File No. S360-36
GY28-2013-6

Program Logic

Version B.1

IBM Systemn/360 Time Sharing System

Command System

Provides descriptions of the internal logic of each
Command System module for persons responsible for pro-
gram maintenance and modification. The Command System
consists of modules that process the commands available
to the user, operator, manager, and administrator of
the System/360 Time Sharing System.

Provides the following information for each module:
basic function, entries, modules called, method of
operation, exits, error conditions, system control
blocks used, and a flowchart.

Before using, be familiar with the contents of:

IBM System/ 360 Time Sharing System:

Concepts and Facilities, GC28-2003

Command System User's Guide, GC28-2001

Manager's and Administrator's Guide, GC28-2024

Operator's Guide, GC28-2033

Have available for reference:

IBM System/360 Time Sharing System: System Mes-
sages, GC28-2037

Seventh Edition (September 1971)

This is a major revision of, and makes obsolete,
GY28-2013-5 and Technical Newsletter GN28-3164. This
edition documents the new KEYWORD, CHGPASS, FLOW,
MCAST, and MCASTAB commands, as well as a set of atten-
tion response commands -- EXIT, PUSH, RTRN, STACK, and
STRING. Significant changes will be indicated by a
vertical line beside the changed text.

This edition is current with Version & Modification
1 of the IBM System/360 Time Sharing System (TSS/360),
and remains in effect for all subsequent versions or
modifications of TS8S/360 unless octherwise noted. Sig-
nificant changes or additions to this publication will
be provided in new editions or Technical Newsletters.
Before using this publication, refer to the latest edi-
tion of IBM System/360 Time Sharing System: Addendum,
GC28~-2043, which may contain information pertinent to
the topics covered in this edition. The Addendum also
1ists the editions of all TSS/360 publications that are
applicable and current.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form is provided at the back of this publication for reader's com-
ments. If the form has been removed, comments may be addressed to IBM
Corporation, Time Sharing System/360 Programming Publications, Depart-
ment 643, Neighborhood Road, Kingston, New York 12401

© Copyright International Business Machines Coxporation
1967,1968,1969,1970,1971

This manual, a guide to the logical
structure and functions of the TSS/360 Com-
mand System, is designed to be used with
the individual assembly listings; it does
not discuss the machine-language module
structure. The symbols that appear here
correlate with those used in the listings.

This manual is intended for persons
involved in program maintenance and
modification.

The manual has 8 sections. Section 1
introduces the Command System. Sections 2
through 7 describe the logical divisions of
the system; Command Controller, Text Edi-
tor, command routines, macro instructions,
source language processing, and interrup-
tion processing; Section 8 contains flow-
charts for the command system modules. The
manual also includes two appendixes: Sys-
tem control block usage and a copy of
SYSPRO.

Each description of a command system
module includes:

e Common and symbolic module names.

e All entry points to the module, and the
use of each entry point.

¢ Basic module functions. (Unless other-
wise noted, modules will operate in
conversational and nonconversational
modes.)

e All module exits. In most cases, the
standard exit is a return to the cal-
ling routine, via the RETURN macro
instruction.

e All modules called and the reason fox
each call. If the called module is

PREFACE

within the command system, its common
and symbolic module names will be
listed; for other modules, the common
name and symbolic name, if applicable,
are given.

¢ An explanation of module operation,
with a discussion of the principal
logic paths.

* All error conditions recognized by a
module, and the actions taken for each
condition.

e All system control blocks referred to
ky a module.

e Flowcharts.

To use this publication you need the
information in:

IBM Systems/360 Time Sharing System:

Concepts and Facilities, GC28-2003

Command System User's Guide,
GC28-2001

Manager's and Administartox's Guide,
GC28-2024

Operator's Guide, GC28-2033

If you intend to use this book to debug
programs, you need the following reference
publication:

IBM System/360 Time Sharing System:
System Messages, GC28-2037

1ii

SECTION 1: COMMAND SYSTEM OVERVIEW
Command System Functions
Command System Organization . . .
Command Controller
Text Editor . . . « « « « o« &
Command Routines
Macro Instruction Processing
Source Language Processing .
Interruption Handling
Command System Module Interactions
Command System Operation . . . =«
System Startup
Cconversational Task Initiation

-

Nonconversational Task Initiation

Processing A Command

Terminating A Conversational Task

Terminating A Nonconversational

Processing Macro Instructions
System Shutdown

SECTION 2: COMMAND CONTROLLER . .
Command Analysis and kxecution .
GATE Routine <« « . . .
SCAN Package . . ¢« & ¢ &« & o « =
User Prompting . . « « . .+ « . .
Attention Handling « .
Source List Handling . . .« . . .
Control Dictionary hHandling . . .
The Combined Dictionary
The Source List . . . <« <« « . . .
Command Controller Routines . . .
Ccommand Analyzer and Executor
GATE Routine (CZATC)
SCAN Routines (CZAAC)
User Prompter Routines (CZATJ)

-

(CZASA)

Tas

-

-

-

Attention Handler Routine (CZASB)

Source List Handlers (CZASC)

Control Dictionary Handler (CZASD)

SECTION 3: TEXT EDITOR

Text Editor Controller -- EDIT Command Routine

CONTEXT Command Routine (CZASM)

CORRECT Command Routine (CZASQ

DATALINE Entry Service Routine (CZASG)

)

-

-

Edit Initialization Routine (CZBSE)
EXCERPT Command Routine (CZASK)

EXCISE Command Routine (CZASL)
INSERT Command Routine (CZASJ)
LIST Command Routine (CZASP)
LLOCATE Command Routine (CZASN)
MATCH Service Routine (CZAST)
NUMBER Command Routine (CZASU)

Profile Handler Command Routine
REGION Command Processor (CZASF)

REVISE Command Routine (CZASH)
STET Command Routine (CZASV)

Transaction Table Initializaticn Routin

-

-

-

-

(CZASZ)

- -

- .

-

-

e (CZBTA/CIBSY)

-

Transaction Table Updater Service Routine (CZASS/CZBSX)

UPDATE Command Routine (CZASR)

-

-

-

-

-

CONTENTS

.
.
.
OO MO JdE WWWWWWNK R P e

.
.
L]
o

« <« - 54

(CZATS1/CZATS2) . 55

- TRIN . . 73
TRUP . 73

- - « 74

SECTION 4: COMMAND ROUTINES . ¢« 2 2 o « o 2 o % o« s o o o« « o s &« =
ABEND (CZACP, CZACQ, @and CZACR) . « 4 o o o o o« o e« s o a o » =
BACK Command Routine (CZABC) - « « s + & & o @
Batch Work Queue (BWQ) EXHIBIT Processor (CZAYF) e e s e e e
CANCEL Command Routine {(CZABJ) e o o o » & ¢ s s a & 2 w s « =
CATALOG Command Routine (CZAEI) . ¢ v 4 4 « o o o o o o o « o =
CDD Command Routine (CZAFS) . ¢ ¢ o« « « o « « = o s s « « o« o =
CDS Command Routine (CZAFV) . . ¢ & o « o « s 2 o o s« o « a « =
CHGPASS Command (CZATI) . « ¢ o « o« o s o a o o a o« a « o« « =« =
CLOSE Command (CZCHB) . « ¢ &« o« o o o o« @ o s o« 2 o o « o« « o«
DATA Command Routine (CZADF) . & 4 o « o o o « a « a o « s = =
DDEF Command Routine (CZAEA) e o a s o s e s 8w o e & « + o « @
DSS?/PC? Command Routine (CZAEL) e s o s o s e e a o a 2 @ o =
ERASE/DELETE Command Routine (CZAEJ) =« ¢ v ¢ o o« o« o o o« « o« «
EVV Command Routine ——- CATVAM (CZCFB) . ¢ o ¢ o o o o « o o « =
EXECUTE Command Routine (CZABB) . & ¢ ¢ o o o o o « o o « 2 + =
EXHIBIT Director (CZAYD) .+ .« o o o o o o o o o« a s s « « = « =
FINDDS Routine (CZAEC) e e o s = e ° ® e e 2 = e s e o & a & @
FINDJFCB Routine (CZAEB) e = e o 8 % & ® ® w e = a ® o + 8 a
FLOW Command Processor (CZAGD) ¢ v 4 4 ¢ o v o o o o o« o o o« =«
IF String Comparison Routine (CZBLT) . « ¢ &+ o o o o o o « « =
JOIN/REJOIN Command Routine (CZAFK) . + o ¢ o o « o o « o o o «
JOINRJE/QUITRJIE Command (CZABS) « ¢ ¢ ¢ o o o « o a a o « o « &«
JOBLIBS and DDNAME? Commands (CZAEK) e e e e« = ® e ® e w s = »
KEYWORD Command Routine (CZATH) . . « « o o o o o « 2 o « « 2 =
LINE? Command Routine (CZAEM) . . ¢ « o o o « » o« o o o« « 2 o =
LOGOFF Command Routine {(CZAFN) . ¢ & ¢ ¢ ¢ « v o s s « « « « =
LOGON (CZAFM) - e« « ® s s & ® a e @ ® ® a a o o
LOGON2 command Routine (CZBTB) e 4 e 2 e e a4 s e o 2 e o & o =
MCAST/MCASTAB Routine . . . e« e« ® e o s e @ s o e e & « o o @
MODIFY Command Routine (CZAEG) . e e e s e s e e e e e e
MSGWR (Message Write) Routine (CZAAD) e & s e e e s e e s e e
Place Address in AIR Table (CZACS) - PAIR v 2 « o « a o = « « =
PERMIT Command Routine (CZAFH) .« ¢ &« + 2 o o « 2 o o« « = « « =
POD? Command Routine (CZCOX) e e+ e 2 & e @ s 4 ® e @ a o a o
PRMPT Command Routine (CZBTC) « =+ o =« o o o a o o s o « o « « =
PROCDEF Routine (CZATP) e 4 o 8 = e a e s e e o o
Procedure Expander Routines (CZATE) e e e e e w e e e e e e e
QUIT Command Routine (CZAFL) e 4 e 2 s e e x s e e s a4 s s e a
RELEASE Command Routine {CZAFJ) . « ¢ & « o o « o 2 2 o« o« « +« =
RET Command Routine (CZAEN) « e e o s 4 e 4 « w o =
RPS/CVV/LPDS/CPS Command Routine (CZAXX) « o 4 = o @ e o o o =
Recreate Public Storage (KPS) . . <« ¢ ¢ ¢ ¢ o o o o o o = o = «
Catalog VAM Volume (CVV) . . ¢ v v v ¢ @ e o o o o o o « « =« =
List Public Storage (LPDS) . ¢ ¢ o v ¢ o« ¢ o o o o « o + = = =«

Clean Public Storage (CPS) . ¢ & o« o « o « a « o « o o o« « o «
SECURE Command Routine (CZAFU) e e e e e e 4 = s e e e e e e s
SHARE Command Routine (CZAFI) . . . e 4 e e e e e e s e e =
SYNONYM/DEFAULT Catalog Routine (CZATRl) « . . .

System Activity and Rresources Display (SARD) Processor (CZAYE)
SYSXPAT Command Routine (CZATF) . ¢ ¢ @ o« o « o o o o « o « a =
Compatibility Handler (CZATFl) . . ¢ o« ¢ o w o o o o « « o o =«
TIME Command Routine (CZAVB) e e s e e e
Userid Informational (UID) EXHIBIT Processor (CZAYG) e e e e
UPDTUSER Command Routine (CZAGC) « 4 s e & e s e 2 e o & o s
USAGE Command Routine (CZAGB) + 4 « 4 o o o o 2 o o « o + « s =
User Control (CZAMZ) - e e . e e e e s s a s 4 e & e o o = =
VAM Tape Command Routine (CZAET) e o s s 8 e s o s » % s e o
VS5 Command Routine (CZAVR) . & ¢ 4 v o o o « o o o « o = o o =

SECTION 5: MACRO INSTRUCTION HANDLING . ¢ « & o « o « @ 2 s 2 « = =
Macro Instructions that Call Command Routines . . «
Macro Instructions that Call Command Support Routines
Macro lnstructions that Call Subsystem Support Routines

vi

Macro Instructions That Communicate With Other Tasks . « . . « .182

SECTION 6: SOURCE LANGUAGE PROCESSING . « « ¢ « ¢ ¢ « o« = « « =« « o 2183
LPCMAIN (CFADA) &« « ¢ =« « o o =« o a o » o« o « « » « s« s o « » « 2188
GETLINE Routine (CFADB) . . « ¢ ¢ « o o o o « ¢ = » o o o« « «» « 2187
PUTDIAG Routine (CFADC) . . ¢ « & « o o o o 2 « o s « o o = « = «190

SECTION 7: INTERRUPTION PROCESSING .« « « ¢ o o ¢ « s o « o« s = « « 2191
Program Interruption Diagnostic Processor =~ DIAGNO - (CZAHA) . .192

Initial Attention Interruption Processor - IAIP - (CZAHB)197
External Interruption Processor - (XIP/XIIS) - (CZAHC}198
External Interruption Subprocessor - XIMS/XIES - (CZAHD)200
Virtual Memory Task Initiation - VMTI - (CZAAF)201
Virtual Memory Task Initiation II - VMTI II (CZATD)202

FLOWCHARTS « 2 o o o o o o 2 o o s o s o o s o a v s o o« » =« « o« « 22086
APPENDIX A: SYSTEM CONTROL BLOCK USAGE . . ¢ & & ¢ o« ¢ o o « « o « 4553
APPENDIX B: SYSPRO + & o 4 o o ¢ o o = o o o a 2 o » o o o o« « « « <557

INDEX « o ¢ « e o « o « o s o « s o s s o o 2 s o w o a =« o« « = o o« 560

vil

ILLUSTRATIONS

Figure 1. Explanation of LOGON procedure . . . « « « « « =« «
Figure 2. Initial command entry procedure « ¢ « +« « «
Figure 3. Execution of BUILTIN procedure . . . « « o « o o =
Figure 4. Execution of a textual procedure . e e o o o o
Figure 5. Execution of PCS commands with Dlrect Call
Figure 6. Modular relationship of the command system
Figure 7. Interaction of COWARD and RTAMTCS &« « « .
Figure 8. Attention processing with AET connected
Figure 9. Interrelation of Text Editor Command Processor and

Service routines . . « o . . e e e s e « e o o e o =
Figure 10. Overview of the Text Edltor Controller logic . . .
Fiqure 11. Command routines - . « . e .

Figure 12. Macro instructions supported by the command system

Chart AA. Command Analyzer and Executor - CZASA
Chart AB. GATE — CZATC &« &+ « « o s a o s o o« s a o a o s « « =
Chart AC. SCAN routines — CZAAC .« o ¢ 4+ o o o s = s s s« « « o
Chart AD. Userxr Prompter — CZATI .« ¢ v ¢ « o o o o a o =« o o =«
Chart AE. Attention Handler - CZASB . ¢ ¢ 4 o o 2 2 « = « o« =
Chart AF. Source List Handlers - CZASC . . e e e e s e e e s
Chart AG. Control Dictionary Handlers - CZASD e o o % s o o o
Chart AH. EDIT Controller — CZATS . . .+ o o o « o o 2 o o« o =
Chart AI. CONTEXT = CZASM ¢ ¢ o o o o« ¢ o a o s o s o « o« « =
Chart AJ. CORRECT Command Processor - CZASQ « o s o e & @« » =
Chart AK. EDIT Initialization = CZBSE =+« o« o o « « o o o « o «
Chart AL. EXCERPT — CZASK &« o« 2o ¢ o 2 s o s s a o s a s« « o =
Chart AM. EXCISE Command Processor CZASL o « ¢ o o o « o« o =«
Chart AN. INSERT Command Processor CZAST & o o« o o o « o« = o
Chart AO. DATALINE Entry — CZASG . «v o« v o o o o o o o o =« « =
Chart AP. LIST — CZASP . « o 2 o « a 2 o o s 2« a o 2 o o« « = «
Chart AQ. LOCATE ~ CZASN +« « 4« « o o o« = 2 o a » 2 s« s = 2« a =
Chart AR. MATCH - CZAST c o e & ¢ % o e« o ® @ s e * a ° o e =
Chart AS. NUMBER Command Processor — CZASU . ¢« « o « « o « o
Chart AT. Profile Handler - CZASZ . ¢ o o « o o = o o o « «
Chart AU. REGION - CZASF . ©v « o o o« o a s a s a s« s o« s « « =
Chart AV. REVISE Command Processor — CZASH . .« « « o o o o o «
Chart AW. STET Processor — CZASV . « o o o« o o o o« o«

|

Chart AX. Transaction Initialization routine (TRIN) - CZBTA/CZBSY

Chart AY. Transaction Table Update (TRUP) - CZASS/CZBSX . . .
Chart AZ. UPDATE Command Processor — CZASR . . «. « « o « « = =
Chart BA. ABEND - CZACP/CZACQ/CZACR =+ « o o « « o s o o = o
Chart BB. BACK — CZABC . « « « « o o 2 s o o o s o« o o « = o« «
Chart BC. BWQ EXHIBIT ProCeSSOLr =« « « o o o o o = o o« o« = = @
Chart BD. CANCEL - CZABJ « 2 « « 2 s o o s o s s s o o« o « o« =
Chart BE. CATALOG - CZAEI . & 4 o o 2 =+ o s « o« s s 2 « « » =
Chart BF. CDD - CZAFS “ e a4 o &« 8 e o ®» e 8 ®© 8 o & o o « e =
Chart BG. CDS = CZAFV . @ v 4 v 4 o o o o« o o o o o o « o « =
Chart BH. CHGPASS = CZATI . v . 4 o o o s o « o« o o« o o« « = =
Chart BI. CLOSE = CZCHB ¢ &+ & ¢ 2 2 o = s o o s o o o o o« o «
Chart BJ. DATA - CZADF . v v v 4 4 o o o o o o o« = o = o o = =
Chart BK. DDEF = CZAEA . 4 &+ ¢ o « o« o o a o o = a a o o o o«
Chart BL. DSE?/PC? - CZAEL . e @ o a4 & & o e s s o a e = & =
Chart BM. ERASE/DELETE - CZAEJ « o 8 & a4 s 8 = o @ w s o o 3 =
Chart BN. CATVAM — CZCFB v 4« 2 2 4 o o« 2 o = o s = o o a o =+ =
Chart BO. EXECUTE - CZABB . . . e 5 s s 3 = ® ® » e e o o s
Chart BP. EXHIBIT Director - CZAYD “ ® = s 8 e e = = ® = e o

viii

L] L]
£ N
CELO~SION e

. 207
. 215
. 230
.234
. 245
.2u8
.256
. 265
.270
. 273
.280
. 281
.284
. 288
.289
. 292
.298
.301
.302
.305
. 306
-308
. 309
.310
.311
.312
. 314
.332
.- 334
-336
.338
.342
. 347
.352
.353
.360
.363
.370
. 373
.378
.383
.385

Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart

BQ.
BR.
BS.
BT.
BU.
BV.
BW.

BY.
CA.
CB.
CC.
CD.
CE.
CF.
CG.
CH.
CI.

CK.
CL.
CM.
CN.
co.
CP.
cQ.
CR.
CcS.
CT.
cu.
CV.
CW.
CX.
cY.
CcZ.
DA.
DB.
DC.
DD.
DE.
DF.
DG.
DH.
DI.
DJ.
DK.

FINDDS - CZAEC . . .« . « .
FINDJFCB - CZAEB
FIOW - CZAGD « .

IF string comparison - CZBLT .

JOIN - CZAFK . « .« « « +
JOINRJE/QUITRJE - CZABS .
JOBLIBS - CZAEK . « « « &
KEYWORD - CZATH
LINE? - CZAEM
LOGOFF - CZAFN« &
LOGON - CZAFM . . « . «
ILOGON2 - CZBTB .« . « . . .
MCAST - CZATU . . « « + =
MODIFY - CZAEG . .« + <« «
MSGWR - CZAAD . . ¢« .« « =«
PAIR - CZACS . &« o o « o «
PERMIT - CZAFH « .
Parameter Analysis (POD) -
PRMPT command - CZBTC . .
PROCDEF - CZATP
Procedure Expander - CZATE
QUIT - CZAFL . « « « +« . .
RELEASE - CZAFJ « s e+ o @
RET - CZAEN . . . « .+ <« «
RPS/CVV routine - CZAXX .
SECURE - CZAFU+ . .
SHARE - CZAFI . . . <« <« .
SYNONYM/DEFAULT - CZATR .
SARD Processor - CZAYE . .
SYSXPAT - CZATF1
TIME - CZAVB . . « <« « « =
UID Processor - CZAYG . .
UPDTUSER - CZAGC
USAGE command - CZAGB . .
User Control - CZAMZ . . .
VAM tapes - CZAET -- Entry
VSS - CZAVR . « <« & « &« =
LPCMAIN - CFADA
GETLINE - CFADB . . « . .
PUTDIAG - CFADC
DIAGNO - CZAHA . . . « . .
IAIP - CZAHB ¢« « « ¢ « o .
XIP/XIIS - CZAHC
XIMS/XIES - CZAHD
VMTI - CZAAF
VMTI-2 - CZATD

- - - - - - - -

.386
.388
-390
.394
-395
400
. 403
. 405
406
L4131
414
.u18
<425
<427
-429
. 430
431
432
441
442
. 449
463
.468
<476
478
. 486
.487
. 488
-490
491
~492
. 493
494
496
-499
. 515
.535
.536
.540
.543
.54y
.545
-.546
.548
. 549
.550

ix

SECTION 1: COMMAND SYSTEM OVERVIEW

COMMAND SYSTEM FUNCTIONS

The command system has three basic functions:

1. Recejve and interpret commands submitted by users of the time-
sharing sharing system.

2. Carry out the actions requested by each valid command.

3. Inform the user of the results of the actions performed or, if a
command is invalid, inform him of his error so that he may correct
it.

The command system has been designed to meet a number of major objec-
tives that incliude facilities to:

e Provide the user with tne ability to define his own commands.

* Permit the user to call his programs or procedures by direct
commands.

¢ Standardize command syntax.
e Provide default and profile facilities.
¢ Provide a general editing capability.

The command system accepts all commands described in Command System
User's Guide, Manager's and Administrator's Guide, and Operator's Guide
(Full titles and order numbers of these publications are shown in the
preface.) Commands may be accepted directly from a user at his termin-
al, or indirectly from a set of commands previously stored in the time-
sharing system. The command system also processes a number of macro
instructions that may be employed in user object programs; the expansion
of these macro instructions results in object code that will link to the
appropriate command system module at execution time.

The command system also contains a collection of service routines,
almost all of them privileged, which operate in virtual storage under
the control of the task monitor.

Each TSS/360 task includes a task monitor and some portion of the
command system. The specitic modules that appear in the task depend, of
course, on the actions requested in that task. The task monitor handles
all interruptions, and calls upon the command system as needed. In
turn, the command system calls upon the TSS/360 general service, catalog
service, and access method routines; it also requests system functions
through supervisor calls, such as VSEND and TSEND. BAll actions per-
formed by the resident supervisor, such as paging and time slicing, do
not influence the command system operation.

COMMAND SYSTEM ORGANIZATION

Command Controller

The command controller consists of the Command Analyzer and Executor
as the highest control routine; to this routine is added other routines
to handle procedures, defaults, synonyms, and comments. Also, the lan-

Section 1: Command System Overview 1

guage processor controllers and text editor are driven by the command
controller.

The basic control of the command controller is done by the Command
Analyzer and Executor. The Command Analyzer and Executor is invoked
upon initial task entry. It may alsc be invoked recursively by a user,
upon intervention of an object program, or during language processor
control. This routine calls the Verb Scanner to determine the verb type
from the control dictionaries. The verb operands are translated and a
command routine is called to execute the verb.

Normal procedures are handled by the Procedure Expander, which scans
for procedure parameters, retrieves the procedure from the procedure
library, and performs character substitution of the parameter specifica-
tion for each occurrence of the dummy parameter in the procedure model.

Text Editor

The Text Editor commands help make it possible for data sets to be
created and maintained. Lines of data may be edited within an existing
VISAM data set or as they are entered into a VISAM data set. The User
Control routine provides the principal interface between the Text Editor
routines and the remainder of the command system, as most Text Editor
routines operate in a nonprivileged state. The Edit Controller, which
is external to the text editor (but also nonprivileged), provides an
interface with the other modules in the system. All Text Editor com-
mands are BUILTIN-created; each BPKD points to a common entry point
located in the User Controller. After locating the BPKD, User Control
supervises the execution of the command.

Command Routines

The largest part of the command system consists of command routines,
almost all of which are privileged BUILTINs. Typically, each of these
processes a single command ox macro instruction by calling general ser-
vice routines and other command routines, in a prescribed order, to
carry out the requested actions. The operation of the command routines
is basically the same: They are called by the Command Analyzer and
Executor (or by another command routine or macro instruction); they make
use of routines in the command controller to get input and issue output;
they call general service routines as needed; and, when finished, they
return to their calling routine. For an external description of the
commands, consult the appropriate guide (listed in the preface). The
command routines are contained in Section 4 with the exception of the
PUNCH, PRINT, WT, RT, ASNBD, FORCE, HOLD/DROP, MSG/BCST, REPLY, SHUT-
DOWN, and XWTO routines. These routines are described in the QOperator
Task and Bulk I/0 PLM, GY28-2047.

Several modules that perform support functions for the command rou-
tines are also described in Section 4.

Macro Instruction Processing

The command system handles many macro instructions. In general,
expansion of those macro instructions produces object coding that links
to a command system routine. Usually, the linkage is to a special macro
instruction entry point in the routine so that the routine will not
issue messages, but instead will return a code to show the processing
results. Some command system modules (for example, those used to access
SYSIN and SYSOUT) are linked to only by macro instructions. Other com-
mand system routines may be called by macro instructions and commands.
See Section 5.

Source Langquage Processing

Three command system modules, LPCMAIN, GETLINE, and PUTDIAG, serve as
an interface between the language processors (FORTRAN compiler, assembl-
er, and linkage editor) and the user, or his prestored source program.
These modules get parameters for the language processors, get source
lines, and pass language processor diagnostics to SYSOUT. See Section
6.

Interruption Handling

The command system includes several modules that are entered by the
task monitoxr for the following types of interruptions: the external
interruption caused by intertask messages; some program interruptions;
and the initial attention interruption of a conversational task. See
Section 7.

COMMAND SYSTEM MODULE INTERACTIONS

Command system modular interaction is most easily understood as a
function of time. Thus, the figures shown in this section are develop-
mental, tracing command system interaction during the execution of spe-
cific functions. The first two are initialization functions:

Figure 1 - Explanation of the LOGON Procedure
Figure 2 - Initial Command Entry Procedure

The command entered may be a BUILTIN call (such as CDS or EDIT), a tex-
tual procedure, or a "direct call.™ (This last could be a dynamic
statement or a LOAD, UNLOAD, or parameterless CALL command.} Figures 3,
4, and 5 demonstrate the command system's general operation in these
cases. Figure 6, the last figure in this section, presents the overall
linkage of command system modules.

The command system contains two centers of information, the source
list (SL) and the combined dictionary. All commands in the system are
read from the source list. The combined dictionary is the source of the
names of all procedures, synonyms, defaults, and command variables.

The source list is a list of pending transactions. When the proce-
dure capability was added it became possible to stack commands. The use
of a procedure verb will result in the procedure expander placing more
verbs in the source list. Execution continues until all of the verbs in
the source list have been processed.

COMMAND SYSTEM OPERATION

The following paragraphs describe the general operation of the com-
mand system. The description begins with the command system operation
at system startup, and continues to system shutdown.

System Startup

At system startup, command system initiates the main operator's task,
and peforms the following prefatory functions: opens the operator's
log, initiates the batch monitor task so that it can start operating,
and readies the system for normal time-sharing operations.

Conversational Task Initiation

When a user causes an initial ATTENTION at his terminal, by pressing
the attention key or by dialing the telephone number to initiate conver-

Section 1: Command System Overview 3

sational operations, the resident supervisor establishes a task for him.
The task monitor links to the command system's Initial Attention Inter-
rupt Processor, which performs a variety of task initialization func-
tions; these include definition of the system library and other system
data sets, and identification of the user's terminal as the SYSIN and
SYSOUT for the task. The LOGON command routine is then called to start
conversational processing by prompting the user for his credentials.

Nonconversational Task Initiation

The user has three ways to start nonconversational tasks: he may
issue an EXECUTE or BACK command from his terminal after he has logged
on; he may issue a bulk input/output command (PUNCH, WT, or PRINT); he
may submit a punched sequence of commands to the operator who will input
them via a high-speed card reader or the RT command.

IAIP (CZAHB) l¢——————— Entered from Task Monitor on
Save Task Monitor initial attention interruption
linkage in
NTCTMR .

VMTI (CZAAF)
Adds public devices
Opens SYSCAT
Opens SYSSVCT

DDEF (CZAEA): Create JFCBs

for all system data sets

FINDJFCB (CZAEB): Find
SYSLIB DCB

Open SYSLIB DCB |
I TIME (CZAVB): Initialize time

VMTI-2 (CZATD)
Open SYSMLF
Find VPAM member SYSMLF

LOGON (CZAFM)

Get LOGON parameters from real core via SVC,
Validate LOGON parameters.

Complete user tables.

Put salutation message.

Tell operator.

l

LOGON?2 (CZBTB)
Open SYSLIB and USERLIB DCBs.
Find USERLIB (SYSPRO) and USERLIB (SYSMLF).
Open SYSLIB (SYSPRO) and SYSLIB (SYSPRD).
Construct combined dictionary from USERLIB
and SYSLIB,
o Enable Command System Attention Handler.

COMMAND ANALY ZER AND EXECUTOR (CZASA)
Obey ZLOGON.

Queve Linkage Entry to CZASA l

|

Return to Task
Monitor via NTCTMR >

Figure 1. Explanation of LOGON procedure

As a result of the QLE Set up by VMTI-2 during LOGON, the Command Analyzer and Executor is called to service the user's commands ...

COMMAND ANALYZER (CZASAY)
Calls CZASC1 to create new

SOURCE LIST HANDLERS

CZASCI: Recognizes

sublist

that there is no
previous sublist and
sets first sublist

Calls CZASA2 to isolate verb

VERB SCANNER (CZASA2Z)
Recognizes that there is nothing
in the SL sublist (EOB).

Calls CZASC4 to process the
E marker

Begins sconning at start of
Sublist again. lsolates ond
validates verb. Returns
pointer to Command Analyzer.

flag on.

CZASC4: Sets up to read
a new fine into the SL at
the first sublist position.

Puts line in SL sublist.
Inserts E marker after this
line. Verb now available

Calls CZASD to find verb

for verb scanner

»1 GATE (CZATCYH
Prompts
user

- Reads command
from user

USER GETS

UNDERSCORE,
ACKSPA

DICTIONARY HANDLERS

in combined dictionary.

> Searches dictionary

for verb,

Command is one of these types:
e BUILTIN
e Textual Procedure
e Direct call

‘Figure 2.

Returns a pointer

COMBINED
DICTIOMNARY

Initial command entry procedure

USER ENTERS
COMMAND

For an EXECUTE or BACK command, the Command Analyzer and Executor
reads the command entered at the terminal and,

mand name, calls the EXECUTE or BACK command routine.

after checking the com-

EXECUTE validates

the command operand, and sends a request to the batch monitor to start a

nonconversational task.

The batch monitor requests a task status index

FTSI) for the new task, and initiates the task by sending a message to
it; the resulting interruption acts in the same manner as the initial

attention interruption of a conversational task.

The task monitor and

the 9ommand system of the new task respond to the interruption by per-
forming the necessary task initialization, and the command system then

Section 1:

Command System Overview 5

COMMAND ANALY ZER
(CZASAT)

Has determined that the

verb is a valid BUILTIN

procedure

BUILTIN PROCESSOR (CZASA2)
Resolves BPKD symbol,

PROCEDURE PARAMETER EXPANDER
> CZATE3: Anclyze parameters

CZATE4: Fill in any default

values

USER CONTROL {CZAMZ)
Privileged No -
BUILTIN > CZA.MZY: Uses Tofk Monitor
to dispatch nonprivileged
(BUILTIN. R13: reflects Task
Monitor Save Area.
R14: CZAMZI9,
[R15: Address of BUILTIN, LVPSW TASK
PROCESSING PSW: Address of BUILTIN, MONITOR NONPRIVILEGED
MODULE 1 Dispatches BUILTIN:
Could be a ! i routine May be user
command like | | ?ddreised code or an
DDEF or PC? | I in PSW LPF? like the
or a legal PCS | i Editor.
procedure 1 -
Invokes PCS Phase T & 'RETURN
processing (CZANA) CZAMZ2: CZAMZI19
if legal PCS procedure Cleans up and
being processed. does level
Updates the source checking. In this
Iist. instance, returns to

CZAMZ1's calling
routine at a special
CZASAS entry point,

Uses Verb Scanner
to get next verb
and continues
processing

//‘//—d

Figure 3. Execution of BUILTIN procedure

fetches its commands from the prestored data set that serves as SYSIN
for the nonconversational task. BACK changes the mode of a task from
conversational to nonconversational; it uses the batch monitor only to
ensure that a new background task is permissible at this time and, if it
is, sets the TSI to indicate nonconversational mode. Commands will sub-
sequently be read from the data set specified in the BACK command.

PUNCH, PRINT, and WT commands may appear in conversational and non-
conversational tasks; RT commands may be issued only in the operator's
conversational task. For each of these commands, the Command Analyzer
and executor validates the command name, and calls the BULKIO preproces-
sor. The preprocessor ensures that the command operands are acceptable;
the user will be prompted, if necessary, and the preprocessor concludes
with a request to the batch monitor for task initiation. The batch mon-
itor operates in the same way as it would for an EXECUTE. There is no
actual SYSIN for bulk input/output tasks. The SYSIN is a sequence of
object code supplied as part of the command system; it is not the usual
prestored series of commands.

COMMAND ANALYZER
(CZASAY)
Has determined that input
verb represents o textual
procedure

PROCEDURE PARAMETER EXPANDER (CZATET)

o Locate procedure in PROCLIB.

® Isolate and validate verb.

o Set the starting address in the source
list for a parameter scan.

Build the ELIST and
the INST from dummy

parameters. SCAN (CZATES)

[solates a parameter
l string fragment for
both BUILDLIST and

Any

Calling LISTEQ (CZATE2) LISTEQ
Parameters R ALY
? Build PLIST from
No calling parameters.
DEFSEARCH (CZATE4)
Insert default
values into PLIST. SUBPARAMETER SEARCH

CZATEND: Seeks
subparameters

- o Complete filling in source list.

VERB SCANNER (CZASAZ)
Isolate and analyze verb
fromn source list - as
created by Procedure
Parometer Expander.

Process verb as required.

Figure 4. Execution of a textual procedure

Processing A Command

The Command Analyzer and Executor starts command processing by
obtaining the next command to be processed from the tasks® SYSIN. The
routine checks the validity of the operation before calling the appro-
priate command routine. The command routine, after verifying the corre-
ctness of the command operands, calls on TSS/360 general service rou-
tines, and other command routines, to carry out the requested actions,
and then returns control to the Command Analyzer and Executor. This
routine fetches the next command from SYSIN, and the entire processing
cycle is repeated.

The verification performed by the command routine makes use of check-
ing routines included as part of the SCAN package. If errors or omis-
sions are found, the command routine will issue messages to the task's
SYSOUT. In the conversational mode, the user may make corrections when
responding to system messages, or he may reenter the command. Since the
user is not present for a nonconversational task, any message that
requires a user response results in termination of the nonconversatiocnal
task.

Section 1: Command System Overview 7

COMMAND

ANALYZER (CZASA1)
Haos decided that verb LOAD, UNLOAD, CALL (without parameters) USER CONTROL (CZAMZ)
CZBTG2: Executes

is not o procedure. el
command. For LOAD or

\ UNLOAD operation retums
PCS COMMAND ROUTINES: Begin tc CZASA1. However,
processing such command as DISPLAY, CALL still needs o
DUMP, REMOVE, QUALIFY, AT, parameter.
If the command ond CALL (with parameters).
processed is AT, : :
ro further PCS catL | i
processing is done. | i
Otherwise PCS INPUT | |
Py {CZANA) PCS OUTPUT | gy ception: when CALL i
Examines and (CZAPB) is the command.
processes the Calls a Command CZAMZ]: Uses Task
input string. System routine to Monitor to dispatch
execute function. requested routine.
R13: ptr. to save area
R14: CZAMZI9
Returns to R15 and FjSW: c.ddress of
. R routine dispatching
calling routine g
LVPSW 1
| |
| |
CZAMG2: Find the | I
name of the routine < TASK MONITOR | |
to be called ~ giving I |
——1 CALL a porameter i l
| t
Dispatches routine |
whose address is | I
ROUTINE THAT IS d in the PSW, | l
CALL'S PARAMETER
Updates the source T Fxecute >
fist to end of phase CZAMZ2: Cleans
or sentence. CZAMZ19/ 4p and does level
checking. Normally
Gets next verb and Note: The PCS logic shown exits to CZAMZ s
continues in the center of this diagram calling routine. In this
is not described further in case, exit is one step
this publication. See PCS further back .
PLM.

Figure 5. Execution of PCS commands with Direct call

Terminating A Conversational Task

Since conversational users are available to handle error conditions,
conversational tasks are terminated only at the user's request, except
in cases of system shutdown, major system errors, or terminal failure.
The LOGOFF command routine handles the normal termination; this ensures
an orderly conclusion to the task. When LOGOFF has finished, it informs
the task monitor which eliminates the task by deleting its task status
index and by making its storage availakle to other tasks. The only
trace of the task remaining after this operation is the cataloged data
sets, if any, that have been retained.

Terminating A Nonconversational Task

Nonconversational tasks may be terminated either normally or abnorm-
ally. Normal termination is the same as a conversational task termina-
tion except that the SYSOUT data set, which contains all system communi-
cations to a task, is printed. The SYSOUT data set will be listed at
the computer center. Another difference is that LOGOFF, when processing
a nonconversational task, notifies the batch monitor that the task has
ended. This notification is required to permit the batch monitor to
update its records.

VMTI 1 VMTI 2 LOGON2 DEFSEARCH LISTEQ BUILDLIST SYSPRO
CZAAF CZATD [e¥4:28:] % CZATE4 CZATEZR CZATE2
T T |
=" Séwsirive 70 —— 23] | i
ENVIRONMENT L 1 1
LOGON COMBINED SYSPRO i
1 DICTIONARY SYSPRX |
i
i |
|
CZAFM |
T
1 H |
N]
i | !
i] PROCEDURE| 1
l 1 EXPANDER
i
1
SYNONYM /DEFAULT b :)
! DICTIONARY ZASAS
i HANDLER
' SYNONYM
: czZasSD VERB
SCANNER
H ps(: }
f
' czasA2
1
|
'
; SYNONYM/ ; NONPRIVILEGED
X DEFAULT | _[commann BUILTIN S BUILTING
) ANALYZER PROCESSOR
USERS } D 3
I CZATR AN Y
| EXECUTOR T CZASA3
i { CZASAI -4 PRIVILEGED BUILTINS ‘e
| ’ :
ATTENTION GATE SOURCE | onenes sorer
HANDLER 1 LisST N FRIVILEGED BUILTINS
oms S |
vor HANDLERS 3
sewsiive rof Y ! ‘_@ . o AT REMOVE
ENVIRONMENT] . I)
CZASB CZATC CZASC PROCESSING]
T i : MODULES
' V owecT can | UV
l 1 :
| SOURCE ' PCS PHASE
| LIST . 1
—
i ViF SET
i DISPLAY
Toume
! DIRECT CALL
i s a.
! i I
; SYSXPAT USER PCS PHASE
i CONTROL I
| ROUTINE
i CZATF CZAMZ CZANA
i
t
i
USER SYSMLF PCS PHASE
PROMPTER T
P R e
}
CIZATY CZaPB
H
i —— 1t =
! 1 | :
i i [KEY
i : USER SYNONYM -» COMMAND LABEL
' H CODE | NONPRIVILEGED w- DESCRIPTIVE LABEL
! i AND LPC |
! i = == = —— NO CONTROL PASSED
D A i S S —" — BUILT IN CALL
ENVIRONMENT i —»d WONPRIVILEGED CODE e
Figure 6. Modular relationship of the command system

A nonconversational task will be abnormally terminated whenever an

uncorrectable error is detected.

ces a premature logoff.
will include a statement that reveals the cause of the abnormal

termination.

Section 1:

In this case,

the command system for-
The SYSOUT of the task will be printed,

and it

Command System Overview 9

Processing Macro Instructions

Command system makes no distinction between processing a command or
processing a macro instruction, except in one situation. When some com-
mand routines are handling a macro instruction, they set indicators so
that the macro instruction will not issue messages, but will return to
the calling routine a code that reveals the success or failure of the
routine. In all other aspects, the command routine operation functions
in the same manner as if a command were being processed.

Some command system routines are accessed only by macro instructions.
These routines do not ordinarily issue messages, but they do return a
code to the calling routine.

When a macro instruction is being processed, there is a direct link
between the user's object program and the command system routine; the
Command Analyzer and Executor is not involved. This means that the cal-
ling routine must perform any error recovery procedures that may be
required.

System Shutdown

When the main operator issues a SHUTDOWN command, every active task,
except the operator's, is terminated. Conversational users will receive
messages that inform them that their tasks have been terminated. Non-
conversational tasks will be terminated by the batch monitor, which
issues a message to the SYSOUT of each task to explain the reason for
termination. After all tasks have been terminated, the operator is
informed, and his own task is terminated. He may then physically shut
down the system.

10

SECTION 2: COMMAND CONTROLLER

The Command Controller consists of the Command Analyzer and Executor
routine, and six system support routines. The Command Analyzer and
Executor (hereafter: Command Analyzer) obtains the next command to be
processed, and determines the verb type from the control dictionaries.
The verb type dictates the remaining scan to be used for each verb. The
names and functions of the six system support routines are:

Routine Name Function

GATE Reads system input (SYSIN) and writes system output
(SYsouT) .

SCAN Fetches and validates command parameters for both

privileged and nonprivileged routines.
User Prompter Communicates with system users.

Attention Handler Accepts and interprets the synchronous attention
interrupts from the task monitor.

Source List Handler Services the source list.

Control Dictionary Provides access to the combined dictionary.
Handler

The Command Controller provides an interface between the remainder of
the command system, and the SYSIN and SYSOUT data streams. Command pro-
cessing is initiated by the Command Analyzer, which is the basic control
routine. When each command has been completed or terminated, control
returns to the Command Analyzer. The six support routines are employed
as needed. The following paragraphs describe the overall operation of
the Command Analyzer, and the support routines.

COMMAND ANALYSIS AND EXECUTION

Command analysis and execution is generally done in three steps: (1)
the verb is recognized, (2) the verb orerands are translated, and (3)
the verb is executed. The Command Analyzer is invoked upon initial task
entry. 1In addition, it may be invoked recursively by a user, upon
intervention of an object program, or during control of language proces-
sors. Verb resolution is performed by the Command Controller after cal-
ling the Verb Scanner (a part of the Command Analyzer). A transient
command that is designed to be passed to a language processor at a spe-
cific place will cause the remainder of the line to be built into a
single string, and passed to the invoked language processor, if a pro-
cessor is defined.

When the verb is a user or system procedure verb, command analysis
calls the Procedure Expander to analyze the parameters, and to expand
the procedure. The output from the procedure expansion is added to the
source lists.

When command analysis uncovers a conditional statement, the PCS Phase
1 IF routine is called to expand the condition, and the object executor
to determine the value of the IF condition. If the condition was not
true, a special scanner is invoked to find the end of the statement.
Otherwise, the text of the statement is bequn by the Command Analyzer.

Section 2: Command Controller 11

An AT verb invokes the AT Analyzer and enables the dynamic statement
switch. Thus, the remaining statements in the line are analyzed, but
they are not executed until the AT is satisfied. In this case, state-
ments which are not executable dynamically are recognized, and appropri-
ate diagnostics are produced.

If the verb was found to be DISPLAY, DUMP, SET, or a program call,
then the program parameter list analyzer (PCS FORMLIST and PCS Phase 2
parameter processing) is called to analyze the parameters; the commands
are invoked by the appropriate execute routine: DISPLAY/DUMP, SET, or
LINK.

Recognition of a DEFAULT or SYNONYM verb results in a call to the
DEFAULT/SYN processor to make the appropriate changes to the primary
control dictionary.

If the verb was GO, then the last uncompleted program will be
resumed. Any commands that were still unexecuted in the source list at
the time of intervention will become eligible for execution upon comple-
tion of the uncompleted routine. Any commands in the source list fol-
lowing GO will be discarded.

When a program issues an LPCINIT macro instruction, it causes the
Edit Controller to be initialized, and the calling program is treated as
a lanquage processor controller. A subsequent LPCEDIT macro instruction
issued by the language processor controller will cause the LPC to
receive input. Any subsequent EDIT commands recognized by the Command
Analyzer will cause the EDIT command processor (a part of the User Con-
troller) to be called. The EDIT command processor in turn calls the
appropriate Edit routine, which, on completion, exits back through the
EDIT processor to the Command Analyzer.

GATE ROUTINE

Normally, GATE either reads from SYSIN and/or writes on SYSOUT, as
requested by the calling routine. Four types of writing capability are
provided:

e Write with available response (fetch the next record from SYSIN
after writing)

e Write with spontaneous response (read the next record from the key-
board after writing)

e Write with no response

s Write with carriage control and no response

SCAN PACKAGE

This package is used by command routines to validate command parame-
ters as well as to fetch those parameters. The SCAN package consists of
six routines, whose names and functions are:

Routine Name Function
NEXTPAR Locates the next parameter field, and inspects it for
invalid characters.
CHEKDS Checks a data set name for valid form and characters.
ALFNUM Checks for a valid symbol.

12

NUMSTG Checks for a string of valid numeric characters.

CHRKNUM Checks a string of numeric characters, and converts them
to a binary value.

ALFBET Checks for a string of wvalid alphabetic characters.

USER PROMPTING

System programs use a centralized message communication facility to
communicate with external users of TSS/360 Messages, responses, and
explanations for messages are defined by system users. All of this
information is cataloged in a central file; a call tc the User Prompter
retrieves it. When the User Prompter is called, via the PRMPT macro
instruction or the PRMPT command, it converses directly with the extern-
al user by displaying messages and explanations, and by reading his
responses. When the conversation has been completed, the User Prompter
returns tc the calling program a code that indicates the response to the
original message.

ATTENTION HANDLING

The Attention Handler accepts interruptions from the task monitor,
and interprets any input which may occur. The possible responses by the
system are as follows:

1. Intervention is prevented if the Attention Interruption Prevention
Switch (AIPS) is set and control is returned normally.

2. A user routine (specified in an AETD macro instruction) is given
control to handle the attention interruption.

3. The current process is interrupted, and commands are accepted from
the console at a new level.

4. The attention interruption is ignored (an immediate carriage return
at the terminail).

SOURCE LIST HANDLING

The Source List Handler processes all entries and deletions to the
source list. The source list contains all of the commands that have
been entered into the system by the user. Whenever there are no com-
mands in the source list, the Source List Handler will call GATE to
issue an underscore and backspace to the user.

The following routines allow manipulation of the source list:
1. PUSH/POP routine.
2. Buffer fetch routine.
3. Marker processors.
4. Synonym expander.

5. UPDATE routine.

6. SYSIN routine.

Section 2: Command Controller 13

CONTROL DICTIONARY HANDLING

The Control Dictionary Handler processes all requests regarding the
combined dictionary. The combined dictionary, which is the source of
the names of all procedures, synonyms, and defaults, is created by the
LOGON2 routine (CZBTB).

This routine utilizes a set of internal subroutines and macro
instructions, which operate on any dictionary of the form of the control
dictionaries. The following routines and handlers are available:

1. STARTFIX routine.

2. STARTVAR routine.

3. HASH macro instruction.
4. RFR routine.

5. NEXTRFR routine.

6. ENTR routine.

7. DELENT routine.

8. EXTDIC routine.

9. PACKVAR routine.

THE COMBINED DICTIONARY

The Dictionary Handler Module (CZASD) is capable of handling any
hasphed entry. In the command system this module processes entries for
the combined dictionary.

The system references: a synonym dictionary, default dictionary,
BUILTIN procedure library, textual procedure library, an internal symbol
dictionary, and a task dictionary which lists external symbols. These
dictionaries cover the range of the language that is used by the system
(the vocabulary of the system).

The formation of a combined dictionary permits a reduction of search
time. However, it is not possible to include all of the individual dic-
tionaries in the combined dictionary. The internal symbol dictionary
and task dictionary are not included in the combined dictionary.

Each entry in the combined dictionary is known by an eight-character
name; some information about the kind of entry (source, purpose) is
included. Entries containing less than 200 bytes are inserted directly
into the combined dictionary. Larger entries contain a pointer in the
dictionary entry. Pointers are used for system modules and procedures;
values are used for command variables, synonyms, and defaults; in gener-
al, the combined dictionary contains the value.

The LOGON2 routine (CZBTB) contains the scheme for creating the com-
bined dictionary; it allows the user dictionaries to be constructed from
the user and from system information. In this manner a centralized
repository of vocabulary 1is established.

The system library provides a source of information for the combined
dictionary. BUILTIN and textual procedure names are obtained from a
data set called SYSPRD, which is a dictionary of system procedures and
system BUILTIN procedures. SYSPRD is estaklished at the same time that
SYSLIB is established, and it becomes part of the combined dictionary

14

each time the LOGON procedure occurs. If the user adds any dictionary
entries in the form of procedures or builtins to his USERLIB, then these
entries will become part of the combined dicticnary the next time this
user logs on. The dictionary search logic allows a search of the SYSLIB
version or the USERLIB version; the user may designate the SYSLIB in
preference to USERLIB.

SYSPRX (system prototype file) stores system defaults and synonyms in
SYSLIB. If the user has created his own profile, then there is a SYSPRX
member of USERLIB. LOGON2 selects the library to be used.

If there is a SYSPRX member of USERLIB (which indicates that the user
has created his own profile environment), then that data set is picked
up, and the synonyms, defaults, and command variables are added to the
combined dictionary. If the user has not created his own profile, there
will be no SYSPRX member of USERLIB, and the SYSPRX member of SYSLIB
will be used.

The references to dictionary handlers are made by a number of entry
codes and macro instructions. GDV (Get Default Value) is the most com-
monly used macro instruction; this is a call to find a default value for
a given name.

Direct calls require no further explanation. However, it should be
noted that some of the entry codes are placed in the entry table so they
may be called from nonprivileged code.

The SYN/DEF (CZATR), PROCDEF (CZATP), and BUILTIN routines create
dictionary entries. The user may create dictionary entries by employing
the SET command if he is referencing a command variable or command sym-—
bol. PCS (Program Control System) will recognize that a name is a com-
mand symbol. If it is, a dictionary entry will be created and the com-
mand symbol will be established.

After LOGON2 has established it, the combined dictiocnary is available
to the users. The combined dictionary resides in one or more pages of
virtual storage. The space is obtained by GETMAIN.

The PROFILE command is designed to take those entries which represent
synonyms and defaults {and optionally, those dictionary entries that are
command symbols), and to write a new version of SYSPRX in the USERLIB.
This is the way in which the user's profile is built. Profile also gets
the syntactical characters (set by MCAST and the translate table) from
GATE's PSECT and New Task Common, and makes the characters part of
SYSPRX.

At LOGON time GATE and the User Prompter cannot use the combined dic-
tionary because it has not been built. System hard-coded defaults are
used until the combined dictionary exists, but this imposes a strict
limitation on the system in the initial phases.

The logic of GETMAIN handling for dictionaries starts the dictionary
handler with a single page of space obtained through GETMAIN. Addition-
al space is obtained as required. As entries are deleted there is a
conservative effort to do some page cleanup.

THE SOURCE LIST

The source list contains a seguenced list of events which are going
to happen in the future. There is practically no record of past events
in the system. The user is able to change the sequence of events in the
source list by invoking an OBEY macro instruction or an expanded
procedure.

Section 2: Command Controller 15

The source list operates through a pushdown, popup structure (a list
structured event). As commands are entered into the system, they are
recorded in the source list which also provides working space for
various parts of the system. For example, the source list provides a
register save area when it is pushed.

When four or five commands on a single line, separated by semicolons,
are entered into the source list, the Command Analyzer and the Verb
Scanner will isolate a verb. A procedural verb requires that a number
of commands be inserted in its place. The new commands are placed in a
sublist, and a pointer to the sublist is made available to the system.
These sublists can be generated almost indefinitely.

The Command Analyzer always checks the source list for the next com—
mand. When the source list is empty, the Command Analyzer links to GATE
to prompt the user for additional input.

There are two special occurrences in the source list:

1. Whenever a sublist is created, registers are saved to permit a
return to original conditions.

2. E markers indicate the ends of lines or ends of logical segments
and sublists.

Items are not erased from the source list until the space is needed.
The source list is handled in virtual storage in the same manner as the
GETMAIN logic of the dictionaries; only required pages are used. An
indefinitely recursive routine can run the source list out of virtual
storage, and thus cause a system blowup.

Certain PCS commands {(such as AT, IF, DISPLAY, SET) access the source

list directly. The syntax of these commands is such that the Command
Analyzer would not be able to analyze them.

COMMAND CONTROLLER ROUTINES

The various routines and subroutines that make up the command con-
troller are described in detail in this section.

’Comand Analyzer and Executor (CZASA)

This routine serves as a driver for command interpretation. It com-
prises three major modules: the Command Analyzer, the Verb Scanner, and
the BUILTIN Call Processor. The Command Analyzer serves as the mainline
processor. After it initializes the source list, the Command Analyzer
calls the Verb Scanner, which identifies and isolates a verb in the
source list. When it returns, the Command Analyzer takes whatever
action is required by that verb -- deletes nulls or comments, expands
procedures and synonyms, controls language processor, and links to the
BUILTIN Call Processor to load and execute BUILTINs. (See Chart AA.)

ENTRIES: The three major modules, as well as certain other functions
are defined by the entry points in the Command Analyzer and Executor:

CZASA1 - normal entry to the Command Analyzer

CZASA2 - normal entry to the Verb Scanner

CZASA3 - normal entry to the BUILTIN Call Processor

CZASA4 - entry to the Command Analyzer for nonprivileged users (OBEY
entry)

CZASA5 - entry to the Command Analyzer when a command that has been
executed (via an attention interruption) returns to it. This
entry point is also used on completion of LOGON procedure

16

CZASA6 -
macro instruction)
CZASA7T -

entry point to assume control of attention interruptions (USATT

entry point to release control of attenticn interruptions

{CLATT macro instruction)

CZASAA - entry to the Command

MODULES CALLED:
below. Later in the list the

Analyzer after a CC=1 ABEND

The modules called by the Command Analyzer appear

modules called by the Verb Scanner and the

BUILTIN Call Processor are listed.

Source List Handlers:
POPSL (CZASC1l)

PUSHSL (CZASC1)

SL Update (SCZASCS6)

Verb Scanner (CZASA2)
Control Dictionary Handlers:
RFR Routine (CZASD3)
User Control (CZAMZ)
AT (CZASW3)
AT (CZBTG1l)
PROCEDURE Expander (CZATEl)
BUILTIN Call Processor
(CZASA3)
PCS Phase I (CZANA1l)
PCS Program Call (CZAMG2)

User Prompter (CZATJ1)

During its operation the Verb
Control Dictionary Handlers:

RFR Routine (CZASD3)
Source List Handlers:

SLMAIN (CZASCH)

SYNSL (CZASC5)

Deletes sublists.
Constructs new sublists.

Updates the source list to end of a sen-
tence or a phase.

Isolates verbs within the command string.

Searches combined dictionary for
procedures.

Processes transient commands.
Handles direct calls without parameters.

Expands identified procedures into the
source list.

Loads and passes control to BUILTIN
procedures.

Completes phase processing.
Handles direct calls with parameters.

Prints error messages at the user's
terminal.

Scanner calls the following routines:
Determines if the isolated verb has a
synonym value.

Processes source list markers.

Expands synonym values into the source
list.

During its operation the BUILTIN Call Processor calls the following

routines:
Procedure Expander:

LISTEQ (CZATE3)

DEFSEARCH (CZATEW)

Analyzes parameters and constructs a table
of pointers to them.

Searches for default values.

Section 2: Command Controller 17

Source List Handlers:
SL Update (CZASCS6) Updates the source list to point to the
next command.

EXITS: When its processing is ended (on error or on exhaustion of the
source list), the Command Analyzer returns to its calling routine via
the RETURN macro instruction. The Verb Scanner returns to the Command
Analyzer when it completes processing. The BUILTIN Call Processor exits
by calling a privileged command directly, or be calling the User Con-
troller to call a nonprivileged command processor. When this portion of
command processing is complete, the command routines exit via the RETURN
macro instruction, which returns to the Command Analyzer at CZASAS.

OPERATION: When entered at CZASAl, this routine calls PUSHSL (CZASC1)
to create a new sublist within the source list (SL). After setting up
the source list, this routine links to the Verb Scanner (CZASAZ} to
isolate and analyze a verb in the source list.

Verb Scanner: On entry the Verb Scanner initializes three internal
values to reflect a zero return code (RC), character count (CC - length
of verb), and depth count (D - used for expressions in parentheses). An
additional flag is set to designate an initial outside of comment condi-
tion. The GNC macro instruction is now expanded to locate the SL
character at the current scurce address (SA). The following actions
provide a description of the verb scan. Leading blanks and underscores
are ignored. A left parenthesis causes all characters to be included as
part of the verb, until a corresponding right parenthesis is found.

This includes all inner sets of parentheses, but should an end of line
occur before all of the sets are resolved (one to one correspondence on
left and right), an error exit is made. If the first character is the
transient command prefix character the Verb Scanner exits with an RC
indicating that a transient statement will follow.

If the first character is a quotation mark, all subsequent characters
are ignored until either the quotation is paired, or an end of line
occurs. Detection of a comma or equal sign at the beginning of the
verb, or outside of quotation marks or parentheses, results in an error
exit after scanning (without storing), until a semicolon or end of line
occurs.

When the verb's delimiter has been found, the verb is tested for a
synonym value. If there is a synonym value, SYNSL moves the verb into
the SL, updates the SL and returns control to the verb scanner. The
synonym value is examined. If the synonym value changes 100 times dur-
ing examination, a loop condition is assumed and an error return code is
set. If there is no synonym value, the routine exits to the mainline
Command Analyzer.

The following checks are made for possible verb errors, and a special
code is returned to the mainline Command Analyzer for each type: bad
clause foliowed by semicolon or end cof line; bad clause due to unpaired
parentheses.

The following return codes will be issued:

RC=0 = Verb, null, or comment followed by blank.

RC=4 = Verb, null, or comment followed by semicolon.

RC=8 = Verb, null, or comment followed by end of line.

RC=12 = Transient statement indicator detected as first character.
RC=16 = Bad clause followed by semicolon.

RC=20 = Bad clause followed by end of 1line.

RC=24 = Bad clause due to unpaired left parenthesis.

RC=28 = Possible synonym loop.

18

Return to Mainline: If an error is detected in the verb format (for
example: unpaired parentheses), the User Prompter (CZATJ1) is called to
send an appropriate message to the user's terminal. Then, the Source
List Update routine (CZASC6) updates the source list past the verb and
its subfields. Control passes to check for an end of sentence. If a
verb is a null clause or a comment, and is not a transient command, con-
trol also passes to check for an end of sentence. If a tramsient com-
mand has occurred in a dynamic sentence, an error is recognized, CZATJ1
and C2ZASCé are called to account for it. If the transient command did
not occur in a dynamic sentence, the Command Analyzer calls User Control
(CZAMZ) at CZASW3 to process the transient command. On return, the Com~
mand Analyzer loops back in its processing line to again call the Verb
Scanner to isolate and analyze the next verb in the source list.

If a verb has a correct format and is neither a null nor a comment,
CZASA1 hashes the verb via the HASH macro instruction and calls the RFR
routine (CZASD3) to determine if the verb is a procedure name (PROCDEF
or BUILTIN). If the verb is not a procedure name, control passes to the
PCS Program Call routine to process the direct call if parameters have
been supplied. Control otherwise passes to the User Controller at
CZBTG1 for a parameterless direct call. If it is a procedure name and
the dynamic sentence flag is on (that is, an AT verb exists in the line)
the verb is checked to ensure that it is a legal PCS verb; if not, an
error condition is diagnosed. If the verb is a procedure, it is
expanded into the SL via the Procedure Expander routine (CZATE1l); then
control is returned to the Verb Scanner to begin processing the PROCDEF.
If the verb had been a BUILTIN procedure, the BUILTIN routine (CZASA3)
would be called to load and to analyze the calling parameters of the
verb, and pass control to the program.

BUILTIN Call Processor: The BUILTIN's dictionary entry is examined to
determine if the BPK external name field has been resolved toc a VM
address. If the BPK external name field has not been overlaid by a VM
address, and if the entry indicates a system BUILTIN is being processed,
a search of COMTAB is made for the address of the external name. (CoM~-
TAB is a table in CZASA's PSECT that contains the external names and
BPKD address of each of the system BUILTINs.) If the external name is
found in COMTAB, the BUILTIN Call Processor need not call the Loader.
Otherwise, this processor retrieves the external name that identifies
the BPK from the BUILTIN's dictionary entry, and uses it, in conjunction
with the LOAD macro instruction, to insure that the BPK does reside in
the task's VM before the verb is called.

The third word of the BPK is tested for an identifier to determine if
the BUILTIN command has subparameters. If no subparameter processing is
required, a test is made to determine if the BPK defines calling parame-
ters. If no parameters are defined, a further test is made to determine
if parameters are supplied. These parameters, which are supplied (but
not required) are stripped, and the user is notified that they are being
ignored. Calling parameters require additional duties to be performed.

The SL will have to assume a temporary expansion to store parameters.
Since the expansion will be deleted upon termination of the BUILTIN, the
current entry point is saved for future restoration. The TYPE table
which is described in the procedure expander (identifies each BUILTIN
dummy parameter as normal, or a special quoted string) is set so that
all dummy parameters are normal. This assures that no calling parameter
will be stripped of its enclosing apostrophes.

At this point, the LISTEQ routine (CZATE3) is called to establish a
table of pointers to the calling parameters. Upon return from LISTEQ,
the calling parameters will exist in the SL as a continuous string,
where each parameter is preceded by a one-byte length characteristic.
The newly constructed PLIST (parameter list constructed by CZATE) will

Section 2: Command Controller 19

contain pointers to the calling parameter strings, and each BUILTIN
dummy parameter that did not have a corresponding calling value will
cause a zero entry within the PLIST at the same relative position.

The DEFSEARCH routine (CZATE4) is now entered to determine if the
dummy parameters, corresponding to zero entries in the PLIST, have
default values. If they have, the PLIST table is updated with default
pointers, thus completing the task of updating the BPK with pointers to
the BUILTIN's calling parameters.

If subparameter processing has been identified, processing similar to
that described above is performed; however the BUILTIN command processor
will call only the LISTEQ routine (CZATE3). LISTEQ will directly call
DEFSEARCH (CZATE4) for subparameters. The end result is the same; the
PLIST table is established with pointers to the calling parameters.

Processing now is similar for BUILTINs with or without parameters or
subparameters. There are two kinds of modules in the system: privi-
leged and nonprivileged, and it is necessary to determine the attributes
of this particular BUILTIN. If the BUILTIN is privileged, the module is
called directly from CZASA3. Nonprivileged BUILTINs are called via User
Control (CZAMZ1) which will perform the privileged/nonprivileged inter-
face and will dispatch them as nonprivileged.

The user is prompted (via PRMPT macro) and an immediate exit is taken
under the following conditions:

1. Use of the PIREC macro to check the validity of the BPKD's VCON and
RCON causes a program interruption.

2. Module to be loaded cannot be found.

When contreol is returned to the Command Analyzer, if the BUILTIN is a
legal PCS procedure (for example, DISPIAY, IF, RUN), and the dynamic
sentence flag is off, control is passed to PCS Phase II to complete
phase processing, and invoke the command. At this point, if the invoked
verb had been a false IF condition, the SL is updated to the end of that
line. If the verb had not been a legal PCS PROCDEF, PCS Phase II would
be skipped.

After processing each verb, the end of level flag is checked (indi-
cating that a RUN or BRANCH verb has just been executed, or the end of
an OBEY command line has been reached), and if it is on, POPSL is called
to delete the current sublist. If the sublist deletion was due to the
termination of an OBEY string, contrcl is returned to the calling rou-
tine; otherwise, control passes back to initiate a scan of the previous
sublist. If the end of level flag is not on, the end of sentence flag
is being checked. If the flag is on in conjunction with the dynamic
sentence flag, PCS Phase II is entered to complete the processing of all
the verbs that follow the AT in the line being processed. In either
case, any pending interruption is now allowed to occur prior to proces-
sing the next verb.

The Command Analyzer is called at CZASA6 and CZASA7 to assume and
release user control of attention interruptions. For these entry points
the Command Analyzer issues a direct macro instruction and sets the
TCMATT flag in task common. Then control is returned to the calling
routine.

ERROR CONDITIONS:

1. If an isolated verb has a format error (ascertained from the verb
scan return code), a message to that effect is sent to the termin-
al, and the verb is effectively ignored.

20

2. If a non-PCS command is encountered in a dynamic statement, a mes-
sage to that effect is sent to the terminal, and the verb is effec-
tively ignored.

3. If a transient command is encountered in a dynamic statement, a
message is sent to the terminal, and the verb is ignored.

SYSTEM CONTROL BLOCK USAGE: These control biocks are used by the Com-
mand Analyzer, the Verb Scanner and the BUILTIN call Processor:

Builtin Procedure Key (CHABPK)

Control Dictionary Entry (CHADEN)

Interrupt Storage Area (CHAISA)

New Task Common (CHANTC)

Profile Character and Switch Table (CHAPCT)
Sublist Header (CHASLH)

Source List Marker (CHASLM)

Source List Page Header {(CHASLP)

’GATE Routine (CZATC)

Gate is a closed, device independent input/ocutput routine that trans-
mits information from SYSIN devices or data sets to the calling routine,
and from the calling routine to a SYSOUT device or data set. (See Chart
AB.)

ENTRIES:

CZATC1 - privileged routines to process GATE call

CZATC2 - nonprivileged routines to process GATE call

CZATC3 - GATE's keyboard card reader switch

CZATCH4 - maximum line length/device type for conversational 1I/0
CZATCS5 - standard character translate and function table
CZATC6 - TCT slot address

CZATC7 - output character translation table address

CZATC8 - nonconversational SYSIN DCB

CZATC9 - nonconversational SYSOUT DCB

CZATCO - flag byte

CZATCB - access Control Dictionary for SYSIN=K,ALPHA=B change

MODULES CALLED:

ABEND (CZACP1) To abort or arrest processing and write an error
message.

Control Dictionary Handlers:

ENTR (CZASDS) Changes SYSIN and ALPHABET defaults.
GDV (CZASDX) Gets user defaults for SYSIN, ALPHABET, RSVP, and
LINES.
RTAM To perform actual I/0 on conversational SYSIN/

SYSOUT device.
CKCLS macro To verify user parameter pointers.

GET and PUT macros To access SYSIN and SYSOUT data sets non-
conversationally.

EXITS:

Normally - via the RETURN macro with return code in register 15
Abnormally - via the ABEND macro (cc=1 through cc=3)

Section 2: Command Controller 21

OPERATION: Five macro instructions, GATWR, GATRD, GTWAR, GTWSR and
GTWRC call GATE to write on SYSOUT, to read from SYSIN, or both. GATE
first processes any required writing by dividing the message into
device-sized lines, or smaller; then the appropriate access method is
determined, the output character translation table is applied to the
message, and the access method is used to transmit the message to SYS-
OUT. When reading is required, GATE determines the appropriate access
method, uses it to obtain the input message (GATE input buffer is for
VAM only; GATE uses RTAM input buffer for conversational reads), and
applies the character translation table to the message as it transmits
the message to the user's buffer.

GATE Supervisor - GASP: Gate receives control at its proper entry point
in GASP. Internal control flags and switches are initialized and build
areas are cleared. If user has entered defaults since last entry, GASP
retrieves, from the combined dictionary via GDV macro, those defaults
applicable to the particular SYSIN/SYSOUT device being used and the mode
of operation of the task. System defaults are supplied when there is no
entry in the dictionary. Defaults used are SYSIN, ALPHABET, RSVP, and
LINES. User parameter list addresses for output are verified via CKCLS
macro if user has requested a write. GASP sets up text pointer and
length for FAVOR or WORM if address verification is positive.

For conversational tasks, 1if the device is not assigned to RTAM and
the GATE request is from outside the task, GATE will ignore the request.
If user is processing in a write/compute environment, GASP will wait for
previous write to complete, if necessary, and ascertain normal comple-
tion before processing new request. For all write operations GASP
acquires the address of the Output Translation Table and checks it.
Then, for conversational writes, GASP enters FAVOR to perform output
formatting and control character recognition. Nonconversational writes
are directed to WORM for similar handling. If a read is required, eith-
er separately or in conjunction with a write, GASP will set up user
parameters for COWARD conversationally or BARD nonconversationally.

User input parameter verification is handled in TRAM routine. GATE's
return code to the user is built internally in the PSECT by the GATE
routines entered to process the GATE request. The return code is then
set at the single GATE exit for return to the user.

Format Conversational Output - FAVOR: User output length is verified.
If equal to or less than 0, the write request is ignored. If length
exceeds 512, 512 is set for the user length. If user wants carriage
control (GTWRC), control characters are prefixed to user output line for
double and triple spacing, or skip-to-channel. Control requests for
single spacing or no spacing result in no prefixing of characters. If a
GTWRC request exceeds one physical line, subsequent lines are single
spaced. FAVOR is sensitive to certain function characters, which it
processes according to the SYSOUT device being accessed. If the SIC
value for a write request has not been specified, FAVOR will translate
the output (excepting valid function bytes). SIC causes output trans-
lation to be bypassed.

The function characters to which FAVOR is sensitive are restore,
bypass, prefix, punch off, punch on, reader stop, tab, new line, back-
space, idle, end-of-block, preferred break point, and linefeed. If user
line exceeds maximum physical line of SYSOUT device, GATE will break the
line at the last preferred break character, or, if none were found, GATE
will use the total line before starting the next line. As each physical
line is completed, FAVOR adds appropriate carriage control and idles, if
necessary, to allow device to position to left margin for next line.
When the user's text is exhausted, COWARD is entered to put out user
request as a single write. Trailing blanks are stripped off the user's
message before any editing occurs.

22

Write Only (Nonconversationally) - WORM: If SYSOUT DCB is closed, or if
user write length is equal to or less than 0, WORM exits to effectively
ignore write request. If user wants printer line control (GTWRC), WORM
passes user-supplied carriage control character to SYSOUT line and con-
tinues processing of text. If user line on GTWRC exceeds one physical
line, subsequent lines are given single spacing with no page control.
Otherwise WORM controls SYSOUT lines with single spaces and new pages
according to user-supplied value for lines-per-page. If SIC is not spe-
cified, WORM will translate the output. (SIC as a parameter for a write
operation negates translation.)

WORM is sensitive to preferred break-point, new line function charac-
ters and the delete function. WORM will always start a new physical
line when the new line function is encountered. Preferred breakpoint
characters will control line segmenting only when user line exceeds a
physical line on SYSOUT device. All preferred break characters are
replaced by blanks. When a character is assigned a delete function
code, that character will be deleted. Maximum write length nonconversa-
tionally is 512 bytes per write request.

Conversational Writes and Reads - COWARD: Upon entrance, COWARD checks
the ISA attention bit; if an interruption is pending, COWARD branches to
PATTER. Otherwise COWARD determines the appropriate I/0 operation, sets
up the Terminal Control Table (TCT) slot accordingly, and sets Register
0 to point to the TCT slot.

COWARD determines, by checking the ALPHABET value (originally
obtained by GASP) and the device type, whether RTAM or GATE will transl-
ate. If RTAM is to translate, this is indicated in the TCT slot. 1If
the terminal is not presently assigned to RTAM, GATE will purge all 1I/0
to that device and then assign the terminal to RTAM.

Next, COWARD issues the ATCS macro (SVC 219), transferring control to
RTAM TCS for actual execution of the I/0 operation. Figure 7 shows the
interaction of COWARD and RTAM.

Upon return, the I/0 flag bytes set by RTAM in TCIWFD are reset and
tested. If the necessary flags are zero and the Writes/Compute flag (in
GATE's PSECT) is off, a WAIT T (SVC 204) is issued.

If the Write/Compute flag is on, COWARD exits through GATEEXIT to the
calling routine. If the flag byte does not have the necessary flags
zeroed, the flag byte is tested further to determine what conditions
exist. For 1/0 errors, COWARD exits to TERROR. For attentions, COWARD
exits to PATTER. Otherwise the WAIT T is issued.

When the wait is complete, COWARD rechecks the I/0 flags in TCTWFD.
1. For I/0 errors, COWARD exits to TFRROR.
2. For attentions, COWARD will exit to PATTER.

3. a. For GATWR and GTWRC complete, COWARD exits to the common exit
routine unless GASP called COWARD to complete the WRITE, in
which case COWARD returns to GASP.

b. For GATRD, GTWSR, and GTWAR complete, COWARD calls TRAM. Upon
return from TRAM, an ATCS 1is issued for a CLEAR operation,
after which COWARD exits to LATE's exit routine. At the exit
routine, in the case where the device was reassigned to RTAM,
the device is reassigned to the user (unliess the GATE regquest
was from LOGOFF or ABEND).

Section 2: Command Controller 23

When GATE entered for conversational 1/O. .,

GATE (CZATQ)
GATE eventually enters its
subroutine. ..
COWARD RTAM TCS
. which prepares for The Terminal

1/O handling by RTAM:
® Sets GPR 0 to point
to the TCT slot of

Communications
Subprocessor does
the following:

:fv;:sel;f)emg o Finds the

o Indicates the appropriate TCT
desired 1/0 slot and
processing in the detfm'nes the
TCT slot, and defured 1/0,

o lssues an e Builds a channel
ATCS macro FATCS generates program in TIOCB,
instruction an SVC 219, the . e Then initiates 1/0.

transferring | »-the Supervisor to .., = Before {/O is complete,
LCO“"O‘ fhmugh RTAM TCS returns
to COWARD,

If COWARD cannot ~

zg;;f:'jo“:"h"”’ Vo =1 RTAM TCS then ...

, » Analyzes the /O
AWAITT lWA]T T inrer:uprion dota,
macro generates ———And contro! returns to the =~ o Posts the results
instryction fon SVC 204 ... Supervisor. When 1/O complete, in the appropriate
is issued contro! is passed back to RTAM TCS TCT slot, and

e Returns control
finally to
COWARD

COWARD checks 1/0
completion status, and

TERROR

exits to TERROR if
1/O error condition
exists, or

P ER
ATT exits to PATTER if an

attention interruption
condition exists, or

returns to caller
if successful 170

Figure 7. Interaction of COWARD and RTAM TCS

Terminal Error Handler - TERROR: TERROR processes all abnormal conver-
sational I/0 termination other than attention interrupts. Error condi-
tions processed by TERROR are unrecoverable error, negative polling
response, and input buffer overflow. In unrecoverable error, Gate will
retry the operation if it had not retried previously. Otherwise TERROR
calls ABEND {cc=3) after setting CZACPSW3 flag indicating terminal can-
not be accessed.

For negative polling response (Read operation), GATE retries the read
if previous read was from terminal card reader. Retry goes to the key-
board for input. Otherwise ABEND (cc=3) is called.

For buffer overflow (Read), user is informed of input overflow and
prompted to re-enter his input at the keyboard.

TERROR also handles operation retry with no error as posted by VSS

processor in TCT when user interrupts I/0 with VSS active and then
reguests resumption of task.

24

Process Attention from Terminal - PATTER: PATTER first determines if
user 1is set for conversational SYSIN. If not, PATTER calls KAYBEE,
which in turn calls the Control Dictionary Handler (CZASDS5) to orient
SYSIN to keyboard with folded translate table. GATE's internal control
flags are synchronized with the dictionary. When the attention inter-
ruption occurred on any read request, input received before the inter-
ruption will be processed and passed back to the caller. After PATTER
sets the attention return code in build area, control is passed to the
exit routine.

VAM Exror -~ VERSE: VERSE is GATE's VISAM SYNAD routine, and VSAM/VISAM
EODAD routine. It exits by calling ABEND.

Translate and Move Input - TRAM: Before this routine is called, GASP
has checked certain user parameter pointers for validity with CKCLS
macro. TRAM checks further and calls ABEND if user location is inac-
cessible. If RTAM did not translate input from line code to EBCDIC,
TRAM will provide this translation in the RTAM buffer.

TRAM sets its own exit for normal conditions; then it determines
whether the SIC mode is specified. If it is, TRAM moves as much of the
input record as possible to the calling program's buffer. TRAM performs
no character translation, or any other character-indicated function. It
sets the truncation return code, if necessary, and furnishes the true
character count to the calling routine; then exits. If the SIC mode is
not specified, TRAM processes each character, performs the function
indicated for the character in the character translation table, and
moves the character to the calling program's buffer as required. Scan-
ning is done from left to right. The following paragraphs discuss each
of the standard mode functions in detail.

e« The Translation Function

When the translation function is specified for a given character, GATE
replaces the character with the post-translation value found in the
corresponding entry of the character translation table.

e The Null Function

TRAM deletes each encountered character that has a specified null func-
tion. If the deletion is imbedded in the line, it is accomplished by
joining the characters on the right of the deletion with those on the
left, thus condensing the line. If the deletion is at either end of the
line, TRAM deletes by appropriately adjusting the starting or ending
point of the line before transmitting the line to the user's input area.

» The Character-kill Function

When it encounters a character with an assigned backspace function, TRAM
deletes not only that character, but also the preceding character, if
any exists. TRAM performs the deletion here just as it does for the
null function.

* The Cancel Function
Wnen the cancel function is specified for a given character, and the
character is encountered as the last character of the current line, TRAM
discards this line and obtains a new line from SYSIN. GATE treats the
new line as a replacement for the discarded one.

s The End of Block Function
The end of block (EOB) function truncates the input string by moving

only those characters, that are to the left of the EOB, to the user's
input buffer.

Section 2: Command Controller 25

e Escape Function

Any character to which this code is assigned becomes a one-character
escape. The character immediately following is always treated as data.

® The Terminal Null Function

When TRAM encounters a character to which the terminal null function is
assigned, it honors that character as a null character only if the EOB
function is assigned to the next character, or if the terminal null
function is assigned to the last character translated. Otherwise, it
treats the character as cone to which the translation function is
assigned.

Before it returns, TRAM sets the truncation return code, if neces-
sary; it executes the CONT sequence to analyze the continuation status,
if truncation is not required, furnishes the true character count to the
caller, and exits. If TRAM encounters a cancel function during the pro-
cessing, it sets its exit for retry, and exits. If no cancel function
is found, TRAM terminates when the input runs out, when the user's buff-
er is full, or when an EOB function is found.

Analyze Continuation Status - CONT: CONT first determines whether the
input is in card or keyboard format. CONT assumes a card format if
SYSIN is a VSAM data set containing fixed length records; it assumes
that the record contains a keyboard/card reader code if SYSIN is a VISAM
aata set, or VSAM data set containing variable length records, and CONT
determines the format from that code. If SYSIN is conversational, CONT
determines the format from the source of input. If a card format is
determined, the continuation convention requires a hyphen as the last
nonblank character in the line. The keyboard convention requires a
hyphen as the next-to-last character of the line (before a carriage
return). If a continuation indicator is present, CONT sets the con-
tinuation return code, and exits. If no continuation indicator is pre-
sent, CONT exits without setting the continuation return code.

Process Nonconversational (Batch) Read - BARD: BARD performs the input
operations required for nonconversational tasks, and controls the trans-
lation of input; BARD also controls the transmission to the user®s area.
BARD calls VAM to obtain the requested input. If no errors are present,
BARD executes the TRAM sequence to translate and move the record to the
calling program's buffer. If TRAM requests a retry, BARD returns to its
initial sequence; otherwise, BARD exits, after setting byte three of the
return code to indicate the type of SYSIN data set (VSAM or VISAM). If
a transmission error does occur, the VERSE (VAM Error) routine is
entered to process the error.

INPUT TRANSLATION (LINE CODE TO EBCDIC) PROVIDED BY GATE:

1. 1052~7 Terminal - Operator's Console.

2. 1050, 2741 Terminals - Support KA option.
3. 1056 card code - Support CA option.

4, 029 card code - Support CB option.

5. 2741 (Correspondence) Terminal - Support ATS Terminal

ERROR CONDITIONS: Conditions which cause GATE tc call ABEND:

1. Invalid GATE operation code for nonprivileged user.

26

2. CKCLS on user parameter pointers indicates location does not have
access necessary for GATE to process user request or is not
assigned to user's Virtual Memory.

{Conversational Only)

3. Unrecoverable error when accessing terminal.

4. Unable to read from terminal input device(s).

(Nonconversational Only)

5. GTWSR macro used nonconversationally. RSVP not equal to Y.

6. SYSIN DCB closed on Read request.

7. EODAD exit taken on GET from SYSIN.

8. SYNAD exit on GET or PUT request.

9. BARD finds RECFM neither fixed nor variable.

10. BARD finds other than a line data set when RECFM is VI.

Condition which causes GATE to call SYSER:

Invalid GATE operation code for privileged user.

SYSTEM CONTROI. BLOCK USAGE:

Character Translation Table (CHACTT)

Data Controcl Block (CHADCR)

Profile Character and Switch Table (CHAPCT)
New Task Common (CHANTC)

Task Common (CHATCM)

Terminal Control Table (CHATCT)

Interrupt Storage Area (CHAISA)

’SCAN Routines (CZAAC)

The SCAN package edits and validates input parameters for the command
routines. The SCAN package consists of six routines and five internal
subroutines. Nonprivileged entries are provided to five of the rou-
tines. At these entries, ten levels of interrupt handling are provided.
The routines operate independently, and issue codes to indicate the
types of parameters, delimiters, or errors found in the input strings.
(See Chart AC.)

The routines are:
NEXTPAR scanning routine
'CHEKDS
ALFNUM
NUMSTG validating routines
CHKNUM
ALFBET

The internal subroutines are:

CKQUAL validating subroutine

SCINIT initialization subroutine

Section 2: Command Controller 27

FNDBLK
BACKUP scanning subroutines
VALCHK

SCAN CONTROL BLOCK: The SCAN Control Block serves as the input and out-
put control block for the SCAN routines. Each routine expects register
1 to contain a pointer to the control block. The format and contents of
the control block are as follows for each SCAN routine:

Byte 0-3 4-7 8-11 12-15 16-19 20-23

L g T T T T L b
NEXTPAR |A | C | D | E | F | G |
F——t-—t-—t-—"—— } Stes |
CHEKDS |A | B | NA| NA | NA | NA |
-4+ + + + i
ALFNUM |A | B | NA | NA | NA | NA |
e e it T S
NUMSTG |A | B | NA| NA| NA | NA |
N e B e B R
CHKNUM [A | B | H | I | J | NA |
e T S -
ALFBET (A | B | NA | NA | NA | NA |
i 4L -4 XL L 1 J

A = Address of pointer to starting location for scan.
B = Address of 2-byte field containing length of string to be scanned.

C = Address of a 4-byte area in which a pointer to the first non-blank
character is to be stored.

D = Address of a u4-byte area into which a pointer to the first delimiter
is stored.

E = Address of a #4-byte area in which:

Byte 1 = Initial delimiter code:

1 if left parenthesis

0 if other
Byte 2 = Final delimiter code:

1 if equal sign (=)

2 if comma but no right parenthesis

6 if comma preceded by a right parenthesis

12 if EOM, or EOM preceded by a right parenthesis
Bytes = Actual character count excluding delimiters and leading
3 &4 leading and trailing blanks.

F = Address of field containing maximum number of characters to be moved
or zero, if no characters are to be moved. (NEXTPAR only)

G = Address of first byte in the area to which field is to be moved, if
a move is requested. (NEXTPAR only)

H = Address of 4-byte field containing maximum allowable value for
CHKNUM.

I = Address of 4-byte field containing minimum allowable value for
CHKNUM.

J = Address of area to which converted value is to be moved (CHKNUM
only).

28

NEXTPAR ROUTINE (CZAACl): NEXTPAR scans an input string for delimiters,
and invalid characters, and moves the field to a specified area. It
also provides a character count of the actual field, and a code indicat-
ing the type of delimiters contained in the string. (See Chart AC.)

Entry: CZAAC1 - normal entry

Modules Called: None.

Internal Subroutines:

SCINIT Performs initialization and housekeeping functions.

FNDBLK Finds the first nonblank character, or the first nonblank
character after a left parenthesis.

BACKUP Finds the last nonblank character before a delimiter.

Exits: The routine returns to the calling routine. If an error occurs,
the routine sets a return code to indicate the type of error and returns
to the calling routine.

Operation: NEXTPAR locates the first nonblank character in an input
string, and stores the address in the parameter list. The input string
is scanned by NEXTPAR which compares each character in the string to a
string of valid character and delimiter codes. If the first nonblank
character found is a left parenthesis, this fact is indicated in the
output control block, and NEXTPAR scans for the first nonblank character
after the left parenthesis. Each character is scanned, and the proper
codes are set in the output control block to indicate delimiters or
invalid characters. If no invalid characters have been found, the
character count is computed. The field is then moved, if the count
(specified by calling routine) is correct, and the move option is speci-
fied. A return code of 0 is set to indicate a valid parameter.

If an invalid character is found, NEXTPAR will set a return code to
indicate this fact, and proceed to the next delimiter in order to posi-
tion the pointers correctly; however, no characters will be moved. All
valid EBCDIC characters are treated as valid by NEXTPAR.

Error Conditions: The routine returns a hexadecimal code in register
15:

Code Significance

o4 Field too long to be moved.
08 Field contained 256 or more valid characters without a delimiter.
0ocC Field contained invalid characters.

System Contrcl Block Usage: Task Common (CHATCM)

CHEKDS ROUTINE (CZAAC2/CZAAC2P): CHEKDS checks data set names for valid
characters and type of dsname. (See Chart AC.)

Entries:

CZAAC2 - normal entry

CZAAC2P - BPKD entry

SYSAAC2 - nonprivileged BPKD entry

Mmodules Called: None.

Section 2: Command Controller 29

Internal Subroutines:

SCINIT Performs initialization and housekeeping.
CKQUAL Validates qualifiers and module names.
BPKDCNVT Converts BPKD entry to expected form.

Exits: The routine returns to the calling routine. If an error occurs,
the routine sets a return code to indicate the type of error, and
returns to the calling routine.

Operation: If the BPKD entry is called, register 1 contains a pointer
to the entry in the BPKD expansion which points to the dsname. The
dsname length is contained in the byte which precedes it. The informa-
tion is made compatible with the normal entry control block format and
processing continues as for a normal entry.

The first gualifier of a dsname is checked for an asterisk to deter-
mine if it is an IBM System/360 Operating System name. (Reference:
DDEF Command Routine, Operand Handling section.) Each qualifier is then
checked for a valid alphameric format. The last qualifier is checked
for parenthesis (indicating a relative generation number or member
name). Then the validity of the relative generation number or member
name is checked. Length checks are also performed. The following codes
are returned in register 15:

Code Significance

00 Valid dsname.

o]} Valid member of a generation data group.

08 Valid member of a partitioned data set.

ocC Valid member of a generation data group.

0c Valid member of a generation data group in a partitioned data
set.

Error Conditions: The routine returns a hexadecimal code in register
15:

Code Significance
10 TSS/360 data set (not a member of PDS or GDG) name exceeds 35
characters.
14 Member of generation data group (GDG) name (exclusive of rela-

tive generation number) exceeds 26 characters.

18 Member of partitioned data set (PDS) name (exclusive of module
name and relative generation number) exceeds 26 characters.

1cC Member of PDS in GDG name (exclusive of module and relative
generation number) exceeds 26 characters.

20 GDG relative generation number is invalid.

24 Incorrect number of parentheses.

28 Data set qualifier blank (2 adjacent periods).

2C Data set qualifier contains invalid character, or field is
empty.

30

30 Data set qualifier has more than 8 characters.

34 Data set qualifier first character not alphabetic.

38,3¢C, Same as 28,2C,30, and 34 but for module name.

40,44

48 IBM System/360 Operating System name contains more than 44

characters with no relative generation number, or more than 35
characters with a relative generation number.

System Control Block Usage: None.

ALFNUM ROUTINE (CZAAC3/CZAAC3P): ALFNUM scans an alphameric string of
one to eight characters; it checks that the first character is alphabet-
ic. (See Chart AC.)

Entries:

CZAAC3 - normal entry

CZAAC3P - BPKD entry

SYSAAC3 - nonprivileged BPKD entry

Modules Called: None.

Internal Subroutines:

SCINIT Performs initialization and houskeeping.
VALCHK Tests for an empty field or invalid characters.
BPKDCNVT Convert BPKD entry to expected form.

Exits: The routine returns to the calling routine. If an errxor occurs,
the routine sets a return code tc indicate the type of error, and
returns to the calling routine.

Operation: If the BPKD entry is used, register 1 contains a pointer to
the entry in the BPKD expansion which points to the input string. The

length of the input string is contained in the byte which precedes it.

The information is made compatible with the normal entry control block

format and processing continues as for a normal entry.

ALFNUM tests the input string to insure that it is not greater than
eight characters. Next ALFNUM checks the string, character by charact-
er, for valid characters, and checks that the input string starts with
an alphabetic character. If no error occurs, a return code of 0 is set
in register 15.

Error Conditions: The routine returns a hexadecimal code in register
15:

Code Significance

04 Empty field (character count zero).
08 Invalid character.

oc Field greater than eight characters.
10 First character not alphabetic.

System Control Block Usage: None.

Section 2: Command Controller 31

NUMSTG ROUTINE (CZAACU4/CZAACHP): This routine scans a field of 256
characters or less for all numeric characters. (See Chart AC.)

Entries:

CZAACH - normal entry

CZAACUP - BPKD entry

SYSAACY4 - nonprivileged BPKD entry

Modules Called: None.

Internal Subroutines:

SCINIT Performs initialization and housekeeping.
VALCHK Tests for an empty field or nonnumeric characters.
BPKDCNVT Convert BPKD entry expected form.

Exits: The routine returns to the calling routine. If an error occurs,
the routine sets a return code to indicate the type of error, and
returns to the calling routine.

Operation: If the BPKD entry is used, register 1 contains a pointer to
the entry in the BPKD expansion which points to the character field to
be scanned. The length of the character field is contained in the byte
which precedes it. The information is made compatible with the normal
entry control block format and processing continues as for a normal
entry.

Exror Conditions: The routine returns a hexadecimal code in register
15:

Code Significance

o4 Empty field (character count zero)
08 Invalid characters (characters other than numeric).

System Control Block Usage: None.

CHKNUM ROUTINE (CZAACS5/CZAACSP): This routine converts a numeric field
of not more than 15 characters, to a binary number. (See Chart AC.)

Entries:

CZAAC5 - normal entry

CZAACS5P - BPKD entry

SYSAACS - non-privileged BPKD entry

Modules Called: None.

Internal Subroutines:

SCINIT Performs initialization and housekeeping.

VALCHK Tests for an empty field or non-numeric characters.

BPKDCNVT Convert BPKD entry to expected form.

Exits: The routine returns to the calling routine. If an error occurs,

th routine sets a return code to indicate the type of error, and returns
to the calling routine.

32

Operation: If the BPKD entries are used, register 1 points to the scan
control block in which the first word is a pointer to the string with
the length in the preceding byte. The second word is a pointer to maxi-
mum value, etc. After CHKNUM converts a numeric .field into a binary
number, it tests the number to ensure that it lies within specified
minimum and maximum limits. If no error occurs, a return coe of 0 is
set in register 15.

Error Condition: The routine returns a hexadecimal code in register 15:

Code Significance

o4 Empty field (character count zero).

08 Invalid character (characters other than numeric).
ocC Field greater than 15 characters.

10 Binary numer exceeds specified upper limit.

14 Binary number is less than specified lower l1limit.

System Control Block Usage: None.

ALFBET ROUTINE (CZAAC6/CZAAC6P): This routine scans a field of 256
characters or less for all alphabetic characters. (See Chart AC.)

Entries:

CZAAC6 - normal entry

CZAAC6P - BPKD entry

SYSAAC6 - nonprivileged BPKD entry

Modules Called: None.

Internal Subroutines:

SCINIT Performs initialization and housekeeping.
VALCHK Tests for an empty field or nonalphabetic characters.
BPKDCNVT Convert BPKD entry to expected form.

Exits: The routine returns to the calling routine. If an error occurs,
the routine sets a return code to indicate the type of error, and
returns to the calling routine. If no error occurs, a return code of 0
set in register 15.

Operation: If the BPKD entry is used, register 1 contains a pointer to
the entry in the BPKD expansion which points to the character field to
be scanned. The length of the character field is contained in the byte
which precedes it. The information is made compatible with the normal
entry control block format and processing continues as for a normal
entry.

Error Conditions: The routine returns a hexadecimal code in register
15:

Code Significance

o4 Empty field (character count zero).
08 Invalid characters (characters other than alphabetic).

System Control Block Usage: None.

Section 2: Command Controller 33

BACKUP SUBROUTINE (AMG2): This subroutine fields the last nonblank
character in a string. (See Chart AC.) -

Entry: None. Called at BACKUP.

Modules Called: None.

Internal Subroutines:

FNDBLK Finds the first nonblank character in a string.
Exits: The subroutine returns to NEXTPAR.

Operation: BACKUP is called by NEXTPAR, after NEXTPAR has found a deli-
miter, to find the last nonblank character.

Frror Conditions: None.

System Control Block Usage: None.

CKQUAL SUBROUTINE: This subroutine is used to validate qualifiers and
module names processed by CHEKDS. (See Chart AC.)

Entry: None. Called at CKQUAL.

Modules Called: None.

Exits: The subroutine returns to CHEKDS. If an error occurs, the sub-
routine sets a return code to indicate the type of error, and returns to
CHEKDS.

Operation: CKQUAL is called by CHEKDS to ascertain that the length of
the qualifier or module name is not zero, or greater than eight charac-
ters. This subroutine subtracts the length of the qualifier from the
total length of the input string, and tests that there are no invalid
characters, and that the first character is alphabetic. It then sets a
pointer to the character after the delimiter, and returns to the calling
point in CHEKDS.

Error Conditions: The subroutine returns a hexadecimal code to CHEKDS.

Code Significance

28 if qualifier Data set qualifier or module name blank.
38 if module name

2C if qualifier Data set qualifier or module name contains invalid
3C if module name characters.

30 if qualifier Data set qualifier or module name has more than
40 if module name eight characters.

34 if qualifier Data set qualifier or module name has a nonalpha-
44 if module name betic first character.

System Control Block Usage: None.

VALCHK SUBROUTINE (AMA2): This subroutine scans for an empty field or
invalid characters. (See Chart AC.)

Entry: None. Called at VALCHK.

Modules Called: None.

34

Exits: The subroutine returns to the calling routine. If an error
occurs, the subroutine sets a return code to indicate the type of error,
and returns to the calling routine.

Operation: VALCHK is called by CHKNUM, NUMSTG, ALFNUM and ALFBET to
validate a string of characters. If the length of the input string is
not zero, VALCHK stores the length in a work area, and tests the string
for invalid characters.

Error Conditions: The subroutine returns a hexadecimal code to the cal-
ling routine.

Code Significance

o4 Empty field (character count is zero).
08 Invalid characters.

System Control Block Usage: None.

FNDBLK SUBROUTINE: This subroutine scans a string of characters from
the start of the string, to find the first nonklank character. (See
Chart AC.)

Entry: None. Called at FNDBILIK.

Modules Called: None.

Exits: The subroutine exits to the calling routine.

Operation: FNDBLK is called by NEXTPAR and BACKUF to find either the
first character in a string (which may be a delimiter), or the first
nonblank character after a delimiter. It will check the characters in
the string until it finds something other than a blank or a tab, or
until it has scanned 256 characters.

Error Conditions: None.

System Control Block Usage: None.

SCINIT SUBROUTINE: This subroutine performs the initialization and
housekeeping for the SCAN routines NEXTPAR, CHECKDS, ALFNUM, NUMSTG,
CHKNUM and ALFBET. (See Chart AC.)

Entry: None. Called at SCINIT.

Modules Called: None.

Exits: The subroutine returns to the calling routine.

Exrror Conditions: None.

System Control Block Usage: None.

’User Prompter Routines (CZATJ)

The User Prompter is a centralized message locator, display, explana-
tion and response handling facility. It uses the user-defined message
file, which is built using the text editor, the system message file, and
a table of the most recently used standard messages of the system mes-
sage file, to perform its functions. (See Chart AD.)

ENTRIES: . The User Prompter module is invoked by the PRMPT macro

instruction. Individual functions within the User Prompter are invoked
by the CALL macro instruction.

Section 2: Command Controller 35

CZATJA - entry point for main user prompter (ncnprivileged entry)
CZATJ1 - entry point for main user prompter (privileged entry)
CZATJ2 - entry point for MSGSYNTH

CZATJ3 - entry point for MSGEXPL

CZATJ4 - entry point for MSGRESP

CZATJ7 - entry point for EXPLAIN command

CZATJB - entry point for ABEND to unlock message table

CZATJE - entry point for NEWMSG

MODULES CALLED:

GATE (CZATCl) Prints messages and obtains responses.
ABEND (CZACP1) When SYSLIB(SYSMLF) is closed.
Dictionary Handlers:
GDV (CZASDX) Gets default values for message severity and
length.
Source List Handler Adds VCON/RCON pair to ABEND table.
(czascl)

SCAN Package:
CHKNUM (CZAACS) Validates and converts a response code in the
response line of SYSMLF.

The User Prompter also uses VISAM SETLs and GETs to manipulate the mes-
sage file.

EXITS: The routine returns to the calling routine, via the RETURN macro
instruction.

OPERATION (MAINLINE): When a PRMPT macro instruction call is received,
the prompter control routine (CZATJA/CZATJI1) calls upon MSGSYNTH
(CZATJ2) to locate the message in the message table or the message file.
After checking with the filter in the user profile, MSGSYNTH inserts
parameters as required and returns control to the User Prompter control
routine. If no response is required, control uses GATWR to display the
message. If a response is expected, the control routine displays the
message, and reads the response using GTWSR. This initial response is
checked to see if further explanation is required. If an explanation is
requested, the control routine uses MSGEXPL to determine the type of
explanation, retrieve the explanatory message required, and use GTWSR
until the user is satisfied. If no explanation is required, and the
option is unpredictable, the response is stored in a User Prompter work
area (CHAAAA). If the option is predictable, MSGRESP accomplishes the
task of comparing the response against valid responses. A response code
is returned for the valid response. Otherwise, the response is stored
in CHAAAA.

MSGSYNTH Routine: This routine retrieves a message, inserts any parame-
ters required, and prepares the message for display. To do this, it
first determines the brevity and severity of the message by calling GDV
to examine the user profile. This routine then calls its own internal
subroutine, GETMSG, to search USERLIB and SYSLIB for the message. The
message to be displayed is assembled by inserting parameters, provided
as required, into the skeletal message. The ID will be prefixed to the
message for identification if the brevity is S or E. It will not be
prefixed if the brevity is T or X. ©Only the ID is given if brevity is
M.

MSGEXPL Routine: This routine determines the type of explanation mes-
sage requested and provides it. After scanning the EXPLAIN response,
MSGEXPL acts as follows:

36

1. If the response is EXPLAIN, the preceeding message is checked to
determine whether it is explainable. The message explanation is
then provided by calling MSGSYNTH.

2. If the response requests a word explanation, it is retrieved. The
word cannot be ORIGIN, RESPONSE, TEXT, MSGS, MSGE, or MSGID. Two
one-byte masks, one for the system message file, and one for the
user message file, are provided to control searches for word
explanations. Each bit in the mask corresponds to a byte in the ID
of the message that contains the explainable word. Bits in the
mask indicate how many bytes of the current message ID are to be
compared in the search for a word explanation record. The mask is
scanned from the right. Each bit encountered causes an access to
the message file, using the current message ID bytes as a search
argument.

The message file is accessed by using a SETL to the region speci-
fied by the mask-designated message ID. If an ID match is found, a
serial search matches the explainable word with the word filed in
the explanation record. If a word match is found, the search ends.
If the message 1D or the word do not match, the mask is scanned to
the left until the next bit is encountered. This determines the
next region where the search will continue. If no bits are encoun-
tered in the mask, a blank argument is used to look for a universal
explanation before the word explanation is assumed not to exist in
the file. If an explanation is not available in the user message
file, the system message file is similarly searched.

3. If the response is EXPLAIN ORIGIN, the location of the PRMPT call
from a system program and the original message ID will be returned.

4, If the response is EXPLAIN TEXT, the message identified by the mes-
sage ID name will be located and, if possible, an explanation will
be provided according to paragraph one.

5. If the response is EXPLAIN RESPONSE, the possible responses will be
retrieved using MSGSYNTH's GETMSG routine.

6. 1f the response is EXPLAIN MSGS or EXPLAIN MSGE, the standard or
extended message line is retrieved using MSGSYNTH's GETMSG routine.

7. If the response is EXPLAIN MSGID, the message ID name is returned.

MSGRESP Routine: This routine determines the validity of the user
response, and informs the calling routine about the nature of the
response. If a predictable response can be expected, MSGRESP compares
the response with the defined responses, and returns the appropriate
code to the calling routine if the comparison is satisfied. If no match
is found, an error message and error code 28 are returned. If the
appropriate code is not valid, error code 48 is returned.

EXPTEXT Routine: This routine permits the direct use of the User
Prompter to handle the EXPLAIN command. This routine constructs the
explain string, calls MSGEXPL to resolve the explanation, and then
issues a GATWR to display that explanation.

NEWMSG Command Routine: This routine allows a privileged system pro-
grammer (O authority) to initialize the message table (CHBMSG) when he
has changed the SYSLIB copy of the system message file, SYSMLF, during a
session. The routine uses TSEND to test the table'®s lock until it is
found unlocked. It then locks the table, initializes pointers and coun-
ters to clear the table, and unlocks the table before exiting.

Section 2: Command Controller 37

ERROR CONDITIONS:

in the table.

for all routines.

Error Code

Exrror Description

I/0 erroxr (SYNAD or EODAD, when resp-opt=p).

Insufficient output buffer space provided.

Explanation not found in MSGEXPL routine. NO

Matching response not found in MSGRESP routine.

Invalid response code in response line of SYSMLF.

0 No error. Normal return.
4y
*¥12 Message not found in MSGSYNTH routine.
16 Message filtered by user.
20
Message truncated..
24
EXPLANATION AVAILABLE displayed to user.
28
32 Resp-opt parameter not N, P, or U.
*36 Message continued.
40 Attention interrupt during I/O operation.
44 Too many reference messages chained.
48
52

Those codes shown preceded by an * are internal error code.

Response message not in SYSMLF (resp-opt=p).

never returned to the module that issues the PRMPT macro.

An overall set of error codes is assigned, as shown
The appropriate code is right-justified in register 15

They are

For returns from a user prompter macro instruction call, the user
response (user-resp) return parameter has different values that depend

on the error code in register 15.

User Response Contains

Unchanged (for resp-opt=n)

Response Code {(for resp-opt=p)

Pointer to string (for resp-opt=u)
(Note: for zero length response,
string is unpredictable)

Zerxro

Pointer to EXPLAIN request line

When Register 15=

0, 16, 20, 32, u4
0
0

4, 20, 40, uu
24

28, 48, 52

Pointer to user response line

For returns from the MSGRESP routine, the RSPCD return parameter has
the same function as user-resp in a PRMPT macro instruction call. If
the error code is register 15 is 0, RSPCD contains the response code.
For any error conditions, RSPCD contains 0.

A system exrror with the code 050330301 is issued when SYSLIB (SYSMLF)
is closed. The ABEND message is: 'SYSTEM MESSAGE FILE CLOSED. UNABLE
TO WRITE MESSAGE.'

38

SYSTEM CONTROL BILOCK USAGE:

Editable Data Set (CHACVF)

Data Control Block (CHADCB)

Interrupt Storage Area (CHAISA)

New Task Common (CHANTC)

Profile Character and Switch Table (CHAPCT)
TABLEA - a work area for CZATJ (CHAAAA) '

’Attention Handler Routine (CZASB)

This routine performs one of the following functions:

e Invokes user-written routines specified by an AETD macro instruc-
tion, or

e Obtains a command from the terminal and prepares it for execution
for the Command Analyzer by creating a new sublist (thus affecting
the source list itself), or

¢ Obtains and acts upon a terminal request to ignore the attention
interruption, repeat the last command, or invoke abnormal termina-
tion, or

s Honors another attention interruption.
(See Chart AE.)
ENTRIES:
CZASB1 - actual attention entry from task monitor
CZASB2 - simulated attention entry
CZASB3 - entry from CZAMZ created stack
CZASBS5 - entry from AETD macro instruction
CZASB6 - entry for ABEND command
CZASB7 - entry for STRING function if entered other than after ATTN

MODULES CALLED:

GATE Routines (CZATCl):

GATRD Reads from SYSIN.

GATWR Acknowledges the attention, and writes
diagnostic and prompting messages on task
SYSOUT.

GATWSR Acknowledges the attention, and obtains input

from the terminal.

User Control (CZAMZ):
PCSEXEC (CZaMZ1) Executes the user's attention routine.

INTERVENE (CZAMZ3) Issues a call to the Command Analyzer to
process inputs from the terminal if inter-
vention is not prevented.

User Prompter (CZATJ1) Reports errors.

EXITS: The Attention Handler exits to the Task Monitor. It does not
provide a return code, although it is responsible for setting certain
switches.

OPERATION: When entered at CZASBl, its entry point for servicing actual
attention interrupts, the Attention Handler decrements CZCJT1, a field

Section 2: Command Controller 39

TASK MONITOR COMMAND SYSTEM
ATTENTION HANDLER
(CzZASBY)

User causes
asynchronous
interruption

AET
connected and
valid for this

USER CONTROL
CZAMZY: Dispatch
user specified in

Yes

Dispatch AET entry. tevel
USER CODE user LVPSW PSW: Points to user
B e routine routine

Process
attention

(other processing)

&

CZAMZ2: Clean
up and return

to CZAMZ1's
caller.

If there are more commands
in source list and control
was received from CZASAY,
QLE CZASA1

RETURN

Figure 8. Attention processing with AET connected

in the Task Monitor that contains a count of pending QLEs. ({Entry was
gained at CzZASB1 through a QLE -- one less (QLE exists to be processed.)

The Attention Handler then tests the AIPS switch. This switch can be
set by a user program to prevent an attention interrupt. If it is on,
the Attention Handler arms the Attention SVC, by placing an SVC in an
area that is usually a NOP. If the user executes the SVC, an attention
is simulated. Consequently the Attention Handler turns on an "internal
simulated attention pending®™ flag. The user is prompted that the AIPS
switch is on, and the Attention Handler branches to its exit logic.

If AIPS is not found on, the Attention Handler takes the extra pre-
caution of turning it off and clearing the area that would be occupied
by the Attention SVC.

The Attention Handler then tests for an Attention Entry Table (AET).
If an AET is connected, the Attention Handler increments the attention
count in CZAMZE and uses that count to determine if the user has speci-
fied a program to deal with this level of attention. (The AET contains
entries which correspond to the values of the attention interrupt
count.) If the user has specified a valid program, the Attention Handl-
er links to User Control (CZAMZ1) to dispatch the user routine. On
return, the Attention Handler decrements the attention count in CZAMZE,
and branches to its exit logic. Attention processing with an AET con-
nected is illustrated in Figure 8.

If no AET is connected, or if there is not a valid user program for
the updated count in CZAMZE, the Attention Handler tests the QLE pending
count in CZCTJ1l. If CZCTJl equals other than zero, this routine returns
to its calling routine -- to allow other QLEs to be dispatched.

If the QLE count is zero, the Attention Handler will service the
attention interrupt. The appropriate attention prompt character is
transmitted to the terminal via GTWSR. The character transmitted is
determined as follows:

40

Character Situation Governing It

- Attention occurred during execution of a privileged command
which was the last command to be processed within the cur-
rent input string.

* Attention occurred during the execution of a privileged com-
mand that is embedded in the command string. Only occurs if
additional commands remain to be processed within string.

Attention occurred during execution ¢f a command or routine
running in the nonprivileged state.

(The user may have defined his own string in place of the underscore.)
A number of responses to the prompt character are possible:

1. Another attention interrupt -- The Attention Handler immediately
exits, returning to its calling routine.

2. A continuation is indicated -~ The Attention Handler uses GATRD to
continue reading the response, and, on return, loops back through
its response-checking logic.

3. Input is null -- The Attention Handler returns to its calling rou-
tine, after first putting a QLE to CZASA if control was passed from
it.

4. STRING function is requested -- The Attention Handler displays all

items in the source list which have not yet been processed. It
then loops back to test for pending QLEs.

If none of the five responses shown are encountered, the Attention
Handler calls the INTERVENE routine (CZAMZ3) in User Control to analyze
the response input. On return, if the AET is not active, the Attention
Handler branches to its exit logic. If the AET is active, it first
decrements the count in CZAMZE.

Exit Logic: 1If the task is the operator's and no more commands exist in
the source list, the Attention Handler exits directly to its calling
routine. Otherwise, if control was passed from the Command Analyzer
(CZASAl), the Attention Handler puts a QLE to the Command Analyzer and
then exits.

Simulated Attentions: At CZASB2, its entry point for simulated atten-
tions, the Attention Handler tests its "internal simulated attention
pending®™ flag. If it is not on, this routine links to CZATJ1 to inform
the user that a simulated attention has occurred. Then, or if the flag
is on (as the result of an earlier attention with AIPS on), the Atten-
tion Handier turns oftf the flag, disarms the attention SVC, and enters
the main routine logic at the point where the main routine tests to
determine if an AET is ccnnected.

ALTD Macro Servicing: At CZASB5, the Attention Handler first clears the
attention count in CZAMZE. It then tests to determine whether (1) the
address of the new ART has been supplied, and (2) there are any entries
in the AET table. If the answer to either guery is no, this routine
clears CZAMZD, which is the AET pointer in CZAMZ's PSECT, then turns oft
the active AFT flag, and returns to its calling routine. But, if both
conditions are satisfied, the Attention dandler begins testing the
entries in the AET to find one that is used. When one is found, this
routine sets a new pointer in CZAMZD, sets the active AET flag on, and
exits. If the list is exhausted before a used entry is found, this rou-
tine clears CZAMZID, turns off the AET flag, and exits.

Section 2: Command Controller 41

Other Functions: There are three other entry points in this module:
CZAsSB3, CZASB6, and CZASB7. CZASB3 is an entry point put into CZAMZ's
stack and used, when encountered, to return to the Command Analyzer via
QLE. CZASB6 is the entry point for the ABEND command. CZASB7 is used
if the user requests the STRING function at a time other than after an
attention interrupt. When entered, this routine calls CZATJ1l to inform
the user that STRING is only valid after attention, and, on return,
exits.

ERROR CONDITIONS: None, other than misuse of the STRING function, as
described above.

SYSTEM CONTROL BLOCK USAGE:

Attention Entry Table (CHAAET)

Interrupt Storage Area (CHAISA)

New Task Common (CHANTC)

TABLEA (CHAAAA)

Profile Character and Switch Table (CHAPCT)

P Source List Handlers (CZASC)

The Source List Handlers package consists of seven separate functions
(each defined as a separate entry point) that provide the command system
with a means of updating and interpreting the contents of the source
list. (See Chart AF.)

ENTRIES: Each of the following entry points defines one of the source
list handlers:

CZASC1 - sublist addition {(push)/ deletion (pop} routine

CZASC2 - source list page acquisition routine

CZASC3 - source list processor for all markers except E

CZASCH4 - source list processor for E markers

CZASC5 - source list synonym expander

CZASC6 - source list update routine

CZASC7 - privileged entry for read from/into source list via SYSIN macro

CZASC8 - nonprivileged entry for read from/into source list wvia SYSIN
macro

SOQURCE LIST HANDLER PUSH/POP (CZASCl1l): This routine allows for the
addition (PUSH) and deletion (POP) of sublists within the source list
(s1). (See Chart AF.)

Entry: CZASCl - normal entry

Modules Called:

Virtual Memory GETMAIN (CZCGA2) gets storage for the first page of
Allocation (CZCGA) the source 1list.

Exits: The routine normally returns to the calling routine, via the
RETURN macro instruction.

Operation: The routine tests an address field for the source list
(CZASCY9) to determine if this is the task's first entry for construction
of the SL. If CZASC9 is zero, the entry flag (INITE) is zeroced and set
to indicate initial entry (INITEM=ON). GETMAIN is then called to
reserve storage so that the task's SL can be constructed from scratch.
If CZASCY9 is not zero the entry flag (INITE) is tested for initial entry
(INITEM=ON) and for a previous POP action which reverted to the SL's
first sublist (INITEM1=ON). The SL is then reinitialized to its first
possible sublist state. For both cases, values are set in the SL Head-
er, a new sublist is constructed and INITEM is set ON for successive
entries.

42

If INITEM=ON, the current sublist base is set from SLPCSL, and a test
is made to determine what type of entry was made. For a POP entry, the
sublist's generation marker's pointer field (SLHPTR) is tested. If the
field is zero, INITEM=0OFF, INITEM1=ON, and EXIT. If it is nonzero,
SLPCSL is reset from SLHPTR (the sublist pointer now points to the pre-
vious sublist), and SLPAVL is enlarged by the number of bytes existing
in the POPed sublist. If the new sublist is a G type (non-OBEY), SLPGIP
is reset to point to its SLHPTR field. 1In either case, an immediate
EXIT is made.

If the entry is a PUSH type, a check for sufficient sublist space is
made (390, bytes minimum). Insufficient space results in a call to
CZASC2 for an additional page. The new sublist base is returned from
CZASC2 which also updates SLPAVL accordingly. If there was enough space
initially, the new sublist base is computed from the previous sublist's
end point (SILHEND), which is rounded to the next fullword boundary.

In either case, the previous sublist pointer is moved into the SLHPTR
field of the new sublist. If the new sublist is an OBEY type (user call
to command analyzer), its generation marker is set to U; otherwise, is
set to G. Also for the G type, the previous sublist's SLHPTR field is
set to zero, and a null command line is input, the start address
(SLHCSA) is set to the beginning of the generation marker; SLHEND is set
to its end; SLPAVL is diminished by the number of bytes in the new sub-
list; SLPCSL is updated; and, an EXIT is made.

If the input command line isn't null, it is moved into the SL after
the new generation marker. An E marker is placed at the line's end,
which points back to the generation marker's beginning. SLHCSA is set
to the line's first byte address; SLHEND is set to the address of the
first available byte after the E marker; SLPAVL is diminished by the
number of bytes in the sublist plus the command line (including 6-byte E
marker); and, an EXIT is made.

Error Conditions: There are no error conditions for this routine.

System Control Block Usage:

Source List Marker (CHASLM)
Source List Page Header (CHASLP)
Sublist Header (CHASLH)

Task Common (CHATCM)

SOURCE LIST HANDLER BUFFER FETCH ROUTINE (CZASC2): This routine is
called to obtain a page of virtual storage for source list (SL) expan-
sion and to provide page-to-page linkage. (See Chart AF.)

Entry: CZASC2 - normal entry

Modules Called:

Virtual Memory GETMAIN (CZCGA2) obtains additional source
Allocation (CZCGA) 1list pages.

Exits: The routine normally returns to the calling routine, via the
RETURN macro instruction.

Operation: The routine tests the first four bytes of the current SL
page. If they are zero, GETMAIN is executed to obtain an additional SL
page after which the address of the new page is placed in the first four
bytes of the previous page. If the four bytes were nonzero, the page to
which they point would be used.

If the entry is for a line expansion (input=pointer to the fullword
containing 1), the current SL end pointer (SIHEND) is set to the address

Section 2: Command Controller 43

of the new page's first available byte (fifth byte position); the SL
available byte count (SLPAVL) is updated to 4092,,; and, an EXIT is
made. If the entry is for a new sublist (input pointer to full-word
containing zeros), the new page's address is returned to the calling
routine; SLPAVL is set to #092,,; and, an EXIT is made.

An entry for textual procedure expansion is assumed if the two pre-
vious types are not specified. A T marker is placed in the old page at
the current end point, which points to the first available byte in the
new page. SLHEND is updated to the address of the first available byte
in the new page; SLPAVL is set to 4092,,; and, an EXIT is made.

Exrror Conditions: There are no error conditions for this routine.

System Control Block Usage:

Source List Marker (CHASLM)
Source List Page Header (CHASLP)
Sublist Header (CHASLH)

SOURCE LIST HANDLER MARKER PROCESSORS (CZASC3/CZASCH): The routine
which is entered to process source list (SL) markers, recognizes when
new lines must be input via GATE and, in addition to expanding the SIL,
it deletes information when the markers indicate that this action is
necessary. (See Chart AF.)

Entries:

CZASC3 - entry point to process all but E-type (connection/termination)
markers

CZASCH4 -~ entry point to process E markers

Modules Called:

GATE (CZATC) To write a prompt string and read into the source list.

Exits: The routine normally returns to the calling routine, via the
RETURN macro instruction.

Operation: When the module is entered at CZASC3, the current start
address (SLHCSA) is tested for a pointer to a T marker. If there is a
pointer, SLHCSA is reset from the T marker's pointer field, and an EXIT
is made. If there is no T, then a G marker is assumed. The address of
the standard prompt string is obtained from PCTPS new task common. Con-
trol now passes to CZASCY4 to prompt for a new command line.

At entry point CZASC4, SLHCSA is immediately reset from the E mar-
ker's pointer field. If it doesn't point to another marker, SLHCSA is
updated, and an EXIT is taken. Otherwise, a check is made for a U mark-
er. If there is one, register 15 is set to hexadecimal FF to signal the
calling routine to initiate a sublist deletion, and an EXIT is taken.
2lso, if the U marker doesn't point to a G or P marker, an EXIT is
taken. If the U marker points to a P marker, the current end point
(SLHEND) is set to the beginning of the P marker; SLHCSA is set from the
P marker's pointer field; the available byte count (SLPAVL) is increased
by the number of bytes from the beginning of the P marker to the end of
the E marker, and an exit to the calling routine is made.

The last possibility is the G, or generation marker. 1In this case,
the G marker address is saved. If its pointer field is nonzero, SLPAVL
is reset to reflect the G marker's position relative to the SL page
beginning, and control passes to prompt for a new line to be read into
the SL, after the G marker. If the G marker's pointer field is zero,
the SL must be reset to its first sublist position. To do this, the
sublist pointer (SLPCSL) is reset to 16,,; the G marker address is reset

44

to the first SL generation marker position and saved; SLPAVL is reset to
4058,0; and, the G type sublist pointer (SLPGIP) is reset to point to
the new G marker.

At this point, regardless of the above path, GATWR is used to prompt
for the next command line with the standard prompt message (underscore-
return) in new task common. This is followed by a call to GATRD for the
command line to be read into the SL after the G marker. An E marker is
now placed after the command line, and a test is made for a continuation
line (if the last character in the line is a hyphen, a continuation line
is expected). If no continuation is expected, the E marker is set to
point back to the saved G marker address; SLHEND is reset to the end of
E marker, SLHCSA is reset to the first byte of the command line; SLPAVL
is diminshed by the line length (plus the 6-byte E marker); and, an EXIT
is taken.

If there is a continuation, a test is made to determine if sufficient
SL space exists for another line. If not, CZASC2 is called to expand
the SL by another page. 1In any event, the E marker is set to point to
the first available SL byte past itself (this may be on another page),
and control passes back to prompt to read another line into the SL at
the position to which the E marker points. This logic is repeated until
all continuation lines are read, after which the above procedure for no
continuation line is executed (last E marker points back to the G
marker).

Exits: This routine normally returns to the calling routine, via the
RETURN macro instruction.

System Control Block Usage:

New Task Common (CHANTC)

Task Common {(CHATCM)

Source List Marker (CHASLM)
Source List Page Header (CHASLP)
Sublist Header (CHASLH)

SOURCE LIST HANDLER SYNONYM EXPANDER -- SYNSL (CZASC5): This routine is
called when a synonym value exists for an isolated command. The synonym
value is placed into the SL, and pointers are reset for its eventual
execution. (See Chart AF.)

Entry: CZASCS5 - normal entry

Modules Called: DNone.

Exits: The routine normally returns to the calling routine, wvia the
RETURN macro instruction.

Operation: The routine establishes the base of the combined dictionary
entry. A test is made to determine if enough space exists in the SL for
the synonym value, plus 12 bytes for the prefix P and terminating mark-
ers E. If space is not available, CZASC2 is called to expand the SL by
one page. In either case, a P marker is now placed in the SL at the
current end pointer (SLHEND), which points back to the current start
address (SLHCSA). The P marker address is saved, and SLHCSA is set to
the first byte after the P marker. The synonym value is now moved from
the combined dictionary entry (its length precedes it in the dictionary
entry) into the SL at the new SLHCSA. An E marker, which points back to
the P marker, is placed at the end of the synonym value in the SL.
SLHEND is set to the end of the E marker; the available byte count
{SLPAVL) is diminished by the number of bytes in the synonym value plus
12 bytes for the markers, and an EXIT is taken.

Error Conditions: There are no error conditions for this routine.

Section 2: Command Controller 45

System Control Block Usage:

Scurce List Marker (CHASLM)
Source List Page Header (CHASLP)
Sublist Header (CHASLH)

SOURCE LIST HANDLER UPDATE ROUTINE (CZASC6): This routine is called to
update the source list (SL) to the next command, or to the end of a com-
mand line. (See Chart AF.)

Entry: CZASC6é - normal entry

Modules Called: None.

Exits: The routine normally returns to the calling routine via the
RETURN macro instruction.

Operation: The routine establishes the current sublist base from
SLPCSL, and executes the GNC macro instruction to isolate the SL
character at the current start address (SLHCSA). The isolated character
is tested for an EOB. If it is an EOB, an immediate EXIT is taken. If
it is not, a test is made to determine if this entry is to update the SL
to the next command. If it is not to update the SL, the routine iso-
lates the next character. If it is, the current character is tested for
a semicolon. The absence of a semicolon causes another character to be
isoclated; the presence of a semicolon causes an EXIT. In any event, an
EXIT updates SLHCSA to the next command (the previous command is deli-
mited by a semicolon) or to the end of the line (delimited by an EOB).

Error Conditions: There are no error conditions for this routine.

System Control Block Usage:

New Task Common (CHANTC)

Source List Marker (CHASLM)
Source List Page Header (CHASLP)
Sublist Header (CHASLH)

SOURCE LIST HANDLER SYSIN ROUTINE (CZASC7/CZASC8): This routine is
called via the SYSIN macro when a user desires to read data lines into
or from the source list (SL) and to pass this information to a user-
specified area. (See Chart AF.)

Entries:

CZASC7 - privileged entry
CZASC8 - nonprivileged entry

Modules Called:

GATE (CZATC) To write from or read into the source list.

Control Dictionary
Handler (CZASD) To test hashed string for a default value.

Exits: The routine normally returns to the calling routine via the
RETURN macro instruction.

Operation: The user may indicate the data source by specifying one of
the following EBCDIC source codes:

e G indicates that a line is to be obtained from SYSIN via GATE.

e I, indicates that a line is to be obtained from the source list.

46

e E indicates one of two alternatives: (1) if the default value for
SYSIN is G, a line is to be obtained from SYSIN via GATE. (2) If
the default value for SYSIN is not equal to G, a line is to be
obtained from the SL.

The user may also indicate that commands are to be treated as data or
message input by appending location code, S, to one of the above source
codes.

In processing G or E (type 1) requests, the user's SYSIN device is
prompted for an input line. If there is not enough space in the SL for
a new line (268;,bytes), the SL is expanded via a call to CZASC2. The
current starting address of the SL (SLHCSA) is saved. If the task is
conversational, the routine tests for a prompt message. If there is a
message and the default value for LINENO is Y, a GTWAR is issued, other-
wise, a GATRD is issued. The input line is read into the SL at its cur-
rent end point (SLHEND). SLHCSA is updated to the line's first charact-
er and an E marker that contains the previously saved SLHCSA is placed
at the end of the line. If the task is nonconversational, the prompt
string (if one exists and LINENO is ¥Y) is moved into the SL; SLHEND is
updated past the prompt string and a GATRD is issued. The SYSIN "line is
put into the SL at its updated SLHEND and the actual record length is
passed to the user. Then the entire string (prompt and input data) is
written via GATWR to SY¥SOUT. An E marker that contains the previously
saved SLHCSA is placed at the end of the line. SLHEND is updated to
point past the E marker and the available byte count (SLPAVL) is
diminished by the number of bytes in the line plus 6 bytes for the E
marker. Then for both conversational and nonconversational tasks, the
input line is transmitted to the user.

In processing L or E (type 2) requests, the character at SLHCSA is
tested. If SLHCSA points to an E marker and the SYSIN code is LS, an
exit is taken with a length of zero passed to the caller. If SLHCSA
points to an E marker and the E marker points to a U marker, the user is
notified via User Prompter that the request is non-serviceable and an
exit is taken. Otherwise, the E marker is processed via CZASC4 and a
line is obtained from the SL.

For all requests, the SL pointer is updated, beginning at SLHCSA, to
the first nonblank character, and the user input value for the maximum
number of transmission characters is set. If the first nonblank
character is not an underscore, a data line is transmitted. If the
first nonblank character is an underscore, the next character is tested
for an underscore. If there are two underscores at the beginning of the
SL, the line is treated as data. Otherwise, the line is treated as an
immediate command. Before termination, a test is performed to determine
if the command is to be treated as data. If not, a return code of C is
set in register 15 and an exit is taken. The data is now moved, one
character at a time, until the user maximum is reached or an EOB is
encountered. If the maximum is exceeded, a return code of 4 is set in
register 15 and an exit is taken.

Note: All nonconversational input data obtained via GATRD will be
adjusted in the SL to eliminate the key, etc., depending on whether the
input was VISAM, VSAM, etc. The line length passed to the user will
reflect the actual record. A truncation return code will not be set for
a nonconversational task if only blanks exceed the user's buffer.

Error Conditions: The routine returns a hexadecimal code in register
15:

Section 2: Command Controller 47

Code
Hexadecimal Significance

00 No errors detected.

o4 Number of characters to move exceeds maximum.

08 Attention interrupt detected by GATE.

ocC An immediate command was detected and executed.

10 The input line was in keyboard format and a normal return

was made.

14 The input line was in keyboard format and the line was
truncated.
20 The input line was in card reader format and a normal

return was made.

24 The input line was in card reader format and the line was
truncated.
40 SYSIN request no processed because:

1) CKCLS detected error.
2) E marker points to U marker.

100 Continuation detected by GATE.

Note: If continuation is detected, a return code of 10 is returned in
byte 2 of register 15.

System Control Block Usage:

New Task Common {CHANTC)

Task Common (CHATCM)

Source List Marker (CHASLM)
Source List Page Header (CHASLP)
Sublist Header (CHASLH)

GNC MACRO: The code generated by GNC initially picks up the character
pointed to by the current SA and places it in output register 1. If the
character is an EOB (first character of an SL marker), a test is made to
determine if it begins an E marker. If an E marker exists at the cur-
rent SA, control passes to the first instruction past the macro expan-
sion (hereafter called an EXIT); otherwise CZASC3 is called to process
the marker. Since CZASC3 determines a new SA, control passes back to
examine the new character.

If the character at the current SA wasn't an EOB, the current SA is
incremented by one and the same character is tested for a continuation
mark. If it's not a continuation character, an EXIT is made; otherwise
a test is made to determine if the continuation character is followed by
an E marker. If not, an EXIT is made with the continuation character in
the output register. If it was, CZASC4 is called to update the SA to
the first character in the continuation line and control passes back to
process the new character.

An operand may be specified with the GNC macro instruction. This
operand specifies the location to get control if a POPIT return code is
received after calling CZASC3 of CZASC4. In effect, the operand speci-
fies a special exit.

48

Programming Notes: NEW TASK COMMON, CHANTC, and the SUBLIST HEADER,
CHASLH, must be covered to assemble and use this macro. Use of this
macro is currently restricted to the Command Analyzer and Executor, the
Source List Handler, PCS, and the PROCDEF Expander.

’Control Dictionary Handler (CZASD)

The control dictionary handlers are a set of internal subroutines
that operate on any dictionary of the form of the command system control
dictionaries. They provide the means to initialize, maintain, and use
any dictionary of this form. (See Chart AG.)

ENTRIES:

CZASD1 - STARTFIX
CZASD2 - STARTVAR
CZASD3 - RFR
CZASD4 - NEXTRFR
CZASD5 - ENTR
CZASD6 - DELENT
CZASD7 - EXTDIC
CZASD8 - PACKVAR
CZASDX - GDV

MODULES CALLED: See individual routines.

EXITS: The routines normally return to the calling routine, via the
RETURN macro instruction.

OPERATION (GENERAL): Dictionary initialization is performed by eitherx
STARTFIX or STARTVAR, depending on the need for fixed-length or
variable-length entries. These routines establish the dictionary and
hash table in space provided by the user. A HASH macro instruction is
provided for determinig the referece value of an eight character entry
name. The RFR and NEXTRFR routines provide the capability to locate the
appropriate position within the dictionary in order to use, add,
replace, or delete an entry. NEXTRFR eliminates the necessity for
beginning the search each time. Either one or the other of these muse
be used prior to the use of ENTR or DELENT.

ENTR performs the addition or replacement of an entry, and in the
process calls EXTDIC as required. EXTDIC provides additional, initia-
lized space. DELENT deletes an entry and makes necessary changes in the
chain pointers. PACVAR is available to regain lost space in variable
length dictionaries by reforming the dictionary. This function should
be necessary only after excessive deletions have occurred.

The GDV routine is called by the GDV macro instruction to retrieve a
default value for a parameter name from the combined dictionary. Upon
entry, Rl contains the VMA of the parameter name. The name length is
preceded by a byte containing the string length, which cannot exceed
eight bytes. On exit, the default value is moved to table A. Then R1
is set to point to table A which will contain the default value, if one
is found in the combined dictionary. If a default value is not found,
Rl is set to 0. The default value is preceded by a byte that contains
the string length.

ERROR CONDITIONS: These are given in the individual routines.

SYSTEM CONTROL BLOCK USAGE: These are given in the individual routines.

Section 2: Command Controller 49

STARTFIX Routine (CZASD1): This subroutine performs the functions
necessary to initialize a dictionary composed of fixed-length entries.
It establishes the hash chain and other necessary initial entries. (See
Chart AG.)

Entry: CZASD1 - normal entry

Modules Called: None.

Exits: The routine returns to the calling routine, via the RETURN macro
instruction.

Operation: This routine uses the page of virtual storage indicated and

sets the hash table entries to point to the availakle space-chain. Then
the entry pointers are initialized for all entry spaces, as required by

the length of the entries; finally, entry codes are initialized.

Error Conditions: There are no error conditions for this routine.

System Control Block Usage:

Control Dictionary Heading (CHADCT)
Control Dictionary Entry (CHADEN)

STARTVAR ROUTINE (CZASD2): This subroutine performs the functions
necessary to initialize a dictionary that will contain variable length
entries; it also establishes the necessary initial entries. (See Chart
AG.)

Entry: CZASDZ2 - normal entry

Modules Called: None.

Exits: The routine returns to the calling routine, via the RETURN macro
instruction.

Operation: STARTVAR uses the space and length tc point the hash table
entries to an available space.

Error Conditions: There are no error conditions for this subroutine.

System Control Block Usage: Control Dictionary Heading (CHADCT).

RFR ROUTINE (CZASD3): This subroutine is used to locate a dictionary
entry which may be added, replaced, or deleted. (See Chart AG.)

Entry: CZASD3 - normal entry

Modules Called: None.

Exits: The routine returns to the calling routine, via the RETURN macro
instruction.

Operation: After verifying the hash value, the next entry is examined
for name and entry code. When the correct entry is located, the loca-
tion of the entry is returned. Successive entries in the hash chain are
checked until either a correct one is found or the end of the particular
hash chain is reached. The absolute location of the preceding pointer
is always retained.

Error Conditions: Register 15 will contain a 0 if the entry was suc-
cessfully located, and a # if no entry was found. It will contain 8 if
the hash value was not valid, or the page containing the dictionary is
not initialized.

50

System Contrcl Block Usage:

Control Dictionary Heading (CHADCT)
Control Dictionary Entry (CHADEN)

NEXTRFR ROUTINE (CZASD#4): This subroutine is used to locate an entry in
a dictionary without going through the entire hash chain. (See Chart
AG.)

Entry: CZASD4 - normal entry

Modules Called: None.

Exits: The routine returns to the calling routine, via the RETURN macro
instruction.

Operation: This routine begins at the point where RFR stopped. Succes-
sive entries in the hash chain are checked until either a correct one is
found or the end of the particular hash chain is reached. The absolute
location of the preceding pointer is always retained, and the location
of the entry found is returned.

Error Conditions: Register 15 will contain:

0 - successful location
4 -~ unsuccessful location
8 - error

System Control Block Usage:

Control Dictionary Heading (CHADCT)
Control Dictionary Entry (CHADEN)

ENTR ROUTINE (CZASDS5): This routine, which is used to add or to replace
an entry, is always used following an RFR or a NEXTRFR. If the preced-
ing locating routine was successful, ENTR will replace the old entry.

I1f the preceding locating routine was unsuccessful, ENTR will add the
new entry. {(See Chart AG.)

Entry: CZASDS - nornal entry

Modules Called: EXTDIC (CZASD7) - To extend the dictionary.

Exits: The routine returns to the calling routine, via the RETURN macro
instruction.

Operation: ENTR checks the preceding pointer, which was retained by RFR
or NEXTRFR, and determines whether to replace or to add the new entry.
It extends the dictionary, if necessary, by calling EXTDIC and proceeds
to perform the addition or replacement. The preceding pointer is
changed, and retained, while the location of the entry is returned.

Exror Conditions: Register 15 will contain:

0 - successful entry
4 - unsuccessful entry
8 - error

System Control Block Usage:

Control Dictionary Heading (CHADCT)
Control Dicticnary Entry (CHADEN)

DELENT ROUTINE (CZASD6): This routine is used to delete an existing
dictionary entry. (See Chart AG.)

Section 2: Command Controller 51

Entry: CZASD6 - normal entry

Modules Called: None.

Exits: The routine returns to the calling routine, via the RETURN macro
instruction.

Operation: This routine is used only following a successful RFR or
NEXTRFR. It deletes the located entry by setting the entry code equal
to 0 and by modifying the next entry pointers of the hash chain. It
also changes the retained preceding pointer. The new space is made
available in fixed-length dictionaries.

Error Conditions: The retained pointer is checked for zero to prevent
the destruction of the sequence. Register 15 contains:

0 - successful deletion
8 - invalid reguest

System Control Block Usage:

Control Dictionary Heading (CHADCT)
Control Dictionary Entry {(CHADEN)

EXTDIC ROUTINE (CZASD7): This routine is used when it is necessary to
provide additional space for the dictionary. It is called by ENTR when
there is insufficient space to accommodate a new entry. (See Chart AG.)

Entry: CZASD7 - normal entry

Modules Called:

EXPAND To get additional contiguous space.
GETMAIN To get storage.

Exits: The routine returns to the calling routine, via the RETURN macro
instruction.

Operation: If it is necessary, GETMAIN is used to get additional
storage. Then the dictionary is moved to ensure page alignment. EXTDIC
calls EXPAND to get additional space to insure contiguous space for the
continuation of the dictionary. The additional space is initialized,
and the dictionary length and dictionary origin are changed
appropriately.

Error Conditions: There are no error conditions for this routine.

System Control Block Usage:

Control Dictionary Heading (CHADCT)
Control Dictionary Entry (CHADEN)

PACKVAR ROUTINE (CZASD8): This routine is used when it becomes feasible
to reclaim lost space which is due to numerous deletions. This is
necessary only in the case of variable-length entry dictionaries where
deleted entry space is not reused. (See Chart AG.)

Entry: CZASD8 - normal entry

Modules Called: STARTVAR (CZASD2). To start a new dictionary.

Exits: The routine returns to the calling routine, wvia the RETURN macro
instruction.

52

Operation: PACKVAR uses the dictionary handlers to form a new dic-
tionary and to establish a new hash table which works through each hash
chain in turn, until all entries from the existing dictionary are put
into the newly formed dictiomnary. The routine returns the new dic-
tionary origin.

Error Conditions: Register 15 will contain:

0 - successfully packed dictionary
4 - error

System Control Block Usage:

control Dictionary Heading (CHADCT)
Control Dictionary Entry (CHADEN)

GDV_ROUTINE (CZASDX): This routine is called by the GDV macro to deter-
mine whether a default value exists in the dictionary for a specified
entry. (See Chart AG.)

Entry: CZASDX - normal entry

Modules Called:

RFR (CZASD3) To search the dictionary.

Exits: The routine returns to the calling module via the RETURN macro
instruction.

Operation: GDV uses a pointer in register 1 to find a pointer to an
eight-byte field containing the name for which the search is to be made.
The name is hashed, using the HASH macro. RFR is called, using these as
parameters: name, hash value, default code, dictionary location, and
the location in which the pointer to the value is to be placed. If a
value is found, a pointer to the value is returned.

Error Cconditions: Register 1 will contain the VMA of the default value,
if one was found. If one was not found, register 1 will contain all

zeros. The default value will be preceded by one byte containing the
string length.

System Control Block Usage: None.

Section 2: <Command Controller 53

SECTION 3: TEXT EDITOR

The Text Editor is a collection of routines that provide a facility
for creating and manipulating lines of data in a VISAM data set. Com-
munications are provided to allow editing to be performed at the same
time that a language processor is compiling or assembling from a source
data set.

The principal interface between the Text Editor routines and the rest
of the system is provided by the User Controller routine (CZAMZ). (The
User Controller serves as an interface to all non-privileged code. All
Text Editor routines are nonprivileged except the Edit Initialization
and DATALINE routines.)

Most of the Text Editor routines are command processor routines; they
are invoked when the specific commands they process are issued by the
user. Two of these, LIST (CZASP) and EXCISE (CZASL), are also called by
many of the other Editor command processors.

The Translation Table Initialization (TRIN) routine (CZBTA/CZBSY),
Translation Table Update (TRUP) routine (CZASS/CZBSX), MATCH {(CZAST),
and DATALINE (CZASG) are all service routines; they do not process spe-
cific commands, but instead serve as common code for the command proces-
sors. Figure 9 shows the logical connections between command

A L L I\

CORRECT CONTEXT Z> MATCH Cg LOCATE UPDATE
(CZASQ) (CZASM) (CZAST) (CZASN) (CZASR)
LIsT NUMBER
(CZASP) (CZASWY)
$ Routines calling service routines are connected
by open arrows. ’
» Routines calling other command processor routines X
are connected by shaded arrows.)EXC]SE YFﬂEVISE
{CZASL) (CZASH)
EDIT TRANSACTION TRANSACTION
TABLE TABLE
IN’T!(ACLZ‘::;’ON :> INITIALIZATION UPDATE
(CZBTA/CZBSY) (CZASS/CZBSX)

it it
i I L

INSERT DATALINE REGION EXCERPT STET
(CZAS D) ::,|> (CZASG) 'C: (CZASF) {CZASK) (CZASY)

Figure 9. Interrelation of Text Editor Command Processor and Service
routines

54

processor and service routines, and among the command processors
themselves.

The Edit Controller (CZATS) is essentially a command processor rou-
tine for the EDIT and END commands. It initializes the Text Editor when
an EDIT command is issued, and terminates Text Editor processing when an
END command is encountered (or another LPC is initiated). The Edit Con-
troller perforims a function that is similar to the LPC function for
assembler, FORTRAN, PL/I, and linkage editor.

The principal function of the Edit Initialization routine (CZBSE) is
to establish a transaction table by means of TRIN and GETMAIN when a
LPCINIT macro instruction has been issued. After the Transaction Table
has been established, control is returned to the User Controller to pro-
cess the next command.

The ENABLE and DISABLE commands are not handled by command processor
routines in the Text Editor; they are instead entry points in the User
Controller routine.

The virtual access method (VAM) is used for the data sets being
edited. The DCB for the data set is in the PSECT that is common to all
the modules in the Text Editor except the Edit Controller. All Text
Editor modules issue a COPY macro instruction; each DSECT (CZBSEDM)
generated by this macro maps the Text Editor's common PSECT (CZBSEW).

All of the commands of the Text Editor are entered in the BPKD form.
Each command points to a common BPKD that is located in the portion of
the User Controller routine that is part of its LPCEDIT routine. The
BPKD is located by the User Controller, and executed. The procedure
permits a controlled dispatch of many nonprivileged routines under the
precise control of the Language Processor Controller which is located in
a section of the User Controller routine.
cou

>'£ext Editor Controller —-- EDIT Command Routine (CZATS1/CZATS2)

This routine is the language processor controller for the Text Edi-
tor. When entered as the result of the EDIT command, this routine
initiates the Text Editor and monitors any succeeding Editor commands.
When entered as the result of the END command, it terminates Text Editor
processing. (See Chart AH.)

ENTRIES:
CZATS1 - entry exclusively from the Command Analyzer through the Edit
Controller for the EDIT command

CZATS2 - entry is from the User Controller (CZAMZ) upon recognition of
the END command, or if the user initiates another LPC

MODULES CALLED:

Control Dictionary
dandler GDV (CZASDX) Gets default value for REGSIZE.

DDEF (CZAEA1l) Creates a JFCB for the data set, if none already
exists.

RELEASE (CZAFJ3) Releases the data definition, during END proces-
sing, if CZATS had to call DDEF during EDIT
processing.

FINDDS (CZAEC1) Determines whether the requested data set has

been defined.

Section 3: Text Editor 55

FINDJFCB (CZAEB1) Locates the object data set, if FINDDS cannot
find the data set.

REGION (CZASF1) Validates RNAME, if it has been entered as one of
EDIT's parameters.

SCAN Routine

CHECKDS (CZAAC2) Validates the data set name.

User Control (CZAMZ):
LPCINIT (CZASW1) Initiates the Editor as an LPC.
LPCEDIT (CZASWY4) Begins execution of Editor commands.

User Prompter (CZATJ1l) Issues diagnostic messages to the user.

EXITS: The routine normally returns to the calling routine, via the
RETURN macro instruction.

OPERATION: An overview of the Editor Controller's logic is displayed in
Figure 10. The routine must first validate the data set name. When it
is assured of a valid dsname, it can determine whether that dsname
represents an already defined data set by calling FINDDS. If FINDDS
returns without a JFCB, CZATS performs the data definition itself: it
creates a ddname, fills in the DCB with default values, calls DDEF to
create a JFCB, and then notes that it supplied the DCB parameters.
These DCB parameters depend in part on whether REGSIZE has been speci-
fied. If REGSIZE is zero, CZATS sets KEYLEN to seven. If there is a
value for REGSIZE, CZATS adds seven to it to determine KEYLEN. Values
of RECFM=V and RKP=4 are assumed. The value for LRECL is determined by
REGSIZE: When REGSIZE=0, LRECL=132; when REGSIZE#0, LRECL=256.

1f FINDDS locates a JFCB, CZATS determines the disposition of the
data set. If it 1s other than "old," CZATS branches to anocther section
of logic to examine the Task Data Definition Table (TDT) and set the
attributes of the data set. If KEYLEN in the TDT=0, and REGSIZE is
valid, CZATS sets the DCBKEY=REGSIZE+7. If LRECL in the TDT is 0, it
sets RECL=132. It tests for record format (RECFM) in the TDT. If there
is no setting, or if the setting indicates variable format records,
CZATS sets RECFM=V and RKP=4. If RECFM=F, there must not be a setting
for RKP in the TDT.

CZATS next tests for and validates a member name, and, after testing
the user's qualifications, opens the requested data set either for input
or update. A value for REGSIZE may be entered as one of the EDIT com-
mand's operands -- CZATS tests for and validates such an occurrence, and
sets LRECL in the DCB accordingly. It then tests for a partitioned data
set. If this data set is not partitioned, CZATS can now begin the final
stage of its processing. However, if the data set is partitioned, CZATS
must first deal with it.

If the data set is partitioned, CZATS tries to locate the member and
open it via the FIND macro instruction. If the member is found, or has
already been opened, and it is a VISAM member, CZATS branches to its
final stage. (If in this processing CZATS finds that REGSIZE+7#DCBKEY,
it informs the user that REGSIZE has been set to 8.) If the member 1is
new, and not in SYSULIB, CZATS creates and closes it via the STOW macro
instruction. The following DDEF options are present, if the member is
in SysuliB, and if the member being processed is either SYSPRO or SYS-
MLF: RKP=4, KEYLEN=15, RECFM=V, LRECL=256. In any event, the new mem-
per is now reopened via the FIND macro instruction.

56

< EDIT)

VALIDATE
DSNAME

DATA SET NO

PERFORM DATA DEFINITION

DEFINED

1.

CREATE DDNAME

2. CREATE DCB:
RECFM=V
RKP—4
EXAMINE TDT () REGSIZE=0:
NO 7 DISPOSITION KEYLEN-7
1. TDT KEYLEN=0: ol LRECL=132
DCBKEY=REGSI ZE+7 (b) REGSIZEAO:
KEYLEN-REGSIZE+7
2. TDT LRECL=0: LRECL=256
DCB LRECL= 132
VALIDATE MEMBER
* ;%Tgii%imf, > NAME-TEST USER 3. CALL DDEF to MAKE
DCB RKP=4 QUALIFICATIONS. JFCB
OPEN DATA SET.
YES DATA SET
1. LOCATE OR PARTITIONED
CREATE AND CLOSE
MEMBER.

2. OPEN MEMBER

ENABLE TRANTAB

y

LPCEDIT

Figure 10. Overview of the Text Editor Controller logic

In its final stage of processing, CZATS determines if it provided the
DCB parameters. If not, it ensures that the RECFM and RKP parameters
are valid. CZATS then executes the LPCINIT macrc¢ to initialize itself
as a language processor controller. On return, it determines whether a
region name (RNAME) was entered as one of the EDIT command's operands.
1f so, it calls the REGION processor (CZASF). CZATS then sets the Tran-
saction Table ENABLE/DISABLE switch to enabled. If this is an old
region or old line data set, the CLP is set to the first line of the
region or data set, and an exit is issued to return the user to command
mode. If this is a new region or new line data set, the editing proce-
dure begins with the execution of the LPCEDIT wmacro instruction, which
returns to the command system to await new Text Editor commands. CZATS
loops on LPCEDIT until the user terminates the Text Editor with an END
command or another LPC. At this point, CZATS2 (END) is called. END
closes the object data set (or members if partitioned), releases EDIT's
DDEF, if necessary, and exits.

Section 3: Text Editor 57

ERROR CONDITIONS: The following conditions will cause a diagnostic mes-
sage to be issued and an error exit taken:

1. Member name or dsname not supplied.

2. Invalid dsname.

3. Member name longer than eight bytes.

4. Invalid REGSIZE specified.

5. Object data set not VISAM or VPAM.

6. Object data set new and read-only.

7. Object data set VPAM and no member name supplied.

8. TUnsuccessful FIND on the supplied member name.

9. Member not VISAM.

10. DDEF unsuccessful.

11. Invalid DCB parameters.

12. 1Invalid BASE default attribute.

13. 1Invalid region name (Name).

SYSTEM CONTROL BLOCK USAGE:

Data Control Block (CHADCB)
Task Definition Table (CHATDT)
Transaction Table (CHATRN)

’CONTEXT Ccommand Routine (CZASM)

The routine is entered from the User Controller when a CONTEXT com-
mand is encountered. It searches within a range of lines (nl to n2) and
character positions in the object data set for a given string (string

1), and upon finding it,

replaces that string with a second string

(string 2). (See Chart AI.)

ENTRY: CZASM1l - normal entry

MODULES CALLED:

Control Dictionary
Handler - GDV (CZASDX)

TRIN (CZBTA)

EXCISE (CZASL2,3)

TRUP (CZASS1, 2)

MATCH (CZAST)

User Prompter (CZATJ1)

58

Gets default value.
Initializes the Transaction Table.

CZASL2 resolves the beginning line number (nl);
CZASL3 resolves the last line number (n2).

C2ZASS1 adds a line to the Transaction Table
addition list. CZASS2 adds a line to the Tran-
saction Table deletion 1list.

Searches for the string to ke replaced (string
1), and converts hexadecimal input when
specified.

Issues diagnostic messages to the user.

LIST (CZASP) Converts the substitution string (string 2) for
hexadecimal input.

EXITS: The routine normally returns to the calling routine, via the
RETURN macro instruction. An error exit to the calling routine is made
when the required parameters are not specified.

OPERATION: CONTEXT establishes the range of lines to be searched. It
sets up the MATCH routine parameters to start at the given character
position for the first line, obtains the first line (via GET), and calls
MATCH to search the line for string 1 and convert hexadecimal input when
specified. If string 1 is found, it is replaced with string 2. LIST
(CZASP3) resolves hexadecimal input for string 2. The match character
position is then reset beyond the position where the last string was
found and MATCH is reentered until the line is exhausted. The new rec-
ord is written into the data set. CONTEXT then checks the transaction
processed switch (TRNPRO). If the the previous transactions have been
processed, TRIN is called to reset the transaction table. Successive
lines are located and searched until the entire range of lines has been
processed.

If the default value for TRANTAB is Y, in every line where string 1
has been replaced with string 2 at least one time, the original line is
entered in the transaction table as a deletion, and the edited line is
entered as an addition. When the entire range has been processed, the
current line pointer is set to the line following the last line seaxrched
(n2), or, if n2 is the last line of the data set or region, to n2 +
INCR; CONTEXT then returns to the calling program.

ERROR CONDITIONS: A diagnostic message is issued and an exit taken
under the following conditions:

1. String 1 not given.

2. Data set null.

3. nl or n2 not resolved (message issued by CZASL).

4. nl > n2 (invalid range).

5. Starting character position greater than ending position.
6. Starting or ending character positions invalid.

7. Error on WRITE operation.

8. Match not found.

SYSTEM CONTROL BLOCK USAGE:

Data Contrecl Block (CHADCRB)
Transaction Table (CHATRN)
New Task Common (CHANTC)

P> CORRECT Command Routine (CZASQ)

The routine is entered by the User Controller when a CORRECT command
is encountered. It initializes the Text Editor to accept correction
lines from SYSIN, and make corrections within a range of lines and
character positions in the data set. (See Chart AJ.)

ENTRY: CZASQ1 - normal entry

Sectiop 3: Text Editor 59

MODULES CALLED:

SYSIN (CZAsc?,8) Reads the expected data.

TRUP (CZASS1&2) Updates the Transaction Table (CHATRN).

TRIN (CZBTA1l) Initializes CHATRN.

User Prompter (CZATJ1) Issues messages to the user.

EXCISE (CZASL2,3) Calculates line numbers nl and n2 as indicated

by input values.

LIST (CZASP2) Converts hexadecimal input data and prints a
line on user's SYSOUT.

EXITS: The routine returns to the calling routine, via the RETURN macro
instruction.

OPERATION: CZASQl establishes the parameter defaults and replaces the
correction markers if the CORMRK parameter has been specified. The
first line (nl) is then obtained via a READ-by-key operation, and, if
hexadecimal output is specified, CZASP2 is called to convert the data to
the EBCDIC representation of hexadecimal. When only one line is speci-
fied to be corrected, the user is prompted with the line. SYSIN is
called to read the correction line (that is, the string of correction
markers).

A scan of both the object line and the correction line is initiated
at the column of data specified by the SCOL parameter in the CORRECT
command. If none was present, the scan starts at the first character of
data.

The scan proceeds character by character until the end of the object
line is reached. The first correction line character (CLC) is examined
to determine if it is a correction marker. If it is not a correction
marker, the CLC is placed in the output line. If it is a duplication
marker, the object line character (OLC) is placed in the output line.
The input and output byte counts are advanced and the next CLC and OLC
are examined in the same fashion.

The relationship of OLC to CLC is summarized as follows:

1. CLC=+* All OLCs are duplicated until the next correction marker is
encountered.

Z. CLC=$ This column is duplicated and all following non-correction-
marker characters replace their corresponding OLCs until
another correction marker is found.

3. CLC=% This column is removed from the object line, and following
object columns are duplicated until another correction
marker is reached.

4. CLC=2a This OLC is duplicated, and all succeeding output charac-
ters are obtained from a replacement line (read at this
time by SYSIN) until an @ (or end of 1line) is encountered
in the replacement line, after which the scanning resumes
from the correction line.

5. CLC=# This functions exactly as the a character except that the
characters entered for the replacement line are treated as
hexadecimal characters. Only valid hexadecimal characters
are accepted.

60

When the end of the object line is reached, the line is written to
the data set; if the default value for TRANTAB is ¥, the transaction
table will be updated. The transaction processed switch (TRNPRO) is
tested. If previous transactions have been processed, TRIN is called to
reinitialize the transaction table. CZASQ then calls TRUP to manipulate
the addition and deletion lists in the transaction table. On return,
the next object line is read (if there is one), all byte counts are
reinitialized, and the same correction/replacement lines are applied to
the new obiject line. The CLP is set to the line number after n2, or to
n2 + INCR if n2 is the last line of the data set.

ERROR CONDITIONS: The following error conditions will cause a diagnost-
ic message to be issued and an exit taken:

1. Output line exceeds a page.

2. Correction line end found prior to completion. The rest of the
output line is left untouched.

3. nl or n2 cannot be resolved.

4. Hexadecimal input contains invalid character.
5. SCOL value is non-decimal.

6. Invalid range specified.

7. CHAR parameter invalid.

8. SYNAD on WRITE operation.

9. SCOL value greater than record length.

SYSTEM CONTROL BLOCK USAGE:

Data Control Block (CHADCB)
Transaction Table (CHATRN)

’DATALINE Entry Service Routine (CZASG)

This privileged routine is entered when data is expected by EDIT,
INSERT, REGION, or REVISE. It reads the line using SYSIN, assigns a
line number, and places the new line in the data set. (See Chart AO.)}

ENTRIES:

CZASG1l - normal entry
CZASG2 - hexadecimal input conversion routine

MODULES CALLED:

TRIN (CZBTAl1) Initializes the Transaction Table.

TRUP (CZASS1) Places an addition in the Transaction Table.

SYSIN (CZASCS8) Reads a line.

User Controller Dispatches nonprivileged scan routine; cancels scan
(CZAMZ1,1%) routine previously terminated by an attention

interruption.

User Prompter Prints diagnostic messages.

(CZATJ1)

Section 3: Text Editor 61

EXITS: The routine processes lines reiteratively until an unusual con-
dition is detected (such as the CLP exceeding N2MAX, or the recognition
of a command) and control is returned to the calling program. See
"Error Conditions™ for a list of the conditions under which exits are
taken.

OPERATION: If a previous scan routine has been terminated by an atten-
tion interruption, User Controller (CZAMZ14) is called to cancel it.
DATALINE next compares the CLP to N2MAX. If the comparison is high or
equal, the User Prompter is called to inform the user that the line
already exists; register 1 is set to zero, and control is returned to
the calling routine. If the CLP is less than N2MAX, and DATALINE was
entered as a result of a REVISE or INSERT command, the increment value
is resolved.

The Source List Handler SYSIN routine (CZASC8) is then called via the
SYSIN macro instruction to read the line from the source list. If a
command or an attention interruption is detected, register 1 is set to
zero and the routine exits. Otherwise, the conversion routine (CZASG2)
within DATALINE is entered; this routine provides for conversion of
hexadecimal data to EBCDIC representation.

On return, DATALINE checks to see if concatenation is required. If
CONREC=Y and a concatenation character is detected at the end of the
line, CZASC8 is reentered until concatenation is complete.

If there is a value in TRNSCAN, DATALINE calls the routine found
there via CZAMZ1 with a two-word parameter list. The first word points
to the input string, preceded by a byte indicating the string length;
the second word points to a byte in CHBAAA where the scan routine may
pass a return code.

If the scan routine indicates that the line is acceptable, DATALINE
enters the line into the data set with a WRITE-by-key operation and
causes the line to be added to the Transaction Table addition list. The
CLP is then updated, and DATLINE loops back to read another line.

ERROR CONDITIONS: Under the following conditions the user is prompted
with a diagnostic message, the current record is ignored, and DATALINE
reads another line of data:

1. The specified scan routine indicates that the data line was inval-
id, and the next data line should be read (return code 4 or 8).

2. An error occurs during the WRITE operation, keys equal.

The user is prompted with a diagnostic message and DATALINE exits
under the following conditions:

1. CLP equal to or greater than N2MAX.
2. Invalid INCR.

3. An underscore detected at the beginning of the data line (no diag-
nostic issued).

4, An attention interruption condition detected (no diagnostic
issued).

5. Specified scan routine indicates that the data line is invalid and
further input should not be accepted (return cocde null or C).

6. An error occurs during the WRITE operation, keys not equal.

7. The line number plus INCR exceeds 9999999.

SYSTEM CONTROIL BLOCK USAGE:

Data Control Block (CHADCB)

New Task Common (CHANTC)

Profile Character and Switch Table (CHAPCT)
Transaction Table (CHATRN)

’Edit Initialization Routine (CZBSE)

This routine initializes the Transaction Table for a new data set.
{See Chart AK.)

ENTRY: CZIBSEl1 - normal entry

MODULES CALLED:

User Prompter (CZATJ1) Prompts user with current key.

TRIN (CZBTA) Initializes addition and deletion lists in
the Transaction Table.

GETMAIN (CZCGAZ2) Gets a page to be shared by all Text Editor
modules.

User Controller (CZASW9) Processes an implicit end.

EXITS: The routine returns to the calling routine, via the RETURN macro
instruction.

OPERATION: The Edit Initialization routine is entered from the User
Controller as a result of the execution of the LPCINIT macro instruc-
tion. This may be a result of the FTN, ASM, or other language processor
invocation. After a SETL is performed to the beginning of the data set,
the first record is obtained. If the data set is empty, the CLP will be
set to the value specified by BASE (if wvalid) or to 100; otherwise the
CLP is set to the first line of the region or data set.

TRIN is then called to initialize the addition and deletion lines in
the Transaction Table. Register 1 is set to zero for a region data set,
or to the address of the CZASGl1 VCON/RCON pair for a non-region data
set. Control is then returned to the User Controller routine.

ERROR CONDITIONS: The routine prompts the user, invokes an implicit
end, and returns if the line number or BASE is invalid.

SYSTEM CONTROL BLOCK USAGE:

Data Control Block (CHADCB)
Transaction Table (CHATRN)
New Task Common (CHANTC)

>EXCERPT Command Routine {(CZASK)

This routine is called by the User Controller when an EXCERPT command
is encountered. EXCERPT incorporates a range of lines from another data
set into the data set currently being edited. Entry parameters are the
name of the data set to be sampled, the region name, and the numbers of
the first and last lines to be included. (See Chart AL.)

ENTRY: CZASKl - normal entry

MODULES CALLED:

TRUP (CZASS1) Updates the transaction table.

Section 3: Text Editor 63

TRIN (CZBTAl1) Reinitializes the transaction table.

User Prompter (CZATJ1) Prints error messages.
FINDDS (CZAEC1) Finds JFCB for DSNAME in input parameter.
SCAN Package (CZAAC) Analyzes input parameters.

EXITS: The routine normally returns to the calling routine, via the
RETURN macro instruction.

OPERATION: Omn entry, if no data set name is input, the user is prompted
and an error exit is taken. CZASK then validates the region name, if
supplied, and issues a CHECKDS macro to validate the data set name. If
the data set from which the data is to be taken is the same as the tar-
get data set, the target data set is first closed and then opened for
update. C2ZATS next calls CZAEC1 to locate the JFCB, and on return,
opens the included data set.

The line numbers parameters are examined to determine what part of
the data set is to be included:

1. If both line numbers are defaulted, it is assumed that the entire
data set is to be included. A SETL to the beginning is performed;
n2 is set to LAST.

2. 1If only a region name is present, the entire region which has been
named is included. A series of SETLs is used to find the first and
last lines of the region; nl and n2 are initialized accordingly.

3. If only nl is present, the single line referred to is included;
both nl1 and n2 are set to the same key.

4. If both nl and n2 are explicitly given, the range of lines from nl
to n2 is included.

After establishing the range of inclusion, the included lines are placed
in order. Each line is renumbered using BASE and INCR and a check is
performed to ensure that N2MAX has not been exceeded. The included
lines are then written into the data set using WRITE-new-key. The tran-
saction processed switch (TRNPRO) is tested to see if previous transac-
tions have been processed. If so, TRIN is called to initialize the
Transaction Table prior to entering the first line. As each 1line is
written, it is entered in the Transaction table as an addition if the
default value for TRANTAB=Y. When the task has been completed, EXCERPT
calls CLOSE to close the sampled data set.

ERROR CONDITIONS: Should the included renumbered lines overflow the
maximum (N2ZMAX), the overflow lines will be ignored and the user will be
prompted with a diagnostic message. The records already processed are
deleted, and control is returned to the calling routine.

If the range of lines or region indicated is not found in the input
data set, or if the data set or region does not exist, the entire com-
mand will be ignored and the user will be prompted with a diagnostic
message.

If the data set from which lines are being included ends before the
line number specified by n2 is encountered, the user is informed by a
diagnostic message. The routine exits to the calling program.

64

SYSTEM CONTROL BLOCK USAGE:

Data Control Block (CHADCB)
Task Data Definition Table (CHATDT)
Transaction Table (CHATRN)

'EXCISE Command Routine (CZASL)

This routine is called by the User Controller when an EXCISE command
is encountered; it is also called by other Text Editor routines to
resolve the user's references to line numbers in the data set being
edited. EXCISE deletes a range of lines from the data set. Entry pa-
rameters are the first and last lines to be deleted. (See Chart AM.)

ENTRIES:

CZASL1 - entry point to delete lines from the data set

CZALS2 - entry point to resolve nl of a range of lines

CZASL3 - entry point to resolve n2 of a range of lines

CZASL4 - entry point to resolve one number not part of a range

MODULES CALLED:

EXCISE (CZASL1,2,§3) Calculates line numbers nl and n2 as indicated
by input values.

TRUP (CZASS2) Defines linkage to this routine.

TRIN (CZBTA1l) Initializes addition and deletion lists.

User Prompter (CZATJ1) Issues diagnostic messages to the user.

EXITS: The routine returns to the calling routine, via the RETURN macroc
instruction.

OPERATION: When entered at CZASL1l, EXCISE resolves any defaults in the
line number parameters. Each line in the indicated range is then
deleted by calling DELREC. The transaction processed switch (TRNPRO) is
tested. If previous transactions have been processed, TRIN is called to
reinitialize the Transaction Table. A deletion entry is made for each
line in the Transaction Table. The CLP is set to the first line deleted
and N2MAX is set to the first line beyond the deletion range if there is
a line, or 9999999 if there is no line.

When EXCISE is entered at CZASL2, CZASL3, or CZASL4, it is determined
whether the line number the user specified was relative or absolute. If
absolute, the line number is resolved by using a SETL by key. If the
line number is relative, SETL NEXT or SETL PREVIOUS is used to arrive at
the requested line.

If CZASL is able to successfully resolve the line number, it stores
the address of the key for the record in the location that was specified
in register 4 by the calling program. Otherwise, register 2, which upon
entry contained the address of the input line, is cleared to zeros.

ERROR CONDITIONS: The user is issued a diagnostic message and an exit
is taken under the following conditions:

1. Only one line is specified and it does not exist in the data set.
2. No lines exist in the current region or line data set.
3. nl or n2 specified as a plus-or-minus integer, and there are not as

many lines from the CLP in the region or data set.

Section 3: Text Editor 65

SYSTEM CONTROL BLOCK USAGE:

Data Control Block (CHADCB)
Transaction Table (CHATRN)

»INSERT command Routine (CZASJ)

INSERT, which is entered from the User Controller when an INSERT com-
mand is encountered, prepares the Text Editor to accept data lines for
insertion following a given line in the source data set. (See Chart
AN.)

ENTRY: CZASJ1l - normal entry

MODULES CALLED:

DATALINE (CZASG) Reads the expected data.

EXCISE (CZASLYH) Resolves the line number.

User Prompter (CZATJ) Prints messages to the user.

TRIN (CZBTAl) Initializes the Transaction Table.

EXITS: The routine returns to the calling routine, via the RETURN macro
instruction. Register 1 contains the address of the CZASGl1 VCON/RCON
pair to indicate that data is expected.

OPERATION: The data set is initialized so that subsequent new data
lines are inserted following line nl. N2MAX is set to the next existing
line after nl. There is no deletion of existing lines.

ERROR CONDITIONS: If a line number is entered which EXCISE cannot

resolve, or if an invalid increment is specified, the user is prompted
and the command is canceled.

SYSTEM CONTROL BLOCK USAGE:

Data Control Block (CHADCR)
Transaction Table (CHATRN)

’LIST Command Routine (CZASP)

The routine is entered by the User Controller whenever a LIST command
is encountered. It lists a range of lines from a data set and places
them on SYSOUT. Entry parameters are either the current line pointer,
or the first (nl) and last (n2) lines to be listed (along with optional
starting and ending character positions) plus the mode (CHAR) in which
the lines are to be listed. (See Chart AP.)

ENTRIES:
CZASP1 - normal entry
CZASP2 - hexadecimal input conversion entry

CZASP3 - hexadecimal output conversion entry

MODULES CALLED:

Control Dictionary
Handler - GDV (CZASDX) Gets default value for LINENO.

EXCISE (CZASL2,3) Calculates the limits of the area to be listed.

GATWR ,GTWRC (CZATC) Writes records to user's SYSOUT.

66

User Prompter {(CZATJ1) Issues diagnostic messages to the user.

EXITS: CZASP1 and CZASP2 exit normally when their function is com-
pleted; register 1 is set to zero, notifying the Text Editor that addi-
tional data is not expected. Control is passed to the calling routine
via the RETURN macro instruction.

OPERATION: If the first parameter (nil) is specified as CLP, the current
line pointer (in CHATRN) will be listed and CZASP1l will exit. If nil
(not specified as CLP) and n2 are specified, CZASP will resolve any
character positions, then call CZASL to resolve the nl and n2 values.

If n2 is defaulted, only nl is listed. If nl is defaulted and n2 is
specified, nl will be set to the CLP. If both nl and n2 are defaulted,
the entire data set will be listed. The CHAR parameter is checked for
validity (valid values are H, C, and M). If it is defaulted, and there
is no value in the combined dictionary, C is assumed.

GET is used to retrieve the lines, and GATE is used to list them on
SYSOUT. A maximum of 256 characters are listed from each line. Data
will be listed as specified by the CHAR parameter in character, hexade-
cimal or mixed (character and underscored hexadecimal) format. The CLP
is set to the line number after n2, if one exists; if n2 is the last
line, the CLP is set to nZ2 + INCR.

Entry point CZASP2 lists lines on SYSOUT, or converts data for LOCATE
and CORRECT.

Entry point CZASP3 converts hexadecimal input data from the EBCDIC
representation.

ERROR CONDITIONS: The user is prompted and an error return taken when
nl is greater than n2, nl or n2 cannot be resolved, an invalid character
position is specified, the CHAR parameter is invalid, or the data set is
empty.

SYSTEM CONTROL BLOCK USAGE:

Data Control Block (CHADCB)
New Task Common {(CHANTC)
Transaction Table (CHATRN)
Task Common (CHATCM)
RESTBL Header (CHARHD)

’LOCATE Command Routine (CZASN)

The routine is entered from the User Controller when a LOCATE command
is encountered. LOCATE searches a range of lines in a data set for a
given character string. Parameters to LOCATE are the first (nl) and
last (n2) line numbers to be searched (along with optional starting and
ending character positions), and the string to be located. (See Chart
AQ.)

ENTRY: CZASN1 - normal entry

MODULES CALLED:

Control Dictionary
Handler - GDV (CZASDX) Gets default value.

EXCISE (CZASL2,CZASL3) Calculates the limits of the area to be
searched.

LIST (CZASP2) Prints the line containing the string.

Section 3: Text Editor 67

MATCH (CZAST1) Searches a line for the desired string.
TRIN (CZBTA1l) Initializes CHATRN.
User Prompter (CZATJ1) Issues diagnostic messages to the user.

EXITS: After printing the current key value the routine normally
returns to the calling routine, via the RETURN macro instruction.

OPERATION: LOCATE resolves the entry parameters. If all of the parame-
ters are defaulted, or if the string is not found, the CLP is set to the
line following the last line searched (n2), or, if n2 is the last line
of the data set, to n2 + INCR.

If nl and n2 are defaulted, the entire data set is searched. If n2
is defaulted, only the line specified by nl is searched. Both nl and n2
may have character positions specified. These positions will apply to
the entire range to be searched. LOCATE retrieves the record via VISAM
GET (locate), then calls MATCH to search for the string. If the string
is found, it is printed using LIST, and the CLP is set to the line con-
taining it. (The CHAR value in the combined dictionary will determine
the mode of the output. If there is no value, C is assumed.)

ERROR CONDITIONS: Under the following conditions the user is issued a
diagnostic message and control is passed to the calling routine via the
RETURN macro instruction:

1. ©No string specified.

2. Specified string not found.

3. Data set empty.

4. nl greater than n2.

5. nl defaulted, but CLP set to non-existent line.

6. nl or n2 not resolved (no message issued by LOCATE).

7. Invalid starting or ending character positions.

8. Specified starting character position greater than ending position.

SYSTEM CONTROL BLOCK USAGE:

Data Control Block (CHADCB)
Transaction Table (CHATRN)
New Task Common (CHANTC)

p» MATCH Service Routine (CZAST)

This routine is used to search a line, or a portion of a line, for a
given string. (See Chart AR.)

ENTRY: CZAST1 - normal entry

MODULES CALLED:

LIST (CZASP3) Converts to hexadecimal output.

Control Dictionary
Handler - GDV (CZASDX) Gets default value for HEXSW.

EXITS: The routine returns to the calling routine, via the RETURN macro
instruction.

68

OPERATION: If a conversion from EBCDIC to hexadecimal is required, the
LIST routine (entry point CZASP3) is called. The given line is searched
character by character until a match with the given string is found, or
a match has not been found when the limit of the given line is reached.
The result of the search is placed in register 2 and passed to the cal-
ling routine. If a match was not found, this result is zero; if a match
was found, register 2 will contain the character position within the
line where the matching string begins.

ERRQOR CONDITIONS: None.

SYSTEM CONTROL BLOCK USAGE: New Task Common (CHANTC)

’NUMBER Command Routine (CZASU)

NUMBER is called from the User Controller when NUMBER command is
encountered. NUMBER is used to renumber a range of lines in the data
set. (See Chart AS.)

ENTRY: CZASUl - normal entry

MODULES CALLED:

EXCISE (CZAsSLZ2,3) Resolves line number nl and maximum
number n2.

TRUP (CZASS1, 3) Updates addition and deletion lists.

TRIN (CZBTAl1) Initializes the Transaction Table.

User Prompter (CZATJ1) Issues diagnostic messages to the user.

GETMAIN Obtains pages to store data set while
numbering.

FREEMAIN Releases pages acquired with GETMAIN.

EXITS: The routine returns to the calling routine, via the RETURN macro
instruction.

OPERATION: NUMBER determines whether both line number parameters, nl
and n2, have been defaulted. If so, nl is set to the first record of
the data set or region, and n2 is set to the last record. If n2 has
been specified but nl has been defaulted, nl is set to the value of the
current line pointer; if nl has been specified but n2 defaulted, n2 is
set to nl. EXCISE (CZASL2) is called to resolve line number parameters
that have -been specified. Unspecified BASE and INCR parameters are set
to nl and 100, respectively.

The records are read via GET in the locate mode. The transaction
processed switch (TRNPRO) is tested to determine whether previous tran-
sactions have been processed. If they have, TRIN is called to initia-
lize the transaction table. The record is then put in the deletion list
to be deleted with DELREC-by-key. As the records are deleted, the
number-of-lines counter is incremented. This is to insure all records
will fit between BASE and limiting line. If they cannot, recovery is
initiated by WRITE with the old key, and the command is cancelled. The
lines are added to the addition list and placed with WRITE-new-key in
the object data set until all of the lines are renumbered.

If INCR is specified in such a way that it causes the limiting line
number to be exceeded, NUMBER calculates a new increment by dividing the
difference between BASE and the limiting line by the count of lines to
be renumbered:

Section 3: Text Editor 69

Resulting quotient: Increment furnished:

100 100
50 - 99 50
20 - 49 20
10 - 19 10

5- 9 5
2 - 4 2
1 1

The user is then informed that the Text Editor has furnished the incre-
ment, and execution continues.

ERROR CONDITIONS: If the BASE or INCR are incorrectly specified or in-
valid, the user is prompted and NUMBER exits to the calling routine.

SYSTEM CONTROL BLOCK USAGE:

Data Control Block (CHADCB)
Transaction Table (CHATRN)

}Profile Handler Command Routine (CZASZ)

This privileged, reenterable, and nonresident routine saves the vir-
tual storage user profile in USERLIB when a PROFILE command is executed.
(See Chart AT.)

ENTRY: CZASZ1 - normal entry via BUILTIN call mechanism from the Com-

mand Analyzer and Executor.

MODULES CALLED:

DICTEXTR (CZBTBX) Adds entries to the primary dictionary.
STARTVAR (CZASD2) Initializes New Primary Dictionary in buffer.

EXITS: The routine normally returns to the calling routine, via the
RETURN macro instruction.

OPERATION: The Profile Handler routine saves a session profile by copy-
ing it into USERLIB from virtual storage when a PROFILE command is
issued. Entry is via the BUILTIN procedure call mechanism. The profile
to be copied is constructed in a contiguous virtual storage area. The
Cnaracter Translation Table, pointed to by PCTCTT, is moved into the
PFLCTT area. The output character translation character, pointed to by
PCTOCT, is moved into the PFLOCT area. The Profile Character and Switch
table is moved from New Task Common into the PFLPCT area.

The Primary Dictionary, starting at PFLPDC, is reinitialized using
the STARTVAR routine of the Control Dictionary Handler. Then the Combi-
ned Dictionary is searched, extracting all Primary Dictionary entries,
which include synonym, default and command symbol definition entries.
The extraction of command symbols is optional, based on the setting of
the Command Sympol Switch. This switch setting originates as a PROFILE
command parameter, which is passed as a calling parameter to the Profile
Handler. The extracted entries are added to the empty Primary Dic-
tionary in the protile through a call to the DICTEXTR routine (CZBTBX).

The USERLIB DCB is located, and the DCBLRE field set with the overall
length of the profile. A FIND is issued to locate the SYSPRX member in
the USERLIB. If one exists, it is deleted and replaced by the new pro-
file, using a VSAM PUT. A STOW is issued to update the POD, and control
is returned to the calling routine.

70

ERROR CONDITIONS: A code 1 ABEND is taken if an error return code is
received following the FIND, STOW {(Type D) or STOW (Type N) macro
instructions.

SYSTEM CONTROL BIOCK USAGE:

Data Control Block (CHADCB)

Control Dictionary Header (CHADCT)

User Profile (CHAPFL)

New Task Common (CHANTC)

Profile Character and Switch Table (CHAPCT)

’REGION command Processor (CZASF)

This routine is entered from the User Controller whenever a REGION
command is encountered; it is also entered when the RNAME parameter has
been specified in an EDIT command. It locates or initializes a region
of lines within the data set having a common region name {(string prefix
to the line number). The entry parameter is a 0 - 240 character string
which is saved in the Transaction Table as a region name, and is pre-
fixed to all subsequent line numbers until another REGION is encoun-
tered. If the entry parameter is defaulted a null string prefixes the
subsequent line numbers, provided that the data set has regions. (See
Chart AU.)

ENTRY: CZASFl1 - normal entry

MODULES CALLED:

DATALINE (CZASG) Reads the expected data.

Usexr Prompter (CZATJ1l) Prints error messages and gives the current
key to the user.

TRIN (CZBTAl) Initializes the Transaction Table.

EXITS: The routine normally returns to the calling routine, via the
RETURN macro instruction, with register 1 containing the address of the
CZASG1 VCON/RCON pair to indicate that data is expected. The error exit
is to the calling routine when the data set has no regions although a
region has been specified. Normally, the Text Editor informs the user
of the current key by means of the User Prompter.

OPERATION: The DCB opened for the data set is retrieved from the tran-
saction table and SETL is called to find the location of the key having
the maximum number in the given region. The key is tested to determine
if this is in the given region. If it is not, no region of that name
exists, and the CLP is determined as follows: If a BASE exists, the CLP
is set to the value of BASE; otherwise, a GDV will be done for BASE and
the default value used to set the CLP. If no default exists, 100 is
assumed. If the region does not exist, the CLP i35 set to the first line
of the region.

In the case where the region name is defaulted a name of all blanks
is assumed if the data set has regions. A data set might not have
regions, and in this case the key is a seven-digit number which can be
initialized or added to as such. If this were the case, it would be
unnecessary to use a REGION command. After a region has been located or
initialized, REGION exits with the address of the CZASG1l VCON/RCON pair
in register 1 to indicate data is expected.

ERROK CONDITIONS: If the user has specified a region name, the length
oi the key (DCBKEY) of the data set is tested. If it is equal to 7, the
data set key has no region name, and the user is informed with a message
issued by the User Prompter.

Section 3: Text Editor 71

If the length of the specified region name plus 7 is greater than the
length already specified for the data set key (DCBKEY), the specified
region name is truncated to conform and the user is informed with a mes-
sage issued by the User Prompter.

If a record is found with a key corresponding to the maximum key of
the region (Region 9999999), the region is assumed to be full and the
user is prompted with two messages issued by the User Prompter.

Note: ©No records can be added to the data set until the user is more
specific as to where records can be inserted.

If the data set key is less than 7, the user receives a diagnostic
error message.

SYSTEM CONTROL BLOCK USAGE:

Data Control Block (CHADCB)
Transaction Table (CHATRN)
Task Data Definition Table (CHATDT)

’REVISE command Routine (CZASH)

This routine is entered from the User Controller whenever a REVISE
command is encountered. (See Chart AV.)

ENTRY: CZASH1 - normal entry

MODULES CALLED:

EXCISE (CZASL) Deletes specified lines.

EXITS: The routine normally returns toc the calling routine, via the
RETURN macro instruction.

OPERATION: REVISE prepares the Text Editor to accept data for inclusion
in the data set at a given point. If an increment is provided, it is
stored in INCR for later reference by CZASG. If it is not provided, an
increment of 100 is the default. CZASI1 is entered to resoclve the line
numbers, and delete the lines. REVISE exits with the address of the
CZASG1 VCON/RCON pair in register 1 to indicate that data is expected.

ERROR CONDITIONS: The user is prompted if the specified increment is
invalid.

SYSTEM CONTROL BLOCK USAGE:

Transaction Table (CHATRN)

P STET command Routine (CZASV)

The routine is entered by the User Controller when a STET command is
encountered. If TRANTAB=Y, it restores the data set to its condition
prior to the most recent set of unprocessed transactions. If TRANTABR=N,
STET will return to its caller. If the Text Editor is disabled, all of
the editing commands entered since it was last enabled will be reversed.
I1f the Text Editor is enabled, only the last transaction is reversible.
(See Chart AW.)

ENTRY: CZASV1 - normal entry

MODULES CALLED:

TRIN (CZBTAl) Initializes the Transaction Table.

72

EXITS: The routine returns to the calling routine, via the RETURN macro
instruction.

OPERATION: The STET routine restores the data set to its previous con-
dition by using DELREC and WRITE. The key of the line in the addition
list (KEYA) is compared to that of the line in the deletion list (KEYD).
If KEYA < KEYD, DELREC is called to delete the line of KEYA from the
data set. If KEYA > KEYD, WRITE is called to write the line of KEYD
into the data set. If the record already exists in the data set, the
user's issued a message by the User Prompter. If KEYA = KE¥D, WRITE is
called to replace line KEYA with l1ine KEYD. When the transactions have
been processed, the pointer to the deletion list is exchanged with the
pointer to the addition list. If there are no transactions, or if there
is no Transaction Table (TRANTAB=N), this command has no effect on the
data set.

ERROR CONDITIONS: None.

SYSTEM CONTROL BLOCK USAGE:

Data Control Block (CHADCB)
Transaction Table (CHATRN)

’Transaction Table Initialization Routine (CZBTA/CZBSY) - TRIN

These routines are called by other Text Editor routines to reinitia-
lize the addition and deletion lists in the Transaction Table. This is
normally done either when a new data set is to be processed or when a
set of transactions have been processed by a language processor. CZBTA
is nonprivileged; CZBSY is privileged - which eliminates the need for
the Text Editor to use SVC-type linkage. (See Chart AX.)

ENTRIES:

CZBTAl - normal entry for CZBTA
CZBSY1 - normal entry for CZBSY

MODULES CALLED:

FREEMAIN Releases pages used for additions and deletions.

EXITS: The routine returns to the calling routine, via the RETURN macro
instruction.

OPERATION: FREEMAIN is called iteratively to release all but the first
page of the addition and deletion lists. The Transaction Table contain-
ing the pointers to the addition and deletion lists is never on the same
page as the additions and deletions; therefore, its page is never
released. Upon completion of the routine the list pointers in CHATRN
are zeroed before control returns to the calling routine.

ERROR CONDITIONS: None.

SYSTEM CONTROL BLOCK USAGE: Transaction Table (CHATRN)

’Transaction Table Updater Service Routine (CZASS/CZBSX) - TRUP

The Transaction Table Updater is entered to add a record to the addi-
tion list or deletion list. CZASS is nonprivileged; CZBSX is privileged
- which eliminates the need for the Text Editor to use SVC-type linkage.
(See Chart AY.)

Section 3: Text Editor 73

ENTRIES:

CZASS1 - entry point in CZASS for an addition to the addition 1list
CZA5S52 - entry point in CZASS for an addition to the deletion list
CZBSX1 - entry point in C2BSX for an addition to the addition list
CZBSX2 - entry point in CZBSX for an addition to the deletion list

MODULES CALLED:

GETMAIN Obtains a page for the record.

EXITS: The routine returns to the calling routine, via the RETURN macro
instruction.

OPERATION: The Transaction Table Updater gets the address of the next
available space (TRNNLK) from the Transaction Table, and determines
whether the record will fit in the available page. If not, ancther page
is acquired with GETMAIN and the table pages are chained. The record is
moved into the available space and TRNNLK is updated.

If the record represents an addition or deletion entry, the corres-
ponding list is updated so that the records in the list are pointed to
in sequence. Also, a deletion entry causes the addition list to be
examined and, if a record which is identical to the deletion entry is
found, it is deleted from the addition list.

ERROR CONDITIONS: None.

SYSTEM CONTROL BLOCK USAGE: Transaction Table (CHATRN)

’UPDA’I‘E Command Routine (CZASR)

This routine is entered from the User Controller whenever an UPDATE
command is encountered. The data set must have been opened prior to
entry and the DCB address stored in the Transaction Table. The current
region is updated with input lines read by SYSIN. (See Chart AZ.)

ENTRY: CZASR1 - normal entry

MODULES CALLED:

Control Dictionary
Handler - GDV (CZASDX) Gets default value.

SYSIN (CZASCE) Reads a line.

L1ST (CZASP3) Converts hexadecimal data.

TRUP (CZASS1) Updates the Transaction Table (CHATRN).

TRIN (CZBTAl) Initializes the Transaction Table (CHATRN).

User Controller Dispatches nonprivileged scan routine; can-
(CzamMZ1,14) cel scan routine previously terminated by an

attention interruption.
User Prompter (CZATJ1) Issues a diagnostic message to the user.
EXITS: UPDATE sets register 1 to zero and exits to the calling routine
wnen a command or attention interruption is recognized. See "Error Con-
ditions™ for a 1list of other situations in which exits are taken.
OPERATION: Upon entry, UPDATE checks to ensure that a language proces-

sor mode exists, and determines if a previous scan routine has been ter-
minated by an attention interruption. If such a scan routine exists,

74

the User Controller (CZAMZ14) is called to cancel it. UPDATE next
issues an initial prompt to the user, requesting line numbers and data.

The routine then checks for variable-length records. If the recorxds
are not variable length, they are padded with blanks. UPDATE then
enters the Source List Handler SYSIN routine (CZASC8) via the SYSIN
macro instruction to read the line. If no line, line number, or blank
stop character was supplied, the user is prompted with a diagnostic, and
UPDATE reads another line from the SYSIN device. If hexadecimal input
is recognized, UPDATE calls CZASP3 to convert it to EBCDIC
representation.

The line is next checked for concatenation characters. If CONREC=Y
and a concatenation character is detected at the end of the line, CZASLS
is again entered until concatenation is complete.

UPDATE checks TRNSCAN to see if a scan routine has been specified.
If there is a value in TRNSCAN, the routine found there is called via
CZAMZ1 with a two-word parameter list. The first word points to the
input string, preceded by a byte indicating the string length; the
second word points to a byte in CHBAAA where the scan routine may pass a
return code.

If the scan routine indicates that the line is acceptable, UPDATE
writes the record into the data set with a WRITE-new-key. If a line
already exists with the key, the line is processed by a WRITE-replace-
by-key. If there are no write errors, UPDATE checks the transaction
processed switch (TRNPRO). If previous transactions have been pro-
cessed, TRIN is called to reinitialize the Transaction Table and TRUP to
update it.

UPDATE then loops back to read another line. No prompt for this line
is issued. UPDATE exits only when it encounters the break character
preceding a command as input, or when it recognizes an attention
interrupt.

ERROR CONDITIONS: Under the following conditions the user is issued a
diagnostic message, the current record is ignored, and UPDATE reads the
next data line:

1. ©No line or line number entered.
2. No blank stop character separates the line number and the data.
3. The indicated line number is greater than seven digits.

4. The specified scan routine indicates that the data line was invalid
and the next data line shoulid be read (return code 4 or 8).

Under the following conditions the user is issued a diagnostic message
and UPDATE exits:

1. The routine is entered with no language processor active.

2. An error occurs on a READ or WRITE operation while updating the
record.

3. The specified scan routine indicates that the data line was invalid
and further input should not be accepted (return code null or C).

SYSTEM CONTROL BLOCK USAGE:

Data Control Block (CHADCB)
Transaction Table (CHATRN)

Section 3: Text Editor 75

SECTION 4: COMMAND ROUTINES

This section describes command routines supported by the command sys-
tem. Each of these routines carries out the actions requested by a com-
mand, and usually does this by calling upon system service routines in a
prescribed sequence. Figure 11 lists the names and functions of the
command routines. This section also describes the four support routines
that are sometimes employed during command processing. These are:

e ABEND routine (to handle abnormal task termination)

e FINDDS routine (to find or create the job file control block for a
specified data set)

e FINDJFCB routine (to locate the job file control block associated
with a specified data definition name)

s PAIR routine (to assist in abnormal task termination)

General operation of the command routines is given in the following
sequence. Typically, the Command Analyzer links to the command routine
when its corresponding command name appears on SYSIN. The command rou-
tine then employs the SCAN routines to isolate and validate each operand
of the command. If diagnostic or prompting messages are needed, the
routine issues them via the User Prompter. When the operands prove
acceptable, the command routine carries out the requested actions, often
by a series of calls to system service modules, such as OPEN or. CLOSE,
issues (via User Prompter) any response or confirmation messages needed,
and finally returns control to the Command Analyzer.

Command routines can be called directly by other command routines or,
in some cases, via macro instruction usage. The called routine operates
in the same general way, but returns to its calling routine upon
completion.

The PUNCH, RT, WT, and PRINT commands are an important exception to
the usual pattern. When the Command Analyzer encounters one of these
commands, it calls the BULKIO preprocessor. The preprocessor then vali-
dates the command operands and, if they are acceptable, sends a request
for task initiation to the batch monitor. Acting upon this request,

| T . T T |
| [Symbolic | |
| Routine Name | Name | Purpose |
3 + - -———— 1
ABEND	CZACP	To terminate an abnormal task.
I		
BACK] CZABC	To switch a conversational task to noncon-	
		versational mode. i
i {		
cDD	CZAFS	To execute one or more prestored DDEF
i		commands.
CANCEL	CZABJ	To terminate a specified nonconversational
		task.
]
CATALOG	C2ZAEI	To create or to update the catalocg entry
		for a data set.
L —_—d 4 J
Figure 11. Command routines (part 1 of 3)

76

| 3 T R L} 1
| | Symbolic | |
| Routine Name | Name | Purpose |
IS 4 i 3
L) T ¥ a
| CDs | CZAFV | To make a copy of a specified data set. |
| | | |
| CHGPASS | CZATI | To change password.]
| | | |
| CONVERT | CZCcQV | To convert VAM 1 formatted volumes to VAM |
i | | 2 format. |
[| l , : 1
DATA	CZADF	To build a VISAM or VSAM data set.
DSsS2/pC?	CZAEL	To present status information about one or
		more data sets.
DDEF	C2ZAEA	To define a data set and describe its
		characteristics tc the systen.
		I
ERASE/DELETE	CZAEJ	To erase a data set on public storage and
{		to delete the catalog entry for a data
		set. I
n l .		
EVWV	CZCFB	To catalog VAM data sets which reside on
i		private volumes and were produced on one
{ { system to allow their use on another		
% % = system. |

|
| EXECUTE | CZABB | To initiate a nonconverxsational task. |
| | | !
| FINDDS | CZAEC | To search the task data definition table |
| | | for a job file control block. |
i [| |
| FINDJFCB | CZAEB | To locate the job file control block for a |
| | | given data definition name. i
| [| |
| FLOW | CZAGD | To regulate the number of different task |
; : : types. |

|
{ IF String | CZBLT | To provide fast substitute for PCS proces- |
| Comparison | | sing of the IF verb when EBCDIC strings i
| | | are being compared. i
JOIN	CZAFK	To grant a user access to the time sharing
i	system.	
]	
KEYWORD	CZATH	To display keywords or command parameters
i	in user's SYSLIB and USERLIB.	
LINE?	CZAEM	To present one or more lines from a speci-
		fied data set.
[[
LOGOFF	C2ZAFN	To log a task off the system. i
		[
} LOGON	CZAFM	To begin a task logon.
LOGON2	CZBTB	To complete a task logon.
		I
MCAST/MCASTAB	CZATU	To make changes in the profile character,
{	switch table, and translation table.	
{ MODIFY	CZAEG	To alter, delete, and insert lines in a {
		VISAM data set. i
[e 4L et e e e e e e e e e e e e e e e e e 20 i e e A < S D e . e <. i e 500 2t e ot e e e e s y)

Figure 11. Command routines (part 2 of 3)

Section 4: Command Routines 77

r L] A § h
| |symbolic |]
| Routine Name | Name | Purpose |
L L L 3
LB T] h |
MSGWR	CZAAD	To issue system messages and fetch system
		responses.
PAIR	CZACS	To add and to remove addresses of inter-
}	lock release routines in the ABEND Inter-	
i i	lock Release (AIR) table.	
	i	
PERMIT	CZAFH	To indicate that sharing of a data set or
		catalog level is permitted to other users.
]
POD?	C€Z2COX	To print the member names of individual
l	members of a cataloged VPAM data set.	
		!
PROCDEF { CZATP	To maintain the procedure library.	
Procedure	CZATE	To expand a procedure name in the
Expander		source list.
QUIT	CZAFL	To deny a user access to the time sharing
: ; % system. :		
] RET	CZAEN	To modify the mode field in the DSD and
		the equivalent JFCB field.
RPS/CVV	CZAXX	To recreate public storage.
RELEASE { C2AFJ	To destroy the job file control block(s) i	
{		for one or more data sets defined during
} { the current task.		
]
SECURE	CZAFU	To secure all devices needed for the]
i		execution of a nonconversational task.
SHARE	CZAFI	To allow a user to share a data set or §
		catalog level.
SYN/DEF] CZATR	To enter or to delete synonym or default]	
i		values in the combined dictionary.
SYSXPAT	CZATF	To pass parameters in their original tex-
{ { tual form.		
]		
TIME	CZAVB	To specify a tuime .nterval for task
		completion.
]		
UPDTUSER	C2ZAGC	To initialize the counts of data sets for
		the system and for each user.
USAGE	CZAGB	To display user accounting information on
} l	S¥SOUT.	
User Control	C2AMZ	To preserve command system interfaces with
] nonprivileged rrograms.	
VAM TAPE	CZAET	To process VAM data sets.
VSs	CZAVR	To determine if user may use the Virtual
} | | Support System (VSS).

L R e e e e e e e e e e <t T e i o P o e 2 A e S . o . o . A S R i Bk e i o S o J

Figure 11. Command routines (part 3 of 3)

78

the batch monitor will initiate the PUNCH, PRINT, WT, or RT command rou-
tine as a new nonconversational task, independent from the task that
originally issued the command. In this way PUNCH, RT, WT, and PRINT
functions —-- which depend upon the availability of input/output devices
-- can be performed at the system's convenience, and the user‘'s task
does not have to wait. A full description of nonconversational opera-
tions and the PUNCH, PRINT, WT, RT, ASNBD, FORCE, HOLD/DROP, MSG/BCST,
REPLY, SHUTDOWN, and XWTO routines is contained in the Operator Task and
Bulk I/0O PLM, GY28-2047.

’ABEND (CZACP, CZACQ, and CZACR)
The abnormal task termination (ABEND) procedure terminates a logical
task sequence at the point the error was detected. (See Chart BA.)
ENTRIES:

CZACP1
(for ABEND routine I-CZACP)

normal entry point, generated by ABEND
macro instruction

CZACP2 - entered for ABENDREG to print diagnost-
ic message

CZACP3 - entered on VDMEP call

CZACQ1

!

(for ABEND routine II-CZACQ) main entry point. This module is only
entered from CZACP
CZACR1

(for ABEND routine III-CZACR)

entry point used only by a QLE which
was queued by the external interrupt
processor as a result of the VSEND
executed by CZACQ of the original task
CZACR2

(for ABEND routine III-CZACR)

parameter list containing address of
MCB, used by CZACP

MODULES CALLED: The major ABEND routine, CZACP, is heavily dependent on
supervisor and access methods routines to fulfill its function. These
are the supervisor routines it calls:

PURGE (CEAALP) Removes any I1/0 requests made by the task.

XTRACT (CEAHO03) Extracts the taskid, conversational flag, and
I/0 pending flag from the TSI.

LVPSW (CEAHQP2Z) Loads the VPSW and unmasks any interrupts.

TSEND (CEAH19) Ends the task®'s time slice until the task's

pending I/0 requests are removed.

RESET (CEAAHR) Resets devices in the task's symbolic device
list which were disabled during PURGE.

These are the access methods routines called by CZACP:

VAM ABIR (CZCQQ1) Releases interlocks set by VAM routines. ABIR=
ABEND Interlock Release.

STOW (CZCOK1) Modifies SYSCAT membexr in the POD to reset the
lock.

INTLK (CZCOH1) Locks RESTBL while ABEND is using it.

Section 4: Command Routines 79

RLINTIK (C2COIl) Unlocks RESTBL. Note: INTLK and RLINTLK set
and release, respectively, a read or write
interlock on a shared data set entry.

FREEQ (CZCTC6) Logically disconnects any multiple terminals for
MTT tasks.
DELVAM (CZCFT1) Deletes a VAM data set (marks all its DSCB and

data page entries "available®™ in the page assig-
nment table.)

CLOSE COMMON (CZCLB) Logically disconnects the data set from the pro-
blem program, closes the DCB and relinguishes
main storage.

DUPCLOSE (CZCEZ1l) Closes a duplexed data set.

Other modules outside the command system also called by ABEND (CZACP)
are:

DISCONNECT (CZHNEB) Disconnects VSS from the task.
RELEAS (CZCAD1l) Releases any private devices.
Loader (CZCDL15) Determines the program that called ABEND.

Loader Logcff (CZCCD) Unlinks the task from the shared data set table.

Scratch (CZCES1) Cleans up the DSCB.

ITI Inhibits task interrupts.

PTI Allows task interrupts.
SRCHAUL Searches the Active User List.

(ABEND also uses READ, WRITE, WTL, WTO, and VSEND.) This ABEND
module (CZACP) also calls modules within the command system:

Control Dictionary Handlers

GDV (CZASDX) Gets the default value for DIAGREG.
GATE (CZATC1) Clears buffer.
{CZATCB) Writes the standard ABEND message.
User Control (CZAMZ7) Processes a call to clean up nonprivileged QLEs.

User Prompter (CZATJ2) Find ABEND message in SYSMLF.

The second ABEND routine, CZACQ, also calls routines both within and
without the command system. The routines within the command system are:

ERASE/DELETE (CZAEJ6) Erases the SYSOUT data set.

EXECUTE (CZABBJ3) Prints SYSOUT with an erase option for a noncon-
versational task.

GATE (CZATC) Uses GATWR to send ABEND message.
CZACG calls some modules outside the command system:
CAT FLUSH (CZCFX1) Flushes the system catalog (SYSCAT).

CLOSE COMMON (CZCLB) Closes SYSCAT, SYSLIB, Active User List.

80

TSEND (CEAH19) Ends the task's time slice until the task's
pending I/0 requests are removed.

VAM ABIR (CZCQQ1) Releases interlocks set by VAM routines.
(CZACQ also uses WTL, ATCS, EBCDTIME, and DLTSI macros.) The third

ABEND module, CZAAQR only makes calls within the command system -- to
log on a new task:

Initial Attention To begin logging on a new task.
Interrupt Processor
(CZAHB1)

LOGON (CZATD2) To complete logging on a new task.

EXITS: ABEND routine I (CZACP) normally returns tc the task monitor
aftexr processing a completion code 1 condition for conversational tasks
or nonconversational tasks for which a TSKABEND data set has been supp-
lied. The routine exits to LOGOFF after processing a completion code 1
condition for a nonconversational task for which nc TSKABEND data set
has been supplied or if the task being ended abnormally is an Express
Batch task. If a minor system error occurs during CZACP processing,
ABEND is reinvoked.

ABEND routine II (CZACQ) normally exits to DLTSI to delete the task
in which a completion code 2, 3, or 4 error condition occurred. If a
major system error occurs during CZACQ processing, CZACP exits to the
system error recovery routine (SERR).

ABEND routine III (CZACR) exits to the task monitor, via the RETURN
macro instruction, after creating a new task for a conversational task
in which a completion code 2 condition occurred. 1f a VSEND cannot be
sent to the old task or if the VSEND reply from the old task is not
received, ABEND is reinvoked.

OPERATION: The ABEND procedure processes four types of error condi-
tions, completion code 1 (referred to as the ABEND condition), comple-
tion code 2 (referred to as the ABORT condition), completion code 3, and
completion code 4 (terminal held condition). Conditions specified by
codes 1 and 2 will terminate the logical task sequence at the point the
error was detected and return control to the user. 1In a completion code
1 {(ABEND) condition, control is returned to the user with the virtual
storage as it was when the error occurred. The user can then determine
the cause of the error and direct the task termination. 1In a completion
code 2 (ABORT) condition, control is returned to the user with a com-
pletely new virtual storage. In a completion code 3 or 4 condition, the
user does not receive control again. His virtual storage is destroyed
and he is disconnected from the systemn.

The ABEND procedure consists of three routines. Routine I performs
the initial processing of completion code 2, 3, and 4 conditions and the
complete processing of completion code 1 conditions. Completion code 2
conditions require further processing by routine II for nonconversation-
al tasks, and by routine II and routine III for conversational tasks.

Routine I determines whether the task being abnormally terminated has
a special purpose ABEND routine; if so, ABEND links to it via a call to
the User Control routine; if not, ABENL processing continues. A CHANGE
macro is issued to move the task to Schedule Table Level 21.

For completion code 1 conditions, routine I will set off any mask
bits set on in the VPSW, terminate the task's I/0, release the system
interlocks set by the task, issue an error message and, in the case of a
conversational task, return control to the user. For nonconversational
tasks, but not for an Express Batch task, routine I will look for a new

Section 4: Command Routines 81

SYSIN data set with a ddname TSKABEND.
set TSKABEND,

If the user has indicated a data
this data set replaces the SYSIN data set and becomes the

new SYSIN data set.

The task is then reinitialized.
If the user has not specified a TSKABEND data set, LOGOFF is
called to terminate the task.
GET is issued to flush the SYSIN data set to the next LOGON card.

ABEND.

A WTO is issued to document the

If the task is an Express Batch task, a
If an

error occurs during routine I processing of a completion code 1 condi-
tion, the ABEND procedure will be reinvoked and will process the error
as a completion code 2 condition.

For completion code 2 conditions, routine I will unmask any masks set
in the VPSW, terminate the task's I/0, and release the system interlocks

set by the task.

When the completion code 2 occurs in a nonconversa-

tional task or in a task that is not logged on, ABEND writes the error
messages on SYSOUT.

The data sets are closed, data sets to be deleted at LOGOFF are
deleted, private devices are released, and the user table is updated.
Routine I then calls routine II to continue processing the completion

code 2 condition.
shared data set table.

The task's shared modules are unlinked from the
In the case of a nonconversational task, a mes-

sage is sent to inform the batch monitor of the task's impending dele-

tion.

Routine II terminates the nonconversational task, or any task

that is not logged on, by removing any I/0 requests made by the task and

deleting the task's symbolic device list.
Routine II then deletes the task from the systenm.

the ABEND.

A WTL is issued to document

For conversational tasks, routine II creates a new virtual storage
and collects information needed to activate a new task and sends this
information to the new task.

Routine III in the new task sets the field used by the ABEND proce-
dure to indicate the task is being created by ABEND and logs on the new

task, using the information sent from routine II.

The new task then

issues the error messages, and routine III returns to the task monitor,
which returns control to the user.

For completion code 3 situations, the task is deleted in the same way
as for completion code 2 situations, except that routine III is never
invoked to initiate a new task.

CZACP2 issues a GATWR for the module locations and registers asso-
ciated with the last occurrence of ABEND, if any.

ERROR CONDITIONS:

The routine may issue these system errors:

SYSER Code

Significance

050506701
050506702
050506703
050506704

050506705
050506706
050506707
050506708
050506709
050506710
650506711
050506731
050506732
050506733

82

MO/BM ABEND in pre-logon state.

MO/BM ABEND in post-logoff state.

ABEND unable to CHANGE task to Level 21.

STOW of SYSCAT member failed. Member interlock might be
left on.

CLE failed before comp 1 exits.

TSICIO count not zero after 96 TSENDs.

ABEND in new task before SETAE completed.

DCB header not released after CLOSE.

ABEND called recursively in LOADER LOGOFF.

Used for system debugging stops.

VSS disconnect failed.

VSEND to BM for nonconversational tasks failed.
Close of SYSCAT data set failed.

Close of SYSLIB (SYSMLF) data set failed.

050506734 VAM interlocks release (CZCQQ2) failed.

050506736 PURGE I/0 failed.

0450506737 VSEND of 1 of 1 MCB to new task failed.

050506738 VSEND of 2 of 2 MCB to new task failed.

050506739 Reply not received from the new task in 255 TSEND.
050506740 ABEND during scanning of SDAT.

050506741 SDAT entry lock not reset after 255 TSENDs.
050506742 SCRTSI failed.

050506743 VSEND of 1 of 2 MCB to new task failed.

050506744 SETAE to shift SYSIN device for new task failed.
050506745 Other error conditions during creation of new task.
050506746 VSEND of reply to the new task failed.

050506747 Close of SYSSVCT (CZCFX5) failed.

050506748 ABEND unable to RELEAS a private data set.
050506749 CLOSE of USERLIB (SYSMLF) failed.

Note: All SYSERs have minor severity.

SYSTEM CONTROL BLOCK USAGE:

ABEND Interrupt Release Table (CHAAIR)
Active User Limits Table (CHAAUL)

Data Control Block (CHADCRB)

Data Control Block Header (CHADHD)

Data Event Block (CHADEB)

Data Event Control Block (CHADEC)

Interrupt Storage Area (CHAISA)

Interrupt Table (CHAITB)

Message Control Block (CHAMCB)

Message Event Control Block (CHAMEBR)

New Task Common (CHANTC)

Relative External Storage Correspondence Table (CHARHD)
Shared Data Set Member Entry (CHASDM)

Shared Data Set Table (CHASDS)

Symbolic Device Allocation Table (CHASDA)
System Activity and Resources Table (CHASAR)
System Common (CHASCM)

Task Accounting and Statistical Data (CHAACT)
Task Common (CHATCM)

Task Data Definition Table (CHATDT)

Task Dictionary Table (CHATDY)

Task Status Index (CHATSI)

Terminal Control Table (CHATCT)

User Table {(CHAUSE)

’BACK Command Routine (CZABC)

This routine switches a conversational task to the nonconversational
mode. BACK operates in conversational mode only. (See Chart BB.)

ENTRY: CZABC1 - normal entry

MODULES CALLED:

User Prompter (CZATJ1) Issues error messages to the user.

FINDDS (CZAEC1) Determines that a SYSIN data set exists and
that JFCB for it has been built.

GATEOPEN (CZBTBA) Opens nonconversational SYSOUT.

BACK also executes the following macro instructions:

Section 4: Command Routines 83

RCR 1. Updates the User Table entry.
2. Gets ration.
3. Vacates task if no task space exists.

VSENDR Sends requests for nonconversational tasks to
the batch monitor (CZABA).

USELOCK Unlocks User Table entry.
ESETL Unlocks SYSUSE data set.
XTRACT Accesses the TSI field containing the

conversational/nonconversational indicator.

SETUP 1. Sets nonconversational indicator in TSI.
2. Puts the symbolic device address of noncon-
versational SYSIN in TSI.
3. Puts the batch sequence number in the TSI.

OPEN Opens nonconversational SYSIN.

SCHED Updates the schedule table index in the TSI to
third level task.

EXITS: The routine normally returns to the calling routine, via the
RETURN macro instruction. If a system error occurs, the routine exits
to ABEND.

OPERATION: This routine first validates the environment in which the
BACK command was issued -~ VSS cannot be connected and the task must be
conversational. The user must also have entered a valid dsname with the
BACK command. If all is in order, the BACK processor calls FINDDS to
determine whether a data set for the given dsname exists. Also, if the
data set has not been defined during the current task, FINDDS creates a
job file contrcl block (JFCB) for it, provided the SYSIN data set name
has been cataloged. A number of invalid conditions can result from the
FINDDS operation -- see Error Conditions for elaboration.

On return, with RC=0, the BACK processor sends the request (via
VSENDR) to the batch monitor to determine whether the system can accept
a new background task at this time. The batch monitor will return a
batch sequence number if a new task is acceptable, and BACK will then
issue that number to the user, confirming the acceptance.

The remaining operations switch the task's mode. The conversational
terminal is disconnected via the ATCS macro (SVC 219). The user's entry
in the User Table is then updated to show that he no longer has an
active conversational task, and the mode indicator in the Task Status
Index (TSI) is reset accordingly. The new SYSIN and SYSOUT are set up
for use, and opened. Finally, the routine issues a SCHED 3VC, changing
the task's schedule table index to reflect its new mode. Execution of
the nonconversational task will then occur at the system's convenience.

ERROR CONDITIONS: The BACK Processor issues a diagnostic message to the
user and returns to its calling routine if it determines that:

1. VSS is connected to the requesting task.
2. The requesting task is not conversational.
3. The user defaulted the data set name in the BACK command.

4. The data set name supplied has invalid length.

84

5. FINDDS indicates (RC=8) that the dsname is for some reason invalid
-- for instance, it could not find the dsname in the catalog.

6. FINDDS indicates (RC=16) that the data set name cannot be
retrieved.

7. The batch monitor indicates that no task space exists, or that

shutdown 1is in progress.

Certain conditions cause the BACK processor to issue the following sys-
tem error:

SYSER Code Severity ABEND Message Significance
050202700 Minorxr INVALID RETURN CODE BACK received an
FROM A CALLED ROUTINE invalid return code

from a called module.

Conditions which can cause this error are:
1. Invalid return code from either FINDDS or the batch monitor.
2. FINDDS indicates (RC=4) that no JFCB was found in TDT and that
there was no request to create one; or indicates (RC=10) that no

JFCB in TDT and unable to build one -- for instance, because space
unavailable.

SYSTEM CONTROL BLOCK USAGE:

Task Common {(CAATCM)

Data Control Block (CHADCB)

User Table (CHAUSE)

New Task Common (CHANTC)

Task Status Index (CHATSI)

Task Data Definition Table (CHATDT)

’b‘atch Work Queue (BWQ) EXHIBIT Processor (CZAYF)

The EXHIBIT Director (CZAYD) calls CZAYF to process requests for an
informational display of the Batch Work Queue, when the BWQ option is
specified in the EXHIBIT command. Various types of displays may be
requested, which may result in a display of all entries or of a smaller
subset of entries. (For example: only print requests may be called
for.) (See Chart BC.)

ENTRIES:

CZAYF1l - normal entry
CZAYF2 - entry from ABEND processing

MODULES CALLED: None.

EXITS: CZAYF returns to its calling routine.

OPERATION: All information required for this display operation is
available in the individual BWQ entries. If the task requesting a dis-
play of the batch work queue is not the operator task, only the request-
ing task's DCB for the Batch Work Queue is opened. The operator tasks
is presented with the status of all jobs on the Batch Work Queue. CZAYF
initializes the Batch Work Queue and determines whether the type speci-
fied is BSN.

Section 4: Command Routines 85

If not, CZAYF obtains each BWQ entry in turn, releases the lock
bytes, determines whether it is the type requested, and, if so, moves
the entry into the work area provided by CZAYD. On end of data, if no
entries have been found, a message to that effect is moved into the work
area.

If the type specified is BSN, CZAYF reads on the BSN key, moving
either the synad message or a 'no entry found' message intc the work
area.

In either case, after the entries have been examined, CZAYF TCLOSEs
the BWQ for the operator task, and begins to write headers on the SYSOUT
device. All write operations are directed to GATE. When the last head-
er has been written, CZAYF converts and formats its BWQ data, line by
line, and writes each line to SYSOUT via GATWR. When these entries are
exhausted, CZAYF returns to its calling routine.

ERROR CONDITIONS: 1If, for a non-operator task, the BWG could not be
accessed, a diagnostic message is directed to GATE.

SYSTEM CONTROL BLOCK USAGE: Batch Work Queue.

’CANCEL command Routine (CZABJ)

This routine sends a message to the batch mcnitor to cancel a speci-
fied nonconversational task. CANCEL operates in conversatioconal mode
only. (See Chart BD.)

ENTRY: CZABJ1 - normal entry

MODULES CALLED:

NEXTPAR (CZAAC1) Gets and checks batch sequence number.
NUMSTG (CZAACH) Validates batch sequence number.
MSGWR (CZAAD2) Issues messages to user.

EXITS: The routine normally returns tc the calling routine, via the
RETURN macro instruction. If a system error occurs, the routine exits
to ABEND.

OPERATION: The routine gets and checks the batch sequence number, which
is provided as the command's operand, using the SCAN routines NEXTPAR
and NUMSTG. CANCEL then builds a request message, including the user's
identification and privilege class as well as the batch sequence number,
and sends it to the batch monitor, via CALL if executed in the operator
task or VSEND if requested by a user.

When the batch monitor receives the message, it will cancel the spe-
cified task if it is currently being executed or is awaiting execution,
and if the user is privileged to cancel that task. Until the batch mon-
itor responds, an AWAIT puts the CANCEL task in wait status. Upon
receiving the batch monitor's response, CANCEL issues an appropriate
message to the user, and returns to the calling routine.

ERROR CONDITIONS: The CANCEL processor checks the validity of the pa-
rameter format and the BSN entered with the CANCFL command. If either
is in error the user is prompted and allowed to try again. An attention
will interrupt this prompting.

After the call to the batch monitor, if the CANCEL routine discovers
that the batch sequence number is either completed or nonexistent, or
that the user is not privileged to cancel the task, it issues an error
message before exiting. For the message IDs and exact text ot the mes-
sages 1issued, see System Messages.

86

The routine may issue these system errors:

SYSER Code Severity ABEND Message

050203401 Minor INVALID RETURN CODE
FROM A CALLED
ROUTINE.

050203402 Minor MESSAGE TO BATCH
MONITOR COULD NOT
BE COMPLETED.

050203403 Minor INVALID RETURN CODE

FROM A CALLED
ROUTINE.

Significance

Invalid return code
received from called
rodule.

VSEND to batch moni-
tor was not com-
pleted.

Invalid response
received from batch
monitor.

SYSTEM CONTROIL BLOCK USAGE:

Task Common (CHATCM)
Message Control Block (CHAMCB)
Message Event Control Block (CHAMEB)

’CATALOG Command Routine (CZAEI)

This routine makes a permanent record of a non-VAM data set in a
user's catalog, updates an existing non-VAM entry in the catalog,
creates an index level in the catalog for a generation data group, or
catalogs a data set as a new generation of a generation data group. For
VAM data sets, it is used only to change the data set name in the cata-
log and on direct access volumes. (See Chart BE.)

ENTRIES:

CZAEI1 - command entry

CZAEI2 - macro instruction entry

CZAEI3 - special macro instruction entry for batch monitor
CZAEI11l - BPKD

MODULES CALLED:

SCAN Routines:
NEXTPAR (CZAAC1) Locates delimiters of input string and scan for
invalid characters.

CHEKDS (CZAAC2) validates data set name.

CHKNUM (CZAACS) Validates generation numker.

MSGWR (CZAAD2) Issues system messages.

FINDDS (CZAEC1) Locates or creates JFCB for specified data sets.

DELCAT (CZCFD) Changes data set name in catalog entry, or deletes
the o0ld name from the catalog.

RENAME (CZCFZ) Changes data set name on direct access volume.

ADDCAT (CZCFA) Creates or updates fields within the catalog.

LOCATE (CZCFL) Creates index level in catalog for generation data
group.

GETMAIN (CZCGA2) Obtains additional virtual storage.

Section 4: Command Routines 87

FREEMAIN (CZCGA3) Releases virtual storage.

INDEX (CZCFI1) Creates generation data group.

MTREQ (CZCAA1l) Mounts data set volume.

SETXP (CEAH7) Makes a DSCB page available for processing.
PGOUT (CZAA1l) Writes out DSCB.

ABEND (CZACP1) Aborts the task for abnormal conditions.

EXITS: The routine normally returns to the calling routine, via the
RETURN macro instruction. If a system error occurs, the routine exits
to ABEND.

OPERATION: The command operands are validated using the SCAN routines.

If the new data set name has a relative generation number appended,
indicating that it is a generation of a generation data group, LOCATE is
called to obtain the absolute form of the generation number. Then the
job file control block (JFCB) for the current data set name operand is
located, and checked to ensure that the state of the data set (cataloged
or not cataloged) as specified by the operand agrees with the state
shown in the JFCB.

A non-VAM data set name is cataloged or the catalog data set descrip-
tor (DSD) for a non-VAM data set is updated by calling the ADDCAT rou-
tine. Upon successful return from ADDCAT, control is returned to the
calling routine. Any attempt to catalog or update the DSD of an exist-
ing catalog entry for a VAM data set or to rename a VAM data set which
has no catalog entry is rejected by the CATALOG Command Routine.

If new and current data set names are entered as operands for:

s Non—-VAM data sets and the current name is not cataloged, RENAME is
called to replace the current name with the new name in the DSCB
before a catalog entry is created and control is returned to the
calling routine.

s Non-VAM data sets and the current name is cataloged, DELCAT is
called to replace the current name with the new name in the catalog
DSD. If the current data set also resides on a direct access
volume, RENAME is called to replace the current name with a new name
in the DSCB. Then ADDCAT is called to update fields in the catalog
and control is returned to the calling routine.

e VAM data sets and the current name is cataloged, DELCAT is called to
replace the current name with the new name in the catalog DSD. Then
SETXP is called to make a Format-E DSCB available for processing.
After changing the DSNAME in the DSCB, PGOUT is called to write out
the Format—-E DSCB and control is returned to the calling routine.

s VAM data sets and the new name is a generation data set name, ADDCAT
is called to catalog the new name. The current name is replaced
with the new name on the DSCB and DELCAT is called to delete the
current name from the catalog.

If a catalog index is requested for a generation data group, a param-
eter list is created for INDEX. Upon successful return from INDEX, con-
trol is returned to the calling routine.

ERROR CONDITIONS: If entry was by macro instruction, a hexadecimal code
is returned in the fourth byte of general register 15:

88

Code

Significance

00

ou

08

oc

10

14

20

24

Cataloging done as requested.

Name cannot be changed since new dsname
Input string error, no cataloging done.
No cataloging for other reason.

Data set name already in catalog.

not unique.

No volume of data set mounted, cannot catalog.

VAM data set not GDG or RENAME option.

Open DCB.

The routine checks for acceptable operands and notifies the user,

through user prompter, of any errors found.

see System Messages.

The routine may issue these system errors:

SYSER Code Severity ABEND Message

050503302 Minor SYSTEM ERROR, INVALID

RETURN FROM MSGWR.

050503304 Minor SYSTEM ERROR, INVALID

RETURN FROM NEXTPAR.

050503306 Minor SYSTEM ERROR, INVALID

RETURN FROM CHEKDS.

050503308 Minor SYSTEM ERROR, INVALID

RETURN FROM CHKNUM.

050503310 Minor SYSTEM ERROR, INVALID

RETURN FROM FINDDS.

050503314 Minor SYSTEM ERROR, INVALID

RETURN FROM DELCAT.

050503316 Minor SYSTEM ERROR, INVALID

RETURN FROM RENAME.

050503318 Minor SYSTEM ERROR, TOO

MANY VOLUMES OR UN-
ABLE TO GETMAIN.

050503320 Minor SYSTEM ERROR, INVALID

RETURN FROM ADDCAT.

050503322 Minor SYSTEM ERROR, UNABLE

TO COMPLETE COMMAND
OR BACKOUT.

For the messages issued,

Significance

Invalid return
code from MSGWR.

Invalid return
code from NEXTPAR.

Invalid return
code from CHEKDS.

Invalid return
code from CHRKNUM.

Invalid return
code from FINDDS.

Invalid return
code from DELCAT.

Invalid return
code from RENAME.

More than 255
volumes or unable
to issue GETMAIN.

Invalid return
code from ADDCAT.

ADDCAT unsuccess-—
ful but indicator
shows that suc-
cessful change of
data set name has
occurred in cata-
iog or DSCB
through DELCAT or
RENAME.

Section U4: Command Routines

89

050503324 Minor SYSTEM ERROR, INVALID Invalid return

RESULTS FROM INDEX. code from INDEX.
050503326 Minor SYSTEM ERROR, INVALID Invalid return
RETURN FROM LOCATE. code from LOCATE.

SYSTEM CONTROL BLOCK USAGE:

Task Common (CHATCM)

Catalog SBLOCK (CHACCC)

Interrupt Storage Area (CHAISA)

Task Data Definition Table (CHATDT)
Symbolic Device Allocation Table (CHASDA)

’CDD command Routine (CZAFS)

This routine retrieves one or more DDEF commands for execution,
obtaining them from a line data set that contains prestored DDEF com-
mands. (See Chart BF.)

ENTRIES:

CZAFS1 - normal entry
CZAFS2 - macro instruction entry

MODULES CALLED:

SCAN Routines:
NEXTPAR (CZAAC1) Gets command operand.

ALFNUM (CZAAC3) Validates ddname.
CHEKDS (CZAAC2) Validates data set name.
MSGWR (CZAAD2) Issue messages to user and fetch his replies.

Also, lists the ddnames processed at the end of
operation.

FINDDS (CZAEC1) Finds or creates JFCB for prestored data set.

Command Analyzer Executes DDEF command via OBEY string.
(CZASAl)

GETMAIN (CZCGAZ2) Reserves virtual storage for stack of ddnames.

FREEMAIN (CZCGA3) Releases virtual storage reserved for ddnames.

EXITS: The routine returns to its calling routine, via the RETURN macro
instruction.

OPERATION: If the command operand field does not include ddnames (data
definition names), the CD routine will fetch all DDEF commands in the
prestored data set, and present them, one by one, to the DDEF command
routine for execution. In doing this, the CDD routine first validates
the name of the prestored data set (using SCAN routines for this), gets
the job file control block for that data set (using the FINDDS routine),
then opens the data set and reads it, record by record. Each record
containing a proper command verb is passed to the Command Analyzer for
processing as an OBEY string. First, however, the CDD routine adjusts
the record to take into account the record length, line number, and con-
tinuation lines. The routine will continue setting up records and pas-
sing them to the Command Analyzer until the prestored data set is
exhausted. At that point, control returns to the calling routine.

90

When one or more ddnames are supplied as operands, the routine vali-
dates and then stacks them in temporary storage. Next, it scans sequen-
tially through the prestored data set, looking for a match on a ddname
with any that had been stacked. BAs each match is found, the prestored
DDEF command is readied and passed to the Command Analyzer for execu-
tion. After the last of the requested ddnames has been executed (or
when end of data set is encountered), the routine returns control to its
calling routine.

If CDD is entered via a command, the routine accepts attention inter-
rupts by immediately closing the prestored data set, setting a return
code and returning control to the calling routine. If all the ddnames
have not been processed, CDD releases the reserved storage through FREE-
MAIN, before returning to its caller.

ERROR CONDITIONS: If entry was by a macro instruction, a hexadecimal
code will be returned in register 15:

Code Significance

00 No error detected

o4 Invalid data set name

08 Invalid data definition name

ocC Data definition name not in prestored data set

10 Error return received from DDEF (via Command Analyzer)
14 Not a line data set

18 Attention interrupt handled

The routine checks for acceptable operands and notifies the user,
through user prompter of any errors found. For the messages issued, see
command description given in System Messages.

The routine may issue these system errors. In each case the severity
is minor, and the ABEND message is SYSTEM ERROR, TASK TERMINATED.

SYSER Code Significance

050506801 Invalid NEXTPAR return code
050506802 Invalid NEXTPAR delimiters
050506803 Invalid MSGWR return code
050506804 Invalid ALFNUM return code
050506805 Invalid FINDDS return code
050506806 Invalid CHEKDS return code

SYSTEM CONTROL BLOCK USAGE:

Task Common (CHATCM)

Data Control Block (CHADCB)

Task Data Definition Table (CHATDT)
Interrupt Storage Area (CHAISA)

Section U4: Command Routines 91

’cns command Routine (CZAFV)

This routine makes a copy of a data set or member of a partitioned
data set. It may also copy member{s) of a partitioned data set (with
user data and aliases) into a second partitioned data set, replacing
duplicate members, if so specified. The original data set or member(s)
may be erased after duplication. If the original data set or member is
a line data set, the routine also renumbers the new data set when
requested. (See Chart BG.)

ENTRIES:

CZAFV1 - command entry

CZAFV2 - macro instruction entry

CZAFV3 - EODAD entry in reading input data set
CZAFVY4 - SYNAD from input or output data set
CZAFVS5 - EODAD entry from output data set

MODULES CALLED:

CHEKDS (CZAAC2P) Validates data set name.

CHKNUM (CZAACS) Validates line number and DCB operands.
PRMPT (CZATJ1) Issues system messages to the user.
FINDDS (CZAEC1) Locates or creates a JFCB.

DDEF (CZAEAl) Defines the data set if no JFCB exists.
FIND (CzZCOJ1) Finds a member of a partitioned data set.
STOW (CZCOK1) Updates the POD of a partitioned data set.
ERASE (CZAEJT) Erases data sets or memkers.

GETMAIN (CZCGA2) Obtains virtual storage work area.
FREEMAIN (CZCGA) Frees virtual storage work area.

EXITS: The routine normally returns to the calling routine, via the
RETURN macro instruction. If a system error occurs, the routine exits
to ABEND.

OPERATION: Upon entry to the macro, the parameter string is obtained,
flags are set, and an OBEY is done to the command entry.

If entered as the result of a command, after each data set name is
validated, a job file control block (JFCB) is obtained or created for
each (by FINDDS). If the output data set JFCB cannot be found or
created (that is, it is not cataloged), CDS calls DDEF tc define the
data set, with the same organization as the input data set. The remain-
ing operands are validated and the erase, renumbering, and replace flags
are set accordingly.

If the input and output data sets are both VAM partitioned and no
member name has been specified, multiple member processing {copying of
members with user data and aliases, if they exist) is assumed.

Otherwise, the input DCB is opened and checked against the output
JFCB. Both data sets must have the same organization (VAM or SAM). Any
combination of VAM data sets may be copied. If a VSAM data set is being
copied to VISAM, the key length, relative key position, and pad must be

92

specified for the output data set. 1In all other combinations, the out-
put is given the same DCB parameters as the input. For VSAM format U
records, a LRECL of one page is used. The output DCB is then opened.

For SAM data sets, READ and WRITE are used to obtain the input rec-
ords and place them in the output data set. For VAM data sets, GET and
PUT are used. If renumbering is specified, the input record is obtained
and the new key is overlayed on the old key before the record is
written.

Tests for attention interrupts are made after each WRITE or PUT.
Processing ends when the input data set is exhausted or an attention
interrupt is received.

If multiple member processing has been indicated, three DCBs are
opened; one for input, one for VSAM output, and one for VISAM output.

If no member names have been specified for the input data set, then
every member found in the input data set's POD will be copied. Other-
wise, only the members specified will be copied.

A FIND for a member is done, which fills in the input DCB and obtains
the user data for the member. The output POD is searched to see if a
member with the same name exists. Then each alias in the input POD
which is associated with the member is checked in the output POD. If a
similar alias 1is found, it must be associated with the same member name
in the output POD or processing of the member is ended.

If no invalid duplicate aliases are found, and the user has not spe-
cified that duplicate members are to be ignored, the input member is
copied into the output data set using the appropriate output DCB.

When the copy is complete, the input member is erased 1f applicable
and the output member is added to the output POD with its user data and
aliases, using STOW.

Multiple member processing is complete when all specified wembers
" have been copied.

When processing is complete, the DCBs are closed and the input data
set is erased, if specified (not applicable to multiple member proces-
sing). Contrcol is then returned to the calling routine.

ERROR CONDITIONS: If entry was by macro instruction, a hexadecimal code
will be returned in register 15:

Code Significance

00 Normal processing completed.

o4 Invalid operands.

08 Name of original data set not in TDT or catalog.

ocC New data set not cataloged or no ddname specified.

10 JFCB for original data set not consistent with JFCB for new data
set.

i4 Member name not given for partitioned data set.

18 User does not have write access to new data set.

ic Original data set organization not VAM or SAM.

Section 4: Command Routines 93

20 Data set not on direct access or tape.
24 Member name for new data set already in POD.

28 Data set copied; old data set not erased because user does not
have proper access.

2C Data set copied; new data set not renumbered because it is not
line data set.

30 Data set copied and renumbered; old data set not erased because
user does not have proper access.

34 Data set copied and erased; new data set not renumbered because
it it is not a line data set.

38 Data set copied; new data set not renumbered and old data set not
erased.
3cC SYNAD cor EODAD exits have occurred.

The routine checks for acceptable operands and notifies the user,
through user prompter, of any errors found. For messages issued, see
System Messages.

The routine may issue these system errors. In each case the severity
is minor and the ABEND message is TASK TERMINATED. DSCOPY INCOMPLETE.

SYSER Code Explanation

050508101 An invalid field in a JFCB has been discovered.
050508102 An illogical return code from STOW or FIND was received.

SYSTEM CONTROL BILOCK USAGE:

Task Common (CHATCM)
Task Data Definition Table (CHATDT)
Data Control Block (CHADCB)

’CHGPASS command (CZATI)

This routine allows users to change their passwords by a command.
This command will be accepted at any time after LOGON and before LOGOFF.
(See Chart BH.)

ENTRY: CZATIC - normal entry

MODULES CALLED:

GATE (CZATCl) Notifies user (via GATWR macro) to enter his
new password (if defaulted) and cutrent pass-—
word. Response read through GATRD.

User Prompter (CZATJ1) Notifies the user of error conditions.
EXITS: This routine returns to its calling routine.

OPERATION: Upon entry, CHGPASS prompts the user to enter his new pass-
word in an overtyped field (if it was not already entered as a parameter
with the command). Once the new passwcrd has keen checked for correct
syntax, CHGPASS prompts the user for his current password (again in an
overtyped field). If the current password matches the USEPAS field, the
new password 1is stored in USEPAS.

94

If the task requesting the change of password is nonconversational,
CHGPASS uses a GTWAR macro to obtain the new and current passwords. If
the task is conversational, a GATWR/GATRD combination is used.

ERROR CONDITIONS: CHGPASS issues an error message via the User Prompter
and returns to its calling routine if (1) the user enters an invalid
current password, or (2) the user enters an invalid new password.

SYSTEM CONTROL BLOCK USAGE:

Usexr Table (CHAUSE)
Task Common (CHATCM)
Terminal Control Table (CHATCT)

P CLOSE command (CZCHB)

The CLOSE command is specified to allow tihe user to close his data
sets from the command level. This function is required when the normal
path of processing has been interrupted either by the system or by the
user himself, and precludes this closure at the program level. This
command may be invoked to close a data set, a group of data sets, or all
data sets. (See Chart BI.)

ENTRY: C2ZCHB1 - command entry point

MODULES CALLED:

CHKDS (CZAAC2P) Validates data set name.
LOCATE (CZCFL1) Converts relative generation member to absolute.

STOW (CZCcoJd, CZCOH, Deletes data sets, sets and resets inter-

czcorn) locks on the RESTBL.
CLOSE (CZCLB) Closes the DCB.
CLOSEVAM (CZCOB) Eliminates all traces of the DCB adjuncts (header,

buffers, etc.).
PRMPT (CZBTC) Issues messages to the user.

EXITS: Normal exit is made via return macro with a return code of RC=00
in Register 15.

OPERATION: This routine is coded as a BUILTIN. The BPKD included in
the PSECT provides for three parameters —- DSNAME, TYPE, and DDNAME.

1f both DSNAME and DDNAME are specified, only the data set for which
both names match is closed. If an inconsistency is found, the user is
informed.

CHEKDS is called to validate the data set name. The return code from
CHEKDS is used to determine if a relative generation number or member
name is included; a member name is ignored. The relative generation
member is converted to absolute via a call to LOCATE; LOCATE is not
called if DSNAME specifies an IBM System/360 Operating System data set
name. If the data definition name exceeds eight characters, or the
return code from CHEKDS 1s unexpected, or LOCATE fails to convert a
relative generation number to absolute, the command is cancelled, and
the user 1is informed.

The TDT is located, and the TDT header (TDTJ10)} is used to find the

last JFCB in the chain. The search of JFCBs is determined from the
DSNAME or DDNAME parameter. If DSNAME is defaulted, all JFCBs in the

Section 4: Command Routines 95

chain are processed, excluding the JFCBs for system data sets and USER-~-
LIB. If DSNAME is specified, the data set name field in the JFCB
(TDTDS1) is compared against the specified data set name. The length
{maximum of 35) for the comparison is obtained from the byte preceding
the data set name pointed to by the BPKD. If a match is found, the
character following the field on which the comparison was made (length +
1) is examined for a period or a blank if less than 35 characters have
been compared. If a period is found, the name is partially qualified,
and the search resumes after the current data set is closed. If a blank
is found, the name is fully gualified, and processing is complete when
the data set is closed.

Special consideration must be made for IBM System/360 Operating Sys-
tem data set names, which may be 44 characters long. Only JFCBs with
TDTDS1=C'#*' are examined and the name compared with TDTDS2.

If DDNAME is specified, the data definition name field in the JFCB
(TDTDDN) is compared against the specified data definition name. The
number of characters to be compared is determined from the byte preced-
ing the data definition name pointed to by the BPKD. If the name is
less than eight characters, the search continues through the JFCBs after
the current data set is closed.

1f a search of the TDT fails to find the specified data set name or
data definition name, the command is terminated, and the user is infor-
med that the data set is not defined in the current task. If the data
set is found to be a system data set, the command is terminated, and the
user is informed that a system data set may not be closed.

After the JFCB is located, the open count (TDTODN) is examined; 1if
the count 1s zero, the command is terminated and the user informed that
the data set is not open.

If the TYPE=T option is specified for a VAM data set that is speci-
fied by name and found to be duplexed (TDTDUP=0), the command is can-
celled; the user is informed that TYPE=T cannot be specified for a dup-
lexed data set.

When the data set has been properly closed, the user is informed.
The actual close processing of a data set is determined from the data
set organization (TDTDSV).

VAM Organization: If the data set is duplexed (TDTDUP=0), under
defaulted names or partially qualified name processing, and the TYPE=T
option is specified, the JFCB is ignored and the user informed that a
duplexed data set cannot be closed with TYPE=T option.

The RESTBL pointer is obtained from the JFCR (TDTDEB). For a shared
data set, the RESTBL is locked via CZOOHh prior to a search of the DCB
Headers. The first DCB Header is located from the pointer in the RESTBL
Header.

The DCB Headers for a task (TCMTID=DHDTSK) are processed one at a
time; from the DCB Header, the DCB address (DHDDCB) is obtained. Furth-
er testing is required prior to the actual call to CLOSE (CZCLB).

1. Before processing an individual DCB Header, all DCB Headers for the
task are counted. This count is used to update, if necessary, the
DCB open count in the JFCB (TDTOPN).

2. For a non-TYPE=T CLOSE, the existence of a valid DCB must be deter-
mined before the call to CLOSE (CZCLB). This is done via a CKCLS
macro instruction for the space assigned to the DCB. A code of O
returned in registexr 0 indicates that the DCB no longer exists.

96

CLOSEVAM (CZCOB) is called at a new entry point (CZCOB2) to elimin-
ate all trace of the DCB adjuncts (DCB Header, buffers, etc.).

When the DCB exists, a check is made for a valid DCBID and the OPEN
flag set. If the DCBID is not valid or the DCB is not flagged as
open, CZCOB2 is called to perform the necessary cleanup.

When the DCB cannot be closed for any of the three reasons above,
the user is informed that the data set could not be closed because
the DCB was missing or invalid.

CZCORB2 is called with a pointer in register 1 to a parameter list
containing a pointer to the DCB Header to be processed.

A call to CZCOB2 doesn't preclude the possible normal closure of
other DCBs opened for the data set; for example, the RESTBL must
not be released prior to processing of all DCB Headers.

When the data set is duplexed and CZCOB2 must be called, it is
called twice to process each DCB in the same manner. If the DCBs
are the last to be closed for the data set in this manner, the dup-
lex pointer and indicator in the JFCB (TDTDUP and TDTDCI) must be
cleared.

3. For a TYPE=T CLOSE the same checks must be made for an existing DCB
that is open and contains a valid DCBID. If these conditions are
not found, the close is not attempted and the user is informed that
the temporary close was not done because the DCB was missing or
invalid.

4. If the JFCB is in the JOBLIB chain, the DCB address is used to
search the LIBE MAINT DCB chain to determine if the DCB is the JOB-
LIB DCB. If it is, the header is bypassed and, upon completion of
processing of the data set, the user is informed that the JOBLIB
DCB was not closed.

5. If the data set is duplexed (DHDDUP=0), the address of the second
DCB is obtained from the DCB Header pointed to from DHDDUP and both
DCBs are passed to DUPCLOSE.

6. For a CLOSE TYPE=T, the address of the next [CB Header for the task
must be retained prior to the actual call to CLOSE. This address
is used to resume processing of the next DCB Header rather than the
pointer in the RESTBL Header used for non-TYFE=T CLOSE which will
change as DCBs are closed and DCB Headers are deleted.

7. When the data set is partitioned and a new member is checked out, a
STOW (type N) must be performed. The name used has the form:

MYDDDNNN

where M is the character M to conform to naming conventions, YDDD
is the current date and NNN are three numeric characters to provide
uniqueness to the name.

If STOW passes back a return code indicating a non-unique member
name, the NNN portion of the name is incremerted and STOW is
recalled.

After the STOW has been performed, the user is informed that a new
member (MYDDDNNN) has been stowed for the data set.

For shared data sets, the lock on the RESTBL must be released by

CZCOI prior to the call to CLOSE and as soon as the DCB address is
obtained.

Section 4: Command Routines 97

SAM Organization: When DDNAME=ddname is specified for concatenated data
sets, all JFCBs with the same ddname are examined and a close performed
on each for which the DCB open count {TDTOPN) is greater than zero.

DEB and
to perform

The DEB address in the JFCB (TDTDEB) is used to locate the
from that, the DCB (DEBDCB). This address is passed to CLOSE
the actual closure of the data set.

Prior to the call to CLOSE (CZCLB) a check must be made for an exist-
ing DCB that is open and contains a valid DCBTD (see "VAM Organization”
above). If these conditions are not found, the close is not attempted.
For a non—-TYPE=T CLOSE, the user is informed that the close of the data

set failed because the DCB was missing or invalid.

ERROR CONDITIONS:

The following messages are issued:

CZCHB00O1 -- invalid

CZCHB0O02 -- data set not defined in this task

CZCHB003 -- data set not open

CZCHBOOU4 -- system data set may not be closed

CZCHBOO5 -- TYPE=T option invalid for duplexed data set
CZCHB0O6 -- DSNAME and DDNAME inconsistent

CZCHBOO7 -- joblib DCB not closed

CZCHBOO8 -- duplexed data set not closed with Type=T option
CZCHBOO09 -- close of data set failed; DCB missing or invalid
CZCHBO10 -- new member (MYDDDNNN) stowed for data set
C4CHBO11 -- close Type=T not done; DCB missing or invalid
CZCHBO012 -- closed

CZCHBO13 -- CSECT, Privileged, Public, READONLY, Reentrant
SYSTEM CONTROL BLOCK USAGE:

Data Control Block (CHADCB)

Data Event Control Block (CHADEB)
DCB Header (CHADED)

Interrupt Storage Area

(CHAISR)

Member Header (CHAMHD)

RESTBL Header
Task Common

(CHARND)
(CHATCM)

Task Definition Table (CHATDT)

This routine
buring creation of a line data set,
insert, delete, and replace lines in that data set.

’DATA Command Routine (CZADF)

creates either a VISAM line data set or a VSAM data set.
the routine can also be used to
(See Chart BJ.)

ENTRILS:

CZADF1 - normal entry
CLZALFZ2 - SYNAD entry

CZADF3 - BEODAD entry

MODULES CALLED:

NeXTPAR (CZAACL)

CHEKDS ({(CZAAC2)

ALFNUM

CHKNUM (CZAACS)

98

(CZAAC3)

Locates delimiters of input string and scan for in-

valid characters.
Validates data set name.
Validates member name.

Validates line number.

FINDDS (CZAEC1) Locates job file control block (JFCR).

DDEF (CZAEA1) Creates JFCB for new data set if needed.
FORTRAN Conversion Converts a record of FORTRAN data set from
(CZAWC1) cardboard to keyboard.
ERASE (CZAEJ1) Erases VSAM data set in case of attention
interrupt.
MSGWR (CZAAD2) Issues system mesSsages.
SYSIN (CZASCT) Issues number sign and fetch input records.

EXITS: The routine normally returns to the calling routine, via the
RETURN macro instruction. If a system error occurs, the routine exits
to ABEND.

OPERATION: After validating its input parameters by means of the SCAN
routines, DATA checks to see if a job file control block (JFCB) exists
for the data set. If so, the JFCB must show either (1) that the data
set is partitioned or (2) it has VSAM or VISAM organization. For a par-
titioned data set, a new member will be created. If there is no JFCB
for the data set, the routine generates one by calling DDEF. 1In that
case, the data set name and organization are as specified in the input
parameter, and the data definition name is derived from a value main-
tained for this purpose in task common. If JFCB already exists, for the
data set name given, the DSORG value in the JFCB is assumed regardless
of the value in the DATA command.

The routine now opens the data set, with a provision for both reading
and writing. For a partitioned data set member, @ search is made
through the partitioned organization directory (PCD) to ensure that the
member name is unique. All further processing depends on the type of
data set to be created, VSAM or VISAM.

For a VSAM data set, the routine issues a nunber sign (#) to invite
each new line, and then puts the line into the new data set -- or member
~— in this format:

length card/keyboard user text
(4 bytes) (1 byte) (120 bytes)

The keyboard/card indicator shows the origin of the line as either a
terminal keyboard (code is 1) or a card reader f(ccde is 0). In a con-
versational task, SYSIN indicates the origin of each line upon return to
DATA (SYSIN is used to fetch the lines). In a nonconversational task,
where input lines are prestored in the SYSIN data set, the indicator
setting is part of the input record itself. The exception to this is
fixed-length lines. The origin of those lines is assumed to be the card
reader, and the keybcoard/card indicator is set accordingly. DATA con-
tinues creating the VSAM data set {(or member), one line at a time, until
it finds 4an input record whose only significant craracters are %eg or «an
underscore followed by a command. The %t (or an underscore followed by
a command) marks the end of input.

The puilding of a VISAM data set is similar, but the line tormat is:

length line numper card/keyboard user text
(4 bytes) (7 bytes (1 bkyte) (120 bytes)

Line numbers are assigned in ascending seguence, in the order lines
are received. The other major difference trom VSAM creation is that
each VISAM input record is checked for modificaticn indicators. 1If the
input record contains %D ftollowed by a line number, the line bearing

Section 4: Comrmand Routines 99

that number is deleted from the data set being built. If the line num-
ber is preceded by a % only, the text following it is written as eithex
a replacement or an insertion line, depending on the line number speci-
fied. When a %E (or an underscore followed by a command) record appears
for VSAM or VISAM data sets, DATA closes the completed data set, without
writing the %E (or an underscore followed by a command) in the data set.
I1f a new member was created, a member descriptor for it is added to the
POD before the data set is closed. Control then passes to the calling
routine. If the attention key is pressed while the DATA command is in
operation, the path taken depends upon how far processing has advanced.
If the new data set has not yet been opened, DATA merely returns con-
trol, leaving the JFCB set up (if it was generated). Otherwise, DATA
closes the opened data set (the member is stowed if it is a VPAM data
set), and then returns control to the calling routine. The VISAM data
set, once opened, thus exists and may be added to later, if desired, by
means of the MODIFY command routine.

ERROR CONDITIONS: The routine checks for acceptable operands and noti-
fies the user, through user prompter, of any errors found. For the mes-
sages issued, see System Messages.

The routine may issue these system errors:

SYSER Code Severity ABEND Message Significance
050504502 Minor SYSTEM ERROR, INVALID Invalid return
RETURN CODE FROM CALLED code from a called
ROUTINE. module.
050504504 Minor SYSTEM ERROR, TROUBLE CHEKDS indicates a
WITH MEMBER NAME. member name but left
parenthesis was not
found or, when add-
ing member name,
new data set name
length is greater
than 45.
050504505 Minor SYSTEM ERROR. TROUBLE Invalid return code.

WITH CHKNUM ROUTINE. ftrom CHKNUM, or all
zeros in line

number.

SYSTEM CONTROL BLOCK USAGE:

Task Common (CAdxTCM)
Task Data Definition Takle (CHATDT)
Data Control Block (CHADCB)

’DDEF Command Routine (CZAER)

To define a data set to the system, this routine creates a job file

control block (JFCB) entry in the task data definition table (TDT). In
addition, the routine issues requests for device allocation ana direct
access external storage, as needed by the newly defined data set. (See

Chart BK.)

ENTKIES:

CZAEA1l - user command entry

CZAEA2 - FINLDJFCH entry

CZAEA3 - user macro instruction entry
CZArAl - system macro instruction entry

CZAEAS - fully qualified dsname entry
C4LAEA6 — FINDDS entry

100

MODULES CALLED:

CHEKDS (CZAAC2) validates the syntax of data set name.

LOCATE (CGCFL) Finds the catalog entry for the data set.

MTREQ (CZCAAl) Mounts a volume for a non-VAM data set.

MTVOL (CZCAM1) Mounts volumes for VAM data set.

RELEAS (CZCAD1) Releases devices allocated for private volumes.

ALLOCATE (CZCEA) Allocates pages for new data sets on direct access.
GETMAIN (CZCGA2) Gets a new page for JFCBs.
MSGWR (CZAAD2) Issues system messages to SYSOUT.

LIBMAINT (CZCDH) Opens the DCB for a data set defined as a JCOBLIB.

EXITS: The routine normally returns to the calling routine, via the
RETURN macro instruction. If a system error occurs, the routine exits
to ABEND.

OPERATION: Operation of this routine may be divided into four broad
steps:

1. The first step is to read the command (or macro instruction)
operands, and set these operand values in the new JFCB.

2. The second step is to set default values -- where defaults are
indicated -- in the new JFCB. If the data set being defined is
cataloged, values available in the catalog entry for the data set
are also moved to the JFCB. Information availakle is in the cata-
log will override system default information.

3. The third step is to effect volume mounting and space allocation
for data sets, if necessary.

4. Tne last step before returning control is to link the newly created
JFCB into the proper chain or chains in the TDT.

Operand Handling: The routine first sets up the new JFCB. It locates
the JFCB by checking the TDT header. In most cases, the JFCB fields are
blanked or zeroed.

Operands in the input string are now inspected one by one. The first
operand is the ddname (data definition name), which if syntactically
correct is moved to the JFCB. At the same time a check is made through
the TDT for a iwatching ddname. If one is found, the address of the
matching ddname is saved for later tests and for possible use in conca-
tenating. The second operand is assumed to he the dsorg (data set
organization) value. It too is validated before being moved to the
JFCB.

All subsequent operands are identified by keywords. As each keyword
is recognized, the individual elements of that operand are isolated,
checked for syntactic correctness, and then processed by an appropriate
part of the DDEF routine. In general, handling of UNIT, VOLUME, SPACE,
DISP, LABEL, OPTION, and DCB operands involves validating elements for
syntax and logic, and then setting them in the corresponding JFCB
fields. For the DSNAME, the routine ensures that a fully-qualified data
set name is placed in the JFCB. It will allow for partitioned data set
members, members of generation data groups, 1IBM Systems/360 Operating

Section 4: Command Routines 101

System names, normal data set names, and names containing special ASCII
characters.

If the first two characters of the data set name parameter are a
quote and a blank, in that order, the normal TSS syntax is ignored and
the data set name is scanned until the first quote-comma pair is found.
All other characters between these pairs are assumed to be the data set
name, and it is not validated, except for length. (If the new data set
name matches a name already in the TDT, and the old ddname is not a sys-
tem name, the new ddname will be substituted for the old ddname and the
routine will return control to its calling routine without processing
any other operands.)

Processing of keyword operands continues until the end of the input
string is reached. UNIT, LABEL, and VOLUME are ignored for a cataloged
data set; SPACE is ignored if the data set already exists.

If the first two characters in the volume serial number specified in
the volume parameter are a quote and a comma, the next six characters
are assumed, without checking, to be the volume serial number. They are
not validated. One seventh character is checked for a comma or a right
parenthesis. If neither, DDEF assumes a user error has occurred.

Default Handling: The routine now checks to see if certain values, such
as dsorg, have been defaulted or if other values, such as file sequence
number, have been defaulted under certain conditions. As needed, the
routine will set standard values in the JFCB to fill out the defaulted
fields. Most defaults result in the operand or element being ignored,
unless the information is available in the catalog. Only dsorg, disp,
file sequence number, and volume seguence number are always considered.
Other defaults that depend on the device required by the data set (for
example, tape density) will be processed during device or storage
allocation.

The routine also checks to see if a data set nas been cataloged. If
50, the routine tests to ensure that the catalog and JFCB values for
dsorg and disp agree. If the data set is cataloged, and disp is
defaulted, disp is set to old. In addition, it uses the catalog infor-
mation to fill certain fields of the JFCB: label-type, original data
set, and volume flags. ©Note that catalog information takes precedence
over corresponding information supplied by the DDEF command Oor macro
instruction.

Volume Handling: For a data set on a private non-VAM volume, the rou-
tine makes a request to MTREQ for device allocation and sets appropriate
flags in the JFCB.

For a new non VAM data set on direct access storage, the routine
moves the data set space requirements to the JFCB, then calls ALLOCATE
to reserve space for the data set on a direct access volume. Tne space
requirements may be either default values or values specified in the
DDEF command or macro instruction.

For data sets on VAM volumes, the routine calls MTVOL to mount all
volumes.

Chaining: The routine places the new JFCB into the main JFCB chain of
the TDT. Depending on the data set defined, it may also link the JFCB
to the temporary tabulation chain (for a new data set) or to the library
chain (for a JOBLIB). When a concatenation is indicated by the CONC
option and by matching ddnames for physical sequential organized data
sets, except ASCII formatted data sets, forward and backward concatena-
tion pointers are set as well.

102

Before returning control to the calling routine, the DDEF routine
tests to see if the newly created JFCB has used the last available space
on the current page. If this is so, GETMAIN is invoked to fetch a new
page, which is then formed into 17 JFCBs, all linked together, for
future use.

ERROR CONDITIONS: If entry was by macro instruction, a hexadecimal code
is returned in the fourth byte of general register 15. Also, the mes-
sage identification code of the diagnostic which would have been issued
if the DDEF had been a command is placed into general register 1, to
clarify the meaning of a nonzero return code.

Code Significance

00 No error detected

o4 Data set undefined

08 Data set name not unique

oC Attention interrupt occurred

10 Inconsistent dsorg

14 Nonexistent generation name specified
18 DSNAME not fully qualified

ic VOL(s) cannot be mounted

20 Space not available

40 Duplicate ddnames but no concatenation
80 Other invalid specification

The routine checks for acceptable operands and notifies the user,
through user prompter, of any errors found. For the messages issued,
see System Messages.

The routine may issue these system errors. 1In each case the severity
is minor, and the ABEND message is SYSTEM ERROR - TASK TERMINATED.

SYSER Code Explanation

050502500 Invalid conversational (TCMCOV) or confirmation (TCMCDF)
field in task common.

050502501 Invalid time in system common.

050502502 Invalid data set name from FINDDS or error in DDEF scan
routine.

050502503 Invalid return code from CHEKDS when validating data set
name.

050502504 Invalid return code from LOCATE (when searching catalog for
duplicate data set name).

050502505 Invalid fully qualified name from LOCATE, or SBLOCK is not
a data set descriptor.

050502506 Invalid return code from FINDDS.

050502507 Logic error within DDEF in DCB parameters.

Section 4: Command Routines 103

050502508 Invalid return code from LOCATE for SBLOCK of next volume.

050502509 Invalid return code from ALLOCATE.

050502510 Invalid return code from MTREQ.

050502511 Return code from MTREQ indicates requested volume could not
be found.

050502512 Invalid return code from RELEAS.

050502513 Inconsistency of address with message response area; end-

of-field address is not greater than next available address
for response.

050502514 Invalid return code from MSGWR.

050502515 Invalid return code from GATRD (used to read parameter list
from SYSIN).

050502516 Invalid delimiter from scan routine in DDEF.

SYSTEM CONTROL BLOCK USAGE:

Task Common (CHATCM)

Symbolic Device Allocation Table (CHASDA)
System Common {(CHASCM)

Interrupt Storage Area (CHAISA)

Catalog SBLOCK (CHACCC)

Task Data Definition Table (CHATDT)
Public Volume Table (CHAPVT)

Routine Control Blocks: The DDEF routine employs several internal
tables, detailed descriptions of which may be found in the listing.
Below is a summary of each table's function.

1. The parameter address list and the parameter descriptor table con-
trol transfers within the routine while operands are being pro-
cessed. The parameter address list consists of 18 words, and the
parameter descriptor table consists of 37 words.

2. The parameter definition table is used for prompting.

3. Two tables are used to validate the individual elements of DDEF.
The first table is a list of attribute and flag addresses for each
element. The second table is the attribute table which defines
what is valid for each element.

4. The consistency table is used to ascertain whether the parameters
are consistent with each other. This table is only used for unca-
taloged data sets, and is only part of the internal consistency
checking done by DDEF.

5. DDEF uses a table of logical diagnostics with a description of per-
mitted replies. It consists of two words for each logical diag-
nostic issued.

’DSS?/PC? command Routine (CZAEL)

This routine processes both DSS? and PC? commands. For DSS?, the
status of one or more cataloged data sets is presented. For PC?, the
data set name, user's access, and, for shared data sets, the owner's
identification of one or more cataloged data sets is presented. (See
Chart BL.)

104

ENTRIES:

CZAEL1 - DSS? entry
CZREL2 - PC? entry

MODULES CALLED:

GATE (CZATC1) Writes information on SYSOUT.
MSGWR (CZAAD2) Issues system messages.
MTREQ (CZCABlE2) Mounts private volumes; obtains the symbolic

device address of a public volume.

LOCATE (CZCFL) Retrieves a catalog SBLOCK for a given fully-
qualified name.

OBTAIN (CZCFO01) Obtains a DSCB for a SAM data set on a direct
access device.

SCAN Routines:
NEXTPAR (CZAAC1) Obtains input parameters.

CHECKDS (CZAAC2) Checks for a valid dsname.

ALFNUM (CZAAC3) Checks for a valid userid.

FREEMAIN (CZCGA3) Releases the pages oktained by LOCFQN for the
TBLOCK structure.

ABEND (CZACP1) Terminates processing after a system error is
detected.

BUMP (CZCABl) Mounts successive private volumes.

SETXP (CEAH7) Issues an SVC 244 to read in a DSCB page.

RELEASE (CZCAD1) Releases private volumes mounted.

EXITS: The routine returns to the calling routine via the RETURN macro
instruction. If a system error occurs, the routine exits to ABEND.

OPERATION: The SCAN routines are called to obtain input parameters and
validate the dsname and userid. If the parameters are valid, LOCATE is
called with the input name prefixed to the userid to obtain the TBLOCK
structure. LOCFQN returns with TBLOCKs containing sharing and volume
information. Volume information is extracted from the TBLOCKs and
printed. For DSs?, MTREQ is called to mount the required volumes. For
direct access devices (either public or private), OBTAIN is called to
obtain a DSCB for a SAM data set or a SETXP is 1issued to read in a DSCB
page for a VAM data set. Additional information is extracted from the
DSCB and printed.

ERROR CONDITIONS: The routine checks for acceptable operands and noti-
fies the user of any errors found. For messages issued, see System Mes-
sages. The routine may issue this ABEND:

*TASK ERROR. CZAEL PROCESSING COMPLETE, BUT TRANSIENT DEVICE NOT
RELEASED. DEVICE FREED BY ABEND.®

Section 4: Command Routines 105

SYSTEM CONTROIL BLOCK USAGE:

Task Common (CHATCM)

TBIOCK Data Set Descriptor (CHATBD)
TBLOCK Continuation (CHATBC)

TBLOCK Sharer (CHATBS)

Interrupt Storage Area (CHAISA)
TASK Definition Table (CHATDT)
Format—-E DSCB (CHADSE)

Public Volume Table (CHAPVT)

»ERASE/DELETE Command Routine (CZAEJ)

This routine erases or deletes a data set, as specified by the user.
The DELETE procedure removes a data set entry from the catalog. The
ERASE procedure erases the direct access storage assigned to the data
set as well as deleting the catalog entry. (See Chart BM.)

ENTRIES:

CZAEJ1 - ERASE command entry

CZAEJ3 - ERASE entrxy from batch monitor

CZAEJ4 - DELETE command entry

CZAEJ5 - DELETE macro instruction entry

CZAEJ6 - ERASE entry for COPY, ABEND, and LOGOFF
CZAEJ7 - ERASE macro instruction entry

CZAEJ8 - ERASE entry for QUIT

CZANER - SYNAD error entry

CZAEOD - EODAD entry

MODULES CALLED:

SRCHSDST (CZCQE1l) Searches for data sets opened by sharers.

NEXTPAR (CZAAC1) Gets a command operand.

CHEKDS (CZAAC2) Validates a data set name.

MSGWR (CZAAD2) Issues system messages.

FINDDS (CZAEC1) Locates the address of a JFCB.

RELEASE (CZAFJ6) Closes the data control block.

DDEF (CZAEA5) Creates a JFCB.

LOCATE (CZCFL) Finds a data set descriptor for shared data set.
DELCAT (CZCFD) Removes a data set from the catalog.

SCRATCH (CZCES) Removes a data set control block from volume table

of contents.
FREEMAIN (CZCGA3) Releases virtual storage page.
GDV (CZASDX) Obtains a default value for DEPROMPT.

DELVAM Removes VAM data sets from the catalog and the
volumes in ERASE mode.

This routine also uses OPEN, FIND, STOW, CLOSE, and MTREQ.
EXITS: The routine normally returns tc the calling routine, via the

RETURN macro instruction. If a system error occurs, the routine exits
to ABEND.

106

OPERATION: Before processing either an ERASE or DELETE request, the
SCAN routine NEXTPAR and CHEKDS are used to fetch and validate the com-
mand operand. If the operand proves valid, LOCATE is called to search
the catalog, and compile a list (TBLOCK) of all data sets qualified by
the input data set name. If the task is nonconversational, the data
sets are erased or deleted as originally specified by the user.

For any data set to be processed, FINDDS is called to search the task
data definition table (TDT) for the address of its job file control
block (JFCB). If the data set is cataloged but not found in the TDT,
FINDDS calls DDEF to create a JFCB.

It is necessary to check for open data sets before erasing. If a
data set has been opened by sharers, or by the owner in anocther task,
the ERASE command will be ignored. The erasure or renaming of an open
data set would have resulted in subsequent errors in the system should
one of the sharers attempt to use the data set.

Before processing an erase or delete request, GDV is called to deter-
mine the value of the DEPROMPT operand in the user profile. If the
value is Y, ERASE/DELETE prompts the user for disposition of data sets,
when more than one is referenced.

For non-VAM data sets, the ERASE/DELETE routine processes an ERASE
request by performing the following functions:

1. RELEASE is called to close the data control block.

2. SCRATCH is called to delete the data set control blocks from the
volume table of contents (VTOC).

3. If the data set is cataloged, DELCAT is called to delete the
various index levels from the catalog structure.

4. RELEASE is called to release the data set entry in the JFCB.

For VAM data sets, the ERASE/DELETE routine processes an ERASE re-
guest by calling DELVAM to delete the catalog entry, remove the data set
from the volume and release the JFCB. If only a member of the data set
is to be released, ERASE/DELETE calls FIND to locate the member name in
the Partitioned Organization Directory (POD) and STOW to remove the mem-
ber from the POD.

In processing a DELETE request, the ERASE/DELETE routine calls DELCAT
to delete the data set's catalog entry. If there is a JFCB, RELEASE is
called to close the DCB and release the JFCB.

Final processing of the ERASE/DELETE routine is as follows: FREEMAIN
releases the virtual storage previously obtained by LOCFQN. Control is
then returned to the command analyzer and executor, or the calling
routine.

When the batch monitor calls ERASE/DELETE, only the ERASE procedure
is used. This operates basically as described above except that the
routine returns error codes rather than printing diagnostic messages and
waiting for a response, and DDEF will be called if there is no JFCB and
LOCATE has been successful.

Code Significance

4c System data definition name found in TDT E

58 Data set opened by another sharer

Section 4: Command Routines 107

The routine checks for acceptable operands and notifies the user,
through MSGWR, of any errors found. For the messages issued, see System

Messages.

The routine may issue these system errors. 1In each case the severity
code is minor, and the ABEND message is SYSTEM ERROR - TASK TERMINATED.

SYSER Code Explanation

050503401 Nonzero return code from CHEKDS.

050503404 Unsuccessful return code from MSGHWR.

050503405 Data set count is nonzero, but no forward pointer in
TBLOCK.

050503406 Invalid type of TBLOCK.

050503407 Return code of C from FINDDS. No space is allocated.

050503408 Invalid return code from FINDDS.

050503409 FINDDS not finding JFCB created by DDEF.

050503410 Invalid data set name code returned by DDEF.

050503412 Invalid return code from SCRATCH.

050503413 Invalid return code from LOCATE.

050503414 Unsuccessful return from DELCAT.

050503415 DELCAT unable to delete data set descriptor (DSD).

050503416 RELEASE unable to release JFCB from TDT.

050503418 CHEKDS found invalid member name.

050503419 Invalid return code from STOW.

050503420 Invalid return from NEXTPAR.

050503423 Unknown TBLOCK; not TBD or TBC.

050503424 Validity bit in JFCB not on.

050503426 Invalid return from RELEASE when trying to close DCBs.

050503427 Invalid return code from MSGWR.

050503428 Sharing indicator but no sharing descriptor TBLOCK.

050503429 Label error.

050503430 SYNAD exit.

050503431 EODAD exit.

ERROR CONDITIONS:

will be returned in the fourth byte of general register 15:

Code

Significance

00 No error detected E/D

108

If entry was by macro instruction, a hexadecimal code

o4 Not class D or batch monitor entry E

08 Invalid return code from NEXTPAR E/D

oc Invalid delimiters in data set name E/D

10 No data set name supplied E/D

14 Invalid return code from CHEKDS E/D

i8 Data set name not in catalog or TDT E or volumes could not

be mounted

ic Partitioned data set not fully qualified name E
20 Member of partitioned data set not found in POD E
24 Data set not cataloged D

28 Data set on public volume D

2C Data set is member of partitioned data set D

30 User does not own data set in ERASE katch monitor entry E
34 Sharing/access conflicts prevent processing E/D
38 No catalog entry for ERASE batch monitor entry E
3c Data set name undefined-return code from DDEF E
4y Data set not on direct access E

48 Volume not found

4c System JFCB

58 Data set in use

5C Resources exceeded, volume cannot be mounted

60 Loaded DS; cannot erase or delete

64 Bulk I/0 pending on data set

SYSTEM CONTROL BLOCK USAGE:

Task Common (CHATCM)

TBLOCK Data Set Descriptor (CHATBD)
Task Data Definition Table (CHATDT)
Data Control Block (CHADCB)
Interrupt Storage Area (CHAISA)

}Evv command Routine —- CATVAM (CZCFB)

This routine catalogs data sets on private volumes which were pro-
duced on one system to allow their use on anctner system. In support of
this function, the routine will optionally alter the userid portion of
the FQN in the Format-E DSCB to make the FQUN compatible to the second
system. Multi-volume data sets are also processed by this routine.

(See Chart BN.)

ENTRY: CZCFB1 - normal entry

Section 4: Command Routines 109

MODULES CALLED:

DDEF (CZAEAl)
MTREQ (CZCARA)

VAMINIT (CZCEQ)

Sets up a JFCB with the necessary parameters.
Issues mount requests for the required volumes.

Reads in the PAT table and initializes the

volume.
DSCB RD/WR (CZCEM) Makes a DSCB page available to the task.
ADDCAT (CZCFAa) Creates a catalog entry.
PGOUT (CEAAl) Writes out a DSCB page.
BUMP (CZCAB) Dismounts and mounts volumes.
INDEX (CZCFI) Updates and chains an indexed data set.
LOCATE (CZCFL) Verifies the userid.
GETMAIN (CZCGA2) Obtains virtual storage.
FREEMAIN (CZCGA3) Releases virtual storage.
User Prompter (CZATJ1) Issues diagnostics to user.

RELEASE (CZAFJ1) Freeup device and JFCB.

EXITS: Control is returned to the calling routine via the RETURN macro
instruction. :

OPERATION: After validating the input parameter list, a random ddname
is generated for the DDEF instruction. The DDEF macro is then issued
with enough parameters specified to create a JFCB which meets the
requirements for later processing by ADDCAT, MTREQ and BUMP.

A parameter list is then prepared for the MTREQ routine. The parame-
ters consist of the volume serial number(s) and the address of the JFCBHB
for the task. MTREQ issues a mount request for the first volume to be
mounted and GETMAIN requests a block of virtual storage in order to read
in and process DSCB pages. The VAMINIT routine is called to initialize
the volume and read in the PAT.

The PAT is scanned to find a DSCB page and the DSCB page is read into
virtual storage by invoking the CZCEM voutine. If the option to alter
the userid portion of the FQON was specified, the first Format-E DSCB 1is
located and the userid portion of the FQN is altered and the DSCB check-
sum is modified. LOCATE is called first in order to verify the old
userid and see if the data set is cataloged. If the data set is not
cataloged but the userid is valid, ADDCAT is called to catalcg the data
set (the new userid, if specified, is updated before calling ADDCAT).
The condition code returned from ADDCAT is checked to assure that the
data set was cataloged successfully. If the data set is cataloged and
the userid is valid, the DSD is verified to assure that the data set
being processed is the same as the cataloged data set.

If the data sets are the same, the next Format-E DSCB is located and
the same procedure is followed as for the previous Format-E DSCB. The
next Format-E DSCB is located and the same procedure is followed as for
the previous Format-E DSCB.

If the option to alter the userid portion of the FON was specified,

the DSCB WRITE routine (CZCEM1) is called to write the altered DSCB page
on the same place on the disk from which the DSCB page was originally

110

read. (If the write is unsuccessful the user is informed of the failure
to relocate the DSCB, and further processing is bypassed.) If the write
is successful (or if the DSCB was not changed), the PAT is scanned for
more DSCB pages. If any are found, they are read in and the same proce-
dure is followed as for the previous DSCB page until the entire PAT has
been scanned and the entire volume cataloged.

After volume processing is complete, a test is made for task comple-
tion. If it is not complete, the BUMP routine is called to dismount the
current volume and mount the next wvolume in the list. VAMINIT is then
called to initialize the next volume and processing continues as for the
previous volume.

After the last volume of the task is processed, the direct access
device is released by invoking the REL command. This frees up the
device and releases the JFCB. A call to FREEMAIN releases the virtual
storage page.

ERROR CONDITIONS: EVV prompts the user and returmns to its calling rou-
tine under the following conditions:

1. Missing or invalid command parameter.

2. An attempt by other than a manager or administrator to change the
userid.

3. A userid that has too many characters or is not joined to the
system.

4. Erroneous volume entries.

5. An attempt to build a JFCB fails.

6. On the mount request (a) the user has cancelled, (b) the first
volume cannot be mounted due to a MTREQ error, (c) the user is not
authorized to use the volume.

7. The requested data set cannot be shared by the current user.

8. DSCBWR cannot relocate the DS{B.

9. ADDCAT cannot catalog the data set.

10. Device release fails after the task has been completed.

SYSTEM CONTROL BLOCK USAGE:

Task Common (CHATCM)

Task Data Definition Table (CHATDT)
Format-E DSCB (CHADSE)

Catalog SBLOCK (CHACCC)

P> EXECUTE Command Routine (CZABB)

This routine sends a message to the batch monitor to initiate a non-
conversational task. The name of the data set that will serve as the
task's SYSIN is supplied in the message. EXECUTE operates in conversa-
tional mode only. (See Chart BO.)

ENTRY: CZABB1 - normal entry

MODULES CALLED:

NLXTPAR (CZAAC1l) Fetches data set name and checks for valid
cnaracters.

Section 4: Command Routines 111

CHEKDS (CZAAC2) Validates syntax of data set name.

LOCATE (CZCFL) Finds catalog entry for SYSIN data set name.

MSGWR (CZAAD2) Issues messages to user (bridges into user prompter).

VSEND Sends request to batch monitor (if the task is not
the main operator's).

AWAIT Delays processing until reply to request message is
received.

EXITS: The routine normally returns to the calling routine, wvia the
RETURN macro instruction. If a system error occurs, the routine exits
to ABEND.

OPERATION: The routine first fetches the name of the SYSIN data set,
which is furnished as the input parameter, and checks that it is valid;
two SCAN routines, NEXTPAR and CHEKDS, are called for this. EXECUTE
then checks, via LOCATE, to see that the valid data set name actually
appears in the catalog. If not, or if the name proves invalid, a diag-
nostic message is issued, asking the user to reenter the data set nane.

After the name has been fully validated, EXECUTE builds a request
message and sends it, via VSEND, to the batch monitor. Wnen the batch
monitor receives the message, it assigns the task a batch seguence num-
ber, and adds an entry for the task in the batch work queue. Until the
batch monitor responds, an AWAIT puts the EXECUTE task in wait status.
Upon return, the batch sequence number is issued to the user and EXECUTE
returns control to the calling routine.

Before and after issuing each diagnostic message, and before sending
the request message to the batch monitor, EXECUTE polls for attention
interrupts. If one is detected, control is immediately returned to the
calling routine.

ERROR CONDITIONS: The routine checks for an acceptable operand and
notifies the user, through user prompter, of any errors tound. For the
nessages issued, See System Messages.

SYSER Code Severity ABEND Message significance

050202601 Minor INVALID RETURN CODE Invalid return code
FROM A CALLED ROUTINE. received from a
called module.

050202602 Minor MESSAGE TO BATCH MON- VSEND to batch moni-
ITOR COULD NOT BE tor not completed.
EXECUTED.

SYSTtM CONTROL BLOCK USAGE:

Task Common {CHATCM)

Batch Work Queue {(CHABWQ)

Catalog SBLOCK (CHACCC)

Message Control Block (CHAMCB)
System Message Record (CHAMSG)
Message Event Control Block (CHAMEB)

’EXHIBIT Director (CZAYD)

The EXHIBIT Director is called when the EXHIBIT command has been
entered from a terminal supported by TSS/7360 as a SYSIN device. The
Director then performs initialization, validates the request, and calls
the applicable display routine to process the request. (See Chart BP.)

112

ENTRY: CZAYD3 - normal entry

MODULES CALLED:

UID EXHIBIT Processor (CZAYG) To process requests for a display of all
active tasks in the system.

BWQ EXHIBIT Processor (CZAYF) To process requests for a display of the
Batch Work Queue.

GETMAIN (CZCGA2) To obtain a work area for the display
pProcessors.

FREEMAIN (CZCGA3) To release the work area acquired
through GETMAIN.

EXITS: When processing is complete CZAYD returns to its calling
routine.

OPERATION: CZAYD's calling routine provides as input a pointer in
Register 1 to a parameter list containing pointers to character strings.
These are pointers to OPTION, TYPE, and FORM parameters. The option
must be specified and valid; it may be either UID or BWQ, regquesting
displays of either the information about active tasks in the system or
the activity on the Batch Work Queue.

CZAYD calls an internal subroutine, SCAN2, to validate the UID or BWQ
type. If the UID type is valid, the UID form is also checked. It then
sets a branch table index to either the UID or BW(¢ displacement and pro-
vides a 50-page work area for the subsequently called processor (CZAYG
or CLAYF). On return, if the task requesting the EXHIBIT function is
tne operator task, CZAYD releases the 50 pages allocated as a work area.
CZAYD then returns to its calling routine.

ERROR CONDITIONS: All diagnostic messages are directed to GATE. The
following conditions cause diagnostic messages:

1. ©No option specified.

2. EXHIBIT option invalid.
3. UID or BWQ type invalid.
4. UID form invalid.

SYSTEM CONTROL BLOCK USAGE: None.

’FINDDS Routine (CZAEC)

Given a data set name, FINDDS searches the task data definition table
(TDT) for a job file control block (JFCB), and either provides the user
with its address, or creates one if requested bty the user. (See Chart
BC.)

ENTRIES:
CZAEC1 - normal entry
CZAEC2 - used when the userid is specified in an input parameter list

rather than in Task Common

MODULES CALLED:

DDEF (CZAEA6) Creates new JFCB using information from the catalog.

Section 4: Command Routines 113

LOCATE (CZCFL1) Converts relative generation number to absolute
number.

CHKDS (CZAAC2) Validates dsname.

EXITS: The routine normally returns to the calling routine, via the
RETURN macro instruction. If a system error occurs, the routine exits
to ABEND.

OPERATION: FINDDS checks the data set name for a relative generation
number or member name. A member name is removed, since it is meaning-
less to this routine. A relative generation number is converted to its
absolute form (via LOCATE). If a relative generation data set name is
not a FQN of a GDG, relative generation zero (0) is appended to the data
set name.

The task data definition table (CHATDT) is then searched for a JFCB
containing the given data set name and, if it is found, its address is
returned to the user. If a JFCB is not found, and the user requested
one, a data definition name is generated from a value maintained for
that purpose in task common. However, if FINDDS is entered at CZAEC2,
it does not fetch the userid from Task Common, but uses the userid
passed to it in Word 4 of the input parameter list. DDEF is called with
this ddname to create a JFCB in the TDT. Its address is then supplied
to the user.

ERROR CONDITIONS: A hexadecimal code is returned in register 15:

Code Significance

00 JFCB found or created as requested
ou No JFCB found; no request to create one
08 No JFCB found; request to create one,

but DDEF could not find data set name
in catalog

oc No JFCB found; DDEF could not create one
because space unavailable.

10 DSNAME invalid.

14 No JFCB found; DDEF could not create one

because volume could not be mounted.

The routine may issue these system errors:

SYSER Code Severity ABEND Message Significance

050502702 Minor GYSTEM ERROR, FINDDS. No right parenthesis
NO RIGHT PAREN IN DS- after relative genera-
NAME. tion number.

050502704 Minor SYSEM ERROR, UNEX- Return code trom
PECTED RETURN FROM LOCATE is invalid or
LOCATE. LOCATE did not replace

relative generation
number with absclute

one.
050502706 Minor SYSTEM ERROR, FINDDS. Invalid return code
INVALID KETURN FROM from DDEF.

DD.

114

SYSTEM CONTROL BLOCK USAGE:

Task Common (CHATCM)
Task Data Definition Table (CHATDT)

’FINDJFCB Routine (CZAEB)

This routine locates the job file control block (JFCB) for a given
data definition name (ddname) and, if requested, checks that the proper
volumes are mounted. (See Chart BR.)

ENTRY: CZAEB1 - normal entry

MODULES CALLED:

MSGWR (CZAAD2) Issues messages to user.

DDEF (CZAEA2) Defines ddname.

MTREQ (CZCAAl) Requests volume mounting.

BUMP (CZCAB1) Replaces mounted volume with requested volume.

EXITS: The rcoutine normally returns to the calling routine, via the
RETURN macro instruction, with a pointer to the JFCB set in a caller-
designated area. If the JFCB cannot be found and a normal return is
made, the caller-designated area will be set to zero. If a system error
occurs, or if a JFCB cannot be found when it is mandatory, the routine
exits to ABEND.

OPERATION: Three option codes (0, 1, and 2) control FINDJFCB
processing:

0 = find JFCB, mount volumes, and do not return unless JFCB is found:;
1 = find JFCB and mount volumes, if possible, but return in any case;
2 = find JFCB, if possible, and return, but do not mount volumes.

For an option code of 0 or 1, the task data definition table (TDT) is
searched for a JFCB with the specified ddname. If the JFCB is not
found, the conversational user is asked if he wants to define the
ddname. If he indicates yes, DDEF is called to built the JFCB. If he
indicates no, or if the task is nonconversational, the action taken
depends on the option code. For option 0, a diagnostic is issued and
the task is terminated via ABEND. For option 1, the output area is set
to zero and return is made to the calling routine.

When the JFCB is found or created, FINDJFCB next checks that the
proper volumes are mounted. For a SAM data set, only the first volume
ot the data set has to be mounted. For VAM data sets, the volume({s) are
mounted at OPEN time. If the proper volumes cannot be mounted immedi-
ately, MTREQ is called to reserve the necessary devices and place the
task in the WAIT state until the devices become available. MTREQ then
mounts the necessary volumes. When volume mounting is completed,
FINDJFCB sets a pointer to the JFCB in the output area and returns to
the calling routine.

For option code 2, there is no attempt to mount volumes; only a
search of the TDT is made to find the JFCB. 1f found, a pointer to the
JFCB is placed in the output area and return is made to the calling rou-
tine. Otherwise, the output area is set to zero before returning to the
calling routine. Option code 2 does not prompt the user, nor does it
check that the proper volumes are mounted.

Section 4%: Command Routines 115

ERROR CONDITIONS: The routine takes this action if the JFCB cannot be

found:
Option
Code Action
0 Issue diagnostic D002 DDNAME (name) UNDEFINED, then terminate
task via ABEND.
1,2 Set ocutput area to zero, then return to calling routine.

FINDIFCB may issue the message B022 WANT TO DEFINE DDNAME (name)? ENTER
Y IF YES, N IF NO, when an undefined ddname is discovered in a conversa-
tional task and the option code is 1 or 0.

The routine may issue these system errors:

SYSER Code Severity ABEND Message Significance

050502600 Minor SYSTEM ERROR INVALID Invalid return code
RETURN CODES received from BUMP.

050502601 Minor Same as above Invalid return code

received from MTREQ.

SYSTEM CONTROL BLOCK USAGE:

Task Common (CHATCM)
Task Data Definition Table (CHATDT)

’FLOW command Processor (CZAGD)

The FLOW Command Processor allows the operator or manager/
administrator to regulate the number of each different task type (batch,
remote, conversational, MTT appplication, and MTT aplication users) that
tne system will process concurrently, by allowing the manipulation of
the various job type limit fields in the system. (See Chart BS.)

ENTRIES:

CZAGD1 - normal entry
CZAGEl1 - subparameter processing entry

MODULES CALLED:

User Prompter (CZATJ1) Informs the user of error conditions.

GATE (CZATC1) Prints the buffer.

GETMAIN (C2ZCGA2) Gets one page of storage for a buffer, if
requested.

UFLOW Macro Obtains or adjusts the conversational task

limit or MIT application user limit.
EXITS: This routine returns to its calling routine.

OPERATION: On entry this routine checks for the appropriate authority
code and privilege class. Only those with privilege class A, B, or F,
and authority O or P can use the FLOW command.

This routine then begins to check the parameter values for reasonab-
leness. The parameters that may be entered are BATCH, CONV, BACK, BUL-
KIO, MTT, and APP. This routine checks the BATCH, BACK, and MTT parame-
ters for exceeding maximum value. If they do not exceed the maximum

116

value, this routine inserts the value entered for them in the System
Activity and Resources Table (CHASAR). Otherwise the maximum value is
inserted in CHASAR. The CONV parameter is validated by issuing the
UFLOW macre with action code 1 passed in Register 15, Action code 1
requests UFLOW to adjust the conversational task limit to the value spe~
cified in the low-order 2 bytes in Register 0.

If the APP parameter 15 entered, this routine links to CZAGEl to
build a list of subparameter addresses. Then, if there are active MIT
nsers, this routine links again to CZAGEl to build a list of application
ies. A relative application number (REN) mayv be associated
. - P parvameter. If so, it is validated; 1if not, a default value

is used. When the application names are exhausted, this routine uses
the UFLOW macro with action code 3 passed in Register 15 to adiust the
MTT user limits for the different application entries. This routine
then calls GATE to print all the application names it has accumulated in
the buffer. Op return from GATE, this routine returns to its calling
routine.

NANE

If no parameters are entered with the FLOW command, the user is re-
questing a display of task type counts and limits. This routine will
extract the appropriate fields for BATCH, BULKIO, BACK and MTT from CHA-
SAR and format them into a message. To complete the message, this rou-
tine executes UFLOW with action code 2. This operation obtains the cur-
rent number of conversational tasks in execution and the conversational
task limit, and returns it to the FLOW Command Processor, which includes
this information in the formatted message. This routine then calls GATE
+o print the buffer. If there are active MTT administrators, this rou-
tine acquires another page of storage for its buffer, and executes UFLOW
with action code 4 to obtain the relative application number {(RAN) and
current number of MTT users in execution for each application entry. On
return this routine lcads this print buffer with the MTT information and
calls GATE to print it. When this operation is finished, this routine
returns to its calling routine.

FRROR CONDITIONS: The FLOW Command Processor prompts the user anag con-
tinues processing if the BATCH, CONV, BACK, oxr MTT parameter is speci-
fied with a value that exceeds the maximum allowed. The maximum limit
is inserted in the table in these cases. The FLOW Command Processor
prompts the user and exit immediately when the user is not authorized to
use the FLOW command, or when it receives a nonzero return code from
UFLOW.

SYSTEM CONTROL BLOCK USAGE: This routine references and manipulates the
System Activity and Resources Table (CHASAR). The following limits,
maximums, and count fields, as well as the BULKIO Suppress Flag, in CHA-
SAR can be set or displayed by this processor:

BATCH SARBTL Batch task limit.
SARNRM Batch tasks in execution.
SARMBT Maximum numbexr of hatch tasks.

BACK SARRML Remote task limit.
SARREM Remote tasks in execution.
SARMRM Remote task maximum.
BULKIO SARBAS BULKIO Suppress Flag. If set to X'01°' indicates
BULKIO will not be initiated. If set to X'00' BUL~
KI0o will be initiated.

M SARMAL MTT Administrator task limit.
SARMCA Actual count of active MTT Administrators.

CONV SARMCHN Maximum number of conversational tasks allowed.

Section 4: Commend Routines 117

'»IF String Comparison Routine (CZBLT)

This routine is a fast substitute for PCS IF processing when EBCDIC
strings are being compared. (See Chart BT.)

ENTRY: CZBLT1 - normal entry

MODULES CALLED:

Source List Updates the source 1list to an end-of-line or
Handler (CZASC6) command.

PCS IF (CZAME1l) Processes IF statements which require additional
processing by PCS.

EXITS: This routine exits normally to the calling routine, via the
RETURN macro instruction.

OPERATION: The routine is entered at CZBLT1 from the CASE when the IF
verb is encountered. It tests '=' and '-~=' for true or false compari-
sons and sets a return code indicating the results of the test. Blanks
on either side of equal signs are removed. If any of the following con-
ditions are present, CZBLT calls PCS IF for additional processing:

e The phrase being processed is dynamic

e Argument is not a quoted string

e No terminating quote found in current string

¢ Embedded EOB encountered

s A character other than = ori = is discovered between strings (such
as <)

e Semicolon is not the delimiter
The source list is updated to the next command or end-of-line, whichever
occurs first, and the routine exits with either a successful true or

successful false condition.

ERROR CONDITIONS: None.

SYSTEM CONTROL BLOCK USAGE:

Source List Page Header (CHASLP)
Source List Sublist Header (CHASLH)
Source List Marker (CHASLM)

’JOIN/REJOIN Command Routine (CZAFK)

These routines operate only in conversational mode to process the
JOIN command by defining a legitimate new user to the system or the
REJOIN command by redefining any parameter (exclusive of userid) and
changing the user table entry accordingly. These commands can only be
issued by a system manager or system administrator. (See Chart BU.)

ENTRIES:

CZAFK1 - JOIN entry
CZAFK2 - REJOIN entry

MODULES CALLED:

ALFNUM (CZAAC3P) Validates user identification.

118

DELCAT (CZCPH1) Deletes an entry in SYSVCT.

READ/WRITE (CZICPE1l) Operates on the User Table and the the User
Limits Table.

FIND (CzZCOJ1) Locates the User Limits Table.

User Prompter (CZATJ1) Accessed via the PRMPT macro; issues messages
t0 user.

EXITS: The routine normally returns to the Command Analyzer and Execu-
tor, via the RETURN macro instruction.

OPERATION: After each operand of the JOIN command is fetched, it is
validated according to the restrictions placed on the particular
operand. Then, after validation and successful preliminary processing,
the operand is stored, and the next one is fetched. When all operands
have been successfully fetched, validated, and processed, they are
placed in the user table so that the new user will be defined to the
system as a legal user. Certain operands (userid, charge number,
priority, privilege class, authorization, ration, batch, and RJE)
require special checking and processing.

REJOIN follows the same processes as above except that only given pa-
rameters are checked and inserted. Defaulted parameters are ignored.
This command makes it possible to alter a user®s entry in the user table
without first QUITing him, thereby losing all his data sets.

Userid: If the new user is being joined by a system administrator, the
first two characters of his userid are prefixed to the userid operand.
The operand is then checked for syntactic validity. A further check is
made to ensure that the userid does not already exist in the system.

Password: This operand, if specified, is wverified as having no invalid
characters (such as parenthesis, comma, period, blank, etc.). If
defaulted, an 8-byte all-blank password is assigned. A blank password
may be specified by enclosing blanks within quotes.

Charge Number: Each user has a charge number. 7The charge number is
prefixed with the first two characters of the user's newly established
userid and checked for syntactic validity. No default value is
permitted.

Priority: This operand, if specified, is verified as a value between 0
and 9 inclusive, and then converted from EBCDIC +o binary. If the
operand is defaulted, an installation-defined value is assigned.

Privilege Class: This operand, if specified, is first verified as an
alphabetic character. Further checks are made to ensure that the user
can assign this class and that this privilege class is acceptable to
this installation. If defaulted, an installation-defined value is
assigned.

Authorization: This operand, if specified, is verified as either U, P,
or O. If defaulted, the operand is assigned an installation value.

Ration: This operand, if specified, is verified as a value between 1
and 9, inclusive. If defaulted, a value of 2 is assigned.

Batch: This operand, if specified, is verified as either Y or N. If
defaulted, N is assigned.

RJE: This operand, if specified, is verified as either Y or N. If
defaulted, N is assigned.

Section 4: Command Routines 119

When all operands have been processed, a first-level catalog entry is
created for the new user and the entry is placed in the user table.
Finally, control is returned to the command analyzer and executor.

ERROR CONDITIONS: The routine checks for acceptable operands and noti-
fies the user, through the User Prompter, of any errors found.

SYSTEM CONTROIL BLOCK USAGE:

Catalog Common (CHACDS)

System Common (CBASCM)

Task Definition Table (CHATDT)
Task Common (CHATCM)

Shared Data Set Member (CHASDM)
Data Control Block (CHADCB)
Task Status Index (CHATSI)

User Table (CHAUSE)

User Limits Table (CHAULT)
Interrupt Storage Area (CHAISA)
Active User Table (CHAAUL)

’JOINRJE/QUITRJE; Command (CZABS)

This command creates or deletes a station ID entry from the RJE ac-
knowledgement data set TSS***** RJEACK. (See Chart BV.)

ENTRIES:

CZABS1 - JOINRJE command entry
CZABS2 - QUITRJE command entry
CZABS3 - ABEND recovery entry

MODULES CALLED:

VISAM write to enter a station id in member
VALIDSTA.

WRITE (CZCPEL1)

ALFNUM (CZAAC3P) Validates input parameters.

DDEF (CZAEAS5) Defines acknowledgement data set.

OPEN (CZCLAO) Opens acknowledgement data set for update.

FIND (CzZCO0OJ1) Finds member of acknowledgement data set-
VALIDSTA; finds VISAM member of STATIONID.
STOW (CZCOK1) Creates or deletes acknowledgement data set
member.

DELREC (CZCPH1)

User Prompter (CZATJ1)
SHAREUP (CZCFS1)
CLOSE (CZCLB)

RELEASE (CZAFJ3)

PAIR (CZACS1)

PAIR (CZACS2)

EXITS:

120

Deletes VISAM records in member VALIDSTA.
Issues messages to SYSOUT.

Permits the acknowledgement data set.
Closes acknowledgement data set.

Releases acknowledgement data set.

Queues entry for ABEND Interlock Release Table.

Dequeues entry from AIR table.

The routine exits to the calling routine via the RETURN macro.

OPERATION: On non ABEND entry, this routine validates parameter input,
utilizing ALFNUM. After parameter validation, the various options
(TYPE, MRF, TAB, BRK, and REC) are checked and set. Then the DATADEF
routine (CZAEAS) IS INVOKED TO DEFINE THE ACKNOWLEDGEMENT DATA SET TSS*#*
*%% RJEACK, the data set is opened, and the Task Definition Table (TDT)
is interrogated to determine disposition.

For disposition=new, the request must be for JOINRJE or the command
is canceled via diagnostic message. The station id is entered utilizing
VISAM WRITE, and the member VALIDSTA created via STOW. SHAREUP (CZCFS1)
is then invoked to PERMIT/SHARE the TSS***%% _RJEACK data set for later
system use.

For disposition=0ld, on a JOINRJE request the member VALIDSTA is
located via FIND, and the requested station id is entered into the data
set using WRITE. On a QUITRJE request, the BULKCOMM table (CHABCT) is
searched to determine if the station id being quit is still active in
the Bulkio task. If active, a diagnostic is output canceling the com-
mand. For an inactive station id, entry point CZABS3 is queued on the
AIR table for possible ABEND recovery with the BULKCOMM locked. A FIND
is done on the requested station id to determine if acknowledgements are
pending for that station id. If acknowledgements are queued in that
member station id, the user is requested to specify their disposition.
Based on the response, the command will be ignored, the acknowledgements
will be deleted, or the acknowledgements will be left enqueued. When
there are no acknowledgements gqueued, the station id is deleted from
VALIDSTA by DELREC.

ERROR CONDITIONS: If an error is found during processing, the command
is canceled and an appropriate diagnostic message is displayed on
SYSOUT.

SYSTEM CONTROL BLOCK USAGE:

BULKCOMM Table (CHABCT)
BULKCOMM S-Entry (CHASET)

Task Common {(CHATCM)

Task Definition Table (CHATDT)
pata Control Block {(CHADCB)

’JOBLIBS and DDNAME? Commands (CZAEK)

These commands allow a user to list the chain of DDNAMES and asso-
ciated DSNAMES and to move any one of his JOBLIBS to the logical top of
the list. {See Chart BW.)

ENTRIES:

CZAEK1 - for manipulating the JOBLIB chain
CZAEK2 - for reviewing user's JFCB chain

MODULES CALLED:

User Prompter (CZATJ1) Writes diagnostic messages.
GATE (CZATC1l} Writes output to user.
EXITS: Returns to calling routine.

OPERATION: CZAEK1l is the entry point for manipulating the JOBLIB chain.
Upon entry the parameter is checked for the presence of a DDNAME. If
one does not exist, a diagnostic is initiated, followed by an exit from
the module. Once a DDNAME has been obtained, the JOBLIB portion of the
TDT chain is searched for this JFCB. If no match occurs, a diagnostic
is issued and the command canceled. If the DDNAME is found in the

Section 4: Command Routines 121

chain, it is removed from the chain by adjusting the appropriate back-
ward pointer of the previous JFCB. Then it is put at the top of the
list by placing its address in TDTPL1l, and replacing the backward point-
er with the address which was at TDTPL1.

Once the TDT chain is adjusted, the chain of DCBs in the Loader's
PSECT is searched for the associated DCB. When it is found, the appro-
priate forward and backward pointers are changed as the JFCB pointers
were, so that the DCB ends up at the top of the chain. This completes
normal processing and the module exits.

If there were no JOBLIBS in the chain or the corresponding DCB could
not be found, a diagnostic will be issued to the user and further pro-
cessing canceled. In the latter case, the TDT chain will be rearranged
as requested but the DCB chain will remain as is.

CZAEK2 is the entry point for reviewing the user's JFCB chain. Upon
entry, the JOBLIB parameter is checked for 'N' or default. If such is
the case, the TDT chain is addressed. If the JOBLIB parameter is 'Y’,
then the JOBLIB portion of the TDT is addressed. Next, a header message
is initiated followed by the list of DDNAMES/DSNAMES of the JFCBs
requested. For JOBLIB lists, the order of listing is from top to bot-
tom; last DDEFed to first DDEFed. Once the end of the chain is reached,
the module exits.

ERROR CONDITIONS: If there are no JOBLIBS assigned, or if the DDNAME
does not exist in the JOBLIB chain, or if there is an invalid or missing
parameter, the command is canceled. If no DCB is found, only the JOBLIB
chain is reordered.

SYSTEM CONTROIL BLOCK USAGE:

Task Data Definition Table (CHATDT)
Data Control Block (CHADCR)

’KEYWORD command Routine (CZATH)

This routine is used to display keywords or parameters of commands in
a user's SYSLIB and USERLIB. (See Chart BX.)

ENTRIES: The Display Keyword Format command has entry point CZATHC and
is called by BUILTIN CZATH11.

MODULES CALLED:

GATE (CZATC1) Outputs commands with their parameter keywords.
FIND (CZCOJ) Searches USERLIB and SYSLIB.

Common OPEN (CZCLA) Opens data sets.

Common CLOSE (CZCLB) Closes data sets.

User Prompter (CZATJ1) Outputs error messages.

EXITS: After all requested output has been printed (or queued up for
nonconversational tasks), this routine returns to its calling routine.

OPERATION: This routine first determines if all or a specific command
in USERLIB (SYSPRO) is being requested. If all, USERLIB (5YSPRO) 1is
opened and a pointer positioned to the beginning of the data set. Then
this routine searches through the data set, seeking out all command
names and their parameter keywords (up to a maximum of 152 bytes). For
PROCDEFs, the keywords are retrieved starting from line 100 of the pro-
cedure. For BUILTINs, the module ID is taken from the SYSPRO entry and

122

stored in an adcon group. Then the adcon is armed for subsequent
issuance of a LOAD macro. Once the module is loaded, the parameter key-
words are retrieved from BPKD. In any case, all commands, with their
parameter keywords, are printed one command string per line.

When the user has asked for a particular command, this routine
searches USERLIB (SYSPRO) first, and, if not found there, searches SYS-
LIB (SYSPRO). Once the command is found, its parameter retrieval pro-
cess is the same as described above for PROCDEFs and BUILTINs. If the
command cannot be found, this routine issues a diagnostic (via the PRMPT
macro) indicating the situation, and processing terminates.

ERROR CONDITIONS: If the command cannot be found, the user is prompted,
and this routine exits to its calling routine.

SYSTEM CONTROL BLOCK USAGE: Interrupt Storage Area (CHAISA)

’LINE? command Routine (CZAEM)

This routine presetns the contents of specified lines from a user's
line data set or language processor list data set. (See Chart BY.)

ENTRIES:

CZAEM1 - normal entry

CZAEME - EODAD error entry

CZAEMS - SYNAD error entry

CZREM2 - DCB macro instruction entry

MODULES CALLED:

NEXTPAR (CZAAC1) Locates operands and scan for invalid characters
and delimiters.

CHEKDS (CZAAC2) Validates data set name.
ALFNUM (CZAAC3) Validates user identification.
NUMSTG (CZAACH) Validates line numbers.

MSGWR (CZAAD2) Issues system messages.

GATWR (CZATC1l) Writes line on SYSOUT.

DDEF (CZAEA5) Creates a JFCB.

FINDDS {(CZAEC1) Locates a JFCB.

EXITS: The routine normally returns to the calling routine, via the
RETURN macro instruction. If a system error occurs, the routine exits
to ABEND.

OPERATION: The data set name is fetched through NEXTPAR. If the user
is class B or F, the data set name must be prefixed with a user identi-
fication; this userid is removed, validated (via ALFNUM), and saved for
future use. For a class B user, a further check is made to ensure that
the first two characters of the userid are the same as the first two
characters of the userid of the administrator issuing the command. The
data set name is validated using CHEKDS. If the name is a wvalid parti-
tioned data set name, the member name is removed and saved for future
use.

After the data set has been successfully opened, and if the first

qualifier {(excluding userid) of the data set name is LIST, data set con-
trol block fields are checked to verify that the data set is in language

Section 4: Command Routines 123

processor list format. (A language processor list data set must be
index sequential, must have a key length of 7 bytes, a logical record
length of 140 bytes, and record format must be fixed length.) If the
first qualifier is not LI1ST, the data control block fields are checked
to vierfy that the data set is in line format. (A line data set must be
index sequential or partitioned index sequential, must have a key length
of 7 bytes, must have RKP=4, a logical record length of no more than 132
bytes, and the record format must be variable length.) If the line data
set is partitioned index sequential, the FIND macro instruction is used
to locate a specified member.

If the entire data set (or member of a line data set) is to be pre-
sented, the SETL macro instruction is used to designate the start of the
data set (or member). The first logical record is then fetched by GET
and presented via GATWR. Before and after each line is presented, a
test is made for an attention interrupt. If one is detected, the data
set is closed and contrel is returned to the command analyzer and execu-
tor. If no attention interrupt has been received, GET obtains the next
logical record and the process is repeated. Sequential reading and pre-
senting continues until GET tries to obtain a record that is past the
end of the data set. At this point, the user is informed that the end
of the data set has been reached, the data set is closed, and control
returns to the command analzyer and executor.

If only a single line is to be presented, NEXTPAR fetches the line
number; SETL points to the line; GET reads the line; and GATWR writes
the line on SYSOUT. If a range of lines is to be presented, the process
is the same except that NEXTPAR fetches both the beginning-of-range and
end-of-range line numbers. When GET obtains a record with a key higher
than the end-of-range line number, processing is complete.

After each line or range of lines has been processed, a check is made
to determine if there are any further lines to be processed from the
current data set. If there are, processing continues. If not, the data
set is closed and control is returned to the command analyzer and
executor.

ERROR CONDITIONS: The routine checks for acceptable operands and noti-
fies the user, through MSGWR, of any error found. The routine may issue
the following system errors. In each case the severity is minor.

SYSER Code Significance

050503700 Response switch set with incorrect value.

050503701 Invalid return code from NEXTPAR.

050503702 DCBEX2 field contains unexpected value.

050503703 Privilege class indicator set incorrectly.

050503704 Indicator for subfield of data set name set incorrectly.
050503705 Beginning-of-range indicator set incorrectly.

050503706 Beginning-of~range indicator set incorrectly.

050503707 Beginning-of-range indicator set incorrectly.

050503708 Prompting switch set incorrectly.

124

SYSTEM CONTROL BILOCK USAGE:

Data Control Block (CHADCB)

Task Common {(CHATCM)

’LOGOFF command Routine (CZAFN)

This routine logs a task off the system.

That is, it disposes of any

uncataloged data sets that were defined by the task, releases all
devices allocated to the task, and frees the task's virtual storage for

system use.
Chart CA.)

ENTRIES:

CZAFN1 - normal entry
CZAFN2 - shutdown entry

When LOGOFF is completed, the task no longer exists.

(See

CZAFN4 - °*END' exit function

MODULES CALLED:

VSS DISCONNECT (CZHNEB)

FINDJFCB (CZAER1L)
Loader Logoff (CZCCDu)
Cleanup (CZCJCU)
RELEASE (CZAFJ2) and
{(CZAFJ3)

Common Close (CZCLBC)

BIO Preprocessor (CZABD3)
CATFLUSH (CZCFX1)

VMTI-II (CZATDHY)

RCR VACATE

RCR LOGOFF

RCR CLOSE

Disconnect VSS from the task.

Finds the SYSOUT DCB for a nonconversational
task.

Unloads the user routines; releases the vir-
tual storage assigned to the task.

Refresh the Task Monitor Interrupt Table.
In stages, releases all but the system data
sets, releases SYSULIB, releases all data

sets.

Closes the SYSIN and SYSOUT DCBs for a non-
conversational task.

Prints SYSOUT for a ncnconversational task.
Flushes the catalog.

Logs on the next subtask for express batch
mode.

Decrements the user ccunt in the User Table
for a nonconversational task.

Computes and saves all resource information
for the task and updates the User Table.

Subtracts the user®'s entry from the User
Table.

The LOGOFF routine also uses FREEQ, DCON, DELVAM, WTL, EBCDITIME, CHANGE,
ACCTSUBR, XTRTM, XTRACT, and ATCS during its processing.

EXITS:

Should an error occur during LOGOFF processing, this routine
exits to the ABEND processor.

The normal exit from LOGOFF processing is

via the DLTSI SVC, which deletes the task status index for the task,
thus eliminating the task from the system.

OPERATION:

An entry at CZAFN2, indicating that a system shutdown is in

progress, causes LOGOFF to act as if it were processing a nonconversa-

tional task and prevents prompting messages.

An entry at CZAFN1l is con-

Section 4: Command Routines 125

sidered a normal entry; however, if the operator task enters here, con-
trol returns to the command system —- the operator cannot successfully
execute a LOGOFF. Operation of this routine is divided into two major
parts. The first part is always performed; the other part is only per-
formed when the task has uncataloged, defined data sets.

LOGOFF always carries out a series of actions to eliminate the task
from the system. Initially, it sets an indicator in the interruption
storage area (ISA) to prevent any recursions of the ABEND routine. For
nonconversational tasks which are not in Express Batch mode, LOGOFF
informs the Batch Monitor that it may permit updating of the batch work
queue. A complete logoff is then performed for tasks which are not in
Express Batch mode by:

1. Issuing a FREEQ to logically or physically disconnect this task
from MTT. If SHUTDOWN is in progress, a physical disconnect is
done. Otherwise a logical disconnect is issued.

2. Issuing a FIND on the sysout JFCB for a nonconversational task.

3. Checking STE level for error, and issuing the CHANGE macro if the
STE level is in error. A bad return code from CHANGE results in
system error 050506305.

4. 1Issuing the LOGOFF accepted message.

5. Calling the accounting subroutine -- ACCTSUBR -- to record this
task's use of the system resources.

6. Closing the SYSIN and SYSOUT data sets for a nonconversational
task, and issuing a print on sysout via PRINT.

7. Issuing the ATCS macro for conversational tasks only; a logical
disconnect is normally performed. 1In the case of a shutdown a
physical disconnect is issued.

8. Purging the terminal from the TSI to allow a new task to be created
at this terminal.

9. Releasing the task's virtual storage via a call to LOADER LOGOFF.

10. Releasing all data sets used by the task by a call to RELEASE
command.

11. Updating the user table entry for the current user and deleting the
AUL entry for the task. This is done by RCR LOGOFF.
Note: A nonconversational task wiil call RCR VACATE previous to
calling RCR LOGOFF.

12. Closing the user table.

13. Calling VSS DISCONNECT (CZHNEB) if the task has been connected to
VSS.

14. And finally, issuing the DLTSI SVC to erase the task status indica-
tor and thereby eliminate the task completely.

A complete logoff is not performed for an express batch subtask. A par-
tial logoff is performed, the first four of the functions above are
done, then the partial logoff is completed by:
1. cCalling LOADER LOGOFF (CZCCD4) to unload user called routines.
2. Calling RELEASE (CZAFJ2) to release all but system data sets and
performing a special release of SYSULIB.

126

3. Performing an RCR VACATE for the task and an RCR CLOSE to update
the user's entry.

4, Calling VMTI-2 (CZATD4) to logon the next subtask.
Note: When the SYNAD exit is reached in express batch {(that is, no more

subtasks to be logged on), CZAFN4 is entered. The userid in task common
is changed to SYSOPER0O and a complete logoff is performed (steps 5-14 in

a normal logoff sequence).

LOGOFF disposes of uncataloged data sets created by the task (found
in the temporary tabulation chain of the task data definition table).

ERROR CONDITIONS:

SYSER Code Severity ABEND Message

050506305 Minor ERROR ATTEMPTING TO
CHANGE STE LEVEL

050506306 Minor NO JFCB IN TDT
SYSouT

050506307 Minor UNABLE TO RELEASE
ALL

050506308 Minor INVALID RETURN FROM
PRINT

050506310 Minor MINOR SOFTWARE

ERROR

SYSTEM CONTROL BLOCK USAGE:

Terminal Control Table {(CHATCT)

Interrupt Storage Area (CHAISA)

Symbolic Device Allocation Table (CHASDA)
Task Common (CHATCM)

User Table (CHAUSE)

Task Data Definition Table (CHATDT)

Data Control Block Header (CHADHD)
RESTBL Header (CHARHD)

Active User Limits Table (CHAAUL)

Task Accounting and Statistical Table (CHAACT)

’LOGON (CZAFM)

The routine may issue these system errors:

Significance

Error return code
from CHANGE.

FINDJFCB determined
that no JFCB was in-
cluded for SYSOUT.

Exror return code
from RELEASE.

Error return code
from PRINT.

Erroxr condition
detected by RCR
LOGOFF; or RCR
CLOSE for a express
batch subtask.

The LOGON command routine validates the user's LOGON parameters (his

user identification, charge number, etc.)

and carries out certain task

initialization functions, such as setting values in task common. The
user cannot proceed with his task until the LOGON routine has been suc-

cessfully completed. (See Chart CB.)
ENTRIES:

CZAFM1 - normal entry

CZAFM2 - privileged entry for SYSOPERO, ABEND,
CZAFMU4 - privileged entry from private BULKIO

Section 4:

BULKIO (TID=0002)

Command Routines 127

MODULES CALLED:

NEXTPAR (CZAACL)
DDEF (CZAEA4}

RCR OPEN

RCR RATION
RCR VACATE
RCR CLOSE
XTRCT
SETUP
SCHED
EBCDTIME

WTL (CZABQ)

GATWR (CZATC)

LOGOFF (CZAFN1)

User Prompter (CZATJ)

Locates next operand.
Creates JFCB for the user library (USERLIB).

Reads an entry in user table and update fields;
create AUL entry.

Processes task, CPU and connect time.

Vacates resources assigned to task.

Resets and writes user table entry.

Fetches authority from Task Status Index.

Stores information in Task Status Index.

Alters task's internal priority.

Gets current time.

Issues logon message to operator log and issues
ABEND message for a nonconversational task ABEND
in LOGON.

Issues shutdown message.

Logs a task off when specified auxiliary space
is not available.

Writes the initial logon message on the user's
SYSOUT.

EXITS: The routine normally returns to the calling routine, via the
RETURN macro instruction. If a system error is detected, the routine

exits to ABEND.

OPERATION: LOGON first determines what kind of task is logging on. For
any conversational task, an ATTACH macro is issued which returns the
address of the terminal control slot for this user. If the TCT slot's

address is zero,

LOGON exits to ABEND. Otherwise, this address is
stored in GATE's PSECT.

The LOGON parameters are pointed to by a field

in the TCT slot for every conversational task except an abended task.

GATE's PSECT is then initialized with information retrieved from the TCT
slot, including the device type and a maximum SYSOUT line length. For
nonconversational and abended tasks, the parameter string is pointed to
in register one. For other than BULKIO and main operator tasks, LOGON
then calls the User Prompter (CZATJ) to print the initial logon message.

A complete ILOGON consists of checking the LOGON command operands.
Actual fetching and validating of each operand for proper syntax is done
through calls to the SCAN's NEXTPAR routine. First the userid is vali-
dated by a call to RCR OPEN. When the userid has been determined to be
valid (that is, a read on the user table is good), an AUL entry is built
for the user, an AUL entry is constructed for USERID=TSS*****, and the
user table is updated. If the task is nonconversational, a call is made
to CZBTBA to copen the SYSOUT data set for this task. The routine next
tests the 'first time through' switch for an express batch task. If on,
a GATWR is issued to write the EXPRESS card to the task's SYSOUT. This
is followed by another GATWR (issued for all nonconversational tasks)
which writes the user's LOGON parameters to SYSOUT.

128

The LOGON parameters are then validated one at a time. If the task
is conversational and the user table entry corresponding to the userid
contains a valid password (not blanks), the password is checked. If the
user has been joined with a valid password, but has defaulted this at
LOGON time, a special prompt will be issued conversationally to have
this parameter entered. The addressing operand is processed next and
fields in the ISA are set accordingly. Then if a charge number is supp-
lied, it is placed in task common; if the charge number has been
defaulted, the charge number from the user table entry is placed in task
common. The CSECT packing operand is checked, followed by the AUX space
control parameter, the pristine parameter, and lastly the XIVM
parameters.

As each command operand is accepted, a part of the LOGON routine's
initialization is performed. Thus the userid, password, and charge num-
ber are moved one at a time to task common. The CSECT packing operand
is moved into new task common and also into the dynamic loader's PSECT.
If a PRISTINE LOGON has been requested the character string *pristine®
is moved into new task common. If any of the LOGON operands are inval-
id, the user is informed of his exror by an appropriate message and can
reenter the entire operand string. . This prompting loop will continue
until the system's prompting limit has been reached; at this time the
task will be abnormally terminated.

When all parameters have been determined to be valid, the routine
performs the following additional functions:

1. Completes fields in the task status index (TSI) by moving userid,
external priority, and authorization values into it;

2. Adds further information to task common. Values are set to show
the user's privilege class, completion of logging on, no confirma-
tion messages and full messages.

3. Calculates the internal priority of the task via a call to the
SCHED SVC;

4, Creates a job file control block (JFCB) for the user library (SYS-
ULIB) through a call to DDEF. Note: This is not done if the user
has specified PRISTINE=X in the LOGON operand string.

After completing all its initialization functions, the routine issues
two messages. One of these is to the task's SYSOUT noting date and time
of LOGON. The other message is issued to the system log noting the
userid, time, and date of LOGON initialization. Control is then passed
to the calling routine.

ERROR CONDITIONS: The routine will check for acceptable operands and
notify the user, through the User Prompter, of any errors found. For
the messages issued, see the description of the LOGON command in Part I.

The routine may issue these system errors:

SYSER Code Severity ABEND Message Significance

050506207 Minor DDEF UNABLE TO DDEF was unable to
CREATE A JFCB FOR create JFCB for
SYSULIB SYSULIB.

050506208 Minor UNABLE TO WRITE THE An attempt was made
USER TABLE to write in user

table but SYNAD
exit was invoked.

Section 4: Command Routines 129

050506211 Minor NO JFCB FOUND FOR No JFCB exists for

USER TABLE user table in TDT
chain.
050506212 Minor RCR CLOSE FAILURE RCR CLOSE failed.
050506213 Minor RCR OPEN DETECTED RCR OPEN could not
SYSTEM ERROR perform its function.

SYSTEM CONTROL BLOCK USAGE:

Interrupt Storage Area (CHAISA)
Task Status Index (CHATSI)

System Common (CHASCM)

Task Data Definition Table (CHATDT)
Data Control Block (CHADCB)

User Table {(CHAUSE)

Task Dictionary Table (CHATDH)
Terminal Control Table (CHATCT)
Task Common {(CHATCM)

New Task Common (CHANTC)

Shared Data Set Member (CHASDM)
Active User Limits Table (CHAAUL)

')IDGONZ Ccommand Routine (CZBTB)

This privileged routine completes the LOGON functions that must be
done within the user's task. LOGON2 functions are accomplished in three
main routines: TASKOPEN, TABINIT, and GATEOPEN. TASKOPEN opens all
system data sets needed by the user's task (except SYSIN and SYSOUT) and
finds all needed members. TABINIT retrieves members from SYSLIB and
USERLIB, and constructs the command system dictionaries and tables in
virtual storage. GATEOPEN opens the SYSIN and SYSOUT devices for non-
conversational tasks and stores information needed by GATE. (See Chart
cc.)

ENTRILES:

CZBTB1 - LOGON2 control
CZBTB2 - TASKOPEN

CZBTB3 - TABINIT

CZBTBY4 - GATEOPEN (SYSIN only)
CZBTB5 - VAM EODAD routine
CZBTB6 - VAM SYNAD routine
CZBTB7 - SYSLIB DCSB

CZBTB8 - USERLIB DCB

CZBTBY9 - PROCLIB SCAN

CZBTBA - GATEOPEN (SYSOUT only)
CZBTBB - EXPRESS BATCH

CZBTBX - DICTEXTR

MODULES CALLED:

Dictionary Handlers:

STARTVAR (CZASD2) Initializes the dictionary; called by CZBTB3.

RFR (CZASD3) Uses the hash chain to locate an entry in the
dictionary; called by CZBTB3 and CZBTBX.

NEXTRFR (CZASDU) Checks the next entry in the dictionary; called
by CZBTBX.

ENTR (CZASD5) Makes a new entry in the dictionary; called by

CZBTB3 and CZBTBX.

130

RELEASE (CZAFJ3) Release the SYSOUT JFCB; called by CZBTBA.

DDEF (CZAEA4) Defines a new SYSOUT J¥CB; called by CIZIBTBA.
FINDIFCB (CZAEB1) Locates the SY¥SIN JFCB; called by CZBTBu4.
User Prompter (CZATJ1) Sends messages to the user.

Various routines within LOGON2 also issue FIND, OPEN, GETMAIN, ESETL,
SETL, GET, PUT, STOW, and CLOSE. CIBTBl1 executes a SIR macro.

EXITS: The routine normally returns to the calling routine, via the
RETURN macro instruction. If a system error occurs, the routine exits
to ABLEND.

OPERATION: LOGONZ2 is called to complete the logon functions. New Task
Common (CHBNTC) is initialized; then all system data sets needed by the
user task are processed. LOGON2 processes four of the system data sets:
SYSLIB, USERLIB, SYSIN, and SYSOUT. If the user has entered the "pris-
tine" operand with his LOGON command, USERLIB DCBs are not processed in
LOGON2; only SYSLIB DCBs are opened, otherwise both USERLIB and SYSLIB
DCBs are processed.

A pristine request will cause SYSLIB (SYSPRO) to be opened. LOGON2
will issue a series of FIND command for the SYSPRG and the SYSPRD mem-
bers of SYSLIB, so that the DCBs will be correctly initialized and the
members ready for reference by the Procedure Expander (CZATE). Where
several members of the same data set are needed simultaneously, a DCB is
generated for each member. A normal logon request will cause the above
to be done, in addition the SYSPRD, SYSPRO, and SYSMLF members of USER-
LIB will be opened, and the FIND command issued on the SYSPRUO and SYSMLF
members. SYSMLF must be initialized for reference by the User Prompter.

LOGON2 then builds the combined dictionary in the Dictionary Handler
(CZASD) PSECT. The origin of the dictionary is indicated by a one-word
pointer and the pointer is saved in the external symbol CZASD9. The
initial size of the dictionary is one page. If it must be expanded, it
is done by a Dictionary Handler routine. GETMAIN is used to obtain the
referenced pages and the CZASD9 pointer is updated accordingly. If the
pristine option has been requested, the combined dictionary will be
puilt from SYSLIR only; otherwise, both SYSLIB and USERLIB information
will be used.

The combined dictionary contains entries from four main sources.
1. The system procedure dictionary -- SYSLIB (SYSPRD).

2. The user procedure dictionary, if any exists -- USERLIB (SYSPRD).
If there is no user procedure dictionary, one will be constructed
{rom the user's procedure library -- USERLIB (SYSPKRO) -- if one
exists. When built, this dictionary will be used and written into
USERLIB.

3. The primary dictionary from the user profile (SYSPRX).

4. The primary dictionary from the system profile for a pristine task
or it no user profiie exists.

The input character translation table is moved into GATE's PSECT
(CZATCS5) and the PCTCTT pointer is set. The output character transla-
tion table is moved into GATE's PSECT (CZATCT) anéd the PCTOCT pointer is
set. The profile character and switch table is mcved into new task com-
mon. The SYSLIB ana USERLIB DCBs opened for SYSPED and SYSPRX are then
closed.

Section #: Command Routines 131

The ZLOGON procedure is executed using the OBEY macro instruction.
Then LOGON2 enables the CSII Attention Handler (CZASBl) by a SIR macro.

ERROR CONDITIONS: The following error conditions result in an ABEND:

1. USERLIB (SYSPRD) - Invalid format.

2. SYSULIB (SYSPRD) - Invalid hash pointer.

3. USERLIB (SYSPRX) - Invalid format.

4. Read past end of dictionary.

5. VAM error, SYNAD routine called.

6. USERLIB (SYSPRD) - invalid nash pointer.

7. Return code from FIND of USERLIB (SYSPRD) of 8, C, or 10.

SYSTEM CONTROL BLOCK USAGE:

Editable Data Set (CHACVE)

Data Control Block (CHADCE)

Control Dictionary Header (CHADCT)

Cont rol Dictionary Entry {(CHADEN)

New Task Common (CHANTC)

Protile Character and Switch Table (CHAPCT)
Task Common (CHATCHM)

User Protile (CHAPFL)

Symbolic Device Allocation Table (CHASDA)
Task Data Definition Table {(CHATDT)

’ MCAST/MCASTAB Routine

This routine makes changes in the Profile Character and Switch Table
as specified in the parameters of the MCAST command or macro instruc-
tion. It also allows the user to specify, through the MCASTAB command,
his own Input and/or Output Translation Table. (See Chart CD.)

ENTRIES:

CZATU1l - MCAST macro entry
CZATU2 - MCAST command entry
CZATU3 - MCASTAB command entry

MODULES CALLED: 7This routine calls the User Prompter (CZATJ1l) via the
PRNMPT macro to inform the user of error conditions during command
processing.

EAITS: This routine returns to its calling routine via the RETURN macro
instruction.

OPERATION: The input parameter list for MCAST specifies the address of
each replacement value for the Profile Character and Switch (CHAPCT)
Table. For macro processing, this routine moves each value from its
location in the calling module to the proper location in CHAPCT. For
MCAST command processing, this routine does some error checking. Unless
the parameter string is nexadecimal, the parameter length must eqgual 1
to be moved into the CHAPCT table. Only nine separate parameters will
be processed. The MCAST command processcr will translate hexadecimal
input via its internal subroutine HEXTRAN.

To process the MCASTAB command, this routine validates the input pa-

rameter and, if valid and if the user wishes to specify his own table,
sets the address to that table in CHAPCT. If the user wishes to discon-

132

nect his Input and/or Output Translation Table, this routine sets a
pointer to the system's Translation Table in CHAPCT.

ERROR CONDITIONS: This routine prompts the user and exits if, during
MCASTAB command processing, it recognizes an invalid parameter. During
MCAST command processing, this routine prompts that it is ignoring any
parameter found to be invalid but does not exit until the parameter list
is exhausted.

SYSTEM CONTROL BLOCK USAGE:

Profile Character and Switch Table (CHAPCT)
Input Translation Table

Output Translation Table

TABLEA (CHAAAA)

’MODIFY command Routine (CZAEG)

This routine inserts, deletes, replaces, and reviews records in a
VISAM data set or VISAM nember of a partitioned data set; or builds a
new VISAM data set or member. (see Chart CE.)

ENTRIES:

CZAEG1 - normal entry
CZAEG2 - SYNAD entry
CZAEG3 - EODAD entry

MODULES CALLED:

NEXTPAR (CZAAC1) Locates delimiters of input string and scan for in-
valid characters.

CHEKDS (CZAAC2) Validates data set name.

ALFNUM (CZAAC3) Validates member name.

CHKNUM (CZAACS) Validates line number.

MSGWR (CZAAD2) Issues system messages.

GATWR (CZATC1) Writes on SYSOUT.

SYSIN (CzAscC7) Reads data from the source list.

FINDDS (CZAEC1l) Finds or builds JFCB.

DDEF (CZAEAW) pefines a new data set and creates JFCB for it.

STOW (CZCOK) Updates POD when new member is created.

GETMAIN (CZCGA2) Gets additional virtual storage.

FREEMAIN (CZCGA3) Releases virtual storage.

EXITS: The routine normally returns to the calling routine via the
RETURN macro instruction. If a system error occurs, the routine exits
to ABEND.

OPERATION: After operands are fetched using BPKD and validated using
tne SCAN routines, an attempt is made to obtain a job file control block
(JFCB) for the data set. If the data set has been previously defined or
cataloged, a JFCB will be created for it. 1In either case the JFCB must
show that the data set has VISAM or VAM partitioned organization and is
write-accessible to this user.

Section 4: Command Routines 133

When the JFCB is successfully located or created, the data set is
opened with a provision for both reading and writing by the user. If
the data set is partitioned, the partitioned organization directory
(POD) must be searched for the specified member name. When the data set
or member name is found, a check is made to ensure that it has VISAM
organization. It the name is not found, a new data set or member is
created with this name and VISAM organization.

Input records containing the user's modifications are obtained one at
a time, via SYSIN, until the end-of-input record {RE or an underscore
followed by a command) is reached. Input characters are EBCDIC unless a
X% is found. dHexadecimal mode is assumed until a nonhexadecimal
character (for example, G) or end-of-block (EOB) is found. The charac-
ters found within the hexadecimal string are converted to hexadecimal,
character for character. When the end-of-input record is reached, the
data set is closed. For a partitioned data set, the POD is updated to
reflect any alterations before the data set is closed.

Modifications are effected by employing the user-supplied key (a line
number, if the data set is in line format) to point out the location of
the specified record (line). When the first character of input supplied
by the user is numeric, the record is written into the data set as an
insertion or replacement for an existing record. When the first
character supplied by the user is D, the record at the specified loca-
tion is deleted from the data set. When the first character is R, the
record at the specified location is reviewed (presented to the user).

If review of all modifications is requested, the existing record which
is being replaced or deleted is presented to the user before the actual
modification is done. In the case of an insertion, the record immedi-
ately preceding the insertion is presented. In confirmation mode the
new record (either an insertion or replacement) is also presented.

When a new nonline data set is to be created, an additional page is
added to MODIFY's virtual storage since the nonline input record may be
as much as 4K bytes in length. This type of data set is built of suc-
cessive readings of input records containing continuation characters.
To build a line data set, each input record is processed individually
with continuation characters disregarded.

ERROR CONDITIONS: The routine checks for acceptable operands and noti-
fies the user, through M3GWR, of any errors found. For messages issued,
see System Messages.

The routine may issue these system errors:

SYSER Code Severity ABEND Message Significance

050503102 Minor SYSTEM ERROR. INVALID Invalid return code
RETURN CODE from called module.

050503104 Minor SYSTEM ERROR. SYNAD error when
TROUBLE IN WRITE trying to write re-
MACRO) placement line in

data set.

050503105 Minor SYSTEM ERROR. SYNAD error when
TROUBLE IN WRITE trying to write in-
MACRO sertion in data set.

050503108 Minor SYSTEM ERROR. No left parenthesis
MEMBERNAME in member name.

134

Page of GY28-2013-6, Issued February 1, 1972 by TNL GN28-3214

SYSTEM CONTROL BLOCK USAGE:

Task Common (CHATCM)
Task Data Definition Table (CHATDT)
Data Control Block (CHADCB)

’MSGWR (Message Write) Routine (CZAAD)

This routine issues system messages and, if requested, fetches
responses to those messages, using the facilities of the USER PROMPTER
{(CZATJ). (See Chart CF.)

ENTRIES:

CZAAD2 - privileged entry
CZAAD3 - nonprivileged entry

MODULES CALLED:

User Prompter (CZATJ) Issues messages and obtains response (if any).

EXITS: The routine returns to the calling routine, via the RETURN
macro.

OPERATION: MSGWR is entered to issue system messages. Either of two
entry points is used, depending on the object code generated by the
MSGWR macro. The macro expansion checks whether the macro user is pri-
vileged or not, then generates linkage to MSGWR accordingly.

MSGWR cenverts the parameter list it receives to a form compatible
with that which the PRMPT macro would generate for an equivalent call to
USER PROMPTER. MSGWR then branches to the USER PROMPTER, who handles
the actual message output and any expected response.

After the message has been issued, via USER PROMPTER, the response
(if any) is collected and MSGWR returns to its caller. A return code is
set to indicate results.

ERROR CONDITIONS: A hexadecimal code will be returned in register 15:

Code Significance

00 No error detected.

o4 Truncation of output to terminal; or truncation of response from
terminal. Truncated response not moved to user-provided area.

08 I/0 terminated by ATTN interruption.

SYSTEM CONTROL BLOCK USAGE: None.

’Place Address in AIR Table (CZACS) - PAIR

This routine adds and removes addresses of interlock release routines
in the ABEND Interlock Release (AIR) Table. PAIR also controls an area
within the AIR table for temporary storage of interlock release routine
control information. (See Chart CG.)

INPUT: Register 1 points to a three-word parameter list.
Word 1l: VCON of interlock release routine.

Word 2: RCON of interlock release routine.

Section 4: Command Routines 135

Page of GY28-2013-6, Issued February 1, 1972 by TNL GN28-3214

Word 3: CZACS]l returns the address of a doubleword that the caller may
use to store variable information. CZACS2 uses the contents of
this word (the address CZACS1l had returned) to determine which
entry to delete from the AIR table,

ENTRIES:

CZACS1 - entry to place address in table
CZACS2 - entry to remove an address from table

MODULES CALLED:

GETMAIN (CZCGA2) Obtains additional virtual storage.

EXITS: This routine returns to the calling routine, via the RETURN
macro instruction.

OPERATION: To place an interlock release routine address in the AIR
table, PAIR searches the table until it finds a pair of zero AIRVCN and
AIRRCN fields. It then places the VCON address of the interlock release
routine in the AIRVCN field, and the RCON address of the routine in the
AIRRCN field. The temporary storage area (AIRINF) address associated
with the AIRVCN and AIRRCN field is placed in the input parameter list
and control is returned to the calling routine.

To erase an interlock release routine address from the AIR table,
CZACS2 verifies the address of the AIRINF field which it gets from the
third word of the parameter list and then sets this field to zero along
with its associated AIRVCN and AIRRCN fields. Control is then returned
to the calling routine.

ERROR CONDITIONS: A hexadecimal code is returned in register 15:

Code Significance
04 No space available in AIR table (for CZACS1)
08 AIRINF address invalid (for CZACS2)
ocC Parameter list not on a word boundary
| 10 Invalid or zero parameter passed to PAIR routine.

SYSTEM CONTROL BLOCK USAGE: ABEND Interlock Release Table (CHAAIR)

>PERMIT Command Routine (CZAFH)

This routine enables a catalog owner to authorize shared use of some
or all of his cataloged data sets by some or all other users. The owner
may subsequently change or retract such authorization. (See Chart CH.)
ENTRY: CZAFH1 - normal entry

MODULES CALLED:

NEXTPAR (CZAAC1) Gets command operand.

CHEKDS (CZACC2) Validates data set name.

SHARE (CGCFS) Adds user identifications to sharer's list.
UNSHARE (CGCFV) Removes user identifications from sharer's list.
MSGWR {CZAAD2) Issues system messages.

EXITS: The routine normally returns to the calling routine, via the
RETURN macro instruction. If a system error occurs, the routine exits
to ABEND.

136

OPERATION: The first operand read in is either a data set name or the
word *ALL, which indicates that the user is offering to share all of his
cataloged data sets.

The sharer's identification is next in the input string, however the
sharing access is checked first. It is validated and a coded version of
it is stored in the parameter list being built for catalog services. If
tne access qualifier is R, meaning that sharing privileges are being
revoked, PERMIT calls UNSHARE rather than SHARE. If the access qualifi-
er is defaulted, this is so indicated and the last entered access on the
sharing list being updated is used.

The next operand shows the identifications of the users being granted
access. If none exists and the owner indicates he has purposely
defaulted the operand, or if the operand is *ALL, the universal sharing
mode is indicated in the parameter list being built. If a list of user
identifications has been entered, each userid is read, validated, and
then added to the sharer's list. A count of the number of sharers
(which is limited to 25 for each PERMIT command) is kept and supplied,
along with the address of the start of the list, as input to SHARE or
UNSHARE.

Either SHARE or UNSHARE makes the appropriate changes in the owner's
catalog. Note that PERMIT calls the catalog service's SHARE (CGCFS),
which should not be confused with the SHARE command (CZAFI).

ERROR CONDITIONS: The routine checks for acceptable operands and noti-
fies the user, through MSGWR, of any errors found. For messages issued,
see System Messages.

The routine may issue these system errors:

SYSER Code Severity ABEND Message Explanation

050505702 Minor OWNER ID NOT IT Owner's user identi-
CATALOG fication not found

in catalog.

050505703 Minor INVALID RETURN CODE SHARE or UNSHARE re-
FROM CATALOG SERVICE turned an invalid
ROUTINE code.

050505704 Minor IMPROPER HANDLING OF SHARE return code
STATE AND MODE BY invalid.
PERMIT

050505705 Minor INVALID RETURN CODE NEXTPAR return code
FROM NEXTPAR invalid.

050505706 Minor INVALID RETURN CODE CHECKDS return code

FROM CHECKDS

SYSTEM CONTROL BLOCK USAGE

Task Common (CHATCM)

Interrupt Storage Area (CHAISA)
bata Control Block (CHADCB)

’POD? Command Routine (CZCOX)

invalid.

This routine is used to print the member names (and, optionally, t

he

aliases and other member-oriented data) of individual members of a cata-
loged VPAM data set. {See Chart CI.)

Section 4: Command Routines 137

ENTRY: C2COX1 - normal entry

MODULES CALLED:

User Prompter (CZATJ) Writes diagnostic messages on task SYSOUT.

GATE (CZATC1) Issues output to task SYSOUT via GATWR.

LOCATE (CGCFL1) Determines the accessibility of the
requested data set.

GETMAIN (CZCGA2) Acquires a work area in storage for the POD
and optionally the PMD.

FREEMAIN (CZCGA3) Frees the work area previously acguired.

Set Interlock (CZCOH1) Denotes the RESTBL of the requested data

set being interlocked.

Release Interlock (CZCOI1l) Removes the interliock from the RESTBL of
the required data set.

FINDDS (CZAEC1l) Locates the JFCB for the requested VPAM
data set using dsname.

RELEASE (CZAFJ3) Releases the JFCB and private devices.

RELEAS (CZCAD1) Releases private device.

CHEKDS (CZAAC2) Validates input dsname.

EXITS: All exits are to the Command Analyzer and Executor (CZASA1) via
type-I linkage.

OPERATION: Upon entry, POD? finds a pointer in register 1 to a four-
word parameter list. The first word contains the dsname address; the
second word is the address of the DATA option; the third word contains
the address of the ALIAS option; and the fourth word is the address of
the module option. An analysis is made of the parameters. Diagnostics
are issued and the routine returns if any of the parameters are inco-
rrect. If they are all correct, LOCATE is called to see if the data set
is accessible to the user; if it is not accessible, a message is issued
via User Prompter and the routine returns. Otherwise, FINDDS is called
to create or locate a JFCB. A DCB is provided in the POD PSECT, and itg
ddname is set to that of the JFCB. The OPEN subroutine is then called
to provide a link between the DCB and the RESTBL DCB header. The POD
address 1s acquired from the DCB header, the data set is write inter-
locked, virtual storage space is allocated, the POD is moved into the
work area, and the interlock is released.

The hash table entries of the POD are examined for hash chaining, and
each hash chain is examined for member entries. As each member is
found, it is printed along with POD and user data, alias entries and
nodule information, if these options have been selected. Atter all mem-
ber names have been printed, the user is informed and the data set is
closed. If a JFCB was created, it is released. If no device was
mounted and no JFCB created, a call to CZCAD1 is made to free the
device. The area required for the POD, and optionally the PMD, is freed
and the routine returns to the Command Analyzer and Executor.

ERROR _CONDITIONS: User Prompter is called to issue diagnostic messages
if any of the following conditions exist:

1. No data set name supplied.

138

2. Data set does not exist.
3. Data set cannot be shared by user.
4. Data set not partitioned.

SYSTEM CONTROL BLOCK USAGE:

Catalog SBLOCK (CHACCC)

Data Control Block (CHADCE)

Data Control Block Header (CHADHD)
Partitioned Organization Directory (CHAPOD)
POD Alias Descriptor (CHAPOE)

POD Member Descriptor (CHAPOM)

RESTBL Header (CHARHD)

Task Common (CHATCM)

Task Data Definition Table (CHATDT)

Task Dictionary Table (CHATDY)

P PRMPT command Routine (CZBIC)
PRMPT allows the user to display the standard cr extended form of a
message in SYSMLF, the message file. He may insert up to five parameter
strings if the message has variable parameters. (See Chart CJ.)

ENTRIES:

CZBTC1 - normal entry
CZBTC2 - BPKD macro entry

MODULES CALLED:

User Prompter (CZATJ1) Finds and writes the message.

EXITS: The routine returns to the calling routine, via the RETURN macro
instruction.

OPERATION: The parameters from the BPKD macro are used to issue a PRMPT
macro with up to five inserts. 1If the MSGID is null, a blank MSGID is
assumed. If it has less than eight characters, the field is padded with
blanks. If it has more than eight, the excess is truncated. The
inserts are checked to see if any exceeds the length limit of 40 charac-
ters. If so, the insert is truncated. There are no error return codes.

ERROR CONDITIONS: None of the user prompter errors are checked.

SYSTEM CONTROL BLOCK USAGE: None.

P PROCDEF Routine (CZATP)

This routine, called by the Command Analyzer and Executor when either
a BUILTIWN or PROCDEF command is recognized, maintains the procedure
library and makes corresponding changes to the combined library. (See
Chart CK.)

ENTRIES:
CZATP1 - entry point for either a BUILTIN or a PROCDEF command

CZATP2 - an internal symbol which is passed as the END entry during an
LPCINIT calil

Section 4: Command Routines 139

NMODULES CALLED:

Dictionary Handlers (CZASD):

STARTVAR (CZASD2) Initializes a VM page in dictionary format.
KFR (CZASD3) Finds a PROCDEF or BUILTIN entry.
NEXTRFR (CZASDU4) Adds and deletes entries from the dictionary at
the direction of the procedure.
ENTR (CZASD5} Adds an entry to the dictionary.
User Controller (CZAMZ):
LPCINIT (CZASW1) Initializes the procedure as an LPC.
LPCEDIT (CZASW4) Begins execution of Text Editor commands.
FINDDS (CZAEC1) Finds or creates a JFCB.
DDEF (CZAEAUW) Creates JFCB if FINDDS fails to locate one for
the input dsname.
CHEKDS (CZAAC2) Validates the data set name.
User Prompter (CZATJ1) Informs user of error situations.

EXITS: The routine normally returns to the calling routine, via the
RETURN macro instruction.

OPERATION: The principal activities are carried on at entry point
CzATP1. After parameter validation, LPCINIT is called to activate the
LPC for PROCDEF. On the first call the SYSPRD member is erased from
USERLIB if one exists. If the data set to whnich the BUILTIN or PROCDEF
is to be added is not USERLIB, a call to CZAsSDZ is made to initialize a
page, obtained by GETMAIN, for use as a variable length dictionary.
This dictionary will contain the SYSPRD member for the BUILTIN/PROCDEF.
On each call, a line corresponding to the BUILTIN or PROCDEF line is
built and written into SYSPRO as line zero of the corresponding region,
and a corresponding entry is added to the combined dictionary.

Transactions are enabled and the routine to modify the dictionary is
entered. The end entry for CZATP is CZATP2. At this entry CZATP issues
a SETL to line zero of the current region to determine if it still
exists. If not, the corresponding dictionary entry is removed. 'The
transaction table is marked as processed. SYSPRO 1s closed to save a
PROCDEF if one was created.

LRROR CONDITIONS: The rcutine checks for any name or symbol which 15
toc iong, and the situation where there is no nawe for PROCDEF or BUIIL-
TIN. If one of these errors or a System Fault occurs, this routine
calls the User Prompter to print an appropriate message.

SYSTEM CONTROL BLOCK USAGE:

Control Dictionary Entry (CHADEN)
Control Dictionary Heading (CHADCT)
Data Set Control Block (CHADCSH)

New Task Common (CHANTC)

Task Data Definition Table (CHATDT)
Transaction Table (CHATKN)

»Procedure mxpander Routines (CZATE)

The Procedure Expander is called by the Command Analyzer and hkxecutor
when it identifies a verp as a procedure name. The Procedure Expander
consists of seven modules which:

140

s Locate the procedure in the Procedure Library (PROCLIB).

s Move the procedure into the Source List (SL).

e Construct (if parameters are present) a table of parameters, equiva-
lent names, and calling values, with default values inserted where

required.

e Substitute calling parameters in the text as the procedure is moved
into the Source List. (See Chart CL.)

ENTRIES: Each of the seven modules is defined by one entry point:

CZATE1 - entry into main line processing

CZATE2 - BUILDLIST entry

CZATE3 - LISTEQ entry

CZATE4 -~ DEFSEARCH entry

CZATES - procedure parameter scan entry

CZATEL - entry into the procedure expander from routines that have been

entered via macro
subparameter search entry

CZATE10

Only CZATE1l and CZATE6 serve as entry points to the Procedure Expander
from routines outside of it.

MODULES CALLED: The Procedure Expander, during its main line proces-
sing, calls three of the other six modules within itself:

BUILDLIST (CZATE2) Builds an ELIST and ILIST from dummy parameters.
LISTEQ (CZATE3) Builds a PLIST from the calling parameters.

DEFSEARCH (CZATEW) Inserts default values in the PLIST if no calling
parameters are present. BAlso called by LISTEQ.

In addition, the BUILDLIST routine and the LISTEQ routine call the fifth
Procedure Expander routine (CZATE5) to find and isolate each procedure
parameter in turn and put it into the Source List.

When entered at CZATE6, Procedure Expander processing includes a call
only to LISTEG. The subparameter processing routine, CZATE10, is a log-
ical extension of LISTEQ and is called only by it.

The modules (outside themselves) upon which the Procedure Expander
routines rely are:

Source List Handlers:
Buffer Fetch (CZASC2) Extends the size of the source list.

Update (CZASC6) Updates the source list pointers.
Dictionary Handlers:
RFR (CZASD3) Searches dictionary for parameter names.
GDV (CZASDX) Determines a default value.
Verb Scanner (CZASA2) ~ Isolates the verb for examination.
User Prompter (CZATJ1) Writes messages to the user.

The Procedure Expander routines also use OPEN, FIND, READ, GET, ESETL,
and HASH.

Section 4: Command Routines 141

EXITS: The routine normally returns to the calling routine, via the
RETURN macro instruction.

OPERATION: Upon entry to the Procedure Expander, a search for the pro-
cedure in the PROCLIB is initiated via the READ macro instruction, after
assuring that the USERLIB DCB is open (if the procedure definition —--
PROCDEF -- resides in USERLIB. If the procedure does not exist, an
immediate return is made to the calling routine with a return code that
indicates this fact. 1f the search was successful, a test is made to
determine if there is enough space in the source list for the proce-
dure's first line. If not, a Source List BHandler is called to expand
the SL by another page. 1In either event, the current end point (EP)
value is saved for a later test, and a P marker is placed in the SL at
the saved EP address. The current start address (SA) value, which
points to a position past the identified name in the SL, is inserted
into the P marker.

The procedure's first line is moved into the SIL after the P marker,
via the GET macro instruction. If the procedure is null, the SIL is left
in its original state, and control returns to the calling routine.
Otherwise, the EP, SA, and available byte count are updated in the SL,
and the SA value is saved. Also, the IDENT field of this line is saved
in order to determine the end of this procedure. The Procedure Expander
now calls the Verb Scanner to determine if the first statement is PARAM.

The lack of a PARAM statement results in moving the procedure into
the SL one line at a time. 1Initially, an E markexr, which contains a
pointer back to the P marker, is placed at the end of the first line.
The EP and available byte count are reset, and the value of EP is saved.
A test is made to determine if there is enough room in the SL for the
next line. If not, the SL is extended another page, via the Source List
Handler routine. In any event, GET is used to obtain the next line, and
move it into the SL. If an EODAD occurs, or the IDENT field is found
not to match the initial IDENT value, the process is complete, and an
exit is made after resetting the SA to the first byte after the P mark-
er. Otherwise, an E marker, with a pointer set to the value of the pre-
vious line's E marker pointer, is placed at the end of the current line.
The previous E marker pointer is reset to the previously saved EP value;
that is, the address of the new line. The EP and available byte count
are updated after saving the current EP, and the process 1is repeated.
The last line, whose E marker points back to the P, or beginning marker,
is an exception. If during the process, the source list must be
expanded, the last E marker on the page will point to the input area on
the new page.

If the first line is a PARAM statement, the end result is the same;
however, the expansion process is different. Initially, a test for a
line continuation marker is made. If one exists, the next line is
obtained via the GET macro instruction, and stored in the SL after the
first line's E marker (current EP). A new E marker is placed after the
continuation line. The pointer in the previous E marker is placed in
the current E marker; then the previocus E marker is changed to point to
the next line. The EP and available byte count are updated, and the
process 1is repeated until all continuation lines of the PARAM statement
reside in the SL. The last EP is saved for future linkage of succeeding
procedure lines. Due to the previous Verb Scan call, the SA is current-
ly set to permit an immediate dummy parameter scan.

BUILDLIST Routine: To analyze the procedure's dummy parameters, control
passes from the main line routine to the BUILDLIST routine (CZATE2).
BUILDLIST calls the Procedure Parameter Scan routine {(CZATE5) to:

» Isolate (search for a delimiter) the parameter beginning at the cur-
rent start address (SA) of the source list (SL).

142

e Store the parameter, preceded by a one-byte length characteristic,
in the SL at the current end point (EP).

s Update the SA, EP, and available byte count in the SL accordingly.

s Determine whether to strip the parameter's quotation marks before
storing them in the SL.

e Return the address of the parameter's new SL location; return a
signal identifying it as a normal or special (quoted) string, and a
return code (RC) designating its delimitexr (= or ,).

On return, BUILDLIST scans and identifies the parameters as to type,
constructing a TYPE table in which each parameter is designated as norm-
al (N) or special (S), where the special form is a quoted string.

In addition to scanning and identifying the parameters, BUILDLIST
constructs two pointer tables, the ELIST and the ILIST.

ELIST Contains the address of each external parameter name.

ILIST Contains the address of each name represented in the keyword
form.

Of course, the ILIST may not have all its entries filled. BUILDLIST now
returns to the main line processor.

The main line Procedure Expander now fills vacant ILIST entries with
the corresponding ELIST values, to obtain a final table with pointers to
parameters which will be used in substitution procedures. An additional
table containing the first letter of each parameter in the ILIST is con-
structed. This table will be used to make tests for the possible exis-
tence of a dummy parameter in the procedure text. The EP is reset to
EP, in order to provide for an extension of the SL with calling
paraneters.

The Procedure Expander now tests for the presence of calling parame-
ters. 1f there are any calling parameters, the processor links to the
LISTEQ routine (CZATE3) to build a table of pointers to the calling pa-
rameters (PLIST); if not, the processor links to the DEFSEARCH routine
(CZATEU4) to build the PLIST from default values.

LISTEQ Routine: After first clearing the PLIST, LISTEQ calls the Proce-
dure Parameter Scan routine (CZATES) to isoclate a parameter {(as it did
for BUILDLIST, above). 1It, on return, LISTEQ finds the parameter nuil
it links back to CZATE5. This process continues until a non-null frag-
ment is found or the end of the input string is reached.

If the parameter is not null, the delimiter becomes important in
determining the type of keyword at hand. If the delimiter is an equals
sign, LISTEQ clears the keyword list (ELIST) index, and begins searching
for a match between the input parameter and the ELIST entries. Errors
exist if (1) the ELIST is exhausted before a match is found, or (2) an
asterisk precedes the match in the ELIST. Errors are marked by flag
settings and may result in the user being prompted.

If a match is found, the ELIST entry is checked further for length,
subparameters, and indefinite form. Flags are set representing the con-
ditions found. 1In all cases, error and non-error, LISTEQ ends its
search loop by returning to the point in its logic where it calls CZATES
to isolate the next parameter.

Section 4: Command Routines 143

When the delimiter is not an equals sign, LISTEC makes different
tests. If the input value is the mate of an invalid keyword, it sets a
flag, and (barring end of input string) ioops back for another call to
CZATES5. If the input is the mate of an asterisk keyword, it is invalid;
the CZATE5 loop continues. The parameter fragment may have been pre-
ceded by an equals sign. If it is not, LISTEQ begins searching for an
asterisk keyword that matches the input parameter. If one is found, its
location in the PLIST is noted and the CZATES5 loop rejocined. If the
ELIST entries are exhausted before a match, but the keyword positions
are not exhausted, or if the parameter was preceded by an equals sign,
further tests are made for indefinite form. Occurrence of a parameter
in the indefinite form results in the creation of an indefinite form pa-
rameter sublist. Then, if the parameter string is not exhausted, LISTEC
calls CZATES again and continues processing.

When the parameter string is exhausted, LISTEQ may, if necessary,
call DEFSEARCH to seek synonyms, and will, on return, link to the Sub-
parameter Search routine (CZATE10) to seek subparameters.

Subparameter Search: This routine is a logical extension of LISTEQ. It
uses LISTEQ's recursion index to orient itself. This routine loops
through the ELIST/PLIST index, locating, identifying, and flagging sub-
parameters, if they exist, and creating a subparameter list for analysis
by LISTEQ. When the keywords are exhausted, this routine finally exits
to LISTEQ.

When the Subparameter Search routine returns to the LISTEQ routine
(after all parameters are exhausted), LISTEQ sets its return code and
returns to its calling routine. This may be the main line processor or
it may be that part of the Procedure Expander defined by entry point
CZATE6. In creating the PLIST, LISTEQ has ensured that the procedure's
calling parameters and subparameters have a one-to-one correspondence
with the entries of a desired BUILTIN or textual procedure dummy table.

DEFSEARCH Routine: This routine is used to determine if default values
exist for dummy parameters without corresponding call values, and, if
they do, to provide default substitutions. DEFSEARCH tests each entry
in the calling parameter pointer table (PLIST), and, if it is =zero,
identifies the values through the corresponding entry in the dummy pa-
rameter pointer table (ELIST). This value is passed to the Dictionary
Handler routine (CZASD3), which searches for the default value.

Such a default value, if found, is moved (preceded by its length
characteristic) by DEFSEARCH into the Source List (SL) at the current
end point (EP), and a pointer to the value is placed in the PLIST. The
EP and available byte count (ABC) in the SL are updated to reflect the
length of the default value. When PLIST entries have been tested
{whether or not default values are found), DEFSEARCH returns to this
calling routine. This can be either LISTEQ or the main line processor.

Mainline Processing Continues: The Procedure Expander now moves the
entire procedure from the PROCLIB into the SL, one character at a time.
Each character is initially tested to determine if it is an end of line
(EOL). 1If not, it is then compared with the first character of each
dummy parameter in the ILIST (previously constructed first character
table). If no match occurs, the character is stored in the SL; the kP
and available byte count are updated, the PROCLIB character pointer is
advanced and control seeks to obtain the next procedure character. Had
a first character match occurred, the entire dummy parameter (obtained
via a pointer in the ILIST) would be compared with its corresponding
number of characters in the PROCLIB. If a match does not occur, the
logic for no match on the first character is followed. If a match did
occur, this indicates a string substitution and the available byte count
is tested to determine if there is enough room in the SL for the string
(length characteristic is retrieved from the SL preceding the calling

144

parameter to be substituted). If required, the SL is extended by anoth-
er page, via the GETBUFSL routine. 1In any event, the corresponding cal-
ling parameter is obtained, via the pointer in PLIST, and inserted into
its new position in the SL. The pointer to the PROCLIB text is updated
to the next character after the dummy parameter, the EP, and available
byte count are updated and control returns to interrogate the next PROC
character.

As previously mentioned, while the above logic is used to move the
procedure into the SL, each character is tested for an EOL. If an EOL
is encountered, an E marker is placed in the SL at the current EP, and
the previously saved EP is tested to determine if it points at the P
marker. This test will be true only for the first procedure line after
the PARAM statement, and its E marker will contain a pointer back to the
P marker. The new EP is saved to allow for the entry of additional
lines; the previous pointer will assume the saved EP value. This will
result in a string of lines with markers pointing to their successors
with the exception of the last line which will point to the P marker.
After each line is properly entered and connected in the SL, a test is
made to determine if a EODAD or IDENT not-equal condition has occurred
(the comparison is made for the previously saved IDENT value). If not,
control passes back to process the first character in the next line;
otherwise, the process is complete, and the SA is updated to point back
to the first executable procedure statement; control returns to the cal-
ling routine.

Entry at CZATE6: The Procedure Expander, at this entry point, accepts
parameter analysis requests from routines which have been entered via
macros. Three parameters are passed to it: the address of the BPKDS,
the address of the string to be scanned, and a flag governing dictionary
reference. Upon entry, this routine sets a flag indicating that no
PRMPT macros should be issued. If the BPKDS and string prove valid,
they are used to form a parameter list for LISTEQ. This routine then
calls LISTEQ. On return it exits, passing the return code from LISTEQ
to its calling routine. This routine provides its own return codes if
the BPKDS is invalid (X*C'), the string is invalid (X'8'), or the dic-
tionary search parameter is invalid (X'10'). In these three cases, this
routine does not call LISTEQ.

ERROR CONDITIONS: If the main line processor discovers that the
requested procedure does not exist in the PROCLIB, a return code desig-
nating this fact is sent immediately to the calling routine. The Proce-
dure Expander calls the User Prompter (CZATJ1l) to send a diagnostic mes-
sage to the user if:

1. Parameter line is erxrroneous.

2. More calling parameters than dummy parameters when the PREXPAND
flag is not set to 'Y'.

3. A synonym loop occurs while BUILDLIST is scanning the parameter
line values.

In these cases the command is canceled. In addition, a message is sent
to the user and processing continues, under the following conditions:

1. BUILDLIST finds that a SYN/DEFAULT parameter on the left side of an
equals sign is a quoted string. The parameter will be treated as
an unquoted string.

2. BUILDLIST discovers that, in a string with more than 2 parameters,

all parameters are equal. The last parameter has precedence in the
ILIST.

Section 4: Command Routines 145

3. BUILDLIST or LISTEQ discovers that the maximum number of parameters
allowed in a list has been exceeded. Any excess parameters are
lost.

4. LISTEQ, while constructing the PLIST, notes redefinition of any pa-
rameter. The new definition has precedence.

5. LISTEQ discovers that a calling parameter keyword does not exist in
the ELIST. The parameter is deleted from the parameter 1list.

SYSTEM CONTROL BLOCK USAGE:

pata Control Block (CHADCB)

Control Dictionary Entry (CHADEN)

Sublist deader (CHASLH)

Source List Marker (CHASLM)

Source List Page Header (CHASLP)

New Task Common (CHANTC)

Profile Character and Switch Table (CHAPCT)

’QUIT command Routine (CZAFL)

This routine processes the QUIT Command, which may be issued only by
a system manager or administrator. QUIT removes the specified user from
the system, and e¢rases, reassigns, or stores (on a private volume) his
data sets. In nonconversational mode, all the user's data sets are
erased. (See Chart CM.)

ENTRY: CZAFLl1 - normal entry

MODULES CALLED: During its processing, QUIT calls some of these modules
several times.

NEXTPAR (CZAACL) Locates and validates operands and delimiters.
ALFNUM (CZAAC2) Validates userid.

DDEF (CZAEAS5S) pDefines JFCBs for data sets to be manipulated.
FINDJFCB (CZAEB1) Locates JFCBs for SYSUCAT, etc.

FINDDS (CZARC1) Locates JFCB for a data set, for example, a

JFCB that DDEF has just created for a data set
to be recataloged.

LOCATE (CZCFL) Finds all the user's data sets.

CATALOG (CZAEI3) Kecatalogs a data set.

ERASE (CZAEJ6) Erases a data set.

Vam Tapes (CZAET6) VVs a data set from public storage onto a priv-
ate volune.

RELEASE (CZAFJ3) Releases the JFCB of a data set QUIT has worked
with.

MSGWR (CZAAD2) Prompts the user for additional or missing
information; prints error messages.

User Prompter (CZATJ1) Prints error messages.

DELVAM (CZCFT1) Deletes catalog entries, as well as the user

entry from the User Table.

146

DELREC (CZCPH1) Deletes SYSSVCT entry.

The QUIT command processor also uses OPEN, READ, WRITE, TSEND, RELEX,
STOW and FREEMAIN during its operation.

EXITS: The QUIT routine normally returns to its calling routine, via
the RETURN macro instruction.

OPERATION: The routine first validates the user identification (userid)
supplied as the command operand. If the command was issued by a system
administrator, the first two characters of the userid are checked to
ensure that they match the initial two characters of the administrator's
userid; only the administrator who joined the user can quit him.

The User Table is now opened, and the entry corresponding to the
userid operand is read. QUIT sets an indicator in the entry so that the
user cannot initiate any new tasks, then checks the entry to see if the
user has any currently active tasks. If he does have an active task, a
message is issued to the administrator (or manager), asking if he wants
to cancel the QUIT command -- by pressing his ATTENTION key -- or wait
until the user's tasks are completed. If he chooses to wait, a TSEND
SVC is issued to end the time slice. When control returns to QUIT, the
user entry is again tested to see if the user has an active task. Pro-
cessing of the QUIT command continues when the user's tasks have been
conpleted.

LOCATE is called to obtain a list of the user's data sets, and the
administrator (or manager) is asked if he wants to erase all of those
data sets or dispose of them individually. If he chooses to erase them,
all data sets owned by the user and residing on direct access volumes
will be eliminated through successive calls to ERASE. Other data sets
are ignored.

If individual disposition is selected, QUIT presents the data set
names one by one, and the administrator indicates his choice for each:
erase, recatalog, or copy onto a private direct access volume.

An erase reguest is processed by a call to ERASE, provided the data
set 1s owned by the user and resides on direct access storage. Other-
wise, the erase request is ignored.

If the data set is to be assigned to another user's catalog, QUIT
fetches and validates the userid of that other user and the new name
under which the data set will be cataloged. DDEF is then called to cre-
ate a JFCB; FINDDS locates this JFCB; and CATALOG then catalogs the data
set, under the new nawme, in the specified user®s catalog. The data set
is closed through a call to RELEASE.

For a copy request, QUIT fetches and validates the identification of
the volume upon which the copy is to be written, the name to be assigned
to that copy data set, and the type of volume (2311,/2314). DDEF and
FINDDS are then called to create and locate JFCBs for the old data set
and the copy, VV is called to make the copy, and RELEASE closes the
copy. 1f the old data set is on direct access storage, it is eliminated
by a call to ERASE; otherwise, it is closed by RELEASE. All copied data
sets are given to TSS*x*s*%,

When disposition of the user's data sets is completed, the userid is
eliminated from the catalog -- thus eliminating that user's catalog; the
user's entry is deleted from the User Table, and the table is closed;
and, finally, the work area obtained by LOCFQN is released. Control
then returns to the calling routine.

ERROR CONDITIONS: The routine checks for acceptable operands and noti-
ties the administrator (or manager), through MSGWR, of any errors found.

Section 4: Command Routines 147

SYSTEM CONTROL BLOCK USAGE:

Data Control i3lock (CHADCR)

Catalog TBLOCK (CHATBD)

Task Common (CHATCM)

System Common (CHASCM)

Task Data Definition Table (CHATDT)
User Table (CHAUSE)

Active User Table (CuBAAUL)
Interrupt Storage Area (CHAISA)

’RELEASE command Routine (CZAFJ)

This routine deletes job file control blocks (JFCB) from the task
data definition table. It may be used to release the devices associated
with a data set, to deconcatenate one or all data sets of a given conca-
tenation, and to remove a job library from the program library list.
(See Chart CN.)

ENTRIES:

CZAFJ1 - normal command entry

CZAFJ2 - nonprivileged macro instruction entry

CZAFJ3 - privileged entry

CZAFJ4 - entry for LOGOFF command routine

CZAFJ5 - second entry for ERASE/DELETE command routine

CZAFJ6 - first entry for ERASE/DELETE command routine (used to close
data control blocks only, not to delete JFCBs)

MODULES CALLED:

NEXTPAR (CZAAC1) Gets and validates input operands.

CHEKDS (CZAACZ) Validates data set name.

ALFNUM (CZAAC3) Validates data definition name.

FINDDS (CZAEC1) Finds JFCB for a given data set name.

MSGWR (CZAAD2) Prompts user for additional or nissing infor-

mation; prints error messages.
RELEAS (CZCAD1) Releases the devices associated with a data
set.

LOCATE (CZCFL1) Sets up a fully qualified name for a genera-
tion data group name.

Loader kRelease (CZCCD2) To UNLOAD modules loaded from job libraries.

User Prompter (CZATJ1) Prompts user for additional or missing infor-
mation; prints error messages.

The RELEASE Command routine also uses VSEND, FREEMAIN, CLOSE, and
DUPCLOSE.

EXITS: The routine normally returns to the calling routine, via the
RETURN macro instruction. If a system error occurs, the routine exits
to ABEND.

OPERATION: This routine first determines if the drive is to be released
and sets a flaq accordingly. Then, the routine determines if its input,
fetched via NEXTPAR, 1s #*ALL or a data definition name (ddmame}). The
*ALL requests that all JFCBs in the Task Data Definition Table (TDT) be
released. If the #*ALL option has been specified, RELEASE locates the

148

first JFCB to be released, tests for a SCRATCH or HOLD option, and
honors it if specified. Then the routine searches the entire TDT. As
each JFCB is found, RELEASE tests its ddname to see if the JFCB is
reserved; reserved JFCBs have ddnames that begin with $3$$ or SYS, can be
released only if the calling routine is privileged.

If the JFCB is not reserved or if the calling routine is privileged,
RELEASE then closes all data control blocks associated with the JFCB.
The request queue is scanned to determine if the symbolic device address
or the device type code entries are matched in the JFCB. Unless entry
was made from ERASE/DELETE at CZAFJ6, an included subroutine -- DJFCB --
is now called to perform the deletion. RELEASE continues this process
until the entire TDT has been scanned. RELEASFE seaxrches the entire SDAT
table to insure that all devices assigned to the task are freed. Each
SDAT entry which contains the task's taskid is deleted by RELEAS3, an
included subroutine. Control is returned to the calling routine.

When the *ALL option is not specified and a ddname is given, the rou-
tine validates it, via ALFNUM, locates that ddname in all chains, and
then looks for a data set name (dsname). If the dsname is defaulted,
the JFCB for the specified ddname is located in the TDT and checked to
see if a concatenation is involved. If no concatenation is involved and
the data set is a library, the JFCB is checked to determine if any
modules were loaded from it. If not, processing continues. If so,
Loader Release (CZCCD2) is called to unload all modules. If Loader
Release is unable to unload all modules after being called by the
Release command, the user is prompted. Under all conditions, a return
code of X"24' is returned to the caller. Then the request gqueue is
scanned for a match on symbolic device address of device type code. If
the data set is open, the DCBs associated with the data set's JFCB are
closed and the included subroutine DJFCB is called to delete the JFCB.
If concatenation is indicated, all JFCBs in the concatenated chain will
be deleted after their DCBs have been closed by the CDCB subroutine.

A dsname supplied along with the ddname indicates that deconcatena-
tion of one data set is desired. In this case, RELEASE validates the
data set name via NEXTPAR and CHEKDS, and uses FINDDS to locate the JFCB
associated with that name. The JFCB will then be deleted (by DJFCB)
from the concatenation, kut the rest of the concatenation will remain
intact.

DJFCB does the actual deletion, handling one JFCB each time it is
calied. DJFCB will delete the JFCB from every chain in which it is
included (concatenation, library, temporary tabulation, as well as the
main TDT chain) and link its area to the free area chain. If the JFCB
to be deleted is on a private volume, DJFCB first validates the volume
field. For multivolumes, DJFCB finds the end of the chain. If the
volume field is invalid, the device is released, but no PAT page is
freed. Through the RELEASE service routine, DJFCB also releases the
devices associated with the JFCB. Note, however, that it will not
release devices for a public, uncataloged data set until ERASE/DELETE
has made the request.

ERROR CONDITIONS: If entry was by macro instruction, a hexadecimal code
will be returned in register 15:

Code Significance

00 Normal return

o4 Ddname not given

08 Attention interrupt

oc Reserved ddname

10 Unknown ddname

14 Uncataloged data set on public volume
18 Unknown dsname

Section 4: Command Routines 149

20 Invalid operand
24 All modules could not be unloaded

The routine checks for acceptable operands and notifies the user,
through MSGWR, of any errors found. For the messages issued, see System

Mess ages.

The routine may issue these system errors. 1In each case the severity
is minor, and the ABEND message is SYSTEM ERROR - TASK TERMINATED.

SYSER Code Significance

050505901 Invalid information from NEXTPAR, ALFNUM, or CHEKDS.

050505902 Invalid information from MSGWR.

050505903 Invalid information from FINDDS.

050505904 Invalid return from RELEASE.

050505905 Invalid information from LOCATE.

050505906 Pointer to RESTBL (for VAM) or DEB (for SAM) data sets said
to be open; ddname taken from TDT, but not subsequently

found. Error in TDT.

050505907 DCB header missing.

SYSTEM CONTROL BLOCK USAGE:

Catalog SBLOCK (CHACCC)

Data Extent Block (CHADEB)

Task Common (CHATCM)

Data Control Block Header (CHADHD)

RESTBL Header (CHARHD)

Request Queue (CHARQU)

Symbolic Device Allocation Table (CHASDA)
Task Data Definition Table (CHATDT)

’RET command Routine (CZAEN)

This routine makes it possible for the user to modify the mode field
in the Data Set Descriptor (DSD) and the equivalent Job File Control
Block (JFCB) field which contains the storage type, deletion and owner/
user access attributes of the data set. (See Chart CO.)

ENTRIES:

CZAEN1 - command entry
CZAEN2 - macro entry

MODULES CALLED:

DSCB RD/WR (CZCEM) Pages in DSCBs.

SRCHSDST (CZCQE) Gets count of current data set users.
FINDDS (CZAEC1) Finds JFCB for a given dsname.
ADDCAT (CZCFA2) Updates the catalog DSD.

User Prompter (CZATJ1) Sends prompting and diagnostic messages to the
user.

150

To update the user accounting information, RET updates RCR UPDATE, RCR
RATION, and RCR VACATE.

EXITS: The routine returns to the calling routine via the RETURN macro
instruction.

OPERATION: The RET command routine is entered with a pointer to a pa-
rameter string containing pointers to the data set name and the values
to be entered into the mode field. When RET has finished processing,

the new values will be reflected in both the DSD and the JFCB for the

data set.

RET processes the input parameter DSNAME, then calls FINDDS to locate
the JFCB or, if necessary, create one.

A check is made that no more than one DCB is open for this JFCB. If
a DCB is open, a check is also made to determine whether the DCB belongs
to the same user who issued the RET command. If it is not the same
user, RET issues a diagnostic, via PRMPT, and returns to the caller. If
it is the same user, a check is made to determine if the data set is
shared.

For shared data sets, RET checks the owner/user access and permits
sharers to use the RET option only if their access privilege is unli-
mited. KRET calls SRCHSDST to determine if there is any current user of
this data set and sends a diagnostic, via PRMPT, if there is a current
user.

RET then scans and validates the input values, making only those
changes to the JFCB that the user has specified. Unspecified values
remain unchanged. If invalid values are entered, the routine issues a
diagnostic and returns to the caller.

RET calls ADDCAT to update the DSD mode field entry. If a public VAM
data set is changed from a permanent to a temporary data set (or vice
versa), RET calls RCR UPDATE, RCR RATION, and RCR VACATE to update the
User Table and either links the JFCB into the temporary tabulation chain
or removes it, if necessary.

If invalid parameters are entered in conversational mode, RET issues
a diagnostic via PRMPT, and the command is canceled. In nonconversa-
tional mode, a message is written on SYSOUT and control is returned to
the user.

ERROR CONDITIONS: When RET is entered through a macro call, error codes
are returned to the calling program in register 15:

Code Significance

00 Normal return

04 Data set not cataloged

08 Invalid dsname

10 Incorrect values (code given)

14 Open DCB

1C Data set not found or not available to this userx
20 Insufficient resources

24 Non zero return code from ADDCAT

Section 4: Command Routines 151

28 Invalid temporary tabulation chain in JFCB

SYSTEM CONTROL BLOCK USAGE:

Task Common (CHATCM)

User Table (CHAUSE)

Catalog SBLOCK (CHACCC)

Task Data Definition Table (CHATDT)
Format—-E DSCB (CHADSE)

Active User Limits Table (CHAAUL)
System Common (CHASCM)

Public Volume Table (CHAPVT)

’RPS/CVV/LPDS/CPS Command Routine (CZAXX)

This routine provides the means for obtaining information about the
status of puklic storage (LPDS); deleting certain invalid data sets on
public storage (CPS); and recreating public storage when the catalog
andsor public storage no longer provides serviceability to support the
Time Sharing System (RPS and CVV). (See Chart CP.)

RPS: The RPS command is processed in three phases:

1. Phase 1 recovers multivolume data sets from public storage {(without
the use of the catalog) and copies them to tape. The RVNO (ACV
volume) used in the search for multivolume data sets can be either
the ACV in use by the system or an old ACV that has been mounted as
a private pack.

2. Phase 2A copies data sets from private volumes (usually those pre-
viously mounted as public) into currently mounted public storage
{which, by definition, catalogs them).

3. Phase 2B copies output produced by Phase 1 or created by VAM TAPE
(CZAET) into public storage.

CVV: The CVV (Catalog Vam Volume) command catalogs data sets on public
volumes from the previous system. 014 public volumes may be mounted
during Startup, provided consistency is maintained in relative volume
numbers.

LPDS: The LPDS (List Public Data Sets) command searches public storage
anda lists each data set found. Any data set that does not pass certain
edit tests is flagged on the list as being invalid. All others are
marked valid.

CPS: The CPS (Clean Public Storage) command searches public storage the
same as LPDS, checks each data set the same as LPDS, and then deletes
the data set if it fails any of the edits. The output listing flags
each data set as "retained®™ or "erased."”

ENTRIES:

CZAXX1 - RPS command entry

CZAXX11 - RPS BPKD

CZAXX2 - CVV command entry

CZAXX12 - CVV BPKD

CZAXX4 - SYNAD for output list data set
CZAXX6 - EODAD for RPS Phase 2B tape input
CZAXX7 - SYNAD for RPS Phase 2B tape input
CZAXX3 -~ CPS command entry

CZAXX13 - CPS BPKD

CZAXX8 - LPDS command entry

CZAXX14 - LPDS BPKD

152

RESTART:

All commands have a START parameter which is used to indicate
where a restart is to take place.

It can be specified as "CONT' which

will process from the point of last interruption; or it can be specified
as a specific DSCE or FSQ number.

MODULES CALLED:

MTREQ (CZCAA1)

VAMINIT (CZCEQ1)
OBTAIN (CZICFO1)
PAIR (CZACS1)

LGCATE (CZCFL1)

ERASE (CZAEJ6)

DDEF (CZAEA5)

VvV (CZALET®6)

VT (CZAETH)

TV (CZAETS)
INDEX (CZCFI1)
ADDCAT (CZCFAl1)
RLLEASE (CZAFJ3)

CATALOG (CZAEI2)

DELCAT (CZCFD1)

DELVAM (CZCFT1)

GATWR (CZATC1)

MSGWR (CZAAD)
GETMAIN (CZCGA2)
FREEMAIN (CZCGA3)
SETXP (CEALT)
PGOUT (CZAAl)

PAIR (CZACS2)

LXITS:

Issues mount requests for volumes as required.

Reads in Page Assignment Table (PAT).

Reads volume labels and DSCBs.

Puts entry in AIR table.

Determines whether data set is already cataloged.

Erases a new data set if the data set is not indexed
or renamed successfully.

Creates input and output JFCBs and reDDEFs TSG#****,
USERLIB if it was released during processing.

Copies data set from private to public volume.
Copies data set to tape.

Copies data set from tape into public storage.
Creates generation index.

Catalogs data set.

keleases input and output JFCBs and USERLIB JFCB.

Renames a new data set to original name, replacing
generated name.

Deletes catalog entries when CVV deletes a cataloged
data set.

Deletes DSCBs and pages of processed (RPS Phase 1)
and error (CVV) data sets without accessing the
Catalog.

Issues status message after attention interrupt or
ABEND.

Issues messages on SYSOUT.

Reserves virtual storage.

Releases virtual storage.

Makes DSCB pages available to a task.
Returns updated DSCB pages to disk.

Removes AIR table entry.

This routine always exits to the calling routine via a RETURN
macro instruction.

Section 4: Command Routines 153

OPERATION: Initialization procedures are similar for all commands and
phases. All parameters are checked for validity and proper combina-
tions. All functions call PAIR (CZACS1) to place an entry in the ABEND
Interlock Recovery table (CHAAIR). All functions locate a JFCB for an
RPSOUT, CVVOUT, CPSOUT or LPDSOUT data set; checking for VI data set
organization; opening the data set and writing the header record.
Exceptions in initialization procedures are as follows:

1. Initialization for RPS Phase 1 with the ACV parameters includes
creating a new PVT to be used by the system when copying multivo-
lume data sets to tape. This PVT will contain the ACV volume that
was requested by RPS. A call is made to MTREQ in Phase 1 with the
ACV parameter to mount and initialize the cld ACV volume.

2. Initialization for Phase 2A includes calls to MTREQ to mount
volume, VAMINIT to read in the PAT, and OBTAIN to read the volume
label.

3. Initialization for RPS Phase 1, RPS Phase 2A, CVV, CPS and LPDS
includes scanning the PAT(s) for DSCB pages and issuing the SETXP
macro to make DSCB pages available to the task.

4. Initialization for all commands is effected by the START parameter.
For all commands and phases except RPS 2B, the starting point of
the search is initialized to the Volume, DSCB page and slot; one
beyond the point that an interruption took place (this information
is saved in the CSECT). This occurs if START = CONT is specified
and the CSECT does contain information from the last run. If the
CSECT does not contain information from the last run and START =
CONT is specified, processing begins at the beginning of the volume
specified. The starting point is also modified if a specific DSCB
is specified in the START parameter. The initialization is similar
tor RPS Phase 2B except that File Sequence Number (FSQ) is used.

Recreate Public Storage (RPS)

Phase 1 locates a Format-E DSCB. All DSCBs for a data set are vali-
dated before they are processed. If the Format-E DSCB is valid, the
data set name, DSCB slot address, data set organization, reference data,
number of data pages, overflow pages, directory pages, total pages
assigned and volume serial number are stored in the RPSOUT buffer. If
invalid conditions are detected, the data set may be skipped.

The relative volume number fields in the Format-E DSCB entents (and
in any Format-F entents) are checked to determine whether the data set
is multivolume. Single volume data sets are skipped. (Since the system
may have been started up with a fresh ACV in order to reclaim any multi-
volume data sets, the DSCB chain may point to a blank DSCB on the ACV.
These data sets are skipped. There is no identification for data pages
on the ACV which are referenced by DSCBs on other packs.) If the ACV
parameter was specified, this problem is minimized. The RVNO of public
storage that is used is taken from a specially built PVT created by
CZAXX and used by VT when multivolume data sets are to be copied to
t(;lpe.

If there is no tape JFCB, it is created and set for multivolume out-
put. Task Common is updated with the userid of the data set. The input
(disk) JFCB is created, if necessary, and updated. VT copies the data
set onto tape. Input JFCE fields are cleared to disconnect the data set
from the systen.

Phase 2A locates and validates a Format-E DSCB and stores DSCB infor-
mation (data s et nawe, D3CB slot address, data set organization,
reference date, number of data pages, overflow pages, directory pages,
total pages assigned and volume serial number) in the RPSOUT buffer. A

154

test is made for the SYSCAT or SYSOPERO data sets and the data page
count and total pages assigned are checked for a null data set. If any
of these conditions are present, the RPSOUT record is updated with the
IGNORED disposition and the record is written. The next DSCB is then
processed.

Phase 2A Format-E DSCB processing continues by checking every extent
and DSCB pointer against the relative volume number (RVN) which was read
in from the volume label. This is done to guard against processing mul-
tivolume data sets. The RPS Flag in the JFCB is set to *'C0' to indicate
to OPENVAM that it should disregard the RVO of each entry in the DSCB.
Task Common is updated with the userid of the data set. The LOCATE is
called with the data set name from the DSCB to determine whether or not
the data set is already cataloged. 1If the data set is cataloged and not
a USERLIB, it is ignored and the RPSOUT record is updated with the
IGNORED disposition. If the data set is a USERLIB, the SYSULIB JFCB is
released and ERASE is called to remove the USERLIB from public storage.
(The USERLIB from the private volume replaces the USERLIB in public
storage which should be a null data set.) Otherwise, the TDT chain is
searched for the current data set name, and if a JFCB is found with the
same name, it is RELEASEd to prevent later interference. If a JFCB does
not exist for the input data set, DDEF is called to create an input
JFCB. If a JFCB does exist, the data set name fields in the JFCB are
updated with the current data set name. All the necessary input JFCB
fields are filled in from known data and the TDTRPS field is set to
X'80' as a signal to other modules toc pick up information from the JFCB
and avoid the Catalog. An output JFCB is created or updated, and fields
are cleared so that they may be filled by other modules. TDTRPS remains
X'00' in the output JFCB. The output data set name is USERID.RPSNNNNN,
where NNNNN is a number generated to create a unique dsname. VV is
called to copy the data set. Once the copy is created, the data set
must be renamed according to its original name.

A check is made on the last qualifier of the original name to deter-
mine whether or not the data set being processed is a generation data
group. If it is a generation data group, the SBLOCK returned by LOCATE
is checked to see if a generation index exists. If a generation index
does not exist, one is created by a call to INDEX (maximum of 2 genera-
tions for LIST data sets; 5 for all other). CATALOG is then called with
the rename option to rename the data set in the Catalog and the DSCB on
public storage according to their original name. 1If at any point after
the copy is made, processing is not concluded normally, the data set
copy is ERASEd and the RPSOUT record is updated with the IGNORD disposi-
tion. The volume serial number of the public volume on which the
correctly completed copy resides is placed in the RPSOUT buffer, and the
RPSOUT record is updated with the PROCESSED disposition.

Phase 2B begins by checking to see if a tape has been mounted either
by the user's DDEF or a previous RPS cycle. If no tape has been
mounted, DDEF is called to mount it. The tape DCB is updated to link to
the JFCB and the DCB is opened, moving the tape to the next data set if
the previous one was skipped. GETMAIN is called to reserve a buffer
page if one is not available and the first record of the data set is
read. (The first record is the VAM TAPE control record.) Task Common
is updated with the userid of the data set and the RPSOUT record 1is
filled in. LOCATE is called to determine whether the data set is in the
Catalog. If the data set is cataloged and is a USERLIB, the existing
USERLIB is erased. If the data set is cataloged and not a USERLIB, the
data set is skipped. If the data set is not cataloged, the tape is
closed with the REREAD option which returns the tape to the beginning of
the file. The output JFCB is created or updated. A check is made on
the last qualifier of the original name to determine whether or not the
data set being processed is a generaticn data group. If it is a genera-
tion data group, the SBLOCK returned by LOCATE is cnecked to see if a
generation index exists. If a generation index does not exist, one is

Section #: Command Routines 155

created by a call to INDEX (maximum of 2 generations for LIST data sets;
5 for all other). TV copies the data set from tape to public storage,
cataloging it directly under its correct name. The RPSOUT buffer is
completed, and the record is written. At the end of the tape, FREEMAIN
releases the buffer page.

Termination for both RPS, CVV, CPS and LPDS are handled by a single
routine. PAIR (CZACS2) is called to remove the AIR table entry. The
RPSOUT/CVVOUT data set is closed. JFCBs are released and the original
userid is restored in Task Common. If SYSULIB has been released, TSS**#*
** USERLIB is reDDEFed; the DCBs for its members are reopened and FIND
macros are issued for the members.. RELEASE is called to release the
device for RPS Phase 2A or RPS with ACV parameter. Completion messages
are sent to SYSOUT via MSGWR.

Catalog VAM Volume (CVV)

Once a Format-E DSCB is located, the DSCB information (the data set
name, DSCB slot address, data set organization, reference date, number
of data pages, overflow pages, directory pages, total pages assigned and
volume serial number) is placed in the buffer to be written to the
CVVOUT data set. If the data set is null or invalid, it is marked for
subsequent deletion, unless it is the CVVOUT data set (which appears to
be null if it is new). The CVVOUT data set is marked IGNORED and the
record is written to it. LOCATE is called to determine whether or not
the data set is already cataloged.

If a data set is cataloged but its DSCB pointer is pointing to anoth-
er DSCB, the data set is marked for deletion. Cataloged data sets
marked for deletion are deleted from the Catalog by DELCAT. Current
system data sets which may be open are ignored even if marked for dele-
tion. Other cataloged data sets are processed by updating the CVVOUT
buffer with the IGNORED disposition and then writing the record. If a
SYSOPERO data set is not cataloged, the data set is marked for deletion.
Other cataloged data sets are processed by creating a JFCB for the data
set or updating the JFCB with the dsname. If the deletion flag is on,
DELVAM is called with TDTRPS set to X'80' to delete the data set pages
and DSCBs. Otherwise, a check is made on the last qualifier of the name
to determine whether or not the data set being processed is a generation
data group. If it is a generation data group, the SBLOCK returned by
LOCATE is examined for an existing generation index. If a generation
index does not exist, one is created by a call to INDEX (maximum of 2
generations for LIST data sets; 5 for all others.) ADDCAT then creates
the Catalog entry for the data set. If the data set is cataloged prop-
erly, the CVVOUT buffer is updated with the CATALOGED disposition and
the record is written. If the data set is not cataloged correctly, the
CVVOUT record is updated with the IGNORED disposition and the record is
written. Termination procedures are described in the last paragraph of
the preceding section.

List Public Storage (LPDS)

Processing for LPDS is similar to CVV in that each data set is
examined to determine its validity (passes certain edit tests listed
below). An indication is then made in the LPDSOUT data set to indicate
the validity of the data set, and if it is invalid, the reason.

Clean Public Storage (CPS)

Processing for CPS is similar to LPDS in that each data set is
examined to determine its validity. When a data set is found to be in-
valid, it is erased from Public Storage and deleted from the catalog.

ERROR CONDITIONS: RPS/CVV/CPS/LPDS issue the following error messages
on SYSOUT via MSGWR:

156

B4O3
EEOQU
EEQ4
EEOH4
EEOD
EEOF
E£10
EE14
EE19
EE30
EE31
EE32
EE33
EE34
EE35
EE36
EE37
EE38

EE39
EE40
EE41
EE42
EEU43
EE44
EE&45
EE46
EE47
EE48

- Memory allocation request rejected. Command ignored.

- Data on tape invalid. Command canceled.

- Return from Vam Tape invalid. Command canceled.

- Parameter passed to Vam Tape invalid. Command canceled.

- Volume for (dsname) not 9 track tape. Command canceled.

- Unrecoverable tape error writing (volid). Command canceled.

- Unrecoverable tape error reading (volid). Command canceled.

- Punctuation error in operand field. cCommand canceled.

- (Dsname) not PS data set. Command canceled.

- Use of

- Volume

- Volume

- Device

- Public

- Unable

- Use EVV command for private volumes. Command canceled.

- Hardware error processing volume. Processing terminated.

- Error in (ddname) data set. Define new data set and restart
this volume.

- (Ddname) data set not found. Command canceled.

- Cannot read volume label. Command canceled.

- Organization of (ddname) data set not VI. Command canceled.

- Exrror is Userid. LOGOFF and LOGON before proceeding.

- Opt parameter invalid. Command canceled.

- Opt and volume parameters inconsistent. Command canceled.

- Unable to determine volid of input tape. Command canceled.

- Input DDEF failed. Command canceled.

- ACV parameter invalid. Command canceled.

- Start parameter invalid. Command canceled.

{(RPS/CVV) command unauthorized. Command canceled.
parameter missing. Command canceled.

parameter invalid. Command canceled.

type code invalid. Command canceled.

volume invalid. Command canceled.

to mount volume. Command canceled.

SYSTEM CONTROL BLOCK USAGE:

Task Common {(CHATCM)

Task Data Definition Table (CHATDT)
Interrupt Storage Area (CHAISA)

Symbolic Device Allocation Table (CHASDA)
System Common (CHASCM)

Format-E DSCB
Format-F DSCB (CHADSF)

Public Volume Table (CBAPVT)

Catalog SBLOCK {CHACCC)

Data Control Block (CHADCE)

ABEND Interlock Release Table (CHAAIR)

EDITS:

(CHADSE)

the Format E DSCB:

- DSCB CHECKSUM
- VALID DSORG
- Zero total pages

- Zero data pages (OK FOR RPS, CVV, CPS, LPDS OUT D/S)
- Total pages

- VS
- Vs
- Vs
- Vs
- VI
- VI
- VI
- VI
- VI
- VI

data
data
data
data
data
data
data
data
data
data

set
set
set
set
set
set
sSet
set
set
set

The following

less than total in use

with Directory pages

with Overflow pages

valid record format

record lengths a page multiple (For Format 'U')
valid record format

key length zero

with more than 255 directory pages

with more than 240 overflow fpages

keylength + keyoffset greater than record lengths
invalid record length

data sets are ignored:

Section 4: Command Routines

with

The following edits are performed for all data sets by checking

157

- CATALOG

- SYSOPFRO D/S
- TSS USERLIB
- TSS SYSouT

- BWQ

The SYSLIB data set is renamed CUV.SYSLIB, or RPS.SYSLIB.

’SECURE command Routine (CZAFU)

This routine is called once by a nonconversational task to reserve
all devices that will be needed during execution of that task. The rou-
tine is also called by BULKIO tasks to reserve the devices required by
them. If the SECURE command is invoked by EXPRESS BATCH, a diagnostic
message is issued and the task exits to ABEND. SECURE operates in non-
conversational mode only. (See Chart CQ.)

ENTRIES:

CZAFUl - normal entry
CZAFU2 - batch monitor entry

MODULES CALLED:

MTREQ (CZCAAl) Allocates requested device(s).

NEXTPAR (CZAAC1) Fetches and validates command operands.

MSGWR (CZAAD2) Issues system messages.

EXITS: The routine normally returns to the calling routine, via the

RETURN macro instruction. If a system error occurs, the routine exits
to ABEND.

CPERATION: The command operands are fetched and validated using the
SCAN routine, NEXTPAR. These operands describe the number and type of
devices needed by the task. If entry is from CZAFUl, the routine will
reserve any of these devices:

1. 7-track tape (with or without data conversion)
2. 9-track tape
3. Direct access devices (2311 and 2314)

In addition to the above, the routine will reserve any of these devices
for an entry from the batch monitor or a class E user.

1. Card reader
2. Punch
3. Printer

After verifying operands, SECURE creates a device type code for each
requested device and inserts these codes in a parameter list for MTREQ.
If any of the requested devices are not available when MTREQ is called,
the request remains enqueued and the task is suspended until all
required devices become available.

ERROR CONDITIONS: The routine checks for acceptable operands and noti-
fies the user, through MSGWR, of any errors found. For the messages
issued, see System Messages.

158

SYSER Code Severity ABEND Message Significance

050507001 Minor SYSTEM ERROR, INVALID MTREQ returned an in-
RETURN FROM MTREQ. valid code.

050507002 Minor SYSTEM ERROR. TASK Error has been found in
TERMINATED. command received from

batch monitor.

SYSTEM CONTROL BLOCK USAGE:

System Common (CHASCM)
Task Common (CHATCM)

}SHﬁRE Command Routine (CZAFI)

This routine enables an authorized user to access a data set in
another user's catalog. (See Chart CR.)

ENTRY: CZAFI1 - normal entry

MODULES CALLED:

NEXTPAR (CZAACL) Gets command operand.

CHEKDS (CZAAC2) Validates data set name.

ALFNUM (CZAAC3) Validates user identification.

MSGWR (CZAAD2) Issues system messages.

SHAREUP (CGCFU) Creates sharing descriptor in owner's catalog.

EXITS: The routine normally returns to the calling routine, wvia the
RETURN macro instruction. If a system error occurs, the routine exits
to ABEND.

OPERATION: The routine obtains its input parameters, and checks them
one at a time for validity. The first check is made on the name that
will appear in the user's catalog pcinting to the owner's catalog. This
name must be both legitimate and unique (see note below). A pointer to
this name is put in a parameter list for SHAREUP.

The owner's user identification (userid) is validated next, and then
the owner's data set name is checked. If, instead of a data set name,
*ALL has been entered (indicating that all of the owner's cataloged data
sets are to be shared), a pointer to the owner's userid is put in the
parameter list as his fully qualified name. For all other cases, the
owner's userid, followed by the data set name, is moved to a save area
and a pointer to this area is put in the SHAREUP parameter list.

SHAREUP is called and if all entries are error-free, it creates the
sharing descriptor entry in the user's catalog.

Note: If SHAREUP finds that a nonunique data set name is already point-
ing to the correct owner's data set, a normal return is effected.

ERROR CONDITIONS: The routine checks for acceptable operands and noti-
fies the user, through MSGWR, of any errors found. For the message
issued, see System Messages.

The routine may issue these system errors:

Section 4: Command Routines 159

SCANNING OWNER DSNAME.

SCANNING OWNER DSNAME.

USERID NOT IN CATALOG.

SYSER Code Severity ABEND Message

050505800 Minor INVALID RETURN CODE
FROM CATALOG SERVICE
ROUTINE.

050505801 Minor INVALID RETURN CODE

- FROM NEXTPAR AFTER

SCANNING USER DSNAME.

050505802 Minor INVALID RETURN CODE
FROM CHEKDS AFTER
SCANNING USER DSNAME.

050505803 Minor INVALID RETURN CODE
FROM NEXTPAR AFTER
SCANNING OWNER 1D.

050505804 Minor INVALID RETURN CODE
FROM NEXTPAR AFTER

050505805 Minor INVALID RETURN CODE
FROM CHEKDS AFTER

050505806 Minor

050505807 Minor INVALID RETURN CODE

SYSTEM CONTROL BIOCK

FROM ALFNUM AFTER
SCANNING OWNER ID.

USAGE:

Task Common (CHATCM)

Interrupt Storage Area (CHAISA)

’ SYNONYM/DEFAULT Catal

og Routine (CZATR1)

Significance

SHAREUP returned invalid
code.

NEXTPAR returned invalid
code.

CHEKDS returned invalid
code.

NEXTPAR returned invalid
code.

NEXTPAR returned invalid
code.

CHEKDS returned invalid
code.

Userid of user issuing
SHARE command is not
in catalog POD.

ALFNUM returned invalid
code.

This routine is used to enter or delete synonym and default values in

the combined dictiona
ENTRY: CZATR1 - norm

MODULES CALLED:

Procedure Expander
(CZATE2)

Dictionary Handler:
DELENT (CZASD6)
ENTR (CZASDS)
RFR (CZASD3)

EXITS:

(CD). (See Chart CS.)

ry

al entry

Constructs tables of pointers to the synonym or

default names.

Deletes entries from the combined dictionary.

Adds entries to the combined dictionary.

Scans the combined dictionary for matching entries.

RETURN macro instruction.

OPFERATION:

synonym values are to be cataloged.
The Procedure Expander routine BUILDLIST is now entered to con-

on.

160

The routine normally returns to the calling routine, via the

Upon entry to SYN/DEF, a test is made to determine if
1f they are,

a flag, CZATR9, is set

struct two tables. The ELIST table contains pointers to the SYN/DEF
names, and ILIST pointers to their corresponding parameters or values,
where each is preceded by its length characteristic. During execution
of BUILDLIST, each isolated parameter is checked for a synonym value;
thus SYNFLG must be enabled to allow a name, which may already be a
synonym name, to be redefined. Since BUILDLIST expands the source list
(SL) while interrogating the SYN/DEF parameter strings, its existing
state must be saved to be restored prior to exit.

After the tables are constructed, each ELIST entry (that is, the
value to which it points) is hashed via the HASH macro instruction, and
the end result is input to the RFR routine to determine if the name cur-
rently exists in the combined dictionary. If not, the corresponding
ILIST entry is checked for a null value, If it is, a warning message is
sent to the terminal, and the next ELIST entry is processed; otherwise,
it is entered in the combined dictionary via the ENTR routine prior to
processing the next entry.

If the ELIST entry already existed in the combined dictionary, a test
is made to determine if it is the right type (that is, a SYN or DEF
type). If not, it is ignored, and the search through the combined dic-
tionary continues; otherwise, its corresponding ILIST entry is tested
for a null value. If null, the name is deleted from the dictiocnary via
the DELENT routine; otherwise, the new value replaces the existing
value, via ENTR.

After all of the entries have been processed, CZATR9 is disabled, the
SL is returned to its state prior to entry, and an exit is made to the
calling routine.

ERROR CONDITIONS: There are no error conditions for this routine.

SYSTEM CONTROL BLOCK USAGE:

Source List Page Header (CHASLP)

Sublist Header (CHASLH)

Profile Character and Switch Table (CHAPCT)
New Task Common (CHANTC)

Control Dictionary Entry (CHADEN)

»System Activity and Resources Display (SARD) Processor (CZAYE)

This routine is called to gather information relative to System Acti-
vity and Resources. It summarizes current system activity, pending
work, and current resources into a convenient display, which is written
to SYSOUT. (See Chart CT.)

ENTRY: CZAYE2 - normal entry

MODULES CALLED: None.

EXITS: CZAYE returns to its calling routine.
OPERATION: This routine may be validly entered only as a result of a
command from an operator task or a manager/administrator task. I1f the
SARD table (CHASAR) is not current (SARCUR=X'01'), CZAYE sets the CHASAR
lock byte ({(SARLCK), and proceeds to calculate and extract the latest
system values for the CHASAR fields that are not dynamically updated.
The data is gathered into CHASAR from various system tables. Some of
the data in the SARD table will be updated dynamically by the Batch Mon-
itor and may be extracted at face value.

When CZAYE has completed gathering and tabulating data in the SARD

table, it issues a GATWR to write a header. Subsequently, CZAYE con-
verts and formats each line, and issues a GATWR to write each 1line.

Section #: Command Routines 161

After the last line is processed, CZAYE unlocks the SARD table and
returns to its calling routine. . ’

If CHASAR is current (SARCUR=X'01'), CZAYE locks CHASAR, but bypasses
the gathering of information, assuming the most recent time-activated
accumulation of data for the display. This is accurate to within 30
seconds.

ERROR CONDITIONS: If this routine is invoked by other than an operator
or manager/administrator task, a diagnostic message is written to GATE.

SYSTEM CONTROL BLOCK USAGE:

System Common {field:SCMTTS)

VAM2 Public Volume Table (CHAPVT)

Active User Table (CHAAUL)

Symbolic Device Address Table (SDAT)

System Activity and Resources Table (CHASAR)

’SYSXPAT command Routine (CZATF)

This privileged routine calls a command analyzer and executor command
directly and passes its parameters in original textual form. (See Chart
CU.)

ENTRY: CZATFl - normal entry

MODULES CALLED: None.

EXITS: The routine normally returns to the calling routine, via the
RETURN macro instruction.

OPERATION: This is a BUILTIN procedure. If the SYSXPAT command ended
with a semicolon, SYSXPAT transfers the parameter list beginning on the
remainder of the line from the source list to the buffer in task common.
If not, it passes the parameter list beginning on the next line. If the
line is a continuation line the following line (2) is also copied. SYS-
XPAT contains a table of names and external symbols which it uses to
determine the symbol to be called.

ERROR CONDITIONS: There are no error conditions for this routine.

SYSTEM CONTROL BLOCK USAGE: Task Common (CHATCM)

Compatibility Handlexr (CZATF1)

This module allows execution of CLI commands {for example, DDEF,
PRINT, EXECUTE, etc.) through the Release II Command System. (See
Chart CU.)

ENTRY: CZATF1 - normal entry

MODULES CALLED:

User Prompter (CZATJ1) Prompts the user.

SYSIN (CZASCT) Retrieves the parameter string from the source
list and place it in task common.

EXITS: The routine normally returns to the calling routine, via the
RETURN macro instruction.

OPERATION: Upon entry to CZATF1l, the input command name is compared to

a table of compatibility names. If a match deoesn't occur, the user is
notified, via the PRMPT macro instruction, and an immediate exit is

162

taken. If a match does occur, the SYSIN macro instruction is executed
in order to retrieve the routines parameter string from the source list
(L), and place it in the task common. If the string has continuation
lines (that is, last character in the preceding line is a dash), they
are also read from the SL until there is a final continuous parameter
string in task common. If the total number of bytes passed exceeds
1500, the user is notified via PRMPT, and an immediate exit is taken. A
special termination byte (X'27') is now placed at the end of the string
in task common, and a series of tests is made to determine if the
desired command is FTN, ASM, or LNK. If it is, an immediate exit is
taken; otherwise, the routine is executed via a CALL on the adcon pair
associated with the input command name. Upon return, an immediate exit
to the calling routine is made.

ERROR CONDITIONS: The user is prompted and an exit is taken if the
input command name isn't found in the compatibility table. The user is
prompted and an exit is taken if the parameter string exceeds 1500
bytes.

SYSTEM CONTROL BLOCK USAGE: Task Common (CHATCM)

’TIME Command Routine (CZAVB)

This routine permits a time interval to be specified for the comple-
tion of a task. Either of two clocks may be set. System Clock 14 is
set to the value specified by a TIME command. It is initialized at
LOGON time to the system time specified during System Generation.
Express Batch Clock 13 is set to the value, if any, specified by an
*EXPRESS' control card during Express Batch processing. (See Chart CV.)

ENTRIES:

CZAVB1

|

The VMTI entry initializes the timer to a value specified by
the SCMTIM field of System Common (CHASCM).

CZAvVB2

The normal command entry is entered when a TIME command is
issued.

CZAVB3

The INTERRUPT routine entry prints a message to the conversa-
tional user indicating his time has elapsed and resets System
Clock 14 to an additional one minute value to permit user con-
tinuation. A nonconversational task is ABENDed when it is
interrupted by System Clock 14. A task in Express Batch mode
is ABENDed by the elapse of Express Batch Clock 13. An indica-
tive diagnostic message is issued for the elapse of either
clock.

CZAVBUYU

[

The EXPRESS entry is entered in Express Batch mode to initia-
lize Express Batch Clock 13 to the time value defined on the
'EXPRESS' control card. It is reentered after LOGON for each
sub-task within the Express Batch to reinitialize the clock.

MODULES CALLED:

NEXTPAR (CZAACL) Scans the parameter for the first nonblank and
for the character length.

CHKNUM (CZAACS) Converts the parameter, N, into a binary number.

ABEND (CZACP1) Abends whenever time interval has elapsed while

in nonconversational mode.

User Prompter (CZATJ1l) Issues elapsed time and error messages.

Section 4: Command Routines 163

EXITS: The routine normally returns to the calling routine via the
RETURN macro instruction. There are no error exits. ABENDl is taken
for an interrupt entry due to Express Batch Clock 13 or a background
task interrupted by System Clock 14.

OPERATION: Entry via the VMTI entry point at LOGON time causes a time
value to be picked up from the SCMTIM field of System Common, as speci-
fied during System Generation. This time value is used to initialize
System Clock 14.

CZAVB2 is entered as a result of the TIME command. Register 1 con-
tains a pointer to the address of the time parameter, N. NEXTPAR
(CZAAC1) is called to scan the parameter. NEXTPAR's output, the length
of the parameter and the address of the first nonblank character, is
used as input to CHKNUM (CZAAC5). Then CHKNUM validates the parameter
and converts it to a binary number. Any unsigned decimal integer great-
er than zero and less then 451 is valid. If the integer is invalid,
PRMPT sends a message to the task and the command is ignored.

The INTERRUPT entry disables the clock not causing the interrupt to
inhikit further interrupt action. A message is written to SYSCUT iden-
tifying the socurce of the interrupt. If System Clock 14 caused the
interrupt and the task is conversational, System Clock 14 is reinitia-
lized to a one minute interval and the routine returns to the calling
routine. If the task is nonconversational, a completion code 1 ABEND
occurs after a message is written to SYSOUT.

The EXPRESS entry utilizes the parameter scan and validation routines
called by CZAVB2. If the time integer is valid, System Clock 14 is
reinitialized to the new value. Then CZAVB4 examines, on the first
pass, the time parameter entered on the 'EXPRESS' card and initializes
Express Batch Clock 13 accordingly. On suksequent entries the clocks
are reinitialized from the value saved from the first pass.

ERROR CONDITIONS: If the integer which is presented with the TIME com-~
mand does not lie within the limits 0<N<451, the following message is
printed on the operator's terminal:

TIME INTEGER N INVALID. REQUEST IGNORED.

SYSTEM CONTROL BLOCK USAGE:

System Common (CHASCM)
Task Common (CHATCM)

'Userid Informational (UID) EXHIBIT Processor (CZAYG)

The EXHIBIT Director (CZAYD) calls CZAYG to process requests for an
information display depicting all active tasks in the system. (See
Chart CW.)

ENTRY: CZAYGl - normal entry

MODULES CALLED: None.

EXITS: CZAYG returns to its calling routine, CZAYD.

OPERATION: If the task requesting the UID option is not an operator or
manager/administrator tasks, this routine flags the form to be presented
as 'short'. This means that the number of userids presented per line
(UINUMPER) is set to five rather that to one, as it is for the ‘long’
form. (If the SYSOUT is a teletype, UINUMPER is set to three for
short.) The operator or manager/administrator may specify the short
form in his command format.

164

The *'long' form displays,

tus,

in addition to the userid, taskid, and sta-

the SDA/BSN, the time the task was activated, how much temporary
storage is being used, and the devices in use.

All of this information

required for the UID display is gathered from the Active User List Table

(CHBAUL) .

CZAYG moves all active and applicable entries from CHBAUL to the work

area provided by its calling routine, CZAYD.

writes headers to SYSOUT,
data in the work area.
to its calling routine.

ERROR CONDITIONS: None.

SYSTEM CONTROL BLOCK USAGE:

Using GATE, CZAYG then

and converts and writes wvia GATWR each line of
When the data lines are exhausted CZAYG returns

Active User List (CHBAUL)

}UPDTUSER command Routine (CZAGC)

This routine may only be invoked by a privileged system programmer,
authority code '0', to initialize the counts of data sets for the system

and for each user.
ENTRIES:

CZAGC1l - command entry
CZAGC2 - macro entry

MODULES CALLED:

Set Interlock {(CZCOH)

Release Interlock (CZCOI)

LOCATE (CZCFL)

User Prompter (CZATJ)

WTL (CZABQ)
SETXP (CEAH7)
ERASE (CZAEJ)

Virtual Memory Allocation
(CZCGA)

EXITS:

OPERATION:

The authority code of the user is checked.

(See Chart CX.)

CZCOH1 locks the User Table RESTBL for
WRITE.

CZCOI1 unlocks the User Table RESTBL.

CZCFlL1l finds a catalog entry for a given
FON.

CZATJ1 writes messages tc a user; CZATJ2
forms messages to write to the operator.

CZABQ1 writes a message to the operator log.
An SVC 244 is issued to read in a DSCB page.
CZAEJ3 erases a temporary data set.

GETMAIN (CZCGA2) reserves a page for DSCB
processing; FREEMBAIN (CZCGA3) frees buffers

which were obtained for DSCB processing and
TBLOCKs .

The routine returns to the calling routine via the RETURN macro.

If the authority

code is not 'O', no processing is performed and the routine returns to

the caller.

Otherwise, GETMAIN is called to reserve a page for DSCB

processing, the User Table data set is opened for update and Set Inter-

lock locks the User Table RESTBL.

The following steps are then per-

formed for each User Table entry:

1. A User Table entry is read in.

2. LOCATE generates TBLOCKs for all data sets in the user's catalog
and returns the address of the first TBLOCK in the TBLOCK chain.

Section 4: Command Routines 165

3. One of the following steps is performed for an entry in the TBLOCK
chain:

e If a TBLOCK is not a DSD entry, or the data set is owned by
another user, or the TBLOCK is a DSD entry for a private volume,
the TBLOCK is bypassed and the next TBLOCK is located in the
chain.

e If a TBLOCK is a DSD entry for a puktlic volume and the owner of
the data set is the user whose User Table entry is currently
being scanned, LOCATE is called to obtain the catalog entry for
the data set. If the data set is temporary, ERASE is called to
delete the data set and the next TBLOCK is located in the chain.
If the data set is not temporary, the Format-E DSCB for the FQN
is read in via SETXP and a checksum is calculated. If the check-
sum is in error, a WTL is issued to write a message in the opera-
tor log and the next TBLOCK is located in the chain. If the che-
cksum is correct, count fields in System Common and the User
Table are updated and the next TBLOCK is located in the chain.

4. When the end of the TBLOCK chain is reached, FREEMAIN is called to
release the space reserved for the TBLOCKS.

5. I1f the userid in Task Common matches the userid of the current UPD-
TUSER command user, the updated User Takle count fields are stored
in the user table entry pointed to by TCMVLU in task common.

6. An updated User Table entry is written out.

After all User Table entries have been processed, Release Interlock
releases the lock on the User Table, the User Table data set is closed,
FREEMAIN releases the page reserved for DSCB processing, a completion
message is issued and the routine returns to the caller.

ERROR CONDITIONS: If an error occurs, User Prompter is called to issue
a diagnostic and processing continues. When processing is complete, a
return code of 4 is set in register 15 and the routine exits to the cal-
ling routine.

SYSTEM CONTROIL BLOCK USAGE:

Catalog SBLOCK (CHACCC)

Data Control Block (CHADCB)
Format-E DSCB (CHADSE)

Interrupt Storage Area (CHAISA)
Public Volume Table (CHAPVT)

System Common (CHASCM)

TBLOCK Data Set Descriptor (CHATBD)
Task Common (CHATCM)

User Table (CHAUSE)

’USAGE Command Routine (CZAGB)

This routine displays on the user's SYSOUT all the non zero account-
ing information associated with the specified userid. (See Chart CY.)

ENTRIES:

CZAGB1 - macro entry
CZAGB2 - command entry

MODULES CALLED:

SCAN Routines:
NEXTPAR (CZAAC1) Gets command operand.

166

ALFNUM (CZAAC3) Checks for alphabetic first character.

CHKNUM (CZAACS5) Checks for all numeric characters.
MSGWR (CZAAD2) Issues system diagnostic.
RCK OPEN Opens a user entry.
RCR UPDATE Updates user accounting information.
RCR CLOSKE Closes a user entry.
REDTIM (CEASS6) Gets current tine.
XTRTM (CEATL) Gets current CPU time used by task.

User Prompter (CZATJ1) Writes RESET diagnostics to SYSOUT.

GATE (CZATC1) Writes data on SYSOUT via GATWR.

WRITE (CZCPEL) Writes reset user entry to SYSUSE.

SYSER (CEAIS) Reports system failures.

EXITS: The routine returns to the calling routine via the RETURN macro

instruction.

OPERATION: Upon entry an indicator is set to show whether entry was
trom a command or a macro. Then the user's privilege is checked for F,
B, or A. If privileged (F, B, or A) the USAGE command operand list is
processed. Otherwise, the user's own user entry address is retrieved
trom task common and processed as with reset option 'N' specified. 1In
this tormer case, the USERID operand specified is checked for validity.
1f the USERID is not valid, a diagnostic message is issued, a return
code of 4 is set in register 15 and control is returned to the caller.

For a valiid USERID, processing continues by checking to see if it is
the same as that in task common. If it is or if no USERID was speci-
fied, the user entry pointed to by TCMVLU is processed. I1If the USERID
is different from that in task common, an RCR OPEN is done to OPEN that
USERID user entry. A failure by RCR OPEN causes & system diagnostic,
invalid USERID, and the command is cancelled.

In both cases, the RESET operand specified or defaulted is analyzed.
If an invalid reset parameter (other than *Y' or 'N') is specified, the
conversational user is prompted and reprompted to this effect until he
enters a "Y' or *N' or defaults. For the nonconversational user, the
invalid reset parameter is ignored and processed as the *N' or default
tarameter. 1f 'Y' has been specified, the user privilege is checked for
' or 'B'. 1If ecither of these privileges pertains, a reset switch is
sect preparatory to reset processing of the user entry fields. If neith-
er pertains, a User Prompter message is presented indicating the RESET
option is not available to the user's privilege class and control is
returned to the caller with a return code of 8 in register 15.

Once the user entry to be processed is located and the reset parame-
ter analyzed, an RCR update is performed to insure that the accounting
information is current. For each of six RESOURCE PRODUCT fields, the
corresponding user entry RATION field, CURRENT ALLOCATICN field, and non
zero PRODUCT field, in that order, are converted to decimal EBCDIC and
moved along with their appropriate resource header to output BUFFER1.
1f the product is zero, only the RATION is converted and moved to BUF-
Frr1l followed by a semicolon indicating the zero PRODUCT field
conditicn.

Section 4: Command Routines 167

Next the active background TASK count RATION and CURRENT TASK COUNT
are converted to decimal EBCDIC and moved along with their appropriate
corresponding header to OUTPUT BUFFER2. However, if the CURRENT TASK
COUNT field is zero, this is indicated by the semicolon following the
ration value. The BULKIN and BULKOUT ACCUMULATIVE fields are converted
and moved to BUFFER2 along with their respective headers only if they
are non zero.

The converted CPU TIME RATION is moved to BUFFER2 and if the user's
own entry is being processed (RCR OPEN has not been done), the CURRENT
CPU TIME is extracted, converted, and moved to BUFFER2 following the
RATION semicolon. Then the ACCUMULATIVE CPU TIME value, if non zero, is
converted and moved to BUFFER2.

The converted CONNECT TIME RATION is moved to BUFFER2 and, if RCR
OPEN has not been done and the current task is conversational, the cur-
rent connect time is extracted, converted, and moved to BUFFER2.

Note: CURRENT CPU TIMF has the converted format of min:sec:millisec;
all other time fields have the format of hr:min:sec.

At this point the RESET parameter switch is checked as set previous-
ly. If it is on, ten RESOURCE FIELDS in the user entry are RESET to
zero. If an RCR OPEN was done to move the user entry from SYSUSE to VM,
an RCR CLOSE is done. However, if RCR OPEN was not done, the RESET user
entry is WRITTEN out to SYSUSE.

Finally a check is made for the type of entry. For a command, the
two output buffers' contents are written to SYSOUT using two GATWRS.
For a macro call, the data in the buffers is moved to the caller’'s
buffer.

At this point processing is complete and the module returns to its
caller via the RETURN macro.

ERROR CONDITIONS: If entry was by macro instruction, a hexadecimal code
will be returned in register 15:

Code Significance

00 normal return

o4 invalid userid

08 invalid privilege for specified userid
12 attention interrupt during PRMPT 1/0

If an invalid userid is specified, a diagnostic is issued and the module
returns to the caller. If the RCR CLOSE fails, a minor system error is
issued followed by a return to the caller.

SYSER Code Severity £xplanation

05062501 Minor RCR CLOSE failed.
05062502 Minor Significance error in millisecond value of CPU
time.

SYSTEM CONTROL BLOCK USAGE:

Task Common (CHATCM)

Task Data Definition Table (CHATDT)
Task Status Index (CHATSI)

User Table (CHAUSE)

Active User Limits Table (CHAAUL)
Data Control Block (CHADCB)

Shared Data Set Member (CHASDM)

168

Active User List Table (CHAAUL)
Data Control Block (CHADCB)

Shared Data Set Member (CHASDM)
"Interrupt Storage Area (CHAISA)

}Us er Control (CZAMZ)

The User Control routines are responsible for preserving the Command
System interfaces with nonprivileged programs, for processing the CLIC,
PAUSE, CLIP, COMMAND, LPCINIT and LPCEDIT macros, for processing the
ENABLE, DISABLE, END and transient commands and for dispatching func-
tions of the Text Editor. 1In addition, it dispatches a LOAD, UNLOAD or
parameterless CALL command. (See Chart CZ.)

ENTRIES: There are twenty-three entry points to this routine:
1. CZAMZ1 is entered by a type-I call from the Command Analyzer's
BUILTIN Call Processor and from other routines in CZAMZ to dispatch
a nonprivileged module. Register 1 points to a builtin procedure
key (BPK).

2. CZAMZ19 is entered when a nonprivileged module issues a RETURN
macro to return to the Command System.

3. CzZAMZ2 is entered when a nonprivileged module issues an EXIT macro.

4. CZAMZ3 is entered from the Attention Handler when an attention
interrupt is received and the user enters a command other than one
of the attention response commands or ABEND. It is also entered
from DIAGNO (CZAHA).

5. CZAMZ5 processes a CLIC or PAUSE macro.

6. CZAMZ6 processes a CLIP or COMMAND macro.

7. CZAMZ7 is the command entry to RTRN processing. RTRN is a stack
manipulating command.

8. CZIAMZ8 processes the EXIT command. EXIT is a stack manipulating
command .

9. CZAMZ10 processes the STACK command. STACK is a stack manipulating
command.

10. CZAMZ11 processes the PUSH command. PUSH is a stack manipulating
command.

11. CZAMZ12 cancels attention levels for the input name. Called by
CZAMZ1.

12. CZAMZ13 is a service routine for other User Control modules. It
obtains a recursive save area.

13. CZAMZ14 deletes LPC programs from CZAMZ's stack.

14. CZAMZ1S5S is the ABEND and task monitor entry to RTRN processing.
15. CZASW1 processes an LPCINIT macro.

16. CZASW2 processes an END command.

17. CZIASW3 processes a transient command.

18. CZASW4 processes an LPCEDIT macro.

Section 4: Command Routines 169

19. CZASW5 is entered by the Command Analyzer to dispatch a function of
the Text Editor.

20. CZASW9 processes an implicit END situation.

21. CZASW10 processes an ENABLE command.

22. CZASW11l processes a DISABLE command.

23. CZBTG1 dispatches a LOAD, UNLOAD or parameterless CALL command.

MODULES CALLED:

User Prompter (CZATJ1) Writes error messages to the user's terminal.

Command Analyzer

C4ASA1 Analyzes input.
CZASA6 DIRs the system attention handler (USATT)
CZASA7 SIRs the systenm attention handler (CLATT)
Source List Handlers
CZASC6 Deletes remainder of line in source list for
EXIT.
GATE (CZATC1) Writes module names to SYSQUT for STACK.

QLE Processor (CZVJQS) Puts a QLE to the Command Analyzer (CZASAl)

CLEANUP (CzcCJcu) Performs Task Monitor cleanup for the attention
response commands.

Edit Initializer
(CZB3E1) Called by LPCINIT to initialize the Text Editor.

DATALINE (CZASG1) Prompts for input into a data set.
EXITG: Exits are described in the following section.

OPERATION: (CZAMZ1 is invoked to process calls from the Command System
to nonprivileged routines. In CZAMZP, it maintains a push-down stack of
save areas, with a maximum of ten levels. One level is associated with
each call. Fach level contains the backward pointer to CZAMZ1's caller,
a copy of ISALS1 at the time CZAMZ1 is called, and a save area the
called routine uses to store CZAMZ's registers.

The User Controller is called at CZAMZ1 to process calls from the
Command System to nonprivileged routines. In CZAMZP it maintains a ten-
entry stack (one level of entry tor each level of call allowed). Each
level contains the backward pointer to the routine that calls CZAMZ1, a
copy ot ISALS1 at the time CZAMZ1 was called, and other pertinent infor-
mation about the previously dispatched module called by CZAMZ1. It then
sets up the same information in its PSECT for the module to be
dispatched.

On entry, 1f the stack is not full, the count of currently active
programs is incremented, and the ISALS1 is saved in the CZAMZP stack.
(ISALS1 is saved because certain fields in it are overlaid to dispatch
the current program.) The status of PIREC, LPC, USATT, and AETD will
also be saved in the stack. If the previous invocations should be can-
celed, this routine branches out to CZAMZ14 to cancel the levels for
this routine. After saving pertinent information in the stack for the
previocusly dispatched module, CZAMZ1 sets in its PSECT informaticn about
the nodule about to be dispatched. Status information saved includes

170

the names of the routine being invoked (whose address is placed in
Register 0), the address of the caller of CZAMZ1l, the current source
list pointer (CZAMZL), and dispatch option flags (CZAMZF). This routine
is marked as active (CZAMZF=X'80') and the pointer to the current stack
entry (CZAMZA) is incremented.

To enable the routine about to be dispatched to return to the Command
System correctly, this routine set Register 14 in the ISA to point to
C2AMZ19. The address of the routine to be dispatched is stored in
Register 15. The VPSW also is set to point to the routine to be dis-
patched. If parameters are included in the call, Register 1 points to
the parameter list. The address of the user portion of the current save
area is saved in Register 13. This routine then returns control to the
Task Monitor, through a field in New Task Common (NTCTMR). The Task
Monitor then issues a LVPSW from ISALS1 and dispatches the routine.

CZAMZ19 is entered when the nonpriviliged routine dispatched by
CZAMZ1 issues a RETURN macro. Its only functicn is to issue the EXIT,
NOMSG macro to return control to CZAMZ2.

CZAMZ2 is the EXIT SVC processor. If its caller is the Task Monitor,
it saves Register 13 (pointer to the save area the Task Monitor used
when it last called the Command System) in New Task Common (NTCTMR).
Then (or for another caller), if USATT is active, this routine calls the
Command Analyzer at CZASA7 to release control of the attention inter-
rupts (CLATT). If no other programs exist in the stack (level=0), this
routine performs a CLEANUP, processes a QLE to the Command Analyzer,
restores Register 13 from NTCTMR and returns to its calling routine.

However, if other levels are filled in the stack, this routine finds
the first active level, moves the stack status information into the cur-
rent fields, clears the stack entry, and resets the pointer so that this
previous entry becomes the current one. If the exiting module issued a
PUSH command, this routine exits to a special entry point in the Atten-
tion Handler, CZASB3, which causes a return to the Command Analyzer via
QLE. Otherwise, Register 13 is restored for CZAMZ1's calling routine
and this routine exits.

CZAMZ3 (sometimes called INTERVENE) is called by the Attention Hand-
ler to process a command string entered after an attention interruption
if that command string is not one of the system-defined responses to
ATTN (such as STRING). CZAMZI3 uses the Command Analyzer to process this
string, but first, if the user has specified a USATT, this routine calls
the Command Analyzer at CZASA7 to SIR the system attention handler
(CLATT). It then specifies a non-OBEY entry by setting Register 0 to 0.
If a recursive save area is not free, it calls CZAMZ13 to provide a
recursive save area.

CZAMZ3 does not expect a return from the Command Analyzer unless the
command in the input string is GO. In case it is GO, this routine sets
CZAMZL in Register 6 before calling the Command Analyzer at CZASAl. On
return, CZAMZ3 returns the recursive save area it acquired, and, if the
currently active program had issued a USATT, calls the Command Analyzer
at CZASA6 to DIR the system attention handler.

CZAMZ5 processes a CLIC or PAUSE macro; CZAMZ6 processes a CLIP or
COMMAND macro. Both call CZAMZ3, passing it a null parameter string.
On return, both return to the Task Monitor. (Note: If the task is non-
conversational, CZAMZ5 bypasses the call to CZAMZ3.}

Attention Command Processing: The User Controller contains the logic
for processing four stack manipulating commands -- RTRN, EXIT, STACK,
and PUSH.

Section 4: Command Routines 171

RTRN is processed by CZAMZ7/CZAMZ15. This command is used to return
the user to the command system with all previous source lists and
programs forgotten, thus allowing him to bypass the normal comple-
tion of these programs and source lists. This function is required
within a multi-level nonprivileged environment to give the user con-
trol over the level at which he is running. This command forces all
active nonprivileged programs to exit, deletes all user SIRs and
AFTDs. The user 1is returned to level zero. The Text Editor, if
active, remains active on completicn of RTRN. A CLEANUP is per-
formed, and the command (or macro) processing ends by processing a
QLE to the Command Analyzer and returning to the Task Monitor.

EXIT is processed by CZAMZ8. This command (or macro) forces the
currently active, user-invoked, nonprivileged program to exit.
Again the user is allowed to bypass the normal completion of the
currently-active nonprivileged program. EXIT checks that the user
level is greater than zero (which it must be), and if there is any
user SIR routine active (ITBACT does not equal zero). If there is
an active routine and SIRTEST=N has not been specified, the opera-
tion is terminated. EXIT returns control to the Command System so
that the command string from which the nonprivileged module was
invoked will be resumed. This means that no commands which follow
EXIT will be executed. The Command System will respond with an
underscore; the user can resume execution of the previous level of
nonprivileged program.

STACK is processed by CZAMZ10. This command displays on SYSOUT all
currently active user-invoked module names. The active level number
must be greater than zero. If there are any active nonprivileged
SIR routines, the message "SIR ROUTINE ACTIVE"™ is displayed. The
module names are displayed in descending order from the currently
active down. SCAN and END routines will be uniquely identified.
GATE is used to write the module names, one line at a time. Atten-
tion is checked for atter each line; attention terminates the
operation.

PUSd is processed by CZAMZ11. This command saves the status of the
last non-completed, nonprivileged program in the system save area or
stack (providing it is not a Text Editor command). The system save
area stack must not be full, and, if there is any user SIR routine
active (with SIRTEST=N not specified) this operation is cancelled.
The current program is moved into the CZAMZP save area stack, and
the currently active level number is incremented by one. In the
next entry of the privilege stack, this routine sets the address of
a routine which QLEs to the Command Analyzer, and then exits to the
Task Monitor. (See CZAMZ2.) This enakles a dispatched routine to
be interrupted, then PUSBHBed, then run to completion twice.

Controller Service Routines: Three routines within the User Controller

perform services for other Controller routines.

172

CZAMZ12 is entered to delete previous entries from the program stack
for a particular nodule name. 1If a stack entry is found with this
name, it is marked inactive and tnc count ot active programs
(CZAMZB) 1is reduced by one. The user is informed of the deletion
before Cz2AMZ12 returns to the calling routine.

CZAMZ13 expands the save area stack as required through GETMAIN.
These recursive save areas are necessary since CZAMZ3 and the Atten-
tion Handler (CZASB), both of which obtain save areas, may be reen-
tered before they have been returned to ky their called routines.

CZAMZ14 is entered to delete previous entries from the program stack
by type of program (all LPCs couid be deactivated, for example). If
a stack entry is found marked as a type to be deleted, the entry is

marked inactive and the count of active stack entries is decreased
(CZAMZB) .

User Controller LPC Processing: The processing of the LPCINIT and LPCE-
DIT macros, of the END and transient commands, of the text editor func-
tions, etc. is performed by the section of the User Controller whose
entry points begin CZASW.

CZASW1, processing the LPCINIT macro, checks whether a new LPC is
permitted. A new LPC is permitted if the LPC in progress indicates that
interrupts are permitted or if no LPC 1s in progress. If the LPC in
progress indicates that interrupts are permitted, the implicit END rou-
tine (CZASW9) is invoked. Then processing continues as if no LPC were
in progress. Otherwise or afterwards, the name of the LPC to be initia-
lized is recorded in the Transaction Table for future use. The address
of the DCB is stored in the Transaction Takle. The address of the END
command preprocessor and postprocessor routines, the implicit END rou-
tine and the transient command routine are saved if they are supplied by
the caller. If no implicit END routine is defined, the END preprocessor
is saved as the implicit END routine. The Edit Initialization routine
(CZBSE1) is linked to, and, on return, Register 13 is restored from
NTCTMR, and control is passed to the calling routine. If a new LPC is
not permitted, the user is prompted with the name of the current LPC and
asked whether he wishes to terminate it.

To process an END command, CZASWZ2 checks whether an LPC is in pro-
gress. If not, the user is prompted and the routine returns to the
caller via the RETURN macro instruction. If the current routine speci-
fied no END preprocessor routine, the name of the current LPC in the
Transaction Table is cleared, CZAMZ14 is called to clear the LPCs out of
the stack, and the END postprocessor is invoked via a call to CZAMZ1.
Afterward, an exit is taken. If there is an END routine specified, it
is invoked through CZAMZ1, the current LPC name in the Transaction Table
1s cleared, the END postprocessor is invoked if it exists. Afterward,
an exit is taken.

CZASW3 is the transient command processor. If no LPC is in progress,
the user is prompted and an exit is taken. If no transient command pro-
cessor is specified by the LPC, the user is prompted and an exit is
taken. Otherwise, 1t reads a command from the source list via the SYSIN
macro instruction, and the transient command processor is invoked, via
CZAMZ1, and an exit is taken.

CZASWH4, processing the LPCEDIT macro, saves Register 13 (address of
the routine that called CZAMZ1) in NTCTMR. Then, if no DCB is open, it
calls the implicit END routine (CZASW9), prompts the user that the LPCE-
DIT has been cancelled, and exits to CZAMZ2. If there is neither an
active LPC nor any active programs, this routine also prompts the user
and exits to CZAMZ2. However, if all is in order, this routine sets up
return linkage to itself for CZAMZ2 to follow and calls CZAMZ2 to pop
the stack. In this case, CZAMZ2 returns to CZASWH4, which, after acquir-
ing a recursive save area (if one is needed) from CZ2AMZ13, links to the
Text Editor UATALINE routine (CZASG1l) to prompt for input. When DATA-
LINE returns, this routine exits to the routine that called CZAMZ1.

CZASWS, entered as a result of a Text Editor command, checks to see
if an LPC is in progress. If not, the user is prompted and an exit is
taken. If there is an active LPC, but no open DCB, CZASW9 is called to
end the LPC, the user prompted, and exit taken. Otherwise, the BUILTIN
procedure key (BPK) 1s altered to contain the adcons for the proper pro-
cessing routine. The processing routine is then called via CZaMZzZil.

Upon return to CZASWS, Reqgister 1 is checked to see if a follow-on rou-
tine was specified. 1If no follow-on routine is specified, an exit is
taken. If a follow-on routine is specified, CZASWS loops, calling

Section 4: Command Routines 173

follow-on routines as long as they are specified. The routine returns
to the calling routine via the RETURN macro instruction.

CZASW10 sets the ENABLE/DISABLE flag, CZASWX, to X'FF' to enable the
Text Editor and returns to the calling routine.

CZASW11l sets the ENABLE/DISABLE flag, CZASWX, to X'00°' to disable the
Text Editor and returns to the calling routine.

CZBTG1 checks to see if there is a name to load or unload. If not,
the current name is taken from the AAAMOD field of Table AAA. If
Register 1 on entry pointed to part of the UNLOAD BPK, an UNLOAD SVC
(SvC 123) is issued and the routine returns to the caller via the RETURN
macro instruction. If an unload operation was not requested, the adcon
group is armed and a LOAD SVC is issued (SVC 127). If, upon return, the
adcon group is still armed, it is assumed that the load operation was
unsuccessful and the routine returns to the calling routine. A check is
made to see if this was a request for a load operation; if so, the rou-
tine returns to the calling routine. Otherwise, a transparent call to
CZAMZ1 is issued to dispatch the module to be called. Since this call
to CZAMZ1 is transparent, CZAMZ1 returns to the caller of CZBTG1l rather
than to CZIBTG1 itself.

ERROR CONDITIONS: The routine checks for the following conditions:

1. Pushdown stack capacity exceeded.

2. Page unavailable in which to build recursive save areas.
3. Command requires that LPC be previously defined.

4. Name to be loaded exceeds eight characters in length.

5. DCB not previously opened.

SYSTEM CONTROL BLOCK USAGE:

BPK DSECT (CHABPK)

Data Control Biock (CHADCBRB)

Stack Entry (CHASTK)

Interrupt Storage Area (CHAISA)

TABLEA (CHAAAA)

Profile Character and Switch Table (CHAPCT)
Source List Pagye Header (CHASLP)

Sublist Header (CHASLH)

New Task Common (CHANTC)

Transaction Table (CHATRN)

'}VAM Tape Comman:d Routine (CZAET)

This routine processes requests to copy a VAM data set on tape as a
physical sequential data set (VT -- VAM to Tape); to restore a physical
sequential copy of a VAM data set from tape to direct access storage (TV
-- Tape to VAM); or, to produce an identical copy of a VAM data set on
direct access storage (VV -- VAM to VAM). (See Chart DA.)

ENTRIES

CZAET1 - VT command entry
CZAET2 - TV command entry
CZAET3 - VV command entry
CZAETY4 - VT call entry
CZAETS - TV call entry
CZAET6 - W call entry
CZAET7 - EODAD entry
CZAET8 - SYNAD entry

174

MODULES CALLED

CHEKDS (CZAAC2)
MSGWR (CZAAD2)
GATWR (CZATC1)
DDEF (CZAEAl)

CATALOG (CZAEIl)

ERASE (CZAEJ1)

RELEASE (CZAFJ1)

LOCATE (CZCFL1)
GETMAIN (CZCGA2)
FREEMAIN (CZCGA3)
ADDCAT (CZCFR)
WRTM (CZCRBS)
BUMP (CZCAB1)
OPEN (CZCLAOQ)
CLOSE (CZCLBC)

PAIR (CZACS1)

BSA LOCK (CZCEJ1)
BSA LOCK (CZCEJ2)
DSCB

RDWR ({(CZCEM1)

EXITS:

Validates data set name.

Issues system messages.

Writes messages on SYSOUT.

Generates JFCBs.

Catalogs output tape (copy) data set.

krases output data set if copy not completed
normally.

Releases JFCBs generated for the input or output
data sets.

Finds catalog entry for data set.

Allocates buffer space.

Releases buffer space.

Updates DSORG field in VAM output data set.
Writes tapemarks.

Removes mounted volume.

Opens DCB.

Closes DCB.

Creates an entry in the ABEND
Table.

Interlock Release

Set a Virtual Memory Lock.
Clears a Virtual Memory Lock.
Writes out a DSCB Page.

Reads one in.

The routine always returns to the calling routine, via the

RETURN macro instruction.

OPERATION:

The VAM tape module is entered at one of six entry points
for the command or CALL specified by the user.

A parameter list with a

pointer to the address of a character string containing the name of the

data set to be copied and,

output data set,

is required.

optionally, the name to be assigned to the

Once the parameters have been located,

processing continues as required by the particular request.

VAM to Tape Processings

The input dsname is verified. It must be the

name of a VAM data set. If a JFCB does not exist and the data set is
cataloged, a JFCh 1s created by a call to DDRDEF. Yor the output data
set, a JFCB must be found with ddname=DDVTOUT. Specitied within this

JFCB must be physical sequential organization and a tape volume on a

nine-track drive.
Jrcy,

tield,
tion is inserted,

string,

If this is the first copy operation for the output

indicated by the absence of the identification *%*% in the TDTDSM
the output dsname used is the name in the JFCB.
put no otner fields
tne tirst copy operation,
or defaulted,
are the tile sequence number (TDTFSQ) and catalog flag

The identifica-
in the JFCE are modified. If not
the output dsname is taken from the operand
and inserted into the DDVTOUT JFCB. Also updated
(ITDTCFL) .

Section 4: Command Routines 175

Once the data sets are opened, the input JFCB (256 bytes) and the
common portion of the input data set's format-E DSCB (37 bytes) are
written as the first record (4096 bytes) on the output tape. The
remainder of the record is padded with zeros.

Data pages to be copied are located by indexing through the RESTBL
for the input data set. For each page to be written, a SETXP SVC is
issued with an external address from the RESTBL, tc make use of the pag-
ing mechanism for input, and is written to tape as a 4096 byte record by
BSAM WRITE. Eight buffers are used to overlap processing and input/
output time. After the tape operation is completed, processing con-
cludes at a common point. See Final Processing below.

Tape to VAM Processing: The input dsname is verified. It must be the
name of a physical sequential data set residing on a nine-track tape.

If a JFCB for the data set cannot be found, and the data set is cata-
loged, DDEF is called to create one. The output dsname must be for a
new VAM data set. If a JFCB is found in the TDT chain, it is used;
otherwise, one 1is created by a call to DDEF. An output JFCB is required
from the user only if the data set is to be restored to a private VAM
volume.

After the data sets have been opened, the first record is read to
verify the tape format and to make available the DSCB data necessary to
recreate the original data set. Data records from the tape are input by
BSAM READ and output by VSAM PUT. (The output data set at this point is
treated as a VAM sequential, format U, data set.) Processing continues
in this manner until a unit exception occurs. The EODAD routine outputs
any remaining records. Processing then concludes as described under
Final Processing.

Eight buffers are used. The initial tape read fills all eight buf-
fers. Subsequently, four buffers at a time are filled as the other four
are emptied to overlap processing and input/output time.

VAM to VAM Processing: The input dsname is verified. It must be the
name of a VAM data set. If a JFCB does not exist and the data set is
cataloged, a JFCB is created by a call to DDEF. The output dsname must
be for a new VAM data set. If a JFCB is found in the TDT chain, it is
used; otherwise, one is created by a call to DDEF. An output JFCB is
regquired only if the data set is to be copied to a private VAM volume.

Both data sets are opened. The comron portion of the input data
set's format-£ DSCB (37 bytes) is retained to recreate the data set once
the copy operation has been completed. Data pages to be copied are
located by indexing through the RESTBL for the input data set. For each
page to be output, a SETXP SVC for the buffer pages is issued with an
external address from the RESTBL (input) tc make use of the paging
mechanism for input, and is written into the output data set by VSAM
PUT. (The output data set at this point is treated as a VAM sequential,
format U, data set.) When the copy is complete, processing concludes as
described under Final Processing below.

Final Processing: Both data sets are closed and all buffers are
released. If the data set created on direct access storage 1s not com-
pleted correctly, ERASE is called to delete the partial data set. For
normally completed TV and VV operations, the output data set's DSCBs
reflect the data set just created by VAM Tape and not the original data
set. To correct this, the format-E DSCB for the output data set is read
in through a read DSCB routine which is internal to the program. The
common portion (37 bytes) of the format-g DSCB is updated from the DSCB
data retained from the original data set. Then the output DSCB is
rewritten to external storage by PGOUT. Next, the DSORG field in the
catalog is updated for the output VAM data set. The output tape data
set is cataloged unless the dsname was preceded Ly an asterisk (*). The

176

TDTDS2 field for the DDVTOUT JFCB is then filled in with F's. Proces-
sing is concluded by releasing any JFCBs created by the routine.

ERROR CONDITIONS: If entry was by macro instruction, a hexadecimal code
will be returned in general register 15:

Code Significance

oc Input dsname missing.

10 Dsname invalid.

14 Dsname not generation data group.
18 Catalog error.

ic Dsname not fully qualified.

20 VAM dsname contains *.

24 DISP=0OLD in DDVTOUT.

28 Dsname not VAM.

2C Dsname not extant.

30 DDVTOUT not extant.

34 Volumwe not 9-track tape.

38 No data to copy-.

3¢ Unrecoverable output tape error.
40 Unrecoverable input tape error.

L1 DSCB error.

48 Unauthorized use of system data set name.
4C Tape volume not mcunted.

50 Punctuation error in operands.

54 Dsname in DDEF not DDVTOUT.

58 New dsname not unique.

5C No direct access space for new data set.
60 Output VAM data set contains data.
64 Dsname not PS.

The routine checks for acceptable operands and, when called at a com-
mand entry point, notifies the user, through MSGWER or GATWR, of any
errors found. Messages issued through MSGWR are identified by a message
code preceding the message. For preclise texts see System Messages.

NORMAL COMPLETION: If entry was by macro instruction, a hexadecimal
code will be returned in general register 15:

Code Significance

00 Normal completion - VT.
o4 Normal completion - TV.
08 Normal completion - VV.

The routine, when called at a command entry point, notifies the user,
through MSGWR, of a successful completion. The messages are for the VT,
TV and VV commands, respectively.

Message
Code Text
BFO1 (dsname;) COPIED AS (dsname;) ON TAPE, FSO (fsqg), VSN (vsn).
BFO2 {dsname,) COPIED AS (dsname,) FROM TAPE, FSQ, (fsq), VSN
(vsn).
BF03 {(dsnane,) COPIED AS (dsname,).

SYSTEM CONTROL BLOCK USAGE:

Ccataloy SBLOCK (CHACCC)
Format-E DSCB (CHADSE)
Interrupt Storage Area (CHAISA)

Section 4: Command Routines 177

Symbolic Device Rllocation Table (CHASDA)
Task Common (CHATCM)

Task Data Definition Table (CHATDT)

Data Control Block (CHADCB)

RESTBIL Header (CHARHD)

DCB Header (CHADHD)

’VSS Command Routine (CZAVR)

This routine checks the user's authority code to determine if he may
use the Virtual Support System (VSS). In order to use VSS, the user
must have an authority of O or P. (See Chart DB.)

ENTRY: CZAVRI - normal entry

MODULES CALLED:

User Prompter (CZATJ1) 1Issues diagnostic messages to SYSOUT when errors
occur.

READ (CZCPE) Reads the user table for user's entry.

EXITS: This routine normally exits to TSSS via an SVC 83. Upon return
from TSSS, exit is made to the calling routine via the RETURN macro
instruction. If an error occurs, the routine exits to the calling rou-
tine via RETURN.

OPERATION: Upon entry, the task's userid is obtained. The User Table
is READ and the user's authority is examined.

If it is O or P, exit is made to the Time Sharing Support System
(TSSS). Otherwise, an insufficient authority diagnostic is issued, and
control is returned to the caller. Upcn return from TSSS, control is
returned to the caller.

ERROR CONDITIONS: The userid of the user issuing the command is checked
for the proper authority (0 or P). 1If the user does not have the proper
authority, a diagnostic message is issued. If the task calling VSS is
nonconversational, a diagnostic is issued, and control is returned to
the caller.

SYSTEM CONTROL BLOCK USAGE:

Task Common (CHATCM)
Data Control Block (CHADCB)
User Table (CHAUSE)

178

SECTION 5: MACRO INSTRUCTION HANDLING

The command system supports macro instructions which allow object
programs, during execution, to use certain command system facilities
while still retaining control over processing. Included with these
macros is the ATPOL macro instruction, used in checking for attention
interrupts before GATE calls. The names and functions of these macro
instructions are listed in Figure 12.

Macro instructions supportea by the command system may be grouped
into four general categories:

1. Those calling command routines.

2. Those calling command support routines (ABEND, FINDJFCB, and
FINDDS) .

3. Those calling subsystem support routines (GATRD, GATWR, GTWAR,
GTWSR, GTWRC and MSGHWR).

T - - 5 T T T T T e e e R
| Macro | | Routine to Which i
{ Instruction | Function | Macro Instruction |
| Name | | Links i
e - ———= + - |
| ABEND | To abnormally terminate a task. | ABEND |
| | | !
{ ATPOL | To check whether an attention | None. Macro expan-— |}
| | interrupt is pending. | sion coding performsi
		action
	I	
CAT	To create or update an entry for	CATALOG Command
	A data set in the catalog. To	Routine
	create a generation data group] i	
	index level.	
{ CDD	To retrieve and process one oOr	CDD Command Routine
i	more prestored DDEF commands.	
CDs	To make a copy of an already	CDS Command Routine
	existing data set or member of a	{
	partitioned data set. i]	
DDEF	To define a data set and	DDEF Command Routine
	describe its characteristics to	
	the system.	
		!
{ DEL	To delete one or more data set	ERASE/DELETE Command
	entries from the catalog. ! Routine	
: ERASE	To erase the direct access	ERASE/DELETE Command]
	storage assigned to a data set	Routine
	and remove the data set entry	
{	from the catalog.	
FINDDS	To locate a JFCB or to create a	FINLCDS
i | JFCB for a cataloged data set. | |
Lt e e e e e e e e e e e e e e e e e o e e e e y T i

Figure 12. Macro instructions supported by the command system
(part 1 of 2)

Section 5: Macro Instruction Handling 179

r T -v 1
Macro {	Routine to Which	
Instruction	Function	Macro Imstruction
Name		Links
t + { 1		
FINDJFCB] To locate a JFCB in the Task	FINDJFCB	
	Data Definition Table and { i	
	optionally, insure that correct	{
	volume (s) is mounted.	i
i		
GATRD	To read a record from SYSIN.	GATE Routine }
]
GATWR	To write a record on SYSOUT. } GATE Routine i	
GTWAR	To write a record on SYSOUT,	GATE Routine i
i { then read the next record from	i	
	SYSIN.	i
GTHWSR	To write a record on SYSOUT then	GATE Routine }
	read record from terminal.]
		!
GTWRC	To write a record on SYSOUT with	GATE Routine
	carriage control character supp-	
	lied by program which issued	
	macro.	
	i	
{ MCAST	To make changes in the profile	MCAST/MCASTAB !
i	character and switch table.] Routine	
	i	
MSGWR	To issue a message to SYSOUT	MSGWR Routine i
	and, if specified, fetch the I	
	response. :	
PR	To print a data set on a high-	PRINT Command i
	speed printer.	Routine
		!
PU	To punch a specified data set	PUNCH Command
	onto cards.	Routine {
REL	To delete the JFCB for a data	RELEASE Command
i	set, to release the I/0 devices	Routine
{	associated with a private data i	
	set, or to remove a job library	{
{	from the program library list.	}
		{
VSENDR	To send an intertask message and	XWTO Routine i
	await the response.	
WT	To write a data set onto tape	WT Command Routine
	for subsequent offline printing.	
WTL	To write a message in the opera-	XWTO Routine
i	T § %	
WTO	To write a message on the opera-	XWTO Routine
{	tor console and in the opera-	{
i	tor's log.	{
WTOR	To write a message on the opera-	XWTO Routine i
	tor console and in the opera-	
	tor's log and get the response.	{
I, i i - -d		
Figure 12. Macro Instructions Supported by the Command System

(part 2 of 2)

180

4. Those used to communicate with other tasks (WTO, WTL, WTOR and
VSENDR) .

A detailed description of the command routines and command support
routines can be found in Section 4, with the exception of the WT, PU and
PR command routines. These routines and the XWTO routine can be found
in the Operator Task and Bulk I/0 PLM, GY28-2047. The GATE routine is
described in Section 2.

Macro Instructions that Call Command Routines

Using CAT, CDD, CDS, DDEF, DEL, ERASE or REL macro instructions
causes execution of the corresponding command routine. The effect is as
if the command itself had been issued; but the code that links to the
command routine, as a result of macro expansion, is part of the user's
object program and thus active only at object time. The linkage from
the object program to the command routine is direct; the command analyz-
er and executor is not used for this linkage.

The command routine itself performs in the same way whether it is
processing a command or a macro instruction. There are two notable
exceptions to this statement:

1. The command routine issues no message if it has been entered by a
macro instruction. Instead, it supplies a return code to show if
an error was found and, in some cases, to indicate the type of
error. Errxor handling is left to the object program that issued
the macro instruction.

2. The macro expansion (that is, the object code generated for the
macro instruction) links to a special entry in the command routine,
not to the entry used in normal command processing. This lets the
routine prepare for macro instruction processing; that is, it sets
indicators as needed so that no messages will be issued, and makes
adjustments to fetch its input parameters. (Unlike the command
analyzer and executor, which supplies the address of the input, the
macro expansion furnishes a pointer to a location containing the
address of the input.)

When the command system routine is finished, it returns control to
the calling object program (unless a system error occurred). An appro-
priate code will be set upon return.

Macro Instructions that Call Command Support Routines

The ABEND, FINDJFCB, and FINDDS macro instructions call upon the
ABEND, FINDJFCB, and FINDDS command support routines. Operation of
those routines is described in Section 4. Entry ¢£o them is always via
macro instruction calls, which require no special macro instruction
provisions.

The FINDIJFCB and FINDDS macro instructions are for system component
use only. (A system component is any component supplied as part ot the
time sharing system or added through a new system generation.) The
ABEND macro instruction is normally for system component use, but user
programs may alsoc employ it.

Entry to the command support routine occurs during execution of the
opject program making the call, via iinkage generated by the macro
expansion. The support routine is then executed as described in Section
4. Return may or may not be made at this point, depending on the macro
instruction issued and on whether or not serious errors were found. An
ABEND macro instruction terminates the task of the calling object pro-
gram, so there is no return. Certain errors found during FINDDS or
FINDJFCB execution will cause an abnormal termination (via ABEND) of the

Section 5: Macro Instruction Handling 181

calling task, but otherwise return is made to the calling obiject
program.

Macro Instructions that Call Subsystem Support Routines

The GATE routine handles five macro instructions: GATRD, GATWR,
GTWAR, GTWSR and GTWRC. These macro instructions may be employed by any
user, privileged or not; the GATE routine itself does not check privi-
lege. (Privilege here means the ability to access certain areas of
storage. Only systems programs may be privileged; user programs are
nonprivileged.)

Entry to GATE is made at the macro entry point; an operation code
generated by the macro expansion indicates which of the five macro
instructions is being processed. For a detailed description of GATE
operation, see Section 2. Upon completion of GATE, return is made to
the calling object program.

The ATPOL macro instruction is unusual in that the expansion itself
provides the object code that is executed when the ATPOL is honored. No
call is made. ATPOL is intended to be used by privileged system oro-
grams before linking to GATE. If ATPOL finds an attention interrupt, it
returns to the designated location in the calling program. If there is
no attention interrupt at this time, it returns to the next instruction
in the calling program. Usually, the next instruction is a linkage to
GATE.

Macro Instructions That Communicate With Other Tasks

The XWTO routine performs the actions requested by four macro
instructions: WTO, WTL, WTOR and VSENDR. WTC, WTL and WTCR each
involve some sort of communication with the system operator. The VSENDR
macro instruction is used to communicate with any specified task. The
expansion of these macro instructions results in linkage to XWTO, with
an operation ccde set to indicate which macro instruction is to be pro-
cessed. XWTO will then carry out the requested action before returning
control to the calling object program.

182

SECTION 6: SOURCE LANGUAGE PROCESSING

The Language Processor Controller (LPC) serves as the link between
the user and the language processors. It is entirely transparent to the
user, for he appears tc be communicating directly with the language pro-
cessor he has chosen. Actually, LPC gathers the input parameters for
the language processor, loads the processor, and passes its parameters
to the processor. The language processors call upon LPC for source
lines, and they use LPC to issue diagnostic messages and invite
corrections.

LPC consists of three routines:

LPCMAIN
has a separate entry point for each lanquage processor, collects
the input parameters, calls the language processor and stores the
object module in a program library.

GETLINE
receives the source lines one at a time from the user and creates a
source data set (or takes the source lines one at a time from a
source data set), and conversationally modifies the source data set
if required.

PUTDIAG
collects diagnostic messages from the language processor, and
issues them if appropriate.

When the user calls upon a language processor, LPCMAIN is loaded and
entered at the proper entry point for the requested processor. LPC
reads the given input parameters, checks them for validity and consis-
tency and, if necessary, issues diagnostic messages and prompts for pa-
rameter reentry. LPC then creates data sets for the source and listing
lines. It sets up a parameter list and calls the initial phase of the
requested processor (thereby loading it).

The processor calls GETLINE whenever it wants an input record. GET-
LINE either fetches this from SYSIN or from the source data set, depend-
ing on whether or not the data set is prestored.

When diagnostic messages have been issued for source statements and
the user enters corrections, GETLINE puts these corrections into the
source data set and informs the language processor that corrections have
been made. The language processor may at this point restart processing
at some earlier point in the source data. GETLINE detects this "back-up
request®™ and takes statements from the source data set as long as there
are records in it; then GETLINE requests additional input from the user.

PUTDIAG is called by the language processors whenever they want to
issue a message to SYSOUT. In conversational mode, PUTDIAG stacks these
diagnostic messages until the language processor calls GETLINE for a
line of input; then the diagnostic messages are sent to the user, and
the keyboard is unlocked so that he can enter corrections. If the diag-
nostic wmessage stack kept by PUTDIAG becomes full, all diagnostic mes-
sages are printed immediately (except for the last one) so that more can
be stacked and issued by GETLINE.

When the processor has reached the end of its first phase of proces-
sing, it returns to LPCMAIN. The source data set is closed unless the
user wishes to modify it. If he chooses to modify it, LPCMAIN calls
GETLINE to accept the modifications, and LEC reinitializes the processor

Section 6: Source Laaguage Processing 183

(by calling the appropriate processor entry point) and restarts, using
the prestored modified source data set as input. If the user does not
wish to modify the source data set, LPCMAIN calls processor continua-
tion, and the language processor continues its activities. It may use
PUTDIAG to issue further messages.

When the language processor has finished, it returns to LPCMAIN with
an error-level code that indicates the severity of errors. LPC sends a
message to the user telling him the level of the error, and stores the
object module (if one was created) in a program library. This library
is either the last-mentioned JOBLIB data set, or if none has been men-
tioned, the SYSULIB.

FREEMAIN is called toc free some of the storage collected by the lan-
guage processors and then LPCMAIN returns control to the Task Monitor.

Since LPC and the language processors are all nonprivileged user pro-
grams, they can be interrupted by an ATTENTION at any point; thus the
user can interrupt a language processor, execute a string of commands,
and restart the language processing. If he modifies his source data set
while in the command mode, neither LPC nor the language processor will
be aware of it, and the results are unpredictable. The user may also
choose to terminate one language processor and immediately call another.
Before the next language processor is called, checks are made to deter-
mine if the current language processor has finished its processing. If
it has not, the source data set is closed, the list data set is erased,
and any virtual storage reserved for the PMD, TXT, and ISD is released.

The DEFAULT LPCXPRSS = Y option makes it possible to do several com-
pilations without returning to the command system between compilations.
Only the new module name is entered at the end of each compilation. The
new module uses the same parameters as the original call to LPC. A
break character or a numeric module name, inserted before the next com-
mand, terminates express mode and causes a return to the command system.
DEFAULT LPCXPRSS = N must be entered after returning to the command sys-
tem or the next assembly or compilation will be in express mode.

’LPCMAIN (CFADA)

LPCMAIN is a nonprivileged program called via the ENTER SVC. After
validating the operands required by that processor, this routine calls
the requested language processor to process a source data set. At the
end of processing, LPCMAIN stores the resulting object module and, if
requested, prints the listing data set, which includes all output speci-
fied by the user. (See Chart DC.)

ENTRIES:

CFADA1 - FORTRAN entry

CFADA2 - assembler entry

CFADA3 - linkage editor entry

SYSASM - alternate assembler entry used by LOAD and RUN
SYSFTN - alternate FORTRAN entry used by LOAD and RUN

SYSLNK - alternate linkage editor entry used by LOAD and RUN

MCDULES CALLED:

GATE (CZATC) CZATC1l writes to SYSOUT or reads from SYSIN.
MSGWR {(CZAAD) CZAAD2 issues system messages.
FINDDS (CZAECQC) CZAEC1 searches the TDT for the JFCB for the source

or listing data set.

184

DDEF (CZAER) CZAEAU4 creates a JFCB for the source data set,
listing data set or system macro library.

DELETE (CZAFJ) CZAFJ deletes a catalog entry for the list data
set.

FINDJFCB (CZAEB) CZAEB1 searches the TDT for the JFCB for a given
ddname.

Virtual Memory CZCGA3 (FREEMAIN) releases virtual storage obtained

Allocation (CZCGA) for PMD, TXT and ISD.

ERASE (CZAEJ) CZAEJ7 erases a listing data set.

CATALOG (CZAEI) CZAEI2 establishes a generation data group for a
listing data set.

ABEND (CZACP) CZACP1 terminates processing after an error is
detected.

Control Dictionary CZASDX finds the default value for LPCXPRSS,
Handler (CZASD) MODREP.

Source List Handler CZASC8 gets another line from the Source List.
(CZASQC)

GETLINE (CFADB) CFADB1 modifies a source data set.

The following are sections of the language processors that may be
entered:

Assember Initiation (CEVPAA), Continuation (CEVPAB), and Early End
(CEVPAZ)

FORTRAN Initiation (CEKTAR)}, Continuation (CEKTAB), and Early End
(CEKTAC)

Linkage Editor Initiation (CEYIAl), Continuation (CEYOP1l), and Early End
(CETEE1)

EXITS: The routine normally returns to the calling routine, wvia the
RETURN SVC. If a system error occurs, the routine exits to ABEND.

OPERATION: This routine first collects the operands required for the
specified language processor (FORTRAN compiler, linkage editor, or
assembler) either by prompting the user for them or by fetching them
from SYSIN. The Command Controller SCAN package (CZAAC), assembled as
part of LPCMAIN with minor modifications, is used to validate the
operands. If any operands are found to be invalid, the rejected operand
is displayed, and the user is prompted to again enter the operand set.
The routine then places the validated operands in a list, calls the lan-
guage processor, and passes the list to it. LPCMAIN also calls DDEF to
issue job file control blocks (JFCBs) for the source and listing data
sets, and opens the source data set as well as the appropriate job
library, before passing control to the language processor's initial
entry. If a listing data set was actually produced, LPC determines if a
generation data group LIST.symbol exists. If not, LPC creates one by
issuing

CAT GDG = LIST.symbol,2,0,E

and then adding the listing data set just produced to LIST.symbol by
issuing

CAT LIST.symbol(+1),N

Section 6: Source Language Processing 185

The user is now responsible for printing listing data sets.

At the end of the source data set scan, the language processor
returns control to LPCMAIN. The routine then issues any diagnostic mes-
sages produced for the last statement in the source data set. If the
task is nonconversational, LPCMAIN merely closes the source data set and
passes control to the language processor at its continuation entry
point. For a conversational task, LPCMAIN asks the user if he wants to
modify his data set.

If the modify option is selected, LPCMAIN calls the language proces-
sor early end routine to terminate the completed processing, then calls
GETLINE to collect the user's modificaticns and place them in his source
data set. Upon return, LPCMAIN calls the language processor initializa-
tion routine to restart processing. The input for this new scan is the
stored source data set with its modifications included.

If the continue option is selected, LPCMAIN closes the source data
set and calls the language processor at its continuation entry point.

When normal processing ends, the language processor returns control
from its continuation entry point to LPCMAIN. The routine then stores
the object module (if one was created) in the user's job library (or
user library). Finally, LPCMAIN returns to its calling routine.

LPCMAIN permits a maximum of seven macrc liktraries to be passed to
the assembler; this includes the system macro library and a maximum of
sixXx user macro libraries.

When a module is assembled with aliases, duplicates of which already
exist in JOBLIRB, the user may, at his coption, print the duplicate
aliases and stow the module in a new JOBLIB.

If the user enters a dsname, LPC DDEFs a new JOBLIB, stows the
module, and releases the data set so the next module assembled will go
into the original JOBLIB. If the user chooses to DDEF his own JOBLIBE,
the module will be stowed in the new JOBLIB and all other modules
assembled will go into the same JOBLIB. The user may also return to
Command System and release the JOBLIB containing the duplicate alias or
erase the member containing the duplicate alias.

Note: Any batch assembly or compilation will automatically have the
listings printed unless the user specifies LISTDS=Y (create a list data
set). This is not true in conversational mode where the default option
tor LISTDS is Y.

ERRCR CONDITIONS: The routine checks for acceptable operands and noti-
fies the user, through MSGWR, of any errors found. For the messages
issued, see System Messages.

LPCMAIN may issue these ABEND messages:

ABEND Message Significance

GATRD RC OR FORMAT KEY Return code from GATE is invalid or unac-
ceptable, or keyboards/card key of record
is invalid.

INVLL RC FROM LP Invalid return code from language
Processor.

SCAN RC OR DELIM CODE INVLD Invalid return code or undefined delimiter
code returned from a SCAN routine.

186

ABNORMAL RC FROM FIND Abnormal return code received from FIND.

INVLD RC FROM FINDDS Invalid return code from FINDDS.

GATWR RC INVALID Invalid return code from GATE.

MSGWR RC INVLD Invalid return code from MSGWR.

MSNG PARAM Required parameter missing (issued in non-

conversational task only).

STOW RC ABNORMAIL Abnormal return code from STOW macro
instruction.
DD RC ABNORMAL Abnormal return code from DDEF.

If the code returned by the language processor at the end of the scan
phase indicates an object module will not be produced, LPCMAIN will
issue any remaining messages for the source data set. In nonconversa-
tional mode, LPCMAIN will terminate processing as described for the ter-
mination option. In conversational mode, the user is asked to terminate
processing or modify his source data set; he cannot continue. Termina-
tion and modification are handled according to the previous description
of those options.

SYSTEM CONTROL BLOCK USAGE:

Task Common (CHATCM)

Task Data Definition Table (CHATDT)
Data Control Block (CHADCB)
Interrupt Storage Area (CHAISA)
TABLEA (CHAAAA)

’ GETLINE Routine (CFADB)

This routine fetches source lines from SYSIN, or from a prestored
source data set, and sends them, on request, to a language processor.
It stores the lines to create a source data set if the data was not
already stored, and places modification lines in the stored data set.
In addition, GETLINE issues diagnostic messages stacked by PUTDIAG for
the language processors and (in conversational mode) prompts for correc-
tions. (See Chart DD.)

ENTRIES:

CFADB1 - normal entry
CFADB2 - SYNAD entry
CFADB3 - EODAD entry

MODULES CALLED: Since GETLINE is a nonprivileged program, all calls are
made via ENTER SVC.

GTWAR (CZATC1) Issues line number for next line, and also reads in
that line.

GATRD (CZATC1) Reads in next line of data set.

GTWSR (CZATC1) Issues correction line number, and also reads in the
next line.

GATHWR (CZATC1) Writes diagnostic messages.
EXITS: The routine normally returns tc the calling routine, via the

RETURN macro instruction. If a system error occurs, the routine exits
to ABEND.

Section 6: Scurce Language Processing 187

OPERATION: GETLINE has four distinct modes of operation:
1. Source data set is prestored; task is nonconversational.
2. Source data set is on nonconversational SYSIN.
3. Source data set is prestored; task is conversational.
4. Source data set is on conversational SYSIN.

For case 1, the source data set is prestored and the task is noncon-
versational. In this case, the source lines are read in one at a time
and passed on to the language processor. No corrections are made and no
messages are issued.

In case 2, the source data set is on nonconversational SYSIN. If the
SYSIN is VISAM, the first seven characters of text are the line number
(or key); GETLINE replaces this number with a new seven character source
data set line number while creating the source data set. The eighth
character is assumed to be a format indicator, and is carried with the
original text.

If SYSIN is VSAM with variable-length records, it is assumed that it
was created via the DATA command, and that the first character of each
record is a keyboard/card-reader indicator. The indicator is left
intact and a seven-character source data set line number is prefixed to
the text.

In case 3, the source aata set is prestored and the task is conversa-
tional. GLTLINE first tests for pending messages, and if any are found
they are issued immediately. After all messages are printed, a number
sign (#) is issued to invite the user to enter corrections. The user
either types in a modification line or presses the RETURN key to indic-
ate that no modifications are desired. Once a correction has been made,
or rejected as invalid, GETLINE requests the next correction until the
user enters a null line (carriage return only).

All diagnostic printouts may be inhibited by typing an "I" immediate-
ly after the number sign (#). A "C", entered immediately after the num-
ber sign, allows diagnostic printouts kut inhikits printing the number
sign, and the user is not allowed to make corrections.

It no corrections were made, GETLINE gets the appropriate record from
the source data set. A test is made to see whether the input line num-
ber is the same as the last line number sent to the language processor.
If it is, the next recoru is taken from the source data set. If the two
numbers are not the same, reorientation within the data set is
pertormed.

in case 4, the source data set is on conversational SYSIN. GETLINE
tirst checks for diagnositic nessages and, if any are found, issues them.
I1f messages are issued, the next line number for the source data set is
printed to prompt the user to enter nis source data line. The keyboard
is uniocked so that the user may enter either the new line or a correc-
tion line. it no messages are issued, the active terminal component is
read.

1f the user has entered a correction line, GETLINE requests another
line (after making the correction in the data set). This process con-
tinues until tne user supplies a normal next line, which is put in the
data set.

There are two subroutines internal to GETLINE: GVDIAG and SCNCOR.

GVDIAG performs the actual issuing of diagnostic messages. It examines
the count in the diagnostic message stack, and if it is nonzero, issues

188

the messages one at a time. SCNCOR validates and makes corrections to
data set lines.

The privileged SCAN routines with slight modifications are assembled
as part of GETLINE.

ERROR CONDITIONS: If called by a language processor, GETLINE returns a
hexadecimal code in register 15. However, LPCMAIN receives no return
code from GETLINE.

Code significance

00 Normal return

0y Normal return when alterations are made
08 No end card in source data set

12 Abnormal end of task

GETLINE may issue these diagnostic messages to the user:

CFADB023 PROCEEDING: CCORRECTION OUTSIDE DATA SET . LINE IGNORED.

CFADB037 PROCEEDING: LAST SOURCE LINE IS $01. MISSING END CARD
SUPPLIED.

CFADB378 PROCEEDING: END OF DATA SET . IAST LINE DELETED WAS $01.

CFADB379 PROCEEDING: INVALID MODIFICATION REQUEST.

CFADB388 CANCYLED: NEXT LINE NUMBER EXCEEDS 7 DIGITS.

The routine may issue these ABEND messages:

ABEND Message Significance

LINE NO. FROM LP INVLD - CASE 3 In case 3, line number parameter
received from language processor
invalid.

LINE NO. FROM LP INVLD - CASE 4 In case 4, line number parameter
received from language processor
invalid.

CASE SW INVLD Indicator in PSECT of GETLINE has been
set incorrectly, showing that PSECT
has been erroneously destroyed.

KEY FORMAT INVLD Keyboard/card-reader indicator of rec-
ord from GATE is invalid.

TCMCOV OR TCMGRD INVLD Conversational/nonconversational flag
or record length type flag in task
common is invalid.

INVLD EXIT TO SYNAD OR EODAD Exit made to SYNAD or EOCDAD when
reason for exit should not have
occcurred.

LPC SDS INVALID A byte within comwmon area of LPCMAIN

is invalid, meaning that common has
been erronecusly destroyed. (5elf-
checking and debugging aid. Byte
actually indicates whether source data
set prestored or not.)

SCAN RC INVLD Invalid return code from a SCAN
routine.
MSGWR RC INVLD Invalid return code from MSGWR.

Section 6: Source Language Processing 189

GATE RC INVLD Invalid return code from GATE.

SYSTEM CONTROL BLOCK USAGE:

Task Common (CAATCM)
Data Control Block (CHADCRB)

} PUTDIAG Routine (CFADC)

This routine receives diagnostic messages from the language proces-
sors and either sends the messages to SYSOUT via the GATE routine, or
stacks them as output for GETLINE or LPCMAIN. (See Chart DE.)

ENTRY: CFADCl1 - normal entry

MODULES CALLED:

GATWR (CZATC1l) To write diagnostic messages to SYSOUT.

EXITS: The routine normaliy returns to the calling routine, via the
RETURN macro instruction. 1If a system error occurs, the routine exits
to ABEND.

OPERATION: PUTDIAG either stacks the diagnostics or prints them immedi-
ately. If the correction request parameter is off (as set by the lan-
guage processor), the diagnostic message is issued immediately. If it
is on, and there is room in the diagnostic message stack, the message is
moved to the stack. If there is no room, the messages currently in the
stack are immediately written out, and then the current message is
stored there.

ERROR CONDITIONS: PUTDIAG may issue these ABEND messages:

ABEND Message Significances

INVALID GATWR RC Invalid return code from GATE.

MSG DISPOSITION BYTE INVLD Invalid parameter from language processor,
indicating whether mwessage is to be stacked
or sent.

SYSTEM CONTROL, BLOCK USAGE: None.

190

SECTION 7: INTERRUPTION PROCESSING

The routines described in this section handle certain interruptions
not processed by the task monitor. Those interruptions are:

1. The initial ATTENTION interruption of a conversational task.

2. Program interruptions for which no other procedure has been
specified.

3. External interruptions (that is, interruptions caused by messages
from one task to another).

Four routines process these interruptions:

Interruption Processor (1AIP)
performs initialization functions for a conversational task.

Program Interruption Diagnostic Processor (DIAGNO)
informs tne user when a program interruption occurs.

External Interruption Processor (XIP/XIS)
receives and vaiidates intertask messages, then routes them to the
specified subprocessor. This routine also handles special initia-
tion functions for nonconversational, batch monitor, and bulk 1I/0
tasks.

External Interruption Subprocessor (XIMS/NIES)
writes a message con a task's SYSOUT, and also returns an error mes-
sage to the sender of an invalid intertask message.

IAIP and XIP make use of the Virtual Memory Task Initialization
(VMT1) routine to define system data sets and priiic devices during task
initiation.

The resident supervisor maintains six interruption queues for each
task; they are defined in location and extent ky fields in the task sta-
tus index (T35I). When an interruption must be brought to the attention
of a task, the task interruption control (TIC) subroutine of the resi-
dent supervisor matches the interruption peniing flags against the
interruption mask in the task's TSI. 1If the interruption is not masked,
TIC moves the MCB, if one exists, to the interruption storage area and
and creates a software interruption by manipulation of the virtual PSW,
causing entry into the task monitor.

I1f the interruption is to be handled Lty any of the routines described
here, one of the interruption handling routines of the task monitor will
engueue a linkage entry in the Tasik Monitor scan table and exit either
to the task monitor scanner or the Selective Optimal Procedure (SOP)
routine.

Program interruptions for which no other prccessor has been defined
by the user (UPI) are given to DIAGNO, which prints a message on the
task's SYSOUT giving the CSECT name, a relative location number for the
location beyond the interrupted instruction, end the cause of the
interruption.

section 7: Interruption Processing 191

External interruptions associated with intertask messages are given
to the external interruption processor (XIP). This processor validates
the message and routes it to its subprocessor.

Because messages cause interruptions, a task may put itself into a
wait state pending some external event (such as a tape being mounted),
and be brought back into activity upon completion of the event by
receipt of a message. The batch monitor creates TSIs for nonconversa-
tional tasks, then activates the tasks by sending messages to them.
These messages contain a code that causes XIP to route them to XIIS, the
task initiation subprocessor, where task initiation is completed.

ATTENTION interruptions associated with a device not currently
assigned to a task are given to the initial attention interruption pro-
cessor (IAIP). (ATTENTION interruptions from SYSIN devices assigned to
active tasks cause the Task Monitor to call the Command Analyzer and
Executor.)

'}Proqram Interruption Diagnostic Processor ~ DIAGNO - (CZAHA)

This routine issues a diagnostic message to SYSOUT, indicating the
cause of the program interruption and where it occurred. DIAGNO ser-
vices all program interruptions not treated by other processors. (See
Chart DF.)

ENTRY: CZAHAl - normal entry

#ODULES CALLED:

MAPSEARCH (CZCCQ) Gets CSECT name and displacement.
MSGWR (CZAAD?2) Issues messages to SYSOUT.
INTERVENE (CZAMZ3) Processes program interventions.

EXITS: If the task was conversational, DIAGNC sets up a linkage entry
to the command analyzer and executor (via QLE), and then returns control
to the task monitorxr, via the RETURN macro instruction. If the task was
nonconversational, DIAGNO exits to ABEND.

OPERATION: The routine first fetches the VPSW, then uses the VPSW
interruption code to find the corresponding diagnostic message. Next,
it calls MAPSEARCH to get the name and base address cf the CSECT in
whnich the interruption occurred. This base address, together with the
interruption address given in the VPSW, is used to develop the location
of the interruption. Using MSGWR, the routine now issues to SYSOUT the
diagnostic message, the old VPSW, the CSECT nane, and the displacement
of the interrugption. The last two of these are supplied by DIAGNO in
this form, provided the CSECT is found valid:

INTERRUPT OCCURRED IN CSECT XXX
WITH DISPLACEMENT OF yyy
FROM BEGINNING OF CSECT.

where xxx is the CSECT nane and yyy is the displacement value.

DIAGNO may issue the following diagnostic messages:

Message Number Message Significance
000 OPERATION CODPE Attempt to execute an
INTERRUPT. PSW = . unassigned operation code.

PSW contains location of
interruption.

192

E001 PRIVILEGED OPERATION Attempt made to execute op
INTERRUPT. PSW = _ . code not permitted for
user's privilege. PSW shows
location of interruption and
contains interruption code
and user's privilege.

E002 EXECUTION INTERRUPT, When subject instruction of
PSW = . an execute instruction is
another execute instruction.
PSW shows location of inter-
ruption and contains inter-
ruption code and user's

privilege.
EO003 PROTECTION INTER- Tries to access privilege
RUPT. PSW = - storage at location indi-
cated in PSW.
EOO4 ADDRESSING INTERRUPT, User attempted to access
PSW = . address that did not exist.

PSW contains location of
interruption.

EQ005 SPECIFICATION INTER- User made syntactical error
RUPT. PSW = . in an instruction. PSW con-
tains location of
interruption.
E006 DATA INTERRUPT. While accessing I/0 device
PSW = . an error was encountered.
PSW contains location of
interruption.
EQ07 FIXED POINT OVERFLOW While doing fixed-point
INTERRUPT. PSW = __ . multiplication or division,

register overflowed. PSW
contains location of

interxuption.
E008 FIXED POINT DIVIDE Register overflowed while
INTERRUPT. PSW = —--—, performing fixed-point
division.
E009 DECIMAL OVERFLOW Destination field too small
INTERRUPT. PSW = . to contain the result field

in a decimal operation. PSW
contains location of

interruption.
EO010 NONPRIVILEGED PRO- User tried to do privileged
GRAM ISSUED IOCAL, I/0 paging operation. PSW
PGOUT. PSW = . contains location of
interruption.
EO11 IOPCB OR IORCB PAGE I1/0 control block too long
LIST TOO LONG. for I/0 program execution.
PSW = . PSW contains location of
interruption.
E012 SPECIFIED ADDRESS IS Address attempted to access
NOT IN USERS VIRTUAL in PSW does not exist in
MEMORY (IOCAL PGOUT). user's virtual storage.

PSW = .

Section 7: Interruption Processing 193

194

E013

EO14

EO1S5

EO16

EO017

EO018

EO19

E021

E022

E023

E024

E025

EO026

EQ27

PROGRAM HAS NO I/0
DEVICES ASSIGNED TO
IT (IOCAL PGOUT).
PSW = -

IORCB SIZE OF ZERO.
PSW = -

TSI SERVICE CALL
INTERRUPT COUNTER
OVERFLOW. PSW =

-

TSI EXTERNAL INTER-
RUPT COUNTER OVER-
FLOW. PSW = .

TSI ASYNCHRONOUS IN-
TERRUPT COUNTER OVER-
FILOW. PSW = -

TSI INTERRUPT COUNTER
OVERFLOW. PSW =

TSI INPUT/OUTPUT IN-
TERRUPT COUNTER OVER-
FLOW. PSW = .

ADDRESS OF UNASSIGNED
PAGE GIVEN TO CKCLS
SVC PROCESSOR. PSW =

ILLEGAL CODE GIVEN TO
SETUP/XTRCT SVC PRO-
CESSOR. PSW = .

AWAIT SVC NOT EXECUTED
REMOTELY OR NOT LAST
HALFWORD OF AN ECB.
PSW = .

INVALID SHARED PAGE
TABLE NUMBER TO ADSPG
SVC PROCESSOR. PSW =

SOFTWARE HAS DETECTED
A POSSIBLE HARDWARE
MALFUNCTION. PSW =

USER'S TASK NOT OF
SUFFICIENT PRIORITY TO
ISSUE SVC. PSW =

SVC NOT ON WORD BOUND-
ARY. PSW = .

Paging cannot be done be-
cause no device can be as-
signed for that purpose.
PSW contains location of
interruption.

I/0 control block is non-
existent for I/0 program.
PSW contains location of
program interruption.

Too many service call in-
terruptions. PSW contains
location of interruption.

Too many external inter-
ruptions. PSW contains lo-
cation of interruption.

Too many asynchronous in-
terruptions. PSW contains
location of interruption.

Too many interruptions. PSW
contains location of in-
terruption.

Too many I/0 interruptions.
PSW contains location of
interruption.

A page that was once in
user's virtual storage and
is no longer, has been
given to Check Class (CKCLS)
SvC.

Illegal form of SETUP/
XTRCT SVC macro user.

AWAIT called directly and
not via an EXECUTE instruc-—
tion.

An invalid shared page
given to ADSPG.

Simalated machine check.

User does not have correct
privilege to issue SVC.

SVC must be on word bound-
ary otherwise an invalid
call.

E028 COUNT OF EXTERNAL External address count

ADDRESS IS ZERO. illegal.
PSW = -

E029 ALL PARAMETERS ARE) All SVC calls are not
NOT IN ONE PAGE. within page boundary.
PSW = -

E030 NO ASYNCHRONOUS ERROR Device malfunction and no
ROUTINE DEFINED FOR error routine defined to
DEVICE WITH ERROR. handle malfunction.
PSW = -

EO031 ASYNCHRONOUS INTER- No routine available to
RUPT RECEIVED BUT NO handle asynchroncus in-
DE AVAILABLE FOR terruption.
DEVICE. PSW = .

E032 PGOUT REQUEST FOR Invalid request for num-
ZERO PAGES. PSW = ber of output pages.

EO033 SETTR NOT ACCEPTED No more main storage avail-
BECAUSE SYSTEM LIMIT able for new entries.
REACHED IN TABLE.
PSW = .

EO34 PROGRAM INTERRUPT RE- Program interruption receive
CEIVED WHILE IN TYPE while going to or from
IITI LINKAGE. PSW = privileged to nonprivileged

. status.

EO035 SVC INTERRUPT RE- No SVC permitted while in

CEIVED WHILE IN TYPE nonprivileged status.

III LINKAGE. PSW =

-

EO036 ATTEMPT TO ADD MORE Interruption occurs when a
THAN 256 SHARED PAGES segment's maximum limit of
TO A SEGMENT. pages 1is exceeded. PSW
PSW = . contains location of
interruption.
E037 VSEND MESSAGE IS TQO MCB extends over 1920 or a
LONG OR EXTENDS OVER page boundary.

PAGE BOUNDARY. PSW =

E038 REQUEST TO DELETE Request to delete a page
PAGE FROM SEGMENT from an invalid segment.
NOT PREVIOQUSLY AS-
ASSIGNED. PSW = _ .

E039 REQUEST TO DELETE PAGE Request deletion of a page
NOT PREVIOUSLY AS- that does not exist.
SIGNED. PSW = -

EO40 MESSAGE CODE INTER- Program interruption receive
RUPT NOT ASSIGNED in PSW is undefined at
PRESENTLY. PSW = present in this system.

EO41 RELOCATION PAGE - IN Attempt to output a page on
ERROR (DEVICE DE- a defective device. Vol-
FECTIVE) - MOVABLE ume can be relocated.
VOLUME. PSW = .

Section 7: Interruption Processing 195

196

EOH42

EO43

EO4Y

E045

EO46

EO047

EO1A

EO1B

EO1C

EOQ1D

EO1E

EO1F

EO2A

EO2B

EQ2C

RELOCATION PAGE - IN
ERROR (MEDIUM DE-
FECTIVE). PSW = .

IOCAL PAGE - IN
ERROR (DEVICE DEFECT-
IVE) PERMANENT VOL-
UME. PSW = .

IOCAL PAGE - IN ERROR
(DEVICE DEFECTIVE) -
MOVABLE VOLUME.

PSW = .

IOCAL PAGE - IN ERROR
(MEDIUM DEFECTIVE).
PSW = .

OPERATION TASK HAS
BEEN REINITIALIZED.
PSW = .

UNAUTHORIZED USE
OF TSSS SVC.
PSW = .

GQE TYPE CODE IS IN
ERROR. PSW = .

IORCB SIZE EXCEEDS
1920 BYTES. PSW =

-

IORCB OR IOPCB
CROSSES A PAGE
BOUNDARY. PSW = -

DEVICE NOT ASSIGNED
TO TASK (IOCAL PGOUT).
PSW = -

IOCAL OR PGOUT SVC
PAGE ADDRESS DOES NOT
EXIST IN VIRTUAL MEM-
ORY. PSW = .

IOCAL OR PGOUT sVC
PAGE IS NOT IN CORE.
PSW = .

COUNT EXCEEDS 991, BIT
STRING FLAG SET FOR
SETXP. PSW = §.

PAGE UNASSIGNED.
PSW = .

COUNT EXCEEDS 1022,
BIT STRING FLAG NOT
SET FOR SETXP.

PSW = .

Attempt to output a page
but mechanism to output
device is defective.

Attempt to output a page
on a defective device.
Volume is permanent and
cannot be relocated.

Attempt to output a page
but device defective. The
volume however can be re-
located.

Attempt to output a page
but the mechanism is de-
fective.

Operator task has been re-
initialized after previous
interruption.

An unauthorized SVC
(codes 64-95) has been
issued by a nonprivileged
program. These codes are
reserved for use by Time
Sharing Support System
(TSSS) .

Used wrong general gueue
entry code for Task Status
Index.

I/0 record contrcl block
exceeds maximum limit.

1/0 record control block
or I/0 page control block
greater than page boundary.

Attempt to place pages
on device not assigned to
task.

Attempt to access a page
that does not exist.

Page not in main storage.

Invalid code used to call
SETXP. PSW contains loca-
tion of interruption.

Attempted to access un-
assigned page.

Invalid code used to call
SETXP. PSW contains loca-
tion of interruption.

EO02D

EOQ2E

EO2F

EO3A

EO3B

EO3C

EO3D

EO3E

EO3F

ERROR CONDITIONS:

ENTER SVC ISSUED TO
INTERRUPTABLE ROU-
TINE WHILE TYPE II1I1
LINKAGE IN EFFECT
AND P1 FLAG ON.

PSW =

ENTER SVC ISSUED WITH
INVALID ENTER CODE

OVER 22K OR UNAS-
SIGNED. PSW =

SVC ISSUED IN NON-

PRIVILEGED STATE AND
NO INTERRUPT ROUTINE
SPECIFIED. PSW

INVALID SEGMENT NUM-
BER GIVEN TO ADSPG
PROCESSOR. PSW

ILLEGAL CODE GIVEN
TO SETSYS/XTRSYS SVC
PROCESSOR. PSW

ILLEGAL CODE GIVEN TG

SETXTS/XTRXTS SVC
PROCESSOR. PSW

UNSUCCESSFUL DEQUEUE
I/0 REQUEST. PSW

-

DRUM FLAG ILLEGALLY
ON. PSW

RELOCATION PAGE - IN
ERROR (DEVICE DEFECT-
IVE) PERMANENT VOL-
UME. PSW

-

None.

SYSTEM CONTROL BLOCK USAGE:

Task Common {(CHATCM)
Task Dictionary Table (CHATDY)

Attempt to start a re-
cursive situation in task
monitor. PSW contains lo-
cation of interruption.

Attempt to use ENTER SVC
(to call a routine) with
wrong code. PSW contains
location of interruption.

No routine exists for par-
ticular SVC executed at
location contained in PSW.

Illegal segment number
given to ADSPG (address
page) processor.

Invalid code received by
SETSYS/XTRSYS SVC. PSW
contains location of
interruption.

Invalid code received by
SETXTS/XTRXTS SVC. PSW
shows location of inter-
ruption.

Unsuccessful attempt to
dequeue I1I/0. PSW shows
location of interruption.

Drum access flag on il-
legally. PSW shows location
of interruption.

Page cannot be relocated
on device because device
is defective. Volume is
permanent and cannot be
relocated. PSW shows loca-
tion of interruption.

»Initial Attention Interruption Processor - IAIP -~ (CZAHB)

This routine processes the initial

versational task

al storage for that task.

ENTRY: CZAHB1l -

MODULES CALLED:

VMTI (CZAAF1) T

i

by providing certain
(See Chart

normal entry

o define system data
ng public volumes.

Section 7:

attention interruption from a con-
initialization functions in virtu-
DG.)

sets and indicate devices contain-

Interruption Processing 197

EXITS: The routine exits through NTCTMR via the RETURN macro instruc-
tion, except in the case of ABEND where a normal return is made.

OPERATION: A flag is set in task common to indicate that the new task
is conversational, and Virtual Memory Task Initiation (VMTI) is called.

ERROR CONDITIONS: None.

SYSTEM CONTROL BLOCK USAGE:

Task Common (CHATCM)
Interruption Storage Area (CHAISA)

>External Interruption Processor - (XIP/XIIS) - (CZAHC)

XIP receives intertask messages, checks their validity, cories them
into virtual storage, and enqueues linkage to the specified subproces-
sor. It also processes the shutdown message.

¥XI1IIS handles task initiation for nonconversational, batch monitor and
bulk I/0 tasks. (See Chart DH.)

ENTRIES:
CZAHC1 - main entry point
CZAHC3 - entry to initiate nonconversational user's tasks

CZAHCU4 - entry to initialize a bulk I/O task or the task monitor

MODULES CALLED:

QLE (CZCJQS) Sets up linkage.

GETMAIN (CZCGA2) Allocates space for MCB.
FINDJFCB (CZAEB1) Finds a JFCB.

FREEMAIN (CZCGA3) Frees storage used by MCB.

SETUP (CZAH2) Places new SYSIN device address in TSI to indicate a
new task has been logged on.

VMTI (CZAAF1) Defines system data sets and indicates devices con-
taining public volumes.

EXITS: The routine normally exits to the task monitor, via the RETURN
macro instruction. If a message was erroneously sent to a particular
task, the routine will enqueue linkage to the error subprocessor (XI1IES),
and then exit to the task monitor via the RETURN macro instruction. If
a system error occurs, the routine exits to ABEND.

OPERATION: At entry CZAHC1l, XIP tests if the message is a reply. If it
is an awaited reply, XIP moves the message to the designated reply area,
and returns control to the task monitor.

If the message is not a reply, XIP tests tor a code indicating that
data management has caused the interrupt to take the task out of the
wait state. I1f such a code is found, control is returned to the Task
Monitor with a return code of zero.

For all other messages, GETMAIN allocates space into which XIP can
move the message control block from the IORCB field. The code in the
message is used as an index to the required subprocessor's entry in a
table and linkage to it is set up via QLE and control returned to the
Task Monitor.

198

The following hexadecimal MCB message codes are recognized as valid
codes:

Code Indicates Module
00 Message CZARHD1
01 Batch Monitor to task being canceled
02 Batch Monitor to third-level task initiation CZABAB
03 Error (invalid code) CZAHD?2
Ou MOCP (Main Operator Control Program) CZACAl
06 Activate Batch Monitor CZABA1l
07 Initiate PRINT CZABG1
09 Initiate WT CZAB11
147:3 Initiate PUNCH CZABH1
0B Initiate RT CZABF1
12 AWAIT for device allocation
16 Device allocation CZABAA
50 EXECUTE to Batch Monitor CZABA2
52 CANCEL to Batch Monitor CZABA3
54 BULKIO to Batch Monitor CZABAL
56 BACK to Batch Monitor CZABAS
5A LOGOFF to Batch Monitor CZABA7
5B BULKIC Init to Batch Monitor CZASW1
5D Shutdown to Batch Monitor CZABAY
5E ABEND CZACR1
5F LOGOFF (from FORCE) CZAFN2
60 MOHR (Main Operator's Housekeeping) CZACE3

If the message is the shutdown message, linkage is also enqueued to
LOGOFF.

Entry C2AHC3 of the XIIS subprocessor is called to initiate noncon-
versational user tasks, while entry CZAHCY4 is called for initialization
of a bulk 1I/0 task or the Batch Monitor.

For both entries, the message control block contains information
needed by XIIS. FREEMAIN is called to clear the MCBE area before return-
ing to the Task Monitor.

For the Batch Monitor or a bulk 1I/0 task, XIIS moves the parameters
of the specified routine from the MCB into PARIN. The batch sequence
number is put into task common. A linkage entry to the routine just
loaded is created and FREEMAIN is called; contrcl is then returned to
the Task Monitor.

Section 7: Interruption Processing 199

When the batch monitor initializes a nonconversational task, it sends
a message to the task with a code for entry CZAHC3. FINDJFCB is called
to find the JFCB of the SYSIN entered in the TSI. The flag in task com-
mon is set to nonconversational. The userid is placed in task common.
FREEMAIN is called, and control is returned to the Task Monitor.

ERROR CONDITIONS: XIP will determine from the following conditions if a
message was erroneously sent to a task:

¢ Sender's reply not the awaited one (either taskid or message number
incorrect).

e User not awaiting reply when a reply is received.
e MEB not on word boundary.
¢ Shutdown message has incorrect taskid.

The routine will then call GETMAIN, move the message, and set up linkage
to the error subprocessor (XIES) before returning to the task monitor.

The routine may issue this system error message:

SYSER Code Severity ABEND Message Explanation

050702701 Minor MCB LENGTH MCB length exceeds maximum limit
EXCEEDS
MAXIMUM LIMIT

SYSTEM CONTROL BLOCK USAGE:

Interrupt Storage Area (CHAISA)
Task Data Definition Table (CHATDT)
Task Common (CHATCM)

Message Control Block (CHAMCB)
Message Event Block (CHAMEB}

Batch Work Queue (CHABWQ)

'}External Interruption Subprocessor - XIMS/XIES - (CZAHD)

This routine issues, to a task's SYSOUT, all messages sent to that
task. The routine also handles any message that is erroneously sent to
a task. (See Chart DI.)

ENTRIES:

CZAHD1 - entry point for the external interruption processor (XIP) to
issue message contained in a specified message control block
(MCB)

CZAHD2 - entry point for XIP to issue message that was erroneously sent
to a particular task

CZAHD3 - entry point for task monitor to process a message that was
unexpectedly sent

MODULES CALLED:

VSEND Sends intertask messages.

GATWR (CZATC1l) Writes messages to task's SYSOUT.
FREEMAIN (CZCGA3) Releases an area of virtual storage.
User Prompter Issues diagnostic message to the user.

(CZATJI1)

200

EXITS: The routine exits to the calling routine, via the RETURN macro
instruction.

OPERATION: The routine is called (at CZAHD1) by the external interrupt
processor (XIP) to issue a message contained in a specific message con—
trol block (MCB). The message text and sender's taskid are extracted
from the MCB and placed in the parameter list for GATWR.

The message code field in the MCB is checked to determine if the mes-
sage was valid (indicated by a code of 0). The code is then extracted
from the MCB, converted to EBCDIC, and inserted in the message. If the
message was invalid (any code other than 0), the code is still placed in
the message, but the following is prefixed to the message:

THE FOLLOWING INVALID MESSAGE WAS RECEIVED BY YOUR TASK.
The total length of the message is calculated and placed in the GATWR
parameter list GATWR then issues the message to the task's SYSOUT.

After the message has been issued, FREEMAIN is called to release the MCB
virtual storage area that was used during processing.

At CZAHD2, this routine is called by XIP to process a message that
was erroneously sent to a particular task. The taskids of the sender
and receiver of the message are extracted from the MCB and transposed so
that the original sender will now receive the message, prefixed with the
following:

THE MESSAGE YOU HAVE SENT HAS AN INVALID CODE.

Then a branch to CZAHD1 is taken to issue the erroneous message.

CZAHD3 is called by the task monitor. Processing at this entry is
the same as at CZAHD2 except that the following message is sent:

THE MESSAGE YOU HAVE SENT HAS AN UNEXPECTED CODE.

ERROR CONDITIONS: None.

SYSTEM CONTROL BLOCK USAGE: Message Control Block (CHAMCRB)

»Virtual Memory Task Initiation - VMTI -~ (CZAAF)

This routine resides in initial virtual storage and performs certain
functions required to initiate a task. These functions include creating
job file control blocks (JFCBs) for system data sets, opening the system
library, and adding to the task symbolic device list (TSDL) all those
devices on which public volumes reside. (See Chart LJ.)

ENTRY: CZAAFl - normal entry

MODULES CALLED:

VMTI~-2 (CZATD) Logs on task.
TIME (CZAVB) Initializes task timer.
DDEF (CZAEA5S) Creates JFCBs for system data sets.

FINDJFCB (CZAEB1) Finds SYSLIB JFCB.

ADDEV Adds symbolic device address to TSDL.
LIB MAINTENANCE Opens SYSLIB DCB.
(CZCDHC)

Section 7: Interruption Processing 201

OPEN (CZCLA) Opens SYSCAT DCBs.

EXITS: The routine normally returns to the calling routine, via the
" RETURN macro instruction. If a system error occurs, the routine exits
to SYSER.

OPERATION: 1Initial virtual storage contains a task data definition
table (TDT) with JFCBs for the SYSCAT (SYSSVCT and SYSUCAT), SYSIN, and
SYSOUT data sets. The TDT header is set up so that the appropriate
fields point to the last JFCB and the first free storage area; the
pointer to the JFCB in the program library list points to zero; the tem-
porary tabulation pointer also points to zero.

VMTI is called by either IAIP (for a conversational task) or XIP (for
a nonconversational task) to initiate a new task.

The symbolic device allocation table (SDAT) is scanned to find all
those devices that carry public volumes. Since all SDAT entries for
such devices are chained together, this involves finding the beginning
of the chain in the SDAT header and following it through the table. As
each public device is found, its address is added to the TSDL using the
ADDEV SVC. The system catalogs SYSSVCT and SYSUCAT are then opened for
update.

Successive calls to DDEF are made to create and fill in the JFCBs for
the user catalog (SYSUCAT), the system library, the user table, the sys-
tem macro library and the macro library index. The timer for the task
is initialized and control is passed to VMTI-2 to logon the task. On
return, control is passed to the calling routine.

ERROR CONDITIONS: The routine may issue these system error messages:

SYSER Code Severity ABEND Message Significance

050106102 Ma jor None Error return code received from
DDEF.
050106103 Major None No address returned by CZAER for

SYSLIB JFCB.

SYSTEM CONTROL BLOCK USAGE:

Interrupt Storage Area (CHAISA)

Symbolic Device Allocation Table (CHASDA)
System Common (CHASCM)

Task Common (CHATLM)

Task Data Definition Table {(CHATDT)

’Virtual Memory Task Initiation II - VMTI II (CZATD)

This routine provides the task initialization interface between com-
mand system I and command system II. This includes opening the system
message file (SYSMLF), opening the SYSIN data set for nonconversational
updating of the user table, logging on the user, and in the case of
operator task, calling the main operator housekeeping routine. (See
Chart DK.)

ENTRIES:
CZATD1 - normal entry point for all tasks in the system

CZATD2 - special entry point for all bulk 1I/0 tasks to call logon
CZATDY4 - special entry point for Express Batch

202

MODULES CALLED:

RELEASE (CZAFJ) Releases the SYSIN JFCB for nonconversational task.

RCR-OPEN Performs OPEN for first express batch subtask for
nonconversational tasks.

FINDJFCB (CZAEB) Finds the SYSIN and SYSOUT JFCBs.

GATEOPEN (CZBTBU) Opens the SYSIN DCB for nonconversational tasks.

GATE (CZATC) Reads SYSIN.

LOGON (CZAFM) Logs user on.

LOGON2 (CZCBTB) Completes LOGON initialization functions.

DDEF (CZAER) Builds USERLIB JFCB for abended task.

MOHR (CZACB} Initializes operator task.

QLE (CZCJgQ) Queues a linkage entry for the Command Analyzer and
Executor.

WTO (CZABQ) Informs operator that EXPRESS card not followed by

LOGON (nonconversationall.
OPEN (CZCLA) Opens system message file (SYSMLF).

EXITS: The routine normally returns to the calling routine via the
RETURN macro instruction. If a system error occurs, the routine exits
to ABEND.

OPERATION: All tasks in the system enter at CZATD1 where the system
message file (SYSMLF) is opened, and a FIND is issued to position a
pointer at that particular VPAM member.

A check is then made to see if this task is the Batch Monitor or a
bulk I/0 task. In the case of the batch monitor or a bulk I/0 task, a
return is made to the calling routine.

In all other tasks, a check is made to see if the task is conversa-
tional. If it is, the conversational flag is turned on in New Task Com-
mon. If the task is nonconversational, the existing SYSIN JFCB is
released, and a call is made to DDEF to construct a new SYSIN JFCB for
the SYSIN data set; the conversational flag in New Task Common is set to
zero. At this point Gate Open (CZBTB4) is called to open the SYSIN data
set for a nonconversational task. The task ID is then extracted from
the TSI and stored in Task Common. It is then examined to see if the
task is the operator's task. If it is the operator task, the address of
the user table DCB is picked up and the SYNAD and EODAD R-cons and V-
cons are changed to point to the proper points in CZATD.

The user table data set is then opened for updating. A SETL is
issued to place the pointer at the beginning of the data set. Each rec-—
ord is then retrieved via the VISAM GET mracro instruction, and the acti-
vity, task count flag and RCR accounting fields are set to zero. Each
record is then written back into the user takle data set. When EODAD is
reached, the data set is closed.

All tasks are again checked to see if they are nonconversational. If
the task is nonconversational, a GATRD obtains the first record of the
SYSIN data set. A check is made for the LOGON verb; if it is not in the
record, a check is made for the 'EXPRESS' verb. If it is not an 'EX-
PRESS' record, the subtask is abnormally terminated.

Section 7: Interruption Processing 203

If the LOGON vexrb is found, the TCMEXP1 (Express Batch mode}) switch
is examined; if it is off, processing continues as described in the next
paragraph. At this point (CZATD4) all jobs in the Express Batch stream
(with the exception of the first job which begins at CZATD1) begin their
LOGON sequence. A call is made to the TIME command module (CZAVB#4) to
reinitialize the clock(s} as required. If the EXPRESS verb is found,
the TCMEXP1 (Express Batch mode) switch is set on and a scan function is
performed which establishes a pointer to the time parameter, bypassing
the keyword, TIME=, when present. A call is then made to the #timE rou-
tine (CZCAVB4) to initialize System Clocks 13 and/or 14.

When return is made to VMTI-2, an additional GATRD is performed for
the next record in SYSIN. These GATRDs are performed until a LOGON is
encountered. If a LOGON is not found immediately after 'EXPRESS', a
warning message is issued to the operator (in building an EXPRESS SYSIN
data set, BULKIO ensures that an 'EXPRESS' card is followed by a *LOGON’
card); then additional GATRDs are performed. Once a LOGON is found, the
clock(s) are reinitialized and processing continues.

In both conversational and nonconversational tasks, LOGON (CZAFM) is
called. If task is conversational, information is extracted from the
TCT slot for this user, and an SDAT entry is built for this device with
pertinent information set. The device type found in the TCT is stored
in GATE's PSECT. It is then translated to a model code which is used to
determine the maximum device line length. This length is also stored in
GATE. GATE uses this information to break up long output lines into
segments that do not exceed the device line capacity and to determine
the translation required.

An MCAST macro instruction allows a nonprivileged program to specify
an input translation. In some application programs the terminal type
must be known to perform the appropriate MCAST. The terminal type thus
must be made available to nonprivileged programs. To do this, CZATD now
moves the terminal type from the TCT (TCTDTY) to a field indicating ter-
minal type in the ISA (ISADTY). ISADTY has the same code indicators as
TCTDTY.

At this point a second entry point (CZATD2) is provided for ABEND and
BULKIO to allow them to go to LOGON. A call to LOGON2 is then made for
all tasks. When LOGON2 returns, a check is made for the first express
batch subtask. If it is the first subtask, a call is made to RCR OPEN
with the userid of SYSOPERU. Upon completion of LOGON2, another check
is made for the operator task. If this is the operator task, the main
operator housekeeping (MOHR) routine is called. When MOHR has finished,
CZATD returns to the calling routine. Also, the completion of LOGON2 in
bulk I/0 tasks and abended tasks causes a return to the calling routine.

In all other tasks in the system, except Express Batch, a call is
made to the Task Monitor to QLE to the Command Analyzer and Executor.
The task initiation flag in the ISA is turned off; VMITI-2 returns to its
calling routine.

For an Express Batch task, the source list and dictionary are rein-
itialized for the subtask via a call to LOGONZ2 (CZBTBB) and a return is
made by way of the Task Monitor.

ERROR CONDITIONS: The following error conditions will result in an
ABEND:

1. An attempt to FIND the system message file (SYSMLF) failed.

2. The absence of the LOGON verb on the first SYSIN record of a non-
conversational task.

204

3. An attempt to DDEF a SYSIN data set for a nonconversational task
failed.

4. BAn attempt to update a user table entry failed.
5. Model code in SDA is not 1-4.
6. RCR open for SYSOPERO failed in Express Batch.

SYSTEM CONTROL BLOCK USAGE:

Data Control Block (CHADCB)

Combined Dictionary Header (CHADCT)
Interrupt Storage Area (CHAISA)

Message Control Block (CHAMCB)

New Task Common (CHANTC)

Symbolic Device Allocation Table (CHASDA)
Task Common (CHATCM)

Task Data Definition Table (CHATDT)

User Table {(CHAUSE)

Terminal Control Table (CHATCT)

Section 7: Interruption Processing 205

FLOWCHARTS

The flowcharts in this manual have been produced by the IBM System/
360 Flowchart program, using ANSI symbols.
ANSI symbols and the System/360 Flowchart conventions will simplify

interpretation of the flowcharts in this manual:

A0L

TERMINAL BLOCK

PROCESS BLOCK

NS N ———

SHBRIMIFINE
By oK

1
PREDET {NFD
PROTESS BlLix ¥

3t

NPT

t et
H!\n k

ONPAGE
CONNECTOR

rare

. ’
. »

- .
EEETY

CGEFLRALE
CONNEUTOR

LT Y

206

CEFINITION EXAMPLE

INDICATES AN ENTRY OR MODNAME
TERMINAL POINT IN A FLOW-

CHART; SHOWS START, STOP B3

HALT, 'DELAY, OR INPERRUP'
TION: MAY O INDICATE COMNAME
RETURN TO THE CALLING
PROGKAM.,
FROM: QTHERMOD
CHRRT AZ
CSECT
LRABEL1
NDICATES A PROCESSING
EUNCTLON OR A DEFINED -
ERA SING CHANGE IN
VA N RN RO LOCATT N
OF TNEORMATION.
A_DECISION /R DH
: TYPE OPERATION
| RMIN[‘.S NHI(H OF NOY
A NUMBER OF ALTER
IR I P i
ES
LABELZ ENTRYPT
NE (IR SUBRTN AG
BED
TR THARUAT
V1h: PASSMECH
LABELY
iE o S npNM-

[/ H

14 an'RUl

Mol
SEINTT

DEX RE
R el

AN l
TALLIZES

INDICATES ENTRY TO OR EXIT I
Fr: ANOTHER BLOCK ON THE
SAME FLOWOHART PAGE.

NEXTRTN

INOTG !\'IES ENT TO OR FXIT
Fk\)M A BLOCK ()N hN')'IHPP

PAGE 'F THE SAME SET
FL“WW HARTS.

T,
MAC s
YES
-

NTR\ PT
C
?AS‘:Hh(H

Bl:

C3:

D3

Hi:

These descriptions of the

COMMENTS

MODNAME IS THE LOAD MODULE OR LIBRARY
NAME. OF THE ROUTINE DESCRIBED BY THIS
FLOWCHART .

gg{ﬁNr\ME IS THE COMMON NAME OF THE
(‘THFRM"D INDICATES THE MGDULES PASSING
NTR: T THIS MODULE ANIJ THEIR FLOW-

CSECT IS THE CSECT NAME OR OTHER EN
POINT AT WHICH PROCESSING BEGINS

LABEIA IS THE LABEL OF THE FIRST
NSTRUCTION.

PROGRAM EXECUT LON HLOCK
H! WHEN THE DEC1S

BLOFK E3 WHEN THE

CONTINGES WLTH
ON
BReis ts %k,

l,Ab‘E!,ﬂ 15 Th
CODFE {N THIS
IS FASSED T ‘r
RLTK‘R'\< T

ING THE QJQW IIT(NE lAlu.

LABEL OF THE bh TION OF
ROUTINE FROM WHICH CONTROL
Y E S JBRA»U"“I‘- i TR

INS

ENTEYPT

15 THE ENTRY PoLINT

THE SUB-

COMMON NAMY OF
IWCHART &5

INDICATE!
TOMNAME T St

How CONTROL

N

LABEL ! 18 THE LABEL OF >U' SECTION OF
(0(' FROM WHICH (ONTROL [5 PASSED THE
PREDEFINED PROUVES EDPN‘"‘ vAH[(H s
i‘ﬂ!(‘lMl'f\Tl‘D IN Al CATION

- POP MAY AlLSO BE Ih A PHUCESS -
N, Bl»"'l‘".

E‘{H H’Il\)N o ‘NTINUP“ WITH BLIUK s u~H1N
h Klk 181 H ES, OR WITH BLOUK ON
OF N S QFT OF FLOWCHARTS MH*N
‘INE DECTSTON 15 N

NN l‘\ TOR [NDT
TH BLOwK
FoFLOW
ALKED
fuK DY
LABEL4 IS THE LABEL “F CODE
OF THIS ROUTINE THAT LR
P:FXIRI‘N IS THE COMMO NAME 3 THE ROUT -
THAT EXECUTES AFTER THIS #OUTINE.
ENTRY P s HE EN TRY PL AN'I S NEXTRTN,
WHICH 18) ~0 A

VIAL H OINDICATES HOW L‘”NTR&A
PA:,bE* FR&,V COMNAME TO NEXTRT

Program Logic Manual
GY28-2013-6

Command System

Flowcharts on pages 207-552 were not scanned.

APPENDIX A: SYSTEM CONTROL BLOCK USAGE

This appendix can be used to find the command system modules that use
a specific control block.

Control
Block Modules Using Control Block
AAA User Prompter Attention Handler User Control
ACT ABEND
AIR ABEND PAIR RPS/CVV
AUL ABEND LOGOFF LOGON
RET USAGE
BPK CA&E User Control
BWQ EXECUTE XIP/X1IS
cccC CATALOG DDEF EVV
EXECUTE PCOD?
RET RPS/CVV RELEASE
UPDTUSER VAM Tape
CTT GATE
CVF User Prompter LOGON2Z
DCB GATE User Prompter Text Editor Controller
CONTEXT CORRECT Edit Initialization
EXCERPT EXCISE INSERT
DATA LINE LIST LOCATE
NUMBER Profile Handler REGION
STET UPDATE ABEND
BACK CDD CDS
DATA ERASE/DELETE JOIN
LINE? LOGON LOGON2
MODIFY PERMIT POD?
Procedure
Expander QUIT RPS/CVV
UPDTUSER USAGE VAM Tape
vsSSs LPCMAIN GETLINE
VMTI-2 PROCDEF User Control
DCT Profile Handler LOGON2 VMTI-2
PROCDEF
DEB ABEND RELEASE
DEC GATE ABEND
DEN CASE LOGON2 Procedure Expander
PROCDEF
DHD ABEND LOGOFF POD?
RELEASE VAM Tape
bsc DSS?2/PC?

Appendix A: System Control Block Usage

553

Control
Block

DSE

DSF

DSV

ISA

ITB

LIM

MCB

MEB

MSG

NTC

PCT

PFL

POD

POE

POM

PvT

554

Modules Using Control Block

CONVERT
RET
VAM Tape

CONVERT
CONVERT

CAEE
Attention
Handler
CATALOG
ERASE/DELETE
LOGON
RPS/CVV

User Control
VMTI-2

ABEND
LOGON2

ABEND
LOGON2
VMTI-2

ABEND
XIP/XIIS

EXECUTE

CALE

Attention
Handler

Profile Handler
Procedure
Expander

CAEE

Attention
Handler
LOGON2

User Control
User Profile
POD?

POD?

POD?

DSS?2/PC?
UPDTUSER

DSSs?/9C?
RPS/CVV

RPS/CVV

GATE

ABEND
DSS?/PC?
JOIN
PERMIT
SHARE
VAM Tape
KEYWORD

CANCEL
XIP/X1IIs

CANCEL

GATE
Source List Handler
BACK

Usexr Control
VMTI-2

GATE
DATA LINE
MCAST

LOGON2

RET

EVV
UPDTUSER

User Prompter

CDD

DDEF
LOGOFF
QUIT
UPDTUSER
XIP/X1IIS
VMTI

EXECUTE
XIMS/XIES

EXECUTE

User Prompter

DATA LINE
LOGON2
LPCMAIN
CONTEXT
Edit Initialization
LIST
LOCATE
MATCH
ABEND
LOGON
PROCLEF

User Prompter

Profile Handler
Procedure Expander

RPS/CVV

Control

Block

RED

RQU
SAR

SCM

SDA

SDM

SDS

SLH

SLM

SLP

STK

Modules Using Control Block

ABEND
RELEASE

RELEASE
ABEND

ABEND
LOGON
SECURE

CATALOG
LOGOFF
RELEASE
VMTI

LOGON
ABEND

CAEE
Procedure
Expander

CASE
Procedure
Expander

CAEE
Procedure
Expander

User Control
DSS?/PC?

DSS?/PC?
UPDTUSER

DSS?/PC?

GATE
ABEND
CANCEL
DATA
ERASE/DELETE
FINDJFCB
LOGOFF
PERMIT
RET
SECURE
TIME

VAM Tape
GETLINE
XIP/X1IIS

GATE

LOGOFF
VAM Tape

FLOW

DDEF
RET
TIME

DDEF
LOGON2
VAM Tape
VMTI-2

USAGE

Source List
Handler
User Control

Source List
Handler

Source List
Handler
User Control

QUIT

SCAN
BACK
CATALOG
DSsS?/pPC?
EXECUTE
JOIN
LOGON
POD?
RPS/CVV
SHARE
UPDTUSER
vss
DIAGNO
VMTI-2

CHGPASS

Appendix A:

POD?
LIST

VMTI

JOIN
RPS/7CVV
UPDTUSER

EVV
RPS/CVV
IATP
ABEND

ABEND

IF String Comparison

IF String Comparison

IF String Comparison

ERASE/DELETE

Source List Handler
CDD

CDS
DDEF
FINDDS
LINE?
MODIFY
QUIT
RELEASE
SYSXPAT
USAGE
LPCMAIN
IAIP

LIST
CHGPASS
LOGON2
VMTI

System Control Block Usage

555

Control

Block

TDH

DT

TRN

TSI

USE

556

Mcodules Using Control Block

LOGON

Text Editor
Controller

CDD

DATA

FINDDS
LOGON

POD?
RPS/CVV
VAM Tape

XIP/XIIS

POD?

Text Editor
Controller
STET
TRIN
Transaction

Table Updater

UPDATE
PROCDEF

BACK
ABEND

GATE
JOIN
QUIT
USAGE
CHGPASS

EXCERPT
ABEND
CATALOG
ERASE/DELETE
FINDJFCB
LOGON2

QUIT
RELEASE
LPCMAIN
VMTI-2

DIAGNO

INSERT
CONTEXT
CORRECT
Edit Initialization
EXCERPT

EXCISE
User Control

LOGON

ASEND
LOGOFF
RET
VSss

REGION
BACK
DS
EVV
LOGOFF
MODIFY
RET
USAGE
IAIP
PROCDEF
VMTI

ABEND

REVISE
DATA LINE
LIST
LOCATE
NUMBER

REGION

USAGE

BACK
LOGON
UPDTUSER
VMTI-2

APPENDIX B:

ABEND 0000000 BUILTIN ABEND ,CZASB66
ABENDREG0000000 BUILTIN ABENDREG,CZACP22
ASM 0000000 BUILTIN ASM (CFADAZ1
ASNBD 0000000 PROCDEF ASNBD

ASNBD 0000100 PARAM $1,$2,$3,$4,85,%6,57,$8,$9,$1X,52X,$3X,$4X,$5X,$6X,$7X
ASNBD 0000200 SYSXPAT ASNBD

ASNBD 0000300 $1,$2,$3,54,%$5.5%6,$7,$8,$9,51X,$2X,$3X,$4X,$5X,5$6X,$7X
AT 0000000 BUILTIN AT ,CZAMF11
BACK 0000000 BUILTIN BACK ,CZABC11
BCST 0000000 PROCDEF BCST

BCST 0000100 PARAM TEXT

BCST 0000200 SYSXPAT BCST

BCST 0000300 TEXT

BRANCH 0000000 BUILTIN BRANCH ,CZAMBI1
BUILTIN 0000000 BUILTIN BUILTIN ,CZATP11l
C 0000000 PROCDEF C

C 0000100 PARAM ALPHABET=351

C 0000200 IF '$1'='2';DEFAULT ALPHABET=3
C 0000300 IF '$1'='l"';DEFAULT ALPHABET=4
C 0000400 DEFAULT SYSIN=C

ca 0000000 PROCDEF CA

CA 0000100 DEFAULT SYSIN=C,ALPHABET=3
CALL 0000000 BUILTIN CALL ,CZAMG11
CANCEL 0000000 PROCDEF CANCEL

CANCEL 0000100 PARAM BSN

CANCEL 0000200 SYSXPAT CANCEL

CANCEL 0000300 BSN

CATALOG 0000000 BUILTIN CATALOG ,CZAEIll
CB 0000000 PROCDEF CB

CB 0000100 DEFAULT SYSIN=C,ALPHABET=4
CDD 0000000 PROCDEF CDD

CbD 0000100 PARAM DSNAME,S1

CDD 0000200 DEFAULT SYS$001=* ';IF '$1 '#' ';DEFAULT SY¥YS$001=',6 DDNAME~
CDD 0000300 =$1°

CDD 0000400 SYSCDD DSNAME

CDS 0000000 BUILTIN CDS ,CZAFV11l
CHGPASS 0000000 BUILTIN CHGPASS ,CZATI11l
CLOSE 0000000 BUILTIN CLOSE ,CZCHB11
CONTEXT 0000000 BUILTIN CONTEXT ,CZASM11
CORRECT 0000000 BUILTIN CORRECT ,CZASQ11l
Cps 0000000 BUILTIN CPS ,CZAXX13
cvy 0000000 BUILTIN CVV ,CZAXX12
DATA 0000000 PROCDEF DATA

DATA 0000100 PARAM DSNAME,RTYPE,DBASE,DINCR
DATA 0000200 SYSXPAT DATA

DATA 0000300 DSNAME,RTYPE,DBASE,DINCR
DDEF 0000000 BUILTIN DDEF ,CZAEA1Ll
DDNAME? 0000000 BUILTIN DDNAME? ,CZAEK12
DEFAULT 0000000 BUILTIN DEFAULT ,CZATR12
DELETE 0000000 BUILTIN DELETE ,CZAEJ21
DIRECT 0000000 BUILTIN DIRECT ,CZABAB1l
DISABLE 0000000 BUILTIN DISABLE ,CZASW7
DISPLAY 0000000 BUILTIN DISPLAY ,CZAMD11
DMPRST 0000000 BUILTIN DMPRST ,CZUFAB
DROP 0000000 BUILTIN DROP ,CZ2CM0411
DSS? 0000000 BUILTIN DSS? ,CZAEL11l
DUMP 0000000 BUILTIN DUMP,CZAMD21

EDIT 0000000 BUILTIN EDIT,CZATS2
ENABLE 0000000 BUILTIN ENABLE,CZASW6

END 0000000 BUILTIN END,CZASW22

ERASE 0000000 BUILTIN ERASE ,CZAET11l
EVV 0000000 BUILTIN EVV ,C2CF311
EXCERPT 0000000 BUILTIN EXCERPT,CZASKll
EXCISE 0000000 BUILTIN EXCISE,CZASL1l
EXECUTE 0000000 BUILTIN EXECUTE ,CZAB311
EXHIBIT 0000000 BUILTIN EXHIBIT ,CZAYD31
EXIT 0000000 BUILTIN EXIT ,CZAMZ88
EXPLAIN 0000000 BUILTIN EXPLAIN,CZATJX
FLOW 0000000 BUILTIN FLOW ,CZAGD11
FORCE 0000000 PROCDEF FORCE

FORCE 0000100 PARAM USERID

FORCE 0000200 SYSXPAT FORCE

FORCE 0000300 USERID

FTN 0000000 BUILTIN FTN ,CFADAll
GO 0000000 BUILTIN GO,CZAMC21

HOLD 0000000 BUILTIN HOLD ,CZCM0711
IF 0000000 BUILTIN IF (CZBLT11
INSERT 0000000 BUILTIN INSERT,CZASJ11l
JOBLIBS 0000000 BUILTIN JOBLIBS ,CZAEXI1l
JOIN 0000000 BUILTIN JOIN ,CZAFK11
JOINRJE 0000000 BUILTIN JOINRJE ,CZAB3111
K 0000000 PROCDEF K

Appendix B: SYSPRO 557

K 0000100 PARAM ALPHABET=S$1
K

K 0000200 IF '$1'='3';DEFAULT ALPHABET=2
K 0000300 IF '$1'="'4';DEFAULT ALPHABET=1
K 0000400 DEFAULT SYSIN=K

KA 0000000 PROCDEF KA

KA 000CG100 DEFAULT SYSIN=K,ALPHABET=2

KB 0000000 PROCDEF KB

KB 0000100 DEFAULT SYSIN=K,ALPHABET=1

KEYWORD 0000000 BUILTIN KEYWORD ,CZATH11l
LABEL 0000000 BUILTIN LABEL ,CZABXX
LINE? 0000000 BUILTIN LINE? ,CZAEM11

LIsT 0000000 BUILTIN LIST,CZASPll1l
LNK 0000000 BUILTIN LNK ,CFADA31
LOAD 0000000 BUILTIN LOAD,CZBTG1ll

LOCATE 0000000 BUILTIN LOCATE,CZASN1l

LOGOFF Q000000 BUILTIN LOGOFF ,CZAFN11l
LPDS 0000060 BUILTIN LPDS ,CZAXX14
MCAST 0000000 BUILTIN MCAST ,CZATU21
MCASTAB 0000000 BUILTIN MCASTAB ,CZATU31l
MODIFY 0000000 BUILTIN MODIFY ,CZAEG1ll

MSG 0000000 PROCDEF MSG

MSG 0000100 PARAM USERID=$1,TEXT
MSG 0000200 SYSXPAT MSG

MSG 0000300 USERID=$1,TEXT

MTT 0000000 BUILTIN MTT ,CTCBPKD

NEWMSG 0000000 BUILTIN NEWMSG ,CZATJD
NUMBER 0000000 BUILTIN NUMBER,CZASUll
PATCLEAR0000000 BUILTIN PATCLEAR,CZAFO3
PATFIX 0000000 BUILTIN PATFIX ,CZUPFIX

PC? 0000000 BUILTIN PC? ,CZAEL22
PERMIT 0000000 BUILTIN PERMIT ,CZAFHI11
PLI 0000000 BUILTIN PLI ,CFBAASB
POD? 0000000 BUILTIN POD? ,CZCOX11
rosT 0000000 BUILTIN POST ,CZASW8

PRINT 0000000 PROCDEF PRINT

PRINT 0000100 PARAM DSNAME, STARTNO, ENDNO,PRTSP,S201,5202,5203,5204,5205,5206,5207,5208, -
PRINT 0000200 HEADER,LINES,PAGE,ERASE, ERROPT,FORM,STATION, TAPOPT

PRINT 0000300 IF 'PRTSP'#'EDIT';DEFAULT SYOl='HEADER',SY02='LINES',SY03='PAGE', -

PRINT 0000400 S¥04='ERASE',SY05='ERROROPT',SY06='FORM',SY07='STATION',bSY08="TAPOPT' ;-
PRINT 0000500 PRINT2 DSNAME,STARTNO,ENDNO,PRTSP,Sz01,5203,5204,5205,5206,5207,5Z08
PRINT 0000600 IF 'PRTSP'='EDIT';DEFAULT SY(01l='ERASE',SY022ERROROPT',SY03='FORM', -
PRINT 0000700 SY04='STATION',SY05='TAPOPT';PRINT3 DSNAME,STARTNO,ENDNO,PRTSP,S5%01,5202,5203,-
PRINT 0000800 S5204,SZ05

PRINT2 0000000 PROCDEF PRINTZ

PRINT2 0000100 PARAM DSNAME,STARTNO,ENDNO,PRTSP,SY01,SY02,SY03,5Y04,5Y05,SY06,SY07,5Y08
PRINT2 0000200 SYSXPAT PRINT

PRINT2 0000300 DSNAME,STARTNO,ENDNO,PRTSP,SY01,SY02,SY03,5Y04,5Y05,5Y06,5Y07,5Y08
PRINT3 0000000 PROCDEF PRINT3

PRINT3 0000100 PARAM DSNAME,STARTNO,ENDNO,PRTSP,SY01,SY02,SY03,S5Y04,SY05

PRINT3 0000200 SYSXPAT PRINT

PRINT3 0000300 DSNAME,STARTNO,ENDNO,PRTSP,SY01,SY02,5Y03,5Y04,5Y05

PRMPT 0000000 BUILTIN PRMPT ,CZBTC2

PROCDEF 0000000 BUILTIN PROCDEF ,CZATP12

PROFILE 0000000 BUILTIN PROFILE,CZASZ2

PUNCH 0000000 PROCDEF PUNCH

FUNCH 0000100 PARAM DSNAME,CBIN,STARTNO,ENDNO,STACK,ERASE,FORM

PUNCH 0000200 SYSXPAT PUNCH

PUNCH 0000300 DSNAME,CBIN,STARTNO,ENDNO,STACK,ERASE,FORM

PUSH 0000000 BUILTIN PUSH ,C2AMZ111
QUALIFY 0000000 BUILTIN QUALIFY,CZAMRI11
QUIT 0000000 PROCDEF QUIT

QuUIT 0000100 PARAM USERID

QuUIT 0000200 SYSXPAT QUIT

QUIT 0000300 USERID

QUITRIJE 0000000 BUILTIN QUITRJE ,CZABS211
REGION 0000000 BUILTIN REGION,CZASF1l
REJOIN 0000000 BUILTIN REJOIN ,CZAFK12
RELEASE 0000000 BUILTIN RELEASE ,CZAFJ1l
REMOVE 00000600 BUILTIN REMOVE,CZAMSI11
0000000 BUILTIN REPLY ,CZACA31

0000000 BUILTIN RET ,CZAEN11
0000000 BUILTIN REVISE,CZASHI1
0000000 BUILTIN RPS ,CZAXX11l

0000000 PROCDEF RT
0000100 PARAM VOLUME,TATYPE,USERID,DSNAMEl,DSNAME2,LINE, ERROROPT, ~
0000200 CTLG=51

0000300 IF '$1 '#' ';SYSXPAT RT;CTLG,USERID,DSNAMEl,DSNAME2,LINE, -
0000400 ERROROPT

0000500 IF 'Sl '=' ';SYSXPAT RT;VOLUME,TATYPE,USERID,DSNAMEL,-
0000600 DSNAME2,LINE,ERROROPT

0000600 BUILTIN RTRN ,CZAMZ77

0000000 PROCDEF RUN

0000200 PARAM LOC

0000250 IF 'LOC '=' ';GO
0000300AIF 'LOC'='ASM';SYSASM

RUN 0000400AIF 'LOC'='FTN';SYSFTN

RUN 0000500AIF 'LOC'='LNK';SYSLNK

RUN 0000600AIF 'LOC'#'ASM's&'LOC'#'FTN's'LOC'#'LNK'&'LOC '#' ';CALL LOC
SARD 0000000 BUILTIN SARD ,CZAYEB

SECURE 0000000 PROCDEF SECURE

SECURE 0000100 PARAM $1,$2,83

SECURE 0000200 DEFAULT SY0l='"',Syp2='"'

SECURE 0000300 IF '$2 '#' ';DEFAULT SYO01l=',6$2'

SECURE 0000400 IF '$3 '#' ';DEFAULT SY02=',b$3'

SECURE 0000500 SECUREL $1

SECURE1 0000000 PROCDEF SECUREL

SECURE1l 0000100 PARAM $1,SY01,SY02

SECURE1l 0000200 SYSXPAT SECURE

SECUREl 0000300 $1SY01SY02

SET 0000000 BUILTIN SET,CZAMAll

SHARE 0000000 PROCDEF SHARE

SHARE 0000100 PARAM DSNAME,USERID,OWNERDS

SHARE 0000200 SYSXPAT SHARE

SHARE 0000300 DSNAME,USERID,OWNERDS

SHUTDOWNQOOO0000 PROCDEF SHUTDOWN

SHUTDOWNO0000200 SYSXPAT SHUTDOWN

STACK 0000000 BUILTIN STACK ,CZAMZ101

STET 0000000 BUILTIN STET,CZASV1l

STOP 0000000 BUILTIN STOP,CZAMC11

STRING 0000000 BUILTIN STRING ,CZASBl2

SYNCCAT 0000000 BUILTIN SYBCCAT ,CZUFY1l

SYNONYM 0000000 BUILTIN SYNONYM,CZATRI11

SYSCDD 0000000 PROCDEF SYSCDD

SYSCDD 0000100 PARAM $1,'SYS$001°

SYSCDD 0000200 SYSXPAT CDD

SYSCDD 0000300 $1SYS$S001

SYSPDEF 0000000 BUILTIN SYSPDEF,CZATP12

SYSXPAT 0000000 BUILTIN SYSXPAT,CZATE1ll

TIME 0000000 PROCDEF TIME

TIME 0000100 PARAM MINS

TIME 0000200 SYSXPAT TIME

TIME 0000300 MINS

TV 0000000 PROCDEF TV

v 0000100 PARAM DSNAME1,DSNAME2

v 0000200 SYSXPAT TV

v 0000300 DSNAMEl,DSNAME2

UNLOAD 0000000 BUILTIN UNLOAD,CZBTG21

UPDATE 0000000 BUILTIN UPDATE,CZASR11

UPDTUSER0000000 BUILTIN UPDTUSER,CZAGCl1

USAGE 0000000 BUILTIN USAGE ,CZAGB11

VMEREP 0000000 PROCDEF VMEREP

VMEREP 0000100 PARAM EMPTY

VMEREP 0000200 SYSXPAT VMEREP

VMEREP 0000300 EMPTY

vss 0000000 PROCDEF VSS

vss 0000100 PARAM USER

vSss 0000200 SYSXPAT VSS

vss 0000300AUSER

vT 0000000 PROCDEF VT

vT 0000100 PARAM DSNAME1,DSNAME2

vT 0000200 SYSXPAT VT

vT 0000300 DSNAME1,DSNAME?2

vV 0000000 PROCDEF VV

A% 0000100 PARAM DSNAME1,DSNAME2

vV 0000200 SYSXPAT VV

vV 0000300 DSNAMEL ,DSNAME2

WT 0000000 PROCDEF WT

WT 0000200 PARAM DSNAME,DSNAME2,VOLUME,FACTOR, STARTNO, ENDNO, -
WT 0000300 PRTSP,$1,52,$3,ERASE,HEADER,LINES, PAGE

WT 0000350 DEFAULT SYOl='',SY02='"',SY03='"',&8Y04=""

WT 0000400AIF 'PRTSP'='EDIT';DEFAULT SYO1l=',ERASE';IF '$1'#'';DEFAULT SY0l=',s1"
WT 0000500AIF 'PRTSP'='EDIT';WT2 DSNAME,DSNAME2,VOLUME,FACTOR,STARTNO, ENDNO,PRTSP
WT 0000600 IF 'PRTSP'#'EDIT';DEFAULT SYOl=',6HEADER', -

WT 0000700 SYO02=',LINES',SY03=',6PAGE',SY04="',ERASE’;-

WT 0000800 WT1 DSNAME,DSNAME2,VOLUME,FACTOR,STARTNO, ENDNO,PRTSP,$1,$2,$3
WT1 0000000 PROCDEF WT1

WT1 0000100 PARAM DSNAME,DSNAME2,VOLUME,FACTCR, STARTNO,ENDNO, -
WT1 0000200 PRTSP,$1,52,S$3

WT1l 0000300 IF '$1'#'';DEFAULT SY0l=',$1‘*

WT1 0000400 IF '$2'#'';DEFAULT 5Y02=',$2"'

WT1 0000500 IF '$3'#'';DEFAULT SY03=',b$3"

WT1 0000600 WT2 DSNAME,DSNAME2,VOLUME,FACTOR, STARTNO, ENDNO,PRTSP
WT2 0000000 PROCDEF WT2

WT2 0000200 PARAM DSNAME,DSNAME2,VOLUME,FACTCR,STARTNO, ENDNO, -
WT2 0000300 PRTSP,SY01,SY02,5Y03,SY04

WT2 0000400 SYSXPAT WT

WT2 0000500 DSNAME,DSNAME2,VOLUME,FACTOR, STARTNO , ENDNO, PRTSP~
WT2 0000600 SY01SY02SY03SY04

ZLOGON 0000000 PROCDEF ZLOGON

7222227 0000000 PROCDEF ZZZZZZ

Appendix B: SYSPRO

559

INDEX

Where more than one page reference is flowchart 543
given, the major reference is first. character-kill function 25
CHEKDS subroutine (CZAAC2) 29,12
CHGPASS command routine (CZATI) 94

ABEND (CZACP, CZACQ, and CZACR) 79 flowchart 352
flowchart 314 CHKNUM subrcutine (CZAACS} 32,13
ABEND Interliock Release {AIR} table 136 CKQUAL subrcutine (AMA3) 34
AETD macro instruction servicing 41 CLOSE command routine (CZCHB) 95
AIPS switch 40 flowchart 353
AIR table 136 combined dicticnary 14
ALFBET subroutine (CZAAC6) 33,13 command analyzer and executor
ALFNUM subroutine (CZAAC3) 31,12 (Czasa) 16,11
AMA1 (FINDBLK subroutine}) 35 flowchart 207
AMA2 (VALCHK subroutine) 34 command controller 1,14
AMA3 (CKQUAL subroutine) 34 command routines 2,76-179
AMG1 (SCINIT subroutine} 35 command system
AMG2 (BACKUP subroutinel) 34 functions 1
analyze continuation status (CONT) 26 module interactions 9,3
attention commands operation 3
EXIT 172 organization 1-3
PUSH 172 overview 1-10
RTRN 172 compatibility handler (CZATF1) 162
STACK 172 flowchart 491
STRING 41 CONT (analyze continuation status) 26
attention handler (CZASB) 39,13 CONTEXT command routine (CZASM) 58
flowchart 245 flowchart 270
attention handling, general 13 control blocks 553
attention interruptions, simulated 41 control dictionary handler {(CZASD) 49,14
ATTENTION key 3 DELENT routine (CZASDé) 51

flowchart 261
ENTR routine (CZASDS) 51

BACK command routine {CZABC) 83 flowchart 260

flowchart 332 EXTDIC routine (CZASD7} 52
backspace function 25 flowchart 262
BACKUP subroutine (AMG2) 34 GDV routine (CZASDX) 53
BARD 26 flowchart 264
batch read 26 NEXTRFR routine (CZASD4) 51
batch work queue processor {(CZAYF) 85 flowchart 259

fiowchart 334 PACKVAR routine (CZASDB) 52
buffer fetch 43 flowchart 263
BUILDLIST routine (CZATE2) 142 RFR routine (CZASD3) 50
BUILTIN call processor (CZASA3) 19 flowchart 258
BUILTIN procedure key (BPX) 173 STARTFIX routine (CZASD1} 50
BWQ (batch work queue processor) 85,334 flowchart 256

STARTVAR routine (CZASD2) 50
flowchart 257

CASE (command analyzer and executor) 16,11 conversational task initiation 3
cancel function 25 CORRECT command routine (CZASQ) 59
CANCEL command routine (CZABJ) 86 flowchart 273
flowchart 336 COWARD 23
CATALOG command routine (CZAEI) 87 CPS command routine 152
flowchart 338 flowchart 478
CATVAM (see EVV command routine) CVV command routine 152
CDD command routine (CZAFS) 90 flowchart 478
flowchart 342 CZAAC (SCAN) 27
CDS command routine (CZAFV) 92 flowchart 230
flowchart 347 CZAAC1 (NEXTPAR subroutine) 29
CFADA (LPCMAIN routine) 184,3 CZAAC2 (CHEKDS subroutine) 29
flowchart 536 CZAAC3 (ALFNUM subroutine) 31
CFADB (GETLINE xroutine} 187,3 CZAACYH (NUMSTG subroutine) 32
flowchart 540 CZAACS5 (CHKNUM subroutine) 32
CFADC (PUTDIAG routine} 190,3 CZAAC6 (ALFBET subroutine) 33

560

CZAAD (MSGWR command routine) 135
flowchart 429
CZAAF (virtual memory task
initiation-VMTI) 201
flowchart 549
CZABB (EXECUTE command routine) 111
filowchart 383
CZABC (BACK command routine) 83
flowchart 332
CZABJ (CANCEL command routine) 86
flowchart 336
CZABS (QUIT/JOIN RJE command routine) 120
flowchart 400
CZACP (ABEND) 79
flowchart 314
CZACQ (ABEND II) 79
flowchart 325
CZACR (ABEND III) 79
flowchart 330
C2ACS (place address in AIR table -
PAIR) 135
flowchart 43¢
CZADF (DATA command routine) 98
flowchart 360
CZAEA (DDEF command routine) 100
flowchart 363
CZAEB (FINDJFCB command routine) 115
flowchart 388
CZAEC (FINDDS command routine) 113
flowchart 386
CZAEG (MODIFY command routine) 133
flowchart 427
CZAEH (LOCATE command routine) 67
flowchart 298
CZAEI (CATALOG command routine) 87
flowchart 338
CZAEJ (ERASE/DELETE command routine) 106
flowchart 373
CZAEK (JOBLIBS/DDNAME?
routine) 121
flowchart 403
CZAEL (DSS?2/PC?
flowchart 370
CZAEM (LINE? command routine) 123
flowchart 406
CZAEN (RET command routine) 150
flowchart 476
CZAET (VAM tape command routine) 174
filowchart 515
CZAFH (PERMIT command routine) 136
flowchart 431
CZAF1 (SHARE command routine) 159
flowchart 487
CZAFJ (RELEASE command routine) 148
flowchart 468
CZAFK {(JOIN command routine) 118
flowchart 395
CZAFL (QUIT command routine) 146
flowchart 463
CZAFM (LOGON command routine) 127
flowchart 414
CZAFN (LOGOFF command routine) 125
flowchart 411
CZAFS (CDD command routine) 90
flowchart 342
CZAF¥U (SECURE command routine) 158
flowchart 486
CZAFV (CDS command routine) 92

command

command routine) 104

flowchart 347
CZAGB (USAGE command routine) 166
flowchart 496
CZAGC (UPDTUSER command routine) 165
flowchart 494
CZAGD (FLOW command routine) 116
flowchart 390
CZAHA (program interrupt diagnostic
processor - DIAGNO) 192
flowchart 544
CZAHB (initial attention interrupt
processor - IAIP) 197
flowchart 545
CZAHC (external interrupt processor -
XIP/XI1IIS) 198
flowchart 546
CZAHD (external interrupt subprocessor -
XIMS/XI1ES) 200
flowchart 548
CZAMZ (user control routine) 169
flowchart 499
CZAMZ1 (PCSEXEC) 170
CZAMZ3 (INTERVENE) 171
CZASA (command analyzer and executor) 16
flowchart 207
CZASA2 (verb scanner) 18
CZASA3 (BUILTIN call processor) 19
CZASB (attention handler) 39,13
flowchart 245
CZASC (source list handler) 42
flowchart 248
CZASC1 (source list handler PUSH/POP) 42
CZASC2 (source list handler buffer
fetch) 43
CZASC3/CZASCH (source list handler marker
processor) 44
CZASC5 (source list handler synonym
expander) 45
CZASC6é (source list handler update) 46
CZASC7/CZASC8 (source list handler
SYSIN) 46
CZASD (control dictionary handler) 49
flowchart 256
CZASD1 (STARTFIX) 50,256
CZASDZ (STARTVAR) 50,257
CZASD3 (RFR) 50,258
CZASD4 (NEXTRFR) 51,259
CZASDS5 (ENTR) 51, 260
CZASD6 (DELENT) 51,261
CZASD7 (EXTDIC) 52,262
CZASD8 (PACKVAR) 52,263
CZASDX (GDV} 53,264
CZASF (REGION command routine) 71
flowchart 306
CZASG (DATALINE service routine) 61
flowchart 289
CZASH (REVISE command routine) 72
flowchart 308
CZASJ (INSERT command routine) 66
flowchart 288
CZASK (EXCERPT command routine) 63
flowchart 281
CZASL (EXCISE command routine) 65
flowchart 284
CZASM (CONTEXT command routine) 58
flowchart 270
CZASN (LOCATE command routine) 67
flowchart 298

Index 561

CZASP (LIST command routine) 66
flowchart 292

CZASQ (CORRECT command routine) 59
flowchart 273

CZASR (UPDATE command routine) 74
flowchart 312

CZASS (transaction table updater service

routine) 73
flowchart 311

CZAST (MATCH service routine) 68
flowchart 301

CZASU (NUMBER command routine) 69
flowchart 302

CZASV (STET command routine) 72
flowchart 309

CZASZ (profile handler command routine) 70
flowchart 305

CZATC (GATE) 21,12
flowchart 215

CZATD (VMTI-2) 202
flowchart 550

CZATE (procedure expander routine) 140
flowchart 449

CZATE2 (BUILDLIST routine) 142

CZATE3 (LISTEQ) 143

CZATE4 (DEFSEARCH) 144

CZATES (procedure parameter scanner) 143

CZATF (SYSXPAT command routine) 162
flowchart 491

CZATF1 (compatibility handler) 162
flowchart 491

CZATH (KEYWORD command routine) 122
flowchart 405

CZATI (CHGPASS command routine) 94
flowchart 352

CZATJ (user prompter) 35
flowchart 234

CZATJI2 (MSGSYNTH routine) 36

CZATJ3 (MSGEXPL routine) 36

CZATJ4 (MSGRESP routine) 37

CZATJ7 (EXPTEXT routine} 37

CZATJE (NEWMSG routine) 37

CZATP (PROCDEF routine) 139
flowchart 442

CZATR (SYNONYM/DEFAULT routine) 160
flowchart 488

CZATS (text editor controller) 55
flowchart 265

CZATU (MCAST/MCASTAB macro routine) 132
flowchart 425

CZAVB (TIME command routine) 163
flowchart 492

CZAVR (VSS command routine) 178
flowchart 535

CZAXX (RPS/CVV command routine) 152
flowchart 478

CZAYD (exhibit director) 112
flowchart 385

CZAYE (SARD) 161
flowchart 490

CZAYG (UID) 164
flowchart 493

CZBLT (IF string comparison command

routine) 118

flowchart 394

CZBSE (edit initialization routine) 63
flowchart 280

CZBSY (TRIN) 73

562

flowchart 310

CZBSX (TRUP) 73
fiowchart 311

CZBRTA (TRIN service routine) 73
flowchart 310

CZBTB (LOGON2 command routine) 130
flowchart 418

CZBTC (PRMPT command routine) 139
flowchart 441

CZCFB (EVV command routine) 156
flowchart 378

CZCHB (CLOSE command routine) 95
flowchart 353

CZC0X (POD? command routine) 137
flowchart 432

DATA command routine (CZADF) 98
flowchart 360

DATALINE service routine (CZASG) 61
flowchart 289

DDEF command routine (CZAEA) 100
flowchart 363

DDNAME? command routine (CZAEK) 121
flowchart 403

DEFAULT catalog routine (CZATR1) 160
flowchart 488

DEFSEARCH routine (CZATEU) 144

DELENT routine (CZASD6) 51

DELETE command routine (CZAEJ) 106
flowchart 373

DIAGNO program interruption diagnostic

processor (CZAHA) 192
flowchart 544

dictionary, combined 14

dictionary handler (see control dictionary

handler)

DSS?/PC? command routine (CZAEL) 104
flowchart 370

edit controller 55

edit initialization (CZBSE) 63
flowchart 280

EDIT command routine 55

editor, text
general 54
module interaction 54

end-ocf-block (EOB) function 25

ENTR routine (CZASD5) 51

EOB function 25

ERASE/DELETE command routine (CZAEJ) 106
flowchart 373

escape function 26

EVV command routine (CZCFB) 109
flowchart 378

EXCERPT command routine (CZASK) 63
flowchart 281

EXCISE command routine (CZASL) 65
flowchart 284

EXECUTE command routine
flowchart 383

EXHIBIT director (CZAYD) 112
flowchart 385

EXHIBIT processor
BWQ (CZAYF) 85
UID (CZAYG) 164

EXIT (stack manipulator) 172

(CZABB) 111

EXPTEXT routine (CZATJ7) 37
EXTDIC routine (CZASD7) 52
external interruption processor
(XIP/XIES) 200
flowchart 546

FAVOR 22

FINDDS command routine (CZAEC) 113
flowchart 386

FINDJFCB command routine (CZAEB) 115
flowchart 388

FLOW command routine (CZAGD) 116
flowchart 390

FNDBLK subroutine (AMAl) 35

Format Conversational Output (FAVOR) 22

GASP 22

GATE routine (CZATC)
flowchart 215

GATE supervisor (GASP) 22

GATRD (GATE routine) 22

GATWR (GATE routine) 22

GDV 53,264

get default value (GDV) 53, 264

GETLINE routine (CFADB) 187
flowchart 540

GTWAR (GATE routine) 22

GTWRC (GATE routine) 22

GTWSR (GATE routine) 22

21,12

handling
attention 13,39
control dictionary 49,14
macro instruction 179-182

source list 15,42

IAIP initial attention interruption
processor (CZAHB) 197
flowchart 545
IF string comparison command routine
(CZBLT) 118
flowchart 394
initial attention interruption processor
(see IAIP)
INSERT command routine (CZASJ) 66
flowchart 288
interruption processing 191-205
interruption gueues 191
INTERVENE 171

JFCB, locating (FINDJFCB routine) 115

JOBLIBS command routine 121
flowchart 403

JOIN command routine (CZAFK) 118
flowchart 395

JOIN/QUIT RJE command routine (CZABS) 120
flowchart 400

KEYWORD command routine (CZATH) 122
flowchart 405

Language Processor Controller
(LPC) 183-190,3

LINE? command routine (CZAEM) 123
flowchart 406

LIST command routine (CZASP) 66
flowchart 292

LISTEQ (CZATE3) 143

LOCATE command routine (CZASN) 67
flowchart 298

LOGOFF command routine (CZAFN) 125
flowchart 411

LOGON command routine (CZAFM) 127
flowchart 414

LOGON2 command routine {(CZBTB) 130
flowchart 418

LPCEDIT 173,12

LPCINIT 173,12

IPCMAIN (CFADA) 184
flowchart 536

LPDS routine 156

macro instruction handling 179-182

macro instructions, supported 179

marker processing 44

MATCH service routine (CZAST) 68
flowchart 301

MCAST routine (CZATU) 132
flowchart 425

MCASTAB routine 132

MODIFY command routine (CZAEG) 133
flowchart 427

MSGEXPL routine (CZATJ3) 36

MSGRESP routine (CZATJ4) 37

MSGSYNTH routine (CZATJ2) 36

MSGWR (CZAAD) 135
flowchart 429

NEWMSG routine (CZATJE) 37

NEXTRFR routine (CZASD#) 51

NEXTPAR subroutine (CZAAC1)

nonconversational read 26

nonconversational task initiation 4

null function 25

NUMBER command routine (CZASU) 69
flowchart 302

NUMSTG subroutine (CZAACH)

29,12

32,13

PACKVAR routine (CZASD8) 52
PAIR - Place Address in AIR Table routine
(CZACS) 13¢%

flowchart 430

password changing (CHGPASS routine) 94

PATTER 25

PC? 104

PERMIT command routine {(CZAFH) 136
flowchart 431

Place address in AIR table (PAIR) 135

PLIST 19

POD? command routine (CZCOX) 137
flowchart 432

POP (source list handler) 42

POPSIL (PUSH/FOP routine) 42,20

primary dictionary (SYSPRD) 14

PRMPT command routine 139
flowchart 441

Index 563

PROCDEF command routine (CZATP) 139
flowchart 442

procedure expander routine (CZATE1l) 140
flowchaxrt 449

procedure parameter scanner (CZATES) 143

Process Attention from Terminal

(PATTER) 25

processing

command 3-10

source language 183,3

profile handler command routine (CZASZ) 70

flowchart 305
program interruption diagnostic processor
(DIAGNQ) 192
prompting routine (PRMPT) 139,13
prototype profile, system (SYSPRX) 15
PUSH (source list handler) 42
PUSH (stack manipulator) 172
PUSHSL 42
PUTDIAG routine (CFADC) 190
flowchart 543

QUIT command routine (CZAFL) 146
flowchart 463

QUIT/JOIN RJE command routine (CZABS) 120
flowchart 400

recreate public storage (RPS) 152

REGION command routine (CZASF) 71
flowchart 306

RELEASE command routine (CZAFJ) 148
flowchart 468

RET command routine (CZAEN) 150
flowchart 476

REVISE command routine (CZASH) 72
flowchart 308

RFR routine (CZASD3) 50

RJE, QUIT/JOIN command routine (CZABS) 120
flowchart 460

RPS/CVV/LPDS/CPS command routine

(CZAXX) 152

flowchart 478

RTAM interface with COWARD 23

RTRN (stack manipulator) 172

SARD 161
SCAN package 12
SCAN routines (CZAAC) 27
ALFBET (CZRAC6) 33,13
flowchart 232
ALFNUM {(CZAAC3)
flowchart 232
CHEKDS (CZRAAC2)
flowchart 231
CHKNUM (CZAACS)
flowchart 232
NEXTPAR (CZAAC1)
flowchart 230
NUMSTG (CZAACH)
flowchart 232
SCAN subroutines
BACKUP (AMG2) 34
flowchart 233
CKQUAL (AMA3) 34
flowchart 233

31,12

29,12

32,13
29,12

32,13

564

FNDBLK (AMA1) 35
flowchart 233
SCINIT (AMGL) 35
flowchart 233
VALCHK (AMA2) 34
flowchart 233
SCINIT subroutine (AMG1l) 35
flowchart 233
SECURE command routine (CZAFU) 158
flowchart 486
SHARE command routine (CZAFI) 159
flowchart 487
similated attention interruptions 41

source language processing 183,3
source list 15
Source List handler (C2ASC) 42,15

Buffer fetch routine (CZASC2) 43
flowchart 250
Marker processors (CZASC3,4) 44
flowchart 251
PUSH/POP routine (CZASC1l) §2
flowchart 248
Synonym Expander (CZASC5) 45
flowchart 252
SYSIN routine (CZASC7,8) Uué
flowchart 254
Update routine (CZASC6} 46
flowchart 253
STACK (stack manipulator) 172
STARTFIX routine (CZASD1l) 50
STARTVAR routine (CZASD2) 50
STET command routine (CZASV) 72
flowchart 309
string comparison 118
STRING (attention response) i1l
synonym expansion 45
SYNONYM/DEFAULT catalog routine
(CZATR) 160
flowchart 488
SYNSI {(source list handler SYNONYM
expander) 45
SYSIN routine, Source list handler 46
SYSPRD (primarxy dictionary) 14
SYSPRO, listing of 557
SYSPRX (system prototype profile) 15
System activity processor (CZAYE) 161
flowchart 490
system resource display (see System
activity processor)
system shutdown 10
system startup 3
system support routines 11-14
SYSXPAT command routine (CZATF) 162
flowchart 491

task initiation
batch monitor and BULKIC 4
conversational 3
nonconversational 4
terminal error handler (TERROR) 24
terminal null function 26
termination
conversational task 8
nonconversational task 8
TERROR 24
text editor

general 54,2

interrelation of modules 54
text editor controller (CZATS) 55

flowchart 265

TIME command routine {(CZAVB) 163
flowchart 492

TRAM 25

transaction table initialization
(CZBTA/CZBSY) 73
flowchart 310
transaction table updater (CZASS/CZBSX)
flowchart 311
translate and move input (TRAM) 25
translation function 25
TRIN service routine (CZBTA/CZIBSY) 73

flowchart 310

TRUP service routine (CZASS/CZIBSX) 73
flowchart 311

UID 1le4

update routine, source list handler 46
UPDATE command routine (CZASR) 74

flowchart 312

UPDTUSER command routines (CZAGC) 165
flowchart 494

USAGE command routine (CZAGB) 166
flowchart U496

user control (CZAMZ) 169
flowchart 499

user prompter (CZATJ) 35
flowchart 234
routines

73

EXPTEXT 37
MSGEXPL 36
MSGRESP 37
MSGSYNTH 36
NEWMSG 37
userid informational EXHIBIT processor
(CZAYG) 164

flowchart 493

VALCHK subroutine (AMA2) 34

VAM tape command routine {(CZAET) 174
flowchart 515

verb scanner (CZASA2) 18

VERSE 25

virtual storage task initiation (see VMTI
and VMTI-2)

VMTI (CZAAF) 201
flowchart 549

VMTI-2 (CZATD) 202
flowchart 550

VSS command routine (CZAVR) 178
flowchart 535

WORM (a GATE routine) 23

XIMS/XIES {CZAHD) 200
flowchart 548

XIP/XIIS {(CZAHC) 198
flowchart 546

Index

565

GY28-2013-6

BV

«©

International Business Machines Corporation
Data Pracessing Division

112 East Post Road, White Plains, N.Y. 10601
{USA Only|

IBM World Trade Corparation

821 United Nations Plaza, New Yark, New York 10017
{International]

WOISAS puURUWMOD

‘¥'STQ UT pajutid

9-€£102-8ZX9

EM Technical Newsletter File Number $360-36

Base Publication No. GY28-2013-6

This Newsletter No. GN28-3214
Date February 1, 1972
Previous Newsletters None

IBM System/360 Time Sharing System
Command System

©18M Corp. 1967, 1968, 1969, 1970, 1971

This Technical Newsletter provides replacement pages for the

subject publication. Pages to be ingserted and/or removed are:
135-136

A change to the text is indicated by a vertical line to the
left of the change.

Summary of Amendments

A new return code has been added to the PAIR (CZACS) routine.
This code indicates that an invalid parameter was passed to
PAIR.

IBM Corporation, Dept. 643, Neighborbood Road, Kingston, N. Y. 12401

PRINTED Ny § &

