

V. Subroutines and Functions
--- -----:: =-= ==---== - - - ----------_ .-

Learning System/23 BASIC

First Edition (January 1981)

Use this publication only for the purpose stated in the Preface.

Changes are periodically made to the information herein; any such changes will be reported in
subsequent revisions or Technical Newsletters.

It is possible that this material may contain reference to, or information about, I BM products

(machines and programs) , programming, or services that are not announced in your country.

Such references or information must not be construed to mean that I BM intends to announce

such I BM products, programming, or services in your country.

Publications are not stocked at the address given below. Requests for copies of IBM publications
should be made to your IBM representative or the IBM branch office serving your locality.

This publication could contain technical inaccuracies or typographical errors. A form for readers'
comments is provided at the back of this publication. If the form has been removed , address your

comments to IBM Corporation, Systems Publications, Department 27T, P.O . Box 1328, Boca
Raton, Florida 33432 . IBM may use and distribute any of the information you supply in any

way it believes appropriate without incurring any obligation whatever . You may, of course,
continue to use the information you supply .

© Copyright International Business Machines Corporation 1981

v. Subroutines and functions

Contents

About this book iv

Chapter 1. Using subroutines 1-1
Introduction 1- 1
What is a subrout ine? 1 - 2
Nested subroutines 1-8
Chapter summary 1 -10
Exercises 1 - 11
Answers 1 -13

Chapter 2. Making decisions with ON 2-1
Introduction 2-1
Using ON GOTO 2- 2
Using ON GOSUB 2-8
Chapter summary 2-10
Exercises 2-11
Answers 2-13

Chapter 3. Using functions 3-1
Introduction 3-1
System functions 3-2
Single-line functions 3-7
Multiple-line functions 3-10
Chapter summary 3-13
Exercises 3-15
Answers 3-17

Sub ro ut in es and fu nctions III

V. Subroutines and functions
About this book

I V SA34 - 01 25

This is the fifth in your series of seven books on Learning
System / 23 BAS/C. You ' re already over halfway through this
course. But don' t stop now. We still have a lot more to
show you.

In Book" of this course, you learned how to change the
order in which program statements are executed. You
learned to use FOR-NEXT loops, IF-THEN statements, and
the GOTO statement.

In Book V, you will learn three more ways to change the
order of execution. You will learn to use subroutines, which
are sequences of statements that may be used more than
once while a program is running.

You will also learn about computed changes in the order of
execution. In a computed change, the value of a numeric
expression determines the next line number to be executed.

And finally, you will learn about functions . A function
performs the same action on any number of variables .

Chapter 1. Using subroutines

Introduction

In this chapter, you will learn how to use subroutines. A
subroutine is a sequence of statements that may be used
more than once while a program is running .

Subroutines are very useful, because they can be used more
than once and control can go to a subroutine from many
different areas in a program . They can be placed anywhere
in a program, which allows you to insert your subroutines
near the end of a program . With your subroutines at the
end of a program, you won't be so confused when you read
a program listing .

Objectives

Upon completion of this chapter, you should be able to do
the following :

Write a program that contains a subroutine.

Call a subroutine by using the GOSUB statement .

Exit from a subroutine by using the RETURN statement.

If you are familiar with these tasks, try the exercises located
at the end of this chapter. If not, read through the chapter
before going on to the exercises .

U sing subroutines 1-1

Using subroutines
What is a subroutine?

~

L....-

L...--

1-2 SA34-01 25

A subroutine is a sequence of statements that may be used
more than once during program execution . You need two
specific statements to use a subroutine : GOSUB and
RETURN .

GOSUB calls a subroutine; that is, it sends program control
to a specific line number or label. RETURN sends control
back to the next program statement following the GOSUB .

Let's look at an example :

10 X= 10
20 Y=20
30 GOSUB 80
40 REM SUBROUTINE
50 X= 15
60 Y=30
70 GOTO 1 1 0
80 REM SUBROUTINE
9 0 PRINT X, Y
100 RETURN -",,'

11 0 END

RETURNS TO H ERE

STARTS HERE

.. .:..!.. "

Line 30 calls the subroutine that starts at line 80. When line
100 is executed, control goes back to the line following the
GOSUB. In this case, control goes back to line 40.

Notice that we put the subroutine near the end of the
program . This makes it easier to follow the flow of contro l
in the program listing .

We said that a subroutine can be used more than once.
What would happen if we added line 65 '1

65 GOSUB 80

The program would look like this:

10 X= 10
20 Y=20
30 GOSUB 8 0

r -40 REM 1 ST RETURNS TO HERE
I 50 X= 15
I 60 Y=30

~~-+--65 GOSUB 80
-70 GOTO 11 0 ! 2ND RETURN S TO HERE

80 REM SUBROUTINE STARTS HERE
I I 90 PRINT X, Y
LL __ 100 RETURN

11 0 END

The same subroutine (lines 80, 90, and 100) is used twice .

When line 30 calls the subroutine, the RETURN in line 100
sends control back to line 40.

When line 65 calls the subroutine, the RETURN in line 100
sends control back to line 70.

Using subroutines '·3

Using subroutines
What is a subroutine? (continued)

1-4 SA34-0125

Often, subroutines are used to control paging and pr int or
display headings on reports.

For example, suppose you want a program to print three
reports, and you want each report to have the same
heading. If you have a printer, enter the following program .

Note: This program has a lot of statements, so take your
time and enter the lines carefully.

CLEAR
10 OPTION BASE 1
20 DIM ITEM$(5),QUANTITY(5) ,COST(5)
30 DATA "NUTS","BOLTS","SCREWS"
40 DA'I'A "NAILS", "HAMMERS"
50 DATA 2000,1500,850,5000,7
6 0 DATA . 29 , . 39 . , 11. , 02 , 10 . 98
70 READ MAT ITEM$,MAT QUANTITY,MAT COST
80 PRINT #255:HEX$("2B0205000AI042")
90 GOSUB HEADING
100 PRINT #255:MAT ITEM$! REPORT 1
110 GOSUB HEADING
120 PRINT #255:MAT QUANTITY! REPORT 2
130 GOSUB HEADING
140 PRINT #255:MAT COST! REPORT 3
150 GOTO 200
160 HEADING: ! START A NEW REPORT
170 PRINT #255:NEWPAGE,"XYZ COMPANY"
180 PRINT #255:
190 RETURN
200 END

Notice that we are using a label in lines 90, 110, 130, and
160 instead of a line number. The label HEADING identifies
the subroutine.

RUN

Now run the program:

RUN

The following pages should be printed :

XYZ COMPANY

NUTS
BOLTS
SCREWS
NAILS
HAMMERS

XYZ COMPANY

2000
1500
850
5000
7

XYZ COMPANY

.29

. 39

.11

.02
10.98

Using subro utines 1-5

Using subroutines
What is a subroutine? (continued)

List the program :

LIST

00010 OPTION BASE 1
00020 DIM ITEM$(5).QUANTITY(5).COST(5)
00030 DATA .. NUTS BOLTS SCREWS ..
0004Q DATA "NAILS HAMMERS ..

00050 DATA 2000,1500.850.5000.7
00060 DATA .29 •• 39 •• 11 •. 02.10.98
00070 READ NAT ITEN$.MAT QUANTITY.MAT COST
00080 PRINT #255:HEX$("ZB0205000A104Z")
00090 GOSUB HEADING
00100 PRINT #Z55:MAT ITEH$! REPORT 1
00110 GOSUB HEADING
001Z0 PRINT #Z55:HAT QUANTITY ! REPORT Z

00130 GOSUB HEADING
00140 PRINT #255:MAT COST ! REPORT 3
00150 GOTO 200
00160 HEADING: ! START A NEW PAGE
00170 PRINT #255:NEWPAGE."XYZ CONPANY" II

00180 PRINT #255:
00190 RETURN
00200 END

- II

1·6 SA34 -0 125

What happened when you ran this program?

First, as you learned in Book IV, you assigned values to
entire arrays by using a READ MAT statement (line 70) .

After the values were assigned, you skipped to a new page
and printed a heading :

XYZ COMPANY

Then you skipped a line on the page. This was all done in
the subroutine (lines 160-190) .

The first report was then printed. It showed the names of
the items (line 100).

Then you called the heading subroutine again . This time, it
returned to line 120.

The second report was printed (line 120).

You called the heading subroutine again. This time, it
returned to line 140.

The third report was printed (line 140)' and the program
ended.

Notice that one subroutine (lines 160-190) was used three
times. Each time, it returned to a different line number.

Using subroutines 1-7

Using subroutines
Nested subroutines

1-8 SA34-0125

One subroutine can call another subroutine. That means that
you do not have to execute a RETURN statement in one
subroutine before going to another subroutine. These are
sometimes called nested subroutines.

Look at the following example :

40 GOSUB 100
....---+- 50 GOTO 270

•
•
•
•
100 X=20
110 Y=30

•
•
•
150 GOSUB 210
160 PRINT X-V

•
•
•

~-+- 200 RETURN
210 PRINT X
220 PRINT Y

•
•
•
260 RETURN
270 z=x*y

..

If we assume there are no other statements that direct
program control , the order of execution in this example is :

Line number

40
100-150
210-260
160-200
50
270

Whenever a RETURN statement is executed, program
control goes to the line number following the last GOSUB
statement that was executed .

Remember : A subroutine requires both a GOSUB and a
RETURN. You can ' t have a GOSUB without a RETURN . You
can ' t have a RETURN without a GOSUB. But one RETURN
statement can send control to different lines in a program.

Note when using subroutines: All variables will keep the
value they had before the subroutine was called, unless
statements in the subroutine cause them to change.

Using subroutines 1-9

Using subroutines
Chapter summary

1-10 SA34-0125

A subroutine is a sequence of program statements that may
be used more than once during program execution. It
requires two programming statements:

GOSUB-tells program control to go to a specific line
number.

RETURN- tells program control to go back to the line
following the GOSUB.

One subroutine can call another subroutine, but each
subroutine requires a RETURN statement.

•

Exercises

Question 1

Add a statement to the following program, on line 20, that
sends control to a subroutine beginning in line 40.

10 NAME$= " XXX BUILDING"
30 STOP
40 PRINT NAME$
50 RETURN
60 END

Answer :

Question 2

What is the order of execution in the following program?

10 GOSUB 40
20 PRINT "JOHN DOE"
30 GOTO 60
40 PRINT "EMPLOYEE "
50 RETURN
60 PRINT "MARY SMI TH"
70 END

Answer:

Using subroutines 1-11

Using subroutines
Exercises (continued)

Question 3

What is the order of execution in the following program?

10 GOSUB 30
20 STOP
30 X=l
40 PRINT X
50 GOS UB 80
60 PRINT X
70 RETURN
80 X=2
90 RETURN
100 END

Answer :

1-12 SA34-0125

Answers

Question 1

20 GOSUB 4 0

Question 2

line number

10
40
50
20
30
60
70

Question 3

line number

10
30
40
50
80
90
60
70 • 20

Using subroutines 1-13

•

•

1-14 SA 34 - 01 25

•

Chapter 2. Making decisions with ON
Introduction

In this chapter, you will learn another way to control the
order of program execution . You will learn how to use the
ON statement with GOTO and GOSUB.

When you use the ON statement, your programs will not
send control to one specific line. Instead, your programs will
compute, or calculate, the value of an expression . The line
that will get control next will depend upon the calculated
value.

Objectives

Upon completion of this chapter, you should be able to do
the following :

Change the order of program execution by using the ON
GOTO statement.

Change the order of program execution by using the ON
GOSUB and RETURN statements .

If you are familiar with these tasks, try the exercises located
at the end of this chapter. If not, read through the chapter
before going on to the exercises .

M aking deci sions with ON 2-1

Making decisions with ON
Using ON GOTO

2-2 SA34-01 25

In Book II of this course, you learned how to use the GOTO
statement to change the order of execution.

10 PRINT "JANUARY"
20 GOTO 40
30 PRINT "FEBRUARY"
40 PRINT "MARCH "
50 END

Line 20 sends control directly to line 40.

You also learned how to test the value of an expression .
The resulting value decided whether you went to another
line or not.

10 PRINT "ENTER A NUMBER"
20 INPUT NUMBER
30 IF NUMBER>5 THEN GOTO 70
40 IF NUMBER<5 THEN GOTO 90
50 PRINT "NUMBER = 5"
60 GOTO 100
70 PRINT "NUMBER > 5"
80 GOTO 100
90 PRINT "NUMBER < 5"
100 END

Lines 30 and 40 test the value of NUMBER. Each line sends
program control to a specific line number, depending on the
value of NUMBER.

•

•

CLEAR
10 PRINT "ENTER A HUMBER"
20 INPUT NUMBER
30 ON NUMBER GOTO 40.60.80
40 PRINT "JANUARY"
50 STOP
60 PRINT "FEBRUARY"
70 STOP
eo PRINT "MARCH"
90 END

Now we' ll show you how one statement can send control to
one of several different lines. Again, we will test the value
of NUMBER.

Enter the following program :

CLEAR
10 PRINT "ENTER A NUMBER"
20 INPUT NUMBER
30 ON NUMBER GOTO 40,60,80
40 PRINT "JANUARY"
50 STOP
60 PRINT "FEBRUARY"
70 STOP
80 PRINT "MARCH"
90 END

What happens when you run this program?

First, you will enter a number. In line 3D, your System/23
tests the number.

If the number is 1, control goes to line 40. If the number is
2, control goes to line 60. If the number is 3 , control goes
to line 80.

This is a computed GOTO. Your System/23 computes the
value of an expression (in this case, NUMBER). The value
tells your System/23 which line to send control to .

30 ON NUMBER GOTO 4 0 , 60 , 80
t t f

(Va lue o f NUMBER) =l, 2 , 3

Control transfers to the line whose position in the list equals
the value of NUMBER.

Making decisions with ON 2-3

Making decisions with ON
Using ON GOTO (continued)

RUN

ENTER A NUMBER

?2

FEBRUARY

00010 PRINT "ENTER A NUMBER"
00020 INPUT NUMBER
00030 ON NUMBER GOTO 40,60,80
00040 PRINT "JANUARY"
00050 STOP
00060 PRINT "FEBRUARY"
00070 STOP
OOOSO PRINT "MARCH"
00090 END

00010 PRINT "ENTER A NUMBER"
00020 INPUT MONTH
00030 ON MONTH GOTO JAN,FEB,MAR
00040 JAN: PRINT "JANUARY"
00050 STOP
00060 FEB: PRINT "FEBRUARY"
00070 STOP
00080 I1AR: PRINT "I1ARCH"
00090 END

2-4 SA34-01 25

Now run the program and enter 2 :

RUN
ENTER A NUMBER
? 2

What happened? FEBRUARY was displayed on the screen
when you entered a 2 . Control went to line 60, because 60
was the second line number in the list.

List your program :

LIST

Let's see if we can make this a little easier to follow by
using labels. Enter these changes :

20 INPUT MONTH
30 ON MONTH GOTO JAN,FEB,MAR
40 JAN: PRINT "JANUARY"
60 FEB: PRINT "FEBRUARY"
80 MAR: PRINT "MARCH"

Now list your program:

LIST

In this version, you input a value for the variable MONTH. If
you input a 1, control goes to the statement with the label
JAN. If you input a 2, control goes to FEB . And if you input
a 3, control goes to MAR.

30 ON MONTH GOTO JAN , FEB , MAR
I / /

(Va lue o f MONTH) =1 , 2 , 3

•

•

..

RUN
ENTER A NUMBER

?2
FEBRUARY

RUN
ENTER A NUMBER

?4

RUN
,1/

ERROR 94
I

Run the program again , and enter a 2:

RUN
ENTER A NUMBER

?2

You can see that the results are the same.

What would happen if you entered a 4 ? Let's try it. Enter :

RUN
ENTER A NUMBER
?4

0210 30 I
The program is interrupted with an error. You entered a 4
for NUMBER, but there are only three line numbers
following the GOTO.

How can you correct this? Press the Error Reset, and enter:

GO END

** 1

GO END_
READY INPUT

Now, enter,

30 ON MONTH GOTO JAN,FEB,MAR NONE 84
82 STOP
84 PRINT "NUMBER IS TOO LARGE"

Making decisions with ON 2-5

Making decisions with ON
Using ON GOTO (continued)

Now run the program again and enter a 4 :

RUN
ENTER A NUMBER

30 ON HONTH GOTO JAN,FEB.MAR NONE 84 ? 4
IS2 STOP
a .. PRINT "NUi'roER IS TOO LARGE"
RUN
E'nER A NUMBER

'4

NUMBER IS TOO LA~GE

2-6 SA34 -01 25

If you enter any number greater than three, the NONE in
line 30 sends control to line 84.

The value you test in an ON-GOTO statement can be any
arithmetic expression . For example,

10 ON X+1 GOTO 30 , 50 , 70

In this example, the value of the expression X+ 1 determines
which line number control goes to. If X=O, then X+ 1 = 1.
So, if X=O, control goes to line 30.

10 ON X+ 1 GOTO 30 , 50 , 70 , \ ,
(Value of X+1)= 1 , 2 , 3

If the expression produces a decimal value that is not a
whole number, it is rounded to a whole number (an integer) .
For example, if the value of the expression equals 2 .75,
control transfers to the third line number in the list. (2 .75 is
rounded to 3 .)

•

It ...

,

Let's look at another example . This time, we'll show a list of
options available in an example inventory program . This
inventory program will be expanded in Books VI and VII.

lO PRINT " l CREATE FILE "
20 PRINT " 2 ADD ITEM "
30 PRINT " 3 UPDATE ITEM "
40 PRINT "ENTER OPTI ON NO."
50 INPUT CHOI CE
60 ON CHOI CE GOTO 8 0 , ll O, l4 0 NONE 7 0
70 STOP
80 REM OPTI ON l
•
•
l l O REM OPTION 2
•
•
l4 0 REM OPTION 3
•
•
l 70 END

If you choose OPTION 1, control goes to line 80. If you
choose OPTION 2, control goes to line 110. If you choose
OPTION 3, control goes to line 140.

Your turn!

What happens if you enter 57

Answer : The program stops (line 70) .

Making dec isions with ON 2-7

Making decisions with ON
Using ON GOSUB

CLEAR

10 PRINT "ENTER A NUMBER"
20 INPUT NUMBER
30 ON NUMBER GOSUB 50.80 NONE 110
40 GO TO 130
50 PR UIT NUMBER
60 NUMBER = NUMBER + 1
70 RETURN
80 PRINT NUMBER
90 NUMBER = NUMBER - 1
100 RETURN
111 PRINT NUMBER
120 RETURN
130 PRINT NUMBER
140 END

2-8 SA34-0125

You can also use the ON statement to send program control
to one of several different subroutines.

Enter the following program :

CLEAR
10 PRINT "ENTER A NUMBER"
20 INPUT NUMBER
30 ON NUMBER GOSUB 50,80 NONE 110
40 GOTO 130
50 PRINT NUMBER
60 NUMBER = NUMBER + 1
70 RETURN
80 PRINT NUMBER
90 NUMBER = NUMBER - 1
100 RETURN
110 PRINT NUMBER
120 RETURN

° 130 PRINT NUMBER
140 END

Notice that line 30 sends control to three different
subroutines.

If you enter 1 for NUMBER. you use the first subroutine
(lines 50-70). If you enter 2, you use the second subroutine
(lines 80-100).

If you enter any other number, you use the third subroutine
(lines 110-120).

Remember that values are rounded to integers (whole
numbers) when being tested in ON statements.

(

RUN
ENTER A NUMBER

?1

1

2

RUN
ENTER A NUMBER

12

2

1

RUN
ENTER A NUMBER

?ls
15

IS

As with any subroutine, you need the statements GOSUB
and RETURN . However, in this program, the RETURNs in
lines 70, 100, and 120 all send control to line 40.

Let's run the program three times to see the different
results . The first time, enter 1 for NUMBER :

RUN
ENTER A NUMBER
?l

Now run the program again and enter 2 for NUMBER :

RUN
ENTER A NUMBER
?2

And finally, run the program and enter 15 for NUMBER:

RUN
ENTER A NUMBER
71 5

Just like a computed GOTO, a computed GOSUB tests the
value of an expression (in this case, NUMBER). Control
goes to a subroutine whose first line number is in the list
following the word GOSUB. Control goes to the line whose
position in the list equals the value of NUMBER.

30 ON NUMBER GOS UB 50 , 80 NONE 11 0
\ \

(Value o f NUMBER)=l, 2

If NUMBER does not equal 1 or 2, control goes to line 110.

Don' t forget to end all subroutines with RETURN.

Making decisions with ON 2-9

Making decisions with ON
Chapter summary

2-10 SA34-0125

These statements allow you to change the order of program
execution:

. GOTO-sends program control to a specific line
number.

10 GOTO 40

ON GOTO-sends program control to one of a list of
line numbers.

10 ON X+1 GOTO 30 , 50 ,1 00 ,1 80 NONE 20

GOSUB/RETURN-tells the program to execute a
specific subroutine and returns control to the next line
following the GOSUB .

10 GOSUB 4 0
•
•
40
•
•
70 RETURN

ON GOSUB/RETURN-tells the program to execute
one of a list of subroutines and returns control to the
next line following the ON GOSUB.

10 ON X+1 GOSUB 30 , 50 NONE 20
20
30
4 0 RETURN
50
60
70 RETURN

~

~

Exercises

•

Question 1

What is the order of execution in the following programs ?

a. 10 X=2
20 ON X GOTO 50 , 30 , 4 0
30 PRINT X
4 0 PRINT X- 1
50 END

Answer:

b. 10 X=l
20 ON X GOTO 50 , 30 , 4 0
30 PRINT X
40 PRINT X-1
50 END

Answer :

M akin g d ecisions with ON 2-11

Making decisions with ON
Exercises (continued)

2-12 SA34-0125

Question 2

What is the order of execution in the following program?

10 NUMBER=5
20 ON NUMBER GO TO 80 ,4 0 NONE 30
30 NUMBER=1
40 ON NUMBER GOS UB 60 , 70
50 GOTO 80
60 PRINT NUMBER
70 RETURN
80 END

Answer:

Answers

Question 1

a. Line number

10
20
30
40
50

b. Line number

10
20
50

Question 2

Line number

10
20
30
40
60
70
50
80

Making decisions with ON 2-13

2-14 SA34-0125

..

Chapter 3. Using functions

Introduction

Sometimes in a program, you may want to perform the
same action on several different variables. In this chapter,
we will show you how to use functions to perform the
same action on a number of values.

We will introduce you to several functions that are stored
internally in your System/23. We will also show you how to
define your own functions in a program .

Objectives

Upon completion of this chapter, you should be able to do
the following :

Use the system functions SQR, ROUND, pas, and
RPT$.

Define a function in a single line by using the DEF
statement.

Define a function in a number of lines by using the DEF,
LET, and FNEND statements .

Join two character strings to form one string by using
&.

Refer to a specific portion of a character string .

If you are familiar with these tasks, try the exercises located
at the end of this chapter. If not, read through the chapter
before going on to the exercises .

USing fu nctions 3-1

Using functions
System functions

RUN
4

00010 OPTION RD 00
00015 lET ~=100
00020 PRINT SQR(X)
00030 END

3-2 SA34-0125

A function allows your System / 23 to perform the same
action on a number of different variables.

Several functions are stored internally on your System / 23,
almost like the internal constant PI. These functions perform
several commonly used operations and always have the
same meaning. They are called system functions.

For example, the system function SQR produces the squa re
root of a number. However, your System / 23 produces
approximate values for SQR so you should use OPTION RD
with SQR .

Let's try it and see. Enter :

CLEAR
10 OPTION RD 00
20 PRINT SQR(16)
30 END

Now run the program :

RUN

The number 4 , which is the square root of 16, is displayed .
SQR(16) = 4 .

You can also use a variable with SQR. Enter the following :

15 X=100
20 PRINT SQR (X)

Now list the new version of your program :

LIST

•

RUN

10

OOOOS PRINT "ENTER PRICE"
00010 INPUT PRICE
00020 LET TOTAL=PRICE+PRICE*.06
00030 PRINT PRICE. TOTAL
00040 END

OOOOS PRINT "ENTER PRICE"
00010 INPUT PRICE
~020 LET TOTAL=PRICE+PRICE*.06
0002S LET TOTAL=ROUNOITOTAL.2)
00030 PRINT PRICE. TOTAL
00040 END

Now run your program:

RUN

As you can see, the number lOis displayed. X= 1 00, so
SOR(X)=SOR(1001. and SOR(100)=10.

Another system function is ROUND. The ROUND function
allows you to round an individual number to a specified
number of digits. For example,

ROUND(5.99001,2)=5.99
, I /

Or iginal/' Two digits to the right
number of the decimal point

Let's see how this can be used in a program. We'll use the
PRICE program you saved in Book II.

Load your program back into the work area:

LOAD PRICE

List the program :

LIST

We want to make sure that the total price is always
rounded to dollars and cents. So, enter:

25 TOTAL=ROUND(TOTAL,2)

List the new version of your program:

LIST

Using functions J.J

Using functions
System functions (continued)

?15-.99
15-.99

00005 PRlNJ "ENTER PRICE"
00010'- INPUT 'PRICE

3-4 SA34- 0125

16.95

Notice in line 25 that we are changing the value of TOTAL.
The new value will be rounded to two decimal places.

Now, run the program and enter 15.99 for PRICE :

RUN
ENTER PRI CE

?15.99

You can see that 16.95 is displayed, instead of 16.9494.
Remember that if you had entered OPTION RD 2, the
number 15.99 would also be rounded when it was
displayed. But, 15.99 already has only two digits to the right
of the decimal point.

Let's look at one more example. Change the 2 in line 25 to
a O. It will look lik this :

25 TOTAL=ROUND(TOTAL,O)

List your program :

LIST

In this example, we want the total to be rounded to an even
number of dollars. Go ahead and run the program with
15.99 for PRICE:

RUN
ENTER PRI CE

?15.99

•

..

We're going to show you two more system functions. The
first is POS. It works like this :

POS(A$, B$,X)

Position of B$ in A$, beginning at position X in A$

For example, if

A$ =" ABCABCDE "
a nd
B$ =" BC"

Then

POS(A$, B$, 1) =2
and
POS(A$, B$,4) =5

The string A$ is searched from left to right for the string
B$. In this case, B$ equals "BC" .

If X = POS(A$, B$, 1 L the search begins in position 1. The
first place BC is found is in position 2. So, X = 2.

If X = POS(A$, B$AL the search begins in position 4 . The
first place BC is found is in position 5. So, X = 5.

If BC is not found in A$, the result is O.

We'" show you an example of POS on the next page.

Using functions 3-5

Using functions
System functions (continued)

RUN
ENTER YOUR INITIAL

?J
POSITION 10
JJJJJJJJJJ

3-6 SA34-0125

The last system function w e're going to show you is RPT$.
It works like this :

RPT$(A$, X)

Repeat the string A$, X times .

For example, if

A$= " SA "

Then

RPT$(A$, 3)= " SASASA "

Let's use POS and RPT$ in a program . Enter the following :

CLEAR
10 DIM A$*26
20 A$="ABCDEFGHIJKLMNOPQRSTUVWXYZ"
30 PRINT "ENTER YOUR INITIAL"
40 INPUT 1$
50 X=POS (A$,I$,l)
60 PRINT "POSITION"iX
70 PRINT RPT$(I$,X)
80 END

Now, run the program and enter your initial. (We' ll use J in
our example, y")u use your first initial.)

RUN
ENTER YOUR I NI TIAL
?J

Your initial is repeated the number of times indicated after
POSITION.

..

•

Single-line functions

CLEAR
10 OEF FNS{XI=2*X+I0
20 A=l
30 8=2
40 X=O
50 PRINT FNS{AI;FNS(81;FNS(XI
60 PRINT AIB;X
70 END

You can also define your own functions in a program. The
statement for a single-line function looks like this :

D£F FNS4X) .,2 • X + 10"

funJon \ummy 'valua
name variabla returned

Where DEF means define; FN means function, and S is the
function name. You must always enter FN and the function
name (for example, FNS) when you use a function in a
program.

The function can have any numeric variable name. The X is
a dummy variable. It stands for any numeric variable in the
program . It also can be any numeric variable name. The
value of the dummy variable is not affected if used
elsewhere in the program.

In this example, the function S will always produce a value
equal to two times the original value plus ten . For example,

if Z=3, FNS(Z) =2 * 3 + 10 = 16

if B=5, FNS(B) =2 * 5 + 10 = 20

Let's look at another example. Enter the following program :

CLEAR
10 DEF FNS (X) 2 * X + 10
20 A=1
30 B=2
40 x=o
50 PRINT FNS(A) iFNS(B) iFNS(X)
60 PRINT AiBiX
70 END

Using functions 3-7

Using functions
Single-line functions (continued)

3-8 SA34- 0125

Now run the program:

RUN

Notice that FNS(1 L FNS(2L and FNS(O) are not individually
defined. The S function of any value is defined in line 10.

10 DEF FNS(X) = 2 * X + 10

So, FNS(1) equals 12, FNS(2) equals 14, and FNS(O) equals
10.

Notice also that the values of A , B, and X do not change
when you use the functions.

You can also use single-line functions to assign values to
character variables.

The statement for a single-line function looks like this :

Where DEF means define ; FN means function, and A$ is
the function name. The function can have any character
variable name. The X$ is a dummy variable. It stands for
any character variable in the program .

In this example, the function A$ is defined. This function
produces the original character string repeated three times.

If N$ = "J" , then FNA$(N$) = "JJJ".

..

Let's look at two more examples. These functions will show
you two more things you can do with strings.

A$="MIAMI, FL"
B$=" 33 133 "
C$=A$&B$
D$=C$ (11 : 15)

The value C$(11 :15) means characters 11 through 15 of the
string C$. You can also assign a value to certain positions in
a string. For example, to make the first three characters of a
string E$ be blank, you would enter E$(1 :3)= "

The & symbol joins two character strings. The length of the
resulting string equals the sum of the lengths of the two
joining strings. So,

C$="MIAMI, FL 33 133 "
D$=" 33 133 "

Let's use the & symbol in a function in a program. Enter the
following, but use your name in lines 10 and 20:

CLEAR
10 F$="JOHN"
20 L$="DOE"
30 DEF FNNAME$ (X$,Y$)=X$&" "&Y$
40 PRINT FNNAME$(F$,L$) ,F$(l:l)jL$(l:l)
50 END

In line 40, we display your name and your initials. Now run
the program :

RUN

Using functions 3-S

Using functions
MUltiple-line functions

A multiple-line function also allows your System/23 to
perform the same action on a number of different variables.
However, it requires more than one statement to define the
function. It requires at least the following three statements :

DEF FNM(X)

/
Function
name

•
•

Dummy
variable

lET FNM = X+1
/ '-.--I

Function
name

•
•
FNEND

Value
returned

') ;

CLEAR
10 A=
20 8-3
30 DEF FNttIX)
40 IF X<=O THEN FHH=O ELSE FNM=l
50 FHEHO
60 PRINT FNHIA).FNMI8)
70 END

3-10 SA34-0125

Required at end
of function

The value of the function is the value last assigned by a LET
statement. Remember that the word LET is optional. LET
X=l is the same as X=l .

Let's look at an example. Enter the following:

CLEAR
10 A=5
20 B=- 3
30 DEF FNM(X)
40 IF X(=O THEN FNM=O ELSE FNM=l
50 FNEND
60 PRINT FNM(A) ,FNM(B)
70 END

RUN

o

This function will always produce one of two different
values : 0 or 1.

A>O , so FNM (A)= l
B<O , so FNM (B)=O

Go ahead and run the program :

RUN

Notice that in a multiple-line function, the first line
(beginning with DEF) does not assign a value. It is assigned
later in the function with LET. A multiple-line function can
be used for numeric or character variables, but not both .

Things to remember when defining a function :

A function can be defined anywhere in a program, either
before or after it is referenced.

A function can be defined only once in a program.

If you use X as a dummy variable to define a function,
such as DEF FNA(X), the value of X will not be affected
if used elsewhere in the program .

In a multiple-line function, a value is not assigned in the
DE F statement.

You cannot input or output data within the statements
that define the function if that function is called from an
I/O statement.

For example, you cannot enter :

U si ng f unct ions 3-11

Using functions
MUltiple-line functions (continued)

3-12 SA34- 01 25

10 PRINT FNA(5)
20 STOP
30 DEF FNA(X)
40 PRINT 5
50 FNEND

Chapter summary

A function performs the same action on several different
variables. There are two different types of functions : those
stored internally on your System/23 ; and those that you
define. You can define two different types of functions:

Single-line-The function is defined in one statement.

DEF FNA(X)=X*4+X- l
or
DEF FNA$(X$)=X$& " ABC"

Multiple-line-The function is defined in several
statements .

DEF FNA(X)
FNA=X*4+X-l
FNEND
o r
DEF FNA$ (X$)
FNA$=X$ &" AB C"
FNEND

Several system functions are stored in your System/23.
They include:

SQR(X)-Th is returns the square root of X.

ROUND(X,2)- This returns the number X rounded to 2
decimal places.

POS(X$, Y$, 1)-This returns the first position of a
character string Y$ in the string X$, beginning at
position 1.

RPT$(X$,3)-This returns the character string X$,
repeated 3 times .

Using functions 3-13

Using functions
Chapter summary (continued)

3-14 SA34 -0125

Several other system functions are stored on your
System / 23. Refer to " System functions" in your BASIC
Language Reference manual for a complete list.

You can add two character strings together with the &
symbol. You indicate specific characters in a string , such as
characters 1 through 4, with X$(l :4) .

Exercises

Question 1

What w ill be d isplayed if you run the following programs ?

a. 10 X=-4
20 Y=1 0
30 DEF FNS(T) =T * 10
4 0 PRINT FNS(X) , FNS(Y)
50 END

b. 10 DEF FNCIRC(R)
20 FNCIRC=2 *PI *R
30 FNEND
40 RADIUS= 5
50 PRINT USING 60 :FNCIRC (RADIUS)
60 FORM N 7 . 3
70 END

c . 10 A$= " NEW"
20 B$= " S "
30 DEF FNM$(X$, Y$)=X$&Y$
40 PRINT FNM$(A$, B$)
50 END

A nswer: a.

b .

c.

Using functions 3·15

Using functions
Exercises (continued)

Question 2

What will be displayed if you run the following programs?

a . 10 T$= " TEXAS "
20 X$ =" E "
30 PRINT POS(T$, X$,l)
40 PRINT ROUND(18 3 . 0 0 10 , 3)
50 END

b. 10 I$= " EMPLOYEE1 "
20 OPT I ON RD 00
30 PRINT 1$ (1 : 3)
40 PRINT SQR(9)
50 END

Answer : a.

b.

3-16 SA34-0125

Answers

Question 1

a. - 40

b. 31.416

c. NEWS

Question 2

a. 2
183 . 00 1

b. EMP
3

100

Using functions 3·17

3-18 SA34-0125

.,
c:
::i
Cl
c:
o
<!
"0
"0
LL

o
:;
u

I
I
I
I
I
I
I
I
I

READE R'S COMMENT FORM

SA34-0125-0

V. Subroutines and Functions

Your comments assist us in improving the usefulness of our publications; they are an

important part of the input used in preparing updates to the publications. IBM may

use and distribute any of the information you supply in any way it believes appro­

priate without incurring any obligation whatever. You may, of course, continue to

use the information you suppl y.

Please do not use this form for technical questions about the system or for requests

for additional publications ; this only delays the response. I nstead, direct your

inquiries or requests to your I BM representative or the I BM branch office serving

your locality .

Corrections or clarifications needed:

Page Comment

Please indicate your name and address in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments.)

Reader's Comment Form

Fold and tape

Fold and tape

--- ------ ----- ---- - ---- - - ----------_ .-

Please Do Not Staple

III II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE Will BE PAID BY ADDRESSEE

I BM Corporation
Systems Publications, Dept 27T
P.O, Box 1328
Boca Raton, Florida 33432

Please Do Not Staple

Fold and tape

NO POSTAGE
NECESSARY
IFMAllED

IN THE
UNITED STATES

Fold and tape

SA34·0125-0
Printed in U .S.A.

I
1~

