File No. S360-29
Form Y28-6801-4

Program Logic

IBM System/360 Operating System
PL/I Subroutine Library

Program Logic Manual

Program Number 360S-LM-512

This publication describes the internal speci-
fications of the PL/I Subroutine Library as a
system component of IBM System/360 Operating Sys-
tem. The relationships between the code produced
by the PL/I (F) Compiler, the PL/I Library modules
and the control program are described, and summar-
ies of the properties of individual modules are
provided. This information is intended for use by
those involved in program maintenance and by
system programmers who are altering the program
design. Program logic information is not neces-
sary for the wuse and operation of the program;
therefore, distribution of this publication is
limited to those described above.

Restricted Distribution

RESTRICTED DISTRIBUTION: This publication is intended primar-
ily for use by IBM personnel involved in program design and
maintenance. It may not be made available to others without
the approval of local IBM management.

I |
IThis is a major revision of, and obsoletes, ¥28-6801-3 and|
|Technical Newsletter Y¥33-6001. A new section has beenl|
ladded in Chapter 5 on multiprocessing and in Chapter 6 onl|
{interrupt handling for the System/360 Model 91. Other|
Ichanges to the text, and small changes to illustrations,|
lare indicated by a vertical 1line to the 1left of the |
|change; changed or added illustrations are denoted by thel|
le symbol to the left of the caption. |
| |
|IThis edition applies to Release 17, of IBM System/360|
|Operating System, and to all subsequent releases until|
lotherwise indicated in new editions or Technical News-|{
|letters. Changes are continually made to the specifi-|
lcation herein; any such changes will be reported in sub-|
|sequent revisions or Technical Newsletters.

L

o e e e o e o e e e . B P e J

Requests for copies of 1IBM publications should be made to
your IBM representative or the IBM branch office serving your
locality.

Address comments concerning the contents of this publication
to IBM United Kingdom Laboratories Ltd., Programming Publica-
tions, Hursley Park, Winchester, Hampshire, England.

© Copyright International Business Machines Corporation 1966,
1967, 1968

PREFACE

This publication describes the object-
time PL/I Library package which forms an

integral part of the PL/I processing
system. General information covering the
overall design and conventions is provided

as well as information specific to the
various areas of language support.

The publication is intended primarily
for technical personnel who wish to under-
stand the structure of the library in order
to maintain, modify, or expand the PL/I
processing system.

Information relevant to this manual is
contained in the following IBM publica-
tions:

IBM System/360: Principles of Operation,
Form A22-6821

IBM System/360: PL/I Reference

Form C28-8201

Manual,

IBM System/360 Operating System:

Assembler lanquage, Form C28-6514

Introduction, Form C28-6534

Concepts _and Facilities, Form C28-6535

Linkage Editor, Form C28-6538

Job Control Lanquage, Form C28-6539

System Programmer's Guide, Form

C28-6550

System Generation, Form C28-655U

PL/I Subroutine Library Computational
Subroutines, Form C28-6590

PL/I_(F) Guide, Form

C28-6594

Programmer's

System control Blocks, Form C28-6628

Supervisor and Data Management Servi-
ces, Form C28-6646

Supervisor and Data Management Macro
Instructions, Form C28-66u47

PL/I(F) Compiler, Program Logic Manual,
Form Y28-6800

PL/I _Language Specifications, Form

¥33-6003

The publication includes two introducto-

ry chapters, ‘'The PL/I Library"® and
*General Implementation Features', which
contain a general description of the

library as a component of
Operating System, and general notes on
features of the operating system and the
PL/I (F) Compiler that are wused in the
library implementation. The remainder of
the manual describes the design of the
library modules in relationship to PL/I
language features, and indicates the use
that is made of the control program to
support the design.

IBM System/360

The descriptive material is supported by
a set of module description summaries and
several appendixes. The module summaries
indicate the salient features of individual

modules in the library package, and act as
guides to the program 1listings that are
available as part of the PL/I Library
distribution. The appendixes contain
details of the system macro instructions
used, system generation, Ilibrary pseudo-
registers and macro instructions, library
internal error codes and associated

messaqges, and PL/I control blocks.

CHAPTER 1: THE PL/I LIBRARY. .
Fanction. « « « ¢ « « o . .
Characteristics « .
Usage « « « « o« « e o e
Control Program Interfaces.
Operating System Requirements

Diagnostic File.
Link Library . « « « « .« &
Instruction Set Requirements.

CHAPTER 2: GENERAL IMPLEMENTATION
FEATURES: « o o o o o o o« s o @

Naming Conventions. . . .
Registers: Symbolic Names
Linkage Conventions . . .
Coding Conventions. . . .
Library Macro Instructions.
Data Representation
Communication Conventions . .
Pseudo-Register Vector (PRV)
Library Workspace (LWS). . .

e e 0

°
°
o
°
.
o
a
-

3
°

Library Communication Area (LCA

Object-Time Dump « « + « «. .«
Checkpoint/Restart
SORT/MERGE - PL/I Interface. .

CHAPTER 3: INPUT/OUTPUT.
Files and Data Sets . . . « .« ..
File Addressing Technique

Declare Control Block (DCLCB).
File Control Block (FCB) .
Program Execution. . . .
OPEN/CLOSE Functions. . . .
Explicit Opening.
Open Control Block
The Open Process
The Close ProcesS.
Implicit Opening. « « « « o« .« &

.
e 6 e 5 ¥ % & 8 .8 % @

STREAM-Oriented I/O.
Current File.
Standard Files. . . .
SYSPRINT in Multltasklng.
GET/PUT Object Program Str
Data Specifications . . .
Executable Format Scheme.
Options . « « . .

cture

-
T
¢ s s e o o
e a2 s 8 v s e

RECORD-Oriented I/0. ¢« . . .+ .
Object Program Structure. .
General Logic and Flow .
Record-Oriented I/0 Control
Record Dope Vector (RDV)
String Dope Vector (SDV)
Request Control Block. .
I/0 Control Block (IOCB)
Exclusive Block.
Access Method Interfaces. .
CONSECUTIVE Data Sets. .
INDEXED Data Sets. . . .
REGIONAL Data Sets . . .

s s e 8 o 4 % o s T & s

e ¢ 8 o s s 0 2 ¢ O o
Q
(O R S I I I

o 8 o e ¢ o s 8 s e ¢ o e & & & o o & s o

« a & & o & s s 8 ¢ 2 & o & o 8 e s e

e s & ¢ & & s e & o & ® s o

e o s s s e s s .8 e o

Yo JVo Ve V)

CHAPTER Uu:
MANAGEMENT. « « ¢« ¢ ¢ o o o o o o o =

CHAPTER 5:
MANAGEMENT (MULTITASKING)

CONTENTS

PL/I OBJECT PROGRAM

Introduction. . . « ¢« « & ¢« ¢ .« o .
Program Initialization
Block Housekeeping: Prologues

and Epilogues+
Storage Management . .« . « « « .
Operating-System Facilities. '

Automatic Storage: StOrage

Management e s s &
Dynamic Storage Area (DsSA) .
Variable Data Area (VDA) . .
Library Workspace (LWS). . .
Allocation and Freeing of

Automatic Storage

Controlled Storage: Storage

Management « « o« ¢ ¢ o o ¢ o o o o

List Processing:
System Storage for Based

Variables « . . . ¢« . ¢ & <« . &
The AREA Attribute
The Area Variable. .
Area Storage for Based Variables
Assignment Between Area

Variables . . « ¢ ¢« « ¢ &« « « &
The AREA Condition

Program Management. « o .
Initialization of a PL/I Program
Termination of a PL/I Program. .
GO TO Statements . . . « ¢ o o &
On-Units and Entry-Parameter

ProceduresS. « ¢« « o o o o « o
Block Housekeeping.
Object-time Optimization

PL/I OBJECT PROGRAM

Control Task« o
Initialization of Major Task .
CALL with Task Options
Initialization of Subtask. . .
End-of-Task Exit Routine
(IHETSAX) . .
GO TO Statements . . . « « « « =
On-Units and Entry Parameter
ProcedureS. . « « o« « o o o
Termlnatlon of a Task. « . .
Controlled Storage
Multitasking Pseudo-Variables
Built-In Functions . . .
COMPLETION Pseudo-Varlable
PRIORITY Pseudo-Variable .
PRIORITY Built-In Functlon
The WAIT Statement.
Alternative I/0 Modules for
Multitasking Programs . .
Multiprocessing
EVENT variables.
Must Complete Operations
Task Termination
EXCLUSIVE Files.
Task Attachment.

LU SR I <
‘ =]
« % s 0 0 e s o

Storage Management

41
41
41

41
41
42

42
42
43
43

43

52
53
54
54
55

56
56

56
56
57

57

57
58
58

58
59
59
59
59
60
60

Changing Pridrities. e s o o o o

CHAPTER 6: ERROR AND INTERRUPT
HANDLING. « o « = o o o ¢ o &«
Program Interrupts.
ON Conditions « . .
Action by Compiled Code.
Action by the Library. .
System Action.
Standard System Action and
Cconditions other than On
Conditions
Built-in Functions.
ONLOC:e ¢ o« o o o o o .

ONCODE ¢ ¢« o o « o « o o
Model 91 Interrupt Handllng .
Implementation
ONCOUNT Built-in Function. .

ic

Flush Instructions.
Model 91 Object-Time Diagnosti
MESSAGESe « « o o s = o o & .
CHAPTER 7: MISCELLANEOUS CONTROL
PROGRAM INTERFACES. ¢ « o o « o o
Full and Minimum Control SYStem=

CHAPTER 8: DATA PROCESSING ROUTINES. .

I/70 Editing and Data Conversion. . . .
Structure of Library Conversion
Packagees « « o o o o o o o o o
~Directors. .« « o« o« o o «
Edit-directed I/0. . . .
I/0 Editing . . « s .
List- and Data-dlrected
Input/Output.
Mode ConversionS. . « « « «
Type Conversions. . . « . « .
String Conversions.
Arithmetic Conversions. . . .
Data Checking and Error Handling.

Edit Directed.
List/Data-Directed . .
Internal Conversions .

e e o & & 2 o o

Computational Subroutines.
String Operations and Functions . .
Arithmetic Operations and Functions

Mathematical Functions. . « . « . .
Array Functions . . ¢« ¢ « ¢ « s o &

CHAPTER 9: MODULE SUMMARIES. . . « . »
control Program Interfaces.«
Data Processing . « .« « « ¢ « ¢ o o

I/0 Editing and Data Conversions
Module Summaries. . « . « ¢ o o . .

APPENDIX A: SYSTEM MACRO INSTRUCTIONS.

e o o o o o
=)
s

67

67
67
68
68

69

* o s & o s s s s " e s e
~ ~}
~ w

« ® o o s
QR
N

APPENDIX B: SYSTEM GENERATION. . . .

APPENDIX C: PL/I OBJECT PROGRAM
PS EUDO"REGISTERS e o s & & o o o . .

APPENDIX D: LIBRARY MACRO INSTRUCTIONS

APPENDIX E: PL/I LIBRARY INTERNAL
ERROR CODES AND MESSAGES. « . + . .

APPENDIX F: DUMP INDEX . . .
SYSPRINI' Buffers . . .
Files Currently Open .
Current File . . « . &
Save Areas . « « o ¢ o
Other Information. . .

*« o o e 5
e & s 8 ¢ o
e ® & * g3 @
« o s v 4 8

APPENDIX G: LENGTHS AND LOCATIONS OF
MODULES « ¢ « o ¢ o ¢ o o o o » 2 o

APPENDIX H: COMPILER-GENERATED CONTROL

BLOCKS:. o o « o o o o o o o o o o @
Array Dope Vector (ADV)
Data Element Descriptor (DED) .
Dope Vector Descriptor (DVD). .
Format Element Descriptor (FED)
Library Communication Area (LCA)
Library Workspace (LWS)
Standard Save Area (SSA). . . .
String Array Dope Vector (SADV)
String Dope Vector (SDV). . . .
Structure Dope Vector
Symbol Table {(SYMTAB)

APPENDIX I: INPUT/OUTPUT CONTROL
BLOCKS. . . . -
Declare Control Block (DCLCB) .
Event Variable. . « ¢« ¢« o « o &
EXCLUSIVE Block . . . e o o o
File Control Block (FCB). « o o
Input/Output Control Block (IOCB
Oopen Control Block (OCB). .«
Example of Chaining
Files. . . « . . .
IOCBSe =« « o o =« .
Event Variables. .
Exclusive Blocks .

e ® 8 o & & e & 2 08 o

s s 0 s & 8 e 3 s & & &

e % o 5 s & & s * o s @

APPENDIX J: STORAGE-MANAGEMENT CONTROL

BLOCKSe « « & e o s o o o s e o o
AREA Varlable e o o @ o o
Dynamic Storage Area (DSA). e o o
Variable Data Area (VDA). . . .

APPENDIX K: MULTITASKING CONTROL

BLOCKS. « « .
Dynamic Storage Area (DSA).
EVENT Variable. . .
PRV VDA « ¢« ¢ ¢ o &«
TASK Variable . . .
INDEx 4 L] ® . L] . L] L] .

® o o o ¢ o
*® o 8 o o o
e o ® o ¢ o

e« o
. e
. o

.15“

.155
.157

.158

.160
.160
.160
.160
.160
.160

a9
.193
.195
.197
.199
.203
.207
.209
.209
.209
.209
.209

.211
.213
«215
L4 217

.219
.221
.223
. 225
«227
229

FIGURES

Figure 1. External Names used by the
PL/I LibYarye « « o o o o o o o s s o
Figure 2. Arithmetic Data
Representaton « « « « o o « o o o = o«
Figure 3. String Data Representation.
Figure 4. Statement-Label Data
Representation. . « « « o o « o o o« &

Figure S. File Addressing Scheme. . .
Figure 6. Format of the IHEQFOP Chain
Figure 7. Error Ccodes Indicating

causes of Failure in Open Process . .
Figure 8. Flow through the OPEN
MOAUIeS <« ¢« o « 2 o o o o o o o o o
Figure 9. Format of the Current File
Pseudo-Register
Figure 10. Modular Llnkage through
Stream-Oriented I/0
Figure 11. Allocation of SYSPRINT
. Resources in Multitasking
Figure 12. Object Program Structure
Of GET/PUT. o« « « o o o o s o o o o &
Fiqure 13. Executable Format Scheme .
Figure 14. Data Management Access
Methods for Record-Oriented I/O . . .
Figure 15. Linkage of Access Modules
in Record-Oriented I/0. « « « « « « «
Fiqure 16. IHESA Entry Points
Figure 17. Structure of the Free-Core
Chain for Automatic Variables .
Figure 18. Storage Allocation for a
Controlled Variable
Figure 19. Format of Area Variable. .
Figqure 20. Example of DSA Chain . . .
Figure 21. Continuation of the DSA
Chain « « ¢ ¢ o o o o o o o o o o s &
Figure 22. Construction of the
Save-area Chain '« « ¢« « .+ . .
Figure 23. Structure of the DSA chain
when the error-handling subroutine is
entered after a new LWS has been
obtained. . « ¢ ¢ ¢ ¢ ¢ ¢ o e 4 o o .
Fiqure 24. Structure of the DSA chain
when the on-unit DSA is attached. . .
Figure 25. Comparison of IHESA and
IHETSA: « ¢ o o o « o o o o o o o o »
Figure 26. Format of Save Area and
Workspace for Control Task.
Figure 27. Parameter List for IHETSAr
Figurie 28. Program Interrupts and
PL/I Conditions . . . « .
Figure 29. Flow through the Error
Handling routine (IHEERR)
Figure 30. Format of the Program
Intérrupt Control Area (PICA)
Figure 31. Format of the Program
Interrupt Element (PIE) . . . « « . &
Figure 32. PL/I ON Conditions . . .
Figqure 33. Pormat of the Search WOrd
comparator. . . . o« . .
Figure 34. Module Usage 1ndicated by
Letters of Module Name. « « « « o« « &

11

13
14

)
19
20
21
23
24
25

27

30

31
41

by
45
49
50
50

50
51
52

53
55

61
62
63

63
64

64
72

Figure 35. DED Flag Byte for
Character Representation of an
Arithmetic Data Item. « « .« .

Figure 36. Structure of the
Conversion Package. « . « « « « o o &

Figure 37. Input/Output Directors for
PL/TI Format Items « ¢ « « o ¢ o o o &

Figure 38. Conversion for List/Data
Directed I/0. . . e e o o = o

Figure 39. Modules for Type
Conversions « e e e e s

Figure 40. Modules for Strlng
Conversions . . ¢ . ¢ e 4 e e o o e

Figure #41. Structure of the
Arithmeric Conversion Package

Figure 42. Conversion Code Set in
THEQERR « o o e o o o o o o o o o o =
Figure 43. Relationship of Data Form
and Sixth Character of Module Name. .

Figure 44. String Operations and
Fanctions .« . « o e ¢ o 4« e e e o

Figure 45. Arithmetic Operations and
Functions . « « o ¢ ¢ @ ¢ ¢ 0 e e .

Figure 46. Mathematical Functions . .

Figure 47. Array Indexers and
Functions . . ¢« ¢ ¢« v & ¢« v ¢ o & « .

Figure 48. Coincidence of Source and
Target Fields in some String Modules.

Figure 49. Internal Codes for ON
condition Entries . . ¢« ¢« .+ ¢ . o o .

Figure 50. Format of the Array Dope
Vector (ADV). « e e .

Figure 51. Format of the Data Element
Descriptor (DED).- .

Figure 52. Format of the DED Flag
BYtCe v ¢ o ¢ o « o o o o o o o = o

Figure 53. Library Communication Area
(LCAY v o o o o o o o s s o o o a o «
Figure 54. Standard Format of Library
Workspace (LWS) . « ¢« ¢ ¢ ¢ ¢« o « o &
Figure 55. Format of the Standard
Save Area (SSA) . . « « o & v « o o .
Figure 56. Format of the SSA Flag

Byt€. o o« o ¢ ¢ o o o o o o o o o o

Figure 57. Format of the Primary
String Array Dope Vector (SADV) . . .
Figure 58. Format of the String Dope

Vector (SDV). &« v '« ¢ o '« o o o o & &
Figure 59. Format of the Symbol Table
(SYMTAB): '« &« o o o o o s o o o o o =
Figure 60. Format of the Declare
control Block (DCLCB) .« . « « « o« « =
Figure 61. Format of the Event
Variable. « ¢ ¢ ¢ ¢ ¢ o « o o o o = &
Figure 62. Format of Exclusive Block.
Figure 63. FCB for Stream-Oriented
I/0 ¢ o o o o o o o o s o o s o o o =
Figure 64. FCB for Record-Oriented
I/0 &« o« o & .
Figure 65. Format of the I/o control
Block (IOCB). « ¢« © o o o o o o o o &

73
T4
75
75
76
77
78
79
80
81

81
82

83

8y

.158

.169

171

.171

<177

.179

.181

.182

.183

.185

.189

.193

195
.197

199

.199

.203

Figure 66. Values used in computing
size of IOCB for various access
methods « o« ¢« ¢« « o « o o « o &

Figure 67. Format of the Open Control
Block (OCB) « « o « « o » o o 2 o 2

Figure 68. Example of Chaining of I/0
Control BloCKkS. « v« o o o ¢ o o o o @

Figure 69. Format of Area Variable. .
Figure 70. Format of the Dynamic
Storage Area (DSA). . . . « « &+ « o
Figqure 71. Format of the DSA flag
DYt@. v o o = o o o o o o o o o = o =
Figure 72. Format of the variable

Data Area (VDA) ¢ ¢« « o « « o s o o &«

.205
.207

.208
.213

.215
.215
.217

Figure 73. Format of the VDA flag
byte. « ¢« ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ 4 e o
Figure 74. Format of the PRV VDA. .
Figure 75. Format of LWS VDA. . . .
Figure 76. Format of the Dynamic

Storage Area (DSA) for Multitasking
Figure 77. Format of the Event

Variable. . . ¢ ¢« ¢« ¢ & « « ¢ .
Figure 78. Format of PRV VDA for
Multitasking. « « ¢« ¢ ¢ ¢ o ¢ o« o
Figure 79. Format of the Task

Variable. . ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ 4 o o @

.217
.217
217
.221
.223
.225

.227

FUNCTION

The PL/I Library is a set of object-time
modules that, in various combinations, sup-
plement compiler-generated modules to pro-
duce executable programs.

The library modules can be divided into
two groups: :

1. Modules that serve as an interface
.between compiled code and the facili-
‘ties of the control program of IBM
System/360 Operating System. The main
‘areas concerned here are input/output,
"dynamic program and storage manage-
ment, and exror and interrupt han-

dling.

2. Closed subroutinds designed to perform
the data processing operations
required during program execution.

The areas concerned here are I/O edit-
ing, data conversion, and the computa-
tional operations necessary for the
implementation of the arithmetic,
‘floating-point arithmetic, array and
string generic built-in functions.

User-designed modules can be substituted
for library modules; each user module is
given the name of the library module it is
meant to replace.

CHARACTERISTICS

The PL/I Library was designed as a large
number of modules to ensure that the object
program would contain only functional code,
and to simplify maintenance and modifica-
tion of the 1library. Each module is
intended to perform a single recognizable
function or a group of related functions
and is used alone or in combination with
other library modules.

All library modules are designed for use
in a multiprogramming or multitasking envi-
ronment. They are therefore reenterable;
they ‘can be used by more than one task at a
time, and a task may begin executing a
module before a previous task has finished
executing it.

The library modules are reenterable
because neither the instruction c¢ode nor
the data areas in them are modified during
execution. The PL/I program in which they

CHAPTER_1: THE_PL/I_LIBRARY

are used 1is protected against accidental
modification by another program during exe-
cution by a protection key provided by the
control program.

USAGE

The linkage editor combines the compiled

modules with the 1library modules they
require, using the external symbol dic-
tionary (ESD). The ESD resolves all direct
references to the library modules; these
references can be to module names
(containing five or six characters) or to
entry-point names (containing seven

characters). (See 'Naming Conventions' in
Chapter 2 for definitions of these names.)

However, the library modules may in turn
call other 1library modules (as, for exam-
ple, in data conversion). To call these
secondary modules and to ensure that only
the ones required are called, a technique
of non-obligatory symbol resolution is
used. Any library object module that calls
a secondary module that may only occasion-

ally be required is preceded by a 1linkage

editor LIBRARY statement that specifie:
that the references to the secondary
modules (which are in the form of seven-

character
resolved unless the

entry-point names) should not be
modules are already

part of the input to the load module. For
those secondary modules that are required,
the compiler generates another ESD, in

which the references to the modules are in
the form of five-character or six-character
module names. These references can now be
resolved, and the required modules are
placed in the input stream.

The PL/I Library for each version of the
F compiler is compatible with previous
versions. For example, a module compiled
under Version 2 can be link-edited and
executed by an operating system that
includes the Version 3 compiler. But a
module compiled under any version of the
compiler cannot be link-edited by an oper-
ating system that uses an earlier version.

Compatibility is discussed fully in IBM
System/360 Operating System: PL/I (F)
Programmer's Guide.

Chapter 1: The PL/I Library 9

- CONTROL PROGRAM INTERFACES

The PL/I Library is the sole interface
between object code produced by the PL/I
compiler and the operating system. No
supervisor call (SVC) or system macro
instruction is issued by the compiled code
produced by a PL/I compiler; a library.call
is made instead. This scheme safeguards
compiled programs and the compilers from
changes in operating system specification.
When the operating system changes, only the
library module is rewritten; the call to
the 1library from the compiler remains as
before.

System macros and SVCs are necessary
because certain facilities, such as
input/output functions and the timer, can
only be used through the services of the
supervisor. The supervisor must control
these facilities so that it can preserve
the integrity of its own lists, tables and
contxol blocks, which, in a multi-
programming system, may be associated with
many tasks, programs or jobs. The
operating system requires that certain
operations be carried out only in supervi-
sor mode; it is an error if such instruc-
tions are executed in problem program mode.

Although it might be possible in some
instances to issue SVC instructions direct-
ly to the supervisor, the use of system
macro instructions is more convenient.
These system macros bear a similar rela-
tionship to the supervisor and assembly
code as the 1library module does to the
operating system and the compiler. If the
SVC calling sequence changes, the macro is
changed to fit, and the program need only
be reassembled.

Macro instructions are processed by the
assembler program, and their expansions are
in-line. The expansions contain the call-
ing sequence together with either an SVC
instruction or a branch to a control pro-
gram . routine. Parameters are passed either
in registers or in data areas. If they are
passed in registers, registers 0 and 1 are
used. If they are passed in data areas,
then register 1 will contain the address of
the data area; this register is called the
parameter list register.

The two main types of macros, therefore,
are:

1. R-type, where parameters are passed in
registers.

2. sS-type, where parameters are passed in
a data area.

The macro instructions used by the
library are listed in Appendix A.

10

For further details about macro instruc-

tions, see IBM_System/360 Operating System:

Supervisor and _ Data Management _Macro
Instructions.

OPERATING SYSTEM REQUIREMENTS

Diagnostic File

During execution time, it may be neces-
sary to inform the user of various error
conditions as they arise. To achieve this,

the job step in which the program is being
executed requires a DD statement for a
diagnostic file. The ddname for the file

is SYSPRINT. In the absence of this state-
ment, any diagnostic messages that arise
will be printed on the system console.

Link Library

Certain modules are loaded dynamically
during program execution. These modules
reside in the link library (SYS1.LINKLIB);
they are transient modules and are loaded,
when required, by the system macros LINK,
LOAD and XCTL. DD statements are not
required. The 1link-library modules are
marked * in Appendix G; they comprise:

1. The print and message modules of the
error and interrupt handling subrout-
ines.

2. The modules for opening and closing

files.
3. The record-oriented I/O transmission
modules.
These modules can, if required, be

replaced by user-designed modules. The
user module is loaded by the linkage editor
into a partitioned data set (PDS). The PDS
(which may have to be provided for the
purpose) must appear in a JOBLIB DD state-
ment.

INSTRUCTION SET REQUIREMENTS

The universal instruction set is gener-
ally required for the execution of PL/I
programs. It is possible that floating-
point or decimal instructions may be used
in the execution of programs that do not
use floating-point or decimal data.

NAMING CONVENTIONS

The PL/I Library conforms to the naming

conventions of IBM System/360 Operating
System with regard to external names.
These are names that are identifiable

outside the bounds of an assembled or
compiled module. PL/I external names
always begin with IHE; this is followed by
two, three or four characters, according to
the name function (see Figure 1).

REGISTERS: SYMBOLIC NAMES

The following symbolic names are used in
the 1library modules for general registers

CHAPTER 2: GENERAL IMPLEMENTATION FEATORES

Synibolic

Register Name

aENO
)
w

LINKAGE CONVENTIONS

Linkage between modules generally fol-
lows the operating system standard calling
sequence. The main features of this are:

1. Arguments are passed by name, not by

value. The addresses of the arguments
are passed, not the arguments them-
selves.

2. These addresses are stored in a param-

0~-151 eter list.
3. The address of the list is stored in
Symbolic Symbolic register RA.
Register Name Register Name
Full details are provided in IBM System/360
0 RO 8 RA Operating System: Supervisor and Data Man-
1 R1,RA 9 RI agement Services.
2 RB 10 RJ
3 RC 1 RX,WR Some PL/I Library modules, however, are
4 RD 12 PR called by a PL/I standard calling sequence.
5 RE 13 DR The main features of this are:
6 RF 14 LR, RY
7 RG 15 BR,RZ 1. Arguments are passed by name.
The following symbolic names are used 2. Arguments are passed in general reg-
for the floating-point registers: isters.
r L T v k|
| Number of |Format | Use] Meaning i
|Characters| | |]
b t } $- :
| 5 | IHEXX | | i
| | | Module name | i
] 6 | THEXXX | | XXX are chosen for mnemonic |
¢ + + jidentification of function. i
| 6 | IHEXXX |PL/I Library defined macros| i
L 4 4 L d
r T T T " b
1 7 | IHEXXXX| Entry-point name |First six characters are module name; |
| [| | the seventh identifies the entry point |
| | | |within the module. |
b ; ¢ 4 j
| 7 | IHEQXXX| Pseudo~-register name | XXX are chosen for mnemonic |
| | | |identification of function. (See |
| | | |Appendix C.)]
L 'S 4L L F

Figure 1.

External Names used by the PL/I Library

Chapter 2: General Implementation Features 11

This standard can only be used where the
number of arguments is both fixed and 1less
than eight. If these conditions are not
met, the operating system standard is used.

Two PL/I Library modules, IHESA and
IHETSA, do not use either of these stand-
ards. The subroutines in these modules
pass arguments by value as well as by name,
and pass them 1in parameter lists and in
general registers.

Wwhichever standard is used, whenever one
module links to another a save area must be
provided for the contents of the registers
used by the called module. The save area
procedure is:

1. The calling module provides a standard
save area (SSA) for the called module.
The address of this save area is
stored in register DR.

2. If the called module in turn calls
another module, it provides that
module with a save area. Register DR
now contains the address of this new
save area. The save areas are chained
together by the chain-back address
field in the new save area.

3. On return to the calling module, the

Registers RB through LR
Program mask

Program control

(PICA)

interrupt area

while the following may_be changed:

Registers RO, RA, and BR
Floating-point registers
Condition code
The standard save area is a 72-byte area
in which the contents of all the general
registers can be saved. The format is
described in Appendix H.

The 1library does not
module trace. Therefore:

support inter-

1. The chain-forward field in the SSA is
not set.

2. (€alling sequence and entry-point
identifiers are not employed.

12

CODING CONVENTIONS

Because all modules within the PL/I
Library are coded to be reenterable, the
following coding constraints must be
observed:

1. The modules are read-only.

2. Workspace (for save areas and tempora-
ry work areas) is obtained within an
area dynamically allocated at program
initialization or by a call to the Get
VDA (variable data area) subroutine in
IHESA. (See 'Library Workspace' in
this chapter and in Chapter 4.)

LIBRARY MACRO INSTRUCTIONS

Seven macro instructions are available
for use in the library modules; they reside
in SYS1.MACLIB. Five of these, IHEEVT,
IHELIB, IHEXLV, IHEZAP, and IHEZZZ, set up
symbolic definitions in the program listing
and the other two, IHESDR and IHEPRV, set
the current addresses of the standard save
area and the pseudo-register vector (PRV)
respectively. The library macros are des-
cribed in Appendix D.

DATA REPRESENTATION

Three types of data may exist within a

PL/I program:

1. Arithmetic

2. String

3. Statement-label

The internal representation and other
details of these three types are shown in
Figures 2, 3, and 4. The invocation count
used in the statement-label data represen-
tation is described in Chapter 4.

Arithmetic or string data may be
fied with tne PICTURE attribute.
arithmetic data item
field and is represented
character string.

speci-
A PICTURE
internally as a
An arithmetic data item
without a PICTURE attribute is called ‘a
coded _arithmetic__data_ _item (CAD) and is
represented internally in one of three
System/360 formats:

Fixed-point binary
Floating-point
Packed decimal

r— : 5 b
| Data Type T Implementation |
lL' e - T T T ST TS T 9
|Scale| Base |Precision| Internal | Alighment | Processing |
| o | | format | | |
T — L L 1 ——de {
| REAL data i
k- T T T T i o - 4
	Binary	pPrq	Fixed-point	Word	Arithmetic operations are performed
		Max p: 31	binary	Jon p-digit integers: scale factor q	
A				is specified in a DED. (See Appendix	
					H, 'Data Element Descriptor'.)
Fixed} + + 4 - 4					
	Decimal] pPra	Packed dec-	Byte {The p digits occupy FLOOR ((p + 2)/2)		
		Max p: 15	imal		bytes. Arithmetic operations as for
]		(see			fixed binary
I		note)	I I I		
R $oue } ommmmmm e mmmm e 4					
	Binary	P		p<21: Word]
]	Max p: 53]	p>21: Double-			
]			Hexadecimal	word	The data is normalized in storage
Float} + —-——-4yfloating- } {before and after arithmetic operat-					
1	Decimal	p	point	p<6: Word	ions.
S	Max p: 16}	p>6: Double-			
			I word	I	
p—————1- § —— Lo L P R _ - -					
] COMPLEX data i					
l'—--' ———— T T [I e ‘_'l					
	Binary	joPhe] }Fixed-point	Word	As for real fixed binary. The real	
		Max p: 31}binary		and imaginary parts occupy adjacent	
	i] {fullwords, with the real part first.			
Fixedp-—-—-— $-——-- } 3 - I L L D i Ll i					
	Decimal	jole		Packed dec-	Byte
		Max p: 15]imal]and imaginary parts occupy adjacent	
] - | | |fields, with tne real part first. |
L d e e e ——— ———— s et o e 20 e e

b 1 ¥ $ 1 y 1
	Binary	P		p<21: Word	As for real float binary. The real
;		Max p: 53]		p>21: Double-	and imaginary parts occupy adjacent
]		word	fullwords or doublewords, depending	
] i]on the precision, with the real part		
			Hexadecimal]	first.	
Floatp======= }———————e jfloating- } —_—— fommm e ——————— i					
}	Decimall ol	point	p<6: .Word	As for real float decimal. The real	
		Max p: 16}]p>6: Double-]and imaginary parts occupy adjacent			
]] } word	fullwords or doublewords, depending		
]]	on the precision, with the real part		
	l		Iflrst- !		
L L - L L —— - - ——
Note: When p is even, the effective precision for all arithmetic operations except div-

ision is (p + 1,q9), except when the SIZE condition is being checked. When this
- occurs, the first digit in the high-order byte must be checked to ansure that it
+is zero.

Figure 2. Arithmetic Data Representaton

Chapter 2: General Implementation Features 13

——— : 1
| T Implementation |
jpata type} - v

{- | Representation | Length Alignment
L 4L [l "
2 T T

| Bit |1 binary digit | | Byte

i lper bit | Maximum 1ength. 32,767. If a VARYING attribute is | (see note)
pmm——————- {declared, maximum length is declared length, e
ICharacter|1 character per)regardless of the string value. | Byte

1 |orte ! !)

Note: The string occupies CEIL (n/8) bytes. If the string comes within the scope of an

bit offset in an SDV.

®Figure 3. String Data Representation

0 7 8 31
r - - 1
| Invocation Count |
fo—-----1 4
| | A(Statement label) |
L L 3
Figure 4. Statement-Label Data Representa-
tion

COMMUNICATION CONVENTIONS

The use of 1library wmodules in a PL/I

program reguires that:

1. Working storage be
modules.

provided for the

2. Techniques for passing information
about arguments and program status be
provided.

Working storage is obtained as library
workspace (LWS). Appendix H gives the
format of LWS, which is allocated by the
library program management module IHESA.

Two modes of communication are available
for passing information:

Explicit: Uses parameter 1lists and reg-
isters. (See 'Linkage Convent-
ions')

Implicit: Uses pseudo-registers or a
Library communication area.

Some library modules are interpretive

(as opposed to declarative), and according-
1y require that information regarding the
characteristics of their arguments be sup-
plied. Such information is made available
to the library in the form of standardized
control blocks. The form and content of
the compiler-generated control blocks in
general use throughout the implementation
are described in Appendix H; one or more

1u

UNALIGNED attribute, the address of the first bit is provided by a byte address and
(see 'String Dope Vector'

in Appendix H.)

blocks is required according to the nature
of the data passed:

Scalar arguments:
Data element descriptor (DED)
String dope vector (SDV)
Symbol table (SYMTAB)

Array arguments:
Array dope vector (ADV)
String array dope vector (SADV)

Structures:
Structure dope vector
Dope vector descriptor (DVD)

Formats:
Format element descriptor (FED)

Special-purpose control blocks, such as
the file control block (FCB), are described
in Chapters 3, 4, and 5, and in Appendixes
I, J, and K.

Pseudo~-Register Vector (PRV)

This is an area of task-oriented stor-~
age, addressed through register PR. The
PRV contains a number of pseudo-registers
which effectively operate as implicit argu-
ments and give information about, for exam=-
ple, current program status. All referen-
ces to specific pseudo-registers within the
PRV are made by the addition of a fixed
displacement to the PRV base address in
register PR.

A pseudo-register is defined within a
library module as a Q-type address constant
which is fixed during the linkage editing
process. All pseudo-register address con-
stants within the PL/I implementation are
two bytes long. The maximum size of a PRV
is 4096 bytes. The pseudo-registers used
by the PL/I Library are shown in Appendix
C.

Various library modules require working
storage:

1. Fox internal functions.

2. For 1linkage to other modules. (a

register save area must be provided.)
Since the 1library is designed to function
within a multitasking environment, such
storage must be allocated on a task-
oriented basis. The storage so allocated
is termed library workspace (LWS).

Library modules which use LWS refer to
it by means of the PRV. A group of
pseudo-registers in the PRV is set during
LWS @allocation to contain the addresses of
contiguous areas within LWS. (See Appendix
H.) Each of these areas is at a different
level.

The notion of level exists because of

inter-module linkage between library
modules:
1. A module which invokes no other

modules is assigned level 0.

2. A module which invokes other modules
is assigned a 1level number greater
than the level number of any invoked
module.

3. A module which transfers control to
another module (i.e., does not expect
a return) is assigned the level number
of that module.

Invocation of the error-and-interrupt-
handling subroutine is not considered suf-
ficient to raise the level number of the
invoking module, since the error subroutine
uses a special level.

Library workspace is allocated as pri-
mary or secondary LWS.

Primary LWS is allocated during program
initialization, before control is passed to
the main procedure. The storage thus
obtained is not freed until the PL/I pro-
gram is finished.

Seboudary LWS is allocated for special
purposes during program execution and is
freed when the situation for which it was

created no longer exists. It is allocated:
on-unit is entered from a
This may lead to a
recursion problem: 1library rodules
called may overwrite this LWS. To
avoid this, the existing LWS is

1. When an
library module.

stacked, a new one obtained and all
the LWS pseudo-registers updated.

2. When SNAP, system action or error
messages are to be printed. The PRINT
subroutine may overwrite the existing

LWS: to avoid this, the same procedure
is followed as for an on-unit.

The library program management module
IHESA controls the allocation of LWS and
the setting of the library pseudo-
registers. (See Chapter 4.) The library
macro IHELIB controls the length of LWS and
of each area within it. The LWS format can

be changed by changing IHELIB and
reassembling IHESA.

Modules using specific areas in LWS
address these areas by the following

library macros:

IHEPRV: Used to address the LCA or when
using an area as temporary workspace.

IHESDR: Used when a module requires a

standard save area for a module it is
calling.

Library Communication Area (LCA)

Within the area allocated for library
workspace 1is an area in which wvarious
symbolic names are defined. These names

are used for implicit communication between
library modules (mainly the data conversion
modules). This area is the library com-
munication area (LCA); its format and the
usage of the symbolic names are shown in
Appendix H. The LCA address is stored in
the pseudo-register IHEQLCA.

In the LCA there is a doubleword immedi-

ately before the first symbolic name. This
contains (in the first four bytes) the
address of the prior generation of LCA

within a given task. This field is used to
readdress the LCA which existed before an
ON block was entered. IHEQLCA contains the
address of the first symbolic name.

Object-Time Dump

A PL/I user may obtain a dump at
time by calling one of the following:

any
IHEDUMC: Dump current task and then con-
: tinue execution.

IHEDUMJ: Dump all tasks and then continue
execution.

Chapter 2: General Implementation Features 15

IHEDUMP: Dump aill tasks and terminate
major task (i.e., terminate the
job step).

IHEDUMT: Dump current task and then ter-
minate it.

Identification of required information
(such as save-area locations) in the dump
is dJdifficult because this information is
not necessarily stored in locations
arranged in a chronological sequence. To
facilitate reading ‘the dump, therefore, two
subroutines, IHEZZC and IHEZZF, are provid-
ed. They extract certain information
(chiefly about save areas and opened files)
and print it as an index to the dQump. Full
details of this information are given in
Appendix F.

If a DD card exists, the information
will be printed on the PL1DUMP file (unless
there is something wrong with the PL/I
save-area chains, in which case the SYSA-
BEND or SYSUDUMP file will be used). If
the data set specified is other than the
SYSOUT file, DISP=MOD should be used on the
DD card. If there is no DD card and the
operating system has the primary control
program or MFT, only the normal indicative
dump will be provided; in an MVT environ-
ment, if there is no DD card, there will be
no dump at all.

Checkpoint/Restart

In an operating system with PCP or MVT,
a PL/I user may establish a checkpoint at
any point within a job step by calling
IHECKPT. He must include a DD statement
with the ddname SYSCHK to define the data
set on which the checkpoint information is
to be saved.

The module IHECKP is called directly
from compiled code. It obtains an ordinary
VDA for use as a save area, rather than
using library workspace, because the CHKPT
macro instruction that is issued by IHECKP
makes use of the first byte of the save
area; the first byte of a save area in IWS
is wused for PL/I information. (Refer to
Chapter 4 for a discussion of the VDA and
LWS VDA.) Each time IHECKP is called, it
creates, from a dummy held as part of the
module, a DCB that refers to the data set
defined in the SYSCHK DD statement; on
return from the CHKPT routine, the DCB is
freed. The address of the DCB is the only
parameter passed to the CHKPT routine.

16

SORT/MERGE - PL/I Interface

A PL/I procedure may call the operating
system SORT/MERGE program, using the
library module IHESRT. The publications in
which the operation of SORT/MERGE is des-
cribed are: IBM System/360 Operating Sys-
tem: SORT/MERGE, Form c28-6543, and,
SORT/MERGE Program Logic_Manual, Form
Y28-6597.

Four entry points, IHESRTA, IHESRTB,
IHESRTC, IHESRTD are provided to enable use
to be made of SORT/MERGE user exits E15 and
E35 to call PL/I procedures, as required by
the application.

SORT/MERGE control statements are sup-
plied as arguments to the PL/I CALL state-
ment. These arguments correspond in format
to standard SORT/MERGE control statements,
from which the parameter lists are generat-
ed.

These arguments also
entry points to be

specify the PL/I
invoked by the user

exits E15 and E35, and any return codes to

be used for inter-program communication.

The normal library conventions for save-
area chaining are not used for this module.
Instead the module allocates a DSA (with
code X'80' in the first byte). This is to
ensure that if either user exit is used,
the chain-back is through the DSAs only.

After the parameter list for SORT/MERGE
is generated, the following actions are
performed before linking to SORT/MERGE:

1. The registers 1in the external save
area of the PL/I procedure are saved
and replaced by special registers
which are used in terminating the sort
when:

a. A PL/I exit procedure is
terminated, due to an error, before
the sort has terminated, or

b. A GO TO from an exit procedure to a
procedure at a level equal to, or
higher than, the calling procedure,
occurs.

Otherwise the PL/I procedure would
terminate allowing the operating sys-
tem to regain control, either directly
or indirectly, while the 1link to
SORT/MERGE is still operative, with a
resultant system interrupt. The reg-
isters stored in the special save area
cause the calling procedure to enter
IHESRT and complete the SORT/MERGE
operation. Any user exit calls to the
now non-existent PL/I exit procedures
are deleted, before restoring the

external save area and returning con-
trol from the PL/I procedure.

2. The PICA is set to system
program interrupts.

action for

3. Register 13 is set to a special save

area with a chain back address of
zero.
On- normal completion of the sort, the

PICA and external save area are reset to
the conditions at entry to IHESRT and
control is returned to the calling program.

If an exit is taken, the PL/I environ-
ment is reestablished and register 13 is
reset to the DSA allocated for IHESRT. The
exit procedure is then invoked and thus the
DSA chain is correct.

Before returning to SORI/MERGE the PICA
and register 13 are reset to their values
on initial entry to the exit routine in
IHESRT.

Chapter :2: General Implementation Features 17

CHAPTER 3: INPUT/OUTPUT

FILES AND DATA SETS

Within this publication, the term ‘'data
set' refers to a collection of records that
exist on an external device. A file is
known as such only within a program; it is
possible that, within a given program,
several files will use the same data set
concurrently (direct access only). Simi-
larly, a data set may be used by several
programs, either concurrently or succes-
sively.

The relationship between a file and a
data set is established when the file is
opened. The data set to be associated with
a file is identified by the TITLE option.
If this option is omitted or an implicit
open occurs, a default identifier is formed
from the first eight characters of the file
name. The data set identifier is not the
data set name, but the ddname (i.e., the
name of the DD statement). Error messages
which are related to file operations use
the full file name through 31
characters).

(1

The attributes of a file in some instan-
ces restrict the attributes of its asso-
ciated data set, but in those instances
where device independence is possible, the
full capabilities of the job control lan-

guage DD statement are available. Unit
assignment, space allocation, record format
and length, and various data management
options (such as write-verify) are esta-
blished on a dynamic basis.

DCLCB PRV
0 31 0 31
r T 1 r 1
| PRV offset | | i |
¢ T 4 | | |
| | | | |
| | | ¢ i
| b $=—==> A(FCB) t
| | ¢ i
| | |]
]		
J L p]		
Figure 5. File Addressing Scheme

18

FILE ADDRESSING TECHNIQUE

In order to accommodate reentrant usage
of a PL/I module, which may imply that the
module exists in read-only storage, the
following technique is employed to communi-
cate file arguments. All calls from com-
piled modules to the library involving file
arguments address a read-only control
block, the DCLCB. The library, wusing a
field within this control block, is able to
address a cell within the pseudo-register
vector. generated for the task. This cell,
the file register, in turn addresses a
dynamically allocated control block, the
file ' control block (FCB). (See Figure 5.)

Declare Control Block (DCLCB)

This control block, generated during
compilation, contains - information derived
from a file declaration (either explicit or
contextual). In addition, it contains the
offset within the PRV of the file register,
a fullword pseudo-register employed within
the file addressing scheme. This pseudo-
register contains the address of a dynamic
storage area containing a file control
block. The DCLCB is read-only, and thus
permits compiled programs to exist within a
reentrant environment (which may imply that
the program is loaded into supervisor
protected storage). The maximum length of
a DCLCB is 56 bytes.

File attributes specified within the
DCLCB may be supplemented, but not overrid-

den, by attributes specified in the OPEN
statement which opens the file. An excep-
FCB
0 31
r==>r L]
| | |
| | |
| I |
| | |
-J |
i
A(DCLCB) |
.|
|
|
|
L]

tion to thié rule is the LINESIZE option,
which overrules record length information
declared in the ENVIRONMENT attribute.

The formit of the DCLCB is described
fully in Appendix I.

File Control Block_ (FCB)

This control block is generated during
program execution when a file is opened.
Dynamic allocation of the FCB storage is
required in order to accommodate reentrant
usage of a given module, for the FCB is not
read-only. The FCB contains fields for
both the PL/I Library and £for operating
system data management. The initial por-
tion of an FCB is PL/I-oriented, while the
second portion is the DCB required by data
management for all data set operations.
The PL/I portion, called the DCB-appendage,
is described in Appendix I; details of the
various DCB constructions are available in
the following IBM publications:

IBM__System/360 _Operating System: System
Control Blocks

IBM System/360 Operating System: Supervi-
soxr . and-Data Management Services

IBM!System/360 Operating System: Supervi-
sor'and Data Management Macro Instruc-
tions

IBM__System/360_ _Operating System: System
Programmer's Guide

An FCB is generated for each file opened
within a program; an FCB cannot exist for

task-oriented storage tin the same subpool
as the PRV for the task: subpool 1).

Accordingly, if a file is implicitly
closed because of the termination of the
task that opened it, its FCB is freed and
the file register is set to zero. The
contents of a given file register in a
non-opening upward task are =zero. Subse-
quent reference to the file may cause the
file to be reopened. (A non-opening upward
task .for a given file is a task that does
not open the file, and which is not a
subtask of a task that has opened the
file.) '

When a file is opened, its .generated FCB
is placed in a chain which links together

(through the TFOP field in the FCB) all
files opened in a given task. When files
are closed, they are removed from the
chain. This chain, which is anchored in
the PRV cell IHEQFOP, exists in order to
perform special PL/I closing processes at
task termination (whether normal or

abnormal). When a task terminates, the
object-program housekeeping routines deter-
mine which files are currently opened by
this task. This is performed by the rele-
vant housekeeping module calling IHEOCLD
(close), which scans the chain and calls
IHECLTB to <close all files opened in the
current task. If the cell IHEQFOP is zero,
then no files are, at present, opened by
the task. When a subtask is attached, this
cell 1is initialized to zero in the newly
generated PRV. The IHEQFOP chain is shown
in Figure 6.

Since an FCB 1is generated in dynamic
storage, its address cannot be determined
either at compile time or link-edit time;
it is this characteristic of the FCB which

an unopened file. FCBs are generated in requires the file addressing scheme out-
ERV
r 1
| |
| |
[l d
L 1
IHEQFOP|. b—- 1
frommm e 4 1
| | FCB1 FCB2 v FCB3
i | r 7 <=1 r 1<==1 1
| | | | 1 | | I |
| |] | | | | |
i | t i | 1 It {
| | | 0 | b4 | t-—4 | TFOP
| | t i 4 t i
L 4] | | | 1
] | | | { |
| | | | | |
[N J i J L J

Note: The FCBs are opened in the order 1, 2,

Figure 6. Format of the IHEQFOP Chain

3, etc.

Chapter 3: Input/Output 19

lined above. If a given procedure is being
executed by two oxr more jobs
(multi-jobbing), an FCB (with its associat-
ed PRV) exists for each job; the procedure
does not, however, necessarily operate on
different data sets. Similarly, if a file
is opened in two parallel subtasks, an FCB
exists for each task.

Program Execution

When program execution is initiated, the
PRV (including &1l file registers) is ini-
tialized to zero. When a file 1is opened
(prepared for I/0 operations), its asso-
ciated file register is set to address an
FCB; similarly, when a file is closed
explicitly, its file register is again set
to zero.

Since a copy of the PRV of the attaching
task (calling procedure) is provided to the
attached task (called procedure), the state
of a file is communicated downward through
major to minor tasks. If the file is not
open, the file register remains zero. If a
file has gone through the opening process
but has failed to be opened (UNDEFINEDFILE
condition), the high-order byte (bits 0 to
7) of the file register will contain an
error code that indicates the cause of
failure. The codes consist of two hexa-
decimal digits; they are shown in Figure 7.

If the file register is non-zero, the
file is open and its FCB is also available
to all the subtasks created while the file
was in the open state. This technique of
communicating the state of a file makes it
possible to access a file in two parallel
subtasks.

Two advantages of the use of the DCLCB
in the file addressing scheme are:

1. Because the DCLCB, in conjunction with
an implicit opening statement, pro-
vides all the information necessary to
open a file, a file can be opened by
I/0 statements other than the OPEN
statement.

2. Because the DCLCB is part of the
static storage of a load module, its
address is constant throughout program
execution. This address can be used
therefore as the file identification
in ON conditions that relate to files.
ON conditions may be enabled for a
file before it is opened, since the
DCLCB address is always available.

20

r v 1
] Error | |
| code | Meaning |
L [l ¥
| 8 T 1
| 81 | Conflict between DECLARE and |
|] OPEN attributes |
82	File access method not support-
	ed
[1 _ [
83	No block size
]	
} 84	No DD card
]	
] 85	TRANSMIT condition while ini-
i	tializing data set (only appli-
1] cable to DIRECT OUTPUT REGIONAL	
]	files)
	_ o
i 86	Conflict between PL/I attri-
i	butes and environment options
!	
] 87	Conflict between environment
]	options and DD parameters
] 88	Key length not specified
] 89	Incorrect block size or logical
] record size specified	
8A	Line size greater than
	implementation-~defined maximum
L 4)
Figure 7. Error Codes Indicating Causes

of Failure in Open Process

OPEN/CLOSE FUNCTIONS

The opening of a file occurs either
explicitly by the use of an OPEN statement,
or implicitly because of other 1/0
operation statements.

Opening a file involves the creation,
within dynamic storage (subpool 1 of the
opening task), of an FCB, the setting of a
file register to address the FCB, and the
invocation of the data management OPEN
executor. The closing of a file involves
invocation of the data management CLOSE
executor, freeing FCB storage, and clearing
the associated file register.

EXPLICIT OPENING

In order to conserve storage, the module
..ructure of the OPEN and CLOSE processors

involves a 'bootstrap' routine, IHEOCL,
which 1links to the modules IHEOPN and
IHECLT. In a multitasking environment

IHEOCT 1links to
bootstrap module

IHEOPN
passes

and IHECTT. The
to the 1loaded

modules the address of a 1list of all
necessary address constants and pseudo-
register offsets, since these cannot be set
in a module not 1link-edited with the
executing program. The list is found in
the library module IHESA (non-multitasking)
or IHETSA (multitasking).

All errors are communicated back to
IHEOCL/IHEOCT by means of the file reg-
isters; TIHEOCL/IHEOCT then invokes the
error handling subroutine. The error con-
ditions are signaled in the high-order byte
of the file register; IHEOCL/IHEOCT, upon
detecting an error condition, sets bit 0 of

this ‘register to indicate an unopenable
file. The error codes are shown in Figure
7.

Open_¢ontrol Block (OCB)

One of the parameters which may be
passed to IHEOPN is the open control block
(OoCcB), which is generated by the compiler.
This four-byte control block indicates the
attributes specified in the OPEN statement.
During the opening process, this informa-
tion is merged with that in the DCLCB in
order tc construct the proper FCB and check
for attribute conflicts. (See Appendix I
for details of the OCB.)

The Open Process

The flow through the OPEN modules 1is

illustrated in Figure 8.

The open process is performed by the
modules IHEOPN, IHEOPO, IHEOPP, IHEOPQ and
IHEOPZ which reside within the LINKLIB data
set. These modules are dynamically loaded
in order to conserve object-program stor-
age. They initially receive control from a
bootstrap module, IHEOCL (non-multitasking)
or IHEOCT (multitasking); each module,
after performing its functions for all
files ibeing opened, passes control to the
next '‘by the XCTL macro. IHEOPQ then
returns to the bootstrap module.

Open__Process, Phase_ _I1: IHEOPN: This per-
forms file attribute checking and default-
ing functions. If a file being opened is
REGIONAL, and is opened for DIRECT OUTPUT
(creation), the module IHEOPZ is invoked by

IHEOPN to initialize (format) the initial
space ‘allocation of the associated data
set. Such initialization is required in

order to allow subsequent direct insertion
of records into the data set. If, in phase
I, all files specified in the OPEN state-
ment have detected errors, a return to the

bootstrap IHEOCL is made immediately. Oth-
erwise phases II, III and IV are invoked
and a return is made to IHEOCL from IHEOPQ.

r L)
| ocLs/ocT |
L |
1} 1
| OPEN/CLOSE |< 1
| bootstrap | |
L ¥ J l
I l
v |
r L] T n I
I OPN | | OPZ | |
} 3 } d l
] 1 T]
| OPEN |<~==>| REGIONAL | |
| Phase I | | Formatting] |
L] L J ’
L)
| |
v |
r H I
| opo | |
L J |
[} 1
I OPEN | |
| Phase II | |
t T 4 |
I |
v |
fr——————————- 1 e -=1 |
| OPP | | OPQ |
b i t |
| OPEN p=—=>] OPEN po———- 4
| Phase III | | Phase IV |
L] . 4
Figure 8. Flow through the OPEN Modules

Initialization for REGIONAL data sets of
F format records involves writing dummy
records (and keys, except for REGIONAL (1))
throughout the data set. On the other
hand, initialization for U or V format
records (REGIONAL (3) only) requires merely
that the capacity record (R0O) be written in
each track to signal a free track, the
track being automatically cleared as well.

Open Process, Phase II: IHEOPO: This
obtains storage for an FCB for each file
being opened, and sets fields in both the
DCB and the DCB-appendage according to the
declared attributes.

Open Process, Phase III: IHEOPP: This exe-

cutes the OPEN macro, and accepts DCB-
exits.

Open Process, Phase 1IV: IHEOPQ: This
dynamically loads record-oriented I/0
modules (setting their addresses in the

FCB), and enters the files being opened
into the IHEQFOP chain of files opened in
the current task.

Chapter 3: Input/Output 21

The Close Process

This process consists of: removing files
from the IHEQFOP chain; freeing dynamically
acquired storage (file control. blocks, buf-
fers, exclusive control blocks, and 1I/0
control blocks); and deleting any appropri-
ate dynamically-loaded record-oriented I/O
modules. 1In the following description the
non-multitasking module is followed with
its multitasking alternative in parenthe-
ses.

Module IHEOCL (IHEOCT) starts the close
process; for an explicit close it links to
IHECLTA (IHECTTA); for an implicit close to

IHECLTB (IHECTTB). If the last operation
on a BUFFERED SEQUENTIAL INDEXED OUTPUT
embedded-key file, before it 1is closed
explicitly, is LOCATE, module IHEOCL

(IHEOCT) replaces the embedded key with the
KEYFROM option, before passing control to
IHECLT (IHECTT). For further information
refer to Indexed Data Sets on page 35.

Module IHEOCL (IHEOCT) calls IHEITC to
finish formatting the current extent when
closing a REGIONAL SEQUENTIAL OUTPUT file.
If IHEITC finds a key sequence error due to
a previous LOCATE statement on a REGIONAL
file with U~ or v-format records the key
seguence 1is ignored and a message is dis-
played on the console.

The normal return from a KEY on-unit is
to the statement following that in which
the condition is raised. Consequently, if
the KEY condition is raised during the
execution of an explicit CLOSE statement,
the file will not be <closed unless the
on-unit also includes a CLOSE statement.

In addition, if a file is closed impli-
citly (on termination of a task), IHEOCL or
IHEDOCT scans the IHEQFOP chain to find the
file. In a multitasking environment, if a
task is terminated normally, IHEOCT unlocks
all records locked in the task and frees
the corresponding exclusive blocks; if a

task is terminated abnormally, it merely
removes the exclusive blocks from their
chains. For an implicit close, all events

associated with event variables in the
IHEQEVT chain are purged, and the associat-
ed IOCBs, if any, are freed.

Modules IHECLT and IHECTT reside within
the LINKLIB data set and are loaded dynami-
cally in the same manner as the OPEN
modules. They perform additional special
functions as follows:

Stream-oriented I/0:

If OUTPUT with U-format
last record is written.

records, the

22

Record-oriented I/0:

All incomplete event variables asso-
ciated with the file are set complete,
abnormal, and inactive, and the I/0
operations are purged.

In a multitasking environment:
1. The event variables in +the TEVT
chain are set complete, abnormal,
and inactive.

2. For a REGIONAL EXCLUSIVE file, or

an INDEXED EXCLUSIVE file with
unblocked records, locked records
are unlocked and all exclusive

blocks in the TXLV chain are freed.

3. For an INDEXED EXCLUSIVE file
blocked records, the
unlocked.

with
file is

IMPLICIT OPENING

If a file is not open and an I/0
operation is initiated, then one of the
compiler-interface modules (IHEIOA, IHEIOB
(or IHEIBT), or IHEION (or IHEINT)) calls
IHEOCL (or IHEOCT), at implicit-open entry
point IHEOCLC (or IHEOCTC), passing any
implied parameters, and the open process
begins.

If the OPEN modules return control to
IHEOCL (or IHEOCT) and the file is still
unopened, the UNDEFINEDFILE condition 1is
raised.

STREAM-ORIENTED I/O

Although I/O devices available within
IBM System/360 Operating System are usually
designed to transmit data in records of
various lengths (blocks), the stream-
oriented facilities allow a program to
ignore record boundaries. The GET and PUT
statements transmit data between storage
and one or more records which exist within
a buffer, the location within the buffer
being updated as each data field is
accessed. When a record becomes filled (if
output) or empty (if input), another record
is obtained. Support for record access is
provided by the data management access
method QSAM (queued sequential access
method). Normally, the GET and PUT data
management macros are used in the locate
mode, to conserve space and time; paper
tape input, however, must use the MOVE
mode. The flow through the stream-oriented
I/0 modules is shown in Figure 10.

CURRENT FILE

The current file is that one which is
being operated upon by an I/0 statement; it
is established when an operation begins,
and removed when the operation is complet-
ed. The current file is addressed through
the pseudo-register IHEQCFL, which address-
es the DCLCB for the file. This pseudo-
register is available for inspection upon
entxy to ON blocks, and during

transmission. Its format is shown in Fig-
ure 9.

0 78 31
r L) 1
I 0 | A (DCLCB) |
t + i
| | A(Abnormal return) |
L - i —]
Figure 9. Format of the Current File

Pseudo-Register

Within a stream-oriented data specifi-
cation there may exist expressions which
involve function references. In turn, the
function procedure may itself perform I/0

operations or may refer to ON blocks that
perform I/O operations. When this situa-
tion occurs, it is necessary to stack the

current file pseudo-register. The presence
of the COPY option in a GET statement and
the raising of the TRANSMIT condition for
an item in the data stream are flagged in
the fifth byte of IHEQCFL:

TRANSMIT to be raised on item: Bit 5 = 1
COPY option in statement: Bit 6 = 1
Current file in PRV: Bit 7 = 0
Current file stacked in DSA: Bit 7 = 1

Stacking of the current file is effected
by the I/O initialization modules; upon
entering such a module (e.g., IHEIOA and

IHEIOB), the contents of the pseudo-
register IHEQCFL are stored in the DSA
(dynamic storage area) of the invoking

procedure, as addressed by register DR.
The stacking cell is termed the current
file pseudo-register update. (See Chapter
4.) Upon termination of an I/O operation,
either normally, or by means of a GO TO
statement out of an ON block, this cell is
copied back into the pseudo-register
IHEQCFL.

GET and PUT statements with the STRING
option employ the current file pseudo-
register, but no abnormal return entry
exists. Instead, the latter four bytes

address a simulated FCB.

STANDARD FILES

The standard files, SYSIN and SYSPRINT,
have default titles equivalent to their
file names. The compilation of GET and PUT
statements without explicit FILE options

causes compile-time syntax substitution of
the file names SYSIN and SYSPRINT
respectively. These files have the same

compiled 1linkage to the library as other
files. Within the library, SYSIN is not
used; the file SYSPRINT, however, is used
in that error messages and listing of data
fields for the COPY and CHECK options
require the presence of this file.

SYSPRINT may be implicitly opened either
by:

1. the first PUT executed in the compiled
procedure, or

2. a call from within the library for the
COPY option or an error message.

If the library attempts to open this file,
and it cannot be opened (missing DD card,
etc.), this situation is flagged and all
error messages will appear on the system
console. In addition, any COPY options, or
system action for the CHECK condition, will
be ignored. The UNDEFINEDFILE condition is
suppressed in the above cases.

If a compiled procedure attempts to open
SYSPRINT, and it cannot be opened, the
normal UNDEFINEDFILE condition is raised.

Because the library and the source pro-
gram both use the SYSPRINT file, it is
necessary that they both refer to the same
DCLCB. This is achieved by the use of
CSECT facilities within the linkage editor;
both the compiled DCLCB and the library-
supplied DCLCB for SYSPRINT (within the
module IHEPKRI) are supplied with the same
name, so that only one of them will be
placed within the linked program. The name
of both CSECTs is IHESPRT; the name of the
associated file register is IHEQSPR.

SYSPRINT IN MULTITASKING

In a multitasking environment, to ensure
that there is no conflict between
operations in different tasks that refer to
the same non-exclusive file, it 1is neces-
sary for the programmer +to synchronize
these operations (by using an EVENT varia-

ble, the COMPLETION pseudo-variable, and
the WAIT statement). Since the 1library
uses the file SYSPRINT, it is not possible

for the programmer to synchronize all oper-
ations on this file. Therefore the library

Chapter 3: Input/Output 23

*|

DDI

| . |
Data

|

f—--__T“-'-{

o e i e s s e s . e e e T o e s P AP . e e . . S e S, e i et e, e e e e, s, S S -
i |
i |
| 1= o e s e ey g = e o e I
|] | * | n 1 1
| | £ [I
| I NS | i @O | I
" -5 E8] 1ilE8t |
- . ——
| i [=] HE I » | O W] | oy —— v
P —— b e oy [}) < O | [T S]]] [B e]] = ey —— T ey ——
| * 1 | | | [| | | (] | | I B %]
] | 1]]]) T | | | | O]]] z | | |]
1 B 30 | b e e d b e — e | | bW | 1EH 1 OH) [} I NO
B 1o |] Ialkuunli 1EH 1+ IBI1BHZ
181881 =18 8>t 1| |61EE|
10 1Aa0l | I ——— ey e ey | | I £ 0 | 1EH 132> I | 1OH |
1al | | | * ! * | | | i I 8w | 1 | w | [} [ON=
1Al | [} | L | 1] i (=]] <" | I] I
[ol S | i 1 3 | IS0 \ A S| [S S— [S-S —
] | © L | =T i | [
=D 1A w4l X I G —— | []
1 1=3 | O10E] [
] HO0 | H 1O MI o e e e e e +————— e e — -1
1] INO I
|] I X &= | A\
—— | S-S | R S | o e e e e oy
1 1 [}]]
1 1 ! [} |
Fi) n 1 [} el]
=} \ v I 1 90
D o o o e s e e e e s e s T e e e e e e e e e e A e i e e e | O | O @ | S
(=31 A A ItH 1 OO
ol | 1 |) Q0 >
1] | [L]
] | ! | | [-
—d e oy e e ey o e oy e e b e e e e (=% [
| * i] | *) | A Ol uw
| 1] | I Oved | Owm
] | L1 | I 801 Ee
B R 1 & bA M [a1]
——> 1 ailn o r——t—— O P b e e e e
Ia 1A | | IR 1881 A
] | A [y s ey | | 140 | |
] | | | |] | [} I R0 o e g o ey = o el e g
]] | ! [T] 1 1 | A | H
b e e e ‘J_ (=T | e — m -
————— S g mbi i B H
Iralug i i @] %3] =9 =
| (-] | I — s — d———-— I N | O [T S)
+] | | | |] =}] O & n
i P | | | 519 5%
I [} &)
P M | | | | a
o peee————— - I | S SR S S
aes] A ! A
+ @i* 1|:1L:|J 1|:1L’|J e o e e e e e e e e e e oy —— =y ke e oy
(1] Qu L% | g 1% | g1 % |] 1
St B Rl LE M . - :
Lo} m 1 I BHE | A FTEHEHI _@ | 0] | Z | 2120 o=z
o 10O 1TEN I = 1 DN D> | O | Q | <] F—> I 1RO D> A& ITRAO
N O E IH1O48L N TP N %) | [N i (o] am (o] &0
0O i [| 1 @ i Pl I Q] (o] 1 oL o
ﬂ eﬁu “ " m | | m ! (=1 _W " [} | A
ol fl:rl:lL PI:PﬂHHL Vl:r lllll L:lli!lh I f'LleL
S Dy | 1 A
383 i Y }
lllllllllllllllllllll [i o g S e ey
)] mﬁw ¥ 1\ P 1%
© ()] e ———] (=] M [}
U HT % | | FTEANNDO)]
nm:;o] I BO |] __EMHLR [I >
<C+H DO) (=N IO I HLAD 1 1 Q1A
10 1A | Il ITRmHO L I 1M
o tSinEl 1P IE2E211916
8 |"ikE) 1 |E888 11
Z | S S | L_ile___1 PI:PIJIL

Modular Linkage through Stream-Oriented I/O

Figure 10.

24

Task B Task A Task C
(major task)
|
(U
| 1
r= 1
0o | |
| F 1
I | o |
ENQ | i
1 Error | |
1211 1 R —— 1 | |
0 | | ENQ
DEQ | ENQ 1
| | 1 PUT
| Message PUT 0
| routine 0 DEQ
| 1 | DEQ |
I | | r >
| | | |
| 1 | |
ENQ | | [
2 | ENQ
pPUT | 1 Function reference
1 | PUT—— e 1
DEQ | | |
| | | |
| | | 1 PROC;
I	ENQ	
	2 Error	
Note: The figures at		PUT———— =y
the left of each column		{
indicate the contents of		
the resource counters.		
i	2 BEGIN;	
{		
		{
] I	
L DEQL DEQK =~ == GO TO		

Figure 11.

module that implements PUT statements for
SYSPRINT (IHEIOB), and other modules that
use this file, issue an ENQ macro instruc-
tion before executing each PUT statement on
SYSPRINT, and a DEQ macro instruction on
completion of the operation. All SYSPRINT
operations cannot be enqueued on the same
resource, since this could result in an
interlock situation (two or more opera-
tions, each waiting for the completion of
the -others). For example, this would be
the case if a PUT statement involved a
function reference that regquired another
BUT oOperation; if both were enqueued on the
same resource, the second operation could
not commence until the completion of the

Allocation of SYSPRINT Resources in Multitasking

first, which itself could not proceed until
the function had returned an answer.

The library resolves the difficulty by
employing a resource counter (the first
byte of the current-file field in the DsA:
see Appendix J). Before each SYSPRINT
operation is executed, the operation is
enqueued on the resource number in the
counter, and the counter is then increment-
ed by one; on completion of the operation,
the counter 1is decremented by one before
the operation is dequeued. When a new DSA
is obtained (on entry to a new block: see
Chapter 4), the resource count is copied
from the DSA of the block from which the
new block was entered.

Chapter 3: Input/Output 25

In the example (Figure 11), when. the
major task (task A) 1is initialized, the
resource count in its DSA is set to zero.
Task A then attaches tasks B and C, and in
each case the resource count (0) is copied
into the new DSA. Tasks A, B, and C then
request PUT operations, all of which are
enqueued on resource 0O; in each case the
resource count is then incremented by 1.
These operations are therefore completed in
the order in which they were requested.

During execution of the PUT statement in
task B, an error condition occurs that
involves a library call to print a message
(e.g., UNDERFLOW). The library PUT state-
ment is enqueued on resource 1, since the
resource counter 1is incremented after the
task PUT statement is enqueued, but before
the statement is executed. The library PUT
operation is therefore not dependent on the
completion of the PUT statement that raised
the error condition.

If a GO TO statement is executed that
passes control to a statement preceding a
series of enqueued operations, the program
management routine TIHETSAG releases the
DSAs of the blocks thus freed and dequeues
the I/0 operations they contain. This is
illustrated in task C (Figure 11), where
control is passed to an on-unit as a result
of an error in a PUT statement in a
function reference made during the execu-
tion of the second PUT statement in the
task. The PUT statement is enqueued on
resource 0, and the resource count is then
incremented. When the function is called,
the resource count (1) is copied into its

DSA; consequently, the next PUT statement
is enqueued on resource 1, and the counter
is again incremented. The count 2 |is
copied into the on-unit DSA when control

passes to the on-unit. On execution of the
GO TO statement, which passes control back
to a statement preceding the original PUT
statement, IHETSAG frees the function and
on-unit DSAs, dequeues all the PUT opera-
tions, and resets the resource counter in
the DSA for task C to its value on entry to
the task (0).

No special provision is made for han-
dling SYSPRINT resources on termination of
a task, since this file cannot be used by
the library end-of-task exit routine.

The gname and rname used in the ENQ and
DEQ macro instructions are:

aqname (two words):
Bytes 1-4: A(SYSPRINT FCB)
Bytes 5-8: A(SYSPRINT FCB)
rname (1 byte):
Resource count in DSA

26

GET/PUT OBJECT PROGRAM STRUCTURE

The code compiled for stream-oriented
I/0 GET and PUT statements has the general
structure illustrated in Figure 12. There
are three ‘'call sets' compiled for these
statements:

1. Initialization:

This call invokes one of the 1I/0
initiator modules, passing:

a. The address of the file DCLCB.
b. The address of the termination

call. (This is the abnormal
return which 1is set within the

current file pseudo-register
IHEQCFL.)

c. The address of the LINE or SKIP
value.

The 1initialization process includes

stacking the current f£file, checking

the specified file (and opening it if
not already open), and performing any
necessary option operations.

2. Data specification:

This is a series of calls to perform
list-, data-, or edit-directed stream-
oriented 1/0 operations. This series
is omitted only for GET/PUT statements

which have no data specification.
Details of the implementation of the
three forms of data specification
appear in 'Data Specifications®,
below.

3. Termination:

This call invokes the
subroutine of the module
formed the initialization. At this
point the current file 1is unstacked
and (for PUT calls) V format output
records have their record-length field
updated.

terminal
which per-

DATA SPECIFICATIONS

There are three forms of Jdata
cation:

specifi-

Data-directed
List-directed

Edit-directed

Compilation of any data specification
yields a series of one or more calls to the
library for transmission of data between
program storage and a record buffer. For
list- and data-directed I/0, the data items
transmitted are passed by means of the
standard 1linkage described above. (see
‘Linkage Conventions' in Chapter 2.) The
PL/I standard (using registers) is employed
wherever possible; where it is not, the
operating system standard (using a paramet-
er list) is employed. For edit-directed

I1/0, the ‘'executable format scheme' des-
cribed below is required.
The ON CHECK facilities for data items

being input are supported by compiled code
between data-list item specifications, in
the instances of 1list- and edit-directed
I1/0; data-directed I/0 determines the exis-
tence of this condition from the symbol
table entry for a given data item.

EXECUTABLE FORMAT SCHEME

format scheme exists to
edit-directed

The executable
support two requirements for
data items:

1. The matching at object time of data-
list items with format-list items.

2. The evaluation of during

an I/0 operation.

expressions

The scheme exists in compiled code for use
by the library format directors and
conversion package. (See 'I/O Editing and
Data Conversion' in Chapter 8.)

The scheme 1is required Dbecause edit-
directed data specifications contain format

lists composed of format items that may
have expressions for replication factors
and format subfields. These expressions

may have to be evaluated with values read
in during a GET operation. Finally, the
use of dynamic replication factors and the
rossible existence of array data-list items
of variable bounds prevent any pre-
determinable matching of data-list items
and format-list items.

Basically, the scheme calls for the
existence of two location counters, one for
a compiled series of data-list item
requests, the other for a compiled series
cf format-list item specifications. These
two series are compiled as the secondary
calling set for a GET or a PUT operation.

To support the dynamic matching of a
format-list item with any data-list item, a
group of format directors exists within the
library; one of these directors receives

the call from the secondary compiled series
of format item specifications. A director
will: determine which conversions are
required to satisfy the transmission of a
data’ item according to its internal rep-
resentation (described by its DED) and its
specified external representation
(described by a FED).

The structure of edit-directed compiled

code 1is illustrated in Figure 13. The
first column, ‘'Primary code', consists of
calls to wunits in the second column,

*Secondary code'; i.e., data-list items are
requesting a match with a format-list item.
The third column shows the flow within the
library as set up by format directors.

- 71

r
| |

Call set 1 | Initialization |
| call |
L

———————e————d

r 1
| Data |
| Specification |
| |

A
|
|
|
|
|
|

Call set 2 .

|

|

|

| v

| pmm—mmmm—mm =
| | Data i
| | Specification |
v | callp |

- L________T_______J

|
v

Call set 3 Termination

call

o e e e g
[IR

Figure 12. Object

GET/PUT

Program Structure of

The scheme works as follows:
1. The address of the start of the
format-list code (executable format)
is obtained.

2. Transmission of the first data item is

requested; its storage address and DED
address are loaded into registers RA
and RB.

3. Control is transferred to the executa-
ble format; at the same time the

Chapter 3: Input/Output 27

Primary code Secondary code

Format directors

Initialization
|
|
\"
o —————— [m==————m———— r 1
| Reguest b———=>1 Specify |p——-=>| Format |
|data item 1] | format | | director |<———me———e——a 1
|transmission| —->| 1 p=—==>] A | |
NPV R | L] L S— -4 v
| (1] j(3) [m——————————— 1
- - 1] | Conversion |
| l | | package |
| | [-———————- 4 |]
v l l L K}
rm——————————q | r v o 1 A
| Request (| | Specify | || Format | |
|data item 2}p——-->| format b—-—->| director |<——m——ee—e—-J
|transmission| | | 2 | | | B |
[PSR B | L T T 4
| | (2) |
| | [
| | |
r —_— 4
| | |
v | |
r 1 l l
| Request I |
|data item 3}p-4 |
|transmission| |
e d |
|
!
r——
|
v
Termination
Figure 13. Executable Format Scheme

location counter of the data-list code
is updated.

The executable format loads, into reg-
ister RC, the address of an FED.

A call is made to a format director
and at the same time the location
counter of the format-list code is
updated.

The format director causes the conver-
sion package to convert the data
according to DED and FED information,
storing the converted data in the
specified storage address, if input,
or placing it in a buffer, if output.

Return is then made to the data-list
code, by means of the data-list loca-
tion counter, LR.

2 through 7, are
end of the data-

The above steps,
repeated until the
list code is reached.

28

Within both primary and secondary code,
looping and invocation of function
procedures may occur. within secondary
code, the appearance control format
items (PAGE, SKIP, LINE, COLUMN, X) will
cause the 1location counter for primary
code, register LR, to be temporarily
altered, so that control is returned f£from
the 1library, not to the primary code, but
to the secondary code. This allows the
data-list item which activated the control
format item to be matched with a data
format item.

of

OPTIONS

COPY: This option causes each data field
accessed during a GET operation to be
listed on the standard output file,
SYSPRINT. This is performed by calling
the module TIHEPRT. Each data field
occupies the initial portion of a line.

If there is no DD card for SYSPRINT,
the COPY is ignored by IHEPRT.

STRING: This option causes a character
string to be used instead of a record

from a file. This

situation is made

transparent to the normal operation of
the I/0 modules since the initializa-
tion module for GET/PUT STRING (IHEIOC)
constructs a temporary FCB for the
string. Information regarding the
address and length of the string is set
in the FCB fields TCBA, TREM and TMAX.
A temporary file register is created in
the second word of the pseudo-register
IHEQCFL. (A dummy DCLCB is placed in
front of the generated FCB and consists
of two bytes which indicate the offset
of the dummy file register.)

PAGE, SKIP, LINE (print files): These
options cause the current record (which
is equivalent to a 'line') to be put
out, and a new record area to be
obtained. SKIP can also be used with
input to cause the rest of a record in
the input stream to be ignored. Record

handling for these

functions 1is per-

formed by the module IHEIOP. All
printing options (and format items) are

supported by use
c¢characters:

of the ASA control

o+

Page eject

Suppress space before printing
Single space before printing
Double space before printing
Triple space before printing

Should spacing greater than triple be
required for a LINE or SKIP request, a
series of blank triple space records is
generated, followed by a single or
double space record, if necessary.

SKIP (non-print files):

1.

Input files: The SKIP(n) option
causes the rest of the current
line (record) to be ignored in the
input stream, and a further
(n - 1) lines to be ignored.

Output files: The SKIP(n) option
causes the remainder of the cur-
rent 1line (record) to be ignored
and (n - 1) blank 1lines to be
inserted into the output stream.
Note that, for format F records,
each 1line 1is padded with blanks;
for format Vv and U records, only
the necessary control bytes and
record lengths are supplied.

Chapter 3: Input/Output 29

r Al =TT 1 L T T 1
| | | | | Record |Access| Notes on Use of |
|O0rganization | Access | Mode |Buffering |Format |Method| Access Method |
t ¥ ¥ } ¥ + —]
|] | | BUFFERED |ALL jQsaM |Locate-mode |
| | | INPUT | | | | (except paper tape) |
| CONSECUTIVE | SEQUENTIAL |OUTPUT |- -4 —_—— - —_— 4
| | IUPDATElUNBUFFEREDlF, U, v |BSAaM | - |
§ B | UV I, — 4
[4 - +’_-‘ T T '|' 1
i] | INPUT |BUFFERED | | | Scan-mode; |
| | | UPDATE | or |F, FBR | | ESETL/SETL |
| | SEQUENTIAL }-————- {UNBUFFERED | |QISAM p-————— e}
| INDEXED] | OUTPUT | | | | Load-mode |
| k- - + + - ———-- i
| | DIRECT | INPUT | - |F, FB | BISAM | - |
| | | UPDATE | | | | !
- - R ettt } pommmmf e - 1
| | | INPUT IBUFFERED |F |osam/ | - |
| | SEQUENTIAL |UPDATE| or | (REGIONAL(1), |BSAM3 | |
|] p————— {UNBUFFERED| REGIONAL(2)) p——————}-—ooov — i
| ! | OUTPUT | | |BSAM | BSAM Load-mode |
l — ¥ o 1 e -—-1
| i I | |IF, U, V | |REGIONAL(1)2 | | |
| | | | - | | |Relative record |
| REGIONAL(1) | | | | |BDAM |without keys |
| REGIONAL(2) | | INPUT | | (REGIONAL(3)) | | REGIONAL (2) 2 |
| REGIONAL(3) | DIRECT | oUTPUT | | | |Relative record 1
| | | UPDATE | | | |with keys |
| | | | | i | REGIONAL (3) 2 |
| i | | | | |Relative track |
| [| ! | | |w1th keys |
‘, & 1 . I - i R L _______________‘!
|Note 1: FB is not allowed for UNBUFFERED files |

[Note 2: OUTPUT causes data set to be formatted using BSAM (BDAM load-mode) at open timej
|Note 3: QSAM is used for REGIONAL(1) BUFFERED but not KEYED |

—— 4

Figure 1u4.

FECORD-ORIENTED I/0

OBJECT PROGRAM STRUCTURE

In record-oriented 1I/0, the data enti-
ties accessible to the source program are
data management logical records (unlike

stream-oriented 1I/0, where the data enti-

ties are data fields).

A wider range of record access is there-
fore available with record-oriented 1I/0:
records may be keyed or not, may be direct-

ly or sequentially accessed, and may be
manipulated within the data set by inser-
tion, replacement, or deletion. The speci~-
fic facilities available vary according to

the data management access method
to support a given data set.

employed

The data management facilities employed
are indicated in Figure 14, according to
the organization of the data set. Note
that not only the declared organization but
also the mode of access and the format of
records determine the chosen access method.
Details of the manner in which the access

30

Data Management Access Methods for Record-Oriented I/0

methods are employed are
'Access Method Interfaces'.

provided in

General Logic and Flow

The overall flow of record-oriented 1I/0
modules 1is illustrated in Figure 15.
Modules IHEION(IHEIOG) (non-multitasking)
or IHEINT(IHEIGT) (multitasking) are gener-
al interface modules, one of which is
invoked by a compiled call for any record-
oriented I/0 statement, in either a non-
multitasking or multitasking environment.
This module interprets the requested I/0
operation, verifies its applicability to
the specified file (and, possibly,
implicitly opens it), and then invokes an
access method inter face module
(characterized by the module names IHEIT#*)
to have the operation performed.

Modules IHEION and IHEINT supersede
modules IHEIOG and IHEIGT at Release 17.
The latter are retained in case a previous-
ly compiled load module is link-edited with
the new 1library. The new modules perform

r]
| Compiled |j———e—mm———————y
| Code | |
L T J v
i ——————————
v | OSW/TSW *|
r . et |
| ION(IOG) /INT (IGT) *| | WAIT |
Note: An asterisk indicates that b 4 | |
the module can be entered | Compiler | b4
directly from compiled code | interface |]
t T 4 |
| |
| <=——mmmmme -
|
|
r 1
I |
v |
S 4 ——

r 7 T 1 T L) h)
|OCL/OCT *| p—=—=—————m———f——mm -1 | | I | | |
pm———————q | v v Vv v v | \Y v
| -4 r -1r 1T 1T alr 1o 1
| CLOSE/ pe—————————o 2| ITB | [ITC | | ITE |1 ITH (11 ITF | ITT |
| OPEN po—moommemg | fmmoand pom———i | it 11F e B 1
I | <==mm=== 711] BSAM | | BsaM | | BISAM | | BISAM ||| BDAM | | BDAM |
| | HELd | | (LoAD)| |No Multi-| | Multi- |[||No Multi-| | Multi- |
e 1] -4t 4 | tasking | | tasking |||tasking |]| tasking |

[1 L J L dL—— 1L y]
e I ¥ -1 |
e ¥ 1| |
v | I |
A | [mm=—————= 1 | 1 1 T L T |
| OPZ | | OPN | { | VvV v v v
- J L - v [- ———— ——————

1 r r r 1 r 1 r 1
|REGIONAL |<--{ OPEN | ———————— 11l ITL | | ITD | | ITG | | ITK |
| formatting| | Phase I | | CLT/CTT | |p-——==—= b——— pm——— =9
L - 4 L T - e 1 1l osam | | QISAM | | osaM | | QsaM |

| | CLOSE }->1| SPANNED| | | | NON- | SPANNED |
| | | || OoUTPUT| | | | SPANNED| | INPUT |
r 3 L It J b J [, ¥
I |
| |
v |
[-————————= 1 [————————- 1 [———————== 1|
| QPO | | OFP | | OoPQ | |
s B ot B 1 |
| OPEN }-->| OPEN }-->] OPEN -4
| Phase II | | Phase IITI| | Phase IV|
R | L 4 | 3
® Figure 15. Linkage of Access Modules in Record-Oriented I/O
the same function as the o0ld except that the statement is invalid. The mask in the
they transfer control to the transmitters FCB 1is set up by IHEOPQ to indicate which

rather than link to them.

The transmitters

Chapter 3:

statements are wvalid,

and the RCB

Input/Output

contains

3

return direct to compiled code. This the statement type as a single bit in its
avoids saving and restoring registers second word.
between the interface module and the
transmitter. On receiving control, the interface
module first performs any necessary Kkey
The verification of a statement is per- analysis and record-variable length check-
formed by TIHEION (IHEINT in multitasking) ing, and establishes any control blocks
by ANDing together a mask at offset -8 from required. It then invokes data management
the BCB and the second word of the Request for the transmission of a record. After
control Block. If the result is zero then transmission, or (if the EVENT option is

1

employed) after initiation of transmission,
control returns to the general interface
module IHEION (oxr IHEINT), and thence to
the compiled program. Errors may be
detected within IHEION (or IHEINT) before
an interface module is invoked, or within
an interface module either before or after
data management has been invoked. The
relevant ON condition raised when
detected.

is

As
diagram,

indicated by the overall flow
record-oriented I/0 is implemented
in such a fashion that the addition of
further access method interface modules
requires minimal changes (if any) within
other parts of the implementation. The
general interface module IHEION or IHEINT
provides each access method inter face
module with a standard parameter set:

RA: A(Compiled parameter list)
Parameter list:
A (DCLCB)
A(Record dope vector/IGNORE/SDV)
A(Event variable)/0/A(Error return)
A (KEY| KEYFROM|KEYTO SDV)/0
A(Request control block)

The record dope vector and the request
control block are described below under
*Record-Oriented I/0 Control Blocks'.

The interface modules are also invoked
to handle WAIT statements associated with
I/0 events. The WAIT module, having deter-
rined that an event variable (see Appendix
1) is associated with a record-oriented 1/0
operation, invokes the relevant I/0
transmitter (IHEIT*), passing the following
parameters:

RA: A(Compiled parameter 1list)
Parameter list:
A (DCLCB)
A(IOCB being waited for)
A(Event variable)
(Reserved)
A(Request control block)

The transmitter then completes the pre-
viously initialized record transmission,
and performs any checking required before
returning control to the WAIT module. (See

also 'The WAIT Statement' in 'PL/I Object
Program Management in Multitasking'.)

32

the interface module
is able to determine fully +the operation
requested of it. The location of the
required interface module is available to
| IHEION from the FCB associated with the
file; the field TACM in the FCB 1is set
during the open process to point to the
appropriate dynamically loaded module.

From the arguments,

Thus, when extra interface modules are
provided, +the only change required in the
open modules is the provision of code to
set TACM and any other FCB fields relevant
to the new access method interface.

RECORD-ORIENTED I/O CONTROL BLOCKS

Record Dope Vector (RDV)

The record dope vector is an eight-byte
block that describes the record variable.
Its format depends on the type of statement
and the associated options:

Bytes 0-3: A(INTO/FROM area), or
A(POINTER variable) for SET
option in READ statement,
or
A(buffer) for LOCATE
statement

Byte 4: Reserved

Bytes 5-7: Length of variable

String Dope Vector (SDV)

The address of the string dope vector is
passed instead of that of the record dope
vector to record I/0 interface modules when

the input or output of varying strings is
requested. The string dope vector is an
eight-byte block:
Bytes 0-3: "A(INTO/FROM string)
Bytes 4-5: Maximum length of string
Bytes 6-7: Current length of string
(output), undefined
(input)
Request_Control Block
This eight-byte block contains the

request codes, in the first four bytes, for
various RECORD I/0 operations and options.
The format is defined in the BREQ field of

the I/O control block (IOCB). (See Appen-
dix I.)
The additional four bytes which are

contained in the compiler argument list are
not i copied into the IOCB. Each type of
Record-oriented I/O statement is represent-
ed by one bit as follows:

Bit_ number Statement + options

0 READ SET
1 READ SET KEYTO
2 READ SET KEY
3 READ INTO
u READ INTO XEYTO
5 READ INTO KEY
6 READ INTO KEY NOLOCK
7 READ IGNORE
8 READ INTO EVENT
9 READ INTO KEYTO EVENT
10 READ INTO KEY EVENT
11 READ INTO KEY NOLOCK EVENT
12 READ IGNORE EVENT
13 WRITE FROM
14 WRITE FROM KEYFROM
15 * WRITE FROM EVENT
16 WRITE FROM KEYFROM EVENT
17 REWRITE
18 REWRITE FROM
19 REWRITE FROM KEY
20 REWRITE FROM EVENT
21 REWRITE FROM KEY EVENT
22 LOCATE SET
23 LOCATE SET KEYFROM
24 DELETE
25 - DELETE KEY
26 DELETE EVENT
27 DELETE KEY EVENT
28 UNLOCK KEY
29-31 Reserved

I/0 Contrxol Block (IOCB)

Record-oriented I/0O employs several data
management access methods that require that
operation requests be provided with a spe-
cial form of parameter list. This paramet-
er 1list 1is termed the data event control
block (DECB). A DECB must be provided for
each . operation, but may be reused when the
operation is completed. If several opera-
tions are outstanding (owing to the use of
the EVENT option in I/0 statements, or
multitasking), then one DECB is required
for each operation. .

In order to meet these requirements, the
PL/I open process allocates one or more I/0
control blocks (IOCB), which are subse-
quently manipulated or increased in number
as follows:

DIRECT access (BISAM and BDAM) :
The IOCBs are created by

IHEITE(BISAM) or IHEITF(BDAM); for
multitasking, they are created by
IHEITH(BISAM) or IHEITJ (BDAM) .

Only one IOCB is
time; any others
created when needed.

created at open
required are

SEQUENTIAL access (BSAM only):
All the required IOCBs are obtained
at open time; an attempt to use
more than those already in exis-
tence raises the ERROR condition.

The IOCB format for both these usages is
described in Appendix I.

in order
Since the

A number of IOCB fields exist
to support the EVENT option.

operation is split into two parts -- ini-
tiation through the READ, WRITE, etc.,
statements, and completion by the WAIT
statement -- information regarding a parti-

cular operation must be retained for use at
the time of completion. For example, if a
hidden buffer is employed for a READ, the
address of the user's record variable must
be retained for subsequent movement from
the buffer to the specified area.

IOCB __-=- SEQUENTIAL Usage: Manipulation of
I0CBs for SEQUENTIAL usage is required only
for BSAM, which is employed for:

1. CONSECUTIVE UNBUFFERED files.

2. SEQUENTIAL creation or access of REG-
IONAL files which have the KEYED
attribute or are unbuffered.

A number of IOCBs is allocated during the
open process by means of the GETPOOL macro;
subsequent selection of a particular IOCB
is made by a routine similar to that
provided by the GETBUF macro. Whenever an
IOCB 1is selected, it is entered into the
chain of IOCBs currently in use; the TLAB
field in the FCB points to the last IOCB to
be used.

The chain of IOCBs is required for two
reasons:

1. All I/0 operations must be checked in
the order in which they were issued.

2. Detection of dummy records for a REG-
IONAL (2) or (3) data set requires
reordering of outstanding requests
(due to the use of the EVENT option).

This chain, however, is principally
required for the EVENT option, which can
cause more than one I/0 operation to be
outstanding at a given time.

The number of IOCBs (buffers) allocated

is determined by the DD statement subparam-
eter NCP. The value of this subparameter

Chapter 3: Input/Output 33

should not be greater than 1 unless the
EVENT option is employed; if NCP = 1, there
is then one IOCB and one channel program.
If NCP is unspecified a default of 1 is
used.

The size of each IOCB varies, depending
upon the organization, the record format of
the data set, and whether or not the file
(if REGIONAL) has the KEYED attribute.

Figure 66 in Appendix I specifies the size
requirements.
IOCB__-- DIRECT Usage: Manipulation of

IOCBs for DIRECT usage is required for both
EDAM and BISAM. One IOCB is allocated to a
DIRECT file when it is opened; subsequent
selection of an IOCB is performed by the
modules IHEITE, IHEITF, IHEITH, and IHEITJ.
Unlike SEQUENTIAL access, the order of I/0
operation is not normally considered.
(However, see the BISAM interface modules
IHEITE and IHEITH.)

The chain of IOCBs for a given file is
anchored in the TLAB field in the FCB; the
chain may be extended beyond the original
single IOCB if the EVENT option or multi-
tasking is wused. BAn extension occurs if,
while there exists an I/O operation that
tas not been completed, another I/0 opera-
tion is initiated.

IOCBs for DIRECT access are obtained in
subpool =zero, in order to cope with multi-
task manipulation of the chain. The chain
of one or more IOCBs is released when the
file is closed.

Exclusive Block

When a DIRECT UPDATE file is opened in a
multitasking environment, the interface
module IHEITH (BISAM) or IHEITJ (BDAM) is
loaded .instead of IHEITE or IHEITF. IHEITH
and IHEITJ contain code to implement the
EXCLUSIVE attribute. When a record is
locked, an exclusive block is created in
subpool 1 of the current task; the block is
freed when the record is unlocked. The
exclusive block contains the gname (address
cf the FCB for the file) and rname (region
number for REGIONAL(1), region number and
key for REGIONAL(2) and (3), and key for
INDEXED) required by the ENQ and DEQ macro
instructions that are issued to lock and
unlock the record. The format of the
exclusive block is given in Appendix I.

34

ACCESS METHOD INTERFACES

This section describes how the PL/I
Library relates to the various data manage-
ment access methods for record-oriented
I/0, and gives details of the support
required from the library for various PL/I
features. This information supplements,
but does not replace, that provided in the
module summaries and in the module listing
prefaces.

CONSECUTIVE Data Sets

The access methods employed for this
organization are QSAM and BSAM. The choice
between them is governed by the file attri-
butes BUFFERED and UNBUFFERED:

BUFFERED: QsAM (All record formats)
UNBUFFERED: BSAM (F,V,U0) (Blocked
records are illegal)

OSAM (IHEITG) : A BUFFERED file is speci-
fied in order to take advantage of automat-
ic transmission, process-time overlap, and
blocking or deblocking of records. All
record formats may be handled.

The locate mode of the GET and PUT
macros 1is employed with this access method
(except for paper tape devices) for the
following purposes:

1. To support the SET option in READ and
LOCATE statements, and to support the
REWRITE statement without the FROM
option. Module IHEITG allocates the
data management buffers for the
records, and sets the pointer
appropriately. The first byte of a
buffer is always on a doubleword
boundary; for blocked records, the
user must ensure that his alignment
reguirements are met by adjusting the
lengths of the variables being trans-
mitted.

2. To remove or add V-format control
bytes if the INTO or FROM option 1is
employed.

Paper tape input requires the use of the
move mode to effect translation of the
characters transmitted. The open process
establishes a work area, placing its
address in TREC; the GET macro instruction
specifies this area as the receiving area.
If an illegal character is read from the
paper tape, the access method (QSAM) passes
control to +the SYNAD routine in IHEITG:
control returns from the SYNAD routine to
QSAM. When the GET macro instruction has
been satisfied, the data is moved into the

record variable or a pointer is set, and
the TRANSMIT condition is raised.

Closing a data set being created by QSAM
may cause output records to be written by
the close executor. If an error occurs
during the closing process, the operating
system uses the ABEND macro to end the
task.

OSAM Spanned Records (IHEITK,IHEITL): Buf-

fered VS- or VBS-format records are proc-
essed using QSAM Locate Mode for input
(module IHEITK) and QSAM Data Mode for

output (module IHEITL).

Tﬁe methods employed are similar to
those described above for module IHEITG
although the following should be noted:

1. Update Mode (REWRITE) is not supported
by the library, since it is not possi-
ble to update complete records (0/S
restriction).

2. The wuse of LOCATE or READ SET state-

ments will cause a work area to be
established equal to the maximum
‘record size. This area is only

released if there is a subseguent READ
‘(without SET) or WRITE statement.

BSAM (IHEITB): An UNBUFFERED file is spec-
ified 1in order to avoid the space and time
over heads of intermediate buffers when
transmitting records. Overlap of transmis-
sion and processing time is only available
if the EVENT option is employed.

the use of DECBs to com-
municate information regarding each 1I/0
operation requested of it; see 'I/0 Control
Block (IOCBY* and Appendix I (IOCB) for
details of the DECB. IHEITB selects an
IOCB . (which contains a DECB area) from the
IOCB (buffer) pool for each input/output
operation. The IOCBs used for CONSECUTIVE
organization do not contain hidden buffers,
except when V-format records are employed.
Hidden buffers are used in this case so
that the V-format control bytes can be
eliminated from the record before the data
is moved into the record variable. If,
however, the data set consists of F-format
unblocked records, and the size of a record
variable is less than the fixed size of
data ;. set records, a temporary buffer area
is dynamically obtained. The use of a
temporary buffer area for input prevents
the destruction of data following the INTO
area; for output, it prevents triggering of
the fetch-protect interrupt.

BSAM requires

INDEXED Data Sets

for this
they are

The access methods employed
organization are QISAM and BISAM;
used thus:

SEQUENTIAL creation and access
DIRECT access

All usage of INDEXED data sets requires the

presence of buffers, even though the file
is UNBUFFERED or DIRECT. The buffer is
required 1in order to deal with a 10-byte

overflow record link-~field. Only F-format
records, blocked or unblocked, are permit-
ted.

QISAM (IHEITD) : SEQUENTIAL creation and
access of INDEXED data sets is performed
using this access method. Creation
requires that keys be presented in ascend-
ing collating sequence. The sequence is
checked by the library before the PUT macro
is executed, in order to synchronize a
given WRITE statement with the raising of
the duplicate KEY condition. This arrange-
ment is necessary because, since PUT LOCATE
is employed, QISAM would normally raise the
condition only on the subsequent PUT opera-
tion.

For records with embedded keys, when a
WRITE statement with a KEYFROM string
shorter than the key length, or a LOCATE
statement, is executed, the KEYFROM string
is placed in an area addressed by TPKA in
the FCB. 1In the next operaticn on the file

after a LOCATE statement (including a CLOSE
statement), the KEYFROM string is compared
with the key embedded in the data in the
buffer. If they are unequal, the KEY
condition is raised. On normal return from
the on-unit, control passes to the next
statement in the program (i.e., the one
following that which caused the KEY condi-
tion to be raised). The process of compar-
ing keys and raising the KEY condition is

repeated in successive statements that
refer to the file until the embedded key
has been changed. (After a LOCATE state-

ment has been executed, no further opera-
tions are possible on the file wuntil the
record has been transmitted; for records
with embedded keys, this cannot occur until

the KEYFROM string matches the embedded
key.)
When a file is closed implicitly (i.e.,

on termination of a task), the KEYFROM
string overwrites the key part of the
record in the buffer, and the record is

written onto the data set. If the KEYFROM
string is not identical with the embedded
key, a message 1is printed out at the
console.

Chapter 3: Input/Output 35

To support the REWRITE statement without
the FROM option, the key 1is saved on
execution of a READ statement with the SET
option. When the REWRITE statement is
executed, if the embedded key is the same
as the saved key, a PUTX macro instruction
is issued. If the key has changed, the
PUTX macro 1is not issued and the KEY
(specification) condition is raised.

To support the DELETE statement without
the KEY option, the first byte of the
logical record is set to X'FF' and a PUTX
mracro instruction is issued to rewrite the
record.

If the file has the KEYED attribute, and
the mode is INPUT or UPDATE, the QISAM SETL
function is required in order to reposition
the indexes. The parameters for the SETL
macro are such that, for unblocked records,
the recorded key is transmitted as well as
the data record. For a READ statement, if
the KEY string is shorter than the Kkey
length, the string 1is placed in an area
addressed by TPKA in the FCB. If the file
is not KEYED (indicating that the KEY
option will not be employed), the QISAM
SETL routine is not loaded during the open
process.

Since buffers are employed, truncation
or padding of records is performed during
the move between the buffer and the record
variable. Padding bytes are undefined in
value.

Closing a data set being created or
updated by QISAM may cause output records
to be written. If an error occurs, output
entry to the SYNAD routine is prevented by
the close process having cleared the DCBSY-
NAD field before issuing the CLOSE macro.
The operating system uses the ABEND macro
to terminate the task.

BISAM in a Non-Multitasking Environment
(IHEITE): When +the TASK option is not
employed, direct access of INDEXED files,
both exclusive and non-exclusive, is per-
formed by module IHEITE. For an exclusive
file, IHEIOG treats the UNLOCK statement as
'no operation' (although it may implicitly
cause the file to be opened); the NOLOCK
option is ignored by IHEITE.

BISAM requires the use of DECBs to
communicate information regarding each I/O
operation requested of it; see 'I/O Control
Block (IOCB)' for details of the DECB and
its use in BISAM.

Since the EVENT option may be employed,
and, moreover, the KEYFROM or KEY expres-
sion may yield a character-string value in
temporary storage, the key value is moved
into the buffer-before BISAM is invoked.
Truncation or padding of the character-

36

string key to conform to the KEYLEN
specification is performed during the move.
A further reason for the move is that BISAM
may destroy the contents of the key and
record fields when adding new records to a
data set.

If the data set consists of unblocked
records, a READ statement need not precede
a REWRITE statement. If blocked records
are used, the sequence must be READ, then
REWRITE, since the READ macro instruction
has the KU parameter, and BISAM requires
this type of READ to be rewritten. The
WRITE K macro instruction used to rewrite
the updated block must address the same
DECB(IOCB) as that used for the READ KU
macro instruction. This is achieved by not
freeing the IOCB used for the READ opera-
tion. On the next operation on the file, a
check 1is made for such an IOCB: if one
exists, and the operation is not a REWRITE
specifying the same key, the ERROR condi-
tion is raised.

A DELETE statement is implemented by
first issuing a READ KU macro instruction,
then setting the first data byte to X'FF',
and finally rewriting the record with a
WRITE K macro instruction.

BISAM in a Multitasking Environment
(IHEITH) : To ensure that the 1initializa-
tion and chaining of event variables,
IOCBs, and exclusive Dblocks cannot be

interrupted, the interface module IHEIOG
raises the dispatching priority of ' the
current task to its limit before calling
IHEITH. IHEITH restores the priority to
its original value before executing an I/O
macro instruction. The formats of the
event variable and the exclusive block are
described in Appendix I, which also
includes an example of the c¢haining of
these blocks.

For non-exclusive files, module IHEITH
performs the same functions as IHEITE, and
in addition chains any event variables that
are made active. Each event variable is
placed in a chain anchored in the pseudo-
register IHEQEVT in the PRV for the current
task. This chain enables 1/0 event
variables for which a WAIT statement has
not been executed to be set complete,
inactive, and abnormal when the task is
terminated.

The implementation for exclusive files
includes the following additional features:

1. Files with unblocked records: When any
operation referring to a record
(except WRITE and UNLOCK) is initiat-
ed, the chain of exclusive blocks
anchored in the TXLV field of the FCB
is searched for an existing exclusive
block established in the current task

for the record. If one exists, the
lock statement count (XSTC) in the
exclusive block is incremented by one.
If there is no exclusive block, one is
created in subpool 1 and inserted in
the task chain (anchored in pseudo-
register IHEQXLV in the current task)
and the file chain (anchored in the
TXLV field of the FCB of the current
file). The lock statement count is
set to one, and the lock bit (XLOK) to
one (unless the operation is READ with
NOLOCK), and the resource is engueued
(i.e. the record is locked). After
control of the resource has been
obtained, it is dequeued if XLOK = O.
The gname and rname given in the ENQ
and DEQ macro instructions are:

gname (two words):.

Byte 0: Zero
Bytes 1-3: A(FCB)
Bytes U4-7: Zero
rname (one word):
Byte 0: X'03
Bytes 1-3: A(FCB)

After the CHECK macro instruction for
the I/0 operation has been executed
(i.e., on execution of the WAIT state-
ment if the EVENT option is used),
IHEITH raises the priority of the
current task to its 1limit, decreases
the lock statement count by one, and
then:

1. If the record is no longer locked
(XLOK=0) and the 1lock statement
count is zero, dechains and frees
the exclusive block.

record 1is still locked
(XLOK=1), unlocks it (unless the
statement is READ without the
NOLOCK option), and sets XLOK to
Zero. If the 1lock statement
count 1is =zero, it then dechains
and frees the exclusive block.

2. If the

IHEITH then restores the dispatching
priority to its original wvalue.

Files with blocked records: To prevent
other tasks interfering with the READ,
REWRITE sequence, each READ, WRITE,
REWRITE, and DELETE statement is
engueued on the same resource (i.e.,

there 1is only one exclusive block for
each file in each task, and it is not
freed until the file is closed). Con-

trol of the resource is retained by a
given task until the WRITE, REWRITE,
or DELETE operation is completed; or,
if the resource was engueued by a READ
operation, until a REWRITE or UNLOCK
statement is executed. When a READ
statement with the NOLOCK option is

executed,
immediately
trol of it.

the resource is dequeued
after the task gains con-

the
with

differences,
for files

Apart from these
implementation is as
unblocked records.

REGIONAL Data Sets

The access methods employed for these

organizations are BsSaM and BDAM, as fol-
lows:
BSAM: Creation and SEQUENTIAL access
BDAM: DIRECT access
Keys supplied by the source code are

termed 'source keys'. These have two for-

mats, one of which is interpreted in two
ways:
. Source key
Organization format
REGIONAL (1):
Relative record addressing,
without recorded keys A
REGIONAL (2):
Relative record addressing,
with recorded keys B
REGIONAL (3):
Relative track addressing,
with recorded keys B
Key Format A:
r - 1
| M |
- — _—
S —— | >
L = Length of key (1 through 255
bytes)
M = Key value

Only the characters blank and 0 to 9 may
be used in M, which, when converted to
binary, is the relative record position, as
required for the BDAM BLKREF parameter.
The last eight characters are scanned for
an unsigned decimal integer representation;
if 1less than eight characters exist, only
the available characters are scanned, from
left to right.

When a format-A source key is required
for the KEYTO option, the relative record
position of the current record is converted

from a binary count field into character
representation and is assigned to the last
eight characters of the XEYTO character

string variable. If the variable has fewer

Chapter 3: Input/Output 37

than eight characters, the converted value
is assigned, right to left, to the KEYTO
variable. Format A keys are not appended
to data set records as recorded keys.

Key Format B:

| S T 1

| c | M I

L 1 J

< - L—— >

L = Length of key (1 +through 255
bytes)

M = Last eight characters in the
source key

C = The remaining characters in the
source key other than the M char-
acters

M consists of up to 8 characters, which
can be blanks or 0 to 9. When converted to
binary, it represents either the relative
record position (REGIONAL (2)), or the
relative track position (REGIONAL (3)).

If L <£8, € does not exist. The C
characters can be any of the 256 characters
available; they are not scanned.

The format-B source key is appended to
output records when they are added to the
data set; the number of characters in the
appended (recorded) key is determined by
the KEYLEN specified for the data set. If
KEYLEN is 1less than the 1length of the
source key, the latter is truncated when
appended to its record; if greater, the
source key is padded with blanks. Similar-
ly, when vretrieving keyed records, the
source key is altered to conform to KEYLEN.
This permits 1 though L charactexs to be
used as the recorded key. The M characters
might thus be used only for computation of
the relative record or track position.

BSAM (IHEOPZ, IHEITC, IHEITB): Creation
and sequential access of REGIONAL data sets
employs this access method.

SEQUENTIAL creation is performed by the

module IHEITC, which adds records to the
data set in physically segquential record
and track positions. This module also

inserts dummy records, as required, by the
user incrementing the source key position
information by a value greater than one.

When a sequentially created REGIONAL
data set 1is closed, the current space
allocation (which may be either the initial
cr a secondary allocation) is completed:
(F-format

1. by writing dummy records

only), or

2. by setting the capacity records of the

38

remaining tracks to indicate

tracks.

empty

An FCB history flag (TMET) 1is turned on
when, after writing a record, this record
is seen to be the last one of an extent.
If this flag is off, the close process will
continue the initialization until an end-
of-extent condition is met.

When LOCATE statements are used to
create a REGIONAIL, data set, an IOCB is
selected from the pool in the normal man-
ner. The KEYFROM string is evaluated, and
all necessary formatting of the data set is
done, before the pointer is set and control
is returned to compiled code. To ensure
that the record is always aligned on a
doubleword boundary, the open process
rounds up the keylength to a doubleword and
allows space in the IOCB for the keylength
and the block size. Module IHEITC places
the key right-aligned in the key area, thus
ensuring that the key and data are in
contiguous areas, and +that the data is
aligned on a doubleword boundary.

The record is not actually transmitted
until the next statement on the file (e.g.,
CLOSE, WRITE, LOCATE) is executed. If it
is found on transmission that there is no
room for the record in the region
(REGIONAL(3) Vv and U format records only),
the capacity record is written and the KEY
sequence error condition is raised. on
normal return from the on-unit, control
passes to the next statement. If this
occurs when a file is closed implicitly (on
termination of a task) or explicitly, a
warning message is printed and the file is
closed (after +the initialization of the

current extent has been completed). Note
that it 1is therefore possible that the
original record associated with the LOCATE

statement may not have been written.

DIRECT creation requires the initializa-
tion of the data set during the open
process; this is performed by the module
IHEOPZ. Subsequently, records may be added
to the data set in a DIRECT fashion using
module IHEITF or IHEITJ. Initialization of
a data set for DIRECT creation causes:

allocation
ignored) to
dummy records
all REGIONAL

1. the initial space
(secondary allocation is
be written with
(F-format records, for
types), or

2. the capacity record of each track of
the initial space allocation to be set
to indicate empty tracks (U-format or
V-format records, REGIONAL (3), only).

If recorded keys are required, dummy keys
(initial byte X'FF', remaining bytes
undefined) are also written for F-format

records only. If during the initialization
for DIRECT creation an error arises, the
UNDEFINEDFILE condition is raised, the type
cf error being indicated by the ONCODE
value.

As SEQUENTIAL access of a REGIONAL data
set (module IHEITB) is performed with BSAM,

it is not possible to support the KEY
option on +the READ statement. The KEYTO
option is supported as follows:
REGIONAL (1):
A counter (the TREL field in the FCB)

beginning at zero, is incremented as
each record, including dummy or deleted
records, is read; this is converted to
character string representation and
assigned to the KEYTO variable.

REGIONAL (2) and (3):
The recorded key is read in with the
record, and assigned, without conver-
sion, to the KEYTO variable. Transmis-
sion of the recorded key only occurs if
the file has the KEYED attribute; oth-
erwise +the KEYLEN DCB field is forced
to zero to prevent input of keys
(since, for F or U records, there are
no hidden buffers).

For both SEQUENTIAL creation and access,
BSAM requires the use of DECBs to communi-
cate information regarding each I/0 opera-
tion requested of it; see 'The I/0 control
Block (IOCB)' for details of the DECB and
its use for BSAM. When REGIONAL data sets
with the UNBUFFERED attribute are accessed
(IHEITB) or created (IHEITC), hidden buf-
fers are present in all cases except for
FEGIONAL(1), since the key and data must be
within a contiguous area in a buffer.

When reading REGIONAL data sets sequen-—
tially, BSAM retrieves all records within
the data set, whether dummy (deleted) or
actual records. For REGIONAL (2) and (3)
data sets, the 1library prevents dummy
(deleted) records being passed to the PL/I
program. This is achieved by inspecting
the initial byte of the recorded key as
transmitted to the hidden buffer. (Hidden
buffers are always required for KEYED
SEQUENTIAL access of REGIONAL (2) and (3)
data sets, because BSAM requires that the
recorded key and the record be transmitted
into contiquous storage areas.)

If the initial byte 1is the dJdummy, or
deleted, code (X*FF'), the IOCB chain is
reorganized to move each input request down
one entry in the chain; this resynchronizes

the READ statements with the actual
records. The reorganization occurs each
time such a flagged key is detected. This

1

technique is not available for REGIONAL
(1), since for this type of organization:

1. there is no way of knowing whether the

records are actuwal or dummy, since
there are no restrictions regarding
the initial byte of the data record,

and

2. there are no recorded keys.

When a READ statement with the SET
option 1is executed for REGIONAL files, the
data is always aligned on a doubleword
boundary in the IOCB buffer.

BDAM(IHEITF and IHEITJ): DIRECT access to
a REGIONAL data set employs this access
method, the wusage depending upon the REG-
IONAL type:

REGIONAL (1):
Relative record
no key argument

(block) addressing,

REGIONAL (2):)
Relative record (block) addressing,
with key search argument

REGIONAL (3):
Relative track addressing,
with key search argument

In the instance of REGIONAL (2) and (3),
the "extended search"™ feature is always
employed. A user may control the effects

of extended search by using the DCB subpar-
ameter LIMCT; a value may be specified to
limit the number of records or tracks which
are searched for a given keyed record, or
for space to add one. Unless so limited,
searching for records extends throughout
the complete data set.

The BDAM access method requires the usc
of DECBs to communicate information regard-
ing each I/0 operation requested of it; see
*"I/0 Control Block (IOCB)' for details of
the DECB and its wusage for BDAM. If V
format records are used, any IOCB created
will contain a hidden buffer.

The BDAM CHECK macro is issued to check
that the operation is complete. If an
error 1is found, the BDAM modules enter the

IHEITF SYNAD routine, where the error is
interrogated.
If the TASK option is not used, direct

access of REGIONAL files, both exclusive
and non-exclusive , is performed by module

| ITHEITF. For an exclusive file, IHEION
treats the UNLOCK statement as 'no
noperation® (although it may implicitly

cause the file to be opened); the NOLOCK

option is ignored by IHEITF.

Chapter 3: Input/Output 39

If the TASK option is employed, module
IHEITJ is loaded instead of IHEITF. The
difference between these modules is the
same as that between IHEITE and IHEITH for
unblocked records. (See 'BISAM in a Multi-
tasking Environment'.)

40

INTRODUCTION

The PL/I Library provides facilities for

the dynamic management of PL/I programs.
This involves:
1. Program management: Housekeeping at

the beginning and end of a program or
at entry to and exit from a block.

2. Storage management: Allocation and
freeing of storage for automatic and

controlled variables, and for 1list
processing.
This section describes the requirements

for these facilities and their implementa-
tion by the library. With the exceptions
of the compiler optimization routine and
storage management for list processing, all
the functions described are performed by
module IHESA, whose entry points are listed
in Figure 16; full details are given in
Chapter 9. Object program management in a
multitasking environment is discussed in

Chapter 5.

Entry point Function
IHESADA Get DSA
THESADB Get VDA
IHESADD Get controlled variable

THESADE Get LWS
IHESADF Get library VDA

THESAFA END

THESAFB RETURN

IHESAFC GO TO

IHESAFD Free VDA/Free LWS

IHESAFF Free controlled variable

IHESAFQ Abnormal program termination

THESAPA

IHESAPB Program initialization

IHESAPC

IHESAPD

THESARA Environment modification

IHESARC Setting of return code
Figure 16. TIHESA Entry Points

Program Initialization

Certain functions must be carried out on
entry to a PL/I program before the PL/I
main procedure is given control. One of
the library program—initialization subrout-
ines is always given control by the super-
visor on entry to the program. Its func-
tions are:

CHAPTER U4: PIL/I OEJECT PROGRAM MANAGEMENT

1. Allocation of storage for the PRV.
(See 'Communications Conventions®' in
Chapter 2.)

2. Initial allocation of LWS.
3. Passing of the address of the library
error-handling subroutine (IHEERR),

which assumes control when an inter-
rupt occurs, to the supervisor.

Block Housekeeping: Prologues and Epilogues

Prologues and epilogues are the routines
executed on entry to and exit from a PL/I
procedure or begin block. The 1library
subroutines contain those sections that are
common to all prologues and epilogues. The
functions of the library prologue subrout-
ine are:

1. To preserve the environment of the
invoking block.

2. To obtain and initialize automatic

storage for the block.

3. To provide chaining mechanisms to ena-
ble the progress of the program to be
traced. A detailed description of the
chaining mechanisms employed is pro-
vided below.

of the

The main functions

subroutine are:

epilogue

1. To release storage for the block.
2. To recover the environment of the

invoking block before returning con-
trol to it.

Storage Management

In IBM System/360 Operating System,
storage is obtained or freed by using the
GETMAIN and FREEMAIN macros. The library
assumes responsibility for obtaining and
freeing storage in this way in order to:

1. Provide an interface between compiled
code and the control program.

2. Reduce the overhead involved in making
a supervisor call every time storage
is obtained and freed.

Chapter 4: PL/I Object Program Management 41

3. Set up chaining mechanisms for dynamic
storage.

There are three types of dynamic storage
in PL/I, controlled, automatic, and based.
Based storage is discussed in ‘'List Proc-
essing: Storage Management'.

Operating-System Facilities

The following facilities appropriate to
this chapter are provided by IBM System/360
Operating System. (See IBM System/360
Operating System: Supervisor and Data Man-
agement Macro Instructions.)

SPIE macro instruction: Specifies the
address of a routine to be entered when
specified program interrupts occur.

ABEND macro instruction: Causes a Jjob
cr task to be terminated abnormally.

step

Write To Operator (WTO) macro instruction:
Can be used to write a message on the
operator's console.

R-type GETMAIN: Reguests that the supervi-
sor allocate a contiguous block of main
storage to the caller. A subpool number
should be specified. (See below.)

R-type FREEMAIN: Releases a main storage
area. The 1length, subpool number, and
address of the beginning of the area must

be specified.

Subpools: Subpool numbers are of signifi-
cance only in an operating system with MVT.

Subpool zero
The storage in subpool zero is allocated

on a job-step basis, and is never auto-
matically released until the end of the
job step.

Subpool non-zero

The storage in a subpool with a non-zero
number is allocated on a task basis, and
is automatically released on the termina-
tion of the task that owned the subpool.

IBM System/360 Operating System: Supervi-
sor and Data Management Services contains
a full discussion of main-storage manage-
ment.

AUTOMATIC STORAGE: STORAGE MANAGEMENT

Two types of automatic storage area are
needed to implement the functions described
above. These are:

42

1. The storage area associated with the
execution of a PL/I block, known as a
dynamic storage area (DSA).

2. The storage area mainly used for auto-
matic variables whose extents are un-
known at compile time, known as a
variable data area (VDA).

Each type of storage area is identified by
flags set in the first byte. These flags
also indicate the existence of certain
optional entries in the storage area. The
flag patterns are shown in Appendix J.

Dynamic Storage Area (DSA)

associated with the
execution of a PL/I Dblock, is wused to
record the progress and environment of a
programe. It also contains space for AUTO-
MATIC variables declared in the block and
for various optional entries. The minimum
size of a DSA is 100 bytes. The format 1is
described in Appendix J.

This area, always

The address of the DSA associated with a
particular block is held in a pseudo-
register. Hence there is a pseudo-register
for each block; the group of these pseudo-
registers is known as the display. The
address contained in a display pseudo-
register can be used to identify the DSA
associated with a non-recursive block when
a GO TO statement specifying a label in
that block is executed. '

When a block is entered recursively, a
new DSA 1is created for the invoked block.
The address of the DSA associated with the
previous invocation of that block is stored

in the display field of the new DSA. This
address is already stored in the
appropriate pseudo-register, where it is

now replaced by the address of the new DSA.
When this latest invocation is finished,
the new DSA is freed and the address of the
previous DSA is restored to the appropriate
pseudo~-register.

When there 1is a GO TO statement to a
label in a recursive block or to a label
variable, a unique means of identifying the
block containing the label is needed. This
is accomplished by means of an invocation
count, which is stored in the invocation-
count field in the DSA during the prologue.
The current invocation count is contained
in a pseudo-register and 1is increased by
one each time a DSA is obtained.

Variable Data Area (VDA)

A variable data area is a special type
of automatic storage area used for
variables whose extents are not known at
compile time. This storage area is asso-
ciated with the storage obtained for a
partigular block. The only housekeeping
necessary is that which provides a means of
identification of the type of storage area
and a method of associating it with a
particular block for epilogue purposes.

VDAs are used for three other purposes:

1. Temporary storage for library modules.
These areas are only distinguishable
from an ordinary VDA by the flag byte.
This is to allow them to be freed on a
GO TO, as described in the example in
*DSA Chain' under 'Block
Housekeeping'.

2. The PRV and primary LWS are contained
in a VDA known as the PRV VDA which is
chained back to the external save
area.

3. Secondary LWS 1is contained in a spe-
cial library workspace VDA.

The formats of the VDA, PRV VDA, and LWS
VDA are shown in Appendix J.

Library Workspace (LWS)

Theghousekeeping associated with library
workspace can be divided into two parts:

1. The identification of the area needed
as library workspace, and chaining
this to a previous allocation of auto-
matic storage and to any previous
library workspace.

2. The updating of the pseudo-registers
pointing at the various areas in
library workspace.

The. first allocation of LWS is contained
in the! PRV VDA; subsequent allocations are
contained in the 1IWS VDA. The pseudo-
register IHEQLSA always contains the
address of the current LWS. Save areas
withini LWS are indicated thus:

1. The address of each save area is held
in a pseudo-register.

2. The beginning of each save area is
indicated by X'60' in the first byte.
(A DSA can often be readily distingu-
ished from a save area in LWS by the

Chapter 4:

presence of X'8' to X'F' in its first
half byte. Appendix J includes the
format of the first byte of the DSA.)

Allocation and Freeing of Automatic Storage

This section describes the methods of
controlling the allocation and freeing of
automatic storage for VDAs, DSAs and secon-
dary LWS.

To minimize the number of supervisor
calls necessary to obtain automatic stor-
age, a fairly 1large block of storage is
obtained every time a call is made. Areas
are allocated by the 1library from this
block as required until a request is made
that 1is too big to be satisfied from the
remaining storage in the block. Another
block is then obtained by a call to the
supervisor. So that a check can be made as
to whether the amount of storage remaining
in a block is sufficient to meet an alloca-
tion, a record of the amount is stored in
the block. When a storage area 1is freed,
its length is added to the available length
in the block. When the available length
equals the total length of the block, the
block is returned to the supervisor.

Since storage areas are released in the
reverse order to their allocation, a chain-
back mechanism, with a pointer to the last
member of the chain, is provided.

Initially, storage is allocated for the
PRV VDA from a 4k or a 6k block. When
further requests are made for storage, they
are satisfied by allocations from the
remaining storage of this block. When a
request cannot be satisfied, a 2k block (or
a block containing a multiple of 2k bytes)
is obtained by means of a GETMAIN macro.
This block is chained to the existing block
by the free-core chain. (See Figure 17.)

In any block that contains unallocated
storage (that is, contains free core), the
first four words of the unallocated storage
are used for control purposes:

1st word: Length (in bytes) of the unallo-
cated storage for that block
(excluding the four control
words)

2nd word: Block length

3rd word: A(Free core 1length in previous
block)

4th word: A(Free core length of following

block)

PL/I Object Program Management 43

[m——————

2k block

h T h f 1
| PRV | | 2k _block | | i
		Used core		Used core
t - {<- -1 ===				
- i | | | | |
| | | | ! | |
b 1 | | | | |
| | | | | | |
p=—- 1 | | | | |
[IHEQSFC === | | | | |
t—-- 4 L-=>} - 4 <—=t—=-1t - +=-
i | | L(Free core) | | | |
| | k 8| | | 1
| | | Block length | | | | |
| | b : 1 |
| | | Chain-back pointer p——4 | | |
| | k —- —————§ | |
| | | Chain-forward pointer f---—4 | | |
| | = i b ettt bt Dt I
| | | | | L(Free core) | |
| | | | t -— 1 1
| | | Free core | | Block length | |
| | | | e Rt e e |
| | | | | chain-back pointer f—=4
| | | | t - 4
| | | | | Zero |
| | | | Py
| | | | | |
| | | | | Free core |
| | | | | |
| | | | | |
| | | | | |
| D— — J L ——— 4 L J

Figure 17.

The first and 1last Dblocks
slightly different usage:

require a

First block: Uses the free-core pseudo-
register IHEQSFC in the

chaining forward and back:

contains
length of

1. THEQSFC
A(Free-core
first block).

2. 3rxd ~word of block
contains
(A (IHEQSFC) - 12), which
is a dummy free-core

length in the PRV.

Last block: 4th word contains 0

When
a search of the free-core lengths, starting
from the first, is made. 1f a free-core
length equal to or greater than the length
requested is found, the request is satis-
fied from that block. The free-core length
and pointers are adjusted, as are the
appropriate pointers in the blocks on eith-
er side.

uy

a request for storage is received,’

Structure of the Free-Core Chain for Automatic Variables

When storage is freed, the pointers are
adjusted, and the free-coxre field in the
corresponding block is updated. If a 2k
block becomes available, it is freed by
issuing a FREEMAIN macro, and the free-core
chain pointers are adjusted accordingly.

CONTROLLED STORAGE: STORAGE MANAGEMENT

Controlled storage is used for con-
trolled variables only; it is requested by
the ALLOCATE statement and freed by the
FREE statement.

Allocation of a particular controlled
variable may occur' a number of times.
Since the 1latest allocation is always the
one to be used it is convenient to have a
pseudo-register pointing at it; this
pseudo-register is sometimes referred to as
an ‘'anchor word‘. Each allocation is
chained back to the previous allocation so
that the pseudo-register can be updated
when the current allocation is freed
(Figure 18). The length of each allocation

ALLOCATION 2

ALLOCATION 1

Figure 18.

is recorded in the fullword field following
the chain-back address. The Task Invoca-
tion count is held in the TIC field.

When there is no allocation, the con-
tents of the pseudo-register are zero.
Each allocation points to the previous

allocation, the pointer being zero in the
first allocation, which is at the bottom of

the stack. Thus the various allocations of
a particular controlled variable become
part of a push-down (ALLOCATE) pop—-up

(FREE) list.

request is made to storage man-
agement for a new allocation, it 1is ser-
viced by issuing a GETMAIN macro. Twelve
bytes are added to the 1length requested,
for control purposes, and this new length
is rounded up to a multiple of eight bytes.
The length field contains the actual length
requested. The pseudo-register is updated
and points to word four of the area. When
a request is made to storage management to
free an allocation, it 1is serviced by
tpdating the pseudo-register and issuing a
FREEMAIN macro.

When a

LIST PROCESSING: STORAGE MANAGEMENT

This section describes the functions of
module IHELSP, which controls the alloca-
tion and freeing of storage for the PL/I
list-processing facility. The functions
involved are:

1. Allocation and freeing of system stor-
age for based variables.

2. Allocation and freeing of storage for
based variables in programmer-defined
areas (area variables).

3. Assignments between area variables.

Chapter 4:

r - 1 == T=-" 1 r T -

] PR F-1 | TIC | PR offset| | TIC | PR offset|
% e B { b : -
| (| | chain-back address }-4 | 0 |
! (4 F 11 F SR
| (I | Length (.] Length |
| | t-—>} § t-->} i
I [| ! | |
| | | ! | |
| I | | I |
L e o e e e e e e e o e 4 | S— -— 4 L ———dd

Storage Allocation for a cControlled Variable

System Storage for Based Variables

Storage for based variables is allocated
and freed in a similar manner to controlled
storage, but it is not stacked since each
generation is associated with a particular
pointer value: reference may be made to any
current generation of based storage by
associating the appropriate pointer value
with the name of the based variable. A
request for a new generation of Dbased
storage 1is serviced by issuing a GETMAIN
macro, and storage is freed by the FREEMAIN
macro. Based storage is allocated only in
multiples of eight bytes: the sum of the
length of the variable and its offset from
a doubleword boundary is rounded up to a
multiple of eight bytes. All based storage
allocated in a task is freed at the end of
the task.

The AREA Attribute

The AREA attribute enables a programmer
to define a block of storage (an area
variable) in which he can collect and make

reference to based data. Space within the
area variable is requested and released by
ALLOCATE and FREE statements that include
an IN(area-variable) clause. Reference can
be made to a based variable contained by an
area variable just as if the based variable
were 1in system storage. The contents of
one area variable can be assigned to anoth-
er area variable, and an area variable can
be handled as a single data item in
input/output operations.

The Area Variable

The format of the area variable is shown
in Figure 19. The start of the area is
aligned on a doubleword boundary. The
first four fullwords are used for control
information, the remainder of the area

PL/I Object Program Management 45

0 78 31

0 Flags Length of AREA variable
o= 4- Offset of End of Extent
E . 8- Offset of Largest Free Element
! E r-—-lZ' Zero if Free List |
P ¥
e
| E { Allocated
Pl
E
. — -
E ; } ‘r——-l- Length of Free Element
| ! L—g——— Offset of next smaller Free Element
b : Free
: { , Element
I
.
P !
T B e e
b l
b
P ! Allocated Extent
b
A N B
! L———:-— Length of Free Element
! [E—— Offset of next smaller Free Element
|
| Free
: Element
!
i
I
|
i
[
G —
i
}
E Allocated
{
S S Y
b - —-
Not Allocated

Figure 19. Format of Area Variable

LT

being the storage requested by the program-
mer in declaring the area variable. The
portion of the area that has been allocated
to based variables is termed the extent.
When storage is allocated to an area varia-

ble, its length is set in the 1last three
bytes of the first word, and the second
word (offset of end of extent) is set to
Zero.

Area Storage for Based Variables

Storage for based variables within an
area variable is allocated only in multi-
prles of eight bytes; each such allocation
is termed an element. The first request
for storage for a based variable is satis-
fied by the allocation of the aprropriate
number of bytes starting at the beginning
of the unused space; the offset of the end
of this allocation is set in the second
word of the area variable, which now points
to the first available doubleword of unused
storage. Providing no storage has been
freed, further requests are met by further
contiguous allocations from the unused
space, the offset of the end of the extent
being updated each time.

If the last allocation of the extent is
freed, the offset in the second word of the
AREA variable is reduced. However, if
allocations other than the last in the
extent are freed, the extent 1is not
reduced: spaces, termed free elements, are
left. The length of each free element is
set in its first fullword, and a pointer to
the next smaller free element (in the form
of an offset from the start of the area
variable) is set in the second word. If
there are no smaller free elements, the
second word of the free element points to
the fourth word of the area variable, which
is set to zero. The chain of free elements
is termed the free list, and is anchored in
the third word of the area variable, which
contains the offset of the largest free
element. When an area variable contains a
free 1list, the first bit of the flag byte
is set to 1.

Whenever storage in an area variable is
to be allocated to a based variable, the
free 1list 1is searched for the smallest
element that will contain the based varia-
ble. If no free element is large enough,
space is allocated from the unused part of
the area. If this, also, is too small, the
AREA condition is raised. When an element
is freed, it is placed in the free 1list
according to its size. If it is contiguous
with another free element, the two are
merged and included in the free list as a
single element. If the last element in the
extent is freed, the extent is reduced and
the element is not placed in the free list.

Assignment Between Area Variables

When the contents of area variable A are
assigned to area variable B, the current
extent and the control words (except the
length of A) are copied into B. If the
length of B is less than the extent of a,
the AREA condition is raised.

The AREA Condition

If an on-unit is entered when the AREA
condition is raised during the execution of
an ALLOCATE statement, the ALLOCATE state-

ment is executed again after the on-unit
has been terminated normally. The return
address passed by compiled code is stored

in the 1library communications area (WREA)
before the on-unit is entered. On normal
termination of the on-unit, IHEERR returns
control to the address in WREA.

If the AREA condition is raised during
the execution of an assignment statement,
the statement is not executed again.

PROGRAM MANAGEMENT

Initialization of a PL/I Program

On entry to a PL/I program, one of the
library initialization subroutines
(IHESAPA, IHESAPB, IHESAPC, and IHESAPD) is
always given control by the supervisor; the
entry point that is used depends on the
level of compiler optimization required
(see below) and on whether the PL/I program

is called from an assembler-language rout-
ine. The initialization routine first
obtains storage for the PRV VDA. The

length required is the sum of:

L(PRV) (passed by the linkage editor)

L(LWS) (assembled by the initialization
subroutine)

8 control bytes

Since a pseudo-register 1is referenced by
the addition of a fixed displacement to the
base address in register PR, and the maxi-
mum displacement allowed by the assembler
is 4096 Dbytes, the length of the PRV is
limited to 4096 bytes. This puts the upper

limit on the combined number of blocks,
files and controlled variables at about
1000. If the initialization routine is

asked to get a PRV longer than 4096 bytes,
a message is printed out on the console and
the program is terminated.

Chapter 4: PL/I Object Program Management 47

initialization routine =zeros the
PRV, sets up the LWS pseudo-registers, and
issues a SPIE macro instruction naming
IHEERR. In addition, IHESAPA and IHESAPC
enable a PARM parameter on the EXEC card to
ke passed to the PL/I program. (see 1IBM
System/360 Operating System: Job Control
language.) On exit from the initialization
subroutine, register RA points at a loca-
tion containing the address of the SDV of
the parameter.

The

Termination of a PL/I Program

Normal Termination: Normal termination of
a PL/I procedure is achieved by an END or
RETURN statement, either of which involves
releasing the automatic storage associated
with the procedure. If a request is made
to free a DSA which would entail freeing
the DSA for the main procedure, IHESAFA
(END) or IHESAFB (RETURN) raises the FINISH
condition and the program branches to the
error-handling subroutine (IHEERR). If and
when this subroutine returns control, IHE-
SAFA oxr IHESAFE causes all opened files to
be closed (by calling the library implicit-
close subroutine). Subsequently all
automatic storage, including the PRV VDA,
is returned to the supervisor. IHESARC 1is
then called to set the return code and
return control to the supervisor.

Abnormal Termination: A PL/I program 1is
considered to terminate abnormally when the
FINISH condition is raised by any means
other than a RETURN, END, or SIGNAL FINISH
statement (e.g., when an object-time error
occurs such that the ERROR condition 1is
raised). If there 1is not a GO TO out of
the ERROR or FINISH on-unit (if any), the
error-handling subroutine (IHEERR) calls
IHESAFQ, which closes all the open files in
the manner described above; IHESAFQ returns
to the supervisor with a return code of
(2000 + any return code already set (modulo
1024)) .

GO _TO Statements

In PL/I, a GO TO statement not only

involves the transfer of control to a
particular 1label in a block but also
requires the termination of contained
blocks. The housekeeping requirements for
this are:

1. A return address.
2. A means of identifying the automatic

storage associated with the block to
be made current.

48

Identification of the appropriate storage
depends on whether the environment is
recursive or non-recursive:

Recursive: A count (the invocation count)

is kept of the number of times
any block 1is entered; this
count can be used to identify
the storage Ffor a particular

invocation.

Non-recursive: The address of the storage

for each block is required.

On-Units and Entry-Parameter Procedures

If, in a recursive environment, the

program enters:
1. an on-unit, or

2. a procedure obtained by
entry parameter,

calling an

that environment must be restored +to the

state that existed when the ON statement
was executed or the entry parameter was
passed. Similarly, at the exit from the

on-unit or the
the environment must be
former state.

entry-parameter procedure,
restored to its

If the on-unit or entry-parameter proce-
dure refers to automatic data in encompass-
ing blocks, these references will be to the
generations that existed when the ON state-
ment was executed or the entry parameter
was passed. These will not necessarily be
the latest generations.

The correct environment is obtained by
restoring the display to what it was at the
time the ON statement was executed or the
entry parameter passed.

the
calls

When an on-unit is to be entered,
library error-handling subroutine
IHESARA and passes it:

1. The address of the on-unit.

2. The 1invocation count of the DSA asso-
ciated with the procedure containing
the ON statement.

When an entry-parameter procedure is to
be called, compiled code branches to
IHESARA and passes it:

. The address of the called procedure.

2. The invocation count of the passing
procedure.
The state of the display at the time of

passing is determined by examining the DSAs
of active blocks invoked before the passing
procedure. The display is modified and
control is transferred to the called proce-
dure.

Before an on-unit or an entry-parameter
DSA is freed, the display is restored, in a
similar manner to that described above, to
the state it had immediately before the
on-unit was entered or the entry-parameter
procedure was called.

Block Housekeeping

The chaining of automatic storage areas
is required both for housekeeping purposes
and for storage management. In general,
both these functions are satisfied by the
automatic storage area chain (called the
LSA chain or *'run time stack'). When a
library module 1is entered, an offshoot of
the DSA chain, known as the save-area
chain, may be formed.

DSA _Chain:
external save area,

The DSA chain consists of the
PRV VDA, DSAs and VDAs.

DSAs are added to the chain as procedures
and blocks are entered. VDAs are added to
the chain after the DSA of the block in

which they are required. The pseudo-
register TIHEQSLA is always set to point at
the last allocation in the chain.
Initially it points at the PRV VDA. Reg-
ister DR always points to the current save
area.

Consider a sample program. Successive
areas are added to the chain thus:

1. PRV VDA

2. DSA (Main procedure)
3. DSA (Procedure)

4. DSA (Begin block)

At this stage the storage map is as
shown in Figure 20. If the begin block
required a VDA this would be added to the
end of the chain. Figure 21 shows an
example in which the begin block required
two VDAs. If the program now executes:

1. An END statement: The storage in the
chain 1is released, starting with the
area pointed at by IHEQSLA and finish-
ing when the current DSA has been
released. This leaves the chain with
items 1, 2 and 3 only.

2. A RETURN statement: All areas up to
and including the immediately encom-
passing procedure DSA are released,
leaving only items 1 and 2.

PR | PRV VDA |-—=Dpm——mme—eeem 1
e |
| | | External |
| PRV I |
THEQLSA | | | | save area |
e S 100 |
| I |
| WS 1 | | teemmeed
I b
b T
A |
[|
| |
Pl 1
| I
| bDsai 1<-4
| (Procedure) |
| |
3
A
I
|
r————- Lo 1
| |
| DSA 2 |
| (Procedure) |
| |
I, g
A
|
IHEQSLA, DR |
———D e Lo .
| |
| DSA 3 |
| (Begin) |
| |
S, 4

Figure 20. Example of DSA Chain

It is also possible to release the last VDA

in a chain without releasing any other
areas, by freeing the area pointed at by
THEQSLA.

If a GO TO statement referring to a

label in the main procedure had been exe-
cuted when the situation was as shown in
Figure 21, then either the invocation count
or the display of the main procedure would
be passed to the library subroutine
(IHESAFC). This would then search back up
the chain until it found the DSA with that
invocation count or display, and then make
this DSA current. It would then free:

DSA
DSA to be made

1. All areas up to and including the
allocated after the
current.

2. Any library VDAs or LWS between the
DSA to be made current and the follow-
ing DSA. A VDA used by the library is
distinguished from one used by com-
piled code by the flags in the first
byte. (See Appendix J.)

Chapter #4: PL/I Object Program Management 49

1
| |
| DSA 2 |
| |
| |
b e 1

A

|

DR |
SN L .
| |
I Dsa 3 |
| |
| |
e 3

A

|

]
r————— Lo 1
| |
| VDA |
| |
b i

A

|

THEQSLA |
SN —— Lo .
| |
| VDA |
| |
b 3

Figure 21. -Continuation of the DSA Chain

Save-Area Chain: When a PL/I block calls a
PL/I Library subroutine, the save area
passed is that in the DSA for that block.
If the library routine calls a lower-level
library routine, the save area passed 1is
that of the appropriate lewvel in LWS. Thus
a save-area chain is built up as an off-
shoot of the DSA chain. (See Figure 22.)
Normally the save-area chain unwinds itself
as control returns up through the levels;
in the example, the chain would be 1left
with DSAs 1, 2 and 3 remaining.

Treatment of Interrupts: When a program
interrupt occurs in a subroutine (library
or compiled code), the 1library error-
handling subroutine (IHEERR) is entered and
the address of the save area of that
subroutine is set in register DR. (See
Figure 23.)

IHEERR calls IHESADE, passing its own
save area, to get a new 1LIWS (IWS2). If
there 1is an on-unit corresponding with the
interrupt condition, then, on return from
IHESADE, IHEERR branches to IHESARA (which
modifies the display) and passes it the
save area LSA in LWS2. 1In turn, IHESARA
branches to the on-unit and passes it the
same save area. The prologue for the
on-unit then calls IHESADA to obtain a DSA.
The DSA chain can now continue if required.
(Ssee Figure 24.)

50

[o=—=——=——=- 1 et
| | | LwWs |
| DSA 3 |<=y | |
| P | LSA [
| | | DR | I
D I St R
A | I |
| leee—=] Save area |
| I
r————- e 1 |
| I | I
| vpa | pommmmmm e
| | I |
| O, 4 | |
A | |
| I |
IHEQSLA |] |
——=> ey | |
| | | I
| VDA | e
| I
I, 4
Figure 22. Construction of the Save-area
Chain
[mm——— e 1 (o mmm— ey
I	LWs 1	
DSA 3	<—y	
	Lsa	
b I R 1<		
A t—{ [
	save area	
I i I		
DR	[
p———- L 1 O 1		
		p-—1
VDA	> LWE]	
I I		
b I .		
A [I		
[I		
I [
e		
! [I		
VDA]	
b S		
A I		
bl		
IHEQSLA	[S —— J	
—==>pm——mmdee—y		
THEQLSA	LWS VDA	
——=D e		
LWS 2 b—-4		
i LSA i		
I		
Save areas		
!		
[J
Figure 23. Structure of the DSA chain when

the error-handling subroutine
is entered after a new LWS has
been obtained

If there is no on-unit corresponding to
the interrupt condition, standard system
action is taken. (See Chapter 6.)

There are two possible ways of freeing
the on-unit DSA:

1. By a GO TO statement from the on-unit.
If the GO TO is to a statement in a

block associated with DSA 3, or
earlier, then the save-area chain can
simply be forgotten. Registers are
restored from the DSA to become cur-
rent.
[r=——=——==7 [oe——————— 1
		Iws 1
DSA 3	<—4	
	Lsa	
[
b e B 1<,		
A I -		
] tl——JsSave area]		
r————t———— b s		
		(I
VDA	r—>1 LWE p—-4	
I	I	
e e B 4		
A o		
1		
I		
pommmtomemq]		
I 1		
vba		
	I	
b L		
A (I !		
o		
P !		
r————t-——q		
[
LWs 2	-+	
[[
J		
A [1		
IHEQSLA, DR		
—> b		
on-unit|
DSA |

|
|
| |
L

————————d

Structure of the DSA chain when
the on-unit DSA is attached

Figure 24.

2. By the on-unit issuing a request to
storage management to free the on-unit
DSA. When this is done, control is
returned to the error-handling
subroutine at the point following that
from which control was transferred to
the on-unit. The error-handling
subroutine restores DR in the normal
way to point at LWE in LWS 1 and calls
IHESAFD to free LWS 2. Control'is
then returned to the interrupted rout-
ine. 1In the example, the situation
would now be as in Figure 22.

Object-time Optimization

The compiler contains an optimization
technique which minimizes the necessary
housekeeping and provides faster execution
of the prologue and epilogue. The tech-
nique can only be applied if the optimiza-
tion option (OPT=01.Default) 1is specified
for the compilation of the main procedure
of a program. In this case, in a non-
multitasking environment, a 512-byte
storage area is reserved at the end of
primary LWS during initialization. The
pseudo-register IHEQLWF contains the
address of the reserved area attached to
the current LWS. A reserved area is
released only when its associated 1IWS is
released.

Whenever a DSA is allocated for the
innermost procedure or procedures (at the
same depth) of a nest of procedures, the
optimization technique will try to meet the
requirement from the reserved area. If
this 1is not possible (because the DSA
requires more than 512 bytes), the required
storage is obtained in the standard way,
using IHESADA.

A DSA allocated in the reserved area, or
a DSA allocated in STATIC storage at com-
pile time, is identified by a 'one' in the
first bit of the second byte. (See IBM
System/360 Operating System: PL/I (F) cCom-
piler, Program lLogic Manual for a discus-
sion of DSAs in STATIC storage.)

Chapter 4: PL/I Object Program Management 51

CHAPTER 5: PL/I OBJECT PROGRAM MANAGEMENT {(MuLTITASKING)

This chapter describes the facilities
provided by the PL/I Library for the dynam-
ic management of PL/I multitasking programs
in an operating system with MVT. A new
task is created by the control program in
response to an ATTACH macro instruction;
the control program sets up a task control
block (TCB), which contains all the control
information related +to the task; it may
also set up an event control block (ECB),
in which completion of the task will be
posted. The new task then competes with
other tasks for control according to the
priority assigned to it. On completion oJ
a task, the attaching task must remove the
subtask's TCB from the system by issuing a
DETACH macro instruction; if no ECB was set
up and no end-of-task exit routine (ETXR)
was specified, the DETACH macro instruction
is unnecessary, and the TCB is removed from
the system by the control program on termi-
nation of the task.

The tasks created in a PL/I multitasking

common ancestor, the control task. The use
of a control task ensures that there is
always present a task with a higher priori-
ty than that of the major task; the control
task can then be entered whenever it is
necessary +to terminate the major task
(e.g., on execution of a STOP statement).
For multitasking , the program management
module IHESA 1is replaced entirely by the
module IHETSA; the user of a non-
multitasking program incurs no significant
overhead, since IHETSA is loaded only
during link-editing of a multitasking pro-
gram. Although some of the routines in
IHETSA are peculiar to multitasking, most
of them perform similar functions to the
corresponding routines of IHESA; Figure 25
compares the two modules. Only those fea-
tures of IHETSA that are not included in
IHESA are described in detail. The library
facilities for the multitasking pseudo-
variables and built-in functions, and for
the WAIT statement, are described at the
end of this section; Appendix K gives full

program are executed as subtasks of a
Entry Points
Function JHESA IHETSA
Get DSA IHESADA IHETSAD (Alias)
Get VDA IHESADB IHETSAV
Cet controlled variable THESADD See Note
Get LWS IHESADE IHETSAL
Get library VDA IHESADF IHETSAW
END IHESAFA IHETSAE
RETURN IHESAFB IHETSAR
GO TO IHESAFC IHETSAG
Free VDA/Free 1IWS IHESAFD IHETSAF
Free controlled variable THESAFF See Note
Abnormal program termination THESAFQ IHETSAY
IHESAPA IHETSAP (Name)
Program initialization IHESAPB IHETSAA (Alias)
IHESAPC
IHESAPD
Environment modification IHESARA IHETSAN
Setting of return code THESARC IHETSAC
Initialization of major task IHETSAM
Initialization of subtask IHETSAS
CALL with task option IHETSAT
ETXR (end-of-task exit routine) IHETSAX
Abnormal task termination IHETSAZ

Note: The allocation and freeing of con-
trolled storage in a multitasking
environment is handled by a separate

module, IHETCV, which

compiled code.

is called by
Figure 25. Comparison of IHESA and IHETSA

52

details of the control blocks for

nultitasking.

PL/I

Control Task

The control task is entered via one of
the initialization routines (IHETSAA and
IHETSAP), and is established at a priority
(16*JSPRI+11), where JSPRI is the priority
specified in the JOB statement for the PL/I
program. The entry point that is used
depends on whether the PL/I program is
called from an assembler-language routine.
The control task obtains contiguous storage
for its own save area and workspace, and
for +the PRV VDA for the major task. (If a
PRV longer than 4096 bytes is requested, a
nessage 1is printed out on the console and
the program is terminated.) The length
required for the PRV VDA is the sum of:

8 control bytes
L(PRV) (passed by the linkage editor)

L(LWS) (assembled by the initialization
routine)

4 task-oriented control words

The format of the save area and workspace
for the control task is shown in Figure 26.

Having allocated these
the control task:

storage areas,

1. Sets the STOP event control block to

Z€ro.

2. Creates a task variable for the major
task, sets it active and initializes
it, using an EXTRACT macro instruction
to obtain the 1limit and dispatching
priorities from the TCB set up by the
operating system for the control task.
(The task variable contains the task
control information required by the
PL/I Library.)

3. Creates an event variable for the

major task, and sets it active.

4, sets the ECB for the major task (which
is contained in the event variable) to

zZero.
5. Sets the message ECB to zero. This
will be posted by the ETXR routine
(IHETSAX) in the event of a task

terminating abnormally, so that the
control task can attach a message task
to put out a message.

6. Sets to zero the pointer to the chain
of message task ECBs.

eFigure 26.

7. Sets the Program Lockout Flag (PLF) to
zero (see Section on Multiprocessing
at the end of this chapter).

0 7 8 31

r T L)

0 | |

[| PLF | |
| | I
pmmmmmt i

4 | I

| |

| Save area |

| |

| |

L — 4

r 1

72 | |
| , |

| Task variable for major task |

| |

| |

b oo

100 | I
| I

| Event variable for major task |

! I

| |

¢ e

132 | |
I I

| stop ECB I

I I

I I

b — :

136 | |
| |

| Message ECB |

- |

I I
— e

140 | |
| |

| Pointer to chain of message task |

| ECBs |

| I

Lee - a

Format of Save Area and

Workspace for Control Task

The control task next issues an IDENTIFY
macro instruction to identify the major-
task and subtask initialization routines,
IHETSAM and IHETSAS, and the message task,
so that these may later be attached.
Finally it places in its save area the
argument list that it will pass to IHETSAM,
and sets the address of the save area in
register RA.

To attach the major task, the control
task 1issues an ATTACH macro instruction
using IHETSAM as an entry point and giving
the address of the ECB in the event varia-
ble of the major task. The control task
shares subpool 1 with the major task so
that, on completion of the major task, its

Chapter 5: PL/I Object Program Management (Multitasking) 53

PRV VDA is still available. No end-of-task
exit routine (ETXR) is specified, since
control will return to the control task on
termination of the major task. The action
of the major-task initialization module
IHETSAM is described under ‘Initialization
of Major Task'.

Having attached the major task, the
control task issues a WAIT macro instruc-
tion which is to be satisfied when either

1. +the STOP ECB is completed (i.e., when
a STOP statement is executed), or

2. the ECB of the major task is completed
(i.e., when the major task terminates
normally or abnormally), or

3. the message ECB is completed (i.e., a

message is to be displayed stating
that a task has terminated
abnormally) .

I1f a task terminates abnormally, the

ETXR routine (IHETSAX), posts the message
ECB with a completion code equal to the
address of an area of storage which it has
obtained and which contains a save area and
information for +the message task. The
control task then attaches a message task,
sets the message ECB to zero, and returns
to the WAIT macro as before. However,
before the message task 1is attached, an
area of storage is obtained to contain the
ECB for the message task. This allows the
message task to be waited on in the event
of the major task terminating while the
message task is still active. This area of
storage is added to a chain which is
pointed to by a word in the control task
workspace.

The message task links to ITHETEXB to put
out the message, after which it frees the
storage obtained for it by the ETXR rout-
ine.

The message is put out on SYSPRINT if it
is open, otherwise it is put out on the
console,

When the major task is completed normal-
ly, or when it is completed abnormally as a
result of a PL/I error, the control task
detaches the major task's TCB, frees sub-
pool 1, and returns control to the calling
Frogram. The return code reflects the
normal or abnormal termination of the pro-
gram; if an operating-system interrupt has
cccurred, a message to this effect is
printed out on the console, and the return
code 1is the operating-system completion
code.

If the major task has not been completed
(i.e., if a STOP statement has been

54

executed), the end-of-program routine IHET-
SAY terminates the major task and all its

subtasks, and then posts the STOP ECB so
that the control task gains control. The
control task frees subpool 1 and then

returns control to the calling program.

Initialization of Major Task

When the major-task initialization rout-
ine, IHETSAM, 1is attached, storage has
already been allocated to the PRV VDA for
the major task. IHETSAM is similar to the
non-multitasking initialization routine
IHESAP (described in Chapter 4), but in
addition:

1. A flag bit (bit 8) in the PRV VDA is
set to indicate that it is a multi-
tasking PRV VDA.

2. The address of the task variable is
placed in the PRV VDA, and the other
task-oriented words of the PRV VDA are
set to zero. (See Appendix K.)

3. After the standard action of initial-
izing the PRV and LWS and setting the
pseudo-registers IHEQVDA, IHEQFVD, and
IHEQADC, the priority of the major
task 1is reduced by one. This has the
effect of making the whole program
appear to have a priority one less
than the operating-system limit prior-

ity (16*JSPRI+11), and enables the
priprity to be raised whenever it is
essential that a routine be non-
interruptible; it also allows the

control task to be posted and entered
immediately if necessary.

CALL with Task Options

When a CALL statement with a TASK, EVENT
or PRIORITY option 1is executed, compiled
code calls the library module IHETSAT to
initialize the task and event variables for
the subtask and to attach the subtask
initialization routine IHETSAS. At compile
time, if the TASK option had been speci-
fied, +the compiler would have created a
TASK variable, set it inactive, and insert-
ed the addresses of the associated symbol
table entry and event variable; if the
EVENT option had been specified, the com-
piler would have created an event variable,
set it inactive and set the STATUS halfword
to zero. Fathermore, compiled code would
have created an argument list (Figure 27)
and inserted its address in register RA.

0 31

—— —_—

24} Argument list for called procedure
| (X*'80' in first byte of last entry
| indicates end of list)

-= T S|
0| Flags | A(Task variable) |
e i 1
uj A(Event variable) |
------ i

8| Priority relative to attaching task |
- 1

12] A(called procedure) |
e ———- .
16| For library use |
— T G 1
20| For library use |
4

|

|

|

b

| . - ———

Figure 27. Parameter List for IHETSAT

IHETSAT raises the priority of the
attaching task to the limit to ensure that
the sequence cannot be interrupted by the
current program, and then obtains a VDA, in
which it places a remote parameter list for
the execute form of the ATTACH macro
instruction that it uses to attach IHETSAS.
It then checks for the presence of the task
and event variables; if either is present
and active, the ERROR condition is raised.
If either of the variables is absent (i.e.,
if the TASK or EVENT option were not
specified), dummy task and event variables
are placed in a VDA and initialized. Poin-
ters to the PRV and DSA of the attaching
task are stored in the two words of the
parameter list reserved for 1library use;
these are for reference by the subtask.

If the CALL statement includes a PRIORI-
TY option, the sum of the relative priority
from the parameter 1list supplied by com-
piled code and the dispatching priority in
the task variable of the attaching task is
stored in the task variable of the subtask;
if the sum exceeds the limit priority for
the PL/I program (16*JSPRI+10), the dis-
patching priority for the subtask is made
equal to +the limit. (See IBM System /360
Operating System: PL/I(F) Programmer's
Guide for a discussion of priority of a
PL/I program.) The limit priority of the
attaching task is also placed in the task
variable of the subtask. If there is no
PRIORITY option, and a task variable
exists, the dispatching priority in the
task variable is assumed; if the task has a
dummy task variable, the dispatching prior-
ity 1is the same as that of the attaching
task at the time the subtask is attached.

To create the new subtask, IHETSAT
issues an ATTACH macro instruction with the
following parameters:

Zero if no TASK option
Zero if no EVENT option

Flags = X"80' if no PRIORITY option

X*80" if no argument list

EP = SUB (the name given to entry point
IHETSAS when it was identified).

ECB = A(ECB in subtask event variable)
ETXR = IHETSAX

No change in priority is made at this
point. When control returns +to IHETSAT,
which is normally almost immediately, the
address of the TCB for the new subtask,
which is placed in register RA by the
control program, is stored in the task
variable for the subtask. IHETSAT then
reduces the priority of the attaching task
to its original level and returns control
to the attaching task.

Initialization of Subtask

The subtask initialization routine IHET-
SAS is entered via an ATTACH macro instruc-
tion issued by IHETSAT; register RA con-
tains the address of the parameter list
prepared by compiled code (Figure 27).
Since the priority of the subtask is at its
limit, having been set there by IHETSAT,
the subtask will gain control as soon as
the priority of the attaching task is
reduced at the end of the IHETSAT routine.

IHETSAS calculates the length of the PRV
VDA required by the subtask, issues a
GETMAIN macro instruction for the amount of
storage needed (rounded up to a multiple of
2048 bytes), and then initializes the PRV
VDA as follows:

1. It copies the contents of the PRV of
the attaching task into the PRV of the
subtask.

2. It copies any ON fields in the DSAa of

Chapter 5: PL/I Object Program Management (Multitasking) 55

the attaching task, and the procedure

argument list (if one is being
passed), 1into the PRV VDA of the
subtask.

3. It increments the pseudo-register

IHEQTIC by one. (IHETSAM sets IHEQTIC
to zero when it initializes the major
task. Each time a subtask is
attached, IHETSAS adds one to the
count in IHEQTIC; the count thus indi-
cates the level of the task within the
hierarchy.)

4, It initializes the new LWS and updates
the pseudo-registers pointing at the
various areas in IWS to their new
values.

Having obtained storage and initialized
the PRV VDA, IHETSAS executes the standard
initialization <routine as in a non-
multitasking program, places the address of
the procedure parameter 1list for the new
subtask in register RA, reduces the
priority of the subtask to the level given
in its task variable, and branches to the
address of the called procedure.

End-of-Task Exit Routine (IHETSAX)

When a subtask is attached, the end-of-

task exit routine IHETSAX is specified in
the ETXR operand of +the ATTACH macro
instruction. This routine is entered after

the subtask has been completed; it is part
of the attaching task, and is executed
asynchronously with it. If the subtask was
terminated by the PL/I storage-management
routines, the only function of IHETSAX is
to detach the TCB of the subtask.

If the subtask was completed abnormally
by the operating system, an area of storage
is obtained in which the mname of the
subtask and the completion code are stored.
This storage area also contains space for a
save area to be used by the message task.
IHETSAX then posts (using the POST macro)
the message ECB in the control task storage
area. The control task receives control
and attaches a task which prints a message
giving the name (if any) of the subtask,
the operating system completion code, and,
in the more common cases, an indication of
the probable error. When IHETSAX regains
control, it detaches the TCB of the sub-
task.

To obtain the name of the subtask for
insertion in the message, IHETSAX locates
the subtask's task variable by initiating a
save-area trace from the current task's
external save area, the address of which is
in the current task's TCB. It obtains the
completion code from the subtask's TCB.

56

GO TO Statements

The multitasking housekeeping routine
for GO TO statements (IHETSAG) differs from
its non-multitasking equivalent only in
that if control is transferred outside the
block in which the statement occurs, any
tasks attached in the blocks that are freed
must be terminated. If any tasks have been
attached in the Dblock, the task variable
chain pointer in the DSA will point to the
task variable of the most recently created
subtask. THETSAG searches the chain
through each DSA in each task until a task
is found that has attached no subtasks:
this task is then terminated. The process
is repeated until all tasks attached in the
block, and their descendants, have been
terminated. In the process, all storage
associated with these tasks is returned to
the supervisor, and all files opened in the
tasks are closed.

On-Units and Entry Parameter Procedures

The multitasking routine TIHETSAN modi-
fies a recursive environment when an on-
unit or an entry parameter procedure is
entered or ended. It differs from the
non-multitasking routine (IHESARA) in two
respects:

1. The chain of recursive DSAs is
followed Dback to the PRV of the major
task.

2. If a CALL statement <calls an entry
parameter procedure with a task
option, the address of the entry par-

ameter is placed at the top of the
parameter list, the address of IHETSAT
is assigned to the entry parameter,
and IHETSAN is called. When TIHETSAN
terminates, it ©points register RA at
the IHETSAT parameter list and branch-
es to IHETSAT.

Termination of a Task

A PL/I task can be terminated by the
execution of any one of the statements END,
RETURN, STOP, and EXIT.

The action taken by the 1library END
(IHETSAE) and RETURN (IHETSAR) routines is
similar to that of the GO TO routine
(IHETSAG); the action differs from that of

the non-multitasking egquivalents in that
any tasks attached in the block being
terminated must also be terminated. If the

block to be terminated is also the end of a

procedure called with a task option, sub-
pool 1 (automatic and controlled storage)
is freed and control is returned to the
control program. If it is the end of the
major task, the FINISH condition is raised
and the program branches to the error-
handling routine. When the END or RETURN

routine has been completed, control is
returned to the control program, but
subpool 1 is not released. (Automatic

storage is required by the control task;
controlled storage may be required by the
calling program.)

The abnormal-end-of-task routine
(IHETSAZ) is entered
1. from IHEERR when return is made from

the ERROR routine in a subtask or from
the FINISH routine in the major task,

2. when an EXIT statement is executed in
any task, or

3. when CALL IHEDUMT is executed in
task.

any

IHETSAZ detaches the task, and any tasks
that it has attached, in the manner des-
cribed under 'GO TO Statements', places a
return code in the task's ECB, and returns
control to the control program.

The end-of-program routine (IHETSAY) is
entered when a STOP or CALL IHEDUMP state-
ment is . executed in any task. IHETSAY
terminates all subtasks in the manner des-
cribed under 'GO TO Statements', and then
passes control to the control +task by
posting the STOP ECB; the control task then
terminates the major task.

The completion code in the STOP ECB or

the ECB for the major task indicates how
the program was terminated.

controlled Storage

The allocation and freeing of storage
for controlled variables in a multitasking
environment 1is handled by library module
IHETCV. This module is independent of
IHETSA and is loaded only if the CONTROLLED
attribute is wused. When storage is allo-
cated, the task invocation count from
pseudo-register IHEQTIC is stored in the
first halfword of the controlled variable.
Before a controlled variable is freed, its
task invocation count 1is checked; if it
does not correspond with the value in
JHEQTIC for the task in which the statement
occurs, the variable is not freed. Con-
trolled storage is allocated in subpool 0
if it is in the major task, and in subpool
1 if it is in a subtask.

MULTITASKING PSEUDO-VARIABLES AND BUILT-IN
FUNCTIONS

Statements in which the STATUS pseudo-
variable appears, or which contain the
COMPLETION or STATUS built-in functions,
are executed from compiled code without a
library call.

COMPLETION Pseudo-Variable

On execution of an assignment statement
in which the COMPLETION pseudo-variable
appears, the expression on the right-hand
side 1is evaluated and converted to a bit
string of length 1, which is then stored at
bit 24 of a fullword. Compiled code then

calls IHETEVA, passing the address of the
event variable named in the pseudo-
variable, and that of the fullword (in a
list pointed to by register RA). If the
event variable is active, the ERROR
condition is raised; otherwise IHETEVA
takes the following action:

1. It raises the priority of the current

task to the limit to prevent interrup-

tion.

2. It sets the I/0 flag in the event
variable (bit 1 of the flag byte) to
zexro.

3. If the bit string = '0'B, it sets bit
1 (the "complete' bit) of the ECB in
the event variable to zero, restores

the priority of the task to its origi-
nal level, and returns control to the
task.

4, If the bit string = *1' B, it tests to
see whether the event is already com-
plete. If it is, IHETEVA restores the
priority of the task to its original
level and returns control to the task;
otherwise it posts the ECB with a
completion code of zero, restores the
priority, and returns control to the
task.

PRIORITY Pseudo-Variable

The PRIORITY pseudo-variable is used to
set the dispatching priority of a task to a
new value relative to that of the current
task. On execution of an assignment state-
ment in which the PRIORITY pseudo-variable
appears, the expression on the right-hand
side is evaluated and converted to -a fixed-
point binary constant of default precision,
which is assigned to a fullword. Compiled

Chapter 5: PL/I Object Program Management (Multitasking) 57

code then calls IHETPRA, passing the
address of the task variable of the task
named in the pseudo-variable and that of
the fullword (in a 1list pointed to by
register RA). If the pseudo-variable does
not specify a task, the current task is
assumed. IHETPRA raises the priority of
the current task to the limit to prevent
interruption, and accesses the dispatching
priority from the task variable; it assigns

to the task variable the new value of
dispatching priority, calculated as fol-
lows:

New dispatching priority of named task
=MAX (0,MIN(limit-1,P+N))

where P=dispatching priority of current
task
and N=increment

If the task whose priority is being
changed is not the current task, IHETPRA
restores the priority of the current task
and returns control to it.

If the priority of the current task is
changed, after the new priority has been
stored in the task variable a CHAP macro
instruction is issued to change the priori-
ty of the task before returning control.

PRIORITY Built-In Function

The PRIORITY built-in function yields
the dispatching priority of a task relative
to that of the current task. On execution
of a statement in which the function
appears, compiled code calls IHETPBA, pass-
ing the address of the task variable of the
task named in the function and the address
of a fullword target field {(in a 1list
pointed to by register RA). TIHETPBA sub-
tracts +the dispatching priority of the
current task from that of the named task,
and assigns the difference +to the target
field. The dispatching priorities are
obtained from the respective task varia-
bles.

THE WAIT STATEMENT

When a WAIT statement is executed in a
multitasking environment, compiled code
calls the 1library module IHETSW, passing
the addresses of the event variables asso-
ciated with the statement. IHETSW scans
the event variables to see whether enough
events to satisfy the WAIT statement are
PL/I complete ('complete' bit, ECMP, set to
1). If not, IHETSW scans the ECBs for the
I/0 events, and in each case where the 1I/0

58

event is complete sets the check bit (EMCH)
in the corresponding event variable to 1; a
list is then made of all the incomplete I/0
and multitasking events.

If the number of PL/I and I/O complete
events is sufficient +to satisfy the WAIT

statement, the relevant I/0 transmit
modules are invoked to complete the 1I/0
events. (See 'General Logic and Flow'

under 'Record-Oriented I/O' in Chapter 3.)
If there are no multitasking events in the
list, and if the number of completed 1I/0
events is not sufficient and all the I/0
events must be completed to satisfy the
WAIT statement, the check bit in each event
variable 1is set to 1 and the relevant I/0
transmit module is invoked. If not all the
I/0 events need to be waited on, or if
there are some multitasking events in the
list, a multiple WAIT macro instruction 1is
issued for the list of incomplete events.
Wwhen the macro has been satisfied, if the
list included any 1I/0 events, the corres-
ponding ECBs are scanned and the check bits
in the event variables corresponding to
completed ECBs set to 1; the I/0 transmit
module is then invoked.

The I/0 event variables that are checked
by the transmit modules are set complete

and the check bits are set to zero. The
event variables are then set inactive and
removed from the task and file chains.

In a non-multitasking environment,

library module IHEOSW is called by complied
code. This module is similar to IHETSW
except that it only accepts 1I/0 event
variables and inactive event variables.

Alternative I/0 Modules for Multitasking
Programs

Alternative multitasking and non-
multitasking modules for input/output
operations have been created in order to
prevent the non-multitasking user from
being inflicted with any multitasking
overheads. These modules are:

Non-multitasking Multitasking
IHEOCL IHEOCT
IHECLT THECTT
IHEPRT IHEPTT
IHEIOB IHEIBT
IHEDDO IHEDDT
IHEION IHEINT
The entry points for the multitasking

modules correspond with the entry points of
the non-multitasking modules. Modules
which have no alternative form will call
the correct module by extracting its

address from the list addressed by pseudo-
register IHEQADC. This list is assembled
into IHESA or IHETSA, whichever is present.

MULTIPROCESSING

Since raising the priority of a task to
the 1limit priority on a multiprocessing
machine does not ensure that no other task
is executing simultaneously, additional
precautions must be taken when performing
certain operations to prevent two tasks
accessing the same control blocks simulta-
neously.

These operations are: manipulation of
EVENT variables; termination of tasks while
still active; task attachment; updating
chains associated with EXCLUSIVE files; and
changing the priority of a subtask.

The following control blocks are useqd,
in conjunction with raising the priority to
the limit to prevent simultaneous access.

Program Lockout Flag (PLF): This is a one
byte flag located in the first byte of the
control task's storage, and is known to all
tasks. It is set to zero at program
initialization time.

Must Complete Flag (MCF), Wait to Terminate

Flag (WTF): These are one byte flags
associlated with a particular task and are
located in that task's EVENT variable.

Wait to Terminate ECB (WTE), Infinite Wait
ECB (IWE): There are fullwords also asso-
ciated with a particular task and are
located in that task's EVENT variable.

Exclusive File Flag (EFF): This is a one
byte flag associated with a particular
EXCLUSIVE file and is located in the file's
FCB.

EVENT variables

The PLF 1is used during operations
involving EVENT variables. Before any
cperation involving an EVENT variable is
kegun, the priority of the current task is
raised to the limit. Since no I/O or macro
instructions are executed until the opera-
tion is finished, this task will not lose
control until after it has restored its
priority to the original value. A TS
instruction is issued on the PLF, and if
the latter is already set, the task loops
on the TS instruction until it is turned
cff. Hence if a task, which is executing
simultaneously, is also performing an oper-

Chapter 5:

ation on an EVENT variable, the first task
will loop until the second task has con-
pleted its operation. On completion of the
EVENT variable operation, the PLF is set to
zero and the priority of the task restored
to its original value.

Must Complete Operations

A Must Complete Operation is an opera-
tion which, once begun by a task, must be
allowed to complete before that task can be
terminated by a higher level task. These
are: task attachment; normal task termina-
tion; and all operations involving the PLF
or an EFF.

Before beginning a Must Complete Opera-
tion, a task first tests its WTF. If it is
on then the task is about to be terminated
by a higher level task (see Task Termina-
tion below) and so it waits on its IWE
until terminated. If its WTF is zero, the
task sets its MCF on, raises 1its priority

to the 1limit and proceeds with its Must
complete Operation. When the operation is
complete, the task tests its WTE to see if

a task is waiting for it to complete its
Must Complete Operation. If a task is
waiting, the task which has completed its
Must Complete Operation POSTs the WTE and
waits on its IWE until terminated. If no
task 1is waiting it resets its MCF to zero,
restores its priority and continues.

Task Termination

If a task A 1is terminating an active
subtask B, it first of all sets B's WTF.
It then tests B's MCF. If it is on, then B
is not in a position to be terminated
(i.e., it 1is doing a Must complete
Operation) and so A issues a WAIT on B's
WTE. When B completes 1its Must Complete
Operation, it tests 1its WTE to see if a
task is waiting and if so it POSTs the WTE
and waits on its IWE until terminated.
When A comes out of the wait state due to
B's POST, it can then go ahead and termi-
nate B.

If A had found that B was not executing
a Must Complete Operation, then it would go
straight ahead and terminate B. Should B
then wish to start a Must Complete Opera-

tion, it would first test its WTF, find it
on, and then wait on its IWE until termi-
nated.

PL/I Object Program Management (Multitasking) 59

EXCLUSIVE Files

The EFF 1is used in a similar manner to
the PLF. When a task wishes to update
chains associated with a particular EXCLU-

SIVE file, it issues a TS instruction on
the EFF associated with that file. Any
other task wishing to do a similar opera-
tion with the same file will then loop
until the first task has reset the EFF to
zerxo.

Task Attachment

The initialization of a subtask involves
accessing the attachor's storage, and to
ensure that the subtask has completed its
initialization Dbefore the storage is
changed, the attachor WAITs on the

60

subtask's IWE immediately after attaching
it. The subtask POSTs the ECB when it has
completed the initialization.

Changing Priorities

In order to prevent the priority pseudo-
variable routine from changing the priority
of a task which is at limit priority, the
routine first 'tests the TCB of the subtask
whose priority it is changing to se2 if it
is at limit priority. If so, it must wait
until the subtask has restored its original
priority. Hence it waits on the subtask's
IWE and when the subtask has restored its
priority it tests its IWE to see if the
priority routine is waiting. If not, it

POSTs the IWE and the priority routine can
then go ahead and change the subtask's
priority.

The PL/I Library handles two types of
conditions at object time which cause
interruption to the main flow of a program.
These are:

1. Conditions for which it is possible to
specify an on-unit:

a. Computational program interrupts.

b. Other conditions.

2. Execution error conditions not covered
by a PL/I-defined condition.

If any of these conditions occurs, con-
trol is passed to the library error han-
dling module IHEERR. This module is always
resident; if it 1s necessary to print a
message at execution time, IHEERR links to
a group of modules normally non-resident

but brought into storage when required.

These are:

IHEESM: This loads one of the message
modules and prints the appropri-
ate message.

IHEERD: Data processing error messages.

IHEERE: Error messages other than those
in the other error message
modules.

THEERI: Input/output error messages.

IHEERO: Error messages for non-I/0 ON
conditions.

IHEERP: Error messages for I/0 ON condi-
tions.

IHEERT: Multitasking error messages.

and their associated
IBM System/360

The error messages
ONCODES are described in

Operating System: PL/I (F) Programmer's
Guide.
All the PL/I-specified ON conditions

except I/0 SIZE and I/0 CONVERSION are
raised by compiled code to facilitate ref-
erence by the error-handling subroutines.
Each ON condition has a code number
(internal to the library) consisting of two
hexadecimal digits. When an ON condition
is raised, the code associated with it is
placed in the error-handling pseudo-
register IHEQERR.

CHAPTER 6: ERROR AND INTERRUPT HANDLING

There 1is an error message for each ON
condition. In some cases the condition
(e.g., CONVERSION) may have a group of
errors associated with it and has therefore
a group of messages. A complete 1list of
the internal error codes and their
associated messages is given in Appendix E.

PROGRAM INTERRUPTS

Fifteen possible program interrupts can
occur in System/360. Seven of these are,
or may be, related to computational condi-
tions in PL/I (see Figure 28); on-units may
be specified for these conditions. Seven
of the remaining eight are treated as
errors of a non-ON type; significance is
not handled.

r = . T YT - 1
| Program Interrupts | PL/I conditions|
| e]
r

Fixed-point overflow	FIXEDOVERFLOW
Fixed-point divide	ZERODIVIDE
Decimal overflow	FIXEDOVERFLOW
Decimal divide	ZERODIVIDE

Exponent overflow	OVERFLOW
Exponent underflow	UNDERFLOW
Floating-point divide	ZERODIVIDE
L —_— I 4
Figure 28. Program Interrupts and PL/I

Conditions

Because the user may specify on-units
for handling certain PL/I conditions, when
an 1interrupt occurs the PL/I program must
gain control to see if there is an on-unit
associated with that particular interrupt.
This is achieved by the Get PRV subroutine

in the IHESA module, which issues a SPIE

macro to:

1. Provide a program interrupt control
area (PICA). This is a six-byte area

(in IHESA) which contains the address
to which control is passed when an
interrupt occurs, and information on
the type of interrupt handled by
IHEERR.

2. Cause the supervisor to create a pro-
gram interrupt element (PIE). This is
a 32-byte area which contains the PICA
address and also a save area for the
old PSW and registers 14 to 2 when an
interrupt occurs.

Chapter 6: Error and Interrupt Handling 61

[T e ———————— 1 r r 1 f B |
I IHEERRC | | IHEERRA |1 IHEERRB I THEERRD |
- ~ ’ 1 I et —
| Non-ON Conditions| |Program Interrupts| | ON Conditions| |[CHECK & CONDITION |
b L .~ It T N R T Tm——— J
| | I |
v v v v
Yesr————-—om— e L I ettt 1T - B bttt ittt |
r—=4{ERROR, CHECK or |<-4 |Save environment; | |Determine ON type| |Determine ON type|
| |FINISH condition?| | |pretend to super- | |£from IHEQERR | |from register-RA |
| Lt—- T 1 | |visor that hand- | t T L e Dt J
| | No | |ling is complete; | | |
! | | |set results if | \% |
| [| |necessary | r 1 | |
| | |t T————————— 4 |Create search word; | |
| \Y | | |search the DSA chain |
[o - | v |for a match; if dis- | |
| [Link to IHEESM, | |[Nor—- - 1Yes |abled in current DSA |<————={
| {which loads mess-|<-4--{ON condition forj--->|return; if dummy, ig-|
| |ages into storage| | f(this interrupt? | A |nore entry |
ot T] t— - 4] ——T-= -——=d
| [| [|
| v I | v
| e e | |
| |Determine which | | | |If SNAP, link toj
| |message is to be | | | | IHEESM to print |
| Iprlnted 1 1 | ISNAP message |
| teme——— T 4| | -7 1
| I | | I
| v | | \
| v |Yes r—— 8| |
| | Print message | L— - -4 {System action re-|
| t————— T—————— 1] |quired? |
I | et > e Sttt
| v | | |No
| r————————————— 1 Yes ¢ L 1 | v
| |Interrupt is ter-}-—-->|Raise ERROR || -)
| |minating type? | |condition | | |Branch to IHESARA |
| Lo T———— 4 L - 1 |in order to enter|
| |No A]]on unit |
| v | 1 by
| 1 | | |
1 1 Return | | | v
| e 4 i |Yes ¢~ !
| b 4---4Invalid conversion |
PO, | L — J
| [m———————— 4 |No
v I v
r_""——’—_-'————————“ YeS r ————————————— J'___1 Yes r_—_-— -
|Exrror condition p--->|Raise FINISH | <=——==——= { ERROR cond1t10n’J |
bt |condition T -4
| No e e 1 |No
v v
-qYes ¢ - -4 r 1¥es pm—mmmm——— e 1
ICHECh condition?}-—->|Print CHECK | | FINISH condition? }--->| ABEND |
L s et |information | L e -4 b 4
|No i L 1 |No
v v v
________________ - 1 - - i}
|FINISH condition]| | Return | | Return
|then terminate | e J B d
{with ABEND |
Y |
Figure 29. Flow through the Error Handling routine (IHEERR)

62

034 7 8 31
r=——T- T - == -r= 1
| | PM | A(Exit subroutine) |
L L i —— —_— d
32 47

[1

| Interrupt Mask |

L - J
Figure 30. Format of the Program Interrupt

Control Area (PICA)

Definitions of PICA fields:

PM: Program mask

A(Exit subroutine): Address of the entry
point in IHEERR to which control is to
be passed when one of the specified
interrupts occurs. This entry point
is IHEERRA.

Interrupt mask: Indicates to the supervisor

which interrupts are to be handled by
IHEERR. These interrupts are all -the
fifteen possible ones except signifi-
cance.

0 7 8 31
r =T - 1
I | A(PICR) |
pmmmmem L -—- 4
| OPSW(Bits 0-31) |
— — - 1
r
| OPSW(Bits 32-63) |
[— -——- -4
r
| Register 14 |
e :
L
| Register 15 |
— 1
| Register 0 |
t - —— 1
| Register 1 |
t : -- 1
| Register 2 |
[— - _ —_—
Figure 31. Format of the Program Interrupt

Element (PIE)

Definitions of PIE fields:

A(PICA): Address of PICA, for supervisor
use
OPSW: Contents of the o0l1ld program status

word

Registers 14 to 2: Contents of these reg-
isters when an interrupt occurs

On entry to IHEERRA, register RA con-
tains the address of PIE.

It is possible for another program
interrupt to occur before user corrective
action has been completed. IHEERR has to

result

guard against this eventuality when it
obtains control, otherwise the second
interrupt would cause the supervisor to
terminate the task. To avoid this, the
following method is used:

1. The PSW in PIE (the old PSW) is saved
in the LWE area in library workspace.

2. Bits 40 to 63 of the PSW in PIE are
changed to contain the address of the
appropriate entry point in IHEERR;
control is returned to the supervisor.

3. The supervisor assumes the interrupt
has been handled satisfactorily and
transfers control to the new address
in the PSW 1in PIE; thus it enters
module IHEERR again.

Floating-point registers are saved in
the library communication area, and the old

PSW 1is inspected to find the cause of the
interrupt.

If a fixed-point or decimal overflow
interrupt 1is forced to occur, the SIZE
condition may be raised. Therefore when

one of these interrupts occurs, the pseudo-

register TIHEQERR must be inspected to see
if the SIZE code has been set. Similarly,
if any of the divide interrupts occurs,

IHEQERR must be inspected to see 1if the
ZERODIVIDE code has been set. If it has,
the condition is disabled and control
returns to the point of interrupt.

Certain very unusual circumstances may
in a program interrupt occurring
during the execution of IHEERR or of one of
the library modules called, or 1linked to,

from it. For example, if the program
destroys the PRV, or the DSA chain, or
parts of 1library workspace, then it is

likely that sooner or later a specification
or addressing interrupt will occur.

Under these circumstances, the program-
mer or systems engineer requires a dump at
the earliest opportunity. To achieve this,
and to prevent any attempt to re-enter
IHEERRA on account of the second interrupt,
a SPIE macro is issued every time IHEERR is

entered. This macro provides that, in the
event of an interrupt occurring, IHEERR
shall be entered at entry point IHEERRE.

Similarly, another SPIE macro is issued at
each exit point, to restore IHEERRA as the
normal entry point for program interrupts
during the execution of compiled code and
library routines.

When IHEERRE is entered, a message is
printed on the console and the program is
abnormally terminated, with a dump.

Chapter 6: Error and Interrupt Handling 63

e Attt Attt Attt
] | [Condition] |
| Type | cCondition |Pirefixes | Default |
| | |permitted|situation]|
b 1 - e
| | CONVERSION | | |
! | FIXEDOVERFLOW | [all {
| Comput- | OVERFLOW | Yes | enabled |
{ational {SIZE | | except |
| | UNDERFLOW I | SIZE |
] | ZERODIVIDE | | |
— S 1
List	AREA	No	Always
pro-			enabled
cessing			
——————— — +- S e			
[ENDFILE		
	ENDPAGE	I !	
Input/	KEY		Always
Output	NAME	No	enabled
	RECORD		
	TRANSMIT]	
	UNDEFINEDFILE		
RIS D - ¢ {			
Program	CHECK	!	
{ check-	SUBSCRIPT-	Yes	Disabled]
jout	RANGE		
	STRINGRANGE		
—— — } i			
Prog-	CONDITION		Always
rammer-		No	enabled
named	l [
b + - - ¥ 1			
System	ERROR	No	Always
Jaction (FINISH | | enabled |
L 1 i I iR 4

Figure 32. PL/I ON Conditions

ON CONDITIONS

The six classes of ON conditions defined
in PL/I are shown in Figure 32. To deal
satisfactorily with the situation when any
of these conditions arise, IHEERR must:

1. Recognize the condition.
2. See if it is enabled.

3. If so, see if there is an on-unit for
the condition.

4, If there is an on-unit, transfer con-

trol to IHESARA, which, after doing

' the necessary' housekeeping, will
transfer control to the on-unit.

S. If no on-unit, take system action for
the condition.

6. Return to the interrupted program or

terminate, according to the provisions
of the PL/I language.

64

In order to carry out these operations
IHEERR needs:

1. Information passed when the error con-
dition arises.

2. Information set by compiled code in
the DSA for each procedure. A two-
word ON field is allocated in the DSA
for this purpose. (See Chapter 4.)

Action by Compiled Code

Action taken by compiled code in
preparation for the possibility of a condi-
tion arising during execution is summarized
here.

Prologue: The prologue allocates space in

the DsAa for:
1. Every ON statement in the block.

2. Each ON
block.

condition disabled in the

ON CHECK (identifier 1,......identifier n)
is interpreted as n ON statements.

For each of the occurrences given above,
the prologue stores information in the two
words in the DSA ON field:

1st word: Contains the error code for the
condition and the address of data
identifying the condition. This word
is called the search word comparator.
(See Figure 33.)

r—— —

1

| Type of ON] Contents of word |
| condition e |
| |Byte 1| Bytes 2 to 4 |
¢ 3 frmm oo m ey
] 1/0 | | A (DCLCB) i
¢ -1 pommmmmm o mmm e 1
| CONDITION I | A (CSECT) |
r - {Error f-—————m—mm————
CHECK (label)		A (Symbol name §&
	code	length)
CHECK (variable)		A (Symbol table)
} 1 = e		
Others		Nothing stored
L _— -1 —_—.
Figure 33. Format of the Search Word com-
parator

2nd_ word: Bits 0, 1 and 4 of the first
byte are set as follows:

Bit 0 0 Not the last ON field in the

DSA

1 Last ON field in the DSA

Bit 1 1 Condition disabled

Bit 4 1 Dummy ON field

either bit 1 or bit 4
(see 'Prefix Options',

In the second word,
is set to 1.
below.?

ON Statement: When the ON statement is
executed, compiled code stores information
in the second word of the ON field:

Byte 1:
Bit 2 = 0 SNAP not required
= 1 SNAP required
Bit 3 = 0 Normal
= 1 System action required
Bit 4 = 0 No longer dummy
Bytes 2-4: A(on-unit)

Prefix options: An ON field for an ON
condition must be created by the prologue
whenever:

1. An ON statement 1is present in the

block.

2. An ON condition becomes disabled at
any time during the execution of the
block.

3. CHECK is enabled within the block.

This
prologue.

ON field is always set to dummy by the
It is also set to disabled if:

1. The condition is disabled by a prefix
option in the block-header statement.

2. The condition is disabled by default
and there is no enabling prefix option
in the Dblock-header statement, or
within the block. The exceptions to
this are CHECK, SIZE, STRINGRANGE, and
SUBSCRIPTRANGE, which are dealt with
as follows:

CHECK: No ON fields are created if
this condition 1is disabled by
default

SIZE, STRINGRANGE, and SUBSCRIPTRANGE:

If these conditions are disabled
by default, flags are set in the

flag byte of the DSA as follows:
SIZE: bit 7 =0
STRINGRANGE bit 2 = 0
SUBSCRIPTRANGE: bit 4 = 0

Execution of an ON statement in the block
causes removal of the dummy flag and inser-
tion of the flags indicating the action
required. It does not remove the disable

Execution of a REVERT state-
reinstatement of the dummy

if on.
causes

flag
ment
flag.

During execution of the block, statements
may be executed which have disabling prefix
options in them. Compiled code must be
inserted before and after the statements
to:

1. Set the disable flag beforé the state-
ment.
the

2. Restore the original flags after

statement.

Similarly, to
piled code must:

enable prefix options, com-

1. Set the disable flag off before the

statement.

2. Restore the
statement.

original flags after the

Prefix options specified on outer blocks
carry down into intermal blocks. The
implementation of these blocks should be as
if the option had been explicit in each of
them.

Action by the Library

When an ON condition arises during exe-
cution, IHEERR gains control from one of
the following:

1. The supervisor
2. Compiled code
3. Another library module
condition code

inspection of the
the o0ld PSW. For

In case 1, the ON
required is determined by
program interrupt code in

cases 2 and 3, the ON condition code is
passed in pseudo-register IHEQERR, except
for the CHECK and CONDITION conditions,

when a parameter list is used. From this
code and information passed in the calling
sequence, a search word is generated in
library workspace in all three cases; the
format of the search word is identical with
that of the search word comparator (Figure
33).

When the search word has been created,
IHEERR initiates a search through the chain
of DSAs to determine +the action to be
taken. Each DSA is analyzed in turn, from
the end of the chain upwards towards the
beginning. The search proceeds as follows:

Chapter 6: Error and Interrupt Handling 65

1. Bit 6 of the flag byte of the first
available DSA is tested to see if that
DSA contains any ON fields. Then:

a. No ON fields: If the DSA 1is the
current DSA and the condition is
SIZE, STRINGRANGE, or SUBSCRIPT-
RANGE, the flag byte of this DSA is
examined to see if the condition is
disabled:

Disabled: the program returns to
the point of interrupt.

Not disabled: The DSA is ignored.

If the condition is CHECK, the
program returns +to the point of
interrupt.

b. ON fields: The first word of each
ON field - the search word compara-
tor - 1is compared with the search
word to see if a match is found.
If a match is found, the ON field
in the DSA is tested to see what
action is required.

2. If the last ON field is reached before
finding a match, then:

a. If the DSA is the current DSA and
the condition is SIZE, STRINGRANGE,
or SUBSCRIPTRANGE, the correspond-
ing flags in the DSA are tested.

b. The error code is tested to see if
the condition is CHECK.

This may result in a return to the point
of interrupt. If not, the next DSA is
obtained and analyzed in the same way.

If a match has been found, then the
following tests are made:

1. Is the condition disabled by a prefix

option? (This test can only be

applied when the matching ON field is
contained in the current DSA.)

Disabled: No further processing
in IHEERR; the program returns to
the point of interrupt.

Not disabled: Next test is made.

2. Is the matching ON field a
field?

dummy ON

Dummy ON field: The field is
ignored and the next DSA is

obtained.

No dummy ON field: Next test is
made.

3. 1Is SNAP action required?

66

SNAP action
flow trace is
system output file.
contains the ON-condition
abbreviation and trace-back
information identifying the pro-
cedures in the chain. The state-
ment number may optionally be
included. Each procedure is
identified by chaining back
through the DSA chain until a
procedure DSA is found and then
using the contents of register BR

required: A summary
written on the
This output

in the appropriate save area.
The search ends when the chain-
back reaches the external save

area. An example of this output
is given in IBM System/360
Operating System: PL/I {m

Programmer's Guide.

SNAP action not required: Proceed

normally.
In a multitasking program, when the
search word has been created, IHEERR calls

IHETER, which searches the ON fields of the
DSA in a similar manner to IHEERR. In the
absence of a matching ON field, the search
continues wuntil the PRV VDA of the major
task is reached. If a subtask PRV VDA is
encountered during the search, any ON
fields that have been copied into it from
the DSA of the attaching task are also
checked. If a match is not found, the
search continues through the DSAs of the
attaching task.

System Action

System action means writing a message
and then either continuing or raising the
ERROR condition. It is performed if:

1. the system action flag is set in the
matching ON field, or

2. no matching ON field can be found in

the DSA chain.

If a match is found, and an on-unit
address is given, then, to guard against
the possibility of recursive use when con-
trol returns from the on-unit by means of a
GO TO statement, a new block of 1library
workspace 1is obtained. This 1LWS is added
to the DSA chain as described in ‘'PL/T
Object Program Management'. In order to
pass control to the on-unit, the recursion
subroutine in IHESA is called; this esta-
blishes the correct environment and then
branches to the on-unit. Return from the
on-unit may be made in one of two ways:

1. On normal completion, control passes

to IHEERR, which returns to compiled
code at the point following the
instruction which caused the condition
to be raised.

2. Execution of a GO TO statement. In
this case the GO TO subroutine
(IHESAFC or IHETSAG) is entered to
carry out the housekeeping described
in Chapters 4 and 5.

STANDARD SYSTEM ACTION AND CONDITIONS OTHER
THAN ON CONDITIONS

If an ON condition is raised and there
is no matching ON field for the condition,
standard system action is taken. This
action is defined by the PL/I 1language.
Another set of error conditions can arise
at object time for which no specific ON
condition is defined in the language (e.qg.,
logarithm of a negative number). In these
cases, implementation-defined system action
is taken.

An error message is printed when
PL/I-defined or implementation-defined
system action occurs. Then, depending on
the severity of the condition, either proc-
essing continues or the ERROR condition is
raised. In a non-multitasking program, or
in a major task, raising the ERROR condi-
tion generally leads to the FINISH condi-
tion being raised and then to the abnormal
termination of the job step by the ABEND
macro. The exceptions to this are when
there 1is a GO TO statement in the ERROR or
FINISH unit. In a multitasking program, if
the ERROR condition is raised in a subtask,
instead of the FINISH condition being
raised, IHETSAZ is invoked. {See
'Termination of a Task' in Chapter 5.) A
complete list of object-time error messa-

ges, with details of the conditions that
cause them to be issued, is given in IBM
System/360 Operating System: PL/I (F)

Programmer's Guide.

When the printing of an error message is
required, the appropriate modules of the
non-resident part of the error package are
dynamically loaded into storage. The seven
nodules concerned are:

IHEERD, IHEERE, THEERI, IHEERO, IHEERP,
IHEERT: The error message modules;
they contain the error message texts

together with tables to 1locate the
messages. Only the module containing
the required message is loaded.

IHEESM: Contains the code required to
print SNAP and system action messages.
This module is always required.

An action indicator is obtained during the
process to determine whether normal proc-
essing should continue if the ERROR condi-
tion is raised. The appropriate action is
taken when the message has been printed as
output.

BUILT-IN FUNCTIONS

The two built-in functions, ONLOC and
ONCODE, may only be wused in an on-unit;
they provide environmental information
associated with the raising of the latest
ON condition.

ONLOC

occur that can cause
whieh ONLOC is

An interrupt can
entry to the on-unit in
specified. If this happens, the ONLOC
built-in function identifies the BCD name
of the entry point of the procedure in
which the interrupt occurs.

The address of this BCD name is computed
by chaining back through the DSA chain
until the first procedure DSA is reached
and by using the contents of BR in the
appropriate save area. The length of this
name and the maximum length are found;
these two lengths and the pointer to the
BCD name are inserted in the target SDV
whose address has been passed to ONLOC as a
parameter.

If ONLOC is
unit, a null string is
target SDV.

specified outside an on-
inserted in the

ONCODE

The ONCODE built-in function picks up a
value from the WONC field in the 1library
communication area in LWS previously set by
IHEERR. This value is implementation-
defined by the type of error that caused
the interruption. It may be specified in
any on-unit. If specified in an ERROR or
FINISH unit, the ONCODE will be that of the
error or condition that caused the ERROR or
FINISH unit to be entered.

If ONCODE is specified outside an on-

unit, a unique ONCODE value (0) is
returned. A list of ONCODEs and an expla-
nation of their use are given in IBM
Systen/360 Operating System: PL/I (F)

Programmer's Guide.

Chapter 6: Error and Interrupt Handling 67

MODEL 91 INTERRUPT HANDLING

Program interrupts occurring in code
executed on an IBM System/360 Model 91
require different treatment from that des-
cribed above. This is necessary because
the Model 91 is capable of executing sever-
al instructions concurrently: hence a
situation may arise in which several pro-
gram exceptions may occur before an inter-
rupt is raised.

As soon as a single exception occurs,
the Model 91 ensures that execution of the

instructions already decoded is completed,
and then raises an interrupt. During exe-
cution of these instructions, further

exceptions may occur. If there are no more
instructions to be executed at the time an
exception occurred, then the interrupt
raised is known as a precise interrupt; the
PSW contains the address of the instruction
following that in which the exception
occurred.

If, however, further instructions were
executed, then the interrupt is known as an
imprecise interrupt; the PSW at interrupt-
time contains the address of the next
instruction to be executed, but this is not
necessarily the address of the instruction
following any of the exceptions raised.
The instructions causing the exceptions
cannot therefore be identified. If there
is more than. one exception prior to
interrupt, then a multiple-exception impre-
cise interrupt is said +to have occurred.
Full details of Model 91 operation and
interrupt handling are given in IBM
System/360 Model 91, Functional Charac-
teristics, Form A22-6907.

When an imprecise interrupt is raised,
therefore, the Model 91 indicates the
situation by setting the interruption code
and the interruption length code in the PSW
as follows:

1. Recognition +that an imprecise inter-
rupt has occurred: Bits 26-33 are set
to zero.

2. 1Identification of the type or types of

exception in the interrupt: Bits 16-25
are set as follows:

68

Bit Type of Exception

16 Protection

17 Addressing

18 Specification

19 Data

20 Fixed-point overflow
21 Fixed-point divide
22 Exponent overflow

23 Exponent underflow

24 Significance

25 Floating-point divide

Implementation

The Library module IHEM91 handles the

problems associated with imprecise inter-
rupts on a Model 91. This module is
obtained by the user specifying the Model

91 option in his program; this creates an
ESD entry that results in TIHEM91 being
linkage-edited with the Library error and

interrupt module IHEERR.

Initially, IHEERR tests bits 26-31 of
the PSW to determine if these bits are all
zero (i.e., if an imprecise interrupt
exists) :

1. All zero: Imprecise interrupt; control
is passed to IHEM91

2. BAny pit non-zero: No imprecise inter-
rupt; IHEERR handles the situation in
the normal way

On receiving control, IHEM91 tests bits

16-25 to determine which exceptions have
occurred. All bits (except significance)
are tested, as more than one type of

inter-
If the bit tested is on (non-zero),

exception can occur in an imprecise
rupt.
then:

1. Condition list: IHEM91 sets an entry
in a 1list of PL/I conditions and
program exceptions. The 1list is
stored in the LWE area of Library
workspace (LWS); an entry indicates
that the particular condition or
exception must be raised. The 1list
consists of from one to eight entries,
processed in the order:

UNDERFLOW
FIXEDOVERFLOW ox SIZE
OVERF LOW

ZERODIVIDE

Data exception
Specification exception
Addressing exception
Protection exception

Note: ZERODIVIDE
in the 1list,

is entered only once
even if floating-

point divide and fixed-point
divide both occur. sSignificance
is not handled, as it is disa-
bled in all PL/I programs.
FIXEDOVERFLOW and SIZE cannot
both be raised since they are
raised by the same hardware con-
dition.

2. Intexrupt count: The walue in the
ONCOUNT field (WONC + 4) in the LCA is
incremented by 1. Thus the total
value in this field is the total
number of conditions or exceptions to
be raised. When a multiple-exception
imprecise interrupt does not exist
(because there are no exceptions or
only a single exception) the value in
the ONCOUNT field is zero.

IHEM91 then returns control to IHEERR in
order that each condition in the 1list can
be raised. As described above, a condition
can be handled in one of two ways:

1. By entering
either:

an ON-unit, with exit by
a. A normal return
b. A GO TO statement
2. By system action
These rules have to be considerably
extended for handling a multiple-exception

imprecise interrupt:

1. ON_unit for UNDERFLOW, FIXEDOVERFLOW,
SIZE, OVERFLOW or ZERODIVIDE:

a. Normal return: Next entry in the
list is processed. If there are
no more entries to be processed,
then a return is made to the
address in the PSW.

b. GO TO statement: No more entries
in the list are processed, and no

information indicating the nature
of these unprocessed entries is
given. However, the ONCOUNT

built-~in function, when used in an
ON anit, will return the number of
entries remaining unprocessed.

2. System action:

a. For UNDERFLOW: When the error mes-
sage has been printed, the next
entry in the list is processed.

b. For FIXEDOVERFLOW, SIZE, OVERFLOW,
or ZERODIVIDE: No further entries
in the list are processed. If the
program terminates as an immediate
result of system action, messages
are printed to indicate the nature
of the unprocessed entries.

3. ERROR
cation,

exception:

raised for a data, specifi-
addressing or protection

No further entries in the
list are processed. If the program
terminates as an immediate result of
the system action, messages are print-
ed to indicate the nature of the
unprocessed entries.

In order to implement these rules,
IHEERR tests for a multiple-exception
imprecise interrupt after:

1. Return from an ON unit: If a multiple-
exception imprecise interrupt exists,
THEM91 is entered at a second entry
point in order to:

a. Process the next entry
b. Reduce the ONCOUNT value by one
C. Return to IHEERR

2. Program termination
condition: If a multiple-exception
imprecise interrupt exits, IHEM91 is
entered at a third entry point. The
condition list is processed in order
to print out a message for each entry
not handled at the time the program
terminated. Program termination is
completed when the list is exhausted.

caused by ERROR

ONCOUNT Built=in Function

The ONCOUNT built-in function returns a
non-zero value only when this function is
used in an ON unit entered as a result of a
multiple-exception imprecise interrupt in a
Model 91. In such a situation, the binary
integer returned is the number of entries
that remaln unprocessed (including the cur-
rent one) at the time the ONCOUNT function
is used.

Flush Instructions

A program may not operate correctly on
the Model 91 if it requires identification

of the instruction causing an imprecise
interrupt. Similarly, it may not operate
correctly if it requires that an imprecise

interrupt 1is honored before some instruc-
tion later 1in the program is executed.
However, the unwanted effects of imprecise
interrupts can usually be eliminated by
placing ‘flush' instructions at certain
points in the program. A 'flush' instruc-
tion 1is an Assembler Language instruction
of the form:

BCR x,0

where x 1s not equal to zero. An instruc-
tion of this type is a no-operation
instruction for all of System/360, but it
is implemented in the Model 91 in such a

Chapter 6: Error and Interrupt Handling 69

way that its execution is delayed until all
previously decoded instructions have been
executed.

If the M91 compiler option is specified,
flush instructions are generated by the
compiler at the following points in the
program:

1. Before every ON statement

2. Before every REVERT statement

3. Before code to set the SIZE condition

4. For every null statement

5. Before code to change prefix options.
If both the M91 and the STMT options are
specified, the compiler generates a flush

instruction to precede every statement in
the program.

Model 91 Obiject-Time Diagnostic Messages

If object-time diagnostic messages are
issued as a result of an imprecise inter-
! rupt, the words "AT OFFSET..." are
veplaced by "NEAR OFFSET...", since in
these circumstances the instruction causing
the interrupt cannot be precisely identifi-
ed.

10

After a multiple-exception imprecise
interrupt on a Model 91, certain exceptions
will remain unprocessed if the ERROR condi-
tion is raised before all the exceptions
have been handled. If the program subse-
quently terminates as a direct result of
the ERROR condition being raised in these
circumstances, one or more of the following
messages will be printed out.

IHES810I PROTECTION EXCEPTION UNPRO-
CESSED AFTER MULTIPLE-
EXCEPTION IMPRECISE
INTERRUPT

IHES11T ADDRESSING EXCEPTION UNPRO-
CESSED AFTER MULTIPLE-
EXCEPTION IMPRECISE
INTERRUPT

ITHE812I SPECIFICATION EXCEPTION
UNPROCESSED AFTER MULTIPLE-
EXCEPTION IMPRECISE
INTERRUPT

IHES813I DATA EXCEPTION UNPROCESSED
AFTER MULTIPLE-EXCEPTION
IMPRECISE INTERRUPT

THES14T ZERODIVIDE UNPROCESSED
AFTER MULTIPLE-EXCEPTION
IMPRECISE INTERRUPT

IHES815I OVERFLOW UNPROCESSED AFTER
MULTIPLE-EXCEPTION
IMPRECISE INTERRUPT

CHAPTER 7: MISCELLANEQUS CONTROL PROGRAM INTERFACES

One function of the PL/I Library is to
provide a standard interface with the con-
trol program which can be utilized by
compiled code. Detailed implementation is
described in Chapters 3, 4, and 5. The
implementation described here concerns sup-
port for PL/I language statements and func-
tions with a control program interface that
does not fall into one of the categories
discussged in those chapters. These are the
PL/I statements DISPLAY, DELAY, STOP and
EXIT, and the built-in functions TIME and
DATE.

Full and Minimum Control Systems

The full control system of IBM
System/360 Operating System will enable the
PL/I Library to issue macro instructions
which support the above-mentioned state-
ments and functions. The relationship is
as follows:

PL/T Macro instruction
DELAY STIMER (WAIT)

TIME TIME

DATE TIME

DISPLAY WTO, WTOR (WAIT)

Thus, the 1library support for
features is as follows:

language

DELAY: The execution of the current task
is suspended for the required time.

EXIT and STOP: Both these statements
raise the FINISH condition and then

cause termination of the PL/I program.

TIME: The time of day is returned to the
caller in the form HHMMSStht where:

HH = hours (24-hour clock)

MM = minutes

5SS = seconds

tht = tenths, hundredths and thous-

andths of a second

DATE: The date is returned to the caller in
the form YYMMDD where:

YY = year
MM = month
DD = day

DISPLAY: A message may be written on the
console with no interruption in execu-
tion or, if a reply is expected, execu-
tion is suspended until the operator's
reply is received. If the EVENT option
is used when a reply 1is expected,
execution is continued without inter-
ruption until a corresponding WAIT
statement is encountered; execution is
then suspended until a reply is
received.

The minimum control system does not
support the TIME and STIMER macro instruc-

tions. Use of the DELAY statement, and
TIME and DATE built-in functions will
result in the ERROR conditions being

raised.

Chapter 7: Miscellaneous Control Program Interfaces 71

CHAPTER 8: DATA PROCESSING ROUTINES

1/0 _EDITING AND DATA CONVERSION

PL/I allows the user a wide choice in
selecting the representation for his data,
both on the external medium and internally
in storage; considerable flexibility is
permitted in specifying changes of data
type and form. The library conversion
package 1is designed to implement the full
set of editing and conversion functions.
To avoid unnecessary duplication of code,
standard intermediate forms are used. This
has the effect of reducing the number of
library modules in the package to about
fifty, to cover about two hundred 1logical
conversions. To speed up processing,
direct routines are provided for some of
the most frequently used conversions, while
the compiler generates in-line code for
some of the simpler ones.

To restrict further the storage require-
ments for the library conversion package,
the F level compiler analyses the actual
changes of data required for a particular
execution. Sometimes these are not fully
known at compile +time, and then a worst
case has to be taken. From this informa-
tion, by use of the linkage editor LIBRARY
statement and external references within
the compiled modules, the loading of con-
version modules is limited to those known
to be required. This technique can be of
considerable value, especially when only a
small number of data types is used by the
source programmer. Further details are
provided in IBM System/360 Operating Sys-
tem: PL/I (F) Compiler, Program Logic Manu-
al.

With one exception, all the modules
contained within the 1library conversion
package are called by means of the PL/I
standard calling sequence (described in

'Linkage Conventions', Chapter 2). The
exception is TIHEVCS (complex~-to-string
director) which is called by the operating

system. external standard calling sequence.

The letters in the module name indicate
the module usage; see Figure 34.

STRUCTURE OF LIBRARY CONVERSION PACKAGE

To perform a change fron a source data
item to a target data item may involve a

72

succession of steps and the use of several
individual library modules within the pack-
age. The structure of the library conver-
sion package is shown in Figure 36.

In association with each individual
step, the attributes of the source or the
target fields, oxr of both, must be known.
The required information is provided in the
calling sequences. Each data item has a
corresponding format element descriptor
(FED) or data element descriptor (DED).
With one exception, the formats of these
control blocks are described in Appendix H.
The exception is that of a DED generated at

object time for communication between
library modules. (See Figure 35.)

r T T e a
| Letters] |
L - 4 |
r 1

1T 2 3 4 5 6 | Meaning |
— oo 1
| T H E D | Director |
; oo 1
] I H E K | Picture check |
e t _T'-"T—_"'T'-_{
| I H E V P | Conversion involving |
| | packed-decimal |
] | intermediate, except |
I | IHEVPG and IHEVPH i
% + paremepra—
T H E VvV F	Conversion involving
	floating-point
	intermediate
b 1 O ——	
T H E V K	Conversion involving
	numeric fields
% 3 - !	
I H E V S	Conversion involving
	strings
t ——— 1 e _'
r T]

I H E V C	Conversion involving
	external character
	data being converted
	to type string
; - - .	
I H E V Q	Direct conversion to
	improve performance
e	
IT H E U P	Mode conversions
L —— 1 J

Module Usage indicated by Let-
ters of Module Name

Figure 34,

| T . 1
| Bit |
"- T T T T =TT T - =T ‘1‘
. Code | 0 i 1 | 2 | 3 { 4 | 5 | 6 | 7 |
1 } $-- } ¥ e S
| | | Non- | | T | |
=0 | 1 | 1 | sterling| Short | 1 | Decimal | Fixed | Real |
i 1 1 ! 1 JRp—— 1 — ________-{

3 T T R T 1B T . T
=1 | 1 | 1 | Sterling| Long | 1 | Binary | Float | Complex |
— e L L L L L 1 'y J

Note: Bits 0, 1 and 4 are always 1.

Figure 35.

This DED is created when it is necessary
to convert a character representation of an
arithmetic value to an intermediate coded
arithmetic data type, prior to conversion
to a string target. The form of +this DED
is the same as that for a coded arithmetic
data item (CAD), and consists of a flag
byte and precision bytes representing the
guantities p and g. As for coded data, the
flag byte defines the attributes of the
corresponding data item; bit 1 is set to 1
to indicate that a character representation
of an arithmetic value is referred to.

Directors

The structure chart makes frequent ref-
erence to 'directors'. These modules are
used to fulfil two main purposes:

1. The matching of source element with
target element, which may not be known
at compile time.

2. The controlling of the flow at object
time by means of interpretative infor-
mation passed to them.

The latter function is best illustrated by
the arithmetic conversion director
(IHEDMA), where a single call determines
the flow through a sub-package of over
twenty arithmetic conversion routines.
(Ssee below in 'Arithmetic Conversions'.)

routines at four
They are:

are director
(See Figure 36.)

There
levels.

1. Complex format directors.

2. Input/output format directors and the
* complex-to-string director.

3. String-to-arithmetic and arithmetic-

to-string directors.
4. Arithmetic conversion director.

All directors except the complex-to-string
directc can be called directly from

DED Flag Byte for Character Representation of an Arithmetic Data Item

compiled code; the complex-to-string direc-

tor is invoked from the complex format
directors or from list/data-directed input
only.

Any director can call any below it in
the structure.

Edit-directed 1I/0

Edit-directed transmission allows the
user to specify the storage area +to which
data is to be assigned or from which data
is to be transmitted and the actual form of
the data on the external medium. The
information concerning storage areas is
specified in the source program by means of
a data list, and the information about the
form of the data on the external medium by
means of a format list.

The library conversion package is
designed to implement the executable format
scheme discussed in Chapter 3. This 1is
done by the object time matching of list
item and format item through the use of the
director routines mentioned above. The set
of I/0 directors provided and their asso-
ciation with the PL/I data format items is
shown in Figure 37.

I/0 EDITING

Complex Directors: Complex format items on
the external medium may have real and
imaginary parts of differing attributes.
When the 1list item and the target field are
of type arithmetic, this situation is hand-
led in the complex director by making
consecutive calls for real and imaginary
format items, and passing control to the
particular format director associated with
the format item.

When the target field is a string,
however, there are +two problems with C
format items. First, the data on the

Chapter 8: Data Processing Routines 73

T 1
{ Compiled | LWS
r T—— i code r— T ———————— Level
| | | | | | No.
\Y A Sttt				
[e				
	Complex			
r—4 format b	>	4		
		director		
	v	v		
	I ottt 1			
1 1 Complex-			Input/output	
		to-string		<mmmm e] format >} 3
		director		
	¢ -T— 4	b T————— I		
1<	-1			
		v		
	I ettt 1			
			String<->	
	prm——————— >	arithmetic } —_—-	==———=> 2	
			directors b	ed
		L T 4		
1<	-1 i			
{	i			
		v	A	
		r 1	1	
		i Mode		1 Decimal [
	b—————— >	conversion	<—=———————-	
			routines	
	l L , 3	temm- —gom——mmd		
et B	—mmmm> l			
v			v i	
r - B l		(=== =7"== 1		
Arithmetic				1 Direct (
conversion	<--- L - s		arithmetic	
director			conversion	
b T————— 1 [i				
[r——m————————————— i				
v \Y v \Y				
[r———m—m——————n r 1 r =1 e ————— 1				
Arithmetic		Data		Picture
conversion		analysis		checking
routines		routines		zroutines
O | L J L 4 b e e e e e 1

Note: <-> indicates a conversion in either direction

Figure 36.

external medium must be scanned dynamically
in order to deduce the attributes of the
format item. The information derived from
this is stored in a special DED. (See
' Structure of Library Conversion Package'.)
This DED is necessary for the conversion of
all format items and constants.

T4

Structure of the Conversion Package

Second, the base, scale and precision of
the real and imaginary parts have to be
compared, to determine the highest set of
attributes, so that the form of +the con-
verted data in the string target may be
known. This is done by invoking a special
director, called the complex-to-string
director, which performs the necessary ana-
lysis on the DEDs of the real and imaginary

parts of the C format item. Each item is
then converted by the rules of type conver-
sion to coded complex and then to string.

Input/Output Directors: The input/output
directors named above (other than C format)
perform three major functions. Because
there are slight differences between input
and output, the functions are described
under these headings.

Input: A call is made to IHEIOD to request
w bytes and a data field pointer. If the w
bytes can be obtained from the current

director is that of the data field in the
buffer itself. If not, a VDA is obtained
and the requisite field of w bytes is built
up in the dynamic area. The VDA address is
stored in WSDV in the LcCA.

These two conditions are normal. If, on
the other hand, an abnormal return occurs
at this point, this signifies that an
ENDFILE condition exists and that a return

has been made from an ENDFILE on-unit. In
this case, the I/0 director must return
control +to the code associated with the

buffer, the address returned to the input next PL/I source statement, which is point-

r - T T =1

| PL/I | | Module name |

|) { . fr————— To——————- 1

| format item | Director | Input | Output |

b= e ¥ ¥ 1

| Complex | C | IHEDIM | IHEDOM |

| I |] |

| Fixed and | F/E | IHEDIA | IHEDOA |

| floating point | | | |

| I | I I

| Bit string | B | IHEDID | IHEDOD |

I : | I | |

| Character string | A | IHEDIB | IHEDOB |

I | I I I

| Picture | P(DEC,STL) | IHEDIE | IHEDOE |

| | P(CHAR) | IHEDIB | IHEDOB |

L L L J -d

Figure 37. Inputs/Output Directors for PL/I Format Items

r - - ————————m—on

I INPUT |

b -—- i

r T - 3 T s

| String value | List item | Cconversion |

t —————] +__ ——— d

I T 1

| | Arithmetic | Character to arithmetic

| Character string | Character string | Character string assignment |

| | Bit string | Character to bit string |

il 1 4

I T T _---—--—‘-_{

| | Arithmetic | Bit string to arithmetic |

| Bit string | Character string | Bit string to character string |

| | Bit string | Bit string assignment |

i -—- +— $ommm - ey

r

| Arithmetic | Arithmetic | Arithmetic type conversion

| (including | Character string | Arithmetic to character string |

| expression) | Bit string | Arithmetic to bit string |

L ———— L — L ——— ,{

!

I OUTPUT |

b - e T R

| List item | String value | Conversion |

b t — e —- -4

L T

| Arithmetic | Character representation | Arithmetic to character string |

| | of data value | |

= . e b -~ i

| Bit string | Bit string in character | Bit to character |

| | form | |
¢ . t ppSEE—— —-

| Character string | Character string | Character string assignment |

e L —_— 1 _— 4

Figure 38. Conversion for List/Data Directed I/0

Chapter 8: Data Processing Routines 75

ed at by the second word of pseudo-register
THEQCFL.

If there is no abnormal return, the
target DED is inspected by the director
routine and the first stage of the neces-
sary conversion process is initiated by
means of a suitable call to a routine below
the input director level. (See structure
chart, Figure 36.)

When the conversion has been completed
and the data item assigned to the list
item, the input director «calls the 1I/0
package again. At +this stage, the I/O
routine tests for the TRANSMIT condition,
and, if necessary, calls IHEERR, to specify
that the TRANSMIT condition is active, and
that the format item transmitted is there-
fore suspect. In addition, any VDA that
has been allocated is freed.

Qutput: A call is made to the library 1I/O
package to obtain an address for the exter-
nal data item. If the w bytes specified
can be satisfied within the current buffer,
the address of the current buffer pointer
is returned; if not, a VDA is obtained and
the address of this dynamic storage is
passed Dback. The source DED is then
inspected and a call is made to the first
subroutine in the conversion package to
perform conversion.

After assignment of the data item to a
buffer area or VDA, a call to the appropri-
ate I/0 routine is made from- the output
director. If a VDA was used, the output
field is split off into the appropriate
buffers and the dynamic storage released.

For both input and output, control is
finally returned to compiled code.

List- and Data-directed Input/OQutput

The total set of conversions regquired by
list/data-directed I/0 is shown in Figure
38.

Since all the conversions represented
deal with change of data from one internal
representation to another, the conversion
package is fully capable of performing the
conversion for list/data-directed I/0. The
type conversions are fully defined in the
PL/I language and the modules that imple-
ment them are given below. Some examples
of list/data-directed I/0 are included in
IBM System/360 Operating System: PL/I (F)
Programmer's Guide.

76

MODE CONVERSIONS

Since data may be declared COMPLEX, and
complex values may be written or read by
list-directed and data-directed input and
output, or by the ¢ format item, two
routines are provided to facilitate conver-
sions of mode during I/0 editing and during
conversions between internal arithmetic and
string data.

TYPE CONVERSIONS

Four director routines are provided to
control the flow which enables changes
between data of type string and data of
type arithmetic, as required by the PL/I
language. These routines are used by
list-, edit- and data-directed I/0 and in
some internal conversions.

| K T 1
| | TO:]
| T s
| |Arithmetic]| String |
| | pommmmm -y

| | | Bit |Character|
b - e
| FROM: | | | [
| N | | |
| Arithmetic| - | IHEDNB | IHEDNC |
i | | | |
Bit string	IHEDBN	-	-
Character	IHEDCN	-	-
string			
L 1 —_— 4L PSS IS |

Figure 39. Modules for Type Conversions

STRING CONVERSIONS

A set of generalized interpretive rout-
ines is provided to support the possible
string conversions and assignments that may
exist. Each module interrogates source and
target information contained in the string
dope vectors and DEDs in order to handle
truncation, padding, and alignment for
fixed and varying strings. Figure 39 shows
the modules provided; it should be noted
that there is no difference between a
source character string with a picture and
one without, as once the data has been
checked into the source field, no further
use is made of the picture.

1

| | TO: , I
| pomm- T -—-

| | Bit |Character|Character with]
| | I |picture |
- } $ t {
| FROM: | | | |
| | | | |
|Bit | THEVSA| IHEVSB | THEVSF |
| | | |
{Character|IHEVSD| IHEVSC | IHEVSE |
L — 1 ———— L d

Figure 40. Modules for String Conversions

ARITHMETIC CONVERSIONS

A direct routine THEVQA converts
floating-point data to fixed-point binary,
in order to provide fast processing of this

frequently used routine. Normally, how-
ever, all conversions (including this one)
are dealt with by the library conversion

package.

This package carries out editing and
conversions for all type arithmetic source
fields which have type arithmetic target
fields. It also handles conversions of
format items and constants, which are char-
acter representations of arithmetic type
data. The flow control through this sub-
package is achieved by the arithmetic con-
version director described below.

The method employed is to use an inter-
mediate form of representation according to
the form of the source data and to relate
this intermediate form to the target data,
either by direct conversion or by use of a
second intermediate form (which implies
radix change). The two intermediate forms
in use are:

1. Packed decimal intermediate (PDI)
This consists of 17 digits and a sign,
together with a one-word scale factor
(WSCF) in binary representing powers of
ten.

2. Long floating-point intermediate (FPI)

This is the standard internal form, and
consists of 14 hexadecimal digits.

The 1logical flow +through the package is
shown in Figure 41.

The arithmetic conversion director
(IHEDMA) links together the modules

required for a particular arithmetic con-
version. It is called either directly by
compiled code or by other director rout-

ines. The flag bytes in the source and
target DEDs are interrogated to determine
which modules are required for the current
conversion and their order of execution.
The 1library communication area is used to
record information required by successive
modules as follows:

WBR1 Address of entry point of second
module

WBR2 Address of entry point of third
module (if required)

WRCD Target information

The conversion director then passes con-
trol to the first module in the chain; the
first transfers control to the second, and
so on until the conversion is complete.
The last module returns to the program
which called the conversion director. All
the modules which can be first in the chain
set up by the conversion director use the
source parameters passed to this director.

The first conversion 1is always to the
intermediate form of the same radix as the
source. The results are stored 1in the

following LCA fields:
WINT Binary results

WINT Decimal results
WSCF

Three modules in the arithmetic package
deal with Gata on the external medium. Two
modules handle the output of F and E format
items from packed decimal intermediate for-
mat, and the third provides conversion from
For E format items +to packed decimal
intermediate format. The LCA fields used
for these modules are:

WFED A(FED) at input

WFDT A(FED) at output

WSWA Switches

WSWC

WOCH A(Error character): for ONCHAR

built-in function

WOFD Dope vector for ONSOURCE built-in

function

DATA CHECKING AND ERROR HANDLING

Checking is carried out on data on the
external medium for edit-, data- and 1list-
directed input and on internal data items
taking part in conversions.

Chapter 8: Data Processing Routines 77

R
|

|
|

Arithmetic

——{ CONVersSionjfm—mme— e e o

[T = =TT ome——— -- - 1
| | director | |
l | I 1 b 4 | B | l
| | sterling | VKC i | |
t—>|numeric field|<————m—m——mm——o 1 fm————————————— { Binary | <=—4
1 1 | VKG | | VPG | constant |
|l 4 |] R | |
! | | [
I 1 | | pmm—mmmmm oo v
| | Decimal | VKB | | VPB | Binary | |
|->|numeric field|< —— q b ——————> fixed | <——14
1 | data] VKF | | VFD | data | |
| b ¥ | | b e |
l v v |
B e T St —— T 1 |
| | Decimal | VPF | Library | vpa | Library | |
F->1 fixed | <===—= >|packed decimal |<—--—- >]floating-point| |
| data] VPD | intermediate | VFA | intermediate |]
[J P 1 L _— i |
| A A |
| r—————————— 1 | [—— T oo ————— |
| | F format i VPE | | VFC | Floating- |
->| character 1< - i R >] point |<-—1
| | string | vVPB | | VFE | data | |
|l J I I I d |
| | | |
| pmmmmmmmmm e 1 | | mmrmmmmmememy
| | E format | VPE | | | Bit string |
L_>| character 1< - 1 D >| constant | <==1
| string | VEC VPH | |
.] b 4

Note: The three-letter names, e.g., VKC, are the last three letters of the module name. A
name above the flow lines indicates a conversion from left to right; a name below
the line indicates a conversion from right to left.

Figure 41.

Edit Directed

All data described by a
matched against the
When a P format item is
checking 1is performed by one of three
ricture check routines (decimal, sterling,
and character) which 1is <called by the
appropriate input director.

picture is
picture description.
read in, this

F/E format items are checked against the
format element descriptor (FED). The vali-
dity of the characters in the data item is
investigated prior to conversion to packed
decimal intermediate format.

If B format items are assigned 1in the
target DED to a bit string, the items are
checked in the character-to-bit module.
Otherwise, a pre-scan within the B format
input director checks that all characters
in the string are either zero or one.

If A format or B format is specified on

input without a w specification, the com-
piled code calls IHEDIL (illegal-input for-

78

Structure of the Arithmeric Conversion Package

mat director). This routine calls the
execution error package, passing an error
code. This causes a message to be printed
and the ERROR condition to be raised.

List/Data-Directed

Within the conversion package, the con-
stants which are converted to arithmetic
are checked in the appropriate internal
conversion modules.

Decimal constants are converted by the
F/E-to-PDI routine and are therefore
checked by that routine as above.

Binary constants are checked prior to
conversion to floating-point intermediate.

Bit string constants are checked prior
to conversion to floating-point intermedi-
ate.

Internal Conversions

Checking of data is
following:

provided for the

1. Character string to arithmetic.
2. Character string to bit string.
3. Character string to pictured character

string.

4. Bit string to character

string.

pictured

In cases 1 to 3 above, 1if an invalid
character is found the CONVERSION condition
is raised; in case 4, the ERROR condition
is raised.

When CONVERSION is raised, an error code
is passed to IHEERR. The error code passed
depends:

1. On the type of operation (internal,
1/0, or I/0 with TRANSMIT condition
raised).

2. On the various formats and conversions
involved. These consist of:

F format

E format

B format

Character string to arithmetic

Character string to bit string

Character string to pictured charac-
ter string

P format
sterling)

(decimal, character and

Different ONCODE values are set for each,
and may ke interrogated in an on-unit
provided for the CONVERSION condition. If
the condition is associated with I/0, it is
also possible that a TRANSMIT condition may
be active. This <can be tested in the
on-unit for CONVERSION. A list of ONCODE
values is given in IBM System/360 Operating
System: PL/I (F) Programmer's Guide.

The conversion package routines set the
following information before invoking the
execution error package:

WOFD Dope vector for field scanned
WOCH Address of character in error
IHEQERR Value of the error code. For

I/0 editing, a 1 bit is set 1in

bit zero.

Bits 12 to 15 are set according

to the conversion being per-

formed. (See Figure 42.)
e it b A 1
| Conversion | Code
e —— S B s
F format	1
E format	2
B format	3
Character string to	4
arithmetic	
Character string to	5
] bit string	
Character string to	6
pictured character string	
P format (decimal)	7
P format (character)	8
P format (sterling) 9]	
L _— SRR T — J

Figure 42. Conversion Code Set in IHEQERR

In addition to the occurrence of the
CONVERSION error, the SIZE condition can
also occur in the conversion package. Once
again, a distinction is made between inter-
nal conversions and conversions involving
the external medium. In the latter case,
bit zero in IHEQERR is again set to one.

In certain cases an illegal conversion
may be requested or an invalid parameter
may be passed to a conversion routine. In
these cases the conversion package calls
the error-handling subroutine, having set
register RA to point to an error code.
This causes a message to be printed which
describes the error found; the error-
handling subroutine then raises the ERROR
condition.

If a CONVERSION error occurs, the
program can proceed in three ways:

1. If system action is specified, a mes-
sage will be printed and the ERROR
condition raised.

2. If CONVERSION is disabled, the conver-
sion will continue, ignoring the char-
acter in error.

3. If an on-~unit exists, it will be
entered. If the on-unit returns con-
trol to the conversion routines, they
will assume that either the ONCHAR or
ONSOURCE pseudo-variable has been used
to correct or replace the character or
field in error, and will automatically
retry the conversion.

Note: If +the pseudo-variables have not
been used to correct the error, and if the
on-unit attempts +to return control to the
conversion, a message will be printed and
the ERROR condition raised.

Chapter 8: Data Processing Routines 79

COMPUTATIONAL SUBROUTINES

Computational subroutines within the
PL/I Library supplement compiled code in
the implementation of operators and func-
tions within four main groups. These
groups are:

1. String handling
2. Arithmetic evaluation
3. Mathematical functions
4, Array functions
In addition to the description provided
in this document, detailed information on
algorithms and performance is published in
IBM System/ 360 Operating System: PL/I

Subroutine Library: Computational Subrout-
ines.

A number of error and, exceptional condi-
tions not directly covered by PL/I-defined
ON conditions may occur in these subrout-
ines. 1In these cases, a diagnostic message
is printed and the ERROR condition raised.
By use of the ONCODE built-in function, the
cause of interrupt may be ascertained in an
ERROR unit and appropriate action may be
taken. A 1list of the error messages and
ONCODEs is given in IBM System/360 Operat-
ing System: PI/I (F) Programmer's Guide.

When an aggregate of data items is being
processed, the indexing through the aggre-
gate is achieved by in-line code, as the
library routines generally handle indivi-
dual elements only. The array functions,
however, perform their own indexing, so
that only a single call from compiled code
is made.

For modules handling data in coded form,
character six of the module name indicates
the type of data concerned; the meanings of
this character are given in Figure u3.

[}
|
|
-

r T

| Data | Character |
—-- e 1
| | Real or |
| Internal form | Real Complex Complex |
k ——-1 1
| Binary | B U I
Packed decimal	D v
Binary or	
packed decimal	F X
Short float	s W G
Long float	L Z H
L L e J
Figure 43. Relationship of Data Form and

Sixth Character of Module Name

80

STRING OPERATIONS AND FUNCTIONS

The 1library string package contains
modules for handling both bit and character
strings. Generally, 1individual modules
handle a particular function or operation
for bit or for character string; in the
interests of efficiency however, additional
modules are provided to deal with byte-
aligned data for some of the bit string
operations.

The functions LENGTH and UNSPEC are
handled directly by compiled code; support
for BIT and CHAR is provided in the library
conversion package.

Linkage to the string subroutines is by
means of the operating system standard for
the functions SUBSTR, INDEX and BOOL, and
by the PL/I standard for all others. The
functions REPEAT, HIGH, and LOW use the
PL/I standard as they are implemented as
entry points to the concatenation and
assign/fill routines.

The address and the maximum and current
lengths of a string are passed to 1library
modules by means of string dope vectors.
All string lengths supplied in SDVs are
assumed to be valid non-negative values;
unpredictable results will ensue if this
condition is not satisfied.

Conversions (e.q. of decimal integers
into binary integers for functions such as
REPEAT) and evaluation of expressions are
handled by the compiler, which 1is also
responsible for recognising instances of
byte-alignment which are suitable for the
byte-aligned bit functions providegd.

The general design of the string package
is influenced by the concept that complete
evaluation of the right-hand side of an
assignment statement occurs before the
assignment. In this evaluation, there is
usually an intermediate stage in which a
partial result is placed in a field acting
as a temporary result field. This does not
prevent the compiler from optimizing by
providing the actual target field of the
assignment as the temporary result field,
subject to the following conditions:

1. If the target field is the same as a
field involved in expression evalua-
tion, an intermediate area is required
to develop the result (unless other-
wise stated in the module description
summaries). For example, A= B || A
requires an intermediate field, but A
= A & B does not.

[m———————

r T T T h
PL/I	PL/I	Bit String	Character	
Operation	Function	- T { String		
		General	Byte-aligned	
b - === 4 ooy				
And I -	Use BOOL	IHEBSA	-	
or	-	Use BOOL	IHEBSO	-
Not	-	Use BOOL	IHEBSN	- I
Concatenate	REPEAT	IHEBSK	-	IHECSK
Compare	-	IHEBSD	IHEBSC	IHECSC
Assign l -	IHEBSK	IHEBSM	IHECSM	
Fill	-	IHEBSM	-	IHECSM
-	HIGH/LOW	-	-	IHECSM
-	SUBSTR	IHEBSS	-	IHECSS
-	INDEX	IHEBSI	-	IHECSI
-	BOOL	IHEBSF	-	-
L P I - L B P, J
Figure 44. String Operations and Functions

-1

| ARITHMETIC OPERATIONS |

"--—— . T . - T-—_—T--_ ——--—_—_T_'—_——_-—{
| Operation | Binary | Decimal| Short | Long |
| | fixed | fixed | float | float |
}_ ———— e e e e e e o e e o e e e e e 1 L L _______L___________!
| Real Operations |
% - i R T T T .=
Integer exponentiation: x**n	IHEXIB	IHEXID	TIHEXIS	IHEXIL
General exponentiation: x**y	-	-	THEXXS	IHEXXL
shift-and-assign, Shift-and-load	-	IHEAPD	-	-
‘, e e e e e e e e e e e —Ll— 1 1 L ——				
Complex Operations				
d - - . T——~ - T {				
Multiplication/division: z,*z,, z4/z,	IHEMZU	IHEMZV	-	-
Multiplication: z,*z,	-	-	IHEMZW	IHEMZZ
Division: z4/z,	-	B	IHEDZW	IHEDZZ
Integer exponentiation: z*#*n	IHEXIU	IHEXIV	IHEXIW	IHEXIZ
General exponentiation: z,**z,	-	-	IHEXXW	IHEXXZ
L 1 L L	5 S			
! - a1				
ARITHMETIC FUNCTIONS				
et S B 1 1				
Function	Binary	Decimal	Short	Long
	fixed	fixed	float	float
% 1 - 1 A {				
Real Arguments				
lf T v T T 1‘				
MAX, MIN	IHEMXB	IHEMXD	IHEMXS	IHEMXL
ADD	-	IHEADD	-	-
IL L 1 1 L ‘1				
Complex Arguments				
fm—===mmm g -—- —" v !				
ADD	- ! IHEADV	-	-	
MULTIPLY	IHEMPU	IHEMPV	-	-
DIVIDE	IHEDVU	IHEDVV	-	-
ABS	IHEABU	IHEABV	IHEABW	IHEABZ
L i R |, i 4
Figqure 4S5 Arithmetic Operations and Functions

Chapter 8: Data Processing Routines

81

2. Padding of fixed-length strings does
not occur automatically when a string
operation is performed, except in the
case of assignmment of fixed-length
character strings and fixed-length
byte-aligned bit strings. Separate
routines are available for padding.

ARITHMETIC OPERATIONS AND FUNCTIONS

Library arithmetic modules provide sup-
port for all those arithmetic generic func-
tions and operations for which the F level
compiler neither generates in-line code nor
(as for the functions FIXED, FLOAT, BINARY,

and DECIMAL) uses the library conversion
package.
Linkage between compiled code and the

arithmetic modules is established by means
of the operating system standard for the
functions supported and by means of the
FL/I standard for the operators supported.
The module description summaries provide
information about 1linkage +to individual
modules.

Fixed-point data often require data ele-
ment descriptors (DEDs) to be passed in
order to convey information about precision
(p, Q. Binary data is always assumed to
be stored in a fullword correctly aligned,
with 0 < p < 31. Decimal data is always
assumed to be packed in FLOOR (p/2) + 1
bytes, where 0 < p £ 15. Where such fields
introduce high-order digits beyond the
specified precision, these digits must not
e significant.

In decimal routines, the target area is
assumed to be of the correct size to
accommodate the result precision as defined
by the language.

Where assignment to a smaller field is
required, the compiled code should generate
an intermediate field for the result and

subsequently make the assignment. This
does not apply to ADD, MULTIPLY and DIVIDE
with fixed-point decimal arguments, which
perform the assignment themselves. Such
action by compiled code avoids much unne-
cessary object-time testing and enables a
clear distinction to be made between SIZE

and FIXEDOVERFLOW conditions.

Floating-point arguments are assumed to
be normalized in aligned fullword or dou-
bleword fields for short or long precision
respectively; the results returned are sim-
ilarly normalized.

82

MATHEMATICAL FUNCTIONS

The library provides subroutines to deal
with all float arithmetic generic functions
and has separate modules for short and long
precision real arguments, and also for
short and long precision complex arguments
where these are admissible.

Linkage to all mathematical subroutines
is by means of the operating system stand-
ard.

Where evaluation or conversion of an
argument 1s necessary, this is done prior
to the invocation of the 1library module.
Hence, all arguments passed to the mathema-
tical subroutines must be of scale FLOAT.
As such, it is assumed that the arguments
are normalized in aligned fullword or dou-
bleword fields for short or long precision

respectively. The results returned are
normalized similarly.
— e 1
| Real Arguments |
t -—- T G
| | Short | Long |
| Function | float | float |
b= e e pommmmmme
SQRT	IHESQS	IHESQL
EXP	IHEEXS	IHEEXL
LOG,LOG2,L0G10	IHELNS	IHELNL
SIN, €OS,SIND,COSD	IHESNS	IHESNL
TAN, TAND	IHETNS	IHETNL
ATAN, ATAND	THEATS	IHEATL
SINH, COSH	THESHS	IHESHL
TANH	IHETHS	IHETHL
ATANH	IHEHTS	IHEHTL
ERF, ERFC	IHEEFS	IHEEFL
L e e - L Lo J		
s		
Complex Arguments		
e S 1		
	Short	Long
i Function	float	float
pmmmmmm - — fommmmme		
SORT	IHESQW	IHESQZ
EXP	THEEXW	IHEEXZ
LOG	IHELNW	IHELNZ
SIN,COS,SINH,COSH	IHESNW	IHESNZ
TAN, TANH	IHETNW	IHETNZ
ATAN, ATANH	IHEATW	IHEATZ
L PR . Lo 4
Figure 46. Mathematical Functions
ARRAY FUNCTIONS

The library provides support for com-

piled code in the implementation of the
PL/I array built-in functions SUM, PROD,
POoLY, ALL, and ANY. Calls to array func-

tion modules are by means of the operating

system standard; the indexing routines,
which are used internally by the library,
use the PL/I standard calling sequence.

In all cases, the source arguments are
arrays and the function value returned is a
scalar. The evaluation of this function
value requires only one call from compiled
code, 1indexing through +the array being
handled internally within the library.

In the interests of efficiency, two sets
of modules are provided: those which deal
with arrays whose elements are stored con-

tiguously (simple arrays), and those which
also deal with arrays whose elements are
not .in contiguous storage (interleaved
arrays).

In order to deal with array element

addressing, the library modules require an

(ADV or SADV) +to be
argument. The format of these
is described in Appendix H.
The number n, the number of dimensions of
the array, is required in addition to the
ADV or SADV, and is passed as a separate
argument.

array dope vector
passed as an

dope vectors

The PL/I language requires that the
scalar values resulting from the use of the
array functions, SuM, PROD, and POLY,
should be floating~point. Since the
library modules are addressing each array
element successively, the necessary calls
to the conversion routines (to change scale
from FIXED to FLOAT) are made from the SUM,
PROD, and POLY modules which have fixed-
point arguments. In the case of ALL and
ANY functions, it 1is expected that any
necessary conversion to bit string will be
carried out before the library is invoked.

r——— =T T 1
	Simple arrays, and	Interleaved string
	interleaved arrays ' of	arrays with fixed-
	variable-length strings	length elements
1

-—- : ——- -4 -—
| Indexers | IHEJXS | ITHEJXI |
| ALL, ANY | IHENL1 | IHENL2 |
| I 1 e e e e e e e e o0 e e o e § . . J
Note: IHEJXI is also wused for indexing

through interleaved arithmetic arrays

r - T - -T ————m——m
| PL/I | Fixed - point | Floating-point arguments

| functions | arguments b————- T— ————
| | | short precision | Long precision |
| pommmom $--- T T SOt
| | Simple |Interleaved| Simple |Interleaved| Simple |Interleaved]
L [] L i I 1 _,___+______-____+_'___________
r T) T]

| SUM real | IHESSF | IHESMF | IHESSG | IHESMG | IHESSH | IHESMH (
| complex | IHESSX | IHESMX | IHESSG | IHESMG | IHESSH | IHESMH |
I | - | | | | |
| PROD real | IHEPSF | IHEPDF | THEPSS | IHEPDS | IHEPSL | THEPDL |
| complex | IHEPSX | IHEPDX | IHEPSW | THEPDW | IHEPSZ | IHEPDZ |
| b S + L ————t— 1
| POLY real | IHEYGF | IHEYGS | THEYGL |
| complex | IHEYGX | THEYGW | IHEYGZ]
1 L - [N —— - PRI |

Figure 47. Array Indexers and Functions

Chapter 8: Data Processing Routines 83

CHAPTER 9: MODULE SUMMARIES

This section provides information about
individual modules of the PL/I Library. It
serves as an introduction to the more
detailed accounts given in the prefaces to
the program listings. A brief statement of
function is given; alsd provided are full
specifications of linkage and inter-modular

dependency. Since many 1library modules
invoke the execution error package
(IHEERR), no reference is made to this

module in the "Calls' section. Appendix G
gives the lengths of the modules and
indicates their 1locations (SY31.PL1LIB or
SYs351.LINKLIB).

CONTROL PROGRAM INTERFACES

The 'calls' and ‘Called by' sections
include the use of the LINK and XCTL macros
to pass control.

DATA PROCESSING

All integral values specified in the
'Linkage' section of the module description
will be represented internally as fullword
binary integers. Target fields will also
be fullwords unless otherwise specified or
implied (for example, for long floating-
point results).

When FIXED data is passed to the
library, a DED is associated with it in the
linkage. 1In cases where the DED 1is not
interrogated, the appropriate entry in the
'Linkage' section is marked with an aster-
isk.

Complex arguments are assumed to have

real and imaginary parts stored next to
each other in that order, so that the
address of the real part suffices for both

of them.
same DED.

Both parts are described by the

I/0 Editing and Data Conversions

Target fields may, if desired, be over-
lapped with source fields in all cases
except IHEVSA, IHEVSB, IHEVSC, TIHEVSD,

IHEVSE, and IHEVSF.

84

Strings: A source string field may coin-
cide with a target string field in the
modules listed in Figure 48. It should be
noted +that use of the same address for the
dope vectors of source string and target
string is not generally permitted, even
though the string fields themselves may be
overlapped. The exceptions to this are the
entry points TIHEBSKK and IHECSKK, where a
considerable saving of time can be obtained
by using the same address for both the
first source and target SDVs.

r—— S i 1
| | Sources/target coincidence |
| f————————————— Rt 8!
| Module | First source |Either source |
| | £field only | field |
et S - 1
TIHEBSA	Yes	-
IHEBSO	-	Yes
IHEBSK	Yes [-	
IHEBSM	Yes] - i	
IHEBSF	- I Yes	
IHECSK	Yes	-
IHECSM	Yes	-]
L L 1 J
Figure 48. Coincidence of Source and Tar-

get Fields in some String

Modules

The first byte of the result produced by
the comparison modules IHEBSC, IHEBSD, and
IHECSC contains:

Bits Contents
0 to 1 Instruction length code 01
2 to 3 Condition code as below
4 to 7 Program mask (calling routine)

The condition code is set as follows :
00 strings equal

01 First string compares low at first
inequality

10 First string compares high at first
inequality

Arithmetic: Target fields may, if desired,
be overlapped with source fields in all
cases except IHEXIU, IHEXIV, IHEXIW, IHEX-
Iz, THEXXL and IHEXXS.

Mathematical: Target fields may, if
desired, be overlapped with source fields
in all cases except IHEEFL, IHEEFS, IHELNW,
IHELNZ, IHESQW and IHESQZ.

MODULE SUMMARIES

IHEABU
ntry point: IHEABUO
Function:

ABS(2),
binary.

where 2z is complex fixed-point

Linkage:
RA: A(Parameter list)
Parameter list:
A(z)
*A(DED for 2z)
A (Target)
*A (Target DED)

Called by: Compiled code
IHEABV
Entry point: IHEABVO

Function:

fixed-point

ABS (z), where z |is

decimal.

complex

Linkage:

RA: A(Parameter list)
Parameter list:
A(z)
A(DED for z)
A(Target)
A(Target DED)

Called by: compiled code

IHEABW
Calls: IHESQS
Entry point: IHEABWO
Function:
ABS(z), where z is complex short

floating-point.
Linkage:
RA: A(Parameter list)
Parameter list:
A(z)
A(Target)
Called by: Compiled code, IHESQW
IHEABZ
Calls: IHESQL

Entry point: IHEABZO

Function:
ABS(z),
point.

Linkage:
RA: A(Parameter list)
Parameter list:

A(z)
A(Target)

Called by: Compiled code, IHESQZ

IHEADD
Calls: THEAPD

Entry point: IHEADDO

Function:

ADD(x,Y,P,q), where
fixed-point decimal,
target precision.

x and y are
and (p,q)

Linkaqge:

RA: A(Parameter list)
Parameter list:

Alx)

A(DED for x)

A(y)

A(DED for y)

A(Target)

A(Target DED)

Called by: Compiled code, IHEADV

IHEADV
Calls: IHEADD

Entry point: IHEADVO
Function:

are
(p,q)

ADD(w,z,p,q), where w and z
fixed-point decimal, and
target precision.

Linkage:

RA: A(Parameter 1list)
Parameter list:

A(w)

A(DED for w)

A(z)

A(DED for z)

A(Target)

A(Target DED)

Called by: Compiled code

Chapter 9: Module Summaries

when z is complex long floating-

real

is the

complex
is the

85

IHEAPD

Entry point IHEAPDA

Function:

To assign x to a target with precision

(p2r 92), Where x is real fixed-point
decimal with precision (py, q;), and p,;
< 31.

Linkage:
RA: A(X)

RB: A(DED for x)

RC: A(Target)

RD: A(DED for target)

IHEMPV

Called by: IHEADD, IHEDVV,

Entry point IHEAPDB

Function:
To convert x to precision (31,q;),
where x 1is real fixed-point decimal
with precision (p;, qi), and py < 31.
Linkage: As for IHEAPDA
Called by: IHEADD, IHEDDV
IHEATL

Entry point IHEATL1

Fuanction:

ATAN(x), where x is real long floating-
point.

Linkage:
RA: A(Parameter list)
Parameter list:
A(x)
A(Target)
Called by: Compiled code

Entry point IHEATLZ2

Function:

ATAN(y,x), where x and y are real 1long
floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:
Aly)
A(x)
A(Target)
IHELNZ

Called by: Compiled code, IHEATZ,

86

Entry point IHEATL3

Function:

ATAND(x), where X is real

floating-point.

long

Linkage:
RA: A(Parameter list)
Parameter list:
A(x)
A(Target)
Called by: Compiled code

Entry point IHEATLU

Function:

ATAND(y,x), where x and y are real long
floating-point.

Linkage:
RA: A(Parameter list)
Parameter list:
A (y)
A(x)
A(Target)
Called by: Compiled code
IHEATS

Entry point IHEATS1

Function:

ATAN(x), where X is real short

floating-point.
Linkage:
RA: A(Parameter list)
Parameter list:
A (x)
A(Target)
Called by: Compiled code

Entry point IHEATS2

Function:

ATAN(y,x). where x and y are real short
floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:
aly)
a(x)
A(Target)
IHELNW

Called by: Compiled code, IHEATW,

Entry point IHEATS3 IHEATZ

Function: Calls: IHEATL, IHEHTL
ATAND(x), where x is real short
floating-point. Entry point IHEATZN
Linkage: Function:
RA: A(Parameter list) ATAN(z), where 2z is complex long
Parameter list: floating-point.
A(x)
A(Target) Linkage:
Called by: Compiled code RA: A (Parameter list)
Parameter list:
Entry point IHEATSH A (z2)
A (Target)
Function:

Called by: compiled code
ATAND(y,x), where x and y are real

short floating-point. Entry point IHEATZH
Linkage: Function:
RA: A(Parameter list) ATANH (2), when 2z 1is complex 1long
Parameter list: floating-point.
A(y)
A(x) Linkage:
A(Taxget)
RA: A (Parameter list)
Called by: Compiled code Parameter list:
A (z)
IHEATW A (Target)
Calls: IHEATS, IHEHTS Called by: Compiled code
Entry point IHEATWN
THEBEG
Function:
Calls:
ATAN(2Z), where 2z is complex short
floating-point. Supervisor (LINK, GETMAIN, FREEMAIN),
THETOM

Linkage:
Entry point THEBEGA

RA: A(Parameter list)

Parameter list: Function:
A(z) ,
A(Tarxget) Links to IHETOM to issue a WTO macro
insruction if the PRV is longer than
Called by: Compiled code 4096 bytes.
Entry point IHEATWH Linkage: None
Function: Called by: IHESA, IHETSA

ATANH(z), where =z 1is complex short Entry point IHEBEGN
floating-point.

Function:

Linkage:
Links to IHETOM to issue a WTO macro
RA: A(Parameter list) instruction if the program dJdoes not
Parameter list: have a main procedure.
A(z)
A(Target) Linkage: None
Called by: Compiled code Called by: IHESA, IHETSA

Chapter 9: Module Summaries 87

IHEBSA

Entry point: IHEBSAO

Function:
AND operator (§) for two byte-aligned bit
strings.
Linkage:
RA: A(SDV of first operand)
RB: A(SDV of second operand)
RC: A(SDV of target field)

Called by: Compiled code, IHENL1, IHENL2

IHEBSC

Entry point: IHEBSCO

Function:

To compare two byte-aligned bit strings.

Linkage:
RA: A(SDV of first operand)
RB: A(SDV of second operand)
RC: A(Target)

Called by: Compiled code

IHEBSD

Fntry point: IHEBSDO

Function:
To compare two bit strings with any
alignment.
Linkage:
RA: A(SDV of first operand)
RB: A(SDV of second operand)
RC: A(Target)

Called by: Compiled code

IHEBSF
Entry point: IHEBSFO
Function:
BOOL (Bit string, bit string, string n,

N, Na Ngd.

88

Linkage:
RA: A(Parameter list)
Parameter list:
A(SDV of first source string)
A(SDV of second source string)
A(Fullword containing bit pattern
ny n, right justified)
A(SDV of target field)
Called by: Compiled code,IHENL1,IHENL
IHEBSI
Entry point: IHEBSIO
Function:
INDEX (Bit string, bit string).
Linkage:
RA: A(Parameter list)
Parameter list:
A(SDV of first source string)
A(SDV of second source string)
A(Target field)
Called by: Compiled code
IHEBSK

Entry point IHEBSKA

Function:

To assign a bit string to a
field.

Linkage:

RA: A(SDV of source string)
RB: A(SDV of target field)

Called by: Compiled code

Entry point IHEBSKK

Function:

Concatenate operator (]|) for
strings.

Linkage:
RA: A(SDV of first operand)
RB: A(SDV of second operand)
RC: A(SDV of target field)
Called by: Compiled code

Entry point THEBSKR

Function: REPEAT (Bit string,n).
Linkage:

RA: A(SDV of source string)

ng ng

2

target

bit

RB: A(n)
RC: A(SDV of target field)

Called by: Compiled code
JHEBSM

Entry point IHEBSMF

Function:

To assign a byte-aligned bit string to
a byte-aligned fixed-length target.

Linkage:

RA: A(SDV of source string)
RB: A(SDV of target field)

Called by: Compiled code

Entry point IHEBSMV

Function:

To assign a byte-aligned bit string to
a byte-aligned VARYING target.

Linkage: As for IHEBSMF
Called by: Compiled code

Entry point IHEBSMZ

Functionzs

To £ill out a bit
current length to its
with zero bits.

string from its
maximum length
Linkage: RA: A(SDV)
Called by: Compiled code
IHEBSN
Entry point: IHEBSNO
Function:

NOT operator (,4) for a byte-aligned bit

string.
Linkage:

RA: A(SDV of operand)
RB: A(SDV of target field)

Called by: Compiled code
IHEBSO
Entry point: IHEBSOO

Function:

OR operator (|) for two byte-aligned bit
strings.

Linkage:
RA: A(SDV of first operand)
RB: A(SDV of second operand)
RC: A(SDV of target field)

Called by: Compiled code, IHENL1, IHENL2

IHEBSS

Entry point IHEBSS2

Function:

To produce an SDV describing the
pseudo-variable or function SUBSTR (Bit
string, i).

Linkage:

RA: A(Parameter list)
Parameter list:
A(SDV of source string)
A (i)
Dummy argument
A(Field for target SDV)

Called by: Compiled code

Entry point IHEBSS3

Function:

To produce an SDV describing the
pseudo-variable or function SUBSTR (Bit
string, i,).

Linkage:
RA:A(Parameter list)
Parameter list:
A(SDV of source string)
A (1)
A(P
A(Field for target SDV)
Called by: Compiled code
IHECFA
Entry point: IHECFAA
Function:
ONLOC: Locates the BCD name of the proce-
dure that contains the PL/I interrupt
that caused entry into +the current on-
unit. If ONLOC is specified outside an
on~-unit, a null string is returned.
Linkage:

RA: A(Parameter list)
Parameter list: A(Target SDV)

Called by: Compiled code

Chapter 9: Module Summaries 89

IHECFB
¥ntry point: IHECFBA
Function:
ONCODE: Returns a value corresponding to
the condition which caused the interrupt.
If specified outside an on-unit, a unique
code (0) is returned.
Linkage:
RA: A(Parameter list)
Parameter list:
A(4-byte word-aligned target)

Called by: Compiled code

ITHECFC

Entry point: IHECFCA

Function:
ONCOUNT: Returns a value equal to the
number of PL/I conditions and program
2xceptions, including the current one,
that have yet to be processed. A zero

value is returned if:

1. ONCOUNT is
or

used outside an ON unit,

2. ONCOUNT is used in an ON unit entered
because of a precise interrupt or a
single imprecise interrupt

(This built-in function is used in
connection with the Model 91 option)

Linkage:
RA: A(Parameter list)
Parameter list:
A(4-byte word-aligned target)
Called by: Compiled code
IHECKP
Calls: Supervisor
Entry point: IHECKPT
Furction:
To call the control program checkpoint
facility to save main storage areas and
control information so that the job
step may be restarted from the check-
point.
Linkage: None
Called by:

Compiled code(CALL IHECKPT statement)

90

ITHECLT

Calls:
IHESA, Supervisor (CLOSE, DCBD, DELETE,
FREEMAIN, FREEPOOL, RETURN)

Entrvy point IHECLTA

Function:
Close files:
1. Free FCB.
2. Set file register to zero.
3. Remove file from IHEQFOP chain.

4, Delete interface modules loaded for
record-oriented 1/0.

5. Purge outstanding I/0 events,
ting event variables
abnormal, and inactive.

set-
complete,

Linkage:

RA: A(Parameter list)
Parameter list:
A(CLOSE parameter list)
A (Private adcons)

CLOSE parameter list:
A(DCLCB,)
(Reserved)
(Reserved)

A (DCLCBp)

(Reserved)

(Reserved)

(High-order byte of 1last argument

indicates end of parameter list)
Called by: IHEOCL

Entry point IHECLTB

Function:

To close all files task is

terminated.

when a

Linkage:

RA: A(Parameter list)

Parameter list:
F(number of files to be closed*y)
A(Adcon list)
A{l1lst FCB)

A(nth FCB)
(High-order byte of last argument
indicates end of parameter list.)

Called by: IHEOCL
IHECNT

Intry point THECNTA

Function:

Returns count of scalar items transmit-

ted on last I/0 operation.

Linkage:

RA: A(Parameter list)

Parameter list:
A(DCLCB)
A(Fullword)

Entry point IHECNTB

Function:
Returns current line number (LINENO).

Linkage: As for IHECNTA

IHECSC

Entry point: IHECSCO

Function:

To compare two character strings.

Linkage:
RA: A(SDV of first operand)
RB: A(SDV of second operand)
RC: A(Target)

Called by: Compiled code

JHECSI

Intry point: IHECSIO

Function:

INDEX (Character

string).

string,

Linkage:

RA: A(Parameter list)

Parameter list:
A(3DV of first source string)
A(SDV of second source string)
A (Target field)

Called by: Compiled code

character

IHECSK

Entry point IHECSKK

Function:

Concatenate operator (||) for character

strings.

Linkage:
RA: A(SDV of first operand)
RB: A(SDV of second operand)
RC: A(SDV of target field)

Called by: Compiled code

Entry point IHECSKR

Function:

REPEAT (Character string, n).

Linkage:
RA: A(SDV of source string)
RB: A(n)
RC: A(SDV of target field)

Called by: Compiled code

IHECSM
Entry_point IHECSMF
Function:

To assign a character
fixed-length target.

string to

Linkage:

RA: A(SDV of source string)
RB: A(SDV of target field)

Called by: Compiled code

Entry point IHECSMV

Function:
To assign a character
VARYING target.

Linkage: As for IHECSMF

string to

Called by: Compiled code

Entry point IHECSMB

Function:

a

To fill out a character string from its

current length to
with blanks.

Chapter 9: Module Summaries

its maximum length

91

Linkage:
RA: A(SDV)
Called by: Compiled code

Entry point IHECSMH

Function: HIGH
Linkage: As for IHECSMB
Called by: Compiled code

Entry point IHECSML

Function: LOW.

Linkage: As for IHECSMB

valled by: Compiled code
IHRECSS

Entry point IHECSS2

Function:

To produce an SDV
pseudo-variable or
(Character string, 1i).

Linkage:

RA: A(Parameter list)
Parameter list:
A(SDV of source string)
A1)
Dummy argument
A(Field for target SDV)

Called by: Compiled code

Entry point IHECSS3

Function:
To produce
pseudo-variable or
(Character string, i, j).
Linkage:
RA: A(Parameter list)
Parameter list:
A(SDV of source string)
A(i)
A(3)
A(Field for target SDV)
Called by: Compiled code
IHECTT
Calls:
IHETSA, Supervisor (CLOSE, DCBD,
DEQ, FREEMAIN, FREEPOOL, RETURN)

92

describing the
function SUBSTR

an SDV describing the
function SUBSTR

DELETE,

Entry point IHECTTA

Function:

Close
ment:

files in a multitasking environ-

1. Free FCB.
2. Set file register to zero.
3. Remove file from IHEQFOP chain.

4., Delete interface modules loaded for
record-oriented I/0.

5. Purge outstanding I/O events, set-
ting event variables complete, nor-
mal, and inactive.

(i) Check that the file is in

the IHEQFOP chain for the
current task.

(ii) Free IOCBs, setting asso-
ciated EVENT variables com-
plete, abnormal, and inac-
tive.

(iii) Set EVENT variables in TEVT
chain complete, abnormal,
and inactive.

(iv) For REGIONAL EXCLUSIVE
files, or INDEXED EXCLUSIVE
files with unblocked
records, dequeue locked
records and free EXCLUSIVE
blocks in the TXLV chain.

(v) For INDEXED EXCLUSIVE files
with blocked records, unlock
the files.

Linkage:

RA: A(Parameter list)
Parameter list:
A(CLOSE parameter list)
A(Private adcons)

CLOSE parameter list:
A (DCLCB,)
A(IDENT SDV,)/0
A(IDENT DED,)/0

A (DCLCBp)

A(IDENT SDVp) /0

A(IDENT DEDp) /0

(High-order byte of 1last argument
indicates end of parameter list)

Called by: IHEOCT

Entry point IHECTTB

Function:

To close all files when a task is

terminated.
Linkage:

RA: A(Parameter list)

Parameter list:
F(number of files to be closed*l)
A(Adcon list)
A{lst FCB)

A(nth FCB)
(High-order byte of 1last argument
indicates end of parameter list)

called by: IHEOCT

THEDBN
Calls: IHEDMA, IHEUPA, IHFUPB
Entry point: IHEDBNA
Function:
To convert a bit string to an arithmetic
target with a specified base, scale,
mode, and precision.
Linkage:
RA: A(Source SDV)
RB: A(Source DED)
RC: A(Target)
RD: A(Target DED)
Called by:
IHEDOE,

Compiled code,

IHEDOM

IHEDID, IHEDOA,

IHEDCN

Calls: IHEDMA, IHEUPA, IHEUPB, IHEVQB

Entrv point IHEDCNA

Function:

To convert a character string contain-
ing a valid arithmetic constant or
complex expression to an arithmetic
target with specified base, scale,
mode, and precision. The ONSOURCE
address is stored.

Linkage:

RA: A(Source SDV)
RB: A(Source DED)
RC: A(Target)

RD: A(Target DED)
WOFD: A(Source SDV)

Called by:

compiled code, IHEDIB, IHEDCE, IHELDI
Entry point IHEDCNB
Function:
As for IHEDCNa, but the ONSOURCE

address is not stored.

Linkage:
As for IHEDCNA, but without WOFD
Called by: As for IHEDCNA
IHEDDI
Calls:
IHIIEDDJ, IHETSA

IHEIOF, IHELDI, IHESA,

Entry point IHEDDIA

Function:

To read data from an input stream and
assign it to internal variables accord-
ing to symbol table information conven-
tions. Restrictive data list.

Linkage:

RA: A(Parameter list)
Parameter list:
A(Symbol table,)

A(Symbol tablep)
(High-order byte of last argument
indicates end of parameter list.)
Called by: Compiled code

Entry point IHEDDIB

Function:
As for IHEDDIA, but no data list.
Linkage:

RA: A(Parameter list)
Parameter list: A(Symbol table chain)

Called by: Compiled code
IHEDDJ
Entry point: IHEDDJA
Function:

To compute the address of an array ele-

ment from source subscripts and an ADV.

Chapter 9: Module Summaries 93

Linkage:

RA: A(ADW)

RB: A(DED)

RC: A(Field for element address)
RD: A(Symbol table entry, 2nd part)
RE: A(SDV for subscripts)

Called by: IHEDDI

IHEDDO
Calls:
IHEDDP, IHEPRT

IHEIOF, IHELDO,

Entry point IHEDDOA

Function:

To convert data according to data-
directed output conventions and to
write it onto an output stream. For
scalar variables and whole arrays.

Linkage:

RA: A(Parameter list)
Parameter list:
A(Symbol table entry,)

A(Symbol table entryp)
(High-order byte of last argument
indicates end of parameter list.)

Called by: Compiled code

Entry point IHEDDOB

Function:

As for
elements.

IHEDDOA but for array variable

Linkage:

RA: A(Parameter list)
Parameter list:
A(Symbol table entry,)
A(Element address,)

A(Symbol table entryp)

A{Element addressp)

(High-order byte of last argument
indicates end of parameter list.)

Called by: Compiled code

24

Entry point IHEDDOC

Functicn:

To terminate data-directed transmiss—
ion.
Linkage: None
Ccalled by: Compiled code

Entry point IHEDDOD

Function:

As for IHEDDOA,
CHECK condition.

but used to support the

Linkage:

RA: A(Parameter list)
Parameter list:
A{(Symbol table entry)
A (Element address)
Called by: IHEERR

Entry point IHEDDOE

Function:
In the absence of a data 1list, to
convert all data known within a block
according to data-directed output

conventions and to write
output stream.

it onto an

Linkage:
RA: A(Parameter list)
Parameter list:
A(First symbol table entry)
called by: Compiled code
IHEDDP
Calls: IHEERR

Entry point IHEDDPA

Function:

To prepare an array for subscript out-
put operation, and to address the first
element.

Linkage:
RA: A(Field for A(VDA))

RB: A(FCB)

RC: A(Symbol table entry, 2nd part)

Called by: IHEDDO

Entry point IHEDDPB

Function: To perform subscript output.

Linkage:

RA: A(Parameter list)
Parameter list: A(VDA)

Called by: IHEDDO

Entry point IHEDDPC

Function: To address the next element.
Linkage:

RA: A(Parameter list)
Parameter list: A(VDA)
Return codes:
BR=0: Another element
BR=4: End of array

Called by: IHEDDO

Entry point IHEDDPD

Function:

To prepare an array for subscript out-
put operation for a given element.

Linkage:

RA: A(Field for A(VDA))
RB: A(FCB)

RC: A(Symbol table entry, 2nd part)
RD: A(Element)
Called by: IHEDDO
IHEDDT
Calls:
Supervisor (DEQ, ENQ), TIHEDDP, IHEIOF,

IHELDO, IHEPTT

Entry point IHEDDTA

Function:

To convert data according to data-
directed output conventions and to
write it onto an output stream. For
scalar variables and whole arrays in a
multitasking environment.

Linkage:

RA: A(Parameter list)
Parameter list:
A(Symbol table entry,)

A(Symbol table entryp)
(High-order byte of last argument
indicates end cof parameter list)

Called by: Compiled code

Entry point THEDDTB

Function:

As for IHEDDTA but for
elements.

array variable

Linkages:

RA: A(Parameter list)

Parameter list:
A(Symbol table entry,)
A(Element address,)

A(Symbol table entryp)

A(Element addressp)

(High-order byte of 1last argument
indicates end of parameter list)

called by: Compiled code

Entxy point IHEDDTC

Function:

To terminate data-directed transmission
in a multitasking environment.

Linkage: None
Called by: Compiled code

Entry point IHEDDTD

Function:

As for IHEDDTA, but used to support the

CHECK condition in a multitasking
environment.
Linkage:

RA: A(Parameter list)

Parameter list:
A(Symbol table entry)
A(Element address)

Called by: IHEERR

Entry point IHEDDTE

Function:

In the absence of a data list, to convert
all data known within a block according
to data-directed output conventions and
to write it onto an output stream in a
multitasking environment.

Linkage:
RA: A(Parameter list)
Parameter list:
A(First symbol table entry)

Called by: Compiled code

Chapter 9: Module Summaries 95

IHEDIA

Calls:
IHEDMA, IHEDNB, IHEDNC, IHEIOD, IHEUPA,
IHEUPB, IHEVCA, IHEVSA, IHEVSC, IHEVQB

Entry point IHEDIAA

Function:
To direct the conversion of F format
data to an internal data type.
Linkage:
RA: A(Target or target dope vector)
RB: A(Target DED)
RC: A(FED)
Called by: Compiled code, IHEDIM

Entrvy point IHEDIAB

Function:

To direct the conversion of E format

data to an internal data type.
Linkage: As for IHEDIAA
Called by: As for IHEDIAA
IHEDIB
Calls:

IHEDCN, IHEIOD, IHEKCD, IHEVSC, IHEVSD,
IHEVSE

Entry point IHEDIBA

Function:

To direct the conversion of A format
data to an internal data type.

Linkage:
RA: A(Target or target dope vector)
RB: A(Target DED)
RC: A(FED)

Called by: Compiled code

Entry point IHEDIBB

Function:
To direct the conversion of pictured
character string data to an internal
data type.

Linkage: As for IHEDIBA

Called by: Compiled code

96

IHEDID
Calls:

IHEDMA, IHEIOD,
IHEVSD, IHEVSE

IHEUPA, IHEUPB, IHEVSC,

Entry point: IHEDIDA
Function:

To direct the conversion of external B
format data to an internal data type.

Linkage:
RA: A(Target or target dope vector)
RB: A(Target DED)
RC: A(FED)

Called by: Compiled code

IHEDIE

Calls:
IHEDMA, IHEIOD, IHEKCA, IHEKCB, IHEUPA,
IHEUPB, IHEVSC, IHEVSD, IHEVSE

Entry point: IHEDIEA

Function:
To direct the conversion of external data
with a numeric picture format to an
internal data type.

Linkage:
RA: A(Target or target dope vector)
RB: A(Target DED)
RC: A(FED)

Called by: Compiled code, IHEDIM

IHEDIL

Entry point IHEDILA

Function:
To set up appropriate error handling
when no width specification for A for-
mat input is given.

Linkage: None

Called by: Compiled code

Entry point IHEDILB

Function:
As for IHEDILA, but B format
Linkage: None

Called by: Compiled code

IHEDIM
Calls:

IHEDIA,
IHEVCS

IHEDIE, IHEIOD, IHEKCA, IHEVCA,

Entry point: TIHEDIMA

Function:

To direct the conversion of external data
with C format to an internal data type.

Linkage:
RA: A(Target or target dope vector)
RB: A(Target DED)
RC: A(Real format director)
RD: A(Real FED)
RE: A(Imaginary format director)
RF: A(Imaginary FED)

Called by: Compiled code

THEDMA

Transfers control to:

THEVFD, IHEVFE, IHEVKB,
IHEVPF, IHEVPG, IHEVPH

IHEVKC, TIHEVPE,

Entry point: IHEDMAA

Function:

To set up the intermodular flow to effect
conversion from one arithmetic data type
to another.

Linkage:

RA: A(Source)
RB: A(Source DED)
RC: A(Target)
RD: A(Target DED)

called by:
I/0 directors,

Compiled code, THEDBN,

IHEDCN, IHEDNB, IHEDNC, IHELDI, IHEPDF,
IHEPDX, IHEPSF, IHEPSX, TIHESMF, IHESMX,
IHESSF, IHEUPB, IHEVCS, IHEYGF, IHEYGX
JTHEDNB
Calls: IHEDMA, IHEVSA
Entry point: IHEDNBA
Function:
To convert an arithmetic source with

specified base, scale, mode, and preci-
sion to a fixed-length bit string or a
VARYING bit string of specified length.

Linkage:

RA: A(Source)

RB: A(Source DED)
RC: A(Target SDV)
RD: A(Target DED)

Called by:

Compiled code,
IHEVCS

IHEDIA, IHEDOD, IHELDI,

IHEDNC
Calls:

IHEDMA, TIHEUPA, IHEVSC, IHEVSE, IHEVQC

Entry point: IHEDNCA

Function:

To convert an arithmetic source of speci-
fied base, scale, mode, and precision to
a character string or a pictured charac-
ter string.

Linkage:

RA: A(Source)

RB: A(Source DED)
RC: A(Target SDV)
RD: A(Target DED)

Called by:
Ccompiled c¢ode, IHEDIA, IHEDOB, IHELDI,
IHELDO, IHEVCS

IHEDOA

Calls:

IHEDBN, IHEDMA, IHEIOD, IHEVQC

Entry point IHEDOAA

Function:

To direct the conversion of internal

data to external F format.
Linkage:
RA: A(Source or source dope vector)
RB: A(Source DED)
RC: A(FED)

Called by: Compiled code, IHEDOM

Chapter 9: Module Summaries 97

Entry point IHEDOAB

Function:

To direct the conversion of internal
data to external E format.

Linkage: As for IHEDOAA

Called by: As for IHEDOAA

IHEDOB
Calls:

IHEDNC,
IHEVSF

IHEIOD, IHEVSB, IHEVSC, TIHEVSE,

Entry point IHEDOBA

Function:
To direct the conversion of internal
data to external A(w) format.
Linkage:
RA: A(Source or source dope vector)
RB: A(Source DED)
RC: A(FED)

Called by: Compiled code

Entry point IHEDOBB

Function:

To direct the conversion of internal

data to external A format.
Linkage:

RA: A(Source or source dope vector)
RB: A(Source DED)

Called by: Compiled code

Entry point IHEDOBC

Function:
To direct the conversion of internal
data to external pictured character
format.

Linkage: As for IHEDOBA

Called by: Compiled code

98

IHEDOD

Calls: IHEDNB, IHEIOD, IHEVSB, IHEVSC

Entry point IHEDODA

Function:

To direct the conversion of internal
data to external B(w) format.

Linkage:
RA: A(Source or source dope vector)
RB: A(Source DED)
RC: A(FED)

Called by: Compiled code

Entry point IHEDODB

Function:

To direct the conversion of internal

data to external B format.
Linkage:

RA: A(Source or source dope vector)
RB: A(Source DED)

Called by: Compiled code
IHEDOE
Calls:
IHEVSB

IHEDBN, IHEDCN, IHEDMA, IHEIOD,

Entry point: IHEDOEA

Function:
To direct the conversion of internal data
to external data with a numeric picture
format.

Linkage:
RA: A(Source or source dope vector)
RB: A(Source DED)
RC: A{(FED)

called by: Compiled code, IHEDOM

IHEDOM

Calls:

IHEDBN, IHEDOA, IHEDOE,
IHEVCA, IHEVCS

IHEUPA, IHEUPB,

Entry point: IHEDOMA
Function:

To direct the conversion of an internal
data type to external C format data.

Linkage:

RA: A(Source or source dope vector)
RB: A(Source DED)

RC: A(Real format director)

RD: A(Real FED)

RE: A(Imaginary format director)
RF: A(Imaginary FED)

Called by: Compiled code

IHEDSP

Calls: Supervisor (WAIT, GET-

MAIN, POST,

Wro, WTOR,
FREEMAIN, CHAP)

Entry point: IHEDSPA

Function:

To write a message on the operator's
console, with or without a reply. The
EVENT option can be used for a message
with a reply.

Linkage:

RA: A(Parameter list)
Parameter list:
A(SDV for message)
A(SDV for reply)
A (Event variable)
(The parameter 1list 1is either one,
two, or three elements long, depend-
ing on the use of the REPLY and EVENT
options. The high-order byte of the
last argument indicates the end of
the parameter list.)

Called by: Compiled code

IHEDUM

Calls:

Supervisor (ABEND, SNAP), IHETSA, IHEZZC

Entry point THEDUMC

Function:

Dump current task and then continue
execution.

Linkage:
RA: A(Parameter list)
Parameter list:
F(Number in range 0 through 255)
Called by:

Compiled code (CALL IHEDUMC statement)

Entry point IHEDUMJ

Function:

Dump all tasks and then continue execu-
tion.

Linkage: As IHEDUMC
Called by:

Compiled code (CALL IHEDUMJ statement)

Entry point IHEDUMP

Function:

Dump all +tasks and terminate

task.

major

Linkage: As IHEDUMC
Called by:
Compiled code (CALL IHEDUMP statement)

Entry point IHEDUMT

Function:

Dump current task and then terminate

it.

Linkage: As IHEDUMC
Called by:
Compiled code (CALL IHEDUMT statement)
IHEDVU
Entry point: IHEDVUO
Function:
DIVIDE(w,z,p,q), Where w and z are com-
plex fixed-point binary, and (p,q) is the
target precision.

Linkage:
RA: A(Parameter list)
Parameter list:

A(w)

A(DED for w)

A(z)

A(DED for z)

A(Target)

A(DED for target)

Called by : Compiled code
IHEDVV
Calls: IHEAPD

Entry point: IHEDVVO

Chapter 9: Module Summaries 99

Function:

DIVIDE(w,z,p,q9), Wwhere w and z are

plex fixed-point decimal,
the target precision.
Linkage:
RA: A(Parameter list)
Parameter list:
A (w)
A(DED for w)
A(z)
A(DED for z)
A (Target)
A(DED for target)
Called by: Compiled code
IHEDZW

Entry point: IHEDZWO

Function:
Z1/Z2, Where z, and z, are complex
floating-point.
Linkage:
RA: A(zi)
RB: A(Zz)
RC: A(Target)

Called by: Compiled code

IHEDZZ

Entry point: IHEDZZO

Function:

zZ,/25, Where
floating-point.

Linkage:
RA: A(z,)
RB: A(z3)
RC: A(Target)
Called by: Compiled code
IHEEFL
Calls: IHEEXL

Entry point IHEEFLF

Function:

com-

and (p,q) is

short

z4 and z, are complex long

ERF(x), where x is real long floating-

point.

100

Linkage:

RA: A(Parameter list)
Parameter list:

a(x)

A(Target)

Called by: Compiled code

Entry point IHEEFIC

Function:
ERFC(x), where x is real long floating-
point.

Linkage: As for IHEEFLF

Called by: Compiled code

IHEEFS

Calls: IHEEXS

Entry point IHEEFSF

Function:
ERF(x), where x is real short floating-
point.
Linkage:
RA: A(Parameter list)
Parameter list:
A{x)
A(Target)

Called by: Compiled code

Entry point IHEEFSC

Function:

ERFC(x), where X is
floating-point.

real short

Linkage: As for IHEEFSF

Called by: Compiled code

IHEERD

Function:

Non-resident part of the error-handling

routines. It contains the data-
processing error messages, and when
required is dynamically loaded from

IHEESM (Versions 3 and 4).

IHEERE (1) Entry into an on-unit

(2) SNAP
Function: (3) No action - return to program
(4) Print error message and terminate
Non-resident part of the error-handling {5) Print error message and continue
routines. It contains the input/output (6) Set standard results into float
error messages, and when required is registers
dynamically loaded from IHEESM (Versions
3 and 4).
Linkage: None
IHEERI
Called by: Supervisor
Function:

Entry point IHEERRB (ON_Conditions):

Non-resident part of the error-handling

routines. It contains the remaining Function: As for IHEERRA.

error messages, that is, those not con-

tained in IHEERD, IHEERE, IHEERO and Linkage:

IHEERP, and when required is dynamically

loaded from IHEESM (Versions 3 and 4). RA: A(DCLCB) (for I/0 conditions)

IHEQERR: Exrror code
IHEERN
Called by: Compiled code, library modules

Function:

Entry point IHEERRC (Non-ON errors):

Non-resident part of the error package.

It contains the error messages, and is Function: As for IHEERRA.
dynamically loaded as required by IHEERR
(Version 1) or IHEESS (Version 2). Linkage:
IHEERO RA: A(Two-byte error code)
A(Four-byte code if source program
Function: error)
Non-resident part of the error-handling Called by: Compiled code, library modules

routines. It contains the error messa-
ges, and when required 1is dynamically Entry point IHEERRD (CHECK, CONDITION):
loaded from IHEESM (Versions 3 and 4).

Function: As for IHEERRA.

THEERP
Linkage:
Function:
RA: A(Parameter list)
Non-resident part of the error-handling Parameter list:
routines. It contains the error messa- One-byte error code
ges, and when required is dynamically Three-byte A(X)
loaded from IHEESM (Versions 3 and 4). X: Symbol table
IHEERR X: Symbol table (CHECK variable), ox
Symbol length and name(CHECK label),
Calls: or

Identifying CSECT(CONDITION)
Supervisor (LINK, SPIE), IHEDDO, IHEDDT,

IHEERS (Version 1), IHEESM, IHEESS Called by: Compiled code
(Version 2), IHEM91, TIHEPRT, IHEPTT,
IHESA, IHETER, IHETSA Entry point IHEERRE
IHEERRE calls: LINK, ABEND with DUMP and
STEP options Function:
Entry point IHEERRA (Program Interrupt): To accept control when a program inter-
rupt occurs in IHEERR or in modules
Function: that IHEERR calls or links to; to 1link
to IHETOM to write a disaster message
To determine the identity of the error or on the console; to terminate the pro-
condition that has been raised, and to gram and to provide an operating system
determine what action must be taken on ABDUMP.
account of it. Several courses of action
are possible, including combinations of: Linkage: None

Chapter 9: Module Summaries 101

Called by: Supervisor

IHEERS
Entry point: IHEERSA
Function:

SNAP: To determine and record the loca-
tion of the point of interrupt and to
print the procedure trace-back informa-
tion associated with it.

Linkage:

RA: A(Third word of a library VDA to
be wused as a save area and message
buffer): words 21 to 23 o6f the VDA
are used to pass the following
parameters:

21: A(Interrupt VDA)/0
22: A(PRINT routine)
23: A(Current DSA)

Called by: IHEERR (Version 1)
IHEERT
Function:

Non-resident part of the error-handling

routines. It contains the multitasking
error messages and is dynamically loaded
when required from IHEESM or IHETEX
(Version u4).

IHEESM

Calls:
Supervisor (DELETE, DEQ, ENQ, LOAD),
IHEERD, IHEERE, IHEERI, IHEERO, TIHEERP,

IHEERT, IHEPRT, IHEPTT, IHESA, IHETSA

Entry point IHEESM?

Function:

To print out
messages.

SNAP and system action

Linkage:

RA: A(First word of a library VDA to be
used as a save area and message
buffer)

RH: A(Current DS3)

Also passed are:
A(IHEPTTB) or A(IHEPRTB): current LWE
+ 124
A(IHETSAL) or A(IHESADE): current LWE
+ 128

102

A(IHETSAF) or A(IHESAFD): current LWE
+ 132
Length of PRV: current LWE+102

Called by: IHEERR (Versions 3 and 4)

Entry point TIHEESMB

Function:

To print CHECK
messages.

(label) system action

Linkage:

RA: Af(Label)
RB: A(Length of label)

Also passed:
A(IHEPTTB) or A(IHEPRTB): Current LWE
+ 124
Called by: IHEERR (Versions 3 and 4)
IHEESS
Calls: IHEERN, IHEPRT,

THESA, IHETSA

Entry point IHEESSA

Function:

To print out SNAP and
messages.

system action

Linkage:

RA: A(First word of a library VDA to be

used as a save area and message
buffer)
Also passed are:
A(Interrupt VDA/0): current LWE + 96
aA(Current DSA): current LWE + 100
A(IHESADE) : current LWE + 104
A(IHESAFE) : current LWE + 108
A(IHEPRT) : current ILWE + 112
Called by: IHEERR (Version 2)
Entry point IHEESSB
Function:
To print CHECK (label) system action
messages.
Linkage:

RA: A(Label)
A(Length of label)

Also passed:
A (IHEPRTB): current LWE + 112

Called by: IHEERR (Version 2)

IHEEXL
Entry point: IHEEXLO
Function:

EXP(x),
point.

where x 1is real long floating-

Linkage:

RA: A{Parameter list)
Parameter list:

A(x)

A(Target)

Called by:

Compiled code, IHEEFL, IHEEX?Z, IHESHL,
IHESNZ, IHETHL, IHEXXL

IHEEXS

Entry point: IHEEXSO

Function:
EXP(x), where x is real short floating-
point.

Linkage:

RA: A(Parameter list)
Parameter list:

A(x)
A(Target)
called by:
Compiled code, IHEEFS, IHEEXW, IHESHS,
THESNW, IHETHS, IHEXXS
IHEEXW
Calls: IHEEXS, IHESNS
Entry point: IHEEXWO
Function:
EXP(z), where z is complex short

floating-point.
Linkage:
RA: A(Parameter list)
Parameter list:
A(z)
A(Target)
Called by: Compiled code, IHEXXW
IHEEXZ
Calls: IHEEXL, IHESNL

Entry point: IHEEXZO0

Function:
EXP(z), where z is complex long floating-
point.
Linkage:
RA: A(Parameter list)
Parameter list:
A(z)
A(Target)

Called by: Compiled code, IHEXXZ

IHEHTL

Calls: IHELNL

Entry point: IHEHTLO
Function:

ATANH (%),
point.

where x is real long floating-

Linkage:
RA: A(Parameter list)
Parameter list:
A(x)
A(Target)

Called by: Compiled code, IHEATZ

IHEHTS

Calls: IHELNS
Entry point: IHEHTSO
Function:

ATANH(x), where x is real short floating-
point. point.

Linkage:
RA: A(Parameter list)
Parameter list:
A(x)
A(Target)
Called by: Compiled code, IHEATW
IHEIBT
This module is used in a multitasking
environment and is equivalent to module
IHEIOB in a non-multitasking environment.
Calls:

Supervisor (DEQ,ENQ), IHEIOP, IHEOCT

Chapter 9: Module Summaries 103

Entry point IHEIBTA

Function:

To initialize the PUT operation, and to
check the file status, in a
multitasking environment:

1. Open
2. Transmit error
3. Invalid
Linkage:
RA: A(Parameter 1list)
Parameter list:
A(DCLCB)
A(Abnormal return)

Called by: Compiled code

Entry point IHEIBTE

Function:
To initialize PUT, and perform PAGE,
and to check the file status, in a
multitasking environment:
1. Open
2. Transmit error
3. 1Invalid
Linkage: As for IHEIBTA

Called by: Compiled code

Entry point IHEIBTC

Function:

To initialize PUT, and perform SKIP,
and to check the file status, in a
multitasking environment:

1. Open
2. Transmit error
3. Invalid

Linkage:

RA: A(Parameter list)
Parameter list:
A(DCLCB)
A(Abnormal return)
A(Expression value)

Called by: Compiled code

iou

Entry point IHEIBTD

Function:
To 1initialize PUT, and perform LINE,
and to check the file status, in a
multitasking environment:
1. Open
2. Transmit error
3. Invalid
Linkage: As for IHEIBTC

Called by: Compiled code

Entry point IHEIBTE

Function:
To initialize PUT, and perform PAGE and
LINE, and to check the file status, in
a multitasking environment:
1. Open
2. Transmit error
3. Invalid
Linkage: As for IHEIBTC

Called by: Compiled code

Entry point IHEIBTT

Function:

To terminate the PUT operation, in a
multitasking environment.

Linkage: None

Called by: Compiled code

IHEIGT

Entry point: IHEIGTA

Function:

As for IHEINT
IHEINT
This module is wused in a multitasking

environment and is equivalent to module
IHEION in a non-multitasking environment.

Calls:

FREEMAIN, GETMAIN),
IHEITD, IHEITE, IHEITF,
IHEITJ, IHEOCT

Supervisor (CHAP,
IHEITB, IHEITC,
IHEITG, IHEITH,

Entry point: IHEINTA

Function:

To verify a RECORD I/O request and to
invoke the appropriate data management
interface module to perform the required
operation, in a multitasking environment.

Linkage:

RA: A(Parameter
Parameter list:
A (DCLCB)
A(RDV)/(IGNORE factor)
A(EVENT variable)/(0)/A(Error return)
A (KEY |KEYFROM|KEYTO SDV)/(0)
A(Request control block)

list)

Called by: Compiled code

IHEIOA

Calls: IHEIOP, IHEOCL, IHEOCT

Entry point IHEIOAA

Function:

To initialize the GET operation, and to
check the file status:

1. Open

2. Endfile

3. Invalid
Linkage:

RA: A(Parameter list)
Parameter list:
A(DCLCB)
A(Abnormal return)
Called by: Compiled code

Entry point IHEIOAB

Function:
To initialize the GET operation, with
the COPY option, and to check the file
status:
1. Open

2. Endfile
3. 1Invalid

Linkage: As for IHEIOAA
Called by:

Compiled code

Entry point IHEIOAC

Function:

To initialize the GET operation with

the SKIP option, and to check the file
status:
1. Open
2. Endfile
3. 1Invalid
Linkage:
RA: A(Parameter list)

Parameter list:
A (DCLCB)
A(Abnormal return)
A(Expression value)

Called by: Compiled code

Entry point IHEIOAT

Function:
To terminate the GET operation.
Linkage: None
Called by: Compiled code
IHEIOB
Calls:
IHEIOP, IHEOCL

Entry point IHEIOBA

Function:

To initialize the PUT operation, and to
check the file status:

1. Open

2. Transmit error

3. 1Invalid

Linkage:
RA: A(Parameter list)
Parameter list:
A(DCLCB)
A(Abnormal return)
Called by: Compiled code

Entry point THEIOBB

Function:

To initialize PUT, and perform PAGE,
and to check the file status:

1. Open

2. Transmit error

3. Invalid
Linkage: As for IHEIOBA

Called by: Compiled code

Chapter 9: Module Summaries 105

Entry point IHEIOBC

Function:

To initialize PUT, and perform SKIP,
and to check the file status:

1. Open
2. Transmit error
3. Invaliad

Linkage:

RA: A(Parameter list)
Parameter list:
A(DCLCB)
A{(Abnormal return)
A(Expression value)

Called by: Compiled code

Entry point IHEIOBD

Function:

To initialize PUT, and perform LINE,
and to check the file status:

1. Open

2. Transmit errorxr
3. 1Invalid

Linkage: As for IHEIOBC

Called by: Compiled code

Entry point IHEIOBE

Function:

To initialize PUT, and perform PAGE and

LINE, and to check the file status:
1. Open
2. Transmit error
3. Invalid
Linkage: As for IHEIOBC
Called by: Compiled code

Entry point IHEIOBT

Function:
To terminate the PUT operation.
Linkage: None
Called by: Compiled code
IHEIOC

Calls: IHESA, IHETSA

106

Entry point IHEIOCA

Function:

To initialize the GET operation, with

the STRING option.
Linkage:
RA: A{Parameter list)
Parameter list:
A (SDV)
A (DED)

Called by: Compiled code

Entry point TIHEIOCB

Function:

To initialize the GET operation, with
the STRING and COPY options.

Linkage: As for IHEIOCA

Called by: compiled code

Entry point THEIOCC

Function:

To initialize the PUT operation, with

the STRING option.

Linkage: As for IHEIOCA

Called by: Compiled code

Entry point IHEIOCT

Function:

To terminate the GET or PUT operations,
with the STRING option.

Linkage: None

Called by: compiled code

IHEIOD

Calls: IHEIOF, IHESA, IHEPRT, IHEPTT,

THETSA

Entry point IHEIODG

Function:

To obtain the next data field from the
record huffer(s).

Linkage:
Library communication area (WSDV)
IHEIOX

Called by: Format directors,

Entry point THEIODP

Function:

To obtain space for a data field in the
record buffer(s).

Linkage: As for IHEIODG
Called by: Format directors, IHEIOX

Entry point IHEIODT

Function:
To terminate the data field request.
Linkage: As for IHEIODG
Called by: Format directors
IHEIOQF
Calls: Data management (QSAM)
Entry point: IHEIOFA
Function:
To obtain logical records via data man-
agement interface modules, and initialize
FCB record pointers and counters.
Linkage: RA: A(FCB)

Called by:

IHEDD, IHEDD, IHEDDP, IHEDDT, IHEIOD,
IHEIOP, IHEIOX, IHELDI, IHELDO, TIHEOCL,
IHEOCT, IHEPRT, IHEPTT

IHETOG

Entry point: IHEIOGA
Function:

As for IHEION

IHEION
This module is used in a non-
multitasking environment and is equivalent
to module IHEINT in a multitasking
environment.
Calls:
Supervisor (FREEMAIN, GETMAIN), IHEITB,
IHEITC, IHEITD, IHEITE, IHEITF, IHEITG,
IHEOCL

Entry point: IHEIONA

Function:

To verify a RECORD I/0
invoke the appropriate data management
interface module to perform the required
operation, in a non-multitasking environ-
ment.

request and to

Linkage:

RA: A(Parameter list)

Parameter list:
A(DCLCB)
A(RDV) /7 (IGNORE factor)
A(EVENT variable)/(0)/A(Error return)
A(KEY|KEYFROM|KEYTO SDV)/(0)
A(Request control block)

Called by: Compiled code

IHEIOP
Calls: IHEIOF

Entry point IHEIOPA

Function: PAGE option/format.
Linkage: No explicit parameters
Called by: Compiled code, IHEIOB

Entry point IHEIOPB

Function: SKIP option/format.
Linkage:

RA: A(FED)
FED: Halfword binary integer
Called by: Compiled code, IHEIOA, IHEIOB

Entry point IHEIOPC

Fronction: LINE option/format.

Linkage: As for IHEIOPB

Called by: As for IHEIOPA
IHEIOX
Calls:

IHEIOD, IHEIOF

Entry point IHEIOXA

Function:

To skip next n characters in record(s).

Chapter 9: Module Summaries 107

Linkage:

RA: A(FED)
FED: Halfword binary integer

Called by: compiled code

Entry point IHEIOXB

Function:

To place n blanks in record(s).

Linkage: As for IHEIOXA

Called by: Compiled code

Entry point IHEIOXC

Function: To position to COLUMN(n).
Linkage: As for IHEIOXA
Called by: Compiled code

IHEITB

Calls:

Data management (BSAM),
GETMAIN)

Supervisor (CHAP,

Entry point: IHEITBA
Function:
To provide the interface with BSAM for:

1. CONSECUTIVE data sets with the UNBUF-
FERED attribute.

2. REGIONAL data sets, whether or not
UNBUFFERED, opened for INPUT/UPDATE

Linkage:
RA: A(FCB)
RB: A(Parameter list)
Parameter list:
A(DCLCB)
A(RDV)/A(IOCB) /A(IGNORE factor)/A(SDV)
A(Event variable)/ (0)
A(KEY |KEYFROM|KEYTO SDV)/(0)
A(Request control block)
| called by: IHEION, IHEINT
IHEITC
Calls:

Data management (BSAM), Supervisor (CHAP,
GETMAIN)

Entry point: IHEITCA

108

Function:

with BsSAaM for
sets when opened

To provide the interface
creating REGIONAL data
for SEQUENTIAL output.

Linkage:

RA: A(FCB)
RB: A(Parameter list)
Parameter list:
A (DCLCB)
A(RDV) /A (IOCB)
A(Event variable)/ (0)/A (Abnormal
return)
A(KEY|KEYFROM SDV)/ (0)
A(Request control block)

| called by: IHEION, IHEINT, IHEOCL
IHEITD
Calls:
Data management (QISAM), Supervisor

(GETMAIN), IHESA, IHETSA

Entry point: IHEITDA

Function:

To provide the interface with QISAM for
creating or accessing INDEXED data sets
when opened for SEQUENTIAL access.

Linkage:

RA: A(FCB)

RB: A(Parameter

Parameter list:
A(DCLCB)
A(RDV) /A (SDV)
A(Error return)/(0)
A(KEY| KEYFROM|KEYTO SDV)/(0)
A(Request control block)

list)

| called by: IHEION, IHEINT
IHEITE
Calls:

Data management
(GETMAIN), IHESA

(BISAM) , Supervisor

Entry point: IHEITEA

Function:

To provide the interface with BISAM for
accessing INDEXED data sets opened for
DIRECT access in a non-multitasking envi-
ronment.

Linkage:

RA: A(FCB)
RB: A(Parameter list)
Parameter list:
A (DCLCB)
A (RDV) /A (IOCB) /A (SDV)
A(Event variable)/(0)
A(KEY|KEYFROM SDV)/ (0)
A(Request control block)

| called by: IHEION

THEITF

Calls:
Data management (BDAM) , Supervisor
(GETMAIN), IHESA

Entry point: IHEITFA

Function:

To provide the interface with BDAM for
REGIONAL data sets opened for DIRECT
access in a non-multitasking environment.

Linkage:

RA: A(FCB)
RB: A(Parameter list)
Parameter list:

2 HeLCc?)

"ADV) /R (IOCB) /A (SDWY
A(Event variaclel/(Q)
A(KEY |KEYFROM SDV)/ (0)
A(Request control block)

| called by: IHEION
IHEITG
Calls: Data management (QSAM)
Entry point: IHEITGA
Function:

interface with QSAM for
RECORD

To provide the
CONSECUTIVE data sets opened for
I/0 with the BUFFERED attribute.

Linkage:

RA: A(FCB)
RB: A(Parameter
Parameter list:
A (DCLCB)
A(RDV) /A (SDV)
A (Exrror return)/(0)
A(0)
A(Request control block)

list)

| called by: IHEION, IHEINT

| called by:

THEITH
Calls:

Data management (BIsaM), Supervisor
(CHAP, DEQ, ENQ, GETMAIN), IHETSA

Entry point: IHEITHA
Function:

To provide the interface with BISAM for
accessing INDEXED data sets opened for
DIRECT access in a multitasking environ-
ment.

Linkage:

RA: A(FCB)

RB: A{(Parameter list)

Parameter list:
A(DCLCB)
A(RDV) /A (IOCB) /A(SDV)
A(Event variable) /(0)
A(KEY | KEYFROM SDV)/(0)
A(Request control block)

IHEINT

IHEITJ

Calls:

Data management (BDAM), Supervisor (CHAP,
DEQ, ENQ, GETMAIN), IHETSA

Entry point: IHEITJA
Function:

To provide the interface with BDAM for
REGIONAL data sets opened for DIRECT
access in a multitasking environment.

Linkage:

RA: A(FCB)
RB: A(Parameter list)
Parameter list:
A(DCLCB)
A(RDV) /A(IOCB)/A(SDV)
A(Event variable)/ (0)
A(KEY | KEYFROM SDV) /(0)
A(Request control block)

| called by: IHEINT

Chapter 9: Module Summaries 109

IHEITK
Calls:

Data Management
(GETMAIN, FREEMAIN)

(QsaM) , Supervisor

Entry point: IHEITKA

Function:

To provide the interface with QSAM for
consecutive data sets opened for RECORD
I/0 Input with the BUFFERED attribute and
VS or VBS format records.

Linkage:

RA: A(FCB)
RB: A(Parameter list)
Parameter list:

A (DCLCB)

A(RDV) /A {SDV)

A (Exrror Return)/(0)

A (0)

A (Request Control Block)

called by: IHEION, IHEINT

IHEITL

Calls:

Data Management
(GETMAIN, FREEMAIN)

(QgsaM) , Supervisor

Entry point: IHEITLA

Function:
To provide the interface with QSAM for
consecutive data sets opened for RECORD

I/0 Output with +the BUFFERED attribute
and VS or VBS format records.

Linkage: as for IHEITK

Called by: IHEION, IHEINT, IHEOCL

IHEJXI

Calls: IHESA, IHETSA

Entrv point IHEJXII

Function:
To initialize IHEJXI to give bit

addresses, and +to find the first ele-
ment of the array.

110

Linkage:
RA: A(ADV)
RB: A(Number of dimensions)
On_return:
RA: Bit address of first element

Called by: IHENL2, IHESTG

Entry point IHEJXIY

Function:

As for IHEJXII but for byte addresses.

Linkage:

RA: A(ADV)

RB: A(Number of dimensions)
On_return:

RA: A(First element)

Called by:
THEOSW,

IHEPDX,
THESMX,

IHEPDF, IHEPDL,
THEPDZ, IHESMF,
IHESTG

IHEPDS, IHEPDW,
IHESMG, IHESMH,

Entry point IHEJXIA
Function:

To find the next element of the array.

Linkage:

No explicit arguments
Implicit arguments:

LCA

VDA, obtained in initialization
On_return:

RA: Bit or byte address of the next

element
BR=0: Normal return
BR=4: Tf the address of the last ele-
ment of the array was provided on
the previous normal return
Ccalled by:

All modules calling IHEJXII and IHEJXIY
IHEJXS
Entry point IHEJXSI
Function:
To find the first and last elements of

an array and to give their addresses as
bit addresses.

Linkage:

RA: A(ADV)

RB: A (Number of dimensions)

Oon Return:

RO: Bit address of first element
RA: Bit address of last element

Called by: IHENL1

Entry point IHEJXSY

Function:

As for IHEJXSI but for byte addresses.

Linkage:
RA: A(ADV)
RB: A(Number of dimensions)
On_return:
RO: A(First element)
RA: A(Last element)
Called by:
IHEPSF, IHEPSL, IHEPSS, IHEPSW, IHEPSX,
IHEPSZ, IHESSF, IHESSG, IHESSH, IHESSX
ITHEKCA

Entry point: IHEKCAA

Function:
To check that external data with a deci-
mal picture specification is valid for
that specification.

Linkage:

RA: A(Source)
RB: A(Source DED)

Called by: IHEDIE, IHEDIM
THEKCB
Entry point: TIHEKCBA
Function:
To check that external data with a sterl-
ing picture specification is valid for
that specification.
Linkage:

RA: A(Source)
RB: A(Source DED)

Called by: IHEDIE

IHEKCD

Entry point IHEKCDA

Function:
To check that external data with a
character picture specification is
valid for that specification. The
ONSOURCE address is stored.

Linkage:
RA: A(Source)
RB: A(Source DED)

Called by: IHEDIB, IHELDI

Entry point IHEKCDB

Function:

As for IHEKCDA, but the ONSOURCE

address is not stored.
Linkage: As for IHEKCDA

Called by: As for IHEKCDA

IHELDI

Calls:
IHEDCN, IHEDMA, IHEDNB, IHEDNC, IHEIOF,
IHEKCD, IHEPRT, IHEPTT, IHESA, IHETSA,
IHEVCA, IHEVCS, IHEVSC, IHEVSD

Entry point IHELDIA

Function:

To read data from an input stream and
to assign it to internal variables
according to 1list-directed input con-
ventions.

Linkage:

RA: A(Parameter list)

Parameter list:
A(Variable,)
A(DED,)

A(Variablep)

A (DEDp)

(High-order byte of 1last argument
indicates end of parameter 1list.)

Called by: Compiled code

Entry point IHELDIB

Function:

As for IHELDIA but for single varia-

bles.

Chapter 9: Module Summaries 111

Linkage:

RA: A(Variable)
RB: A(DED)

Called by: Compiled code

Entry point IHELDIC

function:

To scan the value field (entry for

data-directed input).

Linkage:

RA: A(Buffer sSDV)
RB: A(Control block)
Control block: H'VDA count so far'
X'Flag box' (one byte)
Return codes:
BR=0: Not last item
BR=4: Last item
BR=8: End of file encountered before
complete data field collected

Called by: IHEDDI

Entry point IHELDID

Function:
To assign a value to a variable (entry
for data-directed input).
Linkage:
RA: A(Variable)
RB: A(DED)
RC: A{(Control block)
Control block: H'VDA count so far'
X'Flag box' (one byte)
Called by: IHEDDI
IHELDO
Calls: IHEDNC, IHEIOF, IHEVSB

Entry point_ IHELDOA

Function:

To prepare data for output according to
list-directed output conventions, and
to place it in an output stream.

112

Linkage:

RA: A(Parameter list)

Parameter list:
A(Variabley)
A(DED,)

A(vVariablep)

A (DEDp)
(High-order byte of 1last argument

indicates end of parameter list.)

Called by: Compiled code

Entry point IHELDOB

Function:

As for TIHELDOA, but for only one item
of the list of data.

Linkage:
RA: A(Variable)
RB: A(DED)

Called by: Compiled code

Entry point IHELDOC

Function:

As for IHELDOA, but used by data-

directed output.
Linkage:

A(Variable)
A(DED)
A(FCB)

RA:

RB:

RC:

Called by: IHEDDO
IHELNL

Entry point TIHELNLE

Function:
LOG(x), where x is real long floating-
point.

Linkage:

RA: A(Parameter list)
Parameter list:

A(x)

A(Target)

Called by:

Compiled code, IHEHTL, IHELNZ, IHEXXL,

THEXXZ

Entry point IHELNL2

Function:

LOG2(x), where x is real long fl
point.

Linkage: As for IHELNLE
Called by: As for IHELNLE

Entry point IHELNLD

Function:

LOG10(x), where X is real

floating~point.
Linkage: As for IHELNLE
Called by: As for IHELNLE
IHELNS

Entry point IHELNSE

Function:

oating-

long

LOG(x), where x is real short floating-

point.
Linkage:

RA: A(Parameter list)

Parameter list:

A(x)
A(Target)
Called by:
Compiled code, IHEHTS, IHELNW,
THEXXW
Entry point IHELNS2
Function:
LOG2(x), where b4 is real
floating-point.
Linkage: As for IHELNSE
Called by: As for IHELNSE
Entry point IHELNSD
Fanction:
LOG10(x), where x is real

floating-point.
Linkage: As for IHELNSE
Called by: As for IHELNSE
IHELNW
IHELNS

Calls: IHEATS,

IHEXXS,

short

short

Entry point: IHELNWO

Function:

LOG(z), where z is

floating-point.

complex

Linkage:
RA: A(Parameter list)
Parameter list:
A(z)
A(Target)
Called by: compiled code, IHEXXW
IHELNZ
Calls: IHEATL, IHELNL
Entry point: IHELNZO

Function:

short

LOG(z), where z is complex long floating-

point.
Linkage:
RA: A(Parameter list)
Parameter list:
A(z)
A(Target)
Called by: Compiled code, IHEXXZ
IHELSP
Calls: Supervisor (FREEMAIN,GETMAIN)

Function:

Storage management for list processing.

Entry point IHELSPA

Function:

To provide storage in an area
for an allocation of a based

Linkage:

RA:
list)
RB: A(ALLOCATE statement)
Parameter list:
Byte 0: Not used
Bytes 1-3: A(Area variable)

variable
variable.

A(Eight-byte word-aligned parameter

Byte 4: Offset of beginning of based
variable from doubl eword
boundary

Bytes 5-7: Length of based variable

On_return:

RA: A(Eight-byte
list)

Chapter 9: Module Summaries

word-aligned parameter

113

Parameter list:

Byte 0: Not used

Bytes 1-3: A(Based variable)

Byte 4: Offset of beginning of based
variable from doubleword
boundaxry

Bytes 5-7: Length of based variable

Called by: Compiled code

Entry point IHELSPB

Function:
To free storage allocated to a Dbased
variable in an area variable.

Linkage:

RA: A(Eight-byte word-aligned parameter
list)

RB: A(Area variable)

Parameter list:

Byte 0: Not used

Bytes 1-3: A(Based variable)

Byte ##: Offset of beginning of based
variable from doubleword
boundary

Bytes 5-7: Length of based variable

Called by: Compiled code

Entry point IHELSPC

Function:
Assignments between area variables.
Linkage:

RA: A(Source area variable)
RB: A(Target area variable)

Called by: Compiled code.

Entry point IHELSPD

function:
To provide system storage for an allo-
cation of a based variable (using GET-
MAIN macro).

Linkage:

RA: A(Eight-byte word-aligned parameter
list)

Parameter list:

Bytes 0-3: Not used

Byte 4: Offset of beginning of based
variable from doubleword bound-

ary

Bytes 5-7: Length of based variable

114

On _return:

RA: A(Eight-byte word-aligned parameter
list)
Parameter list:
Byte 0: Not used
Bytes 1-3: A(Based variable)
Bytes U-7: Not used

Called by: Compiled code

Entry point IHELSPE

Function:

To free system storage allocated to a
based variable (using FREEMAIN macro).

Linkage:

RA: A(Eight-byte word-aligned parameter
list)

Parameter list:
Byte 0: Not used
Bytes 1 - 3: A(Based variable)
Byte U4: Offset of beginning of based
variable from doubleword
boundary .
Bytes 5 - 7: Length of based variable

Called by: Compiled code

IHEM91
Calls: IHEERR

Entry point IHEM91A

Function:

1. To analyze the exception or excep-

tions in an imprecise interrupt on a
Model 91

2. To set up a list of these exceptions
(in LWE)

3. To raise the first of a series of

PL/I conditions
these exceptions

corresponding to

Linkage:

PSW at
LWE + 112

interrupt is in current

Called by:

IHEERR, when an imprecise interrupt is
detected

Entry point IHEM91B

Function:

To continue raising, in succession, the

PL/I conditions corresponding to the
exceptions

Linkage:
List of exceptions is in current
LWE + 136

Called by: IHEERR

Entry point IHEM91C

Function:
To print an error message for each
unprocessed exception when, as a result
of the processing of an earlier excep-
tion in the list, a program 1is forced
to terminate before processing of the
list is complete

Linkage: None

Ccalled by: IHEERR

IHEMAI
Entry point: IHEMAIN
Function:

Contains address of IHEBEGN; loaded
if there is no main procedure.

only

Linkage: None
Called by: IHESA, IHETSA

IHEMPU

Entry point: IHEMPUOQ
Function:

w and z are
(p,q) is the

MULTIPLY(w,z,p,q), Wwhere
complex fixed binary, and
target precision.

Linkage:

RA: A(Parameter list)
Parameter list:

A(w)

A(DED for w)

A(z)

A(DED for 2z)

A (Target)

A(DED for target)

Called by: Compiled code
EMPV
Calls: IHEAPD

Entry point: IHEMPVO

Function:

MULTIPLY(w,Zz,p,q), Where w and 2z are
complex fixed decimal, and (p,q) 1is the
target precision.

Linkage:

RA: A(Parameter list)
Parameter list:

A(w)

A(DED for w)

A(z)

A(DED for z)

A(Target)

A(DED for target)

Called by: Compiled code
IHEMSI
Entry point: IHEMSIA
Function:

To call IHEERRC so that an error message

is printed saying that STIMER facilities
are unavailable.

Entry Point: IHEMSTA

Function:
To «call IHEERRC so that an error message.
is printed saying that the TIME facility
is unavailable.

Called by: Compiled code

IHEMSW
Calls:

Supervisor (FREEMAIN, WAIT), 1/0 transmit
module whose address is in the FCB.

Entry point: IHEOSWA
Function:
1. According to the count passed, to
return to the caller or to wait until

a single I/0 event is complete. If
the count is <0, immediate return is

made; otherwise the event 4is waited
on.
2. To branch to the I/0 transmit module

to raise I/O conditions if necessary.
Linkage:
RA: A(Parameter list)
Parameter list:

A(Count)
A(Event variable)

Chapter 9: Module Summaries 115

Called by: Compiled code
THEMXB

Entry point IHEMXBX

Function:
MAX(X,,X24++«¢Xn), Where x4,Xxa and Xp
are real fixed-point binary.

Linkage:

RA: A(Parametexr list)
Parameter list:

A(x,)

A(DED for x4)

A(Xn)

A(DED for xp)

A(Target)

A(Target DED)

(High-order byte of 1last argument
indicates end of parameter list.)

Called by: Compiled code

Entry point IHEMXBN

Function:

MIN(X4, X242+ ¢Xn), Where ¥x,,X> and xXnp

are real fixed-point binary.
Linkage: As for IHEMXBX
Called by: Compiled code
IHEMXD

Entry point IHEMXDX

Function:

MAX(X4,X25ee+4Xn), WwWhere x,;,%X2 and xp
are real fixed-point decimal.
Linkage:
RA: A(Parameter list)
Parameter list:
A(x,)
A(DED for x,)

A (Xn)

A(DED for xp)

A(Target)

A(Target DED)

(High-order byte of 1last argument
indicates end of parameter list.)

Called by: Compiled code

116

Entry point IHEMXDN

Function:
MIN(Xy ,X2...,%Xn)s Where x,;,x, and xp
are real fixed-point decimal.
Linkage: As for IHEMXDX
Called by: Compiled code
ITHEMXL
Entry point IHEMXLX
Fanction:
MAX (X4 (X2,.<2,Xn), Where x,,X; and xp
are real long floating-point.
Linkage:
RA: A(Parameter list)
Parameter list:
A(X1)
A(X2)
A(Xn)
A(Target)
(High-order byte of last argument

indicates end of parameter list.)

Called by: Compiled code

Entry point IHEMXLN

Function:

MIN(X3 ;X2,-+,Xn), Where x,,x; and xp

are real long floating-point.

Linkage: As for IHEMXLX

Called by: Compiled code

IHEMXS

Entry point IHEMXSX

Function:

MAX(X4 ,X2,+.-.¢Xn), Wwhere x,,X, and xp
are real short floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

A(x,)

A(xy)

A(xp)

A(Target)

(High-order byte of 1last argument
indicates end of parameter list.)

Called by: Compiled code

Entry point IHEMXSN

Function:
MIN(X4,X24e4+,%¥n), where x,,X2 and xn
are real short floating-point.

Linkage: As for IHEMXSX

Called by: Compiled code

IHEMZU

Entry point IHEMZUM

Function:

Z,%Z,, Where 2z, and 3z, are
fixed-point binary.

complex

Linkage:

RA: A(Zl)

*RB: A(DED for z,)
RC: A(Zg)

*RD: A(DED for za)
RE: A(Target)
*RF: A(Target DED

Called by: Compiled code, IHEXIU

Entry point IHEMZUD

Function:

Z4/22, Where 2z, and 2z,
fixed-point binary.

are complex

Linkage:

RA: A(Zl)

RB: A(DED for z,)
RC: A(Zz)

*RD: A(DED for z,)
RE: A(Target)
*RF: A(Target DED)

Called by: Compiled code

IHEMZYV

Entry point IHEMZVM

Function:

Z:%2,, Where 3z, and 2z, are
fixed-point decimal.

complex

Linkage:

RA: A(z,)

RB: A(DED for z,4)
RC: A(z,)

RD: A(DED for z,)
RE: A(Target)
*RF: A(Target DED)

Called by: Compiled code, IHEXIV

Entry point IHEMZVD

Function:

'Z,, Where z, and 2z,
fixed-point decimal.

are complex

Linkage: As for IHEMZVM
called by: Compiled code
IHEMZW
Entry point: IHEMZWO
Function:

z2,%*z,, Wwhere z, and z, are complex short

floating-point.

Linkage:
RA: A(z,)
RB: A(Zz)

RC: A(Target)

Called by: Compiled code, IHEXIW

IHEMZZ
Entry point: IHEMZZO0
Function:

zZ,%zZ,, where 2z, and z, are complex long

floating-point.
Linkage:

RA: A(z,)

RB: A(zz)

RC: A(Target)
Called by: Compiled code,IHEXIZ
THENL1
Calls: IHEBSA, IHEBSF,

IHEBSO, IHEJXS

Chapter 9: Module Summaries 117

Entry point IHENL1A

Function:

ALL or ANY for a simple array (or an
interleaved array of VARYING elements)
of byte-aligned elements and a byte-
aligned target.

Linkage:

RA: A(Parameter list)
Parameter list:
A (SADV)
A(Number of dimensions)
A(DED of the array)
(A(IHEBSA0) for ALL, or
(A(IHEBSO0) for ANY
A(SDV for Target field)

Called by: Compiled code

Entry point IHENL1L

Function:

ALL for a simple array (or an
interleaved array of VARYING elements)
of elements with any alignment, and a
target with any alignment.

Linkage:

RA: A(Parameter list)
Parameter list:
A (SADV)
A(Number of dimensions)
A(DED of the array)
A(IHEBSFO0)
A(SDV for target field)

Called by: Compiled code

Entry point IHENL1N

function: As for IHENL1L, but ANY.

Linkage: As for IHENL1L

Called by: Compiled code

IHENL2

Calls: IHEBSA, IHEBSF, IHEBSO, IHEJXI

Entry point IHENL2A

Function:
ALL or ANY for an interleaved array of

fixed-length byte-aligned elements and
a byte-aligned target.

118

Linkage:

RA: A(Parameter list)
Parameter list:

A (SADV)

A (Number of dimensions)
*A(DED of the array)
(A(IHEBSAO) for ALL,
(A(THEBSO0) for ANY
A(SDV for target field)

or

Called by: Compiled code

Entry point IHENL2L

Function:

ALL for an interleaved array of fixed-
length elements with any alignment, and
a target with any alignment.

Linkage:

RA: A(Parameter list)
Parameter ‘list:

A (SADV)

A(Number of dimensions)
*A (DED of the array)

A(IHEBSFO)

A(SDV for target field)

Called by: Compiled code

Entry point IHENL2N

Function:

ANY for an interleaved array of fixed-
length elements with any alignment, and
a target with any alignment.

Linkage:

RA: A(Parameter list)
Parameter list:

A(SADV)

A (Number of dimensions)
*A(DED of the array)

A(IHEBSFO0)

A(SDV for target field)

Called by: Compiled code

IHEOCL
Calls:
Supervisor (bCBD, FREEMAIN,LINK), IHECLT,
| IHEIOF, IHEITC, IHEITL, IHEOPN, IHESA
Entry point THEOCLA
Function:
Explicit open: links to IHEOPNA;
handles error conditions detected by
IHEOPN, IHEOPO, IHEOPP, IHEOPQ or
IHEOPZ.

Linkage:

RA: A(OPEN parameter list)
Parameter list: See IHEOPN

Called by: Compiled code, IHEPRT

Entry point IHEOCLB

Function:
Explicit close: 1links to IHECLTA.
Linkage:

RA: A(CLOSE parameter list)
Parameter list: See IHECLTA

Called by: Compiled code

Entry point IHEOCLC

Function:
To perform implicit open.
Linkage:

RA: A(OCB)
RB: A(DCLCB)

| called by: IHEIOA, IHEIOB, IHEION

Entry point IHEOCLD

Function:

Implicit close:

1. When a task is terminated, to close
task

all the files opened 1in the
{by linking to IHECLTB).

Linkage:
RA: A(PRV of current task)

Called by: IHESA

IHEQCT
Calls:
Supervisor (DCBD, DEQ, FREEMAIN, LINK),
| IHECTT, IHEIOF, IHEITC, IHEITL, IHEOPN,
IHETSA

Entry point THEOCTA

Function:
Explicit open in a multitasking envi-
ronment: links to IHEOPNA; handles

error conditions detected by IHEOPN,
IHEOPO, IHEOPP, IHEOPQ or IHEOPZ.

Linkage:

RA: A(OPEN parameter list)
Parameter list: See IHEOPN

Called by: Compiled code, IHEPTT

Entry point IHEOCTB

Function:
Explicit close in a multitasking envi-
ronment: links to IHECTTA.

Linkage:

RA: A(CLOSE parameter list)
Parameter list: See IHECTTA

Called by: Compiled code

Entry point IHEOCTC

Function:

To perform implicit open in a multi-

tasking environment.
Linkage:

RA: A(OCB)
RB: A(DCLCB)

called by: IHEIOA, IHEIBT, IHEINT

Entry point IHEOCTD

Function:
Implicit close:

1. When a task is terminated, to close
all the files opened in the task
(by linking to IHECTTB).

2. To dequeue all recoxrds 1locked by
the task and free the corresponding
EXCLUSIVE blocks.

To set all imcomplete EVENT varia-
bles complete, inactive, and abnor-
mal, and to free the associated
IOCBs.
Linkage:
RA: A(PRV of current task)

called by: IHETSA

Chapter 9: Module Summaries 119

IHEOPN
Calls:

IHEOPO
IHESA,

(via
IHETSA

XCTL), IHEOPZ (via LINK),

Entry point: IHEOPNA

Function:

Oopen files:
1. Merge declared attributes with OPEN
options.
2. Invoke IHEOPO.
3. Invoke IHEOPZ
OUTPUT
only).

if declared DIRECT
(REGIONAL (1), (2) and (3)

Linkage:

RA: A(Parameter list)
Parameter list:
A(OPEN Parameter list)
A(Private Adcons)
CPEN Parameter list:
A(DCLCB,)
A(OPEN Control block,)/0
A(TITLE-SDV,) /0
(Reserved)
(Reserved)
(Reserved)
A(LINESIZEl)/O
A(PAGESIZE.) /0

A (DCLCBp)

A (OPEN Ccontrol blockp)/0

A(TITLE-SDVp)/0

(Reserved)

(Reserved)

(Reserved)

A(LINESIZEp) /0

A (PAGESIZEp) /70

(High-order byte of last argument
indicates end of parameter list.)

Called by: IHEOCL, IHEOCT
IHEOPO
Calls:
Supervisor (DCB,DCBD, DEVTYPE, GETMAIN),

IHEOPP (via XCTL), IHESA, IHETSA

Entry Point: IHEOPOA
Function:
1. To create and format the FCB.

2. To set file register to A(FCB).

120

Linkage:

RA: A(Parameter list)
Parameter list:
A(IHEOPN Parameter list)
A(Subparameter list)
Subparameter list:
XL4'4*n' (where n is the number of files
to be opened)
X'Access/Organization Code, '
AL3 (DCLCB,)
XL4 'Merged attribute,’

X'Access/Organization Codep!
AL3 (DCLCBp)
XL4'Merged attributep

NOTE: Access/Organization Code is described
in the module listing.

Called by: IHEOPN

IHEOPP

Calls:
Supervisor (DCBD, GETMAIN,GETPOOL, OPEN),
IHEOPQ (via XCTL), IHESA, IHETSA

Entry point: IHEOPPA

Function:
1. To invoke data management (OPEN

macro) .
2. To establish defaults at DCB exit.

3. To acquire initial IOCBs for BSAM.

Linkage:

RA: A(Parameter list)
Parameter list:
A(IHEOPN Parameter list)
A(Subparameter list)
Subparameter list:
XL4'4*n' (where n is the number of files
to be opened)
X'Access/Organization Code,'
AL3 (DCLCB,)
XL4 *Merged attribute,'

X'Access/Organization Codep'
AL3 (DCLCBp)
XL4*Merged attributep'

NOTE: Access/Organization Code is described
in the module 1listing.

called by: - IHEOPO

IHEOPQ

Calls:
Supervisor (DCBD,FREEPOOL,GETMAIN,LOAD),
IHESA, IHETSA

Entry point: IHEOPQA

Function:

1. To load record-oriented 1I/0 inter-

face modules.

2. To 1link FCBs through the IHEQFOP
chain.

3. To acquire the 1initial IOCBs for
BDAM and BISAM linkage.

4. To simulate PUT PAGE when opening a
PRINT file.

Linkage:
RA: A(Parameter list)

Parameter list:
A(IHEOPN parameter list)
A(Subparameter list)
A(Data management. OPEN parameter
list)

Subparameter list:
XL4'4*n' (where n is the number of
files to be opened)
X'Access/Organization Codep'
AL3 (DCLCBy)
XL4 *'Merged attributes,

X'Access/Organization Codep
AL3 (DCLCBp)
XL4 'Merged attributesp’

Data management OPEN parameter list:
XL4*4*n*' (where n is the number of
files to be opened)
X(Flags for data management OPEN
executor,)
AL3(DCB,)

X(Flags for data management OPEN
executorp)
AL3 (DCBp)
NOTE: Access/Organization Code is described
in the module listing.

Called by: IHEOPP

IHEOPZ
Calls:

Supervisor (CHECK,CLOSE,DCB, DCBD,
MAIN, FREEPOOL, GETBUF , GETMAIN,OPEN)

FREE-

Entry point: IHEOPZA

Function:
To provide +the format for the initial
allocation of a volume assigned to a

REGIONAL data set when opened for DIRECT
OUTPUT.

Linkage:

RA: A(Parameter list)

Parameter list:
A(Merged attributes)
A(Entry in IHEOPN Parameter list)
A{(DCLCB)

Called by: IHEOPN

IHEOSD
Calls: TIME macro
Entry point: TIHEOSDA
Function: To obtain current date.
Linkage:

RA: A(Parameter list)
Parameter list: A(Target SDV)

Called by: Compiled code
IHEOSE
Calls: IHESA, IHETSA(to terminate the task)

Entry point: IHEOSEA

Function:
To terminate the current task abnormally,
raising the FINISH condition if it is the
major task.

Called by: Compiled code

IHEOSI

Calls: STIMER macro

Entry point: IHEOSTIA

Function:
To use the STIMER macro with the WAIT
option for the implementation of DELAY.

Chapter 9: Module Summaries 121

Linkage:

RA: A(Parameter list)

Parameter list:
Interval of delay,
a fullword

in milliseconds, in

Called by: Compiled code
IHEOSS

| Calls: IHESA, IHETSA(to terminate the task)
Entry point: TIHEOSSA
Function:

To raise the FINISH condition and
mally terminate the job step.

abnor-

Linkage: None

Called by: Compiled code
IHEOST
Entry Point: THEOSTA

function:

To use the TIME macro to obtain the time
of day.

Linkage:

RA: A(Parameter list)
Parameter list: A(Target SDV)

Called by: Compiled code

IHEOSW

Calls:
Supervisor (FREEMAIN, WAIT), IHEJXI,
IHESA, I/0 transmit module whose address

is in the FCB
Entry point: IHEOSWA
Function:
To determine whether a specified number
of events has occurred. If not, to wait
until the required number is complete,
and, in the case of I/0 events, to branch
to the I/O0 transmit module (which raises
170 conditions if necessary).

This module is used in a non-multitasking
environment.

Linkage:

RA: A(Parameter list)
Parameter list:

Word 1:

122

1. 1If all events are to be waited

on:
Byte 0 = X'FF'
Bytes 1 - 3 not used
2. If a specified number (N) of
events is to be waited on:
Byte 0 = X'00°'

Bytes 1 - 3 = A(N)

Subsequent words (one for each element

or array event):

1. Array event:
Byte 0 = dimensionality
Bytes 1 - 3 = A(ADV)

2. Element event:
Byte 0 = X'00°'
Bytes 1 - 3 = A(Event variable)

(High-order byte of last argument indi-
cates end of parameter list.)

Called by: Compiled code
IHEPDF
Calls: IHEDMA, IHEJXI

Entry point: IHEPDFO
Function:

PROD for an interleaved array of real
fixed-point binary or decimal elements.
Result 1is real short or long floating-
point.

Linkage:

RA: A(Parameter list)
Parameter list:
A(ADV)
A(Number of dimensions)
A(DED of the array)
A(Target)
A(DED for target)

Called by: Compiled code

IHEPDL
Calls: IHEJXT
Entry point: IHEPDLO
Function:
PROD for an interleaved array of real

long floating-point elements. Result is

real long floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:
A(ADV)
A (Number of dimensions)
A(Target)

Called by: Compiled code

IHEPDS

Calls: IHEJXI

Entry point: IHEPDSO

Function:
PROD for an interleaved

short floating-point elements.
real short floating-point.

array of real
Result is

Linkage:
RA: A(Parameter list)
Parameter list:
A (ADV)
A (Number of dimensions)
A (Target)

Called by: Compiled code
IHEPDW
Calls: IHEJXT
Entry point: IHEPDWO
Function:
PROD for an interleaved array of complex
short floating-point elements. Result is
complex short floating-point.
Linkage:
RA: A(Parameter list)
Parameter list:
A (ADV)
A (Number of dimensions)
A(Target)
called by: Compiled code
THEPDX
Calls: IHEDMA, TIHEJXI
Entry point: IHEPDXO
Function:
PROD for an interleaved array of complex
fixed-point binary or decimal elements.

Result is complex short or long floating-
point.

Linkage:

RA: A(Parameter list)
Parameter list:
A(ADV)
A{Number of dimensions)
A(DED of the array)
A(Target)
A(DED for target)

Called by: Compiled code

IHEPDZ

Calls: IHEJXI

Entry point: IHEPDZO

Function:

PROD for an interleaved array of
long floating-point elements.
complex long floating-point.

complex
Result is

Linkage:
RA: A(Parameter list)
Parameter list:
A(ADV)
A (Number of dimensions)
A(Target)
Called by: Compiled code
IHEPRT
Calls:
Supervisor (WTO, EXTRACT), IHEIOF,
| IHEoCL, IHESA
Entxy point IHEPRTA
Function:
To COPY a data field on the SYSPRINT

file, opening it if necessary.

Linkage:

RA: A(Character string)

RB: A(Halfword containing length of
character string)
Called by: IHEIOD,IHELDI

Chapter 9: Module Summaries 123

Entry point IHEPRTB

Function:
To Wwrite an error message on the SYS-
PRINT file, opening it if necessary.
Also, to prepare for system action for
CHECK condition.

Linkage: As for IHEPRTA

Called by: IHEDDO, IHEERR, IHEESM, IHEESS

IHEPSF

calls: IHEDMA, IHEJXS

Entry point: IHEPSFO

Function:

PROD for a simple array of real fixed-
point binary or decimal elements. Result
is real short or long floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:
A(ADV)
A (Number of dimensions)
A(DED of the array)
A(Target)
A(DED for target)

Called by: Compiled code
IHEPSL
Calls: IHEJXS
Entry point: IHEPSLO
Function:

PROD for a simple

floating-point elements.
long floating-point.

array of real 1long
Result is real
Linkage:
RA: A(Parameter list)
Parameter list:
A(ADV)
A (Number of dimensions)
A (Target)
Called by: Compiled code
IHEF'SS
Calls: IHEJXS

Entry point: IHEPSSO

124

Function:

PROD for a simple
floating-point elements.
short floating-point.

array of real short
Result is real

Linkage:

RA: A(Parameter list)
Parameter list:
A(ADV)
A(Number of dimensions)
A(Target)

Called by: Compiled code

IHEPSW
Calls: IHEJXS
Entry point: IHEPSWO
Function:
PROD for a simple array of complex short
floating-point elements. Result is
complex short floating-point.
Linkage:
RA: A(Parameter list)
Parameter list:
A(ADV)
A(Number of dimensions)
A(Target)

Called by: Compiled code

THEPSX
Calls: IHEDMA, IHEJXS
Entry point: IHEPSXO0

Function:

PROD for a simple array of complex fixed-
point binary or decimal elements. Result
is complex short or long floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:
A(ADV)
A (Number of dimensions)
A(DED of the array elements)
A(Target)
A(DED for target)

Called by: Compiled code
IHEPSZ

Calls: IHEJXS

Entry point: IHEPSZ0

Function:

PROD for a simple array of complex long
floating-point elements. Result is
complex long floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:
A (ADV)
A{(Number of dimensions)
A(Target)

Called by: Compiled code
IHEPTT
This module is used in a multitasking

environment and is equivalent to module
IHEPRT in a non-multitasking environment.

Calls:
Supervisor (DEQ, ENQ, EXTRACT, WTO),
THEIOF, IHEOCT, IHETSA
Entry point IHEPTTA
Function:
To COPY a data field on the SYSPRINT

file, opening it if necessary, in a
multitasking environment.

Linkage:
RA: A(Character string)
RB: A(Halfword containing 1length of
character string)

Called by: IHEIOD, IHEIDI

Entry point IHEPTTB

Function:
To write, in a multitasking environ-
ment, an error message on the SYSPRINT
file, opening it if necessary. Also,

to prepare for system action for CHECK
condition.

Linkage: As for IHEPTTA
Called by: IHEDDT, IHEERR, IHEESM, IHEESS
IHESA
Calls:

Supervisor (FREEMAIN, SPIE),

IHEBEG, IHEMAI, IHEOCL

GETMAIN,

Function:

Storage management in a non-multitasking
environment.

Entry point IHESADA (Get DSA):

Function:

To provide a DSA for a
begin block
it.

procedure or
and to set DR to point to

Linkage:

RO: Length of DsSA
DR: A(Current save area)

Called by: Prologues

Entry point IHESADB (Get VDA):

Function:

To get a VDA for compiled code; sets

RA=A(VDA).
Linkage:
RO: Length of VDA (excluding control
words)
DR: A(Current save area)
Called by: Compiled code
Entry point IHESADD (Get CONTROLLED

variable) :
Function:

To provide storage for an allocation of
a controlled variable, and to place the
address of 1its fourth word in its
pseudo-register.

Linkage:

RO: Length of area (not including
trol words)

RA: A(Controlled-variable pseudo-
register)

con-

Called by: Compiled code

Entry point IHESADE (Get LWS):

Function:

To provide a new LWS, and to update the
LWS pseudo-registers.

Linkage: None

Called by: Library modules

Chapter 9: Module Summaries 125

Entry point IHESADF (Get Library VDA):

Function:
To provide a VDA for library modules
and to set RA = A{VDA).

Linkage:

RO: Length of VDA control

words)

(including

Called by: Library modules

Entry point IHESAFA (END):

Function:

Frees the DSA current at entry together

with 1its associated VDAs. Request to
free the DSA of the main procedure
results in raising FINISH, closing all

opened files, releasing automatic stor-
age to the supervisor and finally
returning to the supervisor with a
return code of zero.

Linkage: None

Called by: Epilogues

Entry point IHESAFR (RETURN) :

Function:
Frees all chain elements up to and
including the last procedure DSA in the
chain. Can terminate a main procedure
as in IHESAFA.

Linkage: None

Called by: Compiled code

Entry point IHESAFC (GO TO):

Function:

The DSA indicated by the invocation
count, or pointed to by DR, is made
current. All chain elements up to this
DSA, with the exception of its VDAs and
itself, are freed.

Linkage:

RA: A(Eight-byte word-aligned parameter
list)
Parameter list:
Word 1 = Either Invocation count
(sign bit of word 2 = 0)
Or PR offset (sign bit of
word 2 = 1)
Word 2 = A(Location to which control
is to be returned)

Called by: Compiled code

126

Entry point IHESAFD (Free VL LWS)

Function:

Frees the VDA or LWS at the end of the
DSA chain.

Linkage:
THEQSLA: A(VDA or LWS to be freed)
(A VDA or LWS can be freed only when it
is the last allocation)

Called by: Compiled code, library modules

Entry point IHESAFF (Free controlled
variable):

Function:
Frees the 1latest allocation of a con-
trolled variable, and updates the assu~-
ciated pseudo-register.

Linkage:

RA: A(Controlled variable pseudo-
register)

Called by: Compiled code

Entry point IHESAFQ

Function:

To close all files and to return to the
supervisor.

Linkage: None
Called by: Library modules

Entry point IHESAPA

Function:

1. To provide a PRV and LWS for a main
procedure, and to issue a SPIE
macro; then to transfer control to
an address constant named IHEMAIN.

2. To pass a PARM parameter from the
EXEC card.
Linkage:

L(PRV) from linkage editor
L(LWS) from assembly of IHELIB

Called by: Initial entry

Entry Point IHESAPB

Function:

As for IHESAPA, except that the code
handling PARM parameter is bypassed.

Linkage:

L(PRV) from linkage editor
L(LWS) from assembly of IHELIB

Elntry point IHESAPC

Function:
As for IHESAPA, but also reserves a
512-byte area for optimization purpos-
es,

Linkage:

L(PRV) from linkage editor
L(LWS) from assembly of IHELIB

Entry point THESAPD

Function:
As for IHESAPB, but also reserves a
512-byte area for optimization purpos-
es.

Linkage:

L(PRV) from linkage editor
L(LWS) from assembly or IHELIB

Entry point IHESARA

Function:

To restore the environment of a program
to what it was before:

1. the execution of an ON statement
associated with the on-unit to be
entered, or

2. the passing of the entry parameter
associated with the called proce-
dure.

Then to branch to the on-unit or the
procedure.

Linkage:

RA: A(Parameter list)
Parameter list:
A(Entry parameter). The entry param-
eter is an 8-byte field containing:

1st word: On-unit or entry address

2nd word: Invocation count of the
DSA associated with eith-
er the passing procedure
or the procedure in which
the ON statement was exe-
cuted

Called by: Compiled code, IHEERR

Entry point TIHESARC

Function:

To place the return code in the pseudo-
register IHEQRTC.

Linkage:

RA: A(Parameter list)
Parameter list:
A{(Return code) (The
fixed binary
prceision.)

return code is
with default

Called by: Compiled code

IHESHL
Calls: IHEEXL

Entrxy point IHESHLS

Function:

SINH(x), where x is real long floating-
point.

Linkage:
RA: A Parameter list)
Parameter list:
A(x)
A(Target)
Called by: Compiled code

Entry point IHESHLC

Function:

COSH(x), where x is real long floating-
point.

Linkage: As for IHESHLS
Called by: Compiled code

IHESHS

Calls: IHEEXS

Entry point IHESHSS

Function:

SINH(x), where X is real short

floating-point.
Linkage:
RA: A(Parameter list)
Parameter list:
a(x)
A(Target)

Called by: Compiled code

Chapter 9: Module Summaries 127

Entry point IHESHSC

Function:

COSH(x), where X is real short

Eloating-point.

Linkage: As for IHESHSS

Called by: Compiled code

IHESMF
Calls: IHEDMA, IHEJXI
Entry point: IHESMFO

Function:

SUM for an interleaved array of real
fixed-point binary or decimal elements.
Result 1is real short or long floating-
point.

Linkage:

RA: A(Parameter list)
Parameter list:
2. (ADV)
A(Number of dimensions)
A(DED of the array)
A(Target)
A(DED for target)

Called by: Compiled code
THESMG
Calls: IHEJXI

Entry point IHESMGR

Function:
SUM for an interleaved array of real
short floating-point elements. Result

is real short floating-point.
Linkage:
RA: A(Parameter list)
Parameter list:
A(ADV)
A(Number of dimensions)
A(Target)
Called by: Compiled code

Entry point THESMGC

Function:
SUM for an interleaved array of complex

short floating-point elements. Result
is complex short floating-point.

128

Linkage: As for IHESMGR

Called by: Compiled code

IHESMH

Calls: IHEJXI

Entry point IHESMHR

Function:

SUM for an
long floating-point elements.
is real long floating-point.

interleaved array of real
Result

Linkage:

RA: A(Parameter list)
Parameter list:
A(ADV)
A (Number of dimensions)
A(Target)

Called by: Compiled code

Entry point THESMHC

Function:

SUM for an interleaved array of complex
long floating-point elements. Result
is complex long floating-point.

Linkage: As for IHESMHR

Called by: Compiled code

IHESMX

Calls: IHEDMA, IHEJXI

Entry point: IHESMXO

Function:

SUM for an interleaved array of complex
fixed-point binary or decimal elements.
Result is complex short or long floating-
point.

Linkage:

RA: A(Parameter list)
Parameter list:
A(ADV)
A(Number of dimensions)
A(DED of the array)
A(Target)
A(DED for target)

Called by: Compiled code

THESNL

Entry point IHESNLS

Function:

SIN(x), where x is real long floating-

point.

Linkage:

RA: A(Parameter list)
Parameter list:

A(x)
A(Target)

Called by: Compiled code, IHEEXZ, IHESNZ

Entry point THESNLZ

Function:
SIND(x), where x is real long floating-
point.

Linkage: As for IHESNLS

Called by: Compiled code

Entrv point IHESNLC

Function:

COs(x), where x is real long floating-

point.

Linkage: As for IHESNLS

Called by: Compiled code, IHEEXZ, IHESNZ

Entrvy point TIHESNLK

Function:
COSD(x), where x is real long floating-
point.

Linkage: As for IHESNLS

Called by: Compiled code

IHESNS

Entry_ point THESNSS

Function:

SIN(x), where x is real short floating-
point.

Linkage:

RA: A(Parameter list)
Parameter list:

A(x)

A(Target)

Called by: Compiled code, IHEEXW, IHESNW

Entry point IHESNSZ

Function:

SIND(x), where b 4 is real short

floating-point.
Linkage: As for IHESNSS
Called by: Compiled code

Entry point IHESNSC

Function:

C0S(x), where x is real short floating-
point.
Linkage: As for IHESNSS

Called by: Compiled code, IHEEXW, IHESNW

Entry point IHESNSK

Function:

CcosD(x), where X is real short

floating-point.
Linkage: As for IHESNSS
Called by: Compiled code
IHESNW
IHESNS

Calls: IHEEXS,

Entry point ITHESNWS

Function:

SIN(z), where 2z 1is complex short

floating-point.
Linkage:
RA: A(Parameter list)
Parameter list:
a(z)
A(Target)
Called by: Ccompiled code

Entry point IHESNWZ

Function:

SINH(Z), where 2z 1is complex short

floating-point.

Chapter 9: Module Summaries 129

Linkage: As for IHESNWS

Called by: Compiled code

Elntry point IHESNWC

Function:

cos(z), where z 1is short

floating-point.

complex

Linkage: As for IHESNWS
Called by: Compiled code

Entry point IHESNWK

Function:

COSH(z), where 2z is short

floating-point.

complex

Linkage: As for IHESNWS
Called by: Compiled code
IHESNZ
Calls: IHEEXL, IHESNL

Entry point IHESNZS

Function:

SIN(z), where A is
floating-point.

complex long

Linkage:
RA: A(Parameter 1list)
Parameter list:
A(z)
A(Target)
Called by: Compiled code

Entry point IHESNZZ

Fanction:

SINH(Z), where z is
floating-point.

complex long

Linkage: As for IHESNZS
Called by: Compiled code

Entry point IHESNZC

Fuanction:

cos(z), where Z is
floating-point.

complex long

Linkage: As for IHESNZS

Called by: Compiled code

130

Entry point IHESNZK

Function:
COsH(z), where z is complex long
floating-point.
Linkage: As for IHESNZS
Called by: compiled code
IHESQL
Entry point: IHESQLO
Function:
SQRT(x), where x is real 1long £floating-
point.
Linkage:
RA: A(Parameter list)
Parameter list:
A(x)
A(Target)
Called by: Compiled code, IHEABZ, IHESQZ
IHESQS
Entry point: IHESQSO
Function:
SORT(x), where x is real short floating-
point.
Linkage:

RA: A(Parameter list)
Parameter list:

A(x)

A(Target)
Called by: Compiled code, IHEABW, IHESQW
JHESQW
Calls: THESQS, IHEABW
Entry point: IHESQWO
Function:

SQRT(Z), where z is complex short

floating-point.
Linkage:
RA: A(Parameter list)
Parameter list:
A(z)
A(Target)

Called by: Compiled code

THESQZ
Calls: IHEABZ, IHESQL

Entry point: IHESQZO0

Function:
SQRT (z), where z is complex 1long
floating-point.
Linkage:
RA: A(Parameter list)
Parameter list:
A(z)
A(Target)
Called by: Compiled code
THESRC
Entry point IHESRCA
Function:
Returns SDV of erroneous field
(ONSOURCE pseudo-variable). If used

out of context,
raised.

the ERROR condition is

Linkage:

RA: A(Parameter list)
Parameter list: A(Dummy SDV)

Entry point IHESRCB

Function:

Assigns erroneous
(ONCHAR built-in
out of context,
returned.

character to target
function). If used
then 'blank' is

Linkage:

RA: A(Parameter 1list)
Parameter list: A(Target SDV)

Entry point IHESRCC

Function:
Returns sSDV of erroneous field
(DATAFIELD). If used out of context, a

null string is returned.

Linkage: As for IHESRCA

Entry point IHESRCD

Function:

Returns SDV of erroneous
(ONCHAR pseudo-variable).
of context,
raised.

character.
If used out
the ERROR condition is

Linkage: As for IHESRCA

Entry point IHESRCE

Function:
Returns SDV of the name of the file
(ONFILE) which caused entry to the

current ON block. If wused out of
context a null string is returned.

Linkage: As for IHESRCA

Entry point IHESRCF

Function:

Returns SDvV of erroneous field
(ONSOURCE built-in function). If used

out of context, a null string is
returned.
Linkage: As for IHESRCA

IHESRD

Entry point: IHESRDA

Fanction:
Returns SDV of current key (ONKEY built-
in function). If used out of context, a
null string is returned.

Linkage:

RA: A(Parameter list)
Parameter list: A (Dummy SDV)

IHESRT
Calls:
IHESA, ‘THETSA, Supervisor (GETMAIN,
FREEMAIN, LINK, SPIE), SORT

Function:

To call dynamically, through the use of
a LINK macro, the operating system
SORT/MERGE from within a PL/I proce-
dure, and, optionally, permitting the
use of SORT/MERGE user exits E15 and
E35 - to invoke PL/I exit procedures
contained within the calling PL/I pro-
cedure.

Chapter 9: Module Summaries 131

Entry point IHESRTA

Function:

To call operating system SORT/MERGE to
sort a predefined file (SORTIN) placing
the sorted records on another predef-
ined file (SORTOUT).

Linkage:

RA: A(Parameter list)
Parameter list:

1. A(A character string which rep~-
resents the SORT/MERGE control
card to describe the sort fields
contained in the record.)

2. A(A character string which rep-
resents the SORT/MERGE control
card to describe the record for-
mat of the records which are to
be sorted.)

3. A(A fixed binary value specifying
the amount of core storage avai-
lable to SORT/MERGE.)

4. A(A fixed binary value to be used
as a return code from the sort.
A return code of 0 indicates the
successful completion of the
sort, 16 indicates an unsuccess-
ful sort operation.)

5. A(sSDV for the DD name replacement
string). This 1is an optional
parameter.

Called by: Compiled code (PL/I source
statement)

Entry_point IHESRTB

Function:

To call operating system SORT/MERGE to
sort individual records, passed to
SORT/MERGE through user exit E15 by a
PL/I exit procedure, onto a predefined
file (SORTOUT).

132

Linkage:

RA: A(Parameter list)
Parameter list:
1, 2, 3, and 4 are as for IHESRTA

5. A{(The PL/I functional procedure
entry name invoked by SORT/MERGE
user exit E15. This exit proce-
dure returns a character string
representing a record which is to
be included in the sort.)

6. as for 5 in IHESRTA

Ccalled by: Compiled code (PL/I
statement)

source

Entry point IHESRTC

Function:

To call operating system SORT/MERGE to
sort a predefined file (SORTIN), pass-
ing individual sorted records through
SORT/MERGE user exit E35 to a PL/I exit
procedure.

Linkage:
RA: A(Parameter list)
Parameter list:
1, 2, 3, and 4 are as for IHESRTA
5. Not used

6. A(The PL/I procedure entry name
invoked by SORT/MERGE user exit

E35. This exit procedure
receives a sorted record from the
sort.)

7. as for 5 in IHESRTA

Called by: Compiled code (PL/I
statement)

source

Entry point IHESRTD

Function:

To call operating system SORT/MERGE to
sort individual records passed to the
sort by an exit procedure, through user
exit E15, and to pass the sorted
records, through user exit E35, to an
exit procedure.

Linkage:

RA: A(Parameter list)
Parameter list:
1, 2, 3, and 4 as for IHESRTA
5. as for IHESRTB
6. as for IHESRTC
7. as for 5 in IHESRTA

Called by: Compiled code (PL/I source

statement)

IHESSF

Calls: IHEDMA, IHEJXS

Entry point: IHESSFO0

Function:

SUM for a simple array of real fixed-
point binary or decimal elements. Result
is real short or long floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:
A(ADV)
A(Number of dimensions)
A(DED of the array)
A(Target)
A(DED for target)

Called by: Compiled code
IHESSG
Calls: IHEJXS

Entry point IHESSGR

Function:

SUM for a simple array of real short
floating-point elements. Result is
real short floating-point.

Linkage:
RA: A(Parameter list)
Parameter list:
A(ADV)
A(Number of dimensions?
A(Target)
Called by: Compiled code

Entry point THESSGC

Function:

SUM for a simple array of complex short
floating-point elements. Result is
complex short floating-point.

Linkage: As for IHESSGR

Called by: Compiled code

IHESSH

Calls: IHEJXS

Entry point IHESSHR

Function:

real long
Result is

SUM for a simple array of
floating-point elements.
real long floating-point.

Linkage:
RA: A(Parameter list)
Parameter list:
A (ADV)
A (Number of dimensions)
A(Target)
-Called by: Compiled code

Entry point IHESSHC

Function:

SUM for a simple array of complex long
floating-point elements. Result is
complex long floating-point.

Linkage: As for IHESSHR
Called by: Compiled code

IHESSX

Calls: IHEDMA, IHEJXS

Entry point: IHESSXO0

Function:

SUM for a simple array of complex fixed-
point binary or decimal elements. Result
is complex short or long floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:
A(ADV)
A(Number of dimensions)
A(DED of the array)
A(Target)
A(DED for target)

Called by: Compiled code

Chapter 9: Module Summaries 133

IHESTG
Calls: IHEJXI

Entry point IHESTGA

Function:

Given a structure dope vector and its
DVD, returns a fullword containing the
string length which would result from
the concatenation of all the elements
of the structure.

Linkage:
RA: A(Structure dope vector)
RB: A(DVD)
RC: A(One-word target field)
Called by: Compiled code

Entry point IHESTGB

Function:
Given a structure dope vector and its
DVD, assigns the result of

concatenating all the elements of the
structure to a string target.

Linkage:
RA: A(Structure dope vector)
RB: A(DVD)
RC: A(Target)
Called by: Compiled code
IHESTR
Calls: IHESA, IHETSA

Entry point THESTRA

Function:

ro compute the address of the first
element of a structure and the total
length of the structure, using a com-
plete structure dope vector. The
result in the two-word target field is:

1st word: A(start of structure), in
bytes and bit offset

2nd word: Length of
bytes

structure, in

Linkage:
RA: A(Structure dope vector)
RB: A(DVD)
RC: A(Two-word target)

Called by: Compiled code

134

Entry point IHESTRB

Function:

Given a partially completed structure
dope vector, to map a structure com-
pletely, namely:

1. Locating each structure base ele-

ment on the alignment boundary
required by its data type.

2. Calculating the offset of the start

of each base element from the byte
address of the beginning of the
structure.

3. Calculating the multipliers of all
arrays appearing in the structure
and calculating the offset of the
virtual origin of each array from
the byte address of the beginning
of the structure.

4. Calculating the total length of the
structure.

5. Calculating the offset from the
maximum alignment boundary in the
structure to the byte address of
the start of the structure.

The result is a completed structure

dope vector, and a target field which
contains:

0 7 8 31
r 1
| Zero |
[— — i
r T 1
| Offset | Length
T [S |

Offset: Offset in bytes from the maximum
alignment boundary in the structure
to the start of the structure

Length: Length of structure, in bytes

Linkage: As for IHESTRA
Called by: Compiled code

Entry point IHESTRC

Function:

As for IHESTRB, but wusing the COBOL

structure mapping algorithm.
Linkage: As for IHESTRA
Called by: Compiled code
IHETAB

Base address of table: IHETABS

Function:

This module is a table of default infor-
mation provided for use at installation
or when individual program replacements
are required. It contains:

1. Default PAGESIZE,
and right margin
PRINT files.

LINESIZE, and left
positions for all

2. Default tabulation positions for
list- and data-directed PRINT file
output.

IHETCV

Calls: Supervisor (FREEMAIN, GETMAIN)

Entry point IHETCVA

Function:

To provide storage for an allocation of
a controlled variable in a multitasking

environment, and to place the address

of 1its fourth word in its pseudo~-

register.

Linkage:

RO: Length of area (excluding control
words)

RA: A(Controlled-variable
pseudo-register?

Called by: Compiled code

Entry point IHETCVB

Function:
Frees the latest allocation of a
controlled variable in the current
task, and updates the associated

pseudo-register.
Linkage:

RA: A(Controlled-variable
pseudo-register)

Called by: Compiled code

THETEA
| calls: Supervisor (CHAP, POST,WAIT)
Entry point: IHETERA

Function: Event variable assignment.

Linkage:
RA: A(Source event variable)
RB: A(Target event variable)

Called by: Compiled code

IHETER

Entry point: IHETERA

Function:
To search for a matching ON field in| a
multitasking environment by chaining
through DSAs and PRV VDAs. A return code
is set 1in register BR to indicate the
result of the search.

Linkage: DR: A(LWE)

Called by: IHEERR

IHETEV

[calls: Supervisor (CHAP,POST,WAIT)
Entry point: IHETEVA
Function:
COMPLETION pseudo-variable (COMPLETION (V)
= expression): sets the specified event
variable complete or incomplete according
to the evaluation of the expression.
Linkage:
RA: A(Parameter list)
Parameter list:
~ A(Event variable)
A(Fullword to hold completion value (in
bit 24))
Called by: Compiled code
IHETEX
Calls:

IHEERT,
DELETE,

THEPTT Supervisor (WTO,
EXTRACT, ENQ, DEQ, PUT)

LOAD,

Entry point IHETEXA

Function:
To generate a message when a task has
been terminated while still active due
to the freeing of the block in which
the task was attached.

Linkage:

RA contains the address of a VDA which

Chapter 9: Module Summaries 135

contains space for the creation of the
message and the following parameters:

A(IHEPTTB)

A(Symbol table entry for which the
task has been terminated)

A(IHEQSPR)

Called by: IHETSA

Entry point IHETEXB

Function:
To generate a message when a task has
been abnormally terminated by the oper-
ating system.
Linkage:
PR points to an area of storage conta-
ing a save area, an area for the
creation of the message and the follow-
ing parameters:
Completion code
A(symbol table entry for the task
which has been terminated)
A (IHEQSPR)
Called by: IHETSA
IHETHL
Calls: IHEEXL
Entry point: IHETHLO
Function:

TANH (x), where x is real
point.

long floating-

Linkage:
RA: A(Parameter list)
Parameter list:
A(x)
A(Taxrget)
Called by: Compiled code, IHETNZ
IHETHS
Calls: IHEEXS
Entry point: IHETHSO

Function:

TANH (%),
point.

where x is real short floating-

Linkage:

136

RA: A(Parameter list)
Parameter list:

A(x)

A(Target)

Called by: Compiled code, IHETNW
IHETNL

Entry point IHETNLR

Function:

TAN(x), where x is real long floating-
point.

Linkage:
RA: A(Parameter list)
Parameter list:
A(x)
A(Target)
Called by: Compiled code, IHETNZ

Entry point IHETNLD

Function:

TAND(x), where x is real long floating-
point.

Linkage: As for IHETNLR
Called by: Compiled code
IHETNS
Entry point IHETNSR
Function:

TAN(x), where x is real short floating-
point.

Linkage:
RA: A(Parametexr list)
Parameter list:
A(x)
A(Target)
Called by: Compiled code, IHETNW

Entry point THETNSD

Function:

TAND(x), where X is
floating-point.

real short

Linkage: As for IHETNSR

Ccalled by: Compiled code

IHETNW

Calls: IHETHS, IHETNS

Entryv_point IHETNWN

Function:

TAN(z), where 2z is complex short

floating-point.
Linkage:
RA: A(Parameter list)
Parameter list:
A(z)
A(Target)

called by: Compiled code

Entry point IHETNWH

Function:

TANH(z), where =z is complex short

floating-point.
Linkage: As for IHETNWN

Called by: Compiled code

THETNZ

Calls: IHETHL, TIHETNL

Entry point IHETNZN

Function:

TAN(z), where =z is complex long

floating-point.
Linkage:
RA: A(Parameter list)
Parameter list:
A(z)
A(Target)

Called by: Compiled code

Entry point IHETNZH

Function:

TANH(z), where 2z is complex long

floating-point.
Linkage: As for IHETNZN

Called by: Compiled code

IHETOM

Calls: Supervisor (WTO, EXTRACT)

Entry point IHETOMA

Function:

Issues WIO macro instruction 1if the
program does not have a main procedure.

Linkage:
DR points to an area of storage which
is used as a save area and as workspace
to build up the message.

called by: IHEBEG

Entry point IHETOMB

Function:

Issues WTO macro instruction if the PRV
is longer than 4096 bytes.

Linkage:
As for IHETOMA
Called by: IHEBEG

Entry point THETOMC

Function:

there
error

WTO macro instruction if
interrupt in the

Issues

has been an

handler.
Linkage:

As for IHETOMA
Called by: IHEERR

Entry point IHETOMD

Function:

instruction if the
major task of a multitasking program
has been terminated with an ABEND. The
message contains the completion code.

Issues WTO macro

Linkage:

As for IHETOMA but in addition the
completion code 1is passed in the area
pointed to by DR.

Called by: IHETSA
Chapter 9: Module Summaries 137

Entry point IHETOME

Function:

Issues WTO macro instruction if there
is an abnormal KEY condition when CLOS-
ING a file after a LOCATE statement.
The file may be INDEXED (with RKP # 0)
or REGIONAL.

Linkage: as for IHETOMA
Called by: IHEOCL, IHEOCT
IHETPB

Entry point: IHETPBA
Function:
PRIORITY built-in function: returns the
priority of a named task relative to the
priority of the current task.
Linkage:
RA: A(Parameter list)
Parameter list:
A(Task variable)
A(Fullword target field)

Called by: Compiled code

IHETPR

} Calls: Supervisor (CHAP,POST,WAIT)

Entry point: IHETPRA

Function:
PRIORITY pseudo-variable (PRIORITY(v) =
expression): sets the priority of the

specified task to the given value rela-
tive to the priority of the current task.

Linkage:

RA: A(Parameter list)
Parameter list:
A(Task variable),
task)
A(Relative priority)

or zero (if current

Called by: Compiled code

IHETSA

Calls:
Supervisor (ATTACH, CHAP, DEQ, DETACH,
EXTRACT, FREEMAIN, GETMAIN, IDENTIFY,
LINK, POST, SPIE, WAIT, WTO), IHEBEG,
IHEERR, IHEMAI, TIHEOCL, IHETEX

Function:

138

Object program management in a multitask-
ing environment.

Entry point IHETSAA

Function:

1. Obtains storage for the PRV VDA,
task variable, and event variable
for the major task, and for the
STOP ECB, message ECB and pointer
to the chain of ECBs of the message
tasks.

2. Attaches the PL/I major task and

then enters a wait state until

either the event variable for the
major task or the STOP ECB is
completed, or an abnormal task ter-
mination message is to be printed.

The execution of IHETSAA is termed the
control task. Return is made to the
calling program when files have been

closed and storage released. (See
IHETSAE.)
Linkage:
L(PRV) from linkage editor
L(LWS) from assembly of IHELIB
Called by:
Program that calls the PI/I program.

Entry point THETSAC

Function:

To place the return code in the pseudo-
register IHEQRTC.

Linkage:
RA: A(Parameter list)
Parameter List:
A(Return code) (The return code is
fixed binary with default precision.)
Ccalled by: Compiled code

Entry point IHETSAD (Get DSA)

Function:
To provide a DSA for a procedure or
begin block and to set DR to point to
it.

Linkage:

RO: Length of DsA
DR: A(Current save area)

Called by: Prologues

Entry point TIHETSAE (END)

Function:

Frees the DSA current at entry and its

associated vDAs, and abnormally
terminates any tasks attached in the
block. A request to free the first DSA

in a subtask results in the closing of
all files opened, the dequeuing of
resources enqueued, and the release of
all dynamic storage allocated in that
task. A request to free the DSA of the
main procedure also raises the FINISH
condition, but does not cause con-
trolled storage allocated in the major
task to be freed.

Linkage: None

Called by: Epilogues

Entry point IHETSAF (Free VDA/LWS)

Function:

Frees +the VDA or LWS at the end of the
DSA chain.

Linkage:
THEQSLA: A(VDA or LWS to be freed)
Only the most recently allocated VDA or
LWS can be freed.

Called by: Compiled code, library modules

Entry point IHETSAG (GO TO)

Function:
The DSA indicated by the invocation
count, or pointed to by DR, is made
current. All chain elements up to this

DSA, with the exception of its vDas and
itself, are freed. Any active tasks
attached to the DSAs freed are abnor-
mally terminated.

Linkage:

RA: A(Eight-byte word-aligned parameter
list)
Parameter 1list:
Word l=either Invocation count (sign
bit of word 2=0)

offset (sign bit of
word 2=1)

or PR

Word 2=A(Location to which control is
to be returned)

Called by: Compiled code

Entry point IHETSAL (Get LWS)

Function:

To provide a new LWS, and to update the
LWS pseudo-registers.

Linkage: None

Called by: Library modules

Entry point IHETSAM

Function:
Initializes the PRV and primary LWS for
the major task. Issues a SPIE macro
instruction and branches to the main
procedure,

Linkage:
RA: A(Parameter list)
Parameter 1list contains control infor-
mation from the control task.

Attached by:
IHETSAA, IHETSAP

Entry point IHETSAN

Function:

To change the environment of a progra
to that which existed at the time of

1. the execution of an ON statement
associatéd with the on-unit to be
entered, or

2. the passing of the entry parameter
associated with the called proce-
dure.

Then to branch to the on-unit or the

procedure.

Linkage:

RA: A(Parameter list)

Parameter list:
A(Entry parameter). The entry param-
eter is an 8-byte field containing:

1st word: On-unit or entry address

Invocation count of the DSA
associated with either the
passing procedure or the
procedure in which the ON
statement was executed

2nd word:

Called by: Compiled code, IHEERR

Chapter 9: Module Summaries 139

Entry point IHETSAP

Function:

As IHETSAA, but also passes a PARM

parameter from the the EXEC card.
Linkage:

L(PRV) from linkage editor
L(LWS) from assembly of IHELIB

Called by: Initial entry

Entry point IHETSAR (RETURN)

Function:
Frees all chain elements up to and
including the last procedure DSA in the
chain. Terminates the main procedure
and subtasks as in IHETSAE.

Linkage: None

Called by: Epilogues

Entry point IHETSAS

Function:

1. Allocates storage for a subtask's
PRV VDA, and copies into it the PRV
of the attaching task, any ON
fields in the attaching DSA, and
the argument list created by com-
piled code.

2. 1Issues a SPIE macro instruction and
branches to the called procedure.

Linkage:

RA: A(Parameter list)
Parameter list:
A(Task variable)
no PRIORITY option;
if no TASK option)
A(Event variable) (Zero if
option)
Relative priority
A(called procedure)
A(PRV of attaching task)
A(DSA of attaching task)
Argument list for called procedure
(omitted if no argument list)

(Byte 0 = X '80"' if
bytes 1 - 3 = 0

no EVENT

Attached by: IHETSAT

Entry point TIHETSAT

Function:

To implement a CALL statement with a

task option:

1. 1Initializes the subtask's task and
event variables.

140

2. Attaches the subtask initialization
routine (IHETSAS).

Linkage:

RA: A(Parameter list)

Parameter list:
A(Task variable)
no PRIORITY option;
if no TASK option)
A(Event variable)
option)
Relative priority
A(Called procedure)
Reserved
Reserved (X'80"' if no argument list)
Variable 1length argument 1list for
called procedure (Omitted if no argu-
ment list: X'80' in first byte of
last word indicates end of list.)

(Byte 0 = X'80" if
bytes 1 - 3 =0

(Zero if no EVENT

Called by: Compiled code

Entry point IHETSAV {(Get VDA)

Function:
To get a VDA for compiled code:; sets
RA=A(VDA).

Linkage:
RO: Length of VDA (excluding control

words)
DR: A(Current save area)

Called by: Compiled code

Entry point IHETSAW (Get Library VDA)

Function:

To provide a VDA for
and to set RA = A(VDA)

library modules

Linkage:

RO: Length of VDA (including control

words)
called by: Library modules

Entry point IHETSAX

Function:

End-of-task exit routine (ETXR):
detaches the TCB of a PL/I terminated
task. If the task is abnormally termi-
nated by the operating system, the
control task is posted (by the POST
macro) in order to print a message on
SYSPRINT.

Linkage: None

Called by: Supervisor

Entry point IHFTSAY

Function:
Completes the implementation of STOP:
closes all opened files, releases

dynamic storage, and posts the STOP ECB
to cause control to return to the
control task.

Linkage:

RA: Return code
Called by: IHEDUM, IHETSS

Entry point IHETSAZ

Function:
Abnormal end of task: closes all files
opened in task, releases dynamic stor-
age, and terminates the task and all
subtasks attached by it.

Linkage:

RA: Return code
Called by:

IHEDUM, IHEERR, IHETSE

THETSE

Calls: IHEERR, IHETSA

Entry point: IHETSEA

Function:
To abnormally terminate the current task,
and to raise the FINISH condition if the
current task is the major task.

Linkage: None

Called by: Compiled code

IHETSS

Calls: IHEERR, IHETSA

Entry point: IHETSSA

Function:
To raise the FINISH condition and abnor-
mally terminate the PL/I program in a
multitasking environment.

Linkage: None

Called by: Compiled code

IHETSW

Calls:
Supervisor (CHAP, FREEMAIN, POST,WAIT),
IHEJXI, IHETSA, the 1I/O transmission

module whose address is in the FCB.

Entry point IHETSWA

Function:

To determine whether a specified number
of events has occurred. If not, to
wait until the required number is com-
plete, and, in the case of I/O events,
to branch to the I/0O transmission
module (which raises I/0 conditions if
necessary). This module is used in a
multitasking environment.

Linkage:

RA: A(parameter list)
Parameter list:

Word 1:

1. If all events are to be waited
on:

Byte 0 = X'FF'
Bytes 1-3 not used

2. If a specified number (N) of
events is to be waited on:

Byte 0 = X'00°*
Bytes 1-3 = A(N)

Subsequent words (one for each ele-

ment or array event):
1. Array event:

Byte 0 = dimensionality
Bytes 1-3 = A(ADV)

2. Element event:

Byte 0 = X*'00°*
Bytes 1-3 = A(EVENT variable)

(The high-order byte of the last
argument indicates the end of the
parameter list.)
Called by: Compiled code
IHEUPA

Entry Point IHEUPAA

Function:

To zero the real part of a complex
coded data item and to return the
address of the imaginary part.

Chapter 9: Module Summaries 141

Linkage:

RA: A(Source)
RB: A(Source DED)
WRCD: A(Imaginary part)

Called by: IHEDCN

Entry Point IHEUPAB:

Function:

To return the address of the imaginary
part of a complex coded data item if
switch is on, and to zero the imaginary
part if switch is off.

Linkage:
RA: A(Source)
RB: A(Source DED)
WSWA: Switch for update address only
WRCD: A(Imaginary part)
Called by:

IHEDBN, IHEDCN,
IHEDNC, IHEDOM,

IHEDIA, IHEDID, IHEDIE,
IHEVCS

IHEUPB

Calls: IHEDMA

Entry Point IHEUPBA:

Function:
To zero the real part of a complex

numeric field and to return the address
of the imaginary part.

Linkage:
RA: A(Source)
RB: A(Source DED)
WRCD: A(Imaginary part)

Called by: IHEDCN

Entry Point IHEUPBB:

Function:

To return the address of the imaginary
part of a complex numeric field if
switch is on, and to zero the imaginary
part if switch is off.

142

Linkage:

RA: A(Source)

RB: A(Source DED)

WSWA: Switch for update address only
WRCD: A(Imaginary part)

Called by:

THEDBN,
THEDOM

IHEDCN, IHEDIA, IHEDID, IHEDIE,

IHEVCA
Entry Point: IHEVCAA
Fuanction:
To define the attributes of arithmetic
data in character form by producing a DED
(flags, p, q9).
Linkage:
RA: A(Target DED)
WNCP: A(Start and end addresses of data
to be analysed)
Called by:
IHEDIA, IHEDIM, IHEDOM, IHELDI
IHEVCS
Calls:

IHEDMA, IHEDNB, IHEDNC, IHEUPA, IHEUPB

Entry point IHEVCSA

Function:

To direct the conversion of character
representation of complex data to
internal string data. The character
data 1is first converted to coded com-
plex, with attributes derived from the
real and imaginary parts of the source
data (according to the arithmetic con-
version package rules) and then con-
verted to string.

Linkage:

RA: A(Parameter list)
Parameter list:
A(start and end addresses of real
data)
A(Real DED)
A(start and end addresses
inary data)
A(Imaginary DED)
A(Target SDV)
A(Target DED)
A(Real FED)
A(Imaginary FED).

of imag-

Called by: IHEDIM, IHEDOM, IHELDI
Entry point IHEVCSB
Function:
As for THEVCSA but the conversion is to
coded complex only.
Linkage: As for IHEVCSA

Called by: As for IHEVCSA

IHEVFA
Calls:

IHEVKF, IHEVKG, IHEVPB, IHEVPC, IHEVPD

Entry point: IHEVFAA

Function:
Radix conversion: binary to decimal

To convert long floating-point to packed
decimal intermediate.

Linkage:

WINT: Long precision floating-point
number

Ccalled by: IHEVFD, IHEVFE, IHEVPG, IHEVPH
IHEVFB
Entry point: TIHEVFBA
Function:
To convert a long precision floating-
point number to a fixed-point binary
number with specified precision and scale
factor.
Linkage:
WINT: Long
number

WRCD: A(Target)
A(Target DED)

precision floating-point

Called by:

IHEVFD, IHEVFE, IHEVPA, IHEVPG, IHEVPH
IHEVEC
Entry point: IHEVFCA
Function:

To convert a long floating-point number

to a floating-point variable with speci-~
fied precision.

Linkage:
WINT: Long-precision floating-point num-
ber
WRCD: A(Target)
A(Target DED)
Called by:

IHEVFD, IHEVFE, IHEVPA, IHEVPG, IHEVPH

IHEVFD

Calls: IHEVFA, IHEVFB, IHEVFC

Entry point: IHEVFDA

Function:

integer
precision

To convert a fixed-point binary
with scale factor to 1long
floating-point.

Linkage:

RA: A(Source)
RB: A(Source DED)

Called by: IHEDMA
IHEVFE
IHEVFC

Calls: IHEVFA, IHEVFB,

Entry point: TIHEVFEA
Function:

number of
precision

To convert a floating-point
specified precision to 1long
floating-point.

Linkage:

RA: A(Source)
RB: A(Source DED)

Called by: IHEDMA
IHEVKB
Calls:

THEVKF,
IHEVPD

IHEVKG, IHEVPA, IHEVPB, IHEVPC,

Entry point: IHEVKBA
Function:
To convert a fixed- or floating-point

decimal numeric field to packed decimal
intermediate.

Chapter 9: Module Summaries 143

Linkage:

RA: A(Source)
RB: A(Source DED)

Ccalled by: IHEDMA

IHEVKC
Calls:

IHEVKF, IHEVKG, IHEVPA,
JTHEVPD

IHEVPB, TIHEVPC,

Entry point: IHEVKCA

Function:

To convert a sterling numeric field to
packed decimal intermediate.

Linkage:

RA: A(Source)
RB: B(Source DED)

Called by: IHEDMA
IHEVKE
Entry point: IHEVKFA

Function:

To convert packed decimal intermediate to

a decimal fixed- or floating-point numer-

ic field with specified precision.
Linkage:

WINT: Decimal integer

WSCF: Scale factor

WRCD: A(Target)

A(Target DED)
Called by:

IHEVFA, IHEVKB, IHEVKC, IHEVPE, IHEVPF
IHEVKG
Entry point: IHEVKGA
Function:

To convert packed decimal intermediate to

a sterling numeric field with specified

precision.

Linkage:
WINT: Decimal integer
WSCF: Scale factor

WRCD: A(Target)
A(Target DED)

144

Called by:

IHEVFA, IHEVKB, IHEVKC, IHEVPE, IHEVPF

IHEVPA

Calls: IHEVFB, IHEVFC

Entry point: IHEVPAA

Function:
Radix conversion: decimal to binary

To convert packed decimal intermediate to
long precision floating-point.

Linkage:

WINT: Decimal integer
WSCF: Scale factor

Called by: IHEVKB, IHEVKC, IHEVPE, IHEVPF
IHEVPB
Entry Point: IHEVPBA
Function:

To convert packed decimal intermediate to
an F format item.

Linkage:

WINT: Decimal integexr

WSCF: Scale factor

WFDT: A(FED)

WRCD: A(Target)

Called by:

IHEVFA, IHEVKB, IHEVKC, IHEVPE, IHEVPF
IHEVPC
Entry point: TIHEVPCA
Function:

To convert packed decimal intermediate to
an E format item.

Linkage:
WINT: Decimal integer
WSCF: Scale factor
WFDT: A(FED)
WRCD: A(Target)
Called by:
IHEVFA, IHEVKB, IHEVKC, IHEVPE, IHEVPF
IHEVPD

Entry point: IHEVPDA

Function:
To convert packed decimal intermediate to
a decimal integer with specified preci-
sion and scale factor.
Linkage:
WINT: Decimal integer
WSCF: Scale factor
WRCD: A(Target)
A(Target DED)
Called by:

IHEVFA, IHEVKB, IHEVKC, IHEVPE, IHEVPF
IHEVPE
Calls:

IHEVKF, IHEVKG, IHEVPA,
IHEVPD

IHEVPB, IHEVPC,

Entry point: TIHEVPEA
Function:

To convert an F/E format item to packed
decimal intermediate.

Linkage:
RA: A(Source)
RB: A(Source DED)
WFED: A(FED)

Called by: IHEDMA

IHEVPF

Calls:
IHEVKF, IHEVKG, IHEVPA, IHEVPB, IHEVPC,
IHEVPD

Entry point: IHEVPFA

Function:
To convert a decimal integer with speci-
fied precision and scale factor to packed
decimal intermediate.

Linkage:

RA: A(Source)
RB: A(Source DED)

Called by: IHEDMA
IHEVPG
Calls: IHEVFA, IHEVFB, IHEVFC

Entry point: IHEVPGA

Function:

floating-
precision

To convert a binary fixed- or
point constant to long
floating-point.

Linkage:

WCNP: A(Beginning of constant)
A(End of constant)

Called by: IHEDMA

IHEVPH

Calls: IHEVFA, IHEVFB, IHEVFC

Entry point: IHEVPHA

Function:
To convert a bit string constant with up
to 31 significant bits to long precision
floating-point.

Linkage:

WCN1l: A(Beginning of constant)
A(End of constant)

Called by: IHEDMA

IHEVOA
Entry point: IHEVQAA

Function:
To convert a floating point number of
specified precision to a fixed-point
binary number with specified precision
and scale factor.

Linkage:
RA: A(Source)
RB: A(Source DED)
RC: A(Target)
RD: A(Target DED)

Called by: Compiled code, IHEVQB

IHEVOB

Calls: IHEVQA

Entry point: IHEVQBA

Function:

To convert a decimal constant to a coded

arithmetic data type.

Chapter 9: Module Summaries 145

Linkage:

RA: A(First character of constant)

RB: A(Last character of constant)

RC: A(Target)

RD: A(Target DED)

WFED: A(FED) if constant is part of F or
E format input

WSWB: Switches specifying type of
string

source

Called by: IHEDCN, IHEDIA

IHEVQC

Calls: IHEVSC, IHEVSE
Entry point: IBEVQCA
Function:

coded arithmetic data
E format or character

Tc convert some
types to F or
string.

Linkage:

RA: A(Source)

RBE: A(Source DED)

RC: A(Target SDV)

RD: A (Target DED)

WFDT: A(FED)

WSWB: Switches
string

specifying type of target

Called by: IHEDNC, IHEDOA

IHEVSA

Entry point: IHEVSAA

Function:
To assign a fixed-length or VARYING bit
string to a fixed-length or VARYING bit
string.
Linkage:
RA: A(Source SDV)
RB: A(Source DED)
RC: A(Target SDV)
RD: A(Target DED)
Called by: Compiled code, IHEDIA, IHEDNB
IHEVSB
Entry point: TIHEVSBA
Function:
To convert a fixed-length or VARYING bit

string to a fixed-length or VARYING char-
acter string.

146

Linkage:

RA: A(Source SDV)
RB: A(Source DED)
RC: A(Target SDV)
RD: A(Target DED)

Called by:
Compiled code, IHEDOB, IHEDOD, IHEDOE,
IHELDO

IHEVSC

Entry point: IHEVSCA

Function:

To assign a fixed-length or VARYING char-
acter string to a fixed-length or VARYING
character string.

Linkage:

RA: A(Source SDV)
RB: A(Source DED)
RC: A(Target SDV)
RD: Aa(Target DED)

Called by:
Compiled code, TIHEDIA, IHEDIB, IHEDID,
IHEDIE, IHEDOB, IHEDOD, IHEDNC, IHELDI,
IHEVQC

IHEVSD

Entry point IHEVSDA

Function:

To convert a fixed-length or VARYING
character string +to a fixed-length or
VARYING bit string. The ONSOURCE
address is stored.

Linkage:

RA: A(Source SDV)
RB: A(source DED)
RC: A(Target SDV)
RD: A(Target DED)
WODF: A(Source SDV)

Called by:
Compiled code, IHEDIB, IHEDID, IHEDIE,
THELDI
Entry point IHEVSDB
Fuanction:
As for IHEVSDA, but the ONSOURCE

address is not stored.

Linkage:
As for IHEVSDA, but without WODF
Called by: As for IHEVSDA
IHEVSE

Entry point THEVSEA

Function:

To assign a fixed-length or VARYING
character string to a pictured charac-
ter string. The ONSOURCE address is
stored.

Linkage:

RA: A(Source SDV)
RB: A(Source DED)
RC: A(Target SDV)
RD: A(Target DED)
WODF: A(Source SDV)

Called by:
Ccompiled code, IHEDIB, IHEDID, IHEDIE,
IHEDNC, THEDOB, IHEVQC
Entry point THEVSEB
Function:
As for IHEVSEA, but the ONSOURCE

address is not stored.
Linkage:
As for IHEVSEA, but without WODF

Called by: As for IHEVSEA

IHEVSF
Entry Point: IHEVSFA
Function:

To convert a fixed-length or VARYING bit
string to a pictured character string.

Linkage:

RA: A(Source SDV)

RB: A(Source DED)

RC: A(Target SDV)

RD: A(Target DED)
Called by: Compiled code, IHEDOB
IHEVTB

Base address of table: IHEVTBA

Function:

This module is a table of long precision

floating-point
ers of 10 from 1 to 70. It is

numbers representing pow-
used by

the +two radix conversion routines IHEVPA

and IHEVFA.

Linkage:

Not called.
by IHEVPA and IHEVFA

IHEXIB
Entry point: IHEXIBO
Function:

X*¥*n,
and n is a positive integer.

Linkage:
RA: A(X)
*RB: A(DED for x)
RC: A(n)

RD: A(Target)
*RE: A(Target DED)

Called by: Compiled code
IHEXID

Entry point: IHEXIDO
Function:

x**n, where x is real fixed-point
mal, and n is a positive integer.

Linkage:
RA: A(x)
RB: A(DED for x)
RC: A(n)

RD: A(Target)
RE: A(Target DED)

Called by: Compiled code
IHEXIL

Entry point: IHEXILO
Function:

x**n, where x is
point, and n is an integer.

Linkage:
RA: A(x)
RB: a(n)
RC: A(Target)

Called by: Compiled code

Chapter 9: Module Summaries

Referenced as external data

where x is real fixed-point binary

deci-~

real 1long floating-

147

IHEXIS

Entry point: IHEXISO

Function:

x*¥*n, where x 1is real short
point, and n is an integer.

floating-

Linkage:
RA: A(x)
RB: A(n)
RC: A(Target)

Called by: Compiled code

THEXIU

Calls: IHEMZU

Entry point: IHEXIUQ
Function:

z**n, where z is complex fixed binary and
n is a positive integer.

Linkage:

A(z)

A(DED for z)

A(n)

A(Target)
A(Target)

Called by: Compiled code
IHEXIV
Calls: IHEMZV

Entry point: IHEXIVO
Function:

z**n, where 2z is complex fixed-point
decimal and n is a positive integer.

Linkage:
RA: A(z)
RB: A(DED for z)
RC: A(n)
RD: A(Target)

*RE: A(Target DED)
Called by: Compiled code
JIHEXIW
Calls: IHEMZW

Entry point: IHEXIWO

148

Function:

z**n, where z is complex short
point, and n is an integer.

Linkage:
RA: A(2Z)
RB: A(n)

RC: A(Target)

Called by: Compiled code

IHEXIZ

Calls: IHEMZZ

Entry point: IHEXIZO

Function:
z**n, where
point, and n is an integer.

Linkage:

RA: A(2)

RB: A(n)
RC: A(Target)

Called by: Compiled code
IHEXXL
Calls: IHEEXL, IHELNL

Entry point: IHEXXLO
Function:

xk*y, where x and vy real

floating-point.

are

Linkage:
RA: A(y)
RB: A(X)
RC: A(Target)
Called by: Compiled code
THEXXS
Calls: IHEEXS, IHELNS
Entry point: IHEXXSO
Function:
real

x**y, where x are

floating-point.

and vy

floating-

z is complex long floating-

long

short

Linkage:
RA: A(y)
RB: A(x)

RC: A(Target)

Called by: Compiled code

IHEXXW

Calls: IHEEXW, IHELNS, IHELNW

Entry point: IHEXXWO

Function:
z, *¥*¥2z,, where z,; and z, are complex short
floating-point.
Linkage:
RA: A(z3)
RB: A(z,)
RC: A(Target)

Called by: Compiled code

IHEXXZ

Calls: IHEEXZ, IHELNL, IHELNZ

Entry point: IHEXXZO0

Function:
Z,¥*z,, where z4 and z, are complex long
floating-point.
Linkage:
RA: A(Zz)
RB: A(z4)
RC: A(Target)
Called by: Compiled code
IHEYGF

Clalls: IHEDMA

Entry point IHEYGFV

Function:

POLY (A,X) for both A and X vectors of
real fixed-point binary or decimal num-
bers. Result 1is real short or long
floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:
A(ADV of argument 1)
A(DED of argument 1)
A(ADV of argument 2)
A(DED of argument 2)
A(Target)
A(DED of target)

Called by: Compiled code

-

Entry point IHEYGFS

Function:
As for IHEYGFV but X is scalar.
Linkage:

RA: A(Parameter list)
Parameter list:
A{(ADV of argument 1)
A(DED of argument 1)
A(Argument 2)
A(DED of argument 2)
A(Target)
A(DED of target)

Called by: Compiled code
IHEYGL

Entry point IHEYGLV

Function:

POLY (A,X) for both A and X vectors
numbers.
Result is real long floating-point.

real long .floating-point

Linkage:

RA: A(Parameter list)
Parameter list:
A(ADV of argument 1)
A(ADV of argument 2)
A(Target)

Called by: Compiled code

Entry point IHEYGLS

Function:

As for IHEYGLV but X is scalar.
Linkage:

RA: A(Parameter list)
Parameter list:
A(ADV of argument 1)
A(Argument 2)
A(Target)

Called by: Compiled code

Chapter 9: Module Summaries

of

149

IHEYGS

Entry point IHEYGSV

Function:

POLY (A,X) for both A and
real short floating-point.
real short floating-point.

Linkage:
RA: A(Parameter list)
Parameter list:
A(ADV of argument 1)
A(ADV of argument 2)
A(Target)

Called by: Compiled code

Entry point IHEYGSS

Function:

As for IHEYGSV but X is scalar.

Linkage:
RA: A(Parameter list)
Parameter list:
A(ADV of argument 1)
A(Argument 2)
A(Target)

Called by: Compiled code

IHEYGW

Entry point IHEYGWV

Function:

POLY
complex short floating-point.
is complex short floating-point.

Linkage:
RA: A(Parameter list)
Parameter list:
A(ADV of argument 1)
A(ADV of argument 2)
A(Target)

Called by: Compiled code

Entry point IHEYGWS

Function:

As for IHEYGWV, but X is scalar.

150

X vectors of
Result

(A,X) for both A and X vectors of

Result

is

Linkage:
RA: A(Parameter list)
Parameter list:
A (ADV of argument 2)
A(Argument 1)
A(Target)

Called by: Compiled code

IHEYGX
Calls: IHEDMA

Entry point IHEYGXV

Function:

POLY (A,X) for both A and X vectors of
complex fixed-point binary or decimal
numbers. Result 1is complex short or
long floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:
A(ADV of argument 1)
A(DED of argument 1)
A(ADV of argument 2)
A(DED of argument 2)
A(Target)
A(DED of target)

Called by: Compiled code

Entry point IHEYGXS

Function:

As for IHEYGXV, but X is scalar.

Linkage:

RA: A(Parameter list)
Parameter list:
A(ADV of argument 1)
A(DED of argument 1)
A(Argument 2)
A(DED of argument 2)
A(Target)
A(DED of target)

Called by: Compiled code

IHEYGZ

Entry point IHEYGZS

Function:

As for IHEYGZV, but X is scalar.

Linkage:

RA: A(Parameter list)
Parameter list:
A(ADV of argument 1)
A(Argument 2)
A(Target)

Called by: Compiled code

Entry point THEYGZV

Function:
POLY (A,X) for both A and X vectors of
complex long floating-point numbers.
Result is complex long floating-point.
Linkage:
RA: A(Parameter list)
Parameter list:
A(ADV of argument 1)
A(ADV of argument 2)
A(Target)
Called by: Compiled code
IHEZZC

Calls: IHEZZF

Entry point: IHEZZCA
Function:
To provide a SNAP dump with

trace and information about
files that are open.

save-area
the PL/I
Linkage:

RA: A(Parameter list)
See source listing for parameter list.

Called by: IHEDUM

IHEZZF
Entry point: IHEZZFA
Function:

To provide the save-area trace that forms
part of the output produced by IHEZZC.

Linkage:

RA: A(Parameter list)
See source listing for parameter list.

called by: IHEZZC

Chapter 9: Module Summaries 151

APPENDIX A:

SYSTEM MACRO INSTRUCTIONS

152

The following table lists the system macro instructions used by the
PL/1I library and associates their use with individual library modules.

System Macro
ABEND

ATTACH

CHAP

CHECK
CLOSE
DCB

DCBD

DELETE

DEQ

DETACH
DEVTYPE

ENQ

ESETL
EXTRACT

FREEMAIN

FREEPOOL
GET
GETBUF

GETMAIN

GETPOOL
IDENTIFY

LINK

LOAD
OPEN

POST

IHEDUM,
IHETSA

IHECTT,
IHEOCT,

IHEITF,
IHECTT,
IHEOPO,
THECLT,
IHEITG,
IHEOPQ,
IHECLT,

IHECTT,
IHEPTT,

IHETSA
IHEOPO

IHEDDT,
IHETEX

IHEITD
IHETSA,
IHEBEG,
IHELSP,
IHETSA,
IHECLT,
IHEITD,
IHEOPZ

IHEBEG,
IHEITD,
IHEOPP,
IHEOPP

IHETSA

IHEBEG,
IHETSA

IHEESM,
IHEOPP,

IHEDSP,
IHETEA,

Library Module

IHEERR

IHEDSP, IHEIGT, IHEITB, IHEITC, IHEITH, IHEITJ,
IHETEA, IHETEV, IHETPR, IHETSA, IHETSW

IHEITJ, IHEOPZ, IHEITB, IHEITC

IHECLS, TIHECLT, IHEOPZ

IHEOPZ

IHECTT, IHEITB, IHEITC, IHEITD, IHEITE, IHEITF,
IHEITH, IHEITJ, IHEOCL, IHEOCT, IHEOPO, IHEOPP,
THEOPZ

IHECTT, IHEESM, IHETEX

IHEDDT, IHEESM, IHEIBT, IHEITH, IHEITJ, IHECCT,
IHETSA, IHETEX

IHEESM, IHEIBT, IHEITH, IHEITJ, IHEOCT, IHEPTT,
IHETEX, IHETOM, IHEPRT, IHEPTT

IHECLT, IHECTT, IHEDSP, IHEIOG, IHEITB, IHEITC,
IHEMSW, IHEOCL, IHEOPZ, IHEOSW, IHESA, IHETCV,
IHESRT, IHETSW

IHECTT, IHEOPQ, IHEOPZ

IHEITG

IHEDSP, IHEERR, IHEIGT, IHEIOG, IHEITB, IHEITC,
IHEITE, IHEITF, IHEITH, IHEITJ, IHELSP, IHEOPO,
IHEOPQ, IHEOPZ, IHESA, IHETCV, IHESRT, IHETSA
IHEDUM, IHEERR, IHEOCL, IHEOCT, IHEOPN, IHESRT,
IHEOPQ, IHETEX

IHEOPZ

IHEIGT, IHEINT, IHEITB, IHEITH, IHEITJ, IHEOCT,
IHETEV, IHETPR, IHETSA, IHETSW

PUT
PUTX
READ
RETURN
SETL
SNAP
SPIE
STIMER
TIME

WAIT

WRITE
WTO
WTOR

XCTL

IHEITD,
IHEITD,
IHEITB,
IHECLT,
IHEITD
IHEDUM
IHEERR,
IHEOST
IHEOSD,

IHEDSP,
IHEOCT,

IHEITB,
IHEDSP,
IHEDSP

IHEOPN,

IHEITG,
IHEITG
IHEITE,

IHECTT

IHESA,

IHEOST

IHEIGT,
IHEOSW,

IHEITC,

IHEOCL,

IHEOPO,

IHETEX

IHEITF,

IHESRT,

IHEINT,
IHETEA,

IHEITE,

IHEOCT,

IHEOPP

THEITH,

IHETSA

IHEITB,
IHETEV,

IHEITF,

IHEPRT,

IHEITJ

IHEITE,
IHETPR,

IHEITH,

IHETOM,

IHEITH,
IHETSA,

IHEITJ,

IHETEX,

IHEMSW,
IHETSW

IHEOPZ

IHEPTT

Appendix A: System Macro Instructions 153

APPENDIX B: SYSTEM GENERATION

System Generation Process

IBM System/360 Operating System consists
of libraries of program modules that can be
united in a variety of combinations,
according to options specified by the user.
The user selects the programming options
that meet his data processing requirements
and conform to his machine facilities. The
selected options are translated into pro-
gram module requirements by the system
generation process, the modules being com-
piled into 1libraries that form +the new
operating system.

The operating system is generated in two
stages. First, a series of user-supplied
macro instructions, which describe the
machine facilities and programming options
required, is written. From these, if no
errors are found, a job stream is generat-
ed. 1In the next stage, the job stream is
processed by the assembler, the linkage
editor, and utility programs, to generate
the libraries of modules which form the new

operating system. The whole process is
carried out using an existing operating
system. The system generation process is

described in IBM System/360 Operating Sys-
tem: System Generation.

PL/]1 Library System Generation

All PL/I Library modules are in load

form. Before system generation they exist
on two libraries:
1. SYS1.PL1LIB. This PDS contains

modules which are always required by
a system using PL/I.

154

2. SYsi.LM512. This contains both
modules which are optionally
required and modules which will be

copied into SYS1.LINKLIB.

Three PL/I Library system macros are used,
whose purpose 1is to produce COPY control
cards for inclusion in the job stream.

The first macro, SGIHESLA,
control cards to copy
SYS1.LM512 into SYS1.LINKLIB.

produces COPY
modules from

The second macro, SGIHES5PB, produces
COPY control cards to copy the non-optional
modules on SYS1.PL1LIB into the new
SYS1.PL1LIB.

tests for the
If it is pre-
produced for
arithmetic

The third macro, SGIHESPC,
COMPLEX arithmetic option.
sent, COPY control cards are
modules dealing with complex
(about 30% of the total number). The macro
then tests to see if the TIME and STIMER
options have been requested and are availa-
ble. If so, COPY control cards are pro-
duced for IHEOST and IHEOSI. If either or
both of these options are not required,
either or both of the dummy modules IHEMST
and IHEMSI are renamed IHEOST and IHEOSI
respectively and the appropriate COPY con-
trol cards are produced. Similarly, if the
MULTIPLE WAIT option is not requested, the
SINGLE WAIT module IHEMSW 1is renamed
IHEOSW.

APPENDIX C: PL/I OBJECT PROGRAM PSEUDO-REGISTERS

PL/I object programs require pseudo-
registers (symbolic name format IHEQxxx),
some of which are defined by the compiled
program, others by the 1library modules.
During execution of a program register PR
always points to the base of the PRV (see
'Pseudo-Register Vector', Chapter 2).

IHEQADC
Pointer to a list of address constants
for use by the 1I/0 routines: for non-

multitasking the 1list is in IHESA, for

maltitasking in IHETSA.

IHEQATV

Contains +the address of the
variable for the current task.

task

IHEQCFL
The current-£file pseudo-register,
8-bytes, word aligned. Used by STREAM I/0

modules for implicit communication of the
file currently being operated upon; see
'Current File' in Chapter 3.

IHEQCTS

Contains the address of the save area
for the control task in a multiprogramming
environment.

THEQERR

Serves as a parameter list when calling
IHEERRB. The code associated with the ON
condition to be raised 1is placed into
IHEQERR. See 'ON Conditions' in Chapter 6.

IHEQEVT

The anchor cell for the incomplete I/0O
event variables in a given task. When
IHEQEVT contains =zero, no I/0 event
variable in the task is incomplete.
IHEQFOP

The anchor cell of the chain linking the
FCBs for the files opened in a given task.
When IHEQFOP is zero, none of the files
opened in this task are still open. See
'File Control Block' in Chapter 3.

JHEQFVD
Pointer to the Free VDA module: IHESAFD

for non-multitasking, IHETSAF for multi-
tasking.

IHEQINV

Contains the invocation count, and is
updated by a library module each time a DSA
is obtained.

IHEQLCA

Pointer to the current generation of the

library communication area; see 'Library
Workspace' in Chapters 2 and 4.
IHEQLSA

Pointer to the first save area in IWS,
which serves two purposes: (1) the save
area provided by the error-handling rout-
ines for an on-unit, and (2) an area where
initial task information is saved (PICA,
program mask, etc.). See Chapter 4.
IHEQLWO, IHEQLW1,

THEQLW2, IHEQLW3, THEQLW4

Pointers to the various levels of
library workspace ; see 'Library Workspace’
in Chapters 2 and 4.

IHEQLWE

Pointer to the save area and workspace

used by the error-handling routines when
calling other 1library routines (not an
on-unit).

IHEQLWE

Pointer to the reserved area attached to
the current ILWS. Used for optimization in
storage management. See ‘Object-time
Optimization' in Chapter 4.

IHEQRTC

used in the
(See

Contains the return code
normal termination of a PL/I program.
Chapter 4.)

IHEQSAR

Contains an environment count used by
the display modification module (IHESAR)
when on-units and entry parameter proce-
dures are used in prologues and epilogues.

IHEQSFC
Pointer to free-core within first block

of storage obtained by the task initializa-
tion library module (IHESA); see Chapter 4.

Appendix C: PL/I Object Program Pseudo-Registers 155

IHEQSLA

Pointer to the storage area most recent-
ly allocated by the storage management

routines. The area may be a DSA or a VDA.
See Chapter 4.
IHEQSPR

The file register for SYSPRINT, the name
being standardized to allow usage of the
same FCB for both the source program and
the library modules. See *Standard Files',
and ‘'File Addressing Technique' in Chapter
3.

IHEQTIC
Contains the task invocation count,
which is used in multitasking in the

freeing of controlled storage.

156

IHEQVDA

Pointer to the Get VDA module: ' in non-
multitasking set(in IHESAP) to IHESADF; in
multitasking, set (in IHETSAM) to IHETSAW.

IHEQXILYV

The anchor cell for the exclusive blocks
created in a given task. When IHEQXLV
contains zero, the task has no exclusive
blocks.

IHELIB

Operands: None
Result:

Definitions of LWS pseudo-registers.

Lengths of save areas in LWS.

Format of the library communication area.

Definitions of save area offsets.

Definitions of standard
assignments.

register

IHEEVT
Operands: None
Result:

Definitions of the event variable and its
flags.

IHEPRV

Operands:

A three-character code denoting the last
three letters of a pseudo-register name
(default: ICA)

‘A code denoting a
(default: WR)

A keyword parameter OP=XX, where XX is an
RX instruction (default: L)

general register

Result:

The RX operation 1is performed on the
pseudo-register. This macro is gener-

ally used to store the pseudo-register
address in a general register.

IHESDR

Operands:

A three-character code denoting a work-
space level (default: LWO0)
A code denoting a general register other

than register DR (default: WR)

APPENDIX D: LIBRARY MACRO INSTRUCTIONS

Result:

The address of the required workspace
level is put into register DR.

IHEXLV

Operands: None
Result:

Definition of exclusive block and its

flags.
IHEZAP
Operands: None
Result:
Definitions of I/O pseudo-registers.
Definitions of the file control block and

its flag bytes.
Definition of the declare control block.

Definitions of various I/0 address con-
stants, parameters, operations and
options.

Definitions of the I/O control block and
its flag bytes.

Definitions of the event variable and its
flags.

IHEZ2Z
Operands: DUMP/none
Result:

If the operand is omitted, or is not
DUMP, a full DSECT is generated. If
the operand is DUMP, only the parameter
list for IHEZZC is defined as a DSECT.

Used only by IHEDUM, IHEZ2C, IHEZZF.

Appendix D: Library Macro Instructions 157

APPENDIX E: PL/I LIBRARY INTERNAL ERROR CODES_AND MESSAGES

Among the errors that occur during pro-
gram execution are errors that are covered
by PL/I-defined conditions. If one of
these occurs, an appropriate error code is
passed to IHEERR in pseudo-register
IHEQERR. This code is a #4-digit hexadeci-
mal number. The +two high-order digits
denote the PL/I condition (Figure 49); the
others denote the errors associated with
that condition.

r T 1
| Code | Condition |
b 1- — -1
| 10 | STRINGRANGE
i8	OVERFLOW
20	SIZE
28	FIXEDOVERFLOW
30	SUBSCRIPTRANGE
38	CHECK(label)
40	CONVERSION
48	CHECK(variable)
50	CONDITION(identifier)
I 58	FINISH
60 -	ERROR
68	ZERODIVIDE
70	UNDERFLOW
78	AREA
] 88	NAME
90	RECORD
98	TRANSMIT
A0	1I/0 SI1ZE
A8	KEY {
BO	ENDPAGE
B8	ENDFILE
co }] I/O0O CONVERSION	
Cc8	UNDEFINEDFILE
L L —— 3

Figure 49. 1Internal Codes for ON Condition
Entries

If system action is required, an error
message will be printed. The messages
relating to the errors for the PL/I condi-
tions are given here.

Errxor code Message

1000 STRINGRANGE

1800 OVERFLOW

2000 SIZE

2800 FIXEDOVERFLOW

3000 SUBSCRIPTRANGE

5000 CONVERSION

4001 CONVERSION ERROR 1IN F-FORMAT
INPUT

158

4002

4003

4004

4005

4006

4007

4008

4009

5000
5800
6000
6800
7000
7800

7801

7802

8800
9000

2001

9002

9003

2004
9800
9801

CONVERSION ERROR IN E-FORMAT
INPUT

CONVERSION ERROR IN B-FORMAT
INPUT

ERROR IN CONVERSION FROM CHAR-
ACTER STRING TO ARITHMETIC

ERROR IN CONVERSION FROM CHAR-

ACTER STRING TO BIT STRING
ERROR IN CONVERSION FROM CHAR-
ACTER STRING TO PICTURED CHAR-
ACTER STRING

CONVERSION ERROR IN P-FORMAT
INPUT (DECIMAL)

CONVERSION ERROR 1IN P-FORMAT
INPUT (CHARACTER)

CONVERSION ERROR [N P-FORMAT
INPUT (STERLING)

CONDITION
FINISH

ERROR
ZERODIVIDE
UNDERFLOW
AREA SIGNALED

AREA CONDITION RAISED IN
ASSIGNMENT STATEMENT

AREA CONDITION RAISED IN ALLO-
CATE STATEMENT

UNRECOGNIZABLE DATA NAME
RECORD CONDITION SIGNALED

RECORD VARIABLE SMALLER THAN
RECORD SIZE

RECORD VARIABLE LARGER THAN
RECORD SIZE

ATTEMPT TO WRITE ZERO LENGTH
RECORD

ZERO LENGTH RECORD READ
TRANSMIT CONDITION SIGNALED

PERMANENT OUTPUT ERROR

9802
A800
A801
A802
A803
aA804
A80S5
AB06

A807

B800

c800

c801

PERMANENT INPUT ERROR

KEY CONDITION SIGNALED

KEYED RECORD NOT FOUND
ATTEMPT TO ADD DUPLICATE KEY
KEY SEQUENCE ERROR

KEY CONVERSION ERROR

KEY SPECIFICATION ERROR

KEYED RELATIVE RECORD/TRACK
OUTSIDE DATA SET LIMIT

NO SPACE AVAILABLE TO ADD
KEYED RECORD

END OF FILE ENCOUNTERED

UNDEFINEDFILE CONDITION SIG-
NALED

FILE ATTRIBUTE CONFLICT AT
OPEN

c802
c803
c8ou

C805

Cc806

c807

c808

c809

c80a

C80B

FILE TYPE NOT SUPPORTED
BLOCKSIZE NOT SPECIFIED

CANNOT BE OPENED (NO DD CARD)

ERROR INITIALIZING REGIONAL
DATA SET
CONFLICTING ATTRIBUTE AND

ENVIRONMENT PARAMETERS

CONFLICTING ENVIRONMENT AND/OR
DD PARAMETERS

KEY LENGTH NOT SPECIFIED

INCORRECT BLOCKSIZE AND/OR
LOGICAL RECORD SIZE
LINESIZE GT IMPLEMENTATION

DEFINED MAXIMUM LENGTH

CONFLICTING ATTRIBUTE AND DD
PARAMETERS

Appendix E: PL/I Library Internal.Error Ccodes and Messages 159

APPENDIX F: DUMP INDEX

The dump index provided by the subrout-
ines IHEZZA, IHEZZB, and IHEZZC contains
information about:

SYSPRINT buffers
Files currently open
Current file

Save areas

On-units, interrupts and other details

This information is output to a file called
PL1DUMP.

SYSPRINT Buffers

The contents of each buffer are given,
in EBCDIC. If U-format records are used,
the contents of ¢the intermediate buffer

used by the library are also printed.

Files Currently Open

File name
A (DCLCB)
A(FCB)
A(DCB)

File-register offset in PRV

Current File

I/0 Files: File name
A (DCLCB)
A(FCB)
A(DCB)

STRING Files: A(SDV)

160

Save Areas

A trace-back through the save-area chain
provides the following addresses:

A(All save areas,
library save areas)

including the

A(Current LCA)

A(PRV VDA)

A(vDA for LWS2)

Other Information

If a CALL was made: A(CALL)
A(Procedure) or
A(Entry point of
library module)

If a BEGIN block was
point)

entered: A(Entry

If a program interrupt occurs: A(Interrupt)

If an on-unit was entered: Type of on-unit.
If this on-unit is the error on-unit and
was entered as a result of system
action, the condition causing the system
action is given.

If IHEDMA occurs in the trace-back: The
names of the modules used in the conver-
sion are given.

The statement number (if it exists) is

given.

The following program illustrates the

use of the dump index:

TDUMP: PROC OPTIONS (MAIN);

1 TDUMP: PROC OPTIONS(MAIN);

2 DCL A CHAR(4)INIT('ABCD');

3 DCL IHESARC ENTRY(FIXED BINARY);

4 ON ERROR CALL IHEDUMP;

6 ON CONV CALL CONVPROC;

8 CALL IHESARC(20);

9 PUT LIST ('THIS IS THE FIRST LINE');
10 PUT SKIP LIST('THIS IS THE SECOND

LINE');

11 OPEN FILE(XYZ) OUTPUT;
12 BEGIN;
13 X=A; /* CONV ERROR */
14 END ;

15 CONVPROC :PROC;

16 DCL Y(-32768:-32768,-32768:-32768) CHAR(1);
17 Z2=Y(32767,32767); /* ADDRESSING ERROR */

18 END TDUMP;

The addressing error only occurs if this program is the only one being executed.
The dump index produced for this program is:

¥ * x PI/T F-COMPILER 4TH VERSION * IHEDUMP * * *

* * * SYSPRINT BUFFERS .
BUFFER 01
HE FIRST LINE " U YA 3 R IHEOPNA O O
BUFFER 02
IHES8O4TI ADDRESSING INTERRUPT IN STATEMENT 00017 AT OFFSET +000B4
FROM ENTRY POINT CONVPROC
**% FILES CURRENTLY OPEN
XY7Z DCICB 00A488 FCB 03EB40 DCB 03EB70 PR OFFSET 01C
SYSPRINT DCLCB 00A4UCO FCB O03EBDO DCB 03EC00 PR OFFSET 020
**x* CHAIN BACK THROUGH SAVE AREAS
03F9BO0 DSA FOR ERR ON-UNIT CALLS THEDUMP FROM 00A1FA (STMT 5)

03DF10 SECONDARY LIBRARY WORKSPACE

03DF20 SAVE AREA FOR LIBRARY CALLS 00Al9C FROM OOCA3E LCA AT 03E3]
03F690 SAVE AREA FOR LIBRARY CALLS 00A522 FROM 00CAO4 LCA AT 03F730
03F4C8 SAVE AREA FOR LIBRARY INTERRUPT AT OOAF46 LCA AT 03F730
03F8b8 DSA FOR PROC CONVPROC CALLS O0OAEF0 FROM 00A318 (STMT 17)
03F828 DSA FOR CONV ON-UNIT CALLS 00A264 FROM 00A25E (STMT 7)

03F338 SECONDARY LIBRARY WORKSPACE
03F348 SAVE AREA FOR LIBRARY CALLS 00A200 FROM OOCA3E LCA AT 03F730

03F018 SAVE AREA FOR LIBRARY CALLS 00A522 FROM 00CAO4 LCA AT 03FOBS8

Appendix F: Dump Index

161

03EDB8 SAVE AREA FOR LIBRARY CALLS 00C728 FROM 00B9CA LCA AT 03F0BS

03FE50 SAVE AREA FOR LIBRARY CALLS 00B8DO FROM 00AF06 LCA AT 03F0BS
03F290 DSA FOR BEGIN CALLS OOAEFO FROM O00A186 (STMT 13)
03F1B0 DSA FOR PROC TDUMP ENTERS BEGIN AT 00A138

03EC60 PRV - PSEUDO REGISTERS START AT 03EC68
O03FFB4 EXTERNAL SA CALLS 00A020
*** END OF OUTPUT

When V-format records are used, the first nine data characters of one of the SYSPRINT
buffers may be blanked out.

If there had been a current file, this would have appeared after the section on ‘'Files
Currently Opened‘'. '

162

APPENDIX G: LENGTHS AND LOCATIONS OF MODULES

The following 1list comprises all the IHEDIM 528
library modules provided for Version 4 of IHEDMA 248
the PL/I (F) Compiler. It gives the length IHEDNB 248
in bytes of each module. Some of the IHEDNC 632
modules are not required by Version 4, but IHEDOA 224
are included for compatibility with pre- IHEDOB 328
vious versions; numbers in parentheses IHEDOD 296
after the names of these modules indicate IHEDOE 224
the versions that do use them. The modules IHEDOM 584
marked * reside in the 1link 1library | IHEDSP 612
(SYS1.LINKLIB); all other modules are 1in IHEDUM 280
SYS1.PL1LIB. THEDVU 408

IHEDVV 576

Module Length IHEDZW 104
IHEDZZ 104

IHEABU 184 IHEEFL 736
IHEABV 544 IHEEFS 384
THEABW 128 * IHEERD 720
IHEABZ 128 * THEERE 1704
THEADD 216 * IHEERI 896
IHEADV 926 * THEERN (1,2) 4096
IHEAPD 360 * THEERO 856
THEATL 536 * THEERP 1208
IHEATS 408 IHEERR 1816
IHEATW 304 ‘* IHEERS (1) 848
IHEATZ 296 * IHEERT 712
IHEBEG 136 * IHEESM 1768
IHEBSA 296 * THEESS (2) 1960
IHEBSC 272 IHEEXL 456
IHEBSD 192 IHEEXS 256
IHEBSF 480 IHEEXW 136
IHEBSI 296 IHEEXZ 136
IHEBSK 472 IHEHTL 272
IHEBSM 384 IHEHTS 192
IHEBSN 192 IHEIBT 576
IHEBSO 312 ' IHEIGT (1,2,3,4) 1340
TIHEBSS 240 IHEINT 436
IHECFA 160 IHEIOA 360
IHECFB 576 IHEIOB 480
IHECFC 88 | IHEIOC 288
IHECKP 184 IHEIOD 640
* IHECLsS (1,2,3) 992 IHEIOE (1,2,3) 176
* IHECLT 1298 IHEIOF 736
THECNT 72 | IHEIOG (1,2,3,4) 1104
1IHECSC 200 IHEIOH (2) 200
IHECSI 168 * IHEIOJ (2,3) 1992
IHECSK 320 | IHEION 2u8
IHECSM 280 THEIOP 488
IHECSS 224 IHEIOX 328
THECTT 1718 * THEITB 3772
THEDBN 344 * THEITC 2604
THEDCN 495 * THEITD 2270
IHEDDI 1248 * IHEITE 1760
IHEDDJ 448 * IHEITF 1845
IHEDDO 648 * THEITG 1122
IHEDDP 640 * THEITH 2610
IHEDDT 760 * IHEITJ 2650
IHEDIA 584 * THEITK 622
IHEDIB 280 * THEITL 492
IHEDID 448 IHEJXI 320
IHEDIE 456 IHEJXS 104
IHEDIL 48 IHEKCA 1560

Appendix G: Lengths and Locations of Modules 163

164

* % % ¥ *

IHEKCB
THEKCD
IHELDI
THELDO
IHELNL
IHELNS
THELNW
IHELNZ
IHELSP
THEM91
IHEMAI
TIHEMPU
IHEMPV
IHEMSI
IHEMST
IHEMSW
IHEMXB
THEMXD
THEMXL
IHEMXS
IHEMZU
THEMZV
THEMZW
THEMZZ
THENL1
IHENL2
IHEOCL
IHEOCT
IHEOPN
IHEOPO
IHEOPP
IHEOPQ
IHEOPZ
THEOSD
IHEOSE
IHEOSI
IHEOSS
IHEOST
IHEOSW
IHEPDF
IHEPDL
THEPDS
IHEPDW
IHEPDX
THEPDZ
IHEPRT
IHEPSF
IHEPSL
IHEPSS
IHEPSW
THEPSX
THEPSZ

IHEPTT

THESA

IHESHL
IHESHS
THESMF
IHESMG
IHESMH
IHESMX
IHESNL
IHESNS
IHESNW
IHESNZ

. IHESQL

IHESQS
IHESQW
IHESQZ

1464

256
2072
10u8

144

IHESRC
IHESRD
IHESRT
IHESSF
THESSG
IHESSH
IHESSX
IHESTG
IHESTR
THETAB
IHETCV
IHETEA
IHETER
IHETEV
IHETEX
IHETHL
IHETHS
IHETNL

IHETNS .

IHETNW
IHBETNZ
IHETOM
IHETPB
IHETPR
IHETSA
IHETSE
IHETSS
IHETSW
IHEUPA
IAEUPB
IHEVCA
IHEVCS
IHEVFA

"IHEVFB

IHEVFC
IHEVFD
IHEVFE
IHEVKB
IHEVKC
IHEVKF
IHEVKG
IHEVPA
IHEVPB
IHEVPC
IHEVPD
IHEVPE
IHEVPF
IHEVPG
IHEVPH
IHEVQA
IHEVQB
IHEVQC
IHEVSA
IHEVSB
IHEVSC
IHEVSD
IHEVSE
IHEVSF

‘IHEVTB

IHEXIB
IHEXID
IHEXIL
IHEXIS
IHEXIU
IHEXIV
IHEXIW
IHEXIZ
IHEXXL

344
128
1348

104
104
216
1108
1592

208
248

1464

560

1004
600
320
208
176
416
352
240
136

136
152
152
120
192

256
152

* % ¥

IHEXXS
THEXXW
IHEXXZ
IHEYGF
THEYGL
IHEYGS
IHEYGW
IHEYGX
IHEYGZ
IHEZZA
IHEZZB
IHEZZC
IHEZZF

(3)
(3)

144
280
280
432
240
240
280
688
280
1296
1704
2960
1596

Appendix G: Lengths and Locations of Modules

165

166

APPENDIX H: COMPILER-GENERATED CONTROL_BLOCKS

This appendix describes all +the compiler-generated control blocks used by the PL/I
Library except the DCLCB and the OCB, which are described in BAppendix I (Input/Output
Control Blocks). All offsets are given in hexadecimal form.

Appendix H: Compiler-Generated Control Blocks 167

168

ARRAY DOPE VECTOR (ADV)

0 23 7 8 15 16 31
r T 3 .) '
| BtOf | | Virtual origin |
L '} i]
¥ i)
| Multiplier, |
F i
| . |
| . |
| . |
b !
1}
| Multipliern |
[4
] 1} h)
| Upper bound, | Lower bound, |
t + {
.	.
.	.
.	.
b t 1	
Upper boundp	Lower boundn
L L J
Figure 50. Format of the Array Dope Vector

(ADV)

This control block contains information
required in the derivation of elemental
addresses within an array data aggregate.
The ADV is used for three functions within
the library:

1. Given an array, to step through the
array in row-major order.

2. Given the subscript values of an array
element, to determine the element
address.

3. Given an element address, to determine

its subscript values.

Within PL/I implementation, arrays are
stored in row-major order, upward in stor-
age. The elements of an array are normally
in contiguous storage; if the array is a
member of a structure, its elements may be
discontiguous. Such discontiguity, how-
ever, is transparent to algorithms which
employ an array dope vector.

The ADV contains (2n + 1) 32-bit words,

where n is the number of dimensions of the-

array. The number of dimensions in the
array is not described within the ADV, but
is passed to the library as an additional
argument.

|

1

Definitions of ADV fields:

(= Bit offset): For an array of bit
strings with the UNALIGNED attribute,
this is the bit offset from the byte
address of the virtual origin.

BtOf

Virtual origin: The byte address of the
array element whose subscript values
are all zero, i.e.,X(0,...,0);this ele-
ment need not be an actual member of
the array, in which case the virtual
origin will address a location in stor-
age outside the actual bounds of the

array.
Multiplier: These are fullword binary
integers which, in <the standard ADV
algorithm, effect dimensional incremen-

tation or decrementation to locate an
element. Bit multipliers are used for
fixed-length bit string arrays; byte
multipliers are used for everything
else.

Upper Bound: Halfword binary integer,
specifying the maximum value permitted
for a subscript in the ith dimension.
This value may be negative.

Lower Bound: Halfword binary integer,
specifying the minimum value permitted
for a subscript in the ith dimension.
The value may be negative.

ADV _Algorithm: Given subscript values for
an n-dirmensional array, the address of
any element is computed as:

n
Address = origin +) S;*My
i=1
where S; = value of the ith subscript
M; = value of the ith multiplier

For an array of bit strings with the
UNALIGNED attribute, the origin is a
bit address formed by concatenating the
virual origin and the bit offset. For
all other arrays, the origin is the
virtual origin.

Appendix H: Array Dope Vector (ADV) 169

170

DATA ELEMENT DESCRIPTOR (DED)

r =T T 1
I	Bytes						
	‘t T T T T T "]						
Data type	Representation	1	2	3	4	S5	6 and onwards
L L 1 1 L 1 1 - -							
T T R T T T 13 1} + - "							
	Fixed-point]			
	Floating-point	Flags{ p	a { - { -	-			
Arithmetic	Packed decimal						
! ¢ e B e e {							
	Numeric field	Flags	p	g9	w	1	Picture specn
¢ UL N + L L 1	1						
LD T 13 T T T							
	Unpictured	Flags	-	- { -	-	-	
string	T vty ' -						
	Pictured	Flags	1	Picture specification			
L L L -							
Figure 51. Format of the Data Element Descriptor (DED)							
r - T - 1							
Code	Bit						
‘ "—_—_--—_---T----—T__ T L w T T =II							
	0	S I 3 [5 1 6	7			
pommmmm +- = } } ¥ + - 1							
11 =0		*	Unaligned	Fixed	Picture	Bit	*
I 0= —— ¥ 1 t ¥ fmmmmmemy							
	string				No		
=1		*	Aligned	Varying	Picture	Character	*
et 1 4 t ¥ + 4 -]							
		Non-		Numeric			
=0	1=	*	sterling	Short	field	Decimal	Fixed
p—————- { Arithmetic} + + + + 4							
=1		* Sterling	Long Ccoded	Binary	Float	Complex	
e e o L L iy [1 L —

* These bits are used by the compiler, but, when a DED

module, they are always set to zero.

®Figure 52. Format of the DED Flag Byte

Data element descriptors (DEDs) contain
information derived from explicit or impli-
cit declarations of variables of type
arithmetic and string. There are four DED
formats; they are shown in Figure 51.

Definitions of DED fields:

Flags: An eight-bit encoded form of
declared information (Figure 52). Those
flags which are specified as zero nmust be
set to zero.

p byte: p 1is the declared or default

precision of the data item.

q byte: g is the declared or default scale
factor of the data item, in excess-128
notation (i.e., if the implied fractional
point is between the last and the next-
to-last digit, q will have the value
129).

For numeric fields, @ is the resultant
scale factor derived from the apparent
precision as specified in the picture,
l.e., the number of digit positions after

is passed to a library

a V picture item as
(scale factor) item.

modified by an F

For fixed decimal pictures, any explicit
scaling of the form F(2I) is combined

with the implied scale, as described
above, and reflected 1in the DED. The
F(*I) is then no longer required and is

removed from the picture.

w byte: w specifies the number of storage
units allocated for a numeric field.

1 byte(s): 1 specifies the number of bytes
allocated for the picture associated with
a numeric field. If the data item is

string, 1 occupies two bytes; if
arithmetic, one byte.
Picture specification: This field contains

the picture dJdeclared for the data item.
If the data item is string, the picture
may occupy 1 through 32,767 bytes; if
arithmetic, 1 through 255 bytes. If the
original picture specification contained

replication factors, it will have been
expanded in full.
Appendix H: Data Element Descriptor (DED) 171

172

DOPE VECTOR DESCRIPTOR (DVD)

This provides a key for scanning the
standard array, string and structure dope
vectors. It consists of one entry for each
major structure, minor structure and base
element in the original declaration. Each
entry consists of one word and can have one
of two formats:

1. Structure:
0 1 2 7 8 15
r T T - 1
|F1iF2| L N |
[N | K]
16 31
T h |
| Offset |
L ¥
Fl =0 Structure
F2 =0
L = Level of structure
N = Dimensionality, including
inherited dimensions
Offset = Offset of containing
structure from start of
DVD

= - 1 for a major structure

Base element:

0 1 78 9 10 15
r~=T—=r k3 L s S |
|F1{F2| L |IFS|F6|] N |
L i PN R § J

16 17 18 23 24 31
r==yr=-=-r=— T T™T 1
|F3|Fu| A | | | D I
LadoL A1 4 L]
F1 =1 Base element
F2 =0 Not end of structure

=1 End of structure
L = Level of element
F5 = 1 Area variable
=0 Not area variable
F6 = 1 Event variable
=0 Not event variable
N = Dimensionality
F3 =0 Not an aligned bit string
=1 Aligned bit string
F4 =0 Not a varying string
=1 Varying string
A = Alignment in bits (0 to 63)
D = Length, if not a string, in
bits
= 0 if a string, in which case

Appendix H: Dope .Vector Descriptor (DVD)

the 1length is in the dope

vector

173

174

FORMAT ELEMENT DESCRIPTOR (FED)

This control block contains information 3.
derived from a format element within a
format list specification for edit-directed
I/0. There are five forms of the FED:

1. Format item E:

r E) 1

I w [d] s

L A1 1 Jd u.,

w = width of data field in characters

d = number of digits following decimal
point

s = number of significant digits to be
placed in data field (ignored for 5.

input)

2. Format item F:

- 1
al el
3

L

w and d: as for E format

p = scale factor in excess-128 nota-
tion

Format items A, B, X:

w = as for E format

Format item P:

There are two forms of the FED for the

P format items, these being

identical

to the DEDs for numeric fields and

pictured character strings.

Printing format items PAGE,SKIP, LINE,

COLUMN:

The FEDs for SKIP, LINE and COLUMN are

halfword binary integers.

not have an FED.

PAGE does

Appendix H: Format-Elément Descriptox (FED) 175

176

LIBRARY COMMUNICATION AREA (LCA)

r T) 1
| Symbolic|Length | |
| name |(bytes)]| Function |
pommom——t t . i

0 | WBR1 | 4 2nd XCTL address for communication in arithmetic|
| | conversion package.

4 | WBR2 | 4 3rd XCTL address for communication in arithmetic|
i | | conversion package. [

8 | WRCD | 8 | A(Target) ,A(DED): Implicit parameters for final|
| | conversion in arithmetic scheme. Stored by|
| | arithmetic director.

10 | WFED | 4 A(Source FED): Implicit parameter for F or E|
i | format input conversion.

14 | WsCF |) | Scale factor for 1library decimal intermediate]|
| form. - |

18 | WsSDV 8 Input/output field dope vector. |

20 | WINT 9 Library intermediate form storage area. |

29 | WSWA 1 Eight 1-bit switches: Intermodular communi- |
| | | cation. - |

2A | WSWB | 1 | Eight 1-bit switches: General purpose switches.|

2B | WSWC | 1 | Eight 1-bit switches: Not used across calls. |
2C | WOFD 8 | Dope vector for ONSOURCE or ONKEY built-inj
{ | functions. |

34 | WOCH -4 |. A(Error character): .ONCHAR built-in function. |

38 | WwWFCs | 150 | Character string (in required format) used by|
| | | list-directed and data-directed output. |

CE'| WCFD | 4 | Library intermediate FED: String/arithmetic con-|
| | | version. |

D2 | - WFDT | 4 | A(Target FED): Implicit parameter for F or E|
| : | | format output conversion. |

D6 | WODF | 8 | sDV for DATAFIELD in error. |

DE | WCNV | 8 | Library GO TO control block. |

E6 | WFIL | 4 | A(DCLCB) for ONFILE. 1

EA | WOKY | 8 | sSDV(Null string); requested when ONKEY built-in|
| | | function used out of context. |

F2 | WEVT | 4 | AS(event variable). |

F6 | WREA | 4 | Return address for AREA on-unit. |
L A L —_—) - a

Alternative entries:
r T T ' | |

38 | WFC1 | 40 | Workspace for interleaved array indexer.

60 | WONC | uo | Error code; storage area for contents of|
| | ' | £loating-point registers in error-handling|
| | | subroutines. |
L 4 L 1
r T T 1

38 | WCNP | 4 | Implicit parameter: A(Constant descriptor). |

3c | wWeN1l | 8 | A(start of constant), A(End of constant). |

44 | WwWCN2 | 8 | A(start of constant), A(End of constant). |
3 L 1 N J

Figure 53. Library Communication Area (LCA)

The library communication area (LCA) is part of 1library workspace
format of which is given in Figure 54. The use of LWS and
LCA is described in 'Communication Conventions® in Chapter 2.

(LWS) ,

the

Appendix H: Library Communication Area (LCA)

177

178

LIBRARY WORKSPACE (LWS)

o 78 k3]
IHEQLSA -=> ==) St - -sITT
0 | Flags |
ettt st bt evh
4 | Chain-back address (save area)
L i - . o s
r . T pup——
8 | Chain-forward address]
k- bttt
C
) Register save area
L
48 | (8 bytes unused) = o |
|
IHEQLWO-- >t -
50 | -
| |
| Workspace level 0
} TR
THEQLW1l~-- >t -
E8 | }
]
| Workspace level 1 i
| |
. | |
IHEQLW2-— ->} i
180 | |
| |
| Workspace level 2 |
| i
‘ | |
IHEQLW3 > —_ 4
218 | - |
| |
| Workspace level 3 |
| |
| |
IHEQLW4—- >t i
’ 2B0 |]
| |
| Workspace level 4 |
| |
| |
IHEQLWE—- >t 4
348 | i
| |
| Workspace level E]
| |
| |
THEQLCA >t i
3E0 | |
! |
| o |
| Library communication area (LCA) |
[|
| |
IHEQLWF—-— >L 1

Figure 54. sStandard Format of Library Workspace (LWS)
The use of Library Workspace (LWS) is described in Chapter 2.

The format of the LCA is given in Figure 53 and that of the Ssa
in Figure 55.

Appendix H: Library Workspace (LWS) 179

180

STANDARD SAVE AREA (SSA)

Offset General Register Standard Save Area
Symbolic Symbolic Usage
Value Name Number Name 0 78 31
0 OFCD - - { Flags I Length }
4 OFDR 13 DR i Chain—bac;m;bdress }
8 - - - { Chain-forward address }
c OFLR 14 LR,RY |r
10 OFBR 15 BR,RZ }
14 OFRO 0 RO l Contents of register o i
18 OFRA 1 R1,RA [T]
1c OFRB 2 RB { Contents of register 1
20 OFRC 3 RC { Contents of register]
24 OFRD U RD i Contents of register I
28 OFRE 5 RE { contents of register T]
2C OFRF 6 RF { Contents of register]
30 OFRG 7 RG ; Contents of register o i
34 OFRH 8 RH { Contents of register]
38 OFRI 9 RI { contents of register T 1
3cC OFRJ 10 RJ [Contents of register E
40 OFWR 11 RX,WR i]
4y OFPR 12 PR 1 Pseudo-register pointer _--—--_]
Figure 55. Format of the Standard Save Area (SSA)
Flags: One-byte code, employed by PL/I acquired by a called module.

housekeeping procedures to specify the
nature of the storage area in which the
SSA resides. (See Figure £6.)

Length: Three-byte binary integer speci-
fying the total length of the storage
area in which the SSA resides; used by
PL/I housekeeping to free dynamic stor-
age areas. (See "PL/I Object Program
Management'.) wWhen OPT=0l1l.Default is
used, bit 1 of these three bytes is
used as a flag.

of the SSsA
that

Chain-back Address: Address
originally provided for a module
now calls another module.

Chain-forward Address: Address of the SSA

field is not set for any PL/I Library
module, since intermodule trace is not
supported within the library.

Return address of the calling module: Con-
tents of register LR on entry to the

called module, set by the calling
module to the address of the point of
return. All PL/I Library modul es
return using register LR.

Entry Point of the called module: cContents

of register BR on entry to the called
module.

RO to PR: Contents of the specified reg-
isters on entry to the called module.
PL/I Library modules save all registers

Appendix H: Standard Save Area (SSA) 181

LR through WR in order to meet the
requirements of a GO TO statement in an
on-unit. (See Chapter 4.) The reg-
ister PR field is set by the subroutine
in IHESA that initializes +the main
procedure; it remains unchanged
throughout the task.

v T - T_ 1
| | Meaning |
|Bit} y———- -4
Lo =0 | =1 |
p-—-+ L 1
| 0| Always = 1 |
p--—+ . :
| 1 |No statement num- |Statement number |
| |ber field in DSA |field in DSA |
R e TS 1
| 2 |No dummy ON field |STRINGRANGE field |
| | for STRINGRANGE |created as for |
| | |other ON conditions
S— _—

| 3 |Procedure DSA |Begin block DSA]
p-—- 4 -
| 4 |Y¥o dummy ON field |SUBSCRIPTRANGE |
] | for SUBSCRIPTRANGE|field created as |
| | | for other ON con- |
| | |ditions |
L - $—

b-—1t . + 1
| 5 |Non-recursive DSA, |Recursive DSa, |
f |without display |with display up- |
| jupdate field |date field |
b1+ - -
| 6 |No ON fields |ON fields |
p-=-1 1 , 1
7	No Qummy ON field	SIZE field created
{for SIZE	as for other ON	
		conditions
Lol 1 J

Figure 56. Format of the SSA Flag Byte

182

STRING ARRAY DOPE VECTOR (SADV)

0 15 16 31

ADV

e . S e e e)

1
|
|
|
I
|
I
|

T i
| Maximum length | |
i 4

| Ip—

Figure 57.

current length/0

Format of +the Primary String
Array Dope Vector (SADV)

This control block contains information
required to derive, directly or indirectly
(through a secondary array of SDV entries),
the address of elemental strings. The SADV
is identical to the basic ADV, with the
addition of a fullword which describes the
string length.

Fixed-length strings require only a pri-
mary dope vector. The two length fields

are set to the same value, which is the
declared length of the strings.

VARYING strings require, in addition to
the primary dope vector, a secondary dope
vector. This consists of SDV entries for
each elemental string within the array.
The secondary dope vector is addressed via
the primary dope vector by the standard ADV
algorithm; having located the relevant SDV,
the actual string data is directly addres-
sable. The maximum~length field appended
to the ADV is set to the declared maximum
length of each array element. The current-
length field is set to zero.

The multipliers of the ADV for a fixed-
length string apply to the actual string
data. Those of the ADV for a variable-
length string apply to the secondary dope
vector of SDV entries.

aAppendix H: String Array Dope Vector (SADV) 183

184

STRING DOPE VECTOR (SDV)

0o 23 78 15 16 31
- T T - 1
| BtOf| | Byte address of string |
pmmmmto—meet -1 1
| Maximum length | Current length |
L 1 J

Format of the
Vector (sSDV)

Figure 58. String Dope

A string dope vector (SDV) is an 8-byte
word-aligned block that specifies storage
requirements for string data.

Definition of SDV fields:

BtOf (Bit offset): If the string is a bit
string, positions 0 to 2 of the SDV
specify the offset of the first bit of
the string within the addressed byte.
The bit offset 1is only applicable to
bit strings which form part of a data
aggregate, and then only if that aggre-

gate has the UNALIGNED attribute,

Byte address of string: For both charactgr
and bit strings, this three-byte field

specifies the address of +the initial
byte of the string.

Maximum length: Halfword binary integer
which specifies the number of storage

units allocated for the string; byte
count if character string, bit count if
bit string. This value does not vary
for a particular generation of its
associated string.

Current 1length: Halfword binary integer
which specifies <the number of storage
units, within the maximum length, cur-
rently occupied by +the string; only
applicable to strings with the VARYING
attribute.

The two length fields exist to accommo-
date strings with the VARYING attribute; in
the instance of a fixed-length string, the
two fields contain identical values. Both
fields may contain a maximum value of
32,767..

Appendix H: String Dope Vector (SDV) 185

184

STRUCTURE DOPE VECTOR

This control block contains information
required to derive, directly or indirectly,
the address of all elements of the struc-
ture.

The format of a structure dope vector is
determined as follows. The dimensions
which have been applied to the major struc-
ture or to minor structures are inherited
by the contained structure base elements;

undimensioned non-string base elements are
assigned a dope vector consisting only of a
single-word address field. The structure
dope vector is then derived by concatenat-
ing the ‘dope vectors which the base ele-
ments would have if they were not part of a
structure, in the order in which the ele-
ments appear in the structure.

Appendix ‘H: Structure Dope Vector 187

‘188

SYMBOL TABLE (SYMTAB)

0 7 8 15 16 31
r T A 1
| 0 | Chain-forward address |
t + 1
| Length | |
pmmmmm- : |
| . |
| Identifier |
| |

- P 4

T 1

D | A (DED) I

+ :

| Flags | Field A |

L A .'
v L]

| Field B | {

L - L]

Figure 59. Format of the Symbol Table

(SYMTAB)

The symbol table consists of one or more
entries which define the attributes, iden-
tifier, and storage location of variables
which appear in the data 1list for data-
directed 1I/0. Each SYMTAB entry contains
the address of the next entry or a stopper.

Definition of SYMTAB fields:

Chain-forward address: The address of the
next entry in the symbol table; all
symbols (identifiers) known within a
given block are chained together. The
last entry in the chain is signaled by
a zero chain-forward address. (The
symbol table of a contained block must
include the symbol table of the
containing block; hence the chain-
forward address of the last entry for
variables declared in a contained block
is that of the first entry in the
symbol table of the containing block.)

Length: Number of characters comprising the

identifier. Maximum length is 255
characters.
Identifier: The name declared for a varia-

ble. If the variable is known by a
qualified name, the identifier includes
separating periods.

D (= Dimensionality): The number of ‘
dimensions declared for an array varia-
ble; D = 0 for scalar variables.

A(DED): Address of the data element des-
criptor associated with the variable.

Flags:
Bit
0 (Reserved)
1 =1 ON CHECK for the variable
2 =1 ON CHECK for label variable
3 (Reserved)
4 (Reserved)
Bits
567
000 Variable is STATIC
001 Non-structured AUTOMATIC or CON-
' TROLLED
010 Structured AUTOMATIC or CON-
TROLLED
Field a:

If STATIC: Address of data item or its
dope vector.

If AUTOMATIC (non-structured): Offset of
data item or its dope vector
within DSA. (See note.)

If AUTOMATIC (structured): Offset of dope
vector for data item (within a
structure dope vector), rela-
tive to origin of DSA. (See
note.)

If CONTROLLED (non-structured): Offset to
data item or its dope vector.

If CONTROLLED(structured): As for AUTO-
MATIC (structured), but offset
is relative to origin of
structure dope vector.

Field B:
If STATIC: Not used.

If AUTOMATIC: Offset of display within
PRV.

If CONTROLLED: Offset of the anchor woxrd
(pseudo-register) of the con-
trolled variable.

Note: See Chapter 4 for description of

storage class implementation and for
definition of DSA.

Appendix H: Symbol Table (SYMTAB) 189

190

APPENDIX I: INPUT/OUTPUT CONTROL BLOCKS

This appendix gives the formats of the control blocks used by the PL/I Library I/0
interface modules, including those blocks generated by the compiler. The functions of
the blocks and the way in which they are used by the library are described in Chapter 3.
In the diagrams, all offsets are in hexadecimal.

The appendix includes an example of the chaining of I/0 control blocks.

Appendix I: Inputs/Output Control Blocks 191

192

DECLARE CONTROL BLOCK (DCLCB)

0 7 8 15 16 23 24 31

r T 1

0 | DPRO | DCLA i
- ¥ 1
4| DBLK | DLRIL, |
- = 1 T 1
8} DCLD | DBNO | DCLB | DCLC |
; L t : {
C | DXAL | (Reserved) |
F- L 1
10 | (Reserved) |
b~ 4

14 | (Reserved) |
e 1

18 | DFLN | |

4 I
| [
| DFIL |
| |
I |
| [
I _ J
Figure 60. Format of the Declare Control
Block (DCLCB)

DPRO: Halfword binary integer (set by the
linkage editor) specifying the offset,
within the pseudo-register vector
(PRV), of the pseudo-register associat-
ed with the declared file.

DCIA: Four four-bit codes specifying the
file +type, organization, access and
mode:

Byte 1
Type

0001 =xxxx STREAM
0010 xxxx RECORD

Organization
xxxx 0000 CONSECUTIVE
xxxx 0001 INDEXED
xxxx 0010 REGIONAL (1)
xxxx 0011 REGIONAL (2)
xxxx 0100 REGIONAL (3)

(stream-oriented 1I/0 is supported only
for data sets of CONSECUTIVE organiza-
tion.)

DLRL:

Byte 2

Access
0001 xxxx SEQUENTIAL
0010 xxxx DIRECT
{These are used for record-oriented I/0
only.)

Mode
xxxx 0001 INPUT
xxxx 0010 OouTPUT
xxxx 0100 UPDATE
xxxx 1000 BACKWARDS

(Stream-oriented 1I/0 INPUT and

OUTPUT only.)

uses

DBLK: Halfword binary integer specifying
the length, in bytes, of the blocks
within the data set:

F-format records: block length speci-

fied for data set (constant for
all blocks except possibly the
last omne).

VBS-format records:
any block in

-, V-, VS- or
maximum length of
data set.

Halfword binary
the 1lengthk, in

integer specifying
bytes, of the records
within the data set. TwoO Or more
records may be grouped (blocked) to
form one physical block.

F-format records: record length
fied for data
all records).

speci-
set (constant for

V-, VS- or VBS-format records: maximum
length of any record in the data
set.

U-format records: this specification is
not permitted; the block size
defines the record length.

Appendix I: Declare Control Block (DCLCB) 193

DCLD:

DBNO:

One byte containing ENVI-
RONMENT options:

Bit Option

LEAVE
COBOL file
CTLASA
CTL360
INDEXAREA
NOWRITE
REWIND
GENKEY

~N~NoumeswNhRE O

One-byte binary
the number of buffers to be

integer specifying
allocated

to the file when it 1is opened, as
specified by the BUFFERS option.
DCLB: One byte containing attribute

codes:
Bit Attribute

0 KEYED

1 EXCLUSIVE

2 BUFFERED

3 UNBUFFERED

4 (Reserved)

5 (Reserved)

6 (Reserved)

7 (Reserved)

194

DCLC:

DXAL:

DFLN:

DFIL:

Eight-bit code which specifies the
format of records within the data set:
Bits Code Format
0 and 1 01 v
0 and 1 10 F
0 and 1 11 U

2 - (Reserved)

3 1 Blocked

4 1 VS/VBS

5 1 PRINT

6 - (Reserved)

7 - (Reserved)

Halfword binary integer specifying

the count in the INDEXARFA area envi-
ronment option.

One-byte binary integer specifying
the 1length (minus one) in bytes of the
file name in the following field.

Character string, up to 31 Dbytes
long, specifying the name of the file.
If there is no TITLE option in the OPEN
statement, the first eight characters
of this name are used as the name of
the DD statement associated with the
file Aduring program execution. (The
compiler will have padded the name with
blunks to extend it to at least eight
characters in length.)

EVENT VARIABLE

0 78 15 16 31
r-= T —=== = 1
0 | EVF1 | EVEC i
- L i
+

4 | EVF2 | EVIO |
pommmm Lo -1
8 | EVCF |
b= - i
c | EVCB |
b-- ' T i
10 | EVST | Reserved |
k- -—- L i
14 | EVFF [
I - 1
18 | EVFB i
F- -- 1
1c | EVPR |
L— S |

Figure 61. Format of the Event Variable

In a multitasking

environment,

variables are placed in two chains:

1.

The file chain, which is

anchored

event

in

the TEVT field of the FCB and includes
all active event variables related to
which there
This chain ena-
variables
that are not being waited on to be set
inactive, complete, and abnormal when

a file and for
corresponding I

bles all associated event

a file is closed

The task chain, which is

OCB.

the pseudo-register
includes all active I/0 event varia-

bles associated with the

anchored

IHEQEVT,

task.

no

in
and

This

chain facilitates the setting of those
are not being

event variables

that
waited on inactive,

complete,

and

abnormal on termination of the task.

An example of the chaining of event varia-

bles
EVFl: 8-bit code containing
flags:
Flags

Active event var

I/0 associations

No WAIT required

FCB address cont
in EVEC

This event varia
is to be check

DISPLAY event variable

IGNORE option wi
this event

iable

ained

ble
ed

th

is given at the end of this appendix.

implementation

code Name
1000 0000 EMAC
0100 0000 EMIO
0010 0000 EMNW
0001 0000 EMFC
0000 1000 EMCH
0000 0100 ENDS
0000 0010 EMIG

EVEC:

EVF2:

EVIO:

EVCF:

EVCB:

EVST:

EVFF:

EVFB:

EVPR:

Contains the address of the DECB
associated with the event, or the
address of the FCB when no IOCB was
obtained, e.g., when READ IGNORE(0)
is executed.

PL/I ECB flag byte:

Flags Code Name

Wait 1000 0000 EMWB

Complete 0100 0000 EMCP
Not used.

Event variable chain-forward pointer
(task).

Event variable chain-back pointer
(task).

Status field:

Normal status value: All zeros.

Abnormal status value: Low-order bit
is 1, remainder is zero (unless
set otherwise by STATUS
pseudo-variable).

Event variable chain-forward pointer
(£ile).

Event variable chain-back pointer
(file).

Address of the PRV of the task in

which the associated I/0 event was
initiated.

Appendix I: Event Variable 195

196

EXCLUSIVE BLOCK

0 7 8 15 16 31
F——— - 1
0 | XCFF |
e o 1
4 | XCBF |
e 1
8 | XCFT |
F- 4
c | XCBT |
b= - -
10 | XPRV |
e S ——— e 1
14 | XFL1 | {(Reserved)| XSTC |
b~ ' i 1
18 | |
| XQNM |
| |
e fommmme e
20 | XLRN | XKYI/XREG I A
- : —=- -1 |
24 | I
| |
| XKYR | XRNM
| [
| il
| I
| | v
L ———— SV P,
Figure 62. Format of Exclusive Block
Exclusive blocks are placed in two
chains:
1. The task chain, which is anchored in

the pseudo-register IHEQXLV, and
records locked in a task to

bles all

ena-

be unlocked when the task is terminat-

ed.

2. The file chain,

which is

the TXLV field of the FCB,
of all exclusive
blocks related to the file when it 1is

tates the freeing

closed,

and facilitates

anchored in
and facili-

check on

whether a record is already locked.

An example of the chaining of
given at the end of this appen-

blocks 1is
dix.

exclusive

XCFF:

XCBF:
XCFT:
XCBT:

XPRV:

XFL1:

XSTC:

XQNM:

XRNM:

Chain-forward pointer (file).

Chain-back pointer (file).
Chain-forward pointer (task).
Chain-back pointer (task).

Address of the PRV for the task in
which the exclusive block was creat-
ed.

Flags: XLOK: Code 1000 0000 indicates
that the record associated with the
exclusive Dblock is locked owing to a
READ operation or an incomplete REW-
RITE. or DELETE operation.

Lock statement count: the number of
incomplete I/0 operations that cur-
rently refer to the exclusive block.

night-byte gname used in the ENQ and
DEQ macro instructions. The first
word contains the address of the FCB,
right-aligned, and the second con-
tains zero.

The rname used in the ENQ and DEQ
macro instructions:

XLRN: One byte containing the
of the rname.

length

XKYI/XREG:

XKYI: INDEXED files (unblocked
records): Key of record
being locked.

INDEXED files (blocked
records): A(FCB).

XREG: REGIONAL files: Region
number of the record
being locked. (This
field may extend beyond
byte 23.)

XKYR: REGIONAL(2) and (3) files: The
recorded key of the record
being locked.

Appendix I: Exclusive Block 197

198

FILE CONTROL BLOCK (FCB)

10
14
18
1c
20
24
28
2C

30

0 78 15 16 23 24 31
— — S
| TVAL |
k- -—== -1
| TRES I
p-—omm Nttt 1
| TFLX | TDCB |
e — L e 1
| TTYP | TACM |
o e to-mmmmee T--- == 1
| TFLA | TFLB | TLEN

- -—=4 + R 1
| TFIO | TDCL |
o o 1
[TCBA I
S T —— —
[TREM | TMAX [
- 1
[TREC |
ittt —mem s e 1
| TCNT |
N et Sttt I
| TPGZ I TLNZ |
P L it L A 1
I TLNN | TFLC | TFLD |

————— ___.r____..__-_.l.____..-_ -J.___.._..___...l
| TFLE | TFOP [

___________ — .{
| TFLF | TTAB |
b= + ittty i
I |
| |
| DCB |
I I
I I
g 4

eFigure 63. FCB for Stream-Oriented I/0

TVAL: Word containing bits indicating

which statements are valid for this
file

TRES: Reserved

TFLX: Eight-bit code specifying error and

exceptional conditions:

Conditions code Name
EOF on data set 1000 0000 TMEF
Error on output 0100 0000 TMOE
Error on input 0010 0000 TMIE

Exrror on data field 0001 0000 TMIT
Do not raise

TRANSMIT 0000 1000 TMNX
List terminator 0000 0010 TMLC
ENDPAGE raised 0000 0001 TMEP

TDCB: Address of the DCB part of the FCB.

0 7 8 15 16 23 24 31
r - Rttt |
1-8 | TVAL |
L [e o . S . P . o T S ot e . T e o 0 S _|
1
l-u | TRES |
__________ ———— —— - |
T - -= 1
0 | TFLX | TDCB |
-------- rm oo e 1
4 | TTYP | TACM i
T
8 | TFLA | TFLB | TLEN
________ S |
c | TFIo | TDCL |
bmmm o mdem - - -4
10 | TLAB/TCBA |
T 1
14 | TPKA [
[i et i
18 | TBBZ/TREL |
et - -
ic | TADC [
— T 1
20 | TLRR [
D To————————— 1
24 | TLRL | TFLC | TFLD |
— e 1
28 | TFLE | TFOP |
| e e e e e s e e e e e e o e e e .l
F T
l2c | TFLF | TFMP | (Reserved) |
b S, . 4
30 | TEVT [
pommm e - e 1
34 | Zero |
b e
38 | TXLV* [
b --- —mmmme 1
3c | Zero* |
mm = e :
4o | TXLZ* f
i 1
4o | |
| |
| DCB |
| |
| I
e e e e e e e e 4

* These fields are omitted in non-
multitasking environment: DCB commences
at byte 38.

eFigure 64. FCB for Record-Oriented I/0

Appendix I: File Control Block (FCB) 199

TTYP: Eight-bit code specifying I/0 type:

Type

STREAM I/0

RECORD I/0

STRING I/O

Temporary flags,
valid for single
I/0 call only

TACM: Address of 1I/0
which interfaces

TFLA: Two four-bit co

Code Name
xxxx 0000 TMDS
xxxx 0001 TMRC
xxxx 0010 TMST
1000 xxxx TMT1
0100 xxxx TMT2
0010 xxxx TMT3
0001 xxxx TMTH
transmit module,

with data management
access methods. The names of all such
library modules are IHEIT#, where #* is
a letter identifying the module.

des specifying the

record format and the current file
mode :
Format Code Name
VvV (variable) 0001 xxxx TMVB
F (fixed) 0010 xxxx TMFX
U (undefined) 0100 xxxx TMUN
ASA control/print
file 1xxXx xxxx TMAS
Mode Code Name
INPUT xxxx 0001 TMIN
OUTPUT xxxx 0010 TMOP
UPDATE xxxx 0100 TMUP
BACKWARDS xxXxx 1000 TMBK
TFLB: Eight-bit code specifying the file
attributes:

Attribute Code Name
EXCLUSIVE 1xxx xxxx TMEX
UNBUFFERED ®1xx xxxx TMBU
Hidden buffers Xx1x xxxx TMHB
SYSPRINT file xxx1 xxxx TMPT
Hidden buffer may

be required XxxX xlxx TMHQ
KEYED XXX¥X XxX1x TMKD
DIRECT XXXX Xxx1 TMDR

TLEN: Halfword binary integer, specifying
the length, in bytes, of the FCB.

TFIO: Eight-bit code specifying

of I/0 operation:

Operation

PUT

GET

EVENT option

with IGNORE option
COPY option

TDCL: Address of the
file.

200

the type
Code Name
1000 0000 TMPW
0100 0000 TMGR
0000 0010 TMEX
0000 0001 TvCY

DCLCB defining the

TCBA/TLAB:

STREAM:

RECORD :

TCBA: Address of next available
byte in a buffer.

TLAB:

Sequential: Address of last
IOCB obtained.

Direct: Address of first IOCB
in chain.

TCBA:

Sequential: Address of last
record located.

TREM/TMAX/TPKA:

STREAM:

RECORD:

TREM: Number of bytes remaining
in current record. This value
is equal to TLNZ when the
record is initialized for out-
put.

TMAX: Halfword binary integer
specifying the number of bytes
in a record:

Input: the number of bytes
read.

Output: the number of bytes
initially available.

For V format records, this num-
ber includes the four-byte
record control field; for all
record formats, it includes the
ASA control byte (if present).

TPKXA: Address of previous key.
(Used for SEQUENTIAL access to
REGIONAL data sets, LOCATE
creation of INDEXED data sets,
and padding key for SEQUENTIAL
INDEXED data sets.)

TREC/TBBZ/TREL:

STREAM:

RECORD:

TCNT/TADC:

STREAM:

RECORD:

TREC: Address of buffer work-
space (paper-tape input, U-
format output).

TBBZ: Length of IOCB. The
first byte contains the subpool
number.

TREL: Relative record count.
(Used only for SEQUENTIAL
access to REGIONAL data sets.)

TCNT: Fullword binary integer
specifying the number of scalar
items transmitted during the
most recent I/0 operation (GET
or PUT) on the file.

TADC: Address of the adcon
list.

TPGZ/TLNZ/TLRR:

STREAM:

RECORD:

TLNN/TLRL:

STREAM:

RECORD:

TPGZ: Halfword binary integer
specifying the maximum number
of lines per page. This field
is only used for PRINT files.
A default value of 60 lines is
assumed if:

1. the OPEN statement that
opens the file does not
include the PAGESIZE
option, or

2. an implicit open cccurs.

TLNZ: Halfword binary integer

specifying the maximum number
of characters per 1line. A
default line size is obtained
from the record length speci-
fied in the ENVIRONMENT attri-
bute if:

statement that
file does not
the LINESIZE

1. the OPEN
opens the
include
option, or
2. an implicit open occurs.
If the ENVIRONMENT attribute is
not specified, the record
length used is that specified
in the associated DD statement.

If none of these specifies a
record size, and if the file is
a print file, a default 1length

of 120 characters per line is
assumed.
The TLNZ value includes all

characters available within a
line.

TLRR: Address of IOCB of last
complete READ operation. This

is required whenever the EVENT
option 1is wused; it provides a
means of identifying the 1last

complete READ operation when a
REWRITE is executed. In the
case of spanned records this

field holds the length of the

previously read record if the
previous operation was a READ
SET.

TLNN: Halfword binary integer

specifying the current 1line
number.
TLRL: Maximum logical record

length for the file.

TFLC: Two U-bit codes giving:

1. Type of device.

2. Further file history.
Device code
Paper tape 1000 0000
Printer 0100 0000

Previous operation

was READ with SET

option 0000 1000
Attempt to close in

wrong task 0000 0100
OPEN or CLOSE

in progress 0000 0010

TFLD:

Name
TMPA
TMPR
TMPS
TMDT

TMOC

Eight-bit code specifying the organ-

ization of the data set associated with

the file:
Organization

CONSECUTIVE
INDEXED

REGIONAL (1)
REGIONAL (2)
REGIONAL (3)

TFLE:
ry of the file:

History

Preceding operation
a READ

IGNORE in progress

CLOSE in progress

End of the extent
reached by the
last operation

Preceding operation
a REWRITE

Preceding operation
a LOCATE

I/0 condition on
CLOSE

Implicit CLOSE

TFOP:

the current task,

TFLF:

module code (used by IHECLS,
specify module names in the

IHECTT to
DELETE macro) :

STREAM:

Miscellaneous

TAB table exists

Appendix I: File Control Block (FCB)

Code

X' 00"
Xx'our
X' 08"
X'oc’
X'10"'

code

1000
0100
0010
0001
0000
0000

0000
0000

0000
0000
0000
0000
1000
0100

0010
0001

Address of the prior FCB opened

Name

TMCN
TMIX
TMR1
TMR2
TMR3

Eight-bit code specifying the histo-

Name

TMRP
TMIG
TMCL
TMET
TMWP
TMLT
TMCC
TMCT

in

or zero (if FCB is
the first FCB opened).

Eight-bit code specifying the
IHECLT and

Code

load

Name

0000 0001 TMTB

201

RECORD:

Module Code code
QSAM X'00*
BDAM X'04"
QISAM X'08"
BISAM X'ocC’
BSAM X'10*
BSAM load mode X'14*
Tab control table

exists X'01!

TTAB: Address of TAB control

files only).

wame

TMQS
TMBD
TMQOI
TMBI
TMBS
TMBL

TMTB
table (PRINT

TFMP: RECORD I/0 only. This flag is used

202

by exclusive files to act

as a lockout

flag when updating the chains of IOCBs

and exclusive blocks. A
performed on this byte
freed. When the chaining
complete, the byte is set

TS loop is
until it is
operation is
to zero.

TEVT: Pointer to chain of active I/0 event
variables associated with the file, but
for which there is no corresponding
IOCB: enables the event variables to be
set complete, inactive, and abnormal
when the file is closed.

TXLV: Pointer to chain of exclusive blocks
associated with 1locked records of the
file: enables locked records to be
unlocked when the file is closed.
(Used only in a multitasking environ-
ment.)

TXLZ: Length of exclusive block: the first
byte contains X'01'(the number of the
subpool in which storage for the block
is allocated).

DCB: This field, variable in 1length and
format, is the data control block
defined by data management for the
various access methods.

INPUT/OUTPUT CONTROL BLOCK (IOCB)

0 7 8 15 16 31
r———-= -) Bt
0| BACT | BPIO] A
p----- - 1 |
4 | BNIO | |
- -- - |
8 | BERR | BFCB | |
k- Ao -- --- 1 |
c | BREQ | |
b e 1 |
| BERC/BEFC/BXTC/BKYC | BRCC | IOCB
k- 4 -4 foundation
14 | BRVS | |
p-——-- -—— : [
18 | BEVN | |
’ -- 1 |
ic | BDF1/BBF1 i |
-- - - 1 |
20 | BDF2/BBF2 | BDF3/(Reserved) | |
b= - > 4 |
24 | BDF4 /BBF 3 | |
- - -1 |
28 | BDF5/BBF3 (contd.) | \
} -- frmmm -
2¢C | BECB/BEXD | A A
k- - -1~ - {1 |
30 | BTYP | BLEN | BSAM BDAM/BISAM
3 S i _— { DECB DECB
34 | BDCB | I]
b - - e B |
r 1
38 | BARE | | |
= e -- —{ | |
3c | BSTS/BLOG | v |
b= - -- ¥ |
40 | BKVS/BKEY | |
k- -—- -- -4 |
uy | BBLK/BEXI | v
e rmmm e
48 | BDBF/BXLV | A
k- -—- - -4 |
uc | (Reserved) | |
k- — — - i BDAM/BSAM
50 | | Hidden
- BBBF | buffer
o | area
-1 | |
- | | |
| | v
| _— - ————d

Note: (The IOCB includes the Data Event Control Block (DECB)
for the BSAM and BDAM/BISAM Interfaces)

Figure 65. Format of the I/0 Control Block (IOCB)
BACT: One byte containing an activity flag

(used only in direct access): BNIO: Chain-forward address of +the next
I/0 control block.

Code Meaning
X'FF In use
X'00° Free

BPIO: Chain-back address of the previous
I/0 control block.

Appendix I: Input/Output Control Block (IOCB) 203

BERR: Flag byte for record-oriented I/0
situations:

Situation Code Name
IOCB has been checked 0000 0001 BMCH
I/0 exror exists 0000 0010 BMER
End-of-file has

occurred 0000 0100 BMEF
Possible lock for

REWRITE 0000 1000 BMPR
Lock for

REWRITE 0001 0000 BMNR
IOCB for BISAM

READ UPDATE mode 0100 0000 BMDF
Dummy buffer acquired 1000 0000 BMDB

BFCB: Address of the FCB for the file.
BREQ: Request control block. Four-byte
field specifying the request codes for

associated operations (as passed by the
compiled calling sequence) :

Byte 1 Operation

X'00" READ

xX'oq4" WRITE

X'o08"* REWRITE

Xx'oc’ DELETE

X*'10* LOCATE

X1y UNLOCK

X'18* WAIT

Byte 2 Option Set 1

X'00" None/SET

X'04" IGNORE

X'08° INTO/FROM

Byte 3 Option Set 2

X'00° None

X'ouq! KEYTO

X'08" NOLOCK

Byte 4 Option Set 3

X'40°" VARYING record variable
{INTO)

X'80°" VARYING KEYTO

BERC/BEFC/BXTC/BKYC: Error codes for
ious conditions.

var-

BERC: ERROR condition
BEFC: ENDFILE condition
BXTC: TRANSMIT condition
BKYC: KEY condition
(See Chapter 6 for details of these
codes.)
BRCC: Error code for RECORD condition.

204

(see cCchapter 6 for details of these
codes.)
BRVS: Address of RDV or sSDV for record
variable.
BEVN: Address of event variable; zero, if
none exists for associated operation.
BDF1/BBF1:
BSAM: BDF1l: Address of the user's
record variable.
BDAM: BBF1l: Address of the user's
record variable.
BDF2/BBF2:
BSAM: BDF2: Length, in bytes, of the
user's record variable.
BDAM: BBF2: Length, in bytes, of the
user's record variable.
BDF3:
BsAM: Length, in bytes, of +the KEYTO
area.
BDAM: (Reserved)
BDF4/BBF3:

BSAM: BDF4: Address of the KEYTO area.

BDAM: BBF3: Relative record or track
number (BLKREF).
BDF5: BSAM: Relative record number

(REGIONAL (1)).
BECB/BEXD:

BECB: The data management event control
block (ECB).

BEXD: If BDAM is wused, bytes 2 and 3
(= BEXD) of this field contain
the BDAM exception codes. For
definitions of these codes, see
IBM System/360 Operating System:
Supervisor and Data Management
Macro Instructions.

BTYP: Type of I/0O operation (set
by data management macro).

BLEN: Length, in bytes, of the records to
be transmitted.

BDCB: Address of the DCB.

BARE:

Hidden buffers:

No hidden buffers:

Address of the
appended buffer.

Address of the record

BBLK/BEXI:

BBLK: Address of BLKREF, the

relative

record or track number (i.e., the

address of BBF3).

variable.
BSTS/BLOG: BEXI: If BISAM 1is used, one byte
(= BEXI) contains the BISAM
BSAM: BSTS: Address of the status exception codes. For definitions
indicator. of these codes, see IBM
System/360 Operating System:
BDAM: BLOG: Address of the 1IOB (I/O Supervisor and Data Management
block; see IBM System/360 Oper- Macro Instructions.
ating System: System
Programmer's Guide. BDBF/BXLV:
BISAM: BLOG: Address of the logical
record. BSAM and BISAM: BDBF: Start of hidden
buffer.
BKVS/BKEY
BDAM: BXLV: Address of the exclusive
BSAM: BKVS: Address of SDV for KEYTO. block (if any) associated with
record being referenced.
BDAM: BKEY: Address of KEY
BBBF: Start of BDAM/BISAM hidden buffer.
r ——— === - T e e e e 1
| | SEQUENTIAL | DIRECT |
| - — + -—- —- ——
i | CONSECUTIVE | REGIONAL | REGIONAL | INDEXED i
| | | (KEYED) | | |
| | | (1) (2) 3) | (1) (2) (3) | |
I $--mm- s e e i
F-format	a	a	A	A	A	a	a	A
records	B	B8	B	B { ¢	¢ t c	C		
		8	Da	Dg	8	Da	Da	Dy
			D2	D2				Da
	{						16	
								(Note 1)
— -4- T Lant foommv o o s S 4								
V-format	A ! - 1 - 1 2 4 - 1 - 1 2	-						
records	B 1		B			¢		
	D2			D		{ Da		
				Da		{ Dz		
b= -t-- —+ e R e I e et								
U-format	A !l - {1 - A~ 1 -1 - 1 a	-						
records	B			B	i	¢		
				D			Di	
			Da	! l	{			
‘_____ Lo — o oo ok [N L + _____ L b e e e e ,								
: Size of IOCB foundation	Note 1: If RKP # 0, then D, = 0.							
: Size of BSAM DECB	I£f RKP = 0 then for blocked							
: Size of BDAM/BISAM DECB	records: Dy = L, and for							
: Size of hidden buffer:	unblocked records: D, = 2L,							
D,: Length of recorded key	where L = length of recorded							
Da: Length of block (record)	key.							
	Note 2: The data value is ob-							
	tained by summing the sizes							
lglven under each entry.								
L ———— J
Figure 66. Values used in computing size of IOCB for various access mothods

Appendix I:

Input/Output Control Block (IOCB)

205

206

OPEN CONTROL BLOCK (OCB)

0 4 8 12
r - T T :
| Type | 0 | Access | Mode
| I 1 1 L
16 20 24 28 31
r T T =TT
| FlagA | FlagB | Flag Cc | Flag D
L L —_—— e e e ———
Figure 67. Format of the Open control
Block (OCB)
Type STREAM 0001
RECORD 0010
Access SEQUENTIAL 0001
DIRECT 0010
Mode INPUT 0001
OuUTPUT 0010
UPDATE 0100
BACKWARDS 1000
Flag A Bit: 0 KEYED
1 EXCLUSIVE
2 BUFFERED
3 UNBUFFERED
Flags B § C (Reserved)
Flag D Bit: 0 {Reserved)
1 PRINT
2 (Reserved)
3 (Reserved)

Appendix I: Open Control Block (OCB)

207

P (oot B 1
v | Fm——————— Al pe———————n |
w | “ ;__ _"
|
Y I \
L} _"
i el o ° "
| ol Mol [Zzlop o= > o) ra
o] 1e] N = o o> {
_ slelzl [iSE [2z R _
| |l 554 o) m oD | e o
| wY
| T T T F
| ! | ! @
S| s _ N _ b R
vl = | __~ | __ | R
| | ___ | __— 3 M
| I Il | [zz
_ ! ___ | bl 53
11 (I
|t !]| | Ly
[l e bl _ Ly
Lo CT T T T Uyl | Ly
(.] TllllL_ ! ﬂ WllilL_
" “ " _".IIIIIL _l..J_ -— = 4 r||m
I P U U . Y W H—e e
I (T r 111 i 1
I R e e 1 |
| |
| | Iyl | |
TN _ ! _ | _
Pl ! " |
| |
| | s) \
| |
- | “ " Tuc [T P | wijed _C u-len | W OH.J
2!l | 0|5l2k|elzle ik o _ NI e 9y i 11 s I P
I DmA.W = W.NE | Gl | b e "E jre (e} | W\K SIS
“ " [[= 5 [W | | " s | Ll wiu
I " _ I
[| “ “
I boh | !
Nl Ly m ! _
|
| "] __ ‘_1 i __
Loy T T ! T
g L _ L |
i1 n_ 1 | | i
Tt - o @ | ®! @
[| | "
1] |
| |1 !
| """ wh 1I||L ﬁllnL |
|||||||||||||||||| 4- e [
"" d _ U I a0
)l I o R =
|||||||||||| - 1P SR [SR
E _ N L
i |
ﬁ 1) 1 ! r_
>| |ej—~|~]~]— W.S
- Omjeuf—|> L) = [o) (]
z P P e e g P Y o] I = 1 o w |
b N g o e vt o S 20|UlVvlv ulUuly ufu e
b I s = al o Oa = pxx|x > || x> e[)]
Ll | | =] | H m. x> x|
RF
a O
L
|
| |
[4

Figure 68. Example of Chaining of I/O Control Blocks

208

EXAMPLE OF CHAINING

Figure 68 contains an example of the
chaining of FCBs, IOCBs, event variables,
and exclusive blocks in a single task.

Files

The task has opened two files, and the
addresses of their FCBs (FCB1 and FCB2) are
stored in the PRV; the FCBs are placed in a
chain that is anchored in the pseudo-
register IHEQFOP and uses the TFOP fields
in the FCBs. The task also has 'access to
another file that was opened in a higher
task; the address of the FCB for this file
(FCB3) was copied into the PRV when the
task was attached. (Note +that this FCB
does not appear in the IHEQFOP chain.) A
DCLCB exists for each file declared, but
only the one corresponding to FCBl is shown

in Figure 68; this file is an exclusive
file that has been opened for DIRECT
UPDATE.

IOCBs

Three of the current I/0 operations that
refer to FCB1 required IOCBs. The IOCBs
are placed in a chain anchored in the TLAB

field of the FCB so that they can be freed
when the file is closed. The BXLV field in
each IOCB addresses the corresponding

exclusive block. The EVENT option was used
with two of +the I/0 operations: the BEVN
fields in IOCBs 1 and 3 therefore point to

the corresponding event variables. (The
third operation originated in another
task.)

Event Variables .

four active I/0 event
are chained from the

The +task has
variables. These

pseudo-register IHEQEVT so that, on termi-
nation of the task, they can be set com-
plete, inactive, and abnormal. (Note that
the address in the chain-back field EVCB in
event variable 1 is not that of IHEQEVT,
but that of the field three words higher:
IHEQEVT 1is thus in the same position rela-
tive to this address as EVCB is relative to
the first byte of the event variable.)
Event variables 1, 3, and 4 relate to the
file corresponding to FCB1, and must be set
complete, inactive, and abnormal when the
file 1is closed. Communication with event
variables 1 and 3 is established via the
corresponding IOCBs. But event variable 4,
which relates to an I/0 operation for which
an IOCB was not reguired, is placed in a
chain anchored in the TEVT field of the
FCB. Event variable 2 is related to an I/0
operation on another file in the task.

Exclusive Blocks

For REGIONAL files and INDEXED files
with unblocked records, an exclusive block

exists for each record currently locked;
all those shown refer to the file corres-
ponding to FCB1. (If the files have
blocked records, only one exclusive block

exists for each file in each task; it is
created the first time a record in the file
is 1locked, and is not freed until the file
is closed.) The exclusive blocks are
placed in a chain anchored in the TXLV
field of the FCB so that the blocks can be
freed when the file is closed. Only two of
the records have been locked by this task,
and their exclusive blocks (1 and 3) are
placed in a chain anchored in pseudo-
register IHEQXLV so that the records can be
unlocked on termination of the task. (Note
that the chain-back fields, XCBT and XCBF,
in exclusive block 1 point, not to IHEQXLV
and TXLV, but to fields in the PRV and FCB1
that have the same positions relative to

IHEQXLV - and TXLV as the start of the
exclusive block has relative to XCBT and
XCBF.)

Appendix I: Example of Chaining 209

210

APPENDIX J: STORAGE-MANAGEMENT CONTROL BLOCKS

This appendix gives the formats of the control blocks used by the non-multitasking
storage-management modules of the PL/I Library; the formats of the multitasking
equivalents are given in Appendix K. The functions of the blocks and the way they are
used are described in Chaptexr 4. In the diagrams, all offsets are in hexadecimal.

Appendix J: Storage-Management Control Blocks 211

212

AREA VARIABLE

0 7 8 31
- T==" 1
0 [See Note | Length of Area Variable |
- - — j
4 r Offset of End of Extent |
b= |
8 | Offset of Largest Free Element |
b - 4
c { See Note |
b |
| I
| |
I I
| |
| |
| |
| I
| |
I I
L— i _ J
Note: If the area variable contains a free

list, bit 0 of the first byte is set
to 1, and the fourth word is set to
0.

Figure 69. Format of Area Variable

Appendix J: Area Variable 213

214

DYNAMIC STORAGE AREA (DSA)

Dope vectors

AUTOMATIC data
Workspace
Parameter lists

0 7 8 31

r———=- N s 1

0} Flags | Length |

posmmm b 1

4 Chain-back address |

: P Pt 1

8 | Chain-forward address |

o e !

c | |

o _ |

.| Register save area |

o |

4u | |

b mmmm e m oo -- 1

48 | Current file |

| |

k== -—- ettt |

50 | Invocation count |

I |

e |

58 |OPTIONAL ENTRIES: |

. |

. Display |
. Statement number

. ON fields |

|

|

|

|

|

|

|

—— — e e - i e e e, —

| SO —— J

Figure 70. Format of the Dynamic Storage
Area (DSA)

The minimum size of a non-multitasking
DSA is X'64' bytes.

Standard Entries

Standard Save Area: The area starting with
the flags and continuing up to and
including the register save area. (See
Figure 55 and associated text.)

Current File: This field 1is
long; its wuse 1is described in 'Current
File' in Chapter 3. In a multitasking
environment, the first byte is used as the
SYSPRINT resource counter; see 'SYSPRINT in
Multitasking' in Chapter 3.

eigrm bytes

Invocation Count: This field is eight bytes
lohg and contains:

1st word: Environment chain-back address or
Zero

2nd word: Invocation count

 Sutate dune - 1
| | Meaning i
|Bit - ey - 4
| { =0 I =1 |
o — e R
1 0] Always = 1 |
e T T
| 1 |No statement num- |Statement number |
| |ber field in DSA |[field in DSA |
R D o 4

4
| STRINGRANGE field |
|created as for |
|other'ON conditions]

4
| 2 |No Qummy ON field
| | for STRINGRANGE

|

b-——1 —mm o]
| 3 |Procedure DSA |Beg1n block Dsa |
e T T
4	No dummy ON field	SUBSCRTPTRANGE
	for SUBSCRIPTRANGE	field created as
		for other ON con-
		ditions [
e $--- - 1		
5	Non-recursive DSA,	Recursive DSA,
	without display	with display up-
	update field {date field	
-+ frmmmmm o 1		
6 {No ON fields	ON fields 1	
T R SR		
7 {No dummy ON field	SIZE field created	
	for SIZE	as for other ON

[|conditions i
L L -4 PV |
Figure 71. Format of the DSA flag byte

Optional Entries

Display: This field is eight bytes long and
contains:

1st word: Pseudo-register offset

2nd word: Pseudo-register update
If it occurs at all, the display field
always appears at offset 58.

Statement Number: This field is four bytes
long; it is described in 'Error and Inter-
rupt Handling'. If it occurs at all, the
statement number always appears at offset
60; bytes 60-63 are always set to zero. If
there 1is no statement number, this field
can be used for optional DSA entries, e.qg.,
ON fields.

ON fields: Each ON field is two words long.
The ON fields are described in °'ON

Conditions' under ‘'Error and Interrupt

Appendix J: Dynamic Storage Area (DSA) 215

Handling'. The position of the first ON
field depends on whether there are entries
in the display update and statement number
fields:

1. No display update, no statement num-
ber: ON fields begin at offset 58.

2. Display update, but no statement nun-
ber: ON fields begin at offset 60.

3. Statement number (with or without a

display update): ON fields begin at
offset 64.

216

The last ON field is indicated by bit
0 =1 in the second word.

Remaining Entries

The dope vector formats are described in
Appendix H ('Compiler-Generated Control
Blocks'). The AUTOMATIC data, workspace
and parameter lists areas are provided for
use by the compiler.

VARIABLE DATA AREA (VDA)

0 78 31 0 7 8 31
| .= 1 r T 1
0| Flags | Length | 0| Flags | Length(= L(PRV) + L(LWS) + 8) |
b= { pe———t ey
4| Chain-back address | 4] A(External save area) |
b= T - 1
8] | 8] |
| Data | | Pseudo-register vector (PRV) |
| | | I
b e - 3 t _— - 4
Figure 72. Format of the Variable Data | i
Area (VDA) | Library workspace (LWS) |
| — |
| |
| LWF(DSA optimization area, |
| OPT=01 only |
| I
L J
eFigure 74. Format of the PRV VDA

0 7 8 31
r T bt
0 | Flags | Length |
b-—- - - :
r T - 1 4 | Chain-back address l
| Bit | , | — T T e 1
f - r 4 Meaning | 8 | Chain-back address |
| 0123|4567 | | | (previous LWS) |
s y---—- ---1 b -——- 1
| | |] | (unused) |
| 0010 | 0000 | Ordinary VDA] b —_— - 9
b + fommmm - { 10| |
] 0010] 0001 | VDA obtained for a | | Library workspace (LWS) |
| | | library subroutine | | |
8 L L ————— —— 5 | L 4
1] T T . . 1 v 1
] 00210} 0101 | VDA containing a | | |
| | | secondary LWS | | LWF(DSA optimization area, |
F + _——— 4 | OPT=01 only) |
] 0010|1001]| PRV VDA | | |
| L. -— i -— 3 L —— J

Figure 73. Format of the VDA flag byte e Figure 75. Format of LWS VDA
Appendix J: Variable Data Area (VDA) 217

218

APPENDIX K: MULTITASKING CONTROL BLOCKS

This appendix describes the control blocks used by the multitasking storage-management
modules of the PL/I Library. The way in which they are used by the library is described
in Chapter 5. 1In the diagrams, all offsets are in hexadecimal.

Appendix K: Multitasking cControl Blocks 219

220

DYNAMIC STORAGE AREA (DSA)

0 78 31

= -7 1
0 | Flags | Length |
- " H

4 | Chain-back address |
- 1

8 | Chain-forward address |
b= -- -- 1

c | |
o , |
- Register save area |
. |
44 | |
b e !

48 | |
| , [
| Current file |

| |
— - 1

50 | |
| . |

| Invocation count |

| [
k- - v
58 | |
| Display |
| |
fo————- -T i

60 | Flags | Statement number |
k- oo :

64 | A(Task variable chain) |
pmmmm- . -

68 | Zero |
F- -——- 1

6C | ON fields |
| Dope vectors |

| AUTOMATIC data |

| Workspace |

| Parameter lists |

L e e i)

Figure 76. Format of the Dynamic Storage
: Area (DSA) for Multitasking

The minimum size of a multitasking DSA
is X'6C' bytes.

The multitasking DSA contains two fields
that do not appear in the non-multitasking
DSA (Appendix J): the fullword commencing
at byte 64 contains the address of the
first task variable in the task-wvariable
chain (if any); the following fullword is
always set to zero. The presence of a task
variable chain is indicated by bit 0 = 1 in
byte 60. The Get DSA routine IHETSAD
differs from its non-multitasking equival-
ent only in that it sets the dJdounbleword
commencing at byte 64 to zero.

Appendix Ki Dynamic Storage Area (DSA)

221

222

EVENT VARIABLE

0 7 8 15 16 23 24 31
ittt Sttt 1
0 | Flags | zZerxo |
k - i

4| ECB |
p-———- - i
8 | Reserved |
k- - -1
C | Reserved |
k- -—= T 1
10 | Status | Statement Number |
[N 8
k == +- ———= i
| 14 |Reserved | MCF | WIF |Reserved |
l|= L - 1 L _______‘
I 18 | Infinite Wait ECB |
P, 4
h)
| 1C | Wait to Terminate ECB |
J

L -

e Figure 77.

The

Flags:
Flag

Active event variable
Multitasking (non-I/0) event
variable
Normal PL/I termination
Abnormal PL/I termination
| Event variable being waited
on

Format of the Event Variable

task event variable is not chained.

ECB: This is the control program event
control block. Bit 0 is set to 1 when
a WAIT macro instruction referring to
this ECB is issued; bit 1 is set to 1
when a POST macro instruction is

issued.

status: set to
set to 1.

Status: Normal
Abnormal status:

zZero.

Statement Number: Number of the statement
in which the task was attached.

Set when the associated task 1is not
in a position to be terminated by a
higher level task.

MCE:

WITF: Set by a higher level task which is
about to terminate the task associated
with the event variable.

Code Infinite Wait ECB: Waited on when the task
associated with the event variable is
1000 0000 about to be terminated by a higher
level task.
0000 0000
0010 0000
0001 0000
Wait to Terminate ECB: Waited on by a
0000 0001 higher level task when the MCF is on.

‘Appendix K: Event Variable 223

224

PRV VDA

7 8 31

Length of PRV VDA

A(External save area)

0

|

3

|

s

|

|

|

r

| A(Attaching DSA)
b-- _
|
¢
(
8
|
s
|
|
|
|
s
|

A(Attaching PRV VDA)

A(Task variable)

A(Parameter list)

Optional entries:
ON field
Parameter list

Library workspace (IWS)

Lo - —

Figure 78. Format of PRV VDA for Multi-
tasking

b s s s e s s oy oo s e i v ot e, ke . . s e, it .)

A PRV VDA for multitasking is identified
by a 1 in the first bit of the length field
(bit 8 of the PRV VDA). Like its non-
multitasking counterpart (Appendix J), it
contains the PRV and primary IWS and is
chained back to the external save area. It

differs in the settings of the flag byte
and in the presence of the following
additional fields immediately following the
PRV

1st word: Chain back to the DSA of the
attaching task.

2nd word: Chain back to the PRV VDA of
the attaching task.

3rd word: Address of its own task varia-
ble.

4th word: Address of the parameter list
for the called procedure; if no
parameters are being passed,
this word is set to zero.

The following fields are omitted if there
are no entries:

ON field: When a subtask is attached, the
entries in the ON field of the
DSA of the attaching task are
copied into this field.

Parameter 1list: Parameter 1list for the
called procedure.

The settings of the flag byte are as

follows:
Major task X'29°
Subtask X'2D!
Subtask with entries
in ON field X'2F"

Appendix K: PRV VDA 225

226

TASK VARIABLE

0 78 15 16 31

- T - 1

0 | Flags | A(PRV VDA) |
p===————=t -= i

4 | | A(TCB) |
p-————1% — !
8 | | A(SYMTAB entry) |
St St —m—mem—oco—em e —eed
c | | A(Event variable) |
—_ L 4
T

10 | Limit priority|Dispatching |
| |priority |

b - T L —— - {

14 | | Chain-forward address |
bt —- :
18 | | Chain-back address }
L L - 1

Figure 79. Format of the Task Variable

The task variable contains the task
control information required by +the PL/I
Library. To enable subtasks to be detached
when the attaching task is terminated, all
task variables activated in a task are
placed in a chain anchored in the DSA of
the attaching task. Only the first two
bits of the flag bytes are used:

Bit 1: 0 = Task variable inactive (task
not attached)

Task variable active

CALL with TASK option

CALL without TASK option

v e)
P
ot
N
Hom
imuu

Appendix K: Task Variable

227

228

A-format itemS ..eeccenccccsccscsnas 78,175
error handling-module (IHEDIL) ... 96,78
input AirectOY cceavesccsscscnnnccase 15
output director ..ceceeccceccnceancsnss 715

ABEND MACYO cneenevsscecnacsecsss U2,048,67,152

BABS fuUnCtion sceecceacssecscssccsscsnosas 81

Access method fields
in DCLCB teevcenoconscscenascssasnnes 193
in OCB cteevscenccscssscensancsacansns 207

Access method interface module .ecevees. 30
field In FCB teveecnccccscnscssnnass 200

ADD function .ecescsesmccesccccccaeans 81,82

ADV(array dope vectOr) ..cecmoccscsncess 83
format Of .ceceececsmsccncannaccanaas 169

ALL function .eiececececcccecscacsceccsces 82,83

ALLOCATE statement ..ceceeccecnacesssecsa Ul

ANChOY WOXd c.eeeevocevesscscanecnccsnanasana Ul

AND operator (§)

ANY functiom .eceececcacsccsscnccceces 82,83

AREA attribute .t..cececcecececencscascees U5
EXteNt secenvecccseccsscosnssscsaassees U7

AREA condition ..eccececssccesescess U47,64,158

AREA variable
assignment between .cececeveancves. 45,47
format Of tnecemececsccencccnnnvecasas 213

Arithmetic conversion director .eeeveee. 77

Arithmetic conversion package e.ceeec... 78

Arithmetic data representation 12,13

Arithmetic operations ...ceseeeassse. 81,82

Array built-in functions

ALL ceceevcocsceacecacscscsascncsssassacss 82

cecasmccensnsnssses. 80,81

ANY cccaccenceonmscnnccsconennscsancanse 82

POLY cececceescscnecocsncnaccnnscnonanes 82
PROD ¢vecoemscsneceansssecncscsscsasecnses 82
SUM 2eceeesmnascscccanssnasnsaccscaccns 82
Array dope vector (ADV)
format Of cecveeceveeccessccocecacans 169
Array indexer and function modules .. 82,83
Array input/output ..cececccnciaciacances. 24
Arrays,interleaved ..cecececceenceccacnss 83
ASA control characterS .ceecsescsccaccsaes 29
Assignment
bit String ec.iceececeecccccecnccnnceas. 81
character String ceeceeccccecccceesss 81
ATAN function ceeccececesccvccssecacacass 82
ATAND function c..ecsescccccccacnsnscnns 82
ATANH function ...acececceccescccnnssnss 82
ATTACH MACYO waccemssencsccanss 52,53,55,152
Attributes
see also: data element descriptor
arithmetic data ..eeecenscsceeenes. 12,13
field codes in DCICB <ewececssonsass 194
file,checking .s..cicececcencencaccnccsas 21
file,codes in FCB .ceecvsscsescncass 200
file,codes in OCB eececvcccsnsesesas 207
Of @ file wweceececmcesnncocecsunceea. 18
SETING cevccaccasccncccccmancnencsnse 12
UNALIGNED weccenvcoscccscsavecsaens 14,169
Automatic data .ccccecceccccscenccccncssss U2
Automatic StOYage wecvoceremcccosecess UH2,U48
allocation and freeing ofccccc.. U3

DSA ciecesesecscacsnscssnnncssccsanas U2

cecescssccencacses 83

release Of .ceececcecasensscascseoacansas U8
Automatic variableS cccececevsccnccnesas U2

structure of the free-core

Chain fOr wceeecvecenonsccocvencaneess Ul

B-format 1tems ceeevecnccscenceas 15,79,175
input director .e.cececcivaccecassaes 15
output directorceccecscseccecaas I5

Based storage
allocated in a task .ccccieccneccnena. U5

Based variables
storage for .c.ceiececccecnccsncsaaces. U5

Based variables within an area variable
AREA cONdition eesceccesscscescaanscas U7
element ...ccecienccnecesnennananaes. U7
free elements .cc.cecccccccaccnascancas U7
free 1iSt .iiececacsnccctoncconanances U7
Storage fOr ceeececececcccsscancsnees 47

BDAM eceecsecocccnsanscanacsascnssanases 37,39

BDAM exception COdES .veccececcnncsease 205

BINARY function ec.ceecececcecnscesacsasaas 82

BISAM cececacovcscscsconncncacnosnwccenans 36

BIT function .c.ceeeccecccecacccoaasanoas 80

Bit representation of Record I/O

statement ..iecccceciiceci e ieencnceess 33

Bit string
assignment ..eceececcececccacsacssecasas 81
CONVEYrSiON .ceessececsscccssccscsceannse 16
data representation ...ceececeo.... 12,148
dope VeCtOYr .cececvcencesscnccensss 32,185
input/output directors ..e.ceecce.. 73,75

Blanks in recordsS(IHEIOX) .cececesscesss. 107

BLKREF parameter ..ececessecensewnses 37,205

Block housekeeping ceceeeeceeoceeassess 041,49
library prologue subroutine 41
prologues and epilogues .e.ccecceesso. U1

BOOL function evececoessesscsncsaessaas 80,81

Bootstrap routine for OPEN and CLOSE ... 20

BSAM ciecececsannccsacsncsascnssnvasss 35,37

BUFFERED attribute ..c..ceecrecccencenass 34

Buffers c..ciiececenececccecrenccncensas 194

BUFFERS OptiONn ceceevcoccncccaccannscaass 194

C-format itemS .cec.eescacacscaccanacnasas 715
input Airector ceecececsacvccasccansas 15
output direCtOr sceesescccaceccsacsnaeaa 15

CAD(coded arithmetic data)
arithmetic data representation 13
system/360 formats .eeecceceicecenc.. 12

CAD handling modules ..eoeccecsccsscnsas 80

CALL statement
PRIORITY Option .cecieecccecccoccevecas 55
with a TASK, EVENT or PRIORITY

OPLioNn w.ceeecevmeconsasecsnmscsnasa DU

Calling sequence
operating system standard ...ceeee... 11
PL/I standard .cceceececcccascseancannean 11

Capacity reCord ecceemcecscecsmconncscnses 38

CAT (concatenate operator) (]]) .seece=ec.. 81

Chaining

B

Index 229

automatic StOYage ceeeececsscnscnaass U9
event variables ...cc.cencecsea.. 195,209
exclusive block .ceeancceceseeeas 197,209
file control block aseieeeecesanscass 209
CHAP MACYO .cemcosecsencescscnnannases 28,152
CHAR function ee.eecececccmecaceacanaeaas 80
Character string
assignment ...ceccaccesncccacacascaas 81
CONVEYrSiON weeeceecnscscencccsnnnncas 16
data representation ...eccceccee.. 12,10
AOpe VECLOY ccemeccescancaneanaas 32,185
input/output directors ..ceaceee.. 73,75
CHECK condition .eeeeeeecessneces. 23,27,64,158
CHECK label condition c...eceececanaas. 158
CHECK MACYO ceonencvasconsascsnnaccsnanas 152
CHECK variable condition soceeeceececsa. 158
Checkpoint/Restart ..ioececeesscnscsacsoas 16
primary control PYrOgram .eeeeecsecesess 16
MVUT ceeeeconmcccceacanscancasnocasscnas 16
CHKPT MBCYO ceacseaessncncscvsnncsansascns 16
CLOSE MBCYO ¢ececeocsacncccusonncsasnscas 152
CLOSE statement .ceceseoccccecccescaancocas 22
in stream-oriented input/output 24
see also: IHECLT, IHEOCL
Coded arithmetic data(CAD)
coding conventions used for library
MOJULES .cueeesceceaneccsccnannasanonanses 12
Communication conventions ...cccenceee.. 18
Communications
library communications area 15,177
modes Of cececcacacacecncnancaneenaos 10U
Comparison modules
IHEBSC .cecewccncccsancccnoacanonssse
IHEBSD cccccsccmcesacsccsaconcnonce
IHECSC ceocvacenvccsoscsncnsnncnnscs
Comparison operation
bit StYINg eeeeecesanecacecensonseasas 81
character string .eeececencesaceaacesss 81
compatibility with previous versions 9
Ccompiler-generated control blocks . 167-189
completion code c.ecceceveaccecncans.. 48,53
COMPLETION function .ceeeeececccssvencscss 57
COMPLETION pseudo-variable .eccecececceeecs 57
COMPLEX
arithmetic option eeeeeececccaceeas. 154
AAtA cececvscssmaccnccacnavsncancancas /10
format directors c.eeceeecsnceacaeas. 713,75
computational conditions .e.cencceacecece. 61
Computational ON-conditions wseecees.. 6U4-67
Computational subroutinese...... 80-83
Concatenate operator (}|) ecececeaacacas 81
CONDITION condition eceececsecaceaass 64,158
condition 1iSt ceiceecccascescesanccncas 68
CONSECUTIVE data SetS ececaccccscccncess 34
BSAM (IHEITB) eecceccescscmacscss 35,108
OSAM (IHEITG) ceccacscenccaeacsesas 35,109
QSAM spanned records
(IHEITK, IHEITL)
Control blOCKS eceeeccecececcccnnaaanaas 211
used by the non-multitasking storage
management MOdUleS ...ecceevceansesa 211
used by the multitasking storage
management MOdUle weeeecacesscassees 219
control blocks generated by the
COmMPiler c.iceecescacecseceaannnaas 167-189
control format items
printing format itemsece....
spacing format item .s..cecececnann

N

84,88
84,88
84,91

cacssesensnsssscases 35

27-30
27-30

230

see also: IHEIOP,IHEIOX
CONtroOl PrOgraAM weewoeeecoseacescccasaens 24
control program interfaces for
DATE wececcocncncesssacscnasuncnsssas 71
DELAY cccceccnceascssacssncnaansanaas 71
DISPLAY ccceevccoesassesscnsacsassances 71
EXIT wececsccncencsosancscsnsanssannas /1
STOP eeeeusscmecensosncancnsansasonsaae 71
TIME o2oscceccansaancacscosacansccscaas /1
Control tasSK ccescccsnscscscosssncane 52,53
WOrkspace fOor .eeeeecececescsosnccaccas 53
CONTROLLED attribute ..ceecceaccsscasesseas 57
controlled StOrage weeeescecssssvssss UU4,U6
Controlled variable e.ccceecanaccsses U5,57
storage allocation .ececvacsveacscacss U5
Conventions
COAING tceeecncscacanacocnnccnceanasas 12
COmMMUNIiCAtioNS ceoeeecescensssacaseas 1l
1inkage c.eceecececeancscannasacsaesas 11
to mathematical subroutines 82
to string operations and
functionsS cececececececcsascnnsas 80
NAMING ececeecenecccscaccncsssvassensas 11
Conversion
code set in IHEQERR .ceeecacecvcmncencas 719
for listsdata directed I/0 .cceeeeeces 75
CONVERSION condition ceeesceccscseeses 79,158
conversion QireCtoOrsS ecesceceecesceccncsse 73
conversion package cecesccsesccccccscses 72
conversions
Arithmetic conversion package 78
between internal arithmetic and string
Aat@ eececeeccccanasmncecncosccnnsans 76
Of mode ...ieecniceeccccccannsncennsas 716
Of tYPES tieeccecnsccsncosceaannccnnces 16
Strings cecececencecncccscccnncsanaas 78
COPY Option ciceeececacenceancacensess 23,28
COS function ..cececeveccenccsncsacncscnncas 82
COSD function seeceecee
COSH function .cecceenesccmcccncasesanenaas 82
COUNT function ..ceeceveseacesscescsascansas 82
THECNT eesceecccecnscccnscsesnsnosccesas 90
Ccurrent file pseudo-register ..es.... 23-25

P - 17

Data analysis routines .ce.cecscencvensas 74
Data CheCKing .cessccccevaccvcanaannnses 79
Data control block (DCB)
Data CONvVEerSiONn ssemecccsccccccccnnaes 12=77
arithmetic .s.oeecececcnsccncaeas 64,77,78
director MOAUlES eeecacsveccsacnasecaan 713
input/output .c.cemesecsccsasancass 72-76
internal conversions e.ceeccesacessas 79
Data directed I/0 cceocevcsacnsvancaeca 27,76
data checking and error handling 78
Data element descriptor(DED) 72-74,77,82,84
format Of .t.eecocacscvacacccnseancansa 171
Data event control block(DECB) 33,203
Data field ACCeSS cessennccscsncnncscsss 20
TJHEIOD cccecoeccncaceancscsasnasnasanss 107
DAta 1iSt eeeeeenneccccaceccacnanases 27,73
Data management access methods .<.eee... 30
Data representation e..ceescascecceceess 12
arithmeticC seacececconcaconcncecansaaes 13
StErINg ccececeecsnnscemeccveacanacnaaas 1l
Data set
DCLCB tveecncmasuncannancesssnsnasas 193
FCB ceccccenscncsancanssasasasnssasas 201

Gecessesvecnncas 19

REGIONAL ceeeceneennacosensconannanes 21
relationship between a file and a ... 18
Data specification .c..ceceeccecascccaaaecs 26
DATAFIELD function ...ccceeceenceea. 24,177
IHESRC cuceeccconscsocccsancmnannsasss 131
DATE statement .ccecceocecescecscsacncccces 71
IHEOSD scscsccsnscencsenanssnsnsesae 121
DCB(data control block)
LIMCT subparameter ...cececeecsesceeces 39
DCB MACYO cecsecccosc-vsssscsssssssscse 152
DCBD MACYO ccewessasanscsacancsescencses 152
DCLCB (declare control block) 18,20,193
DD statement .cccecevencecccescccvcssnsesss 18
subparameteY NCP ceeceeevosenmoccsscaess 3l
AANAME ¢ e eeveevesencccncsssosenccsscanes 18
ddname replacement String e.ceececeece. 132
DECB (data event control block) 33,203
Decimal-divide interrupt (ZERODIVIDE
condition) seceessccscscesass 61,63,64,158
Declare control block(DCICB) swsesse.. 18,20
format Of ccecemcceccccccnccacacsass 193
DED(data element descriptor)
format of flag byte ..cececceccemesss 171
DELAY statement ceoweceeccecesscecnsonsces 71
THEOST eeveavoconceanccenaecnnnas 121,150
DELETE MACYO wecevooscmccscssnawsnsnssss 152
DELETE statement :
KEYED attribute .ieesccececcccccences 36
without the KEY Option wceeececececees 36
DEQ MACYO ecsececcscnesemsconcncsss 20,3U,152
TNAME ceecewscncssansconcnsmensnssnse 37
modular 1linkage c.cececmenescsccacesas 24
DETACH MACYO svecconcccensesssnansssas 02,152
Device code in FCB wececccccnccncnsceas 201
DEVTYPE MACLO eweecwscovsccscncsssmsssncesne 152
Diagnostic mesSSagesS .ecescewccccesccscess 10
DIRECT QCCESS wccenssuoccsensessess 33,35-40
DCLCB field .ecvcecvceccessccvnecnscass 193
FCB field wceccenccenscescnsncuensaas 200
OCB field cacessncomccsacnencanesasne 207
DIRECT UPDATE file
multitasking eceoeceececcoccavcnceceeas 3l
DiYECLOrS cccevcnenscenscccssncscnansacas 13
arithmetic conversion <e.ececsceceess 73
format ceeeececavsaancccacvsomcaecnee 27,75
input/output weeceeecncsccascanncsses 15
EYPE ceeesoceniomocnncccasssnacsencsses 16
Display pseudo-regisSters .eeceeceencecss U2
DISPLAY sStatement ececeececoscsccccnsccocons 71
JHEDSP cevevecccccncccancscncsscnccnas 99
DIVIDE function sececescescscceanscseaeaess 81,82
Division operator (/) eccceccccceccccees 81
Dope vector descriptor(DVD) ..ceceeeeec.. 173
DOpe VEeCLOYS ceccenscscscsnancncoansasenes 1U
DSA(dynamic storage area)
AAAYEeSS cavncennscsnsrscroncasacnncenes U2
display pseudo-register ...ececec... 154
FOrmat .c.ccececaccenscnscnsccnnnesas 215
freeing ceeescemeanssssrccnccavcenneas U8
JHESARA .sccecssvwccsscnanccccncaanssanes OU
S1Z€ ccemcrmecanssscnacccannccnccsnes U2
DSA ChaAin ceoeevccsscccccccccacnennass 49,50
StYUCLUYE wececooccerccneccemnocnascees D1
DSA flag byte eencevcccaccccoccancacacaes 221
fOrmat eeceececswecconccsscnnccaocnsans 215
Dummy modules
IHEMSI ceeevvcemocsnoncscccoanncssnsnssss 115
THEMST cccosecsowcccncansssasssnmescses 115

cesencsscssacens 19

Dummy records
BSAM tececcecnsecncenncesmencvcsncsea 38
OISAM cceeecencoconcenmonsnscsocscsnssaes 38
DUmMmy YreCOYAS ceeescvcsnsccencscnssana 38-39
Dummy task and event variables .cceeecs.. 55
DUMDP tececevcscnnacscncnnncssnnascscnmsas 15
TJHEDUMC c.ccceccvccenncscccacancsansas 15
THEDUMJ cccecvceccscencsccnccsecsseses 15
IHEDUMP .cccuaccccevssmncascecancncassncas 15
THEDUMT .ccvavevsmcccscecescscscsnaca 15
object-time caeieececncececnensccnssa 15
PLIDUMP file c.cevcceeeccveccesse. 16,160
DUmp indeX .s.escesccncescsacccssnass 16,160
DVD{(dope vector descriptor)e..e... 173
Dynamic' program management .c.e.cecceesea 41
Dynamic Storage Area(DSA) «.ee.... 42,64,19
fOrMAt ceveccevececscocscecnsonaanses 215
THESA seceecncenceseness 12,41-51,61,125
IHETSA .cvceovcoemscamescws 12,52-58,138
Multitasking eeceecccssasnccncosanss 221
Dynami¢ storage management
automatic StOYAge cesececccvacesasoes 42
controlled StOrage eeeceavecceecas. UU,U6
see also: Object program management

E-format itemS .acececccocesacsnscans 75,78
input AireCtOr ceeeceeccscesocncsensas 715
output director eecceceesccccesceecse 75

ECB(event control block) ..ceceecscesess 52

ECB code in EVENT variable .c.ceeeesee.. 195

Edit-directed I/0 .uccaecacesveaans 27,28,73
conversion package cceceesccececess 73-76

EFF (exclusive file flag)

Element(of an area variable)

END statement weeacecocesscesccceesees 48,49

End-of-task exit routine(ETXR) 52,56
TJHETSAX .cieecceencenesccncccmnensees 140

ENDFILE condition¢ee.... 64,75,158,199

ENDPAGE condition .eeeseeccscssensses 64,158
field in FCB ec.cececccsscccoasnanss 199

END MACYO teccemoscnemccemcscnsosnnses 25,152

Entry-parameter procedures
MUltitasking ceceeecensceccsscncacncas 96

Entry-point NAmeS .aeeccocvscenssscccenscss 9

ENVIRONMENT attribute ceecceeaccescenncas 19

ENVIRONMENT OpPtiON swesvesccscssmsacsss 193

Epilogue subroutineg ec..ececeeccenconeaass U1

ERF function ...ecceeecccnsccssesscnssenscses 82

ERFC function .ceeciceececsscccoceednosceeass 82

Error codes
in open procCesS seeeseceemcscnccasaas 20
internal .c.cecossceccnensscacsacanss 61,158

ERROR condition weceecescacecsnccsacseaass 158
in a multitasking program ..ccceee... 67

Exrror conditions ceessccececsccens 64,66,78
in computational subroutines 80
in data conversion .ceececeveeescees 78,79
interrupt handling ..e.ecececee. 50,61-67

Error conditions, codes and messages .. 158

Error handling .ce.eececesscccecaceansensas 61

Error message modules
THEERD .ccccevcccencenonsscacnancscsnnescs 07
THEERE .4 ecceesncecncccaccnonnascensne 67
THEERT .ccceevccnncecnccanscanncsemnes 607
IHEERO ceccscmeccovcnanssancssncssansas 07
THEERP .cccccncecesoncccssnascmocances 07
THEERT cecceccccnncnvscscsecnancssnsss 67

cececssesscsssas 59

cesecececas U7

cmsssncasssae U8

Index 231

EXYOYr MESSAJES .ceweacacesesaas 61,67,80,158
for ON conditionNsS eeeeeceasesceasssss 158
Error-handling subroutine ...cceceeecesase 10
address Of ceceansnascsasssacsansccaa U1
ESD(external symbol dictionary)
ETXR (end-of-task exit routine)
Event control block (ECB)
ESETI, MACYO ecuevneccosccenessascecnsncecsses 152
EVENT ODPtion .evceeecceacesseceaaceacnss 33,54
EVENT variable ...cecececssccsscascsancnaes 59
Chaining ceceeceenceeaccocccccacsscasaes 209
format Of sac.ccwcanccecccccncaanaaas 195
format of the task event variable .. 223
input/output c.esceccccccecacees 195,209
tASK ececeaemcsesncsnecssonssceanas OU4,223
EXCLUSIVE attribute .eneeecacecccsccceass 34
Exclusive DloCK cceeesmecacsncaccsacsssss 34U
Cchaining c.ececececcccacescccascccceees 209
fOrmat ecoeececconssacccssncccasascsnaas 197
Exclusive file flag(EFF) .ccecescsccsness 59
Exclusive fileS .eevvemececeneacas 36,39,60
multitasking,blocked .scececceccescsnss 37
multitasking,unblocked c.eeccecaceeas 36
EXEC card and PARM parameter c.eceecessos 48
Executable format scheme ...ecececcecsaas 27
Execution error package ..cceececsce. 61-67
in data conversion .c.ccececaicnces 77-79
in input/output ..eeecceccarnsccnssaes 21
in storage management ...cceccecesccass 50
EXIT statement ...ececaccencnsccesees 57,71
EXP function eeesecccsccscescssncesscacas 82
Explicit opening ceeeecscceccsccncssscnsns 20
Exponéent-overflow interrupt
OVERFLOW condition eceecesssecas
Exponent-underflow interrupt
UNDERFLOW condition ...e.se.... 61,64,158
_Exponentiation operator (**)
Extended search featurecceccaeaneca. 39
Extent (of an area variable)
External NamesS ccececcessvsecsncsnsencenass 11
formats and definitions ..cecccecsces 11
External Save Ar€a cececcccvcssasenccsscs U9
External symbol dictionary(ESD)
EXTRACT MACYO eccesescanccacsmnssceas 53,152

ceccseces 9
52,55

cecsacscenasaes 52

eecace

61,64,158

cesscccsscss 81

cusececsnss U7

cecennees 9

F-format itemsS ..eecececccscscecsceases 75,78
F-format recordS eeceeaceccsecaee 193,200,205
F-format records,unblocked ...c.eccecess. 35
FCB(file control block)
chaining .c.ececcececnccenconeseess 19,209
FED(format element descriptor) .. 72,78,175
Fetch-protect interrupt prevention 35
File
access code in DCLCB ccecoscsesscecss 193
access code in OCB seeescsceccanssss 207
2dAdresSSing eeceecccsecccevcesncsccensess 18
attributesS cceemecvssceesccccescscces 18
DCLCB cecceccacnscsmsceccsscceasss 18,20
declaratioOn ..ccesesescescccccncecsses 18
implicitly closed weececcaceccenvaaces 19
opened in two parallel subtasks 20
opening/closSing cceecececceaccccnse 19-22
organization code in DCLCB weeesseee 193
register ..ceceeccccscccscccnceccassne 18
special PL/I closing processes 19
UNDEFINED condition eecesescecscesccns 20
File and a data set

ceecssasscnascss U

232

relationship between s.ecesececccacas 18
File cloSing proCeSS .ecossseccanasss 21-22
File control block(FCB) eeecesw. 19,201,209

for record-oriented I/0 .ecsewsaceass 199

for stream-oriented I/0 .eccecccess. 199

formats of ..ciceececenccocccnss 199-202
File mode

field in DCLCB wawaessmescesacmoasseas 193

field in FCB eccceceevcasscsscacseass 200

field in OCB es.aeesencsscescencacsnass 207
Fil€@ NAME cccveenssasssntvsssesssnsccances 18
File opening .ceecececenccccccccnnocaase 20

bootstrap routine (IHEOCL)

defaulting functions eeec.eeceevccecess 21

error table .eeccecccccsceccenccnscas 20

explicit opening ec.eseeecccecsonssesees 20

file attribute checking .e.ceeceeeees 21

fUunCtionsS ceeecssccccscscosncnscnnsas 20

THEOPN cccesecsscemscocsccocssoncoamans 21

TJHEOPO (v eiecessconcsconessasossnasnnsas 21

THEOPP cceesensccecccnccnnccnncsnsncse 21

THEOPQ <wececcceanccoscscscncscsascnasas 21

THEOPZ ceccececedncconceacncasecansces 21

open control block(OCB)
File opening/closing modules ..ceeceweee. 10
File regiSter ..c.cesmecsasssncscesess 18-20
File transmission

code in DCLCB «ssecssnensncscsnseseas 193

COde In OCB ececeecccavsacsnssnsssnsss 207
Fill

see: padding
FPINISH condition e..eces... 48,57,64,67,158

in error handling ceceeececscscnsas 61-67
FIXED function ..e..ceeeececcescnncceacas 82
Fixed-point divide interrupt

ZERODIVIDE condition
Fixed-point overflow interrupt

FIXEDOVERFLOW condition 158,82,61
FIXEDOVERFLOW CcOndition seseesccascsenss 158

in computational subroutines w.cec... 82

in error handling eceecceacescccsnsas 61
Float arithmetic generic functions 82
FLOAT function .eceecececccscescsoncsasees 82
Floating-point divide interrupt

ZERODIVDE condition «e..... 61,63,64,158
Flush instruction seveceeeceaccceccassss 69
Format Airectors .sececeeccceccconnceas 27,75
Format element descriptor(FED) .. 72,78,175
Format 1temS .ececsvccenencancsannsansas 13

input/output directors ..c.ceecsecsase 75
Format-1ist 1temS eeeescecccvcsanssnccae 713
Free core chain c.ceccccncccecsnssscnaas U3
Free core pseudo-register .ccceececscsnces Ul
Free elements (of area variable) 47
Free list (chain of free elements) 47
FREE statement ..cecececccsceacecncaas U4,U5
FREEMAIN MACYO ecececscsesnmnceoes H41,42,43,152

for based sStOrage .ceececcecseeanscscess U5

R LYPE ceceonscocacsnccconacscnccsnces U2
FREEPOOL MACYO cecesscseveccsesccnscneas 152
FROM OptiOn tcceweccsccsceccocscaaacass 34,36

csescsvsss 20

. |

61,63,64,158

GENKEY ODPtiON suseesccosccccacssassscaes 194
GET MACYO .ccccevoscvecsosnsnsncnas 22,344,152
GET statement ..eeececscccccncesas 22,26,27
current £ile neeewceovncccncccacenscses 23
in FCB tececcsccnacncsscccsnsnsscnancs 200

23
22
28
29
26
27

standard files
stream-oriented input/output
with COPY oOption .eeceececcncccaneces
with STRING OPtiOnN cececcceccenveocas
GET/PUT OperationsS ceeecosvncsoncccnssans
executable format scheme .scecveeecane
object program Structure ..ceceeceseeec. 26
STRING OptiONn ceeececcececsceccecnces 29
GETBUF MACYO wecasvscnoscasasnensnsee 33,152
GETMAIN MACYO eeeevcevwsseevenss 41,U43,45,55
for based sStOrage ecmeecececccenccacea. U5
R LYPE tevececenccomacesencocnncanuwes U2
GETPOOL MACYO weecvsesmscancveasenes 33,152
GO TO statement 42,48,51
housekeeping requirements ..cececees.. 48
to a label in a recursive block 42
to a label variable civececcccncccsaas U2
multitasking housekeeping routine ... 56

HIGH function ec.cececasacecceccceaansss 81,80
Housekeeping
associated with library workspace ... 43
for a PL/I object program e<.<..... 41,49

multitasking ceeceeceaccencacecncaes 55-58

I/0 control block(IOCB) 33

Cchaining ececescocecssscscscasncesees 203,209
203
158

fOYrmat cecececescscomccancnsncsanncsnoe

I/0 CONVERSION condition ceeeececencaas
I/0 SIZE condition c.eescecensesanneaeas 158
Identification of exceptions ceseeccsese. 68
IDENTIFY MACYO cwewccsvcccccnsnsanns 53,152
IHEABU 85,81
IHEABV 85,81
IHEABW 85,81
IHEABZ 85,81
IHEADD 85,81
IHEADV 85,81
IHEAPD 86, 81
IHEATL 86,82
IHEATS 86,82
IHEATW 87,82
IHEATZ 87,82
IHEBEG ecccsoaamosocnsmocsncscscnsasnccsnsssnecs 87
IHEBSA 88,81
IHEBSC 88,81
IHEBSD 88,81
IHEBSF 88,81
IHEBSI 88,81
IHEBSK 88,81
IHEBSM 89,81
IHEBRSN 89,81
IHEBSO 89,81
IHEBSS 89,81
IHECFA 89
IHECFB 90
IHECFC
IHECKP
IHECLT
IHECNT
IHECCS
IHECSI
IHECSK
IHECSM
IHECSS
IHECTT

s ascecemseameecET a0 BeEEmMESO Ve
-ro.-‘.w-.’..-.-.Q.--.‘oli..ntl
S s e csseeD e eeE P RaessTeeNesNBsEBD O
® e s es s emEReUBTesEEseNGCORNEReNR OES
S e ecossemesewecesseevecedeeL O
DR R A P R B R A A R A A IR IR R I RO N)
® @ 0000 NWNe PN T eONe IEBEIBNERNSIBOOEE
Se0cosoewroesDReRRBNERSOERNGEOSOESTDEOE
e evcecsewoeseeNRe0sReRNeDEGOETH S
@ecees s s eer s ssprAINEORIRD e

s cesnvsecsncecssoercesunSseB N

cescrrevsssmscansesmsaemsesnes
.I.l.l.‘-.v‘.‘.‘.‘tin..l<l.l.'l.‘l'"
ceersemscsomsessascancsccenennas
® % @00 O EWE O ED O ESN O eSS SNE SN
teerscsnescossencsevseemananne
ceeccrervacensemmssascesmaan e
R R R R LR T R T IR
.Q.l....l...l’."ﬂ.l'I..OQ'.Q"D-.
..‘Qll...rl"l‘.'l“'t 9 o0 eSS0 edee
® @ 8 0P T EN G O EN O CEN SIS S B SewN e
ceeveenasseecsrenseemsasessensenen

® P OB E G OF OO EN P PNOINS CERNEEE BE SN e

cressceemccsnsacsaccnenensenses 90,16
90,19,20,22
cevscecsmnssmsecsacncessssecsassss 91
91,81
91,81
91,81
91,81

A]

92,20,22,58

e 0eccevooevsscacev v

e sevssweeeNesevesaNT R BOE e
® 9 506 SWTE S EWS P CNS e EBSRSeN B o
e s sssewessewoes e e NEC00eseese e

DRI B A P S SR I I I B BN N A R A

"me vsecsnessevecsensssenaso o

IHEDBN
IHEDCN
IHEDDI
IHEDDJ
IHEDDO
THEDDP
TIHEDDT
IHEDIA
THEDIB
IHEDID
IHEDIE
IHEDIL
IHEDIM
THEDMA
IHEDNB
IHEDNC
THEDOA
IHEDOB
IHEDOD
IHEDOE
IHEDOM
IHEDSP
IHEDUM
IHEDUMC
IHEDUMT
IHEDUMP
IHEDUMT
IHEDVU
IHEDVV
IHEDZW
TIHEDZZ
IHEEFL
IHEEFS
IHEERD
IHEERE
THEERI
IHEERN
IHEERO
IHEERP
IHEERR

JHEERRE ceteccccncrscnncnncocassanccasccas

IHEERS
IHEERT
IHEESM
IHEESS
IHEEVT
IHEEXL
IHEEXS
IHEEXW
IHEEXZ
IHEHTL
IHEHTS
IHEIBT
IHEIGT
IHEINT
IHEIOA
IHEIOB
IHEIOC
IHEIOD
IHEIOF
IHEIOG
IHEION
IHEIOP
THEIOX
IHEITB
IHEITC
IHEITD
IHEITE

e e cessenwsenccess s
@aP s evsecvemsownosenss
@ewssecsececcesevesaces
®eeesessseosevOsoswen
o0 g0 cssevossemsosemoea
@s e ceessevevevwescasa
e®eevoeenosenrencevmsae
" ®eemossowsewmecosnascs
#m®eesscesncuoswRsweona
L AR I N A R L S TR B
@es e espesensnssemsanmnee
e® e cscceosncssmesnowoe
"o s s ene swsesvunew e
®e®eeceesemosonsoocos s
" e e sscessmnros0seamen
eweeasscecesasmcsanse
@@ eewcoscsesecenoenrvsenase
®woesescesussnmoesoeee
e esececsoewenosnoecsves s
I B R I I IR I IR N Y)
@@ e ancsescseseve e ew e
aeeewscsnecswenscnmnsa
meeescsceavsenonncosne
meamoecsecosnsccomeces e
e® oesmenoevessesrnOmSs
@t eseccsnocewecvwase
D R R I N R X
©ee e e00ess0cesmosnceean
BB ®ewvessweesTOeBe e
e®eessoens0ceeus0ens e
B emeseenesmo0ee s
“eesecseomconwcoduoae
e eos0censcsanssansme
®®®eceev evsenwosannss.
ewesssessesocsenvssmew
me® so s ceus v Ew T euwow
@ ®esececcnsssswccnasse
®oevescecsecsmaseweae
@®e® ewsecsevecosvesecnsae

emecesssemnsencsoswes
@®ssacssemevrecscanece
secsensssamenencoanse
meececesansssnsvwnnss.
a8 eeeseemecensaance
messnascsemecosmnscence
eseesccssncsnsessnecs
emecessremsvscnssenen
@secscscenmssenacecan
wesessesenssewssen e
0..‘-00.-.-0-0-..@;.-
wmaeescecsmacwnennnwae
eseemacreomsnmancscce as
@secmecscnsenscnoscnmas
@seseresemenanscenvs
weececsesccssnsenmue
e@essnesmrescssemnnosass
Mesenesvnsencscscssunse
mesevscsssssemssemue
wwsosaceamanebhosawes
wessesecummocemncemaesn
ewecescseccemecnnscansce
eseemsssoaccssncssanss
Wemessncscecemevanae s
B R I R I]
eseseanssemasemssanse

93,76
93,76
93
93
94
- T
95,58
96,75
96,75
96,75
96,75
96,78
97,75
97,73
97,76
97,76
97,75
98,75
98,75
98,75
98,75
- T
99,15,56,157
15
15
I -
15,56
99,81
99, 81
100,81
veeeses.. 100,81
100,82, 84
100,82, 84
100,61,67
101,61,67
101,61,67
ceveeceaeess 101
101,61, 67
101,61,67

e@sccee s ons

em e senecsee

ew e s swcsemene

e e s no s s

ew s emwesseecee

es e v ee

101, 64,41,48,50,61,62,158

63
teeeneeenee. 102
102,61, 67
102,61,67
R 1
157,12
103,82
103,82
103, 82
103,82
103,82
teevees.. 103,82
vees.. 103,22,58
104,22,30,58
teceeseenea. 104
105,23
105,23
106, 28
106,75
tevresecmnes 107
107,30
tereeeemanas 107
107,29
tececmceanes 107
108,35, 38
108,38
veeeee... 108,35
108,33,35,36

swscame s
emsccewsen
cvsssws s
s e ewwean

emecemo oe

em e
sw e noew s o0
ceseccecaoe
se s e sew e
cee v eem s on
*emesanw oo

CR IR R

Index 233

THEITF .cccccenccaavnccencsnssass 109,33,38,39 conversion code St .ce.ceacceaccascaa. 19
IHEITG ceesecncsannancscannns eeseaa. 109,38 IHEQEVT tecceveacasseccnsvaess 155,36,195,209
THEITH vccecncocannnssancasnanaea 109,33,34,36 THEQFOP eceacasvonanscsssmaassesas 155,19,209
IHEITT eecescacesscennsases 109,33,34,38,39 IHEQFOP ChaiN ceeeecwceencaccsscensncone 22
THEITK 2cccccaacsscccsancscmascncaanas 110,35 THEQFVD cueecceeanncnncsssnaccsasanses 155,54
THEITL ccecnconccamessaascsscnseacases 110,35 THEQINV cevnceccevsasncscvncasnnasscsncsee 155
THEJXT ceeevecnsoscnscsscenasasancassesas 110 THEQLCA 2e-cesccencssvesanaassnssanaas 155,15
THEJXS cacessencscemacscassasnssasnsaseas 110 THEQLSA .t ececccncncscnscscasasssnsasnsas 155,43
THEKCA .ccceessmcccmeacsccsnsnnssmesnaascs 111 THEQLWE .cceeecewesccacanacscsascsansaanss 155
TJHEKCB cececcemesaosnecenacssasncnceancaas 111 THEQLWF cececsccescccssanaaceccnnaas 155,51
THEKCD ccesccowcscwscnscss-sasnsenmesas 111 TJHEQLWO weeevcscosncenscscncesncannassnes 155
THELDI vecececeancsacoscancsasaancanasaass 111 THEQLW]l wccceccanccsncssanassnsesacasnsas 155
THELDO cceccveneseccscancaassscsncsanssss 112 THEQLW2 +ceeccccvucaseacscnscsansacasasnsnes 155
IHELIB cvavesccccaacancsccensnsnansas 157,12 THEQLW3 .cciecencncacmercoascsacssncansaes 155
THELNL caccecscenasmscancssncaansssss 112,82 THEQLWH eeeeasececcosanncancesacscsacsunassce 155
THELNS cececesvecssoancesancssensuneesss 113,82 THEQRTC wtveescoeamncascsscncsnnisonscnsnsnsss 155
THELNW ccvensccecsancenasnscsesnss 113,82,84 THEQSAR wvceccscncacansscnceasnmnssanansesss 155
THELNZ veveu.. eeevecenscsenannes 113,82,88 THEQSFC wceeeesceanccannansenananasne 155,04l
THEMI91 .cceccceanconanascssnsnancaasas 114,68 TJHEQSLA ccecocanmomecscssencasacessnness 156,49
THEMAT eecceconcncnccsmasasacsnacnnasasas 115 THEQSPR wecnccasmsccvwcncncccnscansss 156,23
THEMPU ceacccenccsessessnssanssesncsa 115,81 THEQTIC cvveecesaacansascaasnsena 156,55,56
THEMPV tcsececacscancoscnacesssnconesses 115,81 IHEQVDA . iceeccacccsncannnscacnnesas 156,5U
THEMSI veesccsomeccsnacansconancecsas 115,154 IHEQXLV sacececacasconcennsas 156,36,197,209
THEMST wccccecnecancscsanecancssssses 115,154 THESA ceesvoscennanscassanessnssans 125,41,61
THEMSW eccescncssansacnscsacsnnssecss 115,154 €Ntry POINtS cevemesconcacacsosasnenass U1
THEMXB cecveecvnsssscencnossensasasasss 116,81 THESDR cuaesescacaccsncosanensnseas 157,12,15
IHEMXD vcceecccescnnsanccsancanasnscsas 116,81 THESHL eeecescccncacosnsnsescnsnsnaases 127,82
THEMXL eecccescesaasecancscssnsccanaaes 116,81 THESHS ceacecsccmcconcasncsancscocees 127,82
ITHEMXS ecececenssasncesnsccansansanss 116,81 THESMF ceccaccsoncannescasscanssnass 128,83
IHEMZU seececeassanccncscsanaacassess 117,81 THESMG ecvececasncenscsvsacnscsscanes 128,83
THEMZV eceesceumoenecsascsensasasansscass 117,81 THESMH ocecesccocanccosnnscascanscsscses 128,83
THEMZW vevececcacancncomeccannanancas 117,81 THESMX wueveececcacaancaoneccaannnnasas 128,83
THEMZ?Z eccencanevscncscancnansansrsesna. 117,81 THESNL cecsceaccancencssnsnannncsanees 129,82
THENL] cecececcescananccscnsnsasaanas 117,83 THESNS wawsccccamesancnsncasnansnnas 129,82
THENLZ2 eecceccenmcsscemoacmcccscaassnsnnass 118,83 THESNW 2ecemoecsauncesscnancsccncsnsenas 129,82
IHEOCL teeescecccemesecncnassee 118,19,20,22 IHESNZ vecemccsconcansanscacansnsnses 130,82
THEOCT e evescmsccmcanacscsnass 119,20,21,58 THESQL ewscecesancsnncsacsnassnsasnsss 130,82
THEOPN .cceececacccncnnoncsananansssas 120,20 THESOS cecencscscsceancecnsssnsassancnsaes 130
JHEOPO ccneccomassnsencnccansansssnas 120,21 THESOQW weesacsscamaconcecccesasssnss 130,82,84
THEOPP 2eccecennccnscnascanansasenss 120,21 THESOZ eceeaacscvccencscanaceeeans 131,82,84
THEOPQ ccecancacsomeancnescsnnnsmesnscas 121,21 THESRC eecseccsceoscenccsmscscessnenseseos 131
THEOPZ cucvecswessenscnmauvscaasnass 121,21,38 THESRD ceceacarencscoanscenasssnsnancaness 131
THEOSD cecescesnscesccsncassacscsasnconanses 121 JHESRT wecceccccmccosncannnoecncsnesess 131,16
THEOSE ccceeesnassnsasnasssssncnnsannsss 121 THESSF wecescsaceacessccanceasmocsnsas 133,83
JHEOST cvcececovencoscancnconncassaas 121,154 THESSG eaceescencnansassnnacssasnanaas 133,83
IHEOSS eecceceneacosnccscacscasescnsnssanaas 122 THESSH wwceeccecscoceseacsascsncesnacanmesas 133,83
THEOST wceceeasaccscnscncsasnacsansas 122,154 THESSX seweosoacncasnaavscosnwsananss 133,83
THEOSW ceeenscwccemssencaccasasas 122,58,154 TJHESTG cececcecoascevsaccancacsnconnansses 130
IHEPDF veceeesoncsanacsancsscasnnosasns 122,83 THESTR «eccacacsnmascssnssossssncnaasansess 1304
IHEPDL .ccsacccacncnacsnscssnasaassess 122,83 JHESTB wecececscanscaccnassasccnscsmeanasss 13U
THEPDS cceecennsccnscncncsccsnansssss 123,83 JHETCV eesceecccsenseasaccscnccsnsnss 135,52,56
THEPDW cevccenocnemesscnasnansceascecs 123,83 IHETEA cececescnscasnscancsccsncscamaansnsss 135
THEPDX ceeccccansancnescssncsssannans 123,83 IHETER eecesccesenconcnensacmscensss 135,66
THEPDZ ccocccenencancscacsoasssanmncanss 123,83 JHETEV wscescsccsceancvesanancsncscasanneses 135
THEPRT coceeccacccnacnccssaansass 123,23,28 IHETEX eeececccscnceanaanncesnansascass 135,55
THEPRV ceccccccecsncsannsacacanessanss 157,12 THETNL cececevecsnacevcecnnncsacscensss 136,82
IHEPSF cecesccncconesencenmaanseanas 124,83 THETHS 2mwceccccecanccoecnssasncasssceneas 136,82
THEPSL cecscccasccncencnecsannncsasns 124,83 THETNL ccceocscsemcnsncscasasacsccnwaeas 136,82
THEPSS cccecconccacncannncacsnncasane 124,83 THETNS cencecensnccsncencsssacncanans 136,82
THEPSW ceceacesanenmccoccanaassescass 124,83 THETNW cecsecssamwcaancecanccsncsceneas 136,82
IHEPSX ecccenccecacsmcscccacssncssncasses 124,83 THETNZ eeeccccvceamcsanacccncesnasansaes 137,82
THEPSZ ececaccsecscmnasancssnsnacasess 124,83 THETOM cuoecececscacvcasonancacnscnansenass 137
THEPTT e¢eccecamecsemnccccscncsanncesns 125,58 THETPB ecceecmencsosacerosnsassnseaseacas 138,57
THEQADC .neccsaccsncasncacsncsansassss 155,504 THETPR eccenscacesssncssnnansencasssees 138,57
THEQATV ccccevoscsomcscscasnsnescnssnuscsas 105 THETSA cececcoannsccancscascamescses 138,12,52
THEQCFL +cecesusssmenacscas 155,22,26,29,76 THETSE weweccscvacsansasscacsassnassnsns 101
THEQCTS cececaascsemecscaccsncsaanaenssase 195 THETSS weceeccencacenncsacnceonesnccansses 1U1
THEQERR teccaoccnencscansas 155,63,65,79,158 THETSW cecevcsacnanascacoocscscsnscaccssoss LU

234

IHEUPA .ccviccvaccaccanscencsnsannssancsne

IHEUPB cciciccarccoscasncasnnusnsonccss

IHEVCA ccveeccncccaccacscocccsanwonnncnsne

IHEVCS 142
IHEVFA ..ceocancoscscccosnsscsnnonneses 1U3
IHEVFB 143
THEVEC cececsvacccncsnonconnesnwenenrss 143
IHEVFD 143
IHEVFE 143
IHEVKB 143
THEVKC cevcececesomascncsansncsacaas LU
IHEVKF lay
THEVKG 144
IHEVPA lag
IHEVPB 144
THEVPC secetennncscnasvanasncnsenanannas

IHEVPD 144
IHEVPE 145
IHEVPF 145
IHEVPG 145
IHEVPH 145
THEVOA ccuaccemsvcvsncsasscsncccncnnnsans

IHEVOSB
IHEVQC
IHEVSA
IHEVSB
THEVSC
IHEVSD
IHEVSE
IHEVSF
IHEVTB
IHEXIB
IHEXID
IHEXIL
IHEXIS
THEXIU
IHEXIV
IHEXIW
IHEXIZ
IHEXLV
IHEXXL
THEXXS
IHEXXW
IHEXXZ
THEYGF
IHEYGL
IHEYGS
IHEYGW
IHEYGX
IHEYGZ
IHEZAP
IHEZZC

e eesssercon e RsesssecsRaBOEDee
es sescons e smcssane esOeNe e P RIRe

@eesvenccsecnesencesasesweenes
ee e seencesamessunsewscaRenIE.

" e secscvesenenenNs ceseneBeeDRe
S s esevenceseneceunersasneeew0ae
@e e er e so0esNseens o BecaNs GO acs

ssces s s nevrnesenseancsenesen e
et cecsanseseneanecsacsesenasanne
esesceancsssvecenccssessnse s uea
teeccessaneenseencosmetanen e

@ s s s e s sMecNDnessneccvennees e

@ e cseccsscsesneansacnasewBnsssseaenae

S s cuesnsnenso0eensecseameantenan ey

146,77
146,77
146,77
146,77
147,77
147,77
147
147
147
Gt teieeseeeeeeeceaaseanennaas 188
148,81
148,81
148,81
148,81
P ¥/
148,81
148,81
149
149
149
150
150

" e e revecetmeursssEeenROtEssOO0c0 a0

150
cececsswsemmscecacsasccnancns 157
151,116,157,
THEZZF 151,16,157,
IHEZZZ 157
Implementation code in event variable .
Implicit file opening es.ceecceccceancsass
Imprecise interrupt eceeeceecececcccceccses
INDEX function .eeececeececccecceacaccnncnans
bit StrIng ceeeecccesccemeccccnsncosas
INDEXED data sets
BISAM(IHEITH -multitasking)
BISAM(IHEITE -non-multitasking)
DIRECT file attribute .cececevecencecas
duplicate KEY condition .ececeecoceeee
KEY condition sececeecsccnncecencaces
KEYFROM String ceceeccsncsocsacsncccas
QISAM (IHEITD)
UNBUFFERED file attribute .c.cenceee.

“eeevseeussrnesonecsnsn0ese
“secev e enesenanenesenacanc e
evecesenssscecsscancacswe v
®Sececeenecensocsmnsccensnance
@t essscensesnesceesreeeenee

s eessenessDeeReL ceBewowee

e e eceemesrvesecs0esose0Osenos
D A I I RN I B S AR I N R A SN]

" s e seesneesNIEeRNE OECLEORD RSB S

L R I R I I R L
eecsescasvenseesossencssecce
LR N I I R I R N I I I)

S0 e cslamenccsensners s acs e

S e cesrsencsnosomo0esteas e ee
" e ceeseme s 0esR0 e e Rs 0RO 0e
@0 s eessnecan e PP eEsseeseRRss0es

“eesenseneseneensssceeNnewavese.

es s esesmeeoens esséonos 0N 00
@@ esesenee0 00 see et NI NGDCO e

e e e s usewessO0er0oNece0seNopenens
es s cesoevecc0acssecsesones e
e e sesesemsesscscsac s

“« e sccos0nseanecaas seae

® e e ecsceme s 0 eeUNGOeNRsRGEOeS OEe

Meweceessccescnsaacoenses

141
142
142
,72
,78
,78
,78
,78
,78
,78
,78
,78
,78
18
,78
144
,78
,78
,78
,78
,78
145
145
146
, 84
, 80
, 84
, 84
, 84
, 84
147
,81
, 81
,81
, 81
, 80
, 84
, 80
.84
,12
, 8l
, 84
,81
,81
149
,83
,83
,83
150
,83
,12
160
160
,12
195
22
68
80
81
35

36

36

35

Indexing
aggregates sieeeiewccoeccacccenacenaee 80
AYYAYS ewesscecscacennaccancecsacas 80,83

Infinite wait ECB(IWE) taceemceswses 959,223
Initialization
character String eccasvwescecsssscsasaa 81
input/outputecececeinccenccaaca. 20
MAJOr tASK eeeeenncecasccnneencnenasa 5U
PL/I object pProgram ee.esveeasaes R X
Subtask s.cccececnmccescscacesnscanaas 5H
Initialization routines
TJHETSAA ceveancsascenscscssscsnncansss DZ
IHETSAP
Input/output
control block chaining(example)
control block format
control blocks
conversions required by
list/data-directed ec.eceeveccccccsss 76
current file occecececcnsscacssveanas 22,27
DATA directed .c.c.eceeasccnceaes 27,76,78
directors for PL/I format items 75
EDIT directed 27,73,78
file addressing technique ...cccee... 18
files and data sets
LIST directed
ON conditions
see: ON conditions
OPEN and CLOSE functions
operations code in FCB ceeeeenssen.. 200
operations code in IOCB 204
record-oriented cececcevececcanascacass 30
standard files
stream-oriented
StringsS ce.ececenccecaccccasaancanass 78
Instruction set
Interleaved AYYaYS weeceemccsccencacanaas 83
Intermodule tYaCEe .c.occescescncscnncansea 12
Internal codes for ON condition
entries
Internal cONverSioNS .cesescesscancasnsas 79
Internal data typeS ecceecceccecsanecees 72,76
Interrupt Ccount ocecencoascececccsccccaasce 69
Interrupt handling subroutinese... 10
Interruption cOde eew ccececcncecsccanaas 68
Interrupts
imprecCise ceeeceeancecnscscacscacansas 68
multiple-exception imprecise 68
PreCiSe weeevoeasucssnoccncncsscsaces 68
treatment Of s.ceacesccccccccncansaas 50
INTO OPtiON sscescancecncacasssamecansss 34
Invocation count
in DSA .cceecnccnacncnssanccnasancana U2
IOCB(input/output control block) 33,34
SIiZ€ ceecevcvcacesacasscccsnsancsanes 205
IWE(infinite wait ECB) cesscoesenses 59,223

P P4

208,209
eessusseasssnss 203
191,209,33

ev e evsewes ase e

ceesmescsveconenone

P &

27,76,78

ceeemecsacse e nace

ceceenasnaas 21

cecmscevcssuvesencscacas 23

ceesemessnscssanscesas 22

P 1

61,158

cemvesesscsencncncsaccaa UB

condition .ceeceeecsceanssess 64,22,35,158
eXPresSion ecececcceccncncoacccccasasa 36
formats
on-unit
normal YetUrN .ceecececmcccascacacacacs 22
raised in an explicit CLOSE

statement ¢.c.ceeciececccecconccanans 22
KEY Option cccececccescvansscesnasnccasans 36
KEY sequence error condition ...veeee... 38
KEY (specification) condition 35

KEY
KEY
KEY
KEY

cseemcssecnancsamoscaacanns .. 37

Index 235

KEYED attribute ..ccececcecccascnsess 36,39
KEYFROM eXPresSsSion .ceceecescesccsscscsnes 36
KEYFROM String ..ceeeecescsccaccscencacas 38
KEYTO character string variable 37
REYTO OPtiON ceceececaceceassnsnscnssnses 39

source key format esacesceccecsssccass 37

LENGTH function ..ececevececsscosceassssas 80
Lengths of moduleS ..evececeveccssnseceas 163
Library arithmetic modulesvececese. 82
Library communication area .ceceeeceee.. 177
Library conversion package .ceeceececeses 712
Library design characteristics ...eceeee. 9
Library initialization subroutines 47
IHESAPA ceemcsscocascssccssennacsnsncns U47
IHESAPB .cevesccacsenscassacacasnanans U7
THESAPC .cvecsensssascssasncsnnossmscans U7
IHESAPD cceecacneaconsasscsansaronnses U7
Library macro instructions
THEEVT ..cececesvscassnssasnssness 157,12
IHELIB .veveccesmascssennsscanssess 157,12
IHEPRV ceeececscssssscnsscsananes 157,12
IHESDR <evcesccccccssannsaasaasss 157,12
THEXLV cecenecoesvecasosscscasnnssss 157,12
IHEZAP tveeoseacvocnscssseosncasss 157,12
THEZZZ eeveccvemansossannansondasaes 157,12
Library prologue subroutine .c.ecieesve... 41
LIBRARY Statement weesececcceccecsesees 9,72
Library string package .s.cececceeceases. 80
Library VDA .ceceescccamscsassccanssnenss U9
Library workspace(LWS) «ececeesss. 15,43,179
initial allocation Of ceceeneacccess. U1
Primary LWS ceececooccaveocnnsanss 15,43
secondary LWS .sveccaccssccosssasasve 15,43
standard format Of .s..ceecancssncess 179
LIMCT Subparameter .cececevccessscscosss 39
Limit priority ...ccceceescecamscsccssss 959
LINE format itemM sveeecesccassaecccnccesaas 28
LINE OpPtiONn ceeeceoecemecenccscecscences 29
Line S1Z€@ ..eeesscoccancscscccnnsssnnsss 200
Line SpacCiNg eeceemeconcscscssasncsacenses 29
LINENO function ..eecemesececscscccnsans 24
IHECHT cececsvomncanccccnccnsoannsass 90
LINESIZE OpPtiON scacecscecssccesesanasns 19
Link 1library ececeesceenccecccccarceaneass 10
LINK MACYO seeacescescacseaosensess 10,804,152
Linkage conventionS .eacescecescsesnsesas 11
for argument addressSes c.ecesesssacass 11
for argumentsS cececssccscscsccanseces 11
for mathematical subroutines 82
for string operations and functions . 80
Linkage editOY .eeceecsacscccssnrsccscnscs 9
LINKLIB data S€t cvssececensacccssneness 22
List directed I/0 cceceacecscccancacaas 26,76
data checking and error handling 78
IHELDI cvccecucocsamscscvsosccosacsess 111
THELDO cvcoesccvscnccssccoconncseassoass 112
List processing cecececccccccencanscances U5
List/Data Directed I/O
conversion fOr c.cececsececscoccccncaes 75
LOAD MACYO .eoessccesenssccscescssns 10,152
Locate MOde I/0 conececscssccncansnane 22,34
LOCATE statement .cceceesccccesscesccsnss 33U
Location counter in executable format
SCHEeME tveeecnsasncacnccsnsoaccacnssanns 27
Lock bit (in exclusive block) ...eceves. 37
Lock statement count (in exclusive

236

block)
LOG function ..cecececececccnconscnsnsos 82
Logical OperatOrS ceeceececccessecesss 80,81
Logical records, (THEIOF) .vocecoeees.s. 107
LOW function ..ceeeccoescsescacccacasasns 80,81
LWS(library workspace) 15,43,179
LWS pseudo-regisSterS ceeececemeccasceascss U8
IWS VDA wesaccssesesvacenacsancccacssecnes 217

emeevecseccesrcscnscorsacssnsoeacas 37

ew es secooce

Macro instructions
1ibrary ceececececcecenessesssneas 12,157
SYSEEM cecrenoacsnaccosncacncasuess 10,152
system generation ...ecceececncasc.. 154
Major-task initialization ..c.ccoeeeess.. 54
Mathematical functions ..ceeecececenoeceeca. 82
MAX function ...c.ceceeccsccncsansesnnass 81
MCF(must complete flag) ...ceeeececee. 59,223
Message
ECB ceeceoccascnccencscancncesasanssncsss D3
MOAULlES cececesincecncascsnsncnccnnsas 10
tASK eeeseesscscasceccnasescnnsacanceas D3
Minimum control SyStem eceeececevecnensecas 71
MOdel 91 ...ccecncconcecesscncnconssnsene 10
dilagnosticC mMeSSagesS eeeesacccsscsnses 70
interrupt handling .ceceevecenececsa. 68
OPLiON .cceeecmscencncnsacssscencsasnsas 68
Modes of communication ecescececocccsscea. 14
eXpPlicit sicccesecsceveccoasecnssaeaas 1l
implicit veeeeveeacecncanesensasanaes 1l
Module
lengthsS ccieeceeeveccncnancacnceenas 163
L = P .
MESSAJE eeeeevssamcssnssscccnasssncss 10
NAME eceeecsscossssscssassvosnsaseses F,11
Print c.eecececccnsoccssssccsaacenses 10
SECONAAYY ceeceecasecccccencesncencoace 9
significance of mnemonics in
NAME «cosenasnsscescncsccnsnseacns 72,80,11
MOVE MOAE .tceveecscncsoassccnsccnsnes 22,30
Multiple-exception imprecise interrupt . 68
MULTIPLE WAIT Ooption .cesceeecccscecce.s 154
Multiplication Operator e...eeceeesscess 81
MULTIPLY function .eecececccssoneseas 81,82
MultiprocesSing eeeeesecesscesvnaanences 59
EXCLUSIVE file chain «.ceeccvecececcss 59
manipulation of EVENT variables 59
preventing simultaneous control
bloCk ACCESS ceceencacccsencsnscnces 99
task attachment ..c.ccceceecneeaccceess 59
task Priority cececeeecececnsncceesas 59
termination of active task ..ocsce... 59
Multitasking .ecceceevneccccccncsnnmeccaas 58
BISAM ..ececccanscemomamncccsanamescease 36
built-in functionsvoeneecceece. 57
control blockS ceecececcvececne. 219-227
creation of a new task c.ecieaceeeaes 52
DIRECT UPDATE fil€S eecccecscncssecscass 34U
entry parameter proceduree.s... 56
error messages (IHEERT) 102,61,67
EVENT Option c.cececeeccecnccaccensaas 22
GO TO statementsS .c.veececcoscencsacses 56
INDEXED data SetS .eeesvesccccnceccases 36
module ITHETSA ..ccevvecccocveccnacens D2
object program management ..ececcee.e. 52
ON UNit cccceeceacs concscsccsonsnccee 56
pseudo-variables and built-in
fUNCtions eceveceecccecccaccacaces 57,58

REGIONAL data SetS e..ceccececscsescesas 39
storage for controlled variables 57
subtask initialization parameter list 56
SYSPRINT .uweceosescssnccsccccncncnccsns 23
task control block ec.cececaccecaccses 52
task priority cceeceeccccccecccccncaecss 53
task termination
TCB ceccescnsccnnconsosscscsascsnccsonse D2
Must complete flag(MCF) 59,223
Must complete operations ..s.esececcececee 59
operations with PLF Or EFF .ceceseece. 59
normal task termination ..ceceeseeece. 59
task attachment ..ceceeceeccncencaces 59
MUT tucescoansacacnacsnccancscasssnsanss 52
Checkpoint/Restart w.ccececnseencenes 16
MVT operating system facilities
SUDPOOLS cewceenccanmecn-canascansscas U2

ceseseccssnessnncsces 56

NAME condition c.ceceeccecosscnscsnsanes 158
NOLOCK OpPtiOn eeececsncscencacecsssnes 36,39
NOT operator (q) eeiececrececescnencsass 81
Numeric field weececcecccscsncnscsanancas 12

Object program management e.ceeccecacoces 41
program initialization .cceccececnccac. U7
termination cceeccesccecceccccnnacess U8
variable data Are€d weecevecemeccncenss 43

Object program structure
record-oriented I/0 .s.cecceamaccnseess 30
stream-oriented I/0 .c..eceencancoeanes 22

Object-time optimization .eceweecececcaeca. 51

OCB(open control-block)

ON CHECK facilities .cecsccesncccsncenss 27

ON cOnAditions ceceacsscnccsasccanccsnes 61,74
a>tion by compiled code seeee 6U
AREA weeenene-nmacsasccncannes 158,604,047
CHECK eeveeeencmcscnacncens 158,64,23,27
Classes Of wececencnccsccncacacacaces 6U
CONDITION .swccenwcevveccccnencesns 158,60
CONVERSION wacemcsoccccencannsssanes 158,60
ENDFILE ecceccsamcasinssenss 158,64,75,199
ENDPAGE 2cvecccrcsscceasscssnns 158,64,199
ERROR <escewcesns. 158,64,66,67,78,79,80
FINISH ceconcacnsensacancas 158,6Uu4,61,u8
FIXEDOVERFLOW wceesscceacwssss 158,61,82
internal error codes and messages .. 158
KEY ceecoonoanncnceannencnss 158,35,38,64
library action eessescsccnseaccenceccss 65
1list ProcesSSing ..esccevcecacsacsccns U7
NAME .cececacsmenccnvecosemecnseves 158,604
prefix Options ciemsccenctncecnnscecas 65
program Check cee.eesccessacmnss 23,26,6U
programmer-named (CONDITION) 158,64
RECORD cecaanconsacncccusavescsns. 158,64
SIZE ececenwsnccennoascecnnecsss 158,63,79
STRINGRANGE <eemecnscoscennssceses 158,64
SUBSCRIPTRANGE esceosasenacescess. 158,64
system action .ce.c.cecccvcnanceceas 66,67
TRANSMIT cenececeaceseses 158,64,23,76,79
UNDEFINEDFILE eceeoceeececess 158,64,20,23
UNDERFLOW <eceeseceseasccessss 158,61,604
ZERODIVIDE wvacweaneencasnees 158,61,63,6U

ONCOUNT built-in function e.ecececeeses. 69

ON £ieldS c.eemescncenscscnasnncannes 6U,66

ON Statement .ecccececescccosnscsssscesas 65

ON-UNit c.eeeemeccnncccencensccasssnas 61,48

ssessensveaseses 21

DSA ccecccccevccnscsssnscasncnnsccsesss D1
entry parameter procedure 48,56
ONCHAR function w.eeseecescenccascess 848,56
ONCODE function ececvececcececncccccaecs 67,79
THECFB tecceccccnncsanccacecccanccacss 89
in computational subroutines 80
ONFILE function es.cecesececccecccncacases 28
ONKEY function eececevcceccscocsoccsncesscses 24
ONLOC function .ceeceecacescssccascsnnaas 67
THECFA .cceececcnscccosacnscsncsasesss 89
ONSOURCE function .seecevecessccenceces 77,79
THEDCN ceccececccsconncsscaccnncse 716,93
THESRC ccccscwcennscsacssanscccccssess 131
ONSOURCE pseudo-variable ...ececsecacescas 79
Open control block (OCB) 21,207
OPEN MACYO ccsecovsecncsnncsncsncannccases 152
OPEN MOAUlES cvcwacemeccsaccacscancacnssas 21
OPEN statement ..cccececcovescsccsencccsescass 18
Operating system
changes in specification e.ceeceee... 10
completion code ce.cececcenscacceancas 55
PrioXity ccweecccscecsncssccamacenass SU
standard calling sequenceres.e. 11
Operating system naming conventions 11
Operating system facilitiesac.ce... 42
Operating system requirements ..ceece... 10
Operator, message to (IHEDSP) ...cceces... 99
Optimization,object time .t.c.ivecneasa. 51
OR operator (]|) ececeevecscsscnccnnssasn 81,66
OVERFLOW condition eececcscecneeae 61,604,158
Overlapping of source and target fields 84

e e esccnvnaen

P-format items .c.cecoceccsccacesnceas 79,75
PICTURE attribute ..ccecceecceoceaccases 12
picture check ..cwsececcsccannccas 72,78

Packed decimal intermediate(PDI) ...e... 78

Padding
bit string seeeceecisencinccancceaa.. 82
character String eeceececesscecccecsas 82
THEBSM .cccecncccncorcnccansssnsnees 88,81
THECSM cececcoccnancsnccsnccensanse 31,81

PAGE format item ..eececescecscecnsass 28,175

PAGE OpPtion secnecerccccneaccocacnaenaans 29

Page SiZe .tc.veececcccccncccncennsanses. 200

PAGESIZE Option cecececeneccccnccacacnnss 201

Paper tape input ..ccecevcececcccancees 22,34

PARM paraméter on the EXEC card 48
address of the SDV of the parameter . 48

PDI (packed decimal intermediate) 78

PICA(program interrupt control area) ... 63

PICTURE arithmetic data .esevcevesceneas 12

PICTURE attribute .eeceeevcecsccncmencens 12

Picture check ..c.ccerecescccsacnaces 72,78
checking routines .cice.ciecennceancaes T4

Picture specification ..ec.ceeecceensaeaas 171
THEKCA .cceeceanmsecsencsocsnwannacosnaes 111
JHEKCB .ceccccacsccancvenscveancnnosesa 111
THEKCD cecescnssnsscancncacccnananas 111

PICTURE validity check
character picture (IHEKCD) <cecceaw.. 111
decimal picture (IHEKCA) ...cemewes.. 111
sterling picture (IHEKCB) .ceseeeo.. 111

PIE(program interrupt element)

PLIDUMP f£fil€ cc.ewcecscsscconcncscceansas 16

PLF(program lockout flag)ccaceeeees 53

POLY function .c.eeeececceccsceccensees 82,83

POST MACYO wesccececmensnsacscocnese 152,227

cescessssas 63

Index 237

Precise interrupt c.cececececcaccanceasss 68
Prefix optioOnsS ..eceeecececscccnancnceses 65
Primary string array dope vector 183
PRINT attribute/option
iN DCLCB veceseveooncosamancascnssees 194
iN FCB ceeeececsscsnccacsnncncancssas 200
in OCB eececececncnccnscnansnasnsacss 207
Printing control .c.eeececccacscansss 24,29
format itemsS ec.ceceemcccscsccscncaess 175
Printing options .ceeeceecccevceccncass. 28,175
COLUMN ticewccccccnmscencanscensss 28,175
(IHEIOX) ceevnecseccescasncancasss 107
LINE csceecccsensssecccscenaccnsncases 29
PAGE teesveccecncncssscncsemensncassoas 29
SKIP cteeccccconnossancscsoscssncsasscascs 29
PRIORITY built-in function .eceeceeceee. 57
Priority changing s.cceccececccnceceneass 60
PRIORITY OpPtiON ccoececsssccasmsssens DU,55
PRIORITY pseudo-variable ..cceecsiseevece. 57
Procedure DSA ceeeveccesssacenessenansses U9
PROD function ceecoceesscscsasassaass 82,83
Program €xXecUtion esesevecescesncennsaess 20
Program initializaton c.cececeecceascnes U1
allocation of storage for the PRV ... 41l
Program interrupt control area (PICA) ... 63
Program interrupt element(PIE) 63
Program interruptsS eceececscsancsees. 61,50
Program lockout flag(PLF) ..ecececeacceasss 53
Program management eceeececesscsessecscsssase 41
Program status word (PSW)
Programmer named ON conditions ...ece... 604
PYOlOGUE .cecevassnnscsenccsassnswesenss U41,60
PRV(pseudo-register vector) ececesscees. 14
PRV VDA .iececemecvccccssncconsans H3, 47,49
format Of ececeemccanccansncncscsesas 217
length required for ...ecceeccecceaa. 53
storage fOr c.cceceemcecccccncccnccess U7
Pseudo-register
THEQEVT cccceaswsonnesenccsncascassns 30
JHEQXLV cvcoecececenncsncoamessacnsses 36
Pseudo-register vector (PRV)
address constants ccceceescevcosancse. 1l
allocation of storage for .ceccesece.. U1
in file addressing technique ...cuee. 17
PRV offset in DCLCB ..o ceeescavscsses 193
Pseudo-regiStersS .ececcescensvsessees 43,155
PSW(program status WOrd) .eceececcsswecsnss 63
PUT MACYO eccesccasecssancsnee 22,23,34,35,153
PUT Statement eceeeesesssccosenscees 22,26,27
and current file ..cciciecsccnanceceas 26
and standard filesS cececcveacieencesns 23
iN FCB ceceasssscnceaccccsconccssnsnse 200
stream-oriented OUtPUL cceewenccceess 26
with SKIP format itém .cwceececescecscae 28
PUT MACYO secsancscncsnsscsncanccnsss 395,153

T X

®® ® ® 8 0w oo 1"

QISAM vtnaecsaccacncsnsssesasnsscsnsnsnscsms 3D
QNAME .vceveesncscvosancscssasssaccscnas 37
iNterface wceecsassancssccssnssessases 30
QSAM eBes e v cce0r0OcOsoEBeRsERELNSERIEEERN BN 3“
data MOAE eevecessscanconsnsscsncensns 3D
locate MOAE seweensassswesneasssccccee 35
spanned records(IHEITK, IHEITL) «...s. 35

R-type FREEMAIN .aeccecececrsvsnsnoncesces 42
R-type GETMAIN .c.ecceeccencncacnancsnss U2

238

Radix conversion powers table (IHEVTN) 147
RCB (request control block)
RDV(record dope vector) ecececeecaenssancss 30
READ MACYO ceconcescencasnnceasncanacss 36,152
READ statement .c.ceeccascevescesns 35,36,U0
RECORD
conditioNn ceemeccosnscsaswscansas 64,158
I/0 situation flag in IOCB ..cecaa.. 204
Record dope vectOor(RDV) oeececesccsenses 30
Record format field in DCLCB ..cvwceew.s 194
in FCB ceecsnsmenvescnncccsasnsasessses 200
Record variable s.ccececcescencacnenanes 204
Record-oriented I/0 ececeececncsnmeces 22,30
BDAM ccenccscnoncsncsscocsencnsasnnsnss 37
BISAM ceeescsncemoncsouncsnecnacncsnsscas 35
BISAM in multitasking ..cececeececvess... 36
BISAM in non-multitasking c.eeceeeces 36
bit representation of statement 33
transmission modulesS scceescevasnscse 10
BSAM cccsesconcnmesenssssess 34,35,37,38
CONSECUTIVE data SetS ceeeenscceemens 3l
data management access methods ... 30,34
DIRECT CreatiOn seceesscscossccacacacss 38
direct reading .eecececscecccnscseass 39
exclusive DlOoCK .cvenecscoesencsnsass 34
FROM OPtiON cucevesasscscecscancnsans 3l
generic logic and flow ..ecsemecsssenss 30
I/0 control bloCk cseecccecsncscsnces 33
in multitasking ceiseececnsnccecscace 22
INDEXED data SetS .ucecccocscesacecass 35
interface module IHEINT
(multitasking) cscecessvecesccsences 30
interface module IHEION
(non-multitasking)
TOCB ececevscecncenscssnnsscecscncsnnane 33
KEYTO OPtiONn cessesccscocasmna-snnses 39
linkage of access modulesS ..cocese.ss 30
paper tape input ceeeeesenssscssnnnas 3l
QISAM LR B AN BB R BB L B B A I B BB B B B RN BC I B BN B B BN 35
QSAM CAC I R I R BRI N B BN I B B IR BTN B B U NG S) 3“
record dope vector (RDV)
REGIONAL data sets, creation and
ACCESS seesnscsencccsnancsnssssnases 37
request control bloCKk ecceecccecccesns 32
REWRITE statement without the FROM
Option w.ceevccneccecssonsncessncces 34
sequential access of REGIONAL data
SELS weieccescvoecenncecnsacsnssnsscancas 38
SEQUENTIAL Creation cwsseeececcesoses 38
sequential reading .ceecccecescccnocss 39
SET option in READ and LOCATE
statements .ececccccncsccsnvensences 34
string dope vector(SDV)
RECUYSION sveeceacvenecmscnncccnsasanensesss U2
Recursive
DlOoCkS .tecvwcevevemcnnncocesasncconans U2
environment .ec.ceecceessceccnvocemacs U8
REGIONAL data sets
BSAM scccccnomcsanncocncncnssncscsanese 38
creation, using LOCATE «vesesmvsences 38
DIRECT access
DIRECT Creation eeesccesscecccssmecees 38
dummy recordsS ecaececcccesscesascsccesces 39
extended search feature .ec.caceceees. 39
field in DCLCB eccesnvwecscsmscnnscawas 193
field in FCB wecevscvnscsncacnsscess 201
initialization ceecececocncnconcansas 21
initialization for DIRECT creation .. 38

tesscaseseces .32

e 11

tesesscenesee 32

I

veee smemsecncsenvonecss 39

sequential aAcCeSS eeecceecnccsssncnass 38
SEQUENTIAL creation
UNDEFINED file condition ecececececsasse 38
Register IHEQSFC .cuesececcevencasanaarnes Ul
Register save area
dynamic storage area(DSA) U42,64,215
library workspace (LWS) 15,43,63,179
Register symbolic names .ccecceacececscss 11
REPEAT function
bit String c..caceeccerccenncecacenss 81
character String .eeccececessscenseess 81
Request control block(RCB)
Resource count in DSA vevevsncesccncaneas 25
Restart, checkpoint/restart (IHECKP) 16,90
Return CcOde .ceeeacnsvcnscsnssnvecemes 4,55
RETURN MACYO ecweesacsoenmscsanccsmencanseces 153
RETURN statement 48,49,56
REVERT statement .eceveecceccassccamennes 65
REWRITE statement e.eeeceeccscscsccseccsnes U
without the FROM option ..cce.ceeceaec.. 35
Run time Stack ceevesenvcescscncsacesanes U9

P

P -1

cmeecscsaccaes 32

SADV (string array dope vector) 183
Sample Program ..eeececcesecenncnssasces 49
Save areas within IWS aeccecccccccncena. U3
Save-area chain 49,50
Save—~area procedUre ecececeececssscseescanes 12
SDV(string dope wvector) 32,185
Search word cOmparatOr «.ceevwessecnsaeces. 6U
Secondary IWS ceceeccenscsnsassssencnses 15
Secondary mOAU1eS c.ceeccevcnccccensacces 9
SEQUENTIAL file

field in DCLCB ceececccosocnnoscsscns

field in FCB 207
SETL MACYO .ceaecscnssccccncnsnnnscscsanssne 153
SET OpPtion .ceweceecccncscssacsanncacnsnsces 3l
SGIHESLA MACYO .eeasccecsconcscnmsassnecsee 154
SGIHESPB MACYO seewecnnccsncsveonsasnsaece 1OU4
SGIHESPC MACYO «cewwossencnssaccccsnssns 154
Shift-and-assign operator e..ceeceecoecs.. 81
shift-and-load operatOreeseeesses 81,82
SIN funCtion sescececenscesncesecsnuncecnss 82
SIND function weeessesscccccenccnnansenee 82
SINGLE WAIT module (IHEMSW) 154
SINH function aececeeecncccnsccccssnseccnece 82
SIZE condition 61,63,65,66,79,82,158
SKIP (non-print filesS) ..c.cececccncesss 29
SKIP format item
SKIP Option c.mececesceeccccccanncncncases 29
SNAP 66,67,153
SORT/MERGE - PL/I interface sceeccaceee. 16

IHESRT ccsemccemccsncacsncnnsncsnsees 131
Spanned recCordsS cuenmesmesccccscccccns 35,201
SPIE MACYO ecumescennoswassas 42,48,61,63,153
SSA(standard save Aread) .eecececscvsesss 12
SSA flag byte es.ceececoeccsceennescnecsse 182
Standard files

SYSIN veeeemcccaccosncsosnsccssccnsssss 23

SYSPRINT cveeccceccenccswcsscacssscncamwes 23
Standard save area(SSA) 12,181
Standard system action .ccecoceccccececns 67
Statement label data representation 12
Statement NUMDEr wweecwmececescccnncences 82
Static StOrage ..ecacecewecsccecasancnecsecs 51
Status field in event variable 195,223
STATUS function .ceeecemeccecenecvcnenscess 57
STATUS halfword .cecececcscsccnmecscecnacses Sl

eeweeonses s naReesn a0

semsocaemecane

193

sewsoevacsscasancocosnos o0

ememewccsncncsceansenes 29

D R R I I I I R A N N)

csecsamscseams

STATUS pseudo-variable .ce.ceececescesaas 57
STIMER MACYO cecvecencssccssscossesesnnss 153
STIMER OPtion ccececeeasensccnscencsanss 154
STOP ECB wececcncsvcecansscnsoscscsosncssnnaas Db
STOP statement 52,56,71
Storage management eccc.ssssccncccscenscss U1
automatic StOrage ceeececcncscscccecas U2
control blocks 211-217
list ProCcesSing ceescesecccsscncaneasss UD
Storage-management modules
Multitasking eceeeocececscssesmccanss 219
non-multitasking eecesceencecncsanss 211
Stream-oriented I/0 c.soveecccnceencsnnaes 22
code compiled fOr wavecscencccncanaaaas 26
current file c..ececsceccncaansnancas 22
data specification .eceececeecseessessss 26
field in DCLCB eeececacacncacmsccees 193
field in FCB e.eeaccneacccescanssanas 199
field in OCB .ceeencncvcecoaccnsansas 207
initialization ceeeseececcocacacacacas 26
termination. cecceccececcceccacsacnans 26
Stream-oriented I/0 options
LINE
PAGE
SKIP
SKIP (non-print files) ..e.ccececesa. 29
String
arithmetic directors ececeececncesesa. T4
ASSIgNMENtS cecsmvcocccccascnncccnsas 16
conversions
functions ceeceeeeesccsescnseensseasas 80
String array dope vector(SADV) 83,183
String data representation 12,14
String dope vector(SDV) 32,185
STRING OPtiON eeececncecascseacecaecas 23,29
field In PCB weeccancsccscnscomecnnmas 199
String package ..ceeveeceasccsesccnsnssaaas 80
STRINGRANGE condition 158
Strings,I/0 editing and conversions 78
Structure Aope VeCtOY .ec-esncesneceaw-o 187
Subpools ..eceeean. P
Subroutines,error and interrxupt handling 10
SUBSCRIPTRANGE condition ...oecesessasss 158
SUBSTR function ec.ceececesccenccencscssas 80
bit String ccccececccccccncscnnsssasas 81
character String e.ccceececececcsaca.s 81
Subtask
abnormal completion ececceececcscessss 55
creation
initialization ceecececocecacoscancse 55
SUM funcCtion cceoecssececscccssasnsecas 82,83
Supervisor call(SVC) .c.eeececccceccncsas 10
SVC (supervisor call)
Symbol resolution, non-obligatory
teChnigue c.ceccvesncecncccecanccnacanae 9
Symbol table .c.eccncencncccnccansaeass 189
Symbolic names
for general registerscceecece..a 11
for floating-point registers e.cee... 11
of offsets in SSA .ceecscmcensccesss 181
SYMTAB(symbol table) ..cecceecesncecccss 81
SYNAD routine .ceceenescsccsncssacssncas 35
SYSABEND file
SYSIN wnescecscancscnacossnoccncccscsnnsae 23
SYSPRINT 23,25,29
allocation of SYSPRINT resources 26
in multitasking eeceveocccececancenaes 23
YeSOUrCe COUNLEY ececwcncvccencccasas 26

Pw RO De es 0N se NS eRw e

emeeenmwoeeansecsas

s eteccnsccas seseccsccscasanaces 29
“serecccacnensasscsssecsonacanans 29

e cecesegeanacnasescsccnnnccnsaa 29

Y £

ee o as
se s esmeance

" eeceeavennnce

- 1

ceesccemccsescenaes 10

cemcsemccssscsscsenccances 16

sewocev emeesnse eR e ane sew o

Index 239

System generation c..eeeececacenansaasas 1504
maCYO SGIHESLA eieeocccvencnssensass 15U
MacYO SGIHESPC c.eeweconccces . ssvees 154

System macros (LINK, LOAD and XCTL) 10

SYSUDUMP f1l€ weccecesccscasvsanassnsansne 16

SYS1.LINKLIB wu-ccecescncccocnsss 10,154,163

SYS1.LM512 ceeeeccacanvocsconsaccanasas 15U

SYS1.MACLIB cecececscencsascscsnscnonnsess 12

SYS1.PLILIB ccavseveccocncvenoacaes 154,163

Table of powers for radix conversion
(IHEVTB)
TAN fUNCtiONn eesecwcecssscscsenacsscanas 82
TAND function ececeoceevwssscsmenansaseans 82
TANH function cececececcccsessssasnsnsseans 82
Task
attachment c.ccceececccncsosecnasnsnnss 60
closing of fileS .ceeeacacsvccass-s 19,22
control bloCk evecevwcecccssnesamasncas 52
dispatching priority ..cceeecesasssas 57
initialization eceececeacascesecss U47,54,55
invocation count ..ceececsscccceces 55,56
OptioNn sieveececncsecacscasaccacsascans Tl
termination .s..cecceccencecccs. 48,56,59
Task and event variables,initialization 5&
Task control block(TCB)
Task event control block cicecececvcasas. 52
Task event variable .eceeecncescessncess 223
Task termination, abnormalc.c.. 53-54
TASK variable® ececeescsocesscnnaceses 54,227
TCB{task control block) .eceececcencsees 52
Temporary storage, for library modules . 43
Termination
Of current task c.cecccecncescses. 48,56
of data field request (IHEIOD) 107
of input/output operations
(IHEIOA,THEIOB) .ccevecceesacsoss 105,23
of PL/I object program ...cuecce.... 48,56
TIME function aeceecscceccscccssacsaceanas 71
TIME MBCYO .eccccswcscsscscacmsnencnsasce 153
TIME OPtiONn ccceeccoscaccsnscenascanaces 1504
TIME statement cc.eccececccscssccncssncenss 71
TITLE Option ceeeveccecescccecseccsacaess 18
TRANSMIT condition ce.ceeceesccacesss 76,158
TXLV Chain .cccescecccecacscnsesonsnsacenee 22
Type conversions, modules fOr eeeccees.. 76

cetecssvustesseecesnsncnenvens 147

csesssvenevevaes 52

240

UNALIGNED attribute ...eecesocseess. 14,169
UNBUFFERED attribute T 1 14
UNDEFINED FILE condition .ecscvecescesas. 158
UNDERFLOW cONAdition weecececsocevecseese 158
Universal instruction set ..cceeecceas.. 10
UNLOCK statement,EXCLUSIVE file .cecee.. 36

V-format control byte .ececeececenccacass 35
V-format record ecceecemevacasceaccscansas 3l
Variable data area(VDA) ceeccececsocensas 43

format Of ..icevececsvecccenccnsnanes 217

Mmultitasking cecemccconecccencnnasess 225
VARYING attribute cnceewsesecccsessessas 1l
VARYING StringS eceeemecsssssssccsccssess 183
VARYING strings in record-oriented I/O . 30
VBS-format record ceceecaccececscsanceaness 35
VDA (variable data area) ceeseessoss. 49,217
VDA flag Dyte e icececsancsscnscncancnnse 217
VDA for multitasking ceeececoccscceaness 225
VS-format reCorYd ...ecescecccesscsasancas 35

54,58,153
30,58

WAIT MACYO wevwcwssonsnmecsssnasnns
WAIT statement ecccecoceccccccncacnsnsce
WAIT statements associated with I/O
EVENES ceivesnsccsnsesosnscscsesconscsesas 30
Wait to terminate ECB(WTE) .oecewees 59,223
Wait to terminate flag(WTF) 59,223
Workspace for the control task eeesesess 53
WRITE MACYO ececvsccnscnncssscsancsanse 153
WRITE statement eeceeccecscsceacccccancsssaas 35

WTE(wait to terminate ECB) .ecceesa. 59,223
WIF(wait to terminate flag) 59,223
WO MACYO cecececccosacsransasncsccasnas 42,153
WITOR MACYO cececccavcscssnmosncnssceeses 142,153

X-format item ceeevecescnceccocssnccenss 175
XCTL MACYO eececosssncsssesasnsnas 10,211,153
XLOK Dit ceeceecercssncasacscnccenssneccs 36

ZERODIVIDE condition .cceceescceccacacess 158

Y28-5801-4

B

®

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only|

IBM World Trade Corporation
B21 United Nations Plaza, New York, New York 10017
[International]

"Y'STN Ul pauld 09g/walsAs NgI

#-1089-8ZA

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	xBack

