
Program Product 

5C28-1307 -1 
File No. 5370-39 

TSO Extensions 
Command Language 
Reference 

TSO Extensions (TSO/E) 5665-285 

--.- ... 
--- -= - -------------- ---~-------~-,,-



Second Edition (January 1986) 

This is a major revision of, and obsoletes, SC28-1307-0 and Technical Newsletter 
SN28-1030. See the Summary of Amendments following the Contents for a summary of 
the changes made to this manual. Technical changes or additions to the text and 
illustrations are indicated by a vertical line to the left of the change. 

This edition applies to TSO Extensions (TSO/E) Release 2, Program Number 5665-285, 
until otherwise indicated in new editions or Technical Newsletters. Changes are made 
periodically to the information herein. Before using this publication in connection with 
the operation of IBM systems, consult the latest IBM System Bibliography, GC20-0001, 
for the editions that are applicable and current. 

References in this publication to IBM products, programs, or services do not imply that 
IBM intends to make these available in all countries in which IBM operates. Any 
reference to an IBM program product in this publication is not intended to state or imply 
that only IBM's program product may be used. Any functionally equivalent program 
may be used instead. 

Publications are not stocked at the address given below. Requests for IBM publications 
should be made to your IBM representative or to the IBM branch office serving your 
locality. 

A form for readers' comments is provided at the back of this publication. If the form has 
been removed, comments may be addressed to IBM Corporation, Information 
Development, Department D58, Building 921-2, PO Box 390, Poughkeepsie, N.Y. 12602. 
IBM may use or distribute any of the information you supply in any way it believes 
appropriate without incurring any obligation to you. 

© Copyright International Business Machines Corporation 1984, 1986 



Preface 

This book describes the syntax and function of the commands and subcommands 
of the TSO command language. It provides only reference material and assumes 
you are experienced in the use of TSO. 

If you are not familiar with TSO, you should first consult TSO Extensions User's 
Guide. If you have little or no knowledge of the use of TSO commands, TSO 
Extensions User's Guide provides the prerequisite information for using this book. 
The guide explains how to: 

• Enter and execute commands 
• Name and create specific types of data sets 
• Rename, list, copy, protect, free, and delete data sets 
• Compile and/or assemble code 
• Link edit object modules 
• Load and execute load modules. 

How This Book is Organized 

The major sections in this book are: 

Basic Information for Using TSO, which contains general information 
necessary to use TSO commands. The section describes the syntax notation 
in the diagrams that accompany each command, positional and keyword 
operands, delimiters, line continuation, comments, and subcommands. 

The Commands and Subcommands, which explain the syntax and function of 
each command, its operands, and its subcommands. Examples are included. 

The CLIST Statements, also known as command procedures. Information on 
how to write CLISTs is in CLISTs: Implementation and Reference. 

Quick Reference Guide to Commands and Statements, which contains a list of 
TSO commands and CLIST statements. 

This book presents commands in alphabetical order. The subcommands are 
alphabetized under their commands. For example, all EDIT subcommands are 
alphabetized under the EDIT command. Included in the list of commands are 
CLIST statements. 

The alphabetized guide to each TSO command also includes information on how 
that command executes in the background (batch processing), that is, independent 
of the terminal. 

Preface 111 



Program Products 

This reference book is for users of TSO Extensions running under (a) MVS/370, or (b) MVS/Extended 
Architecture (MVS/XA). 

• If information or a command pertains to MVS/XA only, you will see next to that information or 
command: MVS/XA Only. 

• If an operand pertains to MVS/XA only, you will see a footnote. 

This book refers to the following IBM program products: 

Access Method Services Cryptographic Option, 5740-AM8 
Cryptographic Unit Support, 5740-XY6 
Data Facility Product (DFP), 5665-295 (MVS/370) 
Data Facility Product (DFP), 5665-284 (MVS/XA) 
Programmed Cryptographic Facility, 5740-XY5 

Interactive System Productivity Facility (ISPF), 5668-960 or 5665-319 
Interactive System Productivity Facility/Program Development Facility 
(ISPF /PDF), 5665-268 or 5665-317 

Resource Access Control Facility (RACF), 5740-XXH 

TSO Extensions (TSO/E), 5665-285 

Assembler H Version 2, 5668-962 
TSO Assembler Prompter, 5734-CP2 
OS/VS COBOL Release 2.4, 5740-CBl 
TSO COBOL Prompter, 5734-CPl 
PL/I OS Optimizing Compiler, 5734-PLI 
PL/I OS Checkout Compiler, 5734-PL2 
VS FORTRAN, 5748-F03 
TSO FORTRAN Prompter, 5734-CP3 
VSBASIC, 5748-XXI 

lV TSO Extensions Command Language Reference 



Related Books 

MVS/370 

MVS/XA 

The following are the publications mentioned in this book. 

TSO Terminal Monitor Program and Service Routines Logic, SY28-0650 

MVS Data Management Services, GC26-4058 

MVS Access Method Services Reference for the Integrated Catalog Facility, 
GC26-4051 

MVS Access Method Services Reference for VSAM Catalogs, GC26-4059 

OSjVS2 Assembler Language, GC33-4010 

IBM 3800 Printing Subsystem Programmer's Guide, GC26-3846 

IBM Systemj370 Reference Summary, GX20-1850 

For the following books, see MVSjSystem Product Version 1 General Information 
Manual, GC28-1025, for the order numbers that correspond to the level you are 
using: 

MVSJCL 

OSjVS2 Message Library: System Messages 

OSjVS2 System Programming Library: Job Management 

OSjVS2 System Programming Library: Supervisor 

MVSjExtended Architecture Message Library: TSO Terminal Messages, 
GC38-1046 

MVSjExtended Architecture TSO Terminal Monitor Program and Service Routines 
Logic, SY28-0650, as amended by Supplement LD23-0262 

MVSjExtended Architecture Access Method Services Reference for the Integrated 
Catalog Facility, GC26-4019 

MVSjExtended Architecture Access Method Services Reference for VSAM 
Catalogs, GC26-4075 

MVSjExtended Architecture Data Administration Guide, GC26-4013 

MVSjExtended Architecture Linkage Editor and Loader User's Guide, GC26-4011 

MVSjExtended Architecture System Generation Reference, GC26-4009 

Preface V 



For the following books, see MVS/System Product Version 2 General Information 
Manual, GC28-Ill8, for the order numbers that correspond to the level you are 
using: 

MVS/Extended Architecture JCL 

MVS/Extended Architecture Message Library: System Messages 

MVS/Extended Architecture System Programming Library: System Macros and 
Facilities, Volume 1 

MVS/Extended Architecture System Programming Library: System Macros and 
Facilities, Volume 2 

MVS/Extended Architecture System Programming Library: System Modifications 

MVS/Extended Architecture System Programming Library: 31-Bit Addressing 

MVS/370 and MVS/XA 

TSO Extensions Command Language Reference Summary, GX23-0015 

TSO Extensions User's Guide, SC28-1333 

TSO Extensions CLISTs: Implementation and Reference, SC28-1304 

TSO Extensions Guide to Writing a Terminal Monitor Program or a Command 
Processor, SC28-1136 

TSO Extensions Session Manager Program Reference, SC28-1306 

TSO Extensions Terminal Messages, GC28-13IO 

System Programming Library: TSO Extensions Planning and Installation, Volume 
1, SC28-1379 

System Programming Library: TSO Extensions User Exits and Modifications, 
Volume 2, SC28-1380 

System Programming Library: TSO Extensions Command and Macro Reference, 
Volume 3, SC28-1381 

Assembler H Version 2 Application Programming: Language Reference, GC26-4037 

Interactive System Productivity Facility/Program Development Facility for MVS: 
Reference, SC34-2089 

VI TSO Extensions Command Language Reference 



Contents 

Basic Information for Using TSO 
U sing a TSO Command 1 

Positional Operands 1 
Keyword Operands 1 

Syntax Notational Conventions 2 
Abbreviating Keyword Operands 3 
Comments 4 

Line Continuation 4 
Delimi ters 4 
Using the HELP Command 5 
Using Commands for VSAM and Non-VSAM Data Sets 6 
U sing Other TSO Commands 6 

The Commands and Subcommands 7 
ALLOCATE Command 8 
ATTRIB Command 32 
CALL Command 40 
CANCEL Command 42 
DELETE Command 44 
EDIT Command 48 
Subcommands for EDIT 55 

Modes of Operation 58 
Input Mode 58 
Edit Mode 61 
Changing from One Mode to Another 63 
Data Set Disposition 63 
Tabulation Characters 63 
Executing User-Written Programs 64 
Terminating the EDIT Command 64 
Recovering an EDIT Work File 64 
Checkpointing a Data Set 64 
Recovering After a System Failure 65 
Recovering After an Abend 66 
Recovering After a Terminal Line Disconnect 67 

ALLOCATE Subcommand of EDIT 68 
ATTRIB Subcommand of EDIT 69 
BOTTOM Subcommand of EDIT 70 
CHANGE Subcommand of EDIT 71 

Quoted-String Notation 72 
Combinations of Operands 73 

CKPOINT Subcommand of EDIT 77 
COPY Subcommand of EDIT 79 

Messages 81 

Contents Vll 



DELETE Subcommand of EDIT 87 
DOWN Subcommand of EDIT 89 
END Subcommand of EDIT 90 
EXEC Subcommand of EDIT 91 
FIND Subcommand of EDIT 92 
FREE Subcommand of EDIT 94 
HELP Subcommand of EDIT 95 
INPUT Subcommand of EDIT 96 
INSERT Subcommand of EDIT 98 
Insert/Replace/Delete Function of EDIT 

How the System Interprets the Operands 
LIST Subcommand of EDIT 102 
MOVE Subcommand of EDIT 104 

Messages 106 
PROFILE Subcommand of EDIT 112 
RENUM Subcommand of EDIT 113 
RUN Subcommand of EDIT 115 
SAVE Subcommand of EDIT 118 
SCAN Subcommand of EDIT 121 
SEND Subcommand of EDIT 123 
SUBMIT Subcommand of EDIT 124 
TAB SET Subcommand of EDIT 128 
TOP Subcommand of EDIT 130 
UNNUM Subcommand of EDIT 131 
UP Subcommand of EDIT 132 
VERIFY Subcommand of EDIT 133 

END Command 134 
EXEC Command 135 
FREE Command 140 
HELP Command 144 
LINK Command 148 
LIST ALC Command 156 
LISTBC Command 159 
LISTCAT Command 160 
LISTDS Command 164 
LOAD GO Command 167 
LOGOFF Command 172 
LOGON Command 173 
OUTPUT Command 177 
OUTPUT Subcommands 183 

CONTINUE Subcommand of OUTPUT 
END Subcommand of OUTPUT 186 
HELP Subcommand of OUTPUT 187 
SAVE Subcommand of OUTPUT 188 

PROFILE Command 189 
PROTECT Command 196 

Passwords 199 
Types of Access 
Password Data Set 

RECEIVE Command 

199 
200 
201 
208 RENAME Command 

RUN Command 210 
SEND Command 214 
STATUS Command 217 

Vll1 TSO Extensions Command Language Reference 

100 
100 

184 



SUBMIT Command 218 
TERMINAL Command 222 
TEST Command 227 

When to Use TEST 230 
Addressing Conventions Associated with TEST 231 
Restrictions on Use of Symbols 235 

External Symbols 235 
Internal Symbols 236 
Addressing Considerations 236 
Examples of Valid Addresses in TEST Subcommands 236 

31-Bit Addressing Considerations Associated with TEST (MVSjXA 
Only) 237 

Programming Considerations Associated with TEST When Using the Virtual 
Fetch Services (MVSjXA Only) 237 

Programming Considerations Associated with TEST for Use in a 
Cross-Memory Environment 238 

TEST Subcommands 239 
ALLOCATE Subcommand of TEST (MVS/XA Only) 243 
AND Subcommand of TEST (MVS/XA Only) 244 
Assignment of Values Function of TEST 247 
AT Subcommand of TEST 251 
ATTRIB Subeommand of TEST (MVSjXA Only) 255 
CALL Subcommand of TEST 256 
CANCEL Subcommand of TEST (MVS/XA Only) 259 
COpy Subcommand of TEST 260 
DELETE Subcommand of TEST 263 
DROP Subcommand of TEST 264 
END Subcommand of TEST 265 
EQUATE Subcommand of TEST 266 
EXEC Subcommand of TEST (MVS/XA Only) 269 
FREEMAIN Subcommand of TEST 270 
GETMAIN Subcommand of TEST 272 
GO Subcommand of TEST 274 
HELP Subcommand of TEST 276 
LINK Subcommand of TEST (MVS/XA Only) 277 
LIST Subcommand of TEST 278 
LISTALC Subcommand of TEST (MVS/XA Only) 283 
LISTBC Subcommand of TEST (MVS/XA Only) 284 
LISTCAT Subcommand of TEST (MVS/XA Only) 285 
LISTDCB Subcommand of TEST 286 
LISTDEB Subcommand of TEST 288 
LISTDS Subcommand of TEST (MVS/XA Only) 291 
LISTMAP Subcommand of TEST 292 
LISTPSW Subcommand of TEST 294 
LISTTCB Subcommand of TEST 296 
LOAD Subcommand of TEST 299 
OFF Subcommand of TEST 301 
OR Subcommand of TEST (MVS/XA Only) 303 
PROFILE Subcommand of TEST (MVS/XA Only) 306 
PROTECT Subcommand of TEST (MVS/XA Only) 307 
QUALIFY Subcommand of TEST 308 
RENAME Subcommand of TEST (MVS/XA Only) 311 
RUN Subcommand of TEST 312 
SEND Subcommand of TEST (MVS/XA Only) 314 

Contents IX 



STATUS Subcommand of TEST (MVSfXA Only) 315 
SUBMIT Subcommand of TEST (MVS/XA Only) 316 
TERMINAL Subcommand of TEST (MVS/XA Only) 317 
UNALLOC Subcommand of TEST (MVS/XA Only) 318 
WHERE Subcommand of TEST 319 

TIME Command 322 
TRANSMIT Command 323 

Data Encryption Function of TRANSMIT and RECEIVE 324 
Logging Function of TRANSMIT and RECEIVE 324 
NAMES Data Set Function 325 
Control Section Tags 326 

Tag Definitions 326 
Nicknames Section Tags 328 

Tag Definitions 328 
TSOEXEC Command 336 
WHEN Command 337 

The CLIST Statements 339 
ATTN CLIST Statement 340 
CLOSFILE CLIST Statement 342 
CONTROL CLIST Statement 343 
DATA-END DATA CLIST Sequence 346 
DATA PROMPT-ENDDATA Sequence 347 
DO-WHILE-END CLIST Sequence 349 
ERROR CLIST Statement 350 
EXIT CLIST Statement 352 
GETFILE CLIST Statement 353 
GLOBAL CLIST Statement 354 
GOTO CLIST Statement 355 
IF-THEN-ELSE CLIST Statement 356 
OPENFILE CLIST Statement 357 
PROC CLIST Statement 358 
PUT FILE CLIST Statement 359 
READ CLIST Statement 360 
READDVAL CLIST Statement 361 
RETURN CLIST Statement 362 
SET CLIST Statement 363 
TERMIN CLIST Statement 364 
WRITE and WRITENR Statements 365 

Quick Reference Guide to Commands and Statements 367 

Index 369 

X TSO Extensions Command Language Reference 



Figures 

1. Commands Preferred for VSAM/Non-VSAM Data Sets 6 
2. Allocating and Creating Input Data Sets 40 
3. Subcommands of the EDIT Command 56 
4. Default Values for LINE or LRECL and BLOCK or BLKSIZE 

Operands 57 
5. Entering Blank Lines Into Your Data Set 60 
6. How EDIT Subcommands Affect the Line Pointer Value 62 
7. Sample Edit Session Using the CKPOINT Subcommand and the RECOVER 

Operand of EDIT 66 
8. Default Tab Settings 128 
9. Information Available Through the HELP Command 147 

10. System Defaults for Control Characters 189 
11. UPT/PSCB Initialization Table in the Background 194 
12. Source Statement/Program Product Relationship 210 
13. TSO Commands and Statements and Their Uses 367 

Figures Xl 



XlI TSO Extensions Command Language Reference 



Summary of Amendments 

Summary of Amendments 
for SC28-1307-1 
TSO Extensions Release 2 

This edition contains several minor technical corrections and service updates 
throughout the book. Parts of the TRANSMIT and RECEIVE commands have 
been rewritten f~r clarity. 

Summary of Amendments 
for SC28-1307-0 
as Updated December 14, 1984 
by TNL SN28-1030 

This Technical Newsletter contains service updates to the CANCEL, STATUS, 
and SUBMIT commands. 

Summary of Amendments Xl11 



XIV TSO Extensions Command Language Reference 



Basic Information for Using TSO 

Using a TSO Command 

Positional Operands 

Keyword Operands 

A command consists of a command name usually followed by one or more 
operands. Operands provide the specific information required to perform the 
requested operation. For example, operands for the RENAME command identify 
the data set to be renamed and specify the new name: 

RENAME OLDNAME NEWNAME 

command name operand-l operand-2 
(old data-set-name) (new data-set-name) 

Two types of operands are used with the commands: positional and keyword. 

Positional operands follow the command name in a certain order. In the 
command descriptions within this book, the positional operands are shown in 
lowercase characters. F or example, 

EDIT tfknu47.data 

where tfknu47.data is the data-set-name positional operand with the EDIT 
command. 

When you enter a positional operand that is a list of several names or values, you 
must enclose the list within parentheses. For example, 

LISTDS (PARTS.DATA TEST. DATA) 

Keywords are specific names or symbols that have a particular meaning to the 
system. You can include keywords in any order following the positional 
operands. In the command descriptions within this book, keywords are shown in 
uppercase characters. 

Basic Information for Using TSO 1 



You can specify values with some keywords. The value is entered within 
parentheses following the keyword. For example, a typical keyword operand with 
a value is: 

LINESIZE(integer) 

Continuing this example, you would select the number of characters that you 
want to appear in a line and substitute that number for integer when you enter 
the operand: 

LINESIZE(80) 

However, if you enter conflicting, mutually exclusive keywords, the last keyword 
entered overrides the previous ones. ( \:. ;"¥ 

Syntax Notational Conventions 

The following paragraphs describe the notation that this book uses to define the 
command syntax and format. 

1. The set of symbols listed below is used to define the format, but you cannot 
type them in the actual statement. 

{} 

[ ] 

hyphen 

underscore 

braces 

brackets 

ellipsis 

The special uses of these symbols are explained in the following paragraphs. 

2. You can type uppercase letters, numbers, and the set of symbols listed below 
in an actual command exactly as shown in the statement definition. 

apostrophe 

* asterisk 

comma 

equal sign 

() parentheses 

period 

3. Lowercase letters and symbols appearing in a command definition represent 
variables for which you can substitute specific information in the actual 
command. 

Example: If name appears in a command definition, you can substitute a 
specific value (for example, ALPHA) for the variable when you enter the 
command. 

2 TSO Extensions Command Language Reference 



4. Hyphens join lowercase words and symbols to form a single variable. 

Example: If member-name appears in the command syntax, you should 
substitute a specific value (for example, BET A) for the variable in the actual 
command. 

5. The default option is indicated by an underscore. If you do not specify 
anything, you automatically get the default option. For example, 

LOGOFF 
[ 

DISCONNECT 1 
HOLD 

indicates you can select DISCONNECT or HOLD. However, if no operand 
is specified, the default is DISCONNECT. 

6. Braces group related items, such as alternatives. You must choose one of the 
items enclosed within the braces. For example, 

CALL Idsname I 
dsname (membername) 

indicates if you select dsname (membername), the result is CALL dsname 
(membername ). 

7. Brackets also group related items. However, everything within the brackets is 
optional and can be omitted. For example, 

PROTECT data-set-name [PWREAD 1 
NOPWREAD 

indicates you can choose one of the items enclosed within the brackets or you 
can omit both items within the brackets. 

8. An ellipsis indicates the preceding item or group of items can be repeated 
more than once in succession. F or example, 

DELETE (entryname[/ password] [ ... ]) 

indicates an entry name and associated optional password you can repeat any 
number of times in succession. 

Abbreviating Keyword Operands 

You can enter keywords spelled exactly as they are shown or you can use an 
acceptable abbreviation. You can abbreviate any keyword by entering only the 
significant characters; that is, you must type as much of the keyword as is 
necessary to distinguish it from the other keywords of the command or 
subcommand. For example, the LISTBC command has four keywords: 

MAIL 
NOM AIL 
NOTICES 
NONOTICES 

Basic Information for Using TSO 3 



Comments 

Line Continuation 

Delimiters 

The abbreviations are: 

M for MAIL (also MA and MAl) 

NOM for NOMAIL (also NOMA and NOMAI) 

NOT for NOTICES (also NOTI, NOTIC, and NOTICE) 

NON for NONOTICES (also NONO, NONOT, NONOTI, NONOTIC, and NONOTICE) 

In addition, the DELETE and LISTCAT commands allow unique abbreviations 
for some of their keywords. The abbreviations are shown with the syntax and 
operand descriptions of DELETE and LISTCAT. 

You can add comments to a command anywhere a blank might appear. Simply 
enter them within the comment delimiters /* and */. A comment can be 
continued to the next line by using a line continuation character (+ or -) at the 
end of the line. 

listd (data-set-list) /* my data sets */ 

or 

listd (data-set-list) /* this is a list of my -
active data sets */ 

When it is necessary to continue to the next line, use a plus or minus sign as the 
last character of the line being worked on. Caution: A plus sign causes leading 
delimiters to be removed from the continuation line. 

list (data-set-list) /* this is a list of my -
active data sets */ 

or 

alloc dataset(out.data) file(output) new + 
space(lO,2) tracks release 

When you type a command, you must separate the command name from the first 
operand by one or more blanks. You must separate operands by one or more 
blanks or a comma. Do not use a semicolon as a delimiter because the characters 
entered after a semicolon are ignored. If you use a blank or a comma as a 
delimiter, you can type the LISTBC command as follows: 

LISTBC NOMAIL NONOTICES 
LISTBC NOMAIL,NONOTICES 
LISTBC NOMAIL NONOTICES 

4 TSO Extensions Command Language Reference 



Using the HELP Command 

Use the HELP command to receive all the information on the system on how to 
use any TSO command. The requested information is displayed on your terminal. 

Explanations of Commands: To receive a list of all the TSO commands in the 
SYS1.HELP data set along with a description of each, enter the HELP command 
as follows: 

help 

You can place information about installation-written commands in the 
SYS1.HELP data set. You can also get all the information available about a 
specific command in SYS1.HELP by entering the specific command name as an 
operand on the HELP command, as follows: 

help ALLOCATE 

where ALLOCATE is the command name. 

Syntax Interpretation of HELP Information: The syntax notation for the HELP 
information is different from the syntax notation presented in this book because it 
is restricted to characters that are displayed on your terminal. You can get the 
syntax interpretation by entering the HELP command as follows: 

help help 

Explanations of Subcommands: When HELP exists as a subcommand, you can 
use it to obtain a list of subcommands or additional information about a 
particular subcommand. The syntax of HELP as a subcommand is the same as 
the HELP command. 

Basic Information for Using TSO 5 



Using Commands for VSAM and Non-VSAM Data Sets 

Access Method Services is a multi-function service program that primarily 
establishes and maintains Virtual Storage Access Method (VSAM) data sets. 

Figure 1 shows recommended commands, by function, for VSAM and 
non-VSAM data sets. Numbers in parentheses after the commands indicate order 
of preference. Program product commands are identified with an asterisk (*). 
Refer to Access Method Services for commands not covered in this book. 

Function Non-VSAM VSAM 

Build lists of attributes ATTRIB (None) 
Allocate new DASD space ALLOCATE DEFINE 
Connect data set to terminal ALLOCATE ALLOCATE 
List names of allocated LISTALC LISTALC 
(connected) data sets 
Modify passwords PROTECT DEFINE,ALTER 
List attributes of one or LISTDS (1) LISTCAT (1) 
more objects LISTCAT (2) LISTDS (2) 
List names of cataloged data sets 

Limit by type LISTCAT LISTCAT 
Limit by naming convention LISTDS LISTDS 

Catalog data sets DEFINE (1) DEFINE 
ALLOCATE (2) 

List contents EDIT,LIST· PRINT 
Rename date set RENAME ALTER 
Delete data set DELETE DELETE 
Copy data set COPY· REPRO 

Figure 1. Commands Preferred for VSAM/Non-VSAM Data Sets 

Using Other TSO Commands 

The Session Manager TSO commands SMCOPY, SMFIND, and SMPUT are not 
described in this book. For complete descriptions of these commands, see TSO 
Extensions Session Manager Program Reference. 

6 TSO Extensions Command Language Reference 



The Commands and Subcommands 

This section contains descriptions of the TSO commands. The commands are 
presented in alphabetical order. Subcommands are also presented in alphabetical 
order following the command to which they apply. 

The Commands and Subcommands 7 



ALLOCATE Command 

Use the ALLOCATE command or the ALLOCATE subcommand of EDIT (the 
subcommand's function and syntax are identical to the ALLOCATE command) 
to dynamically allocate the data sets required by a program that you intend to 
execute. 

You can specify data set attributes for non-VSAM data sets that you intend to 
allocate dynamically in several ways: 

• Use the LIKE operand to obtain the attributes from an existing model data 
set (a data set that must be cataloged) whose data set attributes you want to 
use. You can override model data set attributes by explicitly specifying the 
desired attributes on the ALLOCATE command. 

• Identify a data set and describe its attributes explicitly on the ALLOCATE 
command. 

• Use the ATTRIB command to build a list of attributes. During the 
remainder of your terminal session, you can have the system refer to this list 
for data set attributes by specifying the USING operand when you enter the 
ALLOCATE command. The ALLOCATE command converts the attributes 
into the data control block (DCB) operands for data sets being allocated. If 
you code DCB attributes in an attribute-list and you refer to the attribute-list 
using the USING operand on the ALLOCATE command, any DCB attribute 
you code on the ALLOCATE command is ignored. 

8 TSO Extensions Command Language Reference 



IALLOCATE] 
ALLOC { I DATASET] I ( * ) ] } 

DSNAME (dsname-list) 
DUMMY 

I FILE (name) ] 
DDNAME (name) [ I DATASET] 

DSNAME 
DUMMY 

[~~~ 1 MOD 
NEW 
SYSOUT [( class) ] 

[
VOLUME (Serial-list)] 
MSVGP (identifier) 

[SPACE (quantity [,increment]) 

[BLKSIZE (blocksize)] 
[DIR (integer)] 
[ALTFILE (name)] 
[DEST (stationid)] 
[REUSE] 

[~g~gLD 1 
[UNIT (type)] 

[
UNCOUNT (count)] 
PARALLEL 

[LABEL (type)] 
[ACCODE(access code)] 

[POSITION (sequence-no.)] 
[MAXVOL (count)] 
[PRIVATE] 
[VSEQ (vol-seq-no)] 

[
LIKE (model-dsname) 1 
USING (attr-list-name) 

[RELEASE] 
[ROUND] 

[~~~TE 1 
CATALOG 
UNCATALOG 

[BUFL (buffer-length)] 

[
FILE (name) ] 
DDNAME (name) 

I (dSna~:!.list)] ] 

(

BLOCK (value) II AVBLOCK (value) 
TRACKS 
CYLINDERS 

ALLOCATE Command 9 



[BUFNO (number-of-buffers)] 

[
LRECL ({lOgiCal-re~ord-length})] 

(NNNNNK) 

[NCP (no.-of-channel-programs)] 

[
INPUT 1 
OUTPUT 

[EXPDT (year-day)] 
[RETPD (no.-of-days)] 

I ~ I 1 
[BFALN 

[OPTCD 

[ EROPT 

(A,B,C,E,F,H,J,Q,R,T,W,and/or Z)] 

({!~})] 
[BFTEK (U}) J 

[RECFM (A,B,D,F,M,S,T,U,and/or V)] 
[DIAGNS (TRACE)] 
[LIMCT (search-number)] 

[BUFOFF (lblock-pr~fiX-length III 

~SORG (111:\)] 

[DEN ((I)) 1 

[:::::N (key(l!:))h) 1 
[PROTECT] 
[COPIES (number), [group value-list])] 
[BURST/NOBURST] 
[CHARS[tablename-list]] 
[FLASH(overlay name ,[count])] 
[MODIFY(module name,[trc])] 
[FCB (image-id [,ALIGN l)] 

,VERIFY 

10 TSO Extensions Command Language Reference 



DATASET(dsname-list or *) or DSNAME(dsname-list or *) 
specifies the name of the data set that is to be allocated. If a list of data set 
names is entered, ALLOCATE allocates and concatenates non-V SAM data 
sets. The data set name must include the descriptive (rightmost) qualifier 
and can contain a member name in parentheses. 

If you specify a password, you are not prompted for it when you open a 
non-VSAM data set. 

If you want to allocate a file to the terminal for input or output, only the following operands are 
processed: 

ALLOCATE DA(*) FILE, DDNAME, BLOCK, BLKSIZE, USING 

If you allocate more than one data set to your terminal, the block size and other data set 
characteristics, which default on the first usage, are also used for all other data sets. This happens for 
input or output. Use the A TIRIB command and the USING operand of ALLOCATE to control the 
data set characteristics. 

1. Data sets residing on the same physical tape volume cannot be allocated 
concurrently. 

2. The following items should be noted when using the concatenate function: 

• The data sets specified in the list must be cataloged. You can use the 
CATALOG operand of either the ALLOCATE or FREE commands to 
catalog a data set. 

• The maximum number of data sets that you can concatenate is 255. This 
maximum applies to sequential data sets. For more information on the 
maximum number of partitioned data sets that you can concatenate, see 
Data Administration Guide. The data sets to be concatenated must all 
have the same record format (RECFM). The block size (BLKSIZE) of 
the first data set in the concatenation must be greater than or equal to the 
block size of each of the other data sets in the same concatenation. 

• The data set group is concatenated. You must free it to deconcatenate it. 
The file name specified for the FILE or DDNAME operand on the 
ALLOCATE command must be the same as that specified for the FILE 
or DDNAME operand on the FREE command. 

• The system ignores all operands except for the following: 
DATASET/DSNAME, FILEjDDNAME, and status operands. 

3. To allocate a member of a generation data group, specify the fully qualified 
data set name, including the generation number. 

DUMMY 
specifies that no devices or external storage space are to be allocated to the 
data set, and no disposition processing is to be performed on the data set. 
Entering the DUMMY operand has the same effect as specifying 
NULLFILE as the data set name on the DATASET or DSNAME operand. 

ALLOCATE Command 11 



If you want to allocate a DUMMY dataset, only the following operands are processed: 

ALLOCATE DUMMY, FILE, DDNAME, BLOCK, BLKSIZE, USING 

Fn.E(name) or DDNAME(name) 

OLD 

SHR 

specifies the name to be associated with the data set. It can contain up to 
eight characters. (This name corresponds to the name on the data definition 
(DD) statement in job control language and must match the DD name in 
the data control block (DCB) that is associated with the data set.) For 
PLjI, this name is the file name in a DECLARE statement and has the form 
DCL file name FILE; for example, DCL MASTER FILE. For COBOL, 
this name is the external-name used in the ASSIGN TO clause. For 
FORTRAN, this name is the data set reference number that identifies a 
data set and has the form FTxxFyyy, for instance FT06F002. 

If you omit this operand, the system assigns an available file name (ddname) 
from a data definition statement in the procedure that is invoked when you 
enter the LOGON command. 

Do not use special DD names unless you want to make use of the facilities 
those names represent to the system. See JCL for more information on the 
following special DD names: 

SYSMDUMP 
SYSUDUMP 
SYSCHK 
SYSCKEOV 
SYSABEND 

See System Programming Library: Job Management (MVSj370) or System 
Programming Library: System Modifications (MVSjXA) for the following 
special DD names: 

JOBCAT 
JOBLIB 
STEPCAT 
STEPLIB 

indicates the data set currently exists and you require exclusive use of the 
data set. The data set should be cataloged. If it is not, you must specify 
the VOLUME operand. OLD data sets are retained by the system when 
you free them from allocation. The DATASET or DSNAME operand is 
required. 

indicates the data set currently exists, but you do not require exclusive use 
of the data set. Others can use it concurrently. ALLOCATE assumes the 
data set is cataloged if the VOLUME operand is not entered. SHR data 
sets are retained by the system when you free them. The DATASET or 
DSNAME operand is required. 

12 TSO Extensions Command Language Reference 



MOD 

NEW 

indicates you want to append data to the end of the data set. If the data set 
does not exist, a new data set is created and the disposition is changed to 
NEW. MOD data sets are retained by the system when you free them. The 
DAT ASET or DSNAME operand is required. 

(non-VSAM only) indicates the data set does not exist and it is to be 
created. For new partitioned data sets, you must specify the DIR operand. 
A NEW data set is kept and cataloged if you specify a data set name. If 
you do not specify a data set name, it is deleted when you free it or log off. 

SYSOUT[(class») 
indicates the data set is to be a system output data set. An optional subfield 
can be defined giving the output class of the data set. Output data is 
initially directed to the job entry subsystem (JES) and can later be 
transcribed to a final output device. The final output device is associated 
with output class by the installation. After transcription by the job entry 
subsystem, SYSOUT data sets are deleted. 

The system generates names for SYSOUT data sets; therefore, you should 
not specify a data set name when you allocate a SYSOUT data set. If you 
do, the system ignores it. 

If you want to allocate a SYSOUT dataset, the following operands are used exclusively with 
SYSOUT: 

ALLOCATE DDNAME, SYSOUT, DEST, HOLD, NOHOLD, COPIES, 
BURST/NOBURST, CHARS, FLASH, MODIFY, FCB 

If you do not specify OLD, SHR, MOD, NEW, or SYSOUT, a default value is 
assigned or a value is prompted for, depending on the other operands specified: 

., If the LIKE operand or any space operands (SPACE, DIR, BLOCK, 
BLKSIZE, A VBLOCK, TRACKS, or CYLINDERS) are specified, then the 
status defaults to NEW. 

• If the COPIES operand is specified, then the status defaults to SYSOUT. 

• If the DATASET/DSNAME operand is entered without the LIKE operand 
or any space operands, then the status defaults to OLD. 

• If the LIKE operand, the DATASET/DSNAME operand, and the space 
operands are all omitted, you are prompted to enter a status value. 

VOLUME(serial-list) 
specifies the serial number(s) of an eligible direct access volume(s) on which 
a new data set is to reside or on which an old data set is located. If you 
specify VOLUME for an old data set, the data set must be on the specified 
volume(s) for allocation to take place. If you do not specify VOLUME, 
new data sets are allocated to any eligible direct access volume. Eligibility is 
determined by the UNIT information in your procedure entry in the user 

ALLOCATE Command 13 



attribute data set (UADS). You can specify up to 255 volume serial 
numbers. 

MSV GP(identifier) 
specifies an installation-defined group of Mass Storage System (MSS) 
volumes to be used for system selection of a volume or volumes to be 
mounted. This operand is used for new data set allocation on MSS (3330V) 
devices only. It is ignored for old data sets, DUMMY, SYSOUT, and 
terminal data sets. Your UADS data set must contain the MOUNT 
attribute. Use of this operand implies PRIVATE. 

SP ACE( quantity, increment) 
specifies the amount of space to be allocated for a new data set. If you 
omit this operand or the primary space quantity, the system uses the 
IBM-supplied default value of SPACE(10,50) AVBLOCK (1000). However, 
your installation might have changed the default. For more information 
about default space, see System Programming Library: System Macros and 
Facilities, Volume 1. 

To indicate the unit of space for allocation, you must specify one of the 
following: BLOCK(value) or BLKSIZE(value), AVBLOCK(value), 
TRACKS, or CYLINDERS. The amount of space requested is determined 
as follows: 

BLOCK(value) or BLKSIZE(value) 
Multiply the value of the BLOCK/BLKSIZE operand by the quantity 
value of the SPACE operand. 

A VBLOCK(value) 
Multiply the value of the A VB LOCK operand by the quantity value 
of the SPACE operand. 

TRACKS 
The quantity value of the SPACE operand is the number of tracks you 
are requesting. 

CYLINDERS 

quantity 

The quantity value of the SPACE operand is the number of cylinders 
you are requesting. 

SPACE can be specified for SYSOUT, NEW, and MOD data sets. 
You must specify a unit of space when you use the SPACE operand. 

specifies the number of units of space to be allocated initially for a data set. 

increment 
specifies the number of units of space to be added to the data set each time 
the previously allocated space has been filled. 

BLOCK(value) 
specifies the average length (in bytes) of the records written to the data set. 
The maximum block value used to determine space to be allocated is 65,535. 
The block value is the unit of space used by the SPACE operand. A track 

14 TSO Extensions Command Language Reference 



or a cylinder on one device can represent a different amount of storage 
(number of bytes) than a track or a cylinder on another device. The unit of 
space value is determined in one of the following ways: 

• From the default value of (10,50) AVBLOCK(lOOO) if no space 
operands (that is, SPACE, BLOCK, TRACKS, AVBLOCK, or 
CYLINDERS) are specified. 

• From the BLOCK operand if specified. 

• From the model data set if the LIKE operand is specified and BLOCK, 
TRACKS, A VBLOCK, or CYLINDERS are not specified on 
ALLOCATE. 

e From the BLKSIZE operand if BLOCK is not specified. 

Note that the default value for space is installation dependent. Your 
installation might have changed the default value. 

A VBLOCK(value) 
specifies only the average length (in bytes) of the records that are written to 
the data set. 

TRACKS 
specifies the unit of space is to be a track. 

CYLINDERS 
specifies the unit of space is to be a cylinder. 

BLKSIZE(blocksize) 
specifies the data control block (DCB) block size for the data set. The 
maximum allowable decimal value for block size recorded in the DeB is 
32,760. The DCB block size is determined in one of the following ways: 

CJ From the attribute list if USING is specified. The BLKSIZE operand 
on ALLOCATE cannot be used for the DCB block size. 

• From the BLKSIZE operand specified on ALLOCATE. 

• From the model data set if LIKE is specified and BLKSIZE is not 
specified on ALLOCATE. 

• From the BLOCK operand if neither USING, BLKSIZE, nor LIKE is 
specified. 

The block size that you specify to be recorded in the data control block 
(DCB) must be consistent with the requirements of the RECFM operand. 
If you specify: 

• RECFM(F), then the block size must be equal to or greater than the 
logical record length. 

• RECFM(F,B), then the block size must be an integral multiple of the 
logical record length. 

ALLOCATE Command 15 



• RECFM(V), then the block size must be equal to or greater than the 
largest block in the data set. (Note: For unblocked variable-length 
records, the size of the largest block must allow space for the four-byte 
block descriptor word in addition to the largest logical record length. 
The logical record length must allow space for a four-byte record 
descriptor word.) 

• RECFM(V,B), then the block size must be equal to or greater than the 
largest block in the data set. For block variable-length records, the size 
of the largest block must allow space for the four-byte block descriptor 
word in addition to the sum of the logical record lengths that will go 
into the block. Each logical record length must allow space for a 
four-byte record descriptor word. Because the number of logical 
records can vary, you must estimate the optimum block size and the 
average number of records for each block based on your knowledge of 
the application that requires the I/O. 

• RECFM(U) and BLKSIZE(80), then one character is truncated from 
the line. That character (the last byte) is reserved for an attribute 
character. 

The operands BLOCK, BLKSIZE, A VBLOCK, TRACKS, and 
CYLINDERS can be specified for SYSOUT, NEW, or MOD data sets. 
The operands BLOCK or BLKSIZE can also be specified for dummy or 
terminal data sets. 

Dffi(integer) 
specifies the number of 256 byte records that are to be allocated for the 
directory of a new partitioned data set. This operand must be specified if 
you are allocating a new partitioned data set. 

AL TFILE(name) 
specifies the name associated with the SYSIN subsystem data set that is to 
be allocated. It can contain up to eight characters. This operand is used 
primarily in the background. 

DEST(stationid) 
specifies a remote work station to which SYSOUT data sets are directed 
upon deallocation. The DEST operand is the one to eight character name 
of the remote work station receiving the SYSOUT data set. 

REUSE 
specifies the file name being allocated is to be freed and reallocated if it is 
currently in use. 

You cannot use the REUSE operand to reallocate a file from a disposition 
of OLD to a disposition of SHR. However, you can first free the file with a 
disposition of OLD, then reallocate it with a disposition of SHR. 

16 TSO Extensions Command Language Reference 



HOLD 
specifies the data set is to be placed on a HOLD queue upon deallocation. 

NOHOLD 
specifies processing of the output should be determined by the 
HOLD/NOHOLD specification associated with the particular SYSOUT 
class specified. However, the specification associated with the SYSOUT 
class can be overridden by using the NOHOLD operand on the FREE 
command. 

UNIT (type) 
specifies the unit type to which a file or data set is to be allocated. You can 
specify an installation-defined group name, a generic device type, or a 
specific device address. If volume information is not supplied (volume and 
unit information is retrieved from a catalog), the unit type that is coded 
overrides the unit type from the catalog. This condition exists only if the 
coded type and class are the same as the cataloged type and class. 

UCOUNT(count) 
specifies the maximum number of devices to be allocated, where count is a 
value from 1-59. 

PARALLEL 
specifies one device is to be mounted for each volume specified on the 
VOLUME operand or in the catalog. 

LABEL(type) 
specifies the kind of label processing to be done. Type can be one of the 
following: SL, SUL, AL, AUL, NSL, NL, LTM, or BLP. These types 
correspond to the present JCL label-type values. 

ACCODE(access code) 
specifies or changes the accessibility code for an ANSI output tape data set. 
The purpose of the code is to protect the ANSI data set from unauthorized 
use. Up to eight characters (A-Z) are permitted in the access code, but only 
the first character is validated by ANSI. The first character must be an 
upper case alphabetic character. Password protection is supported for 
ANSI tape data sets under the PASSWORD/NOPWREAD options on the 
LABEL operand. Password access overrides any ACCODE value if both 
options are specified. 

POSITION(sequence-no.) 
specifies the relative position (1-9999) of the data set on a multiple data set 
tape. The sequence number corresponds to the data set sequence number 
field of the label operand in JCL. 

MAXVOL(count) 
specifies the maximum number (1-255) of volumes a data set can reside 
upon. This number corresponds to the count field on the VOLUME 
operand in JCL. 

ALLOCATE Command 17 



PRIVATE 
specifies the private volume use attribute be assigned to a volume that is not 
reserved or permanently in resident. This operand corresponds to the 
PRIVATE keyword of the VOLUME operand in JCL. 

If VOLUME and PRIVATE operands are not specified and the value 
specified for MAXVOL exceeds the value specified for UCOUNT, the 
system does not demount any volumes when all of the mounted volumes 
have been used, causing abnormal termination of your job. If PRIVATE is 
specified, the system demounts one of the volumes and mounts another 
volume in its place so that processing can continue. 

VSEQ(vol-seq-no.) 
specifies at which volume (1-255) of a multi-volume data set processing is to 
begin. This operand corresponds to the volume sequence number on the 
VOLUME operand in JCL. VSEQ should only be specified when the data 
set is cataloged. 

LIKE(model-dsname) 
specifies the name of an existing model data set whose attributes are to be 
used as the attributes of the new data set being allocated. This data set 
must be cataloged and must reside on a direct access device. The volume 
must be mounted when you issue the ALLOCATE command. 

When the ALLOCATE command assigns attributes to a new data set, it 
copies all of the following attributes from the model data set: 

Primary space quantity (SPACE) 
Secondary space quantity (SPACE) 
Space unit (BLOCK, A VBLOCK, TRACKS, CYLINDERS) 
Directory space quantity (DIR) 
Data set organization (DSORG) 
Record format (RECFM) 
Optional services code (OPTCD) - for ISAM data sets only 
Logical record length (LRECL) 
Key length (KEYLEN) 
Block size (BLKSIZE) 
Volume sequence number (VSEQ) 
Data set expiration date (EXPDT) 

You can use the LIKE operand even if none of your existing data sets have 
the exact attribute values you want to use for a new data set. You can 
override attributes copied from a model data set by specifying the LIKE 
operand as well as the operands corresponding to the attributes you want to 
override on the ALLOCATE command. 

The following items should be considered when using the LIKE operand: 

• The LIKE and USING operands are mutually exclusive. 

• NEW is-the only valid data set status that can be specified with the 
LIKE operand. 

• The LIKE operand must be specified with the DATASET operand. 

18 TSO Extensions Command Language Reference 



o Only one data set name can be specified on the DATASET/DSNAME 
operand. 

(l) If the new data set to be allocated is specified with a member name, 
indicating a partitioned data set (PDS), then you are prompted for 
directory blocks unless that quantity is explicitly specified on the 
ALLOCATE command or defaulted from the LIKE data set. If the 
new data set name is specified with a member name, but the model data 
set is sequential and you have not explicitly specified the quantity for 
directory blocks, then you are prompted for directory blocks. 

USING(attr-list-name) 
specifies the name of a list of attributes that you want to have assigned to 
the data set you are allocating. The attributes in the list correspond to, and 
are used for, data control block (DCB) operands. (Note to users familiar 
with batch processing: These DCB operands are the same as those normally 
specified by using JCL and data management macro instructions.) 

An attribute list must be stored in the system before you use this operand. 
You can build and name an attribute list by using the ATTRIB command. 
The ATTRIB command allocates a file with the name being the 
(attr-list-name) specified in the ATTRIB command. The name that you 
specify for the list when you use the ATTRIB command is the name that 
you must specify for this USING(attr-list-name) operand. 

Note: The DCB operands (operands that are also on the ATTRIB 
command) cannot be specified with the USING operand. 

RELEASE 
specifies unused space is to be deleted when the data set is freed. 

Note: If you use RELEASE for a new data set with the BLOCK or 
BLKSIZE operand, then you must also use the SPACE operand. 

ROUND 
specifies the allocated space be equal to one or more cylinders. This 
operand should be specified only when space is requested in units of blocks. 
This operand corresponds to the ROUND operand on the SPACE 
parameter in JCL. 

Note: A command processor can modify the final disposition of the following 
operands: 

KEEP 
specifies the data set is to be retained by the system after it is freed. 

DELETE 
specifies the data set is to be deleted after it is freed. 

CATALOG 
specifies the data set is to be retained by the system in a catalog after it is 
freed. 

ALLOCATE Command 19 



UNCATALOG 
specifies the data set is to be removed from the catalog after it is freed. If 
you do not want the system to retain the data set, you must also specify the 
DELETE operand. 

BUFL(buffer-length) 
specifies the length, in bytes, of each buffer in the buffer pool. Substitute a 
decimal number for buffer-length. The number must not exceed 32,760. 

If you omit this operand and the system acquires buffers automatically, the 
BLKSIZE and KEYLEN operands are used to supply the information 
needed to establish buffer length. 

BUFNO(number-of-buffers) 
specifies the number of buffers to be assigned for data control blocks. 
Substitute a decimal number for number-of-buffers. The number must 
never exceed 255, and you can be limited to a smaller number of buffers 
depending on the limit established when the operating system was generated. 
The following table shows the condition that requires you to include this 
operand. 

When you use one of the following methods of obtaining the buffer pool, then: 

(1) BUILD macro instruction 
(2) GETPOOL macro instruction 

(3) Automatically with BPAM or BSAM 
(4) Automatically with QSAM 

LRECL(logical-record-length) 

(I) You must specify BUFNO. 
(2) The system uses the number 

that you specify for 
GETPOOL. 

(3) You must specify BUFNO. 
(4) You may omit BUFNO and 

accept two buffers. 

specifies the length, in bytes, of the largest logical record in the data set. 
You must specify this operand for data sets that consist of either 
fixed-length or variable-length records. 

Omit this operand if the data set contains undefined-length records. 

The logical record length must be consistent with the requirements of the 
RECFM operand and must not exceed the block size (BLKSIZE operand) 
except for variable-length-spanned records. If you specify: 

• RECFM(V) or RECFM(V B), then the logical record length is the sum 
of the length of the actual data fields plus four bytes for a record 
descriptor word. 

• RECFM(F) or RECFM(F B), then the logical record length is the 
length of the actual data fields. 

• RECFM(U), then you should omit the LRECL operand. 

LRECL(NNNNNK) allows users of ANSI extended logical records and 
QSAM "locate mode" users to specify a K multiplier on the LRECL 
operand. NNNNN can be a number within 1-16,384. The K indicates that 
the value can be multiplied by' one thousand and twenty-four (1024). 

20 TSO Extensions Command Language Reference 



For variable-length spanned records (VS or VBS) processed by QSAM 
(locate mode) or BSAM, specify LRECL (X) when the logical record 
exceeds 32,756 bytes. 

N CP(number-of-channel-programs) 
specifies the maximum number of READ or WRITE macro instructions 
allowed before a CHECK macro instruction is issued. The maximum 
number must not exceed 99 and must be less than 99 if a lower limit was 
established when the operating system was generated. If you are using 
chained scheduling, you must specify an NCP value greater than 1. If you 
omit the NCP operand, the default value is 1. 

INPUT 
specifies a BSAM data set opened for INOUT or a BDAM data set opened 
for UPDAT is to be processed for input only. This operand overrides the 
INOUT (BSAM) option or UPDAT (BDAM) option in the OPEN macro 
instruction to INPUT. 

OUTPUT 
specifies a BSAM data set opened for OUTIN or OUTINX is to be 
processed for output only. This operand overrides the OUTIN option in the 
OPEN macro instruction to OUTPUT or the OUTINX option in the OPEN 
macro instruction to EXTEND. 

EXPDT(year-day) 
specifies the data set expiration date. You must specify the year and day in 
the form yyddd, where yy is a two digit decimal number for the year and 
ddd is a three digit decimal number for the day of the year using the Julian 
day format. For example, January 1, 1984 is 84001 and December 31, 1984 
is 84366. 

RETPD(number-of-days) 
specifies the data set retention period in days. The value can be a one to 
four digit decimal number. 

BFALN ([~ Il 
specifies the boundary alignment of each buffer as follows: 

F each buffer starts on a fullword boundary that might not be a doubleword boundary. 
D each buffer starts on a doubleword boundary. 

If you do not specify this operand, the system defaults to a doubleword 
boundary. 

OPTCD(A,B,C,E,F,H,J,Q,R,T,W and/or Z) 
specifies the following optional services that you want the system to 
perform. (See also the OPTCD subparameter of the DCB parameter in JCL 
for a detailed discussion of these services.) 

A specifies the actual device addresses be presented in READ and WRITE macro 
instructions. 

B specifies the end-of-file (EO F) recognition be disregarded for tapes. 

ALLOCATE Command 21 



C specifies the use of chained scheduling. 

E requests an extended search for block or available space. 

F specifies feedback from a READ or WRITE macro instruction should return the device 
address in the form it is presented to the control program. 

H requests the system to check for and bypass. 

J specifies the character after the carriage control character is the table reference character 
for that line. The table reference character tells TSO which character arrangement table to 
select when printing the line. 

Q requests the system to translate a magnetic tape from ASCII to EBCDIC or from 
EBCDIC to ASCII. 

R requests the use of relative block addressing. 

T requests the use of the user totaling facility. 

W requests the system to perform a validity check when data is written on a direct access 
device. 

Z requests the control program to shorten its normal error recovery procedure for input on 
magnetic tape. 

You can request any or all of the services by combining the values for this 
operand. You can combine the characters in any sequence, being sure to 
separate them with blanks or commas. 

EROPT ({~}) 
specifies the option you want to execute if an error occurs when a record is 
read or written. The options are: 

ACC to accept the block of records in which the error was found. 
SKP to skip the block of records in which the error was found. 
ABE to end the task abnormally. 

BYrEK ([i)) 
specifies the type of buffering that you want the system to use. The types 
that you can specify are: 

S simple buffering 
E exchange buffering 
A automatic record area buffering 
R record buffering 

RECFM(A,B,D,F,M,S,T,U, and/or V) 
specifies the format and characteristics of the records in the data set. The 
format and characteristics must be completely described by one source only. 
If they are not available from any source, the default is an undefined-length 
record. See also the RECFM subparameter of the DCB parameter in JCL 
for a detailed discussion of the formats and characteristics. 

22 TSO Extensions Command Language Reference 



Use the following values with the RECFM operand: 

A indicates the record contains ASCII printer control characters. 

B indicates the records are blocked. 

D indicates variable-length ASCII records. 

F indicates the records are of fixed-length. 

M indicates the records contain machine code control characters. 

S indicates, for fixed-length records, the records are written as standard blocks (there must 
be no truncated blocks or unfilled tracks except for the last block or track). For 
variable-length records, a record might span more than one block. Exchange buffering, 
BFTEK(E), must not be used. 

T indicates the records can be written onto overflow tracks if required. Exchange buffering, 
BFTEK(E), or chained scheduling, OPTCD(C), cannot be used. 

U indicates the records are of undefined length. 

V indicates the records are of variable length. 

You can specify one or more values for this operand. At least one is 
required. 

DIAGNS(TRACE) 
specifies the Open/Close/EOV trace option that gives a module-by-module 
trace of the Open/Close/EOV work area and your DCB. 

LIMCT(search-number) 
specifies the number of blocks or tracks to be searched for a block or 
available space. The number must not exceed 32,760. 

BUFOFF ( [~OCk-prefiX-length I ) 
specifies the buffer offset. The block prefix length must not exceed 99. L 
specifies the block prefix field is four bytes long and contains the block 
length. 

DSORG DA 
DAU 
PO 
POU 
PS 
PSU 

specifies the data set organization as follows: 

DA direct access 
DAU direct access unmovable 
PO partitioned organization 
POU partitioned organization unmovable 
PS physical sequential 
PSU physical sequential unmovable 

ALLOCATE Command 23 



DEN (/l\) 
specifies the magnetic tape density as follows: 

o 
1 
2 
3 
4 

200 bpi/7 track 
556 bpi/7 track 
800 bpi/7 and 9 track 
1600 bpi/9 track 
6250 bpi/9 track (IBM 3420 Models 4, 6, and 8, or equivalent) 

TRTCH 

([!J) 
specifies the recording technique for 7-track tape as follows: 

C data conversion with odd parity and no translation. 

E even parity with no translation and no conversion. 

T odd parity and no conversion. BCD to EBCDIC translation when reading and 
EBCDIC to BCD translation when writing. 

ET even parity and no conversion. BCD to EBCDIC translation when reading and 
EBCDIC to BCD translation when writing. 

This operand is mutually exclusive with KEYLEN. 

KEYLEN(key-Iength) 
specifies the length in bytes of each of the keys used to locate blocks of 
records in the data set when the data set resides on a direct access device. 
The key length must not exceed 255 bytes. If an existing data set has 
standard labels, you can omit this operand and let the system retrieve the 
key length from the standard label. If a key length is not supplied by any 
source before you issue an OPEN macro instruction, a length of zero (no 
keys) is assumed. This operand is mutually exclusive with TRTCH. 

PROTECT 
specifies the DASD data set or the first data set on a tape volume is to be 
RACF protected. 

• For a new permanent DASD data set, the specified status must be 
NEW or MOD, treated as NEW, and the disposition must be either 
KEEP, CATALOG, or UNCATALOG . 

• For a tape volume, the tape must have an SL, SUL, AL, AUL, or NSL 
label. The file sequence number and volume sequence number must be 
one (except for NSL), and PRIVATE must be assigned as the tape 
volume use attribute. 

The PROTECT operand is invalid if a data set name is not specified or if 
the FeB ot>erand or status other than NEW or MOD is specified. 

24 TSO Extensions Command Language Reference 



COPIES«number), [group value-list)) 
specifies the total number of copies of the data set to be printed, with an 
optional specification on the IBM 3800 printer as to how those copies can 
be grouped. Number is a required operand. The number of copies which 
can be requested is subject to an installation limit. You can specify up to 8 
group values. See JCL for more information. 

• Do not specify the COPIES operand with the DATASET operand. 

• SYSOUT is the only valid data set status that you can specify with the 
COPIES operand. 

BURST /NOBURST 
specifies a request for the burster-trimmer-stacker on 3800 output. 
SYSOUT is the only valid data set status that can be specified with the 
BURST operand. 

CHARS (tablename-list] 
specifies a request for name or names of character arrangement tables 
(fonts) for printing a data set with the 3800 printer. You can specify up to 
4 table names. The choice of fonts available is determined by your 
installation at system generation time. SYSOUT is the only valid data set 
status that can be specified with the CHARS operand. 

FLASH(name,[copies]) 
specifies the name of a forms overlay, which can be used by the 3800 
Printing Subsystem. The overlay is "flashed" on a form or other printed 
information over each page of output. FLASH also allows you to specify 
the number of copies on which the overlay is to be printed. Copies (0-255) 
is optional. SYSOUT is the only valid data set status that can be specified 
with the FLASH operand. 

MODIFY(module-name,(trc)) 
specifies the name of a copy modification module, which is loaded into the 
3800 Printing Subsystem. This module contains predefined data such as 
legends, column headers, or blanks, and specifies where and on which copies 
the data is to be printed. TSO defines and stores the module in 
SYS1.IMAGELIB. The module name can contain 1 to 4 alphameric or 
national characters. 

MODIFY is used in conjunction with FLASH so that individual pages can 
be tailored with the MODIFY operand from the basic form of pages created 
by the FLASH operand. 

TRC corresponds to the character set(s) specified on CHARS (0-3). If TRC 
is not specified, a default character set is used. If TRC is used, CHARS 
must also be specified. 

SYSOUT is the only valid data set status that can be specified with the 
MODIFY operand. 

ALLOCATE Command 25 



FCB(image-id [,ALIGN l) 
,VERIFY 

specifies a forms control buffer (FCB) that is used to store vertical 
formatting information for printing, each position corresponding to a line 
on the form. The buffer determines the operations of the printer. It 
specifies the forms control image to be used to print an output data set on a 
3800 printer or a IBM 3211 printer. The FCB also specifies the data 
protection image to be used for the IBM 3525 card punch. The FCB 
operand is ignored for SYSOUT data sets on the 3525 card punch. 

For further information on the forms control buffer, see System 
Programming Library: Data Management, Programming Support for the IBM 
3505 Card Reader and IBM 3525 Card Punch, or IBM 3800 Printing 
Subsystem Programmer's Guide. 

image-id 
specifies 1-4 alphameric or national characters that identify the image 
to be loaded into the forms control buffer (FCB). 

• For a 3211 printer, IBM provides two standard FCB images, 
STDI and STD2. STDI specifies that 6 lines per inch are to be 
printed on an 8.5 inch form. STD2 specifies that 6 lines per inch 
are to be printed on a 11 inch form. 

• For a 3800 Printing Subsystem, IBM provides another standard 
FCB image, STD3, which specifies output of 80 lines per page at 8 
lines per inch on 11 inch long paper. 

STDI and STD2 (standard FCB images) should not be used as 
image-ids for the SYSOUT data set unless established by your 
installation at system generation time. 

If the image-id information is incorrectly coded, the default for the 
3211 printer is the image currently in the buffer. If there is no image 
in the buffer, the operator is requested to specify an image. For the 
3800 printer, the machine default is 6 lines per inch for any size form 
that is on the printer. 

ALIGN 
specifies the operator should check the alignment of the printer forms 
before the data set is printed. The ALIGN subparameter is ignored 
for SYSOUT data sets and is not used by the 3800 printer. 

VERIFY 

Example 1 

specifies the operator should verify that the image displayed on the 
printer is the desired one. The VERIFY subparameter is ignored for 
SYSOUT data sets. 

Operation: Allocate your terminal as a temporary input data set. 

allocate da(*) file(ftOlfOOl) 

26 TSO Extensions Command Language Reference 



Example 2 

Operation: Allocate an existing cataloged data set. 

Known: 

The name of the data set: MOSER7.INPUT.DATA 

allocate da(input.data) old 

Note that you do not have to specify the user ID, MOSER7, as an explicit 
qualifier. 

Example 3 

Operation: Allocate an existing data set that is not cataloged. 

Known: 

The data set name: SYS I.PTIMAC.AM 
The volume serial number: B99RS2 
The DD name: SYSLIB 

alloc dataset('sysl.ptimac.am') file(syslib) + 
volume(b99rs2) shr 

Example 4 

Operation: Allocate a new data set with the attributes of an existing model data 
set. 

Known: 

The name that you want to give the new data set: MOSER7.NEW.DATA 
The name of the model data set: MOSER7.MODEL.DATA 

alloc da(new.data) like(model.data) 

Example 5 

Operation: Allocate a new data set that differs from an existing model data set 
only in its space allocation. 

Known: 

The name that you want to give the new data set: MOSER7.NEW2.DATA 
The name of the model data set: MOSER7.MODEL.DATA 
The desired space attributes for the new data set: primary 10 tracks, 
secondary 5 tracks 

alloc da(new2.data) space(lO,5) tracks like(model.data) 

ALLOCATE Command 27 



Example 6 

Operation: Allocate a new sequential data set with space allocated in tracks. 

Known: 

The new data set name: MOSER7.EX1.DATA 
The number of tracks: 2 
The logical record length: 80 
The DCB block size: 8000 
The record format: Fixed Block 

alloc da(exl.data) dsorg(ps) space(2,O) tracks lrecl(80) + 
blksize(8000) recfrn(f,b) new 

Example 7 

Operation: Allocate a new partitioned data set with space allocated in blocks. 

Known: 

The new data set name: MOSER7.EX2.DATA 
The block length: 1000 bytes 
The DCB block size: 200 
The number of directory blocks: 2 
The record format: Fixed Block 

alloc da(ex2.data) dsorg(po) block(lOOO) space(lO,lO) + 
lrecl(lOO) blksize(200) dir(2) recfrn(f,b) new 

Example 8 

Operation: Allocate a new sequential data set with default space quantities. 

Known: 

The new data set name: MOSER7.EX3.DATA 
The block length: 800 bytes 
The logical record length: 80 
The record format: Fixed Block 

I 

alloc da(ex3.data) block(800) lrecl(80) dsorg(ps) + 
recfrn(f,b) new 

28 TSO Extensions Command Language Reference 



Example 9 

Operation: Allocate a new sequential data set using an attribute list. 

Known: 

The name that you want to give the new data set: MOSER7.EX4.DATA 
The number of tracks expected to be used: 10 
DCB operands are in an attribute list named: ATRLSTI 

attrib atrlstl dsorg(ps) lrecl(80) blksize(3200) 

alloc da(ex4.data) new space(lO,2) tracks using(atrlstl) 

Example 10 

Operation: Allocate a new sequential data set with space allocated in blocks and 
using an attribute list. 

Known: 

The new data set name: MOSER7.EX5.DATA 
The block length: 1000 bytes 
The DCB attributes taken from attribute list: ATRLST3 

attrib atrlst3 dsorg(ps) lrecl(80) blksize(3200) 

alloc da(ex5.data) using(atrlst3) block(lOOO) + 
space(20,lO) new 

Example 11 

Operation: Allocate a new sequential data set with default space quantities and 
using an attribute list. 

Known: 

The new data set name: MOSER7.EX6.DATA 
The DCB attributes taken from attribute list: ATRLST5 

attrib atrlst5 dsorg(ps) lrecl(80) blksize(3200) 

alloc da(ex6.data) using(atrlst5) new 

Example 12 

Operation: Allocate a new data set to contain the output from a program. 

Known: 

The data set name: MOSER7.0UT.DATA 
The DD name: OUTPUT 
You do not want to hold unused space. 

alloc dataset (out.data) file(output) new space(lO,2) + 
tracks release 

ALLOCATE Command 29 



Example 13 

Operation: Allocate an existing multi-volume data set to SYSDA, with one 
device mounted for each volume. 

Known: 

The data set name: MOSER7.MULTIVOL.DATA 
Volumes: D95VLl, D95VL2, D95VL3 
The DD name: SYSLIB 

alloe dataset('moser7.multivol.data'} old parallel + 
file(syslib} volume(d95vll,d95vl2,d95vl3} + 
unit(sysda} 

Example 14 

Operation: Allocate an existing data set as the second file of a standard-label 
tape. 

Known: 

The data set name: MOSER7.TAPEl.DATA 
The volume: T APEVL 
The unit: 2400 

alloe dataset('moser7.tapel.data'} label(sl} + 
unit(2400} volume (tapevl) position(2} 

Example 15 

Operation: Allocate an output data set using the FCB and COPIES operands to 
request formatted copies of an output data set. 

Known: 

The DD name: OUTPUT 
The FCB image desired: STD 1 
The number of copies: 10 

alloe file(output} sysout feb(stdl) eopies(lO) 

Example 16 

Operation: Allocate a new tape data set using the PROTECT operand to request 
RACF protection. 

Known: 

The data set name: MOSER7.TAPE2.DATA 
The volume: T APEV2 
The unit: 2400 

alloe da(tape2.data} unit(2400) label(sl) position(l) + 
volume (tapev2) protect new 

30 TSO Extensions Command Language Reference 



Example 17 

Operation: Allocate a new DASD data set using the PROTECT operand to 
request RACF protection. 

Known: 

The data set name: MOSER7.DISK.DATA 
The logical record length: 80 
The DCB block size: 8000 
The record format: Fixed Block 
The number of tracks: 2 

alloc da(disk.data) dsorg(ps) space(2,O) tracks + 
Irecl(80) blksize(8000) recfm(f,b) protect new 

Example 18 

Operation: Concatenate a number of data sets. 

Known: 

The data set names: A.CLIST, B.CLIST, C.CLIST 
The DD name: SYSPROC 

alloc file(sysproc) dataset(a.clist,b.clist,c.clist) + 
shr reuse 

You cannot directly add another data set to a concatenation. There are two ways 
to add another data set to a data set concatenation: 

1. Use the FREE command to deallocate or free the data sets in the 
concatenation. Then reallocate the entire concatenation, including the data 
set to be added, using the ALLOCATE command. 

2. Specify the REUSE operand with the ALLOCATE command when you 
concatenate. The REUSE operand specifies the file name being allocated is 
to be freed and reallocated if it is currently in use. 

ALLOCATE Command 31 



ATTRffi Command 

Use the ATTRIB command to build a list of attributes for non-V SAM data sets 
that you intend to allocate dynamically. During the remainder of your terminal 
session, you can have the system refer to this list for data set attributes when you 
enter the ALLOCATE command. The ALLOCATE command converts the 
attributes into DCB operands and LABEL operands for data sets being allocated. 
See also the subparameters of the DCB parameter in JCL. 

The ATTRIB command allocates a file with the same name as your 
attribute-list-name. You can use the LIST ALC command with the STATUS 
operand to list your active attribute lists. The data set name is NULLFILE, 
which is also the data set name for files allocated with the DUMMY operand of 
the ALLOCATE command. Because this is a NULLFILE allocation, it is subject 
to use and modification by other commands. Therefore, it is advisable to allocate 
those data sets for which the attribute list was built before you issue any 
commands that might cause NULLFILE allocation, such as LINK or RUN. 

With the LIKE operand and the DCB operands on the ALLOCATE command, 
you do not have to use the A TTRIB command. 

32 TSO Extensions Command Language Reference 



IATTRIB] 
ATTR 

attr-list-name 

[BLKSIZE(blocksize)] 
[BUFL(buffer-length)] 
[BUFNO(number-of-buffers)] 

[

LRECL ({lOgiCal-re~ord-length])j 
(NNNNNK) 

[NCP(no.-of-channel-programs)] 

[
INPUT 1 
OUTPUT 

EXPDT(year-day) 
RETPD(no.-of-days) 

[ BF ALN (I ~ ] ) 1 

[OPTCD(A,B,C,E,F,H,J,Q,R,T,W,and/or Z)] 

[EROPT ({!~~]) j 

[BFTEK ({ ! })] 
[RECFM(A,B,D,F,M,S,T,U,and/or V)] 
[DIAGNS(TRACE)] 
[LIMCT(search-number)] 

[BUFOFF (lblOCk-prefi~-length])l 

A TTRIB Command 33 



attr-Iist-name 
specifies the name for the attribute list. You can specify this name later as 
an operand of the ALLOCATE command. The name must consist of one 
through eight alphameric and/or national characters, must begin with an 
alphabetic or national character, and must be different from all other 
attribute list names and DD names that exist during your terminal session. 

BLKSIZE(blocksize) 
specifies the block size for the data sets. The block size must be a decimal 
number and must not exceed 32,760 bytes. 

The block size you specify must be consistent with the requirements of the 
RECFM operand. If you specify: 

• RECFM(F), then the block size must be equal to or greater than the 
logical record length. 

CD RECFM(F B), then the block size must be an integral multiple of the 
logical record length. 

• RECFM(V), then the block size must be equal to or greater than the 
largest block in the data set. For unblocked variable-length records, the 
size of the largest block must allow space for the four-byte block 
descriptor word in addition to the largest logical record length. The 
logical record length must allow space for a four-byte record descriptor 
word. 

• RECFM(V B), then the block size must be equal to or greater than the 
largest block in the data set. For block variable-length records, the size 
of the largest block must allow space for the four-byte block descriptor 
word in addition to the sum of the logical record lengths that will go 
into the block. Each logical record length must allow space for a 
four-byte record descriptor word. Because the number of logical 
records can vary, you must estimate the optimum block size and the 
average number of records for each block based on your knowledge of 
the application that requires the I/O. 

• RECFM(U) and BLKSIZE(80), then one character is truncated from 
the line, that character (the last byte) is reserved for an attribute 
character. 

BUFL(buffer-length) 
specifies the length, in bytes, of each buffer in the buffer pool. Specify a 
decimal number for buffer-length. The number must not exceed 32,760. 

If you omit this operand and the system acquires buffers automatically, the 
BLKSIZE and KEYLEN operands are used to supply the information 
needed to establish buffer length. 

BUFNO(number-of-buffers) 
specifies the number of buffers to be assigned for data control blocks. 
Specify a decimal number for number-of-buffers. The number must not 
exceed 255, and you might be limited to a smaller number of buffers 

34 TSO Extensions Command Language Reference 



depending on the limit established at system generation time. The following 
table shows the condition that requires you to include this operand. 

When you use one of the following methods of obtaining the buffer pool, then: 

(1) BUILD macro instruction 
(2) GETPOOL macro instruction 

(3) Automatically with BPAM or BSAM 
(4) Automatically with QSAM 

LRECL(logical-record-length) 

(1) You must specify BUFNO. 
(2) The system uses the number 

that you specify for 
GETPOOL. 

(3) You must specify BUFNO. 
(4) You can omit BUFNO and 

accept two buffers. 

specifies the length, in bytes, of the largest logical record in the data set. 
You must specify this operand for data sets that consist of either 
fixed-length or variable-length records. 

Omit this operand if the data set contains undefined-length records. 

The logical record length must be consistent with the requirements of the 
RECFM operand and must not exceed the block size (BLKSIZE operand), 
except for variable-length-spanned records. If you specify: 

o RECFM(V) or RECFM(V B), then the logical record length is the sum 
of the length of the actual data fields plus four bytes for a record 
descriptor word. 

e RECFM(F) or RECFM(F B), then the logical record length is the 
length of the actual data fields. 

• RECFM(U), then you should omit the LRECL operand. 

LRECL(NNNNNK) allows users of ANSI extended logical records and 
QSAM "locate mode" users to specify a K multiplier on the LRECL 
operand. NNNNN can be within 1-16,384. The K indicates that the value 
can be multiplied by 1024. 

For variable-length spanned records (VS or VBS) processed by QSAM 
(locate mode) or BSAM, specify LRECL (X) when the logical record 
exceeds 32,756 bytes. 

N CP(number-of-channel-programs) 
specifies the maximum number of READ or WRITE macro instructions 
allowed before a CHECK macro instruction is issued. The maximum 
number must not exceed 99 and must be less than 99 if a lower limit was 
established when the operating system was generated. If you are using 
chained scheduling, you must specify an NCP value greater than 1. If you 
omit the NCP operand, the default value is 1. 

INPUT 
specifies a BSAM data set opened for INOUT or a BDAM data set opened 
for UPDAT is to be processed for input only. This operand overrides the 
INOUT (BSAM) option or UPDAT (BDAM) option in the OPEN macro 
instruction to INPUT. 

ATTRIB Command 35 



OUTPUT 
specifies a BSAM data set opened for OUTIN or OUTINX is to be 
processed for output only. This operand overrides the OUTIN option in the 
OPEN macro instruction to OUTPUT or the OUTINX optionin the OPEN 
macro instruction to EXTEND. 

EXPDT(year-day) 
specifies the data set expiration date. You must specify the year and day in 
the form yyddd, where yy is a two digit decimal number for the year and 
ddd is a three digit decimal number for the day of the year using Julian day 
format. For example, January 1, 1984 is 84001 and December 31, 1984 is 
84366. 

RETPD(number-of-days) 
specifies the data set retention period in days. The value can be a one to 
four digit decimal number. 

BFALN ([~ Il 
specifies the boundary alignment of each buffer as follows: 

D each buffer starts on a doubleword boundary. 
F each buffer starts on a fullword boundary that might not be a doubleword boundary. 

If you do not specify this operand and it is not available from any other 
source, then data management routines assign a doubleword boundary. 

OPTCD(A,B,C,E,F,H,J,Q,R,T,W and/or Z) 
specifies the following optional services that you want the system to 
perform. See also the OPT CD subparameter of the DCB parameter in JCL 
for a detailed discussion of these services. 

A specifies actual device addresses be presented in READ and WRITE macro instructions. 

B specifies the end-of-file (EOF) recognition be disregarded for tapes. 

C specifies the use of chained scheduling. 

E requests an extended search for block or available space. 

F specifies feedback from a READ or WRITE macro instruction should return the device 
address in the form it is presented to the control program. 

H requests the system to check for and bypass. 

J specifies the character after the carriage control character is the table reference character 
for that line. The table reference character tells TSO which character arrangement table to 
select when printing the line. 

Q requests the system to translate a magnetic tape from ASCII to EBCDIC or from 
EBCDIC to ASCII. 

R requests the use of relative block addressing. 

T requests the use of the user totaling facility. 

W requests the system to perform a validity check when data is written on a direct access 
device. 

Z requests the control program to shorten its normal error recovery procedure for input on 
magnetic tape. 

36 TSO Extensions Command Language Reference 



You can request any or all of the services by combining the values for this 
operand. You may combine the characters in any sequence, being sure to 
separate them with blanks or commas. 

EROPT ({~~}) 
specifies the option that you want to execute if an error occurs when a 
record is read or written. The options are: 

ACC to accept the block of records in which the error was found. 
SKP to skip the block of records in which the error was found. 
ABE to end the task abnormally. 

BFTEK ((~)) 
specifies the type of buffering that you want the system to use. The types 
that you can specify are: 

S simple buffering 
E exchange buffering 
A automatic record area buffering 
R record buffering 

RECFM(A,B,D,F,M,S,T,U, and/or V) 
specifies the format and characteristics of the records in the data set. The 
format and characteristics must be completely described by one source only. 
If they are not available from any source, the default is an undefined-length 
record. See also the RECFM subparameter of the DCB parameter in JCL 
for a detailed discussion of the formats and characteristics. 

Use the following values with the RECFM operand. 

A indicates the record contains ASCII printer control characters. 

B indicates the records are blocked. 

D indicates variable-length ASCII records. 

F indicates the records are of fixed-length. 

M indicates the records contain machine code control characters. 

S indicates, for fixed-length records, the records are written as standard blocks (there must 
be no truncated blocks or unfilled tracks except for the last block or track). For 
variable-length records, a record can span more than one block. Exchange buffering, 
BFTEK(E), must not be used. 

T indicates the records can be written onto overflow tracks if required. Exchange buffering, 
BFTEK(E), or chained scheduling, OPTCD(C), cannot be used. 

U indicates the records are of undefined length. 

V indicates the records are of variable length. 

You can specify one or more values for this operand (at least one is 
required). 

ATTRIB Command 37 



DIAGNS(TRACE) 
specifies the Open/Close/EOV trace option that gives a module-by-module 
trace of the Open/Close/EOV work area your DCB. 

LIMCT(search-number) 
specifies the number of blocks or tracks to be searched for a block or 
available space. The number must not exceed 32,760. 

BUFOFF ( I ~ock-prefix-length I ) 
specifies the buffer offset. The block prefix length must not exceed 99. L is 
specified if the block prefix field is four bytes long and contains the block 
length. 

DSORG DA 
DAU 
PO 
POU 
PS 
PSU 

specifies the data set organization as follows: 

DA direct access 
DAU direct access unmovable 
PO partitioned organization 
POU partitioned organization unmovable 
PS physical sequential 
PSU physical sequential unmovable 

DEN (!; I) 
specifies the magnetic tape density as follows: 

o 
1 
2 
3 
4 

TRTCH 

200 bpi/7 track 
556 bpi/1 track 
800 bpi/7 and 9 track 
1600 bpi/9 track 
6250 bpi/9 track (IBM 3420 Models 4, 6, and 8, or equivalent) 

((~J) 
specifies the recording technique for 7-track tape as follows: 

C data conversion with odd parity and no translation 

E even parity with no translation and no conversion 

T odd parity and no conversion; BCD to EBCDIC translation ·when reading and EBCDIC 
to BCD translation when writing 

ET even parity and no conversion; BCD to EBCDIC translation when reading and EBCDIC 
to BCD translation when writing 

This operand is mutually exclusive with KEYLEN. 

38 TSO Extensions Command Language Reference 



KEYLEN(key-length) 
specifies the length, in bytes, of each of the keys used to locate blocks of 
records in the data set when the data set resides on a direct access device. 
The key length must not exceed 255 bytes. If an existing data set has 
standard labels, you can omit this operand and let the system retrieve the 
key length from the standard label. If a key length is not supplied by any 
source before you issue an OPEN macro instruction, a length of zero (no 
keys) is assumed. This operand is mutually exclusive with TRTCH. 

Example 1 

Operation: Create a list of attributes to be assigned to a data set when the data 
set is allocated. 

Known: 

The following attributes correspond to the DCB operands that you want assigned 
to a data set. 

Optional services: Chained-scheduling, user totaling 
Expiration date: Dec. 31, 1985 
Record format: Variable-length spanned records 
Error option: Abend when READ or WRITE error occurs 
Buffering: Simple buffering 
Boundary alignment: Doubleword boundary 
Logical record length: Records may be larger than 32,756 bytes 
Name of the attribute list: DCBPARMS 

attr dcbparms optcd(c t) expdt(85365) recfm(v s) -
eropt(abe) bftek(s) bfaln(d) lrecl(x) 

Example 2 

Operation: This example shows how to create an attribute list, how to use the list 
when allocating two data sets, and how to free the list so that it cannot be used 
again. 

Known: 

The name of the attribute list: DSATTRS 
The attributes: EXPDT(99365) BLKSIZE(24000) BFTEK(A) 
The name of the first data set: FORMAT. INPUT 
The name of the second data set: TRAJECT.INPUT 

attrib dsattrs expdt(99365) blksize(24000) -
bftek(a) 

allocate dataset (format. input) new block(80) -
space(l,l) volume(llllll) using(dsattrs) 

alloc da(traject.input) old bl(80) volume(llllll) -
using(dsattrs) 

free attrlist(dsattrs) 

ATTRIB Command 39 



CALL Command 

Use the CALL command to load and execute a program that exists in executable 
(load module) form. The program can be user-written, or it can be a system 
module such as a compiler, sort, or utility program. 

You must specify the name of the program (load module) to be processed. It 
must be a member of a partitioned data set. 

You can specify a list of parameters to be passed to the specified program. The 
system formats this data so that when the program receives control, register one 
contdns the address of a fullword. The three low order bytes of this fullword 
contain the address of a halfword field. This half word field is the count of the 
number of bytes of information contained in the parameter list. The parameters 
immediately follow the halfword field. 

If the program terminates abnormally, you are notified of the condition and may 
enter a TEST command to examine the failing program. 

CALL Command in tile Background: Service aids, utilities, and other programs 
obtaining their input from an allocated file such as SYSIN must have the input in 
a data set or a job stream data set (one which contains the JCL to run the job as 
well as the data itself). Once the data set is created, you can use the CALL 
command to execute the program that accesses the SYSIN data. Figure 2 
illustrates the allocation and creation of input data sets: 

//exampl exec pgm=ikjeftOl,dynamnbr=20 
//systsprt dd sysout=a 
//systsin dd * 

profile prefix(userl) 
allocate file (sysprint) dataset(*) 
allocate file(sysin) altfile(inputdd) 
call (progl) 
allocate file(sysin) altfile(inputdd2) reuse 
call (prog2) 
free all 

//inputdd dd * 
**input to progl** 

//inputdd2 dd * 
**input to prog2** 

/* 

Figure 2. Allocating and Creating Input Data Sets 

Note: Allocating the input file to a terminal results in an I/O error message. 
Abnormal termination occurs when the program tries to get input from the 
terminal. 

CALL 
( 

dsname I 
dsname(membername) 

['parameter-string'] 

40 TSO Extensions Command Language Reference 



dsname 
specifies the name of a sequential data set to be executed. 

dsname( membcrnamc) 
specifies the name of a partitioned data set and the member name (program 
name) to be executed. You must enclose the member name in parentheses. 

Note: A temporary tasklib is established when programs are invoked by the 
CALL command. The tasklib is effective for the execution of the CALL 
command and the tasklib data set is the same as the data set name specified 
on the invocation of the CALL command. 

If you specify a fully qualified name, enclose it in apostrophes (single 
quotes) in the following manner: 

'wrrid.rnyprogs.loadrnod(a) , 
'sys1.linklib(ieuasrn) , 

parameter string 
specifies up to 100 characters of information that you want to pass to the 
program as a parameter list. When passing parameters to a program, you 
should use the standard linkage convention. 

Example 1 

Operation: Execute a load module. 

Known: 

The name of the load module: JUDAL.PEARL.LOAD(TEMPNAME) 

Parameters: 10,18,23 

call pearl(ternpnarne) '10,18,23' 

Example 2 

Operation: Execute a load module. 

Known: 

The name of the load module: JUDAL.MYLIB.LOAD(COSl) 

call rnylib(cos1) 

Example 3 

Operation: Execute a load module. 

Known: 

The name of the load module: JUDAL.LOAD(SIN1) 

call (sin1) 

CALL Command 41 



CANCEL Command 

Use the CANCEL command to halt processing of batch jobs that you have 
submitted from your terminal. A READY message is displayed at your terminal 
if the job has been canceled successfully. A message is also displayed at the 
system operator's console when a job is canceled. 

CANCEL is a foreground-initiated-background (FIB) command. You must have 
authorization from installation management to use CANCEL. This cOlnmand is 
generally used in conjunction with the SUBMIT, STATUS, and OUTPUT 
commands. 

Requesting an attention interrupt after issuing a CANCEL command might 
terminate that command's processing. In this case, you cannot resume CANCEL 
processing by pressing the ENTER key as you can after most attention interrupts. 

CANCEL (jobname[(jobid)]-list) 

[ 
NOPURGE 1 
PURGE 

(jobname((jobid)J-list) 
specifies the names of the jobs that you want to cancel. The job names must 
consist of your user identification plus one or more alphameric characters 
up to a maximum of eight characters unless the IBM-supplied exit has been 
replaced by your installation. 

The optional job ID subfield may consist of one to eight alphameric 
characters (the first character must be alphabetic or national). The job ID 
is a unique job identifier assigned by the job entry subsystem (JES) at the 
tIme the job was submitted to the system. The job ID is needed if you have 
submitted two jobs with the same name. 

Note the following: 

• When you specify a list of several job names, you must separate the job 
names with standard delimiters and you must enclose the entire list within 
parentheses. 

• Jobs controlled by the subsystems are considered started tasks and cannot be 
cancelled by the CANCEL command. 

PURGE 
specifies the job and its output (on the output queue) are to be purged from 
the system. 

NOPURGE 
specifies jobs are to be cancelled if they are in execution, but output 
generated by the jobs remains available. If the jobs have executed, the 
output still remains available. 

42 . TSO Extensions Command Language Reference 



Example 1 

Operatioll: Cancel a batch job. 

Known: 

The name of the job: JE024Al 

cancel je024al 

Example 2 

Operatioll: Cancel several batch jobs. 

Known: 

The names of the jobs: D58BOBTA D58BOBTB(J51) D58BOBTC 

cancel (d58bobta d58bobtb(j51) d58bobtc) 

CANCEL Command 43 



DELETE Command 

Use the DELETE command to delete one or more data set entries or one or more 
members of a partitioned data set. The catalog entry for a partitioned data set is 
removed only when the entire partitioned data set is deleted. The system deletes a 
member of a partitioned data set by removing the member name from the 
directory of the partitioned data set. 

Members of a partitioned data set and aliases for any members must each be 
deleted explicitly. That is, when you delete a member, the system does not 
remove any alias names of the member. Likewise, when you delete an alias name, 
the member itself is not deleted. 

If a generation-data-group entry is to be deleted, any generation data sets that 
belong to it must have been deleted. 

For MVS, the original TSO DELETE command has been replaced by the Access 
Method Services command with the same name. Note that when you delete a 
data set, you must also free the allocated DD names. If you want to modify 
VSAM objects or use the other Access Method Services from a terminal, see 
Access Method Services. For error message information, see Message Library: 
System Messages. 

The DELETE command supports unique operand abbreviations in addition to the 
usual abbreviations produced by truncation. The syntax and operand 
explanations show these unique cases. 

Before you delete a protected non-VSAM data set, you should use the PROTECT 
command to delete the password from the password data set. This prevents your 
having insufficient space for future entries. 

44 TSO Extensions Command Language Reference 



(
DELETE] 
DEL 

(entrynarne[/password] [ ... ]) 

[CATALOG(catname[/password])] 
[FILE(ddnarne)] 

[( 
PURGE] 1 PRG 

(~~~gRGE ] 

l ERASE ] 

( 
NOERASE ] 
NERAS 

[ ( ;~i~~~~CH ]] 
CLUSTER 

( 
USERCATALOG ] 
UCAT 

(
SPACE] 
SPC 

( 
NONVSAM] 
NVSAM 
ALIAS 

(
GENERATIONDATAGROUP] 
GDG 

PAGESPACE] 
PGSPC 

entryname[fpasswordH ... J 

is a required operand that names the entries in the designated catalogs to be 
deleted. When more than one entry is to be deleted, the list of entry names 
must be enclosed in parentheses. This operand must be the first parameter 
following DELETE. 

If you want to delete several data set entries having similar names, you can 
insert an asterisk into the data set name at the point of dissimilarity. That 
is, all data set entries whose names match except at the position where the 
asterisk is placed are deleted. However, you can use only one asterisk per 
data set name. It cannot appear in the first position. 

For example, assume that you have several data set entries named: 

VACOT.SOURCE.PLI 
VACOT.SOURCE2.PLI 
VACOT.SOURCE2.TEXT 
VACOT.SOURCE2.DATA 

If you specify 

delete source2.* 

the only data set entry remaining is: 

VACOT.SOURCE.PLI 

DELETE Command 45 



password 
specifies a password for a password-protected entry. Passwords can 
be specified for each entry name or the catalog's password can be 
specified through the CATALOG operand for the catalog that 
contains the entries to be deleted. 

CAT ALOG( catname(/password]) 
specifies the name of the catalog that contains the entries to be deleted. 

catname 
identifies the catalog that contains the entry to be deleted. 

password 
specifies the master password of the catalog that contains the entries 
to be deleted. 

FILE( ddname) 
specifies the name of the DD statement that identifies the volume that 
contains the data set to be deleted or identifies the entry to be deleted. 

PURGE orPRG 
specifies the entry is to be deleted even if the retention period, specified in 
the TO or FOR operand, has not expired. 

NOPURGEorNPRG 
specifies the entry is not to be deleted if the retention period has not 
expired. When NOPURGE is coded and the retention period has not 
expired, the entry is not deleted. If neither PURGE nor NOPURGE is 
coded, NOPURGE is the default. 

ERASE 
specifies the data component of a cluster (VSAM only) is to be overwritten 
with binary zeros when the cluster is deleted. If ERASE is specified, the 
volume that contains the data component must be mounted. 

NOERASE or NERAS 
specifies the data component of a cluster (VSAM only) is not to be 
overwritten with binary zeros when the cluster is deleted. 

SCRATCH 
specifies a non-VSAM data set is to be scratched (removed) from the 
volume table of contents (VTOC) of the volume on which it resides. 
SCRATCH is the default if neither SCRATCH nor NOSCRA TCH is 
specified. 

NOSCRATCH or NSCR 
specifies a non-VSAM data set is not to be scratched (removed) from the 
VTOC of the volume on which it resides. 

CLUSTER 
specifies the entry to be deleted is a cluster entry for a VSAM data set. 

46 TSO Extensions Command Language Reference 



USERCATALOGorUCAT 
specifies the entry to be deleted is a user-catalog entry. This operand must 
be specified if a user catalog is to be deleted. A user catalog can be deleted 
only if it is empty. 

SPACE 
specifies the entry to be deleted is a data-space entry. This operand is 
required if a data space is to be deleted. A data space can be deleted only if 
it is empty. 

NONVSAM or NVSAM 
specifies the entry to be deleted is a non-V SAM data set entry. 

ALIAS 
specifies the entry to be deleted is an alias entry. 

GENERATIONDATAGROUP or GDG 
specifies the entry to be deleted is a generation-data-group entry. A 
generation-data-group base can be deleted only if it is empty. 

P AGESP ACE or PGSPC 
specifies a page space is to be deleted. A page space can be deleted only if 
it is inactive. 

If the FILE operand is omitted, the entry name is dynamically allocated in 
the following cases: 

Q A non-VSAM entry is to be deleted and scratched. 
• An entry is to be deleted and erased. 
• An entry that resides in a data space of its own is to be deleted. 

Example 

Operation: Delete an entry. In this example, a non-VSAM data set is deleted. 

Known: 

The prefix in the profile is D27UCAT. 
Your user ID is D27UCAT. 

delete example.nonvsam scratch nonvsam 

The DELETE command deletes the non-VSAM data set 
(D27UCAT.EXAMPLE.NONVSAM). Because the catalog in which the 
entry resides is assumed not to be password protected, the CATALOG 
operand is not required to delete the non-V SAM entry. 

SCRATCH removes the VTOC entry of the non-VSAM data set. Because 
FILE is not coded, the volume that contains 
D27UCAT.EXAMPLE.NONVSAM is dynamically allocated. 

NONVSAM ensUres the entry being deleted is a non-V SAM data set. 
However, DELETE can still find and delete a non-VSAM data set if 
NONVSAM is omitted. 

DELETE Command 47 



EDIT Command 

Use the EDIT command to enter data into the system. With EDIT and its 
subcommands, you can create, modify, store, submit, retrieve, and delete data sets 
with sequential or partitioned data set organization. The data sets might contain: 

• Source programs composed of program language statements such as PL/I, 
COBOL, FORTRAN, etc. 

e Data used as input to a program. 

• Text used for information storage and retrieval. 

• Commands, subcommands, CLIST statements and/or data. 

• Job control language (JCL) statements for background jobs. 

The EDIT command supports only data sets that have one of the following 
formats: 

• Fixed blocked, unblocked, or standard block; with or without ASCII and 
machine record formats. 

• Variable blocked or unblocked; without ASCII or machine control characters. 

EDIT support of print control data sets is read only. Whenever a SAVE 
subcommand is entered for an EDIT data set originally containing print control 
characters, the ability to print the data set on the printer with appropriate spaces 
and ejects is lost. If you enter SAVE without operands for a data set containing 
control characters, you are warned that the data set will be saved without control 
characters, and you can choose to either save into the original data set or enter a 
new data set name. If the data set specified on the EDIT command is partitioned 
and contains print control characters, you cannot enter SAVE. 

After you edit a data set with a variable-blocked record format, each record (line) 
is padded with blanks to the end of the record. When you save the data set, the 
blanks are eliminated and the length adjusted accordingly. 

48 TSO Extensions Command Language Reference 



data-set-name 

data-set-name[/password] 

[
EMODE] 
IMODE 

[
RECOVER ] 
NORECOVER 

[
NEW] 
OLD 

PLI 

PLIF 

ASM 
COBOL 
GOFORT [ ( FREE) ] 

(FIXED) 
FORTGI 
FORTH 
TEXT 
DATA 
CLIST 
CNTL 
VSBASIC 

[~g~AN] 
[

NUM ] [ (integerl [integer2] ) ] 
NONUM 

[
BLOCK(integer) ] 
BLKSIZE(integer) 

[
LINE (integer) ] 
LRECL(integer) 

[i~i~] 

[ CHAR48]l] 
CHAR60 

[ CHAR48] 1 ] 
CHAR60 

specifies the name of the data set that you want to create or edit. 

password 
specifies the password associated with the data-set-name. If the password is 
omitted and the data set is password protected, you are prompted for the 
data sees password. Read protected partitioned data sets prompt for the 
password twice, provided it is not entered on the EDIT command, or is not 
the same password as your LOGON user ID password. 

EMODE 
specifies the initial mode of entry is edit mode. This is the default for OLD 
data sets. See "Edit Mode" for more information on this operand. 

EDIT Command 49 



IMODE 
specifies the initial mode of entry is input mode. This is the default for 
NEW or empty data sets. See "Input Mode" for more information on this 
operand. 

RECOVER 
specifies that you intend to recover an EDIT work file containing the data 
set named on the EDIT command as the data set to be edited. You are 
placed in edit mode. This operand is valid only when your profile has the 
RECOVER attribute. See "Recovering an EDIT Work File" for more 
information on this operand. 

NORECOVER 

NEW 

OLD 

PLI 

PLIF 

specifies that you do not want to recover a work file, even if a recoverable 
work file exists. 

specifies the data set named by the first operand does not exist. If an 
existing cataloged data set already has the data set name that you specified, 
the system notifies you when you try to save it. Otherwise, the system 
allocates your data set when you save it. If you specify NEW without 
specifying a member name, a sequential data set is allocated for you when 
you save it. If you specify NEW and include a member name, the system 
allocates a partitioned data set and creates the indicated member when you 
try to save it. 

specifies the data set named on the EDIT command already exists. When 
you specify OLD and the system is unable to locate the data set, you are 
notified and you have to reenter the EDIT command. If you specify OLD 
without specifying a member name, the system assumes that your data set is 
sequential. If the data set is in fact a partitioned data set, the system 
assumes that the member name is TEMPNAME. If you specify OLD and 
include a member name, the system notifies you if your data set is not 
parti ti oned. 

If you do not specify OLD or NEW, the system uses a tentative default of 
OLD. If the data set name or member name that you specified cannot be 
located, the system defaults to NEW. 

Any user-defined data set type (specified at system generation) is also a 
valid data set type operand and can have subfield parameters defined by, 
your installation (see Figure 4, note 4). 

specifies the data identified by the first operand is for PL/I statements that 
are to be held as V-format records with a maximum length of 104 bytes. 
The statements can be for the PL/I Optimizing compiler or the PL/I 
Checkout compiler. . 

specifies the data set identified by the first operand is for PL/I statements 
that are to be held as fixed format records 80 bytes long. The statements 
can be for the PL/I Optimizing compiler or the PL/I Checkout compiler. 

50 TSO Extensions Command Language Reference 



integer! and integcr2 
specify the column boundaries for your input statements. These values are 
applicable only when you request syntax checking of a data set for which 
the PLIP operand has been specified. The position of the first character of 
a line, as determined by the left margin adjustment on your terminal, is 
column 1. The value for integer! specifies the column where each input 
statement is to begin. The statement can extend from the column specified 
by integer! up to and including the column specified as a value for integer2. 
If you omit integerl, you must omit integer2. The default values are 
columns 2 and 72. However, you can omit integer2 without omitting 
integerl. 

CHAR4U or CHAIl60 

ASM 

CHAR48 specifies ~he PL/I source statements are written using the 
character set that consists of 48 characters. CHAR60 specifies the source 
statements arc written using the character set that consists of 60 characters. 
If no value is entered, the default value is CHAR60. 

specifies the data set identified by the first operand is for assembler language 
statements. 

COBOL 
specifies the data set identified by the first operand is for COBOL 
statements. 

CLIST 
specifies the data sct identified by the first operand is for a CLIST and 
contains TSO commands, subcommands, and CLIST statements as 
statements or records in the data set. The data set is assigned line numbers. 

CNTL 
specifies the data set identified by the first operand is for job control 
language (.TCL) statements a!ld SYSIN data to be used with the SUBMIT 
command or subcommand. 

TEXT 
specifies the data set identified by the first operand is for text that can 
consist of both uppercase and lowercase characters. 

DATA 
specifies the data set identified by the first operand is for data that can be 
subsequently retrieved or used as input data for processing by an application 
program. 

FORTGI 
specifies the data set identified by the first operand is for FORTRAN IV 
(Gl) statements. 

FORTH 
speci1ies the data set identified by the first operand is for FORTRAN IV 
(H) EXTCOMP s~atements. 

EDIT Command 51 



GOFORT(FREE or FIXED) 
specifies the data set identified by the first operand is for statements that are 
suitable for processing by the Code and Go FORTRAN program product. 
You can use FORT as an abbreviation for this operand. This is the default 
value if no other FORTRAN language level is specified with the FORTGI 
or FORTH operand. FREE specifies the statements are of variable-lengths 
and do not conform to set column requirements. This is the default value if 
neither FREE nor FIXED is specified. FIXED specifies statements adhere 
to standard FORTRAN column requirements and are 80 bytes long. 

VSBASIC 
specifies the data set identified by the first operand is for VSBASIC 
statements. 

The ASM, CLIST, CNTL, COBOL, DATA, FORTGI, FORTH, GOFORT 
PLI, PLIF, TEXT, and VSBASIC operands specify the type of data set you 
want to edit or create. You must specify one of these whenever: 

• The data-set-name operand does not follow data set naming 
conventions (that is, it is enclosed in quotes). 

• The data-set-name operand is a member name only (that is, it is 
enclosed in parentheses). 

• The data-set-name operand does not include a descriptive qualifier or 
the descriptive qualifier is such that EDIT cannot determine the data set 
type. 

The system prompts you for data set type whenever the type cannot be 
determined from the descriptive qualifier (as in the 3 cases above), or 
whenever you forget to specify a descriptive qualifier on the EDIT 
command. 

Note: If PLI is the descriptive qualifier, the data set type default is PLI. 
To use data set types GOFORT, FORTGI, or FORTH, you must enter the 
data set type operand to save it. 

SCAN 
specifies each line of data you enter in input mode is to be checked, 
statement by statement, for proper syntax. Syntax checking is available 
only for statements written in FORTGI or FORTH. 

User-defined data set types can also use this operand if a syntax checker 
name was specified at system generation time. 

NOSCAN 
specifies syntax checking is not to be performed. This is the default value if 
neither SCAN nor NOSCAN is specified. 

52 TSO Extensions Command Language Reference 



NUM(integerl integer2) 
specifies lines of the data set records are numbered. You can specify 
integer! and integer2 for ASM type data sets only. Integer! specifies, in 
decimal, the starting column (73-80) of the line number. Integer2 specifies, 
in decimal, the length (8 or less) of the line number. Integer! plus integer2 
cannot exceed 81. If integer! and integer2 are not specified, the line 
numbers assume appropriate default values. 

NONUM 
specifies your data set records do not contain line numbers. Do not specify 
this operand for the VSBASIC and CLIST data set types because they must 
always have line numbers. The default is NUM. 

BLOCK(integer) or BLKSIZE(integer) 
specifies the maximum length, in bytes, for blocks of records of a new data 
set. Specify this operand only when creating a new data set or editing an 
empty old data set. You cannot change the block size of an existing data 
set except if the data set is empty. If you omit this operand, it defaults 
according to the type of data set being created. Default block sizes are 
described in Figure 4. If different defaults are established at system 
generation time, the values in Figure 4 might not be applicable. The block 
size (BLOCK or BLKSIZE), for data sets that contain fixed-length records 
must be a multiple of the record length (LINE or LRECL). For 
variable-length records, the block size must be a multiple of the record 
length plus 4. 

If BLKSIZE (80) is coded with RECFM(U), then the line is truncated by 
one character. This byte (the last one) is reserved for an attribute character. 

LINE(integer) or LRECL(integer) 
specifies the length of the records to be created for a new data set. Specify 
this operand only when creating a new data set or editing an empty old data 
set. The new data set is composed of fixed-length records with a logical 
record length equal to the specified integer. You cannot change the logical 
record size of an existing data set unless the data set is empty. If you 
specify this operand and the data set type is ASM, FORTGI, FORTH, 
COBOL, or CNTL, the integer must be 80. If this operand is omitted, the 
line size defaults according to the type of data set being created. Default 
line sizes for each data set type can be found in Figure 4. Use this operand 
in conjunction with the BLOCK or BLKSIZE operand. 

CAPS 

ASIS 

specifies all input data and data on modified lines is to be converted to 
uppercase characters. If you omit both CAPS and ASIS, CAPS is the 
default unless the data set type is TEXT. 

specifies input and output data are to retain the same form (uppercase and 
lowercase) as entered. ASIS is the default for TEXT only. 

EDIT Command 53 



Example 1 

Operation: Create a data set to contain a COBOL program. 

Known: 

The user-supplied name for the new data set: PARTS 
The fully qualified name (where WRR05 is the user ID) will be: 
WRR05.PARTS.COBOL 
Line numbers are to be assigned. 

edit parts new cobol 

Example 2 

Operation: Create a data set to contain a program written in FORTRAN to be 
processed by the FORTRAN (GI) compiler. 

Known: 

The user-supplied name for the new data set: HYDRLICS 
The fully qualified name (where WRR05 is the user ID) will be: 
WRR05.HYDRLICS.FORT 
The input statements are not to be numbered. 
Syntax checking is desired. 
Block size: 400 
Line length must be: 80 
The data is to be changed to all uppercase. 

edit hydrlics new fortgi nonum scan 

Example 3 

Operation: Add data to an existing data set containing input data for a program. 

Known: 

The name of the data set: WRR05.MANHRS.DAT A 
Block size: 3120 
Line length: 80 
Line numbers are desired. 
The data is to be upper case. 
Syntax checking is not applicable. 

e manhrs.data 

Example 4 

Operation: Create a data set for a CLIST. 

Known: 

The user supplied name for the data set: CMDPROC 

e cmdproc new clist 

54 TSO Extensions Command Language Reference 



Subcommands for EDIT 

Use the subcommands while in edit mode to edit and modify data and to 
communicate with the system operator and with other terminal users. The format 
of each subcommand is similar to the format of all the commands. Each 
subcommand, therefore, is presented and explained in a manner similar to that for 
a command. Figure 3 contains a summary of each subcommand's function. 

For a complete description of the syntax and function of the ALLOCATE, 
EXEC, HELP, PROFILE, SEND, and SUBMIT subcommands, refer to the 
description of the TSO command with the same name. 

Subcommands for EDIT 55 



ALLOCATE 
ATTRIB 

BOTTOM 

CHANGE 
CKPT 
COpy 

DELETE 
DOWN 

END 
EXEC 
FIND 
FORMAT (available as an 

optional 
program product) 

FREE 
HELP 
INPUT 
INSERT 

Insert/Replace/Delete 
LIST 
MERGE (available as an 

optional 

MOVE 
PROFILE 

RENUM 
RUN 

SAVE 
SCAN 
SEND 

SUBMIT 

TABSET 
TOP 
UNNUM 
UP 

VERIFY 

program product) 

Allocates data sets and file names. 
Builds a list of attributes for non-VSAM 
data sets. 
Moves the pointer to the last record in 
the data set. 
Alters the contents of a data set. 
Protects input or modifications to a data set. 
Copies records within the data set. 
Removes records. 
Moves the pointer toward the end of 
the data. 
Terminates the EDIT command. 
Executes a CLL~T. 
Locates a chan.', ter string. 
Formats and lists data. 

Releases previously allocated data sets. 
Explains available subcommands. 
Prepares the system for data input. 
Inserts records. 
Inserts, replaces, or deletes a line. 
Prints out specific lines of data. 
Combines all or parts of data sets. 

Moves records within a data set. 
Specifies characteristics of your 
u~er profile. 
Numbers or renumbers lines of data. 
Causes compilation and execution of 
data set. 
Retains the data set. 
Controls syntax checking. 
Allows you to communicate with the 
system operator and with other 
terminal users. 
Submits a job for execution in the 
background. 
Sets the tabs. 
Sets the pointer to zero value. 
Removes line numbers from records. 
Moves the pointer toward the start 
of data set. 
Causes current line to be listed 
whenever the current line pointer 
changes or the text of the current 
line is modified. 

Figure 3. Subcommands of the EDIT Command 

56 TSO Extensions Command Language Reference 



Data LRECL Block Size Line Numbers 

Set DSORG LINE(n) BLOCK(n) NUM(n,m) CAPS/AS IS 

Type Default Specif. 

ASM PS/PO 80 =80 
CLIST PS/PO 255 (Note 2) 
CNTL PS/PO 80 =80 
COBOL PS/PO 80 =80 
DATA PS/PO 80 < =255 
FORTGI PS/PO 255 =80 
FORTH PS/PO 255 =80 
GOFORT PS/PO 255 

(Or user supplied data set type - sec Notc 4) 

PLI 
PLIF 
TEXT 
VSBASIC 

Notes: 

PSjPO 
PS/PO 
PS/PO 
PS/PO 

104 
80 

255 
255 

%0100 
%0100 
(Note 2) 

=80 

Default 

3120 
3120 
3120 
400 

3120 
400 
400 
3120 

400 
400 
3120 
3120 

1. You can specify the default or maximum allowable 
block size at system generation time. 

2. Specifying a LINE value results in fixed length records with 
a LRECL equal to the specified value. The specified value 
must always be equal to or less than the default. If the 
LINE operand is omitted, variable length records are 
created. 

3. The line numbers are contained in the last eight bytes 
of all fixed length records and in the first eight bytes of all 
variable length records. 

4. A user can have additional data set types recognized by the 
EDIT command processor. You can define the user­
defined data set types along with any of thc data sets 
shown above at system generation time by using the EDIT 
macro. The EDIT macro causes a table of constants to be 
built, which describes the data set attributes. For more 

Specif. Default(n,m) Spec. Default CAPS 
(Note 1) Required 

< = default Last 873< =n< =80 CAPS Yes 
< = default 
< = default 
< = default 
< =defauIt 
< = default 
< = default 
< = default 

< =default 
< = default 
< = default 
< = 32,760 

(Note 3) 
Last 8 
First 6 
Last 8 
Last 8 
Last 8 
First 8 

(Note 3) 
Last 8 
(Note 3) 
First 5 

CAPS 
CAPS 
CAPS 
CAPS 
CAPS 
CAPS 
CAPS 

CAPS 
CAPS 
ASIS 
CAPS 

Yes 
Yes 
Yes 
No 
Yes 
Yes 
Yes 

No 
Yes 
No 
Yes 

information on how to specify the EDIT macro at system 
generation time, see SPL: System Generation 
Reference. 
When you edit a data set type you defined yourself, the system 
uses the data set type as the descriptor (right-most) 
qualifier. You cannot override any data set types 
that have been defined by IBM. The EDIT command 
processor supports data sets that have the following 
attributes: 

Data Set Organization: Must be either sequential or 
partitioned 

Record formats: 
Logical Record Size: 
Block Sizes: 

Sequence Numbers: 

Fixed or variable 
Less than or equal to 255 characters 
User specified--must be less than or 
equal to track length 
V type: First 8 characters 
F type: Last 8 characters 

Figure 4. Default Values for LINE or LRECL and BLOCK or.BLKSIZE Operands 

Subcommands for EDIT 57 



Modes of Operation 

Input Mode 

The EDIT command has two modes of operation: input mode and edit mode. 
You enter data into a data set when you are in input mode. You enter 
subcommands and their operands when you are in edit mode. 

You must specify a data set name when you enter the EDIT command. If you 
specify the NEW operand, the system places you in the input mode. If you do 
not specify the NEW operand, you are placed in the edit mode if your specified 
data set is not empty. If the data set is empty, you are placed in input mode. 

If you have limited access to your data set, by assigning a password, you can 
enter a slash (f) followed by the password of your choice after the data set name 
operand of the EDIT command. 

Entering either EMODE or IMODE operands on the EDIT command overrides 
the normal mode setting described above. The specification of the RECOVER 
operand on the EDIT command places you in edit mode upon recovery. Refer to 
"Recovering an EDIT Work File" for more information about the RECOVER 
operand. 

In input mode, you type a line of data and then enter it into the data set by 
pressing the ENTER key. You can enter lines of data as long as you are in input 
mode. One typed line of input becomes one record in the data set. 

Note: If you enter a command or subcommand while you are in input mode, the 
system adds it to the data set as input data. Enter a null line to return to edit 
mode before entering any subcommallds. 

Line Numbers: Unless you specify otherwise, the system assigns a line number to 
each line as it is entered. The default is an interval of 10. Line numbers make 
editing much easier, because you can refer to each line by its own number. 

Each line number consists of up to eight digits, with the significant digits justified 
on the right and preceded by zeros. Line numbers arc placed at the beginning of 
variable-length records and at the end of fixed-length records. (Exception: Line 
numbers for COBOL fixed-length records are placed in the first six positions at 
the beginning of the record.) When you are working with a data set that has line 
numbers, you can have the new line number listed at the start of each new input 
line. If you are creating a data set without line numbers, you can request that a 
prompting character be displayed at the terminal before each line is entered. 
Otherwise, none is issued. 

Input records are converted to uppercase characters, unless you specify the ASIS 
or TEXT operand. The TEXT operand also specifies that character-deleting 
indicators and tabulation characters are recognized, but all other characters are 
added to the data set unchanged. 

All Assembler source data sets must consist of fixed-length records, 80 characters 
in length. These records might not be line numbers. If the records are 

58 TSO Extensions Command Language Reference 



line-numbered, the number can be located anywhere within columns 73 to 80 of 
the stored record (the printed line number always appears at the left margin). 

You can create FORTRAN data sets FORTGI and FORTH. 

S)mtax Checldng: You can have each line of input checked for proper syntax. 
The !;ystcm checks the syntax of statements for data sets having FORT descriptive 
qualifiers. Input lines are collected within the system until a complete statement is 
available for checking. 

V/hell an error is found during syntax checking, an appropriate error message is 
issued and edit mode is entered. You can then take corrective action, using the 
subcommands. \Vhen you want to resume input operations, press the ENTER 
key. Input mode is then entered and you can continue where you left off. 
\Vbcl1cver statements are being checked for syntax during input mode, the system 
prompts you for each line to be entered unless you specify the NOPROMPT 
operand for the INPUT subcommand. 

Ca;Hiwwtioll of (1 Line ill Inpllt lV/ode: In input mode, there are two independent 
situations that require you to indicate the continuation of a line by ending it with 
a hyphen or plus sign (that is, a hyphen or plus sign followed immediately by 
pressing the ENTER key). The situations are: 

,) Th~ syntax checking facility is being used. 
The data set type is CLIST (variable-length records). 

Ii' none of these situations apply, avoid ending a line with a hyphen (minus sign) 
because it is removed by the system before storing the line in your data set. 

You must use the hyphen when the syntax checking facility is active to indicate 
that the logical line to be syntax checked consists of multiple input lines. The 
editor then collects these lines (removing the hyphens) and passes them as one 
logical line to the s.;'ntax scanner. However, each individual input line (with its 
hyphen removed) is also stored separately in your data set. 

The hyphen is used to indicate logical line continuation in CLISTs. If the CLIST 
is in variable-length record format (the default), the hyphen is not removed by 
EDIT, but becomes part of the stored line in your data set and is recognized when 
executed by the EXEC command processor. If the CLIST is in fixed-length 
record format, a hyphen, placed eight character positions before the end of the 
record and followed by a blank, is recognized as a continuation when executed by 
the E;CEC command processor. This assumes that the line number field is defined 
to occupy the last eight positions of the stored record. For example, if the 
operand LINE(80) is specified on the EDIT command when defining the CLIST 
data set, the hyphen must be placed in data position 72 of the input line followed 
immediately by a blank. Location of a particular input data column is described 
under the TABSET subcommand of EDIT. 

I-'loie that these rules apply only when entering data in input mode. When you 
use a subcommand (for example, CHANGE or INSERT) to enter data, a hyphen 
at the end of the line indicates subcommand continuation. The system appends 
the continuation data to the subcommand. 

Subcommands for EDIT 59 



INPUT Mode in the Background: When the EDIT command is executed in the 
background and input mode is requested, blank lines should not be entered into 
the data set. EDIT interprets a blank line as a null line causing a switch from 
input mode to edit mode. When it is necessary to incorporate blank lines into 
your data set, certain methods can be followed. One method is to insert an 
unused character string wherever a blank line is required. Before ending the edit 
session, insert the CHANGE subcommand to change the character string to 
blanks. Figure 5 illustrates how this is done: 

edit examp4.cntl new 
INPUT 
00010 logon user4 proc(proca) 
00020 profile prefix(user ID) 
00030 edit p data new 
00040 line one 
00050 @@@@@ 
00060 line two 
00070 @@@@@ 
00080 line three 
00090 @@@@@ 
00100 line four 
00110 
00120 c 10 999 /@@@@@// all 
00130 list 
00140 end save 
00150 (null line) 
end save 
READY 
submit examp4.cntl notify jobchar(a) 
JOB USER4A(JOB00001) SUBMITTED 
READY 

Figure 5. Entering Blank Lines Into Your Data Set 

An alternate method is to specify the operand EMODE on the EDIT command 
that is to be executed in the background. With this method, each new line of data 
should be preceded by a line number wherever line number editing is allowed. 

To insert a line of data ending in a hyphen in situations where the system would 
remove the hyphen (that is, while in subcommand mode or in input mode for 
other than a CLIST data set), enter a hyphen in the next-to-last column, a blank 
in the last column, and immediately press the ENTER key. 

Creating a Data Set: When creating a data set, you must first request input 
mode. You can do this by entering one of the following: 

• The NEW operand on the EDIT command. 
• The IMODE operand on the EDIT command. 
• The INPUT subcommand while in edit mode. 
• The INSERT subcommand with no operands, while in edit mode. 
(I A null line, if the system is in edit mode. 

60 TSO Extensions Command Language Reference 



Edit Mode 

After you enter the EDIT command with either the NEW or IMODE operands, 
the system sends you the following message: 

INPUT 

For example: 

Operation: Add data to an existing data set using the IMODE operand. 

Known: 

To add data, you want to go into input mode immediately. 

Enter: 

edit crndproc clist imode 

You can enter subcommands to edit data sets when you are in edit mode. You 
can edit data sets that have line numbers by referring to the number of the line 
that you want to edit. This is called line-number editing. You can also edit data 
by referring to specific items of text within the lines. This is called context editing. 
A data set having no line numbers can be edited only by context. Context editing 
is performed by using subcommands that refer to the current line value or a 
character combination, such as with the FIND or CHANGE subcommands. 
There is a pointer within the system that points to a line within the data set. 
Normally, this pointer points to the last line that you referred to. You can use 
subcommands to change the pointer so that it points to any line of data that you 
choose. You can then refer to the line that it points to by specifying an asterisk 
(*) instead of a line number. Figure 6 shows where the pointer points at 
completion of each subcommand. 

Note: A current-line pointer value of zero refers to the position before the first 
record, if the data set does not contain a record zero. 

When you edit data sets with line numbers, the line number field is not involved 
in any modifications made to the record except during renumbering. Also, the 
only editing operations that is performed across record boundaries is the 
CHANGE and FIND subcommands, when the TEXT and NONUM operands 
have been specified for the EDIT command. In CHANGE and FIND, an editing 
operation is performed across only one record boundary at a time. 

Subcommands for EDIT 61 



EDIT Subcommands 

ALLOCATE 

ATTRIB 

BOTTOM 

CHANGE 

CKPT 

COPY 

DELETE 

DOWN 

END 

EXEC 

FIND 

Value of the Pointer at Completion of Subcommand 

No change 

No change 

Last line (or zero for empty data sets) 

Last line changed 

No change 

Last line copied 

Line preceding deleted line (or zero if the fIrst line 
of the data set has been deleted) 

Line n relative lines below the last line referred to, 
where n is the value of the count operand, or 
bottom of the data set (or line zero for empty data sets) 

No change 

No change 

Line containing specified string, if any; else, no change 

FORMAT (part of a program product) No change 

FREE 

HELP 

INPUT 

INSERT 

Insert/Replace/Delete 

LIST 

No change 

No change 

Last line entered 

Last line entered 

Inserted line or replaced line or line preceding the deleted 
line if any (or zero, if no preceding line exists) 

Last line listed 

MERGE (part of a program product) Last line 

MOVE Last line moved 

PROFILE No change 

RENUM Same relative line 

RUN No change 

SAVE No change or same relative line 

SCAN Last line scanned, if any 

SEND No change 

SUBMIT No change 

TABSET No change 

TOP Zero value 

UNNUM Same relative line 

UP Line n relative lines above the last line referred to, where 
n is the value of the count operand, (or line zero for 
empty data sets). 

VERIFY No change 

Figure 6. How EDIT Subcommands Affect the Line Pointer Value 

62 TSO Extensions Command Language Reference 



Changing from One Mode to Another 

Data Set Disposition 

Tabulation Characters 

If you specify an existing data set name as an operand for the EDIT command, 
you begin processing in edit mode. If you specify a new data set name or an old 
data set with no records as an operand for the EDIT command, you begin 
processing in input mode. 

You change from edit mode to input mode when: 

• You enter the INPUT subcommand. 
• You press the ENTER key before typing anything. 
• You enter the INSERT subcommand with no operands. 

If this is the first time during your current usage of EDIT that input mode is 
entered, input begins at the line after the last line of the data set for data sets 
which are not empty, or at the first line of the data set for empty data sets. If this 
is not the first time during your current usage of EDIT that input mode is 
entered, input begins at the point following the data entered when last in input 
mode. 

If you use the INPUT subcommand without the R operand and the line is null 
(that is, it contains no data), input begins at the specified line. If the specified line 
contains data, input begins at the first increment past that line. If you use the 
INPUT subcommand with the R operand, input begins at the specified line, 
replacing existing data, if any. 

You switch from input mode to edit mode when: 

• You press the ENTER key before typing anything. 

• You cause an attention interruption. 

• There is no more space for records to be inserted into the data set and 
re-sequencing is not allowed. 

• An error is discovered by the syntax checker. 

The system assumes a disposition of (NEW,CATLG) for new data sets and 
(OLD,KEEP) for existing data sets. 

When you enter the EDIT command into the system, the system establishes a list 
of tab setting values for you, depending on the data set type. Logical tab setting 
values might not represent the actual tab setting on your terminal. You can 
establish your own tab settings for input by using the TAB SET subcommand. A 
list of the default tab setting values for each data set type is presented in the 
T ABSET subcommand description. The system scans each input line for 
tabulation characters produced by pressing the TAB key on the terminal. The 
system replaces each tabulation character by as many blanks as are necessary to 
position the next character at the appropriate logical tab setting. 

Subcommands for EDIT 63 



When tab settings are not in use, each tabulation character encountered in all 
input data is replaced by a single blank. You can also use the tabulation 
character to separate subconlmandsfrom their operands. 

Executing User-Written Programs 

You can compile and execute the source statements contained in certain data set 
types by using the RUN subcommand. The RUN subcommand makes use of 
optional program products. The specific requirements are discussed in the 
description of the RUN command. 

Terminating the EDIT Command 

You can terminate the EDIT operation at any time by switching to edit mode (if 
you are not already in edit mode) and entering the END subcommand. Before 
terminating the EDIT command, you should be sure to store all data that you 
want to save. You, can use the SAVE subcommand or the SAVE operand of the 
END subcommand for this purpose. 

Recovering an EDIT Work File 

Checkpointing a Data Set 

In the event of an abnormal termination, the recovery facility of EDIT enables 
you to recover changes or modifications made during an edit session (applicable 
in foreground only). To recover the work file after an abnormal termination has 
occurred during an edit session, the EDIT command should be reissued specifying 
the RECOVER operand, along with any any other operands specified initially. 
This facility is optional to both the installation and/or the TSO user. 

Certain specifications must be met before a work file becomes recoverable. They 
are: 

• The installation must not have specified the NO RECOVER attribute to your 
user 10. If the NORECOVER attribute was assigned, the data set is not 
recovera ble. 

• To be recoverable, you must enter the PROFILE command containing the 
RECOVER operand prior to the edit session. 

If the conditions above are met, EDIT creates a work file and updates it while 
your edit session progresses. If the edit session terminates normally, the work file 
is deleted immediately upon termination. If the edit session is terminated 
abnormally, the work file is kept and made available at the beginning of your 
next edit session. 

The CKPOINT subcommand of EDIT gives you the ability to automatically 
checkpoint a data set during the input or modification phase of the edit session. 
The invocation of checkpointing is controlled through the use of the CKPOINT 
subcommand. See the CKPOINT subcommand of EDIT for the syntax 
description. 

64 TSO Extensions Command Language Reference 



Recovering After a System Failure 

To recover data from your last edit session, issue the EDIT command entering the 
same data set name that you were working on at the time of the failure and 
include the RECOVER operand. You are placed in edit mode and the work file 
data set is used as input for the current edit session. The current line pointer is 
positioned at the top of the data set. 

Note the following: 

1. If you specify IMODE upon re-entering your edit session, or if you give a 
data set disposition of NEW, the recovery feature always puts your session in 
edit mode. 

2. If the RECOVER operand is not specified, you are prompted and given a 
choice of RECOVER or NORECOVER. 

3. If the RECOVER operand is specified and the work file data set name does 
not match the edited data set name, an error message is issued. You are 
prompted and given a choice of recovering or not recovering the data set. 

4. If the RECOVER operand is specified and the work file data set does not 
exist, an error message is issued. 

The example shown in Figure 7 illustrates the different stages of an edit session 
and the actions necessary to recover it. 

Subcommands for EDIT 65 



Recovering After an Abend 

READY 
profile recover 
READY 
edit lions old data 
EDIT 
ckpoint 5 
list 
00010 THE 
00020 EDIT 
00030 LOST, 
00040 REENTER 
00050 COMMAND 
00060 AND 
00070 SAVE 
00080 ENTRY 
c 30 /lost,/recovery/ 
c 40 /reenter/feature/ 
c 50 /command/saves/ 
c 60 /and/you/ 
c 70 /save/time and/ 

(System automatically takes a checkpoint after 
fifth line of modifications.) 

c 80 /entry/repetition/ 
(Assuming system failure has occurred here, your edit 
session will terminate abnormally. When the system 
is restored, issue the LOGON command and reenter the 
EDIT command including the RECOVER operand.) 

edit lions old data recover 
EDIT 
list 
00010 THE 
00020 EDIT 
00030 RECOVERY 
00040 FEATURE 
00050 SAVES 
00060 YOU 
00070 TIME AND 
00080 ENTRY 
c 80 /entry/repetition/ 

(Note: The last line was not kept. All other changes 
were kept in the EDIT work 'file (utility data set) 
making it necessary to reenter only one line.) 

Figure 7. Sample Edit Session Using the CKPOINT Subcommand and the RECOVER 
Operand of EDIT 

When an abend occurs after issuing the SAVE subcommand of EDIT because 
there is not enough space (B37, D37, E37) in your data set or on the volume in 
which your data set resides, message IKJ52432A is issued. Termination does not 
occur, even if all attempts to save the data set are unsuccessful. You can respond 
to the system prompt with one of the following options: 

o Enter the SAVE subcommand specifying a different data set name. 

66 TSO Extensions Command Language Reference 



• Enter RETAIN to terminate your edit session. The EDIT work file (utility 
data set) is checkpointed and retained. Recovery is possible at the beginning 
of your next edit session. 

• Enter END to terminate your edit session. With this option, the EDIT work 
file is not available for recovery at your next edit session. 

• Entering any other valid subcommand of EDIT at this time causes the abend 
to be disregarded and your edit session continues. 

Using the RETAIN option allows you to end your edit session and then perform 
any space recovery measures necessary to obtain additional space. The 
RECOVER operand on the EDIT command can be used to recover your data set 
during your next edit session. Refer to "Recovery After System Failure" for the 
correct procedure. 

When your edit session is terminated by a system, operator, or time allocation 
(a bend code X22), the EDIT work file is checkpointed and retained if any 
modifications were made. This allows you to invoke EDIT's recovery feature 
after your next logon is issued. For any other abends, you are prompted for 
END or SAVE through message IKJ52563A. If you do not enter SAVE or END, 
you are terminated immediately. The EDIT work file is retained if modifications 
have been made. If SAVE is issued and the attempt is unsuccessful, the edit 
session is terminated. However, the work file data set is retained if modifications 
were made, and message IKJ 524281 is issued. 

See TSOjE Terminal Messages for more information about the messages in this 
section. 

Recovering After a Terminal Line Disconnect 

If your user profile contains the RECOVER attribute and you are using 
permanent EDIT work files, EDIT creates a work file during your edit session, 
which can be used as input to recover any modification made to your data set in 
the event of a line disconnect or system failure. 

Through the use of the CKPOINT subcommand of EDIT and the RECOVER 
operand of the EDIT command, you are given the opportunity to recover the 
modifications made to your data set prior to the disconnect. 

If your user profile contains the NORECOVER attribute and you are using 
temporary EDIT work files, the system attempts to copy your edited data set 
(with all changes) into a data set with an intermediate qualifier name of 
EDITSAVE. This data set can be edited the next time you log on. 

Subcommands for EDIT 67 



ALLOCATE Subcommand of EDIT 

Use the ALLOCATE subcommand to dynamically allocate the data sets required 
by a program that you intend to execute. Refer to the ALLOCATE command 
for the description of the syntax and function of the ALLOCATE subcommand. 

68 TSO Extensions Command Language Reference 



ATTRIB Subcommand of EDIT 

The ATTRIB subcommand of EDIT performs the same function as the ATTRIB 
command without leaving edit mode. Refer to the ATTRIB command for a 
description of the syntax and function of the ATTRIB subcommand. 

ATTRIB Subcommand of EDIT 69 



BOTTOM Subcommand of EDIT 

Use the BOTTOM subcommand to change the current line pointer to the last line 
of the data set being edited or to contain a zero value (if the data set is empty). 
This subcommand can be useful when subsequent subcommands such as INPUT 
or MERGE must be at the end of the data set. 

70 TSO Extensions Command Language Reference 



CHANGE Subcommand of EDIT 

Use the CHANGE subcommand to modify a sequence of characters in a line or 
in a range of lines. Either the first occurrence or all occurrences of the sequence 
can be modified. 

jgHANGE] [Iine-nUmber-1 [line-nUmber-2]] 
* [count 1] 

jstringl [string2 [ALL]]] 
count2 

line-number-l 
specifies the number of a line you want to change. When used with 
line-number-2, it specifies the first line of a range of lines. 

line-number-2 

* 

specifies the last line of a range of lines that you want to change. The 
specified lines are scanned for first occurrence of the sequence of characters 
specified for stringl. 

specifies the line pointed to by the line pointer in the system is to be used. 
If you do not specify a line number or an asterisk (*), the current line is the 
default. 

count! 
specifies the number of lines that you want to change, starting at the 
position indicated by the asterisk (*). 

string! 
specifies a sequence of characters that you want to change. The sequence 
must be (I) enclosed within single quotes, or (2) preceded by an extra 
character which serves as a special delimiter. The extra character may be 
any printable character other than a single quote (apostrophe), number, 
blank, tab, comma, semicolon, parenthesis, or asterisk. The hyphen (-) and 
plus (+) signs can be used, but should be avoided due to possible confusion 
with their use in continuation. If the first character in the character string is 
an asterisk (*), do not use a slash (/) as the extra character. (TSO interprets 
the /* as the beginning of a comment.) The extra character must not appear, 
in the character string. Do not put a standard delimiter between the extra 
character and the string of characters unless you intend the delimiter to be 
treated as a character in the character string. 

If stringl is specified and string2 is not, the specified characters are 
displayed at your terminal up to (but not including) the sequence of 
characters that you specified for stringl. You can then complete the line. 

CHANGE Subcommand of EDIT 71 



Quoted-String Notation 

string2 

ALL 

specifies a sequence of characters that you want to use as a replacement for 
string!. Like string!, string2 must be (1) enclosed within single quotes, or 
(2) preceded by a special delimiter. This delimiter must be the same as the 
extra character used for stringl. Optionally, this delimiter can also 
immediately follow string2. 

specifies every occurrence of string! within the specified line or range of 
lines are replaced by string2. If this operand is omitted, only the first 
occurrence of string I is replaced with string2. 

If you cause an attention interruption during the CHANGE subcommand 
when using the ALL operand, your data set might be partially changed. It 
is good practice to list the affected area of your data set before continuing. 

If the special delimiter form is used, string2 must be followed by the 
delimiter before typing the ALL operand. 

count2 
specifies a number of characters to be displayed at your terminal, starting at 
the beginning of each specified line. 

As indicated above, instead of using special delimiters to indicate a character 
string, you can use paired single quotes (apostrophes) to accomplish the same 
function with the CHANGE subcommand. The use of single quotes as delimiters 
for a character string is called quoted-string notation. Following are the rules for 
quoted-string notation for the string! and string2 operands: 

• Do not use both special-delimiter and quoted-string notation in the same 
subcommand. 

• Enclose each string with single quotes; for example, 'This is string!' 'This is 
string2.' Quoted strings must be separated with a blank. 

• Use two single quotes to represent a single quote within a character string; for 
example, 'pilgrim" s progress'. 

• Use two single quotes to represent a null string; for example,". 

You can specify quoted-string notation in place of special-delimiter notation to 
accomplish any of the functions of the CHANGE subcommand as follows: 

Function 
*Special-Delimiter 
Notation 

Replace !ab!cde! 
Delete !ab!!or!ab! 
Print up to lab 
Place in front of !!cde! 
* - using the exclamation point (!) as the delimiter. 

Quoted-String 
Notation 

'ab"cde' 
'ab' " 
'ab' 
" 'cde' 

72 TSO Extensions Command Language Reference 



Combinations of Operands 

Note the following: 

1. Choose the form that best suits you (either special-delimiter or quoted-string) 
and use it consistently. It will help you use the subcommand. 

2. If you cause an attention interruption during the CHANGE subcommand, 
your data set might not be completely changed. You should list the affected 
parts of your data set before entering other subcommands. 

You can enter several different combinations of these operands. The system 
interprets the operands that you enter according to the following rules: 

" When you enter a single number and no other operands, the system assumes 
that you are accepting the default value of the asterisk (*) and that the 
number is a value for the count2 operand. 

• When you enter two numbers and no other operands, the system assumes that 
they are line-number-l and count2 respectively. 

e When you enter two operands and the first is a number and the second begins 
with a character that is not a number, the system assumes that they are 
line-number-l and string1. 

G) When you enter three operands and they are all numbers, the system assumes 
that they are line-number-l, line-number-2, and count2. 

• When you enter three operands and the first two are numbers, but the last 
begins with a character that is not a number, the system assumes that they are 
line-number-l, line-number-2, and string1. 

Example 1 

Operation: Change a sequence of characters in a particular line of a 
line-numbered data set. 

Known: 

The line number: 57 
The old sequence of characters: parameter 
The new sequence of characters: operand 

change 57 XparameterXoperand 

CHANGE Subcommand of EDIT 73 



Example lA 

Operation: Change a sequence of characters in a particular line of a 
line-numbered data set. 

Known: 

The line number: 57 
The old sequence of characters: parameter 
The new sequence of characters: operand 

change 57 'parameter' 'operand' 

Example 2 

Operation: Change a sequence of characters wherever it appears in several lines 
of a line-numbered data set. 

change 24 82 !i.e. !e.g. ! all 

The blanks following the stringl and string2 examples (i.e. and e.g. ) are treated 
as characters. 

Example 3 

Operation: Change part of a line in a line-numbered data set. 

Known: 

The line number: 143 
The number of characters in the line preceding the characters to be changed: 
18 

change 143 18 

This form of the subcommand causes the first 18 characters of line number 143 to 
be displayed at your terminal. You complete the line by typing the new 
information and enter the line by pressing the ENTER key. All of your changes 
are incorporated into the data set. 

Example 4 

Operation: Change part of a particular line of a line-numbered data set. 

Known: 

The line number: 103 
A string of characters to be changed: 315 h.p. at 2400 

change 103 m315 h.p. at 2400 

This form of the subcommand causes line number 103 to be searched until the 
characters 315 h.p. at 2400 are found. The line is displayed at your terminal up 
to the string of characters. You can then complete the line and enter the new 
version into the data set. 

74 TSO Extensions Command Language Reference 



Example 5 

OperatiOlI: Change the values in a table. 

Known: 

The line number of the first line in the table: 387 
The line number of the last line in the table: 406 
The number of the column containing the values: 53 

change 387 406 52 

Each line in the table is displayed at your terminal up to the column containing 
the value. As each line is displayed, you can type in the new value. The next line 
is not displayed until you complete the current line and enter it into the data set. 

Example 6 

Operation: Add a sequence of characters to the front of the line that is currently 
referred to by the pointer within the system. 

Known: 

The sequence of characters: in the beginning 

change * //in the beginning 

Example 6A 

Operation: Add a sequence of characters to the front of the line that is currently 
referred to by the pointer within the system. 

Known: 

The sequence of characters: in the beginning 

change * " 'in the beginning' 

Example 7 

Operation: Delete a sequence of characters from a line-numbered data set. 

Known: 

The line number containing the string of characters: 15 
The sequence of characters to be deleted: weekly 

change 15 /week1y// or change 15 /weekly/ 

CHANGE Subcommand of EDIT 75 



Example 7A 

Operation: Delete a sequence of characters from a line-numbered data set. 

Known: 

The line number containing the string of characters: 15 
The sequence of characters to be deleted: weekly 

change 15 'weekly' " 

Example 8 

Operation: Delete a sequence of characters wherever it appears in a 
line-numbered data set containing line numbers 10 to 150. 

Known: 

The sequence of characters to be deleted: weekly 

change 10 999/ weekly// all 

76 TSO Extensions Command Language Reference 



CKPOINT Subcommand of EDIT 

Use the CKPOINT subcommand to protect input or modifications to a data set 
during an EDIT session. All changes are placed in a work file (utility data set) 
created by EDIT and are accessible to you if an abnormal termination occurs. 
The purpose of this subcommand is to eliminate the need for specifying the SAVE 
subcommand of EDIT to preserve changes. 

ICKPOINTj 
CKP 

[value] 

value 
specifies the intervals (number of line modifications or input lines) at which 
a checkpoint is taken. You can use the value operand in one of three ways: 

Q By specifying a decimal value from 1 to 9999 to be used as the 
checkpoint intervals. 

() By specifying a decimal value of zero to terminate interval 
checkpoin ting. 

o By not specifying a value, causing a checkpoint to be taken. This can 
be done even though you have already requested interval checkpointing. 
Checkpointing does not stop in this case, but continues after reaching 
the previously set interval value. 

A line is considered modified if it is inserted, deleted, or changed. Issuing 
the CHANGE subcommand repeatedly and specifying the same line is 
equivalent to modifying the line once the CHANGE subcommand is 
executed. 

Example 1 

When the CKPOINT subcommand is issued without operands, EDIT ensures that 
all changes or modifications made up to this point are reflected in the work file. 
To do this, enter: 

CKPOINT 
or 

CKP 

Example 2 

When the CKPOINT subcommand is issued with an operand value of 1 to 9999, 
a checkpoint is taken immediately and at requested intervals specified by the 
operand value until termination. To do this, enter: 

CKPOINT value 
or 

CKP value 

CKPOINT Subcommand of EDIT 77 



Example 3 

When interval checkpointing is in effect and you want to alter the active value, 
reissue the CKPOINT subcommand inserting the new value like this: 

CKPOINT newvalue 
or 

CKP newvalue 

Example 4 

Toterminate interval checkpoint, issue the CKPOINT subcommand with a zero 
value. The entry is: 

CKPOINT 0 
or 

CKP 0 

78 TSO Extensions Command Language Reference 



COPY Subcommand of EDIT 

Use the COPY subcommand of EDIT to copy one or more records that exist in 
the data set being edited. The copy operation moves data from a source location 
to a target location within the same data set and leaves the source data intact. 
Existing lines in the target area are shifted toward the end of the data set as 
required to make room for the incoming data. No lines are lost. 

The target line cannot be within the source area, with the exception that the target 
line (the first line of the target area) can overlap the last line of the source area. 

Upon completion of the copy operation, the current line pointer points to the last 
copied-to line, not to the last line shifted to make room in the target area. 

If you cause an attention interruption during the copy operation, the data set may 
be only partially changed. As a check, list the affected part of the data set before 
continuing. 

If COpy is entered without operands, the line pointed to by the current line 
pointer is copied into the current-line EDIT -default-increment location. 

linel 

line2 

line3 

[line2] [li;e3] 
[line4] 

[INCR (lines) ] I] 
[INCR (lines) 11 

specifies the first line or the lower limit of the range to be copied. If the 
specified line number does not exist in this data set, the range begins with 
the next higher line number. 

specifies the last line or the upper limit of the range to be copied. If the 
specified line number does not exist in this data set, the range ends with the 
highest line number that is less than Iine2. If Iine2 is not entered, the value 
defaults to the value of line!; that is, the source becomes one line. Do not 
enter an asterisk for line2. 

If COPY is followed by two line-number operands, the system assumes them 
to represent line! and line3, and defaults line2 to the value of line!. 

specifies the target line number; that is, the line at which the copied-to data 
area starts. If the line3 value corresponds to an existing line, the target line 
is changed to line3 + INCR(1ines) and either becomes a new line or 
displaces an existing line at that location. Once the copy operation begins, 
existing lines encountered in the target area are renumbered· to make room 
for the incoming data. The increment for renumbered lines is one (1). 
Specifying zero (0) for line3 puts the copied data at the top of the data set, 
only if line 0 is empty. If line 0 has data, enter TOP followed by COpy 
wi th line3 set to *. Note that line3 defa ul ts to *. 

COpy Subcommand of EDIT 79 



* 

The value of line3 should not fall in the range from linel to line2. The 
target line must not be in the range being copied. Exception: Line3 can be 
equal to line2. 

represents the value of the current line pointer. 

INCR(lines) 
specifies the line number increment to be used for this copy operation. The 
default is the value in effect for this data before the copy operation. When 
the copy operation is complete, the increment reverts to the value in effect 
before COpy was issued. Range: 1-8 decimal digits, but not zero. 

The increment for any renumbered lines is one (1). 

'string' 

count 

line4 

specifies a sequence of alphameric characters with a maximum length equal 
to or less than the logical record length of the data set being edited. When 
a character string is specified, a search starting at the current line is done for 
the line containing the string. When found, that line is the start of the 
range to be copied for either numbered or unnumbered data sets. 

specifies the total number of lines (the range) to be copied. The default for 
count is one (I). Enter 1-8 decimal digits, but not zero (0) or asterisk (*). 

applies to both numbered and unnumbered data sets. For unnumbered data 
sets, line4 specifies the target line (the line at which the copied-to data area 
starts) as a relative line number (the nth line in the data set). For numbered 
data sets, line4 is specified the same as line3. Specifying zero (0) for line4 
puts the copied data at the top of the data set, only if line (0) is empty. If 
line (0) has data, enter TOP followed by COpy with line4 set to *. Note 
that line4 defaults to *. 

80 TSO Extensions Command Language Reference 



Messages 

The COPY subcommand of EDIT causes error messages to be displayed at the 
terminal under specific conditions. To show these conditions, the following data 
set is assumed: 

0010 A 

0020 BB 
0030 CCC 
0040 DDDD 
0050 EEEEE 
0060 FFFFFF 

0070 GGGGGGG 
0080 HHHHHHHH 
0090 IIIIIIIII 
0100 JJJJJJJJJJ 
0110 KKKKKKKKKKK 
0120 LLLLLLLLLLLL 

1. Entering 

copy * * * 

causes: 

INVALID OPERANDS * INVALID FOR COUNT OR END OF RANGE 
SPECIFICATION 

2. Entering 

copy 10000 * 

causes: 

INVALID OPERANDS FIRST LINE TO BE MOVE/COPIED DOES 
NOT EXIST 

3. Entering 

copy 'xyz' * 

causes: 

INVALID OPERANDS QUOTED STRING NOT FOUND 

4. Entering 

copy 20 10 * 

causes: 

INVALID OPERANDS END OF RANGE MUST BE GREATER THAN 
OR EQUAL TO THE BEGINNING OF THE RANGE 

COpy Subcommand of EDIT 81 



5. Entering 

copy 20 I * I 100 

causes: 

INVALID OPERANDS STRING INVALID FOR END OF RANGE 
SPECIFICATION 

6. Entering 

copy * a 100 

causes: 

INVALID OPERANDS a INVALID FOR COUNT 

7. Entering 

copy 10 40 20 

causes: 

INVALID OPERANDS TRYING TO MOVE/COPY INTO LINE RANGE 

In the following examples, CLP refers to the current line pointer. 

Example 1 

Operation: Copy the current line right after itself in a line-numbered data set. 

Known: Data set contains lines 10 through 120; current line pointer is at 50; 
EDIT provides an increment of 10. 

Before: Enter: After: 

0010 A copy 50 50 50 0010 A 
0020 BB 0020 BB 
0030 CCC or 0030 CCC 
0040 DDDD 0040 DDDD 
0050 EEEEE copy 50 50 0050 EEEEE 
0060 FFFFFF CLP 0060 EEEEE 
0070 GGGGGGG or 0061 FFFFFF 
0080 HHHHHHHH 0070 GGGGGGG 
0090 IIIIIIIII copy 50 0080 HHHHHHHH 
0100 JJJJJJJJJJ 0090 IIIIIIIII 
0110 KKKKKKKKKKK or 0100 JJJJJJJJJJ 
0120 LLLLLLLLLLLL 0110 KKKKKKKKKKK 

copy 0120 LLLLLLLLLLLL 

or 

copy lee l 

82 TSO Extensions Command Language Reference 



Example 2 

Operation: Copy the current line right after itself in an unnumbered data set. 

Known: Data set contains 12 lines of sequential alphabetic characters. Current 
line pointer is at the seventh line. 

Before: Enter: After: 

A copy * 1 * A 
BB BB 
eee or eee 
DDDD DDDD 
EEEEE copy 1 EEEEE 
FFFFFF FFFFFF 
GGGGGGG or GGGGGGG 
HHHHHHHH eLP GGGGGGG 
IIIIIIIII copy * HHHHHHHH 
JJJJJJJJJJ IIIIIIIII 

KKKKKKKKKKK or JJJJJJJJJJ 
LLLLLLLLLLLL KKKKKKKKKKK 

copy LLLLLLLLLLLL 

or 

copy 'gg' 

Example 3 

Operation: Copy a line to a line before it. 

Known: Data set contains lines 10 through 120; source line is 60; target line is 50; 
EDIT supplies an increment of 10. 

Before: Enter: After: 

0010 A copy 60 50 0010 A 
0020 BB 0020 BB 
0030 eee 0030 eee 
0040 DDDD 0040 DDDD 
0050 EEEEE 0050 EEEEE 
0060 FFFFFF eLP 0060 FFFFFF 
0070 GGGGGGG 0061 FFFFFF 
0080 HHHHHHHH 0070 GGGGGGG 
0090 I II II II II 0080 HHHHHHHH 
0100 JJJJJJJJJJ 0090 IIIIIIIII 

0110 KKKKKKKKKKK 0100 JJJJJJJJJJ 
0120 LLLLLLLLLLLL 0110 KKKKKKKKKKK 

0120 LLLLLLLLLLLL 

COpy Subcommand of EDIT 83 



Example 4 

Operation: Find the line containing a specific word and copy it to the bottom of 
the data set. 

Known: Data set contains nine lines of text; word to be found is men; data set is 
unnumbered. 

Before: 

NOW IS 
THE TIME 
FOR ALL 
GOOD MEN 
TO COME 
TO THE 
AID OF 
THEIR 
COUNTRY 

Example 5 

Enter: 

top 
copy 

After: 

NOW IS 
'men' 99999999 THE TIME 

FOR ALL 
GOOD MEN 
TO COME 
TO THE 
AID OF 
THEIR 
COUNTRY 

CLP GOOD MEN 

Operation: Copy lines 10, 20, and 30 into a target area starting at line 100, using 
an increment of 5. 

Known: Data set contains lines 10 through 120; EDIT provides an increment of 
10. 

Before: Enter: After: 

0010 A copy 10 30 100 incr(5) 0010 A 
0020 BB 0020 BB 
0030 CCC or 0030 CCC 
0040 DDDD 0040 DDDD 
0050 EEEEE copy 9 31 100 incr(5) 0050 EEEEE 
0060 FFFFFF 0060 FFFFFF 
0070 GGGGGGG or 0070 GGGGGGG 
0080 HHHHHHHH 0080 HHHHHHHH 
0090 IIIIIIIII copy 1 39 100 incr(5) 0090 IIIIIIIII 
0100 JJJJJJJJJJ 0100 JJJJJJJJJJ 
0110 KKKKKKKKKKK 0105 A 
0120 LLLLLLLLLLLL 0110 BB 

CLP 0115 CCC 
0116 KKKKKKKKKKK 
0120 LLLLLLLLLLLL 

Example 6 

Operation: Copy four lines from a source area to a target area that overlaps the 
last line of the source, using the default increment. 

Known: Data set contains lines 10 through 120; source lines are 20 through 50; 
target area starts at line 50; EDIT provides an increment of 10. 

84 TSO Extensions Command Language Reference 



Before: Enter: After: 

0010 A copy 20 50 50 0010 A 
0020 BB 0020 BB 
0030 CCC 0030 CCC 
0040 DDDD 0040 DDDD 
0050 EEEEE 0050 EEEEE 
0060 FFFFFF 0060 BB 
0070 GGGGGGG 0070 CCC 
0080 HHHHHHHH 0080 DDDD 
0090 IIIIIIIII CLP 0090 EEEEE 
0100 JJJJJJJJJJ 0091 FFFFFF 
0100 KKKKKKKKKKK 0092 GGGGGGG 
0120 LLLLLLLLLLLL 0093 HHHHHHHH 

0094 IIIIIIIII 

0100 JJJJJJJJJJ 
0110 KKKKKKKKKKK 
0120 LLLLLLLLLLLL 

Example 7 

Operation: Copy five lines into a target area that starts before but overlaps into 
the source area. 

Known: Data set contains lines 10 through 120; source range is line 70 through 
line 110; target location is line 50; increment is 10. 

Before: Enter: After: 

0010 A copy 70 110 50 incr(10) 0010 A 
0020 BB 0020 BB 
0030 CCC 0030 CCC 
0040 DDDD 0040 DDDD 
0050 EEEEE 0050 EEEEE 
0060 FFFFFF 0060 GGGGGG 
0070 GGGGGGG 0070 HHHHHHH 
0080 HHHHHHHH 0080 IIIIIIII 

0090 IIIIIIIII 0090 JJJJJJJJJ 
0100 JJJJJJJJJJ CLP 0100 KKKKKKKKKK 
0110 KKKKKKKKKKK 0101 FFFFFF 
0120 LLLLLLLLLLLL 0102 GGGGGGG 

0103 HHHHHHHH 
0104 IIIIII!!! 

0105 JJJJJJJJJJ 
0110 KKKKKKKKKKK 
0120 LLLLLLLLLLLL 

Example 8 

Operation: Copy three lines to the top of the data set at line O. 

Known: Data set contains lines 10 through 120; line 0 does not exist; source lines 
are 80, 90, and 100; target area starts at line o. 

COPY Subcommand of EDIT 85 



Before: Enter: After: 

0010 A top 0000 HHHHHHHH 
0020 BB copy 80 100 * incr(50) 0050 IIIIIIIII 
0030 eee eLP 0100 JJJJJJJJJJ 
0040 DDDD or 0101 A 
0050 EEEEE 0102 BB 
0060 FFFFFF copy 80 100 0 incr(50) 0103 eee 
0070 GGGGGGG 0104 DDDD 
0080 HHHHHHHH 0105 EEEEE 
0090 IIIIIIIII 0106 FFFFFF 
0100 JJJJJJJJJJ 0107 GGGGGGG 
0110 KKKKKKKKKKK 0108 HHHHHHHH 
0120 LLLLLLLLLLLL 0109 II IIIII II 

0110 JJJJJJJJJJ 
0111 KKKKKKKKKKK 
0120 LLLLLLLLLLLL 

Example 9 

Operation: Copy three lines to the top of the data set at line 0, using an 
increment of 50. 

Known: Data set contains lines 0 through 120; line 0 contains data; source lines 
are 80, 90, and 100; target area starts at line O. 

Before: 

0000 ZIP 
0010 A 
0020 BB 
0030 eee 
0040 DDDD 
0050 EEEEE 
0060 FFFFFF 
0070 GGGGGGG 
0080 HHHHHHHH 
0090 II III II II 
0100 JJJJJJJJJJ 
0110 KKKKKKKKKKK 
0120 LLLLLLLLLLLL 

Enter: 

top 
copy 80 100 * incr(50) 

eLP 
The attempt to copy into 
line 0 gets the target data 
to the top of the data set 
but shifts the target line 
by the increment value. 

Note: An entry of 
copy 80 100 0 incr(50) 
produces the results 
shown at right. The target 
data is inserted between 
line 0 and the remainder 
of the data set. eLP 

86 TSO Extensions Command Language Reference 

After: 

0050 
0100 
0150 
0151 
0152 
0153 
0154 
0155 
0156 
0157 
0158 
0159 
0160 
0161 
0162 
0163 

0000 
0050 
0100 
0150 
0151 

HHHHHHHH 
IIIIIIIII 
JJJJJJJJJJ 
ZIP 
A 
BB 
eee 
DODD 
EEEEE 
FFFFFF 
GGGGGGG 
HHHHHHHH 
II II II III 
JJJJJJJJJJ 
KKKKKKKKKKK 
LLLLLLLLLLLL 

ZIP 
HHHHHHHH 
IIIIIIEI 
JJJJJJJJJJ 
A 

0152 BB 
0153 eee 
0154 DDDD 
0155 EEEEE 
0156 FFFFFF 
0157 GGGGGGG 
0158 HHHHHHHH 
0159 111111111 
0160 JJJJJJJJJJ 
0161 KKKKKKKKKKK 
0162 LLLLLLLLLLLL 



DELETE Subcommand of EDIT 

Use the DELETE subcommand to remove one or more records from the data set 
being edited. 

Upon completion of the delete operation, the current line pointer points to the 
line that preceded the deleted line. If the first line of the data has been deleted, 
the current line pointer is set to zero. 

(
DELETE I 
DEL 

[
iine-nUmber-l [line-nUmber-2]] 
* [count] 

line-number-l 
specifies the line to be deleted or the first line of a range of lines to be 
deleted. 

line-number-2 

* 

specifies the last line of a range of lines to be deleted. 

specifies the first line to be deleted is the line indicated by the current line 
pointer in the system. If no line is specified, then this is the default. 

count 
specifies the number of lines to be deleted starting at the location indicated 
by the preceding operand. 

Example 1 

Operation: Delete the line being referred to by the current line pointer. 

delete * 
or 

delete 
or 

del * 
or 

del 
or 

* 

Any of the preceding command combinations or abbreviations cause the deletion 
of the line referred to currently. The last instance is actually a use of the 
insert/replace/delete function, not the DELETE subcommand. 

DELETE Subcommand of EDIT 87 



Example 2 

Operation: Delete a particular line from the data set. 

Known: 

The line number: 00004 

delete 4 

Leading zeroes are not required. 

Example 3 

Operation: Delete several consecutive lines from the data set. 

Known: 

The number of the first line: 18 
The number of the last line: 36 

delete 18 36 

Example 4 

Operation: Delete several lines from a data set with no line numbers. The 
current line pointer in the system points to the first line to be deleted. 

Known: 

The number of lines to be deleted: 18 

delete * 18 

Example 5 

Opel'ation: Delete all the lines in a data set. 

Known: 

The data set contains less than 100 lines and is not line-numbered. 

top 
delete * 100 

88 TSO Extensions Command Language Reference 



DOWN Subcommand of EDIT 

Use the DOWN subcommand to change the current line pointer so that it points 
to a line that is closer to the end of the data set. 

[count] 

count 
specifies the number of lines toward the end of the data set that you want to 
move the current line pointer. If you omit this operand, the default is one. 

Example 1 

Operation: Change the pointer so that it points to the next line. 

down 
or 

d 

Example 2 

Operation: Change the pointer so that you can refer to a line that is located 
closer to the end of the data set than the line currently pointed to. 

Known: 

The number of lines from the present position to the new position: 18 

down 18 
or 

d 18 

DOWN Subcommand of EDIT 89 



END Subcommand of EDIT 

Use the END subcommand to terminate the EDIT command. You can use this 
subcommand with or without the optional operands SAVE or NOSA VE. In 
either case, the EDIT command terminates processing. If you have modified your 
data set and have not entered the SAVE subcommand or the SA VE/NOSA VE 
operand on END, the system asks you if you want to save the data set. If you 
want to save the data set, reply SAVE. If you do not want to save the data set, 
reply END. 

END 
[
SAVE 1 
NOSAVE 

There are no defaults. If you do not specify an operand or SAVE after the last 
modification, you are prompted by the system. 

Regardless of the PROMPTjNOPROMPT option, when END (with no operands) 
is found in a CLIST, edit-mode is terminated. (There is no SAVE processing 
done for this portion of the session.) If END (with no operands) is found outside 
a CLIST, you are prompted to enter END or SAVE, regardless of the 
PROMPTjNOPROMPT option. 

SAVE 
specifies that the modified data set is to be saved. 

NOSAVE 
specifies that the modified data set is not to be saved. 

90 TSO Extensions Command Language Reference 



EXEC Subcommand of EDIT 

Use the EXEC subcommand to execute a CLIST. Refer to the EXEC command 
for the description of the syntax and function of the EXEC subcommand. 

EXEC Subcommand of EDIT 91 



FIND Subcommand of EDIT 

Use the FIND subcommand to locate a specified sequence of characters. The 
system begins the search at the line referred to by the current line pointer in the 
system; and continues until the character string is found or the end of the data set 
is reached. 

[string [positiori]] 

If you do not specify any operands, the operands you specified last with FIND 
are used. The search for the specified string begins at the line following the 
current line. If you issue the TOP subcommand, the search for the specified 
string begins with the second line of the data set. Successive use of the FIND 
subcommand without operands allows you to search a data set, line by line. 

string 
specifies the sequence of characters (the character string) that you want to 
locate. This Sequence of characters must be preceded by an extra character 
that serves as a special delimiter. The extra character can be any printable 
character other than a number, apostrophe, semicolon, blank, tab, comma, 
parenthesis, or asterisk. Do not use the extra character in the character 
string or put a delimiter between the extra character and the string of 
characters. 

Instead of using special delimiters to indicate a character string, you can use 
paired single quotes (apostrophes) to accomplish the same function with the 
FIND subcQml1land. The use of single quotes as delimiters for a character 
string is called quoted-string notation. Following are the rules for 
quoted-string notation for the string operand: 

1. Enclose a string within single quotes; for example, 'string character'. 

2. Use two single quotes to represent a single quote within a character 
string; for example, 'pilgrims"s progress'. 

3. Use two single quotes to represent a null string; for example, ". 

position 
specifies the column within each line at which you want the comparison for 
the string to be made. This operand specifies the starting column of the 
field to which the string is compared in each line. If you want to consider a 
string starting in column 6, you must specify the digit 6 for the positional 
operand. For COBOL data sets, the starting column is calculated from the 
end of the six-digit line number. If you want to consider a string starting in 
column 8, you must specify the digit 2 for this operand. When you use this 
operand with the special-delimiter form of notation for string, you must 
separate it from the string operand with the same special delimiter as the 
one preceding the string operand. 

92 TSO Extensions Command Language Reference 



Example 1 

Operation: Locate a sequence of characters in a data set. 

Known: 

The sequence of characters: ELSE GO TO COUNTER 

find xelse go to counter 

Example 2 

Operation: Locate a particular instruction in a data set containing an assembler 
language program. 

Known: 

The sequence of characters: LA 3,BREAK 
The instruction begins in column 10. 

find 'la 3,break I 10 

FIND Subcommand of EDIT 93 



FREE Subcommand of EDIT 

Use the FREE subcommand of EDIT to release (deallocate) previously allocated 
data sets that you no longer need. Refer to the FREE command for a description 
of the syntax and function of the FREE subcommand. 

94 TSO Extensions Command Language Reference 



HELP Subcommand of EDIT 

Use the HELP subcommand to obtain the syntax and function of EDIT 
subcommands. Refer to the HELP command for a description of the syntax and 
function of the HELP subcommand. 

HELP Subcommand of EDIT 95 



INPUT Subcommand of EDIT 

Use the INPUT subcommand to put the system in input mode so that you can 
add or replace data in the data set being edited. 

[;ine-nUmber [increment 1 1 

[
PROMPT 1 
NOPROMPT 

line-number 
specifies the line number and location for the first new line of input. If no 
operands are specified, input data is added to the end of the data set. 

increment 

* 

R 

I 

specifies the amount that you want each succeeding line number to be 
increased. If you omit this operand, the default is the last increment 
specified with the INPUT or RENUM subcommand. If neither of these 
subcommands has been specified with an increment operand, an increment 
of lOis used. 

.) 

specifies the next new line of input either replaces or follows the line pointed 
to by the current line pointer, depending on whether you specify the R or I 
operand. If an increment is specified with this operand, it is ignored. 

specifies that you want to replace existing lines of data and insert new lines 
into the data set. If you fail to specify either a line number or an asterisk, 
this operand is ignored. If the specified line already exists, the old line is 
replaced by the new line. If the specified line is vacant, the new line is 
inserted at that location. If the increment is greater than 1, all lines between 
the replacement lines are deleted. 

specifies that you want to insert new lines into the data set without altering 
existing lines of data. If you fail to specify either a line number or an 
asterisk, this operand is ignored. 

PROMPT 
specifies that you want the system to display either a line number or, if the 
data set is not line numbered, a prompting character before each new input 
line. If you omit this operand, the default is: 

• The value (either PROMPT or NOPROMPT) that was established the 
last time you used input mode. 

• PROMPT, if this is the first use of input mode and the data set has line 
numbers. 

96 TSO Extensions Command Language Reference 



• NOPROMPT, if this is the first use of input mode and the data set does 
not have line numbers. 

NOPROMPT 
specifies that you do not want to be prompted. 

Example 1 

Operation: Add and replace data in an old data set. 

Known: 

The data set is to contain line numbers. 
Prompting is specified. 
The ability to replace lines is specified. 
The first line number: 2 
The increment value for line numbers: 2 

input 2 2 r prompt 

The display at your temlinal will resemble the following with your input in 
lowercase arid the system's response in uppercase. 

edit quer cobol old 
EDIT 
input 2 2 r prompt 
INPUT 
00002 identification division 
00004 program-id.query 
00006 

Example 2 

Operation: Insert data in an existing data set. 

Known: 

The data set contains text for a report. 
The data set does not have line numbers. 
The ability to replace lines is not necessary. 
The first input data is "New research and development activities will," which 
is to be placed at the end of the data set. 
The display at your terminal will resemble the following: 

edit forecast.text old nonum asis 
EDIT 
input 
INPUT 
New research and development activities will 

INPUT Subcommand of EDIT 97 



INSERT Subcommand of EDIT 

Use the INSERT subcommand to insert one or more new lines of data into the 
data set. Input data is inserted follq~ing the location pointed to by the current 
line pointer in the system. If no operands are specified, input data is placed in the 
data set line following the current line. You can change the position pointed to 
by the line pointer by using the BOTTOM, DOWN, TOP, UP, and FIND 
subcommands. 

[insert-data] 

insert-data 
specifies the complete sequence of characters that you want to insert into the 
data set at the location indicated by the current line pointer. When the first 
character of the inserted data is a tab, no delimiter is required between the 
command and the data. Only a single delimiter is recognized by the system. 
If you enter more than one delimiter, all except the first are considered to be 
input data. 

Example 1 

Operation: Insert a single line into a data set. 

Known: 

The line to be inserted is: 

UCBLFG DS .ALl CONTROL FLAGS 

The data set is not line-numbered. 
The location for the insertion follows the 71st line in the data set. 
The current line pointer points to the 74th line in the data set. 
You are operating in edit mode. 

Before entering the INSERT subcommand, the current line pointer must be 
moved up 3 lines to the location where the new data is inserted. 

up 3 

The INSERT subcommand is now entered. 

INSERT UCBFLG DS ALl CONTROL FLAGS 

The display at your terminal shows the following: 

up 3 
insert ucbflg ds all control flags 

98 TSO Extensions Command Language Reference 



Example 2 

OperatiOlI: Insert several lines into a data set. 

Known: 

The data set contains line numbers. 
The inserted lines are to follow line number 00280. 
The current line pointer points to line number 00040. 
You are operating in EDIT mode. 
The lines to be inserted are: 

l.W. HOUSE 13-244831 24.73 

T.N. HOWARD 24-782095 3.05 

B.H. IRELAND 40-007830 104.56 

Before entering the INSERT subcommand, the current line pointer must be 
moved down 24 lines to the location where the new data is inserted. 

down 24 

The INSERT subcommand is now entered: 

insert 

The system responds with: 

INPUT 

The lines to be inserted are now entered. 

The display at your terminal shows the following: 

down 24 
insert 
INPUT 
00281 j.w.house 13-244831 24.73 
00282 t.n.howard 24-782095 3.05 
00283 b.h.ireland 40-007830 104.56 

New line numbers are generated in sequence beginning with the number one 
greater than the one pointed to by the current line pointer. When no line can be 
inserted, you are notified. No re-sequencing is done by the system. 

INSERT Subcommand of EDIT 99 



Insert/Replace/Delete Function of EDIT 

The insert/replace/delete function lets you insert, replace, or delete a line of data 
without specifying a subcommand name. To insert or replace a line, indicate the 
location and the new data. To delete a line, indicate the location. You can 
indicate the location by specifying a line number or an asterisk. The asterisk 
means that the location to be used is pointed to by the line pointer within the 
system. You can change the line pointer by using the UP, DOWN, TOP, 
BOTTOM, and FIND subcommands so that the proper line is referred to. 

[ string] 

line number 

* 

specifies the number of the line you want to insert, replace, or delete. 

specifies you want to replace or delete the line at the location pointed to by 
the line pointer in the system. You can use the TOP, BOTTOM, UP, 
DOWN, and FIND subcommands to change the line pointer without 
modifying the data set you are editing. 

string 
specifies the sequence of characters you want to either insert into the data 
set or to replace an existing line. If this operand is omitted and a line exists 
at the specified location, the existing line is deleted. When the first 
character of string is a tab, no delimiter is required between this operand 
and the preceding operand. Only a single delimiter is recognized by the 
system. If you enter more than one delimiter, all except the first are 
considered to be input data. 

How the System Interprets the Operands 

When you specify only a line number or an asterisk, the system deletes a line of 
data. When you specify a line number or asterisk followed by a sequence of 
characters, the system replaces the existing line with the specified sequence of 
characters or, if there is no existing data at the location, the system inserts the 
sequence of characters into the data set at the specified location. 

Example 1 

Operation: Insert a line into a data set. 

Known: 

The number to be assigned to the new line: 62 
The data: (OPEN INPUT PARTS-FILE) 

62 open input parts-file 

100 TSO Extensions Command Language Reference 



Example 2 

Operation: Replace an existing line in a data set. 

Known: 

The number of the line that is to be replaced: 287 
The replacement data: GO TO HOURCOUNT 

287 go to hourcount; 

Example 3 

Operation: Replace an existing line in a data set that does not have line numbers. 

Known: 

The line pointer in the system points to the line that is to be replaced. 
The replacement data is: 58 PRINT USING 120,S 

* 58 print using 120,s 

Example 4 

Operation: Delete an entire line. 

Known: 

The number of the line: 98 
The current line pointer in the system points to line 98. 

98 
or 
* 

Insert/Replace/Delete Function of EDIT 101 



LIST Subcommand of EDIT 

Use the LIST subcommand to display one or more lines of your data set at your 
terminal. 

If you do not specify any operand with LIST, the entire data set is displayed. 

[
line-nUmber-l [line-nUmber-2]] 
* [count] 

[~~~M ] 
line-number-l 

specifies the number of the line that you want to be displayed at your 
terminal. 

line-number-2 

* 

count 

specifies the number of the last line that you want displayed. When you 
specify this operand, all the lines from line-number-l through line-number·2 
are displayed. 

specifies the line referred to by the current line pointer is to be displayed at 
your terminal. You can change the line pointer by using the UP, DOWN, 
TOP, BOTTOM, and FIND subcommands without modifying the data set 
you are editing. 

If the current line pointer is at zero (for example, as a result of a TOP 
command), and line zero is not already in the data set, the current line 
pointer moves to the first existing line. 

specifies the number of lines that you want displayed, starting at the 
location referred to by the line pointer. 

NUM 
specifies line numbers are to be displayed with the text. If both NUM and 
SNUM are omitted, NUM is the default. If your data set does not have 
line numbers, this operand is ignored by the system. 

SNUM 
specifies line numbers are to be suppressed, that is, not displayed at the 
terminal. 

102 TSO Extensions Command Language Reference 



Example 1 

Operation: List an entire data set. 

list 

Example 2 

Operation: List part of a data set that has line numbers. 

Known: 

The line number of the first line to be displayed: 27 
The line number of the last line to be displayed: 44 
Line numbers are to be included in the list. 

list 27 44 

Example 3 

Operation: List part of a data set that does not have line numbers. 

Known: 

The line pointer in the system points to the first line to be listt:d. 
The section to be listed consists of 17 lines. 

list * 17 

LIST Subcommand of EDIT 103 



MOVE Subcommand of EDIT 

Use the J\.10VE subcommand of EDIT to move one or more records that exist in 
the data set being edited. The move operation moves data from a source location 
to a target location within the same data set and deletes the source data. Existing 
lines in the target area are shifted toward the end of the data set as required to 
make room for the incoming data. No lines are lost in the shift. 

The target line cannot be within the source area, with the exception that the target 
line (the first line of the target area) can overlap the last' line of the source area. 

Upon completion of the move operation, the current line pointer points to the last 
moved-to line, not to the last line shifted to make room in the target area. 

If you do not specify any operand with MOVE, the data set is ignored. 

If you cause an attention interruption during the move operation, the data set 
might be partially changed. As a check, list the affected part of the data set 
before continuing. 

linel 

line2 

line3 

1 

linel 

(' str!ng ' I 
[line2 J [li~e3] 

[co1nt] [line4] 
[INCR(lineS)]] 

[INCR(lines)] 

specifies the first line or the lower limit of the range to be moved. If the 
specified line number does not exist in this data set, the range begins at the 
next higher line number. 

specifies the last line or the upper limit of the range to be moved. If the 
specified line number does not exist in this data set, the range ends with the 
highest line number that is less than line2. If line2 is not entered, the value 
defaults to the value of linel; that is, the source becomes one line. Do not 
enter an asterisk for line2. 

If MOVE is followed by two line-number operands, the system assumes 
them to represent linel and line3, and defaults line2 to the value of line!. 

specifies the target line number; that is, the line at which the moved-to data 
area will start. If the line3 value corresponds to an existing line, the target 
line is changed to line3 + INCR(lines) and either becomes a new line or 
displaces an existing line at that location. Once the move operation begins, 
existing lines encountered in the target area are renumbered to make room 
for the incoming data. The increment for renumbered lines is one (1). 
Specifying zero (0) for line3 puts the moved data at the top of the data set, 
only if line 0 is empty. If line 0 has data, enter TOP followed by MOVE 
with line3 set to *. Note that line3 defaults to *. 

104 TSO Extensions Command Language Reference 



* 

The value of line3 should not fall in the range from line1 to line2; that is, 
the target line must not be in the range being moved. Exception: Line3 can 
be equal to line2. 

represents the value of the current line pointer. 

INCR(lines) 
specifies the line number increment to be used for this move operation. The 
default is the value in effect for this data before the move operation. When 
the move operation is complete, the increment reverts to the value in effect 
before MOVE was issued. Range: 1-8 decimal digits, but not zero. 

The increment for any renumbered line is one (1). 

'string' 

count 

line4 

specifies a string of alphameric characters with a maximum length equal to 
or less than the logical record length of the data set being edited. When a 
character string is specified, a search starting at the current line is done for 
the line containing the string. When found, that line is the start of the 
range to be moved for either numbered or unnumbered data sets. 

specifies the total number of lines (the range) to be moved. The default for 
count is one (1). Enter 1-8 decimal digits, but not zero (0) or asterisk (*). 

applies to both numbered and unnumbered data sets. For unnumbered data 
sets, line4 specifies the target line (the line at which the moved-to data area 
starts) as a relative line number (the nth line in the data set). For numbered 
data sets, line4 is specified the same as line3. Specifying zero (0) for line4 
puts the moved data at the top of the data set only if line 0 is empty. If line 
o has data, enter TOP followed by MOVE with line4 set to *. Note that 
line4 defaults to *. 

]\IOVF Subcommand of EDIT 105 



Messages 

The MOVE subcommand of EDIT causes error messages to be displayed at the 
terminal under specific conditions. To show these conditions, the following data 
set is assumed: 

0010 A 
0020 BB 
0030 CCC 
0040 DDDD 
0050 EEEEE 
0060 FFFFFF 
0070 GGGGGGG 
0080 HHHHHHHH 
0090 111111111 
0100 JJJJJJJJJJ 
0110 KKKKKKKKKKK 
0120 LLLLLLLLLLLL 

1. Entering 

move * * * 

causes: 

IKJ525791 INVALID OPERANDS * INVALID FOR COUNT OR 
END OF RANGE SPECIFICATION 

2. Entering 

move 100000 * 

causes: 

IKJ525791 INVALID OPERANDS FIRST LINE TO BE 
MOVED/COPIED DOES NOT EXIST 

3. Entering 

move 'xyz' * 

causes: 

IKJ525791 INVALID OPERANDS QUOTED STRING NOT FOUND 

4. Entering 

move 20 to 10 * 

causes: 

IKJ525791 INVALID OPERANDS END OF RANGE MUST BE 
GREATER THAN OR EQUAL TO THE BEGINNING OF THE 
RANGE 

106 TSO Extensions Command Language Reference 



5. Entering 

move 20 '*' 100 

causes: 

IKJ52579I INVALID OPERANDS STRING INVALID FOR END OF 
RANGE SPECIFICATION 

6. Entering 

move * a 100 

causes: 

IKJ52579I INVALID OPERANDS a INVALID FOR COUNT 

7. Entering 

move 10 40 20 

causes: 

IKJ52579I INVALID OPERANDS TRYING TO MOVE/COPY 
INTO LINE RANGE 

In the following examples, CLP refers to the current line pointer. 

Example 1 

Operation: Move the current line right after itself in a line-numbered data set. 

Known: Data set contains lines 10 through 120; current line pointer is at 50; 
EDIT provides an increment of 10. 

Before: Enter: After: 

0010 A move 50 50 50 0010 A 
0020 BB 0020 BB 
0030 eee or 0030 eee 
0040 DDDD 0040 DDDD 
0050 EEEEE move 50 50 eLP 0060 FFFFFF 
0060 FFFFFF 0061 EEEEE 
0070 GGGGGGG or 0070 GGGGGGG 
0080 HHHHHHHH 0080 HHHHHHHH 
0090 IIIIIIIII move 50 0090 IIIIIIIII 

0100 JJJJJJJJJJ 0100 JJJJJJJJJJ 
0110 KKKKKKKKKKK or 0110 KKKKKKKKKKK 
0120 LLLLLLLLLLLL 0120 LLLLLLLLLLLL 

move 'ee' 

Note: MOVE is ignored without operands. 

Example 2 

Operation: Move the current line right after itself in an unnumbered data set. 

Known: Data set contains 12 lines of sequential alphabetic characters. Current 
line pointer is at the seventh line. 

MOVE Subcommand of EDIT 107 



Before: Enter: After: 

A move * 1 * A 
BB BB 
CCC or CCC 
DDDD DDDD 
EEEEE move * 1 EEEEE 
FFFFFF FFFFFF 
GGGGGGG or CLP GGGGGGG 
HHHHHHHH HHHHHHHH 
IIIIIIIII move * IIIIIIIII 
JJJJJJJJJJ JJJJJJJJJJ 
KKKKKKKKKKK or KKKKKKKKKKK 
LLLLLLLLLLLL LLLLLLLLLLLL 

move 'gg' 

Note: The effect of the operation is an unchanged data set. 

Example 3 

Operation: Illustrate an attempt to move a line to a line before it. 

Known: Data set contains lines 10 through 120; source line is 60; target line is 50; 
EDIT supplies an increment of 10. 

Before: Enter: After: 

0010 A move 60 50 0010 A 
0020 BB 0020 BB 
0030 CCC 0030 CCC 
0040 DDDD 0040 DDDD 
0050 EEEEE 0050 FFFFFF 
0060 FFFFFF CLP 0060 EEEEE 
0070 GGGGGGG 0070 GGGGGGG 
0080 HHHHHHHH 0080 HHHHHHHH 
0090 II II III II 0090 IIIIIIIII 
0100 JJJJJJJJJJ 0100 JJJJJJJJJJ 
0110 KKKKKKKKKKK 0110 KKKKKKKKKKK 
0120 LLLLLLLLLLLL 0120 LLLLLLLLLLLL 

Example 4 

Operation: Find the line containing a specific word and move it to the bottom of 
the data set. 

Known: Data set contains nine lines of text; word to be found is men; data set is 
unnumbered. 

Before: 

NOW IS 
THE TIME 
FOR ALL 
GOOD MEN 
TO COME 
TO THE 
AID OF 
THEIR 
COUNTRY 

Enter: 

top 
move 'men' 99999999 

108 TSO Extensions Command Language Reference 

CLP 

After: 

NOW IS 
THE TIME 
FOR ALL 
TO COME 
TO THE 
AID OF 
THEIR 
COUNTRY 
GOOD MEN 



Example 5 

Operation: Move lines 10, 20, and 30 into a target area starting at line 100, using 
an increment of 5. 

Known: Data set contains line 10 through 120; EDIT provides increment of 10. 

Before: Enter: After: 

0010 A move 10 30 100 iner(5) 0040 DDDD 
0020 BB 0050 EEEEE 
0030 CCC or 0060 FFFFFF 
0040 DDDD 0070 GGGGGGG 
0050 EEEEE move 9 31 100 iner(5) 0080 HHHHHHHH 
0060 FFFFFF 0090 IIIIIIIII 

0070 GGGGGGG or 0100 JJJJJJJJJJ 
0080 HHHHHHHH 0105 A 
0090 IIIIIIIII move 1 39 100 iner(5) 0110 BB 
0100 JJJJJJJJJJ CLP 0115 CCC 
0110 KKKKKKKKKKK 0116 KKKKKKKKKKK 
0120 LLLLLLLLLLLL 0120 LLLLLLLLLLLL 

Example 6 

Operation: Move four lines from a source area to a target area that overlaps the 
last line of the source, using the default increment. 

Known: Data set contains lines 10 through 120; source lines are 20 through 50; 
target area starts at line 50; EDIT provides an increment of 10. 

Before: Enter: After: 

0010 A move 20 50 50 0010 A 
0020 BB 0060 BB 
0030 CCC 0070 CCC 
0040 DDDD 0080 DDDD 
0050 EEEEE CLP 0090 EEEEE 
0060 FFFFFF 0091 FFFFFF 
0070 GGGGGGG 0092 GGGGGGG 
0080 HHHHHHHH 0093 HHHHHHHH 
0090 IIIIIIIII 0094 IIIIIIIII 

0100 JJJJJJJJJJ 0100 JJJJJJJJJJ 
0110 KKKKKKKKKKK 0110 KKKKKKKKKKK 
0120 LLLLLLLLLLLL 0120 LLLLLLLLLLLL 

lYI0VE Subcommand of EDIT 109 



Example 7 

Operation: Move five lines into a target area that starts before but overlaps into 
the source area. 

Known: Data set contains lines 10 through 120; source range is line 70 through 
line 110; target location is line 50; increment to be 10. 

Before: Enter: After: 

0010 A move 70 110 50 incr(10) 0010 A 
0020 BB 0020 BB 
0030 ece 0030 eee 
0040 DDDD 0040 DDDD 
0050 EEEEE 0050 EEEEE 
0060 FFFFFF 0060 GGGGGG 
0070 GGGGGGG 0070 HHHHHHH 
0080 HHHHHHHH 0080 IIIIIIII 

0090 IIIIIIIII 0090 JJJJJJJJJ 
0100 JJJJJJJJJJ eLP 0100 KKKKKKKKKK 
0110 KKKKKKKKKKK 0101 FFFFFF 
0120 LLLLLLLLLLLL 0120 LLLLLLLLLLL 

Example 8 

Operation: Move three lines to the top of the data set at line O. 

Known: Data set contains lines 10 through 120; line 0 doesn't exist; source lines 
are 80, 90, and 100; target area starts at line O. 

Before: Enter: After: 

0010 A top 0000 HHHHHHHH 
0020 BB move 80 100 * incr(50) 0050 IIIIIIIII 

0030 eec eLP 0100 JJJJJJJJJJ 
0040 DDDD or 0101 A 
0050 EEEEE 0102 BB 
0060 FFFFFF move 80 100 0 incr(50) 0103 eee 
0070 GGGGGGG 0104 DDDD 
0080 HHHHHHHH 0105 EEEEE 
0090 IIIIIIIII 0106 FFFFFF 
0100 JJJJJJJJJJ 0107 GGGGGGG 
0110 KKKKKKKKKKK 0110 KKKKKKKKKKK 
0120 LLLLLLLLLLLL 0120 LLLLLLLLLLL1. 

110 TSO Extensions Command Language Reference 



Example 9 

Operation: Move three lines to the top of the data set at line 0, using an 
increment of 50. 

Known: Data set contains lines 0 through 120; line 0 contains data; source lines 
are 80, 90, and 100; target area starts at line O. 

Before: 

0000 ZIP 
0010 A 
0020 BB 
0030 CCC 
0040 DODD 
0050 EEEEE 
006C FFFFFF 
0070 GGGGGGG 
0080 HHHHHHHH 
0090 IIIIIIIII 
0100 JJJJJJJJJJ 
0110 KKKKKKKKKKK 
0120 LLLLLLLLLLLL 

Enter: 

top 
move 80 100 * incr(50) 

CLP 
The attempt to move into 
line 0 gets the target data 
to the top of the data set 
but shifts the target line 
by the increment value. 

Note: An entry of 
move 80 100 0 incr(50) 
produces the results 
shown at right. The 
target data is inserted 
between line 0 and the 
remainder of the data 
set. 

CLP 

After: 

0050 HHHHHHHH 
0100 IIIIIIIII 
0150 JJJJJJJJJJ 
0151 ZIP 
0152 A 
0153 BB 
0154 CCC 
0155 DODD 
0156 EEEEE 
0157 FFFFFF 
0158 GGGGGGG 
0159 KKKKKKKKKKK 
0160 LLLLLLLLLLLL 

0000 ZIP 
0050 HHHHHHHH 
0100 IIIIIIIII 
0150 JJJJJJJJJJ 
0151 A 
0152 BB 
0153 CCC 
0154 DODD 
0155 EEEEE 
0156 FFFFFF 
0157 GGGGGGG 
0158 KKKKKKKKKKK 
0159 LLLLLLLLLLLL 

MOVE Subcommand of EDIT 111 



PROFILE Subcommand of EDIT 

Use the PROFILE subcommand to change the characteristics of your user profile. 
Refer to PROFILE command for a discussion of the syntax and function of 
PROFILE subcommand. 

] 12 TSO Extensions Command Language Reference 



RENUlVI Subcommand of EDIT 

!RENUM! 
REN 

Use the RENUM subcommand to: 

o Assign a line number to each record of a data set that does not have a line 
number. 

o Renumber each record in a data set that has line numbers. 

If the data set being edited contains fixed-length records, new line numbers are 
placed in the last eight character positions. There are three exceptions to this 
general rule: 

o Data set type COBOL - first six positions 

o Data set type VSBASIC - first five positions 

o Data set type ASM and NUM operand specified on EDIT command -
positions indicated in NUM operand subfield. 

If fixed-length record data sets are being numbered for the first time, any data in 
the positions indicated above is overlaid. 

If variable-length records without sequence numbers are being edited, the records 
are lengthened so that an eight-digit sequence field (five-digits if VSBASIC) is 
prefixed to each record. You are notified if any records have been truncated in 
the process. Records are truncated when the data length plus the sequence length 
exceeds the maximum record length of the data set being edited. 

In all cases the specified (or default) increment value becomes the line increment 
for the data set. 

[new-line-nurnber [increment [old-line-nurnber [end-line-nurnbe r]]]] 

new-line-number 
specifies the new line number to be assigned to the first line renumbered. If 
this operand is omitted, the first line number is 10. 

increment 
specifies the amount by which each succeeding line number is to be 
incremented. The default value is 10. You cannot use this operand unless 
you specify a new line number. 

old-line-number 
specifies the location within the data set where renumbering begins. If this 
operand is omitted, renumbering starts at the beginning of the data set. 
You cannot use this operand unless you specify a value for the increment 
operand or when you are initially numbering a NONUM data set. 

RENUM Subcommand of EDIT 113 



end-line-number 
specifies the line number at which renumbering is to end. If this operand is 
omitted, renumbering continues to the end of the data set. You cannot use 
this operand without specifying all the other operands. 

Example 1 

Operation: Renumber an entire data set using the default values for each 
operand. 

renum 

Example 2 

Operation: Renumber part of a data set with an increment of 1. 

Known: 

The old line number: 17 
The new line number: 21 
The increment: 1 

ren 21 1 17 

Example 3 

Operation: Renumber part of a data set from which lines have been deleted. 

Known: 

Before deletion of the lines, the data set contained lines, 10, 20, 30, 40, and 
50. 
Lines 20 and 30 were deleted. 
Lines 40 and 50 are to be renumbered with an increment of 10. 

ren 20 10 40 

Note: The lowest acceptable value for a new line number in this example is 11. 

Example 4 

Operation: Renumber a range of lines so that new lines may be inserted. 

Known: 

Before renumbering, the data set lines are numbered 10, 20, 23, 26, 29, 30, 40, 
and 50. 
Two lines are to be inserted after line 29. 
Lines 23-29 are to be renumbered with an increment of 2. 
The first new number to be assigned is 22. 

ren 22 2 23 29 

114 TSO Extensions Command Language Reference 



RUN Subcommand of EDIT 

Use the RUN subcommand to compile, load, and execute the source statements in 
the data set that you are editing. The RUN subcommand is designed specifically 
for use with certain program products. The RUN subcommand selects and 
invokes the particular program product needed to process your source statements. 

Any data sets required by your problem program can be allocated before you 
enter EDIT mode or can be allocated using the ALLOCATE subcommand. 

If you want to enter a value for parameters, you should enter this prior to any of 
the other keyword operands. 

'parameters' 

[ 'parameters' ] 

[
TEST 1 
NOTEST 

[~~~~ 1 

[
LPREC 1 
SPREC 

[
CHECK 1 
OPT 

[LIB(data-set-list)] 

[
STORE 1 
NOS TORE 

[~gGO 1 
[SIZE (value) ] 

[
PAUSE 1 
NOPAUSE 

specifies a string of up to 100 characters that is passed to the program that 
is to be executed. You can specify this operand only for programs that 
accept parameters. 

TEST 
specifies testing is to be performed during execution. This operand is valid 
for the VSBASIC program product only. 

NOTEST 
specifies no testing is to be done. If you omit both TEST and NOTEST, 
the default value is NOTEST. 

RUN Subcommand of EDIT 115 



LMSG 
specifies that you want to receive the longer form of a diagnostic message. 
This operand is valid for GOFORT statements only. 

SMSG 
specifies that you want to receive the shorter form of a diagnostic message, 
if there is one. SMSG is the default. 

LPREC 
specifies long precision arithmetic calculations are to be used. This operand 
is valid for VSBASIC statements only. 

SPREC 
specifies short precision arithmetic calculations are to be used. SPREC is 
the default. 

CHECK 

OPT 

specifies the PLjI Checkout compiler. This operand is valid for the PLjI 
program product only. If you omit this operand, the OPT operand is the 
default value for data sets having the PLI descriptive qualifier. 

specifies the PLjI Optimizing compiler. This operand is valid for the PLjI 
program product only. If both CHECK and OPT are omitted, OPT is the 
default value for data sets having the PLI descriptive qualifier. 

LIB(data-set-list) 
specifies the library or libraries that contain subroutines needed by the 
progralll you are running. These libraries are concatenated to the default 
system libraries and passed to the loader for resolution of external 
references. This operand is valid only for the following data set types: 
ASM, COBOL, FORTGI, and PLI(Optimizer). 

STORE 
specifies a permanent OBJ data set is to be created. The dsname of the OBJ 
data set is based on the data set name entered on the EDIT command. This 
operand is valid only for VSBASIC statements. 

NOSTORE 

GO 

specifies a permanent OBJ data set is not to be created. This operand is 
valid only for VSBASIC statements. NOSTORE is the default. 

specifies the compiled program is to be executed. This operand is valid only 
for VSBASIC statements. GO is the default. 

NOGO 
specifies the compiled program is not to be executed. This operand is valid 
only for VSBASIC statements. 

116 TSO Extensions Command Language Reference 



SIZE(value) 
specifies the size (1-999) of the area for VSBASIC. 

PAUSE 
specifies that you are given the chance to add or change certain compiler 
options before proceeding to the next chain program. This operand is valid 
only for VSBASIC statements. 

NOPAUSE 
specifies that you are not to be given the chance to add or change certain 
compiler options before proceeding to the next chain program. This 
operand is valid only for VSBASIC statements. NOPAUSE is the default. 

Example 1 

Operatioll: Execute an assembler language program contained in the data set 
referred to by the ED IT command. 

Known: 

The parameters to be passed to the program are: '1024,PAYROLL' 

run '1024,payroll' 

Example 2 

Operatioll: Run a FORTRAN IV (GI) program that calls an assembler language 
output program to maintain bit patterns. 

Known: 

The assembler language subroutine in load module form resides in a library 
called USERID.MYLIB.LOAD. 

run lib(mylib.load) 

RUN Subcommand of EDIT 117 



SAVE Subcommand of EDIT 

Use the SAVE subcommand to have your data set retained as a permanent data 
set. If you use SAVE without an operand, the updated version of your data set 
replaces the original version. When you specify a new data set name as an 
operand, both the original version and the updated version of the data set are 
available for further use. 

When you edit a data set with a variable or variable-blocked record format, each 
record (line) is padded with blanks to the end of the record. When you save the 
data set, the blanks are eliminated and the length adjusted accordingly. 

* 

[REUSE] 

l
'RENug 

UNNUM 

l 
l (neH--line-nurnbel." lj' [incr[old-line-nurnber 
[end-line-nurnber]]])] 

specifies the edited version of your data set is to replace the original version. 
If there are no operands entered on the subcommand, the * is the default. 

dsname 
specifies a data set name assigned to your edited data set. The new name 
might be different from the current name. If this operand or an asterisk is 
omitted, the name entered with the EDIT command is used. 

If you specify the name of an existing data set or a member of a partitioned 
data set, that data set or member is replaced by the edited data set. (Before 
replacement occurs, you are given the option of specifying a new data set 
name or member name.) 

If you do not specify the name of an existing data set or partitioned data set 
member, a new data set (the edited data set) is created with the name you 
specified. If you specified a member name for a sequentially organized data 
set, no replacement of the data set takes place. If you do not specify a 
member name for an existing partitioned data set, the edited data set is 
assigned a member name of TEMPNAME. 

REUSE 
specifies the data set specified in the DSNAME operand is to be reused if it 
already exists. You are not prompted for it. 

118 TSO Extensions Command Language Reference 



The following operands cannot be included unless a data set name or an * is 
specified. 

RENUM 
specifies the data set is to be renumbered before it is saved. 

new-line-number 

iner 

specifies the first line number to be assigned to the data set. If this 
operand is omitted, the first line number is 10. 

specifies the amount by which each succeeding line number is to be 
incremented. The default is 10. This operand cannot be included 
unless the new-line-number is specified. 

old-line-number 
specifies the line location within the data set where the renumber 
process begins. If this operand is omitted, renumbering starts at the 
beginning of the data set. The old-line-number must be equal to or 
less than the new-line-number. If you specify this operand, then you 
must also specify INCR. 

end-line-number 

UNNUM 

specifies the line location within the data set where renumbering is to 
end. If this operand is omitted, renumbering stops at the end of the 
data set. The end-line-number must be greater than the 
old-line-number. This operand cannot be included unless the 
old-line-number is specified. 

specifies the data set is to be unnumbered before it is saved. 

If the data set being edited originally contained control characters (ASCII or 
machine), and you enter SAVE without operands, the following actions apply. 

Sequential Data Set 
You are warned that the data set is saved without control characters, that is, 
the record format is changed. Then you are prompted to enter another data 
set name for SAVE or a null line to reuse the EDIT data set. 

Partitioned Data Set 
Saving into the EDIT data set with a control character attribute is not 
allowed when it is partitioned. You must save into another data set by 
specifying a data set name on a subsequent SAVE subcommand entry. 

SAVE Subcommand of EDIT 119 



Example 1 

Operation: Save the data set that has just been edited by the EDIT command. 

Known: 

The system is in edit mode. The user-supplied name that you want to give 
the data set is INDEX. 

save index 

Example 2 

Operation: Save the data set that has just been edited, renumbering it first. 

Known: 

new-line-number 100 
increment(INCR) 50 

save * renum(lOO 50) 

120 TSO Extensions Command Language Reference 



SCAN Subcommand of EDIT 

Use the SCAN subcommand to request syntax checking services for statements 
that are processed by the FORTRAN(H) compiler. You can have each statement 
checked as you enter it in input mode, or any or all existing statements checked. 
You must explicitly request a check of the syntax of statements you are adding, 
replacing, or modifying, using the CHANGE subcommand, the INSERT 
subcommand with the insert data operand, or the insert/replace/delete function. 

[
line-nUmber-l [line-nUmber-2]] 
* [count] 

[g~F ] 

line-number-l 
specifies the number of a line to be checked for proper syntax. 

line-number-2 

* 

count 

ON 

OFF 

specifies an lines between line-number-l and line-number-2 are to be 
checked for proper syntax. 

specifies the line at the location indicated by the line pointer in the system is 
to be checked for proper syntax. The line pointer can be changed by the 
TOP, BOTTOM, UP, DOWN, and FIND subcommands. 

specifies the number of lines, beginning with the current line, that you want 
checked for proper syntax. 

specifies each line is to be checked for proper syntax as it is entered in input 
mode. 

specifies each line is not to be check~d as it is entered in input mode. 

If no operands are specified, all existing statements are checked for proper syntax. 

Example 1 

Operation: Have each line of a FORTRAN program checked for proper syntax 
as it is entered. 

scan on 

Example 2 

Operation: Have all the statements in a data set checked for proper syntax. 

scan 

SCAN Subcommand of EDIT 121 



Example 3 

Operation: Have several statements checked for proper syntax. 

Known: 

The number of the first line to be checked: 62 
The number of the last line to be checked: 69 

scan 62 69 

Example 4 

Operation: Check several statements for proper syntax. 

Known: 

The line pointer points to the first line to be checked. 
The number of lines to be checked: 7 

scan * 7 

122 TSO Extensions Command Language Reference 



SEND Subcommand of EDIT 

Use the SEND subcommand to send a message to another terminal user or to the 
system operator. Refer to the SEND command for a description of the syntax 
and function of the SEND subcommand. 

SEND Subcommand of EDIT 123 



SUBMIT Subcommand of EDIT 

Use the SUBMIT subcommand of EDIT to submit one or more batch jobs for 
processing. Each job submitted must reside in either a sequential data set, a 
direct-access data set, or in a member of a partitioned data set. Submitted data 
sets must be fixed blocked, 80 byte records. Using the EDIT command to create 
a CNTL data set provides the correct format. 

Any of these data sets can contain part of a job, one job, or more than one job 
that can be executed by a single entry of SUBMIT. Each job must comprise an 
input job stream (JCL plus data). If the characters in these data sets are lower 
case, do not submit data sets with descriptive qualifiers TEXT or PLI. 

Job cards are optional. The generated jobname is your user ID plus an 
identifying character. SUBMIT prompts you for the character and inserts the job 
accounting information from the user's LOGON command on any generated job 
card. The system or installation default MSGCLASS and CLASS are used fot 
submitted jobs unless MSGCLASS and CLASS are specified on the job card(s) 
being submitted. 

You must be authorized by installation management to use SUBMIT. 

[
SUBMIT] 
SUB 

[~g~gLD ] 
[
JOBCHAR(Characters)] 
NOJOBCHAR 

[
PASSWORD ] 
NOPASSWORD 

[
USER (USerid)] 
NOUSER 

[
NOTIFY ] 
NONOTIFY 

( data-set-list) 

* 

specifies one or more data set names or names of members of partitioned 
data sets that define an input stream (JCL plus data). If you specify more 
than one data set name, enclose them in parentheses. 

An asterisk (*) specifies the data set being edited defines the input stream to 
be submitted. Only the current data set is selected as the input stream. If 
no operands are entered on the subcommand, the * is the default. 

124 TSO Extensions Command Language Reference 



HOLD 
specifies SUBMIT has job output held for use with the OUTPUT command 
by defaulting to the held MSGCLASS supplied by the installation manager 
for the user. If SYSOUT = * or HOLD = YES is specified on the DD 
statement, then output directed to DD statements is held. 

NOHOLD 
specifies the job output is not to be held. If neither HOLD nor NOHOLD 
is specified, then the default is NOHOLD. 

JOBCHAR( characters) 
specifies characters to be appended to the job name on every JOB statement 
in the data set being submitted. If you plan to use the STATUS command 
and your job name is your user ID, use one character. 

NOJOBCHAR 
specifies SUBMIT prompts for job name characters whenever the job name 
is the user ID. If prompting is not possible, the job name character defaults 
to the letter X. If neither JOBCHAR or NOJOBCHAR is specified, then 
the default is NOJOBCHAR. 

PASSWORD 
indicates a PASSWORD operand is to be inserted on the generated JOB 
statement by SUBMIT if the RACF program product is installed in your 
system. SUBMIT prompts you to enter the password value (in print inhibit 
mode, if the terminal supports the feature). This operand is not required if 
a generated JOB statement or the RACF program product is not installed in 
your installation. If the RACF program product is installed in your system, 
then PASSWORD is the default. The password used is: 

o The password (if executing in the foreground) entered on the LOGON 
command initiating the foreground session. The current password is 
used for RACF-defined users. If you have updated your password 
using the LOGON command, you must enter the PASSWORD operand 
with the new password on the SUBMIT command. 

G) The password on the LOGON command (if executing in the 
background) in the data set being submitted. If a LOGON command is 
not in the data set, the USER and PASSWORD operands are not to be 
included on the generated JOB statement. 

NOPASSWORD 
specifies PASSWORD and USER operands are not included on the 
generated JOB statement. If the RACF program product is not installed in 
your system, NOPASSWORD is the default. 

USER(userid) 
specifies a USER operand is to be inserted on the generated JOB statement, 
if the RACF program product is installed in your system. The user ID 
specified is also used as the job name for the generated JOB statement and 
for job name or user ID comparison for NOJOBCHAR processing (see 
NOJOBCHAR operand description). 

SUBMIT Subcommand of EDIT 125 



If neither USER or NOUSER is entered and if the RACF program product 
is installed in your system, then USER is the default. The default user ID 
value used is determined by the following rules. The rules are ordered. If 
the first rule is met, then the user ID is used. 

1. The user ID specified on a LOGON command in the data set being 
submitted. 

2. The user ID specified on the LOGON command (if executing in the 
foreground) initiating the foreground session; the user ID specified on 
the USER operand (if executing in the background - RACF defined 
users only) on the JOB statement initiating the background session. 

3. The default user ID SUBMITJB is used. 

NOUSER 
specifies generated JOB statements do not include USER and PASSWORD 
operands. If USER is not specified and the RACF program product is not 
installed on your system, then NOUSER is the default. 

NOTIFY 
specifies you are to be notified when your job terminates in the background 
if a JOB statement has not been provided. If you do not want to receive 
messages, the message is placed in the broadcast data set. You must then 
enter LISTBC to receive the message. If a JOB statement is generated, then 
NOTIFY is the default. 

When you supply your own JOB statement, use the NOTIFY = userid 
operand on the JOB statement if you want to be notified when the job 
terminates. SUBMIT ignores the NOTIFY operand unless it is generating a 
JOB statement. 

NO NOTIFY 
specifies a termination message is not to be issued or placed in the broadcast 
data set. The NONOTIFY operand is only recognized when a JOB 
statement has not been provided with the job that you are processing. 

If any of the above types of data sets containing two or more jobs is submitted 
for processing, certain conditions apply: 

• The SUBMIT processor builds a job card for the first job in the first data set, 
if none is supplied, but does not build job cards for any other jobs in the data 
set(s). 

• If the SUBMIT processor determines that the first job contains an error, none 
of the jobs are submitted. 

• Once the SUBMIT processor submits a job for processing, errors occurring in 
the execution of that job have no effect on the submission of any remaining 
job(s) in that data set. 

Any job card you supply should have a job name consisting of your user ID and 
a single identifying character. If the job name is not in this format, you cannot 
refer to it with the CANCEL command. You are required to specify the job 

126 TSO Extensions Command Language Reference 



name in the STATUS command if the IBM-supplied exit has not been replaced 
by your installation and your job name is not your user ID plus a single 
identifying character. 

If you want to provide a job card, but you also want to be prompted for a unique 
job name character, put your user ID in the job name field and follow it with 
blanks so that there is room for SUBMIT to insert the prompted-for character. 
This allows you to change job names without re-editing the JCL data set. 

Once SUBMIT has successfully submitted a job for batch processing, it issues a 
'jobnameGobid) submitted' message. The job ID is a unique job identifier 
assigned by the job entry subsystem (JES). 

Example 

Operation: Submit the data set being edited for batch processing. 

Known: 

The data set has no job card and you do not want to be notified when the job 
is completed. 

submit * nonotify 

SUBMIT Subcommand of EDIT 127 



TABSET Subcommand of EDIT 

Use the TAB SET subcommand to: 

• Establish or change the logical tabulation settings. 
en> Cancel any existing tabulation settings. 

The basic form of the subcommand causes each strike of the tab key to be 
translated into blanks correspondIng to the column requirements for the data set 
type. For example, if the name of the data set being edited has FORT as a 
descriptive qualifier, the first tabulation setting is in column 7. The values in 
Figure 8 is in effect when you first enter the EDIT command. 

Data Set Name Descriptive Qualifier 

ASM 
CLIST 
CNTL 
COBOL 
DATA 
FORT FORTRAN(H) compilers, FORTRAN IV (Gl) 

product data set types. 
PLI PL/I Checkout and 

Optimizing compiler data set types. 
TEXT 
VSBASIC 
User-defined 

Figure 8. Default Tab Settings 

Default Tab Settings Columns 

10,16,31,72 
10,20,30,40,50,60 
10,20,30,40,50,60 
8,12,72 
10,20,30,40,50,60 
7,72 

5,10,15,20,25,30,35,40,45,50 

5,10,15,20,30,40 
10,15,20,25,30,35,40,45,50,55 
10,20,30,40,50,60 

You might find it convenient to have the mechanical tab settings coincide with the 
logical tab settings. Note that, except for line-numbered COBOL or VSBASIC 
data sets, the logical tab columns apply only to the data that you actually enter. 
Because a printed line number prompt is not logically part of the data you are 
entering, the logical tab positions are calculated beginning at the next position 
after the prompt. Thus, if you are receiving five-digit line number prompts and 
have set a logical tab in column 10, the mechanical tab should be set 15 columns 
to the right of the margin. If you are not receiving line number prompts, the 
mechanical tab should be set 10 columns to the right of the margin. 

In COBOL and VSBASIC data sets, the sequence number (line number) is 
considered to be a logical (as well as physical) part of each record that you enter. 
For example, if you specify the NONUM operand on the EDIT command, while 
editing a COBOL or VSBASIC data set, the system assumes that column 1 is at 
the left margin and that you are entering the required sequence numbers in the 
first six columns for COBOL or the first five columns for VSBASIC. Thus, 
logical tabs are calculated from the left margin (column 1). In line-numbered 
COBOL data sets (the NONUM operand was not specified), the column 
following a line number prompt is considered to be column 7 of your data; the 
first six columns are occupied by the system-supplied sequence number (line 
number). In line-numbered VSBASIC data sets, the column following a line 
number prompt is considered to be column 6 of your data; the first five columns 
are occupied by the system-supplied sequence number. 

128 TSO Extensions Command Language Reference 



ITABSETj 
TAB 

[

ON [(integer-list)]] 
OFF 
IMAGE 

ON(integer-list) 

OFF 

specifies tab settings are to be translated into blanks by the system. If you 
specify ON without an integer list, the existing or default tab settings are 
used. You can establish new values for tab settings by specifying the 
numbers of the tab columns as values for the integer list. A maximum of 
ten values is allowed. ON is the default. 

specifies there is to be no translation of tabulation characters. Each strike 
of the tab key produces a single blank in the data. 

IMAGE 
specifies the next input line defines new tabulation settings. The next line 
that you type should consist of t's, indicating the column positions of the 
tab settings, and blanks or any other characters except t. Ten is the 
maximum number of tab settings allowable. Do not use the tab key to 
produce the new image line. A good practice is to use a sequence of digits 
between the t's so you can easily determine which columns the tabs are set 
to (see Example 3). 

Example 1 

Operation: Re-establish standard tab settings for your data set. 

Known: 

Tab settings are not in effect. 

tab 

Example 2 

Operation: Establish tabs for columns 2, 18, and 72. 

tab on(2 18 72) 

Example 3 

Operation: Establish tabs at every 10th column. 

tab image 
123456789t123456789t123 ... 

TABSET Subcommand of EDIT 129 



TOP Subcommand of EDIT 

Use the TOP subcommand to change the line pointer in the system to zero, that 
is, the pointer points to the position preceding the first line of an unnumbered 
data set or of a numbered data set, which does not have a line number of zero. 
The pointer points to line number zero of a data set that has one. 

This subcommand is useful in setting the line pointer to the proper position for 
subsequent subcommands that need to start their operations at the beginning of 
the data set. 

If the data set is empty, you are notified. However, the current line pointer still 
takes on a zero value. 

TOP 

Example 1 

Operation: Move the line pointer to the beginning of your data set. 

Known: 

The data set is not line-numbered. 

top 

130 TSO Extensions Command Language Reference 



UNNUM Subcommand of EDIT 

Use the UNNUM subcommand to remove existing line numbers from the records 
in the data set. 

IUNNUM] 
UNN 

Example 1 

Operation: Remove the line numbers from an ASM-type data set. 

Known: 

The data set has line numbers. 

unnum 

UNNUM Subcommand of EDIT 131 



UP Subcommand of EDIT 

Use the UP subcommand to change the line pointer in the system so that it points 
to a record nearer the beginning of your data set. If the use of this subcommand 
causes the line pointer to point to the first record of your data set, you are 
notified. 

UP [count] 

count 
specifies the number of lines toward the beginning of the data set that you 
want to move the current line pointer. If count is omitted, the pointer is 
moved only one line. 

Example 1 

Operation: Change the pointer so that it refers to the preceding line. 

up 

Example 2 

Operation: Change the pointer so that it refers to a line located 17 lines before 
the location currently referred to. 

up 17 

132 TSO Extensions Command Language Reference 



VERIFY Subcommand of EDIT 

Use the VERIFY subcommand to display the line that is currently pointed to by 
the line pointer in the system whenever the current line pointer has been moved, 
or whenever a line has been modified by use of the CHANGE subcommand. 
Until you enter VERIFY, you do not have verification of changes in the position 
of the current line pointer. 

ON 

OFF 

specifies you want to have the line that is referred to by the line pointer 
displayed at your terminal each time the line pointer changes or each time 
the line is changed by the CHANGE subcommand. If you omit both ON 
and OFF, then ON is the default. 

specifies you want to discontinue this service. 

If the VERIFY subcommand is activated by BOTTOM, CHANGE, COPY, 
DELETE, DOWN, FIND, MOVE, RENUM, UNNUM and UP, then 
subcommands change the current line pointer and cause it to be displayed. 

Example 1 

Operation: Have the line that is referred to by the line pointer displayed at your 
terminal each time the line pointer changes. 

verify 
or 

verify on 

Example 2 

Operation: Terminate the operations of the VERIFY subcommand. 

verify off 

VERIFY Subcommand of EDIT 133 



END Command 

Use the END command to end a CLIST. When the system encounters an END 
command in a CLIST, and the CONTROL MAIN option is not in effect, CLIST 
execution halts. If the CONTROL MAIN option is in effect, use the EXIT 
statement to halt the execution of the CLIST. This function is better performed 
by the EXIT statement. 

END 

134 TSO Extensions Command Language Reference 



EXEC Command 

Use the EXEC command to execute a CLIST. For more information on this 
command and the writing of CLISTs, see CLISTs: Implementation and Reference. 

You can specify the EXEC command or the EXEC subcommand of EDIT in 
three ways: 

• Explicit form: Enter EXEC or EX followed by the name of the data set that 
contains the CLIST. 

• Implicit form: Do not enter EXEC or EX; only enter the procedure-name (a 
member of a CLIST library). A CLIST library is a partitioned data set that 
must be allocated to the SYSPROC file name either dynamically by the 
ALLOCATE command or as part of the LOGON procedure. TSO 
determines if the name is a system command before searching SYSPROC for 
the procedure. 

• Extended implicit form: Enter a percent sign followed by the procedure-name. 
TSO only searches the SYSPROC file for the specified name. For CLISTs 
that reside in SYSPROC, this form is the faster of the implicit forms. 

Some of the commands in a CLIST might have symbolic variables for operands. 
When you specify the EXEC command, you can supply actual values for the 
system to use in place of the symbolic variables. 

A CLIST, executed with the EXEC subcommand of EDIT, can only execute 
CLIST statements and EDIT subcommands. 

II~~ECI data-set-namej 
%procedure-name 

[ 'value-list'] [NOLIST 1 [PROMPT 1 
LIST NOPROMPT 

data-set-name 
specifies the name of the data set containing the CLIST to be executed. If 
the descriptive qualifier for the data set is not CLIST, you must enclose the 
fully-qualified name within apostrophes. Variable-blocked records are 
recommended, although you can also use fixed-blocked records. A 
variable-blocked record can have line numbers in the first eight columns. A 
fixed-blocked record can have line numbers in the last eight columns. 

~oprocedure-name 

specifies a member of a CLIST library. If the percent sign (%) is entered, 
TSO searches only the SYSPROC file for the specified name. Do not put 
quotes around the member name. 

EXEC Command 135 



value-list 
specifies the actual values that are to be substituted for the symbolic values 
in the CLIST. The symbolic values are defined by the operands of the 
PROC statement in the CLIST. The actual values to replace the positional 
operands in the PROC statement must be in the same sequence as the 
positional operands. The actual values to replace the keywords in the 
PROC statement must follow the positional values, but can be in any 
sequence. A keyword defined on the PROC statement can have a value 
consisting of a character string with delimiters, provided that the character 
string is enclosed in quotes. When you use the explicit form of the 
command, the value list must be enclosed in apostrophes. If apostrophes 
appear within the list, then you must provide two apostrophes in order to 
print one. If a quoted string appears as the value of a keyword within the 
value list, the number of quotes must be doubled again (see Example 3). 

NOLIST 

LIST 

specifies commands and subcommands are not to be listed at the terminal. 
The system assumes NOLIST for implicit and explicit EXEC commands. 
NOLIST is the default. 

specifies commands and subcommands are to be listed at the terminal as 
they are executed. This operand is valid only for the explicit form of 
EXEC. 

PROMPT 
specifies prompting to the terminal is allowed during the execution of a 
CLIST. The PROMPT keyword implies LIST, unless NOLIST has been 
explicitly specified. Therefore, all commands and sub commands are listed at 
the terminal as they are executed. This operand is valid only for the explicit 
form of EXEC. 

The PROMPT keyword is not propagated to nested EXEC commands. If 
you want to be prompted during execution of the CLIST it invokes, 
PROMPT must be specified on a nested EXEC command. 

NOPROMPT 
specifies no prompting during the execution of a CLIST. NOPROMPT is 
the default. 

No prompting is allowed during the execution of a CLIST if the 
NOPROMPT keyword operand of PROFILE has been specified, even if the 
PROMPT option of EXEC has been specified. 

136 TSO Extensions Command Language Reference 



The following is a list of options resulting from specific keyword entries: 

Keyword specified Resulting options 

PROMPT PROMPT LIST 
NOPROMPT NOPROMPT NOLIST 
LIST LIST NOPROMPT 
NOLIST NOLIST NOPROMPT 
PROMPT LIST PROMPT LIST 
PROMPT NOLIST PROMPT NOLIST 
NOPROMPT LIST NOPROMPT LIST 
NOPROMPT NOLIST NOPROMPT NOLIST 
No keywords NOPROMPT NOLIST 

Suppose the following CLIST exists as a data set named ANZAL: 

proc 3 input output list lines( ) 
allocate dataset (&input) file(indata) old 
allocate dataset(&output) block(lOO) space(300,lOO) 
allocate dataset(&list) file(print) 
call proc2 '&lines' 
end 

The PROC statement indicates that the three symbolic values, &INPUT, 
&OUTPUT and &LIST, are positional (required) and that the symbolic value 
&LINES is a keyword (optional). 

To replace ALPHA for INPUT, BETA for OUTPUT, COMMENT for LIST, 
and 20 for LINES, you would specify the implicit form: 

anzal alpha beta comment lines(20) 

Note: If the value of a keyword operand is not entered on the EXEC statement, 
that value is nullified. 

Example 1 

Operation: Execute a CLIST to invoke the assembler. 

Known: 

The name of the data set that contains the CLIST is RBJ21.FASM.CLIST. 

EXEC Command 137 



The CLIST consists of: 

proc 1 name 
free file(sysin,sysprint) 
delete (&name .. list,&name .. obj) 
allocate dataset(&name .. asm) file(sysin) old keep 
allocate dataset(&name .. list) file{sysprint) -
block(132) space(300,lOO) 

allocate dataset(&name .. obj) file(syspunch) block(80) -
space(lOO,SO) 

allocate file(sysutl) space(3,1) cylinders new delete 
allocate file(sysut2) space(3,1) cylinders new delete 
allocate file(sysut3) space(3,1) cylinders new delete 
allocate file(syslib) da('d821jpl.tso.macro', 

'sysl.maclib') shr 
call 'sysl.linklib(ifoxOO)' 'deck,noobj,rent' 
free file(sysutl,sysut2,sysut3,sysin,sysprint, -
syspunch,syslib) 

allocate file(sysin) da(*) 
allocate file(sysprint) da(*) 

Note: You can use a period to delimit a symbolic variable. However, follow 
the first period with another period. The first period is the delimiter that is 
removed during symbolic substitution of the variable. The second period 
remains unchanged. 

The module to be assembled is TGET ASIS. 

Yau want to have the names of the commands in the CLIST displayed at 
your terminal as they are executed. To execute the CLIST, enter: 

exec fasm 'tgetasis' list 

The display at your terminal would be similar to: 

EX FASM 'TGETASIS' LIST 
FREE FILE(SYSIN,SYSPRINT) 
DELETE (TGETASIS.LIST,TGETASIS.OBJ) 
IDCOSSOI ENTRY (A) D82LJPl.TGETASIS.LIST DELETED 
IDCOSSOI ENTRY (A) D82LJPl.TGETASIS.OBJ DELETED 
ALLOCATE DATASET(TGETASIS.ASM) FILE{SYSIN) OLD KEEP 
ALLOCATE DATASET(TGETASIS.LIST) FILE (SYSPRINT) 

BLOCK(132) SPACE(300,lOO) 
ALLOCATE DATASET(TGETASIS.OBJ) FILE (SYSPUNCH) 

BLOCK(80) SPACE(lOO,SO) 
ALLOCATE FILE(SYSUTl) SPACE(3,1) CYLINDERS NEW DELETE 
ALLOCATE FILE(SYSUT2) SPACE(3,1) CYLINDERS NEW DELETE 
ALLOCATE FILE(SYSUT3) SPACE(3,1) CYLINDERS NEW DELETE 
ALLOCATE FILE(SYSLIB) DA('D82LJPl.TSO.MACRO', 

'SYSl.MACLIB') SHR 
CALL 'SYSl.LINKLIB(IFOXOO)' 'DECK,NOOBJ,RENT' 
FREE FILE(SYSUTl,SYSUT2,SYSUT3,SYSIN,SYSPRINT, 

SYSPUNCH,SYSLIB) 
ALLOCATE FILE(SYSIN) DA(*) 
ALLOCATE FILE(SYSPRINT) DA(*) 
READY 

138 TSO Extensions Command Language Reference 



Example 2 

Operation: Assume that the CLIST in Example 1 has been stored in a CLIST 
library, which was allocated to the SYSPROC file ID. Execute the CLIST using 
the implicit fonn of EXEC. 

Known: 

The name of the member of the partitioned data set 
that contains the CLIST is FASM2. 

fasm2 tgetasis 

Example 3 

Operation: Enter a fully qualified data set name as a keyword value in an EXEC 
command value list. 

Known: 

The CLIST named SWITCH is contained in a CLIST library named 
MASTER.CLIST which is allocated as SYSPROC. 

The CLIST consists of: 

PRoe 0 DSN1() DSN2() 
RENAME &DSNl TEMPSAVE 
RENAME &DSN2 &DSNl 
RENAME TEMPSAVE &DSN2 

If you have a user ID of USER33 and you want to switch the names of two 
datasets MASTER. BACKUP and USER33.GOODCOPY, you could invoke 
the CLIST as follows: 

Explicit form: 

exec 'master.clist(switch) , + 
'dsnl("'" 'master.backup"'" ') + 
dsn2 (goodcopy) , 

Extended implicit form: 

%switch dsnl(" 'master.backup" ') dsn2(goodcopy) 

Note that when you use the implicit fonn, the specification of quoted strings in 
the value list is made simpler because the value list itself is not a quoted string. 

EXEC Command 139 



FREE Command 

Use the FREE command to release (deallocate) previously allocated data sets that 
you no longer need. You can also use this command to change the output class 
of SYSOUT data sets, to delete attribute lists, and to change the data set 
disposition specified with the ALLOCATE command. 

There is a maximum number of data sets that can be allocated to you at anyone 
time. The allowable number must be large enough to accommodate: 

• Data sets allocated by the LOGON and ALLOCATE commands 
• Data sets allocated dynamically by the system's command processors 

The data sets allocated by the LOGON and ALLOCATE commands are not 
freed automatically. To avoid the possibility of reaching your limit and being 
denied necessary resources, you should use the FREE command to release these 
data sets when they are no longer needed. 

When a SYSOUT data set is freed, it is immediately available for output 
processing, either by the job entry subsystem (not-held data sets) or by the 
OUTPUT command (held data sets). 

When you free SYSOUT data sets, you can change their output class to make 
them available for processing by an output writer, or route them to another user. 

When you enter the LOGOFF command, all data sets allocated to you and 
attribute lists created during the terminal session are freed by the system. 

UNALLOC is the alias of FREE and is intended for use under TEST because 
FREE is an alias for the FREEMAIN subcommand. 

Note: Data sets that are dynamically allocated by a command processor are not 
automatically freed when the command processor terminates. You must explicitly 
free dynamically allocated data sets. 

FREE 
ALL 

[ 

DSNAME (dataset-name-list) ) 1 
DATASET (dataset-name-list) 
DDNAME(file-name-list) 
FILE(file-name-list) 
ATTRLIST(attr-list-names) 

[DEST(station-id)] 

[
HOLD 1 
NOHOLD 

[

KEEP 1 DELETE2 
CATALOG 
UN CATALOG 
SYSOUT(class) 

Choose one or more of these operands within braces. 

2 DELETE is the only disposition that is valid for SYSOUT data sets. 

140 TSO Extensions Command Language Reference 



ALL 
requests deallocation of all dynamically allocated data sets, files, and 
attribute lists that are not marked in-use. 

DATASET or DSNAME(data-set-name-list) 
specifies one or more data set names that identify the data sets that you 
want to free. The data set name must include the descriptive (rightmost) 
qualifier and can contain a member name in parentheses. If you omit this 
operand, you must specify either FILE, DDNAME, or the ATTRLIST 
operand. 

FILE or DDNAME(file-name-list) 
specifies one or more file names that identify the data sets to be freed. If 
you omit this operand, you must specify either the DATASET or DSNAME 
or the ATTRLIST operand. 

ATTRLIST(attr-list-names) 
specifies the names of one or more attribute lists that you want to delete. If 
you omit this operand, you must specify either the DATASET or DSNAME 
or the FILE or DDNAME operand. 

DEST(stationid) 
specifies a name of a remote work station to which the SYSOUT data sets 
are directed when ready for deallocation. The station ID is a one to eight 
character name. If this operand is omitted on the FREE command for 
SYSOUT data sets, the data sets are directed to the work station specified 
at the time of allocation. 

HOLD 
specifies the data set is to be placed on the HOLD queue. HOLD overrides 
any HOLD/NOHOLD specification made when the data set was originally 
allocated and it also overrides the default HOLD/NOHOLD specification 
associated with the particular SYSOUT class specified. 

NOHOLD 
specifies the data set is not to be placed on the HOLD queue. NOHOLD 
overrides any HOLD/NOHOLD specification made when the data set was 
originally allocated and it also overrides the default HOLD/NOHOLD 
specification associated with the particular SYSOUT class specified. 

KEEP 
specifies the data set is to be retained by the system after it is freed. 

DELETE 
specifies the data set is to be deleted by the system after it is freed. 
DELETE is not valid for data sets allocated with SHR or for members of a 
PDS. Only DELETE is valid for SYSOUT data sets. 

CATALOG 
specifies the data set is to be retained by the system in a catalog after it is 
freed. 

FREE Command 141 



UNCATALOG 
specifies the data set is to be removed from the catalog after it is freed. The 
data set is still retained by the system. 

If HOLD, NOHOLD, KEEP, DELETE, CATALOG, and UNCATALOG are 
not specified, the specification indicated at the time of allocation remains in effect. 

SYSOUT(class) 
specifies an output class which is represented by a single character. All of 
the system output (SYSOUT) data sets specified in the DATASET or 
DSNAME and FILE or DDNAME operands are assigned to this class and 
placed in the output queue for processing by an output writer. In order to 
free a file to SYSOUT, the file must have previously been allocated to 
SYSOUT. 

A concatenated data set that was allocated in a LOGON procedure or by the 
ALLOCATE command can be freed only by entering the DD name on the FILE 
or DDNAME operand. It can also be freed by entering FREE ALL. 

Example 1 

Operation: Free a data set by specifying its data set name. 

Known: 

The data set name: TOC903.PROGA.LOAD 

free dataset(proga.load) 

Example 2 

Operation: Free three data sets by specifying their data set names. 

Known: 

The data set names: APRIL.PB99CY.ASM, APRIL.FIRSTQTR.DATA, 
MA Y.DESK.MSG 

free dataset(pb99cy.asm,firstqtr.data,'may.desk 
.msg' ) 

142 TSO Extensions Command Language Reference 



Example 3 

Operation: Free five data sets by' specifying data set names or data definition 
names. Change the output class for any SYSOUT data sets being freed. 

Known: 

The name of a data set: WIND.MARCH.FORT 
The file names (data definition names) of 4 data sets: SYSUTI SYSUT3 
SYSIN SYSPRINT 
The new output class: B 

free dataset (march. fort) file(sysutl,sysut3,sysin, 
sysprint) sysout(b) 

Example 4 

Operation: Delete two attribute lists. 

Known: 

The names of the lists: DCBP ARMS ATTRIBUT 

free attrlist(dsbparms attribut) 

Example 5 

Operation: Free all dynamically allocated data sets, files, and attribute lists. 

free all 

FREE Command 143 



HELP Command 

Use the HELP command or subcommand to obtain information about the 
function, syntax, and operands of commands and subcommands, and information 
about certain messages. This reference information is contained within the system 
and is displayed at your terminal in response to your request for help. By 
entering the HELP command or subcommand with no operands you can obtain a 
list of all the TSO commands grouped by function or sub commands of the 
command you are using. 

You cannot use the HELP command to get additional information about CLIST 
statements. 

(sub) command-name 

[

[FUNCTION] [SYNTAX] ] 
[OPERANDS [(list-of-operands)]] 
[POSITIONAL (nn)] 

[ALL] 
[MSGID (list)] 

command-name or subcommand-name 
specifies the name of the command or subcommand that you want to know 
more about. 

FUNCTION 
specifies that you want to know more about the purpose and operation of 
the command or subcommand. 

SYNTAX 
specifies you want to know more about the syntax required to use the 
command or subcommand properly. 

OPERANDS(list-of-operands) 
specifies you want to see explanations of the operands for the command or 
subcommand. When you specify the keyword OPERANDS and omit any 
values, all operands are described. You can specify particular keyword 
operands that you want to have described by including them as values 
within parentheses following the keyword. If you specify a list of more than 
one operand, the operands in the list must be separated by commas or 
blanks. 

144 TSO Extensions Command Language Reference 



POSITIONAL(nn) 

ALL 

specifies that you want to obtain information on a particular positional 
operand of the command or subcommand. You can specify the positional 
operand that you.want described by the number (nn) of the operand in the 
sequence of positional operands. The first positional operand would be 
identified as '1', the second as '2', and so on. You can obtain information 
on the positional operands of the following commands and any of their 
subcommands: 

• ACCOUNT 
• ATTRIB 
• CALL 
• CANCEL 
• EDIT 
• EXEC 
• HELP 
• LOGON 
• OUTPUT 

• RUN 
• SEND 
• TEST 
• TRANSMIT. 

specifies you want to see all information available concerning the command 
or subcommand. If no other keyword operand is specified, then ALL is the 
default. 

MSGID(list) 
specifies you want to get additional information about VSBASIC, 
TRANSMIT, or RECEIVE messages whose message identifiers are given in 
the list. Information includes what caused the error and how to prevent a 
recurrence. You cannot specify the FUNCTION, SYNTAX, OPERANDS, 
or ALL operands with MSGID. 

Help Information: The scope of available information ranges from general to 
specific. The HELP command or subcommand with rio operands produces a list 
of valid commands or subcommand and their basic functions. From the list you 
can select the command or subcommand most applicable to your needs. If you 
need more information about the selected command or subcommand, you can use 
HELP again, specifying the selected command or subcommand name as an 
operand. You then receive: 

• A brief description of the function of the command or subcommand 
• The format and syntax for the command or subcommand 
• A description of each operand 

You can obtain information about a command or subcommand only when the 
system is ready to accept a command or subcommand. 

If you do not want to have all of the detailed information, you can request only 
the portion that you need. 

HELP Command 145 



The information about the commands is contained in a cataloged partitioned data 
set named SYS1.HELP. Information for each command or subcommand is kept 
in a member of the partitioned data set. The HELP command or subcommand 
causes the system to select the appropriate member and display its contents at 
your terminal. 

Figure 9 shows the hierarchy of the sets of information available with the HELP 
command or subcommand. Figure 9 also shows the form of the command or 
subcommand necessary to produce any particular set. 

Example 1 

Operation: Obtain a list of all available commands. 

help 

Example 2 

Operation: Obtain all the information available for the ALLOCATE command. 

help allocate 

Example 3 

Operation: Have a description of the XREF, MAP, COBLIB, and OVL Y 
operands for the LINK command displayed at your terminal. 

h link operands(xref,map,coblib,ovly) 

Example 4 

Operation: Have a description of the function and syntax of the LISTBC 
command displayed at your terminal. 

h listbc function syntax 

Example 5 

Operation: Obtain information on the ATTRIB command positional operand. 

help attrib positional(l) 

Example 6 

Operation: Obtain information on the third positional operand of the RENUM 
subcommand of EDIT. 

help renum positional(3) 

146 TSO Extensions Command Language Reference 



or: 

When the system is ready 
to accept a command, you 
can request: 

List of commands 

Command function 

Command syntax 

List of operands 

6 Each operand 

7 Positional operand 

13 MSGID(list) 
or: 

2 

14 

When the system is ready to accept 
a subcommand, you can request: 

List of subcommands 

Subcommand function 

Subcommand syntax 

List of operands 

11 Each operand 

Positional operand 

MSGIDClist) 

This form of the command ............................................................... produces: 

HELP 

HELP command name 345 

HELP command name ALL 345 
Q) 

-0 
HELP command name FUNCTION 0 3 

E 
>- HELP command name SYNTAX 4 0 
<{ 
w 

5 0::: HELP command name OPERANDS 

HELP commandname OPERANDS (list of keyword operands) 6 

HELP commandname POSITIONAL (positional operand number) 7 

HELP commandname MSGID (list of message IDs) 13 

HELP 2 
(f) 

HELP subcommandname 8 9 10 Q) 

-0 
0 
E HELP subcommandname ALL 8 9 10 
I-
(f) 

8 w HELP subcommandname FUNCTION I-
-0 
c HELP subcommandname SYNTAX 9 
0 

.-=-
:::> HELP subcommand name OPERANDS 10 0.. 
I-
:::> 

HELP subcommandname OPERANDS (list of keyword operands) 11 0 
.-=-
0 HELP subcommandname POSITIONAL (positional operand number) 12 w 

HELP subcommandname MSGID (list of message IDs) 14 

Figure 9. Information Available Through the HELP Command 

Note: The HELP HELP command is valid only in ready mode. 

HELP Command 147 



LINK Command 

Use the LINK command to invoke the linkage editor service program. Basically, 
the linkage editor converts one or more object modules (the output modules from 
compilers) into a load module that is suitable for execution. In doing this, the 
linkage editor changes all symbolic addresses in the object modules into relative 
addresses. 

The linkage editor provides a great deal of information to help you test and 
debug a program. This information includes a cross-reference table and a map of 
the module that identifies the location of control sections, entry points,. and 
addresses. You can have this information listed at your terminal or saved in a 
data set on some device. 

You can specify all the linkage editor options explicitly or you can accept the 
default values. The default values are satisfactory for most uses. By accepting 
the default values, you simplify the use of the LINK command. 

You might want to use the LOADGO command as an alternative to the LINK 
command, if: 

• The module that you want to process has a simple structure; that is, it is 
self-contained and does not pass control to other modules. 

• You do not require the extensive listings produced by the linkage editor. 

• You do not want a load module. 

You should not link an object module with the TEST option and then attempt to 
execute the resulting load module in the background because an abnormal 
termination might occur. 

148 TSO Extensions Command Language Reference 



LINK (data-set-list) 

[LOAD [(data-set-name)]] 

[

PRINT 

NOPRINT 

[
AMODE [~;i~ ]] 3 

(ANY) 

[RMODE [(24) II 3 
(ANY) 

[LIB(data-set-list)] 

[PLILIB] [REFR 1 
[PLICMIX] NOREFR 

[PLIBASE] 
[FORTLIB] 

[COBLIB] 

[
MAP 1 
NOMAP 

SCTR 
NOSCTR 
OVLY 
NOOVLY 

[RENT 1 
NORENT 

[
TERM 1 
NOTERM 

[DCBS(blocksize)] 

. [AC(authorization­
code) ] 

[ NCAL 1 [SIZE(integerl integer2)] 
NON CAL 

[
LIST 1 
NOLIST 

[
LET 1 
NOLET 

[
XCAL 1 
NOXCAL 

[
XREF 1 
NOXREF 

[
REUS 1 
NOREUS 

[NE 1 NONE 

[~~oLl 
[~gDcl 
[
TEST 1 
NOTEST 

( data-sct-list) 
specifies the names of one or more data sets containing your object modules 
and/or linkage editor control statements. The specified data sets are 
concatenated within the output load module in the sequence that they are 
included in this operand. If there is only a single name in the data-set-list, 
parentheses are not required unless the single name is a member name of a 
partitioned data set; then, two pairs of parentheses are required, as in: 

link ( (parts) ) 

You can substitute an asterisk (*) for a data set name to indicate that you 
can enter control statements from your terminal. The system prompts you 
to enter the control statements. A null line indicates the end of your control 
statements. 

MVS/XA only 

LINK Command 149 



LOAD(data-set-name) 
specifies the name of the partitioned data set that contains the load module 
after processing by the linkage editor. If you omit this operand, the system 
generates a name according to the data set naming conventions. 

PRINT( data-set-name or *) 
specifies linkage editor listings are to be produced and placed in the 
specified data set. When you omit the data set name, the data set that is 
generated is named according to the data set naming conventions. If you 
specify LIST, MAP, or XREF operand, then PRINT is the default. If you 
want to have the listings displayed at your terminal, you can substitute an 
asterisk (*) for the data set name. 

NO PRINT 
specifies no linkage editor listings are to be produced. This operand causes 
the MAP, XREF, and LIST options to become invalid. If both PRINT and 
NOPRINT are omitted and you do not use the LIST, MAP, or XREF 
operand, then NOPRINT is the default. 

AMODE (MVS/XA Only) 
specifies the addressing mode for the module to be link-edited. If the 
AMODE operand is not specified, the AMODE defaults to the AMODE of 
the main entry point. 

Valid AMODE values are: 

24 to indicate the module is to be invoked in 24-bit addressing mode 

31 to indicate the module is to be invoked in 31-bit addressing mode 

ANY to indicate the module is to be invoked in the addressing mode of the 
caller 

RMODE (MVS/XA Only) 
specifies the residence mode for the module to be link-edited. If all control 
sections are not specified as RMODE (ANY), RMODE defaults to 24. If 
any section of the load module has an RMODE of 24, RMODE defaults to 
RMODE (24). If the RMODE operand is given without an operand, you 
are prompted for it. 

Valid RMODE values are: 

24 to indicate the module must reside below the 16 megabyte line 

ANY to indicate the module can reside anywhere in virtual storage 

Lm (data-set-list) 
specifies one or more names of library data sets to be searched by the 
linkage editor to locate object modules referred to by the module being 
processed; that is, to resolve external references. When you specify more 
than one name, the names must be separated by a valid delimiter. If you 
specify more than one name, the data sets are concatenated to the file name 
of the first data set in the list. For control statements, the first data set in 
the list must be pre-allocated with the DD name or file name SYSLIB prior 

150 TSO Extensions Command Language Reference 



to the LINK command. If you specify more than one name, the data sets 
are concatenated to the file name of the first data set and lose their 
individual identity. See System Programming Library: System Macros and 
Facilities for details on dynamic concatenation. 

PLILIB 
specifies the partitioned data set named SYSl.PLILIB is to be searched by 
the linkage editor to locate load modules that are referred to by the module 
being processed. 

PLIBASE 
specifies the partitioned data set named SYSl.PLIBASE is to be searched to 
locate load modules referred to by the module being processed. 

PLICMIX 
specifies the partitioned data set named SYSl.PLICMIX is to be searched to 
locate load modules referred to by the module being processed. 

FORTLIB 
specifies the partitioned data set named SYSl.FORTLIB is to be searched 
by the linkage editor to locate load modules referred to by the module being 
processed. 

COBLm 

MAP 

specifies the partitioned data set named SYSl.COBLIB is to be searched by 
the linkage editor to locate load modules referred to by the module being 
processed. 

specifies the PRINT data set is to contain a map of the output module 
consisting of the control sections, the entry names, and (for overlay 
structures) the segment number. 

NOMAP 
specifies a map of the output module is not to be listed. If both MAP and 
NOMAP are omitted, then NOMAP is the default. 

NCAL 
specifies the automatic library call mechanism is not to be invoked to locate 
the modules that are referred to by the module being processed when the 
object module refers to other load modules. 

NONCAL 

LIST 

specifies the modules referred to by the module being processed are to be 
located by the automatic library call mechanism when the object module 
refers to other load modules. NON CAL is the default. 

specifies a list of all linkage editor control statements is to be placed in the 
PRINT data set. 

LINK Command 151 



NOLIST 

LET 

specifies a listing of linkage editor control statements is not to be produced. 
NOLIST is the default. 

specifies the output module is permitted to be marked as executable even 
though a severity 2 error is found. A severity 2 error indicates that 
execution of the output module might be impossible. 

NOLET 
specifies the output module be marked non-executable when a severity 2 
error is found. NOLET is the default. 

XCAL 
specifies the output moduie is permitted to be marked as executable even 
though an exclusive call has been made between segments of an overlay 
structure. Because the segment issuing an exclusive call is overlaid, a return 
from the requested segment can be made only by another exclusive call or a 
branch. 

NOXCAL 
specifies both valid and invalid exclusive calls are marked as errors. 
NOXCAL is the default. 

XREF 
specifies a cross-reference table is to be placed on the PRINT data set. The 
table includes the module map and a list of all address constants referring to 
other control sections. Because the XREF operand includes a module map, 
both XREF and MAP cannot be specified for a particular LINK command. 

NOXREF 
specifies a cross-reference listing is not to be produced. NOXREF is the 
default. 

REUS 
specifies the load module is to be marked serially reusable if the input load 
module was re-:-enterable or serially reusable. The RENT and REUS 
operand are mutually exclusive. If the OVL Y or TEST operands are 
specified, the REUS operand must not be specified. 

NO REUS 
specifies the load module is not be be marked reusable. NOREUS is the 
default. 

REFR 
specifies the load module is to be marked refreshable if the input load 
module was refreshable and the OVL Y operand was not specified. 

NOREFR 
specifies the load module is not to be marked refreshable. NOREFR is the 
default. 

152 TSO Extensions Gommand Language Reference 



SCTR 
specifies the load module created by the linkage editor can be either scatter 
loaded or block loaded. If you specify SCTR, do not specify OVL Y. 

NOSCTR 
specifies scatter loading is not permitted. NOSCTR is the default. 

OVLY 
specifies the load module is an overlay structure and is therefore suitable for 
block loading only. If you specify OVLY, do not specify SCTR. 

NOOVLY 
specifies the load module is not an overlay structure. NOOVL Y is the 
default. 

RENT 
specifies the load module is marked re-enterable provided the input load 
module was re-enterable and that the OVLY operand was not specified. 

NO RENT 
specifies the load module is not marked re-enterable. NO RENT is the 
default. 

SIZE(integerl,integer2) 

NE 

specifies the amount of real storage to be used by the linkage editor. The 
first integer (integer!) indicates the maximum allowable number of bytes. 
Integer2 indicates the number of bytes to be used as the load module buffer, 
which is the real storage area used to contain input and output data. If this 
operand is omitted, SIZE defaults to the size specified at system generation 
time. 

specifies the output load module cannot be processed again by the linkage 
editor or loader. The linkage editor does not create an external symbol 
dictionary. If you specify either MAP or XREF, then the NE operand is 
invalid. 

NONE 

OL 

specifies the output load module can be processed again by the linkage 
editor and loader and that an external symbol dictionary is present. NONE 
is the default. 

specifies the output load module can be brought into real storage only by 
the LOAD macro instruction. 

NOOL 

DC 

specifies the load module is not restricted to the use of the LOAD macro 
instruction for loading into real storage. NOOL is the default. 

specifies the output module can be reprocessed by the linkage editor (level 
E). 

LINK Command 153 



NODC 
specifies the load module cannot be reprocessed by the linkage editor (level 
E). NODC is the default. 

TEST 
specifies the symbol tables created by the assembler and contained in the 
input modules are to be placed into the output module. 

NOTEST 
specifies no symbol table is to be retained in the output load module. 
NOTEST is the default. 

TERM 
specifies you want error messages directed to your terminal as well as to the 
PRINT data set. TERM is the default. 

NOTERM 
specifies you want error messages directed only to the PRINT data set and 
not to your terminal. 

DCBS(blocksize) 
specifies the block size of the records contained in the output load module. 
The block size must be an integer. 

AC(authorization-code) 
specifies an authorization code (0-255) to maintain data security. 

Example 1 

Operation: Combine three object modules into a single load module. 

Known: 

The names of the object modules in the sequence that the modules must be in: 
TPB05.GSALESA.OBJ TPB05.GSALESB.OBJ TPB05.NSALES.OBJ 

You want all of the linkage editor listings to be produced and directed to 
your terminal. 

The name for the output load module: 
TPB05.SALESRPT.LOAD(TEMPNAME) 

link (gsalesa,gsalesb,nsales) load(salesrpt) print(*) -
xref list 

154 TSO Extensions Command Language Reference 



Example 2 

Operation: Create a load module from an object module, an existing load 
module, and a standard processor library. 

Known: 

The name of the object module: VACID.M33THRUS.OBJ 

The name of the existing load module: VACID.M33PAYLD.LOAD(MODI) 

The name of the standard processor library used for resolving external 
references in the object module: SYSI.PLILIB 

The entry name of the load module is MOD2. 

The alias name of the load module is MOD3. 

The name of the output load module: VACID.M33PERFO.LOAD(MOD2) 

link(m33thrus,*) load(m33perfo(mod2» print(*) -
plilib map list 

Choosing Id2 as a file name to be associated with the existing load module, 
the display at your terminal will be: 

allocate dataset (m33payld. load) file(ld2) 
link (m33thrus,*) load(m33perfo(mod2» print(*) -
plilib map list 

IKJ76080A ENTER CONTROL STATEMENTS 
include ld2(modl) 
entry mod2 
alias mod3 
(null line) 

IKJ761111 END OF CONTROL STATEMENTS 

Example 3 (MVS/XA Only) 

Operation: Re-specify the mode of an object module from 24-bit addressing and 
residence mode to 31-bit addressing and residence mode ANY. 

Known: 

The name of the object module: ACCOUNT.MON.OBJ which has an 
addressing mode of 24-bit 

The name of the output load module: 
ACCOUNT. MINE. LOAD(NEWMOD) 

link mon load(mine(newmod»amode(31) rmode(any) 

LINK Command 155 



LISTALC Command 

Use the LISTALC command to obtain a list of the data sets allocated during the 
current TSO session. Included in the total number of data sets that the system 
allows a user to allocate dynamically are data sets that had been previously 
allocated for temporary use by a command. 

The LISTALC command without operands produces a list of all data set names 
(including those that are not partitioned), which have either been allocated by you 
or temporarily allocated by previous TSO commands. This list includes terminal 
data sets, indicated by the word TERMINAL, and also attr-list-names created by 
the ATTRIB command, indicated by the word NULLFILE. 

LISTALC displays a list of data set names allocated by the terminal user. If an 
asterisk precedes a data set name, it indicates that the data set is allocated, but 
marked not-in-use. 

\
LISTALC] 
LISTA 

STATUS 

[STATUS] 

[HISTORY] 

[MEMBERS] 

[SYSNAMES] 

specifies that you want information about the status of each data set. This 
operand provides you with: 

• The data definition name (DDNAME) for the data set allocated and 
the attr-list-names created by the ATTRIB command. 

• The scheduled and conditional dispositions of the data set. The 
operands denoting the dispositions are CATLG, DELETE, KEEP and 
UNCATLG. The scheduled disposition is the normal disposition and 
precedes the conditional disposition when listed. The conditional 
disposition takes effect if an abnormal termination occurs. CATLG 
means the data set is retained and its name is in the system catalog. 
DELETE means references to the data set are to be removed from the 
system and the space occupied by the data set is to be released. KEEP 
means the data set is to be retained. UNCATLG means the data set 
name is removed from the catalog, but the data set is retained. 

156 TSO Extensions Command Language Reference 



HISTORY 
specifies that you want to obtain information about the history of each data 
set. This operand provides you with: 

CD The creation date 

• The expiration date 

c) An indication as to whether or not the data set has password protection 
(non-VSAM only) 

• The data set organization (DSORG). The listing contains: 

PS for sequential 
PO for partitioned 
IS for indexed sequential 
DA for direct access 
VSAM for VSAM data entries 
** for unspecified 
?? for any other specification 

Note: Use the LISTCAT command for further information about VSAM 
data entries. 

MEMBERS 
specifies that you want to obtain the library member names of each 
partitioned data set having your user's identification as the leftmost qualifier 
of the data set name. Aliases are included. 

SYSNAMES 
specifies that you want to obtain the fully qualified names of data sets 
having system-generated names. 

Example 1 

Operation: Obtain a list of the names of all the data sets allocated to you. 

listalc 

Example 2 

Operation: Obtain a list of the names of all the data ~ets allocated to you. At 
the same time obtain the creation date, the expiration date, password protection, 
and the data set organization for each data set allocated to you. 

lista history 

LISTALC Command 157 



Example 3 

Operation: Obtain all available information about the data sets allocated to you. 

lista members history status sysnames 

The output at your terminal might be similar to the following listing: 

list ale mem status sysnames history 
--DSORG--CREATED--EXPIRES---SECURITY---DDNAME---DISP 
RRED9S.ASM 

PS 00/00/00 00/00/00 WRITE EDTDUMYI KEEP 
RRED9S.EXAMPLE 

PO 00/00/00 00/00/00 PROTECTED EDTDUMY2 KEEP,KEEP 
--MEMBERS--

MEMBER 1 
MEMBER2 

SYS70140.T174803.RVOOO.TSOSPEDT.ROOOOOOl 
** 00/00/00 00/00/00 NONE SYSUTI DELETE 

ALLOCATION MUST BE FREED BEFORE RESOURCES CAN BE 
RE-USED 

EDTDUMY3 
SYSIN 
SYSPRINT 

READY 

Example 4 

Operation: List the names of all your active attribute lists allocated with the 
ATTRIB command. 

lista status 

The output at your terminal might be similar to the following listing: 

lista status 
--DDNAME---DISP-­
SYSl.LPALIB2 

STEPLIB KEEP 
SYSl.UADS 

SYSUADS KEEP 
SYSl.BRODCAST 

SYSLBC KEEP 
TERMFILE SYSIN 
TERMFILE SYSPRINT 
*SYSl.HELP 

SYSOOOOS KEEP,KEEP 
D9SBABl.SEPT30.ASM 

SYS00006 KEEP,KEEP 
NULLFILE A 
NULLFILE B 
READY 

158 TSO Extensions Command Language Reference 



LISTBC Command 

Use the LISTBC command to obtain a listing of the contents of the broadcast 
data set, SYSl.BRODCAST. The SYSl.BRODCAST data set contains messages 
of general interest (NOTICES) that are sent from the system to all terminals and 
messages directed to a particular user (MAIL). The system deletes MAIL 
messages from the data set after they have been sent. NOTICES must be deleted 
explicitly by the operator. 

fLISTBC] 
lLISTB 

MAIL 

[:~ILl 
[

NOTICES 1 
NONOTICES 

specifies that you want to receive the messages from the broadcast data set 
that are intended specifically for you. If both MAIL and NOM AIL are 
omitted, then MAIL is the default. 

NO MAIL 
specifies that you do not want to receive messages intended specifically for 
you. 

NOTICES 
specifies that you want to receive the messages from the broadcast data set 
that are intended for all users. If both NOTICES and NONOTICES are 
omitted, then NOTICES is the default. 

NONOTICES 
specifies that you do not want to receive the messages that are intended for 
all users. 

Example 1 

Operation: Specify that you want to receive all messages. 

listbc 

Example 2 

Operation: Specify that you want to receive only the messages intended for all 
terminal users. 

listbc nomail 

LISTBC Command 159 



LIST CAT Command 

Use the LISTCAT command to list entries from a catalog. The entries listed can 
be selected by name or entry type, and the fields to be listed for each entry can 
additionally be selected. 

For MVS, the original TSO LISTCAT command has been replaced by an Access 
Method Services command of the same name. The explanations below provide 
the information required to use these services for normal TSO operations. The 
TSO user who wants to manipulate VSAM data sets or use the other Access 
Method Services from the terminal should see Access Method Services. For error 
message information, see Message Library: System Messages. 

The LISTCAT command supports unique operand abbreviations in addition to 
the usual abbreviations produced by truncation. The syntax and operand 
explanations show these unique cases. 

When LISTCAT is invoked and no operands are specified, the user ID or the 
prefix specified by the PROFILE command becomes the highest level of entry 
name qualification. Only those entries associated with the user ID are listed. 

!LISTCAT] 
LISTC 

160 TSO Extensions Command Language Reference 

[CATALOG(catname[/password])] 

[
OUTFILE(ddname)] 
OFILE(ddname) 

[ 

ENTRIES(entryname[/password] 

!LEVEL (leVel)] 
LVL(level) 

[CLUSTER] 
[DATA] 

[i~DEX ] 
[
SPACE] 
SPC 

[
NONVSAM] 
NVSAM 

[
USERCATALOG] 
UCAT 

[
GENERATIONDATAGROUP] 
GDG 

[
PAGESPACE] 
PGSPC 

[ALIAS] 
[CREATION(days)] 
[EXPIRATION(days)] 

[

ALL 1 NAME 
VOLUME 
ALLOCATION 
HISTORY 

[ ••• 1 ) 1 



CATALOG(catnamel/password]) 
specifies the name of the catalog that contains the entries to be listed. 
When CATALOG is coded, only entries from that catalog are listed. 

catname 
is the name of the catalog. 

password 
specifies the read level or higher level password of the catalog that contains 
entries to be listed. When the entries to be listed contain information about 
password-protected data sets, a password must be supplied either through 
this operand or through the ENTRIES operand. If passwords are to be 
listed, you must specify the master password. 

OUTFILE(ddname) or OFILE(ddname) 
specifies a data set other than the terminal to be used as an output data set. 
The DD name can correspond to the name specified for the FILE operand 
of the ALLOCATE command. The data can be listed when the file is freed. 
The DD name identifies a DD statement that, in turn, identifies the 
alternate output data set. If ODTFILE is not specified, the entries are 
displayed at the terminal. 

The normal output data set for listing is SYSPRINT. The default operands 
of this data set are: 

• Record format: VBA 
e Logical record length: 125, that is, 121 + 4 
e) Block size: 629, that is, 5 x (121 + 4) + 4 

Print lines are 121 bytes in length. The first byte is the ANSI control 
character. The minimum specifiable LRECL is 121 (D-format records 
only). If a smaller size is specified, it is overridden to 121. 

It is possible to alter the above defaults through specification of the desired 
values in the DCB operand of the SYSPRINT statement. The record 
format, however, cannot be specified as F or FB. If you do specify either 
one, it is changed to VBA. 

In several commands, you have the option of specifying an alternate output 
data set for listing. If you do specify an alternate, you must specify DCB 
operands in the referenced DD statement. When specifying an alternate 
output data set, you should not specify F or FB record formats. 

ENTRIES( entrynamel/password]) 
specifies the names of the entries to be listed. If neither ENTRIES nor 
LEVEL is coded, only the entries associated with the user ID are listed. See 
Access Method Services. 

entry name 
specifies the names or generic names of entries to be listed. Entries that 
contain information about catalogs can be listed only by specifying the 
name of the master or user catalog as the entry name. The name of a data 
space can be specified only when SPACE is the only type specified. If a 
volume serial number is specified, SPACE must be specified. 

LISTCAT Command 161 



1 

I. 
1 

1 

1 

1 

Note: You can change a qualified name into a generic name by substituting 
an asterisk (*) for only one qualifier. For example, A. * specifies all 
two-qualifier names that have A as first qualifier; A. *.C specifies all 
three-qualifier names that have A for first qualifier and C for third qualifier. 
However, LISTCAT does not accept *.B as a valid generic name. The * is 
not a valid user ID for the first qualifier. 

password 
specifies a password when the entry to be listed is password protected and a 
password was not specified through the CATALOG operand. The 
password must be the read or higher level password. If protection attributes 
are to be listed, you must supply the master password. If no password is 
supplied, the operator is prompted for each entry's password. Passwords 
cannot be specified for non-VSAM data sets, aliases, generation data 
groups, or data spaces. 

LEVEL (level) or L VL(level) 
specifies the level of entry names to be listed. If neither LEVEL nor 
ENTRIES is coded, only the entries associated with the user ID are listed. 

CLUSTER 
specifies cluster entries are to be listed. When the only entry type specified 
is CLUSTER, entries for data and index components associated with the 
clusters are not listed. 

DATA 
specifies entries for data components, excluding the data component of the 
catalog, are to be listed. If a cluster's name is specified on the ENTRIES 
operand and DATA is coded, only the data component entry is listed. 

INDEX or IX 
specifies entries for index components, excluding the index component of the 
catalog, are to be listed. When a cluster's name is specified on the 
ENTRIES operand and INDEX is coded, only the index component entry is 
listed. 

SPACE or SPC 
specifies entries for volumes containing data spaces defined in this catalog 
are to be listed. Candidate volumes are included. If entries are identified 
by entry name or level, SPACE can be coded only when no other entry-type 
restriction is coded. 

NONVSAM or NVSAM 
specifies entries for non-V SAM data sets are to be listed. When a 
generation data group's name and NONVSAM are specified, the generation 
data sets associated with the generation data group are listed. 

USERCATALOGor UCAT 
specifies entries for user catalogs are to be listed. USERCAT ALOG is 
applicable only when the catalog that contains the entries to be listed is the 
master catalog. 

162 TSO Extensions Command Language Reference 



GENERATIONDATAGROUPor GDG 
specifies entries for generation data groups are to be listed. 

PAGESPACEorPGSPC 
specifies entries for page spaces are to be listed. 

ALIAS 
specifies entries for alias entries are to be listed. 

CREATION(days) 
specifies entries are to be listed only if they were created no later than that 
number of days ago. 

EXPIRATION(days) 
specifies entries are to be listed only if they expire no later than the number 
of days from now. 

ALL/NAME/VOLUME/ALLOCATION/HISTORY 
specifies the fields to be included for each entry listed. If no value is coded, 
NAME is the default. 

ALL 
specifies all fields are to be listed. 

NAME 
specifies names of the entries are to be listed. The default is NAME. 

VOLUME 
specifies the name, owner identification, creation date, expiration date, 
entry type, volume serial numbers and device types allocated to the 
entries are to be listed. Volume information is not listed for cluster 
entries (although it is for the cluster's data and index entries), aliases, 
or generation data groups. 

ALLOCATION 
specifies the information provided by specifying VOLUME and 
detailed information about the allocation are to be listed. The 
information about allocation is listed only for data and index 
component entries. 

HISTORY 
specifies the name, owner identification, creation date, and expiration 
date of the entries are to be listed. 

LISTCAT Command 163 



LISTDS Command 

Use the LISTDS command to have the attributes of specific data sets displayed at 
your terminal. The LISTDS command works differently, depending upon whether 
the data set is VSAM or non-VSAM. If you are unsure as to whether the data set 
is VSAM or not, enter the LISTDS command with no operands. 

A VSAM data set causes the LISTDS command to print only the data set 
organization (DSORG), which is VSAM. Use the LISTCAT command to obtain 
more information on a VSAM data set. 

For non-VSAM data sets, you can obtain: 

• The volume identification (VOLID) of the volume on which the data set 
resides. A volume can be a disk pack or a drum. 

• The logical record length (LRECL) 

• The block size (BLKSIZE) 

• The record format (RECFM) 

• The data set organization (DSORG) 

The data set organization is indicated as follows: 

PS for sequential 
PO for partitioned 
IS for indexed sequential 
DA for direct access 
VSAM for VSAM data entries 
** for unspecified 
?? for any other specification 

• Directory information for members of partitioned data sets, if you specify the 
data set name in the form datasetname(membername}. 

• Creation date, expiration date, and, for non-VSAM only, security attributes. 

• File name and disposition 

• Data set control blocks (DSCB) 

Note: Data sets that are dynamically allocated by the LISTDS command are not 
automatically freed when the command terminates. You must explicitly free 
dynamically allocated data sets. 

164 TSO Extensions Command Language Reference 



jLISTDSj 
LISTD 

(data-set-list) 

(data-set-list) 

[STATUS] 

[HISTORY] 

[MEMBERS] 

[LABEL] 

[CATALOG(cat.-name)] 

[LEVEL] 

specifies one or more data set names. This operand identifies the data sets 
that you want to know more about. Each data set specified must be 
currently allocated or available from the catalog, and must reside on a 
currently active volume. The names in the data set list can contain a single 
asterisk in place of any level except the first. When this is done, all 
cataloged data sets whose names begin with the specified qualifiers are 
listed. For example, A. *.C specifies all three-qualifier names that have A 
for first qualifier and C for third qualifier. 

Note: Do not use alias data set names with this command. 

STATUS 
specifies that you want the following additional information: 

o The DDNAME currently associated with the data set. 

o The currently scheduled data set disposition and the conditional 
disposition. The keywords denoting the dispositions are CATLG, 
DELETE, KEEP, and UNCATLG. The scheduled disposition is the 
normal disposition and precedes the conditional disposition when listed. 
The conditional disposition takes effect if an abnormal termination 
occurs. CATLG means the data set is cataloged. DELETE means the 
data set is to be removed. KEEP means the data set is to be retained. 
UNCATLG means the name is removed from the catalog, but the data 
set is retained. 

HISTORY 
specifies that you want to obtain the creation and expiration dates for the 
specified data sets and find out whether or not the non-VSAM data sets are 
password-protected. 

MEMBERS 
specifies that you want a list of all the members of a partitioned data set, 
including aliases. 

LABEL 
specifies that you want to have the entire data set control block (DSCB) 
listed at your terminal. This operand is applicable only for non-VSAM data 
sets on direct access devices. The list is in hexadecimal notation. 

LISTDS Command 165 



CAT ALOG( cat. name) 
specifies the user catalog that contains the names in the data set list. 
CATALOG is required only if the names are in a catalog other than 
STEPCA T or the catalog implied by the first-level qualifier of the name. 

LEVEL 
specifies names in the data set list are to be high-level qualifiers. All 
cataloged data sets whose names begin with the specified qualifiers are 
listed. If LEVEL is specified, the names cannot contain asterisks. 

Specify only one data set list with the LEVEL option. 

Example 

Operation: List the basic attributes of a particular data set. 

Known: 

The data set name: ZALD58.CIR.OBJ 

listds cir 

The display at your terminal might be similar to the following: 

listds cir 
ZALD58.CIR.OBJ 
--RECFM-LRECL-BLKSIZE-DSORG 

FB 80 80 PS 
--VOLUMES--

D95LIB 
READY 

166 TSO Extensions Command Language Reference 



LOADGO Command 

Use the LOAD GO command to load a compiled or assembled program into real 
storage and begin execution. 

The LOADGO command loads object modules produced by a compiler or 
assembler, and load modules produced by the linkage editor. If you want to load 
and execute a single load module, the CALL command is more efficient. The 
LOADGO command will also search a call library (SYSLIB) or a resident link 
pack area, or both, to resolve external references. 

The LOAD GO command invokes the system loader to accomplish this function. 
The loader combines basic editing and loading services of the linkage editor and 
program fetch in one job step. Therefore, the load function is equivalent to the 
link-edit and go function. 

The LOAD GO command does not produce load modules for program libraries, 
and it does not process linkage editor control statements such as INCLUDE, 
NAME, OVERLAY, etc. 

[
LOADGO] 
LOAD 

4 MVS/XA only 

(data-set-list) 

[ I parameters I ] 

[
PRINT ([data-:et-name]l] 
NOPRINT 

[
AMODE [ ~ ; i ~ ]] 4 

(ANY) 

[
RMODE [(24) II 4 

(ANY) 
[LIB(data-set-list)] 
[PLILIB] 
[PLIBASE] 
[PLICMIX] 
[FORTLIB] 
[COBLIB] 

[
TERM 1 
NOTERM 

[RES 1 
NORES 

[~~pl 
[
CALL 1 
NOCALL 

[LET 1 
NOLET 

[SIZE(integer)] 
[EP(entry-name)] 
[NAME(program-name)] 

LOAD GO Command 167 



( data-set-list) 
specifies the names of one or more object modules and/or load modules to 
be loaded and executed. The names can be data set names, names of 
members of partitioned data sets, or both (see the data set naming 
conventions). When you specify more than one name, the names must be 
enclosed within parentheses and separated from each other by a standard 
delimiter (blank or comma). 

'parameters' 
specifies any parameters that you want to pass to the program to be 
executed. 

PRINT(data-set-name or *) 
specifies the name of the data set that is to contain the listings produced by 
the LOAD GO command. If you omit the data set name, the generated data 
set is named according to the data set naming conventions. You can 
substitute an asterisk (*) for the data set name if you want to have the 
listings displayed at your terminal. If you specify the MAP operand, then 
PRINT is the default. 

NOPRINT 
specifies no listings are to be produced. This operand suppresses the MAP 
operand. If both PRINT and NOPRINT are omitted and you do not use 
the MAP operand, then NOPRINT is the default. 

AMODE (MVS/XA Only) 
specifies the addressing mode for the module to be loaded. If the AMODE 
operand is not specified, the AMODE defaults to the AMODE of the main 
entry point. 

Valid AMODE values are: 

24 to indicate the module is invoked in 24-bit addressing mode 

31 to indicate the module is invoked in 31-bit addressing mode 

ANY to indicate the module is invoked in the addressing mode of the caller 

RMODE (MVS/XA Only) 
specifies the residence mode for the module to be loaded. If all control 
sections are not specified as RMODE(ANY), RMODE defaults to 24. If 
any section of the load module has an RMODE(24), RMODE defaults to 
24. 

Valid RMODE values are: 

24 to indicate the module must reside below the 16 megabyte line 

ANY to indicate the module can reside anywhere in virtual storage 

LIB(data set list) 
specifies names of one or more library data sets that are to be searched to 
find modules referred to by the module being processed (that is, to resolve 
external references). 

168 TSO Extensions Command Language Reference 



PLILm 
specifies the partitioned data set named SYSl.PLILIB is to be searched to 
locate load modules referred to by the module being processed. 

PLmASE 
specifies the partitioned data set named SYSl.PLIBASE is to be searched to 
locate load modules referred to by the module being processed. 

PLICMIX 
specifies the partitioned data set named SYSl.PLICMIX is to be searched to 
locate load modules referred to by the module being processed. 

FORTLm 
specifies the partitioned data set named SYSl.FORTLIB is to be searched 
to locate load modules referred to by the module being processed. 

COBLm 
specifies the partitioned data set named SYSl.COBLIB is to be searched to 
locate load modules referred to by the module being processed. 

TERM 
specifies that you want any error messages directed to your terminal as well 
as the PRINT data set. If both TERM and NOTERM are omitted, then 
TERM is the default. 

NOTERM 

RES 

specifies that you want any error messages directed only to the PRINT data 
set. 

specifies the link pack area is to be searched for load modules (referred to 
by the module being processed) before the specified libraries are searched. 
If both RES and NORES are omitted, then RES is the default. If you 
specify the NOCALL operand, the RES operand is invalid. 

NORES 

MAP 

specifies the link pack area is not to be searched to locate modules referred 
to by the module being processed. 

specifies a list of external names and their real storage addresses are to be 
placed on the PRINT data set. This operand is ignored when NOPRINT is 
specified. 

NOMAP 
specifies external names and addresses are not to be contained in the 
PRINT data set. If both MAP and NOMAP are omitted, then NOMAP is 
the default. 

CALL 
specifies the data set specified in the LIB operand is to be searched to locate 
load modules referred to by the module being processed. If both CALL and 
NOCALL are omitted, then CALL is the default. 

LOADGO Command 169 



NO CALL 

LET 

specifies the data set specified by the LIB operand is not to be searched to 
iocate modules that are referred to by the module being processed. The 
RES operand is invalid when you specify NOCALL. 

specifies execution is to be attempted even if a severity 2 error should occur. 
A severity 2 error indicates that execution might be impossible. 

NOLET 
specifies execution is not to be attempted if a severity 2 error should occur. 
If both LET and NOLET are omitted, then NOLET is the default. 

SIZE(integer) 
specifies the size, in bytes, of dynamic real storage that can be used by the 
loader. If this operand is not specified, then the size defaults to the size 
specified at system generation time. 

EP( entry-name) 
specifies the external name for the entry point to the loaded program. If the 
entry point of the loaded program is in a load module, you must specify the 
EP operand. 

NAME(program-name) 
specifies the name that you want assigned to the loaded program. 

Example 1 

Operation: Load and execute an object module. 

Known: 

The name of the data set: SHEPD58.CSINE.OBJ 

load csine print(*) 

Example 2 

Operation: Combine an object module and a load module, and then load and 
execute them. 

Known: 

The name of the data set containing the object 
module: LARK.HINDSITE.OBJ 

The name of the data set containing the load 
module: LARK.THERMOS.LOAD(COLD) 

load (hindsite thermos(cold» print(*) + 
lib('sysl.sortlib') + 
nores map size (44k) ep (start23) name (thermsit) 

170 TSO Extensions Command Language Reference 



Example 3 (MVS/XA Only) 

Operation: Combine and execute several object and load modules with differing 
AMODE and RMODE attributes. The new load module should execute in 31-bit 
addressing mode and be loaded anywhere in storage. 

Known: 

The name of the main routine, a load module in 24-bit addressing mode: 
MY.PROG.LOAD(MAIN) 

The names of two subroutines, which are updated with changes before 
loading; both are AMODE(31) and RMODE(ANY): MY.SUBl.OBJ, 
MY.SUB2.0BJ 

load (subl sub2 'my.prog.load(main) ') print (*) amode(31) 
rmode(any) 

LOAD GO Command 171 



LOGOFF Command 

Use the LOGOFF command to terminate your terminal session. When you enter 
the LOGOFF command, the system frees all the data sets allocated to you. Data 
remaining in storage is lost. 

If you intend to enter the LOGON command immediately to begin a new session 
using different attributes, you are not required to LOGOFF. Instead, you can 
just enter the LOGON command as you would enter any other command. 

If your terminal is a Systems Network Architecture (SNA) terminal that uses 
VT AM, you might be required to use a format different from the one described 
here. Your system programmer should provide you with this information. 

Using LOGOFF in the Background: When the LOGOFF command is executed in 
the background, your TSO session is terminated normally. Any remaining 
commands in the input stream are ignored. 

LOGOFF 

DISCONNECT 

[
DISCONNECT] 
HOLDS 

specifies the line is to be disconnected following logoff. If no operand is 
specified, then DISCONNECT is the default. 

HOLDS 
specifies the line is not to be disconnected following logoff. 

Example 1 

Operation: Terminate your terminal session. 

logoff 

Not supported with terminals that use VTAM. 

172 TSO Extensions Command Language Reference 



LOGON Command 

Use the LOG0N command to start a terminal session. If you are not familiar 
with the LOGON process, see TSOjE User's Guide. 

There are two types of LOGON command processing: full screen LOGON 
command processing and line mode LOGON command processing. If you are an 
IBM 3270 terminal user, using a display format of 24 X 80 (24 lines of data by 80 
characters on a line) or larger, you must use full screen logon. Full screen logon 
users need only enter 'logon userid'. TSO displays a full screen logon menu with 
appropriate entry fields for both RACF and non-RACF defined users. If you 
enter more parameters than user ID on the LOGON command, TSO accepts and 
processes them with the exception of the current and new password fields for a 
RACF-defined user and the current password fields for a non-RACF defined user. 

TSO requires the password entries to be entered on the logon menu for full screen 
logon processing. If your terminal is such that full screen LOGON command 
processing cannot be used, then all of the logon information must be specified in 
line mode and you might be prompted by the system to enter values for certain 
operands that are required by your installation. 

Before you can use the LOGON command, your installation must provide you 
with certain basic information: 

Q Your user identification (1-7 characters) and, if required by your installation, 
a password (1-8 alphameric characters) 

o An account number (might be optional at your installation) 

G) A procedure name (might be optional at your installation) 

Note: If you are a RACF-defined user, your installation assigns a RACF 
password and a GROUP name (optional) for you. 

You must supply logon information to the system by using the LOGON 
command and operands. The information that you enter is used by the system to 
start and control your time sharing terminal session. You can also use the 
operands to specify whether or not you want to receive messages from the system 
or other users. 

Full screen logon: 

• Displays a menu with the previous session's logon parameter values. Logon 
command parameters entered on the LOGON command override any default 
values from the previous session. 

• Requests that you enter a password. 

• Allows for modification and entry of logon parameter values. If logon 
command parameters were not entered on the LOGON command, you can 
type over existing values on the menu displayed. 

LOGON Command 173 



• Displays RACF entry fields if RACF is installed and active and the user ID is 
RACF -defined. 

• Allows you to enter a single TSO command of up to 80 characters in length 
on the LOGON menu. This command is executed after any command 
entered in the P ARM field on the EXEC card of the LOGON procedure. 
This command is also remembered from session to session. 

• Displays help information for all logon parameters whenever you can enter 
USERID, PASSWORD, or RACF password. Help information is displayed 
for the entry being prompted for and in all cases, except for the PASSWORD 
entry fields, display the user entered data as well. 

Note: If your terminal uses VT AM, you might be required to use a format 
different from the one described here. Your system programmer should provide 
you with this information. 

Using LOGON in the Background: When the LOGON command is executed in 
the background, your TSO session is terminated normally. Any remaining 
commands in the input stream are ignored. 

LOGON user-identity[/password[/newpassword]] 

[ACCT(account)] 
[PROC(procedure)] 
[SIZE (integer) ] 

[
NOTICES 1 
NONOTICES 

[
MAIL 1 
NOMAIL 

[PERFORM(value)] 
[RECONNECT] 
[GROUP(name)] 
[OIDCARD] 

user-identity /password/newpassword 
specifies your user identification and, if required, a valid password or new 
password. Your user identification must be separated from the password by 
a slash (f) and, optionally, one or more standard delimiters (tab, blank, or 
comma). Your identification and password must match the identification 
contained in the system's user attribute data set (UADS) if you are not 
RACF -defined. If you are RACF -defined, you must enter the password 
defined in the RACF data set as the value for password. New password 
specifies the password that is to replace the current password. New 
password must be separated from the password by a slash(f) and, optionally, 
one or more standard delimiters (tab, blank, or comma). The new password 
operand is one to eight alphameric characters in length. This operand is 
ignored for non-RACF-defined users. (Printing is suppressed for some types 
of terminals when you respond to a prompt for a password.) 

174 TSO Extensions Command Language Reference 



ACCT(account) 
specifies the account number required by your installation. If the VADS 
contains only one account number for the password that you specify, this 
operand is not required. If the account number is required and you omit it, 
the system prompts you for it. 

For TSO, an account number must not exceed 40 characters, and must not 
contain a blank, tab, quotation mark, apostrophe, semicolon, comma, or 
line control character. Right parentheses are permissible only when left 
parentheses balance them somewhere in the account number. 

PROC(procedure-name) 
specifies the name of a cataloged procedure containing the job control 
language (JCL) needed to initiate your session. 

SIZE(integer) 
specifies the maximum region size allowed for a conditional GETMAIN 
during the terminal session. If you omit this operand, the VADS contains a 
default value for your region size. The VADS also contains a value for the 
maximum region size that you are allowed. If you specify a region size 
exceeding the maximum region size allowed by the VADS (in this case, the 
V ADS value MAXSIZE is used), then this operand is rejected. 

NOTICES 
specifies messages intended for all terminal users are to be listed at your 
terminal during LOGON processing. If both NOTICES and NONOTICES 
are omitted, then NOTICES is the default. 

NO NOTICES 
specifies that you do not want to receive the messages intended for all users 
during LOGON processing. 

MAIL 
specifies that you want messages intended specifically for you to be 
displayed at your terminal during LOGON processing. If both MAIL and 
NOMAIL are omitted, then MAIL is the default. 

NOMAIL 
specifies that you do not want to receive messages intended specifically for 
you during LOGON processing. 

PERFORM(value) 
specifies the performance group to be used for the terminal session. The 
value must be an integer from 1-999. However, the line mode LOGON 
limit is 255. The default value is determined by the individual installation. 

RECONNECT 
specifies that you want to re-LOGON after your line has been disconnected. 
If a password was specified in the disconnected session, the same password 
must be specified with the RECONNECT option. If RECONNECT is 
specified, then any operands other than user ID and password are ignored. 

LOGON Command 175 



GROUP(name) 
specifies a one-to-eight character ID composed of alphameric and/or 
national characters, the first of which must be alphabetic or national. This 
operand is valid only for RACF users. It will be ignored for users not 
defined to RACF. 

OIDCARD 
specifies the operator identification card is to be prompted for after the 
LOGON command has been entered. This operand is valid only for 
RACF -defined users. 

If you are not defined to RACF and enter this keyword, you are prompted 
for an operator identification card. However, any data you enter is ignored. 
You can also enter a null line in response to the prompt. 

Example 1 

Operation: Start a terminal session. 

Known: 

Your user identification and password: WRRID/23XA$MBT 

Your installation does not require an account number or procedure name for 
LOGON. 

logon wrrid/23xa$mbt 

Example 2 

Operation: Start a terminal session. 

Known: 

Your user identification and password: WRRID/MO@ 
Your account number: 288104 
The name of a cataloged procedure: TS951 
You do not want to receive any broadcast messages. 
Your real storage space requirement: 90K bytes 

logon wrrid/mo@ acct(288104) proc(ts951)­
size(90) nonotices nomail 

176 TSO Extensions Command Language Reference 



OUTPUT Command 

Use the OUTPUT command to: 

• Direct the output from a job to your terminal. The output includes the job's 
job control language statements (JCL), system messages (MSGCLASS), and 
system output (SYSOUT) data sets. 

• Direct the output from a job to a specific data set. 

• Delete the output for jobs. 

• Change the output class(es) for a job. 

• Route the output for a job to a remote work station. 

• Release the output for a job for printing by the subsystem. 

OUTPUT is a foreground-initiated-background (FIB) command. This command 
is generally used in conjunction with SUBMIT, STATUS, and CANCEL 
commands. 

IOUTPUT) 
OUT 

(jobname[(jobid)]-list) 

[CLASS(classname-list)] 

[ PRINT ( I isname ) ) 1 [~~~~Nl 
NEXT 

[PAUSE 1 [KEEP 1 [HOLD 1 
NOPAUSE NOKEEP NOHOLD 

[DELETE] 
[NEWCLASS(classname)] [DEST(station-id)] 

(jobname( (jobid))-Iist) 
specifies one or more names of batch or foreground jobs. The job name for 
foreground session is user rD. Each job name must begin with your user 
identification and, optionally, can include one or more additional characters 
unless the IBM-supplied installation exit that scans and checks the job name 
and user identification is replaced by a user-written routine. The system 
processes the held output from the jobs identified by the job name list. To 
avoid duplicate job names, you should include the optional job ID for 
uniq ueness. 

CLASS( classname-list) 
specifies the names of the output classes to be searched for output from the 
jobs identified in the job name list. If you do not specify the name of a 
class, all held output for the jobs are available. A class name is a single 
character or digit (A-Z or 0-9). 

OUTPUT Command 177 



PRINT( dsname or *) 
specifies the name of the data set to which the output is to be directed. If 
unqualified, the prefix is added to and the qualifier OUTLIST is appended 
to the data set name. You can substitute an asterisk for the data set name 
to indicate that the output is to be directed to your terminal. If you omit 
both the data set name and the asterisk, the default value is the asterisk. 
PRINT is the default value if you omit PRINT, DELETE, NEWCLASS, 
DEST, and HOLDjNOHOLD. 

If the PRINT data set is not pre-allocated, RECFM defaults to FBS, 
LRECL defaults to 132, and the BLKSIZE defaults to 3036. 

BEGIN 
indicates output operations for a data set are to start from the beginning of 
the data set whether it has been checkpointed or not. 

HERE 
indicates output operations for a data set that has been checkpointed are to 
be resumed at the approximate point of interruption. If the data set is not 
checkpointed, it is processed from the beginning. If you omit HERE, 
BEGIN, and NEXT, then HERE is the default. 

NEXT 
indicates output operations for a data set that has been previously 
checkpointed are to be skipped. Processing resumes at the beginning of 
non-checkpointed data sets. Caution: The checkpointed data sets that are 
skipped are deleted unless the KEEP operand is specified. 

PAUSE 
indicates output operations are to pause after each SYSOUT data set is 
listed to allow you to enter a SAVE or CONTINUE subcommand. Pressing 
the ENTER key after the pause causes normal processing to continue. This 
operand can be overridden by the NOP A USE operand of the CONTINUE 
subcommand. 

NOPAUSE 
indicates output operations are not to be interrupted. This operand can be 
overridden by the PAUSE operand of the CONTINUE subcommand. If 
neither PAUSE nor NOPAUSE is specified, then NOPAUSE is the default. 

KEEP 
specifies the SYSOUT data set is to remain enqueued after printing (see also 
HOLD and NOHOLD). 

NOKEEP 
specifies the SYSOUT data set is to be deleted after it is printed. If neither 
KEEP nor NOKEEP is specified, then NOKEEP is the default. 

HOLD 
specifies the kept SYSOUT data set is to be held for later access from the 
terminal. 

178 TSO Extensions Command Language Reference 



Note to JES3 Users: To view output, you must specify an output class that has 
been defined as HOLD (for TSO) or RSVD (reserved) on the DD statement. If 
you specify RSVD class, then MSGCLASS and SYSOUT class must be the same 
as the RSVD class. For more information, see JES3 System Programming 
Library. 

NOHOLD 
specifies the kept SYSOUT data set be released for printing by the 
subsystem. If neither HOLD nor NOH OLD is specified, then NOHOLD is 
the default for KEEP. 

DELETE 
specifies classes of output specified with the CLASS operand are to be 
deleted. 

NEWCLASS( classname) 
is used to change one or more SYSOUT classes to the class specified by the 
c1assname subfield. 

DEST(station-id) 
routes SYSOUT classes to a remote work station specified by the station ID 
subfield. The station ID is one to eight characters in length. 

Considerations: The OUTPUT command applies to all jobs whose job names 
begin with your user identification. Access to jobs whose job names do not begin 
with a valid user identification must be provided by an installation-written exit 
routine. The SUBMIT, STATUS, and CANCEL commands apply to batch jobs. 
You must have special permission to use these commands. 

You can simplify the use of the OUTPUT command by including the NOTIFY 
keyword either on the JOB card or on the SUBMIT command when you submit a 
job for batch processing. The system notifies you when the job terminates, giving 
you the opportunity to use the OUTPUT command. MSGCLASS and SYSOUT 
data sets should be assigned to reserved classes or explicitly held in order to be 
available at the terminal. 

OUTPUT Command 179 



Output Sequence: Output is produced according to the sequence of the jobs that 
are specified, then by the sequence of classes that are specified for the CLASS 
operand. For example, assume that you want to retrieve the output of the 
following jobs: 

IIJWSD581 
II 
IISYSPRINT 
IISYSUTl 
II 
II 
II 
IISYSUT2 
IISYSIN 

1* 
IIJWSD582 
II 
IISYSPRINT 
I/DD2 
II 
IISYSIN 

1* 

JOB 91435,MSGCLASS=X 
EXEC PGM=IEBPTPCH 
DD SYSOUT=Y 
DD DSNAME=PDS,UNIT=3330, 
VOL=SER=11112,LABEL=(,SUL), 
DIPS=(OLD,KEEP), 
DCB=(RECFM=U,BLKSIZE=3036) 
DD SYSOUT=Z 
DD * 

PRINT TYPORG=PS,TOTCONV=XE 
LABELS DATA=NO 

JOB 
EXEC 
DD 
DD 
DISP=OLD 

91435,MSGCLASS=X 
PGM=IEHPROGM 
SYSOUT=Y 
UNIT=3330,VOL=SER=333000, 

DD * 
SCRATCH VTOC,VOL=3330=333000 

To retrieve the output, you enter: 

output (jwsd581 jwsd582) class (x y z) 

Your output is displayed in the following order: 

I. Output of job JWSD581 

a. class X (JCL and messages) 
b. class Y (SYSPRINT data) 
c. class Z (SYSUT2 data) 

2. Output of job JWSD582 

a. class X (JCL and messages) 
b. class Y (SYSPRINT data) 
c. message (No CLASS Z OUTPUT FOR JOB JWSD582) 

If no classes are specified, the jobs are processed as entered. Class sequence is not 
predictable. 

Suhcommands: Subcommands for the OUTPUT command are: CONTINUE, 
END, HELP, and SAVE. When output has been interrupted, you can use the 
CONTINUE subcommand to resume output operations. 

Interruptions causing subcommand mode occur when: 

• Processing of a SYSOUT data set completes and the PAUSE operand was 
specified with the OUTPUT command. 

• You press the attention key. 

180 TSO Extensions Command Language Reference 



Pressing the attention key purges the input/output buffers for the terminal. Data 
and system messages in the buffers at this time may be lost. 

Although the OUTPUT command attempts to back up 10 records to recover the 
lost information, results are unpredictable due to record length and buffer size. 
You might see records repeated or notice records missing if you attempt to 
resume processing of a data set at the point of interruption (using the HERE 
operand of CONTINUE, or in the next session using HERE on the command). 

You can use the SAVE subcommand to copy a SYSOUT data set to another data 
set for retrieval by a different method. Use the END subcommand to terminate 
OUTPUT. The remaining portion of a job that has been interrupted is kept for 
later retrieval at the terminal. 

Clleckpointed Data Set: A, data set is checkpointed if it is interrupted during 
printing and never processed to end-of-data during a terminal session. 

Interruptions which cause a data set to be checkpointed occur when: 

o Processing terminates in the middle of printing a data set because of an error 
or ABEND condition. 

o The attention key is pressed during the printing of a data set and the 
CONTINUE NEXT subcommand is entered. The KEEP operand must be 
present or the data set is deleted. 

o The attention key is pressed during the printing of a data set and the END 
subcommand is entered. 

Example 1 

OperatiOlI: Direct the held output from a job to your terminal. Skip any 
checkpointed data sets. 

Known: 

The name of the job: SMITH2 

The job is in the system output class: SYSOUT = X 

Output operations are to be resumed with the next SYSOUT data set or 
group of system messages that have never been interrupted. You want the 
system to pause after processing each output data set. 

output smith2 class(x) print(*) next pause 

OUTPUT Command 181 



Example 2 

Operation: Direct the held output from two jobs to a data set so that it can be 
saved and processed at a later date. 

Known: 

The name of the jobs: JANA JANB 
The name for the output data set: JAN.AUGPP.OUTLIST 

output (jana,janb) class(r,s,t) print (augpp) 

Example 3 

Operation: Change an output class. 

Known: 

The name of the job: KEANI 
The existing output class: SYSOUT = S 
The new output class: T 

output keanl class(s) newclass(t) 

Example 4 

Operation: Delete the held output instead of changing the class (see Example 3). 

out keanl class(s) delete 

Example 5 

Operation: Retrieve SYSOUT data from your session at your terminal. 

Known: 

The TSO user ID: SMITH 
A JES held SYSOUT class: X 
The filename of the SYSOUT data set: SYSUT2 

free file(sysut2) sysout(x) 
status smith 
SMITH(TSU0001) EXECUTING 
output smith(tsu0001) 

182 TSO Extensions Command Language Reference 



OUTPUT Subcommands 

The subcommands of the OUTPUT command are: 

CONTINUE 
Resumes output operations that have been interrupted. 

HELP 
Obtains the syntax and function of the OUTPUT subcommands. 

SAVE 
Copies the SYSOUT data set from the spool to the named data set. 

OUTPUT Subcommands 183 



CONTINUE Subcommand of OUTPUT 

Use the CONTINUE subcommand to resume output operations that have been 
interrupted. 

Interruptions occur when: 

• An output operation completes and the PAUSE operand was specified with 
the OUTPUT command. 

• You press the attention key. 

BEGIN 

[~:~~N] NEXT 

[
PAUSE 1 
NOPAUSE 

indicates output operations are to be resumed from the beginning of the 
data set being processed at the time of interruption. 

HERE 
indicates output operations are to be resumed at a point of interruption. If 
the attention key is pressed, processing resumes at the approximate point of 
interruption in the current data set. If end-of-data is reached and PAUSE is 
specified, processing resumes at the beginning of the next data set (even if it 
is checkpointed and HERE is specified on the command). 

NEXT 
halts all processing of the current data set and specifies that output 
operations are to be resumed with the next data set. 

The next data set is determined by the BEGIN, HERE, or NEXT operand 
on the OUTPUT command. If BEGIN is specified on the command, 
processing starts at the beginning of the next data set. If HERE is specified, 
processing starts at the checkpoint of the next data set or at its beginning, if 
no checkpoint exists. If NEXT is specified, processing starts-at the 
beginning of the next non-checkpointed data set. If BEGIN, HERE, and 
NEXT are omitted, then NEXT is the default. 

Note: The interrupted and/or skipped data set is deleted unless you 
specified KEEP on the OUTPUT command. 

PAUSE 
indicates output operations are to pause after each data set is processed to 
allow you to enter a SAVE subcommand. Pressing the ENTER key after 
the pause causes normal processing to continue. You can use this operand 
to override a previous NOPAUSE condition for output. 

184 TSO Extensions Command Language Reference 



NOPAUSE 
indicates output operations are not to be interrupted. You can use this 
operand to override a previous condition for output. 

Example 1 

Operation: Continue output operation with the next SYSOUT data set. 

continue 

Example 2 

Operation: Start output operations over again with the current data set being 
processed. 

continue begin 

CONTINUE Subcommand of OUTPUT 185 



END Subcommand of OUTPUT 

Use the END subcommand to terminate the operation of the OUTPUT 
command. 

END 

186 TSO Extensions Command Language Reference 



HELP Subcommand of OUTPUT 

Use the HELP subcommand to obtain the syntax and function of the OUTPUT 
subcommands. Refer to the HELP command for a description of the syntax and 
function of the HELP subcommand. 

HELP Subcommand of OUTPUT 187 



SAVE Subcommand of OUTPUT 

Use the SAVE subcommand to copy the SYSOUT data set from the spool data 
set to the named data set. If you use the data set with the PRINT operand, then 
it must be a valid data set. There is no restriction against saving JCL. To use 
SAVE, you should specify the PAUSE operand on the OUTPUT command. 
SAVE does not save the entire SYSOUT output of the job, only the data set 
currently being processed. 

data-set-name 

data-set-name 
specifies the new data set name to which the SYSOUT data set is to be 
copied. 

Example 1 

Operation: Save an output data set. 

Known: 

The name of the data set: ADT023.NEWOUT.OUTLIST 

save newout 

Example 2 

Operation: Save an output data set. 

Known: 

The name of the data set: BXZ037A.OLDPART.OUTLIST 
The data set member name: MEM5 
The data set password: ZIP 

save oldpart(mem5)/zip 

188 TSO Extensions Command Language Reference 



PROFILE Command 

Use the PROFILE command or subcommand of EDIT to establish, change, or 
list your user profile. The information in your profile tells the system how you 
want to use your terminal. You can: 

• Define a character-deletion or line-deletion control character (on some 
terminals). 

• Specify whether or not prompting is to occur. 

Cit Specify the frequency of prompting under the EDIT command. 

• Specify whether or not you want to accept messages from other terminals. 

CD Specify whether or not you want the opportunity to obtain additional 
information about messages from a CLIST. 

• Specify whether or not you want message numbers for diagnostic messages 
displayed at your terminal. 

The syntax and function of the PROFILE subcommand of EDIT is the same as 
that of the PROFILE command. 

Initially, a user profile is prepared for you when arrangements are made for you 
to use the system. The authorized system programmer creates your user ID and 
your user profile. The system programmer is restricted to defining the same user 
profile for every user ID that the programmer creates. This typical user profile is 
defined when a user profile table (UPT) is initialized to hexadecimal zeroes for 
any new user ID. Thus, your initial user profile is made up of the default values 
of the operands discussed under this command. The system defaults, shown in 
Figure 10, provide for the character-delete and the line-delete control characters, 
depending upon what type of terminal is involved: 

TSO Terminal Character-Delete Line-Delete 
Control Character Control Character 

IBM 2741 Communication Terminal BS(backspace) ATTN(attention) 
IBM 3270 Information Display System None None 
IBM 3290 Information Panel None None 
IBM 3767 Communication Terminal None None 
IBM 3770 Data Communication System None None 

Figure 10. System Defaults for Control Characters 

If deletion characters, prompting, and message activity are not what you expect, 
check your profile by displaying it with the LIST operand. 

Change your profile by using the PROFILE command with the appropriate 
operands. Only the characteristics that you specify explicitly by operands are 
changed. Other characteristics remain unchanged. The new characteristics 
remain valid from session to session. If PROFILE changes do not remain from 
session to session, your installation might have a LOGON pre-prompt exit that is 
preventing the saving of any changes in the UPT. Verify this with your system 
programmer. 

PROFILE Command 189 



If no operands are entered on the PROFILE command, the current user profile is 
displayed. 

IPROFILE] 
PROF 

RECOVER 

[
RECOVER ] 
NORECOVER 

[

CHAR (I Cha~~cter] )] 6 

NO CHAR 

[

LINE (.{ATTN ) )]6 character 
CTLX 

NOLINE 

PROMPT ] 
NOPROMPT 

INTERCOM ] 
NOINTERCOM 

[
PAUSE ] 
NOPAUSE 

[
MSGID ] 
NOMSGID 

[
MODE ] 
NOMODE 

[LIST] 

[
PREFIX(dSname-prefiX)] 
NOPREFIX 

[
WTPMSG ] 
NOWTPMSG 

specifies that you can use the recover option of the EDIT command. 

NORECOVER 
specifies that you cannot use the recover option of the EDIT command. 
This is the default value for your profile when the profile is created. 

CHAR( character)6 
speCifies the EBCDIC character that you want to use to tell the system to 
delete the previous character entered. You should not specify a blank, tab, 
comma, asterisk, or parentheses because these characters are used to enter 
commands. You should not specify terminal-dependent characters, which 
do not translate to a valid EBCDIC character. 

If you are running under Session Manager, the system ignores the EBCDIC 
character. 

Note: Do not use an alphabetic character as either a character-delete or a 
line-delete character. If you do, you run the risk of not being able to enter 
certain commands without accidentally deleting characters or lines of data. 
For instance, if you specify R as a character-delete character, each time you 

6 Not supported with terminals that use VT AM. 

190 TSO Extensions Command Language Reference 



try to enter a PROFILE command the R in PROFILE would delete the P 
that precedes it. Thus it would be impossible to enter the PROFILE 
command as long as R is the character-delete control character. 

CHAR(BS)7 
specifies a backspace signals that the previous character entered should be 
deleted. This is the default value when your user profile is created. 

NOCHAR7 
specifies no control character is to be used for character deletion. 

LINE(ATTN)7 
specifies an attention interruption is to be interpreted as a line-deletion 
control character. This is the default value when your user profile is 
created. 

Note: If an invalid character and/or line-delete control character is entered 
on the PROFILE command, an error message informs you of which specific 
control character is invalid. The character or line delete field in the user 
profile table is not changed. You can continue to use the old character or 
line delete control characters. 

LINE( character)? 
specifies a control character that you want to use to tell the system to delete 
the current line. 

If you are running under Session Manager, the system ignores the control 
character. 

LINE(CTLX)7 
specifies the X and CCTRL keys (pressed together) on a TeletypeS terminal 
are to be interpreted as a line-deletion control character. If you are 
operating a Teletype terminal, LINE is the default value when your user 
profile is created. 

NOLINE7 
specifies no line-deletion control character (including ATTN) is recognized. 

PROMPT 
specifies that you want the system to prompt you for missing information. 
This is the default value when your user profile is created. 

NOPROMPT 
specifies no prompting is to occur. 

INTERCOM 
specifies that you can receive messages from other terminal users. This is 
the default value when your user profile is created. 

Not supported with terminals that use VTAM. 

Trademark of the Teletype Corporation. 

PROFILE Command 191 



NOINTERCOM 
specifies that you do not want to receive messages from other users. 

PAUSE 
specifies that you want the opportunity to obtain additional information 
when a message is issued at your terminal while a CLIST (see the EXEC 
command) or an in-storage command list (created by using the STACK 
macro) is executing. After a message that has additional levels of 
information is issued, the system displays the word PAUSE and waits for 
you to enter a question mark (?) or press the ENTER key. 

NOPAUSE 
specifies that you do not want to be prompted for a question mark or 
ENTER. This is the default value when your user profile is created. 

MSGID 
specifies diagnostic messages are to include message identifiers. 

NOMSGID 
specifies diagnostic messages are not to include message identifiers. This is 
the default value when your user profile is created. 

MODE 
specifies a mode message is requested at the completion of each 
subcommand of EDIT. 

NOMODE 

LIST 

specifies, when this mode is in effect, the mode message (E or EDIT) is to 
be issued after a SAVE, RENUM, or RUN subcommand is issued and also 
when changing from input to edit mode. Specifying PROFILE NOM ODE 
eliminates some of the edit mode messages. NOMODE has the same effect 
in the background as it does in the foreground. Your profile can be 
changed by using the PROFILE command with the appropriate operands. 
Only those characteristics specifically denoted by the operands specified are 
changed. All other characteristics remain unchanged. 

specifies the characteristics of the terminal user's profile be listed at the 
terminal. If other operands are entered with LIST, the characteristics of the 
user's profile are changed first, and then the new profile is listed. 

After a new user ID is created and before the character-delete and/or 
line-delete control character is changed, entering PROFILE LIST results in 
CHAR(O) and LINE(O) being listed. This indicates the terminal defaults for 
character-delete and line-delete control characters are used. 

Although you receive RECOVER/NORECOVER as an option for this 
operand, you must be authorized ~o use the RECOVER options. 

PREFIX( dsname-prefix) 
specifies a prefix is to be appended to all non-fully qualified data set names. 
The prefix is composed of one-to-seven alphameric characters that begin 
with an alphabetic or national character. 

192 TSO Extensions Command Language Reference 



NO PREFIX 
specifies no prefixing of data set names by any qualifier is to be performed. 

The default prefix in the foreground is the user ID. No prefixing of data set 
names is the default in the background. 

WTPMSG 
specifies that you want to receive all write-to-programmer messages at your 
terminal. 

NOWTPMSG 
specifies that you do not want to receive write-to-programmer messages. 
This is the default value when your user profile is created. 

PROFILE Foreground/Background Processing Differences: The following 
differences should be noted for foreground/background processing: 

• Changes made while processing in the foreground are saved from session to 
session. 

• Changes made while processing in the background are not saved after the 
terminal sessions. However, changes you specify remain in effect for the 
duration of the terminal sessions. Your foreground profile is affected by 
background processing. 

See Figure 11 for a guide to the initialization of the Terminal Monitor Program 
(TMP) in batch processing. 

PROFILE Command 193 



TMP Initialization in the Background 

User Profile Table (UPT) Protected Step Control Block (PSCB) 

RACF Job RACF/Non-RACF Job RACF Job RACF/Non-RACF Job 
With USER ID Without USER ID With USER ID Without USER ID 

USERFLD * ZERO PSCBUSER job user ID NULL (blanks) 

EDIT RECOV *$ NO RECOVER PSCBGPNM NULL NULL (blanks) 

PROMPT *$ NO PROMPT OPERATOR * NOOPER 

MSGID * MSGID ACCOUNT * ACCOUNT 

INTERCOMM * NO INTERCOMM JCL * JCL 

PAUSE * NO PAUSE MOUNT * NO MOUNT 

ATTN/LD * NOT ATTN ATTN/LD * NOT ATTN 

MODEMSG * NO MODEMSG EDIT RECOV * NO RECOVER 

WTPMSG * NOWTPMSG HOLDCLASS * NULL (zero) 

CHAR DEL *$ ZERO SUBMIT CLASS * NULL (zero) 

LINE DEL *$ ZERO SUBMIT MSGCLASS * NULL (zero) 

PREFIX 1 * NULL (blanks) SYSOUT CLASS * NULL (zero) 
2job user ID 

SYSOUTDEST * NULL (blanks) 

CHAR DEL * NULL (zero) 

LINE DEL * NULL (zero) 

REGION SIZE */2 NULL (zero) 

* The value is taken from UADS entry profile. If the * The value taken from the UADS entry profile. 
UADS prefix is empty, the system uses the job user ID. 

*$ You can modify most of the above defaults in the 
background by issuing the PROFILE command with the 
appropriate operand/keyword. You cannot use the 
PROFILE command to modify the attributes in the 
background. 

Figure 11. UPT/PSCB Initialization Table in the Background 

Example 1 

Operation: Establish a complete user profile 

Known: 

The character that you want to use to tell the system to delete the previous 
character: # 

The indicator that you want to use to tell the system to delete the current line: 
ATTN. 

You want to be prompted. 

You do not want to receive messages from other terminals. 

You want to be able to get second level messages while a CLIST is executing. 

You do not want diagnostic message identifiers. 

profile char(#) line(attn) prompt nointercom pause 
nomsgid 

194 TSO Extensions Command Language Reference 



Example 2 

Operation: Suppose that you have established the user profile in Example 1. The 
terminal that you are using now does not have a key to cause an attention 
interrupt. You want to change the line-delete control character from ATTN to @ 
without changing any other characteristics. 

profile line(@) 

Example 3 

Operation: Establish and use a line-deletion character and a character-deletion 
character. 

Known: 

The line-deletion character: & 
The character-deletion character: 

profile line(&) char(l) 

If you type: 

now is the ti&aclbcgl. 

and press the ENTER key, you actually enter: 

abc. 

PROFILE Command 195 



PROTECT Command 

Use the PROTECT command to prevent unauthorized access to your non-V SAM 
data set. Use the Access Method Services ALTER and DEFINE commands to 
protect your VSAM data set. These commands are described in Access Method 
Services. 

The PROTECT command establishes or changes: 

• The passwords that must be specified to gain access to your data 

• The type of access allowed 

Data sets that have been allocated (either during a LOGON procedure or by the 
ALLOCATE command) cannot be protected by specifying the PROTECT 
command. To password protect an allocated data set, you would deallocate it 
first using the FREE command and then protect it using the PROTECT 
command. 

(
PROTECT] 
PROT 

data-set-name 

data-set-name /control password 

[

ADD (password 2) ] 
REPLACE (passwordl password2) 
DELETE (passwordl) 
LIST (passwordl) 

[
PWREAD 1 
NOPWREAD 

[
PWWRITE 1 
NOWRITE 

[DATA ( 'string' )] 

specifies the name of the data set you want to protect. 

If the data set is not cataloged, you must specify the fully qualified name. 
For example: 

protect 'userid.dsn.qual' list (password) 

control password 
required on all operands except the LIST operand. It provides the control 
for authorized personnel to alter the password structure on the PROTECT 
command. See "Password Data Set" for additional information. 

ADD(password2) 
specifies a new password is to be required for access to the named data set. 
ADD is the default. 

If the data set exists and is not already protected by a password, its security 
counter is set and the assigned password is flagged as the control password 
for the data set. The security counter is not affected when additional 
passwords are entered. 

196 TSO Extensions Command Language Reference 



REPLACE(passwordl, password2) 
specifies that you want to replace an existing password, access type, or 
optional security information. The first value (password!) is the existing 
password; the second value (password2) is the new password. 

DELETE(passwordl) 
specifies that you want to delete an existing password, access type, or 
optional security information. 

If the entry being removed is the control password (see the discussion 
following these operand descriptions), all other entries for the data set are 
also removed. 

LIST(passwordl) 
specifies that you want the security counter, the access type, and any 
optional security information in the password data set entry to be displayed 
at your terminal. 

passwordl 
specifies the existing password that you want to replace, delete, or have its 
security information listed. 

password2 
specifies the new password that you want to add or to replace an existing 
password. 

PWREAD 
specifies the password must be given before the data set can be read. 

NOPWREAD 
specifies the data set can be read without using a password. 

PWWRITE 
specifies the password must be given before the data set can be written to. 

NOWRITE 
specifies the data set cannot be written to. 

DATA{'string') 
specifies optional security information to be retaIned in the system. The 
value that you supply for string specifies the optional security information 
that is to be included in the password data set entry (up to 77 bytes). 

PROTECT Command 197 



Example 1 

Operation: Establish a password for a new data set. 

Known: 

The name of the data set: ROBID.SALES.DATA 
The password: L82G RIFN 
The type of access allowed: PWREAD PWWRITE 
The logon id was: ROBID 

protect sales.data pwread add (182grifn) 

Example 2 

Operation: Replace an existing password without changing the existing access 
type. 

Known: 

The name of the data set: ROBID.NETSALES.DATA 
The existing password: MTG@AOP 
The new password: PAO$TMG 
The control password: ELHA VJ 
The logon id was: ROBID 

prot netsales.data/elhavj replace(mtg@aop,pao$tmg) 

Example 3 

Operation: Delete one of several passwords. 

Known: 

The name of the data set: ROBID.NETGROSS.ASM 
The password: LETGO 
The control password: APPLE 
The logon id was: ROBID 

prot netgross.asm/apple delete(letgo) 

Example 4 

Operation: Obtain a listing of the security information for a protected data set. 

Known: 

The name of the data set: ROBID.BILLS.CNTRLA 
The password required: D#JP J AM 

protect 'robid.bills.cntrla' list(d#jpjam) 

198 TSO Extensions Command Language Reference 



Passwords 

Types of Access 

Example 5 

Operation: Change the type of access allowed for a data set. 

Known: 

The name of the data set: ROBID.PROJCTN.LOAD 
The new type of access: NOPWREAD PWWRITE 
The existing password: DDA Y6/6 
The control password: EEYORE 
The logon id was: ROBID 

protect projctn.load/eeyore replace(dday6/6)­
nopwread pwwrite 

You can assign one or more passwords to a data set. Once assigned, the 
password for a data set must be specified in order to access the data set. A 
password consists of one through eight alphameric characters. You are allowed 
two attempts to supply a correct password. 

Four operands determine the type of access allowed for your data set: 
PWREAD, PWWRITE, NOPWREAD, NOWRITE. 

Each operand, when used alone, defaults to one of the preceding types of access. 
The default values for each operand used alone are: 

OPERAND 

PWREAD 
NOPWREAD 
PWWRITE 
NOWRITE 

DEFAULT VALUE 

PWREAD 
NOPWREAD 
NOPWREAD 
PWREAD 

PWWRITE 
PWWRITE 
PWWRITE 
NOWRITE 

A combination of NOPWREAD and NOWRITE is not supported and defaults to 
NOPWREAD and PWWRITE. 

If you specify a password, but do not specify a type of access, the default is: 

• NOPWREAD PWWRITE, if the data set does not have any existing access 
restrictions 

• The existing type of access, if a type of access has already been established 

When you specify the REPLACE function of the PROTECT command, the 
default type of access is that of the entry being replaced. 

PROTECT Command 199 



Password Data Set 

Before you can use the PROTECT command, a password data set must reside on 
the system residence volume. The password data set contains passwords and 
security information for protected data sets. You can use the PROTECT 
command to display this information about your data sets at your terminal. 

The password data set contains a security counter for each protected data set. 
This counter keeps a record of the number of times an entry has been referred to. 
The counter is set to zero at the time an entry is placed into the data set, and is 
increased each time the entry is accessed. 

Each password is stored as part of an entry in the password data set. The first 
entry in the password data set for each protected data set is called the control 
entry. The password from the control entry must be specified for each access of 
the data set by using the PROTECT command. However, the LIST operand of 
the PROTECT command does not require the password from the control entry. 

If you omit a required password when using the PROTECT command, the system 
prompts you for it. If your terminal is equipped with the print-inhibit feature, the 
system disengages the printing mechanism at your terminal while you enter the 
password in response. However, the print-inhibit feature is not used if the 
prompting is for a new password. 

200 TSO Extensions Command Language Reference 



I 
I, 

RECEIVE Command 

Use the RECEIVE command to retrieve transmitted files and to restore them to 
their original format. 

The RECEIVE command picks the first file that has been transmitted to you, 
displays descriptive information about the file, and prompts you for information 
to control the restore operation. You can choose to accept the default data set 
name (the original data set name with the high level qualifier changed to the 
receiving user ID) and space information or you can override any of these 
defaults. RECEIVE creates the data set if it does not exist. You can specify a 
disposition (OLD, SHR, MOD, or NEW) to force a particular mode of operation. 
If the data set is successfully restored, RECEIVE continues with the next file. If 
requested by the sender, RECEIVE generates a notification of receipt and 
transmits it back to the sender. This return message contains routing and origin 
information, the name of the data set transmitted, the original transmission 
sequence number, and an indicator of whether the receive was successful. If an 
error occurred, the message number of the error is included. 

Receipt notification is the default for any addressee entered individually on the 
TRANSMIT command, but not for addressees derived from distribution lists. If 
you want to be notified for addressees on distribution lists, you must specify 
:NOTIFY on the distribution list in the control data set or specify 
NOTIFY(ALL) on the TRANSMIT command. 

Generally, RECEIVE cannot reformat data sets. The data set into which received 
data is to be written must have the same record format as the original data set. 
The record length must be compatible. That is, equal for fixed-length records and 
equal or longer for variable-length records. The block size of the received data 
set can be any value that is compatible with the record length and record format. 
If a mismatch is found in record length, block size, or record format, RECEIVE 
terminates with appropriate error messages and return codes. The largest 
fixed-length record data set TSO can receive from VM is 32,760. 

RECEIVE warns you if you are receiving a data set that was RACF or 
PASSWORD protected. It takes no further action to protect newly restored data. 
If you are using the automatic data set protection feature of RACF, then the data 
set is protected. Otherwise, you should use the PROTECT command or the 
RACF ADDSD command to protect the data. 

If RECEIVE detects that TRANSMIT enciphered the incoming file, it 
automatically attempts to decipher the data. To do this, it prompts you for 
decipher options and then passes these to the Access Method Services REPRO 
command. See "Data Encryption Function of TRANSMIT and RECEIVE" 
under the TRANSMIT command. 

The RECEIVE command logs transmissions. See "Logging Function of 
TRANSMIT and RECEIVE" under the TRANSMIT command. 

RECEIVE Command 201 



The format of the RECEIVE command is: 

RECEIVE 

USERID(userid) 

[USERID(userid)] 

[I INDDNAME(ddname)I] 
INFILE(ddname) 

I INDSNAME ( dsn ) I 
INDATASET(dsn) 

[PARM(parameter string)] 

allows you to receive data for a user ID other than your own. The 
USERID operand is limited to users with OPERATOR authority and to 
those who are authorized through the RECEIVE initialization exit 
(INMRZOI). The user ID might exist in SYSl.UADS at the target node or 
might be a non-existent user ID. 

INDDNAME(ddname) or INFILE(ddname) 
specifies the use of a preallocated file as the input data set to receive the 
transmitted data. Define the data set with RECFM = F, FB, V, VB, or U. 
For F and FB, LRECL = 80. The remaining DCB attributes are installation 
options. 

Specify the data set as either sequential or partitioned, but it must be the 
same as that specified for OUTDDNAME or OUTFILE of the 
TRANSMIT command. INDDNAME and INFILE are primarily intended 
for system programmer use. 

INDSNAME(dsn) or INDATASET(dsn) 
specifies the use of a sequential data set as the input data set to receive the 
transmitted data. Define the data set with RECFM = F, FB, V, VB, or U. 
For F and FB, LRECL=80. The remaining DCB attributes are installation 
options. 

If you specify INDATASET with RECEIVE, then the transmitted data is 
not logged and no acknowledgment is sent to the originator. If you do not 
specify INDATASET, then the transmitted data is logged or written into 
the log entry and an acknowledgment is sent to the originator. 

Use INDSNAME and INDATASET in conjunction with OUTDSNAME 
and OUTDAT ASET operands of the TRANSMIT command. 
INDSNAME and INDAT ASET are primarily intended for system 
programmer use. 

P ARM (parameter string) 
You can be instructed by your installation to use this operand to specify 
installation dependent data. 

After describing each file, the RECEIVE command prompts for overriding 
parameters. These parameters are all optional and control the restoring of 
the data set. Parameters not specified are allowed to default or are taken 

202 TSO Extensions Command Language Reference 



from information transmitted with the data. The optional parameters are as 
follows: 

[ IDATASET(dSn)ll 
DSNAME(dsn) 

[UNIT(unitname)] 
[VOLUME(volser)] 

[!~~i~i~;;;:::f]secondarY)l 
[RELEASE] 
[DIRECTORY(blocks)] 

[
[ii~SlIZE (size) ] 

MOD 
SHR 

[SYSOUT(sysoutclass or *)] 

[
PREVIEW 1 
NOPREVIEW 

[( :~~~g:~(LOG)ll DELETE 
END 

[COpy] 

Default values for other keywords are specified with the keyword below. 

DATASET(dsn)/DSNAME(dsn) 
specifies the name of the data set to be used to contain the received data set. 
It is created if it does not already exist. 

If DATASET and DSNAME are omitted, then RECEIVE uses the name of 
the transmitted data set, with the high level qualifier changed to the user ID 
of the receiving user. If this data set already exists, is a sequential data set, 
and disposition (SHR/MOD/OLD/NEW) was not specified, RECEIVE 
prompts you for permission to overwrite the data set. If the data set is 
partitioned, you are prompted to replace duplicate members. 

UNIT(unitname) 
specifies a unit name for a new output data set. The default value for UNIT 
is your normal TSO unit name. 

VOLUME(volser) 
specifies a specific volume serial number for a new output data set. The 
default value for VOLUME is no value, allowing the system to select a 
volume from those defined by your unit name specified on the UNIT 
keyword. 

SPACE(primary,secondary) 
specifies primary and secondary space for the received data set. The default 
value for SPACE is a primary size equal to the size of the incoming data 
and a secondary size of approximately 2 1/2 percent of the primary. 

RECEIVE Command 203 



TRACKS 
specifies space to be allocated in tracks. TRACKS is the default. 

CYLINDERS 
specifies space to be allocated in cylinders. 

BLOCKS(size) 
specifies space to be allocated in blocks of the specified size. 

RELEASE 
specifies unused space to be released when the receive operation is complete. 

DIRECTORY(blocks) 
specifies an override for the number of directory blocks in a partitioned data 
set. The default value for DIRECTORY is the number of directory blocks 
required for the received members. 

If a sequential data set is being received into a new PDS by specifying 
DA(X(MEM)) and DIRECTORY is not specified, the default value for 
directory blocks is 27. 

BLKSIZE(size) 
specifies a value for the block size of the output data set. This value is 
used, if it does not conflict with the received data set parameters or device 
characteristics. 

NEW IOLD/MOD/SHR 
specifies the data set disposition. If you do not specify one of the 
disposition keywords and the SPACE value is not present, RECEIVE first 
tries disposition OLD and attempts to allocate an existing data set. If this 
fails, disposition NEW is used, space values are added, and another attempt 
is made at allocation. 

SYSOUT(sysoutclass or *) 
specifies a SYSOUT class to be used for messages from utility programs the 
RECEIVE command invokes (such as IEBCOPy). If * is specified, these 
messages are directed to the terminal. The default for SYSOUT is normally 
*, but this might be changed by the installation. 

PREVIEW 
specifies the received data should be displayed at the terminal as it is stored. 
This is generally appropriate only for sequential data sets because what is 
displayed is the result of the first pass at restoring the data. For partitioned 
data sets, the IEBCOPY unloaded format is displayed. 

NOPREVIEW 
specifies no previewing is to be done. NOPREVIEW is the default. 

RESTORE 
specifies the transmitted data should be restored to its original format. 
RESTORE is the default. 

204 TSO Extensions Command Language Reference 



RESTORE(LOG) 
specifies the transmitted data should be restored to its original format and 
written to the appropriate log. It is also previewed to the terminal, but it is 
not written to another data set. The DATASET or DSNAME parameter 
cannot be specified with RESTORE(LOG). This operand would be used 
primarily to RECEIVE a message and log the message text in the log entry. 

DELETE 
specifies the file be deleted without restoring it. 

END 
specifies the RECEIVE command terminate immediately, leaving the current 
data set on the spool to be reprocessed at a later time. 

COPY 
specifies not to restore the transmitted data to its original format, but copy 
it 'as is'. At a later time you can specify RECEIVE INDAT ASET to 
restore the data. COPY allows you to examine the data in its transmitted 
form so that you can debug problems when RECEIVE cannot process the 
transmitted data. It is primarily intended for system programmer use. 

Examples 

In the following examples, the transmitting user is assumed to have user ID 
USERI at node NODEA and the receiving user is assumed to have user ID 
USER2 at node NODEB. The sending user has a NAMES data set as follows: 

* Control section 
:altctl.DEPT.TRANSMIT.CNTL 
:prolog.Greetings from John Doe. 
:prolog. 
:epilog. 
:epilog.Yours,:epilog.John Doe :epilog.NODEA.USERl 
* * Nicknames section. 
* 
:nick.alamo :list.Jim Davy :logname.alamo :notify. 
:nick.addrchg :list.joe davy jim :nolog :nonotify 
:nick.Joe :node.nodeb :userid.user2 :name.Joe Doe 
:nick.Me :node.nodea :userid.userl :name.me 
:nick.Davy :node.alamo :userid.CROCKETT :name.Davy Crockett 
:nick.Jim :node.ALAMO :userid.Bowie :name.Jim Bowie 

In the examples involving the RECEIVE command, data entered by the user 
appears in lower case and data displayed by the system is in upper case. 

Example 1: Transmit a copy of the 'SYSl.PARMLIB' data set to Joe, 
identifying Joe by his node and user ID. 

TRANSMIT NODEB.USER2 DA('SYSl.PARMLIB') 

RECEIVE Command 205 



Example 2: Joe receives the copy of 'SYS1.PARMLIB' transmitted above. 

receive 
DATASET 'SYS1.PARMLIB' FROM USERl ON NODEA 
ENTER ALLOCATION PARAMETERS, 'DELETE', OR 'END' 
<null line> 
RESTORE SUCCESSFUL TO DATASET 'USER2.PARMLIB' 

No more Interactive Data Transmission Facility files 
are available for the RECEIVE command to process. 

In the above example, Joe has issued the RECEIVE command, seen the 
identification of what arrived, and chosen to accept the default data set name for 
the arriving file. The default name is the original data set name with the high 
level qualifier replaced by his user ID. 

Example 3: Transmit two members of 'SYS1.PARMLIB' to Joe, and add a 
message identifying what was sent. Joe is identified by his NICKNAME, leaving 
it to TRANSMIT to convert it into node and user ID by the nicknames section of 
the NAMES data set. 

transmit joe da('sysl.parmlib') mem(ieasysOO,ieaipsOO) msg line 
ENTER MESSAGE FOR NODEB.USER2 
Joe, 

These are the parmlib members you asked me to send you. 
They are in fact the ones we are running today. 
<null line> 

The message text in this example was entered in line mode which would be 
unusual for a user on a 3270 terminal, but which is easier to show in an example. 

Example 4: Joe begins the receive process for the members transmitted in 
Example 3. He terminates the receive without actually restoring the data onto the 
receiving system, because he does not know where he wants to store the data. 

receive 
DATASET 'SYS1.PARMLIB' FROM USERl ON NODEA 
MEMBERS: IEASYSOO, IEAIPSOO 
GREETINGS FROM JOHN DOE. 
JOE, 

THESE ARE THE PARMLIB MEMBERS YOU ASKED ME TO SEND YOU. 
THEY ARE IN FACT THE ONES WE ARE RUNNING TODAY. 
YOURS, 
JOHN DOE 
NODEA.USERl 
ENTER ALLOCATION PARAMETERS, 'DELETE', OR 'END' 
end 

In the above example, notice that the PROLOG and EPILOG lines have been 
appended to the message entered by the sender. In an actual RECEIVE 
operation, the original message text would appear in both upper and lower case 
just as the sender had entered it (assuming the receiver's terminal supports lo~er 
case.) 

206 TSO Extensions Command Language Reference 



Example 5: Joe receives the 'SYS1.PARMLIB' members transmitted in Example 
3. Specify space parameters for the data set that will be built by RECEIVE in 
order to leave space for later additions. 

receive 
DATASET 'SYSl.PARMLIB' FROM USERI ON NODEA 
MEMBERS: IEASYSOO, IEAIPSOO 
GREETINGS FROM JOHN DOE. 
JOE, 

THESE ARE THE PARMLIB MEMBERS YOU ASKED ME TO SEND YOU. 
THEY ARE IN FACT THE ONES WE ARE RUNNING TODAY. 
YOURS, 
JOHN DOE 
NODEA.USERI 
ENTER ALLOCATION PARAMETERS, 'DELETE', OR 'END' 
da('nodea.parmlib') space(l) cyl dir(lO) 
RESTORE SUCCESSFUL TO DATASET 'NODEA.PARMLIB' 

No more Interactive Data Transmission Facility files 
are available for the RECEIVE command to process. 

The received members IEASYSOO and IEAIPSOO are saved in the output data set 
with their member names unchanged. 

Example 6: Send a message to a user on another system. 

TRANSMIT DAVY 
<The following text is entered on successive lines> 
<of a full-screen data area. > 
Davy, 

I sure would like to have a coonskin cap like 
yours. 
<Use PF3 to cause message to be sent> 

In this example, the target user is identified by his nickname and no data set is 
specified, causing the terminal to be used as an input source. A full screen input 
area is displayed. In this area, the user can type data, scroll using program 
function (PF) keys PF7 or PF19 and PF8 or PF20, and exit using PF3 or PF15. 

RECEIVE Command 207 



RENAME Command 

Use the RENAME command to: 

• Change the name of a non-VSAM cataloged data set 
• Change the name of a member of a partitioned data set 
• Create an alias for a member of a partitioned data set. 

The Access Method Services ALTER command changes the name of VSAM data 
sets and is described in Access Method Services. 

When a password protected data set is renamed, the data set does not retain the 
password. You must use the PROTECT command to assign a password to the 
data set before you can access it. 

jRENAME) 
REN 

old-name 

old-name 
[ALIAS] 

new-name 

specifies the name that you want to change. The name that you specify can 
be the name of an existing data set or the name of an existing member of a 
partitioned data . set. 

new-name 
specifies the new name to be assigned to the existing data set or member. If 
you are renaming or assigning an alias to a member, you can supply only 
the member name and omit all other levels of qualification. 

ALIAS 
specifies the member name supplied for new-name operand is to become an 
alias for the member identified by the old-name operand. 

You can rename several data sets by substituting an asterisk for a qualifier 
in the old-name and new-name operands. The system changes all data set 
names that match the old name except for the qualifier corresponding to the 
asterisk's position. 

Note: Do not use the RENAME command to create an alias for a linkage 
editor created load module. 

208 TSO Extensions Command Language Reference 



Example 1 

Operation: You have several non-VSAM data sets named: 

userid.mydata.data 
userid.yourdata.data 
userid.workdata.data 

that you want to rename: 

userid.mydata.text 
userid.yourdata.text 
userid.workdata.text 

You can specify either: 

rename 'userid.*.data' ,'userid.*.text' 

or 

rename *.data,*.text 

Example 2 

Operation: Assign an alias SUZIE to the partitioned data set member named 
ELIZBETH(LIZ). 

REN 'ELIZBETH(LIZ) , (SUZIE) ALIAS 

RENAME Command 209 



RUN Command 

Use the RUN command to compile, load, and execute the source statements in a 
data set. The RUN command is designed specifically for use with certain 
program products. It selects and invokes the particular program product needed 
to process the source statements in the data set that you specify. Figure 12 shows 
which program product is selected to process each type of source statement. 

Source Program Product 

Assembler MVS/370: Assembler F and TSO Assembler Prompter 
MVSfXA: Assembler H Version 2 

COBOL OS/VS COBOL Release 2.4 and TSO COBOL Prompter 

FORTRAN FORTRAN IV (Gl) and TSO FORTRAN Prompter 
VSFORTRAN 

PLI PL/I Checkout Compiler or PL/I Optimizing Compiler 

VSBASIC VSBASIC 

Figure 12. Source Statement/Program Product Relationship 

The RUN command and the RUN subcommand of EDIT perform the same basic 
function. 

data-set-name 

[ 'parameters' ] 

ASM[LIB(data-set-list)] 
COBOL[LIB(data-set-list)] 

GOFORT 
[LMSG] [FIXED] 
SMSG FREE 

FORT[LIB(data-set-list)] 

PLI [CHECK] 
OPT 

[LIB(data-set-list)] 

VSBASIC [ ~:~~g ] [~~i~ST] [ NggO ] [ ~~~~~RE ] 
[
PAUSE ] [SOURCE] [SIZE(value)] 
NOPAUSE OBJECT 

data-set-name 'parameters' 

ASM 

specifies the name of the data set containing the source program. A string 
of up to 100 characters can be passed to the program by the parameters 
operand (valid only for data sets which accept parameters). 

In MVS/370, ASM specifies the TSO Assembler Prompter program product 
and the Assembler (F) compiler are to be invoked to process source 
program. In MVS/XA, ASM specifies the Assembler H Version 2 compiler 
(without the TSO Assembler Prompter) is to be invoked to process the 

210 TSO Extensions Command Language Reference 



source program. If the rightmost qualifier of the data set name is ASM, 
this operand is not required. 

Lm( data-set-list) 
specifies the library or libraries that contain subroutines needed by the 
program you are running. These libraries are concatenated to the default 
system libraries and passed to the loader for resolution of external 
references. This operand is valid only for the following data set types: 
ASM, COBOL, FORT, and PLI (Optimizer). 

COBOL 
specifies the TSO COBOL Prompter and the OS/VS COBOL program 
product are to be invoked to process the source program. If the rightmost 
qualifier of the data set name is COBOL, this operand is not required. 

GOFORT 
specifies the Code and Go FORTRAN program product is to be invoked to 
process the source program. If the right most qualifier of the data set name 
is GOFORT, this operand is not required. 

LMSG 
specifies long form diagnostic messages are to be provided. 

SMSG 
specifies short form diagnostic messages are to be provided. 

FIXED 
specifies statements adhere to the standard FORTRAN column 
requirements and are 80 bytes long. 

FREE 
specifies statements are of variable lengths and do not conform to set 
column requirements. 

FORT 

PLI 

specifies the TSO FORTRAN Prompter and the FORTRAN IV (Gl) 
program products are to be invoked to process the source program. 

specifies the PL/I Prompter and either the PL/I Optimizer compiler or the 
PL/I Checkout compiler are to be invoked to process the source program. 
If the rightmost qualifier of the data set name is PLI, this operand is not 
required. 

CHECK 

OPT 

specifies the PL/I Checkout compiler. If you omit this operand, the 
OPT operand is the default value. 

specifies the PL/I Optimizing compiler. If both CHECK and OPT are 
omitted, OPT is the default value. 

RUN Command 211 



VSBASIC 
specifies the VSBASIC program product is to be invoked to process the 
source program. 

LPREC 
specifies long precision arithmetic calculations are required by the 
program. 

SPREC 
specifies short precision arithmetic calculations are adequate for the 
program. SPREC is the default value. 

TEST 
specifies testing of the program is to be performed. 

NOTEST 

GO 

specifies the TEST function is not to be performed. NOTEST is the 
default value. 

specifies the program is to receive control after compilation. GO is 
the default value. 

NOGO 
specifies the program is not to receive control after compilation. 

STORE 
specifies the compiler is to store an object program. 

NOSTORE 
specifies the compiler is not to store an object program. NOSTORE is 
the default value. 

PAUSE 
specifies the compiler is to prompt to the terminal between program 
chains. 

NO PAUSE 
specifies no prompting between program chains. NOPAUSE is the 
default value. 

SOURCE 
specifies the new source code is to be compiled. SOURCE is the 
default value. 

OBJECT 
specifies the data set name entered is a fully-qualified name of an 
object data set to be executed by the VSBASIC compiler. 

SIZE(value) 
specifies the number of thousand-byte blocks of user area where value 
is an integer of one to three digits. 

212 TSO Extensions Command Language Reference 



Determining Compiler Type: The system uses two sources of information to 
determine which compiler is to be used. The first source of information is the 
optional operand (ASM, COBOL, FORT, PLI, or VSBASIC) that you can 
specify for the RUN command. If you omit this operand, the system checks the 
descriptive qualifier of the data set name that is to be executed. If the system 
cannot determine the compiler type from the descriptive qualifier, you are 
prompted for it. 

The RUN command uses standard library names, such as SYS1.FORTLIB and 
SYS1.COBLIB, as the automatic call library. This is the library searched by the 
linkage editor to locate load modules referred to by the module being processed 
for resolution of external references. 

RUN causes other commands to be executed from an in-storage list. If an error 
occurs, one of these commands might issue a message that has additional levels of 
information. This additional information is not available to the user unless the 
PAUSE option is indicated in the user's profile. The PAUSE option is described 
in the section under the PROFILE command. 

Example 1 

Operation: Compile, load, and execute a source program composed of VSBASIC 
statements. 

Known: 

The name of the data set containing the source program is 
DDG39T.MNHRS.VSBASIC. 

run mnhrs.vsbasic 

RUN Command 213 



SEND Command 

Use the SEND command or SEND subcommand of EDIT to send a message to 
another terminal user or to the system operator. You can send a message to more 
than one terminal user. If the intended recipient of a message is not logged on, 
the message can be retained within the system and presented automatically when 
the recipient logs on. You are notified when the recipient is not logged on and 
the message is deferred. 

The syntax and function of the SEND subcommand of EDIT is the same as that 
of the SEND command. 

'text' 

'text' 

[
NOW ] 
LOGON 
SAVE 

[NOWAIT] ] 
WAIT 

[
OPERATOR(2) ] 
OPERATOR (route-code) 

[CN(console-id)] 

specifies the message to be sent. You must enclose the text of the message 
within apostrophes (single quotes). The message cannot exceed 115 
characters, including blanks. If no other operands are used, the message 
goes to the console operator. If you want apostrophes to be printed, you 
must enter two in order to get one. 

USER( userid-list) 
specifies the user identification of one or more terminal users who are to 
receive the message. A maximum of 20 identifications can be used. 

USER(*) 
specifies the message is sent to the user ID associated with the issuer of the 
SEND command. If * is used with a SEND command in a CLIST, the 
message is sent to the user executing the CLIST. If used with the SEND 
command at a terminal, * causes the message to be sent to the same 
terminal. 

NOW 
specifies that you want the message to be sent immediately. If the recipient 
is not logged on, you are notified and the message is deleted. If NOW, 
LOGON, and SAVE are omitted, NOW is the default value. 

LOGON 
specifies that you want the message retained in the SYSl.BRODCAST data 
set if the recipient is not logged on or is not receiving messages. When the 
recipient logs on, the message is removed from the data set and directed to 
his terminal. If the recipient is currently using the system and receiving 
messages, the message is sent immediately. 

214 TSO Extensions Command Language Reference 



SAVE 
specifies the message text is to be entered in the mail section of 
SYSl.BRODCAST without being sent to any user. Messages stored in the 
broadcast data set can be retrieved by using either LISTBC or LOGON 
commands. 

NOWAIT 
specifies that you do not want to wait if system output buffers are not 
immediately available for all specified logged on terminals. You are notified 
of all specified users who did not receive the message. If you specified 
LOGON, mail is created in the SYSl.BRODCAST data set for the specified 
users whose terminals are busy or who have not logged on. If neither 
WAIT nor NOW AIT is specified, NOW AIT is the default value. 

WAIT 
specifies that you want to wait until system output buffers are available for 
all specified logged on terminals. This ensures that the message is received 
by all specified logged on users, but it also means that you might be locked 
out until all such users have received the message. 

OPERATOR(2) or OPERATOR(route-code) 
specifies that you want the message sent to the operator indicated by the 
route-code. If you omit the route-code, the default is two (2); that is, the 
message goes to the master console operator. If both USER (identification) 
and OPERATOR are omitted, OPERATOR is the default value. The 
integer corresponds to routing codes for the write-to-operator (WTO) 
macro. 

eN (console-id) 
specifies the message is to be queued to the indicated operator console. The 
value for console-id must be an integer between 0-64. 

Example 1 

Operation: Send a message to the master console operator. 

Known: 

The message: What is the weekend schedule? 

send 'what is the weekend schedule?' 

SEND Command 215 



Example 2 

Operation: Send a message to two other terminal users. 

Known: 

The message: If you have data set 'mylib.load' allocated, please free it. I 
need it to run my program. 

The user identification for the terminal users: JANET5 and L YNN6 

The message is important and you want to make sure the specified user gets it 
now. 

send 'if you have data set "mylib.load" allocated, -
please free it. i need it to run my program.' -
user(janet5,lynn6) wait 

Example 3 

Operation: Send a message that is to be delivered to 'BETTY7' when she begins 
her terminal session or now if she is currently logged on. 

Known: 

The recipient's user identification: BETTY7 

The message: Is your version of the simulator ready? 

If her terminal is busy, you might want to put the message into the 
.SYS1.BRODCAST data set. There is no rush for her to get it and to respond 
to it. 

send 'is your version of the simulator ready?' -
user(betty7) logon nowait 

216 TSO Extensions Command Language Reference 



STATUS Command 

Use the STATUS command to have the status of batch jobs displayed at your 
terminal. You can obtain the status of all batch jobs, several specific batch jobs, 
or a single batch job. The information you receive for each job tells you whether 
it is awaiting execution, is currently executing, or has completed execution but is 
still on an output queue. It also indicates whether the job is in hold status. An 
attention interrupt during the processing of STATUS results in termination of the 
command, but not the job. 

ST ATUS is a foreground-initiated-background (FIB) command. You must be 
authorized by installation management to use STATUS. This command is 
generally used in conjunction with the CANCEL, SUBMIT, and OUTPUT 
commands. 

Requesting an attention interrupt after issuing a STATUS command might 
terminate that command's processing. In this case, you cannot resume STATUS 
processing by pressing the ENTER key as you can after most attention interrupts. 

[(jobname[(jobid)]-list)] 

GobnamelGobid)]-list) 
specifies the names of the batch jobs for which you want to know the status. 
If two or more jobs have the same job name, the system will display the 
status of all the jobs encountered and supply job IDs for identification. 
When more than one job name is included in the list, the list must be 
enclosed within parentheses. When you specify a list of job names, you 
must separate the job names with standard delimiters. If you do not specify 
any job names, you receive the status of all batch jobs in the system whose 
job names consist of your user ID and one identifying character (alphameric 
or national). 

The optional job ID subfield can consist of one to eight alphameric 
characters (the first character must be alphabetic or national). The job ID 
is a unique job identifier assigned by the job entry subsystem at the time the 
job was submitted to the batch system. 

STATUS Command 217 



SUBMIT Command 

Use the SUBMIT command to submit one or more batch jobs for background 
processing. 

SUBMIT is a foreground-initiated-background (FIB) command. You must be 
authorized by installation management to use SUBMIT. This command is 
generally used in conjunction with the CANCEL, STATUS, and OUTPUT 
commands. 

Requesting an attention interrupt after issuing a SUBMIT command might 
terminate that command's processing. In this case, you cannot resume SUBMIT 
processing by pressing the ENTER key as you can after most attention interrupts. 

The command syntax and description for the SUBMIT command follows: 

[
PAUSE ] 
END(nn) 

[HOLD 1 
NOHOLD 

[
JOBCHAR(Characters)] 
NOJOBCHAR 

[
PASSWORD ] 
NOPASSWORD 

[
USER (USerid)] 
NOUSER 

[
NOTIFY ] 
NONOTIFY 

( data-set-list) 

* 

specifies one or more data set names or names of members of partitioned 
data sets that define an input stream (JCL plus data). If you specify more 
than one data set name, separate them with delimiters, and enclose them in 
parentheses. 

An asterisk (*) specifies that the job stream is to be obtained from the 
current source of input (for example, the terminal or currently executing 
CLIST). TSO commands can be entered directly without creating and 
editing a data set. All characters in the job stream are converted to upper 
case prior to being processed. This positional operand and the data-set-list 
positional operand are mutually exclusive. This operand is required. 

The SUBMIT * function is not available in EDIT mode. Job stream input 
received directly from the terminal or any other source will not be saved. 
The existing SUBMIT * function of EDIT continues to select the current 

218 TSO Extensions Command Language Reference 



data set as the input job stream. See the SUBMIT subcommand of EDIT 
for more information. 

PAUSE 
specifies that you want to make a decision after the job stream has been 
read in. This decision is to either continue the SUBMIT * process or 
terminate. If this operand is omitted, the job stream is processed when the 
end of the job stream is detected. The default is not to pause when the end 
of the job stream is reached. If you have not specified PAUSE and you 
subsequently make an error, the only way the submission can be aborted is 
with an attention interrupt. This is an optional operand. 

Pause is valid only when * (asterisk) is specified for the positional parameter 
and you are not in EDIT mode. 

END(nn) 
specifies a one or two character string to indicate the end of the job stream. 
Only alphabetic, numeric, or national characters are valid END characters. 
If this operand is not specified, a null or blank line indicates the end of the 
job stream. Specifying this operand allows blank lines to be part of the job 
stream. To terminate the job stream, the END character(s) must begin in 
column 1 and be the only data on the input line. The END character string 
is not considered part of the job stream. END is valid only when * 
(asterisk) is specified for the positional parameter and when you are not in 
EDIT mode. 

HOLD 
specifies SUBMIT is to have job output held for use with the OUTPUT 
command by defaulting to the held MSGCLASS supplied by the installation 
manager for the user. Output directed to DD statements is held if 
SYSOUT = * or HOLD = YES is specified on the DD statement. 

NOHOLD 
specifies job output is not to be held. NOH OLD is the default. 

JOBCHAR(characters) 
specifies characters to be appended to the jobname on every JOB statement 
in the data set being submitted. Use one character if you plan to use the 
ST ATUS command and your job name is your user ID. 

NOJOBCHAR 
specifies SUBMIT is to prompt you for jobname characters whenever the 
job name is the user ID. If prompting is not possible, the jobname 
character defaults to the letter X. NOJOBCHAR is the default. The user 
ID is determined by certain rules. See the USER operand for a list of the 
rules. 

PASSWORD 
specifies a PASSWORD operand is to be inserted on the generated JOB 
statement by SUBMIT, if the RACF program product is installed in your 
system. SUBMIT prompts you to enter the password value in print-inhibit 
mode, if the terininal supports the feature. This operand is not required if a 
generated JOB statement or the RACF program product is not installed in 

SUBMIT Command 219 



your installation. If the RACF program product is installed in your system, 
PASSWORD is the default. The password used is: 

• The password (if executing in the foreground) entered on the LOGON 
command initiating the foreground session. The current password is 
used for RACF-defined users. If you have updated your password 
using the LOGON command, you must enter the PASSWORD operand 
with the new password on the SUBMIT command. 

• The password on the LOGON command (if executing in the 
background) specified in the submitted data set. If a LOGON 
command is not in the data set, the USER and PASSWORD operands 
are not to be included on the generated JOB statement. 

NOPASSWORD 
specifies the PASSWORD and USER operands are not included on the 
generated JOB statement. If the RACF program product is not installed in 
your system, NOPASSWORD is the default. 

USER(userid) 
specifies a USER operand is to be inserted on the generated JOB statement, 
if the RACF program product is installed in your system. The user ID 
specified is also used as the jobname for the generated JOB statement. For 
job name or user ID comparison for NOJBOCHAR processing, see the 
NOJOBCHAR operand description. 

If neither USER nor NOUSER is entered and the RACF program product 
is installed in your system, USER is the default. The default user ID used is 
determined by the following rules. The rules are ordered. If the first rule is 
met, then that user ID is used. 

1. The user ID specified on a LOGON command in the data set being 
submitted. 

2. The user ID specified on the LOGON command (if executing in the 
foreground) initiating the foreground session; the user ID specified on 
the USER operand (if executing in the background, RACF defined 
users only) on the JOB statement initiating the background session. 

3. The default user ID SUBMITJB is used. 

NOUSER 
specifies generated JOB statements do not include USER and PASSWORD 
operands. If USER is not specified and the RACF program product is not 
installed on your system, NOUSER is the default. 

NOTIFY 
specifies that you are to be notified when your job terminates in the 
background, if a JOB statement has not been provided. If you have elected 
not to receive messages, the message is placed in the broadcast data set. You 
must then enter LISTBC to receive the message. If a JOB statement is 
generated, NOTIFY is the default. 

220 TSO Extensions Command Language Reference 



When you supply your own JOB statement, use the NOTIFY = userid 
keyword on the JOB statement if you want to be notified when the job 
terminates. SUBMIT ignores the NOTIFY keyword unless it is generating 
a JOB statement. 

If NOTIFY or NONOTIFY is not specified, the default is: 

• The NOTIFY operand (if executing in the foreground) is inserted on the 
generated JOB statement. 

• The NOTIFY operand (if executing in the background) is only inserted 
on the generated JOB statement for RACF-defined users who have 
specified the USER operand on the JOB statement initiating the 
background session. 

NONOTIFY 
specifies a termination message is not to be issued or placed in the broadcast 
data set. The NONOTIFY keyword is only recognized when a JOB 
statement has not been provided with the job that you are processing. 

Example 1 

Operation: Submit two jobs for batch processing. 

Known: 

The data sets that contain the jobs: ABTJQ.STRESS.CNTL and 
ABTJQ.STRAIN.CNTL 

submit (stress, strain) 

Example 2 

Operation: Concatenate and submit data sets as a single job. 

Known: 

The data set that contains the JCL for the job is JCL.CNTL(ASMFCLG) 
The data set that contains the input data is MYDATA.DATA 

submit (jcl(asmfclg) mydata) 

This command causes a single background job to be submitted and 
simultaneously concatenates a generated job card (if required), JCL, and the data. 
Each data set is not submitted as a separate job. 

SUBMIT Command 221 



TERMINAL Command 

ITERMINAL] 
TERM 

Use the TERMINAL command to define operating characteristics that depend 
primarily upon the type of terminal that you are using. You can specify the ways 
that you want to request an attention interruption and you can identify hardware 
features and capabilities. The TERMINAL command allows you to request an 
attention interruption whether or not your terminal has a key for attention 
.interrupt. 

The TERMINAL command is not allowed as a TSO command in the 
background. 

The terminal characteristics that you have defined remain in effect until you enter 
the LOGOFF command. If you terminate a session and begin a new one by 
entering a LOGON command (instead of a LOGOFF command followed by a 
LOGON command), the terminal characteristics defined in the earlier session 
remain in effect during the subsequent session. 

If your session is interrupted by a line disconnection and you logon again using 
the LOGON RECONNECT, you must redefine all previously defined terminal 
characteristics. The reason for the redefinition is that all records for defined data 
are lost as a result of the line disconnection. 

[
LINES (integer)] 9 

NOLINES 

[
SECONDS (integer)] 9 
NOSECONDS 

[
INPUT (str ing )] 9 

NO INPUT 

[
BREAK ] 
NOBREAK 

[
TIMEOUT ] 9 

NOTIMEOUT 

[LINESIZE(integer)] 

[
CLEAR(string )] 9 

NOCLEAR 

[SCRSIZE(rows,length)] 

[
TRAN(name>] 10 
NOTRAN 

[~~~~i~ I ~: ~~~~~ar ,] , I ~: ~~~~~ar ,] ) [ , ( I] , I ]>... ]>] 10 

9 Not supported with terminals that use VTAM. 

10 Not supported with terminals that use TCAM. 

222 TSO Extensions Command Language Reference 



LINES(integer) 11 
specifies an integer from 1 to 255 that indicates you want the opportunity to 
request an attention interruption after the specified number of lines of 
continuous output has been directed to your terminal. 

NOLINESII 
specifies output line count is not to be used for controlling an attention 
interruption. This is the default condition. 

SECONDS(integer)11 
specifies an integer from 10 to 2550 (in multiples of 10) to indicate that you 
want the opportunity to request an attention interruption after a number of 
seconds has elapsed during which the terminal has been locked and inactive. 
If you specify an integer that is not a multiple of 10, it is changed to the 
next largest multiple of 10. 

NOSECONDS11 
specifies elapsed time is not to be used for controlling an attention 
interruption. This is the default condition. 

INPUT(string)11 
specifies the character string, if entered as input, will cause an attention 
interruption. The string must be the only input entered and cannot exceed 
four characters in length. 

NOINPUT11 
specifies no character string will cause an attention interruption. This is the 
default condition. 

BREAK 
specifies, for IBM 3767 and IBM 3770 terminals, the system can interrupt 
your input. For other terminals, it specifies that your terminal keyboard is 
to be unlocked to allow you to enter input whenever you are not receiving 
output from the system. The system can interrupt your input with 
high-priority messages. Because use of BREAK with a terminal type can 
result in loss of output or error, check with your installation system 
manager before specifying this operand. 

Note: If a command processor for a display device is operating in 
full-screen mode, VTAM treats the device as if it were operating in 
NOBREAK mode. For a more detailed description, see TSOjE Guide to 
Writing a Terminal Monitor Program or a Command Processor. 

NOBREAK 
specifies, for IBM 3767 and IBM 3770 terminals, the system is not allowed 
to interrupt you (break in) with a message when you are entering data. For 
other terminals, it specifies that your terminal keyboard is to be unlocked 
only when your program or a command you have used requests input. 

The default for the BREAKjNOBREAK operand is determined when your 
installation defines the terminal features. 

11 Not supported with terminals that use VTAM. 

TERMINAL Command 223 



TIMEOUT 12 
specifies your terminal keyboard will lock automatically after approximately 
9 to 18 seconds of no input. 

NOTIMEOUT12 
specifies your terminal keyboard will not lock automatically after 
approximately 9 to 18 seconds of no input. 

The default for the TIMEOUTjNOTIMEOUT operand is determined when 
your installation defines the terminal features. 

LINESIZE(integer) 
specifies the length of the line (the number of characters) that can be printed 
at your terminal. The integer must not exceed 255. LINE SIZE is not 
applicable to the IBM 3270 display stations. The default values are: 

Teletype 33/35 
IBM 2741 Communication Terminal 
IBM 3767 Communication Terminal 
IBM 3770 Communication System 

- 72 characters 
- 120 characters 
- 132 characters 
- 132 characters 

If LINESIZE (80) is coded with a RECFM equal to U, then the line is 
truncated. The byte truncated (the last byte) is reserved for an attribute 
character. 

CLEAR(string)12 
specifies a character string, if entered as input, causes the screen of an IBM 
3270 Display Station to be erased. The string must be the only input 
entered and cannot exceed four characters in length. 

NOCLEAR12 
specifies that you do not want to use a sequence of characters to erase the 
screen of an IBM 3270 Display Station. This is the default condition. 

SCRSIZE(rows,length) 

'rows' 

specifies the screen dimensions of an IBM 3270 Display Station and a 
Network Terminal Option (NTO) terminal. When you specify the 
SCRSIZE operand, you must use the LINE SIZE operand to get continuous 
writing on a NTO terminal. 

If you are running under Session Manager, the system ignores SCRSIZE. 

specifies the maximum number of lines of data that can appear on the 
screen. 

12 Not supported with terminals that use VTAM. 

224 TSO Extensions Command Language Reference 



'length' 
specifies the maximum number of characters in a line of data displayed on 
the screen. Standard screen sizes are: 

rows,length 

6,40 
12,40 
12,80 
15,64 
24,80 
27,132 
32,80 
43,80 

The default values for the screen sizes are determined when your installation 
defines the terminal features. 

TRAN(name)13 
specifies a load module that contains tables used to translate specific 
characters you type at the terminal into different characters when they are 
seen by TSO. Conversely, when these characters are sent by TSO to the 
terminal, they are retranslated. Translation of numbers and uppercase 
letters is not allowed. 

Character translation is especially useful when you are using a 
correspondence keyboard and would like to type the characters: 

< 
> 

They are not available on a correspondence keyboard. Translation tables 
make it possible for you to specify that when you type the characters: 

[ 
] 

TSO interprets them as <, >, and I. 

NOTRAN13 
specifies no character translation is to take place. 

CHAR13 
specifies one or more pairs of characters, in either hexadecimal or character 
notation, that replace characters in the translation tables specified by 
TRAN(name) or in the default translation tables. When the default 
translate is used, all unprintable characters are set to blanks. The first 
character of the pair is the character typed, printed, or displayed at the 
terminal. The second character is the character seen by TSO. Translation 
of numbers and uppercase letters is not allowed. Do not select characters 
that might be device control characters. 

13 Not supported with terminals that use TCAM. 

TERMINAL Command 225 



NOCHAR14 
specifies all character translations previously specified by CHAR are no 
longer in effect. 

Example 1 

Operation: Modify the characteristics of an IBM 2741 Communication Terminal 
to allow operation in unlocked-keyboard mode. 

Known: 

Your terminal supports the break facility. The installation has defined a 
default of NOBREAK for your terminal. 

terminal break 

Example 2 

Operation: Specify character translation for certain characters not available on 
an IBM 3767 Communication Terminal with an EBCDIC keyboard. 

Known: 

Your terminal supports the character translation facility, and you are using 
the default translation table or a previously specified translation table (that 
you specified with the TRAN operand). You now want [ to stand for <, ] 
to stand for >, and ! to stand for t. 

terminal char ( (C I [ I ,X I 4C I ) , (C I ] I ,X I 6E I ) , (C I ! I ,X I FA I ) ) 

14 Not supported with terminals that use TCAM. 

226 TSO Extensions Command Language Reference 



TEST Command 

Use the TEST command to test a program or a command processor for proper 
execution and to locate programming errors. To use the TEST command and 
subcommands, you should be familiar with the Assembler language and 
addressing conventions. For best results, the program to be tested should be 
written in basic assembler language. To use the symbolic names feature of TEST, 
your program should have been assembled and link-edited with the TEST 
operands. 

If the tested program attempts to LOAD, LINK, XCTL, or ATTACH another 
module, the module is found according to the following search order sequence: 

1.TASKLIB 
2.STEPLIB 
3.JOBLIB 
4.LPA 
5.LNKLST 

If the module is not in any of these areas, it will not be found. To avoid this, 
bring the module into virtual storage by using the LOAD subcommand of TEST. 

TEST ['data-set-name ' ] 
[ I parameters I] 

[~~~~cTl 
[~~cp 1 

'data-set-name' 
specifies the name of the data set containing the program to be tested. The 
program must be a load module that is a member of a partitioned data set 
or it must be an object module. A data set name must be specified to test a 
program that is not currently active. A currently active program is one that 
has abnormally terminated or has been terminated by an attention 
interruption. 

If TEST is specified with a data set name, registers 2 through 12 are initialized to 
X'FFFFFFFF'. This allows you to determine which registers have been changed 
by the tested program. 

When TEST is specified for a load module in a partitioned data set, the program 
being tested can invoke other user load modules if they are members of the same 
PDS. The services by which one member can invoke another in the same PDS 
include LINK, LOAD, XCTL, and ATTACH. 

When specifying the data set name for TEST, the name should be enclosed by 
single quotes or the LOAD or OBJECT qualifier is added to the name specified. 
If no name is specified, TSO searches for the member TEMPNAME. 

TEST Command 227 



Caution: The program to be tested should not have the name TEST or the name 
of any existing TSO service routine. For a listing of the existing module names, 
see TSOjE Terminal Monitor Program and Service Routines Logic. 

'parameters' 
specifies a list of parameters to be passed to the named program. The list 
must not exceed 100 characters, including delimiters. 

LOAD 
specifies the named program is a load module that has been processed by 
the linkage editor and is a member of a partitioned data set. If both LOAD 
and OBJECT are omitted, LOAD is the default. 

OBJECT 

CP 

specifies the named program is an object module that has not been 
processed by the linkage editor. The program can be contained in a 
sequential data set or a member of a partitioned data set. 

If OBJECT is specified on the TEST command, the tested program will be 
named TEMPNAME. 

specifies the named program is a command processor. 

NOCP 
specifies the named program is not a command processor. NOCP is the 
default. 

Example 1 

Operation: Enter TEST mode after experiencing either an abnormal termination 
of your program or an interruption. 

Known: 

Either you have received a message saying that your foreground program has 
terminated abnormally, or you have pressed the attention key while your 
program was executing. In either case, you would like to begin debugging 
your program. 

test 

Example 2 

Operation: Invoke a program for testing. 

Known: 

The name of the data set that contains the program: 
TLC55.PA YER.LOAD(THRUST) 

The program is a load module and is not a command processor. 

The prefix in the user's profile is TLC55. 

228 TSO Extensions Command Language Reference 



The parameters to be passed: 2048, 80 

test payer(thrust) '2048,80' 

or 

test payer.load(thrust) 

Example 3 

Operation: Invoke a program for testing. 

Known: 

The name of the data set that contains the program: TLC55.PA YLOAD.OBJ 

The prefix in the user's profile is TLC55. 

The program is an object module and is not a command processor. 

test payload object 

Example 4 

Operation: Test a command processor. 

Known: 

The name of the data set containing the command processor: 
TLC55.CMDS.LOAD(OUTPUT) 

test cmds(output) cp 

or 

test cmds.load(output) cp 

Note: You will be prompted to enter a command for the command processor. 
TSO prompts you for the commands you want to test. 

Example 5 

Operation: Invoke a command processor for testing. 

Known: 

The name of the data set containing the command processor is 
TLC55.LOAD(OUTPUT). 

The prefix in the user's profile is TLC55. 

test (output) cp 

TEST Command 229 



When to Use TEST 

There are two basic situations in which you might use the TEST command: 

1. To test a currently executing program. 
2. To test a program not currently being executed. 

You might want to test an executing program because it terminated abnormally 
or because you want to check the current environment to see that the program is 
executing properly. 

TEST is rejected if the terminating or interrupted program is APF authorized, 
executing in supervisor state, or in a PSW protection key less than 8. 

If a program terminates abnormally when not under TEST, you receive a 
diagnostic message from the terminal monitor program (TMP) followed by a 
READY message. If you respond to the diagnostic message with anything other 
than TEST, a question mark (?), or TIME, the TMP terminates your program. 
However, if you issue the TEST command (and supply no program name), the 
currently active program remains in storage when the TEST command processor 
gets control and you can use the TEST subcommands to debug the defective 
program. 

You can enter both the? and the TIME command before you issue the TEST 
command to debug an abnormally terminating program. However, if you want a 
dump, enter a null line instead of issuing the TEST command. If a SYSABEND, 
SYSMDUMP, or SYSUDUMP file has already been allocated, the null line 
results in a dump being printed. 

If you want to examine the current environment of an executing program that is 
not terminating abnormally, enter a single attention interruption. The currently 
active program remains attached and the TMP responds to your interruption by 
issuing a READY message. When you issue the TEST command (without a 
program name), the currently active program remains in storage under the control 
of the TEST command processor. You can then use the TEST subcommands to 
examine the current environment. 

In the case of either the ABEND or the attention interruption, you should not 
enter a program name following the TEST command. If you do, you lose the 
current in-storage copy of the program because TEST loads a copy of the 
specified program. 

To test a program not currently executing, enter the TEST command supplying 
the data set name containing the program to be executed and any other applicable 
operands. When you use the TEST command to load and execute a program, the 
program must be an object module or a load module suitable for execution. 

Prior to and during execution, such as when execution is interrupted at a 
breakpoint, you can: 

CD Supply initial values (test data) that you want to pass to the program 

230 TSO Extensions Command Language Reference 



• Establish breakpoints at instructions where execution is to be interrupted so 
that you can examine interim results. Breakpoints should not be inserted into 
TSO service routines or into any of the TEST load modules. 

• Display the contents of registers and virtual storage 

• Modify the contents of registers and virtual storage 

• Display the program status word (PSW) 

• List the contents of control blocks 

• Step through sections of the program, checking each instruction for proper 
execution. 

When running in supervisor state or in a PSW protection key less than 8, 
breakpoints are not honored in any section of your program. 

Addressing Conventions Associated with TEST 

An address used as an operand for a subcommand of TEST must be one of the 
following types: 

o Absolute address - a virtual storage address. An absolute address is 1 to 8 
hexadecimal digits followed by a period and not exceeding X'7FFFFFFF'. 

Q Relative address - a 1 to 8 hexadecimal digit number preceded by a plus sign 
(+). A relative address specifies an offset from the currently qualified virtual 
storage address. See the discussion about qualified addresses. 

• Symbolic address - 1 to 8 alphameric characters, the first of which is an 
alphabetic character. A symbolic address corresponds to a symbol in a 
program or a symbol defined by the EQUATE subcommand. See the 
discussion about qualified addresses for a detailed description of qualified 
symbolic addressing. See "Restrictions on the Use of Symbols" for a detailed 
description on the use of symbols. 

e (module-namel.entry-name - a name within amodule capable of being 
externally referenced, preceded by a period (.), and optionally preceded by a 
name by which the module is known. An entry name is the symbolic address 
of an entry point into the module; for example, a CSECT name. A module 
name can be the name or alias of a load module or the name of an object 
module. Module or entry names can be any combination of up to eight 
alphameric characters, the first of which is alphabetic or national. 

• Qualified addresses - You can qualify symbolic or relative addresses to 
indicate they apply to a particular module and CSECT. To do this, you must 
precede the address by the name of the load or object module and the name 
of the CSECT. The qualified address must be in the form: 

modulename.csect;address 

TEST Command 231 



If the address is to apply to the current module, you only need to specify the 
CSECT name in the following form: 

csect.address 

If the address is to apply to the current CSECT within the current module, 
only the address is necessary; you do not need to qualify the address. The 
current module and CSECT is initially set to the program being tested. This 
setting is automatically changed each time a module under a different request 
block is invoked. This is referred to as automatic qualification. (This happens 
when a module is invoked by ATTACH, XCTL, SYNCH, or LINK. It does 
not happen when a module is loaded, called, or branched to.) The module 
and/or CSECT used in determining a base location for resolving symbolic and 
relative addresses can also be changed by using the QUALIFY subcommand. 

For example, if the name of the module is OUTPUT, the CSECT is TAXES, 
and the symbolic address is YEAR77, you would specify either: 

output.taxes.year77 

or 

.taxes.year77 

If the current module is OUTPUT. You would specify: 

year77 

If the current module is OUTPUT and the current CSECT is TAXES. If the 
module name and CSECT name are the same as above and the address to be 
qualified is the relative address + 4A, you would specify: 

output.taxes.+4A 

• General registers - You can refer to a general register using the AND, OR, 
assignment-of-value, COPY, or LIST subcommands by specifying a decimal 
integer followed by an R. The decimal integer indicates the number of the 
register and must be in the range 0 through 15. Other references to the 
general registers imply indirect addressing. 

If your program issues the STIMER macro or involves asynchronous 
interruptions, the contents of your registers may be changed by interruptions even 
though you are in TEST subcommand mode and your program does not get 
control. 

• Floating-point registers - You can refer to a floating-point register using the 
LIST or assignment-of-value subcommand by specifying a decimal integer 
followed by an E or D. The decimal integer indicates the number of the 
register and must be a zero, two, four, or six. An E indicates a floating-point 
register with single precision. A D indicates a floating-point register with 
double precision. The contents of the floating-point register must be assigned 
using the notation described in "Assignment of Values Function of TEST." 
You must not use floating-point registers for'indirect addressing or in 
expressions. 

232 TSO Extensions Command Language Reference 



• Indirect address - An address expression, a general register, or the address of a 
location that contains another address. An indirect address must be followed 
by one or more indirection symbols to indicate a corresponding number of 
levels of indirect addressing. 

The indirection symbols follow: 

The percent sign (%), indicating that the low-order three bytes of the 
address are used. 

The question mark (?) (for MVS/XA only) indicating that all 31 bits are 
used for the address. 

To use a general register as an indirect address, specify a decimal integer (0 
through 15) followed by an R and a percent sign, or an R and a question 
mark. For example, if you want to refer to data whose address is located in 
register 7, you would specify: 

7r% 

Example: Use of a relative address to form an indirect address. 

Address: + A % (One level of indirect addressing) 

Address: +A% (One level of indirect addressing) 

Relative Location + A 

I 'C6~1l~ I 
. Location BC4 

I BBBBBBBB 

Address: +A? (MVS/XA) 

Relative Location + A 

I ~~!l!i!!, I 
Location 1 COOOBC4 

I MAMMA I 

Example: Comparison of use of 010 and? (MVS/XA) 

Address 

X 
OOOOA080 
OlOOA080 

TEST Subcommand 

LIST X 
LISTX% 
LIST X? (MVS/XA) 

Data 

OlOOA080 
AAAAAAAA 
BBBBBBBB 

Data Displayed 

OlOOA080 
AAAAAAAA 
BBBBBBBB 

TEST Command 233 



Example: Indirect addressing using a combination of indirection symbols. 

Address expression: + A %??% (Four levels of indirect addressing) 

Location + A 

• Address expression - an address followed by any number of expression values. 
You can specify the address as: 

An absolute address 
A relative address (unqualified, partially or fully qualified) 
A symbolic address (unqualified, partially or fully qualified) 
An indirect address. 

An expression value consists of a plus or minus displacement value expressed 
as either 1 to 8 hexadecimal digits or 1 to 10 decimal digits from an address 
in virtual storage. Following are two examples of address expressions: 

Decimal Example: 

address + 14n specifies the location that is 14 bytes past that designated by 

, , address' , 

Hexadecimal Example: 

address + 14 specifies the location that is 20 decimal bytes past that 

designated by "address" 

Decimal displacement (either plus or minus) is indicated by the n following 
the numeric offset. You can indicate up to 256 levels of indirect addressing 
by following the initial indirect address with a corresponding number 
indirection symbols (% or ?). An address expression is specified like this: 

address + 
? 

value % 
? 

+ value % 

If you are using an MVSjXA system, you can use any combination of percent 
signs and question marks after the value. 

234 TSO Extensions Command Language Reference 



Example: Address expression with hexadecimal displacement using a combination 
of indirection symbols. (MVS/XA) 

Address expression: 7R?% +C%?% 

Register 7 

When processing an address expression, TEST checks the high-order bit of the 
result of each addition or subtraction. If the bit is on, indicating a negative value 
or overflow condition, TEST rejects the address. 

Restrictions on Use of Symbols 

External Symbols 

The TEST command processor can resolve external and internal symbolic 
addresses, only if these addresses are available to it. Within certain limitations, 
symbolic addresses are available for both object modules (processed by the loader) 
and load modules (fetched by contents supervision). 

The TSO TEST user can access external symbols, such as CSECT names, for a 
program modules, if the program was brought into main storage by the TEST 
command or one of its subtasks. This is the case for the program being tested, 
any program brought into storage through the tested program, and any program 
loaded by the LOAD subcommand. 

External symbols f~r CSECT names that are in object modules are available only 
if the loader had enough main storage to build composite external symbol table 
dictionary (CESD) entries. 

TEST Command 235 



Internal Symbols 

Addressing Considerations 

Internal symbols for load modules can be resolved if the CSECT containing the 
symbol was assembled with the TEST parameter, the module was link edited with 
the TEST parameter, and the program was brought into storage by the TEST 
command or one of its subtasks as previously explained. Names on EQU, ORG, 
LTORG, CNOP, and DSECT statements cannot be resolved. 

The TSO TEST user cannot access internal symbols for object modules. 

If the necessary conditions for symbol processing are not met, you can use 
absolute, relative, or indirect addressing, or you can define symbols with the 
EQUATE subcommand of TEST. 

Symbols within DSECTs are available only if the DSECT name has been defined 
with the EQUATE subcommand. 

For example, if NAME is a symbol in a DSECT named DATATBL, then to 
access the data associated with NAME, you would first have to determine the 
address to be used as a base address for the DSECT. (This is the address in the 
register on the assembler USING instruction.) If the address is in register 7, you 
can enter: 

equate datatbl 7r% 

This establishes addressability to the DSECT, allowing the symbol NAME and all 
other symbols in the DSECT to be accessed using the symbol. 

TEST can access symbols and process CSECT names (to qualify addresses and 
satisfy deferred breakpoints) for module loaded from a data set in LNKLIST 
concatenation, provided that the module was both assembled and link edited with 
the TEST option, and the data set involved is not READ-protected from the TSO 
user. Symbols and CSECT names cannot be processed for a module accessed 
from LPA. 

Examples of Valid Addresses in TEST Subcommands 

Below is a list of valid addresses which can be used with subcommands: 

Address: 

A23C40. 
+E4 
5R% 
5R? (MVS/XA only) 
NAMES 
.SALES.+26 
14R%+28 
PROFIT.SALES 
+ 16+ IOn 
.SALES.NAMES 
PROFIT.SALES.NAMES + 8n 
DATA + 10 
.SALES 
PROFIT.SALES.NAMES 
6R%+4%+12n%% 
PROFIT. SALES. + CO 

236 TSO Extensions Command Language Reference 

Type of Address: 

Absolute 
Relative 
24-bit Indirect 
31-bitIndirect (MVS/XA only) 
Symbol within program 
Partially-qualified relative 
Expression 
Module and entry name 
Expression 
Partially-qualified symbol 
Expression 
Expression 
Entry name 
Fully-qualified symbol 
Expression 
Fully qualified relative 



Note: In the preceding addresses, PROFIT is a module name, SALES is a 
CSECT name, and NAMES is a symbol. 

31-Bit Addressing Considerations Associated with TEST (MVS/XA Only) 

• All subcommands that accept addresses can process addresses above 16 Mb, 
regardless of the current addressing mode of the program. 

• You can use the 31-bit indirection symbol (?) on any subcommands to 
reference data pointed to by 31-bit addresses. 

o When TEST loads and executes a program, it uses the AMODE and 
RMODE characteristics to determine the addressing mode at entry as well as 
whether the tested program is loaded above or below 16 Mb. 

• The AMODE operand on the CALL, GO, and RUN subcommands can 
change the addressing mode of the program being tested. 

• The loader, invoked by TEST when testing an object module, loads the 
module above or below 16 Mb based on the RMODE characteristics of the 
module's CSECTs. If the first CSECT is RMODE (ANY) and any other 
CSECTs are RMODE (24), the loader loads the module below the 16Mb line 
and issues a warning message. 

() Input passed in Register 1 to the program being tested by register 1 (either the 
CPPL or input parameter list) will be below 16 Mb. 

C) The CALL subcommand of TEST places the return address of the tested 
program in Register 14. The high order bit of Register 14 is set to reflect the 
addressing mode of the tested program. 

" Specify AMODE on the CALL subcommand, if the called program should 
not be invoked in the current addressing mode. When control is returned, 
verify that the addressing mode is appropriate before continuing execution. 

Programming Considerations Associated with TEST When Using the Virtual Fetch Services 
(MVS/XA Only) 

External symbols are not available for a program fetch. For information on 
addressing considerations, see "Restrictions on Use of Symbols." 

Do not establish deferred breakpoints for a program managed by virtual fetch 
because they are ignored. 

If you are testing program A, which invokes program B using the virtual fetch 
services, you cannot use TEST subcommands to stop execution of program B. 

If, while testing program A, you want to debug program B, you can use the 
following method. Instead of allowing a virtual fetch GET request to pass 
control to program B, load and call program B using TEST subcommands. 

• Use the AT subcommand of TEST to establish a breakpoint immediately 
before the virtual fetch GET request in program A. 

TEST Command 237 



• When you reach the breakpoint, use the LOAD subcommand of TEST to 
load a different copy of program B. 

• You can then establish breakpoints using the AT subcommand at any points 
in this copy of program B. 

• Use the CALL subcommand of TEST to execute program B. Specify an 
address on the RETURN parameter to bypass the virtual fetch GET request 
in program A. 

Note: You cannot use TEST facilities to debug a program's interface with virtual 
fetch. 

See System Programming Library: System Modifications for a description of the 
virtual fetch services. 

Programming Considerations Associated with TEST for Use in a Cross-Memory 
Environment 

Attention Interruptions in Cross-Memory Mode - If an attention interrupt occurs 
while the program being tested is executing in cross-memory mode, and you enter 
anything other than a null line, the cross-memory environment is terminated and 
a message is displayed. 

Access to Storage by TEST - If TEST is used with cross-memory applications, 
access to storage by TEST subcommands is restricted to the home address space. 

Abend In Cross-Memory Mode - If an abend occurs while a cross-memory 
application is executing outside the home address space, TSO TEST does not 
preserve the cross-memory environment. The registers and PSW at the time of 
the abend and the abend code from the error message are the only debugging 
information available for a cross-memory abend. 

Restrictions on Breakpoints - Breakpoints cannot be set for the following 
cross-memory instructions: 

PC - Program call 
PT - Program transfer 
SAC - Set address space control 
SSAR - Set secondary ASID 

238 TSO Extensions Command Language Reference 



TEST Subcommands 

The subcommands of the TEST command are: 

ALLOCATE (MVS/XA only) 
dynamically allocates the data sets required by a program intended for 
execution. 

AND (MVS/XA only) 
performs a logical AND operation on data in two locations, placing the 
results in the second location specified. 

ASSIGNMENT OF VALUES(=) 
modifies values in virtual storage and in registers. 

AT 
establishes breakpoints at specified locations. 

ATTRIB (MVS/XA only) 
builds a list of attributes for non-V SAM data sets, which are to be 
dynamically allocated. 

CALL 
initializes registers and initiates processing of the program at a specified 
address using the standard subroutine linkage. 

CANCEL (MVS/XA only) 
halts processing of batch jobs submitted for the terminal. 

COpy 
moves data. 

DELETE 
deletes a load module from virtual storage. 

DROP 

END 

removes symbols established by the EQUATE command from the symbol 
table of the module being tested. 

terminates all operations of the TEST command and the program being 
tested. 

EQUATE 
adds a symbol to the symbol table and assigns attributes and a location to 
that symbol. 

EXEC (MVS/XA only) 
executes a CLIST. 

FREEMAIN 
frees a specified number of bytes of virtual storage. 

TEST Subcommands 239 



GETMAIN 

GO 

acquires a specified number of bytes of virtual storage for use by the 
program being processed. 

restarts the program at the point of interruption or at a specified address. 

HELP 
lists the subcommands of TEST and explains their function, syntax, and 
operands. 

LINK (MVS/XA only) 
invokes the linkage editor service program. 

LIST 
displays the contents of a virtual storage area or registers. 

LISTALC (MVS/XA only) 
displays a list of the names of data sets allocated during the current TSO 
session. 

LISTBC (MVS/XA only) 
displays a listing of the contents of the SYSl.BRODCAST data set, which 
contains messages of general interest (NOTICES) and messages directed to a 
particular user (MAIL). 

LISTCAT (MVS/XA only) 
lists catalog entries by name or entry type; lists selected fields for each entry. 

LISTDCB 
lists the contents of a data control block (DCB). You must specify the 
address of the DCB. 

LISTDEB 
lists the contents of a data extent block (DEB). You must specify the 
address of the DEB. 

LISTDS (MVS/XA only) 
displays attributes of specific data sets at the terminal. 

LISTMAP 
displays a map of the user's virtual storage. 

LISTPSW 
displays a program status word (PSW). 

LISTTCB 
lists the contents of the current task control block (TCB). You can specify 
the address of another TCB. 

LOAD 
loads a program into virtual storage for execution. 

240 TSO Extensions Command Language Reference 



OFF 
removes breakpoints. 

OR (MVS/XA only) 
performs a logical OR operation on data in two locations, placing the 
results in the second location specified. 

PROFILE (MVS/XA only) 
establishes, changes, or lists the user profile. 

PROTECT (MVS/XA only) 
prevents unauthorized access to a non-V SAM data set. 

QUALIFY 
establishes the starting or base location for resolving symbolic or relative 
addresses; resolves identical external symbols within a load module. 

RENAME (MVS/XA only) 

RUN 

changes the name of a non-VSAM cataloged data set or a member of a PDS 
or creates an alias for a member of a PDS. 

terminates TEST and completes execution of the program. 

SEND (MVS/XA only) 
sends a message to another terminal user or to the system operator. 

STATUS (MVS/XA only) 
displays status of batch jobs at terminal. 

SUBMIT (MVS/XA only) 
submits one or more batch jobs for processing. 

TERMINAL (MVS/XA only) 
defines the operating characteristics for the terminal being used. 

UNALLOC (MVS/XA only) 
frees data sets under TSO TEST. Because FREE is an alias for the 
FREEMAIN subcommand, UNALLOC must be used to free files under 
TEST. 

WHERE 
displays the virtual address of a symbol or entry point, or the address of the 
next executable instruction. WHERE can also be used to display the 
module and CSECT name and the displacement into the CSECT 
corresponding to an address. 

TEST Subcommands 241 



For a complete description of the syntax and function of the following TEST 
subcommands, refer to the corresponding TSO command. 

ALLOCATE 
ATTRIB 
CANCEL 
EXEC 
LINK 
LISTALC 
LISTBC 
LISTCAT 
LISTDS 

242 TSO Extensions Command Language Reference 

PROFILE 
PROTECT 
RENAME 
SEND 
STATUS 
SUBMIT 
TERMINAL 
UNALLOC(FREE) 



ALLOCATE Subcommand of TEST (MVS/XA Only) 

Use the ALLOCATE subcommand to dynamically allocate the data sets required 
by a program intended for execution. Refer to the ALLOCATE command for a 
description of the syntax and function of the ALLOCATE subcommand. 

ALLOCATE Subcommand of TEST (MVSjXA Only) 243 



AND Subcommand of TEST (MVS/XA Only) 

Use the AND subcommand to perform a logical AND operation on data or 
addresses from one virtual storage address to another, from one general register to 
another, from a register to virtual storage, or from virtual storage to a register. 

The AND subcommand can be used to: 

• Alter the contents of the general registers. 
• AND an entire data field with another. 

AND addressl address2 

~ENGTH (int~ger)l 

[
POINTER 1 
NOPOINTER 

address! 
specifies the location of data that is to be ANDed with data pointed to by 
address2. 

If you do not specify POINTER and there is a breakpoint in the data 
pointed to by address I, the TSO TEST processor terminates the AND 
operation. 

address2 
specifies the location of the data that is to be ANDed with data pointed to 
byaddressl. When the AND operation is complete, the result is stored at 
this location. You can specify addressl and address2 as: 

• An absolute address 
• A symbolic address 
• A relative address 
• An indirect address 
• An address expression 
e A module-name and entry-name (separated by a period) 
e A general register 
.. An entry-name (preceded by a period). 

LENGTH(integer) or LENGTH(4) 
specifies the length, in decimal, of the field to be copied. If an integer is not 
specified, LENGTH defaults to 4 bytes. The maximum length is 256 bytes. 

POINTER 
specifies address 1 is to be validity checked to see that it does not exceed 
maximum virtual storage size. Addressl is then treated as an immediate 
operand (hexadecimal literal) with a maximum length of 4 bytes (that is, an 
address converted to its hexadecimal equivalent). When using the 
POINTER operand, do not specify a general register as address!. 

244 TSO Extensions Command Language Reference 



NOPOINTER 
specifies addressl is to be treated as an address. If neither POINTER nor 
NOPOINTER is specified, NOPOINTER is the default. 

The AND subcommand treats the 16 general registers as contiguous fields. The 
user can AND 10 bytes from general register 0 to another location as follows: 

and OR 80060. length(10) 

The AND subcommand ANDs the 4 bytes of register 0, the 4 bytes of register 1, 
and the high-order 2 bytes of register 2 to virtual storage beginning at location 
80060. When a register is specified as addressl, the maximum length of data that 
is ANDed is the total length of the general registers or 64 bytes. 

Example 1 

Operation: AND two full words of data each in a virtual storage location placing 
the result in the second location. 

Known: 

The starting address of the data to be used as the first operand: 80680 
The starting address of the data to be used as the second operand and the 
location of the result: 80690 

and 80680. 80690. length(8) 

Example 2 

Operation: AND the contents of two registers, placing the result in the second 
register specified. 

Known: 

The register which contains the data specified as the first operand: 10 
The register which contains data specified as the second operand and the 
result: 5 

and lOr 5r 

Example 3 

Operation: Turn off the. high-order bit of a register. 

Known: 

The AND value: X'7F' 
The register: 1 

and 7F. 1r 1(1) pointer 

Note: Specifying the pointer operand causes 7F to be treated as an immediate 
operand and not as an address. 

AND Subcommand of TEST (MVS/XA Only) 245 



Example 4 

Operation: AND the contents of an area pointed to by a register into another 
area. 

Known: 

The register which points to the area that contains the data to be ANDed: 14 

The virtual storage location which is to contain the second operand and 
result: 80680 

The length of the data to be ANDed: 8 bytes 

and 14r% 80680. 1(8) nopoint 

246 TSO Extensions Command Language Reference 



Assignment of Values Function of TEST 

When processing is halted at a breakpoint or before execution is initiated, you can 
modify values in virtual storage and in registers. This function is implicit; that is, 
you do not enter a subcommand name. The system performs the function in 
response to operands that you enter. 

address=data-type 'value' [,data-type 'value'] ... 

address 
specifies the location that you want to contain a new value. You can 
specify address as: 

o An absolute address 
o A symbolic address 
o A relative address 
o An indirect address 
o An address expression 
o A module-name and entry-name (separated by a period) 
o An entry-name (preceded by a period) 
o A general register 
o A floating point register. 

data-type 'value'l,data-type 'value'] ... 
specifies the type of data and the value that you want to place in the 
specified location. You indicate the type of data by one of the following 
codes: 

Code Type of Data Maximum Length (Bytes)15 Storage Boundary 
Data types must 
begin on specified 
boundary for 

C 

X 
B 
H 
F 
E 
D 
P 
Z 
A 
S 
Y 

Character 

Hexadecimal 
Binary 
Fixed point binary (halfword) 
Fixed point binary (fullword) 
Floating point (single precision) 
Floating point (double precision) 
Packed decimal 
Zoned decimal 
Address constant 
Address (base + displacement) 
Address constant (halfword) 

One line of input, 
continued lines 
permitted 

64 
64 
6 
11 
13 
22 
32 
17 
11 
8 
6 

a virtual 
storage address 

C-byte 

X-byte 
B-byte 
H-halfword 
F-fullword 
E-fullword 
D-doubleword 
P-byte 
Z-byte 
A-fullword 
S-halfword 
Y-halfword 

15 All characters within the quotes are included in the length. 

Assignment of Values Function of TEST 247 



Following is a list of valid entries and syntax for data type: 

C 'character value' 

X 'hexadecimal value' 

B 'binary value' 

H '[ + ] decimal value' 

The minimum value for H-type is -32768 and the maximum value is 32767. 

F '[ + ] decimal value' 

The minimum value for F-type is -2147483648 and the maximum is 2147483647. 

E '[ + ] decimal value [E[ + ] decimal exponent]' 

A maximum of 8 digits are allowed for the decimal value and a maximum of 2 digits are 
allowed for the decimal exponent. 

D '[ +] decimal value [E[ +] decimal exponent]' 

A maximum of 17 digits are allowed for the decimal value and a maximum of 2 digits are 
allowed for the decimal exponent. 

P '[ + ] decimal value' 

A maximum of 31 digits are allowed. 

Z '[ + ] decimal value' 

A maximum of 16 digits are allowed. 

A '[ + ] decimal value' 

The minimum decimal value is -2147483648 and the maximum value is 2147483647. 

S 'decimal value(register number)' 

The decimal value can be from 0 to 4095 and the register number must be from 0 to 15 
(decimal form). 

Y '[ + ] decimal value' 

The decimal value may be from 0 to 32767. 

You include your data following the code. Your data must be enclosed within 
apostrophes. Any single apostrophes within your data must be coded as two 
single apostrophes. Character data will be entered. If necessary, all other data 
types will be translated into uppercase. 

A list of data can be specified by enclosing the list in parentheses. The data in the 
list is stored at the beginning of the location specified by the address operand. 

Values assigned to general registers are placed in registers right-justified and 
padded with binary zeroes. 

When a virtual storage address is assigned a list of data-type values, the address 
must reside on the appropriate boundary for the specified data-type of the first 
value. Storage bytes for subsequent data-type values will be skipped to align data 
on the appropriate boundary for the data type requested. 

248 TSO Extensions Command Language Reference 



The following restrictions apply to general and floating-point registers: 

1. Only one data-type should be specified for floating-point registers. Additional 
values are ignored. 

2. Assign only X or E data-types to single precision floating-point registers. 

3. Assign only X or D data-types to double precision floating-point registers. 

4. With the exception of the D-type of data, general registers can be assigned 
any data-type. 

When a general register is assigned a list of data-type 'values', the first value is 
assigned to the specified register. Subsequent data-type values are assigned to 
contiguous higher-numbered registers. If register 15 is reached and data-type 
values remain, the values are wrapped around to register 0 and subsequent 
registers, if needed. 

If data is assigned to a storage area that contains a breakpoint, the breakpoint is 
removed and a warning message is displayed at the terminal. 

Example 1 

Operation: Insert a character string at a particular location in virtual storage. 

Known: 

The address is a symbol: INPOINT 
The data: January 1, 1985 

inpoint=c'january I, 1985' 

Example 2 

Operation: Insert a binary number into a register. 

Known: 

The number of the register: Register 6 
The data: 0000 0001 0110 0011 

6r=b'0000000101100011' 

Example 3 

Operation: Initialize registers 0 through 3 to zeroes and register 15 to 4. 

15R=(x'4' ,x'O' ,x'O' ,x'O'x'O') 

Note: The sixteen (16) general registers are treated as contiguous fields with 
register 0 immediately following register 15. 

Assignment of Values Function of TEST 249 



Example 4 

Operation: Assign a new base and displacement for an instruction that was found 
to be in error. 

Known: 

LA instruction at + 30 is X' 41309020'. In this instruction, the current base 
register is 9 and the displacement is a decimal value of 32 (hexadecimal value 
of 20). The base register should be 10 and the decimal displacement should 
be 98 (hexadecimal value of 62). 

+32=S'98(10) , 

After this assignment, the instruction at + 30 is: 

X'4130A062' 

Example 5 

Operation: Insert a number in packed format at a particular address in virtual 
storage. 

Known: 

Absolute address: C3D4l, decimal value to be packed is -1038. 

c3d41.=p'-1038' 

250 TSO Extensions Command Language Reference 



AT Subcommand of TEST 

Use the AT subcommand to establish breakpoints where processing is to be 
temporarily halted so that you can examine the results of execution up to the 
point of interruption. Processing is halted before the instruction at the breakpoint 
is executed. 

MVS/XA: The AT subcommand sets breakpoints for all MVSjXA instructions 
except for the cross-memory instructions PC, PT, SAC, and SSAR. 

You cannot establish a breakpoint at: 

• The target of an execute instruction or the execute instruction itself. 

e An instruction that is to be modified by the execution of other in-line code 
prior to the execution of the breakpoint. 

• A user written SVC exit. 

AT laddress [ : address] I 
(address-list) 

[(subcommands-list)] 
[COUNT(integer)] 

[
NODEFER] 
DEFER 

[
NOTIFY ] 
NONOTIFY 

[TITLE ( I text I) ] 16 

address 
specifies a location that is to contain a breakpoint. The address must be on 
a half word boundary and contain a valid op code. 

address:address 
specifies a range of addresses that are to contain breakpoints. Each address 
must be on a half word boundary. A breakpoint is established at each 
instruction between the two addresses. When a range of addresses is 
specified, assignment of breakpoints halts when an invalid instruction is 
encountered. 

address-list 
specifies several addresses that are to contain breakpoints. Each address 
must be on a halfword boundary. The list must be enclosed within 
parentheses, and the addresses in the list must be separated by standard 
delimiters (one or more blanks or a comma). A breakpoint is established at 
each address. 

16 MVS/XA only 

AT Subcommand of TEST 251 



Note: For address, address:address, address-list, specify the address as: 

• An absolute address 
• A symbolic address 
• A relative address 
• An indirect address 
• An address expression 
• A module-name and entry name (separated by a period) 
• An entry-name (preceded by a period). 

subcommands-list 
specifies one or more subcommands to be executed when the program is 
interrupted at the indicated location. If you specify more than one 
subcommand, the subcommands must be separated by semicolons. The list 
cannot be longer than 255 characters. 

Note: If an OFF subcommand in the list removes the breakpoint for which 
a list is specified, all remaining subcommands in that list are ignored. 

COUNT(integer) 
specifies that processing is not to be halted at the breakpoint until it has 
been encountered the specified number of times. This operand is directly 
applicable to program loop situations where an instruction is executed 
several times. Processing is halted each time the breakpoint has been 
encountered for the number of times specified for the integer operand. The 
integer specified cannot exceed 65,535. 

NODEFER 
specifies the breakpoint is to be inserted into the program now in virtual 
storage. This is the default value if both DEFER and NODEFER are 
omitted. 

DEFER 
specifies the breakpoint is to be established in a program that is not yet in 
virtual storage. The program to contain the breakpoint is brought in as a 
result of a LINK, LOAD, ATTACH, or XCTL macro instruction by the 
program being tested. When you specify this operand, you must qualify the 
address of the breakpoint: 

MODULENAME.ENTRYNAME.RELATIVE 

or 

MODULENAME.ENTRYNAME.SYMBOL 

All breakpoint addresses listed in an AT subcommand with the DEFER 
operand must refer to the same load module. 

NOTIFY 
specifies that if the breakpoint is encountered, it will be identified at the 
terminal. If both NOTIFY and NONOTIFY are omitted, NOTIFY is the 
default. 

252 TSO Extensions Command Language Reference 



NONOTIFY 
specifies that if the breakpoint is encountered, it will not be identified at the 
terminal. 

TITLE(,text') MVS/XA Only 
specifies from 1 to 50 characters of text displayed following the word AT 
whenever the tested program stops at the breakpoint associated with that 
text. The text is intended to serve as a meaningful identification of the 
instruction address at which the program stops. It is used instead of an 
address. If NONOTIFY is specified, nothing is displayed. 

A list of addresses can be associated with the same text and the text is 
displayed whenever the associated breakpoint is reached. If a range is 
specified and TITLE ('text') is listed as an operand, the text is displayed in 
the form: 'text-string' + displacement. Displacement is the hexadecimal 
offset at the breakpoint encountered from the beginning of the range. 

Note: If your program is running in supervisor state or in a PSW 
protection key less than 8, breakpoints are ignored. 

Example 1 

Operation: Establish breakpoints at each instruction in a section of the program 
that is being tested. 

Known: 

The addresses of the first and last instructions of the section that you want to 
test: LOOP A EXIT A 

The subcommands to be executed are: LISTPSW, GO 

at loopa:exita (listpswigO) 

Example 2 

Operation: Establish breakpoints at several locations in a program. 

Known: 

The addresses for the breakpoints: + 8A LOOPB EXITB 

at (+8A loopb exitb) 

Example 3 (MVS/XA Only) 

Operation: Establish a breakpoint at a location in a loop. The address of the 
location is contained in register 15. You only want to have an interruption every 
tenth cycle through the loop. When the interruption occurs, you want a 
meaningful identification at the breakpoint. 

Known: 

The address for the breakpoint: 15R % 

at 15r% count(10) title('entry after 10 loops') 

AT Subcommand of TEST 253 



Example 4 

Operation: Establish a breakpoint for a program that is not presently in virtual 
storage. 

Known: 

The name of the load module: CALCULAT 
The CSECT name: INTEREST 
The symbolic address for the breakpoint: TOTAL 

at calculat.interest.total defer 

Example 5 

Operation: Have the following subcommands executed when the breakpoint at 
TAC is reached: LISTTCB PRINT(TCBS), LISTPSW, and GO CALCULAT 

at tac (listtcb print(tcbs) listpsw;go calculat) 

Example 6 

Operation: Request that the following subcommands be executed when the 
breakpoint at symbol NOW is reached: LISTMAP, LISTTCB, OFF NOW, AT 
+32, and GO. 

at now (listmap;listtcb;off now;at +32;go) 

The last two subcommands will not be executed because the breakpoint (NOW) 
and its subcommand list will have been removed. 

254 TSO Extensions Command Language Reference 



ATTRIB Subcommand of TEST (MVS/XA Only) 

Use the ATTRIB subcommand to build a list of attributes for non-V SAM data 
sets that are to be dynamically allocated. Refer to the ATTRIB command for a 
description of the syntax and function of the ATTRIB subcommand. 

ATTRIB Subcommand of TEST (MVS/XA Only) 255 



CALL Subcommand of TEST 

Use the CALL subcommand to initiate processing at a specified address and to 
initialize registers 1, 14, and 15. You can pass parameters to the program that is 
to be tested. 

Caution: The contents of registers 1, 14, and 15 are altered by the use of the 
CALL subcommand. To save the contents of these registers, use the COpy 
subcommand of TEST (see Examples 2 and 3 under the COpy subcommand). 

The CALL subcommand of TEST places the return address of the tested program 
in register 14. The high-order bit of register 14 is set to reflect the addressing 
mode of the tested program. 

CALL address 

[PARM(address-list)] 
[VL] 

[RETURN(address)] 
[RESUME] 17 

lODE [l~!iTCH)]] 17 

address 
specifies the address where processing is to begin. Register 15 contains this 
address when the program under test begins execution. 

You can specify the address as: 

• An absolute address 
• A symbolic address 
• A relative address 
• An indirect address 
• An address expression 
• A module-name and entry-name (separated by a period) 
• An entry-name (preceded by a period). 

P ARM(address-list) 

VL 

specifies one or more addresses that point to data to be used by the 
program being tested. The list of addresses are expanded to full words and 
placed into contiguous storage. Register 1 contains the address of the start 
of the list. If PARM is omitted, register 1 points to a fullword that contains 
the address of a halfword of zeroes. 

specifies the high-order bit of the last fullword of the list of addresses 
pointed to by general register 1 is to be set to one. 

17 MVS/XA only 

256 TSO Extensions Command Language Reference 



RETURN(address) 
specifies on completion of execution, the called program returns control to 
the address in register 14. The high-order bit of register 14 reflects the 
addressing mode of the tested program prior to the issuance of the CALL 
subcommand. If RETURN is omitted, register 14 contains the address of a 
breakpoint instruction. 

RESUME (MVS/XA Only) 
specifies upon completion of execution, the called program returns control 
to the address of the last breakpoint prior to the CALL. 

AMODE [(24) ] MVS/XA Only 
(31) 
(SWITCH) 

specifies the addressing mode in which the called program begins execution. 
If AMODE (SWITCH) is specified, the called program continues execution 
in the addressing mode that is non-current when CALL is issued. You can 
determine the current addressing mode by issuing the LISTPSW command. 
If AMODE is not specified, there is no change in addressing mode. 

Example 1 

Operation: Initiate execution of the program being tested at a particular location. 

Known: 

The starting address: + OA 
The addresses of data to be passed: CTCOUNTR LOOPCNT TAX 

call +Oa parm(ctcountr loopcnt tax) 

Note: The following message is issued after completion of the called routine: 

'IKJ57023I PROGRAM UNDER TEST HAS TERMINATED NORMALLY+' 

This message is issued because no return address was specified. If GO is now 
specified without an address, the TEST session is terminated. 

Example 2 

Operation: Initiate execution at a particular location. 

Known: 

The starting address: STAR TBD 

The addresses of data to be passed: BDFLAGS PRFTTBL COSTTBL 
ERREXIT 

Set the high-order bit of the last address parameter to 1 so that the program 
can tell the end of the list. After execution, control is to be returned to: 
+24A 

call startbd parm(bdflags prfttbl costtbl errexit)­
vI return(+24a) 

CALL Subcommand of TEST 257 



Example 3 

Operation: Initiate execution at label COMPUTE and have execution begin at 
label NEXT when control is returned by register 14. 

call compute return(next) 

258 TSO Extensions Command Language Reference 



CANCEL Subcommand of TEST (MVS/XA Only) 

Use the CANCEL subcommand to halt processing of batch jobs submitted from 
the terminal. Refer to the CANCEL command for a description of the syntax 
and function of the CANCEL subcommand. 

CANCEL Subcommand of TEST (MVSjXA Only) 259 



COpy Subcommand of TEST 

Use the COpy subcommand to transfer data or addresses from: 

• One storage address to another 
• One general register to another 
• A register to virtual storage 
• Virtual storage to a register. 

In addition, you can use the COpy subcommand to: 

• Save or restore the contents of the general registers 
• Propagate the value of a byte throughout a field 
• Move an entire data field from one location to another. 

address! 

addressl address2 

[LENGTH (int~ger)l 

[
POINTER 1 
NOPOINTER 

specifies a location that contains data to be copied. 

address2 
specifies a location that receives the data after it is copied. 

You can specify address 1 and address2 as: 

• An absolute address 
• A symbolic address 
• A relative address 
• An indirect address 
• An address expression 
• A module-name and entry-name (separated by a period) 
• A general register. 

LENGTH(integer) or LENGTH(4) 
specifies the length, in decimal, of the field to be copied. If an integer is not 
specified, LENGTH defaults to 4 bytes. The maximum length is 65,535 
bytes in a storage-to-storage copy operation and 64 bytes when a register is 
specified. 

POINTER 
specifies address 1 is to be validity checked to see that it does not exceed 
maximum virtual storage size. Addressl is then treated as an immediate 
operand (hexadecimal literal) with a maximum length of 4 bytes (that is, an 
address will be converted to its hexadecimal equivalent) and transferred into 
the location specified by address2. When using the POINTER operand, do 
not specify a general register as address 1. 

260 TSO Extensions Command Language Reference 



NOPOINTER 
specifies addressl is to be treated as an address, not as an immediate 
operand. NOPOINTER is the default. 

The COPY subcommand treats the 16 general registers as contiguous fields. You 
can specify that 10 bytes be moved from general register 0 to another location. 

copy or 80060. length(lO) 

The COPY subcommand moves the 4 bytes of register 0, the 4 bytes of register 1, 
and the high-order 2 bytes of register 2 to virtual storage beginning at location 
80060. When a register is specified as addressl, the maximum length of data 
transferred is the total length of the general registers or 64 bytes. 

When the value of address2 is one greater than address1, propagation of the data 
in addressl occurs. When the value of address2 is more than one greater than the 
value of address 1 , no propagation occurs. 

Example 1 

Operation: Transfer two full words of data from one virtual storage location to 
another. 

Known: 

The starting address of the data: 80680 
The starting address of where the data is to be: 80685 

copy 80680. 80685. length(8) 

Example 2 

Operation: Copy the contents of one register into another register. 

Known: 

The register which contains the data to be copied: 10 
The register which contains the data to be received: 5 

copy lOr 5r 

Example 3 

Operation: Save the contents of the general registers. 

Known: 

The first register to be saved: 0 
The starting address of the save area: A0200 

c Or a0200. 1(64) 

COpy Subcommand of TEST 261 



Example 4 

Operation: Propagate the value in the first byte of a buffer throughout the 
buffer. 

Known: 

The starting address of the buffer: 80680 
The length of the buffer: 80 bytes 

c 80680. 80681. 1(79) 

Example 5 

Operation: Insert a hexadecimal value into the high-order byte of a register. 

Known: 

The desired value: X'80' 
The register: 1 

copy 80. 1r 1(1) pointer 

Note: Specifying the pointer operand causes 80 to be treated as an immediate 
operand and not as an address.· 

Example 6 

Operation: Insert the entry point of a routine into a virtual storage location. 

Known: 

The module name and the entry point name: IEFBR14.IEFBR14 
The desired virtual storage location: STAR TPTR 

c iefbr14.iefbr14 startptr p 

Example 7 

Operation: Copy the contents of an area pointed to by a register into another 
area. 

Known: 

The register which points to the area that contains the data to be moved: 14 

The real storage location which is to contain the data: 80680 

The length of the data to be moved: 8 bytes 

c 14r% 80680. 1(8) nopoint 

262 TSO Extensions Command Language Reference 



DELETE Subcommand of TEST 

Use the DELETE subcommand to delete, from virtual storage, a load module 
that was loaded by the tested program, or one of its subtasks. 

MVS/XA: Use the DELETE subcommand to delete a module that was loaded 
above or below 16Mb by the tested program or by the LOAD subcommand of 
TEST. 

[
DELETE I 
DEL 

load-module-name 

load-module-name 

specifies the name of the load module to be deleted. The load name is the 
name (which might be an alias) by which the program is known to the 
system when it is in virtual storage. The name must not exceed eight 
characters. 

Example 1 

Operation: Delete a load module from virtual storage. 

Known: 

The name of the load module: TOTAL 

delete total 

or 

del total 

DELETE Subcommand of TEST 263 



DROP Subcommand of TEST 

Use the DROP subcommand to remove symbols from the symbol table of the 
module being tested. You can only remove symbols that you established with the 
EQUATE subcommand or the EQUATE operand of the GETMAIN 
subcommand. You cannot remove symbols that were established by the linkage 
editor. If the program being tested was assembled with the TEST option and the 
EQUATE subcommand was used to override the location and type of the symbol 
within the program, then when the DROP subcommand is used to delete that 
symbol from the symbol table, the symbol will reflect the original location and 
type within the program. 

DROP (symbol-list) 

(symbol-list) 
specifies one or more symbols that you want to remove from the symbol 
table created by the EQUATE subcommand or the EQUATE operand of 
the GETMAIN subcommand. When you specify only one symbol, you do 
not have to enclose the symbol within parentheses. However, two or more 
symbols must be enclosed by parentheses. If you do not specify any 
symbols, the entire table of symbols is removed. 

Example 1 

Operation: Remove all symbols that you have established with the EQUATE 
subcommand. 

drop 

Example 2 

Operation: Remove a symbol from the symbol table. 

Known: 

The name of the symbol: DATE 

drop date 

Example 3 

Operation: Remove several symbols from the symbol table. 

Known: 

The names of the symbols: STARTADD TOTAL WRITESUM 

drop (startadd total writesum) 

264 TSO Extensions Command Language Reference 



END Subcommand of TEST 

Use the END subcommand to terminate all functions of the TEST command and 
the program being tested. 

END 

The END subcommand does not close an opened data set. Use the GO 
subcommand to close an opened data set. Normal exit cleanup procedures should 
also be used. 

END Subcommand of TEST 265 



EQUATE Subcommand of TEST 

Use the EQUATE subcommand to add a symbol to the symbol table of the 
module being tested. This subcommand allows you to establish a new symbol 
that you can use to refer to an address or override an existing symbol to reflect a 
new address or new attributes. If no symbol table exists, one is created and the 
specified name is added to it. A symbol within DSECT can be accessed if the 
DSECT name is defined using the EQUATE subcommand. For restrictions on 
symbols see the section titled, "Internal Symbols." You can also modify the data 
attributes (type, length, and multiplicity); use the EQUATE subcommand to 
modify attributes of existing equated symbols. The DROP subcommand removes 
symbols added by the EQUATE subcommand. Symbols established by the 
EQUATE subcommand are defined for the duration of the TEST session only. 

symbol 

symbol address 

[LENGTH(integer)] 
[MULTIPLE(integer)] 

[data-type] 

specifies the symbol (name) that you want to add to the symbol table so 
that you can refer to an address symbolically. The symbol must consist of 
one through eight alphameric characters, the first of which is an alphabetic 
character. 

address 
specifies the address is to equate to the symbol that you specified. 

You can specify the address as: 

• An absolute address 
• A symbolic address 
• A relative address 
• An indirect address 
• An address expression 
• A module-name and entry-name (separated by a period) 
• An entry name (preceded by a period). 

266 TSO Extensions Command Language Reference 



data-type 
specifies the characteristics you want to attribute to the data at the location 
given by address. These might be the same as the original characteristics. 
Indicate the type of data by one of the following codes: 

Code 

C 
X 
B 
I 
H 
F 
E 
D 
P 
Z 
A 
S 
Y 

LENGTH(integer) 

Type oCData 

Character 
Hexadecimal 
Binary 
Assembler instruction 
Fixed point binary (halfword) 
Fixed point binary (fullword) 
Floating point (single precision) 
Floating point (double precision) 
Packed decimal 
Zoned decimal 
Address constant 
Address (base, + displacement) 
Address constant (halfword) 

Maximum Length (Bytes) 

256 
256 
256 
256 
8 
8 
8 
8 
16 
16 
4 
2 
2 

specifies the length of the data. The maximum value of the integer is 256. If 
you do not specify the length, the following default values apply: 

Type oCData 

C,B,P,Z 
H,S,Y 
F,E,A,X 
D 
I 

MUL TIPLE(integer) 

DeCault Length (Bytes) 

1 
2 
4 
8 
variable 

specifies a multiplicity factor. The multiplicity factor means that one 
element of the data appears several times in succession. The number of 
repetitions is indicated by the number specified for integer. The maximum 
value of the integer is 256. 

If you do not specify any operands, the defaults are: 

type - X 
mUltiplicity - 1 
length - 4 

If both multiplicity and length are specified for data-type I, the multiplicity is 
ignored. 

Example 1 

Operation: Add a symbolic address to the symbol table of the module that you 
are testing. 

Known: 

The symbol: EXITRTN 
The address: TOTAL + 4 

equate exitrtn total+4 

EQUATE Subcommand of TEST 267 



Example 2 

Operation: Change the address and attributes for an existing symbol. 

Known: 

The symbol: CONSTANT 
The new address: IF AAO 
The new attributes: type: C, length: L(8), multiplicity: M(2) 

eq constant 1faaO. c m(2) 1(8) 

Example 3 

Operation: Add the symbol NAMES to the symbol table to access a list of 6 
names. Each name is 8 characters long. 

Known: 

The names are stored one after the other at relative address + 12C. 

equate names +12c 1(8) m(6) c 

268 TSO Extensions Command Language Reference 



EXEC Subcommand of TEST (MVS/XA Only) 

Use the EXEC subcommand to execute a CLIST. Refer to the EXEC command 
for a description of the syntax and function of the EXEC subcommand. 

Only TEST subcommands and CLIST statements should be specified in the 
CLIST. You can enter any TSO command in the CLIST after entering END or 
RUN to terminate TEST. 

EXEC Subcommand of TEST (MVS/XA Only) 269 



FREEMAIN Subcommand of TEST 

Use the FREEMAIN subcommand to free a specified number of bytes of virtual 
storage. 

MVS/XA: Use the FREEMAIN subcommand to free a specified number of 
bytes of virtual storage above or below 16Mb. 

(
FREEMAIN) 
FREE 

integer 

integer address 

specifies the number of decimal bytes of virtual storage to be released. 

address 
specifies the location of the space to be freed. It must be a multiple of 8 
bytes. 

The LISTMAP subcommand can be used to help locate previously acquired 
virtual storage. 

You can specify the address as: 

• An absolute address 
• A symbolic address 
• A relative address 
• An indirect address 
• An address expression 
• A module-name and entry-name (separated by a period) 
• An entry name (preceded by a period). 

SP(integer) or SP(O) 
specifies the number of the subpool that contains the space to be freed. If 
you omit this operand, the default value is subpool zero. The integer must 
be in the range 0 through 127. 

Example 1 

Operation: Free space in virtual storage that was previously acquired by a 
GET MAIN macro instruction in the module being tested. 

Known: 

The size of the space, in bytes: 500 
The absolute address of the space:. 054A20 
The number of the subpool that the space was acquired from: 3 

free 500 OS4a20. sp(3) 

270 TSO Extensions Command Language Reference 



Example 2 

Operation: Free space in virtual storage that was previously obtained by a 
GETMAIN subcommand. 

Known: 

The size of the space: 100 decimal bytes 

The address of the space to be freed: X' A4' past the address in register 3 

The space to be freed: in subpool 0 

freemain 100 3r%+A4 

Example 3 

Operation: Free subpool 127. 

freemain a a sp(127) 

Warning: Do not attempt to free all of subpool 78. If you want to free a portion 
of subpool 78, be careful not to free the storage obtained by the TMP. This 
results in freeing the TMP's data areas because subpool 78 is shared. The 
deletion of the TMP portion of subpool 78 causes your session to terminate. 

You can release an entire subpool by specifying a length of 0, an absolute address 
of 0, and a subpool in the range of 1 through 127. 

If you specify a non-zero address, the length must also be non-zero. 

FREEMAIN Subcommand of TEST 271 



GETMAIN Subcommand of TEST 

Use the GETMAIN subcommand to obtain a specified number of bytes of virtual 
storage. The GETMAIN subcommand displays the starting address of the virtual 
storage obtained. 

IGETMAINj 
GET 

integer 

integer 

[ SP ( int~ger) 1 
[EQUATE (name) ] 

[LOC [l:~r]] 18 

specifies the number of bytes, in decimal form, of virtual storage to be 
obtained. 

SP(integer) or SP(O) 
specifies the number of a subpool from which the virtual storage is to be 
obtained. If you omit this operand, the default value is subpool zero. The 
integer must be in the range 0 through 127. 

EQUATE(name) 
specifies the address of acquired virtual storage is to be equated to the 
symbol specified by name and placed in the TEST mcemal symbol table. 

LOC (BELOW) MVS/XA Only 
specifies the virtual and real storage area must be below 16 Mb. 

LOC (ANY) MVS/XA Only . 
specifies the virtual storage area can be anywhere in the virtual storage 
addressing range. The actual location (above or below 16 Mb) of the 
virtual storage area depends on the subpool specified. If the requested 
subpool is supported above 16 Mb, GETMAIN allocates virtual storage 
above 16 Mb, if possible. 

LOC (RES) MVS/XA Only 
specifies the address of the virtual storage area depends upon the residence 
of the next instruction to be executed. If the instruction address in the PSW 
for the tested program is below 16 Mb, the request is processed as LOC 
(BELOW). If the instruction address is above 16Mb, the request is 
processed as LOC (ANY). LOC (RES) is the default. 

18 MVSjXA only 

272 TSO Extensions Command Language Reference 



Example 1 

Operation: Obtain 240 decimal bytes of virtual storage from subpool O. 

getmain 240 

Example 2 

Operation: Obtain 500 bytes of virtual storage from subpool 3 and equate 
starting address to symbolic name AREA. 

get 500 sp(3) equate (area) 

GETMAIN Subcommand of TEST 273 



GO Subcommand of TEST 

Use the GO subcommand to start or restart program execution from a particular 
address. If the program was interrupted for a breakpoint and you want to 
c~ntinue from the breakpoint, there is no need to specify the address. However, 
you can start execution at any point by specifying the address. 

GO [address] 

[AMODE 
[
(24) ]] (31 ) 
(SWITCH) 

19 

address 
specifies a symbolic address, a relative address, an absolute address, or a 
general register containing an address. Execution begins at the address that 
you specify. 

When the problem program completes processing, the following message is 
displayed at the terminal: 

'IKJ57023I PROGRAM UNDER TEST HAS TERMINATED NORMALLY+' 

If the GO subcommand is then issued with no address specified, the TEST 
session is terminated. 

AMODE [(24) ] MVS/XA Only 
(31) 
(SWITCH) 

specifies· the addressing mode in which program execution resumes after the 
GO subcommand has been issued. You can specify AMODE without 
specifying an address. However, if the word AMODE or any abbreviation 
of the word AMODE is defined as a symbolic address, GO AMODE 
executes as follows: program execution starts at the last breakpoint and the 
SWITCH default is taken. 

If you do not specify AMODE, there is no change in addressing mode. 

19 MVS/XA only 

274 TSO Extensions Command Language Reference 



Example 1 

Operation: Begin execution of a program at the point where the last interruption 
occurred or initiate execution of a program. 

go 

Example 2 

Operation: Begin execution at a particular address. 

go calculat 

GO Subcommand of TEST 275 



HELP Subcommand of TEST 

Use the HELP subcommand to obtain the syntax and function of the TEST 
subcommands. Refer to the HELP command for a description of the syntax and 
function of the HELP subcommand. 

276 TSO Extensions Command Language Reference 



LINK Subcommand of TEST (MVS/XA Only) 

Use the LINK subcommand to invoke the linkage editor service program. Refer 
to the LINK command for a description of the syntax and function of the LINK 
subcommand. 

LINK Subcommand of TEST (MVSjXA Only) 277 



LIST Subcommand of TEST 

Use the LIST subcommand to have the contents of a specified area of virtual 
storage or the contents of registers displayed at your terminal or placed into a 
data set. 

address 

laddress[:address]i 
1 (address-list) data-type 

[LENGTH(integer)] 
[MULTIPLE(integer)] 
[PRINT(data-set-narne)] 

specifies the location of data that you want displayed at your terminal or 
placed into a data set. 

address:address 
specifies that you want the data located between the specified addresses 
displayed at your terminal or placed into a data set. 

(address-list) 
specifies several addresses of data that you want displayed at your terminal 
or placed into a data set. The data at each location is retrieved. If the first 
address of a range is a register, the second address must also be the same 
type of register (floating point or general). The list of addresses must be 
enclosed within parentheses, and the addresses must be separated by 
standard delimiters (one or more blanks or a comma). 

If a range of addresses is specified on LIST and the ending address is in 
fetch protected storage, you are prompted (if in PROMPT mode) to reenter 
the address. If you want a range of addresses, you must reenter the range, 
not just the ending address. 

You can create a load module that contains more than one DSECT or 
CSECT within the same symbolic name. When you list an unqualified 
symbolic address in a load module, the LIST command displays the area 
associated with the first occurrence of the symbol. Use the fully-qualified 
name, 'module-name.csect.symbol-name', to display occurrences other than 
the first. 

You can specify address, address:address, and address-list as: 

• An absolute address 
• A symbolic address 
• A relative address 
• An indirect address 
• An address expression 
• A module-name and entry-name (separated by a period) 
• An entry name (preceded by a period) 
• A general register 
• A floating point register. 

278 TSO Extensions Command Language Reference 



data-type 
specifies the type of data that is in the specified location. Indicate the type 
of data using one of the following codes: 

Code 

C 
X 
B 
I 
H 
F 
E 
D 
P 
Z 
A 
S 
y 

Type of Data 

Character 
Hexadecimal 
Binary 
Assembler instruction 
Fixed point binary (halfword) 
Fixed point binary (fullword) 
Floating point (single precision) 
Floating point (double precision) 
Packed decimal 
Zoned decimal 
Address constant 
Address (base + displacement) 
Address constant (halfword) 

Maximum Length (Bytes) 

256 
256 
256 
256 
8 
8 
8 
8 
16 
]6 
4 
2 
2 

All accepted data-types allow the specified address to be aligned on a byte 
boundary even though certain data-types cannot be assigned to a byte 
boundary. The default for data-type is hexadecimal. 

A general register is displayed in decimal format if the F data-type is used. 
Otherwise, regardless of the type specified, a general register is displayed in 
hexadecimal. Floating-point registers are listed in floating-point format if 
data-type is not specified. However, floating-point registers can be listed in 
hexadecimal format by using the X data-type. If any data-type other than 
D, E, or X is specified for floating-point registers, data-type is ignored and 
the register is listed in floating-point format. 

If an area is to be displayed using the I data-type and the area contains an 
invalid op code, only the area up to that invalid op code is displayed. 

LENGTH(integer) 
indicates the length, in bytes, of the data that is to be listed. If you use a 
symbolic address and do not specify LENGTH, the value for the LENGTH 
operand is retrieved from the internal TEST symbol table or from the length 
associated with a symbol in a program. Otherwise, the following default 
values apply: 

Type of data 

C,B,P,Z 
H,S,Y 
F,E,A,X 
D 
I 

Default Length (Bytes) 

1 
2 
4 
8 
variable 

When the data-type is I, either LENGTH or MULTIPLE can be specified, 
but not both. If -both are specified, the MULTIPLE operand is ignored, but 
no error message is printed. 

LIST Subcommand of TEST 279 



MUL TIPLE(integer) 
Use with the LENGTH operand. It gives you the following options: 

• The ability to format the data to be listed (see Example 7). 

• A way of printing more than 256 bytes at a time. The value supplied 
for integer determines how many lengths or multiples of data-type you 
want listed. The value supplied for integer cannot exceed 256. 

For I type data, the value supplied for MULTIPLE defines the number of 
instructions to be displayed. If you use a symbolic address and do not 
specify either LENGTH or MULTIPLE, the length retrieved from the 
internal TEST symbol table or from the program is used and multiplicity is 
ignored. 

PRINT( data-set-name) 
specifies the name of a sequential data set to which the data is directed. If 
you omit this operand, the data is directed to your terminal. 

The data format is blocked variable-length records. Old data sets with the 
standard format and block size are treated as NEW, if they are being 
opened for the first time. Otherwise, they are treated as MOD data sets. 

If PRINT(data-set-name) is specified, use the following table to determine 
the format of the output. 

If the data-set-name is not specified within quotes, the descriptive qualifier 
TESTLIST is added. 

If your record type was: Fixed, Fixed Blocked, Variable or 
or Undefined Variable Blocked 

Then it is changed to Recordsize Blocksize Recordsize Blocksize 
variable blocked with 
the following attributes: 125 1629 125 129 

Record and block sizes greater than those specified in the preceding table are 
unchanged. 

The specified data set is kept open until: 

1. The TEST session is ended by a RUN or END subcommand, or 

2. A LIST subcommand is entered specifying a different PRINT data set. In 
this case, the previous data set is closed and the current one opened. 

280 TSO Extensions Command Language Reference 



Example 1 

Operation: List the contents of floating-point register 2 in single precision. 

list 2e 

Example 2 

Operation: List all of the general registers. 

list Or:15r 

Example 3 

Operation: List all of the floating point registers in double precision. 

list Od:6d 

Example 4 

Operation: List 20 instructions starting with address + 3A 

list +3a i m(20) 

Example 5 

Operation: List the contents of an area of virtual storage. 

Known: 

The area to be displayed is between labels COUNTERA and DT ABLE. 

The data is to be listed in character format for a length of 130 bytes. 

The name of the data set where the data is to be put: MYDATA.DCDUMP. 

list countera:dtable 
c 1(130) m(l) print ('mydata.dcdump') 

Example 6 

Operation: List the contents of virtual storage at several addresses. 

Known: 

The addresses: TOTAL1, TOTAL2, TOTAL3, and ALLTOTAL 

Each address is to be displayed in fixed-point binary format in three lines of 3 
bytes each. 

list (total1 tota12 tota13 alltotal) f 1(3) m(3) 

LIST Subcommand of TEST 281 



Example 7 

Operation: List the first six full words in the communications vector table (CVT). 

Known: 

The absolute address of the CVT: 10 

The user is operating in TEST mode. 

The data is to be listed in hexadecimal form in six lines of 4 bytes each. 

Note: First use the QUALIFY subcommand of TEST to establish the beginning 
of the CVT as a base location for displacement values. 

qualify 10.% 

TEST: The system response 

list +0 1(4) m(6) 

The display at your terminal will resemble the following: 

+0 00000000 
+4 00012A34 
+8 00000B2C 
+C 00000000 
+10 001A0408 
+14 00004430 

In the preceding example, the hexadecimal data-type was not specified. It was the 
default. 

282 TSO Extensions Command Language Reference 



LISTALC Subcommand of TEST (MVS/XA Only) 

Use the LISTALC subcommand to obtain a list of names of the data sets 
allocated during the current user session. Refer to the LISTALC command for a 
description of the syntax and function of the LISTALC subcommand. 

LISTALC Subcommand of TEST (MVS/XA Only) 283 



LISTBC Subcommand of TEST (MVS/XA Only) 

Use the LISTBC subcommand to obtain a listing of the contents of the broadcast 
data set, SYSl.BRODCAST. It contains messages of general interest (NOTICES) 
and messages directed to particular users (MAIL). Refer to the LISTBC 
command for a description of the syntax and function of the LISTBC 
subcommand. 

284 TSO Extensions Command Language Reference 



LISTCAT Subcommand of TEST (MVS/XA Only) 

Use the LISTCAT subcommand to list catalog entries by name of entry type and 
selected fields for each entry. Refer to the LISTCAT command for a description 
of the syntax and function of the LISTCAT subcommand. 

LISTCAT Subcommand of TEST (MVS/XA Only) 285 



LISTDCB Subcommand of TEST 

Use the LISTDCB subcommand to list the contents of a data control block 
(DCB). You must provide the address of the beginning of the DCB. 

You can display the selected fields. The field identification is based on the 
sequential access method DCB for direct access. Fifty-two bytes of data are 
displayed if the data set is closed. Forty-nine bytes of data are displayed if the 
da ta set is opened. 

LISTDCB address 
[FIELD(narnes)] 
[PRINT(data-set-narne)] 

address 
specifies the address of the DCB that you want displayed. The address must 
be on a fullword boundary. 

You can specify the address as: 

• An absolute address 
• A symbolic address 
• A relative address 
• An indirect address 
• An address expression 
• A module-name and entry-name (separated by a period) 
• An entry-name (preceded by a period). 

FIELD(names) 
specifies one or more names of the particular fields in the DCB that you 
want to display at your terminal. The segment name is not printed when 
you use this operand. If you omit this operand, the entire DCB is 
displayed. 

Following is a list of the valid field names for the DCB: 

DCBBFALN 
DCBBFTEK 
DCBBUFCB 
DCBBUFL 
DCBBUFNO 
DCBDDNAM 
DCBDEBAD 
DCBDEVT 
DCBDVTBL 
DCBEODAD 
DCBEXLST 
DCBFDAD 
DCBHIARC 

286 TSO Extensions Command Language Reference 

DCBIFLGS 
DCBIOBAD 
DCBKEYCN 
DCBKEYLE 
DCBMACRF 
DCBOFLGS 
DCBRECFM 
DCBRELAD 
DCBTIOT 
DCBTRBAL 
DCBMACR 
DCBDSORG 



PRINT( data-set-name) 
specifies the name of the sequential data set to which data is to be directed. 
If you omit this operand, the data is displayed at your terminal. 

The data format is blocked variable-length records. Old data sets with the 
standard record format and block size are treated as NEW, if they are being 
opened for the first time. Otherwise, they are treated as MOD data sets. 

If the data-set-name is not specified within quotes, the descriptive qualifier 
TESTLIST is added. 

If PRINT(data-set-name) is specified, use the following table to determine 
the format of the output. 

If your record type was: Fixed, Fixed Blocked, Variable or 
or UndefIned Variable Blocked 

Then it is changed to Recordsize Blocksize Recordsize Blocksize 
variable blocked with 
the following attributes: 125 1629 125 129 

Record and block sizes greater than those specified in the preceding table are 
unchanged. 

The specified data set is kept open until: 

6) The LIST session is ended by a RUN or END subcommand, or 

• A LIST subcommand is entered that specifies a different PRINT data set. In 
this case, the former data set is closed and the current one opened. 

Example 1 

Operation: List the RECFM field of a DCB for the program that is being tested. 

Known: 

The DCB begins at location: DCBIN 

listdcb dcbin field(dcbrecfm) 

Example 2 

Operation: List an entire DCB. 

Known: 

The absolute address of the DCB: A33B4 

listdcb a33b4. 

LISTDCB Subcommand of TEST 287 



LISTDEB Subcommand of TEST 

Use the LISTDEB subcommand to list the contents of a data extent block (DEB). 
You must provide the address of the DEB. 

MVS/XA: If a copy of the control block is in extended virtual storage, the 
LISTDEB subcommand accepts addresses greater than 16 Mb, even though the 
block itself will always be in virtual storage below 16 Mb. Even if an absolute 
address has been specified, LISTDEB displays the virtual address before 
formatting the control block. 

In addition to the 32 byte basic section of the DEB, you can receive up to 16 
direct access device dependent sections of 16 bytes each, until the full length has 
been displayed. If you want, you can have only selected fields displayed. 

LISTDEB address 
[FIELD(names)] 
[PRINT(data-set-name)] 

address 
specifies the address is the beginning of the DEB. It must be on a fullword 
boundary. 

You can specify the address as: 

• An absolute address 
• A symbolic address 
• A relative address 
• An indirect address 
• An address expression 
• A module-name and entry-name (separated by a period) 
• An entry-name (preceded by a period). 

FIELD(names) 
specifies one or more names of the particular fields in the DEB that you 
want to display at your terminal. If you omit this operand, the entire DEB 
is listed. 

Following is a list of DEB names that are valid for the LISTDEB 
subcommand: 

DEBAMLNG 
DEBAPPAD 
DEBDCBAD 
DEBDEBAD 
DEBDEBID 
DEBECBAD 
DEBEXSCL 
DEBFLGSI 
DEBIRBAD 

288 TSO Extensions Command Language Reference 

DEBNMEXT 
DEBNMSUB 
DEBOFLGS 
DEBOPATB 
DEBPRIOR 
DEBPROTG 
DEBQSCNT 
DEBTCBAD 
DEBUSPRG 

DEBUSRPG 



Following is a list of the valid DEB names in the direct access section: 

DEBBINUM 
DEBDVMOD 
DEBENDCC 
DEBENDHH 

DEBNMTRK 
DEBSTRCC 
DEBSTRHH 
DEBUCBAD 

Note: These fields cannot be accessed unless there is a direct access section in the 
DEB. 

PRINT( data-set-name) 
specifies the name of the sequential data set to which data is to be directed. 
If you omit this operand, the data is displayed at your terminal. 

The data format is blocked variable-length records. Old data sets with the 
standard record format and block size are treated as NEW if they are being 
opened for the first time. Otherwise, they are treated as MOD data sets. 

If the data-set-name is not specified within quotes, the descriptive qualifier 
TESTLIST is added. 

If PRINT(data-set-name) is specified, use the following table to determine 
the format of the output. 

If your record type was: Fixed, Fixed Blocked, Variable or 
or Undefined Variable Blocked 

Then it is changed to Recordsize Blocksize Recordsize Blocksize 
variable blocked with 
the following attributes: 125 1629 125 129 

Record and block sizes greater than those specified in the preceding table are 
unchanged. 

The specified data set is kept open until: 

1. The TEST session is ended by a RUN or END subcommand, or 

2. A LIST subcommand is entered that specifies a different PRINT data set. In 
this case, the former data set is closed and the current one opened. 

Example 1 

Operation: List the entire DEB for the DCB that is named DCBIN. 

Known: 

The address of the DEB is 44 decimal (2C hexadecimal) bytes past the 
beginning of the DCB. 

The address of the DEB: DCBIN + 2C% 

listdeb dcbin+2c% 

LISTDEB Subcommand of TEST 289 



Example 2 

Operation: List the following fields in the DEB: DEBDCBAD and DEBOFLGS 

Known: 

The address of the DEB is 44 decimal (2C hexadecimal) bytes past the 
beginning of the DCB. The address of the DCB is in register 8. 

listdeb 8r%+2c% field(debdcbad,deboflgs) 

290 TSO Extensions Command Language Reference 



LISTDS Subcommand of TEST (MVS/XA Only) 

Use the LISTDS subcommand to display attributes of specific data sets at the 
terminal. Refer to the LISTDS command for a description of the syntax and 
function of the LISTDS subcommand. 

LISTDS Subcommand of TEST (MVS/XA Only) 291 



LISTMAP Subcommand of TEST 

Use the LISTMAP subcommand to display a virtual storage map at the terminal. 
The map identifies the location and assignment of any storage assigned to the 
program. 

All storage assigned to the problem program and its subtasks as a result of 
GETMAIN requests is located and identified by subpool (0-127). All programs 
assigned to the problem program and its subtasks are identified by name, size, 
location, and attribute. Storage assignment and program assignment are 
displayed by task. 

LISTMAP [PRINT(data-set-name)] 

PRINT( data-set-name) 
specifies the name of the sequential data set to which data is to be directed. 
If you omit this operand, the data is displayed at the terminal. 

The data format is blocked variable-length records. Old data sets with the 
standard record format and block size are treated as NEW, if they are being 
opened for the first time. Otherwise, they are treated as MOD data sets. 

If the data-set-name is not specified within quotes, the descriptive qualifier 
TESTLIST is added. 

If PRINT(data-set-name) is specified, use the following table to determine 
the format of the output. 

If your record type was: Fixed, Fixed Blocked, Variable or 
or Undefined Variable Blocked 

Then it is changed to Recordsize Blocksize Recordsize Blocksize 
variable blocked with 
the following attributes: 125 1629 125 129 

Record and block sizes greater than those specified in the preceding table are 
unchanged. 

The specified data set is kept open until: 

• The TEST session is ended by a RUN or END subcommand, or 

• A LIST subcommand is entered that specifies a different PRINT data set. In 
this case, the former data set is closed and the current one opened. 

292 TSO Extensions Command Language Reference 



Example 1 

Operation: Display a map of virtual storage at your terminal. 

listmap 

Example 2 

Operation: Direct a map of virtual storage to a data set. 

Known: 

The name of the data set: ACDQP.MAP.TESTLIST 
The prefix in the user's profile: ACDQD 

listmap print(map) 

LISTMAP -Subcommand of TEST 293 



LISTPSW Subcommand of TEST 

Use the LISTPSW subcommand to display a program status word (PSW) at your 
terminal. 

LISTPSW 

ADDR(address) 

[ADDR(address)] 
[PRINT(data-set-name)] 

specifies the address which identifies a particular PSW. If you do not 
specify an address, you receive the current PSW for the program that is 
executing. 

You can specify the address as: 

• An absolute address 
• A symbolic address 
• A relative address 
• An indirect address 
• An address expression 
• A module-name and entry-name (separated by a period) 
• An entry-name (preceded by a period). 

PRINT( data-set-name) 
specifies the name of the sequential data set to which data is to be directed. 
If you omit this operand, the data is displayed at your terminal. 

The data format is blocked variable-length records. Old data sets with the 
standard record format and block size are treated as NEW, if they are being 
opened for the first time. Otherwise, they are treated as MOD data sets. 

If the data-set-name is not specified within quotes, the descriptive qualifier 
TESTLIST is added. 

If PRINT(data-set-name) is specified, use the following table to determine 
the format of the output. 

If your record type was: Fixed, Fixed Blocked, Variable or 
or Undefined Variable Blocked 

Then it is changed to Recordsize Blocksize Recordsize Blocksize 
variable blocked with 
the following attributes: 125 1629 125 129 

Record and block sizes greater than those specified in the preceding table are 
unchanged. 

The specified data set is kept open until: 

• The TEST session is ended by a RUN or END subcommand, or 

• A LIST subcommand is entered that specifies a different PRINT data set. In 
this case, the former data set is closed and the current one is opened. 

294 TSO Extensions Command Language Reference 



Example 1 

Operation: Display the current PSW at your terminal. 

listpsw 

Example 2 

Operation: Direct the input/output old PSW into a data set. 

Known: 

The prefix in the user's profile: ANZAL2 
The address of the PSW (in hexadecimal): 38 
The name of the data set: ANZAL2.PSWS.TESTLIST 

listpsw addr(38.) print(psws) 

LISTPSW Subcommand of TEST 295 



LISTTCB Subcommand of TEST 

Use the LISTTCB subcommand to display the contents of a task control block 
(TCB). You can provide the address of the beginning of the TCB. 

MVS/XA: If a copy of the control block is in extended virtual storage, the 
LISTTCB subcommand accepts addresses greater than 16 Mb, even though the 
block itself is below 16 Mb in virtual storage. Even if an absolute address is 
specified, LISTTCB displays the virtual address of the requested TCB before 
formatting the control block., 

If you want, you can have only selected fields displayed. 

LISTTCB 

ADDR(address) 

[ADDR(address)] 
[FIELD(names)] 
[PRINT(data-set-name)] 

specifies the address must be on a fullword boundary. The address 
identifies the particular TCB that you want to display. If you omit an 
address, the TCB for the current task is displayed. 

You can specify the address as: 

• An absolute address 
• A symbolic address 
• A relative address 
• An indirect address 
• An address expression 
• A module-name and entry-name (separated by a period) 
• An entry-name (preceded by a period). 

FIELD(oames) 
specifies one or more names of the particular fields in the TCB that you 
want to display. If you omit this operand, the entire TCB is displayed. 

296 TSO Extensions Command Language Reference 



MVS/370 and MVS/XA: Following is a list of the valid LISTTCB field names. 

TCBABCUR 
TCBAECB 
TCBAFFN 
TCBAQE 
TCBBACK 
TCBCCPVI 
TCBCMP 
TCBDAR 
TCBDEB 
TCBDSP 
TCBECB 
TCBESTAE 
TCBEXTI 
TCBEXT2 
TCBBYTI 
TCBFLGS 
TCBFLGS6 
TCBFLGS7 
TCBFOE 
TCBFSAB 
TCBGRS 
TCBGTFA 

TCBIOBRC 
TCBIQE 
TCBJLB 
TCBJPQ 
TCBJSCB 
TCBJSTCB 
TCBLLS 
TCBLMP 
TCBLCT 
TCBMSS 
TCBNDSPO 
TCBNDSPI 
TCBNDSP2 

. TCBNDSP3 
TCBNDSP4 
TCBNDSP5 
TCBNSTAE 
TCBNTC 
TCBOTC 
TCBPIE 
TCBPKE 

TCBRBP 
TCBRCMP 
TCBRTM12 
TCBRTWA 
TCBSTABB 
TCBSTMCT 
TCBSTPCT 
TCBSWA 
TCBSYSCT 
TCBTCB 
TCBTCBID 
TCBTCT 
TCBTFLG 
TCBTID 
TCBTIO 
TCBTME 
TCBTRN 
TCBTSDP 
TCBSTFLG 
TCBTSLP 
TCBUSER 

MVS/370: Following is a list of the valid LISTTCB field names. 

TCBDDEXC 
TCBDDWTC 

TCBIOTIM 
TCBPQE 

TCBQEL 
TCBTIRB 
TCBMSAV 

MVS/XA: Following is a list of the valid LISTTCB field names. 

TCBAE 
TCBCANF 
TCBEAE 
TCBERD 
TCBEVENT 

PRINT( data-set-name) 

TCBNEEP 
TCBPERCP 
TCBPERCT 
TCBRD 
TCBSEQNO 

TCBSSAT 
TCBSTAWA 
TCBTQE 
TCBXLAS 
TCBXSB 
TCBXSCTI 

specifies the name of the sequential data set to which data is to be directed. 
If you omit this operand, the data is be displayed at your terminal. 

The data format is variable-length blocked records. Old data sets with the 
standard record format and block size are treated as NEW, if they are being 
opened for the first time. Otherwise, they are treated as MOD data sets. 

If data-set-name is not specified within quotes, the descriptive qualifier 
TESTLIST is added. 

If PRINT (data-set-name) is specified, use the following table to determine 
the format of the output. 

If your record type was: Fixed, Fixed Blocked, Variable or 
or Undefined Variable Blocked 

Then it is changed to Recordsize Blocksize Recordsize Blocksize 
variable blocked with 
the following attributes: 125 1629 125 129 

LISTTCB Subcommand of TEST 297 



Record and block sizes greater than those specified in the preceding table are 
unchanged. 

The specified data set is kept open until: 

• The TEST session is ended by a RUN or a END subcommand, or 

• A LIST subcommand is entered that specifies a different PRINT data set. In 
this case, the former data set is closed and the current one opened. 

Example 1 

Operation: Direct a copy of the TCB for the current task into a data set. 

Known: 

The prefix in the user's profile is NAN75. 
The name of the data set: NAN75.TCBS.TESTLIST 

listtcb print(tcbs) 

Example 2 

Operation: Save a copy of some fields of a task's control block that is not active 
in a data set for future information. 

Known: 

The symbolic address of the TCB: MYTCB2 
The fields that are being requested: TCBTIO TCBCMP TCBGRS 
The name of the data set: SCOTT.TCBDATA 

listtcb addr(mytcb2) field(tcbtio,tcbcmp,tcbgrs)­
print('scott.tcbdata') 

Example 3 

Operation: List the entire TCB for the current task. 

listtcb 

298 TSO Extensions Command Language Reference 



LOAD Subcommand of TEST 

Use the LOAD subcommand to load a program into real storage for execution. 

MVS/XA: Use the LOAD subcommand to load a program above or below 16 
Mb virtual storage based on its RMODE characteristics. If the displayed entry 
address is greater than X'7FFFFFFF', the addressing mode is 31-bit. In this 
case, X'80000000' must be subtracted from the displayed number in order to 
obtain the actual address. 

LOAD data-set-name 

data-set-name 
specifies the name of the partitioned data set containing the module to be 
loaded. If the member name is not specified, TEMPNAME is used. If the 
data-set-name is not specified within quotes, the LOAD qualifier is added. 

Example 1 

Operation: Load a program named GSCORES from the data set ATX03.LOAD. 

Known: 

The prefix in the user's profile is ATX03. 

load 'atx03.load (gscores)' 

or 

load (gscores) 

Example 2 

Operation: Load a module named ATTEMPT from data set 
ATX03.TEST.LOAD. 

Known: 

The prefix in the user's profile is ATX03. 

load 'atx03.test.load(attempt)' 

or 

load test(attempt) 

/ 

However, do not specify the following because this results in a search for 
ATX03. TEST .load.load: 

test.load(attempt) 

LOAD Subcommand of TEST 299 



Example 3 

Operation: Load a module named PERFORM from data set ATX03.TRY. 

load 'atx03.try(perform)' 

300 TSO Extensions Command Language Reference 



OFF Subcommand of TEST 

Use the OFF subcommand to remove breakpoints from a program. 

OFF 
[
address [ : address] 1 
(address-list) 

address 
specifies the location of a breakpoint that you want to remove. The address 
must be on a halfword boundary. 

If no address is specified, all breakpoints are removed. You can specify the 
address as: 

• An absolute address 
• A symbolic address 
• A relative address 
• An indirect address 
e An address expression 
(I A module-name and entry-name (separated by a period) 
8 An entry-name (preceded by a period). 

address:address 
specifies a range of addresses. All breakpoints in the range of addresses are 
removed. See the description of address for a list of valid address types. 

(address-list) 
specifies the location of several breakpoints that you want to remove. See 
the description of address for a list of valid address types. 

Note: The list must be in parentheses with address separated by one or 
more blanks or a comma. 

Example 1 

Operation: Remove all breakpoints in a section of a program. 

Known: 

The beginning and ending addresses of the section: LOOPC EXITC 

off loopc:exitc 

Example 2 

Operation: Remove several breakpoints located at different positions. 

Known: 

The addresses of the breakpoints: COUNTRA + 2c 3r% 

off (countra +2c 3r%) 

OFF Subcommand of TEST 301 



Example 3 

Operation: Remove all breakpoints in a program. 

off 

Example 4 

Operation: Remove one (1) breakpoint. 

Known: 

The address of the breakpoint is in register 6. 

off 6r% 

302 TSO Extensions Command Language Reference 



OR Subcommand of TEST (MVS/XA Only) 

Use the OR subcommand to: 

(I Alter the contents of the general registers. 
o OR an entire data field with another. 

The OR subcommand performs logical OR data or addresses from: 

9 One virtual storage address to another 
.. One general register to another 
• A register to virtual storage 
e Virtual storage to a register. 

OR addressl address2 

[LENGTH (intiger) 1 

[POINTER 1 
NOPOINTER 

address! 
specifies the location of data that is to be ORed with data pointed to by 
address2. 

If you do not specify POINTER and there is a breakpoint in the data 
pointed to by addressl, the TSO TEST processor terminates the OR 
operation. 

address2 
specifies the location of the data that is to be ORed with data pointed to by 
addressl. When the OR operation is complete, the result is stored at this 
location. 

You can specify address land address2 as: 

(I) An absolute address 
Q A symbolic address 
fl) A rela ti ve address 
• An indirect address 
o An address expression 
C A module-name and entry-name (separated by a period) 
• A general register 
• An entry name (preceded by a period). 

LENGTH(integer) or LENGTH(4) 
specifies the length, in decimal, of the field to be copied. If an integer is not 
specified, LENGTH defaults to 4 bytes. The maximum length is 256 bytes. 

OR Subcommand of TEST (MVSjXA Only) 303 



POINTER 
specifies addressl is to be validity checked to see that it does not exceed 
maximum virtual storage size. Addressl is then treated as an immediate 
operand (hexadecimal literal) with a maximum length of 4 bytes (that is, an 
address will be converted to its hexadecimal equivalent). When using the 
POINTER operand, do not specify a general register as address!. 

NOPOINTER 
specifies addressl is to be treated as an address. If neither POINTER nor 
NOPOINTER is specified, NOPOINTER is the default. 

The OR subcommand treats the 16 general registers as contiguous fields. You 
can OR 10 bytes from general register 0 to another location as follows: 

or Or 80060. length(lO) 

The OR subcommand ORs the 4 bytes of register 0, the 4 bytes of register 1, and 
the high-order 2 bytes of register 2 to virtual storage beginning at location 80060. 
When a register is specified as addressl, the maximum length of data that is ORed 
is the total length of the general registers or 64 bytes. 

Example 1 

Operation: OR two fullwords of data, each in a virtual storage location, placing 
the result in the second location. 

Known: 

The starting address of the data: 80680 
The starting address of where the data is to be: 80690 

or 80680. 80690. length(8) 

Example 2 

Operation: OR the contents of the two registers, placing the result in the second 
register specified. 

Known: 

The register which contains data specified as the first operand: 10 
The register which contains data specified as the second operand and the 
result: 5 

or lOr 5r 

304 TSO Extensions Command Language Reference 



Example 3 

Operation: Turn on the high-order bit of a register. 

Known: 

The OR value: X'80' 
The register: 1 

OR 80. 1r 1(1) pointer 

Note: Specifying the pointer operand causes 80 to be treated as an immediate 
operand and not as an address. 

Example 4 

Operation: OR the contents of an area pointed to by a register into another area. 

Known: 

The register which points to the area that contains the data to be ORed: 14 

The virtual storage location which contains the second operand and result: 
80680 

The length of the data to be ORed: 8 bytes 

or 14r% 80680. 1(8) 

OR Subcommand of TEST (MVSjXA Only) 305 



PROFILE Subcommand of TEST (MVS/XA Only) 

Use the PROFILE subcommand to establish, change, or list your user profile. 
Refer to the PROFILE command for a description of the syntax and function of 
the PROFILE subcommand. 

306 TSO Extensions Command Language Reference 



PROTECT Subcommand of TEST (MVS/XA Only) 

Use the PROTECT subcommand to prevent unauthorized access to a non-V SAM 
data set. Refer to the PROTECT command for a description of the syntax and 
function of the PROTECT subcommand. 

PROTECT Subcommand of TEST (MVS/XA Only) 307 



QUALIFY Subcommand of TEST 

Use the QUALIFY subcommand to qualify symbolic and relative addresses; that 
is, to establish the starting or base location to which displacements are added so 
that an absolute address is obtained. The QUALIFY subcomuland allows you to 
uniquely specify which program and which CSECT within that program you 
intend to test using symbolic and relative addresses. 

Alternately, you can specify an address to be used as the base location only for 
subsequent relative addresses. Each time you use the QUALIFY subcommand, 
previous qualifications are voided. Automatic qualification overrides previous 
qualifications. See the subsection titled "Qualified Addresses" at the beginning of 
this section for a more detailed description of qualified addresses. 

Symbols that were established by the EQUATE subcommand before you enter 
QUALIFY are not affected by the QUALIFY subcommand. 

jaddress I 
module-name[.entryname] [TCB(address)] 

address 
specifies the base location to be used in determining the absolute address for 
relative addresses only. It does not affect symbolic addressing. You can 
specify the address as: 

• An absolute address 
• A symbolic address 
• A relative address 
• An indirect address 
• An address expression 
• A module-name and entry-name (separated by a period) 
• An entry-name (preceded by a period). 

module-name(.entryname( 
specifies the name by which a load module is known, and optionally, an 
externally referable name within a module. If only a module is specified, 
the first entry point in the module will be supplied. 

TCB(address) 
specifies the address of a task control block (TCB). This operand is 
necessary when programs of the same name are assigned to two or more 
subtasks and you must establish uniquely which one is to be qualified. 

Note: When using QUALIFY in combination with other subcommands of TEST 
(with relative addressing) for routines such as user exit routines, validity check 
routines, and subtasking, the load module or CSECT indicated might differ from 
the one that was qualified. This is due to system control processing of automatic 
qualification. 

308 TSO Extensions Command Language Reference 



Example 1 

Operation: Establish the absolute address 5F820 as a base location for relative 
addressing. 

qualify 5f820. 

Note: This is useful in referring to relative addresses (offsets) within a control 
block or data area. 

Example 2 

Operation: Establish a base location for resolving relative addresses. 

Known: 

The module name is BILLS. 

qualify bills 

Example 3 

Operation: Establish an address as a base location for resolving relative 
addresses. 

Known: 

The address is 8 bytes past the address in register 7. 

q 7r%+8 

Example 4 

Operation: Establish a base location for relative addresses to a symbol within the 
currently qualified program. 

Known: 

The base address: QST ART 

qualify qstart 

Example 5 

Operation: Establish a symbol as a base location for resolving relative addresses. 

Known: 

The module name: MEMBERS 
The CSECT name: BILLS 
The symbol: NAMES 

qualify members.bills.names 

QUALIFY Subcommand of TEST 309 



Example 6 

Operation: Define the base location for relative and symbolic addressing. 

Known: 

The base location is the address of a program named OUTPUT. 

q output 

Example 7 

Operation: Change the currently qualified module and CSECT. This means 
defining the base location for relative and symbolic addresses to a new program. 
The module can be a unique name under any task, or a module under the current 
task. If there is another one by the same name under a different task, the module 
under the current task would be used. 

Known: 

The module name: PROFITS 
The CSECT name: SALES 

qualify profits. sales 

Example 8 

Operation: Change the base location for symbolic and relative addresses to a 
module that has the same name as another module under a different task. 

Known: 

The module name: SALESRPT 

The specified module is the one under the task represented by the TCB whose 
address is in general register 5. 

q salesrpt tcb(Sr%) 

310 TSO Extensions Command Language Reference 



RENAME Subcommand of TEST (MVS/XA Only) 

Use the RENAME subcommand to change the name of a non-VSAM cataloged 
data set or a member of a PDS, or to create an alias for a member of a 
partitioned data set. Refer to the RENAME command for the description of the 
syntax and function of the RENAME subcommand. 

RENAME Subcommand of TEST (MVS/XA Only) 311 



RUN Subcommand of TEST 

Use the RUN subcommand to cause the program that is being tested to execute 
to termination without recognizing any breakpoints. When you specify this 
subcommand, TEST is terminated. When the program completes, you can enter 
another command. Overlay programs are not supported by the RUN 
subcommand. Use the GO subcommand to execute overlay programs. 

[address] 

[AMODE 
[

(24) ]] 20 
(31) 
(SWITCH) 

address 
execution begins at the specified address. If you do not specify an address, 
execution begins at the last point of interruption or at the entry point, if the 
GO or CALL subcommand was not previously specified. 

You can specify the address as: 

• An absolute address 
• A symbolic address 
• A relative address 
• An indirect address 
• An address expression 
• A module-name and entry-name (separated by a period) 
• An entry-name (preceded by a period). 

AMODE [(24) ] MVS/XA Only 
(31) 
(SWITCH) 

specifies the addressing mode in which program execution resumes after the 
RUN subcommand has been issued. You can specify AMODE with RUN, 
even if the address is not given. However, if AMODE or any abbreviation 
of AMODE is defined as a symbolic address, it should not be specified with 
RUN if your intention is to start execution at the address pointed to by 
AMODE. If RUN AMODE is specified, program execution starts at the 
last breakpoint and the SWITCH default is taken. If AMODE (SWITCH) 
is specified, program execution resumes in the addressing mode, which was 
non-current when RUN was issued. The current addressing mode can be 
determined by issuing the LISTPSW command. 

20 MVSjXA only 

312 TSO Extensions Command Language Reference 



Note the following: 

• If you do not specify AMODE, there is no change in addressing mode. 

• If you specify RUN with no operands, the program being tested is restarted 
at the next executable instruction. However, if the tested program abends in 
an address space other than home, the home and primary address space 
identifiers (ASIDs) are different, and the instruction address in the PSW refers 
to an address space which TEST cannot access. Therefore, do not specify 
RUN without operands after such an abend. 

Example 1 

Operation: Execute a program to termination from the last point of interruption. 

run 

Example 2 

Operation: Execute a program to termination from a specific address. 

Known: 

The address: + A8 

run +a8 

RUN Subcommand of TEST 313 



SEND Subcommand of TEST (MVS/XA Only) 

Use the SEND subcommand to send a message to another terminal user or to the 
system operator. Refer to the SEND command for a description of the syntax 
and function of the SEND subcommand. 

314 TSO Extensions Command Language Reference 



STATUS Subcommand of TEST (MVS/XA Only) 

Use the STATUS subcommand to display the status of batch jobs at the terminal. 
Refer to the STATUS command for a description of the syntax and function of 
the STATUS subcommand. 

STATUS Subcommand of TEST (MVS/XA Only) 315 



SUBMIT Subcommand of TEST (MVS/XA Only) 

Use the SUBMIT subcommand to submit one or more batch jobs for processing 
under TEST. Refer to the SUBMIT command for a description of the syntax and 
function of the SUBMIT subcommand. 

316 TSO Extensions Command Language Reference 



TERMINAL Subcommand of TEST (MVS/XA Only) 

Use the TERMINAL subcommand to define the operating characteristics for the 
type of terminal being used. Refer to the TERMINAL command for a 
description of the syntax and function of the TERMINAL subcommand. 

TERMINAL Subcommand of TEST (MVS/XA Only) 317 



UNALLOC Subcommand of TEST (MVS/XA Only) 

Use the UNALLOC subcommand to release (deallocate) previously allocated data 
sets which are no longer needed. UNALLOC is issued instead of FREE under 
TEST. The syntax and operands are identical. 

318 TSO Extensions Command Language Reference 



WHERE Subcommand of TEST 

Use the WHERE subcommand to obtain: 

• An absolute address 
• The name of a module and CSECT 
• A relative offset within the CSECT 
• The address of the TCB for the specified address. 

You can also use the WHERE subcommand to obtain the absolute address 
serving as the starting or base location for the symbolic and relative addresses in 
the program. Alternately, you can obtain the absolute address of an entry point 
in a particular module or control section (CSECT). If you do not specify any 
operands for the WHERE subcommand, you receive the address of the next 
executable instruction, the related load module and CSECT names, and the 
hexadecimal offset. 

Note: After an abend outside the home address space, do not specify WHERE 
without operands. The home and primary address space identifiers (ASIDs) are 
different after an abend, resulting in an instruction address which TEST cannot 
access. 

[
address 1 
module-name 

address 
You can specify the address as: 

• An absolute address 
• A symbolic address 
e A relative address 
o An indirect address 
• An address expression 
e A module-name and entry-name (separated by a period) 
CD An entry-name (preceded by a period). 

If you specify WHERE without an address, the address of the next 
executable instruction, the related load module and CSECT names, and the 
hexadecimal offset are displayed. 

module-name 
specifies the name by which a load module is known or the name of an 
object module. The output of the WHERE subcommand is the module 
name, the CSECT name, the offset within the CSECT, the absolute address, 
and the address of the TCB. If only the module name was specified, the 
only output is the absolute address of the module and the address of the 
TCB for the task under which the module is found. 

If the specified address is not within the extent of any user program, only 
the absolute address is returned. Along with the absolute address, a 
message will be returned stating that the specified address is not within the 

WHERE Subcommand of TEST 319 



program extent. If no operands are specified, the absolute address returned 
is the address of the next executable instruction. 

Example 1 

Operation: Determine the absolute address of the next executable instruction. 

where 

Example 2 

Operation: Determine in which module an absolute address is located. 

Known: 

The absolute address: 3E2B8 

where 3e2b8. 

Example 3 

Operation: Obtain absolute address of + 2c4. 

w +2c4 

Note: An unqualified relative address is calculated from the currently qualified 
address (as specified using the QUALIFY command or the current module and 
CSECT, if no other qualification exists). The module name, CSECT name, and 
TCB address are also obtained along with the absolute address. 

Example 4 

Operation: Obtain offset of the symbol SALES in the current program. 

where sales 

Note: The module name, CSECT name, absolute address, and the TCB address 
are returned along with the offset of SALES. 

Example 5 

Operation: Determine in which module the address in register 7 is located. 

w 7r% 

Note: The offset, absolute address, and the TCB address are also returned with 
the module name. 

Example 6 

Operation: Obtain the virtual address of the module named CSTART. 

where cstart 

320 TSO Extensions Command Language Reference 



Example 7 

Operation: Obtain the virtual address of the CSECT named JULY in the module 
named NETSALES. 

where netsales.july 

Example 8 

OperatiOll: Determine the relative address of symbol COMPARE in the module 
named CALCULAT and CSECT named AVERAGE. 

w calculat.average.compare 

Note: The absolute address and TCB address are also returned with the relative 
address. 

Example 9 

Operation: Determine the virtual address of + 1 CA. 

Known: 

The CSECT: MARCH 
The module: GETDATA 

where getdata.march.+lca 

Note: You also get the TCB address with the virtual address. 

Example 10 

Operation: Obtain the absolute address for relative address + 2C in CSECT 
named PRINTIT within the currently qualified module. 

where .printit.+2C 

WHERE Subcommand of TEST 321 



TIME Command 

Use the TIME command to obtain the following information: 

9 Cumulative CPU time (from LOGON) 

e Cumulative session time (from LOGON) 

e Service units used, which can be: 

CPU Service Units - The task execution time, divided by an SRM constant, 
that is CPU model-dependent. 

1/0 Service Units - The sum of individual SMF data set activity EXCP counts 
for all data sets associated with the address space. 

Storage Service Units - The number of real page frames multiplied by CPU 
service units, multiplied by .02. The decimal .02 is a scaling factor designed 
to bring the storage service component in line with the CPU component. 

() Local time of day 

Refers to the time of execution· for this command. It is displayed as follows: 

local time of day in hours (HH), 
minutes(MM), and seconds(SS), 
(am or pm is also displayed) 

o Today's date. 

To enter the command while a program is executing, you must first cause an 
attention interruption. The TIME command has no effect upon the executing 
program. 

TIME 

322 TSO Extensions Command Language Reference 



TRANSMIT Command 

The TRANSMIT command allows you to send information (a message), or a 
copy of information (a data set), or both, from one user to another. The 
TRANSMIT command converts this data into a special format so that it can be 
transmitted to other users in the network. Use the RECEIVE command to 
retrieve the data and restore it to its original format. 

You can use the TRANSMIT command to transmit sequential or partitioned data 
sets with record formats of F, FS, FB, FBS, V, VB, VBS, and U. The data sets 
must reside on a direct access storage device (DASD). For a VB or VBS data set, 
the largest logical record length (LRECL) TSO can transmit to VM is 65,535. 
Data sets with machine and ASA print-control characters are also supported. 
TRANSMIT does not support data sets with keys, ISAM data sets, VSAM data 
sets, or data sets with user labels. 

Ira partitioned data set (PDS) is transmitted, it is unloaded with IEBCOPY and 
then the unloaded version is transmitted. If a single member of a PDS is 
transmitted, it is generally unloaded before transmission. You can force 
transmission of a PDS as a sequential data set by using the SEQUENTIAL 
operand. Forced transmission of a PDS as a sequential data set does not preserve 
the directory information. The IEBCOPY unload preserves directory 
information, but the receiver must reload it into a PDS. 

If you specify MESSAGE when you transmit data, TRANSMIT prompts you for 
messages that accompany the data. These messages are shown to the receiving 
user when the RECEIVE command is issued. The messages are shown before you 
are prompted to indicate what to do with the data. You can enter messages in 
either full screen mode or single line mode. 

You can enter up to 220 lines of data in either full screen mode or single line 
mode. Of the 220 lines of data, ten is reserved for the PROLOG lines. If you 
specify the EPILOG tag in the NAMES data set, you can specify an additional 10 
lines beyond the 220 line limit. For full screen mode, use the program function 
(PF) keys for scrolling (PF7 or PF19 and PF8 or PF20) and for termination (PF3 
or PFI5). For single line mode, messages are terminated by either a null line or 
the string value specified in LINE(nn). 

Note: Full screen mode is the default for 3270 terminals capable of supporting a 
minimum screen size of 24 rows by 80 columns. 

To. encipher the transmitted data, specify the ENCIPHER operand. The 
TRANSMIT command prompts for encipher options, which are passed to the 
Access Method Services REPRO command. 

Transmitting a message that you enter from the terminal is the simplest form of 
the TRANSMIT command." You specify TRANSMIT addressee-list and 
TRANSMIT defaults to terminal input. Messages sent in this manner are not 
saved in a data set, but an~ saved in the LOG data set. 

TRANSMIT Command 323 



Data Encryption Function of TRANSMIT and RECEIVE 

The TRANSMIT and RECEIVE commands support encryption using the 
following program products: 

Access Method Services Cryptographic Option and either Programmed 
Cryptographic Facility or Cryptographic Unit Support (MVS/370) 

Data Facility Product (DFP) (MVS/XA) 

TSO uses the Access Method Services REPRO command to encrypt data sets 
before transmitting them. However, your installation must allow encryption. 

If you have either of the program products installed and your installation allows 
encryption, TRANSMIT, as required, invokes the Access Method Services 
REPRO command to encrypt data sets before they are transmitted. The 
TRANSMIT and RECEIVE commands prompt you for encipher/decipher 
options and append what you entered as REPRO command suboperands of the 
ENCIPHER or DECIPHER operand. 

Logging Function of TRANSMIT and RECEIVE 

The TRANSMIT and RECEIVE functions normally log each file transmitted and 
received. The TRANSMIT and RECEIVE commands create appropriate log data 
sets, if they do not already exist. 

The name of the log data set is determined as follows: 

I. In the absence of any user or installation specification, the default log data set 
name is 'prefix.LOG.MISC'. 

2. The qualifier LOG is called the log selector and can be changed by the 
:LOGSEL tag in the control section of the NAMES data set. This qualifier is 
common for all log data sets belonging to any given user. 

3. The qualifier MISC is called the log name. It might be overridden by the 
LOGNAME operand on the TRANSMIT command, the :LOGNAME tag in 
the control section of the NAMES data set, or by the :LOGNAME tag in a 
nickname definition. 

Use the log selector to define all of your log data sets under one name. The log 
name identifies each individual data set in the log data set. For example, you can 
list all of your log data sets by 'prefix. LOG' . This would give you a list of all of 
your log data sets with the individual log names. 

The log data sets have the following DCB attributes: LRECL = 255, 
BLKSIZE=3120, and RECFM=VB. 

With any given invocation of the TRANSMIT or RECEIVE command, logging 
can occur to more than one log data set depending upon the presence of the 
:LOGNAME tag on the nickname or distribution list entry in the NAMES data 
set. However, with any given invocation of the TRANSMIT or RECEIVE 
command, only one log entry is written to anyone log data set. This log entry 

324 TSO Extensions Command Language Reference 



then contains an addressee entry for each addressee being logged to that log data 
set. 

The first lines in each log entry contain a line of hyphens and a descriptor line. 
The format of the descriptor line is: 

Column 

1 - 8 
17 - 60 
63 -79 

Usage 

Name of the command using the entry. 
Name of the data set transmitted or received. 
Time stamp from the command execution. 

For the TRANSMIT command log entries, subsequent lines indicate the 
addressees to which the transmission was sent, the names of any members of a 
partitioned data set selected for transmission, and any messages entered with the 
TRANSMIT command. 

For the RECEIVE command log entries, the second log line always identifies the 
originator of the transmission. The originator of the transmission can be the 
issuer of the TRANSMIT command (in the case of a file or message receipt) or 
the issuer of the RECEIVE command (if the log entry is for notification). If the 
entry in the log is a file or a message receipt, the time stamp recorded is from the 
TRANSMIT command. If the entry in the log was a notification, the time stamp 
is from the RECEIVE command. The format is: 

Column 

9 - 15 
17 - 24 
26 - 33 
35 - 61 
63 - 79 

Usage 

Nickname of the originating user or blanks. 
Node name of the originating user. 
User 10 of the originating user. 
Name of the originating user or blank. 
Time stamp from the originating command. 

For RECEIVE command notification entries, the third log line identifies the 
original transmission. The data set name and time stamp on this line are those 
from the original transmission. The format of the third log line is: 

Column 

4 - 15 

17 - 60 
63 - 79 

NAMES Data Set Function 

Usage 

Error code from RECEIVE. STORED indicates that 
the RECEIVE operation was successful. 
Data set name from the TRANSMIT command. 
Time stamp from the TRANSMIT command. 

The TRANSMIT command allows several different specifications of a list of 
addressees. The simplest is a single addressee whose node name and user ID are 
specified explicitly. The next level is the nickname specification. The nickname is 
a 1 to 8 character name that is a synonym for the node and user ID. The 
TRANSMIT and RECEIVE commands find the actual node and user ID by 
looking up the nickname in tables provided in the NAMES data set. The final 
level of addressing is a distribution list. A definition in the NAMES data set 
identifies a distribution list name. The named list can reference up to 100 
nicknames of either addressees or other distribution lists. 

Each user of the TRANSMIT and RECEIVE commands can have one or more 
NAMES data sets to resolve nicknames and establish the default mode of 

TRANSMIT Command 325 



Control Section Tags 

Tag Definitions 

operation. In the absence of any explicit installation specification, the name of 
the first of these data sets is 'userid.NAMES.TEXT'. The first data set contains 
the names of any other NAMES data sets. The data set can have either fixed or 
varying length records. Using varying length records will save disk space. The 
records are numbered according to standard TSO conventions. They can also be 
unnumbered. The data set is either blocked or unblocked with any record length 
less than or equal to 255. 

The data set is composed of two sections, the control section and the nicknames 
section. The control section must precede the nicknames section. The control 
section ends at the first :NICK tag. Use the control section to set defaults for 
LOGjNOLOG and NOTIFYjNONOTIFY, prolog or epilog lines, the default log 
data set name, and to identify other names data sets that are used. 

The nicknames section contains one entry for each nickname and distribution list 
name that you want to define. 

Each occurrence of a colon in the NAMES data set is treated as the start of a tag. 
If the tag following the colon is not one of those described below, it is treated as a 
user-defined tag that may be processed by a user application. The information 
that follows a user-defined tag is ignored by TRANSMIT and RECEIVE 
processing. 

Use the beginning of the NAMES data set to control certain operations of the 
TRANSMIT and RECEIVE commands. The tags are optional. You can include 
any of the following tags: 

:ALTCTL. names-file-dataset-name 

:EPILOG. epilog line 

:PROLOG. prolog line 

:LOGNAME. log-dataset-Iast-qualifier 

:LOGSEL. log-dataset-middle-qualifier 

:LOG or :NOLOG (The default is :LOG.) 

:NOTIFY or :NONOTIFY (The default is :NOTIFY.) 

:ALTCTL.dsname 
specifies the fully qualified file name of another file to be used in the 
nickname look up process. If TRANSMIT finds more than one :AL TCTL 
tag, TRANSMIT uses the order of the :AL TCTL tags to scan the files. 
You can specify up to ten :AL TCTL tags. All control section tags, the 
:LOG and :NOLOG tags, the :LOGNAME tag, and the :NOTIFY and 
:NONOTIFY tags are always ignored when read from the alternate 
NAMES data set. 

326 TSO Extensions Command Language Reference 



:EPILOG.tcxt 
in the control section, specifies a text line to be appended at the end of any 
transmitted message. The maximum length of an epilog line is 72 
characters. You can specify up to ten :EPILOG lines. If more than one 
:EPILOG record is found, records appear in the message in the same order 
as they are in the file. Text data for the :EPILOG tag should be on the 
same line as the :EPILOG tag. 

:PROLOG.tcxt 
in the control section, specifies a text line to be inserted at the beginning of 
any transmitted message. The maximum length of a prolog line is 72 
characters. You can specify up to ten :PROLOG lines. If Inore than one 
:PROLOG record is found, records appear in the message in the same order 
as they are in the file. Text data for the :PROLOG tag should be on the 
same line as the :PROLOG tag. 

:LOGNAME.namc 
in the control section, serves as a default qualifier for the log data set name. 
If you specify it in the nickname entry, the value provided overrides the 
default set in the control section. See "Logging Function of TRANSMIT 
and RECEIVE." 

:LOGSEL.name 
in the control section, specifies the second (middle) qualifier(s) of all log 
data sets. See "Logging Function of TRANSMIT and RECEIVE." 

:LOG or :NOLOG 
in the control section, indicates whether or not you want logging for any 
addressee specified by node and user ID and for any nickname that does not 
also specify :LOG or :NOLOG. If the nickname entry contains the :LOG 
or :NOLOG tag, this value overrides any value in the control section. 
However, it might have been overridden by a specification on the 
TRANSMIT command. If you specify NOLOG in your NAMES data set 
in the control section or on a :NICK tag, TSO prompts you with a message 
to receive data set 'A.MAIL.USERID'. TSO then stores and places the 
message in 'myid.MAIL.USERID' where myid is the receiver of the message 
and USE RID is the originator of the message. 

:NOTIFY or :NONOTIFY 
in the control section, indicates whether or not you want notification for 
any addressee specified by node and user ID, and for any nickname where 
the nickname entry does not contain :NOTIFY or :NONOTIFY. The value 
of :NOTIFY or :NONOTIFY in the NAMES data set might be overridden 
by a similar specification on the TRANSMIT command. If you want to be 
notified for addressees on distribution lists, you must specify :NOTIFY on 
the distribution list in the control data set or specify NOTIFY(ALL). 

TRANSMIT Command 327 



Nicknames Section Tags 

Tag Definitions 

The nicknames section is composed of tags and their values in the same manner 
as the control section. The nicknames section is different from the control section 
in that it is divided by the occurrence of each :NICK tag and continues until the 
next :NICK tag, which starts the next definition. Use the nickname as either a 
nickname of a single user or the name of a distribution list. The :NODE and 
: USERID tags are present when you use the nickname for a user definition. The 
:LIST and/or :CC tags are present when you use the nickname for distribution list 
definition. 

Use the log and notify tags, except for :LOGLST and :NOLOGLST, with either a 
user ID definition or a distribution list definition. 

Note the following: 

1. Each nickname entry must begin with the :NICK tag and :NICK must be the 
first non-blank character on the line. 

2. You can specify the following tags as all uppercase or all lowercase. 

:NOTIFY or :NONOTIFY 

:NICK. nickname (Required) 

:NODE. nodename (Default is your own node.) 

:USERID. user ID (Required) 

:LOG/:NOLOG 

:LOGLST or :NOLOGLST 

:NAME. usemame 

:ADDR.address 

:LIST.name name-list 

:CC.name name-list 

:PARM.text 

:NOTIFY or :NONOTIFY 
in the control section, specifies whether or not you want notification for any 
addressee specified by node and user ID, and for any nickname where the 
nickname entry does not contain :NOTIFY or :NONOTIFY. The value of 
:NOTIFY or :NONOTIFY in the NAMES data set might be overridden by 
a similar specification on the TRANSMIT command. If you want to be 
notified for addressees on distribution lists, you must specify :NOTIFY on 
the distribution list in the control data set or specify NOTIFY(ALL). 

:NICK.name 
indicates a nickname entry in the NAMES data set. It must be the first 
non-blank (except for line numbers) character of the record. The nickname 
is a one-character to eight-character string of non-blank alphanumeric 
characters. 

328 TSO Extensions Command Language Reference 



:NODE.nodeid 
in the nickname entry, specifies a network node name for the nickname 
entry. If the :NODE tag is not present in a nickname entry, the local user's 
node name is assumed. 

: USERID.userid 
specifies the user ID of the user to be identified by the nickname. You 
cannot use the :USERID tag with :LIST or :CC tags in the same nickname 
entry. 

:LOG or :NOLOG 
in the control section, indicates whether or not you want logging for any 
addressee specified by node and user ID and for any nickname that does not 
also specify :LOG or :NOLOG. If the nickname entry contains the :LOG 
or :NOLOG tag, this value overrides any value in the control section. 
However, it might have been overridden by a specification on the 
TRANSMIT command. If you specify NOLOG in your NAMES data set 
in the control section or on a :NICK tag, TSO prompts you with a message 
to receive data set 'A.MAIL.USERID'. TSO then stores and places the 
message in 'myid.MAIL.USERID' where myid is the receiver of the message 
and USERID is the originator of the message. 

:LOGLST /:NOLOGLST 
in the nickname entry, defines a distribution list. The tag indicates whether 
or not a log entry should be made for each addressee in the list. 

:NAME.username 
specifies the plain text name of the user being defined. This name appears 
in the copy list and in any log entries for this nickname. You can specify up 
to 30 characters. 

:ADDR.address 
in the nickname entry, specifies the address of the specified user. Separate 
individual lines of the address with semicolons. 

:LIST .name name-list 
in the nickname entry, specifies a list of addressees that make up the 
distribution list. Specify the addressee as either a nickname of the name or 
another distribution list. The :LIST tag can reference up to 100 nicknames. 
If you want to be notified for addressees on distribution lists, specify 
:NOTIFY on the distribution list in the control data set or specify 
NOTIFY(ALL) on the TRANSMIT command. 

:CC.name name-list 
specifies further nicknames of addressees for a distribution list. It is treated 
as a synonym of the :LIST tag. You can specify up to 100 nicknames. 

:P ARMT. text 
specifies up to 30 characters of installation-defined data. TSO passes this 
data to the RECEIVE command installation exits. See System 
Programming Library: User Exits and Modifications for more information 
about how an installation uses these exits. 

TRANSMIT Command 329 



The format of the TSO TRANSMIT command is: 

I TRANSMIT) 
XMIT 

(addressee-list) 

[ 1 
I g~~!:~ ~~~~~e > ) 

TERMINAL 

[
MESSAGE] 
MSG 

[
COPYLIST ] 
NOCOPYLIST 

[ENCIPHER] 

[
EPILOG ] 
NOEPILOG 

[

FULLSCREEN] 
LINE 
LINE (nn) 

[~g~~~LJ 
[LOGNAME (name) ] 
[MEMBERS(memberlist)] 

[ ~g~i;~(ALL)] NONOTIFY 
[PARM(parameters)] 

[~~~UENTIAL] 
[

PROLOG ] 
NOPROLOG 

[ DSNAME(dSn) ]]] 
FILE (ddname) 

[SYSOUT(sysoutclass or *)] 

( addressee-list) 

[Igg~~~~~~~~::)e » 1 
IOUTDSNAME(dSn) ) 

OUTDATASET(dsn) 

specifies the information identifying the target user(s). You can combine 
one or more of the following: a node and user ID specified as node.userid 
or node/userid, a nickname, or a distribution list name. If you identify only 
one user as the addressee, you can omit the parentheses. See "NAMES 
Data Set Function." 

DATASET(dsn) or DSNAME(dsn) 
specifies the name of a data set to be transmitted. The data set must be on 
a direct access storage device (DASD). 

330 TSO Extensions Command Language Reference 



DDNAME(ddname) or FILE(ddsname) 
specifies the I to 8 character DD name of a preallocated file to be 
transmitted. The data set must be on a direct access storage device 
(DASD). If you transmit a member of a preallocated partitioned data set, 
you must specify the MEMBERS operand. 

TERMINAL 
specifies data input is to be taken from the terminal. You are.prompted to 
enter data to be transmitted either in line mode or in full screen mode as 
specified by the LINE or FULL SCREEN operand. 

MESSAGE or MSG 
specifies that you are to be prompted for messages that accompany a 
transmitted data set. The prompt is either in full screen mode or in line 
mode, depending on the terminal type and the specification of 
FULLSCREEN or LINE. 

Note the following: 

o If you specify both TERMINAL and MESSAGE, TSO prompts you 
twice for the data. 

o TSO uses the prefix as the high level qualifier for the name of the data 
set to be transmitted. 

COPYLIST 
specifies that TRANSMIT build a list of the specified addressees and 
append it as a prolog to the message. If a data set is being transmitted, the 
copylist is added as an accompanying message. If a message is being 
transmitted, COPYLIST prefixes the message text. 

NOCOPYLIST 
specifies no copylist is to be generated or appended. NOCOPYLIST is the 
default. 

ENCIPHER 
specifies TRANSMIT should encipher the data by invoking the Access 
Method Services REPRO command. The TRANSMIT command prompts 
for ENCIPHER options to be passed with the REPRO command. 

EPILOG 
specifies TRANSMIT should include epilog lines from the NAMES data 
set, if a terminal message is transmitted. An EPILOG is added unless you 
either type in NOEPILOG or have no EPILOG in your NAMES data set. 
EPILOG is the default. 

NOEPILOG 
specifies no EPILOG lines should be included. 

FULLSCREEN 
requests all terminal input for messages or data be read in full screen mode. 
This is the default for 3270 terminals capable of supporting a minimum 
screen size of 24 rows by 80 columns. 

TRANSMIT Command 331 



LINE or LINE(nn) 

LOG 

requests terminal input for messages and data be read in single line mode. 
This is the default for non-3270 terminals. You can also use LINE(nn) to 
allow a CLIST to provide messages or data. To terminate message input, 
enter a null line or the one or two character string value LINE(nn) in 
columns 1 and 2. LINE(nn) allows you to insert blank lines into the text. 
Leading blanks are eliminated when in a CLIST, but they are kept when not 
in a CLIST. 

records the transmission in the LOG data set. LOG does not necessarily 
indicate that the log entry will contain a line for every addressee except for 
node.userid addressees. The LOGjNOLOG/LOGLST tags in the nicknames 
section of the NAMES data set or the LOG/NOLOG tags in the control 
section of the NAMES data set determine whether the log entry will contain 
addressee entries for a nickname or distribution list. Only one log entry is 
built in the default log file per transaction. LOG is the default unless 
NOLOG is specified. See "Logging Function of TRANSMIT and 
RECEIVE." 

NOLOG 
specifies not to record the transmission in the LOG data set. NOLOG 
overrides all LOG/LOGLST tags in the NAMES data set. 

LOG(ALL) 
specifies the log entry contain a line for each addressee, including those 
derived from any distribution lists on the NAMES data set. This 
specification overrides the NOLOG/NOLOGLST tags in the NAMES data 
set. 

LOGNAME(name) 
uses the name as the LOGNAME qualifier on the log data set name. See 
"Logging Function of TRANSMIT and RECEIVE." 

MEMBERS(memberlist) 
transmits a list of members from the specified partitioned data set. 

NOTITY 
notifies the sender when the data has been received. NOTIFY does not 
necessarily guarantee that notification will be requested except for 
node.~serid addressees. For nicknames and distribution lists, control of 
notification is determined by the :NOTIFY or :NONOTIFY tag in the 
nickname section of the NAMES data set. 

NOTIFY(ALL) 
notifies the sender when the data has been received by all addressees. This 
operand overrides the :NOTIFY or :NONOTIFY tags in nicknames entries 
of the NAMES data set or distribution lists. 

NONOTIFY 
suppresses the notify function. This stops the notify function completely, 
overriding any specification in the NAMES data set or in the distribution 
lists. 

332 TSO Extensions Command Language Reference 



P ARM(parameters) 

PDS 

Your installation may instruct you to use this operand to specify installation 
dependent data. 

unloads a member or members of a partitioned data set (PDS) before 
transmission. This method preserves the directory information, but forces 
the receiving user to restore the member(s) into a PDS. PDS is the default. 

SEQUENTIAL 
sends a member of a PDS or a sequential data set as a sequential data set. 
This method does not preserve directory information, but allows the 
receiving user to restore the data set as either a sequential data set or as a 
member of a PDS. 

PROLOG 
specifies TRANSMIT should include prolog lines from the control section 
of the NAMES data set if a terminal message is transmitted. PROLOG is 
the default. 

NOPROLOG 
specifies not to include prolog lines. 

SYSOUT(sysoutclass or *) 
uses the SYSOUT class for messages from utility programs, which are used 
by TRANSMIT (for example IEBCOPY). If you specify a * (asterisk), TSO 
directs utility program messages to the terminal. The default is usually *, 
but the installation can modify it. 

OUTDDNAME(ddname) or OUTFILE(ddname) 
specifies the use of a preallocated file as the output data set for the 
TRANSMIT command. No data is written to SYSOUT for transmission. 
TSO assigns the DCB attributes as LRECL=80, BLKSIZE=3l20, and 
RECFM=FB. Specify the DD name as either a sequential data set or a 
member of a partitioned data set. 

Use OUTDDNAME or OUTFILE in conjunction with the INDDNAME 
or INFILE operand of the RECEIVE command. OUTDDNAME and 
OUT FILE are primarily intended for system programmer use. 

OUTDSNAME(dsn) or OUTDATASET(dsn) 
specifies the use of a data set as the output data set for the TRANSMIT 
command. No data is written to SYSOUT for transmission. TSO assigns 
the DCB attributes as LRECL = 80, BLKSIZE = 3120, and RECFM = FB. 
The DD name must be a sequential data set. 

Use OUTDSNAME or OUTDATASET in conjunction with the 
INDSNAME or INDATASET operand of the RECEIVE command. 
OUTDSNAME and OUTDATASET are primarily intended for system 
programmer use. 

TRANSMIT Command 333 



Examples 

In the following examples, the transmitting user is assumed to have user ID 
USERl on node NODEA and the receiving user is assumed to have user ID 
USER2 on node NODEB. The sending user has a NAMES data set as follows: 

* Control section 
:altctl.DEPT.TRANSMIT.CNTL 
:prolog.Greetings from John Doe. 
:prolog. 
:epilog. 
:epilog.Yours,:epilog.John Doe :epilog.NODEA.USERl 
* * Nicknames section. 
* 
:nick.alamo :list.Jim Davy :logname.alamo :notify. 
:nick.addrchg :list.joe davy jim :nolog :nonotify 
:nick.Joe :node.nodeb :userid.user2 :name.Joe Doe 
:nick.Me :node.nodea :userid.userl :name.me 
:nick.Davy :node.alamo :userid.CROCKETT :name.Davy Crockett 
:nick.Jim :node.ALAMO :userid.Bowie :name.Jim Bowie 

In the examples involving the RECEIVE command, data entered by the user 
appears in lower case and data displayed by the system is in upper case. 

Example 1: Transmit a copy of the 'SYSl.PARMLIB' data set to Joe, 
identifying Joe by his node and user ID. 

TRANSMIT NODEB.USER2 DA('SYSl.PARMLIB') 

Example 2: Joe receives the copy of 'SYSl.PARMLIB' transmitted above. 

receive 
DATASET 'SYSl.PARMLIB' FROM USERI ON NODEA 
ENTER ALLOCATION PARAMETERS, 'DELETE', OR 'END' 
<null line> 
RESTORE SUCCESSFUL TO DATASET 'USER2.PARMLIB' 

No more Interactive Data Transmission Facility files 
are available for the RECEIVE command to process. 

In the above example, Joe has issued the RECEIVE command, seen the 
identification of what arrived, and chosen to accept the default data set name for 
the arriving file. The default name is the original data set name with the high 
level qualifier replaced by his user ID. 

Example 3: Transmit two members of 'SYSl.PARMLIB' to Joe, and add a 
message identifying what was sent. Joe is identified by his NICKNAME, leaving 
it to TRANSMIT to convert it into node and user ID by the nicknames section of 
the NAMES data set. 

transmit joe da('sysl.parmlib') mem(ieasysOO,ieaipsOO) msg line 
ENTER MESSAGE FOR NODEB.USER2 
Joe, 

These are the parmlib members you asked me to send you. 
They are in fact the ones we are running today. 
<null line> 

The message text in this example was entered in line mode which would be 
unusual for a user on a 3270 terminal, but which is easier to show in an example. 

334 TSO Extensions Command Language Reference 



Example 4: Joe begins the receive process for the members transmitted in 
Example 3 and aborts the receive without actually restoring the data onto the 
receiving system, because Joe does not know where he wants to store the data. 

receive 
DATASET 'SYS1.PARMLIB' FROM USERl ON NODE A 
MEMBERS: IEASYSOO, IEAIPSOO 
GREETINGS FROM JOHN DOE. 
JOE, 

THESE ARE THE PARMLIB MEMBERS YOU ASKED ME TO SEND YOU. 
THEY ARE IN FACT THE ONES WE ARE RUNNING TODAY. 
YOURS, JOHN DOE 
NODEA.USERl 
ENTER ALLOCATION PARAMETERS, 'DELETE', OR 'END' 
end 

In the above example, notice that the PROLOG and EPILOG lines have been 
appended to the message entered by the sender. In an actual RECEIVE 
operation, the original message text would appear in both upper and lower case 
just as the sender had entered it (assuming the receiver's terminal supports 
lowercase.) 

Example 5: Joe receives the 'SYSl.PARMLIB' members transmitted in Example 
3. Specify space parameters for the data set that will be built by RECEIVE in 
order to leave space for later additions. 

receive 
DATASET 'SYS1.PARMLIB' FROM USERl ON NODEA 
MEMBERS: IEASYSOO, IEAIPSOO 
GREETINGS FROM JOHN DOE. 
JOE, 

THESE ARE THE PARMLIB MEMBERS YOU ASKED ME TO SEND YOU. 
THEY ARE IN FACT THE ONES WE ARE RUNNING TODAY. 
YOURS, JOHN DOE 
NODEA.USERl 
ENTER ALLOCATION PARAMETERS, 'DELETE', OR 'END' 
da('nodea.parmlib') space(l) cyl dir(lO) 
RESTORE SUCCESSFUL TO DATASET 'NODEA.PARMLIB' 

No more Interactive Data Transmission Facility files 
are available for the RECEIVE command to process. 

The received members IEASYSOO and IEAIPSOO are saved in the output data set 
with their member names unchanged. 

Example 6: Send a message to a user on another system. 

TRANSMIT DAVY 
<The following text is entered on successive lines> 
<of a full-screen data area. > 
Davy, 

I sure would like to have a coonskin cap like 
yours. 
<Use PF3 to cause message to be sent> 

In this example, the target user is identified by his nickname and no data set is 
specified, causing the terminal to be used as an input source. A full-screen input 
area is displayed to the user. In this area, he can type his data, scroll using 
program function (PF) keys PF7 or PFl9 and PF8 or PF20, and exit using PF3 
or PF15. 

TRANSMIT Command 335 



TSOEXEC Command 

Use the TSOEXEC command to invoke an authorized command from an 
unauthorized environment. For example, you can use TSOEXEC when in the 
Interactive System Productivity Facility (lSPF), which is an unauthorized 
environment, to invoke authorized commands such as TRANSMIT and 
RECEIVE. 

TSOEXEC [TSO command] 

ITSO command] 
specifies any TSO command the TSO Service Facility can invoke, whether 
or not the command is authorized or unauthorized. 

Example 1 

Operation: Use the TRANSMIT command to send a copy of a data set to 
another user while operating in ISPF. 

Known: 

The user node: NODEB 
The user ID: USER2 
The data set name: SYSl.PARMLIB 

TSOEXEC TRANSMIT NODEB.USER2 DA('SYSl.PARMLIB') 

336 TSO Extensions Command Language Reference 



WHEN Command 

Use the WHEN command to test return codes from programs invoked by an 
immediately preceding CALL or LOAD GO command, and to take a prescribed 
action if the return code meets a certain specified condition. 

WHEN SYSRC(operator integer) 

[~~~and-name 1 

SYSRC 
specifies the return code from the previous function (the previous command 
in the CLIST) is to be tested according to the values specified for operator 
and integer. 

operator 
specifies one of the following operators: 

EQ or = means equal to 
NE or -,= means not equal to 
GT or > means greater than 
LT or < means less than 
GE or >= means greater than or equal to 
NG or -,> means not greater than 
LE or <= means less than or equal to 
NL or -,< means not less than 

integer 
specifies the numeric constant that the return code is to be compared to. 

END 
specifies processing is to be terminated if the comparison is true. If you do 
not specify a command, END is the default. 

command-name 
specifies any valid TSO command name and appropriate operands. If the 
comparison is true, TSO processes the command. 

WHEN terminates CLIST processing and then executes the TSO command name 
specified. 

Use successive WHEN commands to determine an exact return code and then 
perform some action based on that return code. 

Example 

Operation: Use successive WHEN commands to determine an exact return code. 

CALL 
WHEN 
WHEN 
WHEN 

compiler 
SYSRC(= 0) EXEC LNKED 
SYSRC(= 4) EXEC LNKED 
SYSRC(= 8) EXEC ERROR 

WHEN Command 337 



338 TSO Extensions Command Language Reference 



The CLIST Statements 

This section contains descriptions of the CLIST statements. They are presented in 
alphabetical order. Note that CLISTs: Implementation and Reference is the 
authoritative source for information about CLISTs such as the following: 

• Operators and expressions 

• Symbolic variables 

• Control variables 

• Built-in functions 

• Error codes. 

The CLIST Statements 339 



ATTN CLIST Statement 

Use the ATTN statement to set up an environment that detects attention 
interruptions processed by the terminal monitor program (TMP). The detection 
of an attention interruption invokes a specified action which is considered to be 
an attention exit. 

For more information on this statement and the writing of CLISTs, see CLISTs: 
Implementation and Reference. 

[label: ] ATTN 
[
OFF 1 

label: 

OFF 

act~on 

specifies a name to which the CLIST can branch. Enter one-to-eight 
characters, the first alphabetic and the rest alphameric, followed by a colon. 

specifies any previous attention action is nullified. When no action is 
specified on the ATTN statement, OFF is the default. 

action 
Specifies either: 

1. One TSO command (commonly an EXEC of another CLIST) or a null. 

2. A DO-group constituting an attention exit routine. The exit would 
consist of either one TSO command (commonly an EXEC of another 
CLIST), a null statement, or an EXIT statement. 

Results: 

Null--The attention is ignored. 
TSO command--Control is given to the specified command. 
EXIT statement--The attention is ignored, and the CLIST is 
terminated. 

If any statements occur after the one TSO command, a null statement, or an 
EXIT statement, they are ignored. 

In order to prevent the main CLIST from being deleted by a stack flush 
request from the system after the ATTN action has been processed, you 
must specify CONTROL MAIN in the CLIST. CONTROL NOFLUSH 
does not prevent the stack from being flushed during an ATTN action. 

This is also the case if you use GLOBAL variables in the main CLIST and 
in a CLIST that is invoked by the ATTN action. To maintain GLOBAL 
variables, specify GLOBAL MAIN in the CLIST. CONTROL NOFLUSH 
does not prevent the GLOBAL variables from being flushed during an 
ATTN action. 

340 TSO Extensions Command Language Reference 



Example 

Operation: Pass control to a CLIST from an attention exit. 

ATTN DO 
WRITE DO YOU WANT TO TERMINATE (Y OR N) 
READ &ANS 
IF &ANS=Y THEN + 

EXEC (CLEANUP) 
ELSE 

DO 

END 
END 

SET &CMD= 
&CMD 

ALLOC F{INPUT) DA{INPUT.TEXT) 
ALLOC F{OUTPUT) DA{OUTPUT.TEXT) 
ALLOC F{TEMP) DA{TEMP.TEXT) 
CALL 'MYID.MYPROG. LOAD (MEMBER) , 
FREE F{INPUT) DA{INPUT.TEXT) 
FREE F{OUTPUT) DA{OUTPUT.TEXT) 
FREE F{TEMP) DA{TEMP.TEXT) 
END 

The CLIST CLEANUP contains: 

/* 
/* 
/* 
/* 
/* 
/* 

IF TERMINATION REQUESTED 
-THEN CLEANUP AND END 
IF NO TERMINATION REQUESTED 
-THEN SPECIFY A NULL 
SET VARIABLE TO NULL 
SPECIFY NULL TO CONTINUE 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

/*THIS CLIST IS INVOKED WHEN TERMINATION IS REQUESTED FROM */ 
/*THE ATTENTION ROUTINE. IT WILL FREE ALL OF THE CURRENTLY */ 
/*ALLOCATED FILES. 
FREE F{INPUT) DA{INPUT.TEXT) 
FREE F{OUTPUT) DA{OUTPUT.TEXT) 
FREE F{TEMP) DA(TEMP.TEXT) 

A TIN CLIST Statement 341 



CLOSFILE CLIST Statement 

Use the CLOSFILE statement to close a file that was previously opened by an 
OPENFILE statement. It is not necessary to specify file type. You can close 
only one file with one statement. 

For more information on this statement and the writing of CLISTs, see CLISTs: 
Implementation and Reference. 

File variables are only scanned once (no rescans) and only on OPENFILE. 

[label:] CLOSFILE filename 

label: 
specifies a name to which the CLIST can branch. Enter one-to-eight 
characters, the first alphabetic and the rest alphameric, followed by a colon 
and at least one blank. 

filename 
specifies the DD name by which the file was allocated and opened (by 
OPENFILE). 

342 TSO Extensions Command Language Reference 



CONTROL CLIST Statement 

Use the CONTROL statement to define certain processing options to be in effect 
for the CLIST. The options are in effect from the time CONTROL executes until 
either the CLIST terminates or another CONTROL is issued. 

CLISTs without CONTROL statements execute with options MSG, TRANS, 
NOLIST, NOPROMPT, NOCONLIST, NOSYMLIST, and FLUSH. You can 
set PROMPT and LIST by entering them as operands on the EXEC command or 
subcommand that invokes the CLIST. 

CONTROL has no default operands. If you enter CONTROL with no operands, 
the system uses options already in effect because of system pre-definition, 
presetting by EXEC, or setting by a previous CONTROL statement. In addition, 
if there are no operands specified, the system displays those options which are 
currently in effect. 

For more information on this statement and the writing of CLISTs, see CLISTs: 
Implementation and Reference. 

Note: Do not enter CONTROL operands as symbolic variables. 

[label: ] CONTROL [CONLIST 1 

label: 

NOCONLIST 

[FLUSH 1 
NOFLUSH 

[LIST 1 
NOLIST 

[MSG 1 NOMSG 

[PROMPT 1 
NOPROMPT 

[SYMLIST 1 
NOSYMLIST 

[CAPS 1 
NOCAPS/ASIS 

[MAIN] 
[END(string) ] 

specifies a name to which the CLIST can branch. Enter one-to-eight 
characters, the first alphabetic and the rest alphameric, followed by a colon 
and at least one blank. 

CONLIST 
specifies CLIST statements are displayed at the terminal after symbolic 
substitution, but before execution. 

CONTROL CLIST Statement 343 



NOCONLIST 
specifies CLIST statements are not displayed at the terminal. 

FLUSH 
specifies the system can purge (flush) the queue called the input stack. The 
system normally flushes the stack on an execution errOL 

NOFLUSH 

LIST 

specifies the system cannot flush the stack. 

specifies commands and sub commands are displayed at the terminal after 
symbolic substitution, but before execution. 

NOLIST 

MSG 

specifies commands and subcommands are not displayed at the terminal. 

specifies PUTLINE informational messages from commands and statements 
in the procedure are displayed at the terminal. 

NOMSG 
specifies PUTLINE informational messages NOMSG from commands and 
statements in the procedure are not displayed at the terminal. 

PROMPT 
specifies the CLIST can prompt the terminal for input. 

NOPROMPT 
specifies the CLIST cannot prompt the terminal for input, even if the 
procedure has prompting capabilities. 

SYMLIST 
specifies executable statements are displayed at the terminal once before the 
scan for symbolic substitution. Executable statements include commands, 
subcommands, and CLIST statements. 

NOSYMLIST 
specifies executable statements are not displayed at the terminal before 
symbolic substitution. 

CAPS 
indicates input strings are translated to uppercase letters before being 
processed. 

NOCAPS/ASIS 
indicates input strings are not translated to uppercase letters before being 
processed. 

MAIN 
specifies this is the main CLIST in your TSO environment. The system 
cannot delete MAIN by a stack flush. If you specify MAIN, the system 
ignores FLUSH and NOFLUSH. The attention exit in the TMP cannot 
delete the CLIST and any error exit used by this CLIST is protected. 

344 TSO Extensions Command Language Reference 



END (string) 
specifies a character string be recognized by the system as an END 
statement that concludes a DO-group. Enter the string as 1-4 characters, 
the first alphabetic and the rest alphameric. Because END no longer 
signifies the end of a DO-group, the writer of the CLIST can include END 
commands and subcommands without prematurely ending the DO-group. 

CONTROL CLIST Statement 345 



DATA-ENDDATA CLIST Sequence 

Use the DATA and END DATA statements to designate a group of commands 
and subcommands that are looked at as data by the CLIST, but as commands 
and subcommands by the system. Symbolic substitution is performed before 
execution of the group. CLIST statements included in the DATA-END DATA 
group might cause failures because TSO attempts to execute them as commands 
or subcommands. A DO-group ignores an END in an included 
DAT A-ENDDAT A group, instead of terminating the DO-group. 

For more information on this statement and the writing of CLISTs, see CLISTs: 
Implementation and Reference. 

[label: ] DATA 

ENDDATA 

label: 
specifies a name to which the CLIST can branch. Enter one-to-eight 
characters, the first alphabetic and the rest alphameric, followed by a colon. 
You cannot specify a label for ENDDATA. 

Example 

Operation: Perform an EDIT operation without ending a DO-group. 

IF &ADDIT=YES THEN -
DO 

END 
ELSE 

DATA 
EDIT OLD.DATA 
BOTTOM 
INSERT * &NEW ENTRY 
END SAVE 

ENDDATA 

346 TSO Extensions Command Language Reference 



DATA PROMPT-ENDDATA Sequence 

Use the DATA PROMPT-END DATA sequence to designate a group of lines 
within a CLIST as replies when the system prompts for data. An error condition 
(error code 968) occurs unless each DATA PROMPT statement is immediately 
preceded by a command or subcommand that issues a prompt. If a prompt 
occurs, you receive a reply. 

For more information on this sequence and the writing of CLISTs, see CLISTs: 
Implementation and Reference. 

[label:] DATA PROMPT 

ENDDATA 

label: 
specifies a name to which the CLIST can branch. 

There are certain rules to remember when using the DATA 
PROMPT-END DATA sequence. They are: 

o The CLIST must allow prompting with the CONTROL PROMPT or 
PROMPT operand on the EXEC command. 

o Symbolic substitution is performed before a reply is sent. 

co Do not enter the PROMPT operand as a symbolic variable. 

G The DATA PROMPT sequence is sensitive to the following types of prompts: 

PUTGET PROMPT 
PTBYPASS 
TERM 
ATTN 
GETLINE TERM 

DATA PROMPT-ENDDATA Sequence 347 



Example 

Operation: Use the DATA PROMPT feature to supply EDIT with input in 
either foreground or background. 

Procedure: 

CONTROL PROMPT 

DEFINES A NULL VARIABLE 
SET & NULL = R 
EDIT EXAMPLE.DATA NEW 
DATA PROMPT/*SUPPLY REPLIES TO INPUT PROMPT*/ 
THIS WILL BE LINE 1 
THIS WILL BE LINE 2 
&NULL 
ENDDATA 
END SAVE 

Result: The contents of the created data set will be: 

00010 
00020 

348 TSO Extensions Command Language Reference 

THIS WILL BE LINE 1 
THIS WILL BE LINE 2 



DO-WHILE-END CLIST Sequence 

Use the DO, WHILE, and END statements to form commands, subcommands, 
and statements into DO-groups of related instructions. DO and END denote the 
start and end, respectively, of the DO-group. WHILE specifies a condition and 
causes the DO-group to re-execute as long as the condition is true. 

You can use the string specified on the END operand of the CONTROL 
statement instead of the END statement. 

For more information on these statements and the writing of CLISTs, see 
CLISTs: Implementation and Reference. 

[label: ] DO [WHILE logical-expression] 

[label: ] END 

label: 
specifies a name to which the CLIST can branch. Enter one-to-eight 
characters, the first alphabetic and the rest alphameric, followed by a colon. 

logical-expression 
is a set group of comparative expressions grouped by logical operators. The 
minimal entry for logical-expression is a comparative expression. 

DO-WHILE-END CLIST Sequence 349 



ERROR CLIST Statement 

Use the ERROR statement to check for nonzero (error-condition) return codes 
from commands, subcommands, and CLIST statements in the currently executing 
CLIST. When an error code is detected, the system effectively performs an error 
exit. 

The error exit must be protected from being flushed from the input stack by the 
system. Stack flushing makes the error return codes unavailable. Use the MAIN 
or NOFLUSH operands of the CONTROL statement to prevent stack flushing. 

If you specify ERROR with no operands, the system displays any command, 
subcommand, or statement in the CLIST that ends in error. The system then 
attempts to continue with the next sequential statement, if possible. 

Note the following: 

CD If the LIST option was requested for the CLIST being executed, the NULL 
error statement is ignored. 

E) The ERROR statement must precede any statements that might cause a 
branch to it. 

For more information on this statement and the writing of CLISTs, see CLISTs: 
Implementation and Reference. 

[label: ] ERROR 
[
OFF 1 

label: 

OFF 

action 

specifies a name to which the CLIST can branch. Enter one-to-eight 
characters, the first alphabetic and the rest alphameric, followed by a colon. 

specifies any action previously set up by an ERROR statement is nullified. 
Note that OFF is not a default. 

action 
specifies any executable statement, commonly a DO-group constituting a 
routine. 

Note: If only the TIME command or the NULL error statement executes in a 
DO-group, a recursive CLIST error occurs and an error message is issued. The 
error occurs because neither the TIME command nor the NULL error statement 
resets LASTCC. 

350 TSO Extensions Command Language Reference 



Example 

Operation: Perform an error analysis routine whenever an error occurs in the 
CLIST. 

ERROR DO 

. /* Error analysis routine */ 

END 

ERROR CLIST Statement 351 



EXIT CLIST Statement 

Use the EXIT statement to return control to the routine that called the currently 
executing CLIST. You can specify the return code associated with this exit or 
allow it to default to the value in control variable &LASTCC. 

A procedure that is called by another procedure is said to be nested. A called· 
procedure can also call a procedure, which would be considered to be nested two 
levels. Levels of nesting are limited only by the extent of storage and the skill of 
the programmer. The structure of the nesting is called the hierarchy. You go up 
in the hierarchy when control passes from the called to the calling procedure. 
TSO itself is at the top. 

Entering EXIT causes control to go up one level. When EXIT is entered with the 
QUIT operand, the system attempts to pass control upward to the first procedure 
encountered that has MAIN or NOFLUSH in effect (see CONTROL statement). 
If no such procedure is found, control passes up to TSO, the input stack is flushed 
of all CLISTs, and control passes to the terminal. 

For more information on this statement and the writing of CLISTs, see CLISTs: 
Implementation and Reference. 

[label:] EXIT [CODE(expression)] 
[QUIT] 

label: 
specifies a name to which the CLIST can branch. Enter one-to-eight 
characters, the first alphabetic and the rest alphameric, followed by a colon. 

CODE(expression) 
specifies a user-defined return code for this exit, with the code specifiable in 
most simple form as a number or in most complex form as a simple 
expression. If you do not specify CODE, the system uses the contents of 
&LASTCC. 

QUIT 
specifies control is passed up the nested hierarchy until a procedure is found 
with the MAIN or NOFLUSH option active or until TSO receives control. 

352 TSO Extensions Command Language Reference 



GETFILE CLIST Statement 

Use the GETFILE statement to get a record from an open QSAM file. One 
record is obtained for one execution of GETFILE. You must know the 
filename(ddname) by which you allocated and opened (by OPENFILE) the file 
for this terminal session. 

After GETFILE executes, the file variable, filename, contains the record obtained. 

File variables are scanned only once (no rescans) and only on OPENFILE. 

For more information on this statement and the writing of CLISTs, see CLISTs: 
Implementation and Reference. 

[label: ] GETFILE filename 

label: 
specifies a name to which the CLIST can branch. Enter one-to-eight 
characters, the first alphabetic and the rest alphameric, followed by a colon. 

filename 
specifies the DD name by which the file was allocated and opened (by 
OPENFILE). 

GETFILE CLIST Statement 353 



GLOBAL CLIST Statement 

Use the GLOBAL statement to define unique symbolic variables that are to be 
used globally, which in the application means in all lower nested levels of the 
hierarchy. The GLOBAL statement must precede any statement that uses its 
variables. The first level CLIST defines global variables. Lower level procedures 
must include a GLOBAL statement, if they intend to refer to the global variables 
specified in the first level. The number of global variables defined in the first level 
procedure is the maximum number that can be referenced by any lower level 
procedure. 

The global variables are positional, both in the first level procedure and in all 
lower level procedures that reference this same set of variables. This means that 
the nth name on any level GLOBAL statement refers to the same variable, even 
though the symbolic name at each level may be different. Note, however, that the 
names must still be unique among those at that level. 

For more information on this statement and the writing of CLISTs, see CLISTs: 
Implementation and Reference. 

[label:] GLOBAL name!, [name2 •••• nameN] 

label: 
specifies a name to which the CLIST can branch. Enter one-to-eight 
characters, the first alphabetic and the rest alphameric, followed by a colon. 

namel-nameN 
specify valid symbolic variable names for this procedure. 

Example 

Operation: Specify a set of global variables for three levels of procedures, where 
some names are unique to their level. 

First level procedure: 
Second level procedure: 
Third level procedure: 

GLOBAL 
GLOBAL 
GLOBAL 

NAMEI 
FIRST 
PARMI 

NAME2 
SECOND 
PARM2 

NAME3 NAME4 
THIRD 
PARM3 PARM4 

Note that &NAME3, &THIRD, and &PARM3 would access the same variable. 

354 TSO Extensions Command Language Reference 



GOTO CLIST Statement 

Use the GOTO statement to cause an unconditional branch within a CLIST. You 
cannot branch to another CLIST. If you specify GOTO, control passes to the 
statement or command that has the label called out as the target. 

For more information on this statement and the writing of CLISTs, see CLISTs: 
Implementation and Reference. 

[label: ] GOTO target 

label: 
specifies a name to which the CLIST can branch. Enter one-to-eight 
characters, the first alphabetic and the rest alphameric, followed by a colon. 

target 
specifies either a label or an expression that reduces to a valid label value 
after symbolic substitution. 

Example 

Operation: Illustrate branching within a CLIST. 

BEGIN: SET &RET=NEXT 
GOTO LABI 

NEXT: WRITENR TWO, 
SET &N=2 
GOTO LAB&N 

LAB1: WRITENR ONE, 
GOTO &RET 

LAB2: WRITE THREE 
EXIT /* ONE,TWO,THREE HAS BEEN WRITTEN + 

TO THE TERMINAL*/ 

GOTO CLIST Statement 355 



IF-THEN-ELSE CLIST Statement 

Use the IF-THEN-ELSE sequence to define a condition, to test the truth of that 
condition, and to initiate an action based on the test results. 

Caution: A continuation character is required if the THEN or ELSE statement 
extends to the next line. If no continuation character is present and no other text 
is on the same line, the THEN and ELSE are treated like null statements. Use a 
plus ( + ) or (-) sign to continue to the next line when writing CLISTs. 

For more information on this statement and the writing of CLISTs, see CLISTs: 
Implementation and Reference. 

[label: ] IF logical-expression THEN [action] 
[ELSE [action]] 

label: 
specifies a name to which the CLIST can branch. Enter one-to-eight 
characters, the first alphabetic and the rest alphameric, followed by a colon. 

logical-expression 
is a group of comparative expressions grouped by logical operators. The 
minimal entry for logical-expression is a comparative expression. 

action 
specifies an executable statement, which includes commands, subcommands, 
and CLIST statements. The THEN action is invoked if the IF condition is 
satisfied. The ELSE action is invoked if the IF condition is not satisfied 
and ELSE is specified. If the IF condition is not satisfied and ELSE is not 
specified, control passes to the next sequential statement. 

356 TSO Extensions Command Language Reference 



OPENFILE CLIST Statement 

Use the OPENFILE statement to open a specific file for QSAM I/O. One 
execution of OPENFILE opens one file. File variables are scanned only once (no 
rescans) and only on OPENFILE. 

Complete your file I/O on a specific file before you change modes from command 
to subcommand or vice versa. The system does not support crossmode file I/O, 
which causes miscellaneous abnonnal terminations. 

Specify NOFLUSH (see the CONTROL statement) for a CLIST that uses file 
I/O. 

If a system action causes the file to be flushed because you did not specify 
NOFLUSH, you have to log off the system to recover. You recognize the 
condition by getting a message similar to "FILE NOT FREED, DATA SET IS 
OPEN." 

For reference information on QSAM I/O, see Data Management Services. 

For more information on this statement and the writing of CLISTs, see CLISTs: 
Implementation and Reference . 

[label: ] OPENFILE filename 

[
INPUT ] 

label: 

OUTPUT 
UPDATE 

specifies a name to which the CLIST can branch. Enter one-to-eight 
characters, the first alphabetic and the rest alphameric, followed by a colon. 

filename 
specifies the DD name of a file that has been previously allocated by the 
ALLOCATE command or by step allocation. The file name becomes a 
symbolic variable that contains either: 

• The results of a GETFILE 
• A record that was set by the user for a PUTFILE. 

The file name name does not have to be previously defined. 

INPUT 
specifies that the file name will open for input. The default is INPUT when 
neither INPUT, OUTPUT, nor UPDATE is entered. 

OUTPUT 
specifies the file name is to open for output. 

UPDATE 
specifies the file name is to open for updating in place; that is, you can 
replace a previously read record by issuing a PUTFILE statement. 

OPENFILE CLIST Statement 357 



PROC CLIST Statement 

Use the PROC statement to define the parameters that can be passed to the 
CLIST by the value list parameter of the EXEC command. PROC is optional for 
a CLIST, but if it is used, it must be the first statement in the CLIST. 

Note that you cannot enter a label for a PROC statement. 

For more information on this statement and the writing of CLISTs, see CLISTs: 
Implementation and Reference. 

PRoe positional-specification 
[positional-parameters] 
[keyword-parameters[(values)]] 

positional-specification 
specifies the number of required positional parameters to be passed. Enter 
1-5 decimal digits. If you do not have any, enter O. 

positional-parameters 
specifies the positional parameters, in sequence, that require initial values in 
the value list before the CLIST is invoked. Parse prompts for an initial 
value if one is not there, except when positional-specification = 0 and no 
prompting is needed because there are no positional parameters. 

Positional parameter names are 1-252 characters, the first alphabetic and the 
rest alphameric. The values must be character strings without delimiters. 

keyword-parameters(values) 
specify the keyword parameters, either with or without values, that do not 
require initial values in the value list before the CLIST is invoked. 

Keyword parameter names are 1-31 characters, the first alphabetic and the 
rest alphameric. Keywords without values have nothing appended. 
Keywords with values have the values enclosed in parentheses and appended 
to their names. Specify the value as a null entry (keep parentheses), a 
quoted character string, or a non-quoted character string. A quoted 
character string can include delimiters. These values are defaults. 

Note: All symbolic parameters have an initial value at the time the CLIST begins 
execution. You can dynamically change the symbolic parameter value by 
specifying the symbolic parameter name on the READ, SET, or READDVAL 
statements. 

358 TSO Extensions Command Language Reference 



PUTFILE CLIST Statement 

Use the PUTFILE statement to put a record into an already open QSAM file. 
One execution of PUT FILE transfers one record. This record must be initialized 
each time by an assignment statement such as SET unless you want the same 
record sent more than once. You must know the filename( ddname) by which you 
allocated and opened (by OPENFILE) the file for this terminal session. 

File variables are scanned only once (no rescans) and only on OPENFILE. 

For more information on this statement and the writing of CLISTs, see CLISTs: 
Implementation and Reference. 

[label: ] PUTFILE filename 

label: 
specifies a name to which the CLIST can branch. Enter one-to-eight 
characters, the first alphabetic and the rest alphameric, followed by a colon 
and at least one blank. 

filename 
specifies the DD name by which the file was allocated and opened (by 
OPENFILE). The record that is put in is the value of the file variable 
&FILENAME. 

Example 

Operation: Illustrate typical file I/O. 

OPENFILE MYOUTPUT OUTPUT 

SET &MYOUTPUT = TEXT STRING 
PUTFILE MYOUTPUT /* TEXT STRING is put to the file */ 

PUTFILE CLIST Statement 359 



READ CLIST Statement 

Use the READ statement to make terminal user input available to the CLIST as 
values in symbolic variables. You can name these variables in the READ 
statement or elsewhere in the CLIST. The READ statement is usually preceded 
by a WRITE to the terminal to identify the expected input. 

For more information on this statement and the writing of CLISTs, see CLISTs: 
Implementation and Reference. 

[label: ] READ [name! [name2 ... nameN]] 

label: 
specifies a name to which the CLIST can branch. Enter one-to-eight 
characters, the first alphabetic and the rest alphameric, followed by a colon. 

Note: If you specify READ without parameter names, TSO reads the value of 
the terminal input line into &SYSDV AL. 

namel-nameN 
specify any syntactically valid parameter names. The & prefix is optional. 
These symbolic parameters need not be previously defined. The parameters 
are positional in the sense that recognizable values entered by the CLIST 
user are set sequentially into the names specified here. Recognizable values 
are: 

• A character string 

• A quoted string 

• A parenthesized string 

• A null value, specified by entering two adjacent commas (,,) or two 
adjacent quotes (' '). Double quotes (") are not acceptable and cause an 
error message. 

You can specify any or all of the types on one READ statement. 

360 TSO Extensions Command Language Reference 



READDV AL CLIST Statement 

Use the READDV AL statement to cause the current value of &SYSDVAL to be 
parsed into syntactical words and to assign these words to the symbolic 
parameters specified on the READDV AL statement. Use &SYSDVAL to obtain 
the terminal user's response line when a READ statement requests terminal input. 

Syntactical words are defined as character strings, quoted strings, parenthesized 
strin~s, or null values indicated by two adjacent commas (,,). 

The assignment is done sequentially on the parameters in the order they are 
specified. Parameters not assigned a value default to null values. If there are 
more words than parameters, the leftover words are not assigned. 

For more information on this statement and the writing of CLISTs, see CLISTs: 
Implementation and Reference. 

[label: 1 READDVAL variablel[variablenl ... 

label: 
specifies a name to which the CLIST can branch. Enter one-to-eight 
characters, the first alphabetic and the rest alphameric, followed by a colon. 

variable! [variablen) 
specifies any valid variable name. A variable need not have been previously 
defined. 

READDV AL CLIST Statement 361 



RETURN CLIST Statement 

Use the RETURN statement to return control from an error or attention exit to 
the statement following the one that ended in error or the one that was 
interrupted by an attention. 

RETURN is valid only when issued from an activated error action range or an 
activated attention action range from this CLIST. If neither of these conditions 
exists, RETURN is treated as a no-operation. 

For more information on this statement and the writing of CLISTs, see CLISTs: 
Implementation and Reference. 

~label: ] RETURN 

label: 
specifies a name to which the CLIST can branch. Enter one-to-eight 
characters, the first alphabetic and the rest alphameric, followed by a colon. 

362 TSO Extensions Command Language Reference 



SET CLIST Statement 

Use the SET statement to assign a specified value to a specified symbolic variable 
name. One value is assigned to one variable for one execution of SET. You do 
not need to predefine the variable elsewhere. 

You cannot set a variable that is a built-in function. 

For more information on this statement and the writing of CLISTs, see CLISTs: 
Implementation and Reference. 

[label:] SET symbolic-variable-name 1= I 
EQ 

expression 

label: 
specifies a name to which the CLIST can branch. Enter one-to-eight 
characters, the first alphabetic and the rest alphameric, followed by a colon. 

symbolic-variable-name 
specifies the syntactically valid symbolic variable or allowable control 
variable that is to be set. 

EQ or = 
specifies the comparison operator EQUAL. 

expression 
specifies a simple expression as explained in CLISTs: Implementation and 
Reference. 

SET CLIST Statement 363 



TERMIN CLIST Statement 

Use the TERMIN statement to pass control from the CLIST currently executing 
to the terminal user. TSO prompts the terminal user with a READY message .. 
TERMIN also defines the character strings that a user can enter to return control 
to the CLIST. A null value can be specified as a character string that the user 
can enter. TERMIN is usually preceded by a WRITE statement that identifies 
the expected response to the terminal user. 

Control returns to the CLIST at the statement after TERMIN. When control 
returns, TSO sets &SYSDLM and &SYSDV AL. 

For more information on this statement and the writing of CLISTs, see CLISTs: 
Implementation and Reference. 

[label: ] TERMIN [string2 .... stringN] 

label: 
specifies a name to which the CLIST can branch. Enter one-to-eight 
characters, the first alphabetic and the rest alphameric, followed by a colon. 

stringl-stringN 
specify character strings that the terminal user can enter to return control to 
the command processor. The &SYSDLM control variable contains the 
number of the string entered (1 for string!, 2 for string2, etc.) and 
&SYSDV AL contains the balance of the entered line. 

specifies the terminal user can enter a null line to return control to the 
CLIST. Use it only in the first string position. 

364 TSO Extensions Command Language Reference 



WRITE and WRITENR Statements 

Use the WRITE and WRITENR statements to send text to the terminal user 
from the CLIST. You can use the text for messages, information, or prompting. 

For more information on this statement and the writing of CLISTs, see CLISTs: 
Implementation and Reference. 

[label: ] WRITE [NR] text 

label: 
specifies a name to which the CLIST can branch. Enter one-to-eight 
characters, the first alphabetic and the rest alphameric, followed by a colon 
and at least one blank. 

WRITE 
specifies the cursor move to a new line after the text is displayed. 

WRITENR 
specifies the cursor does not move to a new line after the text is displayed. 

text 
specifies what is to be sent to the terminal. You can enter any character 
string, including symbolic variables. Data enclosed within /* and * / 
delimiters is also sent to the terminal, even though it might appear as a 
comment. 

Example 

Operation: Illustrate WRITE and WRITENR usage. 

WRITENR ONE 
WRITENR TWO/ 
WRITENR THREE 
WRITE FOUR 
WRITE FIVE 

The display at the terminal shows: 

ONETWO/THREEFOUR 
FIVE 

WRITE and WRITENR Statements 365 



366 TSO Extensions Command Language Reference 



Quick Reference Guide to Commands and Statements 

Figure 13 lists TSO commands and CLIST statements in alphabetical order. 

CO~NDorSTATEMENT 

ALLOCATE command 

A TIN statement 

A TIRIB command 

CALL command 

CANCEL command 

CLOSFILE statement 

CONTROL statement 

DATA-ENDDATA statement 

USAGE 

To dynamically allocate data sets. 

To set attention routines in a CLIST. 

To build a list of attributes for non-VSAM data sets. 

To load and execute a load module. 

To halt the processing of batch jobs submitted at your terminal. 

To close a file in a CLIST. 

To define processing options for a CLIST. 

To designate a group of commands and subcommands as data for a CLIST. 

DATA PROMPT-ENDDATA statement To designate a group of lines within a CLIST as the prompt replies for commands and 
subcommands. 

DELETE command To delete data set entries or members of a partitioned data set. 

DO-WHILE-END statement To form commands, subcommands, and statements into DO-groups in a CLIST. 

EDIT command To create, modify, store, submit, retrieve, and delete data sets. See command definitions for 
definitions of EDIT subcommands. 

END command To end a CLIST. 

ERROR statement To set up error routines in a CLIST. 

EXEC command To execute a CLIST. 

EXIT statement To return control to the calling routine in a CLIST. 

FREE command To release previously allocated data sets, change the output of a SYSOUT data set, delete 
attribute lists, or change data set disposition. 

GETFILE statement To get a record from an open QSAM file in a CLIST. 

GLOBAL statement To define unique symbolic variables for global use in a CLIST. 

GOTO statement To cause an unconditional branch within a CLIST. 

HELP command To obtain information about the function, syntax, and operands of commands and 
subcommands and information about certain messages. 

IF-THEN-ELSE statement To define a condition, test it, and initiate action based on it within a CLIST. 

LINK command To invoke the linkage editor service program. 

LISTALC command To obtain a list of data sets allocated during the current TSO session. 

Figure 13 (Part 1 of 2). TSO Commands and Statements and Their Uses 

Quick Reference Guide to Commands and Statements 367 



CO~NDorSTATEMrnNT USAGE 

LISTBC command To obtain a listing of the contents of the broadcast data set (SYSl.BRODCAST), which 
contains messages of general interest. 

LISTCAT command To list entries from a catalog by name or entry type. 

LISTDS command To display the attributes of specific data sets at your terminal. 

LOADGO command To load a compiled or assembled program into real storage and begin execution. 

LOGOFF command To end your terminal session. 

LOGON command To start your terminal session. 

OPENFILE statement To open a specific file for QSAM I/O in a CLIST. 

OUTPUT command To direct output from a job to your terminal or to a specific data set; to delete the output, 
change output class, route output to a remote work station, or release the output for a job for 
printing by the subsystem. 

PROC statement To define parameters to be passed to a CLIST using the value list parameter of the EXEC 
command. 

PROFILE command To establish, change, or list your user profile. 

PROTECT command To prevent unauthorized access to your non-VSAM data sets. 

PUTFILE statement To put a record into an already open QSAM file. 

READ statement To make terminal user input available to the CLIST as values in symbolic variables. 

READDV AL statement To cause the current value of &SYSDV AL to be parsed into syntactical words and assign 
those words to the symbolic parameters specified on the READDV AL statement. 

RECEIVE command To retrieve transmitted files and restore them to their original format. 

RENAME command To change the name of a non-VSAM cataloged data set, to change the member name of a 
partitioned data set, or to create an alias for a partitioned data set member. 

RETURN statement To return control from an error range or attention range to the statement following the one 
that ended in error or that was interrupted by an attention. 

RUN command To compile, load, and execute the source statements in a data set. 

SEND command To send a message to another terminal user or to the system operator. 

SET statement To assign a specified value to a specified symbolic variable in a CLIST. 

STATUS command To display the status of batch jobs at your terminal. 

SUBMIT command To submit one or more batch jobs for processing. 

TERMIN statement To pass control from the CLIST currently executing to the terminal user. 

TERMINAL command To define the operating characteristics of your terminal. 

TEST command To test a program or command processor written in Assembler language. 

TRANSMIT command To send information, such as a message or a copy of information in a data set, to another user 
in the network. 

TSOEXEC command To invoke an authorized command from an unauthorized environment. 

WHEN command To test return codes from programs invoked from an immediately preceding CALL or 
LOADGO command, and to take prescribed action if the return code meets a specified 
condition. 

WRITE statement To send text to a terminal user from a CLIST. 

Figure 13 (Part 2 of 2). TSO Commands and Statements and Their Uses 

368 TSO Extensions Command Language Reference 



Index 

* 

* operand 

% 

CHANGE subcommand of EDIT 71 
COpy subcommand of EDIT 79 
DELETE subcommand of EDIT 87 

% indirection symbol 233 
% operand of EXEC command 135 

? 

? (question mark) 233 
? indirection symbol 233 

A 

abbreviating keyword operands 3 
abend occurrences outside home address space 238 
abend, recovering 66 
abnormal termination 

recovering an EDIT work file 64 
absolute address 231 
AC operand of LINK command 154 
access to storage by TEST 238 
ACCODE operand 

ALLOCATE command 17 
address operand 

AT subcommand of TEST 251 
CALL subcommand of TEST 256 

address operand, RUN subcommand of TEST 312 
addressing considerations 236 
address 1 operand 

AND subcommand of TEST 244 
address2 operand 

AND subcommand of TEST 244 
ALIAS operand 

DELETE command 47 
LISTCAT command 163 
RENAME command 208 

ALIGN operand 
ALLOCATE command 26 

ALL operand 
CHANGE subcommand of EDIT 72 
HELP command 144 
LISTCAT command 163 

ALLOCATE command 8 
operands 

ACCODE 17 
ALIGN 26 
ALTFILE 16 

AVBLOCK 15 
BFALN 21 
BFTEK 22 
BLKSIZE 15 
BLOCK 14 
BUFL 20 
BUFNO 20 
BUFOFF 23 
BURST 25 
CATALOG 19 
CHARS 25 
COPIES 25 
CYLINDERS 15 
DELETE 19 
DEN 24 
DEST 16 
DIAGNS 23 
DIR 16 
DSORG 23 
DUMMY 11 
EROPT 22 
EXPDT 21 
FCB 26 
FILE or DDNAME 12 
FLASH 25 
HOLD 17 
image-id 26 
INPUT 21 
KEEP 19 
KEYLEN 24 
LABEL 17 
LIKE 18 
LIMCT 23 
LRECL 20 
MAXVOL 17 
MOD 13 
MODIFY 25 
MSVGP 14 
NCP 21 
NEW 13 
NOHOLD 17 
OLD 12 
OPTCD 21 
OUTPUT 21 
PARALLEL 17 
POSITION 17 
PRIVATE 18 
PROTECT 24 
RECFM 22 
RELEASE 19 
RETPD 21 
REUSE 16 
ROUND 19 
SHR 12 
SPACE 14 
SYSOUT 13 

Index 369 



TRACKS 15 
UCOUNT 17 
UNCATALOG 20 
UNIT 17 
USING 19 
VERIFY 26 
VOLUME 13 
VSEQ 18 

ALLOCATE subcommand of EDIT 68 
ALLOCATE subcommand of TEST 243 
ALLOCATION operand of LISTCAT command 163 
ALTFILE operand 

ALLOCATE command 16 
AMODE operand 

CALL subcommand of TEST 257 
GO subcommand of TEST 274 
LINK command 150 
LOADGO command 168 
RUN subcommand of TEST 312 

AND subcommand of TEST 244 
ASIS operand 

EDIT command 53 
ASM command 

EDIT command 51 
RUN command 210 

assignment of values function of TEST 247 
assignment statements (see CLIST statements) 
AT subcommand of TEST 251 

address 251 
address-list 251 
COUNT 252 
DEFER 252 
NOTIFY 252 
subcommands-list 252 
TITLE 253 

attention interruptions in cross-memory mode 238 
ATTN statement 340 
A TTRIB command 32 
A TTRIB subcommand of EDIT 69 
A TTRIB subcommand of TEST 255 
A TTRILIST operand of FREE command 141 
authorized command 

running in unauthorized environment 336 
automatic qualification 232 
A VBLOCK operand of ALLOCATE command 15 

B 

background behavior of command 
CALL 40 
LOGOFF 172 
LOGON 174 
SUBMIT command 218 

background processing 
checkpointing a data set 64 
EDIT command 60 
recovering after a terminal line disconnect 67 
recovering after an abend 66 

· recovering after system failure 65 

370 TSO Extensions Command Language Reference 

recovering an EDIT work file 64 
batch processing 

cancelling jobs 42 
BEGIN operand 

CONTINUE subcommand of OUTPUT 184 
OUTPUT command 178 

BF ALN operand 
ALLOCATE command 21 
ATTRIB command 36 

BFTEK operand 
ALLOCATE command 22 
ATTRIB command 37 

BLKSIZE operand 
ALLOCATE command 15 
ATTRIB command 34 
RECEIVE command 204 

BLOCK operand 
ALLOCATE command 14 
EDIT command 53 
RECEIVE command 204 

BOTTOM subcommand of EDIT 70 
BREAK operand of TERMINAL command 223 
BUFL (buffer-length) operand 

ALLOCATE command 20 
ATTRIB command 34 

BUFNO (number-of-buffers) operand 
ALLOCATE command 20 
A TTRIB command 34 

BUFOFF (block-prefix-length) operand 
ALLOCATE command 23 
ATTRIB command 38 

built-in functions 339 
BURST operand 

ALLOCATE command 25 

C 

CALL command 40 
call operand of LOADGO command 169 
CALL subcommand of TEST 256 
CANCEL command 42 
CANCEL subcommand of TEST 259 
CAPS operand 

EDIT command 53 
CATALOG operand 

ALLOCATE command 19 
DELETE command 46 
LISTCAT command 161 
LISTDS command 166 

CHANGE subcommand of EDIT 71 
changing from one mode to another 63 
CHAR operand 

PROFILE command 190 
TERMINAL command 225 

CHARS operand 
ALLOCATE command 25 

CHECK operand 
RUN command 211 
RUN subcommand of EDIT 115 



check pointing a data set 64 
CKPOINT subcommand of EDIT 77 
CLASS operand of OUTPUT command 177 
CLEAR operand of TERMINAL command 224 
CLIST statements 339 

assignment 
GLOBAL statement 354 
READDVAL statement 361 
SET statement 363 

built-in functions 339 
conditional 

DO-WHILE-END sequence 349 
IF-THEN-ELSE statement 356 

control 
A TIN statement 340 
CONTROL statement 343 
DATA-ENDDATA statement 346 
ERROR statement 350 
EXIT statement 352 
GOTO statement 355 
PROC statement 358 
READ statement 360 
RETURN statement 362 
TERMIN statement 364 
WRITE and WRITENR statements 365 

control variables 339 
EDIT command 51 
error codes 339 
executing CLIST, EXEC command 135 
file access 

CLOSFILE statement 342 
GETFILE statement 353 
OPEN FILE statement 357 
PUTFILE statement 359 

operators and expressions 339 
symbolic variables 339 

CLOSFILE statement 342 
CLUSTER operand 

DELETE c'ommand 46 
LISTCAT command 162 

CN operand of SEND command 215 
CNTL operand of EDIT command 51 
COBLIB operand 

LINK command 151 
LOAD GO command 169 

COBOL operand 
EDIT command 51 
RUN command 211 

Code and Go FORTRAN 
EDIT command 52 

command procedure (see CLIST statements) 
comments 4 
compiler type, determining 213 
considerations 

addressing 236 
cross-memory using TEST 238 
using virtual fetch services 237 
31-bit addressing for TEST 237 

context editing 61 
CONTINUE subcommand of OUTPUT 184 

control password operand of PROTECT 
command 196 

control section tags 326 
CONTROL statement 343 
control variables 339 
COPIES operand 

ALLOCATE command 25 
COpy operand of RECEIVE command 205 
COpy subcommand of EDIT 79 
COpy subcommand of TEST 260 

address 1 operand 260 
address2 operand 260 
LENGTH operand 260 
POINTER operand 260 

COPYLIST operand of TRANSMIT command 331 
count operand 

CHANGE subcommand of EDIT 71 
COPY subcommand of EDIT 79 
DELETE subcommand of EDIT 87 
DOWN subcommand of EDIT 89 
LIST subcommand of EDIT 102 
MOVE subcommand of EDIT 104 
SCAN subcommand of EDIT 121 
UP subcommand of EDIT 132 

CP operand of TEST command 228 
CREATION operand of LISTCAT command 163 
cross-memory considerations using TEST 238 
CYLINDER operand 

D 

ALLOCATE command 15 
RECEIVE command 204 

data encryption (TRANSMIT and RECEIVE) 324 
DATA operand 

LISTCAT command 162 
PROTECT command 197 

DATA PROMPT-ENDDATA sequence 347 
data set disposition 63 
data set, checkpointing 64 
DATA-END DATA statement 346 
data-set-name operand 

EXEC command 135 
LINK command 149 
LISTDS command 165 
LOADGO command 168 
PROTECT command 196 
SAVE subcommand of EDIT 118 
TEST command 227 

DATASET or DSNAME operand 11 
DC operand of LINK command 153 
DCBS operand of LINK command 154 
DDNAME operand 

FREE command 141 
TRANSMIT command 331 

DELETE command 44 
DELETE operand 

ALLOCATE command 19 
FREE command 141 

Index 371 



OUTPUT command 179 
PROTECT command 197 
RECEIVE command 205 

DELETE subcommand of EDIT 87 
DELETE subcommand of TEST 263 
delimiters 4 
DEN operand 

ALLOCATE command 24 
ATTRIB command 38 

DEST operand 
ALLOCATE command 16 
FREE command 141 
OUTPUT command 179 

determining compiler type 213 
DIAGNS (TRACE) operand 

ALLOCATE command 23 
ATTRIB command 38 

DIR operand of ALLOCATE command 16 
DIRECTORY operand of RECEIVE command 204 
DISCONNECT operand of LOGOFF command 172 
disconnection, recovering data 67 
DO-WHILE-END sequence 349 
DOWN subcommand of EDIT 89 
DROP subcommand of TEST 264 
DSNAME operand 

ALLOCATE command 11, 12 
CALL command 41 
EDIT command 49 
FREE command 141 
RECEIVE command 203 
TRANSMIT command 330 

DSORG operand 
ALLOCATE command 23 
ATTRIB command 38 

DUMMY operand 
ALLOCATE command 11 

E 

EDIT command 
subcommands 

ALLOCATE 68 
ATTRIB 69 
BOTTOM 70 
CHANGE 71 
CKPOINT 77 
COPY 79 
DELETE 87 
DOWN 89 
EDIT 95 
END 90 
FIND 92 
FREE 94 
INPUT 96 
INSERT 98 
insert/replace/delete function 100 
LIST 102 
MOVE 104 
PROFILE 112 

372 TSO Extensions Command Language Reference 

RENUM 113 
RUN 115 
SAVE 118 
SCAN 121 
SEND 123 
SUBMIT 124 
TABSET 128 
TOP 130 
UNNUM 131 
UP 132 
VERIFY 133 

edit mode 61 
EDIT work file, recovering 64 
EMODE operand of EDIT command 49 
ENCIPHER operand of TRANSMIT command 331 
encryption, data (TRANSMIT and RECEIVE) 324 
END command 134 
END operand 

RECEIVE command 205 
WHEN command 337 

END subcommand of EDIT 90 
END subcommand of OUTPUT 186 
END subcommand of TEST 265 
end-line-number operand 

SAVE subcommand of EDIT 118 
ending the ED IT command 64 
ENTRIES operand of LISTCAT command 161 
EP operand of LOADGO command 170 
EPILOG operand of TRANSMIT command 331 
EQUATE operand 

address 266 
data-type 267 
LENGTH 267 
MULTIPLE 267 
symbol 266 

EQUATE subcommand of TEST 266 
ERASE operand of DELETE command 46 
EROPT operand 

ALLOCATE command 22 
A TTRIB command 37 

error codes 339 
error messages, COPY subcommand of EDIT 81 
ERROR statement 350 
EXEC command 135 
EXEC subcommand of EDIT 91 
EXEC subcommand of TEST 269 
executing user-written programs 64 
EXIT statement 352 
EXPDT (year-day) operand 

ALLOCATE command 21 
ATTRIB command 36 

EXPIRATION operand of LISTCAT command 163 
explicit form of EXEC command 135 
extended implicit form of EXEC 135 

F 

failure (system), recovering data 65 
FCB operand of ALLOCATE command 26 



FIB commands (see foreground-initiated-background 
commands) 

file access statements (see CLIST statements) 
FILE operand of FREE command 141 
filename operand of CLOSFILE statement 342 
FIND subcommand of EDIT 92 
FLASH operand of ALLOCATE command 25 
floating-point registers 232 
foreground-initiated-background (FIB) commands 

CANCEL 42 
OUTPUT 177 
STATUS 217 
SUBMIT 218 

forms control buffer (FCB) 26 
FORT operand 

RUN command 211 
FORTGloperand 

EDIT command 51 
FORTRAN IV (Gl) 51 

FORTH operand 
EDIT command 51 
FORTRAN IV (H) 51 

FORTLIB operand 
LINK command 151 
LOADGO command 169 

FORTRAN (H) compiler 121 
FORTRAN IV (Gl) 51 
FORTRAN IV (H) EXTCOMP statements 51 
FREE command 140 
FREE subcommand of EDIT 94 
FREEMAIN subcommand of TEST 270 
FULLSCREEN 

logon 173 
operand of TRANSMIT command 331 

FUNCTION operand of HELP command 144 

G 

general registers 232 
GENERATIONDATAGROUP operand 

DELETE command 47 
LISTCAT command 163 

GETFILE statement 353 
GETMAIN 

operands of TEST 
EQUATE 272 
integer 272 
LOC (ANY) 272 
LOC (BELOW) 272 
LOC (RES) 272 
SP 272 

GETMAIN subcommand of TEST 272 
GLOBAL statement 354 
GO operand of RUN command 212 
GO subcommand of TEST 274 
GOFORT operand 

Code and Go FORTRAN 52 
EDIT command 52 

RUN command 211 
GOTO statement 355 
GROUP operand of LOGON command 176 

H 

halt processing of batch jobs 42 
HELP command 144 
help information 145 
HELP subcommand of EDIT 95 
HELP subcommand of OUTPUT 187 
HELP subcommand of TEST 276 
HELP, using 5 
HERE operand 

CONTINUE subcommand of OUTPUT 184 
OUTPUT command 178 

HISTORY operand 
LIST ALC command 157 
LISTCAT command 163 
LISTDS command 165 

HOLD operand 

I 

ALLOCATE command 17 
FREE command 141 
LOGOFF command 172 
OUTPUT command 178 

I operand, INPUT subcommand of EDIT 96 
IF-THEN-ELSE statement 356 
image-id of ALLOCATE command 26 
IMODE operand of EDIT command 50 
implicit form of EXEC command 135 
INCR operand 

COpy subcommand of EDIT 79 
MOVE subcommand of EDIT 104 

increment operand 
INPUT subcommand of EDIT 96 
RENUM subcommand of EDIT 113 

INDDNAME or IN FILE operand of RECEIVE 
command 202 

INDEX operand of LISTCAT command 162 
indirect symbols 

% (percent sign) 233 
definition and use 233 
examples of indirect addressing 233 

INDSNAME or INDAT ASET operand of RECEIVE 
command 202 

input mode 
background behavior 60 

INPUT operand 
ALLOCATE command 21 
ATTRIB command 35 

INPUT subcommand of EDIT 96 
INSERT subcommand of EDIT 98 
insert/replace/delete function of EDIT 100 
INTERCOM operand of PROFILE command 191 

Index 373 



J 

JES3 users 179 

K 

KEEP operand 
ALLOCATE command 19 
FREE command 141 
OUTPUT command 178 

KEYLEN operand 
ALLOCATE command 24 
A TTRIB command 39 

keyword operands 1, 3 

L 

LABEL operand 
ALLOCATE command 17 
LISTDS command 165 

length operand 
AND subcommand of TEST 244 

LET operand of LINK command 152 
LEVEL operand 

LISTCAT command 162 
LISTDS command 166 

LIB operand 
LINK command 150 
LOADGO command 168 
RUN command 211 
RUN subcommand of EDIT 115 

LIKE operand of ALLOCATE command 18 
LIMCT (search-number) operand 

ALLOCATE command 23 
ATTRIB command 38 

line continuation 4, 59 
line mode logon 173 
linenumbers 58 
LINE operand of TRANSMIT command 332 
line-number editing 61 
line-number operand 

INPUT subcommand of EDIT 96 
line-number-l operand 

CHANGE subcommand of EDIT 71 
DELETE subcommand of EDIT 87 
LIST subcommand of EDIT 102 
SCAN subcommand of EDIT 121 

line-number-2 operand 
CHANGE subcommand of EDIT 71 
DELETE subcommand of EDIT 87 
LIST subcommand of EDIT 102 
SCAN subcommand of EDIT 121 

line 1 operand' 
COpy subcommand of EDIT 79 
MOVE subcommand of EDIT 104 

line2 operand 
COpy subcommand of EDIT 79 
MOVE subcommand of EDIT 104 

374 TSO Extensions Command Language Reference 

line3 operand 
COPY subcommand of EDIT 79 
MOVE subcommand of EDIT 104 

line4 operand 
COpy subcommand of EDIT 80 
MOVE subcommand of EDIT 104 

LINK command 148 
LINK subcommand of TEST 277 
LIST command 

operands 
address 278 
address list 278 
data-type 279 
LENGTH 279 
MULTIPLE 280 
PRINT 280 

LIST subcommand of EDIT 102 
LIST subcommand of TEST 278 
LIST ALC command 156 
LIST ALC subcommand of TEST 283 
LISTBC command 159 
LISTBC subcommand of TEST 284 
LISTCAT command 160 
LISTCAT subcommand of TEST 285 
LISTDCB subcommand of TEST 286 

operands 
address 286 
FIELD 286 
PRINT 287 

LISTDEB subcommand of TEST 
operands 

address 288 
FIELD 288 
PRINT 289 

LISTDS command 164 
LISTDS subcommand of TEST 291 
LISTMAP subcommand of TEST 292 
LISTPSW operands of TEST 

ADDR 294 
PRINT 294 

LISTPSW subcommand of TEST 294 
LISTTCB subcommand of TEST 

operands 
ADDR 296 
FIELD names 296 
PRINT 297 

LMSG operand 
RUN subcommand of EDIT 115 

LOAD subcommand of TEST 299 
LOAD GO command 

description 167 
operands 

CALL 169 
COBLIB 169 
data-set-list 168 
FORTLIB 169 
LIB 168 
MAP 169 
NAME 170 
NOCALL 170 



NOMAP 169 
NOPRINT 168 
NORES 169 
NOTERM 169 
PLIBASE 169 
PLICMIX 169 
PLILIB 169 
PRINT 168 
RES 169 
TERM 169 

LOG operand of TRANSMIT command 332 
LOG(ALL) operand of TRANSMIT command 332 
logging function of TRANSMIT and RECEIVE 324 
LOGNAME operand of TRANSMIT command 332 
LOGOFF command 172 
LOGON command 173 
LOGON, fullscreen 173 
LPREC operand 

RUN command 212 
LRECL (logical-record-Iength) operand 

ALLOCATE command 20 
ATTRIB command 35 
EDIT command 53 

M 

MAIL operand 
LISTBC command 159 
LOGON command 175 

MAP operand of LINK command 151 
MAXVOL operand of ALLOCATE command 17 
MEMBERS operand 

LIST ALC command 157 
LISTDS command 165 
TRANSMIT command 332 

MESSAGE operand of TRANSMIT command 331 
messages 

COpy subcommand of EDIT 81 
MOVE subcommand of EDIT 106 

MOD operand of ALLOCATE command 13 
MODE operand of PROFILE command 192 
modes of operations 

changing from one mode to another 63 
checkpointing a data set 64 
edit mode 61 
input mode 58 
line continuation 59 
line numbers 58 
recovering an EDIT work file 64 
recovering data 67 
syntax checking 59 
terminating the EDIT command 64 

MODIFY operand of ALLOCATE command 25 
module name 231 
MOVE subcommand of EDIT 104 
MSGID (list) operand 

HELP command 145 
PROFILE command 192 

MSVGP operand of ALLOCATE command 14 

MVS/XA 

N 

ALLOCATE subcommand of TEST 243 
AMODE operand of LINK command 150 
AMODE operand of LOAD GO command 168 
AND subcommand of TEST 244 
A TTRIB subcommand of TEST 255 
CANCEL subcommand of TEST 259 
indirect addressing 233 
LINK subcommand of TEST 277 
LIST ALC subcommand of TEST 283 
LISTBC subcommand of TEST 284 
LISTCAT subcommand of TEST 285 
OR subcommand of TEST 303 
PROFILE subcommand of TEST 306 
PROTECT subcommand of TEST 307 
question mark (?) 233 
RENAME subcommand of TEST 311 
RMODE operand of LINK command 150 
RMODE operand of LOADGO command 168 
RUN subcommand of TEST 312 
SEND subcommand of TEST 314 
STATUS subcommand of TEST 315 
SUBMIT subcommand of TEST 316 
TERMINAL subcommand of TEST 317 
UN ALLOC subcommand of TEST 318 
31-bit addressing considerations for TEST 237 

name operand of LISTCAT command 163 
NAMES data set 

control section tags 326 
function 325 
nicknames section tags 328 

NCAL operand of LINK command 151 
NCP operand 

ALLOCATE command 21 
ATTRIB command 35 

NE operand of LINK command 153 
NEW operand 

ALLOCATE command 13 
EDIT command 50 

new-line-number operand 
RENUM subcommand of EDIT 113 
SAVE subcommand of EDIT 118 

new-name operand of RENAME command 208 
NEW /OLD/MOD/SHR operand of RECEIVE 
command 204 

NEWCLASS operand of OUTPUT command 179 
NEXT operand 

CONTINUE subcommand of OUTPUT 184 
nicknames section tags 328 
NODC operand of LINK command 154 
NOEPILOG operand of TRANSMIT command 331 
NOERASE operand of DELETE command 46 
NOGO operand 

RUN command 212 
RUN subcommand of EDIT 115 

NOHOLD operand 

Index 375 



ALLOCATE command 17 
FREE command 141 
OUTPUT command 179 

NOINTERCOM operand of PROFILE command 192 
NO KEEP operand of OUTPUT command 178 
NOLET operand 

LINK command 152 
LOADGO command 170 

NOLINE operand of PROFILE command 191 
NOLINES operand of TERMINAL command 223 
NOLIST operand 

EXEC command 136 
LINK command 152 

NOLOG operand of TRANSMIT command 332 
NOMAIL operand of LISTBC command 159 
NOMAP operand 

LINK command 151 
LOADGO command 169 

NOM ODE operand of PROFILE command 192 
NOMSGID operand of PROFILE command 192 
non-VSAM data sets 6 
NONCAL operand of LINK command 151 
NONE operand of LINK command 153 
NONOTICES operand 

LISTBC command 159 
LOGON command 175 

NONOTIFY 
SUBMIT command 221 
SUBMIT subcommand of EDIT 126 
TRANSMIT command 332 

NONUM operand 
EDIT command 53 

NONVSAM or NVSAM operand 
DELETE command 47 
LISTCAT command 162 

NOOL operand of LINK command 153 
NOOVL Y operand of LINK command 153 
NOPAUSE operand 

CONTINUE subcommand of OUTPUT 185 
OUTPUT command 178 
PROFILE command 192 
RUN command 212 
RUN subcommand of EDIT 115 

nopointer operand 
AND subcommand of TEST 245 

NOPREFIX operand of PROFILE command 193 
NOPREVIEW operand of RECEIVE command 204 
NOPRINT 

LOAD GO command 168 
NOPROLOG operand of TRANSMIT command 333 
NOPROMPT operand 

EXEC command 136 
INPUT subcommand of EDIT 96 
PROFILE command 191 

NOPURGE operand 
CANCEL command 42 
DELETE command 46 

NOPWREAD operand of PROTECT command 197 
NO RECOVER operand of EDIT command 50 

EDIT command 50 

376 TSO Extensions Command Language Reference 

NOREFR operand of LINK command 152 
NO RENT operand of LINK command 153 
NORES operand of LOAD GO command 169 
NO REUS operand of LINK command 152 
NOSA VE operand, END subcommand of EDIT 90 
NOSCAN operand of EDIT command 52 
NOSCRA TCH operand of DELETE command 46 

DELETE command 47 
NOSCTR operand of LINK command 153 
NOSECONDS operand of TERMINAL command 223 
NOSTORE operand of RUN command 212 
NOTERM operand 

LINK command 154 
LOADGO command 169 

NOTEST operand 
LINK command 154 
RUN command 212 

NOTICES operand 
LISTBC command 159 
LOGON command 175 

NOTIFY operand 
SUBMIT command 220 
SUBMIT subcommand of EDIT 126 
TRANSMIT command 332 

NOTIMEOUT operand of TERMINAL 
command 224 

NOT RAN operand of TERMINAL command 225 
NOWAIT operand of SEND command 215 
NOW RITE operand of PROTECT command 197 
NOWTPMSG operand of PROFILE command 193 
NOXCAL operand of LINK command 152 
NOXREF operand of LINK command 152 
NUM operand of EDIT command 53 

o 

OBJECT operand 
RUN command 212 
TEST command 228 

OFF operand 
address 301 
address list 301 
ATTN statement 340 
SCAN subcommand of EDIT 121 
TABSET subcommand of EDIT 128 
VERIFY subcommand of EDIT 133 

OFF subcommand of TEST 301 
OlD CARD operand of LOGON command 176 
OL operand of LINK command 153 
OLD operand 

ALLOCATE command 12 
EDIT command 50 

old-line-number operand 
SAVE subcommand of EDIT 118 

old-name operand of RENAME command 208 
ON operand 

SCAN subcommand of EDIT 121 
TABSET subcommand of EDIT 128 
VERIFY subcommand of EDIT 133 



OPENFILE statement 357 
OPERANDS operand of HELP command 144 
operator operand of WHEN command 337 
operators and expressions 339 
OPT operand of RUN command 211 
OPTCD operand 

ALLOCATE command 21 
A TTRIB command 36 

OR 
address 1 303 
address2 303 
LENGTH 303 
POINTER 304 

OR subcommand of TEST 303 
OUTDATASET operand of TRANSMIT 

command 333 
OUTDDNAME operand of TRANSMIT 

command 333 
OUTDSNAME operand of TRANSMIT 

command 333 
OUTFILE operand of TRANSMIT command 333 
OUTPUT command 177 
OUTPUT operand 

ALLOCATE command 21 
ATTRIB command 36 

output sequence 180 
OUTPUT subcommands 183 
OVL Y operand of LINK command 153 

P 

PAGESPACE operand 
DELETE command 47 
LISTCA T command 163 

PARALLEL operand of ALLOCATE command 17 
parameters operand of TEST command 228 
PARM operand 

RECEIVE command 202 
TRANSMIT command 333 

password 
DELETE command 46 
EDIT command 49 

password data set 200 
password operand of PROTECT command 197 
PA USE operand 

CONTINUE subcommand of OUTPUT 184 
OUTPUT command 178 
PROFILE command 189, 192 
RUN command 212 
RUN subcommand of EDIT 115 

PDS operand of TRANSMIT command 333 
PLIoperand 

EDIT command 50 
RUN command 211 

PLIBASE operand 
LINK command 151 
LOAD GO command 169 

PLICMIX operand of LINK command 151 
PLILIB operand of LOAD GO command 169 

pointer operand 
AND subcommand of TEST 244 

POSITION operand of ALLOCATE command 17 
position operand, FIND subcommand of EDIT 92 
POSITIONAL operand of HELP command 145 
positional operands 1 
PREFIX operand of PROFILE command 192 
PREVIEW operand of RECEIVE command 204 
PRINT operand 

LINK command 150 
OUTPUT command 178 

PRIVATE operand of ALLOCATE command 18 
PROC statement 358 
procedure name operand of EXEC command 135 
PROFILE command 189 
PROFILE subcommand of EDIT 112 
PROFILE subcommand of TEST 306 
programming with TEST using virtual fetch 

services 237 
PROLOG operand of TRANSMIT command 333 
PROMPT operand 

EXEC command 136 
INPUT subcommand of EDIT 96 
PROFILE command 191 

PROTECT command 196 
PROTECT operand of ALLOCATE command 24 
PURGE operand 

CANCEL command 42 
DELETE command 46 

purging jobs 42 
PUTFILE statement 359 
PWREAD operand of PROTECT command 197 
PWWRITE operand of PROTECT command 197 

Q 

qualified addresses 231 
QUALIFY subcommand of TEST 

operands 
address 308 
modu1e-name.entryname 308 
TCB 308 

quoted string notation 72, 92 

R 

R operand, INPUT subcommand of EDIT 96 
READ statement 360 
READDVAL statement 361 
RECEIVE command 

data encryption function 324 
description 201 
logging function 324 

RECFM operand 
ALLOCATE command 22 
ATTRIB command 37 

RECONNECT operand of LOGON command 175 
record format 22 

Index 377 



RECOVER facility operand of PROFILE 190 
recovering 

after abend 66 
data after disconnection 67 
data after system failure 65 
EDIT command 50 
EDIT work file 64 

REFR operand of LINK command 152 
registers 

floating-point 232 
general 232 

relative address 231 
RELEASE operand 

ALLOCATE command 19 
RECEIVE command 204 

RENAME command 208 
RENAME subcommand of TEST 311 
RENT operand of LINK command 153 
RENUM operand, SAVE subcommand of EDIT 118 
RENUM subcommand of EDIT 113 
REPLACE operand of PROTECT command 197 
RES operand of LOAD GO command 169 
RESTORE operand of RECEIVE command 204 
restrictions 

breakpoints for cross-memory applications 238 
internal and external symbols 235 

RETPD (number-of-days) operand 
ALLOCATE command 21 
ATTRIB command 36 

RETURN statement 362 
REUS operand of LINK command 152 
REUSE operand· of ALLOCATE command 16 
RMODE operand 

LINK command 150 
LOAD GO command 168 

ROUND operand of ALLOCATE command 19 
RUN command 210 
RUN command, executing user-written programs 64 
RUN subcommand of EDIT 115 
RUN subcommand of TEST 312 

S 

SAVE subcommand of EDIT 118 
SAVE subcommand of OUTPUT 188 
SCAN operand of EDIT command 52 
SCAN subcommand of EDIT 121 
SCRATCH operand of DELETE command 46 
SCRSIZE operand of TERMIN AL command 224 
SCTR operand of LINK command 153 
SECONDS operand of TERMINAL command 223 
SEND command 214 
SEND subcommand of TEST 314 
SEQUENTIAL operand of TRANSMIT 

command 333 
service units 

CPU 322 
I/O 322 
storage 322 

378 TSO Extensions Command Language Reference 

Session Manager, TSO commands 6 
SET statement 363 
SHR operand 

ALLOCATE command 12 
SIZE operand 

LINK command 153 
RUN command 212 
RUN subcommand of EDIT 115 

SMCOPY 6 
SMFIND 6 
SMPUT 6 
SMSG operand 

RUN subcommand of EDIT 115 
SNUM operand, LIST subcommand of EDIT 102 
SOURCE operand of RUN command 212 
source statements, running 210 
SPACE operand 

ALLOCATE command 14 
AVBLOCK 14 
BLOCK 14 
CYLINDERS 14 
DELETE command 47 
increment 14 
LISTCAT command 162 
quantity 14 
RECEIVE command 203 
TRACKS 14 

SPREC operand 
RUN command 212 

statements, CLIST (see CLIST statements) 
STATUS command 217 
STATUS operand 

LIST ALC command 156 
LISTDS command 165 

STATUS subcommand of TEST 315 
STORE operand 

RUN command 212 
RUN subcommand of EDIT 115 

string operand 
CHANGE subcommand of EDIT 71 
COpy subcommand of EDIT 80 
FIND subcommand of EDIT 92 
insert/replace/delete function of EDIT 100 
MOVE subcommand of EDIT 104 

subcommands for EDIT 55 
SUBMIT 

command 218 
subcommand of EDIT 124 
subcommand of TEST 316 
support in batch 218 

symbolic address 231 
symbolic variables 339 
symbols 

external 235 
internal 236 
restrictions 235 

syntax checking 59 
syntax notation conventions 2 
SYNTAX operand of HELP command 144 
SYSNAMES operand of LISTALC command 157 



SYSOUT operand 
ALLOCATE command 13 
RECEIVE command 204 
TRANSMIT command 333 

SYSRC operand of WHEN command 337 
system failure, recovering data 65 

T 

TABSET subcommand of EDIT 128 
tabulation characters 63 
tag definitions 

control section 326 
nicknames section 328 

TERM operand 
LINK command 154 
LOAD GO command 169 

TERMIN statement 364 
TERMINAL command 222 
TERMINAL operand of TRANSMIT command 331 
TERMINAL subcommand of TEST 317 
terminating the EDIT command 64 
TEST 

addressing considerations 236 
addressing conventions 231 
command 227 
definition of address expression 234 
examples of using TEST 228 
restrictions on internal and external symbols 235 
setting breakpoints for cross-memory 

applications 238 
subcommands 

ALLOCATE 243 
AND 244 
AT 251 
ATTRIB 255 
CALL 256 
CANCEL 259 
COpy 260 
DELETE 263 
DROP 264 
END 265 
EQUATE 266 
EXEC 269 
FREEMAIN 270 
GETMAIN 272 
GO 274 
HELP 276 
LINK 277 
LIST 278 
LISTALC 283 
LISTBC 284 
LISTCAT 285 
LISTDCB 286 
LISTDEB 288 
LISTDS 291 
LISTMAP 292 
LISTPSW 294 
LISTTCB 296 

LOAD 299 
OFF 301 
OR 303 
PROFILE 306 
PROTECT 307 
QUALIFY 308 
RENAME 311 
RUN 312 
SEND 314 
STATUS 315 
SUBMIT 316 
TERMINAL 317 
UNALLOC 318 
WHERE 319 

types of addresses 231 
using virtual fetch services 237 
valid address examples 236 
when to use 230 

TEST operand 
RUN command 212 

TEST subcommands, list of 239 
TEXT operand 

EDIT command 51 
SEND command 214 

TIME command 322 
TIMEOUT operand of TERMINAL command 224 
TOP subcommand of EDIT 130 
TRACKS operand 

ALLOCATE command 15 
RECEIVE command 204 

TRAN operand of TERMINAL command 225 
TRANSMIT command 323 

data encryption function 324 
logging function 324 

TRTCH operand 
ALLOCATE command 24 
A TTRIB command 38 

TSO command, definition 1 
TSO/E Interactive Data Transmission 

RECEIVE command 201 
TRANSMIT command 323 

TSOEXEC command 336 

U 

UCOUNT operand of ALLOCATE command 17 
UNALLOC subcommand of TEST 318 
unauthorized environment 

running authorized commands 336 
UNCATALOG operand 

ALLOCATE command 20 
FREE command 142 

UNIT operand 
ALLOCATE command 17 
RECEIVE command 203 

UNNUM operand, SAVE subcommand of EDIT 118 
UNNUM subcommand of EDIT 131 
UP subcommand of EDIT 132 
USER operand 

Index 379 



SEND command 214 
USERCAT ALOG operand of LISTCA T 

command 162 
USERID operand of RECEIVE command 202 
using HELP 5 
USING operand of ALLOCATE command 19 

V 

VERIFY operand of ALLOCATE command 26 
VERIFY subcommand of EDIT 133 
virtual fetch services 237 
VOLUME operand 

ALLOCATE command 13 
LISTCAT command 163 
RECEIVE command 203 

VSAM data sets 6 
VSBASIC 

EDIT command 52 
RUN command 212 

VSEQ operand 
ALLOCATE command 18 

W 

380 TSO Extensions Command Language Reference 

WAIT operand of SEND command 215 
WHEN command 337 
WHERE subcommand of TEST 319 
WRITE and WRITENR statements 365 

x 

XCAL operand of LINK command 152 
XREF operand of LINK command 152 

3 

31-bit addressing considerations for TEST 237 
3211 Printer 26 
3800 Printer 

BURST/NOBURST operand of ALLOCATE 25 
CHARS operand of ALLOCATE 25 
COPIES operand of ALLOCATE 25 
FCB operand of ALLOCATE 26 
FLASH operand of ALLOCATE 25 
image-id operand of ALLOCATE 26 
MODIFY operand of ALLOCATE 25 





TSO Extensions Command Language Reference 

SC28-1307 -1 S370-39 

Printed in U.S.A. --... - .----- .-- ------~---~ ------ -- -.----------- - ... -® 



· E 
1:~ 
~.~ 
.g.~ 
::J_ 
tTc G.lo 
0>0) 
co 
:e-; 
00. 

~.B 
'c"C 
EG.l 
"C E 
G.lE 

Gl .... ::J 
Co> c 
E ... :.J 
00 0> .... .r:; 
::I .... C 
CO 0 

.r:; ... ;( 
~o "C 
~o 

~ C/I.~ 
E;!: ... CIlO) 0 -c 
.00 .... 
e lll ::J 

o.~ 
u 

:l~ 
::JC/I 
C~ 
Uo. 
C Cll C III U::J 
C/lCIl 
.!!III 
o.C 
CCIl 
Ciia:: 
Gi 
0 z 

TSO Extensions 
Command Language 
Reference 

SC28-1307-1 

READER'S 
COMMENT 
FORM 

This manual is part of a library that serves as a reference source for systems analysts, programmers, 
and operators of IBM systems. You may use this form to communicate your comments about this 
publication, its organization, or subject matter, with the understanding that IBM may use or distribute 
whatever information you supply in any way it believes appropriate without incurring any obligation to 
you. 

Note: Copies of IBM puhlications are not stocked at the location to which this form is addressed. Please 
direct any requests for copies of puhlications, or for assistance in using your IBM system, to your IBM 
representative or to the IBM hranch office serving your locality. 

Possible topics for comment are: 

Clarity Accuracy Completeness Organization Coding Retrieval Legibility 

If you wish a reply, give your name, company, mailing address, and date: 

What is your occupation? 

How do you use this publication? 

Number of latest Newsletter associated with this publication: 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an 
IBM office or representative will be happy to forward your comments or you may mail directly to the 
address in the Edition Notice on the back of the title page.) 



TSO Extensions Command Language Reference 

SC28-1307 -1 S370-39 

Reader's Comment Form 

Fold and tape Please Do Not Staple Fold and tape i 
--------------------------------------------------------------------------------------------------------------------------------------i 

Fold and tape 

r::::::::::::J __ .-=-- .-c:I ___ _ 
ICCI ___ _ 
c:J ____ _ 

C!3I .. __ ~_ 

~-- ... -=-r:::::aa._._ _ ... _@ 

111111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE 

International Business Machines Corporation 
Department 058, Building 921-2 
PO Box 390 
Poughkeepsie, New York 12602 

e 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

eM .eE 

,meWM'fAWtte'1 "'*13 

------------------------------------------------
Please Do Not Staple Fold and tape 

Printed in U.S.A. 

I 



·E 1l.2 
E.!! 

.9-:5 
:::l_ 
0"0 GlO) 
0101 
co 
:e-; 
00.. 
1110 - .... 
O-u EO) 
-u E 
GlE 

+':::l c 001 
E ... ::::i 
00) 01 
~= C 
00 0 

:5'" ;( 
._ 0 -u 
~O) 

~ III.~ 
E~ ... 0)01 0 -c 
.00) +' 
een :::l 

o..~ 
U 

o):::l 

"'''' :::len 
o~ 
Uo.. 
Co 

8~ 
.!!~ 
0..0 
00 
Uiii: 
Qj 
0 z 

TSO Extensions 
Command Language 
Reference 

SC28-1307 -I 

READER'S 
COMMENT 
FORM 

This manual is part of a library that serves as a reference source for systems analysts, programmers, 
and operators of IBM systems. You may use this form to communicate your comments about this 
publication, its organization, or subject matter, with the understanding that IBM may use or distribute 
whatever information you supply in any way it believes appropriate without incurring any obligation to 
you. 

Note: Copies of IBM puhlications are not stocked at the location to which this form is addressed. Please 
direct any requests for copies of puhlications, or for assistance in using your IBM system, to your IBM 
representative or to the IBM hranch office serving your locality. 

Possible topics for comment are: 

Clarity Accuracy Completeness Organiza tion Coding Retrieval Legibility 

If you wish a reply, give your name, company, mailing address, and date: 

What is your occupation? 

How do you use this publication? 

Number of latest Newsletter associated with this publication: 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an 
IBM office or representative will be happy to forward your comments or you may mail .directly to the 
address in the Edition Notice on the back of the title page.) 



TSO Extensions Command Language Reference 

SC28-1307-1 

Reader's Comment Form 

S370-39 

o .., 

i 
Fold and tape Please Do Not Staple Fold and tape I 

--------------------------------------------------------------------------------------------------------------------------------------~ 

Fold and tape 

---- - .-------- .... --- ---- ---~---- -- -..----------- - ., -® 

III " I 
BUSINESS REPLY MAIL 

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE 

International Business Machines Corporation 
Department 058, Building 921 -2 
PO Box 390 
Poughkeepsie, New York 12602 

Please Do Not Staple 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

Fold and tape 

Printed in U.S.A. 

SC28-1307-01 


