
File No. 8360-36
GY28-2013-6

Program Logic

Version B.l

IBM System/360 Time Sharing System

Command System

Provides descriptions of the internal. logic of each
Command System module for persons responsible for pro­
gram maintenance and modification. The Command System
consists of modules that process the commands available
to the user, operator, manager, and administrator of
the System/360 Time Sharing System.

Provides the following information for each module:
basic function, entries, modules called, method of
operation, exits, error conditions, system control
blocks used. and a flowchart.

Before using, be familiar with the contents of:

IBM System/360 Time Sharing System:

Concepts and Facilities, GC28-2003

Command System User's Guide, GC28-2001

Manager's and Administrator's Guide, GC28-2024

Operator's Guide, GC28-2033

Have available for reference:

IBM System/360 Time Sharing System: Systero Mes­
sages, GC28-2037

Seventh Edition (September 1971)

This is a major revision of, and makes obsolete,
GY28-2013-5 and Technical Newsletter GN28-3164. This
edition documents the new KEYWORD, CHGPASS, FLOW,
MCAST, and MCASTAB commands, as well as a set of atten­
tion response commands -- EXIT, PUSH, RTRN, STACK, and
STRING. Significant changes will be indicated by a
vertical line beside the changed text.

This edition is current with Version 8 Modification
1 of the IBM System/360 Time Sharing System (TSS/360),
and remains in effect for all subsequent versions or
modifications of TSS/360 unless otherwise noted. Sig­
nificant changes or additions to this publication will
be provided in new editions or Technical Newsletters.
Before using this publication, refer to the latest edi­
tion of IBM Systeml360 Time Sharing System. Addendum,
GC28-2043, which may contain information pertinent to
the topics covered in this edition. The Addendum also
lists the editions of all TSs/360 publications that are
applicable and current.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form is provided at the back of this publication for reader's com­
ments. If the form has been removed, comments may be addressed to IBM
Corporation, Time Sharing System/360 Programming Publications, Depart­
ment 643, Neighborhood Road, Kingston, New York 12401

o Copyright International Business Machines corporation
1967,1968,1969,1970,1971

This manual, a guide to the logical
structure and functions of the TSS/360 Com­
mand System, is designed to be used with
the individual assembly listings: it does
not discuss the machine-language module
structure. The symbols that appear here
correlate with those used in the listings.

This manual is intended for persons
involved in program maintenance and
modi fica tion.

The manual has 8 sections. Section 1
introduces the Command System. Sections 2
through 7 describe the logical divisions of
the system: Command Controller, Text Edi­
tor, command routines, macro instructions,
source language processing, and interrup­
tion processing; Section 8 contains flow­
charts for the command system modules. The
manual also includes two appendixes: Sys­
tem control block usage and a copy of
SYSPRO.

Each description of a command system
module includes:

• Common and symbolic module names.

• All entry points to the module, and the
use of each entry point.

• Basic module functions. (Unless other­
wise noted, modules will operate in
conversational and nonconversational
modes.)

• All module exits. In most cases, the
standard exit is a return to the cal­
ling routine, via the RETURN macro
instruction.

• All modules called and the reason for
each call. If the called module is

PREFACE

within the command system, its common
and symbolic module names will be
listed: for other modules, the common
name and symbolic name, if applicable,
are given.

• An explanation of module operation,
with a discussion of the principal
logic paths.

• All error conditions recognized by a
module, and the actions taken for each
condition.

• All system control blocks referred to
by a module.

• Flowcharts.

To use this publication you need the
information in:

IBM System/360 Time Sharing System:

Concepts and Facilities, GC28-2003

Command System User's Guide,
GC28-2001

Manager's and Administartor's Guide,
GC28-2024

operator's Guide, GC28-2033

If you intend to use this book to debug
programs, you need the following reference
publication:

IBM System/360 Time Sharing System:
System Messages, GC28-2037

iii

SECTION 1: COMMAND SYSTEM OVERVIEW
Command System Functions
Command System Organization

command Controller • • • •
Text Editor . • .
Command Routines • • • • • • •
Macro Instruction Processing
Source Language Processing
Interruption Handling • • • •

Command System Module Interactions
Command System Operation . • • • • •

System Startup • • • • • • • • •
Conversational Task Initiation
Nonconversational Task Initiation
Processing A Command
Terminating A Conversational Task
Terminating A Nonconversational Task
Processing Macro Instructions
System Shutdown • . • • • •

SECT ION 2: COMMAND CONTROLLER • •
Command Analysis and execution
GATE Routine .•••
SCAN Package • . • •
User Prompting
Attention Handling
Source List Handling
Control Dictionary Handling • •
The Combined Dictionary • .
The Source List . • • • • •
Command Controller Routines •

Command Analyzer and Executor (CZASA)
GATE Routine (CZATC) ••••
SCAN Routines (CZAAC) • • • •
User Prompter Routines (CZATJ)
Attention Handler Routine (CZASB)
Source List Handlers (CZASC)
Control Dictionary Handler (CZASD)

SECTION 3: TEXT EDITOR . • • • • • •• • •••

CONTENTS

1
1
1
1
2
2
2
3
3
3
3
3
3
4
7
8
8

10
• 10

• 11
• 11

• . • • 12
• • • • • • 12

• . • • 13
· • 13

13
• 14
· 14
• 15
• 16

• • 16
21

• 27
35

• 39
42

• 49

· 54
Text Editor Controller -- EDIT Command Routine (CZATS1/CZATS2) • 55
CONTEXT Command Routine (CZASM) • • • •
CORRECT Command Routine (CZASQ) • • • •
DATALINE Entry Service Routi ne (CZASG)
Edit Initialization Routine (CZBSE) •
EXCERPT cowmand Routine (CZASK) •
EXCISE Command Routine (CZASL)
INSERT Command Routine (CZASJ)

• 58
• • 59

• 61
• 63

• • • • 63
• 65

• • 66
LIST Command Routine (CZASP) • • •• • 66
LOCATE Command Routine (CZASN)
MATCH Service Routine (CZAST) • •
NUMBER Command Routine (CZASU)
Profile Handler Command Routine (CZASZ) • • • • ••
REGION Command Processor (CZASF) • • • .
REVISE Command Routine (CZASH) •••• • • • •
STET Command Routine (CZASV) ••••••••••.

• • • • 67
• • 68

69
• 70

· . . . 71
• • 72

• 72
Transaction Table Initialization Routine (CZBTA/CZBSY) - TRIN •
Transaction Table Updater Service Routine (CZASS/CZBSX) - TRUP

• 73
73

UPDATE Command Routine (CZASR) • • • • . • • • • • • • 74

v

SECTION 4: COMMAND ROUTINES. • • • • • 76
ABEND (CZACP, CZACQ, and CZACR) • • • • • • 79
BACK Command Routine (CZABC) •••• • • • • • 83
Batch Work Queue (BWQ) EXHIBIT Processor (CZAYF) • 85
CANCEL Command Routine (CZABJ) • • • • 86
CATALOG Command Routine (CZAEI) • • • • • 87
CDD Command Routine (CZAFS) • • • • • • • • • 90
CDS Command Routine (CZAFV) • • • • • 92
CHGPASS command (CZATI) • • • • • • • • 94
CLOSE Command (CZCHB) • • • . 95
DATA Command Routine (CZADF) ••••• • • • • . 98
DDEF Command Routine (CZAEA) • • • • • • • .100
DSS?/PC? command Routine (CZAEL) ••••• 104
ERASE/DELETE Command Routine (CZAEJ) •••••••• .106
EVV Command Routine -- CATVAM (CZCFB) • • • • • • • •• 109
EXECUTE Command Routine (CZABB) • • • • • • . • • • • .111
EXHIBIT Director (CZAYD) •••••••• 112
FINDDS Routine (CZAEC) ••••• • .113
FINDJFCB Routine (CZAEB) •••• .115
FLO~J Command Processor (CZAGD) • • • • .116
IF string comparison Routine (CZBLT) . • • • •• 118
JOIN/REJOIN Command Routine (CZAFK) • .118
JOINRJE/QUITRJE Command (CZABS) • • • • • • • .120
JOBLIBS and DDNAME? Commands (CZAEK) ••••.••••••••. 121
KEYWORD Command Routine (CZATH) • • • • • • • .122
LINE? Command Routine (CZAEM) • • • • • • .123
LOGOFF Command Routine (CZAFN) • • • . • .125
L(x;ON (CZAFM) • • • • • • • • • . . • • • • • • • •• 127
LOGON2 Command Routine (CZBTB) • • • • • • .130
MCAST/MCASTAB Routine. • • • • • ••• • • • • • .132
MODIFY Command Routine (CZAEG) .133
MSGWR (Message Write) Routine (CZAAD) •••••• 135
Place Address in AIR Table (CZACS) - PAIR. .135
PERMIT Command Routine (CZAFH) •••• • ..• 136
POD? Command Routine (CZCOX) • • • • • • . •. 131
PRMPT Command Routine (CZBTC) • • • • • • .139
PROCDEF Routine (CZATP) • • • • • • ••.•••••••••. 139
Procedure Expander Routines (CZATE) • • • • • .•• 140
QUIT Command Routine (CZAFL) • • • • .146
RELEASE Command Routine (CZAFJ) • • • • •••. 148
RET Command Routine {CZAEN} • • • • • . • • • • • • • .150
RPS/CVV/LPDS/CPS Command Routine (CZAXX) • • • • • • .152
Recreate Public Storage (kPS) .. 154
Catalog VAM Volwne (CVV) •••. • . • • . • .156
List Public Storage (LPDS) • • • • • .156
Cle.m Public Storage (CPS) • • • • .156
SECURE Command Routine (CZAFU) •.•• . •. 158
SHA,.lli Command Routine (CZAFI) • . • • • • • • . • • • .159
SYNONYM/DEFAULT Catalog Routine (CZATRl) ...• • ••• 160
system Activity and ~esources Display (SARD) Processor (CZAYE) .161
SYSXPAT Command Rout.ine (CZATF) • • • • • • .162
Compatibility Handler (CZATFl) • • • • . • • • .162
TIME Command Routine (CZAVB) •.•••••••••... • .163
Userid Intorll'ational CUID} EXHIBIT Processor (CZAYG) .164
UPDTUSER COll'mand Routine (CZAGC) •••. 165
USAGE Command Routine (CZAGB) • • . • • • •. • .166
User Control (CZAMZ) •••••. •• • • .169
VAM Tape Command Routine (CZAET) • • • • • .174
VSS Command Routine (CZAVR) • • • • • • • • • • .178

SECTION 5: MAC~O INSTRUCTION HANDLING • . • • • • ••• . .179
•• 181

.181
• • • .182

vi

~acro Instructions that Call Command Routines • • • • •
Macro Instructions that Call Command support Routines • .
l"Jacro lnstructions that call Subsystem Su~port Routines •

Macro Instructions That Communicate With Other Tasks

SECTION 6: SOURCE LANGUAGE PROCESSING
LPCMAIN (CFADA) • • • •
GETLINE Routine (CFADB) • • • • •
PUTDIAG Routine (CFAOC) • • • • •

SECTION 7: INTERRUPTION PROCESSING ••••••••

.182

.183

.184
• .187

.190

.191

.192
• .197

Program Interruption Diagnostic Processor - DIAGNO - (CZAHA)
Initial Attention Interruption Processor - IAIP - (CZAHB)
External Interruption Processor - (XIP/XIIS) - (CZAHC)
External Interruption Subprocessor - XIMS/XIES - (CZAHD)
Virtual Memory Task Initiation - VMTI - (CZAAF) • •

• .198
• ••• 200

.201

.202 Virtual Memory Task Initiation II - VMTI II (CZATD)

FLOWCHARTS .206

APPENDIX A: SYSTEM CONTROL BLOCK USAGE • ••• 553

APPENDIX B: SYSPRO • • • .557

INDEX • • • .560

vii

ILLUSTRATIONS

Figure 1. Explanation of LOGON procedure 4
5
6
7
8
9

Figure 2. Initial command entry procedure • • • • • • • • • • •
Figure 3. Execution of BUILTIN procedure • • • • • • •
Figure 4. Execution of a textual procedure •••• 0 •••• 0

Figure 5. Execution of PCS commands ~ith Direct Call
Figure 6. Modular relationship of the command system 0 •••

Figure 7. Interaction of COWARD and RTAM TCS •••••• 0 0 •

Figure 8. Attention processing with AET connected •••••••
Figure 9. Interrelation of Text Editor Command Processor and

• • 24
• • 40

Service routines .••••••••• 0 • • • • • • • • • • . 54
Figure 10. Overvie~ of the Text Editor Controller logic • • • • • • 51

• 76
• • .179

Figure 11. Command routines • • • • • •• • • • • • • • •
Figure 12. Macro instructions supported by the command system

Chart AA.
Chart AB.
Chart AC.
Chart AD.
Chart AE.
Chart AF.
Chart AG.
Chart AH.
Chart AI.
Chart AJ •
Chart AK.
Chart AL.
Chart AM.
Chart AN.
Chart AO.
Chart AP.
Chart AQ.
Chart AR.
Chart AS.
Chart AT.
Chart AU.
Chart AV.
Chart AW.
Chart AX.
Chart AY.
Chart AZo
Chart BA.
Chart BB.
Chart BC.
Chart BD.
Chart BE.
Chart BF.
Chart BGo
Chart BH.
Chart BI.
Chart BJ •
Chart BK.
Chart BL.
Chart BM.
Chart BN.
Chart BO.
Chart BP.

viii

Command Analyzer and Executor - CZASA
GATE - CZATC • • 0 0 •

SCAN routines - CZAAC
User Prompter - CZATJ
Attention Handler - CZASB
Source List Handlers - CZASC •
Control Dictionary Handlers - CZASD
EDIT Controller - CZATS • • • • • •
CONTEXT - CZASM • • • • • 0 • • • • •

• • .207
.215

• .230
.234

· .245
• • • • • • .248

. • • .256
• .265

.270
CORRECT Command Processor - CZASQ • • • • .213
EDIT Initialization - CZBSE •••••• 280
EXCERPT - CZASK • • • • • • • • • . 281
EXCISE Command Processor - CZASL .284
INSERT Command Processor - CZASJ • • • • • • .288
DATALINE Entry - CZASG • • • • • • • • .289
LIST - CZASP • • • • • • • • • .292
LOCATE - CZASN • • • • • • . 298
MATCH - CZAST • • • • • • • • • .301
NUMBER Command Processor - CZASU ••••• .302
Profile Handler - CZASZ • • • • • • • • • • • .305
REGION - CZASF • • • • • • • • • • • .306
REVISE Command Processor - CZASH • • • • • • • .308
STET Processor - CZASV • • • • • • • • • • • • .309
Transaction Initialization routine (TRIN) - CZBTA/CZBSY .310
Transaction Table Update (TRUP) - CZASS/CZBSX .311
UPDATE Command Processor - CZASR • • .••••• 312
ABEND - CZACP/CZACQ/CZACR ••••••. 314
BACK - CZABC • • • • • • • • • • • ••• 332
BWQ EXHIBIT Processor ••• 0 • • • • .334
CANCEL - CZABJ • • • • • • • •• .336
CATALOG - CZAEI • 0 .338
CDD - CZAFS .••• 0 ••••••• 342
CDS - CZAFV .341
CHGPASS - CZATI 0 0 ••• 0 •••••• 352
CLOSE - CZCHB .353
DATA - CZADF 0 • • • • • • • • • • .360
DDEF - CZAEA • • • • 0 • • .363
DSS?/PC? - CZAEL
ERASE/DELETE - CZAEJ •
CATVAM - CZCFB •
EXECUTE - CZABB
EXHIBIT Director - CZAYD

.310
• • • • • • • • • • .373

.378
• .383

.385

Chart BQ. FINDDS - CZAEC · · 0386
Chart BR. FINDJFCB - CZAEB · · · · · · .388
Chart BS. FLOW - CZAGD · · · · · · .390
Chart BT. IF string comparison - CZBLT · 0 · · .394
Chart BU. JOIN - CZAF.K · · · · · .395
Chart BV. JOINRJE/QUITRJE - CZABS · · · · · · · · · .400
Chart BW. JOBLIBS - CZAEK · · · · .403
Chart EX. KEYWORD - CZATH · .405
Chart BY. LINE? - CZAEM · · · · · · · · · .406
Chart CA. LOGOFF - CZAFN · · · · · · .411
Chart CB. LOGON - CZAFM · 0 · · · · .414
Chart CC. LOGON 2 - CZBTB · · · · · · · · 0 · · 0 · · .418
Chart CO. MCAST - CZATU · · · · · · · · · .425
Chart. CEo MODIFY - CZAEG · · · · · · · 0427
Chart CFo MSGWR - CZAAD · · · · · · · .429
Chart CG. PAIR - CZACS · · · · · · · · · · · .430
Chart CH. PERMIT - CZAFH · · · · · .431
Chart CI. Parameter Analysis (POD) - CZCOX · · · · · · · · · · .432
Chart CJ • PRMPT command - CZBTC · · · · .441
Chart CK. PROCDEF - CZATP · .442
Chart CL. Procedure Expander - CZATE · · · · .449
Chart CM. QUIT - CZAFL · · · · · · · .463
Chart CN. RELEASE - CZAFJ 0 · · · · · · · · · .468
Chart CO. RET - CZAEN · · · · · · · · · · · .476
Chart CPo RPS/CVV routine - CZAXX · · · · .478
Chart CQ. SECURE - CZAFU · · · · · · · · · · · .486
Chart CR. SHARE - CZAFI 0 · · 0 · · 0 0 0 0 · · · · .487
Chart CS. SYNONYM/DEFAULT - CZATR · 0 0 · · · · · .488
Chart CT. SARD Processor - CZAYE · · .490
Chart CU. SYSXPAT - CZATFl · · · · · · · · · · · · · .491
Chart CV. TIME - CZAVB · · · · · · · 0 · · .492
Chart, CWo UID Processor - CZAYG · .493
Chart CX. UPDTUSER - CZAGC · · · · · · · · · .494
Chart CYo USAGE command - CZAGB · · · · · .496
Chart CZ. User Control - CZAMZ · .499
Chart DA. VAM tapes - CZAET -- Entry and Initialization · .515
Chart DB. VSS - CZAVR · · · · · .535
Chart, DC. LPCMAIN - CFADA · · · · .536
Chart DO. GETLINE - CFADB .540
Chart DE. PUTDIAG - CFADC · .543
Chart DF. DIAGNO - CZAHA · · · · · · · .544
Chart DG. IAIP - CZAHB · · · · · · .545
Chart DH. XIP/XIIS - CZAHC · · · · · · · .546
Chart Dr. XIMS/XIES - CZAHD .548
Chart OJ. VMTI - CZAAF · · · · · · · · · · · .549
Chart DK. VMTI-2 - CZATD · · · · · · · · · · · · .550

ix

SECTION 1: COMMAND SYSTEM OVERVIEw

COMMAND SYSTEM FUNCTIONS

The command system has three basic functions:

1. Receive and interpret commands submitted by users of the time­
sharing sharing system.

2. Carry out the actions requested by each valid command.

3. Inform the user of the results of the actions performed or, if a
command is invalid, inform him of his error so that he may correct
it.

The command system has been designed to meet a number of maior objec­
tives that include facilities to:

• Provide the user with the ability to define his own commands.

• Permit the user to call his programs or procedures by direct
commands.

• Standardize command syntax.

• Provide default and profile facilities.

• Provide a general editing capability.

The command system accepts all commands described in Command System
User's Guide, Manager's and Administrator's Guide, and Operator's Guide
(Full titles and order numbers of these publications are shown in the
preface.) Commands may be accepted directly from a user at his termin­
al, or indirectly from a set of commands previously stored in the time­
sharing system. The command system also processes a number of macro
instructions that may be employed in user object programs; the expansion
of these macro instructions results in object code that will link to the
appropriate command system module at execution time.

The command system also contains a collection of service routines,
almost all of them privileged, which operate in virtual storage under
the control of the task monitor.

Each TSS/360 task includes a task monitor and some portion of the
command system. The specific modules that appear in the task depend, of
course, on the actions requested in that task. The task monitor handles
all interruptions, and calls upon the command system as needed. In
turn, the command system calls upon the TSS/360 general service, catalog
service, and access method routines; it also requests system functions
through supervisor calls, such as VSEND and TSEND. All actions per­
formed by the resident supervisor, such as paging and time slicing, do
not influence the command system operation.

COMMAND SYSTEM ORGANIZATION

Command Controller

The command controller consists of the Command Analyzer and Executor
as the highest control routine; to this routine is added other routines
to handle procedures, defaults, synonyms, and comments. Also. the lan-

section 1: Command System Overview 1

guage processor controllers and text editor are driven by the command
controller.

The basic control of the command controller is done by the Command
Analyzer and Executor. The Command Analyzer and Executor is invoked
upon initial task entry. It may also be invoked recursively by a user,
upon intervention of an object program, or during language processor
control. This routine calls the Verb Scanner to determine the verb type
from the control dictionaries. The verb operands are translated and a
command routine is called to execute the verb.

Normal procedures are handled by the Procedure Expander, which scans
for procedure parameters, retrieves the procedure from the procedure
library, and performs character substitution of the parameter specifica­
tion for each occurrence of the dummy parameter in the procedure model.

Text Editor

The Text Editor commands help make it possible for data sets to be
created and maintained. Lines of data may be edited within an existing
VISAM data set or as they are entered into a VISAM data set. The User
Control routine provides the principal interface between the Text Editor
routines and the remainder of the command system, as most Text Editor
routines operate in a nonprivileged state. The Edit Controller, which
is external to the text editor (but also nonprivileged), provides an
interface with the other modules in the system. All Text Editor com­
mands are BUILTIN-created; each BPKD points to a common entry point
located in the User Controller. After locating the BPKD, User Control
supervises the execution of the command.

Command Routines

The largest part of the command system consists of command routines,
almost all of which are privileged BUILTINs. Typically, each of these
processes a single command or macro instruction by calling general ser­
vice routines and other command routines, in a prescribed order, to
carry out the requested actions. The operation of the command routines
is basically the same: They are called by the Command Analyzer and
Executor (or by another command routine or macro instruction); they make
use of routines in the command controller to get input and issue output;
they call general service routines as needed; and, when finished, they
return to their calling routine. For an external description of the
commands, consult the appropriate guide (listed in the preface). The
command routines are contained in Section 4 with the exception of the
PUNCH, PRINT, WT, RT, ASNBD, FORCE, HOLD/DROP, MSG/BCST, REPLY, SHUT­
DOWN, and XWTO routines. These routines are described in the Operator
Task and Bulk I/O PLM, GY28-2047.

Several modules that perform support functions for the command rou­
tines are also described in Section 4.

Macro Instruction Processing

The command system handles many macro instructions. In general,
expansion of those macro instructions produces object coding that links
to a command system routine. Usually, the linkage is to a special macro
instruction entry point in the routine so that the routine will not
issue messages, but instead will return a code to show the processing
results. Some command system modules (for example, those used to access
SYSIN and SYSOUT) are linked to only by macro instructions. Other com­
mand system routines may be called by macro instructions and commands.
See section 5.

2

Source Language Processing

Three command system modules, LPCMAIN, GETLI~, and PUTDIAG, serve as
an interface between the language processors (FORTRAN compiler, assembl­
er, and linkage editor> and the user. or his prestored source program.
These modules get parameters for the language processors, get source
lines. and pass language processor diagnostics to SYSOUT. See Section
6.

Interruption Handling

The command system includes several modules that are entered by the
task monitor for the following types of interruptions: the external
interruption caused by intertask messages; some program interruptions;
and the initial attention interruption of a conversational task. See
Section 7.

COMMAND SYSTEM MODULE INTERACTIONS

Command system modular interact_ion is most easily understood as a
function of time. ThUS, the figures shown in this section are develop­
mental. tracing command system inte.raction during the execution of spe­
cific functions. The first two are initialization functions:

Figure 1 - Explanation of the LOGON Procedure
Figure 2 - Initial Command Entry Procedure

The command entered may be a BUILTIN call (such as CDS or EDIT), a tex­
tual procedure, or a Rdirect call. w (This last could be a dynamic
statement or a LOAD, UNLOAD, or parameterless CALL command.) Figures 3,
4. and 5 demonstrate the command system's general optration in these
cases. Figure 6, the last figure in this section, presents the overall
linkage of command system modules.

The command system contains two centers of information, the source
list (SL) and the combined dictionary. All commands in the system are
read from the source list. The combined dictionary is the source of the
names of all procedures, synonyms, defaults, and command variables.

The source list is a list of pending transactions. When the proce­
dure capability was added it became possible to stack commands. The use
of a procedure verb will result in the procedure expander placing more
verbs in the source list. Execution continues until all of the verbs in
the source list have been processed.

COMMAND SYSTEM OPERATION

The following paragraphs describe the general operation of the com­
mand system. The description begins with the command system operation
at system startup, and continues to system shutdown.

System Startup

At system startup, command system initiates the main operator's task,
and peforms the following prefatory functions: opens the operator's
log, initiates the batch monitor task so that it can start operating,
and readies the system for normal time-sharing operations.

Conversational Task Initiation

When a user causes an initial ATTENTION at his terminal, by pressing
the attention key or by dialing the telephone number to initiate conver-

Section 1: Comrrand System Overview 3

sational operations, the resident supervisor establishes a task for him.
The task monitor links to the command system's Initial Attention Inter­
rupt Processor, which performs a variety of task initialization func­
tions; these include definition of the system library and other system
data sets, and identification of the user's terminal as the SYSIN and
SYSOUT for the task. The LOGON command routine is then called to start
conversational processing by prompting the user for his credentials.

Nonconversational Task Initiation

The user has three ways to start nonconversational tasks: he may
issue an EXECUTE or BACK command from his terminal after he has logged
on; he may issue a bulk input/output command (PUNCH, WT, or PRINT); he
may submit a punched sequence of commands to the operator who will input
them via a high-speed card reader or the RT command.

IAIP (CZAHB) Entered from T osk Monitor on
Save T osk Mani tar initial attention interruption
linkage in
NTCTMR.

VMTI (CZAAF)

Adds public devices
Opens SYSCAT
Opens SYSSVCT

DDEF (CZAEA): Create JFCB,
for all system data sets

F!NDJFCB (CZAEB): Find
SYSLIB DCB

Open SYSLIB DCB

TIME (CZAVB): Initialize time

VMTI-2 (CZATD)
Open SYSMLF
Find VPAM member SYSMLF

LOGON (CZAFM)

• Get LOGON paromete~ from real core via SVC.
• Validate LOGON paramete~.
• Complete user tables.
• Put solutation message.
• Tell operator.

LOGON2 (CZBTB)
• Open SYSLIB and USERLIB DCBs.
• Find USERLIB (SYSPRO) and USER LIB (SYSMLF).
• Open SYSLIB (SYSPRO) and SYSLIB (SYSPRD).
• Construct combined dictionary from USERLIB

and SYSUB.
• Enable Command System Attention Handler.

COMMAND ANALYZER AND EXECUTOR (CZASA)
Obey ZLOGON.

Queue linkage Entry to CZASA

Return to Task
Monitor via NTCTMR

Figure 1. Explanation of LOGON procedure

4

As a result of the OLE Set up by VMTI-2 during LOGON, the Command Analyzer and Executor is coiled to service the user's commands ...

COMMAND ANALYZER (CZASA 1)

Call, CZASCI to create new
subli.t

Call. CZASA2 to isolate verb

VERB SCANNER (CZASA2)
Recognizes that there is nothing
in the SL subli,! (EOB).
Calls CZASC4 to process the
E morker

Begins scanning at start of
Subli st ago; n. Isolates and
validates verb. Retums
pointer to Command Analyzer.

SOURCE LIST HANDLERS

CZASC 1: Recognizes
that there is no
previous sub Hst and
sets first subli,t
flag on.

CZASC4: Sets up ta read
;;-;;-ew line into the SL ot
the first subli.! position.

Puts line in SL sublist.
Inserts E marker after this
line. Verb now available
for verb scanner

DICTIONARY HANDLERS

GATE (CZATCl)
~;;,p;:;--

user

Reads command
from user

Calls CZASD to find verb
in combined dictionary. f-----~ Searches di ctionory r---''------,

for verb.

Command is ane of these types: 1-----4 Returns a pointer

• BUILTIN
• Textual Procedure
• Direct call

Figure 2. Initial command entry procedure

For an EXECUTE or BACK command, the Command Analyzer and Executor
reads the command entered at the terminal and, after checking the com­
mand name, calls the EXECUTE or BACK command routine. EXECUTE validates
the command operand, and sends a request to the batch monitor to start a
nonconversational task. The batch monitor requests a task status index
(TSI) for the new task, and initiates the task by sending a message to
it; the resulting interruption acts in the same manner as the initial
attention interruption of a conversational task. The task monitor and
the command system of the new task respond to the interruption by per­
forming the necessary task initialization, and the command system then

section 1: Command System overview 5

COMMAND ANALYZER
(CZASA 1)

Has determined that the
verb is a valid BUILTIN
procedure

BUILTIN PROCESSOR (CZASA2)

Resolves BPKD symbol.

arameters
Expected

?
No

Yes

No

PROCEDURE PARAMETER EXPANDER

CZA TE3, Analyze parameters

CZATE4, Fill in any default
values

USER CONTROL (CZAMZ)
Privileged
BUILTIN

Yes

>---+-....... ~CZAMZ1: Uses Tosk Monitor
to dispatch nonprivi feged
BUILTIN. R13: reflects Task
Monitor Save Area.

PROCESSING
MODULE

Could be a
command like
DDEF or PC?
or a legal PCS
procedure

Invokes PCS Phose II f.-
processing (CZANA) '--_____ ...J

if legal PCS procedure
bei ng processed.
Updates the source
list.

CZASA5

Uses Verb Scanner
to get next verb
and conti nues
processing

R 14: CZAMZ19.
R15, Address of BUILTIN. LVPSW TASK
PSW, Address of BUILTIN. f--- MONITOR NONP~IVILEGED

I Dispatches -- BUILTIN:
I I routi ne May be "se r
I add ressed code or en
I I in PSW LPC like the
I I Editor.

I I
r------~I > I---~-----,

RETURN
CZAMZ2, ~ZAMZl9 (}---
Cleons up and 1.----..1

does level
checking. In this
instance, returns to
CZAMZ1's calling
routine ot a special
entry point.

Figure 3. Execution of BUILTIN procedure

fetches its commands from the prestored data set that serves as SYSIN
for the nonconversational task. BACK changes the mode of a task from
conversational to nonconversational; it uses the batch monitor only to
ensure that a new background task is permissible at this time and, if it
is, sets the TSI to indicate nonconversattonal mode. Commands will sub­
sequently be read from the data set specified in the BACK command.

PUNCH, PRINT, and WT commands may appear in conversational and non­
conversational tasks; RT commands may be issued only in the operator's
conversational task. For each of these commands, the Command Analyzer
and executor validates the command name, and calls the BULKIO preproces­
sor. The preprocessor ensures that the command operands are acceptable;
the user will be prompted, if necessary, and the preprocessor concludes
with a request to the batch monitor for task initiation. The batch mon­
itor operates in the same way as it would for an EXECUTE. There is no
actual SYSIN for bulk input/output tasks. The SYSIN is a sequence of
object code supplied as part of the command system; it is not the usual
prestored series of commands.

6

COMMAND ANALYZER
_~ZASA1)

~ROCEgURE PAR.A.METER EXPANDER (CZ;\lEJ)
Has determined that input
verb represents a textual
procedure - • Locate procedure in PROCLIB.

VERB SCANNER (CZASA2)

Isoiate and analyze verb
frorn sOurce itst - os
created by Procedure
Parameter Expander.

Process verb as required.

Figure 4.

processing A Command

• Isolate and va I i date verb.
• Set the starting address in the source

list for a parameter scan.

~
nY

Colling Yes

Paro~eters

No

QIE~E~~~t:LKZA .lt4)

BUILDUST~~Tg\

Build the ELiST and
the INST from dummy
parameters.

LlSTEQ (CZA TE?)

Bui Id P LIST from
calling paramt!te~.

SCAN (CZATE5)
Isora-tes- -0 -p-ora-meter
string fragment for
both BUILOUST and
lISTEQ

Insert defoul t
values into PLiST. ~BPA~A}IIETJI<..2EI\IL<;:l±

~IEQ: Seeks
subparometers

• Complete HI ring in source !Ist.

Execution of a textual procedure

The Command Analyzer and Executor starts command processing by
obtaining the next command to be processed from the tasks' SYSIN. The
routine checks the validity of the operation before calling the appro­
priate command routine. The command routine. after verifying the corre­
ctness of the command operands, calls on TSS/360 general service rou­
tines, and other command routines, 'to carry out the requested actions,
and then returns control to the Command Analyzer and Executor. This
routine fetches the next command from SYSIN, and the entire processing
cycle is repeated.

The verification performed by the command routine makes use of check­
ing routines included as part of the SCAN package. If errors or omis­
sions are found, the command routine will issue messages to the task's
SYSOUT. In the conversational mode. the user may make corrections when
responding to system messages, or he may reenter the command. Since the
user is not present for a nonconversational task, any message that
requires a user response results in termination of the nonconversational
task.

Section 1: Command System Overview 7

COMMAND
ANALYZER (CZASA1)
Has decided that verb
is not a procedure.

I f the command
processed is AT,
no further PCS
processing is done.
Otherwise

Updates the source
list to end of phase
or sentence.

Gets next verb and
continues

USER CONTROL ICZAMZ)
-~-----.-- ... - ---LOAD, UNLOAD, CALL (without parameters)

1--------......:...-----'-----------------j~CZBTG2: Executes

-
PCS COMMAND ROUTINES: Begin
processing such command as DISPLAY,
DUMP, REMOVE, QUALIFY, AT,
and CALL (with parameters).

command. For LOAD or
UN LOAD operot7orr reTums
tc C ZA SA 1. However,

CALL stili needs 0

PCS INPUT
(CZANA)

Exam! nes and r--

,lm !,orom,,, !

PCS OUTPUT Exception: when CALL! :
(CZAPB) i. the command. j---------;

processes the Calls a Command 1-------------1 CZAMZl Uses Task

input string. System routine to Monitor to dispatch
~ execute function. requested routine.

Returns to

colling routine

CZAMG2: Find the
name of the routi ne

to be called - giving

LVPSW

- TASK MONITOR

R 13: ptr. to sove area
R 14: CZAMZ19
R 15 and PSW: address of
routine disoatchi0g

L-___________ ____

: I
I I
I I
I I
I I
I I '-- CALL a parameter

ROUTINE THAT IS
CALL'S PARAMETER

Execute

Dispatches routi.ne
whose address is

i+-- in the PSW.

-L..-______ -'

I I
: I
I I

~ YcCZAMZ2: Cleans
I----.. ~'>, CZAMZ19 up and does level

L-_____ -J l checking. Normally

Nate: The pes logic shown
in the center of this diagram
is not descri bed further; n
this publication. See PCS
PlM.

e"its. to CZAJ'vi,ZI's
calling routine. In ti,is

case, exit is one step
further back.

Figure 5. Execution of PCS commands with Direct Call

Terminating A Conversational Task

Since conversational users are available to handle error conditions,
conversational tasks are terminated only at the user's request, except
in cases of system shutdown, major system errors, or terminal failure.
The LOGOFF command routine handles the normal termination; this ensures
an orderly conclusion to the task. When LOGOFF has finished, it informs
the task monitor which eliminates the task by deleting its task status
index and by making its storage available to other tasks. The only
trace of the task remaining after this operation is the cataloqed data
sets, if any, that have been retained.

Terminating A Nonconversational Task

Nonconversational tasks may be terminated either normally or abnorm­
ally. Normal termination is the same as a conversational task termina­
tion except that the SYSOUT data set, which contains all system communi­
cations to a task, is printed. The SYSOUT data set will be listed at
the computer center. Another difference is that LOGOFF, when processing
a nonconversational task, notifies the batch monitor t.hat the task has
ended. This notification is required to permit thp batch monitor to
update its records.

8

VMTJ 1

CZAAF

SENSITivE-TO' - - - -.1
ENVIRONMENT

LOGON
I
I
I
I

CZAFM

VMTI 2

CZATO

~
~

LOGON2

eZBTB

:
COMBINED
DICTIONARY

I

DEFSEARCH

~ ClATE4

:
SYSPRO
SYSPRX

LlSTEf!

CZATE!

,---­
BUILDLIST

CZATE2

I
I
I
I
I
I
I I

I

~
~~~~~g~~E ______ .J 

~~~~l-____________ ~S~~~NO~N~Y~M~/~D~E~FA~U~L!T~C~Z:A~SA~'~~~ I DICTIONARY " - \J 
HANDLER

JYNONYM

~CTZ_AS_D~PT'..L- ~~:~NER

Cl A5A2"

I SYNONYMI NONPRIl/IL EGED
I DEFAULT 8UIL TINS
" ~ _._ CA?,MALMyAZN[DR BUILTIN

1 I CIATR A~D t:=========~==~PROCESSOR~
I EXECUTOR Cl" or,'
: ~ ~ 1 CZASA1·-4 PRIVILEGED BU;LT:NS

ATTENTION GATE ~ SOURCE ~ I

USERS

~C~NOLER >-:-- I LIST -..f?\ I
5ENSiTMC TO;""':": HANDLERS - 0 / AT REMOVE

~~~WM£NT cZATe
l 

CZASC r' 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I DiRECT CALL"- I 
SOURCE 
LIST 

T;;:-,;~." 
i g~~AY 

PCS PHASE 
I 

i O!Rtc.7 CALL r·_· _. -..... ·~·t 
rS-Y-S-X-PA-'T'--o (3) USER .-JpLC-S-'pLH-A-S'E 

~ ~g~~~~~ ___ n 

CZATF CZAMZ CZANA 

1 I 
USER DYSMLF 
PROMPTER : --

I 

ClATJ 

pes PHASE 
ill 

CZ4PB 

I 
I 
I 
I 
I 
I 
I 
I 

S£NSlnVE TO ~-~ ~.~ 

ENVIRONMENT 

,..-­
I 
I 
I 
I 
I 
I 
I 
I 

USER 
CODE 
AND LPC 

f-',RtVIL[(;rD /iU/L fiNS 

PROCESSING 
MODULES 

~"-:y-----------------------------~ 

SYNONYM .... 

'VOtvPRWI! t Gt U --..-

COMMAND LABEL 

DESCRIPTIVe LABEL 

NO CONTROl" PASSEO 

BUILT IN CALL 
I NONPRIVILEGEO CODE L-______________ ~ __________ ~~~~~~~_L~ ________ ~ ________________________ ~ 

Figure 6. Modular relationship of the command system 

A nonconversational task will be abnormally t{,rminated whenever an 
uncorrectable error is detected. In this case, t:he command system for­
ces a premature logoff. The SYSOUT of the task will be printed, and it 
will include a statement that reveals the cause of the abnormal 
termination. 

section 1: Command System Overview 9 



Processing Macro Instructions 

Command system makes no distinction between processing a command or 
processing a macro instruction, except in one situation. When some com­
mand routines are handling a macro instruction, they set indicators so 
that the macro instruction will not issue messages, but will return to 
the calling routine a code that reveals the success or failure of the 
routine. In all other aspects, the command routine operation functions 
in the same manner as if a command were being processed. 

Some command system routines are accessed only by macro instructions. 
These routines do not ordinarily issue messages, but they do return a 
code to the calling routine. 

When a macro instruction is being processed, there is a direct link 
between the user's object program and the command system routine; the 
Command Analyzer and Executor is not involved. This means that the cal­
ling routine must perform any error recovery procedures that may be 
required. 

System Shutdown 

When the main operator issues a SHUTDOWN command, every active task, 
except the operator's, is terminated. Conversational users will receive 
messages that inform them that their tasks have been terminated. Non­
conversational tasks will be terminated by the batch monitor. which 
issues a message to the SYSOUT of each task to explain the reason for 
termination. After all tasks have been terminated, the operator is 
informed. and his own task is terminated. He may then physically shut 
down the system. 

10 



SECTION 2: COMMAND CONTROLLER 

The command Controller consists of the Command Analyzer and Executor 
routine, and six system support routines. The Command Analyzer and 
Executor (hereafter: Command Analyzer) obtains the next command to be 
processed, and determines the verb type from the control dictionaries. 
The verb type dictates the remaining scan to be used for each verb. The 
names and fUnctions of the six system support routines are: 

Routine Name Function 

GATE Reads system input (SYSIN) and writes system output 
(SYSOUT) • 

SCAN Fetches and validates command parameters for both 
privileged and nonprivileged routines. 

User Prompter Communicates with system us en:; • 

Attention Handler Accepts and interprets the synchronous attention 
interrupts from the task .monitor. 

Source List Handler Services the source list. 

Control Dictionary Provides access to the combined dictionary. 
Handler 

The command Controller provides an interface between the remainder of 
the command system, and the SYSIN and SYSOUT data streams. Command pro­
cessing is initiated by the Command Analyzer, which is the basic control 
routine. When each command has been completed or terminated, control 
returns to the Command Analyzer. The six support routines are employed 
as needed. The following paragraphs describe the overall operation of 
the Command Analyzer, and the support routines. 

COMMAND ANALYSIS AND EXECUTION 

Command ana lysis and execution is generally done in three steps: (1) 
tne verb is recognized, (2) the verb operands are translated, and (3) 
the verb is executed. The Command Analyzer is invoked upon initial task 
entry. In addition, it may be invoked recursively by a user, upon 
intervention of an object program, or during control of language proces­
sors. Verb resolution is performed by the Command Controller after cal­
ling the Verb Scanner (a part of the Command Analyzer). A transient 
command that is designed to be passed to a language processor at a spe­
cific place will cause the remainder of the line t.o be bui It into a 
single string, and passed to the invoked language processor, if a pro­
cessor is defined. 

When the verb is a user or system procedure verb, command analysis 
calls the Procedure Expander to analyze the paramE!ters, and to expand 
the procedure. The output from the procedure expansion is added to the 
source lists. 

When command analysis uncovers a conditional s1:atement, the PCS Phase 
1 IF routine is called to expand the condition, and the object executor 
to determine the value of the IF condition. If the condition was not 
true, a special scanner is invoked to find the end of the statement. 
Otherwise, the text of the statement is begun by the Command Analyzer. 

Section 2: Command Controller 11 



An AT verb invokes the AT Analyzer and enables the dynamic statement 
switch. Thus, the remaining statements in the line are analyzed, but 
they are not executed until the AT is satisfied. In this case, state­
ments which are not executable dynamically are recognized, and appropri­
ate diagnostics are produced. 

If the verb was found to be DISPLAY, DUMP, SET, or a program call, 
then the program parameter list analyzer (PCS FORMLIST and PCS Phase 2 
parameter processing> is called to analyze the parameters; the commands 
are invoked by the appropriate execute routine: DISPLAY/DUMP, SET, or 
LINK. 

Recognition of a DEFAULT or SYNONYM verb results in a call to the 
DEFAULT/SYN processor to make the appropriate changes to the primary 
control dictionary. 

If the verb was GO, then the last uncompleted program will be 
resumed. Any commands that were still unexecuted in the source list at 
the time of intervention will become eligible for execution upon comple­
tion of the uncompleted routine. Any commands in the source list fol­
lowing GO will be discarded. 

When a program issues an LPCINIT macro instruction, it causes the 
Edit controller to be initialized, and the calling program is treated as 
a language processor controller. A subsequent LPCEDIT macro instruction 
issued by the language processor controller will cause the LPC to 
receive input. Any subsequent EDIT commands recognized by the Command 
Analyzer will cause the EDIT command processor (a part of the User Con­
troller) to be called. The EDIT command processor in turn calls the 
appropriate Edit routine, which, on completion, E'xits back through the 
EDIT processor to the Corrwand Analyzer. 

GATE ROUTINE 

Normally, GATE either reads from SYSIN and/or writes on SYSOUT, as 
requested by the calling routine. Four types of writing capability are 
provided: 

• Write with available response (fetch the next record from SYSIN 
after writing) 

• Write with spontaneous response (read the next record from the key­
board after writing) 

• Write with no response 

• Write with carriage control and no response 

SCAN PACKAGE 

This package is used by command routines to validate command parame­
ters as well as to fetch those parameters. 'I'he SCAN package consists of 
six routines, whose names and functions are: 

Routine Name 

NEXTPAR 

CHEKDS 

ALFNUM 

12 

Function 

Locates the next parameter field, and inspects it for 
invalid characters. 

Checks a data set name for valid form and characters. 

Checks for a valid symbol. 



NUMSTG Checks for a string of valid numeric characters. 

CHKNUM Checks a string of numeric characters, and converts them 
to a binary value. 

ALFBET Checks for a string of valid alphabetic characters. 

USER PROMPTING 

System programs use a centralized message communication facility to 
communicate with external users of TSS/360 Messages, responses, and 
explanations for messages are defined by system users. All of this 
information is cataloged in a central file; a call to the User Prompter 
retrieves it. When the User Prompter is called, via the PRMPT macro 
instruction or the PRMPT command, it converses directly with the extern­
al user by displaying messages and explanations, and by reading his 
responses. When the conversation has been completed, the User Prompter 
returns to the calling program a code that indicates the response to the 
original message. 

ATTENTION HANDLING 

The Attention Handler accepts interruptions fron: the task mom tor, 
and interprets any input which may occur. The possible responses by the 
system are as follows: 

1. Intervention is prevented if the Attention Int,erruption Prevention 
switch (AlPS) is set and control is returned normally. 

2. A user routine (specified in an AETD macro instruction) is given 
control to handle the attention interruption. 

3. The current process is interrupted, and commands are accepted from 
the console at a new level. 

4. The attention interruption is ignored (an immediate carriage return 
at the terminal). 

SOURCE LIST HANDLING 

The Source Li~;t Handler processes all entries and deletions to the 
source list. The source list contains all of the commands that have 
been entered into the system by the user. Whenever there are no com­
mands in the source list, the Source List Handler will call GATE to 
issue an underscore and backspace to the user. 

The following routines allow manipulation of the source list: 

1. PUSH/POP routine. 

2. Buffer fetch routine. 

3. Marker processors. 

4. Synonym expander. 

5. UPDATE routine. 

6. SYSIN routine. 

Section 2: Command Controller 13 



CONTROL DICTIONARY HANDLING 

The Control Dictionary Handler processes all requests regarding the 
combined dictionary. The combined dictionary, which is the source of 
the names of all procedures, synonyms, and defaults, is created by the 
LOGON2 routine (CZBTB). 

This routine utilizes a set of internal subroutines and macro 
instructions, which operate on any dictionary of the form of the control 
dictionaries. The following routines and handlers are available: 

1. STARTFIX routine. 

2. STARTVAR routine. 

3. HASH macro instruction. 

4. RFR routine. 

5. NEXTRFR routine. 

6. ENTR routine. 

7. DELENT routine. 

8. EXTDIC routine. 

9. PACKVAR routine. 

THE COMBINED DICTIONARY 

The Dictionary Handler Module (CZASD) is capable of handling any 
hashed entry. In the command system this module processes entries for 
the combined dictionary. 

The system references: a synonym dictionary, default dictionary, 
BUILTIN procedure library, textual procedure library, an internal symbol 
dictionary, and a task dictionary which lists external symbols. These 
dictionaries cover the range of the language that is used by the system 
(the vocabulary of the system>. 

The formation of a combined dictionary permits a reduction of search 
time. However, it is not possible to include all of the individual dic­
tionaries in the combined dictionary. The internal symbol dictionary 
and task dictionary are not included in the combined dictionary. 

Each entry in the combined dictionary is known by an eight-character 
name; some information about the kind of entry (source, purpose) is 
included. Entries containing less than 200 bytes are inserted directly 
into the combined dictionary. Larger entries contain a pointer in the 
dictionary entry. Pointers are used for system modules and procedures; 
values are used for command variables, synonyms, and defaults; in gener­
al, the combined dictionary contains the value. 

The LOGON2 routine (CZBTB) contains the scheme for creating the com­
bined dictionary; it allows the user dictionaries to be constructed from 
the user and from system information. In this manner a centralized 
repository of vocabulary is established. 

The system library provides a source of information for the combined 
dictionary. BUILTIN and textual procedure names are obtained from a 
data set called SYSPRD, which is a dictionary of system procedures and 
system BUILTIN procedures. SYSPRD is established at the same time that 
SYSLIB is established, and it becomes part of the combined dictionary 

14 



each time the LOGON procedure occurs. If the user adds any dictionary 
entries in the form of procedures or builtins to his USERLIB. then these 
entries will become part of the combined dictionary the next time this 
user logs on. The dictionary search logic allows a search of the SYSLIB 
version or the USERLIB version; the user may designate the SYSLIB in 
preference to USERLIB. 

SYSPRX (system prototype file) stores system defaults and synonyms in 
SYSLIB. If the user has created his own profile, then there is a SYSPRX 
member of USERLIB. LOGON2 selects the library to be used. 

If there is a SYSPRX member of USERLIB (which indicates that the user 
has created his own profile enVironment), then that data set is picked 
up, and the synonyms, defaults, and command variables are added to the 
combined dictionary. If the user has not created his own profile, there 
will be no SYSPRX member of USERLIB, and the SYSPRX member of SYSLIB 
will be used. 

The references to dictionary handlers are made by a number of entry 
codes and macro instructions. GDV (Get Default Value) is the most com­
monly used macro instruction; this is a call to find a default value for 
a given name. 

Direct calls require no further explanation. However, it should be 
noted that some of the entry codes are placed in t.he entry table so they 
may be called from nonprivileged code. 

The SYN/DEF (CZATR), PROCDEF (CZATP), and BUIL'I'IN routines create 
dictionary entries. The user may create dictionary entries by employing 
the SET command if he is referencing a command vax:iable or command sym­
bol. PCS (Program control System) will recognize that a name is a com­
mand symbOl. If it is, a dictionary entry will be created and the com­
mand symbol will be establiShed. 

After LOGON2 has established it, the combined dictionary is available 
to the users. The combined dictionary resides in one or more pages of 
virtual storage. The space is obtained by GETMAIN. 

The PROFILE command is designed to take those entries which represent 
synonyms and defaults (and optionally, those dictionary entries that are 
command symbols), and to write a new version of SYSPRX in the USERLIB. 
This is the way in which the user's profile is built. Profile also gets 
the syntactical characters (set by MCAST and the translate table) from 
GATE's PSECT and New Task Common, and makes the characters part of 
SYSPRX. 

At LOGON time GATE and the User Prompter cannot use the combined dic­
tionary because it has not been built. system hard-coded defaults are 
used until the combined dictionary exists, but th~s imposes a strict 
limitation on the system in the initial phases. 

The logic of GETMAIN handling for dictionaries starts the dictionary 
handler with a single page of space obtained through GhTMAIN. Addition­
al space is obtained as required. As entries are deleted there is a 
conservative effort to do some page cleanup. 

THE SOURCE LIST 

The source list contains a sequenced list of events which are going 
to happen in the future. There is practically no record of past events 
in the system. The user is able to change the sequence of events in the 
source list by invoking an OBEY macro instruction or an expanded 
procedure. 

Section 2: Command Controller 15 



The source list operates through a pushdown, popup structure (a list 
structured event). As commands are entered into the system. they are 
recorded in the source list which also provides working space for 
various parts of the system. For example, the source list provides a 
register save area when it is pushed. 

When four or five commands on a single line, separated by semicolons, 
are entered into the source list, the Command Analyzer .nd the Verb 
Scanner will isolate a verb. A procedural verb requires that a number 
of commands be inserted in its place. The new commands are placed in a 
sublist, and a pOinter to the sublist is made available to the system. 
These sublists can be generated almost indefinitely. 

The command Analyzer always checks the source list for the next com­
mand. When the source list is empty, the Command Analyzer links to GATE 
to prompt the user for additional input. 

There are two special occurrences in the source list: 

1. Whenever a sublist is created, registers are saved to permit a 
return to original conditions. 

2. E markers indicate the ends of lines or ends of logical segments 
and sublists. 

Items are not erased from the source list until the space is needed. 
The source list is handled in virtual storage in the same manner as the 
GETMAIN logic of the dictionaries; only required pages are used. An 
indefinitely recursive routine can run the source list out of virtual 
storage, and thus cause a system blowup. 

Certain PCS commands (such as AT, IF, DISPLAY, SET) access the source 
list directly. The syntax of these commands is such that the Command 
Analyzer would not be able to analyze them. 

COMMAND CONTROLLER ROUTINES 

The various routines and subroutines that make up the command con­
troller are described in detail in this section. 

~command Analyzer and Executor (CZASA) 

This routine serves as a driver for command interpretation. It com­
prises three major modules: the Command Analyzer, the Verb Scanner, and 
the BUILTIN call Processor. The Command Analyzer serves as the mainline 
processor. After it initializes the source list, the Command Analyzer 
calls the Verb Scanner, which identifies and isolates a verb in the 
source list. When it returns, the Command Analyzer takes whatever 
action is required by that verb -- deletes nulls or comments, expands 
procedures and synonyms, controls language processor, and links to the 
BUILTIN Call Processor to load and execute BUILTINs. (See Chart AA.) 

ENTRIES: The three n~jor modules, as well as certain other functions 
are defined by the entry points in the Command Analyzer and Executor: 

CZASAl - normal entry 
CZASA2 - normal entry 
CZASA3 - normal entry 

to the 
to the 
to the 

CZASA4 - entry to the Command 
entry) 

Command Analyzer 
Verb Scanner 
BUILTIN Call Processor 
Analyzer for nonprivileged users (OBEY 

CZASA5 - entry to the Command Analyzer when a command that has been 
executed (via an attention interruption) returns to it. This 
entry point is also used on completion of LOGON procedure 

16 



CZASA6 - entry point to assume control of attention interruptions (USATT 
macro instruction) 

CZASA7 - entry point to release control of attention interruptions 
(CLATT macro instruction) 

CZASAA - entry to the Command Analyzer after a CC=l ABEND 

MODULES CALLED: The modules called by the Command Analyzer appear 
below. Later in the list the modules called by the Verb Scanner and the 
BUILTIN Call Processor are listed. 

Source List Handlers: 
POPSL (CZASC1) 

PUSHSL (CZASC1) 

SL Update (SCZASC6) 

Verb Scanner (CZASA2) 

Control Dictionary Handlers: 
RFR Routine (CZASD3) 

User Control (CZAMZ) 

AT (CZASW3) 

AT (CZBTG1) 

PROCEDURE Expander (CZATE1) 

BUILTIN Call Processor 
(CZASA3) 

PCS Phase I (CZANA1) 

PeS Program Call (CZAMG2) 

User Prompter (CZATJ1) 

Deletes sublists. 

Constructs new sublists. 

Updates the source list to end of a sen­
tence or a phase. 

Isolates verbs within the command string. 

Searches combined dictionary for 
procedures. 

Processes transient commands. 

Handles direct calls without parameters. 

Expands identified procedures into the 
source list. 

Loads and passes control to BUILTIN 
procedures. 

Completes phase processing. 

Handles direct calls with parameters. 

Prints error messages at the user's 
terminal. 

During its operation the Verb Scanner calls the following rouT.ines: 

Control Dictionary Handlers: 
RFR Routine (CZASD3) Determines if the isolated verb has a 

synonym value. 

Source List Handlers: 
SLMAIN (CZASC4) 

SYNSL (CZASCS) 

Processes source lis·t markers. 

Expands synonym values into the source 
list. 

During its operation the BUILTIN Call Processor calls the following 
routines: 

Procedure Expander: 

LISTEQ (CZATE3) 

DEFSEARCH (CZATE4) 

Analyzes parameters and constructs a table 
of pointers to them. 

Searches for default values. 

Section 2: Command Controller 17 



Source List Handlers: 
SL Update (CZASC6) Updates the source list to point to the 

next command. 

EXITS: When its processing is ended (on error or on exhaustion of the 
source list), the Command Analyzer returns to its calling routine via 
the RETURN macro instruction. The Verb Scanner returns to the Command 
Analyzer when it completes processing. The BUILTIN Call Processor exits 
by calling a privileged command directly, or be calling the User Con­
troller to call a nonprivileged command processor. When this portion of 
command processing is complete, the command routines exit via the RETURN 
macro instruction, which returns to the Command Analyzer at CZASA5. 

OPERATION: When entered at CZASA1, this routine calls PUSHSL (CZASC1) 
to create a new sublist within the source list (SL). After setting up 
the source list, this routine links to the Verb Scanner (CZASA2) to 
isolate and analyze a verb in the source list. 

Verb Scanner: On entry the Verb Scanner initializes three internal 
values to reflect a zero return code (RC), character count (CC - length 
of verb), and depth count (D - used for expressions in parentheses). An 
additional flag is set to designate an initial outside of comment condi­
tion. The GNC macro instruction is now expanded to locate the SL 
character at the current source address (SA). The following actions 
provide a description of the verb scan. Leading blanks and underscores 
are ignored. A left parenthesis causes all characters to be included as 
part of the verb, until a corresponding right parenthesis is found. 
This includes all inner sets of parentheses, but should an end of line 
occur before all of the sets are resolved (one to one correspondence on 
left and right), an error exit is made. If the first character is the 
transient command prefix character the Verb Scanner exits with an Re 
indicating that a transient statement will follow. 

If the first character is a quotation mark, all subsequent characters 
are ignored until either the quotation is paired, or an end of line 
occurs. Detection of a comma or equal sign at the beginning of the 
verb, or outside of quotation marks or parentheses, results in an error 
exit after scanning (without storing), until a semicolon or end of line 
occurs. 

When the verb's delimiter has been found, the verb is tested for a 
synonym value. If there is a synonym value, SYNSL moves the verb into 
the SL, updates the SL and returns control to the verb scanner. The 
synonym value is examined. If the synonym value changes 100 times dur­
ing examination, a loop condition is assumed and an error return code is 
set. If there is no synonym value, the routine exits to the mainline 
Command Analyzer. 

The following checks are made for possible verb errors, and a special 
code is returned to the mainline Command Analyzer for each type: bad 
clause followed by semicolon or end of line; bad clause due to unpaired 
parentheses. 

The following return codes will be issued: 

RC=O 
RC=4 
RC=8 
RC=12 
RC=16 
RC=20 
RC=24 
RC=28 

18 

= 

= 
= 

= 
= 

Verb, null, or comment followed by blank. 
Verb, null, or comment followed by semicolon. 
Verb, null, or comment followed by end of line. 
Transient statement indicator detected as first character. 
Bad clause followed by semicolon. 
Bad clause followed by end of line. 
Bad clause due to unpaired left parenthesis. 
Possible synonym loop. 



Return to Mainline: If an error is detected in the verb format (for 
example: unpaired parentheses), the User Prompter (CZATJ1) is called to 
send an appropriate message to the user's terminal. Then, the Source 
List Update routine (CZASC6) updates the source list past the verb and 
its subfields. Control passes to check for an end of sentence. If a 
verb is a null clause or a comment, and is not a transient command, con­
trol also passes to check for an end of sentence. If a transient com­
mand has occurred in a dynamic sentence, an error is recognized, CZATJl 
and CZASC6 are called to account for it. If the transient command did 
not occur in a dynamic sentence, the Command Analyzer calls User Control 
(CZAMZ) at CZASW3 to process the transient command. On return, the Com­
mand Analyzer loops back in its processing line to again call the Verb 
Scanner to isolate and analyze the next verb in the source list. 

If a verb has a correct format and is neither a null nor a comment, 
CZASA1 hashes the verb via the HASH macro instruction and calls the RFR 
routine (CZASD3) to determine if the verb is a procedure name (PROCDEF 
or BUILTIN). If the verb is not a procedure name, control passes to the 
PCS Program Call routine to process the direct call if parameters have 
been supplied. control otherwise passes to the User Controller at 
CZBTGI for a parameter less direct call. If it is a procedure name and 
the dynamic sentence flag is on (that is, an AT verb exists in the line) 
the verb is checked to ensure that it is a legal pes verb; if not, an 
error condition is diagnosed. If the verb is a procedure, it is 
expanded into the SL via the Procedure Expander routine (CZATEl); then 
control is returned to the Verb Scanner to begin processing the PROCDEF. 
If the verb had been a BUILTIN procedure, the BUILTIN routine (CZASA3) 
would be called to load and to analyze the calling parameters of the 
verb, and pass control to the program. 

BUILTIN Call Processor: The BUILTIN'S dictionary entry is examined to 
determine if the BPK external name field has been resolved to a VM 
address. If the BPK external name field has not been overlaid by a VM 
address, and if the entry indicates a system BUILTIN is being processed. 
a search of COMTAB is made for the address of the external name. (COM­
TAB is a table in CZASA's PSECT that contains the external names and 
BPKD address of each of the system BUILTINs.) If the external name is 
found in COMTAB, the BUILTIN Call Processor need not call the Loader. 
Otherwise, this processor retrieves the external name that identifies 
the BPK from the BUILTIN's dictionary entry, and uses it, in conjunction 
with the LOAD macro instruction, to insure that the BPK does reside in 
the task's VM before the verb is called. 

The third word of the BPK is tested for an identifier to determine if 
the BUILTIN command has subparameters. If no subparameter processing is 
required, a test is made to determine if the BPK defines calling parame­
ters. If no parameters are defined, a further test is made to determine 
if parameters are supplied. These parameters, which are supplied (but 
not required) are stripped, and the user is notified that they are being 
ignored. Calling parameters require additional duties to be performed. 

The SL will have to assume a temporary expansion to store parameters. 
Since the expansion will be deleted upon termination of the BUILTIN, the 
current entry point is saved for future restoration. The TYPE table 
which is described in the procedure expander (identifies each BUILTIN 
dummy parameter as normal, or a special quoted string) is set so that 
all dummy parameters are normal. This assures that no calling parameter 
will be stripped of its enclosing apostrophes. 

At this point, the LISTEQ routine (CZATE3) is called to establish a 
table of pointers to the calling parameters. Upon return from LISTEQ, 
the calling parameters will exist in the SL as a continuous string, 
where each parameter is preceded by a one-byte length characteristic. 
The newly constructed PLIST (parameter list constructed by CZATE) will 

Section 2: Command Controller 19 



contain pointers to the calling parameter strings, and each BUILTIN 
dummy parameter that did not have a corresponding call~ng value will 
cause a zero entry within the PLIST at the same relative position. 

The DEFSEARCB routine (CZATE4) is now entered to determine if the 
dummy parameters, corresponding to zero entries in the PLIST, have 
default values. If they have, the PLIST table is updated with default 
pointers, thus completing the task of updating the BPK with pointers to 
the BUILTIN's calling parameters. 

If subparameter processing has been identified, processing similar to 
that described above is performed; however the BUILTIN command processor 
will call only the LISTEQ routine (CZATE3). LISTEQ will directly call 
DEFSEARCB (CZATE4) for subparameters. The end result is the same; the 
PLIST table is established with pointers to the calling parameters. 

Processing now is similar for BUILT INs with or without parameters or 
subparameters. There are two kinds of modules in the system: privi­
leged and nonprivileged, and it is necessary to determine the attributes 
of this particular BUILTIN. If the BUILTIN is privileged, the module is 
called directly from CZASA3. Nonprivileged BUILTINs are called via User 
Control (CZAMZ1) which will perform the privileged/nonprivileged inter­
face and will dispatch them as nonprivileged. 

The user is prompted (via PRMPT macro) and an immediate exit is taken 
under the following conditions: 

1. Use of the PIREC macro to check the validity of the BPKD's VCON and 
RCON causes a program interruption. 

2. Module to be loaded cannot be found. 

When control is returned to the Command Analyzer, if the BUILTIN is a 
legal PCS procedure (for example, DISPLAY, IF, RUN), and the dynamic 
sentence flag is off, control is passed to PCS Phase II to complete 
phase processing, and invoke the command. At this point, if the invoked 
verb had been a false IF condition, the SL is updated to the end of that 
line. If the verb had not been a legal PCS PROCDEF, PCS Phase II would 
be skipped. 

After processing each verb, the end of level flag is checked (indi­
cating that a RUN or BRANCH verb has just been executed, or the end of 
an OBEY command line has been reached), and if it is on, POPSL is called 
to delete the current sublist. If the sublist deletion was due to the 
termination of an OBEY string, control is returned to the calling rou­
tine; otherwise, control passes back to initiate a scan of the previous 
sublist. If the end of level flag is not on, the end of sentence flag 
is being checked. If the flag is on in conjunction with the dynamic 
sentence flag, PCS Phase II is entered to complete the processing of all 
the verbs that ~ollow the AT in the line being processed. In either 
case, any pending interruption is now allowed to occur prior to proces­
sing the next verb. 

The Command Analyzer is called at CZASA6 and CZASA7 to assume and 
release user control of attention interruptions. For these entry points 
the Command Analyzer issues a direct macro instruction and sets the 
TCMATT flag in task common. Then control is returned to the calling 
routine. 

ERROR CONDITIONS: 

1. If an isolated verb has a format error (ascertained from the verb 
scan return code), a message to that effect is sent to the termin­
al. and the verb is effectively ignored. 

20 



2. If a non-PCS command is encountered in a dynamic statement, a mes­
sage to that effect is sent to the terminal, and the verb is effec­
tively ignored. 

3. If a transient command is encountered in a dynamic statement, a 
message is sent to the terminal, and the verb is ignored. 

SYSTEM CONTROL BLOCK USAGE: These control blocks are used by the Com­
mand Analyzer, the Verb Scanner and the BUILTIN call Processor: 

Builtin Procedure Key (CHABPK) 
Control Dictionary Entry (CHADEN) 
Interrupt Storage Area (CHAISA) 
New Task Common (CHANTC) 
Profile Character and Switch Table (CHAPCT) 
Sublist Header (CHASLH) 
Source List Marker (CHASLM) 
Source List Page Header (CHASLP) 

~GATE Routine (CZATC) 

Gate is a closed, device independent input/output routine that trans­
mits information from SYSIN devices or data sets to the callinq routine, 
and from the calling routine to a SYSOUT device or data set. (See Chart 
AB.) 

ENTRIES: 

CZATC1 - privileged routines to process GATE call 
CZATC2 - nonprivileged routines to process GATE call 
CZATC3 - GATE's keyboard card reader switch 
CZATC4 - maximum line length/device type for conversational I/O 
CZATCS - standard character translate and function table 
CZATC6 - TCT slot address 
CZATC7 - output character translation table address 
CZATC8 - nonconversational SYSIN DCB 
CZATC9 - nonconversational SYSOUT DCB 
CZATCO - flag byte 
CZATCB - access Control Dictionary for SYSIN=K,ALPHA=B change 

MODULES CALLED: 

ABEND (CZACP1) To abort or arrest processing and write an error 
message. 

Control Dictionary Handlers: 
ENTR (CZASDS) Changes SYSIN and ALPHABET defaults. 

GDV (CZASDX) Gets user defaults for SYSIN, ALPHABET, RSVP, and 
LINES. 

RTAM To perform actual I/O on conversational SYSIN/ 
SYSOUT device. 

CKCLS macro To verify user parameter pointers. 

GET and PUT macros To access SYSIN and SYSOUT data sets non­
conversationally. 

EXITS: 

Normally - via the RETURN macro with return code in register 15 
Abnormally - via the ABEND macro (cc=l through cc=3) 

Section 2: Command Controller 21 



OPERATION: Five macro instructions, GATWR, GATRD, GTWAR, GTWSR and 
GTWRC call GATE to write on SYSOUT, to read from SYSIN, or both. GATE 
first processes any required writing by dividing the message into 
device-sized lines, or smaller; then the appropriate access method is 
determined, the output character translation table is applied to the 
message, and the access method is used to transmit the message to SYS­
OUT. When reading is required, GATE determines the appropriate access 
method, uses it to obtain the input message (GATE input buffer is for 
VAM only; GATE uses RTAM input buffer for conversational reads), and 
applies the character translation table to the message as it transmits 
the message to the user's buffer. 

GATE SUpervisor - GASP: Gate receives control at its proper entry point 
in GASP. Internal control flags and switches are initialized and build 
areas are cleared. If user has entered defaults since last entry, GASP 
retrieves, from the combined dictionary via GDV macro, those defaults 
applicable to the particular SYSIN/SYSOUT device being used and the mode 
of operation of the task. System defaults are supplied when there is no 
entry in the dictionary. Defaults used are SYSIN, ALPHABET, RSVP, and 
LINES. User parameter list addresses for output are verified via CKCLS 
macro if user has requested a write. GASP sets up text pointer and 
length for FAVOR or WORM if address verification is positive. 

For conversational tasks, if the device is not assigned to RTAM and 
the GATE request is from outside the task, GATE will ignore the request. 
If user is processing in a write/compute environment, GASP will wait for 
previous write to complete, if necessary, and ascertain normal comple­
tion before processing new request. For all write operations GASP 
acquires the address of the Output Translation Table and checks it. 
Then, for conversational writes, GASP enters FAVOR to perform output 
formatting and control character recognition. Nonconversational writes 
are directed to WORM for similar handling. If a read is required, eith­
er separately or in conjunction with a write, GASP will set up user 
parameters for COWARD conversationally or BARD nonconversationally. 
User input parameter verification is handled in TRAM routine. GATE's 
return code to the user is built internally in the PSECT by the GATE 
routines entered to process the GATE request. The return code is then 
set at the Single GATE exit for return to the user. 

Format Conversational Output - FAVOR: User output length is verified. 
If equal to or less than 0, the write request is ignored. If length 
exceeds 512, 512 is set for the user length. If user wants carriage 
control (GTWRC>, control characters are prefixed to user output line for 
double and triple spacing, or skip-to-channel. Control requests for 
single spacing or no spacing result in no prefixing of characters. If a 
GTWRC request exceeds one physical line, subsequent lines are single 
spaced. FAVOR is sensitive to certain function characters, which it 
processes according to the SYSOUT device being accessed. If the SIC 
value for a write request has not been specified, FAVOR will translate 
the output (excepting valid fUnction bytes). SIC causes output trans­
lation to be bypassed. 

The function characters to which FAVOR is sensitive are restore, 
bypass, prefix, punch off. punch on, reader stop, tab, new line, back­
space, idle, end-of-block, preferred break point, and linefeed. If user 
line exceeds maximum physical line of SYSOUT device, GATE will break the 
line at the last preferred break character, or, if none were found, GATE 
will use the total line before starting the next line. As each physical 
line is completed. FAVOR adds appropriate carriage control and idles, if 
necessary, to allow device to position to left margin for next line. 
When the user's text is exhausted. COWARD is entered to put out user 
request as a single write. Trailing blanks are stripped off the user's 
message before any editing occurs. 

22 



write Only (Nonconversationally> - WORM: If SYSOU'f DCB is closed, or if 
user write length is equal to or less than 0, WORM exits to effectively 
ignore write request. If user wants printer line control (GTWRC), WORM 
passes user-supplied carriage control character to SYSOUT line and con­
tinues processing of text. If user line on GTWRC exceeds one physical 
line, subsequent lines are given single spacing with no page control. 
Otherwise WORM controls SYSOUT lines with single spaces and new pages 
according to user-supplied value for lines-per-page. If SIC is not spe­
cified, WORM will translate the output. (SIC as a parameter for a write 
operation negates translation.) 

WORM is sensitive to preferred break-point, new line function charac­
ters and the delete function. WORM will always start a new physical 
line when the new line function is encountered. Preferred breakpoint 
characters will control line segmenting only when user line exceeds a 
physical line on SYSOUT device. All preferred break characters are 
replaced by blanks. When a character is assigned a delete function 
code, that character will be deleted. Maximum write length nonconversa­
tionally is 512 bytes per write request. 

Conversational Writes and Reads - COWARD: Upon entrance, COWARD checks 
the ISA attention bit; if an interruption is pending, COWARD branches to 
PATTER. Otherwise COWARD determines the appropriate I/O operation, sets 
up the Terminal Control Table (TCT) slot accordingly, and sets Register 
o to pJint to the TCT slot. 

COWARD determines, by checking the ALPHABET value (originally 
obtained by GASP) and the device type, whether RTAM or GATE will transl­
ate. If RTAM is to translate, this is indicated in the TCT slot. If 
the terminal is not presently assigned to RTAM, GA.TE will purge all I/O 
to that device and then assign the terroinal to RTAM. 

Next, COWARD issues the ATCS macro (SVC 219), transferring control to 
RTAM TCS for actual execution of the I/O operation. Figure 7 shows the 
interaction of COWARD and RTAM. 

Upon return, the I/O flag bytes set by RTAM in TCTWFD are reset and 
tested. If the necessary flags are zero and the Write/Compute flag (in 
GATE'S PSECT) is off, a WAIT T (SVC 204) is issued. 

If the Write/Compute flag is on, COWARD exits t.hrough GATEEXIT to the 
calling routine. If the flag byte does not have t.he necessary flags 
zeroed, the flag byte is tested further to determine what conditions 
exist. For I/O errors, COWARD exits to TERROR. For attentions, COWARD 
exits to PATTEk. Otherwise the WAIT T is issued. 

When the wait is comr::lete, COWARD recheckS the I/O flags in TCTWFD. 

1. For I/O errors, COWARD exits to TERROR. 

2. For attentions, COWARD will exit to PATTER. 

3. a. For GATWR and GTWRC complete, COWARD exi1:s to the common exit 
routine unless GASP called COWARD to complete the WRITE, in 
which case COWARD returns to GASP. 

b. For GATRD, GTWSR, and GTWAR complete, COWARD calls TRAM. Upon 
return from TRAM, an ATCS is issued for a CLEAR operation, 
after which COWARD exits to LATE's exit routine. At the exit 
routine, in the case where the device was reassigned to RTAM, 
the device is reassigned to the user (unless the GATE request 
was frow LOGOFF or ABEND). 

section 2: Command Controller 23 



When GATE entered for conversational I/O ... 

GATE (CZA TC) 

GA TE eventually enters its 
.ubroutine •.. 

COWARD 

•.. which prepares for 
I/O handling by RTAM, 

• Sets GPR 0 to poi nt 
to the TCT .Iot of 
the task be i n9 
seroriced, 

• Indicates the 
desired I/O 
processing in the 
TCT .Iot, and 

• Issues on 
ATCS macro 
instruction 

I A TCS generates 
an SVC 219, 
transferring 

I control through 

If COWARD cannot 
conti nue wi thaut I/O 
completion, 

A WAIT T 'WAIT T 
m<Jcro 
instruction 
is issued 

generates 
Lan SVC 204 ... 

COWARD check. I/O 
completion status, and 

TERROR I exits to TERROR if l+ I--- I/O error condition 
___ ..l exists, or 

PA TTER I exit. to PA HER if an J-. r--- attention interruption 
---.... condition exists, or 

returns to calfer 

if successful I/O 

----

___ the Supervisor to '" _____ ...J 

-And control retums to the 
Supervisor. When I/O complete, 
control i. passed bock to RTAM TeS 

RTAM Tes 
r-------------------1 

The Terminal 
Communi co ti ons 
Subprocess or does 
the following: 

• Finds the 
appropriate TeT 
.Iot and 
determines the 
desired I/O, 

• Bvilds Cl chonne I 
program in TlOeB, 

• Then initiates I/O. 
Before I/O is camp lete, 
RTAM TeS retums 
to COWARD. 

RTAM TCS then ... 

• Analyzes the I/O 
interruption dato, 

• Posts the re.ult, 
in the appropri ate 
TeT slot, and 

• Returns contro; 
finally to 
COWARD 

Figure 7. Interaction of COWARD and RTAM TCS 

Terminal Error Handler - TERROR: TERROR processes all abnormal conver­
sational I/O termination other than attention interrupts. Error condi­
tions processed by TERROR are unrecoverable error, negative polling 
response, and input buffer overflow. In unrecoverable error, Gate will 
retry the operation if it had not retried previously. Otherwise TERROR 
calls ABEND (cc=3) after setting CZACPSW3 flag indicating terminal can­
not be accessed. 

For negative polling response (Read operation), GATE retries the read 
if previous read was from terminal card reader. Retry goes to the key­
board for input. Otherwise ABEND (cc=3) is called. 

For buffer overflow (Read), user is informed of input overflow and 
prompted to re-enter his input at the keyboard. 

TERROR also handles operation retry with no error as posted by VSS 
processor in TCT when user interrupts I/O with VSS active and then 
requests resumption of task. 

24 



Process Attention from Terminal - PATTER: PATTER first determines if 
user is set for conversational SYSIN. If not, PATTER calls KAYBEE, 
which in turn calls the control Dictionary Handler (CZASD5) to orient 
SYSIN to keyboard with folded translate table. GATE'S internal control 
flags are synchronized with the dictionary. When the attention inter­
ruption occurred on any read request, input received before the inter­
ruption will be processed and passed back to the caller. After PATTER 
sets the attention return code in build area, control is passed to the 
exit routine. 

VAM Error - VERSE: VERSE is GATE's VISAM SYNAD routine, and VSAM/VISAM 
EODAD routine. It exits by calling ABEND. 

Translate and Move Input - TRAM: Before this routine is called, GASP 
has checked certain user parameter pointers for validity with CKCLS 
macro. TRAM checks further and calls ABEND if user location is inac­
cessible. If RTAM did not translate input from line code to EBCDIC, 
TRAM will provide this translation in the RTAM buffer. 

TRAM sets its own exit for normal conditions; then it determines 
whether the SIC mode is specified. If it is, TRAM moves as much of the 
input record as possible to the calling program's buffer. TRAM performs 
no character translation, or any other character-indicated function. It 
sets the truncation return code, if necessary, and furnishes the true 
character count to the calling routine; then exits. If the SIC mode is 
not specified, TRAM processes each character, performs the function 
indicated for the character in the character translation table, and 
moves the character to the calling program's buffer as required. Scan­
ning is done from left to right. The following paragraphs discuss each 
of the standard mode functions in detail. 

• The Translation Function 

When the translation function is specified for a given character, GATE 
replaces the character with the post-translation value found in the 
corresponding entry of the character translation table. 

• The Null Function 

TRAM deletes each encountered character that has a specified null fUnc­
tion. If the deletion is imbedded in the line, it is accomplished by 
joining the characters on the right of the deletion with those on the 
left, thus condensing the line. If the deletion is at either end of the 
line, TRAM deletes by appropriately adjusting the starting or ending 
point of the line before transmitting the line to the user's input area. 

• The Character-kill Function 

When it encounters a character with an assigned backspace function, TRAM 
deletes not only that character, but also the preceding character, if 
any exists. TRAM performs the deletion here just as it does for the 
null function. 

• The Cancel Function 

When the cancel fUnction is specified for a given character, and the 
character is encountered as the last character of the current line, TRAM 
discards this line and obtains a new line from SYSIN. GATE treats the 
new line as a replacement for the discarded one. 

• The End of Block Function 

The end of block (BOB) function truncates the input string by moving 
only those characters, that are to the left of the EOB, to the user's 
input buffer. 

Section 2: Command Controller 25 



• Escape Function 

Any character to which this code is assigned becomes a one-character 
escape. The character immediately following is always treated as data. 

• The Terminal Null Function 

When TRAM encounters a character to which the terminal null function is 
assigned, it honors that character as a null character only if the EOB 
function is assigned to the next character, or if the terminal null 
function is assigned to the last character translated. otherwise, it 
treats the character as one to which the translation function is 
assigned. 

Before it returns, TRAM sets the truncation return code, if neces­
sary; it executes the CaNT sequence to analyze the continuation status, 
if truncation is not required, furnishes the true character count to the 
caller, and exits. If TRAM encounters a cancel function during the pro­
cessing, it sets its exit for retry, and exits. If no cancel function 
is found, TRAM terminates when the input runs out, when the user's buff­
er is full, or when an EOB function is found. 

Analyze continuation status - CaNT: CONT first determines whether the 
input is in card or keyboard format. CONT assumes a card format if 
SYSIN is a VSAM data set containing fixed length records; it assumes 
that the record contains a keyboard/card reader code if SYSIN is a VISAM 
data set, or VSAM data set containing variable length records, and CaNT 
determines the format from that code. If SYSIN is conversational, CONT 
determines the format from the source of input. If a card format is 
determined, the continuation convention requires a hyphen as the last 
nonblank character in the line. The keyboard convention requires a 
hyphen as the next-to-Iast character of the line (before a carriage 
return>. If a continuation indicator is present, CaNT sets the con­
tinuation return code, and exits. If no continuation indicator is pre­
sent, CaNT exits without setting the continuation return code. 

Process Nonconversational (Batch) Read - BARD: BARD performs the input 
operations required for nonconversational tasks, and controls the trans­
lation of input; BARD also controls the transmission to the user's area. 
BARD calls VAM to obtain the requested input. If no errors are present, 
BARD executes the TRAM sequence to translate and move the record to the 
calling program's buffer. If TRAM requests a retry, BARD returns to its 
initial sequence; otherwise, BARD exits, after setting byte three of the 
return code to indicate the type of SYSIN data set (VSAM or VISAM). If 
a transmission error does occur, the VERSE (VAM Error) routine is 
entered to process the error. 

INPUT TRANSLATION (LINE CODE TO EBCDIC> PROVIDED BY GATE: 

1. 1052-7 Terminal - Operator's Console. 

2. 1050, 2741 Terminals - Support KA option. 

3. 1056 card code - Support CA option. 

4. 029 card code - Support CB option. 

5. 2741 (Correspondence) Terminal - support ATS Terminal 

ERROR CONDITIONS: Conditions which cause GATE to call ABEND: 

1. Invalid GATE operation code for nonprivileged user. 

26 



2. CKCLS on user parameter pointers indicates location does not have 
access necessary for GATE to process user request or is not 
assigned to user's Virtual Memory. 

(Conversational Only) 

3. Unrecoverable error when accessing terminal. 

4. Unable to read from terminal input device(s). 

(Nonconversational Only) 

5. GTWSR macro used nonconversationally. RSVP not equal to Y. 

6. SYSIN DCB closed on Read request. 

7. EO DAD exit taken on GET from SYSIN. 

8. SYNAD exit on GET or PUT request. 

9. BARD finds RECFM neither fixed nor variable. 

10. BARD finds other than a line data set when RECFM 

Condition which causes GATE to call SYSER: 

Invalid GATE operation code for privileged user. 

SYSTEM CONTROL BLOCK USAGE: 

Character Translation Table (CHACTT) 
Data Control Block (CHADCB) 
Profile Character and Switch Table (CHAPCT) 
New Task Common (CHANTC) 
Task Common (CHATCM) 
Terminal Control Table (CHATCT) 
Interrupt Storage Area (CHAISA) 

~SCAN Routines (CZAAC) 

is VI. 

The SCAN package edits and validates input parameters for the command 
routines. The SCAN package consists of six routines and five internal 
subroutines. Nonprivileged entries are provided t:o five of the rou­
tines. At these entries, ten levels of interrupt handling are provided. 
The routines operate independently, and issue codes to indicate the 
types of parameters, delimiters, or errors found in the input strings. 
(See Chart AC.) 

The routines are: 

NEXTPAR 

CHEKDS 
ALFNUM 
NUMSTG 
CHKNUM 
ALFBET 

scanning routine 

validating routines 

The internal subroutines are: 

CKQUAL validating subroutine 

SCINIT initialization subroutine 

section 2: Command Controller 27 



FNDBLK 
BACKUP 
VALCHK 

scanning subroutines 

SCAN CONTROL BLOCK: The SCAN Control Block serves as the input and out­
put control block for the SCAN routines. Each routine expects register 
1 to contain a pointer to the control block. The format and contents of 
the control block are as follows for each SCAN routine: 

Byte 0-3 4-7 8-11 12-15 16-19 20-23 
r--T---T----T----~-----T-----' 

NEXTPAR IA I C I DIE I FIG I 
~--t---t----t----_+-----+----~ 

CHEKDS IA I B I NA I NA I NA I NA I 
~--+---+----+-----t-----t-----~ 

ALFNUM I AlB I NA 1 NA I NA I NA I 
~--t---t----+----_+-----+----~ 

~Ero IAIBINAI NAI NAI NAI 
~--+---+----+-----+-----t-----~ 

CHKNUM IA I B I H I I I J I NA I 
~--t---t----+-----+-----+----~ 

ALFBET I A I B I NA I NA I NA I NA I 
L-_~ ___ ~ ____ ~ ____ ~ _____ ~ _____ J 

A = Address of pointer to starting location for scan. 

B = Address of 2-byte field containing length of string to be scanned. 

C = Address of a 4-byte area in which a pointer to the first non-blank 
character is to be stored. 

D = Address of a 4-byte area into which a pointer to the first delimiter 
is stored. 

E Address of a 4-byte area in which: 

Byte 1 = Initial delimiter code: 
1 if left parenthesis 
o if other 

Byte 2 = Final delimiter code: 
1 if equal sign (=) 

2 if comma but no right parenthesis 
6 if comma preceded by a right parenthesis 

12 if EOM, or EOM preceded by a right parenthesis 

Bytes = Actual character count excluding delimiters and leading 
3 6 4 leading and trailing blanks. 

F = Address of field containing maximum number of characters to be moved 
or zero, if no characters are to be moved. (NEXTPAR only) 

G = Address of first byte in the area to which field is to be moved, if 
a move is requested. (NEXTPAR only> 

H = Address of 4-byte field containing maximum allowable value for 
CHKNUM. 

I = Address of 4-byte field containing minimum allowable value for 
CHKNUM. 

J = Address of area to which converted value is to be moved (CHKNUM 
only> . 

28 



NEXT PAR ROUTINE (CZAAC1): NEXTPAR scans an input string for delimiters, 
and invalid characters, and moves the field to a specified area. It 
also provides a character count of the actual field, and a code indicat­
ing the type of delimiters contained in the string. (See Chart AC.) 

Entry: CZAACl - normal entry 

Modules Called: None. 

Internal Subroutines: 

SCINIT Performs initialization and housekeeping functions. 

FNDBLK 

BACKUP 

Finds the first nOnblank character, or the first nonblank 
character after a left parenthesis. 

Finds the last nonblank character before a delimiter. 

Exits: The routine returns to the calling routine. If an error occurs, 
the routine sets a return code to indicate the type of error and returns 
to the calling routine. 

Operation: NEXTPAR locates the first nonblank character in an input 
string, and stores the address in the parameter list. The input string 
is scanned by NEXT PAR which compares each character in the string to a 
string of valid character and delimiter codes. If the first nonblank 
character found is a left parenthesis, this fact is indicated in the 
output control block, and NEXTPAR scans for the first nonblank character 
after the left parenthesis. Each character is scanned, and the proper 
codes are set in the output control block to indicate delimiters or 
invalid characters. If no invalid characters have been found, the 
character count is computed. The field is then moved, if the count 
{specified by calling routine> is correct, and the move option is speci­
fied. A return code of 0 is set to indicate a valid parameter. 

If an invalid character is found, NEXTPAR will set a return code to 
indicate this fact, and proceed to the next delimiter in order to poSi­
tion the pointers correctly: however, no characters will be moved. All 
valid EBCDIC characters are treated as valid by NEXTPAR. 

Error Conditions: The routine returns a hexadecimal code in register 
15: 

Significance 

04 Field too long to be moved. 

08 Field contained 256 or more valid characters without a delimiter. 

OC Field contained invalid characters. 

System Control Block Usage: Task Common (CHATCM) 

CHEKDS ROUTINE (CZAAC2/CZAAC2P): CHEKDS checks data set names for valid 
characters and type of dsname. (See Chart AC.) 

Entries: 

CZAAC2 - normal entry 
CZAAC2P - BPKD entry 
SYSAAC2 - nonprivileged BPKD entry 

l"Jodules Called: None. 

Section 2: Command Controller 29 



Internal Subroutines: 

SCINIT Performs initialization and housekeeping. 

CKQUAL Validates qualifiers and module names. 

BPKDCNVT converts BPKD entry to expected form. 

Exits: The routine returns to the calling routine. If an error occurs, 
the routine sets a return code to indicate the type of error, and 
returns to the calling routine. 

Operation: If the BPKD entry is called, register 1 contains a pointer 
to the entry in the BPKD expansion which points to the dsname. The 
dsname length is contained in the byte which precedes it. The informa­
tion is made compatible with the normal entry control block format and 
processing continues as for a normal entry. 

The first qualifier of a dsname is checked for an asterisk to deter­
mine if it is an IBM System/360 Operating System name. (Reference: 
DDEF Command Routine, Operand Handling section.) Each qualifier is then 
checked for a valid alphameric format. The last qualifier is checked 
for parenthesis (indicating a relative generation number or member 
name). Then the validity of the relative generation number or member 
name is checked. Length checks are also performed. The following codes 
are returned in register 15: 

Code 

00 

04 

08 

Oc 

OC 

Significance 

Valid dsname. 

Valid member of a generation data group. 

Valid member of a partitioned data set. 

Valid member of a generation data group. 

Valid member of a generation data group in a partitioned data 
set. 

Error Conditions: The routine returns a hexadecimal code in register 
15: 

Code 

10 

Significance 

TSS/360 data set (not a member of PDS or GOG) name exceeds 35 
characters. 

14 Member of generation data group (GDG) name (exclusive of rela­
tive generation number) exceeds 26 characters. 

18 Member of partitioned data set (PDS) name (exclusive of module 
name and relative generation number) exceeds 26 characters. 

1C Member of PDS in GDG name (exclusive of module and relative 
generation number) exceeds 26 characters. 

20 GDG relative generation number is invalid. 

24 Incorrect number of parentheses. 

28 Data set qualifier blank (2 adjacent periods). 

2C Data set qualifier contains invalid character, or field is 
empty. 

30 



30 

34 

38,3C, 
40,44 

48 

Data set qualifier has more than 8 characters. 

Data set qualifier first character not alphabetic. 

Same as 28,2C,30, and 34 but for module name. 

IBM System/360 Operating System name contains more than 44 
characters with no relative generation number, or more than 35 
characters with a relative generation number. 

System Control Block Usage: None. 

ALFNUM ROUTINE (CZAAC3/CZAAC3P): ALFNUM scans an alphameric string of 
one to eight characters; it checks that the first character is alphabet­
ic. (See Chart AC.) 

Entries: 

CZAAC3 - normal entry 
CZAAC3P - BPKD entry 
SYSAAC3 - nonprivileged BPKD entry 

Modules Called: None. 

Internal Subroutines: 

SCINIT Performs initialization and houskeeping. 

VALCHK Tests for an empty field or invalid characters. 

BPKDCNVT Convert BPKD entry to expected form. 

Exits: The routine returns to the calling routine. If an error occurs, 
the routine sets a return code to indicate the type of error, and 
returns to the calling routine. 

Operation: If the BPKD entry is used, register 1 contains a pointer to 
the entry in the BPKD expansion which points to the input string. The 
length of the input string is contained in the byte which precedes it. 
The information is made compatible with the normal entry control block 
format and processing continues as for a normal entry. 

ALFNUM tests the input string to insure that it is not greater than 
eight characters. Next ALFNUM checks the string, character by charact­
er, for valid characters, and checkS that the input string starts with 
an alphabetic character. If no error occurs, a return code of 0 is set 
in register 15. 

Error Conditions: The routine returns a hexadecimal code in register 
15: 

Code Significance 

04 Empty field (character count zero). 

08 Invalid character. 

OC Field greater than eight characters. 

10 First character not alphabetic. 

System Control Block Usage: None. 

Section 2: Command Controller 31 



NUMSTG ROUTINE (CZAAC4/CZAAC4P): This routine scans a field of 256 
characters or less for all numeric characters. (See Chart AC.) 

Entries: 

CZAAC4 - normal entry 
CZAAC4P - BPKD entry 
SYSAAC4 - nonprivileged BPKD entry 

Modules Called: None. 

Internal Subroutines: 

SCINIT Performs initialization and housekeeping. 

VALCHK Tests for an empty field or nonnumeric characters. 

BPKDCNVT convert BPKD entry expected form. 

Exits: The routine returns to the calling routine. If an error occurs, 
the routine sets a return code to indicate the type of error, and 
returns to the calling routine. 

Operation: If the BPKD entry is used, register 1 contains a pointer to 
the entry in the BPKD expansion which points to the character field to 
be scanned. The length of the character field is contained in the byte 
which precedes it. The information is made compatible with the normal 
entry control block format and processing continues as for a normal 
entry. 

E:roror Conditions: The routine returns a hexadecimal code in register 
15: 

Significance 

04 Empty field (character count zero) 

08 Invalid characters (characters other than numeric). 

System Control Block Usage: None. 

CHKNUM ROUTINE (CZAACS/CZAACSP): This routine converts a numeric field 
of not more than 1S characters, to a binary number. (See Chart AC.) 

Entries: 

CZAACS - normal entry 
CZAACSP - BPKD entry 
SYSAAC5 - non-privileged BPKD entry 

Modules Called: None. 

Internal Subroutines: 

SCINIT Performs initialization and housekeeping. 

VALCHK Tests for an empty field or non-numeric characters. 

BPKDCNVT Convert BPKD entry to expected form. 

Exits: The routine returns to the calling routine. If an error occurs, 
th routine sets a return code to indicate the type of error, and returns 
to the calling routine. 

32 



Operation: If the BPKO entries are used, register 1 points to the scan 
control block in which the first word is a pointer to the string with 
the length in the preceding byte. The second word is a pointer to maxi­
mum value, etc. After CHKNUM converts a numeric .field into a binary 
number, it tests the number to ensure that it lies within specified 
minimum and maximum limits. If no error occurs, a return coe of 0 is 
set in register 15. 

Error Condition: The routine returns a hexadecimal code in register 15: 

Significance 

04 Empty field (character count zero). 

08 Invalid character (characters other than numeric). 

OC Field greater than 15 characters. 

10 Binary numer exceeds specified upper limit. 

14 Binary number is less than specified lower limit. 

System control Block Usage: None. 

ALFBET ROUTINE (CZAAC6/CZAAC6P): This routine scans a field of 256 
characters or less for all alphabetic characters. (See Chart AC.) 

Entries: 

CZAAC6 - normal entry 
CZAAC6P - BPKD entry 
SYSAAC6 - nonprivileged BPKD entry 

Modules Called: None. 

Internal Subroutines: 

SCINIT Performs initialization and housekeeping. 

VALCHK Tests for an empty field or nonalphabetic characters. 

BPKOCNVT Convert BPKD entry to expected form. 

Exits: The routine returns to the calling routine. If an error occurs, 
the routine sets a return code to indicate the type of error, and 
returns to the calling routine. If no error occurs, a return code of 0 
set in register 15. 

Operation: If the BPKD entry is used, register 1 contains a pointer to 
the entry in the BPKO expansion which points to the character field to 
be scanned. The length of the character field is contained in the byte 
which precedes it. The information is made compatible with the normal 
entry control block format and processing continues as for a normal 
entry. 

Error Conditions: The routine returns a hexadecimal code in register 
15: 

Code Significance 

04 Empty field (character count zero). 

08 Invalid characters (characters other than alphabetic). 

System Control Block Usage: None. 

Section 2: Command Controller 33 



BACKUP SUBROUTINE (AMG2): This subroutine fields the last nonblank 
character in a string. (See Chart AC.) 

Entry: None. Called at BACKUP. 

Modules Called: None. 

Internal Subroutines: 

FNDBLK Finds the first nonblank character in a string. 

Exits: The subroutine returns to NEXTPAR. 

Operation: BACKUP is called by NEXTPAR, after NEXT PAR has found a deli­
uQter, to find the last nonblank character. 

Error Conditions: None. 

System Control Block Usage: None. 

CKQUAL SUBROUTINE: This subroutine is used to validate qualifiers and 
module names processed by CHEKDS. (See Chart AC.) 

Entry: None. Called at CKQUAL. 

Modules Called: None. 

Exits: The subroutine returns to CHEKDS. If an error occurs, the sub­
routine sets a return code to indicate the type of error, and returns to 
CHEKDS. 

Operation: CKQUAL is called by CHEKDS to ascertain that the length of 
the qualifier or module name is not zero, or greater than eight charac­
ters. This subroutine subtracts the length of the qualifier from the 
total length of the input string, and tests that there are no invalid 
characters, and that the first character is alphabetic. It then sets a 
pointer to the character after the delimiter, and returns to the calling 
point in CHEKDS. 

Error 

Code 

28 if 
38 if 

2C if 
3C if 

30 if 
40 if 

34 if 
44 if 

Conditions: 

qualifier 
module name 

qualifier 
module name 

qualifier 
module name 

qualifier 
module name 

The subroutine returns a hexadecimal code to CHEKDS. 

Significance 

Data set qualifier or module name blank. 

Data set qualifier or module name contains invalid 
characters. 

Data set qualifier or module name has more than 
eight characters. 

Data set qualifier or module name has a nonalpha­
betic first character. 

System Control Block Usage: None. 

VALCHK SUBROUTINE (AMA2): This subroutine scans for an empty field or 
invalid characters. (See Chart AC.) 

Entry: None. Called at VALCHK. 

Modules Called: None. 

34 



Exits: The subroutine returns to the calling routine. If an error 
occurs, the subroutine sets a return code to indicate the type of error, 
and returns to the calling routine. 

Operation: VALCHK is called by CHKNUM, NUMSTG, ALFNUM and ALFBET to 
validate a string of characters. If the length of the input string is 
not zero, VALCHK stores the length in a work area, and tests the string 
for invalid characters. 

Error Conditions: The subroutine returns a hexadecimal code to the cal­
ling routine. 

Significance 

04 Empty field (character count is zero). 

08 Invalid characters. 

System Control Block usage: None. 

FNDBLK SUBROUTINE: This subroutine scans a string of characters from 
the start of the string, to find the first nonblank character. (See 
Chart AC.) 

Entry: None. Called at FNDBLK. 

Modules Called: None. 

Exits: The subroutine exits to the calling routine. 

operation: FNDBLK is called by NEXTPAR and BACKUP to find either the 
first character in a string (which may be a delimiter), or the first 
nonblank character after a delimiter. It will check the characters in 
the string until it finds something other than a blank or a tab, or 
until it has scanned 256 characters. 

Error Conditions: None. 

System Control Block Usage: None. 

SCINIT SUBROUTINE: This subroutine performs the initialization and 
housekeeping for the SCAN routines NEXTPAR, CHECKDS, ALFNUM, NUMSTG, 
CHKNUM and ALFBET. (See Chart AC.) 

Entry: None. Called at SCINIT. 

Modules Called: None. 

Exits: The subroutine returns to the calling routine. 

Error Conditions: None. 

System Control Block Usage: None. 

~user Prompter Routines (CZATJ) 

The User Prompter is a centralized message locator, display, explana­
tion and response handling facility. It uses the user-defined message 
file, which is bu~lt using the text editor, the system message file, and 
a table of the most recently used standard messages of the system mes­
sage file, to perform its fUnctions. <See Chart AD.) 

ENTRIES: The User Prompter module is invoked by the PRMPT macro 
instruction. Individual functions within the User Prompter are invoked 
by the CALL macro instruction. 

Section 2: Command Controller 35 



CZATJA - entry point 
CZATJl - entry point 
CZATJ2 - entry point 
CZATJ3 - entry point 
CZATJ4 - entry point 
CZATJ7 - entry point 
CZATJB - entry point 
CZATJE - entry point 

MODULES CALLED: 

GATE (CZATCl) 

ABEND (CZACPl) 

Dictionary Handlers: 
GDV (CZASDX) 

Source List Handler 
(CZASCl> 

SCAN Package: 
CHKNUM (CZAAC5) 

for main user prompter (nonprivileged entry) 
for main user prompter (privileged entry) 
for MSGSYNTH 
for MSGEXPL 
for MSGRESP 
for EXPLAIN conunand 
for ABEND to unlock message table 
for NEWMSG 

Prints messages and obtains responses. 

When SYSLIB(SYSMLF) is closed. 

Gets default values for message severity and 
length. 

Adds VCON/RCON pair to ABEND table. 

Validates and converts a response code in the 
response line of SYSMLF. 

The User Prompter also uses VISAM SETLs and GETs to manipulate the mes­
sage file. 

EXITS: The routine returns to the calling routine, via the RETURN macro 
instruction. 

OPERATION (MAINLINE): When a PRMPT macro instruction call is received, 
the prompter control routine (CZATJA/CZATJ1) calls upon MSGSYNTH 
(CZATJ2) to locate the message in the message table or the message file. 
After checking with the filter in the user profile, MSGSYNTH inserts 
parameters as required and returns control to the User Prompter control 
routine. If no response is required, control uses GATWR to display the 
message. If a response is expected, the control routine displays the 
message, and reads the response using GTWSR. This initial response is 
checked to see if further explanation is required. If an explanation is 
requested, the control routine uses MSGEXPL to determine the type of 
explanation, retrieve the explanatory message required, and use GTWSR 
until the user is satisfied. If no explanation is required, and the 
option is unpredictable, the response is stored in a User Prompter work 
area (CHAAAA). If the option is predictable, MSGRESP accomplishes the 
task of comparing the response against valid responses. A response code 
is returned for the valid response. Otherwise, the response is stored 
in CHAAAA. 

MSGSYNTH Routine: This routine retrieves a message, inserts any parame­
ters required, and prepares the message for display. To do this, it 
first determines the brevity and severity of the message by calling GDV 
to examine the user profile. This routine then calls its own internal 
subroutine, GETMSG, to search USERLIB and SYSLIB for the message. The 
message to be displayed is assembled by inserting parameters, provided 
as required, into the skeletal message. The ID will be prefixed to the 
message for identification if the brevity is S or E. It will not be 
prefixed if the brevity is T or X. Only the ID is given if brevity is 
M. 

MSGEXPL Routine: This routine determines the type of explanation mes­
sage requested and provides it. After scanning the EXPLAIN response, 
MSGEXPL acts as follows: 

36 



1. If the response is EXPLAIN, the preceeding message is checked to 
determine whether it is explainable. The message explanation is 
then provided by calling MSGSYNTH. 

2. If the response requests a word explanation,it is retrieved. The 
word cannot be ORIGIN, RESPONSE, TEXT, MSGS, MSGE, or MSGIO. Two 
one-byte masks, one for the system message file, and one for the 
user message file, are provided to control searches for word 
explanations. Each bit in the mask corresponds t:o a byte in the 10 
of the message that contains the explainable word. Bits in the 
mask indicate how many bytes of the current message 10 a:r"e to be 
compared in the search for a word explanation record. The mask is 
scanned from the right. Each bit encountered causes an access to 
the message file, using the current message ID bytes as a search 
argument. 

The message file is accessed by using a SETL to the region speci­
fied by the mask-designated message 10. If an ID match is found, a 
serial search matches the explainable word with the word filed in 
the explanation record. If a word match is found, the search ends. 
If the message 10 or the word do not match, the mask is scanned to 
the left until the next bit is encountered. This determines the 
next region where the search will continue. If no bits are encoun­
tered in the mask, a blank argument is used to look for a universal 
explanation before the word explanation is assumed not to exist in 
the file. If an explanation is not: available in the user message 
file, the system message file is similarly searched. 

3. If the response is EXPLAIN ORIGIN, the location of the PRMPT call 
from a system program and the original message 10 will be returned. 

4. If the response is EXPLAIN TEXT, the message identified by the mes­
sage 10 name will be located and, if possible, an explanation will 
be provided according to paragraph one. 

5. If the response is EXPLAIN RESPONSE, the possible responses will be 
retrieved using MSGSYNTH's GETMSG routine. 

6. If the response is EXPLAIN MSGS or EXPLAIN MSGE, the standard or 
extended message line is retrieved using MSGSYNTH's GETMSG routine. 

7. If the response is EXPLAIN MSGIO, the message 10 name is returned. 

MSGRESP Routine: This routine determines the validity of the user 
response, and informs the calling routine about the nature of the 
response. If a predictable response can be expected. MSGRESP compares 
the response with the defined responses, and returns the appropriate 
code to the calling routine if the comparison is satisfied. If no match 
is found, an error message and error code 28 are returned. If the 
appropriate code is not valid, error code 48 is returned. 

EXPTEXT Routine: This routine permits the direct use of the User 
Prompter to handle the EXPLAIN command. This routine constructs the 
explain string, calls MSGEXPL to resolve the explanation, and then 
issues a GATWR to display that explanation. 

NEWMSG command Routine: This routine allows a privileged system pro­
grammer (0 authority) to initialize the message table <CHBMSG) when he 
has changed the SYSLIB copy of the system message file, SYSMLF, during a 
session. The routine uses TSEND to test the table's lock until it is 
found unlocked. It then locks the table, initializes pointers and coun­
ters to clear the table, and unlocks the table before exiting. 

Section 2: Command Controller 37 



ERROR CONDITIONS: An overall set of error codes is assigned, as shown 
in the table. The appropriate code is right-justified in register 15 
for all routines. 

Error Code 

o 

4 

*12 

16 

20 

24 

28 

32 

*36 

40 

44 

48 

52 

Error Description 

No error. Normal return. 

I/O error (SYNAD or EODAD, when resp-opt=p). 

Message not found in MSGSYNTH routine. 

Message filtered by user. 

Insufficient output buffer space provided. 
Message .truncated •• 

Explanation not found in MSGEXPL routine. NO 
EXPLANATION AVAILABLE displayed to user. 

Matching response not found in MSGRESP routine. 

Resp-opt parameter not N, P, or U. 

Message continued. 

Attention interrupt during I/O operation. 

Too many reference messages chained. 

Invalid response code in response line of SYSMLF. 

Response message not in SYSMLF (resp-opt=p). 

Those codes shown preceded by an * are internal error code. They are 
never returned to the module that issues the PRMPT macro. 

For returns from a user prompter macro instruction call, the USer 
response (user-resp) return parameter has different values that depend 
on the error code in register 15. 

User Response Contains 

Unchanged (for resp-opt=n) 

Response Code (for resp-opt=p) 

Pointer to string (for resp-opt=u) 
(Note: for zero length response, 
string is unpredictable) 

Zero 

Pointer to EXPLAIN request line 

Pointer to user response line 

When Register 15= 

0, 16, 20, 32, 44 

o 

o 

4, 20, 40, 44 

24 

28, 48, 52 

For returns from the MSGRESP routine, the RSPCD return parameter has 
the same function as user-resp in a PRMPT macro instruction call. If 
the error code is register 15 is 0, RSPCD contains the response code. 
For any error conditions, RSPCD contains O. 

A system error with the code 050330301 is issued when SYSLIB (SYSMLF) 
is closed. The ABEND message is: "SYSTEM MESSAGE FILE CLOSED. UNABLE 
TO WRITE MESSAGE." 

38 



SYSTEM CONTROL BLOCK USAGE: 

Editable Data Set (CHACVF) 
Data Control Block (CHADCB) 
Interrupt Storage Area (CHAISA) 
New Task Common (CHANTC) 
Profile Character and Switch Table (CHAPCT) 
TABLEA - a work area for CZATJ (CHAAAA) 

.. Attention Handler Routine (CZASB) 

This routine performs one of the following functions: 

• Invokes user-written routines specified by an AETD macro instruc­
tion, or 

• Obtains a command from the ternunal and prepares it for execution 
for the Command Analyzer by creating a new sublist (thus affecting 
the source list itself), or 

• Obtains and acts upon a terminal request to ignore the attention 
interruption, repeat the last command, or invoke abnormal termina­
tion, or 

• Honors another attention interruption. 

(See Chart AE.) 

ENTRIES: 

CZASBl -
CZASB2 -
CZASB3 -
CZASB5 
CZASB6 -
CZASB1 -

actual attention entry from task monitor 
simulated attention entry 
entry from CZAMZ created stack 
entry from AETD macro instruction 
entry for ABEND command 
entry for STRING function if entered other than after ATTN 

MODULES CALLED: 

GATE Routines (CZATC1): 
GATRD 

GATWR 

GATWSR 

User Control (CZAMZ): 
PCSEXEC (CZAMZ1) 

INTERVENE (CZAMZ3) 

User Prompter (CZATJ1) 

Reads from SYSIN. 

Acknowledges the attention, and writes 
diagnostic and prompting messages on task 
SYSOUT. 

Acknowledges the attent.ion, and obtains input 
from the terminal. 

Executes the user's attention routine. 

Issues a call to the Command Analyzer to 
process inputs from the terminal if inter­
vention is not prevented. 

Reports errors. 

EXITS: The Attention Handler exits to the Task Monitor. It does not 
provide a return code, although it is responsible for setting certain 
switches. 

OPERATION: When entered at CZASB1, its entry point for servicing actual 
attention interrupts, the Attention Handler decrements CZCJT1, a field 

Section 2: Command Controller 39 



USER CODE 

Process 
attention 

TASK MONITOR 

Dispatch 
user 
routine 

USER CONTROL 
CZAMZ1: Dispatch 
user specified in 
AET entry. 

l VPSW PSW: Poinrs to user 
routine 

CZAMZ2: Clean 
up and return 
to CZAMZ1's 
caller. 

RETURN 

Yes 

COMMAND SYSTEM 
.ATTENTION HANDLER 

(CZASS 1) 

(other processinq) 

If there are more commands 

in source fist and control 
was received from CZASA 1, 
OLE CZASA 1 

Figure 8. Attention processing with AET connected 

in the Task Monitor that contains a count of pending QLEs. (Entry was 
gained at CZASBl through a QLE -- one less QLE exists to be processed.) 

The Attention Handler then tests the AlPS switch. This switch can be 
set by a user program to prevent an attention interrupt. If it is on, 
the Attention Handler arms the Attention SVC, by placing an SVC in an 
area that is usually a NOP. If the user executes the SVC, an attention 
is simulated. Consequently the Attention Handler turns on an "internal 
simulated attention pending" flag. The user is prompted that the AlPS 
switch is on, and the Attention Handler branches to its exit logic. 

If AlPS is not found on, the Attention Handler takes the extra pre­
caution of turning it off and clearing the area that would be occupied 
by the Attention SVC. 

The Attention Handler then tests for an Attention Entry Table (AET). 
If an AET is connected, the Attention Handler increments the attention 
count in CZAMZE and uses that count to determine if the user has speci­
fied a program to deal with this level of attention. (The AET contains 
entries which correspond to the values of the attention interrupt 
count.> If the user has specified a valid program, the Attention Handl­
er links to User Control (CZAMZ1) to dispatch the user routine. On 
return, the Attention Handler decrements the attention count in CZAMZE, 
and branches to its exit logic. Attention processing with an AET con­
nected is illustrated in Figure 8. 

If no AET is connected, or if there is not a valid user program for 
the updated count in CZAMZE, the Attention Handler tests the QLE pending 
count in CZCTJ1. If CZCTJl equals other than zero, this routine returns 
to its calling routine -- to allow other QLEs to be dispatched. 

If the QLE count is zero, the Attention Handler will service the 
attention interrupt. The appropriate attention prompt character is 
transmitted to the terminal via GTWSR. The character transmitted is 
determined as follows: 

40 



Character 

* 

Situation Governing It 

Attention occurred during execution of a privileged command 
which was the last command to be processed within the cur­
rent input string. 

Attention occurred during the execution of a privileged com­
mand that is embedded in the command string. Only occurs if 
additional commands remain to be processed within string. 

Attention occurred during execution of a command or routine 
running in the nonprivileged state. 

(The user may have defined his own string in plaoe of the underscore.) 
A number of responses to the prompt character are possible: 

1. Another attention interrupt -- The Attention Handler immediately 
exits, returning to its calling routine. 

2. A continuation is indicated -- The Attention Handler uses GATRD t.o 
continue reading the response, and, on return, loops back through 
its response-checking logic. 

3. Input is null -- The Attention Handler returns to its calling rou­
tine, after first putting a QLE to CZASA if control was passed from 
it. 

4. STRING function is requested -- The Attention Handler displays all 
items in thE' source list which have not yet been processed. It 
then loops back to test for pending QLEs. 

If none of the five responses shown are encountered, the Attention 
Handler calls the INTERVENE routine (CZAMZ3) in User Control to analyze 
thE' response input. On return, if the AE'I' is not~ active, the Attention 
Handler branches to its exit logic. If the AET lS active, it first 
decrements the count in CZAMZE . 

.Exit Logic: If the task is the operator's and no morp commands exist in 
the source list, the Attention Handler exits directly to its calling 
routine. Otherwise, if control was passed from the Command Analyzer 
(CZASAl), the Attention Handler puts a QLE to the Command Analyzer and 
then exits. 

Simulated Att.entions: At CZASB2, it~s entry point. for sirflulat.ed att.en­
tions, the Attention Handler tests its "internal simulated attention 
pendinq" flag. If it is not. on, thi s routine link;; t.o CZATJl to inf orn· 
the USE:cr that d simulated attention has occurrE:'cl. Then, or if the flaq 
is on (as t.he result_ of an earlier attention wi til AI PS on) I the Atten­
tion Bandler turns off the flag, disarws the dtt<'~nt ion SVC, and enters 
tne main routine logic at the pOint where the maln routine tests to 
determine if an AET is connected. 

ALTD Macro Servicing: At CZASB5, the Attention Handler fir::;t clears the 
attention count in CZAMZE. It then tests to determine whether (1) the 
address of the Ill'W Al:..T has been supplied, and (2) there are any entries 
in the AET table. If the answer to either query is nc, this routine 
clears CZAMZD, wnich is the AET pointer in CZA~Z's PSECT, then turns oft 
the active AFT flag, and returns to its calling routine. But, it both 
conditions are satisfied, the Attention dandler begins testing the 
entries in the AET to find one that is used. When one is found, this 
routine sets a new pointer in CZAMZD, sets the active AET flag on, and 
exits. If the list is exhausted before a used entry is round, this rou­
tine clears CZAMZD, turns off the AET flag, and ~~xi ts. 

Section 2: Command Controller 41 



other FUnctions: There are three other entry points in this module: 
CZASB3, CZASB6, and CZASB7. CZASB3 is an entry point put into CZAMZ's 
stack and used, when encountered, to return to the Command Analyzer via 
QLE. CZASB6 is the entry point for the ABEND command. CZASB7 is used 
if the user requests the STRING function at a time other than after an 
attention interrupt. When entered, this routine calls CZATJl to inform 
the user that STRING is only valid after attention, and, on return, 
exits. 

ERROR CONDITIONS: None, other than misuse of the STRING fUnction, as 
described above. 

SYSTEM CONTROL BLOCK USAGE: 

Attention Entry Table (CHAAET) 
Interrupt Storage Area (CHAISA) 
New Task Common (CHANTC) 
TABLEA (CHAAAA) 
Profile Character and Switch Table (CHAPCT) 

.. Source .List Handlers (CZASC> 

The Source List Handlers package consists of seven separate functions 
(each defined as a separate entry point) that provide the command system 
with a means of updating and interpreting the contents of the source 
list. (See Chart AF.) 

ENTRIES: Each of the following entry points defines one of the source 
list handlers: 

sublist addition (push)/ deletion (pop) routine 
source list page acquisition routine 
source list processor for all markers except E 
source list processor for E markers 
source list synonym expander 
source list update routine 

CZASCl -
CZASC2 -
CZASC3 -
CZASC4 -
CZASC5 -
CZASC6 -
CZASC7 
CZASC8 

privileged entry for read from/into source list via SYSIN macro 
- nonprivileged entry for read from/into source list via SYSIN 

macro 

SOURCE LIST HANDLER PUSH/POP (CZASC1): This routine allows for the 
addition (PUSH) and deletion (POP) of sublists within the source list 
(SL) . (See Chart AF.) 

Entry: CZASCl - normal entry 

Modules Called: 

Virtual Memory GETMAIN (CZCGA2) gets storage for the first page of 
Allocation (CZCGA) the source list. 

txits: The routine normally returns to the calling routine, via the 
RETURN macro instruction. 

Operation: The routine tests an address field for the source list 
(CZASC9) to determine if this is the task's first entry for construction 
of the SL. If CZASC9 is zero, the entry flag (INITE) is zeroed and set 
to indicate initial entry (INITEM=ON). GETMAIN is then called to 
reserve storage so that the task's SL can be constructed from scratch. 
If CZASC9 is not zero the entry flag (INITE) is tested for initial entry 
(INITEM=ON) and for a previous POP action which reverted to the SL's 
first sublist (INITEM1=0N). The SL is then reinitialized to its first 
possible sublist state. For both cases, values are set in the SL Head­
er, a new sublist is constructed and INITEM is set ON for successive 
entries. 

42 



If INITEM=ON, the current sublist base is set from SLPCSL, and a test 
is made to determine what type of entry was made. For a POP entry, the 
sublist's generation marker's pointer field (SLHPTR) is tested. If the 
field is zero, INITEM=OFF, INITEM1=ON, and EXIT. If it is nonzero, 
SLPCSL is reset from SLHPTR (the sublist pointer now points to the pre­
vious sublist), and SLPAVL is enlarged by the number of bytes existing 
in the POPed sublist. If the new sublist is a G type (non-OBEY), SLPGIP 
is reset to point to its SLHPTR field. In either case, an immediate 
EXIT is made. 

If the entry is a PUSH type, a check for sufficient sublist space is 
made (390 1 bytes minimum). Insufficient space results in a call to 
CZASC2 for an additional page. The new sublist base is returned from 
CZASC2 which also updates SLPAVL accordingly. If there was enough space 
initially, the new sublist base is computed from the previous sublist's 
end point (SLHEND). which is rounded to the next fullword boundary. 

In either case, the previous sublist pointer is moved into the SLHPTR 
field of the new sublist. If the new sublist is an OBEY type (user call 
to command analyzer), its generation marker is set to U; otherwise, is 
set to G. Also for the G type, the previous sUblist's SLHPTR field is 
set to zero, and a null command line is input, the start address 
(SLHCSA) is set to the beginning of the generation marker: SLHEND is set 
to its end; SLPAVL is diminished by the number of bytes in the new sub­
list: SLPCSL is updated; and, an EXIT is made. 

If the input command line isn't null, it is moved into the SL after 
the new generation marker. An E marker is placed at the line's end, 
which points back to the generation marker's beginning. SLHCSA is set 
to the line'S first byte address; SLHEND is set to the address of the 
first available byte after the E marker; SLPAVL is diminished by the 
number of bytes in the sublist plus the command line (including 6-by-te E 
marker); and, an EXIT is made. 

Error Conditions: There are no error conditions for this routine. 

System Control Block Usage: 

Source List Marker (CHASLM) 
Source List Page Header (CHASLP) 
Sublist Header (CHASLH) 
Task Common (CHATCM) 

SOURCE LIST HANDLER BUFFER FETCH ROUTINE (CZASC2): This routine is 
called to obtain a page of virtual storage for source list (SL) expan­
sion and to provide page-to-page linkage. (See Chart AF.> 

Entry: CZASC2 - normal entry 

Modules called: 

Virtual Memory 
Allocation (CZCGA) 

GET MAIN (CZCGA2) obtains additional source 
list pages. 

Exits: The routine normally returns to the calling routine, via the 
RETURN macro instruction. 

Operation: The routine tests the first four bytes of the current SL 
page. If they are zero, GETMAIN is executed to obtain an additional SL 
page after which the address of the new page is placed in the first four 
bytes of the previous page. If the four bytes were nonzero, the page to 
which they point would be used. 

If the entry is for a line expansion (input=pointer to the full word 
containing 1), the current SL end pointer (SLHEND) is set to the address 

Section 2: Command Controller 43 



of the new page's first available byte (fifth byte position); the SL 
available byte count (SLPAVL) is updated to 4092 10 ; and, an EXIT is 
made. If the entry is for anew sublist (input pointer to full-word 
containing zeros), the new page's address is returned to the calling 
routine; SLPAVL is set to 409210 ; and, an EXIT is made. 

An entry for textual procedure expansion is assumed if the two pre­
vious types are not specified. A T marker is placed in the old page at 
the current end point, which points to the first available byte in the 
new page. SLHEND is updated to the address of the first available byte 
in the new page; SLPAVL is set to 409210 ; and, an EXIT is made. 

Error Conditions: There are no error conditions for this routine. 

System Control Block Usage: 

Source List Marker (CHASLM) 
Source List Page Header (CHASLP) 
Sublist Header <CHASLH) 

SOURCE LIST HANDLER MARKER PROCESSORS (CZASC3/CZASC4): The routine 
which is entered to process source list (SL) markers, recognizes when 
new lines must be input via GATE and, in addition to expanding the SL, 
it deletes information when the markers indicate that this action is 
necessary. (See Chart AF.) 

Entries: 

CZASC3 - entry point to process all but E-type (connection/termination) 
markers 

CZASC4 - entry point to process E markers 

Modules Called: 

GATE (CZATC) To write a prompt string and read into the source list. 

Exits: The routine normally returns to the calling routine, via the 
RETURN macro instruction. 

Operation: When the module is entered at CZASC3, the current start 
address (SLHCSA) is tested for a pointer to a T marker. If there is a 
pointer, SLHCSA is reset from the T marker's pointer field, and an EXIT 
is made. If there is no T, then a G marker is assumed. The address of 
the standard prompt string is obtained from PCTPS new task common. Con­
trol now passes to CZASC4 to prompt for a new comlLland line. 

At entry point CZASC4, SLHCSA is immediately reset from the E mar­
ker's pointer field. If it doesn't point to another marker, SLHCSA is 
updated, and an EXIT is taken. Otherwise, a check is made for a U mark­
er. If there is one, register 15 is set to hexadecimal FF to signal the 
calling routine to initiate a sublist deletion, and an EXIT is taken. 
Also, if the U marker doesn't point to a G or P marker, an EXIT is 
taken. If the U marker points to a P marker, the current end point 
(SLHEND) is set to the beginning of the P marker; SLHCSA is set from the 
P marker'S pointer field; the available byte count (SLPAVL) is increased 
by the number of bytes from the beginning of the P marker to the end of 
the E marker, and an exit to the calling routine is made. 

The last possibility is the G, or generation marker. In this case, 
the G marker address is saved. If its pointer field is nonzero, SLPAVL 
is reset to reflect the G marker's position relative to the SL page 
beginning, and control passes to prompt for a new line to be read into 
the SL, after the G marker. If the G marker's pointer field is zero, 
the SL must be reset to its first sublist position. To do this, the 
sublist pointer (SLPCSL) is reset to 161c ; the G marker address is reset 

44 



to the first SL generation marker position and saved; SLPAVL is reset to 
405810 ; and, the G type sublist pointer (SLPGIP) is reset to point to 
the new G marker. 

At this point, regardless of the above path, GATWR is used to prompt 
for the next command line with the standard prompt message (underscore­
return) in new task common. This is followed by a call to GATRD for the 
command line to be read into the SL after the G ma:rker. An E marker is 
now placed after the command line, and a test is made for a continuation 
line (if the last character in the line is a hyphen, a continuation line 
is expected). If no continuation is expected, the E marker is set to 
point back to the saved G marker address; SLHEND is reset to the end of 
E marker, SLHCSA is reset to the first byte of the command line; SLPAVL 
is diminshed by the line length (plus the 6-byte E marker); and, an EXIT 
is taken. 

If there is a continuation, a test is made to determine if sufficient 
SL space exists for another line. If not, CZASC2 is called to expand 
the SL by another page. In any event, the E marker is set to point to 
the first available SL byte past itself (this may he on another page), 
and control passes back to prompt to read another line into the SL at 
the position to which the E marker points. This logic is repeated until 
all continuation lines are read, after which the above procedure for no 
continuation line is executed (last E marker points back to the G 
marker) • 

Exits: This routine normally returns to the calling routine, via the 
RETURN macro instruction. 

System Control Block Usage: 

New Task Common (CHANTC) 
Task Common (CHATCM) 
Source List Marker (CHASLM) 
Source List Page Header (CHASLP) 
Sublist Header (CHASLH) 

SOURCE LIST HANDLER SYNONYM EXPANDER -- SYNSL (CZASCS): This routine is 
called when a synonym value exists for an isolated command. The synonym 
value is placed into the SL, and pointers are reset for its eventual 
execution. (See Chart AF.) 

Entry: CZASCS - normal entry 

Modules Called: None. 

Exits: The routine normally returns to the calling routine, via the 
RETURN macro instruction. 

Operation: The routine establishes the base of the combined dictionary 
entry. A test is made to determine if enough space exists in the SL for 
the synonym value, plus 12 bytes for the prefix P and terminating mark­
ers E. If space is not available, CZASC2 is called to expand the SL by 
one page. In either case, a P marker is now placed in the SL at the 
current end pointer (SLHEND), which points back to the current start 
address (SLHCSA). The P marker address is saved, and SLHCSA is set to 
the first byte after the P marker. The synonym value is now moved from 
the combined dictionary entry (its length precedes it in the dictionary 
entry) into the SL at the new SLHCSA. An E marker, which points back to 
the P marker, is placed at the end of the synonym value in the SL. 
SLHEND is set to the end of the E marker; the available byte count 
(SLPAVL) is diminiShed by the number of bytes in the synonym value plus 
12 bytes for the markers, and an EXIT is taken. 

Error Conditions: There are no error conditions for this routine. 

Section 2: Command Controller 45 



System Control Block Usage: 

Source List Marker (CHASLM> 
Source List Page Header (CHASLP) 
Sublist Header (CHASLH) 

SOURCE LIST HANDLER UPDATE ROUTINE (CZASC6): This routine is called to 
update the source list (SL) to the next command, or to the end of a com­
mand line. (See Chart AF.) 

Entry: CZASC6 - normal entry 

Modules Called: None. 

Exits: The routine normally returns to the calling routine via the 
RETURN macro instruction. 

Operation: The routine establishes the current sublist base from 
SLPCSL, and executes the GNC macro instruction to isolate the SL 
character at the current start address (SLHCSA). The isolated character 
is tested for an EOB. If it is an EOB, an immediate EXIT is taken. If 
it is not, a test is made to determine if this entry is to update the SL 
to the next command. If it is not to update the SL, the routine iso­
lates the next character. If it is, the current character is tested for 
a semicolon. The absence of a semicolon causes another character to be 
isolated; the presence of a semicolon causes an EXIT. In any event, an 
EXIT updates SLHCSA to the next command (the previous command is deli­
mited by a semicolon> or to the end of the line (delimited by an EOB). 

Error Conditions: There are no error conditions for this routine. 

System Control Block Usage: 

New Task Common (CHANTC> 
Source List Marker (CHASLM) 
Source List Page Header (CHASLP) 
Sublist Header (CHASLH) 

SOURCE LIST HANDLER SYSIN ROUTINE (CZASC7/CZASCS): This routine is 
called via the SYSIN macro when a user desires to read data lines into 
or from the source list (SL) and to pass this information to a user­
specified area. (See Chart AF.> 

Entries: 

CZASC7 - privileged entry 
CZASC8 - nonprivileged entry 

Modules Called: 

GATE (CZATC) 

control Dictionary 
Handler (CZASD) 

To write from or read into the source list. 

To test hashed string for a default value. 

Exits: The routine normally returns to the calling routine via the 
RETURN macro instruction. 

Operation: The user may indicate the data source by specifying one of 
the following EBCDIC source codes: 

• G indicates that a line is to be obtained from SYSIN via GATE . 

• L indicates that a line is to be obtained from the source list. 

46 



• E indicates one of two alternatives: (i) if the default value for 
SYSIN is G, a line is to be obtained from SYSIN via GATE. (2) If 
the default value for SYSIN is not equal to G, a line is to be 
obtained from the SL. 

The user may also indicate that commands are to be treated as data or 
message input by appending location code, S, to one of the above source 
codes. 

In processing G or E (type 1) requests, the user's SYSIN device is 
prompted for an input line. If there is not enough space in the SL for 
a new line (2681o bytes), the SL is expanded via a call to CZASC2. The 
current starting address of the SL (SLHCSA) is saved. If the task is 
conversational, the routine tests for a prompt message. If there is a 
message and the default value for LINENO is Y, a GTWAR is issued, other­
wise, a GATRD is issued. The input line is read into the SL at its cur­
rent end point (SLHEND). SLHCSA is updated to the line's first charact­
er and an E marker that contains the previously saved SLHCSA is placed 
at the end of the line. If the task is nonconversational, the prompt 
string (if one exists and LINENO is Y) is moved into the SL; SLHEND is 
updated past the prompt string and a GATRD is issued. The SYSIN "line is 
put into the SL at its updated SLHEND and the actual record length is 
passed to the user. Then the entire string (prompt and input data) is 
written via GATWR to SYSOUT. An E marker that contains the previously 
saved SLHCSA is placed at the end of the line. SLHEND is updated to 
point past the E marker and the available byte count (SLPAVL) is 
diminished by the number of bytes in the line plus 6 bytes for the E 
marker. Then for both conversational and nonconversational tasks, the 
input line is transmitted to the user. 

In processing L or E (type 2) requests, the character at SLHCSA is 
tested. If SLHCSA points to an E marker and the SYSIN code is LS, an 
exit is taken with a length of zero passed to the caller. If SLHCSA 
points to an E marker and the E marker points to a U marker, the user is 
notified via User Prompter that the request is non-serviceable and an 
exit is taken. Otherwise, the E marker is processed via CZASC4 and a 
line is obtained from the SL. 

For all requests, the SL pointer is updated, beginning at SLHCSA, to 
the first nonblank character, and the user input value for the maximum 
number of transmission characters is set. If the first nonblank 
character is not an underscore, a data line is transmitted. If the 
first nonblank character is an underscore, the next character is tested 
for an underscore. If there are two underscores at the beginning of the 
SL, the line is treated as data. Otherwise, the line is treated as an 
immediate command. Before termination, a test is performed to determine 
if the command is to be treated as data. If not, a return code of C is 
set in register 15 and an exit is taken. The data is now moved, one 
character at a time, until the user maximum is reached or an EOB is 
encountered. If the maximum is exceeded, a return code of 4 is set in 
register 15 and an exit is taken. 

Note: All nonconversational input data obtained via GATRD will be 
adjusted in the SL to eliminate the key, etc., depending on whether the 
input was VISAM, VSAM, etc. The line length passed to the user will 
reflect the actual record. A truncation return code will not be set for 
a nonconversational task if only blanks exceed the user's buffer. 

Error Conditions: The routine returns a hexadecimal code in register 
15: 

Section 2: Command Controller 47 



Code 
Hexadecimal 

00 

04 

08 

OC 

10 

14 

20 

24 

40 

100 

Significance 

NO errors detected. 

Number of characters to move exceeds maximum. 

Attention interrupt detected by GATE. 

An immediate command was detected and executed. 

The input line was in keyboard format and a normal return 
was made. 

The input line was in keyboard format and the line was 
truncated. 

The input line was in card reader format and a normal 
return was made. 

The input line was in card reader format and the line was 
truncated. 

SYSIN request no processed because: 

1) CKCLS detected error. 
2) E marker points to U marker. 

Continuation detected by GATE. 

Note: If continuation is detected, a return code of 10 is returned in 
byte 2 of register 15. 

System Control Block Usage: 

New Task Common (CHANTC) 
Task Common (CHATCM) 
Source List Marker (CHASLM) 
Source List Page Header (CHASLP) 
Sublist Header (CHASLH) 

GNC MACRO: The code generated by GNC initially picks up the character 
pointed to by the current SA and places it in output register 1. If the 
character is an BOB (first character of an SL marker), a test is made to 
determine if it begins an E marker. If an E marker exists at the cur­
rent SA, control passes to the first instruction past the macro expan­
sion (hereafter called an EXIT); otherwise CZASC3 is called to process 
the marker. Since CZASC3 determines a new SA, control passes back to 
examine the new character. 

If the character at the current SA wasn't an EOB, the current SA is 
incremented by one and the same character is tested for a continuation 
mark. If it's not a continuation character, an EXIT is made; otherwise 
a test is made to determine if the continuation character is followed by 
an E marker. If not, an EXIT is made with the continuation character in 
the output register. If it was, CZASC4 is called to update the SA to 
the first character in the continuation line and control passes back to 
process the new character. 

An operand may be specified with the GNC macro instruction. This 
operand specifies the .location to get control if a POPIT return code is 
received after calling CZASC3 of CZASC4. In effect, the operand speci­
fies a special exit. 

48 



Programming Notes: NEW TASK COMMON, CHANTC, and the SUBLIST HEADER, 
CHASLH, must be covered to assemble and use this macro. Use of this 
macro is currently restricted to the Command Analyzer and Executor, the 
Source List Handler, PCS, and the PROCDEF Expander. 

~Control Dictionary Handler (CZASD) 

The control dictionary handlers are a set of internal subroutines 
that operate on any dictionary of the form of the command system control 
dictionaries. They provide the means to initialize, maintain, and use 
any dictionary of this form. (See Chart AG.) 

ENTRIES: 

CZASDl -
CZASD2 -
CZASD3 -
CZASD4 
CZASDS -
CZASD6 -
CZASD7 -
CZASD8 -
CZASDX -

STARTFIX 
STARTVAR 
RFR 
NEXTRFR 
ENTR 
DELENT 
EXTDIC 
PACI<VAR 
GDV 

MODULES CALLED: See individual routines. 

EXITS: The routines normally return to the calling routine, via the 
RETURN macro instruction. 

OPERATION (GENERAL): Dictionary initialization is performed by either 
STARTFIX or STARTVAR, depending on the need for fixed-length or 
variable-length entries. These routines establish the dictionary and 
hash table in space provided by the user. A HASH macro instruction is 
provided for determinig the referece value of an eight character entry 
name. The RFR and NEXTRFR routines provide the capability to locate the 
appropria te posi tion wi thin the dict.ionary in order to use, add, 
replace, or delete an entry. NEXTRFR eliminates the necessity for 
beginning the search each time. Either one or the other of these muse 
be used prior to the use of ENTR or DELENT. 

ENTR performs the addition or replacement of an entry, and in the 
process calls EXTDIC as required. EXTDIC provides additional, initia­
lized space. DELENT deletes an entry and makes necessary changes in the 
chain pointers. PACVAR is available to regain lost space in variable 
length dictionaries by reforming the dictionary. This function should 
be necessary only after excessive deletions have occurred. 

The GDV routine is called by the GDV macro instruction to retrieve a 
default value for a parameter name from the combined dictionary. Upon 
entry, Rl contains the VMA of the parameter name. The name length is 
preceded by a byte containing the string length, which cannot exceed 
eight bytes. On exit, the default value is moved t:o table A. Then Rl 
is set to point to table A which will contain the default value, if one 
is found in the combined dictionary. If a default value is not found, 
Rl is set to O. The default value is preceded by a byte that contains 
the string length. 

ERROR CONDITIONS: These are given in the individual routines. 

SYSTEM CONTROL BLOCK USAGE: These are given in the individual routines. 

Section 2: Command Controller 49 



STARTFIX Routine (CZASD1): This subroutine performs the functions 
necessary to initialize a dictionary composed of fixed-length entries. 
It establishes the hash chain and other necessary initial entries. (See 
Chart AG.) 

Entry: CZASDl - normal entry 

Modules called: None. 

Exits: The routine returns to the calling routine, via the RETURN macro 
instruction. 

Operation: This routine uses the page of virtual storage indicated and 
sets the hash table entries to point to the available space-chain. Then 
the entry pointers are initialized for all entry spaces, as required by 
the length of the entries; finally, entry codes are initialized. 

Error Conditions: There are no error conditions for this routine. 

System control Block Usage: 

Control Dictionary Heading (CHADCT) 
Control Dictionary Entry (CHADEN) 

STARTVAR ROUTINE (CZASD2): This subroutine performs the functions 
necessary to initialize a dictionary that will contain variable length 
entries; it also establishes the necessary initial entries. (See Chart 
AG. ) 

Entry: CZASD2 - normal entry 

Modules Called: None. 

Exits: The routine returns to the calling routine, via the RETURN macro 
instruction. 

Operation: STARTVAR uses the space and length to point the hash table 
entries to an available space. 

Error Conditions: There are no error conditions for this subroutine. 

System Control Block Usage: Control Dictionary Heading (CHADCT). 

RFR ROUTINE (CZASD3): This subroutine is used to locate a dictionary 
entry which may be added, replaced, or deleted. (See Chart AG.) 

Entry: CZASD3 - normal entry 

Modules Called: None. 

Exits: The routine returns to the calling routine, via the RETURN macro 
instruction. 

Operation: After verifying the hash value, the next entry is examined 
for name and entry code. When the correct entry is located, the loca­
tion of the entry is returned. Successive entries in the hash chain are 
cnecked until either a correct one is found or the end of the particular 
hash chain is reached. The absolute location of the preceding pointer 
is always retained. 

Error Conditions: 
cess fully located, 
the hash value was 
not initialized. 

50 

Register 15 will contain a 0 if the entry was suc­
and a 4 if no entry was found. It will contain 8 if 
not valid, or the page containing the dictionary is 



System control Block Usage: 

Control Dictionary Heading (CHADCT) 
Control Dictionary Entry (CHADEN) 

NEXTRFR ROUTINE (CZASD4): This subroutine is used to locate an entry in 
a dictionary without going through the entire hash chain. (See Chart 
AG.) 

Entry: CZASD4 - normal entry 

Modules Called: None. 

Exits: The routine returns to the calling routine, via the RETURN macro 
instruction. 

Operation: This routine begins at the point where RFR stopped. Succes­
sive entries in the hash chain are checked until either a correct one is 
found or the end of the particular hash chain is reached. The absolute 
location of the preceding pointer is always retained, and the location 
of the entry found is returned. 

Error Conditions: Register 15 will contain: 

o - successful location 
4 - unsuccessful location 
8 - error 

System Control Block usage: 

control Dictionary Heading (CHADCT) 
Control Dictionary Entry (CHADEN) 

ENTR ROUTINE (CZASDS): This routine, which is used to add or to replace 
an entry, is always used following an RFR or a NEXTRFR. If the preced­
ing locating routine was successful, ENTR will replace the old entry. 
If the preceding locating routine was unsuccessful, ENTR will add the 
new entry. (See Chart AG.) 

Entry: CZASDS - norn~l entry 

Modules called: hXTDIC (CZASD7) - To extend the dictionary. 

Exits: The routine returns to the calling routine, via the RETURN macro 
instruction. 

Operation: ENTR checks the preceding pointer, which was retained by RFR 
or NEXTRFR, and determines whether to replace or to add the new entry. 
It extends the dictionary, if necessary, by calling EXTDIC and proceeds 
to perform the addition or replacement. The preceding pointer is 
changed, and retained, while the location of the entry is returned. 

Error Conditions: Register is will contain: 

o - successful entry 
4 - unsuccessful entry 
8 - error 

System Control Block Usage: 

Control Dictionary Heading (CHADCT) 
Control Dictionary Entry (CHADEN) 

DELENT ROUTINE (CZASD6): This routine is used to delete an existing 
dictionary entry. (See Chart AG.) 

Section 2: Command Controller 51 



Ent ry : CZASD6 - normal entry 

Modules Called: None. 

Exits: The routine returns to the calling routine, via the RETURN macro 
instruction. 

Operation: This routine is used only following a successful RFR or 
NEXTRFR. It deletes the located entry by setting the entry code equal 
to 0 and by modifying the next entry pointers of the hash chain. It 
also changes the retained preceding pointer. The new space is made 
available in fixed-length dictionaries. 

Error Conditions: The retained pointer is checked for zero to prevent 
the destruction of the sequence. Register 15 contains: 

o successful deletion 
8 - invalid request 

System Control Block Usage: 

control Dictionary Heading (CHADCT) 
Control Dictionary Entry (CHADEN) 

EXTDIC ROUTINE (CZASD7): This routine is used when it is necessary to 
provide additional space for the dictionary. It is called by ENTR when 
there is insufficient space to accommodate a new entry. (See Chart AG.) 

Entry: CZASD7 - normal entry 

Modules Called: 

EXPAND To get additional contiguous space. 

GETMAIN To get storage. 

Exits: The routine returns to the calling routine, via the RETURN macro 
instruction. 

Operation: If it is necessary, GETMAIN is used to get additional 
storage. Then the dictionary is moved to ensure page alignment. EXTDIC 
calls EXPAND to get additional space to insure contiguous space for the 
continuation of the dictionary. The additional space is initialized, 
and the dictionary length and dictionary origin are changed 
appropriately. 

Error Conditions: There are no error conditions for this routine. 

System control Block Usage: 

Control Dictionary Heading (CHADCT) 
Control Dictionary Entry (CHADEN) 

PACKVAR ROUTINE (CZASD8): This routine is used when it becomes feasible 
to reclaim lost space which is due to numerous deletions. This is 
necessary only in the case of variable-length entry dictionaries where 
deleted entry space is not reused. (See Chart AG.) 

Entry: CZASD8 - normal entry 

Modules Called: STARTVAR (CZASD2). To start a new dictionary. 

Exits: The routine returns to the calling routine, via the RETURN macro 
instruction. 

52 



Operation: PACKVAR uses the dictionary handlers to form a new dic­
tionary and to establish a new hash table which works through each hash 
chain in turn, until all entries from the existing dictionary are put 
into the newly formed dictionary. The routine returns the new dic­
tionary origin. 

Error Conditions: Register 15 will contain: 

o - successfully packed dictionary 
4 - error 

System Control Block Usage: 

Control Dictionary Heading (CHADCT) 
Control Dictionary Entry (CHADEN) 

GDV ROUTINE (CZASDX): This routine is called by the GDV macro to deter­
mine whether a default value exists in the dictionary for a specified 
entry. <See Chart AG.) 

Entry: CZASDX - normal entry 

Modules Called: 

RFR (CZASD3) To search the dictionary. 

Exits: The routine returns to the calling module via the RETURN macro 
instruction. 

Operation: GDV uses a pOinter in register 1 to find a pointer to an 
eight-byte field containing the name for which the search is to be made. 
The name is hashed, using the HASH macro. RFR is called, usinq these as 
parameters: name, hash value, default code, dictionary location, and 
the location in which the pointer to the value is to be placed. If a 
value is found, a pointer to the value is returned. 

Error Conditions: Register 1 will contain the VMA of the default value, 
if one was found. If one was not found, register 1 will contain all 
zeros. The default value will be preceded by one byte containing the 
string length. 

System Control Block Usage: None. 

Section 2: Command Controller 53 



SECTION 3: TEXT EDITOR 

The Text Editor is a collection of routines that provide a facility 
for creating and manipulating lines of data in a VIS AM data set. Com­
munications are provided to allow editing to be performed at the same 
time that a language processor is compiling or assembling from a source 
data set. 

The principal interface between the Text Editor routines and the rest 
of the system is provided by the User Controller routine {CZAMZ}. (The 
User Controller serves as an interface to all non-privileged code. All 
Text Editor routines are nonprivileged except the Edit Initialization 
and DATALINE routines.) 

Most of the Text Editor routines are command processor routines; they 
are invoked when the specific commands they process are issued by the 
user. Two of these, LIST (CZASP) and EXCISE (CZASL), are also called by 
many of the other Editor command processors. 

The Translation Table Initialization (TRIN) routine (CZBTA/CZBSY). 
Translation Table Update (TRUP) routine (CZASS/CZESX), MATCH (CZAST), 
and DATALINE (CZASG) are all service routines; they do not process spe­
cific commands, but instead serve as common code for the command proces­
sors. Figure 9 shows the logical connections between command 

tJ I. J L J 
CORRECT CONTEXT P MATCH ~ LOCATE UPDATE 
(CZASQ) (CZASM) (CZAST) (CZASN) (CZASR) 

l • • .. .. LIST - NUMBER 
~ (CZASP) (CZASU) 

~ Routines co! ling service routines are connected 

" 
by open arrows . .. Routi nes ca Iii ng other command processor routines 

EXCISE REVISE are connected by shaded arrows. .. I<;--
(CZASL) (CZASH) r--

r 
~ 

EDIT 
TRANSACTION TRANSACTION 

¢ TABLE TABLE 
INITIALIZA TlON 

INITIAL! ZA TlON UPDATE I 
(CZBSE) 

rCZBTA!CZBSY) (CZASS!CZBSX) 

~ { 

U L J U 
INSERT ¢ DATALINE P REGION EXCERPT STET 
(CZASJ) (CZASG) (CZASF) (CZASK) (CZASV) 

Figure 9. Interrelation of Text Editor Command Processor and Service 
routines 

54 



processor and service routines, and among the command processors 
themselves. 

The Edit Controller (CZATS) is essentially a con~and processor rou­
tine for the EDIT and END commands. It initializes the Text Editor when 
an EDIT command is issued, and terminates Text Edit:or processing when an 
END command is encountered (or another LPC is initiated). The Edit Con­
troller performs a function that is similar to the LPC function for 
assembler, FORTRAN, PL/I, and linkage editor. 

The principal function of the Edit Initialization routine (CZBSE) is 
to establish a transaction table by means of TRIN and GET MAIN when a 
LPCINIT macro instruction has been issued. After the Transaction Table 
has been established, control is returned to the User Controller to pro­
cess the next command. 

The ENABLE and DISABLE commands are not handled by command processor 
routines in the Text Editor; they are instead entrI points in the User 
Controller routine. 

The virtual access method (VAM) is used for the data sets being 
edited. The DCB for the data set is in the PSECT that is common to all 
the modules in the Text Editor except the Edit Controller. All Text 
Editor modules issue a COpy macro instruction; each DSECT (CZBSEDM) 
generated by this macro maps the Text Editor' s common PSECT (CZBSEW). 

All of the commands of the Text Editor are entered in the BPKD form. 
Each command points to a common BPKD that is located in the portion of 
the User Controller routine that is part of its LPCEDIT routine. The 
BPKD is located by the User controller, and executed. The procedure 
permits a controlled dispatch of many nonprivileged routines under the 
precise control of the Language Processor Controller which is located in 
a section of the User Controller routine. 
cou 

~ Text Edl tor Controller -- EDIT command Routine (CZATS1/CZATS2) 

This routine is the language processor controller for the Text Edi­
tor. When entered as the result of the EDIT command, this routine 
initiates the Text Editor and monitors any succeeding Editor commands. 
When entered as the result of the END command, it terminates Text Editor 
processing. (See Chart AH.) 

l!:N'TRIES: 

CZATSl - entry exclusively from the Command Analyzer through the Edit 
Controller for the EDIT command 

CZATS2 - entry is from the User Controller (CZAMZ) upon recognition of 
the END command, or if the user initiates another LPC 

MODULES CALLED: 

Control Dictionary 
Handler GDV (CZASDX) Gets default value for REGSIZE. 

DDEF (CZAEA1) Creates a JFCB for the data set, if none already 
exists. 

RELEASE (CZAFJ3) 

F1NDDS (CZAECl) 

Releases the data definition, during END proces­
sing, if CZATS had to call DDEF during EDIT 
processing. 

Determines whether the requested data set has 
been defined. 

section 3: Text Editor 55 



FINDJFCB (CZAEB1) Locates the object data set, if FINDDS cannot 
find the data set. 

REGION (CZASF1) Validates RNAME, if it has been entered as one of 
EDIT's parameters. 

SCAN Routine 
CHECKDS (CZAAC2) Validates the data set name. 

User Control (CZAMZ): 
LPCINIT (CZASW1) Initiates the Editor as an LPC. 

LPCEDIT (CZASW~) Begins execution of Editor cOIT~ands. 

User Prompter (CZATJ1) Issues diagnostic messages to the user. 

EXITS: The routine normally returns to the calling routine, via the 
RETURN macro instruction. 

OPERATION: An overview of the Editor Controller's logic is displayed in 
Figure 10. The routine must first validate the data set name. When it 
is assured of a valid dsname, it can determine whether that dsname 
represents an already defined data set by calling FINDDS. If FINDDS 
returns without a JFCB, CZATS performs the data definition itself: it 
creates a ddname, fills in the DCB with default values, calls DDEF to 
create a JFCB, and then notes that it supplied the DCB parameters. 
These DCB parameters depend in part on whether REGSIZE has been speci­
fied. If REGSIZE is zero, CZATS sets KEY LEN to seven. If there is a 
value for REGSIZE, CZATS adds seven to it to determine KEYLEN. Values 
of RECFM=V and RKP=4 are assumed. The value for LRECL is determined by 
REGSIZE: When REGSIZE=O, LRECL=132; when RBGSIZE*O, LRECL=256. 

If FINDDS locates a JFCB, CZATS determines the disposition of the 
data set. If it is other than ·old,~ CZATS branches to another section 
of logic to examine the Task Data Definition Table (TDT) and set the 
attributes of the data set. If KEYLEN in the TDT=O, and REGSIZE is 
valid, CZATS sets the DCBKEY=REGSIZE+7. If LRECL in the TDT is 0, it 
sets HECL=132. It tests for record format (RECFM) in the TDT. If there 
is no setting, or if the setting indicates variable format records, 
CZATS sets RECFM=V and RKP=4. If RECFM=F, there must not be a setting 
for RKP in the TDT. 

CZATS next tests for and validates a member name, and, after testing 
the user's qualifications, opens the requested data set either for input 
or update. A value for REGSIZE may be entered as one of the EDIT com­
mand's operands -- CZATS tests for and validates such an occurrence, and 
sets LRECL in the DCB accordingly. It then tests for a partitioned data 
set. If this data set is not partitioned, CZATS can now begin the final 
stage of its processing. However, if the data set is partitioned, CZATS 
must first deal with it. 

If the data set is partitioned, CZATS tries to locate the member and 
open it via the FIND macro instruction. If the member is found, or has 
already been opened, and it is a VISAM member, CZATS branches to its 
final stage. (If in this processing CZATS finds that REGSIZE+7*DCBKEY, 
it informs the user that REGSIZE has been set to 8.) If the member is 
new, and not in SYSULIB, CZATS creates and closes it via the STOW macro 
instruction. The following DDEF options are present, if the member is 
in SysuliB, and if the member being processed is either SYSPRO or SYS­
~LF: RKP=4, KEYLEN=15, RECFM=V, LRECL=256. In any event, the new mem­
ner is now reopened via the FIND macro instruction. 

56 



EXAMINE TDT 

1. TOT KEYLEN~O, 
DCBKEY~REGSIZE+7 

2. TOT lRECL~O: 
DCB lREC l ~ 132 

3. TDTRECF/otyiF 
DCB RECFM~V 
DCB RKP~4 

1. LOCATE OR 
CREA TE AND CLOSE 
MEMBER. 

2. OPE~J MEMBER 

NO 

VAL!DA TE 
DSNAME 

VA lIDA TE MEMBER 
NAME-TEST USER 
QUALIFICATIONS. 
OPEN DATA SET. 

PERFORM DATA DEFINITION 

1. CREATE DDN.AME 

2. CREATE DCB: 

RKP-4 
(0) REGSIZEcO, 

KE'tLEN,7 
LRECl~132 

(b) REG51ZElO, 
KEYLEN'REGS I ZE 'I 
LRECL ~256 

3. CALL DDEF to MAKE 
JFCB 

Figure 10. Overview of the Text Editor Ccntroller logic 

In its final stage of processing, CZATS determines if it provided the 
DCB parameters. If not, it ensures that the RECF'M and RKP parameters 
are valid. CZATS then executes the LPCINIT macro to i ni tiali ze i i:self 
as a language processor controller. On return. i t determine~; whet.her a 
region name (RNAME) was entered as one of the EDIT command's operands. 
If so, it calls the REGION processor (CZASF). CZATS then sets the Tran­
saction Table ENABLE/DISABLE switch to enabled. If this is an old 
region or old line data set, the CLP is set to the first line of the 
region or data set, and an exit is issued to return the user to command 
mode. If this is a new region or new line data set, the editing proce­
dure begins with the execution of the LPCEDIT macro instruction, which 
returns to the command system to await new Text Editor conmands. CZATS 
loops on LPCEDIT until the user terminates the Text Editor with an END 
command or another LPC. At this point, CZATS2 (END) is called. END 
closes the object data set (or members if partitioned), releases EDIT's 
DDEF, if necessary. and exits. 

sect:ion 3: Text Editor 57 



ERROR CONDITIONS: The following conditions will cause a diagnostic mes­
sage to be issued and an error exit taken: 

1. Member name or dsname not supplied. 

2. Invalid dsname. 

3. Member name longer than eight bytes. 

4. Invalid REGSIZE specified. 

5. Object data set not VISAM or VPAM. 

6. Object data set new and read-only. 

7. Object data set VPAM and no member name supplied. 

8. Unsuccessful FIND on the supplied member name. 

9. Member not VISAM. 

10. DDEF unsuccessful. 

11. Invalid DCB parameters. 

12. Invalid BASE default attribute. 

13. Invalid region name (Name). 

SYSTEM CONTROL BLOCK USAGE: 

Data Control Block (CHADCB) 
Task Definition Table (CHATDT) 
Transaction Table (CHATRN) 

~CONTEXT Command Routine (CZASM) 

The routine is entered from the User Controller when a CONTEXT com­
mand is encountered. It searches within a range of lines (nl to n2) and 
character positions in the object data set for a given string (string 
1), and upon finding it, replaces that string with a second string 
(string 2). (See Chart AI.) 

ENTRY: CZASMl - normal entry 

.t-'lODULES CALLED: 

control Dictionary 
Handler - GDV (CZASDX) Gets default value. 

TRIN (CZBTA) Initializes the Transaction Table. 

EXCISE (CZASL2,3) CZASL2 resolves the beginning line number (nl); 
CZASL3 resolves the last line number (n2). 

TRUP (CZASS1,2) CZASSl adds a line to the Transaction Table 
ad.dition list. CZASS2 adds a line to the Tran­
saction Table deletion list. 

~mTCH (CZAST) Searches for the string to be replaced (string 
1), and converts hexadecimal input when 
specified. 

User Prompter (CZATJ1) Issues diagnostic messages to the user. 

58 



LIST (CZASP) Converts the substitution string (string 2) for 
hexadecimal input. 

EXITS: The routine normally returns to the calling routine, via the 
RETURN macro instruction. An error exit to the ca.lling routine is made 
when the required parameters are not specified. 

OPERATION: CONTEXT establishes the range of 1ines to be searched. It 
sets up the MATCH routine parameteI's to start at the given character 
position for the first line, obtains the first line (via GET), and calls 
MATCH to search the line for string 1 and convert hexadecimal input when 
specified. If string 1 is found, it is replaced with string 2. LIST 
(CZASP3) resolves hexadecimal input for string 2. The match character 
position is then reset beyond the position where t.he last string was 
found and ~ATCH is reentered until the line is exhausted. The new rec­
ord is written into the data set. CONTEXT then checks the transaction 
processed switch (TRNPRO). If the the previous tr'ansactions have been 
processed, TRIN is called to reset the transaction table. Successive 
lines are located and searched until the entire range of lines has been 
processed. 

If the default value for TRANTAB is Y, in every line where string 1 
has been replaced with string 2 at least one time, the original line is 
entered in the transaction table as a deletion, and the edited line is 
entered as an addition. When the entire range has been processed, the 
current line pointer is set to the line following the last line searched 
(nl), or. if n2 is the last line of the data set (.r region, to n2 + 
INCRi CONTEXT then returns to the calling program. 

ERROR CONDITIONS: A diagnostic message is issued and an exit taken 
under the following conditions: 

1. string 1 not given. 

2. Data set null. 

3. n1 or n2 not resolved (message issued by CZASL). 

4. n1 > n2 (invalid range). 

5. starting character position greater than ending position. 

6. Starting or ending character positions invalid. 

7. Error on WRITE operation. 

8. Match not found. 

SYSTeM CONTROL BLOCK USAGE: 

Data Control Block (CHADCB) 
Transaction Table (CHATRN) 
New Task Common (CHANTC) 

~CORRECT Command Routine (CZASQ) 

The routine is entered by the User Controller when a CORRECT command 
is encountered. It initializes the Text Editor to accept correction 
lines from SYSIN, and make corrections within a range of lines and 
character positions in the data set. (See Chart AJ.) 

ENTRY: CZASQl - normal entry 

Section 3: Text Editor 59 



MODULES CALLED: 

SYSIN (CZASC7,8) Reads the expected data. 

TKUP (CZASS1&2) Updates the Transaction Table (CHATRN). 

THIN (CZBTAl) Initializes CHATRN. 

User Prompter (CZATJ1) Issues messages to the user. 

EXCISE (CZASL2,3) Calculates line numbers n1 and n2 as indicated 
by input values. 

LIST (CZASP2) Converts hexadecimal input data and prints a 
line on user's SYSOUT. 

EXITS: The routine returns to the calling routine, via the RETURN macro 
instruction. 

OPERATION: CZASQl establishes the parameter defaults and replaces the 
correction markers if the CORMRK parameter has been specified. The 
first line Cnl) is then obtained via a READ-by-key operation, and, if 
hexadecimal output is specified, CZASP2 is called to convert the data to 
the EBCDIC representation of hexadecimal. When only one line is speci­
fied to be corrected, the user is prompted with the line. SYSIN is 
called to read the correction line (that is, the string of correction 
markee,,) . 

A scan of both the object line and the correction line is initiated 
at the column of data specified by the SCOL parameter in the CORRECT 
command. If nonE~ was present, the scan starts at the first character of 
data. 

The ~;can proceeds character by character until the end of the object 
line is reached. The first correction line character (CLC) is examined 
to determine if it is a correction marker. If it is not a correction 
marker, the CLC is placed in the out~ut line. If it is a duplication 
markeT, the object line character (OLC) is placed in the output line. 
The input and output byte counts are advanced and the next CLC and OLC 
are examinEd in the same fashion. 

The relationship of OLC to CLC is summarized as follows: 

1. CLC=* 

2. CLC=$ 

3. CI.C=% 

4. CLC=@ 

5. CLC=fI 

60 

All OLCs are duplicated until the next correction marker is 
encountered. 

This column is duplicated and all following non-correction­
marker characters replace their corresponding OLCs until 
anot_her correction marker is found. 

This column is removed from the object line, and following 
object columns are duplicated until another correction 
marker is reached. 

This OLC is duplicated, and all succeeding output charac­
ters are obtained from a replacement line (read at this 
time by SYSIN) until an @ (or end of line) is encountered 
in the replacement line, after which the scanning resumes 
from the correction line. 

This functions exactly as the @ character except that the 
characters entered for the replacement line are treated as 
hexadecimal characters. Only valid hexadecimal characters 
are accepted. 



When the end of the object line is reached, the line is written to 
the data set; if the default value for TRANTAB is Y, the transaction 
table will be updated. The transaction processed switch (TRNPRO) is 
tested. If previous transactions have been processed, TRIN is called to 
reinitialize the transaction table. CZASQ then calls TRUP to manipulate 
the addition and deletion lists in the transaction table. On return, 
the next object line is read (if there is one). all byte counts are 
reinitialized, and the same correction/replacement lines are applied to 
the new object line. The CLP is set to the line number after n2, or to 
n2 + INCR if n2 is the last line of the data set. 

ERROl<. CONDITIONS: The following error conditions will cause a diagnost­
ic message to be issued and an exit taken: 

1. Output line exceeds d page. 

2. Correction line end found prior to completion. The rest of the 
output line is left untouched. 

3. nl or n2 cannot be resolved. 

4. Hexadecimal input contains invalid character. 

5. SCOL value is non-decimal. 

6. Invalid range specified. 

7. CHAR parameter invalid. 

8. SYNAD on WRITE operation. 

9. SCOL value greater than record length. 

SYSTEM CONTROL BLOCK USAGE: 

Data Control Block (CHADCB) 
Transaction Table (CHATRN) 

~0ATALINE Entry Service Routine (CZASG) 

This privileged routine is entered when data is expected by EDIT, 
INSERT, REGION, or REVISE. It reads the line usinq SYSIN, assigns a 
line number, and places the new line in the data set. (See Chart AO.) 

ENTRIES: 

CZASGl - normal entry 
CZASG2 - hexadecimal input conversion routine 

NODULES CALLED: 

TRIN (CZBTAl) 

TRUP (CZASS1) 

SYSIN (CZASCS) 

User Controller 
(CZAMZ1,14) 

User Prompter 
(CZATJ1) 

Initializes the Transaction Table. 

Places an addition in the Transaction Table. 

Reads a line. 

Dispatches nonprivileged scan routine; cancels scan 
routine previously terminated by an attention 
interruption. 

Prints diagnostic messages. 

Section 3: Text Editor 61 



EXITS: The routine processes lines reiteratively until an unusual con­
dition is detected (such as the CLP exceeding N2MAX, or the recognition 
of a command) and control is returned to the calling program. See 
"Error Conditions" for a list of the conditions under which exits are 
taken. 

OPERATION: If a previous scan routine has been terminated by an atten­
tion interruption, User controller (CZAMZ14) is called to cancel it. 
DATALINE next cowpares the CLP to N2MAX. If the comparison is high or 
equal, the User Prompter is called to inform the user that the line 
already exists; register 1 is set to zero, and control is returned to 
the calling routine. If the CLP is less than N2MAX, and DATALINE was 
entered as a result of a REVISE or INSERT command, the increment value 
is resolved. 

The Source List Handler SYSIN routine (CZASC8) is then called via the 
SYSIN macro instruction to read the line from the source list. If a 
command or an attention interruption is detected, register 1 is set to 
zero and the routine exits. Otherwise, the conversion routine (CZASG2) 
within DATALINE is entered; this routine provides for conversion of 
hexadecimal data to EBCDIC representation. 

On return, DATALINE checks to see if concatenation is required. If 
CONREC=Y and a concatenation character is detected at the end of the 
line, CZASC8 is reentered until concatenation is complete. 

If there is a value in TRNSCAN, DATALINE calls the routine found 
there via CZAMZl with a two-word parameter list. The first word points 
to the input string, preceded by a byte indicating the string length; 
the second word points to a byte in CHBAAA where the scan routine may 
pass a return code. 

If the scan routine indicates that the line is acceptable, DATALINE 
enters the line into the data set with a WRITE-by-key operation and 
causes the line to be added to the Transaction Table addition list. The 
CLP is then updated, and DATLINE loops back to read another line. 

ERROR CONDITIONS: Under the following conditions the user is prompted 
with a diagnostic message, the current record is ignored, and DATALINE 
reads another line of data: 

1. The specified scan routine indicates that the data line was inval­
id, and the next data line should be read (return code 4 or 8). 

2. An error occurs during the WRITE operation, keys equal. 

The user is prompted with a diagnostic message and DATALINE exits 
under the following conditions: 

1. CLP equal to or greater than N2MAX. 

2. Invalid INCR. 

3. An underscore detected at the beginning of the data line (no diag­
nostic issued). 

4. An attention interruption condition detected (no diagnostic 
issued) . 

5. Specified scan routine indicates that the data line is invalid and 
further input should not be accepted (return code null or C). 

6. An error occurs during the WRITE operation, keys not equal. 

7. The line number plus INCR exceeds 9999999. 

62 



SYSTEM CONTROL BLOCK USAGE: 

Data Control Block (CHADCB) 
New Task Common (CHANTC) 
Profile Character and Switch Table (CHAPCT) 
Transaction Table (CHATRN) 

",Edit Initialization Routine (CZBSE) 

This routine initializes the Transaction Table for a new data set. 
(See Chart AK.) 

ENTRY: CZBSEl - normal entry 

MODULES CALLED: 

User Prompter (CZATJ1) 

TRIN (CZBTA) 

GETMAIN (CZCGA2) 

User Controller (CZASW9) 

Prompts user with current key. 

Initializes addition and deletion lists in 
the Transaction Table. 

Gets a page to be shared by all Text Editor 
modules. 

Processes an implicit end. 

EXITS: The routine returns to the calling routine, via the RETURN macro 
instruction. 

OPERATION: The Edit Initialization routine is entered from the User 
Controller as a result of the execution of the LPCINIT macro instruc­
tion. This may be a result of the FTN, ASM, or other language processor 
invocation. After a SETL is performed to the beginning of the data set, 
the first record is obtained. If the data set is empty, the CLP will be 
set to the value specified by BASE (if valid) or to 100; otherwise the 
CLP is set to the first line of the region or data set. 

TRIN is then called to initialize the addition and deletion lines in 
the Transaction Table. Register 1 is set to zero for a region data set, 
or to the address of the CZASGl VCON/RCON pair for a non-region data 
set. Control is then returned to the User Controller routine. 

ERROR CONDITIONS: The routine prompts the user, invokes an implicit 
end, and returns if the line number or BASE is invalid. 

SYSTEM CONTROL BLOCK USAGE: 

Data Control Block (CHADCB) 
Transaction Table (CHATRN) 
New Task Common (CHANTC) 

"'EXCERPT Command Routine (CZASK) 

This routine is called by the User Controller when an EXCERPT command 
is encountered. EXCERPT incorporates a range of lines from another data 
set into the data set currently being edited. Entry parameters are the 
name of the data set to be sampled, the region name, and the numbers of 
the first and last lines to be included. (See Chart AL.) 

ENTRY: CZASKl - normal entry 

MODULES CALLED: 

TRUP (CZASSl) Updates the transaction table. 

Section 3: Text Editor 63 



TRIN (CZBTA1) Reinitializes the transaction table. 

User Prompter (CZATJ1) Prints error messages. 

FINDDS (CZAECl) Finds JFCB for DSNAME in input parameter. 

SCAN Package (CZAAC> Analyzes input parameters. 

EXITS: The routine normally returns to the calling routine, via the 
RETURN macro instruction. 

OPERATION: On entry, if no data set name is input, the user is prompted 
and an error exit is taken. CZASK then validates the region name, if 
supplied, and issues a CBECKDS macro to validate the data set name. If 
the data set from which the data is to be taken is the same as the tar­
get data set, the target data set is first closed and then opened for 
update. CZATS next calls CZAEC1 to locate the JFCB, and on return, 
opens the included data set. 

The line numbers parameters are examined to determine what part of 
the data set is to be included: 

1. If both line numbers are defaulted, it is assumed that the entire 
data set is to be included. A SETL to the beginning is performed; 
n2 is set to LAST. 

2. If only a region name is present, the entire region which has been 
named is included. A series of SETLs is used to find the first and 
last lines of the region; n1 and n2 are initialized accordingly. 

3. If only nl is present, the single line referred to is included; 
both nl and n2 are set to the same key. 

4. If both n1 and n2 are explicitly given, the range of lines from nl 
to n2 is included. 

After establishing the range of inclusion, the included lines are placed 
in order. Each line is renumbered using BASE and INCR and a check is 
performed to ensure that N2MAX has not been exceeded. The included 
lines are then written into the data set using WRITE-new-key. The tran­
saction processed switch (TRNPRO> is tested to see if previous transac­
tions have been processed. If so, TRIN is called to initialize the 
Transaction Table prior to entering the first line. As each line is 
written, it is entered in the Transaction table as an addition if the 
default value for TRANTAB=Y. When the task has been completed, EXCERPT 
calls CLOSE to close the sampled data set. 

ERROR CONDITIONS: Should the included renumbered lines overflow the 
maximum (N2MAX), the overflow lines will be ignored and the user will be 
prompted with a diagnostic message. The records already processed are 
deleted, and control is returned to the calling routine. 

If the range of lines or region indicated is not found in the input 
data set, or if the data set or region does not exist, the entire com­
mand will be ignored and the user will be prompted with a diagnostic 
message. 

If the data set from which lines are being included ends before the 
line number specified by n2 is encountered, the user is informed by a 
diagnostic message. The routine exits to the calling program. 

64 



-

SYSTEM CONTROL BLOCK USAGE: 

Data Control Block (CHADCB) 
Task Data Definition Table (CHATDT) 
Transaction Table (CHATRN) 

"EXCISE Conunand Routine (CZASL) 

This routine is called by the User Controller when an EXCISE command 
is encountered; it is also called by other Text Editor routines to 
resolve the user's references to line numbers in the data set being 
edited. EXCISE deletes a range of lines froID the data set. Entry pa­
rameters are the first and last lines to be deleted. (See Chart AM.) 

ENTRIES: 

CZASL1 - entry point to delete lines from the data set 
CZALS2 - entry point to resolve n1 of a range of lines 
CZASL3 - entry pOint to resolve n2 of a range of lines 
CZASL4 - entry point to resolve one number not pact: of a range 

MODULES CALLED: 

EXCISE (CZASL1,2,&3) 

TRUP (CZASS2) 

TRIN (CZBTAl) 

User Prompter (CZATJ1) 

Calculates line numbers n1 and n2 as indicated 
by input values. 

Defines linkage to this routine. 

Initializes addition and deletion lists. 

Issues diagnostic messages to the user. 

EXITS: The routine returns to the calling routine. via the RETURN macro 
instruction. 

OPERATION: When entered at CZASL1. EXCISE resolves any defaults in the 
line number parameters. Each line in the indicated range is then 
deleted by calling DELREC. The transaction processed switch (TRNPRO) is 
tested. If previous transactions have been processed, TRIN is called to 
reinitialize the Transaction Table. A deletion ent:ry is made for each 
line in the Transaction Table. The CLP is set to i:he first line deleted 
and N2MAX is set to the first line beyond the deletion range if there is 
a line, or 9999999 if there is no line. 

When EXCISE is entered at CZASL2, CZASL3, or CZASL4, it is determined 
whether the line number the user specified was relative or absolute. If 
absolute, the line number is resolved by using a SETL by key. If the 
line number is relative, SETL NEXT or SETL PREVIOUS is used to arrive at 
the requested line. 

If CZASL is able to successfully resolve the line number, it stores 
the address of the key for the record in the locat1on that was specified 
in register 4 by the calling program. Otherwise, register 2, which upon 
entry contained the address of the input line, is cleared to zeros. 

ERROR CONDITIONS: The user is issued a diagnostic message and an exit 
is taken under the following conditions: 

1. Only one line is specified and it does not exist in the data set. 

2. No lines exist in the current region or line data set. 

3. n1 or n2 specified as a plus-or-minus integer, and there are not as 
many lines from the CLP in the region or data set. 

Section 3: Text Editor 65 



SYSTEM CONTROL BLOCK USAGE: 

Data Control Block (CHADCB) 
Transaction Table (CHATRN) 

~INSERT Command Routine (CZASJ) 

INSERT, which is entered from the User Controller when an INSERT com­
mand is encountered, prepares the Text Editor to accept data lines for 
insertion following a given line in the source data set. (See Chart 
AN.) 

ENTRY: CZASJl - normal entry 

MODULES CALLED: 

DATALINE (CZASG) Reads the expected data. 

EXCISE (CZASL4) Resolves the line number. 

User Prompter (CZATJ) Prints messages to the user. 

TRIN (CZBTA1) Initializes the Transaction Table. 

EXITS: The routine returns to the calling routine, via the RETURN macro 
instruction. Register 1 contains the address of the CZASGl VCON/RCON 
pair to indicate that data is expected. 

OPERATION: The data set is initialized so that subsequent new data 
lines are inserted following line n1. N2MAX is set to the next existing 
line after n1. There is no deletion of existing lines. 

ERROR CONDITIONS: If a line number is entered which EXCISE cannot 
resolve, or if an invalid increment is specified, the user is prompted 
and the command is canceled. 

SYSTEM CONTROL BLOCK USAGE: 

Data Control Block (CHADCB) 
Transaction Table (CHATRN) 

~LIST Command Routine (CZASP) 

The routine is entered by the User Controller whenever a LIST command 
is encountered. It lists a range of lines from a data set and places 
them on SYSOUT. Entry parameters are either the current line pointer, 
or the first (n1) and last (n2) lines to be listed (along with optional 
starting and ending character positions) plus the mode (CHAR) in which 
the lines are to be listed. (See Chart AP.) 

ENTRIES: 

CZASPl - normal entry 
CZASP2 - hexadecimal input conversion entry 
CZASP3 - hexadecimal output conversion entry 

MODULES CALLED: 

control Dictionary 
Handler - GDV (CZASDX) Gets default value for LINENO. 

EXCISE (CZASL2,3) Calculates the limits of the area to be listed. 

GATWR,GTWRC (CZATC) Writes records to user's SYSOUT. 

66 



User Prompter (CZATJ1) Issues diagnostic messages to the user. 

EXITS: CZASPl and CZASP2 exit normally when their function is com­
pleted: register 1 is set to zero, notifying the Text Editor that addi­
tional data is not expected. Control is passed to the calling routine 
via the RETURN macro instruction. 

OPERATION: If the first parameter (nl) is specified as CLP, the current 
line pointer (in CHATRN) will be listed and CZASPl will exit. If nl 
(not specified as CLP) and n2 are specified, CZASP will resolve any 
character positions, then call CZASL to resolve the nl and n2 values. 
If n2 is defaulted, only nl is listed. If nl is defaulted and n2 is 
specified, nl will be set to the CLP. If both nl and n2 are defaulted. 
the entire data set will be listed. The CHAR parameter is checked for 
validity (valid values are H, C, and M). If it is defaulted, and there 
is no value in the combined dictionary, C is assumed. 

GET is used to retrieve the lines, and GATE is used to list them on 
SYSOUT. A maximum of 256 characters are listed from each line. Data 
will be listed as specified by the CHAR parameter in character, hexade­
cimal or mixed (character and underscored hexadecimal) format. The CLP 
is set to the line number after n2, if one exists: if n2 is the last 
line, the CLP is set to n2 + INCR. 

Entry point CZASP2 lists lines on SYSOUT, or converts data for LOCATE 
and CORRECT. 

Entry point CZASP3 converts hexadecimal input data from the EBCDIC 
representation. 

ERROR CONDITIONS: The user is prompted and an error return taken when 
nl is greater than n2, nl or n2 cannot be resolved, an invalid character 
pOSition is specified, the CHAR parameter is invalid, or the data set is 
empty. 

SYSTEM CONTROL BLOCK USAGE: 

Data Control Block (CHADCB) 
New Task Common (CHANTC) 
Transaction Table (CHATRN) 
Task Common (CHATCM) 
RESTBL Header (CHARHD) 

~LOCATE Command Routine (CZASN) 

The routine is entered from the User Controller when a LOCATE command 
is encountered. LOCATE searches a range of lines in a data set for a 
given character string. Parameters to LOCATE are the first (nl) and 
last (n2) line numbers to be searched (along with optional starting and 
ending character positions), and the string to be located. (See Chart 
AQ. ) 

ENTRY: CZASNl - normal entry 

MODULES CALLED: 

Control Dictionary 
Handler - GDV (CZASDX) Gets default value. 

EXCISE (CZASL2,CZASL3) Calculates the limits of the area to be 
searched. 

LIST (CZASP2) Prints the line containinq the string. 

Section 3: Text Editor 67 



MATCH (CZAST1) Searches a line for the desired string. 

TRIN (CZBTA1) Initializes CHATRN. 

User Prompter (CZATJ1) Issues diagnostic messages to the user. 

EXITS: After printing the current key value the routine normally 
returns to the calling routine, via the RETURN macro instruction. 

OPERATION: LOCATE resolves the entry parameters. If all of the parame­
ters are defaulted, or if the string is not found, the CLP is set to the 
line following the last line searched (n2), or, if n2 is the last line 
of the data set, to n2 + INCR. 

If n1 and n2 are defaulted, the entire data set is searched. If n2 
is defaulted, only the line specified by n1 is searched. Both n1 and n2 
may have character positions specified. These positions will apply to 
the entire range to be searched. LOCATE retrieves the record via VISAM 
GET (locate), then calls MATCH to search for the string. If the string 
is found. it is printed using LIST, and the CLP is set to the line con­
taining it. (The CHAR value in the combined dictionary will detennine 
the mode of the output. If there is no value, C is assumed.> 

ERROR CONDITIONS: Under the following conditions the user is issued a 
diagnostic message and control is passed to the calling routine via the 
RETURN macro instruction: 

1. No string specified. 

2. Specified string not found. 

3. Data set empty. 

4. nl greater than n2. 

5. nl defaulted, but CLP set to non-existent line. 

6. nl or n2 not resolved (no message issued by LOCATE). 

7. Invalid starting or ending character positions. 

8. Specified starting character position greater than ending position. 

SYSTEM CONTROL BLOCK USAGE: 

Data control Block (CHADCB) 
Transaction Table (CHATRN) 
New Task Common (CHANTC) 

~MATCH Service Routine (CZAST) 

This routine is used to search a line, or a portion of a line, for a 
given string. (See Chart AR.) 

ENTRY: CZASTl - normal entry 

MODULES CALLED: 

LIST (CZASP3) 

control Dictionary 
Handler - GDV (CZASDX) 

Converts to hexadecimal output. 

Gets default value for HEXSW. 

EXITS: The routine returns to the calling routine, via the RETURN macro 
instruction. 

68 



OPERATION: If a conversion from EBCDIC to hexadecimal is required, the 
LIST routine {entry point CZASP3> is called. The given line is searched 
character by character until a match with the given string is found, or 
a match has not been found when the limit of the given line is reached. 
The result of the search is placed in register 2 and passed to the cal­
ling routine. If a match was not found, this result is zero; if a match 
was found, register 2 will contain the character position within the 
line where the matching string begins. 

ERROR CONDITIONS: None. 

SYSTEM CONTROL BLOCK USAGE: New Task Common (CHANTC) 

~NUMBER Command Routine (CZASU) 

NUMBER is called from the User Controller when NUMBER command is 
encountered. NUMBER is used to renumber a range of lines in the data 
set. (See Chart AS.) 

ENTRY: CZASU1 - normal entry 

MODULES CALLED: 

EXCISE (CZASL2,3) 

TRUP <CZASS1,3) 

TRIN (CZBTAl) 

User Prompter (CZATJ1) 

GETMAIN 

FREEMAIN 

Resolves line number n1 and maximum 
number n2. 

Updates addition and deletion lists. 

Initializes the Transaction Table. 

Issues diagnostic messages to the user. 

Obtains pages to store data set while 
numbering. 

Releases pages acquired with GETMAIN. 

EXITS: The routine returns to the calling routine, via the RETURN macro 
instruction. 

OPERATION: NUMBER determines whether both line number parameters, n1 
and n2, have been defaulted. If so, n1 is set to the first record of 
the data set or region, and n2 is set to the last record. If n2 has 
been specified but n1 has been defaulted, n1 is set to the value of the 
current line pointer; if n1 has been specified but n2 defaulted, n2 is 
set to nl. EXCISE (CZASL2) is called to resolve line number parameters 
that have been specified. Unspecified BASE and INCR parameters are set 
to n1 and 100, respectively. 

The records are read via GET in the locate mode. The transaction 
processed switch (TRNPRO) is tested to determine whether previous tran­
sactions have been processed. If they have, TRIN is called to initia­
lize the transaction table. The record is then put in the deletion list 
to be deleted with DELREC-by-key. As the records are deleted, the 
number-of-lines counter is incremented. This is to insure all records 
will fit between BASE and limiting line. If they cannot, recovery is 
initiated by WRITE with the old key, and the command is cancelled. The 
lines are added to the addition list and placed with WRITE-new-key in 
the object data set until all of the lines are renumbered. 

If INCR is specified in such a way that it causes the limiting line 
number to be exceeded, NUMBER calculates a new increment by dividing the 
difference between BASE and the limiting line by the count of lines to 
be renumbered: 

Section 3: Text Editor 69 



Resulting quotient: 

100 
50 - 99 
20 - 49 
10 - 19 

5 - 9 
2 - 4 
1 

Increment furnished: 

100 
50 
20 
10 

5 
2 
1 

The user is then informed that the Text Editor has furnished the incre­
ment, and execution continues. 

ERROR CONDITIONS: If the BASE or INCR are incorrectly specified or in­
valid, the user is prompted and NUMBER exits to the calling routine. 

SYSTEM CONTROL BLOCK USAGE: 

Data Control Block (CHADCB) 
Transaction Table (CHATRN) 

~profile Handler Command Routine (CZASZ) 

This privileged, reenterable, and nonresident routine saves the vir­
tual storage user profile in USERLIB when a PROFILE command is executed. 
(See Chart AT.) 

J::,NTRY: CZASZl - normal entry via BUILTIN call mechanism from the Com­
mand Analyzer and Executor. 

MODULES CALLED: 

DICTEXTR (CZBTBX) Adds entries to the primary dictionary. 

STARTVAR (CZASD2) Initializes New Primary Dictionary in buffer. 

EXITS: The routine normally returns to the calling routine, via the 
RETURN macro instruction. 

OPERATION: The Profile Handler routine saves a session profile by copy­
ing it into USERLIB from virtual storage when a PROFILE command is 
issued. Entry is via the BUILTIN procedure call mechanism. The profile 
to be copied is constructed in a contiguous virtual storage area. The 
Character Translation Table, pointed to by PCTCTT, is moved into the 
PFLCTT area. The output character translation character, pointed to by 
PCTOCT, is moved into the PFLOCT area. The Profile Character and Switch 
table is moved from New Task Common into the PFLPCT area. 

The Primary Dictionary, starting at PFLPDC, is reinitialized using 
the STARTVAR routine of the Control Dictionary Handler. Then the Combi­
ned Dictionary is searched, extracting all Priwary Dictionary entries, 
which include synonym, default and command symbol definition entries. 
The extraction of command symbols is optional, based on the setting of 
the Command Symool Switch. This switch setting originates as a PROFILE 
command parameter, which is passed as a calling parameter to the Profile 
Handler. The extracted entries are added to the empty primary Dic­
tionary in the profile through a call to the DICTEXTR routine (CZBTBX). 

The USERLIB DCB is located, and the DCBLRE fielJ. set with the overall 
length of the profile. A FIND is issued to locate the SYSPRX m~nber in 
the USERLIB. If one exists, it is deleted and replaced by the new pro­
file, using a VSAM PUT. A STOW is issued to update the POD, and control 
is returned to the calling routine. 

70 



ERROR CONDITIONS: A code 1 ABEND is taken if an error return code is 
received following the FIND, STOW (Type D) or STOW (Type N) macro 
instructions. 

SYSTEM CONTROL BLOCK USAGE: 

Data Control Block (CHADCB) 
Control Dictionary Header (CHADCT) 
User Profile (CHAPFL) 
New Task Common (CHANTC) 
Profile Character and Switch Table (CHAPCT) 

~REGION Command Processor (CZASF) 

This routine is entered from the User Controller whenever a REGION 
command is encountered; it is also entered when the RNAME parameter has 
been specified in an EDIT command. It locates or initializes a region 
of lines within the data set having a common region name (string prefix 
to the line number). The entry parameter is a 0 - 2QO character string 
which is saved in the Transaction Table as a region name, and is pre­
fixed to all subsequent line numbers until another REGION is encoun­
tered. If the entry parameter is defaulted a null string prefixes the 
subsequent line numbers, provided that the data set has regions. (See 
Chart AU.) 

ENTRY: CZASFl - normal entry 

MODULES CALLED: 

DATALINE (CZASG) Reads the expected data. 

User Prompter (CZATJ1) Prints error messages and gives the current 
key to the user. 

TRIN (CZBTA1) Initializes the Transaction Table. 

EXITS: The routine normally returns to the calling rout,ine, via the 
RETURN macro instruction, with register 1 containing the address of the 
CZASGl VCON/RCON pair to indicate that data is expected. The error exit 
is to the calling routine when the data set has no regions although a 
region has been specified. Normally, the Text Editor informs the user 
of the current key by means of the User Frompter. 

OPERATION: The DCB opened for the data set is retrieved from the tran­
saction table and SETL is called to find the location of the key having 
the maximum number in the given region. The key is tested to determine 
if this is in the given region. If it is not, no region of that name 
exists, and the CLP is determined as follows: If a BASE exists, the CLP 
is set to the value of BASE; otherwise, a GDV will be done for BASE and 
the default value used to set the CLP. If no default exists, 100 is 
assumed. If the region does not exist, the CLP i:3 set to the first line 
of the region. 

In the case where the region name is defaulted a name of all blanks 
is assumed if the data set has regions. A data set might not have 
regions, and in this case the key is a seven-digit number which can be 
initialized or added to as such. If this were the case, it would be 
unnecessary to use a REGION command. After a region has been located or 
initialized, REGION exits with the address of the CZASGl VCON/RCON pair 
in register 1 to indicate data is expected. 

ERROR CONDITIONS: If the user has specified a region name, the length 
of the key (DCBKEY) of the data set is tested. If it is equal to 7, the 
data set key has no region name, and the user' is informed with a message 
issued by the User Prompter. 

Section 3: Text Editor 71 



If the length of the specified region name plus 7 is greater than the 
length already specified for the data set key (DCBKEY), the specified 
region name is truncated to conform and the user is informed with a mes­
sage issued by the User Prompter. 

If a record is found with a key corresponding to the maximum key of 
the region (Region 9999999), the region is assumed to be full and the 
user is prompted with two messages issued by the User Prompter. 

Note: No records can be added to the data set until the user is more 
specific as to where records can be inserted. 

If the data set key is less than 7, the user receives a diagnostic 
error message. 

SYSTEM CONTROL BLOCK USAGE: 

Data Control Block (CHADCB) 
Transaction Table (CHATRN) 
Task Data Definition Table (CHATDT) 

~REVISE Command Routine (CZASH) 

This routine is entered from the User Controller whenever a REVISE 
command is encountered. (See Chart AV.> 

ENTRY: CZASHl - normal entry 

MODULES CALLED: 

EXCISE (CZASL) Deletes specified lines. 

EXITS: The routine normally returns to the calling routine, via the 
RETURN macro instruction. 

OPERATION: REVISE prepares the Text Editor to accept data for inclusion 
in the data set at a given point. If an increment is provided, it is 
stored in INCR for later reference by CZASG. If it is not provided, an 
increment of 100 is the default. CZASLl is entered to resolve the line 
numbers, and delete the lines. REVISE exits with the address of the 
CZASGl VCON/RCON pair in register 1 to indicate that data is expected. 

ERROR CONDITIONS: The user is prompted if the specified increment is 
invalid. 

SYSTEM CONTROL BLOCK USAGE: 

Transaction Table (CHATRN) 

~STET Command Routine (CZASV) 

The routine is entered by the User Controller when a STET command is 
encountered. If TRANTAB=Y, it restores the data set to its condition 
prior to the most recent set of unprocessed transactions. If TRANTAB=N, 
STET will return to its caller. If the Text Editor is disabled, all of 
the editing commands entered since it was last enabled will be reversed. 
If the Text Editor is enabled, only the last transaction is reversible. 
(See Chart AW.) 

ENTRY: CZASVl - normal entry 

MODULES CALLED: 

TRIN (CZBTA1) Initializes the Transaction Table. 

72 



EXITS: The routine returns to the calling routine, via the RETURN macro 
instruction. 

OPERATION: The STET routine restores the data set to its previous con­
dition by using DELREC and WRITE. The key of the line in the addition 
list (KEYA) is compared to that of the li~e in the deletion list (KEYO). 
If KEYA < KEYD, DELREC is called to delete the line of KEY A from the 
data set. If KEYA > KEYD, WRITE is called to write the line of KEYD 
into the data set. If the record already exists in the data set, the 
user's issued a message by the User Prompter. If KEYA = KEYD, WRITE is 
called to replace line KEYA with line KEYD. When the transactions have 
been processed, the pointer to the deletion list is exchanged with the 
pointer to the addition list. If there are no transactions, or if there 
is no Transaction Table (TRANTAB=N), this command has no effect on the 
data set. 

ERROR CONDITIONS: None. 

SYSTEM CONTROL BLOCK USAGE: 

Data Control Block (CHADCB) 
Transaction Table (CHATRN) 

~Transaction Table Initialization Routine (CZBTA/CZBSY) - TRIN 

These routines are called by other Text Editor routines to reinitia­
lize the addition and deletion lists in the Transaction Table. This is 
normally done either when a new data set is to be processed or when a 
set of transactions have been processed by a language processor. CZBTA 
is nonprivileged; CZBSY is privileged - which eliminates the need for 
the Text Editor to use svc-type linkage. (See Chart AX.) 

ENTRIES: 

CZBTAl - normal entry for CZBTA 
CZBSYl - normal entry for CZBSY 

MODULES CALLED: 

FREEMAIN Releases pages used for additions and deletions. 

EXITS: The routine returns to the calling routine, via the RETURN macro 
instruction. 

OPERATION: FREE~~IN is called iteratively to release all but the first 
page of the addition and deletion lists. The Transaction Table contain­
ing the pointers to the addition and deletion lists is never on the same 
page as the additions and deletions; therefore, its page is never 
released. Upon completion of the routine the list pointers in CHATRN 
are zeroed before control returns to the calling .routine. 

ERROR CONDITIONS: None. 

SYSTEM CONTROL BLOCK USAGE: Transaction Table (CHATRN) 

~Transaction Table Updater Service Routine (CZASS/CZBSX) - TRUP 

The Transaction Table Updater is entered to add a record to the addi­
tion list or deletion list. CZASS is nonprivileged; CZBSX is privileged 
- which eliminates the need for the Text Editor to use SVc-type linkage. 
(See Chart AY.) 

Section 3: Text Editor 73 



ENTRIES: 

CZASSl - entry point in CZASS for an addition to the addition list 
CZASS2 - entry point in CZASS for an addition to the deletion list 
CZBSXl entry point in CZBSX for an addition to the addit.ion list 
CZBSX2 - entry point in CZBSX for an addition to the deletion list 

MODULES CALLED: 

GETl'JAIN Obtains a page for the record. 

EXITS: The routine returns to the calling routine, via the RETURN macro 
instruction. 

OPERATION: The Transaction Table Updater gets the address of the next 
available space (TRNNLK) from the Transaction Table, and determines 
whether the record will fit in the available page. If not, another page 
is acquired with GETMA.IN and the table pages are chained. The record is 
moved into the available space and TRNNLK is updated. 

If the record represents an addition or deletion entry, the corres­
ponding list is updated so that the records in the list are pointed to 
in sequence. Also, a deletion entry causes the addition list to be 
examined and, if a record which is identical to the deletion entry is 
found, it is deleted from the addition list. 

ERROR CONDITIONS: None. 

SYSTEM CONTROL BLOCK USAGE: Transaction 'rable (CHATRN) 

~UPDATE command Routine (CZASR) 

This routine is entered from the User Controller whenever an UPDATE 
command is encountered. The data set must have been opened prior to 
entry and the DCB address stored in the Transaction Table. The current 
region is updated with input lines read by SYSIN. (See Chart AZ.) 

ENTRY: CZASRl - normal entry 

NODULES CALLED: 

Control Dictionary 
Handler - GDV (CZASDX) 

SYSIN (CZASC8) 

LIST (CZASP3) 

TRUP (CZASS1) 

TRIN (CZBTAl) 

User Controller 
(CZAfVJZ1,14) 

User Prompter (CZATJl) 

Gets default value. 

Reads a line. 

Converts hexadecimal data. 

Updates the Transaction Table (CHATRN). 

Initializes the Transaction Table (CHATRN). 

Dispatches nonprivileged scan routine; can­
cel scan routine previously terminated by an 
attention interruption. 

Issues a diagnostic message to the user. 

EAITS: UPDATE sets register 1 to zero and exits to the callinq routine 
wnen a comn.and or attention interruption is recognized. See n Error Con­
ditions" for a list of other situations in which exits are taken. 

OPERATION: Upon entry, UPDATE checks to ensure that a language proces­
sor mode exists, and determines if a previous scan routine has been ter­
minated by an attention interrupt.ion. Ii such a scan routine exists, 

74 



the User Controller (CZAMZ14) is called to cancel it. UPDATE next 
issues an initial prompt to the user, requesting line numbers and data. 

The routine then checks for variable-length records. If the records 
are not variable length, they are padded with blanks. UPDATE then 
enters the Source List Handler SYSIN routine (CZASCS) via the SYSIN 
macro instruction to read the line. If no line, line number, or blank 
stop character was supplied, the user is prompted with a diagnostic, and 
UPDATE reads another line from the SYSIN device. If hexadecimal input 
is recognized, UPDATE calls CZASP3 to convert it to EBCDIC 
representation. 

The line is next checked for concatenation characters. If CONREC=Y 
and a concatenation character is detected at the end of the line, CZASL8 
is again entered until concatenation is complete. 

UPDATE checks TKNSCAN to see if a scan routine has been specified. 
If there is a value in TRNSCAN, the routine found there is called via 
CZAMZ1 with a two-word parameter list. The first word points to the 
input string, preceded by a byte indicating the string length; the 
second word points to a byte in CHBAAA where the scan routine may pass a 
return code. 

If the scan routine indicates that the line is acceptable, UPDATE 
writes the record into the data set with a WRITE-new-key. If a line 
already exists with the key, the line is processed by a WRITE-replace­
by-key. If there are no write errors, UPDATE checks the transaction 
processed switch (TRNPRO). If previous transactions have been pro­
cessed, TRIN is called to reinitialize the Transaction Table and TRUP to 
update it. 

UPDATE then loops back to read another line. No prompt for this line 
is issued. UPDATE exits only when it encounters the break character 
preceding a command as input, or when it recognizes an attention 
interrupt. 

ERROR CONDI'rIONS: Under the following conditions t:he user is issued a 
diagnostic message, the current record is ignored, and UPDATE reads the 
next data line: 

1. No line or line number entered. 

2. No blank stop character separates the line number and the data. 

3. The indicated line nwnber is greater than seven digits. 

4. The specified scan routine indicates that tne data line was invalid 
and the next data line should be read (return co<1e 4 or 8). 

Under the following conditions the user is issued a diagnostic message 
and UPDATE exits: 

1. The routine is entered with no language processor active. 

2. An error occurs on a READ or WRITE operation while updat.ing the 
record. 

3. The specified scan routine indicates that the data line was invalid 
and further input should not be accepted (return code null or C). 

SYSTEM CONTROL BLOCK USAGE: 

Data control Block (CHADCB) 
Transaction Table (CHATRN) 

Section 3: Text Editor 75 



SECTION 4: COMMAND ROUTINES 

This section describes command routines supported by the command sys­
tem. Each of these routines carries out the actions requested by a com­
mand, and usually does this by calling upon system service routines in a 
prescribed sequence. Figure 11 lists the names and functions of the 
command routines. This section also describes the four support routines 
that are sometimes employed during command processing. These are: 

• ABEND routine (to handle abnormal task termination) 

• FINDDS routine (to find or create the job file control block for a 
specified data set) 

• FINDJFCB routine (to locate the job file control block associated 
with a specified data definition name) 

• PAIR routine (to assist in abnormal task termination) 

General operation of the command routines is given in the following 
sequence. Typically, the Command Analyzer links to the command routine 
when its corresponding command name appears on SYSIN. The command rou­
tine then employs the SCAN routines to isolate and validate each operand 
of the command. If diagnostic or prompting messages are needed, the 
routine issues them via the User Prompter. When the operands prove 
acceptable, the command routine carries out the requested actions, often 
by a series of calls to system service modules, such as OPEN or. CLOSE, 
issues (via User Prompter) any response or confirmation messages needed, 
and finally returns control to the Command Analyzer. 

Command routines can be called directly by other command routines or, 
in some cases, via macro instruction usage. The called routine operates 
in the same general way, but returns to its calling routine upon 
completion. 

The PUNCH, RT, WT, and PRINT commands are an important exception to 
the usual pattern. When the Command Analyzer encounters one of these 
commands, it calls the BULKIO preprocessor. The preprocessor then vali­
dates the command operands and, if they are acceptable, sends a request 
for task initiation to the batch monitor. Acting upon this request, 

r---------------T---------T--------------------------------------------, 
I I Symbolic I I 
I Routine Name I Name I Purpose I 
t---------------+---------+--------------------------------------------~ 
I ABEND I CZACP I To terminate an abnormal task. I 
I I I I 
I BACK I CZABC I To switch a conversational task to noncon- I 
I I I versational mode. I 
I I I I 
I CDD I CZAFS I To execute one or more prestored DDEF I 
I I I commands. I 
I I I I 
I CANCEL I CZABJ I To terminate a specified nonconversational I 
I I I task. I 
I I I I 
I CATALOG I CZAEI I To create or to update the catalog entry I 
I I I for a data set. I l _______________ ~ _________ ~ ____________________________________________ ~ 

Figure 11. Command routines (part 1 of 3) 

76 



r--------------~---------T--------------------------------------------, 
I I Symbolic I I 
I Routine Name I Name I Purpose I 
~-------------+---------+--------.------------------------------------~ 
I CDS I CZAFV To make a copy of a specified data set. I 
I I I 
I CHGPASS I CZATI To change password. I 
I I I 
I CONVERT I CZCQV To convert VAM 1 forma tted volumes to VAM I 
I I 2 format. I 
I I I 
I DATA I CZADF To bui ld a VISAM or VSAM data set. I 
I I I 
I DSS?/PC? I CZAEL To present status information about one or I 
I I more data sets. I 
I I I 
I DDEF I CZAEA To define a data set and describe its I 
I I characteristics to the system. I 
I I I 
I ERASE/DELETE I CZAEJ To erase a data set on public storage and I 
I I to delete the catalog entry for a data I 
I I set. I 
I I I 
I EVV I CZCFB To catalog VAM data sets which reside on I 

EXECUTE 

FIN DDS 

FINDJFCB 

FLOW 

IF String 
Comparison 

JOIN 

KEYWORD 

LINE? 

LOGOFF 

LOGON 

LOGON 2 

I private volumes and were produced on one ! 
I system to allow their use on another I 
I system. I 
I I 
I CZABB To initiate a nonconversational task. I 
I I 
I CZAEC To search the task data definition table I 
I for a job file control block. I 
I I 
I CZAEB To locate the job file control block for a I 
I given data definition name. I 
I I 
I CZAGD To regulate the number of different task I 
I types. I 
I I 
I CZBLT To provide fast substH:ute for PCS proces- I 
I sing of the IF verb when EBCDIC strings I 
I a re being compared. I 
I I 
I CZAFK To grant a user access to the time sharing I 
I system. I 
I I 
I CZATH To display keywords or command parameters I 
I in user's SYSLIB and USERLIB. I 
I I 
I CZAEM To present one or more lines from a speci- I 
I tied dat.a set. I 
I I 
I CZAFN To log a task off the system. I 
I I 
I CZAFM To begin a task logon. I 
I I 
I CZBTB To complete a task logon. I 
I I 

MCAST/MCASTAB I CZATU To make changes in the profile character, I 
I switch table, and translation table. I 
I I 

MODIFY I CZAEG To alter, delete, and insert lines in a I 
I I I VISAM data set. I l _______________ .1. ________ .1. ____________________________________________ J 

Figure 11. Command routines (part 2 of 3) 

Section 4: Command Routines 11 



r---------------T---------T--------------------------------------------, 
I ISymbolic I I 
I Routine Name r Name I Purpose I 
r---------------t---------t--------------------------------------------~ I MSGWR CZAAD I To issue system messages and fetch system I 
I I responses. I 
I I I 
I PAIR CZACS I To add and to remove addresses of inter- I 
I I lock release routines in the ABEND Inter- I 
I I lock Release (AIR) table. I 
I I I 
I PERMIT CZAFH I To indicate that sharing of a data set or I 
I I catalog level is permitted to other users. I 
I I I 
I POD? CZCOX I To print the member names of individual I 
I I members of a cataloged VPAM data set. I 
I I I 
I PROCDEF CZATP I To maintain the procedure library. I 
I I I 
I Procedure CZATE I To expand a proce~e name in the I 
I Expander I source list. I 
I I I 
I QUIT CZAFL I To deny a user access to the time sharing I 
I I system. I 
I I I 
I RET CZAEN I To modify the mode field in the DSD and I 
I I the equivalent JFCB field. I 
I I I 
I RPS/CVV CZAXX I To recreate public storage. I 
I I I 
I RELEASE CZAFJ I To destroy the job file control block(s) I 
I I for one or more data sets defined during I 
I I the current task. I 
I I I 
I SECURE CZAFU I To secure all devices needed for the I 

I execution of a nonconversational task. I 
I I 

SHARE CZAFI I To allow a user to share a data set or I 
I catalog level. I 
I I 

SYN/DEF CZATR I To enter or to delete synonym or default I 
I values in the combined dictionary. I 
I I 

SYSXPAT CZATF I To pass parameters in their original tex-
I tual form. 
I 

TIME CZAVB I To specify a tllRe .1.nterval for task 
I completion. 
I 

UPDTUSER CZAGC I To initialize the counts of data sets for 
I the system and for each user. 
I 

USAGE CZAGB I To display user accounting information on 
I SYSOUT. 
I 

User Control CZAMZ I To preserve command system interfaces with 
I nonprivileged programs. 
I 

VAM TAPE CZAET I To process VAM data sets. 
I 

VSS CZAVR I To determine if user may use the Virtual 
I I Support System (VSS). I _______________ L _________ L ____________________________________________ J 

Figure 11. Command routines (part 3 of 3) 

78 



the batch monitor will initiate the PUNCH, PRINT, WT, or RT command rou­
tine as a new nonconversational task, independent from the task that 
originally issued the command. In this way PUNCH, RT, WT, and PRINT 
functions -- which depend upon the availability of input/output devices 
-- can be performed at the system's convenience, a.nd the user' s task 
does not have to wait. A full description of nonconversational opera­
tions and the PUNCH, PRINT, WT, RT, ASNBD, FORCE, HOLD/DROP, MSG/BCST, 
REPLY, SHUTDOWN, and XWTO routines is contained in the Operator Task and 
Bulk I/O PLM, GY28-20Q7 • 

..-ABEND (CZACP, CZACQ, and CZACR) 

The abnormal task termination (ABEND) procedure terminates a logical 
task sequence at the point the error was detected. (See Chart BA.) 

ENTRIES: 

CZACPl 
(for ABEND routine I-CZACP) - normal entry point. generated by ABEND 

macro instruction 
CZACP2 

CZACP3 
CZACQl 

- entered for ABENDREG to print diagnost­
ic message 

- entered on VDMEP call 

(for ABEND routine II-CZACQ) main entry point. This module is only 
entered from CZACP 

CZACRl 
(for ABEND routine III-CZACR) - entry point used only by a QLE which 

was queued by the external interrupt 
processor as a result of the VSEND 
executed by CZACQ of the original task 

CZACR2 
(for ABEND routine III-CZACR) - parameter list containing address of 

MCB, used by CZACP 

MODULES CALLED: The major ABEND routine, CZACP. is heavily dependent on 
supervisor and access methods routines to fulfill its function. These 
are the supervisor routines it calls: 

PURGE (CEAALP) 

XTRACT (CEAH03) 

LVPSW (CEAHQP2) 

TSEND (CEAH19) 

RESET (CEAAHR) 

Removes any I/O requests made by the task. 

Extracts the taskid, conversational flag, and 
I/O pending flag from the TSI. 

Loads the VPSW and unmasks any interrupts. 

Ends the taSk's time slice until the task's 
pending I/O requests are removed. 

Resets devices in the task's symbolic device 
list which were disabled during PURGE. 

These are the access methods routines called by CZACP: 

VAM ABIR (CZCQQ1) 

STOW (CZCOK1) 

INTLK (CZCOHl> 

Releases interlocks set by VAM routines. ABIR= 
ABEND Interlock Release. 

Modifies SYSCAT member in the POD to reset the 
lock. 

Locks RESTBL while ABEND is using it. 

Section 4: Command Routines 79 



RLINTLK (CZCOll) 

FREEQ (CZCTC6) 

DELVAM (CZCFTl) 

CLOSE COMMON (CZCLB) 

DUPCLOSE (CZCEZl) 

Unlocks RESTBL. Note: INTLK and RLINTLK set 
and release, respectively, a read or write 
interlock on a shared data set entry. 

Logically disconnects any multiple terminals for 
MTT tasks. 

Deletes a VAM data set (marks all its DSCB and 
data page entries -available- in the page assig­
nment table.) 

Logically disconnects the data set from the pro­
blem program, closes the DCB and relinquishes 
main storage. 

Closes a duplexed data set. 

Other modules outside the command system also called by ABEND (CZACP) 
are: 

DISCONNECT (CZHNEB) Disconnects VSS from the task. 

RELEAS (CZCADl) Releases any private devices. 

Loader (CZCDLlS) Determines the program that called ABEND. 

Loader Logoff (CZCCD) Unlinks the task from the shared data set table. 

Scratch (CZCESl) Cleans up the DSCB. 

ITI Inhibits task interrupts. 

PTI Allows task interrupts. 

SRCHAUL Searches the Active User List. 

(ABEND also uses READ, WRITE, WTL, WTO, and VSEND.) This ABEND 
module (CZACP) also calls modules within the command system: 

Control Dictionary Handlers 
GDV (CZASDX) Gets the default value for DIAGREG. 

GATE (CZATCl) 
(CZATCB) 

User Control (CZAMZ7) 

User Prompter (CZATJ2) 

Clears buffer. 
Writes the standard ABEND message. 

Processes a call to clean up nonprivileged QLEs. 

Find ABEND message in SYSMLF. 

The second ABEND routine, CZACQ, also calls routines both within and 
without the command system. The routines within the command system are: 

ERASE/DELETE (CZAEJ6) 

EXECUTE (CZABB3) 

GATE (CZATC) 

Erases the SYSOUT data set. 

Prints SYSOUT with an erase option for a noncon­
versational task. 

Uses GATWR to send ABEND message. 

CZACQ calls some modules outside the command system: 

CAT FLUSH (CZCFX1) Flushes the system catalog (SYSCAT). 

CLOSE COMMON (CZCLB) Closes SYSCAT, SYSLIB, Active User List. 

80 



TS.E.ND (CEAH19) 

VAM ABIR (CZCQQ1) 

Ends the task's time slice until the task's 
pending I/O requests are removed. 

Releases interlocks set by VAM routines. 

(CZACQ also uses WTL, ATCS. EBCDTIME, and DLTSI macros.) The third 
ABEND module, CZAAQR only makes calls within the command system -- to 
log on a new task: 

Initial Attention 
Interrupt Processor 
(CZAHBl) 

LOGON (CZATD2) 

To begin logging on a new task. 

To complete logging on a new task. 

EXITS: ABEND routine I (CZACP) normally returns to the task monitor 
after processing a completion code 1 condition for conversational tasks 
or nonconversational tasks for which a TSKABEND data set has been supp­
lied. The routine exits to LOGOFF after processing a completion code 1 
condition for a nonconversational task for which nc TSKABEND data set 
has been supplied or if the task being ended abnormally is an Express 
Batch task. If a minor system error occurs during CZACP processing, 
ABEND is reinvoked. 

ABEND routine II (CZACQ) normally exits to DLTSI to delete the task 
in which a completion code 2, 3, or 4 error condition occurred. If a 
major system error occurs during CZACQ processing, CZACP exits to the 
system error recovery routine (SERR). 

ABEND routine III (C~ACR) exits to the task monitor, via the RETURN 
macro instruction, after creating a new task for a conversational task 
in which a completion code 2 condition occurred. If a VSEND cannot be 
sent to the old task or if the VSEND reply from the old task is not 
received, ABEND is reinvoked. 

OPERATION: The ABEND procedure processes four types of error condi­
tions, completion code 1 (referred to as the ABEND condition), comple­
tion code 2 (referred to as the ABORT condition), completion code 3, and 
completion code 4 (terminal held condition>. Condjtions specified by 
codes 1 and 2 will terminate the logical task sequence at the point the 
error WdS detected dnd return control to the user. In a completion code 
1 (ABEND) condition, control is returned to the user with the virtual 
storage as it was when the error occurred. The user can then determine 
the cause of the error and direct the task termination. In a completion 
code 2 (ABORT) condition, control is returned to the user with a com­
pletely new virtual storage. In a completion code 3 or 4 condition, the 
user does not receive control again. His virtual storage is destroyed 
and he is disconnected from the system. 

The ABEND procedure consists of three routines. Routine I performs 
the initial processing of completion code 2, 3, and 4 conditions and the 
complete processing of completion code 1 conditions. Completion code 2 
conditions require further processing by routine II for nonconversation­
al tasks, and by routine II and routine III for conversational tasks. 

Routine I determines whether the task being abnormally terminated has 
a special purpose ABEND routine; if so, ABEND links to it via a call to 
the User Control routine; if not, ABEND processing continues. A CHANGE 
macro is issued to move the task to Schedule Table Level 21. 

For completion code 1 conditions, routine I will set off any mask 
bits set on in the VPSW, terminate the task's I/O, release the systew 
interlocks set by the task, issue an error message and, in the case of a 
conversat.ional task, return control to the user. E'or nonconversational 
tasks, but not for an Express Batch task, routine 1 will look for a new 

section 4: Command Routines 81 



SYSIN data set with a ddname TSKABEND. If the user has indicated a data 
set TSKABEND, this data set replaces the SYSIN data set and becomes the 
new SYSIN data set. 

The task is then reinitialized. A WTO is issued to document the 
ABEND. If the user has not specified a TSKABEND data set, LOGOFF is 
called to terminate the task. If the task is an Express Batch task. a 
GET is issued to flush the SYSIN data set to the next LOGON card. If an 
error occurs during routine I processing of a completion code 1 condi­
tion. the ABEND procedure will be reinvoked and will process the error 
as a completion code 2 condition. 

For completion code 2 conditions, routine I will unmask any masks set 
in the VPSW, terminate the task's I/O, and release the system interlocks 
set by the task. When the completion code 2 occurs in a nonconversa­
tional task or in a task that is not logged on, ABEND writes the error 
messages on SYSOUT. 

The data sets are closed, data sets to be deleted at LOGOFF are 
deleted, private devices are released, and the user table is updated. 
Routine I then calls routine II to continue processing the completion 
code 2 condition. The task's shared modules are unlinked from the 
shared data set table. In the case of a nonconversational task. a mes­
sage is sent to inform the batch monitor of the task's impending dele­
tion. Routine II terminates the nonconversational task, or any task 
that is not logged on, by removing any I/O requests made by the task and 
deleting the task's symbolic device list. A WTL is issued to document 
the ABEND. Routine II then deletes the task from the system. 

For conversational tasks, routine II creates a new virtual storage 
and collects information needed to activate a new task and sends this 
information to the new task. 

Routine III in the new task se~s the field used by the ABEND proce­
dure to indicate the task is being created by ABEND and logs on the new 
task, using the information sent from routine II. The new task then 
issues the error messages, and routine III returns to the task monitor, 
which returns control to the user. 

For completion code 3 situations, the task is deleted in the same way 
as for completion code 2 situations, except that routine III is never 
invoked to initiate a new task. 

CZACP2 issues a GATWR for the module locations and registers asso­
ciated with the last occurrence of ABEND, if any. 

ERROR CONDITIONS: The routine may issue these system errors: 

SYSER Code 

050506701 
050506702 
050506703 
050506704 

050506705 
050506706 
050506707 
050506708 
050506709 
050506710 
050506711 
050506731 
050506732 
050506733 

82 

Significance 

NO/BM ABEND in pre-logon state. 
MO/BM ABEND in post-logoff state. 
ABEND unable to CHANGE task to Level 21. 
STOW of SYSCAT member failed. Member interlock might be 
left on. 
QLE failed before comp 1 exits. 
TSICIO count not zero after 96 TSENDs. 
ABEND in new task before SETAE completed. 
DCB header not released after CLOSE. 
ABEND called recursively in LOADER LOGOFF. 
Used for system debugging stops. 
VSS disconnect failed. 
VSEND to BM for nonconversational tasks failed. 
close of SYSCAT data set failed. 
Close of SYSLIB (SYSMLF) data set failed. 



050506734-
050506736 
050506737 
050506738 
050506739 
050506740 
050506741 
050506742 
050506743 
050506744-
050506745 
050506746 
050506747 
050506748 
050506749 

VAM interlocks release (CZCQQ2) failed. 
PURGE I/O failed. 
VSEND of 1 of 1 MCB to new task failed. 
VSEND of 2 of 2 MeB to new task failed. 
Reply not received from the new task in 255 TSEND. 
ABEND during scanning of SDAT. 
SDAT entry lock not reset after 255 TSENDs. 
SCR'rSI failed. 
VSEND of 1 of 2 MCB to new task failed. 
SETAE to shift SYSIN device for new task failed. 
Other error conditions during creation of new task. 
VSEND of reply to the new task failed. 
Close of SYSSVCT (CZCFX5) failed. 
ABEND unable to RELEAS a private data set. 
CLOSE of USERLIB (SYSMLF) failed. 

Note: All SYSERs have minor severity. 

SYSTEM CONTROL BLOCK USAGE: 

ABEND Interrupt Release Table (CHAAIR) 
Active User Limits Table (CHAAUL) 
Data Control Block (CHADCB) 
Data Control Block Header (CHADHD) 
Data Event Block (CHADEB) 
Data Event Control Block (CHADEC) 
Interrupt Storage Area (CHAISA) 
Interrupt. Table (CHAITB) 
Message Control Block (CHAMCB) 
Message Event Control Block (CHAMEB) 
New Task Common (CHANTC) 
Relative External Storage correspondence Table (CHARHD) 
Shared Data Set Member Entry (CHASDM) 
Shared Data Set Table (CHASDS) 
Symbolic Device Allocation Table (CHASDA) 
System Activity and Resources Table (CHASAR) 
System Common (CHASCN) 
Task Accounting and Statistical Data (CHAACT) 
Task Common (CHATCM) 
Task Data Definition Table (CHATDT) 
Task Dictionary Table (CHATDY) 
Task Status Index (CHATSI) 
Terminal Control Table (CHATCT) 
User Table (CHAUSE) 

~BACK Command Routine (CZABC) 

This routine switches a conversational task to the nonconversational 
mode. BACK operates in conversational mode only. (See Chart BB.) 

1,NTRY: CZABC1 - normal entry 

MODULES CALLED: 

User Prompter (CZATJ1) 

FINDDS (CZAEC1) 

GATEOPEN (CZBTBA) 

Issues error messages to the user. 

Determines that a SYSIN data set exists and 
that JFCB for it has been built. 

Opens nonconversational SYSOUT. 

BACK also executes the following macro instructions: 

Section 4: Command Routines 83 



RCR 

VSENDR 

USELOCK 

ESETL 

XTRACT 

SETUP 

OPEN 

SCllED 

1. Updates the User Table entry. 
2. Gets ration. 
3. Vacates task if no task space exists. 

Sends requests for nonconversational tasks to 
the batch monitor (CZABA). 

Unlocks User Table entry. 

Unlocks SYSUSE data set. 

Accesses the TSI field containing the 
conversational/nonconversational indicator. 

1. Sets nonconversational indicator in TSI. 
2. Puts the symbolic device address of noncon­

versational SYSIN in TSI. 
3. Puts the batch sequence number in the TSI. 

Opens nonconversational SYSIN. 

Updates the schedule table index in the TSI to 
third level task. 

EXITS: The routine normally returns to the calling routine, via the 
R~TURN macro instruction. If a system error occurs, the routine exits 
to ABEND. 

OPERATION: This routine first validates the environment in which the 
BACK command was issued -- VSS cannot be connected and the task must be 
conversational. The user must also have entered a valid dsname with the 
BACK command. If all is in order. the BACK processor calls FINDDS to 
determine whether a data set for the given dsname exists. Also, if the 
data set has not been defined during the current task. FINDDS creates a 
job file control block (JFCB) for it, provided the SYSIN data set name 
has been cataloged. A number of invalid conditions can result from the 
FINDDS operation -- see Error Conditions for elaboration. 

On return, with RC=O, the BACK processor sends the request (via 
VSENDR) to the batch monitor to determine whether the system can accept 
a new background task at this time. The batch monitor will return a 
batch sequence number if a new task is acceptable, and BACK will then 
issue that number to the user, confirming the acceptance. 

The remaining operations switch the task's mode. The conversational 
terminal is disconnected via the ATCS macro (SVC 219). The user's entry 
in the User Table is then updated to show that he no longer has an 
active conversational task, and the mode indicator in the Task Status 
Index (TSI) is reset accordingly. The new SYSIN and SYSOUT are set up 
for use, and opened. Finally, the routine issues a SCHED SVC, changing 
the task's schedule table index to reflect its new mode. Execution of 
the nonconversational task will then occur at the system's convenience. 

ERROR CONDITIONS: The BACK Processor issues a diagnostic message to the 
user and returns to its calling routine if it determines that: 

1. VSS is connected to the requesting task. 

2. The requesting task is not conversational. 

3. The user defaulted the data set name in the BACK command. 

4. The data set name supplied has invalid length. 

84 



5. FINDDS indicates (RC=8) that the dsname is for some reason invalid 
-- for instance, it could not find the d~;name in the catalog. 

6. FINDDS indicates (RC=16) that the data set name cannot be 
retrieved. 

7. The batch monitor indicates that no task space exists, or that 
shutdown is in progress. 

certain conditions cause the BACK processor to is:3Ue the following sys­
tem error: 

SYSEJ:{ Code severity 

050202700 t-'linor 

ABEND Message 

INVALID RETURN CODE 
FRO~ A CALLED ROUTINE 

Conditions which can cause this error are: 

S ignifi cance 

BACK received an 
invalid return code 
from a called module. 

1. Invalid return code from either FINDDS or the batch monitor. 

2. FINDDS indicates (RC=4) that no JFCB was found in TDT and that 
there was no request to create one; or indicates (RC=10) that no 
JFCB in TDT and unable to build one -- for instance, because space 
unavailable. 

SYST£M CONTROL BLOCK USAGE: 

Task Common (CrlATC~) 

Data Control Block (CHADCB) 
User Table (CHAUSE) 
New Task Common (CHANTC) 
Task Status Index (CHATSI) 
Task Data Definition Table (CHATDT) 

~ Batch Work Queue (BWQ) EXHIBIT Processor (CZAYF) 

The EXHIBIT Director (CZAYD) calls CZAYF to process requests for an 
informational display of the Batch Work Queue, when the BWQ option is 
specified in the EXHIBIT command. Various types of displays may be 
requested, which may result in a display of all entries or of a smaller 
subset of entries. (For example: only print requests may be called 
for.) (See Chart BC.) 

E,NTRIES: 

CZAYFl - normal entry 
CZAYF2 entry from ABEND processing 

MODULES CALLED: None. 

EXITS: CZAYF returns to its calling routine. 

OPERATION: All information required for this display operation is 
available in the individual BWQ entries. If t.hetask requesting a dis­
play of the batch work queue is not the operator task, only the request­
ing task's DCB for the Batch Work Queue is opened. The operator tasks 
is presented with the status of all jobs on the Batch Work Queue. CZAYF 
initializes the Batch Work Queue and determines whether the type speci­
fied is BSN. 

section 4: Command Routines 85 



If not, CZAYF obtains each BWQ entry in turn, releases the lock 
bytes, determines whether it is the type requested, and, if so, moves 
the entry into the work area provided by CZAYD. On end of data, if no 
entries have been found. a message to that effect is moved into the work 
area. 

If the type specified is BSN, CZAYF reads on the BSN key, moving 
either the synad message or a 'no entry found' message into the work 
area. 

In either case, after the entries have been examined, CZAYF TCLOSEs 
the BWQ for the operator task, and begins to write headers on the SYSOUT 
device. All write operations are directed to GATE. When the last head­
er has been written, CZAYF converts and formats its BWQ data, line by 
line, and writes each line to SYSOUT via GATWR. When these entries are 
exhausted, CZAYF returns to its calling routine. 

ERROR CONDITIONS: If, for a non-operator task, the BWQ could not be 
accessea, a diagnostic message is directed to GA'rE. 

SYSTEM CONTROL BLOCK USAGE: Batch Work Queue. 

... CANCEL Command Routine (CZABJ) 

This routine sends a message to the batch monitor to cancel a speci­
fied nonconversational task. CANCEL operates in conversational mode 
only. (See Chart BD.) 

ENTRY: CZABJl - normal entry 

MODULES CALLED: 

NEXT PAR (CZAAC1) Gets and checks batch sequence number. 

NUMSTG (CZAAC4) Validates batch sequence number. 

MSGWR (CZAAD2) Issues messages to user. 

EXITS: The routine normally returns to the calling routine, via the 
RETURN macro instruction. If a system error occurs, the routine exits 
to ABEND. 

OPERATION: The routine gets and checks the batctl sequence number, which 
is provl.ded as the command's operand, using thE .sCAN routines NEXTPAk 
and NUNSTG. CANCEL then builds a request message, incluJ.ing the uscr-' s 
identification and privilege class as well as the batch sequence number, 
and sends it to the batch monitor, via CALL if executerl in tne operator 
task or VSEND if requested by a user. 

When the batch monitor receives the message, it will cancel the spe­
cified task if it is currently being executed or is awaitir~ execution, 
and if the u::;er is privileged to cancel that task. Until the batch mon­
itor responds, an AWAIT puts the CANCEL task in wait statu~,. Upon 
receiving the batch monitor'S response, CANCEL i~jsues an appropriate 
message to the user, and returns to the calling routine. 

ERROR CONDITIONS: The CANCEL processor checks the validity of th'2 ua­
rameter fo.r:mat and the BSN entered with the CANCFL command. If ei ther 
is in error the user is fJrompted and allowed to tTy again. An at.tention 
will interrupt this prompting. 

After the call to the batch monitor, if the CANCEL routine discovers 
that the batch sequence number is either com~leted or nonexistent, or 
that the user is not privileged to cancel the task, it issues an error 
message before exiting. For the message IDs and exact text of the UiP~,­
sages issued, see System Messages. 

86 



The routine may issue these system errors: 

SYSER code severity 

050203401 Minor 

050203402 Minor 

050203403 Minor 

ABEND Message 

INVALID RETURN CODE 
FROM A CALLED 
ROUTINE. 

MESSAGE TO BATCH 
MONITOR COULD NOT 
BE COMPLETED. 

INVALID RETURN CODE 
FROM A CALLED 
ROUTINE. 

Significance 

Invalid return code 
received from called 
module. 

VSEND to batch moni­
tor wa s not com­
pleted. 

Invalid response 
received from batch 
monitor. 

SYSTEM CONTROL BLOCK USAGE: 

Task Common (CHATCM) 
Message Control Block (CHAMCB) 
Message Event Control Block (CHAMEB) 

~CATALOG Command Routine (CZAEI) 

This routine makes a permanent record of a non-VAM data set in a 
user's catalog, updates an existing non-VA~ entry in the catalog, 
creates an index level in the catalog for a generation data group, or 
catalogs a data set as a new generation of a generation data group. For 
VAM data sets, it is used only to change the data set name in the cata­
log and on direct access volumes. {See Chart BE.} 

ENTRIES: 

CZAEI1 - command entry 
CZAEI2 - macro instruction entry 
CZAEI3 - special macro instruction entry for batch monitor 
CZAEI11 - BPKD 

MODULES CALLED: 

SCAN Routines: 
NEXT PAR (CZAAC1) 

CHEKDS (CZAAC2) 

CHKNUM (CZAACS) 

MSGWR (CZAAD2) 

FINDDS (CZAEC1) 

DELCAT (CZCFD) 

RENAl>'lE (CZCFZ) 

ADDCAT (CZCFA) 

LOCATE (CZCFL) 

GETMAIN (CZCGA2) 

Locates delimiters of input string and scan for 
invalid characters. 

Validates data set name. 

Validates generation number. 

Issues system messages. 

Locates or creates JFCB for specified data sets. 

Changes data set name in catalog entry, or deletes 
the old name from the catalog. 

Changes data set name on direct access volume. 

Creates or updates fields within the catalog. 

Creates index level in catalog for generation data 
group. 

Obtains additional virtual storage. 

Section 4: Command Routines 87 



FREEMAIN (CZCGA3) Releases virtual storage. 

INDEX (CZCFIl) Creates generation data group. 

MTREQ (CZCAA1) 

SETXP (CEAH1) 

Mounts data set volume. 

Makes a DSCB page available for processing. 

Writes out DSCB. PGOUT (CZAAl) 

ABEND (CZACPl) Aborts the task for abnormal conditions. 

EXITS: The routine normally returns to the calling routine, via the 
RETURN macro instruction. If a system error occurs, the routine exits 
to ABEND. 

OPERATION: The command operands are validated using the SCAN routines. 

If the new data set name has a relative generation number appended, 
indicating that it is a generation of a generation data group, LOCATE is 
called to obtain the absolute form of the generation number. Then the 
job file control block (JFCB) for the current data set name operand is 
located, and checked to ensure that the state of the data set (cataloged 
or not cataloged) as specified by the operand agrees with the state 
shown in the JFCB. 

A non-YAM data set name is cataloged or the catalog data set descrip­
tor (DSD) for a non-YAM data set is updated by calling the ADDCAT rou­
tine. Upon successful return from ADDCAT, control is returned to the 
calling routine. Any attempt to catalog or update the DSD of an exist­
ing catalog entry for a VAM data set or to rename a VAM data set which 
has no catalog entry is rejected by the CATALOG Command Routine. 

If new and current data set names are entered as operands for: 

• Non-VAM data sets and the current name is not cataloged, RENAME is 
called to replace the current name with the new name in the DSCE 
before a catalog entry is created and control is returned to the 
calling routine. 

• Non-VAM data sets and the current name is cataloged, DELCAT is 
called to replace the current name with the new name in the catalog 
DSD. If the current data set also resides on a direct access 
volume, RENAME is called to replace the current name with a new name 
in the DSCB. Then ADDCAT is called to update fields in the catalog 
and control is returned to the calling routine. 

• VAM data sets and the current name is cataloged, DELCAT is called to 
replace the current name with the new name in the catalog DSD. Then 
SETXP is called to make a Format-E DSCB available for processing. 
After changing the DSNAME in the DSCB. PGOUT is called to write out 
the Format-E DSCB and control is returned to the calling routine. 

• VAM data sets and the new name is a generation data set name, ADDCAT 
is called to catalog the new name. The current name is replaced 
with the new name on the DseB and DELCAT is called to delete the 
current name from the catalog. 

If a catalog index is requested for a generation data group, a param­
eter list is created for INDEX. Upon successful return from INDEX, con­
trol is returned to the calling routine. 

ERROR CONDITIONS: If entry was by macro instruction, a hexadecimal code 
is returned in the fourth byte of general register 15: 

88 



Code Significance 

00 Cataloging done as requested. 

04 Name cannot be changed since new dsname not unique. 

08 Input string error, no cataloging done. 

OC No cataloging for other reason. 

10 Data set name already in catalog. 

14 No volume of data set mounted, cannot catalog. 

20 VAM data set not GOG or RENAME option. 

24 Open DCB. 

The routine checks for acceptable operands and notifies the user, 
through user prompter, of any errors found. For the messages issued, 
see System Messages. 

The routine may issue these system errors! 

SYSER Code 

050503302 

050503304 

050503306 

050503308 

050503310 

050503314 

050503316 

050503318 

050503320 

050503322 

Severity ABEND Message 

Minor 

Minor 

Minor 

Minor 

Minor 

Minor 

Minor 

Minor 

Minor 

Minor 

SYSTEM ERROR, INVALID 
RETURN FROM MSGWR. 

SYSTEM ERROR, INVALID 
RETURN FROM NEXTPAR. 

SYSTEM ERROR, INVALID 
RETURN FROM CHEKDS. 

SYSTEM ERROR, INVALID 
RE.'TURN FROM CHKNUM. 

SYSTEM ERROR, INVALID 
RETURN FROM }<'INDDS. 

SYSTEM ERROR, INVALID 
RETURN FROM DELCA'!'. 

SYSTEM ERROR, INVALID 
RETURN FROM RENAME. 

SYSTEM ERROR, TOO 
MANY VOLUMES OR UN­
ABLE TO GETfY'lAIN. 

SYSTEM ERROR, INVALID 
RETURN FROM ADDCAT. 

SYSTEM ERROR, UNABLE 
TO COMPLETE COMMAND 
OR BACKOUT. 

~hgnif icance 

Invalid return 
code from MSGWR. 

Invalid return 
code from NEXTPAR. 

Invalid return 
code frow CHEKDS. 

Invalid return 
code from CHKNUM. 

rnvalid return 
code from FINDDS. 

Inva lid return 
code from DELCAT. 

Invalid return 
code from RENAME. 

More than 255 
volumes or unable 
to issue GETMAIN. 

Invalid return 
code from ADDCAT. 

ADDCAT unsuccess­
ful but indicator 
shows that suc­
cessful change of 
data set name has 
occurred in cata­
log or DSCE 
through DELCAT or 
RENAME. 

Section 4: Command Routines 89 



050503324 Minor 

050503326 Minor 

SYSTEM ERROR, INVALID 
RESULTS FROM INDEX. 

SYSTEM ERROR, INVALID 
RETURN FROM LOCATE. 

Invalid return 
code from INDEX. 

Invalid return 
code from LOCATE. 

SYSTEM CONTROL BLOCK USAGE: 

Task Common (CHATCM) 
Catalog SBLOCK (CHACCC) 
Interrupt Storage Area (CHAISA) 
Task Data Definition Table (CHATDT) 
Symbolic Device Allocation Table (CHASDA) 

~ CDD Command Routine (CZAFS) 

This routine retrieves one or more DDEF commands for execution, 
obtaining them from a line data set that contains prestored DDEF com­
mands. (See Chart BF.) 

ENTRIES: 

CZAFSl - normal entry 
CZAFS2 - macro instruction entry 

f.tJODULES CALLED: 

SCAN Routines: 
NEXTPAR (CZAACl) 

ALFNUM (CZAAC3) 

CHEKDS (CZAAc2) 

MSGWR (CZAAD2) 

FINDDS (CZAECl) 

command Analyzer 
(CZASAl) 

GETMAIN (CZCGA2) 

FREEMAIN (CZCGA3) 

Gets command operand. 

validates ddname. 

Validates data set name. 

Issue messages to user and fetch his replies. 
Also, lists the ddnames processed at the end of 
operation. 

Finds or creates JFCB for prestored data set. 

Executes DDEF command via OBEY string. 

Reserves virtual storage for stack of ddnarr.es. 

Releases virtual storage reserved for ddnames. 

EXITS: The routine returns to its calling routine, via the RETURN macro 
instruction. 

OPERATION: If the command operand field does not include ddnames (data 
definition names), the CD routine will fetch all DDEF commands in the 
prestored data set, and present them, one by one, to the DDEF command 
routine for execution. In doing this, the CDD routine first validates 
the name of the prestored data set (using SCAN routines for this), gets 
the job file control block for that data set (using the FINDDS routine), 
then opens the data set and reads it, record by record. Each record 
containing a proper command verb is passed to the Command Analyzer for 
processing as an OBEY string. First, however, the CDD routine adjusts 
the record to take into account the record length, line number. and con­
tinuation lines. The routine will continue setting up records and pas­
Sing them to the command Analyzer until the prestored data set is 
exhausted. At that point, control returns to the calling routine. 

90 



When one or more ddnames are supplied as operands, the routine vali­
dates and then stacks them in temporary storage. Next, it scans sequen­
tially through the prestored data set, looking for a match on a ddname 
with any that had been stacked. As each match is found, the prestored 
DDEF command is readied and passed to the Command Analyzer for execu­
tion. After the last of the requested ddnames has been executed (or 
when end of data set is encountered), the routine returns control to its 
calling routine. 

If COD is entered via a command, the routine accepts attention inter­
rupts by immediately closing the prestored data set, setting a return 
code and returning control to the calling routine. If all the ddnames 
have not been processed, COD releases the reserved storage through FREE­
MAIN, before returning to its caller. 

ERROR CONDITIONS: If entry was by a macro instruction, a hexadecimal 
code will be returned in register 15: 

Significance 

00 No error detected 

04 Invalid data set name 

08 Invalid data definition name 

OC Data definition name not in prestored data set 

10 Error return received from DDEF (via Command Analyzer) 

14 Not a line data set 

18 Attention interrupt handled 

The routine checks for acceptable operands and notifies the user, 
through user prompter of clny errors found. For the messages issued, see 
command description given in System Messages. 

The routine may issue these system errors. In each case the severity 
is minor, and the ABEND message is SYSTEt-'J ERROR, 'I'ASK TERMINATED. 

SYSE.R Code Significance 

050506801 Invalid NEXTPAR return code 

050506802 Invalid NEXTPAR delimiters 

050506803 Invalid MSGWR return code 

050506804 Invalid ALFNUM return 

050506805 Invalid FINDDS return 

050506806 Invalid CHEKDS return 

SYSTEM CONTROL BLOCK USAGE: 

Task Common (CrlATCM) 
Data Control Block (CHADCB) 
Task Data Definition Table (CHATDT) 
Interrupt Storage Area (CHAISA) 

code 

code 

code 

Section 4: Command Routines 91 



~ CDS Command Routine (CZAFV) 

This routine makes a copy of a data set or member of a partitioned 
data set. It may also copy member(s) of a partitioned data set (with 
user data and aliases) into a second partitioned data set, replacing 
duplicate members, if so specified. The original data set or member(s) 
may be erased after duplication. If the original data set or member is 
a line data set, the routine also renumbers the new data set when 
requested. (See Chart BG.) 

ENTRIES: 

CZAFVl - command entry 
CZAFV2 - macro instruction entry 
CZAFV3 - EODAD entry in reading input data set 
CZAFV4 - SYNAD from input or output data set 
CZAFVS - EODAD entry from output data set 

MODULES CALLED: 

CHEKDS (CZAAC2P) Validates data set name. 

CHKNUM (CZAACS) Validates line number and DCB operands. 

PRMPT (CZATJ 1) Issues system messages to the user. 

FINDDS (CZAECl) Locates or creates a JFCB. 

DDEF (CZAEAl) Defines the data set if no JFCB exists. 

FIND (CZCOJ1) Finds a member of a partitioned data set. 

STOW (CZCOKl) Updates the POD of a partitioned data set. 

ERASE (CZAEJ7) Erases data sets or members. 

GETMAIN (CZCGA2) Obtains virtual storage work area. 

FREEMAIN (CZCGA) Frees virtual storage work area. 

EXITS: The routine normally returns to the calling routine, via the 
RETURN macro instruction. If a system error occurs, the routine exits 
to ABEND. 

OPERATION: Upon entry to the macro, the parameter string is obtained, 
flags are set, and an OBEY is done to the command entry. 

If entered as the result of a command, after each data set name is 
validated, a job file control block (JFCB) is obtained or created for 
each (by FINDDS). If the output data set JFCB cannot be found or 
created (that is, it is not cataloged), CDS calls DDEF to define the 
data set, with the same organization as the input data set. The remain­
ing operands are validated and the erase, renumbering, and replace flags 
are set accordingly. 

If the input and output data sets are both VAI1 partitioned and no 
member nanle has been specified, multiple member processing (copying of 
members with user data and aliases, if they exist) is assumed. 

Otherwise, the input DCB is opened and checked against the output 
JFCB. Both data sets must have the same organization (VAM or SAM). Any 
combination of VAM data sets may be copied. If a VSAM data set is being 
copied to VISAM, the key length, relative key position, and pad must be 

92 



specified for the output data set. In all other combinations, the out­
put is given the same DCB parameters as the input" For VSAM format U 
records, a LRECL of one page is used. The output DCB is then opened. 

For SAM data sets, READ and WRITE are used to obtain the input rec­
ords and place them in the output data set. For VAM data sets, GET and 
PUT are used. If renumbering is specified, the input record is obtained 
and the new key is overlayed on the old key before the record is 
written. 

Tests for attention interrupts are made after each WRITE or PUT. 
Processing ends when the input data set is exhausted or an attention 
interrupt is received. 

If multiple member processing has been indicated, three DCBs are 
opened; one for input, one for VSAM output, and one for VISAM output. 

If no member names have been specified for the input data set, then 
every member found in the input data set's POD will be copied. other­
wise, only the members specified will be copied. 

A FIND for a member is done, which fills in the input DCB and obtains 
the user data for the member. The output POD is searched to see if d 

member with the same name exists. Then each alia:, in the input POD 
which is associated with the member is checked in the output POD. If a 
similar alias is found, it must be associated with the same member name 
in the output POD or processing of the member is ended. 

If no invalid duplicate aliases are found, and the user has not spe­
cified that duplicate members are to be ignored, the input member is 
copied into the output data set using the appropriate output DCB. 

When the copy is complete, the input member is erased if applicable 
and the output member is added to the output POD with its user data and 
aliases, using STOW. 

Multiple member processing is complete when all specified members 
have been copied. 

When processing is complete, the DCBs are closed and the input data 
set is erased, if specified (not applicable to multiple member proces­
sing). control is then returned to the calling routine. 

ERROR CONDITIONS: If entry was by macro instruction. a hexadecil!lal code 
will be returned in register 15: 

Code 

00 

04 

08 

OC 

10 

Significance 

Normal processing completed. 

Invalid operands. 

Name of original data set not in TDT or catalog. 

New data set not cataloged or no ddname specified. 

JFCB for original data set not consist.ent with JFCB for new data 
set. 

14 Member name not given for partitioned data set. 

18 User does not have write access to new data set. 

lC Original data set organization not VAM or SAM. 

Section 4: Command Routines 93 



20 Data set not on direct access or tape. 

24 Member name for new data set already in POD. 

28 Data set copied; old data set not erased because user does not 
have proper access. 

2C Data set copied; new data set not renumbered because it is not 
line data set. 

30 Data set copied and renumbered; old data set not erased because 
user does not have proper access. 

34 Data set copied and erased: new data set not renumbered because 
it it is not a line data set. 

38 Data set copied; new data set not renumbered and old data set not 
erased. 

3C SYNAD or EODAD exits have occurred. 

The routine checks for acceptable operands and notifies the user, 
through user prompter, of any errors found. For messages issued, see 
System Messages. 

The routine may issue these system errors. In each case the severity 
is minor and the ABEND message is TASK TERMINATED. DSCOPY INCOMPLETE. 

SYSER Code Explanation 

050508101 An invalid field in a JFCB has been discovered. 

050508102 An illogical return code from STOW or FIND was received. 

SYSTEM CONTROL BLOCK USAGE: 

Task Common (CHATCM) 
Task Data Definition Table (CHATDT) 
Data Control Block (CHADCB) 

~CHGPASS Command (CZATI) 

This routine allows users to change their passwords by a command. 
This command will be accepted at any time after LOGON and before LCX;OFF. 
(See Chart BH.) 

ENTRY: CZATIC - normal entry 

MODULES CALLED: 

GATE (CZATC1) 

User Prompter (CZATJ1) 

Notifies user (via GATWk macro) to enter hi:; 
new password (if defaulted) and cutxent f,a,;:;­
word. Response read through GATRD. 

Notifies the user of Error conditions. 

EXITS: This routine returns to its calling routine. 

OPERATION: Upon entry, CHGPASS prompts the user to enter his new pass­
word in an overtyped field (if it was not already entered a~3 a parameter 
with the command). Once the new password has teen checked for correct 
syntax, CHGPASS prompts the user for his current password (again in an 
overtyped field). If the current password matches the USEPAS field, the 
new password is stored in USEPAS. 

94 



If the task requesting the change of password is nonconversational, 
CHGPASS uses a GTWAR macro to obtain the new and current passwords. If 
the task is conversational, a GATWR./GATRD combination is used. 

ERHOR CONDITIONS: CHGPASS issues an error message via the User Prompter 
and returns to its calling routine if (1) the user enters an invalid 
current password, or (2) the user enters an invalid new password. 

SYSTEM CONTROL BLOCK USAGE: 

User Table (CrlAUSE) 
Task Common (CHATCM) 
Terminal Control Table (CHATCT) 

"'CLOSE Command (CZCHB) 

The CLOSE command is stJecified to allow the user to close his data 
sets from the corr~and level. This function is required when the normal 
path of processing has been interrupted either by the system or by the 
user himself, and precludes this closure at the program level. This 
command may be invoked to close a data set, a group of data sets, or all 
data sets. (See Chart BI.) 

ENTRY: CZCHBl - command entry point 

MODULES CALLED: 

CHKDS (CZAAC2P) 

LOCATE (CZCFL1) 

STOW (CZCOJ, CZCOH, 
CZCOI) 

CLOS~ (CZCLB) 

CLOSEVAM (CZCOB) 

PRMPT (CZBTC) 

Validates data set name. 

Converts relative generation member to absolute. 

Deletes data sets, sets and resets inter­
locks on the RESTBL. 

Closes the DCB. 

Eliminates all traces of the DCB adjuncts (header, 
buffers, etc.). 

Issues messages to the user. 

EXITS: Normal exit is made via return macro with a return code of RC=OO ---
in Register 15. 

OPERATION: This routine is coded as a BUILTIN. The BPKD included in 
the PSECT provides for three parameters -- DSNAME, TYPE, and DDNAME. 

If both DSNAME and DDNAME are specified, only t:he data set for which 
both names match is closed. If an inconsistency is found, the user is 
informed. 

CHEKDS is called to validate the data set name. 'I'he return code froll1 
CHEKDS is used to determine if a relative generation number or member 
name is included; a member name is ignored. The relative generation 
rr,emoer is converted to absolute via a call to LOCATE; LOCATE is not 
called if DSNAME specifies an IBM System/360 Operating System data set 
name. If the data definition name exceeds eight characters, or the 
return code from CHEKDS is unexpected, or LOCATE fails to convert a 
relative generation number to absolute, the command is cancelled, and 
the user is informed. 

The TDT is located, and the TDT header (TDTJ10) is used to find the 
last JFCB in the chain. The search of JFCBs is determined from the 
DSNAME or DDNAME parameter. If DSNAME is defaulted, all JFCBs in the 

Section 4: Command R.outines 95 



chain are processed. excluding the JFCBs for system data sets and USER­
LIB. If DSNAME is specified, the data set name field in the JFCB 
(TDTDS1) is compared against the specified data set name. The length 
(maximum of 35) for the comparison is obtained from the byte preceding 
the data set name pointed to by the BPKD. If a match is found, the 
character following the field on which the comparison was made (length + 
1) is examined for a period or a blank if less than 35 characters have 
been compared. If a period is found, the name is partially qualified, 
and the search resumes after the current data set is closed. If a blank 
is found, the name is fully qualified, and processing is complete when 
the data set is closed. 

Special consideration must be made for IBM System/360 Operating Sys­
tem data set names, which may be 44 characters long. Only JFCBs with 
TDTDS1=C'.· are examined and the name compared with TDTDS2. 

If DDNAME is specified, the data definition name field in the JFCB 
(TDTDDN) is compared against the specified data definition name. The 
number of characters to be compared is determined from the byte preced­
ing the data definition name pointed to by the BPKD. If the name is 
less than eight characters, the search continues through the JFCBs after 
the current data set is closed. 

If a search of the TDT fails to find the specified data set name or 
data definition name, the command is terminated. and the user is infor­
med that the data set is not defined in the current task. If the data 
set is found to be a system data set, the conurand is terminated, and t.he 
user is informed that a system data set may not be closed. 

After the JFCB is located, the open count (TDTODN) is examined; if 
the count is zero, the command is terminated and the user informed that 
the data set is not open. 

If the TYPE=T option is specified for a VAM data set that is speci­
fied by name and found to be duplexed (TDTDUP=O>, the command is can­
celled; the user is informed that TYPE=T cannot be specified for a dup­
lexed data set. 

When the data set has been properly closed, the user is informed. 
The actual close processing of a data set is determined from the dat.a 
set organization (TDTDSV). 

VAM Organization: If the data set is duplexed (TDTDUP=O>, under 
defaulted names or partially qualified name processing, and the TYPE=T 
option is specified, the JFCB is ignored and the user infonned that a 
duplexed data set cannot be closed with T¥PE=T option. 

The RESTBL pOinter is obtained from the JFCB (TDTDEB). For d shared 
data set, the RESTBL is locked via CZOOH prior to a search of the DCB 
Headers. The first DCB Header is located from the pointer in the RESTBL 
Header. 

The DCB Headers for a task (TCMTID=DHDTSK) are processed one at a 
time; from the DCB Header, the DCB address (DHDDCB) is obtained. Furth­
er testing is required prior to the actual call to CLOSE (CZCLB). 

1. Before processing an individual DCB Header, all DCB Headers for the 
task are counted. This count is used to update, if necessary, the 
DCB open count in the JFCB (TDTOPN). 

2. For a non-TYP£~T CLOSE, the existence of a valid DCB must be deter­
mined before the call to CLOSE (CZCLB). This is done via a CKeL!:> 
macro instruction for the space assigned to the DCB. A code of 0 
returned in register 0 indicates that the DCB no longer exists. 

96 



CLOSEVAM (CZCOB) is called at a new entry point (CZCOB2) to elimin­
ate all trace of the DCB adjuncts <DCB Header, buffers, etc.). 

When the DCB exists, a check is made for a valid DCBID and the OPEN 
flag set. If the DCBID is not valid or the DCB is not flagged as 
open, CZCOB2 is called to perform the necessary cleanup. 

When the DCB cannot be closed for any of the three reasons above, 
the user is informed that the data set could not be closed because 
the DCB was missing or invalid. 

CZCOB2 is called with a pointer in register 1 to a parameter list 
containing a pointer to the DCB Header to be processed. 

A call to CZCOB2 doesn"t preclude the possible normal closure of 
other DCBs opened for the data set; for example, the RESTBL must 
not be released prior to processing of all DCB Headers. 

When the data set is duplexed and CZCOB2 must be called, it is 
called twice to process each DCB in the same manner. If the DCBs 
are the last to be closed for the data set in this manner, the dup­
lex pointer and indicator in the JFCB (TDTDUP and TDTDCI) must be 
cleared. 

3. For a TYPE=T CLOSE the same checks must be made for an existing DCB 
that is open and contains a valid DCBID. If these conditions are 
not found, the close is not attempted and the user is informed that 
the temporary close was not done because the DCB was missing or 
invalid. 

4. If the JFCB is in the JOBLIB chain, the DCB address is used to 
search the LIBE MAINT DCB chain to determine if the DCB is the JOB­
LIB DCB. If it is, the header is bypassed and, upon completion of 
processing of the data set, the user is informed t.hat the JOBLIB 
DeB was not closed. 

5. If the data set is duplexed (DHDDUP=O), the address of the second 
DeB is obtained from the DCB Header pointed to from DHDDUP and both 
DeBs are passed to DUPCLOSE. 

6. For a CLOSE TYPE=T, the address of the next LCB Header for the task 
must be retained prior to the actual call to CLOSE. This address 
is used to resume processing of the next DCB Header rather than the 
pointer in the RESTBL Header used for non-TYFE=T CLOSE which will 
change as DCBs are closed and DCB Headers arE deleted. 

7. When the data set is partitioned and a new mEcmber is checked out, a 
STOW (type N) must be performed. The name used has the form: 

MYDDDNNN 

where M is the character M to conform to naming conventions, YDVD 
is the current date and NNN are three numeric characters to provide 
uniqueness to the name. 

If STOW passes back a return code indicating a non-unique member 
name, the NNN portion of the name is incremented and STOW is 
recalled. 

After the STOW nas been performed, the user is informed that a new 
member (MYDDDNNN) has been stowed for the dat.a set. 

For shared data sets, the lock on the RESTBL must be released by 
CZCOI prior to the call to CLOSE and as soon as the DCB address is 
obtained. 

Section 4: Command Routines 97 



SAM Organization: When DDNAME=ddname is specified for concatenated data 
sets, all JFCBs with the same ddname are examined and a close performed 
on each for which the DCB open count (TDTOPN) is greater than zero. 

The DEB address in the JFCB (TDTDEB) is used to locate the DEB and 
from that. the DCB (DEBDCB). This address is passed to CLOSE to perform 
the actual closure of the data set. 

Prior to the call to CLOSE (CZCLB) a check must be made for an exist­
ing DCB that is open and contains a valid DCBTD (see "VAM Organization" 
above). If these conditions are not found, the close is not attempted. 
For a non-TYPE=T CLOSE, the user is informed that the close of the data 
set failed because the DCB was missing or invalid. 

ERROR CONDITIONS: The following messages are issued: 

CZCHBOOl 
CZCHB002 
CZCHB003 
CZCHB004 
CZCHB005 
CZCHB006 
CZCHB007 
CZCHB008 
CZCHB009 
CZCHBOIO 
CZCHBOll 
CZCHB012 
CZCHb013 

invalid 
data set not defined in this task 
data set not open 
system data set may not be closed 
TYPE=T option invalid for duplexed data set 
DSNA~E and DDNAME inconsistent 
joblib DCB not closed 
duplexed data set not closed with Type=T opt ion 
close of data set failed; DCB missing or invalid 
new member (J>lIYDDDNNN) stowed for data set 
close Type=T not done; DCB missing or invalid 
closed 
CSECT, Privileged, Public, READONLY, Reentrant 

SY;,TEr-" CONTROL BLOCK USAGE: 

Data Control Block (CHADCB) 
Data Event Control Block (CHADEB) 
DCB Header (CHADED) 
Interrupt storage Area (CtlAISA) 
to',ember Header (CI-lAMHD) 
REST8L Header (CHAHHD) 
Task COJ1Uf!on (CHATCM) 
Task Definition Table (CdATDT) 

~DATA Command Routine (CZADF) 

TIlis routine creates either a VISAM line data set or a VSAM data set. 
During creation of a line data set, the routine can also be used to 
insert, delete, and replace line~; in that data set. (See Chart B..J.) 

ENTRIl.::S: 

CZADFl - normal entry 
CZACF2 - SY~AD entry 
CZADF3 - EODAD entry 

fvlODULES CALLED: 

Ni:XTPAR (CZAACl) 

CttEKDS (CZAAC2) 

AL.FNUfvl (CZAAC3) 

CIiKNUM (CZAACS) 

98 

Locates delimiters of input string and scan for in­
valid characters. 

Validates data set name. 

Validates member name. 

Validates line numbE'r. 



FINDDS (CZAECl) 

DDEF (CZAEAl) 

FORTRAN Conversion 
(CZAWCl) 

ERASE; (CZAEJ 1) 

tv~SGWR (CZAAD2) 

SYSIN (CZASC7) 

Locates job file control block (JFCB). 

Creates JFCB for new data set if needed. 

Converts a record of FORTRAN data set from 
cardboard to keyboard. 

Erases VSAM data set in case of attention 
interrupt. 

Issues system messages. 

Issues number sign and fetch input records. 

EXITS: The routine normally returns to the calling routine, via the 
RhTURN macro instruction. If a system error occurs, the routine exits 
to ABEND. 

OPERATION: After validating its input. parameters by means of the SCAN 
routines, DATA checks to see if a job file control block (JFCB) exists 
for the data set. If so, the JFCB must show either (l) that the data 
set is partitioned or (2) it has VSAM or VISAM organization. For a par­
titioned data set, a new member will be created. If there i~3 no JFCB 
for the data set, the routine generates one by calling DDEF. In that 
case, the data set name and organization are as specified in the input 
parameter, and the data definition name is derived from d value main­
tained for this purpose in task common. If JFCB already exists, for the 
data set name given, the DSORG value in the JFCB is assumed regardless 
of the value in the DATA command. 

The routine now opens the data set, with a provision for both reading 
and writing. For a partitioned data set member, a search is made 
through the partitioned organization directory (POD) to ensure that_ Ule 
member name is unique. All further processing de~ends on the type of 
data set to be created, VSAM or VISAM. 

For a VSAM data set, the routine issues a nU!(lbt:r :.;hjn (#) t.o invite 
each neW' line, and then puts the line into the new (i.clta SEt -- or member 
-- in this format: 

length 
(4 bytes) 

card/keyboard 
(1 byte) 

user tfc'xt 
(120 bytes> 

The keyboard/card indicator shows the origin of the line as either a 
terminal keyboard (code is 1) or d card reader (code i~i 0). In d con­
versational task, SYSIN inJicates the origin of eacll line upon ret,urn to 
DATA (StSIN is used to fetCh the lines). In a nODconversational task, 
where input lines are prestored in the SYSIN ddta set, the il~icator 
setting is part of the input record i tsel f. ThEe' t:xceFtion to t:his i~o 

fixed-length lines. Tne origin of tno,;e line:; is ds~;unwJ to be trle card 
reader, and the k~yboard/card indicator is S2t accordingly. DATA con­
tinues creating the VSAM data set. (or member), on, linEe it a tim,,', until 
it finds an input record whose only si'Jnificant chiH~actpn; are %£, or an 
underscore followed by a command. The %1:: (or dn undec;core lolloW'pd t)y 
a command) marks the end of input. 

The ouilding of d VISAM data set is similar, but 

length 
(4 bytes) 

lint numner 
(7 bytes) 

card/keyboard 
(1 byte) 

uCier text 
(120 nytes) 

1 c. 
0. 

Llne number; dre a~,signeJ in ascending ses·,]enc(c, in the order lin~<) 
are receive~. The other major dlfference from V~A~ credtion is that 
each VISAM input record is Checked for modificaticn indicators. If the 
input rE:'cord contains %D followed by a line nun,ber, the line bearing 

section 4: COTI'ma nd Eout i nes 99 



that number is deleted from the data set being built. If the line num­
ber is preceded by a ~ only, the text following it is written as either 
a replacement or an insertion line, depending on the line number speci­
fied. When a %E (or an underscore followed by a command) record appears 
for VSAM or VISAM data sets, DATA closes the completed data set, without 
writing the %E (or an underscore followed by a command) in the data set. 
If a new member was created, a member descriptor for it is added to the 
POD before the data set is closed. Control then passes to the calling 
routine. If the attention key is pressed while the DATA command is in 
operation, the path taken depends upon how far processing has advanced. 
If the new data set has not yet been opened, DATA merely returns con­
trol, leaving the JFCB set up (if it was generated). Otherwise, DATA 
closes the opened data set (the member is stowed if it is a VPAM data 
set), and then returns control to the calling routine. The VISAM data 
set, once opened, thus exists and may be added to later, if desired, by 
means of the MODIFY command routine. 

ERROR CONDITIONS: The routine checks for acceptable operands and noti­
fies the user, through user prompter, of any errors found. For the mes­
sages issued, see System Messages. 

The routine may issue these system errors: 

SYSER Code Severity 

050504502 Minor 

050504504 MinaI 

050504505 l~inor 

ABEND Message 

SYSTEM ERROR, INVALID 
RBTURN CODE FROM CALLED 
ROUTINE. 

SYSTEM ERROR, TROUBLE 
WITH MEMBER NAME. 

SYSTEM ERROR. TROUBLE 
WITH CHKNUM ROUTINE. 

SYSTEM CONTROL BLOCK USAGE: 

Task Common (CdATCI'1) 
Task Data Definition Table (Ct!A.TOT) 
Data Control Rlock (CHADCB) 

~DDEF Command Routine (CZAEA) 

Significance 

Invalid return 
code from a called 
module. 

CHEKDS indicates a 
member name but left 
parenthesis was not 
found or, when add­
ing member name, 
new data set nam0 
length is greater 
than 45. 

Invalid return code. 
from C1KNUM, or all 
zeros in line 
nuuJJer. 

To define a data set to the system, this routine creatf 3 a iob file" 
control block (JFCB) entry in the task data definition table (TOT). In 
addition, the routine issues requests for device allocaticn dlld direct 
access extl:~rnal storage, as needed by the newly .jefined cldt.d set_. (:;ec 
Chart DK.) 

E.NTf<.IES: 

CZA.EAl - user command entry 
CZAEA2 - FI~UJFCH entry 
CZAEA3 - user macro instruction entry 
CZAhA4 - systerr. macro instructi on entry 
CZAEA5 - fully qualified dsname entry 
C~AEA6 - PINDOS entry 

100 



MODULES CALLED: 

CHEKDS (CZAAC2) 

LOCATE (CGCFL) 

MTREQ (CZCAAl) 

MTVOL (CZCAM1> 

RELEAS (CZCAD1) 

ALLOCATE (CZCEA) 

GETMAIN (CZCGA2) 

MSGWR (CZAAD2) 

LIBMAINT (CZCDH) 

Validates the syntax of data set name. 

Finds the catalog entry for the data set. 

Mounts a volume for a non-VAM data set. 

Mounts volumes for VAM data set. 

Releases devices allocated for private volumes. 

Allocates pages for new data sets on direct access. 

Gets a new page for JFCBs. 

Issues system messages to SYSOUT. 

Opens the DCB for a data set defined as a JOBLIB. 

EXITS: The routine normally returns to the calling routine, via the 
RETURN macro instruction. If a system error occurs, the routine exits 
to ABEND. 

OPERATION: Operation of this routine may be divided into four broad 
stefJs: 

1. The first step is to read the command (or macro instruction) 
operands, and set these operand values in the new JFCB. 

2. The second step is to set default values -- where defaults are 
indicated -- in the new JFCB. If the data set being defined is 
cataloged, values available in the catalog entry for the data set 
are also moved to the JFCB. Information availatle is in the cata­
log will override system default information. 

3. The third step is to effect volume mounting and space allocation 
for data sets, if necessary. 

4. Tne last step before returning control is to link the newly created 
JFCB into the proper chain or chains in the TDT. 

Operand Handling: The routine first sets up the new JFCB. It locates 
the JFCB by checking the TDT header. In most cases, the JFCB fields are 
blanked or zeroed. 

Operands in the input string are now inspected one by one. The first 
operand is the ddname (data definition name), which if syntactically 
correct is moved to the JFCB. At the same time a check is made through 
the TDT for a matching ddname. If one is found, the adr:lress of the 
matching ddnawe is saved for later tests and for possible use in conca­
tenating. The second operand is assumed to be the dsorg (data set 
organization) value. It too is validated before being moved to the 
JFCB. 

All subsequent operands are identified by keywords. As each keyword 
is recognized, the individual elements of that operand are isolated, 
checked for syntactic correctness, and then processed by an appropriate 
part of the DDEF routine. In general, handling of UNIT, VOLUME, SPACE, 
DISP, LABEL, OPTION, and DCB operands involves validating elements for 
syntax and logic, and then setting them in the corresponding JFCB 
fields. For the DSNAME, the routine ensures that a fully-qualified data 
set name is placed in the JFCB. It will allow for partitioned data set 
members, members of generation data groups, 1B./)I; System/360 OfJerating 

Section 4: Command Routines 101 



System names, normal data set names, and names containing special ASCII 
characters. 

If the first two characters of the data set name parameter are a 
quote and a blank, in that order, the normal TSS syntax is ignored and 
the data set name is scanned until the first quote-comma pair is found. 
All other characters between these pairs are assumed to be the data set 
name, and it is not validated, except for length. (If the new data set 
name matches a name already in the TDT, and the old ddname is not a sys­
tem name, the new ddname will be substituted for the old ddname and the 
routine will return control to its calling routine without processing 
any other operands.) . 

Processing of keyword operands continues until the end of the input 
string is reached. UNIT, LABEL, and VOLUME are ignored for a cataloged 
data set; SPACE is ignored if the data set already exists. 

If the first two characters in the volume serial number specified in 
the volume parameter are a quote and a comma, the next six characters 
are assumed, without checking, to be the volume serial number. They are 
not validated. One seventh character is checked for a comrra or a right 
parenthesis. If neither, DDEF assumes a user error has occurred. 

Default Handling: The routine now checks to see if certain values, such 
as dsorg, have been defaulted or if other values, such as file sequence 
number, have been defaulted under certain conditions. As needed, the 
routine will set standard values in the JFCB to fill out the defaulted 
fields. Most defaults result in the operand or element being ignored, 
unless the information is available in the catalog. Only dsorq. disp, 
file sequence number, and volume sequence number are always considered. 
Other defaults that depend on the device required by the data set (for 
example, tape density) will be processed during device or storage 
allocation. 

The routine also checks to see if a data set nas been cataloged. If 
so, the routine tests to ensure that the catalog and JFCB values for 
dsorg and disp agree. If the data set is cataloqed. and disp is 
defaulted, disp is set to old. In addition, it uses the catalog infor­
mation to fill certain fields of the JFCB: label-type, original data 
set, and volume flags. Note that cataloq information takes precedence 
over corresponding information supplied by the DDEF' command or IndCrO 
instruction. 

Volume Handling: For a data set on a private non-VAM volume, the rou­
tine makes a request to MTREQ for device allocation and set'=> appropriate 
flags in the JF'CB. 

For a new non VAM data set. on direct access storage, the routine 
moves the data set space requirements to the JFCB. then calls ALLOCATE 
to reserve space for the data set on a direct access volume. Tne ~;pace 

requirement.s may be either default values or values specif ied in the 
DDEF command or macro instruction. 

For data sets on VAM volumes, the routine calls MTVOL to mount all 
volumes. 

Chaining: The routine places the new JFCB into the main JFCB chain of 
the TOT. Depending on the data set defined. it way also link the JF'CB 
to the temporary tabulation chain (for a new data set) or t.o the library 
chain (for a JOBLIB). When a concatenation is indicated by the CONe 
option and by matching ddnames for physical sequential orgdnized data 
sets, except ASCII formatted data sets. forward and backward concatena­
tion pointer'=> are set as well. 

102 



Before returning control to the calling routine, the DDEF routine 
tests to see if the newly created JFCB has used the last available space 
on the current page. If this is so, GETl-'AIN is invoked to fetch a new 
page, which is then formed into 17 JFCBs, all linked together, for 
future use. 

ERROR CONDITIONS: If entry was by macro instruction, a hexadecimal code 
is returned in the fourth byte of general register 15. Also, the mes­
sage identification code of the diagnostic which would have been issued 
if the DDEF had been a command is placed into general register 1, to 
clarify the meaning of a nonzero return code. 

Code Significance 

00 No error detected 

04 Data set undefined 

08 Data set name not unique 

OC Attention interrupt. occurred 

10 Inconsistent dsorg 

14 Nonexistent generation name specified 

18 DSNAME not fully qualified 

1C VOLts) cannot be mounted 

20 Space not available 

40 Duplicate ddnames but no concatenation 

80 Other invalid specification 

The routine checks for acceptable operands and notifies the user, 
through user prompter, of any errors found. For the messages issued, 
see System Messages. 

The routine may issue these system errors. In each case the severity 
is minor, and the ABEND message is SYSTEM ERHOR - TASK TERMINATED. 

SYSEH Code 

050502500 

050502501 

OSO~)02502 

050')02503 

oso~)o 2504 

050502505 

050502507 

Explanation 

Invalid conversational (TCMCOV) or confirmation (TCMCDF) 
field in task common. 

Invalid time in system common. 

Invalid data set name from FINDm:; or error in DDEF scan 
routine. 

Invalid return code from CHEKDS when validati ng data set 
name. 

Invalid return code from LOCATE (when searching catalog for 
duplicate data set name). 

Invalid fully qualified name from LOCATE, or SBLOCK is not 
a data set descriptor. 

Invalid return code from FINDDS. 

Logic error within DDEF in DCB parameters. 

Section 4: Command Routines 103 



050502508 

050502509 

050502510 

050502511 

050502512 

050502513 

050502514 

050502515 

050502516 

Invalid return code from LOCATE for SBLOCK of next volume. 

Invalid return code from ALLOCATE. 

Invalid return code from ~TREQ. 

Return code from MTREQ indicates requested volume could not 
be found. 

Invalid return code from RELEAS. 

Inconsistency of address with message response area; end­
of-field address is not greater than next available address 
for response. 

Invalid return code from MSGWR. 

Invalid return code from GATRD (used to read parameter list 
from SYSIN). 

Invalid delirr.iter from scan routine in DDEF. 

SYSTEM CONTROL BLOCK USAGE: 

Task Common (CHATCM) 
Symbolic Device Allocation Table (CHASDA) 
System Common (CHASCM) 
Interrupt Storage Area (CHAISA) 
catalog SBLOCK (CHACCC) 
Task Data Definition Table {CHATDT} 
Public Volume Table (CrlAPVT) 

Routine Control Blocks: The DDEF routine employs several internal 
tables, detailed descriptions of which may be found in the listing. 
Below is a summary of each table's function. 

1. The parameter address list and the parameter descriptor table con­
trol transfers within the routine while operands are being pro­
cessed. The parameter address list consists of 18 words, and the 
parameter descriptor table consists of 37 words. 

2. The parameter definition table is used for prompting. 

3. Two tables are used to validate the individual elements of DDEF. 
The first table is a list of attribute and flag addresses for each 
element. The second table is the attribute table which defines 
what is valid for each element. 

4. The consistency table is used to ascertain whether the parameters 
are consistent with each other. This table is only used for unca­
taloged data sets, and is only part of the internal consistency 
checking done by DDEF. 

5. DDEF uses a table of logical diagnostics with a description of per­
mitted replit's. It consists of tINO words for each logical diag­
nostic issued. 

~DSS?/PC? Command Routine (CZAEL) 

This routine processes both DSS? and PC? commands. For DSS?, the 
status of one or more cataloged data sets is presented. For PC?, the 
data set name, user's access, and, for shared data sets, the owner's 
identification of one or more cataloged data sets is presented. (See 
Chart BL.) 

104 



ENTRIES: 

CZAELl - DSS? entry 
CZAEL2 - PC? entry 

MODULES CALLED: 

GATE (CZATCl> 

MSGWR (CZAAD2) 

MTREQ (CZCAA1&2) 

LOCATE (CZCFL) 

OBTAIN (CZCF01) 

SCAN Routines: 
NEXTPAR (CZAAC1) 

ChECKDS (CZAAC2) 

ALFNUM (CZAAC3) 

FREE~~IN (CZCGA3) 

ABEND (CZACP1) 

BUMP (CZCABl) 

SETXP (CEAH7) 

RELEASE (CZCAD1) 

Writes information on SYSOUT. 

Issues system messages. 

Mounts private volumes; obtains the symbolic 
device address of a public volume. 

Retrieves a catalog SBLOCK for a given fully­
qualified name. 

Obtains a DSCB for a SA~ data set on a direct 
access device. 

Obtains input parameters. 

Checks for a valid dsname. 

Checks for a valid userid. 

Releases the pages obtained by LOCFQN for the 
TBLOCK structure. 

Terminates processing after a system error is 
detected. 

Mounts successive private volumes. 

Issues an SVC 244 to read in a DSCB page. 

Releases private volumes mounted. 

EX1TS: The routine returns to the calling routine via the RETURN macro 
instruction. If a systen, error occurs, the routine exits to ABEND. 

OPERATION: The SCAN routines are called to obtain input parameters and 
validate the dsname and userid. If the parameters are valid, LOCATE is 
called with the input name prefixed to the userid to obtain the TBLOCK 
structure. LOCFQN returns with TBLOCKs containing sharing and volume 
information. Volume information is extracted from the TBLOCKs and 

For 
to 
DSCB 

printed. For DSS? I i<JTREQ is called to mount the required volumes. 
direct access devices (either public or private), OBTAIN is called 
obtain a DSCB for a SAM data set or a SETXP is issued to read in a 
page for a VAM data set. Additional information is extracted from the 
DSCB and printed. 

ERROR CONDITIONS: The routine checks for acceptable operands and noti­
fies the user of any errors found. For messages issued, see System !,1es­
sages. The routine may issue this ABEND: 

'TASK ERROR. CZAEL PROC~SSING COMPLETE, BUT TRANSIENT DEVICE NOT 
RELEASED. DEVICE FREED BY ABEND.' 

Section 4: Command Routines 105 



SYSTEM CONTROL BLOCK USAGE: 

Task Common (CHATCM) 
TBLOCK Data Set Descriptor (CHATBD) 
TBLOCK Continuation (CHATBC) 
TBLOCK Sharer (CHATBS) 
Interrupt Storage Area (CHAISA) 
TASK Definition Table (CHATDT) 
Format-E DSCB (CHADSE) 
Public Volume Table (CHAPVT) 

~ERASE/DELETE Command Routine (CZAEJ) 

This routine erases or deletes a data set, as specified by the user. 
The DELETE procedure removes a data set entry from the catalog. The 
ERASE procedure erases the direct access storage assigned to the data 
set as well as deleting the catalog entry. (See Chart BM.) 

ENTRIES: 

CZAEJl - ERASE command entry 
CZAEJ 3 - ERASE entry from batch moni tor 
CZAEJ4 - DELETE command entry 
CZAEJ5 DELETE macro instruction entry 
CZAEJ6 - ERASE entry for COPY, ABEND, and LOGOFF 
CZAEJ1 - ERASE macro instruction entry 
CZAEJ8 - ERASE entry for QUIT 
CZANER - SYNAD error entry 
CZAEOD - EODAD entry 

MODULES CALLED: 

SRCHSDST (CZCQE1) 

NEXTPAR (CZAAC1) 

CHEKDS (CZAAC2) 

MSGWR (CZAAD2) 

FINDDS (CZAEC1) 

RELEASE (CZAFJ6) 

DDEF (CZAEA5) 

LOCATE (CZCFL) 

DELCAT (CZCFO) 

SCRATCH (CZCES) 

FREEMAIN (CZCG~3) 

GOV (CZASOX) 

DELVAM 

Searches for data sets opened by sharers. 

Gets a command operand. 

validates a data set name. 

Issues system messages. 

Locates the address of a JFCB. 

Closes the data control block. 

Creates a JFCB. 

Finds a data set. descriptor for shared data set. 

Removes a data set from the catalog. 

Removes a data set control block from volun:E2 table 
of contents. 

Releases virtual storage 10ge. 

Obtains a default value for OEPROMPT. 

Removes VAM data sets from the catalog clnd the 
volumes in ERASE mode. 

This routine also uses OPEN. FIND, STOW. CLOSE, and MTREQ. 

EXITS: The routin", normally ret.urns to t.he calling routine, via the 
RETURN macro instruction. If a system error occurs, the routine exits 
to ABEND. 

106 



OPERATION: Before processing either an ERASE or DELETE request, the 
SCAN routine NEXTPAR and CHEKDS are used to fetch and validate the com­
mand operand. If the operand proves valid, LOCATE is called to search 
the catalog, and compile a list (TBLOCK) of all data sets qualified by 
the input data set name. If the task is nonconversational, the data 
sets are erased or deleted as originally specified by the user. 

For any data set to be processed, FINDDS is called to search the task 
data definition table (TOT) for the address of its job file control 
block (JFCB). If the data set is cataloged but not found in the TOT, 
FINDDS calls DDEF to create a JFCB. 

It is necessary to check for open data sets before erasing. If a 
data set has been opened by sharers, or by the owner in another task, 
the ERASE command will be ignored. The erasure or renaming of an open 
data set would have resulted in subsequent errors in the system should 
one of the sharers attempt to use the data set. 

Before processing an erase or delete request, GDV is called to deter­
mine the value of the DEPROMPT operand in the user profile. If the 
value is Y, ERASE/DELETE prompts the user for disposition of data sets, 
when more than one is referenced. 

For non-VAM data sets, the ERASE/DELETE routine processes an ERASE 
request by performing the following functions: 

1. RELEASE is called to close the data control block. 

2. SCRATCH is called to delete the data set control blocks from the 
volume table of contents (VTOC). 

3. If the data set is cataloged, DELCAT is called to delete the 
various index levels from the catalog structure. 

4. RELEASE is called to release the data set entry in the JFCB. 

For VAM data sets, the ERASE/DELETE routine processes an ERASE re­
quest by calling DELVAM to delete the catalog entry, remove the data set 
from the volume and release the JFCB. If only a member of the data set 
is to be released, ERASE/DELETE calls FIND to locate the member name in 
the Partitioned Organization Directory (POD) and ~iTOW to remove the mem­
ber from the POD. 

In processing a DELETE request. the ERASE/DELETE routine calls DELCAT 
to delete the data set's catalog entry. If there is a JFCB, RELEASE is 
called to close the DCB and release the JFCB. 

Final process ing of the ERASE/DELETE routine i~; as follows: FREEMAIN 
releases the virtual storage previously obtained by LOCFQN. Control is 
then returned to the command analyzer and executor, or the calling 
routine. 

When the batch monitor calls ERASE/DELETE, only the ERASE procedure 
is used. This operates basically as described above except that the 
routine returns error codes rather than printing diagnostic messages and 
waiting for a response, and DDEF will be called if there is no JFCB and 
LOCATE has been successful. 

Code Significance 

4C System data definition name found in TDT E 

58 Data set opened by another sharer 

Section 4: Command Routines 107 



The routine checks for acceptable operands and notifies the user, 
through MSGWR, of any errors found. For the messages issued, see System 
Messages. 

The routine may issue these system errors. In each case the severity 
code is minor, and the ABEND message is SYSTEM ERROR - TASK TERMINATED. 

SYSER Code 

050503401 

050503404 

050503405 

050503406 

050503407 

050503408 

050503409 

050503410 

050503412 

050503413 

050503414 

050503415 

050503416 

050503418 

050503419 

050503420 

050503423 

050503424 

050503426 

050503427 

050503428 

050503429 

050503430 

050503431 

Explanation 

Nonzero return code from CHEKDS. 

Unsuccessful return code from MSGWR. 

Data set count is nonzero, but no forward pointer in 
TBLOCK. 

Invalid type of TBLOCK. 

Return code of C from FINDDS. No space is allocated. 

Invalid return code from FINDDS. 

FINDDS not finding JFCB created by DDEF. 

Invalid data set name code returned by DDEF. 

Invalid return code from SCRATCH. 

Invalid return code from LOCATE. 

Unsuccessful return from DELCAT. 

DELCAT unable to delete data set descriptor (DSD). 

RELEASE unable to release JFCB from TDT. 

CHEKDS found invalid member name. 

Invalid return code from STOW. 

Invalid return from NEXTPAR. 

Unknown TBLOCK; not TBD or TBC. 

Validity bit in JFCB not on. 

Invalid return from RELEASE when trying to close DCBs. 

Invalid return code from MSGWR. 

Sharing indicator but no sharing descriptor TBLOCK. 

Label error. 

SYNAD exit. 

EODAD exit. 

ERROR CONDITIONS: If entry was by macro instruction, a hexadecimal code 
will be returned in the fourth byte of general register 15: 

Code Significance 

00 No error detected E/D 

108 



04 Not class D or batch monitor entry E 

08 Invalid return code from NEXTPAR E/D 

OC Invalid delimiters in data set name E/D 

10 No data set name supplied E/D 

14 Invalid return code from CHEKDS E/D 

18 Data set name not in catalog or TDT E or volumes could not 
be mounted 

lC Partitioned data set not fully qualified name E 

20 Member of partitioned data set not found in POD E 

24 Data set not cataloged D 

28 Data set on public volume D 

2C Data set is member of partitioned data set D 

30 User does not own data set in ERASE batch monitor entry E 

34 Sharing/access conflicts prevent processing E/D 

38 No catalog entry for ERASE batch monitor entry E 

3C Data set name undefined-return code from DDEF E 

44 Data set not on direct access E 

48 Volume not found 

4C System JFCB 

58 Data set in use 

5C Resources exceeded, volume cannot be mounted 

60 Loaded DS; cannot erase or delete 

64 Bulk I/O pending on data set 

SYSTEM CONTROL BLOCK USAGE: 

Task Common (CHATCM) 
TBLOCK Data Set Descriptor (CRATBD) 
Task Data Definition Table (CHATDT) 
Data Control Block (CHADCB) 
Interrupt Storage Area (CHAISA) 

~EVV Command Routine -- CATVAM (CZCFB) 

This routine catalogs data sets on private volumes which were pro­
duced on one system to allow their use on another system. In support of 
this function, the routine will optionally alter the userid portion of 
the FQN in the Format-E DSCB to make the FQN compatible to the second 
system. Multi-volume data sets are also processed by this routine. 
(See Chart BN.) 

ENTRY: CZCFBl - normal entry 

Section 4~ Command Routines 109 



MODULES CALLED: 

DDEF (CZAEA1) 

MTREQ (CZCAA) 

VAMINIT (CZCEQ) 

DSCB RD/WR (CZCEM) 

ADDCAT (CZCFA) 

PGOUT (CEAAl> 

BUMP (CZCAB) 

INDEX (CZCFI) 

LOCATE (CZCFL) 

GETMAIN (CZCGA2) 

FREEMAIN (CZCGA3) 

User Prompter (CZATJ1) 

RELEASE <CZAFJ1) 

Sets up a JFCB with the necessary parameters. 

Issues mount requests for the required volumes. 

Reads in the PAT table and initializes the 
volume. 

Makes a DSCB page available to the task. 

Creates a catalog entry. 

Writes out a DSCB page. 

Dismounts and mounts volumes. 

Updates and cbains an indexed data set. 

Verifies the userid. 

Obtains virtual storage. 

Releases virtual storage. 

Issues diagnostics to user. 

Freeup device and JFCB. 

EXITS: control is returned to the calling routine via the RETURN macro 
instruction. 

OPERATION: After validating the input parameter list, a random ddname 
is generated for the DDEF instruction. The DDEF macro is then issued 
with enough parameters specified to create a JFCB which meet.s the 
requirements for later processing by ADDCAT, MTREQ and BUMP. 

A parameter list is then prepared for the MTREQ routine. The parame­
ters consist of the volume serial number(s) and the address of the .JFCB 
for the task. MTREQ issues a mount request for the first volume to be 
mounted and GETMAIN requests a block of virtual storage in order to read 
in and process DSCB pages. The VAMINIT routine is called to initialize 
the volume and read in the PAT. 

The PAT is scanned to find a DSCB page and the DSCB page is read into 
virtual storage by invoking the CZCEM ront;ne. If the option to altEr 
the userid portion of the FQN was specified, the first Format.-E DSCB i~, 

located and the userid portion of the FQN is altered and the DSCB check­
sum is modified. LOCATE is called first in order to verify the old 
userid and see if the data set is cataloged. If the data set~ is not 
cataloged but the userid is valid, ADDCAT is called to catalog the data 
set (the new userid, if specified, is updated before calling ADDCAT). 
The condition code returned from ADDCAT is checked to assure that the 
data set was cataloged successfully. If the data set is catdloged and 
the userid is valid, the DSD is verified to assure that the data set 
being processed is the same as the cataloged data set. 

It the data sets are the same, the next Format-E OSCB is located and 
the samE: procedure is followed as for the previous Format-E DSCB. The 
next Format-E DSCB is located and the same procedure is followed as for 
the previous Format-E OSCB. 

If the option to alter the userid portion of the FQN was specified, 
the DSCB WRITE routine (CZCEM1) is called to write the altered DSCB page 
on the same place on the disk from which the oseB page was oriqinally 

110 



read. (If the write is unsuccessful the user is informed of the failure 
to relocate the DSCB, and further processing is bypassed.) If the write 
is successful (or if the DSCB was not changed), the PAT is scanned for 
more DSCB pages. If any are found, they are read in and the same proce­
dure is followed as for the previous DSCB page until the entire PAT has 
been scanned and the entire volume cataloged. 

After volume processing is complete, a test is made for task comple­
tion. If it is not complete, the BUMP routine is called to dismount the 
current volume and mount the next volume in the list. VAMINIT is then 
called to initialize the next volume and processing continues as for the 
previous volume. 

After the last volume of the task is processed, the direct access 
device is released by invoking the REL command. 'rhis frees up the 
device and releases the JFCB. A call to FREEMAIN releases the virtual 
storage page. 

ERROR CONDITIONS: EW prompts the user and returns to its calling rou­
tine under the following conditions: 

1. Missing or invalid command parameter. 

2. An attempt by other than a manager or administrator to change the 
userid. 

3. A userid that has too many characters or is not joined to the 
system. 

4. Erroneous volume entries. 

5. An attempt to build a JFCB fails. 

6. On the mount request (a) the user has cancelled, (b) the first 
volume cannot be mounted due to a MTREQ errOl·, (c) the user is not 
authorized to use the volume. 

7. The requested data set cannot be shared by the current user. 

8. DSCBWR cannot relocate the DSCB. 

9. ADDCAT cannot catalog the data set. 

10. Device release fails after the task has been completed. 

SYSTEM CONTROL BLOCK USAGE: 

Task Common (CHATCM) 
Task Data Definition Table (CHATDT) 
Format-I:.: DSCB (CHAOS!:') 
catalog SBLOCK (CHACCC) 

.... EXECUTE Command Routine (CZABB) 

This routine sends a message to the batch monitor to initiate a non­
conversational task. The name of the data set that will serve as the 
task's SYSIN is supplied in the message. EXECUTE operates in conversa­
tional mode only. (See Chart BO.) 

ENTRY: CZABBl - normal entry 

r-oODULES CALLED: 

N.i:,XTPAR (CZAAC1) Fetches data set name and checks for valid 
characters. 

Section 4: Command Routines 111 



CHE.KDS (CZAAC2) Validates syntax of data set name. 

LOCATE (CZCFL) Finds catalog entry for SYSIN data set name. 

MSGWR (CZAAD2) Issues messages to user (bridges into user prompter). 

VSEND Sends request to batch monitor (if the task is not 
the main operator's). 

AWAIT Delays processing until reply to request message is 
received. 

EXITS: The routine normally returns to the calling routine, via the 
RETURN macro instruction. If a system error occurs, the routine exits 
to ABEND. 

OPERATION: The routine first fetches the name of the SYSIN data set, 
which is furnished as the input parameter, and checks that it is valid; 
two SCAN routines, NEXT PAR and CHE.KDS, are called for this. EXECUTE 
then checks, via LOCATE, to see that the valid data set name actually 
appears in the catalog. If not, or if the name proves invalid, a diag­
nostic message is issued, asking the user to reenter the data set nan.e. 

After the name has been fully validated, EXECUTE builds a request 
message and sends it, via VSEND, to the batch monitor. when the batch 
monitor receives the message, it assigns the task a batch sequence num­
ber, and adds an entry for the task in the batch work queue. Until the 
batch monitor responds, an AWAIT puts the EXECUTE task in wait statu'3. 
Upon return, the batch sequence number is issued to the user and EXECUTE 
returns control to the calling routine. 

Before and after issuing each diagnostic message, and before sending 
the request message to the batch monitor, EXECUTE polls for attention 
interrupts. If one is detected, control is immediately returned to the 
calling routine. 

ERROR CONDITIONS: The routine checks for an acceptable operand and 
notifies the user, through user prompter, of any errors found. For t_he 
aessages issued, see System Messages. 

S'lSEk Code Severity 

050202601 Minor 

050202602 Minor 

ABEND Message 

INVALID ~ETURN CODE 
FROM A CALLED ROUTINE. 

MESSAGE TO BATCH MON­
ITOR COULD NOT BE 
l:.XECUTED. 

SYST~M CONTROL BLOCK USAGB: 

Task Common (CHATCM) 
Batch Work Queue (CHABWQ) 
Catalog SBLOCK (CHACCC> 
Message Control Block (CHAMCB) 
System Message Recoru (CtlAMSG) 
Message Event Control Block (CHAMEB) 

~EXHIBIT Director (CZAYD) 

Significance 

Inval id r(c,t urn code 
received from a 
called :uodule. 

VSEND to b.."Itch moni­
tor not completed. 

The EXHIBIT Director is called when the EXrHBIT con,mand has been 
entered from a terminal supported by TSS/360 as a SYSIN device. The 
Director then performs initialization, validates the request, and calls 
the applicable display routine to process the request. (See Chart BP.) 

112 



ENTRY: CZAYD3 - normal entry 

NODULES CALLED: 

UID EXHIBIT Processor (CZAYG) 

BWQ EXHIBIT Processor (CZAYF) 

GETMAIN (CZCGA2) 

FRE~lAIN (CZCGA3) 

To process requests for a display of all 
active tasks in the system. 

To process requests for a display of the 
Batch Work Queue. 

To obtain a work area for the display 
processors. 

To release the work area acquired 
through GETMAIN. 

EXITS: When processing is complete CZAYD returns to its calling 
routine. 

OPERATION: CZAYD's calling routine provides as input a pointer in 
Register 1 to a parameter list containing Fointers to character strings. 
These are pointers to OPTION, TYPE, and FORM parameters. The option 
must be specified and valid; it may be either urD or BWQ, requesting 
displays of either the information about active tasks in the system or 
the activity on the Batch Work Queue. 

CZAYD calls an internal subroutine. SCAN2, to validate the UID or BWQ 
type. If the UID type is valid, the urD form is also checked. It then 
sets a branch table index to either the UID o.r BWQ displacement and pro­
vides a 50-page work area for the subsequently called processor (CZAYG 
or CZAYF). On return, if the task requesting the EXHIBIT fUnction is 
tne operator task, CZAYD releases the 50 pages allocated as a work area. 
CZAYD then returns to its calling routine. 

ERROR CONDITIONS: All diagnostic messages are directed to GATE. The 
following conditions cause diagnostic messages: 

1. No option specified. 

2. EXHIBIT option invalid. 

3. UID or BWQ type invalid. 

4. UID form invalid. 

SYSTEM CONTROL BLOCK USAGE: None • 

.... FINDDS Routine (CZAEC) 

Given a data set name, FINDDS searches the task data definition table 
(TDT) for a job file control block (JFCB), and ei t;her provides the user 
with its address, or creates one if requested by t;he user. (See Chart 
BQ. ) 

ENTRIES: 

CZAECl - normal entry 
CZAEC2 - used when the userid is specified in an input parameter list 

rather than in Task Common 

MODULES CALLED: 

DDEF (CZAEA6) Creates new JFCB using information from the catalog. 

Section 4: Command Routines 113 



LOCATE (CZCFLl) Converts relative generation number to absolute 
number. 

CHKDS (CZAAC2) Validates dsname. 

EXITS: The routine normally returns to the calling routine, via the 
RETURN macro instruction. If a system error occurs, the routine exits 
to ABEND. 

OPERATION: FINDDS checks the data set name for a relative generation 
number or member name. A member name is removed, since it is meaning­
less to this routine. A relative generation number is converted to its 
absolute form (via LOCATE). If a relative generation data set name is 
not a FQN of a GOG, relative generation zero (0) is appended to the data 
set name. 

The task data definition table (CHATDT) is then searched for a JFCB 
containing the given data set name and, if it is found, its address is 
returned to the user. If a JFCB is not found, and the user requested 
one, a data definition name is generated from a value maintained for 
that purpose in task common. However, if FINDDS is entered at CZAEC2, 
it does not fetch the userid from Task Common, but uses the userid 
passed to it in Word 4 of the input parameter list. DDEF is called with 
this ddname to create a JFCB in the TDT. Its address is then supplied 
to the user. 

ERROR CONDITIONS: A hexadecimal code is returned in register 15: 

Code Significance 

00 JFCB found or created as requested 

04 No JFCB found; no request to create one 

08 No JFCB found; request to create one, 
but DDEF could not find data set name 
in catalog 

OC No JFCB found; DDEF could not create one 
because space unavailable. 

10 DSNAME invalid. 

14 No JFCB found; DDEF could not create one 
because volume could not be mounted. 

The routine may issue these 'iystem errors: 

SYSER Code 

050502102 

050502704 

050502706 

114 

severity 

Minor 

Minor 

Minor 

ABEND Message 

3YSTEM ERROR, FINDOS. 
NO RIGHT PAR EN IN DS­
NAME. 

SYSEM ERROR, UNEX­
PeCTED RETURN FROM 
LOCATE. 

SYSTEM ERROR, PINDDS. 
INVALID RETURN FROM 
DD. 

Signif icano' 

No right parenthesis 
after relative genera­
tion number. 

Return code from 
LOCATE is invalid or 
LOCATE did not replace 
relative generation 
number with absolute 
one. 

Invalid return code 
from DDEF. 



SYSTEM CONTROL BLOCK USAGE: 

Task Common (CHATCM) 
Task Data Definition Table <CHATDT) 

~FINDJFCB Routine (CZAEB) 

This routine locates the job file control block (JFCB) for a given 
data definition name (ddname) and, if requested, checks that the proper 
volumes are mounted. (See Chart BR.) 

ENTRY: CZAEBl - normal entry 

l"lODULES CALLED: 

l"lSGWR (CZAAD2) Issues messages to user. 

DDEF (CZAEA2) Defines ddname. 

f.'lTREQ (CZCAAl) Requests volume mounting. 

BUMP (CZCAB1) Replaces mounted volume with requested volume. 

EXITS: The routine normally returns to the calling routine, via the 
RETUHN macro instruction, with a pointer to the JFCB set in a caller­
designated area. If the JFCB cannot be found and a normal return is 
made, the caller-designated area will be set to zero. If a system error 
occurs, or if a JFCB cannot be found when it is mandatory, the routine 
exits to ABEND. 

OPERATION: 
processing: 

Three option codes (0, 1, and 2) control f'INDJFCB 

o find JFCB, mount volumes, and do not return unless JFCB is found; 

1 find JFCB and mount volumes, if possible, but return in any case; 

2 find JFCB, if possible, and return, but do not mount volumes. 

For an option code of 0 or 1, the task data definition table (TDT) is 
searched for a JFCB with the specified ddname. If the JFCB is not 
found, the conversational user is asked if he wants to define the 
ddname. If he indicates yes, DDEF is called to b'..lil t the JFCB. If he 
indicates no, or if the task is nonconversational. the action taken 
depends on the option code. For option 0, a diagnostic is issued and 
the task is terminated via ABEND. For option 1, the output area is set 
to zero and return is made to the calling routine. 

When the JFCB is found or created, FINDJFCB next checks that the 
proper volumes are mounted. For a SAM data set, only the first volume 
of the data set has to be mounted. For VAM data sets, the volume(s) are 
n,ounted at OPEN time. If the proper volumes cannot be mounted immedi­
ately, t1TREQ is called to reserve the necessary devices and place the 
task in the WAIT state until the devices become available. MTREQ then 
mounts the necessary volumes. When volume mounting is completed, 
f'INDJFCB sets a pointer to the JFCB in the output area and returns to 
the calling routine. 

For option code 2, there is no attempt to mount volumes; only a 
search of the TDT is made to find the JFCB. If found, a pointer to the 
JFC13 is placed in the output area and return is made to the calling rou­
tine. Otherwise, the output area is set to zero before returning to the 
calling routine. Option code 2 does not prompt the user, nor does it 
check that the proper volumes are mounted. 

Section 4: Command Routines 115 



ERROR CONDITIONS: The routine takes this action if the JFCB cannot be 
found: 

option 
Code Action 

o Issue diagnostic D002 DDNAME (name) UNDEFINED, then terminate 
task via ABEND. 

1,2 Set output area to zero, then return to calling routine. 

FINDJFCB may issue the message B022 WANT TO DEFINE DDNAME (name)? ENTER 
Y IF YES, N IF NO, when an undefined ddname is discovered in a conversa­
tional task and the option code is 1 or O. 

'I'he routine may issue these system errors: 

SYSER Code Severity 

050502600 Minor 

050502601 Minor 

ABEND Message 

SYSTEM ERROR INVALID 
RETURN CODES 

Same as above 

Significance 

Invalid return code 
received from BUMP. 

Invalid return code 
received from MTREQ. 

SYSTEM CONTROL BLOCK USAGE: 

Task Common (CHATCM) 
Task Data Definition Table (CHATDT) 

~FLOW Command Processor (CZAGD) 

The FLOW Command Processor allows the operator or manager/ 
administrator to regulate the number of each different task type (batch, 
rerr,ote, conversational, MTT appplication, and MTT aplication users) that 
tne system will process concurrently, by allowing the manipulation of 
the various job type limit fields in the system. (See Chart BS.) 

ENTRIES: 

CZAGDl - normal entry 
CZAGEl - subparameter processing entry 

MODULl:.S CALLED: 

User Prompter (CZATJ1) 

GATE (CZATC1) 

GETNAIN (CZCGA2) 

UFLOW Macro 

Informs the user of error conditions. 

Prints the buffer. 

Gets one page of storage for a buffer, if 
requested. 

Obtains or adjusts the conversational task 
limit or MTT application user limit. 

EXITS: This routine returns to its calling routine. 

OPERATION: On entry this routine checks for the appropriate authority 
code and privilege class. Only those with privilege class A, B, or F, 
and authority 0 or P can use the FLOW command. 

This routine then begins to check the parameter values for reasonab­
leness. The parameters that may be entered are BATCH, CONV, BACK, BUL­
KIO, MTT, and APP. This routine checks the BATCH, BACK, and MTT parame­
ters for exceeding maximum value. If they do not exceed the maximum 

116 



i value,this rontine inserts the value entered for them in the System 
~ Activity and R€:sources '.rable (CHASAR). Othe:cwise the maximum value is 
~ inserted in CHASAH.. The CONV parameter is va1.idated by issuinq the 
I UF.LOW mac:(o wit.h act:ion code 1 passed in Regist~er 1.5. Action code 1 
I regueHts un..ow to adjust the conve.rsational t.ask limit t.o the valu€-" sP"':'­
; cifi.ed 1.n t.nE' l()w-order 2 bytes in Register o. 

I 
! 
1 
~ 
¢ 

If th(:: APP parameter is t?ntered. this routine links to CZAGEl to 
build a .1i81: of l3ubparameter addresses. Then. if there are activ",~ M'I'T 
users, tbi.s routine links again to CZAGEl to build a list of ication 
DamE' addresses. I, rela·tive application number O'<j'..N} may be associa1~.ed 
with the AFP If so. it is validated; if not. a detault value 
.is used. When the application names are exhausted, this routine uses 
tn,,; UFLOi,{ macro ·with act.ion code 3 passed in Hegiste]c 15 to a U:3t the 
~l(r'J:; u~-;er lintj.:ts for the different application entr.ies.,. This r:(YU'tirle 
t,hen co.Lis GATE to print all the application names it. has accumulate-,ct in 
t,he buff~:;r.. ()n return from GATE 1 this routine returns t.o it_~~ cal1inq 
routine ... 

If no parameters are entered with the FLOW command, the user is re­
questing a display of task type counts and limits. This routine will 
t.:xt.ract the appropriat.e fields for BATCH. BULInO. BACK and M'fT from CHA­
SAR and format: them into a message. To complete the message, t.his rou­
tine eXl.'cut_es UFLOW with action code 2. This oper ation obtains the cux­
rent number of conversational tasks in execution and the conversational 
tar,k limit., and returns it to the FLOW Command Prc'cessor, which i.ncludes 
t.his information in t.he formatted message. This rou"tine then calls GATE 

~ to print the buffer. If there are active MI''f adminic,tlators, this rou" 
~ 
.
i" tine acr;uires anot.her pagt." of storage for its buffer. and executes UFLO~'; 
l with action code 4 to obtain the relat.ive app~licdt ion number (RAN) dnd 
a current. Hurnber of t"lTT users in execution for each ication ent.ry. On 
J .return. Lhi:3 routine .loads this print buffer with tl1,,, ~'1'T informat.ion d,nd 
i calls GA'fE to print it. When this operation is finished, this routine: I returns t.O it,3 calling routine. 

i 
~ 

I 
i 
!;:! 

~ 

I 
~ 

i g 
~ 
< 

~ 
I 

I 
I 
i ,. 

ERRO!i.. CONDI~TIOt§: '1'he Fl.OW Command Processor. prompts tIl(' user Cinei con­
tinues processing if the BATCH, CONV, BACK. or' M'f'I" parameter is speci­
fied with a value that exceeds the maximum alloweo.. The maximum limit 
is inserted in the table in these cas('!s. The FLOV; Command ProceSEor 
prompt.s ·the user and exit immediately when the user is not. 
use the FLOW command l or when it receives a nonzero return 
UFLOf...l. 

au-thcrized 
code trom 

to 

thE' SYSTl.M CON'l'ROL Bl.OCK USAGE: This routine referenCE'S and man 
syst'elnAct:ivii:y and Re--;:;ou:rces Table (CHASAR). ThE following limits. 
mdximurnrc:. and count fields, as well as the BULKIO SUrrlIe~c;i3 F'iaq, in CHA­
SAH can be set or displayed by this processor: 

BACK 

.BUI .. KI() 

CONV 

SARBTL 
SARNRt-l 
SAHMBT 

SARRNL 
SARREM 
SARf'o',RM 

SARBAS 

SARMAL 
SAHMCA 

SARMeN 

Batch task limit. 
Hatcll tasks in execution. 
Maxirr,um number of batch tasks. 

Remote tas k limi t .. 
Hemote tasks in execution. 
Remote task maximu.rr:. 

mlLKIO Suppress Flag. If set to X'Ci' ind~cates 
BD.LKIO will not be initiated. If set to X' 00' BUL-
KIO will be initiated. 

MTT Administrator task limit:. 
Act.ua 1 count of active MTT Adn,inist.rat.ors. 

Maximum number of conversational tasks allO'<"ed. 

Section 4: Command Routines 111 



~IF String Comparison Routine (CZBLT) 

This routine is a fast substitute for PCS IF processing when EBCDIC 
strings are being compared. (See Chart BT.> 

ENTRY: CZBLTI - normal entry 

MODULES CALLED: 

Source List 
Handler (CZASC6) 

PCS IF (CZAMEl) 

Updates the source list to an end-ot-line or 
command. 

Processes IF statements which require additional 
processing by PCS. 

EXITS: This routine exits normally to the calling routine. via the 
RETURN macro instruction. 

OPERATION: The routine is entered at CZBLTl from the CA&E when the IF 
verb is encountered. It tests '=' and '-.=' for true or false compari­
sons and sets a return code indicating the results of the test. Blanks 
on either side of equal signs are removed. If any of the following con­
ditions are present, CZBLT calls PCS IF for additional processing: 

• The phrase being processed is dynamic 

• Argument is not a quoted string 

• No terminating quote found in current string 

• Embedded £OB encountered 

• A character other than = or' = is discovered between strinqs (such 
as <) 

• Semicolon is not the delimiter 

The source list is updated to the next command or end-of-line, whichever 
occurs first, and the routine exits with either a successful true or 
successful false condition. 

ERROR CONDITIONS: None. 

SYSTEM CONTROL BLOCK USAGE: 

Source List Page Header (CHASLP) 
Source List Sublist Header (CHASLH) 
Source List Marker (CHASLM) 

~JOIN/REJOIN Command Routine (CZAFK) 

These routines operate only in conversational mode to process the 
JOIN command by defining a legitimate new user to the system or the 
REJOIN command by redefining any parameter (exclusive of userid) and 
changing the user table entry accordingly. These commands can only be 
issued by a system manager or system administrator. (See Chart BU.) 

ENTRIES: 

CZAFKl - JOIN entry 
CZAFK2 - REJOIN entry 

ltjODULES CALLED: 

ALFNUM (CZAAC3P) 

118 

Validates user identification. 



DELCAT (CZCPH1) 

READ/WRITE (CZCPE1) 

FIND (CZ.COJ1) 

User Prompter (CZATJ1) 

Deletes an entry in SYSVCT. 

Operates on the User Table and the the User 
Limits Table. 

Locates the User Limits Table. 

Accessed via the PRMPT ~acro; issues messages 
to user. 

EXITS: The routine normally returns to the Command Analyzer and Execu­
tor, via the RETURN macro instruction. 

OPERATION: After each operand of the JOIN command is fetched, it is 
validated according to the restrictions plac~~d on the particular 
operand. Then, after validation and successful preliminary processing, 
the operand is stored, and the next one is fetched. When all operands 
have been successfully fetched, validated, and processed, they are 
placed in the user table so that the new user will be defined to the 
system as a legal user. certain operands (userid. charge number, 
priority, privilege class, authorization, ration, batch, and RJE) 
require special checking and processing. 

REJOIN follows the same processes as above except that only given pa­
rameters are checked and inserted. Defaulted parameters are ignored. 
This con~and makes it possible to alter a user's entry in the user table 
without first QUITing him. thereby losing all his data sets. 

Userid: If the new user is being joined by a sYE,tem administrator. the 
first two characters of his userid are prefixed to the userid operand. 
The operand is t~hen checked for syntactic validit.y. A further check is 
made to ensure t,hat the userid does not already f'xist in the system. 

Password: This operand, if specified, is verifiE'd as having no invalid 
characters (such as parentheSiS, comma, period, blank, etc.). If 
default.ed, an a-byte all-blank password is assigned. A blank password 
may be specified by enclosing blanks within quotes. 

Charge Number: Each user has a charge numbe!.. 'roe charge number is 
prefixed with the first two characters of t:he user's newly established 
userid and checked for syntactic validity. No default value is 
perrni tted. 

Priority: This operand, if specified, is verified as a value between 0 
and 9 incl usi ve, and then converted f rom EBCDIC 1:0 binary. If the 
operand is defaulted, an installation-defined value is assigned. 

Privilege Class: This operand, if specified, is first verified as an 
alphabetic character. Further checks are made to ensure that the user 
can assign this class and that this privilege class is acceptable to 
this installation. If defaulted, an installation-defined value is 
assigned. 

Authorization: This operand, if specified, i~,; verified as either U, P, 
or O. If defaulted, the operand is assigned an installation value. 

Ration: This operand, if specified, is verified as a value between 1 
and 9, inclusive. If defaulted, a value of 2 is assigned. 

Batch: This operand, if specified, is verified as either Y or N. If 
defaulted, N is assigned • 

. RJE: This operand, if specified, is verified as either Y or N. If 
defaulted, N is assigned. 

Section 4: Command Routines 119 



When all operands have been processed, a first-level catalog entry is 
created for the new user and the entry is placed in the user table. 
Finally, control is returned to the cOIl'.mand analyzer and ex.ecutor. 

ERROR CONDITIONS: The routine checks for acceptable operands and noti­
fies the user, through the User Prompter, of any errors found. 

SYSTEM CONTROL BLOCK USAGE: 

Catalog Common (CHACDS) 
System Common (CHASCM) 
Task Definition Table (CHATDT) 
Task Common (CHATCM) 
Shared Data Set Member (CHASDM) 
Data Control Block (CHADCB) 
Task Status Index. (CHATSI) 
User Table (CHAUSE) 
User Limits Table (CHAULT) 
Interrupt storage Area (CHAISA) 
Active User Table (CHAAUL) 

~JOINRJE/QUITRJE Command (CZABS) 

This command creates or deletes a station ID entry from the RJE ac­
knowledgement data set TSS*****.RJEACK. (See Chart BV.> 

ENTRIES: 

CZABSl - JOINRJE command entry 
CZABS2 - QUITRJE command entry 
CZABS3 - ABEND recovery entry 

MODULES CALLED: 

WRITE (CZCPEl) 

ALFNUM (CZAAC3P) 

DDEF (CZAEAS) 

OPEN (CZCLAO) 

FIND (CZCOJ1) 

STOW (CZCOKl> 

DELREC (CZCPHl> 

User Prompter (CZATJ1) 

SHAREUP (CZCFS1) 

CLOSE (CZCLB) 

RELEASE (CZAFJ3) 

PAIR (CZACS1) 

PAIR (CZACS2) 

VISAM write to enter a station id in member 
VALIDSTA. 

Validates input parameters. 

Defines acknowledgement data set. 

Opens acknowledgement data set for update. 

Finds member of acknowledgement data set­
VALIDSTA; finds VISAM member of STATIONID. 

Creates or deletes acknowledgement data set 
member. 

Deletes VISAM records in member VALIDSTA. 

Issues messages to SYSOUT. 

Permits the acknowledgement data set. 

Closes acknowledgement data set. 

Releases acknowledgement data set. 

Queues entry for ABEND Interlock Release Table. 

Dequeues entry from AIR table. 

EXITS: The routine exits to the calling routine via the RETURN macro. 

120 



OPERATION: On non ABEND entry, this routine validates parameter input, 
utilizing ALFNUM. After parameter validation, the various options 
(TYPE, MRF, TAB, BRK. and REC) are checked and set. Then the DATADEF 
routine (CZAEAS) IS INVOKED TO DEFINE THE ACKNOWLEDGEMENT DATA SET TSS** 
***. RJEACK. the data set is opened, and the Task Definition Table (TOT) 
is interrogated to determine disposition. 

For disposition=new, the request must be for JOINRJE or the command 
is canceled via diagnostic message. The station id is entered utilizing 
VISAM WRITE, and the member VALIDSTA created via STOW. SHAREUP (CZCFS1) 
is then invoked to PERMIT/SHARE the TSS*****.RJEACK data set for later 
system use. 

For disposition=old, on a JOINRJE request the member VALIDSTA is 
located via FIND, and the requested station id is entered into the data 
set using WRITE. On a QUITRJE request, the BULKCOMM table (CHABCT) is 
searched to determine if the station id being quit is still active in 
the Bulkio task. If active, a diagnostic is output canceling the com­
mand. For an inactive station id, entry point CZABS3 is queued on the 
AIR table for possible ABEND recovery with the BULKCOMM locked. A FIND 
is done on the requested station id to determine if acknowledgements are 
pending for that station ide If acknowledgements are queued in that 
member station id, the user is requested to specify their disposition. 
Based on the response, the command will be ignon~d. the aCknowledgements 
will be deleted, or the acknowledgements will be left enqueued. When 
there are no acknowledgements queued, the station id is deleted from 
VALIDSTA by DELREC. 

ERROR CONDITIONS: If an error is found during processing, the command 
is canceled and an appropriate diagnostic message is displayed on 
SYSOUT. 

SYSTEM CONTROL BLOCK USAGE: 

BULKCO~~ Table (CHABCT) 
BULKCOMM S-Entry (CHASETl 
Task Common (CHATCM) 
Task Definition Table (CHATDT) 
Data Control Block <CHADCB) 

~JOBLIBS and DDNAME? Commands (CZAEK) 

These commands allow a user to list the chain of DDNAMES and asso­
ciated DSNAMES and to move anyone of his JOBLIBS to the logical top of 
the list. (See Chart BW.) 

ENTRIES: 

CZAEKl - for manipulating the JOBLIB chain 
CZAEK2 - for reviewing user's JFCB chain 

MODULES CALLED: 

User Prompter (CZATJ1) Writes diagnostic messages. 

GATE (CZATC1) Writes output to user. 

EXITS: Returns to calling routine. 

OPERATION: CZAEK1 is the entry point for manipulating the JOBLIB chain. 
Upon entry the parameter is checked for the presence of a DDNAME. If 
one does not exist, a diagnostic is initiated, followed by an exit from 
the module. Once a DDNAME has been obtained, the JOBLIB portion of the 
TDT chain is searched for this JFCB. If no match occurs. a diagnostic 
is issued and the command canceled. If the DDNAME is found in the 

section 4: Command Routines 121 



chain, it is removed from the chain by adjusting the appropriate back­
ward pointer of the previous JFCB. Then it is put at the top of the 
list by placing its address in TDTPL1, and replacing the backward point­
er with the address which was at TDTPL1. 

Once the TDT chain is adjusted, the chain of DCBs in the Loader's 
PSECT is searched for the associated DCB. When it is found, the appro­
priate forward and backward pointers are changed as the JFCB pointers 
were. so that the DCB ends up at the top of the chain. This completes 
normal processing and the module exits. 

If there were no JOBLIBS in the chain or the corresponding DCB could 
not be found, a diagnostic will be issued to the user and further pro­
cessing canceled. In the latter case, the TDT chain will be rearranged 
as requested but the DCB chain will remain as is. 

CZAEK2 is the entry point for reviewing the user's JFCB chain. Upon 
entry, the JOBLIB parameter is checked for 'N' or default. If such is 
the case, the TDT chain is addressed. If the JOBLIB parameter is 'Y', 
then the JOBLIB portion of the TDT is addressed. Next, a header message 
is initiated followed by the list of DDNAMES/DSNAMES of the JFCBs 
requested. For JOBLIB lists, the order of listing is from top to bot­
tom; last DDEFed to first DDEFed. Once the end of the chain is reached, 
the module exits. 

ERROR CONDITIONS: If there are no JOBLIBS assigned, or if the DDNAME 
does not exist in the JOBLIB chain, or if there is an invalid or missing 
parameter, the command is canceled. If no DCB is found, only the JOBLIB 
chain is reordered. 

SYSTEM CONTROL BLOCK USAGE: 

Task Data Definition Table (CHATDT) 
Data Control Block (CHADCB) 

~KEYWORD Command Routine (CZATH) 

This routine is used to display keywords or parameters of commands in 
a user's SYSLIB and USERLIB. (See Chart BX.) 

ENTRIES: The Display Keyword Format command has entry point CZATHC and 
is called by BUILTIN CZATH11. 

MODULES CALLE.D: 

GATE (CZATC1) Outputs commands with their parameter keywords. 

FIND (CZCOJ) Searches USERLIB and SYSLIB. 

Common OPEN (CZCLA) Opens data sets. 

Common CLOSE (CZCLB) Closes data sets. 

User Prompter (CZATJ1) outputs error messages. 

EXITS: After all requested output has been printed (or queued up for 
nonconversational tasks), this routine returns to its calling routine. 

OPERATION: This routine first determines if all or a specific command 
in USERLIB (SYSPRO) is being requested. If all, USERLIB (SYSPRO) is 
opened and a pointer positioned to the beginning of the data set. Then 
this routine searches through the data set, seeking out all command 
names and their parameter keywords (up to a maximum of 152 bytes). For 
PROCDEFs, the keywords are retrieved starting from line 100 of the pro­
cedure. For BUILTINs, the module ID is taken from the SYSPRO entry and 

122 



stored in an adcon group. Then 
issuance of a LOAD macro. Once 
words are retrieved from BPKD. 
parameter keywords, are printed 

the adcon is armed for subsequent 
the module is loaded, the parameter key­
In any case, all commands, with their 
one command string per line. 

When the user has asked for a particular command, this routine 
searches USERLIB (SYSPRO> first, and, if not found there, searches SYS­
LIB (SYSPRO). Once the command is found, its parameter retrieval pro­
cess is the same as described above for PROCDEFs and BUILTINs. If the 
command cannot be found, this routine issues a diagnostic (via the PRMPT 
macro) indicating the Situation, and processing terminates. 

ERROR CONDITIONS: If the command cannot be found. the user is prompted, 
and this routine exits to its calling routine. 

SYSTEM CONTROL BLOCK USAGE: Interrupt Storage Area (CHAISA) 

~LINE? Command Routine (CZAEM) 

This routine presetns the contents of specified lines from a user's 
line data set or language processor list data set. (See Chart BY.) 

ENTRIES: 

CZAEM1 - normal entry 
CZAEME - EODAD error entry 
CZAEMS - SYNAD error entry 
CZAEM2 - DCB macro instruction entry 

MODULES CALLED: 

NEXTPAR (CZAACi) 

CHEKDS <CZAAC2) 

ALFNUM (CZAAC3) 

NUMSTG (CZAAC4) 

MSGWR (CZAAD2) 

GATWR (CZATCl) 

DDEF (CZAEAS) 

FINDDS (CZAEC1) 

Locates operands and scan for invalid characters 
and delimiters. 

Validates data set name. 

Validates user identification. 

Validates line numbers. 

Issues system messages. 

Writes line on SYSOUT. 

Creates a JFCB. 

Locates a JFCB. 

EXITS: The routine normally returns to the calling routine, via the 
RETURN macro instruction. If a system error occurs, the routine exits 
t.o ABEND. 

OPERATION: The data set name is fetched through NEXTPAR. If the user 
is class B or F, the data set name must be prefixed with a user identi­
fication; this userid is removed, validated (via ALFNUM), and saved for 
future use. For a class B user, a further check is made to ensure that 
the first two characters of the userid are the same as the first two 
characters of the userid of the administrator issuing the command. The 
data set name is validated using CHEKDS. If the name is a valid parti­
tioned data set name, the member name is removed and saved for future 
use. 

After the data set has been successfully openEd, and if the first 
qualifier (excluding userid) of the data set name is LIST, data set con­
trol block fields are checked to verify that the data set is in language 

Section 4: Command Routines 123 



processor list format. (A language processor list data set must be 
index sequential, must have a key length of 7 bytes, a logical record 
length of 140 bytes, and record format must be fixed length.) If the 
first qualifier is not LIST, the data control block fields are checked 
to vierfy that the data set is in line format. (A line data set must be 
index sequential or partitioned index sequential, must have a key length 
of 7 bytes, must have RKP=4, a logical record length of no more than 132 
bytes, and the record format must be variable length.) If the line data 
set is partitioned index sequential, the FIND macro instruction is used 
to locate a specified member. 

If the entire data set (or member of a line data set) is to be pre­
sented, the SETL macro instruction is used to designate the start of t.he 
data set (or member). The first logical record is then fetched by GET 
and presented via GATWR. Before and after each line is presented, a 
test is made for an attention interrupt. If one is detected. the data 
set is closed and control is returned to the command analyzer and execu­
tor. If no attention interrupt has been received, GET obtains the next 
logical record and the process is repeated. sequential reading and pre­
senting continues until GET tries to obtain a record that is past the 
end of the data set. At this point, the user is informed that the end 
of the data set has been reached, the data set is closed, and control 
returns to the command analzyer and executor. 

If only a single line is to be presented, NEXTPAR fetches the line 
number; SETL points to the line; GET reads the line; and GATWR writes 
the line on SYSOUT. If a range of lines is to be presented, the process 
is the same except that NEXTPAR fetches both the beginning-of-range and 
end-of-range line numbers. When GET obtains a record with a key higher 
than the end-of-range line number, processing is complete. 

After each line or range of lines has been processed, a check is made 
to determine if there are any further lines to be processed from the 
current data set. If there are, processing continues. If not, the data 
set is closed and control is returned to the command analyzer and 
executor. 

ERROR CONDITIONS: The routine checks for acceptable operands and not.i­
fies the user, through MSGWR, of any error found. The routine may issue 
the following system errors. In each case the severity is minor. 

SYSER Code Significance 

050503700 Response switch set with incorrect value. 

050503701 Invalid return code from NEXTPAR. 

050503702 DCBEX2 field contains unexpected value. 

050503703 privilege class indicator set incorrectly. 

05050370ll Indicator for subfield of data set name set incorrectly. 

050503705 Beginning-of-range indicator set incorrectly. 

050503706 Beginning-oi-range indicator set incorrectly. 

050503707 Beginning-of-range indicator set incorrectly. 

050503708 Prompting switch set incorrectly. 

124 



SYSTEM CONTROL BLOCK USAGE: 

Data Control Block (CHADCB) 
Task Common (CHATCM) 

~LOGOFF Command Routine (CZAFN) 

This routine logs a task off the system. That is, it disposes of any 
uncataloged data sets that were defined by the task, releases all 
devices allocated to the task, and frees the task's virtual storage for 
system use. When LOGOFF is completed, the task no longer exists. (See 
Chart CA.) 

ENTRIES: 

CZAFNl - normal entry 
CZAFN2 - shutdown entry 
CZAFN4 - 'END' exit fUnction 

MODULES CALLED: 

VSS DISCONNECT (CZHNEB) 

FINDJFCB (CZAEB1) 

Loader Logoff (CZCCD4) 

Cleanup (CZCJCU) 

RELEASE (CZAFJ2) and 
(CZAFJ3) 

Common Close (CZCLBC> 

BIO Preprocessor (CZABD3) 

CATFLUSH (CZCFX1) 

VMTI-II (CZATD4) 

RCR VACATE 

RCR L(x;OFF 

RCR CLOSE 

Disconnect VSS from the task. 

Finds the SYSOUT DCB for a non conversational 
task. 

Unloads the user routines; releases the vir­
tual storage assigned to the task. 

Refresh the Task Monitor Interrupt Tabl~. 

In stages, releases all but the system data 
sets, releases SYSULIB, releases all data 
sets. 

Closes the SYSIN and SYSOUT DCBs for a non­
conversational task. 

Prints SYSOUT for a nonconversational task. 

Flushes the catalog. 

Logs on the next subtask for express batch 
mode. 

Decrements the user count in the User Table 
for a nonconversational task. 

Computes and saves all resource information 
for the task and updates the User Table. 

Subtracts the user's entry from the User 
Table. 

The LOGOFF routine also uses FREEQ, DCON, DELVAM, WTL, EBCDTIME, CHANGE, 
ACCTSUBR, XTRTM, XTRACT, and ATCS during its processing. 

EXITS: Should an error occur during L(x;OFF processing, this routine 
exits to the ABEND processor. The normal exit from LOGOFF processing is 
via the DLTSI SVC, which deletes the task status index for the task, 
thus eliminating the task from the system. 

OPERATION: An entry at CZAFN2, indicating that a system shutdown is in 
progress, causes LOGOFF to act as if it were processing a nonconversa­
tional task and prevents prompting messages. An entry at CZAFN1 is con-

section 4: Command Routines 125 



sidered a normal entry; however, if the operator task enters here, con­
trol returns to the command system -- the operator cannot successfully 
execute a LOGOFF. Operation of this routine is divided into two major 
parts. The first part is always performed; the other part is only per­
formed when the task has uncataloged, defined data sets. 

LOGOFF always carries out a series of actions to eliminate the task 
from the system. Initially, it sets an indicator in the interruption 
storage area (ISA) to prevent any recursions of the ABEND routine. For 
nonconversational tasks which are not in Express Batch mode, LOGOFF 
informs the Batch Monitor that it may permit updating of the batch work 
queue. A complete logoff is then performed for tasks which are not in 
Express Batch mode by: 

1. Issuing a FREEQ to logically or physically disconnect this task 
from MTT. If SHUTDOWN is in progress, a physical disconnect is 
done. Otherwise a logical disconnect is issued. 

2. Issuing a FIND on the sysout JFCB for a nonconversational task. 

3. Checking STE level for error, and issuing the CHANGE macro if the 
STE level is in error. A bad return code from CHANGE results in 
system error 050506305. 

4. Issuing the LOGOFF accepted message. 

5. Calling the accounting subroutine -- ACCTSUBR -- to record this 
task's use of the system resources. 

6. Closing the SYSIN and SYSOUT data sets for a nonconversational 
task, and issuing a print on sysout via PRINT. 

7. Issuing the ATCS macro for conversational tasks only; a logical 
disconnect is normally performed. In the case of a shutdown a 
physical disconnect is issued. 

8. Purging the terminal from the TSI to allow a new task to be created 
at this terminal. 

9. Releasing the task's virtual storage via a call to LOADER LOGOFF. 

10. Releasing all data sets used by the task by a call to RELEASE 
command. 

11. Updating the user table entry for the current user and deleting the 
AUL entry for the task. This is done by RCR LOGOFF. 
Note: A nonconversational task wi~l Call RCR VACATE previous to 
calling RCR LOGOFF. 

12. Closing the user table. 

13. Calling VSS DISCONNECT (CZHNEB) if the task has been connected to 
VSS. 

14. And finally, issuing the DLTSI SVC to erase the task status indica­
tor and thereby eliminate the task completely. 

A complete logoff is not performed for an express batch subtask. A par­
tial logoff is performed, the first four of the functions above are 
done, then the partial logoff is completed by: 

1. Calling LOADER LOGOFF (CZCCD4) to unload user called routines. 

2. calling RELEASE (CZAFJ2) to release all but system data sets and 
performing a special release of SYSULIB. 

126 



3. Performing an RCR VACATE for the task and an RCR CLOSE to update 
the user's entry. 

4. Calling VMTI-2 (CZATD4) to logon the next subtask. 

Note: When the SYNAD exit is reached in express batch (that is, no more 
subtasks to be logged on), CZAFN4 is entered. The userid in task cornmon 
is changed to SYSOPERO and a complete logoff is performed (steps 5-14 in 
a normal logoff sequence). 

L(x;OFF disposes of uncataloged data sets created by the task (found 
in the temporary tabulation chain of the task data definition table). 

£RROR CONDITIONS: The routine may issue these system errors: 

SYSER Code Severity 

050506305 Minor 

050506306 Minor 

050506307 Minor 

050506308 Minor 

050506310 Minor 

ABEND Message 

ERROR ATTEMPTING TO 
CHANGE STE LEVEL 

NO JFCB IN TDT 
SYSOUT 

UNABLE TO RELEASE 
ALL 

INVALID RETURN FROM 
PRINT 

MINOR SOFTWARE 
ERROR 

SYSTEM CONTROL BLOCK USAGE: 

Terminal Control Table (CHATCT) 
Interrupt Storage Area (CHAISA) 
Symbolic Device Allocation Table (CHASDA) 
Task Common (CHATCM) 
User Table (CHAUSE) 
Task Data Definition Table (CHATDT) 
Data control Block Header (CHADHD) 
RESTBL Header (CHARHD) 
Active User Limits Table (CHAAUL) 
Task ACCOUnting and Statistical Table (CHAACT) 

~LOGON (CZAFM) 

Significance 

Error return code 
from CHANGE. 

FINDJFCB determined 
that no JFCB was in­
cluded for SYSOUT. 

Error return code 
from RELEASE. 

Error return code 
from PRINT. 

Error condition 
detected by RCR 
LOGOFF; or RCR 
CLOSE for a express 
batch subtask. 

The LOGON command routine validates the user's LOGON parameters (his 
user identification, charge number, etc.) and carries out certain task 
initialization functions, such as setting values in task common. The 
user cannot proceed with his task until the LOGON routine has been suc­
cessfully completed. (See Chart CB.) 

ENTRIES: 

CZAFMl - normal entry 
CZAFM2 - privileged entry for SYSOPERO, ABEND, BULKIO (TID=0002) 
CZAFM4 - privileged entry from private BULKIO 

Section 4: Command Routines 121 



MODULES CALLED: 

NEXTPAR (CZAACl) 

DDEF (CZAEA4) 

RCR OPEN 

RCR RATION 

RCR VACATE 

RCR CLOSE 

XTRCT 

SETUP 

SCHED 

EBCDTlME 

WTL (CZABQ) 

GATWR (CZATC) 

LOGOFF (CZAFNl) 

User Prompter (CZATJ) 

Locates next operand. 

Creates JFCB for the user library (USERLIB). 

Reads an entry in user table and update fields; 
create AUL entry. 

Processes task, CPU and connect time. 

Vacates resources assigned to task. 

Resets and writes user table entry. 

Fetches authority from Task Status Index. 

Stores information in Task Status Index. 

Alters task's internal priority. 

Gets current time. 

Issues logon message to operator log and issues 
ABEND message for a nonconversational task ABEND 
in LOGON. 

Issues shutdown message. 

Logs a task off when specified auxiliary space 
is not available. 

Writes the initial logon message on the user's 
SYSOUT. 

EXITS: The routine normally returns to the calling routine, via the 
RETURN macro instruction. If a system error is detected. the routine 
exits to ABEND. 

OPERATION: LOGON first determines what kind of task is logging on. For 
any conversational task, an ATTACH macro is issued which returns the 
address of the terminal control slot for this user. If the TCT slot's 
address is zero, LOGON exits to ABEND. otherwise, this address is 
stored in GATE'S PSECT. The LOGON parameters are pointed to by a field 
in the TCT slot for every conversational task except an abended task. 
GATE's PSECT is then initialized with information retrieved from the TCT 
slot, including the device type and a maximum SYSOUT line length. For 
nonconversational and abended tasks, the parameter string is pointed to 
in register one. For other than BULKIO and main operator tasks, LOGON 
then calls the User Prompter (CZATJ) to print the initial logon message. 

A complete LOGON consists of checking the LOGON command operands. 
Actual fetching and validating of each operand for proper syntax is done 
through calls to the SCAN's NEXTPAR routine. First the userid is vali­
dated by a call to RCR OPEN. When the userid has been determined to be 
valid (that is, a read on the user table is good), an AUL entry is built 
for the user, an AUL entry is constructed for USERID=TSS*****, and the 
user table is updated. If the task is nonconversational, a call is made 
to CZBTBA to open the SYSOUT data set for this task. The routine next 
tests the 'first time through' switch for an express batch task. If on, 
a GATWR is issued to write the EXPRESS card to the task's SYSOUT. This 
is followed by another GATWR (issued for all nonconversational tasks> 
which writes the user's LOGON parameters to SYSOUT. 

128 



The LOGON parameters are then validated one at a time. If the task 
is conversational and the user table entry corresponding to the userid 
contains a valid password (not blanks), the password is checked. If the 
user has been joined with a valid password, but has defaulted this at 
LOGON time, a special prompt will be issued conversationally to have 
this parameter entered. The addressing operand is processed next and 
fields in the ISA are set accordingly. Then if a charge number is supp­
lied, it is placed in task conunoni if the charge number has been 
defaulted, the charge number from the user table entry is placed in task 
conunon. The CSECT packing operand is checked, followed by the AUX space 
control parameter, the pristine parameter, and lastly the XIVM 
parameters. 

As each command operand is accepted, a part of the LOGON routine's 
initialization is performed. Thus the userid, password, and charge num­
ber are moved one at a time to task common. The CSECT packing operand 
is moved into new task common and also into the dynamic loader's PSECT. 
If a PRISTINE LOGON has been requested the charact.~er string 'pristine' 
is moved into new task common. If any of the LOGON operands are inval­
id. the user is informed of his error by an appropriate message and can 
reenter the entire operand string •. This prompting loop will continue 
until the system's prompting limit has been reached; at this time the 
task will be abnormally terminated. 

When all parameters have been determined to be valid, the routine 
performs the following additional functions: 

1. Completes fields in the task status index (TSI) by moving userid, 
external priority, and authorization values into it; 

2. Adds further information to task common. Values are set to show 
the user's privilege class, completion of logging on, no confirma­
tion messages and full messages. 

3. Calculates the internal priority of the task via a call to the 
SCHED SVC: 

4. Creates a job file control block (JFCB) for i:he user library (SYS­
ULIB) through a call to DDEF. Note: This is not done if the user 
has specified PRISTINE=X in the LOGON operand string. 

After completing all its initialization fUnctions, the routine issues 
two messages. One of these is to the task's SYSOUT noting date and time 
of LOGON. The other message is issued to the system log noting the 
userid, time, and date of LOGON initialization. Control is then passed 
to the calling routine. 

ERROR CONDITIONS: The routine will check for acceptable operands and 
notify the user, through the User Prompter, of any errors found. For 
the messages issued, see the description of the LOGON command in Part I. 

The routine may issue these system errors: 

SYSER Code severity 

050506201 Minor 

050506208 Minor 

ABEND Message 

DDEF UNABLE TO 
CREATE A JFCB FOR 
SYSULIB 

UNABLE TO WRITE THE 
USER TABLE 

Significance 

DDEF was unable to 
create JFCB for 
SYSULIB. 

An attempt was made 
to wri t:e in user 
table but SYNAD 
exit was invoked. 

Section 4: Command Routines 129 



050506211 

050506212 

050506213 

Minor 

Minor 

Minor 

NO JFCB FOUND FOR 
USER TABLE 

RCR CLOSE FAILURE 

RCR OPEN DETECTED 
SYSTEM ERROR 

SYSTEM CONTROL BLOCK USAGE: 

Interrupt Storage Area (CHAISA) 
Task Status Index (CHATSI) 
System Common (CHASCM) 
Task Data Definition Table (CHATDT) 
Data Control Block (CHADCB) 
User Table (CHAUSE) 
Task Dictionary Table <CHATDH) 
Terminal Control Table (CHATCT) 
Task Cornmon (CHATClvi) 
New Task Common (CHANTC) 
Shared Data Set Member (CHASDM) 
Active User Limits Table (CHAAUL) 

~LOGON2 Command Routine (CZBTB) 

No JFCB exists for 
user table in TDT 
chain. 

RCR CLOSE failed. 

RCR OPEN could not 
perform its function. 

This privileged routine completes the LOGON functions that must be 
done within the user's task. LOGON2 functions are accomplished in three 
main routines: TASKOPEN, TABINIT, and GATEOPEN. TASKOPEN opens all 
system data sets needed by the user's task (except SYSIN and SYSOUT) and 
finds all needed members. TABINIT retrieves members from SYSLIB and 
USERLIB, and constructs the command system dictionaries and tables in 
virtual storage. GATEOPEN opens the SYSIN and SYSOUT devices for non­
conversational tasks and stores information needed by GATE. (~)ee Chart 
CC. ) 

ENTRlhS: 

CZBTBl - LOGON2 control 
CZBTE2 - TASKOPEN 
CZBTB3 - TABINIT 
CZBTB4 - GATEOPEN (SYSIN only> 
CZBTB5 - VAM EODAD routine 
CZBTB6 - VAM SYNAD routine 
CZBTB7 - SYSLIB DCB 
CZBTB8 - USERLIB DCB 
CZBTB9 - PROCLIB SCAN 
CZBTBA - GATEOPEN (SYSOUT only> 
CZBTBB - EXPRESS BATCH 
CZBTBX - DICTEXTR 

MODULes CALLED: 

Dictionary Handlers: 
STARTVAR (CZASD2) 

.t{FR (CZASD3) 

NEXTRFR (CZASD4) 

ENTR (CZASDS) 

130 

Initializes the dictionary; called by CZBTB3. 

Uses the hash chain to locate an entry in the 
dictionary; called by CZBTB3 and CZBTBX. 

Checks the next entry in the dictionary; called 
by CZBT13X. 

Makes a new entry in the dictionary; called by 
CZBTB3 and CZBTBX. 



RELEASE (CZAFJ3) Release the SYSOUT JFCB; called by CZBTBA. 

DDEF (CZAEA4) Defines a new SYSOUT JFCE; called by CZBTBA. 

FINDJFCB (CZAEB1) Locates the SYSIN JFCB; called by CZBTB4. 

User Prompter (CZATJ1) Sends messages to the user. 

Various routines within LOGON2 also issue FIND, OPEN, GETMAIN, ESETL, 
SETL. GET, PUT, STOW, and CLOSE. CZBTBI executes a SIR macro. 

EXITS: The routine normally returns to the calling routine, via the 
RETURN macro instruction. If a system error occurs, the routine exits 
to ABhND. 

OPERATION: LOGON2 is called to complete the logon fUnctions. New Task 
Cornman (CHBNTC) is initialized; then all system data sets needed by the 
user task are processed. LOGON2 processes four of the system data sets: 
SYSLIB, USERLIB, SYSIN, and SYSOUT. If the user has entered the "pris­
tine" operand with his LOGON command, USERLIB DCBs are not processed in 
LOGON2; only SYSLIB DCBs are opened, otherwise both USERLIB and SYSLIB 
DCBs are processeJ. 

A pristine request will cause SYSLIB (SYSPRO) to be opened. LOGON 2 
will is~;ue a series of FIND command for the SYSPRO and the SYSPRD mem­
bers of SYSLIB, so that the DCBs will be correctly initialized dnd the 
members ready !:"or reference by the Procedure Expander (CZATE). Where 
several members of the same data set are needed simultaneously, a DCB is 
generated for each member. A normal logon request will cause the above 
to be done, in addition the SYSPRD, SYSPRO, and SYSMLF members of USER­
LIB will be opened, and the FIND command issued on the SYSPRO and SYStvlLF 
IT.embers. SYSMLF must be initialized for referencE: by the User Prompter. 

LOGON2 then builds the combined dictionary in the Dictionary Handler 
(CZASD) PSECT. The origin of the dictionary is indicat.ed by a one-word 
pointer and the pointer is saved in the external symbol CZASD9. The 
initial size of the dictionary is one page. If it must be expanded, it 
is done by a Dictionary Handler routine. GETMAlT'-l is used to obtain t.he 
referenced pages and the CZASD9 pointer is uE,dated accordingly. If the 
pr istIne option has been requested, t.he combinl'd dictionary will be 
Duilt from SYSLln only; otherwise, both SYSLIB dnd USERLIB information 
will be used. 

The combined dictionary contains entries from four main sources. 

1. ThE"' system procedure dictionary -- SYSLIB (SYSPRD). 

2. The user procedure dictionary, if any exists -- USERLIB (SYSPRD). 
If there is no user procedure dictionary, one will be constructed 
from the user' s procedure library -- USERLIB (S'C~Pl<O) -- if one 
exists. When built, this dictionary will be used and writ.ten into 
USERLIH. 

J. The primary dictionary from the user profile (SYSPRX). 

4. The primary dictionary from the system profile for a pristine task 
or if no user profi~e exists. 

The input character translation table is moved into GATE's PSECT 
(CZATCS) and the PCI'CTT pointer is set. The output character transla­
tion table is moved into GATE's PSECT (CZATCT) and the PCTOCT pointer is 
set. The profile character and switch table is moved into new task com­
mon. The SYSLIB anu USEi:<.LIB DCBs opened for SYSPRD and ~;YSPRX are then 
closed. 

Section 4: Command Routines 131 



The ZLOGON procedure is executed using the OBEY macro instruction. 
Then LOGON2 enables the CSII Attention Handler (CZASB1) by a SIR macro. 

ERROR CONDITIONS: The following error conditions result in an ABEND: 

1. USERLIB (SYSPRD) - Invalid format. 

2. SYSULIB (SYSPRD) - Invalid hash pointer. 

3. USERLIB (SYSPRX) - Invalid format. 

4. Read past end of dictionary. 

5. VAM error, SYNAD routine called. 

6. USERLIB (SYSPRD) - Invalid nash pointer. 

7. Return code from FIND of USERLIB (SYSPRD) of 8, C, or 10. 

SYSTEM CONTROL BLOCK USAGE: 

Editable Data Set (CHACV1."l 
Data Control Block (CHADCb) 
Control Dictionary Header (CtlADCT) 
Cont rol Dictionary Entry (CHADEN) 
New ~ask Common (CHANTC) 
Protile Character and Switch Table (CHAPCT) 
Ta~jk CorrUllon (CHATCh) 
UGer Protile (CHAPFL) 
Symbolic Device lllloca ti on Table (CHASDA) 
Task Data Definition Table (CHATUT) 

..... [v'CAST/MCASTAB Rout ine 

This rout.ine makes changes in the Profile Character and Swi t.ch Table 
as speciiied in the parameters of the MCAST command or macro instruc­
t.ion. It al~30 allows the user to specify, through the MCAc~TAB command, 
his own Input and/or Output Translation Table. (See Chart CD.) 

ENTH.IES: 

CZATUl - MCAST macro entry 
CZATU2 - MCAST command entry 
CZATU3 - t'ICASTAB command entry 

i>,ODULES CALLED: This routine calls the User Prompter (CZATJ1) vid t.hc 
PRtv;PT macro to inform the u~>er of error conditions durinq command 
processinq. 

_E._A_I_T_S_: This routine returns to its calling routine via the RETURN macro 
instruction. 

OPE.RATIOr.;: Tht· input parameter list for MCAST specifies thp address of 
each replacement value for the Profile Character and Swit,ch (CHAPCT) 
Table. For macro proceSSing, this routine moves each value from it~; 
location in t.he calling module to the proper location in CHAPCT. l-'or 
l"',CAST command processing, this routine does some error checkinq. Unle::.;', 
the parameter string is 11exadecimal, the parameter length must equal 1 
to be movE·d into the CclAPCT table. Only nine separate parauleter:; wi 11 
be processed. The l"lCAST command processcr will translate hexadecimal 
lnput via its internal subroutine HEXTRAN. 

To process the MCASTAB command, this routine validates the input pa­
rameter and, if valid and if the user wishes to specify his own table, 
s~~ts th~' address to that table in CHAPCT. If the user wishes to discon-

132 



neet his Input and/or Output Translation Table, this routine sets a 
pointer to the system's Translation Table in CHAPCT. 

BRROR CONDITIONS: This routine prompts the user and exits if, during 
MCASTAB command processing, it recognizes an invalid parameter. During 
l>1CAST conunand processing, this routine prompts that it is ignoring any 
parameter found to be invalid but does not exit until the parameter list 
is exhausted. 

SYSTEM CONTROL BLOCK USAGE: 

Profile Character and switch Table (CHAPCT) 
Input Translation Table 
Output Translation Table 
TABLEA (CHAAAA) 

... MODIFY Conunand Routine (CZAEG) 

This routine inserts, deletes, replaces, and reviews records in a 
VISA!>; data set or VISAN member of a partitioned data set; or builds a 
new VI:=;AM data set or meIr,ber. (~ee Chart CE.) 

ENTRIES: 

CZAEG1 - normal entry 
CZAEG2 - SYNAD entry 
CZAEG3 - EODAD entry 

MODULES CALLED: 

NEXTPAR (CZAACl) 

CHEKDS (CZAAC2) 

ALF'NU£II! (CZAAC3) 

CrlKNUM (CZAACS) 

fv,SGWH (CZAAD2) 

GATWR (CZATCl) 

SYSIN (CZASC7) 

FINDDS (CZAECl) 

DDEF' (CZAEA4) 

STOW (CZCOK) 

GJ:;TMAIN (CZCGA2) 

FREEMAIN (CZCGA3) 

Locates delimiters of input string and scan for in­
valid characters. 

Validates data set name. 

Validates member name. 

Validates line number. 

Issues system messages. 

Writes on SYSOUT. 

Reads data from the source li~;t. 

Finds or builds JFCB. 

Defines a new data set and creates JFCB for it. 

Updates POD when new member is created. 

Gets additional virtual storage. 

Releases virtual storage. 

EXITS: The routine normally returns to the calling routine via the 
K!~TUkN macro instruction. If a system error occurs, the routine exits 
to ABLND. 

OPERATION: After operands are fetched using BPKD and validated using 
tne :c>CAN routines, an attempt is made to obtain a job file control block 
(JFCB) for the data set. If the data set has been previously defined or 
cataloged, a JFCB will be created for it. In either case the JFCB must 
show that the data set has VISAM or VAM partitioned organization and is 
write-accessible to this user. 

Section 4: Command Routines 133 



When the JFCB is successfully located or created, the data set is 
opened with a f}rovision for both reading and writing by the user. If 
the data set is partitioned, the partitioned organization directory 
(POD) mu~t ue searched for the specified member name. When the data set 
or member name is found, a check is made to ensure that it has VlSAM 
organization. If the nallie is not found, a new data set or member i~; 

created with this name and VISAM organization. 

Input records containing the user' s modifications are obtained one at: 
a time, via SYSIN, until the end-of-input record (%E or an underscorp 
followed by a command) is reached. Input characters are EBCDIC unles,; a 
X% is found. rlexadecimal mode is assumed until a nonhexadecimal 
character (for example, G) or end-of-block (EOB) is found. The charac­
ters found within the hexadecimal string are converted to hexadecimal, 
character for character. When the end-of-input record i~j reached, trw 
data set is closed. For a partitioned data set, the POD is updated tu 
reflect any alterations before the data set is closed. 

Modifications are effected by employing the user-supplied key (a lim' 
number, if the data set is in line format) to paint out the location of 
the specified record (line). When the first character of input supplied 
by the user is numeric, the record is written into the data set as an 
insertion or replacement for an existing record. When the first 
character supplied by the user is D, the record at the specified loca­
tion is deleted from the data set. When the first character is R, t.hE 
record at the specified location is reviewed (presented to the user). 
If review of all modifications is requested, the existing record which 
is being replaced or deleted is presented to the user before the actual 
modification is done. In the case of an insertion, the record immedi­
ately preceding the insertion is presented. In confirmation mode the 
new record <either an insertion or replacement) is also presented. 

When a new nonline data set is to be created, an additional page i:,; 
added to MODIF~'s virtual storage since the nonline input record may be 
as much as 4K bytes in length. This type of data set is built of suc­
cessive readings of input records containing continuation characters. 
To build a line data set, each input record is processed individually 
with continuation characters disregarded. 

ERHOR CONDITIONS: The routine checks for acceptable operands and noti­
fies the user, through MSGWR, of any errors found. For messages issued, 
see system Messages. 

The routine may issue these system errors: 

SYSER Code severity 

050503102 l'linor 

050503104 Minor 

050503105 Minor 

050503108 Ninor 

134 

ABEND Message 

SYSTEM ERROR. 
RETURN CODE 

INVALID 

SYSTEM ERROR. 
TROUBLE IN WRITE 
MACRO 

SYSTEM ERROR. 
THOURLE IN WRITE 
MACRO 

SYSTEM ERROR. 
MEMBERNAME 

Significance 

Invalid return code 
from called module. 

SYNAD error when 
trying to write re­
placement line in 
data set. 

SYNAD error when 
trying to write in­
sertion in data set. 

No left parenthesis 
in member name. 



Page of GY28-2013-6, Issued February 1, 1972 by TNL GN28-3214 

SYSTEM CONTROL BLOCK USAGE: 

Task Common (CHATCM) 
Task Data Definition Table .(CHATDT) 
Data Control Block (CHADCB) 

~~1SGWR (Message Write) Routine (CZAAD) 

This routine issues system messages and, if requested, fetches 
responses to those messages, using the facilities of the USER PROMPTER 
(CZATJ). (See Chart CF.) 

ENTRIES: 

CZAAD2 - privileged entry 
CZAAD3 - nonprivileged entry 

MODULES CALLED: 

User Prompter (CZATJ) Issues messages and obtains response (if any) .• 

EXITS: The routine returns to the calling routine, via the RETURN 
macro. 

OPERATION: MSGWR is entered to issu~ system messages. Either of two 
entry points is used, depending on the object code generated by the 
MSGWR macro. The macro expansion checks whether the macro user is pri­
vileged or not, then generates linkage to MSGWR accordingly. 

MSGWR converts the parameter list it receives to a form compatible 
with that which the PRMPT macro would generate for an equivalent call to 
USER PROMPTER. MSGWR then branches to the USER PROMPTER, who handles 
the actual message output and any expected response. 

After the message has been issued, via USER PROMPTER, the response 
(if any) is collected and MSGWR returns to its caller. A return code is 
set to indicate results. 

ERROR CONDITIONS: A hexadecimal code will be returned in register 15: 

Code 

00 

04 

08 

Significance 

No error detected. 

Truncation of output to terminal; or truncation of response from 
terminal. Truncated response not moved to user-provided area. 

I/O terminated by ATTN interruption. 

SYSTEr1 CONTROL BLOCK USAGE: None. 

~Place Address in AIR Table (CZACS) - PAIR 

This routine adds and removes addresses of interlock release routines 
in the ABEND Interlock Release (AIR) Table. PAIR also controls an area 
within the AIR table for temporary storage of interlock release routine 
control information. (See Chart CG.) 

INPUT: Register 1 points to a three-word parameter list. 

Word 1: VCON of interlock release routine, 

Word 2: RCON of interlock release routine. 

Section 4: Command Routines 135 



Page of GY28-2013-6, Issued February 1, 1972 by TNL GN28-32l4 

Word 3: CZACSI returns the address of a doubleword that the caller may 
use to store variable information. CZACS2 uses the contents of 
this word (the address CZACSl had returned) to determine which 
entry to delete from the AIR table. 

ENTRIES: 

CZACSI - entry to place address in table 
CZACS2 - entry to remove an address from table 

:.10DULES CALLED: 

GETMAIN (CZCGA2) Obtains additional virtual storage. 

EXITS: This routine returns to the calling routine, via the RETURN 
macro instruction. 

OPERATION: To place an interlock release routine address in the AIR 
table, PAIR searches the table until it finds a pair of zero AIRVCN and 
AIRRCN fields. It then places the VCON address of the interlock release 
routine in the AIRVCN field, and the RCON address of the routine in the 
AIRRCN field. The temporary storage area (AIRINF) address associated 
with the AIRVCN and AIRRCN field is placed in the input parameter list 
and control is returned to the calling routine. 

To erase an interlock release routine address from the AIR table, 
CZACS2 verifies the address of the AIRINF field which it gets from the 
third word of the parameter list and then sets this field to zero along 
with its associated AIRVCN and AIRRCN fields. Control is then returned 
to the calling routine. 

ERROR CONDITIONS: A hexadecimal code is returned in register 15: 

Significance Code 
04 

08 
OC 
10 

No space available in AIR table (for CZACSl) 
AIRINF address invalid (for CZACS2) 
Parameter list not on a word boundary 
Invalid or zero parameter passed to PAIR routine. 

SYSTEM CONTROL BLOCK USAGE: ABEND Interlock Release Table (CHAAIR) 

~PERMIT Command Routine (CZAFH) 

This routine enables a catalog owner to authorize shared use of some 
or all of his cataloged data sets by some or all other users. The owner 
may subsequently change or retract such authorization. (See Chart CH.) 

ENTRY: CZAFHl - normal entry 

~10DULES CALLED: 

NEXTP AR (C ZMC 1 ) 

CHEKDS (CZACC2) 

SHARE (CGCFS) 

UNSHARE (CGCFV) 

MSGWR (CZAAD2) 

Gets command operand. 

Validates data set name. 

Adds user identifications to sharer's list. 

Removes user identifications from sharer's list. 

Issues system messages. 

EXITS: The routine normally returns to the calling routine, via the 
RETURN macro instruction. If a system error occurs, the routine exits 
to ABEND. 

136 



OPERATION: The first opE~rand read in is either a data set name or the 
word *ALL, which indicates that the user is offering to share all of his 
cataloged data sets. 

The shctrer's ident_ification is next in the input string f however the 
sharing access is checked first. It is validated and a coded version of 
it is stored in thE: parameter list being built for catalog services. If 
tne access qualifier is H, meaning that sharing privileges are being 
revoked, PERMIT calls UNSHARE rather than SHARE. If the access qualifi­
er is defaulted, this is so indicated and the last entered access on the 
sharing list being updated is used. 

The next operand shows the identifications of the users being granted 
access. If none exists and the owner indicates he has purposely 
defaulted the operand, or if the operand is *ALL, the universal sharing 
mode is indicated in the parameter list being built. If a list of user 
identifications has been entered, each userid is read, validated, and 
then added to the sharer's list. A count of the number of sharers 
<which is limited to 25 for each PERMIT command) is kept and supplied, 
along with the address of the start of the list, as input to SHARE or 
UNSHARE. 

Ei ther SHARE or UNSHARE makes the appropriate changes in the owner's 
catalog. Note that PERMIT calls the catalog service's SHARE <CGCFS), 
which should not be confused with the SHARE command (CZAFI). 

ERROR CONDITIONS: The routine checks for acceptable operands and noti­
fies the user, through MSGWR, of any errors found. For messages issued, 
see System Messages. 

The routine may issue these system errors: 

SYSER Code Severity 

050505702 Jlilinor 

050505703 Minor 

050505704 Minor 

050505705 Minor 

050505706 Minor 

ABEND Message 

OWNER ID NOT IT 
CATALOG 

INVALID RETURN CODE 
FROM CATALOG SERVICE 
ROUTINE 

IMPROPER HANDLING OF 
STATE AND MOUE BY 
PERMIT 

INVALID RETURN CODE 
FROM NEXTP AR 

INVALID RETURN CODE 
FROM CHECKDS 

SYSTEM CONTROL BLOCK USAGE 

Task Common (CHATCM) 
Interrupt Storage Area (CHAISA) 
Data Control Block (CHADCB) 

~POD? Command Routine (CZCOX) 

Owner's user identi­
fication not found 
in catalog. 

SHARE or UNSHARE re­
turned an invalid 
code. 

SHARE return code 
invalid. 

NEXTPAR ret_urn code 
invalid. 

CHECKDS return code 
invalid. 

This routine is used to print the member names (and, optionally, the 
aliases and other member-oriented data) of individual members of a cata­
loged VPAM data set. (See Chart CI.) 

section 4: Command Routines 137 



ENTRY: CZCOXl - normal entry 

1>10DULES CALLED: 

User Prompter (CZATJ) 

GATE (CZATC1) 

LOCATE (CGCFLl> 

GETMAIN (CZCGA2) 

FREEMAIN (CZCGA3) 

Set Interlock (CZCOH1) 

Release Interlock (CZCOI1) 

FINDDS (CZAECl) 

RELEASE (CZAFJ3) 

RELEAS (C ZCADl ) 

Writes diagnostic messages on task SYSOUT. 

Issues output to task SYSOUT via GATWR. 

Determines the accessibility of the 
requested data set. 

Acquires a work area in storage for the POD 
and optionally the PMD. 

Frees the work area previously acquired. 

Denotes the RESTBL of the requested data 
set being interlocked. 

Removes the interlock from the RESTBL of 
the required data set. 

Locates the JFCB for the requested VPAM 
data set using dsname. 

Releases the JFCB and private devices. 

Releases private device. 

CHEKDS (CZAAC2) Validates input dsname. 

EXITS: All exits are to the Command Analyzer and Executor (CZASA1) via 
type-I linkage. 

OPERATION: Upon entry, POD? fin,js a pointer in register 1 to a four­
word parameter list. The first word contains the dsname address; th!' 
second word is the address of the DATA option; the third word contain~; 
the address of the ALIAS option; and the fourth word is the address at 
the module option. An analysis is made of the parameters. Diagnosti cs 
are issued and the routine returns if any of the parameters are inco­
rrect. If they are all correct, LOCATE is called to see if t.he data set 
is accessible to the user; if it is not accessible, a message is issued 
via User Prompter and the routine returns. Otherwise, FINDDS is call(~d 
to create or locate a JFCB. A DCB is provided in the POD PSECT, dnd it.~i 

ddname is set to that of the JFCB. The OPEN subroutine is then called 
to provide a link between the DCB and the RESTBL DCB header. The POD 
address is acquired from the DCB header, the data set is wri te inter­
locked, virtual storage space is allocated, the POD is move,} into the 
work area, and the interlock is released. 

The hash table entries of the POD are examined for hash chaining, ilnd 
each hash chain is examined for member entries. As each member is 
found, it is printed along with POD and user data, alias entries and 
fllodule information, if t.hese options have been selected. After <111 mem­
ber names have been printed, the user is informed and the data ~;et i~; 
closed. If a JFCB was created, it is released. If no device was 
mounted and no JFCB created, a call to CZCADl is made to free thp 
device. The area required for the POD, and optionally the PMD, is freed 
and the routine returns to the Command Analyzer and Executor. 

ERROR CONDITIONS: User Prompter is called to issue diagnostic mes~;dqes 
if any of the following conditions exist: 

1. No data set name supplied. 

138 



2. Data set does not exist. 

3. Data set cannot be shared by user. 

4. Data set not partitioned. 

SYSTEM CONTROL BLOCK USAGE: 

Catalog SBLOCK (eHACCC) 
Data Control Block (CHADCB) 
Data Control Block Header (CHADHD) 
Partitioned Organization Directory (CHAPOD) 
POD Alias Descriptor (CHAPOE) 
POD Member Descriptor (CHAPOM) 
RESTBL Header (ClIARHD) 
Task Common (CiiATCM) 
Task Data Definit.ion Table (CHATDT) 
Task Dictionary Table (CHATDY) 

~PRMPT Command Routim~ (CZBTC) 

PRMPT allows the user to display the standard cr extended form of a 
message in SYSMLF', the message file. He may insert up to five parameter 
strings if the message has variable parameters. (See Chart CJ.) 

ENTRIES: 

CZBTCl - normal entry 
CZBTC2 - BPKD macro entry 

t-l0DULES CALLED: 

User Prompter (CZATJ1) Finds and writes the message. 

EXITS: The routine returns to the calling routine, via the RETURN macro 
instruction. 

OPERATION: The parameters from the BPKD macro are used to issue a PRMPT 
macro with up to five inserts. If the MSGID is null. a blank MSGID is 
assumed. If it has less than eight characters, the field i~ padded with 
blanks. If it has more than eight, the excess is truncated. 1~e 
inserts are checked to see if any exceeds the length limit of 40 charac­
ters. If so, the insert is truncated. There are no error return codes. 

~RROR CONDITIONS: None of the user prompter errors are checked. 

SYSTLM CONTROL BLOCK USAGE: None. 

~PROCDEF Routin~CZATP) 

Ttlis routine, called by the Command Analyzer and Executor when eit_her 
a BUILTIN or PROCDEF command is recognized, maintains t:he procedure 
library dnd make~; corresponding changes to the combined library. (See 
Chart CK.) 

ENTRIES: 

CZATPI - entry point for either a BUILTIN or a PROCDEF command 
CZlITP2 - an internal symbol which is passed as the END entry during an 

LPCINIT call 

Section 4: Comma nd Routi nt'S 139 



MODULES CALLED: 

Dictionary Handlers (CZASD): 
STAkTVAR (CZASD2) Initializes a VM page in dictionary format. 

RF'R (CZASD3) Finds a PROCDEF or BUILTIN entry. 

NEXTRFR (CZASD4) Adds and deletes entries from the dictionary at 
the direction of the procedure. 

ENTR (CZASD5) Adds an entry to the dictionary. 

User Controller (CZ~jZ): 
LPCINIT (CZASW1) Initializes the procedure as an LPC. 

LPCEDIT (CZASW4) Begins execution of Text Editor commands. 

f'INDDS (CZAEC1) Finds or creates a JFCB. 

DDEF (CZAEA4) Creates JFCB if FINDDS fails to locate one tor 
the input dsname. 

CHEKDS (CZAAC2) Validates the data set name. 

User Prompter (CZATJ1) Informs user of error situations. 

EXITS: The routine normally returns to the calling routine, via the 
RETURN macro instruction. 

OPERATION: The principal activities are carried on at entry point 
CZATP1. After parameter validation, LPCINIT is called to activate the 
LPC for PROCDEF. On the first call the SYSPRD member is era~~ed from 
USERLIR if one exists. If the data set to wnich the BUILTIN or PHOCDEF 
is to be added is not US£RLIB, a call to CZASD2 is made to initializ(, a 
page, obtained by GETMAIN, for use as a variable length dictionary. 
This dictionary will contain the SYSPRD member for the BlJILTIN/PROCDEF. 
On each call, a line corresponding to the BUILTIN or PROCDEf' line is 
built and written into SYSPRO as line zero of the correspundinq Iegiult, 
and d corresponding entry is added to the combined dictionary. 

Transactions are enabled and the routine to mOdify the dictionary i~; 
entered. The end entry for CZATl' is CZATP2. At this cnt_ry CZATP is:;ue::; 
a SETL to line zero of the current region to det~erll'.ine if it still 
exists. If not, the corresponding dictionary entry is removed. ThEe' 
transaction table i03 marked as processed. S'fSPRO is clo';('<l to :idve ,1 

PROCDEF if one was created. 

E.RROR CONDITIONS: The routine check:; for any naJ:l18 or symbol which ic; 
too long, and the situation where there is no n.:lTfie for PROC[JEF or BUIL­
TIN. If one of these eCLors or d system Fault occurs, this routine 
calls the User Prompter to print an dppropriate message. 

SYSTEfoiJ CONTROL BLOCK USAGE: 

control Dictionary Entry (CHl\DEN) 
Control Dictionary Heading (CHADeT) 
Data set Control Block (CI~DCU) 
New Task Common (CHAN'I'C) 
Task Data Definition Table (CHAT~T) 

Transaction Table (CHATRN) 

... Procedure Expander Routines (CZATE) 

The Procedure Expander is called by the Command Analyzer and }cxeclltor 
when it identifies a verb as a procedure name. The Procedure- Expander 
consists of seven J:l1odules which: 

140 



• Locate the procedure in the Procedure Library (PROCLIB). 

• Move the procedure into the Source List (SL). 

• construct (if parameters are present) a table of parameters, equiva­
lent names, and calling values, with default values inserted where 
required. 

• substitute calling parameters in the text as the procedure is moved 
into the Source List. (See Chart CL.) 

ENTRIES: Each of the seven modules is defined by one entry point: 

CZATEl 
CZATE2 
CZATE3 
CZATE4 
CZATE5 
CZATEL 

- entry into main line processing 
- BUILDLIST entry 
- LISTEQ entry 
- DEFSEARCH entry 
- procedure parameter scan entry 
- entry into the procedure expander from routines that have been 

entered via macro 
CZATE10 - subparameter search entry 

Only CZATE1 and CZATE6 serve as entry points to the Procedure Expander 
from routines outside of it. 

MODULES CALLED: The Procedure Expander, during it!> main line proces­
sing, calls three of the other six modules within itself: 

BUILDLIST (CZATE2) 

LISTE.Q (CZATE3) 

DEFSEARCH (CZATE4) 

Builds an ELIST and ILIST froIn dUllUllY parameters. 

Builds a PLIST from the calling parameters. 

Inserts default values in the PLIST if no calling 
parameters are present. Also called by LISTEQ. 

In addition, the BUILDLIST routine and the LISTEQ routine call the fifth 
Procedure Expander routine (CZATES) to find and isolate each procedure 
parameter in turn and put it into the Source List. 

When entered at CZATE6, Procedure Expander processing includes a call 
only to LISTEQ. The subparameter processing routine, CZATE10, is a log­
ical extension of LISTEQ and is called only by it. 

The modules (outside themselves) upon which the Procedure Expander 
routines rely are: 

Source List Handlers: 
Buffer Fetch (CZASC2) Extends the size of the source list. 

Update (CZASC6) Updates the source list pointers. 

Dictionary Handlers: 
RFR (CZASD3) Searches dictionary for parameter names. 

GDV (CZASDX) Determines a default value. 

Verb Scanner (CZASA2) Isolates the verb for examination. 

User Prompter (CZATJ1) Writes messages to the user. 

The Procedure Expander routines also use OPEN, FIND, READ, GET, ESETL, 
and HASH. 

Section 4: Command Routines 141 



EXITS: The routine normally returns to the calling routine, via the 
RETURN macro instruction. 

OPERATION: Upon entry to the Procedure Expander, a search for the pro­
cedure in the PROCLIB is initiated via the READ macro instruction, after 
assuring that the USERLIB DCB is open (if the procedure definition 
PROCDEF -- resides in USERLIB. If the procedure does not exist, an 
immediate return is made to the calling routine with a return code that 
indicates this fact. If the search was successful, a test is made to 
determine if there is enough space in the source list for the proce­
dure's first line. If not, a Source List Handler is called to expand 
the SL by another page. In either event, the current end point (EP) 
value is saved for a later test, and a P marker is placed in the SL at 
the saved EP address. The current start address <SA) value, which 
points to a position past the identified name in the SL, is inserted 
into the P marker. 

The procedure's first line is moved into the SL after the P marker, 
via the GET macro instruction. If the procedure is null, the SL is left 
in its original state, and control returns to the calling routine. 
Otherwise, the EP, SA, and available byte count are updated in the SL. 
and the SA value is saved. Also, the IDENT field of this li ne is saved 
in order to determine the end of this r;rocedure. The Procedure Expander 
now calls the Verb Scanner to determine if the first statement is PARAM. 

The lack of a PARAM statement results in moving the procedure into 
the SL one line at a time. Initially, an E marker, which contains a 
pointer back to the P marker, is placed at the end of the first line. 
The EP and available byte count are reset, and the value of EP is saved. 
A test is made to determine if there is enough room in the SL for the 
next line. If not, the SL is extended another page, via the Source List 
Handler routine. In any event, GET is used to obtain the next line, and 
move it into the SL. If an EODAD occurs, or the IDENT field is found 
not to match the initial IDENT value, the process is complete, and an 
exit is made after resetting the SA to the first byte after Ule P mark­
er. otherwise, an E marker, with a pointer set to the value of the pre­
vious line's E marker pointer, is placed at the end of the current line. 
The previous E marker pointer is reset to the previously saved EP value; 
that is, the address of the new line. The EP and available Dyte count. 
are updated after saving the current EP, and the process is repeated. 
The last line, whose E marker points back to the P, or beginning marker, 
is an exception. If during the process, the source list mu~ot be 
expanded, the last E marker on the page will point to the input area on 
the new page. 

If the first line is a PARAM statement, the end result. is the same; 
however, the expansion process is different. Initially, a test for a 
line continuation marker is made. If one exists, the next line is 
obtained via the GET macro instruction, and stored in the SL after the 
first line's E marker (current EP). A new E marker is placed after the 
continuation line. The pointer in the previous E marker is placed in 
the current E marker; then the previous E marker is changed to point to 
the next line. The EP and available byte count are updated, and the 
process is repeated until all continuation lines of the PARAM statement 
reside in the SL. The last EP is saved for future linkage of succeeding 
procedure lines. Due to the previous Verb Scan call, the SA is current­
ly set to permit an immediate dummy parameter scan. 

BUILDLIST Routine: To analyze the procedure's dummy parameters, control 
passes from the main line routine to the BUILDLIST routine (CZATE2). 
BUILDLIST calls the Procedure Parameter Scan routine (CZATES) to: 

• Isolate (search for a delimiter) the parameter beginning at the cur­
rent start address (SA) of the source list (SL). 

142 



• Store the parameter, preceded by a one-byte length characteristic, 
in the SL at the current end point (EP). 

• Update the SA, EP, and available byte count in the SL accordingly. 

• Determine whether to strip the parameter's quotation marks before 
storing them in the SL. 

• Return the address of the parameter's new SL location; return a 
signal identifying it as a normal or speci~l (quoted) string, and a 
return code (RC> designating its delimiter (= or , ). 

On return, BUILDLIST scans and identifies the parameters as to type, 
constructing a TYPE table in which each parameter is designated as norm­
al (N) or specia 1 (S), where the special form is a. quoted string. 

In addition to scanning and identifying the parameters, BUILDLIST 
constructs two pointer tables, the ELIST and the ILIST. 

ELIST 

ILIST 

contains the address of each external parameter name. 

Contains the address of each name represented in the keyword 
form. 

Of course, the ILIST may not have all its entries filled. BUILDLIST now 
returns to the main line processor. 

The main line ProcedUre Expander now fills vacant ILIST entries with 
the corresponding ELIST values, to obtain a final table with pointers to 
parameters which will be used in substitution procedures. An additional 
table containing the first letter of each parameter in the ILIST is con­
structed. This table will be used to make tests for the possible exis­
tence of a dummy parameter in the procedure text. The EP is reset to 
EP 2 in order to provide for an extension of the SL with callinq 
parau.eters. 

The Procedure Expander now tests for the presence of callinq parame­
ters. If there are any calling parameters, the processor links to the 
LISTEQ routine (CZATE3) to build a table of pointers to the calling pa­
rameters (PLIST); if not, the processor links to the DEFSEARCH routine 
(CZATE4) to build the PLIST from default values. 

LISTEQ Routine: After first clearing the PLIST, LISTEQ calls the Proce­
dure Parameter Scan routine (CZATES) to isolate a parameter (as it did 
for BUILDLIST, above). It, on return, LISTEQ finds the parameter null 
it links back to CZATE5. This process continues until a non-null frag­
ment is found or the end of the input string is reaclted. 

If the parameter is not null, the delimiter becomes important in 
determining the type of keyword at hand. If the delimiter is an equals 
sign, LlSTEQ clears the keyword list (ELIST) index, and begins searching 
for a match between the input parameter and the ELIST entries. Errors­
exist if (1) tne ELIST is exhausted before a match is found, or (2) an 
asterisk precedes the match in the ELIST. Errors a.re marked by flag 
settings and may result in the user being prompted. 

If a match is found, the ELIST entry is checked further for length, 
subpararneters, ar:d indefinite form. Flags are set representing the con­
ditions found. In all cases, error and non-error, LISTEQ ends its 
search loop by returning to the point in its logic where it calls CZATE5 
to isolate the next parameter. 

section 4: COR@and Routines 143 



When the delimiter is not an equals sign, LISTEQ makes different 
tests. If the input value is the mate of an invalid keyword, it sets a 
flag, and (barring end of input string) loops back for another call to 
CZATE5. If the input is the mate of an asterisk keyword, it is invalid; 
the CZATE5 loop continues. The parameter fragment may have been pre­
ceded by an equals sign. If it is not, LISTEQ begins searching for an 
asterisk keyword that rr~tches the input parameter. If one is found, its 
location in the PLIST is noted and the CZATE5 loop rejoined. If the 
ELIST entries are exhausted before a match, but the keyword positions 
are not exhausted, or if the parameter was preceded by an equals Sign, 
further test~, are made for indefinite form. Occurrence of a parameter 
in the indefinite form results in the creation of an indefinite form pa­
rameter sublist. Then, if the parameter string is not exhausted, LISTEQ 
calls CZATE5 again and continues processing. 

When the parameter string is exhausted, LISTEQ may, if necessary, 
call DEFSEARCH to seek synonyms, and will, on return, link to the Sub­
parameter Search routine (CZATE10) to seek subparameters. 

Subparameter Search: This routine is a logical extension of LISTEQ. It 
uses LISTEQ's recursion index to orient itself. This routine loops 
through the ELIST/PLIST index, locating, identifying, and flagging sub­
parameters, if they exist, and creating a subparameter list for analysis 
by LISTEQ. When the keywords are exhausted, this routine finally exits 
to LISTEQ. 

When the subparameter Search routine returns to the LIS'I'EQ routinE' 
{after all parameters are exhausted>, LISTEQ sets its return code and 
returns to its calling routine. This may be the main line processor c'r 
it may be that part of the Procedure Expander defined by entry point 
CZATE6. In creating the PLIST, LISTEQ has ensured that the procedure's 
calling parameters and subparameters have a one-to-one correspondence 
with the entries of a desired BUILTIN or textual procedure dummy table. 

DEFSEARCH Routine: This routine is used to determine if default values 
exist for dUR@y parameters without corresponding call values, and, if 
they do, to provide default substitutions. DEFSEARCH tests each entry 
in the calling parameter pointer table (PLIST), and, if it is zero, 
identifies the values through the corresponding entry in the dummy pa­
rameter pointer table (ELIST). This value is passed to the Diet ion.uy 
Handler routine (CZAS03), which searches for the default value. 

Such a default value, if found, is moved (preceded by its length 
characteristic> by DEFSEARCH into the Source List (SL) at the current 
end point (EP), and a pointer to the value is placed in the PLIST. The 
EP and available byte count (ABC) in the SL are updated to reflect t.he 
length of the default value. When PLIST entries have been tested 
{whether or not default values are found>, DEFSEARCH returns to this 
calling routine. This can be either LISTEQ or the main line processor.. 

Mainline Processing Continues: The Procedure Expander now moves the 
entire procedure from the PROCLIB into the SL, one character at a time. 
Each character is initially tested to determine if it is an E·nd of 1 ine 
(EOL). If not, it is then compared with the first character of each 
dummy parameter in the ILIST (previously constructed first chardcter 
table>. If no match occurs, the character is stored in the SL; the r.P 
and available byte count are updated, the PROCLIB character pointer is 
advanced and control seeks to obtain the next procedure character. Hild 
a first character match occurred, the entire dummy parameter (obtained 
via a pointer in the ILIST) would be compared with its corn-'sponding 
number of characters in the PROCLIB. If a match does not occur, the 
logic for no match on the first character is followed. If a match did 
occur, this indicates a string substitution and the available byt0 count 
is tested to determine if there is enough room in the SL for the stri ng 
(length characteristic is retrieved from the SL preceding the callinq 

144 



parall1eter to be substituted>. If required, the SL is extended by anoth­
er page, via the GEI'BUFSL routine. In any event ,the corresponding cal­
ling parameter is obtained, via the pOinter in PLIST, and inserted into 
its new position in the SL. The pointer to the PROCLIB text is updated 
to the next character after the dummy parameter, the EP, and available 
byte count are updated and control returns to interrogate the next PROC 
character. 

As previously mentioned, while the above logic is used to move the 
procedure into the SL, each character is tested for an EDL. If an EOL 
is encountered, an E marker is placed in the SL at the current EP, and 
the previously saved EP is tested to determine if it points at the P 
marker. This test will be true only for the first procedure line after 
the PARAM statement, and its E marker will contain a pointer back to the 
P marker. The new EP is saved to allow for the entry of additional 
lines; the previous pointer will assume the saved EP value. This will 
result in a string of lines with markers pointing to their successors 
wi th the exception of the last line which will point to t,he P marker. 
After each line is properly entered and connected in the SL, a test is 
made to determine if a EODAD or IDENT not-equal condition has occurred 
(the comparison is made for the previously saved IDENT value). If not, 
control passes back to process the first character in the next line; 
otherwise, the process is complete, and the SA is Updated to point back 
to the first executable procedure statement; control returns to the cal­
ling routine. 

Entry at CZATE6: The Procedure Expander, at this entry point, accepts 
parameter analysis requests from routines which have been entered via 
macros. Three parameters are passed to it: t,he address of the BPKDS, 
the address of the string to be scanned, and a flag governing dictionary 
reference. Upon entry, this routine sets a flag indicating that no 
PRMPT macros should be issued. If the BPKDS and string prove valid, 
they are used to form a parameter list for LISTEQ. This routine then 
calls LISTEQ. On return it exits, passing the return code from LISTEQ 
to its calling routine. This routine provides its own return codes if 
the BPKDS is invalid (X'C'), the string is invalid (X'8'), or the dic­
tionary search parameter is invalid (XI10'). In these three cases, this 
routine does not call LISTEQ. 

ERROR CONDITIONS: If the main line processor discovers that the 
requested procedure does not exist in the PROCLIB, a return code desig­
nating this fact is sent immediately to the calling routine. The Proce­
dure Expander calls the User Prompter (CZATJ1) to send a diagnostic mes­
sage to the user if: 

1. Parameter line is erroneous. 

2. More calling parameters than dummy parameters when the PREXPAND 
flag is not set to 'yo. 

3. A synonym loop occurs while BUILDLIST is scanning the parameter 
line values. 

In these cases the command is canceled. In addition, a message is sent 
to the user and processing continues, under the following conditions: 

1. BUILDLIST finds that a SYN/DEFAULT parameter on the left side of an 
equals sign is a quoted string. The parameter will be treated as 
an unquoted string. 

2. BUILDLIST discovers that, in a string with more than 2 parameters, 
all parameters are equal. The last parameter has precedence in the 
ILIST. 

Section 4: Command Routines 145 



3. BUILDLIST or LISTEQ discovers that the maximum number of parameters 
allowed in a list has been exceeded. Any excess parameters are 
lost. 

4. LISTEQ, while constructing the PLIST, notes redef ini tion of any pa­
rameter. The new definition has precedence. 

5. LISTEQ discovers that a calling parameter keyword does not exist in 
the ELIST. The parameter is deleted from the parameter list. 

SYSTEM CONTROL BLOCK USAGE: 

Data Control Block (CHADCB) 
Control Dictionary Entry (CHADEN) 
Sublist deader (CHASLH) 
Source List Marker (CHASLM) 
Source List Page Header (CHASLP) 
New Task Common (CHANTC) 
Profile Character and ~witch Table (CHAPCT) 

~QUIT Command )<outine (CZAf'L) 

This routine proce~;~~eS the QUIT Command, which may be issued only by 
a sy~;tem mana<jer or admi nistrator. '.JUIT removes the specified user from 
the :;ystem, and {rases, reassign::;, or stores (on a private volume) his 
data sets. In nonconversational mode, all the user's data sets are 
erased. (See Chart eM.) 

ENTRY: CZAFLl - normal entry 

MODULES CALLED: During its processing, QUIT calls some of these modules 
several time:::;. 

Nf;XTPAR (CZAACl) 

ALFNUM (CZAAC2) 

DDEF (CZAEAS) 

FINDJFCe (CZAEB1) 

FINDDS (CZAECl) 

LOCATE (CZCFL) 

CATALOG (CZAEI3) 

ERASE (CZAEJ6) 

Vam TaptS (CZAET6) 

RELEASE (CZAFJ3) 

1<1SGWR (CZAAD2) 

User Prompter (CZATJ1) 

DELVM1 (CZCFTl) 

146 

Locates and validates operands and delimiters. 

Validates userid. 

Defines JFCBs for data sets to be manipUlated. 

Locates JFCBs for SYSUCAT, etc. 

Locates JFCB for a data set, for example, a 
JFCB that DDEF has just created for a data set 
to be recataloged. 

Finds all the user's data sets. 

«ecatalogs a data set. 

Erases a data set. 

VVs a data set from public storage onto a priv­
ate voluwe. 

Releases the JFCB of a data set QUIT has workto;d 
with. 

Prompts the user for additional or missing 
information; prints error messages. 

Prints error messages. 

Deletes catalog entries, as well as the user 
entry from the User Table. 



DELREC (CZCPHl> Deletes SYSSVCT entry. 

The QUIT command processor also uses OPEN, READ, WRITE, TSEND, RELEX, 
STOW and FREEMAIN during its operation. 

EXITS: The QUIT routine normally returns to its calling routine, via 
the RI::TURN macro instruction. 

OPERATION: The routine first validates the user identification (userid) 
supplied as the command operand. If the command was issued by a system 
administrator, the first two characters of the userid are checked to 
ensure that they match the initial two characters of the administrator's 
userid; only the administrator who joined the user can quit him. 

The User Table is now opened, and the entry corresponding to the 
userid operand is read. QUIT sets an indicator in the entry so that the 
user cannot initiate any new tasks, then checks the entry to see if the 
user has any currently active tasks. If he does have an active task, a 
message is issued to the administrator (or manager), asking if he wants 
to cancel the QUIT command -- by pressing his ATTENTION key -- or wait 
until the user's tasks are completed. If he chooses to wait, a TSEND 
::;VC is issued to end the time slice. When control returns to QUIT, the 
user entry is again tested to see if the user has an active task. Pro­
cessing of the QUIT command continues when the user's tasks have been 
cor"pl eted. 

LOCATE is called to obtain a list of the user's data sets, and the 
administrator (or manager) is asked if he wants to erase all of those 
data set.s or dispose of them individually. If he chooses to erase them, 
all data sets owned by the user and residing on direct access volumes 
will be eliminated through successive calls to ERASE. Other data sets 
are ignored. 

If individual disposition is selected, QUIT presents the data set 
names onE by one, and the administrator indicates his choice for each: 
erase, recatalog, or copy onto a private direct access volume. 

An erase reyuest is processed by a call to ERASE, provided the data 
set is owned by the user and resides on direct access storage. Other­
wise, the erase request is ignored. 

If the data set is to be assigned to another user's catalog, QUIT 
fetches and validates t.he userid of that other user and the new name 
und'c;r which the data set will be cataloged. DDEF is then called to cre­
ate d JFCB; FINDOS locdtes this JFCB; and CATALOG then catalogs the data 
set, under the new name, in the specified user·s cat.alog. The data set 
is closej through d call to H.ELEASE. 

For a copy request, QUIT fetches and validates the identification of 
the volullle upon which the copy is to be written, the name to be assigned 
to that copy data set, anu the type of volume (2311/2314). DDEF and 
FlNDDS are then called to create and locate JFCBs for the old data set 
and the copy, W is called to make the copy, and RELEASE closes the 
copy. If the old data set is on direct access storage, it is eliminated 
by a call to EaASE; otherwise, it is closed by RELEASE. All copied data 
sets are given to TSS*****. 

When disposition of the user's data sets is completed, the userid is 
eliminated from the catalog -- thus eliminating that user's catalog; the 
user's entry is deleted from the User Table, and the table is closed; 
and, finally, the work area obtained by LOCFQN is released. Control 
then returns to the calling routine. 

ERROl{ CONDITIONS: The routine checks for acceptable operands and noti­
fies the administrator (or manager), through MSGWR, of any errors found. 

Section 4: Command Routines 147 



SYSTl,M CONTROL BLOCK U~)AGE: 

Data Control illock (CHADCB) 
Catalog TBLOCK (CHATBD) 
Task Common (CHATCl-') 
System Common (CHASCM) 
Task Data Definition Table (CHATDT) 
User Table (CHAUSE) 
Active User Table (CtlAAUL) 
Interrupt Storage Area (Ca~ISA) 

~RELEASE comrnan~ Routine (CZAFJ) 

This routine deletes job file control blocks (JFCB) from the task 
data definition table. It may be used to release the devices associated 
with a data set, to deconcatenate one or all data sets of a given conca­
tenation, an~ to remove a job library from the program library list. 
(See Chart CN.) 

ENTRIES: 

CZAFJ 1 - norrr,al command entry 
CZAFJ2 - nonprivileged macro instruction entry 
CZAFJ3 - privileged entry 
CZAFJ4 - entry for LOGOFF command routine 
CZAFJ5 - second entry for ERASE/DELETE command routine 
CZAFJ6 - first entry for ERASE/DELETe command routine (used to close 

data control blocks only, not to delete JFCBs) 

MODULES CALLED: 

NI.XTPAR (CZAACl) 

CHEKDS (CZAAC2) 

ALFNUM (CZAAC3) 

FINDDS (CZAECl) 

MSGWR (CZAAD2) 

R1:;LEAS (CZCADl> 

LOCATE (CZCFLl) 

Loader .kelease (CZCCD2) 

User Prompter (CZATJ1) 

Gets and validates input operands. 

Validates data set name. 

Validates data definition name. 

Finds JFCB for a given data set naIT,e. 

Prompts user for additional or nissing infor­
rrdtion; prints error messages. 

" Releases the devices associated with a data 
set. 

Sets up a fully qualified name for a genera­
tion data group name. 

To UNLOAD modules loaded from job librarie~;. 

Prompts user for additional or missing infor­
mation; prints error messages. 

The RELEASE Command routine also uses VSEND, FREEMAIN, CLOSE, and 
DUPCLOSE. 

EXITS: 'The routine normally returns to the calling routine, via the 
RETURN macro instruction. If a system error occurs, the routine exits 
to ABEND. 

OPERATION: This routine first determines if the drive is to be released 
and sets a flag accordingly. Then, the routine determines if its input, 
fetched via NEXTPAR, is *ALL or a data definition name (ddnarr,e). '['he 
*ALL requests that all JI'CBs in the Task Data Definition Table (TDT) be 
released. If the *ALL option has been specified, RELEASE locates the 

148 



first JFCB to be released, tests for a SCRATCH or HOLD option, and 
honors it if specified. Then the routine searches the entire TDT. As 
each JFCB is found, RELEASE tests its ddname to sef! if the JFCB is 
reserved; reserved JFCBs have ddnames that begin with $$$ or SYS, can be 
released only if the calling routine is privileged. 

If the JFCB is not reserved or if the calling routine is privileged, 
RELEASE then closes all data control blocks associated with the JFCB. 
The request queue is scanned to determine if the symbolic device address 
or the device type code entries are matched in the JFCB. Unless entry 
was made from ERASE/DELETE at CZAFJ6, an included subroutine -- DJFCB -­
is now called to perform the deletion. RELEASE continues this process 
until the entire TOT has been scanned. RELEASE searches the entire SDAT 
table to insure that all devices assigned to the task are freed. Each 
SDAT entry which contains the task's taskid is deleted by RELEAS3, an 
included subroutine. Control is returned to the calling routine. 

When the *ALL option is not specified and a ddname is given. the rou­
tine validates it, via ALFNUM, locates that ddname in all chains, and 
then looks for a data set name (dsname). If the dsname is defaulted, 
the JFCB for the specified ddname is located in the TIlT and checked to 
see if a concatenation is involved. If no concatenation is involved and 
the data set is a library, the JFCB is checked to determine if any 
modules were loaded from it. If not, processing continues. If so, 
Loader Release (CZCCD2) is called to unload all modules. If Loader 
Release is unable to unload all modules after beinq called by the 
Release command, the user is prompted. Under all conditions, a return 
code of X'24' is returned to the caller. Then the request queue is 
scanned for a match on symbolic device address of device type code. If 
the data set is open, the DCBs associated with the data set's JFCB are 
closed and the included subroutine DJFCB is called to delete the JFCB. 
If concatenation is indicated, all JFCBs in the concatenated chain will 
be deleted after their DCBs have been closed by the CDCB subroutine. 

A dsname supplied along with the ddname indicates that deconcatena­
tion of one data set is desired. In this case, REI.EASE validates the 
data set name via NEXTPAR and CHEKDS, and uses FINDDS to locate the JFCB 
associated with that name. The JFCB will then be deleted (by DJFCB) 
from the concatenation, but the rest of the concatenation will remain 
intact. 

DJFCB does the actual deletion, handling one JFCB each time it is 
called. DJFCB will delete the JFCB from every chain in which it is 
included (concatenation, library, temporary tabula1:ion, as well as the 
main TIlT chain> and link its area to the free area chain. If the JFCB 
to be deleted is on a private volume, DJFCB first validates the volume 
field. For multi volumes, DJFCB finds the end of the chain. If the 
volume field is invalid, the device is released, but no PAT page is 
freed. Through the RELEASE service routine, DJFCB also releases the 
devices associated with the JFCB. Note, however, that it will not 
release devices for a public, uncataloged data set until ERASE/DELETE 
has made the request. 

ERROR CONDITIONS: If entry was by macro instruction, a hexadecimal code 
will be returned in register 15: 

Code 

00 
04 
08 
OC 
10 
14 
18 

Significance 

Normal return 
Ddname not given 
Attention interrupt 
Reserved ddname 
Unknown ddname 
Uncataloged data set on public volume 
Unknown dsname 

Section 4: Command Routines 149 



20 Invalid operand 
24 All modules could not be unloaded 

The routine checks for acceptable operands and notifies the user, 
through MSGWR, of any errors found. For the messages issued, see System 
Messages. 

The routine may issue these system errors. In each case the severity 
is minor, and the ABEND message is SYSTEM ERROR - TASK TERMINATED. 

SYSER Code Significance 

050505901 Invalid information from NEXTPAR, ALFNUM, or CHEKDS. 

050505902 Invalid information from MSGWR. 

050505903 Invalid information from FINDDS. 

050505904 Invalid return from RELEASE. 

050505905 Invalid information from LOCATE. 

050505906 Pointer to RESTBL (for VAM) or DEB (for SAM) data sets said 
to be open; ddname taken from TOT, but not subsequently 
found. Error in TDT. 

050505907 DCB header missing. 

SYSTEM CONTROL BLOCK USAGE: 

Catalog SBLOCK (CHACCC) 
Data Extent Block {CHADEB} 
Task Common (CHATCM) 
Data Control Block Header (CHADHD) 
RESTBL Header (CHARHD) 
Request Queue (CHARQU) 
Symbolic Device Allocation Table (CHASDA) 
Task Data Definition Table (CHATDT) 

~RET Command Routine (CZAEN) 

This routine makes it possible for the user to modify the mode field 
in the Data Set Descriptor (DSD) and the equivalent Job File Control 
Block (JFCB) field which contains the storage type, deletion and O~1er/ 
user access attributes of the data set. (See Chart CO.) 

ENTRIES: 

CZAENl - command entry 
CZAEN2 - macro entry 

MODULES CALLED: 

DSCB RD/WR (CZCEM) 

SRCHSDST (CZCQE) 

FINDDS (CZAEC1) 

ADDCAT (CZCFA2) 

User Prompter (CZATJ1) 

150 

Pages in DSCBs. 

Gets count of current data set users. 

Finds JFCB for a given dsname. 

Updates the catalog DSD. 

Sends prompting and diagnostic messages to the 
user. 



To update the user accounting information, RET updates ReR UPDATE, RCR 
RATION, and RCR VACATE. 

EXITS: The routine returns to the calling routine via the RETURN macro 
instruction. 

OPERATION: The RET command routine is entered with a pointer to a pa­
rameter string containing pointers to the data set name and the values 
to be entered into the mode field. When RET has finished processing, 
the new values will be reflected in both the DSD and the JFCB for the 
data set. 

RET processes the input parameter DSNAME, then calls FINDDS to locate 
the JFCB or, if necessary, create one. 

A check is made that no more than one DCB is open for this JFCB. If 
a DCB is open, a check is also made to determine whether the DCB belongs 
to the same user who issued the RET command. If it is not the same 
user, RET issues a diagnostic, via PRMPT, and returns to the caller. If 
it is the same user, a check is made to determine if the data set is 
shared. 

For shared data sets, RET checks the owner/user access and permits 
sharers to use the R~T option only if their access privilege is unli­
mited. RET calls SRCHSDST to determine if there is any current user of 
this data set and sends a diagnostic, via PRMPT, if there is a current 
user. 

RET then scans and validates the input values, 
changes to the JFCB that the user has specified. 
remain unchanged. If invalid values are entered, 
diagnostic and returns to the caller. 

making only those 
Unspecified values 
the routine issues a 

RET calls ADDCAT to update the DSD mode field entry. If a public VAM 
data set is changed from a permanent to a temporary data set (or vice 
versa), RET calls RCR UPDATE, RCR RATION, and HCR VACATE to update the 
User Table and either links the JFCB into the temporary tabulation chain 
or removes it, if necessary. 

If invalid parameters are entered in conversational mode, RET issues 
a diagnostic via PRMPT, and the command is canceled. In nonconversa­
tional mode, a message is written on SYSOUT and control is returned to 
the user. 

ERROR CONDITIONS: When RET is entered through a macro call, error codes 
are returned to the calling program in register 15: 

Code Significance 

00 Normal return 

04 Data set not cataloged 

08 Invalid dsname 

10 Incorrect values (code given> 

14 Open DCB 

lC Data set not found or not available to this user 

20 Insufficient resources 

24 Non zero return code from ADDCAT 

Section 4: Command Routines 151 



28 Invalid temporary tabulation chain in JFCB 

SYSTEM CONTROL BLOCK USAGE: 

Task Common (CHATCM) 
User Table (CHAUSE) 
Catalog SBLOCK (CHACCC) 
Task Data Definition Table (CHATDT) 
Format-E DSCB (CHADSE) 
Active User Limits Table (CHAAUL) 
System Common (CHASCM) 
Public Volume Table (CHAPVT) 

~RPS/CVV/LPDS/CPS Command Routine (CZAXX) 

This routine provides the means for obtaining information about the 
status of public storage (LPDS>; deleting certain invalid data sets on 
public storage (CPS>; and recreating public storage when the catalog 
and/or public storage no longer provides serviceability to support the 
Time Sharing System (RPS and CVV). (See Chart CP.) 

kPS: The RPS command is processed in three phases: 

1. Phase 1 recovers multivolume data sets from public storage {without 
the use of the catalog} and copies them to tape. The RVNO (ACV 
volume) used in the search for multivolume data sets can be either 
the ACV in use by the system or an old ACV that has been mounted as 
a private pack. 

2. Phase 2A copies data sets from private volumes (usually those pre­
viously mounted as public) into currently mounted public storage 
(which, by definition, catalogs them). 

3. Phase 2B copies output produced by Phase 1 or created by VAM TAPE 
(CZAET) into public storage. 

CVV: The CVV (Catalog Vam Volume) command catalogs data sets on public 
volurr,es from the previous system. Old public volumes may be mounted 
during startup, provided consistency is maintained in relative volume 
numbers. 

LPDS: The LPDS (List Public Data Sets) corr.mand searches public storage 
ana lists each data set found. Any data set that does not pass certain 
edit tests is flagged on the list as being invalid. All others are 
rroarked valid. 

CPS: The CPS (Clean Public storage) command searches public storage the 
same as LPDS, checks each data set the same as LPDS, and then deletes 
the data set if it fails any of the edits. The output listing flags 
each data set as "retained- or "erased." 

ENTRIES: 

CZAXXl - RPS command entry 
CZAXX11 - RPS BPKD 
CZAXX2 - CVV command entry 
CZAXX12 - CVV BPKD 
CZAXX4 - SYNAD for output list data set 
CZAXX6 - EODAD for RPS Phase 2B tape input 
CZAXX7 - SYNAD for RPS Phase 2B tape input 
CZAXX3 - CPS command entry 
CZAXX13 - CPS BPKD 
CZAXXB - LPDS command entry 
CZAXX14 - LPDS BPKD 

152 



( 

HESTART: All commands have a START parameter which is used to indicate 
where d restart is to take place. It can be specified as 'CONTi which 
will process from the point of last interruption; or it can be specified 
as a specific DSCB or FSQ number. 

MODULES CALLED: 

fv1TR£Q (CZCAA1) 

VAMINIT (CZCEQ1) 

OBTAIN (CZCF01) 

PAIR (CZACS1) 

LOCATE (CZCFL1) 

ERASE (CZAEJ6) 

DDEF (CZAEAS) 

W (CZAE.T6) 

VT (CZABT4) 

TV (CZAE.TS) 

INDEX (CZCFIU 

ADDCAT (CZCF.r\l) 

RELEASE <CZAFJ3) 

CATALOG (CZAEI2) 

DELCAT (CZCFDU 

DELVAM (CZCFTll 

GATWR (CZATCl) 

MSGWR (CZAAD) 

GETMAIN (CZCGA2) 

FREEMAIN (CZCGA3) 

SETXP (CEAH7) 

PGOUT (CZAAl) 

PAIR (CZACS2) 

ISSUES mount requests for volumes as required. 

Reads in Page ASSignment Table (PAT). 

Reads volume labels and DSCBs. 

Puts entry in AIR table. 

Determines whether data set is already cataloged. 

Erases a new data set if the data set is not indexed 
or renamed successfully. 

Creates input and output JFCBs and reDDEFs T3S*****. 
USERLIB if it was released during processing. 

copies data set from private to public volume. 

copies data set to tape. 

copies data set from tape into public storage. 

Creates generation index. 

Catalogs data set. 

keleases input and output JFCBs and USERLIB JFCB. 

Renames a new data set to original name, replacing 
generated name. 

Deletes catalog entries when CW deletes a cataloged 
data set. 

Deletes DSCBs and pages of processed (RPS Phase 1) 
and error (CVV) data sets without accessinq the 
Catalog. 

Issues status message after attention interrupt or 
ABEND. 

Issues messages on SYSOUT. 

Reserves virtual storage. 

Releases virtual storage. 

Makes DSCB pages available to a task. 

Returns updated DSCB pages to disk. 

Removes AIR table entry. 

LXITS: This routine always exits to the calling routine via a RETURN 
macro instruction. 

Section 4: Command Routines 153 



OPERATION: Initialization procedures are similar for all commands and 
phases. All parameters are checked for validity and proper combina­
tions. All functions call PAIR (CZACS1) to place an entry in the ABENO 
Interlock Recovery table (CHAAIR). All fUnctions locate a JFCB for an 
RPSOUT, CVVOUT, CPSOUT or LPDSOUT data set; checking for VI data set 
organization; opening the data set and writing the header record. 
Exceptions in initialization procedures are as follows: 

1. Initialization for RPS Phase 1 with the ACV parameters includes 
creating a new PVT to be used by the system when copying multivo­
lume data sets to tape. This PVT will contain the ACV volume that 
was requested by RPS. A call is made to MTREQ in Phase 1 with the 
ACV parameter to mount and initialize the old ACV volume. 

2. Initialization for Phase 2A includes calls to MTREQ to mount 
volume, VAMINIT to read in the PAT, and OBTAIN to read the volume 
label. 

3. Initialization for RPS Phase 1, RPS Phase 2A, CVV, CPS and LPDS 
includ.es scanning the PATes) for OSCB pages and issuing the SETXP 
macro to make DSCE pages available to the task. 

4. Initialization for all commands is effected by the START parameter. 
For all commands and phases except RPS 2B, the starting point of 
the search is initialized to the Volume, DSCB page and slot; one 
beyond the point that an interruption took place (this information 
is saved in the CSECT). This occurs if START = CONT is specified 
dnd the CSECT does contain information from the last run. If the 
CSECT does not cont.ain information from the last run and START = 
CONT is specified, processing begins at the beginning of the volume 
specified. The starting point is also modified if a specific DSCE 
is specified in the START parameter. The initialization is similar 
tor RPS Phase 2B except that File Sequence Number (FSQ) is used. 

Recreate Public Storage (RPS) 

Phase 1 locates a Format-E OSCE. All OSCBs for a data set are vali­
dated before they are processed. If the Format-E DSCB is valid, the 
data set name, OSCE slot address, data set organization, reference data, 
number of data pages, overflow pages, directory pages, total pages 
assigned and volume serial number are stored in the RPSOUT buffer. If 
invalid conditions are detected, the data set may be skipped. 

The relative volume mmber fields in the Format-E OSCB entents (and 
in any Format-F entent:.;) are checked to determine whether the data set 
is multivolume. Single volume data sets are skipped. (Since the system 
ITiay naVe been started up with a fresh ACV in order to reclaim any multi­
volume data sets, the DSCB chain may point to a blank DSCE on the ACV. 
These data set~.; are Skipped. There is no identification for datd pages 
on the ACV which are referenced by DSCBs on other packs.) If the ACV 
parameter was specified, this problem is minimized. The RVNO of public 
storage that is used is taken from a specially built PVT created by 
CZAXX and used by VT when multivolume data sets are to be copied to 
tape. 

If there is no tape JFCB, it is created and set for multivolume out­
put. Task Common is updated with the userid of the data set. The input 
(disk) Jf'CB is credted, if necessary, and updated. VT copies the data 
set onto tape. Input JFCB fields are cleared to disconnect the data set 
from the systelli. 

Phase 2A locates and validates a Format-E OSCB and stores DSCB infor­
mation (data ~;et name, OSCB slot address, data set organization, 
reference date, number of data pages, overflow pages, directory pages, 
total pages assigned and volume serial number> in the RPSOUT buffer. A 

154 



test is made for the SYSCAT or SYSOPERO data sets and the data page 
count and total pages assigned are checked for a null data set. If any 
of these conditions are present, the RPSOUT record is updated with the 
IGNORED disposition and the record is written. The next tiSCB is then 
processed. 

Phase 2A Format-E DSCB processing continues by checking every extent 
and DSCB pointer against the relative volume number (RVN) which was read 
in from the volume label. This is done to guard against processing mul­
tivolume data sets. The RPS Flag in the JFCB is set to 'CO' to indicate 
to OPENVAM that it should disregard the RVO of each entry in the DSCB. 
Task Common is updated with the userid of the data set. The LOCATE is 
called with the data set name f rom the DSCB to determine whether or not 
the data set is already cataloged. If the data set is cataloged and not 
a USERLIB. it is ignored and the RPSOUT record is updated with the 
IGNORED disposition. If the data set is a USERLIB, the SYSULIB JFCB is 
released and ERASE is called to remove the USERLIB from public storage. 
(The USERLIB from the private volume replaces the USERLIB in public 
storage which should be a null data set.) Otherwise, the TDT chain is 
searched for the current data set name, and if a JFCB is found with the 
same name, it is RELEASEd to prevent later interference. If a JFCB does 
not exist for the input data set, DDEF is called to create an input 
JFCB. If a JFCB does exist, the data set name fields in the JFCB are 
updated with the current data set name. All the necessary input JFCB 
fields are filled in from known data and the TDTRPS field is set to 
x'SO' as a signal to other modules to pick up information from the JFCB 
and avoid the catalog. An output JFCB is created or updated, and fields 
are cleared so that they may be filled by other modules. TDTRPS remains 
X'OO' in the output JFCB. The output data set name is USERID.RPSNNNNN, 
where NNNNN is a number generated to create a unique dsname. VV is 
called to copy the data set. Once the copy is created, the data set 
must be renamed according to its ori'ginal name. 

A check is made on the last qualifier of the original name to deter­
mine whether or not the data set being processed is a generation data 
group. I f it is a generation data g.roup, the SBLOCK returned by LOCATE 
is checked to see if a generation inaex exists. If a generation index 
does not exist, one is created by a call to INDEX (maximum of 2 genera­
tions for LIST data sets; 5 for all other). CATAL03 is t.hen called with 
the rename option to rename the data set in the Cat.alog and the DSCB on 
public storage according to their original name. If at any point after 
the copy is made, processing is not concluded normally, the data set 
copy is ERASEd and the RPSOUT record is updated with the IGNORD disposi­
tion. The volume serial number of the public volume on which the 
corre<.."tly completed copy resides is placed in the RPSOUT buffer. and the 
RPSO(JT record is updated with the PROCESSED disposition. 

Phase 2B begins by checking to see if a tape has been mounted either 
by the user's DDEF or a previous RPS cycle. If no tape has been 
mounted, DDEF is called to mount it. The tape DCB is updated to link to 
the JFCB and the DCB is opened, moving the tape to the next data set if 
the previous one was skipped. GETMAIN is called to reserve a buffer 
page if one is not available and the first record of the data set is 
read. (The first record is the VAM TAPE control record.) Task Common 
is updated with the userid of the data set and the RPSOUT record is 
filled in. LOCATE is called to determine whether the data set is in the 
Catalog. If the data set is cataloged and is a USERLIB, the existing 
USERLIB is era"ed. If the data set is cataloged and not a USERLIB, the 
data set is skipped. If the dat.a set is not cataloqed, the tape is 
closed with the REREAD option which returns the tape to the beqinning of 
the file. The output JFCB is created or updated. A check is made on 
the last qualifier of the original name to determine whether or not the 
data set being processed is a generation data group. If it is a genera­
tion data group, the SBLOCK returned by LOCATE is checked to see if a 
gener-ation index exists. If a generation index does not exist, one is 

Section 4: Command Routines 155 



created by a call to INDEX (maximum of 2 generations for LIST data sets; 
5 for all other). TV copies the data set frow tape to public storage, 
cataloging it directly under its correct name. The RPSOUT buffer is 
completed, and the record is written. At the end of the tape, FREEMAIN 
releases the buffer page. 

Termination for both RPS, CVV, CPS and LPDS are handled by a single 
routine. PAIR (CZACS2) is called to remove the AIR table entry. The 
RPSOUT/CVVOUT data set is closed. JFCBs are released and the original 
userid is restored in Task Common. If SYSULIB has been released, TSS*** 
**.USERLIB is reDDEFed; the DeBs for its members are reopened and FIND 
macros are issued for the members. RELEASE is called to release the 
device for RPS Phase 2A or RPS with ACV parameter. Completion messages 
are sent to SYSOUT via MSGWR. 

catalog VAM Volume (CVV) 

Once a Format-E DSCB is located, the DSCB information (the data set 
name, DSCB slot address, data set organization, reference date, number 
of data pages, overflow pages, directory pages, total pages assigned and 
volume serial number) is placed in the buffer to be written to the 
CVVOUT data set. If the data set is null or invalid, it is marked for 
subsequent deletion, unless it is the CVVOUT data set (which appears to 
be null if it is new). The CVVOUT data set is marked IGNORED and the 
record is written to it. LOCATE is called to determine whether or not 
the data set is already cataloged. 

If a data set is cataloged but its OSCB pointer is pointing to anoth­
er DSCB, the data set is marked for deletion. cataloged data sets 
marked for deletion are deleted from the Catalog by OELCAT. Current 
system data sets which may be open are ignored even if marked for dele­
tion. Other cataloged data sets are processed by updating the CVVOUT 
buffer with the IGNORED disposition and then writing the record. If a 
SYSOPERO data set is not cataloged, the data set is marked for deletion. 
Other cataloged data sets are processed by creating a JFCB for the data 
set or updating the JFCB with the dsnaree. If the deletion flag is on, 
DELVAM is called with TD1'RPS set to X'SO' to delete the data set pages 
and DSCBs. Otherwise, a check is made on the last qualifier of the name 
to determine whether or not the data set being processed is a Qeneration 
data group. If it is a generation data group, the SBLOCK returned by 
LOCATE is examined for an existing generation index. If a generation 
index does not exist, one is created by a call to INDEX (maximum of 2 
generations for LIST data sets; 5 for all others.) ADDCAT then creates 
the Catalog entry for the data set. If the data set is cataloqed prop­
erly, the CVVOUT buffer is updated with the CATALOGED disposition and 
the record is written. If the data set is not cataloged correctly. the 
CVVOUT record is updated with the IGNORED disposition and the record is 
written. Termination procedures are described in the last paragraph of 
the preceding section. 

List Public Storage (LPDS> 

Processing for LPOS is similar to CVV in that each data set is 
examined to determine its validity (passes certain edit tests listed 
below). An indication is then made in the LPDSOUT data set to indicate 
the validity of the data set, and if it is invalid, the reason. 

Clean Public Storage (CPS) 

ProceSSing for CPS is similar to LPDS in that each data set is 
examined to determine its validity. When a data set is found to be in­
valid, it is erased from Public Storage and deleted from the catalog. 

ERROR CONDITIONS: RPS/CVV/CPS/LPDS issue the following error messages 
on SYSOUT via MSGWR: 

156 



B403 - Memory allocation request rejected. Command ignored. 
EE04 - Data on tape invalid. Command canceled. 
EE04 - Return from Vam Tape invalid. Command canceled. 
EE04 - Parameter passed to Vam Tape invalid. Command canceled. 
EEOD - Volume for (dsname) not 9 track tape. Command canceled. 
EEOF - Unrecoverable tape error writing (volid). Command canceled. 
E£10 - Unrecoverable tape error reading (volid). Command canceled. 
EE14 - punctuation error in operand field. Command canceled. 
EE19 - (Dsname) not PS data set. Command canceled. 
EE30 - Use of (RPS/CVV) command unauthorized. Command canceled. 
EE31 - Volume parameter missing. Command canceled. 
EE32 - Volume parameter invalid. Command canceled. 
EE33 - Device type code invalid. Command canceled. 
EE34 - Public volume invalid. Command canceled. 
EE35 - Unable to mount volume. Command canceled. 
EE36 - Use EVV command for private volumes. Command canceled. 
EE37 - Hardware error processing volume. Processing terminated. 
EE38 - Error in (ddname) data set. Define new data set and restart with 

this volume. 
EE39 - (Ddname) data set not found. Command canceled. 
EE40 - Cannot read volume label. Command canceled. 
EE41 - Organization of (ddname) data set not VI. Command canceled. 
EE42 - Error is Userid. LOGOFF and LOGON before proceeding. 
EE43 - opt parameter invalid. Command canceled. 
EE44 - Opt and volume parameters inconsistent. Command canceled. 
EE45 - Unable to determine volid of inrut tape. Command canceled. 
EE46 - Input DDEF failed. Command canceled. 
EE47 - ACV parameter invalid. Command canceled. 
EE48 - Start parameter invalid. Command canceled. 

SYSTEM CONTROL BLOCK USAGE: 

Task Common (CHATCM) 
Task Data Definition Table (CHATDT) 
Interrupt ~torage Area (CHAISA) 
Symbolic Device Allocation Table (CHASDA) 
System Common (CHA~CM) 
Format-E DSCB (CHADSE) 
Format-F DSCB (CHADSF) 
Public Volume Table (CHAPVT) 
catalog SBLOCK (CHACCC) 
Data Control Block (CHADCB) 
ABEND Interlock Release Table (CHAAIR) 

EDITS: The following edits are per-formed for all data sets by checking 
the Format E OSCB: 

- DSCB CHECKSUM 
- VALID DSORG 
- Zero total pages 
- Zero data pages (OK FOR RPS, CVV, CPS, LPDS OUT D/S) 
- Total pages less than total in use 
- VS data set with Directory pages 
- VS data set with Overflow pages 
- VS data set valid record format 
- VS data set record lengths a page multiple (For Format 'U') 
- VI data set valid record format 
- VI data set key length zero 
- VI data set with ffiore than 255 directory pages 
- VI data set with more than 240 overflow rages 
- VI data set keylength + keyoffset: greater than record lengths 
- VI data set invalid record length 

The following data sets are ignored: 

Section 4: Command Routines 157 



- CATALOG 
- SYSOPERO D/S 
- TSS USERLIB 
- TSS SYSOUT 
- BWQ 

The SYSLIB data set is renamed CUV.SYSLIB, or RPS.SYSLIB. 

"'SECURE Command Routine (CZAFU) 

This routine is called once by a nonconversational task to reserve 
all devices that will be needed during execution of that task. The rou­
tine is also called by BULKIO tasks to reserve the devices required by 
them. If the SECURE command is invoked by EXPRESS BATCH, a diagnostic 
message is issued and the task exits to ABEND. SECURE operates in non­
conversational mode only. (See Chart CQ.) 

ENTRIES: 

CZAFUl - normal entry 
CZAFU2 - batch monitor entry 

MODULES CALLED: 

MTREQ (CZCAA1) Allocates requested device(s). 

NEXT PAR (CZAAC1) Fetches and validates command operands. 

MSGWR (CZAAD2) Issues system messages. 

EXITS: The routine normally returns to the calling routine, via the 
RETURN macro instruction. If a system error occurs, the routine exits 
to ABEND. 

OPERATION: The command operands are fetched and validated using the 
SCAN routine, NEXTPAR. These operands describe the number and type of 
devices needed by the task. If entry is from CZAFU1, the routine will 
reserve any of these devices: 

1. 7-track tape (with or without data conversion) 

2. 9-track tape 

3. Dir~ct access devices (2311 and 2314) 

In addition to the above, the routine will reserve any of these devices 
for an entry from the batch monitor or a class E user. 

1. Card reader 

2. Punch 

3. Printer 

After verifying operands, SEClffiE creates a device type code for each 
requested device and inserts these codes in a parameter list for MTREQ. 
If any of the requested devices are not available when MTREQ is called, 
the request remains enqueued and the task is suspended until all 
r~quired devices become available. 

ERROR CONDITIONS: The routine checks for acceptable operands and noti­
fies the user, through MSGWR, of any errors found. For the messages 
issued, see System Messages. 

158 



SYSER Code 

050507001 

050507002 

Severity 

Minor 

Minor 

ABEND Message 

SYSTEM ERROR, INVALID 
RETURN FROM MTREQ. 

SYSTEM ERROR. TASK 
TERMINATED. 

SYSTEM CONTROL BLOCK USAGE: 

System Common (CHASCM) 
Task Common (CHATCM) 

~SHARE Command Routine (CZAFI) 

Significance 

MTREQ returned an in­
valid code. 

Error has been found in 
command received from 
batch monitor. 

This routine enables an authorized user to access a data set in 
another user' s catalog. (See Chart CR.) 

ENTRY: CZAFl1 - normal entry 

MODULES CALLED: 

NEXTPAR (CZAAC1) Gets command operand. 

CHEKDS (CZAAC2) Validates data set name. 

ALrnUM (CZAAC3) Validates user identification. 

MSGWR (CZAAD2) Issues system messages. 

SHAREUP (CGCFU) Creates sharing descriptor in owner's catalog. 

EXITS: The routine normally returns to the calling routine, via the 
RETURN macro instruction. If a system error occurs, the routine exits 
to ABEND. 

OPERATION: The routine obtains its input parameters, and checks them 
one at a time for validity. The first check is made on the name that 
will appear in the user's catalog pointing to the owner's catalog. This 
name must be both legitimate and unique (see note below). A pointer to 
this name is put in a parameter list. for SHAREUP. 

The owner's user identification (userid) is validated next, and then 
the owner's data set name is checked. If, instead of a data set name, 
*ALL has been entered (indicating that all of the owner's cataloged data 
sets are to be shared), a pointer to the owner's userid is put in the 
parameter list as his fully qualified name. For all other cases, the 
owner's userid, followed by the data set name, is moved to a save area 
and a pointer to this area is put in the SHAREUP parameter list. 

SHAREUP is called and if all entries are error-free, it creates the 
sharing descriptor entry in the user's catalog. 

Note: If SHAREUP finds that a nonunique data set name is already point­
ing to the correct owner's data set, a normal return is effected. 

ERROR CONDITIONS: The routine checks for acceptable operands and noti­
fies the user, through MSGWR, of any errors found. For the message 
issued, see system Messages. 

The routine may issue these system errors: 

Section 4: Command Routines 159 



SYSER code Severity 

050505800 Minor 

050505801 Minor 

050505802 Minor 

050505803 Minor 

050505804 Minor 

050505805 Minor 

050505806 Minor 

050505807 Minor 

ABEND Message 

INVALID RETURN CODE 
FROM CATALOG SERVICE 
ROUTINE. 

INVALID RETURN CODE 
FROM NEXT PAR AFI'ER 
SCANNING USER DSNAME. 

INVALID RETURN CODE 
FROM CHEKDS AFTER 
SCANNING USER DSNAME. 

INVALID RETURN CODE 
FROM NEXTPAR AFTER 
SCANNING OWNER ID. 

INVALID RETURN CODE 
FROM NEXTPAR AFTER 
SCANNING OWNER DSNAME. 

INVALID RETURN CODE 
FROM CHEKDS AFTER 
SCANNING OWNER DSNAME. 

USERID NOT IN CATALOG. 

INVALID RETURN CODE 
FROM ALFNUM AFTER 
SCANNING OWNER ID. 

Significance 

SHAREUP returned invalid 
code. 

NEXT PAR returned invalid 
code. 

CHEKDS returned invalid 
code. 

NEXTPAR returned invalid 
code. 

NEXTPAR returned invalid 
code. 

CHEKDS returned invalid 
code. 

Userid of user issuing 
SHARE command is not 
in catalog POD. 

ALFNUM returned invalid 
code. 

SYSTEM CONTROL BI·OCK USAGE: 

Task Common (CrlATCM) 
Interrupt Storage Area (CHAISA) 

~SYNONYM/DEFAULT Catalog Routine (CZATR1) 

This routine is used to enter or delete synonym and default values in 
the combined dictionary (CD). (See Chart CS.) 

ENTRY: CZATR1 - normal entry 

MODULES CALLED: 

Procedure Expander 
(CZATE2) 

Dictionary Handler: 

DELENT (CZASD6) 

ENTR (CZASD5) 

RFR (CZASD3) 

Constructs tables of pointers to the synonym or 
default names. 

Deletes entries from the combined dictionary. 

Adds entries to the combined dictionary. 

Scans the combined dictionary for matching entries. 

EXITS: The routine normally returns to the calling routine, via the 
RETURN macro instruction. 

OPERATION: Upon entry to SYN/DEF, a test is made to determine if 
synonym values are to be cataloged. If they are, a flag, CZATR9, is set 
on. The Procedure Expander routine BUILDLIST is now entered to con-

160 



struct two tables. The ELIST table contains pointers to the SYN/DEF 
names, and ILIST pointers to their corresponding parameters or values, 
where each is preceded by its length characteristic. During execution 
of BUILDLIST, each isolated parameter is checked for a synonym value; 
thus SYNFLG must be enabled to allow a name, which may already be a 
synonym name, to be redefined. Since BUILDLIST expands the source list 
(SL) while interrogating the SYN/DEF parameter strings, its existing 
state must be saved to be restored prior to exit. 

After the tables are constructed, each ELIST entry (that is, the 
value to which it points) is hashed via the HASH macro instruction, and 
the end result is input to the RFR routine to determine if the name cur­
rently exists in the combined dicti.onary. If not, the corresponding 
ILIST entry is checked for a null value, If it is, a warning message is 
sent to the terminal, and the next ELIST entry is processed; otherwise, 
it i.s entered in the combined dictionary via the ENTR routine prior to 
processing the next entry. 

If the ELIST entry already existed in the combi.ned dictionary, a test 
is made to determine if it is the right type (that is, a SYN or DEF 
type). If not, it is ignored, and the search through the combined dic­
tionary continues; otherwise, its corresponding ILlS'!' entry is tested 
for a null value. If null, the name is deleted from the dictionary via 
the DELENT routine; otherwise, the new value replaces the existing 
value, via ENTR. 

After all of the entries have been processed, CZATR9 is disabled, the 
SL is returned to its state prior to entry, and an exit is made to the 
calling routine. 

ERROR CONDITIONS: There are no error conditions for this routine. 

SYSTEM CONTROL BLOCK USAGE: 

Source List Page Header (CHASLP) 
Sublist Header (CHASLH) 
Profile Character and switch Table (CHAPCT) 
New Task Common (CHANTC) 
control Dictionary Entry (CHADEN} 

~system Activity and Resources Display (SARD) Processor (CZAYE) 

This routine is called to gather information relative to system Acti­
vity and Resources. It summarizes current system activity, pending 
work, and current resources into a convenient display, which is written 
to SYSOUT. (See Chart CT.) 

ENTRY: CZAYE2 - normal entry 

MODULES CALLED: None. 

EXITS: CZAYE returns to its calling routine. 

OPERATION: This routine may be validly entered only as a result of a 
command from an operator task or a manager/administrator task. If the 
SARD table (CHASAR) is not current (SARCUR=X'Ol">, CZAYE sets the CHASAR 
lock byte (SARLCK), and proceeds to calculate and extract the latest 
system values for the CHASAR fields that are not dynamically updated. 
The data is gathered into CHASAR from various syst.em tables. Some of 
the data in the SARD table will be updated dynamically by the Batch Mon­
itor and may be extracted at face value. 

When CZAYE has completed gathering and tabulating data in the SARD 
table, it issues a GATWR to write a header. Subsequently, CZAYE con­
verts and formats each line, and issues a GATWR to write each line. 

Section 4: Command Routines 161 



After the last line is processed, CZAYE unlocks the SARD table and 
returns to its calling routine. 

If CHASAR is current (SARCUR=X'Ol'), CZAYE locks CEASAR, but bypasses 
the gathering of information, aSSuming the most recent time-activated 
accumulation of data for the display. This is accurate to within 30 
seconds. 

ERROR CONDITIONS: If this routine is invoked by other than an operator 
or manager/administrator task, a diagnostic message is written to GATE. 

SYSTEM CONTROL BLOCK USAGE: 

System Common (field:SCMTTS) 
VAM2 Public Volume Table (CHAPVT) 
Active User Table (CHAAUL) 
Symbolic Device Address Table (SDAT) 
system Activity and Resources Table (CHASAR) 

~SYSXPAT Command Routine (CZATF) 

This privileged routine calls a command analyzer and executor command 
directly and passes its parameters in original textual form. (See Chart 
CU. ) 

ENTRY: CZATFl - normal entry 

MODULES CALLED: None. 

EXITS: The routine normally returns to the calling routine, via the 
RETURN macro instruction. 

OPERATION: This is a BUILTIN procedure. If the SYSXPAT command ended 
with a semicolon, SYSXPAT transfers the parameter list beginning on the 
remainder of the line from the source list to the buffer in task common. 

If the 
SYS-

If not, it passes the parameter list beginning on the next line. 
line is a continuation line the following line (2) is also copied. 
XPAT conta ins a table of nalr.es and external symbols which it uses to 
determine the symbol to be called. 

ERROR CONDITIONS: There are no error conditions for this routine. 

SYSTEM CONTROL BLOCK USAGE: Task Common (CHATCM} 

Compatibility Handler (CZATF1) 

This module allows execution of CLI commands (for example, DDEF, 
PRINT, EXECUTE, etc.) through the Release II Command System. (See 
Chart CU.) 

ENTRY: CZATFl - normal entry 

l'IODULES CALLED: 

User Prompter (CZATJ1) Prompts the user. 

SYSIN (CZASC7) .Ret.rieves the parameter string from the source 
list and place it in task common. 

EXITS: The routine normally returns to the calling routine, via the 
RETURN macro instruction. 

OPERATION: Upon entry to CZATF1, the input command name is compared to 
a table of compatibility names. If a match doesn't occur, the user is 
notified, via the PRMPT macro instruction. and an immediate exit is 

162 



taken. If a match does occur, the SYSIN macro instruction is executed 
in order to retrieve the routines parameter string from the source list 
(SL), and place it in the task common. If the string has continuation 
lines (that is, last character in the preceding line is a dash), they 
are also read from the SL until there is a final continuous parameter 
string in task common. If the total number of bytes passed exceeds 
1500, the user is notified via PRMPr, and an immediate exit is taken. A 
special termination byte (X'27') is now placed at the end of the string 
in task common, and a series of tests is made to determine if the 
desired command is FTN, ASM, or LNK. If it is, an immediate exit is 
taken: otherwise, the routine is executed via a CALL on the adcon pair 
associated with the input command name. Upon return. an immediate exit 
to the calling routine is made. 

ERROR CONDITIONS: The user is prompted and an exit is taken if the 
input command name isn't found in the compatibility table. The user is 
prompted and an exit is taken if the parameter string exceeds 1500 
bytes. 

SYSTEM CONTROL BLOCK USAGE: Task Common (CHATCM) 

~TlME Command Routine (CZAVB) 

This routine permits a time interval to be specified for the comple­
tion of a task. Either of two clocks may be set. System Clock 14 is 
set to the value specified by a TIME command. It is initialized at 
LOGON time to the system time specified during System Generation. 
Express Batch Clock 13 is set to the value, if any, specified by an 
'EXPRESS' control card during Express Batch processing. (See Chart CV.) 

ENTRIES: 

CZAVB1 - The VMTI entry initializes the timer to a value specified by 
the SCMTIM field of System Common (CHASCM). 

CZAVB2 - The normal command entry is entered when a TIME command is 
issued. 

CZAVB3 - The INTERRUPT routine entry prints a message to the conversa­
tional user indicating his time has elapsed and resets System 
Clock 14 to an additional one minute value to permit user con­
tinuation. A nonconversational task is ABENDed when it is 
interrupted by System Clock 14. A task in Express Batch mode 
is ABENDed by the elapse of Express Batch Clock 13. An indica­
tive diagnostic message is issued for the elapse of either 
clock. 

CZAVB4 - The EXPRESS entry is entered in Express Batch mode to initia­
lizp Express Batch Clock 13 to the time value defined on the 
'EXPRESS' control card. It is reentered after LOGON for each 
sub-task within the Express Batch to reinitialize the clock. 

MODULES CALLED: 

NEXTPAR (CZAAC1) Scans the parameter for the first non blank and 
for the character length. 

CHKNUM (CZAACS) Converts the parameter, Nt into a binary number. 

ABEND (CZACP1) Abends whenever time interval has elapsed while 
in nonconversational mode. 

User PromptE:~r (CZATJ1) Issues elapsed time and error messages. 

Section 4: Command Routines 163 



EXITS: The routine normally returns to the calling routine via the 
RETURN macro instruction. There are no error exits. ABEND1 is taken 
for an interrupt entry due to Express Batch Clock 13 or a background 
task interrupted by System Clock 14. 

OPERATION: Entry via the VMTI 
value to be picked up from the 
fied during System Generation. 
System Clock 14. 

entry point at LOGON time causes a t.ime 
SCMTIM field of System Common, as speci­

This time value is used to initialize 

CZAVB2 is entered as a result of the TIME command. Register 1 con­
tains a pointer to the address of the time parameter, N. NEXT PAR 
(CZAAC1) is called to scan the parameter. NEXTPAR's output, the length 
of the parameter and the address of the first non blank character, is 
used as input to CHKNUM (CZAACS). Then CHKNUM validates the parameter 
and converts it to a binary number. Any unsigned decimal integer great­
er than zero and less then 451 is valid. If the integer is invalid, 
PRMPT sends a message to the task and the command is ignored. 

The INTERRUPT entry disables the clock not causing the interrupt to 
inhibit further interrupt action. A message is written to SYSOUT iden­
tifying the source of the interrupt. If System Clock 14 caused the 
interrupt and the task is conversational, System Clock 14 is reinitia­
lized to a one minute interval and the routine returns to the calling 
routine. If the task is nonconversational, a completion code 1 ABEND 
occurs after a message is written to SYSOUT. 

The EXPRESS entry utilizes the parameter scan and validation routines 
called by CZAVB2. If the time integer is valid, System Clock 14 is 
reinitialized to the new value. Then CZAVB4 examines, on the first 
pass, the time parameter entered on the 'EXPRESS' card and initializes 
Express Batch Clock 13 accordingly. On subsequent entries the clocks 
are reinitialized from the value saved from the first pass. 

ERROR CONDITIONS: If the integer which is presented with the TIME com­
mand does not lie within the limits O<N<451, the following message is 
printed on the operator's terminal: 

TIME INTEGER N INVALID. REQUEST IGNORED. 

SYSTEM CONTROL BLOCK USAGE: 

System Common (CHASCM) 
Task Common (CHATCM) 

~userid Informational (UID) EXHIBIT Processor (CZAYG) 

The EXHIBIT Director (CZAYD) calls CZAYG to process requests for an 
information display depicting all active tasks in the system. (See 
Chart cw.) 

ENTRY: CZAYG1 - normal entry 

MODULES CALLED: None. 

EXITS: CZAYG returns to its calling routine, CZAYD. 

OPERATION: If the task requesting the UID option is not an operator or 
manager/administrator tasks, this routine flags the form to be presented 
as 'short'. This means that the number of userids presented per line 
(UINUMPER) is set to five rather that to one, as it is for the 'long' 
form. {If the SYSOUT is a teletype, UlNUMPER is set to three for 
short.} The operator or manager/administrator may specify the short 
form in his command format. 

164 



The 'long' form displays, in addition to the userid, taskid, and sta­
tus, the SDA/BSN, the time the task was activated, how much temporary 
storage is being used, and the devices in use. All of this information 
required for the UID display is gathered from the Active User List Table 
(CHBAUL) • 

CZAYG moves all active and applicable entries from CHBAUL to the work 
area provided by its calling routine, CZAYD. Using GATE, CZAYG then 
writes headers to SYSOUT, and converts and writes via GATWR each line of 
data in the work area. When the data lines are exhausted CZAYG returns 
to its calling routine. 

ERROR CONDITIONS: None. 

SYSTEM CONTROL BLOCK USAGE: Active User List (CHBAUL) 

~UPDTUSER Command Routine (CZAGC) 

This routine may only be invoked by a privileged system proqrammer, 
authority code '0', to initialize the counts of data sets for the system 
and for each user. (See Chart CX.> 

ENTRIES: 

CZAGCl - command entry 
CZAGC2 - macro entry 

MODULES CALLE:D: 

Set Interlock (CZCOH) 

Release Interlock (CZCOI) 

LOCATE (CZCFL) 

User Prompter (CZATJ) 

WTL (CZABQ) 

SETXP (CEAH7) 

I:.RASE (CZAEJ) 

Virtual Memory Allocation 
(CZCGA) 

CZCOH1 locks the User Table RESTBL for 
WRITE. 

CZCOI1 unlocks the User Table RESTBL. 

CZCFL1 finds a catalog entry for a given 
FQN. 

CZATJl writes messages to a user; CZATJ2 
forms messages to write to the operator. 

CZABQl writes a message to the operator log. 

An SVC 244 is issued to read in a DSCB page. 

CZAEJ3 erases a temporary data set. 

GETMAIN (CZCGA2) reserves a page for DSCB 
processing; FREEMAIN (CZCGA3) frees buffers 
which were obtained for OSCB processing and 
TBLOCKs. 

EXITS: The routine returns to the calling routine via the RETURN macro. 

OPERATION: The authority code of the user is cheCked. If the authority 
code is not '0', no processing is performed and the routine returns to 
the caller. Otherwise, G~~MAIN is called to reserve a page for DseB 
processing, the User Table data set is opened for update and Set Inter­
lock locks the User Table RESTBL. The following steps are then per­
formed for each User Table entry: 

1. A User ~able entry is read in. 

2. LOCATE generates TBLOCKs for all data sets in the user's catalog 
and returns the address of the first TBLOCK in the TBLOCK chain. 

Section 4: Command Routines 165 



3. One of the following steps is performed for an entry in the TBLOCK 
chain: 

• If a TBLOCK is not a DSD entry, or the data set is owned by 
another user, or the TBLOCK is a DSD entry for a private volume, 
the TBLOCK is bypassed and the next TBLOCK is located in the 
chain. 

• If a TBLOCK is a DSD entry for a public volume and the owner of 
the data set is the user whose User Table entry is currently 
being scanned, LOCATE is called to obtain the catalog entry for 
the data set. If the data set is temporary, ERASE is called to 
delete the data set and the next TBLOCK is located in the chain. 
If the data set is not temporary, the Format-E DSCB for the FQN 
is read in via SETXP and a checksum is calculated. If the check­
sum is in error, a WTL is issued to write a message in the opera­
tor log and the next TBLOCK is located in the chain. If the che­
cksum is correct, count fields in System Common and the User 
Table are updated and the next TBLOCK is located in the chain. 

4. When the end of the TBLOCK chain is reached, FREEMAIN is called to 
release the space reserved for the TBLOCKs. 

5. If the userid in Task Common matches the userid of the current UPD­
TUSER command user, the updated User Table count fields are stored 
in the user table entry pointed to by TCMVLU in task common. 

6. An updated User Table entry is written out. 

After all User Table entries have been processed, Release Interlock 
releases the lock on the User Table, the User Table data set is closed, 
FREEMAIN releases the page reserved for DSCB processing, a completion 
message is issued and the routine returns to the caller. 

ERROR CONDITIONS: If an error occurs, User Prompter is called to issue 
a diagnostic and processing continues. When processing is complete, a 
return code of 4 is set in register 15 and the routine exits to the cal­
ling routine. 

SYSTEN CONTROL BLOCK USAGE: 

Catalog SBLOCK (CHACCC) 
Data Control Block (CHADCB) 
Format-E DSCB (CHADSE) 
Interrupt Storage Area (CHAISA) 
Public Volume Table (CHAPVT) 
System Common (CHASCM) 
TBLOCK Data Set Descriptor (CHATBD) 
Task Common (CHATCM) 
User Table (CHAUSE) 

~USAGE Command Routine (CZAGB) 

This routine displays on the user's SYSOUT all the non zero account­
ing information associated with the specified userid. (See Chart CY.) 

ENTRIES: 

CZAGBl - macro entry 
CZAGB2 - command entry 

MODULES CALLED: 

SCAN Routines: 
NEXTPAR (CZAAC1) 

166 

Gets command operand. 



ALFNUf>'1 (CZAAC3) Checks for alphabetic first character. 

CIDI.NUM (CZAACS) Checks for all numeric characters. 

r<lSGWR (CZAAD2) Issues system diagnostic. 

RCI< OPEN Opens a user entry. 

RCR UPDATE Updates user accounting information. 

RCR CLOSE Closes a user entry. 

REDTI11 (CEAS6) Gets current time. 

X'l'R'l'M (CEATl) Gets current CPU time used by task. 

User Prompter (CZATJ1) Writes RESET diagnostics to SYSOUT. 

GATE (CZATCl) Wri tes data on SY~:;OUT via GATWR. 

WRIT!': (C'ZCPEU Writes reset user entry to SYSUSE. 

SYSER (CEAIS) Reports systere failures. 

E.XIT~: The routine returns to the calling routine via the RETURN macro 
instruction. 

OPER1\TION: Upon entry an indicator is set to show whether entry was 
tronl- a command or a ffidcro. Then the user's privilege is checked for F. 
B, or A. If privileged (F, B, or A) the USAGE command operand list is 
processed. Otherwise, the user's own user entry address is retrieved 
trom task common and processed as with reset option 'N' specified. In 
this tonner case, the USERID operand specified is checked for validity. 
If the USERID is not valid, a diagnostic message is issued, a return 
code of 4 is set in register 15 and control is returned to the caller. 

For a vedicl USERID, processing continues by checking to see if it is 
thE' 0ilm€" as that in task common. If it is or if no USERID was speci­
[ied I th~; u"er entry pointed to by TCMVLU is processed. If the USERID 
i~; difff'rent_ from that in task common, an RCR OPE.N is done to OPEN that 
U~;EldD user t'ntry. A failure by RCR OPEN causes a system diagnostic, 
iIlvalld USERID, and the command is cancelled. 

In both cases, the RESET operand specified or defaulted is analyzed. 
If an invalid reset 'parameter (other than 'Y' or 'N') is specified, the 
conversational user is prompted and reprompted to this effect unt_il he 
ent~ers a 'Y' or 'N' or defaults. For the nonconversational user, the 
invalid reset parameter is ignored and processed as the 'N' or default 
ldramtter. If 'y' has been specified, the user privilege is checked for 
'1'" or 'II'. If either of these privileges pertains, a reset switch is 
set preparatory to reset processing of the user entry fields. If neith­
er pertains, a User Prompter message is presented indicating the RESET 
option is not available to the user's privilege class and control is 
returned to the caller with a return code of 8 in register 15. 

Once the user entry to be processed is located and the reset parame­
ter analyzed, an RCR update is performed to insure that the accounting 
information is current. For each of six RESOURCE PRODUCT fields, the 
correspondinq user entry RATION field, CURRENT ALLOCATION field, dnd non 
z!c'ro PRODUCT field, in that order, are converted to decimal EBCDIC and 
moved along with their appropriate resource header to output BUFFER1. 
I f the product is zero, only the RATION is convert.~ed and moved to BUF­
FJ:,Rl followed by a semicolon indicating the zero PRODUCT field 
condition. 

Section 4: Command Routines 167 



Next the active background TASK count RATION and CURRENT TASK COUNT 
are converted to decimal EBCDIC and moved along with their appropriate 
corresponding header to OUTPUT BUFFER2. However, if the CURRENT TASK 
COUNT field is zero, this is indicated by the semicolon following the 
ration value. The BULKIN and BULKOUT ACCU~ULATIVE fields are converted 
and moved to BUFFER2 along with their respective headers only if they 
are non zero. 

The converted CPU TIME RATION is moved to BUFFER2 and if the user's 
own entry is being processed (RCR OPEN has not been done), the CURRENT 
CPU TIME is extracted, converted, and moved to BUFFER2 following the 
RATION semicolon. Then the ACCUMULATIVE CPU TIME value, if non zero, is 
converted and moved to BUFFER2. 

The converted CONNECT TIME RATION is moved to BUFFER2 and, if RCR 
OPEN has not been done and the current task is conversational, the cur­
rent connect time is extracted, converted, and moved to BUFFER2. 

Note: CURRENT CPU TIME has the converted format of min:sec:millisec; 
all other time fields have the format of hr:min:sec. 

At this point the RESET parameter switch is checked as set previous­
ly. If it is on, ten RESOURCE FIELDS in the user entry are RESET to 
zero. If an RCR OPEN was done to move the user entry from SYSUSE to VM. 
an RCR CLOSE is done. However, if RCR OPEN was not done, the RESET user 
entry is WRITTEN out to SYSUSE. 

Finally a check is made for the type of entry. 
two output buffers' contents are written to SYSOUT 
For a macro call, the data in the buffers is moved 
buffer. 

For a command, the 
using two GATWRs. 
to the caller's 

At this point processing is complete and the module returns to its 
caller via the RETURN macro. 

ERROR CONDITIONS: If entry was by macro instruction, a hexadecimal code 
will be returned in register 15: 

Code Significance 

normal return 
invalid userid 

00 
04 
08 
12 

invalid privilege for specified userid 
attention interrupt during PRMPT I/O 

If an invalid userid is specified, a diagnostic is issued and the module 
returns to the caller. If the RCR CLOSE fails, a minor system error is 
issued followed by a return to the caller. 

SYSER Code severity 

05062501 Minor 

05062502 Minor 

Explanation 

RCR CLOSE failed. 

Significance error in millisecond value of CPU 
time. 

SYSTEM CONTROL BLOCK USAGE: 

Task Common (CHATCM) 
Task Data Definition Table (CHATDT) 
Task Status Index (CHATS I) 
User Table (CHAUSE) 
Active User Limits Table (CHAAUL) 
Data Control Block (CHADCB) 
Shared Data set Member (CHASDM) 

168 



Active User List Table (CHAAUL) 
Data Control Block (CHADCB) 
Shared Data Set Member (CHASDM) 

. Inten:upt Storage Area (CHAISA) 

~user Control (CZAMZ) 

The User Control routines are responsible for preserving the Command 
System interfaces with nonprivileged programs, for processing the CLIC, 
PAUSE, CLIP, COMMAND, LPCINIT and LPCEDIT macros, for processing the 
ENABLE, DISABLE, END and transient commands and for dispatching func­
tions of the Text Editor. In addition, it dispatches a LOAD, UNLOAD or 
pararneterless CALL command. (See Chart CZ.) 

ENTRIES: There are twenty-three entry points to this routine: 

1. CZAMZ1 is entered by a type-I call from the Command Analyzer's 
BUILTIN Call Processor and from other routines in CZAMZ to dispatch 
a nonprivileged module. Register 1 points to a builtin procedure 
key (BPK). 

2. CZAMZ19 is entered when a nonprivileged module issues a RETURN 
macro to return to the Command System. 

3. CZAMZ2 is entered when a nonprivileged module issues an EXIT macro. 

4. CZAMZ3 is entered from the Attention Handler when an attention 
interrupt is received and the user enters a command other than one 
of the attention response commands or ABEND. It is also entered 
from DIAGNO (CZAHA). 

5. CZAMZ5 processes a CLIC or PAUSE macro. 

6. CZAMZ6 processes a CLIP or COMMAND macro. 

7. CZAMZ7 is the command entry to RTRN processing. RTRN is a stack 
manipulating command. 

8. CZAMZ8 processes the EXIT command. EXIT is a stack manipulating 
command. 

9. CZAMZ10 processes the STACK command. STACK is a stack manipulating 
command. 

10. CZAMZ11 processes the PUSH command. PUSH is a stack mani pulating 
command. 

11. CZAMZ12 cancels attention levels for the input name. Called by 
CZAMZl. 

12. CZAMZ13 is a service routine for other User Control modules. It 
obtains a recursive save area. 

13. CZAMZ14 deletes LPC programs from CZAMZ's stack. 

14. CZAMZ15 is the ABEND and task monitor entry to RTRN processing. 

15. CZASW1 processes an LPCINIT macro. 

16. CZASW2 processes an END command. 

17. CZASW3 processes a transient command. 

18. CZASW4 processes an LPCEDIT macro. 

section 4: Command Routines 169 



19. CZASW5 is entered by the Command Analyzer to dispatch a function of 
the Text Editor. 

20. CZASW9 processes an implicit END situation. 

21. CZASWI0 processes an ENABLE command. 

22. CZASWll processes a DISABLE command. 

23. CZBTGI dispatches a LOAD, UNLOAD or parameterless CALL command. 

MODULES CALLED: 

User Prompter (CZATJ1) 

Command Analyzer 
CL.ASAI 

CZASA6 

CZASA7 

Source List Handlers 
CZASC6 

GATE (CZATCl) 

OLJ:; Processor (CZVJQS) 

CLEANUP (CZC~JCU) 

Edit Initializer 
(CZB3El> 

DATALINE (CZASG1) 

Writes error messages to the user's terminal. 

Analyzes input. 

DIRs the systerr attention handler (USATT) 

SIRs the systerr: attention handler (CLATT) 

Deletes remainder of line in source list for 
EXIT. 

Writes module names to SYSOUT for STACK. 

Puts a QLE to the Command Analyzer (CZASA1) 

Performs Task Monitor cleanup for t.he attention 
response commands. 

Called by LPCINIT to initialize the Text Editor. 

Prompts for input into a data set. 

EXIT~j : Exits are described in the following section. 

OPE_I0TION: CZAMZl is invoked to process calls from the Command System 
to nonprivileCjed rout.ines. In CZAMZP, it maintains a push-down stack of 
Sdve areas, with a maximum of ten levels. One level is associated with 
each call. Each level contains the backward pointer to CZl\MZ1's caller, 
a copy of ISALSI at the time CZAMZl is called, and a save ared the 
called routinL' uses to ,;tore CZJV.JZ' s registers. 

The User Controller is called at CZAMZ1 to process calls from the 
Command Systf'm to nonpri vileged routines. In CZAMZP it rna intains a ten­
entry stack (one level ot entry tor each level of call allowed). Each 
level contains the backward pointer to the routine that calls CZAMZl, a 
cOfJY ot 1!'AL';l at ttle tirr'e CZAMZl was called, and other pertinent infor­
mation about. t be previou:;ly dispatched module called by CZAMZl. It. then 
seb5 up the ,;dme inforrr.ation in it~; PSECT for the module to be 
dispatched. 

On entry, if the stack is not full. the count of currently active 
programs is incremented, and the ISALSI is saved in the CZAMZP stack. 
(ISALSI is ~;<clv(>d becau::;e certain fields in it are overlaid to dh,patch 
tht' current [Jrugram.) The status of PIR~C, LPC, USATT, and AETD will 
also be saved in the ::;tack. If the fJrevious invocations should be can­
celed, thi~3 r uutine branches out to CZAMZ14 to cancel the levels for 
this routin~.'. Att",r :;aving pertinent information in the stack for thE': 
previously d~~;patch\C'<j n:o,lUle, CZAMZl sets in its PSECT information about 
the lI,odulf: about to be di:>patched. Statm; information saved includes 

170 



the names of the routine being invoked (whose address is placed in 
Register 0), the address of the caller of CZAMZ1, the current source 
list pointer (CZAMZL), and dispatch option flags (CZAMZF). This routine 
is marked as active (CZAMZF=X'SO') and the painter to the current stack 
entry (CZAMZA) is incremented. 

To enable the routine about to be dispatched to return to the Command 
System correctly, this routine set Register 14 in the ISA t.O point to 
CZAMZ19. The address of the routine to be dispatched is stored in 
Register 15. The VPSW also is set to point to the routine to be dis­
patched. If parameters are included in the call, Register 1 points to 
the parameter list. The address of the user portion of the current save 
area is saved in Register 13. This routine then returns control to the 
Task Monitor, through a field in New Task Common (NrCTMR). The Task 
Monitor then issues a LVPSW from ISA[,S1 and dispatchES the routine. 

CZAMZ19 is entered when the nonpriviliged routin.;:! dispatched by 
CZAMZl issues a RETURN macro. Its only function is to issue the EXIT, 
NOMSG macro to return control to CZAMZ2. 

CZAMZ2 is the EXIT SVC processor. If its caller is the Task Monitor, 
it saves Register 13 (pointer to the save area the 'rask Monitor used 
when it last called the Command System) in New Task Common (NTCTMR). 
Then (or for anot.her caller), if USATT is active, this routine calls t.he 
Command Analyzer at CZASA7 to release control of the attention inter­
rupts (CLATT). If no other programs exist in the stack (level=O), this 
routine performs a CLEANUP, processes a QLE to the Command Analyzer, 
restores Register 13 from NTCTMR and returns to its calling routine. 

However, if other levels are filled in the stack, this routi.ne finJ.s 
the first active level, moves the s~lck status information into the cur­
rent fields, clears the stack entry, and resets the pointer so that this 
previous entry becomes the current one. If the exiting module issued a 
PUSH command, this routine exits to a special entry point in the Atten­
tion Handler, CZASB3, which causes a return to the Command Analyzer via 
QLE. Otherwise, Register 13 is restored for CZAMZ1's calling routine 
and this routine exits. 

CZAMZ3 (sometimes called INTERVENE) is called by the Attention Hand­
ler to process a command string entered after an attention interruption 
if that command string is not one of the system-defined responses to 
ATTN (such as STRING). CZAMZ3 uses 1:he Command Analyzer to process this 
string, but first, if the user has specified a USATT. this routine calls 
the Command Analyzer at CZASA7 to SIR the system attention handler 
(CIATT). It then specifies a non-OBEY entry by set1:ing Register 0 to O. 
If a recursive save area is not free, it calls CZAMZ13 to provide a 
recursive save area. 

CZAMZ3 does not expect a return from the Command Analyzer unless the 
command in the input string is GO. In case it is GO, this routine sets 
CZAMZL in Register 6 before calling the Command Analyzer at CZASAl. On 
return. CZAMZ3 returns the recursive save area it acquired, and, if the 
currently active program had issued a USATT, calls t:he Command Analyzer 
at CZASA6 to DIR the system attention handler. 

CZAMZ5 processes a CLIC or PAUSE macro; CZA~Z6 processes a CJ~IP or 
COMMAND macro. Both call CZAMZ3, passing it a null par'ameter string. 
On return, both return to the Task Monitor. (Note: If the task is non­
conversational, CZAMZ5 bypasses the call to CZAMZ3.) 

I Attention Command Processing: The User Controller contains the logic 
for processing four stack manipUlating commands -- RTRN, EXIT, STACK, 
and PUSH. 

Section 4: Command Routines 171 



• RTRN is processed by CZAMZ7/CZAMZ15. This . command is used to r.eturn 
the user to tlle command system with all previous source lists and 
programs iorgotte..'1, thus allowing him to bypass the normal comple­
tion of these ~rograrrs and source lists. This function is required 
within a multi-level nonprivileged environment to give the user con­
trol over t_he level dt which he is running. This comm<J.nd forces all 
actl. ve nonpr:i vi leged programs to exit, deletes all user SIRs and 
AFTDs. The user is ret.urned to level zero. The Text Editor, if 
acti ve, remains active on completion of RTRN. A CLEANUP is per­
formed, and the command (or macro) processing ends by processimJ a 
QLE to the Command Analyzer and returning to the Task Monitor. 

• EXIT is processed by CZAMZ8. This command (or macro) forces the 
currently active, user-invoked, nonprivileged program to exit. 
Again the user is allowed to bypass the normal completion of the 
curn::ntly-active nonprivileged program. EXIT checks that the user 
level is greater than zero (which it must be), and if there is any 
user SIR routine active (ITBACT does not equal zero). If there is 
an active routine and SIRTEST=N has not been specified, the opera­
tion is terminated. EXIT returns control to the Command Syst.enl so 
that the command string from which the nonprivileged module was 
invoked will be resumed. This means that no commands which follow 
EXIT will be executed. The Command System will respond with an 
underscore; the user can resume execution of the previous level of 
nonprivileged progran\. 

• STACK is processed by CZAMZ10. This command displays on SYSOUT all 
currently active user-invoked module names. The active level number 
must be greater than zero. If there are any active nO!1privileQed 
SIR routines, the message "SIR ROUTINE ACTIVE- is displayed. The 
module ndmes are displayed in descending order from the currently 
active down. SCAN and END routines will be uniquely identified. 
GATE is used to write the module names, one line at a time. At.ten­
tion is checked for after each line; attention terminates t.he 
operation. 

• PUSrt is processed by CZAMZ11. This command saves the status at the 
last non-completed, nonprivileged program in the system save area or 
stack (providing it is not a Text Editor command). The sy~tem save 
area stack must not be full, and, if there is any user SIR routine 
active (with SIR'TEST=N not specified) this operation is cancelled. 
The CUrr(llt program is moved into the CZAMZP save area stack, and 
the currently active level number is incremented by one. In t.he 
next entry of the privilege stack, this routine sets the address of 
a routine wbich QLEs to the Command Analyzer, and then exits to the 
Task Monitor. (Sec CZAMZ2.) This enatles a dispatched routine to 
be interrupted, then PUSHed, then run to completion twice. 

controller Service Routines: Three routines within the User Controller 
perform servicf'.c!s for other Controller routints. 

• CZAMZ12 is entered to delete previous entries from the proqram stack 
for a particular n.odule name. If a stack entry is found with t_hi~, 
name, it is marked inactive and tn,:; count at active program~; 
(CZAMZB) i~j reduced by one. The user is informed of the del etion 
before CZAMZ12 returns to the calling routine. 

• CZAMZ13 expands the save area stack a~; required through GE'TMAIN. 
These recursivE ::;ave areas are necessary since CZAMZ3 and the At.t('n­
t.ion Handler (CZASB), both of which obtain save areas, may be reen­
t.ered befuY<' they have been returned to J::y their called routines. 

• CZA}lZ14 is entered to delete previous entries from the proqram stack 
by type of prosram (rill LPCs comd be deactivated, for example). If 
a stack entry is found rr,arked as a type to bE deleted, the entry is 

172 



marked inactive and the count of active stack entries is decreased 
(CZAl>'iZB) • 

User Controller LPC Processing: The processing of the LPCINIT and LPCE­
DIT macros, of the END and transient commands, of the text editor fUnc­
tions, etc. is performed by the section of the User Controller whose 
entry points begin CZASW. 

CZASW1, processing the LPCINIT macro, checks whether a new LPC is 
permitted. A new LPC is permitted if the LPC in progress indicates that 
interrupts are permitted or if no LPC is in progress. If the LPC in 
progress indicates that interrupts are permitted, the implicit END rou­
tine (CZASW9) is invoked. Then processing continues as if no LPC were 
in progress. Otherwise or afterwards, the name of the LPC to be initia­
lized is recorded in the Transaction Table for future use. The address 
of the DCB is stored in the Transaction Table. The address of the END 
command preprocessor and postprocessor routines, the implicit END rou­
tine and the transient command routine are saved if they are supplied by 
the caller. If no implicit END routine is defined, the END preprocessor 
is saved as the implicit END routine. The Edit Initialization routine 
(CZBSE1) is linked to, and, on return, Register 13 is restored from 
NTCTMR, and control i~ passed to the calling routine. If a new LPC is 
not permitted, the user is prompted with the name of the current LPC and 
asked whether he wishes to terminate it. 

To process an END command, CZASW2 checks whether an LPC is in pro­
gress. If not, the user is prompted and the routine returns to the 
caller via the RETURN macro instruction. If the current routine speci­
fied no END preprocessor routine, the name of the current LPC in the 
Transaction Table is cleared, CZAMZ14 is called to clear the LPCs out of 
the stack, and the END postprocessor is invoked via a call to CZAMZ1. 
Afterward, an exit is taken. If there is an END routine specified, it 
is invoked through CZAMZ1, the current LPC name in the Transaction Table 
is cleared, the END postprocessor is invoked if it exists. Afterward. 
an exit is taken. 

CZASW3 is the transient command processor. If no LPC is in progress, 
the user is prompted and an exit is taken. If no transient command pro­
cessor is specified by the LPC, the user is prompted and an exit is 
taken. Otherwise, it reads a command from the source list via the SYSIN 
macro instruction, and the transient command proce::;sor is invoked, via 
CZAMZ1, and an exit is taken. 

CZASW4, processing the LPCEDIT macro, saves Register 13 (address of 
the routine that called CZAMZ1) in NTCTMR. Then, if no DCB is open, it 
calls the implicit END routine (CZASW9>, prompts the user that the LPCE­
DIT has been cancelled, and exits to CZAMZ2. If there is neither an 
active LPC nor any active programs, this routine also prompts the user 
and exits to CZAMZ2. However, if all is in order, this routine sets up 
return linkaqe to itself for CZAMZ2 to follow and calls CZAMZ2 to pop 
tne stack. In this case, CZAMZ2 returns to CZASW4, which, after acquir­
ing a recursive save area (if one is needed) from CZAMZ13, links to the 
Text. Editor DATALINE routine (CZASGl) to prompt for input. When DATA­
LINE returns, this routine exits to the routine that called CZA~Zl. 

CZASW5, entered as a result of a Text Editor command, checks to see 
if an LPC is in progress. If not, the user is prompted and an exit is 
taken. If tht're is an active LPC, but no open DCB, CZASW9 is called to 
end the LPC, the user prompted, and exit taken. Otherwise, the BUILTIN 
procedure key (BPK) is altered to contain the adcons for the proper pro­
cessing rout.ine. The processing routine is then cctlled via CZAMZl. 
Upon return to CZASW5, Heqister 1 is checked to see if a follow-on rou­
tine was specified. It no follow-on routine is specified, an exit is 
taken. If a follow-on routine is specified, CZASW5 loops, calling 

Spct ion 4: Command Routines 173 



follow-on routines as long as they are specified. The routine returns 
to the calling routine via the RETURN ll'acro instruction. 

CZASWI0 sets the ENABLE/DISABLE flag, CZASWX, to X'FF' to enable the 
Text Editor and returns to the calling routine. 

CZASWll sets the ENABLE/DISABLE flag, CZASWX. to X'OO' to disable the 
Text Editor and returns to the calling routine. 

CZBTGl checks to see if there is a name to load or unload. If not. 
the current name is taken from the AAAMOD field of Table AAA. If 
Register 1 on entry pointed to part of the UNLOAD BPK, an UNLOAD SVC 
(SVC 123) is issued and the routine returns to the caller via the RETURN 
macro instruction. If an unload operation was not requested, the adcon 
group is armed and a LOAD SVC is issued (SVC 127). If, upon return, the 
adcon group is still armed, it is assumed that the load operation was 
unsuccessful and the routine returns to the calling routine. A check is 
made to see if this was a request for a load operation; if so, the rou­
tine returns to the calling routine. Otherwise, a transparent call to 
CZAMZ1 is issued to dispatch the module to be called. Since this call 
to CZAMZl is transparent, CZAMZl returns to the caller of CZBTGl rather 
than to CZBTGl itself. 

ERROR CONDITIONS: The routine checks for the following conditions: 

1. Pushdown stack capacity exceeded. 

2. Page unavailable in which to build recursive save areas. 

3. Command requires that LPC be previously defined. 

4. Name to be loaded exceeds eight characters in length. 

5. DCB not previously opened. 

SYSTEM CONTROL BLOCK USAGE: 

BPK DSECT (CHABPK) 
Data Control Block (CHADCB) 
Stack Entry (CHASTK) 
InterrUpt Storage Area (CHAISA) 
TABLEA (CHAAAA) 
Profile Character and switch Table (CHAPCT) 
Source List Paye Header (CHASLP) 
Sublist Header (CHASLH) 
New Task Conmlon (CHANTC) 
Transaction Table (CHATRN) 

~VAM Tape Comwdnd Routine (CZAET) 

This routine processes requests to copy a VAlolJ data set on tape as a 
physi cal sequential data set (VT -- VAt' to Tape); to restore a Fhysical 
o:;<:.quential copy of a VAM data set from tape to direct acces~, storage (TV 
-- Tape to VAM)j or, to produce dn identical copy of a VAM data set on 
direct access storage (VV -- VAM to VAfI). (~ee Chart DA.) 

ENTRIES 

CZAETl - VT command entry 
CZAET2 - TV command entry 
CZAET3 - VV command entry 
CZAET4 - VT call entry 
CZAET5 - TV call entry 
CZAET6 - W call entry 
CZAET7 - EODAD entry 
CZAET8 - SYNAD entry 

174 



MODULES CALLED 

CHEKDS (CZAAC2) 

MSGWR (CZAAD2) 

GA'I'WR (CZATCl) 

DDEF (CZAEAl) 

CATALOG (CZAEI1) 

ERASE (CZAEJ 1> 

RELEASE (CZAFJ1) 

LOCATE (CZCFL1) 

GETMAIN (CZCGA2) 

F'REEMAIN (CZCGA3) 

ADDCAT (CZCFA) 

WRTM (CZCRBS) 

HUMP (CZCAB1> 

OPLN (CZCLAO> 

CLOSE (CZCLBC> 

PAIR (CZACSl) 

BSA LOCK (CZCEJ1) 

BSA LOCK (CZCEJ2) 

DSCB RDWR (CZCEM1) 

validates data set name. 

Issues system messages. 

writes messages on SYSOUT. 

Generates JFCBs. 

Catalogs output tape (copy) data set. 

Erases output data set if copy not completed 
normally. 

Releases JFCBs generated for the input or output 
data sets. 

Finds catalog entry for data set. 

Allocates buffer space. 

Releases buffer space. 

Updates DSORG field in VAM output data set. 

Writes tapemarks. 

Removes mounted volume. 

Opens DCB. 

Closes DCB. 

Creates an entry in the ABEND Interlock Release 
Table. 

Set a Virtual Memory Lock. 

Clears a Virtual Memory Lock. 

Writes out a DSCB Paqe. Read::; one in. 

EXITS: The routine always returns to the calling routine, via the 
RETUkN macro instruction. 

9PERATIO~: The VI\M tape module is entered at one of six entry points 
for the command or CALL specified by the user. A parameter list with a 
pointt?r to tile addres~ of a character string containing the name of the 
data set to be copied and, optionally, the name to be assigned to the 
output data set, is required. Once the paraweten; have been located, 
processing continue~ as required by the particular request. 

~A!'1 __ ~~Tap(~--..!'!:gcessing: The input dsnamp is verified. It must be the 
namE' of a VAM data set. If a JFCB does not Exist and the data set is 
Cdt aloged, d ,JFCh is created by a call to DDI:.F. For the output data 
sd, cl Ji"Cl\ lTIUc;t be found with ddname=DDVTOUT. :;pecitied within this 
JPCH lTIU~t ~e pnysical seqUential orgdnizdtion and a tape volume on a 
I11flic,-trdck ,lrive. If this is t.he first copy operdtion for thp output 
,H'CH, indicated by the absence of t~he identificat_ion *%*% in t.he TDTDSM 
t if'ld, the Ollt~ut dsnallie used is the name in the L1FCB. The identifica­
t ion is insl'rted, out_ no otner fields in the JFCE are modified. If not 
tne t irst copy operat_ion, the output dsname is taken from the operand 
~;tring, or ,ietaulted, and inserted into the DDVTOUT JFCB. Also updated 
dre the fill' sequence number (TDTFSQ) and catalog flag (TDTCFL). 

Section 4: Command Routines 175 



Once the data sets are opened, the input JFCB (256 bytes) and the 
common portion of the input data set's format-E DSCB (37 bytes> are 
written as the first record (4096 bytes) on the output tape. The 
remainder of the record is padded with zeros. 

Data pages t.o be copied are located by indexing through the FESTBL 
for the input data set. For each page to be written, a SETXP SVC i~; 
issued with an external address from the FESTBL, to make use of the pag­
ing mechanism for input, and is written to tape as a 4096 byte record by 
BSAM WRITE. Eight buffers are used to overlap processing and input/ 
output time. After the tape operation is completed, processinq con­
cludes at a common point. See Final Processing below. 

Tape to VAM Processing: The input dsname is verified. It must be the 
name of a physical sequential data set residing on a nine-track tape. 
If a JFCB for the data set cannot be found, and the data set is cata­
loged, DDEF is called to create one. The output dsname must be for d 

new VAM data set. If a JFCB is found in the TDT chain, it is used; 
otherwise, one is created by a call to DDEF. An output JFCB is requi red 
from the user only if the data set is to be restored to a private VAM 
volume. 

After the data sets have been opened, the first record is read to 
verify the tape format and to make available the DSCB data necessary to 
recreate the original data set. Data records from the tape are input by 
BSAM READ and output by VSAM PUT. (The output data set at this point is 
treated as a VAM sequential, format U, data set.) Processing continues 
in this manner until a unit exception occurs. The EODAD routine outputs 
any remaining records. Processing then concludes as described under 
Final Processing. 

Eight buffers are used. The initial tape read fills all eiqht buf­
fers. Subsequently, four buffers at a time are filled as the other four 
are emptied to overlap processing and input/output time. 

VAM to VAM Processing: The input dsname is verified. It must be the 
name of a VAM dat.a set. If a JFCB does not exist and the data set is 
cataloged, a JF'CB is created by a call to DDEF. The output dsname mm::t 
be for a new VAM data set. If a JFCB is found in the TOT chain, it is 
used; otherwise, one is created by a call to DDEF. An output JFCB is 
required only if the data set is to be copied to a private VAM volume. 

Both data sets are opened. The comrron portion of the ini->ut dat.a 
set's format-£ DSCB (37 bytes) is retained to recreate the data set once 
the copy operation has been completed. Data pages to be copied are 
located by indexing through the RESTBL for the input data set. For each 
page to be output, a SETXP SVC for the buffer pages is issued with an 
external address from the RESTBL (input) tc make use of the paqing 
rrechanism for input, and is written into the output data set: by V~;AM 
PUT. (The output data set at this point is treated as a VAM sequent.ial, 
format U, data set.) When the copy is complete, processing concludes a~; 
described under Final processing below. 

Final Processing: Both data sets are closed and all buffers are 
released. If the data set created on direct access storage is not com­
pleted correctly, ERASE is called to delete the partial data set. For 
normally completed TV and VV operations, the output data set's DSCBs 
reflect the data set just created by VAM Tape and not the original data 
set. To correct this, the format-E OSCE for the output data set is read 
in through a read DSCB routine which is internal to the proq ram. The 
common portion (37 bytes) of the format-£ DSCB is updated from the DSCB 
data retained from the original data set. Then the output OSCB is 
rewritten to external storage by PGOUT. Next, the DSORG f:leld in the 
catalog is updated for the output VAM data set.. The output ta pe dat.a 
set is cataloged unless the dsname was preceded Ly an asterisk (*). The 

176 



TDTDS2 field for the DDVTOUT JFCB is then filled In with F's. Proces­
sing is concluded by releasing any JFCBs created by the routine. 

ERROR CONDITIONS: If entry was by macro instruction, a hexadecimal code 
will be returned in general register 15: 

Coje 

OC 
10 
1~ 

18 
lC 
20 
24 
28 
2C 
30 
34 
38 
3C 
40 
44 
48 
4C 
50 
54 
58 
5C 
60 
64 

Signif icanc~ 

Input dsname missing. 
Dsname invalid. 
Dsname not generation data group. 
catalog error. 
Dsname not fully qualified. 
VAl"! dsname contains *. 
DISP=OLD in DDVTOUT. 
Dsname not VAM. 
Dsname not extant. 
DDVTOUT not extant. 
Volume not 9-track tape. 
No data to copy. 
Unrecoverable output tape error. 
UnrecoverablE input tape error. 
DSCB error. 
Unauthorized use of system data set name. 
Tape volume not IT'cunted. 
Punctuation error in operands. 
Dsname in DDEF not DDVTOUT. 
New dsname not unique. 
No direct access space for new data set. 
Output VAi'1J data set contains data. 
Dsname not PS. 

The routine checks for acceptable operands and, when called at a com­
mand entry point, notifies the user, through MSGWR or GATWR, of any 
errors found. Messages issued through MSGWR are identified by a message 
code preceding the message. For precise texts see System Messages. 

NORMAL COr-'PLETION: If entry was by macro instruction, a hexadecimal 
code will be returned in general register 15: 

Code 

00 
04 
08 

Significance 

Normal completion - VT. 
Normal completion - TV. 
Normdl completion - w. 

ThE? routine, .... hen called at a command entry point, notifies the user, 
through MSGWH, of a successful completion. The messages are for the VT, 
TV and VV commands, respectively. 

tvles~;age 

Co~ 

BFOl 

BF'02 

BF03 

Text 

(dsname 1 > COPIED AS (dsname~) ON TAPE, FSQ (fsq), VSN (vsn). 

(dsname1> COPIED AS (dsname2) FROr.; TAPE, FSQ, (fsq), VSN 
(vsn). 

(dsnane1> COPIED AS (dsname~). 

SYSTEM CONTROL BLOCK USAGE: 

Cataloy SBLOCK (CHACCC) 
F'ormat-E DSCB (CHADSE) 
Interrupt Storage Area (CHAISA) 

Section 4: Command Routines 177 



Symbolic Device Allocation Table (CHASDA) 
Task Common (CHATCM) 
Task Data Definition Table (CHATDT) 
Data Control Block (CHAnCB> 
RESTBL Header (CHARHD) 
DCB Header (CHADHD) 

~VSS command Routine (CZAVR) 

This routine checks the user's authority code to determine if he may 
use the Virtual Support System (VSS). In order to use VSS, the user 
must have an authority of 0 or P. (See Chart DB.) 

ENTRY: CZAVRl - normal entry 

MODULES CALLED: 

User Prompter (CZATJ1) Issues diagnostic messages to SYSOUT when errors 
occur. 

READ (CZCPE) Reads the user table for user's entry. 

EXITS: This routine normally exits to TSSS via an SVC 83. Upon return 
from TSSS, exit is made to the calling routine via the RETURN macro 
instruction. If an error occurs, the routine exits to the calling rou­
tine via RETURN. 

OPERATION: Upon entry, the task's userid is obtained. The User Table 
is READ and the user's authority is examined. 

If it is 0 or P, exit is made to the Time Sharing Support System 
(TSSSJ. Otherwise, an insufficient authority diagnostic is issued, aud 
control is returned to the caller. Upon return from TSSS, control is 
returned to the caller. 

ERROR CONDITIONS: The userid of the user issuing the command is checked 
for the proper authority (0 or Pl. If the user does not have the proper 
authority, a diagnostic message is issued. If the task callinq VSS is 
nonconversational, a diagnostic is issued, and control is returned to 
the caller. 

SYSTEM CONTROL BLOCK USAGE: 

Task Common (CHATCM) 
Data Control Block (CHADCB) 
User Table (CHAUSE) 

178 



SECTION 5: MACRO INSTRUCTION HANDLING 

The command system supports macro instructions which allow object 
programs, during execution, to use certain command system facilities 
while still retaining control over processing. Included with these 
macros is the ATPOL macro instruction, used in checking for attention 
int_errupts before GATE calls. The names and functions of these macro 
instructions are listed in Figure 12. 

Macro instructions supporteo. by the command system may be grouped 
into four general categories: 

1. Those calling com~and routines. 

2. Those calling command support routines (ABEND, FINDJFCB, and 
FINDOS) . 

3. ThosE; calling subsystem support routines (GATRD, GATWR, GTWAR, 
G'I'wSR, GTWRC and MSGWR). 

r-------------T----------------------------------T---------------------, 
I Macro I I Routine t~o Which I 
I Instruction I Function I Macro Instruction I 
I Name I I Links I 
~-------------+----------------------------------+---------------------~ 
I ABEND I To abnormally terminate a task. ! ABEND I 
I I I I 
I ATPOI. I To check whether an attention I None. Macro expan- I 
! I interrupt is pending. I sion coding performs I 
I I I action I 
I I I I 
I CAT I To create or update an entry for I CATALOG Command i 
I I A data set in the catalog. To I Routine I 
I 1 create a generation data group I I 
I I index level. I I 
I I I I 
I CDD I To retrieve and process one or I CDD Command Routine I 
I I more prestored DDEF commands. I I 
I I I I 
I CDS I To make a copy of an already I CDS Command Routine I 
I I existing data set or member of a I I 
I I partitioned data set. I I 
I I I I 
I DDEF I To define a data set and I DDEF Command Routine I 
I I describe its characteristics to I I 
I I the system. I I 
I I I I 
I DEL I To delete one or more data set I ERASE/DELETE Command I 
I I entries from the catalog. I Routine ! 
I I I I 
I ERASE I To erase the direct access I ERASE/DELETE Command I 
I I storage assigned to a data set I Routine i 
I I and remove the data set entry I I 
, I from the catalog. I I 
I I I I 
I FIN DDS I To locate a JFCB or to create a I FINDDS I 
I I JFCB for a cataloged data set. I I l _____________ .1. __________________________________ .1. _____________________ J 

Figure 12. f.ilacro instructions supported by the command syst0m 
(part 1 of 2) 

Section 5: Macro Instruction Handling 179 



r-------------T----------------------------------r---------------------, 
I Macro I I Routine to Which I 
I Instruction I Function I Macro Instruction I 
I Name I I Links I 
~-------------+----------------------------------+---------------------~ 

FINDJFCB I To locate a JFCB in the Task I FINDJFCB I 
I Data Definition Table and I I 
I optionally, insure that correct I I 
I volume (s) is mounted. I I 
I I I 

GATRD I To read a record from SYSIN. I GATE Routine I 
I I I 

GATWR I To write a record on SYSOUT. I GATE Routine I 
I I I 

GTWAR I To write a record on SYSOUT, I GATE Routine i 
I then read the next record from I I 
I SYSIN. I ! 
I I I 

GTWSR I To write a record on SYSOUT then I GATE Routine I 
I read record from terminal. I I 
I I I 

GTWRC I To write a record on SYSOUT with I GATE Routine I 
I carriage control character supp- I I 
I lied by program which issued I I 
I macro. I I 
I I I 

MCAST I To make changes in the profile I MCAST/MCASTAB I 
I character and switch table. I Routine I 
I I I 

MSGWR I To issue a message to SYSOUT I MSGWR Routine I 
I and, if specified, fetch the I I 
I response. I I 
I I I 

PR I To print a data set on a high- I PRINT Command I 
I speed printer. I Routine I 
I I I 

PU I To punch a specified data set I PUNCH Command I 
I onto cards. I Routine I 
I I I 

REL I To delete the JFCB for a data I RELEASE Command I 
I set, to release the I/O devices I Routine I 
I associated with a private data I I 
I set, or to remove a job library I i 
I from the program library list. I I 
I I I 

VSENDR I To send an intertask message and I XWTO Routine I 
lawai t the response. I I 
I I 

WT I To write a data set onto tape WT Command Routine I 
I for subsequent offline printing. I 
I I 

WTL I To write a message in the opera- XWTO Routine I 
I tor log. I 
I I 

WTO I To write a message on the opera- XWTO Routine I 
I tor console and in the opera- I 
I tor's log. I 
I I 

WTOR I To write a message on the opera- XWTO Routine I 
I tor console and in the opera- I 

I I tori s log and get the response. I l _____________ ~ __________________________________ ~ _____________________ ~ 

Figure 12. Macro Instructions Supported by the Command System 
(part 2 of 2) 

180 



4. Those used to communicate with other tasks (WTO. WTL, WTOR and 
VSENDR) • 

A detailed description of the command routines and command support 
routines can be found in section 4, with the exception of the ~~. PU and 
PR command routines. These routines and the XWTO routine can be found 
in the 0Rerator Task and Bulk I/O PLM, GY28-2047. The GATE routine is 
described in Section 2. 

Macro Instructions that Call Command Routines 

Using CAT, CDD, CDS, DDEF, DEL, ERASE or REL macro instructions 
causes execution of the corresponding command routine. The effect is as 
if the command itself had been issued; but the code that links to the 
command routine, as a result of macro expansion, is part of the user's 
object program and thus active only at object time. The linkage from 
the object program to the command routine is direct; the command analyz­
er and executor is not used for this linkage. 

The command routine itself performs in the same way whether it is 
processing a command or a macro instruction. There are two notable 
exceptions to this statement: 

1. The command routine issues no message if it has been entered by a 
macro instruction. Instead, it supplies a return code to show if 
an error was found and, in some cases, to indicate the type of 
error. Error handling is left to the object program that issued 
the macro instruction. 

2. The macro expansion (that is, the object code generated for the 
macro instruction) links to a special entry in the command rout:.ine, 
not to the entry used in normal command processing. This lets the 
routine prepare for macro instruction processing; that is, it sets 
indica tors as needed so that no messages will be issued, and makes 
adjustments to fetch its input parameters. (Unlike the command 
analyzer and executor, which supplies the address of the input, the 
macro expansion furnishes a pointer to a locat.ion containing the 
address of the input.) 

When the command system routine is finished, i 1~ returns control to 
the calling object program (unless a system error occurred). An appro­
priate code will be set upon return. 

Macro Instructions that Call Command support Routi. nes 

The ABEND, FINDJFCB, and FINDDS macro instruct::..ons call upon the 
ABEND, FINDJFCB, and FINDDS command sUj:port routines. Operation of 
those rout.ines is described in Section 4. f.;nt~ry to t~hem is ah.ays via 
macro instruction calls, which require no special macro instruction 
provisions. 

The FINWFCB and FINDDS macro instructions are for systt~m component 
use only. (A system component is any component sllj:plied as part of the 
time sharing system or added through a new system generation.) The 
ABEND macro instruction is normally for system comronent US!', but user 
progra~s may also employ it. 

Entry to the command support routine occurs dUI: inq !:'xecut ion of the 
onject program making the call, via linkage generated by the macro 
expansion. The support routine is then executed as described in Section 
4. Return mayor may not be made at this FOint, depending on the macro 
instruction issued and on whether or not serious errors were found. An 
ABEND macro instruction terminates the task of the calling object pro­
gram, so there is no return. Certain errors found during FINDDS or 
FINDJFCB execution will cause an abnormal termination (via ABEND) of the 

Section 5: Macro Instruction Handling 181 



calling task, but otherwise return is made to the calling object 
program. 

Macro Instructions that Call Subsystem Support Routines 

The GATE routine handles five macro instructions: GATRD, GATWR. 
GTWAR, GTWSR and GTWRC. These macro instructions may be employed by any 
user, privileged or not; the GATE routine itself does not check privi­
lege. (privilege here means the ability to access certain areas of 
storage. Only systems programs may be privileged; user programs are 
nonprivileged.) 

Entry to GATE is made at the macro entry point; an operation code 
generated by the macro expansion indicates which of the five macro 
instructions is being processed. For a detailed description of GATE 
operation, see Section 2. Upon completion of GATE, return is made to 
the calling object program. 

The ATPOL macro instruction is unusual in that the expansion itself 
provides the object code that is executed when the ATPOL is honored. No 
call is maje. ATPOL is intenjed to be used by privileged system ?ro­
grams before linking to GATE. If ATPOL finds an attention interrupt, it 
returns to the designated location in the calling program. If there is 
no attention interrupt at this time, it returns to the next instruction 
in the calling program. Usually, the next instruction is a linkage to 
GATE. 

Macro Instructions That Communicate With Other Tasks 

ThE XWTO routine performs the actions requested by four macro 
instructions: WTO, WTL, WTOR and VSENDR. WTO, WTL and WTOR each 
involve some sort of communication with the system operator. The VSENDR 
macro instruction is used to communicate with any specified task. The 
expansion of these macro instructions results in linkage to XWTO, with 
an operation code set to indicate which macro instruction is to be pro­
cessed. XWTO will then carry out the requested action before returning 
control to the calling object program. 

182 



SECTION 6: SOURCE LANGUAGE PROCESSING 

The Language Processor Controller (LPC) serves as the link between 
the user and the language processors. It is entirely transparent to the 
user, for he appears to be communicating directly with the language pro­
cessor he has chosen. Actually, LPC gathers the input parameters for 
the language processor, loads the processor, and passes its parameters 
to the processor. The language processors call upon LPC for source 
lines, and they use LPC to issue diagnostic messages and invite 
corrections. 

LPC consists of three routines: 

LPCMAIN 
has a separate entry point for each language processor, collects 
the input parameters, calls the language processor and stores the 
object module in a program library. 

GETLINE 
receives the source lines one at a time from the user and creates a 
source data set (or takes the source lines one at a time from a 
source data set>. and conversationally modifies the source data set 
if required. 

PUTDIAG 
collects diagnostic messages from the language processor, and 
issues them if appropriate. 

When the user calls upon a language processor, LPCMAIN is loaded and 
entered at the proper entry point for the requested processor. LPC 
reads the given input. parameters, checks them for validity and consis­
tency and, if necessary, issues diagnostic messages and prompts for pa­
rameter reentry. LPC then creates data sets for the source and listing 
lines. It sets up a parameter list and calls the initial phase of the 
requested processor (thereby loading it). 

The processor calls GETLINE whenever it wants an input record. GET­
LINE either fetches this from SYSIN or from the source data set, depend­
ing on whether or not the data set is prestored. 

When diagnostic messages have been issued for source statements and 
the user enters corrections, GETLINE puts these corrections into t.he 
source data set and informs the language processor that corrections have 
been made. 'I'he language processor may at this point restart processing 
at some earlier point in the source data. GETLINE detects this "back-up 
request" and t.akes statements from t:he source data set as long as t.here 
are records in it; then GETLINE requests additional input from the user. 

PUTDIAG i~; ca lIed by the language processor s whenever they want to 
is~;ue a message to SYSOUT. In conversational mode, PUTDIAG stacks these 
diagnostic messages until the language processor calls GETLINE for a 
line of input; then the diagnostic messages are sent to the user, and 
the keyboar·d is unlocked so that he can enter corrections. If the diag­
nostic meSSd':je stack kept by PUTDIAG becomes full, all diagnostic mes­
sages are printed immediately (except for the last one) so that more can 
be stacked and issued by GETLINE. 

When the processor has reached the end of its first phase of proces­
sing, it ret.urns to LPCMAIN. The source data set is closed unless the 
user wishes to modify it. If he chooses to modify it, LPCMAIN calls 
GE'l'LINE to accept the Il'odifications. and LFC reini tializes the processor 

Section 6: Source Language Processing 183 



(by calling the appropriate processor entry point) and restarts, using 
the prestored modified source data set as input. If the user does not 
wish to modify the Source data set, LPCMAIN calls processor continua­
tion, and the language processor continues its activities. It may use 
PUTDIAG to issue further messages. 

When the language processor has finished, it returns to LPCMAIN with 
an error-level code that indicates the severity of errors. LPC sends a 
message to the user telling him the level of the error, and stores the 
object module (if one was created) in a program library. This library 
is either the last-mentioned JOBLIB data set, or if none has been men­
tioned, the SYSULIB. 

FREEMAIN is called to free some of the storage collected by the lan­
guage processors and then LPCMAIN returns control to the Task Monitor. 

Since LPC and the language processors are all nonprivileged user pro­
grams, they can be interrupted by an ATTENTION at any point; thus the 
user can interrupt a language processor, execute a string of commands. 
and restart the language processing. If he modifies his source data set 
while in the command mode, neither LPC nor the language processor will 
be aware of it, and the results are unpredictable. The user may also 
choose to terminate one language processor and immediately call another. 
Before the next language processor is called, checks are made to deter­
mine if the current language processor has finished its processing. If 
it has not, the source data set is closed, the list data set is erased, 
and any virtual storage reserved for the PMD, TXT, and ISD is released. 

The DEFAULT LPCXPRSS = Y option makes it possible to do several com­
pilations without returning to the command system between compilations. 
Only the new module name is entered at the end of each compilation. The 
new module uses the same parameters as the original call to LPC. A 
break character or a numeric module name, inserted before the next com­
mand, terminates express mode and causes a return to the command system. 
DEFAULT LPCXPRSS = N must be entered after returning to the command sys­
tem or the next assembly or compilation will be in express mode. 

~LPCMAIN (CFADA) 

LPCMAIN is a nonprivileged program called via the ENTER SVC. After 
validating the operands required by that processor, this routine calls 
the requested language processor to process a source data set. At the 
end of processing, LPCMAIN stores the reSUlting object module and, if 
requested, prints the listing data set, which includes all output speci­
fied by the user. (See Chart DC.) 

ENTRIES: 

CFADA1 - FORTRAN entry 
CFADA2 - assembler entry 
CFADA3 - linkage editor entry 
SYSASM - alternate assembler entry used by LOAD and RUN 
SYSFTN - alternate FORTRAN entry used by LOAD and RUN 
SYSLNK - alternate linkage editor entry used by LOAD and RUN 

MODULES CALLED: 

GATE (CZATC) 

MSGWR (CZAAD) 

FINDDS (CZAEC) 

184 

CZATC1 writes to SYSOUT or reads from SYSIN. 

CZAAD2 issues system messages. 

CZAECl searches the TDT for the JFCB for the source 
or listing data set. 



-

DDEF (CZAEA) 

DELETE (CZAFJ) 

FINDJFCB (CZAEB) 

Virtual Memory 
Allocation (CZCGA) 

ERASE (CZAEJ) 

CATALOG (CZAEI) 

ABEND (CZACP) 

Control Dictionary 
Handler (CZASD) 

Source List Handler 
(CZASC) 

GETLINE (CFADB) 

CZAEA4 creates a JFCB for the source data set, 
listing data set or system macro library. 

CZAFJ deletes a catalog entry for the list data 
set. 

CZAEBl searches the TDT for the JFC5 for a given 
ddname. 

CZCGA3 (FREEMAIN) releases virtual storage obtained 
for PMD, TXT and ISD. 

CZAEJ1 erases a listing data set. 

CZAEI2 establishes a generation data group for a 
listing data set. 

CZACPl terminat.es processing after an error is 
detected. 

CZASDX finds the default value for LPCXPRSS, 
MODREP. 

CZASC8 gets another line from the Source List. 

CFADBl modifies a source data set. 

The following are sections of the language processors that may be 
entered: 

Assember Initiation (CEVPAA), Continuation (CEVPAB), and Early End 
(CEVPAZ) 

FORTRAN Initiation (CEKTAA), Continl2tion (CEKTAB). and Early End 
(CEKTAC) 

Linkage Editor Initiation (CEYIA1), Continuation (CEYOP1), and Early End 
(CETEEl> 

EXITS: The routine normally returns to the calling routine, via the 
RETURN SVC. If a system error occurs, the routine exits to ABEND. 

OPERATION: This routine first collects the operands required for the 
specified language processor (FORTRAN compiler, linkage editor, or 
assembler> either by prompting the user for them or by fetchinq them 
from SYSIN. The Command Controller SCAN package (CZAAC>, assembled as 
part of LPCMAIN with minor modifications, is used to validate the 
operands. If any operands are found to be invalid, tile rejected operand 
is displayed, and the user is prompted to again enter the operand set. 
The routine then places the validated operands in d list, calls the lan­
guage processor, and passes the list to it. LPCMAIN also calls DDEF to 
issue job file control blocks (JFCBs) for the source and listing data 
sets, and opens the source data set as well as the appropriate job 
library, before passing control to the language processor's initial 
entry. If a listing data set was actually produced, LPC determines if a 
generation data grou~ LIST. symbol exists. If not, LFC creates one by 
issuing 

CAT GOG = .LIST. symbol, 2,0, E 

and then adding the listing data set just produced to I.IST.symbol by 
issuing 

CAT LIST.symbol(+l),N 

Section 6: Source Language Processing 185 



The user is now responsible for printing listing data sets. 

At the end of the source data set scan, the language processor 
returns control to LPCMAIN. The routine then issues any diagnostic mes­
sages ~roduced for the last statement in the source data set. If the 
task is nonconversational, LPCMAIN merely closes the source data set and 
passes control to the language processor at its continuation entry 
point. For a conversational task, LPC~AIN asks the user if he wants to 
modify his data set. 

If the modify option is selected, LPCMAIN calls the language proces­
sor early end routine to terminate the completed processing, then calls 
GETLINE to collect the user's modifications and place them in his source 
data set. Upon return, LPCMAIN calls the language processor initializa­
tion routine to restart processing. The input for this new scan is the 
stored source data set with its modifications included. 

If the continue option is selected, LPCl"AIN closes the source data 
set and calls the language processor at its continuation entry point. 

When normal processing ends, the language processor returns control 
from its continuation entry point to LPCMAIN. The routine then stores 
the object module (if one was created) in the user's job library (or 
user library). Finally, LPCMAIN returns to its calling routine. 

LPCMAIN perrr,i ts a maximum of seven macro lirraries to be passed to 
the assembler; this includes the system macro library and a maximum of 
six user macro libraries. 

When a module is assembled with aliases, duplicates of which already 
exist in JOBLIH, the user may, at his option, print the duplicate 
aliases and stow the module in a new JOBLIB. 

If the user enters a dsname, LPC DDEFs a new JOBLIB, stows the 
module, and releases the data set so the next module assembled will go 
into the original JOBLIB. If the user chooses to DDEF his own JOBLIB, 
the module will be stowed in the new JOBLIE and all other modules 
assembled will go into the same JOBLIB. The user may also return t.o 
Command System and release the JOBLIB containing the duplicate alias or 
erase the member containing the duplicate alias. 

Note: Any batch assembly or compilation will automatically have the 
listings printed unless the user specifies LISTDS=Y (create a list data 
set). This is not true in conversational mode where the default option 
for LISTD:"~ is Y. 

ERROR CONDITIONS: The routine checks for acceptable operands and noti­
fies the user, through MSG~"lR, of any errors found. For the messages 
issued, see System Messages. 

LPCMAIN fIlay issue these ABEND messages: 

ABEND Message 

GATlill RC OR FORMAT KEY 

INVLu RC FRO~ LP 

SCAN RC OR DELIM CODE INVLD 

lH6 

Significance 

Return code from GATE is invalid or unac­
ceptable, or keyboard/card key of record 
is invalid. 

Invalid return code from language 
processor. 

Invalid return code or undefined delimiter 
code returned from a SCAN routine. 



ABNORMAL RC FROM FIND 

INVLD RC FROM FINDDS 

GATWR RC INVALID 

MSGWR RC INVLD 

MSNG PARAM 

STOW RC ABNORMAL 

DD RC ABNORMAL 

Abnormal return code received from FIND. 

Invalid return code from FINDDS. 

Invalid return code from GATE. 

Invalid return code feom MSGWR. 

Required parameter missing (issued in non­
conversational task only). 

Abnormal return code from STOW macro 
instruction. 

Abnormal return code from DDEF. 

If the code returned by the language processor at the end of the scan 
phase indicat.es an object module will not be -produced, LPCMAIN will 
issue any remaining messages for the source data set. In nonconversa­
tional mode, LPCMAIN will terminate processing as described for the ter­
mination option. In conversational mode, the user is asked to terminate 
processing or mOdify his source data set; he cannot continue. Termina­
tion and modification are handled according to the previous description 
of those options. 

SYSTEM CONTROL BLOCK USAGE: 

Task Common (CHATCM) 
Task Data Definition Table (CHATDT) 
Data Control Block (CHADCB) 
Interr"upt Storage Area (CHAISA) 
TABLEA (CHAAAA> 

~GETLINE Routine (CFADB) 

This routine fetches source lines from SYSIN, or from a prestored 
source data set, and sends them, on request, to a language processor. 
It stores the lines to create a source data set if the data was not 
already stored, and places modification lines in the stored data set. 
In addition, GETLINE issues diagnost.ic messages stacked by PUTDIAG for 
the language processors and fin conversational mode) prompts for correc­
tions. (See Chart DD.) 

ENTRIES: 

CFADBl - normal entry 
CFADB2 - SYNAD entry 
CFADB3 - EODAD entry 

IvlODULES CALLED: Since GETLINE is a nonprivileged program, all calls are 
made via ENTER SVC. 

GTWAl{ (CZATC1) 

Gl,TP[) (CZATCl) 

GTWSR (CZA'l'Cl) 

GATWR (CZATCl) 

Issues line number for next line, and also reads in 
that line. 

qeads in next line of data set. 

Issues correction line number, and also reads in the 
next line. 

Writes diagnostic messages. 

EXIT~;: 'I'he routine normally returns tc the calling routine, via the 
RhTUH.N macro instruction. If a system error occurs, the routine exits 
to ABum. 

Section 6: SourCt Language Processing 187 



OPERATION: GETLINE has four distinct modes of operation: 

1. Source data set is prestored; task is nonconversational. 

2. Source data set is on nonconversational SYSIN. 

3. Source data set is prestored; task is conversational. 

4. Source data set is on conversational SYSIN. 

For case 1, the source data set is prestored and the task is noncon­
versational. In this case, the source lines are read in one at a time 
and passed on to the language processor. No corrections are made and no 
messages are issued. 

In case 2, the source data set is on nonconversational SYSIN. If the 
SYSIN is VISAM, the first seven characters of text are the line number 
(or key); GETLINE replaces this number with a new seven character source 
data set line number while creating the source data set. The eighth 
character is assumed to be a format indicator, and is carried with the 
original text. 

It SYSIN is VSAM with variable-length records, it is assumed that it 
was created via the DATA command, and that the first character of each 
record is a keyboard/card-reader indicator. The indicator is left 
intact and a seven-character source data set line number is prefixed to 
the tt~xt. 

In case 3, the source data set is prestored and the task is conversa­
tional. Gl.TLINE first tests for pending messages, and if any are found 
they are issuerl immediately. After all messages are printed. a number 
sign (n) is issued to invite the user to enter corrections. The user 
either types in a modification line or presses the RETURN key to indic­
ate that no modifications are desired. Once a correction has been made, 
or rejected as invalid, GETLINE requests the next correction until the 
user enters a null line (carriage return only). 

All diagnostic printouts may be inhibited by typing an "I" in~ediate­
ly after the number sign (#). A "C", entered immediately after the num­
ber 0ign, allows diagnostic printouts tut inhil::its printing the number 
sign, and the user is not allowed to make corrections. 

It no corrections were made, GETLINE gets the appropriate record from 
the ~,ource data set. A t~st is made to see whether the input line num­
ber is the same il~:; the la:c,t line number sent to the language processor. 
If it is, the next recoru is taken trow the source data set. If the two 
nUll,bers are not the same, reorientation within the data set_ is 
perturmed. 

In case 4, the source data set is on conversational SYSIN. GETLINE 
first checks for diagllo:.tic lIessages and, if any are found, issues them. 
If mc~;sages are issued, thi~ next line number for the source data set is 
print.ed Lo prompt the user to enter his source data line. The keyboard 
is unlocked so that the user may enter either the new line or a corrpc­
tion line. It no messages are issued, the dctive terminal cowronent is 
read. 

If the user has entered a correction line, GETLINE requests another 
line (after makint] tne correction in the data set). This process con­
tinues until toe user supplies a normal next line, which is put in the 
data !3et. 

Tbere are two subroutines internal to GETLINE: GVDIAG and SCNCOR. 
GVDIAG performs the actual issuing of diagno~>tic messages. It examines 
the count in the diagnostic message stack, and if it is nonzero, issues 

188 



the messages one at a time. SCNCOR validates and makes corrections to 
data set lines. 

The privileged SCAN routines with slight modifications are assembled 
as part of GETLINE. 

ERROR CONDITIONS: If called by a language processor, GETLINE returns a 
hexadecimal code in register 15. HOllolever, LPCMAIN .receives no return 
code from GETLINE. 

Code Significance 

Normal return 00 
04 
08 
12 

Normal return when alterations are made 
No end card in source data set 
Abnormal end of task 

GETLINE may issue these diagnostic messages to the user: 

CFADB023 
CFADB037 

PROCEEDING: 
PROCEEDING: 

CORRECTION OUTSIDE DATA SET. LINE IGNORED. 
LAST SOURCE LINE IS $01. MISSING END CARD 

SUPPLIED. 
CFADB378 
CFADB379 
CFADB388 

PROCEEDING: END OF DATA SET. LAST LINE DELETED WAS $01. 
PROCEEDING: INVALID MODIFICATION REQUEST. 
CANCELED: NEXT LINE NUMBER EXCEEDS 7 DIGITS. 

The routine way issue these ABEND messages: 

ABEND Message 

LINE NO. FROM LP INVLD - CASE 3 

LINE NO. FROM LP INVLD - CASE 4 

CASE SW INVLD 

KEY FORMAT INVLD 

TCMCOV OR TCi"lGRD INVLD 

INVLD EXIT TO SYNAD OR EODAD 

LPC 50S INVALID 

SCAN RC I lWLD 

MSGWR RC INVLO 

Significance 

In case 3, line number parameter 
received from language processor 
invalid. 

In case 4, line number parameter 
received from language processor 
invalid. 

Indicator in PSECT of GETLINE has been 
set incorrectly, showing that PSECT 
has been erroneously destroyed. 

Keyboard/card-reader indicator of rec­
ord from GATE is invalid. 

ConVf~rsational/nonconversational flag 
or record length type flag in task 
common is invalid. 

Exit made to SYNAD or EODAD when 
reason for exit should not have 
occurred. 

A byte within common area of LPCMAIN 
is invalid, meaning that common has 
been erroneously destroyed. (Self­
checking and debugging aid. Byte 
actually indicates whether source data 
set prestored or noL.) 

Invalid return code from a SCAN 
routine. 

Invalid return code from ~SGWR. 

Section 6: Source Language Processing 189 



GATE RC INVLD Invalid return code from GATE. 

SYSTEM CONTROL BLOCK USAGE: 

Task Common (CrlATCM) 
Data Control Block (CHADCB) 

~PUTDIAG Routine (CFADC) 

This routine receives diagnostic messages from the language proces­
sors and either sends the messages to SYSOUT via the GATE routine, or 
stacks them as output for GETLINE or LPCMAIN. (See Chart DE.) 

ENTRY: CFADCl - normal entry 

MODULES CALLED: 

GATWR (CZATC1) To write diagnostic messages to SYSOUT. 

EXITS: The routine normally returns to the calling routine, via the 
RBTURN macro instruction. If a system error occurs, the routine exits 
to ABEND. 

OPERATION: PUTDIAG either stacks the diagnostics or prints them irmnedi­
ately. If the correction request parameter is off (as set by the lan­
guage processor), the diagnostic message is issued immediately. If it 
is on, and there is room in the diagnostic message stack, the message is 
moved to the stack. If there is no room, the messages currently in the 
stack are immediately written out, and then the current message is 
stored there. 

ERROR CONDITIONS: PtJ'1'DIAG may issue these ABEND messages: 

ABEND Messag<Cc Significances 

I~VALID GATWR nc Invalid return code from GATE. 

MSG DISPOSITION HYTE INVLD Invalid parameter from language processor, 
indicating whether Iressage is to be stacked 
or sent. 

SYSTEM CONTROL BLOCK USAGE: None. 

190 



SECTION 7: INTERRUPTION PROCESSING 

The routines described in this section handle certain interruftions 
not processed by the task monitor. Those interruptions are: 

1. The initial ATTEN'IION interruption of a conv(~rsational task. 

2. Program interruptions for which no other procedure has been 
specified. 

3. External interruptions (that is. interruptions caused by messages 
from one task to another). 

Four routines process these interruptions: 

Interruption Processor (lAIP) 
performs initialization functions for a conversational task. 

Program Interruption Diagnostic Processor (DIAGNO) 
informs tne user when a program interrur:tion occurs. 

External Interruption Processor (XIP/XIS) 
recei ves and va l.idd tes intertask rr,essages, then routes them to the 
sFecified subproc€s;.;or. This routine also handles special initia­
tion functions Lor nonconversational, batch monitor, and bulk I/O 
tasks. 

External lnt erruption ~Jubprocessor (~P1S/~IES) 
writes a message on a task's SYSOUT. and also returns an error mes­
sage to the sender ot an invalid intertask message. 

IAIP and XlP m;lke use of the Virtual Memory Task Initialization 
(VMTI) routine to define system data sets and p"L1.ic devices during task 
initiation. 

The resident supervisor maintains six interruption queues for each 
task; they are defined in location and extent ty fields in the task r;ta­
tUB index (T:3I). 'When an interruption must be brought to the attention 
ot a task, the task interruption control (TIC) subroutine of the resi­
dent supervisor matches the interruption penling flags against the 
interruption mask in thp task's 'IS!. If the interruption is not masked, 
TIC moves t.he ["ICB, if one exists, to th~; interruption stora<J€ area and 
and creates a soft.ware interruption by manipulation of the virt:lal PSW, 
cawiing 0ntry intu the task monitor. 

If the int.erruption is to be handled ty any of the routines described 
here, one of the interruption handling routines of the task monitor will 
enqueue a linkage entry in the Talik Monitor scan table and exit either 
to thl:' task monitor SCdnner or the Selective Ortimal procedure (SOP) 
routine. 

Program interruptions for which no other ~rccEssor has been defined 
by t:le user (UPI) are given to DIAGNO, which prints a message on the 
task's SYSOUT giving the CSECT name, a relative location number for the 
location beyonu the interrupted instruction, and the cause of the 
interruption. 

Section 7: Interruption Processing 191 



External interruptions associated with intertask messages are given 
to the external interruption processor (XIP). This processor validates 
the message and routes it to its subprocessor. 

Because messages cause interruptions, a task may put itself into a 
wait state pending some external event (such as a tape being mounted), 
and be brought back into activity upon completion of the event by 
receipt of a message. The batch monitor creates TSIs for nonconversa­
tional tasks, then activates the tasks by sending messages to them. 
These messages contain a code that causes XIP to route them to XIIS. the 
task initiation subprocessor, where task initiation is completed. 

ATTENTION interruptions associated with a device not currently 
assigned to a task are given to the initial attention interruption pro­
cessor (IAIP). (ATTENTION interruptions from SYSIN devices assigned to 
active tasks caUSe the Task Monitor to call the Command Analyzer and 
Executor. ) 

~program Interruption Diagnostic Processor - DIAGNO - (CZAHA) 

This routine issues a diagnostic message to SYSOUT, indicating the 
cause of the program interruption and where it occurred. DIAGNO ser­
vice~; all program interruptions not treated by other processors. (See 
Chart OF.) 

ENTRY: CZAHAl - normal entry 

!',ODULES CALLED: 

~lAPSEARCH (CZCCQ> Gets CSECT name and displacement. 

MSGWR (CZAAD2) Issues messages to SYSOUT. 

INTERVENE (CZN-1Z3) Processes program interventions. 

EXITS: If the task was conversational, DIAGNO sets up a linkage entry 
to the command analyzer and executor (via QLL), and then returns control 
to the task monitor, via the RETURN macro instruction. If the task was 
nonconversational, DIAGNO exits to ABEND. 

OPERATION: The routine first fetches the VPSW, then uses the VPSW 
interruption code to find the corresponding diagnostic message. Next., 
it cdlls MAPSEi\RCH to get the name and base address of the CSECl' i.n 
wnich the interruption occurred. This base address, together with the 
interruption address gi Vf~n in the VPSW, is used to develop the locati on 
of the interruption. Using lwlSGWR, the routine now issues to SYSOUT t.he 
diagnostic mes~;aqe, the old VPSW, the CSECT nane, and the displacement 
of the interruption. The last two of thesE are supplied by DIAGNO in 
this form, provided the CSECT is found valid: 

IN'I'ERIWPT OCCURRED IN CSECT xxx 
WITH DISPLACEt-'.ENT OF yyy 
F£<OM BEGINNING OF CSECT. 

where xxx is the CSECT naILe 'lnd yyy is the dis{:lacement value. 

DIAGNO may issue the following diagnostic messages: 

Message Number 

EOOO 

192 

l\lessage 

OPERATION CODE 
INTERRUPT. PSW 

Significance 

Attempt to execute an 
unassigned operation code. 
PSW contains location of 
interruption. 



EOOl 

E002 

E003 

E004 

EOOS 

E006 

E007 

E008 

E009 

E010 

EOH 

E012 

PRIVILEGED OPERATION 
INTERRUPT. PSW = 

EXECUT ION INTERRUPT, 
PSW = 

PROTECTION INTER­
RUPT. PSW = 

ADDRESSING INTERRUPT, 
PSW = 

SPECIFICATION INTER­
RUPT. PSW = 

DATA INTERRUPT. 
PSW = 

FIXED POINT OVERFLOW 
INTERRUPT. PSW = 

FIXED POINT DIVIDE 
INTERRUPT. PSW = 

DECIMAL OVERFLOW 
INTERRUPT. PSW = 

NONPRlVlLEGED PRO-­
GRAM ISSUED lOCAL, 
PGOUT. PSW = 

lOPCB OR IORCB PAGE 
LIST TOO LONG. 
PSW = 

SPECIFIED ADDRESS IS 
Nor IN USERS VIRTUAL 
MEMORY (lOCAL PGOUT). 
PSW = 

Attempt made to execute op 
code not permitted for 
user's privilege. PSW shows 
location of interruption and 
contains interruption code 
and user·s.privilege. 

When subject instruction of 
an execute instruction is 
another execute instruction. 
PSW shows location of inter­
ruption and contains inter­
ruption code and user's 
privilege. 

Tries to access privilege 
storage at location indi­
cated in PSW. 

User attempted to access 
address that did not exist. 
PSW contains location of 
interruption. 

User made syntactical error 
in an instruction. PSW con­
tains location of 
interruption. 

While accessing I/O device 
an error was encountered. 
PSW contains location of 
interruption. 

While doing fixed-point 
multiplication or division, 
register overflowed. PSW 
contains location of 
interruption. 

Hegister overflowed while 
performing fixed-point 
diviSion. 

Destination field too small 
to contain the result field 
in a decimal operation. PSW 
contains location of 
interruption. 

User tried to do privileged 
I/O paging operation. PSW 
contains location of 
interruption. 

I/O control block too long 
for I/O program execution. 
PSW contains location of 
interruption. 

Address attempted to access 
in PSW does not exist in 
user's virtual storage. 

Section 7: Interruption Processing 193 



E013 

E014 

E01S 

E016 

E017 

E018 

E019 

E021 

E022 

E023 

E024 

E025 

E026 

E027 

194 

PROGRAM HAS NO I/O 
DEVICES ASSIGNED TO 
IT (lOCAL PGOUT). 
PSW == 

IORCB SIZE OF ZERO. 
PSW == __ _ 

TSI SERVICE CALL 
INTERRUPT COUNTER 
OVERFLOW. PSW == 

TSI EXTERNAL INTER­
RUPT COUNTER OVER­
FLOW. PSW == 

TSI ASYNCHRONOUS IN­
TERRUPT COUNTER OVER­
FLOW. PSW = 

TSI INTERRUPT COUNTER 
OVERFLOW. PSW = 

TSI INPUT/OUTPUT IN­
TERRUPT COUNTER OVER­
FLOW. PSW == 

ADDRESS OF UNASSIGNED 
PAGE GIVEN TO CKCLS 
SVC PROCESSOR. PSW == 

ILLEGAL CODE GIVEN TO 
SETUP/XTRCT SVC PRO­
CESSOR. PSW == 

AWAIT SVC NOT EXECUTEC 
REMOTELY OR NOT LAST 
HALFWORD OF AN ECB. 
PSW == 

INVALID SHARED PAGE 
TABLE NUMBER TO ADSPG 
SVC PROCESSOR. PSW = 

SOFTWARE HAS DETECTED 
A POSSIBLE HARDWARE 
MALFUNCTION. PSW = 

USER'S TASK NOT OF 
SUFFICIENT PRIORITY TO 
ISSUE SVC. PSW 

SVC NOT ON WORD BOUND­
ARY. PSW == 

Paging cannot be done be­
cause no device can be as­
signed for that purpose. 
PSW contains location of 
interruption. 

I/O control block is non­
existent for I/O program. 
PSW contains location of 
program interruption. 

Too many service call in­
terruptions. PSW contains 
location of interruption. 

Too many external inter­
ruptions. PSW contains lo­
cation of interruption. 

Too many asynchronous in­
terruptions. PSW contains 
location of interruption. 

Too many interruptions. PSW 
contains location of in­
terruption. 

Too many I/O interruptions. 
PSW contains location of 
interruption. 

A Fage that was once in 
user's virtual storage and 
is no longer, has been 
given to Check Class <CKCLS> 
SVC. 

Illegal form of SETUP/ 
XTRCT SVC macro user. 

AWAIT called directly and 
not via an EXECUTE instruc­
tion. 

An invalid shared page 
given to ADSPG. 

Simulated machine check. 

User does not have correct 
privilege to issue SVC. 

SVC must be on word bound­
ary otherwise an invalid 
call. 



E02S 

E029 

E030 

E031 

E032 

E033 

£034 

E035 

E036 

E037 

E038 

E039 

E040 

E041 

COUNT OF EXTERNAL 
ADDRESS IS ZERO. 
PSW = 

ALL PARAMETERS ARE 
NOT IN ONE PAGE. 
PSW 

NO ASYNCHRONOUS ERROR 
ROUTINE DEFINED FOR 
DEVICE WITH ERROR. 
PSW = 

ASYNCHRONOUS INTER­
RUPT RECEIVED BUT NO 
DE AVAILABLE FOR 
DEVICE. PSW = 

PGOUT REQUEST FOR 
ZERO PAGES. PSW = 

S~TTR NOT ACCEPTED 
BECAUSE SYSTEM LIMIT 
REACHED IN TABLE. 
PSW = 

PROGRAM INTERRUPT RE­
CEIVED WHILE IN TYPE 
III LINKAGE. PSW = 

SVC INTERRUPT RE­
CEIVED WHILE IN TYPE 
III LINKAGE. PSW = 

ATTEMPT TO ADD MORE 
THAN 256 SHARED PAGES 
TO A SEGMENT. 
PSW = __ _ 

VSEND MESSAGE IS '1'00 
LONG OR EXTENDS OVER 
PAGE BOUNDARY. PSW = 

REQUEST TO DELETE 
PAGE FROM SEGMENT 
NOT PREVIOUSLY AS­
ASSIGNED. PSW == 

REQUEST TO DELETE PAGE 
NOT PREVIOUSLY AS­
SIGNED. PSW = 

MESSAGE CODE INTER­
RUPT NOT ASSIGNED 
PRESENTLY. PSW = 

RELOCATION PAGE - IN 
ERROR (DEVICE DE­
FECTIVE) - MOVABLE 
VOLUME. PSW = 

External address count 
illegal. 

All svc calls are not 
within page boundary. 

Device malfunction and no 
error routine defined to 
handle malfunction. 

No routine available to 
handle asynchronous in­
terruption. 

Invalid request for num­
ber of output pages. 

No more main storaqe avail­
able for new entries. 

Program interruption receive 
while going to or from 
privileged to nonprivileged 
status. 

No SVC permitted while in 
nonprivileged status. 

Interruption occurs when a 
segment's maximum limit of 
pages is exceeded. PSW 
contains location of 
interruption. 

MCB extends over 1920 or a 
page boundary. 

Request to delete a page 
from an invalid seqment. 

Request deletion of a page 
that does not exist. 

Program interruption receive 
in PSW is undefined at 
present in this system. 

Attempt to output a page on 
a defective device. Vol­
ume can be relocated. 

Section 7: Interruption Processing 195 



E042 

E043 

E044 

E045 

E046 

E041 

E01A 

E01B 

E01C 

E01D 

E01E 

E01F 

E02A 

E028 

E02C 

196 

RELOCATION PAGE - IN 
ERROR (MEDIUM DE­
FECTIVE). PSW = 
lOCAL PAGE - IN 
ERROR (DEVICE DEFECT­
IVE) PERMANENT VOL­
UME. PSW = 

lOCAL PAGE - IN ERROR 
(DEVICE DEFECTIVE) -
MOVABLE VOLUME. 
PSW = 

lOCAL PAGE - IN ERROR 
(MEDIUM DEFECTIVE). 

PSW = 

OPERATION TASK HAS 
BEEN REINITIALIZED. 
PSW = __ _ 

UNAUTHORIZED USE 
OF TSSS SVC. 
PSW = 

GQE TYPE CODE IS IN 
ERROR. PSW = 

IORCB SIZE EXCEEDS 
1920 BYTES. PSW = 

IORCB OR IOPCB 
CROSSES A PAGE 
BOUNDARY. PSW = 

DEVICE NOT ASSIGNED 
TO TASK (lOCAL PGOUT). 
PSW = 

lOCAL OR PGOUT SVC 
PAGE ADDRESS DOES NOT 
EXIST IN VIRTUAL MEM­
ORY. PSW = 

lOCAL OR PGOUT SVC 
PAGE IS NOT IN CORE. 
PSW = 

COUNT EXCEEDS 991, BIT 
STRING FLAG SET FOR 
SETXP. PSW = S. 

PAGE UNASSIGNED. 
PSW = 

COUNT EXCEEDS 1022, 
BIT STRING FLAG NOT 
SEI' FOR SEI'XP. 
PSW = 

Attempt to output a page 
but mechanism to output 
device is defective. 

Attempt to output a page 
on a defective device. 
Volume is permanent and 
cannot be relocated. 

Attempt to output a page 
but device defective. The 
volume however can be re­
located. 

Attempt to output a page 
but the mechanism is de­
fective. 

Operator task has been re­
initialized after previous 
interruption. 

An unauthorized SVC 
(codes 64-95) has been 
issued by a nonprivileged 
program. These codes are 
reserved for use by Time 
Sharing Support System 
(TSSS). 

Used wrong general queue 
entry code for Task Status 
Index. 

I/O record control block 
exceeds maximum limit. 

I/O record control block 
or I/O page control block 
greater than page boundary. 

Attempt to place pages 
on device not assiqned to 
task. 

Attempt to access a page 
that does not exist. 

Page not in main storage. 

Invalid code used to call 
SETXP. PSW contains loca­
tion of interruption. 

Attempted to access un­
assigned page. 

Invalid code used to call 
SETXP. PSW contains loca­
tion of interruption. 



E02D 

E02E 

E02F 

E03A 

E03B 

E03C 

E03D 

E03E 

E03F 

ENTER SVC ISSUED TO 
INTERRUPTABLE ROU­
TINE WHILE TYPE III 
LINKAGE IN EFFECT 
AND Pi FLAG ON. 
PSW = 

ENTER SVC ISSUED WITH 
INVALID ENTER CODE_ 
OVER 22K OR UNAS­
SIGNED. PSW = 

SVC ISSUED IN NON­
PRIVILEGED STATE AND 
NO INTERRUPT ROUTINE 
SPECIFIED. PSW = 

INVALID SEGMENT NUM­
BER GIVEN TO ADSPG 
PROCESSOR. PSW = 

ILLEGAL CODE GIVEN 
TO SETSYS/XTRSYS SVC 
PROCESSOR. PSW = 

ILLEGAL CODE GIVEN TO 
SETXTS/XTRXTS SVC 
PROCESSOR. PSW = 

UNSUCCESSFUL DEQUEUE 
I/O REQUEST. PSW = 

DRUM FLAG ILLEGALLY 
ON. PSW = 

RELOCATION PAGE - IN 
ERROR (DEVICE DEFECT­
IVE) - PERMANENT VOL­
UME. PSW = 

ERROR CONDITIONS: None. 

SYSTEM CONTROL BLOCK USAGE: 

Task Common <CHATCM) 
Task Dictionary Table (CHATDY) 

Attempt to start a re­
cursive situation in task 
monitor. PSW contains lo­
cation of interruption. 

Attempt to use ENTER SVC 
(to call a routine) with 
wrong code. PSW contains 
location of interruption. 

No routine exists for par­
ticular SVC executed at 
location contained in PSW. 

Illegal segment number 
given to ADSPG (address 
page) processor. 

Invalid code received by 
SETSYS/XTRSYS SVC. PSW 
contains location of 
interruption. 

Invalid code received by 
SETXTS/XTRXTS SVC. PSW 
shows location of inter­
ruption. 

Unsuccessful attempt to 
dequeue I/O. PSW shows 
location of interruption. 

Drum access flag on il­
legally. PSW shows location 
of interruption. 

Page cannot be relocated 
on device because device 
is defective. Volume is 
permanent and cannot be 
relocated. PSW shows loca­
t:ion of interruption. 

~Initial Attention Interruption Processor - IAIP - (CZAHB) 

This routine processes the initial attention interruption from a con­
versational task by providing certain initialization functions in virtu­
al storage for that task. (See Chart DG.) 

ENTRY: CZARBl - normal entry 

MODULES CALLED: 

VMTI (CZAAFl) To define system data sets and indicate devices contain­
ing public volumes. 

Section 7: Interruption Processing 197 



EXITS: The routine exits through NTCTMR via the RETURN macro instruc­
tion, except in the case of ABEND where a normal return is made. 

OPERATION: A flag is set in task common to indicate that the new task 
is conversational, and Virtual Memory Task Initiation (VMTI) is called. 

ERROR CONDITIONS: None. 

SYSTEM CONTROL BLOCK USAGE: 

Task Common (CHATCM) 
Interruption Storage Area (CHAISA) 

~External Interruption Processor - (XIP/XIIS) - (CZAHC) 

XIP receives intertask messages, checks their validity, copies them 
into virtual storage, and enqueues linkage to the specified subproces­
sor. It also processes the shutdown message. 

XIIS handles task initiation for nonconversational, batch monitor and 
bulk I/O tasks. (See Chart DH.) 

ENTRIES: 

CZAHC1 - main entry pOint 
CZAHC3 - entry to initiate nonconversational user's tasks 
CZAHC4 - entry to initialize a bulk I/O task or the task monitor 

MODULES CALLED: 

QLE (CZCJQS) 

GETMAIN (CZCGA2) 

FINDJFCB (CZAEB1) 

FREEMAIN (CZCGA3) 

SETUP (CZAH2) 

VMTI (CZAAF1) 

Sets up linkage. 

Allocates space for MCB. 

Finds a JFCB. 

Frees storage used by MCB. 

Places new SYSIN device address in TSI to indicate a 
new task has been logged on. 

Defines systeJTl data sets and indicates devices con­
taining public volumes. 

EXITS: The routine normally exi ts to the task moni tor, via t,he RETURN 
macro instruction. If a message was erroneously sent to a particular 
task, the routine will enqueue linkage to the error subprocessor (Xl~S), 

and then exit to the task monitor via the RETURN macro instruction. If 
a system error occurs, the routine exits to ABEND. 

OPERATION: At entry CZAHC1, XIP tests if the message is a reply. If it, 
is an awaited reply, XIP moves the message to the designated reply area, 
and returns control to the task monitor. 

If the message is not a reply, XIP tests tor a code indicating that 
data management has caused the interrupt to take the task out of the 
wait state. If such a code is found, control is returned to the Task 
Monitor with a return code of zero. 

For allot her messages, GETMAIN allocates space into which XIP can 
move the message control block from the IORCB field. The code in the 
message is used as an index to the required subprocessor's entry in a 
table and linkage to it is set up via QLE and control returned to the 
Task Monitor. 

198 



The following hexadecimal MCB message codes are recognized as valid 
codes: 

Indicates Module 

00 Message CZAHD1 

01 Batch Monitor to task being canceled 

02 Batch Monitor to third-level task initiation CZABAB 

03 Error (invalid code) CZAHD2 

04 MOCP (Main Operator Control Program) CZACAl 

06 Activate Batch Monitor CZABAl 

07 Initiate PRINT CZABGI 

09 Initiate WT CZABll 

OA Initiate PUNCH CZABHl 

OB Initiate RT CZABFl 

12 AWAIT for device allocation 

16 Device allocation CZABAA 

50 EXECUTE to Batch Monitor CZABA2 

52 CANCEL to Batch Monitor CZABA3 

54 BULKIO to Batch Monitor CZABA4 

56 BACK to Batch Monitor CZABA5 

SA LOGOFF to Batch Monitor CZABA7 

5B BULKIO Init to Batch Monitor CZASWl 

5D Shutdown to Batch Monitor CZABA9 

5E ABEND 

5F LOGOFF (from FORCE) CZAFN2 

60 MOHR (Main Operator's Housekeeping) CZACB3 

If the message is the shutdown message, linkage is also enqueued to 
LOGOFF. 

Entry CZAtlC3 of the XIIS subprocess or is called to initiate noncon­
versational user tasks, while entry CZAHC4 is called for initialization 
of a bulk I/O task or the Batch Monitor. 

For both entries, the message control block contains information 
needed by XIIS. FREEMAIN is called to clear the MCB area before return­
ing to the Task Monitor. 

For the Batch Monitor or a bulk I/O task, XIIS moves the parameters 
of the specified routine from the MCB into PARIN. The batch sequence 
number is put into task cornman. A linkage entry to the routine just 
loaded is created and FREEMAIN is called; contrel is then returned to 
the Task Monitor. 

section 7: Interruption ProceSSing 199 



When the batch monitor initializes a nonconversational task, it sends 
a message to the task with a code for entry CZAHC3. FINDJFCB is called 
to find the JFCB of the SYSIN entered in the TSI. The flag in task com­
mon is set to nonconversational. The userid is placed in task common. 
FREEMAIN is called, and control is returned to the Task Monitor. 

ERROR CONDITIONS: XIP will determine from the following conditions if a 
message was erroneously sent to a task: 

• Sender's reply not the awaited one (either taskid or message number 
incorrect) • 

• User not awaiting reply when a reply is received. 

• MEB not on word boundary. 

• Shutdown message has incorrect taskid. 

The routine will then call GETMAIN, move the message, and set up linkage 
to the error subprocessor (XIES) before returning to the task monitor. 

The routine may issue this system error message: 

SYSER Code Severity 

050702701 Minor 

ABEND Message 

MCB LENGTH 
EXCEEDS 
MAXIMUM LIMIT 

SYSTEM CONTROL BLOCK USAGE: 

Interrupt Storage Area (CHAISA) 
Task Data Definition Table (CHATDT) 
'I'ask Common (CHATCM) 
Message Control Block (CHAMCB) 
foi.essage Event Block (CHAMEB) 
Batch Work Queue (CHABWQ) 

Explana tion 

MCB length exceeds maximum limit 

~External Interruption Subprocessor - XIMS/XIES - (CZAHD) 

This routine issues, to a taSk'S SYSOUT, all messages sent to that 
task. The routine also handles any message that is erroneously sent to 
a task. (See Chart Dr.) 

ENTRIES: 

CZAHDl - entry point for the external interruption processor (XIP) to 
issue message contained in a specified message control block 
(MCB) 

CZAHD2 - entry point for XIP to issue message that was erroneously sent 
to a particular task 

CZAHD3 - entry point for task monitor to process a message that was 
unexpectedly sent 

MODULES CALLED: ----
VSEND 

GATWR (CZATC1) 

FREEMAIN (CZCGA3) 

User Prompter 
(CZATJ1) 

200 

Sends intertask messages. 

Writes messages to task's SYSOUT. 

Releases an area of virtual storage. 

ISSUES diagnostic message to the user. 



EXITS: The routine exits to the calling routine. via the RETURN macro 
instruction. 

OPERATION: The routine is called (at CZAHD1) by the external interrupt 
processor (XIP) to issue a message contained in a specific message con­
trol block (MCB). The message text and sender's taskid are extracted 
from the MCB and placed in the parameter list fO:1:" GATWR. 

The message code field in the MCB is checked to determine if the mes­
sage was valid (indicated by a code of 0). The code is then extracted 
from the MeB. converted to EBCDIC, and inserted in the message. If the 
message was invalid (any code other than 0), the code is still placed in 
the message, but the following is prefixed to thE' message: 

THE FOLLOWING INVALID MESSAGE WAS RECEIVED BY YOUR TASK. 

The total length of the message is calculated and placed in t.he GATWR 
parameter list GATWR then issues the message to the task's SYSOUT. 
After the message has been issued, FREEMAIN is called to release the MeB 
virtual storage area that was used during processing. 

At CZAHD2, this routine is called by XIP to process a message that 
was erroneously sent to a particular task. The taskids of the sender 
and receiver of the message are extracted from the MCB and transposed so 
that the original sender will now receive the message, prefixed with the 
following: 

THE MESSAGE YOU HAVE SENT HAS AN INVALID CODE. 

Then a branch to CZAHDl is taken to issue the erroneous message. 

CZAHD3 is called by the task monitor. Processing at this entry is 
the same as at CZAHD2 except that the following message is sent: 

THE MESSAGE YOU HAVE SENT HAS AN UNEXPECTED CODE. 

ERROR CONDITIONS: None. 

SYSTEM CONTROL BLOCK USAGE: Message Control Block (CHAMCB> 

~Virtual Memory Task Initiation - VMTI - (CZAAF) 

This rout.ine resides in initial virtual storage and performs certain 
functions required to initiate a task. These functions include creating 
job file control blocks (JFCBs) for system data sets, opening the system 
library, and adding to the task symbolic device list (TSDL) all those 
devices on which public volumes reside. (See Chart ill.) 

ENTRY: CZAAFl - norwal entry 

MODULES CALLED: 

VMTI- 2 (CZATO) 

TIME (CZAVB) 

DDEF (CZAEAS) 

FINDJFCB (CZAEB1) 

ADDEV 

LIB MAINTENANCE 
(CZCDHC) 

Logs on task. 

Initializes task timer. 

Creates JFCBs for system data sets. 

Finds SYSLIB JFCB. 

Adds symbolic device address to TSDL. 

Opens SYSLIB DCB. 

section 7: Interruption Processing 201 



OPEN (CZCLA) Opens SYSCAT DCBs. 

EXITS: The routine normally returns to the calling routine, via the 
RETURN macro instruction. If a system error occurs, the routine exits 
to SYSER. 

OPERATION: Initial virtual storage contains a task data definition 
table (TDT) with JFCBs for the SYSCAT (SYSSVCT and SYSUCAT), SYSIN, and 
SYSOUT data sets. The TDT header is set up so that the appropriate 
fields point to the last JFCB and the first free storage area; the 
pointer to the JFCB in the program library list points to zero; the tem­
porary tabulation pointer also points to zero. 

VMTI is called by either IAIP (for a conversational task) or XIP (for 
a nonconversational task) to initiate a new task. 

The symbolic device allocation table (SDAT) is scanned to find all 
those devices that carry public volumes. Since all SDAT entries for 
such devices are chained together, this involves finding the beginning 
of the chain in the SDAT header and following it through the table. As 
each public device is found. its address is added to the TSDL using the 
ADDEV SVC. The system catalogs SYSSVCT and SYSUCAT are then opened for 
update. 

Successive calls to DDEF are made to create and fill in the JFCBs for 
the user catalog (SYSUCAT), the system library, the user table, the sys­
tem macro library and the macro library index. The timer for the task 
is initialized and control is passed to VMTI-2 to logon the task. On 
return, control is passed to the calling routine. 

ERROR CONDITIONS: The routine may issue these system error messages: 

SYSER Code severity ABEND Message 

050106102 Major None 

050106103 Major None 

SYSTEM CONTROL BLOCK USAGE: 

Interrupt Storage Area (CHAISA) 

Significance 

Error return code received from 
DDEF. 

No address returned by CZAER for 
SYSLIB JFCB. 

Symbolic Device Allocation Table (CHASDA) 
System Common (CHASCM) 
Task Common (CHATLM) 
Task Data Definition Table (CHATDT) 

~Virtual Memory Task Initiation II - VMTI II (CZATD) 

This routine provides the task initialization interface between com­
mand system I and command system II. This includes opening the system 
message file (SYSMLF), opening the SYSIN data set for nonconversational 
updating of the user table, logging on the user, and in the case of 
operator task, calling the main operator housekeeping routine. (See 
Chart DK.) 

ENTRIES: 

CZATD1 - normal entry point for all tasks in the system 
CZATD2 - special entry point for all bulk LlO tasks to call logon 
CZATD4 - special entry point for Express Batch 

202 



MODULES CALLED: 

RELEASE (CZAFJ) 

RCR-OPEN 

FINDJFCB (CZAEB) 

GATEOPEN (CZBTBIJ) 

GATE (CZATC) 

LOGON (CZAFM) 

LOGON2 (CZCBTB) 

DDEF (CZAEA) 

MOHR (CZACB) 

OLE (CZCJQ) 

WTO (CZABQ) 

OPEN (CZCLA) 

Releases the SYSIN JFCB for nonconversational task. 

Performs OPEN for first express batch subtask for 
nonconversational tasks. 

Finds the SYSIN and SYSOUT JFCBs. 

Opens the SYSIN DCB for nonconversational tasks. 

Reads SYSIN. 

Logs user on. 

Completes LOGON initialization functions. 

Builds USERLIB JFCB for ahended task. 

Initializes operator task. 

Queues a linkage entry for the Command Analyzer and 
Executor. 

Informs operator that EXPRESS card not followed by 
LOGON (nonconversational>. 

Opens system message file (SYSMLF). 

EXITS: The routine normally returns to the calling routine via the 
RETURN macro instruction. If a system error occurs, the routine exits 
to ABEND. 

OPERATION: All tasks in the system enter at CZATDl where the system 
message file (SYSMLF) is opened, and a FIND is issued to position a 
pointer at that particular VPAM member. 

A check is then made to see if ·this task is the Batch Monitor or a 
bulk I/O task. In the case of the batch monitor or a bulk I/O task, a 
return is made to the calling routine. 

In all other tasks, a check is made to see if the task is conversa­
tional. If it is, the conversational flag is turned on in New Task Com­
mon. If the task is nonconversational, the existing SYSIN JFCB is 
released, and a call is made to DDEF to construct a new SYSIN JFCB for 
the SYSIN data set; the conversational flag in New Task Common is set to 
zero. At this point Gate Open (CZBTBIJ) is called to open the SYSIN data 
set for a nonconversational task. The task ID is then extracted from 
the TSI and stored in Task Common. It is then examined to see if the 
task is the operator's task. If it is the operator task, the address of 
the user table DCB is picked up and the SYNAD and EODAD R-cons and V­
cons are changed to point to the proper points in CZATD. 

The user table data set is then opened for updating. A SETL is 
issued to place the pointer at the beginning of the data set. Each rec­
ord is then retrieved via the VISAM GET macro instruction, and the acti­
vity, task count flag and RCR accounting fields are set to zero. Each 
record is then written back into the user table data set. When EODAD is 
reached. the data set is closed. 

All tasks are again checked to see if they are non conversational. If 
the task is nonconversational, a GATRD obtains the first record of the 
SYSIN data set. A check is made for the LOGON verb; if it is not in the 
record, a check is made for the 'EXPRESS' verb. If it is not an 'EX­
PRESS' record, the subtask is abnormally terminated. 

Section 7: Interruption Processing 203 



If the LOGON verb is found, the TCMEXPl (Express Batch mode) switch 
is examined; if it is off. processing continues as described in the next 
paragraph. At this point (CZATD4) all jobs in the Express Batch stream 
{with the exception of the first job which begins at CZATD1> begin their 
LOGON sequence. A call is made to the TIME command module (CZAVB4) to 
reinitialize the clock(s} as required. If the EXPRESS verb is found. 
the TCMEXPl (Express Batch mode) switch is set on and a scan function is 
performed which establishes a pointer to the time parameter, bypassing 
the keyword, TIME=, when present. A call is then made to the #timE rou­
tine (CZCAVB4) to initialize System Clocks 13 and/or 14. 

When return is made to VMTI-2, an additiol~l GATRD is performed for 
the next record in SYSIN. These GATRDs are performed until a LOGON is 
encountered. If a LOGON is not found immediately after 'EXPRESS', a 
warning message is issued to the operator (in building an }~PRESS SYSIN 
data set. BULKIO ensures that an 'EXPRESS' card is followed by a 'LOGON' 
card); then additional GATRDs are performed. Once a LOGON is found. the 
clock(s) are reinitialized and processing continues. 

In both conversational and nonconversational tasks, LOGON (CZAFM) is 
called. If task is conversational, information is extracted frow the 
TCT slot for this user, and an SDAT entry is built for this device with 
pertinent information set. The device type found in the Tel' is stored 
in GATE's PSECT. It is then translated to a model code which is used to 
determine the naximum device line length. This length is also stored in 
GATE. GATE uses this information to break up long output lines into 
segments that do not exceed the device line capacity and to determine 
the translation required. 

An MCAST macro instruction allows a nonprivileged program to specify 
an input translation. In some application programs the terminal type 
must be known to perform the appropriate MCAST. The terminal type thus 
must be made available to nonprivileged programs. To do this, CZATD now 
moves the terminal type from the TCT (TCTDTY) to a field indicating ter­
minal type in the ISA (ISADTY). ISADTY has the same code indicators as 
TCTDTY. 

At this point a second entry point (CZATD2) is provided for ABEND and 
BULKIO to allow them to go to LOGON. A call to LOGON2 is then made for 
all tasks. When LOGON2 returns, a check is made for the first express 
batch subtask. If it is the first sUbtask, a call is made to RCR OPEN 
with the userid of SYSOPERO. Upon completion of LOGON2, another check 
is made for the operator task. If this is the operator task. the main 
operator housekeeping (MOHR) routine is called. When MOHR has finished. 
CZATD returns to the calling routine. Also, the completion of LOGON2 in 
bulk I/O tasks and abended tasks causes a return to the callinq routine. 

In all other tasks in the system, except Express Batch, a call is 
made to the Task Monitor to QLE to the Command Analyzer and Executor. 
The task initiation flag in the ISA is turned off; VMI'I-2 returns to its 
calling routine. 

For an Express Batch task, the source list and dictionary are rein­
itialized for the subtask via a call to LOGON2 (CZBTBB) and a return is 
made by way of the Task Monitor. 

ERROR CONDITIONS: The following error conditions will result in an 
ABEND: 

1. An attempt to FIND the system message file (SYSMLF) failed. 

2. The absence of the LOGON verb on the first SYSIN record of a non­
conversational task. 

204 



3. An attempt to DDEF a SYSIN data set for a nonconversational task 
failed. 

4. An attempt to update a user table entry failed. 

5. Model code in SDA is not 1-4. 

6. RCR open for SYSOPERO failed in Express Batch. 

SYSTEM CONTROL BLOCK USAGE: 

Data Control Block (CHADCB) 
Combined Dictionary Header (CHADCT) 
Interrupt Storage Area (CHAISA) 
Message control Block (CHAMCB) 
New Task Common (CHANTC) 
Symbolic Device Allocation Table (CHASDA) 
Task Common (CHATCM) 
Task Data Definition Table (CHATDT) 
User Table (CHAUSE) 
Terminal Control Table (CHATCT) 

Section 7: Interruption Processing 205 



FLOWCHARTS 

The flowcharts in this manual have been produced by the IBM System/ 
360 Flowchart program, using ANSI symbols. These descriptions of the 
ANSI symbols and the System/360 Flowchart conventions will simplify 
interpretation of the flowcharts in this manual: 

.. " ,,"" . 

uFfI'''''i ,f 
["\ \NNE~ "r, Ik 

206 

OEFINITIOl'< 

1 !-tL;!,- ATES .... N ENTRY OR 
TERMiNAL POINT IN A fLU ... '­
('HART; SHOWS START STUP, 

~;N-i;;: (\~~y AL~~ j~tt~~¥t-
RETURN TO THE ('ALLING 
PRI)\,HAM. 

1NDH'ATES A PR')(~ESSIN(3-
fU>lCT[(lN OR '" DEFINED 'A' 
ERATIt)N CAUSING CHAW-';t: IN 
VALm: FllR!'It OR LQCATI',f' 
C'E"- [N~" PMATfON. 

1;'.lJn,j;,'\'!-s A UEt" ISUJN '-,1< 
~>"':;\ "<{!N'> !'Yf'i'. Uf"ERATI{IN 
THAI' DETERMI!'>lES WHln{ ,"t 
.r., NIJM1H H (IF AL TER\iAT I 
LtiTII: .;!-!\ 11.) { n BF: f' )LL, 'WH 

An:s ENTRY TO c'P F.x!-r 
,e;.~\-'THER Bl \l\'j( ON lH~ 
H' io'Jt HART P .... GE. 

INllli .r.,lES ENTRY Tu OR n.n 
F~uM A BLL)('K ON AN()THFR 
PACt- .- 'i: THF S;>J·U: Sf:':' "F 
rL" ...... UA.L,]TS. 

EX.~PLE 

MOUN!+.ME 

c;~,:::=> 
FROM: OTHERMOD 

CHART A.Z 

ENTRVP1' 

I VlA 

rT;ENTRYPT 
'·HART AC 
VI.tl,: l'ASSHE;'H 

COMMENTS 

B):: MODNAME IS THE LUAD MODULi:. oR Ll BkA.RY 
NAME ClF THE ROUTINE OESCRlBED 8Y T}{lS 
FLOWCHART. 

CUMNJ\ME I S THE COMMON NAPE of' THE 
ROUTINE. 

(.tTHEKMCD INDlC'ATES THE. /'A,_-;).1JLES P1\~ ';ING 
cr.)NTROL TO THIS MODULE ,'"OlD THElR FLuW­
CHARrS, 

c3: CSECT IS THE CSECT NAMf: \lR I)TH£R ENTRY 
POINT AT WHICH PRCX:ESSING BEGINS. 

.1-:1. 

F l 

;~ 1 : 

H.\ : 

LABEL 1 IS 'THE: LABEL UF TH:. FIKST 
[NSTRUC1'10N. 

SUBkTN ts --;:-HL '"uM.t'!· ··t-i Nt,,:-'-! l,F 
f-/(1\}T1NF [t.. t"L,_'Wt'I1AWf At'; 

THF SI![)-

";1 fl.. , F'A.:-;::,~r"H IN:~-~ XH "'''f'i I_'N 'R,-~L 
h\_SSF', F"R"~~ '-':'M~~P...""r:: 1" -';:-RF'i:l. 

LAH!!.IA I::.; THE 1.A8El .iF 1\ :;F('TT .~~ (·f 
I"F Tf-lI_'C: fok1lJTINF THAI" r~lTIATES ; ('. 

NEXTkTN IS THE CUMI'1UN NAMt 'oW THF Rf "l,"[ 
INf rHAT EXECUTES i\f'TF:R TH;:~ f{;'C1T:~L 

ENT;.:YV\ 15 -r'{E ENTF't P',:J:NT ,~F NFXTRTi'.', 
WHll'!i IS DE:-;CfUAED IN ['rlARl' ;.. 

".'lA; PA2~;r",t,( H 1'4[;1 'A'I~_~ Hc.:w lJJr--.nH" 
VASSr:S FflOM '';r-',N'\''1.!-- .,,- "JFXTRTN. 



Program Logic Manual 

GY28-2013-6 

Command System 

Flowcharts on pages 207-552 were not scanned. 



APPENDIX A: SYSTEM CONTROL BLOCK USAGE 

This appendix can be used to find the command system modules that use 
a specific control block. 

Control 
Block Modules Using Control Block 

AAA User Prompter 

ACT ABEND 

AIR 

AUL 

BPK 

BWQ 

CCC 

ABEND 

ABEND 
RET 

CA&E 

EXECUTE 

CATALOG 
EXECUTE 
RET 
UPDTUSER 

CTT GATE 

CVF 

DCB 

User Prompter 

GATE 
CONTEXT 
EXCERPT 
DATA LINE 
NUMBER 
STET 
BACK 
DATA 
LINE? 
MODIFY 
Procedure 
Expander 

UPDTUSER 
VSS 
VMTI-2 

Attention Handler 

PAIR 

LOGOFF 
USAGE 

User Control 

XIP/XIIS 

DDEF 

RPS/CW 
VAM Tape 

LOGON 2 

User Prompter 
CORRECI' 
EXCISE 
LIST 
Profile Handler 
UPDATE 
CDD 
ERASE/DELETE 
LOGON 
PERMIT 

QUIT 
USAGE 
LPCMAIN 
PROCDEF 

OCT Profile Handler LOGON2 
PROCDEF 

DEB 

DEC 

DEN 

DHD 

ABEND 

GATE 

CA&E 
PROCDEF 

ABEND 
RELEASE 

DSC DSS?/PC? 

RELEASE 

ABEND 

LOGON 2 

LOGOFF 
VAM Tape 

User Control 

RPS/CVV 

LOGON 

EW 
POD? 
RELEASE 

Text Editor Controller 
Edit Initialization 
INSERT 
LOCATE 
REGION 
ABEND 
CDS 
JOIN 
LOGON2 
POD? 

RPS/CVV 
VAM Tape 
GETLINE 
User Control 

VMTI-2 

Procedure Expander 

POD? 

Appendix A: System Control Block Usage 553 



Control 
Block Modules Using Control Block 

DSE 

DSF 

CONVERT 
RET 
VAM Tape 

CONVERT 

DSV CONVERT 

ISA CA&E 
Attention 
Handler 

CATALOG 
ERASE/DELETE 
LOGON 
RPS/CVV 
User Control 
VMTI-2 

ITB ABEND 

LIM LOGON2 

MCB 

MEB 

ABEND 
LOGON2 
VMTI-2 

ABEND 
XIP/XIIS 

MSG EXECUTE 

NTC 

PCT 

PFL 

CA&E 
Attention 

Handler 
Profile Handler 
Procedure 

Expander 

CA&E 
Attention 

Handler 
LOGON2 
User Control 

User Profile 

POD POD? 

POE POD? 

POM POD? 

PVT 

554 

DSS?/PC? 
UPDTUSER 

DSS?/PC? 
RPS/CVV 

RPS/CVV 

GATE 

ABEND 
DSS?/PC? 
JOIN 
PERMIT 
SHARE 
VAM Tape 
KEYWORD 

CANCEL 
XIP/XIIS 

CANCEL 

GATE 

Source List Handler 
BACK 
User control 
VMTI-2 

GATE 

DATA LINE 
MCAST 

LOGON2 

RET 

EVV 
UPDTUSER 

User Prompter 

CDD 
DDEF 
LOGOFF 
QUIT 
UPDTUSER 
XIP/XIIS 
VMTI 

EXECUTE 
XIMS/XIES 

EXECUTE 

User Prompter 

DATA LINE 
LOGON2 
LPCMAIN 
CONTEXT 
Edit Initialization 
LIST 
LOCATE 
MATCH 
ABEND 
LOGON 
PROCDEF 

User Prompter 

Profile Handler 
procedure Expander 

RPS/CVV 



control 
Block Modules using Control Block 

RHD ABEND LOGOFF POD? 
RELEASE VAM Tape LIST 

RQU RELEASE 

SAR ABEND FLOW VMTI 

SCM ABEND DDEF JOIN 
LOGON RET RPS/CVV 
SECURE TIME UPDTUSER 

SDA CATALOG DDEF EVV 
LOGOFF LOGON 2 RPS/CVV 
RELEASE VAM Tape IAIP 
VMTI VMTI-2 ABEND 

SDM LOGON USAGE ABEND 

SDS ABEND 

SLH CA&E Source List IF String Comparison 
Procedure Handler 

Expander User Control 

SLM CA&E Source List IF String Comparison 
Procedure Handler 

Expander 

SLP CA&E Source List IF String Comparison 
Procedure Handler 

Expander User Control 

STK User control 

TBC DSS?/PC? 

TBD DSS?/PC? QUIT ERASE/DELETE 
UPDTUSER 

TBS DSS?/PC? 

TCM GATE SCAN Source List Handler 
ABEND BACK CDD 
CANCEL CATALOG CDS 
DATA DSS?/PC? DDEF 
ERASE/DELETE EXECUTE FIN DDS 
FINDJFCB .TOIN LINE? 
LOGOFF LOGON MODIFY 
PERMIT POD? QUIT 
RET RPS/CVV RELEASE 
SECURE SHARE SYSXPAT 
TIME UPDTUSER USAGE 
VAM Tape VSS LPCMAIN 
GET LINE DIAGNO IAIP 
XIP/XIIS VMTI-2 

TCT GATE CHGPASS LIST 
CHGPASS 
LOGON 2 
VMTI 

Appendix A: System Control Block Usage 555 



Control 
Block Modules Usi!!9: Control Block 

TDH LOGON 

TDT Text Editor EXCERPT REGION 
Controller ABEND BACK 

CDD CATALOG CDS 
DATA ERASE/DELETE EVV 
FINDDS FINDJFCB LOGOFF 
LOGON LOGON 2 MODIFY 
POD? QUIT RET 
RPS/CVV RELEASE USAGE 
VAM Tape LPCMAIN IAIP 
XIP/XIIS VMTI-2 PROCDEF 

VMTI 

TOY POD? DIAGNO ABEND 

TRN Text Editor INSERT REVISE 
Controller CONTEXT DATA LINE 

STET CORRECT LIST 
TRIN Edit Initialization LOCATE 
Transaction EXCERPT NUMBER 

Table Upda ter 
UPDATE EXCISE REGION 
PROCDEF User Control 

TSI BACK LOGON USAGE 
ABEND 

USE GATE AclEND BACK 
JOIN LOGOFF LOGON 
QUIT RET UPDTUSER 
USAGE VSS VMTI-2 
CHGPASS 

556 



ABEND 0000000 BUILTIN ABEND ,CZASB66 
ABENDREGOOOOOOO BUILTIN ABENDREG,CZACP22 
ASM 0000000 BUILTIN ASM ,CFADA21 
ASNBD 0000000 PROCDEF ASNBD 

APPENDIX B: SYSPRO 

ASNBD 0000100 PhRAM Sl,S2,$3,$4,$5,$6,S7,$8,S9,$lX,$2X,$3X,$4X,$5X,$6X,$7X 
ASNBD 0000200 SYSXPAT ASNBD 
ASNBD 0000300 $l,$2,$3,S4,$5,$6,$7,$8,$9,$lX,$2X,$3X,$4X,$5X,$6X,$7X 
AT 0000000 BUILTIN AT ,CZAMFll 
BACK 0000000 BUILTIN BACK ,CZABCll 
BCST 0000000 PROCDEF BCST 
BCST 0000100 PARAM TEXT 
BCST 0000200 SYSXPAT BCST 
BCST 0000300 TEXT 
BRhNCH 0000000 BUILTIN BR~NCH ,CZAMBII 
BUILTIN 0000000 BUILTIN BUILTIN ,CZATPll 
C 0000000 PROCDEF C 
C 0000100 PARAM ALPHABET=$l 
C 0000200 IF '$1'='2';DEFAULT ALPHABET=3 
C 0000300 IF '$1'='1' ; DEFAULT ALPHABET=4 
C 0000400 DEFAULT SYSIN=C 
CA 0000000 PROCDEF CA 
CA 0000100 DEFAULT SYSIN=C,ALPHABET=3 
CALL 0000000 BUILTIN CALL ,CZ~'1Gll 

CANCEL 0000000 PROCDEF CANCEL 
CANCEL 0000100 PARAM BSN 
CANCEL 0000200 SYSXPAT CANCEL 
CANCEL 0000300 BSN 
CATALOG 0000000 BUILTIN CATALOC ,CZAEIll 
CB 0000000 PROCDEF CB 
CB 0000100 DEFAULT SYSIN=C,ALPHABET=4 
CDD 0000000 PROCDEF CDD 
COD 0000100 PARAH DSNAME,$l 
CDD 0000200 DEFAULT SYS$OOl=' '; II' '$1 ''I' ';DEFAULT SYS$OOl=' ,DDNAME-
COD 0000300 =$1' 
CDD 0000400 SYSCDD DSN~~E 
CDS 0000000 BUILTIN CDS ,CZAFVll 
CHGPASS 0000000 BUILTIN CHGPASS ,CZATIll 
CLOSE 0000000 BUILTIN CLOSE ,CZCHB11 
CONTEXT 0000000 BUILTIN CONTEXT ,CZASMll 
CORRECT 0000000 BUILTIN CORRECT ,CZASQll 
CPS 0000000 BUILTIN CPS ,CZAXX13 
CVV 0000000 BUILTIN CVV ,CZAXx12 
DATA 0000000 PROCDEF DATA 
DATA 0000 100 PA~'1 DSNAME ,RTYPE ,DBASE, DINCR 
DATA 0000200 SYSXPAT DATA 
DATA 0000300 DSNAME,RTYPE,DBASE,DINCR 
DDEF 0000000 BUILTIN DDEF ,CZAEAll 
DDNAME? 0000000 BUILTIN DDNAME? ,CZAEK12 
DEFAULT 0000000 BUILTIN DEFAULT ,CZATR12 
DELETE 0000000 BUILTIN DELETE ,CZAEJ21 
DIRECT 0000000 BUILTIN DIRECT ,CZABA811 
DISABLE 0000000 BUILTIN DISABLE ,CZASW7 
DISPLAY 0000000 BUILTIN DISPLAY ,CZAMDll 
DMPRST 0000000 BUILTIN DMPRST ,CZUFAB 
DROP 0000000 BUILTIN DROP ,CZCM0411 
DSS? 0000000 BUILTIN DSS? ,CZAELll 
DUMP 0000000 BUILTIN DUMP,CZAMD21 
EDIT 0000000 BUILTIN EDIT,CZATS2 
ENABLE 0000000 BUILTIN ENABLE,CZASI"l6 
END 0000000 BUILTIN END,CZASW22 
ERASE 0000000 BUILTIN ERASE ,CZAE,Jll 
EVV 0000000 BUILTIN EVV ,CZCFBII 
EXCERPT 0000000 BUILTIN EXCERPT,CZASKll 
EXCISE 0000000 BUILTIN EXCISE,CZASLll 
EXECUTE 0000000 BUILTIN EXECUTE ,CZAB811 
EXHIBIT 0000000 BUILTIN EXHIBIT ,CZAYD31 
EXIT 0000000 BUILTIN EXIT ,CZAMZ88 
EXPLAIN 0000000 BUILTIN EXPLAIN,CZATJX 
FLOW 0000000 BUILT IN FLOW ,CZAGi)ll 
FORCE 0000000 PROCDEF FORCE 
FORCE 0000100 PARAM USERID 
FORCE 0000200 SYSXPAT FORCE 
FORCE 0000300 USERID 
FTN 1)000000 BUILTIN FTN ,CFADA,ll 
GO 0000000 BUILTIN GO,CZAMC21 
HOLD 0000000 BUILTIN HOLD ,CZCM0711 
IF 0000000 BUILTIN IF ,CZBLTll 
INSERT 0000000 BUILTIN INSERT,CZASJll 
JOBLIBS 0000000 BUILTIN JOBLIBS ,CZAEKII 
JOIN 0000000 BUILTIN JOIN ,CZAFKll 
JOINRJE 0000000 BUILTIN JOINRJE ,CZABSlll 
K 0000000 PROCDEF K 

Appendix B: SYSPRO 557 



K 
K 
K 
K 
KA 
KA 
KB 
KB 
KEYWORD 
LABEL 
LINE? 
LIST 
LNK 
LOAD 
LOCATE 
LOGOFF 
LPDS 
MCAST 
MCASTAB 
110DIFY 
MSG 
MSG 
I1SG 
~\SG 

[·'l'fT 
::.1EY·~'MSG 

NCC'lEER 

0000100 
0000200 
0000300 
0000400 
0000000 
0000100 
0000000 
0000100 
0000000 
0000000 
0000000 
0000000 
0000000 
0000000 
0000000 
0000000 
0000000 
0000000 
0000000 
0000000 
0000000 
0000100 
0000200 
0000300 
0000000 
0000000 
0000000 

PA~~ ALPHABET=$l 
IF '$1'='3' ; DEFAULT ALPHABET=2 
IF '$1'='4' ; DEFAULT ALPHABET=1 
DEF2'.ULT SYSIN=K 
PROCDEF KA 
DEFAULT SYSIN=K,ALPHABET=2 
PROCDEF KB 
DEFAULT SYSIN=K,ALPHABET=l 
BUILTIN KEYWOHD ,CZATHll 
BUILTIN LABEL ,CZABXX 
BUILTIN LINE? ,CZAEMll 
BUILTIN LIST,CZASPll 
BUILTIN LNK ,CF'ADA31 
BUILTIN LOAD,CZBTGll 
BUILTIN LOCATE,CZASNll 
BUILTIN LOGOFP ,CZAFNl1 
BUILTIN LPDS ,CZAXX14 
BUILTIN NCAST ,CZATU21 
BUILTIN !1CASTAB ,CZATU31 
BUILTIN HODIFY ,CZAEGll 
PROCDEF :15G 
PARAM USERID=$I,TEXT 
SYSXPAT HSG 
USERID=$l,TEXT 

Pl'.'l'CLEAHOOOOOOO 

BUILTIN MTT ,CTCBPKD 
BUILTIN NEh'MSG ,CZATJD 
BUILTIN NUMBER,CZASUll 
BUILTIN PATCLEAR,CZAF03 

PATFIX 
PC? 
PEPlnT 
PLI 
POD? 
POST 
PRINT 
PRINT 
PRINT 
PEINT 
PEINT 
PEI)lT 
PEINT 
PRINT 
PRnJT 
PRPlT2 
PRI:lT2 
PRI~~T2 

PRINT2 
PRINT3 
PRIN'rJ 
PRINT3 
PRINT3 
PH~lp'r 

PHOCDEF 
PROFILE 
PUNCH 
P'j;,jCE 
PUC;CH 

0000000 BUILTIN PATFIX ,CZUPFIX 
0000000 BUILTIN PC? ,CZAEL22 
0000000 BUILTIN PEHMIT ,CZAFIlll 
0000000 BUILTIN PLI ,CFBAA8 
0000000 BUILTIN POD? ,CZCOXll 
0000000 BUILTIN POST ,CZASW8 
0000000 PROCDEF PHINT 
0000100 PA~~ DSNA~E,STARTNO,ENDNO,PHTSP,SZOI,SZ02,SZ03,SZ04,SZ05,SZ06,SZ07,SZ08,-
0000200 HEADER,LINES,PAGE,ERASE,EHROPT,FORM,STATION,TAPOPT 
0000300 IF 'PRTSP't'EDIT';DEFAULT SYOl='HEADER' ,SY02='LINES' ,SY03='PAGE' ,-
0000400 SY04='EHASE' ,SY05='ERHOROPT' ,SY06='FORM' ,SY07='STATION' ,SY08='TAPOPT';-
0000500 PRINT2 DSNA~E,STARTNO,ENDNO,PRTSP,SZOl,SZ03,SZ04,SZ05,SZ06,SZ07,SZ08 
0000600 IF 'PRTSP'='EDIT' ; DEFAULT SYOI='EHASE' ,SY02±ERROROPT' ,SY03='FORH' ,-
000070') SYO 4=' STATION' ,SYO 5=' TAPOPT' ; PRINT3 DSNhllE, STARTNO, ENDNO, PRTSP, SZO I, SZ02, SZO 3,-
0000800 S204,SZ05 
0000000 PHOCDEF PRINT2 
0000100 PI,Rl'J',l DSNAHE, STARTNO, ENDNO, PRTSP, SYOl, SY02, SY03, SY04, SY05, SY06, SYO 7, SYO 8 
0000200 SYSXPAT PRINT 
0000300 DSNAHE,STARTNO,ENDNO,PRTSP,SYOI,SY02,SY03,SY04,SY05,SY06,SY07,SY08 
0000000 PROCDEF PRINTJ 
0000100 PARAM DSN!"VIE, STARTNO,ENDNO, PRTSP, SYOI ,SY02, SYO 3, SY04, SYO 5 
0000200 SYSXPAT PRINT 
0000300 DSNAME,STARTNO,ENDNO,PHTSP,SYOl,SY02,SY03,SY04,SY05 
0000000 BUILTIN PR1P'I' ,CZBTC2 
0000000 BUILTIN PROCDEF ,CZATP12 
0000000 BUILTIN PHOFILE,CZASZ2 
0000000 PHOCDEF PUNCH 
0000100 PAR"'"'l DSNAt1E ,CBrN, STAHTNO, ENDNO ,STACK, ERASE,FORT>1 
0000200 SYSXPAT PUNCH 

PU,'"CH 0000300 IJSNANE, CBIN, S'l'ARTNO, ENDNO, ST.1I.CK, EHASE, FOR]'I 
PUSH 0000000 BUILTIN PUSH ,CZAMZlll 
CiUALIFY 0000000 BUILTI" QUALIFY,CZhlIHll 
QUIT 0000000 PROCDEF QUI'r 
QUIT 0000100 PA~1 USERID 
QUIT 0000200 SYSXPAT QUIT 
QUIT 0000300 USE RID 
Qun'RJE 0000000 BUILTIN QUITRJE ,CZABS211 
HEGION 0000000 BUILTIN REGION,CZASFll 
REJOIN 0000000 BUILTIN RE,}OIN ,CZAFK12 
RELEASE 0000000 BUILTIN RELEASE ,CZAFJll 
llE:-l0VE 0000000 BUILTIN REHOVE,CZAHSll 
RePLY 0000000 BUILTIN HEPLY ,CZACA31 
RET 0000000 BUILTIN RET ,CZAE::Jll 
REVISE 0000000 BUILTIN REVISE,CZASHll 
RPS 0000000 BUILTIN RPS ,CZAXXll 
R7 0000000 PROCDEF RT 
HT OOOOloa PARAH VOLUHE,'I'ATYPE,USERID,DSNAMEl,DSNA~E2,LINE,ERROROPT,-
];1' 0000200 CTLG=$l 
RT 0000300 IF '$1 't' ';SYSXPAT RT;CTLG,USERID,DSNAMEI,DSNAME2,LINE,-
HT 0000400 EEROROPT 
WI' 0000500 If' '$1 '=' ';SYSXPAT RT;VOLU~1E,TATYPE,USERID,DSNAHEl,-
RT 0000600 DSNAHE2,LINL,ERROROPT 
RTRN DOOOOOO BUILTIN RTRN ,CZANZ77 
HUN 0000000 PHOCDEF RUN 
RUN 0000200 PARAH LOC 
HUN 0000250 IF 'LOC '=' ';GO 
RUN 0000300AIF 'LOC'='ASM';SYSASM 

558 



RUN 0000400AIF 'LOC'='FTN';SYSFTN 
RUN 0000500AIF 'LOC'='LNK' ;SYSLNK 
RUN 0000600AIF 'LOC';I'ASM'&'LOC't'FTN'&'LOC';I'LNK'&'LOC ''I' ';CALL LOC 
SARD 0000000 BUILTIN SARD ,CZAYEB 
SECURE 0000000 PROCDEF SECURE 
SECURE 0000100 PARAM $1,$2,$3 
SECURE 0000200 DEFAULT SY01=" ,SY02=' , 
SECURE 0000300 IF '$2 ''I' '; DEFAULT SYOl=' ,$2' 
SECURE 0000400 IF '$3 ''I' ';DEFAULT SY02=' ,$3' 
SECURE 0000500 SECURE 1 $1 
SECUREl 0000000 PROCDEF SECUREl 
SECUREl 0000100 PARAM $1,SY01,SY02 
SECURE 1 0000200 SYSXPAT SECURE 
SECUREl 0000300 $lSY01SY02 
SET 0000000 BUILTIN SET,CZAMA11 
SHARE 0000000 PROCDEF SHARE 
SHARE 0000100 PARAM DSNAME,USERID,OWNERDS 
SHARE 0000200 SYSXPAT SHARE 
SHARE 0000300 DSNAHE,USERID,OWNERDS 
SHUTDOWNOOOOOOO PROCDEF SHUTDOWN 
SHUTDOWN0000200 SYSXPAT SHUTDOWN 
STACK 0000000 BUILTIN STACK ,CZAHZIOI 
STET 0000000 BUILTIN STET,CZASVII 
STOP 0000000 BUILTIN STOP,CZAMCII 
STRING 0000000 BUILTIN STRING ,CZASB12 
SYNCCAT 0000000 BUILTIN SYBCCAT ,CZUFYll 
SYNONYM 0000000 BUILTIN SYNONYM,CZATRll 
SYSCDD 0000000 PROCDEF SYSCDD 
SYSCDD 0000100 PARAM $1, 'SYS$OOl' 
SYSCDD 0000200 SYSXPAT CDD 
SYSCDD 0000300 $lSYS$OOl 
SYSPDEF 0000000 BUILTIN SYSPDEF,CZATP12 
SYSXPAT 0000000 BUILTIN SYSXPAT,CZATEll 
TIME 0000000 PROCDEF TIME 
TIME 0000100 PA~1 MINS 
TIME 0000200 SYSXPAT TIME 
TIME 0000300 MINS 
TV 0000000 PROCDEF TV 
TV 0000100 PA~~ DSNAMEl,DSNAME2 
TV 0000200 SYSXPAT TV 
TV 0000300 DSNAMEl,DSNAME2 
UNLOAD 0000000 BUILTIN UNLOAD,CZBTG21 
UPDATE 0000000 BUILTIN UPDATE,CZASRII 
UPDTUSEROOOOOOO BUILTIN UPDTUSER,CZAGC11 
USAGE 0000000 BUILTIN USAGE ,CZAGBII 
VMEREP 0000000 PROCDEF VHEREP 
VMEREP 0000100 PARAM EMPTY 
VMEREP 0000200 SYSXPAT VMEREP 
VMEREP 0000300 EMPTY 
VSS 0000000 PROCDEF VSS 
VSS 0000100 PARAM USER 
VSS 0000200 SYSXPAT VSS 
VSS 0000300AUSER 
VT 0000000 PROCDEF VT 
VT 0000100 PARAM DSN&~El,DSNAME2 
VT 0000200 SYSXPAT VT 
VT 0000300 DSNAMEl,DSNAME2 
VV 0000000 PROCDEF VV 
VV 0000100 PARAM DSN~IEl,DSNAME2 
VV 0000200 SYSXPAT VV 
VV 0000300 DSNN1El,DSNAME2 
WT 0000000 PROCDEF WT 
WT 0000200 PARAM DSNAME,DSN&"1E2,VOLUME,FACTOR,STARTNO,ENDNO,-
WT 0000300 PRTSP,$1,$2,$3,ERASE,HEADER,LINES,PAGE 
lIT 0000350 DEFAULT SYOl=" ,SY02=" ,SY03=" ,SY04=" 
\vT 0000400AIF 'PRTSP'='EDIT';DEFAULT SYOl=',ERASE';IF '$l';"";DEFAULT SY01=',$1' 
WT 0000500AIF 'PRTSP'='EDIT' ;WT2 DSNAME,DSNF~E2,VOLUME,FACTOR,STARTNO,ENDNO,PRTSP 
WT 0000600 IF 'PRTSP';I'EDIT';DEFAULT SYOl=' ,HEADER' ,-
WT 0000700 SY02=' ,LINES' ,SY03=' ,PAGE' ,SY04=' ,ERASE';-
WT 0000800 WTl DSNAME, DSNA."1E2, VOLUME, FACTOR, STARTNO, ENDNO, PRTSP, $1, $2, $ 3 
WT1 0000000 PROCDEF WTl 
WTl 0000100 PARAM DSNAME,DSNAME2,VOLUME,FACTOR,STARTNO,ENDNO,-
WTl 0000200 PRTSP,$1,$2,$3 
WTl 0000300 IF '$1';"' ';DEFAULT SYOl=',$l' 
WTl 0000400 IF '$2''1' ';DEFAULT SY02=' ,$2' 
WTl 0000500 IF '$3't";DEFAULT SY03=',$3' 
WTl 0000600 WT2 DSN&~E,DSNAME2,VOLUME,FACTOR,STARTNO,ENDNO,PRTSP 
WT2 0000000 PROCDEF WT2 
WT2 0000200 PARAM DSNAME,DSNA.'1E2,VOLUME,FACTOR,STARTNO,ENDNO,-
WT2 0000300 J'>RTSP,SY01,SY02,SY03,SY04 
WT2 0000400 SYSXPAT WT 
WT2 0000500 DSNAME,DSNAME2,VOLUME,FACTOR,STARTNO,ENDNO,PRTSP-
WT2 0000600 SY01SY02SY03SY04 
ZLOGON 0000000 PROCDEF ZLOGON 
ZZZZZZ 0000000 PROCDEF ZZZZZZ 

Appendix B: SYSPRO 559 



Where more than one page reference is 
given. the rna jar refe.rence is fi rst. 

ABEND (CZACP, CZACQ. and CZACR) 79 
flowchart~ 314 

ABEND Interlock Release (AIR) table 136 
AETD macro instruction servicing 41 
AlPS 0:, wi t_ch 40 
AIR t.able 136 
ALFBET subroutine (CZAAC6) 33,13 
ALFNUM subroutine (CZAAC3) 31,12 
AMA1 (FINDBLK subroutine) 35 
AMA2 (VALCHK subroutine) 34 
AMA3 {CKQUAL subrout.ine> 34 
AMGl (SCINIT subroutin.~) 35 
AMG2 (BACKUP subroutine> 34 
analyze continuation status (CaNT) 26 
att.ent ion commands 

EXIT 172 
PUSH 172 
RTRN 172 
STACK 172 
STRING 41 

attent.ion handler (CZASB) 39,13 
flowchart~ 245 

attention handling, general 13 
attention interruptions, simulated 41 
ATTENTION key 3 

BACK command routine (CZABC) 83 
flowchart 332 

backspace function 25 
BACKUP subroutine (AMG2) 34 
BARD 26 
batch read 26 
batch work queue processor (CZAYF) 85 

flowchart 334 
buffer fet.ch 43 
BUILDLIST routine <CZATE2) 142 
BUILTIN call processor (CZASA3) 19 
BUILTIN procedure key (BPX) 173 
BWQ (batch work queue processor) 85,334 

CA&E (command analyzer and executor) 
cancel function 25 
CANCEL cOilliuand routine (CZABJ) 86 

fl()wchart 336 
CATALOG command routine (CZAEI) 87 

flow-chart 338 
CATVAM (see EVV command routine) 
CDD command routine (CZAF'S> 90 

flowchart 342 
CDS command .routine (CZAFV) 92 

flowchart 347 
CFADA (LPCl'AAI N rouT.ine) 184,3 

flowchart 536 
CFADB (GETLINE routine> 187,3 

flowchart 540 
CFADC (PUTDIAG routine) 190,3 

560 

16,11 

flowchart 543 
charac·ter·-kill function 25 
CHEKDS subroutine <CZAAC2) 29,12 
CHGPASS command routine (CZATI) 94 

flowchart 352 
CHKNUM subroutine <CZAAC5} 32,13 
CKQUAL subroutine (AMA3) 34 
CLOSE command routine (CZCHB) 95 

flowchart. 353 
combinE:d dictionary 14 
command analyzer and executor 

(CZASA) 16,11 
flowchart 207 

command controller 1,14 
command routines 2,76-179 
command system 

f unct.ions 1 
module interactions 9,3 
opera t.ion 3 
organization 1-3 
overview 1-10 

compat.ibility handler (CZATF1) 162 
flowchart 491 

CaNT (analyze continuation status) 26 
CONTEXT command routine (CZASM) 58 

flowchart 270 
control blocks 553 
control dictionary handler (CZASD) 49,14 

DELENT routine <CZASD6) 51 
flowchart 261 

ENTR routine (CZASD5) 51 
flowchart 260 

EXTDIC routine (CZASD7) 52 
flowchart 262 

GDV rout.ine (CZASDX) 53 
flowchart 264 

NEX'l'RFR routine (CZASD4) 51 
ilowcha.rt 259 

PACKVAR routine (CZASD8) 52 
flowchart 263 

RFR rout.ine (CZASD3) 50 
flowchart 258 

STARTFIX routine <CZASD1) 50 
flowchart 256 

STARTVAR routine (CZASD2) 50 
flowchart 257 

conversational task initiation 
CORRECT command routine (CZASQ) 

flowchart_ 273 
COWARD 23 
CPS command routine 152 

flowchart 478 
CVV command routine 152 

flowchart 478 
CZAAC (SCAN) 27 

flowchart 230 
CZAAC1 (NEXTPAR subroutine) 29 
CZAAC2 (CHEKDS subroutine) 29 
CZAAC3 (ALFNUM subroutine) 31 
CZAAC4 (NUMSTG subroutine) 32 
CZAAC5 (CHKNUM subroutine> 32 
CZAAC6 (ALFBET subroutine> 33 

3 
59 



CZAAD (MSGWR command routine) 135 
flowchart 429 

CZAAF (virtual memory task 
initiation-VMTI) 201 

flowchart 549 
CZABB (EXECUTE command routine) 111 

flowchart 383 
CZABC (BACK command routine) 83 

flowchart 332 
CZABJ (CANCEL command routine) 86 

flowchart 336 
CZABS (QUIT/JOIN RJE command routine) 120 

flowchart 400 
CZACP (ABEND) 79 

flowchart 314 
CZACQ (ABEND II) 79 

flowchart 325 
CZACR (ABEND III) 79 

flowchart 330 
CZACS (place address in AIR table -

PAIR) 135 
flowchart 430 

CZADF (DATA command routine) 98 
flowchart 360 

CZAEA (DDEF command routine) 100 
flowchart 363 

CZAEB (FINDJFCB command routine 115 
flowchart 388 

CZAEC (FINDDS command routine) 113 
flowchart 386 

CZAEG (MODIFY command routine) 133 
flowchart 427 

CZAEH (LOCATE command routine) 67 
flowchart 298 

CZAEI (CATALOG command routine) 87 
flowchart 338 

CZAEJ (ERASE/DELETE command routine) 106 
flowchart 373 

CZAEK (JOBLIBS/DDNAME? command 
routine) 121 

flowchart 403 
CZAEL (DSS?/PC? command routine) 104 

flowchart 370 
CZAEM (LINE? command routine) 123 

flowchart 406 
CZAEN (RET command routine) 150 

flowchart 476 
CZAET (VAM tape command routine) 114 

flowchart 515 
CZAFH (PERMIT command routine) 136 

flowchart 431 
CZAFI (SHARE command routine) 159 

flowchart 487 
CZAFJ (RELEASE command routine) 148 

flowchart 468 
CZAFK (JOIN command routine) 118 

flowchart 395 
CZAFL (QUIT command routine) 146 

flowchart 463 
CZAFM (LOGON command routine) 127 

flowchart 414 
CZAFN {LOGOFF command routine> 125 

flowchart 411 
CZAFS (CDD command routine) 90 

flowchart 342 
CZAFU (SECURE command routine) 158 

flowchart 486 
CZAFV (CDS command routine) 92 

flowchart 347 
CZAGB (USAGE command routine) 166 

flowchart 496 
CZAGC (UPDTUSER command routine> 165 

flowchart 494 
CZAGD (FLOW command routine) 116 

flowchart 390 
CZAHA (program interrupt diagnostic 
processor - DIAGNO) 192 

flowchart 544 
CZAHB (initial attention interrupt 

processor - IAIP) 197 
flowchart 545 

CZAHC (external interrupt processor -
XIP/XIIS) 198 

flowchart 546 
CZAHD (external interrupt subprocess or -

XIMS/XIES) 200 
flowchart 548 

CZAMZ (user control routine) 169 
flowchart 499 

CZAMZ1 (PCSEXEC) 170 
CZAMZ3 (INTERVENE) 171 
CZASA (command analyzer and executor) 16 

flowchart 207 
CZASA2 (verb scanner) 18 
CZASA3 (BUILTIN call processor) 19 
CZASB (attention handler) 39,13 

flowchart 245 
CZASC (source list handler) 42 

flowchart 248 
CZASC1 (source list handler PUSH/POP) 42 
CZASC2 (source list handler buffer 
fetch) 43 

CZASC3/CZASC4 (source list handler marker 
processor) 44 

CZASC5 (source list handler synonym 
expander) 45 

CZASC6 (source list handler update) 46 
CZASC7/CZASC8 (source list handler 

SYSIN> 46 
CZASD (control dictionary handler) 49 

flowchart 256 
CZASD1 (STru~TFIX) 50,256 
CZASD2 (STARTVAR) 50,257 
CZASD3 (RFR) 50,258 
CZASD4 (NEXTRFR) 51,259 
CZASD5 (ENTH) 51,260 
CZASD6 (DELENT) 51,261 
CZASD7 (EXTDIC) 52,262 
CZASD8 (PACKVAR) 52,263 
CZASDX (GDV) 53,264 
CZASF (REGION command routine) 71 

flowchart 306 
CZASG (DATAJ.INE service routine) 61 

flowchar1: 289 
CZASH (REVI~3E command routine) 72 

flowchar1~ 308 
CZASJ (INSEHT command routine) 66 

flowchart 288 
CZASK (EXCERPT command routine) 63 

flowchart: 281 
CZASL (EXCISE command routine) 65 

flowchart 284 
CZASM (CONT:EXT command routine) 58 

flowchart 270 
CZASN (LOCATE command routine) 67 

flowchart: 298 

Index 561 



CZASP {LIST command routine> 66 
flowchart 292 

CZASQ (CORRECT command routine) 59 
flowchart 273 

CZASR (UPDATE command routine) 74 
flowchart 312 

CZASS (transaction table updater service 
routine> 73 

flowchart 311 
CZAST (MATCH service routine) 68 

flowchart 301 
CZASU (NUMBER command routine) 69 

flowchart 302 
CZASV (STET command routine) 72 

flowchart 309 
CZASZ (profile handler command routine> 70 

flowchart 305 
CZATC (GATE) 21,12 

flowchart 215 
CZATD (VMTI-2) 202 

flowchart 550 
CZATE (procedure expander routine) 140 

flowchart 449 
CZATE2 (BUILDLIST routine) 142 
CZATE3 (LISTEQ) 143 
CZATE4 (DEFSEARCH) 144 
CZATE5 (procedure parameter scanner) 143 
CZATF (SYSXPAT command routine) 162 

flowchart 491 
CZATFl (compatibility handler> 162 

flowchart 491 
CZATH (KEYWORD oommand routine) 122 

flowchart 405 
CZATI (CHGPASS command routine) 94 

flowchart 352 
CZATJ (user prompter) 35 

flowchart 234 
CZATJ2 (MSGSYNTH routine) 36 
CZATJ3 (MSGEXPL routine> 36 
CZATJ4 (MSGRESP routine) 37 
CZATJ7 (EXPTEXT routine) 37 
CZATJE (NEWMSG routine) 37 
CZATP (PROCDEF routine) 139 

flowchart 442 
CZATR (SYNONYM/DEFAULT routine) 160 

flowchart 488 
CZATS (text editor controller) 55 

flowchart 265 
CZATU (MCAST/MCASTAB macro routine) 132 

flowchart 425 
CZAVB (TIME command routine) 163 

flowchart 492 
CZAVR evss command routine) 178 

flowchart 535 
CZAXX (RPS/CVV command routine> 152 

flowchart 478 
CZAYD (exhibit director) 112 

flowchart 385 
CZAYE (SARD) 161 

flowchart 490 
CZAYG WID) 164 

flowchart 493 
CZBLT (IF string comparison command 
routine) 118 

flowchart 394 
CZBSE (edit initialization routine) 63 

flowchart 280 
CZBSY (TRIN) 13 

562 

flowchart 310 
CZBSX (TRUP) 73 

flowchart 311 
CZBTA (TRIN service routine) 73 

flowchart 310 
CZBTB (LOGON2 command routine) 130 

flowchart 418 
CZBTC (PRMPT command routine> 139 

flowchart 441 
CZCFB (EVV command routine) 156 

flowchart 378 
CZCHB (CLOSE command routine) 95 

flowchart 353 
CZCOX (POD? command routine) 131 

flowchart 432 

DATA command routine (CZADF) 98 
flowchart 360 

DATALINE service routine (CZASG) 61 
flowchart 289 

DDEF command routine (CZAEA) 100 
flowchart 363 

DDNAME? command routine (CZAEK) 121 
flowchart 403 

DEFAULT catalog routine (CZATR1) 160 
flowchart 488 

DEFSEARCH routine (CZATE4) 144 
DELENT routine (CZASD6) 51 
DELETE command routine (CZAEJ) 106 

flowchart 373 
DIAGNO program interruption diagnostic 
processor (CZAHA) 192 

flowchart 544 
dictionary, combined 14 
dictionary handler (see control dictionary 
handler> 

DSS?/PC? command routine (CZAEL) 104 
flowchart 370 

edit controller 55 
edit initialization (CZBSE) 63 

flowchart 280 
EDIT command routine 55 
edi tor, text 

general 54 
module interaction 54 

end-af-block (EOB) function 25 
ENTR routine (CZASD5) 51 
EOB function 25 
ERASE/DELETE command routine (CZAEJ) 106 

flowchart 313 
escape function 26 
EVV command routine (CZCFB) 109 

flowchart 378 
EXCERPT command routine (CZASK) 63 

flowchart 281 
EXCISE command routine (CZASL) 65 

flowchart 284 
EXECUTE command routine (CZABB) 111 

flowchart 383 
EXHIBIT director (CZAYD) 112 

flowchart 385 
EXHIBIT processor 

BWQ (CZAYF) 85 
UID (CZAYG) 164 

EXIT (stack manipulator) 172 



EXPTEXT routine (CZATJ7) 37 
EXTDIC routine (CZASD7) 52 
external interruption processor 

(XIP/XIES) 200 
flowchart 5116 

FAVOR 22 
FINDDS command routine (CZAEC) 113 

flowchart 386 
FINDJFCB command routine (CZAEB) 115 

flowchart 388 
FLOW command routine (CZAGD) 116 

flowchart 390 
FNDBLK subroutine (AMAl) 35 
Format Conversational Output (FAVOR) 

GASP 22 
GATE routine (CZATC) 21,12 

flowchart 215 
GATE supervisor (GASP) 22 
GATRD (GATE routine) 22 
GATWR (GATE routine) 22 
GDV 53,264 
get default value (GDV) 53,264 
GETLINE routine (CFADB) 187 

flowchart 540 
GTWAR (GATE routine) 22 
GTWRC (GATE routine) 22 
GTWSR (GATE routine) 22 

handling 
attention 13,39 
control dictionary 49,14 
macro instruction 179-182 
source list 15,42 

IAIP initial attention interruption 
processor (CZAHB) 197 

flowchart 545 
IF string comparison command routine 

(CZBLT) 118 
flowchart 394 

22 

initial attention interruption processor 
(see IAIP) 

INSERT command routine (CZASJ) 66 
flowchart 288 

interruption processing 191-205 
interruption queues 191 
INTERVENE 171 

JFCB. locating (FINDJFCB routine) 115 
JOBLIBS command routine 121 

flowchart 403 
JOIN command routine (CZAFK) 118 

flowchart 395 
JOIN/QUIT RJE command routine (CZABS) 120 

flowchart 400 

KEYWORD command routine (CZATH) 122 
flowchart 405 

Language Processor Controller 
(LPC) 183-190,3 

LINE? command routine (CZAEM) 123 
flowchart 406 

LIST command routine (CZASP) 66 
flowchart 292 

LISTEQ (CZATE3) 143 
LOCATE command routine (CZASN) 67 

flowchart 298 
LOGOFF command routine (CZAFN) 125 

flowchart 411 
LOGON command routine (CZAFM) 127 

flowchart 414 
LOGON2 command routine (CZBTB) 130 

flowchart 418 
LPCEDIT 173,12 
LPCINIT 173,12 
1PCMAIN (CFADA) 184 

flowchart 536 
LPDS routine 156 

macro instruction handling 179-182 
macro instructions, supported 179 
marker processing 44 
~ATCH service routine (CZAST) 68 

flowchart 301 
MCAST routine (CZATU) 132 

flowchart 425 
MCASTAB routine 132 
MODIFY command routine (CZAEG) 133 

flowchart 427 
MSGEXPL routine (CZATJ3) 
MSGRESP routine (CZATJ4) 
MSGSYNTH routine (CZATJ2) 
MSGWR (CZAAD) 135 

flowchart 429 

36 
37 

36 

NEWMSG routine (CZATJE) 37 
NEXTRFR routine (CZASD4) 51 
NEXTPAR subroutine (CZAAC1) 29,12 
nonconversational read 26 
nonconversational task initiation 4 
null function 25 
NUMBER command routine (CZASU> 69 

flowchart 302 
NUMSTG subroutine (CZAAC4) 32,13 

PACKVAR routine (CZASD8) 52 
PAIR - Place Address in AIR Table routine 

(CZACS) 135 
flowchart 430 

password char.ging (CHGPASS routine) 94 
PATTER 25 
PC? 104 
PERMIT command routine (CZAFH) 136 

flowchart 431 
Place address in AIR table (PAIR) 135 
PLIST 19 
POD? command routine (CZCOX) 137 

flowchart 432 
POP (source list handler) 42 
POPSL (PUSH/POP routine) 42.20 
primary dictionary (SYSPRD) 14 
PRMPT command routine 139 

flowchart 441 

Index 563 



PROCDEF command routine (CZATP) 139 
flowchart 442 

procedure expander routine (CZATE1) 140 
flowchart 449 

procedure parameter scanner (CZATES) 143 
Process Attention from Terminal 

(PATTER) 25 
processing 

command 3-10 
source language 183,3 

profile handler command routine (CZASZ) 70 
flowchart 305 

program interruption diagnostic processor 
(DIAGNO) 192 

prompting routine (PRMPT) 139,13 
prototype profile, system (SYSPRX) 15 
PUSH (source list handler) 42 
PUSH (stack manipulator) 172 
PUSHSL 42 
PUTDIAG routine (CFADC) 190 

flowchart 543 

QUIT command routine (CZAFL) 146 
flowchart 463 

QUIT/JOIN RJE command routine (CZABS) 120 
flowchart 400 

recreate public storage (RPS) 152 
REGION command routine (CZASF) 71 

flowchart 306 
RELEASE command routine (CZAFJ) 148 

flowchart 468 
RET command routine (CZAEN) 150 

flowchart 476 
REVISE command routine (CZASH) 72 

flowchart 308 
RFR routine (CZASD3) 50 
RJE, QUIT/JOIN command routine (CZABS) 120 

flowchart 400 
RPS/CVV/LPDS/CPS command routine 

(CZAXX) 152 
flowchart 478 

RTAM interface with COWARD 23 
RTRN <stack manipulator) 172 

SARD 161 
SCAN package 12 
SCAN routines (CZAAC) 27 

ALFBET (CZAAC6) 33,13 
flowchart 232 

ALFNUM (CZAAC3) 31,12 
flowchart 232 

CHF~DS (CZAAC2) 29,12 
flowchart 231 

CHKNUM (CZAAC5) 32,13 
flowchart 232 

NEXTPAR (CZAAC1) 29,12 
flowchart 230 

NUMSTG (CZAAC4) 32,13 
flowchart 232 

SCAN subroutines 

564 

BACKUP (AMG2) 
flowchart 

CKQUAL (AMA3) 
flowchart 

34 
233 

34 
233 

FNDBLK (AMA1) 35 
flowchart 233 

SCINIT (AMG1) 35 
flowchart 233 

VALCHK (AMA2) 34 
flowchart 233 

SCINIT subroutine (AMG1) 35 
flowchart 233 

SECURE command routine (CZAFU) 158 
flowchart 486 

SHARE command routine (CZAFI) 159 
flowchart 487 

simulated attention interruptions 41 
source language processing 183,3 
source list 15 
Source List handler (CZASC) 42,15 

Buffer fetch routine (CZASC2) 43 
flowchart 250 

Marker processors (CZASC3,4) 44 
flowchart 251 

PUSH/POP routine (CZASC1) 42 
flowchart 248 

Synonym Expander (CZASC5) 45 
flowchart 252 

SYSIN routine (CZASC7,8) 46 
flowchart 254 

Update routine (CZASC6) 46 
flowchart 253 

STACK (stack manipulator) 172 
STARTFIX routine (CZASD1) 50 
STARTVAR routine (CZASD2) 50 
STET command routine (CZASV) 72 

flowchart 309 
string comparison 118 
STRING (attention response) 41 
synonym expansion 45 
SYNONYM/DEFAULT catalog routine 

(CZATR) 160 
flowchart 488 

SYNSL (source list handler SYNONYM 
expander) 45 

SYSIN routine, Source list handler 46 
SYSPRD (primary dictionary) 14 
SYSPRO, listing of 557 
SYSPRX (system prototype profile) 15 
System activity processor (CZAYE) 161 

flowchart 490 
system resource display (see System 
activity processor) 

system shutdown 10 
system startup 3 
system support routines 11-14 
SYSXPAT command routine (CZATF) 162 

flowchart 491 

task initiation 
batch monitor and BULKIO 4 
conversational 3 
nonconversational 4 

terminal error handler (TERROR) 24 
terminal null fUnction 26 
termination 

conversational task 8 
nonconversational task 8 

TERROR 24 
text editor 

general 54,2 



interrelation of modules 54 
text editor controller (CZATS> 55 

flowchart 265 
TIME command routine (CZAVB) 163 

flowchart 492 
TRAM 25 
transaction table initialization 

(CZBTA/CZBSY) 73 
flowchart 310 

transaction table updater (CZASS/CZBSX) 73 
flowchart 311 

translate and move input (TRAM) 25 
translation function 25 
TRIN service routine (CZBTA/CZBSY) 73 

flowchart 310 
TRUP service routine (CZASS/CZBSX) 73 

flowchart 311 

UID 164 
update routine, source list handler 46 
UPDATE command routine (CZASR) 74 

flowchart 312 
UPDTUSER command routines (CZAGC) 165 

flowchart 494 
USAGE command routine (CZAGB) 166 

flowchart 496 
user control (CZAMZ) 169 

flowchart 499 
user prompter (CZATJ) 35 

flowchart 2311 
routines 

EXPTEXT 37 
MSGEXPL 36 
MSGRESP 37 
MSGSYNTH 36 
NEWMSG 37 

userid informational EXHIBIT processor 
(CZAYG) 164 

flowchart 493 

VALCHK subroutine (AMA2) 34 
VAM tape command routine (CZAET) 174 

flowchart 515 
verb scanner (CZASA2) 18 
VERSE 25 
virtual storage task initiation (see VMTI 
and VMTI-2) 

VMTI (CZAAF) 201 
flowchart 549 

VMTI-2 (CZATD) 202 
flowchart 550 

VSS command routine (CZAVR) 178 
flowchart 535 

WORM (a GATE routine) 23 

XIMS/XIES (CZAHD) 200 
flowchart 548 

XIP/XIIS (CZAHC) 198 
flowchart 546 

Index 565 



GY28-2013-6 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, NY 10601 
iUSA Only) 

IBM World Trade Corporation 
B21 United Nations Plaza, New York, New York 10017 
f Internationall 



Technical Newsletter File Number 5360-36 

Base Publication No. GY28-20l3-6 

This Newsletter No. GN28-32l4 

Date February 1, 1972 

IBM System/360 Time Sharing System 
Command System 

c IBM Corp. 1967, 1968. 1969. 1970. 1971 

Previous Newsletters 

This Technical Newsletter provides rEplacement pages for the 
subject publication. Pages to be in~erted and/or removed are: 

135-136 

A change to the text is indicated by a vertical line to the 
left of the change. 

Summary of Amendments 

A new return code has been added to the PAIR (CZACS) routine. 
This code indicates that an invalid parameter was passed to 
PAIR. 

IBM Corporatiol1. Dept. 643. Neighborhood Road, KingJlon. N. Y. 12401 

None 




