GC26-4037-0
File No. S370-21

Assembler H Version 2

Application Programming:
~ Systems Language Reference

Program Number 5668-962
Release 1.0

— eees — v e

First Edition (January 1983)

This edition applies to Version 2, Release 1.0 of Assembler H,
Program Product 5668-962 and to any subsequent releases until
othernwise indicated in new editions or technical newsletters.

This manual merges assembler information contained in
0S/VS-DOS/VSE-VM/370 Assembler Language, GC33-4010, and QS
Assembler H lLanguage, 6GC26-3771.

Changes are periodically made to the information herein; before
using this publication in connection with the operation of IBM
systems, consult the latest IBM Svstem/370 and 4300 Processors
Bibliography, GC20-0001, for the editions that are applicable
and current.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available
in all countries in which IBM operates. Any reference to an IBM
program product in this publication is not intended to state or
imply that only IBM's program product may be used. Any
functionally equivalent program may be used instead.

Publications are not stocked at the address given below;
requests for IBM publications should be made to your IBM
representative or to the IBM branch office serving your

locality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Corporation, P.0. Box 50020, Programming
Publishing, San Jose, California, U.S5.A. 95150. IBM may use or
distribute whatever information vou supply in any way it
believes appropriate without incurring any obligation to you.

@ Copyright International Business Machines Corporation 1982

f\,

L

~

A W

O

:’:y%

PREFACE

NEH FEATURES

This is a reference manual for the Assembler H Version 2,
Release 1, Modification 0, Program Product 5668-962 (hereafter
referred to as the Assembler H program or, simply, assembler).
It will enable you to ansuwer specific questions about language
functions and specifications. In many cases, it also provides
information about the purpose of the instruction you refer to,
as well as examples of its use.

This manual merges assembler information contained in
05/VS—DOS/VSE—-VM/370 Assembler Language, GC33-4010, and 0S

Assembler H Lanquage, 6C26-3771, with the following major

di fferences:

Only information relevant to Assembler H has been included
in this manual. DOS/VSE, O0S/MFT, and 0S/MVT information has
been removed because it is valid only for assemblers other
than Assembler H.

New features provided by Assembler H Version 2, Release 1.0,
zave ?een integrated (see the Summary of Amendments for
etails).

Programs may be assembled with Assembler H Version 2,
Release 1.0, under MVS/Extended Architecture (MVS/XA).

Information available in manuals listed below under "Related
Publications™ is not included in this publication;
references are made to the appropriate manuals.

New features provided by the Assembler H Version 2 Program
Product are:

*

A program using Svstem/370 Extended Architecture (5/370-XA)
machine instructions may be assembled with Assembler H under
MVS/Extended Architecture (MVS/XA), 0S/VS2 MVS Release 3.8,
0S/VS1 Release 7, MVS/SP V1, VM/XA Migration Aid, or
VM/System Product (VM/SP). Programs using the Extended
Architecture instruction set can be assembled on any system
supported by the above operating systems; however, programs
containing Extended Architecture instructions can only be
executed on an Extended Architecture mode processor under
MVS/XA or with MVS/XA operating as a guest operating system
under VM/XA Migration Aid.

An AMODE attribute allows specification of the entry point
of the addressing mode (24-bit, 31-bit, or any [not
sensitive to addressing model addresses) to be associated
with a control section.

An RMODE attribute allows specification of the residence
mode (in the 24-bit addressable range or anywhere) to be
associated with a control section.

New channel command word instructions: CCWl (format 1)
allows 31-bit data addresses; CCW0 (format 0) allows 24-bit
data addresses.

New machine instructions for the IBM 308x models operating
in System/370 Extended Architecture mode; in addition, the
System/370 set of machine instructions has been expanded. A
changed installation option allows users to specify whether
the System/370, Extended Architecture, or Universal (all
inclusive) instruction set will be used for assemblies.

Preface iii

. Three new instruction types are included for the Extended
Architecture object code: E, RRE, and SSE.

. An underscore character is allowed in ordinary symbols.
. Operation is now supported in the CMS (Conversational

gggitor System) environment of VM/SP and VM/XA Migration
id.

WHOM THIS MANUAL IS FOR

MAJOR TOPICS

This manual is for application programmers coding in the
Assembler H language. It is not intended to be used for
tutorial purposes; it is for reference only. If you are
interested in learning more about assemblers, most libraries
have tutorial books on the subject.

This manual is divided into three parts.

:Paft 1. Assembler Language" contains the following major
opiIcs:®

"Chapter 1. Introduction to Assembler Language™ describes what

the assembler does, tells about the language and program, gives
the relationship of the assembler to the operating system, and

supplies some coding aids.

"Chapter 2. General Information™ describes the coding rules for
and the structure of the assembler language. It also discusses
terms and expressions.

"Chapter 3. Addressing, Program Sectioning, and Linking™ talks
about how to handle addressing, control and dummy sections, and
symbolic linking.

"Chapter 4. Machine Instruction Statements™ describes the
machine instruction types and their formats.

"Chapter 5. Assembler Instruction Statements™ describes the
assembler instructions.

"Part 2. Macro Language"™ contains the following major topics:

"Chapter 6. Introduction to Macro Language™ briefly describes
the macro instruction statement, definition, library, and so on.

"Chapter 7. How to Prepare Macro Definitions™ tells about the
components of a macro definition.

"Chapter 8. How to Write Macro Instructions" tells about the
format of operands, sublists, and levels of macro instructions.

"Chapter 9. How to Write Conditional Assembly Instructions™
describes the SET and sequence symbols, and attributes of
assembly instructions.

"Part 3. Appendixes™ contains the following appendixes:
"Appendix A. Machine Instruction Format"™ shows the basic machine
formats in relation to the format of the assembler operand field
and applitable instructions.

"Appendix B. Assembler Instructions and Statements™ lists the
related operation, name, and operand entries.

"Appendix C. Summary of Constants™ lists the constant types and
gives related information concerning each.

T"Appendix D. Macro Language Summary"™ summarizes some of the
information contained in Part II.

iv Assembler H Version 2 Application Programming: Language Reference

@

O

D

HOW TO USE THIS MANUAL

RELATED PUBLICATIONS

Because this is a reference manual, you should use the index or
the table of contents to find the subject in which you are
interested.

Complete specifications are given for each instruction or
feature of the assembler language, except for the machine
instructions, which are documented in IBM System/370 Principles
of Operation, GA22-7000, and IBM 4300 Processors Principles of
Operation, GA22-7070.

ASSEMBLER H PUBLICATIONS

Other publications in the Assembler H library are:

Assembler H Version 2: General Information, GC26-4035, contains
a brief description of Assembler H and compares VYersion 2,
Release 1, features with those of Version 1, Release 5, and also
compares Assembler H features with those of the VS Assembler.

Assembler H Version 2: Installation, 5C26-4030, which contains
information necessary for installation of the assembler program.

Assembler H Version 2 Application Programming: Guide, SC26-4036,
tells how to use Assembler H, provides an explanation of each of
the diagnostic and abnormal termination messages issued by
Assembler H, and suggests how you should respond in each case.

Assembler H Version 2: Logic, LY26-3908, describes the design
logic and functional characteristics of Assembler H.

Assembler Coding Form, GX28-6509, is a form for coding the
program in the proper columns.

The following publications provide definitive information about
machine instructions:

IBM System/370 Principles of Operation, GA22-7000

IBM 4300 Processors Principles of Operation, GA22-7070

For quick reference, see:

IBM System/370 Reference Summary, GX20-1850

Preface v

&

O

CONTENTS

Part 1. Assembler Language « e o e @

L] s & e @

Chapter 1. Introduction to Assembler Language

Language Compatibility . e . . e
Assembler Language e e e e
Machine Instructions . .
Assembler Instructions . .
Macro Instructions . . .
Assembler Program e e
Basic Functions e e e
Processing Sequence
Relationship of Assembler to 0perat1ng
Coding Aids .
Svymbolic Representatlon of Program
Variety in Data Representation
Controlling Address Assignment
Relocatability e e e e e e
Sectioning a Program .
Linkage between Source Modules
Program Listings ..

-
.
.

¢ o e & o e

Chapter 2. Coding and Structure . .
Assembler Language Coding Conventions
Field Boundaries e e e e e e e
Statement Field . . .
Continuation Indicator Fweld
Identification-Sequence Field

Continuation Lines . e e e .

Comments Statement Format . .

Instruction Statement Format .
Fixed Format e e e e . .

Free Format
Formatting Spec1f1cat10n5
Character Set .
Assembler Language Structure
Terms and Expressions
Terms e e e e e e e e
Symbols e e .
Self- Deflnlng Terms .
Location Counter Reference
Symbol Length Attribute Reference
Other Attribute References . .
Terms in Parentheses e e e
Literals

e e @ o &
P T S I

L P Y I Y
.

- - .

Sy;tem
Elemen%s'

. -

.
« s e e .
.

.
« e 2 e a4 0 e s
.

Literals,.ceneten%s; en& éeif;Definine ie;ms

General Rules for Literal Usage
Literal Pool e e e . e
Expressions . . .
Rules for Codung Expresstons .
Evaluation of Expressions

. . . .

-

-

e ¢ o
.

Absolute and Relocatable Expre551ons . .

« s & ¢ & 0 ¢ o 0 « e ¢ ¢ e e o o s 4 s e st o e« @

. .

e 4 e e

¢ & o & & ¢ * 2 s 0 4 2 e+ s+ ¢ s 0 L]

. e e ¢ -+ ¢ o ¢ ¢ ¢ 8 L]
.
a & 9 & ¢ @ & o * e o ¢ & 8 .
e & & 9 & 2 ¢ 9 4+ & & + & ¢ 0 e @ L]

.

* e o s o+ @

¢ s o o o @
.

e & ¢ + s @
¢« ¢ o 4 s e

.
e ¢ e o ¢ o v & s s 4 e .
~J

.
« ¢ ¢« ¢ e o

e s e e o o .
W
)]

.
* e @ o o

Chapter 3. Addressing, Program Sectioning, and Linking .« « &0

Addressing

Addressing Qlthln Source Modules Eetebii;h%ne

Addressability
How to Establish Addressab111ty
Base Register Instructions . .
USING—Use Base Address Reglster
DROP—Drop Base Register e e e
Relative Addressing . .
Program Sectioning and Ltnklng
Source Module .
Beginning of a Source Module
End of a Source Module . .

o e e e

Control Sections . . v
Executable Control Sectlons . .
Reference Control Sections e

. - . .

. . -

-

e e e e e o

« e e e e .

« ¢ 0 & e ¢ o

-« .« . « &0

.

.

¢ e o 4 e e ¢ o e 4 e o 0
¢ e e e s e & o o 0
e o e ¢ o e
-

v o o e s e
=)
o

PR Y

Contents vii

viii

Location Counter Setting .
Use of Multiple Location Counters

-

LOCTR—Multiple Location Counters

First Control Section
Unnamed Control Section
Literal Pools In Control Sectlons

.

-

-

.

External Symbol Dictionary Entries
Establishing Residence and Addressing Mode

AMODE—Addressing Mode
RMODE—Residence Mode
Defining a Control Section .

START—Start Assembly . .
CSECT—Identify Control Sectlon .
DSECT—Identify Dummy Section .
COM—Define Blank Common Control Sectlon
External Dummy Sections .

.

.

-

. -

.

.

.

DXD—Define External Dummy Sectlon .
Length External Dummy Section

Entry—Point Symbol

CXD—Cumulative
Symbolic Linkages
ENTRY—Identi fy
EXTRN—Identify
WXTRN—Identi fy

Chapter 4. Machine Instruction
General Instructions
Decimal Instructions
Floating-Point Instructlons
Control Instructions

Input/0utput Operations
Branching with Extended Mnemon|

Statement Formats

Symbolic Operation Codes

Operand Entries
Registers

External Symbol
Weak External Symbol

-

-

.

-

-

.

-

.

statements

-

¢ e 4+ e

c

.

Register Usage by Machlne Instruct

Register Usage by System

Addresses

Relocatabllxty of Addresses
Machine or Object Code Format

Implicit Address

Explicit Address

Lengths . e .
Immediate Data

.

-

-

-

.

.

-

-

.

-

. .

-

.

.

- .

P I)

.
.
.
.
.

-

-

.
.

.

ions

Examples of Coded Méchtne Instruct‘ons)

RR Format .
RRE Format

RS Format .
RX Format .
S Format .
SI Format .
55 Format .
SSE Format .

-

.

e 4 e & o o

Chapter 5. Assembler

Symbol Definition Instruction

EQU—Equate Symbol

Redefining Symbolic Operatlon Codes
OPSYN—Equate Operation Code .
Data Definition Instructions

-

« ¢ s & e e

-

.

-

.

-

.

.

.

-

Instruction

DC—Define Constant

Types of Constants
Format of DC Instruction
Rules for DC Operand
Information about Constants

-

-

.

-

.

-

.

.

.

-

e ® & o o s

-

¢ ¢ o ¢ o o

-

-

-

- -
-

.
.
-

. .

« ¢ s & 0 0

P A Y

sStatements

.

-

-

- -

- -

Padding and Truncation of Values

Subfield 1:

.

-

Duplication Factor
Subfield 2: Type .
Subfield 3: Modlf\ers
Subfield 4: Nominal Value

DS—Define Storage .

How to Use the DS Instructlon .

CCW or CCWO—Define Channel Command Nord

.

-

.

.

-

« o ¢ ¢ ¢ o 4 s

¢« e ¢ ¢ & 0

P T)

e o e 2 ¢ e o

~ . .
-

CCWl—Define Channel Command Word (Format

Program Control Instructions

Assembler H Version 2 Application Programming:

.

Language Reference

- .

.

-

2 e ¢ ¢ a2 e e

¢ ¢ e o o

.

.
.
.

¢ e 0+ e e o 4 e o+ o 2 e LR T T Y S T]

¢ O e e

e & o+ &

« o ¢ & o o o ¢ ¢ o

e ¢ ¢ e o ¢ o & 2 o

.

¢« o ¢ s

« s ¢ &+ o 0

e o o 5 s e e ¢ 4 @

e ¢ o & e o ¢ o

e ¢ & s e o 4 e e &+ s s s

.
e e ¢ & ¢ & e 2 o & s+ & & o

5
ERRE R
o

e oo .

.
.

« v e o e 0

e o e o e « ¢ o s e .

« ¢ ¢ o e .

e & 30 o s ¢ s e s e o & o s o ¢ o

e« s & ¢ o o

s e o+ s e o o

PR T)

o« e+ e ¢

.

¢ e ¢ s s e e e & e & ¢ s & s e o @

@ & ¢ 2 e 9 8 s e s * s & e & ¢+ ¢ o 0 e o

s * s ¢ ¢ &

¢ ¢ o & ¢ & o o o & o &

e o o

e € ¢ & o .+ & & 4 ¢ 4 s & & ¢ @ & ¢ ¢ o ¢

e e e e &+ o s 4 &

¢ & ¢ o+ o o @

¢ ¢ e o s

* s ¢ & ¢ ¢ 9 e @

e 4 e 4 & s & 2 e 2 s e o « ¢ ¢ e .

.

« e & e s o @

e ¢ o o o @

e

ICTL—Input Format Control . e .
ISEQ—Input Sequence Checking
PUNCH—Punch a Card .
REPRO—Reproduce Followvng Card
PUSH Instruction e e e e e
POP Instruction
ORG—Set Location Counter . .
LTORG—Begin Literal Pool . .
Literal Pool . . . e
Addressing Consrderatlons .
Duplicate Literals . . .
CNOP—Conditional No Operatton .
COPY—Copy Predefined Source Coding
END—End Assembly
Listing Control Instructxons .
TITLE—Identify Assembly Output
EJECT—Start New Page e v e e
SPACE—Space Listing . e v e .
PRINT—Print Optional Data . .

.
D T S N S T S S S

e & & 4 ¢ o ¢ o o & ¢ o s e

¢ 0 ¢ e e s
.
.

Part 2. Macro Language e o v e v e e v & @

Chapter 6. Introduction to Macro Language

Using Macros e e e e e e e e e e e e e
Macro Definition e e e e e e e e e e e e
Model Statements . e v e e e e e e
Processing Statements
Comments Statements e e e e e e e
Macro Instruction Statement . © e e
Source and Library Macro Deflnltlons . e
Macro Library . e e e e e e e
System Macro Instructlons e e e e .
Conditional Assembly Language e e e e e

Chapter 7. Hou to Prepare Macro Definitions
Where to Define a Macro in a Source Module
Cpen Code e e e e .
Format of a Macro Deflnxtvon e e e e e e

MACRO—Macro Definition Header e e e e e e

MEND—Macro Definition Trailer . ..

Macro Instruction Prototvype

Name Field e e e e e e e e e e e e e
Operation Field e e e e e . . .
Operand Field . . e e e e
Alternative Ways of Codlng the Prototype
Body of a Macro Definition e e e e e e e

Model Statements .
Variable Symbols as Poxnts of Substltut\on
Listing of Generated Fields . e . . .
Rules for Concatenation e e e e
Rules for Model Statement Flelds e e e .

Symbolic Parameters . e e e e e e e e
Positional Parameters e e e e e e v e
Keyword Parameters

Combining Positional end Keyword Parameters

Subscripted Symbolic Parameters . e e
Processing Statements e e e .

Conditional Assembly Instructlons

Inner Macro Instructions . .

COPY Instruction e e v e e e e e
MNOTE Instruction e e e e e e e
MEXIT Instruction .
AREAD—Assign Character String Value
Comments Statements « e e .
Ordinary Comments Statements . .
Internal Macro Comments Statements
System Variable Symbols . .
&SYSDATE—Macro Instruct!on Date .
&SYSECT—Current Control Section .
&SYSLIST—Macro Instruction Operand
&SYSNDX—Macro Instruction Index . .
&S5YSPARM—Source Module Communication
&SYSTIME—Macro Instruction Time . e
&SYSLOC—Location Counter Name . e s .

¢ ¢ o ¢ o
.

« ¢ o e o
¢ ¢ ¢ ¢ o e o

e e ¢ ¢ o ¢ o & 4 e @

.

s e 0 e ¢ e 2 & & e @

e & ¢ o & ¢ o o s

e e 4 s ¢ o o
« ¢+ ¢ o o o

« ¢ ¢ o o 0 4 o o

e 2 e s & o o o

¢ e e o ¢ ¢ & e o«
.
« + e s 8 8

¢ + e 4+ ¢ e s & o s &
.

. 0

* e o+ s &
-

Statement .

o & & & s ¢ o o 2 s .

¢ o e ¢ s 1 e

D)

e o e ¢ ¢ o

. - -

e o ¢ o 0+ &
« o s e s

e o e 4 o 2 s o s e @

.
« ¢ o o o

Contents

128
129
130
131
132
132
133
135
135
136
136
137
138
139
140
140
142
142
143

145

146
146
146
147
148
148
148
149
149
149
149

151
151
151
152
152
152
152
153
153
153
154
154
155
155
156
156
157
160
161
162
163
163
165
165
166
166
166
167
169
171
171
171
171
172
172
173
176
177
179
179

ix

Chapter 8. How to Write Macro Instructions e s e s s e . 180
Where Macro Instructions Can Appear c e e e e e e e 180
Macro Instruction Format . . e 180 ﬂ(ﬂh
Alternative Ways of Coding a Macro Instruction . e 180 N W
Name Entry e e e e e e e e e e e e e e e e . e e 181
Operation Entry T . . v e e e e e 181
Operand Entry . e e e e e c e e e e . e 182
Positional Operands N N 182
Keyword Operands . . e . 183
Comblnlng Positional and Keyword Operands . e e 185
Sublists in Operands . . e e e e e e e e e e e e 185
Multilevel Sublists e e e e 187
Passing Sublists to Inner Macro Instructlons . e e 188
Values in Operands Ch e e e e e e e e e e e e e e . 188
Omitted Operands e e e e e e e e e e e e e e e e e 188
Specxal Characters e e e e e e e e e e e e e e e e 189
Nesting in Macro Definitions . . e e e v e e 191
Inner and Outer Macro Instructlons . . e e e e e 191
Levels of Nesting e e e e e e e e e e e e e e e 191
Recursion e e v e e e e e e e e e 191
General Rules and Restrlctlons . e e e e e - 191
Passing Values through Nesting Levels e e e e . . 193
System Variable Symbols in Nested Macros e e e . . 193
Chapter 9. How to Hrite COndltlonal Assembly Instructlons 195
Elements and Functions e . e e e e . . 195
SET Symbols . . . e e e . 195

Subscripted SET Symbols . : D 196
Scope of SET Symbols e e e e e e e e e . 196

.
L A T
.
* e e .

SET Symbol Specifications “ e e e e . e 196
Subscripted SET Symbols Specifications . . 198
Created SET Symbols e e e e e e e e e e e e e 198
Data Attributes . e e e e e e e e e e e e e 199
Combination with Symbols . . e e e e e e e e e e 201
Type Attribute (T") e e e e e e e e e e e e e 203
Length Attribute (L") . v e e h e e e e e e e 204 ~
Scaling Attribute (S') . . e e e e e e e e e e e 205 :
Integer Attribute (I') . . e e e e e e e e e e e 205
Count Attribute (K') . . e e e e e . e e e e 206
Number Attribute (N") . e e e e e s . . e 207
Defined Attribute (D") . e e e e e e . . e e 207
Sequence Symbols . . . e e e e e e . . e 208
Attribute Definition and Lookahead e e e e v e e e e 209
Declaring SET Symbols . C e e e e e e e e 210
LCLA, LCLB, LCLC—7Define Local Set Symbols e e e e e 210
GBLA, GBLB, and GBLC Instructions e e e e e e e . . 211
Assigning Values to SET Symbols e e e e e e e e .. 213
SETA—Set Arithmetic . e e e e e e e e e e e . . 213
Subscripted SETA Symbols e e e s e e e e e e e e e 213
Arithmetic (SETA) Expressions et e e e e e e e e 214
Using SETA symbols e e e e e e e e e e e e e e e 218
SETB—Set Binary . e e e e e e e e e e e e e e 219
Subscripted SETB Symbols . e e e e e e e s . e 220
Logical (SETB) Expressions e e e e e e e e e e e e 220
SETC—Set Character . e e e e e v e e e e e e e 223
Character (SETC) Expressxons c e e e e e e e e e e 22%
Extended SET Statements e e e e e e e e e e e e e e 229
Substring Notation . e e e s e e e e e e e e e e e e 230
Branching e e e e e e e e e e e e e e e 232
AIF——Condltlonal Branch e e e e e e e e e e e e e e 232
Extended AIF Instruction . e e e e e e e e e e e 234
AGO—Unconditional Branch . e e e e e e e e e e e 235
Computed AGO Instruction . e e e e e e e e e e e 236
ACTR—Conditional Assembly Loop Co nter e e e e e 236
ANOP—Assembly No Operation e e e e e e e e e e . 237
Open Code . e e e et e e b e e e e e e e 238
MHELP—Macro Trace Facxllty e e e e e e e e e e e e e . 239
Macro Call Trace—Operand=l e e e e e e e e e e . 239
Macro Branch Trace—O0Operand=2 e e e e e e e e e e 239
Macro AIF Dump—Operand=4 e e e e e e e e e e 239
Macro Exit Dump—Operand=8 e e e e e e e e e e 240
Macro Entry Dump—Operand=16 e e e e e e e e e 240
Global Suppression—O0Operand=32 e v s e s e e e e s 240
MHELP Suppression—0perand=128 e s s e s s s s e s s 260

x Assembler H Version 2 Application Programming: Language Reference

MHELP Control on &SYSNDX e e st e s e e e e e e s . 2640
Combining Options e e e e e e e e e e e e e e e e 240

Part 3. Appendixes e e e o o o s s o e s s e s e w e w o 261
Appendix A. Machine Instruction Format c s e o v e o o 262
Appendix B. Assembler Instructions and Statements « o e 266

Appendix €. Summary of Constants e o o s o s e o s o 250
Appendix D. Macro Language summary © e o e e e o 8 o @ 251
I ndex . L] L L] . . L - L] L] L] L L 3 - - L] . - - L] L] L] - L] L] 259

Contents xi

FIGURES

xii

Standard Assembler Coding
Examples Using Character S
Assembler Language Structu
Machine Instructions

« s @

Conditional Assembly Instr
. Macro Instructions . .
Summary of Terms

NNV UN =

Code .

10. Assugnment of Length Attribute Values to Symbols 1n)

Name Fields

11. Differences between thera
Self-Defining Terms

12. Differences between Litera
Self-Defining Terms

13. Definitions of Absolute and Relocatable Exgressions

14, Use of Multiple Location C

15. Defining CSECTs, DSECTs, and Symbols

16. How the Location Counter W
17. Extended Mnemonic Codes
18. Object Code Format .
19. Length Attribute Value of
20. Alignment of Constants

21. Type Codes for Constants
22. Binary Constants e e .
23. Character Constants . .
2%. Hexadecimal Constants .
25. Fixed-Point Constants .
26. Decimal Constants .
27. A and Y Address Constants
28. S Address Constants . .
29. V Address Constants . .
3J0. Q Address Constants . .
31. Floating-Point Constants
32. Floating-Point External Fo
33. Channel Command Word, Form
34¢. Channel Command Word, Form
35. Building a Translate Table
36. CNOP Alignment .

37. Parts of a Macro Deflnxtio
38. Format of a Macro Definiti
39. Rules for Concatenation
40. Positional Parameters .
41. Keyword Parameters

43. Rules for MNOTE Character
%4. MEXIT Operation .

Form
et .
re .

Ordinary Assembler Instructvon Statements

uctions

. . .

Transition from Assembler Language Statement to 6b39ét

. . - .

- - .

. . .

¢ & e
.
e e s e 0

- . . - - -

. - - - - . . . - . .

.

- . - -

ls, Constants, and

- . . . -

15. Constants, and

ounters

orks

Symbols N

- . .

.
.

. .

o+ + & o s e+ o

rmats
at 0
at 1

n .
on

.

« 6 o + s o

. . -

Strings

42. Combining Positional and Keyword Paramete
nd
er

. . - .

-

-

. -

¢ s e o

.
.
-

.

. s e e
.

Namlng COnstants

.

¢ ¢ 2+ s e o ¢ 3 & o
v e 0 ¢+ o

e ¢ & ¢ o o e
.« .
e & & o € o ¢ 0 ¢ s 6 v s »

e ® o ¢ 9 ¢ & ¢ o ¢
e ¢ 8 & & ¢ ¢ & o =

o e e e e
T s e e & e

. . -

e ¢ e & ¢ & o & e s s s
.

-u‘.......-

.

.
e ¢ & & 0

45. Relationship between Keyword Operands a Keyword
Parameters and Their Assigned Values
46. Sublists in Operands . e e . .
47. Relationship between Subscrwpted Paramet s and
Sublist Entries . .- e
48. Values in Nested Macro Calls . e e e e e e e .
49. Passing Values through Nesting Levels . .

50. Features of SET Symbols and Other Types of Varlable

Symbols .
51. Attributes and Related Sym

-

bols

. - . - -

. . . .

52. Relationship of Integer to Length and Scallng

Attributes ..

. - . . -

53. Using Arithmetic (SETA) Expressrons e e e e e e e
54¢. Defining Arithmetic (SETA) Expre5510ns . . .
55. Variable Symbols Allowed as Terms in Ar1thmet1c

Expression e v e e e e
56. Defining Logical Expressio
57. Subscripted SETC Symbols
58. Using Character Expressxon

59. Substring Notations in condltrenal Assembly

ns

. . -

. - -

-

. - . . .

Assembler H Version 2 Application Programming: Language Refearence

226

¢

)

.

Instructions e e e e e e e e e e e 230
Summary of Substrlng Notatton e e e e e e e a e e 232
Restrictions on Coding Expressions s e e e e e e 239
Machine Instruction Format e e e e e e e e e e e 2643
Assembler Instructions e e e e e e e e e e e e e 246
Assembler Statements e e e e e e e e e e e e e e 249
Summary of Constants e e e e e e e e e e e e e e 250
Macro Language Elements . e e e v e e e e . . 252
Conditional Assembly Expre551ons « e e e e . . . 253
Attributes . . .« e . . e e e e e e e e e . . 255
Variable Symbols e e e e e e e e s e e e e e e e 257

Figures

xiii

>

-

PART 1. ASSEMBLER LANGUAGE

Chapter 1 describes what the assembler does, tells about the
language and program, gives the relationship of the assembler to
the operating system, and supplies some coding aids.

Chapter 2 describes the coding rules for and the structure of
the assembler language. It also discusses terms and
expressions.

Chapter 3 talks about how to handle addressing, control and
dummy sections, and symbolic linking.

Chapter 4 describes the machine instruction types and their
formats.

Chapter 5 describes the assembler instructions.

In addition, three appendixes relate to this part of the
publication. See Part 3.

Appendix A shouws the basic machine formats in relation to the
format of the assembler operand field and applicable
instructions.

Appendix B lists the related operation, name, and operand
entries.

Appendix C lists the constant types and gives related
information concerning each.

Part 1. Assembler Language 1

CHAPTER 1. INTRODUCTION TO ASSEMBLER "LANGUAGE

A computer can understand and interpret only machine language.
Machine language is in binary form and, thus, very difficult to
write. The assembler language is a symbolic programming
language that you can use to code instructions instead of coding
in machine language.

Because the assembler language allows vou to use meaningful
symbols made up of alphabetic and numeric characters instead of
just the binary digits 0 and 1 used in machine language, you can
make your coding easier to read, understand, and change. The
assembler must translate the symbolic assembler language into
machine language before the computer can execute your program,
as explained in the following paragraph.

Your program, written in the assembler language, becomes the
source module that is input to the assembler. It can be punched
into & deck of cards, or entered through a terminal. The
assembler processes your source module and produces an object
module in machine language (called object code). The object
module can be used as input to be processed by another
processing program, called the linkage editor. The linkage
editor produces a load module that can be loaded later into the
main storage of the computer. Once your program is loaded, it
can then be executed. Your source module and the object code
produced are printed, along with other information, on a program
listing.

LANGUAGE COMPATIBILITY

ASSEMBLER LANGUAGE

The language used by Assembler H Version 2, Release 1.0, has
functional extensions to the language supported by VS Assembler
and 05 Assembler H Version 1, Release 5.0. Programs written for
VS Assembler and 05 Assembler H Version 1, Release 5.0, that
were successfully assembled with no warning or diagnostic
messages, wWill be assembled correctly by Assembler H Version 2,
Release 1.0.

The assembler language is the symbolic programming language that
lies closest to the machine language in form and content. You
will, therefore, find the assembler language useful when

. vou need to control your program closely, down to the byte
and even the bit level, or

. vou must write subroutines for functions that are not
provided by other symbolic programming languages, such as
COBOL, FORTRAN, or PL/I.

The assembler language is made up of statements that represent

instructions or comments. The instruction statements are the

working part of the language and are divided into the following
three groups:

1. Machine instructions

2. Assembler instructions

3. Macro instructions

Machine Instructions

A machine instruction is the symbolic representation of a
machine language instruction of the IBM System/370 architecture

2 Assembler H Version 2 Application Programming: Language Reference

instruction set, or of the IBM System/370 extended architecture
instruction set. It is called a machine instruction because the
assaembler translates it into the machine language code the
computer can execute. Machine instructions are described in
"Chapter 4. Machine Instruction Statements."

Assembler Instructions

Macro Instructions

ASSEMBLER PROGRAM

Basic Functions

An assembler instruction is a request to the assembler program
to perform certain operations during the assembly of a source
module; for example, defining data constants, defining the end
of the source module, and reserving storage areas. Except for
the instructions that define constants, the assembler does not
translate assembler instructions into object code. The
assembler instructions are described in "Chapter 3. Addressing,
Program Sectioning, and Linking,"™ "Chapter 5. Assembler
Instruction Statements,”™ and"Chapter 9. How to Write Conditional
Assembly Instructions.™

A macro instruction is a request to the assembler program to
process a predefined sequence of code called a macro definition.
From this definition, the assembler generates machine and
assembler instructions, which it then processes as if they uwere
part of the original input in the source module.

IBM supplies macro definitions for input/output, data
management, and supervisor operations that yvou can call for
processing by coding the required macro instruction. (These
IBM-supplied macro instructions are described in the appropriate

Macro Instructions manual.)

You can also prepare vour own macro definitions, and call them,
by coding the corresponding macro instructions. Rather than
code this entire sequence each time it is needéd, you can create
a macro instruction to represent the sequence and then, each
time the sequence is needed, simply code the macro instruction
statemant. During assembly, the sequence of instructions
represented by the macro instruction is inserted into the object
program.

A complete description of the macro facility, including the
macro definition, the macro instruction, and the conditional
assembly language, is given in "Part 2. Macro Language."

The assembler program, also referred to as the assembler,
processes the machine, assembler, and macro instructions you
have coded (source statements) in the assembler language, and
produces an object module in machine language.

Processing involves the translation of source statements into
machine language, assignment of storage locations to
instructions and other elements of the program, and performance
of auxiliary assembler functions you have designated. The
output of the assembler program is the object program, a machine
language translation of the source program. The assembler
furnishes a printed listing of the source statements and object
program statements and additional information, such as error
indications, that are useful in analyzing the program. The
object program is in the format required by the linkage editor.

Chapter 1. Introduction to Assembler Language 3

Procassing Sequence

The assembler processes the machine and assembler language erh
instructions at different times during its processing sequence. 4
You should be aware of the assembler's processing sequence in

order to code your program correctly.

The assembler processes most instructions on two occasions:
First at preassembly time and, later, at assembly time.
However, it does some processing—for example, macro
processing—only at preassembly time.

The assembler also produces information for other processors.
The linkage editor uses such information at link—-edit time to
combine object modules into load modules. The loader loads vour
program (combined load modules) into virtual storage at program
fetch time. Finally, at execution time, the computer executes
the object code produced by the assembler at assembly time.

1. The assembler processes all machine instructions, and
translates them into object code at assembly time.

2. Assembler instructions are divided into two main types:

. Ordinary assembler instructions

. Conditional assembly instructions and the macro
zrgce§sing instructions (MACRO, MEND, MEXIT, MNOTE, and
READ

The following discusses these two main tvpes of assembler
instructions.

a. The assembler processes ordinary assembler instructions
at assembly time.

. The assembler evaluates absolute and relocatable ~
expressions at assembly time; they are sometimes &k
called assembly-time expressions.

. Some instructions produce output for processing
after assembly time (DC, DS, CCW, CCWO, CCWl, ENTRY,
EXTRN, WXTRN, PUNCH, and REPRO).

b. The assembler processes conditional assemb}y
instructions and macro processing instructions at
preassembly time.

. The assembler evaluates the conditional assembly
expressions—arithmetic, logical, and character—at
preassembly time.

. The assembler processes the machine and assembler
instructions generated from preassembly processing
at assembly time.

3. The assembler processes macro instructions at preassembly
time.

Note: The assembler processes the machine and or?ipary
assembler instructions generated from a macro definition
called by a macro instruction at assembly time.

The assembler prints in a program listing all the information it
produces at the various processing times discussed above.

4 Assembler H Version 2 Application Programming: lLanguage Reference

RE NS

CODING_AID

OF

SEMBL 0 OPE G SYSTE!

Assembler H operates under MVS/Extended Architecture (XA),
0Ss/VS2 MVS 3.8, 0S/VS1 Release 7, MVS/System Product (SP) Vi,
VM/XA Migration Aid, and VM/SP. These operating systems provide
the assembler with services for:

° Assembling & source module

. Running the assembled object module as a program

In writing a source module, you must include instructions that
request the desired service functions from the operating system.

0S5/VS provides the following services:

1. For assembling the source module:
a. A control program
b. Libraries to contain source code and macro definitions
c. Utilities

2. For preparing for the execution of the assembler program as
represented by the object module:

a. A control program
b. Storage allocation
c¢. Input and output facilities
d. Linkage editor
e. A loader
CMS provides the following services:
1. For assembling the source module:
a. An interactive control program
b. Files to contain source code and macro definitions
c. Utilities

2. For preparing for the execution of the assembler program as
represented by the object modules:

a. An interactive control program
b. Storage allocation
c. Input and output facilities

d. CMS loader

It can be very difficult to write an assembler language program
using only machine instructions. The assembler provides
additional functions that make this task easier. They are
summarized below.

Chapter 1. Introduction to Assembler Language 5

symbolic Representation of Program Elements

define symbols to represent storage addresses, displacements,
constants, registers, and almost any element that makes up the
assembler language. These elements include operands, operand
subfields, terms, and expressions. Symbols are easier to
remember and code than numbers; moreover, they are listed in a
symbol cross-reference table, which is printed in the program
listings. Thus, vou can easily find a symbol when searching for
an error in vour code.

Symbols greatly reduce programming effort and errors. You can C:jD

variety in Data Representation

controlling Address

Relocatability

You can use decimal, binary, hexadecimal, or character
representation of machine language binary values in writing
source statements. You select the representation best suited to
the purpose. The assembler converts your representations into
the binary values required by the machine language.

Assignment

If you code the appropriate assembler instruction, the assembler
will compute the displacement from a base address of any
symbolic addresses you specify in a machine instruction. It
will insert this displacement, along with the base register
assigned by the assembler instruction, into the object code of
the machine instruction.

At execution time, the object code of address references must be
in the base-displacement form. The computer obtains the
required address by adding the displacement to the base address
contained in the base register.

/
N

The assembler produces an object module that can be relocated
from an originally assigned storage area to any other suitable
virtual storage area without affecting program execution. This
is made easier because most addresses are assembled in their
base-displacement form.

sectioning a Program

You can divide a source module into one or more control
sactions. After assembly, yvou can include or delete individual
control sections from the resulting object module before vou
load it for execution. Control sections can be loaded
separately into storage areas that are not contiguous. This
means that a sectioned program may be loaded and executed even
though a continuous block of storage large enough to accommodate
the entire program may not be available.

Linkage betueen Source Modules

You can create symbolic linkages betuween separately assembled
source modules. This allows vou to refer symbolically from one
source module to data defined in another source module. You can
also use symbolic addresses to branch between modules.

A discussion of sectioning and linking is contained in "Program
Sectioning and Linking™ on page 45.

6 Assembler H Version 2 Application Programming: Language Reference

C

Program Listings

The assembler produces a listing of yvour source module,
including any generated statements, and the object code
assembled from the source module. You can partly control the
form and content of the listing.

The assembler also prints messages about actual errors and
warnings about potential errors in your source module.

Chapter 1. Introduction to Assembler Language

7

APTER 2. CODING AND STRUCTURE

This chapter presents information about assembler language
coding conventions and assembler language structure.

ASSEMBLER LANGUAGE CODING CONVENTIONS

The following describes the coding conventions that you must
follow in writing assembler language programs. Assembler
language statements at one time were commonly written on a
coding form before they were punched onto cards; now they are
usually entered through terminals. In this case, the columns on
the form in Figure 1 correspond to positions on a source
statement entered through a terminal.

One line of coding on the form is entered to represent one card.
The vertical columns on the form correspond to card columns.
Space is provided on the form for program identification and
instructions to keypunch operators.

[+ GX28.8800.8 U/M 080"
mu 1BM Systam/360 Asssmbler Coding Parm w
PROGRAM PUNCHING GRAPHIC PAGE OF
PROGRAMMER I DATE PUNCH CARD ELECTRO NUMBER
STATEMENT
Noma Oporation Oporand Sequence
1 s "W » £ » » o - ® u Ot e = n| In T""‘
;
T - B —] - E3 %) " C ® ® - w oo ®

*No of forme per pad may vary sishty.

Figure 1. Standard Assembler Coding Form

In the alternative, you can enter source statements through a ‘
terminal, using the column format to correspond to positions on B
your screen or terminal printer. J

8 Assembler H Version 2 Application Programming: Language Reference

FIELD BOUNDARIES

sStatement Field

Assembler language statements usually occupy one 80-column line
on the standard form (for statements occupying more than 80
columns, see "Continuation Lines"™ on page 10. Note that any
printable character punched into any column of a card, or
otherwise entered as a position in a source statement, is
reproduced in the listing printed by the assembler. All
characters are placed in the line by the assembler. Whether
they are printed or not depends on the printer. Each line of
the coding form is divided into three main fields:

. Statement field
. Continuation indicator field

. Identification~sequence field

The instructions and comments statements must be written in the
statement field. The statement field starts in the "begin®
column and ends in the "end" column. The continuation indicator
field always lies in the column after the "end”™ column. The
identification-sequence field usually lies in the field after
the continuation indicator field. Any continuation lines needed
must start in the "continue"™ column and end in the "end™ column.
The assembler assumes the following standard values for these
columns:

. The "begin"™ column is column 1.
. The "end" column is column 71.
. The "continue™ column is column 16.

These standard values can be changed by using the Input Format
Control (ICTL) assembler instruction. The ICTL instruction, by
changing the standard begin, end, and continue columns can
create a field before the begin column; this field can then
contain the identification-sequence field. However, all
references to the "begin," "end," and "continue” columns in this
manual refer to the standard values described above.

continuation Indicator Field

The continuation indicator field occupies the column after the
end column. Therefore, the standard position for this field is
column 72. A nonblank character in this column indicates that
the current statement is continued on the next line. This
column must be blank if a statement is completed on the same
line; otherwise, the assembler will treat the statement that
follows on the next line as a continuation line of the current
statement.

Identification-Sequence Field

The identification—-sequence field can contain identification
characters or sequence numbers or both. If the ISEQ instruction
has been specified to check this field, the assembler will
verify whether or not the source statements are in the correct
sequence.

The columns checked by the ISEQ function are not restricted to
columns 73 through 80, or by the boundaries determined by any
ICTL instruction. The columns specified in the ISEQ instruction
can be anywhere on the input statements; they can also coincide
with columns that are occupied by the instruction field.

Chapter 2. Coding and Structure 9

CONTINUATION LINES

To fontinue a statement on another line, the following rules
apply:

1. Enter a nonblank character in the continuation indicator
field (column 72). This nonblank character must not be part
of the statement coding. When more than one continuation
line is needed, a nonblank character must be entered in
column 72 of each line that is to be continued.

2. Continue the statement on the next line, starting in the
continue column (column 16). Columns to the left of the
continue column must be blank. Comments may be continued
after column 16.

Note that, if an operand is continued after column 16, it is
taken to be a comment. Also, if the continuation indicator
field is filled in on one line and yvou try to start a totally
new statement after column 16 on the next line, this statement
will be taken as a comment belonging to the previous statement.
Unless it is one of the statement types listed below, nine

continuation lines are allowed for a single assembler language
statement.

ALTERNATIVE STATEMENT FORMAT: The alternative statement format,
which allows as many continuation lines as are needed, can be
used for the following instructions:

. Prototype statement of a macro definition

. Macro instruction statement

. AGO conditional assembly statement

. AIF conditional assembly statement

. GBLA, GBLB, and GBLC conditional assembly statements

. LCLA, LCLB, and LCLC conditional assembly statements

. SETA, SETB, and SETC conditional assembly statements
Examples of the alternative statement format for each of these

instructions are given with the description of the individual
instruction.

COMMENTS STATEMENT FORMAT

Comments statements are not assembled as part of the object
module, but are only printed in the assembly listing. As many
comments statements as needed can be written, subject to the
following rules:

. Comments statements require an asterisk in the begin column.

Note: Internal macro definition comments statements require
a period in the begin column, followed by an asterisk.

. Any characters of the IBM System/370 character set,
including blanks and special characters, can be used (see
"Character Set™ on page 13).

. Comments statements must lie in the statement field and not
run over into the continuation indicator field; otherwise,
the statement following the comments statement will be
considered as a continuation line of that comments
statement.

. Comments statements must not appear between an instruction
statement and its continuation lines.

10 Assembler H Version 2 Application Programming: Language Reference

O

C

INSTRUCTION STATEMENT FORMAT

Fixed Format

Free Format

Instruction statements must consist of one to four entries in
the statement field. They are:

1. A name entry

2. An operation entry
3. An operand entry
4. A remarks entry

These entries must be separated by one or more blanks, and must
be written in the order stated.

The standard coding form (Figure 1 on page 8) is divided into
fields that provide fixed positions for the first three entries,
as follows:

. An 8-character name field starting in column 1

. A 5-character operation field starting in column 10

. An operand field that begins in column 16.

Note: With this fixed format, one blank separates each field.

It is not necessary to code the name, operation, and operand
antries according to the fixed fields on the standard coding
form. Instead, these entries can be written in any position,
subject to the formatting specifications belouw.

Formatting Specifications

Whether using fixed or free format, the following general rules
apply to the coding of an instruction statement:

1. The entries must be written in the following order: name,
operation, operand, and remarks.

2. The entries must be contained in the begin column (1)
through the end column (71) of the first line and, if
needed, in the continue column (16) through the end column
(71) of any continuation lines.

3. The entries must be separated from each other by one or more
blanks.

4. If used, a name entry must start in the begin column.

5. The name and operation entries, each followed by at least
one blank, must be contained in the first line of an
instruction statement.

6. The operation entry must begin at least one column to the
right of the begin column.

A description of the name, operation, operand, and remarks
entries follows:

NAME ENTRY: The name entry is a symbol created by vou to
identify an instruction statement. A name entry is usually
optional. It must be a valid symbol at assembly time (after
substitution for variable symbols, if specified); for an
exception, see "TITLE—Identify Assembly Output™ on page 140.

Chapter 2. Coding and Structure 11

The symbol must consist of 63 characters or less, and be entered
with the first character appearing in the begin column. The
first character must be alphabetic. If the begin column is
blank, the assembler program assumes no name has been entered.
No blanks may appear in the symbol.

O

OPERATION ENTRY: The operation entry is the symbolic opaeration
code specifying the machine, assembler, or macro instruction
operation desired. The following apply to the operation entry:

. An operation entry is mandatory.

. For machine and assembler instructions, it must be a valid
symbol at assembly time (after substitution for variable
symbols, if specified). The standard symbolic operation
codes are five characters or less (see the appropriate
principles of operation manual; or, for assembler
operations, see Appendix B, "Assembler Instructions and
Statements™).

The standard set of codes can be changed by OPSYN
;g§tructions (see "OPSYN—Equate Operation Code" on page

. For macro instructions, it can be any valid symbol that is
not identical to any machine or assembler op-code.

OPERAND ENTRIES: Operand entries contain one or more operands
that identify and describe data to be acted upon by the
instruction, by indicating such information as storage
locations, masks, storage area lengths, or types of data. The
following rules apply to operands:

. One or more operands are usually required, depending on the
instruction.

¢ (Operands must be separated by commas. No blanks are allowed
between the operands and the commas that separate them.

. Operands must not contain embedded blanks, because a blank
normally indicates the end of the operand entry. Houwever,
blanks are allowed if they are included in character strings
enclosed in single quotation marks, or in logical
expressions.

REMARKS ENTRIES: Remarks are used to describe the current
instruction.

. Remarks are optional.

U They can contain any of the 256 valid characters (or punch
combinations) of the appropriate character set, including
blanks and special characters.

. They can follow any operand entry.

Pov——

12 ‘Assembler H Version 2 Application Programming: Language Reference

CHARACTER SET

. In statements in which an optional operand entry is omitted
but a remarks entry is desired, the absence of the operand
entry must be indicated by a comma preceded and followed by
one or more blanks, as illustrated below:

Name cperation Operand
END REMARKS

STATEMENT EXAMPLE: The following example illustrates the use of
name, operation, operand, and remarks entries. A compare
instruction has been named by the symbol COMP; the operation
entry (CR) is the mnemonic operation code for a
register-to-register compare operation; and the two operands
(5,6) designate the two general registers whose contents are to
be compared. The remarks entry reminds readers that "new sum"
is being compared to "old" with this instruction.

Name Operation Operand
cCOoMP CR 5,6 NEW SUM TO OLD

Terms, expressions, and character strings used to build source
statements are written with the following characters:

Alphabetic Characters A through Z, and $, #, 3
Digits 0 through 9

special Characters + -, = . % () "'/ & blank
Underscore Character

Examples showing the use of the above characters are given in
Figure 2 on page 14

The term "alphameric characters™ includes both alphabetic
characters and digits, but not special characters or the
underscore. Normally, vou would use strings of alphameric
characters to represent data (see "Terms" on page 21), and
special characters as:

. Arithmetic operators in expressions
. Data or field delimiters
. Indicators to the assembler for specific handling

These characters are represented by the card-punch combinations
and internal bit configurations listed in the IBM System/370
Reference Summary. In addition, any of the 256 punch
combinations mavy be designated anywhere that characters can
appear between paired single quotation marks, in comments, and
in macro instruction operands.

Chapter 2. Coding and Structure 13

Characters Usage Example Constituting m
Alphameric In symbols LABEL NINE#01 Terms w
Digits As decimal 01 9 Terms
self-defining
terms
d .
vt In ordinary symbols SAVE_TOTAL Terms
Special
Characters As Operators
+ Addition NINE+FIVE
- Subtraction NINE-5
Expressions
* Multiplication 9*FIVE
/ Division TEN/3
+ or - (Unary) +NINE ~FIVE Terms
As Delimiters
Blanks Between fields LABEL AR 3,4 Statement
Comma Between operands OPND1,0OPND2 Operand field
Apostrophes Enclosing
character strings C'STRING' String
Parentheses Enclosing subfields MOVE MVC TO(80),FROM Statement
or subexpressions (A+Bx(C-D)) Expression C
.
As indicators
for
Ampersand Variable symbol &VAR Term
Period Sequence symbol .SEQ {labet)
Comments statement « % THIS IS A COMMENT Statement
in Macro definition
Concatenation &VAR.A Term
Bit-length DC CL.7'AB' Operand
specification
Decimal point DC F'1.7E4" Operand
Asterisk Location counter w+72 Expression
- reference
Comments statement * THIS IS A COMMENT Statement
Equal sign Literal reference L 6,=F'2"' Statement
Keyword &KEY=D Keyword
Parameter

Figure 2. Examples Using Character Set

14 Assembler H Version 2 Application Programming:

Language Reference

C

ASSEMBLER LANGUAGE STRUCTURE

This section describes the structure of the assembler language,
that is, the various statements that are allowed in the
language, and the elements that make up those statements.

A source statement is composed of:
. A name entry (usually optional) that is a symbol

L An operation entry (required) that is a symbolic operation
code representing a machine, assembler, or macro instruction

. An operand entry (usually required) that is composed of one
or more operands

. A remarks entry (optional)
Notes:

1. The figures in this section show the overall structure of
the statements that represent the assembler language
instructions, and are not specifications for these
instructions. The individual instructions, their purposes,
and their specifications are described in other sections of
this manual. Model statements, used to generate assembler
language statements, are described in "Chapter 7. How to
Prepare Macro Definitions.™

2. The remarks entry is not processed by the assembler, but
only copied into the listings of the program. Therefore, it
is not shown except in the overview of the assembler
Janguage structure in Figure 3 on page 16.

The machine instruction statements are described in Figure ¢ on
page 17 , discussed in "Chapter 4. Machine Instruction
Statements,"™ and summarized in the appropriate principles of
operation manual.

Assembler instruction statements are described in Figure 5 on
page 18 , discussed in "Chapter 3. Addressing, Program
Sectioning, and Linking™ and "Chapter 5. Assembler Instruction
Statements,” and are summarized in Appendix B, "Assembler
Instructions and Statements.”

Conditional assembly instruction statements and the macro
processing statements (MACRO, MEND, MEXIT, MNOTE, and AREAD) are
described in Figure 6 on page 19. The conditional assembly
instructions are discussed in "Chapter 9. How to Write
Conditional Assembly Instructions,” and macro processing
instructions, in "Chapter 7. How to Prepare Macro Definitions."
Both tvpes are summarized in Appendix B, "Assembler Instructions
and Statements.”

Chapter 2. Coding and Structure 15

EITHER

Source Module
made up of
Source Statements

[Source Statements are I

—

INSTRUCTION
STATEMENTS

Which are of three
main types

l

OR

[

MACHINE
Instructions

l

or ASSEMBLER
Instructions

or

MACRO
Instructions

]

Which are composed of

one to four entries

COMMENTS
STATEMENTS

NAME

OPERATION

I

OPERAND

Which for machine instruc-

tions, is composed of

|

EXPRESSIONS

I Which are composed of]

REMARKS

l Which are composed of]

TERMS or

Combination
of terms

CHARACTER
STRINGS

]

|Which are composed of characters]

l

IBM SYSTEM/370
CHARACTER SET

Figure 3. Assembler Language Structure

16

Assembler H Version 2 Application Programming:

Language Reference

»

NAME
Entry

OPERATION
Entry

OPERAND
Entry

A
Literal
=H'g’

A A symbolic One or more
Symbol Operation operands
(or blank) Code composed of
Exp{Exp,Exp)
Expression or Exp {Exp) or or or
Exp (,Exp)
Arithmetic Exp = Expressi
Term or combination P pression
of terms
‘Which can be|
any of the
following
Symbol
A Location L‘:—}ngth A
S | Defin:
ymbo go;mter Attribute TS'elf Defining
ererence Reference erm
e.g. HERE €.8. * e.0. L'HERE
Which can be
any of the
following
Decimal Hexadecimal Binary Character
e.g. 9 e.g. X 'D9’ e.g. B 1001 e.g. C "JAN’

Figure 4. Machine Instructions

Chapter 2. Coding and Structure

17

NAME
Entry

OPERATION
Entry

OPERAND
Entry

A A symbolic One or more
Symbol Operation operands
{or blank) Code
For Data Definition For all other
(DC and DS ordinary Assembler
Instructions) Instructions
1
Operands can be Operands can be
composed of one composed of
to four subfields
E i i
o . Constant xpression Chi.aracter Synjbollc
Duplication Type Modifiers (Nominal or String Option
factor e.gitd eg. &g
Value) "TO BE NOGEN
PUNCHED’
One or more
constants of
the format
e.g. 10,F L3 :200; below
‘Decimal (Expression) ‘Character
number’ or or string’
eg. F'2 e.g. A(ADDR) eg.C'Ais B’

1Discussed more fully where individual instructions are described

Figure 5. Ordinary Assembler Instruction Statements

18 Assembler H Version 2 Application Programming:

Language Reference

(&A EQ1).SEQ

Exp=Expression

NAME OPERATION OPERAND
Entry Entry Entry
:l:lmustbe n e
Sequence R .
Variable A symbolic Zero or more
Symbol X
SEQ or Symbol Operation operands
° & VAR Code composed of
(or blank)
Expression Exp,’msg’
: exp)seq sym
Sequence or ;/an:)blle or o or MNOTE or (exp)seq sy
Symbol ymbo (Expression) 3/ERROR’
Which can be any
combination of
variable symbols
and other characters
that constitute an
Arithmetic Logical Character
Expression or Expression or Expression
&A +1 &B1 OR &B2 "JAN&C’
Figure 6. Conditional Assembly Instructions

Chapter 2. Coding and Structure

19

Macro instruction statements are described in Figure 7 and
discussed in "Part 2. Macro Language."

Symbolic Symbolic Zero or more
Parameter Operation Symbolic
Code Parameters
Prototype
Statement
can be can be
Macro
Instruction
Statement NAME OPERATION OPERAND
Entry Entry Entry

Zero or more

l can be l Operands

which can be

I 1 I

Ordinary . Sublists with
Symbol or Sequence or Variable Operands with | ¢ one or more
(or blank) Symbol Symbol one value entries
I
Each entry
can have a
value
J

Values
can be
|
I |

Character ‘Character
String or String’
{excluding {including
blanks) blanks)

Figure 7. Macro Instructions

20 Assembler H Version 2 Application Programming: Language Reference

C

TERMS AND EXPRESSIONS

TERMS

symbols

A term is the smallest element of the assembler language that

represents a distinct and separate value. It can, therefore, be

used alone or in combination with other terms to form
expressions. Terms are classified as absolute or relocatable,.
depending on the effect of program relocation upon them.
Program relocation is the loading of the object program into
storage locations other than those originally assigned by the
assembler. Terms have absolute or relocatable values that are
assigned by the assembler or that are inherent in the terms
themselves.

A term is absolute if its value does not change upon program
relocation, and is relocatable if its value changes upon
relocation. Figure 8 summarizes the various types of terms.
The following text discusses each term and the rules for its
use.

Terms Term Can Be Value Is
Absolute Relocatable Assigned by Inherent in

Assembler Term

Symbols X X X

Location

Counter X X

Reference

Symbo

Length X X

Attribute

Other Data X X

Attributes

Self-Defining X X

Terms

Figure 8. Summary of Terms

You can use a symbol to represent storage locations or arbitrary
values. If you write a symbol in the name field of an
instruction, vou can then specify this symbol in the operands of
other instructions and thus refer to the former instructjon
symbolically. This symbol represents a relocatable address.

You can also assign an absolute value to a symbol by ceding it
in the name field of an EQU instruction with an operand whose

Chapter 2. Coding and Structure 21

value is absolute. This allows vou to use this symbol in
instruction operands to reprresent registers, displacements in
explicit addresses, immediate data, lengths, and implicit
addresses with absolute values. For details of these program
elements, see "Operand Entries"™ on page 72.

The advantages of symbolic over numeric representation are:

1. Symbols are easier to remember and use than numeric values,
thus reducing programming errors and increasing programming
efficiency.

2. You can use meaningful symbols to describe the program
elements they represent; for example, INPUT can name a field
that is to contain input data, or INDEX can name a register
to be used for indexing.

3. You can change the value of one syvmbol (through an EQU
instruction) more easily than you can change several numeric
values in many instructions.

4. Symbols are entered into a cross-reference table that the
assembler prints in the program listing. This table helps
vou to find a symbol in a program listing, because it lists
(a) the number of the statement in which the symbol is
defined, that is, used as the name entry, and (b) the
numbers of all the statements in which the symbol is used in
the operands.

SYMBOL TABLE: The assembler maintains an internal table called a
symbol table. When the assembler processes your source
statements for the first time, it assigns an absolute or
relocatable value to every symbol that appears in the name field
of an instruction. The assembler enters this value, which
normally reflects the setting of the location counter, into the
symbol table; it also enters the attributes associated with the
data represented by the symbol. The values of the symbol and
its attributes are available later when the assembler finds this
symbol or attribute reference used as a term in an operand or
expression. See "Symbol Length Attribute Reference"™ and
"Salf-Defining Terms"™ in this chapter for more details. The
three types of symbols recognized by the assembler are:

. Ordinary symbols

L Variable symbols

L Sequence symbols

Ordinary symbols can be used in the name and operand fields of

machine and assembler instruction statements. They must be

coded to conform to these rules:

1. The symbol must not consist of more than 63 alphameric
characters. The first character must be an alphabetic
character (A through Z, $§, &%, or @). The other characters
may be alphabetic characters, digits, or a combination of
the two.

2. No special characters may be included in an ordinary symbol.

3. No blanks are allowed in an ordinary symbol.

4. An underscore character is allowed, with the restrictions
listed below.

22 Assembler H Version 2 Application Programming: Language Reference

®

An underscore character must not appear in an external symbol,
or in the name field of an OPSYN instruction. The following
lists the symbol fields in which the underscore character must
not appear:

. In the name field of a CSECT instruction

¢ In the name field of a DXD instruction

. In the name field of a COM instruction

. In the name field of an OPSYN instruction

. In the operand field of an EXTRN instruction

. In the operand field of a WXTRN instruction

. In the operand field of an ENTRY instruction

J As the nominal value in a V-type or Q-type address constant

In the following sections, the term symbol refers to the
ordinary symbol.

The following are valid symbols:

ORDSYM#435A HERE $OPEN
K4 #0123 X
B49467LITTLENAIL a3l SAVE_TOTAL

Variable symbols must begin with an & followed by an alphabetic
character and, optionally, up to 61 alphameric characters.
Variable symbols can only be used in macro processing and
conditional assembly instructions. They allow different values
to be assigned to one symbol. A complete discussion of variable
symbols appears in "Chapter 7. How to Prepare Macro
Definitions."

The following are valid symbols:

&VARYINGSYMABC &AME
&F36469446 &A

Sequence symbols consist of a period (.) followed by an
alphabetic character, and up to 61 additional alphameric
characters. Sequence symbols can be used only in macro
processing and conditional assembly instructions. They are used
to indicate the position of statements within the source program
or macro definition. Through their use, you can vary the
sequence in which statements are processed by the assembler
program. (See the complete discussion in "Chapter 9. How to
Write Conditional Assembly Instructions.™)

The following are valid symbols:

.BLABELO¢ .#359
.BRANCHTOMEFIRST A

SYMBOL DEFINITION: An ordinary symbol is considered defined when
it appears as:

. The name entry in a machine or assembler instruction of the
assembler language

. One of the operands of an EXTRN or WXTRN instruction
Note: Ordinary symbols that appear in instructions generated

from model statements at preassembly time are also considered
defined.

Chapter 2. Coding and Structure 23

In Figure 9, the assembler assigns a value to the ordinary
symbol in the name fields as follows:

1. According to the address of the leftmost byte of the storage WKJV
field that contains one of the following:

a. (See (1) in Figure 9.) Any machine or assembler
instruction (except the EQU or OPSYN instruction)

b. (See (2) in Figure 9.) A storage area defined by the DS
instruction

c. (See (3) in Figure 9.) Any constant defined by the DC
instruction

d. A channel command word defined by the CCW, CCWO0, or CCW1
instruction

The address value thus assigned is relocatable, because the
object code assembled from these items is relocatable; the
relocatability of addresses is described "Addresses™ on page

74.
Assembler Language Address Value Object Code
Statements of Symbol in Hexadecimal
Address of
AREA

Relocatable

s emmarron,
LOAD L 3,AREAO LOAD-—4r[58]3|0IxxxxI

AREA DS F o AREA— [xx x x XXXX]

r200 pc £'200' @) r200-/4o0 0 0 oocs]

A
FULL EQU AREA FULL/
TWOO EQU F200}° TWOO
Absolute
R3 EQU 3 o R3=3
Address
of FULL
e —
L R3,FULL 158 1310 Ixxxx
A R3,TW00 [GAT3T0 [xxxx
[—s——
Address of
TWO00

Figure 9. Transition from Assembler Language Statement to Object
Code

26 Assembler H Version 2 Application Programming: Language Reference

self-Defining Terms

2. According to the value of the first or only expression
specified in the operand of an EQU instruction. This
expression can have a relocatable (see (4) in Figure 9) or
absolute (see (5) in Figure 9) value, which is then assigned
to the ordinary symbol.

The value of an ordinary symbol must lie in the range -23!
through +231-1.

RESTRICTIONS ON SYMBOLS: A symbol must be defined only once in a
source module with one or more control sections, with the
following exception: The symbol in the name fTield of a LOCTR
instruction can be the same as the name of a previous START,
CSECT, DSECT, COM, or LOCTR instruction. It identifies the
resumption of the location counter specified by the name field.

Note: The ordinary symbol that appears in the name field of an
OPSYN or a TITLE instruction does not constitute a definition of
that symbol. It can, therefore, be used in the name field of
any other statement in a source module.

PREVIOUSLY DEFINED SYMBOLS: If ordinary symbols appear in
operand expressions of ORG and CNOP instructions, in modifier
expressions of DC, DS, and DXD statements, in the first operand
of EQU statement, or in Q-type constants, they do not need to be
previously defined.

Allowing forward reference in the above statement types creates
two new kinds of errors that you should guard against.

. Circular definition of symbols, such as:

X EQU Y
Y EQU X
. Circular location-counter dependency, as in this example:
A DS (B-A)C
B LR 1,2

Statement A cannot be resolved because the value of the
duplication factor is dependent on the location of B, which is,
in turn, dependent upon the length of A.

Literals may contain symbolic expressions in modifiers, but any
ordinary symbols used must have been previously defined.

A self-defining term allows you to specify a value explicitly.
With self-defining terms, you can specify decimal, binary,
hexadecimal, or character data. These terms have absolute
values and can be used as absolute terms in expressions to
represent bit configurations, absolute addresses, displacements,
length or other modifiers, or duplication factors.

USING SELF-DEFINING TERHMS: Self-defining terms represent machine
language binaryvy values and are absolute terms; their values do
not change upon program relocation. Some examples of
self-defining terms and the binary values they represent are
given below:

Chapter 2. Coding and Structure 25

self-Defining Decimal Binary

Term Value Value @
15 15 1111 ’
241 261 11110001

B'1111" 15 1111

B'11110001" 2641 ' 11110001

B*100000001" 257 100000001

X'FY 15 1111

X'F1' 261 11110001

X'101" 257 100000001

cry 261 11110001

C'A’ 193 11000001

C'AB’ 49,602 1100000111000010

The assembler carries the values represented by self-defining
terms to 4 bytes or 32 bits; the high-order bit is the sign bit.
(A '1'" in the sign bit indicates a negative value; a '0'
indicates a positive value.?

The use of a self-defining term is distinct from the use of data
constants or literals. When a self-defining term is used in a
machine instruction statement, its value is assembled into the -
instruction. When a data constant is referred to or a literal A
is specified in the operand of an instruction, its address is

assembled into the instruction. Self-defining terms are always
right-justified; truncation or padding with zeros, if necessary,

occurs on the left.

bDecimal Self-Dafining Term: A decimal self-defining term is
simply an unsigned decimal number written as a sequence of
decimal digits. High-order zeros may be used (for example,
007). Limitations on the value of the term depend on its use.
For example, a decimal term that designhates a general register
should have a value between 0 and 15; one that represents an
address should not exceed the size of storage. In any case, a
decimal term may not consist of more than 10 digits, or exceed 2
147 483 647 (231-1). A decimal self-defining term is assembled
as its binary equivalent. Some examples of decimal
self-defining terms are: 8, 147, 4092, and 00021.

Hexadecimal Self-Defining Term: A hexadecimal self-defining term
consists of 1 to 8 hexadecimal digits enclosed in single

quotation marks and preceded by the letter X; for example,
X'C49°'. :

Each hexadecimal digit is assembled as its 4-bit binary
equivalent. Thus, a hexadecimal term used to represent an 8-bit
mask would consist of 2 hexadecimal digits. The maximum value
of a hexadecimal term is X'FFFFFFFF'; this allows a range of
values from -2 147 483 648 through 2 147 483 647.

The hexadecimal digits and their bit patterns are as follows:

- 0000 & - 0100 8 - 1000

] C - 1100
1 - 0001 5 - 0101 9 - 1001 D - 1101
2 - 0010 6 - 0110 A - 1010 E - 1110
3 - 0011 7 - 0111 B - 1011 F - 1111

26 Assembler H Version 2 Application Programming: Language Reference

Note: UWhen useJ as an absolute term in an expression, a
hexadecimal self-defining term has a negative value if the
high-order bit is 1.

Binary Self-Defining Term: A binary self-defining term is
written as an unsigned sequence of ls and 0s enclosed in single
quotation marks and preceded by the letter B; for example,
B'10001101'. This term would appear in storage as shouwn,
occupying 1 byte. A binary term may have up to 32 bits
represented. This allows a range of values from -2 147 483 648
through 2 147 483 647.

Note: When used as an absolute term in an expression, a binary
Telf*defining term has a negative value if the high-order bit is

Binary representation is used primarily in designating bit
patterns of masks or in logical operations.

The following illustrates a binary term used as a mask in a Test
Under Mask (TM) instruction. The contents of GAMMA are to be
tested, bit by bit, against the pattern of bits represented by
the binary term.

Name operation Operand
ALPHA ™ GAMMA,B'10101101"

Character self-Defining Term: A character self-defining term
consists of 1 to 4 characters enclosed in single quotation
marks, and must be preceded by the letter C. All letters,
decimal digits, and special characters may be used in a
character term. 1In addition, any of the remainder of the 256
punch combinations may be designated in & character
self-defining term. Examples of character self-defining terms
are:

cis? C' ' (blank)
CTABC' c'i3y?

Because of the use of single quotation marks in the assembler
language and ampersands in the macro language as syntactic
characters, the following rule must be observed when using these
characters in a character term.

For each single quotation mark or ampersand desired in a
character self-defining term, two single quotation marks or
ampersands must be written. For example, the character value
A'# would be written as "A"'#', while a single quotation mark
followed by a blank and another single quotation mark would be
written as ''"' ''',

Each character in the character sequence is assembled as its
8-bit code equivalent. The two single quotation marks or
ampersands that must be used to represent a single quotation
mark or ampersand within the character sequence are assembled as
a single quotation mark or ampersand.

Location Counter Reference

The assembler runs a location counter to assign storage
addresses to your program statements. It is the assembler's
equivalent of the instruction counter in the computer. You can
refar to the current value of the location counter at any place
in a source module by specifying-an asterisk as a term in an
operand.

Chapter 2. Coding and Structure 27

As the instructions and constants of a source module are being
assembled, the location counter has a value that indicates a
location in storage. The assembler increments the location
counter according to the following:

1. After an instruction or constant has been assembled, the

location counter indicates the next available location.

2. Before assembling the current instruction or constant, the
assembler checks the boundary alignment required for it and
adijusts the location counter, if necessary, to indicate the
proper boundary.

3. MWhile the instruction or constant is being assembled, the
location counter value does not change. It indicates the
location of the current data after boundary alignment and is
the value assigned to the symbol, if present, in the name
field of the statement.

4. After assembling the instruction or constant, the assembler
increments the location counter by the length of the
assembled data to indicate the next available location.

These rules are illustrated below:

Location Source

in Hexadecimal Statements
000004 DONE DC CL3I'ABC'
000007 BEFORE EQU %

000008 DURING DC F'200"
00000C AFTER EQU *

000010 NEXT DS D

You can specify multiple location counters for each control
section in a source module; for more details about the location
counter setting in control sections, see "Location Counter
Setting”™ on page 47.

The assembler carries an internal location counter value as a
4-byte (32-bit) value, but it only uses the low-order 3 bytes,
which are printed in the program listings. However, if vou
specify addresses greater than 224-1, you cause overflou into
the high-order byte, and the assembler issues the error message,
"LOCATION COUNTER OVERFLOW'.

You can control the setting of the location counter in a
particular control section by using the START or ORG
instruction, described in "Chapter 3. Addressing, Program
Sactioning, and Linking"and"Chapter 5. Assembler Instruction
Statements,™ respectively. The counter affected by either of
these assembler instructions is the counter for the control
section in which they appear.

You can refer to the current value of the location counter at
any place in a program by using an asterisk as a term in an
operand. The asterisk can be specified as a relocatable term
according to the following rules:
1. The asterisk can be specified only in the operands of:

a. Machine instructions

b. DC and DS instructions

c. EQU, ORG, and USING instructions

2. It can also be specified in literal constants. Sece
"Literals™ on page 32. For example:

THERE L 3,=A(%)

The value of the location counter reference (%) is the current
value of the location counter of the control section in which

28 Assembler H Version 2 Application Programming: Language Reference

®

O

the asterisk (%) is specified as a term. The asterisk has the
same value as the address of the first bvte of the instruction
in which it appears. For example:

HERE B %+8

where the address value of ¥ is the address of HERE.

For the value of the asterisk in address constants with
gg;lication factors, see "Address Constants—A and Y" on page

symbol Length Attribute Reference

The length attribute of a symbol may be used as a terth.
Reference to the attribute is made by coding L' followed by the
symbol, as in:

L'BETA

The length attribute of BETA will be substituted for the term.
When you specify a symbol length attribute reference, you obtain
the length of the instruction or data referred to by a symbol.
You can use this reference as a term in instruction operands to:

1. Specify unknoun storage area lengths.

2. Cause the assembler to compute length specifications for
you.

3. Build expressions to be evaluated by the assembler.

The symbol length attribute reference must be specified
according to the following rules:

1. The format must be L' immediately followed by a valid symbol
or the location counter reference (%).

2. The symbol must be defined in the same source module in
which the symbol length attribute reference is specified.

3. The symbol length attribute reference can be used in the
operand of any instruction that requires an absolute term.
However, it cannot be used in the form L'*% in any
insgrgction or expression that requires a previously defined
symbol.

The value of the length attribute is normally the length in
bytes of the storage area required by an instruction, constant,
or field represented by a symbol. The assembler stores the
value of the length attribute in the symbol table along with the
address value assigned to the symbol.

When the assembler encounters a symbol length attribute
reference, it substitutes the value of the attribute from the
symbol table entry for the symbol specified.

The assembler assigns the length attribute values to symbols in
the name field of instructions as follows:

. For machine instructions (see (1) in Figure 10 on page 30),
it assigns either 2, &, or 6, depending on the format of the
instruction.

L For the DC and DS instructions (see (2) in Figure 10), it
assigns either the implicit or explicitly specified length.
¥hetlength attribute is not affected by a duplication

actor.

. For the EQU instruction, it assigns the length attribute
value of the leftmost or only term (see (3) in Figure 10) of
the first expression in the first operand, unless a specific
length attribute is supplied in a second operand.

Chapter 2. Coding and Structure 29

Note the length attribute values of the following terms in an

EQU instruction: ,
] Self-defining terms (see (4) in Figure 10) <::>
. Location counter reference (see (5) in Figure 10)

. L'*% (see (6) in Figure 10)

The length attribute of the location counter reference (L'¥%—see

(7) in Figure 10) is equal to the length attribute of the

instruction in which the L'% appears.

Figure 10 illustrates these rules.

Value of Symbol
Source Module Length Attribute

(at assembly time)
MACHA MVC TO, FROM L'MACHA 6
MACHB L 3,ADCON L'MACHB o 4
MACHC LR 3,4 L'MACHC 2
TO DS CL80 L'TO 80
FROM DS CL240 L'FROM 240
ADCON DC A (OTHER) L'ADCON 4
CHAR DC C'YUKON' L'CHAR 5
DUPL DC 3F'200" L'DUPL 4

Q\.
e

RELOC1 EQU L'RELOC1 80
RELOC2 EQU L'RELOC2 80
ABSOL1 EQU L'ABSOL1 240
ABSOL?2 EQU L'ABSOL2 240
SDT1 EQU L'SDT1 1
SDT2 EQU L'SDT2 o 1
SDT3 EQU L'sDT3 1
ASTERISK EQU L'ASTERISK al
LOCTREF EQU L'LOCTREF o 1
LENGTH1 DC A (L'*) ' L'« 4

L'LENGTH1 4
LENGTH2 MVC TO(L'x) ,FROM L'* 6
LENGTH3 MVC TO(L'TO-20) ,FROM L'TO 80

Figure 10. Assignment of Length Attribute Values to Symbols in
Name Fields

The following example illustrates use of the L'symbol in moving
a character-constant into either the high-order or low-order end
of a storage field. For ease in following the example, the
length attributes of Al and B2 are mentioned. However, keep in

30 Assembler H Version 2 Application Programming: Language Reference

C

mind that the L'symbol term makes coding such as this possible
in situations where lengths are unknoun.

Name Operation Operand

Al DS CL8

B2 DC CL2'AB'

HIORD MVC Al(L'B2),B2

LOORD MVC Al+L'Al1-L'B2(L"'B2),B2

Al names a storage field 8 bytes in length and is assigned a
length attribute of 8. B2 names a character constant 2 bytes in
length and is assigned a length attribute of 2. The statement
named HIORD moves the contents of B2 into the leftmost 2 bytes
of Al. The term L'B2 in parentheses provides the length
specification required by the instruction.

The statement named LOORD moves the contents of B2 into the
rightmost 2 bytes of Al. The combination of terms Al+L'Al-L'B2
results in the addition of the length of Al to thes beginning
address of Al, and the subtraction of the length of B2 from this
value. The result is the address of the seventh byte in field
Al. The constant represented by B2 is moved into Al starting at
this aﬁ?ress. L'B2 in parentheses provides length specification
as in ORD.

Note: The length attribute of the location counter reference
(L") is equal to the length attribute of the instruction in
which the L'¥ appears.

Other Attribute References

There are other attributes that describe the characteristics and
structure of the data you define in a program; for example, the
kind of constant you specify or the number of characters you
nead to represent a value. These other attributes are the type
(T"), length (L'), scaling (5'), integer (I'), count (K'),
number (N'), and defined (D') attributes.

Note: You can refer to these attributes only in conditional
assembly instructions and expressions; for full details, see
"Data Attributes”™ on page 199.

Terms in Parentheses

Terms in parentheses are reduced to a single value; thus, the
terms in parentheses, in effect, become a single term.

Arithmetically combined terms; enclosed in parentheses, may be
used in combination with terms outside the parentheses, as
follows:

14+BETA-(GAMMA-LAMBDA)

When the assembler program encounters terms in parentheses in
combination with other terms, it first reduces the combination
of terms inside the parentheses to a single value which may be
absolute or relocatable, depending on the combination of terms.
This value is then used in reducing the rest of the combination
to another single value.

Terms in parentheses may be included within a set of terms in
parentheses:

A+B-(C+D-(E+F)+10)
The innermost set of terms in parentheses is evaluated first.
Six levels of parentheses are allowed; a level of parentheses is

a left parenthesis and its corresponding right parenthesis.
Parentheses which occur as part of an operand format do not

Chapter 2. Coding and Structure 31

count in this limit. An arithmetic combination of terms is
evaluated as described in the next section.

You can use literals as operands in order to introduce data into
your program. However, you cannot use a literal as a term in an
expression. The literal represents data rather than a reference
to data. This is convenient, because

. The data you enter as numbers for computation, addresses, or
messages to be printed is visible in the instruction in
which the literal appears.

. You avoid defining constants elsewhere in your source module
and then using their symbolic names in machine instruction
operands.

The assembler assembles the data specified in a literal into a
"literal pool"™ (described below). It then assembles the address
of this literal data in the pool into the object code of the
instruction that contains the literal specification. Thus, the
assembler saves you a programming step by storing your literal
data for you. The assembler also organizes literal pools
efficiently, so that the literal data is aligned on the proper
boundary alignment and occupies the minimum amount of space.

Literals, Cconstants, and Self-Defining Terms

Literals, constants, and self-defining terms differ in three
important ways:

1. UWhere you can specify them in machine instructions, that is,
whether they represent data or an address of data

2. Whether they have relocatable or absolute values

3. What is assembled into the object code of the machine
instruction in which they appear

Figure 11 on page 33 illustrates the first two points.
. A literal represents data (see (1) in Figure 1ll).

. A constant is represented by its relocatable address (see
(2) in Figure 11). Note that a symbol with an absolute
value does not represent the address of a constant, but
represents immediate data (see (3) in Figure 11) or an
absolute address (see (4) in Figure 11).

. A self-defining term represents data and has an absolute
value (see (5) in Figure 11).

32 Assembler H Version 2 Application Programming: Language Reference

O

TN

-

C

Compare:

A literal with a relocatable address

F'33"'
33

C F'33"'

} same effect

ool

L 3'
L 3’
D

F33

A Literal with a self-defining term
and a symbol with an absolute value

MVC FLAG,=x'uo'l
MVI FLAG,X"'08 ‘' same effect
MVI FLAG,ZEROE)

FLAG DS X
ZERO EQU X'00'

A symbol having an absolute address value

with a self-defining term

LA 4,LOCORE
LA 4, j

LOCORE EQU 1000

}same effect

Figure 11. Differences between Literals, Constants, and
Self-Defining Terms

Figure 12 on page 34 illustrates the third point.

. The address of the literal, rather than the literal data
itself, is assembled into the object code (see (1) in
Figure 12). i

The address of a constant is assembled into the object code
(see (2) in Figure 12). Note that when a symbol with an
absolute value (see (3) in Figure 12) represents immediate
data, it is the absolute value that is assembled into the
object code.

The absolute value of a self-defining term is assembled into
the object code (see (4) in Figure 12).

Chapter 2. Coding and Structure 33

Object Code AW
Source Statements in Hexadecimal & oV
Loc displacement
in Hex| base
LITERAL
RELCON
ABSCON
SELFDT
FLAGCON EQU X'BS8' gj\
248 |F200 DC F'200' .
24C|BYTE DS X
LTORG _
Literal
250 |[000000Cg = F'200"' |Pool

Figure 12. Differences between Literals, Constants, and
Self-Defining Terms

General Rules for Literal Usage

A literal is not a term and can be specified only as a complete
oparand in a machine instruction. In instructions with the RX
format, they must not be specified in operands in which an index
register is also specified.

Because literals provide "read-only" data, they must not be
usead: .

. In operands that represent the receiving field of an
i instruction that modifies storage

. In any shift or I/0 instruction

34 Assembler H Version 2 Application Programming: Language Reference

Literal Pool

The assembler requires a description of the type of literal
being specified as well as the literal itself. This descriptive
information assists the assembler in assembling the literal
correctly. The descriptive portion of the literal must indicate
the format of the constant. It can also specify the length of
the constant.

A literal must be coded as indicated here:
=10XL5'F3"
where the subfields are:

Duplication factor 10
Tvpe X
Modifiers L5
Nominal value 'F3°

The method of describing and specifying a constant as a literal
is nearly identical to the method of specifying it in the
operand of a DC assembler instruction. The major difference is
that the literal must start with an equal sign (=), which
indicates to the assembler that a literal follows. (Refer to
the discussion of the DC assembler instruction operand format in
"Chapter 5. Assembler Instruction Statements™ for the means of
specifying a literal.)

The instruction below shows one use of a literal.

Name Operation Operand
GAMMA L 10,=F'274"

The statement GAMMA is a load instruction using a literal as the
second operand. When assembled, the second operand of the
instruction will be the address at which the value F'274' is
stored.

In general, literals can be used wherever a storage address is
parmitted as an operand. They cannot, however, be used in any
assembler instruction that requires the use of a previously
defined symbol. Literals are considered relocatable because the
address of the literal, rather than the literal itself, will be
assembled in the statement that employs a literal. The
assembler generates the literals, collects them, and places them
in a specific area of storage, as explained under "Literal
Poal.™ A literal is not to be confused with the immediate data
in an SI instruction. Immediate data is assembled into the
instruction.

The literals processed by the assembler are collected and placed
in a special area called the literal pool. The location of the
literal, rather than the literal itself, is assembled in the
statement employing a literal. The positioning of the literal
pool can be controlled by vou, if desired. Unless otheruise
specified, the literal pool is placed at the end of the first
control section.

You can also specify that multiple literal pools be created.
However, the sequence in which literals are ordered within the
pool is controlled by the assembler. Further information on
positioning the literal pool(s) is in "LTORG—Begin Literal
Pool"™ on page 135.

Chapter 2. Coding and Structure 35

EXPRESSIONS

This section discusses the expressions used in coding operand Cﬂﬁ%
entries for source statements. You can use an expressions to iﬁy
speci fy:?

] An address

. An explicit length

. A modifier

. A duplication factor
. A complete operand

Expressions have absolute and relocatable values. Whether an
expression is absolute or relocatable depends on the value of
the terms it contains. You can use an absolute or relocatable
expression in a machine instruction or any assembler instruction
other than a conditional assembly instruction. The assembler
evaluates relocatable and absolute expressions at assembly time.

Note: There are three types of expression that you can use only
in conditional assembly instructions: arithmetic, logical, and
character expressions. They are evaluated at preassembly time.
Figure 13 on page 37 defines both absolute and relocatable
expressions.

An expression is composed of a single term or an arithmetic
combination of terms. The assembler reduces multiterm
expressions to single values. Thus, vou do not have to compute
these values yourself. The following are examples of valid
expressions:

X BETAX10 o
AREAL+X72D" BT1017 an
X+32 C'ABC'. Ny
N-25 29

FIELD+332 L'FIELD

FIELD LAMBDA+GAMMA

C(EXIT-ENTRY+1)+G0 TEN/TWO

=F'1234"
ALPHA-BETA/ (10+AREAXL'FIELD)-100

Rules for Coding Expressions
The rules for coding an absolute or relocatable expression are:

1. Both unary (operating on one value) and binary (operating on
two values) operators are allowed in expressions.

2. An expression can have one or more unary operators preceding
any term in the expression or at the beginning of the
expression.

3. An expression must not begin with a binary operator, nor can
it contain two binary operators in succession.

4. An expression must not contain two terms in succession.

5. No blanks are allowed between an operator and a term, nor
between two successive operators.

6. An expression can contain up to 19 unary and binary
operators, and up to 6 lavels of parentheses. Note that
parentheses that are part of an operand specification do not
count toward this limit.

7. A single relocatable term is not allowed in a multiply or
divide operation. Note that paired relocatable terms have
absolute values and can be multiplied and divided if they
are enclosed in parentheses.

36 Assembler H Version 2 Application Programming: Language Reference

8. A literal is not a valid term and is therefore not allowed
in an expression.

Absolute
Expression
%

7

Abs.Exp

Rel. Exp. Abs. Exp Abs. Exp Abs. Exp
- or At"rsmuw or + or _ or 1 or / or| (Abs.Exp) | or | + Abs. Exp| or|— Abs. Exp
Rel. Exp. ,yerm Abs.Exp Abs. Exp Abs. Exp Abs.Exp
Pairing of
Relocatable 2
Values Ordinary Self- Symbol
i ';‘ol:glte— or| Defining | or| Length
Value Term Attribute
Relocatable Operators Allowed
Expression
2 Unary: + Positive
— Negative
Binary: + Addition
.) — Subtraction
Rel. Exp ") ; * N'lt{lt~iplication
or - or| (Rel. Exp) |or [+ Rel. Exp |or}{z- Rel. Exp / Division
Abs. Exp | : 3
Abs. Exp = Absolute Expression
A Rel. Exp = Relocatabie Expression
(s)rdigall'y Location Unary operators
ymbol —
Relocatable |°7| Counter
Value Reference

Figure 13. Definitions of Absolute and Relocatable Expressions

A single-term expression—for example,

Evaluation of Expressions

29, BETA, x,

L'SYMBOL—takes on the value of the term involved.

The assembler reduces a multiterm expression—for example,

BETA+10,

1.
2.

ENTRY-EXIT, 25%10+A/B—to a single value,

It evaluates each term.

as follows:

It performs arithmetic operations from left to right.

However,

Chapter 2. Coding and Structure

37

a. It performs unary operations before binary operations.

b. It performs binary operations of multiplication and
division before the binary operations of addition and
subtraction.

S

J. In division, it gives an integer result; any fractional
portion is dropped. Division by zero gives 0.

4. In parenthesized expressions, the assembler evaluates the
innermost expressions first and then considers them as terms
in the next outer level of expressions. It continues this
process until the outermost expression is evaluated.

5. A term or expression's intermediate value and computed
result must lie in the range of -23' through +231-1.

Note: It is assumed that the assembler evaluates paired
relocatable terms at each level of expression nesting.

Absolute and Relocatable Expressions

An expression is called absolute if its value is unaffected by
program relocation. An expression is called relocatable if its
value depends upon program relocation. The two types of
expressions, absolute and relocatable, take on these
characteristics from the term or terms composing them. A
description of the factors that determine whether an expression
is absolute or relocatable follows.

ABSOLUTE EXPRESSION: The assembler reduces an absolute
expression to a single absolute value if the expression:

1. Is composed of a symbol with an absolute value, a
self-defining term, or a symbol length attribute reference,
or any arithmetic combination of absolute terms. 7 z\

2. Contains relocatable terms alone or in combination with
absolute terms, and if all these relocatable terms are
paired.

PAIRED RELOCATABLE TERMS: An expression can be absolute even
though it contains relocatable terms, provided that all the
relocatable terms are paired. The pairing of relocatable terms
cancels the effect of relocation.

The assembler reduces paired terms to single absolute terms in
the intermediate stages of evaluation. The assembler considers
relocatable terms as paired under the following conditions:

. The paired terms must be defined in the same control section
of a source module (that is, have the same relocatability
attribute).

. The paired terms must have opposite signs after all unary
operators are resolved. In an expression, the paired terms
do not have to be contiguous (that is, other terms can come
between the paired terms).

. The value represented by the paired terms is absolute.

38 Assembler H Version 2 Application Programming: Language Reference

The following examples illustrate absolute expressions. A is an
absolute term; X and Y are relocatable terms with the same
relocatability.

A-Y+X
A

A¥%A
X=-Y+A
¥-y1l

1 A reference to the location counter must be paired with
another relocatable term from the same control section; that
is, with the same relocatability.

RELOCATABLE EXPRESSION: A relocatable expression is one whose
value changes by n if the program in which it appears is
relocated n bytes away from its originally assigned area of
storage.

A relocatable expression can be a single relocatable term. The
assembler reduces a relocatable expression to a single
relocatable value if the expression:

1. 1Is composed of a single relocatable term, or

2. Contains relocatable terms, alone or in combination with
absolute terms, and

a. All the relocatable terms but one are paired. Note that
the unpaired term gives the expression a relocatable
value; the paired relocatable terms and other absolute
terms constitute increments or decrements to the value
of the unpaired term.

b. The relocatability attribute of the whole expression is
that of the unpaired term.

c. The sign preceding the unpaired relocatable term must be
positive, after all unary operators have been resolved.

The following examples illustrate relocatable expressions. A is
an absolute term, W and X are relocatable terms with the same
relocatability attribute, and Y is a relocatable term with a
different relocatability attribute.

Y-32%A W-X+ % =F'1234' (literal)
W-X+Y AXA+W-W+Y
¥ (reference to W-X+W

location counter) Y

COMPLEX RELOCATABLE EXPRESSIONS: Complex relocatable
expressions, unlike relocatable expressions, can contain:

[Two or more unpaired relocatable terms, or

. An unpaired relocatable term preceded by a negative sign.
Complex relocatable expressions can be used only in A-type and
Y-type address constants (for more detail, see "A-Type and

Y-Type Address Constants"™ in "Chapter 5. Assembler Instruction
Statements™).

Chapter 2. Coding and Structure 39

CHAPTER 3. ADDRESSING, PROGRAM SECTIONING, AND LINKING

ADDRESSING

This part of the chapter describes the techniques and
instructions that allow you to use symbolic addresses when
referring to data. You can address data that is defined within
the same source module, or data that is defined in another
source module. Symbolic addresses are more meaningful and
easier to use than the corresponding object code addresses
required for machine instructions. Also, the assembler can
cogve;t the symbolic addresses you specify into their object
code form.

ADDRESSING WITHIN SOURCE MODULES: ESTABLISHING ADDRESSABILITY

By establishing the addressability of a control section, vou can
refer to the symbolic addresses defined in it in the operands of
machine instructions. This is much easier than coding the
addresses in the base-displacement form required by the
System/370. The symbolic addresses you code in the instruction
operands are called implicit addresses, and the addresses in the
base-displacement form are called explicit addresses.

The assembler will convert these implicit addresses for you into
the explicit addresses required for the assembled object code of
thehmachine instruction. However, you must supply the assembler
with:

1. A base address from which it can compute displacements to N
the addresses within a control section ¢/

2. A base register to hold this base address

How to Establish Addressability

To establish the addressability of a coding section, you must,
when coding:

. Spacify a base address from which the assembler can compute
displacements.

. Assign a base register to contain this base address.

L Write the instruction that loads the base register with the
base address.

During assembly, the implicit addresses you code are converted
into their explicit base-displacement form; then, they are
assembled into the object code of the machine instructions in
which they have been coded.

During execution, the base address is loaded into the base
register, and should remain there throughout the execution of
your program.

BASE REGISTER INSTRUCTIONS

The USING and DROP assembler instructions enable you to use
expressions representing implicit addresses as operands of
machine instruction statements, leaving the assignment of base
registers and the calculation of displacements to the assembler.

In order to use symbols in the operand field of machine
instruction statements, you must (1) indicate to the assembler,

40 Assembler H Version 2 Application Programming: Language Reference

by means of a USING statement, that one or more general
registers are available for use as base registers, (2) specify,
by means of the USING statement, what value each base register
contains, and (3) load each base register with the value you
have specified for it.

Having the assembler determine base registers and displacements
relieves you of the need to separate each address into a
displacement value and a base address value. This feature of
the assembler will eliminate a likely source of programming
errors, thus reducing the time required to check out programs.
You use the USING and DROP instructions described in this
chapter to take advantage of this feature. The principal
discussion of this feature follows the description of both
instructions.

USING—Use Base Address Register

The USING instruction allows you to specify a base address and
assign one or more base registers. If vou also load the base
register with the base address, you have established
addressability in a control section.

To use the USING instruction correctly, you should know:

1. UWhich locations in a control section are made addressable by
the USING instruction

2. Where in a source module you can use these established
addresses as implicit addresses in instruction operands

The format of the USING instruction statement is:

Name Operation Operand
A sequence USING BASE,BASEREG1
symbol or blank [,BASEREG2]...

The operand, BASE, specifies a base address, which can be a
relocatable or an absolute expression. The value of the
expression must lie between -22% and 224-1. '

The remaining operands specify from 1 to 16 base registers. The
operands must be absolute expressions whose values lie in the
range 0 through 15.

The assembler assumes that the first base register (BASEREG1)
contains the base address BASE at execution time. If present,
the subsequent operands, BASEREG2, BASEREG3,..., represent
registers that the assembler assumes will contain the address
values, BASE+4096, BASE+8192,..., respectively.

For example:
USING BASE,9,10,11
has the logical equivalent of:
USING BASE.,9
USING BASE+4096,10
USING BASE+8192,11

In another example, the following statement

Nane Operation Operand
USING %,12,13

Chapter 3. Addressing, Program Sectioning, and Linking 41

tells the assembler it may assume that the current value of the
location counter will be in general register 12 at object time,
and that the current value of the location counter, incremented
by 4096, will be in general register 13 at object time. ;/

If you change the value in a base register currently being used,
and wish the assembler to compute displacement from this value,
vou must tell the assembler the new value by means of another
USING statement. In the following sequence, the assembler first
assumes that the value of ALPHA is in register 9. The second
statement then causes the assembler to assume that ALPHA+1000 is
the value in register 9.

Name Operation operand
USING ALPHA,9
USING ALPHA+1000,9

If you must refer to the first 4096 bytes of storage, general
register 0 can be used as a base register, subject to the
following conditions:

. The value of operand BASE must be either absolute or
relocatable zero or simply relocatable.

. Register 0 must be specified as BASEREGL.

The assembler assumes that register 0 contains zero. Therefore,
regardless of the value of operand BASE, it calculates
displacements as if operand BASE were absolute or relocatable
zero. The assembler also assumes that subsequent registers
specified in the same USING statement contain 4096, 8192, etc. ~
Note: If register 0 is used as a base register, the program is o ¥
not relocatable, despite the fact that operand BASE may be ’
relocatable. The program can be made relocatable by:

. Replacing register 0 in the USING statement
. Loading the new register with a relocatable value
. Reassembling the program

RAMGE OF A USING INSTRUCTION: The range of a USING instruction
(called the USING range) is the 4096 bytes beginning at the base
address specified in the USING instruction. Addresses that lie
within the USING range can be converted from their implicit to
their explicit form; those ocutside the USING range cannot be
converted. :

The USING range does not depend upon the position of the USING
instruction in the source module; rather, it depends upon the
location of the base address specified in the USING instruction.

Note: The USING range is the range of addresses in a control
section that is associated with the base register specified in
the USING instruction. If the USING instruction assigns more
than one base register, the composite USING range is the sum of
the USING ranges that would apply if the base registers were
specified in separate USING instructions.

DOMAIN OF A USING INSTRUCTION: The domain of a USING instruction
(called the USING domain) begins where the USING instruction
appears in a source module and continues to the end of the
source module. (Exceptions are discussed later, under "Notes
about the USING Domain.") The assembler converts implicit
address references into their explicit form:

. If the address reference appears in the domain of a USING
instruction, and

42 Assembler H Version 2 Application Programming: Language Reference

. If the addresses referred to lie within the range of the
same USING instruction.

The assembler does not convert address references that are
outside the USING domain. The USING domain depends on the
position of the USING instruction in the source module after
conditional assembly, if any, has been performed.

HOW TO USE THE USING INSTRUCTICH: You should specify your USING
instruction so that:

. All the addresses in each control section lie within a USING
range.

. All the references for these addresses lie within the
corresponding USING domain.

You should, therefore, place all USING instructions at the
beginning of the source module and specify a base address in
each USING instruction that lies at the beginning of each
control section.

For Executable control sections: To establish the addressability
of an executable control section defined by a START or CSECT
instruction, you specify a base address and assign a base
register in the USING instruction. At execution time, the base
register is loaded with the correct base address.

If a control section is longer than 4096 bytes, you must assign
more than one base register. This allows yvou to establish the
addressability of the entire control section with one USING
instruction.

For Refarence control sections: A dummy section is a reference
control section defined by the DSECT instructions. To establish
the addressability of a dummy section, you should specify the
address of the first byte of the dummy section as the base
address so that all its addresses lie within the pertinent USING
range. The address vou load into the base register must be the
addiess of the storage area being formatted by the dummy
section.

Note: The assembler assumes that vou are referring to the
symbolic addresses of the dummy section, and it computes
displacements accordingly. However, at execution time, the
assembled addresses refer to the location of real data in the
storage area.

NOTES ABOUT THE USING DOMAIN: The domain of a USING instruction
continues until the end of a source module, except when:

. A subsequent DROP instruction specifies the same base
register or registers assigned by the preceding USING
instruction.

. A subsequent USING instruction specifies the same register
or registers assigned by the preceding USING instruction.

NOTES ABOUT THE USING RANGE: Two USING ranges coincide when the
same base address is specified in two different USING
instructions, even though the base registers used are different.
When two USING ranges coincide, the assembler uses the
higher-numbered register for assembling the addresses uwithin the
common USING range. In effect, the first USING domain is
terminated after the second USING instruction.

Two USING ranges overlap when the base address of one USING
instruction lies within the range of another USING instruction.
When two ranges overlap, the assembler computes displacements
froem the base address that gives the smallest displacement; it
usas the corresponding base register when it assembles the
addresses within the range overlap. This applies only to
implicit addresses that appear after the second USING
instruction.

Chapter 3. Addressing, Program Sectioning, and Linking 43

BASE REGISTERS FOR ABSOLUTE ADDRESSES: Absolute addresses used

in a source module must also be made addressable. Absolute

addresses require a base register other than the base register

assigned to relocatable addresses (as described above). ‘

However, the assembler does not need a USING instruction to
convert absolute implicit addresses in the range 0 through 4095
to their explicit form. The assembler uses register 0 as a base
register. Displacements are computed from the base address 0,
because the assembler assumes that a base or index of 0 implies
that a zero quantity is to be used in forming the address,
regardless of the contents of register 0. The USING domain for
th;slautomatic base register assignment is the whole of a source
module,

For absolute implicit addresses greater than 4095, a USING
instruction must be specified according to the following:

. With a base address representing an absolute eéxpression

. With a base register than has not been assigned by a USING
instruction in which a relocatable base address is specified

This base register must be loaded with the base address
specified.

DROP—Drop Base Register
You can use the DROP instruction to indicate to the assembler
that one or more registers are no longer available as base
registers. This allows vyou:

U To free base registers for other programming purposes

. To ensure that the assembler uses the base register you wish

in a particular coding situation; for example, when two //ﬁ\
USING ranges overlap or coincide k@JV
The format of the DROP instruction statement is:
Name Operation Operand
A sequence ~ DROP BASEREGL[,BASEREG2]...
symbol or or blank
blank

Up to 16 operands can be specified. They must be absolute
expressions whose values represent the general registers 0
through 15. The expressions in the operand indicate general
registers previously named in a USING statement that are now
unavailable for base addressing. A DROP instruction with a
blank operand field causes all currently active base registers
assigned by USING instructions to be dropped.

After a DROP instruction, the assembler will not use the
registers specified in a DROP instruction as base registers. A
register made unavailable as a base register by a DROP

instruction can be reassigned as a base register by a subsequent
USING instruction.

The following statement, for example, prevents the assembler
from using registers 7 and 11:

Name Operation Operand
DROP 7,11

44 Assembler H Version 2 Application Programming: Language Reference

C

RELATIVE ADDRESSING

A DROP instruction is not needed:

U If the base address is being changed by a new USING
instruction, and the same base register is assigned;
however, the new base address must be loaded into the base
register.

. At the end of a source module.

Relative addressing is the technique of addressing instructions
and data areas by designating their location in relation to the
location counter or to some symbolic location. This type of
addressing is always in bytes—never in bits, words, or
instructions. Thus, the expression ¥+4 specifies an address
that is & bytes greater than the current value of the location
counter. In the sequence of instructions in the following
example, the location of the CR machine instruction can be
expressed in two ways, ALPHA+2, or BETA-4, because all the
mnemo:ics in the example are for 2-byte instructions in the RR
format.

Name Operation Operand
ALPHA LR 3,4

CR 4,6

BCR 1,14
BETA AR 2,3

PROGRAM SECTIONING AND LINKING

This part of the chapter explains how you can subdivide a large
program into smaller parts that are easier to understand and
maintain. It also explains how you can divide these smaller
parts into convenient sections; for example, one section to
contain your executable instructions, and another section to
contain your data constants and areas.

You should consider two different subdivisions when writing an
assembler language program:

1. The source module
2. The control section

You can divide a program into two or more source modules. Each
source module is assembled into a separate object module. The
object modules can then be combined into load modules to form an
executable program.

You can also divide a source module into two or more control
sections. Each control section is assembled as part of an
object module. By writing the proper link-edit control
statements, you can select a complete object module or any
individual control section of the object module to be)
link-edited and later loaded as an executable program.

Size of Program Parts: If a source module becomes so large that
its logic is not easily understood, divide it into smaller
modules.

Unless you have special programming reasons, you should write
each control section so that the resulting object code is not
larger than 4096 bytes. This is the largest number of bytes
that can be covered by one base register.

Chapter 3. Addressing, Program Sectioning, and Linking 45

communication Betuazen Program Parts: You must be able to
communicate between the parts of vour program; that is, be able

to refer to data in a different part or be able to branch to ol
another part. o

To communicate between two or more source modules, you must
symbolically link them together.

To communicate between two or more control sections within a
source module, you must establish the addressability of each
control properly from one section to another regardless of the
relative section.

SOURCE MODULE

A source module is composed of source statements in the
assembler language. You can include these statements in the
source module in two ways:

1. You write them on a coding form and then enter them as input
thrgugh a terminal or, using punched cards, through a card
reader.

2. You specify one or more COPY instructions among the source
statements being entered. When the assembler encounters a
COPY instruction, it replaces the COPY instruction with a
predetermined set of source statements from a library.
These statements then become a part of the source module.
See "COPY—Copy Predefined Source Coding™ on page 138 for
more details.

Beginning of a Source Module

The first statement of a source module can be any assembler -
language statement, except MEXIT and MEND, described in this //f}
manual. You can initiate the first control section of a source kkjy
module by using the START instruction. However, you can write

some source statements before the beginning of the first control
Ztate?ent. See "First Control Section™ on page 49 for more

etails.

End of a Source Module

The END instruction usually marks the end of a source module.
However, you can code several END instructions. The assembler
stops assembling when it processes the first END instruction.

If no END instruction is found, the assembler will generate one.
See "END—End Assembly"™ on page 139 for more details.

Note: Conditional assembly processing can determine which of
several substituted END instructions is to be processed.

CONTROL SECTIONS

A control section is the smallest subdivision of a program that
can be relocated as a unit. The assembled control sections
contain the object code for machine instructions, data
constants, and areas.

Considar the concept of a control section at different
processing times.

At coding time: You create a control section when you write the
instructions it contains. In addition, you establish the

addressability of each control section within the source module,

and provide any symbolic linkages between control sections that

lie in different source modules. You also write the linkage &)
editor control statements to combine the desired control J
sections into a load module, and to provide an entry point

address for the beginning of program execution.

46 Assembler H Version 2 Application Programming: Language Reference

At assembly time: The assembler translates the source statements
in the control section into object code. Each source module is

(::@ assembled into one object module. The entire object module and
each of the control sections it contains are relocatable.

At link-editing time: According to linkage editor control
statements, the linkage editor combines the object code of one
or more control sections into one load module. It also
calculates the linkage addresses necessary for communication
between two or more contrel sections from different object
modules. In addition, it calculates the space needed to
accommodate external dummy sections.

At progaram fetch time: The control program loads the load module
into virtual storage. All the relocatable addresses are
converted to fixed locations in storage.

At execution time: The control program passes control to the
load module now in virtual storage, and your program is
executed.

Note: You can specify the relocatable address of the starting
point for program execution in a link-edit control statement or
in the operand field of an END statement.

Executable control Sections

An executable control section is one you initiate by using the
START or CSECT instruction, and is assembled jnto object code.
At execution time, an executable control section contains the
binary data assembled from your coded instructions and
constants, and is, therefore, executable.

An executable control section can also be initiated as "private
(:ﬁ code," without using the START or CSECT instruction.

Reference Control Sections

A reference control section is one you initiate by using the
DSECT, COM, or DXD instruction, and is not assembled into object
code. You can use a reference control section either to reserve
storage areas or to describe data to which vou can refer from
executable control sections. These reference control sections
are considered to be empty at assembly time, and the actual
:inary data to which they refer is not entered until execution
ime.

LOCATION COUNTER SETTING

The assembler maintains a separate location counter for each
control section. The location counter setting for each control
section starts at 0. The location values assigned to the
instructions and other data in a control section are, therefore,
relative to the location counter setting at the beginning of
that control section.

However, for executable control sections, the location values
that appear in the listings do not restart at 0 for each
subsequent executable control section. They carry on from the
end of the previous control section. Your executable control
sections are usually loaded into storage in the order in which
vou write them. You can, therefore, match the source statements
and object code produced from them with the contents of a dump
of your program.

: For reference control sections, the location values that appear
“ in the listings always start from 0.

You can continue a control section that has been discontinued by

another control section, and, thereby, intersparse code
sequences from different control sections. Note that the

Chapter 3. Addressing, Program Sectioning, and Linking 47

location values that appear in the listings for a control
section, divided into segments, follow from the end of one
segment to the beginning of the subsequent segment.

The location values listed for the next control section deffned,
begin after the last location value assigned to the preceding
control section.

Use of Multiple Location Counters

Assembler H allows you to use multiple location counters for
each individual control section. You use the LOCTR instruction
(whose format and specifications are described below) to assign
different location counters to different parts of a control
section. The assembler will then rearrange and assemble the
coding together, according to the different location counters
vou have specified: All coding using the first location counter
will be assembled together, then the coding using the second
location counter will be assembled together, etc.

A practical use of multiple location counters is illustrated in
Figure 14. There, executable instructions and data areas have
been interspersed throughout the coding in their logical
sequence, each group of instructions preceded by a LOCTR
instruction identifying the location counter under which it is
to be assembled. The assembler will rearrange the control
saection so that the executable instructions are grouped together
and the data areas together.

SOURCE MODULE

OBJECT MODULE

{shown in source code format)

LR 12,15 controlled
INST CSECT USING INST,12 by INST
‘ LR 12,15 —] location
USING INST,12 | _— ™ CODE,X'03" | counter
DATA LOCTR B NEWCARD control
.
INPUTAREA DS 0CL80 §E$n
. CODE DS cLl]
. INPUTAREA DS 0CLS80 controlled
INST LOCTR CODE DS cLl by DATA
' ™ CODE,X'03" . location
BM NEWCARD VALl DC F'56' counter
. VAL2 DC F'g4’
DATA LOCTR
VAL1L DC F'56"'
1]
VAL2 DC F'84 control
. section
NEXT CSECT NEXT

Figure 14. Use of Multiple Location Counters

LOCTR—Multiple Location Counters

The LOCTR instruction allows you to specify multiple location
counters within a control section. The assembler assigns .
consecutive addresses to the segments of code using one location

48 Assembler H Version 2 Application Programming: Language Reference

O

counter before it assiogns addresses to segments of coding using
the next location counter.

The format for the LOCTR instruction is:

Name Operation Operand

A variable or LOCTR Blank
ordinary symbol

By using the LOCTR instruction, vou can code your control
section in a logical order. For example, you can code work
areas and data constants within the section of code, using them
without having to branch around then.

(1) A CSECT
L

R 12,15
USING A,12
(2) B LOCTR
c LOCTR
(3) B LOCTR
(4) A LOCTR
(1) DUM DSECT
(5) ¢ LOCTR
END

(1) The first location counter of a control section is
defined by the name of the START, CSECT, DSECT, or COM
instruction defining the section.

(2) The LOCTR instruction defines a location counter or (3)
resumes a previously defined location counter.

A location counter remains in use until it is interrupted by
a LOCTR, CSECT, DSECT, or COM instruction.

(4) A LOCTR instruction with the same name as a control
section resumes the first location counter of that section.

(5) A LOCTR instruction with the same name as a LOCTR
instruction in a previous control section causes that control
section to be resumed using the location counter specified.

A control section cannot have the same name as a previous LOCTR
instruction. A LOCTR instruction placed before the first
control section definition will initiate an unnamed control
section before the LOCTR instruction is processed.

The length attribute of a LOCTR name is 1.

LOCTR instructions do not force alignment; code running under a
location counter other than the first location counter of a

control section will be assembled starting at the next available
byte after the previous segment.

FIRST CONTROL SECTION

The specifications below apply to the first executable control
section, and not to a reference control section.

Chapter 3. Addressing, Program Sectioning, and Linking 49

50

Instructions that establish the first control section: Any
instruction that affects the location counter, or uses its
current value, establishes the beginning of the first executable
control section. The instructions that establish the first
control section include any machine instruction and the
following assembler instructions:

CCW, CCHWO, and CCW1
CNOP
(COPY)
CSECT
CXD
DC
DROP
DS

END
EQU
LTORG
ORG
START
USING

Notas:

1. These instructions are always considered a part of the
control section in which they appear.

2. The statements copied into a source module by a COPY
instruction determine whether it will initiate the first
control section.

3. The DSECT, COM, and DXD instructions initiate reference
control sections and do not establish the first executable
control section.

What must come before the first control section: The following
instructions or macro definitions, if specified, belong to a
source module, but must appear before the first control section:?

. The ICTL instruction, which, if specified, must be the first
statement in a source module

. The OPSYN instruction
. Any source macro definitions

. The COPY instruction, if the code to be copied contains only
OPSYN instructions or complete macro definitions

What can optionally come before the first control section: The
instructions or groups of instructions that can optionally be
specified before the first control section are listed below:

L The following assembler instructions:

copPy
DXD
EJECT
ENTRY
EXTRN
ISEQ
PRINT
PUNCH
REPRO
SPACE
TITLE
WXTRN

. Comments statements
. Common control sections

. Dummy control sections

Assembler H Version 2 Application Programming: Language Reference

N
s

L External dummy control sections

. Any conditional assembly instruction
. Macro instructions
Notes:

1. The above instructions or groups of instructions belong to a
source module, but are not considered as part of an
executable control section.

2. Any instructions copied by a COPY instruction, or generated
by the processing of a macro instruction before the first
control section, must belong exclusively to one of the
groups of instructions shown above.

3. The EJECT, ISEQ, OPSYN, PRINT, SPACE, or TITLE instructions
and comments statements must follow the ICTL instruction, if
specified.

4., All the instructions or groups of instructions listed above
can also appear as part of a control section.

UNNAMED CONTROL SECTION

The unnamed control section is an executable control section
that can be initiated in one of the following two ways:

. By coding a START or CSECT instruction without a name entry

. By coding any instruction, other than the START or CSECT
instruction, that initiates the first executable control
section

The unnamed control section is sometimes referred to as private
code.

All control sections ought to be provided with names so that
they can be referred to symbolically:

. Within a source module

U In EXTRN and WXTRN instructions and linkage editor control
statements for linkage between source modules

Notes:

1. Unnamed common control sections or dummy control sections
can be defined if the name entry is omitted from a COM or
DSECT instruction.

2. If you include an AMODE or RMODE instruction in this
assembly and leave the name field blank, you must provide an
unnamed control section.

LITERAL POOLS IN CONTROL SECTIONS

Literals, collected into pools by the assembler, are assembled
as part of the executable control section to which the pools
belong. If a LTORG instruction is specified at the end of each
control section, the literals specified for that section will be
assembled into the pool starting at the LTORG instruction. If
no LTORG instruction is specified, a literal pool containing all
the literals used in the entire source module is assembled at
the end of the first control section. This literal pool appears
in the listings after the END instruction.

Note: If any control section is divided into segments, a LTORG

instruction should be specified at the end of each segment to
create a separate literal pool for that segment.

Chapter 3. Addressing, Program Sectioning, and Linking 51

EXTERNAL SYMBOL DICTIONARY ENTRIES

The assembler keeps a record of each control section and prints w
the following information about it in an external symbol Y
dictionary (ESD):

1. Symbolic name, if one is specified

2. Type code

3. Individual identification

4. Startinhg address

Figure 15 on page 53 lists the assembler instructions that
define control sections and dummy control sections (see 1l in
figure), or identify entry and external symbols (see 2 in
figure), and tells their associated type codes. There is no
limit to the number of individual control sections and external
symbols that can be defined in a source module.

ESTABLISHING RESIDENCE AND ADDRESSING MODE
You may specify the addressing mode (AMODE) and/or the residence
mode (RMODE) to be associated with control sections in the
object deck. These modes may be specified for the following
tvpes of control sections:
. Control section (ESD type code 00)
. Unnamed control section (ESD type code 04)

. Common control section (ESD type code 05)

The assembler will set the AMODE and/or RMODE indicators in the N
ESD record for each applicable control section in an assembly, (8
for passage to the linkage editor and loader. The linkage 8/

editor and loader will ensure that control is given to programs
with the right addressing mode, and that programs are loaded
into the correct part of virtual storage.

Note: The specification of AMODE and RMODE through CMS to the
assembler is supported in all levels of VM. However, the
resultant object deck produced by the assembler will not be
supported through the CMS loader, but may be supported by a
virtual machine under VM/XA Migration Aid that has a loader
compatible with that object code (for example, MVS/XA loader).

52 Assembler H Version 2 Application Programming: Language Reference

Name Instruction Type code en-
Entry tered into external
s_ymbol dictionary

optional START SD) if name
entry is
CSECT SD) present
START PC |} if name
entry is
CSECT PC J omitted
Any instruction that
initiates the unnamed PC
control section
optional 0 COM CM
optional DSECT none

mandatory DXD XD

(external DSECT)| XD

[ENTRY LD
0 EXTRN ER

DC(V-type ad- |gg
dress constant)

WXTRN WX

Figure 15. Defining CSECTs, DSECTs, and Symbols

Chapter 3. Addressing, Program Sectioning, and Linking 53

AMODE—Addressing Mode

Tha AMODE instruction allows you to specify the addressing mode r
to be associated with control sections in the object deck. The o
format of the statement is as follows:

Name Operation operand
Any symbol AMODE 24|31 ANY
or blank

The name field associates the addressing mode with a control
section. If there is a symbol in the name field, it must also
appear in the name field of a START, CSECT, or COM instruction
in this assembly. If the name field is blank, there must be an
unnamed control section in this assembly. If the name field
contains a sequence symbol (see "Symbols™ on page 21for
details), it is treated as a blank name field.

The

operand indicates which addressing mode is to be associated

with the control section identified by the name field. The
operand must be specified as one of the three values shown. The
values cannot be replaced by expressions. The values specify

the following:

24 specifies that a 24-bit addressing mode is to be associated
with a control section.

31 specifies that a 31-bit addressing mode is to be associated
with a control section.

ANY specifies that the control section is not sensitive to
addressing mode.

Any field of this instruction may be generated by a macro, or by ((\>

substitution in open code. Wy

Notes:

1. AMODE can be specified anywhere in the assembly. It does
not initiate an unnamed control section.

2. An assembly can have multiple AMODE instructions; however,
two AMODE instructions cannot have the same name field.

3. Specification of AMODE 24 and RMODE ANY for the same name
field is invalid. All other combinations are valid.

4. AMODE or RMODE cannot be specified for an unnamed common
control section.

5. The defaults when AMODE and RMODE are not both specified for
a name field are as follows:

specified Defaulted

Neither AMODE 24, RMODE 24

AMODE 24 RMODE 24

AMODE 31 RMODE 24

AMODE ANY RMODE 24

RMODE 24 AMODE 24

RMODE ANY AMODE 31

RMODE—Residence Mode

The RMODE instruction allows you to specify the residence mode q;:%
to be associated with control sections in the object deck. The .
format of the statement is as follows:

54 Assembler H Version 2 Application Programming: language Reference

Name Operation Operand

Any symbol RMODE 26 | ANY
or bhlank

The name field associates the residence mode with a control
saection. If there is a symbol in the name field, it must also
appear in the name field of a START, CSECT, or COM instruction
in this assembly. If the name field is blank, there must be an
unnamed control section in this assembly. If the name field
contains a sequence symbol (see "Symbols™ on page 2lfor
details), it is treated as a blank name field.

The operand indicates which residence mode is to be associated
with the control section identified by the name field. The
operand must be specified as one of the two values shouwn. The
values cannot be replaced by expressions. The values specify
the following:

24 specifies that a residence mode of 24 is to be associated
with the control section; that is, the control section must
be resident below 16 megabytes.

ANY specifies that a residence mode of either 24 or 31 is to be
associated with the control section; that is, the control
section can be resident above or below 16 megabytes.

Any field of this instruction may be generated by a macro, or by
substitution in open code.

Notes:

1. RMODE can be specified anywhere in the assembly. It does
not initiate an unnamed control section.

2. An assembly can have multiple RMODE instructions; however,
two RMODE instructions cannot have the same name field.

3. Specification of AMODE 24 and RMODE ANY for the same name
field is invalid. All other combinations are valid.

4, AMODE or RMODE cannot be specified for an unnamed common
control section.

5. The defaults when AMODE and RMODE are not both specified for
a name field are as follows:

spacified pafaulted

Neither AMODE 24, RMODE 2¢
AMODE 24 RMODE 24

AMODE 31 RMODE 24

AMODE ANY RMODE 24

RMODE 24 AMODE 24

RMODE ANY AMODE 31

DEFINING A CONTROL SECTION

You must use the instructions described below to indicate to the
assembler:

U Where a control section begins

. Which type of control section is being defined

Chapter 3. Addressing, Program Sectioning, and Linking 55

START—Start Assembly

The START instruction can be used only to initiate the first or @
only control section of a source module. You should use the <
START instruction for this purpose, because it allows you:

L To determine exactly where the first control section is to
begin; you thereby avoid the accidental initiation of the
first control section by some other instruction

. To give a symbolic name to the first control section, which
can then be distinguished from the other control sections
listed in the external symbol dictionary

. To specify the initial setting of the location counter for
the first or only control section

The START instruction must be the first instruction of the first
executable control section of a source module. It must not be
preceded by any instruction that affects the location counter,
and thereby causes the first control section to be initiated.

The format of the START instruction statement is:

Nanme Operation Operand

Any symbol START A self-defining term,

or blank an absolute expression,
or blank

Note: If the operand of a START instruction is an absolute
expression, any symbols referenced in it must have been
previously defined.

The symbol in the name field, if specified, identifies the first (:
control section. It must be used in the name field of any CSECT o
instruction that indicates the continuation of the first control

saection. This symbol represents the address of the first byte

of the control section, and has a length attribute value of 1.

The assembler uses the value of the self-defining term or
absolute expression in the operand field, if specified, to set
the location counter to an initial value for the source module.

All control sections are aligned on a doubleword boundary.
Therefore, if the value specified in the operand is not
divisible by 8, the assembler sets the initial value of the
location counter to the next higher doubleword boundary. If the
gpegand entry is omitted, the assembler sets the initial value

o 0.

The source statements that follow the START instruction are K
assembled into the first control section. If a CSECT ’
instruction indicates the continuation of the first control
section, the source statements that follow this CSECT

instruction are also assembled into the first control section.

Any instruction that defines a new or continued control section
marks the end of the preceding control section. The END
instruction marks the end of the control section in effect.

CSECT—Identify Control Section

The CSECT instruction allows you to initiate an executable
control section or indicate the continuation of an executable
control section.

The CSECT instruction can be used anywhere in a source module
after any source macro definitions that are specified. If it is
used to initiate the first executable control section, it must
not be preceded by any instruction that affects the location

56 Assembler H Version 2 Application Programming: Language Reference

counter and thereby cause the first control section to be
initiated.

The format of the statement is as follows:

Name Operation operand
Any symbol CSECT Not required
or blank

The symbol in the name field, if specified, identifies the
control section. If several CSECT instructions within a source
module have the same symbol in the name field, the first
occurrence initiates the control section, and the rest indicate
the continuation of the control section. If the first control
section is initiated by a START instruction, the symbol in the
name field must be used to indicate any continuation of the
first control section.

Note: A CSECT instruction with a blank name field either
initiates or indicates the continuation of the unnamed control
saction.

The symbol in the name field represents the address of the first
byte of the control section, and has a length attribute value of
1.

The beginning of a control section is aligned on a doubleword
boundary. However, when an interrupted control section is
resumed using the CSECT instruction, the location counter last
spacified in that control section will be resumed. Consider the
coding in Figure 16.

ALPHA

BETA

NEWSECT

ALPHA

Figure 16.

START
BALR

USING
LOCTR
CSECT

CSECT

ALPHA
12,0 —ﬂ”/",,,,—.,,,,,ﬁfafa4P

| BETA

_This'part is assembled using NEWSECT
the BETA location counter

How the Location Counter Works

The source statements following a CSECT instruction that either
initiate or indicate the continuation of a control section are
assembled into the object code of the control section identified
by that CSECT instruction.

Note: The end of a control section or portion of a control

section is marked by (a) any instruction that defines a new or
continued control section, or (b) the END instruction.

Chapter 3. Addressing, Program Sectioning, and Linking 57

DSECT—Identify Dummy Section

You can use the DSECT instruction to initiate a dummy control
section or to indicate its continuation.

®

A dummy control section is a reference control section that
allows you to describe the layout of data in a storage area
without actually reserving any virtual storage.

You may wish to describe the format of an area whose storage
location will not be determined until the program is executed.
You can do so by describing the format of the area in a dummy
section, and using symbols defined in the dummy section as the
operands of machine instructions.

Hou to use a dummy control section: A dummy control section
(dummy section) allows vou to write a sequence of assembler
language statements to describe the layout of unformatted data
located elsewhere in your source module. The assembler produces
no object code for statements in a dummy control section, and it
reserves no storage for it. Rather, the dummy section provides
a symbolic format that is empty of data. However, the assembler
assigns location values to the symbols you define in a dummy
section, relative to its beginning.

Therefore, to use a dummy section, you must:
. Reserve a storage area for the unformatted data

. Ensure that this data is loaded into the area at execution
time

o Ensure that the locations of the symbols in the dummy
section actually correspond to the locations of the data
being described

. Establish the addressability of the dummy section in /’f\
combination with the storage area \% y

You can then refer to the unformatted data symbolically by using
the symbols defined in the dummy section.

The DSECT instruction identifies the beginning or continuation
of a dummy control section. One or more dummy sections can be
defined in a source module.

The DSECT instruction can be used anywhere in a source module
after the ICTL instruction, or after any source macro
definitions that may be specified. The format of the DSECT
instruction statement is:

Name Operation Operand
Any symbol DSECT Not required
or blank

The symbol in the name field, if specified, identifies the dummy
section. If several DSECT instructions within a source module
have the same symbol in the name field, the first occurrence
initiates the dummy section, and the rest indicate the
continuation of the dummy section.

Note: A DSECT instruction with a blank name field either
initiates or indicates the continuation of the unnamed dummy
section.

The symbol in the name field represents the first location in
the dummy section, and has a length attribute value of 1.

The location counter for a dummy section is always set to an
initial value of 0. However, when an interrupted dummy control

58 Assembler H Version 2 Application Programming: Language Reference

section is resumed using the DSECT instruction, the location
countgr last specified in that control section will be resumed.

The source statements that follow a DSECT instruction belong to
the dummy section identified by that DSECT instruction.

Notes:

1. The assembler language statements that appear in a dummy
section are not assembled into object code.

2. When establishing the addressability of a dummy section, the
symbol in the name field of the DSECT instruction, or any
symbol defined in the dummy section can be specified in a
USING instruction.

3. A symbol defined in a dummy section can be specified in an
address constant only if the symbol is paired with another
symbol from the same dummy section, and if the symbols have
the opposite sign.

To effect references to the storage area defined by a dummy
section, do the following:

. Provide a USING statement specifying both a general register
that the assembler can assign to the machine instructions as
a base register and a value from the dummy section that the
assembler may assume the register contains.

. Ensure that the same register is loaded with the actual
address of the storage area.

The values assigned to symbols defined in a dummy section are
relative to the initial statement of the section. Thus, all
machine instructions that refer to names defined in the dummy
section will, at execution time, refer to storage locations
relative to the address loaded into the register.

An example is shown in the following coding. Assume that two
independent assemblies (assembly 1 and assembly 2) have been
loaded and are to be executed as a single overall program.
Assembly 1 is an input routine that places a record in a
specified area of storage, places the address of the input area
containing the record in general register 3, and branches to
assembly 2. Assembly 2 processes the record. The coding shoun
in the example is from assembly 2.

The input area is described in assembly 2 by the DSECT control
section named INAREA. Portions of the input area that you want
to work with are named in the DSECT control section as shoun.
The assembler instruction USING INAREA,3 designates general
register 3 as the base register to be used in addressing the
DSECT control section, and that general register 3 is assumed to
contain the address of INAREA.

Assembly 1, during execution, loads the actual beginning address
of the input area in general register 3. Because the symbols
used in the DSECT section are defined relative to the initial
statement in the section, the address values they represent
will, at the time of program execution, be the actual storage
locations of the input area.

Chapter 3. Addressing, Program Sectioning, and Linking 59

Nanme Operation Operand
ASMBLY2 CSECT C::D
BEGIN BALR 2,0
USING %,2
USING INAREA, 3
CLI INCODE,C'A"
BE ATYPE
ATYPE MVC WORKA, INPUTA
MVC WORKB, INPUTB
WORKA DS cL20
WORKB DS | cl18
INAREA DSECT »
INCODE DS cL1
INPUTA DS cL20
INPUTB DS cL18
END

coM—Define Blank Common Control Section

You can use the COM instruction to initiate a common control
section, or to indicate its continuation. One or more common
sections can be defined in a source module. A common control
section is a reference control section that allows yvou to .
reserve a storage area that can be used by two or more source

modules.

Hou to use a common control section: A common control section
(common section) allows you to describe a common storage area in
one or more source modules.

When the separately assembled object modules are linked as one
program, the required storage space is reserved for the common
control section. Thus, two or more modules share the common
area.

Only the storage area is provided; the assembler does not
assemble the source statements that make up a common control
section into object code. You must provide the data for the
common area at execution time.

The assembler assigns locations to the symbols you define in a
common section relative to the beginning of that common section.
This allows vou to refer symbolically to the data that will be
loaded at execution time. Note that you must establish the
addressability of a common control section in every source
module in which it is specified. If you code identical common
sections in two or more source modules, you can communicate data
symbolically between these modules through this common section.

Note: You can also code a common control section in a source
module written in the FORTRAN language. This allows you to
communicate between assembler language modules and FORTRAN
modules.

The COM instruction identifies the beginning or continuation of
a common control section.

The COM instruction can be used anywhere in a source module g;j%

after the ICTL instruction, or after any source macro
definitions that may be specified.

60 Assembler H Version 2 Application Programming: Language Reference

The format of the COM instruction statement is:

Nama

operation

Operand

Any symbol

coM

Not required

or blank

The symbol in the name field, if specified, identifies the
common control section. If several COM instructions within a
source module have the same symbol in the name field, the first
occurrence initiates the common section and the rest indicate
the continuation of the common section.

Note: A COM instruction with a blank name field either
initiates or indicates the continuation of the unnamed common
section.

The symbol in the name field represents the address of the first
byvte in the common section, and has a length attribute value of

The location counter for a common section is always set to an
initial value of 0. However, when an interrupted common control
section is resumed using the COM instruction, the location
counter last specified in that control section will be resumed.

If a common section with the same name (or unnamed) is specified
in two or more source modules, the amount of storage reserved
for this common section is equal to that required by the longest
common section specified.

The source statements that follow a COM instruction belong to
the common section identified by that COM imnstruction.

Notes:

1. The assembler language statements that appear in a common
control section are not assembled into object code.

2. When establishing the addressability of a common section,
the symbol in the name field of the COM instruction, or any
symbol defined in the common section, can be specified in a
USING instruction.

In the following example, addressability to the common area of
storage is established relative to the named statement XYZ.

Name Cperation Operand
L 1,=A(XY2)
USING XYz,1
MVC PDQC16),=4C"ABCD"
coM
XYZ DS 16F
PDQ DS 16C

No instructions or constants appearing in a common control
saection are assembled. Data can only be placed in a common
control section through execution of the program. A blank
common control section may include any assembler language
instructions.

If the assignment of common storage is done in the same manner
by each independent assembly, reference to a location in common

Chapter 3. Addressing, Program Sectioning, and Linking 61

by any assembly results in the same location being referenced.
When the blank common control section is assembled, the initial
value of the location counter is set to zero. Q::D

EXTERNAL DUMMY SECTIONS

An external dummy section is a reference control section that
allows you to describe storage areas for one or more source
modules, to be used as:

. Work areas for each source module, or
. Communication areas between two or more source modules

When the assembled object modules are linked and loaded, you can
dynamically allocate the storage required for all yvour external
dummy sections at one time from one source module (for example,
by using the GETMAIN macro instruction). This is not only
convenient, but you save space and prevent fragmentation of
virtual storage.

To generate and use the external dummy sections, you need to
specify a combination of the following:

. DXD or DSECT instruction
. Q-type address constant
. CXD instruction

Generating an external dummy section: An external dummy section
is generated when you specify an DXD instruction or a DSECT
instruction in combination with a Q-type address constant that
contains the name of the DSECT instruction.

~
You use the Q-type address constant to reserve storage for the C: i
offset to the external dummy section whose name is specified in

the operand. This offset is the distance in bytes from the

beginning of the area allocated for all the external dummy

sections to the beginning of the external dummy section

specified. You can use this offset value to address the

external dummy section.

Using external dummy sections: To use an external dummy section,
you must do the following:

1. Identify and define the external dummy section. The
assembler will compute the length and alignment required.

2. Provide a Q-type constant for each external dummy section
defined.

3. Use the CXD instruction to reserve a fullword area into
which the linkage editor or loader will insert the total
length of all the external dummy sections that are specified
in the source modules of your program. The linkage editor
computes this length from the lengths of the individual
extarnal dummy sections supplied by the assembler.

4., Allocate a storage area using the computed total length.

5. Load the address of the allocated area into a register.
Note that register 11 must contain this address throughout
the whole program.

6. Add to the address in register 11 the offset into the
allocated area of the desired external dummy section. The
linkage editor inserts this offset into the fullword area
reserved by the appropriate @-type address constant.

7. Establish the addressibility of the external dummy section
in combination with the portion of the allocated area
reserved for the external dummy section.

62 Assembler H Version 2 gpplication Programming: Language Reference

O

You can now refer symbolically to the locations in the external
dummy section. Note that the source statements in an external
dummy section are not assembled into object code. Thus, at
execution time, you must insert the data described into the area
reserved for the external dummy sections.

DXD—Define External Dummy Section

The DXD instruction allows you to identify and define an
external dummy section. The DXD instruction can be used
anywhere in a source module, after the ICTL instruction, or
after any source macro definitions that may be specified.

Notes:

1. An external dummy section identified by a DXD instruction
will not generate an entry in the external symbol dictionary
(ESD) unless it is referenced by a Q-type address constant.

2. The DSECT instruction also defines an external dummy
saection, but only if the symbol in the name field appears in
a Q-type address constant in the same source module.
Otherwise, a DSECT instruction defines a dummy section.

The format of the DXD instruction is:

Name Operation Operand

A symbol DXD Duplication factor,
type, modifiers,
nominal value

The symbol in the name field must appear in the operand of a
Q-type constant. This symbol represents the address of the

first byte of the external dummy section defined, and has a

length attribute value of 1.

The subfields in the operand field (duplication factor, type.,
modifier, and nominal value) are specified in the same way as in
a DS instruction. The assembler computes the amcunt of storage
and the alignment required for an external dummy section from
the area specified in the operand field.

The linkage editor or loader uses the information provided by
the assembler teo compute the total length of storage required
for all external dummy sections specified in a program.

Note: If two or more external dummy sections for different
source modules have the same name, the linkage editor uses the
most restrictive alignment, and the largest section to compute
the total length.

cXp—cumulative Length External bummy Section

The CXD instruction allows you to reserve a fullword area in
storage. The linkage editor or loader will insert into this
area the total length of all external dummy sections specified
in the source modules that are assembled and linked into one
program.

The format for the CXD instruction is:

Name Operation Operand
Any symbol or CXD Not required
blank

Chapter 3. Addressing, Program Sectioning, and Linking 63

SYMBOLIC LINKAGES

The symbol in the name field, if specified, represents the

address of a fullword area aligned on a fullword boundary. This '
symbol has a length attribute value of 4. The linkage editor or C:jD
loader inserts into this area the total length of storage

required for all the external dummy sections specified in a

program.

The following example shows how external dummy sections may be

used.

ROUTINE A
Name Operation Operand
ALPHA DXD 2DL8
- BETA DXD 4FLG
OMEGA CXD
DC QCALPHA)
DC Q(BETA)
ROUTINE B
Name Operation operand
GAMMA DXD 5D
DELTA DXD 10F
DC QUGAMMA) S~
DC Q(DELTA) Qk'*
. v
ROUTINE €
Name ’ Operation Operand
EPSILON DXD 4H
DC Q(EPSILON)

Each of the three routines is requesting an amount of work area.
Routine A wants 2 doublewords and 4 fullwords; Routine B wants 5
doublewords and 10 fullwords; Routine C wants 4 halfuwords. At
the time these routines are brought into storage, the sum of the
individual lengths will be placed in the location of the CXD
instruction labeled OMEGA. Routine A can then allocate the
amount of storage that is specified in the CXD location.

Symbols may be defined in one module and referred to in another,
thus effecting symbolic linkages between independently assembled
program sections. The linkages can be effected only if the
assembler is able to provide information about the linkage
symbols to the linkage editor, which resolves these linkage
references at load time. &

64 Assembler H Version 2 Application Programming: Language Reference

Establishing symbolic linkage: You must establish symbolic
linkage between source modules so that you can refer or branch
to symbolic locations defined in the control sections of
external source modules. To establish symbolic linkage with an
external source module, you must do the following:

. In the current source module, you must identify the symbols
that are not defined in that source module, if vou wish to
use them in instruction operands. These symbols are called
external symbols, because they are defined in another
(external) source module. You identify external symbols in
the EXT%N or WXTRN instruction, or the V-type address
constant.

. In the external source modules, you must identify the
symbols that are defined in those source modules, and to
which vou refer from the current source module. These
symbols are called entry symbols, because they provide
points of entry to a control section in a source module.
You identify entry symbols with the ENTRY instruction.

. You must provide the A-type or V-type address constants
needed by the assembler to reserve storage for the addresses
represented by the external symbols.

The assembler places information about entry and external
symbols in the external symbol dictionary. The linkage editor
uses this information to resolve the linkage addresses
identified by the entry and external symbols.

Referring to external data: You should use the EXTRN instruction
to identify the external symbol that represents data in an
external source module, if you wish to refer to this data
symbolically.

For example, you can identify the address of a data area as an
external symbol and load the address constant specifying this
symbol into a base register. Then, you use this base register
when establishing the addressability of a dummy section that
formats this external data. You can now refer symbolically to
the data that the external area contains.

You must also identify, in the source module that contains the
data area, the address of the data as an entry symbol.

Branching to an external address: You should use the V-type
address constant to identify the external symbol that represents
the address in an external source module to which you wish to

"~ branch.

For example, vou can load into a register the V-type address
constant that identifies the external symbol. Using this
register, you can then branch to the external address
represented by the symbol.

If the symbol is the name entry of a START or CSECT instruction
in the other source module, and thus names an executable control
section, it is automatically identified as an entry symbol. If
the symbol represents an address in the middle of a control
section, you must identify it as an entry symbol for the
external source module.

You can also use a combination of an EXTRN instruction to
identify, and an A-type address constant to contain, the
external branch address. However, the V-type address constant
is more convenient because:

. You do not have to use an EXTRN instruction.
. The symbol identified is not considered as defined in the

source module, and can be used as the name entry for any
other statement in the same source module.

Chapter 3. Addressing, Program Sectioning, and Linking 65

ENTRY—1Identify Entry-Point Symhol

The ENTRY instruction allows you to identify symbols defined in Q:WN
one source module so that they can be referred to in another :,y)
source module. These symbols are entry symbols.

Thae format for the ENTRY instruction is:

Name Operation operand ,

A sequence ENTRY One or more relocatable

symbol or blank symbols, separated by
commas

The following applies to the entry symbols identified in the
operand field:

. They must be valid symbols.
. They must be defined in an executable control section.

. They must not be defined in a dummy control section, a
common control section, or an external control section.

. The length attribute value of entry symbols is the same as
the length attribute value of the symbol at its point of
definition.

A symbol used as the name entry of a START or CSECT instruction
is also automatically considered an entry symbol, and does not
have to be identified by an ENTRY instruction.

The assembler lists each entry symbol of a source module in an
external symbol dictionary, along with entries for external
symbols, common control sections, and external control sections.

'
\Y

There is no restriction on the number of control sections,
external symbols, and external dummy sections allowed by the
assembler. The maximum number depends on the amount of main
storage available during link editing.

EXTRN—Identify External Symbol

The EXTRN instruction allows vou to identify symbols referred to
in a source module but defined in another source module. These
symbols are external symbols.

The format of the EXTRN statement is:

Name Operation Operand

A sequence EXTRN One or more relocatable

symbol or blank symbols, separated by
commas

EXTERNAL SYMBOLS: The following applies to the external symbols
identified in the operand field:

. They must be valid symbols.

. They must not be used as the name entry of a source
statement in the source module in which they are identified.

. They have a length attribute value of 1.

J They must be used alone and cannot be paired when used in an
expression.

66 Assembler H Version 2 Application Programming: Language Reference

The assembler lists each external symbol identified in a source
module in the external symbol dictionary, along with entries for
ent;y symbols, common control sections, and external control
sections.

There is no restriction on the number of control sections,
external symbols, and external dummy sections allowed by the
assembler. The maximum number depends on the amount of main
storage available during link editing.

UXTRN—Identify Heak External Symbol

The WXTRN statement allows vou to identify symbols referred to
in a source module but defined in another source module. The
WXTRN instruction differs from the EXTRN instruction as follows:

. The EXTRN instruction causes the linkage editor to make an
automatic search of libraries to find the module that
contains the external symbols that you identify in its
operand field. If the module is found, linkage addresses
are resolved; the module is then linked to vour module,
which contains the EXTRN instruction.

. The WXTRN instruction suppresses this automatic search of
libraries. The linkage editor will only resolve the linkage
addresses if the external symbols that vou identify in the
WXTRN operand field are defined:

- In a module that is linked and loaded along with the
object module assembled from your source module, or

- In a module brought in from a library because of the
presence of an EXTRN instruction in another module
linked and loaded with yours.

The format of the WXTRN instruction is:

Name cperation Operand

A sequence WXTRN one or more relocatable

symbol or blank symbols separated by
commas

The external symbols identified by a WXTRN instruction have the
same properties as the external symbols identified by the EXTRN
instruction. However, the type code assigned to these external
symbols differs.

Note: If a symbol, specified in a V-type address constant, is
also identified by a WXTRN instruction, it is assigned the same
type code as the symbol in the WXTRN instruction.

If an external symbol is identified by both an EXTRN and WXTRN
instruction in the same source module, the first declaration
takes precedence, and subsequent declarations are flagged with
warning messages.

Chapter 3. Addressing, Program Sectioning, and Linking 67

CHAPTER 4. MACHINE INSTRUCTION STATEMENTS

O

This chapter introduces the main functions of the machine
instructions and provides general rules for coding them in their
symbolic assembler language format. For the complete
specifications of machine instructions, their object code
format, their coding specifications, and their use of registers
and virtual storage areas, see the appropriate principles of
operation manual for your processor.

At assembly time, the assembler converts the symbolic assembler
language representation of the machine instructions to the
corresponding object code. It is this object code that the
computer processes at execution time. Thus, the functions
described in this section can be called execution time
functions.

Also at assembly time, the assembler creates the object code of
the data constants and reserves storage for the areas you
specify in your DC and DS assembler instructions (see "Data
Definition Instructions™ on page 90). At execution time, the
machine instructions can refer to these constants and areas, but
the constants themselves are not executed.

As defined in the appropriate principles of operation manual,
there are five categories of machine instructions:

. General instructions

. Decimal instructions

. Floating-Point instructions N
. Control instructions &hﬂ/
. Input/Output operations

Each is discussed in the following sections.

GENERAL TNSTRUCTIONS

You use general instructions to manipulate data that resides in
general registers or in storage, or that is introduced from the
instruction stream. These instructions include fixed-point,
logical, and branching instructions; in addition, they include
unprivileged status-switching instructions. Some general
instructions operate on data that resides in the PSW or the TOD
clock.

The general instructions treat data as being of four types:
signed binary integers, unsigned binary integers, unstructured
logical data, and decimal data. Data is treated as decimal by
the conversion, packing, and unpacking instructions.

For further information, see "General Instructions™ in the
appropriate principles of operation manual.

DECIMAL INSTRUCTIONS

You use the decimal instructions when you wish to perform

arithmetic and editing operations on data that has the binary

equivalent of decimal representation, either in packed or zoned

form. These instructions treat all numbers as integers. For

example, 3.1%, 31.4, and 314 are all processed as 314. You must PN
keep track of the decimal point yourself. a -

Additional operations on decimal data are provided by several of
the instructions in "General Instructions™ in the appropriate

68 Assembler H Version 2 Application Programming: Language Reference

C

principles of operation manual. Decimal operands always reside
in storage, and all decimal instructions use the 55 format.

For further infon@ation. see "Decimal Instructions™ in the
appropriate principles of operation manual.

FLOATING-POINT INSTRUCTIONS

You use floating-point instructions when you wish to perform
arithmetic operations on binary data that represents both
integers and fractions. Thus, you do not have to keep track of
the decimal point in your computations. Floating-point
instructions also allow you to perform arithmetic operations on
both very large numbers and very small numbers, with greater
precision than with fixed-point instructions.

For further information, see "Floating-Point Instructions” in
the appropriate principles of operation manual.

CONTROL TNSTRUCTIONS

Control instructions include all privileged and semiprivileged
machine instructions, except the input/output instructions (see
below).

Privileged instructions may be executed only when the processor
is in the supervisor state. An attempt to execute an installed
privileged instruction in the problem state generates a
privileged-operation exception.

Semiprivileged instructions are those instructions that can be
executed in the problem state when certain authority
requirements are met. An attempt to execute an installed
semiprivileged instruction in the problem state when the
authority requirements are not met generates a
privileged-operation exception or some other
program—interruption condition depending on the particular
requirement that is violated.

For further details, see "Control Instructions™ in the
appropriate principles of operation manual.

INPUT/0UTPUT OPERATIONS

You can use the input/output instructions (instead of the
IBM-suppled system macro instructions) when you wish to control
your input and output operations more closely.

The input or output instructions allow you to identify the
channel or the device on which the input or output operation is
to be performed. However, these are privileged instructions,
and you can use them only when the processor is in the
supervisor state but not when it is in the problem state.

For more information, see "Input/Qutput Operations™ in the
appropriate principles of operation manual.

BRANCHING WITH EXTENDED MNEMONIC CODES

The branching instructions described below allow you to specify
a mnemonic code for the condition on which a branch is to occur.
Thus, you avoid having to specify the mask value required by the
BC and BCR branching instructions. The assembler translates the
mnemonic code that represents the condition into the mask value,
which is then assembled in the object code of the machine
instruction.

Chapter 4. Machine Instruction Statements 69

The extended mnemonic codes are given in Figure 17 on page 71.

They can be used as operation codes for branching instructions, ¢
replacing the BC and BCR machine instruction codes (see (1) in C:jb
Figure 17). Note that the first operand (see (2) in Figure 17) =
of the BC and BCR instructions must not be present in the

operand field (see (3) in Figure 17) of the extended mnemonic

branching instructions.

Note: The addresses represented are explicit addresses (see (4)
in Figure 17); however, implicit addresses can also be used in
this type of instruction.

. STATEMENT FORMATS

Machine instructions are assembled into object code according to
one of the formats given below:

Basic Format Length Attribute

E
RR
RRE
RS
RX
S
SI
SS
SSE

R PLLLRNN

When you code machine instructions, you use symbolic formats
that correspond to the actual machine language formats. Within
each basic format, you can also code variations of the symbolic
representation, divided into groups according to the basic
formats illustrated below.

AN
The assembler converts only the operation code and the operand &k 2
entries of the assembler language statement into object code. e
The assembler assigns to the symbol you code as a name entry the
value of the address of the leftmost byte of the assembled
instruction. When yvou use this same symbol in the operand of an
assembler language statement, the assembler uses this address
value in converting the symbolic operand into its object code
form. The length attribute assigned to the symbol depends on
the basic machine language format of the instruction in which
the symbol appears as a name entry.

A remarks entry is not converted into object code.

An example of a typical assembler language statement follows:
LABEL L 4,256(5,10) LOAD INTO REG4

where
LABEL is the name entry.
L is the operation code (converted to 58).
4 is the register operand (copied).
256(5,10) are the storage operand entries (converted to 5A100).
LOAD INTO REG4 (remarks) is not converted into object code.

The object code of the assembled instruction, in hexadecimal,
183

5845A100 (4 bytes in RX format)
SYMBOLIC OPERATION CODES

statement. The symbolic operation code indicates the type of
operation to be performed; for example, A indicates the addition
operation. See Appendix D, "Macro Language Summary” for a
complete list of symbolic operation codes; see the appropriate

You must specify an operation code for each machine instruction §::§

70 Aséembler H Version 2 Application Programming: Language Reference

Extended Code Meaning Format (Symbolic) Machine
Instruction Equivalent
) 0

B D2(X2,B2) } Unconditional Branch RX BC 15,D2(X2,B2)
BR R2 RR BCR 15,R2
NOP D2(X2,B2) No Operation RX BC 0,D2(X2,B2)
NOPR R2 RR BCR 0,R2

Used After Compare Instructions
BH D2(X2,B2) Branch on High RX BC 2,D2(X2,B2)
BHR R2 RR BCR 2,R2
BL D2(X2,B2) Branch on Low RX BC 4,D2(X2,B2)
BLR R2 RR BCR 4,R2
BE D2(X2,B2) Branch on Equal RX BC 8,D2(X2,B2)
BER R2 RR BCR 8,R2
BNH D2(X2,B2) Branch on Not High RX BC 13,D2(X2,B2)
BNHR R2 RR BCR 13,R2
BNL D2(X2,B2) Branch on Not Low RX BC 11,D2(X2,B2)
BNLR R2 RR BCR 11,R2
BNE D2(X2,B2) Branch on Not Equal RX BC 7,D2(X2,B2)
BNER R2 } RR BCR 7,R2

Used After Arithmetic |nstructions
BO D2 (X2,B2) } Branch on Overflow RX BC 1,D2(X2,B2)
BOR R2 RR BCR 1,R2
BP D2 (X2,B2) } Branch on Plus RX BC 2,D2(X2,B2)
BPR R2 RR BCR 2,R2
BM D2 (X2,B2) } Branch on Minus RX BC 4,D2(X2,B2)
BMR R2 RR BCR 4,R2
BNP D2(X2,B2) } Branch on Not Plus RX BC 13,D2(X2,B2)
BNPR R2 RR BCR 13,R2
BNM D2(X2,B2) } Branch on Not Minus RX BC 11,D2(X2,B2)
BNMR R2 RR BCR 11,R2
BN2Z D2(X2,B2) } Branch on Not Zero RX BC 7,D2(X2,B2)
BNZR R2 RR BCR 7,R2
BZ D2(X2,B2) } Branch on Zero RX BC 8,D2(X2,B2)
BZR R2 RR BCR 8,R2
BNO D2(X2,B2) Branch on No Overflow RX BC 14,D2(X2,B2)
BNOR R2 } RR BCR 14,R2

Used After Test Under Mask Instructions
BO D2(X2,B2) } Branch if Ones RX BC 1,D2(X2,B2)
BOR R2 RR BCR 1,R2
BM D2 (X2,B2) } Branch if Mixed RX BC 4,D2(X2,B2)
BMR R2 RR BCR 4,R2
BZ D2 (X2,B2) } Branch if Zeros RX BC 8,D2(X2,B2)
BZR R2 RR BCR 8,R2
BNO D2(X2,B2) } Branch if Not Ones RX BC 14,D2(X2,B2)
BNOR R2 RR BCR 14,R2
BNM D2(X2,B2) } Branch if Not Mixed RX BC 11,D2(X2,B2)
BNMR R2 RR BCR 11,R2
BNZ D2 (X2,B2) Branch if Not Zeros RX BC 7,D2(X2,B2)
BNZR R2 RR BCR 7,R2

D2=displacement,X2=index register,B2=base register,R2=register containing

branch address

Figure 17. Extended Mnemonic Codes

Chapter 4. Machine Instruction Statements

71

principles of operation for the formats of the corresponding

machine instructions. h
The general format of the machine instruction operation code is:

VERB [MODIFIER] [DATA TYPE] [MACHINE FORMAT]
The verb must always be present. It usually consists of one or
two characters and specifies the operation to be performed. The
verb is underscored in the following examples:

A 3,AREA

or

MVC TO,FROM
where

A indicates an add operation, and
MV indicates a move operation.

The other items in the operation code are not always present.
They include the following (underscores are used to indicate
modifiers, data types, and machine formats in the examples
below):
. Modifier, which further defines the operation

AL 3,AREA where L indicates a logical operation

. Type qualifier, which indicates the type of data used by the
instruction in its operation

CVB 3,BINAREA where B indicates binary data
MVC T0,FROM where € indicates character data
™
AE 2,FLTSHRT where E indicates normalized short g;)
floating—-point data =

AD 2,FLTLONG where D indicates normalized long
floating-point data

o Format qualifier, R or I, which indicates that an RR or SI
machine instruction format is assembled

ADR 2,4 where R indicates an RR instruction

MVI FIELD,X'Al' where I indicates an SI instruction

OPERAND ENTRIES

You must specify one or more operands in each machine
instruction statement to provide the data or the location of the
data upon which the machine operation is to be performed. The
operand entries consist of one or more fields or subfields,
depending on the format of the instruction being coded. They
ca: specify a register, an address, a length, and immediate
data.

You can code an operand entry either with symbols or with
self-defining terms. You can omit length fields or subfields,
whlcb the assembler will compute for you from the other operand
entries.

72 Assembler H Version 2 Application Programming: Language Reference

REGISTERS

The rules for coding operand entries are:

1. A comma must separate operands.

2. Parentheses must enclose subfields.

3. A comma must separate subfields enclosed in parentheses.

If a subfield is omitted because it is implicit in a symbolic
address, the parentheses that would have enclosed the subfield
must be omitted.

If two subfields are enclosed in parentheses and separated by
commas, the following applies:

. If both subfields are omitted because they are implicit in a
symbolic entry, the separating comma and the parentheses
that would have been needed must also be omitted.

. If the first subfield is omitted, the comma that separates
it from the second subfield must be written, as well as the
enclosing parentheses.

. If the second subfield is omitted, the comma that separates
it from the first subfield must be omitted; however, the
enclosing parentheses must be written.

Note: Blanks must not appear within the operand field, except
as part of a character self-defining term, or in the
specification of a character literal.

You can specify a register in an operand for use as an
arithmetic accumulator, a base register, an index register, and
as a general depository for data to which you wish to refer
repeatedly.

You must be careful when specifying a register whose contents
have been affected by the execution of another machine
instruction, the control program, or an IBM-supplied system
macro instruction.

For some machine instructions, you are limited in which
registers you can specify in an operand.

The expressions used to specify registers must have absolute
values; in general, registers 0 through 15 can be specified for
machine instructions. However, the following restrictions on
register usage apply:

1. The floating-point registers (0, 2, 4, or 6) must be
specified for floating-point instructions.

2. The even-numbered registers (0, 2, 4, 6, 8, 10, 12, 14) must
be specified for the following groups of instructions:

a. The double-shift instructions
b. The fullword multiply and divide instructions
c. The move long and compare logical long instructions
3. The floating-point registers 0 and 4 must be specified for
the instructions that use extended floating-point data: AXR,
SXR, LRDR, MXR, MXDR, MXD, and DXR.
Note: The assembler checks the registers specified in the
instruction statements of the above groups. If the specified
register does not comply with the stated restrictions, the

assembler issues a diagnostic message and does not assemble the
instruction.

Chapter 4. Machine Instruction Statements 73

Register Usage by Machine Instructions

Registers that are not explicitly coded in the symbolic
assembler language representation of machine instructions, but

are,

nevertheless, used by the assembled machine instructions,

are divided into two categories:

1.

The base registers that are implicit in the symbolic
addresses specified. These implicit addresses are described
in detail in "Addresses." The registers can be identified
by examining the object code of the assembled machine
instruction or the USING instruction(s) that assigns base
registers for the source module.

The registers that are used by machine instructions in their
operations, but do not appear even in the assembled object
code. They are as follows:

a. For the double shift and fullword multiply and divide
instructions, the odd-numbered register, whose number is
one greater than the even-numbered register specified as
the first operand.

b. For the Move Long and Compare Logical Long instructions,
the odd-numbered registers, whose number is one greater

than the even—numbered registers specified in the two
operands.

¢. For the Branch on Index High (BXH) and the Branch on

Index Low or Equal (BXLE) instructions, if the register

specified for the second operand is an even—-numbered

register, the next higher odd-numbered register is used

to contain the value to be used for comparison.

d. For the Translate and Test (TRT) instruction, registers

1 and 2 are also used.

e. For the Load Multiple (LM) and Store Multiple (STM)
instructions, the registers that lie between the
registers specified in the first two operands.

Register Usage by System

ADDRESSES

The control program of the IBM System/370 uses registers 0, 1,

13, 14, and 15.

You can code a symbol in the name field of a machine instruction
statement to represent the address of that instruction. You can

then refer to the symbol in the operands of other machine

instruction statements. The object code for the IBM System/370

requires that all addresses be assembled in a numeric
base-displacement format. This format allows you to specify
addresses that are relocatable or absolute.

You must not confuse the concepts of relocatability with the
actual addresses that are coded as relocatable, nor with the
format of the addresses that are assembled.

DEFINING SYMBOLIC ADDRESSES: You define symbols to represent
either relocatable or absolute addresses. You can define
relocatable addresses in two ways:

1. By using a symbol as the label in the name field of an
assembler language statement

2. By equating a symbol to a relocatable expression

You can define absolute addresses (or values) by equating a
symbol to an absolute expression.

74 Assembler H Version 2 Application Programming: Language Reference

®

C

REFERRING TO ADDRESSES: You can refer to relocatable and
absolute addresses in the operands of machine instruction
statements. (Such address references are also called addresses
in this manual.) The two ways of coding addresses are:

1. Implicitly; that is, in a form that the assembler must first
convert into an explicit base-displacement form before it
can be assembled into object code

2. Explicitly; that is, in a form that can be directly
assembled into object code

Relocatability of Addresses

Addresses in the base-displacement form are relocatable,
because:

L Each relocatable address is assembled as a displacement from
a base address and a base register.

. The base register contains the base address.

. If the object module assembled from your source module is
relocated, only the contents of the base register need
reflect this relocation. This means that the location in
virtual storage of your base has changed, and that your base
register must contain this new base address.

. Your addresses have been assembled as relative to the base
address; therefore, the sum of the displacement and the
contents of the base register will point to the correct
address after relocation.

Note: Absolute addresses are also assembled in the
base-displacement form, but always indicate a fixed location in
virtual storage. This means that the contents of the base
register must always be a fixed absolute address value
regardless of relocation.

Machine or Object Code Format

Implicit Address

All addresses assembled into the object code of the IBM
System/370 machine instructions have the format given in
Figure 18 on page 76

The addresses represented have a value that is the sum of a
displacement (see (1) in Figure 18) and the contents of a base
register (see (2) in Figure 18).

Note: In RX instructions, the address represented has a value
that is the sum of a displacement, the contents of a base
register, and the contents of an index register (see (3) in
Figure 18).

An implicit address is specified by coding one expression. The
expression can be relocatable or absolute. The assembler
converts all implicit addresses into their base-displacement
form before it assembles them into object code. The assembler
converts implicit addresses into explicit addresses only if a
USING instruction has been specified. The USING instruction
assighs both a base address, from which the assembler computes
displacements, and a base register, to contain the base address.
The base register must be loaded with the correct base address
at execution time. For details on how the USING instruction is
used when establishing addressability, thus allowing implicit
references, see "Addressing within Source Modules: Establishing
Addressability™ in "Chapter 6. Introduction to Macro Language."

Chapter 4. Machine Instruction Statements 75

Format Coded or Symbolic Object Code
Representation of Representation
Explicit Addresses of Addresses
8 bits 4 bits | 4 bits|{ 4 bits| 12 bits 4 bits| 12 bits
Operation iBase Displacement | Base | Displacement
Code ERego Reg-
" ister ister
RS | D2(B2) opcope; R TR3 [B2] D2 |
ST | D1(B1) opcove! "z [BI] b1] ?/ON
ss | D1(,B1),D2(B2) opCopE; L [B1] D1 [B2 D2
RX | D2(X2,B2) P CODE! R1 [x2 [B2 D2
Index
Register
. -
S D1(B1) [OPCODE ___ __ __ B1 D1
SSE | D1(B1),D2(B2) [OPCODE __|['B1 D1 B2 D2
R1 and R3 represent registers
12 represents an immediate value
L represents a length value

Figure 18. Object Code Format

Explicit Address

76 Assembler H Version 2 Application Programming: Language Reference

An explicit address is specified by coding two absolute
expressions as follows:

the range 0 through 15.

The first is an absolute expression for the displacement,

whose value must lie in the range 0 through 4095 (4095 is

the maximum value that can be represented by the 12 binary
bits available for the displacement in the object code).

The second (enclosed in parentheses) is an absolute
expression for the base register, whose value must lie in

LENGTHS

IMMEDIATE DATA

If the base register contains a value that changes when the
program is relocated, the assembled address is relocatable. If
the base register contains a fixed absolute value that is
ugaf{e:ted by program relocation, the assembled address is
absolute.

Notes:

1. An explicit base register designation must not accompany an
implicit address.

2. However, in RX instructions, an index register can be coded
with an implicit address as well as with an explicit
address.

3. MWhen two addresses are required, one address can be coded as
an explicit address, and the other as an implicit address.

You can specify the length field in an S$S-type instruction.

This allows you to indicate explicitly the number of bytes of
data at a virtual storage location that is to be used by the
instruction. However, you can omit the length specification,
because the assembler computes the number of bytes of data to be
gs:d from the expression that represents the address of the

ata.

IMPLICIT LENGTH: When a length subfield is omitted from an
95-type machine instruction, an implicit length is assembled
into the object code of the instruction. The implicit length is
either of the following:

. For an implicit address, it is the length attribute of the
first or only term in the expression representing the
implicit address.

. For an explicit address, it is the length attribute of the
first or only term in the expression that represents the
displacement.

EXPLICIT LENGTH: When a length subfield is specified in an
$S-type machine instruction, the explicit length thus defined
always overrides the implicit length.

Notes:

1. An implicit or explicit length is the effective length. The
length value assembled is always one less than the effective
length. If an assembled length value of 0 is desired, an
explicit length of 0 or 1 can be specified.

2. In the S$S instructions requiring one length value, the
allowable range for explicit lengths is 0 through 256. In
the S5 instructions requiring two length values, the
allouwable range for explicit lengths is 0 through 16.

In addition to addresses, registers, and lengths, some machine
instruction operands require immediate data. Such data is
assembled directly into the object code of the machine
instructions. You use immediate data to specify the bit
patterns for masks or other absolute values you need.

You should be careful to specify immediate data only where it is
required. Do not confuse it with address references to
constants and areas, or with any literals you specify as the
operands of machine instructions.

Immediate data must be specified as absolute expressions whose
range of values depends on the machine instruction for which the

Chapter 4. Machine Instruction Statements 77

data is required. The immediate data is assembled into its
4-bit or 8-bit binary representation.

O
EXAMPLES OF CODED MACHINE INSTRUCTIONS

RR Format

RRE Format

The examples that follow are grouped according to machine
instruction format. They illustrate the various ways in which
vou can code the operands of machine instructions. Both
symbolic and numeric representation of fields and subfields are
shown in the examples. You must, therefore, assume that all
symbols used are defined elsewhere in the same source module.

The object code assembled from at least one coded statement per
group is also included. A complete summary of machine
instruction formats with the coded assembler language variants
can be found in Appendix A, "Machine Instruction Format™ and the
appropriate principles of operation manual.

You use the instructions with the RR format mainly to move data
between registers. The operand fields must thus designate
registers, with the following exceptions:

. In BCR branching instructions, when a 4-bit branching mask
replaces the first register specification (see 8 in GAMMAL
instruction below)

. In SVC instructions, where an immediate value (between 0 and
255) replaces both registers (see 200 in DELTAL instruction
below)

Notae: Symbols used in RR instructions (see INDEX,REG2 in ALPHA2
instruction below) are assumed to be equated to absolute values —

between 0 and 15. C;\>
Examples of RR format instructions: o

Hame - Operation gperand

ALPHAL LR 1,2

ALPHAZ2 LR INDEX,REG2

GAMMAL BCR 8,12

DELTAL Sve 200

DELTA2 SvVC TEN

When assembled, the object code of the ALPHAlL instruction, in
hexadecimal, is:

1812
where

18 is the operation code.
1l is register R1.
2 is register R2.

You use the instructions with the RRE format mainly for control
operations. The operand field must designate one or two
registers, depending on the specific instruction. If the
instruction has only one register operand, then register 2 is
assembled as a zero in the object code.

@

78 Assembler H Version 2 Application Programming: Language Reference

Examples of RRE format instructions:

Name Operation Operand
ALPHAL IPM REGS
ALPHA2 IPTE 6,7
BETA DXR 0,4

Note: Symbols used in RRE instructions (such as REG5) are
assumed to be equated to absolute values between 0 and 15.

When assembled, the object code of the BETA instruction, in
hexadecimal, is:

B22D000¢%
where

B22D is the operation code.
00 is zero.

0 is register R1.

4 is register R2.

RS Format

You use the instructions with the RS format mainly to move data
between one or more registers and virtual storage, or to compare
data in one or more registers.

In the Insert Characters under Mask (ICM) and the Store
Characters under Mask (STCM) instructions, a 4-bit mask (see
X'E' and MASK in the DELTA instructions below), with a value
between 0 and 15, replaces the second register specifications.

Notes:

1. Symbols used to represent registers (see REG4, REG6, and
BASE in the ALPHA2 instruction below) are assumed to be
equated to absolute values between 0 and 15.

2. Symbols used to represent implicit addresses (see AREA and
IMPLICIT in the BETAl and DELTA2 instructions below) can be
either relocatable or absolute.

3. Symbols used to represent displacements (see DISPL in the
BETA2 instruction below) in explicit addresses are assumed
to be equated to absolute values between 0 and 4095.

Examples of RS format instructions:

Name Operation Operand

ALPHAL LM %4,6,20012)

ALPHA2 LM REG4,REG6,20(BASE)
BETAlL STM 4%,6,AREA

BETA2 STM 4%,6,DISPL(BASE)
GAMMAL SLL 2,15

GAMMA2 SLL 2,0¢15)

DELTAL ICM 3,X'E",1024(10)
DELTAZ2 ICM REG3,MASK, IMPLICIT

When assembled, the object code for the ALPHAl instruction, in
hexadecimal, is:

9846C014

Chapter 4. Machine Instruction Statements 79

where

98 is the operation code. GKW\
4 is register R1. kjﬂ
6 is register R3.

C is the base register.

014 is the displacement from the base register.

Khen assembled, the object code for the DELTA1l instruction, in
hexadecimal, is:

BF3EA400
where

BF is the operation code.

3 is register Rl.

E is mask M3.

A is the base register.

400 is the displacement from the base register.

RX Format

You use the instructions with the RX format mainly to move data
between a register and virtual storage. By adjusting the
contents of the index register in the RX instructions, you can
change the location in virtual storage being addressed. The
operand fields must, therefore, designate registers, including
index registers and virtual storage addresses, with the
following exception:

In BC branching instructions, a 4-bit branching mask (see 7
and TEN in the LAMBDA instructions below) with a value
between 0 and 15, replaces the first register specification

Notes: C:;;

1. Symbols used to represent registers (see REGl, INDEX, and
BASE in the ALPHA2 instruction below) are assumed to be
equated to absolute values between 0 and 15.

2. Symbols used to represent implicit addresses (see IMPLICIT
in the GAMMA instructions below) can be either relocatable
or absolute.

3. Symbols used to represent displacements (see DISPL in the
BETA2 and LAMBDAl instructions below) in explicit addresses
are assumed to be equated to absolute values between 0 and
4095,

Examples of RX format instructions:

Name Operation operand

ALPHAL L 1,200(4,10)

ALPHA2 L REG1,200CINDEX,BASE)
BETAlL L 2,200(,10)

BETAZ2 L REG2,DISPL(,BASE)
GAMMAL L 3, IMPLICIT

GAMMA2 L 3,IMPLICITCINDEX)
DELTAL L %,=F'33"

LAMBDA1 BC 7,DISPL(,BASE)
LAMBDA2 BC TEN, ADDRESS

When asseﬁbled, the object code for the ALPHAl instruction, in
hexadecimal, is: .

58164A0C8 @

80 Assembler H Version 2 Application Programming: Language Reference

S Format

SI Format

where

58 is the operation code.

1 is register R1l.

4 is the index register.

A is the base register.

0C8 is the displacement from the base register.

When assembled, the object code for the GAMMALl instruction, in
hexadecimal, is:

58264xyyy
where

58 is the operation code.

2 is register R1l.

4 is the index register.

X is the base register.

vyy is the displacement from the base register (IMPLICIT).

You use the instructions with the S format to perform 1/0 and
other system operations and not to move data in virtual storage.

Examples of 8§ format instructions:

Name operation operand
GAMMA1 SIO 40(9)
GAMMAZ2 SIO0 0(9)
GAMMA3 SIO 40(0)
GAMMA4 SIO0 ZETA

The GAMMALl, GAMMA2, and GAMMA3 instructions specify explicit
addresses. The GAMMA4 instruction specifies an implicit
address. The GAMMA2 instruction specifies a displacement of
zero. The GAMMA3 instruction does not specify a base register.

When assembled, the object code of the GAMMAl instruction, in
hexadecimal, is:

9C009028
where

9C00 is the operation code.
9 is is the base register.
028 is the displacement from the base register.

You use the instructions with the SI format mainly to move
immediate data into virtual storage. The operand fields must,
therefore, designate immediate data and virtual storage
addresses, with the following exception: An immediate field is
not needed (see the GAMMA instructions below) in the statements
whose operation codes are LPSW, SSM, TS, TCH, and TIO.

Notes:

1. Symbols used to represent immediate data (see HEX40 and TEN
in the ALPHA2 and BETAl instructions below) are assumed to
be equated to absolute values between 0 and 255.

2. Symbols used to represent implicit addresses (see IMPLICIT,

KEY, and NEWSTATE in the BETA and GAMMA2 instructions below)
can be either relocatable or absoclute.

Chapter 4. Machine Instruction Statements 81

3. Symbols used to represent displacements (see DISPL40 in the
ALPHA2 instruction below) in explicit addresses are assumed
to be equated to absolute values between 0 and 4095.

Examples of S5I format instructions:

Name | Operation Operand

ALPHAlL CLI 40(9),X"40"

ALPHA2 CLI DISPLGO(NINE),HEX40
BETAL CLI IMPLICIT,TEN

BETAZ2 CLI KEY,C'E"'

GAMMAL LPSW 0(9)

GAMMAZ2 LPSW NEWSTATE

When assembled, the object code for the ALPHALl instruction, in
hexadecimal, is:

95409028
where

95 is the operation code.

40 is the immediate data.

9 is the base register.

028 is the displacement from the base register.

SS Format

You use the instructions with the 55 format mainly to move data
between two virtual storage locations. The operand fields and
subfields must, therefore, designate virtual storage addresses
and the explicit data lengths you wish to include. However, -~
note that, in the Shift and Round Decimal (SRP) instruction, a /’,‘
4-bit immediate data field (see 3 in SRP instruction below), \y
with a value between 0 and 9, is specified as a third operand.]

Notaes:

1. Symbols used to represent base registers (see BASE8 and
BASE7 in the ALPHA2 instruction below) in explicit addresses
?ge assumed to be equated to absolute values between 0 and

2. Symbols used to represent explicit lengths (see NINE and SIX
in the ALPHA2 instruction below) are assumed to be equated
to absolute values between 0 and 256 for 55 instructions
with one length specification, and between 0 and 16 for 5§
instructions with two length specifications.

3. Symbols used to represent implicit addresses (see FIELDI,
FIELD2, and FIELD1,X'8' in the ALPHA3 and SRP instructions
below) can be either relocatable or absolute.

4. Symbols used to represent displacements (see DISP40 and
DISP30 in the ALPHAS5 instruction below) in explicit
addresses are assumed to be equated to absolute values
between 0 and 4095,

82 Assembler H Version 2 Application Programming: Language Reference

SSE Format

Examples of S format instructions:

Name Operation Operand
ALPHAL AP 40(9,8),300(6,7)
ALPHAZ2 AP 40(NINE,BASE8),30(SIX,BASE?7)
ALPHA3 AP FIELD1,FIELD2
ALPHAG AP AREA(9),AREA2(6)
ALPHAS AP DISP40(,8),DISP30(,7)
BETA1l MVC 0(80,8),0(7)
BETA2 MvC DISPO(,8),DISP0O(7)
BETA3 MVC T0O, FROM
SRP FIELD1,X'8"',3

When assembled,

hexadecimal,

is:

FA858028701E

where

the object code for

FA is the operation code.

8 is length L1.
5 is length L2.

8 is base register Bl.

028 is the displacement from base

7 is base register B2.

0lE is the displacement from base

When assembled,

hexadecimal,

is:

D24F80007000

where

the object code for

D2 is the operation code.

4F is length L.

8 is base register Bl.

000 is the displacement from base

7 is base register B2.

000 is the displacement from base

the ALPHAl instruction, in

register Bl.

register B2.

the BETAl instruction, in

register Bl.

register B2.

You use the instructions with the SSE format mainly for control

operations.

The operand fields designate virtual storage

addresses, encoded as base and displacement.

Examples of SSE format instructions:

Name Cperation Operand

ALPHAL LASP 40(BASE8),30(BASE?)

ALPHAZ2 LASP 40(8),30(7)

BETAL TPROT LOCl,L0C2

BETA2 TPROT DISP40(8),DISP30(3)
Notes:

1. Symbols used to represent base registers in explicit
addresses (such as BASE8 and BASE7 in the ALPHAL
instruction) are assumed to be equated to absolute values
between 0 and 15.

Chapter 4. Machine Instruction Statements

83

2. Symbols used to represent implicit addresses (such as
LOC1,L0C2 in the BETAl instruction) can either be

relocatable or absolute.

3. Symbols used to represent displacements in explicit
addresses (such as DISP40 and DISP30

in the BETA2

instruction) are assumed to be equated to absolute values

between 0 and 4095.

When assembled, the object code of the ALPHA2 instruction,

hexadecimal, is:
E5008028701E
where

E500 is the operation code.
8 is base register Bl.

028 is the displacement from base register Bl.

7 is base register B2.

01E is the displacement from base register B2.

84 Assembler H Version 2 Application Programming:

Language Reference

in

7N

S

C

CHAPTER 5. ASSEMBLER INSTRUCTION STATEMENTS

This chapter describes the assembly time functions that you can

use.

The following is a list of assembler instructions:

symbol Definition Instruction

EQU

Equate symbol

operation Code Definition Instruction

OPSYN

Equate operation code

Data Definition Instructions

DC
DS
CCW

CClO
CCW1

Program
Chapter

LOCTR

START
AMODE
RMODE
CSECT
CXD

DSECT
DXD

ENTRY
EXTRN
WXTRN
COM

Define constant

Define storage

Define channel command word (Format 0: 24-bit data
address)

Define channel command word (Format 0: 24-bit data
address)

Define channel command word (Format 1: 31-bit data
address)

sectioning and Linking Instructions (discussed in
3)

Specify multiple location counters within a control
section

Start assembly

Specify the addressing mode of a control section
Specify the residence mode of a control section
Identify control section

Cumulative length of external dummy section
Identify dummy section

Define external dummy section

Identify entry-point symbol

Identify external symbol

Identify weak external symbol

Identify blank common control section

Base Register Instructions (discussed in Chapter 3)

USING
DROP

Program

ICTL
ISEQ
PUNCH
REPRO
PUSH
POP
ORG
LTORG
CNOP
coPY
END

Listing

TITLE
EJECT
SPACE
PRINT

Use base address register
Drop base address register

control Instructions

Input format control

Input sequence checking

Punch a card

Reproduce following card

Push-down queue for current PRINT or USING
Restore status of current PRINT or USING
Set location counter

Begin literal pool

Conditional no operation

Copy predefined source coding

End assembly

control Instructions
Identify assembly output
Start new page

Space listing
Print optional data

Chapter 5. Assembler Instruction Statements

85

SYMBOL DEFINITION INSTRUCTION

&
EQU—EQUATE SYMBOL &‘Jy

The EQU instruction allows vou to assign absolute or relocatable
values to symbols. You can use it for the following purposes:

1. To assign single absolute values to symbols.
2. To assign_the values of previously defined symbols or

expressions to new symbols, thus allowing you to use
different mnemonics for different purposes.

3. To compute expressions whose values are unknown at coding
time or difficult to calculate. The value of the
expressions is then assigned to a symbol.

The EQU instruction can be used anywhere in a source module
after the ICTL instruction, or after any source macro
definitions that may be specified. Note, however, that the EQU
instruction can initiate an unnamed control section (private
code) if it is specified before the first control section
(inhitiated by a START or CSECT instruction). The format of the
EQU instruction statement is as follows:

Name Operation Operand
A variable EQU Four options:
symbol or {expressionl|
ordinary expressionl,expression2|
symbol expressionl,expression2,
expression3|
expressionl, ,expression3) L

Note: The two commas in the last option above indicate the
absence of expression 2.

Expression 1 represents a value. It must always be specified
and it may assume any value allowed for an assembly expression:
Absolute (including negative), relocatable, or complexly
relocatable. The assembler carries this value as a signed
4-byte (32-bit) number; all four bytes are printed in the
program listings opposite the symbol.

Any symbols used in the first operand (expression 1) need not be
previously defined. If the expression in the first operand is
complexly relocatable, the whole expression, rather than its
value, is assigned to the symbol. During the evaluation of any
expression that includes a complexly relocatable symbol, that
symbol is replaced by its own defining expression.

Consider the following example, in which Al and A2 are defined
in one control section, and Bl and B2 in another:

Name Operation Operand
X EQU Al+B1
Y EQU X-A2-B2

The first EQU statement assigns a complexly relocatable

expression (Al+Bl) to X. During the evaluation of the

expression in the second EQU statement, X is replaced by its

defining relocatable expression (Al1+Bl), and the assembler

evaluates the resulting expression (Al1+B1-A2-B2) and assigns an

absolute value to Y, because the relocatable terms in the ﬁ%
expression are paired. .

86 Assembler H Version 2 Application Programming: Language Reference

Expression 2 represents a length attribute. It is optional,
but, if specified, it must have an absolute value in the range
of 0 through 65,535. Expression 3 represents a type attribute.
It is optional, but, if specified, must be a self-defining term
with a value in the range of 0 through 255.

Any symbols appearing in expressions 2 and/or 3 must have been
previously defined.

EXPRESSION 1 (VALUE): The assembler assigns the relocatable or
absolute value of expression 1 to the symbol in the name field
at assembly time. If expression 2 is omitted, the assembler
also assigns a length attribute value to the symbol in the name
field according to the length attribute value of the leftmost
(or only) term of expression 1. The length attribute value is
desgr}bed in "Chapter 2. Coding and Structure.™ It is defined
as follows:

1. If the leftmost term is a location counter reference (%), a
self-defining term, or a symbol length attribute value
reference, the length attribute is 1. Note that this also
applies if the leftmost term is a symbol that is equated to
any of these values.

2. If the leftmost term is a symbol that is used in the name
field of a DC or DS instruction, the length attribute value
is equal to the implicit or explicit length of the first (or
only) constant specified in the DC or DS operand field.

3. If the leftmost term is a symbol that is used in the name
field of a machine instruction, the length attribute value

is equal to the length of the assembled instruction.

4. Symbols that name assembler instructions, except the DC and
DS instructions, have a length attribute value of 1.
However, the name of a CCW, CCWO, or CCW1l instruction has a

length attribute value of 8.

5. The length attribute value assigned in cases 2 to % above
only applies to the assembly-time value of the attribute.
Its value at preassembly time, during conditional assembly
processing, is always 1.

6. Further, if expression 3 is omitted, the assembler assigns a
type attribute value of U to the symbol in the name field.

EXPRESSION 2 (LENGTH-ATTRIBUTE VALUE): If expression 2 is
specified, the assembler assigns its value as a length attribute
value to the symbol in the name field. This value overrides the
normal length attribute value implicitly assigned from
expression 1. If expression 2 is a self-defining term, the
assembler also assigns the length attribute value to the symbol
at preassembly time (during conditional assembly processing).

Note: This expression must have been previously defined.

EXPRESSION 3 (TYPE-ATTRIBUTE VALUE): If expression 3 is
specified, it must be a self-defining term. The assembler
assigns its EBCDIC value as a tvpe attribute value to the symbol
in the name field. This value overrides the normal type
attribute value implicitly assigned from expression 1.

Using Preassembly Values: You can use the preassembly values
assigned by the assembler in conditional assembly processing.

If only expression 1l is specified, the assembler assigns a
preassembly value of 1 to the length attribute, and a
preassembly value of U to the type attribute of the symbol.
These values can be used in conditional assembly (although
references to the length attribute of the symbol will be
flagged). The absolute or relocatable value of the symbol,
however, is not assigned until assembly, and thus may not be
used at preassembly.

Chapter 5. Assembler Instruction Statements 87

If you include expressions 2 and 3 and wish to use the explicit
attribute values in preassembly processing, then

1. The symbol in the name field must be an ordinary symbol.

2. Expression 2 and expression 3 must be single self-defining
erms.

SYMBOL IMN THE NAME FIELD: The assembler assigns an absolute or
relocatable value, a length attribute value, and a type
attribute value to the symbol in the name field.

The absoluteée or relocatable value of the symbol is assigned at

assembly time, and is, therefore, not available for conditional

assembly processing at preassembly time.

The type and length attribute values of the symbol are available

for conditional assembly processing under the following

conditions:

. The symbol in the name field must be an ordinary symbol.

. Expression 2 and expression 3 must be single self-defining
terms.

REDEFINING SYMBOLIC OPERATION CODES

OPSYN—EQUATE OPERATION CODE

The OPSYN instruction allows vou to define your oun set of
symbols to represent operation codes for:

. Machine and extended mnemonic branch instructions

. Assembler instructions, including conditional assembly
instructions

You can also prevent the assembler from recognizing a symbol
that represents a current operation code.

The OPSYN instruction has two formats:

Name Operation ’ Operand

Any symbol or OPSYN An operation code
operation code

or
Name Operation | Operand
An operation OPSYN Blank
code

The OPSYN instruction can be coded anywhere in the program to
redefine an operation code.

The operation code specified in the name field or the operand
field must represent either:

1. The operation code of one of the assembler or machine
instructions as described in "Chapter 3. Addressing, Program
Sectioning, and Linking™ on page 40, "Chapter 4. Machine
Instruction Statements,”

88 Assembler H Version 2 Application Programming: Language Reference

"Chapter 5. Assembler Instruction Statements,”™ or"Chapter 9.
How to Write Conditional Assembly Instructions™ on page 195,
respectively, or

2. The operation code defined by a previous OPSYN instruction.

The OPSYN instruction assigns the properties of the operation
code specified in the operand field to the symbol in the name
field. A blank in the operand field causes the operation code
in the name field to lose its properties as an operation code.

Examples:

1. The symbol in the name field can represent a valid operation
code. It loses its current properties as if it had been
defined in an OPSYN instruction with a blank operand field.
In the following example, L and LR will both possess the
properties of the LR machine instruction operation code:

L OPSYN LR

2. When the same symbol appears in the name field of two OPSYN
instructions, the latest definition takes precedence. In
the example below, STORE now represents the STH machine
operation:

STORE OPSYN ST
STORE OPSYN STH

REDEFINING COMDITIONAL ASSEMBLY INSTRUCTIONS: A redefinition of
a conditional assembly operation code will have an effect only
on macro definitions appearing after the OPSYN instruction.
Thus, the new definition is not valid during the processing of
subsequent macro instructions calling a macro that was defined
prior to the OPSYN statement.

Any OPSYN statement redefining the operation code of an
instruction generated from a macro instruction will, however, be
valid, even if the definition of the macro was made prior to the
OPSYN statement. The following example illustrates this

di fference between conditional assembly instructions and model
statements within macro instructions.

Name Operat ion Operand Remark
MACRO macro header
MAC e macro prototype
AIF .en
MVC N
MEND macro trailer
AIF 0PSYN AGO assign AGO properties to AIF
MVC OPSYN MVI assign MVI properties to MVC
ﬁAC cee macro call
[AIF een evaluated as AIF instruction;
generated AIFs not printed]
MVC e evaluated as MVI instruction
. open code started at this point
AIF e evaluated as AGO instruction
MVC e evaluated as MVI instruction

AIF and MVC instructions are used in a macro definition. OPSYN
instructions are used to assign the properties of AGO to AIF and
to assign the properties of MVI to MVC, after the macro
definition has been edited. In subsequent calls to that macro,
AIF is still defined as an AIF operation, while MVC is treated
as an MVI operation. In open code following the OPSYN
instructions, the operations of both instructions are derived
from their new definitions. If the macro is redefined, either
by means of a loop to a point before the macro definition or by
a subsequent macro definition defining the same macro, the new

Chapter 5. Assembler Instruction Statements 89

definitions of AIF and MVC (that is, AGO and MVI) will be fixed
for future expansions.

O
DATA DEFINITION INSTRUCTIONS)

DC—DEFINE CONSTANT

Types of constants

The data definition instruction statements are: Define Constant
(DC), Define Storage (DS), and three types of Channel Command
Words (CCW, CCWO, and CCW1).

These statements are used to define constants, reserve storage,
and specify the contents of channel command words, respectively.
You can also provide a label for these instructions and then
refer to the data symbolically in the operands of machine and
assembler instructions. This data is generated and storage is
reserved at assembly time, and used by the machine instructions
at execution time.

You specify the DC instruction to define the data constants you
need for program execution. The DC instruction causes the
assembler to generate the binary representation of the data
constant vou specify into a particular location in the assembled
source module; this is done at assembly time. :

The DC instruction can generate the following types of
constants:

Binary constants — to define bit patterns.

For example: FLAG DC B'0001000°" »
3

~
Character constants — to define character strings or messages. Q;;y

For example: CHAR DC C'string of characters'

Hexadecimal constants — to define large bit patterns.

For example: PATTERN DC X'FFOOFF00'

Fixed-point constants — for use by the fixed-point and other

instructions of the universal set.

For example: L 3,FCON
FCON DC F'100°

Decimal constants — for use by the decimal instructions.

For example: AP AREA,PCON
PCON pDC P'100°
AREA DS P

Floating-point constants — for use by the floating-point

instructions,

For example: LE 2,ECON
ECON DC E'100.50"

Address constants — to define addresses mainly for the use of

the fixed-point and other instructions in the universal
instruction set.

For example: L 5,ADCON
ADCON DC A(SOMWHERE)

90 Assembler H Version 2 Application Programming: Language Reference

Format of DC Instruction

‘::b The format of the DC instruction statement is as follows:
Name operation Operand
Any symbol DC One or more operands
or blank separated by commas

The symbol in the name field represents the address of the first
byte of the assembled constant. If several operands are
specified, the first constant defined is addressable by the
symbol in the name field. The other constants can be reached by
relative addressing.

Each operand in a DC instruction consists of four subfields: the
first three describe the constant; the fourth provides the
nominal value(s) for the constant(s) to be generated. The
subfields of each DC operand are written in the following

sequence:?

1 ‘ 2 3 4
Duplication Type Modifiers Nominal
Factor Value(s)

For example:
10XL2'FA"
The four subfields are:
1. Duplication factor, such as "10"
2. Type, such as "X"
(::D 3. Modifiers, such as "L2"
4. HNominal value(s), such as "FA"
If all subfields are specified, the order given above is
Ledond ahd fourth must be Seecified in that order. oo Pt Ehe
Rules for DC Operand

1. The type subfield and the nominal value must always be
specified.

2. The duplication factor and modifier subfields are optional.

3. When multiple operands are specified, they can be of
di fferent types.

4, When multiple nominal values are specified in the fourth
subfield, they must be separated by commas and be of the
same type. Multiple nominal values are not allowed for
character constants.

5. The descriptive subfields apply to all the nominal values.

Note: Separate constants are generated for each separate
operand and nominal value specified.

6. No blanks are allowed:
a. Between subfields.

b. Between multiple operands.

c. Within any subfields, unless they occur as part of the
nominal value of a character constant, or as part of a

Chapter 5. Assembler Instruction Statements 91

character self-defining term in a modifier expression,
or in the duplication factor subfield.

Information about Constants

SYMBOLIC ADDRESSES OF CONSTANTS: Constants defined by the DC
instruction are assembled into an object module at the location
at which the instruction is specified. However, the type of
constant being defined will determine whether the constant is to
be aligned on a particular storage boundary or not (see
"Alignment of Constants™ below). The value of the symbol that
names the DC instruction is the address of the leftmost byte
(after alignment) of the first or only constant.

LENGTH ATTRIBUTE VALUE OF SYMEOLS NAMING CONSTANTS: The length
attribute value assigned to the symbols in the name field of the
constants is equal to:

. The implicit length (see (1) in Figuré 19 on page 93) of the
constant when no explicit length is specified in the operand
of the constant, or

. The explicitly specified length (see (2) in Figure 19) of
the constant.

Note: If more than one operand is present, the length attribute
value of the symbol is the length in bytes of the first constant
specified, according to its implicitly or explicitly specified
length.

ALIGNMENT OF CONSTANTS: The assembler aligns constants on
different boundaries according to the following:

. On boundaries implicit to the type of constant (see (1) in
Figure 20 on page 9%) when no length specification is
supplied.

. On byte boundaries (see (2) in Figure 20) when an explicit
length specification is made.

Bytes that are skipped to align a constant at the proper
boundary are not considered part of the constant. They are
filled with zeros.

Notes:

1. The automatic alignment of constants and areas does not
occur if the NOALIGN assembler option has been specified
when the assembler was invoked.

2. Alignment can be forced to any boundary by a preceding DS
(or DC) instruction with a zero duplication factor. This
occurs when either the ALIGN or NOALIGN option is set.

92 Assembier H Version 2 Application Programming: Language Reference

q:jb

e
L

Type of | Implicit E | Value of Length
constant Length‘ xamples Attribute?
B asneeded [DC B'10010000° 1
C asneeded |DC C'WOW' 3
DC CL8'wWOow' 8
X asneeded |DC X'FFEEOQOQ' 3
DC XL2'FFEE' 2
H 2 |DC H'32' 2
F 4 |DC FL3'32" 3
P | asneeded [DC P'123' 2
DC pPL4'123" 4
Z asneeded |DC Z'123' 3
DC ZL10'123" 10
E 4
D 8
L 16
Y 2 |DC Y (HERE) 2
A 4 |DC ALl (THERE) 1
S 2
v 4
Q 4

Figure 19. Length Attribute Value of Symbols Naming Constants

1Dependsontype

2Depends on whether or not an explicit length is specified in constant

Padding and Truncation of Values

The nominal values specified for constants are assembled into

storage. The amount of space available for the nominal value of

a constant is determined:

By the explicit length specified in the second operand

subfield, or

If no explicit length is specified,
according to the type of constant defined (see Appendix

by the implicit length

C, "Summary of Constants™ on page 250).

Chapter 5. Assembler Instruction Statements

93

Type of |Implicit Examples Boundary U
Constant |Boundary Alignment
Alignment’

B byte

C byte

X byte
DC H'25' halfword

H | haltword) o pp 37050 byte

F fullword [DC F'225" fullword
DC FL7'225" ~\\ byte

j2) byte DC P'2934"' byte

Z byte DC z2'1235" byte
DC Z2L2'1235" byte

E fullword |DC E'l.25' _/ fullword
DC EL5'1.25" byte

D |doubleword {[DC 8D'95" doubleword O
DC 8DL7'95" byte

L |doubleword |[DC L'2.57E65" doubleword

Y halfword [DC Y (HERE) / halfword

A fullword |DC AL3 (THERE) byte

S halfword

\Y% fullword

Q fullword

1
Depends on typeh

Figure 20. Alignment of Constants

PADDING: If more space is available than is needed to
accommodate the binary representation of the nominal value, the
extra space is padded:

. With binary zeros on the left for the binary (B),

hexadecimal (X), fixed-point (H,F), packed decimal (P), and
all address (A,Y,5,V,Q) constants %;j%

94 Assembler H Version 2 Application Programming: Language Reference

C

. With EBCDIC zeros on the left (X'F0') for the zoned decimal
(Z) constants

. With EBCDIC blanks on the right (X'40') for the character
(C) constants

Notes:

1. Floating-point constants (E,D,L) are also padded on the
right with zeros.

2. Padding is on left for all constants except the character
constant.

3. Padding is on the right for character constant.

TRUNCATION: If less space is available than is needed to
accommodate the nominal value, the nominal value is truncated
and part of the constant is lost. Truncation of the nominal
value is:

. On the left for the binary (B), hexadecimal (X), decimal (P
and Z), and address (A and Y) constants

. On the right for the character (C) constant

However, the fixed-point constants (H and F) will not be
truncated but flagged if significant bits would be lost through
truncation.

Notes:

1. Floating-point constants (E,D,L) are not truncated; they are
rounded.

2. The above rules for padding and truncation also apply when
the bit-length specification is used (see "Subfield 3:
Modifiers™ below).

subfield 1: Duplication Factor

The duplication factor may be omitted. If specified, it causes
the nominal value or multiple nominal values specified in a
constant to be generated the number of times indicated by the
factor. It is applied after the nominal value or values are
assembled into the constant. Symbols used in subfield 1 need
not be previously defined. This does not apply to literals.

The factor can be specified by an unsigned decimal self-defining
term or by an absolute expression enclosed in parentheses.

The expression should have a positive value or be equal to zero.

Notes:

1. The value of a location counter reference in a duplication
factor is the value before any alignment to boundaries is
done, according to the type of constant specified.

2. A duplication factor of zero is permitted with the following
results:

a. No value is assembled.

b. Alignment is forced according to the type of constant
specified, if no length attribute is present (see
"Alignment of Constants™ above).

c. The length attribute of the symbol naming the constant

is established according to the implicitly or explicitly
specified length.

Chapter 5. Assembler Instruction Statements 95

subfield 2: Type

If duplication is specified for an address constant

containing a location counter reference, the value of the ‘
location counter reference is incremented by the length of q::D
the constant before each duplication is performed (for -

examples, see "Address Constants—A and Y" on page 112.

The type subfield must be specified. From the type
specification, the assembler determines how it is to interpret
the constant and translate it into the appropriate machine
format. The type is specified by a single-letter code as shown
in Figure 21.

Further information about these constants is provided in the
discussion of the constants themselves under "Subfield 4%:
Nominal Value"™ on page 100.

Code Types of Constant Machine Format

Character
Hexadecimal
Binary
Fixed-point
Fixed-point
Floating-point
Floating-point
Floating-point
Decimal
Decimal
Address
Address
Address
Address

Address

D KCKUOUXPNIrFOMIMEXO

8-bit code for each character

4-bit code for each hexadecimal digit

Binary format

Signed, fixed-point binary format; normally a fullword
Signed, fixed-point binary format; normally a halfword
Short floating-point format; normally a fullword

Long floating-point format; normally a doubleword
Extended floating-point format; normally two doublewords
Packed decimal format

Zoned decimal format

Value of address; normally a fullword

Value of address; normally a halfword

Base register and displacement value; a halfword N
Space reserved for external symbol addresses; each C;
address normally a fullword

Space reserved for external dummy section offset

Fi

gure 21. Type Codes for Constants

The type specification indicates to the assembler:

1.

n

subfield 3: Modifiers

96

How the nominal value(s) specified in subfield 4 is to be
assembled; that is, which binary representation or machine
format the object code of the constant must have.

At what boundary the assembler aligns the constant, if no
length specification is present.

How much storage the constant is to occupy, according to the
implicit length of the constant, if no explicit length
spacification is present (for details, see "Padding and
Truncation of Values™ on page 93).

Modifiers describe the length in bytes desired for a constant

(in
for

The
1.

Assembler H Version

contrast to an implied length), and the scaling and exponent
the constant.

three modifiers are:

The length modifier (L), which explicitly defines the length
in bytes desired for a constant. For example:

LENGTH DC XLI1O0'FF'

2 Application Programming: Language Reference

2. The scale modifer ($), which is only used with the
fixed-point or floating-point constants (for details, see
below under "Scale Modifier"). For example:

SCALE DC FS8'35.92°

3. The exponent modifier (E), that is only used with
fixed-point or floating-point constants, and which indicates
the power of 10 by which the constant is to be multiplied
before conversion to its internal binary format. For
example:

EXPON DC EE3'3.41¢4"

If multiple modifiers are used, they must appear in this
sequence: length, scale, exponent. For example:

ALL3 DC DL7S3E50'2.7182"

Symbols used in subfield 3 need not be previously defined. This
does not apply to literals.

LENGTH MODIFIER: The length modifier indicates the number of
bytes of storage into which the constant is to be assembled. It
is written as Ln, where n is either a decimal self-defining term
or an absolute expression enclosed by parentheses. It must have

3 positive value, and any symbols it contains must be previously
efined.

When the length modifier is specified:

L Its value determines the number of bytes of storage
allocated to a constant. It, therefore, determines whether
the nominal value of a censtant must be padded or truncated
to fit into the space allocated (see "Padding and Truncation
of Values™ on page 93).

. No boundary alignment, according to constant type, is
provided (see "Alignment of Constants"™ above).

. Its value must not exceed the maximum length allowed for the
various types of constant defined.

Note: For character constants, when no length is specified, the
whole constant is assembled into its implicit length.

Bit-Length specification: The length modifier can be specified
to indicate the number of bits into which a constant is to be
assembled. The bit-length specification is written as Ln, where
n is either a decimal self-defining term, or an absclute
expression encldsed in parentheses. It must have a positive
value. Symbols that it contains need not be previously defined.

The value of n must lie between 1 and the number of bits (a
multiple of 8) that are required to make up the maximum number
of bytes allowed in the type of constant being defined. The
bit-length specification cannot be used with the $5-, V-, and
Q-type constants.

When only one operand and one nominal value are specified in a
DC instruction, the following rules apply:

1. The bit-length specification allocates a field into which a
constant is to be assembled. The field starts at a byte
boundary and can run over one or more byte boundaries, if
the bit length specified is greater than 8.

If the field does not end at a byte boundary and if the bit
length specified 1is not a multiple of 8, the remainder of
the last byte is filled with zeros.

2. The nominal value of the constant is assembled into the
field:

Chapter 5. Assembler Instruction Statements 97

a. Starting at the high order end for the C-, E-, D-, and

L-type constants Q::D
b. Starting at the low-order end for the remaining types of
constants that allow bit-length specification

3. The nominal value is padded or truncated to fit the field
(see "Padding and Truncation of Values™ on page 93).

Padding of character constants is done witH hexadecimal
blanks, X'40'; other constant types are padded with zeros.

Note: The length attribute value of the symbol naming a DC
instruction with a specified bit length is equal to the minimum
number of integral bytes needed to contain the bit length
specified for the constant. L'TRUNCF is equal to 2. Thus, a
referﬁgcg to TRUNCF mwould address the entire two bytes that are
assembled.

When more than one operand is specified in a DC instruction, or
more than one nominal value in a DC operand, the above rules
about bit~length specifications also apply, except:

1. The first field allocated starts at a byte boundary, but the
succeeding fields start at the next available bit.

2. After all the constants have been assembled into their
respective fields, the bits remaining to make up the last
byte are filled with zeros.

Note: If duplication is specified, filling with zeros
occurs once at the end of all the fields occupied by the
duplicated constants.

3. The length attribute value of the symbol naming the DC

instruction is equal to the number of integral bytes that (”“\
would be needed to contain the bit length specified for the 7
first constant to be assembled. S

storage Requirement for constants: The total amount of storage
required to assemble a DC instruction is the sum of:

1. The requirements for the individual DC operands specified in
the instruction. The requirement of a DC operand is the
product of:

a. The length (implicit or explicit)
b. The number of nominal values
c. The duplication factor, if specified

2. The number of bytes skipped for the boundary alignment
between different operands.

SCALE MODIFIER: The scale modifier specifies the amount of
internal scaling that is desired:

. Binary digits for fixed-point constants (H, F)
. Hexadecimal digits for floating-point constants (E, D, L)

The scale modifier can be used only with the above types of
constant.

The allowable range for each type of constant is as follows:

Fixed-point constants H and F -187 through +346
Floating-point constants E and D 0 through 1%
Floating-point constant L 0 through 28

The scale modifier is written as Sn, where n is either a decimal
self-defining term, or an absolute expression enclosed in
parentheses.

98 Assembler H Version 2 Application Programming: Language Reference

Both types of specification can be preceded by a sign; if no
sign is present, a plus sign is assumed.

scale Modifier for Fixed-Point constants: The scale modifier for
fixed-point constants specifies the power of two by which the
fixed-point constant must be multiplied after its nominal value
has been converted to its binary representation, but before it
is assembled in its final "scaled" form. Scaling causes the
binary point to move from its assumed fixed position at the
right of the rightmost bit position.

Notes:

1. UWhen the scale modifier has a positive value, it indicates
the number of binary positions to be occupied by the
fractional portion of the binary number.

2. When the scale modifier has a negative value, it indicates
the number of binary positions to be deleted from the
integer portion of the binary number.

3. When positions are lost because of scaling (or lack of
scaling), rounding occurs in the leftmost bit of the lost
portion. The rounding is reflected in the rightmost
position saved.

scale Modifier for Floating-Point Constants: The scale modifier
for floating-point constants must have a positive value. It
specifies the number of hexadecimal positions that the
fractional portion of the binary representation of a
floating-point constant is to be shifted to the right. The
hexadecimal point is assumed to be fixed at the left of the
leftmost position in the fractional field. When scaling is
specified, it causes an unnormalized hexadecimal fraction to be
assembled (unnormalized is when the leftmost positions of the
fraction contain hexadecimal zeros). The magnitude of the
constant is retained, because the exponent in the characteristic
portion of the constant is adjusted upward accordingly. When
hexadecimal positions are lost, rounding occurs in the leftmost
hexadecimal position of the lost portion. The rounding is
reflected in the rightmost position saved.

EXPONENT MODIFIER: The exponent modifier specifies the power of
10 by which the nominal value of a constant is to be multiplied
before it is converted to its internal binary representation,
It can only be used with the fixed-point (H and F) and
floating-point (E, D, and L) constants. The exponent modifier
is written as En, where n can be either a decimal self-defining
term, or an absolute expression enclosed in parentheses.

The decimal self-defining term or the expression can be preceded
by a sign: If no sign is present, a plus sign is assumed. The
range for the exponent modifier is -85 through +75.

Notes:

1. The exponent modifier is not to be confused with the
exponent that can be specified in the nominal value subfield
of fixed-point and floating-point constants.

The exponent modifier affects each nominal value specified
in the operand, whereas the exponent written as part of the
nominal value subfield only affects the nominal value it
follows. If both types of ‘exponent specification are
present in a DC operand, their values are algebraically
added together before the nominal value is converted to
binary form. However, this sum must lie within the
permissible range of -85 through +75.

2. The value of the constant, after any exponents have been

applied, must be contained in the implicitly or explicitly
specified length of the constant to be assembled.

Chapter 5. Assembler Instruction Statements 99

subfield 4:

Nominal Value

The nominal value subfield must always be specified. It defines
the value of the constant (or constants) described and affected

by the subfields that precede it. It is this value that is

assembled into the internal binary representation of the

gogftant. The formats for specifying constants are described as
ollows:

®

constant | Single Multiple

Type Nominal Value Nominal value

c 'value! not allowed

B

X

H

F

; 'value' 'value,value,...value"'
E

D

L

A

Y

S (value) (value,value,...value)
Q

v

As the above list shows, a data constant value (any type except
A, Y, S, Q, and V) is enclosed by apostrophes. An address

constant value (type A, Y, S, Q, or V) is enclosed by TN
parentheses. To specify two or more values in the subfield, the &k)
values must be separated by commas, and the entire sequence of 4

values must be enclosed by the appropriate delimiters; that is,
apostrophes or parentheses. Multiple values are not permitted
for character constants.

How nominal values are specified and interpreted by the
assembler is explained in each of the following subsections,
starting with "Binary Constant—B" below.

LYITERAL CONSTANTS: Literal constants allow you to define and
refer to data directly in machine instruction operands. You do
not need to define a constant separately in another part of vour
source module. The difference betuween a literal, a data
constant, and a self-defining term is described in "Literals™ on
page 32.

A literal constant is specified in the same way as the operand
of a DC instruction. The general rules for the operand
subfields of a DC instruction also apply to the subfield of a
literal constant. Moreover, the rules that apply to the
in?{vidual types of constants apply to literal constants as
well.

However, literal constants differ from DC operands in the .
following ways:

L Literals must be preceded by an equal sign.
. Multiple operands are not allowed.

. The duplication factor must not be zero.

100 Assembler H Version 2 Application Programming: Language Reference

The following text describes each of the constant types and
provides examples. The constant types are:

Binary
Character
Hexadecimal
Fixed-Point
Decimal

Packed Decimal
Zoned Decimal
Address
Floating-Point

BINARY COHSTANT—B: The binary constant allows you to specify
the precise bit pattern you want assembled into storage. Each
binary constant is assembled into the integral number of bytes
(see_;;)din Figure 22 on page 102) required to contain the bits
specified.

The following example shows the coding used to designate a
binary constant. BCON would have a length attribute of 1.

Name Operation Operand

BCON DC BvY1i011101"
BTRUNC DC BL1'100100011"
BPAD DC BL1'101"

BTRUNC would assemble with the leftmost bit truncated, as
follows:

00100011
BPAD would assemble with five zeros as padding, as follows:

00000101

Chapter 5. Assembler Instruction Statements 101

Binary Constants

Subfield 3. Constant Type
Binary (B)
1. Duplication Factor Yes
allowed
2. Modifiers As needed

Implicit Length: (Length
Modifier not present)

B DC B'10101111"
C DC B'101'

Alignment:
(Length Modifier not present)

Byte

Range for Length:

1 through 256 (byte length)
.1 through .2048 (bit length)

Range for Scale:

Not ailowed
Range for Exponent: Not allowed
4. Nominal Value Binary digits
(Oor1)
Represented by:
Enclosed by: Apostrophes
Exponent allowed: No
Number of Values per Multiple
Operand:

o With zeros
Padding: at left
Truncation of
Assembled Value : At left

Figure 22. Binary Constants

102 Assembler H Version 2 Application Programming:

Language Reference

a
N

CHARACTER CONSTANT~—C: The character constant allows you to
specify character strings, such as error messages, identifiers,
or other text, that the assembler will convert into their binary
(EBCDIC) representation.

Any of the valid 256 punch combinations can be designated in a
character constant. Each character specified in the nominal
value subfield is assembled into one byte (see (1) in Figure 23
on page 104).

Multiple nominal values are not allowed, because if a comma is
specified in the nominal value subfield, the assembler considers
the comma a valid character (see (2) in Figure 23) and,
therefore, assembles it into its binary (EBCDIC) representation.
For example

DC C'A,B!
is assembled as A,B with object code Cl6BC2.

Special consideration must be given to representing apostrophes
and ampersands as characters. Each single apostrophe or
ampersand desired as a character in the constant must be
represented by a pair of apostrophes or ampersands. They are
assembled as single apostrophes and ampersands (see (3) in
Figure 23).

In the following example, the length attribute of FIELD is 12:

Name Operation Operand
FIELD DC C'TOTAL IS 110"

However, in this next example, the length attribute is 15, and
three blanks appear in storage to the right of the zero:

Name Operation Operand
FIELD DC CL1I5'TOTAL IS 110°

In the next example, the length attribute of FIELD is 12,
although 13 characters appear in the operand. The two
ampersands count as only one bvte.

Name Operation Operand
FIELD DC C'TOTAL IS &&l0°"

Note that, in the next example, a length of & has been
specified, but there are five characters in the constant.

Name Operation Operand
FIELD DC 3CL4'ABCDE'

The generated constant would be:
ABCDABCDABCD

On the other hand, if the length had been specified as 6 instead
of 4, the generated constant would have been:

ABCDE ABCDE ABCDE

Chapter 5. Assembler Instruction Statements 103

Subfield

Character Constants

3. Constant Type

Character (C)

Figure 23. Character Constants

1. Duplication Factor Yes
allowed
2. Modifiers As needed
Implllgvt Length: (Length C DC C'LENGTH' L'C = 6
Modifier not present)
-Alignment: Byte
(Length Modifier not
present)
1 through 256 {byte length)
Range for length: .1 through .2048 (bit length)
Range for Scale: Not allowed
Range for Exponent: Not allowed
4. Nominal Value DC C'A''B' Object Code (hex).
Represented by: Characters (All 256 A'B
8-bit combinations) Assembled A&RB —
DC C'A&&B’
Enclosed by: Apostrophes
Exponent allowed: No
Number of values per One DC C'A,B'
Operand: Assembled A ,B ﬂ
With blanks at right
Padding: (X'40")
Truncation of
Assembled value: At right

104 Assembler H Version 2 Application Programming:

Language Reference

Note that the,same constant could be specified as a literal.

Name

operation

Operand

MvC

AREA(12),=3CL4"ABCDE"

HEXADECIMAL CONSTANT—X: You can use hexadecimal constants to
generate large bit patterns more conveniently than with binary
Also, the hexadecimal values you specify in a source
module allow yvou to compare them directly with the hexadecimal
values generated for the object code and address locations

constants.

printed in the program listing.

Each hexadecimal digit (see (1)

in Figure 24 on page 106)

specified in the nominal value subfield is assembled into four
bits (their binary patterns can be found in "Self-Defining

Terms™ on page 25).

See (2)

in Figure 24%.

The implicit length

in bytes of a hexadecimal constant is then half the number of
hexadecimal digits specified (assuming that a hexadecimal zero
See (3) in Figure 2%.

is added to an odd number of digits).

An 8-digit hexadecimal constant provides a convenient way to set
The constant in the
following example would set the first and third bytes of a word

the bit pattern of a full binary word.

to 1s:
Name Operation Operand
DS OF
TEST DC X'FFOOFFo0O"

The DS instruction sets the location counter to a fullword

boundary.

(See "DS—Define Storage™ on page 123.)

The next example uses a hexadecimal constant as a literal and
inserts 1ls into bits 24 through 31 of register 5.

Name

Operation

Operand

IC

5,=X"FF!

In the following example,

the digit A is dropped,

because 5

hexadecimal digits are specified for a length of 2 bytes:

Name

Operation

Operand

ALPHACON

DC

3XL2'A6F4E"

The resulting constant is 6F4E, which occupies the specified 2

bytes.

duplication factor.

3XTA6F4E"Y,

in the leftmost position.

CA6FGECA6F4EOAG6FSE

It is duplicated three times, as requested by the
If it had merely been specified as
the resulting constant would have a hexadecimal zero

Chapter 5. Assembler Instruction Statements 105

Subfield

Hexadecimal Constants

3. Constant Type

1.Duplication Factor

Hexadecimal (X)

allowed Yes
2.Modifiers As needed

Implicit Length: (Length
Modifier not present)

X DC X'FFO00A2'
Y DC X'F0OO0A2'

E
E
0o
X

Alignment:
{Length Modifier not present)

Byte

Range for Length:

1 through 256 (byte length)
.1 through .2048 (bit length)

Range for Scale:

Not allowed

Range for Exponent:

Not allowed

4, Nominal Value

Represented by:

Hexadecimal digits (0
through 9 and A through
F)

DC X'1F' 0001|1111

DC X'91F' |0000}1001j0001]J1111
«—1 byte—»

Enclosed by: Apostrophes
Exponent allowed: No
Number of Values

Multiple

per Operand:

Padding:

With zeros at left

Truncation of
Assembled value:

At left

Figure 24. Hexadecimal Constants

106 Assembler H Version 2 Application Programming: Language Reference

f "’i:

FIXED-POINT CONSTANT—F AND H: Fixed-point constants allow vou
to introduce data that is in a form suitable for the operations
of the fixed-point machine instructions of the universal
instruction set. The constants you define can also be
automatically aligned to the proper fullword or halfword
boundary for the instructions that refer to addresses on these
boundaries (unless the NOALIGN option has been specified; see
"Information about Constants™ on page 92). You can perform
algebraic functions using this type of constant because they can
have positive or negative values.

A fixed-point constant is written as a decimal number, which can
be followed by a decimal exponent if desired. The format of the
constant is as follows:

1. The nominal value can be a signed (see (1) in Figure 25 on
page 108)—plus is assumed if the number is
unsigned—integer, fraction, or mixed number (see (2)
Figure 25) followed by an exponent (see (3) in Figure 25):
positive or negative.

2. The exponent must lie within the permissible range (see (4)
in Figure 25). If an exponent modifier is also specified,
the algebraic sum (see (5) in Figure 25) of the exponent and
the exponent modifier must lie within the permissible range.

Some examples of the range of values that can be assembled into
fixed-point constants are given below:

Range of Values that
Length can he Assembled

8 -263 through 263-1
4 -23%} through 231-1
2 -215 through 25-1
1 -27 through 27-1

The range of values depends on the implicitly or explicitly
specified length (if scaling is disregarded). If the value
specified for a particular constant does not lie within the
allowable range for a given length, the constant is not
assembled, but flagged as an error.

A fixed-point constant is assembled as follows:

1. The specified number, multiplied by any exponents, is
converted to a binary number.

2. Scaling is performed, if specified. If a scale modifier is
not provided, the fractional portion of the number is lost.

3. The binary value is rounded, if necessary. The resulting
number will not differ from the exact number specified by
more than one in the least significant bit position at the
right.

4. A negative number is carried in twos complement form.

5. Duplication is applied after the constant has been
assembled.

A field of three fullwords is generated from the statement
below. The location attribute of CONWRD is the address of the
leftmost byte of the first word, and the length attribute is 4,
the implied length for a fullword fixed-point constant. The
expression CONWRD+4 could be used to address the second constant
(second word) in the field.

Name Operation operand
CONWRD DC IF'658474"

Chapter 5. Assembler Instruction Statements 107

Fixed-Point Constants

Subfield 3. Constant Type
Fullword(F) Halfword (H)

1. Duplication Factor

Allowed Yes Yes
2. Modifiers
Implicit Length: (Length 4 bytes 2 bytes
Modifier not present)
Alignment: Full word Half word

{Length Modifer not present)

Range for Length:

1 through 8 (byte length)
.1 through .64 (bit length)

1 through 8 (byte length)
.1 through .64 (bit length)

Range for Scale:

— 187 through + 346

— 187 through + 346

Range for Exponent:

— 85 through + 75 0

— 85 through + 75
valu

DC HE+90'2E-88"

4. Nominal Value
Represented by:

Decimal digits (O through 9)

DC F'~-200" 0

DC FS4'2.25"

Decimal digits (O through 9)

DC H'+200'
DC HS4'.25'

e = 2x1020

Enclosed by: Apostrophes Apostrophes
Exponent allowed: Yes Yes

DC F'2E6'’ 9 DC H '2E-6'
Number of Values Multiple Multiple
per Operand:
Padding: With zeros at left With zeros at left

Truncation of
Assembled value:

Not allowed

Not allowed

(error message issued)
]

Figure 25. Fixed-Point Constants

108 Assembler H Version 2 Application Programming:

Language Reference

e

AN

The next statement causes the generation of a 2-byte field
containing a negative constant. Notice that scaling has been
specified in order to reserve 6 bits for the fractional portion
of the constant.

Name Operation Operand
HALFCON DC HS6'-25.46"

The next constant (3.50) is multiplied by 10 to the power -2
before being converted to its binary format. The scale modifier
reserves 12 bits for the fractional portion.

Name operation Operand
FULLCON DC HS12'3.50E-2"

The same constant could be specified as a literal:

Name operation operand
AH 7,=HS12'3.50E-2"

The final example specifies three constants. Notice that the
scale modifier requests 4 bits for the fractional portion of
each constant. The 4 bits are provided whether or not the
fraction exists.

Name Operation Operand
THREECON DC F$S4'10,25.3,100"

DECIMAL CONSTANTS—P AND Z: The decimal constants allow vou to
introduce data in a form suitable for the operations of the
decimal feature machine instructions. The packed decimal
constants (P-type) are used for processing by the decimal
instructions. The zoned decimal constants (Z-type) are in the
form (EBCDIC representation) you can use as a print image,
except for the digits in the rightmost byte.

The nominal value can be a signed (plus is assumed if the number
is unsigned) decimal number. A decimal point may be written
anywhere in the number, or it may be omitted. The placement of
a decimal point in the definition does not affect the assembly
of the constant in any way, because the decimal point is not
assembled into the constant.

The specified digits are assumed to constitute an integer (see
(1) in Figure 26 on page 110). You may determine proper decimal
point alignment either by defining data so that the point is
aligned or by selecting machine instructions that will operate
on the data properly (that is, shift it for purposes of
alignment).

Decimal constants are assembled as follows:

Packed Decimal Constants: Each digit is converted into its 4-bit
binary equivalent (see (2) in Figure 26). The sign indicator
(see (3) in Figure 26) is assembled into the rightmost four bits
of the constant.

Zoned Decimal constants: Each digit is converted into its 8-bit
EBCDIC representation (see (4) in Figure 26). The sign
indicator (see (5) in Figure 26) replaces the first four bits of
the low-order byte of the constant.

Chapter 5. Assembler Instruction Statements 109

Decimal Constants

Subfield 3. Constant Type
Packed (P) Zoned (Z)
1. Duplication Factor
Allowed Yes Yes
2. Modifiers
Implicit Length: (Length As needed As needed
Modifier not present) P DC P'+593" Z DC 7Z'-593"
L'P = 2 L'Z = 3
Alignment:
(Length Modifer not present) Byte Byte

Range for Length:

1 through 16 (byte length)
.1 through .128 (bit length)

1.through 16 (byte length)
.1 through .128 (bit length)

Range for Scale:

Not allowed

Not allowed

Range for Exponent:

Not allowed

Not allowed

4. Nominal Value

Represented by:

Decimal digits (0 through 9)

ﬂDC P'+555"

EELIO@

Decimal digits (O through 9)
DC Z'-=555"

FI5]F[5]D]5

DC P'55°

Enclosed by: Apostrophes Apostrophes 0
Exponent aliowed : No No
Number of Values
per Operand: Multiple Multiple
With Binary zeros With EBCDIC zeros
Padding: at left (X'FO*')
at left
Truncation of At left At left

Assembled value:

Figure 26.

Decimal Constants

110

Assembler H Version 2 Application Programming:

Language Reference

The range of values that can be assembled into a decimal
constant is shown below:

Type of Decimal Range of Values that

constant can be Specified
Packed 103%~1 through -103!
Zoned 1016-1 through -101!¢

For both packed and zoned decimals, a plus sign is translated
into the hexadecimal digit C, a minus sign into the digit D.

The packed decimal constants (P-type) are used for processing by
the decimal instructions.

If an even number of packed decimal digits is specified, one
digit will be left unpaired because the rightmost digit is
paired with the sign. Therefore, in the leftmost byte, the
leftmost four bits will be set to zeros and the rightmost four
bits will contain the odd (first) digit.

Examples of decimal constant definitions follow.

Name Operation Operand
pC P'+1.25°
DC 2'-5643"
DC 2'79.68"
DC PL3'79.68"

The following statement specifies both packed and zoned decimal
constants. The length modifier applies to each constant in the
first operand (that is, to each packed decimal constant). Note
that a literal could not specify both operands.

Name Operation Operand

DECIMALS DC PL8'+25.8,-3874,
+2.3',2'+80,-3.72"

The last example illustrates the use of a packed decimal
literal.

Name 1 operation Operand

UNPK OUTAREA, =PL2"+25"

ADDRESS CONSTANTS: An address constant is a storage address that
is translated into a constant. Address constants can be used
for initializing base registers to facilitate the addressing of
storage. Furthermore, they provide a means of communicating
between control sections of a multisection program. However,
storage addressing and control section communication are also
dependent on the use of the USING assembler instruction and the
loading of registers. Coding examples illustrating these
considerations are provided in "How to Use the USING
Instruction™ in "USING—Use Base Address Register™ on page 4l.

An address constant, unlike other types of constants, is
enclosed in parentheses. If two or more address constants are
specified in an operand, they are separated by commas, and the
entire sequence is enclosed by parentheses. There are five
types of address constants: A, Y, §, Q, and V. A relocatable
address constant may not be specified with bit lengths.

Complex Relocatahle Expressions: A complex relocatable

expression can only be used to specify an A- or Y-type address
constant. These expressions contain two or more unpaired

Chapter 5. Assembler Instruction Statements 111

relocatable terms and/or negative relocatable terms in addition
to any absolute or paired relocatable terms that may be present.
A complex relocatable expression might consist of external
symbols and designate an address in an independent assembly that
is to be linked and loaded with the assembly containing the
address constant.

Address Constants—A and Y: The following sections describe how
the different types of address constants are assembled from
expressions that usually represent storage addresses, and how
thg ionstants are used for addressing within and between source
moaules.

In the A-type and Y-type address constant, you can specify any
of the three types of assembly-time expressions whose values the
assembler then computes and assembles into object code. You use
this expression computation as follows:?

U Relocatable expressions for addressing
. Absolute expressions for addressing and value computation

. Complex relocatable expressions to relate addresses in
different source modules

Notes:

1. No bit-length specification (see (1) in Figure 27 on page
113) is allowed when a relocatable or complex relocatable
expression (see (2) in Figure 27) is specified. The only
explicit lengths that can be specified with these addresses
are:?

a. 3 or 4 bytes for A-type constants
b. 2 bytes for Y-type constants

2. The value of the location counter reference (¥) when
specified in an address constant varies from constant to
constant, if any of the following, or a combination of the
following, are specified:

a. Multiple operands
b. Multiple nominal values (see (3) in Figure 27)
c. A duplication factor (see (4) in Figure 27)

The location counter is incremented with the length of the
previously assembled constant.

3. When the location counter reference occurs in a literal
address constant, the value of the location counter is the
address of the first byte of the instruction.

CAUTION: Specification of Y-type address constants with
relocatable expressions should be avoided in programs that are
to be executed on machines having more than 32,767 bytes of
storage capacity. In any case, Y-type relocatable address
constants should not be used in programs to be executed under
IBM System/370 control.

The A-type and Y-type address constants are processed as
follows: If the nominal value is an absolute expression, it is
computed to its 32-bit value and then truncated on the left to
fit the implicit or explicit length of the constant. If the
nominal value is a relocatable or complex relocatable
expression, it is not completely evaluated until linkage edit
time when the object modules are transformed into load modules.
The 24-bit (or smaller) relocated address values are then placed
in the fields set aside for them at assembly time by the A-type
and Y-type constants.

112 Assembler H Version 2 Application Programming: Language Reference

@

W/

AN

C

Address Constants (A and Y)

Subfield 3. Constant Type
A — Type Y — Type o
1. Duplication Factor Yes Yes A DC 5AL1 (%-A)
allowed Object Code in Hex ——»| 0001020304
2. Modifiers
Implicit Length: (Length 4 bytes 2 bytes
Modifer not present)
Alignment:
(Length Modifier not present) | Full word Half word

Range for Length:

1 through 4 (byte length) o
.1 through .32 (bit length)

1 through 2 (byte length)
.1 through .16 (bit length)

Range for Scale:

Not allowed

Not allowed

Range for Exponent:

Not allowed

Not allowed

4, Nominal Value

Represented by:

Absolute, relocatable, or
complex relocatable
expressions

DC A (ABSOL+10)

Absolute, relocatable, or
complex relocatable
expressions

DC Y (RELOC+32)

A DC Y(%:-A,%+4)

values

Enclosed by: Parentheses Parentheses
Exponent allowed: No No
Number of Values .
per Operand: Multiple Multiple

With zeros at left With zeros at left
Padding:

Truncation of
Assembled value:

Figure 27.

At left

A and Y Address Constants

At left

Chapter 5. Assembler Instruction Statements

113

In the following examples, the field generated from the
statement named ACON contains four constants, each of which
occupies four bytes. HNote that there is a location counter
reference in one. The value of the location counter will be the
address of the first byte allocated to the fourth constant. The
second statement shows the same set of constants specified as
literals (that is, address constant literals).

Name Operation Operand
ACON DC AC108,LO0P, END-STRT,
*¥+4096) :
LM %,7,=A(108,L0P,END-STRT,
%¥+4096)

Note: When the location counter reference occurs in a literal,
as in the LM instruction above, the value of the location
counter is the address of the first byte of the instruction.

Address Constant—S: You can use the S-type address constant to
assemble an explicit address; that is, an address in
base~displacement form. You can specify the explicit address
yourself or allow the assembler to compute it from an implicit
address, using the current base register and address in its
computation.

The nominal values can be specified in two ways:

1. As one absolute or relocatable expression (see (1) in
Figure 28 on page 115) representing an implicit address

2. As two absolute expressions (see (2) in Figure 28) the first
of which represents the displacement (see (3) in Figure 28),
and the second, the base register (see (4) in Figure 28).

The address value represented by the expression in 1 in

Figure 28, will be converted by the assembler into the proper
base register and displacement value. An S-type constant is
assembled as a halfword and aligned on a halfword boundary. The
leftmost four bits of the assembled constant represent the base
register designation; the remaining 12 bits, the displacement
value.

If length specification is used, only 2 bytes may be specified.
S—-type address constants may not be specified as literals.

Address Constant—V: The V-type constant allows vou to reserve
storage for the address of a location in a control section that
lies in another source module. You should use the V-type
address constant only to branch to the external address
specified. This use is contrasted with another method; that is,
of specifying an external symbol, identified by an EXTRN
instruction, in an A-type address constant.

Because you specify a symbol in a V-type address constant, the
assembler assumes that it is an external symbol. A value of
zero is assembled into the space reserved for the V-type
constant; the correct relocated value of the address is inserted
into this space by the linkage editor before your object program
is loaded.

The symbol specified (see (1) in Figure 29 on page 116) in the
nominal value subfield does not constitute a definition of the
symbol for the source module in which the V-type address
constant appears.

The symbol specified in a V-type constant must not represent
external data in an overlay program.

114 Assembler H Version 2 Application Programming: Language Reference

&

s

Address Constants (S)

Subfield 3. Constant Type
S — Type
1. Duplication Factor
Allowed Yes
2. Modifiers
Implicit Length: 2 bytes
{Length Modifier not
present)
Alignment: Half word
(Length Modifier not
present)
Range for length: 2 only (no bit length)
(in bytes)
Range for Scale: Not allowed
Range for Exponent: Not allowed
4. Nominal Value Absolute or DC S(RELOC)
relocatable expression DC S(1024)
Represented by: Two absolute
expressions]o DC S(512(12))
Enclosed by: Parentheses
Exponent allowed: No

Number of Values
per operand : Multiple

Padding: Not applicable

Truncation of
Assembled value:* Not applicable

Figure 28. S Address Constants

Chapter 5. Assembler Instruction Statements 115

&

Address Constants (V)

Subfield 3. Constant Type
V — Type
1. Duplication Factor
allowed Yes
2. Modifiers
Implicit | .ength: (Length 4 bytes
Modifier not present)
Alignment: (Length
Modifier not present) Full word
Range for Length: 4 or 3 only

(in bytes) {no bit length)
Range for Scale: Not allowed
p
Range for Exponent: Not allowed / \w
w
4. Nominal Value
= A single relocatable DC V(MODA)

Represented by:

symbol 0

DC V (EXTADR)

Enclosed by: Parentheses
Exponent allowed: No

Number of values

per Operand: Mufltiple
Padding: With zeros at left

Truncation of
assembled value:

Figure 29. V Address Constants

Not applicable

Assembler H Version 2 Application Programming: Language Reference

In the following example, 12 bytes will be reserved, because
there are three symbols. The value of each assembled constant
will be zero until the program is loaded. It must be emphasized
that a V-type address constant of length less than 4% can and
will be processed by the assembler, but cannot be handled by the
linkage editor.

Name Operation Operand
VCONST DC V(SORT,MERGE, CALC)

Address Constant—Q: You use this constant to reserve storage
for the offset into a storage area of an external dummy section.
The offset is entered into this space by the linkage editor.
When the offset is added to the address of an overall block of
storage set aside for external dummy sections, it allows you to
address the desired section.

For a description of the use of the Q-type address constant in
combination with an external dummy section, see "External Dummy
Sections™ on page 62. See also Figure 30 on page 118 for
details.

In the following example, to access VALUE, the value of A is
added to the base address of the block of storage allocated for
external dummy sections. Q-type address constants may not be
specified in literals.

Name Operation Operand
A DC Q(VALUE)

Note: The DXD or DSECT names referenced in the Q-type address
constant need not be previously defined.

Chapter 5. Assembler Instruction Statements 117

O

Address Constants (Q)

Subfield 3. Constant Type
O-Type
1. Duplication Factor Yes
allowed
2. Modifiers 4 bytes

Implicit Length: (Length
Modifier not present)

Alignment: (Length Fullword
Modifier not present)

Range for Length: 1-4 bytes
(in bytes) {(no bit length)
Range for Scale: Not allowed
™
Range for Exponent: Not allowed C\J/

4. Nominal Value
- DC Q(DUMMYEXT)

Represented by A single relocatable

symbol DC Q(DXDEXT)
Enclosed by: Parentheses
Exponent allowed: No

Number of Values per

Operand: Multiple
Padding: With zeros at left
Truncation of At left

Assembled Value

Figure 30. Q Address Constants

118 Assembler H Version 2 Application Programming: Language Reference

FLOATING~POINT CONSTANTS—E, D, AND L: Floating-point constants
allow yvou to introduce data that is in the form suitable for the
operations of the floating-point feature instructions. These
constants have the following advantages over fixed-point
constants.

. You do not have to consider the fractional portion of a
value you specify, nor worry about the position of the
decimal point when algebraic operations are to be performed.

. You can specify both much larger and much Smaller values.

. You retain greater processing precision; that is, your
values are carried in more significant figures.

The nominal value can be a signed (see (1) in Figure 31 on page
120)—plus is assumed if the number is unsigned—integer,
fraction, or mixed number (see (2) in Figure 31) followed by an
exponent (positive or negative). The exponent (see (3) in
Figure 31) must lie within the permissible range. If an
exponent modifier is also specified, the algebraic sum of the
exponent and the exponent modifier must lie within the
permissible range.

The format of the constant is shown in Figure 32.
The value of the constant is represented by two parts:

1. An exponent portion (see (1) in Figure 32 on page 121),
followed by

2. A fractional portion (see (2) in Figure 32).

A sign bit (see (3) in Figure 32) indicates whether a positive
or negative number has been specified. The number specified
must first be converted into a hexadecimal fraction before it
can be assembled into the proper internal format. The quantity
expressed is the product of the fraction (see (4) in Figure 32)
and the number 16 raised to a power (see (5) in Figure 32).
Figure 32 shows the external format of the three typaes of
floating-point constants.

The range of values that can be assembled into floating-point
constants is given below:

Type
of Con- Range of Magnitude (M) of Values
stant (Positive and Negative)

E 16-%5 < M £ (1-16-%) x 16°%3
D 16-65 < M £ (1-16-14) x 16963
L 16-%% < M £ (1-16-28) x 16%3

Approximately:
E,D,L 5.4 x 10- S MS7.2 x 1075

If the value specified for a particular constant does not lie
within these ranges, the constant is not assembled, but is
flagged as an error.

Chapter 5. Assembler Instruction Statements 119

Floating Point Constants

Subfield 3. Constant Type
SHORT (E) LONG (D) EXTENDED (L)
1. Duplication Factor
Yes Y
Allowed o ves
2. Modifiers
Implicit Length: 4 Bytes 8 Bytes 16 Bytes
(Length Modifier Not
Precent)
Alignment:
(Length Modifier Not Full Word Double Word Double Word
Present)
Range for Length: 1 through 8 {byte length) 1 through 8 (byte length) 1 through 16 (byte length)

.1 through .64 (bit length)

.1 through .64 (bit length)

.1 through .128 (bit length)

Range for Scale:

0 through 14

0 through 14

0 through 28

Range for Exponent:

— 85 through + 75

- 86 through + 75

— 85 through + 75

4, Nominal Value Decimal Digits Decimal Digits Decimal Digits
(0 through 9) { 0 through 9) (0 through 9)
Represented by: DC E'-:SZS' DC D'-525" DC L'525"
DC E'5.25" DC D’+.001'o DC L'3.414'Q—
Enclosed by: Apostrophes Apostrophes Apostrophes
Exponent Allowed: Yes Yes Yes
DC E‘1E+60'° DC D-_2,5E10-o DC L'3.712E-3"
Number of Values per Multiple Multiple ' ’ Multiple
Operand:
Padding: With hexadecimal zeros at With hexadecimal zeros at With hexadecimal zeros at

right

right

right

Truncation of Assembled
Value:

Not applicable
{Values are rounded)

Figure 31. Floating-Point Constants

Not Applicable
{Values are Rounded)

Not applicable
{Values are Rounded)

120 Assembler H Version 2 Application Programming:

Language Reference

O

Type Called Format
- Floating- + Cnaracteristicf___—"Fractior
ISR N s 777777774/ 3¢ 1
l -
Number | Bis 01 78 3-
7-o1t 56-c -
D :;:)ng, + Characteristic Frac: o~
b 77 —3f]
oin -
L Extended 7-bit High-orcer ~a* =
Floating + Characteristic 112-bit Fractc~
Point V777773 & 1
Number | Bits 01 78 63
7-bit b, 56 bits .
+ Characteristic
2 J
Bits—O 1 78 63
. Low-order half of
USED FOR 112-bit'Fraction
SECOND HALF
OF LCON
I
Characteristic | [Hexadecimal Fraction
1
16E)l(_a_+_t3_+£_+.o.o]
| lLe 162 163
I

where a,b,c. . . . are hexadecimal digits, and E is
an exponent that has a positive or negative value
indicated by the characteristic

Figure 32. Floating-Point External Formats

Binary Reprasentation: The assembler assembles a floating-point

constant into its binary representation as follows: The

specified number, multiplied by any exponents, is converted to

the required two-part format. The value is translated into:

L A fractional portion represented by hexadecimal digits and
the sign indicator. The fraction is then entered into the
leftmost part of the fraction field of the constant (after

rounding).

Chapter 5. Assembler Instruction Statements

121

. An exponent portion represented by the excess 64 binary
notation, which is then entered into the characteristic

field of the constant. @

The excess 64 binary notation is when the value of the
characteristic between +127 and +64 represents the exponents of
16 between +63 and 0 (by subtracting 64), and the value of the
characteristic between +63 and 0 represents the exponents of 16
between -1 and -64.

Notes:

1. The L-type floating-point constant resembles two contiguous
D-type constants, The sign of the second doubleword is
assumed to be the same as the sign of the first.

The characteristic for the second doubleword is equal to the
characteristic for the first minus 14 (the number of
hexadecimal digits in the fractional portion of the first
doubleword).

2. If scaling has been specified, hexadecimal zeros are added
to the left of the normalized fraction (causing it to become
unnormalized), and the exponent in the characteristic field
is adjusted accordingly. (For further details on scaling,
see "Subfield 3: Modifiers"™ on page 9%96.)

3. Rounding of the fraction is performed according to the
implied or explicit length of the constant. The resulting
number will not differ from the exact value specified by
more than one in the last place.

4. HNegative fractions are carried in true representation, not
in the twos complement form.

5. Duplication is applied after the constant has been
assembled. Kﬁf\

6. An implied length of ¢ bytes is assumed for a short (E)
constant and 8 bytes for a long (D) constant. An implied
length of 16 bytes is assumed for an extended (L) constant.
The constant is aligned at the proper word (E) or doubleword
(D and L) boundary if a length is not specified. However,
any length up to and including 8 bytes (E and D) or 16 bytes
(L) can be specified by a length modifier. In this case, no
boundary alignment occurs.

Any of the following statements could be used to specify 46.415
as a positive, fullword, floating-point constant; the last is a
machine instruction statement with a literal operand. Note that
each of the last two constants contains an exponent modifier.

Name Oparation Operand
DC E'46.415"
DC E'46415E~-3"
DC E'+464.15E-1"
DC E'+.664615E+2"
peC EE2'.46415"
AE 6,=EE2'.466415"

The following would each be generated as doubleword
floating-point constants.

Name Operation Operand
FLOAT DC DE+4'+46,-3.729,%+473"

122 Assembler H Version 2 Application Programming: Language Reference

DS—DEFINE STORAGE

The DS instruction allows you to:
U Reserve areas of storage.
U Provide labels for these areas.

. Use these areas by referring to the symbols defined as
labels.

The DS instruction causes no data to be assembled. Unlike the
DC instruction, you do not have to specify the nominal value
(fourth subfield) of a DS instruction operand. Therefore, the
DS instruction is the best way of symbolically defining storage
for work areas, input/output buffers, etc.

The format of the DS instruction is:

Name Operation ' Operand
Any symbol DS One or more operands,
or blank separated by commas,

written in the format
described in the
following text

The format of the DS operand is identical to that of the DC
operand; exactly the same subfields are used and are written in
exactly the same sequence as they are in the DC operand.
Although the formats are identical, there are two differences in
the specification of subfields. They are:

1. The nominal value subfield is optional in a DS operand, but
it is mandatory in a DC operand. If a nominal value is
specified in a DS operand, it must be valid.

2. The maximum length that can be specified for the character
(C) and hexadecimal (X) type areas is 65,535 bytes rather
than 256 bytes for the same DC operands.

The label used in the name entry of a DS instruction, as with
the label for a DC instruction:

. Has an address value of the leftmost byte of the area
reserved, after any boundary alignment is performed

. Has a length attribute value, depending on the implicit or
explicit length of the type of area reserved

If the DS instruction is specified with more than one operand or
more than one nominal value in the operand, the label addresses
the area reserved for the field that corresponds to the first
nominal value of the first operand. The length attribute value
is equal to the length explicitly specified or implicit in the
first operand.

Note: Unlike the DC instruction, bytes skipped for alignment
are not set to zero. Also, nothing is assembled into the
storage area reserved by a DS instruction. No assumption should
be made as to the contents of the reserved area.

The size of a storage area that can be reserved by a DS

instruction is limited only by the size of virtual storage or by
the maximum value of the location counter, which is smaller.

Chapter 5. Assembler Instruction Statements 123

How to Use the DS Instruction

TO RESERVE STORAGE: If you want to take advantage of automatic
boundary alignment (if the ALIGN option is specified) and
implicit length calculation, you should not supply a length
modifier in your operand specifications. You should specify a
type subfield that corresponds to the type of area you need for
your instructions.

Note: Duplication has no effect on implicit length.

Using a length modifier can give you the advantage of explicitly
specifying the length attribute value assigned to the label
naming the area reserved. However, your areas will not be
aligned automatically according to their type. If you omit the
nominal value in the operand, you should use a length modifier
for the binary (B), character (C), hexadecimal (X), and decimal
(P and Z) type areas; otherwise, their labels will be given a
length attribute value of 1.

When you need to reserve large areas, you can use a duplication
factor. However, in this case, you can only refer to the first
area by label. You can also use the character (C) and
hexadecimal (X) field types to specify large areas using the
length modifier.

Although the nominal value is optional for a DS instruction, you
can put it to good use by letting the assembler compute the
length for areas of the B, €, X, and decimal (P or Z) type
areas. You achieve this by specifying the general format of the
nominal value that will be placed in the area at execution time.

TO FORCE ALIGNMENT: You can use the DS instruction to force
alignment to a boundary that otherwise would not be provided.
You can force the location counter to a doubleword, fullword, or
halfword boundary by using the appropriate field type (for
example, D, F, or H) with a duplication factor of zero. No
space 1s reserved for such an instruction, yet the data that
follows is aligned on the desired boundary. For example, the
following statements would set the location counter to the next
doubleword boundary and reserve storage space for a 128-byte
field (whose leftmost byte would be on a doubleword boundary).

Name Operation Operand
DS 0D
AREA DS cL128

Note: Alignment is forced when either the ALIGN or the NOALIGN
assembler option is set.

TO NAME FIELDS OF AN AREA: Using a duplication factor of zero in
a DS instruction also allows you to provide a label for an area
of storage without actually reserving the area. You can use DS
or DC instructions to reserve storage for, and assign labels to,
fields within the area. These fields can then be addressed
symbolically. (Another way of accomplishing this is described
in "DSECT—Identify Dummy Section™ on page 58.) The whole area
is addressable by its label. In addition, the symbolic label
will have the length attribute value of the whole area. Within
the area, each field is addressable by its label.

124 Assembler H Version 2 Application Programming: Language Reference

)

C

For example, assume that 80-character records are to be read
into an area for processing and that each record has the

following format:

Positions 5-10 Payroll Number
Positions 11-30 Emplovee Name
Positions 31-36 Date

Positions 47-54 Gross Wages
Positions 55-62 Withholding Tax

The following example illustrates how DS instructions might be

used to assign a name to the record area,
of the area and allocate storage for them.

then define the- fields
Note that the first

statement names the entire area by defining the symbol RDAREA;

this statement gives RDAREA a length attribute of 80 bytes,
does not reserve any storage.
names a 6-byte area by defining the symbol DATE;

Similarly,

subsequent statements actually define the fields of DATE and

allocate storage for them.
statements are used for spacing purposes and,

The second, ninth, and last

therefore, are not

named.
Name Operation Operand
RDAREA DS 0CL80
DS CL4
PAYNO DS CLé6
NAME DS CcL20
DATE DS 0CL®6
DAY DS cL2
MONTH DS CL2
YEAR DS cL2
DS CL10
GROSS DS CL8
FEDTAX DS cL8
DS CL18

Additional examples

of DS statements are shown below:

Name Operation Operand

ONE DS CL80 (One 80-byte field,
length attribute of 80)

TWO DS 80C (80 1-byte fields,
length attribute of 1)

THREE DS 6F (6 fullwords, length
attribute of 4)

~ FOUR DS D (1 doubleword, length

attribute of 8)

FIVE DS 4H (4 halfwords,
length attribute of 2)

To define four 10-byte fields and one

100-byte field,

respective DS statements might be as follows:

the

Name Operation Operand
FIELD DS 4CL10
AREA DS cL100

but
the fifth statement
the three

Although FIELD might have been specified as one 40-byte field,
the preceding definition has the advantage of providing FIELD
with a length attribute of 10. This would be pertinent when
using FIELD as an S5 machine instruction operand.

Chapter 5. Assembler Instruction Statements 125

CCH OR CCHO—DEFINE CHANNEL COMMAND WORD (FORMAT 0)

You can use the CCW or CCWO instruction to define and generate ﬂrﬂ\
an 8-byte channel command word aligned at a doubleword boundary y
for input/output operations. The CCW and CCHWO instructions have
identical functions; however, the CCWO instruction is not

included in the S5/370 instruction set. A CCW or CCWO will cause

any bytes skipped to be zeroced. A CCW or CCWO0 instruction will

result in a Format 0 channel command word which allows 24-bit

data addresses. The internal machine format of a channel

command word is shown in Figure 33.

Byte Bits Usage
0 0-7 Command code
1-3 8-31 Address of data to operate upon
4 32-37 Flags
38-39 Must be specified as zeros
5 40-47 Set to zeros by assembler
6-7 48-63 Byte count or length of data

Figure 33. Channel Command Word, Format 0

The format of the CCW or CCWO instruction statement is:

Name Operation operand
Any symbol CCW or CCWO Command code, data
or blank address, flags, data
count
~
All four operands must appear. They are written, from left to g;)/

right, as follows:

1. An absolute expression that specifies the command code.
This expression's value is right-justified in byte 0.

2. A relocatable or absolute expression specifying the address
of the data to operate upon. This value is treated as a
3-byte, A-type address constant. The value of this
expression is right-justified in bytes 1 through 3.

3. An absolute expression that specifies the flags for bits 32
through 37, and zeros for bits 38 and 39. The value of this
expression is right-justified in byte 4. (Byte 5 is set to
zero by the assembler.)

4. An absolute expression that specifies the byte count or
length of data. The value of this expression is
right-justified in bytes 6 and 7.

The generated channel command word is aligned on a doubleword
boundary. Any bytes skipped are set to zero.

The symbol in the name field, if present, is assigned the value
of the address of the leftmost byte of the channel command word
generated. The length attribute value of the symbol is 8.

The following are examples of CCW and CCWO0 statements:

Nama Operation Operand
WRITEL CCW 1,DATADR,X'48",X'50"'
WRITE?2 CCWoO 1,DATADR,X'48"',X'50"

126 Assembler H Version 2 Application Programming: Language Reference

The object code generated (in hexadecimal) for either of the
above examples is:

01 xxxxxx 48 00 0050

where xxxxxx contains the address of DATADR, and DATADR must
reside below 16 megabytes.

Notes:

1. If you use the EXCP access method, you must use CCW or CCWO,
because EXCP does not support 31-bit data addresses in
channel command words.

2. You should use RMODE 24 with CCW or CCWO0 to ensure that
valid data addresses are generated in the channel command
words at execution time.

CCH1—DEFINE CHANNEL COMMAND WORD (FORMAT 1)

You can use the CCUWl instructien to specify the object code
format to be used for an 8-byte channel command word aligned at
a doubleword boundary for input/output operations. The object
code for a Format 1 channel command word allows a 31-bit data
address, whereas the object code generated by a CCW or CCWO
instruction allows only a 24-bit data address. A CCWl will
cause any bytes skipped to be zeroed. The internal machine
format of a channel command word is shown in Figure 34

Byte Bits Usage
0 0-7 Command code
1 8-15 Flags
2-3 16-31 Count
4 32 Must be zero
4-7 33-63 Data address

Figure 34. Channel Command Word, Format 1

The format of the CCW1l instruction statement is:

Name Operation Operand

Any symbol CCW1 Command code, data

or blank address, flags, data
count

All four operands must appear. They are written, from left to
right, as follows:

1. An absolute expression that specifies the command code.
This expression's value is right-justified in byte 0.

2. An expression specifying the data address. This value is
treated as a 4-byte, A-type address constant. The value of
this expression is in bytes 4 through 7, the first bit of
which is set to 0.

3. An absolute expression that specifies the flags for bits 8
through 15. The value of this expression is right-justified
in byte 1.

4. An absolute expression that specifies the count. The value
of this expression is right-justified in bytes 2 and 3.

Note: The expression for the data address should be such that
the address is within the range 0 to 23!'-1, inclusive, after

Chapter 5. Assembler Instruction Statements 127

possible relocation. This will be the case if the expression

refers to a location within one of the control sections which
will be link-edited together. An expression such as AK\M
¥-1000000000 will vield an acceptable value only when the L 4
ﬁgmmand control word is placed in storage location 1000000000 or

jigher.

The generated channel command word is aligned on a doubleword
boundary. Any bytes skipped are set to zero.

The symbol in the name field, if present, is assigned the value
of the address of the leftmost byte of the channel command word
generated. The length attribute value of the symbol is 8.

The following is an example of a CCW1l statement:

Name Operation Operand
A CCW1 X'0C',BUF1,X'00",L BUFL

The object code (in hexadecimal) generated in the above example
15°

0C 00 yy XXXXXXXX
where yy is length of BUF1l, and xxxxxxxx is BUF1l address.

Note: BUFl1l can reside anywhere in virtual storage.

PROGRAM CONTROL INSTRUCTIONS
You use the program control instructions to:
. Specify the end of an assembly. C:\\
. Set the location counter to a value or word boundary. 7
. Insert previously written coding in the program.
. Specify the placement of literals in storage.
. Check the sequence of input cards.
. Indicate statement format.
. Punch a card.
Except for the CNOP and COPY instructions, none of these

assembler instructions generate instructions or constants in the
object program.

ICTL—INPUT FORMAT CONTROL

The ICTL instruction allows you to change the begin, end, and
continue columns that establish the coding format of the
assembler language source statements.

For example, with the ICTL instruction, you can increase the
number of columns to be used for the identification or sequence
checking of your source statements. By changing the begin
column, you can even create a field before the begin column to
contain identification or sequence numbers.

You can use the ICTL instruction only once, at the very

beginning of a source program. If vou do not use it, the

assembler recognizes the standard values for the begin, end, and
continue columns. %::§

The format of the ICTL instruction statement is as follows:

128 Assembler H Version 2 Application Programming: lLanguage Reference

Name Operation Operand

Blank ICTL 1-3 decimal self-
defining terms of the
form b or b,e or b,e,c

The operand entry must be one to three decimal self-defining
terms. There are only three possible ways of specifying the
operand entry:

1. The operand b specifies the begin column of the source
statement. It must always be specified, and must be within
the range of 1 through 40, inclusive.

2. The operand e specifies the end column of the source
statement. The end column, when specified, must be within
the range of 41 through 80, inclusive; when not specified,
it is assumed to be 71.

3. The operand c specifies the continue column of the source
statement. The continue column, when specified, must be
within the range of 2 through 40. If the continue column is
not specified, or if column 80 is specified as the end
column, the assembler assumes that continuation lines are
not allowed.

If no ICTL statement is used in the source program, the
assembler assumes that 1, 71, and 16 are the begin, end, and
continue columns, respectively.

The values specified for the three operands depend on each
other. Two rules governing the interaction of b, e, and ¢ are:

1. The position of the end column must not be less than the
position of the begin column +5, but must be greater than
the position of the continue column.

2. The position of the continue column must be greater than
that of the begin column.

The next example designates the begin column as 25. Since the
end column is noct specified, it is assumed to be column 71. No
continuation cards are recognized because the continue column is
not specified.

Name & Operation Operand
ICTL 25

Note: The ICTL instruction does not affect the format of
statements brought in by a COPY instruction or generated from a
library macro definition. The assembler processes these
statements according to the standard begin, end, and continue
columns described in "Field Boundaries™ on page 9.

ISEQ—INPUT SEQUENCE CHECKING

You can use the ISEQ instruction to cause the assembler to check
if the statements in a source module are in sequential order.

In the ISEQ instruction, you specify the columns between which
the assembler is to check for sequence numbers.

The assembler begins sequence checking with the first statement
line following the ISEQ instruction. The assembler also checks
continuation lines.

Sequence numbers on adjacent statements or lines are compared

according to the 8-bit internal EBCDIC collating sequence. When
the sequence number on one line is not greater than the sequence

Chapter 5. Assembler Instruction Statements 129

PUNCH—PUNCH A CARD

numbgr on the preceging line, a sequence error is flagged, and a
warning message is issued, but the assembly is not terminated.

Note: If the sequence field in the preceding line is blank, the
assembler uses the last preceding line with a nonblank sequence
field to make its comparison.

The format of the ISEQ instruction statement is:

Name Operation Operand

Blank ISEQ Two decimal self-
defining terms of the
form l,r or blank

The first option in the operand entry must be two decimal
self-defining terms. This format of the ISEQ instruction
initiates sequence checking, beginning at the statement or line
follouwing the ISEQ instruction. Checking begins at the column
represented by 1 and ends at the column represented by r. The
second option of the ISEQ format terminates the sequence
checking operation.

The rules for interaction are:

1. 1 specifies the leftmost column of the field to be checked,
and r specifies the rightmost column of the field to be
checked. r must be greater than or equal to 1.

2. 1 and r can be anywhere on the cards in the input. Thus,
they can also be between the begin and end columns.

Note: The assembler checks only those statements that are
specified in the coding of a source module. This includes any
COPY instruction statement or macro instruction.

However, the assembler does not check:
1. Statements inserted by a COPY instruction.

2. Statements generated from model statements inside macro
definitions or from model statements in open code (statement
generation is discussed in detail in "Chapter 7. How to
Prepare Macro Definitions™ on page 151)

J. Statements in library macro definitions

The PUNCH instruction allows you to punch source or other
statements into a single card. With this feature you can:

. Code PUNCH statements in a source module to produce control
statements for the linkage editor. The linkage editor uses
these control statements to process the object module.

. Code PUNCH statements in macro definitions to produce, for
instance, source statements in other computer languages or
for other processing phases.

The card that is punched has a physical position immediately
after the PUNCH instruction and before any other TXT cards of
the object decks that are to follow.

The PUNCH instruction causes the data in its operand to be
punched into a card. One PUNCH instruction produces one punched
card, but as many PUNCH instructions as necessary can be used.

The PUNCH instruction statement can appear anywhere in a source
module except before and between source macro definitions. If a
PUNCH instruction occurs before the first control section, the

130 Assembler H Version 2 Application Programming: Language Reference

®

~

.

resultant card punched will precede all other cards in the
object deck.

The cards punched as a result of a PUNCH instruction are not a
logical part of the object deck, even though they can be
physically interspersed in the object deck.

The format of the PUNCH instruction statement is:

Name Operation operand

A seduence PUNCH A character string of up

symbol or blank to 80 characters,
enclosed in apostrophes

A114256 punch combinations of the IBM System/370 character set
are allowed in the character string of the operand field.
Variable symbols are also allowed.

The position of each character specified in the PUNCH statement
corresponds to a column in the card to be punched. However, the
following rules apply to ampersands and apostrophes:

1. A single ampersand initiates an attempt to identify a
variable symbol and to substitute its current value.

2. Double ampersands or apostrophes are punched as single
ampersands or apostrophes.

3. A single apostrophe followed by one or more blanks simply
terminates the string of characters punched. If a nonblank.
character follows a single apostrophe, an error message is
issued and nothing is punched.

Only the characters punched, including blanks, count toward the
maximum of 80 allowed.

Notes:

1. No sequence number or identification is punched into the
card produced.)

2. If the NODECK option is specified when the assemblervis
invoked, no cards are punched, neither for the PUNCH or
REPRO instructions, nor for the object deck of the assembly.

REPRO—REPRODUCE FOLLOWING CARD

The REPRO instruction causes the data specified in the statement
that follows to be punched into a card. Unlike the PUNCH
instruction, the REPRO instruction does not allow values to be
substituted into variable symbols before the card is punched.
One REPRO instruction produces one punched card.

The REPRO instruction can appear anywhere in a source module
except before and between source macro definitions. The punched
cards are not part of the object deck, even though they can be
physically interspersed in the object deck.

The format of the REPRO instruction statement is:

Name Operation Operand

A sequence REPRO Not required
symbol or blank

The line to be reproduced can contain any of the 256 punch
characters, including blanks, ampersands, and apostrophes. No
substitution is performed for variable symbols.

Chapter 5. Assembler Instruction Statements 131

PUSH INSTRUCTION

POP INSTRUCTION

132 Assembler H Version 2 Application Programming:

Notes:

1. Seqaence numbers and identification are not punched in the
card.

2. If the NODECK option is specified in the job control
language for the assembler program, no cards are punched:
neither for the PUNCH or REPRO instructions, nor for the
object deck of the assembly.

The PUSH instruction allows you to save the current PRINT or
USING status in "push-down" storage on a last-in, first-out
basis. You can restore this PRINT and USING status later, also
on a last-in, first-out basis, by using a corresponding POP
instruction.

The format of the PUSH instruction statement is:

Name Operation Operand

A sequence PUSH Option 1: PRINT

symbol or Option 2: USING

blank Option 3: PRINT,USING
Option 4: USING,PRINT

One of the four options for the operand entry must be specified.
The PUSH instruction does not change the status of the current
PRINT or USING instructions; the status is only saved.

Note: When the PUSH instruction is used in combination with the

POP instruction, a maximum of four nests of PUSH PRINT - POP
PRINT or PUSH USING - POP USING are allowed.

The POP instruction allows you to restore the PRINT or USING
status saved by the most recent PUSH instruction.

The format of the POP instruction is:

Name Operation Operand

A sequence POP Option 1: PRINT

symbol or Option 2: USING

blank Option 3: PRINT,USING
Option 4t USING,PRINT

One of the four options for the operand entry must be specified.
The POP instruction causes the status of the current PRINT or
USING instruction to be overridden by the PRINT or USING status
saved by the last PUSH instruction.

Note: When the POP instruction is used in combination with the

PUSH instruction, a maximum of four nests of PUSH PRINT - POP
PRINT or PUSH USING - POP USING are allowed.

Language Reference

~
MY

C

ORG—SET LOCATION COUNTER \

You use the ORG 1nstruct|on to alter the setting of the location
counter and thus control the structure of the current control
section. This allows you to redefine portions of a control
section. '

Using the Figure 35 onh page 134 as an example, if vou wish to
build a translate table (for example, to convert EBCDIC
character code into some other internal code):

. You define the table (see (1) in Figure 35) as being filled
with zeros.

* You use the ORG instruction to alter the location counter so
that its counter value indicates a desired location (see (2)
in Figure 35) within the table.

. You redefine the data (see (3) in Figure 35) to be assembled
into that location.

L After repeating the first three steps (see (4) in Figure 35)
until your translate table is complete, vou use an ORG
instruction with a blank operand field to alter the location
counter. The counter value then indicates the next available
location (see (5) in Figure 35) in the current control
section (after the end of the translate table).

Both the assembled object code for the whole table filled with
zeros, and the object code for the portions of the table vou

redefined, are printed in the program listings. However, the
data defined later is loaded over the previously defined zeros
and becomes part of your object program, instead of the zeros.

In other words, the ORG instruction can cause the location to
point to any part of a control section, even the middle of an
instruction, into which you can assemble desired data. It can
also cause the location counter to point to the next available
location so that your program can continue to be assembled in a
sequential fashion.

The format of the ORG instruction statement is:

Name operation Operand
A sequence ORG A relocatable
symbol or blank expression or blank

In general, symbols used in the operand field need not have been
previously defined. However, the relocatable component of the
expression (that is, the unpaired relocatable term) must have
been previously defined in the same control section in which the
OR? statement appears, or be equated to a previously defined
value.

The location counter is set to the value of the expression in
the operand. If the operand is omitted, the location counter is
set to the next available location for the current control
section.

An ORG statement cannot be used to specify a location below the
beginning of the control section in which it appears. For
example, the following is invalid if it appears less than 500
bytes from the beginning of the current control section.

Name Operation Operand

ORG ¥-500

Chapter 5. Assembler Instruction Statements 133

Source Module @
FIRST S?ART 0 Object Code
o TABLE
TABLE DC XL256'00" (in Hex)
ORG TABLE+0 d +0
DC c'o! FO
DC c'1l! Fl
ORG TABLE+13 +13
DC C'D' C4
DC C'E' C5
o) A
N
ORG TABLE+C'D'| +196
DC AL1(13) 0D
DC ALl (14) OE
ORG TABLE+C'0' +240
DC AL1(0) 00 O
DC ALL (1) 01 NS
TABLE+256
l +255
ORG
GOON DS OH
TR INPUT, TABLE
INPUT DS CL20
END

Figure 35. Building a Translate Table

This is because the expression specified is then negative, and
will set the location counter to a value larger than the
assembler can process. The location counter will "wrap around"”
(the location counter is discussed in detail in "Location
Counter Reference™ on page 27).

Note: With the ORG statement, you can give two instructions the
same location counter values. In such a case, the second
instruction will not always eliminate the effects of the first
instruction. Consider the following example:

134 Assembler H Version 2 Application Programming: Language Reference

ADDR DC A(CLOC)
ORG %*-¢
B DC C'BETA'

In this example, the value of B (BETA) will be destroyed by the
relocation of ADDR during linkage editing.

RESTRICTION ON ORG WHEN THE LOCTR INSTRUCTION IS USED: If you
specify multiple location counters with the LOCTR instruction,
the ORG instruction can alter only the location counter in use
when the instruction appears. Thus, you cannot control the
structure of the whole control section using ORG, but only the
part that is controlled by the current location counter.

LTORG—BEGIN LITERAL POOL

Literal Pool

You use the LTORG instruction so that the assembler can collect
and assemble literals into a literal pool. A literal pool
contains the literals you specify in a source module either:

. After the preceding LTORG instruction, or

. After the beginning of the source module.

The assembler ignhores the borders between control sections when
it collects literals into pools. Therefore, you must be careful
to include the literal pools in the control sections to which
they ?§é§ng (for details, see "Addressing Considerations"™ on
page .

The creation of a literal pool gives the following advantages:

. Automatic organization of the literal data into sections
that are properly aligned and arranged so that no space is
wasted.

L Assembling of duplicate data into the same area.

. Because all literals are cross-referenced, vou can find the
literal constant in the pool into which it has been
assembled.

The format of the LTORG instruction statement is:

Name operation Operand
Any symbol or LTORG Not used
blank

If an ordinary symbol is specified in the name field, it
represents the first byte of the literal pool; this symbol is
aligned on a doubleword boundary and has a length attribute
value of 1. If bytes are skipped after the end of a literal
pool to achieve alignment for the next instruction, constant, or
area, the bytes are not filled with zeros.

A literal pool is created immediately after a LTORG instruction
or, if no LTORG instruction is specified, at the end of the
first control section.

Each literal pool has four segments into which the literals are
stored (a) in the order that the literals are specified, and (b)
according to their assembled lengths, which, for each literal,
is the total explicit or implied length), as described below.

® The first segment contains all literal constants whose
assembled lengths are a multiple of 8.

Chapter 5. Assembler Instruction Statements 135

. The second segment contains those whose assembled lengths
are a multiple of 4, but not of 8.

. The third segment contains those whose assembled lengths are
even, but not a multiple of 4.

. The fourth segment contains all the remaining literal
constants whose assembled lengths are odd.

Since each literal pool is aligned on a doubleword boundary,
this guarantees that all literals in the first segment are
doubleword aligned; in the second segment, fullword aligned;
and, in the third, halfuword aligned. No space is wasted except,
possibly, at the origin of the pool.

Literals from the following statement are in the pool, in the
segments indicated by the parenthesized numbers:

FIRST START 0
MVC T0,=3F"9"

(2)

AD 2,=D'7" (1)
IC 2,=XL1'8" (4)
»FCLITJANT (4)
»=2F'1,2" (1)

»=H'33" (33

» =ACADDR) (2)
»=XL8'05" (1)

Addressing Considerations

Duplicate Literals

If you specify literals in source modules with multiple control
sections, you should:

. Write a LTORG instruction at the end of each control
section, so that all the literals specified in the section
are assembled into the one literal pool for that section.

If a control section is divided and interspersed among other
control sections, you should write a LTORG instruction at
the end of each segment of the interspersed control section.

. When establishing the addressability of each control
saction, make sure (a) that the entire literal pool for that
section is also addressable, by including it within a USING
range, and (b) that the literal specifications are within
the corresponding USING domain. The USING range and domain
2;9 described in "USING—Use Base Address Register™ on page

Note: All the literals specified after the last LTORG
instruction, or, if no LTORG instruction is specified, all the
literals in a source module are assembled into a literal pool at
the end of the first control section. You must then make this
literal pool addressable, along with the addresses in the first
control section. This literal pool is printed in the program
listing after the END instruction.

If you specify duplicate literals within the part of the source
module that is controlled by a LTORG instruction, only one
literal constant is assembled into the pertinent literal pool.
This also applies to literals assembled into the literal pool at
the end of the first or only control section of a source module
that contains no LTORG instructions.

Literals are duplicates only if their specifications are
identicai, not if the object code assembled happens to be
identical.

When two literals specifying identical A-type (or Y-type)
address constants contain a reference to the value of the

136 Assembler H Version 2 Application Programming: Language Reference

£
\

location counter (%), both literals are assembled into the
literal pool. This is because the value of the location counter
is different in the two literals.

The following examples illustrate how the assembler stores pairs
of literals, if the placement of each pair is controlled by the
same LTORG statement.

X'Fo"

Both are stored
c'or
XL3'0°"

Both are stored
HL3'0"
A(%+4)

Both are stored
A(x+4)
X'FFFF?'

Identical; the first is stored
X'FFFF"'

CNOP—CONDITIONAL NO OPERATION

You can use the CNOP instruction to align any instruction or
other data on a specific halfword boundary. The CNOP
instruction ensures an unbroken flow of executable instructions
by generating no-operation instructions to fill the bytes
skipped to perform the alignment that you specified.

For example, when vou code the linkage to a subroutine, you may
wish to pass parameters to the subroutine in fields immediately
following the branch and link instructions. These
parameters—for example, channel command words—can require
alignment on a specific boundary.

The subroutine can then address the parameters you pass through
th? register with the return address. This is illustrated
below:

Name Operation Operand
CNOP 6,8
LINK BALR 2,10
CCW 1,DATADR,X"48"',X'50"

Assume that the location counter is currently aligned at a
doubleword boundary. Then the CNOP instruction in the following
sequence causes three branch-on-conditions (no-operations) to be
generated, thus aligning the BALR instruction at the last
halfword in a doubleword as follows:

Name Operation Operand
BCR 0,0
BCR 0,0
BCR 0,0
BALR 2,10
LINK CCW 1,DATADR,X"48",X"50"

After the BALR instruction is generated, the location counter is
at a doubleword boundary, thereby ensuring that*the CCW
instruction immediately follows the branch and link instruction.

Chapter 5. Assembler Instruction Statements 137

The CNOP instruction forces the alignment of the location
counter to a halfword, fullword, or doubleword boundary. It .
does not affect the location counter if the counter is already
properly aligned. If the specified alignment requires the
location counter to be incremented, one to three no-operation

instructions (BCR 0,0 occupying two bytes each) are generated to

fill the skipped bytes. Any single byte skipped to achieve
alignment to the first no-operation instruction is filled with
zeros.

The format of the CNOP instruction statement is:

Name Operation Operand

Any symbol CNOP Two absolute

or blank expressions of
the form b,w

The operands must be absolute expressions, and the symbols in
them need not be previously defined. The first operand, b,
specifies at which even-numbered byte in a fullword or
doubleword the location counter is set. The second operand, w,
specifies whether the byte is in a fullword (w=%) or a
doubleword (w=8).

Valid pairs of b and w are indicated below:
b,w Sspecifies

0,4 Beginning of a word

2.4 Middle of a word

0,8 Beginning of a doubleword

2,8 Second halfuword of a doubleword

4,8 Middle (third halfword) of a doubleword
6,8 Fourth halfword of a doubleword

Figure 36 shows the position in a doubleword that each of these
pairs specifies. Note that both 0,4 and 2,% specify two
locations in a doubleword.

Doubleword
Fullword Fulluword
Halfword Hal fuword Halfword Halfword
Bvte Bvte Byte Byte Byte Byte Byte Byte
0,4 2,4 0,% 2,4
0,8 2,8 4,8 6,8
Figure 36. CNOP Alignment

COPY—COPY PREDEFINED SOURCE CODING

You use the COPY instruction to obtain source language coding
from a library and include it in the programs currently being
assembled. You thereby avoid writing the same, often-used
sequence of code over and over. The format of the COPY
instruction statement is as follows:

Name operation operand

Blank CoPY One ordinary symbol

138 Assembler H Version 2 Application Programming: Language Reference

™
W

C

END—END ASSEMBLY

The operand is a symbol that identifies a partitioned data set
member to be copied from either the system macro library or a
user library concatenated to it.

The source coding that is copied into a source module:

. Is inserted immediately after the COPY instruction

. Is inserted and processed according to the standard
instruction statement coding format, even if an ICTL
instruction has been specified

. Must not contain either an ICTL or ISEQ instruction

. Can contain other COPY statements!

. Can contain macro definitions

If a source macro definition is copied into the beginning of a

source module, both the MACRO and MEND statements that delimit

the definition must be contained in the same level of copied

code.

Notes:

1. The COPY instruction can also be used to copy statements
into source macro definitions.

2. The rules that govern the occurrence of assembler language
statements in a source module also govern the statements
copied into the source module.

You use the END instruction to terminate the assembly of a
program. You can also supply an address in the operand field to
which control may be transferred after the program is loaded.
The END instruction must always be the last statement in the
source program.

The format of the END instruction statement is:

Nanmne Operation Operand

A sequence END A relocatable
symbol or expression or blank
blank

The operand specifies the point to which control may be
transferred when loading is complete. This point is usually the
address of the first executable instruction in the program, as
shown in the following sequence.

1 There are no restrictions on the number of levels of nested
copy instructions. However, the COPY nesting must not be
recursive. Thus, if the statement "COPY A' is coded, and A
contains a statement 'COPY B', B must not contain a
statement 'COPY A'.

Chaptér 5. Assembler Instruction Statements 139

Name : Cperation Operand
:]
NAME CSECT Q;:Q
AREA DS S50F
BEGIN BALR 2,0
USING *
END BEGIN

If specified, the operand entry can be generated by substitution
into variable symbols. However, after substitution, that is, at
assembly time:

. It must be a relocatable expression representing an address
in the source module delimited by the END instruction, or

. If it contains an external symbol, the external symbol must
@e the only term in the expression, or the remaining terms
in the expression must reduce to zero.

. It must not be a literal.

LISTING CONTROL INSTRUCTIONS

The instructions described in this section request the assembler

to produce listings and identify output cards in the object deck
according to your special needs. They allow you to determine

printing and page formatting options other than the ones the

assembler program assumes by default. Among other things, you

can introduce your own page headings, control line spacing, and

suppress unwanted detail. N

TITLE—IDENTIFY ASSEMELY OUTPUT
The TITLE instruction allows you to:

. Provide headings for each page of the assembly listing of
your source modules.

. Identify the assembly output cards of vour object modules.
You can specify up to 8 identification characters that the
assembler will punch into all the output cards, beginning at
column 73. The assembler punches sequence numbers into the
columns that are left, up to column 80.

The format of the TITLE instruction statement is:

Name Operation Operand

A string of TITLE A character string up to
alphameric 100 characters, enclosed
characters, in apostrophes

a variable
symbol, a com-
bination of
above, a
sequence symbol,
or a blank

The first three options for the name field have a special
significance only for the first TITLE instruction in which they
are specified. For subsequent TITLE instructions, the first
three options do not apply.

For the first TITLE instruction of a source module that has a
nonblank name entry that is not a sequence symbol, up to 8

140 Assembler H Version 2 Application Programming: Language Reference

alphameric charatcters can be specified in any combination in the
name field.

These characters are punched as identification, beginning at
column 73, into all the output cards from the assembly, except
those produced by the PUNCH and REPRO instructions. The
assembler substitutes the current value into a variable symbol
and uses the generated result as identification characters.

If a valid ordinary symbol is specified, its appearance in the
name field does not constitute a definition of that symbol for
the source module. It can, therefore, be used in the name field
of any other statement in the same source module.

The character string in the operand field is printed as a
heading at the top of each page of the assembly listing. The
heading is printed beginning on the page in the listing
following the page on which the TITLE instruction is specified.
A new heading is printed when a subsequent TITLE instruction
appears in the source module.

For example, if the following statement is the first TITLE
statement to appear in a program:

Name Operation Operand
PGM1 TITLE *FIRST HEADING'

then PGM1 is punched into all of the output cards (columns 73
through 76) and this heading appears at the top of each
subsequent page: PGM1 FIRST HEADING.

If the following statement occurs later in the program:

Name Operation Operand
TITLE A NEW HEADING?

then PGMlis still punched into the output cards, but each
following page begins with the heading: PGM1 A NEW HEADING.

Each TITLE statement causes the listing to be advanced to a new
page (before the heading is printed), except when PRINT NOGEN is
in use.

Any printable character specified will appear in the heading,
including blanks. Variable symbols are allowed. Houwever, the
following rules apply to ampersands and apostrophes:

L A single ampersand initiates an attempt to identify a
variable symbol and to substitute its current value.

. Double ampersands or apostrophes specified, print as single
ampersands or apostrophes in the heading.

. A single apostrophe followed by one or more blanks simply
terminates the heading prematurely. If & nonblank character
follows a single apostrophe, the assembler issues an error
message and prints no heading.

Only the characters printed in the heading count toward the
maximum of 100 characters allowed.

Note: The TITLE statement itself is not printed in an assembly
listing.

Chapter 5. Assembler Instruction Statements 141

EJECT—START NEW PAGE

The EJECT instruction allows vou to stop the printing of the
assembler listing on the current page, and continue the printing
on the next page.

The format of the EJECT instruction statement is:

Nanme Cperation operand
A sequence EJECT Not required
symbol or blank

The EJECT instruction causes the next line of the assembly
listing to be printed at the top of a new page. If the line

before the EJECT statement appears at the bottom of a page, the

EJECT statement has no effect. An EJECT instruction immediately

Igltgwing another EJECT instruction causes a blank page in the
isting.

Note: The EJECT instruction statement itself is not printed in
the listing.

SPACE—SPACE LISTING

You can use the SPACE instruction to insert one or more blank
lines in the listing of a source module. This allows you to
separate sections of code on the listing page.

The format of the SPACE instruction statement is:

Nama Operation Operand
A sequence SPACE A decimal self-defining
symbol or blank term or blank

The operand entry specifies the number of lines to be left
blank. A blank operand entry causes one blank line to be
inserted. A blank operand causes one blank line to be inserted.
If the operand specified has a value greater than the number of
lines remaining on the listing page, the instruction will have
the same effect as an EJECT statement.

Note: The SPACE instruction itself is not printed in the
listing.

142 Assembler H Version 2 Application Programming: Language Reference

PRINT—PRINT OPTIONAL DATA

The PRINT instruction allows you to control the amount of detail
you wish printed in the listing of your programs. The three
options that you can set are given in the table below:

Hierarchy Description options

1 A listing is printed. ON
No listing is printed. OFF
2 All statements generated by GEN

the processing of a macro
instruction are printed.

Statements generated by the
processing of a macro

instruction are not NOGEN
printed.?

3 Constants are printed in DATA
full in the listing.

Only the leftmost 8 bytes
of constants are printed in NODATA
the listing

Note:

i The MNOTE instruction always causes a message to be printed.

The options are listed in hierarchic order; if OFF is specified,
GEN and DATA will not apply. If NOGEN is specified, DATA will
not apply to constants that are generated. The standard options
inherent in the assembler program are.ON, GEN, and NODATA.

The format of the PRINT instruction statement is:

Name Operation Operand

A sequence PRINT [ON|OFF1

symbol or blank [,GENINOGEN]
[,NODATA|DATA]

Note: Any sequence of specification is allowed.

At least one of the operands must be specified, and at most one
of the options from each group. The PRINT instruction can be
specified any number of times in a source module, but only those
print options actually specified in the instruction change the
current print status.

PRINT options can be generated by macro processing, at
preassembly time. However, at assembly time, all options are in
force until the assembler encounters a new and opposite option
in a PRINT instruction.

The PUSH and POP instructions, described in "PUSH Instruction™
on page 132 and "POP Instruction” on page 132, also influence
the PRINT options by saving and restoring the PRINT status.

Note: The option specified in a PRINT instruction takes effect
after the PRINT instruction. If PRINT OFF is specified, the
PRINT instruction itself is printed, but not the statements that
follow it. If the NOLIST assembler option is specified when the
assembler is invoked, the entire listing for the assembly is
suppressed.

Chapter 5. Assembler Instruction Statements 143

N
"/

PART 2. MACRO LANGUAGE

Chapter 6 describes the macro instruction statement, definition,
library, and so on.

Chapters 7 and 8 describe the basic rules for preparing macro
definitions and for writing macro instructions.

Chapter 9 describes the rules for writing conditional assembly
instructions.

In addition, Appendix D contains a reference summary of the
entire macro language.

Examples of the features of the language appear throughout this
part of the manual. These examples illustrate the use of
particular features. However, they are not intended to show the
full versatility of these features.

Part 2. Macro Language 145

CHAPTE . TRODUCTION TO MACRO LANGUAGE

USING MACROS

MACRO DEFINITION

This chapter introduces the basic macro concept: what you can
use the macro facility for, how vou can prepare your own macro
definitions, and how you call these macro definitions for
processing by the assembler.

Macro language is an extension of assembler language. It
provides a convenient way to generate a desired sequence of
assembler language statements many times in one or more
programs. A macro definition is written only once; thereafter,
a single statement, a macro instruction statement, is written
each time you want to generate the desired sequence of
statements. This simplifies the coding of programs, reduces the
chance of programming errors, and ensures that standard
sequences of statements are used to accomplish desired
functions.

In addition, conditional assembly allows vou to code statements
that may or may not be assembled, depending upon conditions
evaluated at assembly time. These conditions are usually tests
of values which may be defined, set, changed, and tested during
assembly. Conditional assembly can be used without using macro
instruction statements.

The main use of macros is to insert assembler language
statements into a source program.

You call a named sequence of statements (the macro definition) Y
by using a macro instruction, or macro call. The assembler C;)
replaces the macro call by the statements from the macro w4

definition and inserts them into the source module at the point
of call. The process of inserting the text of the macro
definition is called macro generation or macro expansion. The
assembler expands a macro at preassembly time.

The expanded stream of code then becomes the input for
processing at assembly time; that is, the time at which the
assembler translates the machine instructions into object code.

A macro definition is a named sequence of statements you can
call with a macro instruction. When it is called, the assembler
processes and usually generates assembler language statements
from the definition into the source module. The statements
generated can be:

. Copied directly from the definition
. Modified by parameter values before generation

. Manipulated by internal macro processing to change the
sequence in which they are generated

You can define your own macro definitions in which any
combination of these three processes can occur. Some macro
definitions, like some of those used for system generation, do
not generate assembler language statements, but perform only
internal processing.

A macro definition provides the assembler with (1) the name of
the macro, (2) the parameters used in the macro, and (3) the
sequence of statements the assembler generates when the macro
instruction appears in the source program.

146 Assembler H Version 2 Application Programming: Language Reference

Model Statements

Every macro definition consists of a macro definition header
statement (MACRO); a macro instruction prototype statement; one
or more assembler language statements; and a macro definitio
trailer statement (MEND), as shown in Figure 37.

¥ MACRO
Prototype MACID &PARAM1,&PARAM2 |

N)
v

Body of Macro

0 O

$ MEND

Macro Instruction MACID OPERANDI1,OPERAND?2

Figure 37. Parts of a Macro Definition

. The macro definition header and trailer statements (MACRO
and MEND) indicate to the assembler the beginning and end of
a macro definition (see (1) in Figure 37).

. The macro instruction prototype statement is used to name
the macro (see (2) in Figure 37), and to declare its
parameters (see (3) in Figure 37). In the operand field of
the macro instruction, you can assign values (see (%) in
Figure 37) to the parameters declared for the called macro
definition.

. The body of a macro definition (see (5) in Figure 37)
contains the statements that will be generated when you call
the macro. These statements are called model statements;
they are usually interspersed with conditional assembly
statements or other processing statements.

You can also uwrite assembler language statements as model
statements. When it expands the macro, the assembler copies
them exactly as they are written. You can also use variable
symbols as points of substitution in a model statement. The
assembler will enter values in place of these points of
substitution each time the macro is called.

The three types of variable symbols in the assembler language
are:

. Symbolic parameters, declared in the prototype statement
. System variable symbols
. SET symbols, which are part of the conditional assembly

language

Chapter 6. Introduction to Macro Language 147

Processing Statements

Comments Statements

The assembler ;rocesses the generated statements, with or
without value substitution, at assembly time.

@

Processing statements perform functions at preassembly time when
macros are expanded, but they are not themselves generated for
further processing at assembly time. The processing statements
are:?

. Conditional assembly instructions

. Inner macro calls

. MNOTE instructions

. MEXIT instructions

J AREAD instructions

The MNOTE instruction allows you to generate an error message
with an error condition code attached, or to generate comments
in which you can display the results of preassembly computation.
The MEXIT instruction tells the assembler to stop processing a
macro definition. The MEXIT instruction, therefore, provides an
exit from the middle of a macro definition.

The MEND instruction not only delimits the contents of a macro
definition, but also provides an exit from the definition.

The AREAD instruction allows you to assign to a SETC symbol the
character string value of a statement that is placed immediately
after a macro instruction.

One type of comments statement describes preassembly operations
and is not generated. The other type describes assembly-time
operations and is, therefore, generated.

MACRO INSTRUCTION STATEMENT

A macro instruction statement (hereafter called a macro
instruction) is'a source program statement that vou code to tell
the assembler to process a particular macro definition. The
assembler generates a sequence of assembler language statements
for each occurrence of the same macro instruction. The
generated statements are then processed as any other assembler
language statement.

The macro instruction provides the assembler with:

. The name of the macro definition to be processed.

J The information or values to be passed to the macro
definition. The assembler uses the information either in
processing the macro definition or for substituting values
into a model statement in the definition.

Thae output from a macro definition, called by a macro
instruction, can be:

. A sequence of statements generated from the model statements
of the macro for further processing at assembly time.

. Values assigned to global SET symbols. These values can be
used in other macro definitions and in open code. g::%

You can call a macro definition by specifying a macro
instruction anywhere in a source module. You can also call a

148 Assembler H Version 2 Application Programming: Language Reference

C

C

macro definition from within another macro definition. This
type of call is an inner macro call; it is said to be nested in
the macro definition.

SOURCE AND LIBRARY MACRO DEFINITIONS

MACRO LIBRARY

You can include a macro definition in a source module. This
type of definition is called a source macro definition.

You can also insert a macro definition into a system or user
library (located, for example, on disk) by using the appropriate
utility program. This type of definition is called a library
macro definition. The IBM-supplied macro definitions are
examples of library macro definitions.

You can call a source macro definition only from the source
module in which it is included. You can call a library macro
definition from any source module.

Source and library macros are expanded in the same way, but
syntax errors are handled differently. In source macros, error
messages are attached to the statements in error. In library
macros, however, error messages cannot be associated with the
statement in error, because these macros are located and edited
after the entire source module has been read. Therefore, the
error messages are associated with the END statement.

Because of the difficulty of finding syntax errors in library
macros, a macro definition should be run and "debugged" as a
source macro before it is placed in a macro library.

The same macro definition may be made available to more than one
source program by placing the macro definition in the macro
library. The macro library is a collection of macro definitions
that can be used by all the assembler language programs in an
installation. Once a macro definition has been placed in the
macro library, it may be used by writing its corresponding macro
instruction in a source program. Macro definitions must be in
the system macro library under the same name as the prototype.
The procedure for placing macro definitions in the macro library
is described in the appropriate utilities manual.

SYSTEM MACRO INSTRUCTIONS

The macro instructions that correspond to macro definitions
prepared by IBM are called system macro instructions. System
macro instructions are described in the appropriate supervisor
services and macro instructions and data management macro
instructions manuals.

CONDITIONAL ASSEMBLY LANGUAGE

The conditional assembly language is a programming language with
most of the features that characterize a programming language.
For example, it provides:

. Variables

. Data attributes

. Expression computation

. Assignment instructions

. Labels for branching

Chapter 6. Introduction to Macro Language 149

. Branching instructions
. Substring operators that select characters from a string Q:ID

You can use the conditional assembly language in a macro
definition to receive input from a calling macro instruction.
You can produce aoutput from the conditional assembly language by
using the MNOTE instruction.

You can use the functions of the conditional assembly language
to select statements for generation, to determine their order of
generation, and to perform computations that affect the content
of the generated statements.

The conditional assembly language is described in "Chapter 9.
How to Write Conditional Assembly Instructions."

150 Assembler H Version 2 Application Programming: Language Reference

CHAPTER 7. HOW TO PREPARE MACRO DEFINITIONS

Defining a macro means preparing the statements that constitute
a macro definition. To define a macro you must:

. Give it a name.
. Declare any parameters to be used.
. Write the statements it contains.

. Establish its boundaries with a MACRO and a MEND
instruction.

Except for conditional assembly instructions, this chapter
describes all the statements that can be used to prepare macro
definitions. Conditional assembly instructions are described in
"Chap}gg 9. How to Write Conditional Assembly Instructions™ on
page .

WHERE TO DEFINE A MACRO IN A SOURCE MODULE

OPEN CODE

Macro definitions can appear anyvwhere in a source module. They
remain in effect for the rest of your source module, or until
another macro definition defining a macro with the same
operation code is encountered. Thus, yvou can redefine a macro
at any point in your program. The new definition will be used
for all subsequent calls to the macro in the program.

This type of macro definition is called a source macro
definition. A macro definition can also reside in a system
library; this type of macro is called a library macro
definition. Either type can be called from the source module by
the appropriate macro instruction.

Macro definitions can also appear inside other macro
definitions. There is no 1limit to the levels of macro
definitions permitted.

The assembler does not process inner macro definitions until it
finds the definition during the processing of a macro
instruction calling the outer macro.

Consider the following example:

Name Operat ion Operand Remarks
MACRO macro header for outer macro
OUTER &A,&C= macro prototype
AIF ('&C' EQ "").A
MACRO macro header for inner macro
INNER macro prototype
ﬁEND macro trailer for inner macro
A ANOP
ﬁEND macro trailer for outer macro

The assembler does not process the macro definition for INNER
until OUTER is called with a value for &C other than a null
string.

Open code is that part of a source module that lies outside of
any source macro definition. At coding time, it is important to

Chapter 7. How to Prepare Macro Definitions 151

\

distinguish between source statemenfs that lie in open code, and
those that lie inside macro definitions.

C
FORMAT OF A MACRO DEFINITION \. =~

The general format of a macro definitidh is shown in Figure 38.
The four parts are described in detail below:

[MACRO (Header Statement)

ANYNAME (Prototype Statement) J

Body of Macro

MEND (Trailer Statement)

Figure 38. Format of a Macro Definition

MACRO——MACRO DEFINITION HEADER

You use the macro definition header statement to indicate the
beginning of a macro definition. It must be the first statement

in every macro definition. The format of this statement ist
Name Operation Operand
Blank MACRO Blank

MEND—MACRO DEFINITION TRAILER

You use the macro definition traijler statement to indicate the
end of a macro definition. It also provides an exit when it is
processed during macro expansion. It can appear only once
within a macro definition and must be the last statement in
every macro definition. The format of this statement is:

Nanme Operation Operand
A sequence MEND Blank
symbol or blank

MACRO INSTRUCTION PROTOTYPE

You use the macro instruction prototype statement (hereafter

called the prototype statement) to specify the mnemonic

operation code and the format of all macro instructions that you p
use to call the macro definition.

152 Assembler H Version 2 Application Programming: Language Reference

NAME FIELD

0 OPERATION FIELD

OPERAND FIELD

The prototype statement must be the second noncomment statement
in every macro definition. Only internal comments statements

are allowed between the macro header and the macro prototype.
gnggrp:} comments statements are listed only with the macro
efinition.

The format of this statement is:

Name Operation Operand

A name field A symbol Zero or more symbolic

parameter (mandatory) parameters separated
~or blank ‘ by commas

The symbolic parameters are used in the macro definition to
represent the operands of the corresponding macro instruction.
A description of symbolic parameters appears under "Symbolic
Parameters"™ on page 160.

You can write a name field parameter, similar to the symbolic
parameter, as the name entry of a macro prototype statement.
You can then assign a value to this parameter from the name
entry in the calling macro instruction.

If used, the name entry must be a variable symbol. If this
parameter also appears in the body of a macro, it will be given
the value assigned to the parameter in the name field of the
corresponding macro instruction. Note that the value assigned
to the name field parameter has special restrictions that are
listed in "Formatting Specifications™ on page 1ll.

The symbol in the operation field of the prototype statement
establishes the name by which a macro definition must be called.
This name becomes the operation code required in any macro
instruction that calls the macro.

Any operation code can be specified in the prototype operation
field. If the entry is the same as an assembler or a machine
operation code, the new definition overrides the previous use of
the symbol. The same is true if the specified operation code
has been defined earlier in the program as a macro, or is the
operation code of a library macro.

The operand field in a prototype statement allows you to specify
positional or keyword parameters. These parameters represent
the values you can pass from the calling macro instruction to
the statements within the body of a macro definition.

The operand field of the macro prototype statement must contain
0 to 240 symbolic parameters separated by commas. They can be
positional parameters or keyword parameters, or both.

If no parameters are specified in the operand field and if the

absence of the operand entry is indicated by a comma preceded
and followed by one or more blanks, remarks are allowed.

Chapter 7. How to Prepare Macro Definitions 153

The following is an example of a prototype statement:

Name Operation Operand C:j;
&NAME MOVE &70, &FROM

Alternative Hays of Coding the Prototype Statement

The prototype statement can be specified in one of the following
three ways:

. The normal way, with all the symbolic parameters preceding
any remarks

. An alternative way, allowing remarks for each parameter
L A combination of the first two ways
The following examples illustrate (1) the normal statement

format, (2) the alternative statement format, and (3) a
combination of both statement formats.

Name Operation Operand Remarks
NAME1 oP1 SOPERAND1, &0PERANDZ, 80PERAN X
D3 THIS IS THE NORMAL X
STATEMENT FORMAT
‘NAME?2 oP2 &OPERAND1, THIS IS THE AL X
&OPERAND2 TERNA X
TE STATEMENT FORMAT
NAME3 OP3 &OPERAND1, THIS IS A COMB X TN
&OPERAND2, &OPERAND3, 80OPERAN X &\ .
D4,80PERAND5 INATION OF X e

BOTH STATEMENT FORMATS

Notes:

1. Any number of continuation lines are allowed. However, each
continuation line must be indicated by a nonblank character
in the column after the end column on the preceding card.

2. For each continuation line, the operand field entries
(symbolic parameters) must begin in the continue column;

otherwise, the whole line and any lines that follow will be
considered to contain remarks.

3. The standard value for the continue column is 16, and, for
the column after the end column, is 72.

4. A comma is required after each parameter except the last.

5. One or more blanks is required between the operand and.the
remarks.
BODY OF A MACRO DEFINITION
The body of a macro definition contains the sequence of
statements that constitutes the working part of a macro. You
can specify:

1. Model statements to be generated

2. Processing statements that, for example, can alter the g::%

content and sequence of the statements generated or issue
error messages

154 Assembler H Version 2 Application Programming: Language Reference

MODEL STATEMENTS

VARIABLE SYMBOLS AS

3. Comments statements, some of which are generated and others
which are not

4. Conditional assembly instructions to compute results to be

generated

The statements in the body of a macro definition must appear
between the macro prototype statement and the MEND statement of
the definition. Numbers 1 through 3 in the list above are the
three main types of statements allowed in the body of a macro.
The body of a macro definition can be empty, that is, contain no
statements.

Note: You can include macro definitions in the body of a macro
definition. This is explained undar "Using a Macro Definition™
in this chapter.

Model statements are statements from which assembler language
statements are generated at preassembly time. They allow you to
determine the form of the statements to be generated. By
specifying variable symbols as points of substitution in a model
statement, you can vary the contents of the statements generated
from that model statement. You can also use model statements
into which vou substitute values in open code.

A model statement consists of one or more fields, separated by
one or more blanks, in columns 1 to 71. The fields are called
the name, operation, operand, and remarks fields.

Each field or subfield can consist of:

. An ordinary character string composed of alphameric and
special characters

. A variable symbol as a point of substitution

. Any combination of ordinary character strings and variable
symhols to form a concatenated string.

The statements generated at preassembly time from model
statements must be valid machine or assembler instructions, but
must not be conditional assembly instructions. They must obey
the coding rules described in "Rules for Model Statement Fields"™
on page 157or they will be flagged as errors at assembly time.

Examples:
LABEL L 3,AREA
LABEL L 3,20(4,5)

&LABEL L 3,&AREA
FIELD&A L 3,AREA&C

POINTS OF SUBSTITUTION

Values can be substituted for variable symbols that appear in
the name, operation, and operand fields of model statements;
thus, variable symbols represent points of substitution. The
three main types of variable symbol are:

° Symbolic parameters (positional or keyuword)

. System variable symbols (&SYSLIST, &SYSNDX, &SYSECT,
&5YSPARM, &SYSDATE, &SYSLOC, and &SYSTIME)

. SET symbols (global or local SETA, SETB, or SETC symbols)

Chapter 7. How to Prepare Macro Definitions 155

Examples of subscripted variable symbols:

&PARAM(3)
&SYSLIST(1,
&SYSLIST(2)
&SETAC10)
&SETC(15)

3

Note: Symbolic parameters, SET symbols, and the system variable
symbol, &SYSLIST, can all be subscripted. The remaining system

variable symbols (&SYSNDX, &SYSECT, &SYSPARM, &SYSDATE, &SYSLOC,
and &SYSTIME) cannot be subscripted.

LISTING OF GENERATED FIELDS

The different fields in a macro-generated statement or a
statement generated in open code appear in the listing in the
same column as they are coded in the model statement, with the
following exceptions:

. If the substituted value in the name or operation field is
too large for the space available, the next field will be
moved to the right with one blank separating the fields.

. If the substituted value in the operand field causes the
remarks field to be displaced, the remarks field is written
on the next line, starting in the column where it is coded
in the model statement.

U If the value substituted in the operation field of a
macro-generated statement contains leading blanks, the
blanks are ignored.

. If the value substituted in the operation field of a model
statement in open code contains leading blanks, the blanks
will be used to move the field to the right. Cr\\

. If the value substituted in the operand field contains
iﬁading blanks, the blanks will be used to move the field to
e right.

. If the value substituted contains trailing blanks, the
blanks are ignored.

RULES FOR CONCATENATION

If a symbolic parameter in a model statement is immediately
preceded or followed by other characters or another symbolic
parameter, the characters that correspond to the symbolic
parameter are combined in the generated statement with the other
characters or the characters that correspond to the other
symbolic parameter. This process is called concatenation.

When variable symbols are concatenated to ordinary character
strings, the following rules apply to the use of the
concatenation character (a period). The concatenation character
is mandatory when:

1) An alphameric character is to follow a variable symbol.

(2) A left parenthesis that does not enclose a subscript is
to follow a variable symbol.

(3-4) A period (.) is to be generated. Two periods must be
specified in the concatenated string following a variable
symbol.

The concatenation character is not required when:

(5> An ordinary character string precedes a ~variable symbol. {:}%

156 Assembler H Version 2 Application Programming: Language Reference

(6) A special character, except a left parenthesis or a
period, is to follow a variable symbol.

N A il el Y e miilenl Ll T aiiem mmnathan unanishla eumhal

\C’ TIE CUTICaLElIiauLivil Liiar av ueey TMUDT U IV " WE UFSW S ey v we
variable symbol and its subscript; otherwise, the
characters will be considered a concatenated string and
not a subscripted variable symbol.

Figure 39 on page 158, in which the circled numbers correspond
to the numbers in the above list, gives the rules for
concatenating variable symbols to ordinary character strings.

RULES FOR MODEL STATEMENT FIELDS

The fields that can be specified in model statements are the
same fields that can be specified in an ordinary assembler
language statement. They are the name, operation, operand, and
remarks fields. It is also possible to specify a
continuation-indicator field, an identification-sequence field,
and a field before the begin column, if the appropriate ICTL
instruction has been specified. Character strings in the last
three fields (in the standard format only, columns 72 through
80) are generated exactly as they appear in the model statement,
and no values are substituted for variable symbols.

Model statements must have an entry in the operation field, and,
in most cases, an entry in the operand field in order to
generate valid assembler language instructions.

NAME FIELD: The entries allowed in the name field of a model
statement, before generation, are given below.

Blank

Ordinary symbol

Sequence symbol

Variable symbol

Any combination of variable symbols and other character
strings concatenated together

The generated result must either be a blank or a valid ordinary
symbol.

Variable symbols must not be used to generate comments statement
indicators (¥ or .¥).

Note: Restrictions on the name entry are further specified

where each individual assembler language instruction is
described in this manual.

Chapter 7. How to Prepare Macro Definitions 157

158

Concatenated Values to be Generated
String Substituted Result
Variable Value
symbol
&FIELD.A &FIELD AREA AREAA
&FIELDA &FIELDA SUM SUM
&DISP. (&BASE) &DISP 100 100(10)
&BASE 10
Concatenation character is not generated
DC D'EINT.Z&FRACT'|&INT 99 (DC D'99,88"
o &FRACT 88
DC D'& INT&FRACT' DC D'9988"'
DC D'&INT.&FRACT' ADC D'9988"'
optional
] Concatenation character is not generated
FIELD&A &A A FIELDA
&At&B;3—D &A A A+Bx*x3-D
&B B
&A&B AB
&SYM(&SUBSCR)} &SUBSCR 10
0‘ &SYM(10) ENTRY ENTRY

Figure 39. Rules for Concatenation

Assembler H Version 2 Application Programming:

Language Reference

___OPERATION FIELD: The entries allowed in the operation field of a

- Any machine instruction
- A macro instruction
- The following assembler instructions:

AMODE DSECT PRINT

CCHW DXD PUNCH
CCWO EJECT PUSH

CCW1 END RMODE
CNOP ENTRY REPRO
coM EQU SPACE
COPY EXTRN START
CSECT ISEQ TITLE
CXD LTORG USING
DC 0PSYN WXTRN
DROP ORG MEXIT!
DS POP MNOTE!?

1 The MNOTE and MEXIT statements are not model
statements; they are described in "Chapter 7. How to
Prepare Macro Definitions.”

- A variable symbol
- A combination of variable strings concatenated together

Operation code ICTL is not allowed inside a macro definition.
The MACRO and MEND operation codes are not allowed in model
statements; they are used only for delimiting macro definitions.

'::m If the REPRO operation code is specified in a model statement,
no substitution is performed for the variable symbols in the
statement line following the REPRO statement. Variable symbols
can be used alone or as part of a concatenated string to
generate operation codes for:

. Any machine instruction, or

U Any assembler instruction listed above, except COPY, ISEQ,
REPRO, and MEXIT.

The generated operation code must not be an operation code for
the following (or their OPSYN equivalents):

. A macro instruction
. A conditional assembly instruction

. The following assembler instructions: COPY, ICTL, ISEQ,
MACRO, MEND, MEXIT, and REPRO

OPERAND FIELD: The entries allowed in the operand field of a
model statement, before generation, are given belouw:

Blank (if valid)

An ordinary symbol

A character string, combining alphameric and special
characters (but not variable symbols)

A variable symbol

A combination of variable symbols and other character
strings concatenated together

The allowable results of generation are a blank (if valid) and a

m character string that represents a valid assembler or machine
instruction operand field.

Chapter 7. How to Prepare Macro Definitions 159

SYMBOLIC PARAMETERS

Note: Variable symbols must not be used in the operand field of
a COPY, ICTL, or ISEQ instruction.

REMARKS FIELD: The remarks field of a model statement can
contain any combination of characters. No substitution is
performed for variable symbols appearing in the remarks field.
Only generated statements will be printed in the listing.

Note: One or more blanks must be used in a model statement to

separate the name, operation, operand, and remarks fields from

each other. Blanks cannot be generated between fields in order

to create a complete assembler language statement. The

exception to this rule is that a combined operand-remarks field

ggnIZe generated with one or more blanks to separate the two
ields.

Symbolic parameters allow you to pass values into the body of a
macro definition from the calling macro instruction. You
declare these parameters in the macro prototype statement. They
can serve as points of substitution in the body of the macro
definition and are replaced by the values assigned to them by
the calling macro instruction.

By using symbolic parameters with meaningful names, you can
indicate the purpose for which the parameters (or substituted
values) are used.

Symbolic parameters must be valid variable symbols. A symbolic
parameter consists of an ampersand followed by an alphabetic
character and from 0 to 61 alphameric characters.
The following are valid symbolic parameters:

&READER &LOOP2

&A23456 &N

&X4F2 &§$4
The following are invalid symbolic parameters:

CARDAREA (first character is not an ampersand)

&256B (first character after ampersand is not a letter)
&BCD%34 (contains a special character other than initial
ampersand)

&IN AREA (contains a special character [the blank] other than
initial ampersand)

Symbolic parameters have a local scope; that is, the value they
are assigned only applies to the macro definition in which they
have been declared.

The value of the parameter remains constant throughout the
processing of the containing macro definition for every call on
that definition.

Note: Symbolic parameters must not be multiply defined or
identical to any other variable symbols within the given local
scope. This applies to the system variable symbols described in
"System Variable Symbols™ in this chapter, and to local and
global SET symbols described in "SET Symbols"™ on page 195.

The two kinds of symbolic parameters are:

. Positional parameters

. Keyword parameters

Each positional or keyword parameter used in the body of a macro
definition must be declared in the prototype statement.

160 Assembler H Version 2 Application Programming: Language Reference

C

The following is an example of a macro definition with symbolic
paramaters.

Header MACRO

Prototype &NAME MOVE &T0,&FROM
Model &NAME ST 2,SAVE
Model L 2,&FROM
Model ST 2,&TO
Model L 2,SAVE
Trailer MEND

In the following macro instruction that calls the above macro,
the characters HERE, FIELDA, and FIELDB of the MOVE macro
instruction correspond to the svmbolic parameters &NAME, &T0,
and &FROM, respectively, of the MOVE prototype statement.

Name Operation Operand
HERE MOVE FIELDA,FIELDB

If the preceding macro instruction were used in a source
program, the following assembler language statements would be
generated:

Name operation operand
HERE ST 2,5AVE
L 2,FIELDB
ST 2,FIELDA
L 2,SAVE

POSITIONAL PARAMETERS

You should use a positional parameter in a macro definition if
vou want to change the value of the parameter each time vou call
the macro definition. This is because it is easier to supply
the value for a positional parameter than for a kevword
parameter. You only have to write the value you want the
parameter to have in the proper position in the operand of the
calling macro instruction.

For keyword parameters (described below), vou must write the
entire keyword and the equal sign that precedes the value to be
passed. However, if you need a large number of parameters, you
should use keyword parameters. The keywords make it easier to
keep track of the individual values vou must specify at each
call by reminding you which parameters are being given values.

The general specifications for symbolic parameters, described in
"Symbols™ on page 21, also apply to positional parameters. Note
that the specification for each positional parameter declared in
the prototype statement definition must be a valid variable
symbol. Values are assigned to the positional parameters by the
corresponding positional operands specified in the macro
instruction that calls the definition.

The general specifications for symbolic parameters also apply to
positional parameters. Note that the specification for each
positional parameter declared in the prototype statement
definition must be a valid variable symbol. Values are assigned
(see (1) in Figure 40 on page 162) to the positional parameters
by the corresponding positional operands (see (2) in Figure 40)
specified in the macro calls the definition.

Chapter 7. How to Prepare Macro Definitions 161

Source Module

MACRO
Macro
Definition POSPAR &P1,&P2,&P3
—— 000
START
Macro
Instruction| POSPAR ONE, TWO, THREE 0
END
Figure 40. Positional Parameters

KEYWORD PARAMETERS

You should use a keyword parameter in a macro definition for a
value that changes infrequently. By specifving a standard
default value to be assigned to the keyword parameter, you can
omit the corresponding keyword operand in the calling macro
instruction.

Keyword parameters are also convenient because:

. You can specify the corresponding kevword operands in any
order in the calling macro instruction.

° The keyword, repeated in the operand, reminds vou which
parameter is being given a value and for which purpose the
parameter is being used.

162 Assembler H Version 2 Application Programming: Language Reference

The general specifications for symbolic parameters, described in
"Symbols"™ on page 21, also apply to kevuword parameters. Each
keyword parameter must be in the format shown below:

where

&KEYWORD is the variable symbol.
= is an equals sign.
DEFAULT is the standard value.

To give the above keyword parameter a value, you would code
KEYWORD=VALUE
for the kevuword operand when you call the macro.

Note: A null character string can be specified as the standard
value of a keyword parameter, and will be generated if the
corresponding keyword operand is omitted.

The general specifications for symbolic parameters also apply to
keyword parameters. Each keyuword parameter must be in the
format shown in Figure 41 on page 164%.

The actual parameter must be a valid variable symbol (see (1} in
Figure 41).

A value is assigned to a keyword parameter by the corresponding
kaeyword operand (see (2) in Figure 41) through the name of the
keyword as follows:

. If the corresponding keyword operand is omitted (see (3) in
Figure 41), the standard value (see (4) in Figure 41)
specified in the prototype statement becomes the value of
the parameter for that call.

. If the corresponding keyuword operand is specified (see (5)
in Figure 41), the value after the equal sign overrides the
standard value in the prototype and becomes the value of the
parameter (sea (6) in Figure 4l) for that call.

COMBINING POSITIONAL AND KEYKWORD PARAMETERS

By using positional and keyword parameters in a prototype
statement, vou combine the benefits of both. You can use
positional parameters in a macro definition for passing values
that change frequently, and keyword parameters for passing
values that do not change often.)

Positional and keyword parameters can be mixed freely in the
macro prototype statement (see (1) in Figure 42 on page 165).
The same applies to the positional and keyword operands of the
macro instruction (see (2) in Figure 42). Note, however, that
the order in which the positional parameters appear (see (3) in
Figure 42) determines the order in which the positional operands
must appear. Interspersed keyword parameters or operands (see
(4) in Figure 42) do not affect this order.

SUBSCRIPTED SYMBOLIC PARAMETERS
Subscripted symbolic parameters must be coded in the format:
&PARAM(subscript)
where &PARAM is a variable symbol and the subscript is an
arithmetic expression. The subscript can be any arithmetic
expression allowed in the operand field of a SETA instruction

(arithmetic expressions are discussed in "SETA—Set Arithmetic”
on page 213. The arithmetic expression can contain subscripted

Chapter 7. How to Prepare Macro Definitions 163

P

/ Variable Symbol U

Format: Equal Sign

/ Sta'ndard Value

] 1

- Keyword Parameter
KEYWORD] = DEFAULT
Specification
IKEYWORD‘ = VALUE Keyword Operand

Specification

Example:
Source Module A
MACRO ///, \\\\

Prototype KEYS &KEYWORD=ABC, &KEY2=(A,B,C)
MEND
/"“‘\\
START 0 &‘M
. Standard value of
KEYWORD
= @
Standard value of
ABC KEY2
(A,B,C)
EYS KEYWORD=DEF ,KEY2=(D,E,F)
) DEF
(D,E,F

END

Figure 41. Keyword Parameters

variable symbols. Subscripts can be nested up to five levels of
nesting.

The value of the subscript must be greater than or equal to one.
The subscript indicates the position of the entry in the sublist
that is specified as the value of the subscripted parameter
(sublists as values in macro instruction operands are fully
described in "Sublists in Operands™ on page 185).

164 Assembler H Version 2 Application Programming: Language Reference

e §EPIEfJ“°d““’ ,/f‘I’L\\

(r—— P —
MIX &Pl ,&KEY1=A,&P2,&P3,4P4,&KEY2=,8&P5

MIX KEY1=B,
2

E, TWO, THREE , KEY2=33 ,FOUR, FIVE

END

Figure 42. Combining Positional and Keyword Paramaters

C

PROCESSING STATEMENTS

CONDITIONAL ASSEMBLY INSTRUCTIONS

Conditional assembly instructions allow you to determine at
preassembly time the content of the generated statements and the
sequence in which they are generated. The instructions and
their functions are listed below:

conditional Assembly Function Performed

GBLA, GBLB, GBLC Declaration of initial values of
LCLA, LCLB, LCLC variable symbols (global and local
SET symbols)
SETA, SETB, SETC Assignment of values to variable
symbols (SET symbols)
AIF Conditional branch (based on logical
test)
AGO Unconditional branch
ANOP Branch to next sequential instruction
(no operation)
.ACTR Setting loop counter
m Conditional assembly instructions can be used both inside macro
definitions and in open code. They are described in "Chapter 9.

How to Write Conditional Assembly Instructions."

Chapter 7. How to Prepare Macro Definitions 165

INNER MACRO INSTRUCTIONS

Macro instructions can be nested inside macro definitions,
allowing you to call other macros from within your ouwn
definition.

COPY INSTRUCTION

The COPY instruction, inside macro definitions, allows yvou to
copy into the macro definition any sequence of statements
allowed in the body of a macro definition. These statements
become part of the body of the macro before macro processing
takes place. You can also use the COPY instruction to copy
complete macro definitions into a source module.

The specifications for the COPY instruction, which can also be
used in open code, are described in "COPY—Copy Predefined
Source Coding™ on page 138.

MNOTE INSTRUCTION

You can use the MNOTE instruction to generate your own error
messages or display intermediate values of variable symbols
computed at preassembly time.

The MNOTE instruction can be used inside macro definitions or in
_ open code, and its operation code can be created by
* substitution. The MNOTE instruction causes the generation of a
message that is given a statement number in the printed listing.

The format of this instruction is:

Name Operation Operand
A sequence MNOTE Four options:
symbol or blank n, "message' or

, "message' or
*, "message' or
;» "message’

The first two options are error messages; the last two are
comments. The n stands for a severity code. The rules for
specifying the contents of the severity code subfield are:

1. The severity code can be specified as any arithmetic
expression allowed in the operand field of a SETA
instruction. The expression must have a value in the range
0 through 255.

Example:
MNOTE 2,'ERROR IN SYNTAX'
where the genarated result is:
2,ERROR IN SYNTAX

2. If the severity code is omitted, but the comma separating it
from the message is present, the assembler assigns a default
value of 1 as the severity code.

Example:
MNOTE ,'ERROR, SEV 1°?
where the generated result is:

»ERROR, SEV 1

166 Assembler H Version 2 Application Programming: Language Reference

~

A
NS

MEXIT INSTRUCTION

3. An asterisk in the severity code subfield causes the message
and the asterisk to be generated as a comments statement.

MNOTE %, "NO ERROR?'
where the generated result is:
%*,NO ERROR

4. If the entire severity code subfield is omitted, including
the comma separating it from the message, the assembler
generates the message as a comments statement.

Example:
MNOTE 'NO ERROR'
where the generated result is:
NO ERROR
Notes:

1. An MNOTE instruction causes a message to be printed, if the
current PRINT option is ON, even if the PRINT NOGEN option
is specified.

2. The statement number of the message generated from an MNOTE
instruction with a severity code is listed among ‘any other
error maessages for the current source module. However, the
message is printed only if the severity code specified is
greater than or equal to the severity code "'nnn' in the
§ssezbéer option, FLAG(nnn), specified when the assembler is
invoked.

3. The statement number of the comments generated from an MNOTE
instruction without a severity code is not listed among
other error messages.

Any combination of up to 256 characters enclosed in single .
quotation marks can be specified in the message subfield. The
rules that apply to this character string are as follows and are
illustrated in Figure 43 on page 168.

. Variable symbols are allowed (see (1) in Figure 43).

Note: Variable symbols can have a value that includes even
the enclosing single quotation marks.

. Two ampersands (see (2) in Figure 43) and two single
quotation marks (see (3) in Figure 43) are needed to
generate an ampersand or a single quotation mark. If
variable symbols have ampersands or single quotation marks
as values, the values must be coded as two ampersands or two
single quotation marks (see (4) in Figure 43).

Note: Any remarks for the MNOTE instruction statement must be
separated by one or more blanks from the single quotation mark
that ends the message.

The MEXIT instruction allows you to provide an exit for the

assembler from any point in the body of a macro definition. The

MEND instruction provides an exit only from the end of a macro

ge:ipit;on (see "MEND—Macro Definition Trailer"™ on page 152 for
etails).

Chapter 7. How to Prepare Macro Definitions 167

MNOTE Operand

Value of
Variable Symbol

Generated
Result

¥
3, "THIS IS A MESSAGE'

3,&PARAM

‘E'\\\‘\\\

3,'VALUE OF &&A IS &A'

&PARAM=ERROR

&A=10

3,THIS IS A MESSAGE

3,ERROR

3,VALUE OF &A IS 10

[TT——
-3, 'Ll 'AREA'

3, 'DOUBLE &S'

3,/DOUBLE L&APOS&AREA'

&AREA=FIELD1

&S=8&%&

&APOS=""
&AREA=FIELD1

3,L'FLELDL

3,DOUBLE &

3,DOUBLE L'FIELD1l

3, 'MESSAGE STOP'.

Invalid remarks,
must be separated
from operand by

one or more blanks

3'MESSAGE STOP' | 2
Valid Remarks
entry

Figure 43. Rules for MNOTE Character Strings

3,MESSAGE STOP RMRKS

168 Assembler H Version 2 Application Programming: Language Reference

e

The MEXIT instruction statement can be used only inside macro
definitions. The format of this instruction is:

A sequence MEXIT Not required
symbol or blank

The MEXIT instruction causes the assembler to exit from a macro
definition to the next sequential instruction (see (1) in
Figure 44 on page 170) after the macro instruction that calls
the definition. (This also applies to nested macro
instructions, which are described in "Nesting in Macro
Definitions" on page 191.)

AREAD—ASSIGN CHARACTER STRING VALUE

You use the AREAD instruction to assign to a SETC symbol the
character string value of a statement that is placed immediately
after a macro instruction. AREAD functions in much the same way
as symbolic parameters, but instead of supplying vour input to
macro processing as part of the macro instruction, you add the
values in the form of whole 80-character input records that
follow immediately after the macro instruction. Any number of
successive statements can be read into the macro for processing.

The format of the AREAD instruction is:

Name Operation Operand
Any SETC symbol AREAD NOSTMT |NOPRINT

The SETC symbol in the name field may be subscripted. When the
assembler encounters the AREAD statement during the processing
of a macro instruction, it reads the source statement following
the macro instruction and assigns an 80-character string to the
SETC symbol in the name field. In the case of nested macros, it
reads the statement following the outermost macro instruction.

Note: The AREAD instruction can only be used inside macro
definitions.

If no operand is specified, the statement to be read by AREAD is
printed in the listing and assigned a statement number. If
NOSTMT is specified in the operand, the statement is printed,
but not given any statement number. If NOPRINT is specified,
the statement does not appear in the listing, and no statement
number is assigned to it.

Repeated AREAD instruction statements read successive
statements.

The records read by the AREAD instruction can be in code brought
in with the COPY instruction, if the macro instruction appears
in such code. If no more records exist in the code brought in
by the COPY instruction, subsequent statements are read from the
ordinary input stream.

Chapter 7. How to Prepare Macro Definitions 169

START O

EXITS

END

Figure %4. MEXIT Operation

®

For example:

MACRO
MAC1

&VAL AREAD
&VAL1 AREAD

MEND
CSECT
MAC1
THIS IS THE STATEMENT TO BE PROCESSED FIRST
THIS IS THE SECOND STATEMENT FOR THE SECOND AREAD

END

170 Assembler H Version 2 Application Programming: Language Reference

m

COMMENTS STATEMENTS

Ordinary comments statements allow you to make descriptive
remarks about the generated output from a macro definition.
Ordinary comments statements can be used in macro definitions
and in open code.

A comments statement consists of an asterisk in the begin column
followed by any character string. The comments statement is
used by the assembler to generate an assembler language comments
statement, just as other model statements are used by the
assembler to generate assembler statements. No variable symbol
substitution is performed.

INTERNAL MACRO COMMENTS STATEMENTS

You can also write internal macro comments in the body of a
macro definition to describe the operations performed at
preassembly time when the macro is processed.

Intgrpal macro comments statements can be used only inside macro
definitions. They may appear anywhere in a macro definition.
An example of their correct use is given below:

Begin column (standard value):

Column 1 must contain a period (.).

Column 2 must contain an asterisk (%).

Column 3 may contain the start of any character string.

Note:
Internal macro comments will not be generated.

No values are substituted for any variable symbols that are
specified in internal macro comments statements.

SYSTEM VARIABLE SYMBOLS

System variable symbols are variable symbols whose values are
set by the assembler according to specific rules. You can use
these symbols as points of substitution in model statements and
conditional assembly instructions.

System variable symbols (&SYSDATE, &SYSPARM, and &SYSTIME) can
be used as points of substitution both inside macro definitions
and in open code. &SYSLOC gives vou the name of the location
counter in effect when the macro instruction appears. The
remaining system variable symbols (&SYSECT, &SYSLOC, &SYSLIST,
and &SYSNDX) can be used only inside macro definitions. All
system variable symbols are subject to the same rules of
concatenation and substitution as other variable symbols.

System variable symbols must not be used as symbolic parameters
in the macro prototype statement. Also, they must not be
declared as SET symbols.

The assembler assigns read-only values to system variable
symbols; they cannot be changed by using the SETA, SETB, or SETC
instruction.

SCOPE OF SYSTEM VARIABLE SYMBOLS: The system variable symbols
(&SYSDATE, &SYSPARM, and &SYSTIME) have a global scope. This
means that they are assigned a read-only value for an entire
source module, a value that is the same throughout open code and
inside any macro definitions called.

The system variable symbols (&SYSECT, &SYSLOC, &SYSLIST, and
&§SYSNDX) have a local scope. They are assigned a read-only

Chapter 7. How to Prepare Macro Definitions 171

value each timé.a macro is called, and have that value only

within the expansion of the called macro.

&SYSDATE—Macro Instruction Date

You can use &SYSDATE to obtain the date on which your source
module is assembled.

&SYSDATE is assigned a read-only value of the following format:

mm/dd/yy (8-character string)

where:

Example:

Note:
This date corresponds to the date printed in the page
heading of listings and remains constant for each assembly.

mm gives the month.
dd gives the day.
yy gives the vear.

11725782

Note: The value of the type attribute of &SYSDATE (T'&SYSDATE)
is aiways U, and the value of the count attribute (KY&SYSDATE)
is always 8.

&SYSECT—Current control Section

You can use &SYSECT in a macro definition to generate the name
of the current control section. The current control section is
the control section in which the macro instruction that calls
the definition appears.

The local system variable symbol &SYSECT is assigned a read-only
value each time a macro definition is called.

The value assigned is the symbol that represents the name of the
current control section from which the macro definition is
called. Note that it is the control section in effect when the
macro is called. A control section that has been initiated or
continued by substitution does not affect the value of &SYSECT
for the expansion of the current macro. However, it does affect
&SYSECT for a subsequent macro call. Nested macros cause the
assembler to assign a value to &SYSECT that depends on the
control section in force inside the outer macro when the inner
macro is called.

Notes:

1. The control section whose name is assigned to &SYSECT can be
defined by a START, CSECT, DSECT, or COM instruction.

2. The value of the type attribute of &SYSECT (T'&SYSECT) is
always U, and the value of the count attribute (K'&SYSECT)
is equal to the number of characters assigned as a value to
&SYSECT.

3. Throughout the use of a macro definition, the value of

&SYSECT may be considered a constant, independent of any
CSECT or DSECT statements or inner macro instructions in
that definition.

172 Assembler H Version 2 Application Programming: Language Reference

The next example illustrates these rules. In it, statement 8 is
the last CSECT, DSECT, or START statement processed before
stgtemgptug‘ig grocessed._ Therefgre, &SYSECT is’a§sign9d-the

6.

Statement 3 is the last CSECT, DSECT, or START statement
processed before statement 4 is processed. Therefore, &SYSECT
is assigned the value CS0UT]1 for macro instruction INNER in
statement 4. CSOUT1 is substituted for &SYSECT when it appears
in statement 2.

Statement 1 is used to generate a CSECT statement for statement
4. This is the last CSECT, DSECT, or START statement that
appears before statement 5. Therefore, &SYSECT is assigned the
value INA for macro instruction INNER in statement 5. INA is
substituted for &SYSECT when it appears in statement 2.

Name operation operand

MACRO
INNER &INCSECT
1 &INCSECT CSECT
2 DC AC&SYSECT)
MEND

MACRO

OUTER1L
CS0UTL CSECT

DS l100C
INNER INA

INNER INB

DC AC&SYSECT)
MEND

MACRO
CUTER2
7 DC AC&SYSECT)
MEND

8 MAINPROG CSECT
DS 200C
9 QUTER1
10 OUTERZ2

MAINPROG CSECT
DS 200C
CS0UT1 CSECT
DS 100C
INA CSECT
DC ACCSOUTD)
INB CSECT
DC ACINA)

DC A(MAINPROG)
DC ACINB)

AaUH

Statement 1 is used to generate a CSECT statement for statement
5. This is the last CSECT, DSECT, or START statement that
appears before statement 10. Therefore, &SYSECT is assigned the
value INB for macro instruction QOUTER2 in statement 10. 1INB is
substituted for &SYSECT when it appears in statement 7.

&SYSLIST—Macro Instruction Operand

You can use &SYSLIST instead of a positional parameter inside a
macro definition; for example, as a point of substitution. By
varying the subscripts attached to &SYSLIST, vou can refer to
any sublist entry in a macro call, or any positional operands in
a macro call. You can also refer to positional operands for

Chapter 7. How to Prepare Macro Definitions 173

which no corresponding positional parameter is specified in the
macro prototype statement. Afww

The local system variable symbol &SYSLIST is assigned a “L)V
read-only value each time a macro definition is called.

&SYSLIST refers to the complete list of positional operands

specified in a macro instruction. &SYSLIST does not refer to

keyword operands. However, &SYSLIST cannot be specified as

&SYSLIST alone. One of the two following forms must be used as

a point of substitution:

1. &SYSLIST(n) may be used to refer to the nth positional
operand

2. If the nth operand is a sublist, then &SYSLIST(n,m) may be
used to refer to the mth operand in the sublist.

The subscripts n and m can be any arithmetic expression allouwed
in the operand of a SETA instruction. The subscript n must be
greater than or equal to 0. The subscript m must be greater
than or equal to 1.

When referring to multilevel (nested) sublists in operands of
macro instructions, reference to elements of inner sublists can
be made using the appropriate number of subscripts for &SYSLIST.

The examples below show the values assigned to &SYSLIST
according to the value of its subscripts n and m.

\\\
J

174 Assembler H Version 2 Application Programming: lLanguage Reference

Macro instruction:

Point of Substitution Value
in Macro Definition substituted
&SYSLIST(2) TWO
&SYSLIST(3,2) 4

(1) &SYSLIST(4) Null

(2) &SYSLIST(9) Null

(3) &SYSLIST(3,3) Null

(4) &SYSLIST(3,5) Null

(5) &SYSLIST(2,1) TWO
&SYSLIST(2,2) Null

(6) &SYSLIST(0) NAME
&SYSLIST(3) (3,4,,6)

Notes:

(1) If the position indicated by n refers to an omitted

(2) operand, or refers past the end of the list of
positional operands specified, the null character
string is substituted for &SYSLIST(n).

(3) If the position (in a sublist) indicated by the
second subscript, m, refers to an omitted entry,

(4) or refers past the end of the list of entries
specified in the sublist referred to by the first
subscript, n, the null character string is sub-
stituted for &SYSLIST(n,m).

(5) Further, if the nth positional operand is not a
sublist, &SYSLIST(n,1) refers to the operand but
&SYSLIST(n,m), where m is greater than 1, will
cause the null character string to be substituted.

(6) If the value of subscript n is 0, then &SYSLIST(n)
is assigned the value specified in the name field
of the macro instruction, except when it is a
sequence symbol.

Attribute references can be made to the previously described
forms of &SYSLIST. The attributes will be the attributes
inherent in the positional operands or sublist entries to which
vou refer. However, the number attribute of &SYSLIST
(N'&SYSLIST) is different from the number attribute described in
"Data Attributes.”™ One of two forms (N'&SYSLIST or
N'&SYSLIST(n)) can be used for the number attribute:

. To indicate the number of positional operands specified in a
call, vou use the form N'&SYSLIST.

. To indicate the number of sublist entries that have been
specified in a positional operand, you use the form
N'&SYSLIST(n).

Notes:

1. For N'&SYSLIST, positional operands are counted if

specifically omitted by specifying the comma that would
normally have followed the operand.

Chapter 7. How to Prepare Macro Definitions 175

2. For N'&SYSLIST(n), sublist entries are counted if
specifically omitted by specifying the comma that would
normally have followed the entry.

3. If the operand indicated by n is not a sublist,
N'&SYSLIST(n) is 1. If it is omitted, N'&SYSLIST(n) is 0.

Examples:
Macro Instruction N'&SYSLIST
MACLST 1,2,3,4 4
MACLST A,B,,D,E 5
MACLST »A,B,C,D 5
MACLST (A,B,C),(D,E,F) 2
MACLST 0
MACLST KEY1=A,KEY2=B 0
MACLST A,B,KEY1l=C 2
N*'&SYSLIST(2)
MACSUB A,(1,2,3,4,5),B 5
MACSUB A,(1,,3,,5),B 5
MACSUB A, (,2,3,%4,5),B 5
MACSUB A,B,C 1
MACSUB A,,C 0
MACSUB A,KEY=(A,B,C) 0
MACSUB 0

&SYSNDX—Macro Instruction Index

You can attach &SYSNDX to the end of a symbol inside a macro
definition to generate a unique suffix for that symbol each time
vou call the definition. Although the same symbol is generated
by two or more calls to the same definition, the suffix provided
by &S5YSNDX produces two or more unique symbols. Thus vou avoid
an error being flagged for multiply defined symbols.

The local system variable svmbol &SYSNDX is assigned a read-only
valuf each time a macro definition is called from a source
module.

The value assigned to &SYSNDX is a 4-digit number, starting at
0001 for the first macro called by a program. It is incremented
by one for each subsequent macro call (including nested macro
calls).
Nntes:
1. &SYSNDX does not generate a valid symbol, and it must:

. Follow the symbol to which it is concatenated

. Be concatenated to a symbol containing 4 characters or
less

bThe value of the type attribute of &SYSNDX (T'&SYSNDX) is
always N, and the value of the count attribute (K'&SYSNDX)
is always 4.

~N

The following example illustrates the use of &SYSNDX. It is
assumed that the first macro instruction processed, OUTERL, is
the 106th macro instruction processed by the assembler.

176 Assembler H Version 2 Application Programming: Language Reference

®

Name Operation Operand

GBLC &NDXNUM
1 A&SYSNDX SR 2,5
CR 2,5
2 BE BENDXNUM
3 B A&SYSNDX

&NAME OUTER1
GBLC &NDXNUM
4 &NDXNUM SETC *&SYSNDX'
&NAME SR 2,4

AR 256

5 INNERL
6 B&SYSNDX S 2,=F'1000°
MEND

7 ALPHA OUTER1
8 BETA CUTER1

ALPHA SR
AR
A0107 SR
CR
BE
B

BO106 S

BETA SR
AR
Al09 SR
CR
BE
B

B0108 S

Mmoo
~

'1000°

v OO % % v v OO v v %
U D (=TS

NP>TBTNNNNNIINNNN
Moo

8
9
'1000°"

Statement 7 is the 106th macro instruction processed.

Therefore, &SYSNDX is assigned the number 0106 for that macro
instruction. The number 0106 is substituted for &SYSNDX when it
is used in statements 4 and 6. Statement 4 is used to assign
the character value 0106 to the SETC symbol &NDXNUM. Statement
6 is used to create the unique name B0106.

Statement 5 is the 107th macro instruction processed.

Therefore, &SYSNDX is assigned the number 0107 for that macro
instruction. The number 0107 is substituted for &SYSNDX when it
is used in statements 1 and 3. The number 0106 is substituted
for the global SETC symbol &NDXNUM in statement 2.

Statement 8 is the 108th macro instruction processed.
Therefore, each occurrence of &5YSNDX is replaced by the number
0108. For example, statement 6 is used to create the unique
name B0108.

When statement 5 is used to process the 108th macro instruction,
statement 5 becomes the 109th macro instruction processed.
Therefore, each occurrence of &S5YSNDX is replaced by the number
0109.A0§8; example, statement 1 is used to create the unique
name .

&SYSPARM—Source Module Communication

You can use &SYSPARM to communicate with an assembler source
module through job control language (JCL). Through &SYSPARM,
you pass a character string into the source module to be
assembled from a JCL statement, or from a program that
dynamically invokes the assembler. Thus, you can set a
character value from outside a source module and then examine it

Chapter 7. How to Prepare Macro Definitions 177

as part of the ‘source module at preassembly time, during
conditional assembly processing.

The global system variable symbol &SYSPARM is assigned a
read-only value in a JCL statement or in a field set up by a
program that dvnamically invokes the assembler. It is treated
as a global SETC symbol in a source module except that its value
cannot be changed.

Notes:

1.

The largest value that &SYSPARM can hold when you code your
own procedure is 91 characters, which can be specified by an
invoking program. However, if the PARM field of the EXEC
statement is used to specify its value, the PARM field
restrictions reduce its maximum possible length.

Note: Under CMS, the option line of the ASSEMBLE command
cannot exceed 100 characters, thus limiting the number of
characters you can specify for &SYSPARM.

No values are substituted for variable symbols in the
specified value; however, double ampersands must be used to
represent single ampersands in the value.

Note: Since CMS does not strip ampersands from the variable
symbol, vou need not specify double ampersands for CMS.

Two single quotation marks are needed to represent a single
quotation mark because the entire PARM field specification
is enclosed in single quotation marks.

Note: Since CMS does not strip single quotation marks from
the variable symbol, you need not specify two single
quotation marks for CMS.

If SYSPARM is not specified in a JCL statement outside the
source module, &SYSPARM is assigned a default value of the
null character string.

The value of the type attribute of &SYSPARM (T'&SYSPARM) is
always U, while the value of the count attribute
(KY&SYSPARM) is the number of characters specified for
SYSPARM in a JCL statement, or in a field set up by a
program that dvnamically invokes the assembler. Two single
quotation marks and two ampersands count as one character.

CMS parses the command line, breaking the input into
8~character tokens; therefore, the SYSPARM option field
under CMS is limited to an 8-character field. If you want
to enter larger fields, or if yvou want to enter parentheses
or embedded blanks, you must enter the special symbol "?"
(the question mark symbol) in the option field. When CMS
encounters this symbol in the command line, it will prompt
vou With the message ENTER SYSPARM:, after which you can
enter any characters you want up to the option line limit of
100 characters. The following code is an example of how to
use the ? symbol in the SYSPARM field:

assemble test (object deck sysparm(?)
ENTER SYSPARM:
&&am, 'bo) . fy

R;
If &SYSPARM is not specified when you invoke the assembler,
the system parameter is assigned the value that was

specified when the assembler was generated (added to your
system).

178 Assembler H Version 2 Application Programming: lLanguage Reference

A

TN

O

C

&SYSTIME—Macro Instruction Time

You can use &SYSTIME to obtain the time at which your source
module is assembled.

The global system variable symbol &SYSTIME is assigned a
read-only value in the following format:

hh.mm (5-character string)
where:

hh gives the hours.-
mm gives the minutes.

Example: 22.15
Note:

22.15 corresponds to the time printed in the page
heading of listings, and remains constant for each assembly.

Notes:

1. The value of the type attribute of &SYSTIME (T'&SYSTIME) is
§1wa¥s U, gnd the value of the count attribute (K'&SYSTIME)
is always 5.

2. For systems without the internal time feature, &SYSTIME is a
5-character string of blanks.

&SYSLOC—Location Counter Name

You can use &SYSLOC in a macro definition to generate the name
of the location counter currently in effect. If you have not
coded a LOCTR instruction between the macro instruction and the
preceding START, CSECT, DSECT, or COM instruction, the value of
&S5YSLOC is the same as the value of &SYSECT.

The assembler assigns to the system variable symbol &SYSLOC a
local read-only value each time a macro definition containing it
is called. The value assigned is the symbol representing the
name gf ghe location counter in use at the point where the macro
is called.

&SYSLOC can only be used in macro definitions.

Notes:

1. The value of the type attribute of &SYSLOC (T'&SYSLOC) is
always U, and the value of the count attribute (K'&SYSLOC)
;gquggl to the number of characters assigned as a value to

SLOC.

2. Throughout the use of a macro definition, the value of
&SYSLOC may be considered a constant.

Chapter 7. How to Prepare Macro Definitions 179

CHAPTER 8. HOW TO HRITE MACRO INSTRUCTIONS

This chapter describes macro instructions: where they can be
used and how they are specified, including details on the name,
operation, and operand entries, and what will be generated as a
result of that macro call.

The macro instruction provides the assembler with:
. The name of the macro definition to be processed

. The information or values to be passed to the macro
: definition

This information is the input to a macro definition. The
assembler uses the information either in processing the macro
definition, or for substituting values into a model statement in
the definition.)

The output from a macro definition, called by a macro
instruction, can be: .

. A sequence of statements generated from the model statements
of the macro for further processing at assembly time

. Values assigned to global SET symbols

These values can be used in other macro definitions and in open
code (see "SET Svmbols™ on page 195).

WHERE MACRO INSTRUCTIONS CAN APPEAR o

A macro instruction can be written anywhere in vour program, if W
the assembler finds its definition either in a macro library or

in the source module before it finds the macro instruction.

However, the statements generated from the called macro

definition must be valid assembler language instructions and

allowed where the calling macro instruction appears. A macro

instruction can be nested inside a macro definition (see

"Nesting in Macro Definitions™ on page 191).

MACRO INSTRUCTION FORMAT

ALTERNATIVE HWAYS OF

The format of a macro instruction is:

Name Operation Operand
Any symbol Symbolic 0 through 240 operands
or blank operation code separated by commas

If no operands are specified in the operand field and if the
absence of the operand entry is indicated by a comma preceded
and followed by one or more blanks, remarks are allowed.

The entries in the name, operation, and operand fields
correspond to entries in the prototype statement of the called
macro6gefinition (see "ENTRY—Identify Entry-Point Symbol"™ on
page).

CODING A MACRO INSTRUCTION

A macro instruction can be specified in one of the three
following ways: :

.

. The normal way, with the operands preceding any remarks

180 Assembler H Version 2 Application Programming: Language Reference

NAME ENTRY

OPERATION ENTRY

. The alternate way, allowing remarks for each operand

. A combination of the first two ways

Notes:

1. Any number of continuation lines are allowed. However, each
continuation line must be indicated by a nonblank character
in the column after the end column of the previous statement
line (see "Continuation Lines"™ on page 10).

2. Operands on continuation lines must begin in the continue
column (column 16), or the assembler assumes that any lines
that follow contain remarks.

If any entries are made in the columns before the continue
column in continuation lines, the assembler issues an error
message and the whole statement is not processed.

3. One or more blanks must separate the operand from the
remarks.

4. A comma after an operand indicates more operands will
follow.

5. The last operand requires no comma following it, but using a
comma will not cause an error.

You can use the name entry of a macro instruction:

. To generate an assembly-time label for a machine or
assembler instruction, or

. To provide a conditional assembly label (see "Sequence
Symbols™ on page 208) so that yvou can branch to the macro
instruction at preassembly time if you want the called macro
definition expanded.

The name entry of a macro instruction can be:

. An ordinary symbol, such as HERE

. A variable symbol, such as &A

. A character string in which a variable symbol is
concatenated to other characters, such as HERE.&A

A blank

. A sequence symbol, which is never generated, such as .SEQ

The symbolic operation code you specify identifies the macro
definition you wish the assembler to process.

The operatioh entry for a macro instruction must be a valid
symbol that is identical to the symbolic operation code
specified in the prototype statement of the macro definition
called.

Note: If a source macro definition with the same operation code

as a library macro definition is called, the assembler processes
the source macro definition.

Chapter 8. How to Write Macro Instructions 181

OPERAND ENTRY

Positional Operands

You can code a variable symbol in the operation field of a macro
instruction if the value of the variable symbol specifies the
operation code of a library or source macro that has been
previously defined. Thus, if MAC1l has been defined as a macro,
yvou can use the following statements to call it:

&CALL SETC T'MACY!
&CALL

You can use the operand entry of a macro instruction to pass
values into the called macro definition. These values can be
passed through:

. The symbolic parameters yvou have specified in the macro
prototype, or

. The system variable symbol &SYSLIST if it is specified in
the body of the macro definition (see "&SYSLIST—Macro
Instruction Operand™ on page 173).

The two types of operands allowed in a macro instruction are the
positional and kevword operands. You can specify a sublist with
multiple values in both types of operands. Special rules for
ghe various values you can specify in operands are also given
elow.

You can use a positional operand to pass a value into a macro
definition through the corresponding positional parameter
declared for the definition. You should declare a positional
parameter in a macro definition when you wish to change the
value passed at every call to that macro definition.

You can also use a positional operand to pass a value to the
system variable symbol &SYSLIST. If &SYSLIST, with the
appropriate subscripts, is specified in a macro definition, you
do not need to declare positional parameters in the prototype
statement of the macro definition. You can thus use &SYSLIST to
refer to any positional operand. This allouws you to vary the
number of operands you specify each time you call the same macro
definition.

The positional operands of a macro instruction must be specified
in the same order as the positional parameters declared in the
called macro definition.

Each positional operand constitutes a character string. It is
this character string that is the value passed through a
positional parameter into a macro definition.

Notes:
1. An omitted operand has null character value.
2. Each positional operand can be up to 255 characters long.

The following are examples of macro instructions with positional
operands:?

MACCALL VALUE, 9,8

MACCALL &A, "QUOTED STRING'
MACCALL EXPR+2,,SYMBOL
MACCALL (A,B,C,D,E),(1,2,3,4)

182 Assembler H Version 2 Application Programming: Language Reference

N

s

O

Keyuord Operands

The following shows what happens when the number of positional
operands in the macro instruction is equal to or differs from
the number of positional parameters declared in the prototype
statement of the called macro definition:

equal Valid, if operands are correctly specified.

greater than Meaningless, unless &SYSLIST is specified in
definition to refer to excess operands.

less than Omitted operands give null character values to
corresponding parameters (or &SYSLIST
specification).

You can use a keyword operand to pass a value through a keyword
parameter into a macro definition. The values you specify in
keyuword operands override the default values assigned to the
keyword parameters. The default value should be a value you use
frequently. Thus, you avoid having to write this value every
time you code the calling macro instruction.

When vou need to change the default value, you must use the
corresponding keyword operand in the macro instruction. The
keyword can indicate the purpose for which the passed value is
used.

Any keyword operand specified in a macro instruction must
correspond to a keyword parameter in the macro definition
called. However, keyword operands do not have to be specified
in any particular order.

A keyword operand must be coded in the format shown below:
KEYWORD=VALUE
where

KEYWORD has up to 62 characters without ampersand.
= is an equal sign.
VALUE can be up to 255 characters.

The corresponding keyword parameter in the called macro
definition is specified as:

&KEYWORD=DEFAULT

If a keyword operand is specified, its value overrides the
default value specified for the corresponding keyword parameter.

The following examples of macro instructions have keyword
operands:

MACKEY KEYWORD=(A,B,C,D,E)
MACKEY KEY1=1,KEY2=2,KEY3=3
MACKEY KEY3=2000,KEY1=0,KEYWORD=HALLO

To summarize the relationship of keyword operands to keyword
parameters:

. The keyword of the operand corresponds (see (1) in Figure 45
on page 184%) to a keyword parameter. The value in the
operand overrides the default value of the parameter.

. If the keyword operand is not specified (see (2) in
Figure 645), the default value of the parameter is used.

. If the keyword of the operand does not correspond (see (3)
in Figure -45) to any keyword parameter, the assembler issues
an error message, but the macro is generated using the
default values of the other paramaters.

Chapter 8. How to Write Macro Instructions 183

Source Module

Null character

string is default

value

MACRO

‘

SHOW

MACCORR &KEY1=DEFAULT, &KEY2=,&KEY3=123

DC C'&KEY1&KEY2&KEY3'

OPEN

Figure 45. Relationship between Kevword Operands and Keyuword

START 0

MACCORR KEY1=OVERRIDE

MACCORR

SHOW

4

DC C

KEY2=0,KEY3=456

SHOW DC C'DEFAULT123

MACCORR KEY4=SYMBOL,KEY2=0 **ERROR% *

SHOW

DC C'DEFAULTO0123'

MACCORR KEYl=

END

KEY3=456"

SHOW

pe o ffer

Null defaulit

value of KEY 2

Parameters and Their Assigned Values

184 Assembler H Version 2 Application Programming: Language Reference

SUBLISTS IN OPERAND

Note: . The default value specified for a keyword parameter can
be the null character string (see (4) in Figure ¢5). The null
character string is a character string with a length of zero; it
is not a blank, because a blank occupies one character position.

combining Positional and Keyword Operands

You can use positional and kevword operands in the same macro
instruction: Use a positional operand for a value that you
change often, and a keyword operand for a value that you change
infrequently.

Positional and kevuword operands can be combined in the macro
instruction operand field. However, the positional operands
must be in the same order as the corresponding positional
parameter in the macro prototype statement.

Note: The system variable symbol &SYSLIST(n) refers only to the
positional operands in a macro instruction.

You can use a sublist in a positional or keyvword operand to
specify several values. A sublist is one or more entries
separated by commas and enclosed in parentheses. Each entry is
a value to which you can refer in a macro definition by coding:

. The corresponding symbolic parameter with an appropriate
subscript, or

. The system variable symbol &SYSLIST with appropriate
subscripts, the first of which refers to the positional
operand, and the second to the sublist entry in the operand.

&SYSLIST can refer only to sublists in positional operands.

Figure 46 on page 186 illustrates that the value specified in a
positional or keyword operand can be a sublist.

A symbolic parameter can refer to the entire sublist (see (1) in
Figure 46), or to an individual entry of the sublist. To refer
to an individual entry, the symbolic parameter (see (2) in
Figure 46) must have a subscript whose value indicates the
position (see (3) in Figure 46) of the entry in the sublist.

The subscript must have a value greater than or equal to 1.

A sublist, including the enclosing parentheses, must not contain
more than 255 characters. It consists of one or more entries
separated by commas and enclosed in parentheses; for example,
(A,B,C,D,E). () is a valid sublist with the null character
string as the only entry.

The following list shows the relationship between subscripted
parameters and sublist entries if:

1. A sublist entry is omitted: &PAR(3) (1,2,,4)

2. The subscript refers past the end of the sublist: &PAR(5)
(1,2,3,4)

3. The value of the operand is not a sublist:
. &PAR A
. &PAR(1) A
. &PAR(2) A

4. The parameter is not subscripted: &PAR ()

Chapter 8. How to Write Macro Instructions 185

Source Module
MACRO
SUBLISTS &Pl,&P2,&KEY=(F0,F,Q)
) o Refers to
P
&KEY (1) DC &KEY (2) '&KEY (3)" defaul.t
i value in
L [}
&P1(1) DC &P1(2)'&PL(3)[qree—rkeyword
DC 2 e value in || oPerand

positicnal
operand

S S

MEND

OPEN START 0
SUBLISTS (H20,H,200),(A,B,C)

.

FO DC F'0'

.

H20 DC H'200'

DC A(A,B,C)

END

Figure 66. Sublists in Operands

Figure 47 on page 187 shows the relationship between subscripted
parameters and sublist entries if:

. A sublist entry is omitted (see (1) in Figure 67).

. The subscript refers past the end of the sublist (see (2) in
Figure 47). i

. The value of the operand is not a sublist (see (3) in
Figure 67).

. The parameter is not subscripted (see (4) in Figure 47).
Note: The system variable symbol, &SYSLIST(n,m), can also refer

to sublist entries, but only if the sublist is specified in a
positional operand. -

186 Assembler H Version 2 Application Programming: Language Reference

Multilevel Sublists

Parameter Sublist specified Value generated
in corresponding (or used in
operand (or as computation)
default value of
keyword parameter)

&PAR(3) o (1,2,,4) Null character string

&PAR(5) o (1,2,3,4) Null character string

&PAR ‘A A

&PAR (1) 0 A A

&PAR(2) lA Null character string

&PAR o L (A)) ()

&PAR (1) (a) A

&PAR(2) o (A) Null character string

e Considered as -

&PAR(1) () Null character string

&PAR (3) () J Null character string

&PAR(2) (A,, ,C,D) Nothing

This blank indicates *ERROR*
end of operand field Unmatched left
&PAR (1) (¥ parentheses
Nothing
Positional Operands
&POSPAR(3) A,(1,2,3,4) 3
&SYSLIST(2,3)}) A,(1,2,3,4) 3

Figure 47. Relationship between Subscripted Parameters and
Sublist Entries ‘

You can specify multilevel sublists (sublists within sublists)
in macro operands. The depth of this nesting is limited only by
the constraint that the total operand length must not exceed 255
characters. Inner elements of the sublists are referenced using
additional subscripts on symbolic parameters or on &SYSLIST.

N'&SYSLIST with an n-element subscript array gives the number of
operands in the indicated n-th level sublist. The number
attribute (N') and a parameter name with an n-element subscript
array gives the number of operands in the indicated (n+l)th
level sublist.

Chapter 8. How to Write Macro Instructions 187

Passing Sublists to

VALUES IN OPERANDS

Omitted Operands

188 Assembler H Version 2 Application Programming:

For example, if &P is the first positional parameter and the
value assigned in a macro instruction is (A,(B,(C)),D) then:

&P =&SYSLIST(1) =(A,(B,(C)I,D)
&P(1) =&SYSLIST(L1,1) = A

&P(2) =&SYSLIST(1,2) = (B,(C))
&P(2,1) =&SYSLIST(1,2,1) = B
&P(2,2) =&SYSLIST(1,2,2) =)
&P(2,2,1) =&SYSLIST(1,2,2,1) = c
&P(2,2,2) =&SYSLIST(1,2,2,2) =null

&P(3) =&SYSLIST(1,3) = D
N'&P(2,2) =N'&SYSLIST(1,2,2) =1

NY&P(2) =N'&SYSLIST(1,2) =2

N'&P(3) =NY&SYSLIST(1,3) =1

NT&P =ENY&SYSLIST(1) =3

Inner Macro Instructions

You can pass a suboperand of an outer macro instruction sublist
as a sublist to an inner macro instruction.

You can use a macro instruction operand to pass a value into the
called macro definition. The two types of value you can pass
are:

. Explicit values or the actual character strings you specify
in the operand

L Implicit values, or the attributes inherent in the data
represented by the explicit values

The explicit value specified in a macro instruction operand is a
character string that can contain one or more variable symbols.

The character string must not be greater than 255 characters
after substitution of values for any variable symbols. This
includes a character string that constitutes a sublist.

The character string values, including sublist entries, in the
operands are assigned to the corresponding parameters declared
in the prototype statement of the called macro definition. A
sublist entry is assigned to the corresponding subscripted
parameter.

When a keyword operand is omitted, the default value specified
for the corresponding keyword parameter is the value assigned to
the parameter. When a positional operand or sublist entry is
omitted, the null character string is assigned to the parameter.

Notes:

1. Blanks appearing betuween commas do not signify an omitted
positional operand or an omitted sublist entry; they
indicate the end of the operand field.

2. Commas indicate omission of positional operands; no comma is
needed to indicate omission of the last positional operand.

The following example shows a macro instruction preceded by its
corresponding prototype statement. The macro instruction
operands that correspond to the third and sixth operands of the
prototype statement are omitted in this example.

Language Reference

(D
WL, ,y

special Characters

Name Operation Operand

EXAMPLE | &A,&B,&C,&D, &E,&F
EXAMPLE 17,%+4, ,AREA,FIELD(6)

Any of the 256 characters of the System/370 character set can
appear in the value of a macro instruction operand (or sublist
entry). However, the following characters require special
consideration:

AMPERSANDS: A single ampersand indicates the presence of a
variable symbol. The assembler substitutes the value of the
variable symbol into the character string specified in a macro
instruction operand. The resultant string is then the value
passed into the macro definition. If the variable symbol is
undefined, an error message is issued.

Double ampersands must be specified if they are to be passed to
the macro definition.

Examples:
&VAR
SA+EB+3I+ECX10
"EMESSAGE"
&®ISTER
SINGLE QUOTATION MARKS: A single quotation mark is used:
. To indicate the beginning and end of a quoted string, and

. In & length attribute notation that is not within a quoted
string.

Examples:

"QUOTED STRING'
L'SYMBOL

QUOTED STRINGS: A quoted string is any sequence of characters
that begins and ends with a single quotation mark (compare with
conditional assembly character expressions described in
"Character (SETC) Expressions").

Two single quotation marks must be specified inside each quoted
string. This includes substituted single quotation marks.

Macro instruction operands can have values that include one or

more quoted strings. Each quoted string can be separated from

the following quoted string by one or more characters, and each
must contain an even number of single quotation marks.

Examples:

*L''SYMBOL'
'QUOTE1"AND'QUOTEZ"

LENGTH ATTRIBUTE NOTATION: In macro instruction operand values,
the length attribute notation with ordinary symbols can be used
outside of quoted strings, if the length attribute notation is
preceded by any special character except the ampersand.
Examplae:

L'SYMBOL,10+L*AREAXL'FIELD

Chapter 8. How to Write Macro Instructions 189

PARENTHESES: In macro instruction operand values, there must be
an equal number of left and right parentheses. They must be
paired, that is, to each left parenthesis belongs a following
right parenthesis at the same level of nesting. An unpaired
(:ipgle) left or right parenthesis can appear only in a quoted
string.

Examples:

E?AIRED PARENTHESES)
(ACB)CIDCE)
CIN'('STRING)

BLANKS: One or more blanks outside a quoted string indicates the
end of the entire operand field of a macro instruction. Thus
blanks should only be used inside quoted strings.

Example:
"BLANKS ALLOWED®

COMMAS: A comma outside a quoted string indicates the end of an
operand value or sublist entry. Commas that do not delimit
values can appear inside quoted strings or paired parentheses
that do not enclose sublists.

Examples:

A'B'CDD
(1,2)3'5,6°

EQUAL . SIGNS: An equal sign can appear in the value of a macro
instruction operand or sublist entry:

. As the first character,

. Inside quoted strings,

. Betuween paired parentheses,
. In a keyword operand, or

. In a positional operand, provided the parameter does not
resemble a keyword operand.

The assembler issues a warning message for a positional operand
containing an equal sign, if the operand resembles a keyword
operand. Thus, if we assume that the following is the prototype
of a macro definition:

MACl &F

the following macro instruction would generate a warning
message:

MAC1 K=L (K is a valid keyword)
while the following macro instruction would not:
MACL 2+2=4 (2+2 is not a valid keyword)
Examples:

=H'201"
AT='B
C(A=B)
2X=B
KEY=A=B

PERIODS: A period (.) can be used in the value of an operand or
sublist entry. It will be passed as a period. However, if it
is used immediately after a variable symbol, it becomes a

Assembler H Version 2 Application Programming: Language Reference

N
\ W

concatenation character. Then, two periods are required if one
is to be passed as a character.

Examples:
3.4

&A.1
&A..1

NESTING IN MACRO DEFINITIONS

A nested macro instruction is a macro instruction vou specify as
one of the statements in the body of a macro definition. This
allows you to call for the expansion of a macro definition from
within another macro definition.

INNER AND OUTER MACRO INSTRUCTIONS

LEVELS OF NESTING

Recursion

Any macro instruction you write in the open code of a source
module is an guter macro_instruction or call. Any macro
instruction that appears within a macro definition is an inner

macro instruction or call.

The code generated by a macro definition called by an inner

macro call is nested inside the code generated by the macro

definition that contains the inner macro call. In the macro
definition called by an inner macro call, you can include a

macro call to another macro definition. Thus, you can nest

macro.calls at different levels.

The zero level includes outer macro calls, calls that appear in
open code; the first level of nesting includes inner macro calls
that appear inside macro definitions called from the zero level;
the second level of nesting includes inner macro calls inside
macro definitions that are called from the first level, etc.

You can also call a macro definition recursively; that is, you
can write macro instructions inside macro definitions that are
calls to the containing definition. This allows vou to define
macros to process recursive functions.

GENERAL RULES AND RESTRICTIONS

Macro instruction statements can be written inside macro
definitions. Values are substituted in the same way as they are
for the model statements of the containing macro definition.

The assembler processes the called macro definition, passing to
it the operand values (after substitution) from the inner macro
instruction. In addition to the operand values described in
"Values in Operands" on page 188, nested macro calls can specify
values that include (see Figure 48 on page 192):

. Any of the symbolic parameters (see (1) in Figure 48)
specified in the prototype statement of the containing macro
definition

. Any SET symbols (see (2) in Figure 48) declared in the
containing macro definition

. Any of the system variable symbols such as &SYSDATE,
&SYSTIME, etc. (see (3) in Figure 48).

Chapter 8. How to Write Macro Instructions 191

Macro Definitions

®

These are parameters

MACRO
Prototype | OUTER &P1l,&P2,&KEY1=VALUE
LCLC &C

These are operands

&C SET 'ABC'

Inner call INNER &Pl,&KEYl,&C

Prototype

Inner call

¥

MEND

Figure 48. Values in Nested Macro Calls

The number of nesting levels permitted depends on the complexity
and size of the macros at the different levels; that is, the
number of operands specified, the number of local and global SET
symbols declared, and the number of sequence symbols used.

Exits taken from the different levels of nesting when a MEXIT or
MEND instruction is encountered are as follows:

1. From the expansion of a macro definition called by an inner
macro call, an exit is taken to the next sequential
instruction that appears after the inner macro call in the
containing macro definition.

2. From the expansion of a macro definition called by an outer
macro, an exit is taken to the next sequential instruction
that appears after the outer macro call in the open code of
a source module.

192 Assembler H Version 2 Application Programming: Language Reference

C

PASSING VALUES THROUGH NESTING LEVELS

The value contained in an outer macro instruction operand can be
passed through one or more levels of nesting (see Figure 49 on
page 194). However, the value specified (see (1) in Figure %9)
in the inner macro instruction operand must be identical to the
corresponding symbolic parameter (see (2) in Figure 49) declared
in the prototype of the containing macro definition.

Thus, a sublist can be passed (see (3) in Figure 49) and
referred to (see (4) in Figure 49) as a sublist in the macro
definition called by the inner macro call. Also, any symbol
(see (5) in Figure 49) that is passed will carry its inherent
attribute values through the nesting levels.

If inner macro calls at each level are specified with symbolic
parameters as operand values, values can be passed from open
code through several levels of macro nesting.

Note: If a symbolic parameter is only a part of the value
specified in an inner macro instruction operand, only the
character string value given to the parameter by an outer call
is passed through the nesting level. Inner sublist entries and
attributes of symbols are not available for reference in the
inner macro.

SYSTEM VARIABLE SYMBOLS IN NESTED MACROS

The global read-only system variable symbols (&SYSPARM,
&SYSDATE, and &SYSTIME) are not affected by the nesting of
macros. The remaining system variable symbols are given local
read-only values that depend on the position of a macro
instruction in code and the operand value specified in the macro
instruction.

If &SYSLIST is specified in a macro definition called by an
inner macro .instruction, &SYSLIST refers to the positional
operands of the inner macro instruction.

The assembler increments &SYSHDX by one each time it encounters
a macro call. It retains the incremented value throughout the
expansion of the macro definition called, that is, within the
local scope of the nesting level.

The assembler gives &SYSECT the character string value of the
name of the control section in force at the point at which a
macro call is made. For a macro definition called by an inner
macro call, the assembler will assign to &SYSECT the name of the
control section generated in the macro definition that contains
the inner macro call. The control section must be generated
before the inner macro call is processed.

If no control section is generated within a macro definition,
the value assigned to &SYSECT does not change. It is the same
for the next level of macro definition called by an inner macro
instruction.

The assembler gives &SYSLOC the character string value of the
name of the location counter in use at the point at which a
macro call is made. For a macro definition called by an inner
macro call, the assembler will assign to &SYSLOC the name of the
location counter in effect in the macro definition that contains
the inner macro call.

&SYSECT and &SYSLOC have local scope; their read-only values

remain constant throughout the expansion of the called macro
definition.

Chapter 8. How to Write Macro Instructions 193

Source Module @

MACRO’ﬁ
Prototype OUTER
Call INNER .
g
MEND
MACRO
Prototype INNER &Q,&R,&S
L 3,&0(1)
A 3,8Q(2)
ST 3,&Q(3)
MVC &R, &S
MEND
N
START 0 =
. Passed Values /P M\J
Call

&Q &R &S

L 3,AREA
A 3,F200
ST 3,SUM

MVC TO,FROM
END]

Figure 49. Passing Values through Nesting lLevels

194 Assembler H Version 2 Application Programming: Language Reference

CHAPTER 9. HOW TO WRITE CONDITIONAL ASSEMBLY INSTRUCTIONS

C

This chapter describes the conditional assembly language. With
the conditional assembly language, you can perform general
arithmetic and logical computations, as well as many of the
other functions you can perform with any other programming
language. In addition, by writing conditional assembly
instructions in combination with other assembler language
statements, you can:

. Select sequences of these source statements, called model
statements, from which machine and assembler instructions
are generated

L) Vary the contents of these model statements during
generation

The assembler processes the instructions and expressions of the
conditional assembly language at preassembly time. Then, at
assembly time, it processes the generated instructions.
Conditional assembly instructions, however, are not processed
after preassembly time.

The conditional assembly language is more versatile when used to
interact with symbolic parameters and the system variable
symbols inside a macro definition. However, you can also use
the conditional assembly language in open code; that is, code in
an assembler language source program.

ELEMENTS AND FUNCTIONS

SET SYMBOLS

The elements of the conditional assembly language are:
. SET symbols that represent data
. Attributes that represent different characteristics of data

. Sequence symbols that act as labels for branching to
statements at preassembly time

The functions of the conditional assembly language are:

. Declaring SET symbols as variables for use by the
conditional assembly language in its computations

. Assigning values to the declared SET symbols

. Evaluating conditional assembly expressions used as values
for substitution, as subscripts for variable symbols, or as
condition tests for branch instructions

. Selecting characters from strings for substitution in, and
concatenation to, other strings; or for inspection in
condition tests

. Branching and exiting from conditional assembly loops

SET symbols are variable symbols that provide you with
arithmetic, binary, or character data, and whose values you can
vary at preassembly time.

You can use SET symbols as:

. Terms in conditional assembly expressions

. Counters, switches, and character strings

Chapter 9. How to Write Conditional Assembly Instructions 195

. Subscripts for variable symbols‘

. Values for substitution AKWN
&\f u

Thus, SET symbols allow you to control vour conditional assembly

logic, and to generate many different statements from the same

model statement.

subscripted SET Symbols

You can use a SET symbol to represent an array of many values.

You can then refer to any one of the values of this array by

subscripting the SET symbol.

scope of SET Symbols

The scope of a SET symbol is that part of a program for which

the SET symbol has been declared. Local SET symbols need not be

declared by explicit declarations. The assembler considers any

undeclared variable symbol found in the name field of a SETx

instruction as a local SET symbol.

If you declare a SET symbol to have a local scope, you can use

it only in the statements that are part of:

. The same macro definition, or

. Open code

If you declare a SET symbol to have a global scope, you can use

it in the statements that are part of:

. The same macro definition,

e A different macro definition, and 77N

L

. Open code

You must, however, declare the SET symbol as global for each
part of the program (a macro definition or open code) in which
vou use it.

You can change the value assigned to a SET symbol without
affecting the scope of this symbol.

SCOPE OF OTHER VARIABLE SYMBOLS: A symbolic parameter has a
local scope. You can use it only in the statements that are
part of the macro definition for which the parameter is
declared. You declare a symbolic parameter in the prototype
statement of a macro definition.

The system variable symbols &SYSLIST, &SYSECT, &SYSLOC, and
&SYSNDX have a local scope; vou can use them only inside macro
definitions. However, the system variable symbols &SYSPARM,
&SYSDATE, and &SYSTIME have a global scope; you can use them in
both open code and inside any macro definition.

SET symbol Specifications
SET symbols can be used in model statements, from which

assembler language statements are generated, and in conditional
assembly instructions.

196 Assembler H Version 2 Application Programming: Language Reference

The three types of SET symbols are: SETA, SETB, and SETC. A SET
symbol must be a valid variable symbol. The format of a SET
symbol is: :

¢ The first column must contain an ampersand (&).

¢ The second column must contain an alphabetic character.

¢ The remaining columns must contain 0 to 61 alphameric
characters.

Examples of SET symbols are:

SARITHMETICVALUE439
&BOOLEAN
&C

Local SET symbols need not be declared by explicit declarations.
The assembler considers any undeclared variable symbol found in

the name field of a SETx instruction as a local SET symbol. The
instruction that declares a SET symbol determines its scope and

type.

The features of SET symbols and other types of variable symbols
are compared in Figure 50.

Types of Variable Symbol
SETA, SETB, Symbolic System
Feature or SETC Parameters Variable
Symbols Symbols
Can be used only: &SYSPA
In open code YES NO
In macro
definitions YES YES All
ESYSLIST
Scope: ESYSECT
Local or YES YES ESYSLOC
& SYSNDX
& SYSPARM
Global YES NO
vaescan | @) ®© ©O
be changed) NO:
within scope YES I:O.nl read only
value
Figure 50. Features of SET Symbols and Other Tvpes of Variable

Symbols

Chapter 9.

How to Write Conditional Assembly Instructions 197

The value assigned to a SET symbol can be changed (see (1) in
Figure 50) by using the SETA, SETB, or SETC instruction within
the declared scope of the SET symbol. However, a symbolic
parameter and the system variable symbols are assigned values
that remain fixed (see (2) in Figure 50) throughout their scope.
Wherever a SET symbol appears in a statement, the assembler
replaces the symbol with the last value assigned to the symbol.

®

Note: SET symbols can be used in the name and operand fields of
macro instructions. However, the value thus passed through a
symbolic parameter into a macro definition is considered as a
character string and is generated as such.

subscripted SET Symbols Specifications

Created SET Symhols

A subscripted SET symbol must be specified as shown below:

Format: &SETSYM(subscript)

where:

¢ &SETSYM is a variable symbol.

* "suybscript'! is an arithmetic expression, whose value must
not be 0 or negative.

For example: LCLA &ARRAY(20)

The subscript can be any arithmetic expression allowed in the
operand field of a SETA instruction (see "Arithmetic (SETA)
Expressions” below).

A subscripted SET symbol can be used anvwhere an unscripted SET v
symbol is allowed. However, subscripted SET symbols must be N
declared as subscripted by a previous local or global

declaration instruction.

The subscript refers to one of the many positions in an array of
values identified by the SET symbol.

The dimension (the maximum value of the subscript) of a
subscripted SET symbol is not determined by the explicit or
implicit declaration of the symbol. The dimension specified can
be exceeded in subsequent SETx instructions.

Note: The subscript can be a subscripted SET symbol. Five
levels of subscript nesting are allowed.

Assembler H can create SET symbols during conditional assembly
processing from other variable symbols and character strings. A
SET symbol thus created has the form &(e), where "e" represents
ona or more of the following:

. Variable symbols, optionally subscripted

. Strings of alphameric characters

. Other created SET symbols

After substitution and concatenation, "e" must consist of a
string of up to 62 alphameric characters, the first of which is

alphabetic. The assembler will consider the preceding ampersand
and this string as the name of a SET variable. él:%

198 Assembler H Version 2 Application Programming: Language Reference

DATA ATTRIBUTES

You can use created SET symbols wherever ordinary SET symbols
are permitted, including declarations. You can also nest them
in other created SET symbols.

Consider the following example:?

Name Operation Operand
&ABC(1) SETC YMKTY,'27%,'$5"

Let &(e) equal &(&ABC(EIDQUALI).
&I &ABC(&I) Created SET Symbol Comment

1 MKT &MKTQUAL Valid

2 27 &27QUA2 Invalid: first character
after '&¢' not alphabetic

3 $5 &$5QUA3 Valid

4 &QUAG Valid

The created SET symbol can be thought of as a form of indirect
addressing. MWith nested created SET symbols, you can get this
kind of indirect addressing to any level.

In another sense, created SET symbols offer an associative

storage facility. For example, a symbol table of numeric

attributes can be referred to by an expression of the form

:g&aYM)(&I) to yield the "Ith" attribute of the symbol name in
YM.

Created SET symbols also enable you to get some of the effect of
multiple-dimensioned arrays by creating a separate name for each
element of the array. For example, a 3-dimensional array of the
form &X(&I,&J,&K) could be addressed as &(X&I.$&J.$&K). Thus,
&X(2,3,4) would be represented by &X2$3%4. The $s guarantee
that &X(2,33,55) and &X(23,35,5) are unique:

&X(2,33,55) becomes &X2$33$55
§X(23,35,5) becomes §&X23$35$5

The data, such as instructions, constants, and areas, which you
dafine in a source module, can be described in terms of:

. Type, which distinguishes one form of data from another; for
example, fixed-point constants from floating-point
constants, or machine instructions from macro instructions

L] Length, which gives the number of bytes occupied by the
object code of the data

. Scaling, which indicates the number of positions occupied by
the fractional portion of fixed-point and decimal constants
in their object code form

. Integer, which indicates the number of positions occupied by
the integer portion of fixed-point and decimal constants in
their object code form

. Count, which gives the number of characters that would be
required to represent the data, such as a macroe instruction
operand, as a character string

. Number, which gives the number of sublist entries in a macro
instruction operand :

. Defined, which determines whether a symbol has-been defined
prior to the point where the attribute reference is coded

Chapter 9. How to Write Conditional Assembly Instructions 199

These characteristics are called the attributes of the data.
The assembler assigns attribute values to the ordinary symbols
and variable symbols that represent the data.

e

Specifying attributes in conditional assembly instructions
allows you to control conditional assembly logic, which, in
turn, can control the sequence and contents of the statements
generated from model statements. The specific purpose for which
vou use an attribute depends on the kind of attribute being
considered. The attributes and their main uses are shown below:

Attribute | Purpose Main Uses

Type Gives a letter that - In tests to

: identifies type of distinguish between
data represented | different data types

- For value
substitution

- In macros to
discover missing

operands
Length Gives number of = For substitution
bytes that data into length fields
occupies in storage - For computation of
storage requirements
Scaling Refers to the - For testing and
position of the regulating the
decimal point in position of decimal
decimal, points
fixed-point, and - For substitution
floating-point into a scale
constants modi fier
Integer Is a function of the | - To keep track of N
length and scaling significant digits N
attributes of (integers) -
decimal,

fixed-point, and
floating-point

constants
Count Gives the number of - For scanning and
characters required decomposing of
to represent data character strings
- As indexes in
substring notation
Number! Gives the number of - For scanning
sublist entries in a sublists
macro instruction - As counter to test
operand sublist for end of sublist
Defined Indicates whether - To avoid
the symbol assembling a
referenced has been statement again if
defined prior to the the symbol
attribute reference referenced has been

previously defined

Note

1 The number attribute of &SYSLIST(m) and &SYSLIST(m,n) is
ggscribed in "&SYSLIST—Macro Instruction Operand™ on page
3.

200 Assembler H Version 2 Application Programming: Language Reference

The format for an attribute reference is:

]
(:} Attribute Ordinary or
Notation Variable Symbol

For example:

T'SYMBOL
LT&VAR
K'&PARAM

The attribute notation indicates the attribute whose value is
desired. The ordinary or variable symbol represents the data
that possesses the attribute. The assembler substitutes the
value of the attribute for the attribute reference.

An attribute reference to the type, scaling, integer, count, and
number attributes can be used only in a conditional assembly
instruction. The length attribute reference can be used both in
a conditional assembly instruction and in a machine or assembler
instruction.

combination With symbols

Figure 51 shows the seven kinds of attributes, identifying the
types of symbols they can be combined with.

ATTRIBUTES SPECIFIED

SYMBOLS . Type Length Scaling Integer Count Number Defined
SPECIFIED T L s I K’ N’ D’
Q IN THE OPEN CODE
Ordinary Symbols YES YES YES YES NO NO YES
SET Symbols YES SETConly | SETConly | SETConly | YES YES SETC only

subscripted

System Variable Symbols:

&SYSPARM
&SYSDATE YES NO NO NO YES NO NO
&SYSTIME
IN MACRO DEFINITIONS
Ordinary Symbols YES YES YES YES NO NO YES
SET Symbols YES SETConly | SETConly | SETConly | YES YES SETC only

subscripted

Symbolic Parameters YES YES YES YES YES YES YES

System Variable Symbols:

&SYSLIST YES YES YES YES YES YES YES

&SYSECT, &SYSLOC,
&SYSNDX, &YSPARM, | YES NO NO NO YES NO NO
&SYSDATE, &SYSTIME

Figure 51. Attributes and Related Symbols

Chapter 9. How to Write Conditional Assembly Instructions 201

The value of an attribute for an ordinary symbol specified in an
attribute reference comes from the data represented by the
symbol, as shown belou: A ™

Attribute Ordinary

Notation Symbol
Statement-—=—=me—m——————— Operand T
Label of EXTRN LY

or WXTRN S
instruction I

The symbol must appear in the name field of an assembler or
machine instruction, or in the operand field of an EXTRN or
WXTRN instruction. The instruction in which the symbol is
specified:

. Must appear in open code
. Must not contain any variable symbols

Note: You can refer to instructions generated by conditional
assembly substitution or macro expansion with attributes.
However, no such reference can be made until the instruction is
generated.

The value of an attribute for a variable symbol specified in an
attribute reference comes from the value substituted for the
variable symbol as follows:

1. For SET symbols and the system variable symbols: &SYSECT,

" &SYSLOC, &SYSNDX, &SYSPARM, &SYSDATE, and &SYSTIME, the
attgi?ute values come from the current data value of these
symbols.

2. For symbolic parameters and the system variable symbol,
&SYSLIST, the values of the count and number attributes come
from the operands of macro instructions.

The values of the type, length, scaling, and integer
attributes, however, come from the values represented by the
macro instruction operands, as follows:

a. If the operand is a sublist, the entire sublist and each
entry of the sublist can possess attributes; all the
individual entries and the whole sublist have the same
attributes as those of the first suboperand in the
sublist (except for "count," which can be different, and
"number,™ which is relevant only for the whole sublist).

b. If the first character or characters of the operand (or
sublist entry) constitute an ordinary symbol, and this
symbol is followed by either an arithmetic operator (+,
-, ¥, or /), a left parenthesis, a comma, or a blank,
then the value of the attributes for the operand are the
same as for the ordinary symbol.

c. If the operand (or sublist entry) is a character string
other than a sublist or the character string described
in b above, the type attribute is undefined (U) and the
length, scaling, and integer attributes are invalid.

Because attribute references are allowed only in conditional
assembly instructions, their values are available only at
preassembly time, except for the length attribute which can be
referred to outside conditional assembly instructions, and is,
therefore, also available at assembly time.

Note: The system variable symbol, &SYSLIST, can be used in an ™
attribute reference to refer to a macro instruction operand, &
and, in turn, to an ordinary symbol. Thus, any of the attribute

values for macro instruction operands and ordinary symbols

202 Assembler H Version 2 Application Programming: Language Reference

O

Typa Attribute (T')

listed below can also be substituted for an attribute reference
containing &SYSLIST.

The type attribute has a value of a single alphabetic character
that indicates the type of data represented by:

. An ordinary symbol
. A macro instruction operand
. A SET symbol.

The type attribute reference can be used only in the operand
field of the SETC instruction or as one of the values used for
comparison in the operand field of a SETB or AIF instruction.

Notes:

1. Ordinary symbols used in the name field of an EQU
instruction have the type attribute value "U." However, the
third operand of an EQU instruction can be used explicitly
¥9 ?35ign a type attribute value to the symbol in the name

jield.

2. The type attribute of a sublist is set to the same value as
the type attribute of the first element of the sublist.

The following letters are used for the type attribute of data
represented by ordinary symbols and outer macro instruction
operands that are symbols that name DC or DS statements.

A A-type address constant, implied length, aligned (also CXD
instruction label)

Binary constant

Character constant

Long floating-point constant, implicit length, aligned
Short floating-point constant, implicit length, aligned
Fullword fixed-point constant, implicit length, aligned
Fixed-point constant, explicit length

Halfword fixed-point constant, implicit length, aligned
Floating-point constant, explicit length

Extended floating-point constant, implicit length, aligned
Packed decimal constant

Q-type address constant, implicit length, aligned

A-, S-, Q-, V-, or Y-type address constant, explicit length
S-type address constant, implicit length, aligned

V-type address constant, implicit length, aligned
Hexadecimal constant

Y-type address constant, implicit length, aligned

Zoned decimal constant

NAX<ODBOoOVUr-AIOGTMUOW

The following letters are used for the type attribute of data
represented by ordinary symbols (and outer macro instruction
operands that are symbols) that name statements other than DC or
DS statements, or that appear in the operand field of an EXTRN
or WXTRN statement.

Machine instruction

Identified as a control section name

Macro instruction

Identified as an external symbol by EXTRN instruction
CCW, CCWO, or CCW1 instruction

Identified as an external symbol by WXTRN instruction

VEAICH

The following letters are used for the type attribute of data
represented by inner and outer macro instruction operands only.

N Self-defining term or the value of a SETA or SETB variable
0 Omitted operand (has a value of a null character string)

Chapter 9. How to Write Conditional Assembly Instructions 203

The following letter is used for symbols or macro instruction
operands that cannot be assigned any of the above letters.

U Undefined

®

The type attribute value U is assigned to the following:
. Ordinary symbols used as labels:

=~ For the LTORG instruction

—~ For the EQU instruction without a third operand

- For DC and DS statements that contain variable symbols;
for example, Ul DC &X'1'

- That are defined more than once, even though only one
label will be generated due to conditional assembly
statements

. SETC variable symbol

. System variable symbols: &SYSPARM, &SYSDATE, and &SYSTIME
. Macro instruction operands that specify literals

. Inner macro instruction operands that are ordinary symbols

Note: Because Assembler H allows attribute references to
statements generated through substitution, certain cases in
which a type attribute of U (undefined) or M (macro) is given
under the 05/VS Assembler, may give a valid type attribute under
Assembler H. If the value of the SETC symbol is equal to the
name of an instruction that can be referred to by the type
attribute, Assembler H allows vou to use the type attribute with
a SETC symbol.

Length Attribute (L") b

The length attribute has a numeric value equal to the number of
bytes occupied by the data that is represented by the symbol
specified in the attribute reference.

If the length attribute value is desired for preassembly
processing, the symbol specified in the attribute reference must
ultimately represent the name entry of a statement in open code.
In such a statement, the length modifier (for DC and DS
instructions) or the length field (for a machine instruction),
if specified, must be a self-defining term. The length modifier
or length field must not be coded as a multiterm expression,
because the assembler does not evaluate this expression until
assembly time.

Assembler H allows vou to use the length attribute with a SETC
symbol, if the value of the SETC symbol is equal to the name of
an instruction that can be referenced by the length attribute.

The length attribute can also be specified outside conditional
assembly instructions. Then, the length attribute value is not
available for conditional assembly processing, but is used as a
value at assembly time.

At preassembly time, an ordinary symbol used in the name field
of an EQU instruction has a length attribute value of 1. At
assembly time, the symbol has the same length attribute value as
the first symbol of the expression in the first operand of the
EQU instruction. Houwever, the second operand of an EQU
instruction can be used to assign a length attribute value to
the symbol in the name field.

206 Assembler H Version 2 Application Programming: Language Reference

Notes:

(:} 1.

The length attribute reference, when used in conditional
assembly processing, can be specified only in arithmetic
expressions.

A length attribute reference to a symbol with the type
attribute value of M, N, 0, T, U, or § will be flagged. The
length attribute for the symbol will be given the default

value of 1.

scaling Attribute (8')

The scaling attribute can be used only when referring to

fixed-point,

floating-point, or decimal constants.

numeric value that is assigned as shown belou:

Constant Type Value of scaling

Types Attributes Attribute Assigned
Alloned Allouwed

Fixed-Point| H, F, and 6 Equal to the value of the

scale modifier (-187
through +346)

It has a

Floating D, E, L, and K Equal to the value of the
Point scale modifier
(0 through 14 - D, E)
(0 through 28 - L)
Decimal ‘ P and Z » Equal to the number of
decimal digits specified
to the right of the
decimal point
; (0 through 31 - P)
‘ (0 through 16 - 2)
Notes:
1. The scaling attribute reference can be used only in
arithmetic expressions.
2. MWhen no scaling attribute value can be determined, the
reference is flagged and the scaling attribute is given the
value of 1.
3. If the value of the SETC symbol is equal to the name of an

Integer Attribute (I')

instruction that can be referenced by the scaling attribute,
Assembler H allows you to use the scaling attribute with a
SETC symbol.

The integer attribute has a numeric value that is a function of
(depands on) the length and scaling attribute values of the data
being referred to by the attribute reference. The formulas
relating the integer attribute to the length and scaling
attributes are given in Figure 52 on page 206.

Chapter 9. How to Write Conditional Assembly Instru;tions 205

Constant Formula Examples Values N
Type Relating the Of the
Allowed Integer to the Integer
(attribute Length and o Attribute
value) Scaling
Attributes
HALFCON DC HS6'~-25.93" 9

Fixed-point 8x2-6~1
(H.F, and G) '=8xL'-S"'-1 ONECON DC FS8'100.3E-2']) 23

8%4-8-1
Floating-point { when L' =8 SHORT DC ES2'46.415" 4
(D,E,L, and K) I'=2#(L'-1)-S" 2% (4-1)-2 }

LONG DC DS5'-3.729" F 9

2%(8-1)-5

Only for L-Type when L' > 8) -
I'=2%(L'~1)-g'~2 | EXTEND DC LS10'5,312" } 18
| 2%(16-1)-10 -2

Decimal equal to the
number of decimal
digits to the left of
the assumed decimal
point after the
number is assembled (\\
Packed (P) I'=2%L'~-S'~-1 PACK DC P'+3,513" 2 et

2#%3-3-1 s

03[5150

Zoned (2) I'=sL'-S' ZONE DC Z'3,513" 1

4-3

Figure 52. Relationship of Integer to Length and Scaling Attributes

Notes:

1. The integer attribute reference can be used only in

arithmetic expressions.

2. If the value of the SETC symbol is equal to the name of an
instruction that can be referenced by the integer attribute,
Assembler H allows you to use the integer attribute with a
SETC symbol.

count Attribute (K')
The count attribute applies only to macro instruction operands,

to SET symbols, and to the system variable symbols. It has a
numeric value equal to the number of characters:

. That constitute the macro instruction operand, or

206 Assembler H Version 2 Application Programming: Language Reference

C

. That would be required to represent as a character string
the current value of the SET symbol or the system variable
symbol.

Notes:

1. The count attribute reference can be used only in arithmetic
expressions.

2. The count attribute of an omitted macro instruction operand
has a default value of 0.

Number Attribute (N')

The number attribute applies only to the operands of macro
instructions. It has a numeric value equal to the number of
sublist entries in the operand.

When applied to a subscripted SET symbol, the number attribute
is equal to the highest element to which a value has been
assigned in a SETx instruction. For example, if the only
references to &A have been

LCLA &AC100)
&A(5) SETA 20,,,70 (see description of
AIF (&A(20) GT 50).M extended SET statements)

then N'&A is equal to 8, because &A(8) is assigned the value 70.
Notes:

1. The number attribute reference can be used only in
arithmetic expressions.

2. N'&SYSLIST refers to the number of positional operands in a
macro instruction, and N'&SYSLIST(m) refers to the number of
sublist entries in the m-th operand.

Defined Attribute (D')

The defined attribute indicates whether or not the symbol
referenced has been defined prior to the attribute reference. A
symbol is considered as defined if it has been encountered in
the operand field of an EXTRN or WXTRN statement, or in the name
field of any other statement. The value of the defined
attribute is 1, if the symbol has been defined, or 0, if the
symbol has not been defined.

The defined attribute can reference all symbols that can be
referenced by the scaling (S') attribute.

The following is an example of how you can use the defined
attribute:

AIF (DYA).AROUND
A LA 1.4
.ARQOUND ANOP

In this example, the statement at A would be assembled, since
the branch around it would not be taken. However, if by a
branch the same statement were processed again, the statement at
A would not be assembled:

.UP AIF (D'A).AROUND
A LA 1,6
.AROUND ANOP

AGD .UP

You can save assembly time usihg the defined attribute. Each
time the assembler finds a reference (attribute or branch) to an
undefined symbol, it initiates a forward scan until it finds

Chapter 9. How to Write Conditional Assembly Instructions 207

SEQUENCE SYMBOLS

that symbol or reaches the END statement. You can use the
defined attribute in your program to prevent the assembler from
making this time-consuming forward scan.

You can use a sequence symbol in the name field of a statement
to branch to that statement at preassembly time, thus altering
the sequence in which the assembler processes your conditional
assembly and macro instructions. You can thus select the model
statements from which the assembler gencrates assembler language
statements for processing at assembly time.

Sequence symbols must be specified as follows:

¢ The first column must contain a period (.).

¢ The second column must contain an alphabetic character.

¢ The remaining columns must contain 0 to 61 alphameric
characters.

For example: .BRANCHINGLABEL1

.

Sequence symbols can be specified in the name field of assembler
language statements and model statements; however, the following
lists assembler instructions in which sequence symbols must not
be used as name entries:

COPY
EQU
GBLA
GBLB
GBLC
ICTL
ISEQ
LCLA
LCLB
LCLC
MACRO
OPSYN

In addition, sequence symbols cannot bhe used as name entries in
macro prototype instructions, or in any instruction that already
contains an ordinary or a variable symbol.

Sequence symbols can be specified in the operand field of an AIF
or AGO instruction to branch to a statement with the same
sequence symbol as a label.

A sequence symbol has a local scope. Thus, if a sequence symbol
is used in an AIF or an AGO instruction, the sequence symbol
must be defined as a label in the same part of the program in
which the AIF or AGO instruction appears; that is, in the same
macro definition or in open code.

If a sequence symbol appears in the name field of a macro
instruction, and the corresponding prototype statement contains
a symbolic parameter in the name field, the sequence symbol does
not replace the symbolic parameter wherever it is used in the
macro definition. :

208 Assembler H Vaersion 2 Application Programming: Language Reference

A ™
N

:‘ a»};t:

The following example illustrates this rule.

Name Operation Operand

MACRO

1 | &NAME MOVE &T0, &FROM

2 | &NAME ST 2,SAVEAREA
L 2,&FROM
ST { 2,870
L 2,SAVEAREA
MEND

3| .sYM MOVE FIELDA, FIELDB

4 ST 2,SAVEAREA
L 2,FIELDB
ST 2,FIELDA
L 2,SAVEAREA

The symbolic parameter &NAME is used in the name field of the
prototype statement (statement 1) and the first model statement
(statement 2). In the macro instruction (statement 3), a
sequence symbol (.5YM) corresponds to the symbolic parameter
&NAME. &NAME is not replaced by .SYM and, therefore, the
generated statement (statement 4) does not contain an entry in
the name field.

ATTRIBUTE DEFINITION AND LOOKAHEAD

Symbol attributes are established in either definition mode or
lookahead mode. Lookahead mode is entered when Assembler H
Snggungers an attribute reference to a symbol that is not vet
efined.

DEFINITION MODE: Definition occurs whenever a previously
undefined symbol is encountered in the name field of a
statement, or in the operand field of an EXTRN or WXTRN
statement during open code processing. Symbols within a macro
definition are defined when the macro is generated.

Lookahead Mode: Lookahead is a sequential,
statement-by-statement, forward scan over the source text. It
is initiated when reference is made to an attribute (other than
D') of a symbol not yet encountered, either by macro or
open-code attribute reference, or by a forward AGO or AIF branch
in open code.

If reference is made in a macro, forward scan begins with the
first sourcae statement following the outermost macro
instruction. Programmer macros are bypassed. The text is not
assembled. Lookahead attributes are tentatively established for
all intervening undefined symbols. Tentative attributes are
replaced and fixed when the symbol is subsequently encountered
in definition mode. No macro expansion or open-code
substitution is performed; no conditional or unconditional (AIF
or AGO) branches are taken. COPY instructions are executed
during lookahead, and the copied statements are scanned.

Lookahead ends when the desired symbol or sequence symbol is
found, or when the END card or end of file is reached. All
statements passed over by lookahead are saved on an internal
file, and processed when the lookahead ends.

For purposes of attribute definition, a symbol is considered
undefined if it depends in any way upon a symbol not vet
defined. For example, if the symbol is defined by a forward EQU
that is not yet resolved, or if a DC, DS, or DXD modifier
expression contains symbols not yet defined, that symbol is
assigned a type attribute of U.

Chapter 9. How to UWrite Conditional Assembly Instructions 209

Note: Because no variable symbol substitution is performed by a
lookahead, vou should be careful when using a macro or open code
substitution to generate END statements that separate source
modules assembled in one job step (option BATCH). If a symbol
is undefined within a module, lookahead will read in records
past the point where the END statement is to be generated. All
statements between the generated statement and the point at
which lookahead stops (either because it finds a matching
symbol, or because it finds an END statement) are ignored by the
assembler. The next module will start at the point where
lookahead stops.

LOOKAHEAD RESTRICTIONS: Assembler statements are analvzed only
to the extent necessary to establish attributes of symbols in
thair name fields.

Variable symbols are not replaced. Modifier expressions are
evaluated only if all symbols involved were defined prior to
lookahead. Possible multiple or inconsistent definition of the
same symbol is not diagnosed during lookahead because
conditional assembly may eliminate one (or both) of the
definitions.

Lookahead does not check undefined operation codes against
library (system) macro names. If the name field contains an
ordinary symbol and the operation code cannot be matched with
one in the current operation code table, then the ordinary
symbol is assigned the type attribute of M. If the operation
code contains special characters or is a variable symbol, a type
attribute of U is assumed. This may be wrong if the undefined
operation code is later defined by OPSYN. OPSYN statements are
not processed; thus, labels are treated in accordance with the
operation code definitions in effect at the time of entry to
lookahead.

DECLARING SE YMBOLS

You must declare a global SET symbol before you can use it. The
assembler assigns an initial value to a global SET symbol at its
point of declaration.

Local SET symbols need not be declared explicitly with LCLA,
LCLB, or LCLC statements. The assembler considers any
undeclared variable symbol found in the name field of a SETA,
SETB, or SETC statement to be a local SET symbol. It is given
the initial value specified in the operand field. If the symbol
in the name field is subscripted, it is declared as a
subscripted SET symbol.

LCLA, LCLB, LCLC—DEFINE LOCAL SET SYMBOLS
You use the LCLA, LCLB, and LCLC instructions to declare the
local SETA, SETB, and SETC symbols you need. The SETA, SETB,
and SETC symbols are assignhed the initial values of 0, 0, and
null character string, respectively.

The format of these instructions is:

Name Operation Operand

Blank | LCLA, One or more variable
LCLB, or symbols separated
LCLC by commas

These instructions can be used anywhere in the body of a macro
definition or in the open code portion of a source module.

A local SET symbol should not begin with &5YS because these
characters are reserved for system variable symbols.

210 Assembler H Version 2 Application Programming: Language Reference

®

Any variable symbols declared in the operand field have a local
scope. They can be used as SET symbols anywhere after the
pertinent LCLA, LCLB, or LCLC instructions, but only uwithin the
declared local scope. Multiple LCLx statements can declare the
same variable symbol if only one declaration for a givan symbol
is encountered during the expansion of a macro.

The following rules apply to a local SET variable symbol:

1. MWithin a macro dafinition, it must not be the same as any
symbolic parameter declared . in the prototype statement.

2. It must not be the same as any global variable symbol
declared within the same local scope.

3. The same variable symbol must not be declared or used as two
different types of SET symbols; for example, as a SETA and a
SETB symbol, within the same local scope.

SUBSCRIPTED LOCAL SET SYMBOLS: A local subscripted SET symbol is
declared by the LCLA, LCLB, or LCLC instruction. This
declaration must be specified as follows:

Format:
LCLA

LCLB
or LCLC

&SETSYM(dimension)

[SRVES]

where

&SETSYM is a variable symbol.
dimension gu:t b: an unsigned, decimal, self-defining term,
ut not 0.

For examplae:
LCLB &B(10)

There is no limit to SET symbol dimensioning. The limit
specified in the explicit (LCLx) or implicit (SETx) declaration
can also be exceeded by subsequent SETx statements. The
dimension indicates the number of SET variables associated with
the subscripted SET symbol. The assembler assigns an initial
value to every variable in the array thus declared.

Note: A subscripted local SET symbol can be used only if the
declaration has a subscript, which represents a dimension; a
nonsubscripted local SET symbol can be used only if the
declaration had no subscript.

ALTERNATIVE FORMAT FOR LCLX STATEMENTS: Assembler H permits an
alternative statement format for LCLx instructions; for example:

statement continuation

Field Indicator

LCLA &LOCALSYMBOLFORDCGEN, X
&COUNTERFORINNERLOOP, X
&COUNTERFOROUTERLOOP, X

&COUNTERFORTRAILINGLOOP

GBLA, GBLB, AND GBLC INSTRUCTIONS

You use the GBLA, GBLB, and GBLC instructions to declare the
global SETA, SETB, and SETC symbols you need., The SETA, SETB,
and SETC symbols are assigned the initial values of 0, 0, and
null character string, respectively.

Chapter 9. How to Write Conditional Assembly Instructions 211

The format of the GBLA, GBLB, and GBLC instruction statements is
as follows:

Name ' | operation Operand

Blank GBLA, One or more variable
GBLB, or symbols separated
GBLC by commas

These instructions can be used anywhere in the body of a macro
definition or in the open code portion of a source module.

Any variable symbols declared in the operand field have a global
scope. They can be used as SET symbols anywhere after the
pertinent GBLA, GBLB, or GBLC instructions. However, they can
be used only within those parts of a program in which they have
been declared as global SET symbols; that is, in any macro
definition and in open code.

The assembler assigns an initial value to the SET symbol only
when it processes the first GBLA, GBLB, or' GBLC instruction in
which the symbol appears. Subsequent GBLA, GBLB, or GBLC
instructions do not reassign an initial value to the SET symbol.

Multiple GLBx statements can declare the same variable symbol if
only one declaration for a given symbol is encountered during
the expansion of a macro.

The following rules apply to the global SET variable symbol:

1. Within a macro definition, it must not be the same as any
symbolic parameter declared in the prototype statement.

2. It must not be the same as any local variable symbol
declared within the same local scope.

3. The same variable symbol must not be declared or used as two
different types of global SET symbol; for example, as a SETA
or SETB symbol.

Note: A global SET symbol should not begin with the four
characters &5YS, which are reserved for system variable symbols.

SUBSCRIPTED GLOBAL SET SYMBOLS: A global subscripted SET symbol
is declared by the GBLA, GBLB, or GBLC instruction.

This declaration must be specified as follows:
Format:

GBLA 1
GBLB > &SETSYM(dimension)
or GBLC 4

where

&SETSYM is a variable symbol.
dimension gu:t b: gn unsigned, decimal, self-defining term,
ut no .

For example:
GBLA &GA

There is no limit on the maximum subscript allowed. Also, the
limit specified in the global declaration (GBLx) can be
exceeded. The dimension indicates the number of SET variables

associated with the subscripted SET symbol. The assembler '

gss;gnsdan initial value to every variable in the array thus
eclared.

212 Assembler H Varsion 2 Application Programming: Language Reference

O

Notes:

1. Global arrays are assigned initial values only by the first
global declaration processed, in which a global subscripted
SET symbol appears.

2. A subscripted global SET symbol can be used only if the
declaration has a subscript, which represents a dimension; a
nonsubscripted global SET symbol can be used only if the
declaration had no subscript.

3. Wherever a particular global SET symbol is declared with a
dimension as a subscript, the dimension must be the same in
each declaration.

ALTERNATIVE FORMAT FOR GBLX STATEMENTS: Assembler H permits the
alternate statement format for GBLx instructions, as shown in
the following example: '

Statement continuation

Field Indicator

GBLA &GLOBALSYMBOLFORDCGEN, X
&LOOPCONTRLA, X
&VALUEPASSEDTOMACDUFF, X

&VALUERETURNEDFROMMACDUFF

ASSIGNING VALUES TO SET SYMBOLS

SETA—SET ARITHMETIC

The SETA instruction allows you to assign an arithmetic value to
a SETA symbol. You can specify a single value or an arithmetic
expression from which the assembler will compute the value to
assign.

You can change the values assigned to an arithmetic or SETA
symbol. This allows vou to use SETA symbols as counters,
indexes, or for other repeated computations that require varying
values.

The format of this instruction is:

Name Operation Operand
A variable SETA An arithmetic expression
symbol

A global variable symbol in the name field must have been
previously declared as a SETA symbol in a GBLA instruction.
Local SETA symbols need not be declared in a LCLA instruction.
The assembler considers any undeclared variable symbol found in
the name field of a SETA instruction as a local SET symbol.

The variable symbol is assigned a type attribute value of N.

The expression in the operand field is evaluated as a signed
32-bit arithmetic value that is assigned to the SETA symbol in
the name field. The minimum and maximum allowable values of the
expression are -23! and +2%'-1, respectively.

subscripted SETA Symbols

The SETA symbol in the name field can be subscripted, but only
if the same SETA symbol has been previously declared in a GBLA
or LCLA instruction with an allowable dimension.

Chapter 9. How to Write Conditional Assembly Instructions 213

The assembler assigns the value of the expression in the operand

field to the position in the declared array given by the valua

of the subscript. The subscript expression must not be 0, or WFHN
have a negative value, or exceed the dimension actually

specified in the declaration.

Arithmetic (SETA) Expressions

Arithmetic expressions can be used as shown in Figure 53.

_Can be Used In Used As Example
SETA instruction operand &A1 SETA &A1+2
AlF instruction comparand AIF (&A#10 GT 30).A
or in arithmetic
SETB instruction relation
Subscripted SET subscript &SETSYM (&A+10-&C)
symbols
Substring notation subscript '&STRING' (&A#*2,&A-1)
{See L6)
Sublist notation subscript sublist (p B,C,D)
when &A=1
&PARAM (&A+1) =B C:;
&SYSLIST subscript &SYSLIST (8M+1,8N-2)
&SYSLIST(N'&SYSLIST)
SETC instruction character &C SETC ' 5_1 0 #&A 1
string in if gA=10—»
operand then &C=5-103x%1

Figure 53. Using Arithmetic (SETA) Expressions

Note: When an arithmetic expression is used in the operand
field of a SETC instruction (see (1) in Figure 53), the
assembler assigns the character value representing the
arithmetic expression to the SETC symbol, after substituting
values (see (2) in Figure 53) into any variable symbols. It
does not evaluate the arithmetic expression.

Figure 54 on page 215 defines an arithmetic expression.

214 Assembler H Version 2 Application Programming: Language Reference

Arithmetic
Expression

Arith.Exp Arith. Exp Arith. Exp
+ e

or - or
| Arith, Exp | |

or -
Arith, Exp | .. Arith. Exp

Unary operators

Operators Allowed

Unary: + positive
- negative

Binary: + addition
- subtraction
multiplication
/ division

Number

Arith. Exp = Arithmetic Expression

Figure 54. Defining Arithmetic (SETA) Expressions

The variable symbols that are allowed as terms in an arithmetic
expression are given in Figure 55 on page 216.

RULES FOR CODING ARITHMETIC EXPRESSIONS: The following is a
summary of coding rules for arithmetic expressions:

1. Both unary (operating on one value) and binary (operating on
two values) operators are allowed in arithmetic expressions.

2. An arithmetic expression can have one or more unary
operators preceding any term in the expression or at the
beginning of the expression. The unary operators are +
(positive) and - (negative). :

3. The binary operators that can be used to combine the terms
of an expression are t+ (addition), - (subtraction), ¥
(multiplication), and 7 (division).

4. An arithmetic expression must not begin with a binary
operator, and it must not contain two binary operators in
succession. :

5. An arithmetic expression must not contain two terms in
succession.

6. An arithmetic expression must not contain blanks between an
operator and a term, nor between two successive operators.

Chapter 9. How to Write Conditional Assembly Instructions 215

7.

Note:

The parentheses required for sublist notation,
notation, and subscript notation count toward this limit.

An arithmetic expression can contain up to 24 unary and
binary operators, and up to 255 levels of parentheses.

O

substring

Variable Restrictions Example Value
Symbol
SETA none — —
SETB none — —
SETC value mustbe an |&C 123
unsigned decimal
&SYSPARM gﬁdﬁmmgmmw &SYSPARM 2000
in the range 0
through
2,147,483,647
Symbolic value must be a &PARAM X'Al!
Parameters self-defining term
&SUBLIST(3) c'z2!
&SYSLIST (n) correspondihg &SYSLIST (3) 24 /("\\
operand or sublist &(v;;
&SYSLIST (n,m)|) entry mustbe &SYSLIST(3,2)| B*101"
a self-defining
term
&SYSNDX none —_— —

Figurae 55. Variable Symbols Allowed as Terms in Arithmetic
Expression

EVALUATION OF ARITHMETIC EXPRESSIONS: The assembler evaluates
arithmetic expressions at preassembly time as follows:

1.

2.
However,

a.
and

b.

It evaluates each arithmetic term.

It performs arithmetic operations from left to right.
It performs unary operations before binary operations,

It performs the binary operations of multiplication and

division before the binary operations of addition and

subtract

In division,
portion is d

ion.

it gives an integer result; any fractional
Division by zero gives a 0 result.

ropped.

216 Assembler H Version 2 Application Programming: Language Reference

4. In parenthesized arithmetic expressions, the assembler
evaluates the innermost expressions first, and then
considers them as arithmetic terms in the next outer level
of expressions. It continues this process until the
outermost expression is evaluated.

5. The computed result, including intermediate values, must lie
in the range -23! through +231-1.

SETC VARIABLES IN ARITHMETIC EXPRESSIONS: Assembler H permits a
SETC variable to be used as a term in an arithmetic expression
if the character string value of the variable is a self-defining
term. The value represented by the string is assigned to the
arithmetic term. A null string is treated as zero. (The 0S/VS
Assembler allows SETC variables as arithmetic terms only if the
value of the variable is a decimal self-defining term, not
longer than 10 characters.)

Examples
Name Operation Operand
LCcLC &C(5)
&C(1) SETC 'Brrioiry
&§C(2) SETC YCYIAYYY
&C(3) SETC 23
&A SETA SCCI1)+&C(2)-&C(3)?
&AA SETA | &C(3)>2

1Allowed only by Assembler H
2Allowed by the 05/VS Assembler and Assembler H

In evaluating the arithmetic expression in the fifth statement,

the first term (&C(1)) is assigned the binary value 101 (5). To

that is added the value represented by the EBCDIC character A

(hexadecimal Cl, which corresponds to decimal 193). Then the

value represented by the third term (&C(3)) is subtracted, and
the value of &A becomes 5+193-23=175.

This feature allows you to associate numeric values with EBCDIC
or hexadecimal characters to be used in such applications as
indexing, code conversion, translation, and sorting.

Assume that &X is a character string with the value ABC.

Name Operation Operand
&I SETC Yo Y vegxX'(1,1).vvvy
&VAL SETA -&TRANS(&I)

The first statement sets &I to C'A'. The second statement
extracts the 193rd element of &TRANS (C'A' = X'Cl' = 193).

The following code will convert a hexadecimal value in &H into a
decimal value in &VAL:

Name Operation Operand
&X SETC YXTYEHY'
&VAL SETA &X

An arithmetic expression must not contain two terms in
succession; however, any term may be preceded by any number of
unary operators. +&A%-&B is a value operand for a SETA
instruction. The expression &FIELD+- is invalid because it has
no final term.

Chapter 9. How to Write Conditional Assembly Instructions 217

Using SETA symbols

The arithmetic value assigned to a SETA symbol is substituted
for the SETA symbol when it is used in an arithmetic expression.
If the SETA symbol is not used in an arithmetic expression, the
arithmetic value is converted to an unsigned integer, with
lgad;ngozeros removed. If the value is 0, it is converted to a
single 0.

The following example illustrates this rule:

Name Operation Operand
MACRO
&NAME MOVE &T0, &FROM
LCLA &A,&B,8&C,8&D
1 &A SETA 10
2 &B SETA 12
3 &C SETA &A-&B
4 &D SETA &A+EC
&NAME ST 2,SAVEAREA
5 L 2, &FROM&C
6 ST 2,&T0&D
L 2,SAVEAREA
MEND
HERE MOVE FIELDA,FIELDB
HERE ST 2,SAVEAREA
L 2,FIELDB2
ST 2,FIELDA8
L 2,SAVEAREA

Statements 1 and 2 assign the arithmetic values +10 and +12,
respectively, to the SETA symbols &A and &B. Therefora,
statement 3 assigns the SETA symbol &C the arithmetic value -2.
When &C is used in statement 5, the arithmetic value -2 is
converted to the unsigned integer 2. When &C is used in
statement 4, however, the arithmetic value -2 is used.
Therefore, &D is assigned the arithmetic value +8. When &D is
used in statement 6, the arithmetic value +8 is converted to the
unsigned integer 8.

The following example shows how the value assigned to a SETA
symbol may be changed in a macro definition.

Name Operation Operand
MACRO
&NAME MOVE &T0, &FROM
. LCLA &A
1 &A SETA 5
&NAME ST 2,SAVEAREA
2 L 2,&FROMEA
3 &A SETA 8
4 ST 2,&T0&A
L 2,S5SAVEAREA
MEND
- HERE MOVE FIELDA,FIELDB
HERE ST 2,SAVEAREA
L 2,FIELDBS
ST 2,FIELDA8
L 2,SAVEAREA

’218 Assembler H Version 2 Application Programming: Language Reference

O

SETB—SET BINARY

Statement 1 assigns the arithmetic value +5 to SETA symbol &A.
In statement 2, &A is converted to the unsigned integer 5.
Statement 3 assigns the arithmetic value +8 to &A. In statement
4% gherefore, &A is converted to the unsigned integer 8, instead
o .

A SETA symbol may be used with a symbolic parameter to refer to
an operand in an operand sublist. If a SETA symbol is used for
this purpose, it must have been assigned a positive value.

Any expression that may be used in the operand field of a SETA
instruction may be used to refer to an operand in an operand
5"b1if§g Sublists are described in "Sublists in Operands™ on
page .

The following macro definition may be used to add the last
opaerand in an operand sublist to the first operand in an operand
sublist and store the result at the first operand. A sample

gagro_ipstruction and generated statements follow the macro
efinition.

Name operation operand

MACRO

1 ADDX &NUMBER, ®
LCLA &LAST

2 | &LAST SETA N'&NUMBER
L ®, §NUMBER(1)

3 A ®, §NUMBER(&LAST)
ST ®, §NUMBER(1)
MEND

% ADDX (A,B,C,D,E),3
L 3,A
A 3,E
ST 3,A

&NUMBER is the first symbolic parameter in th operand field of
the prototype statement (statement 1). The corresponding
characters (A,B,C,D,E) of the macro instruction (statement 4)
are a sublist. Statement 2 assigns to &LAST the arithmetic
value +5, which is equal to the number of operands in the
sublist. Therefore, in statement 3, &NUMBER(&LAST) is replaced
by the fifth operand of the sublist.

You use the SETB instruction to assign a binary bit value to a
SETB symbol. You can assign the bit values, 0 or 1, to a SETB
symbol directly and use it as a switch.

If you specify a logical (boolean) expression in the operand
field, the assembler evaluates this expression to determine
whether it is true or false, and then assigns the value 1 or 0,
respectively, to the SETB symbol. You can use this computed
value in condition tests or for substitution. .

The format of this instruction is:

Name Operation Operand
A variable SETB One of three options
symbol described below

A global variable symbol in the name field must have been
previously declared as a SETB symbol in a GBLB instruction.
Local SETB symbols need not be declared in a LCLB instruction.
The assembler considers any undeclared variable symbol found in

Chapter 9. How to Write Conditional Assembly Instructions 219

the name field of a SETB instruction as a local SET symbol. The
variable symbol is assigned a type attribute value of N.

Thé three options that can be specified in the operand field
are:?

. A binary value (0 or 1)
. A binary value enclosed in parentheses

Note: An arithmetic value enclosed in parentheses is
allowed. This value can be represented by an unsigned,
decimal, self-defining term; a SETA symbol; or an attribute
reference other than the type attribute reference. If the
value is 0, the assembler assigns a value of 0 to the symbol
in the name field. If the value is not 0, the assembler
assigns a value of 1.

. A logical expression enclosed in parentheses

A logical expression is evaluated to determine if it is true or
false; the SETB symbol in the name field is then assigned the
binary value 1 or 0, corresponding to true or false,
respectively. The assembler assigns the explicitly specified
binary value (0 or 1) or the computed logical value (0 or 1) to
the SETB symbol in the name field.

subscripted SETB Symbols

The SETB symbol in the name field can be subscripted, but only
if the same SETB symbol has been previously declared in a GBLB
or LCLB instruction with an allowable dimension.

The assembler assigns the binary value explicitly specified, or
implicit in the logical expression present in the operand field,
to the position in the declared array given by the value of the
subscript. The subscript expression must not be 0, or have a
negative value, or exceed the dimension actually specified in
the declaration.

Logical (SETB) Expressions
You can use a logical expression to assign a binary value to a
SETB symbol. You can also use a logical expression to represent
the condition test in an AIF instruction. This use allows vou
to code a logical expression whose value (0 or 1) will vary
according to the values substituted into the expression and
thereby determine whether or not a branch is to be taken.
Figure 56 on page 221 defines a logical expression.
Note: An arithmetic relation is two arithmetic expressions
saparated by a relational operator. A character relation is two
character strings (for example, a character expression and a
type attribute reference) separated by a relational operator.
The relational operators are:
EQ equal
NE not equal
LE less than or equal
LT less than
GE ogoreater than or equal

GT greater than

220 Assembler H Version 2 Application Programming: Language Reference

. Logical Operators Allowed
Outermost Expression

must be enclosed in

R addition
parenthes'es in SETB multiplication
and AIF instructions negation

Logical
Expression |eg—

Logicatl Logical i e Logical Logical Optional parentheses
Term | Expression : ; Term Expression around terms and
P i : expressions at this level

Arithmetic Logical SETB . e ! Items optionally
value Relation Variable enclosed in
Symbol : parentheses

Relational Operators Allowed

Arithmetic Character equal
Relation Relation not equal
; tess than or equal
less than

greater than or equal
greater than

which is

Character £ Character Must be in the

Comparand Comparand range 0 through
3 255 characters

Arithmetic
Comparand

Arithmetic
Comparand

Can Be Can Be

Concatenation
Type of Character
Attribute Expression
Reference and Substring

Notation

Arithmetic Character Substring
Expression Expression Notation

Must stand alone
and not be enciosed
Figure 56. Defining Logical Expressions in apostrophes

Chapter 9. How to Write Conditional Assembly Instructions 221

RULES FOR CODING LOGICAL EXPRESSIONS: The following is a summary
of coding rules for logical expressions:®

1.

2.

A logical expression must not contain two logical terms in
succession.

ao%ogical expression can begin with the logical operator

A logical expression can contain two logical operators in
succaession; however, the only combinations allowed are: OR
NOT or AND NOT. The two operators must be separated from
each other by one or more blanks.

Any logical term, relation, or inner logical expression can
be optionally enclosed in parentheses.

The relational and logical operators must be immediately
praceded and followed by at least one blank or other special
character.

A logical expression can contain up to 18 logical operators.
Note that the relational and other operators used by the
arithmetic and character expressions in relations do not
count toward this total. There is no limit on the number of
parentheses.

EVALUATION OF LOGICAL EXPRESSIONS: The assembler evaluates
logical expressions as follows:

1.

2.

It evaluates each logical term, which is given a binary
value of 0 or 1.

If the logical term is an arithmetic or character relation,
the assembler evaluates:

a. The arithmetic or character expressions specified as
values for comparison in these relations, and then

b. The arithmetic or character relation, and finally

c. The logical term, which is the result of the relation.
If the relation is true, the logical term it represents
is given a value of 1; if the relation is false, the
term is given a value of 0.

Note: The two comparands in a character relation arc
compared, character by character, according to binary o
(EBCDIC) representation of the character. If two comparands
in a character relation have character values of unequal
length, the assembler always takes the shorter character
value to be less than the longer one.

The assembler performs logical operations from left to
right. However,

a. Itdperforms logical NOTs before logical ANDs and ORs,
an

b. It performs logical ANDs bafore logical ORs.

In parenthesized logical expressions, the assembler
evaluates the innermost expressions first, and then
considers them as logical terms in the next outer level of
expressions. It continues this process until the outermost
expression is evaluated.

USING SETB SYMBOLS: The logical value assigned to a SETB symbol
is used for the SETB symbol appearing in the operand field of an
AIF instruction or another SETB instruction.

If a SETB symbol is used in the operand field of a SETA
instruction, or in arithmetic relations in the operand fields of

222 Assembler H Version 2 Application Programming: Language Reference

\/\\\:

SETC—SET CHARACTER

AIF and SETB instructions, the binary values 1 (true) and 0
(false) are converted to the arithmetic values +1 and %0,
respectively.

If a SETB symbol is used in the operand field of a SETC
instruction, in character relations in the operand fields of AIF
and SETB instructions, or in any other statement, the binary
values 1 (true) and 0 (false), are converted to the character
values 1 and 0, respectively.

The following example illustrates these rules. It is assumed
that L'&T0 EQ 4 is true, and 5'&T0 EQ 0 is false.

Name Operation Operand
MACRO
&NAME MOVE &T0, &FROM
LCLA &AL
LCLB &B1,&B2
LCLC &C1
1 &B1 SETB (LY&TO EQ %)
2 &B2 SETB (S'&T0 EQ 0)
3 &ALl SETA &B1
4 &C1 SETC *&B2"
ST 2,SAVEAREA
L 2, &FROM&AL
ST 2,&T0&C1
L 2,SAVEAREA
MEND
HERE MOVE FIELDA,FIELDB
HERE ST 2,SAVEAREA
L 2,FIELDB1
ST 2,FIELDAO
L 2,SAVEAREA

Because the operand field of statement 1 is true, &Bl is
assigned the binary value 1. Therefore, the arithmetic value +1
is substituted for &Bl in statement 3. Because the operand
field of statement 2 is false, &B2 is assigned the binary value
0. Therefore, the character value 0 is substituted for &B2 in

statement 4.

The SETC instruction allows you to assign a character value to a
SETC symbol. You can assign whole character strings, or
concatenate several smaller strings together. The assembler
will assign the composite string to your SETC symbol. You can
also assign parts of a character string to a SETC symbol by
using the substring notation.

You can change the character value assigned to a SETC symbol.
This allows yvou to use the same SETC symbol with different
values for character comparisons in several places, or for
substituting different values into the same model statement.

The format of this instruction is:

Name Operation

SETC

Operand

A variable
symbol

One of four options
described below

A global variable symbol in the name field must have been
previously declared as a SETC symbol in a GBLC instruction.
Local SETC symbols need not be declared in a LCLC instruction.
The assembler considers any undeclared variable symbol found in

Chapter 9. How to Write Conditional Assembly Instructions 223

the name field of a SETC instruction as a local SET symbol. The
variable symbol is assigned a type attribute value of U.

®

The four options that can be specified in the operand field are:
. A type attribute reference

. A character expression

. A substring notation

. A concatenation of substring notations, or character
expressions, or both

The assembler assigns the character string value represented in
the operand field to the SETC symbol in the name field.” The
string length must be in the range 0 (null character string)
through 255 characters.

Note: When a SETA or SETB symbol is specified in a character
expression, the unsigned decimal value of the symbol (with
1eagi?g zeros removed) is the character value given to the
symbol.

A duplication factor can precede any of the first three options,
or any of the parts (character expression or substring notation)
that make up the fourth option of the SETC instruction operand.
The duplication factor can be any arithmetic expression allowed
in the operand of a SETA instruction. For example:
&Cl SETC (3)'ABC’
-assigns the value "ABCABCABC' to &Cl.

Note: The assembler evaluates the character string represented

(in particular, the substring) before applving the duplication N
factor. The resulting character string is then assigned to the N
SETC symbol in the name field. For example: &L)/

&C2 SETC 'ABC'.(3)'ABCDEF'(4,3)
assigns the value 'ABCDEFDEFDEF' to &C2.

SUBSCRIPTED SETC SYMBOLS: The SETC symbol (see (1) in Figure 57

on page 225) in the name field can be subscripted, but only if

the same SETC symbol has been previously declared (see (2) in

§§gure.57) in a GBLC or an LCLC instruction with an allowable
imension.

The assembler assigns the character value represented in the
operand field to the position in the declared array (see (3) in
Figure 57) given by the value of the subscript. The subscript
expression must not be 0, or have a negative value, or exceed
the dimension (see (4) in Figure 57) actually specified in the
declaration.

Character (SETC) Expressions

The main purpose of a character expression is to assign a
character value to a SETC symbol. You can then use the SETC
symbol to substitute the character string into a model
statement.

You can also use a character expression as a value for
comparison in condition tests and logical expressions. In
addition, a character expression provides the string from which
characters can be selected by the substring notation.

Substitution of one or more character values into a character
expression allows you to use the character expression wherever
vou need to vary values for substitution or to.control loops.

22% Assembler H Version 2 Application Programming: Language Reference

LCLC &C1,&C2
LCLC &SUBSCRC (20)

. Must be in the
range 1 through
o 32767

&SUBSCRC(10) SETC 'ABCDE'

Array:
&SUBSCRC

Must be an arithmetic
expression allowed in
the operand of a SETA
instruction

S e

1 2 10 20

&SUBSCRC (25) SETC 'ABCDEF' #x%ERROR** NO
o’ Value Assigned

—s

Value assigned
&C1=ABCDE

&C1l SETC '&SUBSCRC (10) "

Figure 57. Subscripted SETC Symbols

Character (SETC) expressions can be used only in conditional
assembly instructions as shown in Figure 58 on page 226.

A character expression consists of any combination of characters
enclosed in single quotation marks. Variable symbols are
allowed. The assembler substitutes the representation of their
values as character strings into the character expression before
evaluating the expression. Up to 255 characters are allouwed in
a character expression.

Note: Attribute references are not allowed in character
expressions.

EVALUATION OF CHARACTER EXPRESSIONS: The value of a character

expression is the character string within the enclosing single
quotation marks, after the assembler performs any substitution
for variable symbols.

Character strings, including variable symbols, can be
concatenated to each other within a character expression. The
resultant string is the value of the expression used in
conditional assembly operations; for example, the value assigned
to a SETC symbol.

Notes:

1. Two single quotation marks must be used to generate a single
quotation mark as part of the value of a character
expression.

The following statement assigns the character value L'SYMBOL
to the SETC symbol &LENGTH.

Chapter 9. How to Write Conditional Assembly Instructions 225

»

Can be Used in | Used As |Example
SETC instruction |operand |&C SETC 'STRINGO'
AIF instruction character |[AIF ('&C' EQ 'STRINGl').B
or string in
SETB instruction | character
relation
Substring notation | firstpart |' SELECT' (2,5)=ELECT
of notation|
character
expression

Figure 58. Using Character Expressions

Name
&LENGTH

Operation
SETC

Operand
"LY'SYMBOL®

2. A double ampersand will generate a double ampersand as part
of the value of a character expression. To generate a ~
single ampersand in a character expression, use the C;))
substring notation; for example, ('&&'(1,1)). s

The following statement assigns the character value HALF&&

to the SETC symbol &AND.

Nama Operation Operand
&AND SETC YHALF&&?®
3. To generate a period, two periods must be.specified after a

variable symbol, or the variable symbol must have a period
as part of its value.
For example, if &ALPHA has been assigned the character value
AB%4, the following statement can be used to assign the
character value AB%4.RST to the variable symbol &GAMMA.

Nama Operation Operand

&GAMMA SETC ~ Y&ALPHA..RST'

CONCATENATION OF CHARACTER STRING VALUES: Character expressions
can be concatenated to each other or to substring notations in
any order. This concatenated string can then be used in the
operand field of a SETC instruction, or as a value for
comparison in a logical expression.

The resultant value is a character string composed of the
concatenated parts.

226 Assembler H Version 2 Application Programming: Language Reference

Note: The concatenation character (a period) is needed to
separate the single quotation mark that ends one character
expression from the single quotation mark that begins the next.

For example, either of the following statements may be used to
assign the character value ABCDEF to the SETC symbol &BETA.

Name Operation operand
&BETA SETC YABCDEF'
&BETA SETC *ABC'.'DEF'

USING SETC SYMBOLS: The character value assigned to a SETC
symbol is substituted for the SETC symbol when it is used in the
name, operation, or operand field of a statement.

For example, consider the following macro definition, macro
instruction, and generated statements.

Nanme Operation Operand
MACRO
&NAME MOVE &T0, &FROM
LCLC &PREFIX
1 &PREFIX SETC | "FIELD'
. &NAME ST 2,SAVEAREA
2 L 2,&PREFIX&FROM
3 ST 2,&PREFIX&TO
L 2,SAVEAREA
MEND
HERE MOVE A,B
HERE ST 2,S5AVEAREA
L 2,FIELDB
ST 2,FIELDA
L 2,SAVEAREA

Statement 1 assigns the character value FIELD to the SETC symbol
&PREFIX. In statements 2 and 3, &PREFIX is replaced by FIELD.

The following example shows how the value assigned to a SETC
symbol may be changed in a macro definition.

Name Operation Operand
MACRO
&NAME MOVE &T0, &FROM
LCLC &PREFIX
1 &PREFIX SETC 'FIELD?
ENAME ST 2,5AVEAREA
2 L 2,&PREFIX&FROM
3 &PREFIX SETC YAREA?
% ST 2,&PREFIX&TO
L 2,SAVEAREA
MEND
HERE MOVE A,B
HERE ST 2,SAVEAREA
L 2,FIELDB
ST 2,AREAA
L 2,SAVEAREA

Statement 1 assigns the character value FIELD to the SETC symbol
&PREFIX. Therefore, &PREFIX is replaced by FIELD in statement
2. Statement 3 assigns the character value AREA to &PREFIX.

Chapter 9. How to Write Conditional Assembly Instructions 227

Therefore, &PREFIX is replaced by AREA, instead of FIELD, in
statement 4.

The following example illustrates the use of a substring
notation as the operand field of a SETC instruction.

O

Name Operation Operand
MACRO
&NAME MOVE &T0, &FROM
LCLC &PREFIX
1 &PREFIX SETC '&T0'(1,5)
&NAME ST 2,SAVEAREA
2 L 2, &PREFIX&FROM
ST 2,&T0
L 2,SAVEAREA
MEND
HERE MOVE FIELDA,B
HERE ST 2,SAVEAREA
L 2,FIELDB
ST 2,FIELDA
L 2,SAVEAREA

Statement 1 assions the substring character value FIELD (the
first five characters corresponding to symbolic parameter &T0)
to the SETC symbol &PREFIX. Therefore, FIELD replaces &PREFIX
in statement 2.

Note: It is not possible, by specifying a string of values

separated by commas as the operand of a SETC instruction and

then using the SETC symbol as an operand in the macro call, to

pass a string of values as parameters in a macro instruction. N
If you attempt to do this, the operand of the SETC instruction N
will be passed to the macro instruction as one parameter, not as \Léy
a list of parameters. If the SETC operand is a sublist, it will

also be passed to the macro instruction as one parameter.

concatenating substring Notations and Character Expressions:
Substring notations can be concatenated with character
expressions in the operand field of a SETC instruction. If a
substring notation follows a character expression, the two can
be concatenated by placing a period between the terminating
single quotation mark of the character expression and the
opening single quotation mark of the substring notation.

For example, if &ALPHA has been assigned the character value
AB%4, and &BETA has been assigned the character value ABCDEF,
the following statement assigns &GAMMA the character value

ABX%GBCD.
Name Operation Operand
&§GAMMA SETC Y&ALPHA'Y."&BETA'(2,3)

If a substring notation precedes a character expression or
another substring notation, the two can be concatenated by
writing the opening single quotation mark of the second item
imﬁegjately after the closing parenthesis of the substrin
notation. :

Optionally, vou can place a period between the closing
parenthesis of a substring notation and the opening single
quotation mark of the next item in the operand field.

If &ALPHA has been assigned the character value ABX%%, and &ABC
has been assigned the character value 5RS, either of the
following statements can be used to assign &WORD the character
value ABX45RS.

228 Assembler H Version 2 Application Programming: Language Reference

Name operation operand
&WORD SETC Y&ALPHA'"(1,4)"&ABC?
&WORD SETC *&ALPHA'(1,4)"&ABC'(1,3)

If a SETC symbol

If a SETA symbol

EXTENDED SET STATEMENTS

is used in the operand field of a SETA
instruction, the character value assigned to the SETC symbol
must be 1 to 8 decimal digits.

is used in the operand field of a SETC
statement, the arithmetic value is converted to an unsigned
integer with leading zeros removed. If the value is 0, it is
converted to a single 0.

In addition to assigning single values to SET symbols, vou can
assign values to multiple elements in an array of a subscripted
SET symbol with one single SETx instruction. Such an
instruction is called an extended SET statement.

The format of an extended SETx statement is:

Name operation Operand

A subscripted {SETA| operandl

variable SETB| ,operand2

symbol SETC} soperand3...
»operandn

The name field specifies the name of the SET symbol and the
position in the array to which the first value in the operand

field is to be assigned.

The successive operand values are then

assigned to the successive positions in the array. If an

opearand is omitted,

the corresponding element of the array is

unchanged. Consider the following example:

Name Operation Operand
LCLA &LIST(50)
\&LIST(II)' SETA 5,10,,20,25,30

The first instruction declares &LIST as a subscripted local SETA
symbol. The second instruction assigns values to certain

elements of the array &LIST.

same as the following sequence:

Thus, the instruction does the

Nama Operation operand
ELISTC1IL) SETA 5
&LIST(12) SETA 10
&LIST(14) SETA 20
&LIST(15) SETA 25
&LIST(16) SETA 30

ALTERNATIVE STATEMENT FORMAT: You can use the alternative
statement format for extended SETx statements. The above coding

could then be written as follows:

Name Operation Operand

&LIST(11) SETA

10,,
20,25,30

continuation
Remarks Indicator
THIS 1S X
AN ARRAY X

SPECIFICATION

Chapter 9. How to Write Conditional Assembly Instructions 229

SUBSTRING NOTATION

The substring notation allows you to refer to one or more

characters within a character string.

You can,

therefore,

either select characters from the string and use them for

substitution or testing,

inspecting each character.

or scan through a complete string,

By concatenating substrings with
other substrings or character str1ngs, you can rearrange and
build vour own strings.

The substring notation can be used only in conditional assembly
instructions, as shown in Figure 59.

The substring notation must be specified as follows:

YCHARACTER STRING'(el,e2)

where the character
the substring is to
the first character
The second

string.

be extracted.

string is a character expression from which
The first subscript indicates
that is to be extracted from the character

subscript indicates the number of characters
to be extracted from the character string,
character indicated by the first subscript.
subscript specifies the length of the resulting substring.

starting with the

the second

Can bg Used as Example Value Assigned
Used in to SETC symbol
SETC operand &Cl SETC 'ABC ' (l ’ 3) ABC
instruction
operand part of &C2 SETC '&Cl'(1,2)." !
operand & /2) .'DEF ABDEF
SETB or Character
AIF value in AIF ('&STRING'(1,4) EQ 'AREA').SEQ
instruction comparand
operand of character | ¢p SETB ('&STRING'(1,4).'9' EQ 'FULL9')
(logical relation
expression)

Figure 59. Substring Notations in Conditional Assembly Instructions

Some examples are:

Examples

'ABCDE'(1,5)
"ABCDE'(2,3)
T&C'(3,3)

'"&PARAM'(3,3) ((A+3)%10)

value of Variable

symbol

ABCDE

ABCDE
BCD
CDE
A+3

Character Value
of Substring

The character string must be a valid character expression with a

length, N,

in the range 1 through 255 characters.

The length of

the resulting substring must be within the range 0 through 255.

The subscripts,

three elements:

page 232.

el and e2,

must be arithmetic expressions. The
substring notation is replaced by a value that depends on the
N, el, and e2, as summarized in Figure 60 on

230 Assembler H Version 2 Application Programming:

Language Reference

™
WLJV

:;éj

The numbers in the following list relate to the numbers in

Figure 60:

(1) In the usual case, the assembler generates a correct
substring of the specified length.

(2) When el has a value of 0 or a negative value, the assembler
issues an error message.

(3) When the value of el exceeds N, the assembler issues a
warning message, and a null string is generated.

(4) MWhen e2 has a value of 0, the assembler generates the null
character string. Note that, if e2 is negative, the
assembler issues an error message.

(5) When e2 indexes past the end of the character expression

(that is, el+e2 is greater than N+1), the assembler issues
a warning message and generates a substring that includes
only the characters up to the end of the character
expression specified.

- Chapter 9. How to Write Conditional Assembly Instructions 231

®

| Character Expression Arithmetic
of length N Expressions

X les: Assume O<N=255 Character Value
of Substring

n 0<el1=N, 0<e2=<N, and
el+e2<N+1

'ABCDEF' (2,5) N=6 BCDEF

aaso

'ABCDEF' (0

#%ERROR:: % null

[Value of e2 disregarded |

e \

'ABCDEF' (7,8) N-g «WARNING# | nul @
e2=0 . '
o'ABCDEF' (% null
<
Value of e1 disregarded |

0<el1=N, 0<e2=N, but
el+e2>N+1

"ABCDEF ' (3,5) N=6 *WARNING* | cppp

'ABCDEF' (3,4) CDEF

Figure 60. Summary of Substring Notation

BRANCHING

AIF—CONDITIONAL BRANCH

You use the AIF instruction to branch according to the results

of a condition test. You can thus alter the sequence in which

source program statements or macro definition statements are

processed by the assembler. g;}a

232 Assembler H Version 2 Application Programming: Language Reference

The AIF instruction also provides loop control for conditional
assembly processing, which allows you to control the sequence of
statements to be generated.

It also allows you to check for error conditions and thereby to
branch to the appropriate MNOTE instruction to issue an error
message.

The format of this instruction is:

Name Operation Operand
A sequence AIF A logical expression
symbol or blank enclosed in parentheses,

imnediately followed by a
sequence symbol

The logical expression in the operand field is evaluated at
preassembly time to determine if it is true or false. If the
expression is true (logical vaiue=l), the statement named by the
sequence symbol in the operand field is the next statement
processed by the assembler. If the expression is false (logical
value=0), the next sequential statement is processed by the
assembler.

ég th$Egollowing example, a branch is taken to the label .0UT if

AIF ('&C' EQ "YES').OUT
.ERROR ANOP

-

-

.ouT ANOP

The sequence symbol in the operand field is a conditional
assembly label that represents an address at preassembly time.
It is the address of the statement to which a branch is taken if
the logical expression preceding the sequence symbol is true.

The statement identified by the sequence symbol referred to in
the AIF instruction can appear before or after the AIF
instruction. However, the statement must appear within the
local scope of the sequence symbol. Thus, the statement
identified by the sequence symbol must appear:

. In open code, if the corresponding AIF instruction does, or

. In the same macro definition in which the corresponding AIF
instruction appears.

No branch can be taken from open code into a macro definition or
between macro definitions, regardless of nested calls to other
macro definitions.

The following macro definition may be used to generate the
statements needed to move a fullword fixed-point number from one
storage area to another. The statements will be generated only
if the type attribute of both storage areas is the letter F.

Chapter 9. How to Write Conditional Assembly Instructions 233

Name Operation Operand
MACRO
&N MOVE &T,4&F
1 AIF (T'&T NE T'&F).END
2 AIF (T'&T NE '"F').END
3 &N ST 2,SAVEAREA
L 2,&F
ST 2,&T
L 2,SAVEAREA
4 . END MEND

The logical expression in the operand field of statement 1 has
the value true if the type attributes of the two macro

instruction operands are not equal.

If the type attributes are

equal, the expression has the logical value false.

Therefore, if the type attributes are not equal, statement ¢
(the statement named by the sequence symbol .END) is the next

statement processed by the assembler.

If the type attributes

are equal, statement 2 (the next sequential statement) is

processed.

The logical expression in the operand field of statement 2 has
the value true if the type attribute of the first macro

instruction operand is not the letter F.
is the letter F,

If the type attribute

the expression has the logical value false.

Therefore, if the type attribute is not the letter F, statement
4 (the statement named by the sequence symbol .END) is the next

statement processed by the assembler.
the letter F,

processed.

Extended AIF Instruction

If the type attribute is

statement 3 (the next sequential statement) is

The extended AIF instruction allows you to combine several

successive AIF statements into one statement.

The extended AIF

instruction has the following format:

Name

Operation

operand

A sequence
- symbol or
blank

AIF

(logical expression).Sl1,
(logical expression).S2,

LR
(logical expression).Sn

The extended AIF instruction is exactly equivalent to n
successive AIF statements. The
sequence symbol (scanning left to right) whose corresponding

logical expression is trusa.

is true, no branch is taken.

Consider the following example:

branch is taken to the first

If none of the logical expressions

Name Operation Operand

AIF ("&L"(&C,1) EQ '"$').DOLR, X
('8L"(&C,1) EQ " & '").POUND, X
('&LY(&C,1) EQ "a').AT, X
("&L'(&C,1) EQ '=').EQUAL, X
('&L"(&C,1) EQ "(').LEFTPAR, X
('&L'(&C,1) EQ "+').PLUS, X
("&L'(&C,1) EQ "-'").MINUS

234 Assembler H Version 2 Application Programming:

Language Reference

®

This statement looks for the occurrence of a $, &, 38, =, (, +,
and -, in that order; and causes control to branch to .DOLR,
.POUND, .AT, .EQUAL, .LEFTPAR, .PLUS, and .MINUS, respectively,
if the string being examined contains any of these characters.

ALTERNATIVE STATEMENT FORMAT: The alternative statement format
is allowed for extended AIF instructions. The format is
illustrated in the above example.

AGO—UNCONDITIONAL BRANCH

The AGO instruction allows vou to branch unconditionally. You
can thus alter the sequence in which vour assembler language
statements are processed. This provides yvou with final exits
from conditional assembly loops.

The format of this instruction is:

Name Operation Operand

A sequence AGO A sequence symbol
symbol or blank

The statement named by the sequence symbol in the operand field
is the next statement processed by the assembler.

The statement identified by a sequence symbol referred to in the
AGO instruction can appear before or after the AGO instruction.
However, the statement must appear within the local scope of the
sequence symbol. Thus, the statement identified by the sequence
symbol must appear

. In open code, if the corresponding AGO instruction does, or

L In the same macro definition in which the corresponding AGO
instruction appears.

The following example illustrates the use of the AGO
instruction.

Name Operation Operand
MACRO
&NAME MOVE &T,&F
1 AIF (T'&T EQ 'F').FIRST
2 AGO .END
3 .FIRST AIF (T'&T NE T'&F).END
&NAME ST 2,SAVEAREA
L 2,&F
ST 2,&T
L 2,SAVEAREA
4 .END MEND

Statement 1

to determine if the type attribute of the
first macro instruction operand is the letter F.
attribute is the letter F,

processed by the assembler.

assembler.

Statement 2

Chapter 9. How to Write Conditional Assembly Instructions

.END).

is used to indicate to the assembler that the next
statement to be processed is statement 4 (the statement named by
sequence symbol

If the type

statement 3 is the next statement
If the type attribute is not the

letter F, statement 2 is the next statement processed by the

Computed AGO Instruction

ACTR—CONDITIONAL ASSEMBLY LOOP COUNTER

236

The computed AGO instruction allows vou to make branches
according to the value of an arithmetic expression specified in
the operand. The format of the computed AGO instruction is:

Nanme

Operation

Operand

A sequence
symbol or blank

AGD

(arithmetic expression)
.Sl;.SZ,...,.Sn

If the arithmetic expression evaluates to k, where k lies
between 1 and n (inclusive),

"k-th" sequence symbol

no branch is taken.

In the following example,

in the list.

then the branch is taken to the
If k is outside that range,

control passes to the statement at

LTHIRD if &I=3. Control passes through to the statement

following the AGO if &I

is less than 1 or greater than 4.

Name

Operation

Operand

AGO

(&I).FIRST,.SECOND, X
.THIRD, .FOURTH

ALTERNATIVE STATEMENT FORMAT: The alternative statement format

is allowed for computed AGO

could be coded as follows:

instructions. The above example

Name Operation Operand
AGO (&I).FIRST, X
.SECOND, X
.THIRD, X

.FOURTH

The ACTR instruction allows you to set a conditional assembly
loop counter either within a macro definition or in open code.
The ACTR instruction can appear anywhere in open code or within

a macro definition.

Each time the assembler processes an AIF or AGO branching
instruction in a macro definition or in open code, the loop
counter for that part of the program is decremented by one.
When the number of conditional assembly branches taken reaches
the value assigned by the ACTR instruction to the loop counter,
the assembler exits from the macro definition or stops

processing statements in open code.

By using the ACTR instruction, vou avoid excessive looping
during conditional assembly processing at preassembly time.

The format of this instruction is as follows:

Name

Oparation

Operand

A sequence
symbol or blank

ACTR

Any valid arithmetic
(SETA) expression

A conditional assembly loop counter is set (or reset) to the
value of the arithmetic expression in the operand field. The

loop counter has a local scope;

its value is decremented only by

AGO and AIF instructions, and reassigned only by ACTR

Assembler H Version 2 Application Programming:

Language Reference

®

instructions that appear within the same scope. Thus, the
nesting of macros has no effect on the setting of individual
loop counters.

The assembler sets its own internal loop counter both for open

code and for each macro definition, if neither contains an ACTR
instruction. The assembler assigns a standard value of 4096 to
each of these internal loop counters.

LOOP COUNTER OPERATIONS: Within the local scope of a particular
loop counter (including the internal counters run by the
assembler), the following occurs:

1. Each time an AGO or AIF branch is executed, the assembler
checks the loop counter for zero or a negative value.

2. If the count is not zero or negative, it is decremented by
one.

3. If the count is zero, before decrementing, the assembler
will take one of two actions:

a. If it is processing instructions in open code, the
assembler will process the remainder of the instructions
in the source module as comments. Errors discovered in
these instructions during previous passes are flagged.

b. If it is processing instructions inside a macro
definition, the assembler terminates the expansion of
that macro definition and processes the next sequential
instruction after the calling macro instruction. If the
macro definition is called by an inner macro
instruction, the assembler processes the next sequential
instruction after this inner call; that is, it continues
processing at the next outer level of nested macros.

Note: The assembler halves the ACTR counter value when it
encounters serious syntax errors in conditional assembly
instructions.

ANOP—ASSEMBLY NO OPERATION

You can specify a sequence symbol in the name field of an ANOP
instruction, and use the symbol as a label for branching
purposes.

The ANOP instruction performs no operation itself, but you can
use it to branch to instructions that already have symbols in
their name fields. For example, if you wanted to branch to a
SETA, SETB, or SETC assignment instruction, which requires a
variable symbol in the name field, you could insert a labeled
ANOP instruction immediately before the assignment instruction.
By branching to the ANOP instruction with an AIF or AGO
instruction, you would, in effect, be branching to the
assignment instruction.

The format of this instruction is:

Nama Operation Operand

A sequence , ANOP Blank
symbol or blank

No operation is performed by an ANOP instruction. Instead, if a
branch is taken to the ANOP instruction, the assembler processes
the next sequential instruction.

The following example illustrates the use of the ANOP
instruction.

Chapter 9. How to Write Conditional Assembly Instructions 237

Name Operation Operand P
MACRO N
&NAME MOVE &T,&F
LCLC &TYPE
1 AIF (T'&T EQ 'F').FTYPE
2 &TYPE SETC TEY
3 .FTYPE ANOP
% &NAME ST&TYPE 2,5AVEAREA
L&TYPE 2,&F
ST&TYPE 2,47
L&TYPE 2,5AVEAREA
MEND

Statement 1 is used to determine if the type attribute of the
first macro instruction operand is the letter F. If the type
attribute is not the letter F, statement 2 is the next statement
processaed by the assembler. If the type attribute is the letter
F, statement 4 should be processed next. However, since there
is a variable symbol (&NAME) in the name field of statement 4,
the required sequence symbol (.FTYPE) cannot be placed in the
name field. Therefore, an ANOP instruction (statement 3) must
be placed before statement 4.

Then, if the type attribute of the first operand is the letter
F, the next statement processed by the assembler is the
statement named by sequence symbol .FTYPE. The value of &TYPE
retains its initial null character value because the SETC
instruction is not processed. Since .FTYPE names an ANOP
instruction, the next statement processed by the assembler is
statement 4, the statement following the ANOP instruction.

OPEN CODE —
Conditional assembly instructions in open code allow you: Q;J/

. To select, at preassembly time, statements or groups of
statements from the open code portion of a source module
according to a predetermined set of conditions. The
assembler further processes the selected statements at
assembly time.

. To pass local variable information from open code through
parameters into macro definitions. '

. To control the computation in and generation of macro
definitions using global SET symbols.

. To substitute values into the model statements in the open
code of a source module and control the sequence of their
generation.

All the conditional assembly elements and instructions can be
specified in open code.

The specifications for the conditional assembly language
described in this chapter also apply in open code. Houwever, the
following restrictions apply:)

1. To attributes in open code: For ordinary symbols, only
references to the type, length, scaling, and integer
attributes are allowed.

Note: References to the number attribute have no meaning in
open code, because &SYSLIST is not allowed in open code and
symbolic parameters have no meaning in open code.

2. To conditional assembly expressions in open code (see
Figure 61 on page 239).

238 Assembler H Version 2 Application Programming: Language Reference

C

Expression Must not contain
Arithmetic » &SYSLIST
(SETA) ®» Symbolic parameters
» Any attribute references to symbolic parameters,
or &SYSLIST,&SYSECT, &SYSNDX
Character » &SYSLIST,&SYSECT,&SYSNDX
(SETC))'Aanmrémmmwto&SYSLIST,&SYSECT,
&SYSNDX, or to symbolic parameters
» Symbolic parameters
Logical * Arithmetic expressions with the items listed above
(SETB) ¢ Character expressions with the items listed above

Figure 61. Restrictions on Coding Expressions

MHELP—MACRO_TRACE FACTILITY

The MHELP instruction controls a set of trace and dump
facilities. Options are selected by an absolute expression in
the MHELP operand field. MHELP statements can occur anvuwhere in
open code or in macro definitions. MHELP options remain in
effect until superseded by another MHELP statement. The format
of this instruction is:

Nama Operation operand

A sequence MHELP Absolute expression,

symbol or blank binary or decimal
options (see below)

Macro Call Trace—gperand=l

This option provides a one-line trace listing for each macro
call, giving the name of the called macro, its nested depth, and
its &SYSHNDX value. The trace is provided only upon entry into
the macro. No trace is provided if error conditions prevent
entry into the macro.

Macro Branch Trace—0Operand=2

This option provides a one-line trace-listing for each AGO and
AIF conditional assembly branch within a macro. It gives the
model statement numbers of the "branched from" and the "branched
to" statements, and the name of the macro in which the branch
occurs. This trace option is suppressed for library macros.

Macro AIF Dump—Operand=4%

This option dumps undimensioned SET symbol values from the macro
dictionary immediately before each AIF statement that is
encountered.

Chapter 9. How to Write Conditional Assembly Instructions 239

Macro Exit Dump—Operand=8

This option dumps undimensioned SET symbols from the macro
dictionary whenever an MEND or MEXIT statement is encountered.

Macro Entry Dump—Operand=16

This option dumps parameter values from the macro dictionary
immediately after a macro call is processed.

Global Suppression—O0Operand=32

This option suppresses global SET symbols in two preceding
options, MHELP 4 and MHELP 8.

MHELP Suppression—0Operand=128

This option suppresses all currently active MHELP options.

MHELP Control on &SYSNDX

The MHELP operand field is actually mapped into a fullword.

Previously defined MHELP codes correspond to the fourth byte of

this fullword.

&SYSNDX control is turned on by any bit in the third byte
(operand values 256 through 65535, inclusive). Then, when

&SYSNDX (total number of macro calls) exceeds the value of the

fullword which contains the MHELP operand value, control is
forced to stay at the open code level by, in effect, making

every statement in a macro behave like a MEXIT. Open code macro
calls are honored, but with an immediate exit back to open code.

Some examples are:

MHELP 256 Limit &SYSNDX to 256.
MHELP 1 Trace macro calls.

MHELP 256+1 Trace calls and limit &SYSNDX to 257.
MHELP 65536 No effect. No bits in bytes 3,4.
MHELP 65792 Limit &SYSHDX to 65792.

When the value of &SYSNDX reaches its limit, the message "ACTR

EXCEEDED—&SYSNDX' is issued.

Combining Options

As shouwn in the example above, multiple options can be obtained

by combining the option codes in one MHELP operand. For
example, call and branch traces can be invoked by MHELP B'11’',
MHELP 2+1, or MHELP 3. Substitution by means of variable
symbols may also be used.

240 Assembler H Version 2 Application Programming: Language Reference

O

N
"/

PART 3. APPENDIXES

Appendix A shows the basic machine formats in relation to the
format of the assembler operand field and applicable
instructions.

Appendix B lists the related operation, name, and operand
entries.

Appendix C lists the constant types and gives related
information concerning each.

Appendix D summarizes the macro language described in Part 2 of
this publication.

Part 3. Appendixes 241

APPENDIX A MACHINE INSTRUCTION FORM

Figure 62 on page 243 is a summary of machine instruction
formats.

242 Assembler H Version 2 Application Programming: Language Reference

®

BASIC MACHINE FORMAT

ASSEMBLER OPERAND
FIELD FORMAT

16 _
E Operation
Code
8 4 4 R1,R2
Operation
Code R1 | R2
38 i 4 M1,R2
Operation
Code M1 | R2
RR
8 i 4 R1
Operation
Code R1
8 8 I
Operation (See Notes 1,6,8,
Code I and 9)
16 8 4 4 R1,R2
Operation
Code R1 | R2
RRE
16 8 4 4 R1
Operation (See Notes 1 and 8)
Code R1
8 4y 4 4 12 R1,R3,D2(B2)
Operation R1,R3,82
Code R1 |[R3 | B2 | D2
8 il 4y 4 12 R1,D2(B2)
RS Operation R1,52
Code R1 B2 | D2
8 4 4 4 12 R1,M3,D2(B2)
Operation R1,M3,S2
Code R1 |M3 | B2 | D2 (See Notes 1-3,7,
" 8, and 9)

Figure 62 (Part 1 of 2). Machine Instruction Format

Appendix A.

Machine Instruction Format 243

ASSEMBLER OPERAND
BASIC MACHINE FORMAT FIELD FORMAT
8 4 4 4 12 R1,D2(X2,B2)
Operation R1,D2(,B2)
Code R1 | X2 | B2| D2 R1,82(X2)
RX R1,S82
8 4 4 4 12 M1,D2(X2,B2)
Operation M1,D2(,B2)
Code M1 | X2 | B2| D2 M1,82(X2)
M1,S82
(See Notes 1,2,3,4,
7 and 9)
16 4 12 D2 (B2)
S Two-byte S1
Operation (See Notes 2,3,
Code B2 {D2 7 and 8)
16 4 12
Operation
Code
8 8 4 12 D1(B1),I2
Operation $1,12
Code I2 |B1 | D1
SI
8 8 |4 12 D1(B1)
Operation S1
Code B1 | D1 (See Notes 2,3,6,
7 and 8)
8 4 4 4 12] 4 12 D1(L1,B1),D2(L2,B2)
Operation S1(L1),82(L2)
Code L1 |{L2 |B1]| b1| B2| D2
8 8 |4 121 4 12 b1(L,B1),D2(B2)
Ss Operation S1(L),S2
Code L |B1 |D1| B2| D2
8 v o o4 [12] 4 | 12 21 Ei;)'B;)Z"__@(BZ) /13
Operation S1.82 £3 !
Code L1 |JI3 |B1 | D1{| B2| D2 e
. 8 4 i 4 121 4 12 D1(R1,B1),D2(B2) ,R3
Operation (See Notes 1,2,3,
Code R1 |R3 |B1 | D1| B2} D2 5,6 and 7)
16 4 12 | 4 12 D1(B1) ,D2(B2)
SSE Operation (See Notes 2 and 3)
Code B1 |D1 | B2 | D2

Figure 62 (Part 2 of 2).

Machine Instruction Format

244 Assembler H Version 2 Application Programming:

Language Reference

O

-

//—\\

Notes to Figure 62:

1.

R1l, R2, and R3 are absolute expressions that specify general
or floating-point registers. The general register numbers
are 0 through 15; floating-point register numbers are 0, 2,
4: and 6.

Dl and D2 are absolute expressions that specify
displacements. A value of 0 through 4095 may be specified.

Bl and B2 are absolute expressions that specify base
registers. Register numbers are 0 through 15.

X2 is an absolute expression that specifies an index
register. Register numbers are 0 through 15.

L, L1, and L2 are absolute expressions that specify field
lengths, An L expression can specify a value of 1 through
256. L1 and L2 expressions can specify a value of 1 through
16. In all cases, the assembled value will be one less than
the specified value.

I, I2, and 13 are absolute expressions that provide
inmediate data. The value of I and I2 may be 0 through 255.
The value of I3 may be 0 through 9.

Sl and S2 are absolute or relocatable expressions that
specify an address.

RR, RRE, RS, S, and SI instruction fields that are blank
under Basic Machine Format are not examined during
instruction execution. The fields are not written in the
symbolic operand, but are assembled as binary zeros.

Ml and M3 specify a 4-bit mask.

Appendix A. Machine Instruction Format 245

APPENDIX B.

ASSEMBLER TNSTRUCTIONS AND STATEMENTYS

Figure 63 summarizes assembler instructions,

and Figure 64 on

page 249 summarizes assembler statements.

Operation Name Entry Operand Entry
Entry
ACTR A sequence symbol or not present An arithmetic SETA expression
. AGO A sequence symbol or not present A sequence symbol
AIF A sequence symbol or not present A logical expression enclosed in
parentheses, immediately
followed by a sequence symbol
AMODE A sequence symbol or blank 24, 31, or ANY
ANOP A sequence symbol or not present Will be taken as a remark
AREAD Any SETC symbol One ordinary symbol
- CCHW Any symbol or not present Four operands, separated by
commas
CClO Any symbol or not present Four operands, separated by
commas
CCUW1 Any symbol or not present Four operands, separated by
commas
CNOP Any symbol or not present Two absolute expressions,
separated by a comma
COM A sequence symbol or not present Will be taken as a remark
COPY Must not be present A symbol
CSECT Any symbol or not present Will be taken as a remark
DC Any symbol or not present One or more operands, separated
by commas
DROP A sequence Symbol or not present One to 16 absolute expressions,
separated by commas
| DS Any symbol or not present One or more operands, separated
by commas
DSECT A variable symbol or an ordinary Will be taken as a remark
: symbol
EJECT A sequence symbol or not present Will be taken as a remark
END A sequence symbol or not present & relocatable expression or not
present
ENTRY A sequence symbol or not present One or more relocatable symbols,
separated by commas
EQU A variable symbol or an ordinary An absolute or relocatable
symbol expression

Figure 63 (Part 1 of 3).

266

Assembler Instructions

Assembler H Version 2 Application Programming:

Language Reference

N
S

O

‘1Ih

Operation Name Entry Operand Entry

Entry

EXTRN A sequence symbol or not present One or more relocatable symbols,
separated by commas

GBLA Must not be present One or more variable symbols
that are to be used as SET
symbols, separated by commas!

GBLB Must not be present One or more variable symbols
that are to be used as SET
symbols, separated by commas!

GBLC Must not be present One or more variable symbols
that are to be used as SET
symbols, separated by commas?

ICTL Must not be present One to three decimal values,
separated by commas

ISEQ Must not be present Two decimal values, separated by
a comma

LCLA Must not be present One or more variable symbols
that are to be used as SET
symbols, separated by commas!

LCLB Must not be present One or more variable symbols
that are to be used as SET
symbols, separated by commas?!

LCLC Must not be present One or more variable symbols
separated by commas!?

LOCTR A variable or ordinary symbol Blank

LTORG Any symbol or not present Will be taken as a remark

MACROD? Must not be present Will be taken as a remark

MEND? A sequence symbol or not present Will be taken as a remark

MEXIT2 A sequence symbol or not present Will be taken as a remark

MNOTE? A sequence symbol, a variable A severity code, followed by a

symbol, or not present comma, followed by any

combination of characters
enclosed in single quotation
marks

ORG A sequence symbol or not present A relocatable expression or not
present

PRINT A sequence‘symbol or not present One to three operands

PUNCH A sequence symbol or not present One to 80 characters enclosed in
single quotation marks

REPRO A sequence symbol or not present Will be taken as a remark

RMODE Any symbol or blank 2% or ANY

SETA A SETA symbol An arithmetic expression

SETB A SETB symbol ‘A0 or al, or logical

expression enclosed in
parentheses

Figure 63 (Part 2 of 3). Assembler Instructions

Appendix B. Assembler Instructions and Statements

247

Operation Name Entry Operand Entry
Entry
SETC A SETC symbol A type attribute, a character
expression, a substring
notation, or a concatenation of
character expressions and
substring notations
SPACE A sequence symbol or not present A decimal self-defining term or
not present
START Any symbol or not present A self-defining term or not
present
TITLES A special symbol (0 to 4% One to 100 characters, enclosed
characters), a sequence symbol, in single quotation marks
a variable symbol, or not
present
USING A sequence symbol or not present An absolute or relocatable
expression followed by 1 to 16
absolute expressions, separated
by commas
WXTRN A sequence symbol or not present One or more relocatable symbols,
separated by commas

Figure 63 (Part 3 of 3). Assembler Instructions

Notes to Figure 63:

1 SET symbols may be defined as subscripted SET symbols.

2 May only be used as part of a macro definition.

3 See "Chapter 5. Assembler Instruction Statements™ on page 85

for a description of the name entry.

248 Assembler H Version 2 Application Programming: Language Refarence

O

O

Instruction
Entry

Name Entry

Operand Entry

Model
Statements! 2

An ordinary symbol, variable
symbol, sequence variable
symbol, a combination of
variable symbols and other
characters that is equivalent
to a symbol, or not present

Any combination of characters
(including variable symbols)

Prototype
Statement?®

A symbolic parameter or not
present

Zero or more operands that are
symbolic parameters (separated
by commas) followed by zero or
more operands (separated by
commas) of the form symbolic
parameter, equal sign,
optional standard value

Macro
Instruction
Statement?

An ordinary symbol, a variable
symbol, a sequaence symbol, a
combination of variable
symbols and other characters
that is equivalent to a
symbol,* or not present

Zero or more positional
operands (separated by commas)
followed by zero or more
keyword operands (separated by
commas) of the form keyvword,
equal sign, value®

Assembler
Language
Statement! 2

An ordinary symbol, a variable
symbol, a sequence symbol, a
combination of variable
symbols and other characters
that is equivalent to a
symbol, or not present

Any combination of characters
(including variable symbols)

Figure 64%. Assembler Statements

Notes to Figure 64:

1

Variable symbols may be used to generate assembler language
mnemonic operation codes (listed in "Chapter 5. Assembler
Instruction Statements™ on page 85), except ACTR, COPY, END,
ICTL, CSECT, DSECT, ISEQ, PRINT, REPRO, and START. Variable
symbols may not be used in the name and operand entries of:
COPY, END, ICTL, or ISEQ.

No substitution is performed for variables in the line
following a REPRO statement.

May only be used as part of a macro definition.

When the name field of a macro instruction contains a
saquence symbol, the sequence symbol is not passed as a name
field parameter. It only has meaning as a possible branch
target for conditional assembly.

Variable symbols appearing in a macro instruction are
replaced by their values before the macro instruction is
processed.

Appendix B. Assembler Instructions and Statements 249

APPENDIX C. SUMMARY OF CONSTANTS

O

Figure 65 is a summary of assembler constants.

r B T T T T T T T 1
I I I | I | NUMBER | I i I
| | | | LENGTH | | OF CON- | | | TRUN- |
| | IMPLICIT | | MopI- | | STANTS | RANGE | RANGE | CATION/ |
i | LENGTH | ALIGN- | FIER | SPECIFIED | PER | FOR EX~ | FOR | PADDING |
! TYPE l (BYTES) i , MENT l RANGE | BY | OPERAND | PONENTS | SCALE | SIDE |
4 4 1 ¥ 4 d
T T T T T T
| C | as | byte | .1 to | characters | one i i { right i
| | needed | | 256 (1)} : | | | | |
b + t + : t = 1 4 1
| X | as | byte | .1 to | hexadecimal | multi- | | | left |
| | needed | | 256 (1)] digits | ple | | | |
L — 1 1 1 3 I I 1
4 T " T T T " T T T
B | as | byte | .1 to | p%ngry | multi=- | | left
1 needed ! l 256 l digits | ple | |
T T T ! T + + + + g -
F | 4 } word } -1 to | d_ecimal | multi- | -85 to | -187 toT left (3)
! ! 1 8 | digits | ple +75 +346
T T -'_—-_———+ ‘}'
| 8 j 2 | half~ | .1 to | decimal | multi- -85 to -187 left (3) |
1 ! word | 8 | digits | ple +75 +346
4 4 N
T T 1 T
E | 4 | word .1 to | decimal | malti- -85 to . | xright (3)
l ! 8 | digits | ple +75 | 0-14]
4 1 4 b 4. .
T T H T H
D | 8 | double~| .1 to | decimal | multi~- | -85 to] lright(B)
! word 1 8 | digits | ple | +75 | 0-14
; t ¢ : t :
L 16 | double-| .1 to | dgc@mal | multi- | -85 to | 0-28 right (3)
| word 16 | digits | ple | +75 | AN
—t B S oo s - oo
P as | byte .1 to | decimal | multi- | | | left k&(;?
| needed | | 16 | digits | ple | | | |)
+ + + + + + + + + i
| 2 | as | byte | .1 to | decimal | multi- | | | left |
| | needed | | 16 | digits | ple | | | |
b == . : + - 1 3 + !
| A | 4 word | .1 to | any | multi- | | | left |
! | | 4 (2) | expression | ple |
: word 1-4 syabol nan-" | g
: ing a DXD
; 4~] or DSECT 4 : : q
i | word | 3,4 | relocatable | multi- left |
l 1 ! ' l ! symbol | ple | | |
r T T T T % . $ 9
| s 2 | halg— 2 only | one absolute | multi- I 1 ;
i | word | or relocatab-| ple i]
{ | | le expression| | |
| | or two absol-| | | | |
] | ute express- | | |]
I | ions: . i I I I
l ! 1 l exp" (exp)] | |
T v T T 'Ir } + 1
Y] 2 | half- | .1 to | any | multi- i i left]
| | word | 2 (2) | expression | ple | | | |
} ______ i 4 4 4 'l 1 4 4 J
|(1) In a DS assembler instruction C and X type constants can have length specification F
| to 65535 P I
‘(2) Bit length specification permitted with absolute expressions only. Relocatable A- :
|(3) type congtants, 3 or 9 Qyte§ oqlx; relocatable Y-type constants, 2 bytes only. |
| Errors will be flagged if significant bits are truncated or if the value specified |
|

i ’ cannot be contained in the implicit length of the constant.

b e e

Figure 65. Summary of Constants

250 Assembler H Version 2 Application Programming: Language Referencae

APPENDIX D. MACRO LANGUAGE SUMMARY

O

This appendix summarizes the macro language described in Part 2
of this publication. Figure 66 on page 252 indicates which
macro language elements may be used in the name and operand
entries of each statement. Figure 67 on page 253 is a summary
of the expressions that may be used in macro instruction
statements. Figure 68 on page 255 is a summary of the
attributes that may be used in each expression. Figure 69 on
page 257 is a summary of the variable symbols that may be used
in each expression.

Appendix D. Macro Language Summary 251

8duaJudjiay abenbue] :Suiwweaboud uoijediTddy 2 UOLSUBA H JBTQUISSY 262

m Variable Symbols
L1 -
lg Global SET Symbols Locol SET Symbols System Variable Symbols Attributes
-’ B
o Symbolic Sequence
o Statement | Parameter SETA SETB SETC SETA SETS SETC ASYSNDX | &SYSECT | &SYSLIST | &SYSPARM | &SYSDATE; &SYSTIME | Type Length Scaling Integer Count Number Symbol
o MACRO
M Protorype Name
Stotement Operand
B
GBLA Operand
(2}
3 GBLB Operond
Q
GBLC Operand
-
o LCLA Operand
3
Q LCcLe Operond
& LCLc Operand
o
g Model Name Name Nome | Name {Nome | Name Nome | Name Nome | Name Name Nome
f S| [o Operati Operation | Operation | Operation | Operati Operation | Operati Operation|Operation | Operation
m Operand | Operand Operand | Operand | Operand | Operand Operand | Operand Operand [Operand Operand Operand | Operond
Ll SETA Name Nome 9
tg Operand? | Operand | Operand? | Operand® | Opsrand | Operand® | Operand® | Operond Operond? | Operand Operond | Operond | Operand | Operand | Operand
o SETS Nome Nome
3 Opetond® | Operand® | Operond | Operand® | Operand® | Operand | Operand® | Operand® - | Operand®|Operond® | Opesand® Operand® | Operand® | Operand® | Operand® | Operand® |Operand’
t
w SETC Name , g | Nome
Operand | Operand” | Operandd | Operond | Operand” | Operand® | Operand |Operand | Operand |Operand | Operand | Operand | Operand | Opesand
AIF . : " 5 R 5 Name
Operand® | Operand® | Operand | Operand® | Operand® | Operand | Operand® | Operand® | Operand® [Operand® | Operand Opesand? | Operand® | Operand® | Operand” | Operand |Operand” | Operand
AGO Nane
Operond
ACTR Operand? | Operand | Operand3 | Operand? | Operand | Operand3 | Operand? | Operand Operand? | Operand® Operand | Operand | Operand | Operand {Operand
ANOP Name
AREAD Name Name
MEXIT Nome
MNOTE Operond | Operand | Operond | Operand | Operand | Operand | Operand |Operand | Operond |Operond | Operand | Operand | Operand Name
MEND Name
Outer Name Name Nome Name Name Naome Name Name
Macro Operand | Operand | Operand | Operand | Operond | Operand Operand | Operand | Operand
{nner Name Name Nome Nome Name Nome Name Nome Name Nome Name . Nome
Macro Operand | Operand | Operand | Operand | Operand | Operond | Operand | Operand | Operand [Operand | Operand [Operand | Operand
Assembler Name Nome Name Name Name Name Name
Language Operati Operation | Operation | Operation | Operati Operation
Statement Operond Operand | Operand | Operand | Operand Operand
1. Variable symbols in macro-instructions are replaced by their values before processing .
2. Only if value is self-defining term.
3. Converted to arithmetic +1 or +0.
4. Only in choracter relations.
5. Only in arithmetic relations.
6. Only in arithmetic or character relotions.
7. Converted to unsigned number .
8. Converted to charocter 1 or 0.
9. Only if one to.ten decimal digits

O

Expression

Can contain

Operations

Range of
values

May be used

Figure 67.

Arithmetic
Expressions

Self-defining terms
Length, scaling,
count, and number
attributes

SETA and SETB symbols!?

integer,

SETC symbols whose values
are a decimal
self-defining term!

&SYSPARM if its value is
a decimal self-defining
term

Symbolic parameters if
the corresponding operand
is a decimal
self-defining term

&SYSLIST (n) if the
corresponding operand is
a decimal self-defining
term
&SYSLIST (n,m) if the
corresponding operand is
a decimal self- defining
term
&SYSNDX

aré +, - (unary and binary),

%, and /; parentheses
permitted

=231 o +231-1

in SETA operands
Arithmetic relations
Subscripted SET symbols
&SYSLIST subscript(s)
Substring notation
Sublist notation

Conditional Assembly Expressions

Character
Expressions

Any combination of
characters enclosed in
apostrophes

Any variable symbol
enclosed in apostrophes

A concatenation of
variable symbols and
other characters enclosed
in apostrophes

A type attribute
reference

Concatenation, with a
period (.)

0 through 255 characters

SETC operands

Character relations?

Logical
Expressions

A0 oral
SETB symbols

Arithmetic
relations!?

Character
relations

Arithmetic
value

AND,
NOT
parentheses
permitted

0 (false) or
1 (true)

OR, and

SETB operands

AIF operands

Appendix D.

Macro Language Summary 253

Notes to Figure 67 on page 253:

1 Values must be from 0 through 2 147 483 647. A ™
2 A character relation consists of two character expressions ka/
related by the operator GT, LT, EQ, NE, GE, or LE. Type

attribute notation and substring notation may also be used

in character relations. The maximum size of the character
expressions that can be compared is 255 characters. If the

two character expressions are of unequal size, the smaller

one will always compare less than the larger.

254 Assembler H Version 2 Application Programming: Language Reference

Attribute

Nota-
tion

Can he used With:

Can be used only if
type attribute 1s:

Ccan be used in

Tvpe

T!

Ordinary Symbols
defined in open
code; symbolic
parameters inside
macro definitions;
&SYSLIST (m),
&SYSLIST (m,n), SET
symbols; &SYSTIME,
&SYSPARM, &SYSDATE,
§SYSECT, &SYSNDX,
&SYSLOC

(May always be
used)

1. SETC operand
fields

2. Character
relations

Length

Ordinary Symbols
defined in open
code; symbolic
parameters inside
macro definitions;
&SYSLIST (m), and
&SYSLIST (m,n)
inside macro
definitions

Any letter except
M,N,O‘,T and U

Arithmetic
expressions

Scaling

S'

Ordinary Symbols
defined in open
code; symbolic
parameters inside
macro definitions;
&SYSLIST (m), and
&SYSLIST (m,n)
inside macro
definitions

H’F'G)D,E’L,K’P)
and Z

Arithmetic
expressions

Integer

I'

Ordinary Symbols
defined in open
code; symbolic
parameters inside
macro definitions;
&SYSLIST (m), and
&SYSLIST (m,n)
inside macro
definitions

H)F}G?D’E)LIK)P’
and Z

Arithmetic
expressions

Count

Kl

Symbolic
parameters,
&SYSLIST (m) and
&SYSLIST (m,n)
inside macro
definitions

SET symbols; all
system variable
symbols

Any letter

Arithmetic
expressions

Number

N'

Symbolic
parameters,
&SYSLIST and
&SYSLIST (m) inside
macro definitions

Any letter

Arithmetic
expraessions

Figure 68 (Part 1 of 2). Attributes

Appendix D.

Macro Language Summary 255

code; symbolic
parameters inside
macro definitions;
&SYSLIST (m), and
&SYSLIST (m,n)
inside macro
definitions

Attribute | Nota- | Can be used with: can be used only if | Can be used in
tion type attribute is:
Defined D' Ordinary Symbols H,F,G,D,E,L,K,P, Arithmetic
defined in open and 2 expressions

Figure 68 (Part 2 of 2). Attributes

256 Assembler H Version 2 Application Programming:

Note: There are definite restrictions on the use of these

attributes.

Refer to "Chapter 9.

Assembly Instructions™ on page 195.

How to Write Conditional

Language Reference

Variahle Declared by: Initialized, Value changed { May be used in:
Symhbol or set to: by: ‘
Symbolic! Prototype Corresponding Constant Arithmetic
parameter statement macro instruc- throughout expressions if
tion operand definition operand is
decimal self-
defining term
Character
expressions
SETA LCLA or GBLA 0 SETA Arithmetic
instruction instruction expressions
Character
expressions
SETB LCLB or GBLB 0 SETB Arithmetic
instruction instruction expressions
Character
expressions
Logical
expressions
SETC LCLC or GBLC String of length SETC Arithmetic
instruction 0 (null) instruction expressions if
value is decimal
self-
defining term
Character
expressions
&SYSNDX! The assembler Macro Constant Arithmetic
instruction throughout expressions
index definition;
unique for Character
each macro expressions
instruction
&SYSECT! The assembler Control section Constant Character
in which macro throughout expressions
instruction definition;
appears set by CSECT,
DSECT, START,
and COM
&SYSLIST! The assembler Not applicable Not NY'&SYSLIST in
applicable arithmetic
expressions
&SYSLIST The assembler Corresponding Constant Arithmetic
(n) ! macro instruc- throughout expressions if
&SYSLIST tion operand definition operand is
(n,m) 1 decimal self-
defining term
Character
expressions

Figure 69 (Part 1 of 2).

Variable Symbols

Appendix D.

Macro Language Summary

257

Variable Daclared by: Initialized, value changed | May be used in:
sSymbol or set to: by: ;
&SYSPARM PARM field User defined or Constant Arithmetic
null throughout expression if
assembly value is decimal
sel f-
defining term
Character
expression
&SYSTIME The assembler System time Constant Character
throughout expression
assembly
&SYSDATE The assembler Svystem date Constant Character
throughout expression
assembly
&sysLoc? The assembler Location counter Constant Character
in effect where throughout expression
macro definition;
instruction set by CSECT,
appears DSECT, START,
COM: and
LOCTR

Figure 69 (Part 2 of 2). Variable Symbols

258 Assembler H Version 2 Application Programming:

Note to Figure 69 on page 257:

1

Can be used only in macro definitions.

Language Reference

e
N

NDE

special Characters

&SYSDATE system variable symbol 171
&SYSECT system variable symbol 172
&SYSLIST system variable symbol 173
&SYSLOC system variable symbol 179
&SYSNDX system variable symbol 176
&SYSPARM system variable symbol 177
&SYSTIME system variable symbol 179

A

A-type constant 111

absolute addresses, base registers
for 44

ACTR instruction 236

address constants

A-type 111
complex relocatable 111
Q-type 117
S-type 114
V-type 114
Y-type 111

addressability
by means of the DROP instruction 44
by means of the USING instruction 61
establishing 40
relative 45
using base register instructions 40
addresses, relocatable or absolute 74
addressing mode (AMODE) 52
AGO instruction 235
AIF instruction 232
AMODE
indicators in ESD 52
instruction to specify addressing
mode 54
ANOP instruction 237
AREAD instruction 169
arithmetic (SETA) expressions
evaluation of 216
rules for coding 215
SETC variables in 217
using 213
assembler instruction statements
base register instructions 40
See also base register
instructions
data definition instructions 90
See also data definition
instructions
listing control instructions 140
See also listing control
instructions
operation code definition
instruction 88
OPSYN instruction 88
program control instructions 128
See also program control
instructions
program sectioning and linking
instructions 45

See also program sectioning and
linking instructions

symbol definition instruction 86
assembler language

assembler instruction statements 2

coding aids overview 6

coding conventions of 8

coding form for 8

compatibility of 2

conditional assembly

instructions 195

introduction to 2

machine instruction statements 2, 68

macro instruction statements 2

statements, summary of 249

structure of 15

summary of instructions 246
assembler program

basic functions 3

procaessing sequence &

relationship to operating system 5§
attributes

count (K') 206

defined (D') 207

definition and lookahead 209

integer (I') 205

length (L') 204

number (N') 207

scaling (S') 205

summary of 251, 256

typa (T') 203
attributes in combination with

symbols 201

attributes, data 199

base register instructions

DROP instruction 4%

USING instruction 41
base registers for absolute
addresses 44
binary constants 101
binary self-defining term 27
branching 232
branching with extended mnemonic
codes 70

c

CCW instruction 126

CCHO0 instruction 126

CCH1l instruction 127

character (SETC) expressions, using 223
character constants 103

character relations in logical
expressions 222

character self-defining term 27

character set 13

character string values, concatenation
of 226

characters, special 189

Index 259

CNOP: instruction 137
coding aids overview 6

coding conventions, assembler language

character set 13
comments statement 10
continuation lines 10
field boundaries

continuation indicator field 9
identification-sequence field 9

statement field ¢
fixed format instruction
statements 11
formatting specifications 11
free format instruction
statements 11
standard coding form 8
COM instruction 60
combining keyword and positional
parameters 163, 185
comments statement format 10
comments statements
function of 148
internal macro 171
ordinary 171
compatibility, language 2
computed AGO instruction 236
concatenation of character string
values 226
concatenation of characters in model
statements 156
conditional assembly instructions
ACTR instruction 236
AGO instruction 235
AIF instruction 232
ANOP instruction 237
computed AGO instruction 236
extended AIF instruction 234
function of 165
GBLA instruction 211
GBLB instruction 211
GBLC instruction 211
how to write 195
LCLA instruction 210
LCLB instruction 210
LCLC instruction 210
MHELP instruction 239
SETA instruction 213
SETB instruction 219
SETC instruction 223
substring notations in 230
conditional assembly language
overview 149
summary of expressions 254
constants
address 111
alignment of 92
binary 101
character 103
decimal 109
duplication factor 95
fixed-point 107
floating-point 119
hexadecimal 105
information about 92
length attribute value of symbols
naming 92
modifiers of 96
nominal values of 100
padding of values 93
subfield 1 95
subfield 2 96
subfield 3 96
subfield 4 100
summary of 250

symbolic addresses of 92

trunction of values 93

types of %0, 96
continuation indicator field 9
continuation lines 10
control instructions 69
control sections

concept of 46

defining a 55

defining blank common 60

executable 47

first 49

identifying a 56

reference 47

unnamed 51
COPY instruction 138, 166
CSECT instruction 56
CXD instruction 63

D-type floating-point constant 119
D' defined attribute 207
data attributes 199
data definition instructions
CCW instruction 126
CCWO instruction 126
CCWl instruction 127
DC instruction 90
DS instruction 123
data, immediate, in machine
instructions 77
DC instruction 90
decimal constants
p and z 109
packed 109
zoned 109
decimal instructions 68
decimal self-defining term 25
DROP instruction 44
DS instruction 123
DSECT instruction 58
dummy section, identifying a 58
dummy sections, external 62
See also external dummy sections
duplication factor in constants 95
DXD instruction 63

E-type floating-point constant 119
EJECT instruction 142
elements and functions
data attributes 199
sequence symbols 208
SET symbols 195
END instruction 139
ENTRY instruction 66
EQU instruction 386
ESD entries 52
expressions
absolute 38
arithmetic 213
character 223
complex relocatable 39
conditional assembly, summary of
discussion of 36
evaluation of 37, 222

260 Assembler H Version 2 Application Programming: Language Reference

254

evaluation of character 225

logical 219

paired relocatable terms 38

relocatable 38

rules for coding 36, 222
extended AIF instruction 234
extended mnemonic codes, branching
with 70
extended SET statement 229
external dummy sections.

CXD instruction to define an 63

discussion of 62 .

DXD instruction to define an 63
external symbol dicticonary entries 52
EXTRN instruction 66

E

field boundaries
continuation indicator field 9
identification-sequence field 9
statement field 9

first control section 49

fixed format for instruction

statements 11
fixed-point constants 107
floating-point constants

D-type 119
E-type 119
L-type 119

floating-point instructions 69
formatting specifications
name entry 11
operand entries 12
operation entry 12
remarks entries 12
free format for instruction
statements 11 .

G

GBLA instruction 211

GBLB instruction 211

GBLC instruction 211

general instructions 68
generated fields, listing of 156

H

header, macro definition 152
hexadecimal constants 105
hexadecimal self-defining term 26

I'" integer attribute 205

ICTL instruction 128
identification-sequence field 9
immediate data in machine

Anstructions 77

inner and outer macro instructions 191
inner macro instructions 166

inner macro instructions, passing
sublists to 188

input/output operations 69

instruction statement format 11
internal macro comments statements 171
ISEQ instruction 129

K' count attribute 206
keyword parameters 162, 183

L-type floating—-point constant 119
L' length attribute 204
LCLA instruction 210
LCLB instruction 210
LCLC instruction 210
length attribute 29
length fields in machine
instructions 77
library macro definitions 149
linkages
by means of the ENTRY instruction 66
by means of the EXTRN instruction 66
by means of the WXTRN instruction 67
symbolic 64
linking 45
listing control instructions
EJECT instruction 142
PRINT instruction 143
SPACE instruction 142
TITLE instruction 140
listing of generated fields 156
literal pool 35, 135
literals
differences between constants,
self-defining terms, and 32
duplicate 136
explanation of 32
general rules for usage 34
location counter reference 27
location counter setting &7
LOCTR instruction 48
logical (SETB) expressions 219
lookahead mode 209
LTORG instruction 135

M

machine instruction formats
RR format 78
RRE format 78
RS format 79
RX format 80
S format &1
SI format 81
55 format 82
SSE format 83
machine instruction statements 70
addresses 76
control 69
decimal 68
examples of 78

Index 261

floating-point 69 MHELP control on &SYSNDX 239

format 242 MHELP suppression—operand=128 239

general 68 mnemonic codes, extended, branching

immediate data 77 iwith 70

input/output 69 MNOTE instruction 166

length field in 77 model statements

operand entries 72 explanation of 155

registers, use of 73 function of 147

symbolic operations codes in 70 rules for concatenation of characters
macro definitions in 156

body of a 15% rules for specifying fields in 157

combining positional and kevword summary of 249

parameters 163 variable symbols as points of

comments statements 171 substitution in 155

COPY instruction 166 modifiers of constants

format of 152 exponent 99

header 152 ' length 97

how to prepare 151 scale 98

inner macro instructions 166 multilevel sublists 187

internal macro comments
statements 171
keyword parameters 162
MEXIT instruction 167 N
MNOTE instruction 166
nesting in 191

positional parameters 161 N' number attribute 207
subscripted symbolic parameters 163 name entry 11

symbolic parameters 160 nested macros, system variable symbols
trailer 152 in 193
where to define in a source nesting

module 151 levels of 191

where to define in open code 151 recursion 191

macro instruction nesting in macro definitions 191

alternative ways of coding 180 nesting levels, passing values
description of 180 through 193

format of 180 nominal values of constants (literal)
general rules and restrictions 191 address 111

inner and outer 191 binary 101
multilevel sublists 187 character 103

name entry 181 decimal 109

operand entry 182 fixed-point 107

oparation entry 181 floating-point 119

passing sublists to inner 188 hexadecimal 105

passing values through nesting

levels 193

prototype 152
: (see also prototype, macro 0

definition)

sublists in operands 185

summary of 249 omitted operands 188
values in operands 188 open code 151, 238

macro language operand entries
comments statements 148 coding rules for 12
conditional assembly language 149 combining positional and keyword 185
defining 146 in machine instructions 72
library macro definition 149 : keyword 183
macro instruction statement 148 multilevel sublists in 187
model statements 147 omitted 188
processing statements 148 positional 182
source macro definition 149 special characters in 189
summary of 251 sublists in 185
using 146 operands

macro library 149 omitted 188

MEXIT instruction 167 sublists in 185

MHELP instruction values in 188
combining options 240 operating system, relationship to
format 239 assembler program 5
global suppression—operand=32 239 operation codes, symbolic 70
macro AIF dump—operand=¢ 239 operation entry 12
macro branch trace—operand=2 239 OPSYN instruction 88
macro call trace—operand=l 239 ordinary comments statements 171
macro entry dump—operand=16 239 ordinary symbols 22
macro exit dump—operand=8 239 ORG instruction 133

262 Assembler H Version ZLApplicatiqn Programming: Language Reference

<

C

parameters

combining positional and keyword 163

keyuword 162

positional 161

subscripted symbolic 163

symbolic 160
parentheses, terms in 31
pool, literal

See literal pool
POP instruction 132
positional parameters 161, 182
PRINT instruction 143
processing statements

conditional assembly

instructions 165

COPY instruction 166

function of 148

inner macro instructions 166

MEXIT instruction 167

MNOTE instruction 166
program control instructions

AREAD instruction 169

CNOP instruction 137

COPY instruction 138

END instruction 139

ICTL instruction 128

ISEQ instruction 129

LTORG instruction 135

ORG instruction 133

POP instruction 132

PUNCH instruction 130

PUSH instruction 132

REPRO instruction 131
program sectioning 45

See also sectioning, program
program sectioning and linking

instructions

AMODE instruction 54

COM instruction 60

CSECT instruction 56

CXD instruction 63

DSECT instruction

DXD instruction 63

ENTRY instruction 66

EXTRN instruction 66

LOCTR instruction 48

RMODE instruction 564

START instruction 55

WXTRN instruction 67
prototype, macro instruction

alternative ways of coding 154

format of 153 ‘

function of 152

name field 153

operand field 153

operation field 153

summary of 249
PUNCH instruction 130
PUSH instruction 132

Q

Q-type constant 117

registers, use of, by machine
instructions 73

relative addressing 45

remarks entries 12

REPRO instruction 131

residence mode (RMODE) 52

RMODE
indicators in ESD 52
instruction to specify residence
mode 54

RR format 78

RRE format 78

RS format 79

RX format 890

S format 81
S-type constant 114
S' scaling attribute 205
sectioning, program
accumulating the cumulative length of
external dummy sections with the CSD
instruction 63
control sections 46
defining an external dummy section
with a DXD instruction 63
ESD entries 52
first control section 49
identifying a blank common control
section with a COM instruction 60
jdentifying a control section with a
CSECT instruction 56
identifying a dummy section with a
DSECT instruction 58 .
identifying external symbols with the
EXTRN instruction 66
identifying the entry-point symbol
with the ENTRY instruction 66
identifying weak external symbols
with the WXTRN instruction 67
location counter setting 647
source module 46
specifying multiple location counters
within a control section with a
LOCTR instruction 48
specifying the addressing mode of a
control section with an AMODE
instruction 54
specifying the residence mode of a
control section with an RMODE
instruction 54
starting assembly with a START
instruction 55
unnamed control section 51
self-defining terms
binary 27
character 27
decimal 25
hexadecimal 26
using 25
sequence symbols 23, 208
SET symbols
assigning values to 213
created 198
declaring 210
define global 211

Index 263

define local 210
description of 195
extended 229
scope of 196
SETA (set arithmetic) 213
SETB (set binary) 219
SETC (set character) 223
specifications 196
specifications for subscripted 198
subscripted 196
SETA
arithmetic expression 213
instruction format 213
symbols, subscripted 213
symbols, using 218
SETB
character relations in logical
expressions 222
instruction format 219
logical expression 219
symbols, subscripted 219
) symbols, using 222
SETC
character expression 223
character expressions 22%
instruction format 223
symbols, subscripted 223
SI format 81
source macro definitions 149
SPACE instruction 142
special characters 189
55 format 82
SSE format 83
START instruction 55
statement field 9
structure, assembler language
symbols 21
terms 21
subfield 1 of constant 95
subfield 2 of constant 96
subfield 3 of constant 96
subfield ¢ of constant 100
sublists in operands 185
sublists, multilevel 187
sublists, passing, to inner macro
instructions 188
subscripted symbolic parameters 163
substring notation 230
symbol definition instruction
EQU instruction 86
symbol table 22
symbolic operation codes 70
symbolic parameters 160
symbols
attributes in combination with 201
defining 23
explanation of 21
extended SET 229
length attribute 29
ordinary 22
previously defined 25
.restrictions on 25
sequence 23, 208
system variable 171
variable 23
variable, as points of substitution
in model statements 155
system macro instructions 149
system variable symbols
&SYSDATE 171
&SYSECT 172
&SYSLIST 173
&SYSLOC 179

&SYSNDX 176

&SYSPARM 177
&SYSTIME 179

in nested macros 193
summary of 258

T' type attribute 203
terms 21

See also self-defining terms
terms in parentheses 31
TITLE instruction 140
trailer, macro definition 152
types of constants 96

u

underscore character 23
unnamed control section 51
USING instruction
base registers for absolute
addresses 4%
discussion of 41
domain of a 42
how to use the 43
for executable control
sections 43
for reference control sections
notes about the domain of a 43
notes about the range of a 43
range of a 42

v

V-type constant 114
values in operands 188
variable symbols 23
variable symbols as points of
substitution 155

variable symbols, system

&SYSDATE 171

&SYSECT 172

&SYSLIST 173

&SYsSLoC 179

&SYSNDX 176

&SYSPARM 177

&SYSTIME 179

summary of 258

W

WXTRN instruction 67

Y

Y-tvpe constant 111

264 Assembler H Version 2 Application Programming: Language Reference

43

O

QKJV

GC26-4037-0

& O

QO

Staples can cause problems with automated mail sorting equipment.

Note:

Please use pressure sensitive or other gummed tape to seal this form.

esesesesecseescetansnosnesasesssesassses s e

tessstassessecssersensests st et estacsssseaasnnsons

ceseeenve

L A T I

Reader’s
GC26-4037-0 Comment
Assembler H Version 2 Application Programming: Form
Language Reference

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of
IBM systems. You may use this form to communicate your comments about this publication, its organization, or
subject matter, with the understanding that IBM may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author’s department for whatever review and action, if any, are deemed
appropriate.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct any
requests for copies of publications, or for assistance in using your IBM system, to your IBM representative or to
the IBM branch office serving your locality.

List TNLs here:
If you have applied any technical newsletters (TNLs) to this book, please list them here:

Last TNL

Previous TNL

Previous TNL

Fold on two lines, tape, and mail. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or you
may mail directly to the address in the Edition Notice on the back of the title page.) Thank
you for your cooperation.

GC26-4037-0

Reader’s Comment Form

Fold and tape

@ 0 8 005050050 080000008000000600E6000Esee intssossostsnstsstsosssucstsssasissoesnessseresnnsirorceninerssrvsssvrossssencocrcarse

Please do not staple

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

8 0 0 5 69 6600000060000 0000000000030000000080060000000E008005000000080sersiisessesissnsrsenccssennsesrsssscssenccsssccntsoscsnccsrsnsos

Fold and tape

—— peE———. S—— m—
SR DS WM A—
-_ N S S A
-— ———— —SS——— Ss—
-— AT, WSS R
L] L W B]
L A
RN RN ESEN Vs

®

&

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

P.0. Box 50020
Programming Publishing
San Jose, California 95150

Please do not staple

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

0 0 68205 5660606066865 caseseseseessosssssssssseesesonseetenerssieteeeressssessNsssteeiteeetoNcse0eTe00N0I eI NIIEIOtPIEPIPIIIIOIIOENIIOIOIOINISIOIENILIIOCOOIOITOIONIOISIOOIOIRNIOIOIIOINISIOISIOIOITOTOTC

Fold and tape

&

0-LE0v-920D "V'S'N Ul palutd (1Z-0LES "ON 2li4) 2douaiajey sbenbue :Buiwwelbold uoneolddy g uoisiap H 13|quiassy

Note: Staples can cause problems ;h automated mail sorting equipment.

Please use pressure sensitive or other gummed tape to seal this form.

e L I R R R R R R LR A R R R

eesecss st ersesscerensreeessssenresraane s

sesecsesssesresssasesas

Reader’s
GC26-4037-0 ‘ Comment
Assembler H Version 2 Application Programming: Form
Language Reference

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of
IBM systems. You may use this form to communicate your comments about this publication, its organization, or
subject matter, with the understanding that IBM may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author’s department for whatever review and action, if any, are deemed
appropriate. '
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct any
requests for copies of publications, or for assistance in using your IBM system, to your IBM representative or to
the IBM branch office serving your locality.

List TNLs here:
If you have applied any technical newsletters (INLs) to this book, please list them here:

Last TNL

Previous TNL

Previous TNL

Fold on two lines, tape, and mail. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or you
may mail directly to the address in the Edition Notice on the back of the title page.) Thank
you for your cooperation.

GC26-4037-0

®

Reader’s Comment Form

Fold and tape Please do not staple Fold and tape

R N O N A N R R

I || || I NO POSTAGE
NECESSARY

IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

P.O. Box 50020
Programming Publishing
San Jose, California 95150

T L T O R R I R I R R R R AR R R A AL R R AR AL R A AR A

R I O R N R I R R R e R R R I R I R R R R R XY

Fold and tape Please do not staple Fold and tape

0-LE0Y-920D “V'S'N ul palulld (LZ-0LES ON 8il4) 9duassjey obenbue :Bujwiwesbold uoliedlddy g UOIsioA H Ja|qiuassy

Note: Staples can cause problemsg automated mail sorting equipment.

Please use pressure sensitive or other gummed tape to seal this form.

cesssssesssessaneessssnananoenn

cesvesaee

cestesessessessssenesanes

I R R R R

Casreana s

Seiasesseseassssseas e te et e s a ot a et

PR R R

Reader’s
GC26-4037-0 Comment
Assembler H Version 2 Application Programming: Form
Language Reference

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of
IBM systems. You may use this form to communicate your comments about this publication, its organization, or
subject matter, with the understanding that IBM may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author’s department for whatever review and action, if any, are deemed
appropriate.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct any
requests for copies of publications, or for assistance in using your IBM system, to your IBM representative or to
the IBM branch office serving your locality.

List TNLs here:
If you have applied any technical newsletters (TNLs) to this book, please list them here:

Last TNL

Previous TNL

Previous TNL

Fold on two lines, tape, and mail. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or you
may mail directly to the address in the Edition Notice on the back of the title page.) Thank
you for your cooperation.

GC26-4037-0 .

Reader’s Comment Form

Fold and tape Please do not staple Fold and tape

L R I I e I I I A R N R A I I N N N N N I I N I I A R R I A R)

| || " | NO POSTAGE
NECESSARY

IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.
POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

P.0O. Box 50020
Programming Publishing
San Jose, California 95150

@ 8 00600600605 6066060 56 0cs 685560600005 06066060060060c0606065c0606006 8606066 06006060660s65¢0006060006860 86500060655 0560060606060560¢0s0¢6s 0+ 8006606060668 0008000006808 860000808 e88000000000000000000ssssstsovssosd

I I I A I I R R R N I A A A R R I N I A A I R R R R R R R I IR A I A A P IR A Y

Fold and tape Please do not staple Fold and tape
SRS AN AR —
R ORI SR r 1
- -_— L W]
L} — L v]
- . L3 2]
-— - L B]
S GEENEENNNY BN W
N N N v —_—

0-LE0V-920D °V'S'N Ul paiulid (1Z-0LES "ON 2o[ld) 8duaiajay abenbue :Buiwwesboid uonesyddy g uoISIBA H Jajquiassy

o)

Staples can cause problems with automated mail sorting equipment.

Note:

Please use pressure sensitive or other gummed tape to seal this form.

stcesancsrasassssrasssesssen

R N T T R R P P

ceersescccstesssesasensarns

seesense

cesesrerens

P R R L R R R R R I

sessneen

Reader’s
GC26-4037-0 Comment
Assembler H Version 2 Application Programming: Form
Language Reference

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of
IBM systems. You may use this form to communicate your comments about this publication, its organization, or
subject matter, with the understanding that IBM may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author’s department for whatever review and action, if any, are deemed
appropriate.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct any
requests for copies of publications, or for assistance in using your IBM system, to your IBM representative or to
the IBM branch office serving your locality.

List TNLs here:
If you have applied any technical newsletters (TNLs) to this book, please list them here:

Last TNL

Previous TNL

Previous TNL

Fold on two lines, tape, and mail. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or you
may mail directly to the address in the Edition Notice on the back of the title page.) Thank
you for your cooperation.

GC26-4037-0

Reader’s Comment Form

Fold and tape

Please do not staple

Fold and tape

1ressesevessacs #6008 0000000 000C0000000EE0000000000000000000000eRNc00e00eENsIORIOEOIOIOIIEBREIEOIRERIETSITOITTS R R R R R R A R I)

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK; N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

P.O. Box 50020
Programming Publishing
San Jose, California 95150

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

LI e N I I R R R R N R N A R R R I I R N I N I I N R N R I I I R I I I T R N R I 'Y

Fold and tape

Please do not staple

Fold and tape

ssscecensoee

s esesssssesesssnsssesessve

essesssescssncs

ssesssseenesecece

6.8 58 60888660800 06068860606806006000000006000006000000000000000000C000CCOOIIOIOGIOIOGIGOGIOIOGIOLITOITSE

0-LE0V-9Z09 'V'S'N Ul palulld (1g-0LES "ON 3ji4) sousisyey ebenbue :Bujwweiboid uoneosjddy g uoisisp H J19|quassy

®

