
IBM System/360 Operating System

PL/I Subroutine Library

Program Logic Manual

Program Number 360S-LM-St2

File No. S360-29
Form Y28-6801-4

Program Logic

This publication describes the internal speci­
fications of the PL/I Subroutine Library as a
system component of IBM System/360 Operating Sys­
tem. The relationships between the code produced
by the PL/I (F) Compiler, the PL/I Library modules
and the control program are described, and summar­
ies of the properties of individual modules are
provided. This information is intended for use by
those involved in program maintenance and by
system programmers who are altering the program
design. Program logic information is not neces­
sary for the use and operation of the program:
therefore, distribution of this publication is
limited to those described above.

Restricted Distribution

RESTRICTED DISTRIBUTION: This publication is intended primar­
ily for use by IBM personnel involved in program desi9n and
maintenance. It may not be made available to others w~thout
the approval of local IBM management.

r---,
IFifth Edition (November, 1968) I
I I
IThis is a major revision of, and obsoletes, Y28-6801-3 and I
I Technical Newsletter Y33-6001. A new section has been I
ladded in Chapter 5 on multiprocessing and in Chapter 6 onl
linterrupt handling for the System/360 Model 91. Other I
Ichanges to the text, and small changes to illustrations, I
lare indicated by a vertical line to the left of the I
I change: changed or added illustrations are denoted by the I
I- symbol to the left of the caption. I
I I
IThis edition applies to Release 17, of IBM System/3601
IOperating System, and to all subsequent releases until I
1 otherwise indicated in new editions or Technical News-I
I letters. Changes are continually made to the specifi-I
Ication herein: any such changes will be reported in sub-I
Isequent revisions or Technical Newsletters. I L ___ J

Requests for copies of IBM publications should be made to
your IBM representative or the IBM branch office serving your
locality.

Address comments concerning the contents of this publication
to IBM United Kingdom Laboratories Ltd., Programming Publica­
tions, Hursley Park, Winchester, Hampshire, England.

C Copyright International Business Machines Corporation 1966,
1967,1968

PREFACE

This publication describes the object­
time PL/I Library package which forms an
integral part of the PL/I processing
system. General information covering the
overall design and conventions is provided
as well as information specific to the
various areas of language support.

The publication is intended primarily
for technical personnel who wish to under­
stand the structure of the library in order
to maintain, modify" or expand the PL/I
processing system.

Information relevant to this manual is
contained in the following IBM publica­
tions:

IBM System/360 : Principles of Operation"
Form A22-6821

IBM System/360: PL/I Reference Manual,
Form C28-8201

IBM 'System/360 Operating System:

Assembler Language" Form C28-6514

Introduction, Form C28-6534

Concepts and Facilities, Form C28-6535

Linkage Editor, Form C28-6538

Job Control Language, Form C28-6539

system Programmer's Guide, Form
C28-6550

system Generation, Form C28-6554

PL/I Subroutine Library Computational
Subroutines~ Form C28-6590

PL/I (F) Programmer's Guide, Form
C28-6594

system control Blocks, Form C28-6628

supervisor and Data Management Servi­
~" Form C28-6646

supervisor and Data Management Macro
Instructions, Form C28-6647

PL/I(F) Compiler. Program Logic Manual,
Form Y28-6800

PL/I Lanquaqe specifications, Form
Y33-6003

The publication includes two introducto­
ry chapters, 'The PL/I Library' and
If General Impl ementation Feat ures' , which
contain a general description of the
library as a component of IBM System/360
Operating System, and general notes on
features of the operating system and the
PL/I (F) Compiler that are used in the
library implementation,. The remainder of
the manual describes the design of the
library modules in relationship to PL/I
language features, and indicates the use
that is made of the control program to
support the design.

The descriptive material is supported by
a set of module description summaries and
several appendixes. The module summaries
indicate the salient features of individual
modules in the library package, and act as
guides to the program listings that are
available as part of the PL/I Library
distribution. The appendixes contain
details of the system macro instructions
used, system generation, library pseudo­
registers and macro instructions, library
internal error codes and associated
messaqes. and PL/I control blocks.

CHAPTER 1: THE PL/I LIBRARY ••
11'unction. • • • • •
Characteristics • • • • • •
Usage • • • • • • • • • • •

9
9
9
9

C:ontrol Program Interfaces.
Operating System Requiremen ts •

• 10
• 10

10 Diagnostic File. • • • • • •
Link Li brary • • • • • • • •

Instruction Set Requirements. •
.. • • 10

· 10

CHAPTER 2: GENERAL IMPLEMENTATION
FEATURES. • • •• ••. • • 11

Naming Conventions.. 11
Registers: Symbolic Names • 11
Linkage Conventions • • • • 11
Co~ing Conventions. • • • • 12
Library MacroInstructions. .. •• 12
Data Representation '. • • • 12
Communication Conventions • 14

pseudo-Register Vector (PRV) • 14
Library Workspace (LWS) 15
Library communication Area (LeA) • 15
Obj ect-Time Dump • • • • .'... 15
Checkpoint/Restart • • • • • " •• 16
SORT/MERGE - PL/I Interface. 16

CHAPTER 3: INPUT/OUTPUT ••••
Files and Data sets • • • •

• • 18
• 18

File Addressing Technique •
Declare control Block (DCLCB) '.
File Control Block (FCB)
Program Execution. •

• • 18
• • 18

19
• • 20

20 OPEN/CLOSE Functions.
Explicit Opening. • •

Open Control Block (OCB)
The Open Process • •
The Close Process.

Implicit Opening. • • • • •

STREAM~Oriented I/O. •
Current File. • •

• 20
• • 21

• • • 21
22
22

22
• 23

• • 23
23

Standard Fi les. • • • • • •
SY$PRINT in Multitasking, ••
GET/PUT O~ject Program Structure. •
Data Specifications • • • •
Executable Format Scheme. •

• 26
26
27
28 Options • • • • • • • • • •

RECORD-Oriented I/O. • • • • •
Object Program Structure. •

General Logic and Flow •
Record-oriented I/O Control

Record Dope Vector (ROV)
string Dope Vector (SDV)
Request Control Block. •
1/0 Control Block' (IOCB)
Exclusive Block •••••

Access Method Interfaces. '.
CONSECUTIVE Data Sets. •
INDEXED Data Sets. •
REGIONAL Data Sets • • •

30
'30
30

Blocks •• 32
32
32
32
33
34
34
34
35
37

coN'l'ENTs

CHAPTER 4: PLII OBJECT PROGRAM
MANAGEMENT. • • • • • • • • •

Introduction. • • • • • • •
Program Initialization • •
Block Housekeeping: Prologues

• • 41
41

• • 41

and Epi logues • • • • • '. • • • • 41
Storage Management. • • • • • • • 41
Operating-System Facilities.. 42

Automatic storage: Storage
Management • • • • • • • • •

Dynamic Storage Area (DSA)
Variable Data Area (VDA) • • •
Library Workspace (LWS) ••
Allocation and Freeing of

Automatic Storage • • • •
Controlled, Storage: Storage

• • 42
42

• • 43
• 43

• • 43

Management • • • • • • • • • • • • • 44
List Processing: storage Management • 45

System Storage for Based
var iabl es • • • • • • • '. • • • • 45

The AREA Attribute ••••.• 45
The Area Variable. ••• • • • 45
Area Storage for Based Variables • 47
Assignment Between Area
Variables • • • • • 47

The AREA Condition • • 47
Program Management. • • • 47

Initialization of a PL/I Program • 47
Termination of a PL/I Program. • • 48
GO TO Statements • • • • • •• 48
On-Units and Entry-Parameter
Procedures. • • '. • • •

Block Housekeeping. • •
Object-time Optimization •

CHAPTER 5: PL/I OBJECT PROGRAM

• • 48
49

• • 51

MANAGEMENT (MULTITASKING) • • 52
Control Task • • • • • • • • • • • 53
Initialization of Major Task • 54
CALL with Task Options • • •• 54
Initialization of Subtask. 55
End-of-Task Exit Routine

(IHETSAX) • • • • • • • • .' • • • 56
GO TO Statements • • • • • • •
On-Units and Entry Parameter

Procedures. • • • .'. • •
Termination of a Task. • •
Controlled Storage ••••

Multitasking Pseud~-Variables and
Built-In Functions • • • • •

COMPLETION Pseudo-Variable ••
PRIORITY Pseudo-Variable • • •
PRIORITY Built-In FUnction • •

The WAI T Sta temen t. • • '. • •
Alternative I/O Modules for
Multitasking Programs ••

Multiprocessing • • • • • •
EVENT variables. • • • •
Must Complete Operations •
Task Termination • •
EXCLUSIVE' Files.
Task Attachment.

56

56
56

• 57

57
57
57
58

• • 58

• • 58
59

• • 59
59

• • 59
• • 60
• • 60

Changing Priorities. • .•

CHAPTER 6: ERROR AND INTERRUPT

60

HAtIDLING. • •• .. • • • 61
Program Interrupts. • • • • 61
ON Condi ti ons • • • • • .• • 64

Action by Compiled Code. 64
Action by the Library. • 65
system Action. • • • • • 66

standard system Action and
Conditions other than On
Conditions • • • • • • • • 67

Built-in Functions. • • • • 67
ONLOC. • •• • • • • • • 67
ONCODE • • • • • • • • • 67

Model 91 Interrupt Handling • 68
Implementation • • • • • 68
ONCOUNT Built-in Function.. 69
Flush Instructions. • • • •• 69
Model 91 Object-Time Diagnostic
Messages. • • • • • • • • • • • • 70

CHAPTER 7: MISCELLANEOUS CONTROL
PROGRAM INTERFACES. • • • • • • • • • • 71

Full and Minimum control Systems. 71

CHAPTER 8: DATA PROCESSING ROOTINES ••• 72

I/O Editing and Data Conversi~n. •
structure of Library Conversion

Package. • • • • • • •
Directors. • • • • • • •
Edit-directed I/O ••••

I/O Editing • • • • • • • •
List- and Data-directed
Input/Output. • •

Mode Conversions. • • • • •
Type Conversions ••••
string Conversions. • • • •

72

• 72
• • • 73
• • • 73

73

76
• • • 76
• • • 76

76
• • • 77 Arithmetic Conversions.

Data Checking and Error
Edit Directed. • • •
List/Data-Directed •
Internal Conversions

Handling. • • 77
78

• • 78
79

Computational Subroutines. • • • • 80
string Operations and Functions • • • 80
Arithmetic Operations and Functions • 82
Mathematical Functions. 82
Array Functions • • • • • • •• • 82

CHAPTER 9: MODULE SUMMARIES. • 84
Control Program Interfaces. 84
Data Processing • • • • 84

I/O Editing and Data Conversions • 84
Modul e Summar i es • • • • • • • • • • • 85

APPENDIX A: SYSTEM MACRO INSTRUCTIONS •• 152

APPENDIX B: SYSTEM GENERATION. •

APPENDIX C: PL/I OBJECT PROGRAM
PSEUDO-REGISTERS ••••••••

.154

.155

APPENDIX D: LIBRARY MACRO INSTRUCTIONS .157

APPENDIX E: PL/I LIBRARY INTERNAL
ERROR CODES ~ND M!SSAGES. • .158

• .160 APPENDIX F: DUMP INDEX ••
SYSPRINr Buffers • •
Files Currently Open
Current File • • • •
Save Areas • • • • •
Other Information. •

••••• 160
• .160
• .160
• .160
• .160

APPENDIX G: LENGTHS AND LOCATIONS OF
MODULES. • • • • • • • • • • • .163

APPENDIX H: COMPILER-GENERATED CONTROL
BLOCKS. • • • • • • • • • • .167

Array Dope vector (ADV) • • • .169
Data Element Descriptor (OED) •• 171
Dope Vector Descriptor (DVD) ••••• 173
Format Element Descriptor (FED) ••• 175
Library Communication Area (LCA) ••• 177
Library Workspace (LWS) • • • • • • .179
Standard Save Area (SSlU. • • •••• 181
string Array Dope Vector (SADV) .183
String Dope Vector (SDV). • • .185
structure Dope Vector. • .187
Symbol Table (SYMTA13) •• 189

APPENDIX I: INPUT/OUTPUT CONTROL
BLOCKS. • • • • • • • • • • .191

Declare Control Block (DCLCB) •••• 193
Event Variable. • • • • .195
EXCLUSIVE Block. • • • • •• • .197
File Control Block (FCB) ••••••• 199
Input/Output Control Block (IOCB) •• 203
Open Control Block (OCB). • • .207
Example of Chaining •• 209

Files. • • • • • • .209
IOCBs. • • • • • • .209
Event Variables. • .209
Exclusive Blocks • .209

APPENDIX 3: STORAGE-~NAGEMENT CONTROL
BLOCKS. • • • • • • • • • • • .211

ARE~ Variable • • • • • • • • • • • .213
Dynamic Storage Area (DSA). • • .215
Variable Data Area (VDA) ••••••• 217

APPENDIX K: MULTITASKING CONTROL
BLOCKS. • • • • • • • • • • • • • • • .219

.221 Dynamic Storage Area (DSA) •••
EVENT Variable.
PRV VDA ••••
TASK Vari abl e •

INDEX. • • • • • •

• .223
•• 225

• •••• 227
• • • • • • .229

PIGURES

Figure 1. External Names used by the
PL.lI· Library. • • • .• • • • • • • .• • • 11

Figur~ 2. Arithmetic Data
Repr~sentaton • • • • • • • • • • 13

Figure 3. String Data Representation. • 14
Figur~ 4. statement-Label Data
Representation. • • • • • • • • • • • • 14

Figure 5. File Addressing Scheme. • • • 18
Figur~ 6. Format of the IHEQFOP Chain • 19
F~gure 7. Error Codes Indicating

Causes of Failure in Open Process • • • 20
Figure 8. Flow through the OPEN
Modules • • • • •• • • • • • 21

Figure 9. Format of the Current File
pseudo-Register • • • • • • •• .• 23

Figure 10. Modular Linkage through
St.ream-Oriented I/O • • • • • • • • 24

Figure 11. Allocation of SYSPRINT
Resources in Multitasking • • • • • • • 25

Figure 12. Object Program structure
of G;ET/PUT. .'. • • • • • • .,. • • • • 27

Figur:e 13. Executable Format Scheme •• 28
Figure 14. Data Management Access
Methods for Record-Oriented I/O • • • • 30

Figure 15. Linkage of Access Modules
in Record-Oriented I/O. • • • • • • • • 31

Figure 16. IHESA Entry Points • • • • • 41
Figure 17. Structure of the Free-Core

Chai:n for Automatic Variables • • • • • 44
Figur:e 18. Storage Allocation for a
Controlled Variable • • • • • • • • • • 45

Figure 19. Format of Area Variable ••• 46
Figure 20. Example of DSA Chain •••• 49
Figure 21. Continuation of the DSA
Chain ••••••••••• . 50

Figure 22. Construction of the
Save-area Chain • • • • • • • • • 50

Figure 23. Structure of the DSA chain
when the error-handling subroutine is
entered after a new LWS has been
obta:ined. • • • • • • • • • • • • • • . 50

Figure 24. Structure of the DSA chain
when the on-unit DSA is attached. • • • 51

Figure 25. comparison of IHESA and
IHETSA. • • • • .'. • • • • • • • • • . 52

Figu~e 26. Format of Save Area and
wor~space for Control Task. • • • • • • 53

Figure 27. Parameter List for IHETSAf • 55
Figure 28. Program Interrupts and
PL/I Conditions • • • • • • • • 61
Fi~~re 29. Flow through the Error
Handling routine (IHEERR) • • • • • 62
Fi~re 30. Format of the Program
Interrupt Control Area (PICA) • • • 63

Figure 31. Format of the Program
Interrupt Element (PIE) • • • • • • 63

Fi~Jure 32. PL/I ON Conditions • • • 64
Figure 33. Format of the Search Word
comparator. ,. • • • • • • • • 64

Fi~;JUre 34. Module Usage indicated by
Letters of Module Name. • • • •• • 72

Figure 35. DEO Flag Byte for
Character Representation of an
Arithmetic Data Item. • • • • • • • 73

Figure 36. Structure of the
Conversion Package. • • • • • • • • 74

Figure 37. Input/Output Directors for
PL/I Format Items • • • • • •• 75

Figure 38. Conversion for List/Data
Directed I/O. • • • • • • • • 75

Figure 39. Modules for Type
Conversions • • • • • • • • • 76

Figure 40·. Modules for String
Conversions • '. • • • • • • • • 77

Figure 41. Structure of the
Arithmeric Conversion Package • 78

Figure 42. Conversion Code Set in
IHEQERR • • • • . • • • • • • • • • • • 79

Figure 43. Relationship of Data Form
and Sixth Character of Module Name. 80

Figure 44. String Operations and
Functions • • • • • • • • • • • • • • • 81

Figure 45. Arithmetic Operations and
Functions • • • • • • • • • • • ~. 81

Figure 46. Mathematical Functions • • • 82
Figure 47. Array Indexers and
Functions • • • • • • • • • • • • • • • 83

Figure 48. Coincidence of Source and
Target Fields in some 'string Modules •• 84

Figure 49. Internal Codes for ON
Condition Entries • • • • • • • • • • .158

Figure 50. Format of the Array Dope
vector (ADV). • • • • • • • • • .169

Figure 51. Format of the Data Element
Descriptor (OED) •••••••••••• 171

Figure 52. Format of the OED Flag
Byte. • ••••••••••.••• 171

Figure 53. Library·Communication Area
(LCA) ••••••••••••••• 177

Figure 54. Standard Format of Library
Workspace (LWS) • • • • • • • • • • • .179

Figure 55. Format of the Standard
Save Area (SSA) , •••••••••••• 181

Figure 56. Format of the SSA Flag
Byte. • • • • • • • • • • • • •• .182

Figure 57. Format of the Primary
String Array Dope Vector (SADV) •• 183

Figure 58. Format of the String Dope
Vector (SDV). • • • • • • • • • .185

Figure 59. ·Format of the Symbol Table
(SYMTAB). • • • • • • • • • •• • .189

Figure 60. Format of the Declare
Control Block (DCLCB) • • • • • • • • .193

Figure 61. Format of the Event
Variable •••••••••••••••• 195

Figure 62. Format of Exclusive Block. .197
Figure 63. FCB for Stream-Oriented
I/O • •••• • • • • • • • • • • .199

Figure 64. FeB for Record-Oriented
I/O • • • • • • • • • • • • • • • .199

Figure 65. Format of the I/O Control
Block (IOCB). • • ..'. • • • • • • • • .203

Figure 66. Values used in computing
size of IOCB for various access
methods ••••••••••••• ' ••• 205

Figure 67. Format of the Open Control
Block (OCB) • • • • • • • • • • • .207

Figure 68. Example of Chaining of 110
Control Blocks. • • • • • • • • • .. •• 208

Figure 69. Format of Area Variable ••• 213
Figure 70. Format of the Dynamic
storage Area (DSA). • • • • • • • .215

Figure 71. Format of the DSA flag
byte. • • • '. • • • • • • • • • • .215

Figure 72. Format of the Variable
Data Area (VDA) • • • • • • • •• • 21 7

Figure 73. Format of the VDA flag
byte. ••• • • • • • • • • • • • .217

Figure 74. Format of the PRV VDA •••• 217
Figure 75. Format of LWS VDA. • •••• 217
Figure 76. Format of the Dynamic
storage Area (DSA) for Multitasking •• 221

Figure 77. Format of the Event
Variable. • • • • • • • • • • • • .223

Figure 78. Format of PRV VDA for
Multitasking. • • • • • • • • • .225

Figure 79. Format of the Task
Variable. • • • • • • • • • • • .227

FUNCTION

The PL/I Library is a set of object-time
modules that, in various combinations. sup­
plement compiler-generated modules to pro­
duce executable programs.

The library modules can be divided into
two groups:

1 •. Modules that serve as an interface
. between compiled code and the facili­
ties of the control program of IBM
System/360 Operating system. The main

'areas concerned here are input/output,
dynamic program and storage manage­
ment, and error and interrupt han-
dling.

2. Closed subroutines designed to perform
the data processing operations
required during program execut1on.
rhe areas concerned here are I/O edit­
ing, data conversion, and the computa­
tional operations necessary for the
implementation of the arithmetic,
floating-point arithmetic, array and
string generic built-in functions.

Gser-designed modules can be substituted
for library modules; each user module is
given the name of the library module it is
meant to replace.

CHARACTERISTICS

rhe PL/I Library was designed as a large
number of modules to ensure that the object
program would contain only functional code,
and to simplify maintenance and modifica­
tion of the library. Each module is
intended to perform a single recognizable
function or a group of related functions
and is used alone or in combination with
other library modules.

All library modules are designed for use
in a multiprogramming or multitasking envi­
ronment. They are therefore reenterable;
they can be used by more than one task at a
time~ and a task may begin executing a
modu~e before a previous task has finished
executing it.

The library modules are reenterable
because neither the instruction code nor
the :data areas in them are modified during
execution. The PL/I program in which they

are used is protected against accidental
modification by another program during exe­
cution by a protection key provided by the
control program.

USAGE

The linkage editor combines the compiled
modules with the library modules they
require, using the external symbol dic­
tionary (ESD). The ESD resolves all direct
references to the library modules; these
references can be to module names
(containing five or six characters) or to
entry-point names (containing seven
characters>. (See 'Naming Conventions' in
Chapter 2 for definitions of these names.>

However, the library modules may in turn
call other library modules (as, for exam­
ple, in data conversion>. To call these
secondary modules and to ensure that only
the ones required are called, a technique
of llQ~obli~tory symbol resolution is
used. Any library object module that calls
a secondary module that may only occasion­
ally be required is preceded by a linkage'
editor LIBRARY statement that specifiel
that the references to the secon1ary
modules (which are in the form of seven­
character entry-point names) should not be
resolved unless the modules are already
part of the input to the load module. For
those secondary modules that are required,
the compiler generates another ESD, in
which the references to the modules are in
the form of five-character or six-character
module names~ These references can now be
resolved, and the required modules are
placed in the input stream.

The PL/I Library for each version of the
F Compiler is compatible with previous
versions. For example, a module compiled
under Version 2 can be link-edited and
executed by an operating system that
includes the Version 3 compiler. But a
module compiled under any version of the
compiler cannot be link-edited by an oper­
ating system that uses an earlier version.

Compatibility is discussed fully in
~tem/36°--2E~r~~!llg_-2l~temL __ -R~/I
PrQg~~mm~~~~~!g~·

IBM
<FI

Chapter 1: The PL/I Library 9

CONTROL PROGRAM INTERFACES

~be PL/I Library is the sole interface
between object code produced by the PL/I
compiler and the operating system. No
super.'visor call (SVe) or system macro
instruction is issued by the compiled code
produced by a PL/I compiler; a library. call
is made instead. This scheme safeguards
compiled programs and the compilers from
changes in operating system specification.
When the operating system changes. only the
library module is rewritten; the call to
the library from the compiler remains as
before.

system macros and SVCS are necessary
because certain facilities, such as
input/output functions and the timer, can
only be used through the services of the
supervisor. The supervisor must control
these facilities so that it can preserve
the integrity of its own lists, tables and
control blocks. which, in a multi­
programming system, may be associated with
many tasks, programs or jobsu The
operating system requires that certain
operations be carried out only in supervi­
sor mode; it is an error if such instruc­
tions are executed in problem program mode.

Although it might be possible in some
instances to issue SVC instructions direct­
ly to the supervisor# the use of system
macro instruction& is more convenient.
These system macros bear a similar rela­
tionship to the supervisor and assembly
code as the library module does to the
operating system and the compiler. If the
SVC calling sequence changes!, the macro is
changed to fit, and the program need only
be reassembled.

Mi:l,cro instructions are processed by the
assembler program, and their expansions are
in-line. The expansions contain the call­
ing sequence together with either an SVC
instruction or a branch to a control pro­
gram routine. Parameters are passed either
in registers or in data areas. If they are
passed in registers, registers 0 and 1 are
used. If they are passed in data areas,
then register 1 will contain the address of
the data area; this register is called the
parameter list register.

The two main types of macros, therefore,
are:

1. R-type, where parameters are passed in
registers.

2. s-type, where parameters are passed in
a data area.

The macro instructions used by the
library are listed in Appendix A.

10

For further details about ~acro instruc­
tions., see IBM Systeml360 Operating system:
Supervisor and Data Management Macro
Instructions.

OPERATING SYSTEM REQUIREMENTS

Diagnostic Fil~

During execution time. it may be neces­
sary to inform the user of various error
conditions as they arise. To achieve this"
the job step in which the program is be~ng
executed requires a DO statement for a
diagnostic file. The ddname for the file
is SYSPRINT. In the absence of this state­
ment, any diagnostic messages that arise
will be printed on the system console.

Link Librar:t

Certain modules are loaded dynamically
during program execution. These modules
reside in the link library (SYS1.LINKLIB);
they are transient modules and are loaded,
when required, by the system macros LINK,
LOAD and XCTL. DO statements are not
required. The link-library modules are
marked * in Appendix G; they comprise:

1. The print and message modules of the
error and interrupt handling subrout­
ines.

2. The modules for opening and closing
files.

3. The record-oriented I/O transmission
modules.

These modules can. if required. be
replaced by user-designed modules. The
user module is loaded by the linkage editor
into a partitioned data set (PDS). The PDS
(which may have to be provided for the
purpose) must appear in a JOBLIB DO state­
ment.

INSTRUCTION SET REQUIREMENTS

The universal instruction set is gener­
ally required for the execution of PL/I
programs. It is possible that floating­
point or decimal instructions may be used
in the execution of programs that do not
use floating-point or decimal data.

NAMING CONVENTIONS

Tbe PL/I Library conforms to the naming
conventions of IBM System/360 Operating
System with regard to external names.
These are names that are identifiable
ou'ts!de the bounds of an assembled or
compiled module. PL/I external names
always begin with IHE; this is followed by
two, three or four characters, according to
the name function (see Figure 1).

REGISTERS: SYMBOLIC NAMES

The following symbolic names are used in
the library modules for general registers
0-15:

Symbolic Symbolic
Regist~ ~~ g~g!ster Name

o RO 8 RB
1 R1,RA 9 RI
2 RB 10 RJ
3 RC 11 RX,WR
4 RD ~2 PR
5 RE 13 DR
6 RF 14 LR,RY
7 RG ~5 BR,RZ

The following symbolic names are used
for the floating-point registers:

CIlAPI'Sl! 2 i iENERAL IMPLBMBN'tATION PEATQRIS

Syntbolic
Register ~

o
2
4
6

FA
FB
Fe
FD

LINKAGE CONVENTIONS

Linkage between modules generally fol­
lows the operating system standard calling
sequence. The main features of this a~e:

1. Arguments are passed by name, not by
value. The addresses of the arguments
are passed, not the arguments them­
selves.

2. These addresses are stored in a param­
eter list.

3. The address of the list is stored in
register RA.

Full details are provided in IID:L2.1stem/36Q.
QE~~inL§Y~!::~.L§1!E~rvisQLand ~!-_~~:
~ement Services.

Some PL/I Library modules, however, are
called by a PL/I standard calling sequence.
The main features of this are:

1. Argume.nts are passed by name.

2. Arguments are passed in general reg­
isters.

r----------T-------T---~-----------------------T--,
INumber of IFormat I Use I Meaning I
I Characters I I I ,
~----------+-------+---------------------------+--~
I 5 I IHEXX I I I
I I I Module name I I
1 6 I IHEXXX I I xxx are chosen for mnemonic I
.----------+-------+---------------------------~identification of function. i
I 6 IIHEXXX IPL/I Library defined macros I I
.----------+-------+---------------------------+------------------------------~---------~
I 7 IIHEXXXXIEntry-point name IFirst six characters are module name; I
I I I Ithe seventh identifies the entry point I
I I I I wi thin the module. I
.----------+-------+-------------_._------------+--~
I 7 IIHEQXXXIPseudo-register name IXXX are chosen for mnemonic I
I I I I identification of function. (See I'
I I I IAppendix c.) I L __________ L _______ L _______________ - ___________ ~ __ J

Figure 1. External Names used by the PL/I Library

Chapter 2: General Implementation Features 11

This standard can only be used where the
number of arguments is both fixed and less
than eight. If these conditions are not
met, the operating system standard is used.

Two PL/I Library modules, IHESA and
IHETSA, do not use either of these stand­
ardso The subroutines in these modules
pass arguments by value as well as by name"
and pass them in parameter lists and in
general registers.

Whichever standard is used, whenever one
module links to another a save area must be
provided for the contents of the registers
used by the called module. The save area
procedure is:

1. rhe calling module provides a standard
save area (SSA) for. the called module.
rhe address of this save area is
stored in register DR.

2. If the called module in turn calls
another module, it provides that
module with a save area. Register DR
now contains the address of this new
save area. The save areas are chained
together by the chain-back address
field in the new save area.

3. On return to the calling module, the
following will be ~n£h~nged:

Registers HB through LR

Program masl<"

Program
(PICA)

interrupt control area

while the following ~~ be changed:

Registers RO, RA, and BR

Floating-point registers

Condition code

rhe standard save area is a 72-byte area
in which the con~ents of all the general
registers can be saved. The format is
described in Appendix H.

rhe library does not support inter­
module trace. Therefore:

1. rhe chain-forward field in the SSA is
not set.

2. Calling sequence and entry-point
identifiers are not employed.

12

CODING CONVENTIONS

Because all modules within the PL/I
Library are coded to b~ reenterable~ the
following coding constraints must be
observed:

1. The modules are read-only.

2. workspace (for save areas and·tempora­
ry work areas) is obtained within an
area dynamically allocated at program
initialization or by a call to the Get
VDA (variable data area) subroutine in
IHESA. (See 'Library Workspace' in
this chapter and in Chapter 4.)

LIBRARY MACRO INSTRUCTIONS

Seven macro instructions are available
for use in the library modules; they reside
in SYS1.MACLIB. Five of these, IHEEVT,
IHELIB, IHEXLV, IHEZAP, and IHEZZZ# set up
symbolic definitions in the program listing
and the other two, IHESDR and IHEPRV, set
the current addresses of the standard save
area and the pseudo-register vector (PRV)
respectively. rhe library macros are des­
cribed in Appendix D.

DATA REPRESENTATION

Three types of data may exist within a
PL/I program:

1. Arithmetic

2. String

3. Statement-label

The internal representation and other
details of these three types are shown in
Figures 2, 3, and 4. rhe invocation count
used in the statement-label data represen­
tation is described in ~hapter 4.

Arithmetic or string data may be speci­
fied with tne PICTURE attribute. A PICTURE
arithmetic data item is called a numeric
iie!g and is represented internally--as--i
character string. An arithmetic data item
without a PlcrURE attribute is called a
coded arithmetic data item (CAD) and is
represente1--InternaIIY--In--one of three
System/360 formats:

Fixed-point binary
Floating-point
Packed decimal

r-------------T---, I Da:ta rype I Implementation !
~--·---T-------+---------y-----------T-------------T-------------------------------------~
IScalel Base IPrecisionl Internal I Alignment I Processing I
I . I I I forma t I I I
~----~~-------~---------~-----------~-------------~-------------------------------------~
I REAL data I
~--·---T-------T---------T-----------T-------------T-------------------------------------~
I IBinary I p,q I Fixed-point I Word IArithmetic operations are performed I
I I IMax p: 311binary I Ion p-digit integers: scale factor q I
I 1 I I I lis specified in a DED. (See Appendix I
I \ I I I I H, • Data Element Descriptor'.) I
IFixe~.-------+---------+-----------+-------------+-------------------------------------i
I I Decimal I p,q IPacked dec-I Byte IThe p digits occupy FLOOR «p + 2)/2) I
I I IMax p: 151imal I I bytes. Arithmetic operations as for I
I I I (see I I I fixed binary I
I I I note) 1 I I I
t-----+-------+---------+-----------+-------------+-------------------------------------i
I I Binary I p I I p5;21: Word I I
1 I IMax p: 531 Ip>21: Double-I I
I I I I Hexadecimal I word IThe data is normalized in storage I
IFloatt--~----+---------ifloating- t-------------ibefore and after arithmetic operat- I
1 I Decimal I p I point I p5;6 : Word I ions. I
I .: IMax p: 161 \p>6: Double-I I
I I 1 I I word I I • _____ L _______ ~ _________ L ___________ L _____________ L _____________________________________ ~

I COMPLEX data I
t-----T-------y---------y-----------T-------------T-------------------------------------~ I IBinary I p,q 1 Fixed-point I Word lAS for real fixed binary. rhe real I
I 1 IMax p: 311binary I land imaginary parts occupy adjacent I
I I , I I Ifullwords, with the real part first. I
I Fixed r-------+---------+-----------+-------------+-------------------------------------~
I IDecimall p,q I Packed dec-I Byte lAs for real fixed decimal. The real I
I I IMaxp: 151imal I land imaginary parts occupy adjacent I
I I I I I Ifields. with tne real part first. I
t-----+-------+---------+-----------t-------------+-------------------------------------i
I 1 Binary I p I I p::;21: Word lAS for real float binary.rhe real I
I I \Max p: 531 Ip>21: Double-land imaginary parts occupy adjacent I
I I I I I word Ifullwords or doublewords, depending I
I I I I I Ion the precision, with the real part I
I 1 1 I Hexadecimal I I first. I
IFloatt-------+---------~floating- t-------------+-------------------------------------~
I I Decimal I p I point Ip5;6: .Word lAs for real float decimal. The real I
I I IMax p: 161 Ip>6: Double-land imaginary parts occupy adjacent I
I I I I r word Ifullwords or doublewords, depending I
I I , f I Ion the precision, with the real part I
I I II I I first. I L _____ L _______ ~ _________ L ___________ ~ _____________ ~ _____________________________________ J

~Q~~~ when p is even, the effective precision for all arithmetic operations except div­
. ision is (p + 1,q), except when the SIZE condition is being checked. When this
occurs~ the first digit in the high-order byte must be checked to ensure that it
is zero.

Figur~ 2. Arithmetic Data Representaton

Chapter 2: General Implementation Features 13

,.----------'T------------------------'---, I 1 Implementa tion I
lData type~---------------y--T----------i
I IRepresentation) Length I Alignment I
.---------+---------------+--+----------i .. I Bit 11 binary digit 1 I Byte I
I Iper bit IMaximum length: 32,767. If a ~ARYING attribute is 1 (see note) I
.---------f---------------ideclared. maximum length is declared length, 1----------1
ICharacterl1 character perlregardless of the string value. 1 Byte I
I I byte I I I L _________ 4 _______________ L _______ , ___________________ - _______________________ 4 __________ J

Notel The string occupies CEIL (n/8) bytes. If the string comes within the scope of an
1 UNALIGNED attribute, the address of the first bit is provided by a byte address and

bit offset in an SD~. (See 'String Dope Vector' in Appendix H.)

eFigure 3. String Data Representation

o 7 8 31

r--------------------------------l
J Invocation Count I
~-------T------------------------~ I I A(Statement label) I L _______ 4 ________________________ J

Figure 4. Statement-Label Data Representa­
tion

COMMUNICATION CONVENTIONS

The use of library modules in a PL/I
program requires that:

1. working storage be provided for the
modules.

2. rechniques for passing information
about arguments and program status be
provided.

Working storage is obtained as library
~QE~~e~2~ (LWS). Appendix H gives the
format of LWS, which is allocated by the
library program management module IHESA.

Two modes of communication are available
for passing information:

~e!.!2!:t!.. Uses parameter lists and reg­
isters. (See 'Linkage convent­
ions')

Impli£it~ Uses ~~~9Q~f~gisters or a
1ibr~El-£Qm~n!£~~ion a~ea.

Some library modules are interpretive
(as opposed to declarative), and according­
ly require that information regarding the
characteristics of their arguments be sup­
plied. Such information is made available
to the library in the form of standardized
control blocks. The form and content of
the compiler-generated control blocks in
general use throughout the implementation
are described in Appendix Hi one or more

114

blocks is required according to the nature
of the data passed:

Scalar arguments:
Data element descriptor (DED)
String dope vector (SDV)
Symbol table (SYMTAB)

Array arguments:
Array dope vector (ADV)
String array dope vector (SAD~)

Structures:
Structure dope vector
Dope vector descriptor (DVD>

Formats:
Format element descriptor (FED)

Special-purpose control blocks, such as
the file control block (FCB), are described
in Chapters 3, 4, and 5, and in Appendixes
III J, and K.

This is an area of task-oriented stor­
age, addressed through register PR. The
PRV contains a number of pseudo-registers
which effectively operate as implicit argu­
ments and give information about# for exam­
ple# current program status. All referen­
ces to specific pseudo-registers within the
PR~ are made by the addition of a fixed
displacement to the PRV base address in
register PR.

A pseudo-register is defined within a
library module as a Q-type address constant
which is fixed during the linkage editing
process. All pseudo-register address con­
stants within the PL/I implementation are
two bytes long. The maximum size of a PRV
is 4096 bytes. The pseudo-registers used
by the PLII Library are shown in Appendix
C.

Various library modules require working
stora,ge:

1. For internal functions.

2. For linkage to other modules. (A
register save area must be provided.)

Since the library is aesigned to function
within a multitasking environment, such
stora:ge must be allocated on a, task­
oriented basis. rhe storage so allocated
is termed library workspace (LWS).

Library modules which use LWS refer to
it by means of the PRV. A group of
pseudo-registers in the PRV is set during
LWS allocation to contain the addresses of
contiguous areas within LWS. (See Appendix
H.) Sach of these areas is at a different
level.

rh,e notion
inter~module
modul,es:

of level exists because of
linkage between library

1. A module which invokes no
modules is assigned level O.

other

2. A module which invokes other modules
is assigned a level number greater
than the level number of any invoked
module.

3. A module which transfers control to
another module (i. eo, does not expect
a return) is assigned the level number
of that module.

Invocation of the error-and-interrupt­
handling subroutine is not considered suf­
ficieht to raise the level number of the
invoklng module, since the error subroutine
uses a special level.

Library workspace is allocated as pri­
mary pr secondary LWS.

Primary LWS is allocated during program
initialization, before control is passed to
the main procedure. The storage thus
obtained is not freed until the PLiI pro­
gram is finished.

Secondary LWS is allocated for special
purposes during program execution and is
freed: when the situation for which it was
creat~d no longer exists. It is allocated:

1. ~hen an on-unit is entered from a
library module. rhis may lead to a
recursion problem: library modules
called may overwrite this LWS. To
avoid this, the existing LWS is

stacked, a new one obtained and all
the LWS pseudo-registers updated.

2. When SNAP. system action or error
messages are to be printed. The PRINT
subroutine may overwrite the existing
LWS: to avoid this, the same procedure
is followed as for an on-unit.

The library program management module
IHESA controls the allocation of LWS and
the setting of the library pseudo­
registers. (See Chapter 4.) rhe library
macro IHELIB controls the length of LWS and
of each area within it. The LWS format can
be changed by changing IHELIB and
reassembling IHESA.

Modules using specific
address these areas by
library macros:

areas in LWS
the following

IHEPRV: Used to address the LCA or when
----using an area as temporary workspace.

IHESDR: Used when
----standard save

calling.

a module requires a
area for a module it is

Within the area allocated for library
workspace is an area in which various
symbolic names are defined. These names
are used for implicit communication between
library modules (mainly the data conversion
modules). rhis area is the library com­
munication area (LCA); its format and the
usage of the symbolic names are shown in
Appendix H. The LCA address is stored in
the pseudo-register IHEQLCA.

In the LeA there is a douoleword immedi­
ately before the first symbolic name. This
contains (in the first four bytes) the
address of the prior generation of LeA
within a given task. This field is used to
readdress the LeA which existed before an
ON block was entered. IHEQLCA contains the
address of the first symbolic name.

A PLII user may obtain a dump at any
time by calling one of the following:

IHEDUMC: Dump current task and then con­
tinue execution.

IHEDUMJ: Dump all tasks and then continue
execution ..

Chapter 2: General Implementation Features 15

IHEDOMP: Dump ail. tasks and terminate
maJor task (i.e.!, terminate the
job step).

IHEDOMT: Dump current task and then ter­
minate it.

Identification of required information
(such as save-area locations) in the dump
is difficult because this information is
not necessarily stored in locations
arranged in a chronological sequence. ro
facilitate reading ~he dump, therefore, two
subroutines, IHEZZC and IHEZZF. are provid­
ed. 'rhey extract certain information
(chiefly about save areas and opened files)
and print it as an index to the dump. Full
details of this information are given in
Appendix F.

If a DD card exists, the information
will be printed on the PL1DUMP file (unless
there is something wrong with the PL/I
save-area chains, in which case the SYSA­
BEND or SYSUDUMP file will be used). If
the data set specified is other than the
SYSOUT file, DISP=MOD should be used on the
DO card. If there is no DD card and the
operating system has the primary control
program or MFT, only the normal indicative
dump will be provided·; in an MVT environ­
ment l if there is no DD card, there will be
no dump at all.

In an operating system with PCP or MVT,
a PL/I user may establish a checklIDint at
any point within a job step by calling
IHECKPT. He must include a DO statement
with the ddname SYSCHK to define the data
set on which the checkpoint information is
to be saved.

The module IHECKP is called directly
from compiled code. It obtains an ordinary
VDA for use as a save area, rather than
using library workspace, because the CHKPT
macro instruction that is issued by IHECKP
makes use of the first byte of the save
area; the first byte of a save area in LWS
is used for PL/I information. (Refer to
Chapter 4 for a discussion of the VDA and
LWS VDA.) Each time IHECKP is called, it
creates., from a dummy held as part of the
module, a DCB that refers to the data set
defined in the SYSCHK DO statement; on
return from the CHKPT routine. the DCB is
freed. The address of the DCB is the only
parameter passed to the CHKPT routine.

16

SORT/MERGE - PL/I Interface

A PL/I procedure may call the operating
system SORT/MERGE program, using the
library module IHESRr. The publications in
which the operation of SORT/MERGE is des­
cribed are: IE~stem/360 Operating Sys­
tem: SORT/MERGEL Form C28-6543. and.
SORT/MERGE Program Logic Manual" Form
Y28-6597.

Four entry points~ IHESRTA, IHESRTB,
IHESRTC, IHESRTD are provided to enable use
to be made of SORT/MERGE user exits E15 and
E35 to call PL/I procedures, as required by
the application.

SORT/MERGE control statements are sup­
plied as arguments to the PL/I CALL state­
ment. These arguments correspond in format
to standard SORT/MERGE control statements"
from which the parameter lists are generat­
ed.

These arguments also specify the PL/I
entry points to be invoked by the user
exits E15 and E35, and any return codes to
be used for inter-program communication.

The normal library conventions for save­
area chaining are not used for this module.
Instead the module allocates a DSA (with
code X'SO' in the first byte). This is to
ensure that if either user exit is used~
the chain-back is through the DSAs only.

After the parameter list for SORT/MERGE
is generated, the following actions are
performed before linking to SORT/MERGE:

10 The registers in the external save
area of the PL/I procedure are saved
and replaced by special registers
which are used in terminating the sort
when:

a. A PL/I exit procedure is
terminated, due to an error. before
the sort has terminated, or

b. A GO TO from an exit procedure to a
procedure at a level equal to, or
higher than, the calling procedure,
occurs.

Otherwise the PL/I procedure would
terminate allowing the operating sys­
tem to regain control, either directly
or indirectly, while the link to
SORT/MERGE is still operative;, with a
resultant system interrupt. The reg­
isters stored in the special save area
cause the calling procedure to enter
IHESRT and complete the SORT/MERGE
operation. Any user exit calls to the
now non-existent PL/I exit procedures
are deleted, before restoring the

external save area and returning con­
trol from the PL/I procedure.

2. The PICA is set to system action for
program interrupts.

3. Register 13
area with a
2:ero.

is set to a special save
chain back address of

On normal completion of the sarti the
PICA ~nd external save area are reset to
the conditions at entry to IHESRT and
control is returned to the calling program.

If an exit is taken, the PLII environ­
ment is reestablished and register 13 is
reset to the DSA allocated for IHESRT. The
exit procedure is then invoked and thus the
DSA chain is correct.

Before returning to SORT/MERGE the PICA
and register 13 are reset to their values
on initial entry to the exit routine in
IHESRT.

Chapter ,2: General Implementation Features 17

FILES AND DATA SETS

within this publication, the term 'data
set' refers to a collection of records that
exist on an external device. A file is
known as such only within a program: it is
possible that, within a given program,
several files will use the same data set
concurrently (direct access only). Simi­
larly, a data set may be used by several
programs, either concurrently or succes­
sively.

rhe relationship between a file and a
data set is established when the file is
opened. The data set to be associated with
a file is identifiej by the TITLE option .•
If this option is omitted or an implicit
open occurs, a default identifier is formed
from the first eight characters of the file
name. The data set identifier is not the
data set name, but the ddname (i.e., the
name of the DD statement). Error messages
which are related to file operations use
the full file name (1 through 31
characters).

The attributes of a file in some instan­
ces restrict the attributes of its asso­
ciated data set~ but in those instances
where device independence is possible, the
full capabilities of the job control lan­
guage DD statement are available. Unit
assignment, space allocation, record format
and length, and various data management
options (such as write-verify) are esta­
blished on a dynamic basis.

o 3~ o 3~

r------------T-----l r--------·-----------lI
I PRV offset I I I I
.-----T------J I 1 I
I I I I I

FILE ADDRESSING TECHNIQUE

In order to accommodate reentrant usage
of a PL/I module, which may imply that the
module exis~s in read-only storage, the
following technique is employed to communi­
cate file arguments. All calls from com­
piled modules to the library involving file
arguments address a read-only control
block, the DCLCB. rhe library, using a
field within this control block, is able to
address a cell within the pseudo-register
vector generated for the task. This cell.
the file register, in turn addresses a
dynamically allocated control block, the
file' control block (FCB). (See Figure 5.)

This control block, generated during
compilation, contains information derived
from a file declaration (either explicit or
contextual). In addition, it contains the
offset within the PRV of the file register,
a fullword pseudo-register employed within
the file addressing scheme. This pseudo­
register contains the address of a dynamic
storage area containing a file control
block. The DCLCB is read-only, and thus
permits compiled programs to exist within a
reentrant environment (which may imply that
the program is loaded into supervisor
protected storage). rhe maximum length of
a DCLCB is 56 bytes.

File attributes specified within the
DCLCB may be supplemented" but not overrid­
den, by attributes specified in the OPEN
statement which opens the file. An excep-

o 31

r-->r-------------------~
I I I
I I I
I I I

I I I .--------·-----------1 I I I
I

L ____________ + ____ >I A(FCB) ._J I I

I I t-------------------1 ~-------------------i
I I I I I A(DCLCB) I
I I I I .-------------------~
I I I I I I
I I I I I I
I I I I I I L __________________ J L ___________________ J L ___________________ J

Figure 5. File Addressing Scheme

18

tion to tbis rule is the LINESIZE option,
~ich overrules record length information
decla~ed in the ENVIRONMENT attribute.

:rhe format of the DCLeB is described
fully in Appendix I.

~rhis control block is. generated during
program execution when a file is opened.
Dynamic allocation of the FCB storage is
required in order to accommodate reentrant
usage of a given module, for the FCB is not
read-only. The FCB contains fields for
both the PL/I Library and for operating
system data management. The initial por­
tion of an FCB is PL/I-oriented, while the
second portion is the DCB required by data
management for all data set operations.
The P:E../I portion, called the DCB-appendage,
is described in App~ndix I; details of the
various DCB constructions are available in
the following IBM publications:

I~M--2Y~~~m/l~~_QE~~~!ing System: system
CO!!!!".Q!_~!Q£~§:

I§~~§l2~~m!1~Q_QE~f!ti!!a-2lstem: Supervi-
2Qf~!!!~Q~~~_~!!!~~~!_Se~vices

1~~~~~~~m!l&Q_Q~~~!ll~System: Supervi-
2Q~~~~_Q~~~_M~!!~gement Macro Instruc­
!:ion2,

An FCB is generated for each file opened
within a program; an FCB cannot exist for
an unopened file. FCBs are generated in

PR~

r-------------,
I I
I I
~-------------~

task-oriented storage (in the same subpool
as the PRY for ~he task: subpool 1).

Accordingly, if a file is implicitly
closed because of the termination of the
task that opened it, its FeB is freed and
the file register is set to zero. The
contents of a given file register in a
non-opening upward task are zero. Subse­
quent reference to the file may cause the
file to be reopened. (A non-opening upward
task for a given file is a task that does
not open the file, and which is not a
subtask of a task that has opened the
file.)

When a file is opened, its ,generated FCB
is placed in a chain which links together
(throUgh the rFOP field in the FCB) all
files opened in a given task. When files
are closed, they are removed from the
chain. This chain, which is anchored in
the PRV cell IHEQFOP, exists in order to
perform special PL/I closing processes at
task termination <whether normal or
abnormal). When a task terminates, the
object-program housekeeping routines deter­
mine which files are currently opened by
this task. This is performed by the rele­
vant housekeeping module calling IHEOCLD
(close), which scans the chain and calls
IHECLTB to close all files opened in the
current task. If the cell IHEQFOP is zero,
then no files are, at present, opened by
the task. When a subtask is attached, this
cell is initializea to zero in the newly
generated PRV. The IHEQFOP chain is shown
in Figure 6.

since an FCB is generated in dynamic
storage, its address cannot be determined
either at compile time or link-edit time;
it is this characteristic of the FCB which
requires the file addressing scheme out-

IHEQFOPI t--,
t----~--------~ I
I I FCB1 [£~£ V FeBl
I I r-----====----,<--, r-------------,<--, ~-------------,
I I I I I I I I
I I I I I I I I
I I ~-------------~ I .-------------~ I .-------------i I I I <0 I L __ ~ J L--i I TFOP
I I .-------------1 .-------------i .-------------i L _____________ J I I I I I I

I I I I I I
I I I I I I L _____________ J L _____________ J L _____________ J

~ The FCBs are opened in the order 1, 2, 3., etc.

Figure 6. Format of the IHEQFOP Chain

Chapter 3: Input/Output 19

lined above. If a given procedure is being
executed by two or more jobs
(multi-jobbing), an FCB (with its associat­
ed PRV) exists for each job; the procedure
does not, however, necessarily operate on
different data sets. Similarly, if a file
is opened in two parallel subtasks# an FCB
exists for each task.

When program execution is initiated, the
PRV (including all file registers) is ini­
tialized to zero. When a file is opened
(prepared for I/O operations), its asso­
ciated file register is set to address an
FCB; similarly, when a file is closed
explicitly, its file register is again set
to zero.

Since a copy of the PRV of the attaching
task (calling procedure) is provided to the
attached task (called procedure), the state
of a file is communicated downward through
major to minor tasks. If the file is not
open, the file register remains zero. If a
file has gone through the opening process
but has failed to be opened (UNDEFINEDFILE
condition), the high-order byte (bits 0 to
7) of the file register will contain an
error code that indicates the cause of
failure. The codes consist of two hexa­
decimal digits; they are shown in Figure 7.

If the file register is non-zero, the
file is open and its FCB is also available
to all the subtasks created while ,the file
was in the open state. This technique of
communicating the state of a file makes it
possible to access a file in two parallel
subtasks.

Two advantages of the use of the DCLCB
in the file addressing scheme are:

1. Because the DCLCB, in conjunction with
an implicit opening statement, pro­
vides all the information necessary to
open a file, a file can be opened by
I/O statements other than the OPEN
statement.

2. Because the DCLCB is part of the
static storage of a load module, its
address is constant throughout program
execution. This address can be used
therefore as the f.ile identification
in ON conditions that relate to files.
ON conditions may be enabled for a
file before it is opened, since the
DCLCB address is always available.

20

r-------T---------------------------------, I Error I I
J code I Meaning I
~-------+---------------------------------~ I 81 I Conflict between DECLARE and
I I OPEN attributes
I I
I 82 I File access method not support-
I I ed
I J
I 83 I No block size
1 J
]
I
J
I
!
I
J
~
J
~
]
]
I
I
J
I
I
I
I

84

85

86

87

88

89

8A

No DD card

TRANSMIT condition while 1n1-
tializing data set (oply appli­
cable to DIRECT OUTPUT REGIONAL
files)

Conflict between PL/I attri­
butes and environment options

Conflict between environment
options and DD parameters

Key length not specified

Incorrect block size or logical
record size specified

Line size greater than
I implementation-defined maximum L _______ ~ ________________________________ _

Figure 7. Error Codes Indicating Causes
of Failure in Open Process

OPEN/CLOSE FUNCTIONS

The opening of a file occurs either
explicitly by the use of an OPEN statement,
or implicitly because of other I/O
operation statements.

Opening a file involves the creation#
within dynamic storage (subpool 1 of the
opening task), of an FCB, the setting of a
file register to address the FCB~ and the
invocation of the data management OPEN
executor. The closing of a file involves
invocation of the data management CLOSE
executor, freeing FCB storage, and clearing
the associated file register.

EXPLICIT OPENING

In order to conserve storage, the module
,ructu~e of the OPEN and CLOSE processors

invol ves a • bootstrap' routine, IHEOCL"
which links to the modules IHEOPN and
IHECLT. In a multitasking environment
IHEOCT links to IHEOPN and IHECTT. The
bootstrap module passes to the loadea

modules the address of a list of all
neces,ary address constants and pseudo­
register offsets~ since these cannot be set
in a module not link-edited with the
executing program. The list is found in
the library module IHESA (non-multitasking)
or IH~TSA (multitasking).

All errors are communicated back to
IHEOC~/IHEOCT by means of the file reg­
isters; IHEOCL/IHEOC'T then invokes the
error handling subroutine. The error con­
ditions are signaled in the high-order byte
of the file register; IHEOCL/IHEOCT, upon
detecting an error condition~ sets bit 0 of
this register to indicate an unopenable
file. The error codes are shown in Figure
7.

One of the parameters which may be
passed to IHEOPN is the open control block
(OCB), which is generated by the compiler.
This ~our-byte control block indicates the
attributes specified in the OPEN statement.
During the opening process, this informa­
tion is merged with that in the DCLCB in
order to construct the proper FeB and check
for attribute conflicts. (See Appendix I
for details of the OCB.)

The flow through the OPEN modules is
illustrated in Figure 8.

:rhe open process is performed by the
modules IHEOPN~ IHEOPO, IHEOPP, IHEOPQ and
IHEOPZ which reside within the LINKLIB data
set. These modules are dynamically loaded
in or~er to conserve object-program stor­
age,. "They initially receive control from a
boots~rap module, IHEOCL (non-multitasking)
or IijEOCT (multitasking); each module,
after performing its functions for all
files 'being opened, passes control to the
next 'by the XCTL macro. IHEOPQ then
returrts to the bootstrap module.

Open Process, Phase -±L IHEOPN: This per­
forms file attribute checking and default­
ing eunctions. If a file being opened is
REGIONAL, and is opened for DIRECT OUTPUT
(crteation), the module IHEOPZ is invoked by
IHEOPN to initialize (format) the initial
space allocation of the associated data
setq Such initialization is required in
order:to allow subsequent direct insertion
of records into the data set. If, in phase
I, all files specified in the OPEN state­
ment have detected errors, a return to the

bootstrap IHEOCL is made immediately. Oth­
erwise phases II, III and IV are invoked
and a return is made to IHEOCL from IHEOPQ.

r------------'11
I OCL/OCT 1
~------------i
I OPEN/CLOSE 1<----------------------,
I bootstrap 1
L----~T------J

1
V

r------------'lI r-----------'lI
I OPN I 1 OPZ I
.------------~ .-----------i

OPEN 1<--->1 REGIONAL 1
I Phase I I I Formatting 1
L-----T------J L, ___________ J

1
V

r------------l1
I OPO I
~------------i
1 OPEN I
1 Phase II 1
L-----T------J

1
V

r------------, r-----------,
I OPP 1 1 OPQ 1
t------------i .-----------i
I OPEN .---->1 OPEN t-----J

I Phase III I I Phase IV 1 L ____________ J L ___________ J

Figure 8. Flow through the OPEN Modules

Initialization for REGIONAL data sets of
F format records involves writing dummy
records (and keys, except for REGIONAL (1»
throughout the data set. On the other
hand" initialization for U or V format
records (REGIONAL (3) only) requires merely
that the capacity record (RO) be written in
each track to signal a free track, the
track being automatically cleared as well.

QEen Process" Phase II: IHEOPO: This
obtains storage for an FCB for each file
being opened~ and sets fields in both the
DCB and the DCB-appendage according to the
declared attributes~

Open Process, Phase III: IHEOPP: This exe­
cutes the OPEN macro, and accepts DCB­
exit9·

Open process, Phase IV: IHEOPQ: This
dynamically loads record-oriented I/O
modules (setting their addresses in the
FCB), and e~ters the files being opened
into the IHEQFOP chain of files opened in
the current task.

Chapter 3: Input/Output 21

This process consists of: removing files
from the IHEQFOP chain; freeing dynamically
acquired storage (file control blocks, buf­
fers, exclusive control blocks, and 1/0
control blocks); and deleting any appropri­
ate dynamically-loaded record-oriented 1/0
modules. In the following description the
non-multitasking module is followed with
its multitasking alternative in parenthe­
ses ..

Module IHEOCL (IHEOCT) starts the close
process; for an explicit close it links to
IHECLT~ (IHECTTA); for an implicit close to
IHECLTB (IHECTTB). If the last operation
on a BUFFERED SEQUENTIAL INDEXED OUTPUT
embedded-key file, before it is closed
explicitly, is LOCATE, module IHEOCL
(IHEOCT) replaces the embedded key with the
KEYFROM option, before passing control to
IHECLT (IHECTT). For further information
refer to Indexed Data Sets on page 35.

Module IHEOCL (IHEOCT) calls IHEITC to
finish formatting the current extent when
closing a REGIONAL SEQUENTIAL OUTPUT file.
If IHEITC finds a key sequence error due to
a previous LOCATE statement on a REGIONAL
file with U- or V-format records the key
sequence is ignored and a message is dis­
played on the console.

The normal return from a KEY on-unit is
to the statement following that in which
the condition is raised. Consequently, if
the KEY condition is raised during the
execution of an explicit CLOSE statement,
the file will not be closed unless the
on-unit also includes a CLOSE statement.

In addition, if a file is closed impli­
citly (on termination of a task), IHEOCL or
IHEOCT scans the IHEQFOP chain to find the
file. In a multitasking environment, if a
task is terminated normally, IHEOCT unlocks
all records locked in the task and frees
the corresponding exclusive blocks; 1t a
task is terminated abnormally. it merely
removes the exclusive blocks from their
chains. For an implicit close, all events
associated with event variables in the
IHEQEVT chain are purged, and the associat­
ed IOCBs, if any, are freed.

Modules IHECLT and IHECTT reside within
the LINKLIB data set and are loaded dynami­
cally in the same manner as the OPEN
modules. They perform additional special
functions as follows:

Stream-oriented I/O:

22

If OUTPUT with U-format records, the
last record is written.

Record-oriented I/O:

All incomplete event variables asso­
ciated with the file are set complete.
abnormal, and inactive, and the I/O
operations are purged.

In a multitasking environment:

1. The event variables in the TEVT
chain are set complete l abnormal,
and inacti ve ..

2. For a REGION~L EXCLUSIVE file., or
an INDEXED EXCLUSIVE file with
unblocked records. locked records
are unlocked and all exclusive
blocks in the TXLV chain are freed.

3. For an INDEXED EXCLUSIVE file with
blocked records, the file is
unlocked.

IMPLICIT OPENING

If a file is not open and an I/O
operation is initiated, then one of the
compiler-interface modules (IHEIOA. IHEIOB
(or IHEIBT), or IHEION (or IHEINT)} calls
IHEOCL (or IHEOCT), at implicit-open entry
point IHEOCLC (or IHEOCTC), passing any
implied parameters, and the open process
begins .•

If the OPEN modules return control to
IHEOCL (or IHEOCT) and the file is still
unopened, the UNDEFINEDFILE condition is
raised.

Although 1/0 devices available within
IBM System/360 Operating System are usually
designed to transmit data in records of
various lengths (blocks), the stream­
oriented facilities allow a program to
ignore record boundaries. The GET and PUT
statements transmit data between storage
and one or more records which exist within
a buffer, the location within the buffer
being updated as each data field is
accessed. When a record becomes filled (if
output) or empty (if input), another record
is obtained. Support for record access is
provided by the data management access
method QSAM (queued sequential access
method). Normally, the GET and PUT data
management macros are used in the locate
mode, to conserve space and time; paper
tape input, however, must use the MOVE
mode. The flow through the stream-oriented
I/O modules is shown in Figure 10.

CURRENT FILE

~['he current file is that one which is
being operated upon by an I/O statement; it
is e~tablished when an operation begins"
and removed when the operation is complet­
ed. The current file is addressed through
the pseudo-register IHEQCFL, which address­
es the DCLCB for the file.' This pseudo­
regist.er is available for inspection upon
entry to ON blocks, and during
trmlsmission. Its format is shown in Fig­
ure 9.

o 7 8 31

r--------T--------------------------------, I 0 I A (DCLCB) I
r-------+--------------------------------~ I I A(Abnormal return) I L _________ .1. ________________________________ J

Figure 9. Format of the Current File
Pseudo-Register

Within a stream-oriented data specifi­
cation there may exist expressions which
involve function references. In turn, the
function procedure may itself perform I/O
operations or may refer to ON blocks that
perform I/O operations. When this situa­
tion occurs" it is necessary to stack the
cun:ent file pseudo-register. The presence
of the COPY option in a GET statement and
the raising of the TRANSMIT condition for
an item in the data stream are flagged in
the fifth byte of IHEQCFL:

TRANSMIT to be raised on item:
COpy option in statement:---­
Current file in PRV:
Current file stacked in DSA:

Bit 5
Bit. 6
Bit~ 7
Bit 7

= 1
= 1
= 0

1

Sta~cking of the current file is effected
by the I/O initialization modules: upon
entering such a module (e.g., lHEIOA and
IHEIOB.) , the contents of the pseudo­
register IHEQCFL are stored in the DSA
(dynamic storage area) of the invoking
procedure, as addressed by register DR.
The stacking cell is termed the current
file pseudo-register update. (See Chapter
4.) Upon termination of an I/O operation,
ei·ther normally, or by means of a GO TO
statement out of an ON bloc~, this cell is
copied back into the ps eudo-register
IHEQCFL.

GET and PUT statements with the STRING
option. employ the current file pseudo­
regist:er, but no abnormal return. entry
exists. Instead" the latter four bytes
add:c'ess a simulated FeB.

STANDARD FILES

The standard files, SYSIN and SYSPRINT,
have default titles equivalent to their
file names. The compilation of GET and PUT
statements without explicit FILE options
causes compile-time syntax substitution of
the file names SYSIN and SYSPRINT
respectively. These files have the same
compiled linkage to the library as other
files. Within the library, SYSIN is not
used; the file SYSPRINT, however, is used
in that error messages and listing of data
fields for the COpy and CHECK options
require the presence of this file.

SYSPRINT may be implicitly opened either
by:

1. the first PUT executed in the compiled
procedure, or

2. a call from within the library for the
COpy option or an error message.

If the library attempts to open this file,
and it cannot be opened (missing DD card,
etc.), this situation is flagged and all
error messages will appear on the system
console. In addition, any COpy options, or
system action for the CHECK condition, will
be ignored. The UNDEFINED FILE condition is
suppressed in the above cases.

If a compiled procedure attempts to open
SYSPRINT" and it cannot be opened, the
normal UNDEFINEDFILE condition is raised.

Because the library and the source pro­
gram both use the SYSPRINT file, it is
necessary that they both refer to the same
DCLCB. This is achieved by the use of
CSECT facilities within the linkage editor;
both the compiled DCLCB and the library­
supplied DCLCB for SYSPRINT (within the
module IHEP}{'£) are supplied with the same
name" so that only one of them will be
placed within the linked program,. The name
of both CSECTs is IHESPRT: the name of the
associated file register is IHEQSPR.

SYSPRINT IN MULTITASKING

In a multi tasking environment" to ensure
that there is no conflict between
operations in different tasks that refer to
the same non-exclusive file, it is neces­
sary for the programmer to synchronize
these operations (by using an EVENT varia­
ble" the COMPLETION pseudo-variable" and
the WAIT statement). Since the library
uses the file SYSPRINT" it is not possible
for the programmer to synchronize all oper­
ations on this file. Therefore the library

Chapter 3: Input/Output 23

r---------,
1 001·1
~---------~

r-----T----i Data 1
I I I input I
I I L----T----J
I V
1 r---------, r---------,

Note~ An asterisk indicates that
the module can be entered
directly from compiled
code

11 LDI *1
I~---------i
II List ~--->
II input I

IDDO/DTT .1
~---------~
I Data r---------,
I output 1

r---------,
1 lOA *'
~- --------~

I L _________ J

I
I
I
V

r------,

L----T----J

I
r------.L------,
I ,
V V

r---------, r---------,
I LDO *1 I DDP ,
~---------i ~---------i

r--of GET ~-,
I Jlnit/Terml ,

I DDJ I
~-------~
1 Array I
I Input I

<---i List I
I output,

I Array I
I output I I L _________ J , L _______ J L _________ J L _________ J

I I
I r---------, I r---------, r---------,
I IIOB/IBT.' I , lOX .1' .,
I ~---------~ , ~---------~ ~---------~

r--------,
I IOC *1
~--------~
IGET/PUT I
I STRING 1 L ________ J

r----------,
I SRC ·1
~---------~
'DATAFIELD/ I
I ONCHAR/ I
I ONFILE/ I
I ONSOURCE I
L ___________ J

r-----------,
I SRD .,
r----------1
I ONKEY 1
, I L __________ J

Figure 10.

24

<-i PUT 1->' I X/COLUMN I ,Format,
'Init/Term' I I Formats , I directors,
L _________ J L ____________ , L----T----J L----T----J

I I I
r--------------------f---------+-------, I I
, 'I I L------T------J
, I I I I
V vI' V r---------, r---------, I I r----------,

JOCL/OCT *1 I lOP *' I I I 100 I
r---------~ ~---------~, I r----------i
I I IPrinting ~--->,<------+---iData Field I
, CLOSE ~-------, I control I' I' access I I I I L _________ J I I L----T-----J

I " 'I I I I I I I I
r---------i I V I V
, I' r---------, 1 r---------,

->, OPEN ~-------+----------->I IOF I 1 IPRT/PTT I
I I' ~---------~ I r---------i
I I I I Record I L ___ ~ Write 1<--------
L----T----J I I access I<-----i SYSPRINTI I 1 L _________ J L _________ J

V V
r---------,
, OPN I
r---------i
I OPEN I
I Phase I I
L----T----J

I
V

r----------,
, CLT/CTT I
r---------i
, CLOSE I
I I L __________ J

r---------, r---------, r---------,
I OPO I , OPP I I OPQ I
~---------~ ~--~------i ~---------i
, OPEN ~->I OPEN ~->, OPEN ,
IPhase II, ,Phase IIII IPhase IV , L _________ J L _________ J L _________ J

Modular Linkage through Stream-Oriented I/O

r---------,
I CNT *'
~---------~
I COUNT/ I
I LINENO I L _________ J

Task B Task A
(ma jor task))

I
o I

I
r-------------------------~ o I I

Task C

I ~------------------------,
I I 0 I

ENQ I I
1 Error I I

PUT-----------, I I
o I

I
I

I ENQ
DEQ

I
ENQ 1

I
I
I

Message
routine
1 I

1

o
PUT o

PUT

DEQ
I

I I
DEQ

I r------------> I

2

1

I
I

ENQ

PUT

DEQ
I
I
I
I

!l~ The figures at
the left of each column
indicate the contents of
1:.he resource counters.

I
I
I

I
I
I

ENQ
1 Function reference

PUT---------,
I I
I I
I 1 PROC;
I I
I I
l I

ENQ
2 Error

PUT--------,
I I
I I
I on-unit
I
I
I
I
I
I

2 BEGIN;
I
I
I
I

I I
------------DEQ<-------DEQ<-----GO TO

I
I
I
I

Figure 11. Allocation of SYSPRINT Resources in Multitasking

module that implements PUT statements for
SYSPRINT (IHEIOB). and other modules that
use this file, issue an ENQ macro instruc­
tionbefore executing each PUT statement on
SYSPRINT, and a DEQ macro instruction on
completion of the operation. All SYSPRINT
operations cannot be enqueued on the same
resoUrce, since this could result in an
interlock situation (two or more opera­
tions" each waiting for the completion of
the others). For example, this would be
thE! case if a PUT statement involved a
function reference that required another
PUT Qperation; if both were enqueued on the
same resource., the second operation could
not commence until the completion of the

first" which itself could not proceed until
the function had returned an answer.

The library resolves the difficulty by
employing a resource counter (the first
byte of the current-file field in the DSA:
see Appendix J). Before each SYSPRINT
operation is executed, the operation is
enqueued on the resource number in the
counter., and the counter is then increment­
edby one: on completion of the operation,
the counter is decremented by one before
the operation is dequeued. When a new DSA
is obtained (on entry to a new block: see
Chapter 4), the resource count is copied
from the DSA of the block from which the
new block was entered.

Chapter 3: Input/Output 25

In the example (Figure 11), when the
major task (task A) is initialized, the
resource count in its DSA is set to zero.
~ask A then attaches tasks Band C, and in
each case the resource count (0) is copied
into the new DSA. Tasks A, B, and C then
request PUT operations, all of which are
enqueued on resource 0; in each case the
resource count is then incremented by 1.
These operations are therefore completed in
the order in which they were requested.

During execution of the PUT statement in
task B, an error condition occurs that
involves a library call to print a message
(e.g., UNDERFLOW). The library PUT state­
ment is enqueued on resource 1, since the
resource counter is incremented after the
task PUT statement is enqueued, but before
the statement is executed. The library PUT
operation is therefore not dependent on the
completion of the PUT statement that raised
the error condition.

If a GO TO statement is executed that
passes control to a statement preceding a
Ser1€S of enqueued operations, the program
management routine IHETSAG releases the
DSAs of the blocks thus freed and dequeues
the I/O operations they contain. This is
illustrated in task C (Figure 11), where
control is passed to an on-unit as a result
of an error in a PUT statement in a
funct.ion reference made during the execu­
tion of the second PUT statement in the
task. The PUT statement is enqueued on
resource 0, and the resource count is then
incremented. When the function is called,
the resource count (1) is copied into its
DSA; consequently, the next PUT statement
is enqueued on resource 1, and the counter
is again incremented. The count 2 is
copied into the on-unit DSA when control
passes to the on-unit. On execution of the
GO TO statement, which passes control back
to a statement preceding the original PUT
statement, IHETSAG frees the function and
on-unit DSAs, dequeues all the PUT opera­
tions, and resets the resource counter in
the DSA for task C to its value on entry to
the task (0).

No special provision is made for han­
dling SYSPRINT resources on termination of
a task, since this file cannot be used by
the library end-of-task exit routine.

The qname and rname used in the ENQ and
DEQ macro instructions are:

26

qname (two words):
Bytes 1-4: A(SYSPRINT feB)
Bytes 5-8: A(SYSPRINT FeB)

rname (1 byte):
Resource count in DSA

GET/PUT OBJECT PROGRAM STRUCTURE

The code compiled for stream-oriented
I/O GET and PUT statements has the general
structure illustrated in Figure 12. There
are three 'call sets' compiled for these
statements:

1. Initialization:

This call invokes one of the I/O
initiator modules, passing:

a. The address of the file DCLCB.

b~ The address of
call. (This
return which is
current file
IHEQCFL.)

the termination
is the abnormal

set within the
pseudo-register

c. The address of the LINE or SKIP
value.

The initialization process includes
stacking the current file, checking
the specified file (and opening it if
not already open), and performing any
necessary option operations.

2. Data specification:

This is a series of calls to perform
list-, data-, or edit-directed stream­
oriented I/O operations. This series
is omitted only for GET/PUT statements
which have no data specification.
Details of the implementation of the
three forms of data specification
appear in 'Data Specifications',
below.

3. Termination:

This call invokes the terminal
subroutine of the module which per­
formed the initialization. At this
point the current file is unstacked
and (for PUT calls) V format output
records have their record-length field
updated.

DATA SPECIFICATIONS

There are three forms of data specifi­
cation:

Data-directed

List-directed

Edit-directed

Compilation of any data specification
yields a series of one or more calls to the
library for transmission of data between
program storage and a record buffer. For
list- and data-~irected IIO, the data items
tr'ansmi tted are passed by means of the
standard linkage described above. (See
'Linkage Conventions' in Chapter 2.) The
PLII standard (using registers) is employed
wherever possible; where it is not, the
operating system standard <using a paramet­
er list) is employed. For edit-directed
I/O, the 'executable format scheme' des­
cribed below is required.

The ON CHECK facilities for data items
being input are supported by compiled co?e
between data-list item specifications, 1n
the instances of list- and edit-directed
I/O; data-directed IIO determines the exis­
tence of this condition from the symbol
table entry for a given data item.

EXECUTABLE FORMAT SCHEME

The executable format scheme exists to
support two requirements for edit-directed
data i terns:

1.. The matching at object time of data­
list items with format-list items.

2. The evaluation of expressions during
an IIO operation.

The scheme exists in compiled code for use
by the library format directors and
conversion package. (See"I/O Editing and
Data Conversion' in Chapter 8.)

The scheme is required because edit­
directed data specifications contain format
lists composed of format items that may
have expressions for replication factors
and format subfields. These expressions
may have to be evaluated with values read
in during a GET operation. Finally, the
use of dynamic replication factors and the
r;oss:ible existence of array data-list items
of variable bounds prevent any pre­
determinable matching of data-li.st items
and format-list items.

Basically, the scheme calls for the
existence of two location counters, one for
a compiled series of data-list item
requests, the other for a compiled series
cf format-list item specifications. These
two series are compiled as the secondary
calling set for a GET or a PUT operation.

To support the dynamic matching of a
format-list item with any data-list item, a
groUp of format directors exists within the
library; one of these directors receives

the call from the secondary compiled series
of format item specifications. A director
will' determine which conversions are
required to satisfy the transmission of a
data: i tern according to its internal rep-­
resentation <described by its DED) and its
specified external representation
<described by a FED).

The structure of edit-directed compiled
code is illustrated in Figure 13. The
first column, 'Primary code', consists of
calls to units in the second column,
• Secondary code'; i.e., data-list items are
requesting a match with a format-list item.
The third column shows the flow within the
library as set up by format directors.

r----------------,

Call set 1
I I
I Initialization I

" I
I
I
I
I
!

I call I
L--------T-------J

I
V

r----------------,
I Data I
I Specification I
I call~ I
L--------T-------J

I
V

Call set 2
I
I
I
I
I
I
I
V

I
I
V

r----------------,
I Data I
I Specification I
I calln I
L--------T-------J

I
V

r----------------,
I I

Call set 3 I Termination I
I call I
L ________________ J

Figure 12. Object Program Structure of
GETIPUT

1.

2.

3.

The scheme works as follows:

The address of
format-list code
is obtained.

the start
<executable

of the
format)

Transmission of the first data item is
requested; its storage address and DED
address are loaded into registers RA
and RB.

Control is transferred to the executa­
ble format; at the same time the

Chapter 3: InputlOutput 27

Primary code secondary code Format directors

Initialization
1 ,
V

r------------, r------------, r------------,
, Request ~---->, specify ~---->I Format 1
Idata item 11 1 format, 1 director 1<----------,
1 transmission I r-->I 1 ~---->I All L ____________ J L ____________ J L----T-T-----J V

, (1) 1 I (3) r------------,
r------------------------------------J 1 , Conversion ,
I' 1 1 package I
'I r--------- J I I VI' L ____________ J

r------------, 1 r------------, I r------------, A
I Request I' , Specify I 1 , Format 1 ,
Idata item 21---->1 format ~----> I director ,< __________ J

I transmission I I I 2 I" B , L ____________ J 1 L ____________ J 1 L-----T------J

, 1 (2),

, " , " r-----------------------------,--------J
I' 1
V I I

r------------, I I
1 Request I' I
,data item 3~-J ,
,transmission 1 I L ____________ J I

1 ,
r----------------------------J

1
V

Termination

Figure 13. Executable Format Scheme

4.

5.

6.

7.

8.

28

location counter of the data-list code
is updated.

The executable format loads, into reg­
ister RC, the address of an FED.

A call
and at
counter
llpdate1.

is
the
of

made to a format director
same time the location
the format-list code is

The format director causes the conver­
sion package to convert the data
according to DED and FED information.,
storing the converted data in the
specified storage address, if input,
or placing it in a buffer, if output.

Return is then made to the data-list
code, by means of the data-list loca­
tion counter, LR.

The above steps, 2 through 7, are
repeated until the end of the data­
list code is reached.

within both primary and secondary code,
looping and invocation of function
procedures may occur. within secondary
code, the appearance of control format
items (PAGE~ SKIP, LINE, COLUMN. X) will
cause the location counter for primary
code, register LR, to be temporarily
altered, so that control is returned from
the library, not to the primary code, but
to the secondary code. This allows the
data-list item which activated the control
format item to be matched with a data
format item.

OPTIONS

COPY: This option causes each data field
accessed during a GET operation to be
listed on the standard output file.,
SYSPRINT. This is performed by calling
the module IHEPRT. Each data field
occupies the initial portion of a line.

If there is noDD card for SYSPRINT"
the COpy is ignored by IHEPRT.

STRI~G: This option causes a character
string to be used instead of a record
from a file. This si tuat.ion is made
transparent to the normal operation of
the I/O modules since the initializa­
tion module for GET/PUT STRING (IHEIOC)
constructs a temporary FCB for the
string. Information regarding the
address and length of the string is set
in the FCB fields TCBA, TREM and TMAX.
A temporary file register is created in
the second word of the pseudo-register
IHEQCFL. (A dummy DCLCB is placed in
front of the generated FCB and consists
of two bytes which indicate the offset
of the dummy file register.)

PAGEl SKIP, LINE (print files): These
options cause the current record (which
is equivalent to a 'line') to be put
out, -. and a new record area to be
obtained. SKIP can also be used with
input to cause the rest of a record in
the input stream to be ignoredQ Record
handling for these functions is per­
formed by the module IHEIOP. All
printing options (and format items) are
supported by use of the ASA control
characters:

1 Page eject
+ Suppress space before printing
b Single space before printing
o Double space before printing

Triple space before printing

Should spacing greater than triple be
required for a LINE Or SKIP request, a
series of blank triple space records is
generated, followed by a single or
double space record, if necessary.

SKIP (non-print files) :

1. Input files: The
causes the rest
line (record) to
input stream,
(n -1) lines to

SKIP(n) option
of the current

be ignored in the
and a further
be ignored.

2. Output files: The SKIP{n) option
causes the remainder of the cur­
rent line (record) to be ignored
and (n - 1) blank lines to be
inserted into the output stream.
Note that, for format F records,
each line is padded with blanks;
for format V and U records, only
the necessary control bytes and
record lengths are supplied.

Chapter 3: Input/Output 29

r-------------T------------T------,----------T--------------T------T--------------------,
\ , \ \ ,Record \ Access \ Notes on Use of \
\Organization 1 Access \ Mode \Buffering IFormat I Method \ Access Method \
~-------------+------------+------+----------+--------------+------+--------------------~
\ \ \ IBUFFERED IALL IQSAM I Locate-mode \
I 1 \INPUT I I I' (except paper tape),
I CONSECUTIVE \ SEQUENTIAL 10UTPUT~----------+--------------+------+--------------------~
I 1 IUPDATEluNBUFFEREDIF, U, V \BSAM, \
.------------+------------+------+----------+--------------+------+-.-------------------~
I I IINPUT IBUFFERED I I ,Scan-mode: I
I I lUPDATE, or IF, FB1 I ,ESETL/SETL 1
, I SEQUENTIAL ~------~UNBUFFEREDI IQISAM ~--------------------~
I INDEXED) I OUTPUT I I I' Load-mode ,
I ~------------+------+----------+--------------+------+--------------------~
I I DIRECT 'INPUT I IF, FB \BISAM I ,
, I I UPDATE I , I' I
~-------------+------------+------+----------+--------------+------+--------------------~

1 I INPUT 'BUFFERED , F I QSAM/ , ,
I SEQUENTIAL I UPDATE I or 1 (REGIONAL(1),IBSAM3 I ,
I ~------~UNBUFFEREDI REGIONAL(2»~------+--------------------~
I I OUTPUT I I 'BSAM ,BSAM Load-mode ,
~------------+------+----------~ ~------+--------------------~
I I I IF, U.. V , , REGIONAL (1) 2 I
I I I I I \Relative record I

REGIONAL (1) , ,\ \ \BDAM Iwithout keys I
REGIONAL (2) I \ INPUT , I (REGIONAL (3» , I REGIONAL (2) 2 ,

REGIONAL (3) I DIRECT 'OUTPUTI I I IRelative record I
I I UPDATE I I I' with keys ,
I I I , I I REGIONAL (3) 2 ,

) I' I \ ,Relative track \
I \ I \ \ \with keys \

~-------------L------------~------J----------~---------_____ ~ ______ ~ ____________________ ~
INote 1: FB is not allowed for UNBUFFERED files ,
1~2: OUTPUT causes data set to be formatted using BSAM (BDAM load-mode> at open timet
INote 3: QSAM is used for REGIONAL(l) BUFFERED but not KEYED I L _______________________________ --__ J

• Figure 14. Data Management Access Methods for Record-Oriented I/O

FECORD-ORIENTED I/O

OBJECT PROGRAM STRUCTURE

In record-oriented I/O, the data enti­
ties accessible to the source program are
data management logical records (unlike
stream-oriented I/O, where the data enti­
ties are data fields).

A wider range of record access is there­
fore available with record-oriented I/O:
records may be keyed or not, may be direct­
ly or sequentially accessed, and may be
manipulated within the data set by inser­
tion, replacement, or deletion. The speci­
fic facilities available vary according to
the data management access method employed
to support a given data set.

The data management facilities employed
are indicated in Figure 14, according to
the organization of the data set. Note
that not only the declared organization but
also the mode of access and the format of
records determine the chosen access method.
Details of the manner in which the access

30

methods are employed are provided in
'Access Method Interfaces'.

General Logic and Flow

The overall flow of record-oriented I/O
modules is illustrated in Figure 15.
Modules IHEION(IHEIOG) (non-multitasking)
or IHEINT(IHEIGT) (multitasking) are gener­
al interface modules, one of which is
invoked by a compiled call for any record­
oriented I/O statement, in either a non­
multitasking or multitasking environment.
This module interprets the requested I/O
operation, verifies its applicability to
the specified file (and, possibly,
implicitly opens it), and then invokes ~n
access method interface module
(characterized by the module names IHEIT*)
to have the operation performed.

Modules IHEION and lHEINT supersede
modules IHEIOG and IHEIGT at Release 17.
The latter are retained in case a previous­
ly compiled load module is link-edited with
the new library. The new modules perform

Note: An asterisk indicates that
the module can be entered
directly from compiled code

r-------------,
I Compiled ~-------------I
I Code I I
L------T------J V

I r----------,
V I OSW/TSW .1

r-------------------, ~----------~
I ION(IOG)/INTCIGT) *' I WAIT I
~-------------------~ I I
, Compiler I L-----T----J
I interface, ,
L---------T---------J ,

I I I < ____________________ J

,
I

r-~--~ , ,
V ,

r---------, r--------,---------T-----------'~----T-----T-----------,
'OCL/OCT *' r-------------t-----l , , , , ,
~---------~ I V V V V V V V

~_J r------, r------, r---------, r---------, r---------, r---------,
CLOSE/ ~----------" ITB I f ITC " ITE 'I ITH 'I ITF 'I ITJ I
OPEN ~---------, I ~-----~ ~------~ ~---------~ ~---------~ ~---------i ~---------~

I <-------, II I BSAM I I BSAM I I BISAM I I BISAM I I BDAM I I BDAM I
I , 1"1 , '(LOAD)' INo Multi-, 'Multi- I INo Multi-, I Multi- I
L----T----J I I I L ______ J l ______ J I tasking , f tasking , Itasking I J tasking , I I I L __________ , L _________ J L _________ J L _________ J L _________ J

L ____________ ,I l ___________ + __________ ,
IL------------+-------, ,
V , ,

r----------, r---------, , I r-----------T-----~-----T-----------,
, OPZ , , OPN I I V V V V V
~-.---------~ ~---------~ V r-------, r-------, r-------, r-------,
'REGIONAL '<--i OPEN I r--------, , ITL I I lTD , , ITG I I ITK I
,formatting, ,Phase I' I CLT/CTT I ~-------~ ~-------~ ~-------~ ~-------~
L __________ J L----T----J ~---------~ 'QSAM I ,QISAM I I QSAM, 'QSAM I

, I CLOSE ~->, SPANNED" I' NON-, 'SPANNED I
I , I I OUTPUT I I I I SPANNED' ,INPUT, r--------------J L _________ J L _______ J L _______ J L _______ J L _______ J ,

I
V

r----------, r---------, r---------,
I OPO , , OPP , , OPQ I
~---------~ ~---------~ ~---------~
'OPEN ~--> I OPEN ~--> I OPEN ~ __ J

I Phase II, ,Phase 1111 I Phase IVI l _________ .. J L _________ J L _________ J

eFigure 15. Linkage of Access Modules in Record-Oriented I/O

the same function as the old except that
they transfer control to the transmitters
rather than link to them. The transmitters
return direct to compiled code. This
avoids saving and restoring registers
between the interface module and the
transmitter.

The verification of a statement is per­
formed by IHEION (IHEINT in multitasking)
by ANDing together a mask at offset -8 from
thE~ FCB and the second word of the Request
Control Block. If the result is zero then

the statement is invalid. The mask in the
FCB is set up by IHEOPQ to indicate which
statements are valid, and the RCB contains
the statement type as a single bit in its
second word.

On receiving control, the interface
module first performs any necessary key
analysis and record-variable length check­
ing, and establishes any control blocks
required. It then invokes data management
for the transmission of a record. After
transmission, or (if the EVENT option is

Chapter 3: Input/Output 31

employed) after initiation of transmission"
control returns to the general interface
roodule IHEION (or IHEINT), and thence to
the compiled program. Errors may be
detect:ed within IHEION (or IHEINT) before
an interface module is invoked, or within
an interface module either before or after
data management has been invoked. The
relevant ON condition is raised when
detected.

As indicated by the overall flow
diagram, record-oriented I/O is implemented
in such a fashion that the addition of
further access method interface modules
requires minimal changes (if any) within
other parts of the implementation. The
general interface module IHEION or IHEINT
provides each access method interface
roodule with a standard parameter set:

RA: A(Compiled parameter list}

Parameter list:

A (DCLCB)

A(Record dope vector/IGNORE/SDV)

A(Event variable)/O/ACError return)

A(KEY\KEYFROM\KEYTO SDV)/O

A(Request control block)

The record dope vector and the request
control block are described below under
'Record-Oriented I/O Control Blocks'.

The interface modules are also invoked
to handle WAIT statements associated with
I/O events. The WAIT module, having deter­
rrined that an event variable (see Appendix
I) is associated with a record-oriented I/O
operation, invokes the relevant I/O
transmitter (IHEIT*), passing the following
parameters:

RA: A(Compiled parameter list)

Parameter list:

A(DCLCB)

A(IOCB being waited for)

A(Event variable)

(Reserved)

A(Request control block)

The transmitter then completes the pre­
viously initialized record transmission,
and performs any checking required before
returning control to the WAIT module. (See
also 'The WAIT Statement' in 'PL/I Object
Program Management in Multitasking'.)

32

From the arguments, the interface module
is able to determine fully the operation
requested of it. The location of the
required interface module is available to

t IHEION from the FeB associated with the
file; the field TACM in the FCB is set
during the open process to point to the
appropriate dynamically loaded module.

Thus, when extra interface modules are
provided, the only change required in the
open modules is the provision of code to
set TACM and any other FCB fields relevant
to the new access method interface.

RECORD-ORIENTED I/O CONTROL BLOCKS

Record Dope ve~tor (RDV)

The record dope vector is an eight-byte
block that describes the record variable.
Its format depends on the type of statement
and the associated options:

Bytes 0-3: A(INTO/FROM area), or
A(POINTER variable) for SET

option in READ statement,
or

A(buffer) for LOCATE
statement

Byte 4: Reserved

Bytes S-7: Length of variable

String Dope Vector (SDV)

The address of the string dope vector is
passed instead of that of the record dope
vector to record 1/0 interface modules when
the input or output of varying strings is
requested. The string dope vector is an
eight-byte block:

Bytes 0-3: A(INTO/FROM string)

Bytes 4-5: Maximum length of string

Bytes 6-7: Current length of string
(output), undefined
(input)

Request Control Block

This eight-byte block contains the
request codes, in the first four bytes, for
var10US RECORD 1/0 operations and options.
The format is defined in the BREQ field of

the I/O control block (IOCB).
dix I.)

(See Appen-

The additional four bytes which are
contained in the compiler argument list are
not : copied into the IOCB. Each type of
Record-oriented I/O statement is represent­
ed by one bit as follows:

Bit number

o
1
2
3
4
5
6
7
8
9

statement + options

READ SET
READ SET KEYTO
READ SET KEY
READ INTO
READ INTO KEYTO
READ INTO KEY
READ INTO KEY NOLOCK
READ IGNORE
READ INTO EVENT
READ INTO KEYTO EVENT
READ INTO KEY EVENT 10

11
12
13
14
15
16
17'
18
19
20
21
22
23
24
25
26
27
28

READ INTO KEY NOLOcK EVENT
READ IGNORE EVENT

29-31

WRITE FROM
WRITE FROM KEYFROM
WRITE FROM EVENT
WRITE FROM KEYFROM EVENT
REWRITE
REWRITE FROM
REWRITE FROM KEY
REWRITE FROM EVENT
REWRITE FROM KEY EVENT
LOCATE SET
LOCATE SET KEYFROM
DELETE
DELETE KEY
DELETE EVENT
DELETE KEY EVENT
UNLOCK KEY
Reserved

I/O Control Block (IOCB)

Record-oriented I/O employs several data
manag;ement access methods that require that
operation requests be provided with a spe­
cial form of parameter list. This paramet­
er list is termed the data event control
block (DECB). A DECB must be provided for
each ,operation, but may be reused when the
operation is completed. If several opera­
tions are outstanding (owing to the use of
the EVENT option in I/O statements, or
mult i tasking) , then one DECB is required
for each operation.

In order to meet these requirements, the
PL/I open process allocates one or more I/O
control blocks (IOCB), which are subse­
quently manipulated or increased in number
as follows:

DIRECT access (BISAM and BDAM) :
The IOCBs are created by

IHElTE(BISAM) or lHEITF(BDAM); for
multitasking" they are created by
IHEITH(BISAM) or IHEITJ(BDAM).
Only one IOCB is created at open
time; any others required are
created when needed.

SEQUENTIAL access (BSAM only):
All the required IOCBs are obtained
at open time; an attempt to use
more than those already in exis­
tence raises the ERROR condition.

The IOCB format for both these usages is
described in Appendix I.

A number of IOCB fields exist in order
to support the EVENT option. Since the
operation is split into two parts ini­
tiation through the READ, WRITE., etc.,
statements., and completion by the WAIT
statement -- information regarding a parti­
cular operation must be retained for use at
the time of completion. For example, if a
hidden buffer is employed for a READ, the
address of the user's record variable must
be retained for subsequent movement from
the buffer to the specified area.

IOCB -- SEQUENTIAL Usage: Manipulation of
IOCBs for SEQUENTIAL usage is required only
for BSAM" which is employed for:

1. CONSECUTIVE UNBUFFERED files.

2. SEQUENTIAL creation or access of REG­
IONAL files which have the KEYED
attribute or are unbuffered.

A number of IOCBs is allocated during the
open process by means of the GETPOOL macro;
subsequent selection of a particular IOCB
is made by a routine similar to that
provided by the GETBUF macro. Whenever an
IOCB is selected" it is entered into the
chain of IOCBs currently in use; the TLAB
field in the FCB points to the last IOCB to
pe used.

The chain of IOCBs is required for two
reasons:

1. All I/O operations must be checked in
the order in which they were issued.

2,. Detection of dummy records for a REG­
IONAL (2) or (3) data set requires
reordering of outstanding requests
(due to the use of the EVENT option).

This chain, however, is principally
required for the EVENT option, which can
cause more than one I/O operation to be
outstanding at a given time.

The number of IOCBs (buffers) allocated
is determined by the DD statement subparam­
eter NCP,. The value of this subparameter

Chapter 3: Input/Output 33

should not be greater
EVENT option is employed;
is then one IOCB and one
If NCP is unspecified
used.

than 1 unless the
if NCP = 1, there
channel p.rogram.
a default of 1 is

The size of each IOCB varies, depending
upon the organization, the record format of
the data set, and whether or not the file
(if REGIONAL) has the KEYED attribute.
Figure 66 in Ap~endix I specifies the size
requirements.

IOCB DIRECT Usage: Manipulation of
IOCBs for DIRECT usage is required for both
EDAM and BISAM. One IOCB is allocated to a
DIRECT file when it is opened; subsequent
selection of an IOCB is performed by the
modules IHEITE, IHEITF, IHEITH, and IHEITJ.
Unlike SEQUENTIAL access, the order of IIO
operation is not normally considered.
(However, see the BISAM interface modules
IHEITE and IHEITH.)

The chain of IOCBs for a given file is
anchored in the TLAB field in the FCB; the
chain may be extended beyond the original
single IOCB if the EVENT option or multi­
tasking is used. An extension occurs if,
while there exists an I/O operation that
tas not been completed, another IIO opera­
tion is initiated.

IOCBs for DIRECT access are obtained in
subpool zero, in order to cope with multi­
task manipulation of the chain. The chain
of one or more IOCBs is released when the
file is closed.

Exclusive Block

When a DIRECT UPDATE file is opened in a
multitasking environment, the interface
module IHEITH (BISAM) or lHEITJ (BDAM) is
loaded .instead of IHEITE or IHEITF. IHEITH
and IHEITJ contain code to implement the
EXCLUSIVE attribute. When a record is
locked, an exclusive block is created in
subpool 1 of the current task; the block is
freed when the record is unlocked. The
exclusive block contains the qname <address
cf the FCB for the file) and rname <region
number for REGIONAL(l), region number and
key for REGIONAL (2) and (3), and key for
INDEXED} required by the ENQ and DEQ macro
instructions that are issued to lock and
unlock the record. The format of the
exclusive block is given in Appendix I.

34

ACCESS METHOD INTERFACES

This section describes how the PL/I
Library relates to the various data manage­
ment access methods for record-oriented
IIO, and gives details of the support
required from the library for various PL/I
features. This information supplements,
but does not replace, that provided in the
module summaries and in the module listing
prefaces.

CONSECUTIVE Data Sets

The access methods employed for this
organization are QSAM and BSAM" The choice
between them is governed by the file attri­
butes BUFFERED and UNBUFFERED:

BUFFERED: QSAM (All record formats)
UNBUFFERED: BSAM (F.,V,U) '(Blocked

records are illegal)

2§AM (IHEITG): A BUFFERED file is speci­
fied in order to take advantage of automat­
ic transmission, process-time overlap, and
blocking or deblocking of records. All
record formats may be handled.

The locate mode of the GET and PUT
macros is employed with this access method
(except for paper tape devices) for the
following purposes:

1. To support the SET option in READ and
LOCATE statements, and to support the
REWRITE statement without the FROM
option. Module IHEITG allocates the
data management buffers for the
records, and sets the pointer
appropriately. The first byte of a
buffer is always on a doubleword
boundary; for blocked records, the
user must ensure that his alignment
requirements are met by adjusting the
lengths of the variables being trans­
mitted.

2. To remove or add
bytes if the INTO or
employed.

V-format control
FROM option is

Paper tape input requires the use of the
move mode to effect translation of the
characters transmitted. The open process
establishes a work area, placing its
address in TREC; the GET macro instruction
specifies this area as the receiving area.
If an illegal character is read from the
paper tape, the access method (QSAM) passes
control to the SYNAD routine in IHEITG;
control returns from the SYNAn routine to
QSAM. When the GET macro instruction has
been satisfied, the data is moved into the

record variable or a pointer is set, and
the TRANSMIT condition is raised.

Closing a data set being created by QSAM
may cause output records to be written by
the close executor. If an error occurs
during the closing process, the operating
system uses the ABEND macro to end the
task.

.Q§.AM Spanned Records (IHEITK., lHEITL) : Buf­
fered VS- or VBS-format records are proc­
essed using QSAM Locate Mode for input
(module lHEITK) and QSAM Data Mode for
output (module IHEITL).

The methods employed are similar to
those described above for module IHEITG
al·though the following should be noted:

1. Update Mode (REWRITE) is not supported
by the library, since it is not possi­
ble to update complete records (O/S
restriction).

20 The use of LOCATE or READ SET state­
ments will cause a work area to be
established equal to the maximum
record size. This area is only
released if there is a subsequent READ
(without SET) or WRITE statement.

BSAM(IHEITB): An UNBUFFERED file is spec­
ifleq in order to avoid the space and time
overheads of intermediate buffers when
transmitting records. Overlap of transmis­
sion and processing time is only available
if t~e EVENT option is employed.

BSAM requires the use of DECBs to com­
municate information regarding each I/O
operation requested of it; see 'I/O Control
Block (IOCB), and Appendix I (IOCB) for
details of the DECB. IHEITB selects an
IOCB (which contains a DECB area) from the
IOCB (buffer) pool for each input/output
opE~ra.tion. The IOCBs used for CONSECUTIVE
organization do not contain hidden buffers"
except when V-format records are employed.
HiClde:n buffers are used in this: case so
that the V-format control bytes can be
elimi:nated from the record before the data
is moved into the record variable. If.,
ho~~ver, the data set consists of F-format
unblocked records, and the size of a record
variable is less than the fixed size of
data set records, a temporary buffer area
is dy'narnically obtained. The use of a
tempO.rary buffer area for input prevents
thE! destruction of data following the INTO
area; for output, it prevents triggering of
thE! fetch-protect interrupt.

INDEXED Data Sets

The access methods employed for this
organization are QISAM and BISAM; they are
used thus:

QISAM: SEQUENTIAL creation and access
BISAM: DIRECT access

All usage of INDEXED data sets requires the
presence of buffers, even though the file
is UNBUFFERED or DIRECT. The buffer is
required in order to deal with a lO-byte
overflow record link-field. Only F-format
records, blocked or unblocked, are permit­
ted.

QISAM_!IHEITD): SEQUENTIAL creation and
access of INDEXED data sets is performed
using this access method. Creation
requires that keys be presented in ascend­
ing collating sequence. The sequence is
checked by the library before the PUT macro
is executed, in order to synchronize a
given WRITE statement with the raising of
the duplicate KEY condition. This arrange­
ment is necessary because, since PUT LOCATE
is employed, QISAM would normally raise the
condition only on the subsequent PUT opera­
tion.

For records with embedded keys, when a
WRITE statement with a KEY FROM string
shorter than the key length, or a LOCATE
statement, is executed, the KEYFROM string
is placed in an area addressed by TPKA in
the FCB. In the next operation on the file
after a LOCATE statement (including a CLOSE
statement), the KEYFROM string is compared
with the key embedded in the data in the
buffer. If they are unequal, the KEY
condition is raised. On normal return from
the on-unit, control passes to the next
statement in the program (i.e., the one
following that which caused the KEY condi­
tion to be raised). The process of compar­
ing keys and raising the KEY condition is
repeated in successive statements that
refer to the file until the embedded key
has been changed. (After a LOCATE state­
ment has been executed, no further opera­
tions are possible on the file until the
record has been transmitted; for records
with embedded keys, this cannot occur until
the KEY FROM string matches the embedded
key.)

When a file is closed implicitly (i.e.,
on termination of a task), the KEYFROM
string overwrites the key part of the
record in the buffer, and the record is
written onto the data set. If the KEYFROM
string is not identical with the embedded
key, a message is printed out at the
console.

Chapter 3: Input/Output 35

To support the REWRITE statement without
the FROM option. the key is saved on
execution of a READ statement with the SET
option. When the REWRITE statement is
executed, if the embedded key is the same
as the saved key, a PUTX macro instruction
is issued. If the key has changed" the
PUTX macro is not issued and the KEY
(specification) condition is raised.

To support the DELETE statement without
the KE:Y option, the first byte of the
logical record is set to X'FF' and a PUTX
rracro instruction is issued to rewrite the
record.

If the file has the KEYED attribute, and
the mode is INPUT or UPDATE, the QISAM SETL
function is required in order to reposition
the indexes. The parameters for the SETL
macro are such that, for unblocked records"
the recorded key is transmitted as well as
the data record. For a READ statement, if
the KEY string is shorter than the key
length, the string is placed in an area
addressed by TPK~ in the FCB. If the file
is not KEYED (indicating that the KEY
option will not be employed). the QISAM
SETL routine is not loaded during the open
process.

Since buffers are employed, truncation
or padding of records is performed during
the move between the buffer and the record
variable. Padding bytes are undefined in
value.

Closing a data set being created or
updated by QISAM may cause output records
to be written. If an error occurs, output
entry to the SYNAD routine is prevented by
the close process having cleared the DCBSY­
NAD field before issuing the CLOSE macro.
The operating system uses the ABEND macro
to terminate the task.

BISAM in a Non-Multitasking Environment
(IHEITE) : When the TASK option is not
employed, direct access of INDEXED files,
both exclusive and non-exclusive, is per­
formed by module IHEITE. For an exclusive
file, IHEIOG treats the UNLOCK statement as
'no operation' (although it may implicitly
cause the file to be opened); the NOLOCK
option is ignored by IHEITE.

BISAM requires the use of DECBs to
communicate information regarding each 1/0
operation requested of it; see "1/0 Control
Block (IOCB)' for details of the DECB and
its use in BISAM.

Since the EVENT option may be employed"
and, moreover, the KEYFROM or KEY expres­
sion may yield a character-string value in
temporary storage. the key value is moved
into the buffer-before BISAM is invoked.
Truncation or padding of the character-

36

string key to conform to the KEYLEN
specification is performed during the move.
A further reason for the move is that BISAM
may destroy the contents of the key and
record fields when adding new records to a
data set.

If the data set consists of unblocked
records. a READ statement need not precede
a REWRITE statement. If blocked records
are used, the sequence must be READ, then
REWRITE" since the READ macro instruction
has the KU parameter" and BISAM requires
this type of READ to be rewritten. The
WRITE K macro instruction used to rewrite
the updated block must address the same
DECB(IOCB) as that used for the READ KU
macro instruction. This is achieved by not
freeing the IOCB used for the READ opera­
tion. On the next operation on the file~ a
check is made for such an IOCB: if one
exists" and the operation is not a REWRITE
specifying the same key, the ERROR condi­
tion is raised.

A DELETE statement is implemented by
first issuing a READ KU macro instruction,
then setting the first data byte to X'FF',
and finally rewriting the record with a
WRITE K macro instruction.

BISAM in a Multitasking Environment
(IHEITH): To ensure that the initializa­
tion and chaining of event variables,
IOCBs, and exclusive blocks cannot be
interrupted. the interface module IHEIOG
raises the dispatching priority of· the
current task to its limit before calling
IHEITH. IHEITH restores the priority to
its original value before executing an 1/0
macro instruction. The formats of the
event variable and the exclusive block are
described in Appendix I, which also
includes an example of the chaining of
these blocks.

For non-exclusive files, module IHEITH
performs the same functions as IHEITE, and
in addition chains any event variables that
are made active. Each event variable is
placed in a chain anchored in the pseudo­
register IHEQEVT in the PRV for the current
task. This chain enables 1/0 event
variables for which a WAIT statement has
not been executed to be set complete"
inactive,. and abnormal when the task is
terminated.

The implementation for exclusive files
includes the following additional features:

1. Files with unblocked records: When any
operation referring to a record
(except WRITE and UNLOCK) is initiat­
ed, the chain of exclusive blocks
anchored in the TXLV field of the FCB
is searched for an existing exclusive
block established in the current task

for the record. If one exists., the
lock statement count (XSTC) in the
~xclusive block is incremented by one.
If there is no exclusive block,,, one is
created in subpool 1 and inserted in
the task chain (anchored in pseudo­
register IHEQXLV in the curren·t task)
and the file chain (anchored in the
TXLV field of the FCB of the current
file). The lock statement count is
set to one, and the lock bit (XLOK) to
one (unless the operation is READ with
NOLOCK), and the resource is enqueued
(i.e. the record is locked). After
control of the resource has been
obtained, it is dequeued if XLOK o.
The qname and rname given in the ENQ
and DEQ macro instructions are:

qname (two words):.
Byte 0: Zero
Bytes 1-3: A(FCB)
Bytes 4-7: Zero

rname (one word):
Byte 0: X'O)
Bytes 1-3: A(FCB)

After the CHECK macro instruction for
the IIO operation has been executed
(i.e., on execution of the WAIT state­
ment if the EVENT option is used),
IHEITH raises the priority of the
current task to its limit, decreases
the lock statement count by one, and
then:

1.

2.

If the record is no longer locked
(XLOK=O) and the lock statement
count is zero, dechains and frees
the exclusive block.

If the record is still locked
(XLOK=l), unlocks it (unless the
statement is READ without the
NOLOCK option), and sets XLOK to
zero. If the lock s·tatement
count is zero, it then dechains
and frees the exclusive block.

IHEITH then restores the dispatching
priority to its original value.

2. Files with blocked records: To prevent
other tasks interfering with the READ,
REWRITE sequence, each READ, WRITE,
REWRITE, and DELETE statement is
enqueued on the same resource (i.e.,
there is only one exclusive block for
each file in each task, and it is not
freed until the file is closed). Con­
trol of the resource is retained by a
given task until the WRITE, REWRITE,
or DELETE operation is completed; or,
if the resource was enqueued by a READ
operation, until a REWRITE or UNLOCK
statement is executed. When a READ
statement with the NOLOCK option is

executed, the resource is dequeued
immediately after the task gains con­
trol of it.

Apart from these
implementation is as
unblocked records.

REGIONAL Data Sets

differences,
for files

the
with

The access methods employed for these
organizations are BSAM and BDAM, as fol­
lows:

BSAM: Creation and SEQUENTIAL access
BDAM: DIRECT access

Keys supplied by the source code are
termed 'source keys'. These have two for­
mats, one of which is interpreted in two
ways:

Source key
Qrgqnization format

REGIONAL (1):
Relative record addressing,
without recorded keys A

REGIONAL (2):
Relative record addressing,
with recorded keys B

REGIONAL (3):
Relative track addressing,
with recorded keys

Key Format A:

r-------------------------------,
I M I l _______________________________ J

<---------------L--------------->
L Length of key (1 through

bytes)
M Key value

B

255

Only the characters blank and 0 to 9 may
be used in M, which, when converted to
binary, is the relative record position, as
required for the BDAM BLKREF parameter.
The last eight characters are scanned for
an unsigned decimal integer representation;
if less than eight characters exist, only
the available characters are scanned, from
left to right.

When a format-A source key is required
for the KEYTO option. the relative record
position of the current record is converted
from a binary count field into character
representation and is assigned to the last
eight characters of the KEYTO character
string variable. If the variable has fewer

Chapter 3: Input/Output 37

than eight characters,. the converted value
is assigned, right to left,. to the KEYTO
variable. Format A keys are not appended
to data set records as recorded keys.

~Format B:

r---------------T---------------,
I C I M I L _______________ ~ _______________ J

<---------------L--------------->
L Length of key (1 through 255

bytes)
M Last eight characters in the

source key
C The remaining characters in the

source key other than the M char-
acters

M consists of up to 8 characters" which
can be blanks or 0 to 9. When converted to
binary, it represents either the relative
record position (REGIONAL (2», or the
relative track position (REGIONAL (3».

If L ~ 8, C does not exist. The C
characters can be any of the 256 characters
available; they are not scanned.

The format-B source key is appended to
output records when they are added to the
data set; the number of characters in the
appended (recorded) key is determined by
the KEYLEN specified for the data set. If
KEYLEN is less than the length of the
source key, the latter is truncated when
appended to its record; if greater, the
source key is padded with blanks. Similar­
ly, when retrieving keyed records, the
source key is altered to conform to KEYLEN.
This permits 1 though L characters to be
used as the recorded key. The M characters
might thus be used only for computation of
the relative record or track position.

BSAM (IHEOPZ, IHEITC. IHEITB): creation
and sequential access of REGIONAL data sets
employs this access method~

SEQUENTIAL creation is performed by the
module IHEITC, which adds records to the
data set in physically sequential record
and track positions. This module also
inserts dununy records,; as required" by the
user incrementing the source key position
information by a value greater than one.

When a sequentially created REGIONAL
data set is closed~ the current space
allocation (which may be either the initial
cr a secondary allocation) is completed:

1. by writing dummy records (F-format
only) " or

2. by setting the capacity records of the

38

remaining tracks to indicate empty
tracks.

An FCB history flag (TMET) is turned on
when, after writing a record, this record
is seen to be the last one of an extent.
If this flag is off,. the close process will
continue the initialization until an end­
of-extent condition is met.

When LOCATE statements are used to
create a REGIONAL data set" an loeB is
selected from the pool in the normal man­
ner. The KEYFROM string is evaluated, and
all necessary formatting of the data set is
done" before the pointer is set and control
is returned to compiled code. To ensure
that the record is always aligned on a
doubleword boundary" the open process
rounds up the keylength to a doubleword and
allows space in the IOCB for the keylength
and the block size. Module IHEITC places
the key right-aligned in the key area, thus
ensuring that the key and data are in
contiguous areas, and that the data is
aligned on a doubleword boundary,.

The record is not actually transmitted
until the next statement on the file (e.g.,
CLOSE, WRITE, LOCATE) is executed. If it
is found on transmission that there is no
room for the record in the region
(REGIONAL (3) V and U format records only),
the capacity record is written and the KEY
sequence error condition is raised. On
normal return from the on-unit, control
passes to the next statement. If this
occurs when a file is closed implicitly (on
termination of a task) or expl ici tly" a
warning message is printed and the file is
closed (after the initialization of the
current extent has been completed). Note
that it is therefore possible that the
original record associated with the LOCATE
statement may not have been written.

DIRECT creation requires the initializa­
tion of the data set during the open
process; this is performed by the module
IHEOPZ. Subsequently, records may be added
to the data set in a DIRECT fashion using
module IHEITF or IHEITJ. Initialization of
a data set for DIRECT creation causes:

1~ the initial space allocation
(secondary allocation is ignored) to
be written with dummy records
(F-format records, for all REGIONAL
types)" or

2. the capacity record of each track of
the initial space allocation to be set
to indicate empty tracks (U-format or
V-format records, REGIONAL (3)" only).

If recorded keys are required, dummy keys
(initial byte X'FF', remaining bytes
undefined) are also written for F-format

records only. If during the initia1ization
for DIRECT creation an error arises" the
UNDEFINEDFILE condition is raised, ·the type
cf error being indicated by the ONCODE
value.

As SEQUENTIAL access of a REGIONAL data
set (module IHEITB) is performed with BSAM"
it is not poss ible to support ·the KEY
option on the READ statement. The KEYTO
option is supported as follows:

REGIONAL (1):
A counter (the TREL field in the FCB)
beginning at zero, is incremented as
each record, including dummy or deleted
records, is read; this is converted to
character string representation and
assigned to the KEYTO variable.

REGIONAL (2) and (3):
The recorded key is read in with the
record" and assigned, without conver­
sion., to the KEYTO variable. Transmis­
sion of the recorded key only occurs if
the file has the KEYED attribute; oth­
erwise the KEYLEN DCB field is forced
to zero to prevent input of keys
(since, for F or U records, there are
no hidden buffers).

For both SEQUENTIAL creation and access,
BSAM requires the use of DECBs to communi­
cate information regarding each I/O opera­
tion requested of it; see 'The I/O Control
Block (IOCB), for details of the DECB and
its use for BSAM. When REGIONAL data sets
with the UNBUFFERED attribute are accessed
(IBEITB) or created (IHEITC), hidden buf­
fers are present in all cases except for
FEGIONAL (1) " since the key and data must be
within a contiguous area in a buffer.

When reading REGIONAL data sets sequen­
tially, BSAM retrieves all records within
the data set, whether dummy (deleted) or
actual records.. For REGIONAL (2) and (3)
data sets, the library prevents dummy
(deleted) records being passed to t:he PL/I

program. This is achieved by inspecting
the initial byte of the recorded key as
transmitted to the hidden buffer.. (Hidden
buffers are always required for KEYED
SEQUENTIAL access of REGIONAL (2) and (3)
data sets, because BSAM requires that the
recorded key and the record be transmitted
into contiguous storage areas.)

If the initial byte is the dummy" or
deleted, code (X·FF'), the IOCB chain is
reorganized to move each input request down
one entry in the chain; this resynchronizes
the READ statements with the actual
records. The reorganization occurs each
time such a flagged key is detected. This

technique is not available for REGIONAL
(1), since for this type of organization:

1. there is no way of knowing whether the
records ::ire actual or dummy" since
there are no restrictions regarding
the initial byte of the data record,
and

2. there are no recorded keys.

When a READ statement with the SET
option is executed for REGIONAL files, the
data is always aligned on a doubleword
boundary in the IOCB buffer.

BDAM(IHEITF and IHEITJ): DIRECT access to
a REGIONAL data set employs this access
method" the usage depending upon the REG­
IONAL type:

REGIONAL (1):
Relative record (block) addressing,
no key argument

REGIONAL (2):
Re~ative record (block) addressing~
with key search argument

REGIONAL (3):
Relative track addressing,
with key search argument

In the instance of REGIONAL (2) and (3),
the "extended search" feature is always
employed. A user may control the effects
of extended search by using the DCB subpar­
ameter LIMCT; a value may be specified to
limit the number of records or tracks which
are searched for a given keyed record, or
for space to add one. Unless so limited"
searching for records extends throughout
the complete data set.

The BDAM access method requires the us~
of DECBs to communicate information regard­
ing each I/O operation requested of it; see
~I/O Control Block (IOCB), for details of
the DECB and its usage for BDAM. If V
format records are used, any IOCB created
will contain a hidden buffer.

The BDAM CHECK macro is issued to check
that the operation is complete. If an
error is found, the BDAM modules enter the
lHEITF SYNAD routine, where the error is
interrogated.

If the TASK option is not used, direct
access of REGIONAL files, both exclusive
and non-exclusive, is performed by module

IIHEITF. For an exclusive file, IHEION
treats the UNLOCK statement as 'no
operation' (although it may implicitly
cause the file to be opened); the NOLOCK
option is ignored by IHEITF.

Chapter 3: Input/Output 39

If the TASK option is employed" module
IHEITJ is loaded instead of IHEITF. The
difference between these modules is the
same as that between IHEITE and IHEITH for
unblocked records. (See 'BISAM in a Multi­
tasking Environment'.)

40

INTRODUCTION

The PL/I Library provides facilities for
the dynamic management of PL/I programs.
This involves:

1. ~rogram management: Housekeeping at
the beginning and end of a program or
at entry to and exit from a block.

2. S:torage managemen!:,: Allocation and
freeing of storage for automa.tic and
controlled variables, and for list
processing.

This section ~escribes the requirements
for these facilities and their implementa­
tion by the library. with the exceptions
of the compiler optimization routine and
storage management for list processing" all
the functions described are performed by
module IHESA, whose entry points are: listed
in Figure 16: full details are given in
Chapter 9. Object program management in a
multitasking environment is discussed in
Chapter 5.

Entry point

IHESADA
IHESADB
IHESADD
IHESADE
IHESADF
IHESAFA
IHESAFB
IHESAFC
IHESAFD
IHESAFF
IHESAFQ
IHESAPA
IHESAPB
IHESAPC
IHESAPD
IHESARA
IHESARC

Get DSA
Get VDA

Function

Get controlled variable
Get LWS
Get library VDA
END
RETURN
GO TO
Free VDA/Free LWS
Free controlled variable
Abnormal program termination

Program initialization

Environment modification
setting of return code

Figure 16. IHESA Entry Points

Program Initialization

certain functions must be carried out on
entry ,to a PL/I program before the PL/I
main procedure is given control. One of
the library program-initialization subrout­
ines is always given control by the super­
visor on entry to the program. Its func­
tions are:

CHAPTER 4: PL/I OBJECT PROGRAM MANAGEMENT

1. Allocation of storage for the PRV.
(See 'Communications Conventions' in
Chapter 2.)

2. Initial allocation of LWS.

3. Passing of the address of the library
error-handling subroutine (IHEERR),
which assumes control when an inter­
rupt occurs~ to the supervisor.

Block Housekeeping: Prologues and Epilogues

Prologues and epilogues are the routines
executed on entry to and exit from a PL/I
procedure or begin block. The library
subroutines contain those sections that are
common to all prologues and epilogues. The
functions of the library prologue subrout­
ine are:

1. To preserve the environment of the
invoking block ..

2. To obtain and initialize automatic
storage for the block.

3. To provide chaining mechanisms to ena­
ble the progress of the program to be
traced. A detailed description of the
chaining mechanisms employed is pro­
vided below.

The main functions of the epilogue
subroutine are:

1. To release storage for the block.

2. To recover the
invoking block
trol to it.

environment of the
before returning con-

Storage Management

In
storage
GET MAIN
assumes
freeing

IBM System/360 Operating system,
is obtained or freed by using the
and FREEMAIN macros. The library

responsibility for obtaining and
storage in this way in order to:

1. Provide an interface between compiled
code and the control program.

2. Reduce the overhead involved in making
a supervisor call every time storage
is obtained and freed.

Chapter 4: PL/I Object Program Management 41

3. Set up chaining mechanisms for dynamic
storage.

There are three types of dynamic storage
in PL/I, controlled, automatic, and based.
Based storage is discussed in 'List Proc­
essing: storage Management'.

Operating-System Facilities

~rhe following facilities appropriate to
this chapter are provided by IBM System/360
operating System. (See IBM System/360
operating System: Supervisor and Data Man­
agement Macro Instructions.)

SPIE macro instruction: Specifies the
address of a routine to be entered when
specified r;rogram interrupts occur.

ABEND macro instruction: Causes a job step
rr task to be terminated abnormally.

write To Operator (WTO) macro ins"truction:
Can be used to write a message on the
operator's console.

R-type GETMAIN: Requests that the supervi­
sor allocate a contiguous block of main
storage to the caller. A subpool number
should be specified. (See below.)

R~type FREEMAIN: Releases a main storage
area. The length, subpool number, and
address of the beginning of the area must
be specified.

Subpools: Subpool numbers are of signifi­
cance only in an operating system with MVT.

Subpool zero
The storage in subpool zero is allocated
on a job-step basis, and is never auto­
matically released until the end of the
job step.

Subpool non-zero
The storage in a subpool with a non-zero
number is allocated on a task basis, and
is automatically released on the termina­
tion of the task that owned the subpool.

IBM System/360 Operating system: Supervi­
sor and Data Management Service~ contains
a full discussion of main-storage manage­
ment.

AUTOMATIC STORAGE: STORAGE MANAGEMENT

Two types of automatic storage area are
needed to implement the functions described
above. These are:

42

1. The storage area associated with the
execution of a PL/I block, known as a
dynamic storage area (DSA).

2. The storage area mainly used for auto­
matic variables whose extents are un­
known at compile time, known as a
variable data area (VDA).

Each type of storage area is identified by
flags set in the first byte. These flags
also indicate the existence of certain
optional entries in the storage area. The
flag patterns are shown in Appendix J.

Dynamic Storage Area (DSA)

This area, always associated with the
execution of a PLiI block, is used to
record the progress and environment of a
program. It also contains space for AUTO­
MATIC variables declared in the block and
for various optional entries. The minimum
size of a DSA is 100 bytes. The format is
described in Appendix J.

The address of the DSA associated with a
particular block is held in a pseudo­
register. Hence there is a pseudo-register
for each block; the group of these pseudo­
registers is known as the display. The
address contained in a display pseudo­
register can be used to identify the DSA
associated with a non-recursive block when
a GO TO statement specifying a label in
that block is executed.

When a block is entered recursively, a
new DSA is created for the invoked block.
The address of the DSA associated with the
previous invocation of that block is stored
in the display field of the new DSA. This
address is already stored in the
appropriate pseudo-register, where it is
now replaced by the address of the new DSA.
When this latest invocation is finished,
the new DSA is freed and the address of the
previous DSA is restored to the appropriate
pseudo-register.

When there is a GO TO statement to a
label in a recursive block or to a label
variable, a unique means of identifying the
block containing the label is needed. This
is accomplished by means of an invocation
count, which is stored in the invocation­
count field in the DSA during the prologue.
The current invocation count is contained
in a pseudo-register and is increased by
one each time a DSA is obtained.

variable Data Area (VDA)

A variable data area is a special type
of automatic storage area used for
variables whose extents are not known at
compile time. This storage area is asso­
ciated with the storage obtained for a
par1:.iqular block. The only housekeeping
neces~ary is that which provides a means of
identification of the type of storage area
and a method of associating it with a
particular block for epilogue purposes.

VDAS are used for three other purposes:

1. Temporary storage for library modules.
These areas are only distinguishable
from an ordinary VDA by the flag byte.
~his is to allow them to be freed on a
GO TO, as described in the example in
'DSA Chain' under 'Block
Housekeeping' •

2. The PRV and primary LWS are contained
in a VDA known as the PRV VDA which is
chained back to the external save
area.

3. secondary LWS is contained in a spe­
cial library workspace VDA.

'I'he~ formats of the VDA, PRV VDA., and LWS
VDA are shown in Appendix J.

Library Workspace (LWS)

The: housekeeping associated with library
workspace can be divided into two parts:

1. The identification of the area needed
as library workspace, and chaining
this to a previous allocation of auto­
matic storage and to any previous
library workspace,.

2. The updating of the pseudo-registers
pointing at the various areas in
library workspace.

The. first allocation of LWS is contained
in the' PRV VDAi subsequent allocations are
contained in the LWS VDA. The pseudo­
register IHEQLSA always contains the
address of the current LWS. Save areas
~ithin,LWS are indicated thus:

1. The address of each save area is held
in a pseudo-register.

2. The beginning of each save area is
indicated by X'60' in the first byte.
(1\ DSA can often be readily distingu­
ished from a save area in LWS by the

presence of XiS· to X'F' in its first
half byte. Appendix J includes the
format of the first byte of the DSA.)

Allocation and Freeing of Automatic Storage

This section describes the methods of
controlling the allocation and freeing of
automatic storage for VDAs, DSAs and secon­
dary LWS.

To minimize the number of supervisor
calls necessary to obtain automatic stor­
age, a fairly large block of storage is
obtained every time a call is made. Areas
are allocated by the library from this
block as required until a request is made
that is too big to be satisfied from the
remaining storage in the block. Another
block is then obtained by a call to the
supervisor. So that a check can be made as
to whether the amount of storage remaining
in a block is sufficient to meet an alloca­
tion. a record of the amount is stored in
the block. when a storage area is freed,
its length is added to the available length
in the block. When the available length
equals the total length of the block, the
block is returned to the supervisor.

Since storage areas are released in the
reverse order to their allocation, a chain­
back mechanism, with a pointer to the last
member of the chain, is provided.

Initially., storage is allocated for the
PRV VDA from a 4k or a 6k block. When
further requests are made for storage, they
are satisfied by allocations from the
remaining storage of this block. When a
request cannot be satisfied, a 2k block (or
a block containing a multiple of 2k bytes)
is obtained by means of a GETMAIN macro.
This block is chained to the existing block
by the free-core chain. (See Figure 17.)

In any block that contains unallocated
storage (that is, contains free core), the
first four words of the unallocated storage
are used for control purposes:

1st word: Length (in bytes) of the unallo­
cated storage for that block
(excluding the four control
words)

2nd word: Block length

3rd word: A(Free core length in previous
block)

4th word: A(Free core length of following
block)

Chapter 4: PL/I Object Program Management 43

r---·-------------------, r----------------------, r----------------------, I PRV I I 2k block 1 I 2k block I
I I I I I \
I I I Used core I I Used core I
I I I I I I
~----------------------~<------I----------------------I---, I I
I I I I I I I
~----------------------~ I I I I I
I I I I I I I
~---------------------~ I I I I I
I I I I I I I
~----------------------~ I I I I I
I IHEQSFC ~---, I I I I I
~----------------------~ L-->~----------------------~<--f---f----------------------f--,

I L(Free core) I I I I
~----------------------~ I I I
I Block length I I I I
~----------------------~ I I I
I Chain-back pointer ~---J I I
~------ ---------------~ I I
I Chain-forward pointer~---l I I
~-_--_-----------------~ L-->~----_-----------------~

I I L (Free core) I
I ~----------------------~

Free core I I Block length I
I ~----------------------~
I I Chain-back pointer ~--

I ~----------------------~
I I Zero I
I ~----------------------~
I I I
I I Free core I
I I I
I I I
I I I l _______________________ _ ______________________ J L ______________________ J

Figure 17. structure of the Free-Core Chain for Automatic Variables

The first and last blocks require a
slightly different usage:

First block: Uses the free-core pseudo­
register IHEQSFC in the
chaining forward and back:

1. IHEQSFC
A(Free-core
first block) .

contains
length of

2. 3rd word of block
contains
(A (IHEQSFC) - 12), which
is a dummy free-core
length in the PRV.

Last block: 4th word contains 0

~~hen a request for storage is received"
a search of the free-core lengths, starting
from the first, is made. If a free-core
lenqth equal to or greater than the length
requested is found, the request is satis­
fied from that block. The free-core length
and painters are adjusted, as are the
appropriate pointers in the blocks on eith­
er side.

44

When storage is freed, the pointers are
adjusted, and the free-core field in the
corresponding block is updated. If a 2k
block becomes available, it is freed by
issuing a FREEMAIN macro, and the free-core
chain pointers are adjusted accordingly.

CONTROLLED STORAGE: STORAGE MANAGEMENT

Controlled storage is used for con­
trolled variables only; it is requested by
the ALLOCATE statement and freed by the
FREE statement.

Allocation of a particular controlled
variable may occur' a number of times.
Since the latest allocation is always the
one to be used it is convenient to have a
pseudo-register pointing at it; this
pseudo-register is sometimes referred to as
an 'anchor word'. Each allocation is
chained back to the previous allocation so
that the pseudo-register can be updated
when the current allocation is freed
(Figure 18). The length of each allocation

ALLOCATION 2 ALLOCATION 1
r-------------------, r---------T----------, r---------T----------,
I PR ~-, I TIC I PR offset I I TIC I PR offset I
~---.----------------~ I ~---------..L..---------~ ~---------.l.----------~
I I I I Chain-back address ~-, I a I
lit ~--------------------~ I ~--------------------~
f I I I Length I I I Length I
l I L __ >~----_---------------~ L __ >~--------------------~
I I I I I I
l I I I I I
I I I I I I L ___________________ J L ____________________ J L ____________________ J

Figure 18. storage Allocation for a controlled variable

is recorded in the fullword field following
the chain-back address. The Task Invoca­
tion count is held in the TIC field.

When there is no allocation, the con­
tents of the pseudo-register are zero.
Each allocation points to the p~evious
allocation, the pointer being zero in the
first allocation, which is at the bottom of
the stack. Thus the various allocations of
a particular controlled variable become
part of a push-down (ALLOCATE) pop-up
(FREE) list,.

When a request is made to storage man­
agement for a new allocation, it is ser­
viced by issuing a GETMAIN macro. Twelve
bytes are added to the length requested.,
for control purposes, and this new length
is rounded up to a multiple of eight bytes.
The length field contains the actual length
requested. The pseudo-register is updated
and points to word four of the area~ When
a request is made to storage management to
free an allocation, it is serviced by
Lpdating the pseudo-register and issuing a
FREEMAIN macro,.

LIST PROCESSING: STORAGE MANAGEMENT

This section describes the functions of
module IHELSP, which controls the alloca­
tion and freeing of storage for the PL/I
list-processing facility. The functions
involved are:

1. Allocation and freeing of system stor­
age for based variables.

2. Allocation and freeing of storage for
based variables in programmer-defined
areas (area variables).

3. ASSignments between area variables.

System Storage for Based variables

storage for based variables is allocated
and freed in a similar manner to controlled
storage" but it is not stacked since each
generation is associated with a particular
pointer value: reference may be made to any
current generation of based storage by
associating the appropriate pointer value
with the name of the based variable. A
request for a new generation of based
storage is serviced by issuing a GETMAIN
macro, and storage is freed by the FREEMAIN
macro. Based storage is allocated only in
multiples of eight bytes: the sum of the
length of the variable and its offset from
a doubleword boundary is rounded up to a
multiple of eight bytes. All based storage
allocated in a task is freed at the end of
the task.

The AREA Attribute

The AREA attribute enables a programmer
to define a block of storage (an area
variable) in which he can collect and make
reference to based data. Space within the
area variable is requested and released by
ALLOCATE and FREE statements that include
an IN(area-variable) clause. Reference can
be made to a based variable contained by an
area variable just as if the based variable
were in system storage. The contents of
one area variable can be assigned to anoth­
er area variable, and an area variable can
be handled as a single data item in
input/output operations.

The ~ea Variable

The format of the area variable is shown
in Figure 19. The start of the area is
aligned on a doubleword boundary. The
first four fullwords are used for control
informa tion, the remainder of the area

Chapter 4: PL/I Object Program Management 45

0

,-------4

I
I
I
I
I
I
I
I
I

r-----8
I
I
I
I
1
I
f

r--­
I
I
I
I ,
I
I
I
I
I

12--

I r­
I I L_

1
__

.....
,-

I
I
I
I
I

....
--

L ______ _
~

Figure 19.

46

o 7 8

Flaqs I Lenqth of AREA variabl e

Offset of End of Extent

Offset of Largest Free Element

Zero if Free List

Allocated

Lenqth of Free Element

Offset of nex t smaller Free Element

Allocated

Lenqth of Free Element

Offset of next smaller Free Element

Allocated

Not Allocated

Format of Area Variable

31

-----,
Free

Element

~

-1
Free

Element

____ J

Extent

beinc:r the storage requested by the program­
mer in :declaring the area variable. The
portion of the area that has been allocated
to based variables is termed the ~tent.
When storage is allocated to an area varia­
ble, its length is set in the last three
bytes of the first word, and the second
word (offset of end of extent) is set to
zero ..

Area storage for Based variables

storage for based variables within an
area variable is allocated only in multi­
ples of eight bytes; each such allocation
is termed an element. The first request
for storage for a based variable is satis­
fied by the allocation of the apFropriate
number of bytes starting at the beginning
of the unused space; the offset of the end
of this allocation is set in the second
word of the area variable, which now points
to the first available doubleword of unused
storage. Providing no storage has been
freed, further requests are met by further
contiguous allocations from the unused
space, the offset of the end of the extent
being updated each time .•

If the last allocation of the ext:ent is
freed, the offset in the second word of the
AREA variable is reduced. However, if
allocations other than the last in the
extent are freed, the extent is not
reduced: spaces, termed free elements, are
left. The length of each free element is
set in its first fullword, and a pointer to
the next smaller free element (in the form
of an offset from the start of the area
variable) is set in the second word. If
there are no smaller free elements, the
second word of the free element points to
the fourth word of the area variable, which
is set to zero. The chain of free elements
is termed the free list, and is anchored in
the third word of the area variable., which
contains the offset of the larges·t free
element. When an area variable con·tains a
free list, the first bit of the flag byte
is set to 1.

Whenever storage in an area variable is
to be allocated to a based variable" the
free list is searched for the smallest
element that will contain the based varia­
ble. If no free element is large enough"
space is allocated from the unused part of
the area. If this., also, is too smalL, the
AREA condition is raised. When an element
is freed, it is placed in the free list
according to its size. If it is contiguous
with another free element, the two are
merged and included in the free list as a
single element. If the last element in the
extent is freed, the extent is reduced and
the element is not placed in the free list.

Assignment Between Area Variables

When the contents of area variable A are
assigned to area variable B" the current
extent and the control words (except the
length of A) are copied into B. If the
length of B is less than the extent of A,
the AREA condition is raised.

The AREA Condition

If an on-unit is entered when the AREA
condition is raised during the execution of
an ALLOCATE statement, the ALLOCATE state­
ment is executed again after the on-unit
has been terminated normally. The return
address passed by compiled c01e is stored
in the library communications area (WREA)
before the on-unit is entered. On normal
termination of the on-unit, IHEERR returns
control to the address in WREA.

If the AREA condition is raised during
the execution of an assignment statement"
the statement is not executed again .•

PROGRAM MANAGEMENT

Initialization of a PL/I Program

On entry to a PL/I program, one of the
library initialization subroutines
(IHESAPA, IHESAPB, IHESAPC, and IHESAPD) is
always given control by the supervisor; the
entry point that is used depends on the
level of compiler optimization required
(see below) and on whether the PL/I program
is called from an assembler-language rout­
ine. The initialization routine first
obtains storage for the PRV VDA. The
length required is the sum of:

L(PRV) (passed by the linkage editor>

L(LWS) <assembled by the initialization
subroutine)

8 control bytes

Since a pseudo-register is referenced by
the addition of a fixed displacement to the
base address in register PR., and the maxi­
mum displacement allowed by the assembler
is 4096 bytes, the length of the PRV is
limited to 4096 bytes. This puts the upper
limit on the combined number of blocks,
files and controlled variables at about
1000. If the initialization routine is
asked to get a PRV longer than 4096 bytes,
a message is printed out on the console and
the program is terminated.

Chapter 4: PL/I Object Program Management 47

The initialization routine zeros the
PRV, sets up the LWS pseudo-registers, and
issues a SPIE macro instruction naming
IHEERR. In addition, IHESAPA and IHESAPC
enable a PARM parameter on the EXEC card to
te passed to the PL/I program.. (See IBM
§y~tem/360 Operating System: Job Control
Language.) On exit from the initialization
subroutine, register RA points at a loca­
tion containing the address of the SDV of
the parameter.

Termination of a PL/I Program

N;ormal Termination: Normal termination of
a PL/I procedure is achieved by an END or
RETURN statement, either of which involves
releasing the automatic storage associated
with the procedure. If a request is made
to free a DSA which would entail freeing
the DSA for the main procedure, IHESAFA
(END) or IHESAFB (RETURN) raises the FINISH
condition and the program branches to the
error-handling subroutine (IHEERR). If and
when this subroutine returns control, IHE­
SAFA or IHESAFB causes all opened files to
be closed (by calling the library implicit­
close subroutine) • Subsequently all
automatic storage, including the PRV VDA,
is returned to the supervisor. IHESARC is
then called to set the return code and
return control to the supervisor.

Abnormal Termination: A PL/I program is
considered to terminate abnormally when the
FINISH condition is raised by any means
other than a RETURN, END, or SIGNAL FINISH
statement (e.g., when an object-time error
occurs such that the ERROR condition is
raised) • If there is not a GO TO out of
the ERROR or FINISH on-unit (if any), the
error-handling subroutine (IHEERR) calls
IHESAFQ, which closes all the open files in
the manner described above; IHESAFQ returns
to the supervisor with a return code of
(2000 + any return code already set (modulo
1024» •

GO TO Statements

In PL/I, a GO TO statement not only
involves the transfer of control to a
particular label in a block but also
requires the termination of contained
blocks. The housekeeping requirements for
this are:

1. A return address.

2. A means of identifying the .automatic
storage associated with the block to
be made current.

48

Identification of the appropriate storage
depends on whether the environment is
recursive or non-recursive:

Recursive: A count (the invocation count)
is kept of the number of times
any block is entered; this
count can be used to identify
the storage for a part~cular
invocation .•

Non-recursive: The address of the storage
for each block is required.

On-units and Entry-Parameter Procedures

If, in a recursive environment, the
program enters:

1. an on-unit., or

2. a procedure obtained by calling an
entry parameter.

that environment must be restored to the
state that existed when the ON statement
was executed or the entry parameter was
passed. Similarly, at the exit from the
on-unit or the entry-parameter procedure,
the environment must be restored to its
former state.

If the on-unit or entry-parameter proce­
dure refers to automatic data in encompass­
ing blocks, these references will be to the
generations that existed when the ON state­
ment was executed or the entry parameter
was passed. These will not necessarily be
the latest generations.

The correct environment is obtained by
restoring the display to what it was at the
time the ON statement was executed or the
entry parameter passed.

When an on-unit is to
library error-handling
IHESARA and passes it:

be entered, the
subroutine calls

1. The address of the on-unit .•

2. The invocation count of the DSA asso­
ciated with the procedure containing
the ON statement.

When an entry-parameter procedure is to
be called, compiled code branches to
IHESARA and passes it:

The address of the called procedure.

2. The invocation count of the passing
procedure.

The state of the display at the time of

passing is determined by examining the DSAs
of active blocks invoked b~fore the passing
procedure. The display 1S modified and
control is transferred to the called proce­
dure.

Before an on-unit or an entry-parameter
DSA is freed, the display is restored, in a
similar manner to that described above, to
the state it had immediately before the
on-unit was entered or the entry-parameter
procedure was called.

Block Housekeeping

The chaining of automatic storage areas
is required both for housekeeping purposes
and for storage management. In general"
both these functions are satisfied by the
automatic storage area chain (called the
CSA chain or 'run time stack'). When a
library module is entered, an offshoot of
the DSA chain, known as the save-area
chain, may be formed.

DSA Chain: The DSA chain consists of the
external save area, PRV VDA, DSAs and VDAs.
DSAs are added to the chain as procedures
and blocks are entered. VDAs are a.dded to
the chain after the DSA of the block in
which they are required. The pseudo­
register IHEQSLA is always set to point at
the last allocation in the chain ..
Initially it points at the PRV VDA. Reg­
ister DR always points to the current save
area.

Consider a sample program. Successive
areas are added to the chain thus:

1. PRV VDA

2. DSA (Main procedure)

3. DSA (Procedure)

4. DSA (Begin block)

At this stage the storage map is as
shown in Figure 20. If the begin block
required a VDA this would be added to the
end of the chain. Figure 21 shows an
example in which the begin block required
two VDAS. If the program now executes:

1. An END statement: The storage in the
chain 1S released, starting with the
area pointed at by IHEQSLA and finish­
ing when the current DSA has been
released. This leaves the chain with
items 1, 2 and 3 only.

2. A RETURN statement: All areas up to
and including the immediately encom­
passing procedure DSA are released,
leaving only items 1 and 2.

r-----------,
PR I PRV VDA ~--->r-----------,
--->~-----------~ I I

I I I External I
I PRV I r~ I

IHEQLSA I , I I save area I
---> ~-----------~ I I I

I I I I I I LWS 1 I I l ___________ J

I I I l ___________ J I

" I I I
, I

r----.1.------, I , , ,
I DSA 1 '<_J
I (Procedure> I
, I l ___________ J

" I
I

r-----.L-----,
I I
I DSA 2 I
I (Procedure)'
I I l ___________ J

" I
IHEQSLA, DR I

--->r-----.1.-----,
I I
I DSA 3 I
I (Begin) I
I I l ___________ J

Figure 20. Example of DSA Chain

It is also possible to release the last VDA
in a chain without releasing any other
areas, by freeing the area pointed at by
IHEQSLA.

If a GO TO statement referring to a
label in the main procedure had been exe­
cuted when the situation was as shown in
Figure 21, then either the invocation count
or the display of the main procedure would
be passed to the library subroutine
(IHESAFC). This would then search back up
the chain until it found the DSA with that
invocation count or display" and then make
this DSA current. It would then free:

1. All areas up to and including the DSA
allocated after the DSA to be made
current.

2. Any library VDAs or LWS between the
DSA to be made current and the follow­
ing DSA. A VDA used by the library is
distinguished from one used by com­
piled code by the flags in the first
byte. (See Appendix J.)

Chapter 4: PL/I Object Program Management 49

" r------1.-----,
I I
I DSA 2 1

I I
I I L ___________ J

" I
DR ,
--->r-----~-----,

1 ,
I DSA 3 I
I I
1 ,
L ___________ J

" ,
I

r-----~-----,
, I
, VDA ,
, 1
L ___________ J

" I
IHEQSLA I

--->r-----~-----, , ,
, VDA ,
, I
L ___________ J

Figure 21. "Continuation of the DSA Chain

Save-Area Chain: When a PL/I block calls a
PL/I Library sQbroutine, the save area
passed is that in the DSA for that block.
If the library routine calls a lower-level
library routine, the save area passed is
that of the appropriate level in LWS. Thus
a save-area chain is built up as an off­
shoot of the DSA chain. (See Figure 22.)
Normally the save-area chain unwinds itself
as control returns up through the levels;
in the example, the chain would be left
with DSAs 1, 2 and 3 remaining.

Treatment of Interrupts: When a program
interrupt occurs in a subroutine (library
or compiled code), the library error­
handling subroutine (IHEERR) is entered and
the address of the save area of that
subroutine is set in register DR. (See
Figure 23.)

IHEERR calls IHESADE, passing its own
save area, to get a new LWS (LWS2). If
there is an on-unit corresponding with the
inte:rrupt condition, then, on return from
IHESADE, IHEERR branches to IHESARA (which
modifies the display) and passes it the
save area LSA in LWS2. In turn, IHESARA
branches to the on-unit and passes it the
same save area. The prologue for the
on-unit then calls IHESADA to obtain a DSA.
The DSA chain can now continue if required.
(see Figure 24.)

50

r-----------, r-----------,
I I I ~ 1
I DSA 3 I <-, I I
I I I 1 LSA I
I I I DR I I
L ___________ J 1 -->~-----------~

" I I 1 I L _____ ~ Save area I

r-----1-----, I I
I I I ,
I VDA, ~-----------~
I I I I L ___________ J I ,

" , ,
1 I ,

IHEQSLA 1 , ,
--->r-----~-----, 1 1

I , I , I VDA I L ___________ J

1 I L ___________ J

Figure 22. Construction of the Save-area
Chain

r-----------, r-----------,
1 1 1 LWS 1 I
, DSA 3 1<-, 1 ,
1 1 I 1 LSA 1
L ___________ J I ~-----------~ <-,

" L __ ~ 1 1
I I Save area' ,
, I , 1
, DR' , ,

r-----~-----, -->~-----------~ I I I I ~ __ J

I VDA 'r->I LWE I
I 1 1 I" 1
L ___________ J I ~-----------1

" I I I
1 I 1 1
I I I I

r-----~-----, I 1 1
1 , , , ,

'VDA I I 1 1
1 1 , , ,
L ___________ J , , ,

" 1 1 I
I I' 1 IHEQSLA 1 1 L ___________ J

--->r-----~-----, 1
IHEQLSA I LWS VDA I 1

--->~-----------~ 1 LWS 2 ~ __ J

I ,
1 LSA I
~------------~
I I
,save areas,
I I L ___________ J

Figure 23. Structure of the DSA chain when
the error-handling subroutine
is entered after a new LWS has
been obtained

If there is no on-unit corresponding to
the interrupt condition, standard system
action is taken. (See Chapter 6.)

']~here are two possible ways of freeing
the on-unit DSA:

1. By a GO TO statement from the on-unit.
If the GO TO is to a sta tement~ in a
block associated with DSA 3, or
earlier, then the save-area chain can
simply be forgotten. Registers are
restored from the DSA to become cur­
rent.

r---------, r---------,
I I I LWS 1 1
1 DSA 3 1<-, 1 1
1 1 I I LSA 1
I I I I I
L _________ J I ~---------i<-,

f\

I
I

r---- L----,
I I
1 VDA 1
1 I L _________ J

f\

1
I

r-- __ .L ----,

1 I
I VDA I
I I L _________ J

f\

I
1

r----L ----,

I I

1 1 I 1
L--iSave areal 1

1 1 1
~------'---i 1

1 1 1
r->I LWE r--J

1 I
~---------~
I I
1 1
1 1
I I
~------'---i

I
1
1
I
I
1
I

I LWS 2 ~--J
I
I
I I I L _________ J

f\

I
IHEQSLA, DR I

--->r----.L----,
I I
I on-unit I
I DSA I
I I L _________ J

I _________ J

Figure 24. Structure of the DSA chain when
the on-unit DSA is attached

2. By the on-unit issuing a request to
storage management to free the on-unit
DSA. When this is done, control is
returned to the error-handling
subroutine at the point following that
from which control was transferred to
the on-unit. The error-handling
subroutine restores DR in the normal
way to point at LWE in LWS 1 and calls
IHESAFD to free LWS 2. Control' is
then returned to the interrupted rout­
ine. In the example, the situation
would now be as in Figure 22.

Obj~t-~im~timization

The compiler contains an optimization
technique which minimizes the necessary
housekeeping and provides faster execution
of the prologue and epilogue. The tech­
nique can only be applied if the optimiza­
tion option (OPT=Ol.Default) is specified
for the compilation of the main procedure
of a program. In this case, in a non­
multitasking environment, a 512-byte
storage area is reserved at the end of
primary LWS during initialization. The
pseudo-register IHEQLWF contains the
address of the reserved area attached to
the current LWS. A reserved area is
released only when its associated LWS is
released.

Whenever a DSA is allocated for the
innermost procedure or procedures (at the
same depth) of a nest of procedures, the
optimization technique will try to meet the
requirement from the reserved area. If
this is not possible (because the DSA
requires more than 512 bytes), the required
storage is obtained in the standard way,
using IHESADA.

A DSA allocated in the reserved area, or
a DSA allocated in STATIC storage at com­
pile time, is identified by a 'one' in the
first bit of the second byt~. (See IBM
System/360 Operating system: PL/I (F) Com­
piler., Program Logic Manual for a discus­
sion of DSAs in STATIC storage.)

Chapter 4: PL/I Object Program Management 51

CHAPTER 5: PL/I OBJECT PROGRAM MANAGEMENT (MuLTITASKING)

'rhis chapter describes the facilities
provided by the PL/I Library for the dynam­
ic management of PL/I multitasking programs
in an operating system with MVT. A new
task is created by the control program in
response to an ATTACH macro instruction;
the control program sets up a task control
block (TCB), which contains all the control
information related to the task: it may
also set up an event control block (ECB),
in which completion of the task will be
posted. The new task then competes with
other tasks for control according to the
priority assigned to it. On completion o~
a task, the attaching task must remove the
subtask's TCB from the system by issuing a
DETACH macro instruction; if no ECB was set
up and no end-of-task exit routine (ETXR)
was specified, the DETACH macro instruction
is unnecessary, and the TCB is removed from
the system by the control program on termi­
nation of the task.

The tasks created in a PL/I multitasking
program are executed as subtasks of a

common ancestor, the control task. The use
of a control task ensures that there is
always present a task with a higher priori­
ty than that of the major task: the control
task can then be entered whenever it is
necessary to terminate the major task
(e.g., on execution of a STOP statement).
For multitasking, the program management
module IHESA is replaced entirely by the
module IHETSA: the user of a non­
multitasking program incurs no significant
overhead, since IHETSA is loaded only
during link-editing of a multitasking pro­
gram. Although some of the routines in
IHETSA are peculiar to multitasking, most
of them perform similar functions to the
corresponding routines of IHESA: Figure 25
compares the two modules. Only those fea­
tures of IHETSA that are not included in
IHESA are described in detail. The library
facilities for the multitasking pseudo­
variables and built-in functions, and for
the WAIT statement, are described at the
end of this section; Appendix K gives full

Entry Points

Get DSA
Get VDA

Function

Get controlled variable
Get LWS
Get library VDA
END
RETURN
GO TO
Free VDA/Free LWS
Free controlled variable
Abnormal program termination

Program initialization

I 0 dOfo 0 Env1ronment mo 1 1cat10n
Setting of return code
Initialization of major task
Initialization of subtask
CALL with task option
ETXR (end-of-task exit routine)
Abnormal task termination

lliESA

IHESADA
lliESADB
lliESADD
IHESADE
lliESADF
IHESAFA
IHESAFB
IHESAFC
IHESAFD
lliESAFF
lliESAFQ
lliESAPA
IHESAPB
lliESAPC
IHESAPD
IHESARA
lliESARC

Note: The allocation and freeing of con­
trolled storage in a multitasking
environment is handled by a separate
module, IHETCV, which is called by
compiled code.

Figure 25. Comparison of IHESA and IHETSA

52

!.HETSA

IHETSAD
IHETSAV
See Note
IHETSAL
IHETSAW
IHETSAE
IHETSAR
IHETSAG
IHETSAF
See Note
IHETSAY
IHETSAP
IHETSAA

IHETSAN
lHETSAC
IHETSAM
IHETSAS
IHETSAT
IHETSAX
IHETSAZ

(Alias)

(Name)
(Alias)

details of the PL/I control blocks for I 7.
Irultitasking.

sets the Program Lockout Flag (PLF) to
zero (see Section on Multiprocessing
at the end of this chapter).

Cbntrol Task

The control task is entered via one of

I the initialization routines (IHETSAA and
IHETSAP), and is established at a priority
(16*JSPRI+l1) " where JSPRI is the priority
specified in the JOB statement for the PL/I
program. The entry point that is used
depends on whether the PL/I program is
called from an assembler-language routine.
~he control task obtains contiguous storage
for its own save area and workspace, and
for the PRV VDA for the major task. (If a
PRV longer than 4096 bytes is requested, a
rressage is printed out on the console and
the program is terminated.) The length
required for the PRV VDA is the sum of:

8 control bytes

L(PRV} (passed by the linkage editor)

LCLWS} (assembled by the initialization
routine)

4 task-oriented control words

The format of the save area and workspace
for the control task is shown in Figure 26.

Having allocated these storage areas,
the control task:

1. sets the STOP event control block to
zero.

2. creates a task variable for the major
task, sets it active and initializes
it, using an EXTRACT macro instruction
to obtain the limit and dispatching
priorities from the TCB set up by the
operating system for the control task.
CThe task variable contains the task
control information required by the
PL/I Library .. }

3. Creates an event var'iable for the
major task, and sets it active.

4. Sets the ECB for the major task (which
is contained in the event variable) to
zero.

5. sets the message ECB to zero. This
will be posted by the ETXR routine
(IHETSAX) in the event of a task
terminating abnormally, so that the
control task can attach a message task
to put out a message.

6. sets to zero the pointer to the chain
o£ message task ECBs.

o 7 8 31
r-------T-----------------------------,

o I I I
I PLF I I
I I I
~-------~-----------------------------~

4 I I
I I
I Save area I
I I
I I
~-------------------------------------~

72 I I
I I
I Task variable for major task I
I I
I I
~-------------------------------------~

100 I I
I I
I Event variable for major task I
I I
I I
~-------------------------------------~

132 I I
I I
I stop ECB I
I I
I I
~-------------------------------------~

ij6 I I
I I
I Message ECB I

. I I
I I
~-------------------------------------~

140 I I
I I
I Pointer to chain of message task I
I ECBs I
I I l _____________________________________ J

.Figure 26. Format of Save Area and
workspace for Control Task

The control task next issues an IDENTIFY
macro instruction to identify the major­
task and subtask initialization routines,
IHETSAM and IHETSAS, and the message task,
so that these may later be attached.
Finally it places in its save area the
argument list that it will pass to IHETSAM"
and sets the address of the save area in
register RA.

To attach the major task, the control
task issues an ATTACH macro instruction
using IHETSAM as an entry point and g1v1ng
the address of the ECB in the event varia­
ble of the major task. The control task
shares subpool 1 with the major task so
that, on completion of the major task, its

Chapter 5: PL/I Object Program Management (Multitasking) 53

PRV VDA is still available. No end-of-task
exit routine (ETXR) is specified, since
control will return to the control task on
termination of the major task. The action
of the major-task initialization module
IHETSAM is described under 'Initialization
of Ma jor Task' '.

Having attached the major task, the
control task issues a WAIT macro instruc­
tion which is to be satisfied when either

1. the S'IDP ECB is completed (i.e,., when
a STOP statement is executed), or

2. the ECB of the major task is completed
(i.e,., when the major task terminates
normally or abnormally), or

3. the message ECB is completed (i.e., a
message is to be displayed stating
that a task has terminated
abnormally) •

If a task terminates abnormally, the
ETXR routine (IHETSAX), posts the message
ECB with a completion code equal to the
address of an area of storage which it has
obtained and which contains a save area and
information for the message task. The
control task then attaches a message task,
sets the message ECB to zero, and returns
to the WAIT macro as before. However,
before the message task is attached, an
area of storage is obtained to contain the
fCB for the message task. This allows the
message task to be waited on in the event
of the major task terminating while the
message task is still active. This area of
storage is added to a chain which is
pointed to by a word in the control task
workspace.

The message task links to IHETEXB to put
out the message~ after which it frees the
storage obtained for it by the ETXR rout­
ine, ..

'l'he message is put out on SYSPRINT if it
is open, otherwise it is put out on the
console.

vlhen the major task is completed normal­
ly, or when it is completed abnormally as a
result of a PL/I error, the control task
detaches the major task's TCB, frees sub­
pool 1, and returns control to the calling
frogram. The return code reflects the
normal or abnormal termination of the pro­
gram; if an operating-system interrupt has
occurred, a message to this effect is
printed out on the console" and the return
code is the operating-system completion
code.

If the major task has not been completed
(i.e., if a STOP statement has been

54

executed), the end-of-program routine IHET­
SAY terminates the major task and all its
subtasks, and then posts the STOP ECB so
that the control task gains control. The
control task frees subpool 1 and then
returns control to the calling program.

Initialization of Major Task

When the major-task initialization rout­
ine" IHETSAM, is attached., storage has
already been allocated to the PRV VDA for
the major task. IHETSAM is similar to the
non-multitasking initialization routine
IHESAP (described in Chapter 4), but in
addition:

1. A flag bit (bit 8) in the PRV VDA is
set to indicate that it is a multi­
tasking PRV VDA.

2. The address of the task variable is
placed in the PRV VDA, and the other
task-oriented words of the PRV VDA are
set to zero. (See Appendix K.)

3. After the standard action of initial-
1z1ng the PRV and LWS and setting the
pseudo-registers IHEQVDA r IHEQFVD, and
IHEQADC, the priority of the major
task is reduced by one. This has the
effect of making the whole program
appear to have a priority one less
than the operating-system limit prior­
ity (16*JSPRI+ll), and enables the
priprity to be raised whe,never it is
essential that a routine be non­
interruptible; it also allows the
control task to be posted and entered
immediately if necessary.

CALL with Task Options

When a CALL statement with a TASK, EVENT
or PRIORITY option is executed, compiled
code calls the library module IHETSAT to
initialize the task and event variables for
the subtask and to attach the subtask
initialization routine IHETSAS. At compile
timef if the TASK option had been speci­
fied, the compiler would have created a
TASK variable, set it inactive, and insert­
ed the addresses of the associated symbol
table entry and event variable; if the
EVENT option had been specified, the com­
piler would have created an event variable,
set it inactive and set the STATUS halfword
to zero. Futhermore, compiled code would
have created an argument list (Figure 27)
and inserted its address in register RA.

o 31
r--------T------------------------------,

01 Flags 1 A(Task variable> 1
~--------~------------------------------~

41 A(Event variable) 1
~---------------------------------------~

81 Priority relative to attaching task 1
~--------------------------------------~

121 ACcalled procedure) 1
~---------------------------------------~

161 For library use 1
~---------------------------------------~

201 For library use 1
~---------------------------------------~

241 Argument list for called procedure 1
1 (X'80' in first byte of last entry I
1 indicates end of list) 1 L _______________________________________ J

Figure 27. Parameter List for IHETSAT

IHETSAT raises the priority of the
attaching task to the limit to ensure that
the sequence cannot be interrupted by the
current program, and then obtains a. VDA, in
which it places a remote parameter list for
the execute form of the ATTACH macro
instruction that it uses to attach IHETSAS.
It then checks for the presence of the task
and event variables: if either is present
and active, the ERROR condition is raised.
If either of the variables is absent (i.e,.,
if the TASK or EVENT option were not
specified), dummy task and event variables
are placed in a VDA and initialized. Poin­
ters to the PRV and DSA of the attaching
task are stored in the two words of the
parameter list reserved for library use:
these are for reference by the subtask.

If the CALL statement includes a PRIORI­
TY option, the sum of the relative priority
from the parameter list supplied by com­
piled code and the dispatching priority in
the task variable of the attaching task is
stored in the task variable of the subtask;
if the sum exceeds the limit priority for
the PL/I program (16*JSPRI+10), the dis­
patching priority for the subtask is made
equal to the limit. (See IBM System /360
,operating system: PL/I (F) Programmer' s
Guide for a discussion of priority of a
PL/I program,.) The limit pr iori ty of the
attaching task is also placed in the task
variable of the subtask. If there is no
PRIORITY option, and a task variable
exists, the dispatching priority in the
task variable is assumed: if the task has a
dummy task variable, the dispatching prior­
ity is the same as that of the attaching
task at the time the subtask is attached.

TO create the new subtask., IHETSAT
issues an ATTACH macro instruction with the
following parameters:

Zero if no TASK option

Zero if no EVENT option

Flags = X'I 80' if no PRIORITY opt ion

X"80' if no argument list

EP = SUB (the name given to entry point
IHETSAS when it was identified).

ECB = A(ECB in subtask event variable)

ETXR = IHETSAX

No change in priority is made at this
point. When control returns to IHETSAT,
which is normally almost immediately, the
address of the TCB for the new subtask,
which is placed in register RA by the
control program, is stored in the task
variable for the subtask. IHETSAT then
reduces the priority of the attaching task
to its original level and returns control
to the attaching task.

Initialization of Subtask

The subtask initialization routine IHET­
SAS is entered via an ATTACH macro instruc­
tion issued by IHETSAT; register RA con­
tains the address of the parameter list
prepared by compiled code (Figure 27).
Since the priority of the subtask is at its
limit, having been set there by IHETSAT,
the subtask will gain control as soon as
the priority of the attaching task is
reduced at the end of the IHETSAT routine.

IHETSAS calculates the length of the PRV
VDA required by the subtask" issues a
GETMAIN macro instruction for the amount of
storage needed (rounded up to a multiple of
2048 bytes), and then initializes the PRV
VDA as follows:

1. It copies the contents of the PRV of
the attaching task into the PRV of the
subtask.

2. It copies any ON fields in the DSA of

Chapter 5: PL/I Object Program Management (Multitasking) 55

the attaching task, and the procedure
argument list (if one is being
passed), into the PRV VDA of the
subtask.

3. It increments the pseudo-register
IHEQTIC by one. (IHETSAM sets IHEQTIC
to zero when it initializes the major
task. Each time a subtask is
attached, IHETSAS adds one to the
count in IHEQTIC; the count thus indi­
cates the level of the task within the
hierarchy.)

4. It initializes the new LWS and updates
the pseudo-registers pointing at the
various areas in LWS to their new
values.

Having obtained storage and initialized
the PRV VDA, IHETSAS executes the standard
initialization routine as in a non­
multitasking program, places the address of
the procedure parameter list for the new
subtask in register RA, reduces the
priority of the subtask to the level given
in its task variable, and branches to the
address of the called procedure.

End-of-Task Exit Routine (IHETS~X)_

When a subtask is attached, the end-of­
task exit routine IHETSAX is s-pecified in
the ETXR operand of the ATTACH macro
instruction. This routine is entered after
the subtask has been completed; it is part
of the attaching task, and is executed
asynchronously with it. If the subtask was
terminated by the PL/I storage-management
routines, the only function of IHETSAX is
to detach the TCB of the subtask.

If the subtask was completed abnormally
by the operating system, an area of storage
is obtained in which the name of the
subtask and the completion code are stored.
This storage area also contains space for a
save area to be used by the message task.
IHETSAX then posts (using the POST macro)
the message ECB in the control task storage
area. The control task receives control
and attaches a task which prints a message
giving the name (if any) of the subtask,
the operating system completion code, and,
in the more common cases, an indication of
the probable error. When IHETSAX regains
control, it detaches the TCB of the sub­
task.

']~o obtain the name of the subtask for
insertion in the message, IHETSAX locates
the subtask's task variable by initiating a
save-area trace from the current task's
external save area, the address of which is
in the current task's TCB. It obtains the
completion code from the subtask's TCB.

56

GO TO Statements

The multitasking housekeeping routine
for GO TO statements (IHETSAG) differs from
its non-multitasking equivalent only in
that if control is transferred outside the
block in which the statement occurs, any
tasks attached in the blocks that are freed
must be terminated. If any tasks have been
attached in the block, the task variable
chain pointer in the DSA will point to the
task variable of the most recently created
subtask. IHETSAG searches the chain
through each DSA in each task until a task
is found that has attached no subtasks;
this task is then terminated. The process
is repeated until all tasks attached in the
block, and t.heir Qescendants, have been
terminated. In the process, all storage
associated with these tasks is returned to
the supervisor, and all files opened in the
tasks are closed.

On-Units and Entry Parameter Procedures

The multitasking routine IHETSAN modi­
fies a recursive environment when an on­
unit or an entry parameter procedure is
entered or ended. It differs from the
non-multitasking routine (IHESARA) in two
respects:

1. The chain of recursive DSAs is
followed back to the PRV of the major
task.

2. If a CALL statement calls an entry
parameter procedure with a task
option, the address of the entry par­
ameter is placed at the top of the
parameter list, the address of IHETSAT
is assigned to the entry parameter,
and IHETSAN is called. When IHETSAN
terminates, it points register RA at
the IHETSAT parameter list and branch­
es to IHETSAT.

Termination of a Task

A PL/I task can be terminated by the
execution of anyone of the statements END,
RETURN, STOP, and EXIT.

The action taken by the library END
(IHETSAE) and RETURN (IHETSAR) routines is
similar to that of the GO TO routine
(IHETSAG); the action differs from that of
the non-multitasking equivalents in that
any tasks attached in the block being
terminated must also be terminated. If the
block to be terminated is also the end of a

procedure called with a task option" sub­
pool 1 (automatic and controlled storage)
is freed and control is returned to the
control program. If it is the end of the
major task, the FINISH condition is raised
and the program branches to the error­
handling routine. When the END or RETURN
routine has been completed" control is
returned to the control program, but
subpool 1 is not released. (Automatic
storage is required by the control task:
controlled storage may be required by the
calling program.)

The abnormal-end-of-task routine
(IHETSA7.) is entered

1. from IHEERR when return is made from
the ERROR routine in a subtask or from
the FINISH routine in the major task"

2. when an EXIT statement is executed in
any task" or

3. when CALL IHEDUMT is executed in any
task.

IHETSAZ detaches the task, and any tasks
th~ it has attached, in the manner des­
cribed under 9GO TO Statements', places a
J:'eturn code in the task's ECB" and returns
control to the control program .•

The end-of-program routine (IHETSAY) is
entered when a STOP or CALL IHEDUMP state­
ment is executed in any task. IHETSAY
terminates all subtasks in the manner des­
cribed under 'GO TO statements', and then
passes control to the control task by
posting the STOP ECB; the control task then
terminates the major task.

The completion code in the STOP ECB or
the ECB for the major task indicates how
the program was terminated .•

Controlled Storage

The allocation and freeing of storage
for controlled variables in a multitasking
environment is handled h¥ library module
IaETCV. This module is independent of
IHETSA and is loaded only if the CONTROLLED
attribute is used. When storage is allo­
cated, the task invocation count from
pseudo-register IHEQTIC is stored in the
first halfword of the controlled variable .•
Before a controlled variable is freed, its
task invocation count is checked; if it
does not correspond with the value in
lHEQTIC for the task in which the statement
occurs, the variable is not freed. Con­
trolled storage is allocated in subpool 0
if it is in the major task, and in subpool
1 if it is in a subtask.

MULTITASKING PSEUDO-VARIABLES AND BUILT-IN
FUNCTIONS

Statements in which the STATUS pseudo­
variable appears, or which contain the
COMPLETION or STATUS built-in functions,
are executed from compiled code wi~hout a
library call.

COMPLETION Pseudo-Variable

On execution of an assignment statement
in which the COMPLETION pseudo-variable
appears" the expression on the right-hand
side is evaluated and converted to a bit
string of length 1., Which is then stored at
bit 24 of a fullword. Compiled code then
calls IHETEVA., passing the address of the
event variable named in the pseudo­
variable" and that of the fullword (in a
list pointed to by register RA). If the
event variable is active, the ERROR
condition is raised: otherwise IHETEVA
takes the following action:

1. It raises the priority of the current
task to the limit to prevent interrup­
tion.

2. It sets the I/O flag in the event
variable (bit 1 of the flag byte) to
zero.

3. If the bit string = 'O'B, it sets bit
1 (the "complete' bit) of the ECB in
the event variable to zero, restores
the priority of the task to its origi­
nal level, and returns control to the
task.

4. If the bit string = '1' B, it tests to
see whether the event is already com­
plete. If it is, IHETEVA restores the
priority of the task to its original
level and returns control to the task;
otherwise it posts the ECB with a
completion code of zero, restores the
priority, and returns control to the
task.

PRIORITY Pseudo-Variable

The PRIORITY pseudo-variable is used to
set the dispatching priority of a task to a
new value relative to that of the current
task. On execution of an assignment state­
ment in which the PRIORITY pseudo-variable
appears, the expression on the right-hand
side is evaluated and converted toa fixed­
point binary constant of default precision,
which is assigned to a full word. Compiled

Chapter 5: PL/I Object Program Management (Multitasking) 57

code then calls IHETPRA, passing the
address of the task variable of the task
named in the pseudo-variable and that of
the fullword (in a list pointed to by
register RA). If the pseudo-variable does
not specify a task r the current task is
assumed. IHETPRA raises the priority of
the current task to the limit to prevent
interruption, and accesses the dispatching
priority from the task variable; it assigns
to the task variable the new value of
dispatching prioritYr calculated as fol­
lows:

New dispatching priority of named task
=MAX (O,MIN(limit-1 r P+N»

where P=dispatching priority of current
task

and N=increment

If the task whose priority is being
changed is not the current task, IHETPRA
restores the priority of the current task
and returns control to it.

If the priority of the current task is
changed, after the new priority has been
stored in the task variable a CHAP macro
instruction is issued to change the priori­
ty of the task before returning control.

PRIORITY Built-In Function

The PRIORITY built-in function yields
the dispatching priority of a task relative
to that of the current task. On execution
of a statement in which the function
appears r compiled code calls IHE'I'PBAr pass­
ing the address of the task variable of the
task named in the function and the address
of a fullword target field (in a list
pointed to by register RA). IHETPBA sub­
tracts the dispatching priority of the
current task from that of the named task,
and assigns the difference to the target
fi(=ld. The dispatching priorities are
obtained from the respective task varia­
bles.

THE WAIT STATEMENT

When a WAIT statement is executed in a
multitasking environment, compiled co:ie
calls the library module IHETSW, passing
the addresses of the event variables asso­
ciated with the statement. IHETSW scans
the event variables to see whether enough
events to satisfy the WAIT statement are
PL/I complete ('complete' bit, ECMP, set to
1). If not, lHETSW scans the ECBs for the
I/O events, and in each case where the I/O

58

event is complete sets the check bit (EMCH)
in the corresponding event variable to 1; a
list is then made of all the incomplete I/O
and multitasking events.

If the number of PL/I and I/O complete
events is sufficient to satisfy the WAIT
statement, the relevant I/O transmit
modules are invoked to complete the I/O
events. (see 'General Logic and Flow'
under 'Record-Oriented I/O' in Chapter 3.)
If there are no multitasking events in the
list, and if the number of completed I/O
events is not sufficient and all the I/O
events must be completed to satisfy the
WAIT statement, the check bit in each event
variable is set to 1 and the relevant I/O
transmit module is invoked. If not all the
1/0 events need to be waited on, or if
there are some multitasking events in the
list, a multiple WAIT macro instruction is
issued for the list of incomplete events.
When the macro has been satisfied, if the
list included any I/O events, the corres­
ponding ECBs are scanned and the check bits
in the event variables corresponding to
completed ECBs set to 1; the I/O transmit
module is then invoked.

The I/O event variables that are checked
by the transmit modules are set complete
and the check bits are set to zero. The
event variables are then set inactive and
removed from the task and file chains.

In a non-multitasking environment,
library moclule IHEOSW is called by complied
code. This module is similar to IHETSW
except that it only accepts 1/0 event
variables and inactive event variables.

Alternative I/O Modules for Multitasking
Program§.

Alternative multitasking and non-
multitasking modules for input/output
operations have been created in order to
prevent the non-multitasking user from
being inflicted with any multitasking
overheads. These modules are:

Non-multitasking

IHEOCL
IHECLT
IHEPRT
IHEIOB
IHEDDO
IHEION

Multitasking

IHEOCT
IHECTT
IHEPTT
IHEIBT
IHEDDT
IHEINT

The entry points for the multitasking
modules correspond with the entry points of
the non-multitasking modules. Modules
which have no alternative form will call
the correct module by extracting its

address from the list addressed by pseudo­
register IHEQADC. This list is assembled
into IHESA or IHETSA, whichever is present.

MULT I PROCESS ING

Since raising the priority of a task to
the limit priority on a multiprocessing
machine does not ensure that no other task
is executing simultaneously, additional
precautions must be taken when performing
certain operations to prevent two tasks
accessing the same control blocks simulta­
neously.

These operations are: manipulation of
EVENT variables; termination of tasks while
still active: task attachment: updating
chains associated with EXCLUSIVE files; and
changing the priority of a subtask.

The following control blocks arE~ used,
in conjunction with raising the priority to
the limit to prevent simUltaneous access.

Program Lockout Flag (PLF): This is a one
byte flag located in the first byte of the
control task's storage, and is known to all
tasks. It is set to zero at program
initialization time.

Must Complete Flag (MCF), wait to Terminate
Flag (WTF) : These are one byte flags
associated with a particular task and are
located in that task's EVENT varia ble.

Wait to Terminate ECB (WTE), Infinite wait
ECB (IWE): There are fullwords also asso­
ciated with a particular task and are
located in that task's EVENT variable.

Exclusive File Flag (EFF): This is a one
byte flag associated with a particular
EXCLUSIVE file and is located in the file's
FCB.

EVENT variables

The PLF is used during operations
involving EVENT variables. Before any
operation involving an EVENT variable is
l:egun, the priority of the current task is
raised to the limit. Since no I/O or macro
instructions are executed until the opera­
tion is finished, this task will not lose
control until after it has restored its
priority to the original value. A TS
instruction is issued on the PLF, and if
the latter is already set, the task loops
on the TS instruction until it is turned
cff. Hence if a task, which is executing
simultaneously, is also performing an oper-

ation on an EVENT variable, the first task
will loop until the second task has com­
pleted its operation. On completion of the
EVENT variable operation, the PLF is set to
zero and the priority of the task restored
to its original value.

Must Complete Operations

A Must Complete Operation is an opera­
tion which, once begun by a task, must be
allowed to complete before that task can be
terminated by a higher level task. These
are: task attachment; normal task termina­
tion: and all operations involving the PLF
or an EFF.

Before beginning a Must Complete Opera­
tion, a task first tests its ~TF. If it is
on then the task is about to be terminated
by a higher level task (see Task Termina­
tion below) and so it waits on its IWE
until terminated. If its WTF is zero, the
task sets its MCF on, raises its priority
to the limit and proceeds with its Must
Complete Operation. When the operation is
complete, the task tests its WTE to see if
a task is waiting for it to complete its
Must Complete Operation. If a task is
waiting, the task which has completed its
Must Complete Operation POSTs the WTE and
waits on its lWE until terminated. If no
task is waiting it resets its MCF to zero,
restores its priority and continues.

Task Termination

If a task A is terminating an active
subtask B, it first of all sets B's WTF.
It then tests B's MCF. If it is on, then B
is not in a position to be terminated
(i.e., it is doing a Must Complete
Operation) and so A issues a WAIT on B's
WTE. When B completes its Must Comolete
Operation, it tests its WTE to see~if a
task is waiting and if so it POSTs the WTE
and waits on its IWE until terminated.
When A comes out of the wait state due to
B's POST, it can then go ahead and termi­
nate B.

If A had found that B was not executing
a Must Complete Operation, then it would go
straight ahead and terminate B. Should B
then wish to start a Must Complete Opera­
tion, it would first test its WTF, find it
on, and then wait on its IWE until termi­
nated.

Chapter 5: PL/I Object Program Management (Multitasking) 59

EXCLUSIVE Files

The EFF is used in a similar manner to
the PLF. When a task wishes to update
chains associated with a part.icular EXCLU­
SIVE file, it issues a TS instruction on
the EFF associated with that file.. Any
other task wishing to do a similar opera­
tion with the same file will then loop
until the first task has reset the EFF to
zero.

Task Attachment

The initialization of a subtask involves
accessing the attachor's storage, and to
ensure that the subtask has completed its
init ialization before the storage is
changed, the attachor WAITs on the

60

subtask's lWE immediately after attaching
it. The subtask POSTs the ECB when it has
completed the initialization.

Changing Priorities

In order to prevent the priority pseudo­
variable routine from changing the priority
of a task which is at limit priority~ the
routine first'tests the TCB of the subtask
whose priority it is changing to se8 if it
is at limit priority. If so, it must wait
until the subtask has restored its original
priority. Hence it waits on the subtask's
IWE and when the subtask has restored its
priority it tests its lWE to see if the
priority routine is waiting. If not, it
POSTs the IWE and the priority routine can
then go ahead and change the subtask's
priority.

The PL/I Library handles two types of
conditions at object time which cause
interruption to the main flow of a program.
'lhese are:

1. Conditions for which it is possible to
specify an on-unit:

a. computational program interrupts,.
b. other conditions.

2. Execution error conditions not. covered
by a PL/I-defined condition.

If any of these conditions occurs" con­
trol is passed to the library error han­
dling module lHEERR. This module is always
resident; if it is necessary to print a
message at execution time~ IHEERR links to
a group of modules normally non-resident
but brought into storage when required.
These are:

IHEESM:

IHEERD:

IHEERE:

IHEERI:

IHEERO:

IHEERP:

IHEERT:

The error
ONCODES
Operating
§uide.

This loads one of the message
modules and prints the appropri­
ate message.

Data processing error messages.

Error messages other than those
in the other error message
modules.

Input/output error messages.

Error messages for non-I/O ON
conditions.

Error messages for I/O ON condi­
tions.

Multitasking error messages.

messages and
are described

System: PL/I

their associated
in IBM System/360

(F) Programmer's

All the PL/I-specified ON conditions
except I/O SIZE and I/O CONVERSION are
raised by compiled code to facilitate ref­
erence by the error-handling subroutines.
Each ON condition has a code number
(internal to the library) consisting of two
hexadecimal digits,. When an ON condition
is raised, the code associated with it is
placed in the error-handling pseudo­
register IHEQERR.

CHAPTER 6: ERROR AND INTERRUPT HA~DLING

There is an error message for each ON
condition. In some cases the condition
(e.g., CONVERSION) may have a group of
errors associated with it and has therefore
a group of messages. A complete list of
the internal error codes and their
associated messages is given in Appendix E.

PROGRAM INTERRUPTS

Fifteen possible program interrupts can
occur in System/360. Seven of these are,
or may be, related to computational condi­
tions in PL/I (see Figure 28); on-units may
be specified for these conditions. Seven
of the remaining eight are treated as
errors of a non-ON type; significance is
not handled.

r------------------------T----------------, I Program Interrupts I PL/I Conditions I
~------------------------+----------------~ I Fixed-point overflow I FIXEDOVERFLOW I
1 Fixed-point divide I ZERODIVIDE I
I Decimal overflow I FIXEDOVERFLOW I
I Decimal divide I ZERODIVIDE I
I Exponent overflow I OVERFLOW I
I Exponent underflow I UNDERFLOW I
I Floating-point divide I ZERODIVIDE I L ________________________ ~ ________________ J

Figure 28. Program Interrupts and PL/I
Conditions

Because the user may specify on-units
for handling certain PL/I conditions, when
an interrupt occurs the PL/I program must
gain control to see if there is an on-unit
associated with that particular interrupt.
This is achieved by the Get PRV subroutine
in the IHESA module, which issues a SPIE
macro to:

1. Provide a program interrupt control
area (PICA). This is a six-byte area
(in IHESA) which contains the address
to which control is passed when an
interrupt occurs, and information on
the type of interrUpt handled by
IHEERR.

2. Cause the supervisor to create a pro­
gram interrupt element (PIE). This is
a 32-byte area which contains the PICA
address and also a save area for the
old PSW and registers 14 to 2 when an
interrupt occurs.

Chapter 6: Error and Interrupt Handling 61

r-----------------,
\ IHEERRC \
~-----------------~
\Non-ON Conditions \
L--------T--------J

\
V

r------------------,
\ IHEERRA I
~------------------~
lProgram Interrupts I
l _________ ~--------J

\
V

r----------------,
\ IHEERRB I
~----------------~
1 ON Conditions I
L--------T-------J

1
V

r------------------,
\ IHEERRD \
~-----------------~
\CHECK & CONDITION I
L--------T---------J

\
V

yesr-----------------, r------------------, r-----------------, r-----------------,
r--~ERROR, CHECK or 1<-, I Save environment; I IDetermine ON type \ \Determine ON type\

I FINISH condition? \ \ \pretend to super- \ \from IHEQERR \ \ from register'RA \
l--------T--------J \ \visor that hand- \ L--------T--------J l-------T---------J

\ No I Iling is complete; \ I \
I I \ set results if I V I
I I I necessary \ r---------------------, \
I \ l--------T---------J \Create search word; I \
V I I \search the DSA chain \ \

r-----------------, I V Ifor a match; if dis- I \
ILink to IHEESM, \ \Nor----------------,yes \abled in current DSA \< _____ J
jwhich loads mess-I<-+--~ON condition for~--->Ireturn; if dummy, ig-I
I ages into storage I I Ithis interrupt? \ 1\ I nore entry I
l--------T--------J I l ________________ J I l--------T------------J

I I I I
V I I V

r-----------------, \ \ r----------------,
\Determine which \ I I IIf SNAP, link tol
Imessage is to be I I I IIHEESM to print \
I printed I \ I ISNAP message I
l--------T--------J I \ l-------T--------J

I I I I
V I \ V

r-----------------, I \YeSr-----------------,
I Print message \ l---------------------+---iSystem action re-\
l--------T--------J I \quired? !

I r---------->! l-------T--------- J

V \ I INo
r-----------------,yes r-------~-------, I V
\Interrupt is ter-~--->\Raise ERROR \ I r-----------------,
\minating type? I \condition \ \ IBranch to IHESARAI
l--------T--------J l _______ , _________ J \ I in order to enter \

INO 1\ I Ion unit \
V I I l-------T--------- J

r-----------------, I I I
\ Return I \ I V
l _________________ J I \yesr-------------------,

l-----------+---~Invalid conversion I
L _________ , \ l-------T-----------J

I r---------J INO
V I V

r----------------,yes r-------------~---, yesr-------------------,
\Error condition ~--->IRaise FINISH I<--------i ERROR condition? \
l----------T-----J I condition \ l-------T-----------J INo l _________________ J INO

V V
r----------------,yes r-----------------,
ICHECK condition?~--->IPrint CHECK
l-----------T-----J I information I

INo l-------T---------J
V V

r----------------,
\FINISH condition I
Ithen terminate I
Iwith ABEND I L ________________ J

r-----------------,
I Return I l _________________ J

r-------------------,yes r-----------,
\ FINISH condition? ~--->I ABEND I
l-------T-----------J l ___________ J

INO
V

r-------------------,
\ Return I l ___________________ J

Figure 29. Flow through the Error Handling routine (IHEERR)

62

034 7 8 31
r---T----T--------------------------------,
I I PM I A(Exit subroutine) I L ___ ~ ____ ~ ________________________________ J

32 47
r----------------------,
I Interrupt Mask I L ______________________ J

Figure 30. Format of the Program Interrupt
Control Area (PICA)

Definitions of PICA fields:

PM: Program mask

A(Exit subroutine): Address of the entry
point in IHEERR to which control is to
be passed when one of the specified
interrupts occurs. This entry point
is IHEERRA.

Interrupt mask: Indicates to the supervisor
which interrupts are to be handled by
IHEERR. These interrupts are all ·the
fifteen possible ones except signifi­
cance.

o 7 8 31
r--------T--------------------------------,
I I A (PI C1\) I
.--------~--------------------------------i
I OPSW(Bits 0-31) I
.---i
I OPSWCBits 32-63) I
~---i
I Register 14 I
~--~
I Register 15 I
.---i
I Register 0 I
.---i
I Register 1 I
.---i
I Register 2 I L ___ J

Figure 31. Format of the Program Interrupt
Element (PIE)

Definitions of PIE fields:

A(PICA): Address of PICA, for supervisor
use

OPSW: Contents of the old program status
word

Registers 14 to 2: contents of these reg­
isters when an interrupt occurs

On entry to IHEERRA, register RA con­
tains the address of PIE.

It is possible for another program
interrupt to occur before user corrective
action has been completed. IHEERR has to

guard against this eventuality when it
obtains control, otherwise the second
interrupt would cause the supervisor to
terminate the task. To avoid this, the
following method is used:

1. The PSW in PIE (the old PSW) is saved
in the LWE area in library workspace.

2. Bits 40 to 63 of the PSW in PIE are
changed to contain the address of the
appropriate entry point in IHEERR;
control is returned to the supervisor.

3. The supervisor assumes the interrupt
has been handled satisfactorily and
transfers control to the new address
in the PSW in PIE; thus it enters
module IHEERR again.

Floating-point registers are saved in
the library communication area, and the old
PSW is inspected to find the cause of the
interrupt.

If a fixed-point or decimal overflow
interrupt is forced to occur, the SIZE
condition may be raised. Therefore when
one of these interrupts occurs, the'pseudo­
register IHEQERR must be inspected to see
if the SIZE code has been set. Similarly,
if any of the divide interrupts occurs,
IHEQERR must be inspected to see if the
ZERODIVIDE code has been set. If it has,
the condition is disabled and control
returns to the point of interrupt.

Certain very unusual circumstances may
.result in a program interrupt occurring
during the execution of IHEERR or of one of
the library modules called, or linked to,
from it.. For example, if the program
destroys the PRV, or the DSA chain, or
parts of library workspace, then it is
likely that sooner or later a specification
or addressing interrupt will occur.

Under these circumstances, the program­
mer or systems engineer requires a dump at
the earliest opportunity. To achieve this,
and to prevent any attempt to re-enter
IHEERRA on account of the second interrupt,
a SPIE macro is issued every time IHEERR is
entered. This macro provides that, in the
event of an interrupt occurring, IHEERR
shall be entered at entry point IHEERRE.
Similarly, another SPIE macro is issued at
each exit point, to restore IHEERRA as the
normal entry point for program interrupts
during the execution of compiled code and
library routines.

When IHEERRE is entered, a message is
printed on the console and the program is
abnormally terminated., with a dump.

Chapter 6: Error and Interrupt Handling 63

r-------T-------------T---------T---------,
I I IConditionl I
/ Type I condition IPlefixes I Default I
I I Ipermittedlsituation\
~-------+-------------+---------+---------~
I I CONVERSION I I \
I IFIXEDOVERFLOW/ I All I
IComput-IOVERFLOW I Yes I enabled I
lationallSIZE I I except I
I I UNDERFLOW I I SIZE I
I IZERODIVIDE I I ,
~-------+-------------+---------+---------~
IList I AREA I No I Always I
Ipro- I I I enabled I
Icessing I I I I
~-------+-------------+---------+---------~
I I ENDFILE I I I
I I ENDPAGE I I I
IInput/ I KEY I I Always I
10utput INAME I No I enabled I
I I RECORD I I I
I ,TRANSMIT I 1 I
I IUNDEFINEDFILEI 1 I
t-------+-------------+---------+---------~
I Program 1 CHECK I I I
Icheck- ISUBSCRIPT- I Yes I Disabledl
lout I RANGE I I I
I ISTRINGRANGE I I I
~-------+-------------+---------+---------~
IProg- I CONDITION I 1 Always I
Iramroer-I I No I enabled I
I named I I I I
~-------+-------------+---------+---------~
ISystem IERROR I No I Always \
taction IFINISH I \ enabled I L _______ ~ _____________ ~ _________ ~ _________ J

Figure 32. PL/I ON Conditions

ON CONDITIONS

The six classes of ON conditions defined
in PL/I are shown in Figure 32. To deal
satisfactorily with the situation when any
of these conditions arise, IHEERR must:

1. Recognize the condition.

2. See if it is enabled.

3. If so, see if there is an on-unit for
the condition.

4. If there is an on-unit, transfer con­
trol to IHESARA, which, af-ter doing
the necessary- housekeeping, will
transfer control to the on-unit.

5. If no on-unit, take system action for
the condition.

6. Return to the interrupted program or
terminate, according to the provisions
of the PL/I language.

64

In order to carry out these operations
IHEERR needs:

1. Information passed when the error con­
dition arises.

2. Information set by compiled code in
the DSA for each procedure. A two­
word ON field is allocated in the DSA
for this purpose. (See Chapter 4.)

~tion by Compiled Code

Action taken by compiled code in
preparation for the possibility of a condi­
tion arising during execution is summarized
here.

Prologue: The prologue allocates space in
the DSA for:

1. Every ON statement in the block.

2. Each ON condition disabled in the
block.

ON CHECK (identifier 1, •••••. identifier n)
is interpreted as n ON statements.

For each of the occurrences given above,
the prologue stores information in the two
words in the DSA ON field:

1st word: Contains the error code for the
condition and the address of data
identifying the condition. This word
is called the search word comparator.
(See Figure 33.)

r----------------T------------------------,
I Type of ON I Contents of word I
'condition ~------T-----------------~
I 'Byte 11 Bytes 2 to 4 ,
.----------------+------+-----------------i
1 I/O , I A (DCLCB) I
~----------------~ r-----------------i
'CONDITION 1 ,A (CSECT) I
t----------------~Error r-----------------~
I CHECK (label) I I A (Symbol name & ,
I I code I length) ,
I CHECK (variable) I I A (Symbol table) ,
r----------------i t-----------------~
I Others I I Nothing stored , L ________________ ~ ______ ~ _________________ J

Figure 33. Format of the Search Word com­
parator

2nd word: Bits 0, 1 and 4 of the first
byte are set as follows:

Bit ° = ° Not the last ON field in the
DSA

1 Last ON field in the DSA

Bit 1 = 1 Condition disabled

Bit 4 = 1 Dummy ON field

In the second word" either bit 1 or bit 4
is set to 1,. (See 'Prefix Options',
below. ,

ON Statement: When the ON statement is
executed" compi led code stores information
in the second word of the ON field:

Byte 1:

Bit 2 o SNAP not required
1 SNAP required

Bit 3 = 0 Normal
= 1 System action required

Bit 4 = 0 No longer dummy

Bytes 2-4: ACon-unit)

Prefix options:
condition must
whenever:

An ON field for an ON
be created by the prologue

1. An ON statement is present in the
block.

2. An ON condition becomes disabled at
any time during the execution of the
block.

3. CHECK is enabled within the block.

This ON field is always set to dummy by the
~ologue. It is also set to disabled if:

1. The condition is disabled by a prefix
option in the block-header statement.

2. The condition is disabled by default
and there is no enabling prefix option
in the block-header statement, or
within the block. The exceptions to
this are CHECK., SIZE, STRINGRANGE" and
SUBSCRIPTRANGE, which are dealt with
as follows:

CHECK: No ON fields
this condition
default

are created if
is disabled by

SIZE" STRINGRANGE, and SUBSCRIPTRANGE:
If these conditions are disabled
by default, flags are set in the
flag byte of the DSA as follows:

SIZE: bit 7 0
STRINGRANGE bit 2 = 0
SUBSCRIPTRANGE: bit 4 0

Execution of an ON statement in the block
causes removal of the dummy flag and inser­
tion of the flags indicating the action
required. It does not remove the disable

flag if on.
ment causes
flag.

Execution of a REVERT state­
reinstatement of the dummy

During execution of the block~ statements
may be executed which have disabling prefix
options in them. Compiled code must be
inserted before and after the statements
to:

1. set the disable flag before the state­
ment.

2,. Restore the original flags after the
statement.

Similarly, to enable prefix options, com­
piled code must:

1.. Set the disable flag off before the
statement.

2. Restore the original flags after the
statement.

Prefix options specified on outer blocks
carry down into internal blocks. The
implementation of these blocks should be as
if the option had been explicit in each of
them.

Action by the Libra~

When an ON condition arises during exe­
cution" IHEERR gains control from one of
the following:

1,. The supervisor

2. Compiled code

3. Another library module

In case 1, the ON condition code
required is determined by inspection of the
program interrupt code in the old PSW. For
cases 2 and 3" the ON condition code is
passed in pseudo-register IHEQERR, except
for the CHECK and CONDITION conditions,
when a parameter list is used. From this
code and information passed in the calling
sequence, a search word is generated in
lib:r'ary workspace in all three cases; the
format of the search word is identical with
that of the search word comparator (Figure
33) •

When the search word has been created,
IHEERR initiates a search through the chain
of DSAs to determine the action to be
taken. Each DSA is analyzed in turn, from
the end of the chain upwards towards the
beginning. The search proceeds as follows:

Chapter 6: Error and Interrupt Handling 65

1.

2.

Bit 6 of the flag byte of the first
available DSA is tested to see if that
DSA contains any ON fields. Then:

a. No ON fields: If the DSA is the
current DSA and the condition is
SIZE" STRINGRANGE, or SUBSCRIPT­
RANGE, the flag byte of this DSA is
examined to see if the condition is
disabled:

Disabled: the program returns to
the point of interrupt.

Not disabled: The DSA is ignored.

If the condition is
program returns to
interrupt.

CHECK, the
the point of

b. ON fields: The first word of each
ON field - the search word compara­
tor is compared with the search
word to see if a match is found.
If a match is found, the ON field
in the DSA is tested to see what
action is required.

If the last ON field is reached before
finding a match, then:

<:t. If the DSA is the current DSA and
the condition is SIZE, STRINGRANGE"
or SUBSCRIPTRANGE, the correspond­
ing flags in the DSA are tested.

b. The error code is tested to see if
the condition is CHECK.

This may result in a return to the point
of interrupt,. If not, the next DSA is
obtained and analyzed in the samew-dY.

If a match has been found, then the
following tests are made:

1. Is the condition disabled by a prefix
option? (This test can only be
applied when the matching ON field is
contained in the current DSA.)

2.

Disabled: No further processing
in IHEERR; the program returns to
the point of interrupt.

Not disabled: Next test is made.

Is the matching ON field a dummy ON
field?

Dummy ON field: The
ignored and the next
obtained.

field
DSA

is
is

No dummy ON field: Next test is
made,.

3. Is SNAP action required?

66

SNAP action required: A summary
flow trace is written on the
system output file. This output
contains the ON-condition
abbreviation and trace-back
information identifying the pro­
cedures in the chain. The state­
ment number may optionally be
included. Each procedure is
identified by chaining back
through the DSA chain until a
procedure DSA is found and then
using the contents of register BR
in the appropriate save area.
The search ends when the chain­
back reaches the external save
area.. An example of this output
is given in IBM Systern/360
Operating System: PL/I (F)
Programmer' s Guide,.

SNAP action not required: Proceed
normally.

In a multitasking program, when the
search word has been created" IHEERR calls
IHETER, which searches the ON fields of the
DSA in a similar manner to IHEERR. In the
absence of a matching ON field, the search
continues until the PRV VDA of the major
task is reached. If a subtask PRV VDA is
encountered during the search.. any ON
fields that have been copied into it from
the DSA of the attaching task are also
checked. If a match is not found, the
search continues through the DSAs of the
attaching task.

System Action

System action means writing a message
and then either continuing or raising the
ERROR condition. It is performed if:

1. the system action flag is set in the
matching ON field, or

2. no matching ON field can be found in
the DSA chain.

If a match is found, and an on-unit
address is given, then# to guard against
the possibility of recursive use when con­
trol returns from the on-unit by means of a
GO TO statement, a new block of library
workspace is obtained. This LWS is added
to the DSA chain as described in 'PL/I
Object Program Management'. In order to
pass control to the on-unit, the recursion
subroutine in IHESA is called; this esta­
blishes the correct environment and then
branches to the on-unit. Return from the
on-unit may be made in one of two ways:

1. On normal completion, control passes

to IHEERR, which returns to compiled
code at the point following the
instruction which caused the condition
to be raised.

2. Execution of a GO TO statement. In
this case the GO TO subroutine
(IHESAFC or IHETSAG) is entered to
carry out the housekeeping described
in Chapters 4 and 5.

STANDARD SYSTEM ACTION AND CONDITIONS OTHER
THAN ON CONDITIONS

If an ON condition is raised and there
is no matching ON field for the condition"
standard system action is taken. This
action is defined by the PL/I language.
Another set of error conditions can arise
at object time for which no specific ON
condition is defined in the language (e.g.,
logarithm of a negative number). In these
cases, implementation-defined system action
is taken.

An error message is printed when
PL/I-defined or implementation-defined
system action occurs. Then, depending on
the severity of the condition, eit,her proc­
essing continues or the ERROR condition is
raised. In a non-multitasking program, or
in a major task, raising the ERROR condi­
tion generally leads to the FINISH condi­
tion being raised and then to the abnormal
termination of the job step by the ABEND
macro. The exceptions to this are when
there is a GO TO statement in the ERROR or
FINISH unit. In a multitasking program, if
the ERROR condition is raised in a subtask,
instead of the FINISH condition being
raised, IHETSAZ is invoked. (See
'Termination of a Task' in Chapter 5.) A
complete list of object-time error messa­
ges, with details of the conditions that
cause them to be issued, is given in IBM
system/360 Operating system: PL/I 1Ff
,Erogrammer' s Guide,.

When the printing of an error message is
required, the appropriate modules of the
non-resident part of the error package are
dynamically loaded into storage. The seven
nodules concerned are:

IHEERD, IHEERE, IHEERI, IHEERO, IHEERP,
IHEERT: The error message modules;
they contain the error message texts
together with tables to locate the
messages. Only the module containing
the required message is loaded.

IHEESM: Contains the code required to
print SNAP and system action messages.
This module is always required.

An action indicator is obtained during the
process to determine whether normal proc­
essing should continue if the ERROR condi­
tion is raised. The appropriate action is
taken when the message has been printed as
output.

BUILT-IN FUNCTIONS

The two built-in functions,
ONCODE" may only be used in
they provide environmental
associated with the raising of
ON condition.

ONLOC and
an on-unit;
information
the latest

An interrupt can occur that can cause
entry to the on-unit in whiGh ONLOC is
specified. If this happens, the ONLOe
built-in function identifies the BCD name
of the entry point of the procedure in
which the interrupt occurs.

The address of this BCD name is computed
by chaining back through the DSA chain
until the first procedure DSA is reached
and by using the contents of BR in the
appropriate save area. The length of this
name and the maximum length are found;
these two lengths and the pointer to the
BCD name are inserted in the target SDV
whose address has been passed to ONLOC as a
parameter.

If ONLOC
unit, a null
target SDV.

is specified outside an on­
string is inserted in the

The ONCODE built-in function picks up a
value from the WONC field in the library
communication area in LWS previously set by
IHEERR. This value is implementation­
defined by the type of error that caused
the interruption. It may be specified in
anyon-unit. If specified in an ERROR or
FINISH unit, the ONCODE will be that of the
error or condition that caused the ERROR or
FINISH unit to be entered.

If ONCODE is specified outside an on­
unit, a unique ONCODE value (0) is
returned. A list of ONCODEs and an expla­
nation of their use are given in IBM
System/360 Operating system: PL/ICF>
Programmer's Guide.

Chapter 6: Error and Interrupt Handling 67

MODEL 91 INTERRUPT HANDLING

Program interrupts occurring in code
executed on an IBM System/360 Model 91
require different treatment from that des­
cribed above. This is necessary because
the Model 91 is capable of executing sever­
al instructions concurrently: hence a
situation may arise in which several pro­
gram exceptions may occur before an inter­
rupt is raised.

As soon as a single exception occurs"
the Model 91 ensures that execution of the
instructions already decoded is completed,
and then raises an interrupt. During exe­
cution of these instructions, further
exceptions may occur. If there are no more
instructi ons to be executed at the t.ime an
exception occurred, then the interrupt
raised is known as a precise interrupt; the
PSW contains the address of the instruction
following that in which the exception
occurred.

If, however, fUrther instructions were
executed, then the interrupt. is known as an
imprecise interrupt; the PSW at interrupt­
time contains the address of the next
instruction to be executed, but this is not
necessarily the address of the instruction
following any of the exceptions raised.
The instructions causing the exceptions
cannot therefore be identified.. If there
is more than one exception prior to
interrupt, then a multiple-exception impre­
cise interrupt is said to have occurred.
Full details of Model 91 operation and
interrupt handling are given in IBM
System/360 Model 91, Functional Charac­
teristics~ Form A22-6907.

When an imprecise interrupt is raised"
therefore, the Model 91 indicates the
situation by setting the interruption code
and the interruption length code in the PSW
as follows:

1. Recognition that an imprecise inter­
rupt has occurred: Bits 26-33 are set
to zero.

2. Identification of the type or types of
exception in the interrupt: Bits 16-25
are set as follows:

68

16
17
18
19
20
21
22
23
24
25

Implementation

Type of Exception

Protection
Addressing
specification
Data
Fixed-point overflow
Fixed-point divide
Exponent overflow
Exponent underflow
Significance
Floating-point divide

The Library module IHEM91 handles the
problems associated with imprecise inter­
rupts on a Model 91. This module is
obtained by the user specifying the Model
91 option in his program; this creates an
ESD entry that results in IHEM91 being
linkage-edited with the Library error and
interrupt module IHEERR.

Initially~ IHEERR tests bits 26-31 of
the PSW to determine if these bits are all
zero (i.e., if an imprecise interrupt
exists):

1. All zero: Imprecise interrupt; control
is passed to IHEM91

2. Any nit non-zero: No imprecise inter­
rupt: IHEERR handles the situation in
the normal way

On receiving control, IHEM91 tests bits
16-25 to determine which exceptions have
occurred. All bits (except significance)
are tested, as more than one type of
exception can occur in an imprecise inter­
rupt. If the bit tested is on (non-zero),
then:

1. Condition list: IHEM91 sets an entry
in a list of PL/I conditions and
program exceptions. The list is
stored in the LWE area of Library
workspace (LWS); an entry indicates
that the particular condition or
exception must be raised. The list
consists of from one to eight entries,
processed in the order:

UNDERFLOH
FIXEDOVERFLOW or SIZE
OVERFLOW
ZERODIVIDE
Data exception
specification exception
Addressing exception
Protection exception

Note: ZERODIVIDE is entered only once
in the list, even if floating-

point divide and fixed-point
divide both occur. significance
is not handled, as it is disa­
bled in all PL/I programs.
FIXEDOVERFLOW and SIZE cannot
both be raised since they are
raised by the same hardware con­
di tion.

2. Interrupt count: The value in the
ONCOUNT field (WONC + 4) in the LCA is
incremented by 1. Thus the total
value in this field is the total
number of conditions or exceptions to
be raised. When a multiple-exception
imprecise interrupt does not exist
(because there are no exceptions or
only a single exception) the value in
the ONCOUNT field is zero.

IHEM91 then returns control to IHEERR in
order that each condition in the list can
be raised. As described above, a condition
can be handled in one of two ways:

1. By entering an ON-unit, with exit by
either:

a. A normal return
b. A GO TO statement

2. By system action

These rules have to be considerably
extended for handling. a multiple-exception
imprecise interrupt:

1. ON unit for UNDERFLOW, FIXED OVERFLOW.,
SIZE, OVERFLOW or ZERODIVIDE:

a. Normal return: Next entry in the
list is processed .• If there are
no more entries to be processed,
then a re·turn is made to the
address in the psw.

b. GO TO statement: No more entries
in the list are processed, and no
information indicating the nature
of these unprocessed entries is
given. However., the ONCOUNT
built-in function, when used in an
ON unit, will return the number of
entries remaining unprocessed.

2. System action:

a. For UNDERFLOW: When the error mes­
sage has been printed, the next
entry in the list is processed.

b. For FIXEDOVERFLOW" SIZE, OVERFLOW,
or ZERODIVIDE: No fUrther entries
in the list are processed. If the
program terminates as an immediate
result of system action, messages
are printed to indicate the nature
of the unprocessed entries.

3. ERROR raised for a data. specifi­
£~tion, addressing or protection
exception: No further entries in the
list are processed. If the program
terminates as an immediate result of
the system action, messages are print­
ed to indicate the nature of the
unprocessed entries.

In order to implement these rules,
IHEERR tests for a multiple-exception
imprecise interrupt after:

1. Return from an ON unit: If a multiple­
exception imprecise interrupt exists,
IHEM91 is entered at a second entry
point in order to:

a. Process the next entry

b. Reduce the ONCOUNT value by one

c. Return to IHEERR

2. Program termination caused by ERROR
condition: If a multiple-exception
imprecise interrupt exits, IHEM91 is
entered at a third entry point. The
condition list is processed in order
to print out a message for each entry
not handled at the time the program
terminated. Program termination is
completed when the list is exhausted.

ONCOUNT Built-in Function

The ONCOUNT built-in function returns a
non-zero value only when this function is
used in an ON unit entered as a result of a
mUltiple-exception imprecise interrupt in a
Model 91. In such a situation, the binary
integer returned is the number of entries
that remain unprocessed (including the cur­
rent one) at the time the ONCOUNT function
is used.

Flush Instructions

A program may not operate correctly on
the Model 91 if it requires identification
of the instruction causing an imprecise
interrupt. Similarly., it may not operate
correctly if it requires that an imprecise
interrupt is honored before some instruc­
tion later in the program is executed.
However, the unwanted effects of imprecise
interrupts can usually be eliminated by
placing 'flush' instructions at certain
points in the program. A 'flush' instruc­
tion is an Assembler Language instruction
of the form:

BCR x,O

where x is not equal t? zero~ An instruc­
tion of this type 1S a no-operation
instruction for all of System/360, but it
is implemented in the Model 91 in such a

Chapter 6: Error and Interrupt Handling 69

way that its execution is delayed until all
previously decoded instructions have been
executed.

If the M91 compiler option is specified,
flush instructions are generated by the
compiler at the following points in the
program:

1. Before every ON statement

2. Before every REVERT statement.

3. Before code to set the SIZE condition

4. For every null statement

5. Before code to change prefix options.

If both the M91 and the STMT options are
specified, the compiler generates a flush
instruction to precede every statement in
the program.

Model 91 Object-Time Diagnostic Messages

If object-time diagnostic messages are
issued as a result of an imprecise inter­

, rupt, the words "AT OFFSET ••. " are
Teplaced by "NEAR OFFSET. ' •• " , since in

I these circumstances the instruction causing
the interrupt cannot be precisely identifi­
ed.

70

After a multiple-exception imprecise
interrupt on a Model 91., certain exceptions
will remain unprocessed if the ERROR condi­
tion is raised before all the exceptions
have been handled. If the program subse­
quently terminates as a direct result of
the ERROR condition being raised in these
circumstances" one or more of the following
messages will be printed out.

IHE810I

IHE811I

IHE812I

IHE813I

IHE814I

IHE815I

PROTECTION EXCEPTION UNPRO­
CESSED AFTER MULTIPLE-
EXCEPTION IMPRECISE
INTERRUPT

ADDRESSING EXCEPTION UNPRO-
CESSED AFTER MULTIPLE-
EXCEPTION IMPRECISE
INTERRUPT

SPECIFICATION EXCEPTION
UNPROCESSED AFTER MULTIPLE-
EXCEPTION IMPRECISE
INTERRUPT

DATA EXCEPTION UNPROCESSED
AFTER MULTIPLE-EXCEPTION
IMPRECISE INTERRUPT

ZERODIVIDE UNPROCESSED
AFTER MULTIPLE-EXCEPTION
IMPRECISE INTERRUPT

OVERFLOW UNPROCESSED AFTER
MULTIPLE-EXCEPTION
IMPRECISE INTERRUPT

CHAPTER 7: MISCELLANEOUS CONTROL PROGRAM INTERFACES

One function of the PL/I Library is to
provide a standard interface with the con­
trol program which can be utilized by
compiled code. Detailed implementation is
described in Chapters 3, 4, and 5. The
implementation described here concerns sup­
port for PL/I language statements and func­
tions with a control program interface that
does not fall into one of the categories
discussed in those chapters. These are the
PL/I statements DISPLAY, DEIA.Y, STOP and
EXIT, and the built-in functions TIME and
DATE.

Full and Minimum Control Systems

The full control system of IBM
System/360 Operating system will enable the
PL/I Library to issue macro instructions
which support the above-mentioned state­
ments and functions. The relationship is
as follows:

PL/I

DELAY

TIME

DATE

DISPLAY

Macro instruction

STIMER(WAIT)

TIME

TIME

WTO, WTOR (WAIT)

Thus, the library support for language
features is as follows:

DELAY: The execution of the current task
is suspended for the required time.

EXIT and STOP: Both these statements
raise the FINISH condition and then
cause termination of the PL/I program.

TIME: The time of day is returned to the
caller in the form HHMMSStht where:

HH hours (24-hour clock)
MM minutes
SS seconds

tht tenths, hundredths and thous­
andths of a second

DATE: The date is returned to the caller in
the form YYMMDD where:

YY =
MM
DD

year
month
day

DISPLAY: A message may be written on the
console with no interruption in execu­
tion or, if a reply is expected, execu­
tion is suspended until the operator's
reply is received. If the EVENT option
is used when a reply is expected,
execution is continued without inter­
ruption until a corresponding WAIT
statement is encountered; execution is
then suspended until a reply is
received.

The minimum control system does not
support the TIME and STIMER macro instruc­
tions. Use of the DELAY statement, and
TIME and DATE built-in functions will
result in the ERROR conditions beinq
raised.

Chapter 7: Miscellaneous Control Program Interfaces 71

CHAPTER 8: DATA PROCESSING ROUTINES

I/O EDITING AND DATA CONVERSION

PL/I allows the user a wide choice in
selecting the representation for his data,
both on the external medium and internally
in storage; considerable flexibility is
permitted in specifying changes of data
type and form. The library conversion
package is designed to implement the full
set of editing and conversion functions.
To avoid unnecessary duplication of code,
standard intermediate fonns are used. This
has the effect of reducing the number of
library modules in the package to about
fifty, to cover about two hundred logical
conversions. To speed up processing,
direct routines are provided for some of
thE~ most frequently used conversions, while
the compiler generates in-line code for
some of the simpler ones.

To restrict further the storage require­
ments for the library conversion package,
the F level compiler analyses the actual
changes of data required for a particular
execution. Sometimes these are not fully
known at compile time, and then a W0rst
case has to be taken. From this informa­
tion, by use of the linkage editor LIBRARY
statement and external references within
the compiled modules. the loading of con­
version modules is limited to those known
to be required. This technique can be of
considerable value" especially when only a
small number of data types is used by the
source programmer.. Further details are
provided in IBM System/360 Operating Sys­
tem: PL/I (F) Compiler., Program Logic Manu­
al..

With one exception, all the modules
contained within the library conversion
package are called by means of the PL/I
standard calling sequence (described in
'Linkage Conventions' " Chapter 2) • The
exception is IHEVCS (complex-to-string
director) which is called by the operating
system external standard calling sequence.

The letters in the module name indicate
the module usage; see Figure 34.

STRUCTURE OF LIBRARY CONVERSION PACKAGE

To perform a change fron. a source data
item to a target data item may involve a

72

succession of steps and the use of several
individual library modules within the pack­
age,. The structure of the library conver­
sion package is shown in Figul:'e 36.

In association with each individual
step. the attributes of the source or the
target fields, or of both, must be known.
The required information is provided in the
calling sequences. Each data item has a
corresponding format element descriptor
(FED) or data element descriptor (OED).
With one exception, the formats of these
control blocks are described in Appendix H.
The exception is that of a DED generated at
object time for communication between
library modules. (See Figure 35.)

r------------------T----------------------,
I Letters I I
~------------------~ I
I 1 2 3 4 5 6 I Meaning I
r------------------t----------------------~
I I H E D I Director I
~------------------t----------------------~
I I H E K I Picture check I
~------------------t----------------------~
I I H E V P I Conversion involving I
I I packed-decimal I
I I intermediate, except I
I I IHEVPG and IHEVPH I
r------------------t----------------------~
I I H E V F I Conversion involving I
I I floating-point I
I I intermediate I
~------------------t----------------------~
I I H E V K I Conversion involving I
I I numeric fields I
r------------------t----------------------~
I I H E V S I Conversion involving I
I I strings I
r------------------t----------------------1
I I H EVe I Conversion involving I
I I external character I
I I data being converted I
I I to type string I
~------------------t----------------------~
I I H E V Q I Direct conversion to I
I I improve performance I
r------------------t----------------------~
I I H E U P I Mode conversions I L __________________ ~ ______________________ J

Figure 34. Module Usage indicated by Let­
ters of Module Name

r-----,.--------------------------.---,
I , Bit ,

I ~---------T---------T---------~---------T---------T---------T---------T---------~
I Cod e I 0 , 1 , 2 , 3 , 4 I 5 I 6 I 7 I
~------+---------+---------+---------+---------+---------+---------+---------+---------i I , I ,Non-, , , I I ,
I = 0 I 1 I 1 I sterling/ Short I 1 ,Decimal I Fixed 'Real I

l------+---------+---------+---------+---------+---------+---------+---------+---------~ I = 1 I 1 , 1 I Sterling, Long , 1 I Binary I Float I Complex I • ______ ~ _________ ~ _________ ~ _________ ~ _________ ~ _________ ~ _________ ~ _________ ~ _________ J

~ote: Bits 0, 1 and 4 are always 1.

Figure 35. DED Flag Byte for Character Representation of an Arithmetic Data Item

This DED is created when it is necessary
to convert a character representation of an
arithmetic value to an intermedia·te coded
arithmetic data type, prior to conversion
to a string target.. The form of -this DED
is the same as that for a coded arithmetic
data item (CAD), and consists of a flag
byte and precision bytes representing the
quantities p and q.. As for coded data., the
flag byte defines the attributes of the
corresponding data item; bit 1 is set to 1
to indicate that a character representation
of an arithmetic value is referred to.

Directors

The structure chart makes frequent ref­
erence to 'directors'. These modules are
used to fulfil two main purposes:

1. The matching of source element with
target element, which may not be known
at compile time.

2. The controlling of the flow at object
time by means of interpretative infor­
mation passed to them .•

The latter function is best illustrated by
the arithmetic conversion director
(IHEDMA), where a single call determines
the flow through a sub-pa~kage of over
twenty arithmetic converS1on routines.
(See below in 'Arithmetic Conversions'.>

There
levels e

are director routines at
(See Figure 36.> They are:

1. Complex format directors.

four

2. Input/output format directors and the
. complex-to-string' director.

3. String-to-arithmetic and arithmetic­
to-string directors.

4. Arithmetic conversion director.

All directors except the complex-tc:>-string
directc can be called directly from

compiled code; the complex-to-string direc­
tor is invoked from the complex format
directors or from list/data-directed input
only ..

Any director can call any below it in
the structure.

Edit-directed I/O

Edit-directed transmission allows the
user to specify the storage area to which
data is to be assigned or from which data
is to be transmitted and the actual form of
the data on the external medium. The
information concerning storage areas is
specified in the source program by means of
a data list. and the information about the
form of the data on the external medium by
means of a format list.

The library conversion package is
designed to implement the executable format
scheme discussed in Chapter 3. This is
done by the object time matching of list
item and format item through the use of the
director routines mentioned above. The set.
of I/O directors provided and their asso­
ciation with the PL/I data format items is
shown in Figure 37.

I/O EDITING

Complex Directors: complex format items on
the external medium may have real and
imaginary parts of differing attributes.
When the list item and the target field are
of type arithmetic, this situation is hand­
led in the complex director by making
consecutive calls for real and imaginary
format items, and passing control to the
particular format director associated with
the format item.

When the target field is a
however~ there are two problems
format items. First, the data

string,
with C

on the

Chapter 8: Data Processing Routines 73

r-------------,
I Compiled I

r-----------------T----------~ code ~----------T-----------------,
I , I I I
V l------T-_----J I I

r-------------, I I I
I Complex I I I I

r--~ format ~----------I---------------->I I
I I di rector I' I I
I L------T------J I I I
I I I I I
I I I I I
I v I V I
I r-------------, I r-------------, I
I 1 Complex- I I I Input/Output I I
I I to-string I I<---------~ format ~--------->I
I I director I I I directors ~-, I
I L _____ ~------J I L------T------J , I
I I I I I I

<------I---------I-----------------I-----------------~ I I
I I I I I I
I I V I I I
I I r-------------, I I I
I I I String<-> I I I I
I ~--------->I arithmetic ~----------I--------I------->I
I 1 I directors ~----------I------->I I
1 I L------T------J I I I
I I \ \ I \

I<------I---------I-----------------~ I I I
I \ \ \ 1 1 1
I I I V I V I
1 I I r-------------, I r-------------, I
I I I I Mode I I 1 Decimal I I
I \ ~--------->I conversion \<---------1 I constant<-> 1 I
I I I \ routines I I \ arithmetic I I
I I \ L------T------.:I I L------:r------J I
\ I \ I I I <-------~ 1 L _________ I _________________ I---------------->I 1 I
V I I I V I

r-------------, I I I r-------------, I
I Arithmetic I I I I I Direct 1 I
I conversion I<---------~-----------------J I I arithmetic I I
I director , I I conversion 1 I
L------T------J I L _____________ J I

I r-----------------~ I
I I I I
V V V V

LWS
Level

No.

4

3

2

1

o

r----·---------, r-------------, r-------------, r------------,
I Data I I string I I Ar ithmetic I

I conversion I
I routines I

I analysis I
1 routines ,

1 Picture 1
I checking I
I routines I

I routines I 0
I 1 L ___ . _________ J L _____________ J L _____________ J L ____________ J

Note~ <-> indicates a conversion in either direction

Figure 36. structure of the Conversion Package

external medium must be scanned dynamically
in order to deduce the attributes of the
format item. The information derived from
this is stored in a special DED. (See
'structure of Library Conversion Package'.)
This DED is necessary for the conversion of
all format items and constants.

14

Second, the base, scale and precision of
the real and imaginary parts have to be
compared, to determine the highest set of
attributes, so that the form of the con­
verted data in the string target may be
known. This is done by invoking a special
director, called the complex-to-string
director, which performs the necessary ana­
lysis on the DEDs of the real and imaginary

parts of the C format item. Each item is
then converted by the rules of type conver­
sion to coded complex and then to string.

Input/Output Directors: The input/output
directors named above (other than C format)
perform three major functions. Because
there are slight differences between input
and output, the functions are described
under these headings.

Input: A call is made to IHEIOD to request
w bytes and a data field pointer. If the w
bytes can be obtained from the current
buffer, the address returned to the input

director is that of the data field in the
buffer itself. If not., a VDA is obtained
and the requisite field of w bytes is built
up in the dynamic area. The VDA address is
stored in WSDV in the LCA.

These two conditions are normal. If, on
the other hand, an abnormal return occurs
at this point, this signifies that an
ENDFILE condition exists and that a return
has been made from an ENDFlLE on-unit. In
this case, the I/O director must return
control to the code associated with the
next PL/I source statement, which is point-

r------------------T----------------T-----------------1
I PL/I I I Module name I

I I ~--------~--------1
I format item I Director I Input I output I
~------------------+----------------+--------+--------q

Complex C I IHEDIM I IHEDOM I

Fixed and
floating point

Bit string

Character string

Picture

F/E

B

A

I I I
I IHEDIA I IHEDOA I
I I I
I I I
I IHEDID I IHEDOD I
I I I
I IHEDIB I IHEDOB I
I I I

P (DEC,STL) I IHEDIE I IHEDOE I
P (CHAR) I IHEDIB I IHEDOB I __________________ L ________________ ~ ________ ~ ________ J

Figure 37. Input/Output Directors for PL/I Format Items

r---,
I INPUT I
~----------------------T--------------------------~---------------------------------~ I String value I List item I Conversion I
~----------------------+--------------------------+---------------------------------~
I I Arithmetic I Character to arithmetic I
I Character string I Character string I Character string assignment I

I I Bit string I Character to bit string I
1----------------------+--------------------------+---------------------------------~
I I Arithmetic I Bit string to arithmetic I
I Bit string I Character string I Bit string to character string I
I I Bit string I Bit string assignment I
1----------------------+----------,---------------+---------------------------------~
I Arithmetic I Arithmetic I Arithmetic type conversion I
I (including I Character string I Arithmetic to character string I
I expression) I Bit string I Arithmetic to bit string I
~----------------------L--------------------------L----_____________________________ ~
I OUTPUT I
~---------------------T--------------------------~---------------------------------~
I List item I string value I Conversion I

r---------------------+--------------------------+---------------------------------~
I Arithmetic I Character representation I Arithmetic to character string I

I I of data value I I
l----------------------+----------,---------------+---------------------------------~
I Bit string I Bit string in character I Bit to character ,
I I form I I
1----------------------+--------------------------+---------------------------------~
I Character string I Character string I Character string assignment I L _____________________ ~ __________________________ ! _________________________________ J

Figure 38. Conversion for List/Data Directed I/O

Chapter 8: Data Processing Routines 75

ed at by the second word of pseudo-register
IHEQCFL.

I:E there is no abnormal return, the
target DED is inspected by the director
routine and the first stage of the neces­
sary conversion process is initiated by
means of a suitable call to a routine below
the input director level. (See structure
chart, Figure 36.>

When the conversion has been completed
and the data item assigned to the list
item, the input director calls the I/O
package again. At this stage, the I/O
routine tests for the TRANSMIT condition"
and, if necessary" calls lHEERR, to specify
that the TRANSMIT condition is active" and
that the format item transmitted is there­
fore suspect. In addition, any VOA that
has been allocated is freed.

output: A call is made to the library I/O
package to obtain an address for the exter­
nal data item. If the w bytes specified
can be satisfied within the current buffer,
the address of the current buffer pointer
is returned; if not, a VDA is obtained and
the address of this dynamic storage is
passed back. The source OED is then
inspected and a call is made to the first
subroutine in the conversion package to
perform conversion.

After assignment of the data item to a
buffer area or VDA, a call to the appropri­
ate I/O routine is made from th e output
director. If a VOA was used, the output
field is split off into the appropriate
buffers and the dynamic storage released.

:E'or both input and output, control is
finally returned to compiled code.

List- and Data-directed Input/Output

The total set of conversions required by
list/data-directed I/O is shown in Figure
38.

Since all the conversions represented
deal with change of data from one internal
representation to another, the conversion
package is fully capable of performing the
conversion for list/data-directed I/O. The
type conversions are fully defined in the
PL/I language and the modules that imple­
ment them are given below. Some examples
of list/data-directed I/O are included in
IBM Systeml360 Operating System: PL/I (F)
Programmer's Guide.

76

MODE CONVERSIONS

Since data may be declared COMPLEX, and
complex values may be written or read by
list-directed and data-directed input and
output, or by the C format item, two
routines are provided to facilitate conver­
sions of ~ode during I/O editing and during
conversions between internal arithmetic and
string data.

TYPE CONVERSIONS

Four director routines are provided to
control the flow which enables changes
between data of type string and data of
type arithmetic. as required by the PL/I
language,. These routines are used by
list-~ edit- and data-directed I/O and in
some internal conversions.

r-----------T-----------------------------,
I I TO: I
1 ~----------T------------------~
\ I Arithmetic I String \
I I ~--------T---------~
\ I \ Bit \ Character \
~-----------t----------t-----,---t---------~
I FROM: I \ \ I
\ I \ \ \
\ Arithmetic \ I IHEDNB \ IHEDNC I
\ I I I \
I Bit string\ IHEOBN I I I
I I I I I
I Character I IHEDCN \ \ \
I string I I I \ L ___________ i __________ i ________ i _________ J

Figure 39. Modules for Type Conversions

STRING CONVERSIONS

A set of generalized interpretive rout­
ines is provided to support the possible
string conversions and assignments that may
exist. Each module interrogates source and
target irlformation contained in the string
dope vectors and DEDs in order to handle
truncation, padding" and alignment for
fixed and varying strings. Figure 39 shows
the modules provided; it should be noted
that there is no difference between a
source character string with a picture and
one without, as once the data has been
checked into the source field" no further
use is made of the picture.

r-~------'-------------------------------'
, , TO: I
I ~------T--------~--------------i
I I Bit ICharacterlcharacter with I
, , I ,picture I
~--------+------+---------+--------------~
I FROM:, 'I ,
I , I I ,
,Bit 'IHEVSA' IHEVSB' IHEVSF I
, , 'I I
ICharacterlIHEVSDI IHEVSC I IHEVSE I L __ -. ______ ..L-_____ .L _________ .L ________ , ______ J

Figure 40. Modules for String Conversions

ARITHMETIC CONVERSIONS

A direct routine IHEVQA converts
floating-point data to fixed-point binary"
in order to provide fast processing of this
frequently used routine. Normally, how­
ever, all conversions (includinq this one)
are dealt with by the library conversion
package.

This package carries out editing and
conversions for all type arithmetic source
fields which have type arithmetic target
fields. It also handles conversions of
format items and constants" which are char­
acter representations of arithmetic type
data. The flow control through this sub­
package is achieved by the arithmetic con­
version director described below.

The method employed is to use an inter­
mediate form of representation according to
the form of the source data and to relate
this intermediate form to the target data,
either by direct conversion or by use of a
second intermediate form (which implies
radix change). The two intermediate forms
in use are:

1. Packed decimal intermediate (PDI)

This consists of 17 digits and a sign"
together with a one-word scale factor
(WSCF) in binary representing powers of
t.en.

2. Long floating-point intermediate (FPI)

This is the standard internal form" and
consi,sts of 14 hexadecimal digits,.

The logical flow through the package is
shown in Figure 41.

The
(IHEDMA)
required
version.
compiled

arithmetic conversion director
links together the modules

for a particular arithmetic con­
It is called either directly by

code or by other director rout-

ines. The flag bytes in the source and
target DEDs are interrogated to determine
which modules are required for the current
conversion and their order of execution.
The library communication area is used to
record information required by successive
modules as follows:

WBR1 Address of entry point of second
module

WBR2 Address of entry point of third
module (if required)

WRCD Target information

The conversion director then passes con­
trol to the first module in the chain: the
first transfers control to the second, and
so on until the conversion is complete.
The last module returns to the program
which called the conversion director. All
the modules which can be first in the chain
set up by th~ conversion director use the
source parameters passed to this director.
The first conversion is always to the
intermediate form of the same radix as the
source. The results are stored in the
following LCA fields:

WINT Binary results

WINT Decimal results
WSCF

Three modules in the arithmetic package
deal with ua~a on the external medium. Two
modules handle the output of F and E format
items from packed decimal intermediate for­
mat, and the third provides conversion from
F or E format items to packed decimal
intermediate format. The LeA fields used
for these modules are:

WFED A(FED) at input

WFDT A(FED) at output

WSWA Switches
WSWC

WOCH A(Error character): for ON CHAR
built-in function

WOFD Dope vector for ONSOURCE built-in
function

DATA CHECKING AND ERROR HANDLING

Checking is carried out on data on the
external medium for edit-, data- and list­
directed input and on internal data items
taking part in conversions.

Chapter 8: Data Processing Routines 77

r----------,
,Arithmetic I

r-------------------------------------~conversion~--------------------------------------1
I , director I I
I r-------------, L __________ J r-------------, I
I I Sterling I VKC I I I
j-> I numeric field, <--------------, r--------------~ Binary I <--~
I 1 ,VKG, , VPG I constant I I
, L _____________ J , I L _____________ J I

1 'I I
I r-------------, , , r-------------, I
1 ,Decimal, VKB I I VPB 'Binary I 1
l->,numeric fieldl<--------------~ ~------------->, fixed I<--~
I I da ta I VKF I I VFD I data I I I L _____________ J , I L _____________ J I

I V V I
I r-------------, r--------------, r--------------, I
I I Decimal I VPF , Library 'VPA' Library , I
~->, fixed ,<----->1 packed decimal 1<-----> I floating-point, I
I I data I VPD I intermediate I VFA I intermediate I I I l _____________ J L ______________ J L ______________ J I

I 1\ 1\ I
I r-------------, I I r-------------, I
I I F format I VPE I I VFC I Floating- I I
~->I character I<--------------~ ~------------->I point I<--~
I I string I VPB I I VFE I data I I I L _____________ J I , L _____________ J I

I 'I ,
I r-------------, , , r-------------, I
I I E format, VPE , I I Bit string I I
L_>' character ,<--------------J L _____________ >I constant I<--J

,string I VPC VPH I I l _____________ J L _____________ J

Note:..;.. The three-letter names, e.g., VKC, are the last three letters of the module name. A
name above the flow lines indicates a conversion from left to right; a name below
the line indicates a conversion from right to left.

Figure 41. structure of the Arithmeric Conversion Package

A.II data described by a picture is
matched against the picture description.
When a P format item is read in, this
checking is performed by one of three
~icture check routines (decimal, sterling,
and character) which is called by the
appropriate input director.

F/E format items are checked against the
format element descriptor (FED). The vali­
dity of the characters in the data item is
investigated prior to conversion to packed
decimal intermediate format.

If B format items are assigned in the
target DED to a bit string, the items are
checked in the character-to-bit module.
otherwise, a pre-scan within the B format
input director checks that all characters
in the string are either zero or one.

If A format or B format is specified on
input without a w specification, the com­
piled code calls IHEDIL (illegal-input for-

78

mat director). This routine calls the
execution error package, passing an error
code. This causes a message to be printed
and the ERROR condition to be raised.

List/Data-Directed

Within the conversion package, the con­
stants which are converted to arithmetic
are checked in the appropriate internal
conversion modules.

Decimal constants are converted by the
F/E-to-PDI routine and are therefore
checked by that routine as above.

Binary constants are checked prior to
conversion to floating-point intermediate.

Bit string constants are checked prior
to conversion to floating-point intermedi­
ate.

Internal Conversions

Checking of data is provided for the
following:

1. Character string to arithmetic.

2. Character string to bit string.

3. Character string to pictured character
string.

4. Bit string to
string.

pictured character

In cases 1 to 3 above, if an invalid
character is found the CONVERSION condition
is raised; in case 4, the ERROR condition
is raised.

When CONVERSION is raised, an error code
is passed to IHEERR. The error code passed
depends:

1. On the type of operation (internal,
I/O, or I/O with TRANSMIT condition
raised) .

2. On the various formats and conversions
involved. These consist of:

F format
E format
B format
Character string to arithmetic
Character string to bit string
Character string to pictured charac-

ter string
P format (decimal, character and

sterling)

Different ONCODE values are set for each,
and may te interrogated in an on-unit
provided for the CONVERSION condition. If
the condition is associated with I/O, it is
also possible that a TRANSMIT condi,tion may
be active. This can be tested in the
on-unit for CONVERSION. A list of ONCODE
values is given in IBM System/360-2Perating
System: PL/I (F) programmer's Guide~

The conversion package routines set the
following information before invoking the
execution error package:

WOFD

WOCH

IHEQERR

Dope vector for field scanned

Address of character in error

Value of the error code. For
I/O editing, a 1 bit is set in
bit zero.

Bits 12 to 15 are set according

to the
formed.

conversion being
(See Figure 42.)

per-

r-----------------------------~-----------,
I Conversion I Code I
~-----------------------------+-----------~

F format I 1 I
E format I 2 I
B format I 3 I
Character string to I 4 I

arithmetic I I
Character string to I 5 I

bit string I I
Character string to I 6 I

pictured character string I I
P format (decimal) I 7 I
P format (character) J 8 I
P format (sterling) I 9 I _____________________________ ~ ___________ J

Figure 42. Conversion Code Set in IHEQERR

In addition to the occurrence of the
CONVERSION error, the SIZE condition can
also occur in the conversion package. Once
again, a distinction is made between inter­
nal conversions and conversions involving
the external medium. In the latter case,
bit zero in IHEQERR is again set to one.

In certain cases an illegal conversion
may be requested or an invalid parameter
may be passed to a conversion routine. In
these cases the conversion package calls
the error-handling subroutine, having set
register RA to point to an error code.
This causes a message to be printed which
describes the error found; the error­
handling subroutine then raises the ERROR
condition.

If a CONVERSION error occurs, the
program can proceed in three ways:

1. If system action is specified, a mes­
sage will be printed and the ERROR
condition raised.

2. If CONVERSION is disabled, the conver­
sion will continue, ignoring the char­
acter in error.

4

3. If an on-unit exists, it will be
entered. If the on-unit returns con­
trol to the conversion routines, they
will assume that either the ONCHAR or
ONSOURCE pseudo-variable has been used
to correct or replace the character or
field in error, and will automatically
retry the conversion.

Note: If the pseudo-variables have
been used to correct the error, and if
on-unit attempts to return control to
conversion, a message will be printed
the ERROR condition raised.

not
the
the
and

Chapter 8: Data Processing Routines 79

COMPUTATIONAL SUBROUTINES

computational subroutines within the
PL/I Library supplement compiled code in
the implementation of operators and func­
tions within four main groups. These
groups are:

1. String handling

2. Arithmetic evaluation

3. Mathematical functions

4. Array functions

In addition to the description provided
in this document, detailed information on
algorithms and performance is published in
IBM System/360 Operating System: PL/I
Eubroutine Library: Computational Subrout­
ine~.

A number of error and.excep~ional condi­
tions not directly covered by PL/I-defined
ON conditions may occur in these subrout­
ineB. In these cases, a diagnostic message
is printed and the ERROR condition raised.
By use of the ONCODE built-in function, the
cause of interrupt may be ascertained in an
ERROR unit and appropriate action may be
taken. A list of the error messages and
ONCODES is given in IBM. System/360 Operat­
ing~stem: PLiI (F) Programmer's Guide.

When an aggregate of data itemB is being
processed, the indexing through the aggre­
gate is achieved by in-line cone, as the
library routines generally handle indivi­
dual elements only.. The array functions,
however, perform their own indexing, so
that only a single call from compiled code
is made.

For modules handling data in coded form,
character six of the module name indicates
the type of data concerned; the meanings of
this character are given in Figure 43.

r------------------T----------------------,
I Data I Character I
~------------------+----------------------~
I I Real or I
I Internal form I Real complex Complex I
~-----------------+----------------------i
I Bi nary I B U I
I Packed decimal I D V I
I Binary or I I
I packed decimal I F X I
I Short float I S W G I
, Long float I L Z H I l __ . ________________ .L ______________________ J

Figure 43. Relationship of Data Form and
Sixth Character of Module Name

80

STRING OPERATIONS AND FUNCTIONS

The library string package contains
modules for handling both bit and character
strings. Generally, individual modules
handle a particular function or operation
for bit or for character string; in the
interests of efficiency however, additional
modules are provided to deal with byte­
aligned data for some of the bit string
operations.

The functions LENGTH and UNSPEC are
handled directly by compiled code; support
for BIT and CHAR is provided in the library
conversion package.

Linkage to the string subroutines is by
means of the operating system standard for
the functions SUBSTR, INDEX and BOOL, and
by the PL/I standard for all others. The
functions REPEAT, HIGH, and LOW use the
PL/I standard as they are implemented as
entry points to the concatenation and
assign/fill routines.

The address and the maximum and current
lengths "of a string are passed to library
modules by means of string ?ope vectors.
All string lengths supplied 1n SDVs are
assumed to be valid non-negative values;
unpredictable results will ensue if this
condition is not satisfied.

Conversions (e.g. of decimal integers
into binary integers for functions such as
REPEAT) and evaluation of expressions are
handled by the compiler, which is also
responsible for recognising instances of
byte-alignment which are suitable for the
byte-aligned bit functions provided.

The general design of the string package
is influenced by the concept that complete
evaluation of the right-hand side of an
assignment statement occurs before the
assignment. In this evaluation, there is
usually an intermediate stage in which a
partial result is placed in a field acting
as a temporary result field. This does not
prevent the compiler from optimizing by
providing the actual target field of the
assignment as the temporary result field,
subject to the following conditions:

1. If the target field is the same as a
field involved in expression evalua­
tion, an intermediate area is required
to develop the result (unless other­
wise stated in the module description
summaries). For example, A = B II A
requires an intermediate field., but A
= A & B does not.

r------------T----------T-----------------------T---------,
,PL/I I PL/I I Bi t S'tring I Character I
,Operation I Function ~----------T------------~ string ,
, I I General I Byte-aligned I I

~-----------+----------+----------+------------+---------~
And I I Use BOOL I IHEBSA I I
Or I I Use BOOL I IHEBSO I I
Not I I Use BJOL I IHEBSN I I
Concatenate I REPEAT I IHEBSK I I IHECSK ,
Compare I I IHEBSD I IHEBSC I IHECSC I
Assign I I lHEBSK I IHEBSM I IHECSM ,
Fill I , IHEBSM , , IHECSM ,

I HIGH/LOW I I I IHECSM I
I SUBSTR , IHEBSS I I IHECSS I
I INDEX I lHEBSI , I IHECSI I
I BOOL I IHEBSF , I , ____________ ~----______ ~ __________ ~ ____________ L _________ J

Figure 44. String operations and Functions

r---,
I ARITHMETIC OPERATIONS I
~--------------------------------------T--------T--------T--------T--------~
, Operation , Binary I Decimal, Short I Long I
I I fixed I fixed I float I float I
~--------------------------------------~--------L-----_-_~ ________ ~ ________ ~
I Real Operations I
~--------------------------------------T--------T--------T--------T--------~ I Integer exponentiation: x**n , IHEXIB , IHEXID , lHEXIS I IHEXIL I
I General exponentiation: x**y I , I IHEXXS I IHEXXL ,
I Shift-and-assign. Shift-and-load I I IHEAPD I I I
~---------------------------------------L--------L----____ ~ ________ ~ ________ ~
I Complex Operations I
d---------------------------------------T--------T--------T--------T--------~
I Multiplication/division: Z1*Z2' Z1 /z 2 I IHEMZU I IHEMZV I , I
I Multiplication: Z1*Z2 I I I IHEMZW I IHEMZZ I
I Divi$ion: Z1/Z2 'I I IHEDZ.W I IHEDZZ I
I Integer exponentiation: z**n I IHEXIU I IHEXIV I IHEXIW I IHEXIZ I
I General exponentiation: Z1**Z2 I I I IHEXXW I IHEXXZ , L ______________________________________ ~ ________ L ________ ~ ________ ~ ________ J

r--, I ARITHMETIC FUNCTIONS I
r--------~--------T--------T--------~--------~
I Function I Binary I Decimal, Short I Long I
I 'fixed I fixed I float I float I

~---------~--------~--------~--------~-------~
I Real Arguments I
~----------T--------T--------T---~----T--------~
, MAX, MIN I lHEMXB , IHEMXD I IHEMXS , IHEMXL I
I ADD , I IHEADD , I ,
~----------L--------~--------~--------~-------1
, Complex Arguments I
~----------T--------T--------T--------T--------1
I ADD I I IHEADV I I I
I MULTIPLY I lHEMPU I IHEMPV I I I
I DIVIDE I IHEDVU , IHEDVV I , I
I ABS , IHEABU I IHEABV I IHEABW I IHEABZ I
L __________ ~ ________ ~ _______ ~ _______ -~-------_J

Figure 45. Arithmetic Operations and Functions

Chapter 8: Data Processing Routines 81

2. Padding of fixed-length strings does
not occur automatically when a string
operation is performed, except in the
case of assignment of fixed-length
character strings and fixed-length
byte-aligned bit strings. separate
routines are available for padding.

ARITHMETIC OPERATIONS AND FUNCTIONS

Library arithmetic modules provide sup­
port for all those arithmetic generic func­
tions and operations for which the F level
compiler neither generates in-line code nor
(as for the functions FIXED, FLOAT, BINARY,
and DECIMAL) uses the library conversion
package.

Linkage between compiled code and the
arithmetic modules is establishe1 by means
of the operating system standard for the
functions supported and by means of the
FL/I standard for the operators supported.
The module description summaries provide
information about linkage to individual
modules.

Fixed-point data often require data ele­
ment descriptors (DEDs) to be passed in
order to convey information about precision
(p, q). Binary data is always assumed to
be stored in a fullword correctly aligned,
with 0 < P ~ 31. Decimal data is always
assumed to be packed in FLOOR (p/2) + 1
bytes, where 0 < p ~ 15. Where such fields
introduce high-order digits beyond the
specified precision, these digits must not
te significant.

In decimal routines, the target area is
assumed to be of the correct size to
accommodate the result precision as defined
by the language.

Where assignment to a smaller field is
required, the compiled code should generate
an intermediate field for the result and
subsequently make the assignment. This
does not apply to ADD, MULTIPLY and DIVIDE
with fixed-point decimal arguments, which
perform the assignment themselves. such
action by compiled code avoids much unne­
cessary object-time testing and enables a
clear distinction to be made between SIZE
and FIXEDOVERFLOW conditions.

Floating-point arguments are assumed to
bE! normal ized in aligned fullword or dou­
bleword fields for short or long precision
respectively; the results returned are sim­
ilarly normalized.

82

MATHEMATICAL FUNCTIONS

The library provides subroutines to deal
with all float arithmetic generic functions
and has separate modules for short and long
precision real arguments, and also for
short and long precision complex arguments
where these are admissible.

Linkage to all mathematical subroutines
is by means of the operating system stand­
ard.

Where evaluation or conversion of an
argument is necessary, this is done prior
to the invocation of the library module.
Hence, all arguments passed to the mathema­
tical subroutines must be of scale FLOAT.
As such, it is assumed that the arguments
are normalized in aligned fullword or dou­
bleword fields for short or long precision
respecti vely. The resul t-s returned are
normalized similarly.

r---,
I Real Arguments I
t-----------------------T--------T--------~
1 I Short I Long I

I Function I float I float I
t-----------------------+--------+--------1
I SQRT I IHESQS I IHESQL I
I EXP I IHEEXS I IHEEXL I
I LOG,LOG2,LOG10 I IHELNS I IHELNL I

I SIN, COS,SIND,COSD I IHESNS I IHESNL I

I TAN, TAND I IHETNS I IHETNL I

I ATAN, ATAND I IHEATS I IHEATL I
I SINH, COSH I IHESHS I IHESHL I

J TANH I IHETHS I IHETHL I
I ATANH I IHEHTS I IHEHTL I

I ERF, ERFC I IHEEFS I IHEEFL I L _______________________ ~ ________ ~ ________ J

r---,
I Complex Arguments I
~-----------------------T--------T--------~
I I Short I Long I

I Function I float I float I
r-----------------------+--------+--------~
I SQRT I IHESQW I IHESQZ I

I EXP I IHEEXW I IHEEXZ I

I LOG I I HELNW I IHELNZ I
I SIN,COS,SINH,COSH I IHESNW I IHESNZ I

I TAN, TANH I IHETNW I IHETNZ I

I ATAN, ATANH I IHEATW I IHEATZ I L _______________________ ~ ________ L ________ J

Figure 46. Mathematical Functions

ARRAY FUNCTIONS

The library provides support for com­
piled code in the implementation of the
PL/I array built-in functions SUM, PROD,
POLY, ALL, and ANY. Calls to array func­
tion modules are by means of the operating

system standard; the indexing routines"
which are used internally by the library,
use the PL/I standard calling sequence.

In all cases, the source argument.s are
arrays and the function value returned is a
scalar. The evaluation of this function
value requires only one call from compiled
code" indexing through the array being
handled internally within the library"

In the interests of efficiency, two sets
of modules are provided: those which deal
with arrays whose elements are stored con­
tiguously (simple arrays), and those which
also deal with arrays whose elements are
not ·in contiguous storage (interleaved
arrays) .

In order to deal with array element
addressing, the library modules require an

array dope vector (ADV or SADV) to be
passed as an argument. The format of these
dope vectors is described in Appendix H.
The number n" the number of dimensions of
the array# is required in addition to the
ADV or SADV, and is passed as a separate
argument.

The PL/I language requires that the
scalar values resulting from the use of the
array functions" SUM, PROD, and POLY,
should be floating-point. Since the
library module~ are addressing each array
element successively, the necessary calls
to the conversion routines (to change scale
from FIXED to FLOAT) are made from the SUM,
PROD" and POLY modules which have fixed­
point arguments. In the case of ALL and
ANY functions, it is expected that any
necessary cqnversion to bit string will be
carried out betore the library is invoked.

r----------.------------------------T----------------------,
I I Simple arrays. and I Interleaved string I
I I interleaved arrays' of I arrays with fixed- I
I I variable-length stringsl length elements I
~----------+------------------------+----------------------~
I Indexers I IHEJXS I IHEJXI I
I ALL,. ANY I IHENLl I IHENL2 I L _________ ~ ________________________ 4 _____________ ~ ________ J

Note: IHEJXI is also used for indexing
through interleaved arithmetic arrays

r--------------T--------------------T---,
I PL/I I Fixed - point I Floating-point arguments I
I functions I arguments ~--------------------T--------------------~
I I I Short precision I Longprecision I
I ~--------T----~------+--------T-----------+--------T~----------~
I I simple I Interleaved I Simple I Interleaved I Simple I Interleavedl
~--------------+--------+-----------+--------+-----------+--------+-~---------~
I SUM real I IHESSF I IHESMF I IHESSG I IHESMG I IHESSH I IHESMH I
I complex I IHESSX I IHESMX I IHESSG I IHESMG I IHESSH I IHESMH I

I I I I I I I I
I PROD real I IHEPSF I IHEPDF I IHEPSS I IHEPDS I IHEPSL I IHEPDL I

I complex I IHEPSX I IHEPDX I IHEPSW I IHEPDW I IHEPSZ I IHEPDZ I

I ~--------~-----------+--------~-----------+--------~-----------~
I POLY real I IHEYGF I IHEYGS I IHEYGL I
I complex I IHEYGX I IHEYGW I IHEYGZ I L ______________ 4 ____________________ ~ ____________________ ~ ____________________ J

Figure 47. Array Indexers and Functions

Chapter 8: Data Processing Routines 83

CH}~PTER 9: MODULE SUMMARIES

This section provides information about
individual modules of the PL/I Library. It
serves as an introduction to the more
detailed accounts given in the prefaces to
the program listings. A brief statement of
function is given: also provided are full
specifications of linkage and inter-modular
dependency. Since many library modules
invoke the execution error package
(IHEERR), no reference is made to this
module in the 'Calls' section. Appendix G
gives the lengths of the modules and
in::1icates their locations (SYSlo PL1LIB or
SY:31. LINKLIB) •

CONTROL PROGRAM INTERFACES

The 'Calls' and 'Called by' sections
include the use of the LINK and XCTL macros
to pass control.

DNfA PROCESSING

All integral values specified in the
'Linkage' section of the module description
will be represented internally as fullword
binary integers. Target fields will also
be fullwords unless otherwise specified or
implied (for example, for long floating­
point results).

When FIXED data is passed to the
library, a DED is associated with it in the
linkage. In cases where the DED is not
interrogated, the appropriate entry in the
'Linkage' section is marked with an aster­
isk.

Complex arguments are assumed to have
real and imaginary parts stored next to
each other in that order, so that the
address of the real part suffices for both
of them. Both parts are described by the
same OED.

I/O Editing and Data Conversions

Target fields may, if desired, be over­
lapped with source fields in all cases
except IHEVSA, IHEVSB, IHEVSC, IHEVSD,
IHEVSE, and IHEVSF.

84

Strings~ A source string field may coin­
cide with a target string field in the
modules listed in Figure 48. It should be
noted that use of the same address for the
dope vectors of source string and target
string is not generally permitted, even
though the string fields themselves may be
overlapped. The exceptions to this are the
entry points IHEBSKK and IHECSKK, where a
considerable saving of time can be obtained
by using the same address for both the
first source and target SDVs.

r----------T------------------------------,
I I Source/target coincidence I
I ~---------------T--------------~
I Module I First source IEither source I
I I field only I field I
t----------+---------------+--------------~
I IHEBSA I Yes I I
I IHEBSO I I Yes I
I IHEBSK I Yes I I
I IHEBSM I Yes I I
I IHEBSF I I Yes I
I IHECSK I Yes I I
I IHECSM I Yes I I l __________ ~ _______________ L-_____________ J

Figure 48. Coincidence of Source and Tar­
get Fields in some String
Modules

The first byte of the result produced by
the comparison modules IHEBSC, IHEBSD, and
IHECSC contains:

o to 1
2 to 3
4 to 7

contents

Instruction length code 01
Condition code as below
Program mask _(calling routine)

The condition code is set as follows :

00 Strings equal

01 First string compares low at first
inequality

10 First string compares high at first
inequality

Ari~tic: Target fields may, if desired,
be overlapped with source fields in all
cases except IHEXIU, IHEXIV, IHEXIW, IHEX­
IZ., IHEXXL and IHEXXS.

Mathematical: Target fields may, if
desired, be overlapped with source fields
in all cases except IHEEFL, IHEEFS, IHELNW,
IHELNZ, IHESQW and IHESQZ.

MODULE SUMMARIES

IHEABU

ntry point: IHEABUO

Function:

ABS(z), where z is complex fixed-point
binary.

Linkage:

RA: A(Parameter list)
Parameter list:

A (z)

*ACDED for z)
ACTarget)

*A(Target DED)

Called by: compiled code

IHEABV

Entry point: IHEABVO

Function:

ABS(z), where z is complex fixed-point
decimal.

Linkage:

RA: ACParameter list)
Parameter list:

ACz)
A (DED for z)
A (Target)
ACTarget DED)

Called by: Compiled code

IHEABW

Call s: IHESQS

Entry point: IHEABWO

Function:

ABS(z), where
floating-point.

Linkage:

z

RA: A(Parameter list)
Parameter list:

A(z)
ACTarget)

is complex

Called by: Compiled code, IHESQW

IHEABZ

Calls: IHESQL

Entry point: IHEABZO

short

Function:

ABSCz), when z is complex long floating­
point ..

Linkage:

RA: ACParameter list)
Parameter list:

A(z)
A(Target)

Called by: Compiled code, IHESQZ

IH~ADD

Calls: IHEAPD

Entry point: IHEADDO

Function:

ADDCx.,y,p,q), where x
fixed-point decimal,
target precision.

Linkage:

RA: A(Parameter list)
Parameter list:

A(x)
A(DED for x)
A(y)
ACDED for y)
A(Target)
A(Target DED)

and
and

yare real
(p,q) is the

Called by: Compiled code, IHEADV

IHEADV

Calls: IHEADD

Entry point: IHEADVO

Function:

ADDCw,z#p,q), where wand z
fixed-point decimal, and
target precision.

Linkage:

RA: ACParameter list)
Parameter list:

A(w)
A(DED for w)
ACz)
A(DED for z)
A(Target)
ACTarget DED)

Called by: Compiled code

are complex
(p,q) is the

Chapter 9: Module Summaries 85

Entry point IHEAPDA

FUnction:

To assign x to a target with precision
(P2' Q2)' where x is real fixed-point
decimal with precision (P1' Q1)' and P1
S 31.

Linkage:

RA: A(x)
RB: A(DED for xl
RC: A(Target)
RD: A(DED for target)

Called by: IHEADD, I HE DVV, IHEMPV

Entry point IHEAPDB

Function:

To convert x to precision (31,Q2)'
where x is real fixed-point decimal
with precision (P1. Q1)' and P1 S 31.

Linkage: As for IHEAPDA

Called by: IHEADD, IHEDDV

Entry point IHEATL1

Function:

ATAN(x), where x is real long floating­
point.

r,inkage:

RA: A(Parameter list)
Parameter list:

A(x)
A(Target)

Called by: Compiled code

Entry point IHEATL2

86

l"Unction:

ATAN (y"x), where x and y are real long
floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

A(y)
A(x)
ACTarget)

called by: Compiled code, IHEATZ, IHELNZ

Entry point IHEATL3

Function:

ATANDCx), where
f loa ti ng-·po int •

Linkage:

x

RA: A(Parameter list)
Parameter list:

A(x)
A(Target)

Called by: Compiled code

Entry point IHEATL4

Function:

is real long

ATAND(y"x), where x and y are real long
floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

A(y)
A(x}
A(Target}

Called by: Compiled code

IHEATS

Entry point IHEATS1

Function:

ATAN(x), where
floating-point.

Linkage:

x

RA: A(Parameter list)
Parameter list:

A(x)
A(Target}

Called by: Compiled code

Entry point IHEATS2

Function:

is real short

ATAN(YfXl. where x and yare real short
floating-point.

Linkage:

RA: A(Parameter list}
Parameter list:

ACy)
ACx)
A(Target)

Called by: Compiled code, IHEATW, IHELNW

Entry point IHEATS3

FUnction:

ATAND (x)" where x
floating-point .•

Linkage:

RA: A(Parameter list)
Parameter list:

A(x)
A (Targetl

Called by: Compiled code

Entry point IHEATS4

FUnction:

is real short

ATAND Cy, x) " where x and yare real
short floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

A(y)
A(x)
A(Target)

Called by: Compiled code

IHEATW

Calls: IHEATS" IHEHTS

Entry point IHEATWN

Function:

ATAN(z), where z is complex short
floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

A(z)
A (Target)

Called by: Compiled code

Entry point IHEATWH

Function:

ATANH (z)", where z is complex short
floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

A(z)
A (Target)

Called by: Compiled code

IHEATZ

calls: IHEATL,IHEHTL

Entry point IHEATZN

Function:

ATAN(z). where z is
floating-point.

Linkage:

RA: A (Parameter list)
Parameter list:

A (z)
A (Target)

Called by: Compiled code

Entry pOint IHEATZH

Function:

complex long

ATANH (z) " when z is complex long
floating-point.

Linkage:

RA: A (Parameter list)
Parameter list:

A (z)

A (Target)

Called by: Compiled code

IHEBEG

Calls:

Supervisor
IHETOM

(LINK, GETMAIN, FREEMAIN),

Entry point IHEBEGA

Function:

Links to IHETOM to issue a WTO macro
ins ruction if the PRV is longer than
4096 bytes.

Linkage: None

Called by: IHESA, IHETSA

Entry point IHEBEGN

Function:

Links to IHETOM to issue a WTO macro
instruction if the program does not
have a main procedure.

Linkage: None

Called by: IHESA, IHETSA

Chapter 9: Module Summaries 87

IHEBSA

Entry point: IHEBSAO

Function:

AND operator (&) for two byte-aligned bit
strings.

Linkage:

RA: A(SDV of first operand)
RB: A(SDV of second operand)
RC: A(SDV of target field)

Called by: Compiled code, IHENL1, IHENL2

IHEBSC

Entry point: IHEBSCO

Function:

To compare two byte-aligned bit strings.

Linkage:

RA: A(SDV of first operand)
RB: ACSDV of second operand)
RC: A CTarget)

Called by: Compiled code

IHEBSD

Entry point: IHEBSDO

Function:

'To compare two bit strings with any
alignment.

Linkage:

RA: A(SDV of first operand)
RB: A (SDV of second operand)
RC: A(Target)

Called by: Compiled code

I:HEBSF

Entry point: IHEBSFO

Function:

BB

BOOL (Bit string, bit string, string n1.
112 n3 n,.).

Linkage:

RA: A(Parameter list)
Parameter list:

ACSDV of first source string)
A(SDV of second source string)
A(Fullword containing bit pattern n1. n2

n3 n,. right justified)
A(SDV of target field)

Called by: Compiled code,IHENL1,IHENL2

IHEBSI

Entry point: IHEBSIO

Function:

INDEX (Bit string" bit string).

Linkage:

RA: ACParameter list)
Parameter list:

ACSDV of first source string)
A(SDV of second source string)
ACTarget field)

Called by: Compiled code

IHEBSK

En~Qoint IHEBSKA

Function:

To assign a bit string to a target
field.

Linkage:

RA: A(SDV of source string)
RB: A(SDV of target field)

Called by: Compiled code

Entry point IHEBSKK

Function:

Concatenate operator <\1)
strings.

Linkage:

RA: ACSDV of first operand)
RB: A(SDV of second operand)
RC: A(SDV of target field)

Called by: Compiled code

En~oint IHEBSKR

Function: REPEAT CBit string,n).

Linkage:

RA: ACSDV of source string)

for bit

RB: A(n)
RC: A(SDV of target field)

Called by: Compiled code

IHEBSM

Entry point IHEBSMF

Function:

To assign a byte-aligned bit string to
a byte-aligned fixed-length target.

Linkage:

RA: A(SDV of source string)
RB: A{SDV of target field)

Called by: Compiled code

Entry point IHEBSMV

Function:

To assign a byte-aligned bit string to
a byte-aligned VARYING target.

Linkage: As for IHEBSMF

Called by: Compiled code

Entry point IHEBSMZ

Function:

To fill out a
current length to
with zero bits.

Linkage: RA: A(SDV)

bit
its

Called by: Compiled code

IHEBSN

Entry point: IHEBSNO

Function:

string from its
maximum length

NOT operator (~) for a byte-aligned bit
string,

Linkage:

RA: A(SDV of operand)
RB: A{SDV of target field)

Called by: Compiled code

IHEBSO

Entry point: IHEBSOO

Function:

OR operator (I) for two byte-aligned bit
strings.

Linkage:

RA: A(SDV of first operand)
RB: A(SDV of second operand)
RC: A{SDV of target field)

Called by: Compiled code, IHENL1.. IHENL2

IHEBSS

Entry point IHEBSS2

Function:

To produce an SDV describing the
pseudo-variable or function SUBSTR (Bit
string, i).

Linkage:

RA: A{Parameter list)
Parameter list:

A(SDV of source string)
A(i)
Dummy argument
A(Field for target SDV)

Called by: Compiled code

Entry point IHEBSS3

Function:

To produce an SDV describing the
pseudo-variable or function SUBSTR (Bit
string, i, j).

Linkage:

RA:A(Parameter list)
Parameter list:

A(SDV of source string)
A(i)
A(j)
A(Field for target SDV)

Called by: compiled code

IHECFA

Entry point: IHECFAA

Function:

ONLOC: Locates the BCD name of the proce­
dure that contains the PL/I interrupt
that caused entry into the current on­
unit.. If ONLOC is specified outside an
on-unit, a null string is returned.

Linkage:

RA: A(Parameter list)
Parameter list: A(Target SDV)

Called by: Compiled code

Chapter 9: Module Summaries 89

Entry point: IHECFBA

Function:

ONCODE: Returns a value corresponding to
tbe condition which caused the interrupt.
If specified outside an on-unit, a unique
code (0) is returned.

Linkage:

RA: A(Parameter list)
Parameter list:

A(4-byte word-aligned target)

Called by: Compiled code

I:HECFC

Entry point: IHECFCA

Function:

ONCOUNT: Returns a value equal to the
number of PL/I conditions and program
'2xceptions, including the current one,
t.hat have yet to be processed. A zero
value is returned if:

1. ONCOUNT is used outside an ON unit,
or

2. ONCOUNT is used in an ON unit entered
because of a precise interrupt or a
single imprecise interrupt

(This built-in function is used
connection with the Model 91 option)

in

Linkage:

RA: A(Parameter list)
Parameter list:

A(4-byte word-aligned target}

Called by: Compiled code

Calls: Supervisor

Entry point: IHECKPT

Function:

To call
facility
control
step may
point.

the control program checkpoint
to save main storage areas and
information so that the job
be restarted from the check-

Linkage: None

Called by:

Compiled code(CALL IHECKPT statement)

90

IHECLT

Calls:

IHESA, Supervisor (CLOSE, DCBD, DELETE,
FREEMAIN, FREEPOOL, RETURN)

En~oint IHECLTA

Function:

Close files:

1. Free FCB.

2. set file register to zero.

3. Remove file from IHEQFOP chain.

4. Delete interface modules loaded for
record-oriented I/O.

5. Purge outstanding I/O events, set­
ting event variables complete,
abnormal, and inactive.

Linkage:

RA: A(Parameter list)
Parameter list:

A(CLOSE parameter list)
A(Private adcons)

CLOSE parameter list:
A(DCLCB 1)

(Reserved)
(Reserved)

A (DCLCBn)
(Reserved)
(Reserved)
(High-order byte of last argument
indicates end of parameter list)

Called by: IHEOCL

Entry point IHECLTB

Function:

To close all files when a task is
terminated.

Linkage:

RA: A(Parameter list)
Parameter list:

F(number of files
A(Adcon list)
A(lst FeB)

A(nth FCB)

to be closed*4)

(High-order byte of last argument
indicates end of parameter list.)

Called by: IHEOCL

IHECNT

Entry point IHECNTA

Function:

Returns count of scalar items transmit­
ted on last I/O operation.

Linkage:

RA: A(Parameter list)
Parameter list:

A(OCLCB)
A (Fullword)

Entry point IHECNTB

FUnction:

Returns current line number (LINENO).

Linkage: As for IHECNTA

IiHECSC

E!ntry point: IHECSCO

Function:

To compare two character strings.

Linkage:

RA: A(SDV of first operand)
RB: A(SDV of second operand)
RC: A (Target)

Called by: Compiled code

IHECSI

Entry point: lHECSIO

Function:

INDEX (Character
string) •

Linkage:

RA: A(Parameter list)
Parameter list:

string,

A(SDV of first source string)
A (SDV of second source string)
A ('Target field)

Called by: Compiled code

character

Entry point IHECSKK

Function:

Concatenate operator (I I) for character
strings.

Linkage:

RA: A(SDV of first operand)
RB: A(SDV of second operand)
RC~ A(SDV of ta.rget field)

Called by: Compiled code

Entry point IHECSKR

Funct.ion:

REPEAT (Character string, n).

Linkage:

RA: A(SDV of source string)
RB: A(n)
RC: A(SDV of target field)

Called by: Compiled code

IHECSM

Ent~Y-E0int IHECSMF

Function:

To assign a character string to a
fixed-length target.

Linkage:

RA: A(SDV of source string)
RB: A(SDV of target field)

Called by: compiled code

Entry pOint IHECSMV

Function:

To assign a character string to a
VARYING target.

Linkage: As for IHECSMF

Called by: Compiled code

Entry point IHECSMB

Function:

To fill out a character string from its
current length to its maximum length
with blanks.

Chapter 9: Module Summaries 91

Linkage:

RA: A(SDV)

Called by: Compiled code

Entry point IHECSMH

Function: HIGH

Linkage: AS for IHECSMB

Called by: Compiled code

Entry point IHECSML

Function: LOW.

Linkage: As for IHECSMB

~alled by: compiled code

IHECSS

Entry point IHECSS2

Function:

To produce an SDV
pseudo-variable or
(Character string" i) .•

Linkage:

RA: A(Parameter list)
Parameter list:

describing the
function SUBSTR

A(SDV of soUrce string>
A(i)
Dummy argument
A(Field for target SDV)

Called by: Compiled code

Entry point IHECSS3

Function:

To produce an SDV describing the
pseudo-variable or function SUBSTR
(Character string~ i, j).

Linkage:

RA: A(Parameter list)
Parameter list:

A(SDV of source string)
A(i)
A(j)
A(Field for target SDV)

Called by: Compiled code

Calls:

92

IHETSA., supervisor (CLOSE, DCBD, DELETE.,
DEQ, FREEMAIN, FREEPOOL, RETURN)

Entry point IHECTTA

Function:

Close files in a multitasking environ­
ment:

1. Free FCB.

2. Set file register to zero.

3. Remove file from IHEQFOP chain.

4. Delete interface modules loaded for
record-oriented I/O.

5. Purge outstanding I/O events" set­
ting event variables complete, nor­
mal" and inactive.

(i) Check that the file is in
the IHEQFOP chain for the
current task.

(ii) Free IOCBs, setting asso­
ciated EVENT vdriables com­
plete., abnormal, and inac­
tive.

(iii) Set EVENT variables in 'fEVT
chain complete" abnormal,
and inactive.

(iv) For REGIONAL EXCLUSIVE

Linkage:

files., or INDEXED EXCLUSIVE
files with unblocked
records" dequeue locked
records and free EXCLUSIVE
blocks in the TXLV chain.

(v) For INDEXED EXCLUSIVE files
with blocked records, unlock
the files.

RA: A(Parameter list)
Parameter list:

A(CLOSE parameter list)
A(Private adcons>

CLOSE parameter list:
A(DCLCB1)

A(IDENT SDV1)/O
A(IDENT DED 1)/O

A (DCLCBn)
A(IDENT SDVn)/O
A(IDENT DEDn)/O
(High-order byte of last argument
indicates end of parameter list)

Called by: IHEOCT

Entry point IHECTTB

Function:

To close all files when a task is
terminated.

Linkage:

RA: A(Parameter list)
Parameter list:

F (number of files to be closed:*4)
A(Adcon list)
A(lst FCB)

A(nth FCB)
(High-order byte of last a.rgument
indicates end of parameter list)

Called by: IHEOCT

IHEDBN

Calls: IHEDMA, lHEUPA, lHEUPB

Entry point: lHEDBNA

Function:

To convert a bit string to an arithmetic
target with a specified base, scale"
mode, and precision.

Linkage:

RA: A(Source SDV)
RB: A (Source DED)
RC: A(Target)
RD: A(Target DED)

Called by:

Compiled code" lHEDlD, lHEDOA, lHEOOE,
lHEDOM

lHEDCN

calls: lHEDMA, lHEUPA, lHEUPB., lHEVQB

Entry point IHEDCNA

FUnction:

To convert a character string contain­
ing a valid arithmetic constant or
complex expression to an arithmetic
target with specif ied base, scale~
mode, and precision. The ONSOURCE
address is stored.

Linkage:

RA: A(Source SDV)
RB: A(Source DED)
RC: A(Target)
RD: A(Target DED)
WOFD: A(Source SDV)

Called by:

Compiled code, lHEDlB, lHEDOE, lHELDl

Entry point lHEDCNB

Function:

As for lHEDCNA, but
address is not stored.

Linkage:

the ONSOURCE

As for IHEDCNA" but without WOFD

Called by: As for lHEDCNA

lHEDDl

Calls:

lUEDDJ, IHElOF" lHELDl., lHESA, lHETSA

Entry pOint lHEDDlA

Function:

To read data from an input stream and
assign it to internal variables accord­
ing to symbol table information conven­
tions. Restrictive data list.

Linkage:

RA: A(Parameter list)
Parameter list:

A(Symbol table1)

A(Symbol tablen)
(High-order byte of last argument
indicates end of parameter list.)

Called by: Compiled code

Entry_point lHEDDIB

Function:

As for lHEDDlA, but no data list.

Linkage:

RA: A(Parameter list)
Parameter list: A(Symbol table chain)

Called by: Compiled code

lHEDDJ

Entry point: lHEDDJA

Function:

To compute the address of an array ele­
ment from source subscripts and an ADV.

Chapter 9: Module Summaries 93

Linkage:

RA: A (ADV)
RB: A CDED)
RC: A(Field for element address)
RD: A(Symbol table entry, 2nd part)
RE: ACSDV for subscripts)

Called by: IHEDDI

calls:

IHEDDP, IHEIOF, IHELDO, IHEPRT

$n~point IHEDDOA

Function:

To convert data according to data­
directed output conventions and to
write it onto an output stream. For
scalar variables and whole arrays.

Linkage:

RA: A(Parameter list)
Parameter list:

A(Symbol table entry1)

A(Symbol table entryn)
(High-order byte of last argument
indicates end of parameter list.)

Called by: Compiled code

Entry point IHEDDOB

94

Function:

As for IHEDDOA but for array variable
elements.

Linkage:

RA: A(Parameter list)
Parameter list:

A(Symbol table entry1)
ACElement address1)

A(Symbol table entryn)
A(Element addressn)
(High-order byte of last argument
indicates end of parameter list.)

Called by: Compiled code

Entry point IHEDDOC

Function:

To terminate data-directed transmiss­
ion.

Linkage~ None

called by: compiled code

Entry point IHEDDOD

Function:

As for IHEDDOA, but used to support the
CHECK condition.

Linkage:

RA: A(Parameter list)
Parameter list:

ACSymbol table entry)
A(Element address)

Called by: IHEERR

Function:

In the absence of a
convert all data known

data list, to
within a block

according to data-directed output
conven tions and to
output stream.

Linkage:

RA: A(Parameter list)
Parameter list:

write

A(First symbol table entry)

called by: Compiled code

Calls: IHEERR

Ent~y point IHEDDPA

Function:

it onto an

To prepare an array for subscript out­
put operation, and to address the first
element.

Linkage:

RA: A(Field for A(VDA»
RB: AC FCB)
RC: ACSymbol table entry" 2nd part)

called by: IHEDDO

Ent~oint IHEDDPB

Function: To perform subscript output.

Linkage:

RA: A(Parameter list)
Parameter list: A(VDA)

Called by: IHEDDO

Entry point IHEDDPC

Function: To address the next element.

Linkage:

RA: A(Parameter list)
Parameter list: A(VDA)
Return codes:

BR=O: Another element
BR=4: End of array

Called by: IHEDDO

Entry point IHEDDPD

Function:

To prepare an array for subscript out­
put operation for a given element.

Linkage:

RA: ACField for A(VDA»
RB: A(FCB)
RC~ A(Symbol table entry, 2nd part)
RD: ACElement)

Called by: IHEDDO

Calls:

supervisor (DEQ,ENQ), I HEDDP , IHEIOF,
IHELDO, IHEPTI'

Entry point IHEDDTA

Function:

To convert data according to data­
directed output conventions and to
write it onto an output stream. For
scalar variables and whole arrays in a
multitasking environment.

Linkage:

RA: A(Parameter list)
Parameter list:

A(Symbol table entry1)

A(Symbol table entryn)
(High-order byte of last argument
indicates end of parameter li.st)

Called by: Compiled code

~nt~y-point IHEDDTB

Function:

As for IHEDDTA but for array variable
elements.

Linkage:

RA: ACParameter list)
Parameter list:

~(Symbol table entrY1)
~(Element address 1)

A(Symbol table entrYn)
~(Element addressn)
(High-order byte of last argument
indicates end of parameter list)

Called by: Compiled code

En~~y-point IHEDDTC

Function:

To terminate data-directed transmission
in a multitasking environment.

Linkage: None

Called by: compiled code

~ntry point IHEDDTD

Function:

As f0r IHEDDTA, but used to support the
CHECK condition in a multitasking
environment.

Linkage:

RA: A(Parameter list)
Parameter list:
~(Symbol table entry)
~(Element address)

Called by: IHEERR

Ent~oint IHEDDTE

Function:

In the absence of a data list, to convert
all data known within a block according
to data-directed output conventions and
to write it onto an output stream in a
multitasking environment.

Linkage:

RA: A(Parameter list)
Parameter list:

A(First symbol table entry)

Called by: Compiled code

Chapter 9: Module Summaries 95

IHEDI~

calls:

IHEDMA, IHEDNB, IHEDNC, IHEIOD , IHEU PA,.
IHEUPB, IHEVCA, IHEVSA, IHEVSC, IHEVQB

Entry point IHEDIAA

Function:

']'0 direct the conversion of F format
data to an internal data type.

Linkage:

RA: A(Target or target dope vector)
RB: A(Target OED)
RC: A(FED)

Called by: Compiled code, IHEDIM

Entry point IHEDIAB

Function:

'ro direct the conversion of E format
data to an internal data type.

Linkage: As for IHEDIAA

Called by: As for IHEDlAA

Calls:

IHEDCN, IHEIOD, IHEKCD, IHEVSC, IHEVSD,
IHEVSE

EntrL.,PQint IHEDIBA

Function:

To direct the conversion of A format
nata to an internal data type.

Linkage:

RA: A(Target or target dope vector)
RB: A(Target OED)
RC: A(FED)

Called by: Compiled code

Entry point IH EDIBB

96

Function:

To direct the conversion of pictured
character string data to an internal
data type .•

Linkage: As for IHEDIBA

Called by: Compiled code

IHEDID

Calls:

IHEDMA, IHEIOD, IHEUPA., lHEUPB" IHEVSC.
IHEVSD, IHEVSE

Entry point: IHEDIDA

Function:

To direct the conversion of external B
format data to an internal data type.

Linkage:

RA: A(Target or target dope vector)
RB: A(Target OED)
RC: A(FED)

Called by: Compiled code

IHEDIE

Calls:

IHEDMA, IHEIOD, IHEKCA, IHEKCB, IHEUPA,
IHEUPB, IHEVSC" IHEVSD, IHEVSE

Entry point: IHEDIEA

Function:

To direct the conversion of external data
with a numeric picture format to an
internal data type.

Linkage:

RA: A(Target or target dope vector)
RB: A(Target DED)
RC: A (FED)

Called by: Compiled code, IHEDIM

IHEDIL

Entry point IHEDlLA

Function:

To set up appropriate error handling
when no width specification for A for­
mat input is given.

Linkage: None

Called by: Compiled code

Ent~Y-Eoint IHEDILB

Function:

As for lHEDlLA, but B format

Linkage: None

Called by: compiled code

IHEDIM

Calls:

IHEDIA, IHEDIE, IHEIOD" IHEKCA, IHEVCA,
IHEVCS

Entry point: IHEDIMA

Function:

To direct the conversion of external data
with C format to an internal data type.

Linkage:

RA: A(Target or target dope vector)
RB: A(Target OED)
RC: A(Real format director)
RD: ACReal FED)
RE: AClmaginary format director)
RF: A(Imaginary FED)

called by: Compiled code

I~EDMA

~ransfers control to:

IHEVFD, IHEVFE, IHEVKB, IHEVKC, IHEVPE,
IHEVPF, IHEVPG, IHEVPH

Entry point: IHEDMAA

Function:

To set up the intermodular flow to effect
conversion from one arithmetic data type
to another.

Linkage:

RA: A C Source)
RB: A(Source DED)
RC: ACTarget)
RD: ACTarget DED)

Called by:

Compiled code, I/O directors, IHEDBN"
IHEDCN, IHEDNB, IHEDNC" IHELDI, IHEPDF,
IHEPDX, IHEPSF, IHEPSX, IHESMF, IHESMX,
IHESSF, IHEUPB, IHEVCS, IHEYGF, IHEYGX

IHEDNB

Calls: IHEDMA, IHEVSA

Entry point: lHEDNBA

Function:

To convert an arithmetic source with
specified base, scale, mode, and 'preci­
sion to a fixed-length bit string or a
VARYING bit string of specified length.

Linkage:

RA: ACSource)
RB: A(Source DED)
RC: ACTarget SDV)
RD: ACTarget DED)

Called by:

Compi led code, IHEDIA., IHEDOD, IHELDI,
IHEVCS

IHEDNC

Calls:

IHEDMA" IHEUPA" IHEVSC, IHEVSE" IHEVQC

Entry point: IHEDNCA

Function:

To convert an arithmetic source of speci­
fied base, scale# mode, and precision to
a character string or a pictured charac­
ter string.

Linkage:

RA: ACSource}
RB: A(Source DED)
RC: ACTarget SDV)
RD: ACTarget OED}

Called by:

compiled code, IHEDIA, IHEDOB, IHELDI,
IHELDO, IHEVCS

IHEDOA

Calls:

IHEDBN, IHEDMA, IHEIOD, IHEVQC

Ent~oint IHEDOAA

Function:

To direct the conversion of internal
data to external F format.

Linkage:

RA: ACSource or source dope vector)
RB: A(Source DED)
RC: A(FED)

Called by: Compiled code, IHEDOM

Chapter 9: Module Summaries 97

Entry point IHEDOAB

Function:

To direct the conversion of internal
data to external E format.

Linkage: As for IHEDOAA

Called by: As for IHEDOAA

IHEDOB

Calls:

IHEDNC., IHEIOD, IHEVSB, IHEVSC, IHEVSE,
IHEVSF

Entry point IHEDOBA

Function:

To direct the conversion of internal
data to external A(w) format.

Linkage:

RA: ACSource or source dope vector)
RB: A(Source DED)
RC: A(FED)

Called by: Compiled code

Entry point IHEDOBB

Function:

To direct the conversion of internal
data to external A format.

Linkage:

RA: A(Source or source dope vector)
RB: A(Source DED)

Called by: compiled code

~ntry point IHEDOBC

98

FUnction:

To direct the conversion of internal
data to external pictured character
format.

Linkage: As for IHEDOBA

Called by: Compiled code

IHEDOD

Calls: IHEDNB, IHEIOD, IHEVSB, IHEVSC

Entry point IHEDODA

Function:

To direct the conve-rsion of internal
data to external B(w) format.

Linkage:

RA: A(Source or source dope vector)
RB: A(Source DED)
RC: A(FED)

Called by: Compiled code

En~~y-point IHEDODB

Function:

To direct the conversion of internal
data to external B format •.

Linkage:

RA: A(Source or source dope vector)
RB: A(Source DED)

Called by: compiled code

IHEDOE

Calls:

IHEDBN, IHEDCN, IHEDMA., lHEIOD, IHEVSB

Entry point: IHEDOEA

Function:

To direct the conversion of internal data
to external data with a numeric picture
format.

Linkage:

RA: A(Source or source dope vector)
RB: A(Source DED)
RC: A(FED)

Called by: compiled code, IHEDOM

IHEDOM

Calls:

IHEDBN, IHEDOA, IHEDOE, IHEUPA, IHEUPB,
IHEVCA, IHEVCS

Entry point: IHEDOMA

Function:

To direct the conversion of an internal
data type to external C format data.

~inkage:

RA: A(Source or source dope vector}
RB: A(Source DED)
RC: A (Real format director)
RD: A(Real FED)
RE: A(Imaginary format director}
RF: A(Imaginary FED)

Called by: Compiled code

IHEDSP

, calls: Supervisor (WAIT, wro, WTOR,
MAIN" POST., FREEMAIN, CHAP)

Entry point: IHEDSPA

Function:

GET-

To write a message on the operator's
console, with or without a reply. The
EVENT option can be used for a message
with a reply.

Linkage:

RA: A(Parameter list)
Parameter list:

A(SDV for message)
A(SDV for reply)
A(Event variable)

(The parame·ter list is either one"
two, or three elements long, depend­
ing on the use of the REPLY and EVENT
options. The high-order byte of the
last argument indicates the end of
the parameter list.)

Called by: compiled code

IHEDUM

Calls:

Supervisor (ABEND" SNAP) " IHETSA" IHEZZC

Entry point IHEDUMC

Function:

Dump current task and then continue
execution.

Linkage:

RA: A(Parameter list)
Parameter list:

F(Number in range 0 through 255)

Called by:

Compiled code (CALL IHEDUMC statement)

Entry point IHEDUMJ

Function:

Dump all tasks and then continue execu­
tion.

Linkage: As IHEDUMC

Called by:

Compiled code (CALL IHEDUMJ statement)

Entry point IHEDUMP

Function:

Dump all tasks and terminate major
task.

Linkage: As IHEDUMC

Called by:

compiled code (CALL IHEDUMP statement)

Ent~point IHEDUMT

Function:

Dump current task and then terminate
it.

Linkage: As IHEDUMC

Called by:

Compiled code (CALL IHEDUMT statement)

Entry point: IHEDVUO

Function:

DIVIDE (w, z" p.,g) , where wand z are com­
plex fixed-point binary, and (p,g) is the
target precision.

Linkage:

RA: A(Parameter list)
Parameter list:

A(w)
A(DED for w)
A(z)
A(DED for z)
A (Target)
A(DED for target)

Called by : Compiled coqe

IHEDVV

Calls: IHEAPD

Entry point: IHEDVVO

Chapter 9: Module Summaries 99

Function:

DIVIDE(w,z,p.,q)., where wand z are com­
plex fixed-point decimal., and (P" q) is
the target precision .•

Linkage:

RA: A(Parameter list)
Parameter list:

A (w)
A(DED for w)
A (z)
A(DED for z)
A (Target)
A(DED for target)

Called by: Compiled code

IIHEDZW

Entry point: IHEDZWO

Function:

Z1/Z;U where Z1 and Z;a are complex short
floating-point.

Linkage:

RA: A(Z1)
RB: A(z;a)
RC: A (Target)

Called by: Compiled code

IHEDZZ

Entry point: IHEDZZO

Function:

Z1/z;a, where Z~ and Z;a are complex long
floating-point.

Link.age:

RA.: A(Z1)
RB: A(z;a)
RC: A(Target)

Called by: Compiled code

IHEEFL

Call s: IHEEXL

Entry point IHEEFLF

Function:

100

ERF(x), where x is real long floating­
point.

Linkage:

RA: A(Parameter list)
Parameter list:

A(x)
A (Target)

Called by: Compiled code

Entry point IHEEFLC

Function:

ERFC (x) " where x is real long floating­
point.

Linkage: As for IHEEFLF

called by: Compiled code

IHEEFS

Calls: IHEEXS

Entry point IHEEFSF

Function:

ERF (x) " where x isreal short floating­
point.

Linkage:

RA: A(Parameter list)
Parameter list:

A(x)
A (Target)

Called by: Compiled code

Ent~oint IHEEFSC

Function:

ERFC (x) " where
floating-point,.

x

Linkage: As for IHEEFSF

Called by: Compiled code

Function:

is real short

Non-resident part of the error-handling
routines. It contains the data­
processing error messages, and when
required is dynamically loaded from
IHEESM (Versions 3 and 4).

IHEERE

Function:

Non-resident part of the error-handling
routines. It contains the input/output
error messages" and when required is
dynamically loaded from IHEESM (Versions
3 and 4).

IHEERI

Func'tion:

Non-resident part of the error-handling
routines. It contains the remaining
error messages" that is, those not con­
tainedin IHEERD, IHEERE" IHEERO and
IHEERP, and when required is dynamically
loaded from IHEESM (Versions 3 and 4).

IHEERN

Function:

Non-resident part of the error package.
It contains the error messages, and is
dynamically loaded as required by IHEERR
(Version 1) or IHEESS (Version 2).

IHEERO

Function:

Non-resident part of the error-handling
routines. It contains the error messa­
ges, and when required is dynamically
loaded from IHEESM (Versions 3 and 4>.

IHEERP

Function:

Non-resident part of the error-handling
routines. It contains the error messa­
ges, and when required is dynamically
loaded from IHEESM (Versions 3 and 4).

IHEERR

Calls:

Supervisor (LINK, SPIE), IHEDDO"
IHEERS (Version 1)., IHEESM,
(Version 2) , IHEM91" IHEPRT,
IHESA, IHETER, IHETSA
IHEERRE calls: LINK" ABEND with
STEP options

IHEDDT,
IHEESS

IHEPTT,

DUMP and

Entry point IHEERRA (Program Interrupt):

Function:

To determine the identity of the error or
condition that has been raised., and to
determine what action must be taken on
account of it. Several courses of action
are possible, including combinations of:

(1) Entry into an on-unit
(2) SNAP
(3) No action - return to program
(4) Print error message and terminate
,(5) Print error message and continue
(6) Set standard results into float

registers

Linkage: None

called by: supervisor

En~~point IHEERRB (ON Conditions):

Function: As for IHEERRA.

Linkage:

RA: A(DCLCB) (for I/O conditions)
IHEQERR: Error code

Called by: Compiled code, library modules

EntIT-E.oint IHEERRC (Non-ON errors):

Function: As for IHEERRA.

Linkage:

RA: A(Two-byte error code)
A(Four-byte code if source program

error)

called by: Compiled code, library modules

En~oint IHEERRD (CHECK, CONDITION)_:

Function: As for IHEERRA.

Linkage:

RA: A(Parameter list)
Parameter list:

One-byte error code
Three-byte A(X)
X: Symbol table

X: Symbol table (CHECK variable) " or
Symbol length and name(CHECK label),
or
Identifying CSECT(CONDITION)

Called by: compiled code

Entry point IHEERRE

Function:

To accept control when a program inter­
rupt occurs in IHEERR or in modules
that IHEERR calls or links to; to link
to IHETOM to write a disaster message
on the console; to terminate the pro­
gram and to provide an operating system
ABDUMP. .

Linkage: None

Chapter 9: Module Summaries 101

Called by: Supervisor

IHEERS

Entry point: lHEERSA

Function:

SNAP: To determine and record the loca­
tion of the point of interrupt and to
print the procedure trace-back informa­
tion associated with it.

Linkage:

RA: A(Third word of a library VDA to
be used as a save area and message
buffer): words 21 to 23 of the VDA
are used to pass the following
parameters:
21: A(Interrupt VDA)/O
22: A(PRINT routine)
23: A(Current DSA)

Called by: IHEERR (Version 1)

Function:

Non-resident part of the error-handling
routines. It contains the multitasking
E~rror messages and is dynamically loaded
when required from IHEESM or IHETEX
(Version 4).

IHEESM

Calls:

supervisor (DELETE, DEQ, ENQ, LOAD),
IHEERD, IHEERE;, IHEERI, IHEERO, IHEERP,
IHEERT, IHEPRT" IHEPTT" IHESA, IHETSA

E:nt.ry point IHEESM 1

Function:

To print out SNAP and system action
messages.

Linkage:

102

RA: A(First word of a library VDA to be
used as a save area and message
buffer)

RH: A(Current DSA)

Also passed are:
A (IHEPTTB) or A(IHEPRTB): current LWE

+ 124
A (IHETSAL) or A(IHESADE): current LWE

+ 128

A(IHETSAF) or A(IHESAFD): current LWE
+ 132

Length of PRV: current LWE+102

Called by: IHEERR (Versions 3 and 4)

Entry point IHEESMB

Function:

To print CHECK (label) system action
messages.

Linkage:

RA: A(Label)
RB: A(Length of label)

Also passed:
A (IHEPTTB) or A(IHEPRTB): Current LWE

+ 124

Called by: IHEERR (Versions 3 and 4)

Calls: lHEERN, IHEPRT, IHESA, lHETSA

Entry point IHEESSA

Function:

To print out SNAP and system action
messages.

Linkage:

RA: ACFirst word of a library VDA to be
used as a save area and message
buffer)

Also passed are:
A(Interrupt VDA/O):
A(Current DSA):
A(IHESADE):
A (IHESAFE) :
A(IHEPRT) :

current LWE +
current LWE +
current LWE +
current LWE +
current LWE +

Called by: IHEERR (Version 2)

Entry pOint IHEESSB

Function:

96
100
104
108
112

To print CHECK (label) system action
messages.

Linkage:

RA: A(Label)
A(Length of label)

Also passed:

A(IHEPRTB): current LWE + 112

Called by: IHEERR (Version 2)

IHEEXL

E'ntry point: lHEEXLO

Function:

EXP(x} , where x is real long floating­
point.

Linkage:

RA: A{Parameter list)
Parameter list:

A(x)
ACTarget}

Called by:

Compiled code, IHEEFL., IHEEXZ, IHESHL.,
IHESNZ, IHETHL, IHEXXL

IHEEXS

Entry point: IHEEXSO

Function:

EXP (x) , ... There x is real short floating­
point.

Linkage:

RA: ACParameter list)
Parameter list:

ACx)
A (Target)

called by:

Compiled code, IHEEFS, IHEEXW, IHESHS,
IHESNW, IHETHS" IHEXXS

IHEEXW

Calls: IHEEXS., IHESNS

Entry point: lHEEXWO

Function:

EXP(z), where z
floating-point .•

Linkage:

RA: A(Parameter list)
Parameter list:

ACz)
A (Target)

is complex

Called by: Compiled code, IHEXXW

IHEEXZ

calls: IHEEXL. lHESNL

Entry point: lHEEXZO

short

Function:

EXP(z). where z is complex long floating­
point.

Linkage:

RA: ACParameter list)
Parameter list:

A(z)
A(Target)

Called by: Compiled code" IHEXXZ

IHEHTL

Calls: IHELNL

Entry point: IHEHTLO

Function:

ATANH(x) , where x is real long floating­
point .•

Linkage:

RA: ACParameter list)
Parameter list:

A(x)
A(Target)

Called by: Compiled code" IHEATZ

IHEHTS

Calls: IHELNS

Entry point: lHEHTSO

Function:

ATANH{x), where x is real short floating­
point.. point.

Linkage:

RA: A(Parameter list)
Parameter list:

A(x}
A(Target)

Called by: Compiled code., IHEATW

IHEIBT

This module is used. in a multitasking
environment and is equivalent to module
IHEIOB in a non-roul titasking environment .•

Calls:

supervisor (DEQ,ENQ). IHEIOP, IHEOCT

Chapter 9: Module Summaries 103

Entry point IHEIBTA

Fqnction:

To initialize the PUT operation, and to
check the file status, in a
multitasking environment:

1. Open
2. Transmit error
3. Invalid

Linkage:

RA: A(Parameter list)
Parameter list:

A(DCLCB)
A(Abnormal return)

Called by: Compiled code

Entry point IHEIBTE

Function:

'ro initialize PUT, and perform PAGE,
and to check the file status, in a
multitasking environment:

1. open
2. Transmit error
3. Invalid

Linkage: As for IHEIBTA

Called by: Compiled code

Entry point IHEIBTC

Function:

To initialize PUT, and perform SKIP,
and to check the file status, in a
multitasking environment:

1. Open
2. Transmit error
3. Invalid

Linkage:

RA: A(Parameter list)
Parameter list:

A(DCLCB)
A(Abnormal return)
A(Expression value)

Ca.lled by: Compiled code

104

Entry point IHEIBTD

Function:

To initialize PUT., and perform LINE,
and to check the file status., in a
multitasking environment:

1. Open
2. Transmit error
3. Invalid

Linkage: As for IHEIBTC

Called by: Compiled code

Entry point IHEIBTE

Function:

To initialize PUT, and perform PAGE and
LINE~ and to check the file status, in
a multitasking environment:

1. Open
2. Transmit error
3. Invalid

Linkage: As for IHEIBTC

Called by: Compiled code

Entry point IHEIBTT

Function:

To terminate the PUT operation, in a
multitasking environment.

Linkage: None

Called by: compiled code

IHEIGT

Entry point: IHEIGTA

Function:

As for IHEINT

IHEINT

This module is used in a multitasking
environment and is equivalent to module
IHEION in a non-multitasking environment.

Calls:

Supervisor (CHAP, FREEMAIN, GETMAIN),
IHEITB, IHEITC, IHEITD, IFIEITE, IHEITF,
IHEITG, IHEITH" IHEITJ, IHEOCT

Entry point: IHEINTA

Function:

To verify a RECORD I/O request and to
invoke the appropriate data management
interface module to perform the required
operation, in a multitasking environment.

Linkage:

RA: A(Parameter list)
Parameter list:

A (DCLCB)
A(RDV)/(IGNORE factor)
A(EVENT variable)/(O)/A(Error return>
A(KEYIKEYFROMIKEYTO SDV)/(O)
ACRequest control block)

Called by: Compiled code

IHEIOA

Calls: IHEIOP, IHEOCL, IHEOCT

Entry point IHEIOAA

Function:

To initialize the GET operation, and to
check the file status:

1.
2.
3.

Linkage:

Open
Endfile
Invalid

RA: ACParameter list)
Parameter list:

ACDCLCB)
ACAbnormal return)

Called by: Compiled code

Entry point IHEIOAB

Function:

To initialize the GET operation, with
the COpy option, and to check the file
status:

1. Open
2. Endfile
3. Invalid

Linkage: As for IHEIOAA

Called by: Compiled code

Entry point IHEIOAC

Function:

To initialize the GET operation with

the SKIP option. and to check the file
status :

1. Open
2. Endfile
3. Invalid

Linkage:

RA: ACParameter list)

Parameter list:
A (DCLCB)
A(Abnormal return)
A(Expression value)

Called by: compiled code

En~EY-E0int IHEIOAT

Function:

To terminate the GET operation.

Linkage: None

Called by: compiled code

Calls:

IHEIOP" IHEOCL

En~fY-Qoint IHEIOBA

Function:

To initialize the PUT operation, and to
check the file status:

1. Open
2. Transmit error
3. Invalid

Linkage:

RA: ACParameter list)
Parameter list:

A(DCLCB)
A(Abnormal return)

Called by: Compiled code

Entry pOint IHEIOBB

Function:

To initialize PUT, and perform PAGE,
and to check the file status:

1. Open
2. Transmit error
3. Invalid

Linkage: As for lHEIOBA

Called by: Compiled code

Chapter 9: Module Summaries 105

Entry point IHEIOBC

Function:

To initialize PUT, and perform SKIP,
and to check the file status:

1. Open
2. Transmit error
3. Invalid

Linkage:

RA: A(Parameter list)
Parameter list:

A(DCLCB)
A(Abnormal return)
A(Expression value)

Called by: Compiled code

Ent~EQint IHEIOBD

Function:

To initialize PUT, and perform LINE,
and to check the file status:

1. Open
2. Transmit error
3. Invalid

Linkage: As for IHEIOBC

Called by: Compiled code

Ent.ry point IHEIOBE

Function:

To initialize PUT, and perform PAGE and
LINE, and to check the file status:

1. Open
2. Transmit error
3. Invalid

Linkage: As for IHEIOBC

Called by: Compiled code

Entry point IHEIOBT

Function:

To terminate the PUT operation.

Linkage: None

Called by: Compiled code

IHEIOC

calls: IHESA, IHETSA

106

Entry point IHEIOCA

Function:

To initialize the GET operation, with
the STRING option.

Linkage:

RA: ACParameter list)
Parameter list:

A (SDV)
A(DED)

Called by: Compiled code

Function:

To initialize the GET operation, with
the STRING and COPY options.

Linkage: As for IHEIOCA

Called by: Compiled code

Ent~y point IHEIOCC

Function:

To initialize the PUT operation, with
the STRING option .•

Linkage: As for IHEIOCA

Called by: Compiled code

Entry point IHEIOCT

Function:

To terminate the GET or PUT operations,
with the STRING option.

Linkage: None

Called by: Compiled code

Calls: IHEIOF, IHESA, IHEPRT, IHEPTT,
IHETSA

En~~oint IHEIODG

Function:

To obtain the next data field from the
record huffer(s).

Linkage:

Library communication area (WSDV)

Called by: Format directors" lHEIOX

~ntry point IHEIODP

Function:

To obtain space for a data field in the
record buffer(s).

Linkage: As for IHEIODG

Called by: Format directors, IHEIOX

Entry point lHEIODT

Function:

To terminate the data field request.

Linkage: As for IHEIODG

Called by: Format directors

IHEIOF

Calls: Data management (QSAM)

Entry point: IHEIOFA

Function:

To obtain logical records via data man­
agement interface modules, and initialize
FeB record pointers and counters.,

Linkage: RA: A(FCB)

Called by:

IHEDD, IHEDD, IHEDDP,
IHEIOP" IHEIOX, IHELDI,
IHEOCT, IHEPRT" IHEPTT

IHEIOG

Entry point: IHEIOGA

Function:

As for lHEION

,IiBEION

IHEDDT,
lHELDO,

IHEIOD,
IHEOCL,

This module is used in a non­
multitasking environment and is equivalent
to module IHEINT in a multitasking
envi ronment.

Calls:

Supervisor (FREEMAIN, GErMAIN) " IHEITB"
IHEITC, IHEITD, IHElTE" IHEITF', IHEITG,
IHEOCL

Entry point: IHEIONA

Function:

To verify a RECORD I/O request and to
invoke the appropriate data management
interface module to perform the required
operation, in a non-multitasking environ­
ment.

Linkage:

RA: A(Parameter list)
Parameter list:

A(DCLCB)
A(RDV)/(IGNORE factor)
A(EVENT variable)/(O)/A(Error return)
A(KEY\KEYFROM\KEYTO SDV)/(O)
A(Request control block)

Called by: Compiled code

IHEIOP

Calls: IHEIOF

Entry point IHEIOPA

Function: PAGE option/format.

Linkage: No explicit parameters

Called by: Compiled code" IHEIOB

Entry point IHEIOPB

Function: SKIP option/format.

Linkage:

RA: A(FED)
FED: Halfword binary integer

Called by: Compiled code, IHEIOA, IHEIOB

Entry point IHEIOPC

li'11nction: LINE option/format.

Linkage: As for IHEIOPB

Called by: As for IHEIOPA

IHEIOX

Calls: IHEIOD, IHEIOF

Entry point IHEIOXA

Function:

To skip next n characters in record(s).

Chapter 9: Module Summaries 107

Linkage:

RA: A CFED)
FED: Halfword binary integer

Called by: compiled code

Entry point IHEIOXB

I~unction:

To place n blanks in recordCs).

Linkage: As for IHEIOXA

Called by: Compiled code

Entry point IHEIOXC

FUnction: To position to COLUMN(n).

Linkage: As for IHEIOXA

Called by: Compiled code

Calls:

Data management (BSAM)., supervisor (CHAP,
GETMAIN)

Entry point: lHEITBA

Function:

To provide the interface with BSAM for:

1. CONSECUTIVE data sets with the UNBUF­
FERED attribute.

2.. REGIONAL data sets, whether or not
UNBUFFERED, opened for INPU'l'/UPDATE

Linkage:

RA: A(FCB)
RB: A(Parameter list)
Parameter list:

A (DCLCB)
A(RDV)/A(IOCB)/A(IGNORE factor)/A(SDV)
ACEvent variable)/CO)
ACKEYIKEYFROMIKEYTO SDV)/(O)
ACRequest control block)

I Called by: IHEION, lHEINT

IHEITC

Calls:

Data management CBSAM), Supervisor (CHAP,
GETMAIN)

Entry point: lHEITCA

108

Function:

To provide the interface with BSAM for
creating REGIONAL data sets when opened
for SEQUENTIAL output.

Linkage:

RA: ACFCB)
RB: ACParameter list)
Parameter list:

A(DCLCB)
ACRDV)/ACIOCB)
ACEvent variable)/(O)/ACAbnormal

return)
ACKEYIKEYFROM SDV)/CO)
ACRequest control block)

I Called by: IHEION, IHEINT, lHEOCL

IHEITD

Calls:

Data management CQISAM),
CGETMAIN), IHESA, IHETSA

Entry point: IHEITDA

Function:

Supervisor

To provi1e the interface with QISAM for
creating or accessing INDEXED data sets
when opened for SEQUENTIAL access.

Linkage:

RA: A C FeB)
RB: ACParameter list)
Parameter list:

ACDCLCB)
A (RDV) /A CSDV)
ACError return)/(O)
A(KEY!KEYFROM!KEYTO SDV)/CO)
ACRequest control block)

! Called by: IREION, IHEINT

IHEITE

Calls:

Data management
CGETMAIN)~ IHESA

Entry point: IHEITEA

Function:

(BISAM), Supervisor

TO provide the interface with BISAM for
accessing INDEXED data sets opened for
DIRECT access in a non-multitasking envi­
ronment.

Linkage:

RA: A(FCB)
RB: A(Parameter list)
Parameter list:

A (DCLCB)
A (RDV)/A(IOCB)/A(SDV)
A(Event variable)/(O)
A(KEYIKEYFROM SDV)/(O)
A(Request control block)

I Called by: IHEION

!liEITF

Calls:

Data management
(GETMAIN), IHESA

Entry point: lHEITFA

Function:

(BDAM) , supervisor

To provide the interface with BD~M for
REGIONAL data sets opened for DIRECT
access in a non-multitasking environment.

Linkage:

RA: A(FCB)
RB: A(Parameter list)
Parameter list:

l' ' ICLC"Q)
I tDV)/r.(I~CB)/A~SDV~

A(Event variaL:6)/(O)
A(KEYIKEYFROM SDV)/(O)
A(Request control block)

I Called by: IREION

lHElTG

Calls: Data management (QSAM)

Entry point: IHEITGA

Function:

To provide the interface with QS~M for
CONSECUTIVE data sets opened for RECORD
I/O with the BUFFERED attribute.

Linkage:

RA: A(FCB)
RB: A(Parameter list'
Parameter list:

ACDCLCB)
ACRDV)/A(SDV)
A(Error return)/(O)
A(O)
A(Request control block)

I Called by: IHElON, lHElNT

IHEITH

Calls:

Data management (BISAM), Supervisor
(CHAP" DEQ, ENQ, GETMAIN), IHETSA

Entry point: IHEITHA

Function:

To provide the interface with BISAM for
accessing INDEXED data sets opened for
DIRECT access in a multitasking environ­
ment.

Linkage:

RA: A(FCB)
RB: A(Parameter list)
Parameter list:

A(DCLCB)
A(RDV)/A(IOCB)/A(SDV)
A(Event variable) / (0)
A(KEY I KEYFROM SDV)/(O)
A(Request control block)

I Called by: lHEINT

IHEITJ

Calls:

Data management (BDAM) " Supervisor (CHAP,
DEQ;, ENQ, GETMAIN) " IHETSA

Entry point: lHEITJA

Function:

To provide the interface with BDAM for
REGIONAL data sets opened for DIRECT
access in a multitasking environment.

Linkage:

RA: ACFCB)
RB: A(Parameter list)
Parameter list:

ACOCLCB)
ACRDV)/ACIOCB)/A(SDV)
A(Event variable)/(O}
ACKEY I KEYFROM SDV) ICO)
A(Request control block)

I Called by: IHEINT

Chapter 9: Module Summaries 109

IHEITK

Calls:

Data Management (QSAM),
(GETMAIN, FREEMAIN)

Entry point: lHEITKA

Function:

Supervisor

To provide the interface with QSAM for
consecutive data sets opened for RECORD
I/O Input with the BUFFERED attribute and
VS or VBS format records.

Linkage:

RA: ACFCB)
RB: ACParameter list)
Parameter list:

ACDCLCB)
A (RDV)/A(SDV)
A(Error Return)/(O)
A (0)

A(Request Control Block)

Called by: IHEION" lHEINT

IHEITL

Calls:

Data Management C QSAM) ,
(GETMAIN, FREEMAIN)

Entry point: lHEITLA

Function:

Supervisor

To provide the interface with QSAM for
consecutive data sets opened for RECORD
I/O Output with the BUFFERED attribute
and VS or VBS format records.

Linkage: as for IHEITK

Called by: IHEION, lHEINT, lHEOCL

IHEJXI

Calls: IHESA" IHETSA

Entry point IHEJXII

Function:

110

To initialize IHEJXI to give bit
addresses, and to find the first ele­
ment of the array.

Linkage:

RA: ACADV)
RB: A(Number of dimensions)
On return:
RA: Bit address of first element

Called by: IHENL2" IHESTG

Entry point IHEJXIY

Function:

As for lHEJXII but for byte addresses.

Linkage:

RA: ACADV)
RB: ACNumber of dimensions)
On return:
RA: ACFirst element)

Called by:

IHEOSW, IHEPDF, IHEPDL, IHEPDS, IHEPDW,
IHEPDX, IHEPDZ, IHESMF, IHESMG, IHESMH,
IHESMX, IHESTG

En~~point IHEJXIA

Function:

To find the next element of the array~

Linkage:

No explicit arguments
Implicit arguments:

LCA
VDA, obtained in initialization

On return:
RA: Bit or byte address of the next

element
BR=O: Normal return
BR=4: If the address of the last ele­

ment of the array was provided on
the previous normal return

Called by:

All modules calling IHEJXII and IHEJXIY

IHEJXS

Entry point IHEJXSI

Function:

To find the first and last elements of
an array and to give their addresses as
bit addresses.

Linkage:

RA: A(ADV)
RB: A(Number of dimensions)
On Return:
RO: Bit address of first element
RA: Bit address of last element

Called by: lHENLl

Entry point lHEJXSY

FUnction:

As for lHEJXSI but for byte addresses.

Linkage:

RA: A(ADV)
RB: A(Number of dimensions)
On return:
RD: A(First element)
RA: A(Last element)

Called by:

lHEPSF, IHEPSL., IHEPSS, IHEPSW, lHEPSX,
IHEPSZ, IHESSF, IHESSG, IHESSH, IHESSX

IHEKCA

Entry point: IHEKCAA

Function:

To check that external data with a deci­
mal picture specification is valid for
that specification.

Linkage:

RA: A(Source)
RB: A(Source OED)

Called by: lHEDlE, lHEDlM

IHEKCB

Entry point: lHEKCBA

Function:

To check that external data with a sterl­
ing picture specification is valid for
that specification.

Linkage:

RA: A(Source)
RB: A(Source OED)

Called by: lHEDlE

lHEKCD

Entry pOint lHEKCDA

Function:

To check that external data with
character picture specification
valid for that specification.
ONSOURCE address is stored.

Linkage:

RA: A(Source)
RB: A(Source DED)

called by: lHEDIB, lHELDl

Entry point lHEKCDB

Function:

a
is

The

As for lHEKCDA" but
address is not stored.

the ONSOURCE

Linkage: As for lHEKCDA

Called by: As for IHEKCDA

IHELDl

Calls:

IHEDCN, lHEDMA, lHEDNB, lHEDNC, IHElOF,
lHEKCD, lHEPRT, lHEPTT, lHESA, lHETSA,
IHEVCA, IHEVCS, lHEVSC" lHEVSD

En~point lHELDlA

Function:

To read data from an input stream and
to assign it to i'nternal variables
according to list-directed input con­
ventions"

Linkage:

RA: A(Parameter list)
Parameter list:

A(Variable1)

A (DED1)

A (Variablen)
A(DEDn)
(High-order byte of last argument
indicates end of parameter list.)

Called by: Compiled code

Entry point lHELDlB

Function:

As for lHELDlA but for single varia­
bles.

Chapter 9: Module Summaries 111

IJinkage:

RA: A(Variable)
RB: A(DED)

Called by: Compiled code

Entry point IHELDIC

FUnction:

To scan the value field (entry for
data-directed input).

Linkage:

RA: A(Buffer SDV)
RB: A(Control block)
Control block: H'VDA count so far'

X'Flag box' (one byte)
Return codes:

BR=O: Not last item
BR=4: Last item
BR=8: End of file encountered before

complete data field collected

Called by: IHEDDI

Entry point IHELDID

Function:

To assign a value to a variable (entry
for data-directed input).

Linkage:

RA: A(Variable)
RB: A(DED)
RC: A(Control block)
Control block: H'VDA count so far'

X'Flag box' (one byte)

Called by: IHEDDI

l.HELDO

Call s: IHEONC, IHEIOF, IHEVSB

Entry point IHELOOA

Function:

112

To prepare data for output according to
list-directed output conventions, and
to place it in an output stream.

Linkage:

RA: A(Parameter list)
Parameter list:

A(Variable1.)
A (DE01.)

A(Variablen)
A (DEDn)
(High-order byte of last argument
indicates end of parameter list.)

Called by: compiled code

Entry point IHELDOB

Function:

As for IHELDOA, but for only one item
of the list of data.

Linkage:

RA: A(Variable)
RB: A(OED)

Called by: Compiled code

Entry point IHELDOC

Function:

As for IHELDO~ but used by data­
directed output.

Linkage:

RA: A(Variable)
RB: A(DED)
RC: A(FCB)

Called by: IHEDDO

IHELNL

En~EY-Point IHELNLE

Function:

LOG(X), where x is real long floating­
point.

Linkage:

RA: A(Parameter list)
Parameter list:

A(x)

A(Target)

Called by:

Compiled code, IHEHTL, IHELNZ, IHEXXL,
IHEXXZ

Entry point IHELNL2

Function:

LOG2(x), where x is real long :floating­
point.

Linkage: As for IHELNLE

called by: As for IHELNLE

Entry point IHELNLD

Function:

LOG10 (x) " where
floating-point.

x

Linkage: As for IHELNLE

called by: As for IHELNLE

IHELNS

Entry point IHELNSE

Function:

is real long

LOG(x), where x is real short floating­
point.

Linkage:

RA: A(Parameter list)
Parameter list:

A(x)
A (Target)

Called by:

Compiled code, IHEHTS" IHELNW" IHEXXS,
IHEXXW

Entry point IHELNS2

Function:

LOG2 (x) " where x
floating-point,.

Linkage: As for IHELNSE

called by: As for IHELNSE

Entry point IHELNSD

Function:

LOG10(x), where x
floating-point,.

Linkage: As for IHELNSE

called by: As for IHELNSE

IHELNW

Call s: IHEATS" IHELNS

is real short

is real short

Entry point: IHELNWO

Function:

LOG (z) " where
floating-point.

Linkage:

Z

RA: A(Parameter list)
Parameter list:

A(z)
A(Target)

is complex short

Called by: compiled code" lHEXXW

IHELNZ

Calls: lHEATL, IHELNL

Entry point: IHELNZO

Function:

LOGCz), where z is complex long floating­
point.

Linkage:

RA: A(Parameter list)
Parameter list:

A(z)
ACTarget)

Called by: Compiled code" IHEXXZ

IHELSP

Calls: Supervisor CFREEMAIN,GETMAIN)

Function:

storage management for list processing.

Entry point IHELSPA

Function:

To provide storage in an area variable
for an allocation of a based variable.

Linkage:

RA: A(Eight-byte word-aligned parameter
list)

RB: ACALLOCATE statement}
Parameter list:

Byte 0: Not used
Bytes 1-3: A(Area variable)
Byte 4: Offset of beginning of based

variable from doubleword
boundary

Bytes 5-7: Length of based variable

On return:

RA: ACEight-byte word-aligned parameter
list)

Chapter 9: Module Summaries 113

Parameter list:
Byte 0: Not used
Bytes 1-3: A(Based variable)
Byte 4: Offset of beginning of based

variable from doubleword
boundary

Bytes 5-1: Length of based variable

Called by: Compiled code

Entry point IHELSPB

Function:

To free storage allocated to a based
variable in an area variable.

Linkage:

RA: A(Eight-byte word-aligned parameter
list)

RB: A (Area variable)
Parameter list:

Byte 0: Not us ed
Bytes 1-3: A(Based variable)
Byte 4: Offset of beginning of based

variable from doubleword
boundary

Bytes 5-7: Length of based variable

Called by: Compiled code

Entry point IHELSPC

E'unction:

Assignments between area variables.

Linkage:

RA: A(Source area variable)
RB: A(Target area variable)

Called by: Compiled code.

Entry point IHELSPD

FUnction:

To provide system storage for an allo­
cation of a based variable (using GET­
MAIN macro).

Linkage:

114

RA: A(Eight-byte word-aligned parameter
list)

Parameter list:

Bytes 0-3: Not used

Byte 4: Offset of beginning of based
variable from doubleword bound­
ary

Bytes 5-7: Length of based variable

On return:

RA: A(Eight-byte word-aligned parameter
list)

Parameter list:
Byte 0: Not used
Bytes 1-3: A(Based variable)
Bytes 4-7: Not used

Called by: Compiled code

Entry pOint IHELSPE

Function:

To free system storage allocated to a
based variable (using FREEMAIN macro).

Linkage:

RA: A(Eight-byte word-aligned parameter
list)

Parameter list:
Byte 0: Not used
Bytes 1 - 3: A(Based variable)
Byte 4: Offset of beginning of based

variable from doubleword
boundary

Bytes 5 - 7: Length of based variable

Called by: Compiled code

IHEM91

Calls: IHEERR

Entry point IHEM91A

Function:

1. To analyze the exception or excep­
tions in an imprecise interrupt on a
Model 91

2. To set up a list of these exceptions
(in LWE)

3. To raise the first of a series of
PLII conditions corresponding to
these exceptions

Linkage:

PSW at interrupt
LWE + 112

Called by:

is in current

IHEERR, when an imprecise interrupt is
detected

Entry point IHEM91B

Function:

To continue raising, in sllccession, the

PL/I conditions corresponding to the
exceptions

Linkage:

List of
LWE + 136

exceptions is in current

Called by: IHEERR

Entry pOint IHEM91C

Function:

To print an error message for each
unprocessed exception when" as a. result
of the processing of an earlier excep­
tion in the list, a program is forced
to terminate before processing' of the
list is complete

Linkage: None

Called by: IHEERR

IHEMAI

Entry point: IHEMAIN

Function:

Contains address of IHEBEGN; loaded only
if there is no main procedure.

Linkage: None

Called by: IHESA, IHETSA

IftEr1PU

Entry point: IHEMPUO

Function:

MULTIPLY(w,z,p,g), where
complex fixed binary, and
target precision.

Linkage:

RA: A(Parameter list)
Parameter list:

A(w)
A (DED for w)
A(z)
A (DED for z)
A (Target)
A(DED for target)

Called by: Compiled code

;rIHEMPV

Calls: IHEAPD

Entry point: IHEMPVO

wand z
(p,g) i.s

are
the

Function:

MULTIPLY(w,z,P.g). where wand z are
complex fixed decimal, and (p,g) is the
target precision.

Linkage:

RA: A(Parameter list)
Parameter list:

A(w)
ACDED for w)
A(z)
A(DED for z)
A(Target)
ACDED for target)

Called by: Compiled code

IHEMSI

Entry point: IHEMSIA

Function:

To call IHEERRC so that an error message
is printed saying that STlMER facilities
are unavailable.

Entry Point: IHEMSTA.

Function:

To call IHEERRC so that an error message
is printed saying that the TIME facility
is unavailable.

Called by: Compiled code

IHJ2MSW

Calls:

Supervisor CFREEMAIN, WAIT), I/O transmit
module whose address is in the FCB.

Entry point: IHEOSWA

Function:

1. According to the count passed, to
return to the caller or to wait until
a single I/O event is complete. If
the count is SO, immediate return is
made; otherwise the event .is waited
on.

2. To branch to the I/O transmit module
to raise I/O conditions if necessary.

Linkage:

RA: A(Parameter list)
Parameter list:

A(Count)
A(Event variable)

Chapter 9: Module sununaries 115

Called by: Compiled code

IHEMXB

Ehtry point IHEMXBX

Function:

MAX(X1.'X2 •••• 'Xn)' where X1.,X2 and Xn
are real fixed-point binary.

Linkage:

RA: A(Parameter list)
Parameter list:

A(x1.)
A(DED for X1.)

A(xn)
A(DED for xn}
A (Target)
A(Target DED)
(High-order byte
indicates end of

of last argument
parameter list.)

called by: Compiled code

Entry point IHEMlCBN

Function:

MIN(X1.,x2 •••• 'xn)' where x1.,x2 and Xn
are real fixed-point binary.

Linkage: As for IHEMXBX

Called by: Compiled code

IHEMXD

Entry point IHEMXDX

Function:

MAX(X1."x 2 , ••• ,xn)·, where X1.,X2 and Xn
are real fixed-point decimal.

Linkage:

RA: A(Parameter list)
Parameter list:

A(X 1)

A(DED for X1)

A(xn)
A(DED for xn)
A (Target)
A(Target DED)
(High-order byte
indicates end of

of last argument
parameter list.)

Called by: Compiled code

116

Entry point IHEMXDN

Function:

MIN(X1.,x2 •••• xn)' where X1,X2 and Xn
are real fixed-point decimal.

Linkage: As for IHEMXDX

Called by: Compiled code

IHEMXL

Entry point IHEMXLX

Function:

MAX(X1,X2, ••• ,Xn), where X1,X2
are real long floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

A(X1.)
A(X2)

A(xn)
A (Target)

and Xn

(High-order byte of last argument
indicates end of parameter list.)

Called by: Compiled code

Ent£Y point IHEMXLN

Function:

MIN(X1,X2" ••• ,xn), where x1.,x2 and xn
are real long floating-point.

Linkage: As for IHEMXLX

Called by: Compiled code

Entry pOint IHEMXSX

Function:

MAX (X1, X2, •.•• , xn) , where X1., X2 and Xn
are real short floating-point,.

Linkage:

RA: A(Parameter list)
Parameter list:

A(x1.)
A(X2)

A(xn)
A (Target)
(High-order byte of last argument
indicates end of parameter list.)

Called by: Compiled code

Entry-EQint IHEMXSN

FUnction:

MIN (X1., X2, •. ;, • , xn) , where X1.' X2 and Xn
are real short floating-point.

Linkage: As for IHEMXSX

Called by: Compiled code

IHEMZU

Entry point IHEMZUM

Function:

Z1.*Z2, where Z1. and Z2 are complex
fixed-point binary.

Linkage:

RA: A(z1.)
*RB: A (DED for Z1.)

RC: A(Z2)
*RD: A(DED for Z:;l)

RE: A (Target)
*RF: A(Target DED

Called by: Compiled code" IHEXIU

Entry point IHEMZUD

Function:

Z1./Z2, where Z1. and Z2 are complex
fixed-point binary.

Linkage:

RA: A(z1.)
RB: A(DED for Z1.)
RC: A(za)

*RD: A(DED for za)
RE: A (Target)

*RF: A(Target DED}

Called by: Compiled code

IHEMZV

Entry point IHEMZVM

Function:

Z1.*Z2, where Z1. and Z2 are complex
fixed-point decimal.

Linkage:

RA: A(z1.)
RB: A(DED for Z1.)
RC: A(Z2)
RD: A(DED for za)
RE: A(Target)

*RF: A(Target OED)

Called by: compiled code, IHEXIV

En~~_2oint IHEMZVD

Function:

·Za. where Z1. and Za are complex
fixed-point decimal.

Linkage: As for IHEMZVM

cal'led by: Compiled code

Entry point: IHEMZWO

FUnction:

Z1.*Za, where Z1. and Za are complex short
floating-point.

Linkage:

RA: A(z1.)
RB: A(Z2)
RC: A(Target)

Called by: compiled code#IHEXIW

IHEMZZ

Entry point: IHEMZZO

Function:

Z1.*Za, where Z1. and Za are complex long
floating-point.

Linkage:

RA: A(z1.)
RB: A(za)
RC: A (Target)

Called by: compiled code,IHEXIZ

IHENL1

Calls: IHEBSA, lHEBSF, IHEBSO, IHEJXS

Chapter 9: Module Summaries 117

Entry point IHENL1A

Function:

ALL or ANY for a simple array (or an
interleaved array of VARYING elements)
of byte-aligned elements and a byte­
aligned target.

Linkage:

RA: A(Parameter list)
Parameter list:

A (SADV)
A(Number of dimensions)
A(DED of the array)

(A(IHEBSAO) for ALL, or
(A(IHEBSOO) for ANY
A(SDV for Target field

Called by: compiled code

Entry point IHENL1L

Function:

ALL for a simple array (or an
interleaved array of VARYING elements)
of elements with any alignment, and a
target with any alignment.

'Linkage:

RA: A(Parameter list)
Parameter list:

A (SADV)
A(Number of dimensions)
A(DED of the array)
A (IHEBSFO)
A(SDV for target field

Called by: Compiled code

En-try point lHENL1N

[i'unction: As for lHENL1L, but ANY.

Linkage: As for lHENL1L

Called by: Compiled code

Calls: IHEBSA, lHEBSF, lHEBSO, IHEJXl

Ebtry point lHENL2A

l!runction:

118

ALL or ANY for an interleaved array of
fixed-length byte-aligned elements and
a byte-aligned target.

Linkage:

RA: A(Parameter list)
Parameter list:

A(SADV)
A(Number of dimensions)

*A(DED of the array)
(A(lHEBSAO) for ALL, or
(A(lHEBSOO) for ANY
A(SDV for target field)

Called by: Compiled code

Entry point IHENL2L

Function:

ALL for an interleaved array of fixed­
length elements with any alignment, and
a target with any alignment.

Linkage:

RA: A(Parameter list)
Parameter 'list:

A(SADV)
A(Number of dimensions)

*A(DED of the array)
A(lHEBSFO)
A(SDV for target field)

Called by: compiled code

~ntrYJ?oint IHENL2N

Function:

ANY for an interleaved array of fixed­
length elements with any alignment, and
a target with any alignment.

Linkage:

RA: A(Parameter list)
Parameter list:

A(SADV)
A(Number of dimensions)

*A(DED of the array)
A(IHEBSFO)
A(SDV for target field)

Called by: Compiled code

lHEOCL

Calls:

Supervisor (DCBD, FREEMAlN, LlN.IO, lHECLT,
IHElOF" IHElTC, IHElTL,. IHEOPN, lHESA

Ent~point lHEOCLA

Function:

Explicit
handles
IHEOPN,
IHEOPZ.

open: links to lHEOPNA;
error conditions detected by

lHEOPO, lHEOPP, lHEOPQ or

Linkage:

RA: A(OPEN parameter list)
Parameter list: See IHEOPN

called by: Compiled code, IHEPRT

Entry point IHEOCLB

Function:

Explicit close: links to lHECLTA.

Linkage:

RA: A(CLOSE parameter list)
Parameter list: See IHECLTA

Called by: Compiled code

Entry point IHEOCLC

Function:

To perform implicit open.

Linkage:

RA: A (CCB)
RB: A (DCLCB)

Called by: IHEIOA, IHEIOB, IHEION

Entry point IHEOCLD

Function:

Implicit close:

1. When a task is terminated, to close
all the files opened in the task
(by linking to IHECLTB).

Linkage:

RA: A(PRV of current task)

Called by: IHESA

IHEOCT

Calls:

supervisor (DCBD, DEQ, FREEMAIN, LINK) "
IHECTT, IHEIOF, IHEITC, IHEITL" IHEOPN,
IHETSA

E\ntry point IHEOCTA

Function:

Explicit open in a multitasking envi­
ronment: links to IHEOPNA; handles
error conditions detected by IHEOPN,
IHEOPO, IHEOPP. IHEOPQ or IHEOPZ.

Linkage:

RA: A(OPEN parameter list)
Parameter list: See IHEOPN

Called by: Compiled code, IHEPTT

En~oint IHEOCTB

Function:

Explicit close in a multitasking envi­
ronment: links to IHECTTA.

Linkage:

RA: A(CLOSE parameter list)
Parameter list: See IHECTTA

Called by: Compiled code

Entry point IHEOCTC

Function:

To perform implicit open in a multi­
tasking environment.

Linkage:

RA: A(OCB)
RB: A(DCLCB)

Called by: IHEIOA, IHEIBT, IHEINT

Entry point IHEOCTD

Function:

Implicit close:

1. When a task is terminated, to close
all the files opened in the task
(by linking to IHECTTB).

2. To dequeue all records locked by
the task and free the corresponding
EXCLUSIVE blocks.

To set all imcomplete EVENT varia­
bles complete" inactive, and abnor­
mal, and to free the associated
IOCBs.

Linkage:

RA: A(PRV of current task)

Called by: IHETSA

Chapter 9: Module Sumn~ries 119

IHEOPN

Calls:

IHEOPO (via XCTL) , IHEOPZ (via LINK),
IHESA" IHETSA

Entry pOint: IHEOPNA

Function:

Open files:
1. Merge declared attributes with OPEN

options.
2. Invoke IHEOPO.
3. Invoke IHEOPZ if declared DIRECT

OUTPUT (REGIONAL (1). (2) and (3)
only) •

Linkage:

RA: A(Parameter list)
Parameter list:

A(OPEN Parameter list)
A(Private Adcons)

OPEN Parameter list:
A(DCLCB1)
A(OPEN Control block1)/0
A(TITLE-SI>V1)/0
(Reserved)
(Reserved)
(Reserved)
A(LINESIZE1)/0
A(PAGESIZE1.)/O

A (DCLCBn)
A(OPEN Control blockn)/O
A(TlTLE-SDVn)/O
(Reserved)
(Reserved)
(Reserved)
A(LlNESIZEn)/O
A(PAGESIZEn)/O
(High-order byte of last argument
indicates end of parameter list.)

Called by: lHEOCL" IHEOCT

lHEOPO

Calls:

Supervisor (DCB,DCBD, DEVTYPE" GETMAIN) ,
lHEOPP (via XCTL), lHESA" lHETSA

Entry Point: lHEOPOA

Function:

1. To create and format the FCB.

2. To set file register to A(FCB).

120

Linkage:

RA: A(Parameter list)
Parameter list:

A(lHEOPN Parameter list)
A(Subparameter list)

Subparameter list:
XL4'4*n'(where n is the number of files

to be opened)
X'Access/Organization code1'
AL3 (DCLCB1)
XL4'Merged attribute1 '

X'Access/Organization Coden'
AL3(DCLCBn)
XL4'Merged attributen'

NOTE: Access/organization Code is described
in the module listing.

Called by: lHEOPN

lHEOPP

Calls:

Supervisor (DCBD"GETMAlN"GETPOOL" OPEN),
lHEOPQ (via XCTL) I' IHESA" IHETSA

Entry point: IHEOPPA

Function:

1. To invoke data
macro).

management (OPEN

2. To establish defaults at DCB exit.

3. To acquire initial lOCBs for BSAM.

Linkage:

RA: A(Parameter list)
Parameter list:

A(lHEOPN Parameter list)
A(Subparameter list)

Subparameter list:
XL4'4*n'(where n is the number of files
to be opened)
X'Access/organization Code1'
AL3 (DCLCB1)
XL4'Merged attribute1'

X'Access/Organization Coden'
AL3(DCLCBn)
XL4'Merged attributen'

NOTE: Access/Organization Code is described
in the module listing.

Called by: "IHEOPO

IHEOPQ

calls:

Supervisor CDCBD,FREEPOOL,GETMAIN,LOAD),
IHESA, lHETSA

Entry point: lHEOPQA

Function:

1. To load record-oriented I/O inter­
face modules.

2. To link FCBs through the IHEQFOP
chain.

3. To acquire the initial IOCBs for
BDAM and BISAM linkage.

4. To simulate PUT PAGE when opening a
PRINT file.

Linkage:

RA: A(Parameter list)
Parameter list:

A(IHEOPN parameter list)
A(Subparameter list)
A(Data management. OPEN parameter

list)

Subparameter list:
XL4'4*n' (where n is the number of

files to be opened)
X'Access/Organization coden'
AL3 (DCLCB,.)
XL4'Merged attributes1'

X'Access/Organization Coden'
AL3(DCLCBn)
XL4'Merged attributesn'

Data management OPEN'parameter list:
XL4'4*n' (where n is the number of

files to be opened)
X(Flags for data management OPEN

executor1)
AL3 (DCB1)

X(Flags for data management OPEN
executorn)

AL3 (OCBn >

NOTE: Access/organization Code is described
in the module listing.

Called by: lHEOPP

IHEOPZ

Calls:

Supervisor (CHECK, CLOSE, DCB, DCBD., FREE­
MAIN,FREEPOOL,GETBUF,GETMAIN,OPEN)

Entry point: IHEOPZA

Function:

To provide the format for the initial
allocation of a volume assigned to a
REGIONAL data set when opened for DIRECT
OUTPUT.

Linkage:

RA: A(Parameter list)
Parameter list:

A(Merged attributes)
A(Entry in IHEOPN Parameter list)
A(DCLCB)

Called by: IHEOPN

IHEOSD

Calls: TIME macro

Entry point: IHEOSDA

Function: To obtain current date.

Linkage:

RA: A(Parameter list)
Parameter list: A(Target SDV)

Called by: Compiled code

IHEOSE

I Calls: IHESA, IHETSA(to terminate the task)

Entry point: IHEOSEA

Function:

To terminate the current task abnormally,
raising the FINISH condition if it is the
major task.

Called by: Compiled code

IHEOSI

Calls: STIMER macro

Entry point: IHEOSIA

Function:

To use the STIMER macro with the WAIT
option for the implementation of DELAY.

Chapter 9: Module Summaries 121

Linkage:

RA: A{Parameter list)
Parameter list:

Interval of delay, in milliseconds, in
a fullword

Called by: compiled code

I Calls: IHESA, IHETSACto terminate the task)

Entry point: IHEOSSA

Function:

To raise the FINISH condition and abnor­
mally terminate the job step.

Linkage: None

Called by: compiled code

Entry Point: IHEOSTA

i?unct.ion:

To use the TIME macro to obtain the time
of day.

Linkage:

RA: A{Parameter list)
Parameter list: A{Target SDV)

Called by: Compiled code

Calls:

Supervisor (FREEMAIN,WAIT), IHEJXI,
IHESA, I/O transmit module whose address
is in the FCB

Entry point: IHEOSWA

Function:

To determine whether a specified number
of events has occurred. If not, to wait
until the required number is complete,
and, in the case of I/O events, to branch
to the I/O transmit module (which raises
I/O cOilditions if necessary).

This module is used in a non-multitasking
environment.

Linkage:

RA: A{Parameter list)
Parameter I is·t:

Word 1:

122

1. If all events are to be waited
on:

Byte 0 = X'FF'
Bytes 1 - 3 not used

2. If a specified number (N) of
events is to be waited on:

Byte 0 X'OO'
Bytes 1 - 3 = A{N)

subsequent words (one for each element
or array event):

1 . Arra y event:
Byte 0 dimensionality
Bytes 1 - 3 = A{ADV)

2,. Element event:
Byte 0 X'OO'
Bytes 1 - 3 = ACEvent variable)

(High-order byte of last argument indi­
cates end of parameter list.)

Called by: Compiled code

IHEPDF

Calls: IHEDMA, IHEJXI

Entry point: IHEPDFO

Function:

PROD for an interleaved array of real
fixed-point binary or decimal elements.
Result is real short or long floating­
point.

Linkage:

RA: ACParameter list)
Parameter list:

A(ADV)
A(Number of dimensions)
ACDED of the array)
A(Target)
ACDED for target)

Called by: Compiled code

IHEPD!:!

Calls: IHEJXI

Entry point: IHEPDLO

Function:

PROD for an interleaved array
long floating-point elements.
real long floating-point.

of real
Result is

Linkage:

RA: ACParameter list)
Parameter list:

ACADV)
ACNumber of dimensions)
A (Target)

Called by: Compiled code

IHEPDS

calls: IHEJXI

Entry point: IHEPDSO

Function:

PROD for an interleaved array
short floating-point elements.
real short floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

A (ADV)
ACNumber of dimensions)
A (Target)

Called by: Compiled code

IHEPlDW

Calls: IHEJXI

Entry point: IHEPDWO

Function:

of real
Result is

PROD for an interleaved array of complex
short floating-point elementsw Result is
complex short floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

A (ADV)
A(Nurnber of dimensions)
ACTarget)

Called by: Compiled code

IHEPDX

Calls: IHEDMA, lHEJXI

Entry point: lHEPDXO

Function:

PROD for an interleaved array of complex
fixed-point binary or decimal elements.
Result is complex short or long floating­
point.

Linkage:

RA: ACParameter list)
Parameter list:

A(ADV)
A(Number of dimensions)
ACDED of the array)
A(Target)
ACDED for target)

Called by: compiled code

IHEPDZ

Calls: IHEJXI

Entry point: IHEPDZO

Function:

PROD for an interleaved array of complex
long floating-point elements. Result is
complex long floating-point.

Linkage:

RA: ACParameter list)
Parameter list:

A(ADV)
ACNumber of dimensions)
A(Target)

Called by: Compiled code

Calls:

Supervisor CWTO,
lHEOCL" lHESA

EntrY-Eoint lHEPRTA

Function:

EXTRACT) , lHElOF,

To COPY a data field on the SYSPRlNT
file, opening it if necessary.

Linkage:

RA: ACCharacter string)
RB: A(Halfword containing length of

character string)

Called by: IHElOD.lHELDI

Chapter 9: Module Summaries 123

Entry poi nt IHEPRTB

FU.nction:

To write an error message on the SYS­
PRINT file, opening it if necessary.
Also, to prepare for system action for
CHECK condition.

Linkage: As for IHEPRTA

Called by: lHEDDO, IHEERR, IHEESM, IHEESS

IHEFSF

calls: IHEDMA, IHEJXS

Entry point: IHEPSFO

Function:

PROD for a simple array of real fixed­
point binary or decimal elements. Result
is real short or long floating-point.

Linkage:

RA.: A (Parameter list)
Parameter list:

A(ADV)
A(Number of dimensions)
A(DED of the array)
A (Target)
A(DED for target)

Ca.lled by: Compiled code

IHEPSL

Calls: IHEJXS

Entry point: IHEPSLO

Function:

PROD for a simple array
floating-point elements.
long floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

A (ADV)
A(Number of dimensions)
A (Target)

Called by: compiled code

IHEPSS

Calls: IHEJXS

Entry point: lHEPSSO

124

of real long
Result is real

Function:

PROD for a simple array
floating-point elements.
short floating-point .•

Linkage:

RA: A(Parameter list)
Parameter list:

A(ADV)
A(Number of dimensions)
A(Target)

Called by: Compiled code

IHEPSW

Calls: IHEJXS

Entry point: IHEPSWO

Function:

of real short
Result is real

PROD for a simple array of complex short
floating-point elements. Result is
complex short floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

A(ADV)
A(Number of dimensions)
A(Target)

Called by: Compiled code

IHEPSX

Calls: IHEDMA, IHEJXS

Entry point: IHEPSXO

Function:

PROD for a simple array of complex fixed­
point binary or decimal elements. Result
is complex short or long floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

A(ADV)
A(Number of dimensions)
A(DED of the array elements)
A(Target)
A(DED for target)

Called by: Compiled code

IHEPSZ

Calls: IHEJXS

Entry point: IHEPSZO

Function:

PROD for a simple array of complex long
floating-point elements. Result is
complex long floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

A (ADV)
A(Number of dimensions)
A (Target)

Called by: Compiled code

IHEPTT

This module is used in a multitasking
environmen t and is equi va lent to module
IHEPRT in a non-multitasking environment.

C'alls:

supervisor (DEQ, ENQ, EXTRACT D WTO),
IHEIOF, IHEOCT, IHETSA

Entry point IHEPTTA

Function:

To COPY a data field on the SYSPRINT
file., opening it if necessary, in a
multitasking environment.

Linkage:

RA: A(Character string)
RB: A(Halfword containing length of

character string)

Called by: IHElOD, lHELDl

Entry point IHEPTTB

Function:

To write, in a multitasking environ­
ment" an error message on the SYSPRlNT
file" opening it if necessary,. Also"
to prepare for system action for CHECK
condition.

Linkage: As for lHEPTTA

Called by: lHEDDT, lHEERR, lHEESM, lHEESS

IHESA

Calls:

supervisor (FREEMAlN, GETMAlN, SPIEl "
IHEBEG, lHEMAI, IHEOCL

Function:

Storage management in a non-Il.ul ti tasking
environment.

Entry point IHESADA (Get DSA):

Function:

To provide a DSA for a procedure or
begin block and to set DR to pOint to
it,.

Linkage:

RO: Length of DSA
DR: A(Current save area)

Called by: Prologues

Ent~oint lHESADB (Get VDA):

Function:

To get a VDA for compiled code; sets
RA=A(VDA) •

Linkage:

RO: Length of VDA (excluding control
words)

DR: A(Current save area)

Called by: compiled code

En:t!:L point
variable):

Function:

IHESADD (Get CONTROLLED

To provide storage for an allocation of
a controlled variable, and to place the
address of its fourth word in its
pseudo-register.

Linkage:

RO: Length of area (not including con­
trol words)

RA: A(Controlled-variable pseudo­
register)

Called by: compiled code

Entry point IHESADE (Get LWS):

Function:

To provide a new LWS. and to update the
LWS pseudo-registers.

Linkage: None

Called by: Library modules

Chapter 9: Module Summaries 125

Entry point IHESADF (Get Library VDA):

FUnction:

To provide a VDA for library modules
a.nd to set RA = A{VDA).

Linkage:

RO: Length of VDA (including control
words)

Called by: Library modules

Entry point IHESAFA (END):

FUnction:

]i'rees the DSA current at entry together
,qith its associated VDAs. Request to
1:ree the DSA of the main procedure
results in raising FINISH" closing all
opened files, releasing automatic stor­
age to the supervisor and finally
returning to the supervisor with a
return code of zero.

Linkage: None

Called by: Epilogues

~Y point IHESAFB (RETURN):

Function:

}~rees all chain elements up to and
including the last procedure DSA in the
chain. Can terminate a main procedure
as in IHESAFA.

Linkage: None

Called by: Compiled code

Entry pOint IHESAFC (GO ~O):

FUnction:

'rhe DSA indicat.ed by the invocation
count, or pointed to by DR, is made
current. All chain elements up to this
))SA, with the exception of its VDAs and
itself, are freed.

Linkage:

RA: A(Eight-byte word-aligned parameter
list)

Parameter list:
WOrd 1 = Either Invocation count

(sign bit of word 2 0)
Or PR offset (sign bit of
word 2 = 1)

Word 2 = A(Location to which control
is to be returned)

Called by: Compiled code

126

Entry point IHESAFD (Free VDJ/LWS)

Function:

Frees the VDA or LWS at the end of the
DSA chain.

Linkage:

IHEQSLA: A(VDA or LWS to be freed)
(A VDA or LWS can be freed only when it

is the last allocation)

Called by: Compiled code, library modules

~nt~-20int IHESAFF (Free cont:rolled
variable):

Function:

Frees the latest allocation of a con­
trolled variable, and upda'tes the ass0'­
ciated pseudo-register.

Linkage:

RA: A(Controlled variable pseudo­
register)

Called by: Compiled code

Entry point IHESAFQ

Function:

To close all files and to return to the
supervisor.

Linkage: None

Called by: Library modules

En£~Y-Qoint IHESAPA

Function:

1. To provide a PRY and LWS for a main
procedure, and to issue a SPIE
macro; then to transfer control to
an address constant named IHEMAIN.

2. To pass a PARM parameter from the
EXEC card.

Linkage:

L{PRV) from linkage editor
L(LWS) from assembly of IHELIB

Called by: Initial entry

Entry Point IHESAPB

Function:

As for IHESAPA" except that the code
handling PARM parameter is bypassed.

Linkage:

L(PRV) from linkage editor
L(LWS) from assembly of IHELIB

Elntry poi nt IHESAPC

Function:

As for IHESAPA, but also reserves a
512-byte area for optimization purpos­
es.

Linkage:

L(PRV) from linkage editor
L(LWS) from assembly of IHELIB

Entry point IHESAPD

Function:

As for IHESAPB" but also reserves a
512-byte area for optimization purpos­
es.

Linkage:

L(PRV) from linkage editor
L{LWS) from assembly or IHELIB

Eptry point IHESARA

FUnction:

To restore the environment of a program
to what it was before:

1. the execution of an ON statement
associated with the on-unit to be
entered" or

2. the passing of the entry parameter
associated with the called proce­
dure.

Then to branch to the on-unit or the
procedure.

Linkage:

RA: A(Parameter list)
Parameter list:

A(Entry parameter). The entry param­
eter is an a-byte field containing:

1st word: On-unit or entry address

2nd word: Invocation count of the
DSA associated with eith­
er the passing procedure
or the procedure in which
the ON statement was exe­
cuted

Called by: Compiled code" IHEERR

Entry point IHESARC

Function:

To place the return code in the pseudo­
register IHEQRTC.

Linkage:

RA: A(Parameter list)
Parameter 1 ist.:

A(Return code) (The
fixed binary
prceision.)

Called by: Compiled code

IH~SHL

Calls: IHEEXL

Entry point IHESHLS

Function:

ret urn code is
with default

SINH(x), where x is real long floating­
point.

Linkage:

RA: A Parameter list)
Parameter list:

A(x)
A(Target)

Called by: Compiled code

Entry point IHESHLC

Function:

COSH(x)~ where x is real long floating­
point.

Linkage: As for IHESHLS

Called by: Compiled code

IHESH~

Calls: IHEEXS

Entry point IHESHSS

Function:

SINH(x)" where
floating-point.

Linkage:

x

RA: A(Parameter list)
Parameter list:

A(x)
A(Target)

Called by: Compiled code

is real short

Chapter 9: Module Summaries 127

Entry point IHESHSC

Function:

COSH (x), where
:E loa ting-poi nt,.

x

Linkage: As for IHESHSS

Called by: Compiled code

Calls: IHEDMA" IHEJXI

Entry point: IHESMFO

Function:

is real short

SUM for an interleaved array of real
fixed-point binary or decimal elements.
Result is real short or long floating­
point.

Linkage:

RA: A(Parameter list)
Parameter list:

[lA (ADV)

A(Number of dimensions}
A(DED of the array)
[l (Target)
A(DED for target}

Called by: Compiled code

IHESMQ

calls: IHEJXI

Entry point IHESMGR

FUnction:

SUM for an interleaved array of real
short floating-point elements. Result
is real short floating-point,.

Linkage:

RA: A(Parameter list}
Parameter list:

A (ADV)
A(Number of dimensions)
A (Target)

Called by: Compiled code

Entry point IHESMGC

Function:

128

SUM for an interleaved array of complex
short floating-point elements. Result
is complex short floating-point.

Linkage: As for IHESMGR

Called by: compiled code

IHESMH

Calls: IHEJXI

Entry point IHESMHR

Function:

SUM for an interleaved array of real
long floating-point elements. Result
is real long floating-point.

Linkage:

RA: A(Parameter list}
Parameter list:

A(ADV)
A(Number of dimensions}
A(Target)

Called by: Compiled code

Entry point IHESMHC

Function:

SUM for an interleaved array of complex
long floating-point elements. Result
is complex long floating-point.

Linkage: As for lHESMHR

Called by: Compiled code

IHESMX

Calls: IHEDMA, IHEJXI

Entry point: IHESMXO

Function:

SUM for an interleaved array of complex
fixed-point binary or decimal elements.
Result is complex short or long floating­
point .•

Linkage:

RA: A(Parameter list}
Parameter list:

A(ADV}
A(Number of dimensions)
A(DED of the array}
A(Target)
A(DED for target)

Called by: compiled code

IHESNL

Entry point IHESNLS

Function:

SINCx), where x is real long floating­
point.

Linkage:

RA: ACParameter list)
Parameter list:

A(x)
A (Target)

Called by: Compiled code, IHEEXZ, IHESNZ

Entry point IHESNLZ

Function:

SINOCx), where x is real long floating­
point.

Linkage: As for IHESNLS

Called by: Compiled code

Entry point IHESNLC

Function:

COSCx), where x is real long floating­
point.

Linkage: As for IHESNLS

Called by: Compiled code, IHEEXZ, IHESNZ

Entry point IHESNLK

Function:

COSOCx), where x is real long floating­
point.

Linkage: As for IHESNLS

Called by: Compiled code

IHESNS

Entry point IHESNSS

Function:

SIN(x), where x is real short floating­
point.

Linkage:

RA: A(Parameter list)
Parameter list:

A(x)
A(Target)

Called by: Compiled code, IHEEXW, IHESNW

Entry point IHESNSZ

Function:

SIND(x), where
floating-point.

x

Linkage: As for IHESNSS

Called by: Compiled code

En~~oint IHESNSC

Function:

is real short

COS(x), where x is real short floating­
point.

Linkage: As for IHESNSS

Called by: Compiled code, IHEEXW, IHESNW

Ent~-20int IHESNSK

Function:

COSD(x), where
floating-point.

x

Linkage: As for IHESNSS

Called by: Compiled code

IHESNW

Calls: IHEEXS, IHESNS

Entry point IHESNWS

Function:

is real short

SIN (z) " where
floating-point.

z is complex short

Linkage:

RA: A(Parameter list)
Parameter list:

A(z)
A(Target)

Called by: Compiled code

Entry point IHESNWZ

Function:

SINH(z), where z is complex short
floating-point.

Chapter 9: Module Summaries 129

Linkage: As for IHESNWS

Called by: Compiled code

Elntry point IHESNWC

Function:

COS(z), where
floating-point ..

z is complex short

Linkage: As for IHESNWS

Called by: Compiled code

Entry point IHESNWK

Function:

COSH{z)" where z is complex short
floating-point.

Linkage: As for IHESNWS

Called by: Compiled code

Calls: IHEEXL, IHESNL

Function:

SIN (z) " where
floating-point.

Linkage:

z

RA: A{Parameter list)
Parameter list:

A{z)
A(Target)

Called by: Compiled code

Entry point IHESNZZ

Function:

is complex long

SINH(z), where
floating-point.

z is complex long

Linkage: As for IHESNZS

Called by: Compiled code

Entry point IHESNZC

Function:

COS(z), where z
floating-point.

Linkage: As for IHESNZS

Called by: Compiled code

130

is complex long

Entry point IHESNZK

Function:

COSH(z), where
floa ting-point .•

z is complex long

Linkage: As for IHESNZS

Called by: Compiled code

IHESQL

Entry point: IHESQLO

Function:

SQRT(x), where x is real long floating­
point.

Linkage:

RA: A(Parameter list)
Parameter list:

A(x)
A(Target)

Called by: Compiled code, IHEABZ" IHESQZ

Entry point: IHESQSO

Function:

SQRT(x) , where x is real short floating­
point.o

Linkage:

RA: A(Parameter list)
Parameter list:

A(x)
A(Target)

Called by: Compiled code, IHEABW, IHESQW

IHESQW

Calls: IHESQS, IHEABW

Entry point: IHESQWO

Function:

SQRT(z). where
floating-point.

Linkage:

z

RA: A(Parameter list)
Parameter list:

A(z)
A(Target)

Called by: Compiled code

is complex short

IHESQZ

calls: IHEABZ, IHESQL

Entry point: IHESQZO

Function:

SQRT (z) " where
floating-point.

Linkage:

z

RA: A(Parameter list)
Parameter list:

A(z)
A (Target)

Called by: Compiled code

IHESRC

Entry point IHESRCA

Function:

is complex long

Returns SDV of erroneous field
(ONSOURCE pseudo-variable). If used
out of context. the ERROR condition is
raised.

Linkage:

RA: A(Parameter list)
Parameter list: ACDummy SDV)

Entry point IHESRCB

Function:

Assigns erroneous character to target
(ONCHAR built-in function). If used
out of context, then 'blank' is
returned.

Linkage:

RA: A(Parameter list)
Parameter list: A(Target SDV)

Entry point IHESRCC

FUnction:

Returns SDV of erroneous field
(DATAFIELD). If used out of context, a
null string is returned.

Linkage: As for IHESRCA

Entry point IHESRCD

Function:

Returns SDV of erroneous character.
(ONCHAR pseudo-variable). If used out
of context, the ERROR condition is
raised.

Linkage: As for IHESRCA

Entry point IHESRCE

Function:

Returns SDV of the name of the file
(ONFILE) which caused entry to the
current ON block. If used out of
context a null string is returned.

Linkage:' As for IHESRCA

En~~oint IHESRCF

Function:

Returns
(ONSOURCE
out of
returned.

SDV of erroneous field
built-in function). If used

context, a null string is

Linkage: As for IHESRCA

Entry point: IHESRDA

FUnction:

Returns SDV of current key (ONKEY built­
in function). If used out of context~ a
null string is returned.

Linkage:

RA: A(Parameter list)
Parameter list: A(Dummy SDV)

IHESRT

Calls:

IHESA., IHETSA, supervisor
FREEMAIN, LINK, SPIE), SORT

Function:

(GETMAJ;N,

To call dynamically, through the use of
a LINK macro, the operating system
SORT/MERGE from within a PLII proce­
dure, and, optionally, permitting the
use of SORT/MERGE user exits E15 and
E35 to invoke PL/I exit procedures
contained within the calling PL/I pro­
cedure.

Chapter 9: Module Summaries 131

Entry point IHESRTA

Function:

To call operating system SORT/MERGE to
sort a predefined file (SORTIN) placing
the sorted records on another predef­
ined file (SORTOUT).

Linkage:

RA: A(Parameter list)
Parameter list:

1. A(A character string which rep­
resents the SORT/MERGE control
card to describe the sort fields
contained in the record.)

2. A(A character string which rep­
resents the SORT/MERGE control
card to describe the record for­
mat of the records which are to
be sorted.)

3. A(A fixed binary value specifying
the amount of core storage avai­
lable to SORT/MERGE.)

4. A(A fixed binary value to be used
as a return code from the sort.
A return code of 0 indicates the
successful completion of the
sort. 16 indicates an unsuccess­
ful sort operation.)

5. A(SDV for the DD name replacement
string). This is an optional
parameter.

Called by: Compiled code (PL/I source
statement)

Entry point IHESRTB

Function:

132

To call operating system SORT/MERGE to
sort individual records., passed to
SORT/MERGE through user exit E15 by a
PL/I exit procedure., onto a predefined
f lIe (SORTOUT).

Linkage:

RA: ACParameter list)
Parameter list:

1., 2, 3, and 4 are as for IHESRTA

5. A(The PL/I functional procedure
entry name invoked by SORT/MERGE
user exit E15. This exit proce­
dure returns a character string
representing a record which is to
be included in the sort.)

6. as for 5 in IHESRTA

called by: compiled code (PL/I
statement)

Entry point IHESRTC

Function:

source

To call operating system SORT/MERGE to
sort a predefined file CSORTIN), pass­
ing individual sorted records through
SORT/MERGE user exit E35 to a PL/I exit
procedure.

Linkage:

RA: A(Parameter list)
Parameter list:

1., 2, 3, and 4 are as for IHESRTA

5. Not used

6. ACThe PL/I procedure entry name
invoked by SORT/MERGE user exit
E35. This exit procedure
receives a sorted record from the
sort.)

7. as for 5 in IHESRTA

called by: Compiled code (PL/I
statement)

Entry point IHESRTD

Function:

source

To call operating system SORT/MERGE to
sort individual records passed to the
sort by an exit procedure, through user
exit E15, and to pass the sorted
records, through user exit E35. to an
exit procedure.

Linkage:

RA: A(Parameter list)
Parameter list:

1, 2, 3~ and 4 as for IHESRTA
5. as for IHESRTB
6. as for IHESRTC
7. as for 5 in IHESRTA

Called by: Compiled code (PL/I source
statement)

IIHESSF

Calls: IHEDMA, IHEJXS

Entry point: lHESSFO

Function:

SUM for a simple array of real fixed­
point binary or decimal elements. Result
is real short or long floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

A (ADV)
A(Number of dimensions)
A(DED of the array)
A (Target)
A(DED for target)

Called by: Compiled code

IHESS§

Calls: IHEJXS

Entry point IHESSGR

Function:

SUM for a simple array of real short
floating-point elements. Result is
real short floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

A (ADV)
A(Number of dimensions)
A(Target)

Called by: Compiled code

Eintry point IHESSGC

Function:

SUM for a simple array of complex short
floating-point elements,. Resul t is
complex short floating-point.

Linkage: As for I,HESSGR

Called by: Compiled code

IHESSH

Calls: IHEJXS

Entry point IHESSHR

Function:

SUM for a simple array of
floating-point elements.
real long floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

A (ADV)
A(Number of dimensions)
A(Target)

·Called by: Compiled code

Entry point IHESSHC

Function:

real
Resul t

long
is

SUM for a simple array of complex long
floating-point elements. Result is
complex long floating-point.

Linkage: As for IHESSHR

Called by: Compiled code

calls: IHEDMA, IHEJXS

Entry point: IHESSXO

Function:

SUM for a simple array of complex fixed­
point binary or decimal elements. Result
is complex short or long floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

A (ADV)
A(Number of dimensions)
A(DED of the array)
A(Target)
A(DED for target)

Called by: compiled code

Chapter 9: Module Summaries 133

~.Q

calls: IHEJXI

Entry point IHESTGA

Function:

Given a structure dope vector and its
DVD, returns a fullword containing the
string length which would result from
the concatenation of all the elements
of the structure.

Linkage:

HA: A(Structure dope vector)
RB: A(DVD)
RC: A(One-word target field)

Called by: Compiled code

Entry point IHESTGB

Function:

Given a structure dope vector and its
DVD, assigns the result of
concatenating all the elements of the
structure to a string target.

Linkage:

RA: A(Structure dope vector)
HB: A (DVD)
RC: A(Target)

Called by: Compiled code

IHESTR

Calls: IHESA" IHETSA

Entry point IHESTRA

FUnction:

~'o compute the address of the f irs't
element of a structure and the total
length of the structure" using a com­
plete structure dope vector. The
:I:'esult in the two-word target field is:

1st word: A(Start of structure), in
bytes and bit offset

2nd word: Length of structure,
bytes

in

Linkage:

RA: A(Structure dope vector)
RB: A(DVD)
RC~ A(Two-word target)

Called by: Compiled code

134

Entry point IHESTRB

o

Function:

Given a partially completed structure
dope vector, to map a structure com­
pletely, namely:

1. Locating each structure base ele­
ment on the alignment boundary
required by its data type.

2. Calculating the offset of the start
of each base element from the byte
address of the beginning of the
structure.

3. Calculating the multipliers of all
arrays appearing in the structure
and calculating the offset of the
virtual origin of each array from
the byte address of the beginning
of the structure.

4. Calculating the total length of the
structure.

5. Calculating the offset from the
maximum alignment boundary in the
struct ure to the by,te address of
the start of the struc'ture.

The r~sult is a completed structure
dope vector" and a targe't field which
contains:

7 8 31
r---,
I Zero I
~-------------T---------------------------~
I Offset I Length I L _____________ ~ ___________________________ J

Offset: Offset in bytes from the maximum
alignment boundary in the structure
to the start of the structure

Length: Length of structure, in bytes

Linkage: As for IHESTRA

Called by: Compiled code

Entry point IHESTRC

Function:

As for IHESTRB, but using the COBOL
structure mapping algorithm.

Linkage: As for IHESTRA

Called by: compiled code

IHETAB

Base address of table: IHETABS

Fu~tion:

This module is a table of default infor­
mation provided for use at ins'tallation
or when individual program replacements
are required.. It contains:

1. Default PAGESIZE" LINESIZE" and left
and right margin positions for all
PRINT files.

2.

IHEl'CV

Defaul t
list- and
output.

tabulation positions
data-directed PRINT

Calls: Supervisor (FREEMAIN,GETMAIN)

Entry point IHETCVA

Function:

for
file

To provide storage for an allocation of

Linkage:

RA: A(Source event variable)

RB: ACTarget event variable)

Called by: Compiled code

Entry point: IHETERA

Function:

To search for a matching ON field ini a
multitasking environment by chaining
through DSAs and PRV VDAs. A return code
is set in register BR to indicate the
result of the search.

Linkage: DR: ACLWE)

Called by: IHEERR

IHETEV

a controlled variable in a multitasking (Calls: Supervisor CCHAP,POST"WAIT)
environment, and to place the address
of its fourth word i.n its pseudo- Entry point: IHETEVA
register.

Linkage:

RO: Length of area Cexcluding control
words)

RA: ACControlled-variable
pseudo-register)

Called by: Compiled code

Entry point IHETCVB

Function:

Frees the latest
controlled variable
task, and updates
pseudo-register.

Linkage:

allocation of a
in the current
the associated

RA: A(Controlled-variable
pseudo-register)

Called by: Compiled code

I:HETEA

I Calls: Supervisor (CHAP" POST" WAIT)

Entry point: IHETEAA

Function: Event variable assignment.

Function:

COMPLETION pseudo-variable (COMPLETION(v)
= expression): sets the specified event
variable complete or incomplete according
to the evaluation of the expression.

Linkage:

RA: A(Parameter list)
Parameter list:

A(Event variable)
A(Fullword to hold completion value (in
bit 24»

Called by: Compiled code

IHETEX

Calls:

IHEERT" IHEPTT supervisor CWTO, LOAD,
DELETE., EXTRACT, ENQ, DEQ, PUT)

En~oint IHETEXA

Function:

To generate a message when a task has
been terminated while still active due
to the freeing of the block in which
the task was attached.

Linkage:

RA contains the address of a VDA which

Chapter 9: Module Summaries 135

contains space for the creation of the
message and the following parameters:

A (IHEPTTB)
A (Symbol table entry for which the

task has been terminated)
A(IHEQSPR)

Called by: lHETSA

Entry pOint IHETEXB

Function:

~ro generate a message when a task has
been abnormally terminated by the oper­
ating system.

Linkage:

lDR points to an area of storage conta­
ing a save area, an area for the
creation of the message and the follow­
ing parameters:

Completion code
A (Symbol table entry for the task

which has been terminated)
A(IHEQSPR)

Called by: lHETSA

IHETHL

Calls: IHEEXL

Entry point: IHETHLO

Function:

TANH(x), where x is real long floating­
point.

Linkage:

RA: A(Parameter list)
Parameter list:

A(x)
A (Target)

Called by: Compiled code, IHETNZ

IHETHS

Calls: IHEEXS

Entry point: IHETHSO

Function:

~NH(x), where x is real short floating­
point.

Linkage:

136

RA: A(Parameter list)
Parameter list:

A(x)
A(Target)

Called by: Compiled code., lHETNW

Entry point IHETNLR

Function:

TAN(x), where x is real long floating­
point...

Linkage:

RA: A(Parameter list)
Parameter list:

A(x)
A(Target)

Called by: Compiled code, IHETNZ

Entry point IHETNLD

Function:

TAND(x) " where x is real long floating­
point.

Linkage: As for IHETNLR

Called by: Compiled code

IHETNS

Entry point IHETNSR

Function:

TAN(x), where x is real short floating­
point.

Linkage:

RA: A(Parameter list)
Parameter list:

A(x)
A(Target)

Called by: Compiled code, IHETNW

En~point IHETNSD

Function:

TAND (x) " where
floating-paint.

x

Linkage: As for IHETNSR

Called by: Compiled code

IHETNW

Calls: IHETHS, IHETNS

is real short

E!ntry point IHETNWN

Function:

TAN(z), where Z is
floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

A(z)
A (Target)

Called by: Compiled code

Entry point IHETNWH

Function:

complex

TANH(z), where z is complex
floating-point.

Linkage: As for IHETNWN

Called by: Compiled code

IHETNZ

Calls: IHETHL, IHETNL

Entry pOint IHETNZN

Function:

TAN (z) , where
floating-point.

Linkage:

z is

RA: A(Parameter list)
Parameter list:

A(z)
A (Target)

Called by: Compiled code

Entry point IHETNZg

Function:

TANH(z), where z is
floating-point.

Linkage: As for IHETNZN

Called by: Compiled code

IHETOM

complex

complex:

Calls: Supervisor (WTO, EXTRACT)

short

short

long

long

Entry point IHETOMA

Function:

Issues WTO macro instruction if the
program does not have a main procedure.

Linkage:

DR points to an area of storage which
is used as a save area and as workspace
to build up the message.

Called by: IHEBEG

Function:

Issues WTO macro instruction if the PRV
is longer than 4096 bytes.

Linkage:

As for lHETOMA

Called by: IHEBEG

En~~y-point IHETOMC

Function:

Issues WTO
has been an
handler.

macro instruction if there
interrupt in the error

Linkage:

As for lHETOMA

Called by: IHEERR

Function:

Issues WTO macro instruction if the
major task of a multitasking program
has been terminated with an ABEND. The
message contains the completion code.

Linkage:

As for IHETOMA
completion code is
pointed to by DR.

Called by: IHETSA

but in
passed

addition the
in the area

Chapter 9: Module Summaries 137

Entry point IHETOME

Function:

Issues WTO macro instruction if there
is an abnormal KEY condition when CLOS­
ING a file after a LOCATE statement.
The file may be INDEXED (with RKP * 0)
or REGIONAL.

Linkage: as for IHETOMA

Called by: IHEOCL, IHEOCT

IHETPB

Entry point: IHETPBA

Function:

PRIORITY built·-in function: returns the
priority of a named task relative to the
priority of the current task.

Linkage:

RA: A(Parameter list)
Parameter list:

A (Task variable)
A(Fullword target field)

Called by: Compiled code

IHETPR

I COall s: supervisor (CHAP, POST, wAIT)

Entry point: IHETPRA

Function:

PRIORITY pseudo-variable (PRIORITY(v)
E~xpression) : sets the priority of the
specified task to the given value rela­
tive to the priority of the current task.

Linkage:

RA: A(Parameter list)
Parameter list:

A (Task variable) " or zero (if current
task)
A(Relative priority)

Called by: Compiled code

IHETSA

calls:

Supervisor (ATTACH, CHAP, DEQ, DETACH,
EXTRACT, FREE MAl N" GETMAIN, IDENTIFY,
I,INK, POST, SPIE, WAIT, WTO), IHEBEG,
IHEERR, IHEMAI, IHEOCL, IHETEX

Function:

138

Object program management in a multitask­
ing environment.

Ent~oint IHETSAA

Function:

1. Obtains storage for the PRV VDA,
task variable, and event variable
for the major task, and for the
STOP ECB, message ECB and pointer
to the chain of ECBs of the message
tasks.

2. Attaches the PL/I
then enters a
either the event
major task or
completed, or an
mination message

major task and
wait state until
variable for the
the STOP ECB is
abnormal task ter­
is to be printed.

The execution of IHETSAA is termed the
control task. Return is made to the
calling program when files have been
closed and storage released. (See
IHETSAE.)

Linkage:

L(PRV) from linkage editor
L(LWS) from assembly of IHELIB

Called by:

Program that calls the PL/I program.

Entry point IHETSAC

Function:

To place the return code in the pseudo­
register IHEQRTC.

Linkage:

RA: A(Parameter list)
Parameter List: .

A(Return code) (The return code is
fixed binary with default precision .•)

Called by: Compiled code

Entry point IHETSAD (Get DSA~

Function:

To provide a DSA for a procedure or
begin block and to set DR to point to
it.

Linkage:

RO: Length of DSA
DR: A(Current save area)

Called by: Prologues

Entry point IHETSAE (END)

Function:

Frees the DSA current at entry and its
associated VDAs, and abnormally
terminates any tasks attached in the
block. A request to free the first DSA
in a subtask results in the closing of
all files opened# the dequeuing of
resources enqueued, and the release of
all dynamic storage allocated in that
task. A request to free the DSA, of the
main procedure also raises the FINISH
condition, but does not cause con­
trolled storage allocated in the major
task to be freed.

Linkage: None

Called by: Epilogues

Entry point IHETSAF (Free VDA/LWS)

Function:

Frees the VDA or LWS at the end of the
DSA chain.

Linkage:

IHEQSLA: A(VDA or LWS to be freed)
Only the most recently allocated VDA or
LWS can be freed.

Called by: compiled code, library modules

Entry point IHETSAG (GO TO)

Function:

The DS~ indicated by the invocation
count, or pointed to by DR# is made
current. All chain elements up to this
DSA# with the exception of its VDAs and
itself# are freed. Any active tasks
attached to the DSAs freed are abnor­
mally terminated.

Linkage:

RA: A(Eight-byte word-aligned parameter
list)

Parameter list:

Word l=either Invocation count (sign
bit of word 2=0)

or PR offset (sign bit of
word 2=1)

Word 2=A(Location to which control is
to be ret urned)

Called by: Compiled code

Entry point IHETSAL (Get LWS)

Function:

To provide a new LWS" and to update the
LWS pseudo-registers.

Linkage: None

Called by: Library modules

Ent~oint IHETSAM

Function:

Initializes the PRV and primary LWS for
the major task. Issues a SPIE macro
instruction and branches to the main
procedure.

Linkage:

RA: A(Parameter list)
Parameter list contains control infor­
mation from the control task.

Attached by:

IHETSAA, IHETSAP

~g~~point IHETSAN

Function:

To change the environment of a program
to that which exis ted a t the time of

1. the execution of an ON statement
associated with the on-unit to be
entered, or

2. the passing of the entry parameter
associated with the called proce­
dure.

Then to branch to the on-unit or the
procedure.

Linkage:

RA: A(Parameter list)
Parameter list:

A(Entry parameter). The entry param­
eter is an 8-byte field containing:

1st word: On-unit or entry address

2nd word: Invocation count of the DSA
associated with either the
passing procedure or the
procedure in which the ON
statement was executed

Called by: compiled code, IHEERR

Chapter 9: Module Summaries 139

Entry point IHETSAP

Function:

As IHETSAA, but also passes a PARM
parameter from the the EXEC card.

Linkage:

L(PRV) from linkage editor
L(LWS) from assembly of IHELIB

Called by: Initial entry

Entry point IHETSAR (RETURN)

Function:

Frees all chain elements up to and
including the last procedure DSA in the
chain. Terminates the main procedure
and subtasks as in IHETSAE.

Linkage: None

Called by: Epilogues

Entry point IHETSAS

Function:

1. Allocates storage for a subtask's
PRV VDA, and copies into it the PRV
of the attaching task, any ON
fields in the attaching DSA~ and
the argument list created by com­
piled code.

2. Issues a SPIE macro instruction and
branches to the called procedure.

Linkage:

RA: A(Parameter list)
Parameter list:

A(Task variable) (Byte 0
no PRIORITY option~ bytes
if no TASK option)
A(Event variable) (Zero

priority
procedure)
attaching task)
attaching task)

X 'SO' if
1 - 3 a

if no EVENT
option)
Relative
A(called
A(PRV of
A(DSA of
Argument
(omitted

list for called procedure
if no argument list)

Attached by: IHETSAT

Entry point IHETSAT

Function:

140

To implement a CALL statement with a
task option:

1. Initializes the subtask's task and
event variables.

2. Attaches the subtask initialization
routine (IHETSAS).

Linkage:

RA: A(Parameter list)
Parameter list:

A(Task variable> (Byte a = X'SO' if
no PRIORITY option~ bytes 1 - 3 = 0
if no TASK option)
A(Event variable) (Zero if no EVENT
option)
Relative priority
A(Called procedure)
Reserved
Reserved (X'SO' if no argument list)
Variable length argument list for
called procedure (Omitted if no argu­
ment list: X'SO' in first byte of
last word indicates end of list.)

Called by: Compiled code

~D~~oint IHETSAV (Get VDA)

Function:

To get a VDA for compiled code: sets
RA=A(VDA) •

Linkage:

RO: Length of VDA (excluding control
words)

DR: A(Current save area)

Called by: Compiled code

Ent~oint IHETSAW (Get Library VDA)

Function:

To provide a VDA for library modules
and to set RA = A(VDA)

Linkage:

RO: Length of VDA (including control
words)

Called by: Library modules

En~oint IHETSAX

Function:

End-of-task exit routine (ETXR):
detaches the TCB of a PL/I terminated
task. If the task is abnormally termi­
nated by the operating system, the
control task is posted (by the POST
macro) in order to print a message on
SYSPRINT.

Linkage: None

Called by: supervisor

Eptry point IHETSAY

Function:

Completes the implementation
closes all opened files,
dynamic storage" and posts the
to cause control to return
control task.

Linkage:

RA: Return code

Called by: IHEDUM, IHETSS

Entry point IHETSAZ

Function:

of STOP:
releases
STOP ECB
to the

Abnormal end of task: closes all files
opened in task" releases dynamic: stor­
age, and terminates the task and all
subtasks attached by it.

Linkage:

RA: Return code

Called by: IHEDUM, IHEERR, IHETSE

Calls: IHEERR" IHETSA

Entry point: lHETSEA

Function:

To abnormally terminate the current task"
and to raise the FINISH condition if the
current task is the major task.

Linkage: None

Called by: Compiled code

IHETSS

Calls: IHEERR, IHETSA

Entry point: lHETSSA

Function:

To raise the FINISH condition and abnor­
mally terminate the PL/I program in a
multitasking environment.

Linkage: None

Called by: Compiled code

IHETSW

Calls:

Supervisor (CHAP" FREEMAIN" POST" WAIT) ,
IHEJXI" IHETSA, the I/O transmission
module whose address is in the FCB.

Entry point IHETSWA

Function:

To determine whether a specified number
of events has occurred. If not, to
wait until the required number is com­
plete, and, in the case of I/O events,
to branch to the I/O transmission
module (which raises I/O conditions if
necessary). This module is used in a
mul titasking environment.

Linkage:

RA: ACparameter list)
Parameter list:

Word 1:

1. If all events are to be waited
on:

Byte 0 = X'FF'
Bytes 1-3 not used

2. If a specified number CN) of
events is to be waited on:

Byte 0 = X'OO'
Bytes 1-3 = A(N)

Subsequent words Cone for each ele­
ment or array event):

1. Array event:

Byte 0 = dimensionality
Bytes 1-3 = ACADV)

2. Element event:

Byte 0 = X' 00 '
Bytes 1-3 = A(EVENT variable)

(The high-order byte of the last
argument indicates the end of the
parameter list.)

Called by: Compiled code

IHEUPA

Entry Point IHEUPAA

Function:

To zero the real part of a complex
coded data item and to return the
address of the fmaginary part.

Chapter 9: Module Summaries 141

Linkage:

RA: A(Source)
RB: A(Source OED)
WRCO: A(lmaginary part)

Called by: lHEOCN

Entry Point lHEUPAB:

Punction:

To return the address of the imaginary
part of a complex coded data item if
switch is on, and to zero the imaginary
part if switch is off.

r.~inkage :

RA: A(SOurce)
RB: A(Source OED)
WSWA: switch for update address only
WRCO: A(lmaginary part)

Called by:

lHEDBN, lHEDCN. lHEOlA" lHEDID" lHEOlE,
lHEONC, lHEDOM i lHEVCS

lHEUPB

Calls: lHEDMA

Entry Point lHEUPBA:

Function:

To zero the real part of a complex
numeric field and to return the address
of the imaginary part.

Linkage:

RA: A(Source)
RB: A(SOurce OED)
WRCO: A(lmaginary part>

Called by: lHEOCN

Entry Point lHEUPBB:

Function:

142

To return the address of the imaginary
part of a complex numeric field if
switch is on" and to zero the imaginary
part if switch is off.

Linkage:

RA: A(Source)
RB: A(Source DEO)
WSWA: Switch for update address only
WRCD: A(lmaginary part)

Called by:

lHEOBN, lHEDCN, lHEOlA, IHEOlD, lHEOlE,
lHEOOM

lHEVCA

Entry Point: lHEVCAA

Function:

To define the attributes of arithmetic
data in character form by producing a OED
(fla,gs, p, q).

Linkage:

RA: A(Target OED)
WNCP: A(Start and end addresses of data

to be analysed)

Called by:

lHEDlA, lHEDlM, lHEDOM, lHELOl

IHEVCS

Calls:

lHEDMA. lHEDNB" IHEDNC, I HEUPA" lHEUPB

Entry point lHEVCSA

Function:

To direct the conversion of character
representation of complex data to
internal string data. The character
data is first converted to coded com­
plex" with attributes derived from the
real and imaginary parts of the source
data (according to the arIthmetic con­
version package rules) and then con­
verted to string.

Linkage:

RA: ,A(Parameter list)
Parameter list:

A(Start and end addresses of real
data)

A(Real OED)
A(Start and end addresses of imag-

inary data)
A(lmaginary OED)
A (Target SDV)
A (Target OED)
A(Real FED)
A(Imaginary FED).

Called by: lHEDIM, IHEDOM, IHELDI

Entry point lHEVCSB

Function:

As for IHEVCSA but the conversion is to
coded complex only .•

Linkage: As for IHEVCSA

Called by: As for IHEVCSA

IHEVFA

Calls:

IHEVKF, IHEVKG, IHEVPB, IHEVPC t, IHEVPD

Entry point: IHEVFAA

Function:

Radix conversion: binary to decimal~
To convert long floating-point to packed
decimal intermediate.

Linkage:

WINT: Long precision floating-point
number

Called by: IHEVFD" IHEVFE., I HEVPGr, IHEVPH

IiHEVFB

Entry point: IHEVFBA

Function:

To convert a long prec1s10n floating­
point number to a fixed-point binary
number with specified precision and scale
factor.

Linkage:

WINT: Long precision float ing- point
number

WRCD: A(Target)
A (Target DED)

Called by:

IHEVFD, IHEVFE, IHEVPA, IHEVPG, IHEVPH

IHEVFC

Entry point: IHEVFCA

Function:

To convert a long floating-point number
to a floating-point variable with speci­
fied precision.

Linkage:

~INT: Long-precision floating-point num­
ber

~RCD: A(Target)
A(Target DED)

Called by:

IHEVFD" I HEVFEr, lHEVPA" lHEVPG., lHEVPH

lHEVFD

Calls: IHEVFA, IHEVFB, IHEVFC

Entry point: IHEVFDA

Function:

To convert a fixed-point
with scale factor to
floating-point.

Linkage:

RA: A(Source)
RB: A(Source DED)

Called by: IHEDMA

IHEVFE

binary integer
long preCision

Calls: IHEVFA, IHEVFB, IHEVFC

Entry point: IHEVFEA

Function:

To convert a floating-point number of
specified precision to long precision
floating-point.

Linkage:

RA: A(Source)
RB: A(Source DED)

Called by: IHEDMA

IHEVKB

Calls:

IHEVKFr, IHEVKG, IHEVPA, IHEVPB, IHEVPC,
IHEVPD

Entry point: IHEVKBA

FUnction:

To convert a fixed- or floating-point
decimal numeric field to packed decimal
intermediate.

Chapter 9: Module Summaries 143

Linkage:

FA: A(Source)
RB: A(Source DED)

Called by: IHEDMA

IHEVKC

Calls:

IHEVKF, IHEVKG" IHEVPA" I HEVPB, IHEVPC,
IHEVPD

Entry point: IHEVKCA

Function:

To convert a sterling numeric field to
packed decimal intermediate .•

Linkage:

RA: A (Source)
RB: A (Source DED)

Called by: IHEDMA

IHEVKF

Entry point: IHEVKFA

Function:

'ro convert packed decimal intermediate to
a. decimal fixed- or floating-point numer­
ic field with specified precision.

Linkage:

WINT: Decimal integer
WSCF: Scale factor
lfJRCD: A (Target)

A(Target DED)

Called by:

IHEVFA, IHEVKB~ IHEVKC, IHEVPE, IHEVPF

IHEVKG

Entry point: IHEVKGA

Function:

To convert packed decimal intermediate to
a sterling numeric field with specified
precision.

Linkage:

WINT: Decimal integer
WSCF: Scale factor
WRCD: A(Target)

A(Target OED)

144

Called by:

IHEVFA" IHEVKB" lHEVKC, IHEVPE, IHEVPF

IH~VPA

Calls: IHEVFB, IHEVFC

Entry pOint: IHEVPAA

Function:

Radix conversion: decimal to binary
To convert packed decimal intermediate to
long precision floating-point.

Linkage:

WINT: Decimal integer
WSCF: Scale factor

Called by: IHEVKB" IHEVKC, IHEVPE, IHEVPF

IHEVPB

Entry Point: lHEVPBA

Function:

To convert packed decimal intermediate to
an F format item.

Linkage:

WINT: Decimal integer
WSCF: Scale factor
WFDT: A(FED)
WRCD: A(Target)

Called by:

IHEVFA, IHEVKB, IHEVKC, IHEVPE" IHEVPF

IHEVPC

Entry point: IHEVPCA

Function:

To convert packed decimal intermediate to
an E format item.

Linkage:

WINT: Decimal integer
WSCF: Scale factor
WFDT: A(FED)
WRCD: A(Target)

Called by:

IHEV~A" IHEVKB, IHEVKC" IHEVPE" IHEVPF

IHEVPD

Entry pOint: IHEVPDA

Function:

To convert packed decimal intermediate to
a decimal integer with specified preci­
sion and scale factor.

Linkage:

WINT: Decimal integer
WSCF: Scale factor
WRCD: ACTarget)

A(Target DED)

Called by:

IHEVFA, IHEVKB, IHEVKC, IHEVPE" IHEVPF

IHEVPE

Calls:

IHEVKF, IHEVKG, IHEVPA, IHEVPB" IHEVPC,
IHEVPD

Entry point: IHEVPEA

Function:

To convert an F/E format item to packed
decimal intermediate.

Linkage:

RA: A (Source)
RB: A(Source DED)
WFED: A (FED)

Called by: IHEDMA

IHEVPF

Calls:

IHEVKF, IHEVKG, IHEVPA, lHEVPB, IHEVPC,
IHEVPD

Entry point: IHEVPFA

Function:

To convert a decimal integer with speci­
fied precision and scale factor to packed
decimal intermediate.

Linkage:

RA: A (Source)
RB: A(Source OED)

Called by: IHEDMA

IHEVPG

Calls: IHEVFA" IHEVFB, IHEVFC

Entry point: IHEVPGA

Function:

To convert a binary fixed- or
point constant to long
floating-point.

Linkage:

WCNP: ACBeginning of constant)
ACEnd of constant)

Called by: IHEDMA

IHEVPH

Calls: IHEVFA, IHEVFB, IHEVFC

Entry point: IHEVPHA

Function:

floating­
precision

To convert a bit string constant with up
to 31 significant bits to long precision
floating-point.

Linkage:

WCN1: ACBeginning of constant)
ACEnd of constant)

Called by: IHEDMA

IHEVQA

Entry point: IHEVQAA

Function:

To convert a floating point number of
specified precision to a fixed-point
binary number with specified precision
and scale factor.

Linkage:

RA: A(Source)
RB: ACSource OED)
RC: A(Target)
RD: ACTarget OED)

Called by: Compiled code" IHEVQB

IHEVQB

Calls: lHEVQA

Entry point: IHEVQBA

Function:

To convert a decimal constant to a coded
arithmetic data type.

Chapter 9: Module Summaries 145

Linkage:

RA: A(First character of constant)
RB: A(Last character of constant)
RC: A(Target)
RD: ACTarget DED)
WFED: ACFED) if constant is part of F or

E format input
WSWB: switches specifying type of source

string

Called by: IHEDCN" lHEDIA

Calls: IHEVSC" IHEVSE

Entry point: IHEVQCA

Function:

To convert some coded arithmetic data
types to F or E format or character
string.

Linkage:

RA.: ACSource)
RB: A(Source DED)
RC: A(Target SDV)
RD: A (Target DED)
WFDT: A(FED)
WSWB: switches specifying type of target

string

Called by: IHEDNC" IHEDOA

Entry point: IHEVSAA

Function:

To assign a fixed-length or VARYING bit
string to a fixed-length or VARYING bit
string.

Linkage:

RA: A(Source SDV)
RB: A(Source DED)
RC: A(Target SDV)
RD: A(Target DED}

Called by: Compiled code, IHEDIA" IHEDNB

IHEVSB

Entry point: IHEVSBA

Function:

To convert a fixed-length or VARYING bit
string to a fixed-length or VARYING char­
acter string.

146

Linkage:

RA: A(Source SDV)
RB: A (Source DED)
RC: A(Target SDV)
RD: A(Target DED)

Called by:

Compiled code,. IHEDOB" IHEDOD, IHEDOE"
IHELDO

IHEVSC

Entry point: IHEVSCA

Function:

To assign a fixed-length or VARYING char­
acter string to a fixed-length or VARYING
character string.

Linkage:

RA: A(Source SDV)
RB: A(Source DED)
RC: A(Target SDV)
RD: A(Target DED)

Called by:

Compiled code" IHEDIA" IHEDIB, IHEDID"
IHEDIE'I IHEDOB, IHEDOD, IHEDNC, IHELDI,
IHEVQC

IHEVSD

Entry point IHEVSDA

Function:

To convert a fixed-length or VARYING
character string to a fixed-length or
VARYING bit string. The ON SOURCE
address is stored.

Linkage:

RA: A(Source SDV}
RB: A(Source DED)
RC: A(Target SDV)
RD: A(Target OED)
WODF: A(Source SDV)

Called by:

Compiled code, IHEDIB,
IHELDI

En:!::!:LJ2oint IHEVSDB

Function:

As for IHEVSDA" but
address is not stored.

IHEDID" IHEDIE,

the ON SOURCE

Linkage:

As for IHEVSDA" but without WODF

Called by: As for IHEVSDA

IHEVSE

Eptry point IHEVSEA

Function:

To assign a fixed-length or VARYING
character string to a pictured charac­
ter string. The ONSOURCE address is
stored.

Linkage:

RA: A(Source SDV)
RB: A(Source DED)
RC: A(Target SDV)
RD: ACTarget OED)
WODF: A(Source SDV)

Called by:

Compiled code, IHEOIB, IHEDID, IHEDIE,
IHEDNC, IHEDOB" IHEVQC

Entry point IHEVSEB

Function:

As for IHEVSEA, but
address is not stored.

Linkage:

the ONSOURCE

As for IHEVSEA" but without WODr

Called by: As for IHEVSEA

IHEVSF

Entry Point: IHEVSFA

Function:

To convert a fixed-length or VARYING bit
st,ring to a pictured character string.

Linkage:

RA: A(Source SDV)
RB: A(Source DED)
RC: A(Target SDV)
RD: A(Target OED)

Called by: Compiled code" IHEDOB

IHEVTB

Base address of table: IHEVTBA

Function:

This module is
floating-point
ers of 10 from
the two radix
and IHEVFA.

Linkage:

a table of long precision
numbers representing pow-

1 to 70. It is used by
conversion routines IHEVPA

Not called. Referenced as external data
by IHEVPA and IHEVFA

Entry point: IHEXIBO

Function:

x**n, where x is real fixed-point binary
and n is a positive integer.

Linkage:

RA: A(x)
*RB: A(DED for x)

RC: A(n)
RD: A (Target)

*RE: A(Target DED)

Called by: compiled code

IHEXID

Entry point: IHEXIDO

Function:

x**n, where x is real fixed-point deci­
mal, and n is a positive integer.

Linkage:

RA: A (x)
RB: A(DED for x)
RC: A(n)
RD: A(Target)
RE: A(Target OED)

Called by: Compiled code

IHEXIL

Entry point: IHEXILO

Function:

x**n" where x is rea I long floating­
point" and n is an integer,.

Linkage:

RA: A(x)
RB: A(n)
RC: A(Target)

Called by: Compiled code

Chapter 9: Module Summaries 147

IHEXIS

Entry point: IHEXISO

Function:

x**n, where x is real short floating­
point, and n is an integer.

Linkage:

RA: A(x)
RB: A(n)
RC: A (Target)

Called by: Compiled code

IHEXIU

Calls: IHEMZU

Entry point: IHEXIUO

Function:

z**n., where z is complex fixed binary and
n is a positive integer.

Linkage:

RA: A(z)
*RB: A(DED for z)

RC: A(n)
RD: A (Target)

*RE: A(Target)

Called by: Compiled code

IHEXIV

Calls: IHEMZV

Entry point: IHEXIVO

Function:

z**n, where z is complex fixed-point
decimal and n is a positive integer.

Linkage:

RA: A(z)
RB: A(DED for z)
RC: A(n)
RD: A (Target)

*RE: A (Target OED)

Called by: Compiled code

IHEXIW

Calls: IHEMZW

Ehtry point: IHEXIWO

148

Function:

z**n" where z is complex short floating­
point~ and n is an integer.

Linkage:

RA: A(z)
RB: A(n)
RC: A(Target)

Called by: Compiled code

IH~XIZ

Calls: IHEMZZ

Entry point: IHEXIZO

Function:

z**n, where z is complex long floating­
point~ and n is an integer.

Linkage:

RA: A (z)
RB: A(n)
RC: A(Target)

Called by: Compiled code

IHEXXL

Calls: IHEEXL, IHELNL

Entry point: IHEXXLO

Function:

x**y, where x and
floating-point.

Linkage:

RA: ~(y)

RB: A(x)
RC: A(Target)

Called by: Compiled code

IHEXXS

Calls: IHEEXS, IHELNS

Entry point: IHEXXSO

Function:

x**y. where x and y
floating-point.

y are real long

are real short

Linkage:

RA: A(y)
RB: A(x)
RC: A (Target)

Called by: Compiled code

IHEXXW

Calls: IHEEXW, IHELNS, lHELNW

Entry point: lHEXXWO

Function:

Z1. **Z2r, where Z1. and Z2 are complex short
floating-point.

Linkage:

RA: A(Z;l)
RB: A(z1.)
RC: A(Target)

called by: Compiled code

lHEXXZ

Calls: IHEEXZ, IHELNL, IHELNZ

Entry point: IHEXXZO

Function:

Z1. **Z2', where Z~ and Z2 are compljex long
floating-point ..

Linkage:

RA: A (Z2)
RB: A(z1.)
RC: A(Target)

Called by: Compiled code

IHEYGF

C\alls: IHEDMA

Entry point IHEYGFV

Function:

POLY (A,X) for both A and X vectors of
real fixed-point binary or decimal num­
bers. Result is real short or long
floating-point ..

Linkage:

RA: A(Parameter list)
Parameter list:

A(ADV of argument 1)
A(DED of argument 1)
A(ADV of argument 2)
A(DED of argument 2)
A (Target)
A(DED of target)

Called by: Compiled code

Ent~ point IHEYGFS

Function:

As for lHEYGFV but X is scalar.

Linkage:

RA: A(Parameter list)
Parameter list:

A(ADV of argument 1)
A(DED of argument 1)
A(Argument 2)
A(DED of argument 2)
A(Target)
A(DED of target)

Called by: Compiled code

IHEYGL

Entry point IHEYGLV

Function:

POLY (A" X) for both A and X vectors of
real long ,floating-point numbers.
Result is real long floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

A(ADV of argument 1)
A(ADV of argument 2)
A(Target)

Called by: Compiled code

Entry-point IHEYGLS

Function:

As for IHEYGLV but X is scalar.
Linkage:

RA: A(Parameter list)
Parameter list:

A(ADV of argument 1)
A(Argument 2)
A(Target)

Called by: Compiled code

Chapter 9: Module Summaries 149

IHEYGS

Entry point IHEYGSV

Function:

POLY (A,X) for both A and X vectors of
real short floating-point.. Resul t is
real short floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

A(ADV of argument 1)
A(ADV of argument 2)
A(Target)

Called by: Compiled code

Entry point IHEYGSS

Function:

As for IHEYGSV but X is scalar.

Linkage:

RA: A(Parameter list)
Parameter list:

A(ADV of argument 1)
A(Argument 2)
ACTarget)

Called by: Compiled code

Entry point IHEYGWV

Function:

POLY CA,X) for both A and X vectors of
complex short floating-point. Result
is complex short floating-point.

Linkage:

RA: ACParameter list)
Parameter list:

ACADV of argument 1)
A(ADV of argument 2)
A (Ta zget)

Called by: Compiled code

Entry point IHEYGWS

Function:

As for IHEYGWV. but X is scalar.

150

Linkage:

RA: A(Parameter list)
Parameter list:

A(ADV of argument 2)
ACArgument 1)
ACTarget)

Called by: Compiled code

IHEYGX

Calls: IHEDMA

Entry point IHEYGXV

Function:

POLY (A, X) for both A and X vectors of
complex fixed-point binary or decimal
numbers. Result is complex short or
long floating-point.

Linkage:

RA: ACParameter list)
Parameter list:

A(ADV of argument 1)
A(DED of argument 1)
ACADV of argument 2)
ACDED of argument 2)
A(Target)
ACDED of target)

Called by: Compiled code

En~~oint IHEYGXS

Function:

As for IHEYGXV, but X is scalar.

Linkage:

RA: ACParameter list)
Parameter list:

ACADV of argument 1)
ACDED of argument 1)
ACArgument 2)
ACDED of argument 2)
A(Target)
ACDED of target)

Called by: Compiled code

IHEYGZ

Entry point IHEYGZS

Function:

As for lHEYGZV, but X i~ pcalat.

Linkage:

RA: A(Parameter list)
Parameter list:

A(ADV of argument 1)
A(Argument 2)
A (Target)

Called by: Compiled code

Entry point IHEYGZV

Function:

POLY (A/X) for both A and X vectors of
complex long floating-point numbers.
Result is complex long floating-point.

Linkage:

RA: A(Parameter list)
Parameter list:

A{ADV of argument 1)
A(ADV of argument 2)
A (Target)

Called by: Compiled code

IHEZZC

calls: IHEZZF

Entry point: IHEZZCA

Function:

To provide a SNAP dump with save-area
trace and information about the PL/I
files that are open.

Linkage:

RA: A(Parameter list)
See source listing for parameter list.

called by: IHEDUM

IHEZZF

Entry point: IHEZZFA

Function:

To provide the save-area trace that forms
part of the output produced by IHEZZC.

Linkage:

RA: A(Parameter list)
See source listing for parameter list.

Called by: IHEZZC

Chapter 9: Module Summaries 151

APPENDIX A: SYSTEM MACRO INSTRUCTIONS

The following table lists the system macro instructions used by the
PL/I library and associates their use with individual library modules.

System Macro Library Module

ABEND I HEDUM, IHEERR

ATTACH IHETSA

CHAP IHECTT, IHEDSP., IHEIGT" IHEITB" IHEITC, IHEITH" IHEITJ,
IHEOCTr, IHETEA, IHETEV" IHETPR" IHETSA, IHETSW

CHECK IHEITF" IHEITJ, IHEOPZ, IHEITBr, IHEITC

CLOSE IHECTT, IHECLS, IHECLT" IHEOPZ

DCB IHEOPo., IHEOPZ

DCBD IHECLT" IHECTT, IHEITB., IHEITC. IHEITDr, IHEITE, IHEITP"
IHEITG, IHEITH, IHEIrJ" IHEOCL, IHEOCT, IHEOPOr, IHEOPP"
I HEOPQ" IHEOPZ

DELETE IHECLT" IHECTT, IHEESM" IHETEX

DEQ IHECTT, IHEDDT, IHEESM" IHEIBTr, IHEITH, IHEITJ" IHEOCT,
IHEPTT, IHETSA, IHETEX

DETACH IHETSA

DEVTYPE IHEOPO

ENQ IHEDDT" IHEESM, IHEIBT., IHEITH, IHEITJ" IHEOCT" IHEPTT,
IHETEX

ESETL IHEITD

EXTRA.CT IHETSA, IHETEX, IHETOM" IHEPRTr, IHEPTT

FREEMAIN IHEBEG" IHECLT, IHECTT" IHEDSP, IHEIOG'i IHEITB, IHEITC,
IHELSP" IHEMSW, IHEOCL'I IHEOPZ" IHEOSW, IHESA, IHETCV,
IHETSA, IHESRT, IHETSW

FREEPOOL IHECLT, IHECTT, IHEOPQ., IHEOPZ

GET IHEITD, IHEITG

GETBUF IHEOPZ

GETMAIN IHEBEG, IHEDSP, IHEERR., IHEIGT" IHEIOGr, IHEITB, IHEITC,
IHEITD, lHEITE, IHEIrF., IHEITH .. IHEITJ, IHELSP, IHEOPOr,
IHEOPP, IHEOPQ, IHEOPZ" IHESA" IHETCV, IHESRT, IHETSA

GETPOOL lHEOPP

IDENTIFY IHETSA

LINK IHEBEG, IHEDUM, IHEERR., IHEOCL" IHEOCT, IHEOPNr, IHESRT,
lHETSA

LOAD IHEESM, IHEOPQ, IHETEX

OPEN IHEOPP, IHEOPZ

POST IHEDSP, lHEIGT, IHEINT, IHEITB" IHEITH, IHEITJ, IHEOCT"
IHETEA, IHETEV, IHETPR, IHETSA" IHETSW

152

PUT lHEITD, lHEITG, IHETEX

PUTX lHEITD, IHEITG

READ lHEITB" IHEITE~ IHEITF" IHEITH, IHEITJ

RETURN lHECLT, IHECTT

SETL IHEITD

SNAP I HE DUM

SPIE lHEERR" IHESA, IHESRT" IHETSA

STIMER lHEOSI

TIME lHEOSD" lHEOST

WAIT IHEDSP, lHEIGT, IHEINT,. IHEITB" IHEITE, IHEITH" IHEMSW,
lHEOCT" IHEOSW, IHETEA" IHETEV" IHETPR., IHETSA" IHETSW

WRITE lHEITB, IHEITC, IHElrE" IHEITF., lHEITH, IHEITJ., IHEOPZ

WTO IHEDSP, IHEOCL, IHEOCT" IHEPRT" IHETOM" IHETEX" IHEPTT

WTOR IHEDSP

XCTL IHEOPN, IHEOPO, IHEOPP

Appendix A: System Macro Instructions 153

APpgNDIX B: SYSTEM GENERATION

System Generation Process

IBM System/360 Operating System consists
of libraries of program modules that can be
uni1:ed in a variety of combinations"
according to options specified by the user.
The user selects the programming options
that meet his data processing requirements
and conform to his machine facilities. The
selected options are translated into pro­
gram module requirements by the system
generation process,. the modules being com­
piled into libraries that form the new
operating system.

']~he operating system is generated in two
stages. First. a series of user-supplied
macro instructions, which describe the
machine facilities and programming options
reqUired, is written. From these~ if no
errors are found, a job stream is generat­
ed. In the next stage. the job stream is
processed by the assembler., the linkage
editor, and util ity programs" to generate
the libraries of modules which form the new
operating system. The whole process is
carried out using an existing operati~g
system. The system generation process 1S
described in IBM System/360 Operating~ys­
tern: system Generation~

PL/I Library System Generation

l~ll PL/I Library modules are in load
form. Before system generation they exist
on two libraries:

1. SYS1.PL1LIB. This PDS contains

154

modules which are always required by
a system using PL/I.

2. SYS1.LM512. This contains both
modules which are optionally
required and modules which will be
copied into SYS1.LINKLIB.

Three PL/I Library system macros are used,
whose purpose is to produce COpy control
cards for inclusion in the job stream.

The first macro" SGIHE5LA" produces COpy
control cards to copy modules from
SYS1.LM512 into SYS1.LINK~IB.

The second macro, SGlHE5PB, produces
COpy control cards to copy the non-optional
modules on SYS1.PL1LIB into the new
SYS1.PL1LIB.

The third macro" SGIHE5PC, tests for the
COMPLEX arithmetic option. If it is pre­
sent, COpy control cards are produced for
modules dealing with complex arithmetic
(about 30% of the total number). The macro
then tests to see if the TIME and STIMER
options have been requested and are availa­
ble. If so, COpy control cards are pro­
duced for IHEOST and IHEOSI. If either or
both of these options are not required,
either or both of the dummy modules IHEMST
and IHEMSI are renamed lHEOST and IHEOSI
respectively and the appropriate COpy con­
trol cards "are produced. Similarly, if the
MULTIPLE WAIT option is not requested, the
SINGLE WAIT module IHEMSW is renamed
IHEOSW.

APPENDIX C: PLII OBJECT PROGRAM PSEUDO-REGISTERS

PL/I object programs require pseudo­
registers (symbolic name format IHEQxxx),
some of which are defined by the compiled
program, others by the library modules.
During execution of a program register PR
alway,s points to the base of the PRV (see
'pseudo-Register vector', Chapter 2).

IHEQADC

Pointer to a list of
for use by the 1/0
multitasking the list
multitasking in IHETSA.

IHEQATV

address constants
routines: for non­
is in IHESA, for

contains the address of
variable for the current task.

the task

IHEQCFL

The current-file pseudo-register,
8-bytes, word aligned,. Used by STREA.M 1/0
modules for implicit communication of the
file currently being operated upon; see
'Current File' in Chapter 3.

IHEQCTS

Contains the address of the save area
for the control task in a multiprogramming
environment.

IHEQERR

Serves as a parameter list when calling
IHEERRB. The code associated with the ON
condition to be raised is placed into
IHEQERR. See 'ON Conditions' in Chapter 6.

IHEQEVT

The anchor cell for the incomplete 1/0
event variables in a given task. When
IHEQEVT contains zero, no 1/0 event
variable in the task is incomplete.

IHEQFOP

The anchor cell of the chain linking the
FCBs for the files opened in a given task.
When IHEQFOP is zero, none of the files
opened in this task are still open. See
'File Control Block' in Chapter 3.

IHEQFVD

Pointer to the Free VDA module: IHESAFD
for non-multitasking, IHETSAF for multi­
tasking.

contains the invocation count, and is
updated by a library module each time a DSA
is obtained.

Pointer to the current generation of the
library communication area; see 'Library
Workspace' in Chapters 2 and 4.

Pointer to the first save area in LWS,
which serves two purposes: (1) the save
area provided by the error-handling rout­
ines for an on-unit, and (2) an area where
initial task information is saved (PICA,
program mask, etc.). See Chapter 4.

IHEQLWO., IHEQLW1, IHEQLW2, I~QLW1L-IHEQLW4

Pointers to the various levels of
library workspace ; see 'Library Workspace'
in Chapters 2 and 4.

Pointer to the save area and workspace
used by the error-handling routines when
calling other library routines (not an
on-unit).

IHEQLWF

Pointer to the reserved area attached to
the current LWS. Used for optimization in
storage management. See 'Object-time
Optimization' in Chapter 4.

contains the return code used in the
normal termination of a PL/I program. (See
Chapter 4.)

IHEQSAR

Contains an environment count used by
the display modification module (IHESAR)
when on-units and entry parameter proce­
dures are used in prologues and epilogues.

IHEQSFC

Pointer to free-core within first block
of storage obtained by the task initializa­
tion library module (IHESA)i see Chapter 4.

Appendix C: PLII Object Program Pseudo-Registers 155

IHEQSLA

Pointer to the storag~ area most recent­
ly allocated by the storage management
routines. The area may be aDSA or a VDA.
See Chapter 4.

IHEQSPR

'The file register for SYSPRINT" the name
being standardized to allow usage of the
same FCB for bo~h the source program and
the library modules.. See "standard Files',
and 'File Addressing Technique' in Chapter
3.

contains the task invocation count"
which is used in multitasking in the
freeing of controlled storage.

156

IHEQVDA

Pointer to the Get VDA module: in non­
multitasking set (in IHESAP) to IHESADF: in
multitaskingw set (in IHETSAM) to IHETSAW.

IHEQXLV

The anchor cell for the exclusive blocks
created in a given task. When IHEQXLV
contains zero, the task has no exclusive
blocks.

IjHELIB

ot>erands: None

Result:

Definitions of LWS pseudo-registers.
Lengths of save areas in LWS.
Format of the library communication area.
Definitions of save area offsets.
Definitions of standard register

assignments.

IHEEVT

Operands: None

Result:

Definitions of the event variable and its
flags.

I!HEPRV

operands:

A three-character code denoting the last
three letters of a pseudo-register name
(default: LeA)

A code denoting a general register
(default: WR)

A keyword parameter OP=XX, where XX is an
RX instruction (defa ul t: L)

Result:

The RX operation is performed on the
pseudo-register. This macro is gener­
ally used to store the pseudo-register
address in a general register.

IHESDR

Operands:

A three-character code denoting a work­
space level (default: LWO)

A code denoting a general register other
than register DR (default: WR)

APPENDIX D: LIBRARY MACRO INSTRUCTIONS

Result:

The address of the required workspace
level is put into register DR.

IHEXLV

Operands: None

Result:

Definition of exclusive block and its
flags.

IHEZAP

Operands: None

Result:

Definitions of I/O pseudo-registers.
Definitions of the file control block and

its flag bytes.
Definition of the declare control block.
Definitions of various I/O address con­

stants, parameters,. operations and
options.

Definitions of the I/O control block and
its flag bytes.

Definitions of the event variable and its
flags.

Operands: DUMP/none

Result:

If the operand is omitted,. or is not
DUMP,. a full DSECT is generated. If
the operand is DUMP, only the parameter
list for IHEZZC is defined as a DSECT.

Used only by IHEDUM, IHEZZC, IHEZZF.

Appendix D: Library Macro Instructions 157

APPENDIX E: PLII LIBRARY INTERNAL ERROR CODES AND MESSAGES

Among the errors that occur during pro­
gram execution are errors that are covered
by PL/I-defined conditions.. If one of
these occurs., an appropl::iate error code is
passed to IHEERR in pseudo-register
IHEQERR. This code is a 4-digit hexadeci­
mal number. The two high-order digits
denot,e the PL/I condition (Figure 49); the
others denote the errors associated with
that condition.

r---------------T-------------------'-----,
I Code I Condition I
~---------------+-------------------------~ I 10 I STRINGRANGE I
I 18 I OVERFLOW I
I 20 I SIZE
I 28 I F IXEDOVER FLOW
I 30 I SUBSCRIPTRANGE
I 38 I CHECK (label)
I 40 I CONVERSION
I 48 I CHECK (variable)
I 50 ,CONDITION(identifier)

58 FINISH
60 ERROR
68 ZERODIVIDE
70 UNDERFLOW
78 AREA
88 NAME
90 RECORD
98 TRANSMIT
AO I/O SIZE
A8 KEY
BO ENDPAGE
B8 ENDFILE
CO I/O CONVERSION
C8 UNDEFINED FILE _______________ ~ _________________________ J

Figure 49. Internal Codes for ON Condition
Entries

If system action is required, an error
message will be printed. The messages
relating to the errors for the PL/I condi­
tions are given here.

Error code Message

1000 STRINGRANGE

1800 OVERFLOW

2000 SIZE

2800 FIXEDOVERFLOW

3000 SUBSCRIPTRANGE

4000 CONVERSION

l~OOl CONVERSION ERROR IN F-FORMAT
INPUT

158

4002

4003

4004

4005

4006

4007

4008

4009

5000

5800

6000

6800

7000

7800

7801

7802

8800

CONVERSION ERROR IN E-FORMAT
INPUT

CONVERSION ERROR IN B-FORMAT
INPUT

ERROR IN CONVERSION FROM CHAR­
ACTER STRING TO ARITHMETIC

ERROR IN CONVERSION FROM CHAR­
ACTER STRING TO BIT STRING

ERROR IN CONVERSION FROM CHAR­
ACTER STRING TO PICTURED CHAR­
ACTER STRING

CONVERSION ERROR IN P-FORMAT
INPUT (DECIMAL)

CONVERSION ERROR IN P-FORMAT
INPUT (CHARACTER)

CONVERSION ERROR iN P-FORMAT
INPUT (STERLING)

CONDITION

FINISH

ERROR

ZERODIVIDE

UNDERFLOW

AREA SIGNALED

AREA CONDITION RAISED
ASSIGNMENT STATEMENT

IN

AREA CONDITION RAISED IN ALLO­
CATE STATEMENT

UNRECOGNIZABLE DATA NAME

9000 RECORD CONDITION SIGNALED

9001 RECORD VARIABLE SMALLER THAN
RECORD SIZE

9002 RECORD VARIABLE LARGER THAN
RECORD SIZE

9003 ATTEMPT TO WRITE ZERO LENGTH
RECORD

9004 ZERO LENGTH RECORD READ

9800 TRANSMIT CONDITION SIGNALED

9801 PERMANENT OUTPUT ERROR

9B02

ABOO

AB01

AB02

PERMANENT INPUT ERROR

KEY CONDITION SIGNALED

KEYED RECORD NOT FOUND

ATTEMPT TO ADD DUPLICATE KEY

AB03 KEY SEQUENCE ERROR

AB04

AB05

AB06

ABO?

BBOO

CBOO

CB01

KEY CONVERSION ERROR

KEY SPECIFICATION ERROR

KEYED RELATIVE RECORD/TRACK
OUTSIDE DATA SET LIMI,]~

NO SPACE AVAILABLE TO ADD
KEYED RECORD

END OF FILE ENCOUNTERE:D

UNDEFINED FILE CONDITION SIG­
NALED

FILE ATTRIBUTE CONFLICT
OPEN

AT

CB02

CB03

CB04

CB05

CB06

CBO?

CBOB

CB09

CBOA

CBOB

FILE TYPE NOT SUPPORTED

BLOCKSIZE NOT SPECIFIED

CANNOT BE OPENED (NO DO CARD)

ERROR INITIALIZING
DATA SET

REGIONAL

CONFLICTING ATTRIBUTE AND
ENVIRONMENT ~ARAMETERS

CONFLICTING ENVIRONMENT AND/OR
DD PARAMETERS

KEY LENGTH NOT SPECIFIED

INCORRECT BLOCKSIZE
LOGICAL RECORD SIZE

AND/OR

LINESIZE GT IMPLEMENTATION
DEFINED MAXIMUM LENGTH

CONFLICTING ATTRIBUTE AND DO
PARAMETERS

Appendix E: PL/I Library Internal.Error codes and Messages 159

APPENDIX F: DUMP INDEX

The dump index provided by the subrout­
ines IHEZZA, lHEZZB, and lHEZZC contains
information about:

SYSPRINT buffers

Files currently open

Current file

Save areas

On-units, interrupts and other details

This information is output to a file called
PL1DUMP.

SYSPRINT Buffers

']~he contents of each buffer are given,
in gBCDIC. If U-format records are used,
the contents of the intermediate buffer
used by the library are also printed.

Files Currently open

File name

A (DCLCB)

A(FCB)

A(DCB)

File-register offset in PRV

Current File

I/O Files: File name

A (DCLCB)

ACFCB)

A(DCB)

STRING Files: A(SDV)

160

Save Areas

A trace-back through the save-area chain
provides the following addresses:

A(All save areas,
library save areas)

A(Current LCA)

A(PRV VDA)

A(VDA for LWS2)

Other Information

including the

If a CALL was made: A(CALL)
A(Procedure) or
A(Entry point of
library module)

If a BEGIN block was entered: A (Entry
point)

If a program interrupt occurs: A (Interrupt)

If an on-unit was entered: Type of on-unit.
If this on-unit is the error on-unit and
was entered as a result of system
action" the condition ca using the system
action is given.

If IHEDMA occurs in the trace-hack: The
names of the modules used in the conver­
sion are given.

The statement number (if .it exists) is
given.

The following program illustrates the
use of the dump index:

TDUMP: PROC OPTIONS (MAIN);

1
2
3
4
6
8
9

10

11
12
13
14
15
16
17
18

TDUMP: PROC OPTIONS(MAIN);
DCL A CHAR(4)INIT('ABCD');

DCr. IHESARC ENTRY(FIXED BINl\RY);
ON ERROR CALL IHEDUMP;
ON CONV CALL CONVPROC;

CALL IHESARC(20);
PUT LIST ('THIS IS THE FIRST LINE');
PUT SKIP LISTC'THIS IS THE SECOND
LINE');
OPEN FILE(XYZ) OUTPUT;
BEGIN;
X=A;

END ;
CONVPROC:PROC;

/* CONV ERROR */

DCL Y (-32768: -32768" -32768: -32768) CHAR(1);
Z=Y(32767,32767); /* ADDRESSING ERROR */
END TDUMP;

The addressing error only occurs if this program is the only one being executed.

The dump index produced for this program is:

* * * PL/I F-COMPILER 4TH VERSION * IHEDUMP * * *

* * * SYSPRINT BUFFERS

BUFFER 01

HE FIRST LINE " U YA 3 R IHEOPNA 0 0

BUFFER 02

IHE804I ADDRESSING INTERRUPT IN STA'rEMENT 00017 AT OFFSET +000B4
FROM ENTRY POINT CONVPROC

*** FILES CURRENTLY OPEN

XYZ
SYSPRINT

DCLCB 00A488 FCB 03EB40 DCB 03EB70 PR OFFSET 01C
DCLCB OOA4CO FCB 03EBDO DCB 03ECOO PR OFFSET 020

*** CHAIN BACK THROUGH SAVE AREAS

03F9BO DSA FOR ERR ON-UNIT CALLS IHEDUMP FROM 00A1FA (STMT 5)

03DF10 SECONDARY LIBRARY WORKSPACE

03DF20 SAVE AREA FOR LIBRARY CALLS OOA19C FROM OOCA3E LCA AT 03E31

03F690 SAVE AREA FOR LIBRARY CALLS 00A522 FROM OOCA04 LCA AT 03F730

03F4C8 SAVE AREA FOR LIBRARY INTERRUPT AT OOAF46 LCA AT 03F730

o 3F8D8 DSA FOR PROC CONVPROC CALLS OOAEFO FROM OOA318 (STMT 17)

03F828 DSA FOR CONV ON-UNIT CALLS OOA264 FROM OOA25E (STMT 7)

03F338 SECONDARY LIBRARY WORKSPACE

03F348 SAVE AREA FOR LIBRARY CALLS OOA200 FROM OOCA3E LCA AT 03F730

03F018 SAVE AREA FOR LIBRARY CALLS OOA522 FROM OOCA04 LCA AT 03FOB8

Appendix F: Dump Index 161

03EDB8 SAVE AREA FOR LIBRARY CALLS OOC728 FROMOOB9CA LCA AT 03FOB8

03FE50 SAVE AREA FOR LIBRARY CALLS OOB8DO FROM OOAF06 LCA AT 03FOB8

03F290 DSA FOR BEGIN CALLS OOAEFO FROM OOA186 (STMT 13)

03F1BO DSA FOR PROC TDUMP ENTERS BEGIN AT OOA138

03EC60 PRV - PSEUDO REGISTERS START AT 03EC68

03FFB4 EXTERNAL SA CALLS OOA020

••• END OF OUTPUT

When V-format records are used" the first nine data characters of one of the SYSPRINT
buffers may be blanked oUt~

If there had been a current file, this would have appeared after the section on 'Files
Currently Opened'.

162

The following list comprises all the
library modules provided for version 4 of
the PL/I (F) Compiler. It gives the length
in bytes of each module. Some of the
modules are not required by Version 4, but
are included for compatibility with pre­
vious versions; numbers in parentheses
after the names of these modules indicate
the versions that do use them. The modules
marked * reside in the link library
(SYS1.LINKLIB); all other modules are in
SYS1. PLlLIB.

Module Length

IHEABU 184
IHEABV 544
IHEABW 128
IHEABZ 128
IHEADD 216
IHEADV 96
IHEAPD 360
IHEATL 536
IHEATS 408
IHEATW 304
IHEATZ 296
IHEBEG 136
IHEBSA 296
IHEBSC 272
IHEBSD 192
IHEBSF 480
IHEBSI 296
IHEBSK 472
IHEBSM 384
IHEBSN 192
IHEBSO 312
IHEBSS 240
IHECFA 160
IHECFB 576
IHECFC 88
IHECKP 184

* IHECLS (1,2,3) 992
* IHECLT 1298

IHECNT 72
lHECSC 200
IHECSI 168
IHECSK 320
IHECSM 280
IHECSS 224
lHECTT 1718
IHEDBN 344
IHEDCN 495
IHEDDI 1248
IHEDDJ 448
IHEDDO 648
IHEDDP 640
lHEDDT 760
IHEDIA 584
IHEDIB 280
IHEDID 448
IHEDIE 456
IHEDIL 48

APPENDIX G: LENGTHS AND LOCATIONS OF MODULES

IHEDIM
IHEDMA
IHEDNB
IHEDNC
IHEDOA
IHEDOB
IHEDOD
IHEDOE
IHEDOM
IHEDSP
lHEDUM
IHEDVU
IHEDVV
IHEDZW
IHEDZZ
IHEEFL
IHEEFS

* IHEERD
* IHEERE
* IHEERI
* IHEERN (1,2)
* IHEERO
* IHEERP

IHEERR
* IHEERS (1)
* IHEERT
* IHEESM
* IHEESS (2)

IHEEXL
IHEEXS
IHEEXW
IHEEXZ
IHEHTL
IHEHTS
lHEIBT
IHEIGT (;J..,.2" 3 ,,4)
lHEINT
IHEIOA
IHEIOB
IHEIOC
IHEIOD
IHEIOE (1,,2,,3)
IHEIOF
IHEIOG (1~2_3,4)
IHEIOH (2)

* IHEIOJ (2,3)
IHEION
IHEIOP
IHEIOX

* lHEITB
* IHEITC
* IHEITD
* IHEITE
* IHEITF
* lHEITG
* IHEITH
* IH:EITJ
* IHEITK
* IHEITL

IHEJXI
IHEJXS
IHEKCA

528
248
248
632
224
328
296
224
584
612
280
408
576
104
104
736
384
720

1704
896

4096
856

1208
1816

848
712

1768
1960

456
256
136
136
272
192
576

1340
436
360
480
288
640
176
736

1104
200

1992
248
488
328

3772
2604
2270
1760
1845
1122
2610
2650

622
492
320
104

1560

Appendix G: Lengths and Locations of Modules 163

IHEKCB 1464 IHESRC 344
IHEKCD 256 IHESRD 128
IHELDI 2072 IHESRT 1348
IHELDO 1048 IHESSF 168
IHELNL 360 IHESSG 104
IHELNS 256 IHESSH 104
IHELNW 268 IHESSX 216
IHELNZ 288 IHESTG 1108
IHELSP 1064 IHESTR 1592
IHEM9'1 344 IHETAB 16
IHEMAI 8 IHETCV 208
IHEMPU 240 IHETEA 248
IHEMPV 288 IHETER 272
IHEMSI 32 IHETEV 240
IHEMST 32 • IHETEX 1464
IHEMSW 136 IHETHL 280
IHEMXB 96 IHETHS 200
IHEMXD 120 IHETNL 344
IHEMXL 96 IHETNS. 272
IHEMXS 96 IHETNW 184
IHEMZU 240 IHETNZ 184
IHEMZV 672 • IHETOM 493
IHEMZW 64 IHETPB 56
IHEMZZ 64 IHETPR 268
IHENL1 280 IHETSA 5720
IHENL2 192 IHETSE 88
IHEOCL 1338 IHETSS 72
IHEOCT 2190 IHETSW 1520

• IHEOPN 920 IHEUPA 192

* IHEOPO 1828 IHEUPB 232

• IHEOPP 1874 IHEVCA 272
• lHEOPQ 1296 IHEVCS 480
• IHEOPZ 992 IHEVFA 232

IHEOSD 216 IHEVFB 224
IHEOSE 80 IHEVFC 40
IHEOSI 72 IHEVFD 88
IHEOSS 56 IHEVFE 32
lHEOST 88 IHEVKB 736
IHEOSW 1060 IHEVKC 720
IHEPDF 144 IHEVKF 1504
IHEPDL 88 IHEvKG 1248
IHEPDS 88 IHEVPA 352
IHEPDW 120 IHEVPB 408
IHEPDX 272 IHEVPC 492
IHEPDZ 120 IHEVPD 264
IHEPRT 656 IHEVPE 616
IHEPSF 160 IHEVPF 72
IHEPSL 72 IHEVPG 560
IHEPSS 72 IHEVPH 184
IHEPSW 96 IHEVQA 208
IHEPSX 256 IHEVQB 1004
lHEPSZ 96 IHEVQC 600
lHEPTT 768 Im;VSA 320
IHESA 2488 lHEVSB 208
IHESHL 248 IHEVSC 176
IHESHS 192 IHEVSD 416
IHESMF 136 IHEVSE 352
lHESMG 128 IHEVSF 240
IHESMH 128 IHEVTB 136
IHESMX 224 IHEXIB 88
IHESNL 416 IHEXID 136
IHESNS 320 IHEXIL 152
IHESNW 320 IHEXIS 152
IHESNZ 368 IHEXIU 120
IHESQL 160 IHEXIV 192
IHESQS 168 IHEXIW 256
IHESQW 152 IHEXIZ 256
IHESQZ 144 IHEXXL 152

164

IHEXXS 144
IHEXXW 280
lHEXXZ 280
IHEYGF 432
lHEYGL 240
lHEYGS 240
IHEYGW 280
lHEYGX 688
IHEYGZ 280

* IHEZZA (3) 1296
* IHEZZB (3) 1704
* IHEZZC 2960
* lHEZZF 1596

Appendix G: Lengths and Locations of Modules 165

166

APPENDIX H: COMPILER-GENERATED CONTROL BLOCKS

This appendix describes all the compiler-generated control blocks used by the PL/I
Library except the DCLCB and the OCB, which are described in Appendix I (Input/output
Control Blocks). All offsets are given in hexadecimal form.

Appendix H: Compiler-~enerated Control Blocks 167

168

ARRAY DOPE VECTOR (ADV)

023 7 8 15 16 31
r----T----~------------------------------, I BtOf I I virtual origin I
~---.1.-----.L-----------------------.------~
I Multipliers. I
~---~
I I
I I
I I
~--~ I Multipliern I
~-------------------T---------------------~ I Upper bound1. I Lower bounds. ,
~-------------------+---------------------~
I I I
I I ,
I I I
~-------------------+---------------------~ I Upper boundn I Lower boundn I L ___________________ .1. _________________ - ___ J

Figure 50. Format of the Array Dope Vector
(ADV)

This control block contains information
required in the derivation of elemental
addresses within an array data aggregate.
The ADV is used for three functions within
the library:

1. Given an array" to step through the
array in row-major order.

2. Given the subscript values of an array
element" to determine the element
address.

3. Given an element address l, to determine
its subscript values.

Wi thin PL/I implementation l, arrays are
stored in row-major order~ upward in stor­
age. The elements of an array are normally
in contiguous storage; if the array is a
member of a structure l, its elements may be
discontiguous. Such discontigui tYI, how­
ever, is transparent to algorithms which
employ an array dope vector.

The ADV contains (2n + 1) 32-bi t words"
where n is the number of dimensions of the
array. The number of. dimensions in the
array is not described within the ADV, but
is passed to the library as an additional
argument.

Definitions of ADV fields:

BtOf (= Bit offset): For an array of bit
strings with the UNALIGNED attribute,
this is the bit offset from the byte
address of the virtual origin ..

Virtual origin: The byte address of the
array element whose subscript values
are all zero, i.e.,X(O, ••• ,O);this ele­
ment need not be an actual member of
the array, in which case the virtual
origin will address a location in stor­
age outside the actual bounds of the
array.

Multiplier: These are fullword binary
integers Which" in the standard ADV
algorithm, effect dimensional incremen­
tation or decrementation to locate an
element.. Bit multipliers are used for
fixed-length bit string arrays; byte
multipliers are used for everything
else.

Upper Bound: Halfword binary integer,
specifying the maximum value permitted
for a subscr.ipt in the ith dimension.
This value may be negative .•

Lower Bound: Halfword binary integer,
specifying the minimum value permitted
for a subscript in the ith dimension.
The value may be negative.

ADV Algorithm: Given subscript values for
an n-dimensional array, the address of
any element is computed as:

n
Address = origin + ~ 5i *Mi

1=1

where 5i = value of the ith subscript
Mi = value of the ith multiplier

For an array of bit strings with the
UNALIGNED attribute" the origin is a
bit address formed by concatenating the
virual origin and the bit offset. For
all other arrays, the origin is the
virtual origin.

Appendix H:' Array Dope vector (ADV) 169

170

DATA ELEMENT DESCRIPTOR (DED)

r---------~----------------T---,
I I I Bytes I
I I ~-----'-----T-----T-----~-----T---------------~
I Data typel Representation I 1 I 2 I 3 I 4 I 5 I 6 and onwards I
~----------+----------------+-----+--.---+-----+-----+-----+---------------~
I I Fixed-point I I I I I I I
I I Floating-point I Flags I p I q I I I I
I Arithmeticl Packed decimal I I I I I. I I
I ~----------------+-----+--. .;...--+-----+-----+-----+---------------~
I I Numeric field IFlagsl p I q I w I 1 I Picture speen I
~----------+----------------+-----+--.---+-----+-----+-----+---------------~
I I Unpictured I Flags' I I I I I
,String ~----------------+-----+-----~-----+-----~-----~---------------~
, I Pictured I Flags I 1 I Picture specification I L __________ ~ ________________ ~ _____ ~_. _________ ~ ___________________________ J

Figure 51. Format of the Data Element Descriptor (DED'

r------T--, I Code I Bit I
I ~-----------T-----T---------T---------T--------T----------T-------T--------~
, I 0 1112 13 14 1 5 16 17 ,
~------+-----------+-----+---------+-.--------+--------+----------+-------+--------~

l' = 0 , I * I Unaligned I Fixed I Picturel Bit I * I 0 I
~------~ 0 = ~-----+---------+-.--------+--------+----------+-------+--------~
I , Stri ng 'I I , No I I I I
I = 1 , , * I Aligned I Varying I Picture I Character I * , 0 ,
~------+-----------+-----+---------+-.--------+--------+----------+-------+--------~
I' I I Non-I I Numeri c I I , ,
, = 0 I 1 = I * I sterling' Short I field 1 Decimal I Fixed I Real ,
~------~ Arithmetic~-----+---------+-·--------+--------+----------+-------+--------~
I = 1 I I * I Sterling I Long I Coded I Binary I Float I Complex I L ______ ~ ___________ ~ _____ ~ _________ ~ _________ ~ ________ ~ __________ ~ _______ ~ ________ J

* These bits are used by the compiler" but, when a DED is passed to a library
module:, they are always set to zero •

• Figure 52. Format of the DED Flag Byte

Data element descriptors (DEDs) c:ontain
information derived from explicit or impli­
cit declarations of variables of type
arithmetic and string. There are four DED
formats; they are shown in Figure 51.

Definitions of DED fields:

Flags: An eight-bit encoded form of
declared information (Figure 52). Those
flags which are specified as zero must be
set to zero.

p byte: p is the declared or default
precision of the data item.

q byte: q is the declared or default scale
factor of the data item" in excess-128
notation (i.e., if the implied fractional
point is between the last and the next~
to-last digit, q will have the value
129).

For numeric fields, q is the resultant
scale factor derived ~rom the apparent
precision as specified 1n the picture,
l.e., the number of digit positions after

a V picture item as modified by an F
(scale factor) item.

For fixed decimal pictures, any explicit
scaling of the form F(tI) is combined
with the implied scale, as described
above. and reflected in the DED. The
F(tI) is then no longer required and is
removed from the picture.

w byte: w specifies the number of storage
units allocated for a numeric field.

1 byte(s): 1 specifies the number of bytes
allocated for the picture associated with
a numeric field. If the data item is
string, 1 occupies two bytes; if
arithmetic, one byte.

Picture specification: This field contains
the picture declared for the data item.
If the data item is string., the picture
may occupy 1 through 32,767 ~tes; if
arithmetic~ 1 through 255 bytes. If the
original picture specification contained
replication factors, it will have been
expanded in full.

Appendix H: Data Element Descriptor (OED) 171

172

DOPE VECTOR DESCRIPTOR CDVO)

This provides a key for scanning the
standard array, string and structure dope
vectors. It consists of one entry for each
major structure, minor structure and base
element in the origl.nal declaration. Each
entry consists of one word and can have one
of two formats:

1. structure:

012 7 8 15
r--T--T-----------T------------------,
IF11F21 LIN I L __ ~ __ ~ ___________ ~ __________________ J

16 31
r------------------------------------,
I Offset I L ____________________________________ J

F1 =

F2 =

L =
N =

Offset =

=

0

0

structure

Level of structure

Dimensionality" including
inherited dimensions

Offset of containing
structure from start of
DVD
- 1 for a major stJ:ucture

2. Bas e el ement :

012 7 8 9 10 15
r--,..--T-----------T--T --T ------------"
IF11F21 L IF5 1F6 1 N I L __ ~_~ ___________ ~_~ __ ~ ____________ J

16 17 18 23 24 31
r--T-~-----------T--T--T------------,
IF31F41 A I I I D I L __ L~_~ ___________ ~ __ ~ __ ~ ____________ J

F1 = 1

F2 = 0
= 1

L =

F5 = 1
= 0

F6 = 1
= 0

N =

F3 = 0
= 1

F4 = 0
= 1

A =

D =

=

Base element

Not end of structure
End of structure

Level of element

Area variable
Not area variable

Event variable
Not ~vent variable

Dimensionality

Not an aligned bit string
Aligned bit string

Not a varying string
Varying string

Alignment in bits CO to 63)

Length, if not a string;, in
bits
o if a string, in which case
the length is in the dope
vect.or

Appendix H: Dope.Vector Descriptor CDVD) 173

174

FORMAT ELEMENT DESCRIPTOR (FED)

This control block contains information
derived from a format element within a
format list specification for edit-directed
I/O. There are five forms of the FED:

1. Format item E:

1 2 3 4
r-------T---T---'
I wid I s I L _______ ~ ___ ~ ___ J

3. Format items A" B., X:

1 2
r-------,
I w I L _______ J

w = as for E format

4. Format item P:

w = width of data field in characters There are two forms of the FED for the

2.

d = number of digits following decimal
point

s = number of significant digits to be
placed in data field (ignored for
input)

Format item F:

1 2 3 4

r-------T---T---'
I wid I p I
L _____ ~_~ ___ ~ ___ J

wand d: as for E format

p scale factor in excess-128 nota­
tion

P format items, these being identical
to the DEDs for numeric fields and
pictured character strings.

5. Printing format i terns PAGE" SKIP., LINE,
COLUMN:

The FEDs for SKIP, LINE and COLUMN are
halfword binary integers. PAGE does
not have an FED.

Appendix H: Format· Element Descriptor (FED) 175

176

LIBRARY COMMUNICATION AREA (LCA)

r--------T------~---,
ISymboliclLength I I
I name I (bytes) I Function I
~--------+-------+---~ o I WBRl 4 2nd XCTL address for communication in arithmetic (

4

8

10

14

18
20
29

2A
2B
2C

34
38

CE

D2

D6
DE
E6
EA

F2
F6

t conversion package. I
WBR2 4 3rd XCTL address for c0mmunication in arithmetict

WRCD

WFED

WSCF

WSDV
WINT
WSWA

WSWB
WSWC
WOFD

WOCH
WFCS

WCFD

WFDT

~iODF

WCNV
WFIL
WOKY

8

4

4

8
9
1

1
1
8

4
150

4

4

8
8
4
8

conversion package. I
A (Target) "A (OED): Implicit parameters for final I
convers ion in arithmetic scheme. stored by I
arithmetic director. I
A(Source FED): Implicit parameter for F or EI
format input conversion. I
Scale factor for library decimal intermediate I
form. I
Input/output field dope vector.. I
Library intermediate form storage area. I
Eight i-bit switches: Intermodular communi-I
cation. . I
Eight i-bit switches: General purpose switches~1
Eight i-bit switches: Not used across calls. I
Dope vector for ONSOURCE or ONKEY built-int
functions. I
A(Error character): ,ONCHAR built-in function.. I
Character string (in required format) used by I
list-directed and data-directed output. I
Library intermediate FED: String/arithmetic con-I
version;. I
A (Target FED): Implicit parameter for F or EI
format output conversion. I
SDV for DATAFIELD in error,. I
Library GO TO control block. I
A (DCLCB) for ONFILE. I
SDV(Null string): requested when ONKEY built-inl
function used out of context. I

WEVT 4 A5 (event variabl.e). I
WREA 4 Return address for AREA on-un! t,. I ________ lL _______ .1. ______________ " _________________________ '-_________ J

Alternative entries:

r--------T-------T---,
38 I WFCl I 40 I Workspace for interleaved array indexer. I
60 I WONC I 40 I Error code: storage area for contents ofl

I I I floating-poiRt registers in error-handling I
I I I subroutines.. I L ________ ~ _______ .1. ______________ - __________________________________ J

r--------T-------T----------------------'---------------------------,
38 I WCNP I 4 I Implicit parameter: ~(Constant descriptor). I
3C I WCNl I 8 I A(Start of constant), A(End Qf constant). I
44 I WCN2 I 8 I A(Start of constant), A(End of constant). I L ________ ~ _______ ~ ____ ~ ___ J

Figure 53. Library Communication Area' (LCA)

The library communication area (LCA) is part of library workspace
(LWS), the format of which is given in Figure 54. The use of LWS and
LCA is described in 'Communication conventions' in Chapter 2.

Appendix H: Library'Communication Area (LCA) 177

178

LIBRARY WORKSPACE (LWS)

O' 78 ~t

lHEQLSA------O>[~~~~~, ... ~. ~ .. ~~~~.·~Jt~.'.", .. E.··.·~.-.'~~~.·~.:.~.-..... :~.~.:~~.:.~~l
4 I Chai~-back addr~ss' (say~· .. a~~a?' ---',

~----------------------------------8 I Chain-forward add r~ss "0<, -'--"-1
~--------------------~~--~~--------~

C \ Register ~av~ area . "'" ---,., :

I' I
~-----------------~----------~-----~ 48 I (8 bytes pnused)' . ,",~ I
I 1

IHEQLWO------->~------------------~---------------~ 50 I ,...... -_. I

I I
I Workspac~ leY~l 0 I 1 "', , ' . I

I 1
IHEQLW1------->~----------------------------------i E8 I '... ,. I

I 1
I Workspace level 1 1
II

. I ,
IHEQLW2------->~----------------------------------~ 180 I .' .,.. . . I

I I
I Workspace level 2 I
1 I
I I

IHEQLW3------->~------------------------------~---~ 218 I . ,~,,- I
I 1
I Workspace level 3 I
I 1
I 1

IHEQLW~------->~----------------------------------~ , ' 2BO I . , "'1
I i
1 Workspace level 4 1

1 I
I I

IHEQLWE-------> ~--------------------·--------------i
348 1-' 1

I 1
1 Workspace level E 1

1 I
I I

IHEQLCA------->~----------------------------------i
3EO I 1

I I
1 1
I Library com~~nic~tion area (LCA) 1
1 1
1 I

IHEQLWF------->L-----------------------~----------J

Figure 54. Standard Format of Library Wo:rk.space (LWS)

The use of Library Workspace (LWS) is described in Chapter 2.
The format of the LCA is given in Figure 53 and that of the SSA
in Figure 55.

Appendix H~ Library Workspace (LWS) 179

180

STANDARD SAVE AREA (SSA)

Offset General Register Standard Save Area

Symbolic
ValUe Name Number

o

4

8

C

10

14

18

lC

20

24

28

2C

30

34

38

40

44

OFCD

OFDR

OFLR

OFBR

OFRO

OFRA

OFRB

OFRC

o FRO

OFRE

OFRF

OFRG

OFRH

OFRI

OFRJ

OFWR

OFPR

13

14

15

0

1

2

3

4

5

6

7

8

9

10

11

12

Symbolic
Name

DR

LR"RY

BR"RZ

RO

Rl"RA

RB

RC

RD

RE

R.F

RG

RH

RI

RJ

RX" WR.

PR

o 7 8 31
r----------T--.-----.------------------------,
I Fla gs I Length I
~---_-----.L--------- . _____________________ ~
I Chain-back address I
~---~ 1 Chain-forward address I
~----------.---------.------------------..... ----~
I I
~---~
I I
~---~ I Contents of register 1
~---~
I I
~--------------..,;---.-------------------------~
I contents of register I
~---~ I Contents of register I
~---~ I Contents of register I
~---~ I Contents of register I
~---~ I contents of register I
~---~ I Contents of register I
~-----.--------------------------------------~
I Contents of register I
~------------------.------------------------- ~
I Contents of register I
~---~ I contents of register I
~---~
I I
~---~ I Pseudo-register pointer I
L ____ ~--_-__ --------------------------------J

Figure 55. Format of the Standard Save Area (SSA)

Flags: One-byte code" employed by PL/I
housekeeping procedures to specify the
nature of the storage area in whidh the
SSA resides. (See Figure 56.)

acquired Ql a called module. This
field is not set for any PL/I Library
module, since intermodule trace is not
supported within the library~

Length: Three-byte binary integer speci­
fying the total length of the storage
area in which the SSA 'resides; used by
PL/I housekeeping to freedynamicstor­
age areas.. (See'PL/I Object Program
Managenent'.) When OPT=Ol.Default is
used" bit 1 of these three bytes is
used as a flag,.

Chain-back Address: Address of the SSA
originally provided for a module that
now calls another module,.

Chain-forward Ad.dress: Address of the SSA

Return address of the calling module: Con­
tents of register LR on entry to the
called module, set by the calling
module to the address of the point of
return. All PL/I Library modules
return using register LR..

Entry Point of the called module: contents
of register BR on entry to the called
module.

RO to PR: contents ,of the specified reg­
isters on entry to the called module.
PL/I Library modules save all registers

Appendix H: standard Save Area (SSA) 181

IJR through WR in order to meet the
l:equirements of a GO TO statement in an
on-unit. (See Chapter 4.) The reg­
ister PR field is set by the subroutine
in IHESA that initializes the main
procedure; it remains unchanged
throughout the task.

r---T-------------------------------------,
I I Meaning I
IBit~------------------T------------------~
I I = 0 I = 1 ,
~---+------------------~------------------~
, 0 I Always = 1 ,
~---+------------------T------------------~ I 1 INa statement num- ,statement number I
I Iber field in DSA Ifield in DSA I
~---+------------------+------------------~
I 2 INa dummy ON field ISTRINGRANGEfield I
I Ifor STRINGRANGE I created as for I
I I lather ON conditions
~---+------------------+------------------~
I 3 IProcedure DSA \Begin block DSA I
~---+------------------+------------------~
I . 4 I ~lo dummy ON field I SUBSCRIPTRANGE I
I Ifor SUBSCRIPTRANGElfield created as I
I I I for other ON con- I
I I Iditions I
~---+------------------+------------------~ 15 INon-recursive DSA.IRecursive DSA.. I
I Iwithout display Iwith display up- I
I lupdate field Idate field I
~---+------------------+----------.--------~
I 6 INa ON fields ION fields I
~---+-----~------------+------------------~
I 7 INa dummy ON field ISIZE field created I
I Ifor SIZE las for other ON I
I I I conditions I L ___ ~ __________________ ~ __________________ J

Figure 56. Format of the SSA Flag Byte

182

STRING ARRAY DOPE VECTOR (SADV)

o 15 16 31
r---------------------------~-------------,
I I
I I
I I
I ADV I
I I
I I
I I
~--------------------T--------------------~ I Maximum length I Current length/O I l ___________________ ~ ____________________ J

Figure 57. Format of the Primary String
Array Dope vector (SADV)

This control block contains information
required to derive, directly or indirectly
(through a secondary array of SDV entries> "
the address of elemental strings. The SADV
is identical to the basic ADV, with the
addition of a fullword which describes the
string length.

Fixed-length strings require only a pri­
mary dope vector. The two length fields

are set to the same value, which is the
declared length of the strings.

VARYING strings require, in addition to
the primary dope vecto r" a secondary dope
vector. This consists of SDV entries for
each elemental string within the array.
The secondary dope vector is addressed via
the primary dope vector by the standard ADV
algorithm; having located the relevant SDV,
the actual string data is directly addres­
sable. The maximum-length field appended
to the ADV is set to the declared maximum
length of each array element. 'l'he current­
length field is set to zero.

The
length
data,.
length
vector

multipliers of
string apply to
Those of the

string apply to
of SDV entries.

the ADV for a fixed­
the actual string
ADV for a variable­

the secondary dope

Appendix H: String ·Array Dope vector (SADV) 183

STRING DOPE VECTOR (SDV)

023 7 8 15 16 31

r----T-----T------------------------------,
IBtOfl I Byte address of string I
~----~-----L--------T---------------------~
I Maximum length I Current length I L ___________________ L _____________________ J

Figure 58. F'ormat of the string Dope
vector (SDV)

A string dope vector (SDV). is an 8-byte
word-aligned block that specifies storage
requirements for string data.

Definition of SDV fields:

BtOf (Bit offset): If the string is a bit
string, positions 0 to 2 of the SDV
specify the offset of the first bit of
the string within the addressed byte.
The bit offset is only applicable to
bit strings which form part of a data
aggregate., and then only if that. aggre­
gate has the UNALIGNED attribute!.

Byte address of string: For both character
and bit strings, this three-byte field

specifies the address of the initial
byte of the string.

Maximum length: Halfword binary integer
which specifies the number of storage
units allocated for the string: byte
count if character string, bit count if
bit string. This value does not vary
for a particular generation of its
associated string .•

Current length: Halfword binary integer
which specifies the number of storage
uni tS Il within the maximum length., cur­
rently occupied by the string: only
applicable to strings with the VARYING
attribute.

The two length fields exist to accommo­
date strings with the VARYING attribute; in
the instance of a fixed-length string, the
two fields contain i1entical values. Both
fields may contain a maximum value of
":\2,767.

Appendix H: String Dope Vector (SDV) 185

186

STRUCTURE DOPE VECTOR

This control block contains information
required to derive, directly or indirectly"
the address of all elements of the struc­
ture.

The format of a structure dope vector is
determined as follows. The dimensions
which have been applied to the major struc­
ture or to minor structures are inherited
by the contained structure base elements:

undimensioned non-string base elements are
assigned a dope vector consisting only of a
single-word address field. The structure
dope vector is then derived by concatenat­
ing the dope vectors which the base ele­
ments would have if they were not part of a
structure,. in the order in which the ele­
ments appear in the structure.

Appendix-H: Structure Dope Vector 187

SYMBOL TABLE (SYMTAB)

o 7 8 15 16 31

r--------~-------------------------------l I 0 I Chain-forward address I
~---------+-------------------------~-----i I Length I I
~ _________ J I

I I
I Identifier I
I 1
~---------T-------------------------------~ I D I A(DED) I,
~---------+-------------------------,------~
I Flags I Field A 1
~--------~---------T--------------------i
I Field B I I l ____________________ L ____________________ J

Figure 59. Format of the Symbol Table
(SYM'fAB)

The symbol table consists of one or more
entries which define the attributes, iden­
tifier" and storage locdtion of variables
which appear in the data list for data­
directed I/O. Each SYMTAB entry contains
the address of the next entry or a stopper.

Definition of SYMTAB fields:

Chain-forward address: The address of the
next entry in the symbol table; all
symbols (identifiers) known within a
given block are chained together. The
last entry in the chain is signaled by
a zero chain-forward address. (The
symbol table of a contained block must
include the symbol table of the
containing block; hence the chain­
forward address of the last entry for
variables declared in a contained block
is that of the first entry in the
symbol table of the containing block.)

Length: Number of characters comprising the
identifier. Maximum length is 255
characters.

Identifier: The name declared for a varia­
ble. If the variable is known by a
qualified name. the identifier includes
separating periods.

D (= Dimensionality): The number of
dimensions declared for an array varia­
ble; D = 0 for scalar variables.

~(DED): Addr,ess of the data element des­
criptor associated with the variable.

Flags:

Bit
-0-

1 = 1
2 = 1
3
4

5 6' 7 o '0 0
001

010

Field ~:

(Reserved)
ON CHECK for the variable
ON CHECK for label variable
(Reserved)
(Reserved)

variable is STATIC
Non-structured AUTOMATIC or CON­
TROLLED
Structured AUTOMATIC or CON­
TROLLED

If STATIC: Address of data item or its
dope vector.

If AUTOMATIC (non-structured): Offset of
data item or its dope vector
within DSA. (see note.)

If AUTOMATIC (structured): Offset of dope
vector for data item (within a
structure dope vector), rela­
tive to origin of DSA. (See
note.)

If CONTROLLED (non-structured): Offset to
, , data' item or its dope vector.

If CONTROLLED(structured): As for AUTO­
MATIC (structured), but offset
is relative to or~g~n of
structure dope vector.

Field B:

If STATIC: Not used.

If AUTOMATIC: Offset of display within
PRV.

If CONTROLLED: Offset of the anchor word
(pseudo-register) of the con­
trolled variable.

Note: See Chapter 4 for description of
storage class implementation and for
definition of DSA.

Appendix H: Symbol Table (SYMTAB) 189

190

APPENDIX I: INPUT/OUTPUT CONTROL BLOCKS

This appendix gives the formats of the control blocks used by the PLII Library I/O
interf ace modules" including those blocks generated by the compiler. The functions of
the blocks and the way in which they are used by the library are described in Chapter 3.
In the diagrams., all offsets are in hexadecimal.

The appendix includes an example of the chaining of I/O control blocks.

Appendix I: Input/Output Control Blocks 191

192

DECLARE CONTROL BLOCK (DCLCB)

o 7 8 15 16 23 24 31
r------------------T-------------------, o I DPRO I DCLll. I
~------------------+-----------.--------~

4 I DBLK I DLRlt I
~---------T--------+--------T-·--------~

8 I DCLD I DBNO I DCLB I DCLC I
t---------~--------+---------~---------~

C I DY.AL I (Reserved) I
~ ------------------~-----------,-------- ~

10 I (Reserved) I
~--------------------------------------~

14 I (Reserved) I
~---------T------------------------~---~

18 I DFLN I I
t--------- J I
I I
I DFIL I
I I
I I
I I L ______________________________________ J

Figure 60. Format of the Declare Control
Block (DCLCB)

DPRO: Halfword binary integer (set by the
linkage edftor) specifying the offset~
within the pseudo-register vector
(PRV), of the pseudo-register associat­
ed with the declared file.

DCLA: Four four-bit codes specifying the
file type, organization~ access and
mode:

Byte 1

0001 xxxx
0010 xxxx

xxxx 0000
xxxx 0001
xxxx 0010
xxxx 0011
xxx x 0100

~

STREAM
RECORD

Organization

CONSECUTIVE
INDEXED
REGIONAL (1)
REGIONAL (2)
REGIONAL (3)

(Stream-oriented I/O is supported only
for data sets of CONSECUTIVE organiza­
tion.)

0001 xxxx
0010 xxxx

Access

SEQUENTIAL
DIRECT

(These are used for record-oriented I/O
only.)

Mod~

xxxx 0001 INPUT
xxxx 0010 OUTPUT
xxxx 0100 UPDATE
xxxx 1000 BACKWARDS

(Stream-oriented I/O uses INPUT and
OUTPUT only.)

DBLK: Halfword binary integer specifying
the length, in bytes, of the blocks
within the data set:

F-format records: block
fied for data set
all blocks except
last one).

length speci­
(constant for
possibly the

U-" V-, VS- or VBS- format records:
maximum length of any block in
data set.

DLRL: Halfword binary integer specifying
the length, in bytes, of the records
within the data set. Two or more
records may be grouped (blocked) to
form one physical block.

F-format records: record length speci­
fied for data set (constant for
all records).

V-" VS- or VBS-format records: maximum
length of any record in the data
set.

U-format records: this specification is
not permitted; the block size
defines the record length.

Appendix I: Declare Control Block (DCLCB) 193

DCLD: One byte containing ENVI­
RONMENT options:

o LEAVE
1 COBOL file
2 CTLASA
3 CTL360
4 INDEXAREA
5 NOWRITE
6 REWIND
7 GENKEY

DBNO: One-byte binary integer specifying
the number of buffers to be allocated
to the file when it is opened, as
specified by the BUFFERS option.

DCLB: One byte containing attribute
codes:

194

Bit

o
1
2
3
4
5
6
7

Attribute

KEYED
EXCLUSIVE
BUFFERED
UNBUFFERED

(Reserved)
(Reserved)
(Reserved)
(Reserved)

DCLC: Eight-bit code which specifies the
format of records within the data set:

Bits Code Format

0 and 1 01 V
0 and 1 10 F
0 and 1 11 U

2 (Reserved)
3 1 Blocked
4 1 VS/VBS
5 1 PRINT
6 (Reserved)
7 (Reserved)

DXAL: Halfword binary integer specifying
the count in the INDEXAREA area envi­
ronment option.

DFLN: One-byte binary integer specifying
the length (minus one) in bytes of the
file name in the following field.

DFIL: Character string, up to 31 bytes
long, specifying the name of the file.
If there is no TITLE option in the OPEN
statement, the first eight characters
of this name are used as the name of
the DD statement associated with the
file during program execution. (The
compiler will have padded the name with
bL"l nks to extend it to at lea st eight
characters in length.)

EVENT VARIABLE

o 7 8 15 16 31
r------T-------------------------------,

o I EVFl I EVEC I
~------+-----------------------.--------~

4 I EVF2 I EVLO I
~------~-------------------------------~

8 I EVCF I
~--------------------------------------~

C I EVCB I
~--------~---------T-------------------~

10 I EVST I Reserved I
~------------------L-------------------i

14 I EVFF I
~--------------------------------------i

18 I EVFB I
~--------------------------------------~

lC I EVPR I L ______________________________________ J

Figure 61. Format of the Event Variable

In a multitasking environment, event
variables are placed in two chains::

1. The file chain, which is anchored in
the TEVT field of the FCB and includes
all active event variables related to
a file and for which there is no
corresponding IOCB. This chain ena­
bles all associated event variables
that are not being waited on to be set
inactive, complete, and abnormal when
a file is closed.

2. The task chain, which is anchored in
the pseudo-register IHEQEVT, and
includes all active I/O event varia­
bles associated with the task. This
chain facilitates the setting of those
event variables that are not being
waited on inactive, complete, and
abnormal on termination of the task.

An example of the chaining of event varia­
bles is given at the end of this appendix.

EVF1: 8-bit code containing implementation
flags:

FI~g§. code Name

Active event variable 1000 0000 EMA.C
I/O associations 0100 0000 EMIO
No WAIT required 0010 0000 EMNW
FCB address contained

in EVEC 0001 0000 EMFC
This event variable

is to be checked 0000 1000 EMCH
DISPLAY event variable 0000 0100 ENDS
IGNORE option with

this event 0000 0010 EMIG

EVEC: Contains the address of the DECB
associated with the event, or the
address of the FCB when no IOCB was
obtained, e.g." when READ IGNORE (0)
is execut ed.

EVF2: PL/I ECB flag byte:

wait
complete

EVIO: Not used.

1000 0000 EMWB
0100 0000 EMCP

EVeF: Event variable chain-forward pointer
(task) •

EVCB: Event variable chain-back pointer
(task).

EVST: Status field:
Normal status value: All zeros.
Abnormal status value: Low-order bit

is 1, remainder is zero (unless
set otherwise by STATUS
pseudo-variable).

EVFF: Event variable chain-forward pointer
(file) •

EVFB: Event variable chain-back
(file).

pointer

EVPR: Address of the PRY of the task in
which the associated 1/'0 event was
initiated.

Appendix I: Event Variable 195

196

EXCLUSIVE BLOCK

o 7 8 15 16 31
r--------------------------------,

o I XCFF !
~--------------------------------~

4 I XCBF I
~--------------~-----------------~

8 I XCFT I
~--------------------------------~

C I XCBT I
~--------------------------------~

10 ! XPRV I
~------T----------T--------------~

14 I XFLl I (Reserved)! XSTC !
~------~---------~--------------~

18 I I
I XQNM !
I I
~------+-------------------------~------

20 ! XLRN I XKYI/XREG ! A
~------~-------------------------~ I

24 I I I
I I I
I XKYR I XRN~
I I I
I i I
I I I
I I V L ________________________________ J _____ _

Figure 62. Format of Exclusive Block

Exclusive blocks are placed in two
chains:

1. The task qhain, which is anchored in
the pseudo-register IHEQXLV~ and ena­
bles all records locked in a. task to
be unlocked when the task is terminat­
ed.

2. The file chain, which is anchored in
the TXLV field of the FCB, and facili­
tates the freeing of all exclusive
blocks related to the file when it is
closed, and facilitates a check on
whether a record is already locked.

An example of the chaining of exclusive
blocks is given at the end of this appen­
dix.

XCFF: Chain-forward pointer (file).

XCBF: Chain-back pointer (file).

XCFT: Chain-forward pointer (task).

XCBT: Chain-back pointer (task).

XPRV: Address of the PRV for the task in
which the exclusive block was creat­
ed.

XFL1: Flags: XLOK: Code 1000 0000 indicates
that the record associated with the
exclusive block is locked owing to a
READ operation or an incomplete REW­
RITE· or DELETE operation.

XSTC: Lock statement count: the number of
incomplete 1/0 operations that cur­
rently refer to the exclusive block.

XQ~M: l-:ight-byte qname used in the ENQ and
DEQ macro instructions. The first
word contains the address of the FCB~
right-aligned, and the second con~'
tains zero.

XRNM:rhe rname used in the ENQ and DEQ
macro instructions:

XLRN: One byte containing the length
of the rname.

XKYI/XREG:
XKYI: INDEXED files (unblocked

records): Key of record
being locked.
INDEXED files (blocked
records): ACFCB).

XREG: REGIONAL files: Region
number of the record
being locked. (This
field may extend beyond
byte 23.)

XKYR: REGIONAL(2) and (3) files: The
recorded key of the record
being locked.

Appendix I: Exclusive Block 197

198

FILE CONTROL BLOCK (FCB)

o 7 8 15 16 23 24 31
r--------------------------------------,

1-8 I TVAL I
~--------------------------------------~

1-4 I TRES I
~--------T-----------------------------i

o I TFLX' TDCB I
~--------+-----------------------------~

4 I TTYP I TACM I
~--------+---------T-------------------i

8 I TFLA I TFLB I TLEN I
~--------+---------~-------------------~

C I TFIO I TDCL I
~--------~-----------------------------~

10 I TCBA I
~------------------T-------------------i

14 I TREM I TMAX I
~------------------~-------------------~

18 I TREC I
~--------------------------------------i

1C I TCNT I
~------------------T-------------------~

20 I TPGZ I TLNZ I .
~------------------+--------T----------i

24 I TLNN I TFLC I TFLD I
~--------T---------~--------~----------i

28 I TFLE I TFOP I
~--------t-----------------------------~

2C I TFLF I TTAB I
~--------~-----------------------------i

30 I I
I I
I DCB I
I I
I I L ______________________________________ J

.Figure 63. FCB for stream-Oriented I/O

TVAL: Word containing bits indicating
which statements are valid for this
file

TRES: Reserved

TFLX: Eight-bit code specifying error and
exceptional conditions:

£Qndition~ Code Name

EOF on data set 1000 0000 T~EF

Error on output 0100 0000 TMOE
Error on input 0010 0000 TMIE
Error on data field 0001 0000 T~IT

Do not raise
TRANSMIT 0000 1000 T~NX

List terminator 0000 0010 TMLC
ENDPAGE raised 0000 0001 TMEP

TDCB: Address of the DCB part of the FCB.

o 7 8 15 16 23 24 31
r--------------------------------------,

J -8 I TVAL I
~--------------------------------------~

1-4 I TRES I
t--------T-----------------------------i

o I TFLX I TDCB I
~--------t-----------------------------i

4 I TTYP I TACM I
~--------t---------T-------------------i

8 I rFLA I TFLB I TLEN I
~--------t---------~-------------------i

C I rFIO I TDCL I
~--------~-----------------------------i

10 I TLAB/TCBA I
~--------------------------------------i

14 I TPKA I
~--------------------------------------i

18 I TBBZ/TREL I
~--------------------------------------i

1C I TADC I
~--------------------------------------~

20 I TLRR I
t------------------T--------T----------i

24 I TLRL I TFLC I TFLD I
~--------T---------~--------~----------~

28 I TFLE I TFOP I
t--------t---------T-------------------i

I 2C I TFLF I TFMP I (Reserved) I
~--------~---------~-------------------i

30 I TEVT I
~--------------------------------------~

34 I Zero I
t--------------------------------------~

38 I TXLV* I
~--------------------------------------~

3C I Zero* I
~--------------------------------------i

40 I TXLZ* I
t--------------------------------------i

44 I I
I I
I DeB I
I I
I I L ______________________________________ J

* These fields are omitted in non­
multitasking environment: DCB commences
at byte 38.

.Figure 64. feB for Record-Oriented I/O

Appen~ix I: File Control Block (FCB) 199

TTYP: Eight-bit code specifying I/O type:

!YI2§. Code !:!ru!!~

STREAM I/O xxxx 0000 TMDS
RECORD I/O xxxx 0001 TMRC
STRING I/O xxxx 0010 TMST
Temporary flags, 1000 xxxx TMTl
valid for single 0100 xxxx TMT2
I/O call only 0010 xxxx TMT3

0001 xxx>\: TMT4

TAC~~: Address of I/O transmit module,
which interfaces with data management
access methods. The names of all such
library modules are IHElr*, where * is
a letter identifying the module.

TFLA: Two four-bit
record format
mode:

codes specifying
and the current

the
file

Format Code ~ame

V (variable) 0001 xxx x TMVB
F (fixed) 0010 xxxx TMFX
U (undefined) 0100 xxxx TMUN
ASA control/print
file lxxx xxxx TMAS

Mode Code Name

INPUT xxxx 0001 TMIN
OUTPUT xxxx 0010 rMOP
UPDATE xxxx 0100 TMUP
BACKWARDS xxxx 1000 rMBK

TFLB: Eight-bit code specifying -the file
attributes:

Attribute £.ode !,!~me

EXCLUSIVE lxxx xxxx TMEX
UNBUFFERED xlxx xxxx TMBU
Hidden buffers xxlx xxxx TMHB
SYSPRINT file xxxl xxx x TMPT
Hidden buffer may

be require:3. xxxx xlxx TMHQ
KEYED xxxx xxlx TMKD
DIRECT xxxx xxxl TMDR

TLEN: Halfword binary integer, specifying
the length, in bytes, of the FCB.

TFIO: Eight-bit code specifying the type
of I/O operation:

°Eeration £ode lila me

PUT 1000 0000 TMPW
GET 0100 0000 TMGR
EVENT option
with IGNORE option 0000 0010 TMEI

COpy option 0000 0001 r~cY

TDCL: Address of the DCLCB defining the
file.

200

TCBA/l'LAB:

STREAM: TCBA: Address of next available
byte in a buffer.

RECORD: TLAB:
sequential: Address of las-t

IOCB obtained.
Direct: Address of first IOCB

in chain.
TCBA:
sequential: Address of last

record located.

TREM/TMAX/TPKA:

STREAM: TREM: Number of bytes remaining
in current record. This value
is equal to TLNZ when the
record is initialized for out­
put.
TMAX: Halfword binary integer
specifying the number of bytes
in a record:

InEut: the number of
read.

output: the number of
initially available.

bytes

bytes

For V format records, this num­
ber includes the four-byte
record control field; for all
recor:3. formats, it includes the
ASA control byte (if present).

RECORD: TPKA: Address of previous key.
(Used for SEQUENTIAL access to
REGIONAL data sets, LOCATE
creation of INDEXED data sets,
and padding key for SEQUENTIAL
INDEXED data sets.)

TREC/TBBZ/TREL:

STREAM: TREC: Address of buffer work­
space (paper-tape input, u­
format output).

RECORD: TBBZ: Length of IOCB. The

TCNT/T~DC:

first byte contains the subpool
number.
TREL: Relative record count.
(Used only for SEQUENTIAL
access to REGIONAL data sets.)

STREAM: TCNT: Fullword binary integer
specifying the number of scalar
items transmitted during the
most recent I/O operation (GET
or PUT) on the file.

RECORD: TADC: Address
list.

of the adcon

TPGZ/TLNZ/TLRR:

STREAM: TPGZ: Halfword binary integer
specifying the naximum number
of lines per page. This field
is only used for PRINr files.
~ default value of 60 lines is
assumed if:

1. the OPEN
opens the
include
option, or

statement that
file does not
the P~GESIZE

2. an implicit open occurs.

TLNZ: Halfword binary integer
specifying th~ maximum number
of characters per line. A
default line size is obtained
from the record length speci­
fied in the ENVIRONMENT attri­
bute if:

1. the OPEN
opens the
include
option, or

statement that
file does not
the LINESIZE

2. an implicit open occurs.

If the ENVIRONMENr attribute is
not specified, the record
length used is that specified
in the associated DD statement.

If none of these specifies a
record size, and if the file is
a print file, a default length
of 120 characters per line is
assumed.

The TLNZ value includes all
characters available within a
line.

RECORD: TLRR: Address of IOCB of last
complete READ operation. This
is required whenever the EVENT
option is used; it provides a
means of identifying the last
complete READ operation when a
REWRITE is executed. In the
case of spanned records this
field holds the length of the
previously read record if the
previous operation was a READ
SET.

TLNN/TLRL:

STREAM: TLNN: Halfword binary integer
specifying the current line
number.

RECORD: TLRL: Maximum logical record
length for the file.

TFLC: Two q-bit codes giving:

1. Type of device.

2. Further file history.

Device code

Paper tape 1000 0000
Printer 0100 0000
Previous operation

was READ with SET
option 0000 1000

Attempt to close in
wrong task 0000 0100

OPEN or CLOSE
in progress 0000 0010

Name

TMPA
TMPR

TMPS

TMDT

TMOC

TFLD: Eight-bit code specifying the organ­
ization of the data set associated with
the file:

Organization Code Name

CONSECUTIVE X' 00' TMCN
INDEXED X'04' TMIX
REGIONAL (1) X, 08' TMRl
REGIONAL (2) X' oct TMR2
RF~IONAL (3) X'10' TMR3

TFLE: Eight-bit code specifying the histo­
ry of the file:

!!i~tory code Name

Preceding operation
a READ 1000 0000 TMRP

IGNORE in progress 0100 0000 TMIG
CLOSE in progress 0010 0000 TMCL
End of the extent

reached by the
last operation 0001 0000 TMET

Preceding operation
a REWRITE 0000 1000 TMWP

Preceding operation
a LOCATE 0000 0100 TMLT

I/O condition on
CLOSE 0000 0010 TMCC

Implicit CLOSE 0000 0001 TMCT

TFOP: Address of the prior FCB opened in
the current task, or zero (if FCB is
the first FCB opened).

TFLF: Eight-bit code specifying the load
module code (used by IHECLS, lHECLT and
IHECTT to specify module names in the
DELETE macro):

STREAM:

Miscellaneous

TAB table exists 0000 0001 TMTB

Appendix I: File Control Block (FCB) 201

RECORD:

QSAM
BDAM
QISAM
BISAM
13 SAM
BSAM load mode
Tab control table

X'OO'
X'04'
X' a 8'
X 'oct
X'lO'
X'14'

exists X'Ol'
TTAB: Address of TAB control table

files only).

TMQS
TMBD
TMQI
TMBI
TMBS
TMBL

TMTB
(PRINT

TFMP: RECORD I/O only. This flag is used
by exclusive files to act as a lockout
flag when updating the chains of IOCBs
and exclusive blocks. A TS loop is
performed on this byte until it is
freed. When the chaining operation is
complete, the byte is set to zero.

202

TEVT: Pointer to chain of active I/O event
variables associated wi th 'the file, but
for which there is no corresponding
IOCB: enables the event variables to be
set complete, inactive, and abnormal
when the file is closed.

TXLV: Pointer to chain of exclusive blocks
associated with locked records of the
file: enables locked records to be
unlocked when the file is closed.
(Used only in a multitasking environ­
ment.)

TXLZ: Length of exclusive block: the first
byte contains X'Ol'(the number of the
subpool in which storage for the block
is allocated).

DCB: This field. variable in length and
format, is the data control block
defined by data management for the
various access methods.

INPUT/OUTPUT CONTROL BLOCK (IOCB)

o 7 8 15 16 31
r---------T-------------------------------,-------------------o I BACT I BPIO I A
~---------~-------------------------------~ I

4 I BNIO I'
~---------T-------------------------------~ ,

8 I BERR I BFCB I'
~---------~-------------------------------~ ,

C I BREQ I I
~--------------------7--------------------~ I I BERC/BEFC/BXTC/BKYC I BRCC I IOCB
~--------------------~--------------------~ foundation

14 I BRVS I I
~---~ I

18 I BEW I I
~---~ I

lC I BDF1/BBF1 I I
~--------------------T--------------------~ I

20 I BDF2/BBF2 I BDF3/(Reserved) I I
~--------------------~--------------------~ I

24 I BDF4/BBF3 I'
~---~ I

28 I BDF5/BBF3(contd.) I V
~---+-------------------

2C I BECB/BEXD I A A

~--------------------T--------------------~ I I
30 I BTYP I BLEN I BSAM BDAM/BISAM

~--------------------~--------------------~ DECB DECB
34 I BDCB I I I

~---~ I I
38 I BARE I I I

~---~ I I
3C I BSTS/BLOG I V I

~---+------ I
40 I BKVS/BKEY I I

~---~ I
44 I BBLK/BEXI I V

~---+-------------------
48 I BDBF/BXLV I A

~------------------------~--~-------------~ I
4C I (Reserved) I I

~---~ BDAM/BSAM
50 I I Hidden

· I BBBF I buffer
· I I area
· I I I
· I I I

I I V l ___ J __________________ _

Note: (The IOCB includes the Data Event Control Block (DECB)
-- for the BSAM and BDAM/BISAM Interfaces)

Figure 65. Format of the I/O Control Block (IOCB)

BACT: One byte containing an activity flag
(used only in direct access):

X'FF'
X'OO'

Meaning

In use
Free

EPIO: Chain-back address of the previous
I/O control block.

BNIO: Chain-forward address of the next
I/O control block.

Appendix I: Input/Output Control Block (IOCB) 203

BERR: Flag byte for record-oriented I/O
situations:

Situation Code Nam~

IOCB has been checked 0000 0001 BMCH
I/O error exists 0000 0010 BMER
End-of-file has

occurred 0000 0100 BMEF
Possible lock for

REWRITE 0000 1000 BMPR
Lock for

REWRITE 0001 0000 BMNR
IOCB for BISAM

READ UPDATE mode 0100 0000 BMDF
Dummy buffer acquired 1000 0000 BMDB

BFCB: Address of the FCB for the file.

BREQ: Request control block. Four-byte
field specifying the request codes for
associated operations (as passed by the
compiled calling sequence):

Byt!L!.

X'OO'
X'04'
x'oa'
x' Oct
X'10'
X'14'
X'la'

Byte 2

X'OO'
X'04'
x'oa'

Byte 3

X'OO'
X'04'
x'oa'

Byte 4

X'40'

X'80'

OEeration

READ
WRITE
REWRITE
DELETE
LOCATE
UNLOCK
WAIT

°Etion set 1

None/SET
IGNORE
INTO/FROM

°Etion set 2

None
KEYTO
NOLOCK

oEtion set 3

VARYING record variable
(INTO)
VARYING KEYTO

BERC/BEFC/BXTC/BKYC: Error codes for var­
i ous condi ti ons .

BERe: ERROR condition

BEFC: ENDFILE condition

BXTC: TRANSMIT condition

BKYC: KEY condition

(See Chapter 6 for details of these
codes.)

BRCC: Error code for RECORD condition.

204

(See Chapter 6 for details of these
codes.)

BRVS: Address of RDV or SDV for record
variable.

BEVN: Address of event variable; zero, if
none exists for associated operation.

BDF1/BBF1:

BSAM: BDF1: Address of
record variable.

BDAM: BBF1: Address of
record vari:tble.

BDF2/BBF2:

the user's

the user's

BSAM: BDF2: Length, in bytes, of the
user's record variable.

BDAM: BBF2: Length, in bytes, of the
user's record variable.

BDF3:

BS~M: Length, in bytes, of the KEYTO
area.

BDAM: (Reserved)

BDF4/BBF3 :

BSAM: BDF4: Address of the KEYTO area.

BDAM: BBF3: Relative record or track
number (BLKREF).

BDFS: BSAM: Relative
(REGIONAL (1».

BECB/BEXD:

record number

BEeB: The data managemen't event control
block (ECB).

BEXD: If BDAM is used, bytes 2 and 3
(= BEXD) of this field contain
the BDAM exception codes. For
definitions of these codes, see
IBM System/360 Operating System:
supervisor and Data Management
Macro Instructions.

BTYP: Type of I/O operation (set
by data management macro).

BLEN: Length, in bytes" of the records to
be transmitted.

BDCB: Address of the DCB.

BARE:

Hidden buffers: Address of the
appended buffer.

No hidden buffers: Address of the record
variable.

BSTS/BLOG:

BSAM:

BDAM:

BISAM:

BKVS/BKEY

BSTS: Address
indicator.

of the status

BLOG: Address of the lOB (I/O
block; see IBM Systernl36~~~=
ating system: _,§ystem
Programmer's Guid~.
BLOG: Address of the logical
recorc'i.

BSAM: BKVS: ~ddress of SDV for KEYTO.

BDAM: BKEY: Address of KEY

BBLK/BEXI:

BBLK: Address of BLKREF, the relative
record or track number (i.e., the
address of BBF3).

BEXI: If BISAM is used, one byte
(= BEXI) contains the BISAM
exception codes. For definitions
of these codes, see ~

BOB F/BXL\T:

System/360 Operating System:
Supervisor and ~Da~t=a __ =M=a=n=a~g=e~m_e=n~t
Macro Instructions.

BS~M and BISAM: BDBF: Start
buffer.

of hidden

BD~M: BXLV: Address of the exclusive
block (if any) associated with
record being referenced.

BBBF: Start of BDAM/BISAM hidden buffer,.

r-------------T-------------------------------T--------------------------------,
I I SEQUENTI~L I DIRECT I
I ~-------------T-----------------+-----------------T--------------~
I I CONSECUTIVE I REGIONAL I REGIONAL I INDEXED I
I I I (KEYED) I I I
I I I (1) (2) (3) I (1) (2) (3) I I
~-------------+-------------+-----T-----T-----+-----T-----T-----+--------------~
I F-format I ~ I A I A I A I A I ~ I A I A I
I records I BIB I BIB I C I C I C I C I
I I I 8 I D1. I D1. I 8 I 01. I D1. I 01. I
I I I I O2 I O2 I I I I 0 3 I
I I I I I I I I I 16 I
I I I I I I I I I (Note 1) I
.-------------+-------------+-----+-----+-----+-----+-----+-----+--------------~
I V-format t A I I I A I I I A I I
I records I B I I I B I I I C I I
I I O2 I I I 01. I I I D1. I I
I I I I I D2 I I I O2 I I
~-------------+-------------+-----+-.----+-----+-----+-----+-----+--------------~
I U-format I A I I I A I I I A I I
I records I B I I I B I I I C I I
I I I I I 01. I I I 01. I I
I I I I I O2 I ~ I I I • _____________ .L- ____________ .1. _____ .L_. ____ .L _____ +-----.L-____ .1. _____ .L ______________ ~

I A: size of IOCB foundation INote 1: If RKP * 0, then D1. = O. I
I B: Size of BSAM DECB IIf RKP = 0 then for blocked I
, C: Size of BDAM/BISAM DECB I records: D1. = L" and for I
I 0: Size of hidden buffer: 'unblocked records: D1 = 2L, I
I D1.: Length of recorded key Iwhere L = length of recorded I
I, D2 : Length of block (record) I key. I
I ,Note 2: The data value is ob- I
I ,tained by summing the sizes I
, I given under each entry. I
L __________________ ~---------------_----------.L-~-----________ ~ ________________ J

Figure 66. Values used in computing s~ze of IOCB for various access methods

Appendix I: Input/Output Control Block (IOCB) 205

206

OPEN CONTROL BLOCK (OCS)

o 4 8 12
r---------T----------T----------T------~--,
I Type I 0 I Access I Mo~e I L _________ ~ __________ ~ __________ ~ _________ J

16 20 24 28 31
r---------T----------T----------T---------,
I Flag A I Flag B I Flag C I Flag D I L _________ ~ __________ ~ __________ ~ _________ J

Figure 67. Format of the Open
Block (OCB)

Type STREAM 0001
RECORD 0010

Access SEQUENTIAL 0001
DIRECT 0010

Mode INPUT 0001
OUTPUT 0010'
UPDATE 0100
BACKWARDS 1000

Flag A Bit: 0 KEYED
1 EXCLUSIVE
2 BUFFERED
3 UNBUFFERED

Flags B & C (Reserved)

Flag D Bit: 0 (Reserved)
1 PRINT
2 (Reserved)
3 (Reserved)

control

Appendix I: open Control Block (OCB) 207

IV "'Il
0
en ~

C
t1
It)

0\
CD .
tIj
)(

~
"C
~
It)

0
H'I

()
::r
~
='
='

\Q

0
H'I

t-t

" 0
()
0
=' rt
t1
0
~

a:I
~
0
0
lIf' CD
at

PRY

IHEOXlV
FC BJ ~ FCIH FCB2

t=~~~H~(~C~O~~~~ri==j~==~=~~~=~~==~~~~_~_~_~_~_~_~_~_~_~_=_=_~_~_=_~_~_~_=_~_~_=_~_~_~_~_~_~~-~-~~-=~~~~~~~~~~~.---
A (FCB2) "------------- --

,- -~::~A~(~F.:::::C:::.. "';..:::.B~l:) ::~f_ --r'= -=-.= -=-.:: =-= =- : =:::- _-__ -_'. -__ -1-_...!T~D~C::::.:l=_ _ _r'----
I IHEOEVT HOP =0' l
I (2) I TlAB f-----,- ___ ,
I I TEVT f---, I I
I I r-------- ---__ (2) I I
I : r--r------- - TXlV I I
I I I I (2) I I
I I I I I I
I I I I I II
I I I I I

I I I I I
: DClCB I I I I I

L--1~~FSET I r-J

1 : : I
I : EVENT I I

HOP

1 I VARIABLES -+-L---. I lOCSs
I I EVEr 1'4' +-1_-, I L_________ BPIO~~.~==: ___ ,
I I I I I I BNl.:::;O __ -i __ -, I
: I ..-- EVf F I I I I I I

L __ -..t--E-=X~7.l:.:~:-:~::~.:.:~-E--,::==.:-=! : EV-CB: : 1 L __________ t---B-E-V=N=:::~ ! i
XCFF ;~--~-t-1 I I L _______ ---__ BEC'-"'~r--_-i I

I Ir-----I--L--::.X:.:::C;!.B.!..F---F.-~-:::- ~-:- -1 : CD : I r __ __ _ _ _ _ _ __ ax L~T'l __ !:
~I .-==I---...:;~.:.;~~::.!~...,;i'----I :: L _______ - ---------------J-+-J .-_~~--__ J I

I I -- I I BPIO _= __ J

: l I I ~:::~B~NIO -:~-l
I I .--- EVCF I I I I
I I EVCB I I I I
I I I I I I

---X-C-F-F--......... ~-=-:!.-~--='- -, I I : I
XCBF f---~-J : (3) : I ,------------ BXlV I I 1---...:.X:.:.Co...!F~T---I I I I I L-_~ I I
xeBT I L _____ --- ----------- ____ +_L_J I I

: EVE(r-- _ ~ =~ ~ -1 ~==:B~P:I-O--""""o-_=--1_ J
I I I I I I _.....::.:BN~IO=~ ~ EVCF I I I I ...

i EVC& l : ! L-----------~-B....,E,...V:N::::~
~ XCFF=(2) t:=-~-l 0 I : L___________ BEC:.,::;B __ -i

1--.....;~:.;..~~~;"..FT-=-=(2),.----If----l- . : I :------------- BXl:.;.V __
XCBT L ___________________________ ~-l-J

L---.. ~_.J I

EVCF =~
EveB

I
I
I
I
I
I I-~E~V!,.!fF,...;z::::..;(2)~__I, ____ J

EVFB .-.

LINKS FOR TASK
II NKS FOR FilE

EXAMPLE OF CHAINING

Figure 68 contains an example of the
chaining of FCBs, IOCBs, event variables,
and exclusive blocks in a single task.

The task has opened two files, and the
addresses of their FCBs (FCBl and FCB2) are
stored in the PRV; the FCBs are placed in a
chain that is anchored in the pseudo­
register IHEQFOP and uses the TFOP fields
in the FCBs. The task also has access to
another file that was· opened in a higher
task; the address of the FCB for this file
(FCB3) was copied into the PRV when the
task was attached. (Note that this FCB
does not appear in the IHEQFOP chain.) A
DCLeB exists for each file declared, but
only the one corresponding to FCBl is shown
in Figure 68; this file is an exclusive
file that has been opened for DIRECT
UPDATE.

Three of the current I/O operations that
refer to FCBl required IOCBS. The IOCBs
are placed in a chain anchored in the TL~B
field of the FCB 50 that they can be freed
when the file is closed. The BXLV field in
each IOCB addresses the corresponding
exclusive block. The EVENT option was used
with two of the I/O operations: the BEVN
fields in IOCBs 1 and 3 therefore point to
the corresponding event variables. (The
third operation originated in another
task.)

Event Variables

The task
variahles.

has
These

four
are

active IIO event
chained from the

pseudo-regist~r IHEQEVT so that, on termi­
nation of the task, they can be set com­
plete, inactive, and abnormal. (Note that
the address in the chain-back field EVCB in
event variable 1 is not that of IHEQEVT,
but that of the field three words higher:
IHEQEVT is thus in the same position rela­
tive to this address as EVCB is relative to
the first byte of the event variable.)
Event variables 1, 3, and 4 relate to the
file corresponding to FCB1, and must be set
complete, inactive j, and abnormal when the
file is closed. Communication with event
variables 1 and 3 is established via the
corresponding IOCBs. But event variable 4,
which relates to an 'rIO operation for which
an IOCB was not required, is placed in a
chain anchored in the TEVT field of the
FCB. Event variable 2 is related to an I/O
operation on another file in the task.

Exclusive Blocks

For REGIONAL files and INDEXED files
with unblocked records, an exclusive block
exists for each record currently locked:
all those shown refer to the file corres­
ponding to FCB1. (If the files have
blocked records, only one exclusive block
exists for each file in each task: it is
created the first time a record in the file
is locked, and is not freed until the file
is closed.) The exclusive blocks are
placed in a chain anchored in the TXLV
field of the FCB so that the blocks can be
freed when the file is closed. Only two of
the records have been locked by this task,
and their exclusive blocks (1 and 3) are
placed in a chain anchored in pseudo­
register IHEQXLV so that the records can be
unlocked on termination of the task. (Note
that the chain-back fields, XCBT and XCBF,
in exclusive block 1 point, not to IHEQXLV
and TXLV, but to fields in the PRV and FCBl
that have the same positions relative to
IHEQXLV· and TXLV as the start of the
exclusive block has relative to XCBT and
XCBF.)

~ppendix I: Example of Chaining 209

210

APPENDIX J: STORAGE-MANAGEMENT CONTROL BLOCKS

This appendix gives the formats of the control blocks used by the non-multitasking
storage~management modules of the PL/I Library: the formats of the multitasking
equivalents are given in Appendix K. The functions of the blocks and the way they are
used are described in Chapter 4. In the di~grams, all offsets are in hexadecimal.

Appendix J: Storage-Management Control Blocks 211

212

AREA VARIABLE

o 7 8 31

r---------T----------------------------, o Isee Note I Length of Area Variable I
~---------~----------------------------~

4 I Offset of End of Extent I
~--------------------------------------i 8 I Offset of Largest Free Element I
~--------------------------------------~

C I See Note I
~--------------------------------------~
I I
I I
I I
I I
I I
I I
I I
I I
I I L ______________________________________ J

Note: If the area variable contains a free
--- list, bit 0 of the first byte· is set

to 1, and the fourth word is set to
o.

Figure 69. Format of Area Variable

Appendix ~: Area Variable 213

214

DYNAMIC STORAGE AREA (DSA)

o 7 8 31
r---------T----------------------------,

o I Flags I Length I
~-~-------~----------------------------~

4 I Chain-back address I
~--------------------------------------~

8 I Chain-forward address I
~--------------------------------------~

C , I
· I I
• I Register save area I
· I I

44 I ,
~--------------------------------------~

48 , Current file ,
, I
~--------------------------------------~

50 , Invocation count ,
I ,
~-~------------------------------------~

58 IOPTIONAL ENTRIES:
· ,
• I · , · ,

I
I
I
I
I
I
1

Display
statement number
ON fields

Dope vectors

AUTOMATIC data
Workspace
Parameter lists

L ______________________________________ J

Figure 70. Format of the Dynamic Storage
Area (DSA)

The minimum size of a non-multitasking
DSA is X'64' bytes.

Standard Entries

Standard Save Area: The area starting
the flagsand continuing up to
including the register save area.
Figure 55 and associated text.)

with
and

(See

Current File: This field is eight bytes
long; it~ use is described in 'Current
File' in Chapter 3. In a multit~sking
environment, the first byte is used as the
SYSPRINT resource counter; see 'SYSPRINT in
Multitasking' in Chapter 3.

Invocation Count: This field is eight bytes
long and contains:

1st word: Environment chain-back address or
zero

2nd word: Invocation count

r---T-------------------------------------,
I I Meaning ,
IBit~------------------T------------------~
I I = 0 1=1 ,
~---+------------------~------------------~
I 0 I Always = 1 I
~---+------------------T------------------~
, 1 INo statement num- ,Statement number I
I Iber field in DSA Ifield in DSA I
~---+------------------+-----~------------~
I 2 INo dummy ON fielj ISTRINGRANGE field I
I Ifor STRINGRANGE Icreated as for I
I I I other ON conditions1
~---+------------------+------------------~
I 3 IProcedure DSA IBegin block DSA I
~---+------------------+------------------~ I 4 INo dummy ON field 'SUBSCRIPTRANGE I
I Ifor SUBSCRIPTRANGElfield created as I
I I Ifor other ON con- I
I I Iditions,
~---+------------------+------------------~
I 5 INon-recursive DSA, I Recursive DSA, I
I Iwithout display Iwith display up- ,
I I update field Idate field I
~---+------------------+------------------~
I 6 !No ON fields ION fields I
~-~-+------------------+------------------~
I 7 INo dummy ON field ISIZE field created I
I Ifor SIZE las for other ON I
I I I conditions I L ___ ~ __________________ ~ __________________ J

Figure 71. Format of the DSA flag byte

Optional Entries

Q!~~Y~ This field is eight bytes long and
contains:

1st word: Pseudo-register offset

2nd word: Pseudo-register update

If it occurs at all" the display field
always appears at offset 58.

Statement Number: This field is four bytes
long: it is described in 'Error and Inter­
rupt Handling'. If it occurs at all, the
statement number always appears at offset
60; bytes 60-63 are always set to zero. If
there is no statement number, this field
can be used for optional DSA entries, e.g.,
ON fields.

ON fields: Each ON field is two wordS long.
The ON fields are described in 'ON
Conditions' under 'Error and Interrupt

Appendix J: Dynamic Storage Area (DSA) 215

Handling'. The position of the first ON
field depends on whether there are entries
in the display update and statement number
fields:

1. No display update, no statement nun­
ber: ON fields begin at offset 58,.

2. Display update, but no statement nun­
ber: ON fields begin at offset 60.

3. statement number (with or without a
display update): ON fields begin at
offset 64.

216

The last ON field is indicated by bit
o = 1 in the second word.

Remaining Entries

The dope vector formats are described in
Appendix H ('Compiler-Generated control
Blocks'). The AUTOMATIC data, workspace
and parameter lists areas are provided for
use by the compiler.

VARIABLE DATA AREA eVDA)

o 7 8 31
r--------T-------------------------------,

o 1 Flags I Length 1
~--------~-------------------------------~

41 Chain-back address I
~--~

81 I
1 Data 1
1 1 L __ J

Figure 72. Format of the Variable Data
Area (VDA)

r-------------------T---------------------,
1 Bit 1 I
.---------T---------~ Meaning 1
10123 1 4 567 1 1
~---------+---------+---------------------~
1 II!
1 0 0 1 0 1 0 0 0 0 1 Ordinary VDA 1
~---------+---------+---------------------~
I 0 0 1 0 1 0 0 0 1 1 VDA obtained for a 1
I 1 1 library subroutine 1
~---------+---------+---------------------~
1 0 0 1 0 1 0 1 0 1 1 VDA containing a 1
1 1 1 secondary LWS 1
~---------+---------+---------------------~
1 0 0 1 0 1 1 0 0 1 I PRV VDA I L _________ L-________ ~ _____________________ J

Figure 73. Format of the VDA flag byte

o 7 8 31

r--------T-------------------------------,
01 Flags 1 Length(= LePRV) + L(LWS) + 8) I

.--------~-------------------------------i
41 A(External save area) 1

~--i
81 I

I pseudo-register vector (PRV) 1
1 I
~--i
1 1
1 Library workspace (LWS) 1
1 I
~--i
1 I
1 LWF(DSA optimization area, I
1 OPT=Ol only I

1 1 L __ J

.Figure 74. Format of the PRV VDA

o 7 8 31

r---------T----------------------------, o 1 Flags I Length 1
~---------~----------------------------~

4 I Chain-back address 1
~--------------------------------------i

8 1 Chain-back address I
I (previous LWS) I
~--------------------------------------i
1 (unused) I

~--------------------------------------i
10 1 I

I Library workspace (LWS) I
I I
~--------------------------------------i
1 I
I LWF(DSA optimization area, I
I OPT=Ol only) I
I I L ______________________________________ J

.Figure 75. Format of LWS VDA

Appendix J: Variable Data Area (VDA) 217

218

ApPENDIX K: MULTITASKING CONTROL BLOCKS

This appendix describes the control blocks used by the multitasking storage-management
modules of the PL/I Library. The way in which they are used by the library is described
in Chapter 5. In the diagrams, all offsets are in hexadecimal.

Appendix K: Multitasking Control Blocks 219

220

DYNAMIC STORAGE AREA (DSA)

o 7 8 31
r------~------------------------------, o I Flags I Length I
~-------~------------------------------~

4 I Chain-back address I
~--------------------------------------~

8 I Chain-forward address I
~--------------------------------------~

C I I
· I I
· I Register save area I
· I I

44 I I
~--------------------------------------~

48 I I
I I
I Current file I
I I
t--------------------------------------~

50 I I
I I
I Invocation count I
I I
~--------------------------------------~

58 I I
I Display I
I I
~------~------------------------------~

60 I Flags I Statement number I
~-------~------------------------------~

64 I A(Task variable chain) I
~--------------------------------------~

68 I Zero I
~--------------------------------------~

6C I ON fields I
I Dope vectors I
I AUTOMATIC data I
I workspace I
I Parameter lists I L ________________________________ - _____ J

Figure 76. Format of the Dynamic Storage
Area (DSA) for Multitasking

The minimum size of a multitasking DSA
is X, 6C' bytes.

The multitasking DSA contains two fields
that do not appear in the non-multitasking
DSA (Appendix J): the fullword commencing
at byte 64 contains the address of the
first task variable in the task-variable
chain (if any): the following fullword is
always set to zero. The presence of a task
variable chain is indicated by bit 0 = 1 in
byte 60. The Get DSA routine IHETS~D
differs from its non-multitasking equival­
ent only in that it sets the doubleword
commencing at byte 64 to zero.

Appendix K: Dynamic storage Area (DSA) 221

222

EVENT VARIABLE

o 7 8 15 16 23 24 31
r---------T----------------------------, o I Flags I Zero I
~--_-----.L---------------------,-------~

4 I ECB I
~--------------------------------------~

8 I Reserved I
~--------------------------------------~

C I Reserved I
~------------------T-------------------~

10 I status I statement Number I
~---------T--------+---------T---------~

114 I Reserved I MCF I Wl'F I Reserved I
~--___ ----.L--------.L---------J.-----.----~

t 18 I Infinite wait ECB I
~------------~-------------------------~

11C I Wait to Terminate ECB I L ______________________________________ J

.Figure 77. Format of the Event Variable

The task event variable is not chained.

Flags:

Active event variable
Multitasking (non-I/O) event

variable
Normal PL/I termination
~bnormal PLII termination
Event variable being waited

on

Code

1000 0000

0.000 0000
0010 0000
0001 0000

0000 0001

ECB: This is the control program event
--- control block. Bit 0 is set to 1 when

a WAIT macro instruction referring to
this ECB is issued; bit 1 is set to 1
when a POST macro instruction is
issued.

status: Normal status: set to
Abnormal status: set to 1.

zero.

statement Number: Number of the statement
in which the task was attached.

MCF: Set when the associated task is not
in a position to be terminated by a
higher level task.

WTf: Set by a higher level task which is
about to terminate the task associated
with the event variable.

Infinite wait ECB: Waited on when the task
associated with the event variable is
about to be terminated by a higher
level task.

wait to Terminate ECB: waited on by a
higher level task when the MCF is on.

Appendix K: Event Variable 223

224

PRV VDA

o 7 8 31

r-------T------------------------------, o I Flags I Length of PRV VD~I I
~-------~------------------------------~

4 I ACExternal save area) I
~--------------------------------------~

8 I I
I Pseudo-register vector CPRV) I
I I
~--------------------------------------i I ACAttaching DSA) I
~--------------------------------------~ I A(Attaching PRV VDA) I
~--------------------------------------~ I ACTask variable) I
~--------------------------------------~ I ACParameter list) I
~--------------------------------------i I Optional entries: I
I ON field I
I Parameter list I
I I
~--------------------------------------i I Library workspace (LWS) I L ______________________________________ J

Figure 78. Format of PRV'VDA fo~ Multi­
tasking

A PRV VDA for multitasking is identified
by a 1 in the first bit of the leng1th field
Cbit 8 of the PRV VDA). Like i,ts non­
multitasking counterpart (Appendix J), it
contains the PRV and primary LWS and is
chained back to the external save area. It

differs in the settings of the flag byte
and in the presence of the following
additional fields immediately following the
PRV:

1st word: Chain back to -the DSA of the
attaching task.

2nd word: Chain back to the PRV VDA of
the attaching task.

3rd l.o1ord: Address of its own task varia-
ble.

4th word: Address of the parameter list
for the called procedure; if no
parameters are being passed,
this word is set to zero.

The following fields are omitted if there
are no entries:

ON field: When a subtask is attached, the
entries in the ON field of the
DSA of the attaching task are
copied into this field.

Parameter list: Parameter list for the
called procedure.

The settings of the flag byte are as
follows:

Major task X'29'
Subtask X'2D'
Subtask with entries
in ON field X'2F"

Appendix K: PRV VDA 225

226

TASK VARIABLE

o 7 8 15 16 31
r-------T----------------------.--------,

o I Flags I A(PRV VDA) I
~-------+------------------------------~

4 I I A(TCB) I
~-------+------------------------------~

8 I I A(SYMTAB entry) I
~-------+------------------------------~

C I I A(Event variable) I
~-------~-------T----------------------~

10 I Limit prioritYIDispatching I
I I priority I
~---~---T-------~~---------------------~

14 I I Chain-forward address I
~-------+------------------------------~

18 I I Chain-back address I L _______ ~ ______________________________ J

Figure 79. Format of the Task Variable

The task variable contains the task
control information required by the PL/I
Library. To enable subtasks to be detached
when the attaching task is terminated, all
task variables activated in a 'task are
pl~ced in a chain anchored in the DSA of
the attaching task. Only the first two
bits of the flag bytes are used:

Bit 1: 0 Task variable inactive (task
not attached>

1 = Task variable active
Bit 2: 0 = CALL with TASK option

1 = CALL without TASK option

Appendix K: Task Variable 227

228

A-format items ••••••••••••••••••••• 78,175
error handling-module (IHEDIL) 96,78
input director ' ••. ' •••• 75
output director ••••••••••••••••••••• 75

ABEND macro • , ••• ' ;0 •• '.. 42, 48, 67 , 152
ABS function ••••••••.••••• '. • • • • • • • • • • • •• 81
Access method fields

in DCLCB •••••••••••••••••••••••••••
in OCB •••••••••••••••••••••••••••••

l\ccess method interface module

193
207

30
field in FCB ••••••••••••••••••••••• 200

ADD function ••• ' ' ' •••••• ' •••. ,. 81,82
ADV(array dope vector) ••••••••••••••••• 83

format of •••• , , •••• 169
ALL function ••• '. • • • • • .. • • • • • .. • • • • • • •• 82,83
ALLOCATE statement ••••••••••• '. • • • • • • • •• 44
Ancho'r word •••••• ' ' ••••••••••• 44
AND operator (&) •••••••••••••••••••• 80,81
ANY functiom ••••• 0 •• 0 ••••••••••••••• 82,83
AREA attribute ••••••• '. • • • • • • • .. • • • • • • • •• 45

extent 47
AREA condition •••••••••••••••••• 47,64,158
AREA variable

assignment between ••••••••••.•••• 45,47
format of '. • • •• 213

Arithmetic conversion director ••••••••• 77
Arithmetic conversion package •••••••••• 78
Arithmetic data representation 12,13
Arithmetic operations •••••• '. • ••• 81,82
Array built-in functions

ALL ••••••••••• e _ •••••••• .••••••••••••

ANY ••••••••••••••••••••• ' ••••••••••••
POLy
PROD ••••••••••••••••••••••••••••••••
SUM •••••••••••••••••••••••••••••••••

82
82
82
82
82

Array dope vector (ADV) '. ' ••• ,... 83
format of 169

Array indexer and function modules 82,83
Array input/output 24
Arrays,interleaved , ••••••• 83
ASA control characters ••••••••••••••••• 29
Assignment

bit string ' ••••• 81
character string •••••••••••••••••••• 81

ATAN function ... , •••••••••••• '. • • • • • .. • • • •• 82
ATAND function •••••• ' ••••••••••• ' •• '. • • •.•• 82
ATANH fUnction ' •••••••• ' ••• ' ' •. , •• '. •• 82
ATTACH macro '.................. 52, 53,55,152
Attributes

see also: data element descriptor
arithmetic data 12,13
field codes in DCLeB •• ' 194
file,checking 21
file, codes in FCB 200
file,codes in OCB •••••••••••••••••• 207
of a file ••••••••••••••••••••••••••. 18
string ~ •••••••••••• 12
UNALIGNED ' ••••• ' ••• ' ••••••••• ' •••• '.. 14,169

Automatic data 42
Automatic storage ' ' •••••• ,. • .• •• 42,48

allocation and freeing of ••••••••••• 43
DSA 42

release of , '.. • • • • • •• 48
Automatic variables 42

structure of the free-core
chain for 44

B-format;. items •••••••••••••••••• 75,79,175
input director ~ 75
output director ••••••••••••••••••••• 75

Based storage
allocated in a task 45

Based variables
storage for ••••••••••••••••••••••••• 45

Based variables within an area variable
AREA condi t"ion 47
element ••••••••••••••••••••••••••••• 47
free elements ••••••••••• ' ••••• ' ••••••• 47
free list 47
storage for ••••••• '. .. • • • ... • • • • • • • .. • •• 47

BDl\M •••••.•.••••••••••••••••••••• 37,39
BDAM exception codes ••••••••••••• 205
BINl\RY function •••••••••••••••••••••••• 82
BISAM 36
BIT function ••••••••••••••••••••••••••• 80
Bit representation of Record I/O
sta tement •••• ' ••••••••••••••••• '. • 33

Bit string
assignment •• ' ••• ,.. • • •• • • •• • • •• • • • • • •• 81
conversion •••••••••••.•••.•••••••••• 76
data representation •••••••••••••• 12,14
dope vector ••••••••••••••••••••• 32,185
input/output directors ••••••••••• 73,75

Blanks in records(IHEIOX) ••••••••••••• 107
BLKREF parameter 37,205
Block housekeeping 41,49

library prologue subroutine ••••••••• 41
prologues and epilogues ••.•••••••••• 41

BOOL function .' 80,81
Bootstrap routine for OPEN and CLOSE 20
B S l\M. •• • • •• • • • .,. • • ... • • • • • • •• • • '... • • •• 35, 37
BUFFERED attribute ••••••••••••••••••••• 34
Buffers ' •••• 194
BUFFERS option ••••••••• ' •••••••••• ,. ... •• 194

C-format items ••• ' , ' '. • • •• 75
input director •••• ' ••••••••••• ,. ••• • •• 75
output director ••••••••••••••••••••• 75

CAD(coded arithmetic 1ata) ••••••••••••• 12
arithmetic data representation 13
system/360 formats ••••••••••••• 12

CAD handling modules 80
Cl\LL statement

PRIORITY option '. '. • • • • • •• 55
with a TASK, EVENT or PRIORITY

option ' ••••••••••••• ' ••••••• '.. • • •• • •• 54
Calling sequence

operating system standard '. ••• • •• 11
PL/I standard ••••••••••• ' '. '. • 11

Capacity record •••••••••••••••••••••••• 38
CAT (concatenate operator) (II) •••.•••.. 81
Chaining

Index 229

automatic storage ••••••••••••••••••• 49
event variables •••••••••••••••• 195,209
exclusive block •••••••••••••••• 197,209
file control block ••••••••••••••••• 209

CHAP macro•• .. • • •• 58,152
CHM function 80
Character string

assignment 81
convers ion '. • • • .• • • • • • • • • • • • .• • • • •. 76
data representation •••••••••••••• 12,14
dope vector .••••••••••••••••••••• 32,185
input/output directors ••••••••••• 73,75

CHECK condition ••••••••••.•••• 23,27,64,158
CH~~K label condition ••••••••••••••••• 158
CHECK macro 152
CHECK variable condition •••••••••••••• 158
Checkpoint/Restart ••••••••••••••••••••• 16

primary control program ••••••••••••• 16
MVT 16

CHKPT macro •.• .. • • • • • • • • • •• •• 16
CLOSE macro •••••••••• o 152
CLOSE statement 22

in stream-oriented input/output ••••. 24
see also: IHECLT,IHEOCL

Coded arithmetic dataCCAD) ••••••• Q ••••• 12
Coding conventions used for library

modules ••••••••••••••••••••••••••••••• 12
Communication conventions •••••••••••••• 14
Communications

library communications area ••••• 15,177
modes of •••••••••••••••••••••••••••• 14

Comparison modules
IHEBse ••••••••••••••••••••••••••• 84,88
IHEBSD •••••.••••••••••••••• , ••••••. 84,88
TREcse 84,91

comparison operation
bit string •••••••••••••••••••••••••• 81
character string •••••• .•• • • .. • • • • • • • •• 81

Co~?atibility with previous versions •••• 9
Compiler-generated control blocks • 167-189
Completion code ••••••••••••.••••••••• 48,53
COMPLETION function •••••••••••••••••••• 57
COMPLETION pseudo-variable ••••••••••••. 57
COMPLEX

arithmetic oT;?tion •••••••••••••••••• 154
data 76
format directors ••••••••••••••••• 73,75

Computational conditions ••••••••••••••• 61
computational ON-conditions ••••••••• 64-67
Computational subroutines ••••••••••• 80-83
Concatenate operator CI I) •••••••••••••. 81
CONDITION condition •••••••••••••••• 64,158
Condition list ••••••••••••••••••••••••• 68
CONSECUTIVE data sets •••••••••••••••••• 34

BSAM ClHEITB) ••••••••••••••••••• 35,108
QSAM ClHEITG) ••••••••••••••••••• 35,109
QSAM spanned records

ClHElTK,IHEITL) .~ •••••••••••••••••. 35
Control blocks •••••••••••••••••••••••• 211

used by the non-multitasking stora~e
management modules 211

used by the multitasking storage
management module .•••••••••••••..••• 219

Control blocks generated by the
compiler 167-189

Control format items

230

printing format items •••••••••••. 27-30
spacing format item •••••••••••• ~. 27- 3 0

see also: IHElOP,IHEIOX
control program 24
Control program interfaces for

DATE .•.•• '. • • • • • • • •• •• ... • • ... • • • • • • • • • •• 71
DELAy ••••••••••••••••••••••••••••••• 71
DISPLAY 71
EXIT 71
STOP 71
TIME •••••••••••••••••••••••••••••••• 71

Control task •••••••••••••••••••••••• 52,53
workspace for •.•.•••••.••••.•••••••••••• 53

CONTROLLED attribute 57
Controlled storage •••••••••••••••••• 44,46
Controlled variable 45,57

storage allocation •••••••••••••••••• 45
Conventions

coding •••••••••••••••••••••••••••••• 12
communi cations ••••.••••••• ~ • • • • • • • • •• 14
linkage ••••••••••••••••••••••••••••• 11

to mathematical subroutines •••••• 82
to string operations and
functions 80

naming •••••••••••••••••••••••••••••• 11
Conversion

code set in IHEQERR ••••••••••••••••• 79
for list/data directed I/O •••••••••• 75

CONVERSION condition ••••••••••••••• 79,158
Conversion directors ••••••••••••••••••• 73
Conversion package ••••••••••••••••••••• 72
Conversions

Arithmetic conversion package ••••••• 78
between internal arithmetic and string
data ••••••••••••••••••••••••••••••• 76

of mode ••.•••••••••••••••••••••••••• 76
of types •••••••••••••••••••••••••••• 76
strings ••••••••••••••••••••••••••••• 78

COpy option ••••••••••••••••••••••••• 23,28
COS functi on 82
COS 0 funct ion 82
COSH function ••••• ' ••• ' ••••••••••••• ' ••••• 82
COUNT function ••••••• ~ ••••••••••••••••• 82

IHECNT •••••••••••••••••••••••••••••• 90
Current file pseudo-register 23-25

Data analysis routines ••••••••••••••••• 74
Data checking 79
Data control blockCDCB) •••••••••••••••• 19
Data conversion ••••••••••••••••••••• 72-77

arithmetic 64,77,78
director modules •••••••••••••••••••• 73
input/output •• ,., •• • • ... • • •• • • •• • ••• 72-76
internal conversions •••••••••••••••• 79

Data directed I/O ••••••••••••••••••• 27,76
data checking and error handling •••• 78

Data element descriptorCDED) 72-74,71,82,84
format of 171

Data event control blockCDECB) 33,203
Data field access 24

lHEIOD 107
Da ta lis t •••••••••••• •• '. • .• ... • D • • • • •• 2 7 , 7 3
Data management access methods ••••••••• 30
Data representation •••••••••••••••••••• 12

arithmetic •••••••••••••••••••••••••• 13
string •••••••••••••••••••••••••••••• 14

Data set
DCLCB ••••.••••••••••••••••••••••••• 193
FCB •••••••••••••••••••••••••••••••• 201

REGIONAL .•.••••• ' ••••. ' ••••••••••••••••••
relationship between a file and a

21
18

Data. specification ••••••••••• '. •• • • • • • •• 26
DATAFIELD function •••••••••• '. .. • • • .•• 24,177

I HE SRC ••• ,. .. • • • • • • • .• • • •••.•• ' ••• ,. • • • •• 1 31
DATE statement •••••.•••• '. • .. • • • • • • • • • • • •• 71

IHEOSD •••••••••• '
DCB (data control block) ••••••••••••••••

121
19

LIMCT subparameter •••• , •• ' ••••• '. • • • • •• 39
DCB macro ••••••••••• - ••••.••••••••••••• 152
DCBD macro ••• ' o ••••••.• '. • • •• 152
DCLCB(declare control block) 18,20,193
DD statement •••.•••••••••••••••••••••••• 18

subparameter NCP •••••••••••••••••••• 34
ddname '. .. •• 18
ddname replacement string •••• ' ••••••••• 132
DECB(data event control block) 33,203
Decimal-divide interrupt (ZERODIVIDE
condition) •••••••••••••••••• 61,63,64,158

Declare control block(DCLCB) •••• ~ ••• 18,20
forxnat of 193

DED(data element descriptor)
format of flag byte •••••••••••••••• 171

DEL1\Y statement ' ,. • • • • • • • •• 71
IHEOSI ••••••••••••••••••••••••• 121,154

DELETE macro , •••.• , ' ' ••••••••••• 15?
DELETE statement

KEYED attribute ' •••••••• ' •••••••••• 36
without the KEY option ' •••••••• , •••••• 36

DEQ macro ••••••••••••••••••••••• 25,34,152
rname 37
modular linkage 24

DETACH macro • ' ••.• , ••• ' '. • • ••• 52,152
Device code in FCB ' •• "' •••••• ' ••••••••• '.. 201
DEVTYPE macro .' ••••••••••• ' •••• ' •••• ' •• ' ••• 152
Diagnostic messages •••••••••••••••••••• 10
DIRECT access ' •• ' ' •• '.. .. • •• 33, 35- 40

DCLCB field ••• G •••••••••••••••••••• 193
FCB field ' ,. • • • • • • •• 200
OCB field· ' •••••• ' '.... • • • • • • •• 207

DIRECT UPDATE file
multitasking

Directors ' .. ttl eO ••• "' •••••••••••••••••

34
73

arithmetic conversion 73
format ,....... 27, 7 5
input/output , '. • •• • • • •• •• • • • •• • • •.•. 75
type •••••••••••••••••••••••••••••••• 76

Display pseudo-registers ••••••••••••••• 42
DISPLAY statement ,. • • • • •• 71

IHEDSP •• w ••••••••••••••••••••••••••• 99
DIVIDE function ,. ,. • • • •••• 81,82
Division operator C/) ' ••• 81
Dope vector descripto]!'(DVD) ••••••••••• 173
Dope vectors • , •••••••••••••••••• ' ••.•••• '.. 14
DSACdynamic storage area)

address •••••••••••••••••••••••••••••
display pseudo-register ••••••••••••
format •••••••••••••••••••••••••••••
freeing •••• $ ••••••••••••••••••••••••

IHESARA •• , •• ' •.••••••• ' , •••.•••
s~ze ••• I •••••••••••• I •••••• '. ' ••••• ' ••• I •••

42
154
215

48
64
42

DSA chain ••••••••••••••••••••••••••• 49,50
s truct ure , , •• ' ••• ' ,.. • • .. • •• 51

DSA flag byte ,. ' •• ' , ... ' ••••• ' '. •• 221
format ••••••••••••••••••••••••••••• 215

Dummy modules
IHEMSI ••••••• , •••• ' •••••.•••• ' •••. " .•••••
IHEMST •••.•••••••••••• ' ••••• ' •• ' • ., ' ••

115
115

Dummy records
BS1\M •••••••••••••••••••••••••••••••• 38
QIS~M 38

Dummy records ••••••••••.••••••••••••• 38-39
Dummy task and event variables 55
Dump ••••••••••••••••••••••••••••••••••• 15

IHEDUMC ••••••••••••••••••••••••••••• 15
IHEDUMJ 15
IHEDUMP ••••••••••••••••••••••••• 15
IHEDUMT ••••••••••••••••• '. • • • • • •• 15
object-time · ••• 0.... 15
PL1DUMP file •••••••••••••••••••• 16,160

Dump index ••••••••••••• ' •• ' •• '. • • •• 16,160
DVD(dope vector descriptor) ••••••••••• 173
DynamiC' program management ••••••••••••• 41
Dynamic Storage Area(DSA) •••••••• 42,64,19

format ••••••••••••••••••••••••••••• 215
IHESA •••••••••••••••••• 12,41-51~61,125
IHETSA 12,52-58,138
multitasking ••••••• 0 ••••••••••••••• 221

Dynamic storage management
automatic storage ••••••••••••••••••• 42
controlled storage ••••••••••••••• 44,46
see also: Object program management

E-format items ••••• '. • ••• • • •• • •.••• ••• 75., 78
input director 75
output di rector ,. • • • • • • • • • • • • • • •• 75

ECB(event control block) ••••••••••••• 52
ECB code in EVENT variable 195
Edit-directed I/O 27,28.,73

conversion package ••••••••••••••• 73-76
EFF(exclusive file flag) ••••••••••••••• 59
ElementCof an area variable) 47
END statement , ' '.. 48,,49
End-of-task exit routine(ETXR) •••••• 52,56

IHETSAX ••• '., ' •••• ' 140
ENDFILE condition ••••••••••• 64,75,158,199
ENDPAGE condition 64,158

field in FCB •••••••••••••••• ,. • • •• •• 199
ENQ macro ,.' ••.• 25,.152
Entry-parameter procedures ••••••••••••• 48

multitasking •••••••••••••••••••••••• 56
Entry-point names •.• '. • ••• • • ... • • •• • •• .• • .••• 9
ENVIRONMENT attribute •••••••••••••••••• 19
ENVIRONMENT option 193
Epilogue subroutine 41
ERF function 82
ERFC function ., ~ •••••• 82
Error codes

in open process ." ".... 20
internal ' 61,158

ERROR condition ' ••••••• 158
in a multitasking program 67

Error conditions ••••••••••••••••• 64,66,78
in computational subroutines •••••••• 80
in data conversion ' '... • ••• 78,79
interrUpt handling 50,61-67

Error conditions~ codes and messages .• 158
Error handl ing '. •• • • •• • • •• • • • .. • •• 61
Error message modules

IHEERD 67
IHEERE •••••••••••••••••••••••••••••• 67
IHEERI 67
IHEERO • '. • • • • • • • .• .. • .• • • • • ... • • • • • • •• 67
IHEERP •••••••••••••••••••••••••••••• 67
IHEERT 67

Index 231

Error messages ••••••••••••••• 61,67,80,158
for ON conditions •••••••••••••••••• 158

Error-handling subroutine •••••••••••••• 10
address of 41

ESD(external symbol dictionary) ••••••••• 9
ETXR(end-of-task exit 'routine) 52,55
Event control block(ECB) ••••••••••••••• 52
ESErIJ macro 152
EVENT option •• '. • • • • • • • • • • •• • • • • • • • •• 33,54
EVENT variable 59

chaining ••••••••••••••••••••••••••• 209
forma t of •••• ... '. '. .. • • • • • • • • • • • • • • • •• 1 9 5
format of the task event variable 223
input/output ••• 1' ••••••••••••••• 195,209
t ask ••••• '. • • • ' • ., • • .. '. • •• • • • • '. •• 54 , 2 2 3

EXCLUSIVE attribute 34
Exclusive block •••••••••••••••••••••••• 34

chaining ••• , , •••••••••.•• 209
format ••••••••••••••••••••••••••• ~. 197

Exclusive file flag(EFF) ••••••••••••••• 59
Exclusive files •••••••••••••••••• 36,39,60

multitasking, blocked •••••••••••••••• 37
multitasking,uriblocked •••••••••••••• 36

EXEC card and PARM parameter ••••••••••• 48
Executable format scheme ••••••••••••••• 27
Execution error package ••••••••••••• 61-67

in data conversion ••••••••• ~ ••••• 77-79
in input/output ••••••••••• '. • • • • • •• •• 21
in storage management •••••••• '. '. • •• •• 50

EXIT statement •••••••••••••••••••••• 57,71
EXP funct ion '. • • • • • •• 82
Explicit opening ••••••••••••••••••••••• 20
Exponent-overflow interrupt

OVERFLOW condition ••••••••••• 61,64,158
Exponent-underflow interrupt

UNDERFLOW condition •••••••••• 61,64,158
,Exponentiation operator (**) •••••••••• '.. 81
Extended search feature ••••••••• ,. • •• • •• 39
Extent (of an area variable) ••••••••••• 47
External names •• ' ••••• '. • • • • • • • • • • • • • • • •• 11

formats and definitions ••••••••••••• 11
Exte rnal save ar ea •••••••••••••••••••• '. 49
External symbol dictionary(ESD) ••••••••• 9
EXTRACT macro •••••••• '. • •• • • • • •• 53,152

F-format items •••••••••••••••••••••• 75,78
F-format records •••••••••••••• 193,200,205
F-format records,unblocked ••••••••••••• 35
FCB (f i Ie control block) •••••••••••••••• 34

chaining 19,209
FED(format element descriptor) 72,78,175
Fetch-protect interrupt prevention 35
File

access code in DCLCB ••••.•••••••••••
access code in OCB •••••••••••••••••
addressing ••••••••••••••••••••••••••
attributes ••••••••••••••••••••••••••

193
207
18
18

DeLCB •••••••••••••••••••••••••••• 18,20
declaration ••••••••••••••••••••••••• 18
implicitly closed ••••••••••••••••••• 19
opened in two parallel subtasks 20
opening/closing •••••••••••••••••• 19-22
organ'ization code in DCLCB ' ••••••• ' •• 193
register •••••• ' ' ••••• ,.. 18
special PL/I closing processes •••••• 19
UNDEFINED condition 20

File and a data set

232

relationship between •••••••••••••••• 18
File closing piocess •••••••••••••••• 21-22
File control block(FCB) 19,201,209

for record-orientej I/O •••••••••••• 199
for stream-oriented I/O •••••••••••• 199
formats of ••••••• • 199-202

File mode
field in DCLCB ••••••••••••••••••••• 193
fie I din FCB 2 00
field in OCB 207

File name '.. 18
Fil e opening • ' •• ' ••••••• , ••••• ' ••••• ' •• '. • • •• 20

bootstrap routine (IHEOCL) •••••••••• 20
defaulting functions •••••••••••••••• 21
error table •••• ' •••• ' ••••• '. • • • • • • • • • •• 20
explicit opening •••••• ~ ••••••••••••• 20
file attribute checking ••••••••••••• 21
functions '. • • •• • • • • • • •• • • •• • •• • • •• 20
IHEOPN •••••••••••••••••••••••••••••• 21
IHEOPO ••• ~ •••••••••••••••••••••••••• 21
IHEOPP •••••••••••••••••••••••••••••• 21
IHEOPQ • ' ••••• _ •• '.. • • •• • • •• • • ••• • • • • •• 21
IHEOPZ " ' 21
open control block(OCB) ••••••••••••• 21

File opening/closing modules ••• ' ••• ' ••••• 10
File register '.' •••••• ' ••••••••• 18-20
File transmission

code in DCLCB •••••••••••••••••••••• 193
code in OCB •••••••••••••••••••••••• 207

Fill
see: padding

FINISH condition •••••••••• 48,57,64.67,158
in erro~ handling •••••••••••••••• 61-67

FIXED function ' '. • •• 82
Fixed-point divide interrupt

ZERODIVIDE condition •••••• 61,63,64,158
Fixed-point overflow interrupt

FIXEDOVERFLOW condition 158,82,61
FIXEDOVERFLOW condition •••• ,.. • •• • • • • •• 158

in computational subroutines 82
in error handling 61

Float arithmetic generic functions 82
FLOAT function ' ••••• ' ••••.••• ' ••••• 82
Floating-point divide interrupt

ZERODIVDE condition ••••••• 61,63,64,158
Flush instruction •••••••••••••••••••••• 69
Format directors ' ,. ••• 27.75
Format element descriptorCFED) 72.78,175
Format items ••• ' '. ' ,. • • • •• 73

input/output directors •••••••••••••• 75
Format-list items •• , ••• ' ••••••• ' •••••••••• 73
Free core chain •••••••• ' •••• ' •••••••••••• 43
Free core pseudo-register 44
Free elements (of area variable) ••••••• 47
Free list (chain of free el,emen'ts) 47
FREE statement .' •••• ' •••••••••• ' ••••••• 44,,45
FREEMAIN macro ., •••••••••••••• 41.,42,43,152

for based storage •••••••• ~ •••••••••• 45
R type ••••• ' ••••• ' ••• ' ••••• ' '.. 42

FREEPOOL macro • ' ' ... ' '.. •• 152
FROM option ••• ' '.. • • • •• • • • • • ••• 34.,36

GENKEY option ,. ' ' ' •••• '. •• 194
GET macro •••• ' •••••••••• ' •• ' ••••••• .22,34,152
GET statement •• ' , ••••••••••••• '.. 22,26,27

current, file ' ••••••• ' ••••• 23
in FCB .' • ••••• •• ' ••• ' •••••.••••••• 200

standard files •••••••••••••••••••••• 23
stream-oriented input/output •••••••• 22
wi th COpy opt ion • '. ' •••••••• '. • • • • • • • •• 28
with STRING option •••••••••••••••••• 29

GET/PUT operations ••••••• ' •• ' •••••• ' •••• '.. 26
executable format scheme •••••••••••• 27
object program structure ••••• ' ••••••• 26
STRING option ••••••••••••••••••• '. • •• 29

GETBUF macro •••• ' •••••••••••• ' •.•••••• 33,152
GETMAIN macro •• ' ••••• ' ' ••• ql, q3, q5, 55

for based storage ••••••••••••••••••• q5
R type q2

GETPOOL macro •••••••••••• ' ••• ' ••••••• 33,152
GO TO statement ' ••• co • • • .• •• • • • •• q 2,48,51

housekeeping requirements ••••••••• '.. q 8
to a label in a recursive block q2
to a label variable '..... q2
multitasking housekeeping routine ••• 56

HIGH function ••••••••• ' ••••• ' ••••• '. '.' •• 81, 80
Housekeeping

associated with library workspace ••• q3
for a PL/I object program •••••••• ql,q9
multitasking ••••••••••••••••••••• 55-58

I/O control block (IOCB) ••••••••••• ,..... 33
chaining 203,209
format ~ •••• 203

I/O CONVERSION condition 158
I/O SIZE condition ,.... 158
Identification of exceptions , •••• '. " • • • •• 68
IDENTIFY macro ., ••••••••••••••••• '.". 53,152
IHEABU ••••••.• ,O' • '. ' O' ... ' 'D •• 85, 81
IHEABV •••••• ' 85,81
I HEABW ••••• '. • .. • • • .. • • • • • • " •• 8 5 , 81
IHEABZ •••• ' O' • O' ••••••••••••••••• ",.. 85,81
IHEAbD •••••• 'O' ••••••••• ' ••••••• ' •••• ., •• 85,81
IHEADV ••• ' ••• J • '. '. ,O' ,O' •••. O' ••••• ' ... ' •••• " •• 85 , 81
IHEAPD •••••• ' •• , •••••.• O' 0.. 86, 81
IHEATL •••••• ' ' •••• ' , ••• ·.·0.. 86,82
IHEA TS •••••• ' ' ••• ' '. .. •• 86, 82
IHEATW ••••••• ' ' •••••••• " '0.. 87,82
I HEA T Z ••• ' ' ' ••• ' •.•••• It •• 87, 82
IHEBEG 87
IHEBSA ' •••• ' ... '. •••• • 88,81
IHEBSC '. , ' ,,.. • • • • • • • .. •• 88, 81
IHEBSD 88,81
IHEBSF 88,81
I HEB S I •••• ' ' ' •• ' " •• 88 , 81
IHEBSK ••••••••••••••••••••••••••• ~ •• 88,81
IHEBSM ., •••••• , , •• '., ••••• , 89,81
IHEBSN •••••••••••••• ' •••• ' ••••••••• ' ••• 89,81
IHEBSO ••••••••.•• ' ' ••• ' •• ' oo '. ' •• ' •.•. ,. •• 89,81
IHEBSS oo "" •• 89,81
IHECFA ' •••••••••• '. • • • • • • • •• 89
IHEC FB ••• < ' '" •••• ' ••• e"a. 9 0
IHECFC ' ••• ' ••• ' •• '. • • .• • • • • •• 90
I HECKP ' ••••••• ' ' '. •• 90, 16
IHECLT O' 'O' •••••••• 90." 19,20,22
I HEC NT •••••• ' •• 'O' • ,. • ~ • • • • • • O'.. • • •• '. '. • • • • •• 91
IHECCS ' , •• '. •• 91,81
I HEC S I ••• '. • • ••• ' •• 'O' •• '. • •• 91, 81
IHEC.SK •••••.••••••••• ' ' ' •• '. •• 91,81
I HEC SM. • • • • • .. • • • '. • • • '. .. •• • • • .. • • • '. • ,. •• 91, 81
IHECSS •• , ' ' •• '. '. ' ••••• ' ••••• ' •••• '. • .. • •• 92
I HECTT ••• ••• , •• ' ,. • • '. • • •• 92, 20, 2 2, 5 8

IHEDBN •••••••••••••••••••••••••••••• 93.76
IHEDCN •••••••••••••••••••••••••••••• 93,76
IHEDDI •• ' ••••••• '. • • • .• • • • .. • • •• • • • • • • • • • •• 93
IHEDDJ • ' ' 93
IHEDDO ••• ~ • • • • •• • • •• • • •• • • •• • • •• • • •• 9q
IHEDDP • ' '. ... • • • • • • •• • • • • • • • • • •• 9 q
IHEDDT •••••.•• ' •• ' •• '. •• • • •• • • ... • • ... • ••• 95,58
IHEDIA 96,75
IHEDIB •.•••••••• '. • ••• .. • •• • • •• • • •• • ••• 96. 75
IHEDID •••••••••••••••• ' '.. 96., 75
IHEDIE 96,75
IHEDIL .' •••••••• , ••••••••••••••••••••• 96.78
IHEDIM 97,75
IHEDMA •••••••••••••••••••••••••••••• 97,73
IHEDNB , ••••• ' '. •• • • •• • • •• 97,76
IHEDNC •••• ' ••••• ' ••••••••• ' •••••••••••• 97,76
IHEDOA •••••••••••••••••••••••••••••• 97_75
IHEDOB 98,75
IHEDOD •••••••••••••••••••••••••••••• 98,75
IHEDOE 98,75
IHEDOM ••••••• ' '. •• • • • .. • • •• 98, 75
IHEDSP ••••••••••••••••••••••••••••••••• 99
IHEDUM •••••••••••••• ' ••• ,... 99,15,56,157
IHEDUMC ' ••••• '. • • • • • • • • • •• 15
IHEDUMJ 15
IHEDUMP •••••••••••••••••••••••••••••••• 15
IHEDUMT ••••••••••••••••••••••••••••• 15,56
IHEDVU •••••••••••••••••••••••••••••• 99,81
IHEDVV '.' ' 99,81
IHEDZW ••••••••••••••••••••••••••••• 100,81
IHEDZZ .,., ••••••• , 100,81
IHEEFL 100,82, 8q
IHEEFS •••••••••••••••••••••••••• 100,82,8Q
IHEERD •••••••••••••••••••• 100,61,67
IHEERE 101,61,67
IHEERI •••••••••••••••••••••••••• 101,61,67
IHEERN ~ ••••••••••• 101
IHEERO •• •••••• 101,61.67
IHEERP 101,61,67
IHEERR •••••••••• 101,6Q,Ql,Q8,50,61,62,158
IHEERRE •••••••••••••••••••••••••••••••• 63
IHEERS • '. • • • • • • • .. • • •• • • • • • • •• • • • .. • • • • •• 102
IHEERT ' , ••••• 102,61.67
IHEESM •••••••••••••••••••••••••• 102,61,67
IHEESS •••••••••••••••••••••••••••••••• 102
IHEEVT '. '. ' ••••••• ' '... • • •• • • ••• •• 157 fI 12
IHEEXL ' •• ' 103,82
IHEEXS •••••••• '. • • • • .. • • • • • • •• • • • • • •• 103, 82
IHEEXW 103,82
IHEEXZ ••••••••••••••••••••••••••••• 103,82
IHEHTL ••••••••••••••••••••••••••••• 103,82
IHEHTS •••• , •••••••••••• ' 103.82
IHEIBT •••••••••••••••••••• 103,22,58
I HE I GT • '. • • '. • • • •• • ... '. • • •• • • 10 Q , 2 2 , 3 0, 5 8
IHEINT 10Q
IHEIOA , ••••••••••••••••••••••••••••• 105.,23
IHEIOB 105,23
IHEIOC •••••••••••• _ •••••••••••••••• 106.28
IHEIOD ••••••••••••••••••••••••••••• 106,75
IHEIOF •••••••••••••••••••••••••••• ~ ••• 107
IHEIOG Ito.· ,. 107 .. 30
IHEION ' ' ••••••••••••• , ••••• 107
IHEIOP ' •••••••• O' •• ' •••••••••••••• 107.,29
IHEIOX •••••••••••••••••••••••••••••••• 107
IHEITB •••••••••••••••••••••••••• 108,35,38
IHEITC ••••••••••••••••••••••••••••• 108,38
IHEITD • ' •••••• ' '........ ••• 108,35
I HE I TE ... '. • • • • .. • • • • •• • • • .. • • • '.. 10 8 , 3 3 , 3 5, 3 6

Index 233

IHEITF
IHEITG
IHEITH
IHEITJ
IHEITK
IHEITL
IHEJ'XI
IHEJXS
IHEKCA
IHEKCB
IHEKCD
IHELDI
IHELDO
IHELIB
IHELNL
IHELNS
IHELNW
IHELNZ
IHEM91
IHEMAI
IHEMPU
IHEMPV
IHEMSI
IHEt-1ST
IHEMSW
IHEM:XB
IHEMXD
IHEMXL
IHEMXS
IHEMZU
IHEMZV
IHEMZW
IHEM.ZZ
IHENLl
IHENL2
IHEOCL
IHEOCT
IHEOPN
IHEOPO
IHEOPP
IHEOPQ
IHEOPZ
IHEOSD
IHEOSE
IHEOSI
IHEOSS
IHEOST
IHEOSW
IHEPDF
IHEPDL
IHEPDS
IHEPDW
IHEPDX
IHEPDZ
IHEPRT
IHEPRV
IHEPSF
IHEPSL
IHEPSS
IHEPSW
IHEPSX
IHEPSZ
IHEPTT
IHEQADC
IHEQATV
IHEQCFL
IHEQCTS
IHEQERR

234

••••••••••••••••••••••• 109.33,38,39
.............................. 109,34
........................ 109,33,34,36
...................... 109,33,34,38,39
.............................. 110,35
••••••••••••••••••••••••••••• 110,35

110
110
111

•••••••••••••••••••••••••••••••• 111
............... ' _•.... 111

111
112

•••••••••••••.•.•••••••.•••••••• 157,12
•••••••••.•••••.•.•••••••••••••• 112,82
.................................. 113,82
•••••••••••••••••••••••••• 113,82,84
•••••••••••••••••••••••••• 113,82,84
.............................. 114,68

115
••••••••••••••••••••••••••••• 115,81
••••••••••••••••••••••••••••• 115,81
............................. 115,154
................................. 115,154
•••••••••••••••••••••••••••• 115,154
................................. 116,81
................................ 116,81
.............................. 116,81
................................. 116,81
• • • • • • • • • • • • • • • • • • • .. • • • • • • • •• 117, 81
••••••••••••••••••••••••••• ~. 117,81
................................ 117,81
•••••••••••••••••••••••.••••. 117,81
•••••••••••••••••••••.•••••••. 117,83
•••••••••••••••••••••••.••.•••.. 118,83
••••••••••••••••••••••• 118,19,20,22
.......................... 119,20,21,58
••••••.•••••••.• ..., •••• · •••• D 120,20
••••••••••••••••••••••••••••• 120,21
••••••••••••••••••••••••••••• 120,21
.............................. 121,21
•••••••••••••••••••••••••• 121,21,38

121
121

•••••••••••••••••••••••••••• 121,154
122

•••••••••••••••••••••••••••• 122,154
•••••••.•••••••••••••••••• 122,58,154
••••••••••••••••••••••••••••. 122,83
••••••••••••••••••••••••••••• 122,83
................................. 123,83
................................. 123,83
••••••••••••••••••••••••••••. 123,83
••••••••••••••••••••••••••••• 123,83
............................ 123,23,28
••••••••••••••••••••••••••••• 157,12
••••••••••••••••••••••••••••• 124,83
••••••••••••••••••••••••••••• 124,83
................................... 124,83
................................ 124,83
••••••••••••••••••••••••••••• 124,83
••••••••••••••••••••••••••••• 124,83
••••••••••••••••••••••••••••• 125,58

.t ••.•• , ••••••••.••••.••••••••.••• 155,54
155

••••••••••••••••••• 155,22,26,29,76
155

155,63,65,79,158

conversion code set ••••••••••••••••• 79
IHEQEVT •••••••••••••••••••• 155,3,6,195,209
IHEQFOP •••••••••••••••••••••••• 155,19,209
IHEQFOP chain 22
IHEQFVD •••••••••••••••••••••••••••• 155,54
IHEQINV ••••••••••••••••••••••••••••••• 155
IHEQLCA •••••••••••••••••••••••••••• 155,15
IHEQLSA •••••••••••••••••••••••••••• 155,43
IHEQLWE 155
IHEQLWF ••••.••••••••••••.•••••••••••• 155.,51
IHEQLWO ••.•••••••••••••••••••••••••••• 155
IHEQLWl ••••••••••••••••••••••••••••••• 155
IHEQLW2, 155
IHEQLW3 ••••••••••••••••••••••••••••••• 155
IHEQLW4 ••••••••••.••••••••••••••.••••••• 155
IHEQRTC •••••••••••••••••• ~ •••••••••••• 155
IHEQSAR ••••••••••••••••••••••••••••••• 155
IHEQSFC •••••••••••••••••••••••••••• 155,44
IHEQSLA 156,49
IHEQSPR •••••••••••••••••••••••••••• 156,23
IHEQTIC 156,55,56
IHEQVDA ••••••••••••••••.•••••••••••• 156,54
IHEQXLV 156,36,197,209
IHESA 125,41,61

entry points co •••••• D. 41
IHESDR 157,12,15
I HE S HL 1 2 7.. 8 2
IHESHS 127,82
IHESMF 128" 83
IHESMG ••••••••••••••••••••••••••••• 128,83
IHESMH ••••••.•••••••••••••••••••••• 128.83
IHESMX ••••••••••••••••••••••••• ~ ••• 128,83
IHESNL ••••••••••••••••••••••••••••• 129,82
IHESNS 129,82
IHESNW ••••••••••••••••••••••••••••• 129,82
IHESNZ ••••••••••••••••••••••••••••• 130,,82
IHESQL 130,82
IHESQS .. 130
IHESQW •.•••• ••• •••••••••••• 130,82,84
IHESQZ ••••• ••.• •••• ••• ••••• 131,82,84
IHESRC 131
IHESRD ••••••• , •••••••••••••••••••••••• 131
IHESRT 131,16
IHESSF ••••••••••••••••••••••••••••• 133,83
IHESSG 133.,83
IHESSH 133.83
IHESSX a 133,83
IHESTG •••••••••••••••••••••••••••••••• 134
IHESTR •••••••••••••••••••••••••••••••. 134
IHESTB •••••••••••••••••••••••••••••••• 134
IHETCV 135, 52, 56
IHETEA •••••••••••••••••••••••••••••••• 135
IHETER ••••••••.•••. ' •.••••.•••.•••••••.••• 135,66
IHETEV •••••••••••••••••••••••••••••••• 135
IHETEX ••••••••••••••••••••••••••••• 135.55
IHETNL ••••••••••••••••••••••••••••• 136.82
IHETHS •••••••••••••••••••• 136,82
IHETNL •••••••••••••••••••• 136.82
IHETNS •.•.•••••••••••••.•.•••••••.•••••• 136,,82
IHETNW ••••••••••••••••••••••••••••• 136.82
IHETNZ 137." 82
IHETOM •••••••••••••• ~ ••••••••••••••••• 137
IHETPB ••••••••••••••.•••••••••••••• 138.57
IHETPR 138,57
IHETSA 138,12,,52
IHETSE •••••••••••••••••••••••••••••••• 141
IHETSS 141
IHETSW •••••••••••••••••••••••••••••••• 141

IHEUPA •••••••••••••••••••••••••••••••• 141
IHEUPB 142
IHEVCA 142
IHEVCS 142,72
IHEVFA •••• g • .• .. • • • • • • • • • • • • • • • ••• • • •• 143, 78
IHEVFB 143,78
IHEVFC 143,78
IHEVFD ~ •• 143,78
IHEVFE ••••••••••••••••••••••••••••• 143,78
IHEVKB 143,78
IHEVKC 144,78
IHEVKF ••••••••••••••••••••••••••••• 144,78
IHEVKG 144,78
IHEVPA 144,78
IHEVPB ••••••••••••••••••••••••••••• 144,78
IHEVPC •••••• ~ •••• _.~ 144
I HEVPD 144, 78
IHEVPE 145,78
IHEVPF 145,78
IHEVPG ' •• 145, 7 8
IHEVPH ••••••••••••••••••••••••••••. 145,78
IHEVQA 145
IHEVQB ••••••••••• n •••••••••••••••••••• 145
IHEVQC •••••••••••••••••••••••••••••••• 146
IHEVSA 146,77,84
IHEVSB •••••••••••••••••••••••••• 146,77,84
IHEVSC 146,77,84
I H EVS D •••••••.••••••••••••••••••• 146, 77, 8 4
IHEVSE 147,77,84
I HEV SF.. • • • • • • .. •• • • • • • • • • .. • .• •• 147, 77, 8 4
IHEVTB , •.•••••••••. 147
IHEXIB ••••••••••••••••••••••••••••. 147,81
IHEXID ••••••••••••••••••••••••••••• 147,81
IHEXIL ••••••••••••••••••••••••••••• 147,81
IHEXIS ••••••••••••••••••••••••••••• 148,81
IHEXIU •••••••••••••••••••••••••• 148,81,84
IHEXIV •••••••••••••••••••••••••• 148,81,~4
IHEXIW 148,81,84
IHEXIZ •••••••••••••••••••••••••• 148,81,84
IHEXLV 157,12
IHEXXL •••••••••••••••••••••••••• 148,81,84
IHEXXS ••••••••••••••••••••• ~ •••• 148,81,84
I HEXXr,ol '. • • • • • • • •• • • • •• 1 4 9 , 81
IHEXXZ ••••••••••••••••••••••••••••• 149,81
IHEYGF ~ •••••••••••• 149
IHEYGL , •• 149,83
IHEYGS 150,83
IHEYG'W co • • • • • • • • • • • .. •• • •• 150, 83
IHEYGX 150
IHEYGZ 150,83
IHEZAP ••••••••••••••••••••••••••••• 157,12
IHEZZC ••••••••••••••••••• 151,16,157,160
IHEZZF 151,16,157,160
IHEZZZ ••••••••••••••••••••••••••••• 157,12
Implementation code in event variable 195
Implicit file opening •••••••••••••••••• 22
Imprecise interrupt •••••••••••••••••••• 68
INDEX function ••••••••••••••••••••••••• 80

bit string •••••••••••••••••••••••••• 81
INDEXED data sets ,. • • • • • •• •• • • • .• • • • •• 35

BISAM(IHEITH -multitasking) 36
BISAM(IHEITE -non-multitasking) 36
DIRECT file attribute •••••••••.•••••• 35
duplicate KEY condition 35
KEY condition •••••••.•••••• ' ••.••. " • • • •• 35
KEYFROM string '. .. .• • • • .. • • • •• 35
Q I SAM (IHE I TD) ... '. • .. • • • .• • •• • • •• .. • • • •• 3 5
UNBUFFERED file attribute ••••• " ••••• 35

Indexing
aggrega tes 80
arrays •••.•••••••.••••••••••••••• 80,83

In fin i t e wa it E CB (I WE) 5 9 , 2 2 3
Initialization

character string ••••••••••••••••••••
input/output
major task •••••••••••••••••••••••••.
PL/I object program

81
20
54
47

subtask ••••••••••••••••••••••••••••• 55
Initialization routines

IHETSAA 52.
IHETSAP ••••••••••••••••••••••••••••• 52

Input/output
control block chaining(examp1e) 208,209
control block format 203
control blocks .0....... 191,209,33
conversions required by
list/data-directej ••••••••••••• 76

current file 22,27
DATA directed ••••••••••••••••• 27,76,78
directors for PL/I format items ••••• 75
EDIT directed 27,73.,78
file addressing technique .•••••••••• 18
files and data sets 18
LIST directed 27,76,78
ON conditions

see: ON conditions
OPEN and CLOSE functions
operations code in FCB •••••••••••••
operations code in IOCB ••••••••••••
record-oriented •••• D

standard files Q •••••

stream-oriented •••••••••••••••
strings ••••••••••••••••••••••••••••.

Instruction set

21
200
204

30
23
22
78
10
81
12

Interleaved arrays •••••••••• ~
Intermodu1e trace
Internal codes for ON condition
entries 61,1'58

Internal conversions ••••• w ••••••••••••• 79
Internal data types ••••••••••••••••• 72,76
Interrupt count 69
Interrupt handling subroutines ••••••••• 10
Interruption code •••••••••••••••••••••• 68
Interrupts

imprecise ••••••••••••••••••••••••••• 68
multiple-exception imprecise •••••••• 68
precise. • • • • • • • ... • •• .• • • •• • • • .•• • • • • .•• 68
trea tment of 50

INTO option •••••••••••••••••••••••••••• 34
Invocation count ••••••••••••••••••••••. 48

in DSA ••••••••••••••••••••••••••••.. 42
IOCBCinput/output control block) 33." 34

size ••••••••••••••••••••••••••••••• 205
IWECinfinite wait ECB) ••••••••• 59,223

KEY
KEY
KEY
KEY

KEY
KEY
KEY

condi tion ••••••••••.•••
expression ••••••••••••
formats •••••••••
on-unit

64,22,35,158
• .. • • • • • • • • • •• 36
••••••••• s ••• 37

normal return •••••••••••••••••••••••
raised in an explicit CLOSE
statement ••••••••••••••••••••••••••
option
sequence error condition ••••••••.••
(specification) condition ••••••••••

22

22
36
38
35

Index 235

KEYED attribute ••••••••••••••••••••• 36,39
KEYFROM expression •• 0 •••••••••••••••••• 36
KEY FROM s tri ng 38
KEYTO character string variable •••••••• 37
KEYTO option 39

source key format ••••••••••••••••••• 37

LENGTH function •• e ••••••••••••••••••••• 80
Lengths of modules •••••••••••••••••••• 163
Library arithmetic modules ••••••••••••• 82
Library communication area •••••••••••• 177
Library conversion package ••••••••••••• 72
Library design characteristics •••••••••• 9
Library initialization subroutines 47

IHESAPA ••••••••••••••••••••••••••••• 47
IHESAPB ••••••••••••••••••••••••••••. 47
IHESAPC ••• ~.~ •• ~ ~. • • • • • • • • .. • • • • • • • •• 47
IHESAPD 47

Library macro instructions
IHEEVT •••••••• G ••••••••••••••••• 157,12
IHELIB •••••••••••••••••••••••••• 157,12
IHEPRV •••••••••••••••••••••••••• 157~12
I HESDR •••••••••••••••••••••••••. 157, 12
I HE XL V"...................... 1,5 7 , 1 2
IHEZAP 157,12
IHEZZZ •••••••• _ •••••••••••• ~ •••• 157,12

Library prologue subroutine •••••••••••• 41
LIBR.ARY statement 9,72
Library string package ••••••••••••.•••. 80
Library VDA 49
Library workspace(LWS) •••••••••• 15,43,179

initial allocation of ••••••••••••••. 41
primary LWS •••••••••••••••••••••• 15,43
secondary LWS 15,43
standard format of ••••••••••••••••• 179

LIMCT subparamet er ••••••••••••••••.•••• 39
Limit priority 59
LI NE format item,........................ 28
LINE option 29
Line size ••••••••••••••••••••••••••••• 200
Line spacing ••••••••••••••••••••••••••• 29
LINENO function 24

I HECNT 90
LINESI ZE; option ••••••.•••••••••••••••••• 19
Link library ' .•••• 10
LINK macro 10,84,152
Linkage conventions ••••••••••••••• ~ •••• 11

for argument addresses ••••••••• ~ •••• 11
f or arguments 11
for mathematical subroutines •••••••. 82
for string operations and functions 80

Linkage editor 9
LINK LIB data set , •••••••• '. • • • •• 22
List directed I/O ••••••••••••••••••• 26,76

data checking and error handling •••• 78
IHELDI ••••••••••••••••••••••••••••• 111
I HELDO ••••••• , ~.. • • • • • • • •• 112

List. processing 45
List/Data Directed I/O

conversion for •• ,. • • • • • • • • • • • • • • • • • •• 75
LOAD macro ••••••••••••••••••••••••• 10,152
Locate mode I/O ••••••••••••••••••••• 22,34
LOCATE statement 34
Location counter in executable format

scheme •••••••••••••••••••••••••••••• ~. 27
Lock bi t (in exc 1 us i ve block) •••••••••• 37
Lock statement count (in exclusive

236

block) •••••••••••••••••••••••••••• 0 ••• 37
LOG function ••••••••••••••••••••• ~ ••••• 82
Logical operators 80,81
Logical records, (IHEIOF) 107
LOW function •••••••••••••• 80,81
LWS(library workspace) 15,43,179
LWS pseudo-registers .~ ••••••••• ~. 48
LWS VDA. ••••••••••• 0 • •• • • • • • • • • • .. • • • • •• 21 7

Macro instructions
library
system •••••••••••••••••

.......... 12,157

.......... 10,152
system generation •••••• • • • • ... • • • • •• 154

Major-task initialization •••••••••••••• 54
Mathematical functions • • • • •.. • • • • • •• 82
MAX function ••••••••••••••••••••••••••• 81
MCF(must complete flag)
Message

••••••••• 59,223

ECB ••••••••• ' •••• '0

modul es
task 0 •.••••••••••••••••••

Minimum control system
Model 91

diagnos,tic messages •••••••••••••••••
interrupt handling 0 •••••••

option
Modes of communication ••••••••••••.

explicit ••••••••••••••••••••••••••••
impl ici t

Module
lengths ••••• 0 ••••••••••••••••••••••

level 0

53
10
53
71
70
70
68
68
14
14
14

163
15

message ••••••••••••••••••••••••••••• 10
name •••••••••••••••••••••••••••••• 9,11
print •••••••••••••••••••••••••• ~ •••• 10
secondary ••••.••••••••••••••••••••••• 9
significance of mnemonics in

name ••••••••••••••• '. • • •• • • 72, 80, 11
Move mode ••••••••••••••••••••••••••• 22,34
Multiple-exception imprecise interrupt. 68
MULTIPLE WAIT option •••••••••••••••••• 154
Multiplication operator •••••••••••••••• 81
MULTIPLY function 81,82
Multiprocessing ~ 59

EXCLUSI~ file chain 59
manipulation of EVENT variables 59
preventing simultaneous control

bloek access ••••••••••••.•••••••••• 5~
task attachment •••••••••.•• ~ •• • • • • • •• 59
task priority •••••• '.................... 59
termination of active task 59

Mul ti tasking •• ~ '. • • • ••• 58
BISA.M ••••••••••••••••••••••••••••••• 36
built-in functions •••••••• ' .••••••••• 57
control blocks 219-227
creation of a new task •••••••••••••• 52
DIRECT UPDATE files ••••••••••••••••• 34
entry parameter procedure ••••••••••• 56
error messages(IHEERT) ••••••• 102,61,67
EVENT option •••••••••••••••••••••••• 22
GO TO statements •••••••••••••••••••• 56
INDEXED data sets ••••••••••••• 36
module IHETSA ••••••••••••••••••••••• 52
object program management ••••••••••• 52
ON unit •••••••••••••.•••••••••••• ' •••• 56
pseudo-variables and built-in
functions ••••••••••••••••••••••• 57,58

REGIONAL data sets ' •• ' •••••
storage for controlled variables •••..
subtask initialization parameter list
SYSPRINT ••••• " •.• ' •• ' •••••• '. ' ••••••••• " •
task control block ' ••••••••••••••••••
task priority •••••••••••••••••••••••
task termination ••••••••••••••••••••
TCB ' ••••••• ' •••• ' •••••.•••

39
57
56
23
52
53
56
52

Must complete flag(MCF) •••••••••• ' •• 59,223
Must complete operations ••• '. • .. • • • • • • • •• 59

operations with PLF or EFF ' ••.• '. .. •.• • •• 59
normal task termination , ••• 59
task attachment '. ' •• ' '" • • • •• 59

MVT '. '. ' V'I

Checkpoint/Restart ••••••• ,
MVT operating system facilities

subpools ••••••••••••• -- •• ~ •••• ~ •••••

52
16

42

NAME cond i tion '.. 158
NOLOCK option ••••••• ' ••.• , •• '. • • • .. • • • .. •• 36,39
NOT operator (,) ' ••• ' ••••.•• ,....... • • •• 81
Numeric field ' •••• '. ' ••••••••• '. '. .. • • • • •• 12

Object program management •••••••••••••• 41
program initialization •••••••••••••• 47
termination • , ' ••• , • • • •• 48
variable data area ~ ••••••••••••••••• 43

Object program structure
record-oriented I/O ••••••••••••••••• 30
stream-oriented I/O ••• ' •••• ' ••••• ' •• '. •• 22

Object-time optimization ••••••••••••••• 51
OCB(open control-block) •••••••••••••••• 21
ON CHECK facilities •••••••••••••••••••• 27
ON conditions ••••••••••••••• ' 61,74

3~tion by compiled con~ 64
AREA .••••••••. ' ' '. • .• .• .. •• 1.58 , 64 , 47
CHECK ••••••••••••••••••••• 158~64,23,27
classes of •••••••••••••••••••••••••• 64
CONDITION • ' ••• , ' ' •••••• '.. 158,64
CONVERSION ••.• , •••••.• , •••.••••.•••••• 158,64
ENDFILE ••••••••••• ~ •••••• 158,64~75,199
ENDPAGE ••••••••.•••.• , ••• , ••• · ••• 158,64,199
ERROR 158,64 .. 66,67,,78,79,80
FINISH •••••••••••••••••••• 158,64~61,48
FIXEDOVERFLOW '.D~ 158,61,82
interna'l error codes and messages 158
KEY ••••••.•• , , ••.••.••.•• , 158,.35,38,64
library action •••••••••••••••••••••• 65
list processing ••••••••••••••••••••• 47
NAME ~ •• 158,64
prefix options ... , ,.' ,., •.••.•• ' •• 65
program check ••••••••••••••••• 23,26,64
programmer-named (CONDITION) 158,64
RECORD ,.. 158, 64
SIZE ~ ••• ~ ••••••••• 158,63,79
STRINGRANGE ." , •• ' •• '.'. " • • • • .• .. • • • • •• 158,64
SUBSCRIPTRANGE , ••• '. ,. • • •• 15 B, 64
system action •••••••••••••••• ~ ••• 66,67
TRANSMIT ,., •••• , •••••• 158,64,23,76,79
UNDEFINEDFILE •••• '.. • •• • • •• 158,64,20,23
UNDERFLOW •••• , '. 158,61,64
ZERODIVIDE •••• ' •••• '.' •••••.•• 158,61,63,64

ONCOUNT built-in function , •••••• ' ••••• '. •• 69
ON fields 64,66
ON statement •••.••••• " '..... 65
ON-uni t I ••• I ' ••• I I ••• -' 61, 48

DSA ••••••••••••••••••••••••••••••••• 51
entry parameter procedure 48,56

ONCHAR function ' ••••••• ' •• 48,56
ONCODE function 67,79

IHECFB •••••••••••••••••••••••••••••• 89
in computational subroutines •••••••• 80

ONFILE function 24
ONKEY function ••••••••••••••••••••••••• 24
ONLOC function ••••••••••••••••••••••••• 67

IHECFA 89
ONSOURCE function 77,79

IHEDCN 76~93
IHESRC ••••••••••••••••••••••••••••• 131

ONSOURCE pseudo-variable ••••••••••••••• 79
Open control block(OCB) •••••••••••• 21,207
OPEN macro ••••• 0 ••••••• , ••.••••••••••••• 152
OPEN modules ••••••••••.•••••.•••• 'O........ 21
OPEN statement ••••••••••••••••••• 18
Operating system

changes in specification •••••• 10
completion code ••••••••••••••••••••• 55
priority •• ' •••••• ' ••.••• ' ••••••••.•• ' ••••• 54
standard calling sequence ••••• ~ ••••• 11

Operating system naming conventions •••• 11
operating system facilities •••••••••••• 42
Operating system requirements •••••••••• 10
Operator, message to (IHEDSP) •••••••••• 99
Optimization,object time .~ ••••••••••••• 51
OR operator (I) ' '. 81.,66
OVERFLOW condition •••••••••••••• 61.64,158
Overlapping of source and target fields 84

P-format items ' '.. 79.75
PICTURE attribute 12
picture check •••••••••••••••••••• 72.78

Packed decimal intermediate(PDI) ••••••• 78
Padding

bit string •••••••••••••••••••• "! .••••• 82
char~cter string 82
IHEBSM ••••• ' 88.,81
IHECSM • ' ••• ' ••.••• ' ... ' •.•.••••• w. • •• • ••• 91,,81

PAGE format item 28,175
PAGE option 29
Page size ••••••••••••••••••••••••••••• 200
PAGESIZE option ••••••••••••••••••••••• 201
Paper tape input ••••••••••••••••••• '. 22" 3 4
PARM parameter on the EXEC card •••••••• 48

address of the SDV of the parameter 48
PDI(packed decimal intermediate) ••••••• 78
PICA(program interrupt control area) 63
PICTURE arithmetic data '... • •• 12
PICTURE attribute •••••••••••• ~ •• _ •••••• 12
Picture check 72,78

checking routines ' '. • • •• 74
Picture specification 171

IHEKCA •.••• , •••• ' 111
IHEKCB • , ••• ' •• ' ••••• '. , ,. • •• • • • • • • •• •• 111
IHEKCD ••••••••• ' •••• ~ '.... .. •• • • •• • • •• •• 111

PICTURE validity check
character picture (IHEKCD) •••• ,.... •.• 111
decimal picture (IHEKCA).... ••• •• 111
sterling picture (IHEKCB) •••••••••• 111

PIE(program interrupt element) ••••••••• 63
PL1DUMP file 16
PLF(program lockout flag) •••••••••••••• 53
POLY function., •••••••• , ' 82,,83
POST macro ' ••••• ' ••• ' 152,227

Index 237

Precise interrupt •••••••••••.••••• , •••• ' •• 68
Prefix options ••••••••••••••••••••••••• 65
Primary string array dope vector •••••• 183
PRlwr attribute/option

in DCLCB •• D

in FCB •••••••••••••••••••••••••••••
in OCB ' ' ' ••••

194
200
207

Printing control 24,29
format items 175

Printing options 28.,175
COLUMN ' •••.•• , •. 28,175

(IHEIOX) •••••••••••••••••••••••• 107
LINE '. .• • • • '. • • • •• 2 9
P.A.GE •••••• " •••••• ' •••••• ' ••• I •••••• e •••• 29
SKIP •••••••••••••••••••••••••••••••• 29

PRIOR ITY bui 1 t-in function ••••••••••• '.. 57
Priori ty changing ' •••••• D ' •• ' ••• 0 • • •• 60
PRIORITY option •••••• ~ o. 54,55
PRIORITY pseudo-variable g..... 57
Procedure DSA •••••••••••••••••••••••••• 49
PROD function G ' ••••••••• ~. 82,83
Program execution ~ • .••• 20
Program initializaton ' .•••• 41

allocation of storage for the PRV ••• 41
Program interrupt control area (PICA) 63
Program interrupt element(PIE) 63
Program interrupts '... .. • • • .. •• 61,50
Program lockout flag (PLF·) 53
Program management 41
Program status word(PSW) ••••••••••••••• 63
Programmer named ON conditions ••••••••• 64
Prologue •••••••••••••••••••••••••••• 41,64
PRV(pseudo-register vector) •••••••••• ' •• 14
PRV VDA ••••••• I." .•••••• ' 43,47,49

format of •••••••••••••••.••••••••••• 21 7
length required for ••••••••••••••••• 53
storage for ••••••• '. • • • • •• • .. • • • • • • • •• 47

Pseudo-register
IHEQEVT ~ •••••••••••••••••
IHEQXLV ••• G ••• G •••••• ' •••••••••• " ••••

Pseudo-register vector(PRV) ••••••••••••
address constants •••••••••••••••••••
allocation of storage for

36
36
14
14
41

in file addressing technique •••••••• 17
PRV offset in DCLCB •••••••••••••••• 193

Pseudo-registers ••••••••••••••••••• 43,155
PSW(program status word)••• 63
PUT macro .0·.' .•..••.•.••...• 22,2J,34,35,153
PUT statement , •••• , •• 22,26,27

and current file •••••••••••••••••••• 26
and standard files •••••••••.•••••••• 23
in FeB •••••••• ' ••• I •••• ' ••••••••••••••

stream-oriented output •••• ' •.• ' ••••• ' •••
200

26
'IIi th SKIP format item • ' •• , •••••••••••• 28

PUT macro ••••••• w ••• ~ •••••••••••••• 35,153

Q I SAM • I. . . '. • • '. • • I. • • '. • • • • • • • • '. • .. . " • • • • • re •

qname ' •••••••••••••••••••
interface •••••• ~ ••••••••••••••••••••

Q S.AM. •••••••• Ie •••••.•••••••••••••••••.••••.••

data mode •• e e

locate mode •• ~ ••••••••••••••••••••••
spanned records(IHEITK,IHEITL)

35
37
30
34
35
35
35

R-type FREEMAIN '. ' ••.•.••• '. '. '. ' ... ,., • • •.•• 42
R-type GETMAIN '. • • • • • .. • .. • • • •• 42

238

Radix conversion powers table (IHEVTN) 147
RCB(request control block) ••••••••••••• 32
RDV (record dope vector)................. 30
REA..D rna cro '. ••• • •• •• • • • • • •• 36 , 152
READ statement •••••• r •••••• 35,36,40
RECORD

conditi.on , ••••.••..••• 64,158
IIO situation flag in IOCB ••••••••• 204

Record dope vector(RDV) ~ ••• 30
Record format field in DCLCB •••••••••• 194

in FeB •••••.••• , •••••• 0., ••••.••••••••• 200
Record variable •••••••••••••••• e •••••• 204
Record-oriented I/O ••••••••••••••••• 22~30

BDAM ••• II ••••• s ' •••••••••••• n • • • • • ••• 37
BISA..M •••••••••••••••••••••••••••••••
BISAM in multitasking •••••••••••••••
BISA..M in non-multi ta sking •••••••••••
'bit representation of statement •••.••
transmission modules ••••••••••••••••

35
36
36
33
10

B SAM 3 4 , 35 , 3 7 " 3 8
CONSECUTIVE data sets ••••••••••••.••• 34
data management access methods 30,34
DIRECT creation •••• '.. • • • • • • • •• 38
direct :r;eadin.g
exclusive block •••••••••••••••••••••
FROM option ••••• _fe ••••••••••• · •• 1 •••••

generic logic and flow •••••• ' •••• ' ••••
I/O control block ••••••••• ~ •••

39
34
34
30
33

in multitasking •• u ••••

INDEXED data sets
interface module IHEINT

••••••••••••• 22
••••••••••••• 35

(multitasking) •••••••••••••••••••••
interface module IHEION

(non-multitasking) •••••••••••••••••
IOCB , ' ••
KEYTO option ' .•.•••••
linkage of access modules •••••••••••
paper tape input ~ ••
QISAM •••••• I " •••••••••

QSAM ••••• ' ••••• I. ' ' e ••• ' •• '. e

record dope vector (RDV) ••••••••••
REGIONA..L data sets~ creation and

access ••••••• ' •. e •••• ' ••• ' •••.••••• I •••

request control block •••••••••••••••
REWRITE statement without the FROM
option •••••••••••••••••••••••••••••

sequential access of REGIONAL data
sets ~ ••••••••••••••••••••••••••••••

SEQUENTIAL creation •••••••••••••
sequential reading ••••••••••••••••••
SET option in READ and LOCATE
statements ' '

string dope vector(SDV) •••••••••••••
Recursion ••••••••••••••••••••••••••••••
Recursive

blocks ••••••••••••••••••••••••••••••
environment ••••••••••••

REGIONAL data sets
BSAM ••••••••••• ' ••••• iii ••
creation, using LOCATE •
DIRECT access
DIRECT creation ••••••••
dummy records
extended search feature
field in DCLCB •••• , ••••••••• ' ••••••••
field in FCB ••••••• ' •••••.•••••••••••
initialization •••••• '
initialization for DIRECT creation ••

30

30
33
39
30
34
35
34
32

37
32

34

38
38
39

34
32
42

42
48

38
38
39
38
39
39

193
201

21
38

sequential access •••••••••••••••••••
SEQUENTIAL creation ' ••••••••
UNDEFINED file condition ••••••••••••

Register IHEQSFC • '
Register save area

38
38
38
44

dynamic storage area(DSA) 42,64,215
library workspace(LWS) 15,43,,63,179

Register symbolic names ,.. 11
REPEAT function ' , '. ' ••••• '. •• 80

bit string
character str ing

Request control block(RCB) •••••••••••••

81
81
32

Resource count in DSA •••••••••••••••••• 25
Restart, checkpoint/restart CIHECKP) 16,90
Return code 54,55
RETURN rna cro '. • .. • • • • • • ... 153
RETURN statement '. • • •• .. • • • • • •• 48, 49,56
REVERT statement ' •••• u '. ' '. • • • .. • • • •• 65
REWRITE statement • ' ' •••• '.. • • • •• 34

wi thout the FROM option '. • •• 35
Run time stack ' ••• '. • • • •.• • • • •• 49

SADV (string array dope vector) ••• ' ••• '.. 183
Samp.le program ,. ••••••• ' , •••••••• 49
Save areas wi thin LWS '. • • • • • • • •• 43
Save-area chain , , •••• 49,50
Save-area procedure ••••••••••••••••• '. •• 12
SDV(string dope vector) 32,185
Search word comparator •• '. ' '. •• 64
S econ dary LWS ... ' ' •••• '.. 15
secondary modules ••••••••••••••••••••••• 9
SEQUEN'rIAL file

field in DCLeB •.•••.•••• ' ••• ' ' ••
field in FCB •••••••••••••••••••••••

193
207

SETL macro •• ' ••••• ' ' ,. ' '.. 153
SET option ••••••••••••••••••••••••••••• 34
SGIHE5LA macro ••••••••••••••• ' ' •• 154
SGIHE5PB macro •••••••••••••••••••••••• 154
SGIHE 5PCmacro , •••••••••. 0 •• '.. 154
Shift-and-assign operator '................ 81
Shift-and-load operator •• ' •• '. '. .. •• • .. •• 81,82
SIN function ••••••. , •• ' ••.••.• ' ••••••• ' ' •• 8,2
SIND function .. ' •• ,. ' •• ,. ' '. '. .. • • • •• 82
SINGLE WAIT module (IHEMSW) ' , •• 154
SINH function ,. ' '. • • • .. • • • •• 82
SIZE condition •••••• 61,63,65,66,79,82,158
SKIP (non-print files) ••••••••••••••••• 29
SKIP format item ••• ,., , ••• 29
SKIP opti on ' ••• '. '. .. • • • •• 29
SNAP ••••.•••• ,. .. • • • .. • • • • • • • • " •• 6 6 , 6 7 , 15 3
SORT/MERGE - PL/I interface 16

I HESRT •• ' ' '0 • '. •• 131
Spanned records •••••••••••••••••••• 35,201
SPIEmacro ••••••• " •••••••• 42,48,61,63,153
SSA(standard save area) •• ' •••••••• ., •••••
SSA f lag byte ,. ' ••• '
standard files

12
182

SYSIN 23
SYSPRINT ,.,. ••••• ' ' ••••• ., •• '. •• 23

standard save area (SSA) •• ' •••••••• ,,,. 12,181
Standard system action " ••• '.. 67
Statement label data representation •• ' •• 12
Statement number ' ' ••• ' •••• '.' ... '.' ••• 82
static storage •• ' ' •••••• '., • • • •• 51
Status field in event variable 195;223
STATUS function • ' ... ' '. '. '., • • • •• 57
STATUS halfword ' ' , ," • • ••• 54

STATUS pseudo-var iable '................... 57
STIMER macro • '. ' 153
STIMER opt ion • ,. ' •••• .o • '. ... • • ... • • ... • • •• •• 154
STOP ECB .••••• ,. ;0 ' •• ... • • ... • • • • • • • • • •• 54
STOP statement 52,56.71
Storage management '. • • ••• • •• • • •• 41

automatic storage ••••••••••••••••••• 42
control blocks ••••••••••••••••• 211-217
list processing 45

Storage-management modules
multitasking 219
non-mul ti tasking ' '. • • • • •• 211

Stream-oriented I/O 22
code compiled for ' '. • • •• 26
current file '... • • •• • • ... •••• • •• 22
data specification 26
field in DCLCB ••••••••••••••••••••• 193
field in FCB , ••••••••••• __ • 199
field in OCB 207
initialization •••••••••••••••••••••• 26
termination ••••••••••••••••••••••••• 26

Stream-oriented I/O options
LINE • .• • • • ... • • ... • • •• • •• 29
PAGE 29
SKIP 29
SKIP (non-print files) •••••••••••••• 29

String
arithmetic directors ••••••••••• " •••• 74
assignments '. • •• • •• 76
convers ions ••• '. • .. • • • .. • .• •• • • • • • • • • • •• 76
functions •• '. • • • .. • • • • .• • • •• • • ... • •• • • •• 80

String array dope vector(SADV) 83,183
String data representation •••••••••• 12.14
string dope vector(SDV) ••••••••• 32,185
STRING option 23.29

field in FCB ' ••••• '.. • • • • •• • • • • .. •• 199
Str ing package •.•• ' '. '. ,. • • ... • • • • .. • •• . •• 80
STRINGRANGE condition , •••••••• 158
Strings,I/O editing and conversions •••• 78
Structure dope vector ••• ~ 187
Subpools ••••••••••••••••••••••••••••••• 42
Subroutines, error and interrupt handling 10
SUBSCRIPTRANGE condition ' ••••••• 158
SUBSTR function 80

bit string ,.. • •• • • •• 81
character string 81

Subtask
abnormal completion ••••••••• ,. • •• 55
creation 55
initialization , ••••• 55

SUM function .• ' '.' •••• ' 82,83
Supervisor call(SVC) ••••••••••••• 10
SVC(supervisor call) ••••••••••••••••••• 10
Symbol resolution, non-obligatory
technique 9

Symbol table •• , 189
Symbolic names

for general registers ••••••••••••••• 11
for floating-point registers •••••••• 11
of offsets in SSA •••••••••••••••••• 181

SYMTAB (symbol ta bl e) ••• .. • • •• • • •• • • • • • •• 81
SYNAD routine '. • • • ... • • •• .• • ... • •• 35
SYSABEND file 16
SYSIN 23
SYSPRINT •••••••••• ' ,. •• • • ... • •• ... 23, 25" 2 9

allocation of SYSPRINT resources •••• 26
in multitasking 23
resource counter •••• '. •• •• • • •• • • ... • •• 26

Index 239

System generation e •••••••••••••••••••• 154
macro SGIHE5LA ••••••••••••••••••••• 154
macro SGIHE5PC •••••••••••••• 154

System macros (LINK, LOAD and XCTL) 10
SYSUDUMP file .••••.••.•••••••••••••••••.•.•• 16
SYS1.LINKLIB ••••••••••••••••••• 10,154,163
SYS1.LM512 •••••••••••••••••••••••••••• 154
SYS1.MACLIB ••••.•••.••••••••••••••••••••• 12
SYS1.PL1LIB ••••••••••••••••••••••• 154,163

Table of powers for radix conversion
(IHEVTB) ' 147

82
82
82

TAN function
TAN]) function '
TANH function ' ••••••
Task

at tachment ' '. • .• ... 60
closing of files ••••••••••••••••• 19,22
control block 52
dispatching priority •••••••••••••••• 57
initialization •••••••••••••••• 47,54,55
invocation count ••••••••••••••••• 55,56
option ' ... '. G •••••••••• '.. • • • • • • • •• 54
termination ••••••••••••••••••• 48,56,59

Task and event variables, initialization 54
Task control blockCTCBl •••••••••••••••• 52
Task event control block ••••••••••••••• 52
Task event variable ••••••.••••••••••••• 223
Task termination, abnormal •••••••••• 53-54
TASK variable , •••.••• 54,'227
TCB(task control block} •• , •••••••••••••• 52
Temporary storage, for library modules 43
Termination

of current task •••••••••••••••••• 48,56
of data field requestCIHEIOD) 107
of inputloutput operations

(IHEIOA,IHEIOB) 105,23
of PL/I object program ••••••••••• 48,56

TIME function 71
TIME macro 153
TIME option 154
TIME statement •••••••••• ~ •••••••••••••• 71
TITLE option 18
TRANSMIT condition ••••••••••••••••• 76,158
TXLV chain ' •••.• '. •. 22
Type conversions, modules for •••••••••• 76

240

UNALIGNED attribute 14,169
UNBUFFERED attribute ••••••••••••••••••• 34
UNDEFINED FILE coridition •••••••••••••• 158
UNDERFLOW condition ••••••••••••••••••• 158
Universal instruction set •••••••••••••• 10
UNLOCK statement,EXCLUSIVE file •••••••• 36

V-format control byte •.••••••••••••••••• 35
V-format record •••••••••••••••••••••••• 34
Variable data area (VOA.) ••••••••••••• 43

format of '. •• 217
mul ti ta sking ' '. • •• •• 225

VARYING attribute 14
VA.RYING strings '. • • • • •• 183
VARYING strings in record-oriented 1/0 • 30
VBS-format record •••••••••••••••••••••• 35
VDAevariable data area) 49,217
VDA flag byte 217
VDA. for multitasking 225
VS-format record 35

WAIT macro ••• , 54,58,153
WAIT statement 30,58
WAIT statements associated with 1/0

events , ..•.. ., •... '.......... 30
Wait to terminate ECB(WTE) 59,223
wait to terminate flagCWTF) •••••••• 59,223
Workspace fo~ the control task ••••••••• 53
WRITE macro 153
WRITE statement 35
WTE(wait to terminate ECB) 59,223
WTF(wait to terminate flag) •••••••• 59,223
WTO mac ro ,. • •• 42 , 153
WTOR macro '... • • ... • • •• • •• 42,153

X-format item 175
XCTL macro 10,,21,153
XLOK bit 16

ZERODIVIDE condition •••••••••••••••••• 158

Y28-6801-4

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	xBack

