2 SVC
routine is entered.

If the svc is a type 3 or 4, the SLIH
e~amines the SVC table, extracts informa
tion telling the size of the extended save
area needed in the SVRB, and creates and
initializes the SVRB.

If the current transient area occupant
is not the requested routine, the requested
routine must be loaded by FINCH, which is
entered by a BALR. When the loading is
completed, FINCH returns control to the SVC
SLIH.

The separate phases of type 4 SVC rou
tines bring each successive phase into the
transient area by using XCTL until the

phases are completed. The final phase
issues an SVCEXIT instruction.

SVC Exiting Procedures

There are two exiting procedures for SVC
routines type 1 exit and EXIT. Type 1
SVC routines with the exception of EXIT
return to the type 1 exit for handling.
Type 1 exit goes to the dispatcher for task
switching or to the interrupted program
either a processing program or a service
routine. Types 2, 3, and 4 SVC routines
return to the second procedure. EXIT
dequeues the SVRB from the TCB's active RB
queue and passes control to the dispatcher.

TYPE 1: Type 1 SVC routines branch direct
ly to the type 1 exit on completion.
Registers are reloaded from the type 1
register save area of the SVC FLIH. The
SVC old PSW is checked to determine if the
requestor of the exiting type 1 SVC routine
was disabled indicating that control is to
be retained. If disabled, the requestor is
reentered by loading the SVC old PSW. If
the requestor was enabled, two full words,
together called the TCB pointer or IEATCBP
on the listing, are compared. If they are
not equal, a task switch is indicated.
Registers are saved in the task control
block, the SVC old PSW is saved in the
current RB on the active request block
queue, and a branch is taken to the dis
patcher. If a switch is not indicated, the
requestor of the exiting type 1 SVC is
reentered by loading the SVC old PSW.

EXIT: Types 2, 3, and 4 SVC .routines, as
well as asynchronous exit routines and
routines entered by supervisor-assisted
linkages, complete by using the EXIT rou
tine directly or indirectly. Using EXIT
directly means issuing an SVC EXIT instruc
tion. Using EXIT indirectly means issuing
a branch instruction with register 14 as an
operand (or issuing a RETURN macro
instruction which expands to include a
branch on register 14)., where register 14
is preset by the supervisor to point to an
SVC EXIT instruction in the nucleus.

EXIT determines the type of routine that
is exiting., performs the necessary terminal
procedures for the routine, and prepares
for return to the routine in control prior
to the exiting routine. In addition, EXIT
determines if the routine to receive
control is an SVC routine executed in the
transient area. It is possible that the

Chapter 1: Interruption Supervision Service Routines 15

Form Y28-6612-0,-1,-2, Page Revised by TNL Y28-2174, 4/10/67

sequence of events has caused the transient
area to be overlaid since the SVC routine
last had control. In this case, the tran
sient area refresh subroutine of EXIT is
entered to restore the SVC routine to the
transient area.

EXIT passes control to either the dis
patcher, a processing program, an asynchro
nous exit routine, or the task termination
routine. The first and most common place
is the dispatcher. The second, a process
ing program, is given control when the exit
is from a program interruption routine.
The third, an asynchronous exit routine, is
given control when the exiting routine is
an asynchronous exit routine and there are
additional requests for the routine (RQEs)
queued on the IRB under which it is operat
ing. The fourth, the task termination
routine, is given control when the return
ing program is the highest control level
for a task.

When entered, EXIT resets the type 1
switch because, although EXIT is entered as
a type 1 SVC routine, it does not return
through the normal type 1 exit. This is
due to the peculiarity of being a transi
tional routine which passes control from
one program to another.

After resetting the type 1 switch, EXIT
determines if the exiting routine is a
program interruption routine. If it is,
the address of a program interruption ele
ment (PIE) is loaded from the TCBPIE field
of the TCB. The PIE contains the PSW and
the contents of registers 14 through 2 that
were in effect when the program interrup
tion occurred, unless they were modified by
the user's program interruption routine.
The right half of the PSW saved in the PIE
is moved to the SVC old PSW, registers 14
through 2 are loaded from the PIE register
save area, and the svc old PSW is loaded to
return control t.o the processing program.
Unless the user's program interruption rou
tine modified the values in the PIE or in
registers 3 through 13, the processing
program regains control at the instruction
following that which caused the program
interruption.

If the exiting routine is not a program
interruption routine, EXIT saves registers
10 through 1 in the register save area of
the TCB and obtains the address of the RB
for the exiting routine from the RB pointer
field (TCBRBP) of the TCB and the address
of the RB for the routine next to receive
control from the XRBLNK field of the exit
ing RB. EXIT tests to see if the exiting
RB is an IRB or the single SIRB in the

16

system. (Both IRBs and the SIRB are dis
cussed under Dispatcher and Exit Effector.)
If it is either, EXIT determines if the RB
has:

• Interruption queue elements (IQEs) with
4-byte link fields.

• IQEs with 2-byte link fields.

• No IQEs.

If the RB has interruption queue ele
ments, the IQE at the top of the RB's XRBQ
queue is removed. If the IQE has a 2-byte
link field, the IQE is returned to the I/O
supervisor to be placed on its list of
available queue elements. (In the I/O
supervisor program logic manual, IQEs with
2-byte link fields are called request ele
ments.) Interruption queue elements with
4-byte link fields are not queued on any
other queue and are effectively discarded
when they are removed from the XRBQ unless
the NEXAVL field of the IRB exists, in
which case they are returned to this queue.

The RB is checked for more queue ele
ments. If there are more, and if the new
top IQE has a 2-byte link field, the
address of the top IQE is loaded into
registers 1 and o. If the top queue
element has a 4-byte link field, register 0
contains the address of the IQE, as before,
but register 1 contains the data from the
second 4-byte field of the queue element.
In either case, the return address to be
used by the asynchronous exit routine is
loaded in register 14, and the entry point
address of the asynchronous exit routine
from the XRBEP field of the RB is loaded
into register 15 before the routine is
entered. The first word of the RB, poten
tially the register save area address, is
loaded into register 13.

If there are no other IQEs queued on the
RB, the saved registers are moved from the
RB's register save area to the TCB's reg
ister save area. The exiting RB is
dequeued from the active program queue of
the task, and the routine to receive con
trol is checked to see if it is in a wait
state. If it is in a wait, the first word
of the TCB pointer is set to zero, indicat
ing that a task switch is necessary. If
the RB is not waiting, the status bits in
the RB for the routine to regain control
are checked to see if the routine is a type
3 or 4 SVC. If it is, the name field in
the RB (XRBNM) is compared to the name of
the routine in the transient area. If the
routine is not in the transient area, the
transient area refresh subroutine is
entered to bring it in. EXIT branches to
the dispatcher.

Dispatcher

Loading a PSW to pass control to a
routine associated with a request block is
called dispatching. Djspatching is accom
plished when EXIT, type 1 exit, I/O FLIH,
or T/E FLIH branches to the dispatcher.
The dispatcher gives control either to the
routine last in control or to a different
routine, or places the machine in a wait
state. Dispatching a routine belonging to
a task different than the task last in
control, or placing the machine in the wait
state, is called task switching.

Task switching occurs when the current
routine in the current task can no longer
be executed because:

• The current routine has issued a WAIT
macro-instruction, setting the WAIT
flag in the RB.

• A system routine
routine in the
cute, by setting
in the TCB.

has indicated that no
current task can exe

non-dispatchable bits

• A task of higher priority pre-empts the
current task by becoming ready (in
environments where the number of tasks
is fixed but greater than one).

After receiving control, the dispatcher
first schedules any requests for system
asynchronous exit routines. Then it exam
ines the first and second words of the TCB
pointer. If the first word is not zero, it
dispatches the task whose TCB is addressed.
If the first word contains zero, the dis
patcher searches for the first ready task
on the queue of TCBs starting with the TCB
addressed by the second word of the TCB
pointer. (In a single-task environment,
the TCB queue has only one TCB on it - the
current TCB.) A ready task is one whose
TCB has no non-dispatchable bits set and
whose current RB is not waiting. In sys
tems with the timer option (see Chapter 7),
the dispatcher dequeues the timer element
for a task time request before entering the
wait state, and queues it again when leav
ing the wait state.

When dispatching a task, the dispatcher
places the address of the task in both
words of the TCB pointer, restores the
registers, and loads the resume PSW. If
there are no ready tasks, the machine wait
state is indicated by turning on a bit in
the resume PSW before loading it.

The dispatcher has a very important
subroutine called the exit effector. The
exit effector schedules the input/output

supervisor's error routines using the I/O
supervisor transient area and schedules
requests to enter asynchronous exit rou
tines by:

• Initializing an IRB or the SIRB.

• Placing the IRB or the SIRB on the
active RB queue.

• Manipulating the saved registers to
allow the dispatching of the asynchron
ous exit routine.

EXIT EFFECTOR: The exit effector consists
of three parts. The first two parts are
used by routines that require asynchronous
exits. The third part is a dequeueing
routine used by the dispatcher.

Part One: The first part of the exit
effector is the CIRB service routine. This
routine creates and initializes an IRB and,
if specified, acquires additional storage
within the partition for a register save
area and a work area used for building
interruption queue elements (IQEs). The
address of the register save area is locat
ed in the three low-order bytes of the
first word of the IRB. The format of the
IRB is shown in Figure 4.

r------------------------------~----------,
I I
I 96 bytes (required) I
I I
.---~ I NEXAVL=*+4 (optional) I
.---~
I I
I Work area for building IQEs (optional) I
I I L ___ J

Figure 4. IRB Format Options

Part Two: The second part of the exit
effector is used by a calling routine to
schedule an asynchronous exit routine.
Part two queues the IQE provided in reg
ister 1 as input, in FIFO order on either
the 2-byte AEQ (asynchronous exit queue) or
the 4-byte AEQ.

Part Three: The third, dequeueing part of
the exit effector is entered by the dis
patcher when the dispatcher finds that the
AEQ points to an IQE. (Each time it is
entered, the dispatcher checks for entries
on the AEQ.) Part three dequeues the IQE
from the AEQ ,f-inds the IRB and TCB asso
ciated with the IQE, queues the IQE on the
IRB and the IRB on the TCB's active RB
queue. When two or more IQEs refer to the
same IRB, they are queued in FIFO order.

Chapter 1: Interruption supervision Service Routines 17

Form Y28-6612-0,-l,-2, Page Revised by TNL Y28-2174, 4/10/67

Part three ensures that no IRB is sche
duled for a task which has the SIRB on its
active RB queue. The interruption queue
element remains on the asynchronous exit
queue to defer scheduling of the current
IRB until the SIRB is inactive .•

I/O SUPERVISOR ASYNCHRONOUS EXIT PROCESS
ING: The name of the error routine to
receive control is generated using informa
tion in the UCB pointed to from the second
half-word of the IQE. If the requested
routine is in the I/O supervisor transient
area, the routine is dispatched. Other
wise, FINCH (a routine described in Chapter
4) handles the interface with the data
management BLDL routine and program fetch
to load the error routine into the I/O
supervisor transient area and ensures that
the return address, entry point, and IQE
address are in the registers and that the
current error routine entry point is in the
entry point slot of the SIRB.

EXITING FROM OTHER ASYNCHRONOUS EXIT ROU
TINES: When the asynchronous exit routine
for the first IQE is completed, EXIT is
entered. The IQE is then dequeued from the
IRB and is either returned to the I/O
supervisor or queued on the NEXAVL field
that immediately follows the IRB, or dis
carded.

If there are no additional IQES queued
on the IRB when an asynchronous exit rou
tine returns, EXIT dequeues the IRB from
the active RB queue. If there are addi
tional IQEs queued on the IRB, the neces
sary initialization steps are executed and
the IRB routine is reentered directly.

If the IRB and a work area were obtained
by using part one of the exit effector, the
work area is freed when the IRB is freed.
If the IRB is to be reused, it is dequeued
but is not freed.

Resident Type 3 and 4 SVC Routine Option

At system generation time, the user can
select the resident type 3 and 4 SVC
routine option. Frequently used routines
can be made resident and need not be
brought into the transient area each time
they are reqUired. A resident type 3 or 4
routine takes on the characteristics of a
type 2 routine except when it issues an
XCTL macro-instruction (see Chart 04).

18

The
result
option
of the

following differences in operation
when the user chooses the resient

(and the optional extension of the
svc table).

1. When the nucleus initialization pro
gram (Appendix B) makes each type 3 or
4 routine resident, the routine's
entry in the SVC table is changed.
The track address, record number and
length fields are overlaid by X'FF'
and the entry point of the routine.
Each time a type 3 or 4 SVC routine is
requested, the SVC table is checked.
X'FF', a number larger than any track
address, indicates that the entry cor
responds to a resident type 3 or 4
routine. The format of each entry for
a resident type 3 SVC routine or for
the first module of a resident type 4
routine is:

1<-8 bits->I<---21 bits-->I<-3 bits->I
r----------T--------------T----------,
1 X'FF' 1 Entry point 1 ESA 1
1 1 address 1 1 l __________ ~ ______________ ~ __________ J

2. The SVC entry procedure for a resident
type 3 or 4 routine is similar to that
for a type 2 routine, that is, a
resident type 3 or 4 routine does not
require the services of FINCH because,
like a type 2, the routine need not be
loaded into the transient area.

3. The SVC exiting procedure does not
require the services of the transient
area refresh subroutine if a resident
type 3 or 4 routine receives control
since a resident routine does not
operate in the transient area and
could not have b~en overlaid since it
last had control. The transient area
refresh subroutine examines the SVRB
of the SVC routine receiving control.
The SVRB indicates that the routine is
a type 3 or 4. If the entry point in
the SVRB does not correspond to the
transient area entry point, a resident
type 3 or 4 routine is gaining con
trol. If the entry point is that of
the transient area, a non-resident
routine is being requested and the
transient area must be checked to
ensure that the routine has not been
overlaid since it was last used.

4. The XCTL service routine checks the
RSVC load list created by the nucleus
initialization program (Appendix B) to
determine if the SVC routine is resi
dent or if it requires loading.

Form Y28-6612-0,-1,-2, Page Revised by TNL Y28-2174, 4/10/67

INPUT/OUTPUT INTERRUPTIONS

Certain events, such as errors or com
pleted actions in an input/output device or
in the channel to which it is attached,
cause the number of the device and a word
of more detailed information about the
status of the channel and the nature of the
event to be placed in storage. The I/O
FLIH is not concerned with the workings of
the channel scheduler or with the inner
details of input/output handling. It per
forms machine interruption supervision and
insulates the input/output interruption
from other types of interruptions. The I/O
FLIH is given control by the input/output
new PSW. The I/O FLIH is entered:

• Disabled "for all maskable interruptions
other than machine check.

• In supervisor state.

The first instruction of the I/O FLIH is
a NOP/branch switch, set to a branch by the
first input/output interruption, allowing
input/output interruptions to be processed
in groups. The first interruption of a
group causes the I/O FLIH to execute some
initialization instructions which block any
further execution of this "first-time
logic" for successive interruptions in a
group. Registers two through nine are
saved.

If the system is not pseudo disabled,
the input/output old PSW is saved in the
current RB. The wait bit in the
input/output old PSW is set to zero
(non-wait state), and registers ten through
one are saved in the TCB's general register
save area.

If the system is pseudo disabled,
registers 10 through 1 are saved in the
interruption superv~s~on pseudo disable
save area, and the input/output old PSW is
saved.

I/O FLIH branches direCtly to that part
of the input/output supervisor which han
dles interruptions. Upon return from the
I/O supervisor, the NOP/branch switch is
reset to no-operation. Registers 2 through
9 are restored.

The pseudo disable switch is tested. If
'off, the dispatcher is entered. If on,
registers 10 through 1 are restored from
the pseudo disable save area, and control
returns to"the interrupted routine by load
ing the input/output old PSW.

TIMER/EXTERNAL INTERRUPTIONS

Timer/external interruptions may come
from the optional hardware timer at loca
tion 80, from the interrupt key on the
console, and from six external units. The
T/E FLIH in the fixed-task supervisor han
dles two kinds of timer/external interrup
tions: those caused by the optional hard~
ware timer and those caused by the inter-"
rupt key on the console. The T/E FLIH
passes control to time superv~s~on for
second level handling of timer interrup
tions and to job management's external
interruption routine for second level han
dling of interrupt key interruptions.

When an interruption occurs, the hard
ware stores the current PSW in the
timer/external old PSW location, indicates

Chapter 1: Interruption Supervision Service Routines 18A

the cause of the interruption in the inter
ruption code field in the T/E old PSW, and
loads the new PSW from the timer/external
new PSW location. This gives control to
the T/E FLIH.

The T/E FLIH saves registers 10 through
1 in the TCB" stores the timer/external old
PSW in a standard original old PSW location
(see program listing), and examines the
interruption code in the timer/external old
PSW to determine the interruption type.

When a supported interruption type is
identified" the T/E FLIH branches to the
appropriate second level handler. On com
pletion of the second level handling, con
trol is returned to the FLIH. A second"
simultaneous interruption may have
occurred, and the FLIH checks for this
possibility, handling it in the same way as
the first interruption.

After handling supported timer/external
interruptions, the FLIH branches to the
dispatcher. If non-supported timer/exter
nal interruptions occur, the T/E FLIH
returns control immediately to the inter
rupted routine rather than to the dispatch
er.

PROGRAM INTERRUPTIONS

If the program being executed attempts
an improper action, a program interruption
occurs and a code describing the attempt is
stored in the program old PSW. Improper
events causing program interruptions
include addressing non-existent operation
codes and attempting to execute privileged
instructions. Users may specify fixed
point overflow, decimal overflow, exponent
underflow and significance as additional
improper events requiring special handling.

If the user wishes to handle some or all
program interruptions, he first issues a
SPIE macro-instruction which generates a
program interruption element (PIE) and
inserts its address in the TCB. The pro
gram first level interruption handler
(P FLIH) is given control by the hardware
after any program interruption. The P FLIH

checks the TCB for an address of a PIE. If
no PIE address is present in the TCB, the
interruption is unanticipated, and the P
FLIH passes control to the PROLOG routine
to initiate abnormal termination of the
task.

If a PIE address is present in the TCB.,
the PIE is examined and the address of a
program interruption control area (PICA) is
extracted. The P FLIH tests the user's
program interruption mask in the PICA to
see if the user is handling the type of
program interruption that has occurred.
The type that has occurred is shown in the
interruption code in the program interrup
tion old PSW. If the user is handling the
interruption, the P FLIH saves the old PSW
and registers 14 through 2 in the PIE.
Register 14 is loaded with a return
address, register 1 with the address of the
PIE, and register 15 with the address of
the user's routine. The P FLIH places the
address of the user's interruption routine,
obtained from the PICA, into the old PSW,
restores the work registers from the save
area, and loads the modified old PSW to
return to the user's program at the entry
point of his program interruption handler.

The user may return to the main body of
his program from his program interruption
handling routine either by a direct branch
or by issuing a RETURN macro-instruction.
If the user returns to the main body of his
program by a direct branch, he must reset
the first-time-entry switch in the PIE.

If the program interruption type is not
handled by the user, PROLOG is entered by a
branch. This routine sets up the abnormal
termination linkage and branches to ABTERM.

MACHINE CHECK INTERRUPTIONS

If the error detection equipment finds a
machine error, information representing the
internal state of the machine is placed in
the diagnostic scan-out area of main stor
age. The hardware gives control to System
Environment Recording or causes a wait
state.

Chapter 1: Interruption Supervision Service Routines 19

CHAPTER 2: TASK SUPERVISION SERVICE ROUTINES

The task supervision service routines
maintain control information, cause tasks
to be executed, and perform other task
related services. Task supervision service
routines:

• Maintain task control blocks.
• Enter tasks into the wait state.
• Post completed events in the event

control block .•
• Maintain control levels indicated by

request blocks.

HOW TASK SUPERVISION IS ORGANIZED

The task supervision service routines
are functionally divided into two areas in
the fixed-task supervisor: task
modification and task termination.

TASK MODIFICATION

In the fixed-task supervisor, issuance
of an ATTACH macro-instruction causes con
trol to be given to a routine named by the
issuer of the macro-instruction. The
ATTACH service routine passes control to
the requested routine and regains control
when the attached program completes.
ATTACH optionally posts an event control
block to mark the completion, and, also
optionally, passes control to a user
specified exit routine. If no special exit
is specified" ATTACH returns control to the
attaching routine.

Through the EXTRACT and SPIE service
routines, task supervision allows the user
to make better use of the system's
controls. EXTRACT provides a processing
program with information contained in spec
ified fields of the task control block.
SPIE allows the user to specify the address
of an exit routine to be entered when
specified program interruptions occur. The
SPIE routine sets the program mask in the
PSW as specified when a SPIE macro
instruction is given.

Through the WAIT and POST service
routines, task supervision monitors the
movement of the task between the ready and
wait states. WAIT bars the continuation of
the task until an event specified in the
WAIT macro-instruction parameters has taken
place and has been indicated by the execu-

20

tion of a POST macro-instruction. As an
option, a WAIT routine to service multiple
event completions may be chosen by the
user. POST signals that the event rep
resented by a specified event control block
has occurred. This may result in a task
being moved from a wait state to a ready
state.

TASK TERMINATION

A task may be terminated by itself or by
the system. Task supervision completes a
task's execution through ABTERM and ABEND
service routines. The ABTERM service rou
tine schedules the ABEND routine, which
terminates the task. The ABDUMP service
routine is used when a full storage dump is
required.

TASK SUPERVISION CONTROL FLOW

As shown in Chart 02, flow of task
supervision is the flow of the individual
modular service routines. Each receives
control from interruption supervision and
returns control to its particular exiting
procedure. The one exception is the Abterm
routine, which is branched to by any ser
vice routine, and returns to that routine
by a branch.

ATTACH

The ATTACH service routine searches for
the RB of the requested routine in the
inactive program list and in the loaded
program list. If the requested routine is
not in the partition, ATTACH uses FINCH to
bring it in. ATTACH places a request block
on the RB queue for the attached routine.
Control is given to the attached routine by
loading a PSW with an LPSW. The request
block queue is ordered as follows:

• RB for the attached routine.
• SVRB for the ATTACH routine.
• RB for the attaching routine.

When the attached routine completes, the
ATTACH routine is dispatched and optionally
posts the event control block. If the
attaching routine specified an exit routine

in the ETXR parameter of the ATTACH macro
instruction, ATTACH places a request block
on the active RB queue for the exit
routine. When the ATTACH routine com
pletes, the exit routine is dispatched, if
this option was specified. When the exit
routine completes, the ~ttaching routine is
dispatched.

EXTRACT

The EXTRACT service routine is entered
from interruption superv~s~on when the
EXTRACT macro-instruction is issued. Upon
entry, EXTRACT zeroes all fields in the
list area specified by the user., except for
the task input/output table (TIOT) address
field. If the macro-instruction's param
eters specified TIOT or ALL, the address in
the TCB of the TIOT is inserted into its
respective field in the user's list.
EXTRACT issues an SVC EXIT instruction on
completion.

SPIE

The SPIE service routine is used to set
up indications that the user has requested
program interruption control. SPIE is
entered by the SVC SLIH when a SPIE macro
instruction is given. Thirty-two bytes of
main storage space for a program
interruption element (PIE) is obtained, and
the address of the PIE is saved in the TCB.
In creating the PIE (Figure 5), the SPIE
routine places in the first four bytes the
address of the program interruption control
area (PICA) specified by the processing
program in the SPIE macro-instruction. The
SPIE routine sets aside the second eight
bytes as a program interruption old PSW
save area" and the next 20 bytes as a
5-register save area.

A program mask whose contents is deter
mined by the interruptions selected is
stored into the caller'S resume PSW. SPIE
executes an SVC EXIT instruction on comple
tion.

r---------T---------T---------------------,
I User's I Old I I
I PICA I PSW I Register Save Area I
I Addre~s I Save I I
I I Area I I l ____ ~ ____ ~ _________ ~ _____________________ J

4 bytes 8 bytes 20 bytes

Figure 5. Program Interruption
(PIE) Format

Element

WAIT -- SINGLE EVENT

When WAIT is entered by the SVC inter
ruption handler, the wait count passed as a
parameter of the WAIT macro-instruction is
tested for zero. If it is zero, the
routine returns immediately by branching to
the type 1 SVC exit. If it is non-zero,
then the resume PSW of the caller is
enabled for input/output and external
interruptions. The wait and complete bits
are tested in the ECB whose address was
passed by the macro-instruction. When the
complete bit is on, indicating that this
event is already completed, WAIT branches
to the type 1 exit. If the wait bit is on,
indicating this event is already being
waited for, WAIT terminates the task by
branching to ABTERM. (Checking the wait
bit is performed only if the validity check
option is selected during system genera
tion.) If neither bit is on, the wait bit
is turned on and the address of the current
RB is placed in the ECB. A wait count of
one is placed in the current RB, and the
first word of the TCB pointer, IEATCBP, is
zeroed as a signal to the dispatcher that
the task is waiting. WAIT returns by
branching to the type 1 exit in interrup
tion supervision.

WAIT -- MULTIPLE EVENT

The WAIT service routine is entered by
the SVC FLIH as a result of a WAIT macro
instruction. Upon entry to the WAIT
routine, the wait count passed as a param
eter is tested for zero. If it is zero,
the routine returns immediately by branch
ing to the type 1 SVC exit. If the wait
count is non-zero, the resume PSW of the
caller is enabled for input/output and
external interruptions. The wait count is
saved and a loop initialized to address the
ECBs addressed by the macro-instruction
parameter list. An ECB counter is incre
mented as each ECB is addressed.

As in Single-event WAIT, on an optional
basis, the wait bit in the first ECB is
tested. If it is on., indicating that this
ECB is already being waited on, the next
ECB is addressed. If the wait bit is off,
the completion bit is tested. If the
completion bit is off, indicating that a
POST has not yet occurred" the wait bit is
turned on and the address of the current RB
is placed in the ECB. If this event has
already completed -- if the completion bit
is on -- the wait count is decremented and
tested for zero. If the count is hot zero,
a test is made to see if this address is
the last element in the parameter ECB list.

Chapter 2: Task Supervision Service Routines 21

Form Y28-6612-0,-1,-2, Page Revised by TNL Y28-2174, 4/10/67

If it is not the last element, the cycle is
repeated. If it is the last element, the
loop is exited. If the wait count becomes
zero, all the wait bits in the ECBs are
turned off and the WAIT routine exits to
the type 1 exit, without putting the cur
rent RB into a wait state since its count
has already been satisfied.

When all ECBs have been addressed and
the wait count has not become zero, the
total number of ECBs specified is compared
to the original wait count. If the number
of ECBs specified is less than the count,
the count cannot be .satisfied: the task is
abnormally terminated by scheduling ABEND
through a branch to ABTERM.

If the wait count is less than the
number of ECBs, a bit is turned on in the
RB to indicate to POST that a multiple
event WAIT has been issued where the number
of ECBs is greater than the wait count. If
the wait count is less than or equal to the
number of FCBs, WAIT inserts the wait count
into the current RB and sets the first word
of the TCB pointer to zero as a signal that
the task is waitinq. The WAIT service
routine returns by branching to the type 1
exit routine o~ interruption supervision.

POST

The POST service routine is entered by
the SVC FLIH after a POST macro-instruction
is issued, but an alternate entry is
provided so that system rout.ines can branch
directly to POST. Upon entry, POST tests
the completion bit of the ECB whpse address
was passed as an input parameter. If it is
on, indicating that the FCB has already
been posted, the POST routine returns by
branching to the type 1 exit or tc the
system routine which entered POST.

If the completion bit is off., the wait
bit is tested to see if this' event is being
waited on. If the bit is off, the comple
tion code is placed in the ECB and the
completion bit is turned on. If the wait
bit is on, the RB wait count is decrement
ed, the completion code is placed in the
ECB, the completion bit is turned on, and
the wait bit is turned off. POST returns
by branching either to type 1 exit or to
the system routine which branched to POST.

In systems with a multiple event WAIT,
POST performs further operations. When the
wait count in the RB is decremented to
zero, POST tests a bit in the waiting RB to
see if the number of ECBs specified in the
associated WAIT was greater than the wait
count specified.

22

If the number of ECBs was greater, then
POST turns off the wait bits in all ECBs in
the ECB list specified which have not yet
been posted, to indicate that no one is
waiting for these events to be completed
and to prevent an erroneous POST. The
address of the ECB list is located in a
register save area belonging to an RB or to
the TCB. POST finds the addresses by
determining which RB is waiting. If RB 3
in the following dia.gram is waiting, the
address of the FCB list is in the register
1 field of the TCB register save area. If
RB 2 is waiting, the list address is in the
same field of the register save area of RB
3. If RB 1 is waiting, the address is in
the register save area of RB2.

TCB
r------,
, ~<---------------------------, , , ,
, , RB 3 RB 2 RB 1
, 'r------, r------, r------,
, " " " I I .-->~ .-->~ .-->i I
, 'I I' I I I I I L ______ J L ______ J L ______ J

L ______ J

If the number of events waited on equals
the number of events specified, the wait
bits are turned off by POST as the events
complete. After turning off the wait bits.
POST places the completion code in the FCB.
and returns.

RESIDENT ABNORMAL TFRMINATION ROUT IN
(ABTERM)

Certain system routines branch to the
ABTERM service routine to schedule the
abnormal termination of a task. ABTERM
returns to the system routine by branching
to the address passed to ABTERM in register
14.

When entered by a type 1 SVC routine,
ABTERM saves the right half of the SVC old
PSW and replaces the right half with the
address of an SVC ABEND instruction. The
task completion ,code is stored in the
TCBCMP field provided in the TCB. After
turning off the type 1 switch in the SVC
FLIH, ABTERM loads registers 0 and 1 from
the type 1 SVC save area, restores reg
isters and branches on register 14 as set
by the SVC routine which branched to it .•

When entered by any other system rou
tine, ABTERM locates the current RB on the
RB queue of the TCB, saves the wait count
from the RB, replacing it with a zero wait
count, and saves the right half of the

resume PSW from this RB. The task compl~
tion code is stored in the TCBCMP field in
the TCB. ABTERM replaces the right half of
the resume PSW in the RB with the address
of an SVC ABEND instruction, restores the
registers and branches on register 14 as
set by the system routine which branched to
it.

ABEND

The ABEND service routine is a type 4
SVC routine that is used for both normal
and abnormal termination of tasks. The
basic function of ABEND is to terminate all
internal activities of the current task and
give control via XCTL to the GO module of
job management to continue processing.

Normal End

When ABEND is entered for a normal
termination, it checks if all data sets
have been closed. If any data sets are
still open, ABEND calls the data management
CLOSE routines. The task completion code
is stored in the TCBCMP field of the TCB,
and all main storage within the task's
partition is designated as a free area.
ABEND then XCTLs to job management to
initiate either the next step of this job
or the first step of a new job.

Abnormal End

When ABEND is entered for an abnormal
termination, it checks if ABTERM was
entered and if it was, ABEND restores the

psw and wait count to the RB that called
ABEND. If ABTERM was not entered, ABEND
stores the completion code in the TCBCMP
field of the TCB. ABEND purges all
input/output operations initiated for this
task using the HALT I/O option. It per
forms validity checking of the various
system queues such as main st~r~ge
supervision queues, contents superVision
queues, and data management queues -- to
prevent ABEND from being' requested while
ABEND is in progress. ABEND removes the
SIRB from the active RB queue.

ABEND determines the amount of main
storage it will· need and acquires the
storage either by using GETMAIN or by
overlaying reentrant code at the beginning
of the partition.

ABEND checks if the abnormally terminat
ing routine has requested a dump. If a
dump was requested, ABEND searches the TIOT
for a SYSABEND ddname. If this entry is
not located, ABEND assembles pertinent
information and packs it in main storage
for eventual printing by the job management
routines. This information is referred to
as an indicative dump. If the SYSABEND
entry was located, ABEND opens a DCB and
calls a type 4 SVC routine named ABDUMP.
ABDUMP assembles a full hex-formatted dump
of the TCB, PSW, RBS, save areas, and all
of main storage.

Upon completion of either the indicative
dump or ABDUMP, or if no dump was taken"
ABEND attempts to CLOSE all data sets by
calling the data management CLOSE routines.
As in normal termination., all main storage
within the partition is designated as a
free area. ABEND XCTLs to job management
to print the indicative dump if provided
and to initiate the next task.

Chapter 2: Task supervision Service Routines 23

CHAPTER 3: MAIN STORAGE SUPERVISION SERVICE ROUTINES

The main storage supervision service
routines establish the availability of main
storage space and dynamically assign space
for program loading and work areas. Within
each partition" the main storage supervi
sion service routines:

• Allocate main storage space dynamical
ly.

• Release main storage space dynamically
on request.

• Maintain a record of all free areas of
main storage.

HOW MAIN STORAGE SUPERVISION IS ORGANIZED

Main storage supervision is permanently
resident within the nucleus, is not reen
terable~ and is disabled for all maskable
interruptions except machine check. It is
made up of the GETMAIN and FREEMAIN service
routines.

The GETMAIN service routine allocates
storage to a task according to its needs,
when a GETMAIN macro-instruction is issued.

The FREEMAIN service routine releases
storage space on request" when a FREEMAIN
macro-instruction is issued.

MAIN STORAGE SUPERVISION CONTROL FLOW

As shown in Chart 03" the flow of main
storage supervision is the flow of the
service routines. The GETMAIN and FREEMAIN
routines receive control from the SVC FLIH,
and give up control through type 1 exit.
Register-type GET MAIN and FREEMAIN requests
have a separate entry point. An exception
occurs when an error condition is encoun
tered. In this case, control passes to
ABTERM by means of a branch.

In the introduction to this manual, main
storage was described as being separated
into at least two areas" the fixed area and
the partition (see Figure 6). The parti
tion is the area subject to the fixed-task
supervisor's storage allocation algorithm.
This algorithm allocates space in the upper
(higher address) portion of the partition
to LOADed routines and data areas requested
by the user, and space in the lower (lower

address) portion to the processing program
itself and to routines it has called
through LINK, XCTL, and ATTACH.

r------->r---7-------------------, - - - -
1 1
1 Free Area 1
1 1

r---->~-----------T-----------~
r--~t Next FQE 1 # Bytes 1 FQE

~----------------------~
1 1
1 1
1 Occupied Area 1 P
1 1 A
1 1 R
liT
~-----------------------~ I
liT
III
1 Free Area 1 0
liN
1 1
~----------T-----------~

->1 0 1 # Bytes 1 FQE
~-----------~-----------~
1 1
1 1
1 Occupied Area 1
1 1
1 1

r->~-----------------------~ - - - -
1 1 1
1 Ir-------------, 1 --+--+--tl t HI Boundary 1 1 F

I 1 I~-------------~ 1 I A
1 L--+~t LO Boundary 1 I X R
I I ~-------------~ r---, lEE
L-----+~t 1st FQE I <--i TCBI I D A

IL-------------J L ___ J I
I I L-______________________ J

Figure 6. Main Storage Organization

More specifically" when a processing
program executes a GETMAIN macro
instruction with a numbered subpool request
ranging from 0 through 127" storage is
allocated in the upper end of the
partition. A request with a subpool number
from 128 through 255 is invalid for pro
cessing programs, and causes task termina
tion. When a privileged routine executes
GETMAIN with a subpool number ranging from
o through 127" storage is allocated in the
lower end of the partition; subpool numbers
128 through 255 cause storage to be allo
cated in the upper end of the partition.
However, by convention, subpool numbers 129
through 248 are not used.

Areas not in use at a given time are
referred to as free areas and are r~p
resented in a fr.ee area queue by a ser~es
of free area queue elements (FQEs). Each
free area begins and ends on a double word
boundary~ requests for main storage space
are always rounded up to multiples of eight
bytes.

Each free area queue element is eight
bytes long. The first four bytes contain
the address of the next lower free area if
there is one, or zero if there is no lower
free area. The second four bytes contain
the length of the free area.. The free area
queue element is always in the lowest eight
bytes of each free area.

The first element in the free area queue
is pOinted to by the first word of a three
word block in the nucleus. This block,
called the boundary box" is initialized by
the nucleus initialization program and is
pointed to by the TCBMSS field in the TCB.
The boundary box contains the address of
the beginning of the partition in its
second word., and the address-plus-one of
the end of the partition in its third word.

GET MAIN

When a GETMAIN is executed" the free
area queue is searched for space as large
or larger than that required. If found"
the space is allocated, and the amount used

is subtracted from the free area from which
it was removed. If space is not found and
the request was conditional, GETMAIN ends
by branching to type 1 exit. If the area
is not found and the request was uncondi
tional, GETMAIN branches to ABTERM to sche
dule the termination of the task.

In systems with the optional inactive
program list, GETMAIN frees all routines on
the inactive program list pointed to by the
TCB if adequate space is not found by
searching the free area queue. GETMAIN
returns the space in which the freed rou
tines resided to the free area queue and
searches again. GETMAIN always frees the
inactive program list whenever a system
routine requests space in the lower end of
the partition.

FREE MAIN

When a FREEMAIN is executed, the area to
be freed is checked for any overlap with
existing free areas. If overlap exists, an
error has occurred and FREEMAIN branches to
ABTERM for the scheduling of an abnormal
termination of the task. Otherwise,
FREEMAIN combines the area to be freed with
any adjacent free area, by updating that
area's FQE. If there are no adjacent free
areas, FREEMAIN creates an FQE for the
newly freed area and queues the FQE on the
free area queue. On completion, FREEMAIN
branches to type 1 exit.

Chapter 3: Main Storage Supervision Service Routines 25

CHAPTER 4: CONTENTS SUPERVISION SERVICE ROUTINES

Contents supervision service routines
record the identity, main storage location,
size" properties and users of routines
which, with the data they operate on, make
up tasks. Completed routines are not
immediately destroyed but may remain in
storage until the space is required. Con
tents supervision service routines maintain
three lists (see the discussion of request
block queueing in the introduction to this
manual) of routines in each partition:

• Active reguest block queue -- a list of
aCtive routines given control by type
II, III, or IV linkage, excluding type
1 SVcs.

• Inactive program list (optional) a
list of inactive routines originally
brought into storage by LINK., XCTL or
ATTACH" but which are no longer in use.

• Loaded program list
frequently-used routines
storage by a LOAD.

a list of
brought into

Each routine in these lists is rep
resented by an RB that immediately precedes
the routine in main storage. Exceptions to
this are: the SIRB, which is permanently in
the nucleus; SVRBS, which are always in the

.upper end of main storage, away from their
associated routines; and "minors," which
are RBs placed on the loaded program list
by the optional IDENTIFY macro-instruction
and which represent routines embedded in
the processing program.

Contents supervision maintains the three
lists by chaining together the RBs for the
routines. Each list is pointed to by the
TCB.

HOW CONTENTS SUPERVISION IS ORGANIZED

Contents superv~s~on is made up of the
following service routines: LINK, LOAD,
XCTL, IDENTIFY (optional), DELETE, SYNCH.,
and a common subroutine called FINCH.

The LINK service routine passes control
from the routine that issued the LINK
macro-instruction to another routine so
that the issuer regains control when the
second routine completes.

The LOAD service routine brings a rou
tine specified in the parameters of a LOAD
macro-instruction into main storage and

26

inserts its RB on the loaded program list
with a use count of one. If the routine is
already on the list., the service routine
merely adds one to the use count, which
thus reflects the number of times a LOAD
has been issued for this routine minus the
number of times a DELETE has been issued
for it.

The XCTL service routine passes control
from the routine issuing the XCTL macro
instruction to a requested routine. When
the requested routine completes, control is
not returned to the issuer, which has been
removed from the active RB queue" but to
the routine which preceded the issuer of
the XCTL. The issuer' of the XCTL is
removed from main storage if it has not
been LOADed

The IDENTIFY service routine causes a
routine named by the issuer of the IDENTIFY
macro-instruction to have a minor RB
created for it, and causes this RB to be
chained on the loaded program list. The RB
which is the result of the IDENTIFY is on
the LOAD list only for control purposes.
The RBs of these identified routines are
removed from the loaded program list and
the RB space is released whenever these
routines are inactive and the routine con
taining them is placed on the inactive
program list or is deleted.

The DELETE service routine decrements
the use count in the RB of a LOADed routine
named by the issuer of a DELETE macro
instruction. When the use count becomes
zero, DELETE removes the RB from the loaded
program list and frees the storage space
occupied by the routine. (Note: In systems
which include the IDENTIFY macro
instruction, any minors associated with the
named routine are also removed by DELETE.)

The SYNCH service routine creates,
initializes, and queues program request
blocks. System routines or processing pro
grams use this routine to create PRBS for
segments of code which they deSignate by
placing an entry point address in register
15 and executing an SVC SYNCH instruction.
After the PRB is queued on the active
request block queue, SYNCH returns by exe
cuting an SVC EXIT instruction.

The FINCH service routine interfaces
with the data management BLDL routine, and
with program fetch which is described in
the next chapter of this manual, to
retrieve routines from auxiliary storage.
Routines may be retrieved when a LINK,

LOAD, XCTL, or ATTACH macro-instruction is
issued, or when a non-resident SVC routine
or non-resident input/output supervisor
error routine is requested. After the
routines are loaded into main storage,
FINCH records information concerning their
attributes and main storage locations into
the appropriate contents supervision lists.

CONTENTS SUPERVISION CONTROL FLOW

As shown in Chart 04, the flow of
contents supervision is essentially the
flow of the individual service routines,
which receive control from interruption
supervision and pass cohtrol to their par
ticular exit routine on completion. FINCH
is an exception in that it receives control
from LINK, LOAD, and XCTL. as well as from
a number of other system routines including
ATTACH and the SVC FLIH, and returns to
whatever routine requested its services.

LINK

The LINK service routine is entered by
the SVC SLIH in response to a LINK macro
instruction.

LINK searches the loaded program list
for the RB of the requested routine and if
it is found and is inactive, prepares the
RB for dispatching. If the routine is not
found or if it is active, LINK checks the
first RB on the inactive program list. If
this RB represents the requested routine,
and is reschedulable, LINK prepares the RB
for dispatching.

When these two steps fail, LINK clears
the inactive program list and frees the
storage occupied by the represented
routines, and enters FINCH. FINCH con
structs an RB for the requested routine and
places both the RB and its routine in the
lower end of the partition.

On return from FINCH, LINK prepares the
RB for dispatching by:

• Initializing LINK's SVRB so that reg
ister loading causes the requested rou
tine to execute EXIT when it issues the
RETURN macro-instruction.

• Flagging the requested routine's RB to
indicate that it is active.

• Placing the requested routine'S RB on
the active RB queue between the RB for
LINK and the RB for the issuer of the
request, to ensure that the requested

routine is entered when 'LINK issues
EXIT.

• Issuing the SVC EXIT instruction.

LOAD

The LOAD service routine is entered by
the SVC SLIH when a LOAD macro-instruction
is issued. LOAD searches the loaded pro
gram list for the RB of the requested
routine, and if it finds it, increments the
use count and passes the· requested
routine'S entry point to the issuer in
register O. LOAD branches to the terminal
portion of LINK that issues the SVC EXIT
instruction.

If the requested routine is not found on
the loaded program list, LOAD branches to
FINCH to load the routine into storage. On
return from FINCH, LOAD initializes the
requested routine'S RB and places it on the
loaded program list, sets the RB's use
count to one and branches to LINK to issue
the SVC EXIT instruction.

If the resident access method (RAM)
option was selected at system generation
time and the name of the requested routine
is prefixed by IGG019, LOAD searches the
RAM system load list first. If the RB of
the routine is found there, the use count
is not incremented and the entry point of
the routine is passed to the user in
register O. If the RB of the routine is
not found in the system load list, LOAD
searches the loaded program list and pro
ceeds as previousl~ described.

XCTL

The XCTL service routine is entered by
the SVC SLIH when an XCTL macro-instruction
is issued.

If XCTL was issued by an SVC routine
operating in the transient area, the XCTL
service routine branches to FINCH. to locate
the routine on the SVC library and bring it
into the transient area. XCTL branches to
that part of LINK that completes the ini
tialization of the RB and executes an SVC
EXIT instruction.

IfXCTL was not issued by a transient
routine, the XCTL routine dequeues the
issuer's RB and its minors from the active
RB queue. The RB for the routine which
issued XCTL is placed on the inactive

Chapter 4: Contents Supervision Service Routines 27

Form Y28-6612-0,-1,-2, Page Revised by TNL Y28-2174, 4/10/67

program list unless it was LOADed. If the
requested routine is on the loaded program
list and inactive, XCTL branches to LINK
to:

• Set the active bit in the RB for
re9uested routine.

• Queue the RB on the active RB queue.

• Issue an SVC EXIT instruction.

the

If the RB of the requested routine was
not found inactive on the loaded program
list, XCTL frees storage of the routines
represented on the inactive program list
and branches to FINCH to bring in the
routine. On return from FINCH, XCTL lnl
tializes the routine in the same manner as
if its RB had been found inactive on the
loaded program list.

If the resident type 3 and 4 SVC routine
option was selected at system generation
time and an XCTL macro-instruction was
issued by a type 3 or 4 routine, the XCTL
routine checks the RSVC system load list to
determine if the requested routine is resi
dent or requires loading .•

IDENTIFY

The IDENTIFY service routine is entered
by the SVC SLIH in response to the issuance
of an IDENTIFY macro-instruction which is
an option in the fixed-task environment.

IDENTIFY builds and initializes a minor
request block to describe a routine speci
fied in the parameters of the IDENTIFY
macro-instruction, and chains this minor to
the loaded program list and to the RB of
the routine which contains the identified
routine. IDENTIFY returns to the issuer by
issuing an SVC EXIT instruction.

DELETE

The DELETE service routine is entered by
the SVC FLIH when a DELETE macro
instruction is issued. The DELETE routine
decrements the use count in the RB of the
routine specified in the parameters of the
DELETE macro-instruction. If the use count
reaches zero, DELETE dequeues the routine
from the loaded program list and issues a
FREE MAIN macro-instruction to release the

28

storage occupied by the specified routine
and its RB. On return from FREEMAIN,
DELETE repeats the deleting process for any
minors belonging to the specified routine.
DELETE returns by branching to the type 1
SVC exit.

If the RB of a routine is found in the
Resident Access Method system load list,
the use count is not decremented by DELETE
and the FREEMAIN macro-instruction is not
issued.

SYNCH

The SYNCH service routine is entered by
the SVC SLIH when a SYNCH macro-instruction
is executed. SYNCH uses GETMAIN to obtain
32 bytes of main storage from the lower end
of the partition for the creation of a PRB.
The PSW in the PRB is initialized by SYNCH
to address the location specified in
register 15 by the issuer of the macro
instruction. SYNCH sets the PSW completely
enabled in problem program mode, with the
protection key recorded in the task control
block. After the PRB is created and
initialized, SYNCH queues it on the active
request block queue below the SVRB for
SYNCH, and returns by issuing an SVC EXIT

. instruction.

COMMON SUBROUTINE (FINCH)

The FINCH service routine is entered by
a branch from seven other system routines
and it returns to them by a branch. The
seven service routines which branch to
FINCH are:

• ATTACH • SVC SLIH
• LINK • EXIT EFFECTOR
• LOAD • EXIT
• XCTL

FINCH uses the data management BLDL
routine to locate a named routine on an
external storage device,. Using the infor
mation provided by BLDL, FINCH initializes
the program fetch parameters and uses the
program fetch routine to bring the speci
fied routine into main storage. FINCH
allows for necessary RBs when issuing GET
MAIN, and initializes them with the RB type
and the size of the storage space they and
their routines occupy.

Program fetch, a part of the resident
nucleus, places into main storage load
modules obtained from the system library or
any other library organized as a parti
tioned data set. Program fetch is reenter
able; that is, it can be used concurrently
by more than one task. The module name of
program fetch is IEWFTMIN.

program Controlled Interrupt (PCI) fetch
is an optional program fetch module that
can be used in place of IEWFTMIN. The
module name of PCI fetch is IEwFTPCI.
Either IEWFTMIN or IEWFTPCI is selected at
system generation time. PCI fetch iIliproves
performance on some System/360 models by
requiring only one revolution of the disk
to place the contents of one track into
main storage. The dif,ferences between PCI
fetch and standard program fetch are point
ed out in notes throughout the chapter.

Program fetch has two entry points.
Contents supervision passes control to pro
gram fetch by br~nching to IEWMSEPT. over
lay supervision passes control to program
fetch by branching to IEWFBOSV.

A load module is placed into main stor
age using block loading, which places an
entire load module into a contiguous main
storage area. IEWFTMIN and IEWFTPCI oper
ate in block loading mode only. Standard
prograIli fetch requires one revolution of
the disk for each RLD record read. Stand
ard fetch waits for channel end so that it
can begin any necessary relocation. When
it has completed relocation, standard pro
gram fetch issues another EXCP to read the
next RLD and/or text record. Note: PCI
fetch reads in the RLD and/or text record
and then, rather than waiting for channel
end to occur, it uses a PCI appendage to
allow the channel program to read the next
RLD and/or text record into another buffer.
The PCI appendage gives control to the
relocation subroutine which performs any
relocation that is required on the contents
of the previous buffer while the next
buffer is being filled. This improved
performance assumes:

• That a buffer is always available for
RLD records to be read into.

• That no errors occur during I/O execu
tion.

J

• That no cyiinders are crossed while the
program is being fetched.

• That the speed of the CPU allows the

CHAP~ER 5: PROGRAM FETCH SERVICE ROUTINES
i

PCI appendage to change a CCW
NOP to a TIC to the next
program before the channel
that CCW.

HOW PROGRAM FETCH IS ORGANIZED

from a
channel

picks up

Program fetch is organized to perform
the following specific functions:

• Initialization. Performs initializa
tion procedures to prepare for the
loading of a module.

• loading.
records
storage.

Reads text
of a load

records
module

and RLD
into main

• Relocation. Adjusts values of address
constants to reflect the relocation of
a module that has been loaded into main
storage.

• Termination. Performs termination pro
cedures after a module has heen loaded
into main storage.

PROGRAM FETCH CONTROL FLOW

Program fetch receives control from con
tents supervision when either a LINK,
ATTACH, LOAD, or XCTL macro-instruction is
issued and a usable copy of the module
specified is not in main storage. When
contents supervision requests a block
module, program fetch loads the entire
module. A load module with the scatter
attribute is block loaded. When an overlay
module is requested, only the root segment
is loaded.

Program fetch receives control from
overlay supervision when a segment of an
overlay program specifies another segment
that is not in main storage either by a
branch or by issuing a SEGWT or CALL
macro-instruction. After receiving control
from overlay supervision, program fetch
loads the requested segment.

The initialization procedures shown in
Chart 05 are performed each time program
fetch begins execution. Control then pass
es to the loading routine, which reads in
the module. Relocatable address constants
embedded in text records are adjusted by

Chapter 5: Program Fetch Service Routines 29

the relocation routine. control passes
between the loading routine and the reloca
tion routine until the entire segment or
module is loaded and relocated'. Termina
tion procedures 'are then performed and
control is returned to the caller.

Note: PCI fetch performs relocation asyn
chronously with its input/output execution.

INITIALIZATION

Contents superv~s~on supplies program
fetch with the following parameters (see
program listing for contents of general
registers and fetch parameter list):

• Main storage address of applicable par
titioned organization directory record.

• Main storage address of an opened data
control block (DCB) to be used while
loading the module.

• Main storage address of the work area
to be used (see Figure 7).

• Main s'torage address of area into which
NOTE list is to be read for overlay
programs (see Figure 8).

• Main storage address at which to begin
loading the module.

• Return address in general register 14.

29A

Byte
r--------------------------------------,

01 CHPGl -Channel Program I
I (7 double words) I
I r--------T--------i

321 I ECB I lOB I
I I (1 word) I I
~--~-----------------4--------+--------~

641 lOB -Input/Output Block I IOBSKBUFI
I (8 words) IIOB Seekl
~---------T---------~--------+--------i

961 Buffer ISEEKBUF -Fetch seekl I
I (2 words) I Buffer (3 words) I I
~---------4-------------------J r-----i

1281 REGSAVE -Register Save Area I
I (10 words) I
~--------------------------------J

1601
1
I

1921
I
I

224 RLDBUF

Relocation Dictionary Buffer
256

(64 words)

288

320

352

384

Figure 7. Program Fetch Work Area

Overlay supervision supplies program
fetch with the following parameters:

30

• Main storage address of the data con
trol block (DCB) previously used to
read in the root segment.

• Main storage address of the note list
(loaded before the root segment).

• Main storage address of a work area for
use by program fetch.

Note: The work area for PCI fetch is
within the PCI program.

• Segment number of the requested segment
multiplied by 4.

• Return address in general register 14.

r----------T------7-----------------------,
I IRelocation factor for module I
I I I
~----------4--------------T---------------i
I I Concatenation I
I 1 Number 1
t-------------------------4---------------i
ITTRO - relative (to beginning of data I
Iset) disk address of segment 1 I
~---i
ITRRO- relative (to beginning of data I
Iset) disk address of segment 2 I L ___ J

r---,
ITRRO - relative (to beginning of data I
Iset) disk address of segment N I L ___ J

Concatenation Number - This a value
specifying this data set's sequential
position within a group of concaten
ated data sets.

Figure 8. Note List (in Main Storage)

After receiving control, program fetch
uses the parameters supplied to build an
input/output block (lOB), an event control
block (ECB), and a channel program (CCW
list) in the specified work area. The
channel program is used to read in the
program, and if necessary, the note list
containing the relative disk addresses of
the overlay module's segments. Figure 9
shows the relationship of the blocks and
tables used by program fetch to load block
and overlay modules.

Note: PCI fetch builds three channel pro
grams in the PCI fetch work area. The work
area also contains three relocation dic
tionary buffers.

r------------------,
r------------------->1 DCB (for library I
I r-->1containing program I
I I I being loaded) I I r-------, I L __________________ J

r------------, I ~ __ J

I I I lOB I r------------------,
I Parameter ~ _______ J ~----->~ ECB I I ~---, I .--, L __________________ J

I List ~-, I L ______ J I
I I I I r------------------,
L ____________ J I L-->1 Channel Program I

Block Modules

I L __________________ J

I
I
I r-------------, r---------------,
L--->~PDS Directoryl---------,

I Record ~------, I
I ~--, I I

I I
I·Direct-Access·1
I • - • Device •••••• I

I I I I I 1···············1 L ____________ J I I L_>+ _______________ ~

I I I Program I Block Module
I I .---------------~
I I 1·,··············1
I I 1·········,······1 I I L _______________ J

I I
-----------------------+-----------------------+---+-------------------------------------

Overlay Modules

r------------------,
I Legend I
I specifies I
1-----> a pointer I L __________________ J

r---------, L-_____ >~ I
I Note I
I I
I List I
I I
I I L _________ J

I
I
I
I
I

r---------------,
I ..•..•...•...•. I
I • Direct-Access. I
I •• • •• Device •••• I

I I••..•..... I L ____ >+ _______________ ~

I SEGTAB I
1-------- I Overlay Module
I Segment 1 I
.---------------~
I Segment 2 I
.---------------~
I segment 3 I
.---------------~
I segment 4 I

-------->+---------------~
I Note list I
.------------~ I•...•. I
1········· .. ,···,··1
I•....... I
I I
I ' I
1. , ••••.•••••••••• 1 L _______________ J

Figure 9. Blocks and Tables Used by Program Fetch

LOADING

A load module (Figure 10) consists of
control records. text records, RLD records,
and composite control RLD records. These
records are of variable length. Their
formats are shown in Appendix D.

After control is received from contents
supervision, program fetch obtains the

length and the relative disk address of a
module'S first text record from the parti
tioned organization directory record (see
Appendix D). subsequent text records are
read using the length given in the control
record preceding each text record. One or
more records containing RLD information
will follow a text record that has embedded
relocatable address constants. Program
fetch uses the RLD information to find and
adjust the values of the address constants.

Chapter 5: Program Fetch Service Routines 31

When loading a block or overlay module,
prograrr fetch alters the mode of its chan
nel program according to the type and
sequence of records contained in the module
(see Figure 11). The normal sequence of
records in a module is: control information

text record - control information - text
record. Two records are read at a time as
long as the normal sequence a text
record followed by control information
is encountered. When the second of the two
records read in the normal mode does not
contain control information, program fetch
alters the mode of the channel program so
that a subsequent EXCP macro-instruction
causes a single record to be read. Each
record read singly is checked for control
information. If present, program fetch

restores its channel program to the normal
mode. Text records are read into their
assigned main storage location; RLD records
are read into the RLD buffer.

As program fetch loads a module, it
reads the count record preceding each data
record into the fetch seek buffer. The
channel program's search command specifies
the last count record read. This is the
count record that precedes the last data
record that was read. When the count
record specified by the search command is
found, a subsequent read count, key and
data corrmand will result in skipping the
data record that followed the count record
and will begin reading at the next count
record, as shown in Figure 12.

r----------, r---------, r---------, r----------, r---------, r----------~-, r----------,
I Record 1 I
I Control I
I I
I 20 bytes I

IRecord 2 I IRecord 3 I I Record 4 I IRecord 5 I I Record 6 I
I Text I I Control I I Text I I RLD I IControl-RLD-1
I I I I I I I I I End-of-seg. I
1500 bytes I 120 bytes I 11024 bytes I 1260 bytes I I 200 bytes I

I Record 7 I
I Text I
I I
I 15 bytes I

L _________ J l _________ J L _________ J I. __________ J l _________ J L ____________ J L __________ J

Figure 10. Typical Load Module (Logical Format on Direct-Access Device)

r------------------------------T-------------------~-----------------------------------,
I INumber of Records I Source (if any) of Record Length I
I Condition IRead With Each I and Relative Disk Address (TTR), I
I IEXCP Issued I if not reading sequentially I
~------------------------------+--------T----------+------------------------------------~

I Standard I PCl I
I Fetch I Fetch I

Normal first EXCP for all
modules including root
segment of overlay modules

~--------+----------~ Partitioned Organization Directory
2 I reads Record

lall

Normal Mode

First EXCP for a segement

EXCP for a NOTE list

EXCP to read a control
and/or RLD record that prev
iously caused an incorrect
length input/output error

2

1

1

1

Ireco~ds
I connected
I with
Ithe
Iload
I module
I
I
11
I
Inot appli-
Icable for
IPCI
I
I

Control record provides record
length of following text record

NOTE list provides relative disk
address (TTR)

Partitioned Organization Directory
Record
None

Previous record was RLD only Inot appli- None
(did not contain control 1 Icable for

I information) IPCI
I I,
I EXCP for a module that con- I
I sists of one text record and 1 11
I no RLD records I
I I
I Last record of the module is Inot appli-
I ,a text record 1 I cable for
I IPCI

Partitioned Organization Directory
Record

Control record provides record
length of following text record

l ______________________________ .L ________ .L __________ .L-_____ , ______ ------------------------

• Figure 11. Conditions Affecting Channel Program Mode

32

Note: For PCI I I will result in a
fetch,a search I I subsequent read
for this count I I of data starting
record. I I here.

V V
Count Data Count Data Count Data Count Data Count Data Count Data
r--T-T-------T-T--T-T--------T-T--T-T-------T-T--T-T--------l-T--T-T-------T-T--T-T------
I
I I I Control I I I I Text I I I I Control I I I I Text I I I I Control I I I I Text
I L __ ~_~ _______ ~_~ __ ~_~ ________ L_L __ L_L _______ ~_L __ ~_L ________ J_L __ L_L _______ L_L __ L_L _____ _

1\ 1\

I I I I l _________________ I ____________ J I

Pr€vious EXCP I I
I I
A search for Will result in a
this count subsequent read
record count, key and data

starting here

Figure 12. Typical Load Module (Physical Format on Direct-Access Device)

Note: For PCI fetch, the search command
specifies a count record and the subsequent
read begins with the data that follows that
count record. See Figure 12.

Program fetch causes a
be read by turning off the
bit in the first read CCW
program when either of the
tions occur:

single record to
command chaining
of the channel
following condi-

• The last text record of a module is to
ce read (indicated by the setting of
the end-of-segment bit in the preceding
control record).

• A module to be loaded consists of a
single text record without any RLD
information following it <indicated by
the module's attributes in the PDS
directory) .

Overlay Modules

When an overlay module is loaded, its
NOTE list is first read into main storage.
The root segment is then read into main
storage using normal block loading proce
dures.

While an overlay program is being exe
cuted, the NOTE list which contains the
main storage address of the SEGTAB and the
relative disk addresses of the module's
segments, remains in main storage.

After the root segment has been loaded
the SEG'IAB is initialized. Program fetch
inserts, into SEGTAB, the ma1n storage
address of data control block (DCB) and the

NOTE list, and if required, sets the
~ESTRAN indicator.

To read in a segment other than the root
segment, program fetch uses a relative disk
address found in the NOTE list to read the
first control record of the segment. The
information in the control record is used
to begin reading in the segment in the
normal mode.

End-of-Extent Appendage

A load module may reside in one or more
extents on a direct-access device. The
boundaries of these extents are specified
in the data extent block (DEB) for the
library containing the module being loaded.
When an EXCP macro-instruction is issued
that results in crossing one of the extent
boundaries within which a portion of the
module being loaded resides, the
input/output supervisor passes control to
program fetch's end-of-extent appendage.
The appendage acquires the beginning extent
boundary for the next portion of the load
module from the DEB, places it into the
unit control block (UCB), and returns con
trol to the input/output supervisor.

Input/Output Errors

All input/output errors are handled by
the I/O supervisor, except incorrect length
errors occurring while reading control
and/or RLD records.

Chapter 5: Program Fetch Service Routines 33

~ For PCI fetch, all input/output
errors are handled by the I/O supervisor.

Normally. an incorrect length indication
is expected when reading control and/or RLD
records, since they are variable length and
their specific length is not known in
advance. After reading such a record with
a maximum possible count (256 bytes), pro
gram fetch examines the content of the
record to check that what was read was of
correct length. If this check fails, pro
gram fetch makes one more attempt to read
the record, this time with the exact
expected count. If the attempt to reread
fails, control is given to the caller and
an error code is passed.

RELOCATION (ADJUSTING ADDRESS CONSTANTS)

Program fetch adjusts address constants
by adding (or subtracting) a relocation
factor to (or from) the address constant's
value that is embedded in the load module.

When a module is block loaded, its
relocation factor is the difference between
its linkage editor assigned address, which
is always zero, and the first byte of main
storage into which the module is to be
loaded. For example, assume a module is to
be loaded into main storage beginning at
address 4000. If the RLD flag bit is
positive a relocation factor of +4000 is
added to the relocatable address constant.
If, however. the RLD flag bit is negative.
the relocation factor is subtracted from

34

the address constant
RLD entry format).
assigned address
address constant is
dictionary (RLD).

(see Appendix D for
The linkage editor

of every relocatabl€
given by the relocation

Address constants in the root segment of
an overlay module are adjusted in the same
manner as those in a block module. The
root segment's relocation is used to adjust
the address constants of all segments of
the module since an overlay module is
essentially block loaded. The relocation
factor is stored in the NOTE list by
program fetch and is available throughout
the execution of the overlay module.

TERMINATION

When a block module or the root segment
of an overlay module has been loaded,
program fetch computes the relocated entry
point of the module and places it in the
fetch (parameter) list. When a root seg
ment of an overlay module is loaded, pro
gram fetch also inserts the main storage
address of the data control block <DCB) and
the NOTE list into the segment table
<SEGTAB).

To specify a successful or unsuccessful
loading, program fetch passes the appropri
ate termination code to its caller. Con
trol is then returned to the caller via a
branch to the address in the link/return
register.

CHAPTER 6: OVERLAY SUPERVISION SERVICE ROUTINES

The overlay superv1s1on service routines
control the loading of overlay program
segments and assist the flow of control
between the segments of an overlay program.
While performing these functions, these
routines place data into and use data from
the segment table (SEGTAB) and the entry
tables (ENTABS).

Because the segment and entry tables are
part of each overlay program, the overlay
supervisor is reenterable and its services
can be used concurrently by many overlay
programs.

During execution, an overlay program
issues requests for segments. The requests
can be explicit via a SEGLD or SEGWT
macro-instruction or implicit via a branch
that is routed through an ENTAB. In either
case, the overlay supervisor receives con
trol from the SVC handler and checks the
SEGTAB to determine whether the requested
segment is in main storage. If not, the
overlay supervisor requests program fetch
to load the segment. When this segment is
part of an overlay program that is being
tested, the overlay supervisor also passes
control to the TESTRAN interpreter.

Program fetch and the TESTRAN interpret
er each return control to the overlay
supervisor after their functions have been
performed.

SEGLD is not supported in this configu
ration; a SEGLD request is treated as a NOP
instruction.

TABLES USED BY OVERLAY SUPERVISION

The segment table (SEGTAB) and the entry
tables (ENTABS) that contain the data ,used
by the overlay supervisor are created by
the linkage editor from information in the
relocation dictionary (RLD) and the user's
control statements.

Figure 13 shows the SEGTAB and ENTABs in
a typical single region overlay structure;
the ENTAB and SEGTAB formats are given in
Appendix E.

r------,
ISEGTABI
1- I
I I
I I
I I
I TEXT I
I I Root segment
I I (Seg 1)

I I
1- I
IENTAB I

r------y----~------~-----T------,
111111111111111111111111111111111
~------+-----------------+------~
I I
I I
I I
I TEXT I TEXT
I ISeg 2 Seg 5
I I
1- I
IENTAB I

r------T-~------L--T------,
1111111111111111111111111111
~------+------------+------~
I I
I I
I TEXT I TEXT
I ISeg 3 Seg 4
I I
I I
I I L _____ -..I

______ J

L ______ J

Figure 13. Single-Region OVerlay Structure

USE OF SEGMENT TABLE

The segment table (SEGTAB) contains data
that describes the structure and status of
an overlay module, and is a directory for
the segments of that module. It contains
both fixed and variable information. The
fixed information includes:

• TEST indicator. This indicator is set
by program fetch if the partitioned
organization directory record indicates
that the program is being tested under
TESTRAN.

Chapter 6: Overlay Supervision Service Routines 35

• Last segment number of each region.
This value defines the segment that
ends a region and is used to determine
the region that contains a particular
segment.

• Previous segment number of each segment
in the module. The overlay supervisor
uses this field to determine the addi
tional segments that must be loaded
with the requested segment. (These
additional segments are those in the
path of the requested segment.)

The variable information includes:

• Pointers. These pointers are addresses
of the NOTE list and DCB.

• Highest number segment of each region
in main storage. This value is ini
tialized to 1 for the first region by
the linkage editor.

• Status indicator for each segment. The
overlay supervisor sets a status indi
cator for each segment to indicate
either that the segment is not in main
storage" that the segment is being
loaded into main storage, or that the
segment is present in main storage.

For more information about the SEGTAB,
see Appendix E.

USE OF ENTRY TABLES

The entry tables (ENTABS) assist in
passing control between the overlay super
visor and an overlay program. They handle
downward branches in an overlay program,
that is, the branches to segments lower in
the path.

When the overlay program executes an
upward branch, the overlay supervisor is
not entered" and the ENTABs and SEGTAB are
not used. An upward branch is direct
because segments in the path are always in
main storage (Figure 14).

36

r------------------~------------------,
I I
I SEGTAB I
I I L _____________________________________ J

R r-------------------------------------,
o I SEG1 CSECT I
o I ENTRY EASY I
T I I
ILlS" ADCON1 I

S I BR 15 I
E I I
G I I

I I
r--> I EASY SR 1,1 I
I I I
I I I
I I I
I I ADCON1 DC V(FOX) I
I I I
I I I
I I I I, L _____________________________________ J

I
I
I
I
I
I E
I N
I T
IA

r-------T-------T-------T-------------,
IB DISP IADDRESSISEG NO.1 I
1(15,,0) lof FOX lof FOX I I L _______ ~ _______ ~ _______ ~ _____________ J

I B r------T--------------T------T---T----'
I ISVC 451L 15,4(0,15) IBR 15 I I I
I I I I I I I I L ______ ~ ______________ ~ ______ ~ ___ ~ ____ J

I
I
I
I
I
I
I

r------------------------------,
I SEG 3 CSECT
I
I
I

I I L
L----------+------------BR

I
I
I
I ADCON2
I
I

DC

15,ADCON2
15

V (EASY)

L _____________________________ _

Figure 14. overlay Program Upward Branch

Branching to a Segment Not in Main storage

When an overlay program branches to a
segment not in main storage, control is
passed to the applicable ENTAB (step A of
Figure 15). The branch instruction in the
ENTAB passes control to an SVC instruction
contained in the first field of the last
ENTAB entry (step B). The SVC instruction

causes an SVC interruption, and passes
control to the SVC handler and then to the
overlay supervisor (step C). The overlay
superv1sor uses a pOinter in general reg
ister 15 to obtain the information required
to:

• Pass control to the requested segment
at the entry point specified by the
address of the entry point field in the
ENTAB.

r

• Determine the number of the requested
segment from the ENTAB.

After the segment is loaded" control is
returned to the second field of the last
ENTAB entry. the instruction following the
SVC (step D). When the load and branch
instructions have been executed, control is
passed to the correct entry point.

• Determine the status of the requested
segment from the SEGTAB.

r--,
1 1
I ~AB 1
1 1 L __ J

R r--,
o 1 SEG1 CSECT 1
o 1 ENTRY EASY 1
TIL 15,. ADCON1 1

••••••••• I. • •• • • • • • •• BR 15 1
S I 1
Ell
G 1 EASY SR 1.1 1

Step All
1 ADCON1 DC V (FOX) 1 L __ J

r---------------T--------------T-------~--------------------,
•••••••• >1 B DISP(15.,0) 1 Address of Iseg.no·1 1

1 1 FOX 1 of FOX 1 1 E L-______________ ~ ____________ ~ ______ _L _____________________ J

N
T ••• step B ••••
A V
B r-------T--------------T-------T-------T---------------------,

..... step C 1 SVC 451L 15,4(0,,15) 1 BR 15 1 IAddress of SEGTAB 1

V
,---------1
1 Overlay 1 •••••••• Step
1 Supervisor 1 L __________ J

1\

1
V

r----------,
1 Program -I
1 Fetch 1 L __________ J

SEG2 CSECT
ENTRY FOX

'.

L _______ ~ ______________ ~ _______ ~ ______ ~ ____________________ J

1\

D ••••.• •••••

r-------------------------------------,
1 SEG3 CSECT 1
1 1
1 1

step E I L 15.,ADCON2 I
1 BR 15 1
1 1
1 1
1 ADCON2 DC V (EASY) 1 L __________________________________ J

FOX AR 1,2 1<

L ___ _ _____ J

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
X X
X ••••• > Shows control flow X
X X
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Figure 15. Branch to Segment Not in Main Storage

Chapter 6: overlay supervision Service Routines 37

Branching to a segment in Main Storage

When a segment is loaded into main
storage, because of an implicit call (a
branch through an ENTAB), the displacement
(DISP) field in the ENTAB entry through
which the branch was routed is increased by
2 (Figure 16). When the overlay program
executes another branch to this ENTAB
entry, the SVC instruction is bypassed, and
control is given to the second field of the
last ENTAB entry. Execution of the
instruction in this field causes general
register 15 to be loaded with the main
storage address assigned to the indicated
symbol. A branch to that location is then
executed.

A caller is an ENTAB entry that assisted
in routing a branch from a segment to an
entry point in a segment lower in the path.
ENTAB entries that have been modified to

bypass the SVC instruction are chained
together in a caller chain (Figure 17).
Thes.e entries are chained only if the
called and calling segments are located in
the same region. Chaining is accomplished
by placing a pointer to (address of) the
modified ENTAB entry into the caller field
of the SEGTAB when the segment is brought
into main storage. If this segment is
requested again, the contents of the SEGTAB
caller field (a pointer to a previous
caller) is placed into the previous caller
field of the referred to ENTAB entry, and a
pointer to this ENTAB entry is placed in
the caller field of the SEGTAB. In this
way, a chain is created that begins at the
SEGTAB entry and points to all the ENTAB
entries (in the same region) that were
modified (+2) to bypass the SVC 45 instruc
tion. When the segment is to be overlaid,
the caller chain is used to reset all of
the modified ENTAB entries in the chain.

r--,

r----------,
I Overlay I
I supervisor I L __________ J

R
o
o
T

S
E
G

I I
I SEGTAB I
I I L-___ J

r--,
SEG1 CSECT -- I

EASY

ADCON1

ENTRY EASY I

L
BR

SR

DC

15,ADCON1
15

1.,1

V(FOX)

I
I
I
I
I
I
I
I
I __ J

r---------------T--------------T-------~--------------------,
•••••• >1 B DISP(15,0) I Address of Iseg.no·1 I

E
N
T
A
B

I I FOX I of FOX I I L _______________ ~ ______________ ~ _______ ~ _____________________ J

V

r-------T--------------T-------T-------T---------------------,
I SVC 451L 15,4(0,15) I BR 15 I IAddress of SEGTAB I L _______ ~ ______________ ~ _______ ~ _______ i_ ____________________ J

r--------------------,
ISEG2 CSECT I
I ENTRY FOX I
I I
I FOX SR 3,41< ••••••••••••••••
I I
I I
I I L ____________________ J

Figure 16. Branch to Segment in Main Storage

38

ENTAB - Segment N
r------T------T-------------,
I I I I First

Caller of
Segment 2

I +2 I I 0 1 <-------,

Third
Caller

1 1 1 1
I 1 1 1
~------+------+-------------~
1 I 1 1
1 I 1 1
~------+------+-------------~
1 I 1 1
1 I 1 1
~------+------+-------------~
1 +2 1 I Address 1<----1
1 1 I ~--, 1
~------+------+-------------~ 1.1
1 I 1 1 1 1
1 I I 1 I 1
~------+------+-------------~ 1 I
1 +2 I 1 Address I<-J 1

SEGTAB
r-----------------------------------,
1 I

I 1
.---T--------------------I----------~
I I 1 Second

Caller , 'I ~-----+--J 1 0 I 1
~------+------+-------------~ 1 I 1 1

Fourth
Caller

I +2, I Address ~-----J ~---+--------------------I----------~ I I 1 I<------------~ 1 Address of last
L-_____ ~ ______ ~ _____________ J I 1 I caller of segment I

1 I 2 1
.---+--------------------I----------~
1 I 1
1 1 1 I 1
1 1 1 L ___ ~ ____________________ I----------J

Figure 17. Chaining of ENTAB Entries Used to Branch to a Segment

HOW OVERLAY SUPERVISION IS ORGANIZED

Overlay superV1S10n is composed of a
resident module called overlay supervisor 1
and either of two non-resident modules
selected at SYSGEN time called overlay
supervisor 2.

The module name of overlay supervisor 1
is IEWSVOVR: the module name of overlay
supervisor 2 is IEWSYOVR for the basic
synchronous module or IEWSXOVR for the
basic synchronous module with optional
SEGWT checking. To pass control to either
version of overlay supervisor 2, overlay
supervisor 1 issues a LINK macro
instruction that specifies IEWSZOVR, which
is the member name of the selected module
in the LINKLIB.'

OVERLAY SUPERVISION CONTROL FLOW

The resident module
points: IGC037 and IGC045.
passes control to IGC037 as
SVC 37 instruction

has two entry
The SVC handler
a result of an
(SEGWT macro-

instruction), or to IGC045 as a result of
an SVC 45 instruction (an intersegment
branch that is routed through an ENTAB).
An SVC 37 instruction with zero in general
register 0 specifies a SEGLD macro
instruction, whereas a one in general
register 0 specifies a SEGWT macro
instruction. (SEGLD is treated as a NOP in
a Single-task environment.) Chart 06 shows
overlay supervisor control flow.

Overlay supervisor 1 is permanently
resident in the nucleus of the operating
system. It performs the first portion of
initialization and then links to overlay
supervisor 2. When control is returned to
overlay supervisor 1" it performs the
remaining termination procedures and issues
an SVC EXIT instruction.

When a requested program is an overlay
program, contents supervision issues a LOAD
macro-instruction to bring overlay supervi
sor 2 into main storage. Overlay supervi
sor 2 remains in main storage for the
duration of the task that required it.
When given control by overlay supervisor 1,
overlay supervisor 2 performs the remaining
initialization procedures, loads the
requested segments, updates the segment

Chapter 6: Overlay Supervision Service Routines 39

table (SEGTAB) and entry tables (ENTABs),
performs some termination procedures, and
then returns control to overlay supervisor
1.

INITIALIZATION

During linkage editor processing, if the
address constants of a segment are resolved
to an ENTAB, the number of the segment is
placed in the high-order byte of the
address constants. The v-type address con
stants that are not resolved to an ENTAB
contain a zero in their high-order bytes.
The address constants can be the result of
an expansion of a SEGLD, SEGWT, or CALL
macro-instruction" or the result of the
user creating an address constant for use
with a branch instruction. If a SEGLD or
SEGWT request is received and the high
order byte of the v-type address constant
is zero, the request is treated as a NOP.

The overlay supervisor obtains the
segment number of the requested segment
from the "to segment number" field in the
ENTAB. The overlay supervisor obtains the
address of the SEGTAB from the last entry
in the ENTAB" and checks the SEGTAB to
determine the segment's status and rela
tionship to the overlay structure.

The basic synchronous module with
optional checking {IEWSXOVR} detects over
lay requests that would cause the request
ing segment to be overlaid. This module
checks only those requests that result from
the execution of a SEGWT macro-instruction.

UPDATING OF TABLES

Before segments are loaded, the overlay
supervisor updates the SEGTAB and ENTABs of
the overlay program to reflect the changes
to be made in the overlay structure present
in main storage. For each segment that is
logically overlaid" a status indicator is
reset in the SEGTAB. The SEGTAB is scanned

40

to find the caller chains (Figure 15),
which are used to reset the ENTAB entries
to their original state (the state before
the segment containing the corresponding
entry point was loaded into main storage).
The ENTAB entries are reset by subtracting
+2 from the displacement field of the
branch. When the SEGTAB and ENTAB entries
of the last segment have been updated, the
segments are loaded.

SEGMENT LOADING

During segment loading, the overlay
supervisor scans the SEGTAB to determine
which segments are needed and directs pro
gram fetch to load the requested segment
and all segments in its path that are not
in main storage.

TERMINATION

The overlay supervisor checks the TEST
indicator in the SEGTAB to determine if the
overlay program is "under test". If under
test, a LINK macro-instruction is issued
specifying the TESTRAN interpreter. After
TESTRAN interpreter execution, control is
returned to overlay supervisor.

If the overlay supervisor was entered
via an SVC 45 instruction (through an
ENTAB), and the ENTAB through which the
request was routed is in the root segment
or is in the same region as the requested
segment" the caller chain is updated
(Figure 15) and the address field of the
branch is altered in the calling ENTAB. If
the requesting and requested segment are
not in the same region" the caller chain
and the branch instruction in the ENTAB are
not altered. subsequent branches to an
altered ENTAB entry are routed directly to
the segment.

Control is returned to overlay supervi
sor 1.

CHAPTER 7:

The time superv1s10n service routines
are an optional feature of the fixed-task
supervisor for installations that have
selected the hardware timer as a part of
their Computing System/360. Time supervi
sion processes requests for the date and
time of day, and requests for setting a
time interval interruption, for checking if
that interval has elapsed" and for cancel
ling that interval. Additional functions
include maintaining a queue of pending
requests and maintaining the relationship
between the actual time of day and the
hardware.

HOW TIME SUPERVISION IS ORGANIZED

Time supervision is made up of the
following service routines: timer second
level interruption handler (SLIH), STIMER,
TIME, and TTIMER.

The timer SLIH monitors all types of
interval expirations" including those of
the control program, and maintains the
queue of time interval requests.

The STIMER service routine sets an
interval into a software interval timer"
specifies when that interval timer is to be
decremented and what action is to be taken
when an interruption signals completion of
the interval. It does these things in
response to an STIMER macro-instruction.

The TIME service routine places the time
of day in register 0 and the current date
in register 1, when requested through a
TIME macro-instruction. The time returned
is the time of day based on a 24-hour clock
that is set with local time by the operator
through the SET command.

The TTIMER service routine tests the
interval timer in response to a TTIMER
macro-instruction, and places in register 0
the time remaining in the TASK or REAL
interval previously set by an STIMER macro
instruction. The TTIMER service routine
can also cancel previously specified
intervals.

THE TIMING ALGORITHM

Within the timer SLIH is a 4-byte field
called the 6-hour pseudo clock (SHPC). By
manipulating the values contained in the

\

TIME SUPERVISI6N SERVICE ROUTINES (OPTIONAL)

SHPC and the hardware timer, time supervi
sion maintains real time while timing a
prespecified interval.

For example, assume that the 6-hour time
of day (TOD), defined as equal to the
contents of the SHPC minus the contents of
the hardware timer, is zero hours. A
request is received for a one hour inter
val. This is accomplished by placing one
hour in the SHPC and in the timer.

SHPC - timer = 6-hour TOD
1 hour - 1 hour = 0 hour

After an hour, the contents of the timer
have automatically decremented to zero and
an interruption occurs.

SHPC - timer = 6-hour TOD
1 hour - 0 hour = 1 hour

If a 2-hour interval is requested, t~o
hours is added to the timer and two hours
is placed in the SHPC.

SHPC - timer = 6-hour TOD
(1 hour + 2 hours) - 2 hours = 1 hour

Two hours later" when the interruption
occurs, the correct 6-hour TOD of three
hours is indicated by the SHPC.

To correlate the internal, software
pseudo clock time with real time, two other
pseudo clocks are maintained by time super
vision. One is a 24-hour pseudo clock
called the T4PC. The other is a local time
pseudo clock called the LTPC.

Each time the SHPC reaches six hours the
SHPC is reset to zero and six hours is
added to T4PC. The T4PC is reset to zero
each time 24 hours pass. The T4PC is
initially set to zero at initial program
load. The contents of the T4PC plus the
6-hour TOD is defined as the T4PC TOD.

The contents of the LTPC initially is
equal to the time keyed in at the console
by the operator ttrough the SET command.
The local time of day which is returned"
when requested, is computed by adding the
contents of the LTPC to the T4PC TOD.

The three basic time relationships of
the timing algorithm are:

• The 6-hour TOD is equal to the contents
of the 6-hour pseudo clock minus the
contents of the hardware timer.

Chapter 7: Time Supervision Service Routines (Optional) 41

• The 24-hour TOO is equal to the con
tents of the 24-hour pseudo clock plus
the 6-hour TOO.

• The local TOO is equal to the contents
of the local time pseudo clock plus the
24-hour TOO.

Time supervision maintains a queue
(Figure 18) of timer queue element
(Figure 19) representing interval requests.
The timer queue is a two-way chain ordered
so that the request for the next interrup
tion is at the top of the queue" while the
request for the last interruption is at the
bottom of the queue. To ensure tha·t the
timer queue element is inserted at the
right place in the queue when a new request
is received" the interval requested is
translated into a value that is relative to
the software clocks. This is done by
adding the value of the interval requested
to the 6-hour TOO. This new value is
placed in the TQVAL field of the timer
queue element and is used by the queueing
subroutine of the timer SLIH to position
the element on the queue.

r-----------------------------------,
I SHPC = 6-Hour Pseudo Clock I l ___________________________________ J

r-------~---------------------------,
I T4PC = 24-Hour Pseudo Clock I l ___________________________________ J

r-----------------------------------, I LTPC = Local-Time Pseudo Clock I l ___________________________________ J

r-----------------------------------,
I TQPTR = Pointer to Timer Queue ~--, r-> l ____________________ , _______________ J I

I I
I r-----------------------------------,<-J
L __ ~ 6-Hour Element ~--,

r->l-----------------------------------J I
I I
I r-----------------------------------,<-J
l--~Midnight Element .--,
r->l-----------------------------------j I
I I
I r-----------------------------------,<-J L--i Pseudo Element I l ___________________________________ J

Figure 18. Timer Queue

When the element reaches the top of the
queue, the interval placed in the timer is
calculated by subtracting the value of the
contents of the SHPC from the value of the
contents of the TQVAL field of the element.
The result of this subtraction is added to
the timer, while the unsubtracted value of
the contents of the TQVAL field of the
element is placed in the SHPC.

42

r--------~---------~--------------------,
I Flags I TCB I Pointer I
I I Pointer I to Successor I
.---------~----------+--------------------~
I Pointer I TQVAL = Time of I
I to Predecessor I Expiration (TOX) I
.--------------------+--------------------~
I PRB I Exit I
I Pointer I Pointer I
.-------------------~--------------------~
I I
I I
I Save Area for 16 Registers I
I I
I I l ___ J

Figure 19. Timer Queue Element (96 Bytes)

At initial program load" two permanent
entries are placed on the ·timer queue
representing time supervision interval
requests. One is a 6-hour interval request
and the other is a request for an interval
that is calculated to cause an interruption
at midnight, local time. When the midnight
interruption occurs, time supervisor incre
ments by one the day-of-the-year count
obtained from the operator's SET command.
When the six-hour interruption occurs, time
supervision updates the T4PC and decrements
by six hours the contents of the TQVAL
field in each of the elements in the timer
queue. In addition, a pseudo element is
placed at the end of the queue to mark the
queue's terminal point.

TIME SUPERVISION CONTROL FLOW

As shown in Chart 01, the flow of time
supervision is generally through two paths.
In the first path, control is received from
the SVC FLIH by one of the three SVC
routines STIMER, TIME, and TTIMER.
STIMER and TTIMER interface with the timer
SLIH's queueing and de queueing subroutines.
TIME and TTIMER return by branching to the
type 1 SVC exit, while STIMER executes an
SVC EXIT instruction. In the second path,
control is received from and returned to
the T/E FLIH by the timer SLIH by branch
ing.

STIMER

The STIMER service routine sets up time
intervals, represented by timer queue ele
ments, at the completion of which a
timer/external interruption will occur.
When entered, STIMER initializes the timer
queue element's fields. STIMER uses the
queueing subroutine of the timer SLIH to

insert the newly created timer
ment into the timer queue.
interval is requested, STIMER
SVC WAIT instruction.

TIME

queue ele
If a WAIT

executes an

The flow through the TIME service rou
tine consists of testing the input parame
ters of the TIME macro-instruction for the
existence of the various options.

The time
26-microsecond
binary units,
always given
(LTOD). This
the formula

whether formatted in
timer units" ten-millisecond

or packed decimal form -- is
in terms of local time of day
is calculated according to

LTOD = LTPC + T4PC + SHPC-timer

where LTPC is the contents of the local
time of day pseudo clock, T4PC is the
contents of the 24-hour pseudo clock, SHPC
is the contents of the 6-hour pseudo clock,
and timer is the contents of the hardware
timer at location 80.

The local time
register 0, and the
register 1.

TTlMER

of
day

day
of

is
the

placed in
year in

The TTIMER service routine determines
how much time remains in an interval
requested by a previous STlMER macro
instruction, and cancels the interval. if
the CANCEL parameter is present .•

When entered, the TTlMER routine
determines whether the interval has
expired. If it has, no action is taken.
If it has not, the time rema~n~ng in the
tested interval is returned to the user in
register O. TTIMER tests for the cancel
option and, if it is present, TTlMER uses
the dequeueing subroutine of the timer SLIH
to take the timer queue element off the
timer queue.

TIMER SLIH

The timer SLIH receives control from the
T/E FLIH when a timer interruption occurs.
The SLIH identifies the type of interval
that has expired and then satisfies the
specific requirement.

The SLIH removes the expired timer queue
element from the timer queue through one of
its two major subroutines (the dequeueing
subroutine) resets the hardware timer to
time the next interval on the queue, and
resets the SHPC. The action taken by the
SLIH after an expiration depends on the
interval type:

• If it is a WAIT type, the SLIH executes
the SVC POST instruction.

• If it is a REAL or TASK type, and an
exit address was specified, the exit is
scheduled through the Exit Effector
routine.

• If it is a 6-hour time supervision
type, six hours is subtracted from the
TQVAL field of each timer queue ele
ment, and the 6-hour interval request
is queued again.

• If it is a midnight time supervision
type, the day-of-the-year count is
incremented by one and the midnight
interval request is queued again.

Queueing Subroutine

The queueing subroutine of the timer
SLIH is used by the dispatcher, the SLIH,
STlMER, and by the SET command handler of
job management, to place a timer element on
the timer queue. The dispatcher uses the
routine when placing a task with a time
interval request in control of the CPU.

The queueing subroutine converts the
absolute time interval in the element to a
relative time based on the 6-hour TOD. If
the interval is found to be smaller than
the current interval on the queue., the new
smaller interval is added to the timer and
placed in the SHPC. If the interval is not
smaller, the correct insert point on the
queue is located for the element" which is
queued.

Dequeueing Subroutine

The dequeueing subroutine is used by the
dispatcher" STlMER, and TTlMER to remove
elements from the timer queue by pointer
manipulation. If the element was at the
top of the queue" control is passed to the
SLIH, which resets the timer and SHPC.
Control is passed back to the caller by a
branch, at the completion of the dequeueing
subroutine., unless a branch was made to the
SLIH, which returns control directly to the
caller.

Chapter 7: Time Supervision Service Routines (Optional) 43

CHAPTER 8: SYSTEM ENVIRONMENT RECORDING -- MODELS 40, 50. 65. 75

System environment recording (SER) is a
set of' optional control program routines
that record hardware malfunctions of the
CPU and channels in System/360 Models 40.
50, 65, and 75. The user may choose to
have no SER routines or either of two
model-dependent versions of SER called SERO
and SER1.

As explained in Chapter 1 in "Machine
Check Interruptions," when a machine check
interruption occurs (CPU check switch must
be in process mode), either the computer is
placed in a wait state or control is given
to SER. SER may also be entered by the SER
interface of the I/O supervisor if a chan
nel error occurs. If the computer is
placed in a wait state, the operator runs a
standard, separately-packaged diagnostic
program called SEREP, described in the
publication IBM System/360: General Pro
gramming Considerations.

HOW SER IS ORGANIZED

The less complex version of system envi
ronment recording, SERO, determines the
type of malfunction and, if possible,
writes out a record describing the error on
a data set called SYS1.LOGREC. This data
set resides on the primary system residence
volume. If SERO cannot write the record,
the computer is placed in a wait state and
a message is printed to the operator to use
SEREP. If the recording is partially or
fully completed, the computer is placed in
a wait state and a message is printed to
the operator requesting him to reload the
operating system .•

The more complex version of system envi
ronment recording, SER1. also collects and
writes out hardware environment data, but
in addition, it performs selective termina
tion analysis which attempts to associate
the error with a specific task.. If the
error can be associated with a specific
task and if the control program has not
been damaged by the error. the task is
terminated abnormally; if not. the computer
is placed in the wait state.

When the SYS1.LOGREC data set has been
filled, the operator runs the environment
recording edit and print (EREP) routine.
This routine formats and writes the records
placed on SYSl.LOGREC by SER onto printer.
tape, or disk according to user specifi-

44

cations. EREP is described
System/360 Operating System:
Program Logic Manual, Technical
Number Y28-2163.

in the IEM
Utilities,
Newsletter

As described in Charts 10 and 11" SERO
collects, formats, and writes error infor
mation resulting from a machine check or
from a channel error. The program is
divided into two modules: the load nucleus
resident module IFBSROOO, and the link
library resident module., IFBSEROO.

Load Nucleus Resident Module -- IFBSROOO

The resident portion of SERO is non~
reusable and does not require Operating
System/360 facilities. The primary
functions of this module are to halt all
I/O activity and to read the first text
record of the non-resident portion of S~O
into an area which begins 32 bytes past ~he
nucleus.

If a machine check occurs, the resident
module gains control directly from the
machine-check new PSW. If a channel error
is detected, the module is entered from the
I/O supervisor which loads the machine
check new PSW.

This module saves information to be used
later by the non-resident portion of SERO
in a 22-byte field in lower storage. After
it has halted I/O on all devices. the
module reads the first 1024 bytes of
IFBSEROO into storage. If after ten
retries, the resident module is not able to
read IFBSEROO into main storage, it sets up
the lOS wait state code OOOFOA and branches
to the Bell Ring/Wait State module which
sounds the console alarm and places the
computer in the wait state. The code
OOOFOA is displayed in the instruction
counter.

Link Library Resident Module -- IFBSEROO

Like IFBSROOO, the IFBSEROO module does
not require any operating system facili
ties. There is an IFBSEROO module for each

>ystem/360 Model; the appropriate module is
;elected at SYSGEN time.

After the module loads the remainder of
ltself into main storage, it checks loca
:ion 50 to determine which type of error
las occurred. This location is preassem
)led to X'FF'. If the error is a machine
:heck, location 50 is overlaid by the
nachine-check old PSW; a channel error does
lot change location 50. Once the type of
~rror is established, the routine sets up
:he appropriate kind of record entry 1n
~hich to place information about the error.

The routine enables itself for machine
:heck interruptions. If it is already
;ollecting error data and receives a
nachine check interruption, the routine
,tops all data collection and writes out
~hat it has accumulated up to that point.
[f a third error occurs, the routine cannot
;ontinue; it prints out an error message .•

If IFBSEROO was entered because of a
nachine check interruption, the general
?urpose registers are checked for valid
?arity on all models except Model 40.
Parity indicators are available for all
registers except 13, 14, and 15 on Models
50 and 75. Floating point registers are
~lso checked for valid parity if the model
is equipped with floating point.

The routine checks the busy bit in each
Wlit control block CUCB) to determine which
I/O units were busy when the error
)ccurred. The addresses of up to ten busy
I/O devices are collected. The routine
then fills in a record with the program
identification, day, and time. After exam
ining the seek address obtained from the
~eader record of the SYSi_LOGR~C data set,
the routine writes on that data set the
~ecord it has just created and an end-of
file record.

If the routine records a partial or
complete error record, it informs the
~perator by printing a message or display
ing a code in the instruction counter.

i. IFBF05W MACHINE ERROR. RELOAD OS/360
This indicates that no machine check
interruptions occurred during the data
collection phase of the routine and a
complete record entry describing the
error was placed on SYS1. LOGREC.

2. IFBF06W MACHINE ERROR. RELOAD OS/360
This indicates that a machine check
interruption occurred during the data
collection phase of the routine. but
the attempt to place a partial data
record on SYSi.LOGREC was successful.

3. The lOS display code 000F05 or 000F06
is set up and the routine branches to

the Bell Ring/Wait State module. This
indicates that the routine has com
pleted its function as described in
either 1 or 2 above but was unable to
print a message to the operator.

If the routine does not write
record it issues one of the
messages:

an error
following

i. IFBFu7S MACHINE ERROR. EXECUTE SEREP
Successive machine check errors have
occurred during the data collection
phase of the routine and the attempt
to place a partial record on
SYS1.LOGREC was not successful.

2. IFBF08S MACHINE ERROR. EXECUTE SEREP
Because of I/O errors, the data col
lected on the original error was not
entered on SYSi.LOGREC.

3. IFBF09S MACHINE ERROR.
The SYSi.LOGREC data
the safety byte in its
was off.

EXECUTE SEREP
set was full or
header record

4. IFBFOAS MACHINE ERROR. EXECUTE SEREP
The link library resident module,
IFBSEROO, could not be read into main
storage.

SERl

Like SERO, SERi collects, formats, and
writes error information resulting from a
machine check or a channel failure as
described in charts 12. i3, 14, and 15.
SERi. unlike SERO, is a single, serially
reusable module that resides in the
nucleus. In addition to writing error
records, it attempts to identify the error
with a specific task. If a task/error
relationship can be established, and if the
control program is in no way damaged by the
error, the task is terminated abnormally,
but system operation continues. If, howev
er, the error cannot be associated with a
task, or if the control program is affected
by the error, the system must be reloaded.

SERl is entered in
the resident portion
entered as the result
following errors:

the same manner as
of SERO. It is

of either of the

1. A machine check interruption. (The
machine-check new PSW points to SERi.)

2. A channel check (inboard). (lOS loads
the machine-check new PSW.)

SERl checks location 50 to determine
which type of error occurred. Location 50
initially contains X'FF'I which is overlaid

System Environment Recording -- Models 40, 50, 65, 75 44A

Form Y28-6612-0, -1, Page Revised by TNL Y28-2161, 9/21/66

by the machine-check old PSW if the
is a machine check. Location 50
changed if SERl is entered because
channel error.

error
is not
of a

SERl gathers error data into either a
machine-check record entry or a channel
check record entry and writes the record on
SYSL. LOGREC. SERl functions within the
framework of the operating system; all I/O
communication with the SYS1.LOGREC data set
is, via the EXCP macro-instruction unless
the control program was affected by the
error. If the control program is damaged,
SERl uses its own I/O routines. The DEB
and DCB required when EXCP is used reside
in the nucleus and are opened at IPL time
by the nucleus initialization program
(NIP) .

If SERl is able to associate the error
with a task and the control program has not
been damaged, SERl terminates that task by
branching to the abnormal termination
service routine, ABTERM. When control
returns from ABTERM, SERl re-initializes
itself and branches to the dispatcher so
that the system can continue.

Thus, the requirements for system con
tinuation are task/error relationship, a
complete record of the error. and success
ful termination of the task. In the fol
lowing cases, these requirements are not
met, so the system must be reloaded.

1. Additional failures occur while SERl
is handling an error. Data collection
on the original error stops, and SERl
attempts to write a partial record on
SYS1.LOGREC. The partial record con
tains the information gathered up to
the time the second error occurred.

2. A complete record was written, but the
error could not be associated with a
specific task.

3. A complete record was written. but the
control program was affected by the
error.

44B

4. The control program was damaged by the
error and a complete record could not
be written.

In any of these cases, a message is printed
on the primary output device instructing
the operator to reload the operating sys
tem, and SEEl places the system in the wait
state.

ENVIRONMENT RECORDING AREA

SYS1.LOGREC is a data set on the system
residence device used exclusively for
dynamic output from SERO, SER1, and all
preservation recording systems. The data
set is formatted during system generation
by the disk/drum initialization utility
program described in IBM System/360 Operat
ing System: System Generation. The data
SYS1. LOGREe contains is edited and printed
by EREP.

The data set contains three types of
records:

1. Header record This is
record in the data set.
the extent of the data set,
to the last record written.
contains a safety byte used
overrun. The record is 38
length.

the first
It defines
and points

It also
to detect
bytes in

2. statistical Data Record Area - This
area contains a record for each unit
control block (UCB) in the system.

3. Record Entry Area - This area begins
on the track following the area occu
pied by statistical data records.
SERO and SERl write the records they
create in this area. The format of
these records is described in Appendix
F.

Chart 00. Fixed-Task supervisor Control Flow
(Described in the introduction to this manual)

*************** * ANY * * I NTERRUPT I ON .

*
***********'****

I
INTERRUPTION I
SUPERVISION

I

CHART 01

v

* * ENTRY

PROCEDURES *
*

v
.* •

• * *.
.* * •

FIXED-TASK SUPERVISOR COMPONENTS

- TASK SUPERVISION CHART 02

ABEND EXTRACT SPIE

ATTACH POST WAIT

- MAIN STORAGE SUPERVISION CHART 03

FREEMAIN GETMAIN

- CONTENTS SUPERVISION CHART 04

DELETE LINK SYNCH

IDENTIFY LOAD XCTL

- PROGRAM FETCH CHART 05

• * EXECI..ITE *. --
. SERVICE .<--->-

. ROUTINE . - OVERLAY SUPERVISION CHART 06
. .

* •• *
*

I

I
v

* EXITING * * PROCEDURES *
*
* *****************

I

v
*************** * PROCESSING *

PROGRAM
* * ***************

- TIME SUPERVISION • TIME

STINER

CHART 07

TIMER SI,.IH

TTIMER

OTHER CONTROL PROGRAM COMPONENTS

- I/O SUPERVISOR

- TESTRAN

PLM 228-6616-0

PLM Z28-~611-0

INITIAL PROGRAM LOADER~"---;"'------CHART 08

NUCLEUS INITIALIZATION PROGRAM--CHART 09

CHARTS

Charts 45

Form Y28-6612-0,-1,-2, Page Revised by TNL Y28-2174, 4/10/67

• Chart 01. Interruption supervision Control Flow
(Described in Chapter 1)

IEAAIH IEAAIH
*****A2********** *****A3********** *****A5**********

****AI********* * svc FLIH * * * * TYPE 1 EXIT *
* 5VC * *-*-*-*-*-*-*-*-* TYPE 1 *-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-* * INTERRUPTION *------->*SORTS OUT TVPEl*------->* APPROPRIATE *-------------------------------->* FINDS OUT IF *---,
* * *svcs. SETS TYPE* SVC * TYPE 1 SVC * *TYPE 1 SW SET OR * I
*************** * 1 SWITCH * * ROUTINE * ***C*A*L*L*R**·D*I*S*A*B*L*D**** I ***************** *****************

, .. "' .. .,.1........ ".......... I i I
* SVC SLIH * *.. ~ I
:-*s~T;-~p*~~D*-:_T_y_p_E __ 2_>:-*~~p~O~~;~~E*-: __ ..., P II

*QUEUES SVRB ON" SVC .. TYPE 2 SVC" I E
.. ACTIVE LIST .. ROUTINE I "j........ I 1

:****C3*********: I
RESIDENT TYPE 3 *-*-*-*-*-*-*-*-*

>* APPROPRIATE *-->1 OR 4 SVC * TYPE 3 OQ 4 *
* SVC ROUTINE *

I
IIEAATA

USES FINCH *****03********** *****04**********
TO GET * * *EXIT SVC 3*

TYPES 3.4 *-*-*-*-*-*-*-*-* V *-*-*-*-*-*-*-*-* I
L-______________ >* APPROPRIATE *------->*DEGUEUES THE RB*--------------->

SVCS *TYPE 3 OR 4- SVC* * FROM THE *
* ROUTINE * * ACTIVE RBO *
***************** ***************** I

IF CALLER PSEUDO DISABLED

IEAAIH I
*****E2********** **E3*******

****El********* * I/O FLIH * * *
* INPUT/OUTPUT * *-*-*-*-*-*-*-*-* * INPUT / *
* INTERRUPTION *------->* SAVES AND * <------>* OUTPUT *
* * * RESTORES * * SUPERVISOR

*************** *MACHINE STATUS * *
***************** ***********

I
V

****E4*********
* INTERRUPTED *
* SERVICE

ROUTINE *

L ______ >

IEAOEXOO
*****F2********** *****F3**********

****Fl********* * T/E FLIH * * T/E ROUTINE *
*TI MER/EXTERNAL * *-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-*
* INTERRUPTION *---->*POSTS ECBS.SET *<----->* APPROPRIATE *
* * *IRBS. ADJ CLOCK* *TIMER/EXTERNAL *

*************** *+ TIMR REa aUE.* *SERVICE ROUTINE*
***************** *****************

I

IEAAIH IEAAPLOO IEAAABOO IEAAPS V
*****H2********** *****H3********** *****H5**********

* **'**~~~~:::**** * :-*-*~*~i.!.~-*-*-:~~E :_*_*~~~i~:_*_*_: * ****H4********* * :_*~!~~~!:~~~_*_:
: INTERRUPTION :------->:C~~g~¥N~O~S~~E :------->:SE65E:~~~L~66~N:------>: ABTERM * :DE~a~~i~~ST~EXT:

*************** * ANTICIPATION * * AND RTN'ADOR * *************** * CONTROL CPU *
***************** ***************** *****************

5
E
T

A
N
o

o
I
5
A
B
L
E
M
E
N
T

I PIE I L. ___ >I< ________ ~

SERO SERI

****Kl********* ****K3*********
* MACHINE CHECK * MACHINE WAIT * SYSTEM *
: INTERRUPTION *----------~~S~T~A~TE=-O~R~~---------:>: E~~~~~~~~NT *

.... ************* ***************

46

****J4-*********
* FROM *

ANY SERVICE
* ROUTINE *

I

I
IEAATA V

*****K4**********
*VALIDITY CHECK *
--*-*-*-*-*-*-*

TESTS *
ADDRESSES *

* *****************

I
I

*****Ks*1******** ~
* PROCESS I NG *

PROGRAM *

Chart 02. Task Supervision Control Flow
(Described in Chapter 2)

I
I

IEA!!!~~***l********
'* ATTACH *
--,*-*-*-*-*-*-*
*PASSES CONTROL *
'* TG AND FROM *
iI- REQUESTED RTN *

I

I

I
y.

FROM

.. SVC
* FLIH OR SLIH *

I

! I I
IIEAAXROO ! IEAAPT V

***************** *****************
I :-*-*:;~~~;~*-*-: *-*-*-~~~~*-*-*-*
I PROVIDES *-><--* SIGNALS THAT I I NFORMAT ION I 4- AN EVENT HAS

I ****~~~~*!;~***** I :***~;;~~~;~****:
I I

I I
I I

IIEAAPXOO I
I ***************** I
I :-*-*-;~!:*-*-*-:
->*ESTABLISHES PIE* I

* AND SETS PSW" I

:*~~~~~:~*~:;~*** I

I I

IEAAWT
****************.jE-

:-*-*-:~!~*-*-.-: I
• STOPS TASK *<-
* UNT I L EVENT
* IS POSTED *
.jE-*****.**********

I

'''''000 ~II
THROUGH
1 EAAAD03 V

***************** * ABDUMP «
--*-*-*-*-*-*-* * PREPARES FULL * * STORAGE DUMP «
* FOR ABEND *

v v v v 1---------------'

I
.. -V •

• * *. ****** .. ********
.. * *. NO * *

. TYPE 1 SVC .------->* EXIT
.. . *

. .
* * * YES

I
V

TYPE 1 EXIT

SVC ENTRY AND EXIT PROCEDURES ARE SHOWN ON CHART 01

IEAAABOO

*************** ABTERM * ***************
* FROM * *-*-*-*-*-*-*-*-* * RETURN *

ANY SERVICE *----->* SCHEDULES *-------->* TO
* ROUT I NE * * ABEND * * CALLER *

*************** ***************
************** .. **

'''''""O~II THROUGH
IEAATM05 V

*************.***
* ABEND *
--*-*-*-*-*-*-*
* ENDS TASK. IF * * DUMP REa,USES *
ABDUMP OR GIVES
*INDICATIVE*OUMP*
************.**.*

I

I
v

*JOB MANAGEMENT *
* GO * * MODULE *

Charts 47

Chart 03. Main Storage supervision Control Flow
(Described in Chapter 3)

FOR MODULES IEAAMSOO.IEABMSQO.IEACMSOO,IEADMSOO

.. FROM

5VC FLIH *
* ***************

I
v

.* •
• * * • • * * • PARAMETER-LIST GETMAIN REQUESTS • * REQUEST *. PARAMETER-LIST FREEMAIN REQUESTS

IGC004

r--*. TYPE .* I' *. .*
. .

---_.

I GETMAIN
.'.'*

REGISTER-TYPE
REQUESTS --------------------------

I
v

*
*

ANALYZES
PARAMETER

LIST *
* * *****************

I
v

* FINDS *

SPACE *<
*
* *****************

I v
***************** * SETS UP QUEUE *
ELEMENT SHOWING
* USAGE + iI* REMAINING
* FREE AREA *

I

V
IGCOIO .*.

.* *.
.* -. NO .* *. YES -----------------------------*. FREEMAIN .*--.-------------------.

. .
. . * •• *

*

OPTIONS

1. VALIDITY CHECKING.

2. COOl NG TO FREE ALL STORAGE
AREAS OCCUPIED BY INACTIVE
ROUTINES IF REQUIRED TO
SATISFY THE REQUEST.

SVC ENTRY AND EXIT PROCEDURES ARE SHOWN ON CHART 01

48

IGC005 l FREEMAIN

I
v

* * ANALYZES *

PARAMETER *
LIST

I
V

* MAKES AREA

>* PART OF FREE *
* AREA *

I
v

* * * COMBINES AREA *
* WITH ADJACENT *
* AREA *

I
>1
I
v

TYPE 1 EXIT

Form Y28-6612-0,-1,-2, Page Revised by TNL Y28-2174, 4/10/67

Chart 04. Contents Supervision Control Flow
(Described in Chapter 4)

IEAAOLOO I
tEABDLOO I OELETE

:------------1--------------:
I

*****Cl**********
< * * REDUCES

USE COUNT

* <

I
v .<.

Dt *.
.* *.

.* USE *. NO
<. C.OUNT=O _*1

. . I
.... j.;;: I

*****El*~*.**!*** I *FREEMAIN ...
--*-*-*-*-*-*-*
... CLEARS RBS ...
*FROM LOAD LIs"r,'"
... AND STORAGE ...

I<~
I

I
I

I

****A3*********
... FROM SVC *

FLIH OR
* SLIH *

IEAATC LOAD

~ . *. C3 *.
."* *.

.* ROUTINE *. NO
. PREVIOUSLY .---,

. LOADED. I *. .* * •• * rES
v

*****03**********
* * INCREASES *

- r-* USE COUNT

: II .

~ I

I
V

*****E3***.*******
*FINCH ' ...
--*-*-... -*-*-*-*
... USES FETCH. *
* QUEUES RS
... ON LOAD LIST *

*******:r*****<*

IEAATC

I .v •
CS *.

.* *.

XCTL

YES.* XCTLOR *.
.--*. ON LOAO .*

. LIST .
. . * •• *

[0
*****05**********
* * * PLACES RS oj. _

* OF XCTLOR ON *
* INACTIVE LIST * -
* * *"****************

NOTE THIS TEST IS -
PERFORMEO' ONLY IF
THE RESIDENT TYPE
3 OR 4 SVC ROUTINE -
OPTION IS SELECTED -

------------------------------ -------------------------------I
V

****FI*"'*******
* * TYPE 1 EXIT

OPTION

IEAAIDOO IDENTIFY

I
V

*****Hl**********
*GETMAIN ...
--*-*-*-*-*-*-*
... CREATES MINOR ...
... LPRB. QUEUES ...
... ON LOAD LIST *

I
V

*****Jl********** -
* * .
*

QUEUES
LPRB.QN

MINOR LIST .
<

I

IEAASYOO SYNCH

I
V

*****H2********** -
*GETl'MIN * -
--*-*-*-"*-*-"*-* -
"* OBTAINS "*-
"* SPACE *-
* FOR PRB *
******"*********"**

I
V

*****J2********** -
* * -
*
* <
*

CREATES AND
INITIALIZE

PRB

. -
* -

I
I
v

SVC ENTRY AND EXIT PROCEDURES ARE SHOWN ON CHART 01

I

v

.v.
F5 *.

.* I IS *.
YES.* TYPE 3 *.

r--*. OR 4 XCTLEE .* I *.RESIDENT .*
. .

* •• * . ro
v

*****G5*"*********
*FINCH *
--*-*-... -*-*-*-* -
"* USES FETCH *
* QUEUES RS ON
* ACTIVE LIST *.

- * ... ***************

I~~~~_C _____________ =~NK: ______________ I----------~
I I
V

****"*H4********** -
*FREEMAIN * -

- "*-*-*-*-*-*-... - ... -* -
- "* MAKES SPACE * -

* FOR LINKEE. * -
* -***************** -

I
V

*****J4********** -
*FINCH * -
--*-*-*-*-*-*-* -* USES FETCH TO *
* GET LINKEE. * -* QUEUES RB. *
***************** -

I
I
v

I
v

I
V

****KS**-****** . .
- EXIT *

Charts 49

Chart OS. Program Fetch Control Flow
(Described in Chapter S)

IEWBOSV IEWMSEPT
*****A2********** *****A3********** *****A4********** --.-AI---._._-- ----AS--...... -... ENTRY FROM'" ... RECEIVE'" -INITIALIZE I/O RECEIVE'" *ENT FR CONTENTS-

OVERLAY ~.------->* NOTE LIST *------->* BLOCKS AND *<-------* DCB. BLDL *<---'----* SUPERVISOR *
... SUPERVISOR'" .. ADDRESS ... CHANNEL'" ... PARAMETERS'" ... (FINCH)

*************** ... PROGRAM(S) ***************
***************** ***************** *****************

1
V .*.

*****81********** *****82****.***** 83 -.
... EXTRACT'" ... IF PROGRAM IS*-.
... RELATIVE DISK'" -OVERLAY STRueT-* YES.* WAS -.
-ADDR (TTR) FOR *<-------* URE. SET UP *<-------*. ENTRY FROM .-
... FIRST TEXT'" ... CHAN PROG AND'" *. FINCH .-

... -READ NOTE LIST'" *..*
.*.*.******** ••• * •• *********.***** * •• *

: Cl :_>1 *1 NO
---* I V V

*****CI********** *****C3**********
* FETCH LOADING * * EXTRACT *

SET UP CHAN * * RELATIVE DISK *
PROG. lOB. *< *ADOR (TTR) FOR *

* EXEC EXCP. * * SEG FROM NOTE *
* AND WAIT * * LIST *
***************** *****************

. 1 ****
* *
: 03 :,

V **** v

3 CHANNEL
PROGRAMS
FOR PCI

.*. .*. .*. .*.
01 *. 02 *. 03 *. 04 *. *****05**********

.* *. .* *. .* *. .* *. * *
YES .* WAS FETCH *. NO .* *. YES .* LAST *. YES.* *. NO * WAIT FOR '*
, *.LAST IND SET .~*------->*. PCI'FETCH .,

. IN RLD . *. .*
. aUF . *..*

v * •• * * •• * v
**** * * NO '****

* * • Jl *
• * I * *

: E4 !
Vri--------------------~

SO

• *.
Et *. *****E2**********

.* *. * TURN ON FETCH '*
.* *. CONTROL * LAST IND IF

. RECORD TYPE .~.-------> NEXT RCD IS *
. . * LAST. SET UP *
.. * PROG FR CTRL *

* •• * *****************

*1· RLO *L
* *

V * Ct *
*·***Ft********** * *
* * ****
* RELOCATION *
ADJUST VALUE OF
* ADDR'ESS *
* CONST ANTS *

1
V .-.

GI *.
.* *.

.* *. YES
*. RLD/CONTROL •

. RECORD .
. . * •• *

- * * CI *
* * ****

1
*****G2**********
* SET *
* CHAN PROG TO *
READ RLD AND/OR
• CONTROL RCD •

JNO ~A
HI *.

• * *. .* *. NO
*. LAST RECORD •

. . *. .* * •• * * YES
****** I
* JI *->1 * * .***

V
.*Jl*******
* COMPUTE *
RELOCATED ENTRY
POINT. INITIAL-
*IZE SEGTAB FOR *
* OVERLAY PROG *

V
****Kl*********

- * RETURN

'*. RECORD READ .*------->*. BUFFER FULL .~.------->* BUFFER TO BE
. . A *. .* * FILLED *

'j'NO :*::*:-~j~YES I
v **** V

.*. .* .
E3 *. E4 *. *****E5**********

.* *. .* *. * *
.* *. NO .* RLD *. YES * RELOCATION *

. *.* JI *.* *.* !***************:

.1/0 COMPLETE . r-->*.PROCESSING TD.*------->*ADJUST VALUE OF*
. . 1 *. 'BE DONE .* * ADDRESS *
.. *..* * CONSTANTS *

"j'~ES *'i~~O ********j********
V V

.*. FREE.*.BUFFER
F3 *. F4 *. *****F5**********

.* *. .* *. * i!-
.* *. YES.* *. YES * WAIT FOR *

*. BUFFER FULL .~> *. LAST BUFFER .*------->*LAST I/O TO BE *
. . *. .* * POSTED *
.. *..* *

+ •• * * •• * **************'*** ro ro

)***
v v '* Jl *

*****G3********** *****G4********** * *
* * *. *
*
*

EXCP

1
V .*. H3 *.

.* * •
*::RIOR BUFFER *:~> I

. FULL .
. .

* •• *

ro

V
*****J3**********
* * I
:THI;A~0F~~: TO :--.1
* BE FILLED *
* *****************

* ROTATE *
sUFFER POI NiERS
* *
if**********

1
* * * 03 *
* * ****

• Chart 05A. PCl and Channel End Appendages
(Described in Chapter 5)

PCI APPENDAGE

****A2******·*·
ENTRY
FROM

.. 10$..

I
v .'.

*****6 I ********** 82 ...
.. PUT" .* ...

CCW IN NEXT" YES .* *.
.. CHAN PROG. *<--------*.CCW IN RECORD.*
.. RELOCATE ADDR .. *. .*
.. .. *..*
***************** * •• *

I .. NO

I I
v v

• *. .*.
(1 *. (2 *. *****C3*********.

• * *. .* *. .. * •• *. NO .* *. YES .. POST ..
. LAST RECORD .---, *. LAST RECORD .*------>*LAST RECORD EeB.

'.' •••••••• * I '.'... : ***.******: ! .,' Ii"" J

: •••• 01 •• *._ .. _-: I :* ••• D2**** ••••• :

.. SET CHAN PROG SET CHAN

.. TO READ TEXT .. PROG TO READ

.. AND STOP .. RLD AND STOP

LI __ *_'_'_*_*_*_' :j*** *.* * *
v I .*. V

E2 *. *****E3*********-.* *. .. POST EeB ..
• * BUFFER *. NO TO ALLOW

. AVAILABLE .------>* NECESSARY
. . A" RELOCATION TO ..

. -----.-.-.:(: I :····~~·r····:
:** •• F2*********: I :***.F3*********:

REPLACE NOP'" j ROTATE
... WITH TIC TO *----- CHAN PROG.
*NEXT CHAN PROG * POINTERS
• *

***********.***-*

I
V

4*G3*******
* RETURN *

TO
IDS

CHANNEL END
APPENDAGE

****A4*** •• **.*
- ENTRY ...
* FROM
* 105 *

* •• ****._*.****

I
V

*****B4**********
* •
*SET UP RESTART *
* OF CHANNEL *

PROGRAM .

I
v

.* •
C4 * •

• * * •
.- *. YES

. MISSED PCI .---~--
. . CHANNEL END

*. • * OCCUREO BEFORE
* •• * PCI APPENDAGE

... NO COULD CHANGE

I
NOP TO TIC.

v .'.
04 * •

• ·CHANNEL *.
NO.* END FOR * •

r--*. LAST .*

I

I

. BUFFER .
. . * •• *

* YES

I
V

*****E4********** . .
* POST •
:LAST RECORD Eca:

I
V

****F4-****** __ *
* NORMAL *

RETURN ...
TO]05

-*-*.*.**
A

I' NO .*.
G4 *.

I .*.* NEXT * ••• YES

****F5*********
* RETRY *

RETURN
* TO IDS *

************-**
A

I
L-->*. BuFFER .*------- J

·.AVAILABLE.*
. . * •••

*

Charts 50A

Chart 06.

IGC037

Overlay Supervision Control Flow
(Described in Chapter 6)

IGC045

FROM

SVC SLIH

* * ***************

v
***************** *****************

* * * 84 ...

* * ****
I
v

***************** **** ********* "'CHKS TO SEE IF EXTRACTS AODR * ***************
... FROM'" *REFERRED TO AO-* ... OF CURRENT ... RESTORES * * ...

SVC SLIH *------->*CON IS RESOLVED*------->* SVRB. ADDR OF ...
... ... TO AN ENTAB. * *SEGTAB AND REQD*

REGISTERS .*----,A->: EXIT ...

*************** ... SEGLO=NOP'" ... SEGI S NUMBER ...

SEGLD I SEGWT
***************** *****************

I
v

**
* * ... 85 ...

* * **** KE$IOENT OVERLAY SUPERVISOR 1 -- IEWSVOVR

: *.* : I
**** * * ... 85 *

* *

~:;~::~~i~~~;=~:~=~:~=;~~~::~;~:=~=::=i~:;:~~::=~~:~~~~==========j==
L **** I • •
N * 05 *
K * * IEWSXOVR ONLY ****

v I
OVRLIB .*. V

***************** .* *. *****************
* CHECKS SEGWT * .* IS *. * IF PROGRAM

ERROR* REQ TO SEE IF * NO .* REQUESTED *. YES - * 'UNDER TEST' *
r--* REQUESTED SEG *<-------*SEGMENT IN MAIN*--n<--------*SETS UP + LINKS*
I :R:~~~S~¥~:L~~G:: *. *~TORAG';*.* : : I2T~~~~~~~R :

:·::*~********I**·**·** ~ * ... * ~ *******i~I,!*·*****
**** - - K R

- - V N
I - OVRL60 .*. V

----------------------------- .* *. ***********

1
.* *. *

INITIALIZATION .* WHERE *. SEGWT TESTRAN
--------------------------------------j-------------------~------------------ *. WAS ENTRY.,

. FROM .
. .

* •• * V
*lGC045 **** I (ENT AS) : 84 :

* INTERPRETER
* (IEGTTRNO)
*

.----->1< --,
OVRL30 .~. OVRL40 I

.* *. *****************
• * ANY *. * RESETS SEGT AS *

.* TABLE *. YES *STAT INDRS FOR *
.ENTRIES TO BE.------->* OVRLO SEGS, *

. RESET . **ENTAB ENTRIES *
.. *IN CALLER CHAIN*

*. • * ***************** * NO 1* IF

I
v

* UPDATES ENTA8 *
*HIERARCHY INFO * * *
*IF REGIONS THE *->* 84 *
* SAME OR ENTAB * * *
* I N ROOT SEG * ****

I I NECESSARY :-::~~~~~~~~~---------------------------------------

v

*OVERLBO *
--*-*-*-*-*-*-*
* COMPUTES AND *
*VALIDATES ADDR *
OF SEGTAB ENTRY

**** I~ * * R * H3 *-> 0
* * R ****

V

*
* * * * B4 *<--*

SETS
ERROR
CODE

* *
* * * * *

UPDATE TABLES

I .!.
***************** .* *.
* MARKS SEGT AS * • * OTHER *.
ENTRY. SUBSTI- YES .* SEGS THAT *.
* TUTES NO. OF *<-------*MUST BE MARKED.*
* PREY SEG FOR * *.FOR LOAD-.*
VAL OF LAST SEG *. ING .*
***************** *. .*

* NO

I
OVRL50 V

***************** *****K2**********
FETCH 05 * SCANS SEGTAB *
--*-*-*-*-*-*-* *REQUEST LOADING* * *
* (IEWf',TMIN) *<-----' >* OF MARKED *-->* 05 *
LOADS REQUESTED * SEGMENTS * * *
* SEGMENTS * *
***************** *****************

SEGMENT LOAD I NG

-SVC ENTRY AND EXIT PROCEDURES ARE SHOWN ON CHART 01

Charts 51

Chart 07. Time Supervision Control Flow
(Described in Chapter 1)

FROM

T/E FLIH

IEAQTIOO V

*TIMER 5LIH *
*_*_-J!._4-_*_*_*_*_*_*_*
*UPDATES TIMER.
*POSTS ECBS.
*aUEuES + DEQUEUES
*TIMER ELE.MENTS.
****************iI·*** * I

*************** FROM
SvC SLIH

IEAaSTOO v

******* ************** *STIMER *
--*-*-*-*-*-*-*-*-*
*SETS TIMER
*ELEMENT + EX IT
*ADDRS. USES
*T/E SLIH TO
*aUEUE + DEQUEUE. *
** * * *** ** **** ** *** * * *

********4****4*
FROM

svc FLIH

IEAQTTOO V

*TTIMER *
--*-*-*-*-*-*-*-*-*
*RTNS INTERVAL
*LEFT. MAY CANCEL *
*BY USING T/E SLIH *
*TO DEQUEUE.
***************** ****

I
IEAQRTOO V

*TIME it

--*-*-*-*-*-*-*
OBTAINS

DATE AND
* TIME. *

I l ·--->1
v

* * T/E FLIH

v
*****"**********

* EXIT

5VC ENTRY AND EXIT PROCEDURES ARE SHOWN ON CHART 01

52

I
v

* TYPE 1 EXIT

IN SYSTEMS WITHOUT
A HARDWARE TIMER

FROM

* SVC SLIH
* ***************

IEAQRTOO

*TIME *
--*-*-*-*-*-*-*

OBTAINS
DATE.

I

I
v

* * EXIT *

* ***************

Chart 08. Initial Program Loader Control Flow
(Described in Appendix A)

~ ~ ~ ~! ~ ~ ~ ~~ y. "'"A'"""N O::--"CCC:O""NC:-O"'1 TCCIC:O""N""'S FOR IEAIPL MODULE

I
I "SYSTEM LOCATED ..
I ... ON A DIRECT- ..

1

'1 .. *!~~;;~*~;~!~;* ..

I
* B2 * . .

1

I OPE~!!~~***~********
.SELECTS SYSTEM ..

I EA~:!~****~******** . .
CLEARS FLOATING
:POINT REGISTERS:

.. RESIDENCE ..

.. DEVICE WITH ..

.. LOAD UNIT -II-

.. SWITCHES

I
v

***************** .. SETS ADDRESS ..
"COMPARE SWITCH -II
* I F OTHER THAN -If
.. PRIMARY NUCL ..

:*!~*~;*;~!~;~**:
I

I
***** ***~********
"* PRESSES LOAD ..
.. KEY ON THE ..
*SYSTEM CONTRUL ..

:*****~!~;;*****:

I

I
v .'.

.* *. *****************
.* *.. * M'ACHINE HAS *

.. * PROGRAM * .. YES * NO 'FP REGS.. *
* .. INTERRUPTION .. *--->*RETURNS CONTROL*

.. . * TO I EAPCRET *
.. * *

* * *****************

I --.1,1 I EA~;~;!** *~**** ****
*CHANGES NEW PI *
PSW TO I EAROUND "* TO HANDLE *<----
STORAGE-CLEARED

:*!~!~~~~~!!~~**:
I

I
1< I NO

HARDWARE V IEALOOPS V .*. .*.

***************** .. SYSTEM l-lESET *
*READS IPL (. TRL *
.. RCD FROM ..
.. INPUT DEVICE *
:**!~!~*;~;*~***:

I

***************** .* *. .* * ..
CLEARS 256 BYTE .* HAS *. ..* * •
* SLK OF MAl N * .. * COUNT REG *. NO .* PROGRAM *.
*STORAGE BEYOND *--->*. RETURNED .*----->*.INTERRUPTIQN.*
* IPL PRG AND * *. TO ZERO .* *. .*
*COUNTS IN REGS * *..* *..*
***************** * •• * * •• *

I PL CONTROL I

rES rES
REC~~~*****~*** * .. ***

IPL

.
.. READS IPL ...
aOUTSTRAP INTO "
: MAIN STORAGE. :

************'11****

II:

aOOTSTRAP v

***************** *LOCATES IPL ON ..
'* 5YSTEf~ RES- ..
.. IDENCE AND ..
.. READS IT It,nO '*
* MAIN STORAGE *

I

IEAIPL
I
I

I EA~!:~.!.*H_~******** . .
CLEARS
GENERAL

REGISTEj-./S

. '.
.* *. *****************

.* HAS *. * APPENDS BYTE *
.* ALTERNATE *. YES *OPERATOR KEYED *

.NUCLEuS BEEN .--->* INTO LOC 8 TO *
. CHOSEN . * STANDARD *

*. .. * * NUCLEUS NAME *
* •• * *****************

* NO I
I I

I I
I I

********~******** ********~********
* * * * *USES ASSEMBLED * * SETS NEW PI *
* NUCLEUS *--->* PSW TO POINT *

NAME * * TO I EAPCRET * . .
***************** ********:*********

I
v

**** . .
: 82 :

I EA~!;~;***~******** I EA~~~~~***~********
* * * ROUNDS OFF *
* MAXIMUM MAIN * * MAIN STORAGE *

: STO~~~~M~bZE: r---:coe~~ER~~I~~~R:
:***************: I :***************:

I I
1 < _____ J

I
********~********
* CHANGES NEW *

PI psw TO *
* IEAPCKEY FOR *
* PI 'ON SET *
* STORAGE KEY *

I
IEAKYLP V

***************** . .
* SETS STORAGE *
* KEY OF MAIN *
* STORAGE TO *

:;~~~~~!;~~*~~!*:

I
v

.* .
.* *.. *****************

.* *.. *MACHINE HAS NO *
.* PROGRAM *. YES *PROTECTION KEYS*

.INTERRUPTION .---->*OR ARE ALL SET *
. . *TO TOP OF MAIN *
.. * STORAGE *

* •• * *****************
* NO I

I I
IEA~~~~!***~******** JI

*CHANGES PI NEW *
* PSW TO GIVE *
*TYPE 9 ERR AND *<:------'---.
* HALTS ON ANY *
* MORE PI *

I
v

-*-* . .
: AS :

• *
: "A5 :

I
*******-~******** . .
* READS SVL AND *
• THEN VTOC TO *
*LOCATE NUCLEUS *
* PDS *
.****************

I
1

I EA~~~~~***~********
* READS IN AND *
* SEARCHES PDS *
* DIRECTORY FOR *
* NUCLEUS *

:**~5~~;~*~:~i**:

I
IEARETI V

* READS THE *
* TRANSLATION *
* TABLE AND *
* SCATTER TABLE *
* BEHIND IPL *
*******-!l** ***.**.

1
.. *******~********
* BUILOS SIZE. *
* ADDRESS AND *
* RLF ,TABLES iI:
* FROM TT/ST
* DATA ,*
**** ****** ****4**

I

I
I EA!~~~~***~********

* MovES PART OF *
* IPL NOT YET *
.. EXECUTED TO *
* TOP OF MAIN *
:****;!~~!~;****:

I
I

I EA~~!*****~********
*READS TXT INTO *
* LOWER MAIN *
4 STORAGE.NIP *
* ESOID=1 AT *
* TOP OF NUC *

I
I EA~~~;~***~********

* READS TXT *
CONTROL RECORDS
INto IPL BUFFER
*THEN MOVES RLD *

:~!!!*~i;~:*!~;*:

I
I EA !~'~;****~********

* WH~N LAST *
*NUCLEUS RECORD *
* READ. UPDATES *
*ADDR CONSTANTS *
.. BY RLF TABLE *
it****************

I
.***~********
* LOADS MACHINE *
... SIZE; IN A *
* REGISiER AND *
* GIVES UP *
*CONTROL TO NIP *

I
*******~*******

NIP

SEE CHART 09

Charts 53

Form Y28-6612-0,-1,-2, Page Revised by TNL Y28-2174, 4/10/67

• Chart 09. Nucleus Initialization Program Control Flow
(Described in Appendix B)

.***A 1 ********* * FROM ...
IPL

... (CHART 08) *

I
IEAANIPO V

*****81*********
... STORES ...

END OF
NUCLEUS ...
IN THE ...

... CVT ...

I
V

*****Cl**********
... INITIALIZES ...

BOUNDARY ...
BOX ...

I

*****A2**********
* SETS NAME *
* OF DATA SET * i >*(TO dE OPENEO) *
* IN THE * * C~NL PROG *

I I I IEASTRIO V

1 :*::~B~~*:*;~::*:
* TO READ PDS
* DIRECTO~Y OF
* THE DATA SET
* *****************

I l *****C2*~********
* INITIALIZES *
• REQUI REO *

<-* FIELDS IN *
A * THE DEB *

*************.***

I
v

IEATIMER.*. V
*****01**********
... INITIALIZES *
... FREE AREA ...
* QUEUE ELEMENT *
* *

02 *. *****03**********

I
V

*****El**********
... INITIALIZES ...

2 BYTE ADDR
WITHIN

... RQE TABLE

* *****************

I
V

--***Fl----*----* * INITiALIZES
uea TABLE

*
* *****************

I IEueeo v
*****Gl**********
... READS ...

STD VOLUME ...
LABEL FROM ...

svs RES
... VOLUME ...

I
IEAUCBB V

*****Hl**********
... READS *

VTQC *
: g~~~ I
***************** II

I
*****Jl*~******** I * DETERMINES *
* u~gR A~~~ :-.1
* SYS RES
* DEVICE *

54

.*CHECKS *. * SENDS *
.* IF TIMER *. NO * A MESSAGE

.IS ENABLED / .------->* TO THE
. WORKING . * OPERATOR
.. *

*
*

* •• * *****************

..... ".1.:::.... ~II * SETS *
TIMER *

WITH A *<---------------
VALUE *

* OF 6 HOURS *

I
V

*****F2********** * DETERMINES * * PROTECTION * KEY FOR THE
PARTITION

I
IEASETK V
*****G2**********
* SETS *

STORAGE KEY
OF THE

* PARTITION
* *****************

.,:)v 1 ''''l ,

*****A4**********
.. OBTAINS *
* TRANS lENT SVC *

.->* NUMBER FROM *
I * RELOCATTON
I TABLE I *****************

I
V

*****B4********** * CONVERTS SVC *
NO. INTO 8

* BYTE SVC * MEMBER NAME

* *****************

I
V

*****C4********** * USES * * eLOL MACRO * TO GET
DATA EXTENT

* FOR THE SVC *

I
v .*. 04 *.

.* IS *.
.* SEARCH *. NO

*****05********** * SENDS *
A MESSAGE

*. BY BLDL • *-------> * TO THE
OPERATOR *SUCCESSFUL.*

. .
* •• * ***************** * YES I

ISVX:~~~~E4*j******** II * MOVES TTR * * AND LENGTH * * OF TRANSIENT *<---------------"
* SVC INTO * * TTR TABLE *

I
v .*.

F4 *.
.* *.

NO.* END OF *.
<-*. RELOCATUON .*

. TABLE .
. .

* •• * * YES

I
V

*****G4********** * APPENDS *
OPTIONAL *

ROUTINES TO
THE NUCLEUS

I
IEANIPl V

*****1'"14********** * INITIALIZES *
PARTITION

* WITH * PRB +
* XCTL CODE *

I
V

****J4*********
* * DISPATCHER

Chart 10. SERO Link Library Resident Module Control Flow
<Described in Chapter 8}

·····Bl**········ " "

..... _ .. Atd.··***·***
" " START

* -_ ... _.-_ --
I
v . ".

82 -.
.- *.

• • YES .* -.
*DIAGNOSE LOCAL *<-------*. MODEL 50 .-
• STORE· *. ••

*. .-••••••••••••••••• * •• *

I ro
L. -------->\

v ·····C2······***-" " • SET

rl---------------:"~:":::::::::"""

v .".
01 -. ._ 'Ii • ····*02*********

" "

-_._.
*10 •
• 84-

* *
*
\
v

." .
S4 •• .. -.

50 .* *. 65.75
,--*. MODEL NUMBER • *--,

I •.•. - .• '. I
v ., .-

•••• * 40 I
* * I • F4 •

* *

I

• - *. 40.50 • LOAD • * NO.-
•• MODEL NUMBER •• >* PTR. TO CVT • ... F4 _<--*. FLOATING ••

*. .- • MACRO • •• *. POINT .-
. . " *. .* _ ••••••• _ ••••••••

*L--
1
6S.7S __ J

V .*.
- •••• E) ••• _._.... E2 *. ** ••• E3 ••••••••••
• SET UP. .* *. • •
• R.E. FOR • YES .* *. NO -SET UP R.E. FOR-
• CHANNEL CHECK *<-------*.LOCATION 50 =.*------->* *
• (INBOARD). *. FF ,* • MACHINE CHECK.

.. * *
****** .. *********-* * •• * ********** ••• *.*.

I * I
L..--------------------'i <

v
*···*F2**··****·*
* " * LPSW. A

PSEUDO M.C.
ENABLE

...................... **

I
••• V

Gl *. * •• *.G2 *.**
..... * •

65.75 •• •• * SETUP
r---•• MODEL NUMBER .*<-------* M.C. HANDLER
I.. .* * ADDRESS

•• .*
* ••• r'so

I
I • GENERAL •

L>:REGI:¥::O~~RITY:
• TEST • · ••••• * •••••••• ***

I v

i
V

·** .. *H2 .. ··****·* ..
* *
*
*

ADJUST •
CCW ADDRES~ :

•••••••••••• * ••••

I
V

:.**.J 1 *.****.*.:~

• LOAD •
• POINTER TO CVT •

*****J2 **********
* * *LOAD REMAINDER *
*OF MODULE INTO •

• MACRO
*

.. CORE
* •• * •• *.*** •••••• *

NOTE R.E.
cu,
UCB

I
v

.***
" * * B4 •
* *

RECORD ENTRY
CHANNEL AND UNIT ADDRESS
UNIT CONTROL BLOCK

-, ,--, ,-
VES

V
*···*E4··********
* * • FLOATING *
*POINT REGISTER *
* PARITY TEST *

****** ••• ********
I

" * I
: F4 :->1
*... I

v
···*·F4···*······
* " • GET •
• UCB ADDRESSES *<--,
* * I
** •• ** •• * •• * •••••

I
v .". G4 ••

•• *.

!
* *

·10 -• F4·
•• ***

•• I/O *. ••
. UNIT ACTIVE .~> F4 * •. .• *.

*. ••
* •• * • YES

I
v .*. H4 *.

YES •• *.
r----. CPU FAILURE .*

*. ••
. . ro

v .*. J4 *. *** •• JS*******.*.
.* *. * •

•• CUA= *. YES * EXTRACT •
. CUA OF I/O .-------»*FIRST CCW. FAIL •

•• OLD PSW .* • CCW AND CSW *
. . *

•• .* **** •••• *** •• ****
* NO I

l..-___ >I < ________ --l.

v
.**.*
*11 •
* 82* * •

Charts 54A

• Chart 11. SERO Link Licrary Resident Module Control Flow (Continued)

*11 *
.. 82*

. '.
62 *.

.* *.
NO.* END *. YES
r--*.~~ UCB ADDR~*.*----------------'

I *. .*
v * •• *

***** *
*10 *
.. F4*
• * .

.*.. .*.
*****Cl*********4- (2 *. (3 *.
.. .. .* *. .* *.
.. .. NO .* *. NO.* MACHINE *.
SET FLAG IN RE.<-------*. FAILING CUA .*<-------*CHECK INTERRUPT*
.. .. *.. FOUND .* *. .*
.. *..* *..*
***************** * •• * * •• * i YES • YES

'---------->1 <

v
*****02 ********** · . .. EXTRACT ..
*PGMID DATE TIME---

I

• * 1 .. E2 *->1
* * I

I

· ·
V

*****E2********** · . · . -READ RO RECORD * · .

I
v

:****F2*********:
.. READ ..
.. HEADER RECORD' * · .

I
v .*.

-JI--lHHI-*Gl ********** G2 *. "* .. .* ...
.. SET UP IDS" NO.* HEADER *.
.. WAIT- STATE *<-------*.RECORD SAFETY.*
.. CODE X 'F07 1t * .. BYTE =FF ._
.. *. .*
***************4.

I
V

******Hl***********

*

PRINT
ERROR MESSAGE

V
*****Jl*******.**

.. ... *
.. YES

I
V

*****H2**********

• * UPDATE
'* SEEK ADDRESS · . · •• ***************

I
I
V

*****J2********** · . ·
*****J3********** · .

• *
• 84 *
• *

1
v

.* •
84 *. *****S5**********

.* *. * * .* R.E. *. NO * WRITE
.ON LAST TRACK.------->* EaF ON LAST

. . * TRACK
. .

* •• * *****************
* YES

I
v

*****C4********** · * WRITE
* EaF AS NEXT

R.E.

I
I

I
I<--------------------~
I
V

*****04********** · . * WRITE *
*UPDATED HEADER *
* RECORD * · *****************

I
V

*****E4********** · . SET UP IDS
WAIT- STATE
CODE X'FOS'

I
v

* *****F 4********* **

·

PRINT END
OF JOB
MESSAGE

I
V

****G4*********

* WAIT STATE
*

****H4-********* * ADDITIONAL *
MACHINE
CHECKS

.*.
J4 *. *****.)5**********

.* *. * *
YES.* FIRST *. NO * SET UP

WAIT STATE * *WRITE R.E. DATA* · · RE-ENABLE
MACHINE
CHECKS

<-------. MACHINE • *-------> * INTERFACE ·

54B

I
v

* 84 * . .

* *. CHECK .* * WITH SEREP . .
..** •• *****

I
v

**** . .
* E2 * . .

. .
* •• * .

I
I
v

******K5*** ***.* ***
****K4*********

* WAIT * * * STATE * <-------
PRINT
ERROR

MESSAGE

Chart 12. SERl Control Flow

**** . .
.. 61 ...
* • * •••

I
MODEL 50 V

·····81······**·· · . DIAGNOSE
.. LOCAL STORE
.. SECTOR

**** •••• *.*******

I
v .'.

Ct *.
• * *. • * *. NO

•• !~ITIAL ENT~:.I

. . I * •• * v * YES ••••

I
V

· . * Jl * · .

···*A2·········
• ENTRY FROM •

Me psw • .

V
···**B2*****··*·· · . * SAVE REG *
*13 IN LOCATION •.
* 372 • · .* •• * ••• **.** ••••

• • I
:*~:*:->I

v
*·***C2***··**·**
* •
• LOAD • * BASE REG FROM •
* NEW MC PSW * · . ••••• *** •••••••••

I
v .'.

02 *.
.* *. ·····01·········· · . -CLEAR POTENTIAL-

.. BAD PARITY IN *, .. ALL REGISTERS ..

•• •• YES
*.CHANN FAILURE •• ·~~------------~---,

• * **... v
** •• · . * C2 *

•• .* I *. .*

"j';O I · .
v v

.*E2*.**.** .***.ES.**** •••••
• • * * * MOVE LOG • • MOVE •
*AND MC OLD PSW • *LOG AND CSW TO •
• TO RE AREA • • RE AREA *
******* •• **.** •• *

I
V

*·***F2*··*****·· · . * CLEAR •
*PENDING MACHINE.
• CHECKS •
************ •••• *

~I-----------I------------I MODEL 50 V V MODEL 40 V
* •••• Gl **........ . .. **G2* ••• ** •• ** ••••• G3* ••• ** •• *·
.. COMPACT" PARITY TEST .. STORE ..
• GP REGS IN RE AND SAVE GP GP REGS IN RE ..
• AREA .. -REGS IN RE AREA- .. AREA

I
V

·**··Hl·········· .. MODIFY •
• DIAG. •
.INSTRUCTION FOR*,
• LS SECTOR 2 • · . ••••••••••••••••• v

· .
• J1 =i ·

V ····*Jl**········ · . .. COMPACT ..

· .
• Bl • * •

· . •••• ** •••••••••••

I
V

··***H2·**······· · . PARITY TEST
.. AND SAVE FP ..
-REGS IN RE AREA-· . ••••• ** ••••••••••

.. FP REGS IN RE .,-------->

.. AREA ..

• •••• ** ••••••••••

I
v .'. H3 •• ..* •• H4-* ••• *.***.

•• FP •• * * .* REGS •• YES •. STORE •
*. AVAILABLE •• ------->. FP REGS IN RE *
•••• AREA

I""
I
v

<:--~
I
v

·····K2·········· · . • • • MOVE OATE *
• K2 .-->.AND TIME TO RE •
• • • AREA •

••••• * •••••••••••

L .. *.
·13 •

>. A2

••••• ***.** •• * •••

I
V

··*F5********** .. .
MOVE FIRST

:CC:~DTriA~~I~~EA: .
* •• *** •• *.***** ••

I
V

• •• ·*G5*···*····· · . • MOVE CUA
• FROM I/O OLD •
.PSW TO RE AREA •

• * * ••• *.* •••• * •••••

I
v

•• ** · . • K2 • · .

Charts 34C

• Chart 13. SER1 Control Flow (Continued)

*.**
*12 •

* A2 *\ o 0
V

··A2*******
• MOVE ..
• eVA OF ALL •

·****A3···*······
* 0
- UPDATE •

• ACTIVE I/O • r->. HEADER RECORD ..
• UNITS TO RE
• AREA • •• *** ••••••• *** ••

I
V

·****82*·***····
o 0

• MOVE CHANN ..
-TYPE ASSIGN. TO
• RE AREA ..
o
•••••••• ******* ••

I
v .0.

C2 *.
.* -.

YES .*. CHANN. *.
~*. FAILURE .*
V *. .*

•••• * *..*
*14 .. *. .-
°oA!O i NO

V
• 0.

02 *.
• * -. YES.* IS *.

~*.SCHEOULER IN .*
V -.OPERATION.-*.*.. *..* *14 • *. .*

• A2* * NO
.. *.. I

I
v .0.

E2 * •
• * -. YES.* OLD Me *.

~ •• PSW = TO SUP •• *
V *. MODE .* **... *..*

*14 • * •• *
.. A2* • NO

. I
I
v

: •••• F2 ••••••••• :

* PARITY TEST
.. ALL OF MAIN * STORAGE

.** ••••••••••••••

I
v .0.

G2 *.
.* BAD -.

YES.* PARITY *.
r--*. OUTSIDE PP .*
v *. AREA .*

***** *..*
*14 * * •• *
.. A2* * NO

540

I
V

··H2-·····-* *
* .. PURGE I/O

* * •••• * •• * •••

I
V

••• J2 ••••••••

*

EXCP TO
READ HEADER

RECORD

I
v .*.

K2 *.
• * *.

: I/O FAILURE *:~
. .

. .
* •• * * YES L ****

*14 * >* A2 * * * ****

• IN CORE -
* * -*_ •••• _ •• _*._***

1
v .0.

B3 *.
.* *.

•• *. NO * *
.RECDRD ENTRY .-->* H3 -

*. FIT.· - * .. .-
* •• * rES

v
·*C3***···*

* *
• EXCP

• WR I TE RECORD -
* ENTRY •

*****-**-**

1
v

.0 •

03 * • .* •. • * *. YES *. I/O FAILURE .,
*. ••

•• .*
* •• * v

- NO .**.* I *14 * I °oE;*

V
E3*-·**

o * * EXCP
* WRITE HEADER *

• RECORD •

.********--

1
v .0.

F3 ••
• * ••

.* *. YES
. I/O FAILURE ., *. .* *. .* * •• * v

ro

v
G3·**.·
o· *

* EXCP * WRITE END OF
• FILE o

****.*.* •• *

: *::*:_>11

* 0 .**.
V

*****H3******-*··
* * • RESTORE TASKS.
* TO A ..
• DISPATCHABLE
• STATE _
.******* •• * •• * •• *

I
V

J3*"."*
* * WTO

MESSAGE TO
OPERATOR •

o
..** ••• **

I
V

****.
*14 •
* E3*

o *

.K3.*.*** *****K4-*.** ••• * •
., • • • ***·KS·····*·*·

BRANCH
TO ABTERM

* * HOUSKEEP *. * 0*------->: R~~~!B~~~TY :------->: EXIT •
***.* •••• *.*.*.

TO
DISPATCHER

• Chart 14 • SER1 Control Flow (Continued)

....
*14 ...
.. A2 ~
o 0 I

y

·····A2·········· o 0
o
• HALT ALL I/O
o

.................

I
y ·····62··· •••.. ·. o 0

... READ ..

.. HEADER RECORD ...
o * o•..........

I
y .*.

(2 *.
.* * • • * *. YES" ..

*. I/O FAILURE .~>. C5 ...
. . ..

*. ••
* •• -o NO

I
V ·····02·········· * 0

.. UPDATE ..

.. HEADER RECORD ..

... IN CORE ...

I
v .*.

E2 *.
• * -.

NO .* *.
I··:~COR~I~NTR!* .*
I *. .*
v * •• *

•••• ... YES · ... (5 ..
• 0 I

* ••••
*14 ..
.. E3*

o 0 .
I
V

···E3···*···· • 0 .
: HALT ALL I/O

* **.*.*

I<:--------------------~
I
y ·····F2·········· * 0

.. lIIIRJTE

... RECORD ENTRY · •••••• * •••• ** •• **

I
y .0.

62 ••
• * ••

•• *. YES'" ...
•• I/O FAILURE •• -->. C5 *

•• •• A· ...
-. .* *. .*

ro

v
··*H2·*··.*.* · . * WRITE •
• HEADER RECORD • · .
•••••••• ** •••••• *

I .~. I
•• J2 •••• ~

•• *. YES
. I/O FAILURE .

. .
*. .-....

• NO

I
v .

• 85 * . .

••• *
o 0
... 85 ..
o *
I
V

·····85·········· * 0
o
... WRITE END OF
... FILE
o .** ••••••••••••••

:*::*:->1
* 0

V

·····cs·**····· •• * 0

* : HALT ALL I/O

*
I
y

·····05·········· * 0
.. SOUND ..
... CONSOLE ALARM ..
* 0•............

I
V

····*ES········ •. . .
.. WRITE

MESSAGE TO
OPERATOR .

****************.

I
y

****FS*·******·
• 0

WAIT .
*****.*** •• ****

Cha.r;-;ts 54E

• Chart 15. SER1 Control Flow (Continued)

SECOND
Me

ENTRY

·**··A2·········· * * .. LOAD BASE ..
.. REGISTER FROM ..
.. LOCAT. 372 ..

* ..•.••..••.......

I
v .*.

62 * •
• * * • • * *. YES

-.SECOND ENTRY •• ~~------------,
. HERE . I ..•. j.:;. I

.*. V C2 *. • •••• C3 ••••••••••
• * *.

• * USING *. YES" ..
. STANO ALONE .------->* HALT ALL 1/0 .. *. I/O •• .. •

. .
*. .-re

v .*.
02 * •

• * -.

•.•...•.......•..

I
V

·····03·········· * * YES .* •• .. SOUND ..
.. CONSOLE ALARM .. , -.HEADER RECORD.

. READ .
. .

v * •• * ••••• .. NO
*14 .. I
.. E3* I
* * v

*14 ..
.. A2-

* *

* *
* *••......•....

I
V ····*E3·········· * •

WRITE
MESSAGE TO

OPERATOR
* •••••••••••••• ***

I
v

.* •
••••• F2* •• **..... F3 *.

54F

.. .. .* *.

.. .. NO .* - •
• SETUP FOR SEREP*<-------*. RE WRITTEN .*
.. .. *. .*

I
. .

* •• *
.. YE;S

I
>1

V
*·**G3*··**·*·*

* * WAIT

The initial program loader (IPL) is a
service routine that loads into main stor
age the nucleus and the nucleus initializa
tion program (NIP -- described in Appendix
B). IPL is initiated by the operator when
he presses the LOAD key on the system
control panel. The hardware loads IPL into
main storage, IPL loads the nucleus and
NIP. On completion, IPL branches to an
LPSW instruction in the nucleus, which
gives control to NIP.

IPL performs the following major func
tions:

• Clears main storage and machine reg
isters to correct parity.

• Sets the storage key of main storage to
the supervisor protection key, in sys
tems with the protection feature.

• Locates the nucleus on the system resi
dence device.

• Loads the nucleus and NIP.

• Gives control to NIP.

HOW IPL IS ORGANIZED

IPL is made up of two records and eight
subroutines:

• IPL Control Record This 24-byte
record, consisting of an IPL-PSW and
two IPL-CCWs, is loaded into main stor
age at location zero by the hardware
circuitry when the operator presses the
LOAD key. This record and the IPL
bootstrap record are located at track
zero, cylinder zero of the system resi
dence device; the IPL subroutines are
contained in one record elsewhere on
the system residence device.

• IPL Bootstrap Record -- This record,
consisting of a chain of CCWs, is
loaded into main storage at a location
specified by the IPL control record.
The IPL bootstrap record loads the IPL
subroutines into main storage at loca
tion zero.

• Nucleus Selection (IEACOMPR)
subroutine selects the nucleus
loaded.

-- This
to be

APPENDIX A: INITIAL PROGRAM LOADER CIPL)

• Hardware Initialization (IEAMAIN)
This subroutine clears main storage,
machine registers and, where applica
ble, initializes the storage keys.

• Nucleus Location (IEACOMLP) This
subroutine locates the nucleus on the
system residence device.

• Control Section Data Organization
CIEAHOOP) -- This subroutine computes
and sequentially arranges nucleus con
trol section data so the nucleus can be
loaded into main storage.

• IPL Relocation (IEAADDR) -- This sub
routine moves the unexecuted part of
IPL to the upper end of main storage to
make room for the nucleus.

• Nucleus Load (IEALOAD) -- This subrou
tine loads the nucleus and NIP into
main storage.

• RLD Relocation (IEARELOC) -- This sub
routine relocates RLD items within the
nucleus text read into main storage.

• Common I/O (IEASTRIO) -- This subrou
tine, used by IEACOMLP and IEALOAD~
issues and tests for the successful
completion of START I/O operations.

IPL CONTROL INFORMATION

NIP and the nucleus are combined into
one load module and written on the system
residence device by the linkage editor at
system generation time. IPL is supplied
with the fixed name of this "nucleus" load
module, but not with its location or the
location of its DSCB within the VTOC.

The structure of the nucleus load module
on the system residence device is the
standard structure described in the publi
cation IBM system/360 Operating System:
Linkage Editor, Program Logic Manual. That
is, its records and text are ordered as
follows:

• Composite ESD Record (CESD).

• Scatter/Translation Record.

• Control Record.

• Text Record (TXT).

Appendix A: Initial Program Loader (IPL) 55

• Control/RLD Record (here and elsewhere,
RLD data on this type of record depends
on the presence of RLD items in the
previous text).

• TXT.

• Control/RLD Record.

• TXT.

• and so on" until the end of the load
module.

The scatter/translation record is made
up of the translation table and the scatter
table. The translation table corresponds,
entry for entry, to the CESD" where each
entry represents one control section
(CSECT) made up of a control (or
control/RLD) record and TXT. Entry 0 of
both the translation table and the scatter
table is a dummy entry containing zeros.
Entry 1, corresponding to an ESDID of 1,
represents NIP, whiqh is the first CSECT of
the nucleus load module. The translation
table contains 2-byte pointers to the
4-byte entries in the scatter table.

IPL TABLES

Since the order of nucleus CSECTs on the
system residence device is not fixed until
system generation time, IPL organizes the
information available for the CSECTs before
loading the text within CSECTs into main
storage. IPL organizes the data by
creating three tables:

• SIZTABLE -- a table of CSECT sizes.

• ADRTABLE a table of addresses where
the CSECTs are to be loaded.

• RLFTABLE -- a table of relocation fac
tors.

These tables are arranged in the same
sequence as the CSECT entries in the scat
ter table and have 4-byte entries, making
each table the same length as the scatter
table.

To make up the SIZTABLE., IPL performs
the following:

56

• Indexes the scatter table by
tents of the translation table
determine the address of the
table entry corresponding to a

the con
entry to
scatter

CSECT.

• Loads in a register the assembled ori
gin "0" of the CSECT from the scatter
table entry.

• Loads in another register the assembled
origin "01" of the next CSECT from the
consecutive entry in the scatter table.

• computes the size
subtracting origin
"01."

of
" 0"

the CSECT by
from origin

• stores the size in SIZTABLE in a posi
tion relative to the CSECT position in
the scatter table.

The size of the CSECT whose linkage
editor assigned origin is available in the
last 4-byte entry of the scatter table is
computed by subtracting origin "0" from the
size of the nucleus which is available in
the PDS directory and stored by IPL in the
first word of the SIZTABLE which IPL builds
behind the scatter table.

To make up the ADRTABLE" IPL performs
the fOllowing:

• stores the address where the second
CSECT is to be loaded (assumed to be
location 0) in the same position in the
ADRTABLE as the CSECT occupies in the
scatter table.

• Computes
CSECT by
CSECT to
CSECT.

the address for the third
adding the size of the second
the address of the second

• Stores the address for the third CSECT
in the same position in the ADRTABLE as
the CSECT occupies in the scatter
table.

• Repeats the second and third steps
above for each ordered CSECT. (Ordered
CSECTs are those which must be loaded
first and in the order in which they
appear in the translation table.)

• stores the addresses for non-ordered
CSECTs, after computing them as they
are encountered sequentially following
the last of the ordered CSECTs.

The RLFTABLE is similar in structure to
the SIZTABLE and ADRTABLE. Its entries are
computed by subtracting the linkage-editor
assigned origin from the address at which
the CSECT is to be loaded.

IPL CONTROL FLOW

As shown in Chart 08" IPL begins with
several operator actions and prior
conditions (see the publication IBM
System/360 Operating System: operator'S
Guide, Form C28-6540). The operator se
lects the system residence device with the

LOAD-UNIT switches and presses the LOAD
key. The hardware circuitry resets the
CPU, locates track 0, cylinder 0" and loads
the IPL control record into location O.
The control record loads the IPL bootstrap
record, which, in turn, loads IPL and
passes control to the first subroutine via
an LPSW instruction. IPL is executed disa
bled for all interruptions except program
interruptions.

IPL clears storage and registers, se
lects the nucleus or allows the operator to
select a non-standard nucleus, sets storage
keys where applicable., searches the VTOC
and locates the data set containing the
nucleus load module. IPL loads the trans
lation table and the scatter table into
main storage, relocates part of IPL (if
necessary) " calculates relocation con
stants, and loads the nucleus load module.
IPL passes control to NIP by branching to
an LPSW instruction in the nucleus.

NUCLEUS SELECTION

This subroutine (IEACOMPR) selects the
nucleus for loading or allows the operator
to choose a different nucleus, by using the
ADDRESS-COMPARE switch and the DATA switch.
The procedure for operator-selection of the
nucleus is given in the publication IBM
System/360 Operating System: Operator's
Guide.

HARDWARE INITIALIZATION

This subroutine (IEAMAIN) sets correct
parity in the:

• General registers.

• Floating point registers, if present.

• Main storage beyond IPL.

In addition, IEAMAIN sets storage keys
to the supervisor protection key.

Program interruptions will occur while
setting storage keys in machines without
the protection feature, or while correcting
parity in machines without floating point
registers or without maximum main storage
capacity. These interruptions are automat
ically handled by IEAMAIN. Further program
interruptions are unexpected, and this sub
routine places the machine in a wait state
if they occur.

NUCLEUS LOCATION

This subroutine (IEACOMLP) searches for
the location of the specified nucleus name
on the system residence device and pOSi
tions the read head of the system residence
device at the first text record of the
nucleus. IEACOMLP takes the following
steps to lcoate the nucleus:

• picks up the system
address stored at
hardware circuitry.

residence device
location 2 by the

• Reads the standard volume label to find
the VTOC DSCB address.

• Reads the VTOC DSCB data to determine
the number of tracks per cylinder on
the system residence device.

• Searches the VTOC to find the DSCB for
the partitioned data set (PDS) name.

• Seeks the track where the PDS directory
starts.

• Searches the directory for a record
containing the name of the nucleus,
using the SEARCH EQUAL HIGH KEY com
mand.

• Reads the PDS directory record.

• Determines the address of the scatter
translation record on the system resi
dence device from the PDS directory
record.

• Finds the scatter
and reads it into
IPL.

translation record
main storage above

The nucleus location subroutine uses the
common I/O subroutine, IEASTRIO, when read
ing the standard volume label, VTOC, etc.,
from the system residence device into main
storage. Before using the common I/O sub
routine, IEACOMLP sets up a channel program
with an appropriate chain of CCWs to SEEK,
SEARCH, TIC and READ.

CONTROL SECTION DATA ORGANIZATION

This subroutine (IEAHOOP) computes the
address for loading the ordered CSECTs and
also computes the relocation factor and
size of each CSECT. This data is arranged
in tables SIZTABLE, ADRTABLE, and
RLFTABLE for use by the nucleus load
subroutine. The tables and the procedures
IEAHOOP uses to make them are described
under the earlier heading" "IPL Tables."

Appendix A: Initial Program Loader (IPL) 57

IPL RELOCATION

This subroutine (IEAADDR) relocates that
part of IPL not executed at the time of the
loading of the nucleus into the
numerically-lower end of main storage. The
tables created at the top of IPL are
included in the relocation. Space for the
RLD information concerning the nucleus is
assigned from the top of NIP to the bottom
of the relocated portion of IPL.

NUCLEUS LOAD

This subroutine (IEALOAD) loads the
nucleus into main storage,! placing the
relocatable modules into ma~n storage in
the order of their position in the transla
tion table. Unless INSERT cards are used
for each nucleus CSECT prepared by linkage
editor, the order of the loading of the
relocatable nucleus CSECTS will vary. IPL
sets a buffer of 256 bytes in IPL for
reading control/RLD records, and performs
the following actions:

58

• Reads a control/RLD record into the
buffer and interrogates the record.

• Picks up from the control/RLD record
the ESDID of the text record that
follows the control/RLD record.

• Determines the address" L, at which the
text record of the CSECT is to be read,
by adding the relocation factor from
the RLFTABLE to the assigned origin of
the record.

• Reads the TXT record of the
address L.

• Adds the number of text bytes
to address" L, to compute the
where the next text record of
CSECT is to be read. Sets L =

CSECT at

read" T,
address

the same
L + T.

• Reads into the buffer the control/RLD
record following the text record.

• Builds a table of RLDs by moving RLD
information bytes from the control/RLD
record and keeps a count of the RLD

bytes moved into the RLD table above
NIP.

• Repeats the above steps until all the
records of the nucleus are read into
main storage.

The nucleus load subroutine uses the
common 1/,0 subroutine when reading the CCW"
control/RLD and TXT records of the nucleus
load module from the system residence
device into main storage. Before using the
common I/O subroutine, lEALOAD sets up a
channel program with an appropriate CCW to
READ the particular record.

RLD RELOCATION

This subroutine (IEARELOC) scans the RLD
table created by lEALOAD and relocates the
load constants in the nucleus text, using
relocation factors stored by IPL in the
RLFTABLE. At the completion of IEARELOC,
IPL's work is done and control is passed to
NIP.

COMMON I/O

This subroutine (IEASTRIO), used by
nucleus locate and nucleus load, issues and
tests for the successful completion of
START I/O operations. Nucleus locate and
nucleus load set up the CAW and CCWs and
then branch and link to IEASTRIO. After
execution of IEASTRIO, control is returned
to the IPL subroutine that branched to it.

Error conditions encountered during the
execution of IEASTRIO are indicated to the
operator by the WAIT light, and the error
type is stored in the address field of the
WAIT PSW.

The operator can retry IPL when the WAIT
light is on. If IPL is unsuccessful after
a few trials" the operator displays the
address field of the PSW to determine the
error type, and informs the customer engi
neer. The ten error types are shown in
Figure 20.

Form Y28-6612-0,-1,-2, Page Revised by TNL Y28-2174, 4/10/67

r------T-----------T--,
IError IBit Pattern I Meaning I
I Type I Displayed I I
~------+-----------+--~

1 00000001 I IYO is not operational. I

2 00000010

3 00000011

4 00000100

5 00000101

6 00000110

8 00001000

9 00001001

I
I/O operation is not initiated. CSW is stored. Unit is not busy. I

I/O operation is not initiated.
not busy.

CSW is not stored. Channel is

During TEST I/O. Channel is not busy. CSW is not stored.

During TEST I/O. Unit check condition is indicated. Location
X'4C' contains the address of the CCW causing the original unit
check, and X'54' contains the first four sense bytes.

During TEST I/O. Any of these
Interface control check.
Channel control check.
Channel Data check.
Channel chaining check.
Program Check.

conditions are indicated:

Available space for reading RLD records has been exceeded.

Unexpected program interruption. IPL contaminated.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

FF OOOOOOFF No IPL on this direct-access device. I ______ ~ ___________ ~ __ J

Figure 20. IPL Error Types

Appendix A: Initial Program Loader <IPL) 59

Form Y28-6612-0,-1,-2, Page Revised by TNL Y28-2174, 4/10/67

APPENDIX B: NUCLEUS INITIALIZATION PROGRAM (NIP)

The nucleus initialization program (NIP)
consists of several subroutines, each of
which performs an initialization function
required by the resident portion (nucleus)
of the primary control program. Such func
tions include opening of the SVC and Link
libraries, setting the protection key of
main storage and placing the addresses of
the upper and lower boundaries of the
partition into the boundary box.

The NIP sub-routines are packaged in one
non-resident module. The NIP module is
processed by the linkage editor together
with the nucleus modules. It is loaded
into main storage immediately following the
nucleus, by the IPL program. NIP is
entered from the IPL program and, on com
pletion, passes control to the dispatcher,
after which it is overlaid by the process
ing programs.

NIP operates partially under its own
stand-alone input/output routine and par
tially under system routines including the
I/O supervisor. NIP has its own TCB, RB
and boundary box, all of which are pre
assembled within NIP code. The location
NEW contains the address of the TCB.

The NIP
following:

module initializes the

• Communication Vector Table (CVT).
• Partition.
• Boundary Box.
• Free Area Queue Element.
• UCB Table and Request Element Table.
• SYS1.SVCLIB, SYS1.LINKLIB, SYS1.LOGREC

DEB.
• SVC Table Extension (optional).
• Protection Key (optional).
• Timer (optional).
• Resident Access Method Routines

(optional> •
• Resident BLDL Table (optional).
• Resident Type 3 and 4 SVC Routines

(optional> •
• Resident Job Queue (optional).

NIP CONTROL FLOW

When entered from the IPL program, NIP
saves the address of the system residence
device, stored in register 10 by the IPL
program. (See Chart 09.) It rounds up the
address of the end of nucleus to a
2048-byte boundary and stores this value in
the CVT for use by the system environment
recorder (SER 0).

60

NIP examines the parameters provided by
the user in the boundary box, and
determines the addresses of the free area
queue element and lower and upper bounda
ries for the partition. It stores these
addresses in the boundary box. It also
stores the number of free bytes in the

. partition in the free area queue element.

NIP changes the 2-byte displacements of
each "Forward Link" from the start of the
I/O supervisor into absolute addresses and
stores them into the request element table.
It also changes the 2-byte displacements of
each UCB from the start of the I/O supervi
sor into absolute addresses and stores them
into the UCB table.

It initializes the pre-assembled DEB-
for SYS1.SVCLIB, SYS1.LINKLIB, and
SYS1.LOGREC data set.

NIP optionally determines if the timer
is enabled and working. If the timer is
not enabled and working, NIP sends a timer
status message to the operator. If the
timer is enabled and working, it sets the
timer with a value of six hours.

NIP optionally determines the protection
key for the partition from the "protect
key" field within the TCB associated with
the partition. It sets the storage key of
the partition.

NIP optionally extends the SVC table to
contain the TTR and the length of each
transient SVC routine.

It moves a PRB and the XCTL code from
the NIP module to the beginning of the
partition and relocates the address
constants within the XCTL code. The PRB
and XCTL code have been pre-assembled with
in the NIP module. The code moved into the
partition passes control to the job schedu
ler through an XCTL macro-instruction.

After completing all the initialization
procedures, NIP passes control to the dis
patcher.

CVT INITIALIZATION

NIP rounds up the address of the end of
nucleus to a double-word boundary and
stores it in entry 33 in the CVT. This
information is used by system environment
recorder.

PARTITION INITIALIZATION

The main storage area outside the fixed
area is called the partition.

The boundary between the fixed area and
the partition is on a double word for a
system without the protection feature.

The initialization of the partition con
sists of:

• Moving pre-assembled code from NIP to
the beginning of the partition. This
code includes a PRB and the XCTL code
that causes loading of the job schedul
er through an XCTL macro-instruction.

• Relocating the address constants in the
PRB and XCTL code.

NIP may be overlaid when the pre
assembled code is moved to the beginning of
the partition. To eliminate this
possibility" NIP code is assembled 2048
bytes from the beginning of the NIP module.

Main storage before and after initializ
ing the partition is shown in Figure 21.

r----------,

1

NIP Code

NIP DS of
2K Bytes

1- -
1
1
1 Resident
1 Nucleus
1 I L __________ J

Before

Figure 21.

r----------, - - - - - -

NIP Code

I PRB and
I XCTL codel
~----------~

I I
I I
I I
I I
I I
I I
I I L __________ J

After

P
A
R
T
I
T
I
o
N

Boundary

F A
I R
X E
E A
D

Main storage Initialization

BOUNDARY BOX INITIALIZATION

A 12-byte boundary box specifies the
boundary of the partition. The parameters
specified by the customer are assembled in
the boundary box at System Generation time
(Figure 22).

r-------------------------------------,
I I FA
~-------------------------------------~
I Minimum Partition I LB
~--------T----------------------------~
I 0 I Main Storage Size I UB L ________ i-___________________________ J

Figure 22. Boundary Box

The initialization of the boundary box
consists of computing and storing the fol
lowing addresses into the boundary box:

Upper boundary of the partition - UB

Lower boundary of the partition - LB

Free area queue element - FA

The boundary box initialization for the
single-task supervisor is shown in Figure
23.

r--------------------, - - - - - - UB
I I
I I
I I
I I
I I
I I
I I
I I
~---T----------------~
I 0 I Free Area = L I FQE

/\

I
I
I
L

I
I
I
I
V

~--------------------~ - - - - - FA
I PRB and I
I XCTL Code I

P
A
R
T
I
T
I
o
N

~--------------------~ - - - - - - - - - LB
I r------' I
I I UB I I
I ~------~ I
I I LB I I
I ~------~ I
I I FA I I I L ______ J I
I Boundary I
I Box I

F A
I R
X E
E A
D

L ____________________ J - - - - - - _ - - _

Figure 23. Boundary Box Initialization

Appendix B: Nucleus Initialization Program (NIP) 61

The boundary box addresses are computed
as follows:

UB = highest address in the main stor
age, computed dynamically.

LB = address of the end of nucleus
rounded up to a double word
boundary for a system without
protection feature.

or address of the end of nucleus
rounded up to 2048-byte boundary
for a protected system.

FA address of free area queue ele
ment (FQE), described in the fol
lowing section.

FREE AREA QUEUE ELEMENT INITIALIZATION

The free area queue element (FQE) is a
double word after the PRB and XCTL code
within the partition. The initialization
of the FQE consists of the following:

• computing the length of the free area
(L) and storing this value in the right
half of the FQE. The free area is
defined as the partition minus the area
occupied by PRB and XCTL Code (see
Figure 23).

• storing zeros in the left half of the
FQE.

UCB TABLE AND REQUEST ELEMENT TABLE
INITIALIZATION

UCB Table: NIP changes the 2 byte dis
placements within the UCB table and request
element table into 2-byte absolute address
es after these tables are loaded into main
storage.

When loaded into main storage, the UCB
table contains the displacement (D) of each
UCB from the start (X) of the I/O supervi
sor (IECIOSOO). NIP adds X to D and stores
the sum into the UCB table.

The start of the UCB table is available
in entry 11 within the CVT. The end of the
UCB table is indicated by 'FFFF' in the
last entry within the UCB table.

Figure 24 shows the UCB table before and
after the initialization.

62

r-------------, r--------------,
I D1 I I D1 + X I
~-------------~ ~--------------~
I D2 I I D2 + X I
~-------------~ ~-------------~
I D3 I I D3 + X I
~-------------~ ~--------------~
I D4 I I 04 + X I
~------------~ ~--------------~
I I I I
I I I I
I I I I
~--------------~ ~--------------~
I FFFF I I FFFF I L ____________ J L ______________ J

2 Bytes

Before After

Figure 24. UCB Table Initialization

Request Element Table: The request element
table consists of a number of request
elements (I/O supervisor's name for IQEs
with 2-byte link fields; see Chapter 1)
that are used to represent I/O interruption
requests. The number of elements in the
table is determined at system generation
and remains fixed.

When loaded into main storage"
request element table contains the
placement (L) of each 'Forward Link'
the start of the I/O supervisor (X).
adds X to L and stores the sum into
request element table.

the
dis
from

NIP
the

The start of the request element table
is available in entry 31 within the CVT.
The end of the request element table is
indicated by 'FFFF' in the first two bytes
of the last entry in the request element
table. Figure 25 shows the request element
table before and'after the initialization.

r---------T-------,
I L1 I I
~--------+--------~
I L2 I I
~--------+-------~
I L3 I I
~---'------+--------~
I I I
I I I
I I I
~----------+--------~
I FFFF I I L _________ ~ ________ J

I 2 Bytes I

Before

r----------T--------,
I L1 + X I I
~---------+--------~
I L2 + X I I
~----------+--------~
I L3 + X I I
~--------+-------~
I I I
I I I
I I I
~----------+--------i
I FFFF I I L __ ~ _______ ~ ________ J

12 Bytes

After

Figure 25. Request Element Table Initiali
zation

In addition to the initialization proce
dures described above" NIP stores the
address of the request element table at the
next request element address" which is
available in entry 32 in the CVT.

SYS1.SVCLIB, SYS1.LINKLIB, AND SYS1.LOGREC
DEB INITIALIZATION

Although the DEB'S for these data sets
are assembled within the nucleus, some of
the DEB fields are not pre-assembled. The
data in these fields is stored by NIP to
simulate the OPEN function.

The initialization of the DEB
of determining the following data
ing them into the corresponding
the DEB:

consists
and stor
fields in

• start cylinder address and track
address (CCHH) of the data set.

• End CCHH of the data set.

• Number of tracks occupied by the data
set.

• UCB address for the system residence
device.

• Appendage address.

Figure 26 shows the DEB fields which are
initialized by NIP.

r---------------------------------------,
01 1

1

1 1
~---------T-----------------------------~

281 1 Appendage Address 1
~---------+-----------------------------~

321 1 UCB Address 1
~---------~---------T-------------------~

36 lice start 1
~-------------------+-------------------~

401 HH 1 CC End 1
~-------------------+--------------------1

441 HH 1 Number of Tracks 1 L ___________________ ~ ___________________ J

Figure 26. DEB Initialization

NIP executes in a stand-alone environ
ment using its own input/output routine and
performs the following functions to accom
plish the DEB initialization:

)

1. Reads the standard volume label to
determine the volume table of contents
(VTOC) address on the system residence
device.

2. Reads the data portion of VTOC DSCB to
determine the tracks per cylinder for
the system residence device.

3. Determines the
system residence
table look up.

UCB address of the
device through UCB

4. Determines the DEB address through the
use of CVT and DCB. The DEB Address
is available within the corresponding
DCB. The DCB addresses for
SYS1.SVCLIB, SYS1.LINKLIB, and
SYS1.LOGREC data sets are available in
the CVT at entries 22, 3, and 30,
respectively.

5. Searches the VTOC and reads" into a
buffer, the data portion of the DSCB
for the data set.

6. Moves Start CCHH and End CCHH for the
data set from the buffer into the DEB.

7. computes the number of tracks con-
tained within the data set extent and
stores this value in the DEB.

8. Stores the UCB address into the DEB.

9. Moves the I/O appendage address from
entry 6 of the CVT into the DEB.

10. Repeats steps 4-9 for each data set.

SVC TABLE EXTENSION (TTR TABLE)
INITIALIZATION

This is an optional NIP fUnction that is
selected at system generation time.

The TTR address and length (L) of each
non-resident SVC routine are available in
the partitioned data set (PDS) directory of
the SVC library.

The TTR table initialization consists of
the following:

• Searching the PDS directory of the SVC
library to fine the TTR and length of
each transient svc routine.

• Storing TTR and L of each transient SVC
routine in a table within the nucleus.
The assigned area for this table is
within the SVC handler routine.

The TTR table consists of a 4-byte entry
for each transient SVC routine. The format

Appendix B: Nucleus Initialization Program (NIP) 63

of each 4-byte entry in the table" is shown
in the diagram below:

Bits: 10 a 11 3

r------------T---------T--------------T---'
I TT I R I LENGTH IESAI L ____________ ~ _________ ~ _____________ ~ ___ J

<-----------------4 Bytes---------------->

where

TT = Track address of the transient
SVC routine relative to the start
of the SYS1. SVCLIB data set,.

R = Record number on the track.

L = Length in bytes of the transient
SVC routine.

ESA = Extended save area
words. This field
assembled in the table.

in double
is pre-

NIP uses the f6110wing information
available in the SVC handler routine to
accomplish the initialization function:

• Relocation table
index number for
table.

containing 1-byte
each SVC in the SVC

• Highest number assigned to an SVC pro
vided by IBM.

• Highest number assigned to a resident
SVC.

To initialize the TTR table, NIP follows
the procedure described below:

1.

64

Constructs
transient
table and
number, as

an eight byte name for the
SVC by using the relocation
the highest resident SVC
explained below:

• Picks up the entry in the relocation
table which corresponds to a tran
sient 8VC.

• Translates the entry number in the
relocation table to 'a SVC number.

• Converts the SVC number from binary
to decimal.

• Unpacks the decimal number to a
4-byte number.

• Constructs an a-byte name for the
SVC routine by placing the 4-byte
unpacked decimal number beside a
pre-assembled four character prefix
for the SVC names, as follows:

IGCO

pre-assembled
prefix

XXXX

unpacked
decimal number

2. Loads the following registers:

• Address ,of the input parameter list
to the BLDL macro-instruction is
placed in register o.

• Address of the SYS1.SVCLIB DCB is
placed in register 1.

3. Issues the BLDL macro-instruction to
search the SYS1.SVCLIB directory.

4.

5.

6.

Tests for the successful execution of
the BLDL macro-instruction.

On successful completion, BLDL returns
the data extent for the SVC routine in
a return area. NIP moves the TTR and
length of the SVC routine from the
return area into the TTR table, in a
format shown in the diagram above.

When unsuccessful, BLDL
error code in register 15.
the error code and sends
following error messages to
tor:

returns an
NIP tests
one of the
the opera-

"IEA101I SVC ROUTINE IGCOXXXX NOT
AVAILABLE - PERMANENT I/O ERROR ON SVC
LIBRARY."

"IEA102I SVC ROUTINE IGCOXXXX NOT
AVAILABLE - NOT FOUND ON SVC LIBRARY."

7. Scans the relocation table and repeats
the above procedure for each transient
SVC routine.

PROTECTION KEY INITIALIZATION

Main storage protection is an optional
hardware feature. When protection is
selected;, the storage keys are set accord
ing to the following criteria:

• The storage occupied by the nucleus has
a storage key of zero.

• The partition has a non-zero storage
key, specified in the TCB associated
with the partition.

NIP obtains the storage key for the
partition from the "protect key" field
within the TCB corresponding to the parti
tion, and sets the partition to the
appropriate storage key.

TIMER INITIALIZATION

The timer is an optional hardware fea
ture. It can be enabled or disabled by a
switch on the syste~ control panel.

The timer initialization consists of the
following:

• Testing to check if the timer is ena
bled and working.

• Setting the timer to six hours when
control is given to the job scheduler.

NIP performs the following functions to
initialize the Timer:

1. Tests to check if the timer is werk
ing:

• Sets location 80 with value of six
hours (X'6309109E).

• Waits for the ti~er to decrement.

• Compares the contents of location 80
with the original value of six
hours. If the contents of location
80 are equal to six hours, sends the
following message to the operator:

"IEAI00A TIMER IS NOT WORKING. PUT
TIMER SWITCH ON."

2. Resets location 80 with the 6-hour
value.

BUILDING A RESIDENT DIRECTORY FOR
SYS1.LINKLIB

This section is applicable only if the
resident BLDL table option was selected at
system generation time.

Each time an ATTACH, LINK, XCTLn or LOAD
macro-instruction is issued, the system
issues a BLDL with a subsequent program
fetch of the module. When the resident
BLDL table option is selected, all or any
portion of the SYS1.LINKLIB directory can
be made resident as a part ef the nucleus
by the nucleus initialization prograrr,. Any
linkage to a SYS1.LINKLIB module causes a
scan of the resident table before a direct
access device search is initiated in the
BLDL routine.

The message:

IEAI01A SPECIFY SYSTEM PARAMETERS

is issued to the operator if COMM was
specified in the SUPRVSOR system generation
macro-instruction. The operator may then:

1. Specify an alternate list of
SYS1.LINKLIB modules whose directory
entries are to be made resident.

2. Request a listing of the names of the
modules whose directory entries were
rr:ade resident.

3. Cancel the option for the current IPL.

If a list is selected, NIP then:

1. Reads the specified list from member
IEABLDxx in SYS1.PROCLIB (where xx=OO
or is replaced by two alphanumeric
characters supplied by the operator).

2. Places the names in a table which is
filled in by the BLDL routine.

3. Issues a BLDL.

If a normal return is received fLOm the
BLDL routine, the boundary box is adjusted
to include the resident directory table as
a part of the nucleus.

If an error code is returned from the
BLDL routine, NIP issues one of the follow
ing messages:

IEAI08I PERMANENT I/O ERROR DURING BLDL

The BLDL function is not performed. NIP
continues to initialize the nucleus.

IEAI09I BLDL FAILED FOR FOLLOWING MODULES

This message is followed by a list of
names of the modules whose directory
entries were not made resident because they
were not found in SYS1.LINKLIB. NIP
adjusts the boundary box to include the
incomplete BLDL table and continues as
though the table had been completed.

NIP places the address of the BLDL table
into an ar~a in the BLDL routine, IECPFND1.

RESIDENT ACCESS METHOD (RAM) INITIALIZATION

When the RAM option is selected at
system generation time, a group of access
method modules is preloaded as part of the
nucleus by the nucleus initialization pro
gram, thus creating a permanent system load
list. Each time a LOAD is issued for any
access method rr:odule, the system load list
is checked. A program fetch is not per
formed if the module is found in the system
load list. Otherwise, the system loads the
module in the standard ~anner.

If COMM was specified in the SUPRVSOR
macro-instruction at system generation

Appendix B: Nucleus Initialization Program (NIP) 65

Form Y28~6612-0,-1,-2, Page Revised by TNL Y28-2174, 4/10/67

time, NIP issues the following message to
the operator:

IEA101A SPECIFY SYSTEM PARAMETERS

The operator may then:

1. Specify an alternate list of access
method modules to be loaded.

2. Request a listing of the names of the
access method modules that were load
ed.

3. Cancel the option for the current IPL.

If a list was selected, NIP then:

1. Reads the specified list of access
method modules from member IEAIGGxx in
SYS1.PROCLIB.

2. Issues a LOAD macro-instruction for
each module in the list. This creates
a load list attached to the TCB. The
list pointer is moved to an area in
the nucleus which is reserved for the
system load list pointer.

3.

If NIP is unable to load an access
method module, it issues the following
message:

IEAll01 LOAD FAILED FOR (module name)

NIP continues to initialize the
nucleus even though the named access
method module was not loaded as part
of the RAM option.

The boundary box is adjusted
include the system load list
access method modules as part of
nucleus.

to
and
the

RESIDENT TYPE 3 AND 4 SVC ROUTINE
INITIALIZATION

When the resident type 3 and 4 SVC
routine option is selected at system gener
ation time, type 3 and 4 routines roay be
loaded as part of the nucleus by NIP. If
COMM was specified in the SUPRVSOR macro
instruction at system generation time, NIP
issues the following message to the
operator:

IEA101A SPECIFY SYSTEM PARAMETERS

The operator may then:

1. Specify an alternate list of type 3
and 4. SVC routines to be loaded.

2. Request a listing of the names of the
routines that were loaded.

3. Cancel the option for the current IPL.

If a list was selected, NIP then:

1. Reads the specified list of SVC rou-
tines from merober IEARSVxx in
SYS1.PROCLIB.

2. Issues a LOAD macro-instruction for
each module in the list. This creates
a load list attached to the TCB. If
the module is a type 3 routine or the
first module of a type 4 routine, its
entry point is placed in the SVC table
as discussed in the section entitled
nResident Type 3 and 4 SVC Routine
Option." After all loading has been
completed, the load list contains
entries for routines requested by type
4 SVC routines via XCTL macro
instructions. Following these
entries, regardless of the order in
which the routines were actually load
ed, are entries for the first loads of
type 3 or 4 SVC routines. The list
pointer is moved to an area in the
nucleus which is reserved for the RSVC
system load list pointer. If NIP is
unable to load an SVC routine, it
issues the following message:

IEAll0l1 LOAD FAILED FOR (module name)

NIP econtinues to initialize the
nucleus even though the naroed routine
was not loaded as part of the resident
type 3 and 4 SVC routine option.

If a requested SVC routine is not
supported at the installation, NIP
issues the following message:

IEAl141 SVC (xxx) NOT SUPPORTED

The named SVC routine is defined but
cannot be loaded becuase it is not
supported at the installation.

If a requested SVC routine is unde-
fined, NIP issues the following mes-
sage:

IEAl151 SVC (xxx) NOT DEFINED

Indicating that no such SVC routine
exists.

3. The boundary box is adjusted to
include the RSVC load list and SVC
routines as part of the nucleus.

65A

Form Y28-6612-0,-1,-2, Page Added by TNL Y28-2174, 4/10/67

RESIDENT JOB QUEUE INITIALIZATION

When the resident job queue option is
selected at system generation time, NIP
must obtain the area needed to hold a
specified number of job queue records. If
COMM was specified in the SUPRVSOR macro
instruction at system generation time, the
number of resident job queue records
specified at system generation time may be
overridden when the nucleus is initialized.
In this case, NIP issues the following
message to the operator:

IEAI0IA SPECIFY SYSTEM PARAMETERS

The operator may then vary the number of
job queue records for the current IPL.
After the operator responds, NIP obtains an
area whose size is based on the number of
records to be made resident. The area
becomes part of the nucleus. A pointer to
the area is saved in a portion if the
nucleus that was reserved for this purpose
when the resident job queue option was
selected.

Appendix B: Nucleus Initialization Program (NIP) 65B

APPENDIX C: GUIDE TO THE LINKAGE EDITOR MAP OF THE NUCLEUS

r-----------T-------------T----------T--,
ICsect Names I Sysgen Output I I I
lin Order oflMacro. to be I Microfiche I ' Routine Name I
IAppearance I Checked for I Module I (or Other Specified Function~ e.g., Table) I
Ion L.E. Map I Module Name I Name I I
~-----------+-------------+----------+--~
I IEAAIHOO I IEAAIH I * I First Level Interruption Handlers (FLIHs) I
I I IEAAPS I * I Dispatcher and Exit Effector I
I I IECIOS I * I I/O supervisor I
~-----------+-------------+----------+--~
I IGC009 I I IEAADLOO I Delete I
~-----------+-------------+----------+--~
I IGC012 I I IEAASYOO I Synch I
~-----------+-------------+----------+-----------~--------------------------------------~
I IGCOIO I I IEAAMSOO I Getmain I
~-----------+-------------+----------+--~
I IEAOPLOO I I IEAAPLOO I Prolog I
~-----------+-------------+----------+--~
I IGCOll I I IEAORTIO I Timer SVC I
~-----------+-----~~-----+----------+--~
I IEEBAl I I IEECIROl I Console Interruption (Job Management) I
~-----------+-------------+----------+--~
I IEAOABOO I --- I IEAAABOO I Abterm I
~-----------+-------------+----------+--~
I IGCOOl I IEAAWT I * I Wait I
~-----------+-------------+----------+--~
I IHASVCOO I SGIEA2SV I * I SVC Table I
~-----------+-------------+----------+--~
I IEAATAOO I IEAATA I * I Attach I
~-----------+-------------+----------+--~
I IEACVT I CVT I * I 'Communications Vector Table I
~-----------+-------------+----------+--~
I IGC002 I IEAAPT I * I .Post I
r-----------+-------------+----------+--~
I IGC006 I IEAATC I * I Link I
~-----------+-------------+----------+--~
I IEATCBO 0 I IEATCB I * I Task Control Block I
~-----------+-------------+~---------+--~
I IEWFTMIN I I IEWFTMIN I Program Fetch I
~-----------+-------------+----------+--~
I IEWFTPCI I I IEWFTPCI I Program C~ntrolled Interrupt Fetch I
~-----------+-------------+----------+--~---------~
I IEFJOB I I IEFKRESA I Job Scheduler Tables and Work Area I
I I I I (Job Management) I L ___________ ~ _____________ ~ __________ ~ __ l

(Continued)

66

(Continued)
r-----------T-------------T----------T--,
I Csect Names I Sysgen Output I I ' I
lin Order oflMacro. to be I Microfiche I Routine Name I
IAppearance I Checked for I Module I (or Other Specified Function: e.g., Table) I
Ion L.E. Mapl Module Name I Name I I
~-----------+-------------+----------+--1
I IFBDCBOO I I IFBDCBOO I·· System Environment Recorder (SER) Data Control I
I I I I Block I
~-----------+-------------+----------+--1
I IGC018 I I IECPFIND I Find (Data Management) I
~-----------+-------------+----------+--1
I IGC037 I I IEWSVOVR I Overlay Supervisor I
~-----------+-------------+----------+--1
I IEEBC1PE I I IEEBC1PE I External Interrupticn (Job Management) I
~-----------+-------------+----------+--1
I IEC2311A I I IEC2311A I Disk Error Routine (I/O Supervisor) I
~-----------+-------------+----------+--1
I IEFDPOST I I IEFDPOST I Unsolicited Interruption (Job Management) I
~-----------+-------------+----------+--1
I IEEMSLT I SGIEEOOl I * I Master Scheduler Resident Control Data Area I
r I I I (Job Management) I
~-----------+-------------+----------+--i
I IECZDTAB I SGIECODT I * I Direct Access Device Table (I/O Supervisor) I
~-----------+-------------+----------+----------~---------------------------------------i
I IECINTRP I I IECINTRP I Sense and Status Interpreter (I/O Supervisor) I
~-----------+-------------+---------~+--i
I IEAANIPO I IEAANIP I * I Nucleus Initialization Program I
~-----------~-------------~----------~--i
I*Variable module names, dependent on macro-instruction's use. I L ________ ~ ____________________________________ ~-------__________________________________ J

APPENDIX D

CONTROL RECORD - (LOAD MODULE)

68

r-T---T--T--T--------T-~--T- --,
1011-314,16~18-15 I I I I
I I 15 17 I I I I Record length is 20 bytes I
L_~ ___ ~ __ ~ __ ~ ________ ~ __ ~ __ ~_ _ ___ J

I
I
I
I
I
I

I
I
L--Length of control section - specifies the length

control section (in bytes) that the text in
following record belongs to (2 bytes)

of the
the

L--------------CESD entry number - specifies the composite
external symbol dictionary entry that
contains the control section name' of the
control section that this text is part
of (2 bytes)

--Channel Command Word (CCW) - that could be used to read the text
record that follows. The data address field contains
the linkage editor assigned address of the first byte
of text in the text record that follows. (8 bytes)

--Count - contains two bytes of binary zeros. The count field contains the
length of the record.

L--Count - in bytes of the control information (CESD ID, length of
control section) following the CCW field (2 bytes)

L--Spare - contains three bytes of binary zeros

L--Identification - specifies that this is: (1 byte)

• A control record - 0000 0001

• The control record that precedes the last text record of this overlay
segment - 9000 0101

• The control record that precedes the last text record of the module -
0000 1101

RELOCATION DICTIONARY RECORD - (LOAD MODULE)

r~T--~T--T--T--------T-------- --,
1011-314,16,18-15 116-255 Record length can be I
I I 15 17 I I between 24 and 256 bytes I
L_~ ___ ~ __ ~ __ ~ ________ ~ _______ _ __ J

I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I

I
I
I
I
I
I

I
I
I
I
L--Spare

I
I
L--RLD data -- see below

- contains 8 bytes of binary zeroes

L--Count - in bytes of
--- the spare 8

the relocation dictionary information following
byte field (2 bytes)

L--Count - contains two bytes of binary zeroes

L--Spare - contains three bytes of binary zeroes

--Identification - specifies that this is: (1 byte)

I
I

* A relocation dictionary record - 0000 0010
* The last record of the segment - 0000 0110
* The last record of the module - 0000 1110

r-T---~-T--T-T---T--T--T-~--'

I I I I I I I I I I I
I I I I I I I I I I I
IFI A IR IP IFI A IR IP IFI A I
L_~ __ ~_~ __ ~_~ __ ~ __ ~ __ ~_~ ___ J

I
L--Address - linkage editor assigned

address of the address
constant (3 bytes)

specifies miscellaneous information as follows: (1 byte)
when byte format is xxxxLLST:
xxxx specifies the type of this RLD item (address constant)
0000 non-branch type in assembler language,a DC A(name)
0001 -- branch type (in assembler language., a DC V(name)
0010 -- pseudo register displacement value
0011 -- pseudo register cumulative displacement value
1000 and 1001 -- this address constant is not to be relocated,
because it refers to an unresolved .syIilbol.
LL specifies the length of the address constant
01 -- two byte
10 -- three byte
11 -- four byte
S specifies the direction of relocation
o -- positive
1 -- negative
T specifies the type of RLD item following this one
o the following RLD item has a different relocation

and/or position pointer
1 -- the following RLD item has the same relocation and

position pointers as this one., and therefore is omitted

L--Position pointer - contains the entry number of the CESD entry (or trans-
lation table entry) that indicates which control section
the address constant is in (2 bytes)

--Relocation pointer - contains the entry number of the CESD entry (or transla
tion table entry) ,that indicates which symbol's value
is to be used in the computation of the
address constant's value (2 bytes)

Appendix D 69

CONTROL AND RELOCATION DICTIONARY RECORD - (LOAD MODULE)

70

r-T---T--T--T--------~-T--~T---T-~--'

1011-31 4 ,,1 6 ,18-15 I I I I I I I
I I 15 11 I I I I I I I I
I I I I I I I I I I I I
L_~ ___ ~ __ ~ __ ~ ________ ~_~ __ ~~ ___ ~_~ __ J

I I
I ,

r-T---T--T--'
I I I I I
I I I I I
I I I I ,
L_~ ___ ~ __ ~ __ J

I , I
I

I I
I I
I I
I I
I I
I I
I I

I L--Address
I

I
I ,

L--Lenqth of control
section (2 bytes)

L--Flaq

I I
I L--Address (3 bytes)
I
L--Flaq (1 byte)

L--CESD entry
(2 bytes)

--Position pointer (2 bytes)

L--Relocation pOinter (2 bytes)

number

L--Channel Command Word (8 bytes)

L--Count of RLD information (2 bytes)

L--Count of control information (2 bytes) - the control information contains the
ID and length of control sections in the following text record.

'--Spare (3 bytes)

--Identification (1 byte) - specifies that this record is:

• A control and RLD record - 0000 0011

• A control and RLD record that is followed by the
last text record of a segment - 0000 0111

• A control and RLD record that is followed by the
last text record of a module - 0000 1111

Note: For detailed descriptions of the data fields see:

Relocation Dictionary Record
Control Record

The record length will vary from 20 to 260 bytes.

PARTITIONED ORGANIZATION DIRECTORY RECORD - (AS RECEIVED FROM BLDL)

Byte
r---,

01 1
1 Name of load module (member or alias name) 1

41 1
~---T-------------------~

81 Relative (to beginning of data set) disk address of 1 Concatenation 1
1 module (TTR) 1 number 1
~-------------------T-------------------T-------------------L ___________________ ~

121 Byte of binary IAlias indicator andl Relative (to beginning of data set) 1
1 zeroes. ** lmiscellaneous info. 1 disk address of first text record. 1
~-------------------+-------------------+---------------------------------------~

161continuation of I Byte of binary IRelative (to beginning of data set) 1
Idisk address I zeroes 1 disk address of NOTE List or Scatter-I
~-------------------+-------------------+---------------------------------------~

201 translation recordlNumber of entries I Module attributes (see below) I
I lin NOTE List ++ 10,,1,,2,3,,4,5,,6,7,,8,9,,10,11,12,13,+,+ I
~-------------------~-------------------~----------------~-------------------~

241 Total contiguous quantity of main storage required by thelLength(in bytes) ofl
I module I first text record. I
~-------------------~----------------------------------___ -L ___________________ ~

281 continuation of IModule's linkage editor assigned entry point address I
1 Length. 1 I
~-------------------~---------------------------------------T-------------------J

321Linkage editor assigned origin of first text record. I
1 I
1 I L __ -J

r-------------------,
1 Length of scatter I

For load modules in scatter format add: I I
r-------------------T---------------------------------------+-------------------~

361List (in bytes) ILength of translation table (in bytes) IESDID (CESD entry I
I 1 Inumber of control I
~-------------------+_-------------------------------------_+-------------------J

40lsection name) for IESDID (CESD entry number of control 1
I first text record. Isection name) containing entry point. I L ___________________ ~ _______________________________________ J

r-------------------,
For load modules with RENT or REUS attribute and Alias IEntry point address I
names add: I I r---------------------------------------T---------------___ -L ___________________ ~

361 of the member name. 1 I
I I I
1 I I
~---------------------------------------j 1

401 Member name I
I r---------------------------------------J

441 I L _______________________________________ J

r---,
I SSI Bytes - Aligned on a half-word boundary at the end of the PDS I
I record. I L ___ J

Alias indicator and miscellaneous Information:
1. Alias indicator -- 0 signifies none,l signifies alias -- bit 0
2. Number of relative disk addresses (TTR) in user data field bi ts 1,,2
3. Length of user data field (in halfwords) bits 3-7

PDS Directory Record size (for SSI, add 4 bytes to sizes):
Block format 36 bytes * Scatter format 44 bytes
Block format with alias. names 46 bytes scatter format with alias names 54 bytes

+ Reserved
++ This byte contains zero if load module is not in overlay

Appendix D 71

MODULE ATTRIBUTES

Bit Number

o

1

2

3

4

5

6

7

8

9

10

11

12

13

14
15

Attribute Bit setting

RENT 0
1

REUS 0
1

OVLY 0
1

TEST 0
1

LOAD 0
1

Format 0
1

Executable 0
1

. Format 0

1

compatibility 0

1

Format 0

1

Format 0

1

Format 0
1

Editability 0

1

Format 0

Reserved
Reserved

1

Indication

Not reenterable
Reenterable
Not reusable
Reusable
Not an overlay module
Overlay module
Not under test
Under test
Not only loadable
Only loadable *
Block format
Scatter format
Not executable
Executable
Module contains more than one text
record and/or RLD record(s).
Module contains only one text
record and no RLD record.
Module can be processed by all
levels of linkage editor.
Module cannot be reprocessed by
linkage editor-E.
Linkage editor assigned origin of
first text record is not zero.
Linkage editor assigned origin of
first text record is zero.
Linkage editor assigned entry
point is not zero.
Linkage editor assigned entry point
is zero.
Module contains RLD record(s)
Module does not contain an RLD record.
Module can be reprocessed by
linkage editor.
Module cannot be reprocessed by
linkage editor.
Module does not contain TESTRAN
symbol records.
Module contains TESTRAN symbol
records.

* Module can only be loaded with the LOAD macro-instruction. When the module is
in main storage it will be entered directly, and not through the use of an
XCTL" LINK, or ATTACH macro-instruction.

** This is normally a zero byte inserted to maintain half-word boundaries. If the
DCB operand was specified as zero, this byte will contain a 1 if the name was
found in the link library, and a 2 if the name was. found in t.he job library.

72

APPENDIX E

ENTRY TABLE (ENTAB)

r-----------------------------T-----------------------------T-------T-------------------,
IUnconditional branch to last laddress of referred l"to"segIPrevious Caller I
I entry BC 15,DISP(15,O) Ito symbol. Inumber I (zero initially) I
~-----------------------------+-----------------------------+-------+-------------------~
IUnconditional branch to last IAddress of referred I "to"segIPrevious Caller I
I entry BC 15"DISP(15,O) Ito symbol Inumber I (zero initially) I L _____________________________ ~ _____________________________ ~ _______ ~ ___________________ J

r-----------------------------T-----------------------------T-------T-------------------,
IUnconditional branch to last IAddress of referred I "to"segIPrevious Caller I
I entry-BC 15,DISP(15"O) Ito symbol Inumber I (zero initially) I
~--------------T--------------~--------------T--------------+-------+-------------------~
I SVC 45 IL 15,4(0,15) Loads GR15 with I BCR 15,15 I"from" IAddress of segment I
I Ithe value of the ADCON. I I seg.no. I table (SEGTAB) I L ______________ ~ _____________________________ ~ ______________ ~ _______ ~ ___________________ J

1<---2 bytes-->I<--2 bytes--->I<--2 bytes--->I<---2 bytes-->I<lbyte>I<-----3 bytes----->I

DISP -- is the displacement, in bytes, of this entry from the last entry.
"to" segment number -- is the number of the segment containing the symbol being

referred to.
"from" segment number -- is the number of the segment that contains this entry

table.

Appendix E 73

SEGMENT TABLE (SEGTAB)

r----~------------T--,
I TEST I IAddress of Data Control Block (DeB) used to load module * I
lind. I I I
~----~--------------t--~
I' I Address of note list * I
I I I
~-------------------t-------------------~------------------T--------------------~
ILast segment IHighest segment no. I Last segment IHighest segment no. I
Inumber of region 1 lin storage-region 11number of region 2 lin storage-region 2 I
~-------------------t-------------------t-------------------t--------------------~
ILast segment IHighest segment no. I Last segment IHighest segment no. I
Inumber of region 3 lin storag~region 31number of region 4 lin storage-region 4 I
~-------------------t-------------------~------------------L--------------------i
I Zero I (Not used in the Fixed-Task Supervisor} * I
I I I
~-------------------~---~
I (Not used in the Fixed-Task Supervisor) * I
I I
~-------------------T---T------~
I Previous segment * I Zero I status I
Inumber for segment11 lindctrl
~-------------------t7--t------i
IPrevious segment IAddress of entry table entry (when caller I status I
Inumber for segment21chain exists) * lindctrl L ___________________ L ___ ~ ______ J

r-------------------~--T------,
IPrevious segment IAddress of entry table entry (when caller I status I
Inumber for segmentNlchain exists) * lindctrl L ___________________ L ___ L ______ J

1<----------------------------------4 bytes------------------------------------>I

TEST indicator -- specifies that this module is "under test" using TESTRAN.
(Bit 1) Initialized by program fetch.

Highest segment no. in storage -- is initially set to 00 except for region 1 which
is initially set t9 01 by linkage editor.

Status indicator -- indicates the status of this segment with the two last bits of
the entry table address field as follows:

00 segment is in main storage as a result of a branch to the segment.
10 segment is in main storage, no caller chain exists.
01 segment is not in main storage, but is scheduled to be loaded.
11 segment is not in main storage.

The status indicator for segment 1 is initially set to 10, all the rest are
initially set to 11.

* Set to zero by linkage editor.

74

APPENDIX F: SYSTEM ENVIRONMENT RECORDING RECORD ENTRY FORMATS

There are two types of record entries corresponding to the two types of errors SER
processes: machine check and channel error. Record entry size varies with the type of
record and the model number. The formats of the record entries are:

Machine Check Record Entry Forn,at
r--------------T-----T-----T----T---------,
, , SYS , MOD ,R.E., ,
, R.E. LABEL , ID ,NO. ,TYPE, FLAGS ,
~-----------~--L-----t-----L----L---------~ , , ,
, DATE , TIME , , , ,
~--------------------L--------------------~ , ,
I PROGRAM IDENTITY ,
I I
~---i I ,
I MACHINE CHECK OLD PSW I , ,
r---~ , ,
I ACTIVE I/O UNITS ,
I ,
I r--------------------~ I , CHANNEL TYPE ,
, I ASSIGNMENTS ,
~--------------------L--------------------~
I ,
I GENERAL PURPOSE ,
, REGISTER CONTENTS I , ,
~---i , I
I FLOATING POINT ,
I REGISTER CONTENTS ,
I ,
~---~ , ,
I GENERAL PURPOSE REGISTER PARITIES I
I I
~--------------------T--------------------i
I I I
I FPR PARITIES . , CPU I
I , HARDWARE LOGOUT I
~--------------------J ,
I ,
I MODEL BYTES ,
I ,
I 40 256 ,
I 50 164 r--------------------J

I 65 176 I
I 75 152 , L-___________________ J

Channel Error Record Entry Format
r------~-------T-----T-----T----T---------,
I I SYS I MOD ,R.E., ,
I R.E. LABEL I ID 'NO. ,TYPE, FLAGS ,
~--------------L-----t-----L----L---------i
, I ,
, DATE , TIME I
, I I
~--------------------i--------------------i
I ,
, PROGRAM IDENTITY I
, I
~---i I ,
I FIRST CCW OF FAILING CHAIN ,
I I
~---~ , ,
, FAILING CCW I
I I
.---~ I ,
, CSW , , ,
.---~ , I
, ACTIVE I/O UNITS , , ,
I r--------------------i
, I CHANNEL TYPE ,
, , ASSIGNMENTS ,
.-----------T--------t--------------------i
, CHANNEL " ,
I and UNIT I FLAGS I I/O I
I ADDRESS' I I • ___________ i ________ J , , ,
I HARDWARE LOGOUT , , ,
~---i
I I
'MODEL BYTES ,
,~ -0- ,
, 50 48 I
I 65,75 24 , , ,
, I
, r--------------------J , ,
, I L ____________________ J

Appendix F: System Environrr.ent Recording Record Entry Formats 74A

The fields in the record entry are
interpreted as follows:

Record Entry Label - 3 bytes
Identifies the record as output from
SER. It is set to SER in EBCDIC.

System Identifier - 1 byte
Identifies the version of SER which
created the record.
o = SERO, 1 = SERl

Model Number - 1 byte
Identifies the system/360 model on I
which the record was created.

Record Entry Type - 1 byte
Identifies the type of error that
caused the reccrd to be created.
C machine check
I = channel error

Flags - 2 bytes
Byte 0

74B

Bit 0

Bit 1

Bit 2

Bit 3

Spare bit

o Record entry is com
plete

1 Record entry is not
complete

o Channel and unit
address matches a sys
tem UCB

1 Channel and unit
address does not rr.atch
any system UCB

o The operating system
could not continue
after the error

1 The operating system
could continue after
the error

Bit 4 0 The scheduler was not
in control when the

Byte 1

Bit 0

machine check
occurred.

= 1 The scheduler was in
control when the
machine check
occurred.

o Program data was
obtained

1 Program data could not
be obtained because
the area from which it
would have been
extracted was over
laid. (Applies only
to SERO.)

Other bits - unused

Date - 4 1:;ytes

Time

Identifies the year and day in packed
decirral as follows:

00 xx XXX F

Unused Year Day Zone

- 4 bytes
Identifies the time of day when the
record entry was created.

xx xx xx x x

Hour Minute Second Tenths Hundredths

If the model does not have an interval
timer, this field is zero.

Program Identity - 8 bytes
Identifies the program
the program requesting
the error occurred.

in process or
service ·when

Machine Check Old PSW - 8 bytes
The field is taken directly from loca
tions 48-55.

Active I/O Units - 20 bytes
Identifies by channel and unit address
a maximum of ten devices that were
busy when the error occurred.

Channel Type Assignments - 4 bytes
Identifies the channel configuration
of the system as follows: "

BYTE 0 BYTE 1
r------T------T------T------T-------->
ICHAN OICHAN llCHAN 21CHAN 3IETC.
l ______ ~ ______ ~ ______ i ______ i ________ >

Bit 0 0 Chaflnel not present
1 Channel present

Bit 1 0 Multiplexor channel
1 Selector channel

Bit 2 0 Low speed
1 High speed

Bit 3 0 Not a storage channel
1 Storage channel

General Purpose Register Contents 64
bytes

Identifies the contents of the GPRs at
the time the error occurred. For the
Model 50, only bits 0-27 and the
parity bits are stored for each reg
ister. For Models 65 and 75, GPRs are
tested for parity errors and corrected
if necessary before being stored in
this field.

Floating Point Register Contents - 32 bytes
Identifies the contents of all FPRs at
the time the error occurred. The
field is zero for Models 30 and 40 not
equipped with the floating point fea
ture.

General Purpose Register Parities - 8 bytes
For Model 40, this field is zero
because hardware corrects parity dur
ing part of the machine check inter
rupt cycle. making parity indications
unavailable. For Model 50. the field
contains the last four bits of each
register with the exception of reg
isters 13. 14, and 15. (Applies only
to SERO.) For Models 65 and 75, the
field identifies the GPRs that con
tained parity errors when the error
occurred. Only the first two bytes of
the field are used. They are inter
preted as follows:

Byte 0

000 0 0 1 0 0

'" Register 0

Byte 1

o 0 1 0 0 000
~

Register 1~

Registers 5 and 10 had parity errors.

Note: If this information is stored by
the SERO program for the model 75, no
parity errors will be indicated for
registers 13, 14, and 15 because SERO
cannot determine the parity in these
registers.

Floating. Point Register Parities - 4 bytes
Identifies the FPRs that contained
parity errors when the error occurred.
The contents of the field differs
according to model and is interpreted
in the same manner as the GPR parity
field. The field is zero for a Model
40 record.

CPU Hardware Logout - 152 to 256 bytes
Represents all or part of the contents
of locations Hex 80 through Hex 17F.

First CCW of Failing Chain - 8 bytes
Identifies the first CCW of a chain of
CCws being executed when an error
occurred.

Failiing CCW - 8 bytes
Identifies the specific CCW being exe
cuted when an error occurred.

CSW - 8 bytes
Identifies the CSW that was stored
when an I/O error occurred.

Channel and Unit Address - 2 bytes
Identifies the device being serviced
at the tirre of the channel failure.

Flags - 2 bytes
Not used.

I/O Hardware Logout
Identifies the
channel when
occurred.

- 0 to 48 bytes
status of the failing
an I/O error interrupt

Appendix F: System Environment Recording Record Entry Formats 74C

Abdump 20,23
Abend 20,22,23
Abterm 13,,14,19-25
Active request block queue (see Queue)
Address constants 29.31,34,40,60,61
Algorithm

main storage allocation 24
timing 41

Alias 71
Appendage 33,63
Area

extended save (ESA) 14,15,64
fixed or system 7,24,61
free 23-25,60-62
I/O supervisor transient 7,,12,,17,,18
processing program (partition)

7-9,17,20,23-28,60-62,,64
program interruption control (PICA) 21
SVC transient 7,,12,15,,16,27

Asynchronous exit queue (AEQ) (see Queue)
Attach 8,20,21,,24,2~-29,72

Bldl 18,,26,,28,,64,71
Block

data control (DCB)
23,,29,30,33,,34~36,,63,,64,72

data extent (DEB) 33,,60,,63
data set control eDSCB) 55,,57,,63
event control (ECB) 20-22,30
input/output (lOB) 30
request (RB)

interruption (IRB) 8,9,16-18
loaded (LRB) 8
loaded program (LPRB) 8,9

minor 26,,28
program (PRB)

8,9,14-18,20-22,25-28,60-62
supervisor (SVRB) 8,,9.15,,20,27,28
system interruption (SIRB)

8,9,16-18,,23,26
task control (TCB)

8,9,13,15-23,,25,26,28,,60,64
unit control (UCB) 33

Block loading 29,30,32,33,34
Boundary box 25" 60- 62

Call 29
Channel scheduler (see Scheduler)
Check

machine 13,,14,,18,19,24
validity 13,21.,23

Clock 41-43
Communication vector table (CVTl (see

Table)
Contents supervision (see supervision)
Control block (see Block)
CPU 8,9,43,,57
Csect 56-58

Data control block (DCB) (see Block)
Data extent block (DEB) (see Block)
Data management (see Management)

Data set control block (DSCB) (see Block)
Delete 7,26,28
Dispatcher 12,14-19,21,,43,60
Dump, storage

full 20,23
indicative 23

ECB list (see List)
Editor, linkage (see Linkage editor)
Element

free area queue (FQE) 60-62
interruption queue (IQE) 16-18,62
program interruption (PIE) 16,19,,21
timer queue 17,42,43

End of task
abnormal 14,,19,22-25
normal 16,20,23,25
(see also Abdump: Abend: Abterm)

Entry procedures, SVC 14
Entry table (ENTAB) (see Table)
Error routines, I/O supervisor

7,8,11,18,27
Event control block (ECB) (see Block)
Excp 12,,32,33
Exit

asynchronous 8,,16-18,,43
SVC 12,15-18,20,21,26-28,38,42
type 1 12,,15-17,21,22,24,,25,27,28,42

,Exit effector 16-18,28,43
Extended save area (ESA) (see Area)
Extract 20,21

Fetch" program 9,,13,,18,,26,28-35,,40,51,74
Finch 15,18,20,26-28
Fixed area (see Area)
Flih (first level interruption handler)

I/O 12,17,18,46
MK (machine check) 13
P (program) 13,19,46
SVC 12,14,15,21,22,24,27,,28,42,46-49,52
T/E (timer/external)

12,17-19,42,43,46,52
Free area (see Area)
Free area queue (see Queue)
Free area queue element '(FQE) (see

Element)
Freemain 12,24,25,28

Getmain 12,15,23-25,28

Handler
interruption (see Fllh: Slih)
set command 43
SVC (see Flih: Slih)

Identify 8,12,,26,,28
Inactive program list (see List)
Initial program loader (IPL) (see Loader)
Initialization

boundary box 61,62
communication vector table 60
fetch 29

Index 75

hardware 55,57
main storage 61,62
nucleus 1,8,25,54,55,,60
overlay supervision 38,40
partition 61
protection key 64
request element table 62
SVC table extension 63
SVRB 15
timer 65
UCB table 62

Input/output block (lOB) (see Block)
Input/output supervisor

7-9,12,16-18,27,33,60,62
Input/output supervisor transient area

(see Area)
Interrupt key 18
Interruption handling (see Flih: Slih)
Interruption queue element (IQE) (see

Element)
Interruption request block (IRB) (see

Block)
Interruption supervision (see Supervision)

Job management
Job scheduler
Job step 23

(see Management)
(see Scheduler)

Link 7~8,24,26-29,34~38,40,58,72
Linkage editor 2,9,34-36~40,56,58T60~72,74
List

ECB 21,22
inactive program 8,,9,,20,25-28
loaded program 9,20,26" 27,28
note 29~30,33,34,36
(see also Queue)

Load 7.,12,26-29,38
Loaded program list (see List)
Loaded program request block (LPRB) (see

Block)
Loaded request block (LRB) (see Block)
Loader

initial program (IPL) 1,53,55-58,,60
relocating (see Fetch)

Machine check (see Check)
Main storage supervision (see Supervision)
Management

data 7,9,18,23,26,28
job 7-9~12,18,23,43,60,61
task 1,2,,7
(see also Supervision)

Note list (see List)
Nucleus 7,15,24-26,29,38,55-58~60,62-64

Nucleus initialization (see
Initialization)

Nucleus initialization program (NIP)
1,8,55-58,60-65

Open 12,23,63
Operator 41,42,55-58,60,64,65
Overlay supervision (see Supervision)

Partition (see Area, processing program)
Post 20-22,43
Processing program area (see Area)

76

Program interruption control area (PICA)
(see area)

Program interruption element (PIE) (see
Element)

Program request block (PRB) (see Block)
Prolog 13,19
Protection 2.,9,13.,28,,55,57,60-62.,64

Queue
active request block

8,9,15-18,20,22~23,26-28
asynchronous exit queue (AEQ) 17
free area 25,60-62
TCB ready 17
timer 41-43
(see also List: Elements)

Relocation dictionary (RLD) 34,35,69,70
Relocation table (see Table)
Request block (RB) (see Block)
Request element (interruption queue

element) (see Element)
Request element table (see Table)
Return 7,15~19,27

Scheduler
channel 18
job 60,61,65

Segld 35,38,40
Segment table (SEGTAB) (see Table)
Segwt 29,,35,38,40
Slih

SVC 12,14,15,21,27,28
timer 41-43

spie 19-21
Stimer 41-43
subpool 24
Supervision

contents 9"23,26,27,, 29., 31" 38,49
I/O 9

(see also Input/output supervisor)
interruption 9,12,14,18,20-22,27,46
main storage 9,24,48
overlay 9,,29,30,35,38,,51
task 9,13,20,47
time 9,18,41-43,52

Supervisor request block (SVRB) (see
Block)

SVC table (see Table)
SVC transient area (see Area)
Synch 26,28
System area (see Area)
System generation 2,13,14,21,55,56,61-63
System interruption request block (SIRB)

(see Block)

Table
communication vector (CVT) 60,62,63
entry (ENTAB) 35-38,40,73
relocation 13,64 .
request element 60,62,63
segment (SEGTAB) 33-38,40,74
SVC 13-15,63

extension 14,60.,63,64
task input/output (TIOT) 21,23
unit control block CUCB) 62

Task control block (TCB) (see Block)
Task management (see Management)
Task supervision (see Supervision)

Task switching 11
TCB ready queue (see Queue)
Termination, task (see End)
Testran 33~35440~12,74
Text record 14,,29,31-33,56-58,68,70,72
Time 41,,43
Time supervision (see supervision)
Timer queue (see Queue)
Timer queue element (see Element)
Transient area (see Area)

Unit control block (UCB) (see Block)

validity check (see Check)
Volume table of contents (VTOC) 55,57,63

Wait 12,13,16-23,,43,51,58

Xctl 8,12,,15,,23-29,60-62,,72

Index 11

Y28-6612-2

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.lOS01
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza,NewYork,NewYorkl0017
[International]

Technical Newsletter
Re: Form No. Y28-6612-0,-1,-2

This Newsletter No. Y2 8- 2174

Dare April 10, 1967

IBM SYSTEM/360 OPERATING SYSTEM
FIXED TASK SUPERVISOR
PROGRAM LOGIC MANUAL

Previous Newsletter Nos.

This technical newsletter amends the publication IBM System/360
Operating System: Fixed-Task Supervisor, Program Logic Manual,
Form Y28-6612-0,-1.. Additions and changes are marked with bars to
the left of the text.

Pages to be
Inserted

Cover, Preface
Contents
Illustrations
7-14,14A
15-18,18A
21,22
27,28
45,46
49,50
53,54
59,60
65A,65B,66

Summary of Amendment

Pages to be
ReIlloved

Cover, Preface
Contents
Illustrations
7-14
15-18
21,22
27,28
45,46
49,50
53,54
59,60
65A,66

A discussion of the Resident Type 3 and 4 SVC Routine Option is
added to Chapter 1.

Discussions of Resident Type 3 and 4 SVC Routine Initialization
and Resident Job Queue Initialization are added to Appendix B:
Nucleus Initialization Program.

Note: Please file this cover letter at the back of the publica
tion. Cover letters provide a quick reference to changes and a
means of checking receipt of all amendrrents.

IBM Corporation, Programming Systems Publications; P.O. Box 390, Poughkeepsie, N.Y. 12602

PRINTED IN U. S. A.

Y28-2141
Y28-2161

READER'S COMMENTS

Title: IBM System/360 Operating System
Fixed-Task Supervisor
Program Logic Manual

Is the material:
Easy to Read?
Well organized?
Complete?
Well illustrated?
Accurate?
Suitable for its intended audience?

Yes No

Y28-66l2-2

How did you use this publication?
As an introduction to the subject ___ For additional knowledge

fold Other ________________________________ __

Please check the items that describe your position:
___ Customer personnel _Operator
___ IBM personnel _ Programmer
__ Manager _Customer Engineer
_ Systems Analyst _ Instructor

_ Sales Representative
_ Systems Engineer
_Trainee

Other _____________ _

Please check specific criticism(s), give page number(s) ,and explain below:
__ Clarification on page (s)
___ Addition on page(s)

l --- Deletion on page (s)
~ I --- Error on page (s)

~ I , Explanation:

5 I
~ I
~ I
) I

I
I

I
I

FOLD ON TWO LINES,STAPLE AND MAIL
No Postage Necessary if Mailed in U.S.A.

fold

Y28-6612-2

fold

r--,
I BUSINESS REPLY MAIL I
I NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. I L __ J

POSTAGE WILL BE PAID BY

IBM CORPORATION
P.O. BOX 390
POUGHKEEPSIE, N. Y. 12602

ATTN: PROGRAMMING SYSTEMS PUBLICATIONS
DEPT. D58

s1

r--------------------,
I FIRST CLASS I
I PERMIT NO. 81 I
I I
I POUGHKEEPSIE, N.Y. I L ____________________ J

111111

111111

111111

111111

111111

111111

111111

-- 00

fold

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

0-<:
N
00
I

0"1
0"1
I-"
N
I

N

