File No. S$3606-21
GC28-2000-5

Systems Reference Library

IBM Time Sharing System
Assembler Language

This publication describes the IBM Time
Sharing System Assembler Language, a symbolic
programming language. The language provides a
convenient means for representing machine
instructions and related data, especially as
related to the Time Sharing System (TSS). The
TSS Assembler Program processes the language
and provides auxiliary functions for preparing
and documenting a program; the Assembler includes
facilities for processing the assembler macro
language.

This manual is intended for applications
programmers and any users who code in the assembler
language.

Sixth Edition {April 1976)

This is a revision of, but does not make obsolete, the
previous edition, GC28-20004. Editorial changes have been
made throughout this publication. Also, much of the now
outdated reference data that appeared in the Appendices has
been deleted. -

This edition is current with Release 2.0 of the IBM Time
Sharing System/370 {T55/370), and remains in effect for all
subsequent versions or modifications of TSS unless otherwise
noted. Significant changes or additions to this publication
will be provided in new editions or Technical Newsletters.

Requests for copies of IBM publications should be made
to your |BN\: representative or to the 1BM branch office
serving your locality.

A form is provided at the back of this publication for
reader’s comments. if the form has been removed, com-
ments may be addressed to tBM Corporation, Time Sharing
System - - Dept BOM,1133 Westchester Avenue, White Plains,
New York 10604.

©Cooyright International Business Machines Corporation
1866, 1969, 1970, 1971, 1976.

HOW TO USE TBIS BOCK

This publication explains for the Time
Sharing System user the .instructions which
direct the Assembler language program in
converting source statements into object
language. It alsc contains the syntactical
rules you must follow in coding your
program in Assembler language. Only
assembler instructions are fully described
in this book; the functions of
machine-executable instructions (such as
Load, A4dd Register, or Move Character) are

explained in Principles of Operation,
GA22-6821.

Since some of the terms used in this
book are defined in earlier sections of the
book, we suggest an initial read-through;
after that, you will probably continue to
rely on this publication as a reference
source. This book is not a primer, and
other Time Sharing System publications are
directed more towards illustrating specific
possibilities; this publication serves as
the definitive grammar of the Assembler
language.

The reader is presumed to have some
knowledge of programming concepts as well
as some understanding of machine opera-
tions, particularly storage addressing,
data formats, and machine instruction
formats and functions.

THIS BOOK CONTAINS

¢« The rules of the language: statement
format and syntax, assembler
limitations.

e Assembler (not machine-executable)
instructions, such as DC, DS, ORG,
CSECT, ENTRY. How and when tc use
them. ’

PREFACE

e The mweaning of words defined sgpecially
for Assembler language, such as "term”,
"literal®, "relocatable expressicn®,
"symkolic parameter®™.

e Macro language. How to use it and the
rules for writing a macro definition.

Appendixes of Assembler language
characteristics.

SEE THESE BOOKS FOR

® A description of machine-executable
instructions. Standard instructions
may be found in the IBM Principles
of Operation, GA22-6821.

® How to use TSS to assemble a program
you've written. The Time Sharing
System Assembler Programmer's Guide,
GC28-2032, tells how and has several
examples.

e System macro instructions availakle to
you. These are described fully in Time

Sharing System Asgsembler User Macro
Instructions, GC28-2004.

e Special macro-writing techniques.
Certain macro techniques that you may
find useful are described in the System

' Programmer's Guide, GC28-2008.

Time Sharing System Concepts and
Faciiities. GC28-2003, is recommended as
rreliminary reading. The TSS Quick Guide,
GX28-6400, provides a pocket-size summary
of some of the tables in this bock.

iii

CONTENTS

SECTICN 1: INTRODUCTION
Assemkler Language . . . <« « « . . .
Machine Operation Codes
Assembler Operation Codes
Macro Instructions
Assembler Program . . .« . « o o « « &
Virtual Storage Concept
Basic Functions
Programmer Aids
Operating System Relationships . . .

SECTION 2: GENERAL INFORMATION . . .
Assembler Language Coding Conventions
Input Sources e a e
Punched Ccard Coding Form s e e .

Statement Boundaries —-- Card Forma
Continuaticn Lines -- Card Format
Character Sets -- Card Format . .
Statement Boundaries -- Keyboard F
Continuation Lines -- Keyboard For
Character Sets -- Keyboard Format

Statement Format « « o .
Identification Sequence Field . .
Caution When Changing Card-Origin
Summary of Statement Format . . .
Character Set « & « « &«
Assembler Language Structure
Terms And Expressions
TEIMS o o 2 o o o o« o o o a o »
Symbols . . . ¢« .+ . & s & o .
Self-Defining Terms . . « . .
Location Counter Reference .
Literals . . « .« « « « . e
Symbol Length Attribute Reference
Terms in Parentheses
EXpressions . . « ¢ <« ¢ < « s o o .
Evaluation of Expressions
Absolute and Relocatable Expressio

e 8 o s ¥
®

SECTION 3: ADDRESSING -- PROGRAM SECTI
AdAressing .« <« . ¢ ¢ <« o e o o o o @
Addresses -- Explicit and Implied .
Base Register Instructions . . .
USING -- Use Base Address Register
DROP -- Drop Base Register . . .
Programming With The USING Instructi
Relative Addressing . . . « « « « .
Program Sectioning and Linking . . .
Control Sections « .« .
Control Section Location Assignmen
First Control Section cof Program .

START -- Start Assemkly
CSECT -~ Identify Control Section
Unnamed Control Section
DSECT -- Identify Dummy Section .
COM -- Define Common Control Secti
PSECT -- Define Prototype Control

External Dummy Sections« .

Attributes of Control Sections . .

Symbolic Linkages +« + o & «
ENTRY -- Identify Entry Point Symb
EXTRN -- identity External Symbol

iv

« o s o =
e o o o s
e o e+ & a4 e a s
€ o ¢ o o
e e a2 e o s e o @

e« e & 8 s e & = =

crmat .« . .« .« o =
WAL o ¢« « o o o .
e & e « o o & +

e m & & @ » e & =

Statements e o o

[
»
.
.
[
e o o & =&
®
*
[3

.
-
.
.
.
(]
.
®
.

»
.
.
°
.
»
s
*
.

ns e & o & & s =

ONING AND LINKING

e & o o o 8 o o
« e s s e o & o« @
a e s o o o = o a

« o & & o s o =
s x e e e e e s w
ON 4 & o o 2 » =
e« o 2 e e e e s @
e e + ¢ & o s s @
e« o o s e s s e =
T« ¢ o o o o o @
e e o o o 8 e = @
e e e s e s e s o
s e o o & e o 3 s
« o o s e « o o
e s 4 e s e &
ons e e 4 e o
Section e e e e e
e e e e s e s e e
e e s e e e e e s

« 4 e e e e e s

Cl e e s e s e .

s & & & &

R N e T e

wWwwe NN OO EE SRS

Addressing External Control Sections .

SECTION 4: MACHINE INSTRUCTIONS
Machine Instruction Statements . . .

Instruction Alignment and Checking
Operand Fields and Subfields . . .

Lengths ~- Explicit and Implied .

Machine Instruction Mnemonic Codes
Machine Instruction Examples .

RR Format . . .

RX Format . .

RS Format .

SI Format .

SS Format .

Extended Mnemonic Codes

° e e

s & s & 3 9

o & a 2 3

s * & 3 @

s & & & s

s & & & &

s & 3 & a8 ¢ »

a & & 2 & o & o 9

e & @ & & & ¢ 2 o

e 8 & 8 & & 8 s o & 8 o @
a ® B & 3 6 & & 2 & 3 & ¢

SECTION 5: ASSEMBLER INSTRUCTION STATEMENTS
Symbol Definition Instruction . .
EQU -~ Equate Symbol . . « . « « < .
Data Definition Instructions . .
DC -- Define Constant « . « = « « o =«
Operand Sukfield 1: Duplication Factor
Operand Subfield 2: Type .« « « « « « &
Operand Subfield 3: Modifiers

-
e ¢ © a
-

Operand Subfield 4: Constant
DS -- Define Storage . « « « o o o =
Special Uses of the Duplication Pactor
DXD -- pefine External Dummy Section .
CXD -- Cumulative Length External Dummy
CCW -~ Define Channel Command Word
Listing Control Instructions . . .
TITLE -- Identify Assembly Outpnt
EJECT -- Start New Page
SPACE -- Space Listing
PRINT -~ Print Opticnal Data .
Program Control Instructions . . .
ICTL -- Input Format Control .
ISEQ ~-- Input Sequence checking
PUNCH -- Punch a Card
REPRO -- Reproduce Following Car
ORG -- Set Location Counter . .
LTORG -~ Begin Literal Pool . .
Special Addressing Consideration
Duplicate Literals

» 0 Q8 2 0 s s s
* 8 & o & 2 * 3 8 2 8 s s

o 2 & ® s & & ® ¢ & 2 3 & 4 & &

® & & & & & & ® 2 & o° & B 8 & 6 9 2

CNOP -- Conditional No 0peration .
COPY =-- Copy Predefined Source Coding
END -— End Assembly « « « ¢ & o o o o«

SECTION 6: INTRODUCTION TC MACRO LANGUAGE
Macro Instruction Statement . . .
Macro Definition
Sources Of Macro Definitions . .
System Macro Instructions
Varying The Generated Statements
Variable Symbols . . .« .

Types of Variable Symbols . -

Assigning Values to Variable Symbols

Global SET Symbols . . « « + « &

s * & o s &

« 8 0 8 4 2

e 8 0 s 0 ¥ 0
s & &2 & o & 3 & o &

Y
-
-
.
.
-
1
.« e

SECTION 7: HOW TO PREPARE MACRO DEFINITIONS
MACRO ~- Macro Definition Header . .
MEND -~ Macro Definition Trailer

Macro Instruction Prototype

Statement Format

Model Statements . . .
Free Apostrophes .

Symbolic Parameters . .

e« s =

s s 8 a4 e
s & 0 4 e 8

.
-
.
-
-
.
-

* &+ & 8 0
[S T)

L T T)

.« =
. o
. e

@ 6 & 6 s & & & o 5 o & ¢ & a o & & [Ne & & o 8 s s s & & a4 @ s 5 5 & 8 8 8 5 0 4 0 &

¢ & & s & ¢ & 3 &

¢ & & 8 s s s &

1

2 s & & & & 8 & 3 & & B s & s s 8 o e s 2 & s s @

8 *» & & & & » 0 B & ® ¥ @

s & 5 ¢

§ & & & & & 8 ¢ 8 o

« 5 0 ¢ & s 8 s

et

5 & s s o &5 & ¥ 2 2 » & » &

@ & ¢ & & & 2 & © & & & @

a & & & 5 & % 6 s 8 & 5 t 8 b &

« & & & 5 0 0 w0 & &

L T S SR S)

o]

e o & 8 & & & 8 5 ¥ & 2 B8

H s 2 s s 8 e o 8 2 e &

® = & » ® & s 8B 8 4 & & » s 6 s & B

& 4 8 4 s 2 s 5

¢ s o e 2

e @ & s & s & 3 & » & ¥ » & & & & ¢ 2 & & 3 6 s & 2 2 T @ B @ 8 8 & & ® § O & & & 6 & @

« 6 5 o o o o & 6 ¢

a ¢ 8 @

¢ 8 ¢ & 6 § © o B & & e @

& & & o & & & 5 & s B » 2 e & s o e ¢t ¢ P o & s & o &6 * 8 & &

s & 9 8 & 8 & & & &

@ s & & 5 » ¥ & » 3 * & @

8 82 ® & & @ & s & s o6 s ¥ ¢ 5 s B p & & & & S s 5 5 B B » & @

s & 8 & 8 & & s s o

R Y T

s 5 & 5 & & & & & s A g &

¢ & © 8 B a2 @ a2 & & *t s B 4 & & s g € 4 & s P & * 5 s 8 2 & o

s * & o * & * & v @

® & P & & e & 5 & s & 5 & 8 & 8 8 s & & & 4 S & % 5 A * 2 & @ ¢ o & 4 8 ¢ & & » s s o @

L N S Y

LI Y I } .

$ 8 0 8 * a4 & & s s B 3 = 9 B 5 @ a ® & 8 9 2 & & @ & 3 ° 0 § 6 9 o 4 8 * 2 ¥ s & o &

s % & & % & & s 0+ 8

& ¢ & ¢ & 8 & s & o % a &

s ® s 8 4 & & B & & 4 & ¢ & s & & o O o

L R ST Y

L S Y T T T

¢ & & 8 B 3 0 s B s & s

¢ ®* 2 & » & s & s & 3 ¥ ¢ O° & B 2 & 5 s @+ @

* & & 2 8 & ¢ & 0

s 8 5 s & & 0 o 0 a

S ¢ ¢ & & a2 ¢ & 5 s & 3 =

$ ¢ » 8 & & s & s * s o© a & & 6 & ¢ & p & @

L)

s 8 o 3 o

LI S)

o 5 & o

Concatenating Symbolic Parameters With Other Characters

Other Symbolic Parameters
Comments Statements . . .
Copy Statements . . . « .+ . .

SECTION 8: HOW TO WRITE MACRO
Macro Instruction Operands .
Statement Format
Omitted Operands
Operand Sublists
Inner Macro Instructions . .
Levels Of Macro Instructions

* s e

»

SECTION 9:
Set Symbols e .
Defining SET Symbols . .
Using Variable Symbols .
Attributes . . . « o o o
Type Attrlbute (T') a o e
Length (L'} Scaling (s5'),
count Attribute (K') . .
Number Attrikbute (N') . .

-

INSTRUCTIONS

-
-
-
.
-

-

and

e« 85 & & &

HOW TO WRITE CONDITIONAL

e 8 puf s 8 & 8

Assigning Attributes to Symbols

Sequence Symbols

LCLA, LCLB, LCLC -- Define SET Symhols

SETA -- SET Arithmetic .

Evaluation of Arithmetic Expressions

Using SETA Symbols . .
SETC -- SET Character
Type Attrikute . . .
Character Expression
Substring Notation .
Using SETC Symkols . .
SETB -- SET Binary . . =«

¢ 2 8 &
s o 8 3 8

e 5 & s @

-

¢« 5 8 a8 ®

-

2 & o

a e e

. s =

e e e

s & s 8
e & & & 9
s & s 8 & &

ASSEMBLY

» & 0 &

Evaluation of Logical Expressions

Using SETB Symbols . . .
AIF =-- Conditional Branch

AGO -- Unconditional Branch
ANOP -- Assembly No Operation

Conditional Assembly Elements

SECTION 10:
MEXIT ~- Macro Definition Exit

MNOTE ~-- Reguest for Error Message

.

-

Global and Local Variable Symbols .
Defining Local and Glcbal SET Symbols « .

Using Global and Local SET Symbols

Subscripted SET Symbols .
System Variakle Symbols . . .

§SYSNDX -- Macro Instruction Index
§SYSECT -- Current Control Section
£SYSSTYP -~ Current Contrxol Sectiocn

-

¢ 2 s @ &

-

-

¢ o 8 & v

.

.

. .
* & s o B ¢ o &t 2 8 s »
LN

3
s
® & & 8 » 5 o & @

» & =

. e @
« e o
- s e
- o e

*« & =

Tyge

§SYSLIST -- Macro Instruction Operand . .

£§SYSPSCT -- Prototype Control Section Name
£SYSDATE and ESYSTIME -- Date/Time Variables

Keyword Macro Definitions and Instructions .

Keyword Prototype . . .« .
Keyword Macro Instruction

-

-

e s e

Mixed-Mode Macro Definitions and Instructions

Mixed-Mode Prototype . .

Mixed-Mode Macro Instruction

Macro Definition Compatibility

vi

-

.

L

-

e e @

2 o o &

L I S

¢ & & 8 8 & ¥ s 2 s 4

EXTENDED FEATURES OF MACRO LANGUAGE

Y

¢ 9 & o

-

-

-

2 & o & s @ 8

a & & & & @

‘. 8 & 8

2

*

-

Y

s & 8 s o 3

® & 8 & & & 2 & &8 ® 8 »

L]

¢ & & & » 8

¢ & 5

. e

s 8 a 2

e & & & &

y

) Attribu

® & 2 & 8 & 8 & * & & ® 8 o & o s

. 2 a2 e

*« e

.
®

INSTRUCTIONS

. e

es

» s s 8 & s s 8 s @
*

L] . . s & & » & &
& & 5 @ 4 & s *» 5 8 & o g &

¢ o & @
s

.
.

-

-

. s & & 8

s s e & o @

¢« & & ¢ 8 8 5 s a a g 8 5 & 8 @

® 8 & s & o & » 8 ¢ p & ¢ & 8 ®* a O g

s 8 & »

s & & O o &

e & s » 3

» & & ¥

* & * s 8 e 8 a s & 5 &

s & @ & @

APPENDIX A: ASSEMBLER INSTRUCTIONS . v o o « o o « o « o » @

APPENDIX B: MACHINE INSTRUCTION FORMAT 4 o s o @ = o o« o o
Notes for AppendiX B: o v « o o ¢ o @ ¢ o o o « s o o o« «

APPENDIX C:

APPENDIX D:

SUMMARY OF CONSTANTS |, . & o o « ¢ s 2 = o o o &«

MACRO LANGUAGE SUMMARY 4« o « o ¢ # # o o o o s @

APPENDIX F: SAMPLFE ASSEMBLY ® 8 ¢ ¢ & 8 0 @ 2 6 4 o s+ e B e &
IND“:X.- ¥ ® e 8§ B B ® 8 @ e e & &« g © ¢ o € g 4 ® & ®© & @
ILLUSTRATIONS
Figure 1. cCoding Formw « o e . o e e o o s e e = o o @
Figure 2. Assembler Language Structure -- Machine and
Assembler e & o o o o & e & e s @
Figure 3. Multiple Base Register Assignment e o o o o o
Figure 4. Extended Mnemonic Codes (RX format) . . « « .
Figure 5. Extended Mnemonic Codes (RR format) . . . « « . .
Figure 6. Type Codes for Constants e s
Figure 7. Bit-Length Specification (Single Constant) o e =
Figure 8. Bit-Length Specification (Multiple Constants) . .
Figure 9. Bit-Length Specification (Multiple Operands) . .
Figure 10. CNOP Alignment e o o s e o o o s o o
Figure 11. Conditional Assembly Elements « e o 8 e o » & o
Table 1. Details of Address Specification
Table 2. Details of Length Specification in SS Instructions
Table 3. Channel Command Word . . . ¢ ¢ ¢« o« o ¢ o « o o « «
Chart 1. Statements (Part 1 of 2) . . . ¢ & & ¢ ¢ ¢ o« o « &
‘Chart 2. Macro Language Elements . ¢ ¢« ¢ ¢ ¢ v « « o « o &
Chart 3. EXPIeSSiONS . ¢ ¢ ¢ « o « ¢ o o o = s o s o o o &
Chart “ . Attributes - - - - - - - - - - - - L] - - - - - - -
Chart 5. Variable SymbolS . « . . ¢« ¢« ¢ ¢ ¢« « o o « o o o

s & &6 8 & 8 & o &

1?7
29
30
34
35
35
35
51
76

¢ 8 & & 5 & ¢ % o o

.95
.97
.98
.99
.99

. 89
< 92
. 93
. 94
« 95
101
. 105

vii

Computer programs may be expressed in
machine language (language directly inter-
preted by the computer) or in a symbolic
ianguage, which is more meaningful to the
programmer. The symbolic language must be
translated into machine language by an
associated processing program before the
computer can execute the program.

Among symbolic programming languages,
assembler languages are closest to machine
language in form and content.

The assembler language discussed in this
manual is a symbolic programming language
for the IBM Time Sharing System (TSS).

It enables the programmer to use all
machine functions as if he were coding
in machine language.

The assembler program translates symbol-
ic 1instructions into machine language
instructions, assigns storage locations,
and performs auxiliary functions necessary
to produce an executable machine language
program.

ASSEMBLER LANGUAGE

The basis of the assembler language is a
collection of mnemonic symbols which
represent:

1. Machine language operation codes.

2. Operations (auxiliary functions) to be
performed by the assembler program.

The language is augmented by other sym-
bols, supplied by the programmer and used
to represent storage addresses or data.
Symbols are easier to remember and to code
than their machine langquage equivalents.
Use of symbols greatly reduces programming
effort and error.

The programmer may also create a type of
instruction called macro instructions, for
which mnemonic symbols, supplied by the
programmer, serve as operation codes.

Machine Operation Codes

The assembler language provides mnemonic
machine instruction operation codes for all
machine instructions in the Universal
Instruction Set and provides extended
mnemonic operation codes for the conditional
branch instruction.

SECTION 1: INTRODUCTION

Agssembler Operation Codes

The assembler language also contains
mnemonic assembler instruction operation
codes that specify auxiliary functions to
be performed by the assembler program.
These instructions to the assembler pro-
gram, with a few exceptions, do not result
in the generation of any machine langquage
code by the assembler program.

Macro Instructions

The assembler language enables the pro-
grammer to define and use macro instruc-
tions that are represented by operation
codes specifying sequences of machine and/
or assembler instructions that accomplish
the desired function.

Macro instructions used in preparing an
assembler language source program are eith-
er: (a) system macroc instructions, pro-
vided by IBM, that relate the object pro-
gram to components of the coperating system,
or (b) macro instructions created by the
programmer specifically for the program at
hand or for incorporation in a library.

Programmer-created macro instructions
simplify program writing and ensure that a
standard sequence of instructions is used
to accomplish a desired function.

For instance, the logic of a program may
require repetitive execution of the same
instruction sequence. Rather than code the
entire sequence every time it is needed,
the programmer creates a macro instruction
that represents the sequence. Then whenev-
er the sequence is needed, the programmer
codes the macro instruction statement.
During assembly the corresponding sequence
of instructions is inserted in the okject
program.

The language
and using macro
in Part Two.

and procedures for defining
instructions are discussed

ASSEMBLER PROGRAM

The assembler program, or assembler,
processes source statements that are writ-
ten in the assembler language.

Virtual Storage Concept

TSS permits the concept of a "virtual
storage", whose size is the maximum

Section 1: Introduction 1

addressing capability of the computer
system.

The 24-bit addressing capability per-
mits 12-bit base addressing (4096 base
addresses) and 12-bit byte addressing
(4096 byte addresses) -- a maximum of
over 16 million addressable bytes. 1In
programming, however, the user is usual-
ly restricted to addresses that represent
physical storage on his machine. Such a
rrogram cannot address 16 million contigu-
ous bytes directly, but must be structured
as a series of overlays. For the Model 67,
which has been modified for 32-bit address-
ing, the capacity of virtual storage is
over four billion bytes.

The time sharing monitor assigns active
programs to whatever physical storage is
available. Automatic relocation techniques
are used to distribute the logical program,
as written by the programmer, into physical
locations that are consistent with effi-
cient operation of the system. These relo-
cation techniques need not concern the pro-
grammer. He may write his program as if
contiguous bytes of storage were available
for each assenmbly.

Baslc Functions

Processing involves translating source
statements into machine language, assigning
virtual storage locations to instructions
and other elements of the program, and per-
forming the auxiliary assembler program
functions designated by the programmer.

The output of the assembler program is the
object program, a machine language equiva-
lent of the source program. Upon the PRINT
request of the programmer, the assembler
program furnishes a printed listing of the
source- and object-program statements, and
presents additional information, such as
error indications, that may be useful to
him in analyzing his program. (Nonconver-
sational users may arrange to have listings
printed directly without the PRINT command
by so specifying in the ASM command.) The
cbject program is in the format required by
the linkage and loading components of Time
Sharing System.

The assembler uses virtual storage to
allocate its working storage. Thus, lan-
quage elements that are customarily limited
by the capacity of internal tables are, in
effect, limited only by the size of virtual
storage available to the TSS Assembler.

PROGRAMMER AIDS

The auxiliary functions of the assembler
program assist the programmer in checking
and documenting programs, controlling
address assignment, segmenting programs,
defining data and symbols, generating macro
instructions, and controlling the assemkly
program itself. Mnemonic operation codes
for these functions are provided in the
language.

Variety in Data Representation: The prxo-

grammer selects decimal, binary, hexadecim-
al, or character representations of machine
language binary values that best suit his
purposes in writing source statements.

Base Register Address Calculation: The
addressing scheme requires designation of
a base register (containing a base address
value) and a displacement value to specify
a storage location (discussed in IBM
Principles of Operation). The assembler
assumes the clerical burden of calculat-
ing relative virtual storage addresses in
these terms for the symbolic addresses
used by the programmer. The programmer
retains control of base register usage

and the values entered therein.

Relocatability: The TSS assembler assigns
virtual storage locations to a program.
Physical storage locations are assigned

to virtual storage components, when the
program is executed, by a combination

of linkage preogramming and automatic
relocation features.

Sectioning and Linking: The assembler lan-
guage and program provide facilities for
partitioning an assembly into one or more
parts, called control sections. Special
control sections provide facilities for
reenterakle programs and the “common® data
feature for FORTRAN.

The assembler allows symbols to be
defined in one assembly and referred to in
another, thus effecting a link between
separately assemkled programs. This per-~
mits reference to data ands/or transfer of
control ketween programs. Sectioning and
linking is discussed in Section 3, under
"Program Sectioning and Linking."

Program Listings: A listing of source pro-
gram statements and resulting object pro-
gram statements may be produced by the
assembler for each source program. The
programmer can, to some extent, control the
form and content of the listing.

Conversational users will have selected
listings automatically stored in a list
data set which may be later obtained on an
output device by issuing the PRINT command.

The user may, however, override this
default by requesting that listings be
printed out immediately at his terminal.
Nonconversational users may choose to have
listings put either in a list data set or
immediately onto an output device. (Refer
to IBM Time Sharing System Command System
User's Guide, GC28-2001 for a full expla-
nation of the listing data set maintenance
process.) ’

Exyor Indications: As a source program is
asgembled, it is analyzed for actual or
potential errors in the use of the assembl-
er lanquage. Detected errors are indicated
in the program listing or in conversational
mode during the actual assembly run.

OPERATING SYSTEM RELATIONSHIPS

The assembler, a component of TSS,
functions under control of the operating

system that provides the assembler with
input/output, supplementary macro library,
system macro library, and other services
needed in assembling a source program.
Similarly, the object program produced by
the assembler will operate under control of
TSS and will depend on it for input/

output and other services. In writing the
source program, the programmer must include
statements requesting the desired functions
from TSS. These statements are discussed
in IBM Time Sharing System Assembler User
Macro Instructions.

‘The assembler will create the progex
linkage Lketween the object program and the
specified service components of the operat-
ing system. More specific informsation on
operating systeam relationships is in Con-

cepts apd Facilities.

Section 1: Introduction 3

- device;

SECTION 2: GENERAL INFORMATION

This section presents information about
assembler language coding conventions,
assembler source statement structure,
addressing, and sectioning and linking of
programs.

ASSEMBLER LANGUAGE CODING CONVENTIONS

Input Sources

A source program is a sequence of source
statements that have either been punched
into cards and entered by card reader, or
typed at the keyboard of a remote terminal
the statement formats differ
slightly between the two sources. The card
format is identical to that in other IBM
assembler languages; the keyboard format
was designed for use at typewriter-like
terminal devices.

Punched card Coding Form

Assembler language source statements may
be written on the standard coding form,

X28-6509 (Figure 1), provided by IBM. One

line of coding on the form is punched into
cne card; vertical columns on the form
correspond to card columns.

Space is provided for program identifi-
cation and instructions to keypunch opera-
tors. The body of the form is composed of
the statement field, columns 1~71, and the
identification sequence field, columns
73-80. The identification sequence field,
not part of a statement, is discussed under
"Statement Format,® below.

The entries (coding) that compose a
statement occupy columns 1-71 of a state-
rent line and, if needed, columns 16-71 of

up to two successive contipuation lines.

Statement Boundaries -- Card Format

Source statements are normally in
columns 1-71 of statement lines and columns
16-71 of continuation lines. Therefore,
columns 1, 71, and 16 are referred to as
the "begin,” "end," and "continue" columns.
(This convention may be altered by use of
the input format control (ICTL) assembler

TR~ 04001 UTIAS

M IBM Assembler Coding Form Prisisa 76 o
r-';u PUNOING ORAMHC TAGE or
1"‘" INETRUCTHONT —c AT TECTAS MUMME
STATEMENT
I(o Ogpmsitom. Opoarsd Cammpens Soopmnca
s 1 L3 4 16 = 3% 43 bl 53 # 83 7 3 20
X 34 4 & B T
P& ;. B 4
N3 LR
— | IRAEEER |BEE BB 10N f
i [| : i | i P { 1
S SR ; + ! . i S —
i b I H f 5
et T p 1 T T ;?Egé
3 et F 3] TR AT I IBEREE
! $~" A Tikia ERNE
‘ L ! . e
!‘ I T) t T H)
- . _
| : .
B K ¥ % 3 r 7 Y T L4
—}_ . 9 k }4i % b I ! i
. 7 12 s 9 A) ; . i o 1l
b A 3, I i ‘[
! i ! ! L
1 T + - ~ -
; i i i
. ; + : —
. ! i i ;
EREIE 8K ‘ IREEE ; ! T,
“ONESY q. 1 ‘ l 1‘ }
- T
) /| SEEREERNI | ’
' B
i ; : !
[! :

Figure 1. Coding Form

which will be discussed
later.) The continuation character, if
used, always immediately follows the end
column.

instruction,

Continuatjon Lines -- card Format

When it is necessary to continue a
fitatement on another line, these rules
apply.

1. Enter a continuation character (not
blank, and not part of the statement
coding) in the column following the
end column (normally column 72) of the
statement line.

2. Continue the statement on the next
line, starting in the continue column
(normally column 16); all columns toc
the left of the continue column must
be blank.

3. When more than one continuation line
is needed, each line to be continued
must have a character (not blank, and
not part of the statement coding)
entered in the column following the
end column (normally column 72).

4. Only two continuation lines may be
used for a normal statement. A macro
instruction, however, may use as many
ag necessary. '

Character Sets -- Card Format

Source statements may be entered into
TSS from punched cards in three ways:
from the installation's high-speed card
rcader, from an IBM 2780 Data Transmission
Terminal located away from the central
installation (remote job entry), or from an
TBM 10656 Card Reader attached to a 1052
Printer-Keyboard.

Cards read into the central or remote
jJob entry card readers must be in 029 key-
punch code, which is converted to EBCDIC.
Cards read into the 1056 Card Reader may be
in either 1057 card punch code or 029 punch
code,

To initiate punched card input from the
1056 Card Reader, the user must type in CA,
CB, or C on the keyboard. CA transfers
control from the keyboard to the reader and
specifies conversion from 1057 card gunch
code to EBCDIC. CB transfers control to
the reader and specifies conversion from
029 punch code to EBCDIC. C transfers con-
trol to the reader using the following con-
vention: if keybocard mode was KA, CA will
be the new mode; if KB was the keyboard
mode, CB will be the new mode. If some
cards were punched on the 1057 and others
on the 029, the commands CA and CB may be
inserted at any place in the deck where it

is necessary to change the mode. (Further
information on the use of C, CA, and CB
will be found in Command System User's
Guide and Terminal User's Guide.)

Statement Boundarjes ~- Keybocard Fgrmat

Source statements occupy the area
ketween: (a) the column at which the com-
mand language interpreter releases the key-—
board to the user and (b) the right-hand
margin setting. This area is not
restricted to 80 columns.

Continuation Lines -- Keyboard Format

When it is necessary to continue a
statement that is being entered from a key-
board, the continuation character is typed
at the point at which continuation is
desired, followed immediately by a carrier
return. (For example, on the IBM 1052
Printer-Keyboard, the continuation charac-
ter is a hyphen.) The statement is con-
tinued at the first non-blank, non-tab
character of the next line.

Character Sets -- Keyboard Format

KA and KB can be used to specify the
character set to be used during keyboard
input. With KA, the user indicates he
wishes to use the full EBCLCIC character
set. With KB, the user specifies that the
lower case characters {a~z and ! " +) be
translated into their ugper case equiva-
lents (A-2 and $ # 3).

Statement Format

Statements may consist of one to four
entries. They must be written in this or-
der, left to right: name entry, operation
entry, orerand entry, and comments entry.
These entries must be serarated by one or
more blanks (or a horizontal tab character
from the keyboard).

For punched card input, the coding form
provides an 8-character name field, a 5-
character operation field, and a 56-
character operand and/or comments field.

If the programmer wants to disregard
these koundaries and write the namwe, opera-
tion, operand, and comment entries in other
positions, he is subject to these rules:

1. On punched cards, the entries must not
extend beyond statement boundaries
(either the conventicnal boundaries,
or as designated by the programmer via
the ICTL instruction).

2. Entries must be in proper sequence.
3. Entries must be separated by one or

more klanks.

Section 2: General Information 5

4. A name entry must start in the begin
column.

5. Name and operation entries must be
completed in the first line of the
statement, including at least one
blank following the operation entry.

In the descriptions of the entries,
below, the assembler regards a horizontal
tab character in keyboard format as a
single blank.

Name Entry: This symbol, usually optional,
is created by the programmer to identify or
label a statement. The symbol must consist
of eight characters or less; the first
character must be entered in the begin
column. If the begin column is blank, the
assembler assumes no name has Leen entered;
no blanks may appear within the name entry.

Operation_ Entry: The mnemonic operation
code specifies the machine operation,
assembler, or macro instruction operation
desired. An operation entry is mandatory
and must start at least one position to the
right of the begin cclumn; it cannct appear
in a continuation line., Valid mnemonic
operation codes for machine and assembler
operations, given in Appendixes B and C,
consist of five characters or less for
machine or assembler operation codes, and
eight characters or less for macro instruc-
tion operation codes. No blanks may appear
within the operation entry.

Operand Entry: This entry identifies and
describes data {such as storage locations,
masks, storage area lengths, or types of
data) associated with the instruction.

Operands are required for all machine
instructions and, depending on the needs of
the instruction, one or more operands may
be written. Operands must be separated by
commas. Ko blanks may appear Letween
operands and the commas that separate them.
The operands may not contain embedded
blanks except when character representation
specifies a constant, a literal, or immedi-
ate data in an operand; e.g., C'AB D'.

Comments Entry: These are information
items about the program that are to be
inserted in the program listing. All valid
characters ({(see "Character Set,® below),
including blanks, may ke used in writing a
comment. The entry may follow the operand
entry and must be separated from it by a
blank; comments entries cannot extend
beyond the end column (normally column 71).

An entire line, or a series of lines,
may be used for comments, by placing an
asterisk in the begin column of each line.
Also, continuation lines, described above,
may be used.

In statements where an optional ogperand
entry is omitted, or in statements which
allow no operand but in which a comments
entry is desired, the absence of the
operand entry must be indicated by a comma
preceded and followed by one or more
blanks.

T
perationj{Operand
4

o

(@)
END |« COMMENT

SIS

b

Statement Example: A compare instruction
is named by the symbol COMP; the operation
entry (CR) is the mnemonic operation code
for a register-to-register compare ogera-
tion; and the two operands (5,6) designate
two general registers whose contents are to
be compared. The comments entry rewinds
the gprogrammer that he is comparing "new
sum* to "old."

3 L]
{Name |Operation|Operand
1 4 3

R

r T T
|COMP |CR |{S,6 NEW SUM TO OLD
L i rt

Identification Sequence Field

For source statements that originate
from punched cards, the identification
sequence field of the coding form (columns
73-80) is used to enter the optional pro-
gram identification and/or statement
sequence characters. If the field, or a
portion of it, is used, the program identi-
fication is punched in the statement cards
and rerroduced in the printed listing of
the source program.

The programmer may number the cards in
this field, to keep source statements in
order, by punching appropriate characters
into the cards. During assembly, he may
request the assembler to verify this
sequence by using the input sequence check-
ing (ISE(C) assembler instruction (see Sec-
tion 5, "Program Control Instructions®).

Caution When Changing Card-Orxigin
Statements

Source statements from punched cards may
later be changed, using various commands of
the TSS Text Editor (the Text Editor
commands are described in Command System
User's Guide).

On assembly, each source statement of
runched card origin is treated as an 80-
character record. Where the statement has
been shortened to fewer than 80 characters
Ly changing it with a Text Editor command
after it has been stored, the assexmtler,

before further processing, pads the state-
ment to 80 characters with trailing blanks.
Where the statement has been changed to
contain more than 80 characters, the
assembler truncates the statement to 80
characters.

Care must be taken in changing a card-
origin source statement so that, after pad-
ding or truncation by the assembler, the
statement will still conform to the coding
conventions discussed in this section. (aAn
example might be a statement containing a
sequence number in the identification
sequence field, columns 73-80. The state-
ment is shortened one character during text
editing. The assembler pads with one
trailing blank in column 80, leaving
columns 72-79 containing the sequence num-
ber. Since column 72 is normally the con-
tinuation column, an errxor results if the
next source statement is not a continuation
line.)

Summary of Statement Format

Entries in a statement must always be
separated by at least cne blank and must be
in this order: name, operation, operands,
comment.

Every statement requires an operation
entry; name and comment entries are option-
al. Operand entries are required for all
machine instructions and most assembler
instructions.

The name and operation entries must be
completed in the first statement line,
including at least one blank following the
operation entry.

The name and operation entries must not
contain blanks; operand entries must not
have blanks preceding or following the com-
mas that separate them.

A name entry must always start in the
begin column.

If the column after the end column is
blank, the next line must start a new
statement. If the column after the end
column is not blank, the following line
will be treated as a continuation line.

All entries must be contained within the
designated begin-, end-, and continue-
column boundaries.

Character Set

Source statements use these characters:

Letters A through 2 § * &

Diqgits 0 through 9
Sgecial
Characters + - , = . * () ' / & blank

Any of the remainder of the 256 punch
combinations may be designated anywhere
that characters may appear between paired
apostrophes, and in comments.

ASSEMBLER LANGUAGE STRUCTURE

A source statement is composed of:

e A name entry (usually optional)

e An operation entry (mandatory)

e An operand entry (usually required)
A name entry is:

* A symbol
An operation entry is:

e A mnénonic operation code representing
a machine, assembler, or macro
instruction.

An operand entry is:

e One or more operands composed of one or
more expressions, which, in turn, are
composed of a term or an arithmetic
combination of terms.

Orperands of machine instructions gener-
ally represent such things as storage loca-
tions, general registers, immediate data,
or constant values. Operands of assemkler
instructions provide the information needed
by the assembler program to perform the
designated operation.

This structure is shown in Figure 2.
Terms shown in the figure are classed as
absolute or relocatable, depending on how
program relocation affects them. The relo-
cation consideration in the following dis-
cussions is the adjustment, by the loader
or linkage editor, of the virtual storage
assignments that were made by the assembl-
er. This adjustment usually takes the form
of a base increment that is added to the
original virtual storage location assign-
ments. A term is absolute if its value
does not change when such an adjustment is
wrade and is relocatable if its value
changes upon relocation.

Section 2: General Information 7

m Oparation Enryf Operond Entry
. iso
isa Mnemonic Operaonds
Symbol Operation Code one or more
/G‘ N that are d of an
/ N
/
P N
Y, AN
Ve AN
ya N
Moachi; As:
lmrr:c;?:n lmmi‘:b Exp o Exp (Exp) or | ExplExp, Exp)
Arithmetic
Term Combination
of Terms
as {follows
/o
which may be
any one of ATop ATop... ——] RT+RT+ ...
the following
or
—q AT+ RT+ ...
or
A A Locotion . Symbol Length
A
A Smhel o | | seté-Defining | | ConterRefer=] |, ALerel | | Ahribure Refer,
(A?o't RTY Term ence e.g.,* '9"(”) ence 6.g.,] RT AT+ ...
(A1) (RD L'Symbol (A
which may be Legend:
;?:f:?l.o: Exp = Expression; AT * Absolute Term; RT = Relocatable Term
hd Arithmetic Operators (op):
* oo Addition
“eeens Subtraction
Y. Maultiplication
/oenn Division
Decimat Hexadecimal Binary Character
e.g.,15 e.g., X'C4 e.g., 8101’ e.g.,C'ABY'
Figure 2. Assembler lLanguage Structure -- Machine and Assembler

TERMS AND EXPRESSIONS
TERMS

Every term represents a value that may
be assigned by the assembler program (sym-
bols, symbol length attribute, location
counter reference), or that may be inherent
in the term itself (self-defining term lit-
eral). An arithmetic combination of terms
is reduced to a single value by the
asgembler.

The following material discusses each
type of term and the rules for its use.

Symbols

A sywbol is a character or combination
of characters that represents addresses or
arbitrary values.

Symbols, through their use as names and
in operands, provide the programmer with a
way to name and refer to a program element.
A gsymbol created by the programmer for use
as a name entry and in an operand must con-
form to these rules:

1. The symbol must consist of not more
than eight characters. The first
character must be a letter, the other
characters may be letters, digits, or
any combination of the two.

2. No special characters may be included
in a symbol.

3. No blanks are allowed in & symbol.

These are valid symbols:

READER LOOP2 aB4
A23456 N $a1
X4F2 sS4 #56

These symbols are invalid, for the
reasons noted:

256B (first character is not
alphabetic)

RECORDAREA2 (more than eight
characters)

BCD*34 (contains a special char-
acter -)

IN AREA (contains a blank)

Defining Symbols: The assembler assigns a
value to each symbol appearing as a name
entry in a source statement. The values
assigned to symbols that name storage
areas, instructions, constants, and control
sections are the addresses of the leftmost
bytes of the storage fields containing the
named items. Since the addresses of these
items may change with program relocation,
the symbols naming them are considered
relocatable terms.

A symbol used as a name entry in the
equate (EQU) assembler instruction is
assigned the value designated in the
operand entry of the instruction. Since
the operand entry may rerresent a relocat-
able value or an absolute (nonchanging)
value, the symbol is considered a relccat-
able, or absolute, term, depending upon the
value it is equated to.

The assembled value of a symbol may not
ke negative and may not exceed 2341 except
when using a 32-bit machine where its allo-
cated value may ke as high as 232-%1,

A symbol is defined when it appears as
the name of a source statement. (A special
case of symbol definition is discussed in
Section 3, "Program Sectioning and
ILinking.")"

Symbol definition also involves the
agsignment of a length attribute to the
symbol. (The assembler program maintains
an internal symbol table that has the
values and attributes of symbols. When the
assembler encounters a symbol in an
operand, it refers to the table fox the
values associated with the symbol.) The
symbol*'s length attribute is the size, in
kytes, of the storage field whose address
is represented by the symbol. For example,
a symbol naming an instruction that occu-
pies four bytes of storage has a length
attribute of 4.

Previously Defined Symbols: Some instruc-

tions require that a sywbol appearing in
the operand entry be previously defined;
that symbol, before its use in an operand,
must have appeared as a name entry in a
prior statement.

General Restrictions on Symbols: A symbol

may be defined only once in an assenktly;
each symkol used as a statement name must
be unique to that assembly. However, a
symbcol may be used in the name field more
than once as a control section name
(defined in the START, CSECT, or DSECT
assembler statements, described in Section
3) hecause the coding of a control section
may ke suspended and then resumed at any
subsequent point. The CSECT or DSECT
statement that resumes the section must be
named by the same symbol that initially
named the section; thus, the symbol that
names the section must be repeated. Such
usage is not considered to be duplication
of a symbol definition.

Self-Defining Terms

The value of a self-defining term is
inherent in the term; for example, the
decimal self-defining term 15 represents a
value of fifteen. The value of a self-

Section 2: General Information 9

defining term is absolute; it does not
change when the program is relocated.

The four types of self-defining terms --
decimal, hexadecimal, binary, and character
-- are used as the machine language binary
value or bit configuration they represent.
The type of term selected depends on what
is being specified.

sinqg Self-Defining Terms: These ternms,
representing machine values or bit confi-
gurations, are used to specify program ele-
ments, such as immediate data, masks, regi-
sters, addresses, and address increments.

Self-defining terms are distinct from
data constants or literals. When a self-
defining term is used in a machine instruc-
tion statement, its value is assembled into
the instruction. When a data constant or
literal is specified in the operand of an
instruction, its address is assembled into
the instruction.

Decimal Self-Defining Term: A decimal
self-defining term is simply an unsigned

decimal number written as a sequence of
digits; high-order 0s may be used (e.g.,
007). Limjtations on the value of a term
depend on its use. For example, a decimal
term that designates a general register
should have a value between 0 and 15 inclu-
sive; one that represents an address should
not exceed the size of storage. 1In any
case, the value of a decimal term may not
exceed 4,294,967,295 (232-1). A decimal
term is assembled as its binary equivalent.
Some examples of decimal self-defining
texms are 8, 147, 4092, and 00021.

Hexadecimal Self-Defining Term: & hexade-
cimal self-defining term is an unsigned
hexadecimal number written as a sequence of
hexadecimal digits. The digits must be
enclosed in apostrophes and preceded by the
letter X; for example, X'C49°.

Each hexadecimal digit is assembled as
its 4-bit binary equivalent. Thus, a hexa-
decimal term used to represent an 8-bit
mask would consist of two hexadecimal
digits. The maximum value of a hexadecimal
term is X' FFFFFFFF'.

The hexadecimal digits and their bit
patterns are:

0~ 0000 4~ 0100 8- 1000 Cc- 1100
1- 0001 5- 0101 9- 1001 D- 1101
2- 0010 6- 0110 A- 1010 E- 1110
3- 0011 7- 0111 B- 1011 F- 1111

10

Binary Self-Defining Texrm: A binary self-
defining term is written as an unsigned

sequence of 1s and 0s enclosed in apos-
trophes and preceded by the letter B; for
example, B°10001101*'. This term would
appear in storage as shown, occupying one
byte. A binary term may have up to 32
kits. Binary representation is used pri-
marily in designating bit patterns of masks
or in logical operations.

The following example illustrates a
kinary term used as a mask in a test undex
wask (TM) instruction. The contents of
GAMMA are to be tested, bit by bit, against
the rattern of bits represented by the
binary term.

f ¥ Ll
|Name |Operation|Operand
i 4

e commce, s s 008

1] T
ALPHA | TM |GAMMA,B*10101101°
4 A

Charactexr Self-Defining Term: A character
self-defining term consists of ocne to four
characters enclosed by apostrophes; it must
be preceded by the letter C. All letters,
decimal digits, and special charactexrs may
be used in a character term. Also, any of
the remainder of the 256 punch combinations
may be designated in a character self-
defining term. Examples of character self-
defining terms are:

crst C* '{blank)
C*ABC* c*13"

Because apostrophes, in the assembler
language, and ampersands, in the macro
instruction language, are used as syntactic
characters, the following rule must ke
observed when using these characters in a
character term: For each apostrophe or
ampersand desired in a character self-
defining term, two apostrophes or amper-
sands must be written. For example, the
character value A'# would be written as
'A'‘#°', while an apostrophe followed by a
blank and another single apostrophe would
be written as *¢*' ''*,

Each character in the character sequence
is assembled as its 8-bit code equivalent.
The two apostrophes or ampersands that
must be used to represent a single
apostrophe or ampersand within the char-
acter sequence are assembled as a single
apostrophe or ampersand.

Iocation Counter: A location counter is
used to assign storage addresses to program
statements; it is the assembler's equiva-
lent of the instruction counter in the com-
puter. AsS each machine instruction or data
area is assembled, the location counter is
adjusted to the proper boundary for the
item, if adjustment is necessary, and then

incremented by the length of the assembled
item. Thas, it always points to the next
available location. If the statement is
named by a symbol, the value attribute of
the symbol is the value of the location
counter after boundary adjustment, but
before addition of the length.

The assembler maintains a location coun-
ter for each control section of the program
ond manipulates each location counter as
previously described. Source statements
tor each section are assigned addresses
trom the location counter for that section.
Within each control section, the location
counter controls the assignment of consecu-
tively higher virtual storage locations.
Thus, if a program has multiple control
sections, all statements identified as
belonging to the first control section will
be assigned from the location counter for
section 1; the statements for the second
section from the location counter for sec-
tion 2; etc. This procedure is followed
whether the statements from different con-
trol sections are interspersed or written
in control section sequence.

The location counter setting can be con-
trolled by using the START and ORG assembl-
or instructions, which are described in
sections 3 and 5. The counter affected by
c¢ither of these assembler instructions is
the counter for the control section in
which it appears; the maximum value for the
counter is 23%-2,

Location Counter Reference

The programmer may refer to the current
value of the location counter at any place
in a program by using an asterisk in an
operand. The asterisk represents the loca-
tion of the first byte of currently avail-
able storage (that is, after any required
boundary adjustment). Using an asterisk in
a machine instruction statement is the same
as placing a symbol in the name field of
the statement and then using that symbol as
an operand of the statement. Because a
location counter is maintained for each
control section, a location counter
reference designates the location counter
for the section in which the reference
appears.

A reference to the location counter may
Le made in a literal address constant (that
is, the asterisk may be used in an address
constant specified in literal form). The
address of the instruction containing the
literal is used for the value of the loca-
tion counter. A location counter reference
may not be used in a statement that
requires the use of a predefined symbol,
excepting the EQU and ORG assembler
instructions.

literals

This is a constant preceded by an equal
sign (=), one of three basic ways to intro-
duce data into a progran.

A literal represents data, rather than a
reference to data. The inclusion of a lit-
eral in a source statement directs the as-
sembler to: (a) assemble the value speci-
fied by the Miteral, (b) store this value
in a "literal pool,” and (c) place the
address of the storage field containing the
value in the operand field of the assembled
source statement.

Literals provide a means of entering
constants (such as numbers for calculation
and addresses, indexing factors, or words
cr phrases for printing out a message) into
a preogram by specifying the constant in the
operand of the instruction in which it is
used. This may be done rather thanm using
the DC (define constant, see Section 5) as-
sembler instruction to enter the data into
the program, and then using the name of the
DC instruction in the operand.

Only one literal is allowed in a machine
instruction statement and it may not be
combined with any other terms; alsc, it may
not ke used as the receiving field of an
instruction that modifies storage. A 1lit-
eral may not be specified in an address
constant. (However, an address constant
may ke specified as a literal.)

This instruction shows one use of a
literal:

r L] L
}|Name |Operation|Operand
i 4

i

i

i
R Y

H
|GAMMA | L [10,=F*274"
L L

The statement GAMMA is a load instruc-
tion using a literal as the second ogerand.
When assembled, the, second operand will be
the address at which the value represented
bty F'274' is stored.

In general, literals may be used wherev-
er a storage address is permitted as an
operand. They may not, however, be used in
any assembler instruction that requires the
use of a previously defined symbol.
literals are considered relocatable Lecause
the address of the literal, rather than the
literal itself, will be assembled in the
statement that employs a literal. The as-
sembler gemerates the literals, collects
them, and places them in a specific storage
area (explained in "Literal Pool," Lkelow).

A literal is not to be confused with the
immediate data in an SI instruction; such

Section 2: General Information 11

data is assembled into the instruction and
is not preceded by an eqgual sign (=).

Literal Format: The assemkler requires
descriptions of the specified type of 1lit-
eral and of the literal itself. Those
descriptions assist the assembler in
assembling the literal correctly. The
descriptive portion of the literal must
indicate the format of the constant, and it
may specify the constant®'s length.

The method of describing and specifying
¢ constant ag a literal is nearly identical
to the method of specifying it in the
operand of a DC assembler instruction. The
major difference is that the literal must
start with an equal sign (=) to indicate to
the assembler that a literal follows.
{Specification of a literal is covered in
the DC assembler instruction operand for-
mat, in Section 5.) The type of literal
designated in an instruction is not checked
for correspondence with the operation code
of the instruction.

Some examples of literals are:

=A(BETA) ~~ address constant ljiteral
=F"'1234* -- fixed point, 4-byte number
=C'ABC' ~-- character literal

Literal Poul: The literals processed by
the assembler are collected and placed in a
special area called the literal pool; the
location of 2 literal, rather thanm the lit-
eral itself, is assembled in a statement
using a literal. The positioning of the
literal pool may be controlled by the pro-
grammexr, if he so desires. Unless other-
wise specified, the literal pool is placed
at the end of the first control section
(CSECT). To facilitate writing reenterable
programs, if the assembly contains one or
more prototype control sections (PSECTs),
literal address constants are placed in a
pool at the end of the first prototype con-
trol section.

The programmer can also specify the
creation of multiple literal pools. How-
ever, the sequence in which literals are
ordered within the pool is controlled by
the assembler. Literals that are eight
bytes, or a multiple of eight are aligned
at a doubleword boundary; #4-byte literals
are aligned at a word boundary; 2-byte
literals are aligned at a halfword; and
literals with an odd number of bytes are
aligned at the next available storage loca-
tion. Further information on positioning
literal pools is in Section 5, under “LTORG
~-- Begin Literal Pool."

Symbol Length Attribute Reference

The length attribute of a symbol may be
used as a term. Reference to the attribute

12

is made ky coding L' followed by the sym-
kol; for example, L'BETA. The length
attribute of BETA will be substituted for
the term. The following example illus-
trates the use of L'symbol in moving a
character constant into either the high-
order or low-order end of a storage field.

For ease in following the example, the
length attributes of A1l and B2 are men-
tioned. However, keep in mind that the
L'symbol term makes coding such as this
possible in situations where lengths are
unknown.

(m==—=7 S St 1
|Name |Operation|Operand |
e S
{al |ps {CL8 |
|B2 |DC {CL2°AB" |
| HIORD | MVC {AL1(L*B2),8B2 |
| LOORD | MVC |A1+L*A1-L°'B2(L"B2),B2 i
L i 'y o e <o e ot e e e o 2 e o 4

Al names an 8-byte storage field and is
assigned a length attribute of 8. B2 names
a 2-kyte character constant and is assigned
a length attribute of 2. HIORD moves the
contents of B2 into the leftmost two bytes
of Al; the term L*'B2 in parentheses pro-
vides the length specification required by
the instruction. WwWhen the instruction is
assembled, the length is placed in the pro-
rer field of the machine instruction.

LOORD moves the contents of B2 into the
rightmost two bytes of Al. The comkination
of terms A1+L°Ai1-L°'B2 results in the addi-
tion of the length of Al to the beginning
address of Al, and the subtraction of the
length of B2 from this value. The result
is the address of the seventh byte in field
Al. The constant represented by B2 is
moved into Al, starting at this address.
L'B2 in parentheses provides length speci-
fication, as in HIORD.

Terms in Parentheses

These are reduced to a single value, soO
they, in effect, become a single term.
Arithmetically combined terms, enclosed in
parentheses, may be used in combination
with terms ocutside the parentheses:

14+BETA- (GAMMA-LAMBDA)

When the assembler program encounters
terms in parentheses in combination with
cther terms, it reduces the combination of
terms inside the parentheses to a single
value which may be absolute or relocatable,
depending on the combination of terms.

This value then is used in reducing the
rest of the combination to another single
value.

Terms in parentheses may be included
within a set of terms in parentheses:

A+B-(C+D-(E+F)+10)

The innermost set of terms in paren-
theses is evaluated first. For compatibil-
ity with other IBM assemblers, expres-
sions should be limited to five levels
of parentheses; parentheses which occur as
part of an operand format are not included
in this five-level limit. Programs written
expressly for the TSS assembler are not
restricted in the number of levels of
parentheses that may be used.

EXPRESSIONS

This subsection discusses the two types
of expressions, absolute and relocatable,
used in coding operand entries for source
statements, together with the rules for
determining these attributes of an
expression.

An expression is composed of a single
term or an arithmetic combination of terms,
as shown in Figure 2. These are examples
of valid expressions:

. BETA*10

AREAl1+X"* 2D" B*101’

*432 C'ABC'

N-25 29
FIELD+332 I'FIELD
FIELD LAMBDA +GAMMA
(EXIT-ENTRY+1) +GO TEN/TWO
=F*1234°*

ALPHA-BETA/ (10+4AREA¢L'FIELD)~100
The rules for coding expressions are:

1. An expression may not start with an
arithmetic operator, (+-/¢). The
expression -A+BETA is invalid; O-A+
BETA is valid.

2. An expression may not contain two suc-
cessive terms or two operators.

3. For compatibility with other IBM
assemblers, an expression should not
consist of more than 16 terms or
contain more than five levels of
parentheses. For programs written
expressly for the TSS assembler,
there is no restriction on the number
of terms or levels of parentheses.

4. A multiterm expression may not contain
a literal.

Expressions containing more than five
levels of parentheses produce warning mes-
sages, but are assembled correctly.

Evaluation of Expressions

A single term expression; for example,
29, BETA, *, L'AILPHA, takes on the value of
the term involved.

A multiterm expression; for example,
BETA+10, ENTRY-EXIT, 25*10+A/B, is reduced
to a single value, as follows:

1. Each term is given its value.

2. Arithmetic operations are performed
left to right. Multiplication and
division are done before addition and
subtraction; for example, A+B*C is
evaluated as A+(B*C), not (A+B)*C.
The computed result is the value of
the expression.

3. Division always yields an integer
result; for example, 1/2#%#10 yields 0;
10#1/2 yields 5.

4. Division by 0 is valid and yields a 0
result.

Parenthesized multiterm expressions used
in an expression are processed before the
rest of the terms in the expression; for
example, in A+BETA*(CON-10), the term CON-
10 is evaluated first and the resulting
value is used in computing the final value
of the expression.

Absolute and Relocatable Expressions

An exgpression is absolute if its value
is unaffected by program relocation; it is
relocatakle if its value changes upon pro-
gram relocation. The two types of expres-
sions, aksolute and relocatable, take on
these characteristics from the terms com-
fFosing them.

Absolute_ Expression: This may be either an
absolute term or any arithmetic combination
of aksolute terms. An aksolute term may be
an absolute symbol, any of the self-
defining terms, or a length attribute
reference. All arithmetic operations are
permitted between absclute terms, as indi-
cated in Figure 2.

An aksolute expression may contain relo-
catable terms (RT), alone or in combination
with aksclute terms (AT), under these
conditions:

1. There must be an even number of relo-
catable terms in the expression.

2. The relocatable terms must be paired.
Each pair must have the same relocata-
bility attributes; that is, they
arpear in the same control section in
this assembly (see "Program Sectioning
and Linking,® in Section 3). Each

Section 2: General Information 13

pair must consist of terms with oppo-
site signs. The paired terms do not
have to be contiguous, for example,
RT+AT-RT.

3. No relocatable term may enter into a
multiply or divide operation. RT-RT#*
10 is invalid; (RT-RT)#*10 is valid.

The pairing of relocatable terms (with
opposite signs and the same relocatability
attribute) cancels the effect of reloca-
tion. Therefore, the value represented by
the paired terms remains constant, regard-
less of program relocation. For example,
in the absolute expression aA-Y+X, A is an
absoclute term, and X and Y are relocatable
with the same relocatability attribute. 1If
A eqguals 50, Y equals 25, and X equals 10,
the value of the expression would be 35.
It X and Y are relocated by a factor of
100, their values would then be 125 and
110. However, the expression would still
be evaluated as 35(50-125+110=35).

The following examples illustrate abso-
lute expressions. A is an aksolute term; X
and Y are relocatable terms with the same
relocatability attribute.

A-Y+X

A

A%*A

X-Y+A

*-Y (A reference to the location counter
must be paired with anotherxr relocat-
able term from the same control sec-
tion, that is, with the same relo-
catability attribute.)

Note that paired relocatable expressions
cannot be successfully used in certain

miacro language statements of this book.
In macro language, cenditional or branch-
ing statements, such as AIF, SETA, and

SETB statements, determine which of
several desired, pre-stored lines of
source code will be included in an
assembled program. Since macro expan-
sion (generation of these selected source
codce statements into a program) takes
place prior to the assignment of loca-
tion counter values, a paired relo-
catable expression in a conditional macro
langquage statement will not have been
resolved into an absolute expression.

Relocatable Expressions: The value of a
relocatable expression would change by n if
the program in which it appears is relo-

14

cated n kytes away from its originally
assigned area of storage. All relocatable
expressions must have a positive value.

A relocatable expression may be a relo-
catakle term and it may contain relocatable
terms, alone or in combination with abso-
lute terms, under these conditions:

1. There must be an odd number of relo-
catable terms.

2. All the relocatable terms but one must
be paired (described in "Absoclute
Expression, ™ above).

3. The unpaired term must not be directly
preceded ky a minus sign.

4. No relocatable term may enter into a
multiply or divide operation.

A relocatable expression reduces to the
single relocatable value of the o0dd relo-
catakle term, adjusted by the values repre-
sented by the absolute terms and/or paired
relocatakle terms associated with that
value. The relocatability attribute is
that of the odd relocatable term.

For example, in W-X+W~-10, W and X are
relocatable terms with the same relocata-
kility attrikute. If initially, W egquals
10 and X equals 5, the value of the expres-
sion is 5. However, upon relocation this
value will change. If a relocation factor
of 100 is applied, the value of the expres-
sion is 105. Note that the value of the
paired terms W-X remains constant at 5
regardless of relocation. Thus, the new
value of the expression, 105, is the result
of the value of the odd term (W) adjusted
ky the values of W-X and 10.

The following examples illustrate relo-
catable expressions. A is an absoclute
term, W and X are relocatable terms with
the same relocatability attribute, and Y is
a relocatakle term with a different relo-
catability attribute.

Y-32*A W-X+* =F'1234*' (literxral)
W-X+Y A*A+H-W+Y
* (reference to W-X+W

location counter) Y

SECTION 3:

ADDRESSING -- PROGRAM SECTIONING AND LINKING

ADDRESSING
The addressing technique requires
the use of a base register, which contains

the base address, and a displacement,
which is added to the contents of the base
register. The programmer may specify a
symbolic address and request the assem-
bler to determine its storage address in
terms of a base register and a displace-
ment. The programmer may rely on the as-
sembler to perform this service for him by
indicating which general registers are
available for assignment, and what values
the assembler may assume that each con-
tains. The programmer may use as many oOr
as few registers for this purpose as he
desires. The only requirement is that, at
the point of reference, a register contain-
ing an address from the same control sec-
tion is available, and that this address is
less than or equal to the address of the
item to which the reference is being made.
The difference between the two addresses
may not exceed 4095 bytes.

ADDRESSES -—- EXPLICIT AND IMPLIED

An address is composed of a displacement
plus the contents of a base register. (In
the case of RX instructions, the contents
of an index register are also used to
derive the address.)

The programmer writes an explicit
address by specifying the displacement and
the base register number. In designating
explicit addresses, a kase register must
not be combined with a relocatable symbol.

He writes an implied address by specify-
ing an absolute or relocatable address,
The assembler has the facility to select a
base register and compute a displacement,
thereby generating an explicit address from
an implied address, provided that the as-
sembler has been informed: (a) what base
registers are available to it, and (b) what
each contains. The programmer conveys this
information to the assembler through the
USING and DROP instructions.

BASE REGISTER INSTRUCTIONS
The USING and DROP instructions enable

programmers to use expressions representing
implied addresses as operands of machine

Section 3:

instruction statements, leaving the assign-
went of Lase registers and the calculation
of displacements to the assembler.

To use symbols in the operand field of
machine instruction statements, the pro-
grammer must: (a) indicate to the assem-
bler, by a USING statement, that one or
rore general registers are available for
use as base registers, (b) specify, Ly the
USING statement what value each base regis-
ter contains, and (c¢) load each base regis-
ter with the value he has specified for it.

If implicit addressing is desired, a
Frogram must have at least one USING state-
ment for each control section to be
addressed.

The assembler's determination of Lase
registers and displacements relieves the
programmer of separating each address into
a displacement value and a base address
value. This feature of the assembler will
eliminate a likely source of programming
errors, thus reducing the time required to
check out programs. To take advantage of
this feature, the programmer uses the USING
and DROP instructions described in this
subsection. The principal discussion of
this feature follows the descriptions of
both instructions.

USING -- Use Base Address Register

This instruction indicates that one or
more general registers are available for
use as base registers. Also, this instruc-
tion states the base address values that
the assembler may assume will be in the
registers at okject time. Note that USING
does not load the specified registers; it
is the programmer's responsibility to see
that the base address values are placed
into the registers. Suggested loading
methods are described in the subsection
"Programming With the USING Instruction,”

below. The format of the USING statement
is:

r T - h St |
|Name |Oreration|Operand |
e -+ , -
|Blank | USING |From 2-17 expressions of |
{ | |the form |
{ | jv,r1,r2,r3,...,1r16 |
L 4 U —— J

|
i}

Addressing -- Program Sectioning and Linking 15

Operand Vv must be an absolute or relo-
catable expression specifying a value that
the assembler can use as a base address (no
literals are permitted). The othex
operands must be absolute expressions.
Operand r1 specifies the general register
that can be assumed to contain the base
address represented by operand v. Operands
r2, r3, r4, ... specify registers that can
be agssumed to contain v+4096, v+8192, v+
12288, ..., respectively. The values of
operands r1, r2, r3, ..., rlé must be
between 0 and 15. For example, the

statement

| S S - T - 1
| Name |Operation|Operand |
e . t -4
| | USING [*,12,13 |
b S, ¥ G]

tells the assembler it may assume that the
current value of the location counter will
be in general register 12 at okject time,
and that the current value of the location
counter, incremented by 4096, will be in
general register 13 at object time.

If the programmer changes the value in a
base register currently being used and
wishes the assembler to compute displace-
ment from this value, the assembler must be
told the new value by means of anotherx
USING statement. In the following
sequence, the assembler first assumes that
the value of ALPHA is in register 9; the
second statement causes the assembler to
assume that ALPHA+1000 is the value in reg-
ister 9.

1 h] 1
|{Name |Operation|Operand |
p-----+ T !
| |USING | ALPHA, 9 |
| |- | |
[B | |
| | USING | ALPHA+1000,9 |
| R j i - ¥}

When a USING statement specifies general
register 0 as a base register, the assem-
bler places subsequent effective addresses
less than 4096 in the displacement field,
and uses 0 for the base register field.
This process is the same as for any other
base register. Note that the hardware of
TSS will not actually reference regis-
ter 0, but will use zero guantity as a base
value. The user should not attempt to use
general register 0 as a base register.

16

DROP ~-- Drop Base Register

The DROP instruction, specifying a pre-
viously available register that may no
longer be used as a base register, has this
format:

T R R}
|Name |Operation|Operand i

4 4 4
L] h) T B]
| Blank | DROP |Up to 16 absolute expres-|
| | |sions of the form r1,r2, |
| | |r3,...,r16, or blank i
| . 4 4 3

The expressions indicate general regis-
ters previously named in a USING statement
that are now unavailable for base addres-
sing. A blank operand field indicates that
all registers previously defined as Lase
registers are now unavailable for addres-
sing. This statement, for example, pre-
vents the assembler from using registers 7
and 11:

fr L] 1
|Name |Operation|Operand |
4 ; |

- T h
| | DROP 17.11 |
[) | 4 - o o — ; |

It is not necessary to use a DROP state-
nent when the kase address in a register is
changed by a USING statement, nor are DROP
statements needed at the end of the source
program. A register made unavailakle Lty a
DROP instruction can be made available
again by a subsequent USING instruction.

Note: If a comment is desired on a DROP
statement which has no operands, a comma
must be used to signify the missing
operand.

PROGRAMMING WITH THE USING INSTRUCTIOCON

The USING and DROP instructions may ke
used anywhere in a program, as often as
needed, to indicate the general registers
that are available for use as base regis-
ters, and the base address values the as-
sembler may assume each contains at execu-
tion time. Whenever an address is speci~-
fied in a machine instruction statement,
the assembler determines whether there is
an available register containing a suitatle
btase address. A register is considered
available for a relocatable address if it
was loaded with a relocatakle value that is
in the same control section as the address.
The rase address is considered suitatle
only if it is less than or equal to the
address of the item to which the reference

is made. The difference between the two
addresses may not exceed 4095 Lytes. In
calculating the base register to be used,
the assembler will always use the av:ilable
register giving the smallest displacement.
If there are two registers with the same
value, the highest numbered register will
bLe chosen.

Lf operand v of a USING statement speci-
ties an absolute value, the assembler will
use the assocjated base registers only for
vperands with absolute values. In the
absence of a base register containing a
suitable absolute value, an operand with an
absolute value less than 4096 will be
f-laced directly in the displacement field
of the assembled instruction. Thus, for
¢xample, a base register does not have to
be explicitly stated for the operands of
shift-type instructions. The programmer is
cautioned, however, that in TSS any virtual
storage references derived from absolute
values will be references to an area of
virtual storage that is reserved for use
by the system monitor.

....... ¥ ey
{Name iOperation Operand 4
_— } _—
|BEGIN |BASR 12,0 i
i {USING | HERE, 2,3,4,5 |
| HERE {LM 13.5,BASEADDR |
i |B | FIRST i
{ BASEADDR | DC | A(BERE+4096, |
| | | HERE+8192, HERE+12288) |
| FIRST |- | |
I {- I |
| LAST |- | |
| |END | BEGIN |
L i s - e J

Figure 3. Multiple Base Register

Assignment

RELATIVE ARDDRESSING

This is the technique of addressing
instructions and data areas by designating
their location in relation to the location
counter or to some symbolic location. This
type of addressing is always in bytes,
never in bits, words, or instructions.
Thus, the expression #*+4 specifies an
address that is four bytes greater than the
current value of the location counter. 1In
the sequence of instructions shown in the

| Sl T T - 1

|Name |Operation|Operand | following example, the location of the CR

------------------- { rachine instruction can be expressed in two

| BEGIN|BASR 12,0 | ways, ALPHA+2 or BETA-U4, because all the

| JUSING |*,2 | mnemonics in the example are for 2-hyte

| FIRST| . | | instructions in the RR format.

| f- | |

| LAST | . | | r T Y 1

| | END | BEGIN { |Name |Operation|Operand {

Lo ee L- L 4} ¢ 1 {
|ALPHA | LR 13,4 |
{ |CR 4,6 |

In the preceding sequence, the BASR | | BCR 1,14 |

instruction locads register 2 with the {|BETA |AR 12,3 {

e 4 L -

address cf the first storage locatjion imme-
diately following. In this case, it is the
address of the instruction named FIRST.

The USING instruction indicates to the as-
sembler that register 2 contains this loca-
tion. When employing this method, the
USING instruction must immediately follow
the BASR instruction. No other USING or
load instructions are reguired if the loca-
tion named LAST is within 4095 bytes of
FIRST.

The BASR and LM instructions in Figure 3
load registers 2-5. The USING instruction
indicates to the assemkler that these regi-
sters are available as base registers for
addressing a maximum of 16,384 consecutive
bytes of storage, beginning with the loca-
tion named HERE. The number of addressable
bytes may be increased or decreased, alter-
ing the number of registers designated, by
the USING and LM instructions and the num-
ber of address constants specified in the
DC instruction.

Section 3:

PROGRAM SECTIONING AND LINKING

It is often convenient, or necessary, to
write a large program in sections. The
sections may be assembled separately, then
combined into one object program. The as-
sembler provides facilities for creating
multisectioned programs and symbolically
linking separately assembled programs or
program sections.

Sectioning a program is optional, and
many programs can best be written without
sectioning them. The programmer writing an
unsectioned program need not concern him-
self with the subsequent discussion of pro-
gram sections, which are called control
sections. He need not employ the CSECT
instruction, which is used to identify the
control sections of a multisection program.
Similarly, he need not concern himself with
the discussion of symbolic linkages, if his

Addressing -- Program Sectioning and Linking 17

yrogram neither requires a linkage to nor
receives a linkage from another program.
He may, however, wish to identify the pro-
gram and/or specify a tentative starting
location for it, both of which may be done
by using the START instruction. He may
4lso want to employ the dummy section fea-
ture obtainec¢ by using the DSECT
instruction.

Note: Program sectioning and linking is
closely related to the specification of

base registiters for each control section.
sectioning and linking examples are pro-
vided in this section under "Addressing

External Control Sections.®

COMNTROL SECTIONS

The concept of program sectioning is a
consideration at coding time, assembly
time, and load time. To¢ the programmer, a
program is a logical unit. He may want to
divide it into sections called control sec-
tions; if so, he writes it in such a way
that control passes properly from one sec-
tion to another, regardless of the relative
rhysical position of the sections in
storage. & control section is a block of
coding whose virtual storage location
assignments can be adjusted, independently
of other coding, during linkage or loading
without altering or impairing the operating
logic of the program. A control section is
normally identified by the CSECT, PSECT, or
COM assembler instructions,

To the assembler there is no such thing
as a program; instead, therxe is an assem-
bly, which consists of one or more control
sections. {(However, the terms assembly and
program are often used interchangeably.)

An unsectioned program is treated as a
single control section. To the linkage
editor there are no programs, only control
sections that must be fashioned into an
object prograrm.

The output of the assembler consists of
the assembled control sections and a con-
trol dictionary. The control dictionary
contains information that the linkage edi-
tor and the loader need to complete cross-
referencing between control sections, as it
combines them into an object program. The
linkage editor and the loader can take con-
trol sections from various assemblies and
corbine them properly, with the help of the
corresponding control dictionaries. Suc-
cessful combination of separately assembled
control sections depends on the techniques
used to provide symbolic linkages Letween
the control sections.

Regardless of the degree to which his

program is sectioned, the programmer still
knows the elements that comprise his virtu-

18

al storage, kecause he has described them
symbolically. He cannot, however, make any
assumptions about the position or ordering
cf ccntrol sections, since their virtual
storage location assignments may have keen
adjusted by the linkage editor or the load-
er, and their physical storage addresses
ray ke constantly changing within the time
sharing environment.

Control Section location Assignment

control section contents can be written
in an intermixed manner because the assem-
kler provides a location counter for each
control section. Virtual storage locations
are assigned consecutively within each con-
trol section, Lkeginning at 0. The oxder in
which different control sections agpear in
the assembly does not imply a similar order
of program execution.

FIRST CONTROL SECTION OF PROGRAM

Normally, this contains the literals
requested in the program, although their
positioning can be altered. {(Further
explanation is in the discussion of the
LTORG assemblex instruction, below.)

START -- Start Assembly

The START instruction may be used to
give a name to the first (or only) control
section of a program; only one START
instruction may be in an assembly. Also,
it may ke used to specify the initial wvir-
tual storage location counter value for the
first control section. The START format
is:

[———

Rl T
|Name |Operation|Operand
<4 i

—_— 4 —-——
|A symbol|START
jexr blank]|
i i

{A self-defining term
jor blank
4

b e anm s an. oud

If a symbol names the START instruction,
the symbol is estaklished as the name of
the control section; if not, the control
section is considered to be unnamed. All
subsequent statements are assembled as part
of that control section. The procedure
continues until a different CSECT instruc-
tion identifying a control section, or a
DSECT, PSECT or COM, instruction is encoun-
tered. A CSECT instruction named by the
same symbol that names a START instruction
is considered to identify the continuation
of the control section first identified by
the START. Similarly, an unnamed CSECT
that occurs in a program initiated by an
unnamed START is considered to identify the
continuation of the unnamed control
section.

The symbol in the name field is a valid
relocatable symbol with a value that repre-
sents the address of the first byte of the
control section and with a length attribute
of 1.

The assembler uses the self-defining
value gspecified by the operand as the
starting value for the virtual storage
location counter for the control section.
The START instruction is, in effect, equiv-
alent to a CSECT instruction followed by an
ORG instruction. For example, either of
these statements could be used to assign
the name PROG2 to the first control section
and to indicate an initial location counter
value of 2040:

[Aubnintaiah S L}
| Name |Operatxon|0perand |
o i
{ PROG2| START IZOMO |
;pnoczlsmn'r]X'?FS' |

d

If the operand is omitted, the assembler
sets the initial value of the location
counter to 0. The location counter is set
at the next doubleword boundary when the
value of the START operand is not divisible
by 8.

Note: The START instruction may not be
preceded by any assembler language state-
ment that affects or depends on the setting
of the location counter.

CSECT ~- Identify Control Section

The CSECT instruction identifies the
beginning or the continuation of a control
section, in this format:

11 T T
| Name |OperationjoOperand
i 4

+
{One or more attribute
|names, or blank

41

T
|{A symbol |CSECT
|or blankl

| G,

If a symbol names the CSECT instruction,
the symbol is established as the name of
the control section; otherwise, the section
is considered to be unnamed. All state-
ments following the CSECT are assembled as
part of that control section until a state-
ment identifying a different control sec-
tion (another CSECT, PSECT, COM or DSECT
instruction) is encountered.

The symbol in the name field is a wvalid
relocatable symbol with a value that repre-
sents the address of the first byte of the
control section and with a length attribute
of 1.

Section 3:

When several CSECT statements with the
same name appear within a program, the
first is considered to identify the begin-
ning of the control section; the rest iden-
tify the resumption of the section. Thus,
statements from differemt control sections
may be interspersed. They are properly
assembled (assigned contiguous storage
locations) as long as the statements from
the various control sections are identified
by the arpropriate CSECT instructions.

The operand field may be used to assign
attributes to the control section. Attri-
butes of control sections are discussed
later in this section.

Unnamed Control Section

The assembler will produce an unnamed
control section if it encounterxs certain
statements before any type of control sec-
tion statement (CSECT, PSECT, COM, or
DSECT) is encountered. The statements for
which this will be done are those which
agssume that a location counter value is
available. Such statements are:

1. Machine operation instructions

2. Macro instructions (but not instruc-
tions within macro definitions)

3. CcCwW
4. CNOP
5. CXD

6. DC, DS, and ORG
7. EQU
8. USING and DROP

9. LTORG
10. END
11. ENTRY

If an unnamed CSECT is not wanted, then the
above statements should follow a CSECT,
PSECT, COM, or DSECT instruction.

There can be only one unnamed control
section in a program. If one is initiated
and is then followed by a named control
section, any subsequent unnamed CSECT sta-
tements are considered to resume the
unnamed control section. If a programmer
wants to write a small program that is
unsectioned, the program need not contain a
CSECT instruction.

Addressing -- Program Sectioning and Linking 19

DSECYT -- Identify Dummy Section

A dummy section represents a control
section that is.assembled but is not part
of the object program. A dummy section is
a convenient means of describing the layout
of a storage area without actually reserxrv-
ing the storage. (It is assumed that the
storage is reserved either by some other
part of this assembly or by another assem-
bly.) The DSECT instruction identifies the
beginning or resumption of a dummy section.
More than one dummy section may be defined

per assembly, but each must be named. This
is the format of the DSECT instruction
Statement :

[——— T T S T T T T e 1
| Name |Operation|Operand |
S e :
|A symbol|DSECT {Not -used; should be |
| | |blank i
[I SR i 3

The symbol in the name field is a wvalid
relocatable symbol with a value that repre-
sents the first byte of the section and
with a length attribute of 1.

Program statements belonging to dummy
sections may be interspersed throughout the
program or may be written as a unit. 1In
either case, the appropriate DSECT instruc-
tion should precede each set of statements.
When multiple DSECT instructions with the
same name are encountered, the first is
considered to initiate the dummy section,
and the res* to continue it.

Symbols that name statements in a dummy
section may be in USING instructions.
Therefore, they may be used in program ele-
ments (for example, machine instructions
and data definitions) that specify storage
addresses. An example illustrating the use
of a dummy section appears under "Addres-
sing Dummy Sections,™ below.

Note: A symbol that names a statement in a
dummy section may be used in an A-type
address constant only if it is paired with
another symbol (with the opposite sign)
from the same dummy section.

DUMMY SECTION LOCATION ASSIGNMENT: A loca-
tion counter is used to determine the rela-
tive locations of named program elements in
a dummy section. The location counter is
always set to 0 at the beginning of the
dummy section; the location values assigned
to symbols that name statements in the
dummy section are relative to the initial
statement in the section.

20

ADDRESSING DUMMY SECTIONS: The progranmmer

may wish to describe the format of an area
whose storage location will not ke deter-
mined until the program is executed. He
can describe the format of the area in a
dummy section, and he can use symbols
defined in the dummy secticon as the
operands of machine instructions. To
effect references to the storage area, he
does the following:

1. Provides a USING statement that speci-
fies: (a) a general register that the
assembler can assign to the machine
instructions as a base register, and
(b) a value from the dummy section
that the assembler may assume the reg-
ister contains.

2. Ensures that the same register is
lcaded with the actual address of the
storage area.

The value assigned to symbols defined in
a dummy section are relative to the initial
statement of the section. Thus, all
machine instructions which refer to names
defined in the dummy section will, at
execution time, refer to storage lccations
relative to the address loaded into the
register.

An example is shown in the coding below.
Assume that two independent assemblies (as-
sembly 1 and assembly 2) have been loaded
and are to be executed as one overall pro-
gram. Assembly 1 is an input routine that:
(a) places a record in a specified storage
area, (b) places the address of the input
area containing the record in general reg-
ister 3, and (c) branches tc assembly 2.
Assewbly 2 processes the record. The cod-
ing shown in the example is from assemkly
2.

The input area is described in assembly
2 by the DSECT control section named
INAREA. Portions of the input area (that
is, record) that the programmer wishes to
work with are named in the DSECT control
section, as shown. The assembler instruc-
tion USING INAREA,3 designates general reg-
ister 3 as the base register to be used in
addressing the DSECT control section. Gen-
eral register 3 is assumed to contain the
address of INAREA.

Assemkly 1, during execution, loads the
actual keginning address of the input area
in general register 3. Because the symbols
used in the DSECT section are defined rela-
tive to the initial statement in the sec-
tion, the address values they represent
will, at the time of program execution, be
the actual storage locations of the ingput
area.

=== T T 1
| Name |Operation|{Operand |

T e S SRR 1
| ASMBLY2 |CSECT | |
|BEGIN |BASR {2 {
| | USING [* |
| I i |
| l- i |
| | USING | INAREA, 3 |
| jCLI | INCODE,C*A" |
| | BE |ATYPE {
B		
	-	
ATYPE	MVC	WORKA, INPUTA
	MVC	WORKB, INPUTB
I	-	
	-	
WORKA	DS jCL20 {	
WORKB	Bs	cL1s
I		
b- . I		
INAREA	DSECT § i	
INCODE	DS	CL1
INPUTA	DS fcrL20	
INPUTB	DS jcLis	
[[- | i
l | END 1 [
[4 i 3

COM -~ Define Common Control Sections

The COM agssembler instruction identifies
and reserves common areas of storage that
may be referred to by independent assemb~
lies that have been linked and/or loaded
for execution as one overall program.
Appezarance of another COM statement after
the initial one indicates resumption of the
previously defined blank or named common
control section. One blank and any number
of named common control sections can be
designated in an assembly. The format is:

r T R 3

| Name | OperationjOperand

t + +

|Symbol | COM |One or more attributes|
jor blank]| jox blank |
i — 4 L 4

The common area may be broken up into
subfields through use of the DS and DC as-
sembler instructions. Names of subfields
are defined relative to the beginning of
the common section, as in the DSECT control
section.

No instructions or constants are
assembled in the blank common control sec-
tion. Data can be placed there only
through execution of the program. Instruc-
tions and constants can be assembled in
named common control sections. The rules
governing the final structure of common
control sections are described in Linkage
Editor.

Section 3:

The orerand field may be used to assign
attributes to a common section. Attributes
of control sections are discussed later in
this section.

¥ v A
| Name |OperationjOperand ‘
e 4 'S ’
v h)
| ASMBLY3 |CSECT | PUBLIC, READONLY i
| BEGIN | BASR {1,0 |
| USING |*,1 |
i USING | INAREA, 2 |
| USING | PRCTL, 3 |
| | USING |NAMED, 4 |
|* l- |
* . | :
NEWPG MVC CUTPUTB,TITLE
MVC CUTPUTA, BLANKS |
MVI PRCTL,C'1* |
. . |
i* .
CLI INCODE,C'E"
BE MVLINE
. .
* o
MVLINE MVC OUTPUTA , INPUTA
{MvC OUTPUTE, INPUTB l
|MVI PRCTL,C* °* {
* . | |
* |
INAREA |DSECT | |
INCODE DS CL1 |
INPUTA |DS CL20 |
INPUTB DS CL14 {
. . |
. . {
| jcoM |
| PRCTL | DS CL1 |
|OUTPUTA |DS CL20 |
| OUTPUTB |DS CL14 |
| * |- |
|+ |- | l
|NAMED |COM |
|{TITLE |DC CL14*'ERROR MESSAGES' |
{BLANKS |DC CL20* * i
| | END BEGIN |
t 4 4]

PSECT -- Define Protgtype Control Section

Within TSS, a single copy of a com-
monly used, reenterable routine will
appear to have different virtual storage
location assignments to different users,
although its physical disposition in
storage remains unchanged. When control
is transferred to a reenterable routine,
the calling program must supply an address
constant which reflects the virtual storage
assignments of the calling program, so the
reenterable routine may obtain data storage
that is unique to the user.

This would ordinarily imply that a pro-
gram that calls a reenterable routine knows
all address constants which might be
required within the hierarchy of reenter-
able programs. To minimize this clerical

Addressing -- Program Sectioning and Linking 21

burden, a prototype control section is
defined for use by reenterable programs to
simplify the handling of address constants
and working storage. The format is:

(rom - o ——— To————— -1
jName |Operation|Operand |
__________________ - —_— 4

A}
|A symbol|PSECT {One or more attribute |
| | |names, or blank |
RPN U QRSSO |

The contents of a prototype section are
identical in every respect with those of a
control section (CSECT). However, on link-
age to the reenterable routine, a copy of
the contents of the prototype section is
made and then assigned to virtual storage
locations within the domain of the calling
program.

A reenterable program is then free to
agsemble all its working storage and
address constants within a prototype sec-
tion, and the user need not know any of the
internal requirements of the routine he
calls.

Communication of prototype section
information is accomplished through use of
the R-type address constant (see Section
5).

The operand field may be used to assign
attributes to a prototype section.

EXTERNAL DUMMY SECTIONS

External dummy sections allow the pro-
grammer to define work area requests for
several different programs and, at execu-
tion time, combine these requests into cne
block of storage accessikble to each pro-
gram. Several different programs may be
assembled together, each with one or more
external dummy sections. After the loader
has processed these programs, the program-
mer, having issued a GETMAIN macro instruc-
tion, can dynamically allocate storage for
the dummy sections in one block. External
dummy sections are defined through the use
of a Q~type DC instruction in combination
with a DXD or a DSECT instruction. In or-
der to allocate the correct amount of
storage when the program is executed, the
programmer must use the CXD instruction,
described in Section 5, within one of the
programs.

ATTRIBUTES OF CONTROL SECTIONS
To facilitate dynamic linkage and load-

ing within TSS, it is often necessary to
indicate that certain attributes are

characteristic of the data or instructions
within a control section. One or more of
the following operands may be used in
CSECT, PSECT, or COM statements to indicate
which attributes are to be assigned to the
section:

PUBLIC Section contains shared pub-

lic data or instructions.

Section contains instructions
or data that are never
modified.

READONLY

VARIABLE

L

Length of section may vary
during program execution.

PRVLGD

i

When section is assigned
space by loader, a protection
key is to ke assigned to it;
only privileged system sexr-
vice routines have read or
write access to it.

SYSTEM Section may contain entry
points to system subroutines
whose entry point names kegin

with SY¥S.

Attrikutes may be specified singly or in
combination, where meaningful. If a sec-
ticon is interrupted and resumed, as
described above under CSECT, the final set
of attribtutes for the section is determined
by combining the attributes which aprear on
each of the various CSECT, PSECT, or COM
statements. If no attributes are speci-
fied, the section is defined as a standard
control, prototype, or common section.

SYMBOLIC LINKAGES

Symbols may be defined in one program
and referred to in another, thus effecting
symbolic linkages ketween independently
assembled programs. The linkages can ke
effected only if the assembler is able to
provide information about the linkage sym-
kols to the dynamic loadex, which resolves
these linkage references at load time. The
asserbler places the necessary information
in the control dictionary on the basis of
the linkage symbols identified by the ENTRY
and EXTRN instructions. HNote that these
symbolic linkages are described as linkages
between independent assemblies; more sge-
cifically, they are linkages between inde-
pendently assembled control sections.

In the program where the linkage symbol
is defined (i.e., used as a name), it must
also be identified to the assembler Ly the
ENTRY assembler instruction. It is identi-
fied as a symbol that names an entry point,
which means that another program will use
that symbol to effect a branch operationm or

a data reference. The assembler places
this information in the control dictionary.

Similarly, the program that uses a sym-
bol defined in some other program must
rdentify it by the EXTRN assemkler instruc-
tion. It is identified as an externally
defined symbol (that is, defined in another
program) that is used to effect linkage to
the point of definition. The assembler
places thiy information in the control
dirctionary.

Ancther way to obtain symbolic linkages
15 by using the V-type address constant.
“bata Definition Instructions® in Sectiomn 5
contains the details pertinent to writing a
V-type address constant. It is sufficient
here to note that this constant may be con-
sidered an indirect linkage point. It is
created from an externally defined symbol,
but that symbol does not have to be identi-
t1ed by an EXTRN statement. The V-type
address constant may be used for external
branch references (that is, for effecting
branches to other programs) or for external
data references.

ENTRY -- Identify Entry Point Symbol

The ENTRY instruction identifies linkage
symbols that are defined in this program
but may be used by some other program. The
length attribute of an external symbol is
1. The format of the ENTRY instruction
statement is:

r———= L S roTm—

{Name |[Operation}Operand

o v +

| Blank | ENTRY |One or more relocatable

|or absolute symkols,

| separated by commas, that
|also appear as statement
| names

R e L

The symbols in the ENTRY operand field
may be used as operands by other programs.
An ENTRY statement operand may not contain
a symbol defined in a dummy section. The
following example identifies the statements
named SINE and COSINE as entry points to
the program.

Note: The ENTRY statement may not arpear
in a DSECT, unnamed common section, or an
unnamed control section.

Note: The name of a control section cannot
be identified by an ENTRY instruction. The
assembler automatically places information
on contrcol section names in the comntrol
dictionary. Multiple declarations of the
same ENTRY name, either through duplicate
ENTRY statements or duplication of an
operand within an ENTRY statement, do not
cause multiple definitions to be entered in
the ocutput program module.

Note: An operand of an ENTRY statement
must appear in the name field of another
statement; however, a symbol declared in an
ENTRY statement may not be the name of an
EQU statement if the EQU contains an
externally defined symbol in its operand
field. Under this rule, the following code
is incorrect:

]

Name |Operation|Operand i
y |

B]

| ENTRY (A |

| EXTRN |x i

|A | EQU 1X |
L 4. i y]

EXTRN -- Identify External Symbol

The EXTRN instruction identifies linkage
symbols that are used by this program but
defined in some other program. Each
external symbol must be identified; this
includes symbols that name control sec-
tions. The length attribute of an external
symbol is 1. This is the format of the
EXTRN instruction statement:

T v 1
Name |Operation|Operand i
i 4 d
v T 1
Blank | EXTRN |{One or more relocatable |
| |symbols, separated Ly |
i lcqmmas l

The symbols in the operand field may not
appear as names of statements in this pro-
gram. The following example identifies
three external symbols that have been used

- T - T H
|Name |Operation|Operand } as operands in this program but are defined
b e S B 4 in some other program.
| | ENTRY | SINE, COSINE |
| S, L L e e —— ———— 4
T R} . L] 1 4
{Name |Operation|Operand |
If the ENTRY statement appears within a b + +]
named CSECT, PSECT, or named common Sec- | | EXTRN | RATEBL, PAYCALC,WITHCAIC |
i 4 4 b |

tion, all the operands appearing in the
ENTRY statement are associated with the
name of the section. ' These entry names may
then be referenced with R-type address con-
stants in other programs.

Section 3:

An example that employs the EXTRN
instruction appears under "Addressing
External Control Sections,™ below.

Addressing -- Program Sectioning and Linking 23

Notes:

(1) Sywbols appearing in the operand
field of a V-type or R-type address
constant need not be defined by an
EXTRN statement.

(2) When external symbols are used in an
expression, they may not be paired;
each must be considered as having a
unique relocatability attribute.

Adidressing External Control Sections

A common way for a program to link to an
external control section is to:

1. Create a V-type address constant with
the name of the external symbol. If
the external control section is reen-
terable, create an R-type constant
with the name of the external symbol.

2. Load the constants into general regis-
ters and branch to the control sec-
tion, via the register containing the
V-type address constant.

For example, to link to the control sec-
tion named SINE, this coding might be used:

~ -=TT T 1
| Name |operation|Operand |
s e 4 i 1

v v L]
{ MAINPROG | CSECT | |
{BEGIN | BASR 12,0 |
| | USING |*.2 |
| } 3 |
| {L {13, RCON |
| {L |15,VCON |
| { BASR {14,155 |
| |- | |
[l- i I
| RCON {DC |R{SINE) {
{VCON |pC |V(SINE) |
| | END | BEGIN |
[N L i 1

To use an external symbol naming data,
the programmer:

1. Identifies the external symbol with

the EXTRN instruction and creates an
address constant from the symbol.

24

2. Loads the constant into a general reg-
ister and uses the register for base
addressing.

For example, to use an area named
RATETBL, which is in another control sec-
tion, this coding might be used:

r v T 1
|Name |Operation|Operand |
L 4 4 _....._..-u—.{
[8 Al R]

| MAINPROG | CSECT { |
| BEGIN | BASR 12,0 |
} | USING |*,2 |
l.		
l-		
	BXTRN	RATETBL
I-		
	-	
{L	4, RATEADDR	
	USING {RATETBL, 4	
{ (A	3, RATETBL	
B .'		
RATEADDR	DC {A(RATETBL)	
{ | END | BEGIN |
[3 4 A J

Alternatively, a V-type address constant
may be used to refer to externally named
data:

[3 v b)]
| Name |Operation|Operand |
b + + :
| MAINPROG | CSECT | i
| BEGIN | BASR |2,0 |
| | USING [*,2 |
| I % |
{ |L | 4, RATEADDR |
i jusING | RATETAB, 4 i
| |a | 3. RATE |
| l- I |
| |- | |
{RATEADDR|D | VIRATETBL) i
{RATETAB |DSECT |]
|RATE {pS |P i
{ | END | BEGIN |
i 4 & J

This section discusses coding of the
machine instructions represented in the as-
sembler language. The functions of each
machine instruction are discussed in Prin-
ciples of Operation.

MACHINE INSTRUCTION STATEMENTS

Machine instructions may be represented
symbolically as assembler language state-
ments. The symbolic format of each varies
according to-the actual machine instruction
format, of which there are five: RR, RX,
RS, SI, and SS. Within each basic format,
further varjations are possible.

The symbolic format of a machine
instruction is similar to, but does not
duplicate, its actual format. A mnemonic
operation code is written in the operation
field; one or more operands are written
in the operand field. Comments may be
appended to a machine instruction state-
ment, as explained in Section 1.

Any machine instruction statement may be
named by a symbol that other assembler sta-
tements can use as an operand. The value
attribute of the symbol is the address of
the leftmost byte assigned to the assembled
instruction. The length attribute of the
symbol depends on the basic instruction
format:

Basic Format Length Attribute

RR 2
RX 4
RS 4
SI L
55 6

Instruction Alignment and Checking

All machine instructions are aligned
automatically by the assembler on halfword
boundaries. If any statement that causes
information to be assembled requires align-
ment, the bytes skipped are filled with
hexadecimal 0s. All expressions that spe-
cify storage addresses are checked to
ensure that they refer to appropriate boun-
daries for the instructions in which they
are used. Register numbers are also
checked to make sure that they specify the
proper registers:

SECTION 4: MACHINE INSTRUCTIONS

1. Floating point instructions must spe-
cify floating point registers 0, 2, 4,
or 6.

2. Doukle-shift, fullword multiply, and
divide instructions must specify an
even-numbered general register in the
first orerand.

CPERAND FIELDS AND SUBFIELDS

Some symbolic operands are written as a
single field; other operands are written as
a field followed by one or two subfields.
For example, addresses consist of the con-
tents of a base register and a displace-
ment. An operand that specifies a kase and
displacement is written as a displacement
field followed by a base register sukfield,
as 40(5). 1In the RX format, both an index
register subfield and a base register sub-
field are written as 40(3,5). In the SS
format, both a length subfield and a base
register subfield are written as 40(21,5).

Two types of addressing formats for RX,
RS, SI, and SS instructions are shown in
Appendix B. In each case, the first type
shows the method of specifying an address
explicitly, as a base register and dis-
rlacement. The second type indicates how
to specify an implied address as an
expression.

For example, a load multiple instruction
(RS format) may have either of these sym-
Eolic operands:

R1,R3,D2(B2) -~ explicit address
R1,R3,S2 - implied address

While D2 and B2 must be represented by
absolute expressions, S2 may be represented
ty either a relocatable or an absolute
expression.

To use implied addresses, these rules
must be observed:

1. The base register assembler instruc-
tions (USING and DROP) must be used.

2. BAn explicit base register designation
must not accompany the implied
address.

For example, assume that FIELD is a
relocatable symbol which has been assigned
a value of 7400. Assume also that the as-
sembler has been notified (by a USING
instruction) that general register 12 cur-

Section 4: Machine Instructions 25

rently contains a relocatable value of 4096
and is available as a kase register. The
following example shows a machine instruc-
tion statement as it would be written in
assembler language and as it would be
assembled. Note that the value of D2 is
the difference between 7400 and 4096, and
that X2 is assembled as 0, since it was
omitted. The assembled instruction is pre-
sented in hexadecimal:

Anssembler statement:
5T 4,FIELD
Assembled instruction:

Op. Code R1 X2 B2 D2
50 4 0 C CE8

An address may be specified explicitly
as a base register and displacement (and
index register for RX instructions) by the
formats shown in the first column of Table
1. The address may be specified as an
implied address by the formats shown in the
second column. Observe that the two
titorage addresses required by the SS
instructions are presented separately; an
impiied address may be used for one and an
explicit address for the other.

Table 1. Details of Address Specification
| i S) 1
|Type|Explicit Address|Implied Address |
TR S $- i
[RX [D2(X2,B2) |s2(x2) |
| |D2(0,B2) |2 |
|{RS |D2(B2) |s2 |
|ISI |D1(B1) |s1 i
|ss |D1(L1,B1) {s1(1l) |
l |D1(L,B1) |S1(L) |
i |D2(L2,B2) |S2(L2) |
GO S - i -4

A comma must be written to separate
operands. Parentheses must be written to
enclose subfields, and a comma must be
written to separate two subfields within
parentheses. When parentheses are used to
enclose one subfield and the subfield is
omitted, the parentheses must be omitted.
In the case of two subfields that are
separated by a comma and enclosed by paren-
theses, these rules apply:

1. 1If both subfields are omitted, the
separating comma and the parentheses
must also be omitted.

L 2,48(4,5)
I. 2,FIELD (implied address)

2. If the first subfield in the sequence
is omitted, the comma that separates
it from the second subfield is writ-
ten; the parentheses must also be
written.

26

MVC 32(16,5) ,FIELD2

MVC BETA(,S5),FIELD2 (implied
length)

L 2,u48{(,5) (omitted index register)

3. 1If the second subfield in the sequence
is omitted, the comma that separates
it from the first subfield must be
omitted; the parentheses must ke
written.

MVC 32(16,5) ,FIELD2
MVC FIELD1(16) ,FIELD2 (implied
address)

Fields and subfields in a symbolic
operand may ke represented either by abso-
lute or by relocatable expressions, depend-
ing on what the field requires. (An ex-
pression is defined as consisting cof one
term or a series of arithmetically combined
terms.) Refer to Appendix B for a detailed
description of field requirements.

Note: Blanks may not appear in an ogerand
unless provided as characters in a charac-
ter self-defining term or a character lit-
eral; blanks may not intervene between
fields and the comma separators, between
parentheses and fields, etc.

LENGTHS -~ EXPLICIT AND IMPLIED

The length field in SS instructiomns can
e explicit or implied. To imply a length,
the programmer omits a length field from
the operand. The omission indicates that
the length field is either:

1. The length attribute of the expression
specifying the displacement, if an
explicit kase and displacement have
been written.

2. The length attribute of the expression
specifying the effective address, if
the base and displacement have keen
implied.

In either case, the length attribute for
an expression is the length of the leftmost
term in the expression.

By contrast, an explicit length is writ-
ten by the programmer in the operand as an
absolute expression. The explicit length
overrides any implied length.

Whether the length is explicit or
implied, it is always an effective length.
The value inserted into the length field of
the assembled instruction is one less than
the effective length in the machine
instruction statement.

Note: If a length field of 0 is desired,
for use with an execute (EX) machine
instruction, the length may be stated as 0.

To summarize, the length required in an
§S instruction may be specified explicitly
by the formats shown in the first column of
Table 2, or may be implied by the formats
shown in the second column. Observe that
the two lengths required in one of the SS
instruction formats are presented separate-
ly. An implied length may be used for one
and an explicit length for the other. For
the SS instruction format, which regquires a
single length field (L), the implicit
length used is that of the first operand.

Table 2. Details of Length Specification
in SS Instructions
[S T 1
| Explicit Length |} Implied Length I
pmmmmm $:
| D1(L1,B1) | D1(,B1)
| S1(L1) | s1
| D1(L,B1) | D1(,B1)
| s1(L) | s1
| D2(L2,B2) | D2(,B2)
S521(L2) { 52
RO .

MACHINE INSTRUCTION MNEMONIC CODES

The mnemonic operation codes are
easily remembered for indicating the
tunctions of the instructions. The
normal format of the code is shown
below; the items in brackets are not
necesgsarily present in all codes:

VerblModifier] (Data Typel (Machine Format]

The verb, which is usually one or two
characters, specifies the function (A
represents Add, and MV represents Move).
The function may be further defined by a
modifier (wmodifier L indicates a logical
function, as in AL for Add Logical).

Mnemonic codes for functions ipvolving
data usually indicate the data types by
letters that correspond to those for the
data types in the DC assembler instruction
(see Section 5). Furthermore, letters U
and W have been added to indicate short and
long unnormalized floating-point opera-
tions, respectively. For example, AE indi-
cates Add Normalized Short, wherxeas AU
indicates Add Unnormalized Short. Where
applicable, fullword fixed-point data is
implied if the data type is omitted.

The letters R and 1 are added to the
codes to indicate, respectively, RR and SI
machine instruction formats. Thus, AER
indicates Add Normalized Shorxrt in the RR
format. Functions involving character and
decimal data types imply the SS format.

MACHINE INSTRUCTION EXAMPLES

The examples that follow are grouged
according to machine instruction format.
They illustrate the various symbolic
operand formats. All symbols employed in
the examples must be assumed to be defined
elsewhere in the same assembly. All sym-
bols that specify register numbers and
lengths must be assumed to be equated else-
where to absolute values.

Implied addressing, control section
addressing, and the function of the USING
assembler instruction were considered,
together with examples of coding sequences,
earlier in this section, under "Program
Sectioning and Linking™ and "Base Register
Instructions.*”

Format
[} L] R 1
{Name {Operation|Operand {
L i 4
L] v B
|{ALPHA1 |LR {1,2 |
|ALPHAZ |LR | REG1,REG2 i
| BETA | SPM {15 |
|GAMMAL |SVC j250 {
|GAMMA2 |SVC | TEN |
[§ i 4 ¥ |

The operands of ALPHAl1l, BETA, and GAMMAl
are decimal self-defining values, which are
categorized as absolute expressions. The
operands of ALPHA2 and GAMMA2 are symbols
that are equated elsewhere to absolute
values.

RX Format

3 b3 T 1
{Name |{Operation|Operand |
b + + 1
JALPHA1 (L 11,39(4,10) |
|ALPHA2 |L JREG1,39(4, TEN) |
| BETA1 {L 12,ZETA (4) i
{ BETA2 |L |REG2, ZETA(REG4) {
|GAMMAL {L {|2,ZETA |
{GaMMA2 |L | REG2, ZETA |
{GAMMA3 |L {2,=F'1000°" {
| LAMBDAl (L {3,20t0,5) |
L o4 L J

Both ALPBA instructions specify exglicit
addresses; REG1 and TEN are absolute sym-
bols. Both BETA instructions specify
implied addresses, and both use index regi-
sters. Indexing is omitted from the GAMMA
instructions. GAMMAl1 and GAMMA2 specify
implied addresses. The second operand of
GAMMA3 is a literal. LAMBDAl specifies no
indexing.

Section 4: Machine Instructions 27

RS Format

| S h SRR B Z 1
|Name |Operation|oOperand |
__________________________ 4

1
{ALPIiA1 | BXH |1,2,200(14) |
{ALPHA2 |BXH | REG1, REG2, 20 {REGD) |
|ALPHA3 |BXH | REG1,REG2, ZETA |
{ALPHAU4 |SLL |REG2,15 |
|ALPHAS |SLL |REG2,0(15) |
b e Ao L. 3

While ALPHAl and ALPHA2 specify explicit
addresses, ALPHA3 specifies an implied
address. ALPHA4 is a shift instruction,
shifting the contents of REG2 left 15 bit
positions. ALPHA5 is a shift instruction,
thifting the contents of REG2 left by the
value contained in general register 15.

51 Format

[St T T 3
| Name |Operation|Operand |
pomm—==e t—- -+ 1
|ALPHA1 |CLI J40(9),X*40°" i
{ALPHA2 |CLI |40 (REGY) , TEN |
{ BETA1 jcL1 | ZETA, TEN |
| BETA2 jcLy {ZETA,C*A" |
GAMMAL	SIO	40(9)
GAMMA2	SIO	0(9)
GAMMA3	SIO juo (0}	
GAMMBY	SIO	ZETA
L ;8]		

The ALPHA instructions and GAMMA1-GAMMA3
Bpecify explicit addresses; the BETA
instructions and GAMMAY4 specify implied
addresses. GAMMA2 specifies a displacement
of 0. GAMMA3 does not specify a base
register.

S5 Format

g St T

| Name |Operation|Operand

o= pmmmm e $----

|ALPHA1 [|AP | 40(9,8),30(6,7)
{ALPHA2 {AP |40 (NINE,REG8) ,30(L6,7)
|ALPHA3 |AP | FIELD2,FIELD1

|ALPHAG |AP | FIELD2(9) , FIELD1($)

TP Sy Sp——

| BETA | AP |FIELD2 (9) ,FIELD1
|GAMMA1 |MVC |40(9,8),30(7)
|GAMMA2 | MVC |40 (NINE, REGB) ,DEC(7)
|GAMMA3 [MVC | FIELD2, FIELD1
|GAMMAL | MVC | FIELD2(9) , FIELD1

| IS F J

ALPHA1l, ALPHA2, GAMMAl, and GAMMA2 spe-
cify explicit lengths and addresses.
ALPHA3 and GAMMA3 specify both implied
length and implied addresses. ALPHAY4 and
GAMMAY4 specify explicit length and implied
addresses. BETA specifies an explicit
length for FIELD2 and an implied length for
FIELD1; both addresses are implied.

28

EXTENDED MNEMONIC CODES

For the convenience of the programmer,
the assembler provides extended mnemonic
codes, which allow conditional branches to
be specified mnemonically, as well as
through the use of the BC and BCR machine
instructions. These extended mnemonic
codes specify both the machine branch
instruction and the condition on which the
kranch is to occur. The codes are not part
of the universal set of machine instruc-
tions, but are translated by the assembler
into the corresponding operation and condi-
tion combinations.

The allowable extended mnemonic codes
and their operand formats are shown in
Fiqures 4 and 5, together with their
machine instruction equivalents. All
extended mnemonics in Figure 4 are for
instructions in the RX format. Figure 5
shows the extended mnemonics for instruc-
tions in the RR format. Note that the only
difference between the operand fields of
the extended mnemonics and those of theirx
wachine instruction equivalents is the
absence of the Rl field and the comma that
separates it from the rest of the operand
field. The extended mnemonic list for the
RX format, like the machine instruction
list, shows explicit address formats only.
Each address can also be specified as an
implied address.

In the following examples, which
illustrate the use of extended mnemonics,
it is to be assumed that the symbol GO is
defined elsewhere in the program.

5
s

-
peration|Operard
4

S
ju0(3,6)
[40¢0,6)
|Go(3)
)
|4
(3
i

Towwoww i O
[Nl
s . s s, it s elivn. sroave. wnd

o e e s e e e g St oy
<)

S Sy——

The first two instructions specify an
unconditional branch to an explicit
address. The address in the first case is
the sum of the contents of base register 6,
the contents of index register 3, and the
displacement 40; the address in the second
instruction is not indexed. The third
instruction specifies a branch on low to
the address implied by GO as indexed by the
contents of index register 3; the fourth
instruction does not specify an index reg-
ister. The fifth instruction is an uncon-
diticnal branch to the address contained in
register 4. The last instruction sgecifies
a branch on equal to the address contained
in register 3.

r-== T T T e e it T
| Extended Code | Meaning | Machine-Instruction i
e e -—4- i
| B D2(x2,B2) | Branch Unconditional | BC 15,D2(X2,B2) |
| NOP D2(X2,B2) i No Operation | BC 0,D2(X2,B2) |
i_ __________ —————— A Y - {
| Used After Compare Instructions |
prmm oo m o oo T 4
BH D2(X2,B2)	Branch on High	BC 2,D2(X2,B2)
BI D2(X2,B2) { Branch on Low	BC 4,D2(X2,B2)	
BE D2(X2,B2)	Branch on Equal	BC 8,D2(X2,B2)
BNH D2(X2,B2) § Branch on Not High	BC 13,D2(X2,B2)	
i BNL D2{(X2,B2)	Branch on Not Low i BC 11,D2(X2,B2) {	
BNE D2(X2,B2)	Branch on Not Equal	BC 7.,D2(X2,B2)
S - —_—— i 4		
i Used After Arithmetic Expressions		
I’ °°°°°°°°°°°° T T —%		
BO D2(X2,B2) i Branch on Overflow	BC 1,D2(X2,B2)	
BP D2(X2,B2)	Branch on Plus	BC 2,D2(X2,B2)
BM D2(X2,B2)	Branch on Minus	BC 4,D2(X2,B2)
BZ D2(X2,B2)] Branch on Zero	BC 8,D2(X2,B2)	
BNM D2(X2,B2)	Branch on Not Minus	BC 11,D2(X2,B2)
BNC D2(X2,B2)	Branch on No Overflow	BC 14,D2(X2,B2)
BNP D2(X2,B2)	Branch on Not Plus	BC 13,D2(X2,B2)
BNZ D2(x2,B2) i Branch on Not Zero	BC 7,D2(X2,B2)	
e - L —		
Used After Test Under Mask Instructions		
.’ """"""" T T {		
{ BO D2(X2,B2)	Branch if Ones	BC 1,D2(X2,B2) i
BM D2(X2,B2) i Branch if Mixed	BC 4,D2(X2,B2)	
BZ D2(X2,B2)	Branch if Zeros	BC 8,D2(X2,B2)
BNM D2(X2,B2)	Branch on Not Mixed	BC 11,D2(X2,B2)
BNO D2(X2,B2)	Branch on Not Ones	BC 14,D2(X2,B2) {
BNZ D2(X2,B2)	Branch on Not Zeros	BC 7,D2(X2,B2)
e e e e e e e e e e o e e e e Lo 4 J
Figure 4. Extended Mnemonic Codes (RX format)

Section 4: Machine Instructions 29

| St b et T 1
| Extended Code | Meaning | Machine-Instruction |
T } -- e -- i
| BR R2 | Branch Unconditional | BCR 15,R2 |
i NOPR R2 H No Operation | BCR 0,R2 |
‘, ____________________ i - i . {
] Used After Compare Instructions |
b e S Rt bt Dy T 4
BHR R2 { Branch on High	. BCR 2,R2	
BLR R2	Branch on Low	BCR 4,R2
BER 2	Branch on Equal	BCR 8,R2
BNHR R2 { Branch on Not High { BCR 13,R2		
{ BNLR R2 [Branch on Not Low	BCR 11,R2 {	
BNER R2Z2 i Branch on Not Egual	BCR 7.R2	
frmmm e U S A e ——— 4		
Used After Arithmetic Expressions }		
pmmm o mm e e T- — 4		
BOR R2	Branch on Overflow	BCR 1,R2
BER R2	Branch on Plus	BCR 2,R2
BMR R2	Branch on Minus i BCR 4,R2 {	
i BZR R2	Branch on Zero	BCR 8,R2
BNMR R2 { Branch on Not Minus { BCR 11,R2		
BNOR R2	Branch on No Overflow i BCR 14,R2 {	
BHPR R2	Branch on Not Plus	BCR 13,R2
BNZR R2 { Branch on Not Zero	BCR 7,R2	
i,_-_.__--_ 4 i %		
i Used After Test Under Mask Instructions		
t’ ““““““““““““““ k4 T {		
{ BOR R2	Branch if Ones	BCR 1,R2
BMR R2	Branch if Mixed } BCR 4,R2	
{ BZIR R2 { Branch if 2Zeros { BCR 8,R2 }		
i BNMR R2 { Branch on Not Mixed	BCR 11,R2	
BNOR R2	Branch on Not Ones	BCR 14,R2
BNZR R2	Branch on Not Zeros { BCR 7.R2 {	
- L 4 - J		
Extended Mnemonic Codes (RR format)

30

Just as machine instructions request the
computer to perform a sequence of opera-
tions during program execution time, so as-
sembler instructions request the assembler
to perform certain operations during the
assembly. Assembler instruction state-
ments, in contrast to machine instruction
statements, do not always cause machine
instructions to be included in the
assembled program. Some, such as DS and
DC, generate no instructions but do cause
storage areas to be set aside for constants
and other data. Others, such as EQU and
SPACE, are effective only at assembly time;
they generate nothing in the assembled pro-
gram and have no effect on the location
counter.

This is a list of all the assembler
instructions:

Symbol Definition Instruction
EQU - Equate symbol

Data Definition Instructions

DC - Define constant

DS - Define storage

DXD - Define external dummy section

CXD - Cumulative length external dummy
section

CCW - Define channel command word

¢ Program Sectioning and Linking
Instructions

START - Start assembly

CSECT - Identify control section

DSECT - Identify dummy section

ENTRY - Identify entry point symbol

EXTRN - Identify external symbol

COM ~ Identify blank common control
section

PSECT - 1dentify prototype section

* Base Register Instructions
. USING ~ Use base address register
DROP - Drop base address registerx

* Discussed earlier in this section

Listing Control Instructions
TITLE - Identify assembly output
EJECT - Start new page

SPACE - Space listing

PRINT - Print optional data

Program Control Instructions

ICTL - Input format control

ISEQ - Input sequence checking

ORG - Set location counter

LTORG - Begin literal pool

CNOP - Conditional no operation
COPY ~ Copy predefined source coding

Section 5:

SECTION S:

ASSEMBLER INSTRUCTION STATEMENTS

END - End assembly
PUNCH - Punch card
REPRO -~ Reproduce following card

SYMBOL DEFINITION INSTRUCTION
EQU -- Egquate Symbol

The EQU instruction defines a symbol by
assigning to it the attributes specified in
the operand fields. The format of the EQU
instruction statement is:

T L] T L}
| Rame {Operation|Operand]
L J L 4
T 1) 1
{symkol, | EQU | Previously defined |
jvariable | |symbol,length,type |
{symbol, or| | |
{blank | |]
L 'y d J

The symbol in the name field is option-
al; if it is omitted, the statement is
treated as a comment. A variable sywbol is
valid in the name field; it is possible to
code

ENAME EQU *
where SNAME is undefined.

The first operand may be absolute
(including negative), relocatable, or com-
plex. Symbols in this field must be pre-
viously defined. This operand may not be
omitted unless the name field is also
omitted.

The second operand specifies an explicit
length attribute. It consists of any abso-
lute integer expression with a value from 1
to 65535, or a 1 - 2 byte self-defining
term (hex, character, or binary).

The third operand specifies an explicit
type attribute. It consists of any abso-
lute integer expression with a value from 0
to 255, or a l1l-byte self-defining term
(hex, character, or binary).

The symbol in the name field is given
the attributes explicitly specified ky the
second and third operands. If the second
operand is omitted, the symbol in the name
field will receive the length attribute of
the first operand. If the first operand
consists of an absolute value, the length
attribute of the symbol is 1; otherwise,
the length attribute is that of the left-
nost (or only) term of the first operand.

Assembler Instruction Statements 31

If the type attribute is omitted, the
symbol's type attribute is assigned as U
(undefined).

The value attribute of the symbol in the
name field is the value of the first
operand.

Rote: The second and third operands are
optional; if they are specified, they must
be written in the order shown above. If
the length attribute is omitted, and the
type attribute is specified, a comma must
be used to indicate the missing operand.

The EQU instruction equates symbols to
register numbers, immediate data, and other
arbitrary values. These examples illus-
trate how this might be done:

3
|Name iOperatlon|09erand {
s o } -- 4
|REG2 | EQU |2 (general register) |
| TEST [EQU gx 3F' (immediate data) |

¥ |

)

| S

In the following example, LENGTH is
eqguated to EXP2. The length attribute is
explicitly specified as 8, overriding the
length attribute of EXpP2. TYPE is equated
to EXP3; the type attribute is C (charac-
ter). DEFAULT is equated to VALUE.

Because the second and third operands are
omitted, the length and type attributes are
determined by the attributes of VALUE.

3
gﬂame |09eration|0petand |
— + -—{
| LENGTR |EQU |EXP2 8 {
|{TYPE |EQU | EXP3,,C*C" |
IDEFAULTlEQU [VALUE |

J

| SR U —

section (DXD), cumulative length external
dummy section (CXD), and define channel
command word (CCW). They are used tc: (a)
enter data constants into storage, (b)
define and reserve areas of storage, (c)
define storage for external dummy sections,
(d) specify the cumulative length for
external dummy sections, and (e) specify
the contents of channel command words. The
statements may be named by symbols so that
other program statements can refer to the
fields generated from them.

Discussion of the DC instruction is more
extensive than that of the DS or DXD
instructions, because the DS and DXD
instructions are written in the same format
as the DC instruction and may specify some
or all of the information that the DC
instruction provides. Only the function
and treatment of the statements vary.
Therefore, the DC instruction is presented
first and discussed in more detail than ei-
ther the DS or DXD instructions.

DC -- Define Constant

The DC instruction provides constant
data in storage. It may specify one con-
stant or a series of constants, thereby
relieving the programmer of the necessity
to write a separate data definition state-
ment for each constant desired. Further-
nmore, a variety of constants may be speci-
fied: fixed-point, floating-point, decim-
al, hexadecimal, character, and storage
addresses. (Data constants are generally
called constants unless they are created
from storage addresses, in which case they
are called address constants.) The format
of the DC instruction statement is:

To reduce programming time, the program-
mer can eguate symbols to frequently used
expressions, and then use the symbols as
operands instead of the expressions. Thus,
in the statement:

- —

—
{Name lOperat10n|Operand

|
3

FIELD is defined as ALPHA-BETA+GAMMA and
may be used in place of it. However,
ALPHA, BETA, and GAMMA must have been pre-
viously defined.

DATA DEFINITION INSTRUCTIONS

The five data definition instruction
statements are: define constant (DC),
define storage (DS), define external dummy

32

- - -

|0peration[0perand l

i o e e e e e 4
IOne or more operands |
|in format descriked |
| below, each separated |
|by comma }
i 4

3
| Rame
'S

1] T
|symkol |DC
|or blank]|
|]
{
L

|
i

Each operand consists of four subfields;
the first three describe the constant, and
the fourth provides the constants. The
second and fourth subfields must be speci-
fied; the first and third are opticnal.
Note that more than one constant may be
specified in the fourth subfield for most
types of constants. BAll specified con-
stants must be of the same type; the
descriptive sukfields that precede the con-
stants apply to all of them. No blanks may
occur within any subfields (unless provided
as characters in a character constant or a
character self-defining term), nor may they
cccur between the subfields of an operand.
Similarly, blanks may not occur between

operands and the commas that separate them,
when multiple operands are being specified.

The subfields of each DC operand are
written in this sequence:

1 2 3 4
Duplication Type Modifiers Constants
Factor

Although the constants specified in an
operand must have the same characteristics,
each operand may specify different types of
constants. For example, in a DC instruc-
tion with three operands, the first operand
might specify four decimal constants, the
second a floating-point constant, and the
third a character constant.

The symbol that names the DC instruction
i8 the name qf the constant (or first con-
stant if the instruction specifies more
than one). Relative addressing (for
example, SYMBOL+2) may be used to address
the various constants if more than one has
been specified, because the number of bytes
allocated to each constant can be
determined.

The value attribute of the symbol naming
the DC instruction is the address of the
leftmost byte (after alignment) of the
first, or only, constant. The length
attribute depends on two things: the type
of constant being defined and the presence
of a length specification. Implied lengths
are assumed for the various constant types,
in the absence of a length specification.
If more than one constant is defined, the
length attribute is the length in bytes
(specified or implied) of the first
constant.

Boundary alignment also varies according
to the type of constant keing specified and
the presence of a length specification.
Some constant types are only aligned to a
byte boundary, but the DS instruction can
be used to force any type of word boundary
alignment for them. This is explained un-
der "DS -- Define Storage."™ Other con-
stants are aligned at various word boun-
daries (half, full, or double) in the
absence of a length specification. If
length is specified, no toundary alignment
occurs for such constants.

Bytes that must be skipped to align the
field at the proper boundary are not con-
sidered to be part of the constant. 1In
other words, the location counter is incre-
mented to reflect the proper.boundary (if
incrementing is necessary), before the
address value is established. Thus, the
symbol naming the constant will not receive
a value that is the location of a skipped

byte.

Section 5:

Any bytes skipped in aligning statements
that do not cause information to be
assembled are not set to hexadecimal 0.
Thus bytes skipped to align a statement
such as DC F'123° are set to hexadecimal O,
and bytes skipped to align a statement such
as DS F are not set to hexadecimal 0.

Information concerning constants, pre-
sented in this section, is summarized in
Appendix C.

LITERAL DEFINITIONS: The discussion of
literals as machine instruction operands
(in Section 2) referred the reader tc the
description of the DC operand for the
method of writing a literal operand. aAll
suksequent operand specifications are appl-
icable to writing literals; the only dif-
ferences are:

1. The literal is preceded by an equal
sign.

2. Multiple operands may not be
specified.

3. The duplication factor may not be 0.

4. S-type address constants may not be
specified.

Examples of literals appear throughout
the remainder of the DC instruction
discussion.

Operand Subfield 1: Duplication Factor

The duplication factor may be omitted.
If specified, it causes the constants to be
generated as many times as indicated by the
factor, which may be specified either ky an
unsigned decimal self-defining term or by a
positive absolute expression that is en~
closed Ly parentheses. All symbols in the
expression must be previously defined.

The duplication factor is applied after
the constant is assembled. A duplication
factor of 0 is perwitted, except in a lit-
eral, and achieves the same result as it
would in a DS instruction (see "Forcing
Alignment,” under "DS -- Define Storage,”
later in this section).

Note: If duplication is specified for an
address constant containing a location
counter reference, the value of the loca-
tion counter used in each duplication is
incremented by the length of the constant.

Operand Subfield 2: Type

This subfield defines the type of con-
stant being specified. From that specifi-
cation, the asserbler determines how it
will interpret the constant and translate
it into the appropriate machine format.

Assemkler Instruction Statements 33

- o

Character
Hexadecimal
Binary
Fixed-point

Binary format

Address
Address

ly a fullword
Address

Address

(o)
Po e o e e s O s s — e . st o e . s, i e]

o e o s A s A e o e W s i i o s S s e

B-kit code for each character
4-bit code for each hexadecimal digit

h i

(

+

|

t

| Signed, fixed-roint kinary format; normally a fullword

| fixed-point binary format; normally a halfword

{ Short floating-point format; normally a fullword

| Long floating-point format; normally a doubleword
Decimal | Packed decimal forrmat

|

|

|

{

{

|

|

|

i

|

'y

Value of address; normally a fullword

i Fixed~-point Signed,
E Floating-point
Floating-point
p
Decimal Zoned decimal format
Adaress
Adcress Value of address;

Base register and displacement value; a halfword
Space reserved for offset of external dummy section; ncrmal-

Space reserved for external symbol addresses; each address
normally a fullword

Space reserved for address of control section of external
symbol; each address normally a fullword

Machine Format {

normally a halfword

R ot O — —— — Y — ——— —— — — A — O S_——. —

Figure 6. Type Codes for Constants

The type is specified by a single-letter
code, as shown in Figure 6.

Further information about these con-
stants is provided in the discussion of the
constants themselves, under "Constant,”
below.

Operand Subfield 3: Modifiers

Modifiers describe the length in bytes
desired for a constant (in contrast to an
implied length), and the scaling and
exponent for the constant. If multiple
modifiers are written, they must agpgpear in
this sequence: 1length, scale, exponent.
Each is written and used as described in
the following text.

LENGTH MODIFIER: This is written as Ln,
where n is either an unsigned decimal value
or an absolute expression enclosed Ly
parentheses. Any symbols in the expression
must be previously defined. A paired relo-
catable expression cannot be used in a
length modifier to form an absolute expres-
sion. The value of n rerresents the number
of bytes of storage assembled for the con-
stant. The maximum values permitted for
the length modifiers supplied for the
various types of constants are summarized
in Appendix C. Also, this appendix indi-
cates the implied length for each type of
constant; the implied length is used unless
a length modifier is present. A length
mcdifier may be specified for any type of
constant, but no boundary alignment will be
provided when a length modifier is given.

Bit-Length Specification: The bit length
of a constant is specified bty 1.n, where n
is specified as above and represents the
number of bits in storage into which the

14

constant is to be assembled. The value of
n may exceed 8 and is interpreted to mean
an integral number of bytes plus so many
kits. For example, L.20 is interpreted as
a length of twoc bytes plus four bits.

Assemkly of the first (or only) constant
with bit-length specification starts on a
kyte boundary. The constant is placed in
the high- or low-order end of the field,
depending on the type of constant being
specified. The constant is padded or trun-
cated to fit the field. 1If the assembled
length does not leave the location counter
set at a byte boundary, and another Lkit-
length constant does not follow, the
remainder of the last byte used is filled
with O0s. This leaves the location counter
set at the next byte boundary. A fixed-
point constant with a specified bit length
cf 13, as coded, and as it would appear in
storage, is shown in Figure 7. Note that
the constant has been padded on the left to
bring it to its designated 13-bit length.

A reference to BLCON, with an implied
length of two bytes, would cause both kytes
to ke referenced.

When kit-length specification is used in
association with multiple constants (see
"Constants,® below), each succeeding con-
stant in the list is assembled, starting_at
the next available bit. Figure 8 illus-
trates this.

The symkbol used as a name entry in a DC
assembler instruction takes on the length
attribute of the first constant in the
list; the implied length of BLMCON in
Figure 8 is two Lkytes.

byte
radding

0001001000011000
e e T e T N
| 579 £ill
U |
Figure 7. Bit-Length Specification
(Single Constant)

-
!
|
i
t
l
l
i
'
|
|
t
|
|
l
O
!
]
H
i
}
|
!
3

SO W S S

1 o o o

]
|As_coded |
[|
e B e sttt {
|Name |Operation|Operand |

il S S 1
lBLMCONIDC]FL 10'673,21,57" |
prmm e e 1
| |
|In_storage |
| |
|byte byte byte byte byte |
| I padding’ padc?ng |
| PR |
| 10101000010000010101000011100100 i
1 B R '
| 673 21 57 £ill I
e e -1

Bit-Length Spec1f1cat10n (Mul—
tiple Constants)

If duplication is specified, filling
occurs once, at the end of the field occu-
pied by the duplicated constants.

When bit-length specification is used in
association with multiple operands, assen-
bly of the constants in each succeeding
operand starts at the next available bit.
Figure 9 illustrates this.

Three different types of constants have
bteen specified in Figqure 9, one to an
operand. Note that the character constant
*AB', which normally would occupy 16 bits,
is truncated on the right to fit the desig-
nated 10-bit field. Note that filling
occurs only at the end of the field occu-
ried by all the constants.

Section 5:

[2 e e i 12 2 o e 2 e e 1y
|As_coded i
| |
fom e g e e e =
{Name {Opex-|Operand i
| |ation| |
- OO SR USSR PP |
|BLMOCON|DC IFL.'I")',C‘L 10°AB* ,XL.14°Cl" |
i e R |
| |
|In _storage |
| |
| byt byte byte pyte Yot !
| padding paddinF i ;
! i i
| 00010011100000111000000110001000 i
I 9 A Cc4 £ill i
I ~———— |
{ A plus {
| first two |
| bits of B |

SRR |
Bit-Length Specification (Mul-
tiple Operands)

| S,

Figure 9.

SCALE MODIFIER: This wodifier is written
as Sn, where n is either a decimal value ox
an aksolute expression enclosed by paren-
theses. Any symbol in the expression must
be previously defined. The decimal self-
defining term or the parenthesized expres-
sion may be preceded by a sign; if none is
rresent, a plus sign is assumed. The maxi-
mum values for scale modifiers are sum-
marized in Appendix C.

A scale modifier may be used with fixed-
rpoint (F, H) and floating-point (E, D) con-
stants only. It is used to specify the
desired amount of internal scaling.

Scale Modifier for Fixed-Point Constants:
This modifier specifies the power of 2, Ly
which the constant must be multiplied after
it has been converted to its binary regre-
sentation. Just as multiplication of a
decimal number by a power of 10 causes the
decimal point to move, multiplication of a
binary number by a power of 2 causes the
kinary point to move. This multiplication
has the effect of woving the binary goint
away from its assumed position in the
binary field -- the assumed position being
to the right of the rightmost position.

Thus, the scale modifier indicates ei-
ther of these: (a) the number of binary
positions to be occupied by the fractional
portion of the binary number, or (k) the
number of binary positions to be deleted
from the integral portion of the binary
numker.

A positive scale x will shift the

integral portion of the number x binary
positions to the left, thereby reserving

Assembler Instruction Statements 35

the 1ightmost x binary positions for the
fractional portion. A negative scale
“hifts the integral portion of the number
L the right, thereby deleting rightmost
integral positions. If a scale modifier
does not accowmpany a fixed-point constant
centaining a fractional part, the fraction-
sl nart is lost.

In all rases where positions are lost
because of scaling (or the lack of scal-
tug), rounding occurs in the leftmost bit
ot the fent portion. The rounding is
tefieoted in the rightmost position saved.

seale Modifier for Floating-Point Con-
stants: Only a positive scale modifier may
be used with a floating-point constant. It
indicates the number of hexadecimal posi-
tions that the fraction is to be shifted to
the right. Note that this shift is in
terms of hexadecimal positions, each of
which is four binary positions. (A posi-
tive scaling actually indicates that the
point is to be moved to the left. However,
a floating-point constant is always con-
verted to a fraction, which is hexadecimal-
ly normalized. The point is assumed to be
at the left of the leftmost position in the
field; since the point cannot ke moved
left, the fraction is shifted right.)

Thus, scaling that is specified for a
floating-point constant provides an
assembled fraction that is unnormalized;
that is, it contains hexadecimal 08 in the
lettmost positions of the fraction. Wwhen
the fraction is shifted, the exponent is
adjusted accordingly to retain the correct
magnitude. When hexadecimal positions are
lost, rounding occurs in the leftmost hexa-
decimal position of the lost portion. The
rounding is reflected in the rightmost
hexadecimal position saved.

EXPONENT MODIFIER: This modifier is writ-
ten as En, where n is either a decimal
self-defining term or an absolute expres-
sion enclosed by parentheses. Any symbols
in the expression must be previously
defined. The decimal value of the paren-
thesized expression may be preceded by a
sign; if none is present, a plus sign is
assumed. The maximum values for exponent
modifiers are summarized in Appendix C.

An exponent modifier may be used with
fixed-point (F, H) and floating-point (E,
D) constants only. The modifier denotes
the power of 10 by which the constant is to
be multiplied before its conversion to the
proper internal format.

This modifier is not to be confused with
the exponent of the constant itself, which
1s specified as part of the constant and is
explained under "Constant," Lkelow. Both
are denoted in the same fashion, as En.

36

The exponent modifier affects each constant
in the operand; the exponent written as
part of the constant only pertains to that
constant. Thus, a constant may L« speci-
fied with an exponent of +2, and an
exponent modifier of +5 may precede the
constant. In effect, the constant has an
exponent of +7.

Note that there is a maximum value, both
positive and negative, listed in Appendix
C, for exponents. This applies both to
exponent modifier and exponents specified
as part of the constant, or to their suam,
if both are specified.

Operand Subfield 4: Constant

This subfield supplies the constants
described by the subfields that precede
them. A data constant (all types except A,
¥, S, @, V, and R) is enclosed by agos-
trophes. An address constant (types A, Y,
S, Q, V, and R) is enclosed by parentheses.
To specify two or more constants in the
subfield, the constants must be separated
ky commas, and the entire sequence of con-
stants must be enclosed by the approgriate
delimiters (that is, apostrophes or paren-
theses). The format for specifying con-
stants is one of these:

Single Multiple

Constant Constants*

"Constant' *constant,...,constant’
(constant) (constant,...,constant)

*Not permitted for character, hexadecimal,
and kinary constants.

All constant types except character (C),
hexadecimal (X), binary (B), packed decimal
(P), and zoned decimal (2Z), are aligned on
the proper boundary, as shown in Appendix
F, unless a length modifier is specified.
In the presence of a length modifier, there
is no koundary alignment. If an operand
specifies more than one constant, any
necessary alignment applies to the first
constant only. Thus, for an operand that
provides five fullword constants, the first
would be aligned on a fullword boundary,
and the rest would automatically fall on
fullword boundaries.

The total storage requirement of an
operand is the product of the length multi-
plied by the number of constants in the
operand, multiplied by the duplicaticn fac-
tor (if present), plus any bytes skipped
for boundary alignment of the first con-
stant. If more than one operand is pre-
sent, the storage requirement is derived Ly
summing the requirements for each operand.

If an address constant contains a loca-
tion counter reference, the locatiocon count-
er value to ke used is the storage address

of the first byte the constant will occupy.
Thus, if several address constants in the
same instruction refer to the location
counter, the value of the location counter
varies from constant to constant. Similar-
ly, if a single constant is specified (and
it is a location counter reference) with a
duplication factor, the constant is dupli-
cated with a varying location counter
value,

The following text describes each con-
stant type and provides examples.

Character constant -- C: Any of the valid
256 punch combinations may be designated in
a character constant. Only one character
constant may be specified per operand.
Since multiple constants within an operand
are gseparated by commas, an attempt to spe-
cify two character constants would result
in interpreting the comma separating them
as a character.

Special consideration must ke given to
representing apostrophes and ampersands as
characters. Each apostrophe or ampersand
desired as a character in the constant must
be represented by a pair of apostrophes or
ampersands. Only one apostrophe or amper-
sand appears in storage. :

The maximum length of a character con-
stant is 256 bytes. No boundary alignment
is performed. Each character is translated
into one byte. Double apostrophes or
double ampersands count as one character.
If no length modifier is given, the size in
bytes of the character constant is equal to
the number of characters in the constant.
If a length modifier is provided, the
result varies, as follows:

1. If the number of characters in the
constant exceeds the specified length,
as many rightmost bytes and/or bits as
necessary are dropped.

2. If the number of characters is less
than the specified length, the excess
rightmost bytes and/or bits are filled
with blanks.

In this example, the length attribute of
FIELD is 12:

r v
{Name |Operation|Operand
. é

[8 T
| FIELD|DC jC*TOTAL IS 110°
L . 4
However, in this example, the length

attribute is 15, and three blanks agpear in
storage to the right of the 0:

Section 5:

L3 T v 1
|Name |Oreration|Operand |
L 4 Y d
T T 1 -
| FIELD|DC {CL15'TOTAL IS 110° |
| O, et o e s e e e e e e o s e e i e e 3

In this example, the length attribute of
FIELD is 12, although 13 characters appear
in the operand; two ampersands count as one

kyte:

T v T
{Name |Operationj|Operand
L 4 4

e

[) L T
|FIELD|DC |C'TOTAL IS §810°
L Fy '’y
Note that in this example, a length of 4
has been specified, but there are five
characters in the constant:
2] v k
Name |Operation|Operand |
i - J
L] v 1
|FIELD|DC | 3CL4*ABCDE" |
i 4 4 ¥ |

The generated constant would be
ABCDABCDABCD
kut, if the length had been specified as 6
instead of 4, the generated constant would
have been:
ABCDE ABCLE ABCDE

Note that the same constant could be speci-
fied as a literal:

1 3 T v
{Name |Operation|Operand
4

MVC

bt e et s el

|AREA(12) ,=3CL4* ABCDE'
4 -

Hexadecimal Constant -—- X: A hexadecimal
constant consists of one or more of the

hexadecimal digits 0-9 and A-F. Only one
hexadecimal constant may be specified per
aoperand. The maximum length of a hexade-
cimal constant is 256 bytes (512 hexadecim-
al digits). No boundary alignment is
rerformed.

constants that contain an even number of
hexadecimal digits are translated as one
kyte per pair of digits. If an odd number
of digits is specified, the leftmost Lyte
has the leftmost four bits filled with a
hexadecimal 0; the rightmost four bits con-
tain the odd (first) digit.

If no length modifier is given, the
implied length of the constant is half the
number of hexadecimal digits in the con-
stant (assuming that a hexadecimal 0 is
added to an odd number of digits). If a

Assembler Instruction Statements 37

length modifier is given, this is the
handling of the constant:

1. If the number of hexadecimal digit
pairs exceeds the specified length,
the necessary leftmost bits (and/or
byten) are dropped.

2. 1t the number of hexadecimal digit
pairs is less than the specified
length, the necessary bits (and/or
bytes) are added to the left and
filied with hexadecimal Os.

An 8-digit hexadecimal constant provides
a convenient way to set the bit pattern of
a full binary word. The constant in the
following example would set the first and
third bytes of a word to 1s:

U St - 1
| Name tOperatlongOperand |
— o ee 4 y
| | DS | OF |
| TEST lDC |x FFOOFF00' |
| N W S, 4

The DS instruction sets the location
counter to a fullword koundary.

The next example uses a hexadecimal con-
stant as a literal and inserts 1s into bits
24 through 31 of register 5:

' ———— -—
| Name 10peration|0perand
S B $---—=
| {IC |S,=X"'FF*
Lo §) S

b e ol e

In this example, the digit A would be
dropped, because five hexadecimal digits
are specified for a length of two bytes:

| 3XL2° AGFUE’

________ —— —_——]

The resulting constant would be 6FUE,
which would occupy the specified two bytes.
It would then be duplicated three times, as
requested by the duplication factor. If
X*A6FUE’ had been specified, the resulting
constant would have had a hexadecimal 0 in
the leftmost position:

OA6FUE

Binary Constant -- B: A binary constant
uses 1s and 0s enclosed in apostrophes;
only one binary constant may be specified
in an operand. Duplication and length may
be specified. The mazimum length of a
binary constant is 256 bytes.

38

Fixed-Point Constants --_F and H:

The implied length of a binary constant
is the number of bytes occupied by the con-
stant, including any padding necessary.
Padding or truncation takes place on the
left; the padding kit used is a 0.

In this example of the coding used to

designate a binary constant, BCCN would
have a length attribute of 1:

- e

- —— v o

h]
|Name 10perat10n10perand }
_____ A
}| BCCN }DC [E 11011101° |
| BTRUNC|CC |BL1'100100011"° |
|BPAD |DC |{BL1'101" |
t i - i -—d

BTRUNC would assemble with the leftmost kit
truncated: 00100011

BPAD would assemble with five 0s as pad-
ding: 00000101

A fixed-
point constant is written as a decimal num-
ber, which may be followed by a decimal
exponent if desired. The number may be an
integer, a fraction, or a mixed number
(i.e., one with integral and fractional
Fortions). The format of the constant is:

1. The numker is written as a signed or
unsigned decimal value. The decimal
point may be placed before, within, or
after the number; it may be omitted,
in which case the number is assumed to
be an integer. A positive sign is
assumed if an unsigned number is spec-~
ified. Unless a scale modifier accom-
panies a mixed number or fraction, the
fractional portion is lost, as
explained under "Operand Subfield 3:
Modifiers,® akove.

2. The exponent is optional. If speci-
fied, it is written immediately after
the number as En, where n is an
ofptionally signed decimal value speci-
fying the exponent of the factor 10.
The exponent may be in the range -85
to +75. 1If an unsigned exponent is
specified, a plus sign is assumed.
The exponent causes the value of the
constant to be adjusted by the speci-
fied power of 10 before the constant
is converted to its binary form.

The number is converted to its kinary
equivalent and is assembled as a fullword
or halfword, depending on whether the tyge
is sgpecified as F or H. It is aligned at
the proper fullword or halfword boundary if
a length is not specified. An implied
length of four bytes is assumed for a full-
word (F) and two bytes for a halfword (H).
However, any length up to and including
eight bytes may be specified for either

type of constant by a length modifier, in
which case no boundary alignment occurs.

Maximum and minimum values, exclusive of
scaling, for fixed-point ccnstants are:

Length Max Min
8 263-1 -2603
4 2311 -231
2 218-1 ~218
1 27-1 -27

The binary number occupies the rightmost
tortion of the field in which it is placed.
The unoccupied portion (i.e., the leftmost
bits) is filled with the sign; that is, the
setting of the bit designating the sign is
the setting for the bits in the unused por-
tion of the field. If the value of the
number exceeds the length, the necessary
leftmost bits are dropped. A negative num-
ber is carried in 2s complement form.

If the rightmost portion of the number
must be dropped as a result of scale modi-
fiers, rounding occurs. Any duplication
factor that is present is applied after the
constant is converted to its binary format
and assembled into the proper number of
bytes.

A field of three fullwords is generated
from the statement shown below. The loca-
tion attribute of CONWRD is the address of
the leftmost byte of the first word, and
the length attribute is 4, the implied
length for a fullword fixed-point constant.
The expression CONWRD+4 could be used to
address the second constant (second word)
in the field.

=== L SO S
|Operation|Operand
| CONWRD | DC |3F*658474"
L i L -

e

The next statement causes the generation
of a 2-byte field containing a negative
constant. Notice that scaling has been
specified in order to reserve six bits for
the fractional portion of the constant.

(mm—————= S S T
| Name |Operation|Operand
— 4

—— 4+

+ -

-—-

T

+
|HS6'-25.93"
'y

The next constant (3.50) is multiplied
by 10 to the -2 before being converted to
its binary format. The scale modifier
reserves 12 bits for the fractional
portion.

Section 5:

f T R]
| Name |Operation|Operand
4 4

a1l
| FULLCON |DC
1 § i

b e . e,

+
|HS12°3.50E-2"
L -

The same constant could be specified as
a literal:

v
Name peration|Operand

—
v

0
AB {7,=HS12"3.50E-2*
L

o W Sy o g
po o o e o
b s s s, wd

The final example specifies three con-
stants; the scale modifier requests four
bits for the fractional portion of each
constant. The four bits are provided
whether or nct the fraction exists.

r " T 2
| Name Operation|Operand

THREECON | DC

b e cndhi s a0

Fs4'10,25.3,100°

Floating-Point Constants -- E and D: A

floating-point constant is written as a
decimal number, which may be followed by a
decimal exponent, if desired. The numker
may ke an integer, a fraction, or a mixed
number (i.e., one with integral and frac-
tional portions). The format of the con-
stant is:

1. The number is written as a signed or
unsigned decimal value. The decimal
point may be placed before, within, or
after the numker; it may be omitted,
in which case the number is assumed to
be an integer. A positive sign is
assumed if an unsigned number is
specified.

2. The exponent is optional. If speci-
fied, it is written immediately after
the numker as En, where n is an
ortionally signed decimal value speci-
fying the exponent of the factor 10.
The exponent may be in the range -85
to +75. If an unsigned exponent is
specified, a plus sign is assumed.

Machine format for a floating-point num—
ker is in two parts: (a) the portion con-
taining the exponent, which is sometimes
called the characteristic, followed by (b)
the portion containing the fraction, which
is sometimes called the mantissa. There-
fore, the number specified as a floating-
Foint constant must be converted to a frac-
tion before it can be translated into the
proper format. For example, the constant
27.35E2 represents the number 27.35 multip-
lied by 10 to the 2nd. Represented as a
fraction, it would be 0.2735 multiplied by
10 to the 4th, the exponent having keen

Assembler Instruction Statements 39

modified to reflect the shifting of the
decimal point. The exponent may also be
affected by the presence of an exponent
modifier (explained under "Operand Subfield
3: Modifiers.®) Thus, the exponent is also
altered before being translated into
machine format. When the constant is con-
verted intoc the proper exponent and frac-
tion, each is translated into its binary
equivalent and arranged in machine
floating-point format.

The translated constant is placed in a
fullword or a doubleword, depending on
whether the type is specified as E or D.

It is aligned at the proper word or double-
word houndary if a length is not specified.
An implied length of four bytes is assumed
for a fullword (E), and eight bytes is
assumed for a doubleword (D). However, any
length up to and including eight bytes may
be specified for either type of constant by
a length modifier, in which case no boun-
dary alignment occurs.

Within the portion of the floating-point
field allocated to the fraction, the hexa-
decimal point is assumed to be to the left
of the leftmost hexadecimal digit, and the
fraction occupies the leftmost portion of
the field. The fraction is normalized (no
leading hexadecimal 0s8), unless scaling is
specified. 1f the rightmost portion of the
fraction must be dropped, because of length
or scale modifiers, rounding will occur.
Negative fractions are carried in true
representation, not in the 2s complement
form.

Any of the following statements could be
used to specify 46.415 as a positive, full-
word, floating-point constant; the last is
a machine instruction statement with a lit-
eral operand. Note that the last two con-
stants contain an exponent modifier.

[T - T s |
{Name |[Operation|Operand |

e e Nttt
| |bC |E'46.415" i
I |pC {E'46415E-3" |
| |DC |E*+464.15E-1" |
| |DC |E*+.U6415E+2" |
i | DC |EE2".46u15" |
| | AE |6,=EE2'.46415" |
| P, RS [¥)

The following would each be generated as
doubleword floating-point constants.

 Suiuiint: Sutnd S S - 1
| Name |Operation|Operand |
S S e 1
| FLOAT | DC |DE+4°446,-3.729,4473" |
N G j S -1

40

Lecimal Constants -- P and_2Z: A decimal
constant is written as a signed or unsigned
decimral value. 1f the sign is omitted, a
plus sign is assumed. The decimal point
nay ke written wherever desired, or it may
be omitted. Scaling and exponent modifiers
rmay not be specified for decimal constants.
The maximum length of a decimal constant is
16 bytes; there is no word boundary
alignment.

The placement of a decimal point in the
definition does not affect the assemkbly of
the constant in any way because, unlike
fixed-point and floating-point constants, a
decimal constant is not converted tc its
kinary equivalent. The fact that a decimal
constant is an integer, a fraction, or a
mixed numker is not pertinent to its
generation. Further, the decimal point is
not assembled into the constant. The pro-
grammer may determine proper decimal point
alignment, either ky defining his data so
that the point is aligned or by selecting
machine instructions that will operate on
the data prorerly (that is, shift it for
rurposes of alignment).

If zoned decimal format (2) is speci-
fied, each decimal digit is translated into
one byte. The rightmost byte contains the
sign, and the rightmost digit. For packed
decimal format (P), each pair of decimal
digits is translated into one byte. The
rightmost digit and the sign are translated
into the rightmost byte. The bit confi-
guration for the digits is identical to the
configurations for the hexadecimal digits
0-9, as shown in Section 3 under “Hexade-
cimal Self-Defining Value." For both
packed and zoned decimals a plus sign is
translated into the hexadecimal digit C,
and a minus sign into the digit D.

If an even number of packed decimal
digits is specified, one digit will ke left
unpaired, kecause the rightmost digit is
raired with the sign. Therefore, in the
leftmost byte, the leftmost four bits will
ke set to 0s, and the rightmost four Lits
will contain the odd (first) digit.

If no length modifier is given, the
implied length for either constant is the
number of bytes the constant occupies (tak-
ing into account the format, sign, and
possible addition of 0 bits for packed
decimals). If a length modifier is given,
this is the handling of the constant:

1. If the constant requires fewer Lytes
than the length specifies, the neces-
sary nurber of bytes is added to the
left. For zoned decimal format, the
decimal digit 0 is placed in each

added byte. For packed decimals, the
bits of each added Lkyte are set to 0.

2. If the constant requires more bytes
than the length specifies, the neces-
sary number of leftmost digits or
pairs of digits is dropped, depending
on which format is specified.

Examples of decimal constant
definitions:

[T T T e e e e ——— 1
| Name [Operat10n|0perand |
S e i
| {DC |P +1.25° |
i | DC |z*-543" |
| |DC 12°79.68" i
{ | bC [PL3‘79 68° {
[— F G G - r

The following statement specifies both
packed and zoned decimal constants. The
length modifier applies to each constant in
the first operand (that is, to each packed
decimal constant). Note that a literal
could not specify both operands.

- _—
| Name |Operation{Operand

e O O _

| DECIMALS | DC |PL8'+25.8,-3874,

| | |+2.3° z'+ao.—3.72'
N SN S A

This example illustrates the use of a
packed decimal literal:

Fo-——= Sl Skt 1
| Name |0p9rat10n|0perand |
 — et 1
] JUNPK | OUTAREA, =PL2°* +25* |
S y G 3

ADDRESS CONSTANTS: An address constant is
a virtual storage address or an absolute
expression that is translated into a con-
stant. Address constants are normally used
for initializing base registers to facili-
tate the addressing of storage. Further,
they provide the means of communicating
between control sections of a multisection
program. However, storage addressing and
control section communication are also
dependent on the USING assemkler instruc-
tion and the loading of registers. These
considerations are illustrated in Section 3
under “"Programming With the USING
Instruction.”

An address constant, unlike other types
of constants, is enclosed in parentheses.
Two or more address constants specified in
an operand are separated by commas, and the
entire sequence is enclosed by parentheses.
The six types of address constants are A,
Y, s, 0, VvV, and R.

Section 5:

Complex Relocatable Expressions: A complex
relocatable expression can only be used to
specify an A-type or Y-type address con-
stant. These expressions contain two or
more unpaired relocatakle terms and/or a
negative relocatable term, in addition to
any absolute or paired relocatable terms
that may be present. 1In contrast to relo-
catable expressions, complex relocatakle
expressions may represent negative values.
A complex relocatable expression might con-
sist of external symbols (which cannot be
paired) and designate an address in an
independent asserbly that is to be linked
and locaded with the assembly containing the
address constant.

A-Type Address constant: This constant is
specified as an absolute, relocatable, or

complex relocatakle expression. (Remember
that an expression may be single term or
rultiterm.) The value of the expression is
calculated as explained in Section 2, with
one excertion. The maximum value of the
expression may be 231-1. The implied
length of an A-type constant is four bytes,
and the valye is placed in the rightmost
position. The length that may be specifi-
fied depends on the type of constant. A
length of 1-4 bytes may be used for an
absolute, relocatable, or complex exgres-
sion. The programmer is cautioned that
address constants which contain relocatakle
values may cause truncation of the relo-
cated value if fewer than four bytes are
allowed for the length of the constant.

In the following examples, the field
generated from the statement named ACONST
contains four constants, each of which
occupies four bytes. Note that one has a
location counter reference. The value of
the location counter will be the address of
the first byte allocated to the fourth con-
stant. The second statement shows the same
set of constants specified as literals
(i.e., address constant literals).

1 4 T . T - -
| Name |Operation|Operand |

4
—————t e - — i
|ACONST|LC |A(108, LOOP, i
		END-STRT, #+4096)
	LM s, 7,=A(108,LOOP,	
		END-STRT, *+4096)
L L 4 - J
Note: When the location counter reference

occurs in a literal, as in the LM instruc-
tion akove, the value of the location coun-
ter is the address of the first byte of the
instruction.

Y-Type Address Constant: This constant has
the characteristics and format of the A-
type constant, except for:

Assembler Instruction Statements 41

1. The constant is assembled as a 16-bit
value and is aligned to a halfword
boundary.

2. The implied length is two bytes.

3. The maximum length of a Y-type address
constant is two bytes. If length spe-
cification is used, a length of one or
two bytes may be designated for a
relocatable or complex expression and
one to two bytes for an aksolute
expression.

WARNING: Specification of relocatable Y-
type address constants two or fewer bytes
in length should be avoided in programs to
be executed under TSS control, since such
constants do not permit the assignment of
a complete virtual storage address.

Y-type address constants should not be
used in programs to be executed under
0S control.

S-Tvype Address Constant: This constant is
used to store an address in base-

displacement form. It may be specified in
two ways: :

1. As an absolute or relocatable expres-
sion, for example, S(BETA).

2. As two absolute expressions, the first
of which represents the displacement
value and the second the kase regis-
ter, e.g., S(400(13)).

The address value represented by the ex-
pression in 1 will be kroken down by the
assembler into the prorer base register and
displacement value. An S-type constant is
assembled as a halfword and aligned on a
halfword boundary. The leftmost four bits
of the assembled constant represents the
base register designation; the remaining 12
bits the displacement value.

If length specification is used, only
two bytes may be specified. S-type address
constants may be specified as literal.

-Type Address Constant: This constant is
used to reserve storage for the offset of
sn external dummy section. This offset is
added to the address of the klock of
storage allocated to the external dummy
sections to address the desired section.
The constant is specified as a relocatable
symbol which is defined in a DXD or DSECT
statement. The implied length of a Q-type
address constant is 4 bytes, and the boun-
dary alignment is to a fullword; a length
of 1-4 bytes may be specified. No bit
length specification is permitted. Q-type
address constants may be specified in
literals.

42

In the following example, the constant
VALUE is defined in a DXL or DSECT state-
ment. To address VALUE, the value of A is
added to the base address of the block of
storage allocated for external dummy
sections.

- |

[Namelcperatlon[Operand i

————— - -4
lQ(VALUE) : |

R ——

V-Tygpe Address Constant: This constant is
used to reserve storage for the address of
an external symbol. The constant is speci-
fied as one relocatable symbol, which need
not ke identified Ly an EXTRN statement.
The symbol used is assumed to be an extern-
al symkol because it is supplied in a V-
type address constant.

Specification of a symbol as the operand
of a V-type constant does not constitute a
definition of the symbol for this assemnkly.
The implied length of a V-type address con-
stant is four bytes, and boundary alignment
is to a fullword. A length modifiexr may be
used to specify a length of from one to
four bytes, in which case no such koundary
alignment occurs. The programmer is cau-
tioned that address constants which contain
relocatakle values may cause truncation of
the relocated value if fewer than four
tytes are allowed for the length of the
constant. In the following example 12
kytes will be reserved, hkecause there are
three symbols.” The values of each
assembled constant will be 0 until the pro-
gram is loaded.

i |

I
| Name]OperatlcniOperand |
X

r
|VCONST|DC lV(SURT MERGE,CAIC)
1

e

R-Type Address Constant: This constant,

when linking to a reenterable program, sup-
plies the address of the control section
that is required by the reenterable program
for working storage, variable program data,
and address constants unique to the calling
program. The programmer need not be aware
of the name given to the section by the re-
enterakle program; he needs to know only
the desired entry point within the reenter-
able program. Use of the R-type address
constant causes the loader to supply the
address of the control section as a func-
tion of the entry point name.

In the example akbove, SINE is an entry
pcint, defined by an ENTRY assembler
instruction, in a reenterakle routine. The
prototype control section for the routine
is named MATHSECT. The programmer who
wishes to use the SINE entry needs to write
only the entry name; the loader will pro-
vide the address of the prototype section
MATHSECT in which SINE has been defined by
the ENTRY instruction. The assembler will
qenerate the equivalent of:

o o ———— T 1
|Name |OperationjOperand |
pommm e oo -- !
| RCONST|DC | V (MATHSECT) |
[P, i j S 4

The rules for specifying an R-type
address constant are the same as those for
V-type.)

The assembler automatically associates
the name of an entry point with the name of
the CSECT, PSECT, or COM section in which
it was defined (see the ENTRY assembler
instruction in Section 3).

DS_-- Define Storaqge

The DS instruction reserves areas of
storage and assigns names to those areas.
The use of this instruction is the pre-
ferred way of symbolically defining storage
tor work areas, input/output areas, etc.
The size of a storage area that can be
reserved by using the DS instruction is
limited only by the maximum value of the
location counter.

e e e . s e g g S . A - -~

f T
| Name |Operation|Operand
3 4

Ll

|One or more operands,
|separated Lty commas,

{written in format de-
{scriked in following

|
i | text
| R y S -

R

The format of the DS operand is identi-
cal to that of the DC operand; exactly the
same subfields are employed and are written
in the same sequence as in the DC operand.
Although the formats are identical, there
are two differences in the specification of
subfields: .

1. The specification of data (subfield 4)
is optional in a DS operand, but is
mandatory in a DC operand.

2. The maximum length that may be speci-
fied for character (C) and hexadecimal
(x) field types is 65,535 bytes, rath-
er than 256 bytes.

Section 5:

If a bS operand specifies a constant in
sukfield 4, and no length is specified in
subfield 3, the assembler determines the
length of the data and reserves the appro-
rriate amount of storage. It does_not
assemble the constant. The ability to sge-

cify data and have the assembler calculate
the storage area that would be required for
such data is a convenience to the program-
mer. If he knows the general format of the
data that will be placed in the storage
area during program execution, he need only
show it as the fourth subfield in a DS
operand. The assembler then deterwmines the
correct amount of storage to be reserved,
thus relieving the programmer of length
considerations.

If the DS instruction is named by a sym-
ktol, its value attribute is the location cf
the leftmost byte of the reserved area.

The length attrikute of the symbol is the
length (implied or explicit) of the type cof
data specified. Should the DS have a
series of operands, the length attrikute of
the symbol is developed from the first item
in the first operand. Any positioning
required for aligning the storage area to
the proper type of boundary is done kefore
the address value is determined. Bytes
skipped for alignment are not set to 0.

Each field type (for example, hexadeci-
ral, character, floating point) is asso-
ciated with certain characteristics (sum~
rarized in Appendix C). The associated
characteristics will determine which field-
type code the programmer selects for the DS
operand and what other information he adds,
such as a length specification or a dupli-
cation factor. For example, both E
floating-point fields and F fixed-point
fields have implied lengths of four ktytes.
The leftmost byte is aligned to a fullwozxd
koundary. Thus, either code could be spec-
ified, if it were desired to reserve four
kytes of storage aligned to a fullword
toundary. To obtain a length of eight
bytes, either the E or F field type could
te specified with a length modifier of 8.
However, a duplication factor would have to
be used to reserve a larger area, kbecause
the maximum length specification for either
type is eight bytes. Note also that speci-
fying length would cancel any special boun-
dary alignment.

In contrast, packed and zoned decimal (P
and 2), character (C), hexadecimal (X)), and
binary (B) fields have an implied length of
one kyte. Any of these codes should be
accompanied by a length modifier, unless
just one byte is to be reserved. Although
no alignment occurs, the use of C and X
fields permits greater latitude in length
specifications; the maximum for either type
is 65,535 kytes. (Note that this differs
from the maximum for these types in a DC

Assembler Instruction Statements 43

nstruction.) Unless a field of one byte
is desired, the length must be either: (a)
specified for the ¢, X, P, 2, or B field
types, or (b) the data must be specified
(as the fourth subfield), so that the as-
sembler can calculate the length.

To define four 10-byte fields and one
100-ktyte field, the respective DS state-
ments might be:

[Sttt Sttt shahateth e - 1
| Name }OperationlOperand |
_______________________ 4
1

{FIELD|DS juscrio |
| AREA sns |cri00 |
4

Although FIELD might have been specified
as one 40-byte field, the preceding defini-
tion has the advantage of providing FIELD
with a length attribute 6f 10. This would
be pertinent when using FIELD as an SS
machine instruction operand.

Here are more examples of DS statements:

T — -

| Name |Operation|09erand

IR e S

CEFINING FIELDS OF AN AREA: A DS instruc-

tion with a duplication factor of 0 can ke
used to assign a name to an area of storage
without actually reserving the area. Addi-
tional DS and/or DC instructions may then
be used to reserve the area and assign
names to fields within the area (and genexr-
ate constants if DC is used).

For example, assume that 80-character
records are to be read into an area for
processing, and that each record has this
format:

Payroll nunber
Employee name
Date

Gross wages
Withholding tax

Positions 5-10
Positions 11-30
Positions 31-36
Positions 47-54
Positions 55-62

The following example illustrates how DS
instructions might be used to assign a name
to the record area, then define the fields
of the area and allocate the storage for
them. The first statement names the entire
area by defining the symbol RDAREA; the
statement gives RDAREA a length attribute
of 80 bytes, but does not reserve any

1)
|
4
|ONE |DS |CL80 (one 80-byte field; | storage. Similarly, the fifth statement
| | |length attribute, 80) | names a 6-byte area by defining the symbol
| TWO |DS |80C (B0 1-byte fields; { DATE; the three suksequent statements actu-~
} | |1length attribute, 1) | ally define the fields of DATE and allocate
| THREE|DS |6F (six fullwords; length]| storage for them. The second, ninth, and
|attrikute, 4) | last statements are used for spacing pur-
{FOUR |DS |D (one doubleword; lengthj poses and, therefore, are not named.
| | |attribute, 8) i
{|FIVE |DsS |48 (four halfwords; | r T T - 1
| | |length attribute, 2) | |Name |Operation|Operand |
bl . - it 1 + :
| RDAREA | DS |0CL8O 1
Note: A DS statement causes the storage | |DS jCcLu i
area to be reserved but not set to 0's. No |PAYNC |DsS |CcL6 |
assumption should be made as to the con- |NAME |DS | CL20 |
tents of the reserved area. |DATE |DS | ocL6 i
| DAY |Ds jcr2 |
Special Uses of the Duplication Factor |MONTH |DS |CL2 |
|YEAR |LS {cL2 |
FORCING ALIGNMENT: The location counter { . |Ds |cL10 |
can be forced to a doubleword, fullwcord, or |GROSS |DS |C1L8 |
halfword boundary by using the appropriate | FEDTAX | DS jCcL8 |
field type (for example, D, F, or B) with a | |DS jcris |
i

duplication factor of 0. This method may
be used to obtain boundary alignment that
otherwise would not be provided. For
example, the following statements would set
the location counter to the next doubleword
boundary and then reserve storage space for
a 128-byte field (whose leftmost byte would
be on a doubleword boundary).

[- 1
| Name |0perat10n|0perand |
. {
| iDs 0D |
{AREA |DS jcr128 |
[S SN A e ¥

L U

CXD ~- Define External Dummy Section

The DXD instruction defines an external
dummy section (also referred to as a Pseudo
Register). When the assembler encounters a
DXD instruction, it computes the amcunt of
storage, and the alignment, required for
each operand. This information is avail-
able to the loader, which will compute the
total length of the external dummy sec-
tions. The format for the DXD instruction
is:

- k3 T

Name |Operation|Operand
e 4

S

$
|Duplication factor,
|type,modifiers,constant
4 \

-+
ymbol|DXD
|

R s

|
1
r
|
|
L

The name field, which must be specified,
may not contain a sequence symbol. The
symbol in the name field is a symbol which
usually appears as a Q-type constant in the
operand field of a DC statement in the pro-
gram. The symbol has a length attribute
which is calculated by the rules for DC and
DS instructions.

The operand of a DXD may be written as
if it were a DS instruction operand. The
constant in the operand field is only used
in determining the byte alignment and total
length. !ultiple operands and multiple
constants are allowed but are only used to
determine the length of the work area requ-
est. The storage specified in DXD instruc-
tions is not initialized to the value spec-
ified in the constant.

If more than one external dummy section
with the same name is encountered by the
loader, it uses the first section in com-
puting length. If two or more identically
named external dummy sections have dif-
ferent boundary alignments, the loader uses
the first alignment encountered in comput-
ing total length.

An external dummy section may also be
defined by a Q-type address constant which
refers to a DSECT name. The alignment is
doubleword and the length is the highest
location counter value assigned to that
DSECT.

CXD -- Cumulative Length External Dummy
Section

The CXD instruction allocates a four-
byte, fullword aligned area in storage
which will contain, at execution time, the
sum of the lengths of all external dummy
sections plus the sum of the lengths of all
bytes used in aligning external dummy sec-
tions. This sum is supplied by the loader.
The instruction format is:

v T
|Operation|Operand
4 4

T
| Symbol or blank|CXD
t 4

v
|Must be blank
4 y |

The CXD instruction may appear anywhere
within a program, or, if several programs
are being combined, it may appear in each
program. The symbol in the name field has
the length attribute of 4.

Section 5:

The fcllowing example shows how external
dummy sections may be used.

L o 3
i ROUTINE A |
i d
[- b]
{Name Operation|Operand |
i |
v 1
|ALPHA |DXD | 2DL8 |
| BETA | DXD | 4FL4 |
JOMEGA |CXD | |
i i -] |
| | - | 1
al {DC	Q(ALPHA)	
A2 {pC	Q (BETR)	
	-	
	-	
t i i 1		
ROUTINE B		
} “““ T T 4		
Name {Operation	Operand	
t + + 4		
(GAMMA	DXD	5D
DELTA	DXD	10F
]	-	I
	-	
A3 {DC.	Q(GAMMA)	
Al jDC	Q (DELTA)	
I .		
I -		
l___‘__ 4 4 1]		
ROUTINE C i		
L 4		
[3 T T 1		
Name jOoperation	{Operand }	
i 4 { 4		
8 L] T		
DELTA	DXD	10F
{EPSILON	DXD j4R	
	-	
	-	
A4 jpC	Q (DELTA)	
AS jpC	Q (EPSILON)	
	-	
	-	
t 4 L J

Each of the three routines is requesting a
work area. Routine A requests 2 double-
words and 4 fullwords. Routine B request 5
doublewords and 10 fullwords. Routine C
requests 10 fullwords and 4 halfwords. At
the time these routines are loaded, the sum
of the individual lengths, plus the length
of any alignment bytes used, will be placed
in the fullword storage area allocated by
the CXD instruction lakeled OMEGA. Routine
A can then allocate the amount of storage
that is specified in the CXD location.

Note that routines B and C may communicate
with each other Ly placing information in
the dummy section named DELTA. No othey
interroutine communication is possible in
the example shown kecause no other corres-
ponding external dummy sections have been
defined in routines A, B, or C.

Assemkler Instruction Statements 45

CCW -- Define Channel Command Word

The CCW instruction provides a con-
venient way to define and generate an 8-
kyte channel command word aligned at a
doubleword boundary. The internal machine
format of a channel command word is shown
in Table 3. The format of the CCW instruc-
tion statement is:

| Subiniiatt B St T
jName {Operation|Operand

{Symbol |CCW
jor blank|]

1
|
1
| Four operands, sepa- |
|rated by commwas, spec-|
|ifying contents of |
|channel command word |
|in format described in|

!

|
{ | following text
j i__

The four operands must appear, written
from left to right, as:

1. An absolute expression that specifies
the command code. This expression's
value is right-justified in byte 1.

2. An absolute, relocatable, or complex
relocatable expression specifying the
data address. The value of this ex-
pression is right-justified in bytes
2-4,

3. An absolute expression that specifies
the flags for bits 32-36 and 0's for
bits 37-39. The value of this expres-
sion is right-justified in kyte S5
(byte 6 is set to 0).

4. An absolute expression that specifies
the count. The value is right-
justified in bytes 7-8.

This is an example of a CCW statement:

—— PR

T 1]) |
| Name |Operation|oOperand |
R ot - :
| |ccw | 2, REACAREA, X' 48" ,80 |
S S § G b

The form of the third operand sets bits
37-39 to 0, as required. The bit pattern
of this operand is:

32-35
0100

36-39
1000

A symbol appearing in the name field of
the CCW instruction is assigned the address
value of the leftmost byte of the channel
command word. The length attribute of the
symbol is 8.

46

Takle 3. Channel Command Word

= T - -7 -= ==
| Byte | Bits | Usage {
b 4 1 4
| 1 | 0-7 | Command code |
| 2-u4 { 8-31 | Data address |
{ S] 32-36 | Flags |
| | 37-39 | Must be 0 i
i 6 | 40-47 | sSet to 0 {
| 7-8 | u48-63 | Count |
L - 1 i J
CAUTION: The CCW command does not provide

a field large enough to contain a 32-kbit
address.

LISTING CONTROL INSTRUCTIONS

These instructions identify an assembly
listing, provide blank lines in the list-
ing, and designate how much detail is to be
included. 1In no case are instructicns or
constants generated in the object program.

TITLE -- Identify Assembly Output

TITLE enakles the programmer to identify
the assembly output, and has the format:

r L)

|Name Operation|Operand

k- t

| Name | TITLE | Sequence of charac-

jor klank]| |ters, enclosed in |
1 | japostrophes {
L ——de i 3

The name field may contain a name of
from one to four alphabetic or numeric
characters, in any combination. The con-
tents of the name field are placed in the
assenbly output to serve as identification
for punching output cards. Only the first
TITLE statement in a program may have a
name in the name field; for all suksequent
TITLE statements the field should be blank.

The orerand field may contain up to 100
characters, enclosed in apostrophes. The
contents of the operand field are printed
at the top of each assemkly listing page.

If a character string containing at
least one single apostrophe is to be sub-
stituted for an operand in a TITLE state-
ment, it must meet the requirements
described in Section 7, under “Free
Apostrophes.™

A program may contain more than one
TITLE statement. Each statement provides
the heading for pages in the assembly list-
ing that follow it, until another TITLE
statement is encountered. Each TITLE
statement encountered causes the listing to
ke advanced to a new page (before the head-
ing is printed). For examgple, assume that

this statement is the first TITLE statement
to appear in a program:

[St A
| Name iOperat10n|Operand |
I ommmemm -4
| |TITLE | *FIRST HEADING' |
QRS UNUIIUSIUNS G J
then this heading appears at the top of
e¢ach following page: FIRST HEADING

1f this statement occurs later in the
same programs
r=—=-- T]
| Name ;Operation|0perand {
p-—- $-- i
| | TITLE {*A NEW HEADING' |
[R, § 3

then each following page begins with this
heading: A NEW HEADING

EJECT -- Start New Page

EJECT causes the next line of the list-
ing to appear at the top of a new page.
This instruction provides a convenient way
to separate routines in the program list-
ing. The format is:

(=== 7 =

| Name]Operat10n|0perand

|Not used

| SNSRI . -—

I1f the next line of the listing normally
appears at the top of a new page, the EJECT
statement has no effect. Two EJECT state-
ments may be used in succession to obtain a
completely blank page.

SPACE -- Space Listing

This instruction inserts one or more
blank lines in the listing. The format is:

(m—————— _—
| Name iOperat1on|0perand
¢ =
|Blank|SPACE |Dec1mal value or klank
bmmmmed i _—

[S S——

A decimal value specifies the number of
blank lines to be inserted in the assembly
listing; a blank operand causes one blank
line to be inserted. If this value exceeds
the number of lines remaining on the list-
ing page, the statement will have the same
effect as an EJECT statement.

PRINT -- Print Optional Data

The PRINT instruction controls what is
assembled into the 1list data set. Through
use of this instruction, lines or data may

Section 5:

be included or omitted from the listing
created during assembly. The object module
created is not affected.

Note: The PRINT assembler instruction is
not to be confused with the PRINT command.
The instruction determines what lines or
data are to be included or not in the list-
ing; the command is necessary to cause the
listing to be printed. (A special case,
however, is when a nonconversational user
elects to have his listing printed immedi-
ately on SYSOUT; in this case, any PRINT
assembler instructions will affect the out-
put listing just as it would if the list
data set had been retained internally.)

The format for the PRINT instruction is:

L 3 v ¥
| Name |Operation|Operand
4

o s b e

L)
Blank | PRINT one to three operands
4

One to three of these operands are used:

ON - Listing is printed.
CFF - No listing is printed.

GEN ~ All statéments generated by macro
- instructions, backward AGO
instructions, or statements in a
copled element are printed.

FULLGEN Al]l statements generated Ly macro
instructions, backward AGO state-
ments, conditional instructions
as they are encountered, or
statements in a copied elewent

are printed.

NOGEN

'

Statements generated by macro
instructions, backward AGO
instructions, or statements in a
copied element are not printed.
The macro instruction or COPY
statement’ itself will appear in
the listing.

CATA

'

Constants are printed in full in
the listing.

NODATA

[

Only the first eight bytes (16
hexadecimal digits), or the first
constant, whichever is shorter,
of the assembled data is grinted
in the listing.

A program may contain any number of
PRINT statements. One PRINT controls the
printing of the assembly listing until
another PRINT is encountered. If no PRINT
assembler instruction is issued, the fol-
lowing is assumed:

Assemkler Instruction Statements 47

T r==-= 1
{Name |Operation|Operand |
e e
i | PRINT | ON, NODAT#,GEN
C) S P S, —
For example, if
g o L S 1
| Name |Operation|Operand |
. $ {

T 1

| | DC | XL256°' 00" |
SRR S i 4

appears in a program, 256 Lytes of 0°'s are
assembled. If

~——=-v-- T - 1
|Name |Operation|Operand |
- $ + {
i | PRINT | DATA |
b 1 i s

">

is the last PRINT to appear before the DC
statement, the 256 bytes of 0's are printed
in the assembly listing. However, if

)] T
|Name |Operation|Operand

pom == mmem e =ommmem
i { PRINT | NODATA
4

4

e e

| IS P,

is the last PRINT before the DC statement,
only eight bytes of 0°s are printed in the
assembly 1listing.

Whenever an operand is omitted, the as-

sembler assumes the operand specification
made in the most recent PRINT statement.

PROGRAM CONTROL_INSTRUCTIONS

Program Control instructions:
e Specify the end of an assembly.

e Set the location counter to a value or
word boundary.

e Insert previously written coding in the
program.

e Specify the placement of literals in
storage.

e Check the sequence of input cards.

e Indicate statement format.

Except for the CNOP and COPY instruc-
tions, none of these assembler instructions

generate instructions or constants in the
object program.

48

ICTL -- Input Format Control

This instruction allows the programmer
to alter the normal format of source state-
ments that originate on punched cards; it
has no effect on statements entered through
a keyboard. ICTL must precede all other
statements in the source program that ori-
ginate from cards; it may be used only
once. The format of the ICTL instruction
statement is:

v

r T T mmmemsssssms e s 1
{Name |Operation{Operand |
e 1 4
|Blank | ICTL }|1-3 decimal values of thej|
! 1 !form b,e, c |

|

Operand b specifies the begin column of
the source statement. It must always ke
specified, and must be from 1-40,
inclusive. - ‘

orerand e specifies the end column of
the last source statement. The end column,
when specified, must be from 41-80, inclu-
sive; when not srecified, it is assumed to
be 71. The column after the end column is
used to indicate whether the next card is a
continuation card.

Orerand c specifies the continue column
of the source statement. The continue
colurn, when specified, must be from 2-40
and must be greater thanm b. If the con-
tinue column is not specified, or if column
80 is specified as the end column, the as-
sembler assumes that there are no continua-
tion cards and that all statements are on a
single card.

If no ICTL statement is used in the
source program, the assembler assumes that
1, 71, and 16 are the begin, end, and con-
tinue columns, respectively. An error in
the specification of b causes the statement
to be ignored. 1If e is in error, the end
column defaults to 71. If the specifica-
tion for ¢ is in error, the continue column
defaults to 16; if this default conflicts
with the begin or end column specifica-
tions, continuation cards will not be
allowed.

The next example designates the kegin
column as column 25. Since the end column
is not specified, it is assumed to ke
cclumn 71. No continuation cards are reco-
gnized because the continue column is not
specified.

[3 h] T
|Name |Operation|Operand
I 4 4

h—c’b.—..d

B T k)
i |ICTL 125
| S L A

ISEQ -- Input Sequence Checking

ISEQ checks the sequence of source
statements that originate from cards. The
format of the ISEQ instruction statement
is:

o —————— -

T 1
| Name |Operation|Operand |
e S {
| Blank | ISEQ |Two decimal values of the|
\ | |form 1, r, or blank i
[W———) S i 3

The operands 1 and r specify the left-
most and rightmost columns of the field in
the input cards to be checked. Operand r
wust be equal to or greater than operand 1.
Columns to be checked must not be between
the "begin®™ and "end" columns.

Sequence checking begins with the first
card following the ISEQ statement. Com-
parison of adjacent cards makes use of the
8-bit internal collating sequence. ISEQ
with a blank operand terminates the opera-
tion; checking may be resumed with another
ISEQ.

Sequence checking is performed only on
statements in the source program. State-
ments inserted by the COPY assembler
instruction or generated by a macro
instruction are not checked for seguence.

PUNCH —-- Pupch a Card

The PUNCH assembler instruction is in
the language for compatibility with other
InM ansembler lanquages. It will produce
a line in the printed listing only.

REPRQ -- Reproduce Following Card

The REPRO assembler instruction. too,
is in the language for compatibility with
other IBM assemblers. It will produce
lines in the printed listing only.

ORG -- Set Location Counter

ORG alters the setting of the location
counter for the current control section.
The format is:

| SRRttt Sttt § S
|Name |OperationjOperand

statement aprears. Absolute expressions
nmust not be negative.

The location counter is set to the value
of the expression in the operand. An abso-
lute value sets the location counter the
specified number of virtual storage loca-
tions higher than the beginning of the con-
trol section, which is always 0. If the
cperand is omitted, the location counter is
set to a location that is one byte higher
than the maximum location assigned for the
control section up to this point.

An ORG statement must not be used to
specify a location below the beginning of
the control section in which it agfgears.
For examgle,

o e gy

+ +
|ORG 1*-500 i

4 4 J

is invalid if it appears less than 500
Lytes from the keginning of the current
control section.

If the location counter is to be reset
to a value that is one byte beyond the
highest location yet assigned (in the con-
trol section), this statement should be
used:

T =
Name |Orperation|Operand
4

ORG

e o g e
b o o s

—

If previous ORG statements have reduced
the location counter for the purpose of
redefining a portion of the current sec-
tion, an ORG statement with an omitted
operand can be used to terminate the
effects of such statements and restore the
locaticn counter to its highest setting.

LTORG ~- Begin literal Pocl

The LTORG instruction causes all
literals thus far encountered in the source
program to be assembled at appropriate
boundaries, starting at the first double-
word boundary following the LTORG state-
ment. The format of the instruction is:

| Blank | ORG |Expression, or blank
[6 -4 P

4
+

[}
i
R S

-

r ¥ T
| Name |operationjOperand
[X 4 4

Any symbols in the expression must have
been previously defined and must not be
external. If the expression is relocat-
able, it must not ke complex; the unpaired
relocatable symbol must be defined in the
same control section in which the ORG

Section 5:

¥ T T

{Symbol |LTORG |Not used
joxr kElank| |
j 4

4

|
i
1
]
|
i}

The symkol represents the address of the
first byte of the literal pool; it has a
length attribute of 1.

Assemkler Instruction Statements 49

Special Addressing Consideration

Any literals used after the last LTORG
cstatement are placed at the end of the
first control section. If there are no
LTORG statements, all literals used in the
program are placed at the end of the first
control section. In these circumstances,
the programmer must ensure that the first
cont.rol section is always addressable.

This means that the base address register
tor the first control section should not be
¢hanged through use in subsequent control
wections. If the programmer does not want
3 reserve a register for this purpose, he
nay place an LTORG statement at the end of
vash control section, thereby ensuring that
all literals appearing in that section are
addressable.

In programs which define one or more
jrototype control sections (PSECTs), liter-
4l address constants are placed in a separ-
ate literal pool at the end of the first
prototype control section. In these cir-
cumstances, the programmer also must ensure
that the first prototype control section is
-always addressable.

Dbuplicate Literals

If duplicate literals occur within the
range controlled by one LTORG statement,
only one literal is stored. Literals are
considered duplicates only if their speci-
fications are identical. A literal will be
stored even if it appears to duplicate
another literal, if it is an A-type address
constant containing any reference to the
location counter.

These examples illustrate how the assem-
bler stores pairs of literals, if the pla-
cement of each pair is controlled by the
samee LTORG statement:

X*FO*

c*o Both are stored

XL3'0"

HL3'0° Both are stored

A(s+y)

Al®+y) Both are stored

X' FFFF*

X'FFFF' Identical; the first is stored
CNOP -- Conditional No Operxation

) This instruction allows the programmer
to align an instruction at a specific word
boundary. If any bytes must be skipped to
align the instruction properly, the assem-
bler ensures an unbroken instruction flow
by generating no-operation instructions.
This facility is useful in creating calling
sequences consisting of a linkage to a sub-

routine followed by parameters such as
channel command words (CCW).

CNOP ensures the alignment of the loca-
tion counter setting to a halfword, full-
word, or doubleword boundary. If the loca-
tion counter is already properly aligned,
the CNOP instruction has no effect. If the
specified alignment requires the location
counter to be incremented, cne to three
no-operation instructions are generated.
Each uses two bytes.

This is the format of the CNOP

instruction:

r T . LS 3
|Name |OperationjOperand |
e e - {
|{Blank |{CNOP |Two absolute expressions |
| { jocf the form b,w |
L 4 s ¥ §

Any symbols used in the expressions in
the operand field must have been previously
defined.

Orerand b specifies at which byte in a
word or doubleword the location counter is
to be set; b can be 0, 2, 4, or 6. OCperand
w specifies whether byte b is in a fullword
(w=4) or doukleword (w=8). These pairs of
r and w are valid:

L,w Specifies

0,4 Beginning of word

2,4 Middle of word

0,8 Beginning of doubleword

2,8 Second halfword of doubleword

4,8 Middle (third halfword) of doukleword
6,8 Fourth halfword of doubleword

The position in a doubleword that each
of these pairs specifies is shown in Figure
10. Note that both 0,4 and 2,4 specify two
locations in a doubleword.

Assuming that the location counter is
currently aligned at a doubleword koundary,
the CNOP instruction in this séquence

r) T A}
|Name |Operationj|Operand |
[4 S d
8 T T i
i | CNOP (0,8 |
i | BASR 12,14 |
[G & i 4

has no effect; it is printed in the assem—
Ely listing. However, this sequence

r T X T - 1
|Name |Operation|Operand |
e 1 -y
| | CNOP 16,8 |
| | BASR {2,14 I
| R F 1 4

causes three kranch-on-conditions (NO-OPs)
to be generated, thus aligning the BASR
instruction at the last halfword in a
doubleword, as follows:

o g e e e e e e 8]
| Name |0perat10nf0perand |
p-—m= T i
i { BCR (0,0 {
	BCR {0,0	
	BCR 0.0	
	BASR	2,14
[R o U & P]
‘ - —-——

| Doubleword

p——- _—

| Word | Word

|Balfword [Halfword |{Halfword |Halfword

encountered. The requested coding must not
contain anothexr COPY statement. If identi-
cal COPY statements are encountered, the
coding they request is brought into the
program each time. The control section in
effect at the time of the COPY statement is
not automatically resumed after the copied
element; therefore, if the copied element
contains one or more control section state-
ments, all coding following the COPY state-
xment (until another control section state-
ment is encountered) will be considered as
part of the last control section in the
copied element. .

END -- End Assembly

END terminates the assembly of a pro-
gram. It may also designate a point in the
program, or in a separately asséembled pro-

|
S e 1 + 4 gram, to which control may be transferred
IBytelBytelByte{BytelBytelBytelBytetByte | after the program is loaded. The END
------- 4 instruction must always be the last state-
0,4 2.4 0,u 2,4 i ment in the source program, in this format:
(0,8 2,8 4,8 6,8 \
e - 4 4 L] T L)
rigure 10. CNOP Alignment | Name |Operation|Operand |
1 4 4 d
L3 v T R]
After the BASR instruction is generated, |Blank | END jRelocatable or absolute |
the location counter is at a doukleword } | |expression, or klank |
boundary, thereby ensuring an unbroken t 1 4 4

instruction flow.

COPY -~ Copy Predefined Source Coding

The COPY instruction obtains source lan-
guage coding from a likrary and includes it
in the program currently being assembled.
This is the format:

The operand specifies the point to which
control is transferred when loading is com-
plete. This point is usually the first
machine instruction in the program, as
shown in this sequence:

...... -y
|Name |Operat10n10perand

|Blank|copY

+
|0ne symbol

e corom: sl e, oud

The operand is a symbol that identifies
the section of coding to be copied. The
assembler inserts the requested coding
immediately after the COPY statement is

Secticn 5:

L] 1
|Name |[Operation|Operand |
¢ ~
|NAME |CSECT | {
{AREA |DS | SOF |
| BEGIN | BASR 12,0 |
| jUSING |*,2 |
I [- 1 I
| I | |
| l- | |
i | END | BEGIN |
L 4 S 3

Assemkler Instruction Statements 51

SECTION 6: INTRODUCTION TO MACRO LANGUAGE

Macro language is an extension of the
TSS Assembler language.

The macro language provides the program-
mexr with a convenient way to generate a
desired, previously prepared sequence of
assembler language statements with only one
statement, a macro instruction.

The sequence of generated statements is
determined in a previously written defini-
tion and, when invoked with a macro
instruction, placed in line with his code.
This definition may be written only once,
stored, and used repeatedly in one or more
programs. The definition may be created by
a programmer for his sole use, or it may be
shared '‘by many users in a system.

This facility simplifies coding pro-
grams, reduces the chance of programming
errors, and ensures that standard segquences
of assembler language statements are used
to accomplish desired functions.

An additional facility, called condi-
tional assembly, allows specification of
assembler language statements, which may or
may not be assembled, depending upon condi-
tions evaluated at assemkly time. These
conditions are usually tesats of values,
which may be defined, set, changed, and
tested during the course of the assembly
itself. The conditional assemkly facility
can be used without macro instruction
statements.

MACRO INSTRUCTION STATEMENT

A macro instruction statement, or simply
a macro instruction, is a source program
statement that is processed by the assem-
bler, just as assembler language statements
are source program statements that are pro-
cessed by the assembler.

The assembler generates a sequence of
assembler language statements for each
occurrence of the same macro instruction.
The generated statements are then processed
like any other assembler language
statement.

Three types of macro instructions may be
written: positional, keyword, and
mixed-mode.

Positional macro instructions permit the
programmer to write the operands of a macro
instruction in a fixed order. Keyword
macro instructions permit him to write the

52

operands in a variable order. Mixed-mode
macro instructions permit him to use the
features of both positional and keyword
macro instructions in the same macro
instruction.

v

MACRO DEFINITION

Before a wacro instruction can be
assembled, a macro definition must be
availakbkle to the assembler.

A macro definition is a set of state-
ments that provides the assembler with:
(a) the mnemcnic operation code and the
format of the macro instruction, and (b)
the sequence of statements the assembler
generates when the macro instruction
appears in the source program.

Every macro definition consists of a
macro definition header statement, a macro
instruction prototype statement, one or
more model statements, and a macro defini-
tion trailer statement. In addition, COPY
statements MEXIT, MNOTE, and conditional
assemkly instructions may Le used.

Header and trailer statements indicate
to the assembler the beginning and end of a
macrc definition.

The prototype statement specifies the
mnemonic operation code and format of the
macro instruction.

Model statements are used by the assen-
kler to generate the assembler language
statements that replace each occurrence of
the macro instruction.

COPY statements can be used to cogry
rodel statements, MEXIT, MNOTE, or condi-
tional assembly instructions from a systen
library into a macro definition.

MEXIT can be used to terminate process-
ing of a macro definition.

MNOTE can be used to generate an error
nessage when the rules for writing a parti-
cular macro instruction are wviolated.

The conditional assembly instructions
may ke used to vary the sequence of state-
ments generated for each occurrence cf a
macro instruction. Conditional assembly
instructions may also be used outside macro
definitions, that is, among the assembler
language statemwents in the program.

SOURCES OF MACRO DEFINITIONS

Macro definitions may be secured from
three sources and are searched for in the
following order:

1. User source statements
2. Supplementary macro library
3. System macro library

The same macro definition may be made
available to more than one source program
by placing the macro definition in a macro
library. A macro library is a collection
of macro definitions that can ke used by
several assembler language programs. = Once
a macro definition has been placed in a
macro library, it may be used by writing
its corresponding macro instructiomn in a
source program, if the user has access to
that library.

SYSTEM MACRO INSTRUCTIONS

The macro instructions that correspond
to macro definitions prepared by IBM are
called system macro instructions; they are
described in Assembler User Macro
Instructions.

VARYING THE GENERATED STATEMENTS

Bach time a macro instruction appears in
the source program, it is replaced by the
same sequence of assembler language state-
ments, unless one or more conditional as-
sembly instructions appear in the macro
definition. Conditional assembly instruc-
tions are used to vary the number and for-
mat of the generated statements.

VARIABLE SYMBOLS

A variable symbol is assigned different
values by either the programmer ox the as-
sembler. When the assembler uses a macro
definition to determine what statements are
to replace a macro instruction, variable
symbols in the model statement are replaced

Section 6:

with the values assigned to them. By
changing the values assigned to variakle
symbols, the prcgrammer can change parts of
the generated statements.

A variable symbol is written as an
ampersand followed by from one through
seven letters and/or digits, the first of
which must be a letter. Elsewhere, two
ampersands must ke used to represent an
ampersand.

Types of Variable Symbols

There are three types of variable sym-
bols: symbolic parameters, system variable
symbols, and SET symbols. SET symbols are
further broken down into SETA, SETB, and
SETC symkols. The three types of variable
symbols differ in the way they are assigned
values.

Assigning Values to Variable Symbols

Symbolic parameters are assigned values
by the programmer each time he writes a
macro instruction.

System variable symbols are assigned
values by the assembler each time it pro-
cesses a macro instruction.

SET symkols are assigned values by the’
programmer's use of conditional assembly
instructions.

Glokal SET Symkols

The values assigned to SET sywbols in
cne macro definition may be used to vary
the statements that appear in other macro
definitions. All SET symbols used for this
purpose must be defined by the programmer
as glokal SET symbols. BAll other SET sym-
bols (that is, those which may be used to
vary statements that appear in the same
mwacro definition) must be defined by the
programmer as local SET symbols. Local SET
syrbols and the other variable symbols
(that is, symbolic parameters and system
variable symbols) are local variable sym-
bols. Global SET symbols are global vari-
able symkols.

Introduction to Macro Language 53

SECTION 7: HOW TO PREPARE MACRO DEFINITIONS

A macro definition, which must appear in

the source program before any macro
instruction that references it, consists
ot:

» A macro definition header statement.

* A macro instruction grototype
statement.

e Zero or more model statements,
statements, MEXIT, MNOTE,
al assemkly instructions.

CcOoPY
or condition-

e A macro definition trailer statement.

Except for MEXIT, MNOTE, and conditional
asgsembly instructions, this section
describes all statements that may be used
to prepare macro definitions. Conditional
assembly instructions are described in Sec-
tion 9. MEXIT and MNOTE instructions are
described in Section 10.

MACRO -- Macro Definition Header

The macro definition header statement,
indicating the beginning of a macro defini-
tion, must be the first statement, with
this format:

[Sutniaiuin SESntb it Siait
| Name |Operation|Operand

S S
}Blank | MACRO | Blank
L L i

e o

MEND -- Macro Definition Trailer

The trailer statement, indicating the
end of a macro definition, must be the last
statement, with this format:

v i e o, g o < . 0 e o . e g s i o o o A

T T eSS —

| Blank | MEND |Blank
| S, P O, §

e

MACRO INSTRUCTION PROTOTYPE

The macro instruction prototype state-
ment, called the prototype statement, spe-
cifies the mnemonic coperation code and the
format of all macro instructions that refer
to the macro definition. It must be the
second statement of every macro definition,
with this format:

54

r T ¥
| Name |Operation|Operand
'y {

- T
|Symbolic |[Symbol
| parameter|
|or blank |
L 8

i sunes

+
|Zexro or more symkolic|
| parameters, separated|
|by commas {
4 J

The symbolic parameters (see "Model
Statements,* below) are used in the macro
definition to represent the name field and
operands of the corresponding macro
instruction. The name field of the proto-
type statement may be blank, or it may con-
tain a symbolic parameter.

The symkol in the operation field is the
mnemonic operation code that must appear in
all macro instructions that refer to a
macro definition. The mnemonic operation
code must not be the same as the mnemonic
cperation code of another macro definition
in the source program or of an asserkler
instruction. If a macro definition in a
source program has the same mnemonic as a
mwachine operation, the macro definition is
used during assembly. If the macro defini-
tion is stored in a library, however, the
wrachine operation will be used.

The orerand field may contain 0 or more
symbolic parameters separated by commas.

This is a prototype statement:

T ¥ 1]
| Name |Operation|Operand
£ '} 4

S S

1 3 L] v
{ §NAME | MOVE |§TO, 8§ FROM
i i i

STATEMENT FORMAT

The prototype statement may be written
in a format different from that used for
other assembler language statements. The
normal format was described in Section 2,
under "Assembler Language Coding Conven-
tions.” The alternate format descriked
here allows the programmer to write an
operand on each line, and intersgperse
cperands and comments in the statement.

as in the nor-
fields must

In the alternate format,
mal, the name and operation
arpear on the first line of the statement,
and at least one blank must follow the
cperation field on that line. Both types
of statement format may be used in the same
Frototyre statement.

The rules for using the alternate format
for punched cards are:

1. If an operand is followed by a comma
and a blank, and the column after the
end column contains a nonblank charac-
ter, the operand field may be con-
tinued on the next line, starting in
the continue column. More than one
operand may appear on the same line.

2. Comments may appear after the blank
that indicates the end of an operand,
up to and including the end column.

3. If, in the next card, the operand
field starts after the continue
column, the information entered on
that line is considered toc be com-
ments, and the operand field of the
previocus card is considered ter-
minated. Any subsequent continuation
lines are considered comments.

Note: A prototype statement may be written
on as many continuation lines as there are
operands.

The rules for using the alternate state-
ment format at a keyboard are:

1. If an operand is followed by a comma
and either a blank or a horizontal
tab, and the remaining text contains a
keyboard continuation character prior
to the return, the operand field may
be continued on the next line, start-
ing in the first column of the state-
ment area. If this form of continua-
tion is used, an operand must appear
on a single line. More than one
operand, however, may appear on the
same line.

2. Comments may appear after the blank or
horizontal tab that indicates the end
of an operand, up to the column con-
taining the return.

3. If text contains the keyboard con-
tinuation character prior to the
return, and the next line starts in
the first column of the statement
area, the information entered on the
next line is considered toc ke an
operand. However, if the first column
of the statement area is blank or con-
tains a horizontal tab character, the
information entered on the next line
is considered to be comments, and the
operand field is considered ter-
minated. Any subsequent continuation
lines are considered to contain only
commands.

4. A prototype statement may be written
on as many continuation lines as there
are operands.

Section 7:

The following examples illustrate: (a)
the normal statement format, (b) the
alternate statement format, and (c) the
combination of both statement formats.

L) T - h 2)
| Name |oper-|Operand Comments| |
{ jation| |1
e S -—--—4-
| NAME1 |OP1 |OPERAND1,O0PERAND2,OPERAN|X|
| | |D3 THIS IS THE NORMAL |X|
(| | STATEMENT FORMAT L
% =i
| NAME2 [OP2 |OPERAND1, THIS IS THE AL|X|
} i | OPERAND2,0PERAND3 TERNA |X|
| | | TE STATEMENT FORMAT I
- + + +-4
| NAME3 {OP3 |OPERAND1, THIS IS A COMB|X|
| | | OPERAND2 , OPERAND3,OPERAN | X|
| | | D4 ,OPERANDS INATION OF 1 X4
i § | BOTH STATEMENT FORMATS | |
L R 4 F S |

MODEL STATEMENTS

These are the macro definition state-
rents from which the desired sequences of
assenbler language statements are
generated. One or more model statements
may follow the prototype statement. A
nodel statement consists of one to four
fields (left to right): name, operxation,
operand, and comments.

The name field may ke blank, or it may
contain a symbol or symbolic parameter.

The operation field may contain: any
rachine instruction mnemonic operation
code; any assembler mnemonic operation code
excert COPY, END, ICTL, ISEQ, START, MACRO,
and MEND; or the mnemonic operation code of
a user macro instruction or of a systenm
macro instruction. Variable symbols may
not ke used to generate the following as-
sembler mnemonic operation codes: COPY,
END, ICTL, ISEQ, REPRO, START, MACRO, and
MEND. .

Variakle symbols may not be used in the
name field nor in the operand fields of the
following instructions: COPY, END, ICTL,
ISEQ., REPRO, and START.

The operand field may contain symktols,
symbolic parameters, or other combinations
of characters, with the exception noted un-
der "Free Apostrophes®™ below.

The corments field may contain any com-
bination of characters.

Free Apostrorhes

A free apostrophe is:

How to Prepare Macro Definitions 55

* A single apostrophe not immediately
preceded or followed by another
apostrophe.

e The last apostrophe in a sequence con-
taining an odd number of consecutive
apogstrophes.

A macro instruction operand may include
free apostrophes. If a macro definition is
to treat such an ogerand in an apostrophe
delimited field, the character positions
which may contain free apostrophes must be
doubled by using concatenated substring
notations. Substring notation is discussed
in Section 9.

Apostrophe delimited fields agpear as
operands of TITLE (Section 5), SETC (Sec-
tion 9), MNOTE (Section 10) instructions,
or as terms of character relations in the
operand fields of AIF or BETB instructions
{Section 9).

SYMBOLIC PARAMETERS

A symbolic parameter is a type of vari-
abie symbol that is assigned values by the
piogrammer when he writes a macro instruc-
tion. The programmer may vary statements
that are generated for each occurrence of a
macro instruction by varying the values
assigned to symbolic parameters.

A symbolic parameter consists of an
ampersand followed by from one to seven
letters and/or digits, the first of which
must be a letter. Elsewhere, two amper-
sands must be used to represent an amper-
sand. The programmer should not use £SYS
as the first four characters of a symbolic
parameter.

These axe valid symbolic parameters:

$§READER §LOOP2
EA23456 &N
EXUF2 [9:1

These are invalid symbolic parameters:

CARDAREA (first character is not
ampersand)

£256B8 (first character after amper-
sand is not letter)

£AREA2456 (more than seven characters
after ampersand)

£ BCD%34 (contains special character
other than initial ampersand)

&§IN AREA {contains special character

(blank) other than initial
ampersand)

Any symbolic parameters in a model

statement must appear in the prototype
statement of the macro definition.

56

The following is an example of a macxo
definition. Note that the symbolic parame-
ters in the model statements appear in the
prototype statement.

- L] e e e e R}

|Name |Operation|Operand {

t oo 4

Header | | MACRO | |
Prototype| §NAME | MOVE | §€TO, §FROM i
Model | SNAME| ST | 2, SAVE |
Model | L |2, 6FROM |
podel | {ST i2,8TO !
Model | |L {2,SAVE |
Trailer | | MEND | |
L i 4 J

Symbolic parameters in model statements
are replaced by the characters of the macro
instruction that correspond to the symkolic
parameters.

In the following example, the characters
HERE, FIELDA, and FIELDB of the MOVE macro
instruction correspond to the symbolic
parameters §SNAME, §TO, and &FROM, respec-
tively, of the MOVE prototype statement.

| S -

| Name |Operation|Operand
3

[PR "

¢ t
{HERE |MOVE |FIELDA,FIELDB
L i A

Any occurrence of the symbolic parame-
ters ENAME, £T0O, and &FROM in a model
statement will be replaced by the charac-
ters HERE, FIEIDA, and FIELDB. If the pre-
ceding macro instruction were used in a
source program, these assembler language
statements would be generated:

J

T il
ame |Operation|Operand
4 4

N
T - T

HERE |ST | 2, SAVE

iL {2,FIELDB

|ST | 2, FIELDA

L |2,SAVE

b 3 i

[s s G s S s ey
o ons o s e s st

i
]
i
i

The example below illustrates another
use of the MOVE macro instruction, using
operands that are different from those that
appear in the preceding example.

¥ L] R
{Name |Operation|Operand
4. 4

L}

i

[y)

2 T b]

Macro | LABEL | MOVE { IN,OUT |
| I | |
Generated|LABEL|ST | 2, SAVE |
Generated| L |2,00T |
Generated| |sT |2, IN i
Generated| |L {2,SAVE |
L P S 3

If a symbolic parameter appears in the
comments field of a model statement, it is
not replaced by the corresponding charac-
ters of the macro instruction.

Concatenating Symbolic Parameters With
Other Characters or Other Symbolic
Parameters

It a symbolic parameter in a model
statement is immediately preceded or fol-
lowed by other characters or another sym-
bolic parameter, the charactexrs that corre-
spond to the symbolic parameter are combi-
ned, in the generated statement, with the
other characters or the characters that
correspond to the other symbolic parameter.
This process is called concatenation.

The macro definition, macro instruction,
and generated statements in the following
example illustrate these rules.

r T v 3

|Name |Operation]Operand |
-ttt 4

Header { | MACRO | i
Prototype| s8NAME | MOVE | €TY, &P, §TO, §FROM|
Model | ENAME | ST&TY |2, SAVEAREA |
Model i | L&TY | 2, §PEFROM i
Model i | STETY | 2, 6P&TO |
Model | | L&TY |2,SAVEAREA |
Trailer | | MEND | ' |
i | |

Macro |HERE |MOVE |D,FIELD,A,B i
| | | |
Generated|HERE |STD |2, SAVEAREA |
Generated| |LD | 2, FIELDB {
Generated| { STD |2,FIELDA |
Generated|j | LD | 2, SAVEAREA |
L i ————4 4

Symbolic parameter &TY is used in each
of the four model statements to vary the
mnemonic operation code of each of the
generated statements. The character D in
the macro instruction corresponds to sym-
bolic parameter &TY. Since &TY is preceded
by other characters (that is, ST and L) in
the model statements, the character that
corresponds to &TY (that is, D) is conca-
tenated with the other characters to form
the operation fields of the generated
statements.

Symbolic parameters &P, &TO, and &FROM
are used in two of the model statements to
vary part of the operand fields of the
corresponding generated statements. The
characters FIELD, A, and B correspond to
the symbolic parameters &P, &TO, and &§FROM.
Since &P is followed by &FROM in the second
model statement, the characters that corre-
spond to them (that is, FIELD and B) are
concatenated to form part of the operand
field of the second generated statement.
Similarly, FIELD and A are concatenated to

Section 7:

form part of the operand field of the third
generated statement.

If the programmer wants to concatenate a
symbolic parameter with a letter, digit,
left parenthesis, or period following the
symbolic parameter, he must immwediately
follow the symbolic parameter with a
period. A period is optional if the sym-
tolic parameter is to be concatenated with
anothexr symbolic parameter, or with a spe-
cial character other than a left parenthe-
sis or another period that follows it.

If a symbolic parameter is immediately
followed by a period, the symbolic paramet-
er and the period are replaced by the
characters that correspond to the symbolic
parameter. A period that immediately fol-
lows a symbolic parameter does not aggpear
in the generated statement.

The following macro definition, macro
instruction, and generated statements il-
lustrate these rules.

3 h 3 R 1
| Name |OperationjOperand |
b + pommmm e 1
Header | | MACRO | |
Prototype| §NAME | MOVE | 6P, &S, ER1, ER2 |
Model { ENAME| ST | 8R1,8S. (€R2) {
Nodel | L {&R1,&P.B |
Model | | ST (ER1,EP.A |
Model | |L | $R1, &S. {(§R2) |
Trailer | | MEND i |
| | | |
rMacro |HERE |MOVE | FIELD,SAVE,2,4 |
| i | |
Generated|BERE |ST {2,SAVE{(4) |
Generated| |L {2,FIELDB |
Generated|} {ST | 2,FIELDA {
Generated| |L | 2,SAVE(4) |
(8 i "y — b

The symbolic parameter &P is used in the
second and third model statements to vary
part of the operand field of each of the
corresponding generated statements. FIELD
cf the macro instruction corresponds to §&P.
Since &P is to be concatenated with letters
(B and A) in each of the statements, a
period immediately follows &P in each of
the model statements. The period does not
appear in the generated statements.

Similarly, symbolic parameter &S is used
in the first and fourth model statements to
vary the operand fields of the correspoha-s
ing generated statements. &S is followed
ky a period in each of the model statements
because it is to be concatenated with a
left parenthesis. The period does not
appear in the generated statements.

How to Prepare Macro Definitions 57

Comments Statements

A model statement may be a comments
statement. A comments statement consists
of an asterisk in the begin column, fol-
lowed by comments. The comments statement
15 used by the assembler to generate an as-
sembler language comments statement, just
as other model statements are used by the
assembler to generate assembler lanquage
statements. No variable symbol substitu-
tion 1s performed.

The programmer may also write, in a
macro definition, comments statements that
are not to be generated. These statements
wust have a period in the kegin column,
immediately followed by an asterisk and the
comments.

The first statement in the following
example will be used by the assembler to
generate a comments statement; the second
statement will not.

| Soluiuiint Sttt Sttt 1
| Name |Operation|Operand |
[) e 4
| *TH1S STATEMENT WILL BE GENERATED |
|
J

j-*THIS ONE WILL NOT BE GENERATED
| S, e e e e e e e e

COPY STATEMENTS

COPY statements may be used to copy
model statements and MEXIT, MNOTE, and con-

58

ditional assembly instructions into a macro
definition, just as COPY may be used out-
side macro definitions to copy source
statements into an assembler language
program.

The format of this statement is:

12 T Al
| Name |Operation|Operand
L i 4

s

1 3 h T
{Blank|COPY |A symbol
L L 5 Y

The symbol in the operand field identi-
fies the section of coding to be copied.
Any statement that may be used in a macxo
definition may be part of the copied cod-
ing, except MACRO, MEND, COPY, and proto-
type statements.

Statements to be copied are secured ei-
ther from a surplementary macro library or
the system macro library. If availakle,
the supplementary macro library is first
searched for the statements to be copied.
If the statements are not in the sugrgplemen-
tary macro library, the system macro
library is then searched.

A CCPY statement is not a model state-
ment, since it is not used by the assembler
to generate a COPY statement.

The format of a macro instruction is:

Stttk R S T -
| Name jOperationjOperand

p=== + ~+--

|Symbol {Mnemonic |0 or more operands,

jor blank|operation|separated by conmmas
| jcode |
4 1

| I

PP Sp—— |

The name field of the macro instruction
may contain a symbol. The symbol will not
be defined unless a symbolic parameter
appears in the name field of the prototype
and the same parameter arpears in the name
field of a generated model statement.

The operation field contains the mnemon-
ic operation code of the macro instruction.
The mnemonic must be the same as the mne-
monic of a macro definition in the source
program or in the macro library. The macro
definition with the same mnemonic is used
by the assembler to process the macro
instruction. If a macro definition in the
source program and one in the macro library
have the same mnemonic, the macro defini-
tion in the source program is used.

The placement and order of the operands
in the macro instruction are determined by
the placement and order of the symbolic
parameters in the operand field of the pro-
totype statement.

MACRQ_INSTRUCTION OPERANDS

Any combination of up to 255 characters
may be used as a macro instruction operand,
provided the following rules concerning
apostrophes, parentheses, equal signs,
ampersands, commas, and blanks are
observed.

Paired Apostrophes: An operand may contain
one or more quoted strings, or seguences of
characters that begin and end with apos-
trophes and contain even numkers of
apostrophes.

The first quoted string starts with the
first apostrophe in the operand. Subse-
quent guoted strings start with the first
apostrophe after the apostrophe that ends
the previous quoted string.

The first and last apostrophes of a
quoted string are called paired apos-
trophes. In the following example, the
first and fourth and the fifth and eighth
apostrophes are paired apostroghes.

Section 8:

SECTION 8: HOW TO WRITE MACRO INSTRUCTIONS

'A' IBlctDlll

An apostrophe immediately followed Ly a
letter and immediately preceded by the
letter L, which in turn is preceded ky any
special character other than &, and not
within a quoted string, is not considered
to be the first apostrorhe of a quoted str-
ing. An example is (L'X).

Paired Parentheses: There must be an equal
number of left and right parentheses;
raired parentheses are a left parenthesis
and a following right parenthesis, without
any intervening parentheses. If there is
nore than one pair, each additional pair is
determined by removing any pairs already
recognized and reapplying the above rule
for paired parentheses. For instance, in
the following example the first and fourth,
the second and third, and the fifth and
sixth parentheses are paired parentheses:
(A(B)C)D(E)

A parenthesis that appears between
paired agostrorhes is not considered in
determining paired parentheses. For
instance, the middle parenthesis is not
considered in this examgle: (')°*)

Equal Signs: An equal sign can occur only
as the first character in an operand or
between paired apostrophes or paired paren-
theses. These illustrate the rule:

=F*32°
L} @D.
E(F=G)

Ampersands: Each sequence of consecutive
ampersands must ke an even number of amper-
sands, except as noted under "Inner Macro
Instructions,” below. This example illus-
trates the rule:

£€123¢8584
Commas: A comma indicates the end of an

operand, unless it is placed between paired
apostrophes or paired parentheses. This
example illustrates the rule:

(a,B)C*,*
Blanks: A blank indicates the end of the
cperand field, unless it is placed between
paired apostrophes, except as noted under
"Statement Format,” below. This exarple
illustrates the rule:

‘A RC*

How to Write Macro Instructions %9

These are valid macro instruction
operands:

SYMBOL A+2

123 (TO(8) , FROM)
X*'189A" 0{2,3)

* =F*4096"

1" NAME ABEE9

*TEN = 10" * PARENTHESIS IS) '

QUOTE IS'* '"COMMA IS,

These are invalid macro instruction
operands:

W* NAME (odd numgber of
apostrophes)

SA)B (number of left paren-
theses does not equal num-
ber of right parentheses)

(15 B) (blank not placed between

apostroghes)

(blank not placed between
paired apostrophes)

"ONE' 1S *1°

STATEMENT FORMAT

Macro instructions may use the same
alternate format that can be used for pro-
totype statements. If the alternate format
is used, a blank does not always indicate
the end of the operand field. The altern-
ate format was described in Section 7 under
"Macro Instruction Prototype.®

OMITTED OPERANDS

If an operand that appears in the proto-
type statement is omitted from the macro
instruction, the comma that would have
separated it from the next operand must be
present. 1If the last operand is omitted
from a macro instruction, the comma
separating the last operand from the pre-
vious operand may be omitted.

The following example shows a macro
instruction preceded by its corresponding
prototype statement; the operands that
correspond to the third and sixth operands
of the prototype statement are omitted.

——=-r T - 1
| Name|Operation|Operand |
e T $ommmom oo .
i | EXAMPLE | &A,§B, &C, £C,EE, &F i
I | EXAMPLE |17,%*+4,,AREA,FIELD(6)]
| S S A e 5]

60

If the symbolic parameter that corres-
ponds to an omitted operand is used in a
model statement, a null character value
replaces the symbolic parameter in the
generated statement. 1In effect, the sym-
kolic parameter is removed.

For example, the first statement Lelow
is a model statement that contains the sym-
tolic parameter §C. If the operand that
corresponds to &C were omitted from the
macro instruction, the second statement
would ke generated from the model
statement.

r T L e 1
| Name | Operation|Operand |
L 4 i - 1
1) L] T

i |MVC | THEREEC. 25, THIS |
| | MvC | THERE25, THIS |
L i L J

OPERAND SUBLISTS

An operand of a macro instruction may be
a sublist that provides the programmer with
a convenient way to refer to: (a) a
collection of macro instruction operands as
a single operand, or (b) a single operand
in a collection of operands.

A sublist consists of one or more
operands separated by commas and enclosed
in paired parentheses. The entire suklist,
including the parentheses, is considered to
ke one macro instruction operand.

If a macro instruction is written in the
alternate statement format, each sublist
operand may be written on a separate line;
the macro instruction may be written on as
many lines as there are operands, including
sublist operands.

If €P1 is a symbolic parameter in a pxo-
totyre statement, and the corxresponding
operand of a macro instruction is a suk-
list, &P1(n) may be used in a model state-
ment to refer to the nth operand of the
suklist, where n may be a decimal integer.
(n may also be any arithmetic expression
allowed in the SETA instruction that is
described in Section 9.)

If &P1 is a symbolic parameter in a pro-
totyre statement, and the corresponding
operand of a macro instruction is not a
suklist, &Pl(n) refers to the operand as a
whole, regardless of the value of n.

For example, consider these macro
definition, macro instruction, and
generated statements:

r T T T 1
| Name |Operation|Operand |
— $ommmm o mee {
Header | | MACRO |
Prototype| | TOTAL | éNUM, §REG, 8AREA |
Model | |L | SREG, 4NUM(1) |
Model } |A | SREG, § NUM(2) |
Model | A | SREG, 8NUM(3) i
Model | |SsT | SREG, §AREA |
Trailer |} | MEND | |
| | |
Macro | | TOTAL |(A,B,C),6,SUM |
| |
tenerated]| |L ;G,A }
Generated| |A |16,B |
tenerated| |A |6,C {
Generated| |sT |6,SUM |
. F O . ———d

The operand of the macro instruction
that corresponds to symbolic parameter ENUM
is a sublist. One of the operands in the
sublist is referred to in the operand field
of three model statements. For example,
ENUM(1) refers to the first operand in the
sublist corresponding to symbcolic parameter
ENUM; the first operand is A. Therefore, A
replaces ENUM(1) to form part of the
generated statement.

Note: When referring to an operand in a

sublist, the left parenthesis of the sub-
list notation must immediately follow the
last character, &NUM(1), of the symbolic

parameter.

A period should not be placed between
the left parenthesis and the last character
of the symbolic parameter. A period may be
used between these two characters only when
the programmer wants to concatenate the
left parenthesis with the characters that
the symbolic parameter represents. The
tollowing example shows what would be
generated if a period appeared between the
left parenthesis and the last character of
the symbolic parameter in the first model
statement of the preceding example.

SRt Skt 4 -1
|Name |Operation|Operand |

e e == :
Prototype| | TOTAL | ENUM, §REG, §AREA |
Model | |L | REG, §NUM. (1) |
I | |

Macro | | TOTAL | (A,B,C),6,SUM |
| | | |
Generatedj |L |6.(A,B,C) (1) {
[e 1 ——— -1

The symbolic parameter ENUM is used in
the operand field of the model statement.
The characters (A,B,C) of the macro i
instruction correspond to ENUM. Since &ENUM
is immediately followed by a periocd, ENUM
and the period are replaced ky (A,B,C); the
period is not in the generated statement.

Section 8:

The resulting generated statement is an
invalid assembler language statement.

INNER_MACRO_ INSTRUCTIONS

A macro instruction may be used as a
model statement in a macro definition; then
the macro instruction is called an inner
macro instruction. A macro instruction
that is not used as a model statement is
called an cuter macro instruction.

Any symbolic parameters used in an inner
racro instruction are replaced by the
corresponding characters of the outer macro
instruction. The macro definition corres-
ponding to an inner macro instruction is
used to generate the statements that
replace the inner macro instruction.

The TOTAL macro instruction of the pre-
vious example is used as an inner macro
instruction in the following example. The
inner macro instruction contains two sym-
kolic parameters, &S and &T. Characters
(X,Y¥,2) and J of the macrc instruction
correspond to €S and €T. Therefore, these
characters replace the symbolic parameters
in the operand field of the inner macro
instruction.

r T T - 1

| Name |Operation|Operand {

N + i

Header | | MACRO { {
Prototype| |coMP {&R1,6R2,&5,8T,.EU |
Model i | SR {6R1, ER2 |
Model | |C |6R1,6T |
Model | | BNE | &U |
Inner } | TOTAL |6€S,12,8T |
Model {su |A |6R1,E&T i
Trailer | | MEND | |
{ | i |

Macro |K | COMP (10,11, (X,Y,2),J3,K|
| | | |
Generated|] | SR]10,11 |
Generated| ic (10,3 |
Generated|] | BNE IK |
Generated| {L j12,X |
Generated| ja j12,Y |
Generatedj |A 12,2 |
Generated| |SsT (12,3 |
Generated|K |A 110,J |
i J

L i - ———

The assenkler then uses the macro
definition that corresponds to the inner
macro instruction to generate statements to
replace the inner macro instruction. The
fourth through seventh statements are
generated for the inner macro instruction.

Note: An amrersand that is part of a sym-
kolic parameter is not considered in deter-
nining whether a macro instruction ogerand
contains an even numker of consecutive
ampersands.

How to Write Macro Instructicns 61

LEVELS OF MACRC INSTRUCTIONS

A macro definition that corresponds to
an outer macro instruction may contain any
number of inner macro instructions. The
outer macro instruction is considered a
first-level macro instruction. Each innerxr
macro instruction is considered a second-
level macro instruction.

The macro definition that corresponds to
a second-level macro instruction may con-
tain any number of inner macro instructions.
These are considered third-level macro
instructions, etc.

62

SECTION 9:

HOW TC WRITE CONDITIONAL ASSEMBLY INSTRUCTIONS

The conditional assembly instructions
allow the programmer to: (a) define and
assign values to SET symbols that can be
used to vary parts of generated statements,
«nd (b) vary the sequence of generated
statements. Thus the programmer can use
these instructions to generate many 4if-
ferent sequences of statements from the
same macro definition.

Nine of the 12 conditional assembly
instructions are described in this section:

LCLA SETA AIF
LCLB SETB AGO
LCLC SETC ANOP

The other three, GBLA, GBLB, and GBLC,
are described in Section 10.

All conditional assembly instructions
may be used anywhere in an assembler lan-
guage source program; the primary use is in
macro definitions.

The LCLA, LCLB, and LCLC instructions
may be used to define and assign initial
values to SET symbols.

The SETA, SETB, and SETC instructions
may be used to assign arithmetic, binary,
and character values, respectively, to SET
symbols. The SETB instruction is described
below, after the SETA and SETC instruc-
tions, because the operand field of the
SETB instruction is a combination of the
operand fields of the SETA and SETC
instructions.

The Al¥, AGO, and ANOP instructions may
be used in conjunction with sequence sym-
bols to vary the sequence in which state-
ments are processed by the assemkler. The
programmer can test attributes assigned by
the assembler to macro instruction operands
to determine which statements are to be
processed. '

Examples illustrating the use of each
conditional assembly instruction are
included throughout this section, and a
chart summarizing the elements that can be
used in each instruction appears at the end
of this section.

SET SYMBOLS
SET symbols are one type of variable
symbol; symbolic parameters, in Section 7,

are another type. SET symhols differ from
symbolic parameters in: (a) where they can

Section 9:

ke used in an assembler language source
program, (b) how they are assigned values,
and (c) whether the values assigned toc them
can be changed.

Symbolic parameters can only be used in
macro definitions; SET symbols can ke used
inside and outside macro definitions.

Symkolic parameters are assigned values
when the programmer writes a macro instruc-
tion; SET symbols are assigned values when
he writes SETA, SETB, and SETC conditional
assembly instructions.

Each symbolic parameter is assigned a
single value for one use of a macro defini-
tion, whereas the values assigned to each
SETA, SETB, and SETC symbol can change dur-
ing one use of a macro definition.

LCefining SET Symkols

SET symbols must be defined by the pro-
grammer before they are used. When a SET
symbol is defined, it is assigned an ini-
tial value. New values may be assigned Ly
the SETA, SETB, and SETC instructions. A
SET symbol is defined when it arpears in
the operand fieid of an LCLA, LCLB, or LCLC
instruction.

Using Variable Symkols

SETA, SETB, and SETC instructions may be
used to change the values assigned to SETA,
SETB, and SETC symbols. When a SET symkol
arpears in the name, operation, or operand
field of a statement, the current value of
the SET symbol replaces the SET symbol in
the statement.

For example, if %A is a symbolic rara-
xetexr and the corresponding characters of
the macro instruction are the symbol HERE,
then HERE replaces each occurrence of €A in
the macro definition. However, if §A is a
SET symbol, the value assigned to &A can be
changed, and a different value can reglace
each occurrence of §A in the macro defini-
tion. The same variable symbol may not be
used as a symboclic parameter and as a SET
symbol in the same macro definition. The
rule is illustrated by:

== T oY - 1
| Name |Operation|Operand |
s 4

T

4
| §NAME | MOVE
F 8

| £€TO, EFROM |
L L

How to Write Conditional Assembly Instructions 63

If the statement above is a prototype
statement, &§NAME, &TO, and &§FROM may not be
used as SET symbols in the macro
definition.

The same variable symbol may not be used
as two different types of SET symbols in
the same macro definition. Similarly, the
same variable symbol may not be used as two
different types of SET symbols outside
macro definitions. For example, if &A is a
SETA symbel in a macro definition, it can-
not be used as a SETC symbol in that
definition. Similarly, if &A is a SETA
symbol outside macro definitions, it cannot
be used as a SETC symbol outside macro
definitions.

The same variable symkol may be used in
two or more macro definitions and outside
macro definitions. 1In that case, the vari-
able symbol will be considered a different
variable symbol each time it is used. For
example, if &A is a variable symkol (either
SET symbol or symbolic parameter) in one
macro definition, it can be used as a vari-
able symbol in another definition. Simi-
larly, if 8A is a variable symkol in a
wacro definition, it can be used as a SET
symbol outside macro definitionms.

All variable symbols may Le concatenated
with other characters in the same way that
symbolic parameters may be concatenated
with other characters. The rules for this
concatenation are in Section 7, under
“Model Statements.®

Variable symbols in macro instructions
are replaced by the values assigned to
them, immedliately prioxr to processing the
definition. If a SET symbol is used in the
operand field of a macro instruction, and
the value assigned to the SET symbol is e-
guivalent to the sublist notation, the
operand is not considered a sublist.

ATTRIBUTES

The assembler assigns attrikutes to
macro instruction operands, all literals,
and ali symbols defined in the program.
The six attributes, type, length, scaling,
integer, count, and number, are discussed
below.

All attributes of macro instruction
operands may be referred to within macro
definitions. However, only the type,
length, scaling, and integer attributes of
symbols may be referred to outside macro
definitions. Attributes of symbols appear-
ing in the name field of generated state-
ments may not be referred to outside macro
definitions; they may be referred to within
macro definitions only when the symbol is

64

previously defined. The notations asso-
ciated with the attributes are:

Type T*
Length L
Scaling s*
Integer I
Count K'
Number N*

This is how the programmer may refer to
an attribute:

1. In a statement that is outside macro
definitions, he may write the notation
for the attribute, immediately fol-
lowed by a symbol; for example, L*NAME
refers to the length attribute of the
symkol NAME.

2. In a statement that is in a macro
definition, he may write the notation
for the attribute, immediately fol-
lowed by a symbolic parameter; e.g.,
L*ENAME refers to the length attribute
of the macro instruction operand that
corresponds to symbolic parameter
ENAME; L'ENAME(2) refers to the length
attribute of the second operand in the
sublist that corresponds to symbolic
parameter ENAME.

If a macro instruction operand is a
sublist, the programmer may refer to
any of the attributes of each member
in the list. However, the only attri-
butes defined for the entire sublist
are number and count, and any
reference to type, length, scaling or
integer attributes of an entire sub-
list parameter is invalid. For
example, L*ENAME(2), referring to the
length attribute of the second member
of a symbolic parametex which is a
sublist, would be valid; L'&NAME, ref-
erring to the sublist itself, would
not be wvalid.

If an outer macro instruction operand is
a symbol or a literal, the operand attri-
tutes are the same as the corresponding
attributes of the symbol or literal. The
symbol must appear in the name field of an
assembler language statement or in the
operand field of an EXTRN statement. The
statement must be outside macro definitions
and must not contain any variable symbols.
I1f an inner macro instruction operand is a
symbolic parameter, the operand attributes
are the same as the attributes of the
corresponding cuter macro instruction
operand.

Tyge Attribute (T')

The type attribute of a macro instruc-
tion operand, a literal, or a symbol is a
letter. This list defines the letters that

are used for symbols that name DC and DS
statements, and for outer macro instruction
operands that are either literals or sym-
bols that name DC or DS statements:

A A-type address constant, implied
length, aligned

B Binary constant

C Character constant

D Long floating-point constant,
implied length, aligned

E Short floating-point constant,
implied length, aligned

¥ Fullword fixed-point constant,
implied length, aligned

G Fixed-point constant, explicit
length

H Halfword fixed-point constant,
implied length, aligned

K Floating-point constant, explicit
length

P Packed decimal constant

Q Q-type address constant, implied

length, aligned

R A-, Q-, R-, S-, V-, or Y-type
address constant, explicit length

[S-type address constant, implied
length, aligned

\ V-type address constant, implied
length, aligned

X Hexadecimal constant

Y Y-type address constant, implied
length, aligned

z Zoned decimal constant

R-type address constant, implied

length, aligned

These letters are used for symbols and
cuter macro instruction operands that are
symbols which: (a) name statements other
than DC or DS statements, or (b) appear in
the operand field of an EXTRN statement:

Machine instruction
Control section name
Macro instruction
External symbol

CCW assembler instruction

E ol e SR)

These letters are used only for inner
and outer macro instruction operands:

Section 9:

N Self-defining term
o Omitted operand

U = Undefined is used for: (a) symbols
whose attributes are not available, and (b)
inner and outer macro instruction operands,
symbols, or literals that cannot be
assigned any of the above letters. The U
is also assigned to symbols that name EQU
statements.

The programmer may refer to a type
attribute in the operand field of a SETC
instruction, or in character relations in
the operand fields of SETB or AIF
instructions.

Iength (L') Scaling (S'), and Integex (I')

Attributes

These attributes of macro instruction
operands, literals, and symbols are numeric
values.

The length attribute of a symbol (or of
a macro instruction operand that is a sym-
bol) was described in Section 2. The
length attribute of symbpls or macro
instruction operands with attributes of M,
0, T, or U is 0. If N is the type attri-
bute, the length attribute is 1.

Scaling and integer attributes are pro-
vided for fixed-point, floating-point, and
decimal literals, and for symbols that name
fixed-point, floating-point and decimal
fields.

Fixed-Point: The scaling attribute of a
fixed-point number is the value of the

scale modifier subfield of the DC state-
rent. The integer attribute of a fixed-
roint number is a function of the length
and scaling attributes, as I'=8#%L*-S'-1.

Floating-Point: The scaling attribute of a

floating-point number is the number of hex-
adecimal 0s in the leftmost portion of the
fraction. The integer attribute of a
floating-point number is the number of sig-
nificant hexadecimal digits in the
fraction.

Decimal: The scaling attribute of a decim-
al numker is the number of decimal digits
to the right of the decimal point. The
integer attribute of a decimal number is a
function of the length and scaling attri-
kutes. For a packed decimal number, I°'=2#
L'-5'~1; for a zoned decimal number,
'=Ll_sl.

Scaling and integer attributes are
availakle for symbols and macro instruction
operands only if their type attributes are
H, F, and G (fixed-point); D, E, and K
(floating-point); or P and 2 (decimal).

How to Write Conditional Assembly Instructions 65

The programmer may refer to the length,
scaling, and integer attrikutes in the
operand field of a SETA instruction, or in
arithmetic relations in the operand fields
of SETB or AIF instructions.

count Attribute (K°)

The count attribute is a value equal to
the number of characters in the macro
instruction operand, excluding commas. If
the operand is a sublist, the count attri-
bute includes the beginning and ending
parentheses and the commas within the sub-
list. The count attribute of an omitted
operand is 0. This attribute is assigned
to macro instruction operands only.

if the macro instruction operand con-
tains variable symbols, the characters that
replace the variable symbols, rather than
the variable symbols themselves, are used
to determine the count attribute.

The programmer may refer to the count
attribute in the operand field of a SETA
instruction, or in arithmetic relations in
the operand fields of SETB and AIF instruc-
tions that are parts of a macro definition.

Number Attribute (N')

The programmer may refer to the number
attribute of macro instruction operands
only.

The number attribute is a value egqual to
the number of operands in an operand sub-
list. The number of operands in an operand
sublist is equal to 1 plus the number of
commas that indicate the end of an operand
in the sublist. .

These examples illustrate the rule:

(A,B,C,D,E) S operands
(ap,,C,D,E) S operands
(pA,B,C,D) 4 operands
(,B,C,D,E) S operands
(A,B,C,D,) 5 operands
(A,B,C,D,,) 6 operands

I1f the macro instruction operand is not
a sublist, the number attribute is 1; if
the operand is omitted, it is O.

The programmer may refer to the number
attribute in the operand field of a SETA
instruction, or in arithmetic relations in
the operand fields of SETB and AIF instruc-
tions that are part of a macro definition.

Assigning Attributes to Symbols

The integer attribute is computed from
the length and scaling attributes.

66

Fixed-Point:

The integer attribute of a
fixed-point number is equal to eight times
the length attribute of the number, minus
the scaling attribute, minus 1; that is,
I*=8*L*'-S5'-1,

Each of the following statements defines
a fixed-point field. The length attrikute
of HALFCON is 2, the scaling attribute is
6, and the integer attribute is 9. The
length attribute of ONECON is 4, the scal-
ing attribute is 8, and the integer attri-
btute is 23.

T
|Operation|Operand
i 4

——————— t

| HALFCON |DC
|ONECON |DC
L i

L§

|HS6°~25.93"

|FS8'100.3E-2"
L

b crnct e slige s 8

Floating-Point: This integer attribute is
equal to two times the difference ketween
the length attribute of the number and 1,
minus the scaling attribute; that is,
I'=2%(L*-1)-S".

Each of the following statements defines
a floating-point field. The length attri-
bute of SHORT is 4, the scaling attribute
is 2, and the integer attribute is 4. The
length attribute of LONG is 8, the scaling
attribute is 5, and the integer attrikute
is 9.

r 7 - T -
|Name |Operation|Operand |
i 4. ¥
¥ k] -t - k)
| SHORT | DC |ES2'46.415" }
| LONG |DC {DS5'-3.729"* {
[i i —— 3
Decimal: The integer attribute of a packed

decimal number is equal to two times the
length attribute of the number, minus the
scaling attribute, minus 1; that is, I'=2+
L'-S'-1. The integer attribute of a zoned
decimal number is equal to the difference
Letween the length attribute and the scal-
ing attribute; that is, I'=L'-S°‘.

This table identifies the characteris-
tics of the names that are in the state-
ments defining the decimal fields:

Name Length Scaling Integer
FIRST 2 2 1
SECOND 3 0 3
THIRD [} 2 2
FOURTH 3 2 3

r====- T T = 1
|Name |Operation|Operand |
— — oo e 1
FIRST	DC	p'+1.25°*
SECOND	DC 1Z2'-543"	
THIRD	DC	2*79.68"
FOURTH	DC	P*79.68"*
S, e ———— - 4 4		

SEQUENCE SYMBOLS

Name fields may contain sequence symbols
that provide the programmer with the abili-
ty to vary the sequence in which statements
are processed by the assembler.

A sequence gsymbol is used in the operand
tield of an AIF or AGO statement to refer
to the statement named by the sequence sym-
bol. A sequence symbol may be used in the
name field of any statement that does not
coptain a symbcl or SET symbol; exceptions
are prototype statements and MACRO, LCLA,
LcLB, LCLC, GBLA, GBLB, and GBLC
instructions.

A sequence symbol consists of a period
followed by one through seven letters and/
or digits; a letter must be first.

These are valid sequence symbols:

« READER .A23456
. LooPrP2 «X4F2
.N .54

These are invalid sequence symbols:

CARDARERA (first character is not
period)

.246B (first character after period
is not letter)

.AREA2345 (more than seven characters
after period)

. BCD%84 (contains special character
other than initial period)

. IN AREA (contains special character

(blank) other than initial
period)

I1f a sequence symbol appears in the name
field of a macro instruction, and the
corresponding prototype statement contains
a symbolic parameter in the name field, the
sequence symbol does not replace the sym-
bolic parameter wherever it is used in the
macro definition.

Section 9:

This example illustrates the rule:

g

T
| Name |Operation|Operand
L

|

b=t -——- -

| MACRO |

1 | §NAME | MOVE | $TO, § FROM |
2 | ENAME|ST |2, SAVEAREA |
| L | 2, §FROM |

l |sT [2,6TO [

| | L | 2, SAVEAREA]
Lo !

3 |.SYM |MOVE | FIELDA, F1ELDB |
| | | |

4 | |ST | 2, SAVEAREA |
| L |2,FIELDB |

| |sT | 2, FIELDA |

| L | 2,SAVEAREA |

[4 4 4 J

The symkolic parameter &NAME is used in
the name field of the prototype statement
(1) and the first model statement (2). 1In
the macro instruction (3) a sequence symktol

- (.SYM) corresponds to the symbolic paramet-

er ENAME that is not replaced by .SY¥M;
therefore, the generated statement (4) does
not contain an entry in the same field.

Sequence symbols appearing within a
macro definition are, in effect, “"local"

symbols that may be duplicated in other
macro definitions.

LCLA, LCLB, LCLC -- Define SET Symbols

The format of these instructions is:

r T 1
|Name |Operation|Operand |
[& i 4
1 3 T . |
|Blank |LCLA, |One or more variakle i
| LCLB, |symbols to be used as |
| |oxr LCLC |SET symbols, separated |
] | | by commas I
8 4 1 h - 3
The LCLA, LCLB, and LCLC instructions

are used to define and assign initial
values to SETA, SETB, and SETC symbols.
SETA, SETB, and SETC are assigned initial
values of 0, 0, and null character value,
respectively.

The rrogrammer should not define any SET
symbol whose first four characters are
ESYS.

An LCLA, ICIB, or LCLC instruction that
is part of a macro definition must occur
tefore any of the symbols which it defines
are referenced by SET statements.

How to Write Conditional Assembly Instructions 67

SETA -- SET Arithmetic

This instruction may be used to assign
an arithmetic value to a SETA symbol. The
format of this instruction is:

pmm——— o ———— o - 1
{Name |Operation|Operand |
poomm-- L oo - -
|SETA |SETA |Arithmetic expression |
| symbol | | {
G, J . y O - -4

The expression in the operand field is
evaluated as a signed 32-bit arithmetic
value which is assigned to the SETA symbol
in the name field. The minimun and maximum
allowable values of the expression are -231
and +231-1,

The expression may consist of one term
or an arithmetic combination of terms.
Terms that may be used alone or in combin-
ation are self-defining terms, variable
symbols, and the length, scaling, integer,
count, and number attributes.

A variable symbol may not represent a
relocatable symbol (even if paired to form
an absolute expression) when used in the
operand of a SETA instruction.

Ncte: A SETC variable symbol may appear in
a SETA expression only if the value of the
SETC variable is from one to eight decimal
digits; decimal digits will be converted to
a positive arithmetic value.

The arithmetic operators that may be
used to combine the terms of an expression
are + {(add), - (subtract), * (multiply),
and / (divide). An expression may not con-
tain two terms or two operators in succes-
sion, nor may it begin with an operator.

These are valid operand fields of SETA
instructions:

LARER+X' 2D" I*&EN/25
¢BETA#10 EEXIT-S'6§ENTRY+1
L* §HERE+32 29

These are invalid operand fields of SETA
instructions:

EAREAX*C" (two terms in succession)

EFIELD+~- (two operators in
succession)

-§DELTA#*2 (begins with operator)

«+32 (tegins with operator; two
operators in succession)

NAME/15 (NAME is not valid term)

68

Evaluation of Arithmetic Expressions

The procedure used to evaluate the
arithmetic expression in the operand field
cf a SETA instruction is the same as that
used to evaluate arithmetic expressions in
assembler language statements. The only
difference between the two types of arith-
metic expressions is the terms that are
allowed in each expression. This is the
evaluation procedure:

.

1. Each term is given its numerical
value.

2. The arithmetic operations are per-
formed from left to right; multigplica-
tion and division are performed before
addition and subtraction.

3. The computed result is the value
assigned to the SETA symbcl in the
name field.

The arithmwetic expression in the operand
field of a SETA instruction may contain one
or more sequences of arithmetically corki-
ned terms that are enclosed in parentheses.
A sequence of parenthesized terms may
appear within another parenthesized
sequence. These examples of SETA instruc-
tion operand fields contain parenthesized
sequences of terms:

(L' EHERE+32) *29
EAREA+X' 2D 7 (SEXIT-S'§ENTRY+1)
SBETA*10¢(I1'EN/25/(EEXIT~S'6ENTRY+1))
The parenthesized portions of an arith-
metic expression are evaluated before the
other terms. Parenthesized terms that arxe

within other parenthesized sequences are
evaluated first.

Using SETA Symkols

The arithmetic value assigned to a SETA
symbol is substituted for the SETA symbol
when it is used in the orperand field of a
SETA instruction, or in arithmetic rela-
tions in the operand fields of SETB and AILF
instructions. If SETA is used in any other
statement, the arithmetic value is con-
verted to an unsigned integer, with leading
0's removed; when the value is 0, it is
converted to a single 0.

This illustrates the rule:

- — -

|
-

| ol T
| Name |Operation|Operand
4

|

e S 1

| | MACRO { i

| §NAME | MOVE | €TO, £ FROM |

| | LCLA |&A, E€B, §C, &D {

1 |&A | SETA {10 |
2 |&B | SETA 12 |
1| &C | SETA |8A-6B |
4 |&D SETA | §A+EC i
| SNAME | ST |2,SAVEAREA i

5 | |L | 2, EFROMEC |
6 | | ST 12,8TOED |
| |L { 2, SAVEAREA |

| | MEND | |

| { i

| HERE |MOVE { FIELDA, FIELDB |

| | | {
|HERE |ST | 2, SAVEAREA |

| L |2, FIELDB2 |

| |sT |2,FIELDAS i

| L | 2, SAVEAREA |

| P 4 d

Statements 1 and 2 assign values +10 and
+12 to SETA symbols &A and €B. Statement 3
assigns value -2 to SETA symbol &C. When
&C is used in statement S5, value -2 is con-
verted to unsigned integer 2. When &C is
used in statement 4, value -2 is used, and
éD i8s asusigned value +8. When &D is used
in statement 6, value +8 is converted to
ansigned integexr 8.

This example shows how the value
assigned to a SETA symkol in a macro
definition may be changed:

|

|

|

|

I

| |
| HERE | MOVE FIELDA, FIELDB
|

|

|

]

|

L

——— ———

jST - |2,SAVEAREA
iL | 2, FIELDBS
|sT |2, FIELDAS

iL | 2, SAVEAREA
..... P U RPN, -

| St St T 1
| Name |Operation|Operand |
................... {

| MACRO |
| §NAME | MOVE | ETOEFROM |
| | LCLA {sa |

1 |&A | SETA IS |
| §NAME| ST | 2, SAVEAREA i

2 iL | 2, EFROMEA |

3 |&A | SETA i8 |

) |ST |2,6TO&A |

| L | 2, SAVEAREA i
|MEND |
|
|
|
l
]
|
|
4

Statement 1 assigns value +5 to SETA
symbol &€A. In statement 2, &8A is converted
to unsigned integer 5. Statement 3 assigns
value +8 to &A. In statement 4, therefore,
&A is converted to unsigned integer 8,
instead of 5.

Section 9:

A SETA symbol used with a symbolic para-
meter to refer to an operand in an operand
suklist must have been assigned a positive
value. Expressions that may be used in
operand fields of SETA instructions may ke
used to refer to operands in operand sub-
lists (described in Section 8, under
"Operand Sublists").

The following macro definition may ke
used to add the last operand in an operand
sublist to the first operand in an orerand
suklist and store the result at the first
operand. A sample macro instruction and
the generated statements follow the macro
definition.

r T T 1
|Name |Operation|Operand |
8 4 4 4
r T T :
| | MACRO | i
1| | ADDX | §NUMBER, §REG |
| | LCcLA | SLAST {
2 |6LAST|SETA | N* §NUMBER |
{ L | §REG, ENUMBER (1) |
3] |a | REG, §NUMBER (§LAST) I
| |sT | §REG, §NUMBER (1) |
| | MEND i |
I | I
4 | | ADDX |<A,B,C,D,E),3 |
| l | I
| (L {3.A |
| |A |3.E |
| (ST 13,2 |
L 1 4 .|

ENUMBER is the first symbolic parameter
in the operand field of the prototyge
statement (1). The corresponding charac-
ters (A,B,C,D,E) of the macro instruction
(4) are a sublist. Statement 2 assigns to
S&LAST arithmetic value +5, which is equal
to the number of operands in the sublist.
Therefore, in statement 3, &ENUMBER(ELAST)
is replaced Lky the fifth operand of the
sublist.

SETC --_ SET Character

SETC assigns a character value to a SETC
symbol. The format of this instruction is:

=== o it s o e e e e e e e

Ll
|Name |Cperation|Operand
[4 4

¥

|One operand, of the form
| described below

L

r -T
|A SETC|SETC

|symbol

1
|
d
1
| |
[9. 4 2

The operand field may consist of the
type attribute, a character expression, a
substring notation, or a concatenation of
substring notations and character expres-
sions. A SETA symbol may appear in the
operand of a SETC statement. The result is
the character representation of the deciral
value, unsigned, with leading 0's removed;
if the value is 0, one decimal 0 is used.

How to Write Conditional Assembly Instructions 69

If a character string containing at
least one single apostrophe is to be sub-
stituted for an operand in a SETC instruc-
tion, it must meet the requirements
described in Section 7, under “Free
Apostrophes. ™
Type Attribute

If the character value assigned to a
SETC symbol is a type attribute, the attri-
bute must appear alone in the operand
field. The following example assigns to
§TYPE the type attribute (T') of the macro
instruction operand that corresponds to the
symbolic parameter &ABC.

| S S T - -

Charactexr Expression

A character expression consists of any
combination of characters enclosed in apos-
trophes; the enclosed value in the operand
field is assigned to the SETC symbol in the
name field. The maximum value size that
can be assigned to a SETC symbol is eight
characters.

Evaluation_of Character Expressions: This
statement assigns the character value AB%4
to SETC symbol &ALPHA:

_pee—— P

More than one character expression may
be concatenated intoc a single expression by
placing a period between the terminating
apostrophe of one expression and the open-
ing apostrophe of the next expression. For
example, either of the following statements
may be used to assign the character value
ABCDEF to the SETC symkcl $BETA.

[S S A S k]
{ Name]Operdt10n|Operand |
—— pmo e — --- -—4
| §BETA | SETC | *ABCDEF" |
{&BETAlSETC | *ABC' ."DEF* |
______________ UGN |
Two apostrophes must be used to repre-
sent an apostrophe that is part of a char-
acter expression, as in this statement:
---------------- T 1
| Name iOperatlonlOperand . |
_____________ + —_—— -
T
IELLNGTHlSETC |*L**SYMBOL® |
________________ § U |

Variable symbols may be concatenated
with other characters in the operand field
of a SETC instruction, according to the
general rules for concatenating symkolic
parareters with other characters (see Sec-
tion 7).

If €ALPHA has been assigned the charac-
ter value ABX4, the following statement may
ke used to assign the character value
ABX4RST to the variable symbol §GAMMA.

R T L]
| Rame]OperationiOperand 4}
| §GAMMA | SETC | ' €ALPHA.RST® |
L i 1 3

Two ampersands must be used to represent
an ampersand that is not part of a variable
symbol. Only one ampersand becomes gpart of
the character value assigned to the SETC
syrmbol. This statement assigns value HALFé&
to the SETC symbol €AND:

r T v
| Name |Operation|Operand
i 4

‘BALFEE®

R L

T v
| §AND |SETC
Lt i

Substring Notation

The character value assigned to a SETC
symbol may be a substring charactex value,
to permit the programmer to assign part of
a character value to a SETC symbol. 1If the
programmer wants to assign part of a char-
acter value to a SETC symbol, he must ind-
icate to the assembler in the operand field
of a SETC instruction: (a) the character
value itself, and (b) the part of the char-
acter value he wants to assign to the SETC
symbol. The combination of (a) and (L) is
a sukstring notation; the value is referred
to as a substring character value.

Substring notation consists of a charac-
ter exrgression, immediately followed by two
arithmetic expressions that are separated
ky 2 comma and enclosed in parentheses; the
expressions may be any expression that is
allowed in the operand field of a SETA
instruction. The first expression indi-
cates the first character in the character
expression that is to be assigned to the
SETC symkol in the name field. The second
expression indicates the number of consecu-
tive characters in the character expression
(starting with the character indicated by
the first expression) that are to ke
assigned to the SETC symbol.

The maximum size substring character
value that can be assigned to a SETC symbol
is eight characters; 255 characters is the
maximum size character expression that the

substring character value can be chosen
from.

These are valid substring notations:

§ALPHA (2,5)

*AB%4°' (§AREA+2,1)

* GALPHA.RST' (6, 6A) ;
*ABC&GAMMA® (§A,§AREA+2)

These are invalid substring notations:

*EBETA' (4,6) (blanks between charac-
ter value and arithmetic
expressions)

*L**SYMBOL® (only one arithmetic

(142-8XYZ) expression)

'ABX%1EALPHA" (arithmetic expressions

(8§FIELD*2) not separated by comma)
*BETA'4,6 {arithmetic expressions

not enclosed in
parentheses)

Usinqg SETC Symbols

The character value assigned to a SETC
symbol is substituted for the SETC symbol
when it is used in the name, operation, or
operand field of a statement. Consider
these macro definition, macro instruction,
and generated statements:

S T -
| Name |Operation|Operand
R
| MACRO
| SNAME |MOVE | §TO, EFROM
| jLCLC | §PREFIX
1 | §PREFIX|SETC | *FIELD®
| ENAME |ST 2,SAVEAREA
2 | IL . 2, §PREFIX&FROM
3 {sT 2, §PREFIX§TO
| |L | 2, SAVEARER
A
|HERE |MOVE |A.B
I I |
| HERE IsT | 2, SAVEAREA
| |L |2,FIELDB
| |sT | 2,FIELDA
| L | 2,SAVEAREA v |
| S—— L - 1 - 3

Statement 1 assigns the character value
FIELD to the SETC symbol EPREFIX; in 2 and
3, &PREFIX is replaced by FIELD.

This is how the value assigned to a SETC

symbol may be changed in a macro
definition:

Section 9:

[Stk 8 1
{Name |Operation|Operxand |
- + -

| MACRO |

§NAME |MOVE { §TO, 6FROM |

| LCLC S§PREFIX |

1 | SPREFIX|SETC *FI1ELD* |
§NAME |ST | 2, SAVEAREA i

2 L { 2, SPREFIX&FROM |
3 | §PREFIX|SETC | *ARER® |
4 | |sT | 2 SPREFIX&TO |
|L |2, SAVEAREA |

| MEND | |

| |

HERE | MOVE |A,B |

| I |

HERE | ST | 2, SAVEAREA |

|IL |2,FIELDB |

| I ST | 2, AREAA |

| {L | 2, SAVEAREA |

L 4 i J

Statement 1 assigns the character value
FIELD to the SETC symbol EPREFIX. There-
fore, &PREFIX is replaced by FIELD in
statement 2. Statement 3 assigns the char-
acter value AREA to &PREFIX. Therefore,
§PREFIX is replaced by ARER, instead of
FIELD, in statement 4.

Here is an illustration of a sukstring
notation used as the operand field of a
SETC instruction:

1 2 L]
|Name Oferation|Operand 1
4
B
MACRO |
SNAME |[MOVE | €TO, §FROM |
ICIC $§PREFIX |
1 |SPREFIX|SETC ‘§TO'(1,5) |
§NAME |ST { 2, SAVEAREA |
2 L 2 . SPREFIXEFROM
ST 2,8TO
L 2,SAVEAREA
‘ e %
HERE MOVE |FIELDA,B
HERE ST 2, SAVEAREA
} L ~ }2,FIELDB |
{ ST |2.FIELDA |
| |L |2, SAVEAREA |
L L 4 -

Statement 1 assigns the substring char-
acter value FIELD (the first five charac-
ters corresponding to symbolic parameter
£§TO) to the SETC symbol &PREFIX. There-
fore, FIELD replaces &PREFIX in statement
2.

Concatenating Substring Notations and char-
acter Expressions: Substring notations may
ke concatenated with character expressions
in the operand field of a SETC instruction.
If a sukstring notation follows a character
expression, both may be concatenated by a

How to Write Conditional Assembly Instructions 71

period between the terminating apostrophe
of the character expression and the opening
apostrophe of the substring notation.

For example, if EALPHA has Leen assigned
the character value ABX4 and &BETA has
value ABCDEF, this statement assigns value
ABRUHCD to &GAMMA:

(- Ty ———— L it s=—=-
|Operation|Operand

-
'
{
t
]
'
i
|
t
i
!
|
'
|
|
|
|
!
i
[}

S C——]

§GAMMA | SETC

| | *6ALPHA". " §BETA® (2,3)
| .)

'S

If a substring notation precedes a char-
acter expression or another sukstring nota-
tion, both may be concatenated by writing
the opening apostrophe of the second item
immediately after the closing parenthesis
of a substring notatiocon and the opening
apostrophe of the next item in the operand
field.

If the character value AB%4 is assigned
to SALPHA, and value 5RS to §ABC, either of
these statements may be used to assign
value ABR45RS to EWORD:

- —— -1

L 3 2]

|Name |Operation|Operand

f—-—-- $-—- $---

| §WORD | SETC | *SALPHA" (1,4) ' §ABC®

| SWORD | SETC | *§ALPHA' (1,4) *§ABC" (1, 3)
| SN, S i

s e e b

When a SETC symbol is used in the
operand field of a SETA instruction, the
character value assigned to the SETC symbol
must be from one to eight decimal digits,
which will be converted to a positive
arithmetic value when the SETC symbol is
replaced in the SETC instruction.

When a SETA symbol is used in the
operand field of a SETC statement, the
arithmetic value is converted to an
unsigned integer with leading 0s removed;
if the value is 0, it is converted to a
single 0.

SETB -- SET Binary

The SETB instruction assigns binary 0 orx
1 to a SETB symbol. The format of this
instruction is:

Sl T T 1
jName |Operation|Operand |
— S + 1
|SETB |SETB |0 or 1, or logical |
|symbol] |expression enclosed in |
| | | parentheses i
[8 4 4]

A logical expression is evaluated to
determine if it is true or false; binary 1
or 0, corresponding toc true or false, is

72

then assigned to the SETB symbol in the
name field.

A logical expression consists of one
term or a logical combination of terrms.
The terms that may be used alone or in com-
bination with each other are arithrmetic
relations, character relations, and SETB
symbols. The logical operators that comki-
ne the terms are AND, OR, and NOT.

A ldgical expression may contain two
operators in succession only if the first
operator is either AND or OR, and the
second operator is NOT. A logical expres-
sion may kegin with operator NOT, not with
operators AND or OR.

An_arithmetic relation consists of two
arithmetic expressions connected by a rela-
tional operator. A character relation con-
sists of two character values connected by
a relational operator. The relational
operators are EQ (equal), NE (not equal),
LT (less than), GT (greater than), 1E (less
than or equal), and GE (greater than or
eqgual).

Any expression that may be used in the
operand field of a SETB instruction may be
used as an arithmetic expression in the
operand field of a SETB instruction. 2any
expression that may be used in the operand
field of a SETC instruction may be used as
a character value in the operand field of a
SETB instruction, including substring and
type attribute notations. The maximum size
of the character values that can be com-
pared is 255 characters. 1If the two char-
acter values are of different lengths, the
shorter one will always compare "less than®"
the larger one.

Relational operators may be preceded
irmediately by one or more blanks, a clos-
ing parenthesis, or a closing apostrothe.
They may be followed immediately by one or
more blanks, an opening parenthesis, an
opening apostrophe, or an ampersand that
introduces a variable symbol. Each rela-
tion may or may not be enclosed in paren-
theses; it must ke separated from the log-
ical operators by at least one blank. A
relation enclosed in parentheses need not
be separated by any blanks from the logical
operators; however, blanks may be ortiocnal-
ly placed between logical operators and
relations enclosed in parentheses.

If a character string containing at
least one single apostrophe is to be sub-
stituted for a variable symbol in a SETB
instruction, it must meet the requirements
described in Section 7, under “Free
Apostrorhes."”

These are valid operand fields of SETB
instructions:

1

(EAREA+2 GT 29)

(*ABX4* EQ *EALPHA')

(T*&ABC NE T'&XY¥Z)

(T*&P12 EQ °‘F')

(§AREA+2 GT 29 OR &B)

(NOT &B AND &AREA+X'2D' GT 29)

These are invalid operand fields of SETB
instructions:

&B (not enclosed in
parentheses)

(T°§P12 EQ *F' §B) (two terms in suc-
cession)

(*ABX4* EQ 'ALPHA' (NOT operator must

NOT &B) be preceded by AND

or OR)
(AND T*6P12 EQ 'F') (expression begins
with AND)

Evaluation of lLogical Expressions

This procedure evaluates a.logical ex-
pression in the operand field of a SETB
instruction:

1. Each term (arithmetic relation, char-
acter relation, or SETB symkol) is
evaluated and given its logical value
(true or false).

2. The logical operations are performed
from left to right. However, NOTs are
performed before ANDs and ANDs Lkefore
ORs.

3. The computed result is the value
assigned to the SETB symbol in the
name field.

The logical expression in the operand
field of a SETB instruction may contain one
or more sequences of logically combined
terms that are enclosed in parentheses. A
sequence of parenthesized terms may appear
within another parenthesized sequence.
These are examples:

(NOT (&B AND &AREA+X'2D' GT 29))
(B AND (T'$P12 EQ °‘F' OR &B))

The parenthesized portion or portions of
a logical expression are evaluated before
other terms are evaluated. If a sequence
of parenthesized terms appears within
another parenthesized sequence, the inner-
most sequence is evaluated first.

Section 9:

Using SETB Symktols

The logical value assigned to a SETB
symbol is used for the SETB symbol appear-
ing in the operand field of an AIF instruc-
tion or another SETB instruction.

If a SETB symbol is used in the ogerand
field of a SETA instruction, or in arithme-
tic relations in the operand fields of AIF
and SETB instructions, binary 1 (true) and
0 (false) are converted to arithmetic
values +1 and +0.

If a SETB symbol is used in the operand
field of a SETC instruction, in character
relations in the operand fields of AIF and
SETB instructions, or in any other state-
rent, kinary 1 (true) and 0 (false) are
converted to character values 1 and 0.
L*'S8TO EQ 4 is assumed to be true, and S'&TO
EQ 0 is assumed to be false.

L 4 T T -
|Name |Operation|Operand |
I - 1 {
MACRO | i
S§NAME | MOVE . | §TC, §FROM |
LCLA | €A1 |
1LCLB |€B1,6B2
LCLC | sc1
1 |é&B1 SETB (L'§TC EQ 4)
2 |&B2 SETB (s'§TO EQ 0)
3 |§éA1 SETA §B1
4 |sc1 SETC '§B2°
| ST |2, SAVEAREA i
| L | 2, §FROMEA1
| ST 2,8TO8C1
| L , 2,SAVEAREA
| MEND
I | |
| HERE |MOVE FIELDA, FIELDB i
| |
| HERE |ST 2, SAVEAREA |
| L 2 ,FIELDB1 |
| ST 2,FIELDAO |
| L | 2 ,SAVEAREA |
L 4. i & J

Because the operand field of statement 1
is true, &Bl1 is assigned the binary value
1. Therefore, the arithmetic value +1 is
substituted for &Bl1 in statement 3.

Because the operand field of statement 2 is
false, &€B2 1s assigned the binary value 0;
character value 0 is substituted for £B2 in
statement 4.

AIF -- Conditicnal Branch

The AIF instruction conditiopally alters
the sequence in which source program state-
ments are processed by the assembler. This
format is used: ‘

How to Write Conditional Assembly Instructions 73

T T -
| Name |Operation|Operand
8 4
1 4 T ===
| Sequence |AIF |Logical exgression
jsymbol | |enclosed in parenthe-

lor blank| |ses, immediately fol-
| lowed ky sequence
symbol

. — T~ -

B e o e ot e i o

| |
b S 1

Any logical expression that may be used
in the operand field of a SETB instruction
may be used in the operand field of an AIF
instruction. The sequence symbol in the
operand field must immediately follow the
closing parenthesis of the logical
expression.

The logical expression in the operand
field is evaluated to determine if it is
true or false. If true, the statement
named by the sequence symbol in the operand
field is the next statement processed by
the assembler. If false, the next sequen-
tial statement is processed by the
assembler.

The statement named by the sequence sym-
bol may precede or follow the AIF
instruction.

1f an AIF instruction is in a macro
detinition, the sequence symbol in the
operand field must appear in the name field
ot a statement in the definition. If AIF
appears outside macro definitions, the
sequence symbol in the operand field must
appear in the name field of a statement
outside macro definitions, and any attri-
butes used in the logical expression must
be those of previously defined symbols.

These are wvalid operand fields of AIF
instructions: :

(EAREA+X®° 2D* GT 29) .READER
(T*&P12 EQ *F').THERE

These are invalid operand fields of AIF
instructions:

(T* §ABC NE T'&XYZ) (no sequence
symbol)
(no logical
expression)
(blanks between
logical expres-
sion and
sequence sym-
kol)

. X4F2

{(T*&ABC NE T'&XYZ) .X4F2

The following macrc definition may be
used to generate the statements needed to
move a fullword fixed-point number from one
storage area to another. The statements
will be generated only if the type attri-
bute of both storage areas is the letter F.

74

1

{Name Operation|Operand [

t |

| | MACRO | |

] €N | MOVE {&T,&F |
11 |AIF |(T'&T NE T'&F).END |
2 | }|AIF {(T*&T NE °"F*).END |
3 |&N |ST {2, SAVEAREA . i
| |L |2,6F t

[|sT [2,8T |

| |L | 2, SAVEAREA {

4 |.END |MEND [1
[N 4 4L J

The logical expression in the operand
field of statement 1 is true if the type
attributes of the two macro instruction
operands are not equal. If the attributes
are equal, the expression is false. There~
fore, if the attrikutes are not equal,
statement 4 (named by the sequence symkol
-END) is the next statement processed by
the assembler. If the attributes are
equal, statement 2 (the next sequential
statement) is processed.

The expression in the operand of state-
nment 2 is true if the type attribute of the
first macro instruction operand is noct F.
If the attribute is F, the expression is
false. Therefore, if the attribute is not
F and the expression is true, statement 4
(named by the sequence symbol .END) is the
next statement processed by the assembler.
If the attribute is F, statement 3 (the
next sequential statement) is processed.

If a character string containing at
least one single apostrophe is to ke sub-
stituted for a variable symbol in an AIF
statement, it must meet the requirements
descriked in Section 7, under “Free
Apostrophes.”

Note: AIFB is an instruction, identical in
format and function with AIF, which can be
used to provide compatibility with the IBM
OS Assembler.

AGO -~ Unconditional Brapch

The AGO instruction unconditionally
alters the sequence in which source grogram
statements are processed by the assembler.
This is the format:

-

L] T 3
| Name |Operation|Operand |
i 4 4 4
[T T 1
| Sequence|AGO | Sequence symbol |
|symbol | | |
|oxr klank| | {
L i i 5

The statement named by the sequence sym-
bol in the operand field is the next state-
ment processed by the assembler.

The statement named by the sequence sym-
bol may precede or follow the AGO instruc-
tion. If an AGO instruction is part of a
macro definition, the sequence symbol in
the operand field must appear in the name
field of a statement that is in that
definition. If an AGO appears outside
macro definitions, the sequence symbol in
the operand field must appear in the name
field of a statement outside macro
definitions.

This illustrates the use of the AGO
instruction:

1

T

{Name |Operationj|Operand

b ¥

| | MACRO

| ENAME | MOVE £T, &F
1] | AIF (T*€T EQ "F').FIRST
2 | |aGo .END .
3 |.FIRST|AIF [{T*&T NE T*&F) .END

| SNAME |ST 2, SAVEAREA

| {L 2,8F

| |ST 2,87

| L 2, SAVEAREA
4 |.END |MEND

L 'y

Statement 1 determines if the type
attribute of the first macro instruction
operand is the letter F. If the attribute
is F, statement 3 is the next statement
processed by the assembler. Otherxrwise,
statement 2 is processed next. Statement 2
indicates to the assembler that statement 4§
(named by sequence symbol .END) i8 the next
statement.

Note: AGOB is an instruction, identical in
format and function with AGO, which can be
used to provide compatibility with the IBM
0S Assembler.

ANOP -- Assembly No Operation

The ANCP instruction facilitates condi-
tional and unconditional branching to
statements named by symbols or variable
symbols.

The format of this instruction is:

¥ k4 : T

| Name |Operation|Operand

{ 1 4

T v T

| Sequence | ANOP | blank

{symbol | | .

| - i L i

If the programmer wants to use an AIF or
AGO to branch to another statement, he must
place a sequence symbol in the name field
of the statement to which he wants to
branch. However, if he has already entered
a symbol or variable symbol in the name
field of that statement, he cannot place a
sequence symbol in the name field.

Section 9:

Instead, he must place an ANOP before the
statement and then branch to the ANOP.

This has the same effect as branching to
the statement immediately after the ANOP.

This illustrates the use of the ANOP
instruction: ‘

R S S a]

Name |[Operation|Operand i

+ -4

| MACRO i

| ENAME | MOVE §T,&F i

| jLcLe §TYPE |

1 jAIF (T*&T EQ 'F').FTYPE |
2 |STYPE |SETC ‘E’ |
3 | .FTYPE|ANOP |
4 |SNAME |STETYPE |2,SAVEAREA |
|LETYPE |2,&F |

| STETYPE |2,8&T |

|LE&TYPE |2,SAVEAREA |

| MEND | |

4 4 y]

Statement 1 determines if the tyge
attribute of the first macro instruction
operand is the letter F. If the attrikute
is not F, statement 2 is the next statement
processed by the assembler. Otherwise,
statement 4 is processed next. However,
since there is a variakle symbol (ENAME) in
the name field of statement 4, the required
seguence syrbol (.FTYPE) cannot be placed
in the name field. Therefore, an ANCP
{statement 3) must be placed before state-
ment 4.

Then, if the attribute of the first
operand is F, the next statement processed
by the assembler is the statement named Ly
sequence symkol .FTYPE. The value of &TYPE
retains its ipitial null character value
kecause the SETC instruction is not gro-
cessed. Since .FTYPE names an ANOP
instruction, the next statement processed
Ly the assemkler is statement 4, which fol-
lows the ANOP.

CONDITIONAL ASSEMBLY ELEMENTS

The elements that can be used in each
conditional assembly instruction are sum-
xarized in Figure 11. Each row in this
chart indicates which elements can be used
in a single conditional assembly instruc-
tion. Each column indicates the condition-
al assemkly instructions in which a parti-
cular element can be used.

The intersection of a column and a row
indicates whether an element can be used in
an instruction; if so, in what fields of
the instruction the element can be used.
For example, the intersection of the first
row and the fixrst column of the chart indi-
cates that symbolic parameters can he used
in the operand field of SETA instiu tions.

How to Write Conditional Assembly Instructions 75

[P e s S S S g 308 Voo S QA S S e O o Y gy | S W ot T S e S . sy

T..ll\lllTl-IlfllT:lllT'LT‘LT‘AT'L

N!
0

Q3
02

R e ah L SR TP TR S

Kl
(o)
03
Q=3
is Number Attrikute

is Count Attribute
S.S. is sequence Symbol

o s s e e e e e e e e e e e

Il
o]

02
Q2
Kl
N!

rlll....!LT..ILTlvlrl'LtlLtol.A

Attributes

e e e e e e e e e e o

L'
0
02
o

RR-TpU S S S DT X

——Ld

T‘
02
o

[e1 3

o e e e e o e e e e e e et ot e e e o

SETC
0
o)
.0
(o}

o e e e e e e e e e e s e = of

is Scaling Attribute

T*' is Type Attribute
L' is Length Attritute

sI
I' is Integer Attribute

0
.
O
o

L]
|
4
b
|
4
L)
|
i
T
|
4
T
|

e e of

SET Symbols
SETB
o

——

|
b 8
10nly in character relations

0
0
20nly in arithmetic relations

N,O
o}

Variable Symbols

|
4
T
|

t
T

O
(@]
O

6]
Parameter

Abbreviations
is Name
is Operand
is Symkbolic

SETA
SETB
SETC
AlF
AGO
ANOP
S.P.

[
e SR
s
N
o]

|

| SRS .

|
i B s

P
et SRS

l
ot S

i
|
|

Conditional Assembly Elements

Figure 11.

76

ECTION 10:

The extended features of the macro lan-
guage allow the programmer to:

1. Terminate processing of a macro
definition.

2. Generate error messages.

3. Define global SET symktols.

4. Define subscripted SET symhols.

5. Use system variable symkols.

6. Prepare keyword and mixed-mode macro
definitions and write keyword and

mixed-mode macro instructions.

7. Use other macro definitions.

MEXIT =- MACRO DEFINITION EXIT

The MEXIT instruction, used only in a
macro definition, indicates to the assem-
bler that it should terminate processing of
a macroc definition. The format is:

EXTENDED FEATURES OF MACRO LANGUAGE

===

Ld '
j Name |0peration10perand i

..... + - -—

| | MACRO | |
ENAME | MOVE | €T, &F |

1 |AIF | (T*E€T EQ 'F').OK]
2 | MEXIT |]
3 |.0K |anoP | |
| ENAME| ST |2, SAVEAREA I
|L |2,&F I

|ST |2,8T |

|L | 2,SAVEAREA |

| |MEND | |

L 4L - e e e e e e e e i e 2w v e i

Statement 1 determines if the type
attribute of the first macro instruction
operand is the letter F. If the type is F,
the assembler processes the remainder of
the macrc definition, starting with state-
ment 3. Otherwise, statement 2 is pro-
cessed next. Statement 2 indicates to the
assembler that processing of the macro
definition is to be terminated.

MNOTE -- Request for Error Message

The MNOTE instruction requests the as-
sembler to generate an error message ox
comments line. This instruction is prin-
cipally used with conditional assermkly
statements, either in macro definitions or

f =T v - 3
| Name |Operation|Operand | assembler language source code. The format
b + 1 { s
| Sequence | MEXIT |Blank |
| symbol | | r T e T T T e e e R}
jor blank| | | {Name |cperation{Operand |
L L i - J 3 4 e ————— e q
| Sequence | MNOTE |Severity code, fol- |
If the assembler processes the MEXIT |symkol | | lowed by comma, fol- |
instruction in a macro definition corres- jor | lowed by any comkina- |
ponding to an outer macro instruction, the |blank |tion of characters en-|

next statement processed by the assembler
is the next statement outside macro
definitions.

If the assembler processes the MEXIT in
a macro definition corresponding to a
second- or third-level macro instruction,
the next statement processed is the next
statement after the second- or third-level
macro instruction in the macro definition.

MEXIT should not be confused with MEND,
‘which indicates the end of a macro defini-
tion. MEND must be the last statement of
every macro definition, including those
that contain one or more MEXIT
instructions.

This illustrates the use of the MEXIT
instruction:

Section 10:

|
' .
| | jclosed in apostrophes |
| SPRRERORpRS ¥ ——4 e 2 o e o o i e)

If the first operand field is an akso-
lute or null value, the MNOTE causes an
error message to be generated, and the
value is treated as a severity code. This
severity code may be a decimal integer from
0 through 255. A null value is treated as
a value 0. A severity code value of 0
remains 0, and the message is not included
in the error count. A severity code value
of 1 remains 1 and causes the error count
to be incremented and a W to appear on the
error message. A severity code value of 2
or greater is set to 2 and causes the error
count to be incremented and an E to appear
on the error message. The maximum number
of characters allowed in the error ressage
character string is 226.

Extended Features of Macro Language 77

An asterisk in the first operand indi-
cates that the MNOTE is to generate a com-
ments line. The error level and count are
unaffected by such a statement. A maximum
of 100 characters is allowed in the follow-
ing character string.

When an MNOTE instruction is processed
by the assembler, the characters enclosed
in apostrophes are provided in the source
program listing, in the same way as other
error messages. When the assembler encoun-
ters an MNOTE instruction in assembler lan-
yuage source code in a conversational as-
sembly, it will interpret processing to
prompt the user for corrections.

Two apostrophes must be used to repre-
sent an apostrophe enclosed in apostrophes
in the operand field of an MNOTE instruc-
tion; one apostrophe will ke listed for
each pair of apostrophes in the operand
field.

Any variable symbols used in the operand
field of an MNOTE instruction will be
replaced by the values assigned to them.

Two ampersands must be used to represent
an ampersand that is not part of a variable
symbol in the operand field of an MNOTE
statement; one ampersand will ke listed for
cach pair of ampersands in the operand
tield.

If a character string containing at
least one single apostrophe is to be sub-
stituted for an operand in an MNOTE
instruction, it must meet the requirements
described in Section 7, under "Free
Apostrophe.®

This example illustrates the use of
MNOTE in a macro definition. The MNOTE
instruction is valid anywhere in an assem-
bler language source program.

T T
|Name |Operation|Operand
i oo SR -1
| | MACRO |
| §NAME | MOVE | €T, &F
1 |AIF | (T*ST NE T'&F).M1 |
2 | |AIF | (T*6T NE 'F*').M2
3 |ENAME|ST | 2, SAVEAREA
| iL |2,8F
| |sT {2,887
| |L | 2,SAVEAREA
| | MEXIT i
4 |.M1 |MNOTE | *TYPE NOT SAME'
| | MEXIT I
5 |.M2 |MNOTE | *TYPE NOT F' -
| | MEND]
{—— ¥ S i y

Statement 1 determines if the type
attributes of both macro instruction

operands are the same. If they are, state-

78

ment 2 is the next statement processed Ly
the assembler. Otherwise, statement 4 is
the next statement processed. Statement 4
causes an erxror message -- TYPE NOT SAME --
to be printed in the source program
listing.

Statement 2 determines if the type
attribute of the first macro instruction
operand is the letter F. If the type is F,
statement 3 is the next statement pro-
cessed. Otherwise, statement 5 is next.
Statement S causes an error message -- TYPE
NOT F -- to ke printed in the source pro-
gram listing.

GLOBAL AND LOCAL VARIABLE SYMBOLS

These are local variable symbols:

Symbolic parameters
Local SET symbols
System variakle symbols

Glokal SET symbols are the only global
variable symbols.

The GBLA, GBLB, and GBLC instructions
define global SET symbols, just as the
ICLA, LCLB, and LCLC instructions define
the SET symbols described in Section 9.

SET symbols defined by LCLA, LCLB, and LCLC
instructions are referred to as local SET
symbols.

Global SET symbols communicate values
developed outside a macro definition to
statements which are within macro defini-
tions. Communication from macro defini-
tions to macro definitions is also permiss-
ible. However, local SET symbols communic-
ate values between statements in the same
macro definition, or between statements
outside macro definitionmns.

If a local SET symbol is defined in two
or more macro definitions, or in a macro
definition and outside macro definitions,
the SET symbol is considered to be a dif-
ferent SET symbol in each case. Bowever, a
global SET symbol is the same SET symbol in
each place it is defined.

A SET symbol must be defined as a glokal
SET symkol in each macro definition in
which it is to be used as a global SET sym-
kol. A SET symbol must be defined as a
global SET sywbol outside macro defini-
tions, if it is to be used outside.

If the same SET symbol is defined as a
global SET symbol in one or more places,
and as a local SET symbol elsewhere, it is
considered the same symbol wherever it is
defined as a global SET symbol, and a dif-
ferent symbol wherever it is defined as a
local SET sywbol.

Cefining Local and Glokal SET Symbols

Local SET symbols are defined when they
appear in the operand field of an LCLA,
LCLB, or LCLC instruction. These instruc-
tions were discussed in Section 9, under
"Defining SET Symbols."

Global SET symbols are defined when they
appear in the operand field of a GBLA,
GBLB, or GBIC instruction. The formats of
these instructions are:

e T T -

““““““ T
|{Blank |GBLA, |One or more variable
| |GBLB, or |symbols to be used

i |GBLC |as SET symbols,

| separated by commas
1

b oo cmae S e el wten

| U F R

The GBLA, GBLB, and GBLC instructions
define global SETA, SETB, and SETC symbols
and assign the same initial values as the
corresponding types of local SET symbols.
However, a global SET symbol is assigned an
initial value ky only the first GBLA, GBLB,
or GBIC instruction processed in which that
SET symbol appears. Subsequent GBLA, GBLB,
or GBIC instructions processed by the as-
sembler do not affect the value assigned to
the SET symbol. The programmer should not
define any global SET symbols whose first
four characters are &SY¥YS.

If a GBLA, GBLB, or GBLC instruction is
part of a macro definition, it must occur
before any of the symbols which it defines
are referenced by SET statements.

A GBLA, GBLB, or GBLC instruction must
precede any macro instructions which gener-
ate references to the global instruction.

Using Global and Local SET Symkols

The following examples illustrate the
use of global and local SET symbols; each
example consists of two parts. The first
part is an assembler language source pro-
gram. The second part shows the statements
that would be generated Ly the assembler
after it processed the statements in the
source program.

The same SET symbol can be used
to communicate: (a) values Letween state-
ments in the same macro definitions, and
(b) different values between statements
outside macro definitions.

Example 1:

€A is defined as a local SETA symbol in
a macro definition (statement 1) and out-
side macro definitions (statement 4). €A
is used twice within the macro definition
{statements 2 and 3) and twice outside
macro definitions (statements 5 and 6).

Section

Since &R is a local SETA symbol in the
macro definition and outside macro defini-
tions, it is one SETA symbol in the macro
definition, and another SETA symbol outside
macro definitions. Therefore, statement 3
(in the wacro definition) does not affect
the value used for 8A in statements 5 and 6
(outside macro definitions).

T L3 T iR
|Name |Operation|Operand |
-+ + 4
| | MACRO | {
| ENAME | LOADA | |
1 | LCLA | €A |
2 |ENAME|LR 115, &A |
3 |&A | SETA | EA+1 |
| | MEND | |
| | |
4 | LCLA | sa
| FIRST | LOADA {
5 | LR 15,6A
| LOADA
6 | LR 15,86A
| | END | FIRST |
L 4 4 4
[8 T b B |
| FIRST | LR |15,0 |
| LR 15,0
| ILR 15,0
i |LR 15,0 {
| | END | FIRST {
L L i J

Example 2: This example illustrates the
use of global SET symbols to communicate a
value developed outside a macro definition
to a statement which is within a macro
definition.

T v T k|
| Name |Opexation|Operand {
L 4 s 4
r T T 1
| | MACRO | |
| §NAME | LOALA | |
1| { GBLA |&A |
2 JEMAME|LR 115, &A |
| | MEND | |
| | | I
3| |GBLA |&A |
| FIRST | LOALA | |
4 |&A | SETA | &A+1 |
5 | {LR |15,8A |
| |LOADA] |
6 &2 | SETA | EA+1 |
7| {LR 115, éA I
| | END | FIRST |
— e :
| FIRST| LR {15,0 i
| |LR {15,1 |
| {LR 115,1 |
| |LR {15,2 |
i | END | FIRST |
Lt 4 4 -]

&A is defined as a global SETA symbol in
a macro definition (statement 1) and out-
side macro definitions (statement 3). &A
is used once within the macro definition

10: Extended Features of Macro Language 79

(statement 2) and 4 times outside macro
definitions (statements 4, 5, 6, and 7).

Global SET symbols may be used to com-
municate values from macro definitions to
macro definitions, or from statements out-
side of macro definitions to statements
within macro definitions. Glokal SET sym-
bols may not be used to communicate values
from within macro definitions to statements
outside macro definitions.

Exawple 3: The same SET symbol can ke used
to communicate (a) values Letween state-~
ments in one macro definition, and (b) d4dif-
ferent values between statements in dif-
ferent macro definitions.

éA is defined as a local SETA symkol in
two different macro definitions (statements
1 and 4). §&A is used twice within each
macro definition (statements 2, 3, 5, and
6).

Since §A 18 a local SETA symbol in each
macro definition, it is one SETA symbol in
one macro definition, and another SETA sym-
bol in the other. Therefore, statement 3
(in cne macro definition) does not affect
the value used for &A in statement 5 (in
the other macro definition). Similarly,
statement 6 does not affect the value used
for A in statement 2.

St ! S 2 1 1
| Name |Operation]Operand |
————— o S :
| | MACRO | |
| ENAME | LOADA | i
1 | | LCLA | &a |
2 |&NAME|LR |15,8A |
3 |6A |SETA | en+1 |
| | MEND | |
| | | |
| | MACRO | i
| | LOADB | |
4 | | LCLA | €A |
S | JLR 115, &A |
6 |&A | SETA jsA+1 |
	MEND	
FIRST	LOADA i	
	LOADB	
	LOADA	
	LOADB	
	END	FIRST
-------------- +-—- -— i		
FIRST	LR j15,0	
{	LR }15,0 {	
	LR 15,0	
{	LR {15,0	
	END	FIRST
[——— de e Lo — J

Example 4: A SET symbol can be used to
communicate values between statements that
are parts of two different macro
definitions.

80

¢A is defined as a global SETA symbol in
two different macro definitions (statements

1 and 4). &A is used twice within each
macro definition (statements 2, 3, 5 and 6).
r= T - K
|Name |Operation|Operand {
p-----4 + 4
| { MACRO | {
| §NAME | LOADA | |
14 | GBLA | &A |
2 |ENAME|LR |15,82 |
3 |&A {SETA | 6A+1 |
| {MEND | {
	MACRO	
	LOADB	
4		GBLA
S	LR 115,82	
6	&A	SETA
	MEND	
		I
FIRST	LOADA	
	LOADB	
	LOADA	l
	LoADB	i
	END	FIRST
p-==—=t $ 4		
FIRST	LR 115, 0 i	
	LR 115,1	
	LR 115,2	
I	LR 115,3 t	
	END	FIRST
L L 4 y |

Since &A is a global SETA in each macro
definition, it is the same SETA syrkol in
each. Therefore, statement 3 (in one macro
definition) affects the value used for &2
in statement 5 (in the other macro defini-
tion). sSimilarly, statement 6 affects the
value used for &A in statement 2.

Example 5: The same SET symbol can ke used
to communicate: (a) values between state-
ments in two different macro definitions,
and (b) different values between statements
cutside macro definitions.

&M is defined as a global SETA in two
different macro definitions (statements 1
and 4), kut it is defined as a local SETA
outside macro definitions (statement 7).
§A is used twice within each macro defini-
tion and twice outside macro definitions
(statements 2, 3, 5, 6, 8 and 9).

Since &A is a global SETA in each macro
definition, it is the same SETA in each.
However, since &A is a local SETA outside
nmacro definitions, it is a different SETA
symbol outside.

Therefore, statement 3 (in one macro
definition) affects the value used fcr &A
in statement 5 (in the other macro defini-
tion), but it does not affect the value
used for &A in statements 8 and 9 (cutside

macro definitions). Similarly, statement 6
affects the value used for €A in statement
2, but it does not affect the value used
for €A in statements 8 and 9.

~— T L Sudatndeind 1
|Name |Operation|Operand i
| RESTRPRIONY P I -
§ | MACRO | ?
| §NAME | LOADA | |

1| {GBLA {&A |

2 | ENAME|LR |115,6A |

3 |&A | SETA | EA+1 i
| { MEND i |
	i
IMACRO	
j LOADB	

4 | {GBLA & |

5 | |LR |15, &A |

6 |&A | SETA j6A+1 i
| | MEND | |
[! : { {

7 | | LCL | 8a }
| FIRST{ LOADA } |
| | LOADB | |

8 | {LR 115,8A |
| | LOADA | |
| | LOADB | |

9 | LR {15, éA |
| | END |FIRST {
i St s |
| FIRBT | LR {115,0 |
| {LR 115,1 |
| |LR 15,0 {
| LR }15,2 {
| | LR {1s5,3 |
| LR 15,0 {
| { END | FIRST |
[| -4 J

Subscripted SET Symbols

Both global and local SET symbols may be
defined as subscripted SET symkols. The
local SET symbols defined in Section 9 were
all unsubscripted SET symbols.

Subscripted SET symkols provide the pro-
grammer with a convenient way to use one
SET symbol plus a subscript to refer to
wany arithmetic, binary, or character
values. A subscripted symbol consists of a
SET symbol immediately followed by a sub-
script that is enclosed in parentheses.

The subscript may be any arithmetic expres-
sion that is allowed in the operand field
of a SETA statement. The subscript of a
variable symbol may not ke an attribute of
a subscripted variable symbol.

These are valid subscripted SET symbols:
&§READER(17)

EA23456(6S4)

EXUF2(25+8A2)

These are invalid subscripted SET
symbols:

EX4F2 (no subscript)
(25) (no SET symbol)
EX4F2 (25) (subscript does not

immediately
follow SET symbol)

Lef ng_Subscrirted SET Symbols: If the
programmer wants to use a subscripted SET
symbol, he must write, in a GBLA, GELB,
GBLC, LCLA, LCLB, or LCLC instruction, a
SET symkol immediately followed by a decim-
al integer enclosed in rarentheses. The
deciral integer, called a dimension, indi-
cates the number of SET variables asso-
ciated with the SET symbol. Every variakle
associated with a SET symbol is assigned an
initial value that is the same as the ini-
tial value assigned to the corresponding
type of unsubscripted SET symbol.

If a subscripted SET symbol is defined
as global, the same dimension must be used
with the SET symbol each time it is defined
as glokal. The maximum dimension that can
be used with SETA, SETB, and SETC symbols
is 255.

The following statements define the
global SET sywbols §SBOX, &WBOX, and &PSW,
and the local SET symbol &TSW. &SBOX has
50 arithmetic variables associated with it,
§WBOX has 20 character variables, and &PSW
and §TSW have 230 Lkinary variakles each.

LB T 1
|Name |Operation{Operand i
L. i 4 - |
4 T v]
| |GBLA | €SBOX (50) |
i |GBLC | §WBOX (20) |
i | GELB | EPSW(230) |
| | LCLB | §TSW(230) |
L 4 - d
Using Subscripted SET Symbols: After the

programmer has associated a number of SET
variables with a SET symbol, he may assign
values to each of the variables and use
them in other statements.

If the statements in the previous
example were parts of a macro definition
(and €A was defined as a SETA in the same
definition), these statements could ke
parts of the same macro definition.

¥ v 1) 1
| Name |Operation|Operand |
b 4 4 q
1] T L 1
1 [&A | SETA {5 |
2 | 6PSW(&A) | SETB {16 LT 2) {
3 |&TSW(9) |SETB | (6PSW(EA)) |
4 | ia | 2,=F*€SBOX(45)" |
s | |CLI | AREA,C* EWBOX(17) ' i
[4 - 4

Statement 1 assigns the arithmetic value
5 to the unsubscripted SETA symbol €A.
Statements 2 and 3 then assign the hbinary

Section 10: Extended Features of Macro Language 81

value 0 to subscripted SETB symbols &PSW(5)
and 8TSW(9). Statements 4 and S5 generate
statements that add the value assigned to
£SBOX(45) to general register 2, and com-
pare the value assigned to &WBOX(17) to the
value stored at AREA.

SYSTEM VARIABLE SYMBOLS

System variable symbols are variable
symbols to which the assemkler automatical-
ly assigns values. The five local system
variable symbols (§SYSNDX, &SYSECT, £SYSS-
TYP, 6SYSLIST, and &§SYSPSCT) may be used in
the name, operation, and operand fields of
statements in macro definitions, but not in
statements outside macro definitions. They
may not be defined as symbolic parameters
or SET symbols, nor may they be assigned
values by SETA, SETB, and SETC. §SYSDATE
and &§SYSTIME are global system variable
symbols to which the assemkler assigns
values. They may be used in macro defini-
tions and in assembler language source
code. They may not be defined or altered.

£5YSNDX ~- Macro Instruction Index

The system variable symbol &SYSHNDX may
be concatenated with other characters to
create unique names for statements
generated from the same model statement.

§SYSNDX is assigned the 4-digit number
0001 for the first macro instruction pro-
cegssed by the assembler, and it is incre-
mented by one for each subsequent inner and
cuter macro instruction processed.

1t ESYSNDX is used in a model statement,
SETC or MNOTE instruction, or a character
relation in a SETB or AIF instruction, the
value substituted for &SYSNDX is the 4-
digit number of the macro instruction being
processed, including leading Os. If
§SYSNDX appears in arithmetic expressions
(in the operand field of a SETA instruc-
tion), the value used for §SYSNDX is an
arithmetic value.

Throughout one use of a macro defini-
tion, the value of &SYSNDX may be consider-
ed a constant, independent of any inner
macro instruction in that definition.

The accompanying example illustrates
these rules. It is assumed that the first
macro instruction processed, OUTER1, is the
106th macro instruction processed by the
assembler. Statement 7 is the 106th macro
instruction processed. Therefore, &SYSNDX
is assigned 0106 for that macro instruc-
tion. The number 0106 is substituted for
§SYSNDX when it is used in statements 4 and
6. Statement 4 assigns the character value
0106 to the SETC symbol ENDXNUM and state-
ment 6 creates the unigue name B0106.

82

Statement 5 is the 107th macro instruc-
tion processed. §SYSNDX is assigned the
number 0107 for that macro instruction.
0107 is substituted for &£SYSNDX in state-
xents 1 and 3. 0106 is substituted for the
global SETC symbol ENDXNUM in statement 2.

Statement 8 is the 108th macro instruc-
tion processed. Each occurrence of &SYSNDX
is replaced by 0108. Statement 6 creates
the unigue name B0108.

L} L)
|Cperation|Operand
<4 4

+
| MACRO
| INNER1L
| GBLC
AESYSNDX | SR

|CR

| BE

iB
|MEND

s . et e . s s

|
| MACRO
| OUTER1
| GBLC
E§NDXNUM |SETC
ISR
|AR
| INNER1
BESYSNDX|S
| MEND
4

ENAME

™
:
z
=

-
il
o]
-
[
o
(=
(=]
-

S — — i (. T S~ ———— c—— " S —— d— - o —a—

T
|OUTER1
|OUTERL
<4

@ ~d
& B
" R
>B

-~

4
{ALPHA |SR
i |AR
|A0107 |SR
ICR
| BE
iB
|B0106 |S
{ BETA {SR
{ |AR
[A0109 |SR
| ICR
| | BE
| |B
|BO108 |S
i

| I,

b-—-—o-—-—--—-.—-_—_..—-.————‘—-ah——-Jh--——_-n.-—-—————-—-.—-——.—-.-———_—.—dh——-

When statement 5 processes the 108th
macro instruction, statement 5 becomes the
109th macro instruction processed. Each
occurrence of ESYSNDX is replaced by 0109.
Statement 1 creates the unigque name A0109.

ESYSECT -- Current Control Section

The system variable symbol &SYSECT
represents the name of the control section
in which a macro instruction appears. For
each inner and ocuter macro instructicn pro-
cessed, &SYSECT is assigned a value that is
the name of the control section in which
the macro instruction appears.

When §SYSECT is used in a macro defini-
ticn, the value substituted for &SYSECT is
the name of the last CSECT, DSECT, or START
statement that occurs kefore the macro
instruction. If no named CSECT, DSECT, or
START statements occur before a macro
instruction, &SYSECT is assigned a null
cnaracter value for that macro instruction.
CSECT or DSECT statements processed in a
macro definition affect the value of &SY-
SECT of any subsequent inner macro instruc-
tions in that definition, and for any other
cuter and inner macro instructions. Throu-
ghout the use of a macro definition, the
value of ESYSECT may be considered a con-
stant, independent of any CSECT or DSECT
statements or inner macro instructions in
that definition.

The next example illustrates these
rules.

[ki S i - 1}
| Name |0peratlon§0perand |
b= +-- -4
1 |MACRO] |
| | INNER { EINCSECT |
1 |&INCSECT|CSECT | |
2| |DC | A (ESYSECT) !
	MEND	
	MACRO	
{OUTER1		
3	CSOUT1	CSECT
{ {Ds j100cC i		
4		INNER
5		INNER
6		DC
	MEND	
	MACRO	
	OUTER2 {	
7	{DC	A (ESYSECT)
	MEND	
b-—- -+-- -		
8 }MAINPROG	CSECT	
	DS {200C	
9		OUTER1
10	fOUTERZ	
b= -t+-- 1		
MAINPROG	CSECT]	
]	Ds	200C
CSOUTL	CSECT	
	DS {100cC	
INA	CSECT	
}	DC }A (CSOUT1)	
{ INB	CSECT	
{DC	ACINR)	
e	A (MAINPROG)	
	DC { A(INB)	
I L 4 ——d		

Statement 8 is the last CSECT, DSECT, or
START statement processed before statement
9. Therefore, §SYSECT is assigned the
value MAINPROG for macro instructicn OUTER1
in statement 9. MAINPROG is substituted
for &SYSECT when it appears in statement 6.

Section 10:

Statement 3 is the last CSECT, DSECT, or
START statement processed before statement
4. Therefore, &SYSECT is assigned CSOUT1
for wacro instruction INNER in statement 4.
CSOUT1 is substituted for &SYSECT when it
arpears kefore statement 2.

Staterent 1 is used to generate a CSECT
statement for statement 4. This is the
last CSECT, LCSECT, or START statement that
appears before statement 5. Therefore,
6SYSECT is assigned INA for macro instruc-
tion INNER in statement 5. INA is suksti-
tuted for ESYSECT when it arpears in state-
ment 2.

Statement 1 is used to generate a CSECT
statement for statement 5. This is the
last CSECT, DSECT, or START statement that
appears before statement 10. Therefore,
ESYSECT is assigned INB for macro instruc-
tion OUTER2 in statement 10. INB is sukt-
stituted for &§SYSECT when it appears in
statement 7.

ESYSSTYp -- current control Section Type

The system variable symbol &SYSSTYP
represents the mnemonic operation which
defined the name of the control, prototype,
dummy, or common section in which a mracro
instruction appears.

When ESYSSTYP is used in a macro defini-
tion, its substituted value is one of the
character string values CSECT, PSECT,
DSECT, or COM. The value used will corres-
pond to the mnemonic operation which
defined the name represented by system
variable symbol ESYSECT. A section defined
ky the START instruction is considered to
ke a CSECT. &SYSSTYP enables the macro
language programmer to resume the curxrent
control section after it is interrupted,
without requiring the section type to te
supplied as a parameter.

| Name |0peratlon|0;erand |
e Sttt D Rttt 1

} | MACRO | {

| §10C |OUTLINE {&RTNE |

1 {PRO | PSECT] |
2 |&LOC |cc | A (ERTNE) |
3 |8§SYSECT |&SYSSTYP | |
| IMEND | |
- J. Y e e e . o o o = . A o > o > - “
lMAINPROGlCSECT | {

| L {1,ACCR |

| ADDR {OUTLINE |SUBR |

| Iz |2.X |
IR SOt tete bbb b Rt |
{MAINPROG | CSECT | |

| {r |1,ADLR |

{ PRO { PSECT { i

| ACDR jcce | A (SUBR) |

| MAINPROG | CSECT | |

| IL {2.X |

| S, S 3 Oy MG g g Sy S P, 4

Extended Features of Macro Language 83

In the example above, statement 1 is a
mode]l statement to initiate the prototype
control section PRO. Statement 2 generates
an address constant of the entry point of
subroutine SUBR. Statement 3 reinstates
the interrupted control section MAINPROG.
The macro instruction does not require that
the: name or type of the original control
section be stated as a parameter.

&5YSLIST —- Macro Instruction Operand

System variable symkbol ESYSLIST provides
the programmer with an alternative to sym-—
bolic parameters for referring to macro
instruction operands.

§SYSLIST and symbolic parameters may ke
used in the same macro definition. &SYS-
LIST also may be used in place of symboclic
pa rameters.

£SYSLIST(n) may be used to refer to the
nth macro instruction operand. In addi-
tion, if the nth operand is a sublist, then
4SYSLIST(n,m) may be used to refer to the
mth operand in the sublist, where n and m
may be any arithmetic expressions, greater
than zero, allowed in the operand field of
a SETA statement.

The type, length, scaling, integer, and
count. attributes of &SYSLIST(n) and
§SYSLIST(m,m), and the number attributes of
&§SYSLIST(n) and &SYSLIST, may ke used in
conditional assembly instructions. N'§SYS-
LIST may be used to refer to the total num-
ber of operands in a macro instruction
statement. N'ESYSLIST(n) may be used to
refer to the number of operands in a sub-
list. If the nth operand is omitted, N' is
0; if the nth operand is not a sublist, N'
is 1.

The following procedure is used to eva-
luate N'ESYSLIST:

A sublist is considered to ke one
operand.

The number of operands equals 1 plus the
number of commas indicating the end of
an operand.

Attributes were discussed in Section 7
under ®"Attributes.”

8u

== L St b Stttk 1
|Name |Operation|Operand |
— 4 §
Header | | MACRO | |
| | | |
Prototype| { TOTAL {NUM, REG, AREA |
| 1 |
Model | IL | 6SYSLIST(2), i
{ | | €SYSLIST(1,1) |
| | | |
Model | |A | §SYSLIST(2), {
| 1) ESYSLIST(1,2)]
| | | |
Model | A { 8S¥SLIST(2),]
| | | €SYSLIST(1,3) i
| | | |
Fodel | | ST | §SYSLIST(2), |
{ i | €SYSLIST(3) |
|] | |
Trailer | | MEND | |
L 4 4 4
¥ T T Ll
Macro { | TOTAL {(A,B,C),6,50M |
| i | |
Generated| IL |6,A |
| | |
Generated| | A {6,B |
| | | |
Generated] |2 |16,C |
| | |
Generated| |ST {|6,SUM |
[—— § S 1
The generated statements in the akove
examples are exactly the same as the
generated statements of the example under
"Operand Sublists® of Section 8, "How to
Write Macro Instructions.”
ESYSPSCT -- Prototype Control Section Name

The system variable symbol &SYSPSCT
represents the name of the first prototygpe
control section defined in the source
program.

When &SYSPSCT is used, the value substi-
tuted for &SYSPSCT is the name of the first
PSECT statement in the source program. If
no PSECT statement has occurred pricr to
the use of §SYSPSCT, the value assigned to
§SYSPSCT is that of a null character str-
ing. &SYSPSCT may be used when writing re-
enterable programs. It provides the macro
language programmer with the ability to
generate instructions within a prototyge
control section without requiring that the
name of the PSECT be sugrlied as an expli-
cit rarameter. Thus, the macro instruction
OUTLINE, from the previous example, might
ke rewritten as shown below, where PRO was
the first PSECT declared in the program.

[e e e P e e e e s e e e

[Name IOPeratlonIOperand }
|t +-—- + - -1
| | MACRO | |
| 6LOC |OUTLINE | &RTINE |
{ ESYSPSCT | PSECT i i
jeLOC { bC JACERINE) {
| §SYSECT | 8SYSSTYP | |
| | MEND } I
————————————————— $--—- o
| MAINPROG | CSECT | |

|L {1,ADDR i
| ADDK |OUTLINE |SUBR {
| |L {2,X |
. S i
| MAINPROG | CSECT i {
] |L {1,ADDR {
| PRO { PSECT | |
| ADDR {DC | A(SUBR) i
| MAINPROG | CSECT i {
I IL | 2,X |
b e 1 i 4

§SYSDATE and &SYSTIME -- Date/Tigg
Variables

The global system variables &SYSDATE and
£SYSTIME represent the date and time as set
ky the system during assembly. ThesSe sym-
bols are available in open code as well as
in macro definitions. The values for these
symbols are set only once during an assem-
bly: they cannot be changed by the program-
mer. GBLC statements are not required to
refer to these variaktles, and a duplicate
symbol diagnostic will ke issued if these
symbols are defined.

When either &SYSDATE or ESYSTIME are
encountered in a source program, the assem~
pler will substitute the value from the
version identification for the assembly.

€SYSDATE is a GBLC variable symbol of
the form:

mo/da’/yr

where mo is the month, da is the day, and
yr is the year. &SYSTIME is a GBLC vari-
able symbol.of the form

hh:mm:ss

where hh is the hour (24 hour clock), mm is
minutes, and ss is seconds.

In the following example, the programmer
is using the GATWR macro instruction to
write the date and time of this program's
assembly onto his SYSOUT. &SYSDATE and
€SYSTIME are set by the assembler when
first encountered; they are both eight
characters in length. When the GATWR macro
instruction is executed, the output will
consist of statements 1 and 2.

Section 10:

r=—- T T 1
| Name |Operation|Operand |
i S -- —
| ICSECT | |]
| Lo i I
| P { |
| | | |
| { GATWR | DATE, LENGTH1 |
% | GATWR | TIME, LENGTH2 i
[| |

b		
CATE lDC	C*8SYSDATE"	
LENGTH1 {DC {F*8°*		
TIME {pC	C*ESYSTIME"	
LENGTH2{DC	F*8°*	
I		
I		
.	!	
	END	
b P 4
1 jo3s/18/71 |
2]09:30:15 |
Lt — J

In the following example, the macro
TODAY is defined to obtain the date from
the ESYSDATE variable. &M is set to the
month, &L is set to the day, and &Y is set
to the year. When the macro definition is
referenced, registers 3, 4, and 5 will con-
tain the month, day, and year respectively.

L3)}

|Name30perat1on|0perand |

e |
Header | | MACRO |
Prototype | | TODAY |&R1,8R2, &R3 i
Model | | LCLC |&M,&D, 6Y {
Model |8M |SETC |* §SYSDATE' (1,2) |
Model |§D | SETC | *6SYSCATE" (4,2) |
Model {€Y |SETC | * §SYSDATE" (7,2) |
Model } |IA |&R1,EM |
Model | {LA | ER2, §D |
Model | | LA [|6R3,EY |
Trailer { { MEND | |

i 4 <4 4

1] ¥ R 1
Macro { | TODAY 13,4,5 |
Generated | | LA {3.03 |
Generated | |LA {4,18 |
Generated | |LA }15.71 |

L L 1 ———d

KEYWORD MACRC DEFINITIONS AND INSTRUCTIONS

Keyword macro definitions provide the
programmer with an alternative way cf fre-
garing macro definitions.

A keyword macro definition reduces the
number of operands in each macro instruc-
tion that corresponds to the definition;
the operands may be written in any order.

The macro instructions that correspcnd

to the macro definitions (positional macro
instructions and positional macro defini-

Extended Features of Macro Language 85

tions), described in Section 7, require
that the operands be written in the same
order as the corresponding symbolic rarame-
ters in the operand field of the prototype
statement.

In a keyword macro definition, the pro-
grammer can assign standard values to any
symbolic parameters apgearing in the
operand field of the prototype statement.
The standard value assigned to a symbolic
parameter is substituted for the symbolic
parameter if the programmer does not write
anything in the operand field of the macro
instruction to correspond to the symbolic
parameter. When a keyword macro instruc-
tion is written, the programmer need write
only one operand for each symbolic paramet-
er whose value he wants to change.

Keyword macro definitions are prepared
the same way as positional macro defini-
tions, except that the prototype statement
is written differently, and &SYSLIST may
not be used in the definition. The rules
for preparing positional macro definitions
are in Section 7.

Keyword Prototype

The format of this statement is:

(T) Stk T———-- 1
| Name |Operation|Operand |
pmm o om - T S — 1
Hiymbolic|Symbol |One or more coperands |
|param- | jof form described [
|eter or | | below, separated by |
| blank | | commas |
[S Lo 4

Each operand must consist of a symbolic
parameter, immediately followed by an equal
sign and optionally followed by a standard
value. A standard value that is part of an
operand must immediately follow the equal
sign.

Anything that may be used as an orerand
in a macro instruction, except variatle
symbols, may be used as a standard value in
a keyword prototype statement. The rules
for forming valid macro instruction
operands were detailed in Section 8.

These are valid keyword prototype
operands:

EREADER=
£ LOOP2=SYMBOL
£§SU==F*'u4096"

These are invalid keyword prototype
operands:

CARDAREA {no symbolic parameter)
ETYPE (no equal sign)
§THO =123 (equal sign does not

86

immediately follow
synbolic parameter)
(standard value does not
irmediately follow

equal sign)

SAREA= X'189A°

The following keyword prototype state~
ment contains a symbolic parameter in the
name field, and four operands in the
operand field; the first two operands con-
tain standard values. The mnemonic opera-
tion code is MOVE.

po—-

T T
| Name |OperationjOperand
i 4 &

e e b . 0

¥ v T
|&N |MOVE | §R=2, §A=S, 6T=, 6F=
i 1 .Y

Keyword Macro Instruction

After a programmer has prepared a key-
word macro definition, he may use it by
writing a keyword macro instruction.

The format of a keyword macro instruc-
tion is:

r T T
Name Operation|Operand
L <4 p 4

1 T T

|Symbol, |Mnemonic |0 or more operands of
|sequencejoperation| form described below,
|symbol, |code |separated by commas
{or blank| |

[4 i

e e s s v el e

Each operand consists of a keyword imme-
diately followed by an equal sign and an
cptional value. Any valid operand in a
positional macro instruction may be used as
a value in a keyword macro instruction.

The rules for feorming valid positional
racro instruction operands were detailed in
Section 8.

A keyword consists of one through seven
letters and digits, the first of which must
be a letter. The keywoxrd part of each key~-
word macro instruction operand must corres-—
pond to one of the symbolic parameters
appearing in the operand field of the key-
word prototype statement. A keyword corre-
sponds to a symbolic parameter, if the
characters of the keyword are identical to
the characters of the symbolic parameter
that follow the ampersand.

These are valid keyword macro instruc-
tion operands:

LOOP2=SYMBOL
S4==F*'4096"
TO=

These are invalid keyword macro instruc-
tion operands:

§XUF2=0(2,3) (keyword does not begin
with a letter)
(keyword is more than
seven characters)

(no keyword)

CARDAREA=A+2
=(T0(8), (FROM)

The operands in a keyword macro instruc-
tion may be written in any order. If an
operand appeared in a keyword prototype
statement, a corresponding operand need not
appear in the keyword macro instruction.

If an operand is omitted, the comma that
would have separated it from the next
operand need not be written.

The following rules are used to replace
the symbolic parameters in the statements
of a keyword macro definition:

1. If a symbolic parameter appears in the
name field of the prototype statement,
and the name field of the macro
instruction contains a symbol, the
symbolic parameter is replaced by the
symbol. If the name field of the
macro instruction is blank or contains
a sequence symbol, the symbolic para-
meter is replaced by a null character
value.

2. If a symbolic parameter appears in the
operand field of the prototype state-
ment, and the macro instruction con-
tains a keyword that corresponds to
the symbolic parameter, the value
assigned to the keyword replaces the
symbolic parameter.

3. If a symbolic parameter was assigned a
standard value by a prototype state-
ment, and the macro instruction does
not contain a keyword that corresponds
to the symbolic parameter, the stan-
dard value assigned to the symbolic
parameter replaces the symbolic para-
meter. Otherwise, the symbolic para-
meter is replaced by a null character
value.

Note: If a standard value is a self-
defining term, the type attribute assigned
to the standard value is N. If a standard
value is omitted, the type attribute
assigned is O. All other standard values
are assigned the type attribute apptoprlate
to their type.

The following keyword macro definition,
keyword macro instruction, and generated
statements illustrate these rules.

Statement 1 assigns standard values 2
and S to symbolic parameters ER and &A.
Statement 6 assigns values FA, FB, and
THERE to keywords T, F, and A. The symbol
HERE is used in the name field of statement
6.

Section 10:

Since a symbolic parameter (8N) agpears
in the name field of the prototype state-
ment (1), and the corresponding characters
(HERE) of the macro instruction (6) are a
symbol, &N is replaced by HERE (in 2).

r L 1
|Name |Operation|Operand |
p-----+ {
} | MACRO | |
1 |&N | MOVE | 6R=2, §A=S, &§T=, §F= |
2 |88 |sT §R,8A |
3| |L ER,EF]
4 | IST | SR, &T |
5 | |L | 6R, 62 |
| | MEND | |
i 'y 'l d
L 2 L] T 1
6 |HERE |MOVE | T=FA, F=FB,A=THERE |
I iR 4 ¥ |
[T 4
{HERE |ST {2, THERE |
| L |2,FB |
{ | ST |2,Fa |
{ |L | 2, THERE |
L 4 1 T}

Since &T appears in the operand field
(statement 1), and statement 6 contains the
keyword (T) that corresponds to T, the
value assigned to T (FA) replaces &T (in
4). Similarly, FB and THERE replace &F and
§A (in 3 and in 2 and 5). Note that the
value assigned to &2 in statement 6 is used
instead of the value assigned to §A in
statement 1.

Since &R appears in the operand field of
statement 1, and statement 6 does not con-
tain a corresponding keyword, the value
assigned to &R (2) replaces &R (in 2, 3, 4,
and 5).

Operand Sublists: The value assigned to a
keyword and the standard value assigned to
a symbolic parameter may be an operand sub-
list. Any valid operand sublist in a posi-
tional macro instruction may be used as a
value in a keyword macro instruction and as
a standard value in a keyword prototype
statement. The rules for forming valid
operand sublists were detailed in Section 8
under "Operand Sublists.”

Keyword Inner Macro Instructions: Keyword
and positional inner macro instructions may

ke used as model statements in either key-
word or positional macro definitions.

MIXED-MODE MACRO DEFINITIONS AND
INSTRUCTIONS

Mixed-mode macro definitions allow the
programmer to use the features of keyword
and positional macro definitions in the
same macrc definition.

Mixed-mode macrc definitions are gre-
rared in the same way as positiona?! macro

Extended Features of Macro Language 87

definitions, except that the prototyge
statement is written differently. &SYSLIST
may be used to reference the positional
operands. The rules for preparing posi-
tional macro definitions are in Section 7.

Mixed-Mode Prototype

The format of this statement is:

-

........ = ‘-
|Name |OperationjOperand
!,_._.__......._ —— o o 4

| Symbolic|Symbol
|param- |

|eter or

e o s, e cnsems sl e el

+
|Two or more operands
|of form descriked
|below, separated by
| cormas

i 8

The operands must be valid operands of
positional and keyword prototype state-
ments. All positional operands must pre-
cede the first keyword operand. The rules
for forming positional operands were dis-
cussed in Section 7 under "Macro Instruc-
tion Prototype."

The following sample mixed-mode proto-
type statement contains three positional
operands and two keyword operands.

R
|

{§N |MOVE | §TY, &P, &R, 6TO=, §F=
| P O P .

g

Mixed-Mode Macro Instruction

The format for this is:

= T
| Name joperation{Operand
4 i

| sequence|operation| form described below,
|symbol, |code | serarated by conmmas

jor blank| |
| L 4

)
E
g
&
—
5
®
g
B
H-
0
—t
)
o)

. =
B
0
=
o
(¢}
Lo
]
"
o
]
a
)
o)
"

L .

The operand field consists of two parts.
The first part corresponds to the rosition-
al prototype operands and is written in the
same way as the operand field of a posi-
tional macro instruction. The rules for
writing positional macro in structions are
in Section 8.

The second part of the operand field
corresponds to the keyword prototype

8B

operands and is written in the same way as
the operand field of a keyword macro
instruction.

The following mixed-wmode macro defini-
tion, mixed-mode macro instruction, and
generated statements illustrate these
facilities.

- T T 1
{Name |Operation|Operand |
e - $ - 4
| | MACRO |

1 [N |MOVE | §TY, &P, &R, §TO=, £F= |
| &N | STETY | §R, SAVE |
{ | LETY | &R, EPEF |
	STETY	€R, EPETO
	LETY	€R, SAVE
	MEND	
[N 'y e4
r T T

2 |HERE |[MOVE |H,,2,F=FB,TO=FA |
t +) i
| HERE |STH | 2, SAVE |
{ |LH |2,FB |
| |STH |2,Fa |
| |LB |2.SAVE |
[4 1 —— 4

The prototype statement (1) contains
three positional operands (8TY, &P, and &R)
and two keyword operands (§TO and &F). In
the macro instruction (2), the positional
cperands are written in the same order as
the positional operands in the prototyge
statement (the second operand is omitted).
The keyword operands are written in an or-
der that is different from the order of
keyword operands in the prototype
statement.

Mixed-mode inner macro instructions may
be used as model statements in mixed-mode,
keyword, and positional macro defimiticns.
Keyword and positional inner macro instruc-
tions may be used as model statements in
mixed-mode macro definitions.

MACRQ DEFINITION COMPATIBILITY

Macro definitions prepared for use
with other IBM assemblers having macro
language facilities may be used with
the TSS assembler, provided that all
SET symbols are defined in an appropri-
ate LCLB, GBLA, GBLB, or GBLC statement.
The AIFB and AGOB instructions will be
processed by the TSS assembler in the
same way that AIF and AGO are processed.

APPENDIX A:

ASSEMBLER INSTRUCTIONS

-————

T T) Subuintetehsintabt ekttt 3
i Name i Operation | Operands | Specified as |
—————————————— T e St T
| luymbol} | ccw | command code { 1 byte, absolute expression, |
| | ! | right justified. |
| | I b 4
| | | .data address | Absolute, relocatable, orx |
| | | | complex expression. i
| | | b 4
| | | (flag values | Absolute expression. |
| | I 3 {
| | | .count | Aksoclute expression. {
i e 4 4 'y ¥ |
4 + T T 1
| { CNOP | byte alignment, { b=n, where n=0, 2, 4, or 6 |
{ ; : 4t {douhle} % w=n, where n=4 or 8 |
: word type |
| | | single | |
b —+ ———t- + i
| (symbol]) | COM | same as CSECT | Default = standard comrmon |
| | | | section. |
t + + + -
{ { COPY | symbol name | Name cof area to be copied. |
e o + t {
[symboll	CSECT	(public storagel	PUBLIC
		[(,read only storagel	+READONLY
		(,variable section length]	«VARIABLE
		(.privileged sectionl] { (PRVLGD {	
		[,section includes SYS entry	«SYSTEM
ints			
]	_pointsl ; J		
3 T b g L3 R			
(symboll	CXD	none i	
& 4 4 & 1			
L T T h 3 1			
[symboll	DC	(duplication factorl	
% g : constant t{gi = See Appendix C. ;			
s			
		[length { }	
	l bytes	I	
		[scalel {	
{	[exponent]		
		constant(,...]	One or more additional
	l	orerands, separated by	
			comma(s), may be specified.
t + } 1 4			
{	DROP	(reql (,reg2,...,reglél]	Absclute value. Default =
			all currently active base
	{	registers.	
b 1 + + 1			
[symboll	Ds	[duplication factor]	Same as DC except as
]		constant type } noted below.	
{	bits]	
			length l]
I		bytes i	
: : % Escalel -	See Appendix C. }		
exponen			
	t - 1 - -		
		1. Specification of ‘constant' operand, optional. k	
{	2. *Constant' operand reserves space btut does not store data.		
] } 3. Maximum length for C and X constants, 65,535 bytes. i			
	{ 4. Dugplication factor of 0 forces alignment to assumed i		
alignments in DC.
e | S ! s - J
Appendix A: Assembler Instructicns 89

 Setatatabah ettt romeTeEmm————— D Bttt == T esTEssm - 1
i Name | Operation | Operands | Specified as |
fr~mmme e + - — 4
| (symbol} | DSECT | none | |
b mmm e pommmmmm e g e $-mmmm -4
{ symbol { DXD |} (duplication factorl | Same as DC except as noted |
{ { | constant type } below. {
| | i[{bits }] | |
i | | [Length | |
| | | bytes { |
| i | [scalel | |
| { { (exponentl | {
! | ! {constantl |]
] | t 1.~ i
} | { 1. ‘constant' operand does not cause initialization to value |
i i { specified. |
| | | 2. ‘*Scale' and 'Exponent' cperands may be specified. |
| | | 3. Multiple operands and constants only used to determine {
| | | length. {
R $omm- ¥ {
|) EJECT |} none { |
— - + + {
{ | END | (control transfer point] | Relocatable or absolute |
	{	expression.	
			Default = first instruction
	i of CSECT.		
pmm - + + {			
{ i ENTRY	(entry pointl{,...] Relocatable symbols. {		
frmmmmmmmm - 1 §			
[symboll	EQU { {previously defined symboll		
{	{ [,length} aksolute integer (1-65535) {		
		(,typel	absoclute integer (0-255)
f-mmm e 1 - '			
	EXTRN	external symbol (,...]	Relocatable symbols. (]
e B B : : 4			
{ { ICTL	[beginning source column)	b=decimal digit, range,	
	{	1-40; default=1l.	
{		{,ending source column}	e=decimal digit, range, {
			41-80; default=71.
		[,continue column]	c=decimal digit, range,
			2-40; default=16.
e e O . 4			
{ ISEQ	(sequence field - left coll	Decimal digits,	
i {	[sequence field - right coll	default = no sequence check.	
pommmmm o rmmmmmmmme $--- $ 4			
(symboll	LTORG	none i }	
f--——mm- - + + - 1			
{ ORG	(new location counter	Expression; default=current	
{	address]	} location counter positicn+l.	
fommmmm - + + + -—- y			
{	PRINT } listing j OR		
{ {	printing option	{	
- { no	OFF		
]	i listing		
]		
I } executable	FULIGEN		
i	[macro gen{all }]	GEN	
: : { none { NOGEN			
{			
{	i print full constant)]} DATA ;		
		,constants[print 8 bytes { NODATA	
i i	or less]	
O o 1- 1 ——mmmmm oo 1			
symbol	PSECT	same as CSECT	Same as CSECT.
N U i i 4			

90

v T 1

Name | Operation | Operands Specified as |
——— - - 4

4 T

} SPACE {no. of lines to be sraced] Decimal digits, default=1. |

————— 4
-t g R

{(symboll | START | (initial location ctr. address] Self-defining term, |
| | default=0. |

- + -4- {
(symboll] | TITLE | *characters’ | To 100 characters. |
| b= A 3

{ | Note: Symbol may be from 1 to 4 alphameric characters. |

4 4 |

- v - T R} Rl
| USING | base value, | Absclute or relocatable i

I | | value. i

} | regil,reg2,...,reglé6l | Absolute exgpression. |

——— i iy i . I |
Appendix A: Assembler Instructicns 91

APPENDIX B : MACHINE INSTRUCTION FORMAT
Assembler Operand Applicable
= ~ Basic Machine Format Field Format Instructions
T8 T4 Ju
Operation R1,R2 All RR instructions
Code R1|R2 except SPM and SVC
8 4
RR | Operation R1 SPM
Code R1
8 8
Operation
__ Code | T | I svc
(See noctes 1,6, and 8)
8 4 ju 4 12 .
RX | Operation R1,D2 (X2,B2) All RX instructions
Code R1|/X2| B2 D2 R1,S2 (X2)
(See notes 1-U4, and 7)
8 4 |4 4 12
Operation R1,R3,D2 (B2) BXH,BXLE,LM,STM
Code R1|R3 | B2} D2 R1,R3,S82
RS
8) 4 12
Operation R1,D2 (B2) All shift instructions
Code R1 B2 D2 R1,52
(See notes 1-3, 7, and 8)
8 8 L) 12 All SI instructions
Operation D1(B1) ,I2 except LPSW,SSM,
Code 12 B1] D1 51,12 HIO,SI1Q,TIO,TCH,TS
51
8 4 12
Operation D1(B1) LPSW, SSM,HIO, SIO,
Code B1| D1 S1 TIO,TCH,TS
(See notes 2, 3, and 6-8)
8 . 4 |4 4 12 |4 12
Operation D1(L1,B1),D2 (L2,B2) PACK, UNPK,MVO,AP,
Code L1|L2 | B1| D1 |B2| D2} S1(L1),S2(L2) CP,DP,MP,SP,ZAP
SS
8 8 4 12 | & 12
Operation D1 (L,B1) ,D2 (B2) NC, 0C, XC,CLC,MVC, MVN,
Code |L Bt1|{ D1|{B2|D2]| S1(1),S2 MVZ,TR, TRT,ED, EDMK
(See notes 2, 3, 5, and 7)

92

Notes for Appendix B:

1.

R1, R2, and R3 are absclute expres-
sions that specify general or
floating-point registers. General

registers are 0 through 15; floating-

point registers are 0, 2, 4, and 6.

D1 and D2 are absolute expressions
that specify displacements; a value
from 0 to 4095 may ke specified.

Bl1L and B2 are absclute expressions
that specify base registers; registers
are 0 - 15.

X2 is an abolute expression that spe-

cifies an index register; registers 6.
1-15 mway be used as index registers.

1f a base register and no index regis-

ter is desired, X2 may be either spec-

ified as 0 or omitted, with a comma 7.
preceding B2. :
Examples: L

2,48(0,5) 8.
L 2,48¢(,5) _

L, L1, and L2 are aksolute expicssions
that specify field lengths; L value
can be specified from 0 to 256; L1 and

Arpendix B:

L2 values from 0 to 16. The assembled
value will ke one less than the sreci-
fied value except that if 0 is speci-
fied, 0 will be assembled. L1 may ke
defaulted; the length assigned will be
that of the first operand. 11 and L2
may be defaulted; however, a comma
must precede Bl and B2. If an expli-
cit base and displacement have been
written, the defaulted (or implied)
length will be the length attrikute of
the expression specifying the dis- ’
placement. If the base and displace-
ment have been implied, the defaulted
length will be the length attrikute of
the expression specifying the effec-
tive address. ‘

I and I2 are absolute expressions that
provide inmediate data; the value can
be from ¢ to 255.

S1 and S2 are aksolute or relocatable
expressions that specify an address.

RR, RS, and SI instruction fields that
are crossed out in the machine formats
are not exarined during instruction
execution. The fields are not written
in the symbolic operand, but are
assembled as kinary 0Os.

Machine Instruction Format 93

APPENDIX C:

SUMMARY OF CONSTANTS

F ¥ i Ll T T T i |
| o | {Number of| |] |
] Implied | i Length |Constants | | | Truncation/}
| Length | | Modifier i Per |Range for | Range for | Padding |
{Type (Bytes) lAliqnmem: i Range Specified by 1 Operand lExponents l Scale 1 Side {3
T T T T T T .=
| C as needed|byte j-1 to 256 (1) |characters |one | | | right |
b + 4 + +- + p-——me- fommmmm e
| X as needed|byte }.1 to 256 (1)}hexadecimal digits|one | 1 | left l
b $ + 1 t -+ B -
| B as needed|byte {-1 to 256 binary digits {one] | | left [
b 4 } - + ¥ 1 pommm e
| F 4 jword -1 to 8 | decimal digits jmultiple |-85 to +75|-187 to +346 | left |
T 1 $ t t t e e T
} H 2 jhalfword }.1 to 8 jdecimal digits {jmultiple |-85 to +75]-187 to +346 | left |
e -t 4 + + i —+ omme
| E 4 jword }-1 to 8 |decimal digits multiple |-85 to +75|0 to 2L-2 (2)| right |
f-— } } - 1 ‘ + fmmm oo
| D 8 |doubleword|.l to 8 |decimal digits jmultiple |-85 to +75|0 to 2L-2 (2)| right |
b~ + t + 4 t $ -
} P as needed]byte «1 to 16 | decimal digits |multiple | i ; left }
b t + - - } + e -
{2z as needed|byte .1 to 16 ‘{decimal digits |multiple | | | left |
L i i 1 3 4 4
¥ T v ¥ T T T ——"'“{
i A 4 iwo_rd {.1 to & (3) {any expression Pnultiple i l ll left i
v T ¥ v T -
| Vv 4 | word 11 to & (3) jrelocatable symboljmultiple | f i {
8 i 4 i 4- 4 4
1 3 T T v T R - R S ‘
| R 4 jword {1 to & (D) jan external symbol|multiple | | i {
b ¥ + + 1 1 e 1
s 2		2 only jone absolute or multiple	i			
			relocatable			
		jexpression or two				
} | | |absolute expres- | |) | |
%. | l lsions: exp (exp) 1 ! 1 | |
k kel T v T sy T T o oo 1
: Y 2 1.1 to 2 (3) |any expression imultiple ! 1 i left :
- E Stk Tanbaed T h St tataabieh St S
tl Q] gwo:d :1 to 4 (4) 'lay::gl nagégcgr llmultlple { 1| : Jatt :
a or
pom—— L de i 1 i B S, Lo {
1(1) In a DS assembler instruction C and X type constants may have length specification to 65515.
}1(2) L is length of constant. Negative scaling is not permitted.
| (3) Bit length specification permitted with absolute expressions only. Relocatable values may

3, or 4 bytes only.

| (4) No bit length specification permitted.
L

|
|
be 1, 2, |
|
!

94

APPENDIX D: MACRO LANGUAGE SUMMARY

e o o e, acditn o 0

These charts summarize the macro 1anguage 3. Chart 3 is a sumﬁary of the
described in the second half of this manual. expressions that may be used in macro
lanquage statements.
1. Chart 1 describes the name and operand 4. Chart 4 is a suniary of the attrxiltutes
fields of each statement. , that may ke used in each expression.
2. Chart 2 indicates which macro Ianguage ;. Se Chart 5 is awsummary of the variable
elements may be used in the name and .-symbols that uay be used in each
operand fields of each statement. . @expression. ,
Chart 1. Statements (Part 1 of 2) . ,
““““““““ Lo " T g -
|Instruct10n |Name Field {Operand. Field
e ———- _ $ - N _—
|AGO,ABORB |seguence symbcl | equence.symhol -
| jor blank | - . o
_________________ + + :
|AIF,AIFB | Ssequence symbol - {Logical express1on ‘enclosed in parentheses,
| lor blank | immediately followed by a sequence. symkol o .
eaman e $- e e
| ANOP | Sequence symhol Blank : . . T |-
3 . 4
*********************** - v T he 3
|copyY | Sequence symbol }Symbol |
| {or blank | . . : Lo e e }
e t 4
| GBLA, GBLB, GBLC | Blank . P - jOne or more variable symbols .to be usgd,as 1
| | Cee .|SET. symbolﬁ. .separated by, commas® . {
1 d
........ -— - 4
| LCLA, LCLB,LCLC {Blank QOne or moxe—variable symbole to be used as |
| } lSET syubols, separated by commas3 |
b= e - $. — {
{ MACRO1 | Blank lalank . |
........ $ - -
T ‘l'
| MEND? | sequence symbol | Blank |
| jor blank § |
b= - + + 1
| MEXIT2 | Sequence symbol | Blank |
| jor blank | |
- + + — 1
| MNOTE | Sequence symbol |Severity code, followed ky a comma, followed|
] |oxr blank |{by any combination of characters enclosed in|
| ‘ | |apcstrogphes |
———————— } 1 -
| SETA | SETA symbol jArithmetic expression
prmmmm o - - 1 -
| SETB | SETB symbol |0 cx 1, or a logical expression enclosed in
i | | parentheses
e 1 - - e
| SETC | SETC symbol | Type attrikute, character expression sub-
| 1 | string notation, or concatenation of char-
] i |acter expressions and substring notations

|Model statement | Symbol, variable sym-
| tany assembler |bol, sequence symbol
{language mnemonic jor blank, or concate-
joperation code, |nation of variable

|except COPY, END,

| ICTL, ISEQ, MACRO,|acters that is equiv-
Jand START)® jalent to symkol
[—— i ——— —

|symbols and other char-

lAny combination of characters (including
|variakle symkols)

—
s e e . i, s s, e cmes s, sk, e, s el et

|
|
|
|
b &

Appendix D: NMacro Language Sunmary

(T T T T e L Sttt T - it |
|Instruction |Name Field {operand Field |
------------------ $-—ammm + i
{Prototype state- |Symbolic parameter or |0 or more operands that are symbolic param- |
|ment |blank ¢ | eters, separated by commas, followed by 0 or}
| | jmore operands {(separated by commas) in the |
| | | form of symbolic parameter, equal sign, |
| | |optional standard value i
bem e po-mmmmmmmmem + T I s
|Macro instruction |Symbol, or variable {0 or more positional operands separated by
|ntat ement {symbol, sequence symbol|commas, followed by 0 or more keyword oper-
§ |or blank, or concate- |[ands (separated ky commas) in the form of

i |nation of variable sym-|keyword, equal sign, value?
{ {bols and other charac- |

| |ters that is equivalent|
|

PO S TGRS Up——

|to symbol |
e ————— et +
{Assembler language{Symbol, or variable |Any combination of characters (including
| statemente® S |symbol, sequence symboljvariable symkols)

| lor blank, or concate- |
Ination of variable sym-|
| bols and other charac- |
jters that is equivalent|
[to symbol |
4

d
|*May be used only as part of a macro definition.

2variable symbols appearing in a macro instruction are regplaced by their values before
the macro instruction is processed.

3SET symbols may be defined as subscripted SET symbols.

“Variable symbols may not be used to generate the following mnemonic operation codes,
nor may variable symbols be used in the name and operand fields of these instructions:
COPY, END, ICTL, ISEQ, REPRO, and START. Variable symbols may not be used to generate
a macro instruction mnemonic operation code.

|
|
|
|
|
|
I
|
|
|

|®The line following a REPRO statement may not contain variakle symbols.

| SR -

i s o G —————o—— o—— — -~ - n—s D " Gr—— —. ——— —

96

"3 30 | IPWWEINGS O3 POAIMAMOD]

cxmqunn peuSTeun 03 PEIIRANOD

SPUOTIVYRI INIOWTIRGS 3O OYIENITIe uy LTup

"FUDFIFTET OTIGMNTIe uy ATuo

*FWOTINTRI I9DWINYD WY ATU0

*0¢ I0 Lo OTINEMITIC O3 PEITRAWOD

cmzey SajUTFOp-Jres st snrEa 37 AT

*butesesoad BI0FRG SINTEA ITHGE 4G PEORIdEI SR FUOTICBIINTT-OIIME Uy sToquis PrqerIes

R N

1
ATWIITIS

sbenbuey
T TqweReyY

o3

LIXEN

H

a1 nn s

sbuezado

2

eDuPIado | o

asas

purzedo

R

was |
|

puessdo

punisdo
o

soz3m |
Touuy |

hi

A e e e

Eou“

- e

puezsdo

uotTIvIedo
suwy

puwisdo

uotIezedo
.

T3pOW

Macro Language Elements

2.

DU
xabeul _ v::ﬂvm_ qybawy |
|

i
|
|

]
|
i
|
I
:
i
i
!
|
|
I
_

I
4

|

LIMELSE

Chart

£230qT 133V

sTemmiy sTqeiINa me3sdg

uotiezady |juwwazmis |

|

puwaedo .ugu-um i
aewn .!:uouuum |

e IRg _ucdl-u-um ~

!

i
I
i
|

97

Macro Language Summary

Appendix D:

Chart 3. Expressions

—-———

L 4
| Expression {Arithmetic Expressions |Character Expressions

T
|Logical Expressions

b= ——t-- 1 fommmmmm oo e
|May contain |1. Self-defining terms |1. Any comkination of |]1. SETB symbols
{2. Length, scaling, inte- | characters enclosed }2. Arithmetic
i | ger, count, and number | in quotation marks | relations?
| | attributes |2. Any variable symbol |3. Character
| |3. SETA and SETB symbols | enclosed in apostro- | relations?
| |4. SETC symbols whose | rhes |
| | value is 1-8 decimal |3. Concatenation of |
{ | digits | variable symbols and |
| |5. Symbolic parameters, if| other characters {
{ | corresponding operand | enclosed in apostro- |
| | is self-defining term | ghes |
l |6. &SYSLIST(n), if corre- |U4. Request for tyre |
	sponding operand is	attribute.
i self-defining term		
	7. &SYSLIST(n,m), if cor-	
	responding operand is	
{ self-defining term {		
i	8. &SYSNDX	
k + + + - -		
Operators are	+,-,¢*, and / parentheses	Concatenation, with a
	permitted	period (.)
{ | { | permitted
- 4 1 — -
|Range of {-232 to 4231 -] |0 to 255 characters |0 (false) or
| values { | |1 (true)
___________ $ —_— 4 ——— $—— e
|May be used in|1. SETA operands {1. SETC operands? |1. SETB operxands
| |2. Arithmetic relations |2. Character relations? |2. AIF operands
} {3. Subscripted SET symbols| |
i j4. &SYSLIST | |
{ |5. Substring notation | i
i |6. Sublist notation | {
'_________ _______ i
|tAn arithmetic relation consists of two arithmetic expressjons related by operators GT,
| LT, EQ, NE, GE, or LE.

{2A character relation consists of two character expressions related by operators GT,

{ LT, EQ, NE, GE, or LE.
| used in character relations.
| compared is 255 characters.
smaller will always compare less than the larger.

3Maximum of eight characters will be assigned.

= w——

98

1

Type attrikute notation and the substring notation alsc may ke
Maximum size of character expression that can be
If the two character expressions are of unequal size, thej

|

| Sttt k Sttt T
|Attribute|Notation|May be used with

|

T S T
{Symbols ocutside
|macro definitions;
[symbolic parameters,
|€SYSLIST(n), and

| §SYSLIST(n,m), inside
jmacro definitions

| Type

|
| T

L 3
| Produces pertinent
{value when T'

is

May be used in

| Symbols outside
jmacro definitions;
|symbolic parameters,
| €SYSLIST(n), and

| §6SYSLIST(n,m),
|macroc definitions
4

-+

N -

. Charact

. SETC operand fields

er relations

inside

Any letter except L,
M,N,O, T,

and U

Arithmetic

expressions

T

| Symbols outside
jmacro definitions;
|symbolic parameters,

| 6SYSLIST(n), and

| 6SYSLIST(n,m), inside
|macro definitions

H,F,G,D.,E.K,P,

and 2

Arithmetic

expressions

4
| Symbols outside
|macro definitions;
|symbolic parameters,

| §SYSLIST(n), and

{ §SYSLIST(n,m), inside
|{macro definitions

H,F,G,D,E,K,P, and 2

Arithmetic

expressions

=

| Symbolic parameters
corresponding to
|macro instruction
{operands §SYSLIST(n)
jand &SYSLIST(n,m),
}inside macro defini-

jtion
4

s

Any letter except L

Arithmetic

B el e R R e L e el s e T PR SO ——

expressions

| Number
|
i
|

W L ———
z
-

A g

|Ssymbolic parameters
| €éSYSLIST and

{ §SYSLIST(n), inside
|macro definitions

L

e e e = a e T T L o p—

Any letter except I |Arithmetic

o e, v s

expressions

bt s cnin e e ks o s s o ca v, G @ . e e, T w Snons lS. e, cm— v, e v St 2l e s e —— w2 o we s s apporn cons sl o atmes. @b

| S

Chart 5.

|Symbol

Variable Symbols

jDefined by

L
Initialized or set tojValue changed by

May

be used in

|Symbolic*
| parameter

- ——

Prototype
statement

Corresponding
macro instruction
operand

+
| (Constant throughout

|definition)

i
.

N
.

Arithmetic
expressions

if operand is
self-defining

term
Character
expresgsions

P ——
[0
3
>

ICLA or GB
instructio

i
4
T
|
|
|
|
|
|
|
4
T
|
|
]
|
4

LA
n

o e o s . et S e . e S . . S s,]

o

U S p——
0ni

ETA instruction

N [ad
.

e e e = 508 s s st e e e o e e o

Arithmetic
expressions
Character
expressions

Agppendix D:

Macro Language Surxary

L Oy RIS —— S

29

-
{Variable 1 by |
lerabal ;Defined by |Initialized or s t to
isyer i et tojValue changed b 1
e % o . Yy {May be used in i
' ;igzs or GBLB|O B T |sE 1 l
_ox GBL |SETB instructi 1 o
2 : : l ruction |1. Arithmetic 1
| | ‘ | expressions |
‘ ; | ! 2. Character |
o | | ' | exp;essions |
oare {rcie or amcin — e
- H ssions
| inetroctson 'valuecharactet | SETC instruction t --4
i | | ! |1. Arithmetic |
| ‘ | l { gxpressions. |
l | | ' { if value is |
' ' | ‘ | self-defining|
o | | o, ke |
S !) # . aracter
‘ :Assembler |Macro instructio H 1 e g
| i o n | (Constant throughout i i eti 1
i i I jdefinition; unique f 1 e rossion l
B i | le?ch macro instruc- °x| o™ |
{ §SYSECT2 {As H oo | st |
' l sembler }Control section in T;E_ 1 T
| comerol. onstant th i e -
i : Iinsttuctggcr); appea lercr one gg:gggut |expresaic ‘z
_— i I pears |CSECT, DSECT, and | xpressions |
} §SYSLISTS jAssemb BT - | |
‘ | embler {Not applicable o T 1 l
i i l [|Nct agplicakle TN’ 1
o L | i larichoesic | |
{ SSYSLIST s |Assembler |Cor 1C
‘CSYSLIST(n) gnssembler :Corresponding ‘‘‘‘‘ T;C leXPIQSSionS }
{n,m)* BACIKO i - onstant 11. Arithmetic
: st i ‘operan;nsttuctxon 'definition§hroughout 1. Arithmetic |
| ' i ' | ?xpressions |
I | | | } if operand isj
| i | ‘ { self-defining|
| 1 | { :2 éﬁtm 1
__ * i i . aracter
; TYP ;Assenbler {unexonic operation T(C l e :
| ot scat i onstant th i er 1
| E {definede:ent :h:gh {definition s::ug:out | morossic }
B _ i | sented by tSYSECTpre-‘CSECT' and_ STAND jE—— |
o Hss - i lDSECT, and START)' l !
‘ ! embler {Name of first PSECT 1 l l
‘ i | Sefined vithin l(cogs@ant throughout Icha !
] | |assembly; null |definition; set by je ressic '
| i |ateing 3¢ no PSECT |first PSECT statement)| xpressions l
I;;;—- i |is defined : | |
e S S
’ DATE :Assenblez |Assemkler date T(C s 1 ;
Asse onstan H 1
: | : o [assemhlyf throughout |1. Character }
‘‘‘‘‘‘‘‘‘‘ i | } %2 :xpressions i
S U [- Macro
: TIME %Assembler |Assembler ti;; l; gh 1 e }
Asse Constant 11. ¢ T
: i : ° ke throughout (1. Charactex }
. i | | { expressions |
- o ! |2. Macro |
______ I 1 definitions |
-

100

APPENDIX

Es

SAMPLE

ASSEMBLY

Given:

1. A TABLE with 15 entries, each 16 bytes long, having this format:

-

r T
| Number of Items |Switches
L

R L)
|Address | Name
....... i i 4

3 bytes 1 byte 4 bytes 8 bytes

2. A LIST of items, each 16 bytes long, having this format:

S T-= T v
| Name | Switches |Number of Items |[Address
3 i

“R—

8 bytes - 1 byte 3 bytes 4 Lkytes

Find: Any of the items in the list which occur in the table and put the switches, numker
of items, and address from that LIST entry into the corresponding TABLE entry.
LIST item does not occur in the TABLE, turn on the first kit in the switches-byte of the

LIST entry.

The TABLE entries have Leen sorted by their name.

EXAM TITLE °'SAMPLE ASSEMBLY'
: THIS IS THE MACRO DEFINITION
’ MACRO
MOVE §&TO, §FROM
:: DEFINE SETC SYMBOL
-t LCLC &TYPE
:: CHECK NUMBER COF OPERANDS
.

AIF {(N' §SYSLIST NE 2).ERROR1
.* CHECK TYPE ATTRIBUTES OF OPERANDS

AIF (T'&§TO NE T°®&FROM).ERROR2
AIF (T*'S§TO EQ 'C® OR T'€TO EQ °'G' OR T'&TO EQ °'K').TYPECGK
AIF (T*£TO EQ 'D' OR T'STO EQ 'E*' OR T'€TO EQ °*H').TYPEDEH
AIF (T*§TO EQ "F').MOVE
AGO . ERROR3

-TYPEDEH ANOP

.*
- * ASSIGN TYPE ATTRIBUTE TO SETC SYMBOL
..
&§TYPE SETC T'ETO
.MOVE ANOP
* NEXT TWO STATEMENTS GENERATED FOR MOVE MACRO
LETYPE 2, §FROM
STETYPE 2,€TO
MEXIT
.*
.* CHECK LENGTH ATTRIBUTES OF OPERANDS

.
.TYPECGK AIF (L*&€TO NE L®'EFRCOM OR L'&TO GT 256) .ERRORY
* NEXT STATEMENT GENERATED FOR MOVE MACRO

MVC &§TO, EFROM

If the

Arrendix E: Sample Assembly 101

MEXIT

*

.* ERROR MESSAGES FOR INVALID MOVE MACRO INSTRUCTIONS

. *

.ERROR1 MNOTE 1, °*‘IMPROPER NUMBER OF OPERANDS, NO STATEMENTS GENERATED'
MEXIT

.ERROR2 MNOTE 1, 'OPERAND TYPES DIFFERENT, NO STATEMENTS GENERATED'
MEXIT

.ERROR3 MNOTE 1, °‘'IMPROPER OPERAND TYPES, NO STATEMENTS GENERATED®
MEXIT

.ERROR4 MNOTE 1, °*IMPROPER OPERAND LENGTHS, NC STATEMENTS GENERATED®
MEND

t 4

. MAIN ROUTINE

-

ARGSRCH CSECT PUBLIC,READONLY

BEGIN STM R14,R12,12(R13) SAVE CALLER'S REGISTERS
LR R14,R13
L R13,72(R13) SECURE PSECT COVER FOR THIS ROUTINE
USING RSAVE,R13
ST R14,RSAVE+4 SAVE CALLER'S SAVE AREA COVER
LR R12,R15 ESTABLISH ADDRESSABILITY OF PROGRAM
USING BEGIN,R12 AND TELL THE ASSEMBLER
LM R5,R7,=A(LISTAREA,16,LISTEND) 1CAD LIST AREA PARAMETERS
USING LIST,RS REGISTER S5 POINTS TO THE LIST

MORE BAS R14, SEARCH FIND LIST ENTRY IN TABLE
™ SWITCH, NONE CHECK TO SEE IF NAME WAS FOUND
BO NOTTHERE BRANCH IF NOT
USING TABLE, Rl REGISTER 1 NOW POINTS TO TABLE ENTRY

MOVE TSWITCH,LSWITCH MOVE FUNCTIONS

Following the macro instruction MOVE, the macrc definition might go through the following
sequence:

LCILC &TYPE)

AIF {2 NE 2).ERROR1

ALF (T*TSWITCH NE T'LSWITCH).ERROR2

AIF (T*'TSWITCH EQ 'C*' OR T'TSWITCH EQ 'G' OR T'TSWITCH PBQ "K*
) .TYPECGK
-TYPECGK AIF L*TSWITCH NE L°LSWITCH OR L'TSWITCH GT 256).ERRORY

As a result, the following instruction would be assemkled intc the object program in
place of the macro instruction MOVE:
MVC TSWITCH, LSWITCH

MOVE TNUMBER, LNUMBER FROM LIST ENTRY

Again, the MOVE macro instruction and how the macro definition would process.it:
LCLC &TYPE
ALIF. (2 NE 2).ERROR1
AIF (T' TNUMBER NE T°'LNUMBER).ERROR2

AIF (T'TNUMBER EQ 'C*®' OR T'TNUMBER EQ *G' OR T*TNUMBER EQ ‘K’
) .TYPECGK

.TYPECGK AIF (L*TNUMBER NE L°'LNUMBER OR I°'TNUMBER GT 256).ERRORY

This would be substituted in the assembled code in place of the macro instruction:
MVC TNUMBER , LNUMBER
MOVE TADDRESS,LADDRESS "TO TABLE ENTRY

Once again, the MOVE macro definition would prccess the macro instruction:
LCLC &TYPE

AIF (2 NE 2).ERROR1
AIF (T*TADDRESS NE T'LADDRESS).ERROR2

102

AIF (T*TADDRESS EQ °*C* OR T'TADDRESS EQ *G' OR T'TADDRESS EC

K) . TYPECGK

AIF T*TADDRESS EQ 'D* OR T'TADDRESS EQ ‘'E* OR T°'TADDRESS EQ

'‘H*) . TYPEDEH

«MOVE

AIF (T*TADDRESS EQ ‘'F').MOVE

ANOP

Thene lines of code would be generated, replacing the MOVE macro instruction:

L 2,LADDRESS
ST 2,TADDRESS

The assembler continues with the following source statements:

NOTTHERE

EXIT

NONE
*

*
*

SEARCH

Loop

HIGHER

NOTFOUND

SAP

RSAVE

BXLE RS5,R6,MORE LOOP THROUGH THE LIST

B EXIT SUBROUTINRE COMPLETION

oI LSWITCH,NONE TURN ON SWITCH IN LIST ENTRY
BXLE R5,R6,MORE LOOP THROUGH THE LIST

L R13,RSAVE+Y4 RETURN TO CALLER

L Ri%,12(R13) RESTORE EXIT ADDRESS

oI 11(r13),1 SET LINKAGE BIT

LM R2,R12,28(R13) MULTIPLE REGISTER RESTORE

BR R1u4 RETURN TO CAILLER

EQU X*80°*

BINARY SEARCH ROUTINE

NI SWITCH, 255-NONE TURN OFF NOT-FOUND SWITCH

LM R1,R3,=F"128,4,128" LOAD TABLE PARAMETERS
LA R1,TABLAREA-16{R1) GET ADDRESS OF MIDDLE TABLE ENTRY
SRL R3,1 DIVIDE INCRENENT BY 2
CLC LNAME, TNAME COMPARE LIST ENTRY WITH TABLE ENTRY
BH HIGHER BRANCH IF SHOULD BE HIGHER IN TABLE
BCR 8,R14 EXIT IF FOUNL
SR R1,R3 OTHERWISE IT IS LOWER IN THE TABLE
SO SUBTRACT INCREMENT
BCT R2,LOOP LOOP 4 TIMES
B NOTFOUND ARGUMENT IS NOT IN TBE TABLE
AR R1,R3 ADD INCREMENT
BCT R2, LOOP LOOP 4 TIMES
oI SWITCH,NONE TURN ON NOT-FOUND SWITCH
BR R14 EXIT
All literals, except literal address constants, go here:
=F"'128,4,128"
PSECT
ENTRY BEGIN
DC F'76°' USER'S SAVE AREA
DC - 18F'0’
DS X FOUND SWITCH FOR BINARY SEARCH

SWITCH
*

*
*

TABLAREA

THIS 1S THE TABLE

DS oD
DC XLB'0',CL8'ALPHA®
DC XL8'0',CL8"BETA'

DC XL8*0',CL8*DELTA"®
DC XL8'0',CL8*EPSILON'
DC XL8'0',CL8'ETA"

nC XL8°0°*,CL8"GAMMA®
DC XL8*0*,CL8* IOTA®

bC XL8°0',CL8 "' KAPPA®
DC XL8'0*,CL8'LAMBLCA"®
DC XL8°0°,CL8'MU"*

pC X1L8'0',CL8'NU"

DC XL8'0',CL8 * OMICRON®
DC XL8'0',CL8'PHI®

DC XL8'0°,CL8"SIGMA®

Appendix D: Sample Assembly

103

DC XL8'0"',CL8"ZETA"
*

. THIS IS THE LIST
*
LISTAREA DC CL8'LAMBDA® ,X'OA' ,FL3"29" ,A(BEGIN)
pC CL8'ZETA',X'05',FL3°5"',A (LOOP)
DC CL8°*THETA® ,X'02*,FL3'45* , A (BEGIN)
DC CL8"TAU',X*00°',FL3'0',A(1)
DC CL8°'LIST',X*1F',FL3°456°',A(0)
LISTEND DC CL8'ALPHA',X'00°*,FL3'1",A(123)

. THESE ARE THE SYMBOLIC REGISTERS
&

R1 EQU 1
R2 EQU 2
R3 EQU 3
RS EQU S
R6 EQU 6
R7 EQU 7
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

Address constant literals go here:
=A(LISTAREA, 16, LISTEND)
*
* THIS 1S THE FORMAT DEFINITION OF LIST ENTRYS
*
LIST DSECT
LNAME Ds CL8
LSWITCH DS C
LNUMBER DS FL3
LADDRESS DS F
*
* THIS IS THE FORMAT DEFIRITION OF TABLE ENTRYS
»
TABLE DSECT
TNUMBER DS FL3
TSWITCH DS C
TADDRESS DS F
TNAME DS CL8
END

104

&§5YS, restrictions on use 56
§SYSDATE (see date variable)
&SYSECT

{8ee current control section name)
ESYSLIST

(see macro instruction operand)
£SYSNDX

(see macro instruction index)
&SYSPSCT

(see prototype control section name)
§SYSSTYP

(see current control section tyge)
§SYSTIME {(time variable)

Absolute term 9

Address constants
A-type 41,65
complex relocatable expressions 41
literals not allowed 11

41-u43

Q-type 42
R-type 42-43,65
S-type 42,65
V-type 42,65
Y-type 41-42,65
Addressing

caution, CCW command 46
dummy sections 19-20
explicit 15
external control sections 24
external dummy sections 22
implied 15
relative 17
AGO instruction
example 75
format of 74
inside macro definitions 75
operand field of 75
outside macro definitions 75
sequence symbol in 74-75
use of 74
AGOB insturction (see AGO instruction)
AIF instruction
example of 74
format of 74
inside macro definitions 74
invalid operand fields of 74
logical expression in 74
operand field of 74
outside macro definitions 74
sequence symbols in 74
use of 73-74
valid operand fields of 74
AIFB instruction (see AIF instruction)
Alignment, boundary
CNOP instruction for 50-51
machine instruction 25
Ampersands in
character expressions 70
macrc instruction operands 59
MNOTE instruction 74-7S
symbolic parameters 54,56-57

INDEX

variable symbols S3
ANOP instruction

example of 75

format of 75

sequence symbol in 75

use of 75
Apostrophes, free
Apostrorhes in

character expressions 70

macro instruction operands 59

MNOTE instruction 78
Arithmetic expressions

arithmetic relations 72

evaluation procedure 68

operand sublists 69

orerators allowed 68

parenthesized terms in evaluation of

SETA instruction 68-69

SETB instruction 72-73

Substring notation 70-71

terms allowed 68
Arithmetic relations 72
Assembler instructions

statement 30-51

55-56

Assembler language
comparison chart 95-100
macro language, relation to 52
statement format 5-6,7
structure 7-8
Assembler program
basic functions 2
output 47
Assembly, terminating an 51
Assembly no operation (see ANOP
instruction)
Asterisk
MNOTE instruction 78

68

Attributes (see also specific attributes)

assignment to control sections 22
how referred to 64
inner macro instructicn operands 64
kinds of 6u4-67
notations 64
operand sublists 64
outer macro instruction operands 64
sunmary chart of 99
use of 64-66

A-type address constant 41

Pase registers
address calculation 2,25
DROP instruction 16
loading of 15
USING instruction
Binary constant 38,65
Binary self-defining term 10
Blanks
logical expressions 72
macro instruction operands 59

15~16

Index

105

CCW instruction 46
Channel command word, defining 46

Character constant 37-38,65
Character expressions
ampersands in 70
character relations 72
examples ot 70
periods and 70
SETB instructions 72-73
SETC instructions 69-70
Character relation 72
Character self-defining term 10
Character set 7
CNOP instruction 50-51
Coding form 4
COM instruction 21
Commas, macro instruction operands 59
Comments statements
example of 6,58
model statements 55
not generated 58
Comparison chart 95-100
Complex relocatable expressions 41
Concatenation
character expressions 70,71-72
defined 57
examples of 57
substring notations 71-72
Conditional assembly elements, summary
charts of 76
Conditional assembly instructions
how to write 63-76
Summary of 76
use of 63
{see also specific instructions)
Conditional branch
(see AIF instruction)
Conditional branch instruction 28
Constants
defining
{see DC instructions)
summary of 94
(see also specific types)
Continuation lines 5
Control dictionary 18
Control section location assignment 18
Control sections
attributes of 22
blank COMMON 21
CSECT instruction 19
defined 18
DSECT instruction 20-21

first control section, properties of 18

identification of 18
maximum location counter value 11
PSECT instruction 21-22
START instruction 18-19
unnamed 19
COPY instruction 51
COPY statements in macro definitions
format of 58
model statements, contrasted 58
operand field of 58
use of 58
Count attribute
defined 66
operand sublists 66

106

use of 66
variakle symbols 66
CSECT instruction 19
Current control section name
{§SYSECT) 82-83,100

affected Lty CSECT, DSECT, START 82-83

example of 82-83
use of 82-813
current control section type
(ESYSSTYP) 83-84,98
CXD instruction 45

pata definition instructions 32
channel command words 46
constants 32-43

storages 42-43

Date variable (8SYSDATE) 85,100

CC instruction 31-43
constant coperand subfield 36

address-constants (see address
constants)

Einary constant 38

character constant 37
decimal-constants 40-41
fixed-point constants 38-39
floating-point constants 39-40

hexadecimal constant 37-38
type codes for 34

duplication factor operand subfield 33

operand subfield modifiers 34
type operand sukfield 33-34
kit length specification 34-35
exponent modifier 36
length modifier 34
scale modifier 35
Decimal constants 40-41,65
length modifier 40-u41
length, maximum 40
packed 4o
zoned 40
Cecimal field, integer attribute of 65
Decimal self-defining terms 10
Cefining constants
(see DC instruction)
Cefining storage
(see DC instruction, DS instruction)
Defining symkols 9-11
Dimension, subscripted SET symkols 81
Coukle-shift instruction 25
DROP instruction 16
LS instruction 43-44
defining areas U4Uu
forcing alignment 44
DSECT instruction 20
Cumrmy section location assignment 20
Duplication factor 33,35
defining fields of an area 44
forcing alignment 44
CXD instruc 44-45

Effective address, length 26
EJECT instruction 47

END instruction 51

ENTRY instruction 23

Entry point symbol, identification of 23

EQU instruction 31-32

Equal signs, as macro instruction
operands 59
Exror message

(see MNOTE instruction)
Explicit addressing 15

length 26-27
Exponent modifiers 36
Expressions 13-14

absolute 13

evaluation 13

relocatable 14

summary chart of 98
kxtended mnemonic codes

RR format 30

RX format 29
External control section, addressing of 24
External dummy section

allocation for 22

definition of 22

description of 22
External symbol, identification of 23-24
EXTRN instruction 23-24

First control section 18
Fixed-point constants 35-36,38-39,65
format 39
positioning of 38
scaling 35
values, minimum and maximum 38
Fixed-point field, integer attribute of 65
Floating-point constants 39-40,65
alignwent 40
format 40
scale modifiers 40
Floating-point field, integer attribute
of 65
Format control, input 48

GBLA instruction
format of 79

inside macro definitions 79-80
outside macro definitions 79-80
une of 79-81

GBLB instruction
format of 79
inside macro definitions 79-80
outside macro definitions 79-80
use of 79-81

GBLC instruction
format of . 79
inside macro definitions 79-80
outside macro definitions 79-80

use of 79-81
General register 0, base register usage 16
Global SET sywmbols
defining 79
examples of 79-81
local SET symbols, compared 79
using 79
Global system variable symbols
definition of 78
types of 78
Global variable symbols
types of 78
(see also global SET symkols,
subscripted SET symbols)

78-82

Hexadecimal constants 37-38,65
Hexadecimal self-defining terms 10

I'
(see integer attribute)
ICTL instruction 48
Identification-sequence field 6
Identify dummy section 22
Identifying klank common control
section 21
Implied addressing 15-16
length 26
Inplied length specification
Inner macro instruction 61-62
defined 61
example of 61
symkolic parameters in 61-62
Instruction alignmwent 25
Integer attribute 65-66
decimal fields 65
defined 65
examples of 65
fixed-point fields 65
floating-point fields 65
notation 65
restrictions on use 66
symbols 65-66
use of 65-66
ISEQ instruction 49

26-27

K!
(see count attribute)
Keyboard statement formats
koundaries S
continuation lines 5
Keyword
defined 85
keyword macro-instruction 85-87
symbolic parameter and 86
Keyword, inner macro instructions used
in 87
Keyword macro definition
positional wacro definitions,
compared 85-86
use 86
Keyword macro instruction
example of 86-87
format of 86
keywords in 86
orerand sublists in 87
operands
invalid examples
valid examples 86
Keyword prototype statement 86
example of 86
format of 86
operands 86
invalid examples 86
valid exarwrples B86
standard values 86

86-87

I!
(see length attribute)

Index

107

ICLA instruction
format of 67
use of 67
LCLB instruction
format of 67
use of 67
LCLC 1instruction
tormat of 67
use of 67
Length attribute
defined 65
examples 65
notation 65
restrictions on use 65
symbols 12,65
use of 65-66
Length modifier 35-36
bit-length specification 34
length subfield 34
Lengths explicit and implied 26-27
Linkage symbols
(see also ENTRY instruction, EXTERNAL
instruction)
entry point symbol 23
external symbol 23-24
Listing control instructions u46-us
Listing, spacing 47
Literal pools 12,49
Literals 11-12
character 26
DC instruction, used in 12
duplicate 50
format 12
literal pool, beginning 49-50
literal pools, multiple 12
Local SET symbols
defining 79
examples of 79-81
global SET symbols, compared 79
using 79-81
Local system variable symbols
(see also local SET symbols)
(see also subscripted SET symbols)
types of 78
Location counter 10-1%,33,36,45,50
maximum value 11
references to 11
Logical expressions
AIF instructions 73-74
arithmetic relations 72
blanks in 72
character relation 72
evaluation of 73
invalid examples of 73
logical operators in 72
parenthesized terms in
evaluation of 73
examples of 73
relation operators in 72
SETB instructions 72
terms allowed in 72
valid examples of 73
LTORG instruction 49

Machine-instruction examples and format
RR 25,27
RS 26,298

108

RX 26,27
SI 26,28
Ss 26,28

Machine~-instruction mnemonic codes 27

Fachine-instructions
alignment and checking 25
literals, limits on 11
mnemonic operation codes 27-28
operand fields and subfields 25-26
symbolic operand formats 25

NACRO
format of 54
use 54

Macro language
extended features of 74-88
relation to assembler language 52
summary 95-100
Macro definition
defined 52
example of 55-56
how to prepare 54-58
keyword 52
(see also keyword wacro definition)
mixed-mode 52
(see also mixed-mode macro
definition)
placement in source program 54
use 52
Macro definition exit
(see MEXIT instruction)
Macro definition header statement
{see MACRO)
Macro definition trailer statement
{see MEND)
Macro instruction
defined 52
example of 61
format of 59
how to write 59-61
levels of 62
mnemonic operation code 59
name field of 59
omitted operands 690
example 60
operand field of 59-60
operand sublists 60-61

operands
ampersands 59
blanks 59

commas 59
equal signs 59
paired apostrophes 59
paired parentheses 59
operation field of 59
statement format 60
types of 52
used as mocdel statement 61
Macro instruction index (8§SYSNDX) 82,100
AIF instruction 82
arithmetic expressions 82
character relation 82
example 82
SETA instruction 82
SETB instruction 82
SETC instruction 82
use of 82

Macro instruction operand
(§SYSLIST) 84,100
attributes of 84
use of 84
(see also symbolic parameters)
Macro instruction prototype
statement 52,54
Macro instruction statement
(see macro instruction)
MEND
format of 54
MEXIT instruction, contrasted 77
use of 54,77
MEXIT instruction
example of 77
format of 77
MEND, contrasted 77
use of 77
Mixed-mode macro definitions
positional macro definitions,
contrasted 87-88
use 88
Mixed-mode macro instruction 87-88
example of 88
format of 88
operand field of 88
Mixed-mode prototype statement
example of 88
format of 88
operands of 88
Mnemonic operation codes 27
extended 28-30
machine instruction 27
RR format 27
RS format 28
RX format 27
SI format 28
S§S format 28
MNOTE instruction
ampersands in 77-78
apostrophes in 77-78
asterisk in 78
error message 77-78
example of 77-78
operand field of 77-78
severity code 77-78
use of 77-78
Model statements
comments field of 55
comments statements 55
defined 52,55
name field of S5
operand field of 55
operation field of 55
use of 55

Nl
(see number attribute)
Name entries 6
Number attribute
defined 66
example of 66
notation 66
operand sublist 66

Operand sublist
alternate statement format 60-61
defined 60-61
example of 60-61
use of 60-61
Operands
entries 6
fields 25-26
subfields 25-26
symbolic 25-26
Operating system 3
ORG instruction 49
Quter macro instruction defined 62

Paired apostrophes 59
Paired parentheses 59
Parentheses in
arithmetic expressions 70
logical expressions 69
macro instruction operands 57
orerand fields and subfields 25-26
Period in
character expressions 67
comments statements 58
concatenation 57
sequence symbols 64
Positional macro definition
(see macro definition)
Positional macro instruction
(see macro instruction)
Previously defined symbols 9
PRINT instruction 47
Program control instructions 45-48
Program listings 2
Program sectioning and linking 17-18
Prototype control section name
(ESYSPSCT)} 84,100
Prototype statement
example of 54
format of 54
keyword
(see keyword prototype statement)
nixed-mode

(see mixed-mode prototype statement)

name field of 54
operand field of 55
operation field of 54
statement format 54-55
symbolic parameters in 54,56-57
use of 54-55
PSECT instruction 21-22
PUNCH instruction 49

Q-tyre address constant 42

Relative addressing 17
Relocatability 2,7

attrikutes 14

program, general register 0 16
Relocatakle exgpressions 14

in USING instructions 15-16
Relocatakle terms 9

in relocatable expressions 14

pairing of 14
REPRO instruction 49

Index

109

RR extended mnemonic codes 30

RR machine-instruction format 25,27
length attribute 25
symbolic operands 25

RS machine-instruction fcrmat 25,28
address specification 26
length attribute 25
symbolic operands 25

R-type address constant 42-43

RX extended mnemonic codes 29

RX machine-instruction format 25,27
address specification 26
length attribute 25
symbolic operands 25

sl
(see scaling attribute)
Sample assembly 101-104
Scale modifier 35-36
fixed-point constants 35-36
floating-point constant 36
Scaling attribute
decimal fields 6%
defined 65
examples of 65
fixed-point fields 65
floating-point fields 65
notation 65
restrictions on use 65-66
symbols 65
use of 65-66
Self-defining terms 9-10
(see also specific terms)
Sequence checking 49
Sequence symbols
AGO instruction 74-75
AIF instruction 73-74
ANOP instruction 75
how to write 67
invalid exanples of 67
use of 67
valid examples of 67
Set symbols
(see also local SET symbols)
(see also global SET symbols)
(see also subscripted SET symbols)
assigning values to 63
defining 63

symbolic parametexs, contrasted 63

use 63-64
SET variable 78
SETA instruction
examples of 68
format of 68
operand field of 68
evaluation procedure 68
operators allowed 68
parenthesized terms 68
terms allowed 68
valid examples of 68
operand sublist 69
example 69
SETA symbol
assigning values to 69
defining 63
SETA instruction 68
SETC instruction 69

110

using 68-69
SETB instruction
example of 73
format of 72
logical expression in 72
arithmetic relations 72
blanks in 72
character relations 72
evaluation of 73
operators allowed 72
terms allowed 72
operand field of 73
invalid examples of 73
valid examples of 73
SETB symbol
AIF instruction 73-74
assigning values to 63
defining 63
SETA instruction 73
SETB instruction 73
SETC instruction 73
using 73
SETC instruction
apostrophes 70
character expressions in 70
ampersands 70
periods 70
concatenation in
character expressions 71-72
sukstring notations 71-72
examples of 70
format of 69
operand field of 69
substring notations in 70~-71
arithmetic expressions in 70
character expressions in 70
invalid examples of 71
valid examples of 71
type attribute in 70
SETC symkol
assigning values to 71
defining 63
SETA instruction 70
using 71-72

Severity code in MNOTE instruction 77

81 machine-instruction format 25,28
address specification 26
length attribute 25
symbolic operands 25
SPRCE instruction 47
S$S machine~instruction format 25,28
address srecification 26
length attribute 25
length field 26
symkclic cperands 25
Standard value
attrikutes of 87
keyword prototype statement 86
START instruction
positioning of 19 »
unnamed control sections 18-19
Statements 4-7
koundaries &4
examples 6
macro instructions 53
prototype 54
Storage, defining
(see DS instruction)

S-type address constant 42
Sublist
(see operand sublist)
Subscripted SET symbols
defining 81
dimension of 81
examples 81
how 0o write 81-82
invalid examples of 81
subscript of 81 :
using 81-82
valid examples of 81
Substring notation
arithmetic expressions in 70
character expression in 70
defined 70
how to write 70-71
invalid example of 71
SETA instruction 70
SETC instruction 70
valid examples of 71
Symbol definition, EQU instruction
for 31-32
Symbolic linkages 22-24
Symbolic operand formats 25-27
Symbolic parameter
concatenation of 57
defined 56
how to write 56
invalid examples of 56
replaced by 56-57
valid example of 56
Symbols
defining 9-11
length attributes 9,11
length, maximum 9
previously defined 9
restrictions 9
System macro instructions defined 53
System variable symbols 82-83

(see alsc specific system variakle
symbols) .
assigned values by assembler 82-83
defined 82

T!
{see type attribute)
Terms
expressions composed of 9
in parentheses 12-13
pairing of 14
Time variakle (§SYSTIME) 85,100
TITLE instruction 46-47
Type attribute
defined 64-65
literals 65
macro instruction operands 65
notation 65
symbols &5
use 65

Unconditional branch

(see AGO instrxuction)
Unconditional branch instruction 28
Unnamed control section 19
USING instruction 15-16,17

Variable symbols

assigning values toc 53

defined 53

how to write 53

types of S3

use 53

(see also specific variable symbols)

Virtual storage concept 1-2
V-type address constant 42
V-type address constant 41-42

Index 111

GC28-2000-5

JIBIM

International Business Machines Corporation

Data Processing Division

1133 Wastchester Avenus, Whits Plains, New York 10604
[U.S.A. anly]

1BM World Trade Corperatian
821 United Nations Plaze, New York, New York 10017
{International]

IOVNONYT dITHEASSY

‘¥§°n Ut pejutagd

¢-0002-8C09

